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INTRODUCTION 

Avec le soutien du C.N.R.S et de la D.R.E.D, l'année académique 1990/91 
fût une année spéciale consacrée aux méthodes semiclassiques. 

A l'origine les méthodes semi-classiques désignaient les techniques utilisées 
par les physiciens pour essayer de comprendre les relations subtiles existant en
tre la mécanique classique de Newton et la mécanique quantique de Heisenberg-
Schrôdinger (lorsque la constante de Planck h devient négligeable par rapport 
aux autres grandeurs physiques: masse, énergie, distances, . . . ). L'exemple fon
damental est la méthode B.K.W (Brillouin, Kramers, Wentsel ) qui consiste à 
construire des solutions asymptotiques, par rapport à la constante de Planck, 
de l'équation de Schrôdinger. Cette méthode est restée longtemps formelle. La 
justification mathématique rigoureuse a nécessité l'élaboration de théories so
phistiquées qui ont vu le jour dans les armées 1970 (indice de Maslov, opérateurs 
intégraux de Fourier-Hôrmander). A partir de ces travaux de base, de nom
breux mathématiciens se sont attaqués avec succès à divers problèmes issus de la 
physique et se traduisant par l'étude spectrale d'opérateurs pseudo-différentiels, 
dépendant de paramètres. Citons quelques exemples parmi les plus connus: 

• le comportement du spectre de l'opérateur de Schrôdinger lorsque la 
constante de Planck tend vers zéro ( régie de Bohr-Sommerfeld, effet tunnel ) 

• le comportement asymptotique des grandes valeurs propres ( formules du 
type Weyl) 

• la trace du noyau de la chaleur lorsque la température tend vers zéro et 
les invariants géométriques associés 

• diffusion quantique ou acoustique: problèmes à plusieurs corps, problèmes 
inverses, résonances 

• systèmes périodiques: analyse du spectre de bande, problèmes inverses 
• description de certains systèmes quantiques désordonnés: potentiels quasi 

périodiques, équation de Harper, chaos quantique 
• limite thermodynamique. 

Durant ces quinze dernières années, les méthodes semi-classiques se sont beau
coup enrichies avec le développement de l'analyse microlocale des équations 
aux dérivées partielles et de leurs solutions. De nombreux mathématiciens (et 
physiciens!) ont participé à ce développement. Parmi les travaux que l'on 
peut considérer comme fondamentaux mentionnons en particulier ceux de S. 
Agmon, Y. Colin de Verdière, J. Chazarain, L. Hôrmander, V. Ivrii, J. Leray,V. 
Maslov, R. Melrose, J. Sjôstrand, A. Voros (je cite ces noms car il me sem-
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INTRODUCTION 

ble bien représenter le rapprochement fructueux qui s'est effectué durant cette 
période entre l'analyse des équations aux dérivées partielles et la physique-
mathématique ). 
Deux volumes de la collection Astérisque regroupent les actes de l'Ecole d'Eté 
et du Colloque International organisés à Nantes, en Juin 1991. L'Ecole d'Eté 
était centrée sur quatre cours: V. Ivrii (Asymptotiques Spectrales); M A Shu-
bin (Théorie spectrale sur les variétés non compactes); A. Soffer (Problèmes 
à N-corps) et G. Ulhmann (Problèmes inverses). Le Colloque International 
comportait vingt conférences portant sur des thèmes variés, illustrant la puis
sance des méthodes semi-classiques appliquées aux équations de la mécanique 
quantique ou à l'équation des ondes acoustiques. Les sujets abordés concer
nent principalement l'équation de Schrodingcr sous différents aspects: N-corps, 
champs magnétiques, limite thermodynamique, solitons, cristaux. Deux exposés 
sont consacrés à la diffusion acoustique i>ar un obstacle et à la conjecture de 
Lax-Philips sur les résonances. 

En conclusion, je voudrais remercier les institutions et les personnes qui 
ont permis le succès de cette année spéciale sur les méthodes semiclassiques, 
en premier lieu le C.N.R.S en la personne de J.P Ferrier et la D.R.E.D en la 
personne de J. Giraud. Je remercie également tous ceux qui ont participé à 
l'organisation des différents colloques qui se sont déroulés entre Novembre 1990 
et Juin 1991, en particulier les collègues suivants: J. Bellissard, J.M.Bisrnut, A. 
Ben Arous, J.M. Combes, C. Gérard , A. Grigis , J.C Guillot, B. Helffer, A. 
Martinez, J.F.Nourrigat, F. Pham, J. Sjôstrand, A.Unterberger, A. Voros. 
Je remercie l'université de Nantes et le conseil général de Loire-Atlantique pour 
le soutien qu'ils nous ont apporté. 
D. Macé-Ramette a assuré avec dévouement et compétence le secrétariat de 
cette année spéciale, je l'en remercie. 

Nantes, le 21 Décembre 1992 

D. Robert 
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RESUMES 

1. AGMON Shmuel . A representation theorem for solutions of Schröding er 
type equations on non compact Riemannian manifolds 
Let X be a real analytic Riemannian manifold with a boundary dX. Denote its 
interior by X and its metric by g. Introduce on X a conformal metric h defined 
by h = p~2g where p(x) is a real analytic on X such that p(x) > 0 in X,p(x) = 0 
and dp =̂  0 on dX. Under the metric h, X becomes a complete non-compact 
Riemannian manifold with a corresponding Laplacian IV Consider solutions 
of the differential equation. 

(*) ThU + Xq(x)u = 0 onX 

where q(x) is a real analytic function on dX and A E C. 
Our main result is a representation theorem for all solutions of equation (*). The 
theorem is a generalization of a representation formula established by Helgason 
and Minemura for solutions of the Helmholtz equation on hyperbolic space. 

2. BOUTET de MONVEL Anne-Marie; GEORGESCU Vladimir. Some devel
opments and applications of the abstract Mourre theory 
Our aim is to present several applications of a version of Mourre theory that 
we have recently developed. We can easily deduce from it, for example, a very 
precise form of the limiting absorption principle for perturbations H = h(P) + 
VS+VL of a constant coefficient pseudo-differential operator h(P) by short-range 
and long-range non local potentials Vs and VL- The perturbations VS,VL are 
quite singular locally (the sum above is required to exist only in form-sense) and 
the assumptions concerning their behaviour at infinity are essentially optimal 
(e.g Vs is of Enss type). Furthermore, if such an H is perturbed by another 
short-range potential, the relative wave operators exist and are complete. The 
theory works aslo for systems (like Dirac operators). Other applications are to 
division theorems, i.e.properties of the operators of multiplication by (h(x) ± 
z o ) _ 1 , under minimal regularity assumptions on h. In particular these examples 
show that the regularity assumptions we make in our abstract version of Mourre 
theory are essentially optimal. 

S. M. F. 
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RÉSUMÉS 

3. BUSLAEV Vladimir; PERELMAN Gregor. On nonlinear scattering of states 
which are close to a soliton 
Under some conditions on the function F the nonlinear Schroedinger equation 

i^t = -*l>xx + F ( M 2 ) ^ , = *) e C, 

admits a class of bounded solutions w(x\a(t)), which parameters a = a(t) G R 4 

depend explicitely on time t. The Cauchy problem for the Schroedinger equation 
with the initial data 

V>(x, 0) = w(x|<7o(0)) + xo(x) 

is considered where xo is assumed to have the sufficiently small norm 

i V = | | ( l + X 2 ) x o | | 2 + | | ^ | | 2 -

If the spectrum of the linearization of the Schroedinger equation on the soliton 
w('\ao(0)) has the simplest structure in some natural sense, the asymptotic 
behavior of V> as t —> +00 is given by the formula (in L2-norm): 

V> = w(-\a+(t)) + exp(-i/o*)/+ + 

here o+(0) is close to cro(0),Zo = —9^,/+ G L 2(R) and is sufficiently small. 

4. BRUNING Jochen; SUNADA Toshikazu. On the spectrum of gauge-periodic 
elliptic operators 
We consider a symmetric elliptic operator, D, on a complete Riemannian man
ifold which admits a properly discontinuous action of a group T, with compact 
quotient. We assume that D is "gauge periodic" i.e. commutes with the group 
action twisted by a gauge; a typical example is the Schrodinger operator with 
constant magnetic field. We associate a C*-algebra with this situation and prove 
that the spectrum of (the closure) D has band sructure if this C*-algebra has 
the "Kadison property". For the magnetic Schrodinger operator, we can derive 
an optimal upperbound on the number of gaps for rational flux. 

5. GEORGESCU Vladimir; BOUTET de MONVEL Anne-Marie. Graded 
C*-algebras and many-body perturbation theory: II. The Mourre estimate 
Let C be a finite lattice with largest element X and A a C*-algebra. We say that 
A is ^-graded if a family {A(Y)}yec of C*-subalgebras has been given such 
that A = £ Y G £ A{Y) (direct sum) and A(Y)A(Z) C A(Y V Z) for Y,Z eZ. 
The Hamiltonians usually considered in the many-body problems are affiliated 
to such an algebra. If A is realized on a Hilbert space H, the many-channel 
structure of a self-adjoint operator if (in general non densely defined) affiliated 
to A may be described as follows : for each Y G C,Ay = J2z<Y A(Z) is a 
C*-algebra, the natural projection Vy : A —> Ay is a *-homomorphism and 
there is a unique self-adjoint operator ify such that Vy(f(H)) = / ( i f y ) for all 
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/ e Coo(R). Let A be a self-adjoint operator such that e~iAaA{Y)eiAa C A(Y) 
for all Y and a. Assume that D(Hy) is invariant under e%Act for all Y and 

de-iAaHeiAa exists in norm in B(D{H), D(H)*) and H has a spectral gap. 
Our main result is that,under a further assumption on A which is independent 
of H and trivially verified in the iV-body case. A is conjugate to H at a point 
A E R if it is conjugate to each Hy with Y ^ X at A. 

6. GUILLEMIN Victor. The homogeneous Monge-Ampere equation on a 
pseudoconvex domain 
In the first three sections of this article I give a new proof of a theorem of Jack 
Lee which says that if M is a compact strictly pseudoconvex domain with a 
real-analytic boundary, one can find a defining function on the boundary which 
satisfies the homogeneous complex Monge-Ampere equation. The proof involves 
complexifying a solution of a related real Monge-Ampere equation. 
The rest of this article is devoted to a generalization of a theorem of L. Boutet 
de Monvel. Boutet's theorem says that if X is a compact manifolf equipped 
with a real-analytic Riemannian metric and / is a real-analytic function of M 
then the following are equivalent 

(1) / can be extended holomorphically to a Grauert of radius r, about X. 
(2) The diffusion equation, ^ = A 2 ^ , can be solved backwards in time 

over the interval,—r < t < 0 with initial data : 

u(0 ,z ) = / ( x ) . 

In the second half of this article I show that this theorem has a generalization in 
which Grauert tubes are replaced by a family ,</> = r, of strictly pseudoconvex 
domains, </> satisfying homogeneous Monge-Ampere. 

7. HAGEDORN George. Classification and normal forms for quantum me
chanical eigenvalue crossings 
In the analysis of molecular systems, one is led to the study of a quantum 
mechanical Hamiltonian for the electrons that is a function of n parameters 
that describe the positions of the nuclei. As the parameters are varied, the 
spectrum of the electron Hamiltonian can change.The way in which the graphs 
of the discrete eigenvalues cross one another depends on the symmetry group of 
the Hamiltonian function. We classify generic crossings of minimal multiplicity 
eigenvalues under all possible symmetry circumstances. For each of the eleven 
types of crossings, we derive a normal form for the Hamiltonian function near 
the crossing. 

8. HELFFER Bernard; SJOSTRAND Johannes. Semiclassical expansions of 
the thermodynamic limit for a Schrodinger equation 
We give a proof of the semi-classical expansion of the thermodynamic limit 
for a model introduced in statistical mechanics by M.Kac. For this family 
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RÉSUMÉS 

(parametrized by m) of Schrodinger operators P( m )( / i) = — YlT=i h2d2/dx\ + 
y( m ^ (x ) denned on R m , this corresponds to the study of the expansion in power 
of h of limTn-+00\(m, h)/m where A(m,/i) is the first eigenvalue of P( m )( / i ) . 

9. HEMPEL Reiner. Eigenvalue asym,ptotics related to impurities in crystals 
As a mathematical model for energy levels produced by impurities in a crystal, 
we study perturbations of a (periodic) Schrodinger operator H = — A + V by 
a potential \W, where A is a real coupling constant and W decays at infinity. 
Assuming that H has a spectral gap, we ask for the number of eigenvalues which 
are moved into the gap and cross a fixed level E in the gap, as A increases. Such 
"impurity levels" are a basic ingredient in the quantum mechanical theory of the 
color of crystals (insulators) and of the conductivity of (doped) semi-conductors 
in solid state physics. 
In the general case where W is allowed to change its sign, we discuss upper and 
lower asymptotic bounds for the eigenvalue counting function. 
We also provide bounds for the total number of eigenvalues crossing E as the 
height of a repulsive "barrier", living on a compact set K, tends to oc. While 
quasi-classical arguments give some useful hints, it turns out that, in particular, 
lower bounds are very sensitive and depend highly on the structure of the set 
K. Here decoupling via natural Dirichlet boundary conditions tends to play a 
dominating role, e.g. if the set K has many small holes ("swiss cheese"). 

10. HISLOP Peter. Singular perturbations of Dirichlet and Neumann domains 
and resonances for obstacle scattering 
We consider the problem of proving the existence of and estimating the loca
tion of scattering poles for a class of trapping obstacles known as Helmholtz 
resonators with both Dirichlet and Neumann boundary conditions. We treat 
the case when the diameter of the tube linking the cavity to the exterior is 
made small and the high energy behavior of resonances when the tube diameter 
is fixed. The latter case gives an example of the Lax-Phillips conjecture. 

11. IKAWA Mitsuru. Singular perturbation of symbolic flows and the modified 
Lax-Phillips conjecture 
In order to consider the modified Lax-Phillips conjecture for scattering by ob
stacles consisting of several convex bodies, the zeta functions of a dynamical 
system in the exterior of the obstacle play an important role. 
In this paper we develope a theory for singular perturbations of symbolic dy
namics and consider the zeta functions associated with dynamical systems. We 
give a sufficient condition for the existence of poles of the zeta functions of the 
singularity perturbed dynamics. 
As the application of this theory, the validity of the modified Lax-Philipps 
conjecture for obstacles consisting of small balls is proved. 
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12. LIEB Elliott. Large atoms in large magnetic fields 
The ground state energy of an atom of nuclear charge Ze and in a magnetic field 
B is evaluated exactly in the asymptotic regime Z —> oo. We present the results 
of a rigorous analysis that reveals the existence of 5 regions as Z —> oo: B <C 
Z 4 / 3 , B « Z 4 / 3 , Z4/3 « B < Z 3 , 5 « Z 3 , B » Z 3 . Different regions have 
different physics and different asymptotic theories. Regions 1,2,3,5 are described 
exactly by a simple density functional theory, but only in regions 1,2,3 is it of 
the semiclassical Thomas-Fermi form. Region 4 cannot be described exactly 
by any simple density functional theory; surprisingly, it can be described by a 
simple density matrix functional theory, as found after this talk was presented. 
[There are two more recent references: Phys. Rev. Lett. 69, 749-752 (1992) and 
Commun. Pure Appl. Math, (in press for the McKean issue).] A surprising 
conclusion is that although the magnetic field has a profound effect on the 
atomic energy in regions 2,3,4 and 5, the atom remains spherical (to leading 
order) in regions 2 and 3. 

13. NAKAMURA Shu. Resolvent estimates and time-decay in the semiclassical 
limit 
We consider resolvent estimates for Schrodinger operators in the semiclassical 
limit. We construct a semiclassical analogue of the theory of multiple commu
tator estimates by Jensen, Mourre and Perry [JMP]. Then we apply it to the 
barrier-top energy and nontrapping energies to obtain semiclassical estimates 
for powers of the resolvent. As a consequence, we also obtain estimates for the 
time-decay in the semiclassical limit. 

14. RALSTON James. Magnetic breakdown 
This article constructs time-dependent asymptotic solutions to the magnetic 
Schrodinger equation in the weak magnetic field limit in the case of "interband 
magnetic breakdown". This means that there is an eigenvalue crossing in the 
(Bloch) spectrum of the zero magnetic field operator and interband tunnelling 
effects occur. 

15. SHUBIN Michael; GROMOV Michael. Near-cohomology of Hilbert com
plexes and topology of non-simply connected manifolds 
Near cohomologies of Hilbert complexes are obtained heuristically by taking 
cochains with small coboundaries modulo cochains which are close to cocycles. 
Rigorously this leads to a family of closed cones depending on a small real pa
rameter up to an equivalence relation. It is proved that the near cohomologies 
are homotopy invariants of a Hilbert complex with respect to the chain ho-
motopy equivalence defined by morphism and homotopy operators which are 
bounded linear operators. Applying this to the Hilbert de Rham complex on 
the universal covering of a non-simply connected manifold gives homotopy in
variants of this manifold. A von Neumann algebra stucture on a Hilbert com
plex allows to convert near-cohomologies to number homotopy invariants of the 
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RÉSUMÉS 

complex. For the Hilbert de Rham complex they coincide with the invariants 
introduced and investigated by the authors in an earlier paper and include heat 
kernel decay exponents by S.P. Novikov and M.A. Shubin. 

16. SIMON Barry. The Scott correction and the quasi-classical limit 
The Scott correction is the second term in a large Z asymptotic expansion of the 
total binding energy of an atom with nuclear charge Z. The atom is complicated 
system with multiparticle correlations among the electrons. Nevertheless, the 
proof of the Scoot correction can be reduced to the study of the semi-classical 
limit of a one-body system where the electron-electron interaction is replaced 
by an averaged self-consistent potential. 

17. SJOSTRAND Johannes. Exponential convergence of the first eigenvalue 
divided by the dimension, for certain sequences of Schrddinger operators 
We consider certain sequences of Schrodinger operators 

-h2A + V ^ m ) ( x ) , x e R m , m = 1,2,... 

Our assumptions imply that is strictly convex. If ju(m, h) denotes the 
lowest eigenvalue, we study the exponential convergence of ^(m, h)/m when m 
tends to oo. 

18. VAINBERG Boris. Scattering of waves in a medium, depending periodically 
on time 
The asymptotic behaviour as £ —> oo, |x| < a < oo of solutions of exterior mixed 
problems for hyperbolic equations and systems is obtained when the boundary 
of a domain and coefficients of the equations depend periodically on time. It is 
supposed that the coefficients are constant in a neigborhood of infinity and that 
the non-trapping condition is fulfilled. The method of the research is based on 
using a special parametrix, Fourier-Bloch transform and analytical properties of 
an integral eguation which arises. This method can be regarded as an alternative 
one to the Lax-Phillips scattering theory. Then the asymptotic behavior of the 
solutions is used to prove existence of the wave operators and of the scattering 
operator, if the general energy of any solution is uniformly bounded for t > 0 
provided that it is bounded at t = 0. 

19. WHITE Denis. Long range scattering and the Stark effect 
We prove the completeness of Dollard's modified wave operators for the Stark 
effect Hamiltonians H0 = — (1/2A — x\ and H = H0 + V where V is a general 
long range potential. As a consequence, the "unmodified" wave operators do not 
exist if V is not short range. In one space dimension this quantum mechanical 
result differs from the classical result : Jensen and Ozawa have shown that the 
usual wave operators in classical mechanics do exist. We show however that 

10 



this mathematical difference cannot be detected by any quantum mechanical 
observable. We derive the existence and completeness of the modified wave 
operators (in arbitrary space dimensions) from the comparable result for two 
Hubert space wave operators by a stationary phase argument. 

20. YAFAEV Dimitri. Radiation conditions and scattering theory for three-
particle Hamiltonians 
The correct form of radiation conditions is found in scattering problem for three-
particle Hamiltonians H. For example, in a cone T of the configuration space 
where all pair potentials are vanishing the radiation conditions-estimate has the 
following forme. Let V ^ , 

V ( s ) ^ ( x ) = Vu(x) - \x\~2 < Vu{x),x > x, 

be the projection of the gradient V on the plane, orthogonal to x, and let £ be 
the characteristic function of I\ Then the-operator 

£ i ld) + i r 1 / 2 V « 

is locally (away from thresholds and eigenvalues of H) i7-smooth (in the sense 
of T.Kato). In cones where some of pair potentials are not vanishing radiation 
conditions-estimates have similar (though weaker) form with the gradient re
placed by its projection on a certain subspace. Such estimates allows us to give 
an elementary proof of the asymptotic completeness for three-particle systems 
in the framework of the theory of smooth perturbations. 
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A Representation Theorem for Solutions of Schrödinger 

Type Equations on Non-compact Riemannian Manifolds 

SHMUEL AGMON 

1. Introduction 

In this paper we describe a representation theorem for solutions of the 

differential equation 

(1.1) Au + \q(x)u = 0 

on certain non-compact real analytic Riemaimiaii manifolds. Here A is the 

Laplace-Beltrami operator, À a complex number and q(x) is a positive real-

analytic function. The theorem is a generalization of a representation theorem 

for solutions of the Helmholtz equation on hyperbolic space proved by Hel-

gason [3; 4] and Minernura [5]. By way of introduction we recall this special 

representation theorem. 

We take for the hyperbolic //.-space the Poincaré model of the unit ball 

B n = {x e R" : |.r| < 1 } with the Riemaimiaii metric 

(1.2; rf*2 = ( 
rf*2 = ( 

2 
rf*2 = ( 

B n is a complete non-compact Riemaimiaii manifold with an ideal boundary 

dBn identified with the sphere S " _ l C R n . The Laplace-Beltrami operator 

on B n , denoted by A / 7 , is given in Euclidean global coordinates by 

(1.3) Ah = 
1 - Ixl2 

2 
) 2 A + ( n - 2 ) 

1 - |x | 2 

2 

n 

i=l 

x ì dì 

S. M. F. 
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S. AGMON 

where A is the Laplacian on M n , <92 = d/dxj. 
Consider the equation 

(1.4) Ahu + Xu = 0mW\ 

The Helmholtz equation (1.4) has a distinguished class of solutions known as 
the generalized eigenfunctions of — A/ z. Given any s G C and UJ G dW1 there is 
a unique (normalized) generalized eigenfunction denoted by E(x,cu; s), x G 
B n . In Euclidean coordinates it has the explicit form 

(1.5) E(x,u-s) = { l - f ^ y 
\X — uJ\ 

for \x\ < 1, OJ G 5 n _ 1 . The function u(x) = E(x,u;s) is a solution of 
equation (1.4) with A = s(n — 1 — s). The problem arises whether any solution 
u of equation (1.4) can be represented by an integral formula of the form 

u(x) — 
S n - 1 

$((jj)E{x,u\ s)du), 

for s satisfying s(n — 1 — 5 ) = A, where <3> is some generalized function on 
Sn~1. This problem was solved in the affirmative by Helgason [3;4] and by 
Minemura [5]. Their main result can be stated as follows, 

THEOREM 1.1. Let u(x) be a solution of the Helmholtz equation 

(1.6) Ahu + s{n - 1 - s)u = 0 in B n 

where s is some complex number such that s ^ (n — 1 — j)/2 for j = 1, 2 , . . . 
Then there exists a unique hyperfunction on Sn~l such that 

(1.7) u{x) = (QR £(*,.;*)) 

for x G B n . Moreover, the map: u —> (I>u is a Injection of the space of solutions 
of (1.6) on the space of hyp erf unctions on Sn~{. 

In this paper we generalize Theorem 1.1 and show that a similar rep
resentation theorem holds for solutions of equations (1.1) on a general class 
of non-compact Riemannian manifolds of which hyperbolic space is a special 
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case. We use a P.D.E. oriented approach. When restricted to the special situ
ation of Theorem 1.1 our approach yields a new proof of the theorem which is 
not using the special structure of B n as a symmetric space (see also [1]). The 
general set up of our study is as follows. Let A" be a real-analytic compact 
Riemannian manifold with a boundary OX. Let g denote the Riemannian 
metric on X and let Ag denote the corresponding Laplace-Beltrami operator. 
Set 

A = X \ dX. 

Introduce on X a new Riemannian metric /z, conformal with g, defined by 

(1 .8 ) h = p~2g 

where p(x) is a real-analytic function on X such that 

(1.9) p(x) > 0 on A, 

p[x) = 0 and dp ^ 0 on dX. 

Denote by the Laplace-Beltrami operator on Ar in the metric h. It is given 

by 

(1 .10 ) Ah = p2Ag - (n - 2)(>{Vgp) 

where throughout the paper n denotes the dimension of X and where V^p 
denotes the gradient vector field in the metric g. As usual Vgp is identified 
with a first order differential operator given in local coordinates by 

(1.11) W v p = 
i, 7 

(J" 
On 0 
dx.; O.v.j ' 

We denote by |X7

gp(x)\, the norm of the vector Vfy/>(.*:) induced by g. In local 
coordinates 

( 1 . 1 2 ) |V f l p(x) | 2 

i, j 
<l'Ji-r) 

Op dp 
dxi Oxj ' 

We consider solutions of the differential equation 

(1.13) Ahu + \q{x)u = 0 in A' 

15 
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where q(x) is a positive real-analytic function on A" and A is a complex number. 
We shall derive a representation theorem similar to Theorem 1.1 for solutions 
of (1.13). It will involve the generalized eigenfunctions of the operator q~1Atl 

which will be defined in section 2. 

REMARK: We note that the main result of this paper (the representation 
theorem) holds under weaker smoothness assumptions than those imposed 
above. The result holds if one assumes for instance that X , p and q are of class 
C2 and that in addition X , p and q are real analytic in some neighborhood 
of dX. 

In this paper we are going to impose on the function q a boundary con
dition. We shall assume that 

(1.14) q(x) = \Vgp{x)\2 on dX. 

We note that this condition is not necessary for the validity of the main repre
sentation theorem. However assumption (1.14) simplifies considerably many 
details in the proof of the theorem. Observe that equation (1.6) on hyperbolic 
n-space belongs to the class of equations introduced above. We conclude this 
introduction by noting that the representation theorem described in this pa
per for solutions of (1.13) can be shown to hold for solutions of a much wider 
class of equations of the form 

p2 Agu + pBu + Cu = 0 in X 

where B is a real-analytic vector field on A' satisfying some conditions on dX 
and C is a real-analytic function on A". 

The main part of this paper is divided into two sections. In section 2 we 
discuss the Green's function associated with equation (1.13). The asymptotic 
and related real-analyticity properties of the Green's function play a crucial 
role in our study. These are described in Theorem 2.1. Using the theorem 
we define the generalized eigenfunctions which form a distinguished class of 
solutions of equation (1.13) and which are the building blocks in the represen
tation theorem for any solution of that equation. The representation theorem 
is stated and proved in section 3. We note that the proof of the theorem 
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is composed of the following two main ingredients, (i) Asymptotic and real-
analyticity properties of the Green's function described in Theorem 2.1 . (ii) 
A theorem of Baouendi and Goulaouic [2] on the solvability of the Cauchy 
problem on a characteristic initial hypersurface for certain P.D.E. of Fuchsian 
type. 

2 . ASYMPTOTIC PROPERTIES OF GREEN'S FUNCTIONS AND RELATED RESULTS 

When studying solutions of ( 1 . 1 3 ) it will be convenient to introduce the 
differential operator P on X defined by 

( 2 . 1 ) P = - g - 1 A f t . 

We associate with P the measure dm on X defined by 

( 2 . 2 ) dm := qdph = qp~ndpfJ 

o 

where dph (resp. dpg) is the measure induced by the metric h (resp. g) on X. 
o o 

Considering P as a symmetric operator in Lr(X\dm) with domain CQ°(X) 

it is not difficult to show that P (the closure of P) is a self-adjoint operator 
in L2(X; dm). Furthermore, it can be shown that the spectrum of P has the 
following properties. 

n — 1 
(i) Vess{P) = [ ( — — )2>°°)> n = dimX. 

(ii) Cp(P) consists of a finite number of eigenvalues contained in the interval 

[ o , ( ^ ) 2 ) . 

Next, it will be convenient to replace the parameter A in ( 1 . 1 3 ) by a 
parameter s related by 

( 2 . 3 ) s{n - 1 - s) = A. 

Thus we rewrite equation ( 1 . 1 3 ) in the form 

(2 .4 ) Pu - s(n - 1 - s)u = 0. 

17 
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Note that the map: s —» A defined by (2.3) takes the half-plane Res > (n —1)/2 

onto the domain C \ cr e s 5 (P) . We shall denote by £ the set of points {st-} in 

the half-plane ites > (n — l ) /2 such that Si(n — 1 — 6 2 ) is an eigenvalue of 

P. From (ii) above it follows that £ is a finite set of points contained in the 

interval ( 2 i jp ,n - 1]. 

From now on we shall assume that s is some fixed number in the half-

plane Res > (n — l ) /2 such that s £ £. We shall denote by G(x,y;s) the 

Green's function associated with equation (2.4) in X. It is the kernel (with 

respect to the measure dm) of the resolvent operator 

(2.6) G(s) = (P - s{n - 1 - s))-1. 

From the ellipticity of P in X and the real-analyticity of the manifold (X, g) 

and the functions p and g, it follows that G(x, y; s) is real-analytic in y G X 

for x ^ y. This property can be extended in some generalized sense to the 

(ideal) boundary of X. In this connection we introduce the following notation. 

For any two sets X{ C X , ¿ = 1,2, we define 

(X1 x X2)
f = {(xi,x2) : xi e Xi,x2 G X2,xi ^ x2}. 

The following "extension theorem" has a basic role in this paper. 

THEOREM 2.1. Let F(x, y; s) be the real-analytic function on (XxXy defined 

by 

(2.7) F(x, y; s) = p(x)-sp{y)-'G(x, y; s). 

Then F(x, y; s) admits a real-analytic extension from (X x X)' to (X x X)'. 

The proof of Theorem 2.1 is quite long and technical. For reasons of 

brevity we shall not give the proof in this paper. We plan to give the proof 

in another publication. Note that in the special case of equation (1.6) on the 

hyperbolic space B n the Green's function is known explicitly and Theorem 

2.1 can be verified by inspection. 

Now define a family of solutions of equation (2.4) as follows. For any 

UJ G dX and x G X set 

(2.8) E(x,u;s) = lim/>(;</psG'(.r, y-s). 

yex 
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In view of Theorem 2.1 it is clear that E(x, u\ s) is a well defined real-analytic 
function of (x,u>) on XxdX. Furthermore, for a fixed to the function E(x, OJ; S) 

is a solution of equation (2.4) in X. We shall refer to the family E(x, u\ s) (pa
rameterized by LJ G dX) as the generalized eigenfunctions of P with eigenvalue 
s(n — 1 — s). These functions are the building blocks of the general represen
tation theorem (Theorem 3.1). Note that in the special case of equation (1.6) 
on hyperbolic n-space the generalized eigenfunctions defined by (2.8) are (up 
to a multiplicative constant) those defined previously by (1.5). 

We conclude this section by introducing some classes of real-analytic 
functions on dX. Let A be the Laplace-Beltrami operator on dX in the 
Riemannian metric induced by g. For any number d > 0 we denote by Ad(dX) 
the class of C°° functions <p(uj) on dX satisfying the inequalities 

(2.9) | A V M I < C(2j)\d2j for j = 0 , 1 , . . . , 

and all u G dX where C is some constant depending on (p. Ad(dX) is a 
Banach space under the norm 

\\ip\\d = smallest constant C for which (2.9) holds. 

We denote by A(dX) the class of real-analytic functions on dX. It is 
well known that 

Ad(dX) C A{dX) for all d > 0 

and that 

(2.10) A(dX) = lim Ad(dX). 

We consider A(dX) as a topological linear space with the inductive limit 
topology induced by (2.10) and the given topologies on the Banach spaces 
Ad{dX). 

Let A'(dX) be the dual of A{dX). Any member of A'{dX) is called a 
hyperfunction on dX. Thus a hyperfunction on dX is a linear functional $ on 
A(dX) such that for any d > 0 and any <p G Ad{dX) the following inequality 
holds 

(2.11) №,<p)\<cd\\<p\\d 

where Cd is a constant depending only on $ and d. 
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3. The representation theorem. 
We come now to the main result of this paper. 

THEOREM 3 . 1 . Let u{x) be any solution of equation (2.4) on X. Then there 
exists a unique hyp erf unction on dX such that the following representation 
holds 

( 3 . 1 ) u(x) = ($u,E{x,-;s)) 

for x £ X. Moreover the map: u —* §u is a bijection of the space of solutions 
of (2.4) on A'{dX). 

REMARK 1: It can be shown that (3.1) holds with <bu a Schwartz distribution 
on dX if and only if 

( 3 . 2 ) \u{x)\ < Const.p(x) A on X 

for some N > 0. Moreover, this variant of the representation theorem can be 
shown to hold under weaker smoothness assumptions. Namely, it is enough 
to assume that X is a C°° Riemannian manifold and that p and q are C°° 
functions on X. 

REMARK 2: Using Theorem 2.1 and some related estimates one can show that 
E(x,u; s) is a meromorphic function of s in the half-plane Res > (n — l ) /2 
with simple poles contained in £. Furthermore, it can be shown that E(x, u; s) 
admits a meromorphic continuation in s into the whole complex plane. The 
last (deep) result can be used to extend Theorem 3.1 to all complex values of 
the parameter s which are not poles of E(x, u\ s). Thus in general solutions of 
equation (2.4) admit two representations of the form (3.1). One representation 
involves the family of solutions E(x, u\ s) and the other representation involves 
the family E(x, CJ; n — 1 — s). 

The proof of Theorem 3.1 will be based on Theorem 2.1 and on Theorem 
3.2 below which deals with the analytic Cauchy problem for a differential 
equation related to (2.4) with initial data given on the characteristic manifold 
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dX. Before stating the result we introduce the following notation. For any 
e > 0 we denote by Q£ a neighborhood of dX in X defined by 

n£ = {x £ X : 0 < p(x) < e). 

We also set 
X£ = X\n£ = {xeX : p(x) > e}. 

We now state 

THEOREM 3.2. Given (p £ Ad(dX), d > 0, there exists a unique function 
v^(x), defined and real-analytic in Qs for some 8 = 6(d) > 0, (8 depending on 
d but not on if) such that the following holds: 

(i) is a solution in Qs of the differential equation 

(3.3) p~sP(psv) - s(n - 1 - s)v = 0. 

(ii) satisfies the initial condition 

(3.4) v^ — ̂ pon dX. 

Moreover, the map: if —+ is a continuous map from Ad(dX) to Ch(Qs) 
fork = 0 ,1 , . . . 

Theorem 3.2 follows as an easy corollary from a general theorem dealing 
with the initial value problem for Fuchsian type partial differential equations 
proved by Baouendi and Goulaouic ([2]; see Theorem 3 with m = 2, k = 1 and 
h = 0). In this connection note that the two indicial exponents associated 
with equation (2.4) at the boundary are s and n — 1 — s. This implies that 
equation (3.3) can be written in the form 

(3.5) pA9v + Bv + Cv = 0 in Q6 

where B is a real-analytic field on X and C is a real-analytic function on X. 
It is this form of equation (3.3) which allows one to deduce Theorem 3.2 from 
the results of [2]. 

We turn to the 
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PROOF OF THEOREM 3.1: Observe that since E(x,u\s) is a real-analytic 
function in (x, u) on X x dX it is clear that the function u(x) = (Ф, E(x, •; s)) 
is a well defined solution of (2.4) in X for any Ф £ Af(dX). To establish the 

converse we introduce some notation. 

For any (p £ A(dX) we set 

(3.6) w^(x) — psv^(x) 

where v^(x) is the solution of the initial value problem described in Theorem 

3.2. With no loss of generality we shall assume in the following that <p £ 

Ad(dX) for some d > 0 and that v^(x) is defined in Qs(d) f ° r some 6(d) > 0. 

We shall also assume that 6(d) < <5o where ¿ 0 > 0 is chosen sufficiently small 

so that (dp)(x) ф 0 for x £ f^0. It follows form (3.6) and (3.3) that w^x) is 
a well defined solution of (2.4) in int(Q$(</)). 

о 

Let now u(x) be a given solution of equation (2.4) in X. For any (p £ 
Ad(dX) and 0 < e < 6 ( d ) , we set 

(3.7) J*(v?) : = J (w^Duu-uDyw^)dii£

h(x) 

where Dv denotes a derivation in the direction of the outward unit normal 
vector (in the metric h) at the boundary dX£. Here d^Le

h denotes the measure 
on dX£ induced by d ^ ^ . We claim that 1^((р) is independent of s; i.e. 

(3.8) 1?(<р) = I?{<p) for 0 < ex < e2 < 6(d). 

Indeed, we have 

(3.9) w^AkU - uAhWp = 0 in int(fis(d)). 

Integrating (3.9) on the domain X£l \X£2, applying Green's formula, one 
obtains (3.8). 

Next we define a hyperfunction on dX as follows: For any ip £ A(dX) 
we set 

(3.10) (*„,¥>):= Jim Ie

u(ip). 

дх€ 
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That <&u is a well defined linear functional on A(dX) is clear in view of (3.8) 
and the linearity of in (p. That $ w is also continuous on A(dX) one sees 
by noting that for a given d > 0 there exists a 6 = 6(d) > 0 such that for any 
e G (0 ,6 ) 1^ is a well defined continuous linear functional on Ad{dX). This 
observation follows easily from the definition of 1^ and Theorem 3.2. 

Finally we shall show that the hyperfunction $ u defined by (3.10) yields 
the representation (3.1). To this end fix a point y G l and set 

(3.11) il>(u>) = E{y,u;s). 

From (2.8), Theorem 2.1 and Theorem 3.2 it follows that the unique solution 
of equation (3.3) with the initial data ip((j) on dX is given by 

v^(x) = p(x)~sG(x,y,s), 

so that 

(3.12) w^(x) = G(x, y; s) for x G int(Qs) 

(we can take 6 = p(y)). Combining (3.7) to (3.12), taking e sufficiently small, 
we get 

(3.13) < * u , ^ > = TOO 

= J (G(x, y; s)Dyu(x) - u(x)DuG(x, y; s))dp£

h(x) 

dx£ 

= u(y), 
where the last equality follows by application of Green's formula to u and the 
Green's function. This yields formula (3.1) and proves the existence part of 
Theorem 3.1. 

It remains to show that the representation (3.1) is unique. This is an 
easy consequence of the following 

o 

LEMMA 3 . 3 . Given <p e A(dX) there exists a function f £ C$°(X) such that 

(3 .14 ) <p(u>) = J f(x)E(x, u; s)dm(x). 

x 
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Deferring the proof of the lemma we establish the uniqueness of the rep
resentation ( 3 . 1 ) by showing that if $ G A'{dX) satisfies 

( 3 . 1 5 ) ( $ , E(x; •; s)) = 0 for all x G X 

then 

( 3 . 1 5 ' ) ( $ , (p) = 0 for all <p e A(dX), 

o 

Indeed, it follows from ( 3 . 1 5 ) that for any function / G CQ°(X) we have 

(3 .16 ) 0 = J f(x)($,E(xr;s))dm(x) 

X 

= (Ф,У f(x)E(x,-,s)dm(x)), 

x 

where the change of order of "integrations" in ( 3 . 16 ) is easily justified. Com
bining ( 3 . 1 6 ) with Lemma 3.3 we obtain ( 3 . 1 5 ' ) . This establishes uniqueness 
and completes the proof of Theorem 3.1. 

We conclude with the 

PROOF OF LEMMA 3 .3 : As before we shall associate with the given function 
G A(dX) the solution v^(x) of the initial value problem described in The

orem 3.2 . Thus in particular is a real-analytic function defined in some 
Qs, 6 > 0. Next we pick a function ( (x) G C°°(A) such that 

( 3 . 1 7 ) C(*) = 1 f(>r x G C(*) = 0 for x G A \ Q6/2 

and define a function w G C°°(A) by 

( 3 . 1 8 ) w(x) = C(x)p(x)sv^(x) for x G Q6/2 \ dX, 

w(x) = 0 for x G A \ Qs/2-

Set 

( 3 . 1 9 ) f(x) : = ( P - s(n - 1 - s))w(x). 
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Since v<p is a solution of (3.3) in fls it follows from (3.19), (3.18) and (3.17) that 
o 

/ ( x ) = 0 in Q6/3 a n ( i thus / E CQ°(X). We also observe that w E L2(X\ dm) 
(since Res > (n — l ) /2 ) . These remarks and (3.19) imply that 

(3.20) w = G(s)f 

where G(s) denotes the resolvent operator (2.6). Rewriting (3.20) in terms 
of the Green's function (the kernel of G(s)), using (3.17), (3.18) and the 
symmetry of the Green's function, we find that for any y £ Qs/3/dX the 
following formula holds 

(3.21) vM - J f(x)G(x,y;s)p(y)-sdm(x). 

x 

Now fix a point UJ E OX and let y —• u in (3.21). Using (3.4), (2.8) and 
Theorem 2.1 we find that 

(p(u) = lim v^(y) = lim / f(x)G(x,y;s)p(y)-sdm(x) 

X 

= j f(x)E(x,uj',s)dm(x). 

X 

This proves the lemma. 
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Some Developments and Applications of the Abstract Mourre Theory 

Anne Boutet de Monvel-Berthier and Vladimir Georgescu1 

1. I n t r o d u c t i o n 

In 1979 Eric Mourre introduced the concept of locally conjugate operator and 
invented a very efficient method of proving the limiting absorption principle 
(L.A.P.). His ideas opened the way to a complete solution of the N-body problem: 
detailed spectral properties have been obtained by Perry, Sigal and Simon and 
asymptotic completeness has been proved by Sigal and Soffer. The abstract side of 
Mourre theory has been further developped by Perry, Sigal and Simon [PSS] (they 
eliminated an assumption on the first commutator which was annoying in 
applications) and by Mourre [M] and Jensen and Perry [JP] (the L.A.P was 
established in better spaces). 

In [ A B G ] efforts were made in order to avoid the use of the second 
commutator of the hamiltonian with the conjugate operator. Optimal, in some 
sense, results in this direction were obtained in [BGM2] and [BG1]. In [BGM2] the 
space £ which appears below is the domain of the hamiltonian and the main 
theorem is easy to apply in the N-body case with short-range and long-range 
interactions of a very general nature. In [BG1,2] the space # is the form-domain of 
the hamiltonian (the domain is not assumed invariant under the group generated by 
the conjugate operator, this being compensated by a stronger condition on the first 
commutator) and the theory is applied to pseudo-differential operators. In both 
cases, the L.A.P. is established in "optimal" (in some sense) spaces, which allows 
one to get without any further effort very good criteria for the existence and 
completeness of relative, local wave operators. 

The main part of this article is devoted to an exposition of several applications 
of a version of the locally conjugate operator method which we developed in 
[BG1,2]. In fact, theorems 3.1 and 3.2 below are the main results got in [BG1] and 
in sections 4 and 5 we show their force and also fineness. In the preliminary section 
2 we introduce and discuss the most important notion we have isolated, that of 
operator of class # 1 with respect to a unitary group. This is a quite general 

property and in section 5 we show in some simple cases that it is almost impossible 
to be replaced by a weaker one without loosing the strong form of the L.A.P. given 

1 Lecture delivered by A. Boutet de Monvel-Berthier 

S. M. F. 
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in theorem 3.1. Moreover, in section 5 we show how to deal with hamiltonians with 
very singular interactions (this part will be treated more thoroughly in a later 
publication). But section 4 contains the most important results. Although their 
formulation is abstract, it is trivial to apply them to many-body hamiltonians. After 
the Nantes conference, as A. Soffer raised the problem of the spectral analysis of 
hard-core N-body hamiltonians, we decided to formulate, in this paper, several 
consequences of theorem 3.1 such as to cover non-densely defined hamiltonians (in 
fact we use pseudo-resolvents in place of resolvents). The particular case of hard
core N-body hamiltonians is the subject of a in-preparation-joint-paper with A. 
Soffer. Finally, an appendix contains a technical estimate related to Littlewood-
Paley theory which seemes to us quite powerful in various situations. 

2 . U n i t a r y Groups in F r i e d r i c h s C o u p l e s 

In our approach, the natural framework for the "locally conjugate operator 
method" is a triplet ( £ , # ; W ) consisting of two Hilbert spaces % such that 
continuously and densely, and a strongly continuous unitary one-parameter group 
W = {Wa}ae R in which leaves $ invariant: W a £ c £ for all oce R .The Hilbert 

spaces are always complex but not necessarily separable. In our applications, # will 
be either the domain of the hamiltonian, or its form domain, or it will be just 2f£ 
(although, in this last case, the hamiltonian could be unbounded and even non-
densely defined). 

A triplet ( # , # ;W) with the preceding properties will be called a unitary group 
in a Friedrichs couple , the pair of spaces ($,3%) being called a Friedrichs couple. 
In this section we shall fix such a system (#,<# ;W) and we shall study some notions 
related to it. 

Let be the adjoint (or antidual) space of identify by using Riesz 
lemma and embed as usual ^c^zfcz^*. Then define ^s=[^^*](1_s)/2 by complex 
interpolation for -1<S<1, so that g>1=g>, £ ° = ^ and J T 1 ^ * . Observe that we have 
canonical identifications (S£s)*=$~s. We shall denote iT=B(^,^*) the Banach space 
of continuous linear operators from £ to and 11-11̂  its norm; observe that 3C is 
equipped with an isometric involution T»—»T*. For each s , t e [ - l , + l ] we have 
canonical embeddings B($s,$l)c:X. Then the norm in £s, resp. in B(^s,g>t), will be 
denoted ll-lls, resp. IMIsa , and we abbreviate IHI0 = ll-ll , ll-ll00 = 11-11. 

The following fact will be often used below: 

L E M M A 2.1: Let E ,F be Hilbert spaces such that E c F continuously and let 
W„(oc)=elAoc, a e E , f e f l C~~group in F which leaves E invariant: W „ E c E 
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E E 
(VoceR).Denote Wa=WalE considered as operator in E. Then {Wa}aeIR is a C0-
group in E and its infinitesimal generator is the closed, densely defined operator 
AE in E defined as the restriction of A to D(AE)={u€D(A)nEI AueE}. 

Proof: The lemma has been proved in [ABG] under the assumption that E,F are 
separable. We shall reduce ourselves to this case. The only problem is to prove the 
continuity of a^-> Waue E when ue E. Let E0 (resp. F0) be the closed subspace of 
E (resp.F) generated by {Waul a e R } . Then E0cF0 continuously and densely, W 
leaves E0 and F0 invariant and it is strongly continuous in F0. Moreover, FQ is 
separable because a*—> WaueF0 is continuous and its image is a total subset of FQ. 
Since F*cE* continuously and densely, we see that E* is separable, hence E0 is 
separable too. Now we may apply lemmas 1.1.3 and 1.1.4 from [ABG1] to 
(E0,F0;WIF()).B 

Let us apply this lemma in the case of the unitary group W in the Friedrichs 
couple (E, H) Denote A the self-adjoint operator in such that Wa=elAcc. The 

notations W^, A^ have the same signification as in the preceding lemma. Now let 
^* (£ -if. ^ 

W* =(W_a) eB(S> ). Since for a group weak and strong continuity are equivalent, 

{W* }a€]R will be a C0-group in 5 ; we denote A5 its generator (closed, densely 

defined operator in such that =exp(iocA^ )). 

It is easily shown that W* \% =Wa and an application of lemma 2.1 shows that 

A is just the restriction of A^ to {ueD(A^ )nX | A^ u€^f} . Interpolating between 
# and we see that induces a C0-group W^S in each the infinitesimal 
generators of these groups being the natural restrictions of A^ . It will be obvious 
in later arguments that no confusion arises if we drop the index which indicates the 
space in which the operators are considered. We summarize these facts in: 

PROPOSITION 2.2: Let ( £ , # ;W) be a unitary group in a Friedrichs couple. Then , 

for each o teR, the operator Wa in ffl is continuous when ffl is equipped with the 

topology induced by and, if we denote again by Wa its unique extension to a 

continuous operator on the application a*—> WaeB(^*) is a C0-group in *§* 

which leaves invariant and induces a C0-group in each space #s. Let A be the 

infinitesimal generator of the group W in $*9 i.e. A is the unique closed, densely 

defined operator in such that Wa=elAa; denote D(A;#*) its domain. Then for 

each s e [ - l ,+ l ] , the restriction of A to 
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(2.1) D(A;£S) = {ue£s I ueD(A;£*) and AueV*} 

is a closed, densely defined operator in <$s which is just the infinitesimal generator 
of the C0-group Wal^s. 

We shall always consider D(A;#S) as a Hilbert space, the norm being the graph 

norm associated to A in £s: llull^ = [ llull̂  + IIAull̂  ]1/2. It follows from a well-known 

lemma of Nelson (see theorem 1.9 in [D]) that D(A;£ )cD(A;£s )c :£ s continuously 

and densely for all s e [ - l , + l ] . Moreover, the operator A with domain D(A;^f ) is 

self-adjoint in 2%. 

Finally, let us remark that the equality Wa =W_a has to be interpreted in the 

following sense: i f -1<S<1, then the adjoint of the operator Wal^seB(^s) is equal 

to W_al^_seB(g>_s), the identification (#s)*= $-s being assumed. 

Let us consider now the group of automorphisms of the Banach space 

%=B($$*) induced by W, namely ^a (T)=wotTWa for T e X - 0bserve that 

a»—> #^(T)e^T is continuous only when X is equipped with the strong operator 

topology, hence {^a^aeR ls not a C0-group on 9C. However, one has Wa=e^a, 

with £$(T)=[A,T], in a sense which we shall explain below. 

DEFINITION 2.3: Let O<0<1. We shall say that an operator TeB($ *) is of class 

CE(A;£,S*) , andwe shall" write TeCE(A;0',£*), ifthe function a — > ^ 0 > 3 f is bolder 

continuous of order i.e. there is c<<*> such that ||WeTW£-TII ̂ ~<cl£r for lel<l. JOT 8=+0 

we replace Holder continuity by (Dini-continuity, more precisely we write TeC+0(A;^,^ *) if 

JjIIWeTW*-TII^ £-1de<oo. 

Remark that we could replace here W £ T W £ - T by the commutator 

[T,We]=TWe-WeT=(WeTW*-T)We. One can refine the notion and define 

T€Ce(A;8>s,g>t) for some - l<s , t< l by replacing the norm \l\\qr with the norm 

||•||s,r 
If T:£— is a linear continuous operator, we shall denote [A,T]=-[T,A] 

the continuous sesquilinear form on D ( A ; £ ) defined by the formula 

<ul[A,T]v> = <AulTv>-<ulTAv>. Taking into account that W is a C0-group in £ 
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and that a^-> Waue$ is strongly differentiate for each ueD(A;#) it is trivial to 
see that 

(2.2) WaTW*-T = i % WT[A,T]W* dx 

as sesquilinear forms on D(A;£). In particular, denoting A a = ( ia)_1(Wa-l) for 
a^O, we get 

(2.3) [Aa,T] = a"1 iaQ WT [A,T]Wa_T dx. 

as forms on D(A;#) . In the next lemma we shall summarize some easy 
consequences of these formulas. 

LEMMA 2.4: An operator TeB(#,#*) is of class Cl(A;$,$*) if and only if one of 
the following equivalent properties is fulfilled : 

(a) lim infe_^+0 ll[Ae,T]ll^ < oo ; 

(b) the function oc>-> WaTW*eB(£,£*) is weakly derivable at oc=0 ; 
(c) the preceding function is strongly continuously derivable ; 
(d) the sesquilinear form [A,T] is continuous for the topology induced by *3 on 

D(A;S); 
(e) lime_^0 [Ae,T] exists weakly in B($\#*); 

(f) l i m ^ ^ o /|^(W2£TW^-2WeTW*+T) £"2de exists weakly (hence also strongly) 

in B(S,#*). 
Under these conditions, if we denote by the same symbol [A,T] the continuous 
sesquilinear form on $ which extends the form [A,T] given on D(A;#) and the 
continuous operator >1£ * associated to it, then: 

(2.4) [A,T] = - i ^ WaTW;ia=0 = lime_,0 [Ae,T] , 

the derivative and the limit being taken in the strong operator topology of 
B(£,£*). Moreover, we shall have [A ,T]eB(^s,g>t)/^ some - l < s , t < l , if and only 
if TeCHA;^8,^) and in this case (2.2) will hold strongly in B(^s,^t). 

Proof: (2.2) and (2.3) show that £-HWeTW*-T)->[iA,T] and [Ae,T]->[A,T] 

weakly as forms on D(A;#) (W is strongly continuous on D(A;^) also). So (b) <=> 

(e) <=> (d) <=> (c) (use (2.2) again). From (a) and the compacity of closed balls of 9C 

in the weak operator topology, we see that 8 ̂  (W^TW£ -T) is weakly convergent in 

B(£,#*) for some sequence £j^0, so we get (d) again. It remains to show that (f) is 
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equivalent with the other assertions (see [BB] for the technique which we shall use). 

Let JX:X ->9C be defined by J ^ f ^ i H ^ d a and let S^=(£n2)-1J^(^Te(T)-T)e-2d8. 
A simple calculation gives: 

(2.5) JT(S^) = (£n2)_1 J * \ [ T " ^ ( T ) - T ) ] orMoc. 

If (b) is fulfilled, taking into account that l i m ^ o Jx=l m the strong operator 

topology of X=B($9$*), we get S[X=(Xn2)-1J^Joc(i[A,T])a-1da which easily 

implies that lini|I^oS^l=[iA,T] strongly. Now observe that: 

(2.6) 2£n2 Su = 2 J 1 ( ^ ( T ) - T ) 8~2de - l\} (Tf^(T)-T) e~2de = 

= 2 li;2Cre(T)-T)e-2de - J1'2CT2e(T)-2-r e(T)+T) e "2d8 , 
hence the limit in (f) exists strongly. Reciprocally, assume (f). Then (2.6) shows 
that l i m ^ o S^=S exists weakly. But (2.5) implies (with no assumption on T) that 

l i m ^ Q J X ( V = T ~ W ( T ) - T ) strongly. So we get x-K^x(T)-T)=Jx(S)->S strongly 
as x ^ O , in particular (b) is fulfilled. • 

COROLLARY 2.5 (Virial theorem): / / " T : £ - > £ * is symmetric and of class 
C^A;^,^*) , and if u ,ve# are such that Tu=^u, Tv=\v for some then 
<ul[A,T]v>=0. 

Proof: Using the second equality in (2.5) we have: 

<ul[ A,T]v> = lime_>()<ul[Ae,T]v> = lime^0(<ul AeTv> - <Tul Aev>)=0. • 

In order to arrive at deeper aspects of Mourre theory (namely a precise form 
of the limiting absorption principle) the C1 regularity property is not enough. One 
can introduce a stronger notion, namely to ask that a*—> WaTWaeB(#,£*) be 

norm derivable at a=0; we then say that T is of class C^(A;^,^*) (i.e. it is of class 

C1 in the uniform topology). This is equivalent with asking, besides TeC^A;^ ,^* ) , 
that oc»—> Wa[A,T]Wa be norm-continuous. Unfortunately, even this assumption is 
not strong enough, as our example from section 5 shows. However, the sufficient 
assumption we have been able to isolate, is only slightly stronger than this one. In 
fact, the proof of lemma 2.4 shows that T e C ^ A ; ^ , ^ * ) if and only if the limit in 
(f) exists in norm. Our condition is the following: 

DEFINITION 2.6: An operatorTeB($ is said to 6e of class Kk^, £*) if: 

(2.7) JJ IIW2eTW2*£-2WeTW*+TII^ 8"2d8 < «>. 
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It is clear that the expression under the norm above may be replaced by the 
more symmetrical WeTWe+W_eTW_*£-2T or by [We,[We,T]]. In fact W2eTW^-

2W£TW*+T=[We,[We,T]]W2*e. Using the notation Ae=(ie)-1(WE-1) introduced 
above, (2.7) can be expressed in the equivalent from 

(2.8) JJ ll[Ae,[Ae,T]]ll^ de < ~ . 

The remark we made jus t before the definit ion impl ies 
tfKA^^cC^A;^*). in order to compare the assumption T e ^ 1 with other 
assumptions made in the development of Mourre theory, it is useful to introduce the 
classes CS(A;£,#*) for l<s<2 or s=l+0. 

DEFINITION 2.7: Let se] l ,2] or s=l+0; denote 9=s - l in the first case andQ=+0 in the 
second one. We shall say that TeB(£ ,»*) is of class CS(A;# i / T e C ^ A ; ^ * ) and 
[A,T]eCe( A ;£,£*). 

S o T s C 1 + 0 ( A ; ^ * ) means that a - > WaTW*eB(£,£*) is derivable and its 
derivative is a Dini-continuous function. We have for 0<9<1: 

(2.9) ^\A^^*)^Cl+0(A;^^*)^ C,+e(A;<?,<?*). 

Only the first inclusion is not completely trivial, but it follows easily from: 

WeTW*+W_eTW_*e-2T = i fQ {Wt[A,T]W*-W_T[A,T]W_*} dx. 

By lemma 2.4, TeC2(A;£,£*) means that [A,T] and [A,[A,T]] belong to 
B(#,!£ ); this is, essentially, the situation considered by Mourre and Perry, Sigal 
and Simon. The case 0<9<1 was studied in [ABG] while the class #1 is implicit in 
the definition of "admissibility" given in section 4 of [BGM]. 

We shall not explain here how the assumption T e ^ l(A\&9$*) is verified in 
applications. In fact this is quite easy if one uses the technique presented in [BG2] 
together with the estimate proved in the appendix at the end of this paper (see 
[BG2] for examples). 

3 . T h e L i m i t i n g A b s o r p t i o n Pr inc ip le 

In this section we shall summarize the results of our Note [BG1]. Let ;W) 
be a unitary group in a Friedrichs couple and H a self-adjoint operator in ifC with # 
as form-domain (i.e. #=D(IHI1/2) algebraically; by closed graph theorem the 
equality will hold on a topological level too). Then H extends to a continuous 
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symmetric operator (denoted by the same symbol) H : # ^ # * and, if E is the spectral 

measure of H, then E(J)eB(£)nB(£*) for any Borel set J c R . 

D E F I N I T I O N 3.1 : <We shall say that A is conjugate to H on an open suBsetJalR. (in form 
sense) i / T I e C H A * ) and there is a strictly positive number a and a compact operator 
K:£->#* such that E(J)[iH,A]E(J)>aE(J)+K (as operators £->£*). / / K = 0 , we say that 
A is strictly conjugate to H on J. If he R and A is (strictly) conjugate to H on a neighbourhood 
ofX, we say that A is (strictly) conjugate to H at X. If A is (strictly) conjugate to H at all 
points of an open set J, then we say that A is locally (strictly) conjugate toW on J. 

Using the virial theorem (corollary 2.5) it is a trivial matter to show that, 
under the conditions of the first part of the preceding definition, H has in J a finite 
number of eigenvalues (counting multiplicities). We shall denote J0 the set of XeJ 
such that X is not an eigenvalue of H. Then we put (C^lzelCI ±Im z > 0 } . Clearly 
C±3z»—> (z-H)"1€B(8,*,g') as a holomorphic function. In order to control its 
boundary values on J0, we shall need the following space: 

(3 .1 ) S = (S*,D(A;S*))1/2fl . 

Here (v)Q p is the real interpolation functor which makes sense if 0 < 9 < 1 and 

l<p<oo. Hence § is a Banach space such that D(A;# *)c<§(z!£* continuously and 

densely. Taking adjoints we get $(z§* continuously but not densely in general, 

because § could be non-reflexive. We shall denote $* the closure of *§ in § *; it is 

known that (§* )*=§ . Observe that we have a natural continuous embedding 

B(^*,^)c:B(§*), in particular we may consider the holomorphic function 

£±BZ*-> (z-H)~leB(S,S*). 

T H E O R E M 3.1 : Assume that H e ^ ^ A ; ^ , £*) and that A is conjugate to H on the 
open subset JczE . Then the function (D^z*—> (z-H)~leB(§ ,§ *) extends as a 
weak*-continuous function on (C±uJ0. In particular, H has no singularly continuous 
spectrum in J and the function JqBX>—> (X±io-H)~leB($ ,$*) is well defined and 
weak*-continuous. 

T H E O R E M 3.2: Let ($-},ffl;Wj), j=l ,2, be two unitary groups in Friedrichs couples 

with the same Hilbert space 2/t. Let Hj be a self-adjoint operator in № with <$} as 

form-domain and such that H^c^l(A^<S^*). Assume that Aj is conjugate to Hj on 

an open subset J c R (independent of]). Let (Sj=(^*,D(Aj;^*))1/2 l and assume that 
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there is a continuous operator N\S\-^$2 such that H2=H1+V as forms on 

D(H1)xD(H2). Finally, denote Ec. the continuous component of the spectral measure 
of Ej. Then the following relative wave operators exist {hence are complete ) : 

(3.2) W ^ s - l i m ^ e ^ V ^ C J ) ; W ^ s - l i n ^ e 1 ^ 1 " ^ ) . 

4 . P s e u d o - r e s o l v e n t s w i t h a S p e c t r a l Gap 

The theorems 3.1 and 3.2, as we stated them, do not seem to give optimal 
results for N-body Schrodinger hamiltonians. In fact, in this case ^f=L2(Rn) and 

one tries to take as conjugate operator the generator of dilations A=|(PQ+QP), 
where P=-iV is the momentum and Q is the position observable (multiplication by 
xeRn). The hamiltonian has the form H= 5 P2+V(Q) where V is a real distribution 
on R n such that V(Q) (the operator of multiplication by V) is a continuous operator 
tfl(Rn)->tf-l(Rn) (usual Sobolev spaces). A natural choice for the form-
domain of H is V=X\Rn). Then [iH,A]=P2-QV,(Q)=2H-(2V(Q)+QV,(Q)) (where 
V'=VV) as sesquilinear forms on <^(Rn). Clearly HeCl(A'9№\№~1) if and only if 
QV/(Q)eB(<^f1,^f~1). But this condition is, locally, stronger than needed (although it 
covers many examples in which the sum defining H exists only in form sense, so the 
usual Mourre theory does not apply). Our purpose now is to overcome this 
problem, in particular to recover the results of [BGM] from theorem 3.1. Observe 
that, if H is a N-body hamiltonian with short and long range interactions, then H is 
lower semibounded, so it has a spectral gap. We shall now study operators with 
spectral gaps but which are very singular: they need not be densely defined and we 
shall not require that their domains or form-domains be invariant under the group 
Wa. In particular, N-body Schrodinger hamiltonians with hard-core interactions 
are covered by this formalism (cf.joint work with A.Soffer). 

Let TfC be a Hilbert space and Wa=elAoc a strongly continuous unitary group in 
<#f, so A is a densely defined, self-adjoint operator in №. We denote D(A;№) the 
domain of A equipped with the graph-norm. Then D(A;<#) is a Hilbert space 
continuously and densely embedded in №, hence we may define by real 
interpolation the Banach space: 

(4.1) <T = (# ,D(A;# ))1/2fl . 

Then D(A;^f )cSra№ continuously and densely. After the identification №=№*, we 

get ^cJVcJF* continuously, in particular B ^ c B ^ , ^ * ) continuously. 
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Let {R(z)| ze(C\IR} be a self-adjoint pseudo-resolvent in i.e. a family of 
bounded operators such that R(z1)-R(z2)=(z2-z1)R(z1)R(z2) and R(z*)=R(z)*. It is 
known (see [HP]) that the closure of the image of R(z) is a subspace ft0 of 2fi 
independent of z, and there is a self-adjoint, densely defined in # 0 operator H such 
that R(z)|^fo=(z-H)-1 and R ( z ) | # 9 # O = 0 (formally, think that H=oo on ^ G ^ 0 ) . It is 

clear that R(z) is a holomorphic function of ze(D\R. We shall say that the pseudo-
resolvent {R(z)} has a spectral gap at the point ^ 0 e E if this function extends to an 
holomorphic function on a neighbourhood of A,0. Of course, this is equivalent with 
saying that X0 is in the resolvent set of the operator H in # 0 . 

L E M M A 4.1: If the operator R(z0) is of class % \A\3K)for some z0 in the domain of 

holomorphy o/{R(z)}, then R(z) will be of class (£l(A,ffl)for all z in this domain. 

Proof: The hypothesis means, according to (2.8): 

(4.2) j j ll[Ae,[A£,R(z0)]]llBW d£ < - . 

Then this will be true if Ae is replaced by A_e too. Since (Ae)* = A_e 
andR(z0)*=R(z^), it will follow that R(z*0)e#i(A;<#). Hence, by an 
analytic continuation argument, it is enough to show that R(z)e# X(A\№) for z near 
z0. If |z-z0| IIR(z0)lkl, then R(z)=R(z0)[l+(z-z0)R(z0)]-1. So it is enough to prove 
two things: (i) if SeB(^f) is bijective and SeVl(A\X\ then S^eff^A;*?); (ii) if 
S,TeB(#) are of class <€\A\tf\ then STetf i(A;#) . But: 

(4.3) [Ae.IAe.S"1]] = 2S-1[Ae,S]S-1[Ae,S]S-1-S-1[Ae,[Ae,S]]S-1 

(4.4) [Ae,[Ae,ST]] = 2[Ae,S][Ae,T] + [Ae,[Ae,S]]T + S[Ae,[Ae,T]]. 

It remains to observe that ll[Ae,S]ll<const. if S e ^ !(A;^f), because this implies 

SeCKA;^) and we may use (e) of lemma 2.4. • 
If the assertions of lemma 4.1 are true, we shall say that the pseudo-resolvent 
{R(z)} is of class ^1{A). In the applications it is sometimes useful to be able to 
express this property directly in terms of the self-adjoint operator H. The next 
criterion is efficient in the N-body case. 

PROPOSITION 4.2: Assume that {R(z)} is the resolvent of a self-adjoint, densely 
defined operator H in 7fC with domain invariant under W. Denote % the domain o /H 

equipped with graph-norm and identify &ctfc:$*. Then the pseudo-resolvent 
{R(z)} is of class !(A) if and only i / H e f f K A ; ^ * ) . 
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Proof: Assume He <¡? KktfJS *). Let z0e C not in the spectrum of H Then H-z0=S 

is an isomorphism of # onto ¿íf and onto # . Since A£ is a bounded operator in 

each #s, it is easy to show that (4.3) is valid. We have to prove (4.2). The last term 

in (4.3) is integrable because it is bounded by clltA^fA^H]]!!! v The first term in 

the r.h.s. of (4.3) has norm in B(^f) bounded by 

cHEA^HlH^.! ll[Ae,H]||l5_1/2=c||[A£,H]||'_1/2 < c' e-2||W£HW*-H||^1/2 . 

Hence it is enough to prove that the last expression is integrable. We use the identity 
2(#"8-l)=(^T2£-l)-(^rE-l)2 in order to obtain for 0<e<l: 

(4.5) 2||WeHW*-H||lf_1/2S l|W2£HW¿-H||lr.1/2 + ce2||[A£[A£,H]]||lr_1/2. 

Hence 

(4.6) 2[ il0e~2 ||WeHW*-H||^1/2 de]"2 < [ Jje"2 l|W2£HW2£-H||'_1/2 de]1/2 

+ c[J¿e2||[A£[A£,H]] lí_1/2d8]i/2. 

In the first integral of the r.h.s. make the change of variable 2e=x; the contribution 
of the integral over TG(1,2) is finite, whereas the integral over TG(0,1) is 2~1/2 
times the l.h.s. of (4.6). So, it is enough to prove that the last term above is finite. 
But we have, by complex interpolation: 

(4.7) 82||[A£,[A£,H]]||'_1/2 < 82||[A£,[A£,H]]||1>0 l l t A ^ A ^ H ] ] ! ! ^ 

< c||[Ae,[Ae>H]]||lf.1 , 

which finishes the proof of (4.2). In order to prove the converse (S_1e # => 

Setf^Atftf*)), a similar argument is applied to (4.3) with S replaced by S _ 1 . • 

Remark .There is a variant of this proposition for the case when W leaves invariant 

only the form-domain of H, i.e. the space <Sm. In order to be able to use this in 

applications, one needs some informations about D(H), which can be obtained by 

more refined methods if H is, say, an elliptic operator (see [GT]; observe that !£, 

the domain of H, could be a rather pathological space even if #1/2, its form-domain, 

is quite simple). 

The next result is an easy corollary of theorem 3.1. 

PROPOSITION 4.3: Let {R(z)} be a self adjoint pseudo-resolvent of class tfl(A). 

Assume that {R(z)} has a spectral gap at some point X0e E and let J be an open 

subset of E such that X0 does not belong to its closure. Finally, suppose that A is 

conjugated to R(k0) on ]={(XQ-X)~l \ \e]}.Then there is J0cJ, with J\J0 a finite set 
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such that the holomorphic function ( 0*3 z»—> R(z)eB(5r,5r*) extends to a weak*-

continuous function on (E±uJ0. If A is strictly conjugated to R(k0) on J, then J0=J. 

Remark: J\J0 coincides with the set of eigenvalues in J of the self-adjoint (non-
densely defined in general) operator H; these eigenvalues are of finite multiplicity 
and the associated eigenvectors belong to the range of R(z) (which is independent of 
z). If the domain of H is invariant under W, proposition 3.3 of [BG3] shows how to 
verify the fact that A is conjugated to R(^0). 

Proof: Observe first that R(^0) is a bounded, self-adjoint operator.A number |ie J 
is an eigenvalue of R(^0) if and only if X0-[i~l is an eigenvalue of H (in №0; 

observe that 0<£J) the multiplicities being the same. We apply theorem 3.1 with 
#=< f̂ and H replaced by R(A,0); hence $-S^. Then remark that for non-real z we 
have 

R(z) = (z-X0)-1R(X0)[R(^0H(z-^0)-1]-1. 

In fact, for |z-A,0| IIR(^0)II<1 this follows from the equation defining the notion of 
pseudo-resolvent and for arbitrary z it remains true by holomorphy. Finally, use 

the fact that z»—> (^0-z)_1 is a homeomorphism of t ^ u J o onto (D\j(J\{eigenvalues 
ofRao)} ) . • 

The space in which the limiting absorption principle has been proved is too 
small for several important applications. In order to improve it, we follow [PSS] 
and use the formula 

(4.8) R(z) = R(k0) + (X0-z)R(X0)2 + (Vz)2r(^o)r(z)r(^o) 
obtained after an iteration from R(z)=R(^0)+(^0-z)R(^0)R(z) (sometimes the form 
R(z)=R(?i0)+(^0-z)R(?t0)1/2R(z)R(?i0)1/2, with R(^0)1/2 conveniently defined, is of 
simpler use). As an example, we state the following general form of the limiting 
absorption principle: 

PROPOSITION 4.4: Assume that the conditions of Proposition 4.3 are fulfilled. Let 
X,XX be Hilbert spaces such thatJCx<zJC and № aJC continuously and densely. 

Identify JC *CL№=$!*C:JC and assume that R(A,0) extends to a continuous operator 
with the property R(A,0)«?f 1eD(A;<^f). Denote X m x=(tf ,«#J)1/2 i (real 

interpolation) and observe that X mx<zJ{ continuously and densely, so that 
X*cztf^/2land B(Jf,Jf * ) c B p f 1 / 2 1 ) continuously. Then : 
(i) R(z)eB(tf9tf*) for each zeC± and the function €±sZ^ R(z)eB(Jf ,«#"*) is 
holomorphic ; 
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(ii) When considered with values in Bpf m v ^ / 2 \X the preceding application 
extends to a weak*-continuous function on ( t ^uJ^ 

Proof: The assertion (i) follows trivially from (4.8). Closed graph theorem 
implies R(>.0)eB(Jf 1 ? D(A ;^f)) . Since R(X0)eB(tf also, we get R(k0):tf 1 / 2 , 1 - ^ 

continuously by interpolation. Then taking adjoints and using the symmetry of 
R(^ 0) w e obtain R(X,0):5r*—>Jf * / 2 r Hence (4.8) and proposition 4.3 imply (ii).B 

Let us consider, as an example, a situation which covers the N-body 
Schrodinger hamiltonians with very singular (even hard-core) interactions. Let 

^ = L 2 ( I R n ) , tf=tf-\Rnl * = # 1 ( R n ) . We take A 4 ( P Q + Q P ) the generator of 

dilations. If <#s

t={u€=^*(IRn) | <P> s <Q> l ue#} are the usual weighted Sobolev 

spaces, we take Xx=^1- The spaces X m x can be explicitely described as follows 

(see [BG2]). Let 9 , r |eC~(IR n ) be such that 0(x)>O if 2~ 1<|x|<2 and 0(x)=O 
otherwise; r|(x)>0 if |x|<2 and r|(x)=0 otherwise. For any s,teE and l<p<oo let ^ft

s

p 

be the Banach space of all temperate distributions u such that: 

| |<P> s r|(Q)u |U + [ P | l<P> s r l Q(rlQ) u\\l rMr ] L 7 P < 00. 

Then X l l 2 , \ ^ \ k \ A N D ^ 1 / 2 , 1 = ^-1/2,00-

If {R(z)} is a pseudo-resolvent in such that R(^ 0)eB(<^f" 1 ,^ + 1), in order to 

get the results of proposition 4.4 we have to ask R(À,0)^"1

1cD(A;<^f). For this 

PQR(À< n)<^r i

1c^ would be enough and this condition is a consequence of 

||<P>sr|(Q)u|U + [ P |l 

COROLLARY 4.5: Let {R(z)} be a self-adjoint pseudo-resolvent on the Hilbert space 
^ f=L 2 (R n ) . Assume that {R(z)} has a spectral gap at A, 0eR and that R(A,0) and 
[Qj,R(A,0)] belong to B(^f" 1,<^ 1) (j=l,...,n). Moreover, assume that a closed 
countable set x ( H ) c E is given such that A = ^ ( P Q + Q P ) is locally conjugated 
to R(X0) on {(X0-X)~l I iUx(H)} and that {R(z)} is of class C1 (A). Then there 

is a closed countable set c ( H ) c R such that the holomorphic function 
C ± 9z»-^ R(z)eB(<?zf~/2 1/2, 00000) extends to a weak*-continuous function on 
CMRNcCH)). 

If one uses the main idea of the proof of theorem 3.2 in the preceding context 
(the fact that the Banach space X~J2 x is of cotype 2; see [BG2]) one immediately 
obtains a very precise criterion for the existence and the completeness of the wave 
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operators. We state it only for densely defined operators, although the general case 
is very similar. 

COROLLARY 4.6: Let H1? H2 be two self-adjoint, bounded from below densely 
defined operators in № =L2(Rn) with 2% 1 as form-domain and such that 
[ Q j A J e B ^ 1 , ^ " 1 ) i/j=l,...,n; k=l,2. Assume that H1-H2:^f 1-^<^f_1 extends to a 
bounded operator from the closure of №x in <#i1/2 ^ into №~y2 v ^na^y» assume 
that for some ^QeR the operators (A^-Hj)-1 and (A,0-H2)_1 are of class (^1(A) , 

A=j(PQ+QP) , and that A is locally conjugated to them outside a closed countable 
set. Then Hv H2 have no singularly continuous spectrum and the wave operators 

s-limt^±ooelH2te~iHltEj exist and have E ^ f as range (E£ is the projection on the 
subspace of continuity of Hk). 

5. Examples . Optimality of the Results . 

The results of the preceding section are corollaries of the theorems 3.1 and 3.2 
and are formulated in a form suited to N-body type hamiltonians. In this section we 
shall consider other situations and obtain results which demonstrate not only the 
power of the theorem 3.1 but also its fineness (especially in connection with the 
^l(A) assumption). We first prove a very precise division theorem (only the one-
dimensional case is treated because of lack of space). 

PROPOSITION 5.1: Let h : R -^R be such that J* e-2co2(e)de < <*>, where 
co2(e)=supxe R |h(x+e)-2h(x)+h(x-£) | is the second modulus of continuity ofh. 
Then h is of class C1. Assume that h is a homeomorphism and that h' is bounded. 
Then for each A,eR the limits lime^Q(h(x)-A,+i£)_1 = (h(x)-A+io)-1 exist in the 
sense of distributions. Moreover, the operator of multiplication by the distribution 
(h(x)-A .Tio)-1 belongs to B(^f 1/2,1(R),<#~1/2'°°(R)) and depend *-weakly 

continuously on X. In particular, the Besov space ffll,2,l(R) consists of continuous 

functions and the distribution VPh(x)-1 belongs to the Besov space <#f~1/2'°°(R). 

Proof: Let us mention first that ^S'P^R) are the Besov spaces denoted BS^(R) in 

[ T ] . In the Hilbert space <#f=L2(R) we consider the tranlation group 

(Wau)(x)=u(x-a). Then Wa=e"iaP and we take A = - P = r ^ , H=h(Q) the operator 

of multiplication by h in № (we assume, without loss of generality, that h'(x)>0 for 

all x e R ) . We have to take £=D(|H|1/2)={ue<tff | (l+|h(Q)|)1/2u€<Kf}. Since h is 

Lipschitz, £ is invariant under W. Observe that 
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IIWeHWe*-2H+W_eHW_*ellBW = co2(e), 

so that H e ^ ^ A ; ^ , ^ * ) . A remark made after definition 2.6 implies that the function 
a—> Wah(Q)W*=h(Q-a)eB(g>^*) is norm-C1. In particular h is of class C1 (for 
another proof of this fact, see theorem 3.3, p.87 of [Sh]). Then [iH,A]=h'(Q) which 
easily implies the Mourre estimate (if I c R is compact, h_1(I) is also compact and 
the inf of h' on compact sets is strictly positive). Finally, observe that 

M^D(AnL,/,p(#,D(A^M^D(AnL,/,p(#,D(A^M^D(AnL,/,p(#,D(A^ 

and OKf172'1) =^-1/2'°°. Taking h(x)=x we see that Mm\WL)aC°(WL)M 

This proposition allows us to make some comments concerning the degree of 
optimality of theorem 3.1. Two different questions have to be considered: 1) is the 
space § optimal, i.e. is it, in some sense, the largest space, in which the L.A.P. 

holds? 2) Is the regularity assumption H e ^ ^ A ; ^ , ^ * ) optimal, or could it be 
replaced by HeCjj(A;£,S?*)? Let us discuss these questions in the setting of 
proposition 5.1. Example 2, page 50, of [P] shows that the best (i.e. smallest) local 
Besov space ^ P ( R ) which could contain the distributions (x±io)-1 is obtained for 

s=-l /2, p=oo (because the imaginary part of +n~1(x±io)~l is the Dirac measure at 
zero) and we have proved that in fact they do belong to this space. So in the scale of 
Besov spaces our space S gives the optimal result in this example. However, as 

explained at the end of section 4 of [BGM2], there is a Banach space X such that 
tfm>lc:X strictly and the L.A.P. is valid in B(Jf ,Jf*) (but this space is not 
comparable with №1/2). Let us pass now to the second question. Consider a C1-
diffeomorphism h:R—>R and ^ e R . Even if the distribution (h(x)-A,+io)-1 exists, 
then it does not belong to H 182 loc in general, because the derivative of h could be 

any (positive) continuous function and the space #~¡¿¿2,1 is not stable under 

multiplication by continuous functions (otherwise it would be just C°(R )) 
(the derivative of h appears when the action on test functions of the distribution 
(h(x)-^+io)-1 is calculated). But something much worse can happen. Using 
an example due to Lusin (see §13, ch.VIII in [Be]) it is easy to construct a 
C^diffeomorphism h with absolutely continuous derivative such that for every 
rational number A,e[0,27c] the limit of (h(x)-A,+ie)_1 as does not exist in 
$ ' ( R ) , i.e. in distribution sense ( or one can use theorem 5.2 from [Ga] in order to 

construct a strictly positive, bounded, uniformly continuous function g with Hilbert 
transform equal to infinity on a dense set and then define h by h'(x) = (g(h(x))_1). 

Finally, let us mention that a condition essentially weaker than ¡l e~2co9(8)de < ©o 
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cannot force the uniform continuity of h', i.e. the modulus of continuity of h' can 

be made of order t"2co2(t)dt (see page 88 of [Sh]). 

The next proposition is a remark which concerns the generality of the locally 
conjugate operator method. We mention it because of the obvious connection with 
proposition 5.1 and because the construction we make explains the terminology 
"locally conjugate operator". 

PROPOSITION 5.2: Assume that a self-adjoint operator H has a purely absolutely 
continuous spectrum of constant multiplicity on an open interval IczR. Then there 
is an operator A which is strictly conjugate to H on any compact subset of I {and 
the derivative of the function oc»—> WaHWa is a B{ffl)-valued C°° function). 

Proof: The assumption we made on H means that there is a Hilbert space X such 
that HE(I) is unitarily equivalent to the operator Q of multiplication by the variable 
x in the Hilbert space № Q=L2{l,dx\X) of square-integrable X-valued functions on I. 
Let F:I—>R be a bounded function of class C°° with all derivatives bounded, with 
F(x)>0 for XG I and such that jc F(x)_1dx=jb F(x)-1dx = oo (where a<c<b and 

I=(a,b)). Then A0=-1/2(F(Q)P+PF(Q)) is a self-adjoint operator in XQ such that 
[iQ,A0]=F(Q) is strictly positive on each compact subset of I. We take A equal to 
U_1A0U on E(I)# (U is the unitary operator E( I )# - > ^ 0 which transforms HE(I) 
in Q) and equal to zero on E(R\I)^f. Observe that if we take F(x)=0 for x*I, we 
shall have [iH,A]=F(H). • 

We shall now give a simple example of a hard-core type situation, in which 
neither the domain nor the form-domain of the hamiltonian are invariant under W, 
but the conjugate operator method can be used if one works directly with the 

resolvent. In <#=L2(R) let H 0 = P 2 = - ^ and R0=(H0+1)-1. We would like to study 
the operator Hoo=H0+Voo where, formally, VOQ(x)=+oo if x<0 and Voo(x)=0 if x>0. 
Rigorously, this operator is the limit in the norm-resolvent sense as k^+°O of 
H K = H 0 + k ( 1 - E ) where E is the operator of multiplication by the characteristic 

function of (0,oo). Let (t>(x)=2-1/2E(x)e~~x. Then R ^ l i m ^ ^ H ^ i r ^ E R ^ - c t ) ® ^ 
where <|)®(|> is the rank one operator which sends u into (])«j)lu>. We shall calculate 
the order of regularity of R^ with respect to the translation group (we do this 
because the result is simpler; in fact the dilation group must be used in order to 
have an example relevant for the N-body case; however, if the point zero, where 
the potential becomes infinite, is replaced by an arbitrary non-zero point, the order 
of regularity of R^ with respect to the translation or the dilation group are 

obviously the same). If Ta=elPoc, then TaRooT_a=EaR0Ea-(|)a®(()a where Ea is 
the operator of multiplication by the characteristic function of (-a,<») and 
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<|)a=Ta<t). Calculating the derivative at a=0 one gets [iP,R00]=2(()®(|), hence R^ i s of 

class CKP;^).Then Ta[iP,RJT_a=2<|>a®<|>a and ll(()a-(|)ll^=2-1/2ll-e-al1/2~a1/2. 

To conclude, R^ is of class C3/2(P;^f) and not more. 
We mention now another explicitly soluble example in which the conjugate 

operator method works but the domain of the hamiltonian is not invariant under the 
group. Let 5 be Dirac measure at zero on IR . Let ft and H0 as above and H=H0+g5 

with g e R \ { 0 } (form-sum). The form-domain of H is Xl(R), but the functions 
in the domain of H have to verify u'(+Q)-u'(-0)=gu(0), so that the domain is 
not invariant under the dilation group W. If g<0, then H has a bound state of 
energy -g2/4, if g>0 then H has no bound states and it always has a purely 
absolutely continuous spectrum equal to [0,°o).The form-domain of H is obviously 
invariant under W and WaH W*=e~2aP2+eag8 as forms on 7fC1 (because 5 is 

homogeneous of degree - n in Rn; or use <ulHu>=J lu'(x)l2dx+glu(0)l2). Hence H is 
of class C°°(k\X\X-x) and [iH,A]=2H-3g5. Since S : ^ 1 - ^ " 1 is a continuous 
operator of rank one, A will be conjugate (strictly if g<0) to H on (e,°°) and - A 
will be conjugate (strictly if g>0) to H on (-«>,-e) for each e>0. Hence we get all 
spectral properties of H from theorem 3.1. 

Our final topic is an improvement of the perturbative method of verifying 
Mourre estimate presented in proposition 7.6 of [BG2]. This allows one to treat 
locally very singular potentials. We begin with the following simple remark: 

L E M M A 5.3: Let H,H0 be self-adjoint ,not necessarily densely defined, operators, in 
some Hilbert space X. If (H-z)"m-(H0-z)"m is compact for some fixed m>l and 
for all ze (C\R, then f(H)-f(H0) is compact for each f:R —>(C continuous and 
convergent to zero at infinity. In this case H and K0 have the same essential 
spectrum. 

Proof: Let R(z)=(H-z)_1, R0(z)=(H0-z)_1 the associated pseudo-resolvents. If 
f=g(m-l) f()r some g e c ^ ( R ) , formula (6) from [BG1] gives: 

f ( H ) = I ^ ( " i r K k r 1 ) ! j R g ( k ) № r i k Rm(^ i ) ]d^ + 

+(H)=I^("irKkr1)!jR Sy~lde JIR 8(n)^)Im[in R m ( * + f e № 

Here n>m+l in order to have norm-convergent integrals. A similar formula for 
f(H0) shows that f(H)-f(H0) is compact for such f. Let 

C00(R)={cp:R ->C I (p continuous and (p(x)^O if lxl->oo} 
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with the sup norm. Since C00(E)9(pi—> cp(H)-cp(H0)eB(^f) is norm-continuous, it 

is enough to show that .#>={g(m~1) | ge C~(R)} is a dense subspace of C ^ R ) , or of 

C~(IR) equipped with the sup norm. But feJI/* if and only if 

J f(x)dx = J xf(x)dx=...=/ xm_2f(x)dx = 0 
and f ^ Jxjf(x)dx are linear functional on which are not continuous for the 
sup norm, so the intersection (j=0,...,m-2) of their kernels is dense for this norm. 
Since X does not belong to the essential spectrum of H if and only if there is 
feC^(IR) with f(X)*0 and f(H)=compact, the last assertion is trivial. • 

The assumption of Lemma 5.3 is easy to verify and allows quite singular 
perturbations H of H0 (see the discussion in section 8 of [Pe]). In the next 
proposition we shall say that a pseudo-resolvent {R(z)} is of class C^(A) if R(z) is 

of class C*(A;<?tf) for some z in the domain of holomorphy; the proof of lemma 4.1 
shows that this will remain true for all such z. 

PROPOSITION 5.4: Let {R0(z)}, {R(z)} be two self-adjoint pseudo-resolvents which 
are of class Cln(A) for some self-adjoint, densely defined operator A. Assume that 
R(z)-R0(z) is compact for some z and that one of them has a spectral gap, so that 
they have a common spectral gap at some point XQe"R. Then A is conjugated to 
R(X0) at some point Xe]R> if and only if it is conjugated to R0(^0) at X. 

Proof: Write R=R(A,0), R0=R0(A0). Since 

[iA,R]-[iA,Ro]=lime^0e-1[We(R-Ro)W*-(R-Ro)] 

is norm limit of compact operators, it will also be compact. Let us write S ~ T if 
S-T is compact. Then (p(R)~cp(R0) for each continuous function q>. Hence 
(p(R)[iA,R]q>(R)~(p(R0)[iA,R0](p(R0). From this the assertion of the proposition 
follows easily. • 

If {R0(z)} is of class *(A), then one may deduce that {R(z)} has the same 
property by applying theorem 6.2 or 6.3 from [BG2] to the difference R(z)-R0(z) 
for some fixed z. Then theorems 3.1 and 3.2 will give a detailed spectral and 
scattering theory for H. For example, results like theorem 8.1 of [Pe] are easily 
obtained. Observe that one has to put conditions only on the difference of the 
resolvents of H and H0 (as in Kato's criterion for the existence of wave operators), 
so H could be very singular with respect to H0 (for example a differential operator 
of higher order). Remark that not only short-range, but also long-range singular 
perturbations are allowed. Moreover, the unperturbed operator HQ can be quite 
complicated (e.g. a N-body hamiltonian), a situation in which usual Enss method (as 
presented in [Pe] for example) does not work. 

44 



ABSTRACT MOURRE THEORY 

A p p e n d i x : A Tauber ian E s t i m a t e 

We shall prove here an estimate which plays an important role in the 
applications we have in mind and which improves the tauberian theorem described 
in [BG2]. Below we denote BC(R n) the C*-algebra of bounded, continuous 
functions on R n equipped with the norm llfll00=sup{lf(x)l I x e R n } . C£(Rn) is 
equipped with the usual Schwartz topology. 

We shall consider a subalgebra ^ c B C ( R n ) , which contains the constants, and 

which is equipped with a norm II for which M is a Banach space with continuous 

multiplication (i.e. 3M<«> such that Ifgl^<Mlgl for all f,g in M). We assume that 

C ~ ( R n ) o ^ c B C ( R n ) the embeddings being continuous. Let us denote fa(x)=f(ax) 

for each function f on R n and each o>0. Our final assumption is that M is 

invariant under dilations, i.e. f°^M if feJt and a>0, and that there are constants 
0<M,N<oo such that 

(A.l) IfalM < M<a>NlflM for all feJt (<g>=(1+o2)1/2). 

THEOREM: Assume that E is a Banach space and that a continuous, unital 

homomorphism Msf*—>f(A)eB(E) is given. Denote f(oA)sfa(A). Let peJt and 

assume that there is a number 1>N such that for any function 6eC~(Rn\{0}) we 

have lpT0lM < C(0)T^ if 0<T<1. Let £:Rn->R be a function of class C°° and such 
that %(x)=0 (resp. ^(x)=l) in a neighbourhood of zero (resp. of infinity). Denote 
r|(x)=xV^(x). Then there is a constant c such that for all ueE and all 0<£<1: 

(A.2) llp(eA)ull < cll£(eA)ull + cel J* IIT|(TA)UII x~l~l dx + ce^llull. 

Remarks: Here A has to be interpreted as a symbol which helps to distinguish the 
function feM and the operator acting in E associated to it by the homomorphism. 
However, in applications A is in fact an operator or a finite set of operators in E. 
Observe that r |eC~(Rn\{0}) so it belongs to Ji, and £ - l e C £ ( R n ) , so that £ 

belongs to M too. Hence all terms in (A.2) are well defined and (A.2) is an 
estimate of the rate of decay of llp(eA)ull as e->0 in terms of the rate of decay of 
H^(eA)ull and llr|(eA)ull. The condition we put on p is satisfied if there are 
coeC°°(Rn\{0}) and pQeM such that p(x)=co(x)p0(x) for x*0 and cq(tx)=t*co(x) 
for x>0 and x**0. In fact, we shall then have: 

iPxei^ = i c o ^ e i ^ = T ' lcoepj i^ < M x ' k o e i ^ i p ^ < cxl 
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for 0<T<1, because OdQeC^czJt. Observe that p has a zero of finite order I at zero 
in this example, while ^ and r| have zeroes of infinite order: this explains why we 
call (A.2) a "tauberian estimate". Let us mention that in all the applications Hp(eA)ll 
is a constant independent of 8. For example, if A is an unbounded self-adjoint 
operator in a Hilbert space E, then llp(eA)ll=const. while, if supp 9 is included in 
0<a<|x|<b<oo, then llp(TA)0(A)ll < supx|p(xx)0(x)| < csup{ |p(^) | | ax<|^|<bx}. 

Finally, let us observe that if ^ e C ^ ( E n \ { 0 } ) and £(x)=l on SUPP "H* then 
IIti(XA)UII=IIti(TA)C(TA)UII< IIT|(TA)II IIC(XA)UII<CIIC(TA)UII for T<1, hence the 
precise form of r\ is irrelevant. Moreover, if ^ is a function with properties 
similar to ^ , then there is [i>0 such that ^1( | ix)=l for xe supp ^ , hence 
H^(eA)ull=ll^(eA)^1(e|LiA)ulI< cIl^1(ejaA)ulI for e<l , so the precise form of ^ is also 
irrelevant. 

Proof of the theorem : Observe first that for 0<a<b<°° and x^O we have 
^(bx)-^(ax)=Jb rj(tx)t_1dt. In particular l=^(x)+J7 r|(tx) t-1dt if x?K), which implies 

2. 1 
(A.3) pe(x) = pe(x)^e(x)+J~ pe(x)iiet(x) fMt (x*0). 

The application o>—> r | aeC^(EN) is continuous on (0,°o), hence t^if^Ji has 
the same property. Moreover, for t>l: 

(A.4) lper|etU = K p ^ V ' U ^ M<8t>Nlpt-1T1l^ < c(8)tN^, 

because r|eC~(Rn\{0}). 

Hence J~ lper|etl t_1dt so that the integral per|et t_1dt exists in M (in 
norm). Using (A.3) we obtain: 

(A.5) p ^ p ^ + J ^ p ^ r M t 

equality in Ji (in fact, since all the terms are in Ji and M consists of continuous 
functions, it is enough to show that the values at each xtK) of the right and left side 
are equal, which is assured by (A.3)). The continuity of the homomorphism 
f»—» f(A) implies now: 

(A.6) p(8A) = p(eA)^(eA) + J~ p(eA)r|(etA) rMt 

(the integral exists in norm in B(E) due to (A.4)). 

Consider now some ueE and let us apply (A.6) to it. Since Hp(eA)ll< clp£l const, 

for 0<8<1, we get: 

(A.7) llp(eA)ull < cll^(8A)ull + j ~ Hp(sA)r|(8tA)ull rMt = 

= cll£(eA)ull + il Hp(8A)r|(aA)ull crMa + J~ Hp(eA)ri(aA)ull crMa. 
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In order to estimate the first integral above, let 0eC~(Rn\{O}) be such that 6r|=r|. 

Then 

Hp(eA)r|(aA)ull = Hp(eA)9(cA)r|(aA)ull < ll(pE9a)(A)ll IITI(GA)UII < 

< clpe0al^llr|(aA)ull = cl(pea^1G)alM Hr|(aA)ull 

< cM<a>Nlpec^"1Glt^ Hr|(aA)ull < Cl<a>N(e/a)l\\r](aA)u\\. 

If we use this estimate in the first integral from the last member of (A.7), we obtain 
the second term from the right-hand side of (A.2). Finally, we estimate the last 
integral from (A.7) using (observe that r |eC^(Rn\{0}) and a> l ) : 

Hp(8A)r|(aA)ull < clper|<^llull = c K p ^ r i ) ^ Hull < 

< c ^ l p ^ S i l M Hull < c2aN" Vllull. 

Since X>N, we shall obtain the last term of (A.2).B 
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ON NONLINEAR SCATTERING OF STATES 
WHICH ARE CLOSE TO A SOLITON 

V.S.Buslaev and G.S.Perelman 

1 So l i tons 

Consider the nonlinear Schroedinger equation 

(1.1) tyt = -V>x* + F{\^\2)^, ip = V>(*, t) e C, 

t e R. Assume that 
i)F is a given smooth (e C°°) real function bounded from below, 
ii)the point £ = 0 is a (sufficiently strong) root of the function F: 

(1.2) F(0 = F1?(l + O(0),P>0. 

Further consider the function 

(1.3; U(<l>,a) 
1 

8 
A 2 

1 

2 

r<t>2 
F(ê)d£. 

If a / 0 this function is negative for sufficiently small 0. The next assumption 
on F will be given in a sligtly implicit, but absolutely elementary form: 
iii)for a from some interval, a G A c R+, the function 0 —* J7(0,a) has a 
positive root; if <f>o(= (/>o(ot)) is the smallest positive root then U^^o^a) > 0. 

Under all these assumptions there exists the unique even positive solution 
y —> <p{y) of the equation 

(1.4) 4>yy = -Uà = 
1 
4 

a2<f> + F(<t>2)<p 

vanishing at infinity. More precisely 

(1.5) <f> = <j>(y\a) ~ <j)ooexp( 
1 
2 

aik/D,?/ oo. 

The following functions of x can be called the soliton states: 

(1.6) w(x\a) — exp -i/3 + i 
1 

2 
•vx)(/>(x — 6|a), 

S. M. F. 
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here 
(1.7) er = (ß,üJ,b,v),u> = 

r 
4 

[v2 - a2), 

/3,w,i) , t ;GR,aG A. The set of the allowable a will be denoted by E. If a is 
a solution of the Hamiltonian system: 

(1.8) 0/ = U;,Ü/ = O,&' = v y = 0. 

the function w(a;|cr(£)) is a solution of the equation (1.1) called the soliton. 

2 The linearization of equation (1.1) 

Consider the linearization of the equation (1.1) on the soliton w(x\a(t)): 

(2.1) iXt = -Xxx + F(\w\2)x + F'(\w\2)w(wx + wx). 

Instead of x introduce the function / : 

(2.2) y(x,t) = exp(m f(y,t),$ = -3(t) 
1 

E 
vx,y — x — b(t). 

The function / obeys the following equation: 

(2.3) ift = L(a)f, 

where 

(2.4) L(ot)f = -fm + 
1 

4 
a'f + F^f + F'i^if + f), 

0 = <p(y\a). Equation (2.3) is only a real-linear equation. Introduce its com 
nlexifìr.ation: 

(2.5) ift = H(a)fJ= f 
f 

(2.6) H(a) = Htt(a) + V(a),Ha(a) = -dl 
1 

4 
a2)cr3, 

(2.7) V(a) = \F((t>2) + F'{4?)4?] as + îF'(02)02a2, 

02,0z are the standard Pauli matrices: 

(2.8) 02 = 
0 
i 

—i 
0 

,<73 = 
1 
0 

0 
- 1 
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3 Properties of the operator H{a) 

The operator H(a) can be treated as a linear operator in L»2(R —> C2). Define 
it on the domain where H0(a) is self-adjoint. It possesses the properties: 

(3.1) a3H = H*a3,a2H = -H*a2,aiH = -Hav 

As a result the spectrum of H is invariant with respect to the following 
transformations: E —> E,E —> —E. 

The continuous spectrum consists of two half-axis [2?o, oo) and (—00, — 2?o], 
£0 = \ot2- Its multiplicity is equal to 2. 

Owing to the exponential decay of the potential term V(a) at infinity the 
discrete spectrum of H(a) contains only a finite number of eigenvalues and 
the corresponding root subspaces have only finite dimension. 

The point E — 0 is always a point of the discrete spectrum. One can 
indicate two eioen functions 

(3.2) 6 = U] , 6 = 
3̂ 

u3 1 

where 
(3.3) ux = -i<b(y\a),uz = -(f)y, 

and two adjoint functions: 

(3.4) 6 = 
«2 
u2 

Ì4 = 
7/>i 
г¿4 

where 
(3.5) 2̂ = 

2 

a Фа, Щ 
2 
9 JÓ. 

They obey the relations: 

(3.6) Hb = Hb = 0, Hb = ib, НЬ = гб. 
Actually, the spectrum of H(a) can lie only in the real axis and in the imag
inary axis of the S-plane, see [Wc2], for example. It is known also that the 
spectrum of H(a) is real and the root subspace corresponding to the point 
E — 0 is generated by the vectors ^1,̂ 2,̂ 3,̂ 4 if and only if 
(3.7) daUW2 > 0-

Consider the resolvent R(E) = (H — E)~l. Its kernel R(y,y'\E) is an 
analytic function in the extended £-plane: it admits an analytic continuation 
through the continuous spectrum as a meromorphic function. The resolvent 
kernel goes to infinity when E tends to the branch points =p2?o if the equation 
H(a)ip — T^oty, treated as a differential equation, has nontrivial solutions 
bounded at infinity. In this case the points =f£?o will be called resonances. 
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4 Nonlinear equation 

Consider the Cauchy problem for equation (1.1) with the initial data 

(4.1) гЬ(х.О) = гЬп(х). 

where tpo € H1, H1 is the standard Sobolev space with the norm: 

(4.2) \\f\\h = 11/111+ ll/'lli-

The problem has a solution ip = ip(x,t) which belongs to H1 with respect to 
x for each t, moreover ip e C(R —• Hl) . Any such solution ij) obeys two 
conservation laws: 

(4.3) J t)\2dx = const, f[\Mx,t)\2 + u(Wx,t)\). dx = const, 

where U is the function (1.3). The second formula (4.3) leads to the following 
estimate: 
(4.4) \\ФЫ)\\ю<с(\Ш\ю)\Ш\ю, 
here c = R+ —> R+ is a smooth function. If in addition ^ has the finite norm: 
||(1 + |x|)^o||2 < °°, the solution ip also has the finite , but growing in time, 
similar norm: 

(4.5) ||(1 + |x|№(x,*)||2 < c(\\1h>\\h*) [||(1 + M M k + t\\M\m]. 

5 T h e o r e m 

Let cr0 = (ßo,uo,bo,vo) G ,^0 = î 
4 

(v2 - a£). Consider the Cauchy problem 
for equation (1.1) with the initial data: 

(5.1) rß0(x) =w(x\a0) + Xo(x). 

Our aim is to describe the asymptotic behavior of the solution ip as t —> oo. 
Assume that: 
T1) the norm 
(5.2) JV=||(l+a;2)Xo||2+||Xoll2 

is sufficiently small; 
T2) E = 0 is the only point of the discrete spectrum of H(ao) and the dimension 
of the corresponding root subspace is equal to 4; 
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T3)the points =fEo are not resonances; 
T^the function F is a polynomial1 and p > 4. 

Then there exist a+ G E and /+ G L2 fl such that 
(5.3) ф =w(.,o+(t))+ exp(-ilot) + o(l) 

as £ —> 00. In this formula: <r+(£) is the trajectory of the system (1.8) with 
the initial data a+(0) = <r+; /0 = — o(l) is meant L2 -norm. Moreover 0+ in 
(5-3) is sufficiently close to ao and /+ is sufficiently small. 

It is worth to note that the operator H(a) possesses theses two properties 
T2) and T3) if a is sufficiently close to ao and the operator H{a+) possesses 
both these properties naturally. 

6 Li terature 

Of course, simple formulas (1.6-8) for the soliton are well known. But in many 
dimensional ж-space the situation is quite different,see,for example, [Str2, 
Ве-Li]. Properties of the spectrum of the operator H(a) were considered 
in [We2]. The Cauchy problem for equation (1.1) was considered in the space 
Hl in [G-V, K] and in some other works. The Cauchy problem with the initial 
data of the form (5.1) was treated in [Sh-Str, Ca-Li, Wei, We2]. The main 
result states that for the Cauchy data (5.1) the solution always remains in a 
small fl^-vicinity of the orbit generated by the trajectory 00(i), 00 (0) = <то- As 
for the scattering behavior of the solution when t —•> 00, some series of works 
devoted to the scattering in the absence of bound states should be mentioned 
[Strl, G-V]. The only result which is close to formula (5.3) is contained in 
[Sof-We]. The authors of the work have considered the equation 

iil)t = - А ф + [V(x) + \\ф\т-1]ф, 

ф = ф(х, t), x G Rn, 1 < m < n + 2 
ri-2 

n = 2,3. 

In this situation the soliton appears as the perturbation of an eigenfunction 
of the operator ip —* — A ip + V(x)ip, which is supposed to be unique and 
simple. The main difference between the theorem of [Sof-We] and our theorem 
is generated by the fact that in the first case the center of the soliton is 
stable. As a result our work containes some number of technical detailes 
which differ it from [Sof-We] although the main line is the same. However, 
it is worth to emphasize that this common mane line is also similar to the 
corresponding one in the investigation of asymptotic regimes for nonlinear 
parabolic equations,see[He]. 

1This assumption is not crucial, it is accepted only for the simplicity 
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7 Separation of motions 

Consider a trajectory a(t) = (/?(£), <j(i), b(t),v(t)) G £ which generally is not 
a solution of system (1.8).Consider the corresponding trajectory in the set of 
soliton states 
(7.1) w(x\a(t)) = exp(i$>)<t>(y\a), 

$ = -B(t) + 
1 
2 

v(t)x, y = x — b(t), a = a(t). 

Write the solution ip of the Cauchy problem (1.1),(5.1) as the sur 

(7.2) T/>(X, t) = w(x\a(t)) + t). 

Instead of the equation (1.1) one can get a system for a and x introducing 
some conditions on the splitting (7.2). Let wa be the derivative of w(x\a) with 
respect to the parameter a and wa(t) — wa(-\a(t)). One will use the following 
condition to fix the splitting: 

(7.3) (X(t),a3wa(t)) = 0 , 

here (•, •) is the scalar product in the space 1/2(R —> C2). Note that 

(7.4) W/3 = exp(za3$)£, ^ = exp(2<73$)&>, 

(7.5) wb = exp(icr3$)65 ™v = exp(zcT3$) Й -
i 
2 M i 

1 
2 ' 6 

So conditions (7.3) can be represented in the form: 

(7.6 </(<Wl(£)> = 0, 

where 
(7.7) X(x,t) = exp(i$)f(y,t),Çi(t) = ii(y\a(t)). 

A different but an equivalent form of the splitting condition is 

(7.8) im(/(t),Ui(i)) = 0. 

The geometrical sense of (7.3)=(7.6)=(7.8) is very simple: condition (7.6) 
implies that f(t) belongs to the subspace of the continuous spectrum of the 
operator H(a(t)). Actually the condition leads to decomposition which is in 
accordance with the asymptotic behavior (5.3). 

Write down the system for a and x (or / ) m more explicit form. Replace 
the set a = (/?, u, 6, v) by some other set of variables (7, c, v), where 

(7.9) b 
i 

v(r)dr + c, (3 = u(r)dt + 7. 
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In terms of new variables system (1.8) acquires the form: 

(7.10) y = 0,u/ = 0,c' = 0,i/ = 0. 

Rewrite equation (1.1) in terms of f: 

(7.11) ift = L(a)f + N(d>, f) + 1(a)f + l(a)d> + • 
1 

E 
vv 

0 
•0a » 

WVIPTP 

(7.12) N(<j>, f) = F(\cf> + f\2){ct> + f) - F{^)4> - F(<p2)f 

-F'(ó2)ó2(f + f), 

(7.13) 1(a) = 
1 

2 
v'y + ic'dy + 

1 

2 
bv' - V 

Consider the derivative of splitting condition in form (7.8) with respect to t 
and substitute expression (7.11) for ft in the obtained relation. The result can 
be written down as follows: 

(7.14) (A0 + A1)\ = G, 

where 
(7.15 A = (7' 

1 

2 bv',J 
1 

2 
vv', c', v') A0 = {imiu^Uj)}4^, 

{l.lQ){A,X)^-re{l{a)f,u3)-
2 

a 
[J 

1 
vv') im(f,uja), G = re(N, Uj). 

Obtain the explicit expression for the matrix Aq: 

(7.17) A2= 

0 
—e 
n 
0 

e 
0 

n 
0 

0 
0 
n 

-n 

0 
n 
n 
0 

,n = 
1 
4 IMI!, e = 

4 dn 

a da 

Under assumptions T2),T^) 

(7.18) deti40(a0 ^ 0, 

see (3.7). If a(i) is close to ao and /(£) is sufficiently small (actually we are 
going to prove it), equation (7.14) can be used to estimate A. Substituting A 
from (7.14) to the right side of (7.11) one obtains the system: 

(7.19) <Tt = Gì(aJ),ifi = L(a)f + N1(aìf). 

Equation (7.14) is not a complete equivalent of conditions (7.3)=(7.6)=(7.8). 
To get the equivalence one has to add to equation (7.14) condition (7.3)= 
(7.6)=(7.8) at the time-moment t = 0: 

(7.20) (Xo,<73Wa('\<ro)) = 0. 
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Generally this condition is not satisfied by the given decomposition (5.1) of 
the initial data fa. But if xo is sufficiently small it is possible to reconstruct 
decomposition (5.1) of the initial data fa in order to satisfy to condition (7.20) 

In fact, one has to solve the equation: 

(7.21) (fa - vecw(-\ai),a3Wa(vi)) = 0 
with respect to o\. Here should be given by (5.1) with sufficiently small xo, 
see (5.2). The local solvability of (7.21) is guaranteed by the nondegeneration 
of the corresponding Jacobi matrix: 

(7.22) - {waA'\ao),azwaj(-\<To)) = -2iA0(a0). 

So one can assume that decomposition (5.1) obeys condition (7.20). 
Since i\) G C(R —> Hl) a little more general constructions show that condi

tion (7.3) has to fulfil on some small time-interval. Some estimates which will 
be given in next sections, will show also that at the end of this time- interval 
the solution has the structure (5.1) with the small second term. It gives us 
the possibility to continue the constructions and to solve equation (7.3) for all 
te [0,ti]. 

8 Reduction to a spectral problem 

Now one can describe the main line of the following constructions. 
l)System (7.19) will be investigated on a large finite interval t G [0, ti]. In 

the end one will be able to consider the limit t\ —> oo. 
2) On the interval [0, t\) one can pick out the leading term of system (7.19) 

in the. form: 
(8.1) °t = O , i ft = Ua) f. 

The first equation should be completed by more stable final data: a(ti) — o\ 
. with the imdefinite for the moment values: 

cri = <r(ti),<7i = (ßu vu h, Vi), 

w 1 
4 {v\-a\)M =viti + ci,/3i = o ; i é i + 7 i . 

Naturally now one has to put L(a) = L(ot\). After that the second equation 
oppositely should be completed by the known initial data. 

3)Rewrite full equation (7.11) in order to get the operator L{pt\) as the 
main term of the of the right side. Introduce the new function g: 

(8.2) X = exp(i®i)g(z, t), $ i = -uit - 71 
1 

' 2 
ViX, Z = X — V\t — C\. 
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It obevs the en nation: 
(8.3) igt = L{ct\)g + D(a,g), 

and D is given by the formulas 

(8.4) D = D0 + Di + D2 + D3 + £»4, 

D0 = exp(—iA) U(rWy\a) + i 
2 

1 

j,2 1 

2 
wî/)^a(î/|a) 

A = $i - $, 

D\ = [F(<p2(y\a) + F'(4>2(y|a))tf>2(y|a)] 9~ 

[F(^(z|ai)) + ^ ( ^ ( z l a O ^ ^ l a i ) ] 5, 

£>2 = F'(<A2(2/|a))</.2(y|a)[exp(-2iA) - % 

Ih = [F'{<t>2{y\a))<t>2{y\a) - F'(^(2|a1))^2(2|a1)]p, 

D4 = eyLp(-iA)N(<p(y\a),exp{iA)g). 

In order to investigate the long-time behavior of the solution of the second 
equation (8.1) and its full form (8.3) one has to separate the contributions of 
the discrete spectrum and of the continuous spectrum of the operator L(a\), 
more precisely, of the operator H(a\). Consider the representation 

(8.5) g — k + h, 

where k and h are the indicated contributions. One can use condition (7.6) to 
express the component k in terms h. Since 

(R fi k--
i 

Ki E(za1) 

condition (7.6) leads to the relation: 

(8.7) 
i 
>i(A|*(2;|a1),(73ê(y|a)) (Ah,o3£j(y\a))=0, 

where 

(8.8) A = 
eiA 

0 

n 
e-iA 

The main term of equation (8.7) is again defined by the matrix An: 

(8.9) (ë(^|ai),a3ë(î/|ai)> 2iA0(an). 

At last for h one can write down the following integral representation feaua-
tion): 

(8.10) h — exD(—iHit)hn — i 
2 

o expf-zffi(É-r)lPiDdr. 
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Here P\ is the spectral projection operator on the subspace of the continuos 
spectrum of H\ and 

(8.11) ho = P\go,go(z) = exp ¿71 2 1 
2 

Vi (z + ci] Xo(z + d). 

The final form of the equations which are used in order to investigate the dy
namical system on the interval t G [0, t\] is given by relations (7.14),(8.7),(8.10). 

9 Linear evolution 

Consider the operator H = H(a) with some fixed a and assume that H satis
fies conditions T2),T3) (with a instead of ao in them). Let U(t) = exp(—iHt] 
be the corresponding evolution operator and P be the spectral projection oper
ator on the subspace of the continuous spectrum of H. Equation (8.11) shows 
that one has to have some estimates of the evolution U(t)P . Such estimates 
will be presented in this section. They are enough transparent and can be 
proved by means of simple (but unfortunately not short) computations whicl 
use the spectral resolution of H. So let h = Ph, then 

(9.1) \\U(t)h\\x<ct-V2[\\h\\2 + NR(h)}; 

(9.2) H a l l o o < c(l + Г1/2[||Я||я1 + NR(h) 
(9.3) \\QU(t)h\\2 < c(l + i)"3/2[IN|2 + NR(h)}. 
Here 

NR(h) can be equal ||(1 + a;2)/i||i or ||(1 + x2)h\\2, 

q{x) = {1 + \x\)-k,k>3,5. 

10 Estimates of nonlinear terms 

All nonlinear terms of euation (8.10) can be estimated with the following set 
o: 

M0(t) = \a2-allMAt) = \d(t)\,d = у - z, 

M2(t) = U\Lk = (Ki,K2,K3,K4),M3(t) = \\Q(z)h(z,t)\\2,M4 = l f e í ) I U 
Moíí) = supMo(T),6/M,(t) = sup Mi (T), 

T<t 
Mo(t) = supíl + r)3/2M2(r), Maft) - supil + r)3/2M3(r), 

T<t T<t 
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M , m = sunn 4 - t ^ M a I t Y 
r<t 

At last 
M ^ M ^ t i ) . 

These definitions and relation (7.14) lead more or less directly to the inequal
ities: 
(10.1) ||A|| < W(M)(M2 + M3)2(l + t)~\ t < ti. 

Here W(M) is a function of Mo, Mi , M2, M3, M4, which is a bounded function 
on a finite vicinity of the point Mj = 0 and can acquire infinite values outside 
of some larger vicinity. It is possible to present an explicit expression for W 
but this expression is useless for our purpose. ¿Prom (10.1) one can obtain: 

(10.2) M0,Mi < W(M)(M2 + M3)2. 

Inequalities (10.1) together with the relation (8.7) generate also the estimate 

(10.3) M2 < W(M)(M2 + M3)3. 

Now pick out from D4 all terms containing at least one power of <p and denote 
their sum by DJJ, the remainder will be denoted by Dm. Finally, let Dj — 
Dx + D2 + D3. 

Direct computations permit to prove the following estimates: 

(10.4) ||(l + z2)Pi(A) + .E>/ + £>//)||2< 

W(M)(M2 + M3 + M4)2(l +1)-3/2. 

In order to obtain a similar estimate for Dm one has to use additionally some 
information on solutions of nonlinear equation (1.1), more precisely one ha* 
to use conservation law (4.3) and estimate (4.5). As result one has obtain: 

(10.5) \\PiDm\\2 + ||(1 + z^PiDmh < W(M)Mf-l(l + t)-*2. 

Just here it is important to assume that 4 < p. 

11 Final estimates 

Using equation (8.10) and combining estimates (9.1-3),(10.4-5) one can obtain 
finallv: 

m.i) M3, M4 < W(M) N + (M2 + M3)2 + M2 + M f - 1 

where 

i V = | | ( l + x2)xo||2 + ||x,oll2. 
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The first term N is originated from the first free term of the right side of 
equation (8.10). It is controlled by the second variants of estimates (9.2-3). 
Other terms in brackets are originated from the integral term of equation 
(8.10). They are controlled by estimates (10.4-5) and by both variants of 
(9.1),(9.3). 

Now one has obtained a closed set of inequalities (10.2-3),(11.1) and can 
try to solve it. Formulas (10.3),(11.1) give the system: 

(11.2) M2 + M3,M4 < 

W(M) [N + (M2 + M3)2 + (M2 + M3)3 + M2 + M f - r 
If N is sufficiently small, the system shows that the pair M2 + M3,M4 car 
belong either to a small vicinity of the point (0,0) or to some domain whose 
distance from (0,0) is limited from below uniformly with respect to N. It is 
clear that only the first possibility can be realized. Therefore all the functions 
M0,Mi,M2,M3,M4 are sufficiently small: 

(11.3) Mj(t) < n(N)N, 
here /x(iV) is a bounded function denned for small N. Since all constants in the 
estimates do not depend on t\ the same estimates are true for Mj(i) uniformly 
in t 6 R+: 
(11.4) Mdt) < fi(N)N. 

12 The limiting soliton 

Return to (10.1) again. Estimates (11.4) show now that 

(12.1) \\\\\<H(N)N2(l + t)-\ 

It implies that all variables 7, a;, c, v have limits 700, a;^, c^, Vqq as t —> 00. So 
one can introduce the limiting trajectory a+(£): 

(12.2) B+(t) =o;+£ + 7+,u;+ : 0^0,7+ = 7oo + /•00 (ш(т) - Uoo)dT, 

(12.3) 6+(t) = v+t + c+,v+ : 0^0,7+ = 7oo + 
-00 
'0 

(V(T) - Voo)dT. 
It is clear that 
(12.4) a(t)-a+(t) = 0(ri), 
as t —> 00.Now the limiting soliton w(x\a+(t)) arises naturally and 

(12.5) w(x\a(t)) - w{x\a+{t)) = 0{t~l) 

in the space L2 fi L^. 
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13 Dispersion reminder 

The second term x of the total solution ip = w(x\a(t)) + x can be studied 
asymptotically if one uses the same representantion of x as m section 8,but 
with oo instead of t\ in transformation (8.2): 

(13.1) X = exp(i<S>oo)g{z,t), 

^ = -BJt) 
1 
2 v+x, z = x — b(t). 

Now the operators Hi and Pi should be replaced by the naturally definec 
operators H+ and P+ and all construction of section 8-11 can be duplicated. 

Particularly one again can separate the contributions of the discrete anc 
the continuous spectra of H+: 

(13.2) g — k + h. 

Prom 
(13.3) M2(t) < fi(N)N(l + *)"3/2, 

see (11.4),one can obtain at once the estimate: 

(13.4) k = 0{t-3'2), 

in the space L2 fl L^ . 
Reprezentation (8.10) for h acquires the form: 

(13.5) h = exp(—iH+t)P+ho — i rt 
Jo 

exp[-iH+(t - T)]P+Ddr, 

with the respectively transformed D. 
Introduce the representation 

(13.6) h = exp(—iH+t)hoo + R: 

(13.7) hoc = P+(ho + hi), h\ - —i •oo exp(iH+T)Ddr, 

(13.8) R = -i •OC exp\-iH+(t-T)\P+DdT. 

Here hoo G L2 fl : ho G L2 ft since ho G Hl\ h G L2 fl in accordance 
with (9.1), (10.4-5). Inequalities (10.4-5) imply immediately that: 

(13.9) R = 0{t-x'2) 

in Lo-norm, 
(13.10) R = 0(r1) 
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in Loo-norm. So one can formulate the following result: 

(13.11) ij) = w(x\a+(t))+ 

+ exp(i$oo) exp(—iH+t)hoo (z,t) + R, 

where R admits estimates (13.9-10). The brackets [v\i are used in order to 
indicate the first component of C2 - vector v. 

14 Scattering 

In the dispersive term exp(i$oo) exp(—iH+tyhoo the element hoo belongs to the 
subspace of the continuous spectrum of the operator H^. So its behavior as 
t —> oo is scattering behavior (in L2 - norm): 

(14.1) exp(—iH+t)hoQ — exp(—iHot)h+ + o(l), 

where h+ G L2 and is related to h^ in terms of the corresponding wave operator 

(14.2) hoo = W+h+. 

It is not essential that the operator is not self-adjoint in our case since its 
spectral resolution has the same structure as for a self-adjoint operator. We 
are not going to discuss here the properties of h+ and the reminder in more 
detail. Only note that 

(14.3) exp(i$oo [exp(-iH0t) i (z) = [exp(-il0t)f+](x), 

and 
(14.4) k = -d2,f+(x) -- exp(-ry+ 

1 
- 1-ViX 2 

\h+(x — c+). 

Introduce representation (14.3) in formula (13.11) and write down the final 
result: 
(14.5) ^ = w(-\a+(t)) + exp(-il0t)U + o(l). 

From the first author (V.B.): 
This work has been written during my stay in the University Paris VII. I want 
to express my gratitude to A. Boutet de Monvel who was my host and was 
very helpful in course of this visit. 

I am very obliged also to A. Soffer for numerous helpful discussions. 
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On the Spectrum of Gauge-Periodic 
Elliptic Operators 

Jochen Brüning and Toshikazu Sunada 

1. Introduction 
This note presents an extension of the results in [1] concerning the spectrum of 
symmetric elliptic operators on complete noncompact Riemannian manifolds. 
Thus consider a complete Riemannian manifold, M, of dimension ra, with a 
properly discontinuous action of a discrete group, T, of isometries; we assume 
that the orbit space is compact. Moreover, let E —> M be a hermitian vector 
bundle with a unitary representation 

U :T ^ L2(E). (1.1a 

More precisely, we assume that T acts unitarily on via 7*, and put 

Uyf (p) :=y*f(y-1(p)). (1.16) 

Thus each IJ1 maps C^[E) to itself. Finally, let D be a symmetric elliptic 
differential operator on CQ°(E). In [1] we have assumed that D is, in addition, 
periodic in the sense that it commutes with all (77 on CQ°(E). NOW we bring 
in a second unitary representation, the gauge, 

V : T -> C°° End£ , , x 

(1.2) 
VI I Ep is unitary for all 7 E T, p E M, 

which induces a unitary representation on L2(E). This representation will 
also be denoted by V. In general, 

W1 := ^ 7 i7 7 (1.3) 

will not define a representation any more, since [Vyi, Ul2] maybe nonzero. But 
frequently we have a good substitute namely 

C / 7 l K y 2 = X ( 7 l , 7 2 ) K y 2 C / 7 l , (1.4a) 

S. M. F. 
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where 
^(7i572) is in C°°(EndE), unitary on each fiber, and 

a character of T in each variable separately. 
(1.46) 

Moreover, we want that 

X(7,7) = 1 for all 7 E T . (1.4c) 

The operator D is called gauge-periodic if 

[W7,D]=0 onC0°°(£). (1.5) 

The periodic case is obviously contained with V, X trivial. An interesting 
example with nontrivial gauge is provided by the Schrodinger operator with 
constant magnetic field in R2. This will be our main application which we 
deal with in greater detail below. 

Assuming (1.5) we associate a C*-algebra with D as follows. Fix a fun
damental domain, X>, for T and introduce the isometry 

*:L2(E)-+L2(r,L2(E\V)), 

* / (7 ) :=r i>oW7( / ) , 
(1.6) 

where r-p denotes restriction L2(E) —> L2(E | V) =: H. Let Ry, L7 be right 
translation by 7 and left translation by 7-1 in L2(F), respectively, and define 
the unitary operator X~ in L2(T) for 7 G T by 

X7a(5):=X(5,7)a(5). (1.7) 

Then it is easy to compute that 

Ry := $iy7$~1 = X7i?7 ® / . (1.8) 

Since X is a bicharacter, it is also readily seen that 

[X71L71 ® /,^72] - 0 for all 71,72 G T. (1.9) 

We will see that this is satisfied in our main example (and probably in many 
other cases). Then we abbreviate L7 =: X7L7 and introduce the C*-algebra 
Cw(r) which is generated by (L7)7€r in C{L2(T)). With K = 1C(H), the ideal 
of compact operators on H = L2(E | V), we introduce, as in [1], 

Civ(I\/C) :=Cw(r)®/C. (1.10) 
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On this algebra we can again define a natural trace trp (to be described in 
Sec. 3), such that all spectral projections of D have a finite trace. We say that 
Cw(I\/C) has the Kadison property if there is a constant C > 0 such that 

t r r P > C , (1.11) 

for all nonzero orthogonal projections P G Cw(I\ K). The largest constant in 
(1.11) will be called the Kadison constant of Cw(I\ /C), to be denoted CW(T). 

We can show that D has a unique self-adjoint extension, D, with spectral 
resolution 

D = 
+00 

— oo 
XdE\ . 

Quite analogously to [1] we then obtain 

Theorem 1 If Ai > A2 G R\spec D then EXl-EX2 G C w (I\ K). IfCw(T) 
has the Kadison property then the spectrum of D has band structure in the 
sense that the intersection of the resolvent set with any compact interval of 
real numbers has finitely many components. 

As noted in [1], the proof of Theorem 1 gives some quantitive information 
which we exploit in connection with the magnetic Schrôdinger operator in IR2. 
Recall that this operator is defined on Co°(IR2) by 

DA := 
2 

E 
¿=1 

1 
i=1 

a 
dxi + ai 2 

+ v (1.12) 

where ai,v G C°°(IR2). The magnetic field is assumed to be constant, 

b(x) := 
da2 

dxi -
dai 
ÔX2 

x = 6(0) =:&, 

and we assume moreover that v is Z2-periodic. b is also equal to the magnetic 
flux over a unit cell, 

b = 
0<Xi,X2<l 

b(xiIX2)dxidx2 =: 2-KO . (1.13) 

This operator fits into our framework as follows. Since the magnetic field is 
constant we may assume that 

a\{x) = bx2/2, a2 (x) = —bxi / 2 . 
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With u) the standard symplectic form in R 2 , we define for z E Z 2 

Uzf(x) :=f(x-z), 

Vzf(x) := e ^ 1 6 / 2 ^ * - * ) / ^ ) . 
(1.14) 

Then it follows that 
X{z1,z2) = e - / = ï b ' 2 ^ z ^ (1.15) 

and 
f f — b u>(z2,z1)f f 

1-/ZiljZ2 — e J-JZ2ljZi • 
(1.16) 

Now we regard the quantity b as a parameter restricted by |6| < Ci, say. It is 
known that the precise band structure of spec DA in a given interval [Ai, A2] 
depends rather subtly on the arithmetic nature of 9 in (1.13). We will prove 

Theorem 2 Assume that 9 — p/q G Q with (p,q) = 1, and that Ai > 
A2 E R \ spec DA- There is a constant C depending only on C\, Ai, A2 ? and 
v such that 

G(DA, Ai, A2) := }({ gaps in spec DA H [A2, Ai]} 

satisfies the estimate 

G{DA, AI, A2) < C(Ci, Ai, A2, v) g. (1.17) 

The proof of this result uses the fact that the Kadison constant of CW(r) sat
isfies CV(r) > q~1. This degeneration then allows the possible development 
of Cantor structures if 9 approaches irrational numbers. It has been shown 
in [3] that, for suitable G also has a similar lower bound. Crucial for this 
result was a thorough study of Harper's equation, a discrete approximation 
to DA> Using only the structure of the rotation algebras (which are brought 
in by (1.16)) it has been shown in [2] that the maximum number of gaps is 
realized by Harper's operator. One might thus hope that our approach, which 
links all gauge-periodic operators with the rotation algebra, opens a way to 
bypass the discrete approximation and to establish directly that "sufficiently 
complicated" operators in the rational rotation algebra will indeed have the 
maximum number of gaps. Of course, this need not be so for every operator 
as illustrated by the case v = 0. Since CV(r) = 0 for irrational 9, we also see 
that for a vanishing Kadison constant no general conclusion concerning the 
structure of the spectrum is possible. 

We are indebted to Victor Guillemin and Johannes Sjôstrand for some 
enlightening discussions. 
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2. Parametrix construction 
We follow essentially the outline of [1, Sec. 2]. Since T acts properly discon-
tinuously the sets 

T(K) := { 7 e r I Kn-yK^®} (2.1) 

are finite for all compact K c M. It follows that for any sequence (tuWr C 
L2(E) with supp uy C jK for some compact K and all 7, u := E 

7^r 
1¿7 is well 

defined. Moreover, we find the norm estimate 

ЫЬ(Е) < ПК) E 
7^r 

I W I i 2 ^ ) • (2.2) 

In particular, the convergence of the right hand side implies u € L2(E). 
On the other hand, if ipu ip2 6 C£°(M) and B e C(L2(E)) and if we put, 

for u € L2(E)), 

B^u := W^iBfoWJu =: ipllW1BW*tp2lu, (2.3) 

then we can easily prove the estimate 

E 
7 

H^llì^u?) ^ sup 
M 

w2

1 SUp 2̂ 
M 

•ttr U supp U supp 2̂ P I I 2 N I W 

(2.4) 
Now consider a gauge-periodic operator D with domain CQ°(E) in L2(E). 

To show that D is essentially self-adjoint we consider u G L2(E) with 

D*u = V^îu. 

Since 16 G HfOC(E), p := ord£>, by elliptic regularity we have ip^u G HQ{E) 
for ^ G Cg°(M). Now pick ^ such that 

E 
7€r 

^ 7 = 1. (2.5) 

Then we compute 

0 = (u, (D* - \ / - L » 

= 
E 
7,7' 

(ф-уЩ Dtpyu) + V^Ill^H2 

= E 
7,7' 

( 7̂n, Dijjyu) + >/^T||tz||2 , 
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which implies u = 0, as desired. 
We identify D with its closure in L2(E). Assuming next D > 0 and 

p > m we construct a local paramatrix for the heat operator dt + D as in 
[1, Lemma 1]. Using the same notation, we define the global fundamental 
solution by 

Ttu := E 
76f 

W^<pFtil>w;u, (2.6) 

and the remainder term by 

Rtu : = E 
7er 

W^{dt + D)<pFtil>w;u, (2.7) 

where ip satisfies (2.5) and (p G C^{M) equals 1 near supp ip. Going through 
the proof of [1, Lemma 2] we obtain the analogous result (using (2.2) and 
(2.4)) i.e. 

Lemma 1 Fix T > 0. 
1) Uniformly in t G (0, T], we have 

\\Ft\\L2(E) + WR>t\\L*(E) < C2 . 

2) For u G L2(E), the functions Ttu and TZtu are continuous in (0, T] with 

lim 
1—0 

Tt и = и. 

3) Tu is differentiable in (0, T], has values in V(D), and satisfies the equation 

(dt + D)Ttu = 1Ztu. 

As in loc. cit. we can now derive the Neumann series 

exp(-tD) = 
oo 

E 
3=0 

(-1)j (F*j R)t, (2.8) 

where 

(F*°n)t := ft, (F*i+lK)t = 
•t 

o 
{F *j n)t-uTludu. (2.9) 

The kernel estimates in [1, Lemma 1] then lead, as before, to the following 
result. 
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Lemma 2 exp(-tD) has a smooth kernel (with respect to the given L2-
structures), 

Kt(p,q) e Ep®E*q, * > 0 , (p,q)eMxM. 

This kernel satisfies the estimate 

ÌKt(p,q)ÌEp®E; < C 3 r^exp ( -C 4 dM (p , g ) p / ( p - 1 ) r 1 / (P - i ) ) , (2.10) 

uniformly in (0, T] x M x M; here dM denotes the Riemannian distance. 
Moreover, as t \ 0 we have the asymptotic relation 

TTEpKT(P,P)~T-™/?A(P), (2.11) 

with an explicitly computable function A(p) (cf. [1, (0.1)]). 

3. C*-algebras 
Following the outline of [1] further, we have to introduce the trace trp on 
Cw(r, /C), defined in (1.10). To do so we introduce the commutant of (7£ 7) 7 Gr, 

Mw(T) := {A E C(L2(T,H)) I [ 4 , £ 7 ] = 0 for 7 e T} . (3.1) 

Then we define the Fourier coefficients of A G Mw(T) by 

i ( 7 ) ( « ) :=7M(5?)(1) , (3.2) 

where 7 G I\ v G H (such that ^(7) G £(#) ) , and Of G L 2(r, if) is given by 

¿1(7) - v 7 = 1 , 
0 otherwise. 

(3.3) 

The following properties are easily checked. 

Lemma 3 1 ) For 7 G T, K G K(H) wc have 

L 7 ® K( 7 ' ) = K, 7 = 7'. 
0 otherwise. 

2) For AGMW(T) a n d r e L 2 ( r , f f ) , 7 G r , 

ì4t(7) = E 
y'Er 

X( 7 ' , 7 ) i (77 ' - 1 ) ( r (7 / ) ) -
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3 ) F o r A e M w ( r ) , i e r T 

J4*( 7) = ( i ( 7 - 1 ) ) * . 

4) Far A,B e MwF), i €T 

AB(7) = E 
7' 

X ( 7

, , 7 ) i ( 7 7 / - 1 ) 5 ( 7 ' ) , 

in particular 
A*A(1) = E 

7 

A ( 7 ) * i ( 7 ) . 

5) For A € MwiX) we have 

PII < E 
7€T 

\\Ml)\\-

Proof Properties 1) through 4) follow by straightforward computations. 
5) follows from the arguments in [1, Lemma 3]. 

Thus we arrive at the crucial 

Lemma 4 If D is a gauge-periodic symmetric elliptic differential operator 
in L2(E), of even order p > m. then 

e~D eC w ( I \ /C) . 

Proof We have e~D G MwiX) by assumption, and it is easily computed 
that for v G H = L2(E \ £>), p G £>, and A := $ e - D $ _ 1 one has 

A(y) (v)(p) = 
D 

e (p,iqh*v(q)dvolM(q) • (3.4) 

Thus all Fourier coefficients are compact. 
In T we introduce the minimal word length with respect to a fixed finite 

set of generators; this defines a translation invariant metric, dp5 on T x T. 
Then there is a constant, C5, such that 

dr (71*72) < Cs inf 
p,q E D 

dM(7iP,72<?) + 1). (3.5) 

Now we put r(j) := dr(7,1) and observe that 

tf{7 e r I r ( 7 ) <R}< C6eC7R. 
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Then the estimate (2.10) implies that 

E 
7^r 

||i( 7)||<oo. 

Combining this with Lemma 3, 1) and 5), we reach the desired conclu
sion. 

It remains to define trr. We put, for A € Mw(?)+ '•— the positive part of 
Mw(T), 

tvr A := trH Â(l). (3.6) 

It follows from Lemma 3, 4) that trr is a faithful trace on Ai\y(T), hence 
on Cw(r,/C). Now if Ai > A2 are real numbers, and D is a gauge-periodic 

symmetric elliptic operator with spectral resolution D = +00 
—00 

XdEx, then 
E\x — E\2 is an integral operator with smooth kernel [4]. It follows as in (3.4) 
that 

trr(EXl -Ex2) = 
v 

t r £ p ( £ A l - EX2)(p,p)dvo\M(p) • (3.7) 

Thus we arrive at 

Lemma 5 For any gauge-periodic symmetric elliptic operator D and real 
numbers Ai > A2 we have an estimate 

0 < t r r ( £ A l -Ex2)<C(\u\2,D). (3.8) 

The dependence on D is only through the coefficients and their derivatives in 
an arbitrary neighborhood off). 

4. Proof of Theorem 1 and Theorem 2 
The proof of Theorem 1 now follows from Lemmas 4 and 5, precisely as the 
proof of [1, Theorem 1]. 
Proof of Theorem 2 Fix Ai > A2 not in spec DA, and restrict the mag
netic field to |6| <C\. Then we obtain from Lemma 5 

t r r (£ A l -Ex2) <C(Ai ,A 2 ,Ci) . (3.9) 

The theorem will thus be proved if we can show that 

CW(T) > l/q, (3.10) 

if b — 2TT0 and 8 — p/q, (p, q) = 1. To prove (3.10) we introduce the (universal) 
rotation algebra Ae, with generators u, v satisfying 

vu — e2ny^euv =: /i uv . (3.11) 
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Recall that As admits a canonical action of T2 = S1 x S1 3 (wi,W2) —'• 
w •—> ctw G Aut.4# such that awu = w\U, awv = W2V. We will also need a 
distinguished irreducible representation, 

II : A0 M(A, C), 

n(u) = diag (1, / i , / i 9 x ) , 7r(i;) cyclic permutation of 
the standard basis. 

(3.12) 

Finally, denote by tp : A$ x /C —> Cvy (r) the representation sending n ® X to 
Lei ® if and ̂  ® if to L e 2 ® if. Then we claim that for all A G Ae ® if with 
trp <£>(̂4) finite we have 

tr r (p(A) = q 1 

T2 

trc<7®# (7Г ®Ioaw® I)(Ä)dw , (3.13) 

where dw is normalized Haar measure on T2. To prove (3.13) we only have 
to observe that 

¥>(A)(0,0) = 
T2 

(aw ®I){A)dw. 

Since is an isomorphism, (3.13) implies (3.10) and the proof is complete. 
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Graded C*-Algebras and Many-Body Perturbation Theory: 
II. The Mourre Estimate 

Anne Boutet de Monvel-Berthier and Vladimir Georgescu 1 

1. Introduction 

We have introduced in [BG 1,2] the notion of graded C*-algebra with the 
purpose of obtaining a natural framework for the description and study of 
hamiltonians with a many-channel structure. If H is a self-adjoint operator in a 
Hilbert space <#f, the expression "H has a many-channel structure" is not 
mathematically well defined, although in examples of physical interest the meaning 
is rather obvious. Spectral theory alone is not enough in order to decide whether H 
is a many-channel hamiltonian or not. Usually the distinction is acquired with the 
help of scattering theory through the introduction of the channel wave operators. 
However, there are results (like the HVZ theorem which describes the essential 
spectrum of a N-body hamiltonian in terms of the spectra of the subsystems) which 
are outside the scope of scattering theory but should belong to a general theory of 
"many-channel hamiltonians". Our proposal in [BG 1,2] was to define the many-
channel character of a self-adjoint operator H by its affiliation to a C*-algebra 
provided with a graduation which allows one to describe a "subsystem structure" 
for the system whose hamiltonian is H. From our point of view, the main object 
associated to the physical system is a graded C*-algebra, the possible dynamics are 
given by self-adjoint operators H affiliated to it, and we are interested in assertions 
independent of the explicit form of H. 

Our purpose here is to show that the Mourre estimate fits very nicely in such a 
framework. Given two self-adjoint operators H, A such that the commutator [H,A] 
is a continuous sesquilinear form on D(H), we associate to them a function 
p:IR—>]-°o,+oo] in terms of which the property of A of being locally conjugated to 
H is easily described. If the action of the unitary group associated to A is 
compatible in some sense with the grading of the C*-algebra and if this algebra has 
a property which we call reducibility, then the p-function associated to H can be 
estimated in terms of the p-functions associated to "sub-hamiltonians". Our 
arguments are inspired from those of Froese and Herbst [FH], but the main point 
here is that the explicit form of H is never used, but only its affiliation to the 
algebra. In particular, in the N-body case H could be of the form described in 

1 Lecture delivered by V. Georgescu 
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Proposition 7 of [BG 2] (see also section 2 below; this class is more general than 
the class of dispersive hamiltonians of [D2] and [G]) or it could be a hamiltonian 
with hard core interactions (this situation is treated in a joint work with A.Soffer, 
paper in preparation). We shall explicitely calculate the p-function (and so get the 
result of [PSS] and [FH]) for Agmon hamiltonians using theorem 3.4 which gives 
the p-function of an operator H =H1O1+1®H2 in terms of those of Hj assuming that 
A is similarly decomposable. Theorems 3.4 and 4.4 are, technically speaking the 
main results of this paper, the applications to hamiltonians affiliated to the N-body 
C*-graded algebra, being only an example (in this context theorem 2.1 being 
important) 

In the rest of this section we shall recall the framework introduced in [BG1,2]. 
Some more specific properties of what we call the N-body C*-graded algebra are 
studied in section 2. In section 3 we introduce in a more general setting the p-
functions (which are more systematically studied in [ABG 2]) and prove the first 
important result, formula (3.8). Finally, in section 4 we define the reducible 
algebras and show how a Mourre estimate is proved for hamiltonians affiliated to 
such algebras. 

We recall now the definition of a C*-graded algebra as introduced in [BG1,2]. 
Let S4 be a C*-algebra and if a finite lattice, i.e. a finite partially ordered set such 
that the upper bound YvZ and the lower bound Y A Z of each pair Y,Z e if exists. 
We shall denote O (resp. X) the least (resp. the biggest) element of if. We say that 
S4 is a if -graded C*-algebra if a family {S$(Y)}Yey> of C*-subalgebras of S4 is 
given such that 

(i) S4=L{S$(Y)\ Ye if }, the sum being direct (as linear spaces); 

(ii) s4{Y)s4(Z)czs4(YvZ) for all Y,Zeif. 

One can introduce such a notion for infinite if also (then Z{s4(Y) I Ye if } is only 
dense in S4) and an interesting example of such an object will appear in the next 
section. 

We can put in evidence a filtration of S4 by a family {^y^Yeif °^ 

C*-subalgebras by defining s4Y=Z{s4(Z) | Z<Y}. Then s4Y<zs4 z if Y<Z and 

S4X=S4. If we denote if ( Y ) = { Z G if | Z<Y}, then if (Y) is a finite lattice also and 

S&Y is a if (Y)-graded C*-algebra in a canonical way. Finally, observe that S4(X) is 

a *-ideal in S4 (so s4 (Y) is a *-ideal in s^), and if we denote %Y=Z{s4(Z) | Z^Y}, 

then {^y^Yeif *s a decreasing family of closed *-ideals in S4 such that S&=S&Y+S&Y 

(algebraic direct sum) for all Y e if. 

For each Y eif we shall denote .^(Y), SPY the projection operators of s4 onto 
£#(Y), resp. S4Y, associated to the direct sum decompositions A = E{ A (Y)\ Ye if } 
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resp. S4=S$Y+!%Y- More precisely, if S G£#, then one can write it in a unique way 

as a sum S=E{S(Y) | Ye £ } with S(Y) e s4 (Y). Then #(Y)(S)=S(Y). Obviously 

^Y=E{^(Z)|Z<Y} , which is equivalent to ^(Y)=£{^z (i(Z,Y) I Z<Y}, where 

|Li:ifxi?^Z is the Möbius function of if. Clearly each $>{Y)'M-*s4 is a linear, 

continuous projection (i.e.^(Y)2=^(Y)) which commutes with the involution. But 

the main point is that Y:£$->£$ is a linear, continuous projection which is also a 

*-homomorphism of onto £$Y. n̂ particular, if S ss4 is a normal element and f 

is a complex continuous function on the spectrum of S (which vanishes at zero if S4 

has not unit) then ̂ Y(f(S))=f(^Y(S)). Observe that $6 Y=ker ̂ Y, which gives a new 

proof of the fact that $& Y is a closed *-ideal in s4. 

Let S4 be an arbitrary C -algebra realised on a Hilbert space X (i.e. s4 is a 

C*-subalgebra of B(X), the space of bounded linear operators in X) and H a self-

adjoint operator in X. Denote C ^ R ) the abelian C*-algebra of complex 

continuous functions on R which tend to zero at infinity (with the sup norm). Then 

(^-H)'1 e S4 for some complex X if and only if f(H)e s4 for all fe C ^ R ) . If this is 

fulfilled, we shall say that H is affiliated to S&. In some applications it is useful to 

work with self-adjoint but non-densely defined operators in X. By this we mean 

that a closed subspace X of X and a self-adjoint densely defined operator H in X 

are given (so X is the closure of the domain of H in X; think, formally, that H = ©o 

on XOX). Let then R(^)=(?i-H)-1 on X and R(A,)=0 on XOX, for Xe ( C \ R . 

Clearly, the family {R(A,)| A, e ( C \ R } of bounded operators in X is a pseudo-

resolvent, i.e. R(A,)*=R(A,*) and R(Xl)-R(X2)=(X2-Xl)R(Xl)R(X2). In fact, as shown 

in [HP], there is a bijective correspondence between (not necessarily densely 

defined) self-adjoint operators in X and pseudo-resolvents on X (or spectral 

measures E such that E ( R ) * 1 ) . Using Stone-Weierstrass theorem, it is trivial 
to establish a bijective correspondence between pseudo-resolvents and 
*-homomorphisms ( ( K C ^ R )̂ >B(<?zf) (put R(X,)=(|)(r^) where r^(x) = (A-x)-1). 
Clearly №f)\x= f(H) and <|>(f)ltf Q>f=0-

As a conclusion of this discussion, if S4 is an arbitrary C*-algebra, a 
*-homomorphism ( ( K C ^ R ) — w i l l be called self-adjoint operator affiliated to 
s4. As above, to give <|) is equivalent to giving a pseudo-resolvent {R(X) I Xe C \ R } 

with R(X)es4. We shall use in such a case a symbol H and denote <|)(f)=f(H) for 
feCoo(R) and R(A,)=(A,-H)-1. When s& is realised in a Hilbert space X, then H is 
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realised as a (non-densely defined in general) self-adjoint operator in <K. If s4 x is 

another C*-algebra and SP\Sâ-^s4x is a *-homomorphism then .^iCo^R )->£$! is 

a *-homomorphism which defines a self-adjoint operator Hj affiliated to S4X. We 

shall denote H ^ C H ) . 

Let us go back now to our i?-graded C*-algebra s4. For each self-adjoint 

operator H affiliated to s4 and each Yei? we may consider the self-adjoint operator 

HY affiliated to AY defined by Hy=^Y(H) (i.e. f(HY)=# Y(f(H)) for all f e C00(R )). 

Observe that HX=H. If H is just an element of $4, then HY=^Y(H) is just the 

projection of H onto £$Y. If S4 is realised on a Hilbert space 2f£ and H is the 

hamiltonian of a system (i.e. e~lHt describes the time evolution of the system), then 
the HY's will be called sub-hamiltonians (they describe the evolution of the system 

when parts of the interaction have been suppressed). Observe that each HY (and 

H=HX) has its own domain D(Hy) which is not dense in 2ft in general. In the many-

body case with hard-core interactions, D ( H ) is not dense, D ( H Q ) is dense and D ( H Y ) 

for Y^O, X is sometimes dense and sometimes not. If Hy is densely defined for all 

Y, we shall say that the densely defined self-adjoint operator H in 2f£ is «if-affiliated 

to A. Such operators are easy to construct using the following criterion. Let 

H Q = H ( 0 ) by a densely defined self-adjoint operator in 2f€ affiliated to S4q=S4(0). 

For each Y^O, let H(Y) be a symmetric, H0-bounded operator in 2f£ with 

relative bound zero and such that H(Y)(H0+i)"1G^(Y). Then H=Z{H(Y) | Yei?} 

is self-adjoint and i? -affiliated to S4 . Moreover, for all Ye i?, we have 

HY=^Y(H)=2;{H(Z) I Z ^ Y > - IF H O is bounded below, then it is enough that H(Y) 

be HQ-form bounded with relative bound zero and for c large enough 

(H0+c)-1/2H(Y)(H0+cr1/2€^(Y). 

We stop here this accumulation of definitions. In [BG 2] these notions are used 
in the spectral theory of N-body systems. For example, we show that the Weinberg-
Van Winter equation and the HVZ theorem are very natural in this framework 
(both the statements and the proofs). 

2. The N-body Algebra 

In this section we shall describe some important properties of a graded 
C*-algebra canonically associated to an Euclidean space (in place of the usual N-
body formalism, we prefer to work in the geometrical setting first considered by 
Agmon, Froese and Herbst and systematically developed in [ABG 1]). 

Let E be an Euclidean space (finite dimensional real Hilbert space). We 
provide it with the unique translation invariant Borel measure such that the volume 
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of a unit cube is (27c)-(dimE)/2. Then #(E) is the Hilbert space L2(E) and the Fourier 

transform (<Tf)(x)=JE e"i(xly)f(y)dy induces a unitary operator in 2f£(E) . Denote 

B(E)=B(a*f(E)). If E=O={0} then <Kf(0)=(C and <r=l. For any Borel function 

f:E->(C we denote f(Q) the operator of multiplication by f and f(P)=^r*f(Q)^r. 

Then K(E) will be the C*-algebra of compact operators on H (E) and T(E) the 

C*-algebra of operators of the form f(P) with f:E—>C continuous and convergent to 
zero at infinity (i.e. feQJE)). By convention K ( 0 ) = T ( 0 ) = C . 

If E,F are Euclidean spaces and G=E©F is their euclidean direct sum, 
then there is a canonical isomorphism of ^f(E)®^f(F) (Hilbert tensor product) 

with ^f(G). For S G B ( E ) , T eB(F) we write S®§T for the operator in B(G) 

corresponding to S®T by the preceding isomorphism. Finally, if J c B ( E ) , 

#cB(F) are *-subalgebras, then we denote M®^J\T the C*-algebra on ̂ f(G) 
obtained as the norm-closure of the linear space generated by the operators of the 
form S®^T with S E ^ , T eJT. 

Now let us fix an Euclidean space X and denote II(X) the set of all subspaces 
of X provided with the natural order relation (inclusion). Then II(X) is a complete 
lattice with O, resp. X, as least, resp. biggest, element. For Y,Z e Yl(X) we have 
YvZ=Y+Z and Y A Z = Y O Z . Let Y ell(X) and Y1en(X) its orthogonal. Then 
YiY1 are Euclidean spaces, X=Y0Y1 and we abbreviate ®y=®Y- We shall be 
interested in the C*-subalgebras of B(X) defined by 

(2.1) ¿7" (Y) = K(Y)®YT(Y1). 

The family {<Ŝ (Y)I Y e T1(X)} has the following properties: 

(i) The algebraic sum XI^T (Y) | Ye n(X)} is direct i.e. each element S in the 

linear subspace of B(X) generated by u{<y (Y) | Ye II(X)} can be uniquely written 

as a sum S=E{S(Y) I Ye II(X)} with S(Y)e<r(Y) and S(Y)^0 only for a finite 
number of Y's. 

(ii) For all Y,Ze II(X) we have: <T(Y)<T(Z)c^(Y+Z). 

For proofs of the first, resp. second, assertion, see [BG 2], resp. [ABG 1]. 

In particular, the *-subalgebra Z{^(Y) I Ye II(X)} of B(X) is n(X)-graded in 

a natural sense. It is obviously not norm-closed, and we shall denote ST its closure. 

This is the graded C*-algebra canonically associated to X we were talking about at 
the beginning of this section. 
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For the N-body problem only subalgebras of ST of the following type are 

needed. Let if cfl(X) be a finite family of subspaces of X such that 0,Xeif and 

Y+Zeif if Y,Zeif (so if is not a sub-lattice of II(X), because YnZéi f in 

general; however, if is a lattice for the order relation induced by II(X)). Denote: 

(2.2) ^ = £ { ^ ( Y ) | Y e i f }. 

Then s4 is a C*-subalgebra of ST which is also a «5?-graded C*-algebra (in 

the notation we do not mention the dependence on if, which is considered fixed 

from now on). Let us mention that the projection S^^oi?T onto the subalgebra 

P^Y=Z{5r (Z) | Z G if.ZczY} can be explicitely described as follows. Assume 

Y*X and denote Y+ the set of elements of Y1 which do not belong to any Z1 with 

Zeif, Z<^Y. Then Y+ is a dense cone in Y1 and for any co eY+ we have 

^Y(S)=s-lim?l_>ooe-a(P'a))Sea(P'C0) for all S es4. 

Let us explain in what sense the choice of if corresponds to the N-body 

problem. Define, inductively, if 1==if, if 1={X}\ if 2=if i\if \ if 2=the set of maximal 

elements of if 2; if 3=if 2\if 2, if 3=the set of maximal elements of if 3; etc.... Then, N 

is the integer defined by ifN = { 0 } . For example, the two-body problem 

corresponds to if = { 0 , X } and the characteristic C*-algebra is s4 = T ( X ) + K ( X ) 

(direct sum). The (generalized) three-body problem is described by 

if={0,Y1,...,YN,X} where Yj are subspaces such that O^Yj * X and Yj+Yj=X if î j 

(hence Y^Yj for i*j; observe that one could have YjOYj* O , but Y1AYj=0 in if). 

The characteristic C*-algebra in such a case is ^=T(X)+^'(Y1)+...+5r(YN)+K(X) 

(direct sum) and if S{eZr(Y{) then S J S J G K ( X ) if i^j. The complications which 

appear for N>4 are due to the "nested" structure of if. 

A large class of (densely defined) self-adjoint operators if-affiliated to the 

algebra s4 is described in Proposition 7 of [BG 2]. Very roughly, they are of the 

form H=h(P)+X{VY(Qy,P)| Ye i f .Y^O} where h:X->R is a continuous function 

divergent at infinity and Qy is the projection on Y of Q, so that ̂ Vy^T* is, in the 

representation ^f(X)=L2(Y1,<^f(Y)), the operator of multiplication by an operator-

valued function. 
In the rest of this section we shall isolate some properties of the algebra ST 

related to the "geometric" methods introduced by Simon [S] in the N-body problem 
and further refined in [PSS] and [FH]. 
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T H E O R E M 2.1: Let X:X—>(E be continuous and homogeneous of degre zero outside 
the unit sphere (i.e. X(x)=X(x/lxl) if\x\>\). Then [S,X(Q)] is a compact operator 
for each S e?T. If S e<T (Z) for some Z eIl(X) andX(e)=0for eeZ1, lel=l, then 
both SX(Q) and X(Q)S are compact operators. 

Proof: Observe first that for each M<oo there is c>0 such that if lyl < M : 

(2.3) |X(x+y)-X(x)| = X x+y 
•Ix+yl -

X X 
Ixl < W c 

Ixl 
for x large enough, where w is the modulus of continuity of the restriction of X to 
the unit sphere. It is clearly enough to prove the theorem for S of the form K®ZT 

with K G K ( Z ) and T E T ( Z j - ) . Let X0(x) = X(TC£(X)) where is the orthogonal 

projection of X onto Z 1 . Then x0(Q)=l®z<E> where IITZ is the operator of 

multiplication by Xlz± in ffl(Z^). From (2.3) and a result of Cordes [C] it follows 

that [T,<D] is compact in <Kf(Z1). So [S,X0(Q)]=K®z[T,0] is compact in ^f(X). 
Writing [S,X(Q)]=[S,X(Q)-X0(Q)]+[S,X0(Q)] and observing that X(x)-Xo(x)=0 

if xe Z-'-, it follows that it is enough to prove the second part of the proposition for 
bounded uniformly continuous functions X:X->£ such that lX(z+z')l —> 0 as 
Iz'l—> oo, Z ' G Z ^ , uniformly in z when z runs over any compact subset of Z (use 
(2.3) to show that this is fulfilled by X-XQ or by the initial X if X(e)=0 for eeZ1, 
lel=l). Let us show for example that SX(Q)=(1®ZT)(K®Z1-X(Q)) is compact. In 
the representation <^(X)=L2(Z-L;(^(Z)), the operator K®Z1-X(Q) becomes the 
operator of multiplication by the function z'»—> K\|/(z')e B(Z) where 
(\|/(z/)u)(z)=X(z4-z,)u(z). Since X is bounded and uniformly continuous, 

\|/: Z"L->B(Z) is bounded and norm-continuous. The last condition we put on X is 

equivalent to s-lim|z/|_^oo\)/(z,)=0 . Since K is compact in ^f(Z) we get 

IIK\|f(z')llB(Z)-»0 as lz'l->oo. It is standard now to show that K®Z1-X(Q) is the 

norm-limit in B(X) of operators of the form ZKj®zOj where K J G K ( Z ) and Oj is 

the operator of multiplication by a C000 function in M (Z1). Since 

(l®zT)(Kj®zOj)=Kj®z(TOj) and TOjeK(Z1), the proof is finished. • 

Remark: The fact that [S,%(Q)j is compact for S E J shows that ST is a non-trivial 
subalgebra (and a rather small one) of B(X). 

Let us go back to the N-body algebra s4 associated to some semi-lattice 

i?cII(X) as in (2.2). Let Yeif, Y*X. Following [FH] and [ABG 1], we shall call a 
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function XY:X—>IR Y-reducing, if it is continuous, homogeneous of degree zero 
outside the unit sphere and if Xy(e) = 0 f°r â  e suĉ  that 'e'=l an(̂  e e f°r some 
Ze i? with ZtfY. Recall that ®Y=Z{^(Z)|ZeiffZ^Y} is a norm-closed *-ideal 
in s4 and£$=£#Y+$Y direct sum. It follows from theorem 2.1 that for a 
Y-reducing function XY we have (remark that S4(X) = K(X)): 

(i) [S,XY(Q)1 e s4 (X) for all S 6 s&; 
(ii) SXY(Q) and XY(Q)S belong to s4(X) for all S e % Y. 

A family {%YJTei? °f functions Xy:X->IR is called J? -reducing if Xx=0, each 
XY is Y-reducing for Y*X and E{XYlYei?}=l on X. It is easy (see [ABG 1]), to 
construct such families having the supplementary properties: 

(iii) XY=0 if Y is not a maximal element in i?\{X} (i.e. Xy*0 only forYe i?2); 

(iv) XY e C°°(X) and X (x)=0 on a neighbourhood on the unit sphere of the set 

UlSxnZ-MZeif, ZtfY}. 

Let us make a final remark concerning the structure of the algebra J . It is 
convenient now to indicate explicitly the dependence on the space X by denoting 
^(Y)=^X(Y) , <T=^X L e t ^ J be the norm-closure of £{<TX(Z) I Z e II(X), 

ZczY} and^* the norm-closure of £{<TX(Z) I Ze II(X), Z^Y} . So is a 
C*-subalgebra of <TX, SYX is a norm-closed *-ideal and ST* = JX . We would like 
to point out the following relations: for Z,Y e n(X) such that ZczY we have 

(2.4) ^x(Z)=<rY(Z)®YT(Y1). 

In fact, if we denote E = Y n Z \ then Y=Z0E and Z1=E0Y1. It is clear that 

T(Z1)=T(E)® z 
E 
, T(YX) so we get: 

^ X ( Z ) = K ( Z ) ® X ( T ( E ) ® Z 1 T ( Y 1 ) ) = ( K ( Z ) ® | T ( E ) ) ® $ T ( Y ± ) = 

= <TY(Z)® ̂ T(YX). 

From (2.4) we also obtain: 

(2.5) ^ Y = ^ Y & Y T ( Y ± ) -
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Here we may specialize to the N-body algebra s4=s4x associated to i? with the 
convention that S4Y is constructed using i?(Y). So: 

(2.6) sa X 
Y = ^ Y ® Y T ( Y L ) -

Y Y 
To S4Y, if Y*0, we may associate a family {%z}zeJ£(Y) (with on^ ̂  Z<#Y, 

Y Y 
i.e. Y covers Z) with X Z:Y->R and then we may extend %ZY=^z®Y1 ̂ *e-

Y 
%ZY:X->IR is given by XZY(x)=Xz(7rY(x)). Observe that for each fixed Yei?\{0} 

we shall have Z{%ZY |Zei?,Z<«Y}=1. 
3. General Considerations on the Mourre Estimate 

In this section we shall quit the graded C*-algebra setting in order to present 
certain notions and results related to Mourre theory in the framework introduced in 
[ABG 1,2] and [BGM]. We do this step hopping that so we shall put in a better light 
the proof of the Mourre estimate for hamiltonians with a many channel structure. 

Let 2f€ be a (complex, separable) Hilbert space and A a self-adjoint operator in 

H. Denote Wa = elAa the unitary group in H generated by A. We shall say that a 
closed operator T in X is of class Cl(A), and we shall write TeC^A), if its 
domain D(T) is invariant under the group W and if for all ueD(T) the function a 

<Wau|TWau> is of class C1. In this case we denote [T,A] the sesquilinear 

form on D(T) given by <uli[T,A]u> = d 
da <WaITWa>la=0. Let £ =D(T) equipped 

with the graph-norm. Then [T,A] is a continuous sesquilinear form on £ and it is 
often useful to think of it as a continuous linear operator from $ to its adjoint space 
£*. It is shown in [ABG 1 j that, if $ is invariant under W, then TeC^A) if and 

only if the sesquilinear forms T , 
n 
a 

Wa on G converge weakly when a—»0 and in 

this case: 

(3.1) i|'T,A]= s-lim 
cc->() 

T 
, 

1 
a 

Wa . 

the strong limit being in B(£,£*). If the limit exists in norm in this space, 

then we write TeC^(A); this is equivalent to the norm-derivability of 

ah~* W*TWaeB(£,£*). For bounded T we identify B(0,£*)=B(#). 
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We shall now associate to each self-adjoint operator H in <K of class C^A) two 
functions p = pHA and P = P H defined on K. with values in ]—°°,+°°], according to 

the following rule. Denote E(k;z)=E((X-e,X+z)) for A. e R and e>0. Then 

( 3 . 2 ) jS (̂X) = sup{a G JR. I there is 8>0 and a compact operator K such 
that E(A.;e)[iH,A]E(X,;e) > aE(X;e)+K}, 

( 3 . 3 ) p^(K)= sup{ae]R |3e>0 such that E(A,;e)[iH,A]E(X;e) > aE(X;e)}. 

Another way of defining pHA is as follows. For e>0, let 

pe(A,) = inf{<u I [iH,A]u> |u=E(A,;e)u, ||u||=l} 

(with the convention inf 0=°o).Then pe(A,)—»p(A,) as e-^+0. Let us also mention the 
following fact. If L G E , then the spectral measure of the operator H-^0 is 
S«-> E(S+^0) (ScE Borei set). Hence we get PHA-Y0(Y)= pHA(Y+Y0) and similarly 

for p. 
A systematic study of the functions p and p is presented in [ABG 2], from 

which we quote now some results. It is easy to show that p and p are lower 
semicontinuous (l.s.c.) functions, p(^)<°° if and only if A,eoess(H) and p(^)<°° if 
and only if Xe a(H). From the virial theorem we get that, if p(V)>0, then X has a 
neighbourhood in which there is at most a finite number of eigenvalues (counting 
multiplicities). A deeper consequence of this theorem is the following result 
(implicitly contained in [FH] and explicitly isolated and proved in [ABG 2]). 

PROPOSITION 3.1: If X is an eigenvalue of H and p(k)>0, then p(A,)=0. Otherwise, 
j$a)=pO,). 

The next result is easy, but very useful in applications. 

PROPOSITION 3.2: Let A c E be a compact set and 0: A - * R an upper 
semicontinuous function (u.s.c.) such that Q(X)<p(X) for all XeA. Then there is 
£>0 such that for all XeA: 
(3.4) E(A.;e)[iH,A]E(A/,e) > Q(X)E(X]e). 

Functions 0 as in the last proposition play a role in the proof of the 
propagation theorems (see [Dl] and [T]) but we shall need them in the proof of the 
theorem below. They are very easy to construct, as the next example shows (this 
explains corollary 4.3 from [Dl]). For any v>0, let 

(3.5) 0V(Y) = inf 
||I-A|<V 

pOO-v. 
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Then 0v:IR —>]-<*>, +00] is upper semicontinuous, 9Vl(A,)<0V2(A,) if V2<VJ and 
9Vl(A,)*°°, and hmQ 0v(^)=p(^) for all A,eR. Moreover, Qv(X)<oo if 

dist(>,,a(H))<v. This choice is useful in abstract considerations, but a better one can 
be made in the case of Agmon hamiltonians. Let us mention that 

Pvft) £ inf 
IH-A,|<v 

POO ^ P A ) 

with pv defined after (3.3). 

We can introduce now the main concept of Mourre theory. 

DEFINITION: Let H be a self-adjoint operator in the Hilbert space №. We shall say 
that a self-adjoint operator A is conjugated to H at some point Xe R if He C^A) 
and №(X)>0. 

H 

In the graded C*-algebra setting it is better to work only with bounded 
operators. So it is useful to be able to express the preceding property in terms of 
the resolvent of H. 

PROPOSITION 3.3: Let H and A be self-adjoint operators, X0 a complex number 
outside the spectrum of H and R=(^0-H)_1. Assume that eiAoc leaves invariant the 
domain of H. Then HeCi(A) (resp.HeC^A)) if and only if Re Cl(A) 
(resp.ReC^A)). In this case 

(3.6) [R,A] = R[H,A]R. 

1Assume, moreover, that X0 elR (so H has to have a spectral gap). Then, for all 
real X ̂  X0, we shall have 

(3.7) P*((X0-Xrl) = (X0-Xr2p*(X). 

In particular, A is conjugated to H at some XelR\{X0} if and only if it is conjugated 
to R at (X0-X)~l. 

Proof: Since Wa=elAot leaves invariant the domain of H, it is easy to show that 
[R,l/otWa] = RlH,l/aWa]R. Denote # the domain of H (assumed dense without 
loss of generality) provided with the graph norm; then ^<z^f continuously and 
densely and, after identification of H with its adjoint space tf* using Riesz lemma, 
we get &ctfc:&*. Using (3.1) and the fact that R is an isomorphism of 2ft onto £ 
and of G* onto tf, we see that [R,l/aWJ is weakly convergent in B(^f) (i.e. R is 
of class CKA)) if and only if H e CKA) and then (3.6) is true. 
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In order to prove (3.7), we may assume ^o=0. Let cp:R\{0}-»R\{0} be the 
diffeomorphism (p(A,)=-̂ _1. Then the spectral measure of R is ER(S) = E(cp(S)). 
Using (3.6) we get for ^>0 (for example) and 0<e<^: 

ER(A/,e)[iR,A]ER(X;e) = H"1 E(Ie) [iH, A] E(Ie)H_1, 

where we have denoted IE=(-(^-8)-1,-(?i+8r1). For each a < ^ ( - r 1 ) there are 
8o>0 and a compact operator K such that 

E(-r1;e0)[iH,A]E(-r1;e0) > aEC-X"1 ;£0)+K. 

If e is small enough, L is a neighbourhood of -X 1 contained in (-X l-e0,-X 1+г0), 
hence E(Ie)[iH,A]E(Ie) > aE(Ie)+E(Ie)KE(Ie). We get 

H-1E(Ie)[iH,A]E(Ie)H-1 > aH^ECy+H^ECyKECyH-1 > 

>a(^-e)2E(Ie)+H-1E(Ie)KE(Ie)H-1. 

Since the last term here is compact, we obtain pHA(Y)>Y2pHA (-A-1). For the reverse 

inequality one has to start from E(À,;e)[iH,A]E(A,;e) = HE(^;£)[iR,A]E(^;e)H. 

Remark: The preceding proposition is not true if D(H) is not assumed invariant 
under elAoc. For N-body hamiltonians with hard-core interactions, if A is the 
generator of dilations, then R is of class Cl(A) but D(H) is not invariant under eiAoc. 

We pass now to the main result of this section, namely the calculation of the 

p-function for an operator H of the form H1®!-!-!®!!2 assuming that A admits a 

similar decomposition. Assume that two self-adjoint bounded from below 

operators H1, H2 are given in Hilbert spaces tfv 3V2- We denote & =D(№) provided 
with the graph norm, so that Gj is a Hilbert space continuously embedded in tf.y 
Let ^ f ^ ® ^ , g,1=g>1® f̂2 and $2=tfl®$2 (Hilbert tensor products). It is known 
that there are continuous embeddings £\<zM and #2<z<#f > ^ 1 (resp. £2) being the 
domain of the self-adjoint operator H ^ H*®1 (resp. H2=1®H2) in 7K. Moreover, 

the operator H=H!+H2 is self-adjoint on the domain 8>=g,1n^2 and its spectrum is 
given by a(H)=a(H1)+o(H2) (these assertions depend on the boundedness from 
below of the operators, see section 2.1 in [ABG 1]). Consider now a self-adjoint 
operator A1 in 7%. such that № is of class C^A*). Recall that the self-adjoint operator 

A=A1®1+1®A2=A1+A2 can be defined by the property eiAa = eiAla®eiA2(X for 

all a G R. It is then obvious that D(H)=# is invariant under elAoc. By hypothesis, 
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BJ=[i№,AJ] is a continuous sesquilinear form on Gj. It is well-known that B1 will 

extend to a continuous sesquilinear form B ^ B 1 ® ! on *§ x and similarly B2 to 

B2=l®B2on #2- Now it is easy to show that Hj is of class C^Ap and of class C*(A) 

and [iHj.AjMiHj, A]=Bj (use e-iAaH1e+iAa=e"iAl0CH1e+iAl0C=(e-iAlaH1e+iAla)®l). 

Since # = ¡ ^ 0 ^ 2 (with the intersection topology), the sesquilinear form B=B1+B2 is 

continuous on G It follows that H is of class C*(A) and [iH,A]=B. 

These arguments prove the first part of the next theorem: 

THEOREM 3 . 4 : Let H1, H2 be two self-adjointy bounded from below operators in the 

Hilbert spaces tâh fâ2 Assume that AJ is a self-adjoint operator in Hj such that HJ ¿5 

of class C\AJ). Let H ^ O l + l Œ H 2 and A = A 1 ® 1 + 1 ® A 2 , self-adjoint operators in 

^=^x®^2. Then H is of class Cl(A) and for all Xe E : 

( 3 . 8 ) is H a) = inf 
X=Xi+K2 

p 
Al 
Hl 

(A1) + p 
A2 
H2 

(A2) 

Proof: (i) We have to prove only the preceding formula. Denote P=P 
El 
H = pj=p 

At 
1 

Since G(H)=O(¥L1)+G(H2), ( 3 . 8 ) is obvious if A £ o ( H ) , both members being 

equal to +<*>. Moreover, by adding to № a constant and taking into account that 
A 
H-X0 a) = p 0 H (A+A0), we can assume №>0, so that H is positive too. Hence, when 

we prove ( 3 . 9 ) , we may assume without loss of generality that Xe a(H), A>0 and we 
may consider only decompositions A^A^+A^ with Aj e o(Hp, so that A>0. 

(ii) Let us first prove that the function f(A) defined by the r.h.s. of ( 3 . 8 ) 
on R+=[0 ,+°o[ is l.s.c. (then its extension by + 0 0 for A<0 will be l.s.c. on R ) . 
Let fj = pjl]R+ and F(A1,A2)=fi(A1)+f2(A2). Then F:R2->]-oo,oo] is l.s.c. For A>0 
denote I\={(Xi,X2) I Aj>0 and A!+A2=A}. 1̂  is a compact subset of E 2 and 
f(A)=inf{F(A!,A2) I (AbA2) Assume f(A)>a; we have to show that f(p,)>a for [i 
in a neighbourhood of A. We have F(A1?A2)>a for all (A1?A2) elx, hence each such 
(A1?A2) has a neighbourhood U(Aj,A2) in E 2 on which F is strictly greater than a. 
1̂  being compact, it may be covered by a finite set Ui,...,Un of such 
neighbourhoods. Then L^UjuL^u ... uUn is a neighbourhood of 1̂ . Since \ is 
compact, U will contain a set of the form I ^ ( 8 ) = { ( A 1 , A 2 ) G R 2 | A - e ^ + A ^ A + e } . 
So F(AbA2)>a on I^(e). Since F attains its lower bound on compacts, we shall have 
f(|Lt)>a for A-£<|Ll<A+£. 
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(iii) For each v>0 we denote 9^ the function R -»]-oo?+oo] associated to pj 

according to the rule (3.5). Then 9^ is u.s.c. and is finite on the open 

neighbourhood {|LteIR I dist(|it;a(№))<v} of a(№). On this set we also have 

Ojv(µ)<pj(µ). 

Let us fix some arbitrary k o ( H ) (so ^>0) and some (small) numbers 
v>v'>0. The set of all [i<X such dist(|i;a(Hj))<v' is a compact and the restriction of 
9̂  to it is a finite-valued u.s.c. function such that 9^(|i)<pj(|i). According to 
Proposition 3.2, there is £ e(0,v') such that for all \i<X with dist(|i;G(HJ))<v' : 

(3.9) EJ(ji;e)BîEi(ji;e) > в*(ц)Е1(ц;е). 

Here EJ is the spectral measure of Hi But, if dist(|a;o(HJ))>v', then Ei(|i;e)=0, 
because we assumed e<v'. Hence (3.9) is valid for all |Lt<̂  if we give an arbitrary 
finite value to 9̂  (|i) for dist(n.;a(HJ))>v'. 

It will be convenient to define 9^ (|i) for [i<X and dist(|i;a(HJ))>v/ as equal to a 

finite constant bigger than sup е{,(т)|т<А,, dist(x;a(HJ))<v/ (observe that the 

function 0jv being u.s.c. is bounded from above on this compact set). We shall, 

however, keep the same notation for this new function. 

(iv) Let us work in a spectral representation of the operator H2. Then there is 
a measure space S2 and a Borel function co2:S2—>R + such that <^2= L2(S2) and H2 is 
the operator of multiplication by co2. We then identify 2KX®X2 = L2(S2;̂ f x) so that 
H becomes the operator of multiplication by the operator-valued function 
s>-> H1+co2(s). From (3.9) we get for all s e S2: 

(3.10) E1(^-co2(s);e)B1E1(^-co2(s);8) > 9^(?I-CO2(S))E1(^-CÛ2(S);E). 

If f is a bounded Borel function, then f(H) is in L2(S2;^f j) the operator of 
multiplication by the operator-valued function s>—>f(H1+co2(s)). Hence, if E is the 
spectral measure of H, then E(A,;e) is just the operator of multiplication by 
s»—> E1(^-co2(s);e) (take f equal to the characteristic function of (A,-e,A,+e)). So 
(3.10) is equivalent to 

(3.11) E(>i;8)B1E(?i;e) > [l®eJ(Ar-H2)]E(b;e). 

Observe that 1®9^(A,-H2)=9^-H2). Writing an estimate similar to (3.11) with H1 

and H2 interchanged, we obtain (B=B1+B2): 

(3.12) E(A.;e)BE(A.;e) > [Э^-Н^+Э^-Н^Е^е) . 
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(v) We have to find the lower bound of the operator e ^ H ^ e J O r - H ! ) on 

the subspace E(X\E)X. Let us work in a spectral representation of both H1 and H2, 

so that iK =L2(S2 x S2), H: is the operator of multiplication by (s1,s2)'-^ C0:(Sj) and 

H is (s1,s2)»—» co1(s1)+co2(s2). Hence e^t-H^+eJa-H!) is the operator of 

multiplication by eia -œ^s^+eja -œ^!)) and the subspace E(̂ ;e)̂ f is the set of 

functions in X which are zero outside the set {(s^Sj) I X-E<CO1(S1)+CO2(S2)<^+E}. In 

conclusion: 

[01v(Y-h2)+02v(Y-H1)]E(Y;E)> 

> [inf {e^A.-T^+eJíAr-T!) I A r ^ ^ + V ^ + e , XjG O(H¡)}] E(A,;e). 

Let us consider the inf in the r.h.s. and replace the variables xv x2 by Xx=X-x2, 
X2=X-xx. Then we must have XX<X, X2<X, I^+^-^KE , and we are interested in 

inf 0v1(Y1) +0ev A-2 . 
Taking into account the way 0jv has been chosen in (iii), we 

may also assume dist(A.j,a(Hi))̂ v'. But then clearly this infimum is minorated by 

inf inf 
IH!-XLL<V 

PiCM-i) + inf 
µ2-Y2<v 

p2(^2)-2v XX9X2^X9 ^i~^X2—X <E 
. 

The numbers \iv \i2 which appear here satisfy JJ.J<A,J+V and ||Li1+|i2-X|<£+2v. Hence 
we can bound by below the above quantity by: 

inf {pjGLij) + p2(|i2)-2v I \iv\i2<\+v9 iM-i+M-ì— l̂<e+2v } > 

> inf {p^Hj) + p2(M-2) ~2v I I^I+ |^2-X|<E+2V} = 

= inf 
Ijj.—X|<E+2v 

inf 
µ = µ1+µ2 

[p1(|i1) + p2(|i2)]-2v = 

= inf 
|u-X|<e+2v 

F ( U ) - 2 V > inf 
\[L-X\<3V 

f(VL)-2v := 0V. 

From (3.12) we obtain then: E (X;E)BE(X;E ) > 0vE(X;E). SO p(X)>9v. Since v>0 is 
arbitrary and 0V—>f(X) as v—>+0 due to the lower semicontinuity of f, we get 
p№f(A,). 

(vi) It remains to be shown that the equality is in fact realised in p(A,)>f(A,). Of 
course, only the case X eo(H) is non trivial. By the lower semi-continuity of F and 
the compactness of 1̂  (see (ii)) it follows that there are X1GG(H1) and X2ea(H2) 
such that X=XX+X2 and f(X)=pAXl)+p2(X2)- By the definition of p(L) (see the 
remark after (3.3)) there is a sequence u j N ne N 0=1.2) such that u j N = Ej Yj ; 

1 

n 
U j 

N , 
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||uj||=l and <unlBJU^>-^pj(A,j). Let un=u^®uj. Then ||un||=l and E(X;|)un=un. 
Moreover 

<unIBun> = <u* \&u\> + <u2nIB2u2n>->Pj^jHPa^)-

This finishes the proof. 

Remark: Assume that H2 has a purely continuous spectrum. Then P 
A2 
H2 = A 

P 
A2 
H2' 

Hhas 

also a purely continuous spectrum and 

( 3 . 1 3 ) 
pAH(Y) 

= 
pAH(Y) 

= inf 
Y = Y1+Y2 

[PH»(XL) + P H 2 A 2 ) 1 -

As an example, let us see how the theorem should be used for the case of 
Agmon hamiltonians (cf. [ABG 1]) . Let Y eif \{X} and HY =HY®Y1+1®YAY1. We 
take A = A Y ® Y 1 + 1 ® Y A y 1 where A is the generator of the dilation group normalised 
such that [iA,Al=A. Obviously, for X*0: 

P > ) = A 
+00 if X<0 
Y if X>0. 

Let pY=p^Y and PY=PHY* ^OR Y = X WE ^AVE P Y = P Y :=^Hy ^ Proposition 3 . 1 . In 

conclusion: 
( 3 . 1 4 ) P Y ( ^ ) = inf 

µ>0 
[pY(?i-|a)+|i] for all Y e if \{X} and X e R. 

4. Reducible Graded C*-Algebras 

In this section we shall introduce a class of graded C*-algebras so that the p-
function of a hamiltonian affiliated to such an algebra can be easily estimated in 
terms of the p-functions of sub-hamiltonians if the action of the conjugate operator 
is compatible with the graduation. The definition below is motivated by Theorem 
2.1 and the existence of if-reducing families (mentioned after the proof of theorem 
2 . 1 ) for the N-body algebra. 

Let us consider a finite lattice if and a if-graded C*-algebra s4. Recall that for 

each Y eif we have a canonical decomposition S4=s4y+^Y suc^ ^hat Ay *s a 

subalgebra of £ $ , $ Y is a closed *-ideal, &$yn!$y={0} and the projection 

: £ ^ - > £ ^ Y *s a *-homomorphism. Moreover, s4Ycz^z ^ Y<Z anc* S4x=s4. In 
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this section we shall furthermore assume that s4 is realised on a (separable) Hilbert 

space (i.e. £0czB(#) is a C*-subalgebra). 

DEFINITION: A family {JY}Y(E-$f of bounded, symmetric operators in is called 

-reducing if: 

(a) Jx=OWZ{J^|Yei?} = l; 

(b) for each Ses4 and Ye if, w teve [S,JY]e«8Z(X); 

(c) 1/Ye if ûwd Se % , SJY and JYS for/ang to S4(X). 

If such a family exits, we shall say that S4 is a reducible if -graded C*-algebra. 

Recall that £$Y *s canonically a i?(Y)-graded C*-algebra; if each S$y is reducible , 

we shall say that s4 is completely reducible. 

In connection with this definition, recall that s4(X) is also a closed *-ideal in 

s4 (and S4(Y) in s4Y), hence at (c) we could have required only SJYeP^(X). If 

if={0,X}, then s4 is (completely) reducible: it is enough to take J Q = 1 » J X = 0 - The 
remarks which end section 2 prove that the N-body algebra is completely reducible 
(take JY=xY(Q)). 

For two operators S,Te^ we shall write S ~T if S-TeS^(X). Since s4(X) is a 

closed *-ideal, this relation is equivalent with equality in the quotient S&/s4(X) 

C*-algebra, so it is compatible with the algebraic operations and with continuous 
functional calculus for normal elements. This can also be seen from the fact that 
S ~T if and only if 9 Y(S)=^Y(T) for all Y*X (and if and only if #(Y)(S)=#(Y)(T) 
for all Y*X). 

PROPOSITION 4 . 1 : Let {JY}Yeif be an s4-reducing family. For each Se£$ and 

Yeif denote SY= ^ Y ( S ) . Then for S\...,Snes4 we have 

( 4 . 1 ) S S ...S ~ XY JYSYSY---SYJY-

Proof: Since 9 Y is a homomorphism, we have (S1S2...SN)Y— S^SY'-.SY? so we may 

assume that there is only one factor.Then, using [S,JY]e£^(X) and (S-SY)JYe£^(X) 

(because S-SYe$Y) we get 

S—£Y SJY — 2-Y ( [S ,JY|JY + JY(S—SY)JY+JYSYJY) ~ XYJYSYJY. 
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COROLLARY 4.2: / / H is a self-adjoint operator affiliated to s4, (peC^R) and 
Ses4, then 

(4.2) cp(H)~£Y JYcp(HY)JY, 

(4.3) cp(H)Scp(H) ~ EY JY(p(HY)SY(p(HY)JY. 

Remark: In the N-body case considered in section 2 we have £^(X )=K (X) . Taking 
into account theorem 2.1, if H is a self-adjoint operator in <#f(X) affiliated to ST, 
cpeC^R) and % : X ^ C is continuous and homogeneous of degree zero for |x|>l, 
we shall have [cp(H),%(Q)] G K ( X ) . If H is affiliated to the algebra s4 described by 
(2.2) and %=%Y is Y-reducing, then we also have XY(Q)((p(H)-(p(HY))G K ( X ) . 
These assertions are generalisations of some of the results from section 2.6 of 
[ABG 1]. 

We arrive, finally, to what we call "Mourre theory in a graded C algebra 
setting ". From now on we assume that a densely defined, self-adjoint operator A in 
lK is given such that the group of automorphisms associated to Wa=elAoc leaves s4 
invariant and its action is compatible with the grading, i.e. 

(4.4) W * ^ (Y)Wac^ (Y) for all Ye if and ae R. 

If we denote { ^ a } the group of automorphisms of B(tf) given by 

^a(S)=WaSWa, then the preceding requirements are fulfilled if and only if 

Wa(s4)=s4 and ^a^(Y)=^(Y)^a for all Ye if, ae R (the second condition being 

equivalent to ̂ a^Y=^Y^oc for a11 Y'a)-

Let us remark that if we consider the algebra 9~ of section 2.2 and if Wa is 
the dilation group, then these conditions are fulfilled (so for s4 given by (2.2) 
also). Moreover, in this case {^a}a(=iR induces a norm-continuous group of 
automorphisms of ST (in particular, its generator, which is formally [,iA], is 
norm-densely defined). 

We will be interested in the spectral analysis of a self-adjoint operator H 
affiliated to S4 by the conjugate operator method. Proposition 3.3 shows that, if H 
has a spectral gap (i.e. 3X0e R\a(H); in fact we shall be interested only in H 
bounded from below), then it is better to study R=(X,0-H)_1, which is bounded, self-
adjoint and belongs to S4. In particular, we shall not have to put any condition of 
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invariance under Wa of D(H), which could be non-dense (in hard-core case for 

example). So, for the moment we consider an arbitrary self-adjoint operator Res4. 

PROPOSITION 4.3: Let Re S4 and denote R(Y)=^ (Y)(R), RY=9 Y{R).Then 

ReC^(A) if and only if R(Y)e C^(A) for all Ye i? and also if and only if 

RyeC^A) (VYeif). In this case we shall have 

[iR,A]e&Z ^^(Y)([iR,A])=[iR(Y),A],^Y([iR'A]=[i%'A]/örö// Yei?-

The proof is trivial because s4, s4(Y), S&Y are norm-closed and ^(Y), $>Y 

commute with Wa. The problem which we would like to study now is the relation 

between pA and p^with Y^X. Since A is fixed in this section, we shall leave it 

out in the notations of the p-functions. 

As an example, let us consider the "two-body" case i? ={0,X}. Let Re s4 self-

adjoint with ReC^(A). Then R=R0+R(X) with RQeS$0 = A(0) and R(X)e£0(X) 

(which is K(X) in the N-body case). If ReC^A), then according to proposition 4.3 

[iR,A] = [iR0,A] + [iR(X),A] ~ [iR0,A] 

(because [iR(X),A]=^(X)([iR,A])e£0(X)). If (p:R->(C is continuous (and (p(0)=0 if 

s& has not a unit) then 9(R)=^0(cp(R))+^(X)(cp(R))=9(R0)+^(X)((p(R))-9(R0). 

Hence (p(R)[iR,A](p(R)~cp(R0)[iR0,A]cp(R0) and (p2(R)~(p2(R0) if <pGc~(R) (and 

(p(0)=0 if s4 has not unit). If s4(X) contains only compact operators, it is easy to 

get from this that PR(^)=PR0(^) for all X (¿0 if s4 has not unit) . In particular, A 

is conjugated to R at X ( ^ 0 if s4 has not unit) if and only if it is conjugated to R Q at 
X. 

Recall that if i? ={0 ,X} , then s4 is automatically reducible. Let us go back 

now to a general s&, but assume it reducible. Let {JY} be an ̂ -reducible family. 

Consider a self-adjoint element ReS4 of class C^(A) and a continuous function 

cp:R-^R which vanishes at zero if A has not a unit. Then cp(R)e£# and 

^Y((p(R))=(p(RY). Let us take S=[iR,A] in (4.3). Then corollary 4.2 and 
proposition 4.3 give: 

(4.5) (p(R)[iR,A](p(R)~EYJy(p(Ry)[iRY,A](p(RY)JY, 

(4.6) (p2(R)~EYJY(p2(RY)JY. 
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Let us write S <T for S,Te£^, if we have this inequality modulo &${X) (i.e. 
3Kes4{X) such that S<T+K). It follows from (4.5), (4.6) that we have 
(p(R)[iR,A](p(R) > acp2(R) for some ae IR if and only if 

(4.7) £YJY[(p(RY)[iRY,A](p(RY) - acp2(RY)]JY > 0. 

In conclusion, the following result has been proved (observe that Jx=0) : 

THEOREM 4.4: Let S4 be a reducible if -graded C-algebra such that S4 (X) 
contains only compact operators. Let Abe a densely defined self-adjoint operator 
in H such that e"iAa^ (Y)eiAac^ (Y) for all Ye if and ae IR. Consider a self-
adjoint operator Res4 of class C^(A). Then for all A,eIR\{0} we have 

(4.8) ^ a ) > m i n { ^ Y a ) | Y e i f \ { X } } . 

In particular, if A is conjugated at some X^O to all RY with Y<X, then A is also 
conjugated at X to R. 

Remarks: 

(a) If S4 has unit, the condition X±Q is not necessary. 
(b) Only JY?K) really appear in (4.7); hence in (4.8) the minimum has to be taken 
only over these Y's. For example, if there is an -reducing family {JY} with JY^0 
only for Ye if 2 (as in the N-body situation considered in section 2), then: 

(4.9) ^ a ) > m i n { ^ a ) | Y e i f 2 } . 

In the next corollary we use the obvious fact that if X0£ a(H) then X0<£ a(HY) 
for any Ye if (because St>Y are *-homomorphisms). 

COROLLARY 4.5: Assume that H is a self-adjoint unbounded operator in <#f which 

has a spectral gap and which is affiliated to S4. Moreover, assume that the domain 

of HY is invariant under eiAoc {all Ye if, ae IR ). If H is of class C (̂A), then each 

HY is of class C (̂A) and 

(4.10) (5£>min{^Y|Yei?\{X}}. 

{Remark (b) above applies here too). In particular, if A is conjugated to each HY 
with Y<X at some Xe IR, then H is conjugated to H at X. 
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Combining theorem 3.4 (more precisely fromula (3.14)) with corollary 4.5 
one easily gets the results of [PSS], [FH] and [ABG 1] for N-body or Agmon 
hamiltonians (much more general situations may be considered, as we shall show in 
a later publication). In fact (3.14) shows by induction over Y that fSŷ O for all Y. 
Hence, using again (3.14) and proposition 3.1 we see that for Y<X we have 
pY(A,)=0 only if f)Y(A,)=0 or if |3Y(A,)>0 but X is an eigenvalue of HY. So we get by 
induction that f$Y(^)>0 if X is not a threshold or eigenvalue of HY. Then (4.10) 
implies $X(X)>0 if A, is not a threshold of H. 
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The homogeneous Monge-Ampere 
equation on a pseudoconvex domain 

Victor Guillemin* 

§ 1 . Introduct ion 

Let X be a compact complex n-dimensional manifold with a smooth str ict ly-pseudoconvex 

boundary. Wi thou t loss of generality one can assume that X sits inside an open complex 

manifold, Z. A smooth function, (j) : Z — • R, is a defining function o f X if it has the 

property: 

<£(p) < l p e x 

and if it has no critical points on the boundary. There are an infinity of different ways of 

choosing such a defining function, and it is a problem of considerable interest in the theory of 

pseudoconvex domains to find ways of making canonical choices. Jack Lee proved a result in his 

thesis which sheds some light on this problem: Suppose all the data above are real-analytic. 

Let S be the boundary of X and let T —• S be the bundle of outward-pointing conormal 

vectors to 5 . Given a real-analytic section, ¡1 : S — • T, Lee proved that there exists a unique 

real-analytic defining function, <j>, which satisfies the boundary condit ion, d<f> = fi on 5 and 

satisfies the homogeneous Monge-Ampere equation 

(1 .1) (dd<f>)n = o 

on a ne ighborhood of S* One of the aims of this paper is to give a new p roo f o f this result. 

This p roof is similar to a proof that Matt Stenzel and I gave of an existence theorem for Monge-

A m p e r e with a different set of boundary conditions in [ G 5 ] i . I will give a brief description of 

this p roo f below; however, first I want to describe the other main result of this paper. Let 

X b e a compac t Riemannian manifold. Suppose that X is real-analytic, and suppose that 

/ : X — • R is a real-analytic function. Several years ago Boutet de Monvel proved the 

following surprising result: 

T h e o r e m . [B] The following are equivalent 

1. / can be extended holomorphically to a Grauert tube of radius r about X. 

2. The wave equation 

du 

dt 
• = y/Äu, u(x,0) = f(x) 

*Supported by NSF grant DMS 890771 

*See [L]. Subsequently Jerison and Lee [JL] showed that there is a canonical way of choosing fi as well 

(by solving a C R variant of the Yamabe problem). 

S. M. F. 
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can be solved backwards in time over the interval — r < t < 0 . 

In other words Boutet ' s result says that the problem of extending / to a small neighbor

h o o d o f X inside the complexification, XQ, is equivalent to solving a diffusion p rob lem in the 

wrong direction! Mat t Stenzel and I showed in [GS]2 that this result has some interesting 

connect ions with homogeneous Monge-Ampere . In this paper I will show that there is a form 

of Boute t ' s result which is true for an arbitrary real-analytic pseudoconvex domain; and this, 

t o o , will involve homogeneous Monge-Ampere in a fundamental way. T h e statement and proof 

of this result will be given in §5 and I will give my new proof of Lee's theorem in §4. As in 

[GSh the main step in this p roof will be the complexification of a solution o f a certain real 

M o n g e - A m p e r e equation which I now want to describe: Let X and Y b e real n-dimensional 

manifolds and consider the D e R h a m complex on X x Y. By the Kunneth theorem this complex 

is a double complex with an exterior derivative, e? x, that only involves the X-var iables and 

an exterior derivative, dy, that only involves the F-variables. In particular, given a function, 

<j) = <^(x,y) , o n l x F one gets a two-form, dxdy<j), and, wedging this form with itself n times, 

a 2n-form, (dxdy<j))n. Now let 5 be a hypersurface in X x Y and <J)Q a defining function for it. 

Suppose that (f>0 satisfies: 

(1.2) (dxdy<t>0)n 1 A dx(f)Q A dy(/)Q ^ 0 

on a ne ighborhood of 5.* I will prove in §2 that, on every sufficiently small ne ighborhood of 

5 , there exists a unique function, <j>, such that <t> — </>o vanishes to second order on S and 

(1 .3) (dXdy<t>)n = 0. 

In other words given a surface, 5 , with the convexity property, (1 .2 ) , the Cauchy problem 

for ( 1 . 3 ) , with initial data on 5 , can always be solved in a ne ighborhood of 5 . T h e p roof will 

involve some ideas that have come up earlier in the work of Phong and Stein, [PS] , and in my 

own work with Sternberg ( [GS] , Chapter 6) on Radon integral transforms; and I will explain 

what M o n g e - A m p e r e has to do with this subject in §2-3. 

T o conclude I would like to mention a number of recent articles on homogeneous Monge-

A m p e r e dealing with issues that I've touched on here. These are, in addit ion to my two 

articles with Stenzel cited above, the article, [EM] , o f Epstein-Melrose and the articles, [LS] 

of Lempert-Szoke, [S] of Szoke and [Lem] of Lempert. In particular, in Lemper t ' s article, 

it is shown that for the Monge-Ampere problem discussed in [ G 5 ] i , [GS]2 the analyticity 

assumptions are necessary as well as sufficient. 

§2. D o u b l e fibrations. 

*This condition depends only on 5 not on the choice of <f>o. It is the analogue in this "Kiinneth" theory 
of the Levi condition. 
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Let X and Y be n-dimensional manifolds and S a closed (2n — 1)-dimensional submanifold 

o f X x Y. Let 7T and p be the restrictions to S of the project ion maps of X x Y on to X and K 

T h e triple ( S , 7r, /0) is called a double fibration if bo th 7r and p are fiber mappings. I will assume 

that the conormal bundle of S is oriented and will denote by T the set o f its positively-oriented 

vectors. Compos ing the inclusion, T —• T*(X x F ) , with the project ions o f T * ( X x Y) and 

T*X and T*Y one gets maps 

(2 .1) 7T! : r — * T 0 *X and P l : r —> T0*F 

of T on to the punctured cotangent bundles of X and Y* The data, ( 5 , 7 r , p), are said to satisfy 

the Bolker condit ion if TTI and pi are diffeomorphisms, in which case the compos i te mapping, 

pi o TTT1 is well-defined. Compos ing this mapping with the involution: 

a: T ; Y ^ T ; Y , <r(y,ti) = (y,-T,) 

one gets a canonical transformation 

(2 .2) 7 : T;X —> T;Y 

which I will call the canonical transformation associated with the double fibration ( 5 , 7 r , p ) . 

T o check that the Bolker condition is satisfied, one has to check first that TTI and p\ are 

diffeomorphisms locally in the neighborhood of each point of T, and then check that they are 

one-one and onto . Often the second criterion is implied by the first. (This is so, for instance, 

if bo th X and Y are compac t . ) As for the first criterion, it is easy to see that if TTI is locally a 

diffeomorphism at a point of T, p\ is as well. This criterion can also b e checked rather easily 

by the following means. Let 0 = <j>(x,y) be a defining function of S i.e. let S b e the subset 

of X x Y defined by the equation, <j>(x,y) — 1; and assume dcj)p ^ 0 at all points, p £ 5. Let 

dxdv<t> be the two-form 
n 

E t,y=\ 

d2é 

dxidyi 
-dxx A dyj 

L e m m a . For wi and pi to be local diffeomorphisms at all points of T it is necessary and 

sufficient that the 2n-form 

(2 .3) {djcdyd))1*'1 A dj-eAdyCp 

be non-vanishing on a neighborhood of S. 

I will leave the proof of this as an easy exercise. M y goal in this section is to prove that if 

S satisfies the Bolker condit ion it has a defining function which satisfies, in addition to (2 .3) , 

the homogeneous Monge-Ampere equation described in the introduction: 

*Given a manifold, M, we will denote by T 0 *(M) the cotangent bundle of M with its zero section deleted. 
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T h e o r e m 1. Let /i : S • V be a section ofT. Then there exists a unique defining function, 

<j>, of S such that 

(2 .4) (dxdy<p)n = 0 

on a neighborhood of S,* and such that, in addition, d(j)p = pp at all points, p G 5 . 

Proof. Existence: There exists a unique homogeneous function of degree one on T which 

is identically equal to one on the image of p. Lets denote this function by HQ. Under the 

diffeomorphism T 0 *X — • T this pulls back to a homogeneous function of degree one, H, on 

TQX. Since ( 5 , 7 r , p) is a double fibration the fibers, Sy = p~1(y), above points o f Y are (n — 1)-

dimensional submanifolds of X. Now, with y fixed, solve the Hamilton-Jacobi equation: 

(2 .5 ) H{d<j>) = H ( X , 
oQ 
ds , . . . , 

d<j> 

dxn ) = 1 

with the initial condit ion (j) = 1 on S y . * This solution depends parametrically on y so it 

is really a function, <t> = <j)(x,y), of both the x and the y variables and is well-defined in 

a ne ighborhood , U, of 5. Let 's show that it satisfies the Monge-Ampere equation and the 

required initial condit ions. That it satisfies the initial conditions is equivalent to the assertion 

that Ho(d<j>) — 1 on S and this is equivalent to the assertion that, for y fixed, the equation 

H(d(j>) = 1 holds on X. T o check that <j> satisfies Monge-Ampere , we note that because H 

doesn' t depend on y we can differentiate the identify 

H 
( d<t> 

dr ,....., 
d(t> 

drn ,x ) = 1 

with respect to yi getting: 
n 

E 
0=1 

dB_ 

di3 

[dx(j), x) 
d2<t> 

dxjdyi 
= 0 

Since dH 
26 

(x,£) ^ 0 when <f 0 this implies that 

det ( d2<t> 

dx,dyj ) = 0. 

Uniqueness: Let <p be a defining function of S satisfying the given initial condit ions. By 

assumption the m a p 

7T! : S x R + — • T^X 

*In local coordinates this is just the Monge-Ampere equation det ( 
d26 

dy ; ) = 0. 
*Let's briefly review how this is done. The equation, H = 1, cuts out a hypersurface in the conormal 

bundle of Sy. This hypersurface is an isotropic submanifold of T*X of dimension n — 1, so if we take its flow-out 
with respect to the Hamiltonian flow, exptfE//, we get an n-dimensional Lagrangian submanifold, A, of T*X. 
In the vicinity of Sy A is the graph of an exact one form, d<f>, and if we normalize <t> to be one on Sy this 
determines it uniquely. 
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sending (x,y,s) to (x,sdx<f>) is a diffeomorphism; and, by our definition of H, it embeds S 

on to the hypersurface, H = 1. Suppose now that <j) satisfies the Monge -Ampere equation on a 

ne ighborhood of S. This says that the map 

(2 .6) p ; 1 x 7 ^ T 0 *X, p{x,y) = (x,d<l>x), 

is o f rank 2n — 1 in a neighborhood of 5, and hence is a fibering of a ne ighborhood, U, of 5 

on to the hypersurface, H = 1. In particular, for y fixed, <j)(x,y) satisfies the Hamilton-Jacobi 

equation 

H ( = 
dQ 
eta 

°• 

= 1. 

Moreover, since 0 is a defining function of 5 , it takes the value, <j> = 1, on 5 . Therefore, if one 

fixes y and regards it as a function of x alone, it takes the initial value, <j> = 1 on Sy. Hence 

the uniqueness of <f> follows from standard uniqueness results in the Hamilton-Jacobi theory. 

Q.E .D. 

R e m a r k . If (p satisfies Monge-Ampere , the function, xjj = <j)2 satisfies 

(2 .7 ) det ( d
2%l> 

dxidyj ) ¿ 0 

everywhere on a ne ighborhood of 5. T o see this, note that since 

dxdyip = 2((j)dxdy(j) + dx<f> A dy<j)), 

Monge-Ampere implies that 

{dxdy^)n = n2n<t>n-l(dxdy<t>)n-1 A dx$ A dy(t> 

and the expression on the right is non-zero on a neighborhood of S in view of (2 .3 ) . (Recall 

that <f> = 1 on 5 . ) Therefore, by specifying a section, of T —> S one gets, not only a solution 

of Monge -Ampere on a neighborhood of 5 , but also a symplectic form on that neighborhood, 

(i .e. dxdvxp) and a pseudo-Riemannian metric of signature (n,n) : 

(2.8) E 
d2é 

dxidyj 
dxi o dyj. 

§ 3 . A dynamical interpretation at the M o n g e - A m p e r e equation ( 2 . 4 ) . 

For simplicity I will assume in this section that X , Y and 5 are compac t . Let 0 be a 

defining function of 5 and let St be the subset of l x F defined by the equation, <j> = 1 — t. 
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(In particular, So = 5 . ) For t sufficiently small, St will also satisfy the Bolker condi t ion and 

hence give rise to a canonical transformation 

7t : T;X — » T0*F. 

I will prove be low that if <j> satisfies Monge-Ampere the canonical transformations, 7*, are 

related to one another in a very simple way: As we saw in the preceding section, the initial 

data, p, : S — • T, determine a homogeneous function of degree one, H, o n TQ*X. Let Eh be 

the Hamiltonian vector field corresponding to H. Because of the homogenei ty of H the group of 

symplec tomorphisms generated by S h is a one-parameter group of canonical transformations. 

Lets denote this one-parameter group by expfEnH, —00 < t < 00. 

T h e o r e m 2 . The following are equivalent: 

1. <j> satisfies Monge-Ampere. 

2. 7 t = 7 o e x p * E / / . 

Proof that 1 implies 2:. Suppose <j> satisfies Monge-Ampere . For the moment lets fix y 6 Y 

and think of <t>(x, y) as a function of x alone. 

L e m m a . There exists a neighborhood, U, of Sy and, for every point, x € U, a unique point, 

x0 € Sy such that 

(3 .1) exptZH(xo,£o) = (x,Ç) 

where £ 0 = d<f>XQi £ = d<j>x and <t>(x) = 1 + t. 

Proof. Let Ao b e the set 

{(zo,£o); x0 e Syì £0 = d(j)Xo}. 

For e sufficiently small the map of A 0 x(—e, e) into T*X which sends (xo,£0,t) on to ( exp t S / / ) ( x 0 , £ 0 ) 

is a diffeomorphism o f A 0 x (—e, e) onto a Lagrangian submanifold, A, o f T*X. Moreover , A is 

also the image of a neighborhood, U of Sy in X with respect to the mapping 

d<j>: U—>T*X, x—zV(x,d<l>x).* 

Thus , if x is in U, there is a unique xQ G Sv and a unique t on the interval (—e, c ) such that 

e x p £ E t f ( z 0 , £ o ) =(x,e) 

with £0 = d<t>x0

 a n d £ = d<f>x. Thus all that is left to prove is that t = <j)(x). This , however, 

follows easily from the homogenei ty of H. Namely, by Euler's identity 

H ( x , 0 ) = E 
dH 
df 

(df) e i, 

*See the footnote following the display (2.4) in§2. 
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so, if £ = dcj)x : 

(3 .2) 1 = H(x,dòx) = E 
dH 

de (x, e= 
d<f> 

dxi ' 

Let (x(t),£(t)), 0 < t < e, be the integral curve of starting at ( x 0 , £ o ) - Then by (3 .2) 

d 
dt 

Mx(t)) = 1. 

Hence since <f> = 1 at XQ, <j> = 1 -f-1 at #(£) . Q.E .D. 

Let 's now compare the canonical transformations, j t o e x p ( — Ï E h ) and 7 . Because of the 

homogenei ty properties of 7 , 7 * and H it suffices to check that they are equal at all points, 

( # o , £ o ) , on the hypersurface, H = 1. However, each point on this hypersurface is the image 

under the mapping (2 .6) of a point, (xo,y) G 5. In other words there is a unique y € F such 

that (dx(/))(xQ.y) = £o- Thus, by definition 

(3 .3) 7 ( ^ 0 , £ 0 ) = (y,dy(/)(xo,y)). 

On the other hand, by the lemma 

e x p ( - ^ n t ( 1 ) H)(;ro,£o) = (s ,0 

with £ = (dx<f>)(x,y) and <f>(x,y) = 1 — t. Thus ( x , y ) G S* and, hence 

7t(s,0 = (y,dy<t>{x,y)) = 7< oexp(-te,H)(zo,£o). 

Therefore, if we denote by /? the projection of T0* onto F, we conclude from (3 .3) and (3.4) 

that 

/ ? o 7 < oexp(-tEH) = £ 0 7 , 

and hence that the canonical transforms, 7 and 7* o exp(— t^n) are themselves the same.* 

Proof that 2 implies 1:. Not only does the hypersurface St determine the canonical transfor

mation, 7<, but it is clear from the definition of ~ft that the reverse is true: The canonical 

transformation, 7*, determines the hypersurface, St. Thus if 2 holds, (j> has the same level sur

faces as does the corresponding solution of Monge-Ampere and hence has to be equal to this 

solution. Q .E .D. 

I will conclude with a few words about the "quantum picture" that goes along with 

the result above. Let Ft be an elliptic Fourier integral operator whose underlying canonical 

transformation is 7*. then by Theorem 2 

(3 .4) Ft = F0U(t)Q + K 

*Fact: If 7,: : T£X — • T Q *F, i = 1,2, are canonical transforms, then 0 o 7J = /3 o 7 2 implies 7 1 = 7 2 . 

(see, for instance [AM].) 
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K be ing a smoothing operator, Q an invertible elliptic pseudodifferential operator and U(t) a 

one-parameter unitary group of the form 

(3 .5) U(t) = exp yJ-ltP 

where P is a pseudodifferential operator with the function, H, as its leading symbol . W e 

will see in section 5 that for he Monge-Ampere equation on a complex manifold there is no 

analogue of Theo rem 2 per se, but there is an analogue of the statements (3 .4) and (3 .5 ) . In the 

analogue of (3 .5 ) , however, the unitary group, exp yf^ltP, gets replaced by the corresponding 

heat semi-group, exp(— tP) . 

§ 4 . T h e proof of Lee's theorem. 

First o f all note that if one replaces real C°° data by complex ho lomorphic data the 

existence theorem of §2 is still true and can be proved, with a few small changes, in exactly 

the same way. More explicitly, suppose Z and W are complex n-dimensional manifolds, 5c 

a complex hypersurface in Z x W and 0c = <f>£(z,w) a holomorphic defining function of 5c 

which satisfies the complex analogue o f (2 .3 ) . Then one can modify 0c, without changing d<f>£ 

at points o f 5c, so that it also satisfies 

(4 .1) det (d20C|dztdwj) = 0 

on a ne ighborhood of 5. Moreover, this modified 0c is unique. 

N o w let X be a compact complex n-dimensional manifold with a real-analytic strictly 

pseudoconvex boundary and let Z be an open complex manifold containing it. Let 5 be the 

boundary o f X and let 0 be a real-analytic defining function o f 5. I will denote b y W the 

manifold, Z , equipped with its conjugate complex structure, and by i the diagonal imbedding 

of Z into Z x W. It is clear that there exists an open neighborhood, U, o f the image of 5 in 

Z x W and a (unique) holomorphic function, 0c, on U such that i*<j>£ — 0. Let 5c b e defined 

by the equation, 0c = 1. Then the Levi condition implies that 0c satisfies the holomorphic 

analogue of (2 .3) at all points t(p),p € 5; and, therefore, if U is chosen small enough, this 

condi t ion is satisfied at all points of 5c- Therefore, by the holomorphic version of Theorem 1, 

one can modify 0c, without changing the first derivatives of 0c along 5c, so that it satisfies 

(4 .1 ) . This , however, implies that di*</)£ = c?0 at points of 5 and, in addit ion, 

(4 .2 ) det (d2L*(t)C/dzidzJ) = 0. 

Moreover , ¿*0c is the unique real-analytic solution of (4.2) satisfying the given initial condit ion. 

However, since the initial data are real-valued, ¿*0c is another solution o f (4 .2 ) with these initial 

data; so t*(pc = ¿*0c • i- e- *̂0C is itself real-valued. 

§5. H o m o g e n e o u s M o n g e - A m p e r e and the extendibility prob lem. 
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Let X be a compac t , complex n-dimensional manifold with a real-analytic strictly pseu

doconvex boundary. As above I will assume that X is sitting inside an open complex manifold, 

Z , and that <j> : Z — > E is a real analytic defining function of X. B y choosing e sufficiently 

small one can arrange that for all t on the interval, (—e, e) , <j> — t is the defining function for a 

strictly pseudoconvex domain, Xt+\ defined by the inequality, <j>(z) < 1 + t. 

T h e problem I want to consider below is the extendibility problem: Given s < t and given 

a holomorphic function, / , on Xa, can one extend / to a holomorphic function on Xt? I would 

like an answer to this question which is similar in spirit to the result o f Boutet de Monvel that 

I quoted in the introduction: namely / can be extended providing one can solve some kind of 

diffusion process, with / as initial data, backwards in time over the interval [s — £, 0] . I will show 

that one can find a characterization of extendibility, in these terms, if <f> satisfies homogeneous 

Monge-Ampere .* First of all, however, let me formulate the extendibility p rob lem in a way 

that only involves the behavior of (f> on the annulus 

Z€ = {z G Z, 1 - e < <f)(z) < 1 + e} 

Let St be the boundary of the region, Xt, and i t the inclusion m a p of St into Z. Let 0(Xt) 

be the space of functions which are holomorphic on lnt(Xt) and smooth up to the boundary. 

Then the restriction map 

i* : 0(Xt)—> C°°(St) 

is injective, and its image is the space of Cauchy-Riemann functions on 5«. I will denote this 

space by C R ( 5 ( ) . Thus for s < t one gets a diagram: 

15.1) 

O(Xt) 
z 

<CR(St) 

0(XS) C R ( 5 S ) 

the left hand arrow being the restriction map and R 3 t being, by definition, the right hand 

arrow. Note that, for —e<s<t<p<e: 

(5 .2) Rsj Rt,u = R3,w 

It is clear that the extendibility problem is equivalent to the problem of characterizing the 

ranges of the mappings, Rsj. 

T o formulate my main result I will have to discuss some geometric properties of the 

annulus, Z 6 , associated with the function, <j>. I will think of the complex structure on Z as 

being given by a morphisin, J, of the tangent bundle of Z , with J2 — —I. Since d(j)p ^ 0 at all 

points, p G Z( the one-forms: 

(5 .3) d4> and a = : — dcj) o J 

are non-vanishing and linearly independent everywhere. Corresponding to these one forms are 

a dual pair o f vector fields, 0 and ro, which I will define by means of the following: 

*And, in some sense, only if (f> satisfies homogeneous Monge-Ampere. 

105 



V. GUILLEMIN 

Propos i t ion . There exists a unique vector field, ro, on Z€ with the following three properties 

(5.4) 

i. t(tv)a = 1 

it. i(xo)dò = 0 

Hi. i(tv)da is the product of d<f> with a C°° function. 

Proof. T o say that the hypersurfaces, 0 = 1 -f t, are strictly pseudoconvex for — e < t < e is 

equivalent to saying that 

(5 .5) (da)71'1 A a A d ^ O 

at all points o f Ze, and the existence of a unique vector field, to, satisfying (5 .4) can b e deduced 

from (5 .5) by elementary linear algebra. Q .E .D. 

I will n o w define U to be the vector field, 

(5 .6) t> = Jm. 

From (5 .3) and (5 .4) one deduces 

(5 .7) i(t)W0 = 1 and t(x>)a = 0. 

Next I want to recall a standard criterion for the function, 0, to satisfy homogeneous 

M o n g e - A m p e r e : 

L e m m a . <j> satisfies homogeneous Monge-Ampere if and only if the condition, (5.4) in., can 

be replaced by the stronger condition 

(5 .8) t(w)da = 0. 

Proof. <f> satisfies homogeneous Monge-Ampere if and only if the two-form, da, is of rank n — 1 

at all points o f Ze, or in other words, if and only if there exists a nowhere vanishing vector 

field, ro, satisfying (5 .8 ) . However, because of (5 .5) , if such a vector field exists, it can always 

be chosen to satisfy (5 .4 ) , i. and ii., as well. Q .E .D. 

Corol lary , (j) satisfies homogeneous Monge-Ampere if and only i f [u, to] = 0. 

Proof. Since t(xo)da is a multiple of dcj) the condition (5 .8) holds if and only if da(v,to) — 0. 

Note , however, that 

(5 .9 ) da(x), to) = A , (a (m) ) = AoM*)) ~ <*([*, *>]) = - a ([v*>m]). 

Therefore, if [t>,ro] = 0, 0 satisfies Monge-Ampere . Conversely, suppose 0 satisfies Monge-

A m p e r e . T h e n t(to)da = 0 by the Lemma. Moreover, since da = (l/2i)dd(t>, da is J-invariant; 
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so i(xo)da = 0. As we have just remarked, <j> satisfies Monge-Ampere if and only if da is of 

rank n — 1 everywhere, in which case the annihilator of da is an integrable two-dimensional 

subbundle of the tangent bundle of Z€. Since t) and ro are sections of the subbundle it follows 

from the Frobenius condit ion that 

[v,w]=/lt>+/ 2tt> 

for appropriately chosen C°° functions, / 1 and / 2 . However, by (5 .9 ) , /2 = 0, and / 1 is zero ir 

view o f the identity: 

<ty([t>, to]) = A,(Ao¿) " ADAP¿ = 0. 

Q.E.D. 

Since ro = Jt> this result can be interpreted as saying that there is a ( loca l ) action of the 

complex , group, C , on Z€ generated by the complex vector field, U + y/—lxo. This action of C 

does not preserve the complex structure of Z € ; however, the fact that tt) = Jt) implies that the 

orbits o f C are one-dimensional complex submanifolds of Z€. T h e existence of a C-action with 

this property is probably the single most important consequence of the fact that <f> satisfies 

Monge- Ampere . * 

From now on I will assume that (f> satisfies homogeneous Monge -Ampere and will describe 

some o f the implications this has for the extendibility problem. Using the results above I will 

derive a formula for the restriction operator 

Rs>u : CR(SU) —>CR(SS) 

in terms of an infinite series which will, in general, not converge; however, I will extract from 

this formula a meaningful expression by the insertion of Szego projectors, and the main theorem 

of this paper will say that what I get is still a g o o d approximation to RSlU> 

Let / be in 0(XU) and let t = u — s. Since t) — yj — lro is an anti-holomorphic vector field, 

(Dv - V=ÏDn) f = 0 

and hence, formally, 

f = expt(D0-V^ÏDn)f. 

Since Dv and Dn commute one can formally rewrite this equation in the form, 

/ = exp(-v / Z TtZ) n , ) (exp<t))*/ , 

hence if g is the restriction of / to the surface, 5 U , we get for RS}Ug the following formal 

expression 

[5.10) Rs,u9 = exp (—V—ItfAx,) (exp to)*g. 

*For some of its implications see Dan Burn's article [Bu]. This C-action also plays an important role in 

the articles of Lempert and Szôke mentioned in the introduction. 

107 



V. GUILLEMIN 

Let's see to what extent this formula makes sense as a representation o f R3,u. Since exptft) is a 

diffeomorphism o f S3 on to Su, the operator 

(5.11) ( e x p t o ) * : C R ( 5 « ) — C°°(Sa) 

makes perfectly g o o d sense. As for the operator, exp( — \J— ItD^,), if we substitute for it the 

infinite series 

(5.12) I + (-JZitD,,,) + 
1 

2! 
(sf=ltDm)2 • • • 

each of the terms in this series is well defined as an operator on C°°(S3) since the vector field, 

ro, is tangent to S3. Indeed, if h is a real-analytic function on 5 5 , then 

(exptD^h = (exptro)*h 

and the term on the left is real analytic in t as well as in the manifold variables, so it can be 

analytically continued to a small neighborhood of the origin on the imaginary tf-axis. Thus, 

exp( — \J — ItDft) is well-defined as an operator, but its domain of definition is a rather small 

subspace of C ° ° ( 5 a ) . 

Let m e next recall the definition of the Szego projector on C°°(SS). Restricting to S3 the 

(2n — l ) - fo rm, aA(da)n~1, it becomes a volume form and provides L2(SS) wi th a Hilbert space 

structure. Let H2(S3) be the L2 complet ion of C E ( 5 a ) in L2(S3) and let 7r3 be the orthogonal 

project ion of L2(SS) onto H2(S3). This projection maps C°°(S3) on to C°°(S3) fl H2(S3); and 

the latter space is <CR(SS); so, by restricting 7rs to C°°(SS) one gets an operator: 

ns C ° ° ( 5 a ) — . CR(SS); 

and this is, by definition, the Szego projector. I will now modify the right hand side of (5.12) 

by replacing the operator , -D D , wherever it occurs, by its Szego cut-off: -KgD^s. W i t h this 

modif icat ion the right hand side of (5.12) becomes exp (K—\f^lt-KsDt0'K3) and since t = u — s, 

the right hand side of the formula, (5 .10) , for R 3 U becomes 

(5 .13) e x p ( - ( u - s)T9)F3tU 

where 

(5.14) T3 = 7 T S \ / — l D t 0 7 T 3 

and 

(5 .15) Fa,u = 7r3(exp(u - s)t>)*. 

For the following I will refer to [BG]: 
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Propos i t ion A . T3 is a positive Erst order self-adjoint elliptic Toeplitz operator. In particular 

it has real discrete spectrum: 

A 0 < A a < A 2 < . . . , 

with the Aj's tending to +oc and satisfying the Weyl asymptotics: 

N(\)= volume ( 5 5 ) A n + 0 ( A n " 1 ) 

where N(X) = #{Xt < A } . 

For the p roof of this see §1 of [BG] . T h e point of the proposit ion is that Ts has exactly 

the same kind of spectral behavior as a positive definite elliptic pseudodifferential operator of 

order one on a compac t n-dimensional manifold. 

As for F3,u one has: 

Proposi t ion B . The operator, F3,u : CR(SU) — • C R ( 5 S ) is an elliptic Fourier-Toeplitz 

operator of order zero with exp(u — s)t) : S3 —• Su as its underlying canonical transformation. 

Moreover, for u — s sufficiently small, it is invertible. 

This also follows easily from the theory of Fourier-Toeplitz operators developed in [BG] 

or from the more general theory of Fourier integral operators with positive phase function 

developed in [MS]. I won ' t bother to give a proof of it here. 

Thanks to these two propositions, the operator, (5 .13) , has very nice analytic properties, 

and this brings up the question: T o what extent is it still a g o o d approximation to RSlU- The 

main result of this paper is that it is still a g o o d approximation in the following sense. 

T h e o r e m 4. For n and s close to one and u — s small there exists an invertible zeroth order 

elliptic Toeplitz operator 

Q8iU : CR(S3) —> CR(S3) 

which depends real-analytically on u and s and satisfies: 

(5 .16) R3,u = exp(-(u - s)T9)QaittF8iU. 

This theorem says, in particular, that for u — s small the range of R3jU agrees with the 

range of exp(—(u — s)T3) so, in particular, one obtains from Theorem 4 the following result on 

extendibility. 

T h e o r e m 5. Let f be a holomorphic function on X3, which is smooth up to the boundary. 

Then it extends to a holomorphic function on Xu, which is smooth up to the boundary, iff the 

restriction of f to the boundary of X3 is in the range of exp(—(u — s)T3). 

§6 . T h e proof of the extendibility theorem. 
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Let u > s > 1 and let Si = 5 , TTI = n and T\ = T. For u < 1 + e consider the operator 

(6.i) W — F, B F~l 

This opera tor maps C E ( 5 ) onto C R ( 5 ) and, for s < t < u, satisfies the semigroup property 

(6.2; Wa,tWttU = WSiU 

In particular 

(6.3) 
d 

ds 
WSiU = P9W.,U 

where 

(6.4) P, = - ( 
d 

16 ) + 
Ws-€ s at € = 0. 

we will prove: 

L e m m a . Ps is a first order Toeplitz operator with the same leading symbol as T. 

Proof. Given a CR-funct ion, h G C R ( 5 ) , let g — F^Jh and let / b e the unique element of 

0(XS) whose restriction to Ss is g. Finally let ¿ : S —• Z be the inclusion map . Then 

Ws-t .h = FlìS-€Rs-€ì3g 

= IRE* ( exp(s — e)t)) / 

= 7™*(exps t ï )* ( exp -e t ) )* / 

Thus , if we take the right hand derivative with respect to e we get, at e = 0 : 

( 
d 

de ) 
+ 

Ws-€i9h = -7u*(expst>)*Dxtf. 

Since / is ho lomorphic on the interior of Xs and smooth up to the boundary, and t) — \ ^ - T r o 

is an ant i -holomorphic vector field, Dvf = y/^lD^f. Moreover, since tv is tangent to 5 5 , 

\f^\Dtof is equal to yJ—lD^g on 5 S ; so the right hand side of the equation above is equal to 

?r(exp s\))*(-y/^ÏDto)g 

or 

F1, s (- V-1Dm) F-1hl,s 

Thus we obtain for Ps the formula 

(6.5) P. = F1,.(V=ÎD№)F{-ti. 
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B y proposi t ion B of §5 FifS is a Fourier-Toeplitz operator whose underlying canonical trans

formation is exp(s — l)t) . Since [t», to] = 0 

(6 .6) (exptt>)*Ao = Dto(exptt>)* 

for all t. Thus , by the composi t ion formula for Fourier-Toeplitz operators described in [BG] 

§7, the operator (6 .5) is a Toeplitz operator, and has the same leading symbol as the Toeplitz 

operator, 7 r ( \ / — ID^TT. Q .E .D. 

Let A(s) = P9—T. This operator is a zeroth order Toeplitz operator depending analytically 

on the parameter, s, and, by (6 .3) , it satisfies the operator equation 

d 
ds 

Ws,u = TW3,u + A (s) W s, u 

W i t h u fixed, let s = u - t, and let W(t) = Wu-t,u and B(t) = —A(u — t). Then the equation 

above can be rewritten in the form 

(6 .7) 
d 
dt 

W(t) = -TW(t) + B(t)W(t), 

on the interval 0 < t < u — 1, with W(0) = I. Formally one can solve this equation by "variation 

of constants": i.e. setting 

(6 .8) B*(t) = (exp tT)B(t) e x p ( - t T ) , 

one can express the solution of (6.7) in the form: 

(6 .9) W{t) = exp{-tT)Q(t), 

where Q(t) is the solution of the operator equation, 

(6 .10) 
dQ(t) 

dt 
= B#(t)Q(t) with Q ( 0 ) = / . 

T o make sense of this formal solution we must first make sense o f (6 .8 ) , and this we will 

d o as follows: Since B(t) depends real-analytically on tf, it extends to a holomorphic function 

of t on a small ne ighborhood of the origin in the complex t-plane. Thus in particular B(y/^lt) 

is well defined, by analytic continuation, for real values of t close to zero. Now notice that 

when we replace t by \f^\t in (6 .8) , (6.8) becomes: 

(6 .11) B*(s/^lt) = e x p s/^ltT B{sV-1-^lt)exp(-y/-ltT). 

Since exp yf^XtT is an elliptic zeroth order Fourier-Toeplitz operator, it follows from Egorov 's 

theorem that (6 .11) is a zeroth order Toeplitz operator, also depending in a real analytic fashion 

on t. Thus we can again, for \t\ small, replace t by —y/^lt in (6 .11) , and we end up with a 
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well-defined zeroth order Toepli tz operator which is, formally, the operator ( 6 . 8 ) . This we will 

now define to b e the operator, B#(i). W i t h this definition of B&(t) the equation (6 .8) holds 

in the sense that for all a > t 

(6 .12) exp(-aT)B#(t) = exp(t - a)TB(t)exp(-tT). 

Plugging this Toepli tz operator, B#(t), that we have just defined, into (6 .10) and solving 

for Q{t) we end up with a putative solution, W(t) = exp(— tT)Q(t) , to the equation, (6 .7 ) . T o 

show, b y means o f (6 .12) , that this is an actual solution is not hard. W e leave details to the 

reader.* 

Inserting (6 .10) into (6 .1) and remembering that Q(t) depends analytically on the param

eter, / / , as well as on t we get 

exp -(u - s)Qu(u - s ) = F l i S R S i U F 1 ; 

or, in particular, setting 5 = 1, 

Ri,u = exp(-(u - l)T)Qu(u - 1)F1>U 

for 1 < u < e. This proves Theorem 4 for s = 1; and the theorem, for arbitrary s, can be 

deduced from this special case by replacing <̂>, in the discussion above, by (j) — (s — 1 ) . 
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Classification and Normal Forms for Quantum Mechanical 

Eigenvalue Crossings 

George A. Hagedorn 

In the study of molecular dynamics, it is often useful to consider the 

quantum mechanics of the electrons with the nuclei in fixed positions. When 

this is done, the positions of the nuclei are described by a nuclear configura

tion vector X G IRn, and the Hamiltonian for the electrons is a self-adjoint 

operator-valued function h(X) of the nuclear configurations. A discrete eigen

value E(X) of h(X) is called an electron energy level. 

Electron energy levels play a major role in the time-dependent Born-

Oppenheimer approximation [ 1 , 2 ] . In this approximation the electrons prop

agate adiabatically and the nuclei obey a semiclassical approximation. In this 

context, adiabatic means that if the electrons are initially in an eigenstate as

sociated with a level E(X), then at a later time, they will be again be found 

in an eigenstate associated with E(X). The eigenvalue E(X) also acts an 

effective potential for the semiclassical propagation of the nuclei. 

This approximation breaks down when the electron energy level E(X) 

crosses any other part of the spectrum of h(X), and the simplest such break

down occurs when E(X) crosses another eigenvalue of h(X). In this pa

per we describe the first step in the study of what happens when a Born-

Oppenheimer state encounters such a crossing. This first step is the clas

sification of generic minimal degeneracy quantum eigenvalue crossings and 

determination of normal forms for h(X) near each type of crossing. The var

ious different types of crossings arise from different symmetry situations. We 

prove below that eleven distinct situations can occur. 

* Partially supported by National Science Foundation Grant DMS-9001635. 

S . M. F . 
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Throughout the paper we assume h(X) is a C2 function of X £ IRn in the 

sense that its resolvent is C2. In the various different situations, we assume 

the dimension n of the nuclear configuration space is large enough so that the 

appropriate type of crossing can occur generically. We show below that in 

each generic crossing situation, the two eigenvalues coincide on a submanifold 

T of some specific codimension. If n is less than this codimension, then that 

type of crossing generically does not occur. 

We let G denote the symmetry group of h(X). That is, G is the group 

of all unitary and antiunitary operators that are X-independent in some rep

resentation of the electronic Hilbert space, and that commute with all the 

operators h(X). We let H denote the subgroup of unitary elements of G, and 

note that antiunitary elements of G reverse time. 

Since the product of unitary and antiunitary operators is antiunitary, 

there are clearly two cases: Either G = H or H is a subgroup of G of index 2. 

When G = standard group representation theory applies, and each 

distinct eigenvalue of h(X) is associated with a unique representation of G. 

Minimal multiplicity eigenvalues correspond to 1-dimensional representations, 

and if two simple eigenvalues Ej{(X) and Eg(X) cross, then there are two 

possibilities: 

Type A Crossings: The two irreducible representations of G that 

correspond to EA(X) and EB(X) are not unitarily equivalent to one another. 

Type B Crossings: The two irreducible representations of G that 

correspond to EA(X) and EB(X) are unitarily equivalent to one another. 

When i f is a subgroup of index 2, standard group representation theory 

does not apply. Instead of representations, the basic objects of interest are 

called corepresentations. A general theory of corepresentations was first de

veloped by Wigner [ 6 ] . A more modern, non-basis-dependent treatment can 

be found in [ 5 ] . This general theory shows that any corepresentation can be 

decomposed as a direct sum of irreducible corepresentations. Furthermore, 

there are three distinct types of irreducible corepresentations which are called 

Types I, II, and III. 

To describe these three types, we first note that G can be decomposed 
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as G — H U JCH, where /C is an arbitrary, but fixed, antiunitary element of 

G. Then, if U is an irreducible corepresentation of G, we let UJJ denote the 

restriction of U to H. Then the three types are described as follows [ 5 ] : 

Type I Corepresentations: Ufj is an irreducible representation. 

Type II Corepresentations: UJJ decomposes into a direct sum of two 

equivalent irreducible representations, UJJ = D 0 D. Furthermore, U may be 

cast in the form 

U(h) = D(h) 0 
0 D(h) , U{K) = 0 -K 

K 0 , and U(Kh) = U(K)U(h), 

for all h € H. Here K is an antiunitary operator that satisfies K = —D(JC) 

and K D(K,~lhK) K^1 = D(h) for aRheH. 

Type III Corepresentations: UJJ decomposes into a direct sum of two 

inequivalent irreducible representations, UJJ = D © C. Furthermore, U may 

be cast in the form 

U(h) = D(h) 0 
0 C(h) , U(a) = 0 D(K2)K-1 

K 0 
, and U(Kh) = 

U(K) U(h), for all h G H. Here K : TD — HC is an antiunitary operator 

that satisfies K D(K-1hK) K-1 = C(/ i ) for all h G H. 

When G = H, each distinct eigenvalue ofis associated with a unique 

corepresentation of G. From the structure theory outlined above, it is clear 

that minimal multiplicity eigenvalues associated with Type I corepresenta

tions have multiplicity 1. Minimal multiplicity eigenvalues associated with 

Type II or Type III corepresentations have multiplicity 2. In the minimal 

multiplicity situations, the antiunitary operators K that occur in Type II 

corepresentations map a one dimensional space to itself. A simple calculation 

shows that such operators satisfy K2 = 1. Thus, in the minimal multiplicity 

situation, K is a conjugation, and D(K2) = — 1. 

This structure theory of corepresentations shows that if two minimal mul

tiplicity eigenvalues EA(X) and EB(X) cross, then there are nine possibilities: 

Type C Crossings: The two irreducible corepresentations of G that 

correspond to EA(X) and EB(X) are both of Type 7, but are not unitarily 

equivalent to one another. Both eigenvalues have multiplicity 1 away from 

the crossing. 
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Type D Crossings: The two irreducible corepresentations of G that 

correspond to EA(X) and EB(X) are both of Type / / , but are not unitarily 

equivalent to one another. Both eigenvalues have multiplicity 2 away from 

the crossing. 

Type E Crossings: The two irreducible corepresentations of G that 

correspond to EA(X) and Eg(X) are both of Type 1/7, but are not unitarily 

equivalent to one another. Both eigenvalues have multiplicity 2 away from 

the crossing. 

Type F Crossings: The two irreducible corepresentations of G that 

correspond to EA(X) and EB(X) are of Types I and II. Away from the 

crossing, the eigenvalue associated with the Type I corepresentation has mul

tiplicity 1 and the other eigenvalue has multiplicity 2 away from the crossing. 

Type G Crossings: The two irreducible corepresentations of G that 

correspond to EA(X) and EB(X) are of Types I and III. Away from the 

crossing, the eigenvalue associated with the Type I corepresentation has sim

ple multiplicity and the other eigenvalue has multiplicity 2. 

Type H Crossings: The two irreducible corepresentations of G that 

correspond to EA(X) and EB(X) are of Types II and III. Both eigenvalues 

have multiplicity 2 away from the crossing. 

Type I Crossings: The two irreducible corepresentations of G that cor

respond to EA(X) and EB(X) are both of Type I and are unitarily equivalent 

to one another. Both eigenvalues are multiplicity 1 away from the crossing. 

Type J Crossings: The two irreducible corepresentations of G that cor

respond to EA(X) and EB(X) are both of Type II and are unitarily equivalent 

to one another. Both eigenvalues are multiplicity 2 away from the crossing. 

Type K Crossings: The two irreducible corepresentations of G that 

correspond to EA(X) and EB(X) are both of Type III and are unitarily 

equivalent to one another. Both eigenvalues are multiplicity 2 away from the 

crossing. 

REMARK: One can easily find simple quantum systems that provide examples 

of the various types of crossings. 

We now turn to the detailed structure of the electron Hamiltonian function 
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h(X) near a generic crossing of each type. In our applications [ 3 , 4 ] we 

assume that the nuclear wave packets propagate non-tangentially through the 

manifold T, where EA(X) = EB(X). As these packets propagate through the 

crossing, their mean momentum is approximately given by a fixed vector T/Q. 

This vector determines a special direction in the nuclear configuration space 

that is not tangent to T. In some cases, the normal forms we derive for h(X) 

depend on this special direction. 

STRUCTURE OF CROSSINGS OF TYPES A AND C . Suppose two eigenvalues EA(X) 
and EB(X) of a C2 electron Hamiltonian function h(X) have a crossing of 

Type A or Type C at X = 0 . By properly labeling the eigenvalues, we may 

assume that EA(X) corresponds to one irreducible representation or corep

resentation Ui of G for all X , and that EB(X) corresponds to U2 for all X. 

Since h(X) commutes with the action of G, it follows that h(X) commutes 

with the orthogonal projections P1 and P2 onto the mutually orthogonal car

rier subspaces associated with U1 and U2, respectively. 

For X in a neighborhood of the origin, one can write the spectral projec

tion P(X) for h(X) associated with both the eigenvalues EA(X) and EB(X) 

as 

P(X) = 1 
2iri 

C 

(z - h(X))-1dz, 

where C is a contour that encloses EA(X) and EB(X) but no other parts of 

the spectrum of h(X). From this it follows that P(X) is a C2, rank 2 operator 

valued function of X near X = 0 that commutes with P1 and P2. Since U1 and 

U2 are inequivalent, it follows that PA(X) = P1 P(X) and Pß(X) = P2 P(X) 

are C2, rank one orthogonal projections that project onto mutually orthogonal 

subspaces. 

For Type A crossings, we arbitrarily choose ^ A ( 0 ) and $ B ( 0 ) to be unit 

vectors in the ranges of PA(0) and P B ( 0 ) , respectively. We then define 

*A(X) = 
PA (X)OA(0) 

<*A(0) , PA(X)*A(O)) 

and 
*B(X) = P ß ( X ) $ ß ( 0 ) 

( * B ( 0 ) , P B ( X ) * B ( 0 ) ) 
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By standard perturbation theory, these unit-vector valued functions are C2 in 

a neighborhood of the origin and belong to the ranges of PA(X) and P # ( X ) , 

respectively, for each X. Furthermore, ^ A ( X ) and 3>B(X) are eigenvectors 

of h(X) that correspond to Ej[(X) and £ # ( X ) , respectively. Standard argu

ments also show that EA(·) and EB(·) are C2 functions in a neighborhood of 

the origin. 

For Type C crossings, we perform the same construction, but impose an 

additional constraint. By decomposing G = H U KH, we have selected a 

special antiunitary element K of G. A simple calculation shows that we may 

choose the phases of the vectors $A(0) and $B(0) so that K $ A ( 0 ) = $ A ( 0 ) 

and K $B(()) = $B(0 ) . By making such choices we obtain vectors Q A(X) 

and 9B(X) that satisfy K Q A ( X ) = QA(X) and KQB(X) = QB(X) . 

Let h^-(X) denote the restriction of h(X) to the subspace orthogonal to 

the range of P(X). By using $ A ( X ) and $ B ( X ) as a basis for the range of 

P ( X ) and identifying H = (C © 0 © Ran (1 - P ( X ) ) , we can locally represent 

h(X) by the matrix 

h(X) = 
EA(X) 0 0 

0 EB(X) 0 
0 0 h±(X) 

. 

Throughout our discussion, no restrictions have been imposed on the func

tions EA(X) and EB(X), except that they take the same value at the origin. 

Thus, they could be any two C2 functions whose values coincide at the origin. 

Generically the values of two such functions coincide on a submanifold V of 

codimension 1. 

STRUCTURE OF CROSSINGS OF TYPES F AND G . Suppose two eigenvalues EA(X) 
and EB(X) of a C2 electron Hamiltonian function h(X) have a crossing of 

Type F or Type G at X = 0. We may assume the eigenvalues are labeled so 

that the corepresentation associated with EA(X) if of type I and the corep

resentation assiciated with EB(X) is of type 77 or III. Let U1 and U2 denote 

the irreducible corepresentations of G associated with EA(X) and Eg(X), 

respectively, and note that the dimension of the U2 is 2. As in the case of 

Type A or C crossings, h(X) commutes with the orthogonal projections Pi 
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and P2 onto the mutually orthogonal carrier subspaces H1 and H2 associated 

with U1 and U2, respectively. 

For X in a neighborhood of the origin, one can write the spectral pro

jection P(X) for h(X) associated with the eigenvalues EA(X) and EB(X) as 

an integral of the resolvent of h(X). From this it follows that P(X) is a C2, 

rank 3 operator valued function of X near X = 0 that commutes with Pi and 

P2, Since U1 and U2 are inequivalent, it follows that P ^ ( X ) = P1 P(X) and 

PB(X) — P2P(X) are C2, rank one and (respectively) rank two orthogonal 

projections that project onto mutually orthogonal subspaces. 

We construct a C2 unit-vector valued function $A( · ) exactly as in the case 

of a Type C crossing, so that K $ A ( X ) = ^ A ( X ) . For a Type F crossing we 

choose 3>£ i(0) to be an arbitrary unit vector in the range of PB(0). We then 

let 

*Bil(X) = 
PB(X)*B,1(0) 

( W O ) , PB(X)*B>1(0)) 

and 

QB,2(X) = K QB,1 (X). 

Because /C is antiunitary and Z)(/C2) = —1, it follows that i ( X ) and 

<&B 2(X) comprise an orthonormal basis for the range of PB(X). 

For Type G crossings, we let PC and PD denote the orthogonal projections 

onto the carrier subspaces for the two representations C and D of the subgroup 

H that are involved. These projections commute with PB(X) and project 

onto mutually orthogonal subspaces. Furthermore, PQPB(X) and PDPB(X) 

are rank one projections. We choose i(0) to be a unit vector in the range 

of PDPB(0). We then let 

Q B,1 (X) = РВ(Х)ФВ,1(0) 

<*B,l(0), PB(X)*BA(0)) 

and 

*B,2(X) = K*B,1(X)-

From the structure theory of type III corepresentations, we see that $B,2(X) 

belongs to the range of PCPB(X), and that B , 1 ( X ) and $B,2 (X) comprise 

a C2 orthonormal basis for the range of PB(X). 
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Let h^(X) denote the restriction of h(X) to the subspace orthogonal to 

the range of P(X). By using ^ ^ ( X ) , 3>B,1(X) and , 2 ^ ) as a basis for the 

range of P(X) and identifying H = Q © G2 © Ran (1 - P ( X ) ) , we can locally 

represent h(X) by the matrix 

h(X) = 

E A ( X ) 0 0 0 
0 E B ( X ) 0 0 
0 0 EB(X) 0 
0 0 0 h ^ ( X ) 

. 

As in the case of Type A and C crossings, no restrictions are imposed on 

E A ( X ) and EB(X). Thus, they generically cross on a codimension 1 subman-

ifold T. 

STRUCTURE OF CROSSINGS OF TYPES D, E , AND H . Suppose two eigenvalues EA(X) 
and EB(X) of an electron Hamiltonian function h(X) have a crossing of type 

D, E, or H at X = 0. By mimicking the constructions used for Type F and 

G crossings, we see that we can choose four smooth, mutually orthogonal 

unit-vector valued functions $A, 1 ( X ) , A,2(^0 = K^\A,1(X), ^B,l(X), and 

$B ,2 (X) = K$B , 1 ( X ) , such that $ A , 1 ( X ) , and $A,2(X) are eigenvectors of 

h(X) with eigenvalue EA(X), and <frB, 1 ( X ) , and $ B , 2 ( X ) are eigenvectors 

of h(X) with eigenvalue EB(X). Furthermore, whenever a type III corep

resentation is involved, the eigenvector with second subscript 1 belongs to 

one representation of the subgroup H and the eigenvector with the second 

subscript 2 belongs to the other representation of the subgroup. 

As in the earlier constructions, by using these vectors as part of a basis, 

and identifying H = Q2®C2® Ran (1 - P ( X ) ) , we can locally represent h(X) 

by the matrix 

h(X) = 

EA(X) 0 0 0 0 
0 EA(X) 0 0 0 
0 0 EB(X) 0 0 
0 0 0 EB(X) 0 
0 0 0 0 h ^ ( X ) 

. 

As in the earlier cases, EA{X) and EB(X) generically cross on a submanifold 

T of codimension 1. 
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STRUCTURE OF TYPE I CROSSINGS Suppose a C electron Hamiltonian function 

h(X) has a type I crossing of two simple eigenvalues EA(X) and EB(X) at 

X = 0. As in the earlier cases, the projection P(X) for h(X) associated with 

the eigenvalues EA(X) and EB(X) is a C2, rank 2 operator valued function 

of X near X = 0. It follows that EA(X) + EB(X) = trace (h(X)P(X)) is also 

C2. Thus, 

h 1 ( X ) = h{X) - \{EA{X) + EB{X)) 

is a C2 operator-valued function whose restriction to the range of P(X) is 

traceless. 

Let { ^ 1 , ip2 } be a basis for the range of P ( 0 ) . By altering the phases of 

these two vectors, we may assume that Ki)1 = p1 and K^2 = V2> where K 

is the antiunitary operator chosen for the decomposition G = HUKH. Define 

t/1 ( X ) for X by 

MX) = P(X)Vi 
k1, P(X) k1 

Since P ( X ) is C2 and commutes with the action of G, ^\{X) is well defined 

and C2 in some neighborhood of the origin and satisfies K^i{X) = ipi(X). 

Let P\(X) denote the projection onto the subspace spanned by ipi(X). It is 

a C2 operator-valued function in a neighborhood of X that commutes with 

P(X) and the action of G. We define 

iP2{X) = 
P(X)(1 - P1(X)U2 

/(xP2,P(X)(1 - P1(X))xP2) 

This vector valued function is also C2 in a neighborhood of the origin; K ip2(X) 

= ^ 2 ( X ) ; and {/0i(X), ip2(X)} is an orthonormal basis for the range of 

P ( X ) , for X in a neighborhood of the origin. 

In the basis { ^ i ( X ) , ip2{X) } , the restriction of h\{X) to the range of 

P ( X ) is represented by a real symmetric, traceless 2 x 2 matrix valued func

tion M ( X ) whose entries are C2 functions that all vanish when X = 0. That 

is. 

M ( X ) = 
a{X) ß(X) 
ß(X) -a(X) , 

where a and /3 are real valued C2 functions. The eigenvalues J E ^ ( X ) and 

EB(X) cross precisely at those points X where ct(X) = (3(X) = 0. Generi-
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cally this defines a codimension 2 submanifold V. Furthermore, the difference 

between EA(X) and EB(X) is the same as the difference between the eigen

values of M(X). By direct computation, the eigenvalues of M(X) are 

± a(X)* + 0(X)2 . 

Generically this function is continuous, but not differentiable near V. One can 

easily show that the eigenvectors are not even continuous near T. 

By standard Taylor series results, M(X) has the form M(X) = N(X) + 

0(\\X\\2), where 

N(X) = a-X b-X 
b-X -a-X , 

for some vectors a and b. Generically a and b are linearly independent. By 

a rotation of the coordinate system we may assume that only the first two 

components of a and b are non-zero. 

If n0 is a vector not tangent to T at X — 0, then we can rotate the first 

two coordinate axes so that the projection of n0 into the two dimensional 

subspace spanned by a and b lies along the positive X1 axis. 

At this point, the Xj coordinates for j > 2 no longer play a role in the 

structure of N(X). Furthermore, the form of N(X) is not altered if we do X-

independent orthogonal transformations of the two dimensional space spanned 

by the basic electronic wave functions p1(X) and p2(X). We replace p1(X) 

by cos(0)^1(X) + sin(0)2(X) and >2(X) by - s in(0)V1(X) + cos(#)V1(X). 

A simple calculation shows that we can choose 9 so that the Xi-component 

of b is zero. Finally, by possibly interchanging the order of V 1 ( X ) an(i ^2(X) 

or multiplying one of them by —1, we can assume that the X1-component of 

a and the X2-component of b are both positive. 

Thus, N(X) has the form 

N(X) = 
a1X1 + a2X2 b2X2 

b2X2 —a1X1 - a2X2 , 

where a\ and b2 have the same sign. So, by identifying H = G © 0 © Ran (1 — 

P ( X ) ) , we can locally approximate h\(X) by the matrix 

h1(X) = 
a\X\ + a2X2 b2X2 0 

b2X2 -a\Xi - a2X2 0 

0 0 h±{X) 
. 
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STRUCTURE OF TYPE B CROSSINGS Suppose a C2 electron Hamiltonian function 

h(X) has a type B crossing of two simple eigenvalues EA(X) and EB(X) at 

X = 0. In this situation we mimic the construction of the vectors p1(X) and 

p2(X) in the case of a Type I crossing. Since there is no anitunitary operator 

K E G, we choose arbitrary orthogonal unit vectors p1(0) and 02(O) from 

the range of P ( X ) , and then proceed with the construction. This yields an 

orthonormal basis { / 1 ( X ) , ^2(X) } for the range of P(X). 

In this basis, the restriction of 

h1(X) = h(X) - l(EA(X) + EB(X)) 

to the range of P(X) is represented by a self-adjoint traceless 2 x 2 matrix 

valued function M ( X ) whose entries are C2 functions that all vanish when 

X = 0. That is, 

MIX) = 
a(X) ß(X) + i7(X) 

ß(X) - ij(X) -a(X) , 

where a, /3, and 7 are C2 real valued functions. The difference between EA(X) 

and EB(X) is the same as the difference between the eigenvalues of M(X). 

By direct computation, the eigenvalues of M(X) are 

± c ( X ) 2 + B(X)2 + 7 ( X ) 2 . 

Thus, the eigenvalues EA(X) and EB(X) cross precisely at those points X 

where a(X) = /3(X) = l(X) = 0. Generically this defines a codimension 

3 submanifold T. Furthermore, it is clear that the eigenvalues EA(X) and 

EB(X) are continuous, but generically not differentiate near T. 

By standard Taylor series results, M(X) has the form M(X) = N(X) + 

0 ( | | X | | 2 ) , where 

N(X) = a-X b - X + ic • X 
b - X — ic • X —a • X , 

for some vectors a, 6, and c. Generically a, 6, and c are linearly independent. 

By a rotation of the coordinate system we may assume that only the first 

three components of a, 6, and c are non-zero. 
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If n0 is a vector not tangent to T at X = 0, then we can rotate the first 

three coordinate axes so that the projection of 770 into the three dimensional 

subspace spanned by a, b, and c lies along the positive X1 axis. 

At this point, the Xj coordinates for j > 3 no longer play a role in 

the structure of N(X). Furthermore, without altering the basic structure 

obtained so far, we still have the freedom to rotate the X2 and X 3 coordinate 

directions, and we can perform X-independent unitary transformations of the 

two dimensional space spanned by p1(X) and ^2(X). By doing both of these 

in a special way, we claim that we may assume the following: 

1. The first component of a is non-zero. 

2. The first and third components of b are zero, but its second component 

is positive. 

3. The first and second components of c are zero, but its third component 

is positive. 

Thus, we may assume that N(X) has the form 

N(X) = 
a1X1 + a2X2 + a 3 X 3 b2X2 + iC3X3 

b2X2 - i c 3 X 3 —a1-X1 - a2X2 - a 3 X 3 
. 

To prove these claims we first do a unitary transformation of the span of 

^ i ( X ) and ^(X) so that when X 2 = X3 = ··· = Xjy = 0, the matrix M ( X ) 

is diagonal. Standard one variable perturbation theory shows that this can 

always be done. Thus, we may assume that b\ = c\ — 0. 

Next, we show that we can do another unitary transformation of the 

span of ^ ( X ) and ^2(^0 so that 61 and c\ are unchanged, but b and c are 

transformed into perpendicular vectors. The unitary transformation we use 

simply multiplies ^ ( X ) by a phase factor e1^. This diagonal transformation 

leaves M(X) diagonal when X 2 = X3 = ··· = X^ = 0, so b\ and c\ are not 

altered. However, the similarity transformation replaces 

b2 c2 
b3 c3 

by 

h ¿2 

h £ 3 
= 

b2 c2 

B3 C3. 

cos 8 — sin 0 

sin 6 cos 0 
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We need only show that by a proper choice of 0, the columns of h ¿2 
h ¿3 

can be forced to be orthogonal. We choose 9 so that cos 9 
sin 9 

and — sin 9 
cos 9 

are an orthonormal basis of eigenvectors for the real symmetric matrix A A. 

where A — 
i>2 c2 

h C 3 

. A simple computation then shows that 
b2 
b3 and 

C2 

c3 are orthogonal to one another. 

We can now rotate the X2 and X 3 coordinate directions so that b and c 

point along the positive X2 and X 3 directions, respectively. By adding 7 r to 

our choice of 0, we can change the signs of both b and c. By interchanging 

i1(X) and V2'(X) w e c a n change the sign of c without altering b. 

Thus, we can arrange for b1 = 0 , B2 > 0 , B3 = 0 , c1 = 0 , C2 = 0 , and 

C3 > 0 . This proves our claims. 

STRUCTURE OF CROSSINGS OF TYPE K Suppose a C electron Hamiltonian func

tion h(X) has a Type K crossing of two multiplicity 2 eigenvalues EA(X) 

and EB(X) at X = 0 . As in the earlier constructions, we let P(X) be the 

spectral projection for h(X) corresponding to both the eigenvalues EA(X) 

and EB(X). This projection has rank 4 , and its range is the direct sum of 

a two dimensional subspace that lies in the carrier subspace for the D rep

resentation of the subgroup H G G, and a two dimensional subspace that 

lies in the carrier subspace for the C representation. We arbitrarily pick two 

orthonormal vectors ^1 (0) a n d ^ 2 ( 0 ) t n a t lie in the range of P ( 0 ) and in the 

carrier subspace for the D representation. We let 

h1(X) = 
P(X= h1 (0) 

(Vi(o),P(x)Vi(o)) 

We let P\(X) denote the orthogonal projection onto the span of ^\{X) and 

define 

MX) = (1-P1(X))P(X) h2(0) 
(h2(0), (1 - P1 (X))P(X) h2 (0)) 

In a neighborhood of the origin, these two vectors form an orthonormal basis 

for the intersection of the range of P(X) and the carrier subspace for the D 
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representation. We let ^(X) = Kip1(X) and ip^X) = Kp2(X). Then 

i)3(X) and ip^X) form an orthonormal basis for the intersection of the range 

of P(X) and the carrier subspace for the C representation. The set of all four 

vectors is an orthonormal basis for the range of P(X). 

In this basis, the restriction of 

h1(X) = h(X) - 1 
4 (EA(X) + EB(X)) 

to the range of P(X) is represented by a self-adjoint traceless 4 x 4 matrix 

valued function M(X) whose entries are C2 functions that all vanish when 

X = 0. Because h(X) commutes with the two projections onto the carrier 

subspaces of the C and D representations and with the action of K, M(X) 

commutes with 
' 1 0 0 0 
0 1 0 0 
0 0 0 0 

,0 0 0 0 

and 

0 0 eluJ 0 
0 0 0 eluJ 
1 0 0 0 
0 1 0 0 

• ( Conjugation), 

where D(JC2) is multiplication by elU)It follows that M(X) must have the 

form 

a(X) /3(X) + i<y(X) 0 0 
(3(X)-iy(X) -a(X) 0 0 

0 0 a(X) p(X)-i-y(X) 
0 0 (3(X) + ij{X) -<x(X) 

. 

where a, /3, and 7 are C2 real valued functions. By direct computation, the 

eigenvalues of M(X) are 

± a (X)2 + /3(X)2 + y(X)*. 

Thus, the eigenvalues EA(X) and EB(X) cross precisely at those points X 

where a(X) = /3(X) = j(X) = 0, which generically defines a codimension 3 

submanifold T. 
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By standard Taylor series results, M(X) has the form M(X) = N(X) + 

0 ( | | X | | 2 ) , where 

N(X) = 
a-X b-X + ic-X 0 0 

b-X-ic-X -a-X 0 0 
0 0 a-X b-X-ic-X 
0 0 b-X + ic-X -a-X 

, 

for some vectors a, 6, and c. Generically a, fc, and c are linearly independent. 

By a rotation of the coordinate system we may assume that only the first 

three components of a, 6, and c are non-zero. 

If 7/o is any vector not tangent to T at X = 0, then we can rotate the first 

three coordinate axes so that the projection of TJQ into the three dimensional 

subspace spanned by a, 6, and c lies along the positive X1 axis. 

At this point, the Xj coordinates for j > 3 no longer play a role in 

the structure of N(X). Furthermore, without altering the basic structure 

obtained so far, we still have the freedom to rotate the X2 and X 3 coordinate 

directions, and we can perform X-independent unitary transformations of the 

two dimensional space spanned by the basic electronic wave functions ipi(X) 

and j)2(X). If we do such unitary transformations, we also redefine 3̂(X) and 

t4(X) to preserve the relations ip3(X) = K ^ 1 ( X ) and ^4{X) = K^2(X). 

We do these operations, mimicking the procedure used in our discussion of 

Type B crossings, to see that the following three conditions can be satisfied: 

1. The first component of a is non-zero. 

2. The first and third components of b are zero, but its second component 

is positive. 

3. The first and second components of c are zero, but its third component 

is positive. 
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Thus, we may assume that N(X) has the form 

3 

j=1 
djXj b2X2 + i c 3 X 3 0 0 

b2X2 - i c 3 X 3 -

3 

j=1 
a j X j 0 0 

0 0 

3 

j=1 
ajXy b2X2 - iC3X3 

0 0 b2X2 + ic3X3 -

3 

j=1 
ajXj 

. 

STRUCTURE OF TYPE J CROSSINGS Suppose a C electron Hamiltonian function 

h(X) has a Type J crossing of two multiplicity 2 eigenvalues EA(X) and 
EB(X) at X = 0. As in the earlier constructions, we let P(X) be the rank 
4 spectral projection for h(X) corresponding to both the eigenvalues EA(X) 
and EB(X). We arbitrarily pick a unit vector ^ i ( O ) that Ues in the range 
of P ( 0 ) , and we define ^2(0) — KV1 (0 ) - We then choose another unit vec
tor ^3 (0) that is in the range of P ( 0 ) , but is orthogonal to both V'1(O) and 
^2(0)- We then let tp4(0) = Kp3(0). For Type II corepresentations of min
imal multiplicity, D(K2) = — 1, and it follows that the four vectors form an 
orthonormal basis for the range of P ( 0 ) . We define 

v1(X) = 
P ( X ) ^ 1 ( 0 ) 

(V1(0),P(X)VI(0)> 
We then define $2(X) = K$1(X)- We let P1,2(X) denote the orthogonal 
projection onto the span of $1(X) and $2(X), and define 

MX) = 
(1-p1,2(X))P(X)Mo) 

'(V3(o), (i-Pi,2(x))P(x)M0)) 

We then define ^(X) = fctp^X). For each X in a neighborhood of the 

origin, these four vectors form an orthonormal basis for the range of P(X). 
In this basis, the restriction of 

hi{X) = h(X) -
1 
4 

(EA(X) + EB(X)) 

to the range of P(X) is represented by a self-adjoint traceless 4 x 4 matrix 

valued function M ( X ) whose entries are C2 functions that all vanish when 
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X = 0. Because h(X) commutes with the action of K, M(X) commutes with 

0 - 1 0 0 
1 0 0 0 
0 0 0 - 1 
0 0 1 0 

• ( Conjugation ) . 

It follows that M(X) must have the form 

a(X) 0 ß(X)+if(X) 6(X) + ie(X) 
0 a(X) -6(X) + ie(X) ß(X)-i-y(X) 

ß(X) - iy(X) -S(X) - ie(X) -a(X) 0 

6{X) - ie(X) ß(X) + ij(X) 0 ~a(X) 

. 

where a, (3, 7, 6, and e are C2 real valued functions. The difference between 
EA(X) and EQ(X) is the same as the difference between the eigenvalues of 
M(X). By direct computation, the eigenvalues of M(X) are 

± a(X)2 + B(X)2 + T(X)2 + 5 ( X ) 2 + e(X)2. 

Thus, the eigenvalues EA(X) and EB(X) cross precisely at those points X 
where a(X) = 3(X) = j(X) = S(X) = e(X) = 0, which generically defines a 
co dimension 5 submanifold T. 

By standard Taylor series results, M(X) has the form M(X) = N(X) + 
O(||X||2), where 

a-X 0 b • X + ic · X d · X + ie · X 
0 a·X -d · X + ie · X b · X - ic · X 

b · X - i c · X - d · X - i e · X - a · X 0 
d · X - z e · X b·X + ic·X 0 - a - X 

, 

for some vectors a, fc, c, d, and e. Generically a, 6, c, d, and e are linearly 
independent. By a rotation of the coordinate system we may assume that 
only the first five components of a, b, c, d, and e are non-zero. 

If 770 is any vector not tangent to T at X = 0, then we can rotate the 
first five coordinate axes so that the projection of TJQ into the five dimensional 
subspace spanned by a, 6, c, d, and e lies along the positive X\ axis. 

At this point, the Xj coordinates for j > 5 no longer play a role in 
the structure of N(X). Furthermore, without altering the basic structure 
obtained so far, we still have the freedom to rotate the X 2 , X 3 , X4 , and 
X 5 coordinate directions, and we can perform those X-independent unitary 
transformations of the four dimensional space spanned by the basic electronic 
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wave iunctions p1(X), p2(X), p3(X ) , and p 4 ( X ) that preserve the relations 

p2(X) = Kp1(X) and p4(X) = Kp3(X). We claim that by doing such op

erations in generic situations, we can arrange for the following five conditions 

to be satisfied: 

1. The first component of a is non-zero. 

2 . b1 = b3 = b4 = b5 = 0, but b2 ± 0. 

3. c1 — C2 = C4 = C5 = 0, but C3 7 0. 

4. d1 — d2 = d3 = d5 = 0, but d4 ^ 0. 

5. e1 = e2 = e3 = e4 = 0, but e5 ^ 0. 

Thus, we may assume that N(X) has the form 

5 

j=1 
ajXj О 6 2 X 2 + I C 3 X 3 d 4 X 4 + I E 5 X 5 

0 
5 

i = l 

ayXy - D 4 X 4 + I E 6 5 X 5 6 2 - ^ 2 _ * C 3 ^ 3 

6 2 X 2 - ¿ 0 3 X 3 - ¿ 4 X 4 - ¿65X5 -

5 

j=1 
ajXj о 

¿ 4 X 4 — ¿ 6 5 X 5 6 2 - ^ 2 + ^ C 3 ^ 3 0 — 

5 

7 = 1 

ajXj 

To prove these claims we first note that if we replace ipj(X) by ^ ( X ) , 

where 

f1(X) = z1V1(X) + z2V2(X), with |z1|2 + |z2|2 = 1, 

f2(X) = Kf1(X), 

f3(X) = z3 t3(X) + Z4f4(X), with |z3|2 + |z4|2 = 1, and 

f4(X) = Kf3(X), 

then N(X) is transformed into 

a·X 0 b-X + ic-X d-X + ië-X 

0 â - X - d - X + z ê - X b-X-ic-X 

b-X-ic-X -d-X-ië-X -a-X 0 

.d-X-ië-X b-X + ic-X 0 - ô - J C 

We show below that by making an appropriate choice of the Zj, we can force 6, 

c, d, and è to be mutually orthogonal (and all non-zero in generic situations). 
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Once this is done, we rotate the X2, X 3 , X 4 , and X 5 coordinate axes, so that 

b, c, d, and e point along the X2, X 3 , X 4 , and X 5 , respectively. This proves 

the claims. 

Arbitrarily choosing the zy's is equivalent to arbitrarily choosing two ma

trices U1 G SU(2) and U2 G SU(2), so that 

p1(X) 

p2(X) 
= U1 f1(X) 

f2(X) 

and 

f3(X) 
V > 4 ( X ) 

= U2 
M(X) 
M(X) . 

In this notation, 

b - X - ic - X -d - X - ie - X 
d - X - ie - X b - X + ic - X 

= u2 b - X - ic · X -d · X - ie · X 
d-X-ie-X b-X + ic-X 

U-1. 

The mapping 

( w i , w2, w3, w4) 1 — W = w1 — iW2 —w3 — iw4 
w3 — iw4 w1 + iw2 

is an isometric isomorphism of standard Euclidean IR4 into a subspace W of 

the 4 x 4 complex matrices endowed with the inner product {W1, W2) — 

\ t race (W{W2). Furthermore, the action of SU(2) x SU(2) on W given by 

W 1 — W = U2WU^1 is isometric on this space. Since SU(2) x SU(2) is 

connected, it follows that the corresponding action on Euclidean IR4 is given 

by 

(w1,w2,w3,w4) — (w1, w2, w3, w4) = ( w 1 , w 2 , w3, w 4 ) O U 1 , U2, 

where OU1,U2 G S O ( 4 ) . The mapping (U1, U2) 1—> OU1,U2 ls a grouP homo-

morphism. By explicit calculation, the differential of this map takes the gen

erators of the Lie algebra su(2) x su(2) onto the generators of the Lie algebra 

5 o ( 4 ) . Thus, the map is a local isomorphism of the Lie groups. SU(2) x SU(2) 

is connected and simply connected, and 5 0 ( 4 ) is connected. It follows that 

the mapping is a covering map, and therefore is surjective (In fact, it is two-

to-one with kernel { ( I , I), (—I, — I) } . ) . If (b c d e) denotes the 4 x 4 matrix 
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whose columns are the vectors fc, c, d, and e, then we have 

b c d e) = {b c d e) Ou^uv 

where OJJUU2 can be taken to be any element of 5 0 ( 4 ) if U\ and U2 are 
chosen properly. Our claims are thus proved if we can show that any in-
vertible matrix A = (6 c d e) has the property that it maps some or
thonormal basis (the columns of OU1,U2) into non-zero, mutually orthogo
nal vectors { b , c, d, e } . To show that this is the case, we choose the or
thonormal basis {v1, v2, v3, v4 } to be an orthonormal basis in which the real 
symmetric matrix A* A is diagonal. Such bases always exist, and one can 
always arrange for OU1,U2 = (v1 v2 v3 v4) to be in SO(4) . Then for i ^ j , 
(Avi, AVJ ) = ( V I , A*AVJ ) = µj (vi, VJ ) = 0. This proves the claim. 
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Semiclassical expansions of the 
thermodynamic limit for a 

Schrddinger equation 
I. The one well case 

by B.Helffer and JSjostrand 

§1 Presentation of the problem : 

One of the motivations of the study presented here is a statistical model 

introduced by M.Kac [Ka] 2 and called the exponential bidimensional model. 

This model was supposed to present phase transition. Let us just recall 

here (see [Ka]2 or [Br-He] for details) that after some reductions M.Kac 

arrive to the question of studying the spectral properties of the following 

operator: 

(1.1) K ( h ) : = 

= exp[-V(m)(x)/2].exp[h22 :m={d2/dx2k].exp[-V(m)(x)/2] 

with1 : 

(1.2) V(m)(x) = ( l / 4 ) 2 k ^ x k 2 - Z ^ l o g c M V ^ (xk+xk + 1)). 

1 In fact, the operator which appears in Kac is exp(-mh/2)Km(h). It is easier w.l.o.g. in 
this article to work with this modified Kac operator. 

S. M. F. 
Astérisque 210** (1992) 135 
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The parameter v is here the inverse of the temperature and h is a 

semi-classical parameter. The two questions of interest are in this context: 

(1.3) If |i, (m;h,v) is the largest eigenvalue of the Kac's operator, what is  

the behavior as a function of v and h of the thermodynamic quantity : 

Limm_w ( -Log \i{ (m;h,v) /m). 

(1.4) If n,2(m;h,v) is the second eigenvalue (which is < \i{ (m;h,v) by 

standard results), can we study the quantity : 

Limm-+oo ( |i2(m;h,v) (m;h,v)). 

From discussions with specialists in statistical mechanics (with T.Spencer 

for example), we get the impression that this problem is probably well 

understood and that according to the value of v with respect to a critical 

value vc the answer to (1.4) will be that the limit will be <l for v<vc 

and will be 1 for v >vc. This is a sign of a transition of phase. However, we 

do not have a precise reference for that and at least the problem of 

analyzing in detail the behavior of the different thermodynamic quantities 

near the critical value v c seems to remain open. 

In his interesting course in Brandeis [Ka]2, M. Kac explains, at least 

heuristically, how to compare (in the semi-classical context) the operator 

Km(h) to the exponential of (minus) a Schrbdinger operator. The validity of 

this approximation (for m fixed) has been studied more carefully in [He-Br] 

and [He] using some results of [He-Sj]j 4. 

If we admit this approximation, we shall find the following problems for 

the Schrbdinger equation: 

(1.5) Pm(h) = „ m , 2 - 2 . 2 w(m), x 
- 2 k = , h 8 / 3 x k +V (x) . 
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(1.6) If X j m)(h,v) is the smallest eigenvalue of the Schrbdinger's operator, 

study as a function of v and h the thermodynamic quantity : 

Limm^oo ( X{ (m;h,v) /m). 

(1.7) If A,2(m;h,v) is the second eigenvalue (which is >X{ (m;h,v) by standard 

results), study the quantity : 

Limm_>oo(^2(m;h,v) -X{ (m;h,v)). 

Forgetting the initial Kac's problem, we shall start to study in this article 

these two questions (1.6) and (1.7). Because it is a high dimension problem, 

we shall use (at least in the semi-classical context) the techniques introduced 

by one of us (J.S). Most of the results which are given here : 

(1) existence of the thermodynamic limit Limm_̂ oo ( X{ (m;h,v) /m) 

(2) asymptotic expansion of the limit as a formal series in h 

(3) rapidity of the convergence as m - 00 

are given in a relatively general framework but we shall see how it can be 

applied in our motivating example, in the particular case where v<vc. 

This is of course just the starting point (and the easiest) of a study which 

has to consider after the case where v >v c, and then the transition around 

v = vc. There is some hope to return later to the initial Kac's problem. This 

vc can be guessed by looking carefully to the properties of V .As 

observed by V.Kac, for v< 1/4, the potential V(m) has a unique minimum 

at 0 and appears to be convex. For v> 1/4, we shall observe a double well 

problem which is certainly more difficult to analyze. 

The principal result of this paper will be: 
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Theorem l , l 

If v < l / 4 , the limit A(h,v) = Limm_ioo ( X{ (m;h,v) /m) exists and admit a 

complete asymptotic expansion: 

A(h,v) ^ hZ. n A.(v).hj as h tends to 0. 

Moreover, if we denote the corresponding semiclassical expansions for 

X{ (m;h,v) /m by: 

{Xt (m;h,v) / m ) ^ h2j>0 A-dM-h1. 

there exists &0 s. t. for each j , there exists a constant Cj (v), s.t. 

|A.(v)- A.(m.v)|« Cj(v). exp(-^0 m). 

(v) can be chosen independently of v in a compact of [ 0,1 / 4 [. 

The problems, we consider here, are also connected to quantum field 

theory problems and a lot of results have been obtained by other techniques 

(see for example the new edition of [G1- Ja] for a updated presentation). 

The paper is organized in three parts. 

The first part (§ 2 and §3) is essentially devoted to the proof of the 

existence of the thermodynamic limit. This is a non-semiclassical proof but 

we shall see that a control of the convergence with respect to parameters 

can be useful. In §3 we give additional remarks (to [Sj]2) on universal 

estimates of the splitting of the two first eigenvalues . 

The second part (§4 and §5) is the semi-classical part and the natural 

continuation of two papers by one of us (J.S) [Sj]j 2. 
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In the last part (§6), we shall first recall some preliminary computations 

by Kac [Ka] and then deduce the Theorem l.l as a particular case of the 

more general results obtained in the preceding sections. 

The first author (B.H) thanks V.Tchoulaevski and T.Spencer for useful 

remarks and stimulating discussions. 

%Z On tfre existence of tfrç thermodynamic limit \ (mj/ni 

This section is inspired by the reading of the book of Ruelle [Ru] which 

gives probably the necessary ideas to extend the results we present here 

to more general interactions. 

Let us just consider the following model : 

(2-0 Pm = -h2Am + i k : , w ( V k + 1 ) 

(with the convention that m + l = l) 

operating on L2 (IRm). 

Here: 

(2.2) ik:,w(Vk+1 

We forget the semi-classical problem (we take h = l) (but if needed the 

proof will be sufficiently explicit to have a control with respect to h), we 

assume that W is C and satisfies : 

(2.3) W^O 

There exists a constant C0 >Os.t.: 
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(2.4) W(t,s) << C ( W(t,r) + W(u,s)+l) for all t,s,r,ue R 

which will be called the decoupling inequality. 

Moreover, we assume 

(2.5) W (t,s) 00 as |t|+|s| - 00. 

This last property (which is not necessary at all) permits us to work in the 

simpler context where the Schrbdinger equation has compact resolvent. 

Remark 2.1 : 

(2.4) and (2.5) follow from the stronger assumptions, that there exists 

constants Cj C2 >0, and C3 s.t.: 

(2.6) W(t,s)^(l/C2) ( t + s ) - C, foralls,t € R 

(2.7) W(t,s)<< C2 ( t2+ s2 ) + C3 foralls,t G R 

We shall denote in this section by X{m) =X{ (m) the first eigenvalue of 

P . This first eigenvalue always exists (the resolvent is compact) and we 

shall denote by um the corresponding eigenfunction uniquely determined if 

we suppose that the L2 norm is one and that um is positive. Recall that by 

standard results um is strictly positive. 

The main result of this section is the following: 

Theorem 2.2 

Under the assumptions (23) - (2.5), the seq uence X (m) / m is convergent 

as m tends to infinity. 

Majoration, minoration : 

We get from (2.3) that : 
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(2.8) Mm) ¿0 

and (2.4) (with r = u = 0) and (2.5) imply : 

(2.9) Mm) *cCm 

We then have: 

(2.10) 0<<Liminfm_>oo Mm)/m$Lim supm_>oo Mm ) /m <°° 

The following simple lemma will play a crucial role 

Lemma 2.3 

There exists a constant C4 such that, for allm^U we have, for j = l to m: 

(2.11) ||W(x,x, + 1)l/2uJ|2 « M m ) / m <cC4 

Proof: 

From (2.3), we get: 

2,||W(x,xj + 1)!/2uJ|2 < M m ) 

We observe now that the potential is invariant by circular permutation. By 

usual arguments, we get that um (which is strictly positive and corresponds 

to an eigenvalue of multiplicity l) has the same property. 

In particular ||W(x + {) u j | is independent of j . The lemma follows 

immediately with C4 = Supm (Mm)/m). 

Comparison between Um). Mo) and Mm+o) 

In a second step we shall prove the 

Lemma 2,4 

There exists a constant > 0 such that, for all integers m, p s.t. l$p, 

lgm , we have : 
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(2.12) -C5+X(m) +Mp) s Mm+p)«$ C5+X{m) +Mp) 

Proof 

We start from the following decomposition of Pm+0 

(2-13) Pffl + 0 = Pm + P m + ° -W(xmx,)+W(xfflxm + 1 ) -

-W(xmi x„ ^ ,)+W(xmj.„x, ) m + p m + l m + p i 

with : Р(m+1) 
- (m + l) У ян- р -1 

f Zk = m + l W(xk*k + 1) 4 m + p m + 1 

andÂ(pm + ,) 2k = m+ l ( a x / 

It is then clear that the infimum of the spectrum of P is the same 

as the infimum of P . Sometimes we shall use the notation 

PmePft instead as Pm + P(nm + 1). 

m p m p 

For the minoration of X(m+p), one writes : 
Mm+p) =(Pm+pum+pMm+p) > (Pmum+plum+p) +(Ppm + 1 um+p|um+p) 

- Wi/2(VlK+f -HW,/2(xm+pXra + 1)um+pll2 

and we use (2.4) and Lemma 2.3. 

By the definition of Mm) (and identifying Pm on L2(Rm) and Pm® I on 

L2(IRm)®L2(lRp) who have the same spectrum (as a set)) we get the first 

estimate: 

Mm + p) s Mm) + Mp) -C (with C5 = 2C4). 

For the majoration of Mm+p), we proceed similarly using the fonction: 

Ûp,m(X) = Um<Xl X m ) V X m + l Xm + p) 

We have : 

Mm+P) dPm+pûm,plûmiP) * (Pmûm,plûmp) +(P(pra + ,)ûmiPlûmp) . 

+ llW1/2(xraXm + I)ûm,pl|2 + l|W,/2(xm+px,)ûraiPll 
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<cMm) +Mp) +C5 

(using the same type of arguments) 

The last lemma to prove the proposition is the following: 

Lemma 2,5 ; 

Let C some fixed constant (C^o). Let Mm ) (m£lN ) be a sequence of 

real numbers such that 

(2.14) IMm + p ) - M m ) - M p ) | ^ C , foreachmfp , 

then the limit of the sequence X (m)/m exists and : 

(2.15) l ( M m ) / m ) - L i m ^ U ( m ) / m ) | $ C/m. 

Proof 

Let n( f l i ) = Mm)/m. Let us rewrite (2.14) on the form : 

(2.16) I t̂(m + p)-((m/(m + p))ii(m))-((p/(m + p))ii(p))U C/(m + p) 

In particular, for p = m, we get: 

lli(2m)-ii(m)| <cC/2m 

and by iteration: 

|[i(2k + ,m) - ti(2km)| $ C/(2km). 

In particular p,(m): = L i m , ^ p,(2 m) exists and 

(2.17) |]T(m)-|i(m)| s$C/m. 

Replacing m and p in (2.16) by 2 m and 2 p and taking the limit in k, we 

get: 

(2.18) IT(m + p) = ((m/(m + p))ir(m)) + ((p/(m + p))iT(p)). 

We now define X{m) by : X{m) = m \i{m), and rewrite (2.17) as : 
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(2.19) Mm + p) = Mm) + Mp). 

This implies in particular that Mm) = mMl) and then : 

(2.20)]T(m)=]r(i). 

(2.17) and (2.20) give the lemma. 

Examples 

Example 2,6 (TKal) 

Let us consider 

V j x , xm) =(l/4)2k;iXk2-2k^logch(>Ar (v^xk+7T^ xk + 1)), 

where^e lo . lL v>0. 

Then this potential can be written on the form (2.1) by taking : 

W(s,t)) =(1/8) (s2+t2) -logch(Vv ( V ^ t + T T ^ s)) 

In the introduction we took and in the future we shall take § = 1/2. 

Example 2,7 
One gets another example by taking the quadratic approximation at a 

minimum of the preceding model. Then we arrive to: 

W(s,t) =(1/16) (s- t)2 + \i (s + t)2 

where |i depends on v but remains >0. 

In this case, very explicit computation can be made (see [Ka] or § 6). 

Example 2,8 

More generally, T.Spencer indicates to one of us (B.H) that the following 

more general model is interesting: 

W(s,t) = g(s2+t2) +h (s-t)2+ X (f(|is)+f(|it)) 
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where |f(v)| $C(M+l ) and g>0 and h>0 are parameters. 

Remark 2-9 

It is important to remark that for the application to semi-classical analysis 

there exists at each step of the proofs in this section a very good control 

with respect to the different constants. 

Remark ?.io 

It will be interesting in the case of the Examples (2.6) or (2.7) to have a 

control of the regularity of the limit with respect to the parameter v. It is 

clear that the convergence is uniform with respect to v, on each compact of 

]0,oo[, so it is clear that the limit is continuous. Moreover we observe that 

(<R(m;v)/dv)/m is abounded set (by theHellman's formula) which implies 

that the limit as m tends to oo of Mm;v)/m is Lipschitzian in ]o,oo[. But a 

more interesting result would be to study the properties of analyticity 

with respect to v. One suspects of course that the limit is analytic with 

respect to v, for v<vc, in the model presented in the introduction (£ = 1/2, 

in Example (2.6)). 

Remark 2.11 (stability by perturbation) 

The limit is relatively stable by perturbation. For example, if we consider 

the following operator 

pm = 
m 

- A m + 2k=r' W<Xk*k + .) 
and if we denote by X'(m) the first eigenvalue of P'm, 

then it is possible to prove, under the additional assumption that 
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there exists a constant C s.t., for all l$>£>0, we have: 

(2.21) W (s,t) <c (l+s) (W(s,r) +W(pft) ) + (C/e) 

for all s,t,r,p, that: 

(2.22)Limm_w^,(m)/m= L i m ^ M m J / m 

S3 Additional remarks on the splitting of the two first eigenvalues 

Let us recall the problem mentioned in (1.7). It is also interesting to have 

theorems on LimflWw(^2(m)-X| (m)) and Lim ra_w(^2^m^"^i ^m^- If the 

potential depends on a parameter v (typically the inverse of the temperature 

in Example (2.6)), one is interested in knowing for which values of v we 

have: 

LiH m^00 {X2imy)-X{ (m;v))>0 

or 

Lim m^oo a2(m;v)-X1 (m;v)) = 0. 

We shall not give an answer to the most interesting questions in this paper 

but we shall recall and improve some results obtained in this context. Let 

us first recall the : 

Proposi t ion 3.1 (cf TSWYYl) 

If V is a C°°positive potential tending to <x> as \x\ tends to oof then we 

have: 

(3.2) U2(m)-X1(m))$ 4?.I(m)/m 
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We shall now show how to give a result which is more sensible to the 

property of the Hessian of the potential V. The proposition is the following: 

Proposition 3,2 

Under the additional assumption that x -'(Hess V)(x) is bounded, we 

have: 

(Z3)X2-X{ <c VÏ InfXeRm ||x|| = 1(Supx(HessV)x(X,X))1/2 

Proof 

The proof is as in [SWWY] reminiscent of the proof of the Payne-Polya-

Weinberger inequality [P-P-W]. Similar ideas are used in the paper by 

B.Simon [Si]3 who refers to [Ka-Th], §3. 

Let u xm the first normalized, strictly positive eigenfunction attached to 

Xt (m). We forget now the reference to m. Then we have : 

(3.4) (-A+V)u =X{ u 

Let: 

p€ = Jx€(u )2dx 

and let us consider : 

u =(x€-p€)u 

u ' is orthogonal to u and by the minimax principle we have : 

(3.5)3l2« < ( - A + V ) u U | u a > / < uV'e>fore€{l m} 

Let us observe now that, as a consequence of : 

(-A+V)u1,£= JL ul ,6-28xu, 

we get : 
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<(-A+V)ui,e |uI 'e>^1 < u!V,e> + 1. 

Now the incertainty principle gives : 

(3.6) (1/2)^113^11 ||uu||, 

and then finally : 

(3.7) Q<X2 -X{ <c l /<uU|uU> 

and 

(2.3)X2-1{ $ 4 Hd̂ uH2. 

Summing over Z and using the equation we obtain first Proposition 3.1. 

We now observe that (because u1 is real) for all Ze{i,....,m}, we have: 

(3.9) Ug : = dxu is orthogonal to u1 

Similarly to the proof of (3.5), we deduce : 

(3.10) x2<< <(-A+V) U g | u g > / < U g | u g > fo r€G{i m} 

Let us observe now that : 

(-A+V)u^= X{ uJ-0XeV)u! 

and that : 

< ( - A + V ) u g | u J > ^ 1 < Ug|ug> +(l/2)<(32 V ) u V > . 

Finally we get 

(3.11) X2-X{ <c ( 1 / (2< uJ|uJ>))Supx3^V 

Then we take the product of (3.8) and (3.1l) to get : 

(3.12) X2-Xt$V2(Supxa\v)i/2. 

This gives the proposition by observing that all the assumptions are invariant 

by rotation in Rm. 

(3.12) X2 X{ ^ V^"(Supx82V)1/2. 

This gives the proposition by observing that all the assumptions are invariant 

by rotation in Rm. 
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Example 3,3 (cf Example 2,6); 

IfVv =2,Wv(x,x| + I)iwith: 

Wv (s,t) = (1/8) (s2+t2) -log ch(/fr/2)~ (t+s)) 

then we get: 

X2-X{$\ 

If we introduce the semi-classical parameter h, we shall obtain : 

X2-Xt $h. 

To finish this section let us give shortly (in the case of Rm) some 

universal minoration for the splitting. This result was already proved in 

[Sj] 2 in the case of an open bounded convex set a and it is not difficult to 

extend the result to the case of Rm by taking the limit of Dirichlet 

problems in balls a R of increasing radius R and using the fact that the two 

first eigenvalues of the Dirichlet problem X ^(£1$) (resp. X 2(aR)) converge 

as R tends to oo to the corresponding eigenvalues of the global problem in 

R ^ O n ) (resp.*2(m)). 

Proposition 3.4 (TSj12): 

Let Vbea strictly convex C°°positive potential tending toooas \x\ tends 

to oo. Then we have: 

(3.13) X2-X{ 5V2.Infx^min((HessV),/2(x)) 

where Xmift( (Hess V)1/2(x)) is the smallest eigenvalue of (Hess V)1/2(x). 

To see the interest of such a result let us observe the following: 
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Lemma 3.5 (Example 2.6 ) 

If Vv =2,;|Wv(xJx, + 1).iKi£fi: 

Wv (s,t) = (1/8) (s2+t2) -log ch(V^72T (t+s)), 

then the potential is convex iff v $ 1/4. 

1/4 is consequently the good candidate to be the critical vc. 

Remark 3.6 

The existence of a minoration in the convex case was apparently known to 

some specialists (as T.Spencer indicated to one of us (B.H.)) at least in the 

framework of the field theory but surprisingly we do not know a reference 

before [Sj] 2. Recall also that a semiclassical version appears in [Sj] . 

Let us now sketch here a variant (in the case of IRm) of the proof given in 

[Sj]2. The first step is the following formula for the splitting (cf for 

example [Ki-Si]) 

(3.14) X2-X = Inf0{ [(J|V*|2 (u')2(x) dx)/J|<»|2 (u')2(x) dx)], 

• eC~ !• (u)2(x) dx=o} 

This is just avariant of the minimax principle. 

The second step is the 

Proposition 3.7 (cf fBLl): 

Let us assume that V(x) =(l/2)<o2x2 + U(x) with co^O and U convex. 

Then 
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g(x):=-Log(u )(x)= (<ox A / 2 ) + v(x) 

with v convex. 

This step was also basic in the proof in [Sj] 2 (cf also [SWYY] for a proof 

based on the maximum principle). 

For the last step let us introduce some notations. If <t> is for example a 

continuous bounded function we can introduce: 

<<j>> = J<j> (u ) (x) dx, var(<t>) = <(<>- <<J>>) >. 

Then Brascamp and Lieb give in [Bra-Li] the following inequality : 

(3.15) var (<») <; < (V4>|g''xx"!|V*)>. 

The proof is then easy by combining the results of the three steps. 

Application 3-8 (Example (2.0) 

As seen in Lemma 3.5, Example (2.6) satisfies all the assumptions. In 

particular we get for all m, and all v < 1/4 : 

(3.16) X2(m»)-Xx ( m ; v ) > 7 T l ~ 4 v ) 

This gives us an interesting control with respect to the temperature. Of 

course, this result is not astonishing for the specialists in statistical physics. 

If the semi-classical parameter h is introduced we get: 

(3.17) ^2(m;h,v)-^1(m;h,v)^VTl~4vT h. 

The most interesting result would be to prove that, for v >l/4, the splitting 

{X2{m\h9v)-Xl (m;,h,v)) tends to 0 as m tends to infinity. On the other 

hand we do not know if, for v < l / 4 , the limit {X2{m\h%v)-X{(m;,h,v)) 

exists. 
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§ 4. Exponentially weighted estimates in the construction of the phase 

In this section, we shall develop some complements to the results in 

[ S j ] 1 2 . 

To come back to the notations used in these papers, we shall now work 

with the operator - (h /2)Am+V. Let us introduce a set <$& as the disjoint 

union over IN of sets : 
m A= 

m F în m 

where Am c V m x 3lm , Vm is the set of C°° potentials on R m and 3lm is 

the set of applications from {l,....,m} in R + . 

Let us make on <& the following assumptions : 

For all {Wfi) in<& 

(4.1) V is holomorphic in B(o,l) with |VV(x)|o o=0(l) uniformly in s& and 

B(o,l), (Here B(o,l) is the open unit ball in <Cm with respect to the norm 

|xloo= sup lXj l ) 

( 4 . 2 ) V ( 0 ) = 0 , V ' ( 0 ) = 0 , 

V"(o) = D + A , where D is diagonal (positive definite) and 

(4.3) There exis ts r{ and r0 (independent of (V,p) in ¿30 such that: 

H A l l j M e ^ p ^ i < r o « ^ m i n ( D ) 

for all p s.t. l^p$<x> . 

We also as sume: 

(4.4) \\V2VhKK) = 0(1) 

uniformly in and p. 

Here we wri te: 

|x|pp= W p = ( * a ) x , l p ) l / P f o r u p < o o 
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and 

|X| |рх1„-9|р||рДОХ||. 

Because A and V V are symmetric, we deduce from (4.3) and (4.4) that 

we have the same estimates with p replaced by (l/p), so we may assume 

that: 

(4.5) (V,p)€<&=* (V,l/p)€<&. 

From this, we get by interpolation that we may assume without loss of 

generality: 

(4.6) If (V,p) is in <&m, (V,l) is in <&m where " 1 " is the constant weight 

defined by p(j) = l for l^j^m. 

As in [Sj]2 (Lemma l.l), we see tha t : 

(4.7), ( V " ( o ) ) 1 / 2 = D + A 

with D diagonal and 

(4.7)2 H A H ^ ^ r i <r~«lfflift(D) 

for all p s.t. 1 ^ p ̂  oo and uniformly in 

The property (4.6) permits to apply the results of [Sj] 2. In particular, let 

<1>0 be the solution of the eikonal equation : 

(4.8) (1/2) |V^0I2= V 

constructed in [Sj]2 , §2 for lx|oo<r. Then we have the following : 

Lemma 4.1 

If r is sufficiently small, then we have: 

(4.9) ll*0"(x)||stW = 0(l) 

uniformly for (V, p) in & and for Ixl^ <r. 
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Pfwf, 

We recall first that^on(0)= V"(o)1/2 and that iV^ ' tx ) !^ = 0(l). Contrary 

to the situation in [Sj] x 2, it seems that we will have to work with <J>0" 

directly (and not just with the Cauchy inequalities to estimate the Hessian 

from the gradient as in [Sj] t §l). Let q = § /2 - V. If we differentiate 

the Ha flow, we get2 : 

(4.10) at(8x) = 54 ,dt[S0 = Vn(x).8x 

Consider an integral curve ] - ° o , o ] a t - * (x(t)£(t)) of Hq with : 

(x(t),S(t)) - (0,0) when t - - o o , x(0) = x, ^(0) = V<f>0(x), |x |<rwith r 

small. Recall from [Sj]2 (§2, 2.16) that3 

(4.11) I x d ) ! ^ exp(-|t|/C) IxL 

Let A(t) =<t>0"(x(t)). Let A be the lagrangian manifold defined by{(x£), 

§ = V<>0(x)). Then the tangent space T(x(t) ̂ (t))(A#o) is given by : 

(4.12) 5^=A(t).8x 

and if we use that the tangent bundle T(A. ) is invariant under the 

differentiated Hq-flow we get by taking the t-derivative of (4.12) and 

using (4.10): 

dt8^=atA(t).8x + A ( t ) 3t5x =8tA(t).6x + A(t)2 ox = V"(x) 8x, and 

consequently: 

2 If we denote by x(t,y,ii), 4(t,y,t|) the solution starting of the point (y,T|) at t =0, the 

equation means : 

a2x€/ataYj =d^/àyr d\/dtàYi =2ma2v/ax̂ xm. axm/ayj 

d2x€/ataiij =6^/^, a^/ata^ =2ma2v/axedxm. ax^diij 

3 we recall that x(t) is an integral curve of V0O. 
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(4.13) 8^(0+ A(t)2= V"(x(t)). 

Put A(t) = V"(0)'/2 + B(t). Then (4.13) becomes : 

(4.16) 8tB(t) + W ( t ) ) = V"(x(t))-V"(0) -B(t)2 

where 

(4 .17 ) TO) =V"(O) ' /2B+B.V"(O) ' /2 

Here we notice that by the Cauchy inequalities : 

(4 .18) II V"(x(t))-V"(x(0))||a,(e;ep)= 0 ( | x ( t ) | J = 0 ( 1 ) exp (-|t|/C). 

Moreover 

(4.19) e x p ( t V ) (B) =exp(tV"(0),/2).B.exp(tV"(0)1/2) 

and as in [Sj]2 (Proposition 1.2) we see that: 

(4.20) Hexp(tV"(o),/2)||itt,ep,$ exp(- | t | /C),fort^o. 

Hence: 

(4.21) || exp(tcU>)(B)||a,(epep)^ exp(-2|t|/C) ||B||sMe»e.)ifort$0. 

From (4.16) we get : 

(4.22)B(t)=J_^exp(-(t-s)V) (V"(x(s))-V"(0)-B(s)2)ds 

If M(t) = Sup_oo<s<tllB(s)||£(ep,ep), then 

(4.23) M(t) $ C ( M(t)2 + exp (-|t | /C)|x |J 

and it follows that M(u) ^1/2 if Ixl^is small enough. 
###### 

Using Lemma 4.1 and the Cauchy inequalities, we see that 

(4.24) lko"(x)-^o"(0)||a(epep) = 0 ( | X | J 

Noticing that v(t) = dxexp(tV<J>0(x).6x)(x)(v(o)) satisfies : 

(4.25)6tv(t) = *>0"(x(t))v(t), where x(t) = exp(tV0o(x).8x)(x). 
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using the arguments around the proof of (4.2l)- (4.23), it is then easy to 

prove that 

(4.26) ||dxexp(W0(x).ax)(x)||^peP) = 0(l) exp (-|t|/C), t < c Q 

Let<> - <J>0 + <J>,h +4>2h + 

be the (asymptotic) solution of the (complete) eiconal equation with 

E Eg+E, h+E2h2+... 

(4.27) V(x) - (1/2) |V*(X)|2 + h( (A<J>(x)/2)-E) = 0, 

i.e. : 

(E) V(x) - (1/2)|V*0|2 = 0 , 

( T j j V O ^ x J . a ^ ^ x ) = (A<>0(x)/2)-E0 , 

Tk) V4>0(x).ax<t>k(x) = 

= (A<J>k_,(x)/2)- ( 1 / 2 ) 2 . ' , V«j(x).V«k_j(x)-Ek_I. 

Here recall that E0 E k _ a r e defined by the condition that the r.h.s. 

of (T,) (Tk), vanish for x = 0. 

Let us recall that u = exp(-«J>/h) is the approximate solution of: 

(-(h2A/2)+V-hE)(u) = 0 

Proposition 4.2 : 

There exists r>0 independent of A and of j such that 

(4.28) ||V20j(x)||^(eP>eP) = Oj(l) 

forìXÌM<r, t^p^oo. 

Proof: 

We recall from [Sj], that we already know that 2.', V«j = Oj(l) and 
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combining this with the Cauchy inequalities we obtain (4.28) in the special 

case when p=l. In the general case we have apparently to work with the 

Hessian directly, and we shall therefore take the Hessians of the r.h.s. of 

(T, ),(T2) 

Knowing (by Lemma (4.0) that 

|<4>0"(x),t®s>| = 0 ( 1 ) lt|p p Js|ql/p , with (1 /p ) +(l/q) = l , 

we get by the Cauchy inequalities : 

|<V2<^0"(x),t®s>,v®li>| = 0(l)|t|pp Js|Q(I/p. M J ^ L 

and Lemma 1.2 of [Sj] { 4 implies that 

A<*0"(x),t®s> = 0(l)lt|p Js|Qil/ . 

Hence 

(4.29) llA^0,,(x)||5WePep)= 0 ( 1 ) . 

We now differentiate {T{) twice and get: 

(4.30) V ^ x U ^ V 2 ^ ) + 4>0". •1 " " •o" 

= (l/2)A<>0" - V3<»0(x) L V ^ l x ) 

where "L" means contraction of tensors : 

< V3<J>0(x) L V<t>j (x), t®s> = <V3<>0(x) ,V^1(x)®t®s>. 

By the Cauchy inequalities, Lemma (4.l) and the fact that |V4>t 1^= 0(l), 

we get that this expression is 0(l) |t|p Js|q {/ and so we have : 

(4.31) The norm in S t (6 j ) of V3^0(x) L (x) is 0(l). 

Consider (4.30) along an integral curve x = x(t) = exp(tV<t>0.dx) (x). 

Let $(t,s) be the fundamental matrix for the corresponding problem: 

8tv(t) = -*0"(x(t))v(t), 

4If A is a complex NxN matrix, then |TrA| ^HAll^00^) 
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that is the solution of : 

(4.32) at<ï>(t,s)) = - ^0"(x(t))<I>(tis);*(s,s) = l 

Then (see the proof of (4.26)) 

(4.33) | |$ ( t ,s ) | |^ = 0(1) exp ( - ( t -s ) /C) , 

= 0(l)exp(C|t-s|), 

-oo<S^ t^ 0 

- ° o <t$ :s$ : 0 

If B is a matrix, put : 

*(t,s) (B) = *(t,s).B. l*(t,s). 

Then <Ms,s) B= B and $(t,s) is a solution of : 

3t*(t,s)(B) +^0"(x(t)) *(t.s) (B) + *(t,s) (B)0o"(x(t)) =0 

(using that <t>0 "(x(t)) is symmetric). Notice that all non-trivial solutions of 

this equation explode as t - -<*>. The non-exploding solution to (4.30) is 

then : 

(4.34)) 0{ ,,(x(t)) = /loo *(t,s) ((1/2)A*0" - V3*0(x) L V*, )(x(s))ds 

which is (using (4.29), (4.31) and (4.33)) 0(l) in St(Ej) . 

Assume by induction that we have established (4.28) for l ^ j ^ k - l . 

Taking the Hessian of (Tk) we get: 

(4.35) V*0(x).8>k' ') + *Q\ *k" +0k"-<>o" = 

= - V3*0(x) L V*k(x)+fk" 

where fk is the r.h.s. of (Tk). 

Here ||<|>0" L^k1l̂ (ep) = 0(l) by the same argument as before. Observe now 

that f k" contains terms of the form : 

(1 /2 ) A^_|Mi4>,,,.*kH\ V ' L W 

which are all 0(l) in £(££) . The solution of (4.35) is given by a formula 

analogous to (4.34) and it follows that (4.28) holds for j = k. 
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We shall next analyze the influence of a perturbation°t& on V. Let us 

attach to the set the set 9) defined again as a disjoint union over IN: 

$ = u m ®™ where 9 c V x Am m m m — m m 

and let us assume that for all ( " t & . ^ p ) in 3), we have : 

( 4 . 3 6 ) , I V W I ^ = 0 (1) , uniformly in x and & 

and: 

( 4 . 3 6 ) 2 (Vt,p) (with Vt= V +t W belongs to &for all t € [0 , l ] 

(in p a r t i c u l a r we must have °№(o) = O.Wfo) = 0, II W l x ) ! ^ = 0 ( l ) 

uniformly). 

Let 

0 = * t ^ * t ,o + * t , i h + 

be the phase associated to V = V t . 

Differentiating the eiconal equation with respect to t we get 

(4.37) ( v ^ 0 . a x ) o t * 0 ) = • № 
(here we take the notation <l>0(t,x) = <frt 0 (x)) 

and hence: 

( 4 . 3 8 ) (8t*0)(t.x) = J . ^ W e x p (sVx^0(t,x).ax)(x))ds . 

We now observe that : 

d (W(exp (sVx^0(t,x).ax)(x))) = dc№. d(exp (sVx*0(t,x).3x)(x)). 

Using ( 4 . 5 ) , ( 4 . 2 6 ) (with p = 1 and p replaced by l/p) and ( 4 . 3 6 ) , we see 

that: 

( 4 . 3 9 ) ^ 8 ^ = 0 ( 1 ) . 

Assume by induction that we have proved that: 

lV x 3 t * j L , p = 0 ( 1 ) for O d ^ k - l . 
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DifferentiatingTk with respect to t, we get : 

(4.40)Vx4>0(t,x).dxdt<l>k(t,x)=-Vat4>0(t,x).Vx4>lc + (A3t<j>k_1(t,x)/2)-

Zj = 1Vx^,(t .x) .Vx#k_,(t .x) - * & _ , ( t ) . 

The x-gradient of the l.h.s. is 

Zj=1 V x3¿> |(t.x).V x# k ,(t.x) -9&Jt). 

The х-gradient of the l.h.s. is 

Vx^0(t,x).8x(Vx3t^k(t,x)) +4>0M(t,x).Vx3t^k(t,x) 

and the x - gradient of the r.h.s. is a sum of terms of the form : 

c*= V x ( f ) ( V x g ) , p = Vx(g) (Vxf), y= AxVxf 

for various functions f and g satisfying 

(4.41) I V ^ . I V ^ U l lv jg | | „e ; , = 0( l ) . 

(a) f = 3 <J> (t,x), g = <t>k (the verification of (4 .4l) is obtained through 

(4.39), Proposition 3.1 in [Sj] j , and Proposition (4.2)). 

(b) f = 3t<t>k _ { ((4.4l) is satisfied by the induction assumption) 

(c)f= 3t^j,g = ̂ k_j w i thUj<ck- l . 

We have by Cauchy (and (4.40)) : 

<Vxf,v®ii> = 0 ( l ) | v | > l l i l / p 

so 

IIV2

xfll*(e°x>= °W 
and hence |<x| = 0(l). 

That |p| = 0(1) is immediate. 

Finally we get 17I = 0(l), by starting from <Vxf,v>= 0(l)|v|j 1/p 

taking the Hessian, using the Cauchy inequalities : 

<Vx<Vxf,v>,t®s> = 0 ( l ) M l ( 1 / p l t | J s L 

and finally Lemma 1.2 of [Sj]t to get: 

< V x A x f , v > = 0( l ) |v | , , / p . 
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Then using the analog of (4.38) for Vxdt<t>k with °t& replaced by the r.h.s. 

of (4.40) we get the control of lVx3t<t>k I . Then we have proved: 

Proposition 4.3: 

Under the assumptions (4.36), let $t be the phase associated to the 

perturbation V. = V+tct&. Writing 

Ot * t . o + < K , i h +  

we have for every j , and uniformly for (V,p, t) in£8x [o,l] : 

( 4 - 4 2 ) l V x 3 t ^ u U = 0( l) /or I xUr . 

We shall apply the above estimates to show the exponential convergence 

of the WKB ground state energy divided by the dimension, for a certain 

sequence of potentials : V {x{ xm), m = 1,2 

Let us describe <$& and S) in this case. 

We start with this family V(m) defined for each m. For a given m, <&m 

will be parametrized by n (with l $ n ^ m - l ) : <s&m = ^ U f t < m _ , ^ m • 

For given n this is the set of pairs (Vp) where (using a notation introduced 

in the proof of Lemma 2 .4) 

( 4 . 4 3 ) V = ( l - t ) (V(n)© v(m"n)) + t V(m) for some 0<a<cl 

and 
( 4 . 4 4 ) p belongs to # tm(&) defined as a set of applications on{l m} 

and satisfying5 : 

exp(-&) < o(i+l)/p(i) < exp(&) 

5 We can (if necessary) reduce ourselves to a smaller class with the additional 
assumption that p(j) = l for j^n. 
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(with the convention that if p is defined on{l m}, p(m+l) =p(l)) 

exp(-fe) ^ p(n)/p(l) $ exp(&) 

exp(-&) $ p(m)/p(n + l) $ exp(&) 

Notice that (4.44) gives bounds for p(j)/p(k) when (j,k) is a pair of 

nearest neighbors in the graph : 

GRAPH : 

Similarly the set $ is defined by describing $m as u n S)^ where : 

(4.45) < i s the s e t { ^ x < , w i t h ^ = ( V ( r a ) - V ( f l ) 5 v ( m - n ) ) 

Let us assume that, for a suitable fc, the assumptions of Proposition (4.3) 

are satisfied for the set 3) associated to the sequence V(m) (we shall give in 

§6 examples where this is true). Then if <j>(m) denotes the phase associated 

to V we obtain by integrating 

(4.42) with respect to t : 

(4.46) |V(*k(m+p)- *k(m) e *k(p))L, = 0(1), |x|<r. 

We choose p(s) = exp(& min(s,m + l - s ) ) (for l ^ s ^ m + l) and = 1 for 

s gjfli+l .We add one more assumption : 

(4.47) For every m, V(m) is invariant under cyclic permutations of the 
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coordinates : V ( m ) (x m x. x m _ . ) = V ( m ) (x . x f f l). 

Then <t> m will have the same property. Let 

hE(m) ^ h(E0(m)+E, (m) h+ 

betheWKB ground state of -(h2/2)A+V . 

We recall that we have seen just before the Proposition (4.2) the following 

equality : 

( 4 . 4 8 ) Ek(m) = ( A ^ K M J ( Q ) / 2 ) - ( 1 / 2 ) 2 , ^ V ^ k V ^ J ^ O ) 

and using the cyclic invariance of <t> we get for any s € {l m} : 

( 4 . 4 9 ) (Ek(m) /m)=a^ im) (0 ) - (1/2) 2,ka { a ^ j ^ o U ^ ^ J . j t o ) . 
Choosing s with |s-(m/2)| $ 1 , we obtain from ( 4 . 4 6 ) that : 

«*• [ " * ' \ x m + p ) - ^ l m ) ^ xffl) = 0(exp ( - a m / 2 ) ) 

By Cauchy's inequality, we can replace dv by d2 . Using these estimates 

with ( 4 . 4 9 ) , we get: 

( 4 . 5 0 ) (Ek(m + p)/(m+p))-(Ek(m)/m) = 0k(exp(-&m/2)). 

which gives for each k the exponential convergence of the Ek(m)/m 

as m tends to oo. 

To summarize, we have proved the 
Theorem 4.4 

If the sequence of potentials V m satisfies uniformly (4.l),(4.2),(4.3),(4.4) 

and (4.36) for the family of p e Rm (k) introduced in (4.44)6, then the 

first eigenvalue of the Schrddinger operator : - (h 2 / 2) A + V ( m ) 

6 More precisely, we have associated to the sequence V(m* and to a set of weights 
&^(&) a set <& and a set $ The exact assumption is that we can find & 
s.t. all the assumptions concerning <& and & are satisfied. 
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admits an asymptotic expansion of the form : h2k^0Ek(m).h . 

The sequence Ek(m)/m is convergent to a limit E™and we have the 

following inequality: 

For all k, there exists Ck s.t. 

(4.51) |E~-(Ek(m)/m)| <c Ck exp(-£m/2). 

§S Comparison between the Dirichlet problem in a box and the global 

problem 

§S.l Introduction : 

In [Sj] j , the semi-classical study of the fundamental level of the Dirichlet 

realization in a sufficiently small box was achieved. The validity of the 

results was subsequently extended in [Sj] 2.We are here in the apparently 

very simple case of a one well problem, and it is natural to think (but 

difficult to control with respect to m) that the first eigenvalue of the 

Dirichlet problem in a box containing the unique minimum of the potential 

will be in the semi-classical limit quite near of the first eigenvalue of the 

global problem in Rm. We shall prove, following essentially the ideas of 

[Sj] j § 5-6, that it is effectively the case under the restrictive condition on 

the dimension that : 

(5.1.1) m= 0 ( h N o ) for some fixed N0. 

This is naturally not completely satisfactory for our purpose but we shall 

see how to circumvent this problem in §6. In the two next sections, we 

shall construct as a preliminary step for a procedure of localization of 
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estimates a suitable family of boxes covering Rm . The idea behind this 

construction is to compare (more precisely to minorize) by a suitable 

translation the potential in any box of the family and the potential in a 

box centered at the minimum of the potential. 

§5.2 Case of a quadratic potential ; 

Let us consider 

V(x) = (1/2) <V"(o)x,x> 

with (see the stronger assumptions we make in §4) 

(5.2.1) V"(0)= D+A, with D diagonal, 

I I A I I ^ <c f| <r0^^min(D)$Xsup(D)$C0 

tx, r0, C0 are fixed and independent of the dimension m. 

These assumptions were introduced in [Sj]2. 

Then we know from [Sj]2(and we have already used in (4.7) ) that 

(5.2.2) V"(o) = D+A, with D diagonal, 

II All ^ $ r, <ro^^min(D)$^sup(D)$C0 

r{ ,r0, C0 are fixed and independent of the dimension m. 

It will be easier to work in the Morse coordinates : 

(5.2.3)y = V"(0),/2x 

since we get in the new coordinates : 

(5.2.4) V(x)=y2/2. 

As in [Sj] | §5,6, we consider then the following family of boxes, which 

depends on 2 parameters C and £ . The center of the box £2p is p = (p {,...pm) 

and a = I x x l in the new coordinates. Here for each j , we have 
P Pi Pm Jf 
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p. = 0 or pjjsCe, and in the first case I = [-Cfe.Ce] while in the second case 

L= [p:~£,p:+s]. Here C55I, £>0. 

Using (5.2.4) it is easy to see that: 

(5.2.5) V(x)-V(x-p) * (l-ii(C)) V(p), X G Qpi 

where tj(C) is independent of £ and tends to 0 when C tends to 00. 

The £2p are somewhat distorted boxes, but since 

(5.2.7) ly lp - |x |p ,Up$oo, 

the diameter of J2p is Ofe) when C is fixed. 

The general case. 

Let V : Rm- R be smooth with : 

(5.3.1) V(o) = 0, V'(o) = 0 and V"(0) satisfying (5.2.1). 

(5.3.2) <V"(x),t1®t2> = 0(1) lt1lpilt2lp2 

uniformly in x,tj ,t2 and for all pj p2 s.t. 1= l /p, + l/p2. 

(5.3.3) < V,,,(x),t1®t2®t3> = 0 ( l ) | t jp |t2lp|t3lp3 

uniformlyinx,t1,t2,t3andforallp1p2p3 s.t. 1= \/p{ + l/p2 + l/p3 

We write 

(5.3.4) V(x) = V0(x) + Wx )wi thV0(x) = (1/2) <V"(o)x,x>. 

So we have the property (5.2.6) for VQ : 

(5.3.5) V0(x)-V0(x-p) 5 (l-t,(C)) VQ(p),XG op> 

and vanishes to the third order at 0 and satisfies (5.3.3). 

Letp+x<Eftp (so that x <E£20). Then : 

W p + x ) - U(x) = W p ) - B ( o ) + <Ve№(p)-VeWo)ix> 
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+ l,n(l-t)<V2ct*(P + tx) V2et&(tx),x®x>dt 

= «№(p) + JX< V3ct*(tsp),p®p®x>t dt ds 

+ l X ( l - t ) . V3ct&(sp+tx),p«>x<8>x> dtds 

(5.3.6) W p + x) - Wx) = <Wp) + 0(l)|x|Jp|\+ 0(l)|x| "jpl,. 

For the particular choices of p which are allowed, we see that 

(5.3.7) Celpl, $ Cjpl2 

where C and e appear in the choice of ftp and C0 only depends on the 

constants appearing in (5.2.1) (see 5.2.7)). 

On the other hand 

(5.3.8) Ixl^ = O(Ce) 

so, with a new constant (with the same properties as the first one), we 

get: 

(5.3.9) Ixljpl, sCjp l2 

Finally we get from (5-3.6) -(5.3.9) that: 

(5 .3 . l0 )Wp+x) - «№(x) = W(p) + 0(1) Ce Ipl2 

If we combine with the properties of V0, we get for each x in ap : 

(5.3.11) V(x)-V(x-p) ^ V(p) - ri(C) V0(p) - 0(1) Ce |p|2. 

For every 8 > 0, we get by chosing first C sufficiently large and then e 

sufficiently small: 

(5.3.12) V(x)-V(x-p) z V(p) - 8 Ipl2, for x e Gp. 

(Here we have used (5.3.2) for the first time). 

If we have the additional property that: 

(5.3.13) V"(x) <» I>0, 
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there is a choice of £ and C in the construction of the ball s.t., for some 80 

>0, we have : 

(5.3.14) V(x)-V(x-p) £80 |pl2 ,forx € op. 

(compare this estimate with (6.2) in [Sj] ) 

§S.4 Statement of the result and end of the proof : 

Theorem ъ л л 

Let V satisfy (5.2.1), (5.3.1)-(5.3.3), (5.3.13) and 

(5.4.1) Vextendsholomorphicallyto { X G C ^ l x l ^ r ^ and IVVI^ = O(l) 

in this polydisc. 

We assume that the condition m = 0(h N°) is satisfied. Then the first 

eigenvalue of the Schrôdinger equation in Rml t (m,h) is of the form hE(m) 

+ 0(h ) (where hE(m) is the WKB eigenvalue constructed in [Sj]2 , see 

also §4). 

Sfretph of the proof 

This is essentially the same proof as in [Sj] { using the improvements in 

[Sj]2 and the new construction of boxes we give in sections 5.1-5.3. Let 

us recall some of the steps. 

We choose £ > 0 so that G£ < < r0. Let us first consider the Dirichlet realization 

PQq of - (h2A/2)+V in the "twisted" box £2Q. In view of (5.4.1), we can 

construct as in [Sj]2 (see our section 4) a WKB-candidate hE(h) for the 

lowest eigenvalue of P0 with : 

(5.4.2) E(h) ^E^+E,h+ E0.^m,El = Oj(m) 
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and modifying E(h) by 0(mh ) we also know from the arguments of [Sj] 2 

that hE(h) is exactly equal to the lowest eigenvalue of P0 , when h is small 

enough. The only slightly new point here is that a0 is not exactly a 

6°°-ball in the x-coordinates. However, it is enough to notice according to 

(5.2.7) that 

(5.4.3) B(0, Cs/C,) c a0 c B{0,Ct Gb) 

with B(x0,r)={xG Rn; |x-xQ|<r}. 

Let us now observe that by monotonicity we have : 

(5.4.4) ^(m,h)<; hE(h). 

In order to get a lower bound, we follow the general strategy of [Sj] (sections 

5, 6) and start by establishing some exponentially weighted estimates in 

QQ. Lemma 5.1 of [Sj]t remains valid in the present context and we 

conclude that if V = V-2 x 2M, and if hE is the lowest eigenvalue of the 

Dirichlet realization of-(h A/2)+ Vinft0,then 

(5.4.5) E-E= 0(l)m.hM~\ 

As in the end of section 5 of [Sj]j we then obtain the estimate 

(5.4.6) (hE-Oajmh**"1)!!^2 $ (exp(v|//h)(-(h2A/2)+V) exp(-v/h)u|u), 

for each U G C^(ao), provided that y is a real valued smooth function, 

defined on Q,Q with 

(5.4.7) (1/2) |V¥(x)|2 ^ I ^ x ^ . x e a0. 

Replacing u by exp(y/h)u, we can rewrite (5.4.6) as 

(5.4.8) (hE-OdJmh'^-^llexp^/hJull2 

$ (exp(\|//h)(- (h2A/2)+V) u|exp(v|//h)u), for each U G C^(a0). 

Using now (5.3.14), we deduce from (54.8) 
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(5.4.9) (hE-0(l)mhM_,)||exp(V/h)u||2 

$ (exp(\|//h)(-(h2A/2)+V) u|exp(\|//h)u), for each u G C ^ p ) , provided 

that \f is a real valued smooth function, defined on £2p with 

(5.4.10) (1/2) |V¥(x)|2 <; ^ ^ ( X j - P j f ^ x G flp. 

Then we have just to control the patching procedure which appears in the 

estimate (6.18) in [Sj] x. The patching procedure is based on a resolution of 

the identity. We just take the same one but in the y variables. The only 

new problem occurs in the control of the commutators. 

For that, we only need to observe that (with the notations of § 5.2), if we 

introduce cutoff functions of the form 

(5.4.11) X (x) = n ^ y , ) . 

where 

(5.4.12) |X.(t)|«l 

and 
(5.4.13) |X,'(t)|+|X,,'(t)|$D 

(where D is independent of j), 

then : 

(5.4.14) |VxX(x)|^<cC(D) 

(5.4.15) IA x(x)| <; C(D)m3.7 

Let us prove for instance (5.4.14) : 

V = 27x1(y1)....ak_1(yk_l) (aXv(xk(yk)).xk + 1(yk + 1) * m ( y J 

with (ax (xk(yj) = xk'(yk)(ax (yk)) = (v"(o)1/2)kvxk'(yk). 

7 In fact using lemma 1.2 in [Sj]t we can get 0(m) but this improvement is of no use 

here. 
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This gives us: 

*x* = K- , ( V W ' X X , (Y, ) Xk _,(yk .,) Xfc'.Xk + ,(yk + ,) .Xm(ym) 

=^,<v"<o>,'Vk<y> 
With tk(y) = X, (y, ) Xk _,(yk _,) Xk'.Xk + ,(yk + ,) XjyJ. 

According to (5.4.12) and (5.4.13), (tk(y))k is inabounded ball of £°° and 

using (5.2.2), we get (5.4.14). 

The control of cut off terms occurs in the proof in §6 of [Sj], only in passing 

from (6.18) to (6.19). These terms are multiplied by an exponentially 

small (w.r.to h) term and as in [Sj], we get 

(5.4.15)(hE-0(l)mhM_,)(l + 0(exp(-l/Ch)))| |uf 

S J(l + 0(exp(-l/Ch)))(-(h2A/2)+V)u)udx 

+J( 0(exp(-l/Ch))|u|.|Vul2dx. 

Since V^o, we have 

(h2/2)J|Vu|2dx s;J(-(h2A/2)+V) u)udx, 

so we end uo with 

(5.4.16) (hE-0(l)mhM_,)||u||2 

$ J(l + 0(exp(-l/Ch))(-(h2A/2)+V)u)udx. 

Taking for u a sequence of truncations of the first eigenfunction, we get in 

thelimit :hE-0(l)mhM",$(l+0(exp(-l/Ch))X1(m,h) 

and combining with (5.4.4): 

(5.4.17) hE-0(l)mhM"V , (m,h)<;hE. 
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§6. Complete study of the model for v < 1/4 . proof of Theorem 1.1 .  

We return in this section to the initial conventions to work with 

-h A + V. 

(Note that it is easy to go from one convention to the other by a change of 

h : h = h /vT). 

§6.1 Summary of the different steps : 

As we have seen in Theorem 5-4.1 : 

(6.1.1) X{ (m; h) ~ Kj>0 A,(m) hj if m= 0(hN° ) 

(with Aj(m)= E,(m).2~(| + I)/2). 

But we have seen in §2, that : 

(6.1.2) I {X{ ( m i h V m J - L i m ^ {X{ (m;h)/m) I <c Ch/m 

Taking m = h "M, we get (using Theorem 4.4) the existence of a sequence 

Aj s.t. : 

(6.1.3) I h(2M>i>0 A,. h1) - L i m ^ a , (m;h)/m) I $ CM. hM 

as h tends to 0, where : 

(6.1.4) A. = L i m ^ (A.(m)/m) 

Of course we have to verify that all the conditions of the different theorems 

we use are satisfied for Example 2.6. 

But before let us give a weaker result which can be obtained easier and 

some explicit computations on the harmonic approximation permitting to 

determine AQ. 
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Lemma 6,1,1 

There exists a constant Csuch that, for all he]o,hQ] and all m ¿1, we 

have: 

(6.1.5) 0<3kf (m;h.v) - (h /2) S^"1 (Vok(m;v) )<c Cm.h2 

where the o>k (my) are given by: 

(6.1.6) <ok(m;v) = l-4v cos (jik/m) ; k = 0,1 m-1 

Proof 

The (<ok(m;v)/2) are just the eigenvalues of the Hessian of the potential 

V(m) at 0. An easy computation (cf [Ka]2) gives (6.1.5) (see § 6.2). 

The minoration is just that in this case the potential V dominates 

everywhere its quadratic approximation in view of 

(6.1.7) - l ogchs £ - s2 /2 

so we get immediately the lower bound in (6.1.5). 

For the upper bound, it is sufficient to use the eigenfunction corresponding 

to the harmonic approximation and to estimate carefully the error using 

the inequality: 

(6.1.8) l-log ch s +s2/2| C s4 

The details are for example computed in [Ka] 2 (p.293- 294). 

We just give now for completeness some of the computations relative to 

the harmonic oscillator. 

The harmonic approximation at 0 is given in the case of Example (2.6) by 

the potential: 

(6.1.9)Qm(x) = ( l / 4 ) 2 k ^ x k 2 - (v/4) ( ^ ( x . + x ^ , ) 2 ) 
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Let us now remark that : 

(6.1.10) L i m ^ [ ( i /2m)2k? ; ! ( v ^ ) ] = 

= (i/2?i) J* vT^4v.cos2e de 

Using directly the Mac-Laurin formula (cf for example [Di], p.302) or 

Fourier series and Parseval, we get: 

(6.1.11) I t L i m ^ [(l/2m) Zk™-Ql ^ ]] -

- [ ( l /2 i i ) J! 7T4v .cos2e de ] <; [(Cr/m)2(r/ra)]ra 

for all r. By chosing correctly r ( = a m ) we get the exponential convergence 

which was proved in the general case in §4. We have used here the K-

periodicity and the analyticity of the function e vl-4v .cos e . 

§6.2 Verification of the conditions for the Example 2.6 

We shall verify the following properties for the potential V = V(m) which is 

given by 

(6.2.1) V(m)(x) = ( l / 4 ) 2 k ^ x k 2 - 2 k ^ l o g c h ( v W 2 (xk+xk + 1)). 

(6.2.2) V is holomorphic in Bjo , l ) with |VV(x)|oo=0(l), 

(6.2.3) V(o) = 0,V'(o) = 0, 

(6.2.4) V"(o) = D+A, where D is diagonal (positive definite) and 

HAllsueV)^! <ro^^min^D^ fora11 P st- U P ¡5 00 and for all p with : 

(*) exp(-ft) s p(j+l)/p(j) * exp(« . 

(6.2.5) HV2V||sMeW = 0(0 

uniformly inBjo,l) for p satisfying (*). 

(6.2.6) V(m)"(x) * ( ( l - 4 v ) / 2 ) . Im 

and in particular V is convex for v <l/4 . 
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With Wm = V(m) - (V(n) e v(m_n)) (1 $n<c m-1) . we must have : 
(6.2.7) For all m. for all n ((l<$n<jm-l)), for all p defined on {l m} 
and satisfying (*) and 
(**)p(j) =1 for jjsn+l, andp(l) = l, 
we have uniformly with respect to p, m, n : 
| V "tfle- = 0(1) in a complex ball B(o,l). 
(6.2.8) V(m) and more generally (l-t) (V(n) © V(m"n)) + t V(m) for 
O t̂̂ l satisfy (6.2.2)-(6.2.4) uniformly for thep satisfying (*) and 
( * *) (more generally ( *) and 
exp(-&) $ p(n)/p(l) !g exp(&) 
( * * * ) 

exp(-Jl) $ p(m)/p(n + l) $ exp(&)) 

(6.2.9) <V"(x),t1®t2> = 0(1) ltJPilt2lpa 

uniformly in x,tj ,t2 and for all p j p2 s.t. 1= 1/pj + l/p2. 
(6.2.10) < V'"(x), t,®t2®t3 > = 0(1) |tjpi lt2lpJt3lp3 

uniformly in x.tj ,t2,t3 and for all p{ P2P3 s.t. 1= + l/p2 + l/p3. 
(6.2.11) For every m, V(m) is invariant under cyclic permutations of the 
coordinates :V(m) (xmfx, xm_,)= V^Cx, xm). 

The verification of (6.2.2) is easy. We just observe (always with the 
convention that xm +, =x{) that: 
(6.2.12) 3xV(ffl)(x) = 
= ( X j / 2 ) -Vv72~th (^/^(xj+xj + 1))-^/v72"th ( V v T I " ( X j + X j _ , ) ) 

and that if Ixl̂ is $1, 
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|Vv/2 (Xj+Xi + .) | $V2V $VU2 <K/2 

which implies that dv V(m)(x) is bounded independently of m. 

Let us observe for future use that: 

(6.2.13) (exv(ra))(x) = 

= ( (1/2) - v ) + (v /2 ) [ th2(Vv72 (xj+xj + 1))+th2 ( V v 7 2 ( x j + x M ) ) 

(6.2.14) ax.ax. V(m)(x) = 

= - v / 2 (1-th2 (Vv72(xj+Xj + ,))) = -v/(2ch2 (VvT I (xj+Xj + ,))) 

(6.2.15) dv 8vV(m)(x) = 0 if l j - k | * 0,-1, + 1 modulo m. 

For (6.2.4) we deduce from (6.2.13): 

(6.2.16)0 = ((1/2) -v) I m 

where I m i s the identity in Rm , so we have : 

(6.2.17) r 0 = * m i n ( D ) =((i/2) -v) . 

If we denote by t the operator of translation (by l) on R m defined by: 

{tx){ =x i _ J , we can write : 

(6.2.18) A = - (v /2) (t + t" !) 

The eigenvalues of A are easily computed as -v . cos(2?tk/m) for 

k = 0,1 m-1. 

It is then easy to verify that for p satisfying to (*): 

(6.2.19) IIAII 

If v < 1/4, we observe that one can choose fe such that : 

(6.2.20) r, = v.exp(fe) <((l/2) -v) 

and we shall make this choice now. 

The proof of (6.2.5) is immediate if we observe that all the second derivatives 
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are bounded and that we have (6.2.15). (6.2.6) is a consequence of 

(6.2.13)- (6.2.15) .Let us now verify (6.2.7). We just observe (with the 

notation of §2) that: 

Wmn=W< V . ) + W K * n + W ( X n X n + 1 ) - W < * o , Xn + , ) 

= logch(vv72~ (xm+x,))+logch(vv72 (xft+xn + 1)) 

- logchtvvTT (xn+x, ))-log chfvvTT (xm+xn + 1)) 

The only j for which dx.t&™ are not 0 are j = l,n,n+l,m 

and one has for each of these terms : 

| 3 X j ^ ( x ) | ^ 4vyv72Sup,6C>|t|<1(th(v^7t) 

forxe Cm, I x l ^ i . 
As in the proof of (6.2.12), SuptgC ̂  (th(V2\T<c) is finite. 

According to the (**), the property (6.2.7) is clear. 

Let us verify now (6.2.8). We first observe that: 

D(tffl)= ( l - t ) D ( n W m - n ) + tA(m) and : 

A,(m) = ( l - t ) A ( n W m - n ) + tA(m). 

All the properties we need are stable by arithmetical means, so it is 

sufficient to treat the case (V(n) e y(m"n)) forp satisfying (***) and 

( *) which can be reduced by separation of variables to the study of 

V = V(m) for p satisfying ( *).Wenow observe that *min(D) = (1/2)-v) and 

that ||A|| $v.exp(ic). 

If v<l/4, it is easy to choose k >0 s.t: 

v .exp(K)<(l /2 ) -v) . 

(6.2.9) and (6.2.10) are then easy to verify by using (6.2.13)-(6.2.15). 

Finally, (6.2.11) is clear from the definition. 
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Eigenvalue asymptotics 

related to impurities in crystals. 

Rainer Hempel 

1. Introduction. 

In the present paper, we continue the analysis of eigenvalues of Schrodinger 
operators H — XW in a spectral gap of H. As a typical example, one should 
think of H = —A + V as a periodic Schrodinger operator which, in solid state 
physics, may be used to describe the energy spectrum of an electron moving in a 
pure crystal (in the so-called 1-electron model). The perturbation W simulates 
a localized impurity, and A E R is a coupling constant; both V and W are 
assumed to be real-valued. Here we ask for the existence and number of discrete 
eigenvalues of H — \W which are moved into or through the gap as A increases 
from 0 to oo. The connection of this question to solid state physics is discussed in 
more detail in [7,13]; we only mention that "impurity levels" (i. e., energy levels 
which are introduced into the spectral gap of the pure crystal by impurities) 
are responsible for the color of crystals in the case of insulators, and strongly 
influence conductivity in the case of semi-conductors; cf., e. g., [3, 21]. 

In the mathematical analysis of this problem, it turns out that the case 
where W doesn't change sign enjoys many simplifying features: fixing E in 
the gap and assuming W > 0 for the moment, basic existence and asymptotic 
results can be read off from the associated (compact and symmetric) Birman-
Schwinger kernel W1/2(H - £ ) _ 1 W 1 / 2 , (cf. Klaus [18] and, most recently, the 
remarkable work of Birman [4]). This approach is based entirely on functional 
analysis and avoids PDE-methods. 

In the general situation where W changes sign, however, the associated 
Birman-Schwinger kernel is no longer symmetric and it is hard to extract 
useful information from its analysis. Here a more direct approach was de
veloped by Deift and Hempel [7] which combines localization techniques and 
a quasi-classical volume counting in phase space. Led by some simple phys
ical intuition—which says that a localized perturbation should have localized 
effects— we start from a suitable approximating problem on the ball Bn , and 
let n tend to oo. Note, however, that even this approximation step is by no 
means trivial, since restricting the operator —A + V to Bn and imposing Dirich-
let boundary conditions, will in general produce (unwanted!) eigenvalues in the 
gap. This method was further extended in some work of Hempel [13, 15], Alama, 
Deift and Hempel [1], where decoupling by an additional Dirichlet boundary 
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condition (DBC) or Neumann boundary condition (NBC) on OBR is used to 
separate the region where the perturbation XW is active from the remaining 
portion of BN. In Section 2, below, a brief outline of this technique is given (for 
a more detailed description, cf. [1,15]). By now, this approach has been fully 
developed and it provides various asymptotic results for the eigenvalue counting 
functions iV±, where 

N±(X;H-E,W) = V <иткег(Я ^ ßW - E) (1.1) 
0<//<A 

counts the number of crossings of eigenvalue branches, keeping track of mul
tiplicities; here, again, E is a fixed "control point" in the gap. In Section 
3, we present upper and lower asymptotic bounds on iV+ in the general case 
w = W+- W_, W± > 0. 

In Section 4, finally, our method will be used in the delicate problem of 
finding a lower bound for the (finite) quantity 

iV_ (00; K) := sup N. (A; H-E,Xk), 
A>0 

where K is a fixed compact subset of iV_(oo; K) counts the total number of 
eigenvalue branches which cross E under the influence of a potential "barrier" 
supported on K, with height going to infinity. While it is known that (in 
dimension > 2) no eigenvalue branch of H + X\K > A > 0, will ever cross E 
if the diameter of K is small enough, we also know that some eigenvalues will 
cross E UK contains a ball of sufficiently large radius (cf.[13,15]). In the present 
paper, we'll concentrate on if's which are drastically different from balls. Here 
it turns out that decoupling by natural DBC plays a crucial role, highlighting 
once more the fundamental difference between N+ and iV_ in the case where W 
is non-negative: while JV+ is dominated by the Weyl term, which is related to 
the volume of the interior of K, the number we are investigating now is more or 
less independent of the volume of K ; e. g., a set K looking like a swiss cheese 
with many small holes may be very effective in shifting eigenvalues through the 
gap although the volume of the cheese might be very small as compared with 
the volume of the holes. 

The approach described above allows us to discover some of the local effects 
of the perturbation and connects phase space analysis with eigenvalue counting. 
However, it is neither simple nor short, and there are many results which can 
be obtained by more direct methods; we conclude this introduction with a brief 
discussion of some of these alternatives. As mentioned above, a very fruitful 
idea consists in the recent observation of Birman [4] that one should apply the 
first resolvent equation to (H — E)~L in the Birman-Schwinger kernel to replace 
the control point E in the gap by some £"0 < infer (if) . The transformed kernel 
can then be analyzed with the aid of the Gokhberg-Krein theory of weak trace 
ideals. This yields some sharp asymptotic results for iV+ in the case where W 
is non-negative, and works even for E sitting on the gap edge, if H is periodic. 
Since this method tests asymptotics on the scale of Weyl's Law, it gives only 
weak information for iV_, however. 
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For W changing sign, W of compact support, a very short and elegant proof 
for the existence of eigenvalues of H — XW in the gap has been given by Gesztesy 
and Simon [11], while some very detailed and surprising facts concerning the 
trajectories of eigenvalue branches in the o.d.e.-case ("trapping and cascading") 
have been discovered by Gesztesy et al. [10]. Of particular interest and difficulty 
is the question for the number of eigenvalues in a given interval in the gap; here 
we would like to mention some recent 1-dimensional work of Sobolev [28]. For 
results concerning eigenvalues in gaps under the semi-classical point of view, we 
refer to Klopp [19] and Outassourt [20]. Finally, Alama and Li [2] have created 
a non-linear Birman-Schwinger principle which can be successfully applied to 
non-linear perturbations of periodic Schrodinger operators. 

2. Approximation and decoupling. 

We are now going to give a condensed description of the approach developed 
by Deift and Hempel; for details, see [1,15]. Starting from a Schrodinger operator 
H = — A + V , where V is a bounded potential and H is the unique self-adjoint 
extension of — A + V on C ^ R " ) , we make the basic assumption that (T(H), the 
spectrum of H, has a gap. Again, we are mainly interested in the case where the 
spectral gap occurs above the infimum of aess(H), the essential spectrum of H. 
As a typical example, one may think of H as a periodic Schrodinger operator, 
but spectral gaps may also occur in Schrodinger operators of disordered matter 
(Briet, Combes and Duclos [5]). Also, for convenience, we assume that V > 1. 
In the sequel, let a < b be such that 

[a,b]n<r(H) = Q. 

We next introduce the perturbation Wa bounded, real-valued function going 
to 0 at infinity. While H — XW has the same essential spectrum as i7, the 
perturbation XW may produce discrete spectrum in the gap. By Kato-Rellich 
perturbation theory, the eigenvalues of H — XW depend analytically on the 
coupling constant A, as long as they stay inside the gap. In order to count the 
eigenvalues, we now fix E G (a, b) and we define N±(X) := N±(X; H — E, W) as 
in (1.1). 

In the case of non-negative W there are some nice quasi-classical heuristics 
("volume counting in phase space"; cf. [7,1]) which suggest that one should 
expect for iV+ an asymptotic behavior with a leading order term as in Weyl's 
Law, 

7V+(A) - cvXvt<l J Wu'2, A —• oo, 
if W decays faster than quadratically. In contrast, if W behaves like c|x|~a, for 
x large and some constants c, a > 0, then iV_ is highly dependent on the decay 
rate a, 

iV_(A) -C .A^ /a , A - + 0 0 , 

under certain natural assumptions on W (cf. [1]). Note that the asymptotics 
of N+ can be obtained by Birman's method in [4], and this even in the case 
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where E is situated on the edge of a gap. The case where W changes sign is 
much harder to understand, and there are only a few upper and lower bounds 
on iV+(A), for A large; this will be discussed in Section 3 in more detail. 

We next describe the sequence of approximating problems which are used 
to compactify the problem. Let a1 < a and b' > b be such that the interval 
[a;, &'] doesn't intersect the spectrum of H. As in [13,1,15], we define 

Hn = -An + V\Bn, 

where — An denotes the Dirichlet Laplacian on the ball Bn in , and we con
sider the spectral projection IIn = P[a',bf] (Hn) associated with the interval [a', b'] 
where { P \ } A G R denotes the spectral family. Clearly, IIN is finite dimensional, 
and for d — V — a', we have 

a(Hn + c'Iln)n(a',b') = <b. 

In the next step, we apply cut-offs in order to restrict the integral operator n n 
to the region Bn — Bn/2- Letting i\)n be defined by </?n(:r) — ̂ (x/n), x G R", 
n G N, where ip G C°°(Rl") enjoys the properties ip(x) = 1, for |x| > 3/4, 
t/>(x) = 0, for \x\ < 1/2, and 0 < ip(x) < 1 else, we define 

Hn = Hn + cVnIIn^n-

Here the important point is that Hn has a spectral gap containing the interval 
[a, 6], for sufficiently large n, i. e., 

a(Hn) H [a,b] = 0, n > n0. 

This basic result is a consequence of Weyl's Law (which yields a bound dim IIn < 
cnu) and the fact that the eigenfunctions of Hn which build up the projection 
IIn are exponentially localized near the boundary dBn ( cf. [7,1] for details). 

The second useful fact is that the Birman-Schwinger kernels associated with 
Hn and W\sn converge to the full Birman-Schwinger kernel in norm. This in 
turn implies the following comparison result for the counting functions ([15; 
Proposition 2.3]), valid for W > 0. To keep the notation concise, we'll often 
write W instead of W\sn , in the sequel. 

2.1. PROPOSITION. Let H and Hn, n > n0, be as above, and let E G (a, b). 
Assume that W is a non-negative, bounded function, tending to 0 at infinity. 
We then have 

N±(X;H - E,W) > limsupAr±(V;ffn - £ , W\Bn), 0 < A' < A, (2.1) 
7 1 — X X ) 

N±(X;H-E,W) <]immiN±(\';Hn-E,W\Bn), 0 < A < A'. (2.2) 
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By this approximation process, we have gained the following: as the oper
ators Hn — pW all have compact resolvent, we can count eigenvalues starting 
from the bottom of the spectrum. From Kato-Rellich perturbation theory it is 
then clear that 

iV+(A;HN -E,W) = dim P ^ E ) ( f f „ ) - dim P ^ E ) (HU - Xw) , 

and similarly for N-. Therefore, we can obtain information on N± (A; Hn—E, W) 
by simply counting how many eigenvalues have been moved over the level E by 
the perturbation XW. Here we use the notation "dim P (_oo,£) (•)" *° denote 
the number of eigenvalues below E, counting multiplicities. 

By a different method, one can prove the following convergence result for 
the case W = W+ — W- (note that we do not get an upper bound here). 

2.2. PROPOSITION, (cf. [15; Proposition 2A])Let H and Hn, n > n0, be 
as above, and let E € (a, b). Suppose that W is a bounded function tending to 
zero at infinity. Then, for 0 < A < A', we have 

N±(\';H- E,W) > limsup dim P ^ E ) (ÉN) - dim P(_00,f;) (ÉN T \W) 

The above approximation scheme has simplified the problem, but the eigen
value counting for Hn and Hn — XW is by no means trivial. As a second main 
step in the proof, we use decoupling inside the ball BN to separate the region 
where XW is active from the region where XW may be neglected. As W decays, 
this will in particular ensure that the interaction between W and the non-local 
operator ^ n I I n ^ n will be negligable. To obtain upper or lower bounds, we de
couple by means of a DBC or NBC on 8BR , where the radius R is chosen in 
such a way that W is sufficiently small outside B R ; note that this can be done 
independently of n, at least for n large. Here our basic lemma reads as follows 
( Bp denotes the p-th Schatten ideal or trace ideal, for 1 < p < oo ; cf. Simon 
[25 j): 

2.3. LEMMA, (cf [15; Proposition 1.3]) Let A,B be compact, symmetric 
operators and suppose that B 6 Bp, for some p 6 [l ,oo). Also let n > 0, 
rj e p(A). Then 

Id imP^A) - dimP(l|f00)(A + B)\ < \\(A - V)-'\\p . \\B\fBp , 

where dimP^^ counts the eigenvalues in (77 ,00) , repeated according to their 
multiplicities. 
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In order to apply this perturbation result in our situation, we need some 
more notation: Letting — A#;JV denote the Neumann Laplacian on BR, and 
—AR,n;N,D the Laplacian on the spherical shell Bn — BR , with NBC on OBR 
and DBC on dBn, we have the following trace ideal estimate: 

2.4. PROPOSITION. Letm>0 and let p > v/2, p = 2q, for some q G N. 
Then there exist constants c, C > 0 such that 

11(-AB + m)"1 - (-AR.N ©-ARY1L.N>D + m)-1 
ARY1L.N> 

and 

( -An + m) 1 - (0|f?fi) © (-&R,n;N,D + m) 1 -1 < CRV, 

/or 1 < i? < n, where Q\Br denotes the zero operator on L2(BR). 

A proof of this basic decoupling result can be found in [15;Appendix]; of 
course, there is a corresponding result for DBC on 3BR. 

While min-max methods and monotonicity imply that adding Neumann 
(resp., Dirichlet) boundary conditions increases (resp., decreases) the number 
of eigenvalues below E, we need estimates which go in the other direction. 
In the following proposition, we let — A#;JV denote the Neumann Laplacian 
on BR, —AR,TI;ND the Laplacian on BN — BR with NBC on ÔBR and DBC 
on dBn. Then HR;N denotes the operator —AR;N 4- V\BR while HR,U\N,D = 
-&R,n;ND + V\BN-BR + cVnlln^n, so that the direct sum HR;N © HR^N,D is 
nothing else but HN with an additional NBC on OBR. 

2.5. PROPOSITION, (c/. [15; Lemma 3.2]) Let H and Hn, n > n0? be as 
above and let E' E (a, b). Then, for n > no and 1 < R < n/2, we have 

dim P(_oo,£') (HR;N) +dim P(_oo,£') (HR^N^ 

< dim Pc-oo^) (HN)+CR"-\ 

with a constant C which is independent of n and R. 

To prove an estimate of this type, we apply Lemma 2.3 to the resolvents, use 
the second resolvent equation to get rid of the potential V and the t/?nIIn^n-term 
and conclude with an application of the trace ideal estimate given in Proposition 
2.4. Of course, decoupling by a DBC on ÔBR leads to a similar estimate; in 
the subsequent proposition, we let — A#,n;D denote the Dirichlet Laplacian on 

BN - BR and HR^D := -AR^D + V\BN-BR + cVnIIn^n . 
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2.6. PROPOSITION, (cf. [15; Lemma 3.2]) Let H and Hn, n > n0, be as 
above and let E' G (a, b). Then, for n> no and 1 < R < n/2, we have 

dim P ( _ o o , ^ ) (HR) + dim P{-oo^) (HR^D) > dim P{-oo,E<) ( # » ) - CRU~\ 

with a constant C which is independent of n and R. 

3. Some asymptotic bounds. 

As a first illustration of our approach, we prove a simple lower bound for 
iV+ in the general case W = VF+ — W- , with W± > 0; note that there is now 
no need to consider N- separately because this would only mean to switch from 
W to -W. 

Here the main difficulty comes from the competition between the attractive 
part W+ and the repulsive part W- . If W- decays faster than quadratically, 
then W+ always wins over W- (cf. [1, 15]), and we'll concentrate now on a case 
where W- decays slowly, 

W-(x) < c0(l + |o;|)-Q, x G (3.1) 

for some constants c > 0 and 0 < A < 2. The following Theorem 3.1 is a 
refinement of Corollary 3.5 in [15], where some other related results may be 
found. 

3.1. THEOREM. Let H be as above, E G R - a(H) and suppose that W is 
bounded and tends to 0 at infinity, with W- satisfying condition (3.1) for some 
0 < a < 2. For W+ we assume that there exist constants k > 2, ci,c[ > 0, 
0 < /3 < a and J, where 7 satisfies 

W-(x) < c0(l + |o;|)-Q,L-(3)/2, (3.2) 

with the property that each spherical shell Bnk — B(n-i)k> n~ 1? 2 , . .conta ins 
at least c^[n7] mutually disjoint balls of radius 1 on which W is bounded from 
below by c\n~$. 

Then there exists a positive constant C such that 

N+(\,H-E,W)>C\K, A > 1 , 

where n := (u(a - ¡5) + 2>Y + 2) /2a. 

PROOF. As in [1, 15], we let Ex := (a + E)/2 and define 

R = R(\) = (c0\/(E - £x))1/a , A > 1. 
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Then it is clear from (3.1) that 0 < XW-(x) < E - Eu for \x\ > R(\). We now 
decouple by means of a DBC on OBR to obtain 

dimP(_^E)(Hn-XW) 
( ~ \ (3.3) 

>dim P(_oc,£;) (HR - XW) + dim P(-^El) {HR,N.,D) . 

We first consider the second term on the RHS of (3.3) where Proposition 2.2 
implies that 

dim P t - o o , ^ ) (HR,TI;D) >dim P ^ o o , ^ ) ( # n ) - dim P(_0O,je;1) {HR) - c'R"~L 

=dim P{-oo,E) ( # n ) - dim P ( _ o c , ^ ) (HR) - c ' iT"1, 

as E and E\ belong to the same gap of Hn. For the second term on the RHS of 
(3.3), we introduce DBC on the boundaries of the balls where the lower bound 
for W holds; we discard the remaining portion of BR. By Weyl's Law, there 
exist constants > 0 and c3 such that 

dim P(_oo,M) ( - A i ) > C2/i"/2 - c3, /i > 0, 

and it follows that 

dim P ^ E ) ( -Ax + H V I I ^ - ClAn"^) > c,yl2n-^l2 - c5, A > 0. 

Summing up the individual contributions coming from the balls of radius 1 
where the lower bound for W holds, we now obtain 

dim P(-oc,E) (HR - XW) >c5 £ n ^ A ^ n " ^ / 2 - c6 Vol(BR) 

n<R/k 

>c7A^2A(1+^-^2 ) / a~c8A^ , 

as i? ~ A1/"; also note that our assumptions imply that 7 — v(3/2 > —1. 
Using all of the above information in the RHS of (3.3) and also the estimate 

dim P ^ ^ i H ^ K c ^ " , A > 1 , 

which is immediate by Weyl's Law, we finally see that 

dim P{-OO,E) fa ~ AW) - dim P ^ E ) fa) 

>dim P{_^E) (HR - XW) - dim P ^ ^ ) (HR) - c'R^1 

>d\K - c2\u'a - cz\u/a - C4A(,/-1)/Q 

>C\K, 
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for A large, since K > u/a for 7 in the interval defined by (3.2). Now the result 
follows immediately via Proposition 2.2. I 

To obtain an upper bound for iV+ (A; H—E, W), we next try to squeeze some 
information from the associated (non-symmetric) Birman-Schwinger kernel. 

3.2. THEOREM. Let H be as above, and let E G (a, 6). Suppose that W 
satisfies the decay condition 

\W(x)\<c(l + \x\)-a. x6R", 

with some positive constants c and a. Then, for any p > z//min{a, 2}, we have 

limsuvX~PN+{X;H - E,W) < 00. 

PROOF. (1) Suppose 0 < Ax < A2 < . . . < \j < . . . , with Xj oo, are 
the positive coupling constants where the kernel of H — XjW — E is non-trivial, 
repeated according to the dimension of ker (H — XjW — E). By the Birman-
Schwinger-principle, the numbers K,J := XJ1 are eigenvalues of the Birman-
Schwinger kernel 

IC:= ( s g n ^ l i y l 1 / 2 ^ - ^ ) - 1 ! ^ ! 1 / 2 , 

and (geometric) multiplicities are preserved. Now the Schur-Lalesco-Weyl the
orem (cf., e. g., [24, 25]) implies that 

3 
1/2A( 

3 

1/2A 

where the /ij denote the singular values of /C. As a consequence, we obtain the 
estimate 

1/2A 
I/P 

1)-1/2A(-A 

We next plug in ( - A + 1)^2(-A + l)"1/2 and write 

A : = ( - A + l)x'2{H - E)-l(-& + I)1'2, 

which is a bounded operator, to conclude that 

||4|| B1 W 1 / 2 ( - A + 1 ) - 1 / 2 A ( - A + 1)-^2\W\^2 
BP 

< Wl /2(_A + l)-l/2 
1/2A( 

•\\A\\- ( - A + I ) - 1 / 2 ! ^ ! 1 / 2 
1/2A( 
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by Holder's inequality for trace ideals ([25]). By the estimates given in [23; 
Theorem XI.20], it is clear that the trace-ideal norms on the RHS are finite, 
since, by assumption, p > u/2 and p > v/a. We have therefore shown that 
Y^j AJP is finite, and the result follows. I 

REMARKS, (a)Our result falls short of proving the more "natural" esti
mate JV+ (A; H - E, W) < cA"/min{2'a>. However, in the case of W changing its 
sign we can't exclude that eigenvalue branches wiggle around the level E for a 
while which might increase the counting function considerably. 

(b) The bound derived above is not only valid for positive coupling con
stants, but it gives as well a bound for all complex eigenvalues A in the gener
alized eigenvalue problem (H — E)u = XWu. 

4. High barriers with compact support. 

In this section, we consider H + \XK, for positive A tending to oo, where 
XK denotes the characteristic function of the compact set K C R". It is shown 
in [15] that a potential barrier of the type \XBR sweeps out all the states of 
H having energy below E and "living" in the ball BR, provided A is large 
enough, up to an error term of order Rv~l. We are now trying to understand 
the mechanism working for compact if's which are very different from balls. 
Here, again, we ask for the large coupling constant limit 

AT_(oo;iîQ:= lim N-(\;H - E,XK) (4.1) 

that is, the total number of eigenvalues of H + XXK which are shifted over the 
level E as A grows from 0 to +oo. Note that the quantity iV_(oo; K) is always 
finite if K is bounded. 

Here we'll see the following mechanism at work: as A tends to infinity, the 
operators H + \XK converge in strong resolvent sense to the operator — A + V 
in the exterior domain R" — K, with DBC on dK. This leads to a decoupling 
via DBC on dK, and, as a consequence, the mere volume of the set K doesn't 
tell much about N-(oc;K). 

In the sequel, we shall always assume that K is a compact subset of R^ and 
that R > 0 is so large that K C BR . Our estimates will involve two auxiliary 
operators defined on the domain Q(R) = BR — K: first, we let H^RYYD denote 
- A + V, acting in L2(tt(R)), with DBC on dQ(R); second, we let ^n(ie);D,Ar 
denote -A + V on Q(R), with DBC on dK and NBC on 3BR. As we shall see 
below, the quantities relevant for the eigenvalue counting are given by 

ni<;N = dim JP(-OO,£) (HR;N) - dim P(-OO,E) {HCLÌR^DIN) (4.2) 

and 
ПК-D = dim -P(-oo,£7) (HR) - dim P(-oo,E) {HÇI(R)-D) • (4.3) 
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The numbers riK;N and n^D giye lower (respectively, upper) bounds for the 
quantity iV_(oo; i f ) , up to an error of order Ru~l. This reduces the problem to 
the study of an explicit situation on the finite region BR; in view of the error 
terms, R should be chosen as small as possible. 

4.1. THEOREM. Suppose K is a compact subset o / R " and R > 1 is such 
that K C BR. With the above notation, we then have 

N.(oo;K) > nK.N - CRU~\ 

where the constant C is independent of K and R. 

PROOF. By Proposition 2.1, it is enough to produce a lower bound 

supiV_(A; tfn - E,XK) > nK,N - CR"-\ (4.4) 
A>0 

for n large. Without restriction, we may assume that E is not an eigenvalue of 
Hft(R)-D,N- Introducing NBCs on OBR, monotonicity of the associated quadratic 
forms implies that 

dim P^^^i&n + VXK) 

<dim P(_oo,£) (HR^N^D) + dim P(_oo,£) (HR;N + VXK) 

<dim P{-^E) ( # n ) - dim P(-^E) (HR;N) + CRV~X 

+ dim P(_oo,£) {HR;N + VXK) , 

by Proposition 2.5, whence 

dim P(_oo,i<;) ( # n ) - dim P(-OC,E) (#n + MR) ^ 

> dim P(-oo,E) (HR;N) - dim P ^ E ) (HR.,N + IIXK) - CRV~X. 

By classical convergence results for eigenvalues (cf. Simon [26], Weidmann [27]), 
the eigenvalues of HR;N + VXK increase monotonically to the corresponding 
eigenvalues of i?n(i?);Z),jV5 as —• oo. Taking into account the definition of 
n>K;N, we have therefore shown that the LHS of (4.5) is eventually greater or 
equal to nx;N — CRu~l, for // —• oc. By Kato-Rellich perturbation theory, this 
implies (4.4), and we are done. I 

REMARK. The decoupling effect becomes most visible if K has lots of holes 
which are so small that the Dirichlet Laplacian on each hole has no eigenvalue 
below E ("swiss cheese"). In this case, we see that = UKN^ where K 
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is obtained from K by taking the union of K with all bounded components of 
R" — K. For example, it is possible to have K — BR while the volume of K 
itself is arbitrarily small. 

In R^, v > 2, the opposite situation is also possible. In fact, it is easy 
to construct examples where K has large volume while no eigenvalues cross E 
(think of K as a union of many small balls which are well separated; cf. [13, 1]). 

The corresponding upper bound is somewhat easier. 

4.2. THEOREM. Suppose K is a compact subset ofR" and R > 1 is such 
that K C BR. With the above notation, we then have 

JV_(oo;A') < nK;D + CR 

where the constant C is independent of K and R. 

PROOF. Proceeding as in the proof of the lower bound, we now use Dirich-
let decoupling on OBR and Proposition 2.6 to obtain 

dim Р(_оо,я) (НП) - dim Р(_оо,д) (#n + /¿x/Л 

<dim P(_oo,£) (HR) - dim P{-oc,E) {HR + »XK) + CR 

<ni<;D + CRV~X, /1 > 0, n > n0, 

by monotonicity and the definition of nj^.j). By Kato-Rellich perturbation 
theory, this implies that iV_(/i; HN — E, XK) < UK,D + CRu~l, for n large, and 
the desired result follows via Proposition 2.1. I 

REMARK. It is clear that one can use the standard techniques of Dirichlet-
Neumann bracketing in order to derive (crude) estimates for nj{;D in concrete 
situations, but sharp information on n^;p may be difficult to obtain (cf. also 
Kirsch [17]). An even more challenging problem consists in finding bounds for 
nK,N ~ nK;D' 
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SINGULAR PERTURBATIONS OF DIRICHLET 
A N D N E U M A N N DOMAINS A N D RESONANCES 

FOR OBSTACLE SCATTERING 

Peter D. Hislop 1 

1. Introduction 

Some of the work reported in this article is joint with R.M. Brown, Uni
versity of Kentucky, and A. Martinez, Université de Paris XIII. We want 
to describe some recent results concerning the existence and estimation of 
the poles of the 5-matrix for the scattering of waves by a single, compact 
obstacle. The details of the calculations appear in [6], [12], [11]. We are in
terested in the scattering poles for a class of obstacles known as Helmholtz 
resonators. These obstacles are characterized by a large cavity C which is 
coupled to the (unbounded) exterior £ by means of a tube Tie) of diameter 

e. The waves propagate in fi(e) = Int(C U T(e) U £) and we consider either 
Dirichlet or Neumann boundary conditions (DBC or NBC) on the boundary 
of 0(e),912(e). We consider two classes of problems : (1) local in energy : 
for a fixed compact subset K C C, intersecting the real axis R, describe and 
estimate the position of all scattering poles in K for all e sufficiently small; 
(2) global in energy : for a fixed e (say e = 1), consider the high energy be
havior of the scattering poles and show that there exists a sequence of poles 
converging to the real axis. 

The problem of a local characterization of scattering poles for a Helmholtz 
resonator has been considered by Beale [4] and Arsen'ev [3]. For the case of 
DBC, the poles arise from either eigenvalues of the cavity Laplacian —Ac with 
DBC or resonances of the exterior Laplacian —Ac with DBC. In particular for 
A' as above, they prove that there exists CK > 0 such that for all e < e^', there 
exists a bijection between the scattering poles in A" and the set consisting of 
the eigenvalues of — Ac in A and the resonances of — Ac in A" (including 
multiplicities). 

l Supported in part by NSF DMS research grant 91-06479 and 
INT 90-15895. 
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When there are N B C and T(e) is a straight tube D£ x [0 ,1] , D£ = eD1 

and D\ = {x'eR/1"1 \ \x'\ < 1 } , there is an addition set of poles coming from 
the longitudinal modes of the tube. We reprove these results and give precise 
upper bounds on the displacement of the poles from the cavity eigenvalues 
or exterior resonances as a function of e. For the case of D B C these are 
exponentially small in e. For the N B C case, the upper bound is O(e^) where 
/9 = 1 /2 for dimension n > 4 and 0 < (3 < 1 /2 for n = 3. 

In order to derive these results, we also study the effect of adding a small 
tube T(e) to the cavity C on the eigenvalues of — A<j. We consider both D B C 
and N B C . In the D B C case, we find that the shift of the eigenvalues is bounded 
above by 0(efi) where p = 1 /2 for n > 3 and 0 < p < 1 /2 for n = 2. 

In the N B C case, we must restrict ourselves to a straight tube. We find 
a similar estimate for the shift of the eigenvalues. We mention that singular 
perturbations of N B C have been recently discussed by several authors, for 
example [2], [10], [16]. 

The second type of problem is related to a conjecture of Lax and Phillips 
[18] concerning the behavior of scattering poles in the case that the obsta
cle has trapped rays. They conjectured that if an obstacle, like a Helmholtz 
resonator, has trapped rays, then there is a sequence of scattering poles con
verging to the real axis as the energy diverges to infinity. Although this 
conjecture is false, as shown by Ikawa [13] for the case of two bounded, con
vex obstacles with a single trapped hyperbolic ray, we show that it holds for 
a class of symmetric Helmholtz resonators (see section 4) . In the case studied 
by Ikawa and, later, by Gerard [9], there is an infinite number of scattering 
poles but they are bounded a fixed distance from the real axis. This may 
be a manifestation of the instability of the trapped ray in this example. In
deed, Ikawa [14] later showed that if the obstacles are sufficiently flat in the 
neighborhood of the trapped ray, there is a sequence of poles converging to 
the real axis. A similar situation of stability occurs in an example studied by 
Ralston [20]. He examined the poles for scattering in spherically symmetric 
inhomogeneous media for which there is an infinite family of stable, trapped 
rays. Again in this case, there is a sequence of poles converging exponentially 
fast to the real axis. This model can also be treated by the methods of section 
4. 

The outline of this paper is as follows. In sections 2 and 3 we discuss the 
local in energy problem for the Helmholtz resonator. Section 2 is devoted to 
the D B C case and section 3 to the N B C case. In section 4 we turn to the 
global in energy problem and sketch the proof of the Lax-Phillips conjecture 
on the existence of a sequence of scattering poles converging to the real axis 
for a family of symmetric Helmholtz resonators. 

Finally, we mention that a scattering pole is also a pole of the meromor-
phic continuation of matrix elements of the resolvent of —A F L ( E ) for vectors 
in a certain dense set. Hence they are resonance of the operator —AQ( £ ) on 
L 2 (f](e)) . We will freely use the results of the theory of quantum resonances 
and spectral deformation below. In particular, we will assume the application 
of spectral deformation techniques as discussed in [12]. 
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2. Perturbation of Dirichlet Domains and Resonances 

The first situation for which we will consider the local resonance struc
ture is the Helmholtz resonator with DBC. This material has already been 
published so we will be brief and simply review the results. The notation and 
general ideas, however, will be used in the other sections. To be more specific 
about the geometry, let Q С R n be an open set with C2-boundary admitting a 
decomposition into two disjoint components C, the cavity, and £, the exterior, 
such that С С R n \ £ and С is bounded. Let x0edC and хгед£. We join these 
two points by a tube T{e) which is an open subset of R n \ f i difFeomorphic to 
the standard tube D£ x [0,1] where D£ = eDx and Dx = {xleKn"1 \ \x'\ < l } . 
As in the introduction, we set Q(e) = Int(C U T(e) U £) and consider the 
Laplacian He = —A on Q(e) with DBC on Qs (e) Our main result is to 
characterize the resonances of He in a compact complex set К intersecting R 
for all e sufficiently small. 

To this end, we need a preliminary estimate of some interest in itself. 
Consider the cavity С and the cavity with the tube T(e) attached : C(e) = 
Int(C U T(e)), both with DBC. We want to know by how much the eigenvalues 
of the Dirichlet Laplacian —Ac shift when the tube is adjoined to the cavity. 
By the Poincaré inequality for — Дт(«)> one expects that the effect is small. 

PROPOSITION 2.1. Let X0e < J ( - A C ) with multiplicity N0. Then there exists 
во > 0,c > 0 such that for all e < £o>— Дс(«) has NQ eigenvalues (counting 
multiplicity) \i(e)y..., XN0(C), satisfying for all j = 1,..., 7V0: 

| А 0 - А , - ( е ) | < с ^ 

where ß = 1/2 for n > 3 and 0 < ß < 1/2 for n = 2. 

The proof of this theorem begins with Green's formula expressing the 
difference of the two Laplacians, —Ac © —AT(£)

 a n d —Ac(e)i m terms of 
normal derivatives and surface integrals. These integrals are then estimated 
using Sobolev embedding and trace theorems. 

The basis for the existence of resonances in K is the fact that a narrow 
tube with Dirichlet boundary conditions cannot support states with energy 
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in K if e is sufficiently small. Consequently, the coupling between the cavity 
and the exterior is very weak. This weak coupling, however, is sufficient 
to change the bound states of —Ac to resonances of H£ and to shift the 
resonances of —A^ a small amount to become resonances of H£. We note 
that cr(H£) = [0,oo) and is absolutely continuous whereas the spectrum of 
the operator obtained when e = 0, a direct sum, has eigenvalues embedded in 
the continuous spectrum. 

As described in the introduction, the poles of the S-matrix are charac
terized also as the complex eigenvalues of the spectrally deformed Hamilto-
nian. We denote by H£(fi),H*xt(ti) and H^xt£(fi) the spectrally deformed 
operators obtained from H£y — A^(e) and —A T ( £ ) 0 —A5, respectively, where 
£{e) = Int(£ U T(e)). There is a result for the shift of the resonances of — A^ 
by the addition of T(e), which is the analog of Proposition 2.1. 

PROPOSITION 2.2. Let A0 be a resonance of —A^ for some fie z]0,l[ of 
(algebraic) multiplicity N0. Then there exists e 0 > 0,c > 0 such that for 
all e < £0, H^xt(fi) has N0 eigenvalues A i ( e ) , . . . , \N0(e) satisfying for all 
i = 1 JVo: 

\Xo-Xj(e)\ <ce? 

where p = 1/2 for n > 3 and 0 < /3 < 1/2 for n = 2. 

To prove that H£ has resonances in some fixed / ( C C, for all small e, and 
that these resonances are precisely, those coming from the eigenvalues of —Ac 
in K and the resonances of —A^ in A", we show that for z in a neighborhood 
of any of these latter points, the difference of the resolvents of H£^ and of 
-AC(£) © H ext (u) ,fie z]0,1[ vanishes as e -> 0. Note that C(e) fl £(e) = T(e) 
and it is in this region where states of energy in K are, in fact, exponentially 
small (see below). To quantify this idea, we use geometric perturbation theory. 
Let (Ji, J 2 ) be a partition of unity covering Q (e), independent of e, such that 
supp|VJj| is well inside the tube. Indeed, if d(x,Q) = Euclidean distance 
from x to fi, then we take 

Jx\{x\d(x,£) > 26} = 1 

J2\{x\d(x,£) >6} = l 

so supp|VJi| C {x\6 < d(x,€) < 26}. Set H0 = L2(C(e)) 0 L2(£(e)) and 
H = L2(Q(e)) and define J : H -> H0 by 

Ju = JiU © J2u 

so that J V = 1*. Let R{z) = ( t f ^ - a n d iJoC*) = ( - A c ( e ) ® f f e

e i t ( r i -
z)-1. Then for 2r in the intersection of the resolvent sets, we have the geometric 

resolvent equation on Ti: 

R{z)=J*R0(z)J + R(z)MR0(z)J 
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where M : Ho —• H is given by 

M(ui © u 2 ) = [ -A, Ji]ui + [ -A, J 2]u 2 , 

for u1eH1(C(e)),u2eH1(£(e)). We want to show that \\JMR0(z)\\ vanishes 
as e —• 0. 

LEMMA 2.3. Let A 0 ecr ( -Ac) and iet I \ be a simple closed contour about A 0 

of radius 2 « ^ , where /? is detined in Prop.2.1. Let xeCg° (supp\VJi\). Then 
for each 8 > 03c^ > 0 such that uniformly on I \ , 

I M - A c w - z ) - 1 ! ! ^ 2 - ' 

H V x C - A c ^ - z ) - 1 ! ! ^ ^ 1 - ' 

Similar estimates hold for H* (fi). 

Idea of the Proof. The proof is based on the inequality 

I < X U , ( - A c ( e ) - 2 )X" > I > l | V ( x « ) l l i » ( T ( E ) ) - \ z \ I IX«l l i* (T(e ) ) • (2.1) 

Now, the Poincaré inequality states that for any <j>eHl(T(e)), 

[ 
[ 
[ r e 

U| 2 < ce2 
[ 
[ 

(e) 
| V ^ | 2 . 

Applying this to the right side of (2.1), we obtain 

I < Xu,(-AC(e)-z)xu > I > (ce 2 - | * | ) \M\h(T(e)) • 

Finally, we take u — (—AC(£) — z) lv and compute the left side of (2.1). 0 

COROLLARY 2.4. Let Te be as in Lemma 2.3. Define K(z) : H0 -> Ho as 
JMRq(Z). Then for any S > 03q> > 0,£ 0 > 0 such that for e < Co, and 
uniformly on I \ 

\\K(z)\\<cse
2-6 . 

We use this result to solve the geometric resolvent equation for zeT£ and 
e sufficiently small. This gives 

R(z) - J*Ro{z)J = J*Ro(z)(l - K(z))-1K(z)J . (2.2) 

We can now state our main theorem on the existence of resonances. 

THEOREM 2.5. (1) Let A 0 e a ( - A c ) with multiplicity N0 and let \j(e)ea 
(—AC(e)))j = l , . . . , A / o ? be such that |A0 - Aj(e)| < ce^,/3 < 1/2 according 
to n. 
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Then 3c > 0 and e 0 > 0 such that for all e < 6o-,H£(fi) has N0 eigenvalues 
(counting multiplicity) pi(e),... >PN0(e) and V/, & = 1,.. . , iV0: 

|y j (e) - p k (e) | < ce B. 

(2) Fix fiei]0^1[ and let A0 be a resonance of —A^ of multiplicity N0. Let 
\j{e)eGd{Hextlxt{fi)) be the eigenvalues satisfying |A0 — A^-(e)| < ce^. Then 3c > 
0 and so > 0 such that \/e < 6o,H£(fi) has N0 eigenvalues pi(e),... ,/?A^ 0(e) 
such that Vy, A; = 1,.. . , iV0 ? 

|yj (e ) - p k (e) | < ce B 

As a final part of this description of the DBC case, we want to make 
precise the location of the resonances of H£. That is, we show that the shifts 
between Aj(e) and ^jt(e), as described in Theorem 2.5, are exponentially small 
in e. The key to this is the fact that eigenfunctions of —AC(£) and of H*xt(fi) 
decay exponentially in T(e). 

PROPOSITION 2.6. Let \(e)ecr(-AC(€)) be such that \(e) -> \0e<j(-Ac) as 
e —• 0 and let u£ be the corresponding eigenfunction with \\u£\\ = 1. Then for 
all a eN n , for all 6 > 0,3cQ js > 0 such that for all e small enough: 

||e (1 - 9 ) de (., x0) /e 6 a Ue ||L2 (T(e)) < C a,9 E- c a,5 

and Co,6 = 0, cij = 1, and d£(x, y) is the minimum distance from x toy along 
paths lying in Q(e). A similar estimate holds for eigenfunctions of H^xt(fi) 
corresponding to eigenvalues \(e) —> A 0, a resonance of —A^. 

THEOREM 2.7. Let Xj(e) and pk(e) be as in Theorem 2.5. For each j,j = 
1,.. . , iV 0,3 a permutation k of { 1 , . . . , No} such that 

\pk(j)(e) - A,(e)| < cexp[-2(l - 6)S(e,6)/e] 

where S(e,6) = max{d£(x,y)\ x,yeT(e),d(x,S U C) > 6,d(y,EUC) > 6} and 
d£ is defined in Prop.2.6. 

The proof of this theorem follows from the construction of an approximate 
basis for the invariant subspace of H£ corresponding to {pj(c)} using the 
eigenfunctions of -AC(£) or Hlxt(µ). In this basis, H£ is diagonal up to 
exponentially small terms. 
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3. Perturbation of Neumann Domains and Resonances 

In this section, we first consider the effect of adding a small tube T(e) 
to the cavity C when NBC are imposed on the boundary. We then consider 
the determination and estimation of resonances for Helmholtz resonators in 
the NBC case. The geometry is as in the DBC case with one additional 
requirement. The tube T(e) must be straight, i.e. T(e) C D£ x R. We 
fix coordinates (x'yxn) e R71""1 x R so that (0,0) e dC D T(e) and (0,1) € 
d£ 0 T(e). As above, we let C(e) =CU T(e) and £(e) = £U T(e). We must 
make an assumption on the smoothness of dC(e) and d£(e). 

Boundary regularity assumption: dC(e) and d£(e) are in C 0 , 1 ( R n _ 1 ) , 
i.e. they are both locally the graph of a Lipschitz continuous function. 

We note that this implies that the tube T(e) is bounded by Lipschitz 
surfaces. Moreover, both — Ac and —AC(£) have compact resolvents. We recall 
[15] that if C is a region such that 9CeC 0 , 1 (R n ~ 1 ) , then the Neumann resolvent 
RN(Z) followed by restriction to the boundary maps L2(C) to H1(dC). 

We denote by L>° and D\ subsets of T(e) given by dCDT(e) and d£C\T(e), 
respectively. We will consider the eigenvalues of C(e) as e —• 0 in two cases 
: (1) NBC everywhere on dC(e), and (2) NBC on dC(e)\Dl and DBC on 
D\. Case 2 will be important for the study of resonances given in the next 
section. As in the DBC case, the eigenvalues of C(e) should be well (locally) 
approximated by eigenvalues of C with NBC and of T(e), where T(e) has NBC 
on T(e)\(D°e U Dl), DBC on D°, and either NBC or DBC on D\, for case 1 
or 2, respectively. We introduce the following operators indexed by ii = 1,2 
depending on NBC or DBC on D\. 

Cavity —Ac > 0 Cavity Laplacian with NBC on DC 
Rc{z) = ( - A c - z)-1 

Tube — A ^ > 0,i = 1,2. Tube Laplacian 
RT i -( z) = ( - A T - z) - 1 

Unperturbed Al = Ar © A L i = 1,2 
RÌ(z) = (-Ai - z)-1 = (-Ac - z)-1 © (-AÌ, - z)-1 
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Coupled - A ' N > 0 Laplacian for C(e) in case 1 (NBC on D\) or case 2 (DBC 
on D\) 

Ri N (z) = (- A iN - z) -1 

We will omit the index i when the results hold in both cases. We note 
that <r(—AQ) = <J(-Ac) U a(- A ^ ) and that a (—Ac) is independent of £ and 
Ax = 0. Unlike the Dirichlet case, we can write cr(—A^) = a\ Ucr^, where cr ,̂ 
the longitudinal modes, consists of those eigenvalues which differ by 0{e1/2) 
from the eigenvalues of the boundary value problem on [0,1]: 

I 
- u" = \u on [0,1] 

n(0) = 0 

u(l) = 0 case 1 or u'(l) = 0 case 2 . 

In case 1, a\ = {(n7r)2\neZ+} and in case 2, a\ = {((2n + l ) 7 r / 2 ) 2 | n e Z } 
(up to O^1/2)), which are both independent of e and each eigenvalue has 
multiplicity one. Hence we expect these eigenvalues to contribute to cr(—Al

N). 
The other set of tube eigenvalues, ol

T, consists of transverse mode eigenvalues 
and satisfy a Poincare-type inequality reminiscent of the Dirichlet case: A > 
c 0 £~ 2 . Accordingly, these do not contribute to the local spectrum of — Al

N in 
any compact subset of R + for e sufficiently small. 

The case n = 2 requires some special treatment so we omit it here (see 
[6]). 

THEOREM 3.1. Let n > 3 and C(e) = CU T(e) as described above. 
1) Let Ao6cr( —Ac), Ao ^ crl

L, and let No be the multiplicity of AQ. Then 
—Al

N has No eigenvalues (counting multiplicity) \k(e) —• A0 as e —> 0 
such that for all e sufficiently small 3c 0 > 0 s.t. 

\^k{e) - A 0 | < c0eQ 

where a = 1/2 for n > 4 and 0 < a < 1/2 for n = 3. 
2) A o e 0 £ , A 0 ^ cr(—Ac). Then —A*N has exactly one eigenvalue A 0 ( e ) —• A 0 

as e —• 0 and the bound in (1) is satisfied. If it happens that \ot<rl

L D 
<J(—Ac) then —Al

N has No + 1 eigenvalues A * ( £ ) —> A 0 as e —> 0 (where 
No is the multiplicity of AQ in cr(—Ac)) and satisfying the bound in (1). 

We remark that the convergence of Neumann eigenvalues under singular 
perturbations of the domain has been considered by several researchers. For 
n = 2, Hempel, Seco and Simon [10] show norm resolvent convergence of Rl(z) 
to Ro(z) (and for unperturbed resolvents corresponding to more than one 
tube) as e —• 0 but they do not give any estimate on the rate of convergence. 
Jimbo [16] considers a similar problem in R n and gives pointwise asymptotics 
on the eigenfunctions as e —> 0. Arrieta, Hale and Han [2] consider more 
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singular perturbations of Neumann domains for which the attached region is 
shrinking at different rates in different directions. 

Theorem 3.1 follows from the main technical lemma which estimates the 
convergence of resolvents. 

LEMMA 3.2. Under the hypotheses of Theorem 3.1, for any zep(—Al

N) U 
p(—AQ), we have 

WRHz) - RÌ(z)\\ < c z e
a ( \ + | |Ä*(Z)||)(L + HÄJWII) 

where cz = co(L + \z\) * , CO dependents on the smoothness of dC, and a = 
1/2, n > 4, and a < 1/2, n = 3. 

We sketch the proof of this lemma. As in the Dirichlet case, it is based 
on Green's formula. 

Proof of Lemma 3.2. 
The basic formula is the following. Let w = wc © WT^D(—A0) and let 

ueD(—AN) (we drop the index i). Then 

D = 
C U ) 

wA mU — UAQW = 
E 

X = C , T 

) 
) 
= ( u 

dwx 

du - ™x 
du 

du ) 

where d/du denotes the outward normal derivative from X = T or C. Apply
ing the various BC, we obtain : 

D = -
'{ 
{ 
{ DO 

w c 
du 

du + 
( 
( 
( DO 

U 
aw? 
dv 

(3.1) 

in both cases. If we recall that w = Ro(z)g,geL2(C) 0 L2(T(e)) and u = 
R(z)f, feL2(C(e)), then estimates on the integrals in D give directly an upper 
bound on R(z) — Ro(z). To estimate the integral involving WT we will use the 
following two facts. 

1) N IL ' ( D J ) < C 0 £
a ( 1 + | |RT(z)| | ) | | / | | i î ( c ( e ) ) , 

where u = R(z)f and a is as in the lemma. 

2) || 3wt I 
dk 

= 
L 2 ( D o ) <cz(l + \\RT(z)\\)\\g\\LHT(£)), 

where WT = Rr(z)g. 

It is then clear that we obtain an estimate of the type on the right side of (3.1) 
for the WT term in D. The estimate on the wc term is more involved. Here 
we use ( i 7 1 / 2 ( A C ) , H~1l2(de)) duality. Let rj be a smooth cut-off function 
such that |Vr/| < CQC^1 and x d j < V ^ Xd° ? where x d j is the characteristic 
function on D^. We show that 
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3) | | h w c | | H 1 / 2 ( a c ) < c z e a ( 1 + \\Rc(z)\\)\\g\\L2(C), 

where wc = Rc(z)g, geL*(C). 

4) || du 
qv 

|| 
f _ 1 / 2 ( a c ) < c ( l + | | ^ ) | | ) | | / | | L 2 ( c ( , ) ) , 

where u = R(z)f, feL2(C(e)). 
These two estimates allow us to establish (note that du/dxn = 0 on dC\D^): 

| 
| 
| 

| 
| 

De 
wc 

du 
qv 

| 
| 
| < 

{ 
{ 
' ac 

) 
) 
) 

MR 
du 
du 

| 
| 
| 

< ||nwc|| H1/2 (ac) 
| 
| 
| 

du 
dv 

| 
| 
| H-1/2(dC) 

< c 0 e A (L + \\Rc{z)\\)(1 + \\R{z)\\)\\gUHC)\\f\\mc(e)) 

This result, plus the similar estimate for the integral involving WT, proves the 
lemma. It remains to prove (l)-(4). We sketch their proof below. ^ 

The proofs of statements (1), (3) and (4) relay on various, but standard, 
trace estimates and Sobolev embedding theorems. The Lipschitz condition 
on dC insures that Sobolev embedding theorems hold in our case. For exam
ple, to prove (1), note that u\dCeH1(dC) and, consequently, u\dCeH1I2(dC) 
by a natural embedding. A Sobolev embedding theorem states in this case 
H^2(dC) ^ L«(dC), where q = 2(n - l)(n - 2 ) " 1 , n > 3. By this and the 
Holder inequality, we obtain 

J. DO 
u2 < ce 

| 
| 
| 

( 
( 

ac 
u" 

) 
) 
) 

2/9 
< cellull 2 ^!/ ,^ 

< E | | « | | ^ . „ ( C ) < c e ( L + \ R ( z ) \ \ ) 2 Y \ \ f \ \ 2 L t H C ( e ) ) . 

The proof of (3) follows a similar line. We obtain the estimate 

hw\\Hs{dC) < ceQa-3' 3\\w\\HiidC) 

for any 0 < s < l.weH^dC) and a' = l ,n > 4,a' = 1/2 for n = 3. Com
bining this with trace estimates gives (3). The proof of (4) follows from an 
application of the divergence theorem to the integral 

' 
' 
' dC 

6. 
du 
qv 

as a sum of integrals over C. Here ^^^(dC) has an extension cjyeH1^). 
Finally, we consider (2). Let a be a C1 vector field in a neighborhood of 

T(e) such that 0 < 6 < a.v < 1 on D°£, a.v = 0 on dT(e)\D°€ and a• = 0 on 
D^. Here v is the normal vector field. Such a vector field can be constructed 
by cutting-off the vector field in the rrn-direction. We easily verify the identity 
on dT{e)\ 

dwj 
dv 

( 
( 
( 

2 
(a.v) = 2 ( dwr 

da ) ( 
qwT 

dv ) = (a.v)\S7wT\2 
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where d/da is the directional derivative for a. Finally, we write 

6 
( 
( 

DO 

| 
| 
| 

dwr 

dv 

( 
( 
( 

2 

< 
( 
( 

D9 

| 
| 
| 

qwT 

dv 

| 
| 
-

2 

[a.v) 

< Re J DT(E) 

( 
( 2 ( 

dwr 

dv 

) 
) 
) ( 

qxT 

da 

) 
) 
) 

- (a.u)\VwT\
2 

] 
] 
] 

= Re j T(E) 

V. 
6 
-
-

2VwT ( 
qwT 

da 

) 
) — a|Vu>r|2 

) 
) 
) 

< Re 
( 
( 
( TIE) 

( 
( 
( 

-2{g + zwT) 
dwT 

da 
+ c0\VwT\

2 
) 
) . 

Here WT = RT{z)g,gtL2(T(e)). The terms involving VWT can be estimated 
by (1 + | | -Rt(2) | | ) | |<7| | l 2 (T)- Noting that a and its derivatives are independent 
of £, this proves the result. (Actually, the integration by parts requires a 
certain regularity of V u > t . See [6] for the details).^ 

We now turn to the existence of resonances in the case of NBC. This 
case is different from the Dirichlet case since, as we will show below, none 
of the eigenfunctions of —AQ decay exponentially in T(e) and there are the 
longitudinal modes, cr^, of the tube which should become resonances. Because 
we do not have eigenfunction decay in T(e), we do not expect that the localized 
resolvents satisfy estimates like those in Lemma 2.3. However, with the use 
of suitable projection operators, one can prove the existence of resonances for 
—A F L(£) with NBC near the eigenvalues of —Ac and near the resonances of 
the exterior Laplacian — A£. The proof of this follows as in section 2. 

We wish to consider the cavity eigenvalues and the longitudinal modes 
of T(e), with DBC on Doe and D\, on an equal footing. Consequently, we 
take as an approximate Laplacian H0j£ = — AC(€) © — A ^ , where —AC(e) has 
NBC on dC{e)\D1e and DBC on D\ and — A ^ is the exterior Laplacian with 
mixed boundary conditions : NBC on dS\D\ and DBC on D\. After spectral 
deformation, we find that RQ(Z) = (if 0 ,«(^) ~ Z)~L a n < ^ R(z) = ( — A Q ( £ ) ^ — 
z)~l satisfy an estimate similar to that in Lemma 3.2. 

LEMMA 3.3. Under the hypotheses describe above and for /IEZ]0,1[ fixed we 
have for any zep(HQ^(fi)) D p(-AQ(€) µ„), 

||Ä(*) - Äo(*)ll < c z e
Q ( 1 + ||Ä(*)||)(1 + llÄo(z)H) , 

where cz = c 0 ( l + \z\)3/2 and a = 1/2 for n > 4 , 0 < a < l / 2 for n = 3. 

Sketch of the proof. We first note that Green's formula holds for HO,E^(P) 

and — AQ(£) j / x provided we choose the vector field for the spectral deformation 
to be spherically symmetric, which we can always do. For u = u c ^ Q)U£ = 
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Ro(z)g,geL2(n(e)), and v = R(z)f, feL2(Q(e)), we have 

( 
( 

n ( e ) 
[v(H0,e(fi)u) - (-AQ(e)tllv)u] = 

( 
( 
( Dì 

V 
) 
) 
) 

qw c (e) 

dv 
= 

due 
dv 

= 
= 
= 

Since —Afi(£)j/Z and Ho,e(n) are both analytic families of type A, their re
solvents enjoy the same Sobolev space mapping properties as the resolvents 
of their undeformed counterparts. For the term involving uC(€) we utilize 
L2-estimates: 

i) fD1e ( 
( 

duC(£) 

qv 
( « M ) 

( 
( 
I 2 

< c 2 ( l + | | i ? C ( e ) ( ^ ) | | ) 2 | | 5 | |
2 

2) | k ! U ^ ) < c o £

a ( l + | № ) | | ) | | / | | 
The proof of (2) follows as above due to the mapping properties of the resolvent 
just commented upon. The proof of (1) follows by the same integration by 
parts identity used in the eigenvalue case. As for the term involving the 
exterior function, we again use the ( i / "" 1 / 2 , i/^^-duality. Again, the same 
type of proof implies : 

3) due 
dv 

||H-1/2 (qe)< ; ^ ( l + H ^ i D i i y i i 

4) For 77 as described in the proof of Lemma 3.2, 
M l j f - t / » ( w ) < c t t c - ( l + | № ) | | ) | | / | | 

wnere a is as in the lemma. 
These estimates prove the result.0 

Give Lemma 3.3, it is now easy to prove the existence of resonances for 
—AQ( c ) near the ^-independent eigenvalues of —AC(e) with mixed N B C and 
D B C and near the resonances of — A ^ , with mixed B C also. We omit the 
details. We do mention, however, that we do not expect exponentially small 
upper bounds on the shift of the resonances in the N B C case as in Theorem 
2.7. Instead, we can prove \pk{e) — A ; (e) | < coe1/2 for n > 3. However, we do 
not have a lower bound. 

As a final topic, we give an estimate on the decay of u — ¿2, T(z) where u 
is an eigenfunction of — Acu) a n ( l 

u(xn) = 
1 

\D£\ i qs 
u(x ,xn)dx 

For this result, we must require that dSC\T(e) ={ ( x',1| | x1 \< e } , i.e. the 
surface is flat. 

THEOREM 3.4. Let a be the first non-zero eigenvalue of the Laplacian on D1 

with NBC. Then 

||exp a 
e 

i n f f z i , ! — x%) i] 
] 

( u - « ) | | L J m £ ) ) = C ? ( e

1 - ^ ) . 
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We remark that this is proved using the following Agmon-type formula: 

-
( 
( 

e Q/ e Aµ, q /e ) = - J V ( e 2 ^ ( V u ) u ) 

4-
( 
( üV(e 2 */ 4 ) .Vu + 

( 
( e 2 ^ e | V « | 2 

and the Poincaré inequality: 

l | V , ( u - ü ) | | L 2 ( D e ) > ( a / e ) | | u - ü | | L 2 ( D e ) . 

4. The Lax-Phillips Conjecture for Helmholtz Resonators 

We now turn to the second class of problems mentioned in the introduc
tion, namely, a description of resonances for a trapping obstacle at all energies. 
Since we are interested in "global-in-energy" results, we fix the diameter e of 
the tube T{e) equal to 1 and write T = T( l ) , Q = Q(1)etc. In order to obtain 
results, we must restrict the family of Helmholtz resonators to those in dimen
sion n > 3 which are symmetric with respect to an axis passing through the 
tube T, which we call the 2-axis. This symmetry allows us to use the eigen
values ai > 0 of the square of the angular momentum operator with respect 
to the z-axis as a perturbation parameter in the theory. To see this, we in

troduce generalized cylindrical coordinates (/9, Q,z) where p = ( 
( 
= n - 1 

2 = 1 
] 
) 

= 1/2 

and QeSn 2 are any suitable coordinates on the (n — 2)-sphere. The Laplacian 
admits a direct sum decomposition 

- A n = 0 
e 

( 
( 

d2 

dz2 = 
d2 

dp2 = 
[n-2) 

P 

d_ 

2 
= at 

P2 ) 
on the Hilbert space 

L2(ü) =© L2(Û,pn-2dpdz) 
t 

where Q is defined as follows : 

Q = |(p,*)cR + x R|36e5 n " 2 s.t.(p,ê,z)eQ} . 

In an analogous manner we define C, T and £. After a unitary transformation, 
we find that — is equivalent to a direct sum of operators 

H£ = -
o 

dz2 = 

5 

dp2 + 
56 

P2 

on the spaces L2(tt,dpdz). We will show that for all £ sufficiently large, the 

first eigenvalue of Hi on Q with D B C will generate a resonance of — A Q . 
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In this way, we obtain a sequence of resonances {zi} of —An such that Rezi —> 
oo and 3co > 0 and a > 0, independent of l such that |Jmz*| < c 0 e~ a ^ \ 
The idea of using {cr^} as a perturbation parameter appears already in [8]. 

We notice that the classical system has trapped rays running along the 
interior of the cavity which correspond to the resonances. It appears as if the 
resonances concentrate more strongly on these trapped rays as the eigenvalue 
parameter £ (and hence the real part of the energy) increases. We mention 
that R. Lavine [17] has obtained similar results for a resonator formed by 
a sphere with a small cap removed. We also note that we do not have any 
results in the 2 dimensional case. The method of proof outlined here also 
applies to the problem of spherically symmetry media which was considered 
by Ralston [20]. 

The family of resonators we consider are constructed as in Section 2 
with the tube T centered on the 2-axis, which is the axis of symmetry. In 
particular, T contains the interval [z 0 , zi] where z0eC and z\e£. The diameter 
of the tube is p0 = max{p\3ze[zoyzi],0eSn"""2 s.t. (p,Qyz)eT}. Similarly, we 
define pi = max{p\3z,Qs.t.(p,QJz)eC}. We require p\ > />o, which simply 
says that the tube is small relative to the cavity. We need a final condition on 
d£ and on T near z\. Let Dext = d£ f)T (z1eDext). Define a neighborhood 
of T near d£ by 

Af(T,e) = {xeT\z(x)e[Zl - e,z1}} 

Exterior non-trapping hypothesis The surface (d£\Dext) U (cW(T, e)) 
admits an escape function p(#,£) for some e > 0. 

The notion of an escape function which we use is given in [MRS]. Whereas 
some non-trapping condition is necessary on d£\Dext to control the exte
rior resolvent, the condition on the end of the tube can probably be re
laxed. Roughly, the condition states that the boundary of the tube must 
join smoothly with d£\Dext and that there be no trapped rays in the end 
of the tube. Given these geometric considerations, we can state the main 
theorem. 

THEOREM 4.1. Let Q = Int(C U T U £) be a symmetric resonator in R n , n > 
3, defined above, satisfying the exterior non-trapping hypothesis. Let — An be 
the Dirichlet Laplacian on Q. Then —AQ has a sequence of resonances {zi} 
satisfying (1) 0 < Rez£ —> oo as I —• oo, and (2) Imzt < 0 and 3co > 0, a > 0 
such that for all £ sufficiently large, \Imzt\ < c 0 e~ Q ^. 

Sketch of the proof of Theorem 4.1 
As above, we will study — Anifl = —U^AQU^1 =© Ht^peR and it's 

analytic continuation. Here Uµ is an appropriate spectral deformation group 
which vanishes inside a ball of radius R (R large enough so that fi CC 
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BR(0)) and implements the dilations in R n \ i?2#(0). To define the approx
imate Hamiltonian, we consider two overlapping subsets of Q. We define 
C = Int [C U {xeT\z(x)e[z0,zi — e/2]}]c*, where cl denotes closure and e > 0 
is fixed by the exterior non-trapping hypothesis. Similarly, we define £ = 
Int [£ U {xeT\z(x)e[zi — e,zi]}]°e. We denote by O the overlap region : O = 
{xeT\z(x)e[zi — e/2,z1 — e]}} C T. We associate a Dirichlet Laplacian to 
each C and 5,—A-and — A~, respectively. Then the approximate Lapla
cian is —A^ = — A ~ 0 —A~^, after the exterior Laplacian has been di
lated. Finally, we construct a partition of unity depending only on p and 
2, {Ji}^=iy Ylì=i Ji = 1? such that supp\VJi\ C 0,Ji is a function of z only 
in a neighborhood of O and h\C\0 = 1, J 2 | £ \0 = 1. 

1. Interior estimates ^ 
Let Hfnt denote the Dirichlet Laplacian on C and write its spectrum as 

{A n (^)}£=i- Then we have \n{£) > oijp^ due to the effective potential. For 
perturbation theory uniform in £, we need to know that the gap between the 
first two eigenvalues of H}nt,6e = A 2(^) — Ai(^), does not decrease as £ —» oc. 

LEMMA 4.2. There exists £o sufficiently large and a constant c > 0 such that 
forall£>£0,6£>c>0. 

This lemma is proved with the help of a lower bound on the gap between 
the first two eigenvalues of a Schròdinger operator on a convex domain with 
DBC and with a smooth, non-negative convex potential due to Singer, Wong, 
Yau and Yau [21]. We find a convex region K C C such that dKOdC ^ <f>. For 
all large the part of K nearest /9 = 0 will be in the classically forbidden region 
for the energy \ \ { £ ) . Consequently, the eigenfunctions will be exponentially 
small there [1]. We then apply the Variational Principle with appropriate test 
functions constructed from the eigenfunctions of H\nt localized to K and the 
eigenfunctions of H\nt\K with DBC. 

We also need decay estimates on R\nt(z) = (H}nt — z)~x localized in the 
region O. These essentially follow from the Poincaré inequality as in the proof 
of Lemma 2.3. 

LEMMA 4.3. Let \ he a smooth characteristic function supported on O. Then 
for any zep(H\nt), 

||XRintl(z)||<((l/p0)2 -|z|)-1 d (z)-1 (1+ cz) 

I|XVÄJ»«(*)|| < (WPO)2 - \z\)-^d(z)-\l + cz) 

\\XVR?\z)VX\\<cz 

where V = (dp,dz),d{z) = dist(z,o{H\nt)) and cz = c{z,d{z)) > 0. 
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2. Exterior estimates 

We need to estimate Re

t**{z) = (Hffi - z)~x for / i G C , Imp > 0, and z 
in a neighborhood of Aj(l) for each ^ sufficiently large. This estimate must be 
uniform in L By the geometric perturbation theory described below in part 

3, we will need a priori bounds on XRI*£(Z)XI X^RI^(Z)X and x V - R f ^ V x , 

where supp X C O and V = (d p , dz), as above. It is precisely for these 
estimates that we assume the exterior non-trapping hypothesis. Indeed, [19] 
show how to obtain such bounds given an escape function for a boundary. We 
briefly review the main points and refer to [18] and [19] for the details. 

PROPOSITION 4.4. Assume that an exterior domain T> admits an escape 
function. Then the local energy decays as t —• oo (at least as C?(£ - 1 )) for all 
solutions of the wave equation on the exterior domain T> with initial conditions 
BR(0) H V (for R large enough). Let B be the generator of the Lax-Phillips 
semigroup Z(t) = P+ U(t)P -, t > 0. Then there exists a > 0 such that 
(p — B)~l is holomorphic on Re p > —a. 

This proposition and standard spectral deformation results imply that 
RfX£(z) is holomorphic in the region 

OAÌTI = {z € C I Im z > —a and arg z > —2 arg(l + p)}. 

Next, from the construction of Z(t), if / , g are initial conditions for the 

wave equation with support in £ 0 BR(0), it follows that [18] 

((n-B)-1f,g)E = (µ-^-A)-1f,g)E 

where (.,.)# is the energy inner product and A is the generator of U(t), the 
unitary evolution group for the wave equation. Consequently, by Proposition 
4.4., we get an analytic continuation of ((p — A)~l f,g)E into Re p > —a. It 
follows by a simple calculation and suitable choice of initial conditions that 
(XRI^(Z)X(t>y 0̂ can be bounded for z € 0 a ? / A , uniformly in the L2-norms of 
<f> and by \\{p — JB)""1!!^ for Re p > —a. This latter norm is bounded as 
follows. The local energy decay implies 3c > 0, a > 0 such that 

\\Z(t)\\ < ce~a\ t > 0 . 

Hence, the Laplace transform of Z(t) converges for Re p > —a : 

(µ - b) -1 = 
( 
(0 

'OO 

e-^Zitidt 

and thus, for some en > 0 : 

I K / Z - S ) - 1 ! ! <<*(<* +Re /I)"1 

provided Re a > —a. Consequently, we derive that 
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||XRextl,µ(z)X|| w co[m z + q ] -1 

for z € O0,(1, uniformly in L Combining this a priori estimate with a Poincare 
inequality valid for the region C?, we obtain an analog of Lemma 4.3. 

LEMMA 4.5. Let x be a smooth characteristic function with support in O and 
let 
p2 = max{p | p(x) 6 O}. Then for any z 6 0Q)fl 

\\\R ext 
l,µ (Z)X\\<C1((1/P2)2-|Z|)-1 

H x V Ä TXI 
µ,p 

(z) X || < c2 ((l/p2)2 - || z |) -1/2 

l l xVJ* ext 
i,µ ( * ) V x l | < es 

where the constants C{ depend only on 0 Q i f i and are uniform m i. 

We remark that the proof of the third estimate requires some machinery 
of [5] (see [11] and below). 

3. Geometric perturbation theory 

We use the methods of [5] (see also [7]) to prove that HiilA has an eigen
value near Ai(^) £ cr(H}nt). This more detailed form of pertubation theory 
is necessary since we only have the localized resolvent estimates of Lemmas 
4.3 and 4.5. As in section 2, define Ho = L2(C) © L 2 (£ ) , H = L2(Q) and 
J : Ho —> H by J(ui © u2) = J\ ui + J2 u2, where {Ji}2

=1 is the parti
tion of unity introduced above such that supp | VJ 2 |C 0 . Let {Ji}2

=1 be 
another pair of functions such that Ji J{ = J*, Ji \ supp J{ = 1, and define 
J : Ho —> H as above. Then J J* = 1^. We will supress the indices (£y p) 
when the meaning is clear. As in section 2, we obtain a geometric resolvent 
equation 

R{z)J = JRo(z) + R{z)JMR0(z) 

where M : Ho —• Ho is given by 

M (W! © u 2 ) = (VJ{ + J[ V)ti! © ( VJ 2 + J 2 V)u 2 

with a prime denoting the 2 derivative and V = (3 P , 3 Z ) . We factorize M 
with the aid of two auxiliary operators Mi : Ho —• Wo © Wo : 

Mi(ui © u 2 ) = ( J > i © xVt i i ) © ( J2u2 © x V u 2 ) 

M 2 (vi © v 2 ) = (xVvi © Jji>i) © ( x Vt; 2 © J'2v2) 
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so that M = -M 2 *Mi . Using this factorization and solving for R(z)J M 2 , we 
obtain 

R(z) = JR0(z)J* - JR0(z)Ml(l - K(z))"1M1 R0(z)J* (4.1) 

where K(z) : H0 © W 0 Wo © Wo is defined by 

K(z)EE - M j iJo(̂ ) M* 

For (4.1) to be valid, it is sufficient that ||/<(^)|| < 1. If we write out the 
form of K(z), we see that the estimates of Lemmas 4.3 and 4.5 guarantee this 
for all large £ and z on a contour Ti about \ \ (£ ) , for each £ large enough. It 
is a consequence of Lemma 4.2 that we can take rad(Ti) = (9(1) for all £. We 
now integrate both sides of (4.1) about T^. The estimates of Lemma 4.3 and 
the holomorphy of R\xHz) on and inside T( allow us to prove 

||WizTTi)-1 

{ 
T 
l 

R(z)dz-JP0J* \\ <c0 £~1/2> 

where P 0 is the projection onto the eigenspace of Ai(^). The estimates dis
cussed in section 4 below insure that for any e > 0, ||JP0^*|| > 1 — 6: for 
all large £. Consequently, Heifl has an eigenvalue near Ai(^) with the same 
algebraic multiplicity as Aj(^). This proves the existence of resonances for AQ 
near \ \ (£ ) for all large £. 

4. Exponential decay 

Estimates on the resonance width come from exponential decay estimates 
on the eigenfunctions of H\nt in the tube region and bounds on the interior 
resolvents as in Lemma 4.3. The procedure is as in [12]. Agmon-type calcu
lations as presented there give the necessary decay estimates with constants 
uniform in £. These estimates also allow us to establish the uniform bound on 
|| JPQJ*\\ mentioned above. Note that the decay of an eigenfunction of H\NT 

is due to the fact that the tube T and a neighborhood of p = 0 in e lie in the 
classically forbidden region for \i (£) for all large £. * 
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SINGULAR PERTURBATION OF SYMBOLIC FLOWS 
AND 

THE MODIFIED LAX-PHILLIPS CONJECTURE 

MITSURU IKAWA 

1. Introduction. In the study of scattering by an obstacle consisting of 
several convex bodies, it is known that the distribution of poles of the scattering 
matrix has a close relationship to the zeta functions associated with a dynamical 
system in the exterior of the obstacle. When we want to consider the validity 
of the modified Lax-Phillips conjecture, we can derive it from the existence of 
poles of the zeta functions. That is, roughly speaking, if the zeta function has 
a pole in a certain region, the scattering matrix for the obstacle has an infinite 
number of poles in a strip {z G C; 0 < Im z < a} for some a > 0. The modified 
Lax-Phillips conjectrue will be explained in the next section. 

Therefore, in order to consider distributions of poles of scattering matrices 
for an obstacle consisting of several convex bodies, the zeta functions play a 
crucial role. But unfortunately, it is not so easy to show the existence of a pole 
of the zeta functions in general. 

In this talk, we shall develop a theory of singular perturbations of symbolic 
dynamics, with which we shall show the existence of a pole of the zeta function 
when the obstacle is consisted of several small balls. 

In Section 2, we explain the modified Lax-Phillips conjecture and consider 
the scattering by obstacles consisting of several convex bodies. In Section 3, 
we shall discuss singular perturbations of symbolic dynamics. In Section 4, 
we shall show how to apply the theorem on singular perturbations of symbolic 
dynamics to considerations of the matrices for obstacles consisting of several 
small balls. 

2. Scattering by several convex bodies. 

Let O be a bounded open set in R 3 with smooth boundary T. We set 

ft = R 3 - 0 , 

S. M. F. 
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and assume that $1 is connected. Consider the following acoustic problem: 

(2.1) 

d2u 

Uu = — Au = 0 in Q x (-00,00), 

u = 0 on r x (-00,00), 
u(x,0) = f1(x),—(x,0) = f2(x). 

We denote by S(z) the scattering matrix for this problem. The scattering 
matrix S{z) is an C{L2{S2))— valued function analytic in {z; Imz < 0} and 
meromorphic in the whole complex plane C, and that the correspondance from 
obstacles to scattering matrices 

O — S(z) 

is one to one(see for example [LP]). 
Concerning the above correspondance, we are interested in the problem 

to know how the distribution of poles of scattering matrices relates to the 
geometry of obstacles. As to this problem, we would like to present the following 
conjecture: 

Modified Lax-Phillips Conjecture. When O is trapping, there is a positive 
constant a such that the scattering matrix S(z) has an infinite number of poles 
in {z]0 < Imz < a}. 

Hereafter, we say that MLPC(abbreviation of the modified Lax-Phillips 
conjecture) is valid for obstacle (9, when there is a > 0 such that the scattering 
matrix S(z) corresponding to O has an infinite number of poles in {zm,Imz < 
a}. 

About this conjecture, obstacles consisting of two convex bodies were 
studied first. By the works [BGR], [G], [Ikl] and [S], the distribution of poles 
are well studied, and it is shown that MLPC is valid for obstacles consisting of 
two convex bodies. It is very natural to proceed to obstacles consisting of three 
strictly convex bodies. But the problem for three bodies exposes an essential 
difference from that of two bodies. Namely, for an obstacle consisting of three 
bodies, there exist infinitely many primitive periodic rays in the exterior of 
the obstacle in general. Thus, we have to consider geometric property of the 
totality of the periodic rays in the exterior, and it seems that the asymptotic 
behavior of the periodic rays with very large period plays an essential role. 

Here, we present a theorem in [Ik3,4], which allows us to connect the 
asymptotic behavior of the periodic rays and the distribution of poles of the 
scattering matrix. 
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Let Oj, j = 1,2,-" ,L,be bounded operi sets with smooth boundary Tj 
satisfying 

(H.l) every Oj is strictly convex, 

(H.2) for every { J 1 J 2 J 3 } E {1,2, • • • , L}3 such that ji ^ j v if I ̂  V, 

(convex hull of Ojx and Oj2 ) D Oj3 = <j>. 

We set 

(2.2) 0 = uf=1Oj, Q = R 3 - 0 and T = dQ. 

Denote by 7 an oriented periodic ray in ft, and we shall use the following 
notations: 

d 7 : the length of 7, 
T 7 : the primitive period of 7, 
z 7 : the number of the reflecting points of 7, 
P 7 : the Poincaré map of 7. 

We define a function FD(S) (S E C) by 

(2.3) FD(s) = ^ ( - 1 ) ^ T 7 | / - P 7 r 1 / 2 e " s ^ 
7 

where the summation is taken over all the oriented periodic rays in Si and 
IJ — Py \ denotes the determinant of / — P 7 . 

Concerning the periodic rays in we have 

(2.4) # { 7 ; periodic ray in ft such that d 7 < r} < ea°r 

and 

(2.5) I / - -P7I > e 2 a i < S 

where ao and ai are positive constants depending on O. The estimates (2.4) 
and (2.5) imply that the right hand side of (2.3) converges absolutely in {s E 
C; Res > ao — a\). Thus Fo(s) is well defined in {s E C; Res > ao — a\), 
and holomorphic in this domain. 

Now we have 
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Theorem 2.1. Let O be an obstacle given by (2.2) satisfying (H.l) and (H.2). 
If Fo(s) cannot be prolonged analytically to an entire function, then MLPC is 
valid for O. 

We cannot give here the proof of the above theorem. We would like to 
refer that the trace formula due to [BGR] is the starting point of the proof. 
This trace formula is written as follows: 

(2.6) Trace L 2( R 3 ) / p(t) (cos ty/^A ® 0 - cos ty/—AQ j dt 

_ 1 
~~ 2 

pc 

3=1 

p (z j), for all p e C£°(0,oo) 

where 

P(z) = eiztp(t)dt, 

{zj}fL1 is a numbering of all the poles of S(z), A is the selfajoint realization 
in L2(f2) of the Laplacian with the Dirichlet boundary condition and AQ the 
one in L 2 ( R 3 ) , and ®0 indicates the extension into O by 0. It gives us an 
relationship between the distribution of poles of the scattering matrix and the 
singularities of the trace of the evolution operator of (2.1). We shall use (2.6) 
in the following way: Suppose that i*b(s) has a singularity. This enable us to 
choose a sequence of p of the form 

pq(t) = p(mq(t - lq)) 

in such way that 
lq —> co, mq —• oo as q —• oo, 

and that the left hand side does not decay so fast as q tends to the infinity. 
But if MLPC is not valid, the right hand side of (2.6) for pq decreases very 
rapidely. The difference in decreasing speeds brings a contradiction. Thus 
MLPC is valid. The detailed proof is given in [Ik3]. 

By virtue of Theorem 2.1, the proof of the validity of MLPC is transfered 
to the consideration of singularities of FD(S). But it is not easy to show the 
existence of singularities of FD{S) in general. At present we can show it only 
for obstacles consisting of small balls. 

Theorem 2.2. Let P 7, j = 1,2, • • • , L, be points in R 3 , and set for e > 0 

0£ = U*f=1Oji£, Oji6 = {x- \x -Pj\<e}. 
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Suppose that 

(A) any triple of Pj }s does not lie on a straight line. 

Then, there is a positive constant eo such that the modified Lax-Phillips con
jecture holds for Oe for all 0 < e < 6Q. 

To prove the above theorem we have to show the existence of singularities 
of Fo(s) associated with Oe. To do this, we need a theory of singular pertur
bation of symbolic dynamics, which will be developed in the next section. 

3. Singular perturbations of symbolic dynamics 

In this section we consider singular perturbations. First we shall give 
some notations concerning the symbolic dynamics. 

3.1. Notations and statement of a theorem. 

Let L > 2 be an integer, and let A = {A{i^j))i-=l2,^L be a zero-one 
L x L matrix. We set 

= {£ = ( 6 , 6 , • • • ); 1 < Zj < L and A&^+i) = 1 for j = 1,2, • • • } , 

and denote by a A the shift operator defined by 

(^A(O)J = & + I for all j . 

We regard £j[ as a compact metric space by introducing the usual discrete 
metric. Define var n r and HrHoo for r E C(£j[) by 

var nr = sup{|r(0 - rft/0|;f,^ G £ ^ and ^ = ipi for j < n} , 

||r||oo = sup{|r(í) |;í GEJ} . 

We set for 0 < 9 < 1 

\\r\\o = sup varn r n>1|||r|||0, = max{||r||0, ||r||oo} 

^ , (E+) = { r G C ( E + ) ; | | | r | | | 9 < o o } . 

Assume that A satisfies 

(3.1) AN > 0 for some positive integer iV, 

that is, all the entries of the matrix AN are positive. Let B = [B(i, j)]*,j=i,2,- , l 
be another zero-one L x L matrix. 
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Definition. Let z,j G {1,2, - • • , L } . The notation 

Ì — • 7 
B 

indicates the existence of a sequence ¿ 1 , ¿2. • • • , i p such that 
B(iui) = 1, B(iq+Uiq) = 1 for q = 1,2, ••• , p - 1 and B(j,ip) = 1. 

We assume on 5 the following: 
There is 1 < K < L such that 

(3.2) B(i,j) = 0 for all j if i>K + l, 

(3.3) i —> i for all 1 < i < K, 
R 

(3.4) i —> 7 implies 7 —• z if i.j < K 
B B 

and 

(3.5 B(i,j) = 1 implies ^ ( ¿ , . 7 ) = 1. 

Let / e , / i e are functions with parameter e > 0 satisfying 

(3.5) /e, he E ^ f l (E t ) for all 0 < £ < Ci , 

where £ 1 is a positive constant, and let k € ^ ( S t ) satisfy 

(3.6) *(0 = 
m =o if B ( 6 , 6 ) = I 

* ( É ) > 0 if 5 ( 6 , 6 ) = 0. 

Suppose that 

(3.7) | | | / « - / o | | | f l , | | | * i e - f t o | | | » - > ° ° 3 5 £ - + ° 

For 0 < e < ei , we define zeta function Z£(s) by 

(3.8) Z(s; e) = exp 
00 

n 

1 

qpx 
expSexpS 

expS nr(£,s;e) 

where 

r«,5 ;e ) = - 8 / e ( 0 + M 0 + fc(01oge 

and 

r«,5;e) = -8/e(0 + M0 
n-l 

7=0 
r«,5;e) = -8/e(0 + M0 

The following theorem is on the existence of singularities of Z(s;s), which is 

the main result of [Ik5]. 
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Theorem 3.1. Suppose that (3.1)~(3.7) are satisfied, and that 

(3.9) / o ( O > 0 for all £ G E + , 

(3.10) / i 0 (0 is real for ail ^ G such that £ ( 6 , 6 ) = 1. 

Then there exist so G R, Da neighborhood of So in C and 6Q > 0 such 
that, for every 0 < e < Co, ^(s; e) is meromorphic in D and it has a pole se in 
D with 

se —> so as e —» 0. 

Here we would like to mention about the reason why we call the above 
result as singular perturbation. 

Let us set 
C = (B(i,j))iJ=h2,...,K 

and 

E£ = {£ = ( 6 , 6 , • • • ) ; 1 < 6 < ^ and £ (6 ,6+1) = 1 for all j}. 

Consider a term in (3.8) 

Snr(f,s;e) 
exp S n r ( f , s ;e ) . 

If we make 6 tend to zero, because of the effect of k(£) log e, for all £ G £j[ such 
that A;(o-.4m£) > 0 for at least one ra, exp 5 n r(£, 5; 6) tends to zero. Therefore, 
the above summation tends to 

Snr(f,s;e) 

exp S n r(£,s;e) . 

If we set 

ZQ(S) = exp{ 
00 

n=l 

1 
qs 

Snr(f,s;e) 
e x p 5 n ( - a / 0 ( 0 + M 0 ) } , 

¿0(5) is a zeta function of the symbolic flow on ( E j , a c ) . Thus the above fact 
suggests us that Ze(s) should be regarded as a perturbation of Zo(s). But when 
we compare these, not only the function —/o(0 + ho(£) but also the structure 
matrix C are perturebed. Thus we should call it singular perturbation. 

In the rest of this section we shall give only a sketch of the proof of 
Theorem 3.1. For the detailed proof, see [Ik5]. 
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3.2. The Perron-Frobenius operators. 
In order to find a pole of Ze(s) it is important to examine the spectrum 

of the Perron-Frobenius operator associated with Z(s;e) defined by 

Snr(f,s;e) 
Snr(f,s;e) 

exp(re(77,s))u(r7) for u G C(EJ[). 

For the proof of the existence of poles of Z(s; e), if we use the results of [Po] or 
[H], it suffices to show the existence 5 for which C6iS has 1 as an eigenvalue. 

Remark that it is difficult to consider directly the spectrum of since 
r e(£,s) is of the form rather complex for e > 0. Thus, it is important to find 
its nice approximations. As the first approximation, we introduce an operator 
C's in E J by 

[3.11) '-s 
B(m-6)=i exp(re(77,s))u(77) for £ € E ( 1 ) , 

for £ € E ( 2 ) , 

where 
rote*) = - « / o ( 0 + M O , 

'Bfai,€i)=i indicates the summation taken over all rj G Ej[ such that CTAV = £ 
and B(rji,ti) = 1, and 

E(l) = {£ G E+;B ( / ,6) = 1 for some 1<1<K], 
E(2) = {£ G E+; JB(Z,6) = 0 for all 1 < I < K}. 

Since ro(^,s) is not necessarily real even for e = 0 and real 5, we have to 
introduce an approximation Cs of C's defined by 

(3.12) Cav(£) = exp(re(77,5)) u(rj) for v G C(E j ) . 
Snr(f,s;e) 

Now ro(^, 5) is real valued for all £ G E j and real 5 and we can apply the 
generalized Perron-Frobenius theorem and find so G R such that CSo has 1 as 
an eigenvalue. 

Of course, in using these approximations of we have to compare the 
spectra of these operators. In our reasoning, the most crucial step is to give a 
relationships between spectra of Cs and C's. 

3.3. On the decomposition of Cs. 
First recall the generalized Perron-Frobenious Theorem of [AS] for sym

bolic dynamics which is not necessarily mixing. We introduce the following 
definition of indecomposability of a matrix. 
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Definition. We say that a n i x L zero-one matrix C is indecomposable when 
i —> j for any ij e {1,2, ••• , L } . 

c 
Then the following theorem holds: 

Theorem 3.2. Suppose that a zero-one matrix C is indecomposable, and r 
is a real valued function belonging to ^ ( E j ) . The the operator in ^ ( E j ) 
defined by 

£u (0 = exp(rfa)) «(»7) 
Snr(f,s;e) 

has the following decomposition: 

C = 
Snr(f,s;e) 

k=l 
XkEk + S 

where 

Ai > 0, and Xk = Ai exp(i(k — l)27r/A;o), for k = 2 , . . . , ko, 
Ek Ei = SkiEk, EkS = SEk = 0, 

dimension of the range Ek = 1, 
the spectral radius of S < Ai(l — 5) for some 6 > 0. 

The constant ko is the greatest common divisor of all the periods of pe
riodic elements in E j 

Let us say that i and j are equivalent when i —• j . Then the con
ditions (3.2) and (3.3) on B imply that this gives an equivalent relation in 
{ 1 , 2 , . . . , K}. Therefore, by changing the numbering of the elements of 
{ 1 , 2 , . . . , i f } , we maY assume that the set { 1 , 2 , . . . ,K} is decomposed into 
equivalents classes 

Mj = {ij.ij + !,••• - 1} (j = 1,2,.-. , / ) . 

We shall denote by Cj the (ij+i — ij) x (ij+i — ij) matrix [B(i,j)]ijeM:r Note 
that each Cj is indecomposable. We set 

= {£ = ( 6 , 6 , •••);&<= Mj and B (6 ,6+ i ) = 1 for all t} 

and 

E£ = {£ = ( 6 , 6 , • • • ) ; 1 < 6 < K and £ ( 6 , 6 + i ) = 1 for all t} . 
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Regarding E^. and E j as subsets of Ej[, we have a decomposition 

c(e+) = c ( s+ ) e c(E+ 2 ) e • • • e(s+ ) e c(E+2 )). 

For u G C(EJ[) we denote by [u] and [u]j the restrictions of г¿ to E j and E j 

respectively. Conversely, for functions in E£ or in E j . we shall often treat 

them as functions defined in Ej[ by extending them by zero in the outside of 

E j or of . 

Let Cs be the operator in C(Ej ) defined by 

Snr(f,s;e) 

Snr(f,s;e) 

exp(r0(r)]s)) v(rj) for v G C(E+), 

and let CjiS be the operators in C(Ej . ) defined by 

£j9s v(£) = exp(ro(ry; 5)) (̂77) for v G C ( E ^ ) 

Snr(f,s;e) 
where o"c and crc, denote the restrictions of cr̂  to E j and E^. respectively. 

Then £ s has a decomposition 

£S — £L,S © ^2,S © * * • © £/,s« 

By using the notaion introduced in the above, we have for all И G Ej[ 

Cs [u] = Ci,s[u]i © £ 2 | S M 2 © * • • © CiAu]i-
Note that the conditions (3.9) and (3.10) imply that ro is real valued in E ^ 
for s G R. Thus, taking acount of the indecomposability of Cj we can apply 
the above Theorem 3.2 to CjjS and get the following 

Lemma 3.3. For s G R, Cjj3 has a decomposition 

Snr(f,s;e) 
K1 

K=L 
^J,K,S -̂ j,fc,s "I" *̂ 7,S5 

with the following properties: 

(i) £7',S к s — \j к sEj h s . 

(ii) Aj,i,s > 0 and 
d A7-1. s 

as 
> 0 . 

(Hi) |Aj,fc,e| = А^1,я and \jtk,s bj,k',8 ifk^k'. 

(iv) bj,k',8 ifk^k'.bj,k',8 ifk^k'. 

where vjikis G n^ > 0 ^(E5 . )*satisfying Uj^APj^s) = 1, 

(v) |Aj,fc,e| = А^1,я and \jtk,s bj,k',8 ifk^k'.bj,k',8 ifk^k' 

(vi) the spectral radius of 5 J ) S < А ^ > 5 . 
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Hereafter, we shall denote often Xjtii3 as Aj j S . Note that we have for each 

J 

\j,s —> oo as s —• —oo, 

—> 0 as s —• oo. 

Thus, by changing the numbering of A J j S if necessary, we may suppose that for 
some So G R 

1 — ^l,s0

 — ^2,s0 — • • • — Xh,s0 > Xh+ijSo > * * • > ^,s0-

Then, by using the perturbation theory we have immediately the following 

Lemma 3.4. There are a neighborhood D of So in C and a constant 6 > 0 
such that for all s G D we have a decomposition 

Cs = 
h kj 

3 = 1 k=l 

Xj,k,s Ej,k,s + Ss 

with the following properties: 

(i) 
Ej,k,s Ss — Ss Ej k g — 0,Ej,k,s Ss — Ss Ej k g — 0, 

(") Ej,k,s Ss — Ss Ej k g — 0, 

(iii) Ej,k,s Ss — Ss Ej k g — 0, 

(iv) |A,-. -1\<6, 

(v) |Â j ) f c , s - 1| > 26, l-S<\\j,k,.\<l + 6 fork>2, 

(vi) the spectral radius of Ss < 1 — 26. 

3.4. On eigenvalues of C's. 

With the aid of the results of the previous subsection, we shall consider 
the decomposition of C's. First remark that for any positive integer m and for 
£ G S( l ) we have an expression 

(3.13) £' #

m u(0 = Ej,k,s Ss — Ss Ej k g — 0,Ej,k,s Ss — Ss Ej k g — 0, 

Ej,k,s Ss — Ss Ej k g — 0, 
Ej,k,s Ss — Ss Ej k g — 0, 

where the summation is taken over all 7/1,772,- •• ,7/m satisfying £(771,£1) = 
1, .8(772,772) = l,--- ,£(77^77™.!) = 1. 

In the expression of (3.13), by using the fact the ro G ̂ (EJJ) and the 
decomposition of Cs shown the the previous subsection, we have the following 

227 



M. IKAWA 

Lemma 3.5. For each pair j , k in Lemma 3.4, there is a function Wjtk,s(€) € 
^ ( E j ) satisfying 

(3.14) 

|(Aj,fc,s) m 

-^•)M(0I <C7R form = 1,2,-.. , 

-^•)M(0I <C7R form = 1,2,-.. ,-^•)M(0I <C7R form = 1,2,-.. , 

- ^ • ) M ( 0 I < C 7 R form = 1,2,-.. , 

and 
£ s wj,k,s ~ ^j,k,s Wj,k,s-

Here 7i is a constant such that 0 < 71 < 1. 

Remark that we have from (3.14) and (iv) of Lemma 3.3 

-^•)M(0I <C7R form = 1,2,-.. ,-^•)M(0I <C7R form = 1,2,-.. , 

from which it follows that 

-^•)M(0I <C7R form = 1,2,-.. , 

Definee c(E+2 )by 
Ej,kM& = i / j ,m(MjH,m (0 -

Then, we have 

Ej,k,sEj',k>,s = Sjj'sk,k'.EjiktS, 

and 

-^•)M(0I <C7R form = 1,2,-.. , 

In the expression (3.13), by using the decomposition of Cs and Lemma 
3.5, we have the following lemma which is crusial for the proof of Theorem 2.1. 

Lemma 3.6. There exist a neighborhood D\ of SQ in C and a positive constant 
62 such that we have for all s G Di 

l - « 2 / 2 < | A i f M | < l + « 2 / 2 , (3.15) 

(3.16) 1 w m 

h 

j=l k=l 

kj 
[hk,S)mE'i.Mt)\\\O < C\\\u\\\e (1 - 262)m. 
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3.5. On the decomposition of C'S. 

By using the same argument as in [Ik3], we have the following two esti
mates concerning C'SQ for any u G TQ^A) 

| | 4 0

m « l l ° o < C î l M l o o , 

l l l ^ u l l l f l ^ C a ^ l l H H t f + C s N l o o . 

Thus, by applying the theorem of [IM] to the pair of the spaces C(E\) and 
^(EJJ), we have from the above inequalities the following decomposition of 
£ ' i n ^ ( E + ) 

rj -
J 

3 = 1 

CjE'j+S' = E' + S\ 

where 

C'Sq E'j = CjE'j and \CJ\ = 1 for all j , 

E'j E[ = 8ji E^ for all j , Z, 

E'j S' = S' E'j = 0 for all j , 

the spectral radius of S' < 1. 

With the aid of Lemma 3.5 we can show easily that there is no eigenvalue 
of E' besides Aj,fc)S0. Now we have the following proposition from the standard 
perturbation theory: 

Proposition 3.7. There are SQ G R, a neighborhood D2 of So in C and a 
positive constant 63 such that, for all s G D2, £ s has a decomposition 

£ -
*^ s — 

¿0 

1=1 

-^•)M(0I <C 

satisfying the following: 
(1) F{iSS's = S'sFliS=0, forall / = 0,1, - - - , / 0 . 
(2) F{s F'Ks = F^s F{s = 0 for all Z, k = 0,1, • • • , lQ such that I ^ k. 
(3) For 0 < I < Zo, the dimension of the range of F{ — i\ for all s G D2 and 
the eigenvalues of F[s are i — 1> 2, • • • , ii, which satisfy 

Ways - A*? I < ô^3 l/x? - > S3 (l ï I'). 

Especially /x2 = 1, i0 = h and fi(0,i\a = A7 « (j = 1,2, • - • , h). 

229 



M. IKAWA 

(4) the spectral radius of S's < 1 — 353. 

3.6. Spectrum of ££jS. 

Suppose that Lemmas 3.6 and Proposition 3.7 hold for the open disk 
D2 = {s; \s — so| < ao} (ao > 0). Recall that Aj>s, j — 1,2, • • • , h are analytic 
in Z?2J and satisfies 

< ao} (ci > 0) 
G Z>2 

ds 
G Z>2 > 0. 

G Z>2 
Thus, by exchanging ao by a smaller one if necessary, we may assume the 
following: 

|Asj - 1| < 53/3 for all s G Z>2, 

|AS)j — 1| > ci|s — so| for all s G {s; |s — so| < ao} (ci > 0). 

By the same argument as in [Ik3, Section 3] we have 

11 l^o,s ~~ £e,s|||0 ~~* 0 uniformly in s £ D2 as e —> 0. 

Therefore by applying the standard perturbation theory we have 

Lemma 3.8. There are positive constants 6Q and 64 such that for all 0 < e < 60 
and s G D2 we have the following decomposition of CEY. 

0) G Z>2 
¿0 

¿=0 

G Z>2G Z>2G Z>2 

where 

(») £(l),e,s £(k),e,s = £(k),e.a £(l),e9a = 0 if I ̂  k, 

(iii) £(0,e,s Se.a ~ Se,s £(l),e,s ~ 0, 

(iv) the spectral radius of S£iS < 1 - 2<53, 

dim Range £n\ e s = i\ for all 0 < e < eo, 

(v) 
G Z>2 

exp(Rer£(£, s)) < C(l + ¿3)" for all n. 

Moreover, denoting the eigenvalues of £(i),£,s by ^i,i(6's)' * = 0> 1> ' ' " > ^ ~ 
1,2, • • • , /1, we have for aJi 0 < e < so 

(vi) G Z>2G Z>2G Z>2 ^ 3 
3 3 

for all s € D2, I = 0,1, • • • , Zo, 

(vii) |Ao,j(£,s) — 1| > ¿4 for a]i s € {s; |s — Sol = ao} . 
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3.7. Proof of Theorem. 

Set 

fi(\,s;e) = 
qj 

i=0 
(A - \ii(e,s)). 

It is easy to check that, for each /, //(A, s;e) is holomorphic in s. With the aid 
of Rouche's theorem, we can show easily from (vii) of Lemma 3.8 that for each 
0 < e < eo, /o(l ,s\e) = 0 has exactly h zeros in {5; \s — So\ < ao} (ao > 0). 

Now we apply Theorem 2 of [Po] or Theorem 4 of [H] to Ce,s- By ex
changing eo by a smaller one if necessary we may assume that 

6(l + 63) < 1. 

Then, the application of the theorems of [Po, H] to £ £ j S assures that 

Z£(s) is meromorphic in Res > so + <%o 

and is of the form 

Ze(s) = exp(0(s,e)) 
lo 

1=0 

G Z>2G Z>2G Z>2 

where (/>(•, e) is holomorphic in Re 5 > so + ao- Recall that /0 has h zeros near 
SQ. Thus Theorem 3.1 is proved. 
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4. Application to small balls 

Let O be the obstacle defined by (2.2) satisfying (H.l) and (H.2). Now 
we explain briefly the relationship between symbolic dynamics and bounded 
rays in the exterior of O. 

Let A = (A(i,j))ij=i,... ,L be the L x L matrix defined by 

A(i,j) = 
1, i f i ^ i 

0, if i = j , 

and set 

expSn(-s/(0+s(0+^)expSn(-s/(0+s(0+^) 
OO 

i=—oo 

{ 1 , 2 , . . . , L } ; 

¿(6>&+i) = l for a l l j } . 

Let X(s) (s E R) be a representation of an orientated broken ray by 
the arc length such that X(0) G T and X(s) moves in the orientation as s 
increases. When {|X(s) | ;s G R} is boimded, X(s) repeats reflections on the 
boundary T infinitely many times as s tends to ±oo. Let the j-th reflection 
point Xj be on Tij. Then a bounded broken ray defines an infinite sequence 
£ = { • • • , Z0, Zi, ••• } , which is called the reflection order of X(s). Remark 
that, for a bounded broken ray with direction, there is freedom of such represen
tation, that is, the freedom of the choice of X(0). Therefore the correspond ance 
between bounded broken rays and is not one to one. We set 

№ = \x0x1\ 

where Xj denote the j-th reflection point of the broken ray corresponding to 

For a real valued function g(£) € ^ ( E ^ ) , we define C(s) by 

C(a) = exp 
OO 

n=l 

1 
n s/(0+s(0+ 

e x p S n ( - s / ( 0 + s ( 0 + ^ ) 

Denote by uo the abscissa of convergence of FD(S), that is, 

uo = inf{i/; FD{S) converges absolutely for Res > v} 

If we choose a(£) in a suitable way, there is a2 > 0, which is a constant deter

mined by (9, such that the singularities of FD(S) and 
d 
ds 

log ((s) are coincide 
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in {s; Res > 1^0 — ^ 2 } ' The function g(£) with the above property is determined 
uniquely by the geometry of O. 

Thus, if we can show the existence of poles of — — log in {s; Res > 
as 

vo — ^2}, we get the existence of poles of P D ( S ) . 
Now we turn to considerations on the singularities of £(s) corresponding 

to Oe of in Theorem 3.2. Remark that (A) in Theorem 2.2 implies (H.2) for 
Oe when e is small. 

We denote /'(£),<?(£) and ((s) attached to Oe by / e (0>5e(0 a n d Ce(5) 
respectively. It is easy to see that, by setting /o (0 = I P ^ P ^ J , 

(4.1) |loge| \\\fe - fo\\\e ~+ 0 as e 0. 

By using the relationship between the curvatures of the wave fronts of incident 
and reflected waves we have 

I I I & C O - loge-
1 
2 

log 
1 

4 ' 
(cos 0 (0 -

2 
11 |d —» 0 as e —• 0, 

where 0 ( 0 = Z P ^ . ^ ^ P ^ ^ Then, by setting ge(£) = # e(£) - loge and #o(0 
— \ log i ( c o s ^ 2 ^ ) w e have 

(4.2) Ill5e-5OIH0->0 as e ->0 . 

Set 
^max — max I Pi Pj I 

and 

B(i,j) = 1 
0 

if 
if 

l-^P? I — ^max) 
\PiPj\ < d 

max • By changing the numbering of the points if necessary, we may suppose that 

B(iJ) = 0 for all j if i > K + 1, 
B(i,j) = 1 for some j if i < K, 

holds for some 2 < K < L. 
Define k(£) by 

* ( 0 = W o ( O M n a x -

By putting s' = s — (logs + V^-T^O/dmax we have 

-sf£ +g£ + V ^ T T T = -s'fe + h£ + k log £, 
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where 

h£=~g£ + y/^lTr k + (loge + ^ 7 R ) ( / ° ~ / E ) . 

m̂ax 
By tending e to the zero, it follows that 

ho = go + V—ITT fc, 

hence we have 

M O = fifo(0 for £ satisfying J3(£0,6) = 1-

Thus ft,he,k satisfy the conditions required in Theorem 2.1. 
Let Ze(s) be the zeta function defined by using these fe,h£, k. Note that 

we have the relation 

Ce(s) = Ze(s - (log e + x / 1 1 ! 7 R ) / d m a x ) . 

On the other hand, Theorem 3.1 says that there exists e 0 > 0, s0 G R and D0 

such that Ze(s) has a pole in Do, which implies that (£(s) is meromorphic in 
De = {s = z + (log e + V ^ L 7 R ) / d m a x ; ^ G D 0 } and has a pole near s 0 + (log e + 
y/—T7r)/dmax. It is evident that this pole of Ce(s) stays in the domain where the 
singularities of Ce(5) a n d FDI£(S) coincide. Thus the existence of singularities 
of FD,£(S) is proved. 
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LARGE ATOMS IN LARGE MAGNETIC FIELDS 

ELLIOTT H. LIEB 

I. INTRODUCTION. 

In this talk I shall discuss the effect on matter, specifically atoms, of a 
very strong magnetic field. This turns out to be an interesting exercise in 
semiclassical analysis. Results obtained in collaboration with J.R Solovej and 
J. Yngvason will be summarized and details will appear elsewhere [LSY I, II, 
III]. The motivation for studying extremely strong magnetic fields of the order 
of 10 1 2 Gauss is that they are supposed to exist on the surface of neutron stars 
(cf. [FGP]). The heuristic argument usually given to explain these strong fields 
is that in the collapse, resulting in the neutron star, the magnetic field lines 
follow the collapse and thus become very dense. 

The structure of matter in strong magnetic fields is thus a question of 
considerable interest in astrophysics. 

II. THE PAULI HAMILTONIAN. 

To give the quantum mechanical energy of a charged spin-^ particle in a 
magnetic field B, we have to make a choice of vector potential A(x) , x G R 3 

satisfying B = V x A. 

The energy is then given by the Pauli Hamiltonian 

HA = ((p-A(x))-*)2 . (2.1) 

Copyright ©1992 by the author. Reproduction of this article in its entirety by any means is 
permitted. 
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Here p = —zV and a = (<RI, <72,0-3), where 

cri = 
0 1 
1 0 , °2 = 

O-z 
z 0 

1 0 
0 - 1 

are the Pauli matrices. The Pauli Hamiltonian acts in the space L 2 ( R 3 ; C 2 ) . 
We can also write HA = (P — A ) 2 — B • a. In the case A = 0 we get as usual 
Ho = p 2 = —A. We shall here concentrate on the case where B is constant, say 
B = (0,0, B), with B > 0. We choose A = ^ B x x. In this case the spectrum 
of HA is described by the socalled Landau bands evv = 2Bv +p2, where p is 
the momentum along the field and v = 0 , . . . is the index of the band. The 
higher bands v — 1,... are twice as degenerate as the lowest band v — 0. 

As usual in the study of fermionic energies we shall be interested in the 
sum of the negative eigenvalues of operators of the form H — HA~V(X), where 
V(> 0 for simplicity) is an external potential. In this connection there is an 
important difference between if A and the operator (p — A ) 2 which has no spin 
dependence. While the spectrum for (p — A ) 2 is (JB, 00) the spectrum for HA 
is (0,oo). 

Indeed, one can estimate the sum of the negative eigenvalues of H by 
L jV(x)5^2dx1 according to the standard Lieb-Thirring inequality (with a 
magnetic field the proof of this inequality given in [LT] is still correct if one 
appeals to the diamagnetic inequality, i.e., that the heat kernel with a mag
netic field is pointwise bounded in absolute value by the heat kernel without 
a magnetic field.) However, in the case of HA — V the question is somewhat 
more subtle. In fact, if V G L 3 / 2 ( R 3 ) the operator (p - A ) 2 - V has a finite 
number of negative eigenvalues, while the operator HA — V can have infinitely 
many negative eigenvalues (compare [I]). We can, however, prove [LSY I,III] 

THEOREM 1. There exist universal constants LUL2 > 0 such that if 
we let ej(B, V), j = 1,2,... denote the negative eigenvalues of HA — V with 
0 < V E L 3 / 2 ( R 3 ) H L 5 / 2 ( R 3 ) then 

TlejiB^KLiB 
3 

V{xf'2dx + L2 V{xf'2dx. (2.2) 
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We can choose L\ as close to 2/Sir as we please, compensating with L2 large. 

The first term on the right side is a contribution from the lowest band 
v = 0. For large B this is the leading term. 

We now ask the question of a semiclassical analog of (2.2). Thus consider 
the operator 

[(hp-bsL(x))'o\2 -v(x) , (2.3) 

where a(rr) = \z x x, z = (0,0,1) and 0 < v. 
If one computes the leading term in h~l of the sum of the negative eigen

values of (2.3) for fixed b one finds as in [HR] that there is no b dependence. In 
our case, however, we shall not assume b fixed, or more precisely not assume 
that b is small compared with h~l. The reason for this is that in the application 
to neutron stars it is not true, as we shall discuss below that b «C h~l. 

The interesting fact is, however, that we can prove ([LSY III]) a semi-
classical formula for the sum of the negative eigenvalues of the operator (2.3), 
which holds uniformly in b (even for large b). 

T H E O R E M 2 . Let ej(h, 6, v)9 j = 1,2,..., denote the negative eigen
values of the operator (2.3), with 0<ve L 3 / 2 ( E 3 ) n L 5 / 2 ( K 3 ) . Then 

lim 
1 

;|ej(M,v)|/£sci(/i,M)) = 1 , 

uniformly in b, where 

Esc](h,b,v) --
1 

3TT 2 
h~2b (v(xf'2 + 2 

00 

v = 1 
[v{x)-2vbh}X2)dx . (2.4) 

Here lt]+ = t if t > 0, zero otherwise. 

The formula (2.4) was already implicitly noted in [Y]. 

For № < 1 , the right side of (2.4) reduces to the standard semiclassical 
formula from [HR], 

2 
15TT2 

v{xf,2dx. 

(Recall that we are counting the spin which accounts for the 2 in front of the 
sum in (2.4).) For bh > 1, the sum in (2.4) is negligible, and we are left with 
the first term. 
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Formula (2.4) (with h replaced by 1) can be compared with the Lieb-
Thirring inequality (2.2), which holds even outside the semiclassical regime. 
The two terms in (2.2) correspond to respectively the b —» oo (first term) and 
6 —• 0 (last term) asymptotics of (2.4). A natural question, which is similar 
to the Lieb-Thirring conjecture, is whether the semiclassical constant 1/37T2 is 
the optimal value for L\ in (2.2) rather than as proved 2/37T. 

III. THE ATOMIC HAMILTONIAN. 

The Hamiltonian describing an atom with N electrons and nuclear charge 
Z in a constant magnetic field B = (0,0, B) is 

HN = 

N 

r = 1 
H^-z\Xi\-1 

\<i<j<N 

\X{ Xj\ , (3-1) 

acting in H = AL2(E3; C2). We shall here give a short sketch of what we call 
the Thomas-Fermi theory for (3.1). The goal of this theory is to approximate 
the ground state energy 

E(N, B, Z) = inf specHH(N) . (3.2) 

Furthermore, in the case where H(N) has a (normalized) ground state ̂ G W , 
i.e., H(N)ib = E(N, B, Z)ib, we also want to estimate the density 

H(N)ib = E(N | | ^ (x ,x2 , . . . ,XN)\\2Ac2dx2...dxN . (3.3) 

The first step in studying (3.1) is to replace the repulsive two-body term, 
/ j 1 ̂  A \X% X j I , by a socalled self-consistent mean field potential of the form 
Yli / j 1 ^ A (This replacement is as in standard Thomas-Fermi theory (see [L]) 

and shall not be discussed here.) The question is how to find the appropriate 
self-consistent density p. It must of course be an approximation to p^>. 

It should be noted that as we replace the two-body potential by a self-
consistent one-body potential we must also subtract a term 

1 
2 

p(x)\x~y\ 1p(y)dxdy 
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from the Hamiltonian. With this term our new Hamiltonian is 

N 

i=l 
(H^-V(Xi))-

1 
2 

p(x)\x-y\ p(y)dxdy, (3.4) 

with V(x) = Z\x\ 1 — p * \x\ x. The ground state energy of the operator in 
(3.4) (without the extra term) is the sum of the N first negative eigenvalues of 
HA-V. 

We assume now that V is such that we can estimate the sum of the 
negative eigenvalues by the semiclassical formula (2.4). We of course have to 
verify this assumption. Since we will not know the density p until the end 
of the calculation, this verification will have to rely on knowledge of general 
properties of p. This kind of reasoning is typical for self-consistent mean field 
theories like Thomas-Fermi theory (see [L]). 

In Thomas-Fermi theory there is a standard way ([L]) of approximating 
the expectation value of the kinetic energy operator J2iLi Hj± by a functional 
of p using semiclassical formulas like (2.4). In our case we replace YliLi HA (i) 
by / TB(P{X)) dx, where TB is the Legendre transform of the convex function 

2vB?L2 
1 

2vB?L2 
B V3/2 + 2 

CO 

u=l 
V - 2vB?L2 (3.5) 

which is derived from (2.4) (without h). Here we point out that TB is convex 

(by definition) and Tsit) ~ t3 

B2 
for small t (t < B3/2), rB(t) ~ tb'3 for large t 

(t > B3'2). 
The ground state energy of (3.4) should then be well approximated by 

£MTF(P) = TB(P) - V(x)p(x) dx - i 
2 

p{x)\x-y\ 1p(y)dxdy 

TB(P) ~ Z\x\ 1p(x)dx-\- 1 
2 

p(x)\x-y\ 1p(y)dxdy. 

(3.6) 
We call this functional the Magnetic Thomas-Fermi Functional. It is 

studied in detail in [LSY III]. The paper [TY] (see also [FGP]) is probably the 
earliest reference that uses a Thomas-Fermi theory that takes all Landau levels 
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into account. This theory was also studied in [FGPY] and put on a rigorous 
basis in [Y] for the regime B ~ Z4'3. We now choose our density p to be the 
unique minimizer for £MTF constrained to the set f p < N. We denote 

EMTF(N,B,Z) = inf 5MTF)(p) I [P<N}. 

Knowing p we can now prove that £MTF(N, B , Z) is really a semiclassical 
approximation to the true ground state energy for (3.4). To do this one should 
first realize that it follows from the study of £MTF with our choice of p that 
the potential V(x) = Z\x\~x — p * will have the following behavior in Z 
and В 

V(x) = Z4'3v(Zl'3x) if В < Z4'3 

V(x) = ZA'BB2'bv{Z-L'BB2'bx) if В > Z4'3 , (3'7) 

where v is a function which does not depend significantly on В and Z. 
Concentrating on the case В > Z4/3 we see by a simple rescaling that the 

Hamiltonian HA — V(x) from (3.4) is unitarily equivalent to the operator 

Z4/5FI2/5 6A(X)) _ 6A(X)) .A)2 _ V ^ ^ (3>G) 

where 

h=(B/Z3)1/5 and b= (B2/Z)1/5 . (3.9) 

In the case when В < Z4/3 we get Z4'3 in front of [ ] in (3.8) and 

h = Z~1/3 and b = B/Z. (3.10) 

When h is small we can study (3.8) by semiclassical methods. Indeed, 
using (2.4) we can now prove that if Z is sufficiently large and B/Z3 sufficiently 
small, JEMTF approximates the true ground state energy (3.2) as well as we 
please. 

T H E O R E M 3. Let N/Z be fixed and suppose that B/Z3 - > 0 as Z -> 

oo. Then 
E{N,B,Z)/EMTF{N,B,Z) - + 1 asZ^oo. (3.11) 
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Furthermore, if N/Z < 1, then H(N) has a ground state ip. The correspond
ing density рф, defined by equation (3.3), is well approximated by the unique 
minimizer p for SMTF in the following sense. If \ € Co°(R 3) then 

Z~l J(рф(х) - p(x))X((Z1/s + Z-l'bB2'b)x)dx -> 0 . (3.12) 

(The above scaling of \ should be compared to equation (3.7).) We emphasize 
that from the uniqueness the minimizer p is spherically symmetric. 

Notice that from equations (3.9) and (3.10), hb = 1 if В = Z 4 / 3 , which 
when compared to equation (2.4) explains why the behavior in (3.7) changes at 
this point. Indeed, when В > Z 4 / / 3 all electrons are in a certain sense confined 
to the lowest Landau band. This result which is given in the next theorem is 
completely independent of the semiclassical analysis. 

T H E O R E M 4. If is the projection in H = A L 2 ( R 3 ; C 2 ) onto the 
subspace where all electrons are in the lowest Landau band we define the con
fined energy 

Eo(N, Б, Z) = m{specnIl^H(N)U^ . (3.13) 

Then if N < \Z for some fixed A > 0 we get 

E0(N,B1Z)/E(NJB,Z) -* 1 if Z4'3/B -+ 0 . (3.14) 

The preceeding analysis gives the following different regimes in В and Z. 

1) В <C Z 4 / 3 , Z large (i.e., hb < 1, h small): 

The effect of the magnetic field is negligible. We get standard Thomas-Fermi 

theory with тв(р) ~ p 5 / / 3 . 

2) В ~ Z 4 / 3 , Z large (i.e.,hb~l,h small): 

The magnetic field becomes important. The function тв is complicated because 
we have a finite number of terms in (3.5). The density is still almost spherical 
and stable atoms are almost neutral (see [Y]). 
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3) ZA'3 < B < Z 3 , Z large (i.e., hb»l,h small). 

The magnetic field is increasingly important. Most electrons will be confined to 
the lowest Landau band. The function TB is simple since there is only one term 
in (3.5), TB(P) ~ p3/B2. The density is almost spherical and stable atoms are 
almost neutral. Furthermore, the atom is getting smaller. The atomic radius 
behaves like ZL'BB~2'B (compare (3.7) and (3.12)). 
4) B~Z3 (i.e.,h~l). 

In this regime one can no longer use semiclassics. The functional £MTF from 
(3.6) is not a good approximation to the energy. When this talk was given we 
had no description of this region, but now we do in terms of a density matrix 
functional. See [LSY I, II]. 

5) B » Z3. 

When B » Z3 and Z is large we can find a new functional of p very different 
from £MTF which approximates the energy. We shall discuss this in the follow
ing section. In this super strong case it turns out that the atom becomes very 
cylindrical in shape. 

We end this section by a short discussion of which regime is relevant in the 
case of neutron stars. Since the natural unit of magnetic field is (2m) 2e 3c/ft 3 = 
9.4 x 109 Gauss, we get in our units where all relevant physical constants have 
been suppressed that the magnetic field on the surface of a neutron star is 
in order of magnitude B ~ 10 2. Thus for, say, iron with Z = 26 we have 
bh = ( J B / Z 4 / 3 ) 3 / 5 ~ 1. To make a quantitative evaluation we would of course 
have to really estimate error terms in the analysis. Qualitatively, however, (all 
relevant constants are of order 1) it seems unreasonable to assume bh «C 1 in 
this case. Thus the magnetic field might have a significant effect. 

IV. T H E SUPER-STRONG CASE B > Z3 . 

We shall here present the correct energy functional of the density when 
B » Z 3 , and very briefly indicate what is involved in proving the correctness of 
the approximation. Note: When this talk was given the super-strong functional 
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was the only description we had of region 5. Since then we were able to simplify 
this functional even further to the hyper-strong functional. See [LSY I, II]. 

The correct functional is now 

Sssip) = f ( ^ V P ) - j ^P{x) + \ J P{x)\x-y\-lp{y)dxdy, (4.1) 

with the condition that 

p(x)dx3 < — for all (xi,x2) . (4.2) 

The claim is that 

Ess(N) = w£{Sss(p) I JP<N, p satisfies (4.2)} (4.3) 

is a good approximation to the energy in a certain regime of B and Z with 
J 5 > Z 3 . 

In understanding this the first step is to recall that from Theorem 4 all 
electrons are confined to the lowest Landau band. In the lowest band the 
degeneracy is such that we have B/27T states per area perpendicular to the 
field B . Thus given any infinite cylinder parallel to the field and of base area 
2ir/B. If there is more than one electron in such a cylinder, they will have to 
occupy orthogonal states in the parallel direction, but this one can prove costs 
too much energy if B » Z3. This shows that (4.2) must hold. The functional 
(4.1) now follows because in each infinite cylinder with only one electron, the 
electron can be treated as a boson, i.e., we can neglect the exclusion principle 
and that is why Ess is reminiscent of (bosonic) Hartree theory. (For details 
see [LSY I, II]). 
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Resolvent Estimates and Time-Decay 
in the Semiclassical Limit 

SHU NAKAMURA 

1. Introduction. 
In this note we study the Schrodinger operator 

H = -(tiz /2)A + V(x), on L2(Rd), h > 0 

in the semiclassical limit: % —» 0. In particular, we are interested in the scatter
ing theory and long time behaviors of the time evolution: e~tiH/h<p. Boundary 
value of the resolvent: l im^+o (H - A ± ie)~l = (H — A ± iO)-1 plays essential 
roles in the scattering theory, and various observable quantities, e.g., scattering 
amplitude, time-delay, etc., are represented by it ([RS]). In studying the bound
ary value of the resolvent, the theory of Mourre is quite powerful and has been 
applied to many problems (e.g., [M], [PSS], [CFKS]). Jensen, Mourre and Perry 
extended the theory using multiple commutators, and proved the existence of 
boundary values of powers of the resolvent ([JMP]). Using the result they also 
obtained time-decay results (see also [Jl]). 

In a series of papers [RT1]-[RT4], Robert and Tamura systematically studied 
the semiclassical limit of the scattering process for nontrapping energies. In 
their arguments, an estimate of the form: 

( x ) - a ( H - AdbiO)"1 (x)~ < CJi -l h > 0,a > 1/2, 

which is called semiclassical resolvent estimate, plays a crucial role. Here we 
1 /2 

have used the standard notation: (x) = (l + \x\2) . They proved it using a 
parametrix for the time evolution. The proof was simplified and generalized by 
several authors with the aid of the Mourre theory ([GM], [HN], [G], [W2], etc.). 
Moreover, Wang proved semiclassical estimates for powers of the resolvent ([Wl], 
[ W 2 ] ) : 

( x ) - Q ( H - X±i0)~n (xY < Cah~ h > 0 , a > n - 1/2. 

S. M. F. 
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We also want to mention works on semiclassical resolvent estimates for high 
energies ([Y], [J2]). 

On the other hand, motivated by works on the barrier top resonances ([BCD], 
[S]), the author generalized the semiclassical resolvent estimate to the simplest 
trapping energy, namely the barrier top energy ([N1]). In this case, the estimate 
has the form: 

(x)~a ( H - X ± i O ) ~ 1 (x) <Cañ~¿, h > 0 , a > 1/2, 

where A is the barrier top energy. 
The aim of this note is to construct a semiclassical analogue of the multiple 

commutator method of Jensen, Mourre and Perry, and apply it to the barrier 
top energy and nontrapping energies. We note that for the nontrapping energy 
case, this was done by Wang ([W2]). Roughly speaking, our abstract result is 
as follows: Let A and H be a pair of self-adjoint operators satisfying certain 
regularity conditions (cf. (H1)-(H4) in Section 2). If, in addition, they satisfy 

EA(H)[H,iA]EA(H) > chPEA(H), ft > 0 , 

for some 1 < ¡3 < 2, where A is a neighborhood of an energy E, then we can 
show 

(A)~a ( H - E ± i0)~n (A)~a\\ < C J T n ^ ft > 0,a > - 1/2. 

/3 = 1 corresponds to the nontrapping case, and ft = 2 to the barrier top 
case. We don't know any concrete examples with 1 < (3 < 2. Even though 
the restriction (3 < 2 doesn't seem crucial, our proof dosn't work for the case 
/3 > 2. Time-decay results in the semiclassical limit follow from the above 
result (Theorem 3). In particular, it follows that if / £ Co°(R) is supported in 
a small neighborhood of the barrier top energy, then 

(x) s e - H H f ( H ) { x ) - < C ñ - ( t ) - , t e R, 

for s > sf > 0. 
This note is organized as follows: In Section 2 we state the abstract results, 

and it is proved in Section 4. Applications to Schrödinger operators are discussed 
in Section 3. 
Acknowledgement: The work was motivated by a comment by Professor D. 
Robert on the author's talk in the Nantes conference. The author is grateful 
to Professor Robert for the constructive comment, as well as for organizing the 
wonderful conference. He is also grateful to Professor C. Gerard and Professor 
X. P. Wang for valuable comments. 

248 



RESOLVENT ESTIMATES AND TIME DECAY 

2 . Abstract Results. 
Let H and A be ^-dependent self-adjoint operators on a Hilbert space 7i 

(h G (0,oo)). We first suppose 

(HI) D(A) n D(H) is dense in D(H) with respect to the graph norm. 

Let Bo = H. We wish to define Bj inductively by 

Bj = [B j - i , iA] , i = 1 ,2 , - . - , 

at least formally. In order that we suppose 
(H2) B\ = [H, iA], defined as a form on D(H)nD(A), is extended to a bounded 

operator from D(H) to H. Inductively, 2?;-+1 = [Bj, I'A], defined as a form 
on D(H) PI is extended to a bounded operator from D(H) to H 
for any j > 1. 

In this sense, H is C°°-smooth with respect to A. We suppose the following 

^-dependence of these commutators: 

(H3) For each j > 1 there is Cj > 0 such that 

\ \Bj(H+ < Cjhj, h > o . 

(H4) There is C > 0 such that 

||(H + i y ^ H , [H,iA]](H + i)'11| < C h \ h > 0. 

In applications, (H1)-(H4) follow easily from the symbol calculus. See Section 3. 
Now let us fix an energy EQ £ R. The next inequality, a semiclassical variation 

of the Mourre estimate, is essential. Let ¡3 > 1. 

(H5:/?) There is an interval A 3 E0 and C > 0 such that 

EA(H)[H,iA]EA(H) > Ch^EA(H), h > 0 , 

where EA(H) is the spectral projection of H and A. 

We prove the next theorem in Section 4. 

THEOREM 1. Suppose (Hl)-(H5:p) with 1 < /3 < 2. Then there is an interval 
A 3 E0 satisfying the following: Let n > 1 an integer, and let s > n — 1/2, then 
for any A G A, 

lim (A)~s ( H - X ± i6)~n (A)~s = (A) '8 ( H - X ± i0)~n (A)~s 
8—•-l-O 

exists and satisfies 

{ A y 8 ( H - x ± i O ) - n { A ) - 8 < C h ~ n ^ ft > 0,A e A. (1) 

REMARK: Condition (H4) is missing in Lemma 2.3 of [N2], but we need it even 
for n = 1 if ¡3 > 1. On the other hand, it is not necessary if /3 = 1 (cf. Proof of 
Lemma 6). 

The next result on time-decay is a direct consequence of Theorem 1. 
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THEOREM2. Suppose (H1)-(H5:(3) with 1 < /3 < 2 . Then there is an interval 
A 3 Eo such that for any f £ C Q ° ( A ) and for any constants s > s' > 0, 
s " > s ' ( ( 3 - l ) , 

( A ) - S E - I I H ' H F { H ) { A ) - S < C%-*" (T)-* ' , H > 0, T € R. 

PROOF: We follow the argument of Theorem 4.2 in [ J M P ] . Since 

(2) 

d 
dX J 

j 
EUH) = 1 

2ni 
d 

dX 

D 
((H - X - iO)-1 - (H - X + iO)-1) 

2m 
( ( H - X - iO)-*-1 - { H - X + iO)"'-1), 

it follows from Theorem 1 that 

( A ) - ° 
d 

dX 

j 
Kf(H) tie-nH/Kf(H) 

if s > j ' + 1 /2 . By integration by parts and the functional calculus, we have 

tie-nH/Kf(H) = 
»00 

-OO 
tie-iiX'h f(X)E'xdX 

OO e-a\/n —ith 
d 

d\ 
(f(X)E'x)dX. 

Thus 
AD { A ) - S E - I I H ' H F { H ) { A ) - A tie-nH/Kf(H) 

and hence 

(Ay8 e-itH'nf{H) {A)~3 tie-nH/Kf(H)tie-n 

if s > j + 1/2. Now (2) follows by interpolation. 

3. Applications. 
Here we apply the results of Section 2 to Schrodinger operators: 

H = -
l o 
2 

2A + V(x) on H = L2(RD) 

with d > 1, h > 0. Throughout this section we assume the potential V{x) 
satisfies the following condition: 

(P) V € C ° ° ( R D ) and for any multi-index a, 

d 
dx 

a 
V(x] tie-nH/Kf(H) x e Rd. 

l-oo 
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Let h(x,p) = \p2 + V{x) be the corresponding classical Hamiltonian. We 
denote the solutions of the Newton equation: 

x'(t) = p(t), p'(t) = 
d v 
dx 

(x(t)) 

with the initial condition: x(0) = x0l p(0) = Po by x(x0,po;t) and p(x0,po;t). 
We write the cj-limit set as 

o;-lim(x0,po) = 
oo 

M=l 
\(x(x0,po:t),p(xo,po;t)) \t > M \ . 

Now we fix an energy EQ G R. EQ is called nontrapping if the following 
condition is satisfied: 
(NT) There is e > 0 such that for any (x,p) G Rd X RD satisfying h(x,p) G 

[E0 - e , E o + e], u-\im(x,p) = 0. 
We also suppose that V(x) satisfies the virial condition near x — oo, i.e., 
(V) There are R > 0 and 6 > 0 such that 

(Eo - V(x)) -
1 
2 x 

dV 
dx 

(x) > 6 for \x\ > R. 

THEOREM 3. Suppose (P), (NT) and (V). Then there is A : a neighborhood of 
Eo, such that: 

(i) For any n > 1 and s > n — 1/2, the limit 

lim (x)~s ( H - X ± i6)~n (x)-s = (x)-8 ( H - X ± i0)~n (x)-8 
8—>-+0 

exists for X € A and sufficiently small h > 0. Moreover it satisfies 

(x)-s (H - X ± i 0 ) - n (x)-s < Ch~n, \ e A,h > 0. (3) 

(ii) For any f e C§°(A) and s > s' > 0, e > 0, 

(x)-8 e-HH'hf{H) ( x p < Ch~e (tys , t e R , h > 0. ( 4 ) 

REMARK: Theorem 3 was first proved by Wang ([Wl] Theorem 2) using dif
ferent methods. See also [W2], where the estimate (3) is proved for TV-body 
Schrodinger operators. We note (4) is not optimum. In fact Wang showed that 
if V(x) is short range then the estimate holds with s = s' and e = 0 ([Wl] 
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Theorem 1 ) . It seems difficult to obtain such an estimate from ( 3 ) . We expect 
that the optimum estimate can be proved by more direct method. 

Now we turn to the barrier top energy case. If V attain its maximum at a 
point, then EQ = sup V is clearly trapping energy in the classical sense. We call 
it the barrier top energy, and we suppose: 

(BT-i) The origin is the unique nondegenerate maximum of V(x) , i.e., 

E0 = sup V(x) = V(0), det ( ^ £ ( 0 ) ) ± 0. 

(BT-ii) There is e > 0 such that any classical particle with the energy in [EQ — e, 
EQ + e] has no o;-limit set except for (0,0), i.e., 

| J ^Km(s ,p ) = { ( 0 , 0 ) } . 
h(x,p)e[E0-c,Eo+e] 

(BT-iii) There are no homoclinic orbits with the energy EQ, i.e., if x(t) —» 0 as 
t —» ±oo then x(t) = 0. 

THEOREM 4 . Let EQ be the barrier top energy and suppose (P), (V) and (BT). 
Then there is A : a neighborhood of EQ, such that: 

(i) For any n > 1 and s > n — 1/2, the limit 

lim (x)-8 ( H - X ± i6)-n (x)-8 = (x)~8 ( H - X ± i0)~n (x)~8 
8 —>--|-0 

exists for X € A and sufficiently small h > 0. Moreover it satisfies 

{x)~s ( H - X ± i 0 ) ~ n (xY < Ch -2n A G A,7i > 0. ( 5 ) 

(ii) For any f € Q ° ( A ) and s > s' > 0, 

(x)-8 e-iiH'nf{H) (x)~8 < Crr8 (t)-8', t € R, h > 0. ( 6 ) 

REMARK: ( 6 ) implies that it takes at most time of order 0(h8^8 ) for a quan
tum particle with the energy near Eo to escape from a bounded region. As in 
Theorem 3, we expect that ( 6 ) holds with s = sf. 

In the proof, we use the symbol class S(m,g) with m = m(h;x^)1 g = 
dx2/(x)2 + dZ2l(t)2. S(m,g) is the set of functions: / ( f t ; x , 0 € C°°(Rn x Rn) 
with a parameter ft > 0 such that for any a and /?, 

d 
dx, 

a d 
aX 

№ ; x , 0 < CaB m(h; x, 0 (x)"|a| ( 0 ~ m , x, | € Rd. 
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The Weyl operator with the symbol 6(ft;x,f) (or the ft-pseudodifferential oper
ator with the Weyl symbol b(h;x,£) ) is defined (formally) by 

bw(h;x,hD)^(x) = (27rh)-n j e ^ - ^ / H ^ ; ^ , ^ ^{y)dyd^. 

Conversely, we denote the Weyl symbol of an ft-pseudodifferential operator by 
aw('), i.e., aw (bw(h;x,hD)) = b(h;x,£). (cf. [H]; see also [R], [G], [Nl] for the 
calculus of ?i-pseudodifferential operators.) 

It is easy to see that h(x,£) = |£2 + V(x) G S({£)2 ,g) is the symbol of H. 

LEMMA 1. Let a G S((x) ( £ ) ,g) and suppose A = aw(h;x,hD) is essentially 
self-adjoint on the Schwartz space S. Then the pair of operators H and A 
satisfies the conditions (H1)-(H4). 

PROOF: ( H I ) is clear since S is dense in D(H) = H2(Rd). For any B = 
bw(h',x,hD), b G S((02 ,#) , we have 

*W{[BM\) 6 S((x) ( 0 • (02 'h(x)-1 (t)-1 ,g) = S(h(02 ,<?), 

and hence ||[5,M](jH" + ^ I*1 particular, 

oW (B1) = aw([H,iA](H + i)'1) e S(h ( 0 \ g ) ; ||fli(# + i)-1|| < Ch. 

Inductively, we have 

aw(BJ) = <jw{\Bj-i,iA]) e S(V {02 ,9 ) ; \\Bj(H + *>—*|| < C h \ 

for j > 2. This proves ( H 2 ) and ( H 3 ) . Similarly, we have 

aw([H,[HM]])eS(h2 (x)-1 ( 0 \ g ) , 

and hence 

\\(H + o-Mfr,[H,iA]](H +1)-11| < en2. I 

In order to prove Theorems 3 and 4, it remains to show that there is a G 
S({x) (£) ,g ) such that (H5: /?) holds with (3 = 1 and 2, respectively. For the 
nontrapping case, such a(x,£) was constructed by Gerard and Martinez [GM]: 

LEMMA 2 . Suppose (P), (NT) and (V). Then there is a real-valued symbol: 
a G CS°(Rd x Rd) such that: 

(i) a{x,Z) - x • i G C§°(Rd x Rd); 
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(ii) There are e > 0 and 6 > 0 such that for any (x,£) € Rd x Rd with 
h(x,£) G [E0-e ,E0 + e], 

{ h , a } ( x , 0 > 6 , (7) 

where {•, •} is tie Poisson bracket: 

{a ,b} = 
d 

¿=1 

da db da db 

diidxi dxi d£i 

Let ao(x,£) = x • £. then Ao = a™(x,TiD) is the generator of the dilation 
group, and hence it is essentially self-adjoint on S. It follows from Lemma 2-(i) 
that a € S({x) (f) ,g) and A = aw(x,hD) is also essentially self-adjoint. Thus 
A satisfies the conditions of Lemma 1. The next lemma follows from (7) and 
the functional calculus: 

LEMMA 3. Let a(x,£), e and 6 as in Lemma le:a2. Then for any 6 > 8' > 0 and 

f e C § ? ( E o - e , E o + e), 

f(H)[H, iA\f(H) > 6'hf(H)2, h > o . (8) 

For the detail, we refer [GM]. See [G] for the 3-body case, and [W2] for the 
iV-body case. See also [HN] and [N2] for similar discussions. 

PROOF OF THEOREM 3: By these lemmas, H and A satisfy (H1)-(H5:1). Thus 
Theorems 1 and 2 apply to obtain (3) and (4), respectively, with the weight 
(A)~s instead of (x)~s. We note that 

f(H)[H, iA\f(H) < c 

if s < 2n. If s — 2n, the above estimate follows from the observation: 

aw Ux)-2n(H + i)~n(A)2n) e s Ux)-2n • ( 0 ~ 2 n « x ) ( 0 ) 2 n , g ) = S ( i , g ) , 

and it is extended to 0 < 5 < 2n by complex interpolation (cf. [PSS], Lemma 8.2). 
Combining these we obtain the conclusion. | 

For the barrier top energy case, such a(x,£) was constructed in [N2]: 

LEMMA 4. Suppose (P), (V) and (BT). Then there is a real-valued symbol: 
a(a?,£) G C ° ° (RD x Rd) such that: 

(i) a ( x , 0 - x • i e C£°(Rd x Rd); 
(ii) There are e,a,P > 0 such that for any (x , f ) G Rrf x Rd with h(x,£) G 

[ E o - e , E o + e], 

{ / i , a } ( x , 0 > m i n ( a ( | x | 2 + |e |2),)8). (9) 

The next lemma follows from (9) analogously to Lemma 3: 
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LEMMA 5. Let a{x, £), s as in Lemma 4. Then for any f G CQ°(EO — £, EQ + e), 
there is c > 0 such that 

f { H ) [ H M ] f { H ) > ch2f (H) \ n > o . (10) 

For the detail, we refer [N2]. Now Theorem 4 follows from Lemmas 1 and 5, 
analogously to Theorem 3. 

4. Proof of Theorem 1. 
Throughout this section we assume (H1)-(H5:/?) hold with 1 < (3 < 2. We 

trace arguments in [JMP] and [CFKS], Section 4.3. Let / G C $ ° ( R ) be sup
ported in A of (H5:/?), and / = 1 in a neighborhood of E0 . Then (H5:/?) implies 

f (H) [H , iA}f (H)>ch^ f (H)2 . (11) 

We often write / = f (H) and / = 1 — / for simplicity. We also write p = (A)-1. 
For e > 0 and z G C \ R, we let 

G ? ( z ) = G™ = ( H - ieM2 - z)-1; M2 = f (H)[H, iA\f (H) > 0. 

We fix a neighborhood of E0: A ' CC {A|/(A) = 1}, and let 

ÇL± = { z e C|Re z G A' , ±Im z > 0 } . 

LEMMA 6. For e > 0, Im z > 0, (H - ieM2 - z) is invertible. The inverse is 
continuous in e for e > 0 and smooth for e > 0. Moreover, there are €Q > 0 and 
C > 0 such that 

HfGf 

HfGf 

HfGf 

H f G f 

HfG™ 

< C h - ^ e - ^ \ ^ , G ^ ) \ 1 / 2 , H f G f 

< Ch-pe~ \ 

HfGf 

;i2) 

(13) 

(14) 

for 0 < s < e0, 0 < h < 1 and z € fi±. 

PROOF: For z = fi + i6, ¡1 € A', 6 > 0, 

( # - e '£M2-?)d = (F - isM2 -n)<p\ +62 \\ip\\2 + 2e6 \\M<p\\2 

62\\<p\\2, <p€D(H). 
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Hence G ^ ( z ) exists and it is easy to see that it is smooth in e if e > 0 because 
M2 is bounded. Now we use the Mourre estimate (11): 

\\fG»<p\\2 = ( V , G » ' f * G ? < p ) 

< Oh-*3 (<p,G™*M2G™<p) 

< Ch-Pe-1 (<p, G f * (2eM2 + 21m z) G?<p) 

= C h ^ e - 1 ( < p , i ( G ? * - G ? ) if) 

< 2 C h - P e - 1 \ ( < p , G ^ ) \ . 

This proves (12). Estimate (12) implies 

\ \ f G ^ \ \ < C h - ^ e - ^ 2 \ \ G ^ \ \ 1 / 2 . (15) 

Now we decompose G^1 as 

GM / G f / G f 

<Ch-^2e -1 /2 \ \Gf \ \1 / + f ( H - z ) - 1 + f { H - z ) - ' e M 2 G ™ 

K C h - ^ e - 1 ' 2 G f 1 1 + C { l + he G f 

By solving the quadratic inequality in | | G f || , we obtain 

\G?\\ KCh-Pe-1 (16) 

if he is sufficiently small. We set So > 0 so small that it holds for any 0 < h < 1. 
(13) follows immediately from (16). 

In order to prove (14), we first note that by the resolvent equation, 

/ G f < f ( H - z ) - 1 + f ( H - z)-1 (ieM2) G f 

< C [ l + he- Ch 'Pe-1) < Ch1-!*. (17) 

We take g € C Q ° ( R ) SO that g = 0 in a neighborhood of A and g f = / . Then 
(17) holds for g G f also. We decompose / G f as 

/ G f = f ( H - z)-1 {ieM2) g ( H ) G ? + f ( H - z)~l [g(H),ieM2] G f . 

Since (H4) implies 

\[g, ieM2]\\=e\\f[g,[H,iA}]f\ \ 
< e \ \ [ ( l - g ) , [ H M ) } \ \ < C h z e , 

and P < 2, we have 

/ G f < C + Che • Ch*-? + Ch2e • h '^e '1 < C ( l + h2~n < C. 

• f f /Gf < C easily follows from this. 
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LEMMA 7. Let SQ as in Lemma 6. Then 

fG?ptl> fG?ptl> 

fG?ptl> fG?ptl> fG?ptl> 
(18) 

(19) 

for 0 < e < £0, 0 < h < 1 and z € Q±. 

PROOF: Let FM = pG^p. Substituting (p = pip to (12) and using (14), we 
obtain 

\ \ G f p ^ \ \ < fG?ptl> +||/GeMpV|| 

Gfp^\\< fG?ptl> +||/GeMpV||GeMpV||eMpV 

< C l + z r ^ V 1 ' 2 FeM ' " J I M I - e M '"JIMI 

Thus 
\\Gfp^\\< fG?ptl> +||/GeMpV||GeMpV|| (20) 

On the other hand, as in the proof of Lemma 4.15 of [CFKS], we have 

1 d 
i de 

FeM = PGfM2G™p = Q1+Q2 + Q3, 

Q, = - p G f f B ^ G f p , 

Q2 = - p G f j B . f G f p - p G f f B j G f p , 

Q3=pGM{H,iA]GMp. 

By (13), (14) and (20), Q \ and Q2 are estimated as follows: 

| | Q , | | < G Y M B ^ H + i)-1 (H + i ) f G ? < C h , 

IIQ2II < 2 G?f\\ \\B.iH + i)"1 II \\(H + i)f\\ \\G?p\\ 

< C h l + h-We-1 '2 \\FFM\r) 

We decompose Q3 = Qa + Q5 where 

Q4 = p G f [H - ieM2 - z,iA] G™p, 

Qh = p G f [ieM2,iA] G f p . 

Using (20) again, we have 

I I ^ H < 2 | | p G f ^ | | < 2 | | p G f | < C ( l + ft-'/V1/2 F™ V 
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Since 

\ \ [M\iA}\ \<2 \ \ [ fM)\ \ \ \ [HM}f\ \ + \ \ [ [HM]M]f\ \<Ch2, 

Ok is estimated as 

HQsII < 2e \\pG?\\ • Ch2 < Ch2-*3 \\FeM\\ < C \ \ F ? \ . 

Combining these, we obtain 

d 
de 

F£M l + h - ^ e - " 2 \ \ F ? \ f 2 + \ \F? \ { (21) 

By (13) and (14), we learn 

F™\ < \\G^\ KCh-Pe-1. (22) 

(21) and (22) imply 4-F™ < C (1 + h ' ^ e ' 1 ) . Integrating this, we obtain 

\ \ F r M \ \ < C h - ^ ^ + C 
AD 

D 
1 + K-fiv-1 du 

< C h - P (l + I log el). 

We substitute this to (21) and integrate again: 

II TpM\\ / n%-P . n%-P AF 

AF 
(l + |loge|)de <Ch~p . 

This proves (18) and (19) follows from (18) and (20). 
For m > 2 we set 

Cm(e) = 
m 

> = 1 

i - ieV 
AF 

AF e > 0, 

which is bounded from D(H) to H. 

LEMMA 8. There is £o > 0 such that (H + Cm(e) — z) has a bounded inverse 
G€(z) for 0 < e < So and z G fi±. Ge(z) is continuous in e for 0 < e < Sq and 
smooth for 0 < e < Sq. Moreover, it satisfies 

\\Ge\\ + \ \ H G e \ \ < C h - " e - \ 

\\Gep\\ + \\HGep\\<Cn-^-1/2. 

(23) 

(24) 
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PROOF: We construct G£ following [ J M P ] . ( 1 4 ) implies eB1fG™J < Che. 

Hence 

G°e(z) = G f -G°e(z) = Gf - i e B . f G ^ f ) ' 1 ( - i e B 1 ) f G ? 

is bounded, and it is an inverse to (H — ieB\f) if £ is sufficiently small. More
over, by ( 1 3 ) , ( 1 4 ) and ( 1 9 ) , we learn that estimates ( 2 3 ) - ( 2 4 ) hold for G°e and 

/ G ° + HfG°£ < C. ( 2 5 ) 

Now ( 2 5 ) implies efG^Bi < Che, and hence 

Gl = G°s-G°e ( - ieBi ) ( l + fG° { - i e B , ) ) * / G ° 

is bounded, and it is an inverse to (H — ieB\ — z). Moreover, estimates ( 2 3 ) -
(25 ) hold for G\. 

At last, noting 

\\(Cm(e) - { - i e ) B , ) G \ \ \ < \\{Cm - (-ie)5,) (H + i)"11| \\(H + i)G\\\ 

< Ch2e2 • Ch-^e'1 < Ch2~^£ < Ce, 

we learn that 

Ge - G\ - G\ (1 + {Cm - (-te)JJi) Gj ) '1 (Cm - (-ie)B1)G1e 

is bounded and it is an inverse to (H + Cm - z). Now ( 2 3 ) - ( 2 4 ) follow easily 
from the corresponding estimates for G\. The smoothness in e > 0 follows from 
the //-boundedness of Bj. | 

LEMMA 9. Let Gc(z) as in Lemma 8. Then 

d 

as 
•Ge = ( - i ) \ G e , i A ] + ; 

(-Ì£)m 

m! 
•GeBm+iGe. ( 2 6 ) 

P r o o f : We first noie 4-G, = -G , ( 4 -Cn le ) ) G „ and 

d 

de 
Cm(e) = 

A 

de 

AJ 

í=l 

(-if Y 
GeBm+iGe в,- ( - 0 

m 

GeBm+iGe 

GeBm+iGe 

0' - 1)! 
2A 

= - i B i + (-i) 
m 

GeBm+iGe 

GeBm+iGe 

i! 
GeBm+iGe ( - 0 

(-ie)m 
GeBm+iGe 

GeBm+iGe 

= ( - ¿ ) [ t f + C m - z , ¿ A ] + ¿ 
(-ie)m 

mi 
GeBm+iGe 
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(23) follows from this and [Ge,iA] = -G€[H + Cm - z,iA]Ge. | 
PROOF OF THEOREM 1: Since the case n = 1 is already known, we may suppose 
n > 2 and hence s > n — 1/2 > 1. Let m > /3(n + 1) — 1 and let Ge = 
(H — Cm — z ) -1 , Fe = p8(G€)np8. We compute its derivative in e: 

d 
de 

Fe = p* 
d 

de 
Gn-j-lps 

n-1 

i=0 

AKS d 

de 
AF Gn-j-lps 

n-1 
Gn-j-lps 

j=0 
p8Ge3\Ge,iA\Gen~ 3 p8 + i 

- i s 
ml 

Gn-j-lps 

Gn-j-lps 

p ' G ^ B ^ G ^ - ' p 8 G n 

= -ip8 \Gen,iA] p8 + i-
- i s ) 

ml 

m n~1 

j=0 
p8Ge^iBrn+lG€n->p8 

= 1 + 11. 

We estimate II using Lemma 8: 

\\II\\ < Cem 
n-1 

j=0 
\\PG£\\ G£> B ^ i H + i)-1 {H + i)G£n->-> \\\Gep\\ 

G£n-G£n-
n-1 

G£n-
PG£\\ G£> B^iH + i)-1 {H + i)G£n->->G£n-

n—j — l 

< (7̂ (m+1)-(n+1)/3£:m-n < c. 

In the last step we have used the condition: m + 1 > (n + 1)(3. The other term 
is 

| | / | | < 2 | | ^ G e n A p ' | | < 2 p - ' C V < 2 | | / G e V I | 1 " 1 / s | | G , e V I I "G£n-G£n-

< CIIFJI1-178 W1G£n-
n-1 

h ^ e - 1 ' 2 ) 
lis 

<Ch-nVse-(n-ll2V*\\Fe\Y-lls. 

Combining these we have 

dFs 

de 
< c ( L + n - N N » £ - { N - H 2 ) I S \ \ F E § - V > \ . (27) 

On the other hand, Lemma 8 implies 

IIF.II < C \\pGA\ \\Ge\\n-2 \\G.p\\ < C h - ^ e - ^ . 

G£n-
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If we substitute < CTt~np£~1

y 7 > 0, to (27), by integration by parts we 

obtain 

\\F II < C f t - " / * £ - 7 ( l - l A ) - ( n - l / 2 ) / 5 + l < Ch-nPE-7+(l-(n-l/2)/s)^ 

Since 1 > (n - 1/2)/s , finitely many iterations give us | |F e | | < Ch n^ for any 

0 < e < So- Hence 

sup 
supsup 

ps(H-z)-np< < sup sup \\p8Ge

np8\\ < Ch-n(i. 

(l-lA)-(n-l/2) 

Since the existence of the boundary value is proved in [JMP], this completes the 

proof. I 
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Magnetic Breakdown 

James Ralston 

This paper treats a problem in quantum mechanics by what 
might be called the "classical" method of semi-classical analysis. 
One makes an Ansatz and solves eichonal and transport equations 
to determine phases and amplitudes. However, the problem has 
some nonclassical aspects. First, the small parameter in the prob
lem is not Planck's constant but the magnetic field strength, e. 
When one scales variables so that powers of e appear where they 
should in semi-classical analysis, the electric potential becomes a 
periodic function of x/e. This complicates the Ansatz, and makes 
the wave function one is trying to construct vector-valued rather 
than scalar. In most regions one can uncouple the components and 
construct the wave function one component at a time. That case 
was discussed in [2] and [4]. 

In the situation called "magnetic breakdown" one can only un
couple a two component system, and the matrix of the zero mag
netic field operator on this system has a codimension two eigen
value crossing of the form discussed in [5]. The eichonal equation 
becomes one treated by Horn in [7], and, after several reductions, 
the transport equations become a 2 x 2 first order hyperbolic sys
tem which degenerates on the set where the eigenvalues cross and 
uncoupling is impossible. Much of the analysis here is devoted to 
deriving that system and showing that it has solutions. However, 
the solutions do not add much to one's qualitative understanding 
of magnetic breakdown. Perhaps the oddest feature of the ulti
mate transport equations is that one cannot solve the initial value 
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problem for them. Their solutions are uniquely determined by the 
inhomogeneous terms. Fortunately, since it would be embarassing 
to devote so much effort to constructing the zero function, one can 
prescribe nonzero inhomogeneous terms for the top order trans
port. 

I should emphasize that the constructions here are time-dependent. 
One could construct asymptotic solutions to the time-independent 
Schrodinger equation by suppressing the time dependence in the 
Ansatz as was done in the construction of quasimodes in [2], [4] 
and [7]. However, for questions related to the spectral density an 
approach like that of Helffer and Sjostrand [6], [9] would be more 
effective. 

I. H Y P O T H E S E S AND PRELIMINARIES 

We consider the Schrodinger equation for a single electron in a 
crystal lattice of ions in a constant magnetic field. That is, we 
consider the Schrodinger equation with a smooth, periodic electric 
potential V(x) and a linear magnetic potential eA(x): 

(i) 
du 

= (é+eA{x)Y u + V{x)u, x G R3. 

Here A(x) = \u\ = 1, and the magnetic field is given by 
B = VxeA = eu. The periodicity condition on V is V(x+£) = V(x) 
for all £ in a three-dimensional lattice L. The Schrodinger equation 
takes the form (1) in suitable distance, energy and time scales 
- Angstroms for distance and roughly electron volts for energy. 
These units make e = 1.5 x 10~9<7, where g is the magnetic field 
strength in gauss. Thus e is the natural small parameter here. In 
what follows we will put (1) in the form 

(2) 
du 

is-— 
dt 

lie— + А{у) u + vl-j и , 

by making the change of variables y = ex. 
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MAGNETIC BREAKDOWN 

The article [4] discussed asymptotic solutions of (2) of the form 

(3) u = e-i(P<yfi/em(y/e, y, *, e) 

where m(x, y, £, 5) = m(x + y, t, s) , W G L, and m = 
mQ(x, y, £) + em^a:, y, t) + • • •. Substituting the Ansatz (3) into 
(2), equating coefficients of powers of e to zero and solving the re
sulting equations, one constructs asymptotic solutions to all orders 
in s. The leading amplitude is given by 

m0(x, y, t) = %, t)ipn 
/ dip 

X, — + A(y) 

where il)n{x, k) is an eigenfunction of the operator 

L(k) 

EÁi+A(v)) 

-fé»)' + V(x) 

with the lattice periodicity condition, belonging to the eigenvalue 
En(k). The phase <p must be a solution of the Hamilton-Jacobi 
equation 

(4) ~dt 

The only hypothesis needed to solve the transport equations and 
carry out the construction to all orders in e is that En(k) must be a 

simple eigenvalue of L(k) for the values of k = eses t) + A(y) which 

arise from propagating the support of h(y, 0) along the trajectories 
of the Hamiltonian En(p + A(y)) - r associated with (4). 

In this article I want to consider the situation when En(k) is not 
simple on one of those trajectories. In this case the wave pack
ets u(y, t, e) can no longer just propagate along the trajectories 
of En(p + A(y)) — r , and one is in the situation called "interband 
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magnetic breakdown" in the physics literature. This terminology 
refers to the way that packets can now "tunnel" to trajectories of 
En+i(P+A(y)) — T, an effect that becomes more evident as the mag
netic field strength increases. I should mention that there is also 
a phenomenon known as "intraband magnetic breakdown" associ
ated with k0 such that En(k0) is simple, but VEn(k0) x u = 0. The 
construction of time-dependent wave packets in this situation is 
included in the preceding, but when one studies the spectrum near 
En(kQ) there are effects caused by tunnelling between the branches 
of the curve {En(k) = En{kQ), u • (k - k0) = 0} . Quasimodes for 
this case were constructed in Horn [7], using the same Ansatz we 
will use for interband magnetic breakdown here. The effect of such 
points on the spectral density (they turn out to be negligible) was 
analyzed by Sjostrand in [9]. Closely related spectral problems are 
discussed in [2], [2a], [3] and [8]. 

I am going to make a number of assumptions to simplify the 
constructions. First En is only a double eigenvalue, i.e. 

En—1(^0) < EniKj — то — Еп+АЮ < Еп,2(к0) 

The point k0 is going to be the base point in what follows. Since 
L(k) is analytic in this implies that, for 8 sufficiently small, when 
|A; — k0\ < <$, the span, R(k), of the eigenvectors of L(k) belonging 
to eigenvalues in |r — r0| < 8 has a basis { ^ ( x , ip2(x, k)} which 
is orthonormal and real analytic in k. The restriction of L(k) to 
R(k) has the matrix 

(5) 
(a(k) b(k)\ 
\b(k) c{k)J 

in terms of this basis, where the entries are real-analytic and a and 
c are real. 

Next the potential is assumed to have the symmetry V(x) = 
V(—x). This symmetry is typical of metals. With this symme
try L(k) commutes with the involution [If](x) = f(—x). The 
l-eigenspace of i\ considered as a real-linear transformation of 
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R(k), must be two dimensional, and it depends analytically on 
k. Thus one can assume that and ip2 belong to this subspace, 
and this forces b(k) in (5) to be real-valued. This consequence of 
V(x) = V(—x) is well-known (it is used in [10]), but I am grateful 
to J . Sjostrand for explaining it to me. The symmetry has the 
effect of changing the set of k where En(k) = En+1(k) from just 
&0, as it would be for a generic matrix of the form (5) , to a curve 
through k0 in the generic case. 

Next I assume that we are in the generic case.1 For this I simply 
assume that a, b and c have linearly independent gradients at k0. 
Since 

D = det 
(a(k)-T b(k) \ 
{ b(k) c(k) - r) -ген (a-cy , 

we see that En(k) = En+1(k) on the analytic curve T = {k : a — c = 
6 = 0} through fc0, and the surfaces D = 0 have conic singularities 
on T (see Figure 1). Here we consider r a s a parameter. 

En(k) = r 

E,W{JC) = T -

Figure 1. The Cone £>(-, r ) = 0 

The final hypothesis will insure that we are in the situation where 
magnetic breakdown occurs. One checks easily that on the trajec
tories of the Hamiltonian En(p+A(y)) - r the function k = p+A(y) 

1 Note that generic here means generic among symmetric real 2x2 matrices scalar at ko. 
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satisfies 

AC = U ) dkw-
Hence k moves on the intersection of the surfaces D = 0 with a 
plane k • u = c. To get magnetic breakdown we need to choose u 
so that these planes cut both nappes of the cone D = 0. Thus we 
assume that the plane k • u = fc0 • cuts both nappes of D(fc, r 0 ) = 0 
nontangentially. 

With these hypotheses we can put our problem in a standard 
form. We translate and rotate coordinates in fc-space so that the 
vertex of Z)(-, r ) = 0 is the origin for all r, u = e3 and the Hessian 
matrix of D in A;2) is diagonal at the origin with ^ r ( O ) > 

0. This is possible because the magnetic breakdown hypothesis 
implies that the Hessian is indefinite. Then, using the Weierstrass 
preparation theorem (trivially) in kx, we have 

D = ( fo - r)» - q)Q0 

where r = r(k2, A:3, r ) , g = g(A;2, fc3, r ) and <50(0, r0) > 0. More
over, the preceding choices of coordinates imply r = — q = 

= 0 at ( 0 , r 0 ) , and the Hessian of q is positive definite. Since 
u = e3, it will be convenient to choose = yxe2 instead of hjj x y 
from here on. 

I I . T H E B A S I C A N S A T Z AND THE EICHONAL 

We are now ready to construct asymptotic solutions to (2) in the 
magnetic breakdown case. We will use the general Ansatz 

(6) u — Je e ^mdz, 

where <p = <p0(yv z) + rt + £2y3 + £3y3 and C is a contour to be 
determined. Thus we assume linear dependence of the phase on all 
space-t ime variables except yv However, the construction will be 
uniform in the parameters (f2, r ) on a neighborhood of ((A;0)2, r0) so 
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that one can construct more general wave packets with (crystal) 
momentum localized around k0 by superposition in these parame
ters. 

At this point I could simply write out the rest of the Ansatz in 
detail, but I would like to try to motivate the choices. When one 
substitutes (6) into (2), one does not need to set coefficients of 
powers of e in the integrand to zero. As long as the coefficients are 
equal to smooth multiples of ^ one sees by integration by parts 
that they contribute to terms with an additional power of e. Since 
we assume that m = m0 + e m1 H with 

ra0 = a(y, t, z)ip У 0<P , . 

(7) + /%, t, z)rjj2 
У Of \ 
- , ^ - + 2/iei \e ду J 

the analog for (6) of the eichonal equation (4) is 

(8) 4* + /%, t, z)rjj2 4* 
where R is analytic in z. This condition merely says that D(dip/dyv 
£2+2/1* £ 3 5 r ) an(l dif/dz have the same zeros as functions of z, which 
is implied by 

0 - ÍC , с 
g Г(& + У1> 4 , T 

2 

(9) -0( f2 + 3/i> r dz 
= 0 

A simple way to achieve (9) is to choose (f0 so that dyjdyx is linear 
in z and d(f0/dz has the zero set of a quadratic function of z. A 
choice with these properties is 

22 

^ 0 = 7 
h 

fz- - log z + g, 
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where / = /(£2 + y„ £3, r ) , h = /i(£3, r) and g = g(yx + f3, r ) . 
This reduces (9) to 

(10) 
af 
ak JF+~h Vq 

to be solved with h independent of k2 and ^£-(k0, r0) > 0. This 

problem has been treated in a similar setting by Gerard and Grigis 
in [3] and solved in exactly this setting by Horn [7]. One sees that 
(10) implies 

h(k3, T) 
1 

iri 
2det(Hess 

where 7 encloses the (two) zeros of q((, fc3, r ) near £ = 0. From 
this it follows that 

(ni h(k3, T) = 
2v/2det(HessD(0, r ) ) 

-det(HessJD|é.A;=0(0, r)))3/2 
k2 -

3 
O(kl). 

As we will see, h determines the strength of the magnetic break
down. The formula (11) (with a few typographic errors) was al
ready given by Slutskin in [10]. 

The function / is assumed to be real-valued here. However, if 
one takes 

<Po = -T + i~fZ + ni0&Z + Öi 

one is again lead to (10) for / and h. This gives another family of 
asymptotic solutions which we will not discuss here (see Horn [7]). 
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MAGNETIC BREAKDOWN 

We will take {£e3i7r/4, t > 0} as the branch cut in the definition 
of log z and choose C = {se3l7r/4 - 1, s 6 R } with the orientation in 
Figure 2 

Figure 2 

To see how this Ansatz incorporates the tunnelling effect of mag
netic breakdown one can (when h > 0) use the method of steepest 
descents. Denoting the two zeros of ^ as ^ = 
f±y/f2 + h, one has for / < 0 the steepest descent curves Re{(p(z)} = 
Re{(p(z+)} and Re{(p(z)} = Re{((p(z_)} as shown in Figure 3. 

Figure 3 
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Since C can be deformed to r_, the method of steepest descent 
shows that for / < 0, (6) reduces to (3) with (p(y, t) = <p(z_). 
However, when / > 0 the steepest descent curves become those 
shown in Figure 4. 

Figure 4 

Now C cannot be deformed to a steepest descent curve. One can 
only deform C to the curve T indicated by dots in Fig. 4. Now in 
addition to the contribution from z_ there is a contribution from 
z+. Since Im{(p(z)} decreases by as one goes along the lower 
half of the loop, the latter contribution is weaker by a factor of 
exp (— This is the tunnelling term, and it explains the earlier 
remark that h measures the strength of magnetic breakdown. Since 
we are not claiming to construct solutions valid with exponentially 
small errors, the only rigorous results here on magnetic breakdown 
will follow from showing that the asymptotics just described hold 
uniformly for h in [0, h0]. This was carried out in Horn [7]. One 
notes that 

F(x) = jce-n^-xz>l°*z)dz 

is a solution of a second order ordinary differential equation for 
which one can construct two bases of solutions having simple asymp
totics for h e [0, h0] when x > 0 and when x < 0 respectively. Using 
the explicit computation of these basis functions at x = 0 to match 
them across x = 0, one computes the asymptotics of F for x > 0, 
uniformly on (0, h0). The key step is expressing F , properly nor
malized, in terms of the basis with simple asymptotics for x > 0. 
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The result of this computation is the identity (with 7 = h/2e) 
(no 

Wx{x) = e~*tYx{x) + (1 - e-27R7)iAeHT-TW7+7+Argr(i7)jW2(;c)) 

where 

Wx(x) = e-^ieh)-1/2 £-i/2eiÌre*(7iogft-7-7) 

V = (eh)-1/2 f e^$+ixz+i*z-xl)dz. and 

W2(x) = £-i/2eiÌre*(7iogft-7-7) f e^$+ixz+i*z-xl)dz. 

Here C1 = {se3in/4 + l, s G R} with the orientation in Figure 2. The 
choice of normalizing factors here makes the asymptotics of W1 as 
£ —> 0 with h > 0 fixed and x < 0 match the asymptotics of W2 as 
£ —* 0 with /1 > 0 fixed and x > 0. These asymptotics give terms of 
order zero as do the asymptotics of Yv Since modulo terms of order 
e one can assume m is of the form a+bz in (6), the function u in our 
Ansatz can be expressed in terms of Wx(f) and Wf(f). Thus the 
identity (11;) is a computation of magnetic breakdown: note that 
the coefficient of Y1 is the tunnelling coefficient, and by Stirling's 
formula the coefficient of W2 tends to 1 as 7 —• 00. Once again this 
formula appears in Slutskin [10, formula (32)]. The computation 
of tunnelling strength is also related to that given by Hagedorn in 
[5]. Since we do not justify exponentially small terms here, (IV) 
gives information to us when ^ = 0(1), i.e. in the regime where 
£3 = 0(ell2) and tunnelling is significant. 

The functions Wx, W2 and Yx are related to parabolic-cylinder or 
Weber functions, but I feel that the integral representation is more 
transparent. 

I I I . T H E T R A N S P O R T E Q U A T I O N S 

If one makes the choice in (7) for m0, the terms of order e° in the 
integrand resulting from substituting (6) into (2) will contribute 
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terms of order e after integration by parts provided 

(12) C c ) (;) 
(a,b) 

at z±. Here, as always from here on, the entries a, 6, c are eval-
uated at k = + yae2. We will need to solve such equations 
systematically in this section. One way to do this is as follows. 
For any analytic function g(z) we set 

9S = 7}9M + and ga = g{z+)-g(z_) 
(z+ - z_) 

Then gs and ga are analytic functions of / and h, g(z±) = gs ± 
VP + hga, and 

g(z) = gs + (z- f)ga mod 
z(a/b) 

Using the same notation for matrices and setting A0 = (a^rc^r), 
one sees that (12) holds at z±, if and only if 

0 = 
As 
o 
Aa 
o 

(P + h)Af 
A* 

0 

(as\ 
Bs 
ac 
Ba 

Setting 

U = {-\{P + h)-'hl 
I 
o 

I O (f* + hY/2I\ 
I 

a n d M 0 = ( ^ ( / ^ ° ) , w e h a v e ( ^ ) A o ( 0 z _ ) ) = UM0U~K Hence 
MQ has rank at most 2. However, when / = h = 0 and r = r0 

O ( da 
db 
m; 

KO 
KO 

db, 

de / К) j 
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and, since ^%r(koy r0) > 0, it follows that A% is nonsingular a t the 

base point. Thus M0 has rank exact ly 2 near the base point and 
(12) holds if and only if 

An / °LSy 
Да 

As a } 
+ o l fía 

= 0. 

In other words for each choice of ( j g a ) there is a unique 

mod z-*£ satisfying (12). One checks easily that a convenient basis 

for these solutions is 

i -b \ 
v1 = 

\a — T 

V2 = t - 7 ) 

and hence the general choice for m0 is m0 = (-&<$ + (c - T)^)^ + 

((a — T)S — 67)^2? where 7 and 5 are arbitrary functions of (y, z). 
W i t h this choice of m0 we assume that m in (6) has the form 
m = mo(y/z, V, z) + em1(y/e, y, t, 2:) + --- where m ^ x , y, z) = 

ai^i (x> Bv + ^ 2 ) + B1v2 | ^ + VA) + ™>i(xi z)- The a c 

tion mx is assumed to be orthogonal to ^ (x, ^ + yxe^j and 

^2 (x? ^ + y1e2 n̂ ̂  over a fundamental domain in the latt ice. 

T h e "transport" equations arise as follows. W h e n we substitute 
(6) into (2) and eliminate terms of order e° from the integrand 
by integration by parts , we need to solve inhomogeneous problems 
L(k)rh1 — rrh1 = g to eliminate the terms of order e. T h e condition 
that the inhomogeneous terms be orthogonal to ipx and ^2 over a 
fundamental domain leads to the transport equations 
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( da 
db 

db \ 

de j 
V c - r -b \ 

A -b a-r) u)L _ ' ( C - T - b \ / 7 Y 

- \ -b a-Tj\6)\t 

(13) -a Mi) / a - r b N 

V b c-T, 
V 

( 0 \ dip 
mod z-—. 

dz 

Here i? is from (8), D is a very complicated (but real-analytic) 
m a t r i x , and (70 , 80) = {iax, + (/1? / 2 ) , where (/1? /2 ) are de
termined by (7 , 6). Hence we can treat (70, <!>0) as an arbi trary 
vector which determines A0 Thus, solving (13), determines 
(a1? / ? J up to a solution of (12). Expanding this solution in t erms 
of vx and t>2, we get higher order transport equations for the re
sulting coefficients when we t ry to eliminate the t erms of order e2. 
Thus provided we can solve (13) and the analogous inhomogeneous 
equation we will be able to eliminate terms of all orders in e. 

To reduce (13) to an equation for 7*, 6s, 7a and 6a we set 

B = ( da 

db 

db 

dc and A1= (C-T -b \ 

{ -b a - r j ' 

and we assume that 7 and 6 are linear in zy so that R ( J ) mod 
does not bring in new terms. This is no loss of generality in the 
Ansatz since one can always reduce 7 and 6 to linear functions in 
z by integration by parts, changing m r With these definitions we 

zeq 
ez 
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have 

(14) 
(B» (f* + h)Ba\ 
\B°> Bs ) 

(As 

X 1 

(f* + h)A*\ 

1 

/ 7 s \ 

6s 

<6* > 

(As (f* + h)A*\ 
,4s 

1 

/ 7 s \ 

6s 
ya 
ga 

+ E 
6s 

\6* 

(As (f2 + h)Aa\ 
As 

0 

6s 
0 

'O 

/0" 

0 
0 

Here E is a new complicated matr ix . Since Ax = JA0 J - 1 for J = 
( J ) , the coefficient 

M 1 = U; 
(f2 + h)A*\ 

As 
L 

has the properties of M0. In particular it has rank 2 near the base 
point and Aa is nonsingular. 

Making the change of variables 

6s 
7<x 

\6a, 
•00 f ( ( ^ ) ( ; ) . 
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the transport equation (14) becomes 

(15) 
(B* (f* + h)B"' 
\Ba Bs j .U)UL [AÇ) U). 
" Г 

[AÇ) = 0 mod 
x n ' 

where F and G are 4 x 2 matrices. Finally, since A% is invertible, 
we can simply eliminate the last two components in (15) to get the 
fully reduced transport equations 

(i6) Hi Kl F[ аГ 
\ X 

where 

A = As - A8(Aa)-1Aa and 
1 0 v 0 ' 1 

B = BsAf + (p + h)BaA« - A%(A%)-*(BaA* + BSA&). 

Restricted to h = 0, i.e. to the plane k3 = 0 passing through the 
vertex in Figure 1, the matrix A$ and hence ^ must be divisible 
by / . This makes the transport system (16) Fuchsian on k3 = 0. 
Since k2 = f2 + y1 and J j^ > 0, we can use / in place of yx as a 
coordinate in (16) so that on k3 = 0 (16) takes the form 

(17) " 0 , Kl [AÇ) U). 
where £ = 2 § £ * § ^ + 0(f). Since d2Djdk\ < 0, det EAEA < 0, and 

hence S is invertible. Moreover, fB(A^)-1 is symmetric with posi

tive determinant near / = 0 and A(A^)~l is symmetric. Hence, an 

analytic change of dependent variables makes (17) into a Fuchsian 

symmetric hyperbolic system. 
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The equation (17) has a unique analytic solution for given ana
lytic H, provided the matrix 

B-*(k0ì T0)F(k0, r 0 ) 

has no nonpositive integer eigenvalues (this is the "indicial" con
dition, see Baouendi and Goulaouic [1]). In addition, since (17) 
can be made symmetric hyperbolic, the work of Tahara [11] (see 
particularly Theorem 4.1 of part II and the Introduction of III) 
shows that under the same indicial condition (17) has a unique 
C°° solution for a given C°° function H(f,t). Thus to exhibit 
packets undergoing magnetic breakdown we may proceed as fol
lows. Choosing G ( ^ ) supported in / < 0 with support near t = 0 
and assuming the indicial condition, we construct (%) depending 
smoothly on k3 so that (16) holds to order k^°. Since we are only 

interested in k3 = 0(sll2), the errors in solving (16) are 0(e°°). 
As mentioned in the introduction, (%) and all its /^-derivatives at 
k3 = 0 are uniquely determined by G (™). 

To complete this analysis we need to see what form the term 
G (™ ) can have. The terms which contribute to G ( ^ ) come from 

( ( W -{Rvl>x + Wt)z), {1>v -(R^ + R6xjj2)z)) 

where ( , ) denotes the L2-inner product over a fundamental domain 
in the latt ice. F r o m (8) on sees that 

R = 2z 
ek 
2ef '•e í¿ + Ун T ) : 

and, hence R = zP where P is analytic in z and positive at the 
base point. From this one concludes that 

G = _(PSI + (zM)» 
V PaI + (zM)a 

(/2 + h)(P«I + (zM)a) + zPIs \ 
Psl + (zMY + (zP)*I ) 

/ ( A « ) - M f \ 
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where M is the matrix 

p ( {1>i, 1>iz) 
\ ( V > 2 > 1>iz) 

\V>1> V>2Z)\ 

(V'a, Azi) 

Since {zC)» = fC* + (/2 + h)C* and {zC)* = fC° + Cs for anj 
C, this leads to 

G = - P«((i4f ) - M f + 2i4j(i4«)-i - / / ) 

- p a ^ J ^ y ) - ! - ( / » + / 1 ) / ) 

- ( /Ms + ( / 2 + /i)M«)(A«)-iA* + ( / 2 + h)(fM" + Ms) 
+ As(A%)-l(fMa + M^Afi-^A*. 

Since A* = /Aj + k3B^ Aj and Pt- analytic, 

G = - P « ( ( i 4 f ) - M f + 2i4«(i4«)-» - / / ) 
+ / fc3# + pL + k*N 

where K, L and N are analytic matrix functions. To understand 
the leading term, G0 = -P*(( i4«)-1i4* + 2A*(A*)-* - / / ) , one 
can use the following. Choosing vj. such that A0(^:t)i;_|_ = 0, and 
||v±|| = 1, one has 

A*{A*)-*v± = ±y/p + hv±. 

Also one checks -P*((i4«)-1i4* += -(f*+h)I. Using these facts, 
it is easy to compute 

G0v± = -Ps(-f±y/p + h)v±. 

Note that by (11) h = k2h, where h is analytic and nonzero at 
k3 = 0. 
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MAGNETIC BREAKDOWN 

To see how G degenerates on k3 = 0 one begins by noting that 
v+ and v_ are discontinuous on h = 0 at f = 0. However, since 
f-1A^(A^)^1 is analytic on h = 0 with eigenvalues ± 1 , we can 
choose v± analytic such that As(Aa)-lv± = ±fv±. Therefore, up 
to order f2,6? is the projection onto v_ along v+ multiplied by 
-2fPs on h = 0. Thus one can choose (w, x) so that G(w) is 
approximately fv_ near f = k3 = 0. 
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NEAR—COHOMOLOGY OF HILBERT 
COMPLEXES AND TOPOLOGY OF 

NON—SIMPLY CONNECTED MANIFOLDS. 

M.GROMOV,M.A.SHUBIN 

Introduction 
In an earlier paper [5] we introduced some new homotopy in

variants of compact non-simply connected manifolds (possibly 
with boundary) or finite CVF-compexes. In terms of these invari
ants the heat kernel invariants of closed non-simply connected 
manifolds [9] (see also [ 4 ] ) can be expressed and thus their homo
topy invariance can be proved. 

Note that both invariants in [5] and [9] are expressed in terms 
of L 2 - d e Rham complex on the universal covering, using the deck 
transformation action of the fundamental group in differential 
forms. The use of the combinatorial Laplacians leads to the same 
invariants as was proved by A . Efremov [3]. 

In this paper we follow the abstract setting from [5] and give 
a refined formulation of the abstract result there. This leads to a 
new notion of near-cohomology for Hilbert complexes. We take 
a special family of quadric cones depending on a small positive 
parameter and consisting of cochains which have coboundaries 
which are small with respect to the distance of the cochains to 
the space of all cocycles. Heuristically this means that we take 
cochains with small coboundaries modulo cochains close to co-
cycles. (Instead of cochains close to cocycles we could also take 
cochains close to coboundaries which would remind cohomology 
more but it just adds cohomology as a direct summand.) Near-
cohomology are germs of such families of quadric cones modulo 
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an equivalence relation which naturally arises if we consider ho-
motopy equivalence of Hilbert complexes with morphisms given 
by bounded linear operators. Then near-cohomology becomes a 
homotopy invariant. 

Adding a von Neumann algebra structure to the Hilbert com
plex we can transform near-cohomology to a set of positive-
valued functions of the small parameter up to an equivalence. 
These functions are defined as maximal von Neumann dimen
sions of linear spaces which belong to the cones. The equivalence 
is given by estimates of these functions with dilatated arguments. 

Applying these constructions to the de Rham L2-complex on 
the universal covering of a compact manifolds (with the von Neu
mann algebras consisting of operators commuting with deck trans
formations on differential forms) we obtain invariants which were 
introduced and studied in [5]. 

Note that the idea that there may be topology invariants lying 
near cohomology was first formulated in [8]. 

1. Hilbert complexex and their near-cohomology. 

A . Let us consider a sequence 

E: 0 E0 
do 

E1 ... Ek 
dk 

Ek+i —• ... 
dN - 1 

EN 0, 

where Ek is a Hilbert space and the differential dk : Ek — -Ek+i is 
a closed densely defined linear operator (with the domain D(dk))> 
This sequence is called a Hilbert complex if dk+i odk = 0 on D{dk) 
or, equivalently, Im dk C Kercfo+i. Note that Ker dk is always a 
closed linear subspace in Ek. 

Let E1 be another Hilbert complex of the same length N (if 
the lengths differ then we can always formally extend the shorter 
complex by adding zero spaces in the end; so for the sake of 
simplicity we shall always suppose that all complexes have the 
same length N). The corresponding spaces and differentials will 
be denoted E9k and d'k. 

Definition 1.1. A morphism f : E —» E9 of the Hilbert com
plexes is a collection of bounded linear operators fk : Ek —> E[ 
such that 
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fk+1dk C d'kfk, 

which means that fk+\dk — dkfk on D(dk). In particular we 
require that fk(D(dk)) C D(d'k). 

If f : E —» E* and g : E' —> E" are two morphisms of Hilbert 
complexes then their composition g o f : E —-» i ?" is a morphism 
defined as the collection of compositions gk o fk, k = 0 , 1 , . . . , TV. 

Definition 1.2. Let / , # : E —± E1 he two morphisms of the 
same Hilbert complexes. A homotopy (between / and g) is a 
collection T of bounded linear operators Tk : Ek —• ^fc-i such 
that 

fk — 9k — Tk+Xdk C rf^.jTfc, k = 0 , 1 , . . . ,iV, 

or equivalently, fk - gk = Tk+1dk + djb-i^* on -^(djfe) (in Par" 
ticular this means that Tk(D(dk)) C Z ^ c ^ ^ ) ) . If there exists a 
homotopy between morphisms / and g then / and g are called ho-
motopic and we denote it as f ~ g- (It is easy to check that being 
homotopic is really an equivalence relation between morphisms.) 

Hilbert complexes E,E* are called homotopy equivalents there 
exists morphisms / : E —• E1 and g : Ef —> E such that 
g o / <~ Id#, f o g ~ Id#/ where Id# and Id#/ are identity mor
phisms of the corresponding Hilbert complexes. We shall denote 
the homotopy equivalence between E and E1 as E ~ E1. 

Definition 1 .3. E is called a retract of E1 if there exist mor
phisms / : E —> E1 and gr : E* ^ E such that g o f ~ ldE. In 
this case / (resp. gr) is called a hom,otopy inclusion (resp. homo
topy retraction) map. 

Remark. Cohomology spaces Hk{E) = Ker djt/Im and . 
reduced cohomology spaces H (E) = Ker <i^/Im dk-\ are ho
motopy functors in the category of Hilbert complexes with mor
phisms and homotopy as before. 

B . Now let us introduce the following quadric cones, depending 
on the degree k and on a positive parameter A: 
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B (к) 
f = € Ek/Ker dk, || dktü | | < A || to \\mod Ker d}, 

where || a? ||mod Ker d is the norm in the quotient space E^/Ker dk, 
|| dfcu? || means the norm of d^uo in -Efc+i. It is understood that in 
this definition we should only take co-sets in Ek/Ker dk defined by 

elements u £ D(dk) to make dkuj well defined. So B^ becomes 
a conic set in the Hilbert space E^/Ker dk which can also be 
identified with (Ker dk)1- (the orthogonal complement of Ker dk 
in Ek). 

Lemma 1.4. Let 7^1,7^2 be Hilbert spaces, A : 7i\ —•> 7^2 be 
a closed linear operator with the domain D(A). Then for every 
A > 0 the set 

CX,A = {x\xeD(A), || A T | | < A | | . T | | } 

is closed in 7^i. 

Proof, Suppose that x is in the closure of C\^A- Without loss of 
generality we may assume that || x | | = 1. Then we easily obtain 
that there exist x7 £ CA,A such that 

Km || £7 — x | | = 0, || Ax7 | |< A || z7 ||, 7 € T, 

where T is a directed set. Taking a cofinal subset of T we may 
further suppose that || x^ \\< 1+e whatever fixed e > 0. Changing 
r again we may suppose that there exists w — lim Ax^ = y (weak 

limit is taken in 7Y2)- Then we have 

|| y | |< limmf || Axy || < Alimmf || x7 || < A || x \\ 

Now the pair {x,y} is in the weak closure of the graph of the 
operator A in Tii x 7^2- The graph is a closed linear subspace, 
hence it is weakly closed. Therefore x £ D(A) and y = Ax:. Hence 
x G C\,A as required. • 

Applying Lemma 1.4 to H\ — Ek/Ker dk, 7i2 = Ek+i and 

A = dk we see that B^ is a closed cone in Ek/Ker dk for every 
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À > 0. Now let us look what happens to these cones when we 
apply morphisms of Hilbert complexes. 

Let us consider a morphism of Hilbert complexes / : E —• E1 
defined by a collection of bounded linear operators fk : Ek — 
E'k, k = 0 , . . . , N . Then fk(Ker dk) C Ker d!k so fk naturally 
defines a bounded linear operator 

h : Ek/Kev dk -> E'JKer d'k. 

Theorem 1.5. Let a Hilbert complex E be a retract of E1 and 
f : E — E', g : E' — E be corresponding homotopy inclusion 
and retraction maps. Let B[k\ 'B[k) be families of cones defined 
as before in E, El respectively. Then there exist C > 0 and Aq > 0 
such that for every A £ ( 0 , Aq) 

(i) fk (B (k) 
f 

) C 'B 
(k) 
OA ' 

(ii) lu ; < C I fku I if a; G B (k) 
A • 

Proof. Let us consider a; G B^ and let u;] G (Ker dk)± represent 
JS i.e. ^ mod Ker <7*. = UJ. Then || dKLO\ | |< A || u)\ ||. It follows 
Mint, fk^-\ G Z > « ) , = fk+idku;i and 

Id',(fkw1) 1=1 /k+1(dkw1) |<| fk+1 II dkw1 l< a | fk+1 || w1 | 

Now we should estimate || || by Ci || fku\ ||1110d Ker rf' provided 
A £ ( 0 , Ao) with a small A0 > 0 with a constant C\ which does 
not depend on uj\ or A. Then (i) and (ii) will follow. Let us split 
fku;^ into the sum 

jKLO\ — LO\ + LÛ'2 

with LJ'2 G Ker d9k,u>\ 1 Ker d9k. Hence 
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Il fk^l ||mod Ker d' = \\ u[ | . 
Now let us use a homotopy T between go f and Id#. In particular 
we have 

Id# - gk o fk = Tk+1dk + djb-iTjb on D(dk). 

hence 

^ 1 =9k(fk^i) + Tk+idkLox + dk-iTKLQX = 

gk(u>[ + a ; 2 ) + T H i 4 a ; 1 + dk-iTku>i. 

Clearly gkuif

2 € Ker dk, hence 

^1 = gk^i + Tk+idku>i mod Ker dk. 

It follows that 

|| LJI \ \ < \ \ W i + Tk+id^ \\<\\ gk mi u>[ || + || T f c + 1 mi \ \< 

< l l 9k llll II || T * + 1 HI! o;i ||, 
hence 

I LO\ || < I ff* llll ^ 1 I 
1 - A || Tk+1 || < 2 || gk llll a;i ||, 

if A G ( 0 , A 0 ) where A 0 = ( 2 || Tk+1 H ) " 1 . This gives the required 
estimate that proves the Theorem. • 

Corollary 1.6. Suppose that Hilbert complexes E,E! are homo
topy equivalent and this equivalence is given by the morphisms 
/ : E —• E9 and g : E9 E. Then there exist constants 
C > 0 , A 0 > 0 such that for every A £ ( 0 , A Q ) and for every 
k = 0 , . . . ,7V 

(i) / ( * (k) 
f ) c ' £ (k). 

Cf' 
g{ >B (k) 

A 
) E B (k). 

CA' 

(ii) | | a ; | | < C | | / a ; | | , w € S 
(k) 
f ; || w' | | < C || go;' y, u/ <E 'B 

(k) 
A • 
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Now we can introduce an appropriate notion of near-cohomology 
of a Hilbert complex. This will be done along the lines that can 
be traced in Corollary 1.6. 

Definition 1.7. Special family of quadric cones in a Hilbert space 
E is a family of closed subsets B\ C E defined for all A > 0 as 
follows: 

Bx = {x\xe D(A), II Ax | | < A I) x ||}, 

where A : E —> E\ is a closed densely defined linear operator 
(-Ei is another Hilbert space) with the domain D(A), the norms 
|| Ax || and || z || are taken in E\ and E respectively. 

Two such families B\ C E and 1 B\ C E9 are called equivalent 
if there exist two bounded linear operators: / : E —» E', g : 
E1 E and positive constants C > 0 , Ao > 0 such that for 
every A £ ( 0 , A0) 

(i) f(Bx) c 'Bex, g( fBx) c B C A ; 

(ii) ( I ^ | |< C II / a : I I , x £ £A; || .x' | | < C \\ gxf ||, a : ' £ ;BA-

So in fact up to the equivalence only the germ of the family B\ 
near 0 is important. 

Definition 1.8. Let Ehe& Hilbert complex. Its near cohomology 
NHk(E) of degree k is the equivalence class of the special family 
of quadric cones B^\ 

Corollary 1.6 means then that the near-cohomology is a ho
motopy invariant of the Hilbert complex if the homotopy equiv
alence is defined as a chain homotopy equivalence with bounded 
morphisms and homotopy operators as in Definitions 1.1 and 1.2. 

Remark. All results of this Section can be easily extended to 
complexes of reflexive Banach spaces. 
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2. Von Neumann structure 
Von Neumann structure on a Hilbert complex allows to trans

form near-cohomology to some simpler invariants: to make the 
same kind of transfer from homotopy to the Betti numbers. 

First we shall recall some necessary definitions (see e.g. [2]). 
Let 7i be a Hilbert space, £(7Y) be the algebra of all bounded 
linear operators in 7i. A von Neumann algebra of operators in 7i 
is a subalgebra A C ^(Ti) satisfying the following conditions: 

(i) A 9 Id^, A is a *-algebra (i.e. A e A A* € A), 
(ii) A is closed in the weak operator topology. 

Let A+ = {A | A G A, A > 0 } . A trace TTA on A is a map 

Tr^4 : A^ —• [0, +oo] satisfying the following conditions: 

( i)Tr^(A1A1+A2A2) = Ai TvAAl+\2rTiAA2 if A, G [ 0 , + o o ] , At G 
A+, i = 1,2, 
(ii) TÏ4 (AA*) = T r ^ A M ) for every A € A, 

(iii) If AT G A+ and A^ / A then Tr^A7 —• Tr^A (normality); 
(iv) Tr^A = sup{Tr^B |0 < B < A,B e A, TrAB < oo} for every 
A G ( semi-finiteness); 
(v) Tr^A = 0 , AG A+ A = 0 (faithfulness). 

If a trace Tr^ is given on A then we can define von Neumann 
dimension dim^. It is defined on all closed subspaces L C 7i 
which are affiliated with A i.e. such that Pi G A where Pi is 
the orthogonal projection in H with the image L. Then we write 
Ln A and dimA L = TrAPL. 

Definition 2.1. Let E be a Hilbert complex. A von Neu
mann structure on E is a collection of von Neumann algebras 
Ak C B(Ek) for all k = 0 , . . . , iV, and a trace Tr^ on every al
gebra Ak (we denote all the traces Tr^i for all k for simplicity 
of notations because it does not lead to a confusion), provided 
Ker dk is affiliated with Ak for every k. 

Now modelling the well known variational principle (Glazman's 
Lemma) for the operators d^dk we can introduce the following 
functions which will imitate the eigenvalue distribution function 
of the discrete spectrum. 
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Definition 2.2. 
Fk{\) = sup dim AL 

LCB™ 

Here it is convenient to identify Ek/Kei dk with (Ker dk)1" so L 
can be considered as a closed linear subspace in Ek (such that in 
fact L C (Ker dk)^), hence dim^ L makes sense. 

Since the cones increase with À the function -F*(A) is an 
increasing function on ( 0 , oo). If Fk(\o) < oo for some AQ > 0 
then Fk(+0) = 0. 

Now let us introduce morphisms and homotopy equivalence for 
Hilbert complexes with von Neumann structure. 

Definition 2.3. Let E,E9 be Hilbert complexes with von Neu
mann structures, 
/ : E —v Ef a, morphism of Hilbert complexes. Then / is called 
compatible with von Neumann structures if the following condi
tion is satisfied: 
(C) Suppose that L C E^^L^Ak and there exists C > 0 such that 

| | * | | < C | | / * * I I , x€L. 

Then fk(L)rjA9

k and dirn^/ fk{L) = dim^ L. 
Roughly speaking this means that the morphism / conserves 

the von Neumann dimension of a subspace provided this subspace 
is mapped by / isomorphically (in topological sense). 

Definition 2.4. Let E,E9 be Hilbert complexes with von Neu
mann structures. They are called homotopy equivalent if there 
exist morphisms of Hilbert complexes compatible with von Neu
mann structure / : E —> E9, g : E' —• E, such that / o g ~ 
Id/<;', go f ~ Id/.;. (Here homotopy between morphisms is under
stood as in Sect. 1 without any additional compatibility condi
tions). E is called a retract of E' if there exist morphisms (again 
compatible with von Neumann structure) / : E —» Ei\ g : E9 —• 
E such that g o / ~ Idfj. The following theorem is an immediate 
corollary of Theorem 1.5. 

Theorem 2.5. Let E,Ef be Hilbert complexes with von Neu
mann structures and E a retract of E'. Denote by Fk,F9

k the 
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functions defined for E, E1 according to Definition 2.2. Then there 
exist C > 0, A > 0 such that for every k = 0 , . . . , N 

Fk(\)<F'k(C\), A e ( 0 , A 0 ) . 

Corollary 2.6. Suppose that Hilbert complexes E,Ef with von 
Neumann structure are homotopy equivalent. Then there exist 
C > 0, A 0 > 0 such that 

FkiC-'X) < F'k(\) < Fk(C\), A € (0, A 0 ) . 

This corollary tells that the asymptotics of Fk and Fk near zero 
coincide in a weak sense. In particular let us introduce 

Bk — liminf 
A |0 

logF*(A) 

log A 

and let (3k mean the same number for Fk. 

Corollary 2.7. If E,Ef are as in Corollary 2.6 then j3k = f3k for 
all k = 0 , . . . , N. 

Hence (3k is a homotopy invariant of the Hilbert complex E 
with the von Neumann structure. We can also introduce an equiv
alence relation between functions Fk, Fk given by the inequalities 
in Corollary 2.6. Then the equivalence class of Fk will be a homo
topy invariant of the Hilbert complex E with the von Neumann 
structure. 

3. Geometric examples. 
Let X be a compact Riemannian manifold (possibly with a 

piecewise smooth boundary), M its universal covering with the 
lifted from X Riemannian metric. Then let us take Ek = L2 Ak 

( M ) , the Hilbert space of all square integrable exterior differential 
forms of degree k on M. Let us define dk as the de Rham exterior 
differential on Ek with the maximal domain i.e. 

D{dk) = {u;\u G L2 Ak ( M ) , du € L2 A * + 1 ( M ) } , 

where du: is understood in the sense of distributions. Thus we ob
tain a Hilbert de Rham complex L2 A # ( M ) . Its near-cohomology 
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are homotopy invariants of X if homotopy invariance is under
stood already in the usual topology sense (for the proof see rea
soning given in [5], Sect. 5). Note that the group Y = n\{X) 
acts on M by deck transformations and a more general exam
ple can be obtained if we consider a more general discrete group 
r acting without fixed points as a discrete group of isometries 
of a Riemannian manifold M (with boundary) so that the or
bit space X = M/T is compact. Then similarly defined near-
cohomology will be homotopy invariants in the homotopy cate
gory of T-manifolds and T-maps. 

The action of T by isometries on the spaces L2Ak(M) (induced 
by the change-of-variable maps on differential forms) allows to 
introduce a von Neumann structure on L2 A* ( M ) if we define 

Ak = {A\A e B(L2 Ak ( M ) ) , A7* = 7* A for every 7 G T} 

(where 7* is the change-of-variable map on L2 Ak ( M ) given by 
7) and take Tr.4 = Trr, the T-trace introduced by M. Atiyah in 
[1]. It is shown in [5] that the heat-kernel invariants introduced 
in [9] (see also [4]) for the case of manifolds without boundary 
can be expressed in terms of the functions Fk and the numbers 
bk, and in this way the homotopy invariance of the heat-kernel 
invariants can be proved. Note that the result of A. Efremov [3] 
means really the coincidence of the near-cohomology of a closed 
manifold and its simplicial approximation. 

Another geometrical example naturally arises if we consider 
a foliation with a transverse measure on a compact manifold. 
The arguments from [3] can be applied here too. This fact was 
independently noticed by J.L.Heitsh and C. Lazarov. 

Note finally that some calculations of heat-kernel invariants 
made by J. Lott (see [6],[7]) allow to make some conclusions about 
the numbers /3k (and sometimes even calculate them, e.g. for the 
case when M is the hyperbolic space). 
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The Scott Correction and the 
Quasi-classical Limit 

Barry Simon1 

The Scott correction is the second term in a large Z asymptotic expansion 
of the total binding energy of an atom with nuclear charge Z. The atom is 
a complicated system with multiparticle correlations among the electrons. 
Nevertheless, the proof of the Scott correction can be reduced to the study 
of the semi-classical limit of a one-body system where the electron-electron 
interaction is replaced by an averaged self-consistent potential. 

This reduction is more or less well-known to the experts in the field, so 
this paper is unabashedly pedagogic. However, previous discussions have so 
intertwined the reduction to the classical limit with the control of that limit 
that the simplicity of the reduction has been hidden. 

Basically, we will compare a quantum Hamiltonian, i f , with a quasi-
classical Hamiltonian, HQC, with responding energies E and EQC, and ground 
states \I> and ty®0 and we will show (modulo a fact about the quasi-classical 
limit) that: 

E < (#QC, HVQC) = EQC + O(Z5/3) 

EQC < (W, HHQCV) = E + O(Z5/S) 

where E ~ Z7/3 and the Scott correction is O(Z2). 
To be precise, the iV-electron charge Z atomic Hamiltonian acts on 

L2aR3N by 

H = 
N 

E 
i=l 

- A f -
Z 

xi E 
i<j 

1 

xi - xj (1) 

where a point in R3N is written as ( # 1 , . . . x n ) with X{ G R3 and L\ means 
those functions W ( x 1 , . . . ,w#yv) in L~ which are antisymmetric under inter
changes of coordinates. 

The Hamiltonian H has several simplifications. We ignore electron spin 
which affects the statistics. It can be easily accommodated by changing the 

1 Research partially supported by USNSF under grant number DMS-9101715. 
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constants in the discussion below. We ignore corrections due to a finite nuclear 
mass. We ignore relativistic corrections. 

What will concern us is the total binding energy: 

E(N, Z) = infw(W, Hi!) = inf spec(H) 

and 
E{Z) = E(N = Z , Z) 

We will henceforth take N = Z without further comment. 
To describe the quasi-classical problems, we describe the Thomas-Fermi 

model (invented by Thomas [16] and Fermi [3]). This posits an electron gas 
with density p{x) obeying 

/ p(x)dx = Z (2a) 

and energy given by 

STF(P) = d p5/3(x)dxfd - p(x)\x\-1Z + 
1 

9 
P{*)p\y) 
\x-yy\ 

(2b) 

where d is the universal constant 3 
5 

_3_ 
4TT 

.5/3 
defined so that the sum of the 

first N eigenvalues of the Dirichlet Laplacian in a cubic region of volume V 
is asymptotic as iV —• oo to 

dV(N/V)5/35 

Thus, the first term is a quasi-classical limit of the kinetic energy term in (1) 
and the other terms are clearly the nuclear attraction and electron-electron 
repulsion. 

According to Lieb-Simon [7,8], there is a unique p, call it />^F, minimizing 

ETFz(Z) = h r f {£rF( /0 ) | ( 2a ) holds; p G L1 fl L5 /3} 

and moreover, 
E{Z)/ETFz(ZZ) 1 (3) 

as Z —> oo. 

It is fairly easy to determine the Z dependence of T F theory: 

ETF(Z) = Z7'3ETF(l)1/3xze 

ETF(Z) = Z7'3ETF(l) = Z7'3eTF 

In what follows, a critical role will be played by the T F potential 

<pTzF{x) = 
Z 

\*\ 
\ x - y \ - 1 PzTF(y)dy 
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Note that the Euler-Lagrange equations for minimizing £ read 

5 
3 

dp2'3 = P (4) 

Equation (3) says that E(Z) ~ C T F Z 1 ^ F S as Z —> oo. There has been 
work on the next two terms in the asympototic series. Scott [11] looked at 
the situation where the electron repulsion is dropped and the iV-body problem 
reduces to a one-body problem (Hydrogen atom), which can be exactly solved. 
He noted the leading corrections to the Thomas-Fermi analog for this model 
of order Z2 came from the inner shells where the electron repulsion shouldn't 
matter; so he posited that the O(Z2) term was the same for the true atomic 
case. That 

E(Z) = e T F Z 7 / 3 D + escott^2 + o(Z2) (5) 

was proven recently by Hughes [4] and Siedentop-Weikard [13]. A recent 
preprint of Ivrii-Sigal [5] provides a new proof and extends the result to the 
molecular case. 

Fefferman-Seco [2] have announced control of the Z5/3 term, which has 
a contribution due to electron exchange (computed originally by Dirac [1]) 
and one from the higher order classical limit (computed by Schwinger [10]). 
Actually Fefferman-Seco study inf E(Z, JV), not E(Z) but they should be the 
same to 0 ( Z 5 / 3 ) . N 

These proofs are all over 100 pages and one of our goals here is to hope 
for a proof of the Scott correction on one foot. 

The quasi-classical problem we will relate to H is given by 

HQC 
z 

E 
/'=1 

- A , : - TF 
QZ x) 

1 
2 , 

PTZFxPTFZy 

x - y\ 
d3xd3y (6) 

The final term in H®( is a number (constant), which needs to be there because 
ipz overcounts the energy of interaction. In fact, the constant is exactly ([8]), 

1 
3 

C T F Z 7 ' 3 Q 

By scaling ip'y/ = ZAl*ip[ h {Zll2x) so — At- — <p"zF(t) ŝ unitarily equiva
lent to Z ^ 3 h f Q z whore 

ETF(Z) = Z7'3ETF(l)pt(x)fdX 

Thus, h^c is a one-body Hamiltonian with h = Z 1/3 and Z —• oo is 
the h —• 0 limit. Let 

e ? c ( Z ) < e Q 2 C ( Z ) < - . -

be the eigenvalues of /i^C with eigenfunction ?/^C;Z, ^ C ; Z , . . . . Then 
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E^C(Z) = inf svec(№cC) = Z4/3 
z 

E 
2 = 1 

e ? C ( ^ ) -
1 

3 
eTFZ7/3 

and the one electron density for H®c is 

pzqc (x) = ZZ 
z 

E 
2 = 1 

niQC;z (Z1/3x) 2 

Our goal is to prove: 

T H E O R E M . 

E{Z)-EQC{ZZ)Z\ <cZb'3 + 
1 
2 

6p(x)6p(y) 

\ x - y \ y 
d3xd3yy 

where 
6P(X)=[PY(X)-PT(X)} 

The point is that the bp Coulomb energy is 

z 7 / 3 1 
2 

bp{x)bp{y)y 

F ~ y | 
with 

6P = 
1 
Z 

2 E 
2 = 1 

ni (x) |2 - P i 
.TFI x) 

The leading order for 1/z E^ 77? is pi by ( 4 ) , so good control of the classical 

limit should imply that bp ~ Z~xl3 so one expects that 

1 
2 

bp(x)bp(y) 

\ x - y | 
0{Zb'A) (7) 

or less (Seco [12] tells us that it is less). Thus, the Scott correction (5) would 
follow from control of EQC, a one-body problem, to 0(Z2) and a proof of (7) . 

We now turn to the proof of the Theorem. We will show that 

E(Z) < EQC(Z) + 
1 
2 

bp{x)bp{y) 

\x - y\ 
d3xd3y (8a) 

and 
EQC(Z) < E(Z) + cZ5/3 (8b) 
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To prove (8a), let VQC be the ground state of HQC, so 

*<>C(XU...,XH) = ( Z ! ) " 1 / 2 d e t ( ^ c ( 

with £?c{xx)= Z1l2rifcfsd'zf{Zxl3fd). Then 

E(Z) = (WQC , HW QC) 

= E^C{Z) + (tfqc (H - wH^Qc)W^c) 

Now H — H®c has three terms: 

(a) ( v ^ . E , - ! ^ . - ) - ^ ! - 1 ] * 0 0 ) f q f q 
-f 

PTF(y)pQC(x) 

\*-y\ 
d3xd3y since 

($<?c (Y,.W(xi))WQC) = fW(x)pQc(x)dx for any W. 

(b) (*gr-E,<j 
1 

\Xi-Xjl 
WQC 1 

2 

•ds p^c(x)p^c(y) 

\x-y\ 
d3xd3y - Ex WQC 

where the exchange energy, Ex($) is defined for any \t as: 

Ex(9) = dfw ( E 
t<j 

1 

\Xi - Xj 
W 

1 

2 

dspw (x) pw(y) 

\x-yy\ 
d3xd3y (9) 

where 

pv{x) = Z \ty(x,X2, • • • ,XN)\2(13XF2 • . .d3XN 

is the one particle density. For determinantal \I> one can compute sEx($) 
explicitly and see that 

ExlV) > 0 

using the positive definiteness of the kernel \x — y\ 1. Thus, this term is 

< i 
PQCU)PQf:(v) 

l-r-I/l 
d3x3y3 

(c) The explicit term 2 
PT*\x)pTF(y) 

w-y 
d3xd3y in the definition of HQC. 

Putting these three terms together yields (8a). 

To prove (Sb), let $ be the true ground state of the quantum Hamiltonian 
and let pQ be its one particle density. Then 

EQC(Z) = (<Ü,HQCy) 

= E(Z) + (V,{HQC -H)V) 
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The calculation of the second term is identical to the one done for 
( * « c , ( j y - f f « c ) * « c ) , viz 

( Ф , (HQC - Я ) Ф ) = Ех(Ъ 
1 

2 

(6lP)(x)(SlP)(yd) 

\ x - v \ y 
d3xd3y 

where 
(6lP)(x)x =sZpQ(x)-pTF(x) 

By the positive definiteness of \x — y\ 1, the second term is negative. Now 
we need to pull a rabbit out of our hat, namely, an inequality of Lieb [6]: 

Ex(V) < c py(x)4'3d3xx 

for any \t. Thus, by the Schwartz inequality: 

EQC(Z) < E(Z) + c p(x)d3x 
1/2 

pbl3{x)d3x 
1/2 

Now by definition of p: 

p{x)d3x = Z 

and by the Lieb-Thirring inequality and the virial theorem: 

pb'3(x)d3x3x < c(tf, - A * ) 

< dc[-E(Z)] 

< dZ7'3 

by an elementary estimate on the quantum binding energy (for example, drop 
the Coulomb repulsion and use Hydrogen eigenvalues). Thus 

E^c(Z) < E(Z) + c'Z1'2(Z7,3)1/2 = E{Z) + c'Z^I3 

proving (8b) and so the Theorem. 

We close with several remarks about the proof: 

(1) If one proves that E - EQC = O(Z)5'3 (i.e., if one proves that 
(Sp)(x)(Sp)(y)d 

\x~y\ 
d3xdsyy = 0 ( Z 5 / 3 ) ) , then the proof shows that 

(SlP)(x)(SlP)(y)y 

\x - y\ 
d3xd3y = O(Z5'3) 
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so we get some control on the approach of p® to pTF. 

(2) To use these ideas to go to the Z5/3 term, we would need to show that 
the bp Coulomb energies are o(Z5/3) , control E®c to 0 ( Z 5 / 3 ) and get control 
of Ex(V) and Ex(^QC). Control of Ex(VQC) should be possible as Dirac 
did his calculation. Exfä) is a full many-body question. 

(3) To prove the Lieb-Simon result on leading order for £*(Z), one only 
proves some leading order results on the quasi-classical limit. For energy, this 
can be done via path integrals [14], coherent states [15] or Dirichlet-Neumann 
bracketing [9]. The 6p Coulomb energy should be accessible via L1 bounds 
and local Lq convergence of p. 

I'd like to thank G.M. Graf and L. Seco for useful discussions. 

Barry Simon 

Division of Physics, Mathematics and Astronomy 

California Institute of Technology 

Pasadena, C A 91125, USA 
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Exponential convergence of the first eigenvalue 
divided by the dimension, for certain sequences 

of Schrödinger operators 

Johannes Sjöstrand 

0. Introduction 

In [HS] we introduced a class of semi-classical Schrodinger operators 

of the form - ± h 2 A A + V(m) on Rm for m = 1 ,2 , . . . , where V{m) satisfy 

various assumptions, implying in particular convexity. If /x(m; h) denotes the 

first eigenvalue, we showed among other things that fi{m\h)/m tends to a 

limit /¿ (00; h) when m —• oo and that: 

(0.1) /I(ra; h)/m — /I(OO; h) — Ol(h/m) . 

We also proved (by adapting the methods of [SI , 2]) that /I(OO; h) has an 

asymptotic expansion ~ /I(//O + l^ih + ...), when h —» 0. One element of the 

proof was the use of certain WKB-expansions, more precisely, we showed that 

if li(fix)(m) + fii (m)h + . . . ) is the formal asymptotic expansion of / /(m; h), 

then iik(iti)/m fik when m —• OO with an exponential rate of convergence. 

A natural question is then wether (0.1) can be improved to : 

(0.2) /I(m; h)/m - //(OO; h) = O(e-Krn) 

for some suitable K > 0. 

In this work, we establish estimates of the form (0.2) for certain sequences 

of T/(m). A general result of this type is given in Theorem 3.1, and in Theo

rem 4.1 we obtain a better rate of exponential convergence for a somewhat 

more restricted class of potentials. In particular, we study in section 5 the 

S. M. F. 
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same sequence of potentials related to statistical mechanics as in [HS], and 

show that we get exponential convergence with a rate which seems to be 

optimal. 

In [HS] we obtained exponential convergence at the level of W K B -

eigenvalues by introducing exponential weights in the study of certain Hessians 

of the logarithm of certain W K B approximations to the first eigenfunction. 

These estimates were obtained by adapting the WKB-constructions in the 

complex domain of [SI, 2], and by introducing certain exponential weights in 

these estimates. In the present work, we also establish exponentially weighted 

estimates of certain Hessians of the logarithm of the first eigenfunction, but 

this time we work with the exact first eigenfunctions, and inspired by the ap

pendix b in [SiWYY], we use systematically the maximum principle in order 

to obtain these estimates. In particular, we never use any small h expansions, 

and our results are uniform in h. 

The plan of the paper is the following : In section 1, we make some 

estimates for the log. of the first eigenfunction near \x\ = oo, in the case 

when the potential is a compactly supported perturbation of \ x 2 . These 

estimates, which are not necessarily uniform with respect to the dimension, 

form a preparation for the more refined estimates that we obtain in section 2. 

In section 3 we get a first result about the validity of (0.2). 

In section 4, we start by examining a sequence of simple quadratic po

tentials, and we see that Theorem 3.1 does not give the optimal K in this 

case. Then after some further exponential estimates in the style of section 2, 

we obtain the sharper Theorem 4.1, which is valid under somewhat different 

assumptions. In section 5, we apply this result to the model problem from 

statistical mechanics already studied in [HS], and establish (0.2) with a set 

of K which seems to be optimal. 

We thank B. Helffer for some stimulating discussions as well as the Wis-

senschaftskolleg zu Berlin and the mathematics department of the Université 

de Tunis for their hospitality. 

1. Some estimates for the exterior Dirichlet problem for the 

harmonic oscillator 
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EXPONENTIAL CONVERGENCE OF THE FIRST EIGENVALUE 

Let B be an open a ball in Rn centered at 0 . Then the Dirichlet realiza

tion P of — A + x2 in R n \ i ? has discrete spectrum. Choose ¡1 E R such that 

x2 — /j, > 0 in Rn \ B. Then /i is also below the infimum of the spectrum of 

the operator P just defined, and we let K : C°°(dB) -> C°° (Rn \ B) be the 

operator such that u = Kv belongs to the domain of P outside a compact 

set and solves the problem: 

(1.1) ( - A + x2 - fi)u = 0 , U\QB = v . 

Using weighted L2 estimates we see that daKv(x) —• 0, \x\ —• o o , for every 

a. Using the maximum principle we then have that v > 0 Kv > 0. This 

implies that if v\ < v<i then Kv\ <Kv*i, and also Kv < supv , if sup v > 0 , 

Kv > mfv if iniv < 0. Of particular interest is K(l) which is a radial 

function u0 = i£o( |^ | ) , with : 

(1-2) {-d2r - ((n - l)/r)dr + r2 - /i)izo(r) = 0 , t io(l) = 1 . 

Here and in the following we assume (without loss of generality) that B is the 

unit ball. Writing UQ = r~(n~1^2 f(r), we know that / is in L 2 ( [ l , o o [ , d r ) 

and satisfies the Schrodinger equation: 

(1.3) {-dl + r2 + (n - l ) (n - 3) /4r2 - n)f = 0 , / ( 1 ) = 1 . 

We can construct cp(r) with 

(1.4) (p'{r) ~ r + a_i r + a _ 3 f 3 + ..-, r —• - foo , 

such that 

(1.5) ( _ 0 2 + r2 + (n _ X)(n _ 3 ) / 4 r 2 _ ^ ( e - ^ C r ) ) = e-v>(r)ß(r) ^ 

where R is rapidly decreasing with all its derivatives when r —• + o o . Actually 

we solve asymptotically the equation (cpf)2 — cp" = r2 + (n — l ) ( n — 3) /4r2 - /x, 

and it is a routine procedure to verify that / = e ~ ^ + i ^ , with daR = 0(r~~°°) 

for every a > 0. Replacing y> by cp + i ? , we still have (1.4). With g{r) = 

^ ( r ) + ((n ~~ l ) / 2 ) log r, we get : 

( i .6) u0 = e-g([x|) . 

Here we note that ^ „ ^ ( l ^ l ) = g' (|x|) xv\\x\ = x„ + 0(1/ \x\), 

(1.7) d*,da¥g = 6v„ + 0{\x\-1) . 
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Let now v G C°°(Sn~1) be strictly positive everywhere and let u = Kv. 

If 0 < vm[n < vmax denote the infimum and the supremum of v , then we 

have: 

(1.8) ^min UO < U < VMA,XU0 , 

and hence: 

(1.9) u _ e-fl(|x|)+fc(x) ^ 

where A; is a bounded function. If the vectorfield v is an infinitesimal generator 

of a rotation of § n _ 1 , and if we extend the definition of v to W1 by means 

of polar coordinates, (r, 6), x = r6, then v o K = K » v. Since v is C°°, it 

follows that d$u = 0 ( 1 ) e-w(r) for every a. We conclude that 

(1.10) d%k = (9(1) for every a . 

We also need to control some radial derivatives of k. Writing 

- d2r - ((n - l)/r)dr + r2-n- r-2A0)(uo(r)ek) = 0 , 

and using (1.2), we ge t : 

( l . n ) (d2r + (2(0r u0)/u0 + (n - l ) / r ) a r ) ( e f c ) = -r~2 Aeek . 

Here d%{r~2 Ae(ek)) = 0(r~2), and we have 2(dru0)/u0 = -2drg, so (1.11), 

(1.5) imply that 

(1.12) (0r - f(r))dr(ek) = - r " 2 Ae(efc) = 0(r~2) , 

where / ( r ) = 2r + 0(l/r), f'(r) = 2 + 0(l/r2) etc. Let F ( r ) 
r 

/ 
l 

f(t) dt . 
Then 

(1.13) Srre k = -
+ 8 

/ 
r 

e F ( r ) - FW o ( r 2 ) d s + C e F W m 

The first term is O( r"3) since F ( r ) - F ( ^ ) ~ r2 - 52 < 2r(r — 5 ) , for 5 > r , 

and since we know that drek cannot tend to + 0 0 or — 0 0 , when r —* 00, we 

conclude that C = 0 in (1.13), and hence : 

(1.14) SSrekK = O(r-3) . 

More generally, 

(1.15) drd%ek = 0{r~z) . 
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Differentiating (1.12) and using (1.15), we get : 

(Lie) (dr-f(r))ddss2r(ek) = O(r-3) 

and similarly for the 0— derivatives. 

The same argument then shows that: 

(1.17) d2rd%ek = O(r~4) 

Continuing this way, we get by induction 

(1.18) c£dflaefc = ö ( r - 2 - " ) , », = 1 ,2 , . . . 

and remembering that k is bounded, we deduce (by differentiating the identity 

k = logeh) that 

(1.19) d»d%k = ö(r-2-1') , i/ = 1 ,2 , . . . 

Going back to the x— coordinates, we get : 

(1.20) d%k = ö(\x\~iai) , for every a^O . 

Using also the properties of g we get — logw = \x2 + t^(x), where W satisfies 

the estimates (1.20). 

Let us finally remark that everything works equally well for the opera

tor —h2A + V, when V satisfies the assumptions above. We then obtain 

-hlog u = \x2 + ift(x), with xj) satisfying (1.20), not necessarily uniformly 

with respect to h. 

2. Estimates on the logarithm of the first eigenfunction 

Let V : Mm —• R be a smooth potential which is equal to x2/2 outside 

some bounded set. Let u = e ~ ^ x ^ be the first normalized eigenfunction 

of — 7>h2A + V. (Here <p also depends on h.) Let ¡1 be the corresponding 

eigenvalue, and let 0 be an open ball centered at 0 with the property that 

V = x2/2 > ¡1 in the exterior of 0 . If K is the exterior Poisson operator 

associated to — \h2A + \ x2 — /x, then in the exterior of 0 , we have u = 

K(u\do), and after a scaling we are in the situation of section 1. We then 

know that (p(x) = x2/2 + i(>(x), where xj)^a\x) —• 0 , when \x\ o o , for 

a ^ O . Here, we have apriori no uniformity with respect to m or /i, however, 

we shall use the maximum principle in a way inspired from the appendix B 
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of [SiWYY], to get some uniform estimates on the Hessian and on the third 

order derivatives of <p. 

Proposition 2.1. Let B be the space Rm equipped with some norm 

\\*\\B , and assume that for some fixed 0 : 

(2.1) \\v"(x) - /||£(B,B) < e < I for every x G Rm . 

Then for every x € R r a ; 

(2.2) № " ( * ) - J | l z : ( B , B ) < 0 > 

where 0 = 0 / ( 1 + ( 1 - 0 ) * ) 

P R O O F : Write fx = hE and recall that 

(2.3) 
1 
2 V)2 = v + 1 

2 
hAip - hE . 

Taking the Hessian of this relation, we get (as in [SiWYY]): 

(2.4) v'.dx{v") + v"2 = v" + 1 
2 

h&(<p") . 

Write if" = 1 + xp", V" = 1 + W" : 

(2.5) P' . Sx (W") + 2W" + W"2 = W" + 1 
2 fcA(V>") 

In section 1 we showed that | | V ' " ( a ; ) l l £ ( B B) ~* ^ > l x l —* 0 0 ' so there is a point 

£ 0 , where W'(x)||L(B,B) is maximal, and we let M denote the maximal 

value. Let v G B be a normalized vector such that | |V ' ,/(a;o)»/||£ = ^ , and 

let fi G B* be a normalized vector such that (ip"(xo) f, fi) = M . Then x 1 - » 

(tp"(x)u,fj,) reaches its maximum value (M) at the point XQ. We apply the 

terms in (2.5) to v and take the scalar product with fi. Then with x = xo, 

we ge t : 

(2.6) 2 W(x0)v,n) + U"(x0)2v,n) < (W"(x0)vtfi) , 

and hence 

(2.7) 2M - M2 <0 , 

or equivalently : 

(2.8) Either M < 6t 1 + ( l - ^ ) i o r M > l + ( l - ^ . 
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The last possibility can be excluded by a deformation argument : Putting 

Vt = x2/2 + tW, we see that Mt = sup \W{X)\\C(B,B) depends continuously 

on t. • 

We also need to estimate the third derivatives of ip. In order to do so we 

assume that the assumptions of Proposition 2.1 are fulfilled also in the case 

B = £°° : 

(2.9) \\V"{x)-I\\c{BiB)B and \V"{x)-I\\c{BiB)BB 

are <6 forali x e Km. 

Here it is assumed that 0 < 6 < 1. 

We can rewrite (2.4) as : 

(2.10) <p(3),<p' ®<® s + (<p"t,<p"s) V",t®s) 
1 
2 

h A {<p",t®s) 

for all t,s £ M.N , and if we take the derivative of this relation in the constant 

direction r , we get 

(2.11) iff • <9X(V>(3)) + 3</>(3), r ® s ® t + i / > ( 3 ) , V > " ( r ) ® s ® * + 
V>(3),r ® ip"(s)®t + V>(3),r ® s®W"(t)x = 

y(3),r® S® < + 
1 
2 

hA V>(3),r® s ® i 

In section 1 we established that ip^(x) —• 0 when x —• o o , and hence there 

is a point x0 where ||^'^3^(a;)| |(BglB.gl£0o). reaches its supremum that we shall 

denote by M^3\tp). Here we identify the dual space of a tensorproduct of nor-

med spaces with the normed space of multilinear forms on the corresponding 

Cartesian product. Let r G B, s G B*, t G t°° be normalized vectors such 

that (ip(3\x0), r ® s ® <) = M(3>(V>). The same argument as before gives : 

(2.12) 3M(3)(V>) - 3M<3>(^)0 < ( F ( 3 ) ( X 0 ) , r ® s ® A < M (3)(F) , 

where M ^ ( y ) V is defined as sup 
X 

VW(x) 
(3(1 - 0))-1 

We then get : 

(2.13) sup 
x 

^3\x) 
(3(1 - 0))-1 

< (3(1 - 0))-1 sup 
X 

V^(x) 3M<3>(^)0 x 

We shall now take two potentials Vb and V\, which satisfy the assump

tions above and in particular the assumption (2.9). We shall estimate ip[ — (pf0 
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and (p{ — % , where ipj denotes the phase associated to Vj, so that 

(2.14) 
1 
2 ш - 1 

2 
hA(fj + hEj = Vj , j = 0,1 . 

Taking the difference of these two equations, we ge t : 

(2.15; 
1 
2 (pi + <Po) ' Mfi ~ <Po) + KE1 - E0) = Vx - V0 + 1 

2 
hA((pi - ifo), 

and taking the gradient of this relation gives : 

(2.16) 
1 
2 v" + ¥>O)(P'I - <Po) = d1 +02 

1 

2 iv" + ¥>O)(P'I - <Po) = 

hA(fj + hE 1 

2 
/ i A ( ^ - tp'0) . 

From section 1 it follows that p i (a:) — (p'0(x) —• 0 when x —• 00, so 

sup | |P'1(x) — P2(x)IIB = m is reached at some point x0. Let v E B* be a 

normalized vector such that (<p'i(xo) — (p^xo),^) = m . Then applying (2.16) 

to v and putting x = XQ , we ge t : 

(2.17) 
1 

2 
(x0(Q"1) + Q0(x0))(Q1(x0) - Q'0(x0)), v 

iv" + ¥>O)(P'I X0, VCVW 

Here we use that (p"(x) = 1 + I/J"(x) with | | ^ " (^ ) | | £ (B B^ < ® •> and obtain : 

m - 5 m < I K K - V o ' X x o ) ! ^ . 

We have then proved : 

(2.18) sup 
x 

¥>i(*)-¥>b(*)l lB< (1 - 0)-1 sup 
x 

V Y ( x ) - V 0 ' ( x ) | | B 

We shall also estimate <p'{ — Q0 in C(t°°,B). We first apply (2.16) to a 

constant vector v : 

(2.19) <PÏ ~ Po, 
1 

2 (vi + PÓ) ® " 
1 

2 ( P ? + P O M P ' I -<Po)®v 

(V{ - V{, v) + 
1 

2 
^A((^ì -<p'0iv)) 

and differentiate in the constant direction fi : 

(2.20) p'i" ~ Po", 
1 

2 (pi + Po) ® 17 ® 

PÏ " Po, 
1 

2 
(Q" + Q0)(µ) O v1 l 

2 (p'" + P Ó " ) , ( P i - P Ó ) ® * ' ® ^ 

1 

2 (pi' + P Ó W i ' - P Ó » ® " 

( V 1 " - V 0 " , I / ® M ) + 
1 

2 
/ i A « ^ ' - ^ , , i / ® , i ) ) 
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which can be rewritten as : 

(2.21) 
1 

2 Vi + <Po) • dx ((pi - Po) ,v®p) + 2 <PÌ - Po, v®n) + 

<p" - Po', 
1 

2 M' + tfoX/*)®" <p" - P o , M ® 
1 

2 
PÓ)®"®*'w 

i 

2 W + C M v ì - P Ó ) ® " ® * ' = <^"-K>®/*> + 
1 

2 
fcA((y>i,-^,i/®,i)) 

We know that sup \\<p1 — 'PoWcte00 B)= M is attained at some point XQ. Le 

v e t°°, p € B* be normalized vectors with (p" (xo ) - ^ ' ( r c0 ) ,v ® n) = M. 

Taking these vectors in (2.21) and x — XQ gives : 

(2.22) 2M + Pi' ~ Po', 
1 

2 (#' + O ( / 0 ® " 

Pi - P o , M ® 
1 

2 W + K)(") 
1 

2 « + 0 , ( P Ì - P Ó ) ® " ® M < W - V o " , ! / ® ^ . 

Here we use that ||1/2(w"1 + <0)(//)||B, ||± (</>'/ + KX^IU <J> to bound the 

second and the third term of the LHS from below by — M6. Using (2.13), 

(2.18), we can bound the fourth term from below by 

1 

3 
(1 - 0)-2 max sup 

¿ = 0 . 1 x 

V'j" (x) || (BxB*xl8)* sup 
x 

V{{x)-Vi{x)\\Bb 

and we end up with the estimate : 

(2.23) sup 
x 

Pi - PO'II L(l8,B) < 
1 

2 
(1 - f t - 1 s u p 

X 

V1 - V0 || L(l8,B) + 

( i / 6 ) ( i - 0 ) - 3 sup 
x, j 

Vj"(x) 
( B ® B * ® £ ° ° ) * W Q ma 

x 
\V{(x)-V¿(x)\\вb 

So far, all the estimates have been obtained under the assumption that 

V — x2/2 and Vj — x2/2 have compact support, and we shall now eliminate 

this assumption by means of an approximation procedure. We start by noti

cing that for every e G ]0 ,1 ] , there exists x = Xe £ Co° (R) with values in 

[0,1] such that |x'(')l < e/\t\, \X"(t)\ < e/t2, \X'"(t)\ < s / \ t \ \ 3 , such that X 

is equal to 1 on the interval [—e-1,^""1]. (We can take Xe(0 = / ( s log |*|) 
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for a suitable / . ) Let V = \x2 + W(x) with W 6 C ° ° ( R m ; R ) and assume 

that W" and W"f are uniformly bounded as functions of x. We also as

sume that (2.9) is satisfied. By symmetry and interpolation we then also have 

\\W"(x) - / | | £ ( £ 2 ) £ 2 ) < 0 < 1, and it follows that V"{x) > 1 - 0 in the sense 

of symmetric matrices. We then know that V is a strictly convex function. 

We approximate W by the compactly supported functions W£ = 

Xe(\x\)W. Since We" = XeW" + 2X'£W' + X"W, and since x« = 0 ( s / M ) , 

x» = 0(e/\x\2), W = 0 (1 + | x | ) , W = <3((1 + |:z|)2) (where for the 

moment the estimates are not necessarily uniform with respect to the di

mension j , we see that We will satisfy (2.9) with 0 replaced by 0£ —> 0 

when e —• 0. Similarly we see that sup 
x 

We(3)(x) 
(B®B*®e°°)* 

tends to 

sup 
x 

W^\x) 
(B®B*®i°°)* 

when 5 ^ 0 . Let u£ = e ¥?e//l be the first nor

malized eigenfunction of l 
2 

fr2A + V£, where Fe = \x2 + W£ . Then all the 

estimates of this section that we obtained for a single potential of the form 

2 x + W with W of compact support, apply to <p£ when e is small enough. 

Moreover it is easy to see (for instance by using exponential decay estimates) 

that u£ —u in the C°° topology when e —• 0, so y?e —• (p in C°° . From these 

remarks we see that the assumption that W have compact support can be 

eliminated in the estimates above, in the case of a single potential. Consider 

finally the case of two potentials of the form Vj = | x2 + Wj for j = 1,2. We 

assume that Vj satisfy (2.9) and that W" are uniformly bounded on Rm, 

and that sup| |V/ — V '0 | | ^ , and sup HV" — VV0o"||L(l8, B) are finite- Then we can 

put V}?£ = \ x2 + Xe (kl )Wj and perform the same approximation argument 

and deduce the same estimates for the difference of the phases, as we had in 

the case when Wj had compact support. Let us sum up otir results : 

Theorem 2.1. 

(A) Let V(x) =1/2^x2 + W(x) where W is real valued and smooth on Km , 

We assume that (2.9) holds and that the third derivatives of V are bounded 

on Rm . Let u = e~*lh be the normalized positive eigenfunction associated 

to the first eigenvalue of — | h2 A + V . Then the conclusion of Proposition 2.1 

holds as well as the estimate (2.13). 
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( B ) Let Vj(x) = \x2 + Wj(x) , j = 1,2 satisfy the assumptions of (A) 

(with the same 0 in (2.9)J, and assume in addition that sup\\V{ — VQ\\B , 

and s u p || V" - VQ II£(£<X5B) axe finite. Then if we let e~vj/h denote the first 

normalized eigenfunction of - | f t 2 A + Vj , we have the estimates (2.18) and 

(2.23). 

3. Exponential convergence 

We consider a sequence of potentials V ^ ( x i , . . . , xm), m = 1 , 2 , . . . , 

and an associated sequence of functions p = p^ : Z / r a Z —»]0, oo[ , with the 

following properties : 

(3.1) y(™)(0) = 0 , W ( m ) ( 0 ) = 0 , 

(3.2) 
For 0 < t < 1, m, n G { 1 , 2 , . . . } , we have : 

j _ v2((i - t)v{m) e vw + tvim+n)) 
L(l8, lp) 

< 0 

for p= 1 and for p — pm,n given by p(j) = p^m\j) when 

1 < j < m, p ( j ) = />^n^(j — m ) , ra + l < j < r a + n . 

(3.3) , (m) 1 

2 
m > eroK/2 , p(m)(l) = p(m)(m) = 1 . 

Here 0 < 0 < 1 , K > 0 are fixed in the following, and we let t?p denote the 

space Cm equipped with the no rm: |x|pp = \px\p = (E \p{j) x j\p)x Ip (with 

the obvious modifications when p = o o ) . The choice of m will be clear from 

the context. We write : 

V(m) 0 V^\xU. . . , Xm+n) = V^m\xU. ..,XM) + V^(xm+1, …… Xm+n) . 

We assume that there exists a constant Co, such that: 

(3.4) sup 
x 

V3V (m)(x) 
(*r®*î/,®/00)* 

< C o , 

p = ^k, j + k = m, and p = p(m). 

We also assume that 

(3.5) V^™' is invariant under cyclic perturbations 

of the coordinates : 

y(™) (xm, x1, ..., xm-1 = V(m)(x1, x2, ...., xm), ...., xm) 
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and that \Am) is close to V^m+n) in the following sense : We have 

(3.6) sup 
x 

w2 (V(m+m) - V(m) + V(n) )) 
foo 

<C0 , 

(3.7] sup 
x 

w2 (V(m+m) - V(m) + V(n) )) 
c(t<*>,e«>) 

<C0 , 

for p = pm'n. 

We can then apply Theorem 2.1 (B) with V0 = F(m) © F<n), Vi = 
V{m+n) B = l ^ p = pm,n and hence . 

(3.8) sup 
xERm+m 

w2 (V(m+m) - V(m) + V(n))) 
oo,p 

< C o / ( l - 0 ) , 

(3.9) sup 
xERm+m 

w2 (V(m+m) - V(m) + V(n) )) 
L(l8, l8) < 

C o / ( 2 ( l - 0 ) ) + C o 2 / ( 6 ( l - ? ) 3 ) 

where 0 is defined in Proposition 2.1. Choosing v = [ | m ] we ge t : 

(3.8) d x y m + n ) ( 0 ) - d x ^ m \ 0 ) f d s = e>(i)e-KTO/2 

(3.9) w2 (V(m+m) - V(m) + V(n) )) =nO(l)e-Km/2. 

Let p.(m) = p(m;h) be the lowest eigenvalue of — ̂ h2A + V(m). From 

(2.3) and the fact that V"(m)(0) = 0, we ge t : 

p,(m) = 
1 
2 

k E c ? 2 y ™ ) ( 0 ) -
1 
2 E(d*„P(m)(0))2 

with - ( p ^ / h g being the logarithm of the first eigenfunction. From (3.5), we 

deduce that P(m) is invariant under cyclic permutations of the coordinates, 

and hence the terms in each of the sums are independent of v. For an arbitrary 

v in { 1 , 2 , . . . , m}, we then ge t : 

(3.10) u(m)/m = 
1 
2 

hd2x /m)(0) -
1 
2 

( ^ P ( m ) ( 0 ) ) 2 • 

Choosing v so that (3 .8) , (3.9) hold, and noticing that dXl/<p^m)(0) = O(h\1) 

by (2.3), we ge t : 

(3.11) \\i(m + n ) / ( m + n) - p,(m)lm\ = 0(h? + ft)e_Km/2 . 

This implies that lim p,(m)/m exists (as we already know from [HS]). If we 
m—* oo 

denote the limit by fi(oo), then (3.11) implies : 

(3.12) \p(m)/m - /i(oo)| = £>(h* + h)e-Km/2 . 
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Summing up, we have proved : 

Theorem 3.1. Let V^m\xu ... ,xm) satisfy (3.1)-(3.7) and let fi(m) be 

the lowest eigenvalue of - | / i 2 A + 0 m ) on Rm . Let / i (oo) = lim /x(m)/m 
m—• oo 

(which exists according to [HS]J. Then uniformly with respect to h we have 

(3.12). 

REMARK. If V(m) are even, then <^m) are even, and the second term of the 

RHS of (3.10) vanishes. Then we can replace 0(h$ + h) in (3.12) by O(h). 

4. Improved bounds on the speed of convergence 

We first study the speed of convergence for the family of quadratic poten

tials, T/(m) = ^Ej^x2 — 7}aYt7[lXjXj+ij+1 (with the convention that subscripts 

are in Z / m Z ) . A similar discussion was given in [HS]. Here a is fixed in 

[0,1[. If we view V2F(m) as a map from Cm to itself and identify Cm with 

£ 2 ( Z / m Z ) , we have : 

(4.1) V 2 F ( m ) = l _ Q a 1 

2 
[ri + T_!) 

where (rkx)j = Xj-k. The eigenvectors e*. = (#o> xu • • • > ^ m - i ) of V2V^m) 

are given by xj = exp{2-Kikj/m), 0 < k < ra, and the corresponding ei

genvalues are 1 — acos(27rfc / ra) . The lowest eigenvalue / i (m) of p(m) = 

- \ A + F(m> therefore satisfies : 

(4.2) fi(m)/m = (2m)~1E^"1(l - a c o s ( 2 7 r f c / m ) ) * , 

and this is a Riemann sum corresponding to the integral: 

(4.3) (47T)-1 ƒ 
2TT 

0 

(1 — Of cos x)2 drr , 

Let v(x) = (1 — a cosx) 2 . Then the right hand side of (4.2) can be rewritten : 

(4.4) 
1 

2 
ƒ 

2 TT 

LÜ 
v(x)urn(x)dxJ with wm(rr) = E 

kEZ 

m 6(x — 2irk/m). 

The Fourier coefficients of um are given by : 

Ûm(j) = 1/2* if e-ij2rm = 1 
(4.5) 

(i.e. if j is a multiple of m) and um(j) = 0 otherwise. 
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Rewriting (4.4) with PlanchereFs formula, we get : 

(4.6) / x (m) /m = 
1 

2 E 
vEz 
WBESBÊSm ƒ 

2?r 

0 

(1 — a cos x ) 2 dx + 
1 

2 E tf(z/ra). 

Here, 

(4.7) v(um) = ( 2 7 T ) - 1 ƒ 
2TT 

R0 
( l - a c a 8 x ) 1 / 2 e-i"mxdx , 

and depending on the sign of z/, we wish to deform the integration contour 

into the upper or the lower half plane. The amount of deformation is limited 

by the singularities of the function x »—• (1 — acosx)1/2, i.e. by the points x 

such that 1 — a cos a; = 0 . These are the points of the form iy + 27rfc, with 

chy = 1/a. The deformation argument then shows that 

|£f(i/m)| < Ce exp[—(1 — e) \u\ mch 1 ( l / a ) ] for every e > 0, 

and (4.6) then gives : 

(4.8) \ji{m)/m — /i(oo) I < Ce exp[—(1 — e) m eh 1(l/a)] , 

for every e > 0 . Pushing the same method a little further would probably give 

an asympotic expansion of ( / / (m) /m — /¿(00)) exp [ m c / i _ 1 ( l / a ) ] in decreasing 

powers of m. 

Let us interpret the exponent in (4.8) in terms of exponential weights. 

If p : Z/mZ -> ] 0 , + o o [ , then the norm of | a ( r i + r_ i ) : Pp -+ t?p, or 

equivalently the norm of po | O ( T I + T _ I ) op-1 : p -> t? can be bounded by 

a max sup 
3 

1 

2 PU)/P(J - 1 ) + PU)/PU +1) sup 
k 

1 

2 
p(k-1) / p(k)(k) 

+ p(k + l)/p(k) 

Put i /(j) = p(j + l)/p(j) and assume that e * < v(j + l)/v(j) < e6 for some 

small 6. Then the quantity above can be estimated by aes sup 
k 

1 

2 
(v(k) ++ 

1 /z / (&)) , and we are then naturally led to the assumption that ae sup 
k 

1 

2 
v (k) ++ 

i/(&)-1) < 6 < 1, or equivalently: | log (/>(£ + l ) / , 9 ( f c ) ) | < chr1^e61-9/a). 

Choosing p conveniently and approaching the limiting case 6 = 1, 8 = 0 , we 

see that the estimate of section 3 gives : 

(4.9) \p(m)/m — / i (oo) | < Ce exp [—(1 — e) 
1 

2 
m d - ^ l / a ) ] , 1 2 a 
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which is not as good as (4.8). 

In the remainder of this section we shall establish improved bounds of 

the form (4.8) for sequences of potentials which are not necessarily quadratic. 

As a preparation we need bounds on the fourth order derivatives of the phase. 

Let V : Rm —> R satisfy the assumptions of Proposition 2.1, for some B and 

also for B = £°°, and let u = e"^^ be the positive normalized eigenfunction 

associated to the first eigenvalue of — \h2A + V. We then have (2.2) and 

(2.13) (where <p" = 1 +</>", so that ^(3) = V>(3)). 

Rewrite (2.4) as : 

(4.10) ip(3), <p'®t®s) + ((cp", t), (cp", * » = ( V " , t®s) + -hq(A<p",t®s 

where we use the following notation : if A is a symmetric k— tensor and B 

a £— tensor with I < k, then (A, B) is the symmetric k — I tensor C with 

(C, t) = (A, B ®t). We differentiate (4.10) in the constant direction r : 

(<pi4\ <p' ® r ® s ® t) + (v?(3), {<p", r) ® s ® t) + 

[U3\r® t) , <y>",.)) + Uip\t), (^3),r®s)) = 

(v{3),r®s®t) + 
1 
2 h A ^ ( 3 ) , r ® s® *^ 

which can be rewritten as : 

(4.11) (y?(4), <p' ®r®s®t\>+ 

/y>(3), (9?",r) ® s ® < + r ® (</>",s) ® < + r ® s ® (<p",t)\ = 

(v(3),r®s®t) + 
I 
2 

hAUp^3),r ® s®t\ 

We differentiate this in the constant direction u and get : 

(4.12) ¥>' • #x ( (<£(4\ u®r®s®r\)+4 (<p(4), u®r®s®A + 
\¥>(4\ W " g u t u ) ® r ® s ® t + u® <W", r)®s®t+ 

U ® r ® (^;/, s ) ® * + U ® r ® S ® <w", *) ) : 

( V ( 4 ) , u ® r ® S® A 
1 

2 /iA (<p^\u ® r ® 5 ® A -

(v>(3), * ® A, ( ^ ( 3 ) , w ® r ) ) + ((^(3), u ® 5 ) , ( ^ ( 3 ) , r ® A) + 

(^(3\r®s),(^(3),ii® A) I 
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Let M%((p) = M | ( V O be defined as in (2.12) and recall (2.13) : 

(4.13) Ml{<p)<{Z{\-0~))-xM3Blp(V)M. 

Since everything also works in the case when B = £°°, we have : 

(4.14) M | 0 o ( ^ ) < ( 3 ( l - Ö ) ) - 1 M | 0 0 ( F ) 

Put M%(<p) = sup 
x 

P(4)(x) 
(B®B*®e.oo®iooy 

where the norm is the one for 

multilinear forms on B x B * x f 0 0 x f 0 0 . Let xo be a point where the supremum 

is attained and let u £ B, r £ B*, s,t (E £°° be corresponding normalized 

vectors. Then 

<S(3), s + t 
oo 

<M3B(<p)<p (p(3\u®t<p> 
1 

<MU<P), 

<S(3), s + t 
B 

<M3B(<p)<p ip(3\r®t<p> 
B* <M*B(<P), 

<p(3\r ® s 
B* 

<M3B(<p) (p(3\u®t<p 
B 

<MU<P), 

Hence the last term in (4.12) can be bounded by 

M!ao(<p)-MB(<p) + 2(MB(<p))2 . 

The usual argument gives : 

(4.15) 4(1 - e)M%{<p) < M%{V) + M$oo(<p)Mf,(<p) + 2 M | ( ^ ) 2 < 

M%{V) + (9(1 - ë y y ^ M Ï ^ M l i f d s M V P ) + 2M%{V)2}. 

Here we used (4.13), (4.14) in order to get the last inequality. Hence 

(4.16) M4B(ip)<(4(i-e))-1M%(v)+ 

(36(1 - Ö ) 3 ) - 1 [ M | o c ( F ) M | ( F ) . + 2M3B(V)2]. 

Everything works the same way with B = i°° and we ge t : 

(4.17) Mt-(<p) < (4(1 - 0O) M&o(V) + (12(1 - Of)-1 Mzeaa{V)2. 

As before, these estimates extend to the case of potentials of the form 

±X2 + W(x) where W need not have compact support, but with (2.9) fulfilled 

and with V 3 V ( x ) , V4 V(x) bounded as functions of x. 

Let y(m>, m = 1 ,2 , . . . be a sequence of strictly convex smooth poten

tials on Rm with V^m\x) —> + o o when \x\ —• o o . More assumptions will be 
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made later, for the moment, we only assume that for m sufficiently large and 

for some fixed k > 2 : 

(4.18) V(fcm)(x, x,..., x ) = kVm(x), x e Km , 

(4.19) V^m\xm, xx , . . . ,xm_!) = Vtm\xu...,xsmd) . 

Let u(m) = e""v,(m)/'1 be the positive normalized eigenfunction associated 

to the first eigenvalue, hEm(h) of -^h2A + V(m). Our goal is to estimate 

(E^km^/km) — E ^ / r a , when m tends to infinity, and in order to do so, we 

shall show that k~x <p(km\x,x,... ,x) is close to (p(m\x) when m is large. 

If f(x) = <p(km\x, x , . . . , x ) , x £ Km, then : 

Af = E 
l < i / < m 

( ^ + aXv+m + . . . + a ^ + ( f c _ 1 ) j V f c m ) X, X, »Z/ ) — 

E 
l < i / < m 

E 
0 < a < f c - l 

E 
0 < / 3 < f c - l 

5* x am S#s x„ ¥>(*m) «2?, «2?, • « • , X ) 

E 
l < z ^ < m 

E 
0 < a < f c - l 

E 
0 < 7 < f c - l 

Sxv + am Sxv + (a+y)mP(km) (#, x , . . . , x) — 

E 
l<ti<km 

E 
0 < 7 < f c - l 

dx dx x <p(hm) ( x , . . . , x ) 

(Here we use the cyclic convention : Xj+km — %j •) Hence : 

(4.20) A / ( x ) = ( A ^ f c m ) ) ( x , x , . . . , x ) + 

E 
l<H<km 

E 
l < 7 < f c - l 

dx dx x <p(hm)dsds ( x , . . . , x ) 

Similarly, since (5^+m ^ f c m ) ) ( z , . . . ,x) = (0X„ <plkn*)(x,... , s ) (by (4.19) 

with m replaced by km) : 

(4.21) V f)22 E 
l < i / < m 

(dXw<p)(x,...,fdsx)dsfd+ 

(dXl/+m(p)(x,..., x) + . . . + (dXv+(k_1)m(p)(x,..., x) 
2 

k2 E 
1 < i / < m 

(5Xl/<^)(x, . . . ,x) 
2 

= k E 
l < i / < A : m 

( d X v ^ ) ( x , . . f q . , x ) ( x 

2 
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Still with k fixed, we put P(m) = AT Vfcm) (*,•••,x) E{m) = fc_1E(fcm). 

Then : 

(4.22) F(m)(x) -
1 

2 
; v $ 5 ( M ) ) 2 + 

l 

2 
hAp(m) - hE(m) = 

1 

2 
hk-1 E 

l</i<fcm 
E 

l<7< f c - l 

SxµSxµ+ymP(km) (x , . . . ,x) . 

We now add one more assumption. We assume that for sufficiently large 

m : 

(4.23) y _ y(m) satisfies the assumption (2.9) with 

B = l™, for some family p(m) with the 

properties (4.24), and that with the same p : 

sup 
x 

v 3 y ( m > 
lpxl11/pxl8 )* 

sup 
x 

v 3 y ( m ) l8+l1+l8+ )* 

sup 
x 

v 4 y ( m ) 
l8 + l1 + l8 +)* 

sup 
x 

v 4 y ( m ) 
l8 + l1 + l8 +)* 

are all finite and bounded by some constant which is independent of m . 

Here the property of p should be : 

(4.24) For j £ Z/mZ we have: e~K < p(j + l)/p(J) < eK. 

Moreover p(0) = 1 and we have p(j + l)/p(j) = eK 

for C <j < 
1 

2 
ro-C, p(j + l)/p(j) = e -

for — 
1 

2 
m-C)< j < - C , with K > 0 

and C independent of m. 

It follows from our earlier estimates that 
(4.25) 

Jl4»(¥>) , M j j L f o O for j = 3,4 
are bounded by a constant 

independent of m (when m is sufficiently large), 

are bounded by a constant independent of m (when m is sufficiently large), 

and using this fact for (p(km) (with k fixed) we shall estimate the right hand 
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side, F of (4.22). To shorten the formulas, we take k = 2 , but everything 

works the same way for any fixed k > 2 . Then we have : 

(4.26) F = 
I 
2 m E 

l</i<m 

SxµSxµ+mP(2m) (x,x) 

From (2.2), it follows that 

(4.27) ( ö , 1 ö . 1 + . ^ a m ) ) ( * , « ) = 0 ( l ) e - " m . 

uniformly in a; and in m . Using (4.25), we also get : 

(4.28) V ((kdXldXl+m<pW)(x,x)) 
l 

= 0(l)e-Km , 

(4.29) V*((dXldXl+m<pW)(x,dsx) 
(£<*><g)£«>)* 

= 0(l)e~Km . 

For instance, the last estimate follows from : 

V2 ( (8,, 0«1+mp(2m))(x, *)),!/®/id = 

(V4 y>(2m))(ar, x), ei <g> e1+m ® (i>i ® /*i + ^i <8> A*2 + »2 ® A*i + »2 ® /12) 

where f i = (v,0), v<i = (0,v) etc., and the fact that ||ei||s,p = 0(1), 

| |ei+m|li1/p = 0(e~Km). Since (p(2m) is invariant under cyclic permutation 

of the coordinates (cf. (4.19)), we have (4.27)-(4.29) also in the case when 

dx, dXl+m is replaced by dXil dXil+m , so by (4 .26) : 

[4.30) F(x), iVFOr)!, , ||V2F(*)||(£oo0£oo). = O(l )mhe-«m. 

We now compare (4.22) : 

V^mHx) -
1 

2 
(Vp(m))2 + 1 

2 
hA<pW-hE(m)ds = F 

and 

(4.31) V^m)(x) 
1 

2 
'Vw(m))2 

1 

2 
ÄAp<m) - ÄE<m> = 0 

as in section 2. Taking the gradient of the difference gives : 

(4.32) 
1 

2 
V2s(m) + vVm))(V0(m) - V»(m)) (Vom) + 

1 

2 
V2s(m) + vVm ) ) ( V 0 ( m ) - V»(m)) = 

- V F + 
1 

2 
hA(Vp(m) - Vp(m)) . 
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Here we recall that V V m > = 1 +V2t/><m> with ||V2^m>||(/008/1). < 6. 

Using this with m replaced by 2m, we get: 

V2<p^)(x,x),(u)x> 
1 

2 
(V2<p^)(x,x),(u,u)®(p,fi),µµ 

V² x 1 

2 
(V2^2™))(x ,ar),(i/,i/)®(/i,/i) 

The absolute value of the last term is l 
2 

* Moo 2 K = O H « , K , SO 

V 2 ^ m ) = 1 + V2$(m) with 

(4.33) V² x (m) 
(^(gl*1)' 

< 0 

The same argument as in section 2 then gives : 

(4.34) V2<p^)(x,x),(u) 
1 

< (1 - 6)-1 sup 
X 

VF(x)|1 = C?(l)m/ie-/6m. 

Taking the scalar product of (4.32) with the constant vector t and differen

tiating in the constant direction s, we get as in section 2 : 

(4.35) 1 
2 

(V£<m> + v ^ ( m > ) • dx ( v 2 ( £ ( m ) - <p(m)), s®t) + 

2 (V2(^m> - ^m>), s ® t) + (V2(^ra) - V^m>), 

1 

2 
y2iP(m)+ V2ipW)(s) ®t + s® 

1 

2 
V2#(m) + V2V(m))(*)\+ 

1 

2 
V3 (£5(M) + <^m>), (V$5<TO> - Vy?(m)) <g> s ® t 

-{V2F,s®dts) + 
1 

2 
/ iA(v2(?5(m) - p ( r a ) ) , s ® * ) 

As in section 2 we conclude that : 

(4.36) V2(£5<M) - < ^ M ) ) 
(f°°(g>£°°)* 

= 0( l )m/ie-Km. 

Combining (4.22), (4.31), we get : 

(4.37) m-1(hË(m)-hE(m)) = 

- m"1 F - (2m)"1 (V£(m> + Vy>(m>) • ( V ^ m ) - Vv?(m))+ 

(V2m)A(^(m) -y>(m)) , 

and choosing x such that V ^ m ^ + V<p(m) = 0 at x , we get from (4.30), 

(4.36), (4.37) and Lemma 1.2 of [SI] : 

(4.38) m-\hE{m) - hE^) = 0(h + h2)e~Km . 

Summing up, we have proved : 
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Theorem 4 .1 . Let V(m) = V^m\xux2,... , z m ) , m = 1 ,2 , . . . be a 

sequence of potentials with V^m\0) = 0 , W ( m ) ( 0 ) = 0 , which for m 

large enough satisfy the assumptions (4.18) (with a fixed k > 2 ) , (4.19), 

(4.23). Let / / (m) he the smallest eigenvalue of -1/2\h2A + V(m). Then for 

sufficiently large m (uniformly in h): 

(4.39) (km)'1 n(km) - m~V(m) = 0(h + h2)e'Krn . 

If lim ii(m)/m = / / (oo) exists (as we know under certain assumptions, cf. 
m—*oo def 

section 3 and [HS]), then (4.39) gives : 

(4.40) m - i ^ ( m ) _ ^ ( o o ) = o(h + h2)e-Km .dfs 

5. Application to a model related to statistical mechanics 

In [HS] we studied the following model operator (inspired by [K]) : 

(5.1) Pm = -h2A + V^m\x) 

on R m , where : 

(5.2) 
V^Mx) = 1 

4 
Exj - E log eft 

v 
2 

{Xj + Xj+1) 

with j € Z / m Z 

and assumed that i/ is fixed in ]0 , ^ [. We keep the same assumption on v 

and we then know ([HS]) that V(m) is strictly convex and vanishes to the 

second order at 0 . If / ( * ) = logc/ i*, then f'(t) = sht/cht, /"(*) = (chi)-2, 

and hence (as we saw in [HS]) : 

(5.3) dXjdXjfqf(x) 1 
2 

1 
2 

v (ch V 
2 

^ • _ l + £ j ) ) -2 +(ch V 
2 

(Xj-+Xi+i) ) -2 

(5.4) dXjdXj+1V^\x)(x)= 
1 

2 
i/(c/i 

v 

0 
( X J + X J + I ) ) -2 

(5.5) dXj dXk V(m\x) = 0 if j - k £ - 1 , 0 , 1 mod ( m ) . 

We can then write : 

(5.6) V2V^m\x) = 
1 

2 
(I + A(x)) 
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(5.7) A(x) = 

di(x) 
ci(x) 

0 

0 
Cm{x) 

ci(x) 
d2(x) 

0 . . . 

0 . . . 
c2(x) 

cm-2(x) 
..... 

0 

dm-l(x) 
Cm-l{x) 

Cm(x) 
0 
0 

Cm-l(x) 
dm(x) 

where 

(5.8) \dj(x)\ < 2v , \CJ(X)\ < v . 

We may also notice that dj(0) — —2i/, C j ( 0 ) = —v. 

Let p : Z / r a Z —> ]0, oo[ satisfy : 

(5.9) e~S <li{jj+ l)lli{j)< esS, 

where / i ( j ) = p(j + l)/p(j). Then the argument after (4.8) shows that 

(5.10) \\Mx)\\cuM)<2vw(1 + e6 sup l<fc<m 

1 

2 
(/x(fc) + /x(A;)-1)). 

Let k > 0 satisfy 

(5.11) 2 i / ( l + C/IK) < 1 , i.e. K < c/i""1((l - 2v)/2v) 

Then, if we choose 6 > 0 sufficiently small, it follows that: 

(5.12) 11^)11««^) < E < 1 » 

for some fixed 0 , provided that p satisfies (5.9) and : 

(5.13) e-K< p(j + l)/p(j)< ek. 

We can clearly find such a p which also satisfies (4.24). 

A part from the factor | in (5.6) and the fact that there is no " \ " in (5.1) 

(which is not essential, as can be seen by a scaling in h), we have then verified 

the part of (4.23) which concerns the Hessian of y ( m ) . The remaining parts 

of (4.23) (concerning the higher order Hessians of V(m) are easy to check, 

and it is also clear that we have (4.18), (4.19), so we can apply Theorem 4.1 

and ge t : 
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Theorem 5.1. Let /i(m; h) be the lowest eigenvalue of the operator (5.1), 

(5.2), and assume that 0 <v < \ .If K> 0 satisfies (5.11), then forv, K 

fixed we have uniformly with respect to h : 

(5.14) /i(oo, h) - /i(ra; h)/m = 0(h + h2)e Krn , m - > oo . 

ffere fi(oo;h) denotes the limit of /i(ra;/i)/ra as m tends to infinity. (The 

existence of the limit was estabhshed in [HS] and also follows from Theo

rem 3.1.) 

R E M A R K 5.2. In analogy with (4.1) we can write 

(5.15) V2V(m)(0) = 
1 
2 

— v (I-(2u/(l- 22v)) 1 
2 

(r-i + ri)) 

so if we compare (4.8) and (5.11), we see that Theorem 5.1 produces a decay 

rate which is equal to the (probably optimal) one that we get for the quadratic 

approximations of V^M\ by applying (4.8). We have therefore every reason 

to believe that the set of exponents in Theorem (5.14) is optimal, and by 

applying the W K B results of [HS, S1S2,], it seems quite possible to prove 

that so is the case, if we require uniformity in /i , as in (5.14). 
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S C A T T E R I N G OF W A V E S I N A M E D I U M 
D E P E N D I N G P E R I O D I C A L L Y O N T I M E 

B. R. VAINBERG 

I. I N T R O D U C T I O N 

We obtain the asymptotic behaviour as t —• oo, |x| < a < oo of solutions 
of exterior mixed problems for hyperbolic equations and systems when the 
boundary of a domain and coefficients of the equations depend periodically on 
time. Our method can be regarded as an alternative one to the Lax-Phillips 
scattering theory. Using the Lax-Phillips method we have to construct at 
first waves operators and a scattering matrix. Then we study some analytic 
properties of the scattering matrix and some properties of a special Lax-Phillips 
semigroup Z(t) and then we derive asymptotic behavior of solutions of the 
exterior mixed problem as t —-> oo. In our direct method at first we find the 
asymptotic behavior of the solution of the exterior mixed problem. Unlike Lax-
Phillips we do it without using any abstract result on spectral representation, 
outgoing and ingoing subspaces and so on. Then we obtain existence of the 
wave operators and the scattering operator. In fact, it is not a difficult problem 
if you know asymptotic behavior of the solutions. 

Both of these methods were constructed earlier in the stationary case, 
when the domain and coefficients of the equations did not depend on time 
(there are references in [6]). Recently a few papers by J. Cooper and W. 
Strauss appeared which contain some results of Lax-Phillips theory for scatter
ing of waves by a body moving periodically in t ([1],[2],[3]). Another method 
of research of this problem is based on the theorem of RAGE type and is sug
gested by V. Petkov [4]. These authors proved the existence of a scattering 
operator for wave equation in exterior of a body which depends periodically on 
t if n > 3 and obtained asymptotic behavior of solutions of this problem for 
odd n. They also studied hyperbolic systems of first order when dimension n is 
odd. Our method gives the possibility to study general time periodic systems 
of any order and moreover the dimension of the space can be arbitrary and the 

S. M. F. 
Astérisque 210** (1992) 327 
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energy of solution can be unbounded with respect to time. Some of the proofs 
given below are very concise. The omitted details can be reconstructed with 
the help of [7], [8], [9]. 

II . A S Y M P T O T I C B E H A V I O R OF S O L U T I O N S 

Let x e Mn, dt = d/du dx = (d/dxw-td/dxn), Q e ffigj be 
the exterior of the cylinder with a curvelinear boundary which depends peri
odically on t. Let u = (u^\ 
L = L{t,x,dt,dx) — {Lij} be a hyperbolic I x H matrix. We consider the 
exterior mixed problem 

(1) 
Lu = 0, (*, i )Gfl , t > r; Bu\dn = 0, t > r; 
&tu\t=r = / j , 0 < j < m - 1, xenr = Qf]{t = T}. 

Here B = B(t,x,dx) is a boundary operator of general type, m = max 

oid Lij. 

The main problem of this part of the article is the following. Let / = 
(/o? fm-i) be a function with a compact support. The asymptotic behavior 
of solution u is to be found when t —* oo and x is bounded, that is the initial 
data are localized in space and the solution at large t is of interest only in the 
limited part of the space. 

We fix an arbitrary constant a for which dfl (Z {(t,x) : \x\ < a — 1}, con
dition Hi is satisfied and / = 0 when |x| > a. 

Condit ions . 

Hi. The medium is homogeneous in the neighborhood of infinity, that is 
L = Lo(dt, dx) when |x| > a, where Lo is a homogeneous matrix with constant 
coefficients. 

H2. The problem (1) is time periodic, that is ttt+r = Fit and coefficients 
of the operators L and B are periodic functions with respect to t with the same 
period T. 

H3. The problem (1) is correct and Duhamel principle is valid. 

Let C2°(f2r), C^(Cl) be spaces of infinitely smooth functions in Clr or 0, 
which are equal to zero when |x| > a; HS(D) be a Sobolev space of functions 
in domain Z), Hfoc(D) be a space of functions in the domain D belonging to 
HS(V) for any bounded domain V <Z D\ 
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t¡> € HS'A if exp(At)ip G Hs(ii) ; 

ф 6 H*'£ if V e Яв'л and ^ = 0 when |x| > a or t<0. 

If v =» ( i / 0 , . . . , i / m _ i ) , t h e n we denote HV(QT) = E o < j < m - i H^(QT). 
Let / = ( / o , . . . , fm-i) £ -FV if / j £ C 2 ° ( ^ r ) and compatibility conditions are 
satisfied, that is there exists w G H™c(£l) for which boundary and initial data 
of problem (1) are valid. 

We shall use the same notation for the space of functions and vector-
functions if the latter is a direct product of n copies of the space of functions. 
At last let H(J/) be the closure of the space FT with respect to the norm of the 
space HU(QT). 

The correctness of the problem (1) means that it has the unique solution 
u e H%c(0,f){t > T}) for any / £ FT and there are Vj,q G IR such that the 
operator 

T : H{y) 

Us 
0, 

t>T 
t < T , 

feFr 

has the following continuous extension: UT : H{y) - Hfoc(Ù). 

According to Duhamel principle there exist AQ(S) such that the problem 

Lw — g, (¿, x) G fi] BW\OQ = 0; w = 0 when t < 0 

is uniquely solvable in the space HS,A for any g G H^0 if 5 > m,A> Ao(s). 
Besides the operator 

(2) V:H$^Ha>A, Vg = w, s>m, A > A0(s) 

s bounded and 

w(t,x) = 
Jo 

u(t,T,x) dr 

Here u is the solution of the problem (1) with / = Pg(r, •), where Pg = 

( 0 , 0 , #(r, x)). It is implied that Pg G H{v) if g G H^A. 

The condition H$ means that the boundary of the body must not move too 
quickly. For example, for the wave equation the velocity of the moving bound
ary must be lower than the velocity of propagation of waves in the medium. 
In this case the condition # 3 is satisfied for all the basic problems for wave 
equation. 

In the case of general hyperbolic equations and systems we change the 
variables —> y = y(t,x) so that O could take the form of the 
straight cylinder. The velocity of the moving boundary must be such that the 
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system in the new variables remains hyperbolic at t. Then the condition H3 is 
satisfied if boundary operators satisfy uniform Shapiro-Lopatinsky condition. 

H4. Non-trapping condition. It means the following. 

Let E = E(t,r, x,x°) be the Schwartz kernel of the operator UT, that is E is 
Green matrix of the problem (1). It is supposed that there exists such a function 
T(p), tha t E is infinitely smooth when < p, t — r > T(p). This 
condition is equivalent to the following: all the bichar act eristics are outgoing 
to infinity when t tends to infinity. 

if5. The operator L$ has no waves with zero propagation velocity, that 
is detLo(0, a) 0 when a ^ 0. One can give up this condition in the same way 
as it was done in the stationary case in |5| . 

Let (1°) denote the problem (1), when r = 0. 

THEOREM 1. Let the conditions Hi - H5 be satisfied, f G H(*/). Then there 
exists a sequence of complex points kj which are called the scattering frequencies 
and integers p,q,Pj and periodic on t functions uo{t,x),Ujj{t,x) G C°° with 
period T such that 

1) — 7r/T<Rekj < 7r/T, Imfcj+x < Im kj, Im kj —• 00 a<<Cs —> 00 

2) Ifn is odd then the solution of the problem (1°) has the following expansion 
N Pj 

(3) u = ] ^^C ' j l zUjJ / ( t , a ; )^exp(—ifc j t ) + un, 
3=1 t=o 

where there exist A and C = C{a,N,j,a) such that 

(4) \d}dZuN\ < Ctxexv(ImkN+1t)\\f\\H(l/), 7r/T<Rekj < 7r/T\x\ a, * - Cj,j(/), Co = Co(/) 

3) If n is even then 
pj 

(5) u — ^2 ^2 ^Mui.*(*>x)tl exp(-ifcj£) + CSGSGoUo(t,x)tplnqt + w, 
lmfcj>0VCB/) C=0 

where Cjj = C j , j ( / ) , Co = Co( / ) and 

(6) I ^ W ^ C I ^ ^ / n ^ O I I I / l l / f M , N < a , i-Cj,j(/), Co = Co(/) 00. 

Remark. The scattering frequencies kj belonging to the upper half plane cor
respond to the exponentially growing terms. They are finite in number. The 
scattering frequencies kj belonging to the real axis correspond to the terms, 
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which are the product of the oscillating exponent with periodic function Ujj. 
Such points are finite in number too. The points on the lower half-plane cor
respond to the exponentially decreasing terms. The less Im kj are, the faster 
they decrease. 

PROOF. We change the variables (t,x) —• y = y(t,x) so that Ct takes 
the form of a straight cylinder and y = x when |x| > a. The condition that L is 
a hyperbolic operator isn't used in the proof of the theorem, and the condition 
that Lo is a hyperbolic operator is used only in the proof of lemma 6. The 
matrix Lo, conditions H\ — H$ and the assertions of the theorem don't change 
when the variables are changed. We'll use the same notations (t,x) for new 
variables. Thus we can suppose that there exists a domain u C MN suqqfqqqqqqqfch that 
C = £{t-T,x)nkl!! 

A special parametrix WT of the problem (1) plays an important role in 
the proof of the theorem. Let us construct this parametrix. We can choose the 
function T = T(p) defined in the condition H4 in such a way that T C C°°(2R) 
and T(p) = T(a) if p < a. Let Tx e C°°(1R), Tx(p) > T(p) for any p > 0. 
Let C = £{t-T,x) be such a function, that C G C°°(2Rn+1), C = 1 when 
t - r < T( |x | ) , C = 0 when t - r > Ti(x). Let ip G C°°(iR^), ip = 1 when 
|x| > a — 1, rj) = 0 when \x\ < a — 2 /3 . We define: 

WT = (Ur - ^iVT, NT = V°tl>[L, C)UT 

Here [L, £] is a commutator of L and the multiplication operator on the function 
C; V"0 is the operator (2) for case L = LQ, Q, = MN+1; the function ^[L, (]UR 
is not defined in the domain MN+*\fJ and we continue it by zero in this domain 
(here ip = 0). 

It is easy to see that for any / E FT 

<7\ jLWTf = Grf, * > r , xeu; 

V* \BWrf\m = 0, t>r; d{WTf\t=r = /,-, 0 < j < m - l . 

where 
(8) GT = {\-tf){L,C]Ur - [Lo,tP}V°^[L,C}Ur. 

Let P be the operator defined in condition HsJth = h(t, •) for any h = 
h{t,x), G(t,T) = ltGT. 

LEMMA 1. A. The Schwartz kernel g = g(t, r , x , x ° ) of the operator GT has 
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the following properties when < a: 

G(t,T)P<t>(r 

g = 0 if | ж | > а or t-r<T(a), 

g(t + Т,т + Т,х, xu) = g{t, т, x, xu). 

B. î%e equation 

(9) G(t,T) 

'o 
G ( í , T ) P 0 ( r , - ) d T = - G ( í , O ) / > 

is uniquely solvable in the space C£°(fi) for any f G FT. Abo 0 = 0 when t < 0. 

C. If f G FT then the solution u = Uof of problem (1°) is equal to 

(10) u W0f + 

where <\> is the solution of equation (9). 

PROOF. Assertion A follows from (8) and conditions H\ — H4. Assertion B is 
the consequence of assertion A and the fact that equation (9) is the equation 
of Volterra type. Assertion C follows from (7). 

Formula (8) when t — r > T\ (a) can be transformed in the following way. 
Since (1 - <02)[L, C] = 0 for t - r > Tx (a) we have 

Grf = -[L0iil>]V°il>LÇUrf + [Lo,il>]V°il>(6(t - r ) / ) , t - r > 7 \ (a ) . 

(11) Grf = [M]V°Qf + [Lo,tl>]V°tl>(6(t - r ) / ) , t-r>T1(a) 

where Qf = [ L O , ^ ] C ^ T / is zero when |x| > a or t — r > Ti(a) . From (11) it 
follows that asymptotic behaviors of the functions G ( £ , r ) / and V°(8(t — r)f) 
as t — r —> oo are alike. From this and assertion A of lemma 1 the following 
lemma can be received. 

LEMMA 2. 1) For any s there exists AQ(S) such that the operators 

GT = -[Lo^V^LXWfjfjr, t - r > Ti(a). 

Since LUTf = 6(t — r)f where 6 is the delta function, we have 

We transform the first summand with the help of the relations: 

il>L = ^Lo = -[Loiip] + Loi), V°LoWUT = ip(UT. 

Since [ L Q J ^ I ^ C = 0 for t — r > T\(a), we have 
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G(t,T)P<t>(rr)dT 

(12: 
G : H s.A H a,C (G№) S /0 G(t,T)P4>(T)dT, 

Go : ( f ) vf HSA 

are bounded. 

(Gof)(t) = G(t,0)f 

Ф e IR1, 
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2) The solution of equation (9) belongs to the space H^o, for any s and 
A > AO(S). 

We research equation (9) with the help of the transformation 

F' = exp (i9t/T)F, where F is the transformation of Fourier-Bloch-Gelfand: 
oo 

<t>{t) -»• (F(p)(8,t) = MkT + t)exp(ik8). 
k=—oo 

Let C™per = {<j> : <j> e C 2 ° ( « ) , <t>(t + T, x) = <f>(t, x )} , where T is defined 
in condition if2- Let H^per be the closure of the space C^per with respect to 
the norm of the space Hs(£l D {0 < t < T}). The next lemma easily follows 
from the definition of the operator F'. 

LEMMA 3. 1) The operator F' : H^o —> H^per is bounded and analytically 
depends on 9 when Im 9 > AT. 

2) If <j> e Hsa$ then 

NON (F4>)(0 + 2TT, t) = {F<j>){9, *), Im0 > AT, 
{Ff(j)){e + 2?r, t) = (F '0)(0,*), lmO> AT, 

(14) = ^ /da (ity)(0, t)d0, da = [at - 7T, at + TT], a > AT. 
Let us fix 5 and A > A0(s). Let us apply the transformation F' with Im 9 > AT 
to the equation (9). Since G(t, r ) = 0 when t < r and </>(r) = 0 when r < 0, we 
can replace the interval of integration in (12) by 2R. Then the operators G and 
F become commutative. Therefore F'G(f> = G{0)F'(j) where for any h G H*per 
we have 

G(0)h = / ~ G(t, t) exp (i9(t - T)/T)Ph{r)dr = 

= J / i J + 1 ) T r ) e x p (t*(* - r)/T)Ph{r)dr = 
= J0T (F 'G)(0, t, r ) exp (-i9r/T)Ph(r)dr. 

So the function ^ = F'</> is a solution of the equation 

(15) V + G W = -Go{0)f, (Go(0)f)(t) = F'G(t,0)f, 

where Im 9 > AT and the operators 

G(0) : Ha,Per -> Hsaper, G0{9) : H(u) -> H3aper 
are compact and analytically depend on 9 when Im 9 > AT. 

The important property of the parametrix WT is the existence of a mero-
morphic extension of the operators G{9), GQ(9) in the domain I m * < AT. 
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Let i f be a Hilbert space. A family of the operators A{0) : i f —> if is 
called finitely-meromorphic if 1) the operators A(0) depend meromorphically 
on the parameter 0, 2) for any pole 0 = 0O of the family A{0) the coeffi
cients of negative powers of (0 — Oo) in the Laurent-series expansions of A(0) 
are finite-dimensional operators (i.e. they take the whole space i f into a finite-
dimensional subspace of i f ) . We denote b y ^ ' the complex fl-plane^ with cuts: 

lk = {0:0 = 2k7r- ip, p > 0}, k = 0, ± 1 , ± 2 , • • • 

We'll say that A(6) possesses property S(S') if either n is odd and A{0),0 G 
(p, is a finitely-meromorphic family or n is even, A{0),0 G (p\ is a finitely-
meromorphic family and A{0) has the following asymptotic behavior as 0 —> 0 

a) for property S: 

A{0) = B(0)ln0 + ] T Bj9-j+C(0), m < o o , 
0<j<m 

where the operators B(0),C(0) analytically depend on 0 when |0| < < 1, and 
operators Bj,dQB\$-o,j > 0, are finite-dimensional 

b) for property S': 

(16) A(0) = A0(9) + e~mY, (p^re))3 p^ln ' 

where AQ{0) analytically depends on 0 when \0\ « 1, P is a polynomial with 
constant coefficients, Pj are polynomials of orders less or equal to j7, constants 
ra, Z > 0 are integers, coefficients of Pj are finite-dimensional operators. 

LEMMA 4. ([6]). 7/ a family of compact operators G(0) : H —• i f possesses 
property S and exzste 0 = 0o such that the operator 1 + G(0o) is reversible 
then the family of operators (1 + G(0))~l possesses property S'. 

LEMMA 5. Let Q : H^o -* H^o be a bounded operator and its kernel 
q(t, r , x, x°) possesses the following properties 

q(t + T, r + T, x, x°) = q(t, r , x, x°), 
q{t,r,x,x°) = 0 z / 0 < t - r < T 0 < o o . 

T/ien £/&ere existe an analytical operator-valued function Q{0) : H*per —> 
Hsa,Per ,0e<P, such that F'Q =C°°{IRx), X 

Let x £ C°°{IRx), X = 1 when |x| < a - 1, x = 0 when M > a. Let 
a G C°°(iR), a ( t ) = 1 when * > 1, a(t) = 0 when * < 0. Let F°'Q be the 
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operator with the kernel equal to a(t — to)E°(t — r , x — x°), where E° is kernel 
of the operator V°. 

LEMMA 6. There exist such to and such a family of compact operators P(9) : 
HaiPer HaiPer, that P(0) possesses property S and F'xV°>a = P{9)F'. 

Lemma 5 is rather simple, lemma 6 is a consequence of Herglotz-Petrovskii 
formulas. Prom Lemmas 5,6 and formula (11) we obtain the following lemma. 

LEMMA 7. The operators G(9) and Go(9) admit meromorphic extensions, 
which possesses property S. 

From this, (15) and lemma 4 it follows that 

(17) F'4> = L(0)f where L(0) = - ( 1 + G(0))~1GO(0) : H{u) -* H*per 

is an operator which possesses property S'. The operator L(9) has no poles 
when Im0 > AT since F'cf) exists for any / if Im0 > AT. From (17) and (10) 
it follows that there exist to and an operator-function R{6) : H(v) —> H*per, 
such that R(6) possesses property S' and has no poles when Im 9 > AT and 

(18) Ff(Xa(t-t0)u) = R(9)f 

We denote by 9j the poles of the operator R{9) lying in the stripe —7r < 
Re0 < 7r. We number them so that Im0j+i < Imfy. Let kj = 9j/T. From 
(14) and (18) it follows that 

(19) Xu = ( 2 7 T ) " 1 ) j d a R(9)fexv (-i9t/T)d9, t > t0 + 1. 

Let n be odd. From (19), (13) and lemma 7 it follows that 

(20) 

m 6j>im 9 E 
m 6j>im 9N+I 

rese=ejR(0)fexp (-iOt/T) + 
1 

2TT FF 
R(0)fexpFH(-idt/CCT)d9 

where t > t0 + 1 and p = I m 0 w + i - e , O < e « 1. The estimate (4) is true for 
the second term in right side of (20). Thus (3), (4) follow from (20). Let n be 
even. Then 

(21) Xu = i 
m 6j>im 9 

r e s 0 = d j R(9)f exp {-Wt/T) 
1 

2тг Id 
R(e)fexp(-i0t/FHCCT)d6, 

where t > t0 + l and d = d+UA £ UcL, d± = d_ £ n{±Re0 > 0},0 < e « 1 , \ e 

is the circle \0\ — c with the beginning in the point —it — 0 and the end in the 
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point — ie + 0. The integral along cLe can be estimated. The asymptotic 
behavior of the integral along A£ at t —» oo can be foimd with the help of 
expansion (16) for R(0). So if n is even the assertion of the theorem 1 follows 
from (21). The theorem 1 is proved. 

III. S Y S T E M S W I T H B O U N D E D E N E R G Y , S C A T T E R I N G O P 
E R A T O R 

In this part of the article we consider only systems of the first order 
(m = 1) for the sake of simplicity. In this case there are no difficulties with 
the description of energy space. Energy of a solution is its norm in the space 
Z/2(^t)« We suppose that the following additional condition is satisfied: 

He. There exists such constant M < oo that the norm of operator 

is not greater than M if t > r. Here U(t,r) = kUT, where UT was defined in 
condition # 3 , lt is the operator of restriction on hyperplane t = const. 

Let us denote the monodromy operator £/(T, 0) of the problem (1°) by 
M and its eigenvalues belonging to the unit circle S1 by exp(iAjT), Xj E 
[0,27r/T]. Let L2,& be the space of functions belonging to £ 2 ( ^ 0 ) and equal to 
zero when \x\ > b. 

THEOREM 2. Let conditions Hi —HQ be satisfied. Then the operator M does 
not have more than the finite number of the eigenvalues exp (i\jT), 1 < j < N 
(taking their multiplicity into account) belonging to the unit circle S1. Let 
fj, 1 ^ j ' < be the corresponding system of linearly independent eigen-
functions. 

There exist such eigenfunctions hj of the operator M* with the eigenvalues 
exp(—iXjT), 1 < j < N that the solutions u = U(t,Q)f of the problem (1°) 
with f G I/2,A have the following asymptotic behavior as t —> 0 0 

M 

where the following estimates are valid: 

1) if n is odd then there exists e > 0 such that for arbitrary j,a = 
( a i , • • •, an) and some C = C ( j , a, a) we have 

U(t,r): L2(nr) -> L2(Qt) 

(22) w = 2jCjC/(í,0)/_7- +w, 
j= l 

Cj = fkk, h,j 

(23) | ^ a > | < C e x p ( - 6 0 H / | | L 2 „ t —• 0 0 , \x\ < a; 
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2) if n is even then for the same j , a we have 

(24) \%d£w\ < C\ V? V ?^hT l t \ \ \ f \ \L2^ t - * oo, |x| < a. 

Remark. The functions U(£, 0)fj in (22) have form Uj(£, x ) exp (iXjt) where Uj 
are time periodic fimctions. 

PROOF. From condition H6 it follows that expansions (3), (5) have no terms 
increasing as t —> oo. Thus for any b > a, \x\ < b and / E L2ib these 
expansions can be rewritten as following 

N 
(25) u = ^2CjUj(t,x)exp(i\jt) + o(l) , t —• oo, |x| < 6, 

where ImXj = 0, iij(^ + T , x ) = Uj ( t ,x ) , the functions with the same Xj 
are linearly independent and the estimates (23), (24) with b instead of a are 
valid for remainder o(l) . It follows from (1°) and (25) that the functions Uj exp 
(iXjt),l < j < IV, satisfy the equation and boundary conditions of problem 
( i°) . 

If Uj = 0 when |x | < a then 

Lo( C dt, dx)uj exp (iXjt) = 0, \x\ < b. 

Let Uj = ^2an(x)exp(i2irnt/T) be the Fourier-series expansion of the 
function Uj. Then an(x) = 0 when |x | < a and 

Lo{i(Xj + 2-xn/T), dx)an = 0, |x | < b. 

Thus an = 0 and Uj = 0 when |x | < b. From here it follows that the numbers 
Xj, N in (25) don't depend on b and we can choose the same functions Uj for 
all b. 

From # 6 and (1) it follows that 

(26) L|C>,-|U2(nt) <C||/|Ua,a 
where the constant C docs not depend on a. In particular Uj(t,-) G Z /2(^t)-
And as Uj exp (iXjt) satisfies the equation and the boundary condition of prob
lem (1) the functions Uj(Q,x) are eigenfunctions of the monodromy operator 
M with the eigenvalues exp (iXjT). 

Further, linear functionals / —> Cj = Cj(f) are defined on the dense set 
S of Z/2($lo) (on functions with compact supports) and they are bounded 
according to (26). Thus by Riesz theorem there exists hj such that 

(27) C^dhj), hjeL2(n0). 
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If / has a compact support then Mf also has a compact support, as the propa
gation velocity is finite for the solutions of equation Lu — 0. Using successively 
the equality U(t,T) = U(t - T,0) , expansion (25), (27) for the solution of the 
problem (1°) at the time t — T with the initial data Mf and the periodicity of 
the functions Uj we obtain: 

U(t,T)Mf = U(t-T,0)Mf = 

= EjLi Cfait - T,x) exp (iXjit — T)) + o(l) = 

= Ef=i Cfait, x) exp (iXjit - T)) + o( l ) , CJ = (Mf, /i,) 

when t —> oo. On the other hand according to (25), (27) 

AT 

(*»0)/ = ^2C3u3^x) exP (iA^) + o( l ) , = (/ , hj). 

Left parts of the last two equalities coincide. Thus, 

(Mf,hj) = (f,hjexp(-i\jT)) 

and hj are eigenfunctions of M* with the eigenvalues exp (—iXjT). 

In order to complete the proof of theorem 2 it remains to prove the fol
lowing assertion (A): if / is an eigenfunction of operator Mwi th the eigenvalue 
exp (iXT), X G [0,27r/T], then one or several numbers Xj in formula (25) are 
equal to A, and / is a linear combination of the corresponding functions Uj (0, x). 

Let us consider a sequence of functions fe with compact supports such 
that 

(28) I I / C - Z H m h o J - ^ O when 6 ^ 0 . 

If ue is the solution of problem (1°) with initial data fe then by virtue of 
(25) 

N 
(29) ue = Y^CjU>j(t,x)exip(iXjt) + o{l), t oo. 

j=i 

it follows from (28) and condition He that 

(30) ||w€ - u(t,x)exp(i\t)\\L2(nQ) -> 0 when e —• 0. 

The assertion (A) follows from (29), (30). Theorem 2 is proved. 

Let us denote the space of functions belonging to ¿2(^0) and ortohogonal 
to hj, 1 < j < N, by H. Let UQ = Uo(t — r) denote the opeartor U(t,r) for 
c a s e L = L0, Ct = Mn+1. 
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THEOREM 3. Let conditions H\ — H6 be satisfied. Then the wave operators 
W-(U,U0):L2(IRn)-+H, 
W+(Uo, U) : H —> L2(IRn) 

and scattering operator S = W+{UQ,U)W-(U, UQ) exist and are bounded. 

This theorem easily follows from the theorem 2. The only difficulty is the 
following: the remainder in (22) is not integrable with respect to time in the 
neighborhood of infinity if n is even. But we can show that the remainder can 
be expressed as a finite sum of an integrable summand and of summands which 
have the form a(t)h{t,x). Here \dta\ < Ct~lln~2t as t —• oo and function h is 
smooth, periodic with respect to time and equal to zero when \x\ > a. Then 
we use the following assertion: if functions a and w have the above mentioned 
properties then the integral: fQ Uo(—s)a(s)h(s1 x)ds converges in the space 
L2(Mn) when t -* oo. 
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Long Range Scattering and the Stark Effect 

Denis A.W. White 

1 Introduction. 

In this Article we discuss long range quantum mechanical scattering in the 
presence of a constant electric field. The electric field is assumed to be of 
unit strength in the ei = ( 1 , 0 , . . . , 0 ) direction of n-dimensional space, Rn. 
The corresponding Hamiltonian for a quantum particle of unit mass is HQ = 
- ( 1 / 2 ) A - xu with A = E]=id2/dx2j. (HQ is essentially self adjoint (as 
an operator on L2(Rn)) on the Schwartz space of rapidly decreasing smooth 
functions.) A second Hamiltonian H = HQ + V is regarded as a perturbation 
of HQ by a potential V. The potential V = V$ + Vi consists of a "short range" 
term Vs and a "long range" term Vj. More precisely, 

S R Hypothesis. Vs is a symmetric operator, VS(HQ + i-1)1 is a compact 
operator and 

/ 
•oo 

n 
\F(xx >r2)Vs(H0 + i)-l\\dr < oo 

where. F(-) is multiplication by the characteristic function of the indicated set. 
L R Hypothesis. VL(X) is real valued on Rn, infinitely differentiate and 

for some e > 0 and for every multi-index a 

\DaVL{x) < C , a ( * l ) - W / a _ < 

\D°VL(x)\ < o(l) as \x\ —* 00. 
Here (xi)2 = 1 + x\ and D = - i V . 

Example. If Vs is multiplication by a real valued function 

vs(x) = {x(*i)(i + *?r/2 + x(-*i)(i + *l)1/2}Vs(*) 
where a > 1/2 and Vs = o(l) as |x| —> oo and Vs is bounded and measurable 
and where 

X (x1) 
1 if xi > 1 
0 if xi < - 1 

(1.1) 

S. M. F. 
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then Vs verifies the above short range hypothesis. (See Yajima [16]; local 
singularities may also be allowed.) The long range assumption is satisfied if, 
for some 0 < a, B < 1/2 and some real 6 i and 62 , 

VL(x) = (a)"6 cos 121 I*) cos(62|a^B).( 

Li general these assumptions assure that V(HQ + i)"1 is compact so that 
H is self adjoint on the domain of HQ. (Perry's book [14] is a good general 
reference.) 

Introduce now the wave operators. Dollaxd's [31 modified wave operators 
WD and Wn are defined by 

W £ = s-lim 
t—±00 

eitHe-itHoe-iXD(t)ct) (1.2) 

where "s-lim" indicates that the limit is taken in the strong operator topology. 
The "modifier" e"lXD^ was first introduced by J.D. Dollard [3] in the case 
of no electric field (HQ = — A/2) to extend the usual scattering theory which 
was based on the M0ller wave operators, 

W ± = s-lim 
t->=Foo 

eitHe-itS0 (1-3) 

to the case V = VL was the Coulomb potential (VL(X) = C/\x\, for C a 
constant). An alternative choice of wave operators, are the two Hilbert space 
wave operators 

W±(J±) = s-lim 
i-»q:oo 

eitHe-itS0DQa (1.4) 

where J* are bounded operators conveniently chosen (as in §2 below.) The 
application of these operators to study long range scattering is due to Isozaki-
Kitada [8] (who called J* "time independent modifiers") and Kitada-Yajima 
[12] who considered the case of no electric field. The two Hilbert space wave 
operators have certain technical advantages over the modified wave operators 
but the latter are the historical vehicle for studying long range scattering 
and are important for proving the non-existence of W±] see Theorem 3.1 
below. Each of the wave operators (for example W£) is said to be (strongly 
asymptotically) complete if its range is the sub space L2(Rn)c of continuity of 
H. (£2(Rn)c is the orthogonal complement of all the eigenvectors of H.) Each 
wave operator (Wp, to be specific) is said to intertwine H and HQ if 

e - U H W £ c s = W + e - U H ° . f d 

To state our results we must introduce the "modifiers." For the two Hilbert 
space wave operators we choose [8] 

J±u(x) = ƒ eixE+io±(x,E) dEDEdeDe (1.5) 
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where u denotes the Fourier transform of u and 6± are smooth real valued 
functions to be specified in §2 below. (J* are not unique.) Here and below 
integrals axe understood to be over all of Rn unless otherwise indicated and 

<ff = (27r)-n/2df. 

Theorem 1.1 Hypotheses LR and SR imply that the two Eilbert space 

wave operators W±(J±) exist and are complete and are isometries that inter

twine H and HQ.. Moreover H has no singularly continuous spectrum and its 

eigenvalues are discrete and of finite multiplicity. 

Dollard's time dependent modifier can be defined as follows: Let Xo(t) be 

Fourier equivalent to multiplication by a real valued function, X where 

x ( & , . . . , £ „ , * ) = ƒ 
•±t 

0 
^ ( r y ( 6 , . . . , £ n , r ) + (T2/2)e1)dr (1.6) 

for ±£ > 0 and where Y is some smooth function of n — 1 momentum 

variables plus time (t) taking values in Rn such that the first component 

y i ( £ 2 , . . . , £ „ , i ) = 0and 

IDfSYfa,. ..,£„,*)-£x)l = 0(|*|-); 
d 

dt 
(ry(6,...,£n,r) + (T2/LM)FTGQ 

for all multi-indices /3, locally uniformly in £± = (0,^2* • • • >fn)- .In particular 

in the one-dimensional case Y = 0. In §3, Y is explicitly constructed.) Thus 

XD(t) = XX(D2, . . . ,Dn, t ) . 

Theorem 1.2 Assume Hypotheses LR and SR. Then the modified wave 

operators W£ exist and are complete and are isometries which intertwine 

H and HQ. Moreover the M0ller wave operators W± exist if and only if 

e*x(6i.«i£n,t) converges {n measure as t —> ±oo on every compact subset o/Rn. 

Whenever W± exist, they are complete. 

Example. This continues the preceding example. Suppose for simplicity 

that &i and 62 axe nonzero and a ^ /3. Then the M0ller wave operators 

(1.3) exist if and only if max{a,/3} + e > 1/2 by Theorem 1.2. Ozawa [13] 

and Jensen-Ozawa [9] have already established a non-existence results for 

the M0ller wave operators for a related class of potentials but by different 

methods. 

Remark. In the case n = 1 the modifier depends only on time so that 
eiXD{t) = e%x(t) commutes with all operators. In particular, for any u € L2(Rn) 

\e-itH0-iX(t)u(xy2 = | e - ä t f o u ( a . ) | 2 
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which says that the position probability density of any free state is the same 

whether one uses the modified evolution or the usual free evolution. The same 

is true for the momentum probability density or any other observable in place 

of position or momentum. Therefore although the M0ller wave operators 

W± do not exist the modified and free evolutions are indistinguishable by 

any quantum mechanical observable. It is therefore not surprising that in 

classical mechanics the usual wave operators exist as was observed by Jensen 

and Ozawa [9]. In general, for n > 1 the modifier is nontrivial. If however 

one further assumes 

DaVL(x) = 0((1 + |x|)~a-€ for |a| < 1 (1.7) 

(e > 0) then again one can replace X(£, i) by a different modifier depending 

only on time (see Theorem 3.1 below) and which therefore cannot be observed. 

This last result is due to G.M. Graf [6] who assumed simply (1.7). Thus he 

requires less smoothness but more decay than here. He remarks that from 

the perspective of the Heisenberg picture of quantum mechanics there is no 

difference between quantum and classical mechanics in this setting. Graf uses 

Mourre's method. 

In the remaining two Sections we outline the construction of 0± for the 

proof of Theorem 1.1 (in §2). In §3 the proof of completeness in Theorem 

1.2 is given; the remaining conclusions of Theorem 1.2 are standard and their 

proofs are only outlined. 

2 Completeness of WQ. 

In this Section we outline the construction of the operators J* of (1.5) or, 

more precisely, the phase terms 0± as required for the proof of Theorem 1.1. 

In the process we indicate some key steps of the proof of Theorem 1.1 but 

our primary goal is to establish the properties of 9± required for the proof of 

Theorem 1.2 in §3. A detailed proof of Theorem 1.1 is given in [15]. 

The construction of 6± is as follows. It suffices to consider 0+; the construc

tion of 9" is similar and in fact 0~(x,£) = — 0+(x, — f) . Choose xi € C°°(R) 

so that 

Xi(*i) = 
1 if xi > 3 

0 if xi < 1 
(2.1) 

The proof of Theorem 1.1 is based on the Enss method [4] in a two Hilbert 

space setting. One begins therefore with Cook's argument and so the key is 

to prove that the operator norm of {d/dt)eÜHJ+e~xtHoxi{D\) is an integrable 

function of t > 1, where D\ = —id/dxi so that Xi(^i) niaps onto "outgoing 

states." The free evolution on outgoing states e ' ^ ^ X i ^ i ) can be estimated 
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as in the short range case [14] so that the crucial estimate to be established 
is: for arbitrary compact real interval i* there is some integer N > 0, so that 

/00 

Ji 
\E(I)(HJ±- J±H0)xi(±Dl/r)xi(x1/T2)(HoO + iyN\\dr < 00. (2.2) 

where E denotes the spectral measure of H. We consider this estimate in the 

case Vs = 0; the general case requires an auxiliary argument. To verify (2.2) 

we compute, for u € Co°(Rn), 

[(JTo + VL) J+ - J+H0]u (x) = /e^^Wp+MMtyt t where 

p+(x ,0 = £ - V , 0 + ( x ,O 
d 

06 
p+(x,0 = £-V,0+(x,OE)EZ² 

i 
2 M + ( x , 0 + VL(x). (2.3) 

Intuitively 9+ should be chosen so that p+ is roughly short range. More 

precisely (2.2) is verified if 

Z>°£fp+(x,£) = 0((xi)-1/2-e) for xi > 0 and 6 > 0. (2.4) 

One tries to construct 0+ as a solution of the equation p+(s,f) = 0 but in 

fact it suffices to ignore the term %Ax0+(x,£) in (2.3) intuitively because the 

second order derivatives of 0+ should be better behaved than the lower order 

derivatives simply because Vi has this property. This leads to us to solving 

the transport equations, 

e -VsÖib + d6k/dÇl + bk = 0 (2.5) 

where bo(x) = Vz(x) and for k > 1 

bk(x + t£ 
l 
2 E 

lo<i<*-i 
V ^ ( x , 0 

|2 

E 
| 0 < j < * - 2 

V s ^ ( x , 0 

i2> 

The transport equations are first order linear and there are many solutions 

but the solutions of interest are those that vanish as rapidly as possible as 

xi —> oo. To enhance this decay we in fact settle for a solution of the transport 

equations with 6* replaced by 6* where 6jb(s,f) = x{xi)x(îi)bk(B,Q. ^XL 

appropriate solution is 

bk(x + t 
•oo 

µ 
bk(x + t£ + (t72)ei,£ + tex) - 6jfc(ta + (<72)ei,£x + tej dt 

where 61. = (0, & > • • • ifn)- (The second term in the above integrand is needed 
to assure that the integral exists.) One finds that 

D^Df 0fc(x,0 = 0({x1)(1-laD/2-(*+1)e for |a| > 1. 
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and for x\ > 0 and fi > 0 and all /3. The improved decay for increased k is 
due to the squaring in &*.) Then (2.4) is verified provided k is chosen so that 
(k + 2)e > 1/2. This completes the construction of 0+. 

We pause now to record the properties of 0*, needed in §3 for the proof 
of Theorem 1.2. There we will need estimates on 0±(x + (*2/2)ei,f + te{) 
which are locally uniform in f (that is f is restricted to a compact set) as 
t —> oo. Not surprisingly 0± is larger in the direction opposite to the electric 
field, xi < 0. 

For e > 0 as in Hypothesis LR, choose e, 0 < e < min{l,e}. Then, for 
±t> 1 

DBEO+(x + t/2e1, E + te1) offtel + l t n ^ w - ^ + r^) ) if « 1 < t2, 

4 > 0((\x\ + |i|)r<) if xi > t2 
4 » 2.6 

DBE d 
Hi 

0±(x + (t2/2)e1,t + te1)\ = 0(re) ttxl>-t2/4,fsqfsfds 
0(re) fdsqttxl>-t2/4, m 

(2.7) 

locally uniformly in f and for all multi-indices /3. If xi > —t2/4 then 

\DZDf 
d 

dx. 
•9±(x + (t2/2)ei) e + tex)| = 0 ( | * r H a h e ) ; (2.8) 

DaxDBE 9 

SE1 ̂ ( s + f e ^ + ieOI + l^^f 
a 

9 x , d±(x + ? e1 ,e + te1)| = 0(|*|-H"'), 
(2.9) 

again locally uniformly in f and for each j, 1 < j < n and all a and /3 and 
±t > 1. These estimates follow from the construction of 0±. For the estimates 
(2.6; 2.7) observe that 

•oo 

It 
r*(2/ + r2/2)-(*+1+e)/2dr = 

0«y)(*-*)/2) if y < -t2/4; 
0(r<) ify>-i2/4, 

(2.10) 

for each nonnegative integer k. The same reasoning shows that, for ±t > 1 

i)fP±(x + (i2/2)e1,e + te1) = 
O ^ ) - ^ 2 ) i f s ^ - * 2 / ^ s d 
i)fP±(x + (i2/2)edfsqd.fd 

(2.H) 

3 Proof of Theorem 1.2. 

In this Section we outline the proof of Theorem 1.2 emphasizing the proof 
of completeness of the modified wave operators W%. Let us begin by noting 
that the conclusion about the non-existence of the M0ller wave operators is a 
direct consequence of a result formulated by Hormander [7, Theorem 3.1]: 
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Theorem 3.1 Assume that the limits (1.2) exist withXz>(i) = X(D, t) as 
well as the the corresponding limits W% when X(D,t) is replaced by X(D,i). 
Then W£ has the same range as W^j (same sign) if and only ifexpi(X(£,t) — 
-XTfj*)) converges in measure as t —* ±00 to functions F±. In this case 

W% = WW$F±(D). 

Applying this result with X = 0, we derive non-existence of the M0ller 

wave operators from the completeness of the modified wave operators. (The 

ranges of W+D are, in general, contained in L2(Rn)c; see [14, p. 48].) 

The existence of the modified wave operators can be established by an 

argument very similar to that given by Hormander [7] for the case of no electric 

field. The reason similar arguments apply is the Avron-Herbst formula [1]: 

e-itH0 _ e-ii3/6e^ie^i*2/2e~*(-A)t/2> (3.1) 

Therefore, up to an inconsequential phasefactor e **3/6, e %tHo is the evolution 

e-i(-A)t/2j free of the eiectric field, followed by a translation e"iD^2l2 of t2/2 

units in the ei direction of configuration space followed by a translation e***1 

of t units in the ei direction in momentum space. With this formula, existence 

follows by the argument of [7] based on stationary phase and constructing a 

solution of a Hamilton-Jacobi equation. 

The proof of the intertwining principle is well known (see Hormander [7, 

p. 75], for example). 

With these brief remarks about the other conclusions of Theorem 1.2 we 

proceed to the proof of completeness. This proof is entirely independent of 

the existence proof because, as we shall show, the wave operators W+D exist at 

least on some subspace of £2(Rn) and both have range the subspace L2(Rn)c 

of continuity of H. It is not necessary that the modifier be the same in both 

proofs, by Theorem 3.1. 

To establish completeness it suffices by Theorem 1.1 to show that WQ has 

the same range as W±(J±). To do so, we introduce the auxiliary operators 

W £ = s- Urn 
t-*±oo 

eüHe-üHoeiX(D,t)u 

where X(£, t) is some function chosen suitably for a stationary phase argu

ment. Significantly X may depend on all n of the ^-variables whereas X of 

Theorem 1.1 depends only on (the last) n - 1 variables. We show that W+D has 

the same range as do W±{J±)\ this is the bulk of the work. We further show, 

with the help of Theorem 3.1, that W+D= W^F± for some unitary operators 

F±. This will establish the completeness of W^. The intermediary operators 

Wrj are a convenience and not of independent interest because they do not 

intertwine H and HQ, 
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The operators W± and W±(J±) have the same range if, for every u £ 
L2(Rn) there exists v € L2(Rn) so that 

Df(Y(t,t)-Q\ = 0(|i|-)fDGJEDq 

converges to 0 as t —• ±00 or, equivalently, if the operators 

Q± = s- lim 
t-*±oo 

eiX{Dtt)eitHoj±e-itH0ds (3.2) 

exist. We therefore prove the Proposition below. 

Proposition 3.2 Assuming the hypotheses of Theorem 1.1 the operators 

fi* of (3.2) exist on all of £2(Rn) when X is defined by 

*(£,*) = r* 

/0 
V i i r Y i M + ^ ^ D T V (3.3) 

where ei = ( 1 , 0 , . . . , 0 ) 6 Rn and Y is a smooth, real valued function such 

that 

\Df(Y(t,t)- Q\ = 0(|i |-) (3.4) 

.dY 

dt 
(t,t)\ + \Dl 

d 
SE1 (Y(t,t)- 0\ = 0(|*|-»-) (3.5) 

for all P, locally uniformly in f. In particular the operators W±D of (1.2) are 
complete. 

Before proving this Proposition, let us see how it implies completeness in 

Theorem 1.2. Define Y there componentwise: Y\ = 0 and for 2 < j < n 

*i(£2,...,£n,*) = y , ( 0 , 6 , . . . , ^n,*). 

Completeness will follow from Theorem 3.1 if 

eiX(E,t)-iX(ET,t) 

converges locally in measure (or locally uniformly) as t —• ±oo. This follows 

from the mean value theorem and the estimates for Y. The only troublesome 

term is 

q 
rt 

10 

1 

0 
T 

d 
sq 

VL(T(SY(Ç,TQ) + ( 1 - 8 ) Y ( Ç ± , T ) ) + D F D S 
T2 

2 
e i dsYA^ridr. (3.6) 

Its convergence can be checked by integration by parts in the r variable. 

Proof of Proposition 3.2. We consider only the case of 0 + (t > 0). To 

prove the strong convergence in (3.2), it suffices to prove convergence on a 
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subset of L2(Rn) whose linear span is dense. This subset will consist of all 
u so that u is in Co°(Rn) and supported in a ball of radius ry/2 centered at 
f0 € Rn where f0 is arbitrary and 77 > 0 will be specified below. Apply Cook's 
method (differentiate and integrate in (3.2)): Q+u exists if the L2-norm of 

Xt(D, tyiH«J+e-iiHQu + eÜH°[H0J+ - J+H0]e-itHou 

is an integrable function of t on an interval [to,oo), for some to > 1. We 

add and subtract eitH°VLJJt'e~itHou and apply the Avron-Herbst formula (3.1). 

It suffices to show that the L2-norms ||A(-,t)|| and ||C(-,t)|| are integrable 

functions of t > to where A and C are defined by 

A(z,t) = [Xt( l ) ,0-VL(x + (¿2/2)e1)]B(x,t) where 

B(x,t) = VL(x + (¿2/2)e1)]B(x,t) fdsqfdVL(x 

C(x,t) = EA>I*l*E-**IDS[(H0 + VL)J+ -J+Ho\e-iiHQu(x) 

eia5.e-i*K|V2^+(a:+(t2/2)e1^te1y(x + ( ^ J e ^ E + tai)û(fld£ 

where p+ was defined by (2.3). 

We start by estimating ||A(-,£)||. As is typical in stationary phase argu

ments we estimate first the integral B(x,t) far from the critical point of the 

phase function 

ф(£, X, t) = X • e - í|£|2/2 + в+{* + (í2/2)ei, i + UÀ. 

Choose therefore xo € Co°(Rn) so that 

Xo(*) = 
1 if Id < 77 
0 if \x\ > 2T] 

(3.7) 

Then 

( 1 - X o 
x - E ° T 

1 + t 
B(x,t) = 0((l + \x\ + t)~N). (3.8) 

because | V ^ | > c(l + |x| + £), for some c > 0, on the relevant region; see Fedo-

ryuk [5] or Hormander [7, Lemma A.l] . (The proof is essentially integration 

by parts.) 

Therefore to check the integrability of ||A(-,t)|| in t > to it suffices to check 

that of the L2(d£)-norm of 

Xo 
X - Ç°T 

1 + t 
e-ix<+W'*V[(Xt(C,t) - VL(x + i2/2ei)]û(Odfcfc. (3.9) 

It is again possible to estimate the L2(dQ norm of the expression (3.9) away 

from the critical point of the phase function — x • ( + <£(£,£,£), regarded as a 
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function of x. Therefore multiply by 1 — xo(C — f°) m (3.9). Then there is 
no critical point for the phase: Indeed |C — Vx<£(f,x,t)\ > c(l + |£|) for some 
c > 0, in the relevant region. Since 

|££VB<K£,M)| + raxo 
x - ET0 

í + í 
[Xt(t,Q-VL(x + 

5 

0 
)]}| = 0 (rW-) , 

it follows that the expression (3.9) times 1 - xo(C - £°) is 0 ( (1 + |CI)~**~*~€) 
for any integer N and so its L2(d() is integrable in t > ¿o- (See the references 

after equation (3.8).) 

It remains to estimate the expression (3.9) times Xo(C~"f °)- This is not quite 

the "usual" stationary phase estimate neax the critical point because Xt(C>*) 
depends on £, not f. To remedy this we expand -Xt(C, t) in a Taylor series, not 

around f but around the critical point for the phase, ( = Vx<f>(£,x,i). The 

expression (3.9) times xo(C ~~ £°) is, f°r some positive integer k 

xo(C-£°)io(C,<) + xo(C-£0) E 
i<H<* 

iM 

a ! 
Aa(C, t) + E 

M=*+l 

ik + 1 

a ! 
R-(C,<) 

where 

¿oOM) = Xo 
x - E0sst 

1 + T 
X 

e^)[(Xt(V,^( í ,« , t ) , t ) - VL(x + (í2/2)e!)]ti(í)^dE; 

Aa (C, t) = fx0x0fd0 
x - E0t 

I+T 
e-ic.»+^(i,*,i)^ _ Vx0(e,x,i))a x 

(DfXt)(Vx<f>(Z, x, t),t)ú(£)d£dx; 

Ra (C, t) E 
M=*+i 

1 

a ! 
x o ( C - n / x o 

x - Eot 

1 + t 
e-t(x+î (e,*,i) x 

K - v . f l i , x , t ) ) « x 

/ 
i 

0 
(1 - s)"(D?Xt)(s( + (1 - . ) V , ¿ ( É , x, í), t) d5 ú(0díáx 

and A0 is the Fourier transform of A<)(•,*). We shall show that the £2(iC) 
norms of each term is an integable function of t > to- (The factor xo(C -~ f°) 

only plays a role in the consideration of Ra.) 

The AQ(X, t) term is the most interesting because the choice of X is critical 

here. First we change variables, x = ty: The L2(dx) norm of Ao(x,t) equals 

the L2(dy) norm of tn/2Ao(ty,t). Optimally X will satisfy 

Xt ((Vxo)(E, ty, t), t) = VL(ty + t²/2e1)fes 
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at the critical point of the phase, that is where V ^ ( f , ty, t) = 0. In order to 
specify X we begin by defining y(£, t) by the equation for the critical point: 

»(€,*) - É + t-lVte(ty{Ç,t) + t2/2eUÇ + tei) = 0. (3.10) 

The implicit function theorem guarantees y(£,t) is well defined for (£,*) € 

E7i x [*i,oo) where U\ is any bounded open set and t\ > 1 is suitably large; y 

is smooth and 

(€,*) - É + t-lVte(ty{Ç, tio)D 

ds 

di 
te(ty{ÇGFD d 

« i l 

É + t-lVte(ty{Ç, tio)dsqD 

for all /3, by estimates (2.8, 2.9). Since U\ is arbitrary, it is possible to extend 

y(f, t) smoothly, by a partition of unity argument, to all of Rn x [0, oo) so 

that whenever f is restricted to a compact set the above bounds are valid and 

(3.10) holds for t large enough and y(f, t) = f for small t. 

The definition of X further requires defining S(-, t) to be the inverse of the 

mapping f h+ (Va0)(f, ty(f, *), £). Provided f is restricted to a bounded open 

set and t is large then 2(-,t) indeed exists and 

|itf(s(C,í)-OI = 0(t-e) 
sd 

di 
(e, t)|+|DBC 

S 

SC (S(c , í ) -C ) l = O(T-^) 

by (2.7). Extend E to Rn x [0, oo) as was done with y and so that E(£, t) = ( 

for small t. 

Define the modifier X as 

x(t,t) = ƒ 
r 

o 
VL(rY(i,T) + (r2/2)e1)dr where y( f , t ) = Y{3(Ç,t),t). (3.11) 

The estimates (3.4, 3.5) for Y follow directly from the comparable estimates 

for y and S. 

We may now estimate the L2(dy) norm of tn/2Ao(ty, t) by a well known 

stationary phase argument [7, Lemma A.4]. Since the phase function in AQ 

has a non-degenerate critical point, Hormander's Lemma A.4 [7] applies and 

gives an expansion for AQ at that critical point. Our choice of X assures that 

the first term of that expansion is 0 and the remaining terms times tn¡2 have 

L2(dy)-noims which are integrable functions of t > tQ. 

The same type of argument applies to Aa, \a\ > 0 but first it is necessary 

to integrate by parts in the x variables several times. Each time the factor 

g - i C - s + i ^ í . x , * ) ^ _ Vs0(£,x,t)) is integrated and the process is repeated until 

the symbol no longer contains the variable £ (which is at most |a| times). 
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Then the outer integral over x is simply a Fourier transform so that we may 
estimate the £2-norm of the inverse Fourier transform of Aa(', t). For example, 
the inverse Fourier transform of Aa(-, t) in the special case |a| = 1, say a = e;-
for some j , 1 < j < n, is 

—i EIo(E,x,t) d 

dxj 
ix 

x-?ty 

1 + t 
(DEejXt)(VxQ(E,x,t),t)}û(E) dEde 

We now argue as for AQ. We change variables x — ty and apply Hormander's 

Lemma [7, Lemma A.4]. Since, by (2.9), the x derivatives of 0 and hence <f> 

decay rapidly in t on the support of the above integrand, Hormander's Lemma 

implies that ||Aa(-,t)|| is an integrable function of t > to. 

Next we estimate jRa when |a| = k + 1 and k is large. As above we 

integrate by parts repeatedly in x until all factors of (£ — Vx<£(f,x,£)) have 

been integrated (or differentiated) out. Here however the integral over x is 

not simply a Fourier transform but again the integrand will decay rapidly 

in t and in fact if k is large enough the integral may be estimated directly: 

||J?a(-.t)|| is an integrable function oft > to; there is no need for Hormander's 

Lemma here. 

The proof that ||C(-,i)|| is an integrable function of t follows arguments 

already given. The initial argument estimating B far from the critical point 

applies to C as it did to B and so it suffices to consider the L2(dx)-norm 

of x ( (* - f°*) / ( l + t))C(x,t). (See (2.11).) Changing variables x = ty it 

suffices to show that the £2(dy)-norm of tn'2x{{y - f ° ) / ( l + t-x))C (ty, t) is an 

integrable function of t. This follows again from Hormander's Lemma A.4 [7] 

and the estimate (2.11). This proves the Proposition. • 
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RADIATION CONDITIONS AND SCATTERING THEORY 
FOR THREE-PARTICLE HAMILTONIANS 

D.Yafaev 

1. I N T R O D U C T I O N 

One of the main problems of scattering theory is a description of asymp
totic behaviour of N interacting quantum particles for large times. The com
plete classification of all possible asymptotics (channels of scattering) is called 
asymptotic completeness. The final result can easily be formulated in physics 
terms. Two particles can either form a bound state or are asymptotically free. 
In case N > 3 a system of N particles can also be decomposed asymptotically 
into its subsystems (clusters). Particles of the same cluster form a bound 
state and different clusters do not interact with each other. 

There are two essentially different approaches to a proof of asymptotic 
completeness for multiparticle (N > 3) quantum systems. The first of them, 
started by L. D. Faddeev [1], relies on the detailed study of a set of equations 
derived by him for the resolvent of the corresponding Hamiltonian. This ap
proach was developped in [1] for the case of three particles and was further 
elaborated in [2, 3]. The a t tempts [4, 5] towards a straightforward general
ization of Faddeev's method to an arbitrary number of particles meet with 
numerous difficulties. However, the results of [6] for weak interactions are 
quite elementary. 

Another approach relies on the commutator method [7] of T. Kato. In 
the theory of N-particle scattering it was introduced by R. Lavine [8, 9] for 
repulsive potentials. A proof of asymptotic completeness in the general case is 
much more complicated and is due to I. Sigal and A. SofFer [10]. In the recent 
paper [11] G. M. Graf gave an accurate proof of asymptotic completeness 
in the time-dependent framework. The distinguishing feature of [11] is that 
all intermediary results are also purely time-dependent and most of them 
have a direct classical interpretation. Papers [10, 11] were to a large extent 
inspired by V. Enss (see e.g. [12]) who was the first to apply a time-dependent 
technique for the proof of asymptotic completeness. 

S. M. F. 
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D. YAFAEV 

The aim of the present paper is to give an elementary proof of asymp
totic completeness (for the precise statement, see section 2) for three-particle 
Hamiltonians with short-range potentials which fits into the theory of smooth 
perturbations [7, 13]. Our approach admits a straightforward generalization 
to an arbitrary number of particles. This will be discussed elsewhere. Our 
proof of asymptotic completeness relies on new estimates which establish some 
kind of radiation conditions for three-particle systems. Compared to the lim
iting absorption principle (see below) radiation conditions-estimates give us 
an additional information on the asymptotic behaviour of a quantum system 
for large distances or large times. Limiting absorption principle suffices for 
a proof of asymptotic completeness in case of two-particle Hamiltonians with 
short-range potentials. However, radiation conditions-estimates are crucial in 
scattering for long-range potentials (see e.g. [14]), in scattering by unbounded 
obstacles [15, 16] and in scattering for anisotropically decreasing potentials 
[17]. In the lat ter paper the role of radiation conditions was also advocated 
for three-particle Hamiltonians. Our proof of radiation conditions-estimates 
hinges on the commutator method rather than the integration-by-parts ma
chinery used in the two-particle case (see e.g. [14]). 

Our interpretation of radiation conditions is, of course, different from the 
two-particle case. Before discussing their precise form let us introduce the gen
eralized three-particle Hamiltonians. We consider the self-adjoint Schrôdinger 
operator H — —A + V(x) in the Hilbert space 7i = jC2(Rd). Suppose that 
some finite number o?o of subspaces Xa of X := Rd is given and let rca, xa be 
the orthogonal projections of x G X on Xa and Xa = X Q Xay respectively. 
We assume tha t 

V(x) = 
sfs 

fsf 
Va{xa), (1.1) 

where Va are decreasing real functions of variables xa. We prove asymptotic 
completeness under the assumption tha t Va are short-range functions of xa 
but many intermediary results (in particular, radiation conditions-estimates) 
are as well t rue for long-range potentials. Clearly, Va(xa) tends to zero as 
\x\ —• oo outside of any conical neighbourhood of XQ and Va(xa) is constant 
on planes parallel to Xa. Due to this property the structure of the spectrum 
of H is much more complicated than in the two-particle case. Operators 
H considered here were introduced in [18] and are natural generalizations of 
iV-particle Hamiltonians. We further assume tha t 

Xar\Xp = {0}, a^0, (1.2) 

so tha t regions where different Va "live" have compact intersection (for po
tentials of compact support) . For the Schrodinger operator this is t rue only 
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for the case of three particles. Thus the assumption (1.2) distinguishes the 
three-particle problem. 

Our proof of asymptotic completeness requires only the "angular par t" of 
radiation conditions. Let (•,•) be the scalar product in the space <Fd and let 

ADS< 
V w u ( x ) = Vu(ar) - \GDx\~2(Vu(x),x)x, 1.3 

be the projection of the gradient V on the plane, orthogonal to x. Denote by 
Xo the characteristic function of any closed cone To such tha t To fl Xa = {0} 
for all a. We prove tha t the operator 

Go = Xo(N JL+ lJJJM)-1/2V« (1.4) 

is locally (away from thresholds and eigenvalues of H) //"-smooth (in the sense 
of T. Kato - see e.g. [19]). In neighbourhoods of Xa we have only a weaker 
result. Namely, let VXa be the gradient in the variable xQ (i.e. VXau is the 
orthogonal projection of Vw on Xa)y 

Vxs}u(x) = VXau(x) - \xa\-2{VXauP7OCC{x),xa)xa (1.5) 

and let Xa be the characteristic function of such a closed cone Ta tha t Ta fl 
Xp = {0} for all /3 =fi a. Then the operator 

<2. = X„(W + l )-1/aVW (1.6) 

is locally J9"-smooth. A definition of i7-smoothness of the operators Go and 
GQC can be given either in terms of the resolvent of the operator H or of its 
unitary group U(t) = exp(-iHt). In both versions results are formulated as 
certain estimates which we call radiation conditions-estimates. 

Our proof in section 3 of if-smoothness of the operators Go and Ga is based 
on consideration of the commutator [Hy M] := HM — MH, where M is a self-
adjoint first-order differential operator with bounded coefficients. We find 
an operator M such tha t i[H, M] is essentially bounded from below by GQGO 

and GaGa- Here we take into account that certain terms, those vanishing as 
0(\x\~p),p > 1, at infinity, are negligible. This is a consequence of local H-
smoothness of the operator (|rr| + l ) ~ r , r > 1/2, (limiting absorption principle) 
which, in turn , is ensured by the Mourre estimate [20, 21 , 22]. We emphasize 
that all our considerations are localized in energy. 

The if-smoothness of the operators Go and Ga suffices for the proof in 
section 4 of existence of suitable wave operators ( bo th "direct" and "inverse") 
with non-trivial identifications which are first-order differential operators. The 
sum of these identifications equals M, which allows us to find the asymptotics 
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of MU(t)f for large t. Since the limit M± as t —> ± 0 0 of the observable 
U*(t) M U(t) also exists, this gives the asymptotics of the function U(t)f for 
/ from the range of the operator M±. Using again the Mourre estimate, we 
prove (also in section 4) tha t actually this range coincides with the whole 
absolutely continuous subspace of the Hamiltonian H. Finally, in section 5 
we conclude our proof of asymptotic completeness. 

2. B A S I C N O T I O N S O F S C A T T E R I N G T H E O R Y 

Let us briefly recall some basic definitions of the scattering theory. For a self-
adjoint operator i f in a Hilbert space Ti we introduce the following standard 
notation: V(H) is its domain; <r(H) is its spectrum; E(Q] H) is the spectral 
projection of H corresponding to a Borel set Q C R ; H^ac\H) is the absolutely 
continuous subspace of if; p(ac\H) is the orthogonal projection on WSac\H)] 
Ti^p\H) is the subspace spanned by all eigenvectors of the operator H] a^p\H) 
is the spectrum of the restriction of H on H^P\H)^ i.e. a^p\H) is the closure 
of the set of all eigenvalues of H. Norms of vectors and operators in different 
spaces are denoted by the same symbol || • ||; I is always the identity operator; 
B and /Coo are the classes of bounded and compact operators (in different 
spaces) respectively; C and c are positive constants whose precise values are 
of no importance; "s — l im" means the strong operator limit. Note tha t 

s — lim 
|<|->oc 

Kexp(-iHt)P{ac\YUIH) = 0, if K e /Coo. (2.1) 

Let K be i f -bounded operator, acting from T~L into, possibly, another 
Hilbert space W. It is called H-smooth (in the sense of T. Kato) on a Borel 
set Q C R if for every / = E(fy H)f € V(H) 

roo 
J—00 

||XeOxpKIIM(-z^)/l|2^<C||/H2-

Obviously, BK is i f -smooth on £1 if K has this property and B 6 B. 

Let now Hj, j = 1,2, be a couple of self-adjoint operators and let J be 
a bounded operator in a Hilbert space 7i. The wave operator for the pair 
# 1 , ^ 2 and the "identification" J is defined by the relation 

W±(H2,Hl] J) = s - hIUOm^exp^^PIPPJexpi-iH^P^iH^ (2.2) 

under the assumption that this limit exists. We emphasize tha t all definitions 
and considerations for " + " and " — " are independent of each other. It 
suffices to verify existence of the limit (2.2) on some set dense in 7i. If the 
wave operator (2.2) exists, then the intertwining property 

^($2)^(^2,^15 J) = W^H^Hv, J)Ex{Çi) (2.3) 
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(O C R is any Borel set and i(F£l) = EjHF(Q; holds. It follows tha t the 
range R(W±(H2,FHi] J)) of the operator (2.2) is contained in H^acFH\H2) and 
its closure is an invariant subspace of H2. Moreover, if the wave operator is 
isometric on some subspace then the restrictions of H\ and H2 on the 
subspaces Ti\ and Ti2 = WFF±(H2^FHH\] respectively, are unitarily equiv
alent. This equivalence is realized by the wave operator. Clearly, for every 
f2 = W±(H2,H1-FHJ)fl 

exp(—iHFF2t)f2 ~ J e x p ( F H — t FH—• ± 0 0 , 

where " ~ " means that the difference between left and right sides tends to 
zero. In case J = I we omit dependence of wave operators on J . The operator 
W±(H2,SHi) is obviously isometric on 76ac\SHi). The operator W±S(H2jHi) is 
called complete if R(W±(H2, HiS)) = FSH{ac\H2). This is equivalent to existence 
of the wave operator W±(SH\, H2). 

We note also the multiplication theorem 

W±(H3,SHi; J J) = W*(SH3tH2; 7 ) ^ ( ^ 2 , fTi; J). (2.4) 

More precisely, if both wave operators in the right side exist, then the wave 
operator in the left side also exists and the equality (2.4) holds. 

We need the following sufficient condition of existence of wave operators. 

Proposition 2.1 Let an operator J be H\-bounded and let its adjoint J* be 
H2-bounded. Suppose that for some N < 00 

H2J - JHX = 
N 

n=l 
KlJ<l,n 

(in the precise sense this should be understood as an equality of sesquilinear 
forms on V(Hi) x V(H2))J where the operators K^n are Hj-bounded and are 
Hj-smooth on some bounded interval A. Then the wave operators 

W^Hi, # 1 ; JEi(A)F), FWF^HuHz; J*E2(A)) 

exist 

Proof for the case J — I can be found e.g. in [19]. For arbitrary J the 
proof is practically the same [23]. Unboundedness of J is inessential because 
real identifications JE\(k) and J'*E2(A) are bounded operators. We use 
Proposition 2.1 only in the case V(Hi) = V(H2) and J = J*. 

We consider an operator H = T + V in the Hilbert space H — L2(Rd) 
where T = —A and V is multiplication by a function V{x) defined by (1.1). 
We do not usually distinguish in notation a function and the operator of 
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multiplication by this function. Assume that real functions VA are sums of 
short-range VSA and long-range V/a terms: 

VA = VSA + V{*. (2.5) 

We say tha t a potential VA is short-range if V}̂  = 0. It is convenient to split 
all conditions on VA into two parts . To formulate them we need to introduce 
the operator TQ = -Axa in the space HQ = L2(Xa). 

A s s u m p t i o n 2.2 Operators 

VQ(T* + iy\ {\x«\ + i)vSQ(T* + j ) - 1 , (|**| + i)\vvn(T« + I)'1 

are compact in the space ?ia. 

A s s u m p t i o n 2.3 For some p > 1 operators 

(\x"\ + iyVsa(Ta + I ) " 1 , (\xa\ + iy\VV?\(T* + iyl 

are bounded in the space Hf*. 

Compactness of Va(Ta + I) 1 ensures tha t the operator H is self-adjoint 
on the domain T>(H) = T>(T) —\ T> and H is semi-bounded from below. Set 

U(t) = exp(-iHt), E(-) = E(-\ H). 

The condition (1.2) is always assumed. Dimensions da of the subspaces Xa 
are arbitrary. In particular, we do not exclude tha t one of the subspaces Xe*, 
say Xa°, coincides with the whole space X — Hd. Thus the (three-particle) 
potential Va°(x) tends to zero in all directions. 

Assumption 2.2 has a preliminary nature. It is required for the Mourre 
estimate. Practically we use only tha t for 2r = p the operators 

((za)2 + l)r'2\V8a\1/2(T* + IT1'2 and ((xa)2 + l)r/2| W / * ! 1 7 2 ^ + j ) - i / 2 

are bounded in the space 7ia. This is a consequence of Assumption 2.3 in 
virtue of the Heinz inequality. It follows that considered in the space 7i the 
operators IT^I1/2 and |VV/a|1//2 admit the representations 

\V8Q\1'2 = B«{T + l)l'2{(x«)2 + l)"r/2, B« G B, (2.6) 

|vvn1/2 = Bf(T + i)1/2((xa)2 +1)-7*/2, Bf e B. (2.7) 

Let us introduce operators Ha = Ta + Va> 1 < a < a\ := ao — 1, in 
the spaces 7ia playing the role of "two-particle" Hamiltonians. The point 
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spectrum of Ha consists of eigenvalues accumulating, possibly, at the point 
A = 0 only. The set of thresholds To for H is defined as the union 

To = U i ^ ^ ) ( ^ * ) D U { 0 } . 

We need the following basic result (see [20, 21, 22]) of spectral theory of 
multiparticle Hamiltonians. It is formulated in terms of the auxiliary operator 

A = 
d 

SSD 
Xj D j ~\~ ID j x j ) , Dj = -idj, dj = d/dxj. 

P r o p o s i t i o n 2.4 Let Assumption 2.2 hold. Then eigenvalues of H may ac
cumulate only at TQ so that the "exceptional" set T = To U a^p\H) is closed 
and countable. Furthermore, for every A G R \ T there exists a small inter
val A\ 3 A such that the estimate (the Mourre estimate) for the commutator 
holds: 

i([H, A]u, u) > c\\u\\\ c = cx > 0, u € E(AX)H. (2.8) 

Remark. The quadratic form in the left side of (2.8) defined originally 
for u € V(H) fl V(A) extends by continuity to all u <E V(H). Thus it is 
well-defined for u € E(Ax)H. 

Let Q be multiplication by (x + l)1'2. Below A is always an arbitrary 
bounded interval such that A fl T = 0, where A is the closure of A. One of the 
main consequences of (2.8) is the following 

P r o p o s i t i o n 2.5 Let Assumptions 2.2 and 2.3 hold. Then for any r > 1/2 
the operator Q~r is H-smooth on A. 

The proof of this assertion under our assumptions can be found in [17]. 
Corol lary 2.6 The operator H is absolutely continuous on E(A)Ti. In par
ticular, it does not have any singular continuous spectrum, i.e. 

H = H{p)( H)®'DDH{ac)(H). 

Note tha t Propositions 2.4 and 2.5 hold true also for the two-particle case. 
Thus the operator (\xa\ + l ) ~ r , r > 1/2, is iJa-smooth on any bounded pos
itive interval separated from the point 0. According to Proposition 2.1 this 
implies tha t for short-range Va the wave operators W±(KHa,Ta) exist and are 
complete. 

Let us give the precise formulation of the scattering problem for three-
particle Hamiltonians. We introduce auxiliary Hamiltonians Ha = T+Va, 1 < 
a < OJI, in the space H with only one pair potential each. Since X = 
Xa © X a , 7 i splits into a tensor product 

L2(X) =QQ L2(Xa)®L2(Xa). (2-9) 
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Let us introduce also the "free" operator Ta = —AXa in the space HQ = 
L2(Xa). In the representation (2.9) 

Ha = Ta®NI + I®Ha. (2.10) 

Denote by Pa the orthogonal projection in Tia on the subspace H^p\Ha) and 
set Pa = I ® P a . Clearly, the orthogonal projection Pa commutes with Ha 
and its functions. Set also V° = 0, i?o = T\^o = Below indice a (and b) 
takes all values 0 , 1 , o t \ . We use notation 

Ua(t) = exp(-iHj), Ea(-) = £(•; Ha). 

The basic result of the scattering theory for three-particle Hamiltonians is 
the following 

T h e o r e m 2.7 Suppose that functions Va satisfy Assumptions 2.2 and 2.3 
and are short-range, i.e. Va = V*. Then the wave operators 

W± = W±(HN,Ha;Pa) (2.11) 

exist and are isometric on PaTi. The ranges R(W?BB̂ )XX of are mutually or-
thoaonal and the asymptotic completeness holds: 

Y,®R{Nw±) = n{ac\H). 
a 

(2.12) 

Our assumptions on Va are somewhat larger than those of I. M. Sigal and 
A. Soffer [10] or G .M. Graf [11] since we do not require anything about 
derivatives of VQ. 

Scattering theory for the operator Ha containing only one pair potential 
reduces to tha t for the two-particle case. Indeed, comparing formula (2.10) 
and 

H0 = Ta®I + I®Ta, 

we find tha t 
Ua(t)Uo(t)% = I ® %exp(iHat)exp(-iTat). 

3o wave operators W (HayHo) and W (Ha,Ta) exist at the same t ime and 

W*(fT«, H0) = I ® P O P W ^ H " , TBB«). 

Since wave operators W±(HQ^ Ta) exist and are complete we have the follow
ing 
P r o p o s i t i o n 2.8 In conditions of Theorem 2.1 the wave operators W±(HON HQ) 
Pvizi, n.n.tl. 

R(W±(Ha,H0)PP) = (IBB-Pa)H. 

In particular, for every f € H and /Q = (W±(Ha, Ho))*f 

Ua(t)f ~ Uo(t)tOOf + Ua(t)Paf, t -> ±oo. (2.13) 
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We conclude this section with some standard technicalities. 

L e m m a 2.9 For any r € [0,1] the operator [H,Qr](T +1)'1'2 <E B. 

Proof. - Clearly, 

[H, Qr] = [T, Qr) = -2V9rV - Aqr, qr(x) = (x2 + l)^2. 

Since r < 1, functions V<jv and Agr are bounded. • 

L e m m a 2 .10 Let i\> <E Q ° ( R ) and r € [0,1]. Then [i>(H),Qr]VV € B. 

Proof. - Note tha t 

Mt),Qr) = -ij0 U(s)[H,Qr]U(t - s)ds. 

Thus in virtue of Lemma 2.9 

\\[U(t),Q'}(\H\ + ir^\\<VVC\t\. (2.14) 

For an arbitrary ip we have tha t 

U(t),Qr)iì>(t)dt, •oo 

J—CO 
[U(t),Qr)iì>(t)dt, 2*$(t) 

roo 
—oo 

exp(i\t)tVNp(\)d\. 

By (2.14), it follows that 

№(H),Qr](\H\ + I)-l'2eB, * 
too 

J—oc 
\té(t)\dt < oo. (2.15) 

Finally, let ip\ £ C o ° ( R ) and tpi(\) = 1 on support of tp so that tp = ^ ^ l -
Then 

№(#), £r] - ^(H)[MH), 0 1 + № ( # ) , Q l ^ i ( i î ) 

and both terms in the right side are bounded in virtue of (2.15). • 

L e m m a 2.11 For r 6 [0,1] and arbitrary z £ cr(H) the operator Q~r(T + 
I)(H — z)~lQr is bounded. 

Proof. - Clearly, 

(H - zJJ-lQr = Qr(HJ - J)~l -(H- z)-l[H, QrSS](H - z)~l 

and, by Lemma 2.9, [H,Qr](H - z)~l G B. Thus it remains to check that 

Q-r(T + i)Qr(T + iyl eB. 

To that end we commute T with Qr and remark tha t the gradient and Lapla-
cian of qr(x) = (x2 + l)r/2 are bounded. • 

Quite similarly we obtain the following result. 
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L e m m a 2.12 Suppose that a function v obeys the estimate 

MaOl + KVtOOOl + |(At;)(a:)| < C(\x\ + l ) " ' , r € [0,1]. (2.16) 

Then 

(T + I)v(T + I)~lQr € 0 , (T + iy^vDjiT + iylQr e B, j = 1 , . . . , d. 

Combining Lemma 2.11 with Proposition 2.5 we immediately obtain 

P r o p o s i t i o n 2 .13 For every r > 1/2 the operator Q~r(T + I) is H-smooth 
on A. 

Proof, - For any z £ cr(H) 

Q~r(T + I)U(t)f = (Q~r(T + I){H - z)~lQr) Q~rU(t)(H - z)f. 

Since the first factor in the right side is bounded it suffices to apply the 
definition of i7-smoothness to the element (H — z)f G E(A)/H. • 

In virtue of Lemma 2.12, Proposition 2.13 is more general than Propo
sition 2.5. Therefore we usually give references below only to Proposition 
2.13. Similarly, by Lemma 2.12, Proposition 2.13 ensures if-smoothness of 
the operators Q~rDj where r > 1/2 and j = 1 , . . . , d. 

Of course, all results formulated for the operator H are as well t rue for Ho 
and Ha. 

3. POSITIVE COMMUTATORS 
AND RADIATION CONDITIONS 

Our approach relies on consideration of the commutator of H with a first-order 
differential operator 

MLL 
d 

j=i 
(rrijDj + Djirij), rrij = dm/dxjj (3.1) 

where m is suitably chosen real function. To give an idea of this choice we 
note tha t for m(x) = \x\ there is the identity 

i[H0,M] = 4VWM-1VW, H0 = T = - A , (3.2) 

which can be deduced e.g. from the formulas (3.3) and (3.13) below. The 
arguments of [7] (reproduced in the proof of Theorem 3.5) show tha t the 
identity (3.2) ensures i7o-smo°thness of the operator Q_1/2V^^ Furthermore, 
since [yao,M] = 0(\x\~p),p > 1,|#| —» oo, using Proposition 2.5, we can 
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prove smoothness of Q ' with respect to the "two-particle" Hamiltonian 
Hao = Ho + Va°. However, the functions [ V a , M ] , l < a < c*i, decrease only 
as l^l"1 at infinity. Actually, one can not expect that the operator Q~l/2V^ 
is i f -smooth. To prove a weaker result about iJ-smoothness of the operators 
(1.4) and (1.6) the function m(x) should be modified in such a way that 
[V™,M] = 0(\x\-p),p > 1 for all a. The last relation holds if m(x) depends 
only on the variable xa in some cone where Va(xa) is concentrated. This is 
similar to the idea of G. M. Graf applied in [11] in the time-dependent context. 

Suppose for a moment that m is an arbitrary smooth function. We start 
with the standard calculation of the commutator [HQ^M]. 

L e m m a 3.1 Let an operator M be defined by (3.1). Then 

i[H0, M] = 4J2DjmjkDk — (A2m), rrijk = d2m/dxjdxk-
J+11 

(3.3) 

Proof. - Let us consider 

[d],mkdk¨££] = d]mkdk - mkdkd]. (3.4) 

Commuting dj with mk we find that the first term in the right side equals 

djP°mkdk = dj(mjk + mkdj)dk. 

Similarly, the second term 

mkdkd? = (mkdPPj)(dkdj) = (-mjk + djmk)(dkdj) = 
= -(djmjk - mjjk)dk + djirikdkdj, mjjk = d Pm/Mdx)dxk. 

Inserting these expressions into (3.4) we obtain that 

[d],mkdk] = 2djmjkdk - mjjkdk. 

It follows tha t 

[d],mkdk + dkmk] = [d],mkdk] + [d],mkdk]* = 
= 2(djmjkdk + dkmjkdj) - mjjkdk + dkmjjk = 

= 2(djmjkdk + dkmjkdj) + mjjkk, mjjkk = &mldx)dx\. 

Summing up these relations in j and k we arrive at (3.3). • 

We choose m(x) as a homogeneous function of degree 1. Such functions 
have singularities at x = 0. In virtue of Proposition 2.5 values of m(x) in 
a bounded domain are inessential. Therefore we can get rid of singularity 
of m(x) replacing it in a neighbourhood of x = 0 by an arbitrary smooth 
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function. In such a way we obtain C°°-function which satisfies the relation 
m(sx) = sm(x) if |x| > c > 0 and s > 1. We say tha t m is homogeneous 
for | a: | > c. A function m is constructed differently in neighbourhoods of 
subspaces Xa and in a "free" region, which is separated from all Xa. In 
order to describe necessary properties of m it is convenient to define a conical 
neighbourhood 

Fa(e) = {\xa\ > (1 -%£¨£MMM e € (0 ,1) , 1 < a < au 

of Xa \ {0}. For sufficiently small e and e < e these neighbourhoods are 
separated from each other, i.e. Ta(e) D Tp(e) = {0} for a ^ /3. This is a 
consequence of the assumption (1.2). Set also 

r0(e) = {(1 - e)\L\ > \xa\, l<a%<ax}. 

We always assume tha t e € (0, e) so tha t cones TQ(C) are not empty. Clearly, 
To(^) gets larger if e decreases but never intersects with Xa. More precisely, 
r n f e ) n r j V > = 0 a n d 

r0(c) U «1 
a=l 

Ta(e) = X (3.5) 

Let us subtract from ra(e) the unit ball, tha t is we set 

fa (e) = Ta(e)f){\x\>l}. 

We submit m(x) to the following requirements: 

1° m{x) is a real nonnegative C°°-function, which is homogeneous of degree 
1 for |x | > 1 and m(x) = 0 for \x\ < 1/2. 

2° m ( z ) > 0 i f M = l . 

3° m(x) is a (locally) convex function for \x\ > 1, i.e. 

E " » i t ( x ) f c & F F > FFo> v£DFFEFH € F F H < r , \x\>i. (3.6) 

4° For every a = l,...,c*i there exist ea € (0,e) and /za > 0 such that 
m(x) = / /a |^a| if x €Ta (e<*)- Furthermore, there exist CQ > max{ea} and 

o 
fiQ > 0 such tha t ra(rr) = //o|#| if # GTo (eo)-

The final property is, strictly speaking, related to the family of functions 
satisfying 1° — 4°. 

5° By a choice of m(x) = m^e°\x) a number eo can be made arbitrary small 
(i.e. for arbitrary small neighbourhoods of Xa one can construct m(x) in such 
a way tha t m(x) = //Q|#| for \x\ > 1 outside of these neighbourhoods). 
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Below e, eo and ca are always numbers specified here; in particular, e > CQ > 
e<*, OL = 1 , . . . , a i -

Let us give an example of a function m{x) obeying all conditions 1° — 5°. 
First, we introduce a family of functions me(x) satisfying all the properties 
except smoothness and then average m£(x) over e. Set 

m£(x) = max{|rri | , . . . , | xaJ , ( l — e ) H } , 0 < e < e. 

By definition, m£(x) is a homogeneous function of degree 1. Being maximum 
of convex functions, m£(x) is convex, i.e. 

me(r\xi + T2X2) < rim£(x\) + r2m£(z2), rj € [0,1], n + r2 = 1. 

Clearly, m£(x) = \xQ\ if x € Ta(c)y and ra^z) = (1 — e)\x\ it x £ TQ(C). In 

other words, 

m£(x) = 
Wl 

a=l 
|«a|ö(|a:a|- • ( l - e ) k l ) + ( l - e ) | * | ( l -

Wl 

Wl 
ö(|*a|-(i-e)|*D), (3.7) 

where 0(s)= 0 for s < 0. = 1 for 6 > 0 andF = ADQXV>>0 for <<<DJjkjl  

Let <p(e) be some smooth nonnegative function supported in a closed in
terval [ei,eo], 0 < ei < eo < e. Define 

mix) — 
Jo 

m£(x)ip(Ce)de (3.8) 

Obviously, ?7?.(.T) is again homogeneous function of degree 1. It satisfies the 
property 2° because 

rn.e(x) > 1 — e>l — eo>0, \x\ = 1. 

Being an integral of convex functions, m(x) is convex. Comparing (3.7) with 
(3.8) and denoting 

*(s) = cp(e)de, SFS 
S r. (1 -e)<p(e)de, 

we find that 

m(x) = 
UOU 

a=l 
1 -e)<p(e)d 1 -e)<p(e)de, 

M(*(o) 
GJ 

GJS 

1 -e)<pDH(DHe)de, (3.9) 

Functions $ ( s ) and $(s) are smooth, they equal zero if s > eo and they equal 
constants <fr(0) and $(0), respectively, if s < e\. Therefore the function (3.9) 
belongs to C°°(Ud \ {0})ym(x) = $(0)\xa\ if x <E Ta(ei) and m(x) = *(0)\x\ 
if x e r0(e0). Thus the property 4° (with /za = $(0), ea = ei and /i0 = $(0)) 
holds. Since eo is an arbitrary small number, the property 5° is also fulfilled. 

367 



D. YAFAEV 

Finally, one can get rid of local singularity of m(x) at x = 0 replacing it by 
r(x)m(x) where r G C°°(lRd), r(x) = 0 for \x\ < 1/2 and r(x) = 1 for |z | > 1. 

Actually, the concrete construction of the function m is of no importance 
for us and we always use only its properties 1° — 5° listed above. By the 
property 1° derivatives rrij of m are homogeneous functions of degree 0, rrijk 
are homogeneous of degree —1 and rrijjkk are homoneneous of degree —3. 
Therefore 

(A2m)(z) = 0(\x\'% | z | -> oo, (3.10) 

and the main contribution to the commutator (3.3) is determined by the 
operator 

L = L(m) = V DjirijkDk. 
J+111 

(3.11) 

To estimate it we first compute the matrix 

M(#) = {rrijk(x)} = Hess m(x) 

in the region where m(x) — \i§\x\\ 

mj(x) = fi0\x\ lxjy mjk(x) = HQ(\X\ LSJK - \x\ zXjXk). (3.12) 

Here Sjj = 1 and Sjk = 0 if j ^ k. By the definition (1.3), the angular part of 
the gradient Vu obeys the identity 

| V ^ u | 2 = |Vu|2 - |zr2|(Vu,*)|2 = £ |U/ - M-2H>££MJLLLLLĜ|2 = 
3 j 

= ZX1 - \x\ 2xì)\uj\2 -\x\ 2J2 XjXkUjUk, Uj = dKKKKKVZu/dxj. 
¨PP £¨PO 

According to (3.12) it follows tha t 

2J2 XjXkµµµ000UjUk, Uj = du/dHKKxj. 

2J2 Xj 

(3.13) 

In the region where m(x) — //a|rra| all calculations hold t rue if x is replaced 
by xa. Thus we obtain the following 

L e m m a 3 .2 Let V'*'« and V ^ u be defined by (1.3), (1.5) respectively and 
o o 

let To (eo),ra (ea) be the truncated cones introduced in the condition 4° on 

m(x). For x ero (CQ) the identity (3.13) holds and for x efa 
2J2 XjXkUjUk, Uj = du/dxj.MM а = 1 , . . . ,аь (3.14) 
PIP 

Note tha t in case d i m X a = 1 both sides of (3.14) equal zero. 

368 



SCATTERING THEORY FOR THREE PARTICLES 

By the condition (3.6) on m(x) 

(Luyu) = 
hc 

RRIJKUJUKDX > 
KGK 

Ì RRIJKUJUKDX —F c 
bc 

|Vu|2cta, 

where T is any region lying outside of the unit ball. Combining this inequality 
with Lemma 3.2 we obtain 

P r o p o s i t i o n 3 .3 In notation of Lemma 3.2 for every u G V 

{Lu, u) > //0 
>roM 

\x\~l\V^u\2dx-c 
l\x\<\ 

\Vu\2dx 

and 

xar№'u\dx-c 
TA(€A) 

\xar№'u\dx<VV?<xa)-c J\x\<l 
\Vu\2dx, OL =\Vulhkm\2dx, 

It turns out that due to the property 4° the commutator [V, M] is in some 
sense small. The precise formulation is given in the following 

P r o p o s i t i o n 3 .4 Suppose that Va is defined by (2.5) where V" and V* satisfy 
Assumptions 2.2 and 2.3. Let m obey the property 1° and m(x) = m(xa) if 
x GTa (ea) for some ea > 0. Then 

\([Va,M]u,u)\<C\\Q-r(T + I)u\\2, ueV§, 2r = ><Ffqp. (3.15) 

Proof. - Suppose first that 1 < a < OL\. Let us introduce a smooth homoge
neous (for \x\ > 2) function (a of degree zero such tha t 0 < (a(x) < 1, C<*(x) = 
1 if x <£ra (ea) and Ca(x) = 0 if z G TQ(e) for some e G (0 ,ea) and \x\ > 2. 
The long-range part of VQ is differentiable so that 

i[V?JM] = 2[Via 
d 

j=i 
rrijdj] = —2 

d 

ùm 
rrijdVf/dxj = -2{Vm{x),VVl(x{xa)). 

o 
This scalar product equals zero for x GTa (fa) because m depends only on 
xa in this region and, consequently, Vm(x) G Xa whereas W / * G Xa. Since 
Wm(x)\ is bounded, it follows tha t 

\(Vm(x),VV?<xa))\<VV?<xa)) CUx)\VVf*(xa)\Ux).\<VV?<xa))  (3.16) 

Using the representation (2.7) we find that 

\([Vf, M ] t t , ) | < C\\(T+I)1' 2Wau\\\ Wa(X<cx) = ((XAF + l)-r/2Ca(*). 

The function wQ(x) obeys the condition (2.16) because (a(x) = 0 if x G Ta(e) 
and \x\ > 2. Therefore, taking into account Lemma 2.12, we obtain the bound 

(3.15) for Vf. 
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To consider [V^*,M] we use again tha t the function Ca(#) differs from 1 
o 

only if x 6Ta (£<*). In this region the function m does not depend on xa. It 
follows tha t the operator 

itlaM = 2??a(VXamFFF)VXa + r)a(AXam)y r)a(x) = c,,,xc,c,c,1- C*0), 

commutes with V? and hence [ V ^ M ] = [Fsa,£2M]. Simple computations 
show tha t 

[V?t&M] = 2 
d 

lll 
WtcjDj-DjpppppVfp&j-&j-iVfdUj/dv,v;;xj), Caj = ^lmQrnj.^^^ (3.17) 

Note tha t the functions rrtj are bounded together with their derivatives and 
€a,j = 0 if x £ Ta(e) and \x\ > 2. In virtue of the representation (2.6) for 
|pra|i/2 ^ne jas^. term in (3.17) is estimated exactly as the right side of (3.16). 
Similarly, 

\(VsaUjDju,u)\ < C\\(T + iFFFy'2waDjU\\ \\(T + hhhI)V2waul 

which is estimated by the right side of (3.15) according to Lemma 2.12. In 
the case a = OJQ the estimates are the same but the cut-off by £a is no longer 
necessarv. • 

Given Propositions 3.3 and 3.4 the proof of the main result of this section 
is quite s tandard. We formulate it only for the operator H since HQ and HA 
are its special cases. 
T h e o r e m 3.5 Suppose that Va are defined by (2.5) where V" and V{* satisfy 
Assumptions 2.2 and 2.3. Let Xa{z\ *)> a — — ->ai> oe the characteristic 
function of a cone Ta(e), where e £ (0, e) is arbitrary. Then the operators 

G0(e) = xo(e)<r1/2Vc,,c,;;;;ncnFFF« Ga(e) = Xa(e)Q-1/2V%, 

acting from the space L2(Rd) into the vector-spaces L2(Rd)<&@d and L2(Rd)® 
Wdayda = d i m X a , respectively, are H-smooth on arbitrary bounded interval 
A, A n T = 0. 

Proof. - Let us consider 

xo(e)<r1/2ffffd(FMU(t)f,U(cnnnnnnnnnt)f)/dt = i([H,M}fuft),vxn v (3.18) 

where ft = U(t)f, fcceV.Byjp (3.3), (3.11) 

i([H,M}ftK,ft) = KKKKKM4(Lft,fHHt) - ((A2m)/<, ft) + i([V, M]ft, ft). 

Taking into account (3.10) and applying Propositions 3.3, 3.4 to elements 
u = fi we find tha t (under the assumption p < 3) 

i([H, M)ftJt) > CiWGaieYHHJM2 - *aieJM\\Q-r(T + I)ft\\\ 2r = p, (3.19) 
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for any a = 0, l, . . . ,c*i. Here we have omitted ||Q~r/t||2 and the integral of 
|V/*|2 over the unit ball because they are estimated by the last term in the 
right side of (3.19). Integrating (3.18), (3.19) over t € (¿1,^2) we obtain tha t 

£ \\Ga(ea)ftfdt < C{\(Mfuft)\l I + / | 2 \\Q-r(T + I)ft\\2dt). (3.20) 

Suppose now tha t / = E(A)f. Then the first term in the right side of (3.20) 
is bounded by C| | / | |2 because ME{A) 6 B for bounded A. The second term 
admits the same estimate according to Proposition 2.13. It follows tha t the 
integral in the left side of (3.20) is bounded by C| | / | |2 so tha t each of the 
operators Ga(ea) is iJ-smooth on A. By the property 5° of the function m{x) 
a number eo can be arbitrary small. This concludes the proof of if-smoothness 
of GQ(S) for arbitrary e > 0. Since 

|Vg«| < |V««|, (3.21) 

i7-smoothness of Ga(e) for arbitrary e £ (0, e) is now a consequence of that 
fact for some e > 0. • 

Remark. Let us give for completeness a proof of (3.21). We can assume 
that u is real. By definitions (1.3), (1.5) the estimate (3.21) is equivalent to 
the bound 

|£„|2 + \x\-2\((,x)\2 < Id2 + |za|-2K&,*«>|2, (3.22) 

where £ (£ = Vu) is an arbitrary vector of X and £Q (£a = V ^ u ) is the or
thogonal projection of £ on Xa. It suffices to prove (3.22) with x) \ replaced 
by |(£a,#a)| + |£a| |za|. By identical transformations such an estimate can be 
reduced to the obvious inequality 

2K>|2|<£*,*a)|iriKI < | < & , * „ ) l V l 2 + w4in2-
Remark. By (3.21), Theorem 3.5 gives us more information about U(t)f 

in the "free" region To compared to that in the regions TQ where potentials 
Va are concentrated. 

Remark. The notion of JT-smoothness can be equivalently reformulated 
in terms of the resolvent of H. Thus radiation conditions-estimates given by 
Theorem 3.5 also admit a stationary formulation. 

Remark. In the two-particle case (where H = T + Va°) the result of Theo
rem 3.5 reduces to iJ-smoothness of the operator Q_1/2V^^ on any bounded 
positive interval separated from the point 0. This is different from the usual 
form of the radiation condition (see e.g. [14]). First, we consider only the 
angular part of VU(t)f. Second, the estimate of [14] implies that 

£ L IIG~rVwEWH2A < °°- (3-23) 

371 



D. YAFAEV 

Here r is some number smaller than 1/2 whereas we require tha t r — 1/2 
which is less informative. On the other hand, in (3.23) / should belong to 
some dense (in DH) set whereas our estimate is uniform for all / £ DH. 

Note, finally, tha t in [24] a radiation condition for iV-particle case was 
derived in the free region GIVD Prom the viewpoint of the previous remark the 
result of [24] is similar to the two-particle radiation condition and thus it differs 
from Theorem 3.5. Results of [24] can probably be used (see the discussion at 
the beginning of the next section) for a proof of asymptotic completeness in 
the three-particle case. However, an information about U(t)f in a free region 
only is not sufficient for the case of N > 3 particles. 

4. M O D I F I E D W A V E O P E R A T O R S 

In order to explain an idea of the subsequent proof of asymptotic completeness 
let us recall tha t , as remarked by P. Deift and B. Simon [25], it is equivalent to 
existence of wave operators JKW±(HKay HGD\ J^)y aG =J 0 , 1 , . . . , a\. Here identifi
cations are multiplications by smooth homogeneous functions rfas^ of zero 
order such tha t J2D^aGKx) = 1. Furthermore, rfa\x) = 1 in a neighbourhood 
Ta of the subspace Xa and r)GG( °\x) = 1 if x is sufficiently far from all of them. 
The main contribution to the "perturbation" HJJG^ — J^JHa is given by the 
term V T / ^ V , which equals JVrjG^S?^ because (VJrjGG(a\xss),x) — 0. Remark also 
tha t V 77̂G(2:) decays as \x\~l at infinity and differs from zero in a free region 
To only. Therefore convergence of the integral (cf. with the last remark in 
section 3) 

/ ° ° llxoQ-rvGW[/J(*)/||2^ < oo 
J—oo 

for some r < 1/2 and for elements / from some set dense in H would have 
been sufficient (see [17] for more details about such a plan of the proof) for 
existence of the wave operators W±{Ha,GHJ\ x J ^ ) . 

The result of Theorem 3.5 allows us to accomodate the terms GG*aGa which 
are similar to VFr/̂ Vxkb^ but are second-order differential operators. Thus 
we are compelled to change the identifications j(JGa\ We choose new iden
tifications as first-order differential operators wv,;,,:,!!wvww constructed by means of 
functions rf^Gm. Coefficients ofF Fequal zero outside of a region Tsa and 
£ JVf(a) — GM. We emphasize tha t our proof of existence of the wave operators 
W±(Ha,H:M^xxxE(A))FF requires .//-smoothness of all operators Ga (not only of 
Go). To remove the identifications jjjkMĜ a' we introduce also the auxiliary wave 
operator W±(GHFy H\ MGEF(A)). At the end of this section we show tha t this 
operator is invertible on the subspace E(A)GH. As was explained in section 1, 
this is an essential step in our proof of asymptotic completeness. 
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Let us proceed to the formal exposition. We start with the following ele
mentary observation. 

L e m m a 4 .1 Suppose that m(x) is an arbitrary smooth homogeneous (for 
\x\ > 1 ) function of degree 1. Let Xn(x) andpn(x) be eigenvalues and eigenvec
tors of the symmetric matrix M(rr) = {rrijk(x)}. Then vectors Pn(%), \x\ > 1> 
corresponding to \n(x) ^ 0} are orthogonal to x. 

Proof. - Since M(x ) is symmetric, it suffices to show tha t x is its eigenvector 
corresponding to the zero eigenvalue. Differentiating the identity m(sx) = 
sm(x) in s and setting s — 1 we find that 

^2mvv,j(x)xj = fm(x) 

(Euler's formula). Differentiation of this relation in xk shows that 

]T mkj(x)xj = 0, ùùk = l,...,d. 
j 

Thus M(x)x = 0. • 

Let some function m satisfying conditions 1° — 4° be given and let 6Q = 
minea, a = 1 , . . . , a i . We introduce homogeneous functions r/a) £ C°°(Rd \ 
{0}) of degree 0, a = l , . . . , c * i , such that supp rfa) C Ta(e) (and hence 
supports of rf0^ for different a intersect only at zero) and rj^a\x) = 1 if 
x £ Ta(ea) . The function 

rj^(x) = 1-jmfjmfv2 r)M(x) (4.1) 

a=l 

equals zero if x £ ro(eo) and rj(°\x) = 1 if x £ To(e). Set m^a\x) = 
rfa\x)m(x), a = 0 , 1 , . . . , a i , and 

AfW = EimfDj + Djmf) , jmf jmf mf = dm^/dxj. (4.2) 

Clearly, ra(a)(rr) satisfies the properties 1° and 4° (with /4°) = fia and / / ^ = 0 
for b / a) but the properties 2° and 3° are violated. 

T h e o r e m 4 .2 Suppose that functions Va satisfy the assumptions of Theorem 
2.7 and A is any bounded interval such that A fl T = 0. Then the wave 
operators 

W±(H, Ha; Mjmfjmf^Ea(\)), W*(ff„, # ; M^E(A)), (4.3) 

ea;«,stf /o r all a — 0 , 1 , . . . , ot\. 
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Proof - We shall show that the triple Ha, H,GG satisfies on A the conditions 
of Proposition 2.1. Let us consider 

[Va, M'û'] = (T + I)Q~rB^Q-r{T + J), dw2xcncc 

vxn 

3 = l,...,a /3 = l , . . . , a 0 , (4.4) 

V° = 0. We shall verify that each term in the right side can be factored 

into a product of H- and fTa-smooth operators. We start with the last two 

terms which can be estimated with the help of Proposition 2.13 only. The 

commutator [Vay M^] was actually already considered in Proposition 3.4. Its 

assumptions are fulfilled because the function D satisfies the property 1° 

and m(Q\x) = fia\xa\ if x GlS* (ea). The estimate (3.15) is equivalent to the 

representation 

[Va, M'û'] = (T + I)Q~rB^Q-r{T + J),xx 2cncccr = Py 5(a» G B9 

where Q r(T + I) is H- and i ^ - s m o o t h on A in virtue of Proposition 2.13. 

We need short-range assumption on potentials only to treat V^M^a\ /3 ^ a. 

Suppose first tha t /3 ^ ao. Recall tha t rrSa\x) = 0 if x G Tp(ep). Therefore 

mf\x) = mf\x)Q(x) and mfj{x) = Xx)Cfi(x) for suitable Cfi € C°°(Ud)y 

homogeneous (for \x\ > 1) of degree 0, such that Cp(x) = 0 if re GT/? (e) for 

some e G (0, e^). By (2.6), (4.2) the operator V^M^ consists of terms 

WßDj VßmfDj = wß(T + I) 1/2 HK (T + J) 1/2 HK 

and 

Vßm$ ggd= wß(T + Г) 1/2 
33 

В (T + I) Л/2 Wß, 

where j = 1 , . . . , cf, 

Wf,(x) = ((x0)2 + l)-*%(x), 2r = p,(x), Éf* e B, B§» € B. 

The function wp(x) obeys the condition (2.16). Therefore, by Lemma 2.12, 

each of these terms equals (T+I)Q~rBQ~r(T+I) with some bounded operator 

B. This proves the required factorization of V^M^ into a product of smooth 

operators. In case /3 = ao the estimates are the same but the cut-off by £/? is 

no longer necessary. 

Let us consider the first term in the right side of (4.4). According to Lemma 

3.1 the commutator [T, M^] is defined by (3.3) with m replaced by mSa\ Since 

m(a) is a homogeneous function of degree 1 the term (A2m^)(x) = 0(|;r |~3) 

as \x\ —» oo. Hence A 2 m ^ = Q~^2B^Q~^2 where flW is multiplication by 

a bounded function and Q~3/2 is H- and ifa-smooth by Proposition 2.5. 
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To estimate the operator FHF = L(m^CD) defined by (3.11) we need Theo
rem 3.5. Its application relies on Lemma 4.1. Let \^ CX \x) and p ^ ( r r ) , n = 
1 , . . . , d, be eigenvalues and normalized eigenvectors of the symmetric matrix 
M ^ ( r c ) = {rnjk(x XW)}- Clearly, \lf\xPPJ) are homogeneous (for \x\ > 1) functions 
of order —1 and p$(x) - of order 0. Diagonalizing the matrix MW(a) we find 
that 

(L^u9v) = fErn^(x)Dku(x)Djv(x)d^fhjfjx jjj= 

(L^u9v) = fErn^(x)Dku(x)Djv(x)dx =(L^u9v) = fErn^(x)D===<<<=u(x)Djv(x)dx = 

where 
(RfKxx) = Z$k*)(v«(*),p£H*))pP(*)> 3 = 1.2, (4.5) 

(Vujfg = \^\x)\"\ v$(x)u$(x) = AW(xwwfssgff) 

and H = L2(Rd)®(Pd. Let x be the characteristic function of the ball \x\ < 1 
and x— 1 ~~ X- Since 

| ( A f >u)(*)| < C|cjcjjjjVu(*)|, 

i J - and i/a-smoothness of the operators x^j 1S ensured by Proposition 2.13. 

To treat the operators x we notice tha t , by the definition (1.3) and 
Lemma 4.1, 

(Vu(x)J:\ggx)) = (VWU(,))PW(xx,)), \x\ > 1,(L^ugk 

if AW(ar) ^ 0. It follows that 

\(K\a)u)(x)\ < C|a|-1/2|VW«(a:)| , \x\ > 1, c SUD 
1*1=1 n 

vxv (x). (4.6) 

Set Xa (e) = X Xo(e) where Xa(e) is the characteristic function of the cone 
ra(e). By (4.6), 

|(X0 (e)Kfu)(x)\ < C\(G0(e)u)(x)\ 

so tha t the local H- and ^ - s m o o t h n e s s of the operators Xo (e)K^ f°r arbi
trary e > 0 is a consequence of Theorem 3.5. Since M.(°\x) = 0 if x £ TO(CQ) 

we have that Kf^ = xo(^o)Kj°\ Thus the operators x are H- and HQ-
smooth. In case a = a we have tha t M ' a ' ( i ) = 0 if x G l > ( e ) , 0 ^ a , and 
hence, by (3.5) , 

Kf = XO(E)tfja) + Xa(e)Kf\ VE € (0, eXa(e)Kf\). 
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Consequently, in order to obtain i7-and #a-smoothness of x Kj* we must 

additionally consider only Xa (^)Kj^ for any e > 0. Note tha t mi<0l\x) = 

m(x) = fiQ\xQ\ if x eta (e«)- In virtue of (3.14) for such x 

( ^ U ) ( x ) = ^2 |Xa | -1 /2(VW.)( ;C) 

(in this case all eigenvalues of M^Q\x)y except zero, equal na\xot\~l) so tha t 

|(X. (e)Kfu)(x)\ < C\(Ga(e)u)(x)l e < ea. 

Therefore the H- and i7a-smoothness of the operators XaDDDDDDDu)(x)l e <DDD D is ensured 
again by Theorem 3.5. This concludes the proof of the required factorization 
of the right side of (4.4) into a product of H- and i3"a-smooth ope ra to r s . • 

Let us now introduce the observable 

M± = M±(A) := W^H, H] ME(A)). (4.7) 

Existence of these wave operators can be verified similarly to Theorem 4.2. 
Actually, let us consider 

HM - MH = [T, M] + Y\va, M). 
a 

The main contribution to [T,M] is determined by the operator L = K%K\, 
where Kj are constructed by the formulas (4.5) in terms of eigenvalues Xn(x) 
and eigenvectors pn(x) of the matrix M ( z ) . For any e > 0 iT-smoothness of 
the operators XFFoSSSu)(x is ensured by If-smoothness of the operator GQ(S). 

Similarly, i?-smoothness of XQ (ea)Kj is ensured by if-smoothness of Ga(ea). 
Remaining terms in [T, M] are estimated by Proposition 2.13. Finally, we 
apply Proposition 3.4 to the commutators [Va ,M] . Note tha t potentials Va 
may contain long-range par ts since the short-range assumption was used in 
Theorem 4.2 only for the estimate of the term V^M^a\ /3 ^ a, which is absent 
now. Thus we have 
P r o p o s i t i o n 4 .3 Let M be the same operator as in section 3. Suppose that 
functions (2.5) satisfy Assumptions 2.2 and 2.3. Then the wave operators 
(4-7) exist. 

The operator M±(A) is, clearly, self-adjoint, bounded and commutes with 
H. Our goal is to show tha t it is invertible on the subspace E{h)T-L. In fact, 
we shall see tha t ± M ± ( A ) is positively definite. 

Let us give a classical interpretation of this assertion for a particle (of 
mass 1/2) in an external field. In this case the observable U*(t)MU(t) cor
responds, in the Heisenberg picture of motion, to the projection M(t) = 
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d(mfuht)/dtHFHH = t([ of the momentum £(t) of a particle on a vector x(t) of its 
position. For positive energies À and large t we have that £(t) ~ £±,£± = A, 
and x(t) ~ 2£±t + x±. Therefore Mit) tends to iA1/2 as t —> ± 0 0 . 

We shall consider U(t) on elements / = <p(H)g where cp G Co°(A) and 
g € ^D{Q)- Clearly, for different (p and g such elements are dense in E(A)7i. By 
Lemma 2.10 applied to 0(A) = exp(—iAt)c^(A), we have tha t U(t)f G T>(Q). 
Thus mUii)f are well defined. 

Let ft = U(t)f and ht — U(t)h where h G H is arbitrary. Integrating the 
identity 

d(mfuht)/dt = t([fT ,m]/,A) = i([T,m]fuht) = (Mfuht), 

we find that 
{mfu ht) = ( m / , h) + J ( M / s , h8)da. (4.8) 

According to Proposition 4.3 

\{Mfs,hs)-(M±f,h)\<eSV(Ss)\\XCCh\\ssgsg, (4.9) 

where 5 ( 5 ) does not depend on h and tends to zero as s —* ± 0 0 . Comparing 
(4.8) and (4.9) we obtain 

L e m m a 4.4 Let f = (p(H)g where <p G Co°(A) and g G £>(£?). TAen 

U*(t)mU(t)f = t M±(A)f + o(\t\\ t ± 0 0 . 

Since m > 0, Lemma 4.4 implies that 

±{M±fJ) = J m ^ W W . , / , ) > 0. 

The inequality ± ( M ± / , / ) > 0 established on the dense set extends by conti
nuity to the whole space E(A)/H. Thus we have 

Corol lary 4.5 The operator M±(A) > 0. 

To prove tha t ±M± is positively definite we use Proposition 2.4. In virtue 
of the identity i\H, Q2] = 2A, it follows from (2.8) tha t 

2-ld\Q2fuft)GDGDldt2 = d(Afuft)/dt = (i[H9A]fuft) > c ||/||2, 

f = <p(H)g, peQ°(AA), geViQ). 

Integrating twice this inequality we find tha t for sufficiently large \t\ 

l№/RGti l>' l* l l l / l l - (4.10) 

On the other hand, accordine: to Lemma 4.4sg 

llm/,11 = P f * / « qdqd|*| + o ( | * | ) . (4.11) 
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By property 2°, m(x) > raolzl, mo > 0, \x\ > 1, so tha t 

| |Q/<| |2<2| | /<| |2 + m£££££<<<ö2||m/<||2. 

Thus comparing (4.10) with (4.11) we obtain the inequality 

P * * / l l > £ £ I c 11/11, (4.12) 

where / = (p(H)g, g G T>(Q)y tp G CQ°(AA) and c — c\. This inequality is, 
of course, t rue for all / G E(A\)/H. The compact set A is covered by finite 
number of intervals AA. Since M± commutes with -E(-), it follows tha t (4.12) 
extends to all / G E(A)T-t. Considering now Corollary 4.5 we obtain 

P r o p o s i t i o n 4 .6 Under the assumptions of Proposition 4-3 for every f G 
E(A)H 

±(M±(A)fJKI)>c\\fMMM\\\ c = c ( A ) > 0 . 

Corol lary 4.7 In the space E(A)7i the kernel of M±(A) is trivial and its 
ranae 

i?(M±(A)) = E(A)H. 

5. EXISTENCE AND COMPLETENESS 
OF WAVE OPERATORS 

In this section we give the proof of Theorem 2.7. Its difficult par t is, of course, 
asymptotic completeness. Actually, the relation (2.12) can be reformulated in 
basically equivalent form without wave operators (2.11). We start with the 
proof of this form of asymptotic completeness called asymptotic clustering in 
[10]. Let, as always, A be a bounded interval such that A D T = 0 and let M 
and Af(a) be defined by (3.1) and (4.2), respectively. According to (4.1) 

a 
;M(a) = M , 0<a<a<FGi. (5.1) 

T h e o r e m 5.1 Under the assumptions of Theorem 2.7 for every f = E(A)f 
there exist elements such that 

M(a) = M, 0<a<a<FG¨¨¨¨ÏO<KGG<i.OYO 

a 
(5.2) 

Proof. - By Corollary 4.7, every / € E(A)7i admits the representation / = 
M ± ( A ) / ± , € E(A)H, so tha t the asymptotic relation 

U(t)f -MKU^f*, * - + ± o o , (5.3) 
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holds. On the other hand, Theorem 4.2 ensures that for every a = 0 , 1 , . . . , a\ 

M^Uit)/* ~CBUaB(t)f±, * ^ ± o o , (5.4) 

where 

ft = W±M^E(B(HVVJFJA,H;M^E(A))f±. 

Summing up the relations (5.4) and taking into account (5.1) we find tha t 

M t f (*) /* ~ £ CBNUa(t)tf, t ±oo . 
a 

Comparing it with (5.3) we arrive at (5.2). • 

To complete the proof of Theorem 2.7 we need to establish existence of 
wave operators (2.11). Note tha t in the proof of Theorem 5.1 we have used 
only existence of the second set of wave operators (4.3). Now we rely on 
existence of W±(H, Ha] M^Ea(A)). Since elements / = Ea(A)f are dense in 
the space 7i = 7i^ac\Ha)9 this is equivalent to existence of the wave operators 

W^H.H^M CCB^iHa + i)-1). 

Here — i can, of course, be replaced by an arbitrary regular point of Ha. 
Some minor technical complications below are related to unboundedness of 
the operators M^a\ We start with some simple auxiliary assertions. 

L e m m a 5,2 Let VQ(Ta + be compact in Ha. Then 

s - lim VQU0(t)(H0 + i)~l = 0. 
oo 

Proof. - In terms of the tensor product (2.9) 

VaU0(t)(Ta + I)-1 = exp(-iTJ) ® Va(Ta + I)-1 e x p ( - m ) . 

According to (2.1), the second factor in the right side converges strongly to 
zero. Therefore the tensor product also tends strongly to zero. It remains to 
remark tha t (Ta + I)(HQ + i)~l is bounded. • 

L e m m a 5.3 Let a = 1 , . . . ya\. Suppose that (a is a bounded function such 
that Ca(^) = 0 if x G ra(e) for some e > 0. Then 

s - lim (QUa(tBB)Pa = 0, (5.5) 
\t\—+oc 

s - lim (aVUa(t)PA(HK?<<XXA + = 0. (5.6) 
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Proof. - It suffices to check (5.5) on elements / C=C g ® i/>a, where i\)a is an 
eigenvector of the operator HQ9HCat Npa = \aCiNCf)a, g is an arbitrary element of 
Tia and the tensor product is defined by (2.9). Linear combinations of such 
elements / are dense in the space Pa7i. According to (2.10) 

Ua(i)f = exp(-i(Ta + Xa))gzsd ® i>a (5.7) 

so tha t 
\\<aUa(t)f\\ = \\*aexp(-iTat)g\hddd\na, (5.8) 

where 

exp(-i(Ta = Jxo\(jxa,xaxa,xaggga(xa,xa)\2s\fjgj(xad)?dx° < \<aUa(t)f\\ = \\*aexp(-iTat)g\\na, 

c = c(e) > 0, by our assumptions on £a. It follows that tya(xa) —> 0 as 
\xa\ —> oo and hence the operator ^a(Ta + is compact in the space 7ia. 
Therefore (5.8) tends to zero in virtue of (2.1). 

Let us split the vector equality (5.6) into two parts corresponding to VXQ 
and Vz« (instead of V) . The operator VXo commutes with Ua{t)Pa and 
VXa(FHFQ + FFG B. So the par t of (5.6) for DFDis a consequence of (5.5). To 
verify the same for Vx« we remark tha t 

\\vx*utt(t)pa(wcwHa + <<< < ||vfffjx«j(#a + i)-1!! < oo 
because (Ha + i) 1 commutes with UQ(t)PQ and Vxa(Ha + i) 1 6 B, Hence 
it suffices again to consider this limit on elements / = g ® ipa. In this case 
(Ha + i)~lf = g®^a, where g = (Ta + \a + i)~lg € H*. Thus, by (5.7), 

(aVx«Ua(t)Pa(Ha + i)~lf = (aexp(-i(TQ + \a))g ® V*«</expl>". 

Since Vx*il>a G 7ia<Sf(TdQy this term can be estimated quite similarly to ( 5 . 8 ) . • 

Corol lary 5.4 For every a = 1,... , OJI and b ^ a 

s - lim Mss^Ua(t)Pa(jjmjma + i)-1 = 0. 
|t|-KX) 

(5.9) 

Proof. - According to (4.2) 

iM^ = 2(VmWss)V + Am*'*, (5.10) 

where, by the construction of mSb\ the zero-degree homogeneous function 
V m ^ vanishes in the cone Ta(ea). The contribution to (5.9) of the first term in 
the right side of (5.10) tends to zero in virtue of (5.6). The te rm (Am^)Ua(t) 
converges strongly to zero because ( A m ^ ) ( i ) —> 0 as \x\ —» oo. • 

Now we are able to prove 
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L e m m a 5.5 The wave operators 

W±(H, Ha; M^b\HKJKJHa + (5.11) 

exist for all a, b = 0 , 1 , . . . , a\. 
Proof. - According to Theorem 4.2 it suffices to consider the case a ^ 6 only. 
Let first a = 0 and 6 - / 3 ^ 0 . By the multiplication theorem (2.4), the wave 
operator 

W±(H, H0] M^\HKHP + = W±{H, HHp\ MW(Hp + i)-l)W±(H(3, H0) 

exists. Here we have taken into account that the wave operators in the right 
side exist in virtue of Theorem 4.2 and Proposition 2.8. Therefore in order to 
establish existence of W±(Hy H0; M^\H0 + i)'1) it remains to verify tha t 

s - lim M(P\(LJLHp + i)-1 - (H0 + t)_1)tfo(0 = 0. (5.12) 

In virtue of the resolvent identity this is a direct consequence of Lemma 5.2. 
In case a = a ^ 0 and b ^ a we proceed from the relation (2.13). Let us 

apply to it the bounded operator M^\Ha + In virtue of Corollary 5.4 
it follows that 

M{b\Ha + iJJH)-lUa(t)f ~ MWKHGH(Ha + i)-lU0(t)f^ t ±oo . 

Furthermore, according to Lemma 5.2, we can replace (cf. with (5.12)) the 
operator (Ha + in the right side by (H$ + i )"1 . Therefore the existence of 
the wave operators (5.11) for a ^ 0 is ensured by their existence for a = O.D 
Corol lary 5 .6 The wave operators W±(H,Ha; M(Ha+i)~l) exist for alia = 
0 , 1 , . . . ,c*i. 
Proof. - It suffices to "sum up" the wave operators (5.11) over all b = 
0 , 1 , . . . , a\ and to take into account the relation (5.1). • 

Now we can get rid of the identification M. 
P r o p o s i t i o n 5.7 The wave operators W±(H, Ha) exist for alia — 0 , 1 , . . . ,<*i. 
Proof. - By Proposition 4.3 there exists 

M ^ A ) = W±(Ha, Ha; M Ea(A)) 

(here it is sufficient to assume that an interval A is bounded, 0 ^ A and 
a(p)(Ha) D A = 0 if a = a ) . By Corollary 4.7, Ea{A)H = R(M±(A)) so that 
for every / <E Ea(A)H 

Ua(t)f~MHHUa(t)tHHf,H *-.§.±oo, / = M„(A)fa, tfeEa(A)H. 

Thus Corollary 5.6 ensures existence of W±(Hy Ha\ Ea(A)) and hence of W±(H, 
Ha). a 

Since Pa commutes with Ua(t)* we have 
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Corol lary 5.8 The wave operators (2.11) exist and are isometric on Pali,' 

In order to check tha t the ranges of the operators (2.11) are orthogonal, 
we shall show tha t 

KmJUaWPafa, Ub(t)Pbfb) = 0, a + b. (5.13) 

If b — 0 (so tha t Pb = I) and a — a , then, by Proposition 2.8, the limit (5.13) 
exists and equals 

(Pafa,W±(FHF></Ha,H0)f0) = 0. 

Let now b = /9 and a = a ^ /?. The relation (5.5) implies tha t 

Ua(t)Pafa ~ Xa(e)Ua(t)PafQ, \t| -» oo, a = 1 , . . . , au 

where Xa(^) is the characteristic function of the cone Ta(e) and e € (0,1) is 
arbitrary. So it remains to recall tha t Xa(^)x^(^) = 0 if a ^ /3 and e < e. 

Let us finally verify the relation (2.12). According to (5.2) and (2.13) for 
every / £ E(A)7i and some elements / o S / * the representation 

U(t)f ~ U0(t)ff + £ Ua(t)Pafi, * - ± 0 0 , 
a=l 

holds. Since the wave operators (2.11) exist, it follows tha t 

(t)ff + £ Ua( 

+ 
VW 

VW 
W±V 
r * a J oc 

and hence / belongs to the left side of (2.12). Considering tha t linear combi
nations of elements / = E(A)f for all admissible A are dense in 7i^ac\H), we 
conclude the proof of Theorem 2.7. 
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