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RADIATION CONDITIONS AND SCATTERING THEORY 
FOR THREE-PARTICLE HAMILTONIANS 

D.Yafaev 

1. I N T R O D U C T I O N 

One of the main problems of scattering theory is a description of asymp
totic behaviour of N interacting quantum particles for large times. The com
plete classification of all possible asymptotics (channels of scattering) is called 
asymptotic completeness. The final result can easily be formulated in physics 
terms. Two particles can either form a bound state or are asymptotically free. 
In case N > 3 a system of N particles can also be decomposed asymptotically 
into its subsystems (clusters). Particles of the same cluster form a bound 
state and different clusters do not interact with each other. 

There are two essentially different approaches to a proof of asymptotic 
completeness for multiparticle (N > 3) quantum systems. The first of them, 
started by L. D. Faddeev [1], relies on the detailed study of a set of equations 
derived by him for the resolvent of the corresponding Hamiltonian. This ap
proach was developped in [1] for the case of three particles and was further 
elaborated in [2, 3]. The a t tempts [4, 5] towards a straightforward general
ization of Faddeev's method to an arbitrary number of particles meet with 
numerous difficulties. However, the results of [6] for weak interactions are 
quite elementary. 

Another approach relies on the commutator method [7] of T. Kato. In 
the theory of N-particle scattering it was introduced by R. Lavine [8, 9] for 
repulsive potentials. A proof of asymptotic completeness in the general case is 
much more complicated and is due to I. Sigal and A. SofFer [10]. In the recent 
paper [11] G. M. Graf gave an accurate proof of asymptotic completeness 
in the time-dependent framework. The distinguishing feature of [11] is that 
all intermediary results are also purely time-dependent and most of them 
have a direct classical interpretation. Papers [10, 11] were to a large extent 
inspired by V. Enss (see e.g. [12]) who was the first to apply a time-dependent 
technique for the proof of asymptotic completeness. 
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D. YAFAEV 

The aim of the present paper is to give an elementary proof of asymp
totic completeness (for the precise statement, see section 2) for three-particle 
Hamiltonians with short-range potentials which fits into the theory of smooth 
perturbations [7, 13]. Our approach admits a straightforward generalization 
to an arbitrary number of particles. This will be discussed elsewhere. Our 
proof of asymptotic completeness relies on new estimates which establish some 
kind of radiation conditions for three-particle systems. Compared to the lim
iting absorption principle (see below) radiation conditions-estimates give us 
an additional information on the asymptotic behaviour of a quantum system 
for large distances or large times. Limiting absorption principle suffices for 
a proof of asymptotic completeness in case of two-particle Hamiltonians with 
short-range potentials. However, radiation conditions-estimates are crucial in 
scattering for long-range potentials (see e.g. [14]), in scattering by unbounded 
obstacles [15, 16] and in scattering for anisotropically decreasing potentials 
[17]. In the lat ter paper the role of radiation conditions was also advocated 
for three-particle Hamiltonians. Our proof of radiation conditions-estimates 
hinges on the commutator method rather than the integration-by-parts ma
chinery used in the two-particle case (see e.g. [14]). 

Our interpretation of radiation conditions is, of course, different from the 
two-particle case. Before discussing their precise form let us introduce the gen
eralized three-particle Hamiltonians. We consider the self-adjoint Schrôdinger 
operator H — —A + V(x) in the Hilbert space 7i = jC2(Rd). Suppose that 
some finite number o?o of subspaces Xa of X := Rd is given and let rca, xa be 
the orthogonal projections of x G X on Xa and Xa = X Q Xay respectively. 
We assume tha t 

V(x) = 
sfs 

fsf 
Va{xa), (1.1) 

where Va are decreasing real functions of variables xa. We prove asymptotic 
completeness under the assumption tha t Va are short-range functions of xa 
but many intermediary results (in particular, radiation conditions-estimates) 
are as well t rue for long-range potentials. Clearly, Va(xa) tends to zero as 
\x\ —• oo outside of any conical neighbourhood of XQ and Va(xa) is constant 
on planes parallel to Xa. Due to this property the structure of the spectrum 
of H is much more complicated than in the two-particle case. Operators 
H considered here were introduced in [18] and are natural generalizations of 
iV-particle Hamiltonians. We further assume tha t 

Xar\Xp = {0}, a^0, (1.2) 

so tha t regions where different Va "live" have compact intersection (for po
tentials of compact support) . For the Schrodinger operator this is t rue only 
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for the case of three particles. Thus the assumption (1.2) distinguishes the 
three-particle problem. 

Our proof of asymptotic completeness requires only the "angular par t" of 
radiation conditions. Let (•,•) be the scalar product in the space <Fd and let 

ADS< 
V w u ( x ) = Vu(ar) - \GDx\~2(Vu(x),x)x, 1.3 

be the projection of the gradient V on the plane, orthogonal to x. Denote by 
Xo the characteristic function of any closed cone To such tha t To fl Xa = {0} 
for all a. We prove tha t the operator 

Go = Xo(N JL+ lJJJM)-1/2V« (1.4) 

is locally (away from thresholds and eigenvalues of H) //"-smooth (in the sense 
of T. Kato - see e.g. [19]). In neighbourhoods of Xa we have only a weaker 
result. Namely, let VXa be the gradient in the variable xQ (i.e. VXau is the 
orthogonal projection of Vw on Xa)y 

Vxs}u(x) = VXau(x) - \xa\-2{VXauP7OCC{x),xa)xa (1.5) 

and let Xa be the characteristic function of such a closed cone Ta tha t Ta fl 
Xp = {0} for all /3 =fi a. Then the operator 

<2. = X„(W + l )-1/aVW (1.6) 

is locally J9"-smooth. A definition of i7-smoothness of the operators Go and 
GQC can be given either in terms of the resolvent of the operator H or of its 
unitary group U(t) = exp(-iHt). In both versions results are formulated as 
certain estimates which we call radiation conditions-estimates. 

Our proof in section 3 of if-smoothness of the operators Go and Ga is based 
on consideration of the commutator [Hy M] := HM — MH, where M is a self-
adjoint first-order differential operator with bounded coefficients. We find 
an operator M such tha t i[H, M] is essentially bounded from below by GQGO 

and GaGa- Here we take into account that certain terms, those vanishing as 
0(\x\~p),p > 1, at infinity, are negligible. This is a consequence of local H-
smoothness of the operator (|rr| + l ) ~ r , r > 1/2, (limiting absorption principle) 
which, in turn , is ensured by the Mourre estimate [20, 21 , 22]. We emphasize 
that all our considerations are localized in energy. 

The if-smoothness of the operators Go and Ga suffices for the proof in 
section 4 of existence of suitable wave operators ( bo th "direct" and "inverse") 
with non-trivial identifications which are first-order differential operators. The 
sum of these identifications equals M, which allows us to find the asymptotics 
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of MU(t)f for large t. Since the limit M± as t —> ± 0 0 of the observable 
U*(t) M U(t) also exists, this gives the asymptotics of the function U(t)f for 
/ from the range of the operator M±. Using again the Mourre estimate, we 
prove (also in section 4) tha t actually this range coincides with the whole 
absolutely continuous subspace of the Hamiltonian H. Finally, in section 5 
we conclude our proof of asymptotic completeness. 

2. B A S I C N O T I O N S O F S C A T T E R I N G T H E O R Y 

Let us briefly recall some basic definitions of the scattering theory. For a self-
adjoint operator i f in a Hilbert space Ti we introduce the following standard 
notation: V(H) is its domain; <r(H) is its spectrum; E(Q] H) is the spectral 
projection of H corresponding to a Borel set Q C R ; H^ac\H) is the absolutely 
continuous subspace of if; p(ac\H) is the orthogonal projection on WSac\H)] 
Ti^p\H) is the subspace spanned by all eigenvectors of the operator H] a^p\H) 
is the spectrum of the restriction of H on H^P\H)^ i.e. a^p\H) is the closure 
of the set of all eigenvalues of H. Norms of vectors and operators in different 
spaces are denoted by the same symbol || • ||; I is always the identity operator; 
B and /Coo are the classes of bounded and compact operators (in different 
spaces) respectively; C and c are positive constants whose precise values are 
of no importance; "s — l im" means the strong operator limit. Note tha t 

s — lim 
|<|->oc 

Kexp(-iHt)P{ac\YUIH) = 0, if K e /Coo. (2.1) 

Let K be i f -bounded operator, acting from T~L into, possibly, another 
Hilbert space W. It is called H-smooth (in the sense of T. Kato) on a Borel 
set Q C R if for every / = E(fy H)f € V(H) 

roo 
J—00 

||XeOxpKIIM(-z^)/l|2^<C||/H2-

Obviously, BK is i f -smooth on £1 if K has this property and B 6 B. 

Let now Hj, j = 1,2, be a couple of self-adjoint operators and let J be 
a bounded operator in a Hilbert space 7i. The wave operator for the pair 
# 1 , ^ 2 and the "identification" J is defined by the relation 

W±(H2,Hl] J) = s - hIUOm^exp^^PIPPJexpi-iH^P^iH^ (2.2) 

under the assumption that this limit exists. We emphasize tha t all definitions 
and considerations for " + " and " — " are independent of each other. It 
suffices to verify existence of the limit (2.2) on some set dense in 7i. If the 
wave operator (2.2) exists, then the intertwining property 

^($2)^(^2,^15 J) = W^H^Hv, J)Ex{Çi) (2.3) 
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(O C R is any Borel set and i(F£l) = EjHF(Q; holds. It follows tha t the 
range R(W±(H2,FHi] J)) of the operator (2.2) is contained in H^acFH\H2) and 
its closure is an invariant subspace of H2. Moreover, if the wave operator is 
isometric on some subspace then the restrictions of H\ and H2 on the 
subspaces Ti\ and Ti2 = WFF±(H2^FHH\] respectively, are unitarily equiv
alent. This equivalence is realized by the wave operator. Clearly, for every 
f2 = W±(H2,H1-FHJ)fl 

exp(—iHFF2t)f2 ~ J e x p ( F H — t FH—• ± 0 0 , 

where " ~ " means that the difference between left and right sides tends to 
zero. In case J = I we omit dependence of wave operators on J . The operator 
W±(H2,SHi) is obviously isometric on 76ac\SHi). The operator W±S(H2jHi) is 
called complete if R(W±(H2, HiS)) = FSH{ac\H2). This is equivalent to existence 
of the wave operator W±(SH\, H2). 

We note also the multiplication theorem 

W±(H3,SHi; J J) = W*(SH3tH2; 7 ) ^ ( ^ 2 , fTi; J). (2.4) 

More precisely, if both wave operators in the right side exist, then the wave 
operator in the left side also exists and the equality (2.4) holds. 

We need the following sufficient condition of existence of wave operators. 

Proposition 2.1 Let an operator J be H\-bounded and let its adjoint J* be 
H2-bounded. Suppose that for some N < 00 

H2J - JHX = 
N 

n=l 
KlJ<l,n 

(in the precise sense this should be understood as an equality of sesquilinear 
forms on V(Hi) x V(H2))J where the operators K^n are Hj-bounded and are 
Hj-smooth on some bounded interval A. Then the wave operators 

W^Hi, # 1 ; JEi(A)F), FWF^HuHz; J*E2(A)) 

exist 

Proof for the case J — I can be found e.g. in [19]. For arbitrary J the 
proof is practically the same [23]. Unboundedness of J is inessential because 
real identifications JE\(k) and J'*E2(A) are bounded operators. We use 
Proposition 2.1 only in the case V(Hi) = V(H2) and J = J*. 

We consider an operator H = T + V in the Hilbert space H — L2(Rd) 
where T = —A and V is multiplication by a function V{x) defined by (1.1). 
We do not usually distinguish in notation a function and the operator of 
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multiplication by this function. Assume that real functions VA are sums of 
short-range VSA and long-range V/a terms: 

VA = VSA + V{*. (2.5) 

We say tha t a potential VA is short-range if V}̂  = 0. It is convenient to split 
all conditions on VA into two parts . To formulate them we need to introduce 
the operator TQ = -Axa in the space HQ = L2(Xa). 

A s s u m p t i o n 2.2 Operators 

VQ(T* + iy\ {\x«\ + i)vSQ(T* + j ) - 1 , (|**| + i)\vvn(T« + I)'1 

are compact in the space ?ia. 

A s s u m p t i o n 2.3 For some p > 1 operators 

(\x"\ + iyVsa(Ta + I ) " 1 , (\xa\ + iy\VV?\(T* + iyl 

are bounded in the space Hf*. 

Compactness of Va(Ta + I) 1 ensures tha t the operator H is self-adjoint 
on the domain T>(H) = T>(T) —\ T> and H is semi-bounded from below. Set 

U(t) = exp(-iHt), E(-) = E(-\ H). 

The condition (1.2) is always assumed. Dimensions da of the subspaces Xa 
are arbitrary. In particular, we do not exclude tha t one of the subspaces Xe*, 
say Xa°, coincides with the whole space X — Hd. Thus the (three-particle) 
potential Va°(x) tends to zero in all directions. 

Assumption 2.2 has a preliminary nature. It is required for the Mourre 
estimate. Practically we use only tha t for 2r = p the operators 

((za)2 + l)r'2\V8a\1/2(T* + IT1'2 and ((xa)2 + l)r/2| W / * ! 1 7 2 ^ + j ) - i / 2 

are bounded in the space 7ia. This is a consequence of Assumption 2.3 in 
virtue of the Heinz inequality. It follows that considered in the space 7i the 
operators IT^I1/2 and |VV/a|1//2 admit the representations 

\V8Q\1'2 = B«{T + l)l'2{(x«)2 + l)"r/2, B« G B, (2.6) 

|vvn1/2 = Bf(T + i)1/2((xa)2 +1)-7*/2, Bf e B. (2.7) 

Let us introduce operators Ha = Ta + Va> 1 < a < a\ := ao — 1, in 
the spaces 7ia playing the role of "two-particle" Hamiltonians. The point 
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spectrum of Ha consists of eigenvalues accumulating, possibly, at the point 
A = 0 only. The set of thresholds To for H is defined as the union 

To = U i ^ ^ ) ( ^ * ) D U { 0 } . 

We need the following basic result (see [20, 21, 22]) of spectral theory of 
multiparticle Hamiltonians. It is formulated in terms of the auxiliary operator 

A = 
d 

SSD 
Xj D j ~\~ ID j x j ) , Dj = -idj, dj = d/dxj. 

P r o p o s i t i o n 2.4 Let Assumption 2.2 hold. Then eigenvalues of H may ac
cumulate only at TQ so that the "exceptional" set T = To U a^p\H) is closed 
and countable. Furthermore, for every A G R \ T there exists a small inter
val A\ 3 A such that the estimate (the Mourre estimate) for the commutator 
holds: 

i([H, A]u, u) > c\\u\\\ c = cx > 0, u € E(AX)H. (2.8) 

Remark. The quadratic form in the left side of (2.8) defined originally 
for u € V(H) fl V(A) extends by continuity to all u <E V(H). Thus it is 
well-defined for u € E(Ax)H. 

Let Q be multiplication by (x + l)1'2. Below A is always an arbitrary 
bounded interval such that A fl T = 0, where A is the closure of A. One of the 
main consequences of (2.8) is the following 

P r o p o s i t i o n 2.5 Let Assumptions 2.2 and 2.3 hold. Then for any r > 1/2 
the operator Q~r is H-smooth on A. 

The proof of this assertion under our assumptions can be found in [17]. 
Corol lary 2.6 The operator H is absolutely continuous on E(A)Ti. In par
ticular, it does not have any singular continuous spectrum, i.e. 

H = H{p)( H)®'DDH{ac)(H). 

Note tha t Propositions 2.4 and 2.5 hold true also for the two-particle case. 
Thus the operator (\xa\ + l ) ~ r , r > 1/2, is iJa-smooth on any bounded pos
itive interval separated from the point 0. According to Proposition 2.1 this 
implies tha t for short-range Va the wave operators W±(KHa,Ta) exist and are 
complete. 

Let us give the precise formulation of the scattering problem for three-
particle Hamiltonians. We introduce auxiliary Hamiltonians Ha = T+Va, 1 < 
a < OJI, in the space H with only one pair potential each. Since X = 
Xa © X a , 7 i splits into a tensor product 

L2(X) =QQ L2(Xa)®L2(Xa). (2-9) 
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Let us introduce also the "free" operator Ta = —AXa in the space HQ = 
L2(Xa). In the representation (2.9) 

Ha = Ta®NI + I®Ha. (2.10) 

Denote by Pa the orthogonal projection in Tia on the subspace H^p\Ha) and 
set Pa = I ® P a . Clearly, the orthogonal projection Pa commutes with Ha 
and its functions. Set also V° = 0, i?o = T\^o = Below indice a (and b) 
takes all values 0 , 1 , o t \ . We use notation 

Ua(t) = exp(-iHj), Ea(-) = £(•; Ha). 

The basic result of the scattering theory for three-particle Hamiltonians is 
the following 

T h e o r e m 2.7 Suppose that functions Va satisfy Assumptions 2.2 and 2.3 
and are short-range, i.e. Va = V*. Then the wave operators 

W± = W±(HN,Ha;Pa) (2.11) 

exist and are isometric on PaTi. The ranges R(W?BB̂ )XX of are mutually or-
thoaonal and the asymptotic completeness holds: 

Y,®R{Nw±) = n{ac\H). 
a 

(2.12) 

Our assumptions on Va are somewhat larger than those of I. M. Sigal and 
A. Soffer [10] or G .M. Graf [11] since we do not require anything about 
derivatives of VQ. 

Scattering theory for the operator Ha containing only one pair potential 
reduces to tha t for the two-particle case. Indeed, comparing formula (2.10) 
and 

H0 = Ta®I + I®Ta, 

we find tha t 
Ua(t)Uo(t)% = I ® %exp(iHat)exp(-iTat). 

3o wave operators W (HayHo) and W (Ha,Ta) exist at the same t ime and 

W*(fT«, H0) = I ® P O P W ^ H " , TBB«). 

Since wave operators W±(HQ^ Ta) exist and are complete we have the follow
ing 
P r o p o s i t i o n 2.8 In conditions of Theorem 2.1 the wave operators W±(HON HQ) 
Pvizi, n.n.tl. 

R(W±(Ha,H0)PP) = (IBB-Pa)H. 

In particular, for every f € H and /Q = (W±(Ha, Ho))*f 

Ua(t)f ~ Uo(t)tOOf + Ua(t)Paf, t -> ±oo. (2.13) 

362 



SCATTERING THEORY FOR THREE PARTICLES 

We conclude this section with some standard technicalities. 

L e m m a 2.9 For any r € [0,1] the operator [H,Qr](T +1)'1'2 <E B. 

Proof. - Clearly, 

[H, Qr] = [T, Qr) = -2V9rV - Aqr, qr(x) = (x2 + l)^2. 

Since r < 1, functions V<jv and Agr are bounded. • 

L e m m a 2 .10 Let i\> <E Q ° ( R ) and r € [0,1]. Then [i>(H),Qr]VV € B. 

Proof. - Note tha t 

Mt),Qr) = -ij0 U(s)[H,Qr]U(t - s)ds. 

Thus in virtue of Lemma 2.9 

\\[U(t),Q'}(\H\ + ir^\\<VVC\t\. (2.14) 

For an arbitrary ip we have tha t 

U(t),Qr)iì>(t)dt, •oo 

J—CO 
[U(t),Qr)iì>(t)dt, 2*$(t) 

roo 
—oo 

exp(i\t)tVNp(\)d\. 

By (2.14), it follows that 

№(H),Qr](\H\ + I)-l'2eB, * 
too 

J—oc 
\té(t)\dt < oo. (2.15) 

Finally, let ip\ £ C o ° ( R ) and tpi(\) = 1 on support of tp so that tp = ^ ^ l -
Then 

№(#), £r] - ^(H)[MH), 0 1 + № ( # ) , Q l ^ i ( i î ) 

and both terms in the right side are bounded in virtue of (2.15). • 

L e m m a 2.11 For r 6 [0,1] and arbitrary z £ cr(H) the operator Q~r(T + 
I)(H — z)~lQr is bounded. 

Proof. - Clearly, 

(H - zJJ-lQr = Qr(HJ - J)~l -(H- z)-l[H, QrSS](H - z)~l 

and, by Lemma 2.9, [H,Qr](H - z)~l G B. Thus it remains to check that 

Q-r(T + i)Qr(T + iyl eB. 

To that end we commute T with Qr and remark tha t the gradient and Lapla-
cian of qr(x) = (x2 + l)r/2 are bounded. • 

Quite similarly we obtain the following result. 
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L e m m a 2.12 Suppose that a function v obeys the estimate 

MaOl + KVtOOOl + |(At;)(a:)| < C(\x\ + l ) " ' , r € [0,1]. (2.16) 

Then 

(T + I)v(T + I)~lQr € 0 , (T + iy^vDjiT + iylQr e B, j = 1 , . . . , d. 

Combining Lemma 2.11 with Proposition 2.5 we immediately obtain 

P r o p o s i t i o n 2 .13 For every r > 1/2 the operator Q~r(T + I) is H-smooth 
on A. 

Proof, - For any z £ cr(H) 

Q~r(T + I)U(t)f = (Q~r(T + I){H - z)~lQr) Q~rU(t)(H - z)f. 

Since the first factor in the right side is bounded it suffices to apply the 
definition of i7-smoothness to the element (H — z)f G E(A)/H. • 

In virtue of Lemma 2.12, Proposition 2.13 is more general than Propo
sition 2.5. Therefore we usually give references below only to Proposition 
2.13. Similarly, by Lemma 2.12, Proposition 2.13 ensures if-smoothness of 
the operators Q~rDj where r > 1/2 and j = 1 , . . . , d. 

Of course, all results formulated for the operator H are as well t rue for Ho 
and Ha. 

3. POSITIVE COMMUTATORS 
AND RADIATION CONDITIONS 

Our approach relies on consideration of the commutator of H with a first-order 
differential operator 

MLL 
d 

j=i 
(rrijDj + Djirij), rrij = dm/dxjj (3.1) 

where m is suitably chosen real function. To give an idea of this choice we 
note tha t for m(x) = \x\ there is the identity 

i[H0,M] = 4VWM-1VW, H0 = T = - A , (3.2) 

which can be deduced e.g. from the formulas (3.3) and (3.13) below. The 
arguments of [7] (reproduced in the proof of Theorem 3.5) show tha t the 
identity (3.2) ensures i7o-smo°thness of the operator Q_1/2V^^ Furthermore, 
since [yao,M] = 0(\x\~p),p > 1,|#| —» oo, using Proposition 2.5, we can 
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prove smoothness of Q ' with respect to the "two-particle" Hamiltonian 
Hao = Ho + Va°. However, the functions [ V a , M ] , l < a < c*i, decrease only 
as l^l"1 at infinity. Actually, one can not expect that the operator Q~l/2V^ 
is i f -smooth. To prove a weaker result about iJ-smoothness of the operators 
(1.4) and (1.6) the function m(x) should be modified in such a way that 
[V™,M] = 0(\x\-p),p > 1 for all a. The last relation holds if m(x) depends 
only on the variable xa in some cone where Va(xa) is concentrated. This is 
similar to the idea of G. M. Graf applied in [11] in the time-dependent context. 

Suppose for a moment that m is an arbitrary smooth function. We start 
with the standard calculation of the commutator [HQ^M]. 

L e m m a 3.1 Let an operator M be defined by (3.1). Then 

i[H0, M] = 4J2DjmjkDk — (A2m), rrijk = d2m/dxjdxk-
J+11 

(3.3) 

Proof. - Let us consider 

[d],mkdk¨££] = d]mkdk - mkdkd]. (3.4) 

Commuting dj with mk we find that the first term in the right side equals 

djP°mkdk = dj(mjk + mkdj)dk. 

Similarly, the second term 

mkdkd? = (mkdPPj)(dkdj) = (-mjk + djmk)(dkdj) = 
= -(djmjk - mjjk)dk + djirikdkdj, mjjk = d Pm/Mdx)dxk. 

Inserting these expressions into (3.4) we obtain that 

[d],mkdk] = 2djmjkdk - mjjkdk. 

It follows tha t 

[d],mkdk + dkmk] = [d],mkdk] + [d],mkdk]* = 
= 2(djmjkdk + dkmjkdj) - mjjkdk + dkmjjk = 

= 2(djmjkdk + dkmjkdj) + mjjkk, mjjkk = &mldx)dx\. 

Summing up these relations in j and k we arrive at (3.3). • 

We choose m(x) as a homogeneous function of degree 1. Such functions 
have singularities at x = 0. In virtue of Proposition 2.5 values of m(x) in 
a bounded domain are inessential. Therefore we can get rid of singularity 
of m(x) replacing it in a neighbourhood of x = 0 by an arbitrary smooth 
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function. In such a way we obtain C°°-function which satisfies the relation 
m(sx) = sm(x) if |x| > c > 0 and s > 1. We say tha t m is homogeneous 
for | a: | > c. A function m is constructed differently in neighbourhoods of 
subspaces Xa and in a "free" region, which is separated from all Xa. In 
order to describe necessary properties of m it is convenient to define a conical 
neighbourhood 

Fa(e) = {\xa\ > (1 -%£¨£MMM e € (0 ,1) , 1 < a < au 

of Xa \ {0}. For sufficiently small e and e < e these neighbourhoods are 
separated from each other, i.e. Ta(e) D Tp(e) = {0} for a ^ /3. This is a 
consequence of the assumption (1.2). Set also 

r0(e) = {(1 - e)\L\ > \xa\, l<a%<ax}. 

We always assume tha t e € (0, e) so tha t cones TQ(C) are not empty. Clearly, 
To(^) gets larger if e decreases but never intersects with Xa. More precisely, 
r n f e ) n r j V > = 0 a n d 

r0(c) U «1 
a=l 

Ta(e) = X (3.5) 

Let us subtract from ra(e) the unit ball, tha t is we set 

fa (e) = Ta(e)f){\x\>l}. 

We submit m(x) to the following requirements: 

1° m{x) is a real nonnegative C°°-function, which is homogeneous of degree 
1 for |x | > 1 and m(x) = 0 for \x\ < 1/2. 

2° m ( z ) > 0 i f M = l . 

3° m(x) is a (locally) convex function for \x\ > 1, i.e. 

E " » i t ( x ) f c & F F > FFo> v£DFFEFH € F F H < r , \x\>i. (3.6) 

4° For every a = l,...,c*i there exist ea € (0,e) and /za > 0 such that 
m(x) = / /a |^a| if x €Ta (e<*)- Furthermore, there exist CQ > max{ea} and 

o 
fiQ > 0 such tha t ra(rr) = //o|#| if # GTo (eo)-

The final property is, strictly speaking, related to the family of functions 
satisfying 1° — 4°. 

5° By a choice of m(x) = m^e°\x) a number eo can be made arbitrary small 
(i.e. for arbitrary small neighbourhoods of Xa one can construct m(x) in such 
a way tha t m(x) = //Q|#| for \x\ > 1 outside of these neighbourhoods). 
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Below e, eo and ca are always numbers specified here; in particular, e > CQ > 
e<*, OL = 1 , . . . , a i -

Let us give an example of a function m{x) obeying all conditions 1° — 5°. 
First, we introduce a family of functions me(x) satisfying all the properties 
except smoothness and then average m£(x) over e. Set 

m£(x) = max{|rri | , . . . , | xaJ , ( l — e ) H } , 0 < e < e. 

By definition, m£(x) is a homogeneous function of degree 1. Being maximum 
of convex functions, m£(x) is convex, i.e. 

me(r\xi + T2X2) < rim£(x\) + r2m£(z2), rj € [0,1], n + r2 = 1. 

Clearly, m£(x) = \xQ\ if x € Ta(c)y and ra^z) = (1 — e)\x\ it x £ TQ(C). In 

other words, 

m£(x) = 
Wl 

a=l 
|«a|ö(|a:a|- • ( l - e ) k l ) + ( l - e ) | * | ( l -

Wl 

Wl 
ö(|*a|-(i-e)|*D), (3.7) 

where 0(s)= 0 for s < 0. = 1 for 6 > 0 andF = ADQXV>>0 for <<<DJjkjl  

Let <p(e) be some smooth nonnegative function supported in a closed in
terval [ei,eo], 0 < ei < eo < e. Define 

mix) — 
Jo 

m£(x)ip(Ce)de (3.8) 

Obviously, ?7?.(.T) is again homogeneous function of degree 1. It satisfies the 
property 2° because 

rn.e(x) > 1 — e>l — eo>0, \x\ = 1. 

Being an integral of convex functions, m(x) is convex. Comparing (3.7) with 
(3.8) and denoting 

*(s) = cp(e)de, SFS 
S r. (1 -e)<p(e)de, 

we find that 

m(x) = 
UOU 

a=l 
1 -e)<p(e)d 1 -e)<p(e)de, 

M(*(o) 
GJ 

GJS 

1 -e)<pDH(DHe)de, (3.9) 

Functions $ ( s ) and $(s) are smooth, they equal zero if s > eo and they equal 
constants <fr(0) and $(0), respectively, if s < e\. Therefore the function (3.9) 
belongs to C°°(Ud \ {0})ym(x) = $(0)\xa\ if x <E Ta(ei) and m(x) = *(0)\x\ 
if x e r0(e0). Thus the property 4° (with /za = $(0), ea = ei and /i0 = $(0)) 
holds. Since eo is an arbitrary small number, the property 5° is also fulfilled. 
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Finally, one can get rid of local singularity of m(x) at x = 0 replacing it by 
r(x)m(x) where r G C°°(lRd), r(x) = 0 for \x\ < 1/2 and r(x) = 1 for |z | > 1. 

Actually, the concrete construction of the function m is of no importance 
for us and we always use only its properties 1° — 5° listed above. By the 
property 1° derivatives rrij of m are homogeneous functions of degree 0, rrijk 
are homogeneous of degree —1 and rrijjkk are homoneneous of degree —3. 
Therefore 

(A2m)(z) = 0(\x\'% | z | -> oo, (3.10) 

and the main contribution to the commutator (3.3) is determined by the 
operator 

L = L(m) = V DjirijkDk. 
J+111 

(3.11) 

To estimate it we first compute the matrix 

M(#) = {rrijk(x)} = Hess m(x) 

in the region where m(x) — \i§\x\\ 

mj(x) = fi0\x\ lxjy mjk(x) = HQ(\X\ LSJK - \x\ zXjXk). (3.12) 

Here Sjj = 1 and Sjk = 0 if j ^ k. By the definition (1.3), the angular part of 
the gradient Vu obeys the identity 

| V ^ u | 2 = |Vu|2 - |zr2|(Vu,*)|2 = £ |U/ - M-2H>££MJLLLLLĜ|2 = 
3 j 

= ZX1 - \x\ 2xì)\uj\2 -\x\ 2J2 XjXkUjUk, Uj = dKKKKKVZu/dxj. 
¨PP £¨PO 

According to (3.12) it follows tha t 

2J2 XjXkµµµ000UjUk, Uj = du/dHKKxj. 

2J2 Xj 

(3.13) 

In the region where m(x) — //a|rra| all calculations hold t rue if x is replaced 
by xa. Thus we obtain the following 

L e m m a 3 .2 Let V'*'« and V ^ u be defined by (1.3), (1.5) respectively and 
o o 

let To (eo),ra (ea) be the truncated cones introduced in the condition 4° on 

m(x). For x ero (CQ) the identity (3.13) holds and for x efa 
2J2 XjXkUjUk, Uj = du/dxj.MM а = 1 , . . . ,аь (3.14) 
PIP 

Note tha t in case d i m X a = 1 both sides of (3.14) equal zero. 
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By the condition (3.6) on m(x) 

(Luyu) = 
hc 

RRIJKUJUKDX > 
KGK 

Ì RRIJKUJUKDX —F c 
bc 

|Vu|2cta, 

where T is any region lying outside of the unit ball. Combining this inequality 
with Lemma 3.2 we obtain 

P r o p o s i t i o n 3 .3 In notation of Lemma 3.2 for every u G V 

{Lu, u) > //0 
>roM 

\x\~l\V^u\2dx-c 
l\x\<\ 

\Vu\2dx 

and 

xar№'u\dx-c 
TA(€A) 

\xar№'u\dx<VV?<xa)-c J\x\<l 
\Vu\2dx, OL =\Vulhkm\2dx, 

It turns out that due to the property 4° the commutator [V, M] is in some 
sense small. The precise formulation is given in the following 

P r o p o s i t i o n 3 .4 Suppose that Va is defined by (2.5) where V" and V* satisfy 
Assumptions 2.2 and 2.3. Let m obey the property 1° and m(x) = m(xa) if 
x GTa (ea) for some ea > 0. Then 

\([Va,M]u,u)\<C\\Q-r(T + I)u\\2, ueV§, 2r = ><Ffqp. (3.15) 

Proof. - Suppose first that 1 < a < OL\. Let us introduce a smooth homoge
neous (for \x\ > 2) function (a of degree zero such tha t 0 < (a(x) < 1, C<*(x) = 
1 if x <£ra (ea) and Ca(x) = 0 if z G TQ(e) for some e G (0 ,ea) and \x\ > 2. 
The long-range part of VQ is differentiable so that 

i[V?JM] = 2[Via 
d 

j=i 
rrijdj] = —2 

d 

ùm 
rrijdVf/dxj = -2{Vm{x),VVl(x{xa)). 

o 
This scalar product equals zero for x GTa (fa) because m depends only on 
xa in this region and, consequently, Vm(x) G Xa whereas W / * G Xa. Since 
Wm(x)\ is bounded, it follows tha t 

\(Vm(x),VV?<xa))\<VV?<xa)) CUx)\VVf*(xa)\Ux).\<VV?<xa))  (3.16) 

Using the representation (2.7) we find that 

\([Vf, M ] t t , ) | < C\\(T+I)1' 2Wau\\\ Wa(X<cx) = ((XAF + l)-r/2Ca(*). 

The function wQ(x) obeys the condition (2.16) because (a(x) = 0 if x G Ta(e) 
and \x\ > 2. Therefore, taking into account Lemma 2.12, we obtain the bound 

(3.15) for Vf. 
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To consider [V^*,M] we use again tha t the function Ca(#) differs from 1 
o 

only if x 6Ta (£<*). In this region the function m does not depend on xa. It 
follows tha t the operator 

itlaM = 2??a(VXamFFF)VXa + r)a(AXam)y r)a(x) = c,,,xc,c,c,1- C*0), 

commutes with V? and hence [ V ^ M ] = [Fsa,£2M]. Simple computations 
show tha t 

[V?t&M] = 2 
d 

lll 
WtcjDj-DjpppppVfp&j-&j-iVfdUj/dv,v;;xj), Caj = ^lmQrnj.^^^ (3.17) 

Note tha t the functions rrtj are bounded together with their derivatives and 
€a,j = 0 if x £ Ta(e) and \x\ > 2. In virtue of the representation (2.6) for 
|pra|i/2 ^ne jas^. term in (3.17) is estimated exactly as the right side of (3.16). 
Similarly, 

\(VsaUjDju,u)\ < C\\(T + iFFFy'2waDjU\\ \\(T + hhhI)V2waul 

which is estimated by the right side of (3.15) according to Lemma 2.12. In 
the case a = OJQ the estimates are the same but the cut-off by £a is no longer 
necessarv. • 

Given Propositions 3.3 and 3.4 the proof of the main result of this section 
is quite s tandard. We formulate it only for the operator H since HQ and HA 
are its special cases. 
T h e o r e m 3.5 Suppose that Va are defined by (2.5) where V" and V{* satisfy 
Assumptions 2.2 and 2.3. Let Xa{z\ *)> a — — ->ai> oe the characteristic 
function of a cone Ta(e), where e £ (0, e) is arbitrary. Then the operators 

G0(e) = xo(e)<r1/2Vc,,c,;;;;ncnFFF« Ga(e) = Xa(e)Q-1/2V%, 

acting from the space L2(Rd) into the vector-spaces L2(Rd)<&@d and L2(Rd)® 
Wdayda = d i m X a , respectively, are H-smooth on arbitrary bounded interval 
A, A n T = 0. 

Proof. - Let us consider 

xo(e)<r1/2ffffd(FMU(t)f,U(cnnnnnnnnnt)f)/dt = i([H,M}fuft),vxn v (3.18) 

where ft = U(t)f, fcceV.Byjp (3.3), (3.11) 

i([H,M}ftK,ft) = KKKKKM4(Lft,fHHt) - ((A2m)/<, ft) + i([V, M]ft, ft). 

Taking into account (3.10) and applying Propositions 3.3, 3.4 to elements 
u = fi we find tha t (under the assumption p < 3) 

i([H, M)ftJt) > CiWGaieYHHJM2 - *aieJM\\Q-r(T + I)ft\\\ 2r = p, (3.19) 
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for any a = 0, l, . . . ,c*i. Here we have omitted ||Q~r/t||2 and the integral of 
|V/*|2 over the unit ball because they are estimated by the last term in the 
right side of (3.19). Integrating (3.18), (3.19) over t € (¿1,^2) we obtain tha t 

£ \\Ga(ea)ftfdt < C{\(Mfuft)\l I + / | 2 \\Q-r(T + I)ft\\2dt). (3.20) 

Suppose now tha t / = E(A)f. Then the first term in the right side of (3.20) 
is bounded by C| | / | |2 because ME{A) 6 B for bounded A. The second term 
admits the same estimate according to Proposition 2.13. It follows tha t the 
integral in the left side of (3.20) is bounded by C| | / | |2 so tha t each of the 
operators Ga(ea) is iJ-smooth on A. By the property 5° of the function m{x) 
a number eo can be arbitrary small. This concludes the proof of if-smoothness 
of GQ(S) for arbitrary e > 0. Since 

|Vg«| < |V««|, (3.21) 

i7-smoothness of Ga(e) for arbitrary e £ (0, e) is now a consequence of that 
fact for some e > 0. • 

Remark. Let us give for completeness a proof of (3.21). We can assume 
that u is real. By definitions (1.3), (1.5) the estimate (3.21) is equivalent to 
the bound 

|£„|2 + \x\-2\((,x)\2 < Id2 + |za|-2K&,*«>|2, (3.22) 

where £ (£ = Vu) is an arbitrary vector of X and £Q (£a = V ^ u ) is the or
thogonal projection of £ on Xa. It suffices to prove (3.22) with x) \ replaced 
by |(£a,#a)| + |£a| |za|. By identical transformations such an estimate can be 
reduced to the obvious inequality 

2K>|2|<£*,*a)|iriKI < | < & , * „ ) l V l 2 + w4in2-
Remark. By (3.21), Theorem 3.5 gives us more information about U(t)f 

in the "free" region To compared to that in the regions TQ where potentials 
Va are concentrated. 

Remark. The notion of JT-smoothness can be equivalently reformulated 
in terms of the resolvent of H. Thus radiation conditions-estimates given by 
Theorem 3.5 also admit a stationary formulation. 

Remark. In the two-particle case (where H = T + Va°) the result of Theo
rem 3.5 reduces to iJ-smoothness of the operator Q_1/2V^^ on any bounded 
positive interval separated from the point 0. This is different from the usual 
form of the radiation condition (see e.g. [14]). First, we consider only the 
angular part of VU(t)f. Second, the estimate of [14] implies that 

£ L IIG~rVwEWH2A < °°- (3-23) 
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Here r is some number smaller than 1/2 whereas we require tha t r — 1/2 
which is less informative. On the other hand, in (3.23) / should belong to 
some dense (in DH) set whereas our estimate is uniform for all / £ DH. 

Note, finally, tha t in [24] a radiation condition for iV-particle case was 
derived in the free region GIVD Prom the viewpoint of the previous remark the 
result of [24] is similar to the two-particle radiation condition and thus it differs 
from Theorem 3.5. Results of [24] can probably be used (see the discussion at 
the beginning of the next section) for a proof of asymptotic completeness in 
the three-particle case. However, an information about U(t)f in a free region 
only is not sufficient for the case of N > 3 particles. 

4. M O D I F I E D W A V E O P E R A T O R S 

In order to explain an idea of the subsequent proof of asymptotic completeness 
let us recall tha t , as remarked by P. Deift and B. Simon [25], it is equivalent to 
existence of wave operators JKW±(HKay HGD\ J^)y aG =J 0 , 1 , . . . , a\. Here identifi
cations are multiplications by smooth homogeneous functions rfas^ of zero 
order such tha t J2D^aGKx) = 1. Furthermore, rfa\x) = 1 in a neighbourhood 
Ta of the subspace Xa and r)GG( °\x) = 1 if x is sufficiently far from all of them. 
The main contribution to the "perturbation" HJJG^ — J^JHa is given by the 
term V T / ^ V , which equals JVrjG^S?^ because (VJrjGG(a\xss),x) — 0. Remark also 
tha t V 77̂G(2:) decays as \x\~l at infinity and differs from zero in a free region 
To only. Therefore convergence of the integral (cf. with the last remark in 
section 3) 

/ ° ° llxoQ-rvGW[/J(*)/||2^ < oo 
J—oo 

for some r < 1/2 and for elements / from some set dense in H would have 
been sufficient (see [17] for more details about such a plan of the proof) for 
existence of the wave operators W±{Ha,GHJ\ x J ^ ) . 

The result of Theorem 3.5 allows us to accomodate the terms GG*aGa which 
are similar to VFr/̂ Vxkb^ but are second-order differential operators. Thus 
we are compelled to change the identifications j(JGa\ We choose new iden
tifications as first-order differential operators wv,;,,:,!!wvww constructed by means of 
functions rf^Gm. Coefficients ofF Fequal zero outside of a region Tsa and 
£ JVf(a) — GM. We emphasize tha t our proof of existence of the wave operators 
W±(Ha,H:M^xxxE(A))FF requires .//-smoothness of all operators Ga (not only of 
Go). To remove the identifications jjjkMĜ a' we introduce also the auxiliary wave 
operator W±(GHFy H\ MGEF(A)). At the end of this section we show tha t this 
operator is invertible on the subspace E(A)GH. As was explained in section 1, 
this is an essential step in our proof of asymptotic completeness. 
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Let us proceed to the formal exposition. We start with the following ele
mentary observation. 

L e m m a 4 .1 Suppose that m(x) is an arbitrary smooth homogeneous (for 
\x\ > 1 ) function of degree 1. Let Xn(x) andpn(x) be eigenvalues and eigenvec
tors of the symmetric matrix M(rr) = {rrijk(x)}. Then vectors Pn(%), \x\ > 1> 
corresponding to \n(x) ^ 0} are orthogonal to x. 

Proof. - Since M(x ) is symmetric, it suffices to show tha t x is its eigenvector 
corresponding to the zero eigenvalue. Differentiating the identity m(sx) = 
sm(x) in s and setting s — 1 we find that 

^2mvv,j(x)xj = fm(x) 

(Euler's formula). Differentiation of this relation in xk shows that 

]T mkj(x)xj = 0, ùùk = l,...,d. 
j 

Thus M(x)x = 0. • 

Let some function m satisfying conditions 1° — 4° be given and let 6Q = 
minea, a = 1 , . . . , a i . We introduce homogeneous functions r/a) £ C°°(Rd \ 
{0}) of degree 0, a = l , . . . , c * i , such that supp rfa) C Ta(e) (and hence 
supports of rf0^ for different a intersect only at zero) and rj^a\x) = 1 if 
x £ Ta(ea) . The function 

rj^(x) = 1-jmfjmfv2 r)M(x) (4.1) 

a=l 

equals zero if x £ ro(eo) and rj(°\x) = 1 if x £ To(e). Set m^a\x) = 
rfa\x)m(x), a = 0 , 1 , . . . , a i , and 

AfW = EimfDj + Djmf) , jmf jmf mf = dm^/dxj. (4.2) 

Clearly, ra(a)(rr) satisfies the properties 1° and 4° (with /4°) = fia and / / ^ = 0 
for b / a) but the properties 2° and 3° are violated. 

T h e o r e m 4 .2 Suppose that functions Va satisfy the assumptions of Theorem 
2.7 and A is any bounded interval such that A fl T = 0. Then the wave 
operators 

W±(H, Ha; Mjmfjmf^Ea(\)), W*(ff„, # ; M^E(A)), (4.3) 

ea;«,stf /o r all a — 0 , 1 , . . . , ot\. 
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Proof - We shall show that the triple Ha, H,GG satisfies on A the conditions 
of Proposition 2.1. Let us consider 

[Va, M'û'] = (T + I)Q~rB^Q-r{T + J), dw2xcncc 

vxn 

3 = l,...,a /3 = l , . . . , a 0 , (4.4) 

V° = 0. We shall verify that each term in the right side can be factored 

into a product of H- and fTa-smooth operators. We start with the last two 

terms which can be estimated with the help of Proposition 2.13 only. The 

commutator [Vay M^] was actually already considered in Proposition 3.4. Its 

assumptions are fulfilled because the function D satisfies the property 1° 

and m(Q\x) = fia\xa\ if x GlS* (ea). The estimate (3.15) is equivalent to the 

representation 

[Va, M'û'] = (T + I)Q~rB^Q-r{T + J),xx 2cncccr = Py 5(a» G B9 

where Q r(T + I) is H- and i ^ - s m o o t h on A in virtue of Proposition 2.13. 

We need short-range assumption on potentials only to treat V^M^a\ /3 ^ a. 

Suppose first tha t /3 ^ ao. Recall tha t rrSa\x) = 0 if x G Tp(ep). Therefore 

mf\x) = mf\x)Q(x) and mfj{x) = Xx)Cfi(x) for suitable Cfi € C°°(Ud)y 

homogeneous (for \x\ > 1) of degree 0, such that Cp(x) = 0 if re GT/? (e) for 

some e G (0, e^). By (2.6), (4.2) the operator V^M^ consists of terms 

WßDj VßmfDj = wß(T + I) 1/2 HK (T + J) 1/2 HK 

and 

Vßm$ ggd= wß(T + Г) 1/2 
33 

В (T + I) Л/2 Wß, 

where j = 1 , . . . , cf, 

Wf,(x) = ((x0)2 + l)-*%(x), 2r = p,(x), Éf* e B, B§» € B. 

The function wp(x) obeys the condition (2.16). Therefore, by Lemma 2.12, 

each of these terms equals (T+I)Q~rBQ~r(T+I) with some bounded operator 

B. This proves the required factorization of V^M^ into a product of smooth 

operators. In case /3 = ao the estimates are the same but the cut-off by £/? is 

no longer necessary. 

Let us consider the first term in the right side of (4.4). According to Lemma 

3.1 the commutator [T, M^] is defined by (3.3) with m replaced by mSa\ Since 

m(a) is a homogeneous function of degree 1 the term (A2m^)(x) = 0(|;r |~3) 

as \x\ —» oo. Hence A 2 m ^ = Q~^2B^Q~^2 where flW is multiplication by 

a bounded function and Q~3/2 is H- and ifa-smooth by Proposition 2.5. 
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To estimate the operator FHF = L(m^CD) defined by (3.11) we need Theo
rem 3.5. Its application relies on Lemma 4.1. Let \^ CX \x) and p ^ ( r r ) , n = 
1 , . . . , d, be eigenvalues and normalized eigenvectors of the symmetric matrix 
M ^ ( r c ) = {rnjk(x XW)}- Clearly, \lf\xPPJ) are homogeneous (for \x\ > 1) functions 
of order —1 and p$(x) - of order 0. Diagonalizing the matrix MW(a) we find 
that 

(L^u9v) = fErn^(x)Dku(x)Djv(x)d^fhjfjx jjj= 

(L^u9v) = fErn^(x)Dku(x)Djv(x)dx =(L^u9v) = fErn^(x)D===<<<=u(x)Djv(x)dx = 

where 
(RfKxx) = Z$k*)(v«(*),p£H*))pP(*)> 3 = 1.2, (4.5) 

(Vujfg = \^\x)\"\ v$(x)u$(x) = AW(xwwfssgff) 

and H = L2(Rd)®(Pd. Let x be the characteristic function of the ball \x\ < 1 
and x— 1 ~~ X- Since 

| ( A f >u)(*)| < C|cjcjjjjVu(*)|, 

i J - and i/a-smoothness of the operators x^j 1S ensured by Proposition 2.13. 

To treat the operators x we notice tha t , by the definition (1.3) and 
Lemma 4.1, 

(Vu(x)J:\ggx)) = (VWU(,))PW(xx,)), \x\ > 1,(L^ugk 

if AW(ar) ^ 0. It follows that 

\(K\a)u)(x)\ < C|a|-1/2|VW«(a:)| , \x\ > 1, c SUD 
1*1=1 n 

vxv (x). (4.6) 

Set Xa (e) = X Xo(e) where Xa(e) is the characteristic function of the cone 
ra(e). By (4.6), 

|(X0 (e)Kfu)(x)\ < C\(G0(e)u)(x)\ 

so tha t the local H- and ^ - s m o o t h n e s s of the operators Xo (e)K^ f°r arbi
trary e > 0 is a consequence of Theorem 3.5. Since M.(°\x) = 0 if x £ TO(CQ) 

we have that Kf^ = xo(^o)Kj°\ Thus the operators x are H- and HQ-
smooth. In case a = a we have tha t M ' a ' ( i ) = 0 if x G l > ( e ) , 0 ^ a , and 
hence, by (3.5) , 

Kf = XO(E)tfja) + Xa(e)Kf\ VE € (0, eXa(e)Kf\). 
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Consequently, in order to obtain i7-and #a-smoothness of x Kj* we must 

additionally consider only Xa (^)Kj^ for any e > 0. Note tha t mi<0l\x) = 

m(x) = fiQ\xQ\ if x eta (e«)- In virtue of (3.14) for such x 

( ^ U ) ( x ) = ^2 |Xa | -1 /2(VW.)( ;C) 

(in this case all eigenvalues of M^Q\x)y except zero, equal na\xot\~l) so tha t 

|(X. (e)Kfu)(x)\ < C\(Ga(e)u)(x)l e < ea. 

Therefore the H- and i7a-smoothness of the operators XaDDDDDDDu)(x)l e <DDD D is ensured 
again by Theorem 3.5. This concludes the proof of the required factorization 
of the right side of (4.4) into a product of H- and i3"a-smooth ope ra to r s . • 

Let us now introduce the observable 

M± = M±(A) := W^H, H] ME(A)). (4.7) 

Existence of these wave operators can be verified similarly to Theorem 4.2. 
Actually, let us consider 

HM - MH = [T, M] + Y\va, M). 
a 

The main contribution to [T,M] is determined by the operator L = K%K\, 
where Kj are constructed by the formulas (4.5) in terms of eigenvalues Xn(x) 
and eigenvectors pn(x) of the matrix M ( z ) . For any e > 0 iT-smoothness of 
the operators XFFoSSSu)(x is ensured by If-smoothness of the operator GQ(S). 

Similarly, i?-smoothness of XQ (ea)Kj is ensured by if-smoothness of Ga(ea). 
Remaining terms in [T, M] are estimated by Proposition 2.13. Finally, we 
apply Proposition 3.4 to the commutators [Va ,M] . Note tha t potentials Va 
may contain long-range par ts since the short-range assumption was used in 
Theorem 4.2 only for the estimate of the term V^M^a\ /3 ^ a, which is absent 
now. Thus we have 
P r o p o s i t i o n 4 .3 Let M be the same operator as in section 3. Suppose that 
functions (2.5) satisfy Assumptions 2.2 and 2.3. Then the wave operators 
(4-7) exist. 

The operator M±(A) is, clearly, self-adjoint, bounded and commutes with 
H. Our goal is to show tha t it is invertible on the subspace E{h)T-L. In fact, 
we shall see tha t ± M ± ( A ) is positively definite. 

Let us give a classical interpretation of this assertion for a particle (of 
mass 1/2) in an external field. In this case the observable U*(t)MU(t) cor
responds, in the Heisenberg picture of motion, to the projection M(t) = 
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d(mfuht)/dtHFHH = t([ of the momentum £(t) of a particle on a vector x(t) of its 
position. For positive energies À and large t we have that £(t) ~ £±,£± = A, 
and x(t) ~ 2£±t + x±. Therefore Mit) tends to iA1/2 as t —> ± 0 0 . 

We shall consider U(t) on elements / = <p(H)g where cp G Co°(A) and 
g € ^D{Q)- Clearly, for different (p and g such elements are dense in E(A)7i. By 
Lemma 2.10 applied to 0(A) = exp(—iAt)c^(A), we have tha t U(t)f G T>(Q). 
Thus mUii)f are well defined. 

Let ft = U(t)f and ht — U(t)h where h G H is arbitrary. Integrating the 
identity 

d(mfuht)/dt = t([fT ,m]/,A) = i([T,m]fuht) = (Mfuht), 

we find that 
{mfu ht) = ( m / , h) + J ( M / s , h8)da. (4.8) 

According to Proposition 4.3 

\{Mfs,hs)-(M±f,h)\<eSV(Ss)\\XCCh\\ssgsg, (4.9) 

where 5 ( 5 ) does not depend on h and tends to zero as s —* ± 0 0 . Comparing 
(4.8) and (4.9) we obtain 

L e m m a 4.4 Let f = (p(H)g where <p G Co°(A) and g G £>(£?). TAen 

U*(t)mU(t)f = t M±(A)f + o(\t\\ t ± 0 0 . 

Since m > 0, Lemma 4.4 implies that 

±{M±fJ) = J m ^ W W . , / , ) > 0. 

The inequality ± ( M ± / , / ) > 0 established on the dense set extends by conti
nuity to the whole space E(A)/H. Thus we have 

Corol lary 4.5 The operator M±(A) > 0. 

To prove tha t ±M± is positively definite we use Proposition 2.4. In virtue 
of the identity i\H, Q2] = 2A, it follows from (2.8) tha t 

2-ld\Q2fuft)GDGDldt2 = d(Afuft)/dt = (i[H9A]fuft) > c ||/||2, 

f = <p(H)g, peQ°(AA), geViQ). 

Integrating twice this inequality we find tha t for sufficiently large \t\ 

l№/RGti l>' l* l l l / l l - (4.10) 

On the other hand, accordine: to Lemma 4.4sg 

llm/,11 = P f * / « qdqd|*| + o ( | * | ) . (4.11) 
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By property 2°, m(x) > raolzl, mo > 0, \x\ > 1, so tha t 

| |Q/<| |2<2| | /<| |2 + m£££££<<<ö2||m/<||2. 

Thus comparing (4.10) with (4.11) we obtain the inequality 

P * * / l l > £ £ I c 11/11, (4.12) 

where / = (p(H)g, g G T>(Q)y tp G CQ°(AA) and c — c\. This inequality is, 
of course, t rue for all / G E(A\)/H. The compact set A is covered by finite 
number of intervals AA. Since M± commutes with -E(-), it follows tha t (4.12) 
extends to all / G E(A)T-t. Considering now Corollary 4.5 we obtain 

P r o p o s i t i o n 4 .6 Under the assumptions of Proposition 4-3 for every f G 
E(A)H 

±(M±(A)fJKI)>c\\fMMM\\\ c = c ( A ) > 0 . 

Corol lary 4.7 In the space E(A)7i the kernel of M±(A) is trivial and its 
ranae 

i?(M±(A)) = E(A)H. 

5. EXISTENCE AND COMPLETENESS 
OF WAVE OPERATORS 

In this section we give the proof of Theorem 2.7. Its difficult par t is, of course, 
asymptotic completeness. Actually, the relation (2.12) can be reformulated in 
basically equivalent form without wave operators (2.11). We start with the 
proof of this form of asymptotic completeness called asymptotic clustering in 
[10]. Let, as always, A be a bounded interval such that A D T = 0 and let M 
and Af(a) be defined by (3.1) and (4.2), respectively. According to (4.1) 

a 
;M(a) = M , 0<a<a<FGi. (5.1) 

T h e o r e m 5.1 Under the assumptions of Theorem 2.7 for every f = E(A)f 
there exist elements such that 

M(a) = M, 0<a<a<FG¨¨¨¨ÏO<KGG<i.OYO 

a 
(5.2) 

Proof. - By Corollary 4.7, every / € E(A)7i admits the representation / = 
M ± ( A ) / ± , € E(A)H, so tha t the asymptotic relation 

U(t)f -MKU^f*, * - + ± o o , (5.3) 
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holds. On the other hand, Theorem 4.2 ensures that for every a = 0 , 1 , . . . , a\ 

M^Uit)/* ~CBUaB(t)f±, * ^ ± o o , (5.4) 

where 

ft = W±M^E(B(HVVJFJA,H;M^E(A))f±. 

Summing up the relations (5.4) and taking into account (5.1) we find tha t 

M t f (*) /* ~ £ CBNUa(t)tf, t ±oo . 
a 

Comparing it with (5.3) we arrive at (5.2). • 

To complete the proof of Theorem 2.7 we need to establish existence of 
wave operators (2.11). Note tha t in the proof of Theorem 5.1 we have used 
only existence of the second set of wave operators (4.3). Now we rely on 
existence of W±(H, Ha] M^Ea(A)). Since elements / = Ea(A)f are dense in 
the space 7i = 7i^ac\Ha)9 this is equivalent to existence of the wave operators 

W^H.H^M CCB^iHa + i)-1). 

Here — i can, of course, be replaced by an arbitrary regular point of Ha. 
Some minor technical complications below are related to unboundedness of 
the operators M^a\ We start with some simple auxiliary assertions. 

L e m m a 5,2 Let VQ(Ta + be compact in Ha. Then 

s - lim VQU0(t)(H0 + i)~l = 0. 
oo 

Proof. - In terms of the tensor product (2.9) 

VaU0(t)(Ta + I)-1 = exp(-iTJ) ® Va(Ta + I)-1 e x p ( - m ) . 

According to (2.1), the second factor in the right side converges strongly to 
zero. Therefore the tensor product also tends strongly to zero. It remains to 
remark tha t (Ta + I)(HQ + i)~l is bounded. • 

L e m m a 5.3 Let a = 1 , . . . ya\. Suppose that (a is a bounded function such 
that Ca(^) = 0 if x G ra(e) for some e > 0. Then 

s - lim (QUa(tBB)Pa = 0, (5.5) 
\t\—+oc 

s - lim (aVUa(t)PA(HK?<<XXA + = 0. (5.6) 
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Proof. - It suffices to check (5.5) on elements / C=C g ® i/>a, where i\)a is an 
eigenvector of the operator HQ9HCat Npa = \aCiNCf)a, g is an arbitrary element of 
Tia and the tensor product is defined by (2.9). Linear combinations of such 
elements / are dense in the space Pa7i. According to (2.10) 

Ua(i)f = exp(-i(Ta + Xa))gzsd ® i>a (5.7) 

so tha t 
\\<aUa(t)f\\ = \\*aexp(-iTat)g\hddd\na, (5.8) 

where 

exp(-i(Ta = Jxo\(jxa,xaxa,xaggga(xa,xa)\2s\fjgj(xad)?dx° < \<aUa(t)f\\ = \\*aexp(-iTat)g\\na, 

c = c(e) > 0, by our assumptions on £a. It follows that tya(xa) —> 0 as 
\xa\ —> oo and hence the operator ^a(Ta + is compact in the space 7ia. 
Therefore (5.8) tends to zero in virtue of (2.1). 

Let us split the vector equality (5.6) into two parts corresponding to VXQ 
and Vz« (instead of V) . The operator VXo commutes with Ua{t)Pa and 
VXa(FHFQ + FFG B. So the par t of (5.6) for DFDis a consequence of (5.5). To 
verify the same for Vx« we remark tha t 

\\vx*utt(t)pa(wcwHa + <<< < ||vfffjx«j(#a + i)-1!! < oo 
because (Ha + i) 1 commutes with UQ(t)PQ and Vxa(Ha + i) 1 6 B, Hence 
it suffices again to consider this limit on elements / = g ® ipa. In this case 
(Ha + i)~lf = g®^a, where g = (Ta + \a + i)~lg € H*. Thus, by (5.7), 

(aVx«Ua(t)Pa(Ha + i)~lf = (aexp(-i(TQ + \a))g ® V*«</expl>". 

Since Vx*il>a G 7ia<Sf(TdQy this term can be estimated quite similarly to ( 5 . 8 ) . • 

Corol lary 5.4 For every a = 1,... , OJI and b ^ a 

s - lim Mss^Ua(t)Pa(jjmjma + i)-1 = 0. 
|t|-KX) 

(5.9) 

Proof. - According to (4.2) 

iM^ = 2(VmWss)V + Am*'*, (5.10) 

where, by the construction of mSb\ the zero-degree homogeneous function 
V m ^ vanishes in the cone Ta(ea). The contribution to (5.9) of the first term in 
the right side of (5.10) tends to zero in virtue of (5.6). The te rm (Am^)Ua(t) 
converges strongly to zero because ( A m ^ ) ( i ) —> 0 as \x\ —» oo. • 

Now we are able to prove 
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L e m m a 5.5 The wave operators 

W±(H, Ha; M^b\HKJKJHa + (5.11) 

exist for all a, b = 0 , 1 , . . . , a\. 
Proof. - According to Theorem 4.2 it suffices to consider the case a ^ 6 only. 
Let first a = 0 and 6 - / 3 ^ 0 . By the multiplication theorem (2.4), the wave 
operator 

W±(H, H0] M^\HKHP + = W±{H, HHp\ MW(Hp + i)-l)W±(H(3, H0) 

exists. Here we have taken into account that the wave operators in the right 
side exist in virtue of Theorem 4.2 and Proposition 2.8. Therefore in order to 
establish existence of W±(Hy H0; M^\H0 + i)'1) it remains to verify tha t 

s - lim M(P\(LJLHp + i)-1 - (H0 + t)_1)tfo(0 = 0. (5.12) 

In virtue of the resolvent identity this is a direct consequence of Lemma 5.2. 
In case a = a ^ 0 and b ^ a we proceed from the relation (2.13). Let us 

apply to it the bounded operator M^\Ha + In virtue of Corollary 5.4 
it follows that 

M{b\Ha + iJJH)-lUa(t)f ~ MWKHGH(Ha + i)-lU0(t)f^ t ±oo . 

Furthermore, according to Lemma 5.2, we can replace (cf. with (5.12)) the 
operator (Ha + in the right side by (H$ + i )"1 . Therefore the existence of 
the wave operators (5.11) for a ^ 0 is ensured by their existence for a = O.D 
Corol lary 5 .6 The wave operators W±(H,Ha; M(Ha+i)~l) exist for alia = 
0 , 1 , . . . ,c*i. 
Proof. - It suffices to "sum up" the wave operators (5.11) over all b = 
0 , 1 , . . . , a\ and to take into account the relation (5.1). • 

Now we can get rid of the identification M. 
P r o p o s i t i o n 5.7 The wave operators W±(H, Ha) exist for alia — 0 , 1 , . . . ,<*i. 
Proof. - By Proposition 4.3 there exists 

M ^ A ) = W±(Ha, Ha; M Ea(A)) 

(here it is sufficient to assume that an interval A is bounded, 0 ^ A and 
a(p)(Ha) D A = 0 if a = a ) . By Corollary 4.7, Ea{A)H = R(M±(A)) so that 
for every / <E Ea(A)H 

Ua(t)f~MHHUa(t)tHHf,H *-.§.±oo, / = M„(A)fa, tfeEa(A)H. 

Thus Corollary 5.6 ensures existence of W±(Hy Ha\ Ea(A)) and hence of W±(H, 
Ha). a 

Since Pa commutes with Ua(t)* we have 
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Corol lary 5.8 The wave operators (2.11) exist and are isometric on Pali,' 

In order to check tha t the ranges of the operators (2.11) are orthogonal, 
we shall show tha t 

KmJUaWPafa, Ub(t)Pbfb) = 0, a + b. (5.13) 

If b — 0 (so tha t Pb = I) and a — a , then, by Proposition 2.8, the limit (5.13) 
exists and equals 

(Pafa,W±(FHF></Ha,H0)f0) = 0. 

Let now b = /9 and a = a ^ /?. The relation (5.5) implies tha t 

Ua(t)Pafa ~ Xa(e)Ua(t)PafQ, \t| -» oo, a = 1 , . . . , au 

where Xa(^) is the characteristic function of the cone Ta(e) and e € (0,1) is 
arbitrary. So it remains to recall tha t Xa(^)x^(^) = 0 if a ^ /3 and e < e. 

Let us finally verify the relation (2.12). According to (5.2) and (2.13) for 
every / £ E(A)7i and some elements / o S / * the representation 

U(t)f ~ U0(t)ff + £ Ua(t)Pafi, * - ± 0 0 , 
a=l 

holds. Since the wave operators (2.11) exist, it follows tha t 

(t)ff + £ Ua( 

+ 
VW 

VW 
W±V 
r * a J oc 

and hence / belongs to the left side of (2.12). Considering tha t linear combi
nations of elements / = E(A)f for all admissible A are dense in 7i^ac\H), we 
conclude the proof of Theorem 2.7. 
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