
Astérisque

DENIS A. W. WHITE
Long range scattering and the Stark effect

Astérisque, tome 210 (1992), p. 341-353
<http://www.numdam.org/item?id=AST_1992__210__341_0>

© Société mathématique de France, 1992, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1992__210__341_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Long Range Scattering and the Stark Effect 

Denis A.W. White 

1 Introduction. 

In this Article we discuss long range quantum mechanical scattering in the 
presence of a constant electric field. The electric field is assumed to be of 
unit strength in the ei = ( 1 , 0 , . . . , 0 ) direction of n-dimensional space, Rn. 
The corresponding Hamiltonian for a quantum particle of unit mass is HQ = 
- ( 1 / 2 ) A - xu with A = E]=id2/dx2j. (HQ is essentially self adjoint (as 
an operator on L2(Rn)) on the Schwartz space of rapidly decreasing smooth 
functions.) A second Hamiltonian H = HQ + V is regarded as a perturbation 
of HQ by a potential V. The potential V = V$ + Vi consists of a "short range" 
term Vs and a "long range" term Vj. More precisely, 

S R Hypothesis. Vs is a symmetric operator, VS(HQ + i-1)1 is a compact 
operator and 

/ 
•oo 

n 
\F(xx >r2)Vs(H0 + i)-l\\dr < oo 

where. F(-) is multiplication by the characteristic function of the indicated set. 
L R Hypothesis. VL(X) is real valued on Rn, infinitely differentiate and 

for some e > 0 and for every multi-index a 

\DaVL{x) < C , a ( * l ) - W / a _ < 

\D°VL(x)\ < o(l) as \x\ —* 00. 
Here (xi)2 = 1 + x\ and D = - i V . 

Example. If Vs is multiplication by a real valued function 

vs(x) = {x(*i)(i + *?r/2 + x(-*i)(i + *l)1/2}Vs(*) 
where a > 1/2 and Vs = o(l) as |x| —> oo and Vs is bounded and measurable 
and where 

X (x1) 
1 if xi > 1 
0 if xi < - 1 

(1.1) 

S. M. F. 
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then Vs verifies the above short range hypothesis. (See Yajima [16]; local 
singularities may also be allowed.) The long range assumption is satisfied if, 
for some 0 < a, B < 1/2 and some real 6 i and 62 , 

VL(x) = (a)"6 cos 121 I*) cos(62|a^B).( 

Li general these assumptions assure that V(HQ + i)"1 is compact so that 
H is self adjoint on the domain of HQ. (Perry's book [14] is a good general 
reference.) 

Introduce now the wave operators. Dollaxd's [31 modified wave operators 
WD and Wn are defined by 

W £ = s-lim 
t—±00 

eitHe-itHoe-iXD(t)ct) (1.2) 

where "s-lim" indicates that the limit is taken in the strong operator topology. 
The "modifier" e"lXD^ was first introduced by J.D. Dollard [3] in the case 
of no electric field (HQ = — A/2) to extend the usual scattering theory which 
was based on the M0ller wave operators, 

W ± = s-lim 
t->=Foo 

eitHe-itS0 (1-3) 

to the case V = VL was the Coulomb potential (VL(X) = C/\x\, for C a 
constant). An alternative choice of wave operators, are the two Hilbert space 
wave operators 

W±(J±) = s-lim 
i-»q:oo 

eitHe-itS0DQa (1.4) 

where J* are bounded operators conveniently chosen (as in §2 below.) The 
application of these operators to study long range scattering is due to Isozaki-
Kitada [8] (who called J* "time independent modifiers") and Kitada-Yajima 
[12] who considered the case of no electric field. The two Hilbert space wave 
operators have certain technical advantages over the modified wave operators 
but the latter are the historical vehicle for studying long range scattering 
and are important for proving the non-existence of W±] see Theorem 3.1 
below. Each of the wave operators (for example W£) is said to be (strongly 
asymptotically) complete if its range is the sub space L2(Rn)c of continuity of 
H. (£2(Rn)c is the orthogonal complement of all the eigenvectors of H.) Each 
wave operator (Wp, to be specific) is said to intertwine H and HQ if 

e - U H W £ c s = W + e - U H ° . f d 

To state our results we must introduce the "modifiers." For the two Hilbert 
space wave operators we choose [8] 

J±u(x) = ƒ eixE+io±(x,E) dEDEdeDe (1.5) 
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where u denotes the Fourier transform of u and 6± are smooth real valued 
functions to be specified in §2 below. (J* are not unique.) Here and below 
integrals axe understood to be over all of Rn unless otherwise indicated and 

<ff = (27r)-n/2df. 

Theorem 1.1 Hypotheses LR and SR imply that the two Eilbert space 

wave operators W±(J±) exist and are complete and are isometries that inter

twine H and HQ.. Moreover H has no singularly continuous spectrum and its 

eigenvalues are discrete and of finite multiplicity. 

Dollard's time dependent modifier can be defined as follows: Let Xo(t) be 

Fourier equivalent to multiplication by a real valued function, X where 

x ( & , . . . , £ „ , * ) = ƒ 
•±t 

0 
^ ( r y ( 6 , . . . , £ n , r ) + (T2/2)e1)dr (1.6) 

for ±£ > 0 and where Y is some smooth function of n — 1 momentum 

variables plus time (t) taking values in Rn such that the first component 

y i ( £ 2 , . . . , £ „ , i ) = 0and 

IDfSYfa,. ..,£„,*)-£x)l = 0(|*|-); 
d 

dt 
(ry(6,...,£n,r) + (T2/LM)FTGQ 

for all multi-indices /3, locally uniformly in £± = (0,^2* • • • >fn)- .In particular 

in the one-dimensional case Y = 0. In §3, Y is explicitly constructed.) Thus 

XD(t) = XX(D2, . . . ,Dn, t ) . 

Theorem 1.2 Assume Hypotheses LR and SR. Then the modified wave 

operators W£ exist and are complete and are isometries which intertwine 

H and HQ. Moreover the M0ller wave operators W± exist if and only if 

e*x(6i.«i£n,t) converges {n measure as t —> ±oo on every compact subset o/Rn. 

Whenever W± exist, they are complete. 

Example. This continues the preceding example. Suppose for simplicity 

that &i and 62 axe nonzero and a ^ /3. Then the M0ller wave operators 

(1.3) exist if and only if max{a,/3} + e > 1/2 by Theorem 1.2. Ozawa [13] 

and Jensen-Ozawa [9] have already established a non-existence results for 

the M0ller wave operators for a related class of potentials but by different 

methods. 

Remark. In the case n = 1 the modifier depends only on time so that 
eiXD{t) = e%x(t) commutes with all operators. In particular, for any u € L2(Rn) 

\e-itH0-iX(t)u(xy2 = | e - ä t f o u ( a . ) | 2 
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which says that the position probability density of any free state is the same 

whether one uses the modified evolution or the usual free evolution. The same 

is true for the momentum probability density or any other observable in place 

of position or momentum. Therefore although the M0ller wave operators 

W± do not exist the modified and free evolutions are indistinguishable by 

any quantum mechanical observable. It is therefore not surprising that in 

classical mechanics the usual wave operators exist as was observed by Jensen 

and Ozawa [9]. In general, for n > 1 the modifier is nontrivial. If however 

one further assumes 

DaVL(x) = 0((1 + |x|)~a-€ for |a| < 1 (1.7) 

(e > 0) then again one can replace X(£, i) by a different modifier depending 

only on time (see Theorem 3.1 below) and which therefore cannot be observed. 

This last result is due to G.M. Graf [6] who assumed simply (1.7). Thus he 

requires less smoothness but more decay than here. He remarks that from 

the perspective of the Heisenberg picture of quantum mechanics there is no 

difference between quantum and classical mechanics in this setting. Graf uses 

Mourre's method. 

In the remaining two Sections we outline the construction of 0± for the 

proof of Theorem 1.1 (in §2). In §3 the proof of completeness in Theorem 

1.2 is given; the remaining conclusions of Theorem 1.2 are standard and their 

proofs are only outlined. 

2 Completeness of WQ. 

In this Section we outline the construction of the operators J* of (1.5) or, 

more precisely, the phase terms 0± as required for the proof of Theorem 1.1. 

In the process we indicate some key steps of the proof of Theorem 1.1 but 

our primary goal is to establish the properties of 9± required for the proof of 

Theorem 1.2 in §3. A detailed proof of Theorem 1.1 is given in [15]. 

The construction of 6± is as follows. It suffices to consider 0+; the construc

tion of 9" is similar and in fact 0~(x,£) = — 0+(x, — f) . Choose xi € C°°(R) 

so that 

Xi(*i) = 
1 if xi > 3 

0 if xi < 1 
(2.1) 

The proof of Theorem 1.1 is based on the Enss method [4] in a two Hilbert 

space setting. One begins therefore with Cook's argument and so the key is 

to prove that the operator norm of {d/dt)eÜHJ+e~xtHoxi{D\) is an integrable 

function of t > 1, where D\ = —id/dxi so that Xi(^i) niaps onto "outgoing 

states." The free evolution on outgoing states e ' ^ ^ X i ^ i ) can be estimated 

344 



LONG RANGE SCATTERING 

as in the short range case [14] so that the crucial estimate to be established 
is: for arbitrary compact real interval i* there is some integer N > 0, so that 

/00 

Ji 
\E(I)(HJ±- J±H0)xi(±Dl/r)xi(x1/T2)(HoO + iyN\\dr < 00. (2.2) 

where E denotes the spectral measure of H. We consider this estimate in the 

case Vs = 0; the general case requires an auxiliary argument. To verify (2.2) 

we compute, for u € Co°(Rn), 

[(JTo + VL) J+ - J+H0]u (x) = /e^^Wp+MMtyt t where 

p+(x ,0 = £ - V , 0 + ( x ,O 
d 

06 
p+(x,0 = £-V,0+(x,OE)EZ² 

i 
2 M + ( x , 0 + VL(x). (2.3) 

Intuitively 9+ should be chosen so that p+ is roughly short range. More 

precisely (2.2) is verified if 

Z>°£fp+(x,£) = 0((xi)-1/2-e) for xi > 0 and 6 > 0. (2.4) 

One tries to construct 0+ as a solution of the equation p+(s,f) = 0 but in 

fact it suffices to ignore the term %Ax0+(x,£) in (2.3) intuitively because the 

second order derivatives of 0+ should be better behaved than the lower order 

derivatives simply because Vi has this property. This leads to us to solving 

the transport equations, 

e -VsÖib + d6k/dÇl + bk = 0 (2.5) 

where bo(x) = Vz(x) and for k > 1 

bk(x + t£ 
l 
2 E 

lo<i<*-i 
V ^ ( x , 0 

|2 

E 
| 0 < j < * - 2 

V s ^ ( x , 0 

i2> 

The transport equations are first order linear and there are many solutions 

but the solutions of interest are those that vanish as rapidly as possible as 

xi —> oo. To enhance this decay we in fact settle for a solution of the transport 

equations with 6* replaced by 6* where 6jb(s,f) = x{xi)x(îi)bk(B,Q. ^XL 

appropriate solution is 

bk(x + t 
•oo 

µ 
bk(x + t£ + (t72)ei,£ + tex) - 6jfc(ta + (<72)ei,£x + tej dt 

where 61. = (0, & > • • • ifn)- (The second term in the above integrand is needed 
to assure that the integral exists.) One finds that 

D^Df 0fc(x,0 = 0({x1)(1-laD/2-(*+1)e for |a| > 1. 
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and for x\ > 0 and fi > 0 and all /3. The improved decay for increased k is 
due to the squaring in &*.) Then (2.4) is verified provided k is chosen so that 
(k + 2)e > 1/2. This completes the construction of 0+. 

We pause now to record the properties of 0*, needed in §3 for the proof 
of Theorem 1.2. There we will need estimates on 0±(x + (*2/2)ei,f + te{) 
which are locally uniform in f (that is f is restricted to a compact set) as 
t —> oo. Not surprisingly 0± is larger in the direction opposite to the electric 
field, xi < 0. 

For e > 0 as in Hypothesis LR, choose e, 0 < e < min{l,e}. Then, for 
±t> 1 

DBEO+(x + t/2e1, E + te1) offtel + l t n ^ w - ^ + r^) ) if « 1 < t2, 

4 > 0((\x\ + |i|)r<) if xi > t2 
4 » 2.6 

DBE d 
Hi 

0±(x + (t2/2)e1,t + te1)\ = 0(re) ttxl>-t2/4,fsqfsfds 
0(re) fdsqttxl>-t2/4, m 

(2.7) 

locally uniformly in f and for all multi-indices /3. If xi > —t2/4 then 

\DZDf 
d 

dx. 
•9±(x + (t2/2)ei) e + tex)| = 0 ( | * r H a h e ) ; (2.8) 

DaxDBE 9 

SE1 ̂ ( s + f e ^ + ieOI + l^^f 
a 

9 x , d±(x + ? e1 ,e + te1)| = 0(|*|-H"'), 
(2.9) 

again locally uniformly in f and for each j, 1 < j < n and all a and /3 and 
±t > 1. These estimates follow from the construction of 0±. For the estimates 
(2.6; 2.7) observe that 

•oo 

It 
r*(2/ + r2/2)-(*+1+e)/2dr = 

0«y)(*-*)/2) if y < -t2/4; 
0(r<) ify>-i2/4, 

(2.10) 

for each nonnegative integer k. The same reasoning shows that, for ±t > 1 

i)fP±(x + (i2/2)e1,e + te1) = 
O ^ ) - ^ 2 ) i f s ^ - * 2 / ^ s d 
i)fP±(x + (i2/2)edfsqd.fd 

(2.H) 

3 Proof of Theorem 1.2. 

In this Section we outline the proof of Theorem 1.2 emphasizing the proof 
of completeness of the modified wave operators W%. Let us begin by noting 
that the conclusion about the non-existence of the M0ller wave operators is a 
direct consequence of a result formulated by Hormander [7, Theorem 3.1]: 
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Theorem 3.1 Assume that the limits (1.2) exist withXz>(i) = X(D, t) as 
well as the the corresponding limits W% when X(D,t) is replaced by X(D,i). 
Then W£ has the same range as W^j (same sign) if and only ifexpi(X(£,t) — 
-XTfj*)) converges in measure as t —* ±00 to functions F±. In this case 

W% = WW$F±(D). 

Applying this result with X = 0, we derive non-existence of the M0ller 

wave operators from the completeness of the modified wave operators. (The 

ranges of W+D are, in general, contained in L2(Rn)c; see [14, p. 48].) 

The existence of the modified wave operators can be established by an 

argument very similar to that given by Hormander [7] for the case of no electric 

field. The reason similar arguments apply is the Avron-Herbst formula [1]: 

e-itH0 _ e-ii3/6e^ie^i*2/2e~*(-A)t/2> (3.1) 

Therefore, up to an inconsequential phasefactor e **3/6, e %tHo is the evolution 

e-i(-A)t/2j free of the eiectric field, followed by a translation e"iD^2l2 of t2/2 

units in the ei direction of configuration space followed by a translation e***1 

of t units in the ei direction in momentum space. With this formula, existence 

follows by the argument of [7] based on stationary phase and constructing a 

solution of a Hamilton-Jacobi equation. 

The proof of the intertwining principle is well known (see Hormander [7, 

p. 75], for example). 

With these brief remarks about the other conclusions of Theorem 1.2 we 

proceed to the proof of completeness. This proof is entirely independent of 

the existence proof because, as we shall show, the wave operators W+D exist at 

least on some subspace of £2(Rn) and both have range the subspace L2(Rn)c 

of continuity of H. It is not necessary that the modifier be the same in both 

proofs, by Theorem 3.1. 

To establish completeness it suffices by Theorem 1.1 to show that WQ has 

the same range as W±(J±). To do so, we introduce the auxiliary operators 

W £ = s- Urn 
t-*±oo 

eüHe-üHoeiX(D,t)u 

where X(£, t) is some function chosen suitably for a stationary phase argu

ment. Significantly X may depend on all n of the ^-variables whereas X of 

Theorem 1.1 depends only on (the last) n - 1 variables. We show that W+D has 

the same range as do W±{J±)\ this is the bulk of the work. We further show, 

with the help of Theorem 3.1, that W+D= W^F± for some unitary operators 

F±. This will establish the completeness of W^. The intermediary operators 

Wrj are a convenience and not of independent interest because they do not 

intertwine H and HQ, 
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The operators W± and W±(J±) have the same range if, for every u £ 
L2(Rn) there exists v € L2(Rn) so that 

Df(Y(t,t)-Q\ = 0(|i|-)fDGJEDq 

converges to 0 as t —• ±00 or, equivalently, if the operators 

Q± = s- lim 
t-*±oo 

eiX{Dtt)eitHoj±e-itH0ds (3.2) 

exist. We therefore prove the Proposition below. 

Proposition 3.2 Assuming the hypotheses of Theorem 1.1 the operators 

fi* of (3.2) exist on all of £2(Rn) when X is defined by 

*(£,*) = r* 

/0 
V i i r Y i M + ^ ^ D T V (3.3) 

where ei = ( 1 , 0 , . . . , 0 ) 6 Rn and Y is a smooth, real valued function such 

that 

\Df(Y(t,t)- Q\ = 0(|i |-) (3.4) 

.dY 

dt 
(t,t)\ + \Dl 

d 
SE1 (Y(t,t)- 0\ = 0(|*|-»-) (3.5) 

for all P, locally uniformly in f. In particular the operators W±D of (1.2) are 
complete. 

Before proving this Proposition, let us see how it implies completeness in 

Theorem 1.2. Define Y there componentwise: Y\ = 0 and for 2 < j < n 

*i(£2,...,£n,*) = y , ( 0 , 6 , . . . , ^n,*). 

Completeness will follow from Theorem 3.1 if 

eiX(E,t)-iX(ET,t) 

converges locally in measure (or locally uniformly) as t —• ±oo. This follows 

from the mean value theorem and the estimates for Y. The only troublesome 

term is 

q 
rt 

10 

1 

0 
T 

d 
sq 

VL(T(SY(Ç,TQ) + ( 1 - 8 ) Y ( Ç ± , T ) ) + D F D S 
T2 

2 
e i dsYA^ridr. (3.6) 

Its convergence can be checked by integration by parts in the r variable. 

Proof of Proposition 3.2. We consider only the case of 0 + (t > 0). To 

prove the strong convergence in (3.2), it suffices to prove convergence on a 
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subset of L2(Rn) whose linear span is dense. This subset will consist of all 
u so that u is in Co°(Rn) and supported in a ball of radius ry/2 centered at 
f0 € Rn where f0 is arbitrary and 77 > 0 will be specified below. Apply Cook's 
method (differentiate and integrate in (3.2)): Q+u exists if the L2-norm of 

Xt(D, tyiH«J+e-iiHQu + eÜH°[H0J+ - J+H0]e-itHou 

is an integrable function of t on an interval [to,oo), for some to > 1. We 

add and subtract eitH°VLJJt'e~itHou and apply the Avron-Herbst formula (3.1). 

It suffices to show that the L2-norms ||A(-,t)|| and ||C(-,t)|| are integrable 

functions of t > to where A and C are defined by 

A(z,t) = [Xt( l ) ,0-VL(x + (¿2/2)e1)]B(x,t) where 

B(x,t) = VL(x + (¿2/2)e1)]B(x,t) fdsqfdVL(x 

C(x,t) = EA>I*l*E-**IDS[(H0 + VL)J+ -J+Ho\e-iiHQu(x) 

eia5.e-i*K|V2^+(a:+(t2/2)e1^te1y(x + ( ^ J e ^ E + tai)û(fld£ 

where p+ was defined by (2.3). 

We start by estimating ||A(-,£)||. As is typical in stationary phase argu

ments we estimate first the integral B(x,t) far from the critical point of the 

phase function 

ф(£, X, t) = X • e - í|£|2/2 + в+{* + (í2/2)ei, i + UÀ. 

Choose therefore xo € Co°(Rn) so that 

Xo(*) = 
1 if Id < 77 
0 if \x\ > 2T] 

(3.7) 

Then 

( 1 - X o 
x - E ° T 

1 + t 
B(x,t) = 0((l + \x\ + t)~N). (3.8) 

because | V ^ | > c(l + |x| + £), for some c > 0, on the relevant region; see Fedo-

ryuk [5] or Hormander [7, Lemma A.l] . (The proof is essentially integration 

by parts.) 

Therefore to check the integrability of ||A(-,t)|| in t > to it suffices to check 

that of the L2(d£)-norm of 

Xo 
X - Ç°T 

1 + t 
e-ix<+W'*V[(Xt(C,t) - VL(x + i2/2ei)]û(Odfcfc. (3.9) 

It is again possible to estimate the L2(dQ norm of the expression (3.9) away 

from the critical point of the phase function — x • ( + <£(£,£,£), regarded as a 
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function of x. Therefore multiply by 1 — xo(C — f°) m (3.9). Then there is 
no critical point for the phase: Indeed |C — Vx<£(f,x,t)\ > c(l + |£|) for some 
c > 0, in the relevant region. Since 

|££VB<K£,M)| + raxo 
x - ET0 

í + í 
[Xt(t,Q-VL(x + 

5 

0 
)]}| = 0 (rW-) , 

it follows that the expression (3.9) times 1 - xo(C - £°) is 0 ( (1 + |CI)~**~*~€) 
for any integer N and so its L2(d() is integrable in t > ¿o- (See the references 

after equation (3.8).) 

It remains to estimate the expression (3.9) times Xo(C~"f °)- This is not quite 

the "usual" stationary phase estimate neax the critical point because Xt(C>*) 
depends on £, not f. To remedy this we expand -Xt(C, t) in a Taylor series, not 

around f but around the critical point for the phase, ( = Vx<f>(£,x,i). The 

expression (3.9) times xo(C ~~ £°) is, f°r some positive integer k 

xo(C-£°)io(C,<) + xo(C-£0) E 
i<H<* 

iM 

a ! 
Aa(C, t) + E 

M=*+l 

ik + 1 

a ! 
R-(C,<) 

where 

¿oOM) = Xo 
x - E0sst 

1 + T 
X 

e^)[(Xt(V,^( í ,« , t ) , t ) - VL(x + (í2/2)e!)]ti(í)^dE; 

Aa (C, t) = fx0x0fd0 
x - E0t 

I+T 
e-ic.»+^(i,*,i)^ _ Vx0(e,x,i))a x 

(DfXt)(Vx<f>(Z, x, t),t)ú(£)d£dx; 

Ra (C, t) E 
M=*+i 

1 

a ! 
x o ( C - n / x o 

x - Eot 

1 + t 
e-t(x+î (e,*,i) x 

K - v . f l i , x , t ) ) « x 

/ 
i 

0 
(1 - s)"(D?Xt)(s( + (1 - . ) V , ¿ ( É , x, í), t) d5 ú(0díáx 

and A0 is the Fourier transform of A<)(•,*). We shall show that the £2(iC) 
norms of each term is an integable function of t > to- (The factor xo(C -~ f°) 

only plays a role in the consideration of Ra.) 

The AQ(X, t) term is the most interesting because the choice of X is critical 

here. First we change variables, x = ty: The L2(dx) norm of Ao(x,t) equals 

the L2(dy) norm of tn/2Ao(ty,t). Optimally X will satisfy 

Xt ((Vxo)(E, ty, t), t) = VL(ty + t²/2e1)fes 
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at the critical point of the phase, that is where V ^ ( f , ty, t) = 0. In order to 
specify X we begin by defining y(£, t) by the equation for the critical point: 

»(€,*) - É + t-lVte(ty{Ç,t) + t2/2eUÇ + tei) = 0. (3.10) 

The implicit function theorem guarantees y(£,t) is well defined for (£,*) € 

E7i x [*i,oo) where U\ is any bounded open set and t\ > 1 is suitably large; y 

is smooth and 

(€,*) - É + t-lVte(ty{Ç, tio)D 

ds 

di 
te(ty{ÇGFD d 

« i l 

É + t-lVte(ty{Ç, tio)dsqD 

for all /3, by estimates (2.8, 2.9). Since U\ is arbitrary, it is possible to extend 

y(f, t) smoothly, by a partition of unity argument, to all of Rn x [0, oo) so 

that whenever f is restricted to a compact set the above bounds are valid and 

(3.10) holds for t large enough and y(f, t) = f for small t. 

The definition of X further requires defining S(-, t) to be the inverse of the 

mapping f h+ (Va0)(f, ty(f, *), £). Provided f is restricted to a bounded open 

set and t is large then 2(-,t) indeed exists and 

|itf(s(C,í)-OI = 0(t-e) 
sd 

di 
(e, t)|+|DBC 

S 

SC (S(c , í ) -C ) l = O(T-^) 

by (2.7). Extend E to Rn x [0, oo) as was done with y and so that E(£, t) = ( 

for small t. 

Define the modifier X as 

x(t,t) = ƒ 
r 

o 
VL(rY(i,T) + (r2/2)e1)dr where y( f , t ) = Y{3(Ç,t),t). (3.11) 

The estimates (3.4, 3.5) for Y follow directly from the comparable estimates 

for y and S. 

We may now estimate the L2(dy) norm of tn/2Ao(ty, t) by a well known 

stationary phase argument [7, Lemma A.4]. Since the phase function in AQ 

has a non-degenerate critical point, Hormander's Lemma A.4 [7] applies and 

gives an expansion for AQ at that critical point. Our choice of X assures that 

the first term of that expansion is 0 and the remaining terms times tn¡2 have 

L2(dy)-noims which are integrable functions of t > tQ. 

The same type of argument applies to Aa, \a\ > 0 but first it is necessary 

to integrate by parts in the x variables several times. Each time the factor 

g - i C - s + i ^ í . x , * ) ^ _ Vs0(£,x,t)) is integrated and the process is repeated until 

the symbol no longer contains the variable £ (which is at most |a| times). 

351 



D. A. W. WHITE 

Then the outer integral over x is simply a Fourier transform so that we may 
estimate the £2-norm of the inverse Fourier transform of Aa(', t). For example, 
the inverse Fourier transform of Aa(-, t) in the special case |a| = 1, say a = e;-
for some j , 1 < j < n, is 

—i EIo(E,x,t) d 

dxj 
ix 

x-?ty 

1 + t 
(DEejXt)(VxQ(E,x,t),t)}û(E) dEde 

We now argue as for AQ. We change variables x — ty and apply Hormander's 

Lemma [7, Lemma A.4]. Since, by (2.9), the x derivatives of 0 and hence <f> 

decay rapidly in t on the support of the above integrand, Hormander's Lemma 

implies that ||Aa(-,t)|| is an integrable function of t > to. 

Next we estimate jRa when |a| = k + 1 and k is large. As above we 

integrate by parts repeatedly in x until all factors of (£ — Vx<£(f,x,£)) have 

been integrated (or differentiated) out. Here however the integral over x is 

not simply a Fourier transform but again the integrand will decay rapidly 

in t and in fact if k is large enough the integral may be estimated directly: 

||J?a(-.t)|| is an integrable function oft > to; there is no need for Hormander's 

Lemma here. 

The proof that ||C(-,i)|| is an integrable function of t follows arguments 

already given. The initial argument estimating B far from the critical point 

applies to C as it did to B and so it suffices to consider the L2(dx)-norm 

of x ( (* - f°*) / ( l + t))C(x,t). (See (2.11).) Changing variables x = ty it 

suffices to show that the £2(dy)-norm of tn'2x{{y - f ° ) / ( l + t-x))C (ty, t) is an 

integrable function of t. This follows again from Hormander's Lemma A.4 [7] 

and the estimate (2.11). This proves the Proposition. • 
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