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PREFACE 

These notes originated at the Second Algebraic Geometry Summer Semina r 
held a t th e Universit y o f Utah durin g Augus t 1991 . Th e semina r wa s th e 
continuation o f the Firs t Summer Seminar held in 1987 whose notes appeare d 
in [CKM88] . 

The aim of the Firs t Summer Seminar wa s to give an introduction t o three 
dimensional birational geometry , especially to Mori's Program (also called the 
Minimal Model Program). W e are very happy to note that in the last few years 
this program has become much better known among algebraic geometers. Thi s 
was reflected in the number of participants. I n 1987 there were 16 participant s 
for a n introductor y seminar ; i n 199 1 there were 30 for a  more advanced one. 

Because of these changes , instead o f starting at th e beginning , the Second 
Summer Semina r concentrate d o n reviewin g recen t development s i n highe r 
dimensional birationa l geometry . W e surveyed tw o o f the mos t importan t 
recent directions . 

The firs t topi c was the existenc e of flips in dimension three, th e final  ste p 
in the three dimensional Minimal Model Program. I n surface theor y i t i s well 
known that repeated contractio n of — 1-curves yields a minimal surface. Simi -
larly, starting with a threefold X , Mori's Program produces another threefol d 
X ' , birationa l t o X, which can reasonably be called minimal in analogy with 
the surface case. Th e required operation s are however more complicated. On e 
of them i s called flip. 

The existence of flips was first proved by [Mori88]. Recentl y a very different 
approach to a more general type of flipping problem (still in dimension three) 
was found b y [Shokurov91] . W e owe special thanks to Mile s Reid who pre-
pared a n English translation of [Shokurov91] in a very short time . Shokurov' s 
article contain s man y ne w ideas, but unfortunatel y i t i s very difficul t t o un -
derstand. Numerou s parts required a  truly joint effort o f the participants an d 
some detail s wer e understood onl y after severa l discussion s with th e author . 
Eventually w e discovered an erro r i n [ibid , 8.3]. Unfortunately, ther e was no 
opportunity to reconvene the seminar and study the new version [Shokurov92]. 

The first  part o f the note s (Chapter s 4-8 ) presents a  new proof o f log flips 
using [Mori88] . Th e third part (Chapter s 16-21 ) present s a  reworked version 
of [Shokurov91 , 1-7]. 
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The secon d topic (Chapters 9-15 ) is the Abundanc e Conjecture proposed 
in [Reid83] . I t i s a natural continuation o f Mori's Program. Startin g with th e 
threefold X'  produce d above , th e conjectur e state s that a  suitabl e multipl e 
of th e canonica l clas s determine s a  base  poin t fre e linea r syste m (unles s al l 
such ar e empty) . Th e proo f o f this resul t wa s complete d i n th e serie s of 
articles [Kawamata84,85,91b ; Miyaoka87a,b,88a,b] . Agai n w e succeede d in 
simplifying severa l o f the step s an d generalizin g many intermediate results . 

A mor e detailed explanatio n o f the result s and a n outlin e o f the proof s is 
given in Chapte r 1 . 

ACKNOWLEDGEMENT. W e are ver y gratefu l t o S . Mor i for hi s attentio n 
and hel p during an d afte r th e conference . He pointed ou t severa l mistakes i n 
preliminary version s of the notes . 

Many error s an d inaccuracie s wer e pointe d ou t t o u s b y S . Kovac s an d 
E. Szabo . We received long lists o f comments, corrections and improvement s 
from M . Reid and fro m V. V. Shokurov. The y helped to improve these note s 
considerably. 

The semina r wa s made possible by a generous grant from the Universit y of 
Utah to S . Mori . 

These note s wer e typese t b y Aj^S-T^Q,  th e Ijg X macr o syste m o f th e 
Americal Mathematical Society. 
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PREREQUISITES 

In writin g thes e note s we tried t o keep the prerequisite s t o the minimum . 
The reader is assumed to have a basic general knowledge of algebraic geometry. 
Some familiarit y wit h highe r dimensiona l techniques i s necessary . W e tried 
to rely only on Chapters 1-1 3 of [CKM88]. Ther e are however two topics not 
adequately covere d in [CKM88] . 

1. I n [CKM88 ] the Con e Theore m and relate d result s are prove d only for 
the canonica l divisor Kx instea d o f an arbitrary log terminal diviso r Kx +  A . 
The proof s i n the mor e general lo g terminal cas e are essentiall y th e sam e a s 
the proof s give n in [CKM88] . A  reader wh o understands Chapter s 9-1 3 of 
[CKM88] should have no problem with the more general log versions. However 
we usually refer t o [KMM87 ] where the precise results are stated and proved. 

2. [CKM88 , Chapte r 6 ] collects th e mos t importan t result s o n termina l 
and canonica l singularities i n dimensio n three , mostl y without proofs . Th e 
reader wh o i s happ y t o accep t thes e result s doe s not nee d t o kno w more. 
For thos e wh o want proofs , th e lis t o f prerequisites get s longer . Th e survey 
article [Reid87 ] presents a  very readable and elementary overview with proofs . 
Unfortunately eve n [Reid87] relies on detailed properties of elliptic Gorenstein 
surface singularities [Laufer77 ; Reid75] which are by no means basic. W e could 
not offe r an y significant improvements;  thus there was no reason to reproduce 
the results . 

3. Th e first proo f o f the existence  of log flips (Chapters 4-8 ) uses the very 
difficult result s of [Mori88] . W e need however only the statement s and non e 
of th e techniques . 

4. I n Chapte r 9  we discuss the abundanc e proble m only for regular three -
folds. Th e irregular cas e was solved earlier using the ideas of Iitaka's program 
which are no t relate d t o the method s discussed here. 

No other resul t fro m highe r dimensiona l birational geometr y is used with-
out proof. 

We als o need some other result s which are no t par t o f basic algebraic ge-
ometry. 

Naturally w e need Hironaka's resolutio n of singularities. 
Simultaneous resolution of flat deformations of Du Val singularities ( = ra -

tional double points) is an important resul t [Brieskorn71 ] which is not treated 
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in textbooks. 
In Chapter s 9-1 0 we use severa l properties o f stable vecto r bundles. Als o 

in Chapte r 9  we need some properties o f foliations in positive characteristic . 
In al l cases we state the result s we use and giv e precise references. 

Finally ther e ar e occasiona l uses o f a  fe w othe r topics : mixe d Hodg e 
structures, Lefschet z type theorems, relative duality  an d th e existenc e of the 
Hilbert scheme. 
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1. LO G FLIP S A N D ABUNDANCE : A N OVERVIE W 

JANOS KOLLA R 

The aim of these notes is to present tw o of the most important recen t direc-
tions of three dimensional algebraic geometry. W e generalize the following two 
theorems fro m surface s t o threefolds . (Fo r the surfac e case , see for example, 
[BPV84,VI.1.1,V.12.1,VII.5.2].): 

1.1 Theorem . Let  X  be  a smooth projective  surface.  Then  there  is a bira-
tional morphism X  —•  X'  to  another smooth projective  surface  X', where  X' 
satisfies exactly  one  of the following  conditions: 

(1.1.1) Kx>  is nef, i.e.  C  •  Kx 1 >  0  for every  curve  C C  X'; 
(1.1.2) X'  is  P1 -bundle over  a  smooth curve  D; 
(1.1.3) X ' ^ P 2 . 

1.2 Theorem . Let  Y  be  a  smooth projective  surface.  Assume  that  Ky  is 
nef. Then  \mKy  \  is base  point free  for  some m  >  0 . 

The approac h t o th e highe r dimensiona l versio n o f (1.1 ) is calle d Mori' s 
program or the Minimal Model Program, initiated in [Mori82] . (Se e [KMM87; 
Kollar90; Kollar91 ] for introductions. ) It s genera l feature s hav e bee n wel l 
understood fo r a  fe w year s an d the y wer e presente d i n [CKM88,1-13 ] i n a 
fairly elementar y way . Th e majo r remainin g ope n problem was to prov e th e 
existence of flips. Thi s was finally don e in [Mori88] . Recentl y a new proof (of 
a mor e genera l result ) wa s give n in [Shokurov91] ; we present tw o proof s of 
this result. Th e firs t on e (Chapters 4-8 ) is short , bu t relie s o n [Mori88] . Th e 
approach o f [Shokurov91] is presented i n Chapter s 16-22 . 

The higher dimensiona l version of (1.2) is called the Abundance Conjectur e 
[Reid83, 4.6] . I n dimensio n thre e i t i s now a theorem ; prove d in th e secon d 
part (Chapter s 9-15) . 

Before givin g a  detaile d outlin e o f the thre e dimensiona l proofs , I  giv e a 
very short sketc h o f the surfac e cas e and discus s the ne w features o f the thre e 
dimensional case . 

The proof of (1.1) is relatively easy (cf. [BPV84,III.4.1,VI.2.4] , [CKM88,3]) . 
One proves that i f X doe s not satisf y an y o f the condition s (1.1.1-3 ) the n i t 

s. M. F. 
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/. KOLLAR 

contains a  smoot h rational curv e C C  X  suc h that C  •  Kx  =  —  1. C  ca n b e 
contracted b y a  morphis m p :  X —>  X\  an d X i i s again smooth . W e repea t 
this as many times as necessary. A t every step the second Betti number drop s 
by one , and therefor e eventuall y th e procedur e must stop . 

In dimensio n three, lif e i s more complicated. The very first ste p X  —>  X\ 
was analyze d i n [Mori82] . H e showe d that i n som e cases X\  i s necessaril y 
singular. A t first sight this seems a major trouble ; however, the technique s t o 
handle th e singularitie s tha t occu r hav e been worked out. Th e bi g problem 
is that in subsequent step s we may arrive a t a  situation whe n the contractio n 
forced upo n us by the progra m is of the followin g type : 

Small Extremal  Contraction,  f  :  X —*  Z i s a  prope r birationa l morphis m 
between threefold s suc h that th e exceptiona l set o f / i s a  curv e C C  X  an d 
Kx i s negative o n C. 

In this case Z ha s "ver y bad" singularities . Thi s makes it necessary to find 
a ne w type o f birational transformation , th e flip. 

Flips. Le t /  :  (C C  X) — • ( P G  Z) b e a proper birational morphism such that 
/ :  (X —  C) —•  (Z —  P)  i s an isomorphism . Assum e that Kx  i s negative on 
C. Th e flip of / i s a proper birational morphis m /+ :  ( C+ C  X+) —•  (P  G  Z) 
such that / + :  X+ —  C+ — • Z —  P i s an isomorphism, and Kx+  i s positive on 
C + . Thi s gives the followin g diagram : 

с СХ 
f \ 

ф C+ CX+ 

z 

(Frequently th e birationa l ma p </ > = ( /+ ) 1 o  / :  X —X + i s also called th e 

Informally, we take C ou t o f X an d replace it with another curv e C+ . Th e 
main poin t i s that th e canonica l class becomes positive near C +. Asid e from 
the sig n restriction o n K , th e flip  migh t see m to b e a  symmetri c operation ; 
however, the negativit y o f Kx -  C i s crucial. 

The existenc e o f flips  was th e mai n ope n proble m o f three dimensiona l 
birational geometr y for six years, until it wa s finally settled b y [Mori88] . 

The first  an d thir d part s o f these note s presen t a  generalize d versio n of 
flips. W e loo k a t perturbation s o f Kx o f the for m Kx  +  ]C b%Bi wher e th e 
Bi ar e effectiv e an d 0  <  6 « < 1 . Ther e ar e furthe r stron g restriction s o n 
the singularitie s o f X an d o f the B{  which are no t importan t fo r the genera l 
picture. Instea d o f requiring tha t Kx  •  C b e negative, we require tha t (Kx  + 

flip.) 
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FLIPS AND ABUNDANCE 

Y^biBi) •  C  b e negative . Thi s generalizatio n give s us considerabl e flexibility 
in certain problems which is crucial i n many applications . 

The proof s o f [Mori88 ] and o f [Shokurov91 ] proceed alon g ver y differen t 
lines. Th e technical heart of [Mori88] is a method t o understand the structure 
of X  alon g C.  Onc e we understand th e structur e sufficientl y well , i t i s no t 
too har d t o construc t th e flip.  Thi s approac h wa s furthe r develope d into a 
fairly complet e structure theory o f all possible pairs C C  X  [Kollar-Mori92] . 
In particular , this method give s a very goo d descriptio n o f X+ i n al l cases . 

[Shokurov91] ha s a  mor e genera l situatio n wher e a  complet e descriptio n 
may ver y wel l be intractable . Thu s h e concentrate s o n tryin g t o prov e th e 
existence o f flips.  Hi s metho d i s t o hav e variou s result s to th e effec t tha t if 
certain flips exist then some more general flips also exist. Ther e are about fiv e 
main types of reductions, eac h applied several times. Thi s has the consequence 
that w e know very little about X +. 

At the en d of the progra m we obtain the following theorems. Firs t we state 
the origina l version o f [Mori88], then the generalize d versio n of [Shokurov91]. 

1.3 Theorem . (Existence  of  minimal models) Let  X  be  a smooth projective 
threefold. Then  there  is  a  birational  map  X  —->  X r to  another  projective 
threefold X'  (with  terminal  singularities),  where  X'  satisfies  exactly  one  of 
the following  conditions: 

(1.3.1) Kx f is  nef, i.e.  C  •  Kx'  >  0  for every curve  C C  X'; 
(1.3.2) There  is  a morphism p  :  X' —>  Z'  onto  a  lower dimensional variety 

Z' such  that  Kx 1 is  negative on  the  fibers  of  f. 

1.4 Theorem . (Existence  of  log minimal models) Let  X  be  a smooth projec-
tive threefold.  Let  D  =  ^ d{Di  where the D{ are different irreducible divisors, 
Supp D has  only  normal  crossings  and 0  < d{  < 1. 

Then there  is a birational map 4> '•  X  —X'  to  another projective threefold 
Xf such  that  (X',D f =  <j)*(D)) is  log  terminal  (see  (2.13)),  and  X f satisfies 
exactly one  of  the  following  conditions: 

(1.4.1) K x> +  D' is  nef, i.e.  C  •  (Kx> +D')>0  for  every curve  C  C  X'. 
(1.4.2) There  is  a morphism p  :  X' —•  Z f onto  a  lower dimensional variety 

Z1 such  that  Kx'  +  D' is  negative on  the  fibers  of  p. 

A lot of work has been done on the structure of X' i n the second case of (1.3) 
and (1.4) , especiall y when D  =  0. Som e of the mos t importan t contribution s 
are [Sarkisov81,82 ; Miyaoka-Mori86; Iskovskikh87; Kawamata91a; Alexeev92; 
Corti92]. W e d o no t sa y muc h abou t thi s direction , excep t fo r som e ver y 
special examples i n Chapte r 23. 

The secon d par t o f these note s concern s th e followin g generalization o f 
(1.2) conjecture d i n [Reid83,4.6 ] and prove d i n a  serie s o f article s [Kawa -
mata84,85,91b; Miyaoka87a,b,88a,b]. 
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1.5 Theorem . Let  Y  be  a  projective threefold  with  terminal  singularities 
such that  Ky  is  nef. Then  \mKy  \  is base  point free  for  some m  >  0 . 

In orde r t o see the difficultie s o f the proof , we recall the mai n step s o f the 
two dimensional argument . B y Riemann-Roch we have 

h0(OY(mKy)) +  h 2(Oy(mKY)) >  X(0Y(mKY)) =  m ( m ^ V  K $ +  X(0Y). 

If Ky  >  0  then /i°(Oy(raliV) ) — > oc , and therefor e w e have lot s o f sections. 
This correspond s t o th e cas e whe n |miiV | give s a  birationa l morphis m fo r 
m > 1 . 

Thus assum e tha t Ky  =  0 . Her e w e ar e i n troubl e sinc e w e onl y ge t 
/i°(CV(miiY)) >  X(@Y) —  1 - I n th e ellipti c surfac e cas e w e have t o prov e 
that bot h /i°(CV(raiiV) ) an d / i 1 (Oy(miiV)) g o to infinity , bu t the y cance l 
each other out . 

We have two different cases . 

Irregular surfaces.  W e use the Albanes e morphism Y  — » Alb(Y) t o ge t some 
information. Subvarietie s o f Abelian varieties ar e rather special, hence we can 
expect tha t analyzing  th e morphis m give s us al l necessary information . Thi s 
part ca n be generalized rather successfully to higher dimensions , and i t lead s 
to severa l genera l conjecture s o f Iitaka, most o f which were proved by Ueno, 
Fujita, Viehweg , Kawamata, Kolla r and others . Se e [Mori87 ] for a  survey . 

Regular surfaces. I n this case X(@Y) > 1 , 

h0(O(2KY)) +  h0(O(-KY)) >  1. 

Therefore we can find an effective divisor D G  \2Ky | . I f we expect that 2AY is 
trivial (i.e. , K3  o r Enriques surfaces ) then D =  0 and we are done . Otherwis e 
we expec t tha t Y  i s a n ellipti c surfac e an d D  i s supporte d o n fibers  o f th e 
elliptic fibration.  W e need t o sho w that (som e multiple of ) D  move s in a 
pencil. Ther e ar e tw o problems here. First , D  ca n b e very singular . Second , 
it i s not a t al l obvious that D  moves , even if it i s smooth. Thi s part i s rather 
delicate eve n for surfaces . 

The thre e dimensiona l versio n proceed s along th e sam e mai n lines . Th e 
irregular case has been treated earlier b y the methods of the Iitaka conjectures 
mentioned abov e [Viehweg80] . W e do not dea l wit h thi s part. Thu s w e ar e 
left wit h th e regula r case . 

First w e loo k a t Riemann-Roch . Becaus e o f th e singularities , th e pre -
cise for m i s no t eas y t o wor k out . I t wa s don e b y Barlow-Fletcher-Rei d 
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FLIPS AND ABUNDANCE 

[Reid87,10.3]: 

h0(OY(mKY)) +  h2(0Y(mKY)) >x(Oy(mKy)) 

= m ( ^ l ) ( 2 m - l )4 + ^ t C 2 ( y ) 

+ X(Oy ) +  / ( y , m ) , 

where /(V , m) is a periodic function o f ra, depending only on the singularitie s 
of Y. 

If i f y >  0  then genera l method s o f the Bas e Poin t Fre e Theore m give the 
result (see , e.g., [CKM88,9.3]) . Th e next mai n step , due to [Miyaoka87a,b] , is 
to sho w that Ky  •  ¿ 2 00 >  0 . Afte r furthe r difficulties , w e can a t leas t show 
that i f Ky i s nef then |raiiY | ^  0  for some m >  0 [Miyaoka88a] . 

A furthe r ste p wa s taken b y [Miyaoka88b ] who settled th e proble m com -
pletely i n th e cas e whe n w e expec t Y  t o b e a  penci l o f K3-surfaces . Th e 
arguments ar e analogou s t o th e ellipti c surfac e case , bu t technicall y muc h 
more involved. 

The elliptic threefold cas e was first studie d b y [Matsuki90] , using the idea s 
of [Miyaoka88b] . H e wa s abl e t o achiev e onl y partial results . Finally , thi s 
method wa s furthe r develope d in [Kawamata91b] . H e improve d Matsuki' s 
argument a t a  decisive point. I n general, one needs to deal with the possibility 
that D  G  |m/iV| i s badly singular . Kawamat a consider s a log minimal model 
for K  +  redD.  Whil e w e ge t mor e complicate d threefold singularities , th e 
resulting member o f \mK\  become s much better, which is crucial . 

Before w e give a detaile d outlin e o f the proofs , w e need t o discus s a  littl e 
about th e relevan t singularities . 

SINGULARITIES 

Singularities ente r into th e progra m alread y a t th e firs t ste p [Mori82 ] an d 
[Reid80,83], and understandin g them i s an indispensabl e initia l part o f three 
dimensional birationa l geometry . Se e [Reid87 ] for a  general introduction . 

The followin g observation s lea d t o the correc t classes of singularities . 

(1.6.1). Ou r main interes t is in studying th e canonica l class Kx an d i n being 
able to compute its intersection number s with curves. Thu s we need Kx t o be 
Cartier or at leas t Q-Cartier (i.e. , a multiple o f Kx i s Cartier). Frequentl y w e 
may even restrict ourselve s to the cas e when every Weil divisor is Q-Cartier . 

(1.6.2). Le t X b e a normal variety such that Kx i s Q-Cartier. Le t f  :Y  —>  X 
be a  proper birationa l morphism . W e can writ e 

KY =  f*Kx  +  Ta (E,X)E, 
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where E  C  Y ar e exceptiona l divisors, a(E,X) G  Q and =  denote s numerica l 
equivalence. 

a(E,X) i s calle d th e discrepancy  of E  wit h respec t t o X.  f(E)  C  X  i s 
called th e center  of E o n X  an d i s denoted b y Centerx(^) . A  diviso r E  i s 
called exceptional  if dim Center x <  dim X — 2. 

If / ' :  Y f —•  X i s anothe r prope r birationa l morphis m an d E'  C  Y'  i s 
the birationa l transfor m (2.4.1 ) o f E  o n Y'  the n a(I?,X ) =  a(E',X)  an d 
Centerx(i?) =  Center  x(E'). I n thi s sense a(E,X)  an d Centerx(£" ) depen d 
only on the diviso r E bu t no t on Y. Thi s is the reason why Y i s suppressed i n 
the notation. A  more invariant description is obtained by considering the rank 
one discret e valuatio n o f the functio n field  C(X)  correspondin g to a  divisor . 
Thus w e obtain a  functio n 

a( , X ) : {divisors of C(X) wit h nonempt y cente r o n X}  — • Q. 

(If X  i s proper the n every divisor has a  nonempty center. ) 
(1.6.3) I t turn s ou t t o b e ver y natura l t o measur e th e singularitie s o f a 

variety X  b y the behavio r o f the discrepanc y function . Th e mos t importan t 
measure i s given by 

discrep(X) =  mf{a(E,X)\E  exceptional , Center x(E) ^  0 } G E U { - o o } . 
E 

The followin g i s clea r b y considerin g th e blo w u p o f a  codimensio n two 
sub variety: 

1.7 Claim . If  X is  smooth then  discrep(X ) = 1 . 

This property i s close to characterizing smoot h varieties. Th e precise state-
ment i s the following . 

1.8 Conjecture . Let  X  be  a  normal  variety  such  that  Kx  is  Q-Cartier. 
Then X  is'smooth  iff 

a(E, X)  >  dimX -  dim(Center x(£)) -  1 F O R EVERY E -

This i s true if dimX <  3  (cf . (17.1.2)) . 
For arbitrary varieties th e followin g resul t limit s th e possibilities : 

1.9 Proposition . [CKM88,6.3]  Let  X  be  a normal variety  such  that  Kx  I s 

Q-Cartier. Then  one  of the following  holds: 
(1.9.1) discrep(X ) G [—1,1] and the  inf is  a minimum; 
(1.9.2) discrep(X ) = - o o. 

For mos t singula r varietie s w e have (1.9.2 ) an d th e first  cas e shoul d b e 
considered ver y special . I n general , th e large r discrep(X) , th e milde r th e 
singularities o f X. 

14 
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There ar e fou r classe s that deserv e special  attention : 

1.10 Definition.  Le t X  b e a  norma l variet y suc h tha t K x i s Q-Cartier . W e 
say that 

X ha s I 

f termina l 
canonical 
log terminal 

^ lo g canonical 

singularities if discrep(X) 

f >o, 

> - l , 

> - 1 . 

In dimensio n tw o these classes correspon d t o well-know n classe s o f singu-
larities: 

1.11 Theorem . Let  0  £ X  be  a (germ of  a) normal surface  singularity  over 
C. Then  X is 

terminal smooth; 

canonical <=>  C 2/(finite subgroup  of  SL(2, C)) ; 

log terminal  C 2/(finite subgroup  of  GL(2, C)) ; 

log canonical  <=> simple elliptic,  cusp,  smooth  or  a quotient of  these 

All o f these classes occup y an importan t plac e in the theory : 

(1.12.1). Termina l singularitie s are the smalles t clas s in which Mori's program 
can work , even i f we start wit h smoot h an d projectiv e varieties . 

(1.12.2). Canonica l singularities are precisely those that appear on the canon -
ical models of smooth varietie s of general type . [Reid80 ] 

(1.12.3). Lo g termina l singularitie s ar e precisel y thos e tha t appea r o n th e 
canonical model s o f smoot h varietie s o f nongenera l type . [Kawamata85 ; 
Nakayama88] 

Log canonical singularitie s appear naturally in a  differen t context : 

1.13 Conjecture . Let  X  be  a  proper and  normal  variety  such  that  Kx  is 
Q-Cartier. 

(1.13.1) If  X has  log canonical singularities then 

H\X, C ) H\X,  O x) is  surjective for  every  i. 

(1.13.2) Log canonical is the largest class where the above surjectivity holds. 

(More precisely , there is a  loca l version o f the abov e surjectivity involvin g 
De Rha m complexe s [DuBois81; Steenbrink83], an d thi s local version shoul d 
characterize lo g canonical singularities. ) 

Both direction s ar e tru e if X ha s isolate d singularitie s [Ishii85]. 
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Next we introduce the "perturbations" o f K which are crucial in the sequel. 
Instead o f concentrating on Kx w e consider pairs (X, £>) , where X i s a normal 
variety an d D =  Y^diDi i s a diviso r such that D{  distinct an d 0 <  d t; < 1 . 
Such a divisor is called a boundary. There are at least three reasons to consider 
these: 

(1.14-1) Flexibility.  B y choosing D appropriately, w e are able to analyze sit-
uations whe n Kx i s small (e.g. , Kx  =  0). 

(1.14-2) Open  varieties.  Le t X b e a smoot h variet y an d let X  C  X  b e a 
compactification suc h tha t D  =  X —  X i s a diviso r wit h norma l crossings . 
H^X^Qg) ar e basic cohomologica l invariants of X, but they depen d on X, 
not onl y on X. [Grothendieck66 ] discovered that th e groups 

Hi(X,il)t(logD)) 

depend only on X, no t on the completion X. Th e simplest on e is 

H°(X,ux(D)) or more generaüy H°(X, (ux(D))® m). 

Thus if we want t o study propertie s tha t reflec t the choice of X, it is natural 
to conside r the divisor Kx +  D. 

(1.14.3) Fiber  spaces.  Th e simplest exampl e i s Kodaira' s canonica l bundl e 
formula fo r elliptic surface s [BPV84,V.12.1] . Le t / :  S —•  C b e a minima l 
elliptic surface. Le t m2F2- = / * ( c 2 ) b e the multiple fibers . The n 

Ks =  f*Kc +  rihKsic) + Y,(mi ~ 

ЕЕ Г [Kc + (f.Ks,c) + E ( X -  ¿ ) M • 

Thus th e study o f Ks ca n be reduced to the study o f a divisor of the form 
Kc + D where D  has rational coefficients . Th e same happen s i n general for 
fiber space s / :  X —• y where the general fibe r has trivial canonica l class. 

The notio n of discrepancy is again the fundamental measur e o f the singu-
larities of (X, D) . 

1.15 Definition. Le t X b e a normal variety and D = ^ d 2Z?2 a  Q-divisor (not 
necessarily effective ) suc h tha t Kx  + D is  Q-Cartier. Le t / :  Y —>  X b e a 
proper birationa l morphism . The n we can write 

KY =  f*(Kx +  D) + £ a(E, X, D)E 
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where E C Y are distinct prime divisors and a(E, X, D) € Q. The right hand 
side is not unique because we allow nonexceptional divisors too. In order 
to make it unique we adopt the convention that a nonexceptional divisor F 
appears in the sum iff F = Di for some z, and then with the coefficient 
a(F,X,D) = -di. 

We frequently write a(E, D) if no confusion is likely. 
As explained in (1.6.2), a(E,X,D) depends only on the divisor E but not 

on y . Thus we obtain a function 

a( , X, D) : {divisors of C(X) with nonempty center on X} —> Q. 

a(E,X,D) is called the discrepancy of E with respect to (X, D). We define 
as in (1.6.3) 

discrep(X,D) = mf{a(E,X,D)\E is exceptional, Centerx(£') ^ 0}. 
E 

We also use the notation logdiscrep(X, D) = 1 + discrep(X, D). 

1.16 Definition. Let X be a normal variety. Let D = Y^diDi be an effective 
Q-divisor such that Kx + D is Q-Cartier. We say that 

terminal ( > 0, 
. canonical , x I > 0, 

(X,D) oi Kx + D is { i i , ifdiscrep(X) < " 
purely log terminal | > — 1, 
log canonical \ > — 1. 

We say that (X, D) is Kawamata log terminal if (X, D) is purely log ter
minal and di < 1 for every i. 

1.17 Remark. If D = 0 then these definitions agree with (1.10). One should 
note that if D ^ 0 then the terminal and canonical conditions on a log variety 
(X, D) are not preserved under extremal contractions in general. 

The divisors K + D that appear in the context of (1.14.3) are Kawamata 
log terminal, but the divisors appearing in (1.14.2) are not. Arbitrary log 
canonical singularities form a too large class; for instance, they need not be 
rational. 

Kawamata log terminal seems to be the largest class where the proofs of 
[CKM88,9-13] go through with only minor modifications (see [KMM87]). 

Thus the need arises for a suitable class between Kawamata log terminal 
and log canonical. There can be two different objectives in defining such a 
class. 

17 
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(1.18.1) Minimalist.  Tak e th e smalles t clas s tha t i s necessar y i n orde r fo r 
the Minima l Model Program t o work starting with a  pair (X , D) wher e X  i s 
smooth and D  i s a boundary whose components are smooth and have normal 
crossings only. 

(1.18.2) Maximalist.  Tak e th e larges t clas s wher e al l th e relevan t theorem s 
still hold. 

There are several proposed definitions (2.13) . However , in my opinion none 
of the m satisfie s an y o f the abov e objectives fully. Th e lac k o f a goo d clas s 
leads to technica l difficulties later. 

DESCRIPTION O F TH E CHAPTERS 

We start with two introductory chapters : Chapte r 2  gives the precis e defi -
nitions and basi c properties o f log terminal threefold s an d thei r log canonical 
models. Man y o f the result s ar e rathe r technica l an d ar e use d onl y toward 
the end  o f the notes . Th e reade r shoul d ski p (2.16-35 ) a t th e first  readin g 
and refe r bac k only as necessary . 

Chapter 3  give s the folklor e classification o f log canonical surfac e singu -
larities (X,  B)  wit h reduce d (possibl y empty) boundar y B.  Thi s wa s first 
written dow n in [Kawamata88] . Here we present a n elementar y proof , due to 
Alexeev, whic h works in an y characteristi c an d generalize s wel l to fractiona l 
coefficients. 

L O G FLIP S I . 

The ai m o f the first  majo r par t o f the note s (Chapter s 4-8 ) is to giv e our 
first proo f o f the existenc e and terminatio n o f log flips.  Thi s proo f relie s on 
[Mori88], bu t i s otherwise fairly short . 

Chapter 4  deals with flops  and flips on threefolds wit h termina l singulari -
ties. Firs t we prove the existenc e of flops due to [Reid83 ] and the terminatio n 
of flops  an d flips.  Th e argument s ar e take n fro m [Kawamata88 , Kollar89 , 
Matsuki91, Kawamata91c] with several improvements. Th e main result is the 
following: 

1.19=4.15 Theorem . (Termination  of  Hips for canonical 3-folds) Let X  be  a 
normal three  dimensional Q-factorial variety and D an effective Q-divisor  such 
that (X,  D)  is  canonical.  Then  any  sequence  of  flips for  (X,  D)  terminates, 
i.e., there  is  no infinite sequence 

(X0,Do) -*  (X 1,D1) —»  (X 2,D2) 

4>o OO+OO1 OO+OO1 
Z0 Zx z2 
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where Xi+i =  (X{) + is  a Kx{ +Di-flip  of  X\ and  D{ is the birational transform 
ofD0 =  D. 

Chapter 5  show s that lo g flips  exis t i n th e specia l cas e whe n (X , D) i s 
terminal or canonical (4.9) . Thi s is the poin t where [Mori88 ] is used. 

Chapter 6  present s th e s o calle d Backtrackin g Metho d o f flipping (6.4) 
which i s used severa l time s t o construc t flips.  Th e first  two applications ar e 
the Crepan t Descen t Theorem s (6.10-11) . Thes e ar e base d o n earlie r case s 
worked ou t i n [Kawamata88 , Kollar89 , Kawamata91c]. The main ide a is th e 
following. W e want t o flip /  :  X —»  Z.  Assum e that w e can find a  birationa l 
morphism h :  X' —•  X suc h that Kx 1 =  h*Kx-  The n we are able to construc t 
the flip of g by constructing various flips on X'. I n many cases, X' exist s an d 
its singularitie s ar e simple r than the singularitie s o f X. Th e main applicatio n 
is the following : 

1.20=6.15 Theorem . Assume  that  three  dimensional  terminal  flips  exist. 
Let (X , B) be  a log terminal  Q-factorial  threefold. Then  log  Sips exist,  and 
any sequence of  them is  finite. 

Chapter 7  discusses the question of termination o f log flips in a special case. 
The arguments are taken from [Shokurov91 ] with severa l improvements. 

Finally, i n Chapte r 8  we strengthen th e previou s results by proving that 
flips exist i f (X,D)  i s log canonical (as opposed to lo g terminal). Th e tech -
niques ar e independen t o f the previou s chapters . A t th e en d w e extend th e 
method t o prove the followin g log canonical version of (1.5) : 

1.21=8.4 Theorem . Let  X  be  a proper threefold.  Assume  that  Kx  +  D is 
log canonical,  nef and  big.  Then  m(Kx  +  D) is  base  point free  for  suitable 
m >  0 . Thus 

oo 

^2 H°(x> 0(s(K x +  D))) is  finitely generated. 
5 = 0 

ABUNDANCE 

While the genera l abundance proble m can be formulated onl y for minima l 
models, some of its most difficult aspects were originally conjectured in a form 
not involvin g the notio n o f minimal models . Thi s approac h i s based o n th e 
following: 

1.22 Definition. A  variety X n i s called uniruled i f there exists a variety Y 71"1 

and a  dominant rationa l map Y x  P1 —•» • X. (Equivalently , there is a rational 
curve through ever y point o f X.) 
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1.23 Theorem . [Miyaoka-Mori86]  Let X'  be  as in (1.3).  Then 
(1.23.1) HK X' is  nef (1.3.1)  then X'  is  not uniruled. 
(1.23.2) IfX'  is  as in (1.3.2)  then X'  is  uniruled. 

The first  importan t par t o f abundance i s the followin g ol d question, which 
from th e ne w point o f view is a combination of (1.3) and (1.5) : 

1.24 Conjecture . Let  X  be  a  smooth projective  variety.  Then  X  satisfies 
exactly one  of  the following  conditions: 

(1.24.1) X  is  uniruled;  or 
(1.24.2) h°(X,  0{mK x)) >  0 for some m  >  0 . 

It i s in this form that th e first  substantia l result was achieved: 

1.25 Theorem . [Viehweg80,Satz  I]  Let X  be  a smooth projective  threefold 
over C.  Assume  that  h}(Ox)  >  0. Then  exactly  one  of the following  holds: 

(1.25.1) X  is  uniruled. 
(1.25.2) X  is  birational  to  a  smooth variety  X f such  that  mKx r ~  0  for 

some m  >  0 . 
(1.25.3) h°(X,  0(mK x)) >  2 for some m  >  0 . 

As already mentioned , the proo f relie s on the (b y now) usual techniques of 
the Iitak a conjectures, an d w e do not presen t it . We , however, use this result 
to concentrat e o n regular threefold s only . 

While (1.24 ) ca n be stated without minima l models , its proo f i n dimension 
three requires th e theor y o f minimal models . There are tw o major steps . Th e 
first one is the generic semipositivity of [Miyaoka87a,b,88a] . To be precise: 

1.26=9.0.1 Theorem . Let  X n be  a smooth projective  variety  and  assume 
that X  is  not  uniruled.  Let  H  be  sufficiently ample  on  X and  let  C  be  the 
complete intersection  of  (n  —  1 ) general  members of  \H\.  Then  &x\C  does 
not have  any  quotients  of  negative degree. 

The original proof of Miyaoka is very technical and complicated. I n Chapte r 
9 we give a simple r proo f du e to Shepherd-Barron . 

This result implies that various Chern number s ar e nonnegative (i n partic -
ular — ci(X)c2(X) >  0) , whic h i s exactl y wha t w e nee d i n th e Riemann -
Roch formula . However , eve n i f th e linea r ter m i s positive , w e ar e no t 
done sinc e ther e i s n o vanishin g resul t fo r th e h 2(Ox{mKx)) term . I n 
the cas e whe n X  i s a  penci l o f surface s wit h trivia l canonica l class , bot h 
h?(Ox(™>Kx)) a n d h 2(Ox{^Kx)) g o to infinity . Th e way out i s to observe 
that i f h 2(Ox{™<Kx)) ^  0  then we obtain a  nontrivial extensio n 

0 -> O x((l ~  m)Kx)  ->  E  E->+Ox--->0. 
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Analyzing the stabilit y o f E lead s to the necessar y result. Thi s part relies on 
the result s o f [Donaldson85] . W e finally achiev e the firs t majo r ste p towar d 
abundance. 

1.27=9.0.6 Theorem . (1.24)  is true  in dimension  three. 

The next thre e chapters ar e preliminar y i n nature. Chapte r 1 0 deals with 
the theor y o f Chern classe s applied t o ^-bundles , ^-bundle s ar e locall y th e 
quotients o f vector bundles by finite groups ; one can expect that mos t o f the 
relevant result s go through. [Kawamata91b ] sketches th e analyti c approach , 
we present a n algebrai c one. Th e Bogomolov inequality fo r stable Q-sheave s 
(10.11) and a n improved Bogomolov-Miyaoka-Yau inequality fo r log surfaces 
(10.14) ar e du e to Megyesi . 

Chapter 1 1 proves abundance fo r log canonical surfaces. Thi s was settle d 
by [Kawamata79 ; Sakai83 ; Fujita84 ] (i n fact thei r result s are mor e general). 
We present onl y those results needed in subsequent chapters . Ou r proofs are 
adapted fro m three dimensional methods. 

For later applications we also need to consider certain nonnorma l surface s 
with so called semi log canonical singularities. Thes e are considered in Chap-
ter 12 . Th e key results (give n in section 12.3) describe some special feature s 
of normal surfaces tha t wer e used in [Shokurov91 , 6.9 ] for different purposes . 
The mai n idea s see m to appl y in al l dimensions . W e also prove a versio n of 
(1.13) fo r semi log canonical surfaces. 

With thes e preparation s behin d us , th e threefol d cas e i s no t tha t hard . 
First w e divide the proble m into four parts using the followin g notion . 

1.28 Definition.  Le t L  b e a  ne f lin e bundl e o n a  prope r variet y X.  (I.e . 
L-C >  0 for every curve C C  X.) W e define its numerical  Kodaira dimension 
by 

v(L) =  max{& | L^^L  i s not zer o in H 2k(X, Q).} 

k—factors 

Clearly 0 < v(L)  <  dimX . 

Two of the case s are eas y to dispense with : 
1.29 Theorem . Let  X  be  a  projective  n-fold  with  terminal  singularities. 
Assume that  Kx  is  nef and  let D  £  |mifx| -

(1.29.1) Ifu(Kx)  =  0  then D  = <b  hence  mK x ~  0 . 
(1.29.2) Ifu(Kx)  =  n  then  by  [CKM88,9.3],  \rK x\ is  base  point free  for 

some r  >  1 . 

In dimension three we are lef t wit h two cases: v  = 1,2 . Th e first cas e was 
treated b y [Miyaoka88b] , the secon d by [Kawamata91b] , who also simplified 
the proo f i n the firs t case . 
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Let D  E  |raifx| - Th e argumen t o f Kawamata start s by replacing (X , D) 
with anothe r mode l (X\D f) suc h tha t Kx>  + redD' i s lo g terminal . Th e 
origins o f this procedur e ca n b e trace d t o th e doubl e projection metho d of 
G. Fano . B y the result s of Chapter 16 , redD' i s semi log canonical. I n bot h 
cases we perform som e further modification s to simplify the model . 

Chapter 1 3 considers the cas e v(Kx)  =  1 . Her e we find a  model (X",D") 
such that ever y connected component of D" i s irreducible an d re d D" i s semi 
log canonica l (13.3.1-2) . Th e crucia l propert y o f D"  i s tha t (1.13.1 ) hold s 
for sem i lo g canonica l surfaces . Onc e thi s i s established , th e argumen t o f 
[Miyaoka88b] improved by [Kawamata91b ] shows that D"  move s in a  pencil. 

Chapter 1 4 consider s th e cas e v(Kx)  =  2 . Ou r argument s ar e differen t 
from the one given in [Kawamata91b]. By choosing a suitable mode l (X", D") 
a crucia l Tod d class computatio n become s rather eas y (14.3) . Furthermore , 
we ca n lif t section s o f 0{nKx")\D"  t o X"  directly . Thes e result s however 
only give a penci l in |miTx | while we expect a  morphism ont o a surface . 

The remainin g proble m was settle d earlie r b y [Kawamata85 ] i n a  genera l 
form. Hi s argument relie s on a very technical generalization o f the Bas e Poin t 
Free Theorem. I n Chapter 1 5 we present a  shorter geometri c argument, whic h 
is however probably restricted t o dimension three. 

LOG FLIP S II . 

In th e thir d majo r par t (Chapter s 16-22 ) we return t o Shokurov' s proo f 
of lo g flips . Thi s approac h doe s no t us e [Mori88] , an d ou r presentatio n i s 
self-contained (assumin g o f course [CKM88]) . Thi s proof als o uses (7.1) . Fur -
thermore a t th e presen t i t does not yield termination o f a sequence of log flips, 
so that (6.11 ) i s also needed to complet e this approach t o prove (1.4) . 

Let S  C  X b e a  Weil divisor. I n Chapte r 1 6 we define the differen t Dif f of 
a diviso r in a  variety . Dif f s(0) essentiall y measure s th e failur e o f the adjunc -
tion formula Ks  =  (Kx  +  S)\S i n the presenc e of singularities. [Shokurov91 ] 
considers this under som e restrictive assumptions ; th e genera l case was discov-
ered and worked out by Corti. W e also classify three dimensional log terminal 
singularities (X , B) wher e B  i s "large" . 

Then we want t o use the differen t t o relate properties o f X t o properties of 
S. Thi s i s done in Chapte r 17 . Th e main resul t fo r the presen t application s 
is the following , calle d "inversio n o f adjunction" . 

1.30=17.6 Theorem . Let  X  be  normal and  S  C  X an  irreducible divisor. 
Let B  =  b{B{  be an  effective  Q-divisor  such  that  6 2- < 1  for every  i,  and 
assume that  Kx  +  S + B is  Q-Cartier. Then  Kx  +  S + B is  purely log  terminal 
in a  neighborhood of  S iff  Ks +  Diff(J3 ) is  Kawamata log  terminal. 
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In [Shokurov91 ] this was proved in dimensio n three by a  rather elaborat e 
argument. Th e proof in Chapter 1 7 works in all dimensions and is fairly short . 

Chapter 1 8 contains th e first  tw o reduction steps . (1.30 ) allow s us to sim-
plify th e proof s of Shokurov considerably while generalizing variou s part s t o 
higher dimensions . Th e conclusio n is th e followin g resul t (stil l restricte d t o 
dimension three) : 

1.31=18.9 Theorem . Assume  that  the  flip exists for every small  contraction 
g :  {U,K  +  S)  —»  V such  that  S  is  reduced,  irreducible  and  has  negative 
intersection with  C (these  are  called special Sips). 

Then the  flip exists  for  any  small  contraction  f  :  (X, K  +  D) —>  Z  such 
that K  +  D is  Kawamata log  terminal. 

During th e proo f o f (1.31 ) w e encounter on e o f the majo r discoverie s of 
[Shokurov88,91]. Le t m e describe a simila r phenomeno n where th e complet e 
result i s known. (Se e [Alexeev89] for a  more difficult example. ) 

Let D<i  =  {discrep(X) | X  i s a log canonical surface} . 

1.32 Theorem . (Shokurov,  unpublished)  Notation  as  above. Then 
(1.32.1) Any  increasing  subsequence of  D2 is  finite; 
(1.32.2) The  accumulation  points  of  D2 are  exactly 

- 1 an d - 1 +  1,- 1 +  1,- 1 +  1,.. , 

Shokurov's observatio n i s that simila r result s hold in man y differen t con -
texts. Se e (18.16) fo r the precis e conjectures . 

Chapter 1 9 considers complements on surfaces. Th e notion of a complement 
is another on e of the majo r ne w inventions o f [Shokurov91]. Th e main resul t 
(19.4) say s that in many situations we can replace the boundar y ^  h {Bi wit h 
another diviso r ] ^ bf

iBf

i suc h that 

h\ e  —  N fo r every i,  where n  £  {1 ,2 ,3 ,4 ,6} . 

Some other importan t technica l results are als o proved. 
Unfortunately th e flips  required i n (1.31 ) ar e stil l ver y hard t o construct , 

and w e need severa l preparator y results , presented i n Chapte r 20 . W e prove 
that th e flip of / :  (X, K +  B)  — • Z exist s i f B ha s a t leas t tw o reduced com -
ponents intersectin g th e contracte d curv e C  (20.7) . Thi s i s used repeatedl y 
in the nex t tw o chapters . 

The specia l flips  g  :  (U,K  +  5 ) — • V o f (1.31 ) ar e studie d i n Chapter s 
21-22. I n thi s cas e w e have K s =  (K  +  S)\S, an d therefor e g\S  :  S ->  S' 
is a  ifs-negativ e contraction . Furthermore , b y the result s o f Chapter 16 , S 
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has onl y log terminal singularities . Thu s w e are i n th e situatio n o f Chapte r 
19 and w e can analyz e g  in terms of the propertie s o f the surfac e S.  B y th e 
results o f Chapter 1 9 mentioned abov e we can find a  reduced diviso r B  an d 
an intege r n  G  {1 ,2 ,3 ,4 ,6} suc h that 

Different value s o f n presen t differen t level s of difficulty fo r flipping.  Every -
thing i s easy i f n  =  1  (21.4) . Th e case s where n  =  3,4, 6 ar e reduce d t o th e 
n =  2  case in (21.10) . 

The really hard part is the n  = 2  case. Thi s is where [Shokurov91] contains 
an erro r ([ibid,8.3 ] i s false). A  new version ([Shokurov92] ) wa s completed in 
February '92 . I n Chapte r 2 2 w e restric t ourselve s t o presentin g th e mai n 
line of the arguments . Hopefull y this helps the reade r t o study th e complete 
version. 

Chapter 2 3 is independent o f the res t o f the notes . I t review s the proo f of 
an ol d theorem o f [Morin40] an d [Predonzan49 ] saysing that complet e inter-
sections in Pn o f very low degree are unirational. Thi s was done independently 
by [Ramero90] . 

FURTHER DEVELOPMENT S 

Several o f the participant s hav e continue d t o wor k on th e problem s dis -
cussed in these notes . Alexee v proved that ^(fano ) an d henc e «S 3 (local) an d 
c>4 (local) satisf y th e ascendin g chain conditio n (cf. Chapte r 18) . Fong, Keel, 
Matsuki an d M cKernan proved several results about lo g abundance fo r three -
folds. Szab o is doing some foundational wor k which should clarify the various 
different flavors  o f log terminal give n in (2.13) . 

FLOWCHARTS 

The followin g diagram s exhibi t th e logica l structur e o f the proof s o f th e 
principal results . Th e arrow s indicat e onl y the mai n line s o f the arguments . 
There ar e man y othe r occasiona l references t o other parts . 

C-(K +  S+ ^Bj  =  0 and K  +  S  H—B i s log canonical, 
n 
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FLOPS AN D EAS Y FLIP S 

Existence o f Terminal Flops : 4.8 

( Crêpant Descent\ 
6.10 ; 

Canonical Flops : 6.14 

Easy Flips : 20.7 

Termination o f Flops: 4.11 

Covering Methods: Ch. 2 0 

Complements o n Surfaces : Ch. 1 9 

LOG MINIMA L MODE L PROGRA M I 

Mori88 

4 
Existence o f Canonical Flips : 5.4 

(Crêpant Descent \ 
6.11 ; 

Termination o f Flips:4.10 

Existence o f Flops: 4.8 

LC Flips : 8.1 <=\ Log Terminal Flips : 6.15 

Minimal Models 
Log Terminal Cas e Termination o f Flips: 7.1 
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ABUNDANCE FO R THREEFOLD S 

v > 0 =s> \mK\ Ï 0 : 9.0. 6 

a. 

(pick D  e \mK\) 

/ construct (X',D')  \ 
\ lo g canonical : 13.2 J 

S 

4 

{ 
1/ =  0  mif ~  0: 1.29. 1 

v = 3  =^ ImiTl i s free: 1.29.2 

\ 

{v =  2) 

4 

Minimal Mode l Progra m 
Log Termina l Cas e 

Q-Chern Number s 
Ch. 1 0 

( D ' deform s \ 
Ch. 1 3 J ( lift section s from \  /comput e x(mKx') 

nKX'\D' :  14. 4 y  * \ usin g R-R : 14. 3 

ft 
nüGr-P' : 14. 4 

ft 
Surface Abundance : Chs . 11,1 2 

m stand s for a  sufficiently larg e an d divisibl e natural number . 
If K  i s nef then v  =  v(X)  i s defined i n (1.28) . 
(For threefold s w e have fou r cases : v  £  {0 ,1 ,2 ,3} . ) 
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LOG FLIP S I I 

Different an d Adjunction : Ch. 1 6 

Inversion o f Adjunction: Ch. 1 7 

Ascending Chain Condition : 18.25 

Reduction t o Specia l Flips: 18.9 Termination o f Flips: 7.1 

/ Sub divison by index \ 
V n  =  1,2,3,4,6 ) 

( Backtracking Metho d \ 
6.4-5; 21.6-9 J 

/ I \ 

Complements o n Surfaces: Ch. 1 9 

Easy Flips : 20.7 

n = 1 n = 3,4, 6 n = 2 
21.4 21.10 Ch. 2 2 
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2. LOG CANONICA L MODELS 

ANTONELLA GRASS I an d JÂNOS KOLLAR 

In th e followin g w e consider normal algebrai c schemes or normal comple x 
analytic spaces . Al l the propositions are stated in terms o f the algebrai c case, 
although th e proof s work for the analyti c cas e with minor modifications. 

BASIC DEFINITION S 

2.1 Definition. 
(2.1.1) /  :  Y - ~ » X denote s a  map ; / :  Y — • X a  morphism , tha t is , 

a ma p everywher e defined . W e try t o b e ver y systemati c abou t usin g das h 
arrows for maps and soli d arrows for morphisms. 

(2.1.2) A modification / :  Y — X i s a birational map . 
(2.1.3) A proper morphism / :  Y — > X i s a contraction if f*Oy  = Ox-
(2.1.4) Let / :  Y  — • X b e a  contractio n wit h dim Y = dimX. f  i s a 

birational contraction (or blow down ) i f X i s viewed as constructed from 
Y; extractio n (o r blow up ) i f Y is viewed as constructed fro m X. 

(2.1.5) A modification o f a prope r morphis m / :  X —> Z int o a  prope r 
morphism g :  Y —•  Z i s a commutative diagra m 

4> 
X Y 
f \ / 9 

Z 

where (j)  :  X —Y  i s a modification. 
(2.1.6) A  birationa l contractio n i s smal l i f i t i s a n isomorphis m in codi -

mension one . Equivalently , th e exceptiona l set ha s codimensio n > 2 . (Th e 
literature i s rather inconsisten t abou t th e definito n o f small morphism . Al l 
definitions that we know of agree in dimension three but no t in higher dimen-
sions.) 

2.2 Definition.  I n the followin g X  i s an n-dimensiona l normal variety : 

S. M . F. 
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(2.2.1) D  =  J2diDi w i t h Di  distinc t prim e Wei l divisors , di  G  1 (o r G  Q ) 
is called an R -divisor (Q -divisor). 

(2.2.2) A n R (o r Q)-Cartier diviso r D  i s an R  (o r Q)-linear combinatio n 
of Cartier divisors which need not t o be irreducible o r reduced. Th e index of 
D i s the smalles t natura l number m  suc h that mD  i s Cartier. Th e index of 
X i s the inde x o f Kx (i f it make s sense). 

(2.2.3) Le t D  =  E Di Di  be an R-diviso r as in (2.2.1) . Se t 

SuppD =  U{SuppZ? 2- suc h that di  ^  0} . 

(2.2.4) A n R-divisor as in (2.2.1 ) i s a subboundary i f di <  1 for al l i  an d 
a boundar y i f 0 < di  <  1 for al l i. 

(2.2.5) Fo r r  e  R  let i_ r j =  max{ * e Z  such that t  <  r} an d rr~ l = - L - r J . 
(These are pronounced round down resp. roun d up.) Le t { r } = r  — i_rj denote 
the fractiona l par t o f r. 

(2.2.6) Assum e that D  =  ^diDi  suc h tha t al l th e D^s  ar e distinct . Le t 
L D J =  ^[.di-iDi  an d {D}  =  E (Di) Di.  I f D  i s a  boundary , L D J is th e 
reduced par t o f D; {D}  i s the fractiona l par t o f D. 

Warning: I f D  i s Q-linearly equivalen t t o D' , it doe s not follo w tha t L D J 
is linearly equivalen t t o L D ' J . 

2.3 Definition. Le t (X , Dx) b e a normal variety X  togethe r wit h a  boundar y 
Dx- {X,  Dx) i s a called a log variety with log canonica l divisor Kx+Dx> 
If ther e i s n o dange r o f confusio n w e wil l denote this simply b y (X , D). 

We think of Kx +  Dx a s a mixed object: Kx  i s a linear equivalenc e class, 
while Dx  i s a fixed Weil divisor. 

2.4 Definition. 
(2.4.1) Le t /  :  X —•>  Y  b e a  ma p whic h i s a  morphis m i n codimension 

1 an d le t D  b e a  Wei l diviso r o n X.  W e denot e th e imag e o f D  a s Wei l 
divisor b y f*(D).  Thi s extend s b y linearity t o th e se t o f all R-Wei l divisors. 
If /  i s birationa l the n f*(D)  i s called the birational , (o r proper, o r stric t ) 
transform o f D.  Thi s notatio n wil l frequently b e use d whe n /  =  g~ l, i n 
which case the notatio n g~ 1(D) =  (g^ 1)^(D) look s slightly unusual . 

(2.4.2) A  log morphis m / :  (Y, DY) - > (X, D x) i s a morphism f:Y->X 
such that f*{D Y) C  D x. 

2.5 Definition-Proposition,  (cf . (1.15) ) 
(2.5.1) Le t Kx  +  Dx b e an R-Cartie r diviso r on a normal variet y X , an d 

f :Y  —>  X  an y extraction . Choos e representatives o f Kx an d K Y suc h that 
f*(Kx) an d K Y coincid e on the smoot h locus of Y. Then 

KY +  f:\D x) =  f*(K x +  Dx) +  Y,a(Ei,D x)Ei, 
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for some real numbers a(E{,  Dx)', wher e the {E{}  ar e the exceptional divisors. 
(2.5.2) Th e numbe r a(E{,Dx)  doe s not depen d o n th e choice s made. I t 

is calle d th e discrepanc y o f E{  wit h respec t t o (X , D). Whe n ther e i s n o 
danger o f confusion we write a(E{)  fo r a(E{,  0). 

(2.5.3) 1  + a(Ei,Dx)  i s the lo g discrepanc y (denote d by ai(Ei,Dx))> 
(2.5.4) In general we define the discrepancy of any divisor F o f the functio n 

field C(X) wit h cente r o n X (se e also (1.6)) . I f c(F) i s the coefficien t of F i n 
Dx, the n we set b y definition th e discrepanc y of F t o be a(F,Dx)  =  —  c(F), 
while the lo g discrepancy is ai(F, Dx) =  1  + a(F , Dx) —  1  — c(F). 

The log discrepancy behaves better in certain formula s (cf . e.g . (20.3)) . 

2.6 Remark.  W e will sometimes need the notion of discrepancy in cases where 
X i s no t normal . Instea d o f trying t o wor k ou t th e mos t genera l case , we 
restrict ourselve s to the followin g special  situation : 

(2.6.1) X  i s reduced, equidimensiona l an d i f P  6  X  i s a  codimensio n one 
point then P i s either smooth or two smooth branches of X intersec t transver -
sally a t P. 

If X  an d Y  bot h satisf y (2.6.1 ) then we say that /  :  Y —•  X  i s birational i f 
(2.6.2) /  an d / _ 1 ar e isomorphism s at th e generi c points o f X an d Y  an d 

also at codimensio n one singular point s o f X an d Y. 
In this situation one can define discrepancies exactly as in (2.5) . 

2.7 Definition.  Le t /  :  X —->  Y  b e any modification . Le t {F{}  be the excep -
tional divisor s of f~ l. 

If Kx  +  Dx i s R-Cartier , le t T  =  {f(F{)}  b e a  sequence of real number s 
such tha t 1  >  f{Fi)  >  min{l , -a(F 2-, Dx)}- Th e ^-birationa l transfor m 
of Dx  i s defined a s 

We always assume tha t Ky  +  (Dx)jr  Y i s R-Cartier. Thu s a(F 2-, (Dx)j- y)  = 
-f(Fi). W e will frequently writ e D^y  instea d o f (D X)T,Y- I f / ( #) =  1  for 
every i  o r Kx +  Dx i s not R-Cartie r the n se t 

(Dx)y =  UD x) +  J ^Fi. 

Note that Ky  ^  (K X)Y-

2.8 Remark.  Th e most importan t cas e of the ^-birationa l transfor m i s given 
by the specia l choice f(F{)  =  1 . I t turn s out that in many case s the choic e of 
T doe s not matte r (cf . (2.22.1)) . Th e freedom in our definitio n i s sometimes 
convenient i n intermediate step s o f the proofs . 

№ W =  / . ( ^) + V / ( F i ) F i . 
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2.9 Definition,  f  :  Y —•  X  i s a lo g resolutio n of the lo g variety (X , D) i f Y 
is smooth an d th e irreducibl e component s of Supp(£V) are no n singula r an d 
cross normally . 

It ma y b e mor e natura l t o requir e onl y that Supp(Dy ) i s locall y analyt-
ically a  norma l crossin g diviso r (i.e . irreducibl e component s ar e allowe d t o 
selfintersect). Ou r stronger requiremen t make s statements and proofs simpler. 

2.10 Definition.  Le t Dx  b e a  boundary o n a normal variet y X. 
Kx +  Dx i s lo g canonica l (lc ) (o r (X,  D)  i s log canonical) i f Kx +  Dx 

is R-Cartier an d a(E,Dx)  >  - 1 fo r al l divisor s E  o f C(X) wit h cente r o n X 
(or equivalentl y a^{E,Dx)  >  0). 

It i s sufficient t o chec k the abov e condition in (2.10 ) fo r one log resolution 
[CKM88, 6.5]. 

The following proposition allow s us to conside r onl y Q-Cartier divisors : 

2.11 Proposition . Let  D  =  ^%Di  be  an R-Cartier divisor  on  X. Then  for 
every e  > 0, there  is  a  Q-Cartier  divisor  D f =  E d'i Di  such that 

(2.11.1) \di-d\l <e  for  alii 
(2.11.2) IfC  is  a curve and D  •  C e  Q , then  DC  =  D' C. 
(2.11.3) Assume  in  addition that  K  + D is  R-Cartier. Let  F  be  a divisor of 

C(X) with  center onX. IfF  has  rational discrepancy then  a(F, D) =  a(F, D') 

Proof. B y definitio n th e D{  ar e Cartie r divisors . (2.11.2 ) an d (2.11.3 ) giv e 
a syste m o f (possibl y infinitel y many ) rationa l linea r equation s i n ^ R D j , 
considered a s rea l vector space with Q  structure. W e can replac e (2.11.1 ) b y 
a syste m o f rational inequalities . Thes e system s defin e a  nonempt y rationa l 
polyhedron, whos e vertices hav e rationa l coordinates . An y vertex wil l do a s 
{<}• • 
2.12 Corollary . A  lc  R-divisor can  be  replaced with  a lc Q-divisor without 
changing rational intersection  numbers  and  rational  discrepancies.  • 

The followin g ar e variant s o f th e notio n o f log termina l tha t hav e bee n 
introduced i n th e literature . Le t (X , D) b e a  log variety. I f every coefficient 
in D  i s <  1  then th e natura l notion i s (2.13.5) , whic h was already define d i n 
(1.16). I f we allow some coefficients to be 1 , then the natura l notion seems t o 
be log canonical. Thi s howeve r seems too general fo r mos t theorem s t o hold . 
This lead s t o a  sle w of variants, four o f which are introduce d below . W e feel 
that th e onl y way to understand these is to se e them use d i n proofs. 

2.13 Definition.  Le t (X,D)  b e a  log variety . 
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(2.13.1) (X , D) i s lo g termina l (It ) i f ther e exists  a  lo g resolution /  : 
Y — • X  wher e al l th e /-exceptiona l divisor s hav e positiv e lo g discrepancie s 
(at(EuD)>0). 

(2.13.2) (X,D)  i s purel y lo g termina l (pit ) i f th e lo g discrepanc y o f 
every exceptional divisor of C(X) with cente r o n X i s strictly positive . 

(2.13.3) (X , D) i s divisorial log termina l (dlt ) i f there exists  a log reso-
lution such that the exceptiona l locus consists of divisors with strictly positiv e 
log discrepancies . 

(2.13.4) (X,D)  i s weakly Kawamat a lo g termina l (wklt ) i f there ex-
ists a  lo g resolution f  :  Y —>  X  suc h tha t al l th e lo g discrepancie s o f th e 
exceptional divisors with cente r o n X ar e positiv e and ther e exists a n / - ant i 
ample diviso r whos e suppor t coincide s with tha t o f the exceptiona l locu s of 
/ • 

(2.13.5) (X , D) i s Kawamata lo g termina l (kit ) i f every divisor of C(X) 
having cente r o n X ha s positiv e log discrepancy. (Not e that th e singularitie s 
that w e call kit ar e calle d "lo g terminal" i n [KMM87 , 0-2-10]. ) 

2.14 Example.  Le t X  b e a  smooth surface an d D  a n irreducibl e curv e with a 
node. Th e identit y ma p i s not a  log resolution an d (X , D) ha s lo g canonical 
but no t lo g terminal singularities . 

Let X  b e a  smoot h surfac e an d D  a  diviso r consistin g o f 2 reduced irre -
ducible smoot h curve s intersectin g transversely : the n (X , D) i s log terminal 
but no t pit . 

In bot h case s th e exceptiona l diviso r obtaine d b y blowing up th e singula r 
point o f D ha s lo g discrepancy 0 . 

The analog s o f minima l model s ar e th e variou s version s o f lo g minima l 
models (cf . (1.3-4)) . 

2.15 Definition. 
(2.15.1) g  :  (Y,Dy) —*  Z  i s a  relativ e lo g minima l mode l o r i s g  lo g 

terminal i f Ky +  Dy i s g-nei  an d lo g terminal. (Y , Dy) i s a  lo g minima l 
model i f Ky +  Dy i s nef and lo g terminal. 

(2.15.2) g  :  (Y, Dy) —»  Z  i s a relative lo g canonica l mode l i f Ky +  Dy 
is g-ample an d lo g canonical. (Y , Dy) i s a log canonica l model if Ky +  Dy 
is ample an d lo g canonical. 

(2.15.3) g  :  (Y,Dy)  —•  Z i s a  relativ e wea k lo g canonica l mode l i f 
Ky +  Dy i s g-nef and lo g canonical. 

Questions o f uniqueness ar e discusse d i n (2.22) . 
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BASIC TECHNICA L RESULT S 

We advise the reade r t o skip this part a t th e firs t readin g an d t o refer bac k 
to i t onl y as necessary . 

2.16 Proposition . 
(2.16.1) By  definition  kit  =»  pit  It  and  wklt  =»  dlt  ==•  It. 
(2.16.2) Let  (X,D)  be  Q-factorial  and  log  terminal.  Let  f  :  Y  ->  X 

be the  log  resolution  whose  existence  is  assumed  in  the  definition.  If  f  is 
projective then  (X,D)  is  also  wklt.  (The  assumption  of  projectivity might 
not be  necessary.) 

(2.16.3) (X,  D x) is  pit iff  it is  It and  L / ~ 1 C D ) - J is  smooth. 
(2.16.4) Wklt  singularities  are  always rational. 

Proof. (2.16.2 ) Le t /  :  Y —>  X  b e a  log resolution an d H  a n /-ampl e diviso r 
on Y.  The n H  +  E =  / * ( / * ( # ) ) , fo r some effective divisor E  whos e suppor t 
coincides with tha t o f the exceptiona l locus of /. E  i s also /-anti ample . 

(2.16.3) Consider / :  Y ->  X an d let K Y +  /*"1(^) + E №  =  f*(K x+D) 
where hi  =  —a(iJ z, D) <  1 for every i  since (X,D)  i s It. Le t v  b e any divisor 
of C(X)  =  C(Y).  Appl y (4.12.1.2) wit h 

E =  ^f:\  ( D)^ an d H  =  £ № +  { / r 1 ( £ > ) } . 

By assumptio n E  i s smooth, so center^ (u) i s contained i n a t mos t on e com -
ponent o f E. Thu s (4.12.1.2 ) implie s that 

a€(v,X9D) =  aei^YJ-^ (D)  +  ^ M f c ) > - 1 , 

unless v  i s one of the component s of L / ~ X ( £ ) ) J . Thu s (X,D)  i s pit . 
(2.16.4) i s proved in [KMM87 , 1-3-6] ; we will not nee d it . • 

The following proposition is a consequence of the definition s an d o f (2.11) : 

2.17 Proposition . Let  X  be  a variety. 
(2.17.1) The  set  of  boundaries D for  which K +  D is  log canonical (nef, or 

numerically ample)  is  convex. 
(2.17.2) The  set  of  boundaries  D  with  support  in  a  finite union  UDi  for 

which K +  D is  log canonical is a rational convex  polyhedron in  R-D* . 
(2.17.3) If  D'  <  D  axe  such that  K  +  D is  log  canonical  (respectively 

log terminal)  and  K  +  D'  is  R-Cartier , then  K  +  D' is  also  log  canonical 
(respectively log  terminal).  Moreover,  a(Ei,D)  <  a{Ei,D'). 

(2.17.4) Let  Kx  +  D =  Kx +  diDi  be  a log terminal divisor.  Then  there 
exists a  positive number  e  such that  K  +  D' is  log terminal  for  all  R-Cartie r 
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divisors K +  D' =  K +  ^d^Di such  that  d\  <  min{l,d z- +  e} . In  addition  if 
K +  D is  pit, then  K  +  D' is  pit. 

(2.17.5) IfK x +  D is  pit and  K x +  D + D' is  lc, then K  +  D + tD' is  pit 
for all  t E  [0,1] . • 

2.18 Proposition . Let  g  :  Y  — » Z  be  birational.  Set  Dz  =  g*(Dy)  and 
assume that  Kz  +  Dz is  R-Cartier. If  g  : (Y, Dy) —»  Z  is  a relative weak  log 
canonical model,  then 

KY +  DY= g*(K z +  DZ)~Y1 < Ei)Ei w i t h c (Ei) ^  °>  Vi-

If c(E{)  =  0  for every i  then  {Kz->  Dz) is  lc. Conversely,  if (Kz, Dz)  is  lc and 
i_Dyj contains  the  exceptional  divisor  of g then  c(Ei)  =  0  for every  i. 

Proof. Thi s follows from (2.19) , which is sometimes called "Kodaira Lemma". 
(Others attribut e it t o Zariski. ) • 

2.19 Lemma . Let  f  :  Y —•  X be  a  proper birational  morphism.  Assume 
that Y  is  normal. Let  Fi  CY  be  the  f-exceptional  divisors.  Let  L  be  a line 
bundle on  X;  let  M  be  an  f-nef  line  bundle  on  Y,  and  let  G  C  Y  be  an 
effective divisor  such that  none  of  the F{  is a component of  G. Assume  that 

f*(L) =  M  + G  + ^  fiFi. 

Then 
(2.19.1) fi  >  0 for every  i. 
(2.19.2) fi  >  0  i f M  is  not  numerically  f-trivial  on  some  Fj  such  that 

f(Fi) =  f(Fj). 

Proof. Th e proof is taken from [Kollar91, 5.2.5.3] with some changes. Se e also 
[Shokurov91, 1.1]. 

If /  i s not projective , by the Cho w Lemma there is a birational projectiv e 
morphism / ' :  Y7 -*  Y  X.  I f (2.19 ) hold s for / ' the n i t als o hold s fo r / . 
Thus assum e tha t /  i s projective. 

Fix a n Fi.  B y cutting wit h dim/(F 2 ) genera l hypersurface s i n X  w e may 
assume tha t f(Fi)  i s zer o dimensional . Le t S  C  Y  b e th e intersectio n o f 
dimY —  2  general hypersurface s containin g a  genera l poin t o f F{. Le t Ej  = 
S f l Fj]  thi s i s eithe r a n irreducibl e curv e o r empty . B y assumptio n E{  i s 
nonempty. M'  =  ( M + G)\S  i s /-nef , thu s 

0 = f*L\  U  Ej =  (M'  +  Y^ fiFi)\U Ej  =  (M'  +  J2 fjEj)\ U Ej, 

where th e secon d su m run s onl y ove r thos e Ej  whic h ar e nonempty . B y 
assumption M  i s ne f o n L)Ej,  thu s everythin g i s implie d b y th e followin g 
abstract linea r algebr a resul t (cf . [Artin62]). 
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2.19.3 Lemma . Let  Q(  ,  )  be  a n inner  product  on  R n with  basis  {Ei}. 
Assume that  for  every  i  ^  j  we  have Q(E^Ei)  <  0, Q{E^Ej)  >  0  an d Q  is 
negative definite.  Then 

(2.19.3.1) Let  F  =  Y,<*i Ei b e s u c h t h a t Q(F,Ei)  >  0 . Then  a, - <  0  for 
every i  and  strict  inequality  holds  unless  F =  0 . 

(2.19.3.2) The  matrix  (Q(Ei,Ej))" 1 has  only  negative  entries. 

Proof. Le t F  =  F+ -  F~  wher e 

F+ =  aiEi  an d F~  =  ^  -<*i Ei' 
i : a » > 0 i:oti<0 

Assume that F+  ^  0 . The n fo r some j , ctj  >  0 and Q(Ej,F+)  <  0 since Q  i s 
negative definite . Thu s Q(Ej,F)  =  Q{E iyF+) -  Q(Ej,F~)  <  0. 

Each colum n of the invers e satisfie s th e assumption s of the first  part , thus 
they have onl y negative entries . • 

2.20 Proposition . Let  g  :  Y — • Z be  a morphism: 
(2.20.1) The  set  of  boundaries  D  for  which  g  is  a  relative  log  canonical 

model forms  a  convex subset  in  the  set  of  all boundaries. 
(2.20.2) The  set  of  rational boundaries  is  dense in the  set  of  all boundaries 

D for  which  g  is  a  relative log  canonical model. 
(2.20.3) If  g  :Y  —» Z is  a relative log  canonical model, then  g is projective. 

Proof. Thi s follow s fro m (2.11 ) an d (2.17) . • 

2.21 Definition.  Le t g  :  Y —*  Z  b e a  modificatio n o f the prope r morphis m 
/ :  X —•  Z.  Choos e T a s i n (2.7) . W e obtain a  diagra m 

ff/\ / 9 
{X,DX)-+ (Y ,Dr%Y) 

(2.21.1) g  :  (Y,Djr^ Y) — * Z  i s a  wea k lo g canonica l mode l (wit h re -
spect t o T)  o f /  :  X  —•  Z i f g  i s a  relativ e wea k lo g canonica l mode l an d 
a(Gi,Djry) >  a(Gi,Dx)  fo r al l divisor s Gi  C  X  tha t ar e (^-exceptional . 
Note tha t b y (2.7 ) i f Fi  i s a  (j)" 1 -exceptional diviso r the n a(Fi ,DjrY) < 
max{— l ,a(Fi,Dx)}, thu s the inequalit y i s reversed . 

(2.21.2) g  :  (Y.Djry) -+  Z i s called a  lo g termina l mode l o f / :  X ->  Z 
(with respec t t o T)  i f g is also a  relative log minimal mode l (2.15.1) . 

(2.21.3) g  :  (Y, DjrY) — • Z i s called a  log canonica l model of / :  X —•  Z 
(with respec t t o T)  i f g is also a  relative log canonical mode l (2.15.2) . 
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(2.21.4) I f f(Fi)  =  1  for every i  then we drop T  fro m the notatio n an d cal l 
g :  (Y, Dy) - > Z a wea k log canonical model etc . 

2.21.5 Remark.  I t follow s from (2.23.3 ) that wea k log canonical model s o f / 
can be described in the following more invariant way. (f>: (X , Dx) — * (Y, Dy) 
is a  weak log canonical mode l of / if f 

(2.21.5.1) (Y , Dy) — • Z i s a relative weak log canonical mode l (2.15) , 
(2.21.5.2) a(E,D Y) >  a(E,D x) fo r every diviso r E  o f C ( X ), an d 
(2.21.5.3) a(E,Dy)  =  max{- l , a (E ,Dx)} fo r every exceptiona l diviso r of 

g :  Y — > Z. (I f /  i s no t birational , w e consider ever y diviso r E  C  Y  t o b e 
exceptional.) 

One of our eventual main aim s is to show that log terminal or log canonical 
models exist unde r various assumptions . Her e we do not addres s the questio n 
of existence ; rather, we consider basic properties o f log models assuming that 
they exist . 

2.22 Theorem . 
(2.22.1) A  log  canonical  model  for  f  :  X —•  Z is  unique;  in  particular  it 

does not  depend  on  the  choice  of  T. 
(2.22.2) If  g  :  Y —•  Z is  a  weak  log  canonical  model and  g c :  Y c — > Z a 

log canonical  model  then  there  is  a  unique  morphism  p  :  Y — • Yc such  that 
g = pog c. 

(2.22.3) Let g  :  Y —•  Z  be  a weak log canonical model. Then  a log canonical 
model g c :  Yc — • Z exists  iff  some  multiple  of  Ky +  Dy is  g-free,  and  then 
Yc/Z is  given as  the image  ofY/Z  under  m(Ky  +  Dy) for  suitable m  >  0. 

2.22.4 Remark.  (2.19 ) implies tha t i f g  :  Y — * Z i s th e lo g canonical mode l 
of (X,D)  an d E  C  Y i s a  ^-exceptional diviso r then a(E,D)  <  —  1. Fo r suc h 
divisors the coefficien t in J 7 i s —1 , which explains wh y Y is independent o f T. 

The proo f relie s o n the followin g variant o f [Shokurov91, 1.5.5-6]. 

2.23 Theorem . Let  g  :  Y —>  Z  be  a weak log canonical model of  f :  X —•  Z 
as in (2.21).  Let  W  be  a normal scheme,  proper  and  birational  over  both  X 
and Y  such  that  the  following  diagram is commutative: 

W 

SS \ 9 

X --•»  Y 

f \ / 9 
Z 
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Let {Ei,Fi,Gi}  C W be  all the exceptional divisors  such  that  {Ei}  are  both 
g and f-exceptional, {Fi}  are f exceptional  but  not g-exceptional and  {Gi} 
are g exceptional but  not f exceptional,  for  every i.  Set: 

~f:\Dx) = Y,diDi + E ^iGi 
~f:\Dx) = Y,diDi + E ^iGi 

Note that  the  fi's are  the coefficients defining  DyrY. 
(2.23.1) There exists  a  Zariski decomposition: 

Kw +  f:\Dx) + £ fiFi +  J2Ei 
= g*(Kv + Dp,Y) + Dr,Y) + l]Ei + YHGi, D r,Y) + 9i]Gi, 

where a(E h D T,Y) +  1  > 0 and a(GIT D^ Y) +  9i > 0. 
(2.23.2) If  Kx +  Dx is  log canonical, then  there  exists  a  (Zariski-type) 

decomposition: 

Kw +  t \ D x ) + £ fiFi + £ Ei 

= f*(Kx +  Dx) + Y^HFhDx) + fi]Fi + J2HEUDX) + 1}E{ 

where a(F{, Dx) +  fi>0 and  a(E u D x) + 1  > 0. 
(2.23.3) Let B be  a divisor ofC(X).  Then 

a(B,D^Y)>a(B,Dx). 

Furthermore if  Ky +  Djry is  g-ample (i.e.  g  is a log canonical  model)  and  </> 
is not a morphism at  the generic point  of  Centerx(B) then 

a(B,D^y)>a(B,Dx)-

Proof. Th e displayed formula s i n (2.23.1-2) axe formal equalities . Th e inequal-
ities a(Ei, Djr Y)-\-l >  0 and a(Ei, Dx)  + l >  0 follow from the definition o f lc. 
a(Gi, D?,y)  + gi > 0 follows from the definition (2.21 ) and a(Fi, Dx) + fi >  0 
from the definition (2.7) . 

(2.23.3) W e ma y assume tha t B  i s a diviso r o n W. Fro m (2.23.1-2 ) we 
obtain 

f*(Kx+Dx) 

(2.23.4) =  9*(KY +  ZV,K) + 5}a(Gi, Dr,v) + 9i]Gi 

+ J } - / , - a(Fi,Dx)}Fi +  J2HEi,Dr,Y) - a(EuDx))Ei. 
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Here £[a(G t-,Dj-,y) +  9i]Gi i s effectiv e an d g *(Ky +  D^ Y) i s /-nef . Th e 
first par t follow s from (2.19) . 

Assume that <j) is not a  morphism a t th e generi c point o f Centerx(JS). The n 

dimsl ( / - 1 ( / (B)))>0, 

thus g *(Ky +  Djr^y) i s no t numericall y trivia l o n f" 1(f(B)). Thu s agai n 
(2.19) applies . • ' 

2.24 Corollary . Let  g  :  Y —•  Z be  a  log  model  of  the  proper  morphism 
f:X^Z. Then: 

(2.24.1) If  Kx  +  Dx is  log  canonical,  and  g  :  Y —•  Z  is  the  log  canonical 
model of  f,  then  4>~l does not  contract  any  divisor. 

(2.24.2) If  gi  :  (Yi, D{) — > Z  ( ¿ = 1,2 ) ar e weak  log canonical  models  of  f 
then g 2 is  a  weak  log  canonical  model  of  g\. 

(2.24.3) If  f  :  X —»  Z  is  a weak log canonical model, then  the  modification 
<l> to  the  log  canonical  model  is  a morphism. 

(2.24.4) Assume  that  Kx  +  Dx is  log  canonical,  f  :  X —•  Z is  birational 
and f  is  small or —(Kx+Dx) is  f-nef. Then  g :Y —•  Z  is  a small contraction. 

Proof. Le t Fi  be a n exceptiona l diviso r o f I f Kx +  Dx i s log canonical , 
then by (2.23.2 ) —  fi —  a(Fi,Dx) <  0 , while g  :  Y —•  Z  relativ e log canonica l 
model implies - / t - - a (Fi,Dx) >  0 . Thi s prove s (2.24.1 ) and als o (2.24.4 ) for 
/ small . 

If —(Kx  +  Dx)  i s /-nef , the n le t L  C  Y  b e a  ^-exceptiona l divisor . B y 
the above , ^^(L)  i s a divisor . Restric t bot h side s o f (2.23.4) to g 37 1(L). Th e 
left han d sid e i s negative , th e righ t han d sid e i s bi g +  effective . Agai n a 
contradiction. 

(2.24.2) Le t ip  : Y\ —+  Y<i b e the induce d map . I f E\ C  ii i s ^-exceptiona l 
then by (2.21 ) 

a(E1,D1) =  max{-l,a(E uDx)} <  m a x { - l , a ( E 1 , D 2 ) } . 

Similarly, i f E<i  C  Y<±  i s -exceptiona l the n by (2.21) 

a(E2,D2) = m a x { - l , a ( £ 2 , I > x ) } <  m a x { - l , a ( E 2 , A ) } . 

By assumption (1^ , Di) ar e l c thus all discrepancies ar e a t leas t —1 . Therefor e 

a(£?i,2?i) <  a(E uD2), an d a(E 2,D2) <  a (E 2 ,D i ) . 

These togethe r impl y tha t g 2 i s a  weak lo g canonical mode l o f g\. 
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(2.24.3) Tak e a  common resolution a s in (2.23) ; we have: 

g*(KY +  D^Y) =f%K x +  DX) ~  £[(a (G,-, DT,Y) +  9i]Gi 

- YtMEuDrr)  -  a(E i9Dx)]Ei. 

Using (2.19 ) an d (2.23.3 ) w e obtain tha t a (Ei,DT,Y) -  a (Dx,E{) =  0  an d 
a(G2', DjrY) +  g { =  0 for every index i  and thu s g*(K Y +  Djr Y) =  f*(K x + 
Dx)- I f <t>  i s no t a  morphism , the n ther e exist s a  curv e C  C  W  whic h i s 
/-exceptional bu t no t ^-exceptional . The n K Y +  DjrY g-ampl e implie s 

0 = (K x +  Dx) •  C =  (K Y +  DTiY) C>0 

which is a contradiction . • 

Proof of  (2.22).  Assum e that we have two log canonical models Yi and Y2 . B y 
(2.24.2-3) there are morphism s Y\  — • Y 2 and Y 2 —> Yi; these must be inverse s 
of each other. (2.22.2 ) i s the sam e as (2.24.3) . Finall y (2.22.3 ) clearl y follow s 
from (2.22.2) . • 

2.25 Corollary . (2.25.1)  Let X x -»  Z  be  a modification of  f :  X -+  Z as  in 
the diagram: 

X X x 

/ \ /  h 
z 

If no  divisorial  component  G{  C  X is  contracted  by  r , then  a  log model for 
/1 is  also a log model for  f  :  X —•  Z. 

(2.25.2) Notation  as  in (2.23).  If  K x +  Dx is  log canonical, r(Kx +  D x) 
is Cartier  for some r  £  N  and g :Y —+  Z is  the  log canonical model, then 

Y =  Pro j ®n>of*Ox(nr(Kx +  D x)). 

Proof (2.25.1 ) follow s fro m the definition . 
(2.25.2) Withou t los s of generality w e can assume that r(K Y +  DY) i s also 

Cartier. Le t W  b e as in (2.23) . K Y +  DY i s g-ample, thus 

Y =  Pro j ® n>09*OY(nr(KY +  D Y)) 

= Pro j ©n >0( f f )*O w {~g*{nr(K Y + Dy))) 

= Pro j ®n>o(ff)*Ow{~g*{nr(KY +  Dy))) 

= Pro j (Bn>o(ff).Ow(f*(nr(Kx +  D x))). 
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Kx +  Dx i s log canonical and thus , by (2.24.1 ) {Fi}  =  0 . Th e result follow s 
from (2.23.1-2) . • 

We wil l frequently nee d variou s version s o f the Minima l Mode l Program . 
Next we describe a general variant whose steps d o not exis t i n complete gen-
erality bu t whic h provides the righ t framewor k in al l cases that we use later. 

2.26 Minimal  Model  Program.  Le t (X , E) b e a scheme X (ove r a base scheme 
S whic h we suppress i n th e notation ) togethe r wit h a n R-Cartie r diviso r E 
(not necessaril y effective) . B y the ^-Minima l Mode l Progra m (E -MMP 
for short ) w e mean a  sequence 

(X0,E0) (XuEi)  № , £ 2 ) •  • • 
constructed a s follows . 

(2.26.1) (X 0,E0) =  (X,E); 
(2.26.2) Assum e that (Xi,E{)  i s already constructed . I f Ei i s nef, we stop. 
(2.26.3) If E{ i s not nef then assume that there is a contraction fi :  X{ — • Z{ 

such tha t —Ej  i s / t-ample an d p(Xi/Zi)  =  1 . I f fi(Ei)  i s R-Cartie r (thi s 
happens usuall y whe n th e exceptiona l se t o f fi  i s a n irreducibl e Q-Cartie r 
divisor) the n se t =  an d (X t-+i, jE7j+i) = (Zj , /,•(£?,•)). (W e are stuc k i f fi 
does not exist. ) 

(2.26.4) I f fi(Ei)  i s not R-Cartier , the n we try t o find a  diagra m 

(Xi,Ei) —- > (X 2-+i,i?2+i) 

f i \ /  ft 
Zi 

with th e followin g properties 
(2.26.4.1) fl~  i s a small morphism, 
(2.26.4.2) E i+1 i s //-ample , 
(2.26.4.3) E i+1 =  (gMEi). 
Such a  diagra m i s called the generalize d opposit e o r generalized flip 

of fi  wit h respec t t o Ei.  I f fi  itsel f i s smal l the n th e diagra m i s calle d th e 
opposite o r flip o f fi wit h respec t t o Ei,  o r a n .E 2-flip, o r a n i?-flip . (W e 
are stuc k agai n i f the flip does not exist. ) 

(2.26.5) Furthe r terminology: 
(2.26.5.1) The modification described in (2.26.4) has collected various labels 

since it wa s first introduced . Th e name "flip " ha s bee n traditionally use d t o 
describe th e abov e situation whe n E  =  K x whil e "lo g flip"  i s reserved fo r 
the cas e of a log divisor E =  K x +  B x. I f K Xi i s / 2-trivial, the n th e flip of 
fi wit h respec t t o the diviso r Ei i s called the .E -flop o r £^-flop . 

(2.26.5.2) X+J+  an d </ > are als o called the "fli p of / " . 
(2.26.5.3) Th e birational transfor m o f Ei i s often denote d by Ef. 
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2.27 Proposition . Let  f  :  X —>  Z  be  a  small  birational  contraction  such 
that —  (Kx +  Dx) is  f-ample;  then  the  log  canonical  model of  f  is  the  flip 
with respect to  Kx +  Dx and  conversely. 

A flip or log  canonical  model of  f  is  also  a log canonical  model of  Z  for 
Kz +  f(D). Therefore  the  discrepancies  do not decrease  under  Hips. 

Proof. Thi s follow s fro m (2.24.2) , (2.24.4 ) an d (2.23) . • 

The inequalit y betwee n th e discrepancie s i s als o implied b y the followin g 
more general resul t which will be useful i n many situations : 

2.28 Proposition . Let  f  :  X —*  Z  and  g  :  Y —•  Z be  proper  birational 
morphisms between  varieties.  Let  D  C  Z be  a divisor and let Ex  (resp.  Ey) 
be f  (resp.  g)-exceptional  divisors.  (Not  necessarily  effective.) Assume  that 

(2.28.1.1) -(K x +  fr\D) +  Ex) is  R-Cartier and  f -nef; 
(2.28.1.2) Ky  +  gZl(D) +  Ey is  R-Cartier and  g-nef; 
Let B  be  any divisor  of C(Z) and  let b  G Centerz(B) be  the generic  point. 

Then 
(2.28.2.1) a(B,Y,g;\D)  +  Ey) >  a(B,XJ-\D) +  Ex); and 
(2.28.2.2) equality  holds  iff  K x +  f^(D) +  E x is  numerically  trivial  on 

f~x(b) and  Ky  +  g~x(D) +  Ey is  numerically trivial  on  g" 1^) 

Proof. Le t W  b e a  normal variet y suc h that there are prope r birationa l mor -
phisms /  :  W -+  X an d g  :  W -+  Y. The n 

M =  g*(Ky  +  g7 l(D) +  Ey) +  f*(-(Kx +  K\D) +  E x)) 

is nef on W/Z. Furthermor e it is supported o n the exceptiona l locus. Thu s by 
(2.19) M  =  —  F wher e F  i s an effectiv e divisor supported o n the exceptiona l 
locus oiW-+Z.  Therefor e 

a(B^g-1(D) +  EY) =  a(B,W, g*(Ky  +  g;1 (D)  + Ey) -  K w) 

> a(B,  W,  g*(Ky +  g^(D) +  Ey) -  K w +  F) 

= a(B,  W,  f*(Kx +  f:l(D) +  EX) -  K w) 

= a(B,X ,f;1(D) +  E x), 

and stric t inequality hold s iff Center\y(J5) C  SuppF. Thu s (2.28.2.1 ) i s clear 
and (2.28.2.2 ) follow s fro m (2.19.2) . • 

2.28.3 Remark.  (2.28.3.1 ) We will frequently us e the abov e result in the spe -
cial case when /  o r g  i s an isomorphism . I f /  :  X —•  Z =  Y  i s an extrema l 
divisorial contractio n the n th e resul t say s that discrepancie s increas e fo r di -
visors whose center i s contained i n the exceptiona l divisor of / . 

(2.28.3.2) I t i s eas y t o se e that (2.28 ) als o holds i f X , Y , Z satisf y (2.6.1 ) 
and /  an d g  are birationa l i n the sens e o f (2.6.2) . 
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2.29 Proposition . 
(2.29.1) Let  (X,  Dx)  be  kit and  f  :  X —•  Z a  small birational  contraction. 

Assume that  g  :  Y —•  Z  is  a  weak  log canonical  model, as  in (2.23.3).  Then 
the flip  of  f  exists. 

(2.29.2) Let  g  :  Y —•  Z  be  a  weak  log  canonical  model  of  f  :  X —•  Z. 
Assume that  p(X/Z)  =  1  and either  X  is  Q-factorial  or  g is  projective. If  g 
is small then  g  is  the  flip  of  f :  X —•  Z. 

Proof. (29.1 ) If (X,D X) i s kit the n g  is small b y (2.24.4 ) and th e Bas e Poin t 
Free Theorem [KMM87 , 3-3-1 ] applies: thu s the flip  exists . 

(2.29.2) U p to a  constant multiple , Ky  +  Dy i s the onl y relative divisor on 
Y. Thu s Ky  +  Dy i s ample an d th e flip  exists . • 

Shokurov introduce s a  systemati c metho d o f decreasing th e coefficient s of 
D whil e preserving th e intersectio n number s with th e exceptiona l curve s o f / 
and preservin g rationalit y under an extr a condition. 

2.30 Definition.  Le t /  :  X —*  S  b e a  contractio n an d K  +  D  a  lo g diviso r 
on X.  W e say tha t D  i s a n LSEP D (=Locall y (over S)  th e Suppor t o f a n 
Effective Principa l Divisor ) diviso r i f th e followin g holds : fo r ever y s  G  S 
there is an ope n neighborhood s  £  U s C  S an d a  regular function h s G  0(U S) 
such that 

f-'iUs) H LJDJ C Supp(/*/*5 =  0 ) C r'iUs) n r ZT =  f -'iUs) n SuppD . 

I.e., Supp(/*/i 5 =  0 ) contain s ever y componen t o f D whic h ha s coefficien t 1 
and Supp(/*/z s =  0 ) is contained i n th e suppor t o f D. 

2.31 Remark. 
(2.31.1) Le t /  :  Y  —>  S  b e a  smal l contractio n suc h tha t p(Y/S)  =  1 , 

Rlf*Oy =  0  and Y  i s Q-factorial . A  reduced boundar y D  i s LSEP D i f an d 
only if 

either al l th e component s o f D ar e numericall y zer o with respec t t o / , 
or a t leas t on e component i s /-positive an d on e /-negative . 

h 
(2.31.2) Le t X  —»  Z  —»  S b e prope r morphism . Le t Dx  (resp . Dz)  b e 

divisors o n X  (resp . Z).  The n 
(2.31.2.1) D x LSEP D =>  h*(D x) LSEPD ; 
(2.31.2.2) D z LSEP D h*(D z) LSEPD ; 
(2.31.2.3) Assum e tha t X+  Z  i s th e opposit e o f X  ->  Z.  The n D x 

LSEPD D+  LSEPD . 
Next w e prove some results which allow us t o chang e D  withou t changin g 

the lo g flip. 
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2.32 Proposition . Let  f  :  X —>  Z be  a small morphism. 
(2.32.1) If  p(X/Z)  =  1  an d R 1f*Ox =  0 , then  the  opposite  of  f  with 

respect to  E  does  not  depend  on  the  choice  of  E =  Y^eiE{. In  particular we 
are free  to  increase  or decrease  the  coefficients  of E as  long as  —E remains 
f-ample.. 

(2.32.2) Let  f  :  (X,D) ->  Z be  log terminal, with  D LSEPD.  Then  there 
exists a  divisor D' such  that  K x +  D' is  kit and  D' is  f- equivalent  to  D. 

Proof. (2.32.1 ) I f E an d otE'  {a  >  0 ) are numericall y equivalent ove r Z the n 
the opposit e with respect t o E  i s the same as the opposit e with respect t o E f. 

(2.32.2) I f D  i s LSEPD and K  +  D I t the n there exists a  positive number 
6 suc h tha t D  —  e( / o  h =  0 ) i s effective , Kx  +  D —  e( / o  ft = 0 ) i s I t an d 
^D-e(foh =  0 ) J = 0 . • 

2.33 Proposition . Let  f  :  X  Z  be  a  small  morphism  with  Z  affine . 
Assume that  K x +  dD + D' is  lc (resp.  pit)  where  D is  a Weil  divisor.  Let 
n G  N. Then  there  is  a reduced divisor  D such  that 

(2.33.1) D~nD  (hence  K x +  dD + D' =  K x +  +  D'); 
(2.33.2) K X +  ^D +  D' is  also lc (resp.  pit). 

Proof. Le t D  be a general element of the linear system \nf(D)\  o n Z. Sinc e Z 
is affine, D  i s reduced. Le t D be the birational transfor m o f D. D  ~  nD  sinc e 
/ i s small. Le t g  : Y —+  X b e any log resolution with exceptiona l divisors E{. 
Then 

g:1(D)~g:1(nD) +  J > 2 ^ , 

where e 2- > 0 . Thu s 

a(Ei, -D  +  D') =  a(E u dD  + D') +  -e {. • 
n n 

We wil l use the followin g tw o special cases: 

2.34 Corollary . Let  f  :  X —•  Z be  a  small  morphism  where  Z  is  affine. 
Assume that  K x +  D  is  lc (resp.  pit).  Then 

(2.34.1) There  is  a divisor D such  that  K x +  D =  K x +  D, L_DJ  = 0  and 
Kx +  D is  lc (resp.  pit). 

(2.34.2) Assume  that  D  is  a Weil  divisor.  There  is  a Weil  divisor  D such 
that K x +  D =  K x +  \D  and  K x +  \D is  lc (resp.  pit).  • 

The followin g resul t wil l be needed in Chapter s 5  and 18 . 
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2.35 Proposition . Let  (X,B)  be  lc  and  let  f  :  X  —>  Y  be  proper  and 
birational Then  there  are  only finitely  many  f-extremal  rays  if  one  of  the 
following conditions  are  satisfied: 

(2.35.1) (X,B)  is  pit and  LJB J does  not contain  any exceptional  divisors; 
(2.35.2) (X,  B)  is  It outside  L B J and  B is  LSEPD with  respect to  f. 

Proof, (se e [KMM87,4-2-4]) Assume (2.35.2). Th e problem is local on Y s o by 
shrinking Y  w e may assume that there is an effective principal diviso r M C  Y 
such that 

Supp L £j C  Supp/*M C  SuppJB. 

Thus (X , B —  ef*M)  i s kit fo r 0  < e  <C 1 and ha s th e sam e extrema l ray s a s 
(X,B). Therefor e (2.35.1 ) implie s (2.35.2) . 

Let O x(l) b e /-ample . Choos e H  G  |C?x(~l) | such  tha t Suppi f an d 
Suppi_2? J d o not hav e common irreducible components . Thu s (X , B +  eH) i s 
still pi t fo r 0  < e  < 1 . B y the con e theorem [KMM87,4-2-l ] i f M i s /-ampl e 
then ther e ar e onl y finitely man y (K  +  B +  eH)-extremal ray s R  suc h tha t 
R •  (B +  eH + M) <  0. Choos e M =  e(-fT) t o conclude . • 
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3, CLASSIFICATIO N OF LO G CANONICA L SURFAC E 
SINGULARITIES: ARITHMETICA L PROO F 

VALÉRY ALEXEEV 

(3.0.0). Notation. Le t (X,  P)  b e a germ of a normal surfac e singularit y an d 
B = biBi a  forma l su m o f irreducible Weil  divisors , passin g throug h P, 
with rationa l coefficient s 0 < bi < 1 . Since X i s normal, w e can assume tha t 
P i s the onl y singularity o f X. Also , we have a well defined linear equivalence 
class of canonical Weil divisors Kx-

We us e th e usua l definitions fo r log  canonical, log terminal and  purely log 
terminal (2.13). 

(3.0.1). If B  = 0  and th e characteristi c o f the bas e field  i s 0, log termina l 
singularities o f surfaces ar e th e sam e a s quotien t singularitie s [Kawamata84 ] 
and wer e classified by [Brieskorn68] . [Iliev86] contains an arithmetica l proof . 

In the cas e B i s reduced,  i.e. al l the b{  = 1 , [Kawamata88] classified all log 
canonical and lo g terminal singularitie s (th e latter turn out t o be also purely 
log terminal wit h one trivial exception : whe n X i s nonsingular an d B  consist s 
of tw o normally crossin g nonsingular curves) . Thi s classificatio n i s give n in 
Fig.3. Th e notation i s explained in (3.1). 

The proo f o f [Kawamata88 ] i s slightl y tricky  an d use s th e lo g canonical 
cover o f (X,  P).  Arithmetica l proof s wer e give n i n [Sakai87 ] fo r th e cas e 
b{ = 0 and b y S. Nakamura i n an appendi x to [Kobayashi90] . 

(3.0.2). Here we suggest a purely arithmetical an d quite elementary approac h 
for the classification . Th e idea is the following : le t / :  Y —•  X b e the minima l 
resolution of the singularit y (X,  P)  ( a priori not a  good resolution of (X, P)). 

Let f~ 1C C  Y denote the birationa l transfor m o f a curve C C  X. Writ e 

KY+J2 f* lBi+E E i = f*(K*+E B<)+E a>Er 

S. M . F. 
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Then fo r any j ' = 1,... , n, b y the adjunctio n formula , w e have 

2pa(Ej) =  E j(KY +  Ej) +  2 = 

= Ej(r(K x +  B) +  Y,akEk -  f: lBi -J2Ek)  +  2 = 

= Ej(£  a kEk -  f: xBi -  J2  E*) + 2 

Therefore we get the followin g syste m of n linear equation s i n n  variable s 

n 
(*) ^2a kEk-Ej =  - C j , 

k=l 

where cj  =  2  - 2 Pa(Ej) -  ( £ f^Bi  +  £ f c # j

 E *)EJ- Equivalent^ , 

n 
(**) ^ ( ^ - 1 ) ^ . ^ =  - ^ , 

k=l 

where dj  =  2  - 2p a(£7 i) +  jE7? -  £  Z*" 1^ •  £ j . 

(3.0.3). No w our strateg y i s ver y simple : solv e the syste m (*) , find the a& 
and chec k the condition s a,k >  0. 

(3.0.4)- Som e of the formula s fo r th e coefficient s ar e containe d i n [Alex -
eev89, 4.7,4.8] . Not e als o tha t i n th e lo g termina l cas e wit h 2 ? =  0 , ou r 
treatment.has som e intersections wit h [Iliev86] . However , our proo f i s more 
explicit an d direct . 

J. Kolla r points out that the present proo f works in any characteristic. Thi s 
follows fro m th e fac t tha t th e syste m (* ) has a  unique solutio n independen t 
of th e characteristi c o f the bas e field. 

3.1. Solutio n o f (*) • 

(3.1.0). First , note that (* ) does have a unique solution since by [Mumford61] 
the matri x (Ek  •  Ej) i s negative definite . 

(3.1.1). Th e weighted  dual  graph F o f the resolutio n /  :  Y —>  X  i s th e fol -
lowing: eac h curv e Ej  correspond s t o a  verte x Vj.  Tw o vertices Vj 1 an d Vj 2 

are connecte d by an edge  of weight m  i f the correspondin g curve s intersect : 
Eh '  Ej2

 =  m ' Eac h verte x Vj  has a  positive weight rij  = —Ej. 
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Since th e resolutio n /  i s minimal , w e hav e dj  =  2  —  2p a(Ej) +  Ej  — 
Ef^BiEj < 0 f o r al l j. 

(3.1.2). B y (2.19.3 ) ever y coefficien t o f th e invers e matri x o f (Ek  •  Ej) i s 
strictly negative . Therefore , (** ) implies that eithe r al l dj  =  0 , and the n for 
all k,  ak  —  1 =  0  o r a t leas t on e dj  <  0 , an d fo r al l k,  a & — 1  <  0 . Th e 
former happen s onl y if all p a(Ej) =  0, E 2j =  - 2 an d •  ^ /~ xJ3 2 =  0 . Suc h 
singularities (an d th e correspondin g graphs ) ar e calle d Du  Val  singularities 
(resp. Du  Val  graphs). 

The following resul t i s easy. 

(3.1.3). Lemma , (cf.  [Alexeev89,3.2(ii-iii)])  Let T  be  a  weighted  graph 
corresponding to  a minimal resolution,  in particular such  that  all  dj <  0. Let 
r' C  T , T  /  T  b e a  subgraph  in  the  sense  that  all  the  vertices  of  V are  at 
the same  time  vertices  ofT with  the same  weight  rij, the  weights  of  edges of 
F' and p a of  vertices in V do  not exceed  the  corresponding  weights and pa in 
T, and  Ej  •  f7 XBi j r i r ; do  not exceed  the  corresponding  Ej •  ^  f^ 1B{ in 
r. 

Then the  corresponding  coefficients  satisfy <  ol k and  if  T  is  not  a  Du 
Val graph, then  a & < a' k. 

Proof. Compar e th e correspondin g system s (** ) of linear equation s an d us e 
(3.1.2). • 

(3.1.4). Suppos e tha t F  =  {^ i } and p a ( ^ i ) =  1 - The n i n (* ) c x =  2  -
2pa(Ei) —  0  = 0  and a[  =  0 . I f E\  i s a  smoot h ellipti c curve , this is Cas e 4 
of Fig.3 . I f Ei  i s a rational curve with a  node then afte r a  single blow u p we 
are i n Case 5  of Fig.3. I f E\ i s a rational curve with a  cusp it i s easy to show 
that afte r tw o blow up s on e gets a  log discrepancy as  =  —1 , so this is not a 
log canonica l singularity . 

(3.1.5). Suppos e tha t T ' =  {t>i,i >2>--- ?^z } i s a  circl e o f smoot h rationa l 
curves. The n i n (* ) Cj  =  2  - 0  - 2  =  0  an d al l a'j  =  0 . Thi s i s Cas e 5 
of Figur e 3 . Not e that al l the curve s Ej  shoul d intersect normally : i f a circle 
contains tw o or three vertices an d tw o corresponding curves have a  common 
tangent, or three curves intersect a t on e point, then two or one blow ups give 
a log discrepancy a' 3 =  —  1. 

(3.1.6). No w (3.1.2-5) impl y that: 

(3.1.6.1). Th e grap h o f a log canonical singularity doe s not contai n a  verte x 
Vj wit h Pa(Ej) >  1  or an edg e of weight >  2 . 
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(3.1.6.2). I f T ^ V  a s in (3.1.4 ) o r (3.1.5) , then V  contains only vertices that 
correspond t o smoot h rationa l curves , al l edge s are simple , i.e . o f weight 1 , 
and r  i s a tree . 

From now on we always assume that we are i n this final case. 

(3.1.7). Fo r any subgraph V  C  T, we define A' = A( r ' ) as the absolute value 
of th e determinan t o f the submatri x (Ek  •  Ej), mad e up b y the column s and 
rows corresponding to the vertice s of V. 

Note that i f V i s a disjoint unio n of graphs T i an d T2 , then A ' = A i •  A2. 
We se t A(0 ) = 1  by definition. 

The followin g lemma s are eas y exercises. 

3.1.8 Lemma . Let  T  be  a graph with simple edges,  v  a vertex ofT  of  weight 
n, and  v i , . . . , v s the  vertices  adjacent to  v. Then 

A ( r ) =  n  •  A (r -  v)  -  A ( r ~  v ~  vi)-
i 

3.1.9 Lemma . Let  T  be  a tree  with  simple edges,  Vj 1} Vj 2 two  vertices  ofT. 
Then the  ( j i , J2) cofactor  of  the matrix  (Ek  -  Ej) is 

Ahh =  (-l) J1+hMjlh =  -(-l) nA{T-(pa,th fro m v h t o t; i a)) 

Note that sinc e T  is a  tree there is a  uniqu e (shortest ) pat h joining Vj 1 an d 
VJ2' 

(3.1.10). Th e previous lemma gives the solutio n of (*) : 

1 n 

ctj = -^^ y ]P A ( r - (pat h fro m Vj  t o v k)) •  c k, 
(* *  *) k = 1 

ck =  2-C£f:iBi +  Y,Ei) Ek. 

Here f* 1^ +  Yliijik E*i)Ek  is the number of connections of the vertex Vk 
with adjacen t vertice s (among f ^1Bi an d the othe r Ei).  Therefore , Ck  = 0 
if an d onl y if Vk  has exactl y 2  neighbours, Ck  = 1  if i t ha s 1  neighbour an d 
Ck <  0  if if has >  3  neighbours. B y ( * * * ) , aj  i s a  su m o f Ck  with positiv e 
coefficients. W e are intereste d i n th e case s whe n aj  >  0 , therefor e w e cal l 
vertices with Ck  = 1  (resp. Ck  < 0 ) bonus  (resp. penalty)  vertices. 

Now ou r ai m is to simplify the us e of the formula s ( * * * ) . 
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(3.1.11). W e need th e followin g wel l known descriptio n o f weighted chains . 
Every weighte d chai n wit h positiv e intege r weight s (fro m th e lef t t o right ) 
ni, . . . , n s >  2 corresponds in unique way to the pai r (A , q), where A = A ( r) 
and 1  < q  < A i s an intege r coprim e to A  define d by: 

A 
— = m 
a 

1 
1 

n2 - 1 

ns 

Let u s sho w how to ge t thi s description . Le t v  b e th e en d verte x o f th e 
chain T. The n by (3.1.8), A = A (T) can be expressed in terms of q = A( r — v) 
and A( r —  v — ?Ji), then A(T  —  v) can be expressed in terms of A(T — v — vi) 
and A( r —  v  —  v\ —  V2) an d s o on , th e las t determinan t wil l be A (0) = 1 . 
One ca n easil y se e that thi s procedur e i s nothing othe r tha n th e Euclidea n 
algorithm for finding the greates t common divisor, so (A, q) = 1 , and on e gets 
the give n formula . 

3.1.12 Lemma . Suppose  that  a  graph T  contains  a  subgraph V  such  that 
r' is  a  chain with weights  rij >  2  and the  interior  vertices  of  this chain have 
no other  neighbors  in  T  or  J^Bj. Let  Vj 1 be  one of  the  middle  vertices,  ctj1 

the corresponding  log discrepancy ofT. Then  the  graph of  the function ctj  at 
the vertex  Vj 1 is  concave  up  if aj 1 >  0  and is concave down  if aj 1 <  0. 

Proof. Not e that fro m (*) 

aji-i ~  njiaji + aji+i = 0> 

so that 

[aj1] = a?i-i + a j l + 1 

nj1 

aji-i + aji+i 
2 

The rest i s obvious . • 

3.1.13 Lemma. Let  T  be  a  tree  with  simple edges  and all  weights  rij  > 2 
(all these  conditions  hold  in  our  situation). Then  all  the log  discrepancies of 
T are nonnegative (resp.  positive)  if  and only if the same holds for all vertices 
with at least  3 neighbours and  for all vertices neighbouring f7 XBi-

Proof. Indeed , if Tf C  T is a subchain such that each middle vertex has exactly 
2 neighbours an d on e of this middle vertices has dj 1 <  0 (resp. cij  < 0), then 
by (3.1.12) the sam e holds for the end s o f T;. 
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Moreover, w e can exclud e the vertice s wit h exactl y 1  neighbour, becaus e 
from (* ) we have 

a j l + 1 - n h a h =  - 1 

and aj 1 <  0 implies a^+i <  a^.  • 

(3.1.14). W e explain the notatio n o f Fig.3. W e consider a minimal resolutio n 
/ :  Y —•  X (wit h th e exceptio n of Case 5) . o  denotes a n exceptiona l curv e 
of / , •  denote s (loca l branche s of ) B{.  Lon g empty oval s denote an y chai n 
(A,g) , attache d a t a n end . 

3.2. Th e cas e B  =  0 . W e first conside r severa l simpl e possibilities fo r th e 
graph T 

(3.2.1). Le t T  be a  chain . The n b y (3.1.13 ) T  corresponds to a  log terminal 
singularity, becaus e none of the vertice s has >  3  neighbours. 

(3.1.10) give s th e formul a fo r th e lo g discrepancies . Le t Vj  be a  verte x 
of T , s o that r  —  Vj  = Ti  —  T2  i s a  disjoin t unio n o f two chain s (l? i o r T2 
could b e empty) , le t A i , A 2 be th e correspondin g (absolut e value s of ) th e 
determinants (A(0 ) =  1  by definition). I n our situation we have only 2 bonus 
vertices, namely th e end s o f the chai n T.  Therefor e 

1 ,  A A  x  A i A 2 , 1 1  x  

a j =  - ( A , + A 2 ) = _ ( _ +  _ ) . 

This i s Case 1  of Fig.3. 

(3.2.2). Le t r  b e a  grap h havin g a  singl e for k a t a  verte x Vj  and suppos e 
that r  -  vj  =  T i +  T 2 +  T 3 , an d A t- = A(r t-) for i  =  1,2,3 . I n orde r fo r T  to 
correspond to a  log terminal (resp. lo g canonical) singularity on e should have 
aj >  0  (resp. aj  >  0) . In this situation we have 3  bonus vertices, namely th e 
simple end s o f Ti, T2 , T3 and 1  penalty verte x whic h is Vj  itself. Therefore , 
by (3.1.10 ) on e ha s 

aj =  — ( A i A 2 +  A 2 A 3 +  A3A 1 -  A i A 2 A 3 ) = 

= A i A 2 A 3 , 1 1 1 , 
A l A i A 2 A 3 > ' 

So this is a log terminal singularity i n the case s 

(3.2.2.1). (Ax , A2 , A3 ) = (2,2,n) , n  >  2 
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(3.2.2.2). ( A 1 , A 2 , A 3 ) =  (2,3,3 ) 

(3.2.2.3). ( A i , A 2 , A 3 ) =  (2,3,4 ) 

(3.2.2.4). ( A ! , A 2 , A 3 ) =  (2,3,5 ) 

and a  log canonical (but no t lo g terminal) singularit y i n the case s 

(3.2.2.5). (Ai ,A 2 ,A 3 ) =  (2,3,6 ) 

(3.2.2.6). (A 1 ,A 2 ,A 3 ) =  (2,4,4 ) 
(Ai ,A 2 ,A 3 ) =  (3,3,3 ) 

This gives Cases 2  and 6  of Fig.3. 

(3.2.3). No w let r  b e a graph wit h a  single fork at th e vertex Vj  an d suppos e 
that r  -  V j =  Ti +  T 2 +  T 3 +  T 4, A, - = A ( I \ ) for i  = 1,... , 4. 

Then 

cij = 
A1A2A9A4, 1 1 1 1 

A v A i A 2 A 3 A 4 

2) 

and give s a log canonical singularity onl y if 
(3.2.3.1) ( A i , A 2 , A 3 , A 4 ) =  (2,2,2,2 ) 
This i s Case 8  of Fig.3. 

(3.2.4)' I n th e cas e of graph T  with a  single fork a t a  vertex Vj,  breaking u p 
T into N  >  5  subgraphs w e get a  non-log canonical singularity, becaus e 

aj = ^ ( £ ¿ : - ^ - 2 ) ) < o 
i=l 1 

for A t- > 2  and i V > 5 . 

(3.2.5). Now suppose that we are in the situation of Fig.l o f a graph V  with a t 
least 2 forks, one of them a t th e vertex  Vj.  Suppos e that T  — Vj = T i + r 2 + r3, 
and le t A i , A 2 , A3, A A, A 73 be th e correspondin g determinants . The n b y 
(3.1.10), 

_ A ! A 2 A 3 / 1 , 1 , 1 - ( A A - 1 ) ( A B - 1 ) 1 N  

a j ~ A  l A ! + A 2

+ A 3

 l j -

This i s nonnegative (actually , equa l t o zero) only in the cas e 

Ai =  A 2 =  A A =  A B =  2 . 

By (3.1.10), this i s also the sufficien t conditio n for T  t o giv e a log canonical 
singularity. Thi s i s Case 7. 
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Fig.l 

(3.2.6). Usin g (3.1.10 ) on e ca n easil y sho w that i n th e graph s o f Fig.2 th e 
marked vertice s hav e negativ e lo g discrepancies , henc e thes e graph s defin e 
non-log canonical singularities . 

Fig.2 

3.2.7 Lemma . IfT  corresponds  to  a log terminal (log  canonical) singularity 
then T  is one  of  the graphs  listed  in  (3.2.1-2.5). 

1st proof. (3.2.5 ) gives the genera l rule for what happen s t o a  log discrepancy 
when w e add a n additiona l fork : th e term , denot e i t b y T, tha t correspond s 
to the par t o f the grap h afte r th e ne w fork i s changed t o a  numbe r 

T •  ( AA - A B ( A A -  1) ) 

with th e correspondin g A  A, A# >  1 . Th e othe r term s don' t change . 
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Therefore, startin g fro m (3.2.3) , (3.2.4 ) o r (3.2.6) , addin g a  for k alway s 
gives a negative lo g discrepancy. 

2nd proof. B y (3.1.3 ) th e subgrap h f c T als o defines a  log canonical singu-
larity. Therefor e T  cannot hav e subgraphs a s in (3.2.4 ) o r (3.2.6) . • 

(3.2.8). Not e that Cas e 8 is essentially a  subcase of 7. 

3.3. Th e cas e 5 ^ 0 . 

(3.3.1). I n addition t o the restriction s o f (3.2) we have to consider additiona l 
penalties fo r th e connection s with f* lB. No w it i s an eas y excercis e to ge t 
the remainin g Case s o f Fig.3. 

(3.3.2). Fro m Fig.3 one can see that th e minima l resolution i s a good resolu -
tion for K + B. Not e that in Case 9 with a chain containing a  single vertex t>i, 
the curve s corresponding to the black vertices do not intersect E\.  Otherwise , 
a singl e blow up give s a log discrepancy a 2 =  —1 . 

(3.3.3). Not e that in the Cas e 9 of Fig.3 all the discrepancies axe zero because 
we have neither bonuses nor penalties . 

(3.3.4)- Th e inde x o f a rational singularity , i.e . th e leas t natura l number N 
such tha t NKx  i s a  Cartie r divisor , i s a t th e sam e tim e th e leas t commo n 
denominator o f all th e lo g discrepancies a ,j. On e ca n easil y se e that i n th e 
Cases 6-8 indice s are 2,3, 4 or 6. 

3.4. Fina l remarks . 

(S.^.l). Not e that th e onl y restriction o n the unmarke d weight s o n Fig.3 i s 
that th e quadrati c for m o f the whol e graph T  shoul d b e negativ e definite . 
This is essential onl y in Cases 6-8 (wher e at leas t on e weight should be >  2), 
and als o in Cas e 5  (where either al l weights are a t leas t tw o and a t leas t on e 
at leas t three ; o r there are tw o vertices, one of them ha s weigh t on e and th e 
other ha s weigh t a t leas t five) . 

An eas y cas e b y cas e chec k shows that i n Case s 1- 3 an d 6-1 0 an y (con-
tractible) grap h define s a  rational singularity, s o by [Artin66] a configuratio n 
can b e contracte d t o a  norma l singula r point . I n case s 4- 5 i f the quadrati c 
form i s negative definite , the n a  configuration ca n b e contracted i n th e ana -
lytic situation . I n th e algebrai c situatio n thi s i s a  necessar y conditio n (bu t 
not sufficient) . 
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(3.4-2). Our metho d allow s one i n principl e t o classif y lo g terminal o r log 
canonical surface singularitie s (X , K + B) whe n B  ma y have fractional coef -
ficients with denominator s 2 ,3 , . . . , if this shoul d turn ou t t o b e necessary . 
There wil l be a large number o f new cases. 
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K + B i s lo g terminal , B  i s reduce d 

(1) 

(2) 

(3) 

(A A A ) = 
1 ' 2 ' 3 

(2,2,n) 

(2,3,3) 

(2,3,4) 

(2,3,5) 

Fig.3, beginnin g 
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K + B i s lo g canonica l bu t no t lo g terminal , B  i s reduce d 

(4) (5) 

( б ) 

< Л 1 . Л 2 . А 3 ) = 

(3,3,3) 

(2,4,4) 

(2,3,6) 

( 7 ) (8) 

( 9 ) (10) 
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4. TERMINATION O F CANONICA L FLIP S 

JANOS KOLLÂR and KENJ I MATSUK I 

The aim of this chapter is to study flops and flips for terminal and canonica l 
threefolds. Firs t we prove the basic  finite generation theore m o f [Reid83]. Th e 
second main resul t is termination of flips (and flops) for canonical pairs (X, D) 
(4.10). We start wit h som e general result s that hol d for arbitrary schemes . 

4.1 Definition. Le t X  b e a  norma l scheme . A  small  modification  o f X  i s 
a prope r birationa l morphis m f  : Y —>  X suc h tha t Y is norma l an d th e 
exceptional se t o f / has codimensio n > 2 . We usually exclud e the trivia l case 
Y^X. 

The followin g proposition relate s projective smal l modification s t o th e di -
visor clas s grou p Weil(X ) (cf. (16.3.1)) . 

4.2 Proposition. [Kawamata88,3.1]  Let X  be  a normal scheme and let D  be 
a Weil  divisor on  X (not  necessarily  effective).  The  following  two  statements 
are equivalent: 

(4.2.1) 5Zm=o @x(™>D) is  a finitely generated  Ox-algebra. 
(4.2.2) There is a small modification f  :Y  —• X such  that D',  the  birational 

transform ofDonY,  is  Q-Cartier and f-ample. 
Furthermore f  is  nontrivial iff  no positive multiple  of  D is  Cartier. 

Proof. Assum e tha t f :  Y —>  X exists . Le t C  C  Y be th e exceptiona l set . 
First w e claim that 

(4.2.3) f*0Y(mD') = Ox(mD) fo r m >  0. 

It i s always true that f^Oy(mD f) C  Ox(mD).  Le t C CY be  the exceptiona l 
set o f / . Let s :  Ox -+ Ox(mD) b e a section. W e can pull it bac k to a section 

s :  Oy-c -> 0Y-c{rnD'). 

S. M . F. 
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Since C ha s codimensio n >  2 , this extends t o a  sectio n s  :  Oy —>  Oy(mD f). 
This prove s (4.2.3) . The n (4.2.1 ) follows since D f i s /-ample , an d henc e 

oo 

f*0Y(mD') 
m=0 

is finitely  generated . 
Replacing D  b y rD  fo r some r  >  0  we may assume that Ox{D)  generate s 

Y,Ox{mD). Le t 
oo 

Y =  Proj x O x(mD), 
m=0 

and le t D'  b e th e birationa l transform o f D o n Y  (henc e Oy(D')  =  Oy(l)). 
Let C  C  Y  b e th e exceptiona l se t an d assum e that i t contain s a  diviso r E. 
For m > l w e have a n exac t sequenc e 

0 UOy(mD')  UOy{mD'  +  E) -  / * (CV(m£>') ® (Oy(J5) /Oy ) ) - 0 , 

since R lf*Oy{mD') =  0 . Therefor e fo r m  > 1 

Ox(mD) =  f*Oy(mD')  C  f*Oy(mD' +  E). 

This i s impossible since Ox{mD)  i s reflexive an d 

O x ( m i ? ) | X -  / ( C ) = hO Y{mDf +  E)\X -  / ( C ) . 

Finally, assum e that mD  i s Cartier . The n mD ' an d f*(mD)  ar e tw o Q -
Cartier divisor s o n Y  whic h agre e outsid e a  se t o f codimension two . Thu s 
mD' =  f*(mD).  Sinc e D  i s /-ample an d f*Oy  =  Ox,  thi s is possible only if 
Y^X. • 

4-3 Remark.  (4.3.1 ) If X  i s affine , the n on e ca n alway s find  a n idea l shea f 
/ C  Ox  whic h is isomorphic to O x{D) (a s a sheaf), and then the m th symboli c 
power o f /  i s b y definitio n j ( m ) =  Ox{™>D)-  Fo r thi s reaso n th e algebr a 
Y^m=o Ox(mD)  i s called the symboli c power algebra o f D. 

(4.3.2) The equivalent statement s of (4.2) are both false in general. Howeve r 
it i s not eas y t o com e up wit h nic e examples (se e e.g. [Cutkosky88]) . 

4.4 Definition.  Le t D  b e a  Wei l divisor o n X.  W e say that finite  generation 
holds for D  o n X  i f the equivalen t condition s o f (4.2) are satisfied . 
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4.5 Corollary . Let  X  be  a normal scheme  and  assume  that  rank ^ Pic(X — 
Sing X) J  Pic(X) =  1 . Then  X has  at most two  small projective modifications. 

Proof. Le t fi  :  Y{ — * X b e a  smal l modificatio n an d le t D\  b e a n /^-ampl e 
divisor. Le t D { =  /*(£>•) • The n b y (4.2) 

oo 

3=0 

If nDi  ~  mD 2 fo r some ra, ra > 0  then since Proj i s unchanged o n truncating 
a grade d rin g 

oo oo 

P r o j x Y °x{JDi)  S  P r o j x Y, °xUnDi) 
j=o j=o 

oo o o 

S P r o j x Y  °x{jmD 2) =i  Pvojx Y  Ox(jD 2). 
j=o j=o 

Therefore th e tw o possible modifications correspon d t o th e positiv e an d neg -
ative parts of Z. • 

4.6 Proposition . [Kawamata88,3.2]  Let  X  and  Z  be  normal,  irreducible 
schemes and  g  :  Z —•  X a  finite and  surjective  morphism.  Let  E  be  a  Weil 
divisor on  X and  Ez  =  g*E.  Then  finite  generation  holds  for  E  iff  it  holds 
for Ez> 

Proof. (Assum e fo r simplicit y tha t g  i s separable. ) Suppos e tha t finite  gen -
eration hold s fo r E.  Le t /  :  Y — > X  b e a  smal l modificatio n suc h tha t th e 
birational transform E'  o f E i s /-ample. Le t p :  Yz —>  Y  b e the normalizatio n 
of Y  Xx  Z.  The n h  :Y Z — • Z i s a  smal l modificatio n an d p*(E f) i s /i-ample . 
Also, p*(E f) i s th e birationa l transform o f Ez- Thu s finite  generatio n hold s 
for Ez-

Assume finite  generatio n fo r Ez-  Le t q  :  U  —•  Z —•  X b e th e Galoi s 
closure o f Z  ove r X  an d G  th e Galoi s grou p o f U/X.  Se t E \j =  q*Ez-
By th e previou s cas e finite  generatio n hold s fo r E \j\ thu s ther e i s a  smal l 
modification fy  \Y \j — • U suc h tha t th e birationa l transfor m E f

v o f E \j i s 
/{/-ample. Clearl y G  acts on Y\j. Tak e Y  =  Yu/G. E'y  descend s t o a  diviso r 
E'u/G o n Y  whic h i s th e birationa l transfor m o f E.  Thu s finite  generatio n 
holds fo r E.  • 

4.7 Theorem . [Reid83]  Let Xbea  threefold  with  terminal singularities.  Let 
D C  X be  a Weil  divisor. Then 

oo 

E °x(mD) 
m=0 

Oxi(jDi). Yi = Proj x 
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is a finitely generated  Ox-algebra. 

Proof. Th e problem is local, thus we may assume tha t Ox(mKx)  —  Ox for 
some m > 0. 

By (4.6 ) it is sufficient t o prove (4.7) for the index one cover of X. Thu s we 
may assume that X i s terminal with index one. By [Reid83] X i s a cDV point; 
thus i t ca n be viewed as a one parameter famil y g  :  X —»  A(t) o f surface s 
with DuVa l singularities. B y [Brieskorn71] (see also [Artin74] ) there is a base 
change t  = s171 suc h that the resulting threefold X'  =  X x A ( f ) A(s) admits a 
small resolution . Tha t is , there is a small modification h  :Y' —•  X' suc h that 
Y' i s smooth. B y (4.6) it is sufficient t o prove finite generation o n X'. Le t D 
be a Weil divisor on X' an d let H be its birational transfor m o n Y'. 

We apply the (K + e#)-MMP on Y'/X1 wit h som e 0 < e < 1  (see (2.26)). 
The existenc e of flops is given by (4.8) while termination is proved in (4.11) . 
Finally w e obtain h + :  Y+ —•  X' suc h tha t i ? + i s /i +-nef. B y Base Poin t 
Freeness [KMM87,3-l-2] , there is a morphism 

such tha t p(H +) i s Q-Cartier an d g-ample. Thu s q  : Y —>  X'  show s finite 
generation fo r D. • 

4.8 Theorem . [Reid83]  Let f  :  Y —>  X  be  a small modification  between 
threefolds. Assume  that  Y has  isolated cDV points only  and Ky is  numerically 
f-trivial. Let  H be  a divisor on Y such  that  H  is negative onY/X.  Then  the 
flop / + :  Y+ —*  X of  f with  respect to  H exists  and  has isolated cDV  points 
only. 

Proof. A  very simple proof , due to Mori, is given in [CKM88,16.8-9] . • 

4-9 Definition.  [Kawamata91c ] Le t (X , D) b e a  lo g variety. Assum e tha t 
Kx +  D i s Q-Cartier (K x nee d no t be Q-Cartier). W e say that (X,D)  i s 
terminal (resp . canonical)  if a(E,D) >  0(resp . >  0 ) for every exceptiona l 
divisor o f C(X) wit h cente r o n X (cf . (1.6)) . I f D =  0, this coincide s with 
the usua l definition o f terminal (resp . canonical) . 

4.9.1 Exercise.  Le t (0 G 5, b e the germ of a normal surface . The n 
(4.9.1.1) (S^biBi)  i s terminal iff 

S i s smooth and ̂T ^ b{ multo B{ < 1. 

Therefore if (X, D) is terminal (any dimension) then L DJ =  0  and X i s smooth 
in codimension two. 

h + : Y+ -> p Y -> a X' 
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(4.9.1.2) (S ,J2biBi) i s canonica l iff either 

S i s smooth and ^  b{  multo B\ <  1; o r 

S i s Du Val and ^  6 t-J5t- = 0 . 

From (2.28 ) w e see that termina l i s preserved unde r flops  an d flips.  I t i s 
however not preserve d unde r extrema l contractions . 

In th e res t o f this section , flips  ar e assume d t o exis t wheneve r the y ar e 
mentioned. 

Next w e prove the terminatio n o f a sequenc e o f flips for termina l 3-fold s 
(X, D).  Th e flop  version was first proved by [Kawamata88] for a special case, 
then i n genera l b y [Kollar89] . Finall y [Kawamata91c ] noticed that th e righ t 
context i s the mor e general for m (4.10) . 

Here w e emphasise th e analog y between [Kollar89 ] and [Shokurov91 , 4.1] 
whose proof i s presented i n Chapte r 7 . Roughl y speaking, th e proof s consist 
of tw o major step s (th e D  =  0 case can be treated a s a  special case of (I)): 

(I) Show that there is a finite set of special discrete valuations associated to 
the flipped curves such that the cardinality o f the se t (o r some other invariant ) 
drops i f a flipped  curv e i s contained i n th e boundary . Thi s ste p show s that, 
after finitely  man y flips, no flipped curve is contained in the boundary . 

(II) Now use the finiteness of the Picard number o f the irreducible compo -
nents of the boundar y t o conclud e that, afte r finitely  man y flips,  no flipping 
curve can be contained i n the boundary . 

4.10 Theorem . (Termination  of  flips for canonical 3-folds) Let X  be  a nor-
mal three  dimensional  Q-factorial  scheme of  finite type  over  a  field of  char-
acteristic zero  and  D an  effective Q-divisor. Assume  that  (X,  D)  is  canonical 
and L D J =  0 . Then  any  sequence  of flips for (X,D)  terminates,  i.e.,  there  is 
no infinite  sequence 

(Xo,D0) ~+  (Xi,I>i ) — • (X 2,D2) -* 

<h\ /<t>t  & \ Sti  <h\ 
ZQ Z\  Z2 

where X{+\  =  (Xi) + is  a  (Kx { +  Di)-flip of  X{  for  each  i  and  D\  is  the 
birational transform  of  D Q =  D. 

4.11 Corollary . (Termination  of  flops for terminal  3-folds)  Let X  be  a nor-
mal Q-factorial  3-fold  with only  terminal  singularities  and  D an  effective  Q-
Cartier divisor.  Then  any  sequence of D-flops terminates. 

Proof. Fo r 0< 6 < 1 th e pai r (X , eD) i s terminal and an y JD-flop is a (Kx  + 
e£>)-flip. • 
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The proo f o f (4.10) i s done in severa l steps . 

4.12 Discrepanc y Lemmas . 

4.12.1 Lemma . Let  Y  be  a smooth variety  with a (not necessarily effective) 
Q-divisor B  =  ^2 b{B{ such tat  B%  has  simple normal  crossings. 

(4.12.1.1) If  v  is  a divisor of  C(Y) then  there  are  fc,n2- £ N  such that 

at{y, Y,B)  =  k + Y ^ ( 1 -bi)  =  k + J2 niat(Bi,Y,  B). 

rii = 0  unless  Centery(zz) C B{ and  k  + ^n2 - >  codim(Centery(z/) , Y ) . 
(4.12.1.2) Let  B  =  E +  H =  Y^ejEj +  £hkHk such  that  e j <  1 . Assume 

that 1  — hk  >  c  for every  k,  where  c is some fixed  constant  with  1  > c  >  0 . 
Let v  be  a divisor of  C(Y) such  that 

#{j|Centery(i/) C  Ej} <  codim(Centery(z/), Y ) . 

Then a e(u,Y,E +  H) >  c. 
(4.12.1.3) Assume  that  ( 1 — bk) + (l — bi) > 2 whenever Bk and  Bi intersect. 

If v  is  a discrete valuation  with  small center on Y such  that a^iy,  B) <  2  then 
v is  obtained  by  blowing  up  the  generic  point  of  a  subvariety W  C  Y  such 
that codim y W =  2 , only one  of the Bk  (say  Bk0) contains  W and  >  0 . 

Proof. Le t v  b e any discret e valuatio n o f Y. Le t Z\  C  Yi = Y  b e the cente r 
of v  o n Y. Le t Y 2 b e the blo w u p o f Y\ alon g Z\.  Le t Z 2 b e the cente r o f v 
on Yz - The n Y 2 is smooth at th e generi c point o f Z2 an d w e can continue th e 
blowing up procedure. Afte r finitely many steps the cente r of v on Y& becomes 
a divisor . (Thi s i s a  basi c resul t o f Zariski . Se e [Artin86 , 5.2 ] for a  simpl e 
self-contained proof. ) Thu s i f we understand the behavior of log discrepancies 
under a  singl e (smooth ) blo w up , the n w e understand the m fo r al l discret e 
valuations. 

With thi s in mind , (4.12.1.1-3 ) ar e eas y computations . Se e [Kollar89,3.2] 
for details . • 

4.12.2 Lemma . Let  (X,D)  be  a log variety, where D =  Yl^jDj  is  an effec -
tive Q-divisor on  X. Assume  that  (X,D)  is  kit. 

(4.12.2.1) There  is  a finite set  of  valuations {vi}  such  that  if 

aii{y, D) <  min{2,1 + logdiscrep(X , D)} and  v  £  {u{} 

then v  is  obtained  from  blowing  up  the  generic  point  of  a  subvariety  W  C 
D C  X  such  that  D  and  X  are  generically smooth along  W (and  thus  only 
one of  the Dj  contains  W)  and  dimW =  dimX — 2. 
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(4.12.2.2) There  axe  only finitely many  exceptional  divisors v such that 

az{v, D)  < min{l + logdiscrep(X, D),2 —  max{dj}}. 
j 

Proof. Th e second claim is a consequence of the first.  T o see the first,  take 
a goo d resolutio n f  :  Y —>  X suc h tha t F  =  f~ 1(D) i s smoot h an d let 
Ky +  J2hkHk =  f*(K x +  D). (Thu s F  i s a summand o f Y,hkHk.) The n 
ai(v,D) =  a£(u,J2hkHk) fo r every v. 

We wan t to change Y s o that ( 4 . 1 2 . 1 . 3 ) i s satisfied. Assum e that it fails for 
a pai r (&,/) . Blo w up Hk f l Hi. Le t H' be the new exceptional divisor. The n 

at{H\ D) = a£(Hk, D) + a£(Hh D). 

Let c  = min{l - dj,discrep(X,D) + 1 } . Then 

at(H\ D) + ae(Hk, D) >  at{Hk, D)  + at(HhD) + c. 

Repeating this procedure a finite number o f times, we can finally achieve that 
the assumptio n o f ( 4 . 1 2 . 1 . 3 ) i s satisfied . B y a sligh t abus e o f notation we 
assume that f  :Y  —>  X itsel f satisfies ( 4 . 1 2 . 1 . 3 ) . 

Thus w e obtain ( 4 . 1 2 . 2 . 1 ) excep t that ( 4 . 1 2 . 1 . 3 ) give s information abou t 
the center s on Y an d not on X. 

Assume that v  is a discrete valuation suc h that 

a¿y, D) =  a¿y, > J hkHk) < 2 . 

By ( 4 . 1 2 . 1 . 3 ) al l but finitely  man y o f these ar e obtaine d b y blowing up a 
smooth codimension one point on H k- I f the center of v is contained in Hj 
and Hj  i s /-exceptional then 

at{y, D)  = l + a,£(Hj,D) > 1  + logdiscrep(X, D). 

Therefore th e center o f v i s contained in F. Amon g thes e z/ , there are only 
finitely many v  whose center on X doe s not satisfy ( 4 . 1 2 . 2 . 1 . 1 ) . (The excep-
tions com e fro m the exceptional divisors of F —>  D, the singular locu s of D 
and th e singular locu s of X.) • 
4-12.3 Definition. Le t (X,D = Yl^jDj) b e a canonica l pair. Assum e that 
L-DJ = 0. Fix an integer N G  N such that ND  i s a Weil divisor (i.e. Ndj G N 
for ever y j). Le t d = m&x{dj}. Le t 

dN(X,D)= * 
i=Nd 

This i s a weighted versio n of the "difficulty " introduce d b y [Shokurov85 ] 
(see als o [Kollar89]) . d N(X,D) <  0 0 by ( 4 . 1 2 . 2 . 2 ) . 

Shokurov pointed out that eve n if (X,D) i s not canonical, dx(X,D) <  0 0 
if d  > 1 —  logdiscrep(X, D). 

discrete valuations v  with smal l center on X 
such that at(y,  D) <  2 - i/N 
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4.12.4 Lemma . Let  (X,D)  be  a  canonical  pair. Assume  that  LZ) J =  0 . 
Then dx(X,  D)  is  finite and  nonincreasing under  flips. 

Proof. Le t v  b e a  discret e valuatio n wit h cente r o f codimension >  2  o n Y 
such that ae(v,D)  <  2 . I f v i s obtained b y blowing up a  smooth codimension 
one point o f Fj the n ai(y,  D)  =  2  — dj >  2 — d.  Thu s finiteness  follow s fro m 
(4.12.2). 

(2.28) implie s the secon d part. • 

(4.13) Proof of  (4.10). 

Let (X,D)  b e as in (4.10) . Le t D  =  J2djFj, s o A  =  Yj doFj- Conside r a 
sequence of (Kx +  D)-&ips. W e prove termination b y descending induction on 
the coefficients dj o f D, combined with the strategy explained at the beginnin g 
of th e chapter . A s before se t d  =  m&x{dj}  (d  =  0  i f D  =  0 ) an d le t G  := 
Yldi-d Fi b e diviso r consisting of the Fj  wit h the bigges t coefficient (G = 
X i f D =  0) . W e prove the followin g tw o statements: 

(I)G Afte r som e flips  n o flipped  curv e i s containe d i n (th e birationa l 
transform of ) G. 

(II)G Afte r som e flips no flipping  curv e i s containe d i n (th e birationa l 
transform of ) G. 

(Here by a  flipping curve  we mean an y componen t of a fiber  o f fa  an d b y 
a flipped curve  any componen t of a fiber of faf.) 

4.13.1 Subclaim . Suppose  a  flipped curve  C is  contained in G;+i (the  bira-
tional transform  of  G on  Xi+\ =  Xf).  Let  Ec  be  the  divisor  obtained  from 
blowing up  the  generic  point  of  C. Then  there  is a k(C) G  N  such that 

a£(Ec,Di) <  a/(£7c, A+i) = 2 - ^  <  2 - d. 

Proof. B y (4.9.1 ) the generi c point o f C lies in the smoot h locus of X{+i. B y 
explicit computatio n 

a£(Ec, A + i ) =  2  - ^rrijdj, 

where rrij  is the multiplicit y o f F^1 alon g the generi c point o f C. Se t k(C)  = 
N^rrijdj. I f C  C  G then k(C)  >  Nd. B y (2.23.3 ) 

ai(EC9Di)<ai(Ec9Di+1). • 
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4.13.2 Claim . (I) G is  true. 

Proof. I f ipi : X{  —+  Xi+i i s a flip and a  flipped curve is contained i n G  then 
by (4.13.1 ) d N(Xi+1, A '+ i ) <  d N(XijDi). Sinc e dN( ,  )  is nonnegative, thi s 
can happen onl y finitely many times . • 

4.13.3 Claim . ( 7 7 ) G is  true. 

Proof. B y virtue o f (7)G ? w e m a Y assum e tha t n o flipped curve i s containe d 
in G{.  Thi s implie s that th e induce d birationa l ma p ipi  : {Gi}v —•  {Gi+i}" 
is actuall y a  morphism , an d moreove r contracts a  curve whenever a  flipping 
curve i s contained i n G{.  ( { }" denotes th e normalization. ) Thi s canno t b e 
repeated infinitel y man y times , an d thu s we have the clai m ( 7 7 ) G- d 

If D  =  0  then (4.13.2 ) complete s the proof . Otherwis e afte r finitely  man y 
flips neither th e flipping  no r th e flipped  curv e i s contained i n th e birationa l 
transform o f G. I n the Q-factoria l cas e this implies that the birationa l trans -
form of G is disjoint from the flipping curves. Indeed , assume that C intersects 
G bu t i s not containe d i n it . The n th e Q-factorialit y o f X implie s that ther e 
exists a  componen t Go  o f G  suc h tha t C  •  Go >  0 . Thi s i n tur n implie s 
C+ •  G+ <  0  and henc e C+ C  G% C  G +. 

Thus w e may replace (X,  D)  b y (X \  G,  J2dj<d djFj) a n d us e induction on 
the numbe r o f irreducible component s of D. • 

4-14 Remark. Szab o observed that i t i s not to o difficult t o modify the above 
proof i n cas e X  i s no t Q-factorial . W e canno t guarante e tha t G  becomes 
disjoint fro m th e flipping  curves . W e need t o modif y the definitio n (4.12.3 ) 
by counting only those discrete valuations v  which are not obtained by blowing 
up the generi c point o f a curve in G. Onc e neither the flipping nor the flipped 
curves are containe d i n G,  this definition i s independent o f further flips. 

We also need a  slight strengthenin g of (4.10) : 

4.15 Theorem . Let  X  be  a  normal  three  dimensional  Q-factorial  scheme 
of finite  type  over  a  field of  characteristic  zero and  D an  effective  Q-divisor. 
Assume that  (X , D) is  canonical.  Then  any  sequence  of  Bips for (X , D) ter-
minates. 

Proof. Le t g  :  (X,D) ( X + , 7 ) + ) b e a  flip and le t C + b e a  flipped  curve . 
Assume that C + C  L 7 ) + J . The n b y (4.9.1 ) i s genericall y smoot h alon g 
C + . Le t E  b e th e exceptiona l diviso r obtaine d b y blowin g up th e generi c 
point o f C+. The n 0  = a(E,D +) >  a(E,D) >  0 gives a contradiction . Thu s 
C+ (jL  L7>+J . 

As in (4.13.3 ) we see that after finitely  many steps no flipping curve can be 
contained in L D J . Thu s after finitely  many flips we can replace X b y X \  I_7) J 
and terminatio n i s reduced to (4.10) . • 
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4.15.1 Remark. Shokuro v pointed ou t that the abov e proof o f (4.15) works in 
positive characteristi c as well.  68



5. EXISTENC E O F CANONICA L FLIP S 

ALESSIO CORT I and JÀNOS KOLLÀ R 

The ai m o f this chapte r i s t o prov e that i f (X , D) i s canonica l and thre e 
dimensional the n flips exist . Unfortunately , th e proo f assume s th e existenc e 
of flips  i n th e D  =  0  case , whic h i s a  ver y difficul t resul t o f [Mori88] . Fo r 
technical reason s w e need t o conside r pair s (X,D)  whic h ar e slightl y mor e 
general than terminal . 

5.1 Definition.  W e say that th e pai r (X,D)  satisfie s conditio n (* ) if the fol -
lowing assumptions hold : 

(5.1.1) X  i s a normal Q-factoria l threefol d an d D  =  ]Td 2\Dz- i s a Q-Cartie r 
divisor; an d 

(5.1.2) a(E,D)  >  0  for ever y exceptional divisor E  wit h equalit y holdin g 
only i f E  i s obtained b y blowing up (th e generi c point of ) a curve containe d 
in L D J . 

5.2 Proposition . Assume  that  (X,D)  satisfies  (*).  If  (X',D')  is  obtained 
from (X,  D)  by  a  sequence of  D-Bips or  extremal contractions  which  do  not 
contract any  components  of  D, then  (X',D f) also  satisfies (*). 

Proof. I t i s sufficien t t o conside r on e flip or contractio n g  :  X —->  X'.  Le t 
C C  X'  b e th e exceptiona l se t o f g~ x. I f E  i s a n exceptiona l diviso r over 
X' suc h that Center*'(£ ) t-  c* t t i e n ct (E,Df) =  a(E,D). Thu s assum e tha t 
CenterX<(E) C  C. I n this case, a{E,D') >  a(E,D) b y (2.23.3 ) an d (2.28.3) . 

The onl y cas e tha t need s attentio n i s whe n g  i s a  divisoria l contractio n 
and E  th e exceptiona l divisor of g (sinc e E i s not exceptiona l over X). I f E 
is no t a  componen t o f D  the n a(£ l, D) =  0 . Otherwis e a(E,  D)  <  0 , henc e 
E C  Supp D, whic h was excluded. • 

5.3 Lemma . Assume  (X,D)  satisfies  (*).  Then 
(5.3.1) X  has  terminal  singularities; 
(5.3.2) If  x  G  \-DJ then X  and  D are  smooth at  x. 

Proof. Th e first  part i s clear. 
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The second par t can b e don e b y hand , bu t i t i s easie r t o us e adjunc -
tion. Assum e that x  G L D J . Pic k a  componen t S C L D J containin g x.  B y 
(17.2) (5,Diff( JD - S)) i s terminal,  an d thu s b y (4.9.1) S  is smooth . Le t 
p : (x'', X') —• (#, X) b e the inde x one cover in a neighborhood of x. Th e cov -
ering i s étale outside x  an d ha s degre e equa l t o index( # G X). S is smooth, 
thus p~ 1(S) i s a  unio n o f index(x G X) irreducibl e component s intersectin g 
at x' . p~~1(S) i s a  Q-Cartie r diviso r on the cD V variety X' , thus Cartier by 
(6.7.2). Therefore p~ 1(S) i s S 2 . Le t i:U  = p-^S) - {x1} -+ p'\S) b e th e 
injection. Sinc e p~1(S) i s 5 2 , i*Ou  = Op-i(Sy Thi s implie s that p~ 1(S) i s 
irreducible. Therefor e index( # G X ) = 1 , X i s a cDV point an d 5 is Cartier. 
Hence X  i s also smooth. • 

5.4 Theorem. Assume  that  (X,D)  is  canonical Let  f  : X —• Z be  a small 
extremal contraction  such  that —  (Kx +  D) is  f-ample and  p(X/Z) = 1 . Then 
the flip  of  f exists. 

Proof. Th e proof is in two steps. Firs t we establish th e result in the case when 
D i s reduced an d satisfie s (*). Then w e prove the genera l cas e by inductio n 
on the numbe r o f irreducible component s of D. 

5.4.I Step  1. (5.4 ) holds if D =  D% l s reduce d an d satisfie s (*). 

Let C C  X b e the exceptiona l curve. B y shrinking Z , we may assume tha t 
C i s connected . I f C  • D{ > 0  then w e can discar d D{.  I f we discard al l th e 
Dj the n C  • Kx < 0. Then th e flip exists by [Mori88 ] ( the flips with respec t 
to Kx  + D an d wit h respec t t o Kx  coincide , cf. (2.32.1)) . 

If w e assume tha t C  • D\ < 0 , then C C D\.  Thu s n o othe r componen t 
of D  intersect s C  b y (5.3.2) and S =  D\ i s smoot h alon g C.  Conside r th e 
contraction / :  S  -+  f(S). K s =  K + S\S. Thu s -K s i s (/|5)-ample . 
Therefore f\S  i s the contractio n o f a single — 1-curve C  and (K  + S) • C = —  1. 

Suppose that S •  C = —  m, s o that K  • C = m —  1. Furthermore, 

Ox(K +  S)® rn^Ox(D), 

at leas t i n a  neighborhood of C. Usin g the natura l section of Ox(S) w e can 
construct a  degre e m cyclic cove r p : Xm -+  X ramifie d alon g 5. Let Z m b e 
the normalizatio n o f Z i n X m an d f m :  Xm —»  Zm th e induce d contractio n 
of C m =  p _ 1 ( C ) . B y the ramificatio n formul a 

C m •  KXm =C m -p*  (KX +  ^ — ^ =CK X +  ^—^C  -5 =  0 . 
\ m J m 

Therefore / m i s a flopping contraction an d th e opposit e (X m)+ —•  Zm exist s 
by (4.8). Thus X+  = ( X m ) + / Z m i s the flip of / . • 
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By (2.35 ) for fixed 7 7 there are only finitely many (K+B —  (e+7;)5j)-extremal 
rays. Thu s we may assume that if R generates a  (K + B —  (e + rj)Bj )-extremal 
ray then 

R •  (K +  B -  eBj)  =  0. 

Therefore, i f C{ i s a flipping curve, then 

(5.4.2.4) (K  +  B -  ( e + rj)Bj)  •  d =  -TJ BJ •  d <  0. 

Set 

B' = £d,-JC1(A-)+ Yl  K \Di). 
i<j * > j + l 

Prom (5.4.2.4 ) w e conclude that 

Bj -Ci >0 an d (K  +  B') •  d <  0. 

Thus the flip required i s also a (K  +  2?')-flip, whic h exists by induction since 
B' ha s one fewer irreducible components. Afte r some flips and contractions we 
can increase the value of e to e' >  e  + rj. Next apply the (K  + B —  (e' + rj')Bj))-
MMP, an d s o on. 

We claim that afte r finitely  man y steps w e reach e  = 1  — dj. A s usual, th e 
only question is the terminatio n o f flips. As was remarked above , every flip is 
a (K  +  B^-flip, an d s o termination follow s from (4.15) . I n the end  we obtain 

hj+i . (Yi+\Bj+1) ^Z. 

(5.4.2.5) I f D  ha s k  component s then iterating (5.4.2.3 ) w e obtain 

hk+l .  (y*+l)B*+l) Z  suc h that Bk+1  =  ^ + 1 ^ - 1 ^ 

Thus we can take X =  Xk+1. • 

5.5 Remark.  On e can conside r the (K  +  D)-MMP fo r termina l o r canonical 
pairs. I n genera l i t ca n occu r tha t a n extrema l contractio n create s a  pai r 
(X*\D') whic h is not canonical . Thi s ca n happe n whe n we contract a n irre -
ducible componen t of D. Ther e ar e som e geometric conditions which ensur e 
that thi s does not occur . 

The simples t cas e is when we do the relativ e MM P with respec t t o a  mor-
phism /  :  X —>  Y  suc h that /  i s generically finite on every irreducible com -
ponent o f D.  Anothe r exampl e i s when D  i s reduced an d every  irreducibl e 
component ha s nonnegativ e Kodaira dimension. 

Assume that we avoid the above problem and the (K+D)-WMP  terminate s 
with a  pai r (Xm,Dm)  suc h that K  +  Dm i s nef and satisfie s (*) . In genera l 
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Xm i s not uniqu e i n codimensio n one since we can alway s blo w up a  smoot h 
curve inside th e smoot h locus of i_D m j to obtai n anothe r minimal model . I n 
order t o remed y th e situatio n we introduce th e followin g notion: 

5.6 Definition. W e say that a pair {X',  D')  i s a (K+(1 —  0)J9/)-minimal model 
if the followin g conditions are satisfied : 

(5.6.1) (X',D')  i s canonical; 
(5.6.2) (X',D')  i s termina l outsid e rDfn (equivalently , X'  ha s termina l 

singularities); 
(5.6.3) K  +  (1 - e)D'  i s nef for every 0 < e  < 1 . 

5.7 Construction.  Assum e that (X , D) satisfie s (*) . Th e construction o f (K + 
(1 — 0)D)-minimal models proceeds along the lines of the MMP . First we apply 
the (K  +  £>)-MMP . Thus eventuall y w e obtain ( X m , D m), unles s w e run int o 
a forbidde n contractio n a s in (5.5) . 

If K  +  ( 1 -  e)D m i s ne f fo r som e 0  <  e  then w e ca n tak e X r =  X m. 
Otherwise, w e choose e such that ever y (K  +  ( 1 — e).Dm)-extremal ra y R  ha s 
zero intersection wit h K  +  Dm an d appl y th e (K  +  ( 1 - e)D m )-MMP. 

Assume that w e need t o flip a  curve C  C  Xm. The n 

(K +  ( 1 - e)D m) •  C =  -eD m •  C <  0, 

and therefor e ( 1 — e)D m •  C >  0 and K  •  C <  0. Thu s ever y such log flip is a 
K-flip. Henc e they exis t b y [Mori88 ] an d an y sequence terminates. O f course 
again ther e is the possibilit y that w e contract a  component of D. 

These models have the same uniqueness propert y a s ordinary minima l mod-
els: 

5.8 Proposition . Assume  that  (X,D)  satihes  (* ) and let  (X l,Dl) (i  =  1,2 ) 
be two  (K  +  ( 1 —  0)D)-minimal  models.  Then  the  natural  birational  map 
X1 —X 2 is  an isomorphism in  codimension  one. 

Proof. Choos e e so that K  +  (1 - e)D i i s nef for ¿  = 1,2 . The n ( X \ (1 -e)D i) 
are terminal . Th e rest of the proo f i s essentially th e sam e as in [Kollar89,4.3]. 
We do not us e this result i n the res t o f the notes . • 

5.9 Remark.  I t i s interesting t o not e tha t th e abov e notions ca n b e use d t o 
unify flops,  flips  an d inverse s o f flips.  Conside r pair s (X , D) wit h D  reduce d 
which ar e canonica l an d termina l outsid e D.  Th e flops  in thi s categor y ar e 
precisely the following: 

terminal flops  (D  i s a member o f \Ox \  = |  - Kx\)\ 
terminal flips  (D  i s a member o f |  — Kx\,  [Kollar-Mori92 , 1.7]); and 
inverses o f terminal flips (D is a member of | — Kx\, [Kollar-Mori92 , Ch.3]). 
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6. CREPAN T DESCENT 

JANOS KOLLA R 

The ai m o f this chapte r i s t o develo p a  reductio n metho d fo r lo g flips. 
The mai n result s say that i f /  :  Y —•  X  i s a  birationa l morphis m suc h tha t 
Ky =  f*Kx  (i.e . /  i s crepant)  then flipping on X ca n be reduced to flipping 
on Y. Thi s method first appeare d i n [Kawamata88] and was further developed 
in [Kollar89 ] and [Kawamata91c] . Firs t w e outlin e th e genera l metho d o f 
doing this , calle d th e Backtrackin g Method . The n w e prove th e tw o mai n 
applications i n (6.10-11) . 

We start with three auxiliary lemmas . 

6.1 Lemma . Let  h  :  U —• Z  be  a projective morphism such  that h*Ou  =  Oz-
Assume that  p(U/Z)  =  2 . Then  there  are at most  two  normal and  projective 
schemes Vj  —•  Z  (j  =  1,2 ) giving  nontrivial factorizations 

U-+Vj^Z 

such that  U  —• Vj  has  connected  fibers. 

Proof. Le t Hj  b e ampl e o n Vj/Z  an d le t Mj  b e th e pull-bac k o f Hj  t o U. 
Then Mj  i s ne f an d trivia l o n the curve s that ar e containe d i n th e fiber s of 
U-^Vj. 

{[D]\D •  Mj =  0} C NE{U/Z) C M2 

is an extrema l fac e which determines Vj.  A  convex con e in R 2 ha s onl y two 
edges, thus there can be at mos t tw o contraction morphism s U  —• Vj. • 

6.2 Lemma . Let  Y  be  a  normal  Q-factorial  variety.  Let  q  :  Y  —>  X  be 
a projective birational  morphism  such  that  p(Y/X)  =  1 . Let  q'  :  Y' —>  X 
be another  projective  birational  morphism with  a unique exceptional  divisor 
E' C Y'. Assume  that  the  composite  birational  map q~ l o  q' : Y f —+  Y is  an 
isomorphism at  the  generic  point  of  E'. Then  q" 1 o  q' is an isomorphism. 

Proof. Le t H' b e an effective, irreducible g'-ample divisor. It s birational trans-
form H  o n Y i s an irreducible and effective divisor which does not contain th e 
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exceptional set o f q. Sinc e p(Y/X) =  1 , this implies that H  i s g-ample. Thu s 
g" 1 o  qf i s a n isomorphis m in codimensio n one and transform s th e g'-ampl e 
divisor H r int o th e g-ampl e diviso r H.  Thi s easil y implies that q~ x o  q' is a n 
isomorphism. • 

6.3 Lemma. Let  g :Y —•  Z andg'  :Y'  —>  Z  be  proper birational  morphisms. 
Let </>  :  Y —Y'  be  a  Z-map,  isomorphic  in  codimension  one.  Let  H  be  a 
divisor on Y and  let H'  =  (/>(H).  Assume that  both  H  and  H' are  Q-Cartier. 
If —H  is g-ample and  H f is  g f-nef then  g  and g'  are  both small. 

Proof. Le t F f C  Y' b e the close d subset wher e i s not an ismorphism. Fo r 
m >  1 , |  - mH\  i s g-veiy  ample , henc e base poin t free . Thu s 0* | —  mH\  i s 
base point fre e outside F'.  I f g' :Y f —  F' —>  Z  i s not a n immersion then there 
is a  prope r curv e C  C  Y'  suc h tha t g f{C) =  point , C  intersect s F'  bu t i s 
not containe d i n it . Thu s C  •  (—H') >  0 , a contradiction . • 

6.4 Backtracking  Method. 
Let /  :  X —•  Z b e a  smal l contractio n wit h p(X/Z)  =  1  and le t H  b e a 

Q-Cartier diviso r on X  suc h that —H  is /-ample . Th e aim o f the metho d i s 
to construc t th e opposit e of / wit h respec t t o H. 

Set X  =  XQ.  A S a  first ste p we construct a  birational projectiv e morphism 
qi :  Y i - + X 0 suc h tha t p(Y 1/X) =  1  an d pfa/Z)  =  2 . (Th e latte r i s 
automatic i f X  i s Q-factorial. ) I f Xo  i s Q-factorial , thi s implie s tha t th e 
exceptional se t o f q\ i s an irreducibl e divisor . 

Assume tha t qi  :  Y{ —• —»>  Z  i s alread y constructed . B y (6.1 ) there 
are a t mos t tw o nontrivial factorization s 

Yi Vj  Z. 

X{-i i s one of them. Th e correspondin g extremal ra y i s denoted b y Qi.  Le t 
Ri b e th e othe r extrema l ra y an d le t r 2 :  — * X{ b e th e correspondin g 
contraction (provide d it exists) . I f r2- is a divisorial contraction, we stop. Ou r 
hope is that X{  i s the opposit e of X —•  Z.  I f r t- i s a small contraction then let 
ft+i :  Yi+i — • X{  b e the opposit e (if it exists) . 

We have to be a little more careful ifYi—>Z  i s small. (Thi s never happen s 
in mos t applications. ) I n thi s cas e we stop th e metho d whe n th e birationa l 
transform o f —qlH  become s nef on Y{.  I f i t become s ample the n Y{  —• Z i s 
the flip  o f XQ — > Z.  Otherwis e —qlH  shoul d descen d to Xi,  thu s X{  —•  Z i s 
the require d flip. 

In workin g with th e metho d w e always use the abov e notation. Also , i f D 
is a  diviso r o n X  o r o n Yi , its birationa l transfor m o n Y{  is denoted b y Di. 
We usually writ e simpl y K  instea d of Ky{ o r Kx  i f no confusion is likely. 
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Thus startin g wit h q\  :  Y\ — • X Q we define a  uniqu e chai n o f projective 
Z-schemes and morphisms : 

(YI ,JDI) — > (Y 2,D2) —» 
/ qi ri  \  / f t r 2 \ 

Xo X\  X 2 

The necessary step s fo r the succes s of this approach ar e th e following : 
(6.4.1) Th e construction o f qi :  Y\ — • X0 (mostl y easy). 
(6.4.2) Proo f tha t th e contraction s r 2- exis t (easy). 
(6.4.3) Proof that the opposites qi+i :  Yi+i —•  X{ exis t (thi s is the hardest) . 
(6.4.4) Proo f tha t eventuall y w e get a  divisoria l contractio n rj  :  Yj —>  Xj 

(easy using Chapter s 4  and 7). 
(6.4.5) Proo f tha t Xj  —>  Z  i s indeed the opposit e of X — • Z (easy) . 

It i s convenien t t o imagin e th e bactrackin g metho d b y drawing a  pictur e 
of th e ampl e cones . By assumption ther e are natural isomorphism 

iV^Yi) £  i V 1 ^ ) = ...  =  N 1 =  R 2 . 

For eac h i , le t Ampl^ - C A^ 1 be th e close d cone generated b y the relativel y 
ample divisor s of Y{jZ. Th e two edges of the con e Amp Y{  correspon d to th e 
two contraction s q\  and r 2-: the y are given by pull backs of ample divisors from 
Xi-i an d fro m Xi.  I n particular , th e cone s Ampl^ an d AmpYi- + 1 shar e a 
common edge corresponding to the pul l back of ample divisors from Xj. Thu s 
we obtai n a  subdivision of TV 1 int o a  collection of cones. 

Amp Y 

Amp Y 

Amp Y 
m 
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6.4,6 Lemma . Notation  as  above.  All  the  cones  AmpY ; are  in one  of  the 
half planes determined  by  the line M[qlH]. In  particular, all the cones  Am p Y{ 
are different,  hence  Y{  and Yj are  not isomorphic  over  Z  if  i  ^ j . 

Proof. Th e shaded area represents thos e divisors F fo r which —  F i s ample on 
Yi. Thu s i f Y\ — • Z i s not smal l then by (6.3) the cone s Amp Ym ar e disjoin t 
from th e shade d area . I f Y\  — • Z i s smal l the n w e stop th e metho d whe n 
qlH become s nef. Thu s i n bot h case s w e stay i n th e halfplan e containin g 
Amp Yi. • 

6.5 General  Properties  of  the Backtracking Method. 

6.5.1. Whe n applying the Backtrackin g Method , the choic e o f qi :  Y\ — • X 0 

is our onl y freedom. I n som e cases it i s easy, in som e other case s i t i s fairl y 
hard to prove that a  choice with very good propertie s exists . 

6.5.2 Claim . Notation  as  above.  Assume  that  —D\  is  relatively ample  on 
Yi/Z. Then  the  steps  of  the Backtracking  Method  are  steps of  the D\-MMP 
applied to  (Yi,D\). 

Proof. W e assumed th e i  = 1  case. B y induction assume nex t tha t this holds 
for L  Thu s Di  •  Ri <  0. The n A + i •  Qi+i  >  0 . I f Yi Z  i s not small , then 
by (6.3 ) Di+i i s not ne f on YJ+i, thus Z?,-+i •  Ri+i <  0. 

If Y i — + Z i s small , the n i t ca n happe n tha t D{+i  i s ne f o n Y^+i . Thi s 
however was declared to be the las t step o f the method . • 

6.5.2.1 Complement.  Notatio n a s above . Assum e that Xo  i s Q-factorial an d 
H =  K  +  A  wher e (Xo , A) i s kit . Le t E\  C  Y i be th e exceptiona l divisor. 
Then £> i =  K  +  Ai =  q{(K  +  A ) + eE 1 i s ki t an d negativ e o n Y i / Z for 
0 < e < l . Therefor e the step s o f the backtrackin g metho d becom e the step s 
of th e (K  +  Ai)-MMP . I n particula r th e contraction s r 2- exist . 

6.5.3. I n th e genera l framewor k I  canno t sa y anythin g abou t th e existenc e 
of th e opposites . I n th e application s th e crucia l poin t i s t o sho w that th e 
singularities o f Yi ar e "simpler " tha n the singularitie s o f XQ. Thu s w e prove 
existence o f flips by reduction t o "simpler " singularities . Unfortunatel y th e 
notions o f "simplicity " used see m rather artificia l an d i t i s not clea r ho w to 
generalize them t o higher dimensions . 

6.5.4- Terminatio n o f flips is again a  problem. In the application s the result s 
of Chapter s 4  an d 7  impl y tha t eventuall y w e ge t a  divisoria l contractio n 
Tm '  Y m y  XfYi. 

6.5.5 Proposition . Notation  and  assumptions  as  above.  Assume  further-
more that  X  and  Yi are Q-factorial.  Assume  that  eventually  we  get a  diviso-
rial contraction r m :  Ym X m. Then  X m —•  Z  is  the opposite  of  X----> Z. 
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Proof. B y (4.5), if X i s Q-factorial then Z has at most two small modifications, 
X an d it s opposite . Therefor e i t i s sufficient t o show that 

</, ;  X —  Z  4 - X m 

is not a n isomorphism . (Warning ! I t ca n easil y happen tha t X  an d X m ar e 
isomorphic a s varieties , bu t the y ar e no t isomorphi c over Z.) 

Assume the contrary . The n 

4>: Y\  —•  X =  Xm <—  Y m 

is also an isomorphis m by (6.2) . Thi s is however impossible by (6.4.6) . • 

Next we formulate th e crepant descen t theorems. Firs t we collect propertie s 
of flops  an d termina l flips  of threefolds tha t ar e neede d durin g th e proo f of 
the descen t theorems . Th e lists are complet e in the sens e that i f (6.7 ) (resp. 
(6.9)) hold s in dimension n  then (6.10 ) (resp . (6.11) ) als o holds in dimension 
n. (Unfortunately , a s Matsuk i pointe d ou t t o me , (6.7.2 ) ha s n o analo g i n 
dimension >  4.) 

6.6 Definition.  Le t (X,B)  b e a  ki t threefold . B y (4.12.1 ) ther e ar e onl y 
finitely man y exceptiona l divisors (i.e . valuations ) wit h lo g discrepancy <  1 . 
The number o f these divisor s is denoted b y e(X,B).  I f B =  0 , then we write 
e(X). Thu s (X , B) i s terminal (4.9 ) iff e(X, £) =  0 . 

6.7 Proposition . Let  Y  be  a threefold with  terminal  singularities. 
(6.7.1) Flops  exist  and  terminate  with  respect to  any  effective  Cartier  di-

visor. 
(6.7.2) Let Ebea  Q-Cartier  Weil  divisor on Y. Then  index(Y).E is Cartier. 
(6.7.3) The  index  is  unchanged  under  flops. 
(6.7.4) [Reid80,83]  Let X  be  a threefold with canonical singularities. Then 

there is  a threefold with  Q-factorial terminal singularities  Y and  a  projective 
morphism f  :Y  —•  X such  that  Ky  =  f*Kx-

Proof. (6.7.1 ) wa s proved in Chapte r 4 . 
(6.7.2) follow s from the followin g loca l result (i n the analyti c topology) : i f 

D i s Q-Cartier the n index(0 G Y)D i s Cartier . T o prove this let p  :  Y' —•  Y 
be th e inde x on e cover . The n p*p*D  =  index( 0 G  Y)D, thu s i t i s sufficien t 
to consider the inde x one case. A n index one terminal singularity i s a hyper -
surface i n C 4 . Therefor e Y'  —  { 0} i s simply connected (se e e.g. [Milnor68]) , 
and thu s H 2(Y' —  { 0 } , Z) i s torsion free . Therefor e an y Q-Cartie r diviso r i s 
Cartier. 

/ / + 

Let X  —•  Z <—  X+  b e a  flop.  The n b y th e Bas e Poin t Fre e Theore m 
[KMM87,3-1-1] index(X) =  index(Z ) =  index(X+ ) whic h proves (6.7.3) . 
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(6.7.4) i s the mos t difficult . First , by [Reid80 ] (cf . [CKM88,6.19-25] ) there 
is a morphism g'  :  Y' — » X suc h that Kyi  =  g '*Kx an d Y 1 ha s onl y terminal 
singularities. Thu s i t i s sufficient t o prove the exsitenc e of a smal l morphis m 
Y —•  Y 1 suc h tha t Y  i s Q-factoria l an d terminal . (W e could just resolv e Y' 
and ru n th e MM R However, it i s desirable t o give a proof whic h uses less.) 

In orde r t o prov e this we first not e th e eas y result that Weil(Y') /Pic(Y' ) 
is finitely  generate d sinc e Y'  ha s rationa l singularitie s (se e (16.3.1 ) fo r th e 
definition o f Weil). Le t D  G  Weil(Y')/Pic(Y') b e a  nontorsion element . B y 
(4.7) ther e i s a  smal l morphis m Y{  —•  Y'  suc h that th e birationa l transfor m 
Z?i o f D i s torsion o f order m i i n Weil(Y/)/Pic(Y/) . Sinc e 

Weil(Y/) =  Weil(Y' ) an d Pic(Y/ ) D  (Pic(Y'), rai£>i), 

we see that 

rank z Weil(Y 1

/)/Pic(Y 1

/) <  rank z Weil(Y')/Pic(Y') -  1 . 

Therefore afte r finitely  man y step s w e obtai n a  smal l projectiv e morphis m 
Y =  Y ^ Y ' such that Y  i s Q-factorial. • 

6.8 Definition.  Le t (X ,B) b e an l c threefold. Le t H  b e a  Cartie r diviso r on 
X. Le t /  :  X —>  Z  b e a  smal l contractio n suc h that Kx  +  B  i s numericall y 
/-trivial an d —  H i s /-ample . Th e opposit e of / wit h respec t t o H  i s called 
an H-&op  wit h respec t t o K  +  B o r simpl y an if-flop . I f (X , B) i s ki t the n 
(X, B +  eH) i s kit fo r 0  < e  < 1  and a n iJ-flo p i s a  (K  +  B +  eH)-\og flip. 

6.9 Proposit ion . Let  (Y,D)  be  a terminal  threefold. 
(6.9.1.1) H-flops  exist  and  terminate  with  respect to  any  effective  Cartier 

divisor H. 
(6.9.1.2) Terminal  flips  exist  and  terminate. 
(6.9.2) \Kawamata91c] Set  r(Y,D)  =  (4 r discrep(Y,D)' l n ) l . Let  E  be  a 

Q-Cartier Weil  divisor  on  Y. (Assume  for  simplicity  that  Ky  is  Q-Cartier.) 
Then r(Y,D)E  is  Cartier. 

(6.9.3) Let  (X , 5) be  a kit threefold.  discrep(X , B) is  nondecreasing under 
flops and  flips. 

(6.9.4) [Kawamata91c]  Let (X , B) be  a kit threefold.  Then  there  is a termi-
nal threefold  (Y , D) with  Q-factorial singularities and a  projective morphism 
f:Y^X such  that  f*D  =  B and  Ky +  D =  f*(K x +  B). 

Proof. (6.9.1.1 ) wa s proved in Chapte r 4 . 
(6.9.1.2) wa s proved in Chapter s 4  and 5 . 
(6.9.2) ca n b e prove d a s follows . Le t y  G  Y b e a  singula r point . The n 

y G  Y i s terminal . Le t r  b e it s index . B y (6.7.2 ) rE  i s Cartier a t y.  W e see 
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in (6.9.7 ) tha t ther e is an exceptional divisor E y dominatin g y such tha t 

4 
- >  a(Ey,$) >  a(Ey,D) >  discrep(Y, D). 

Thus r  divides r(Y , £>), and hence r(Y,D)E  i s Cartier at y. 
(6.9.3) i s a special case of (2.28) and holds in all dimensions. 
Finally conside r (6.9.4) . Le t ho : VQ — > X b e a log resolution suc h that : 
(6.9.5.1) If i>j i s a discrete rank one valuation wit h log discrepancy at mos t 

one, then Ej =  CenterV0(VJ) i s a divisor; 
(6.9.5.2) UEj  U (birational transfor m o f B) has smooth support (i.e . differ -

ent component s are disjoint). 
We writ e 

KVo=h*0(Kx +  B) + E+ -E-, 

where E +,E~ ar e effectiv e Q-divisor s withou t commo n components . B y 
(6.9.5.2) Suppi? " i s smooth. Therefor e Ky Q + E~ i s terminal. 

Apply th e (Kv Q +  i?~)-minima l mode l progra m t o Vo/X.  Assum e tha t 
Vi hi 

we hav e alread y constructe d V b —+ Vi —> X an d the birationa l transfor m 
E~ =  (ri)*E~ suc h that 

(6.9.6.1) ri  does not contract an y irreducible component s of E~~; an d 
(6.9.6.2) K Vi +  E~ i s terminal. 
Let pi : Vi —* Zi  be the contraction o f a {Ky i +  £'~)-extremal ray . I f pi is 

small, the flip exists by (6.9.1.2). Assum e that pi is divisorial with exceptiona l 
divisor Fi. 

KVi +  E~ = h*{ {Kx +  B) + ( ri)*E+, 
and Fi  C Supp(rz-)*i?+. Henc e r2+i =  piori satisfie s (6.9.6.1 ) and this implies 
(6.9.6.2) for ¿ + 1. Thus eventuall y w e obtain h m :  Vm —>  X suc h tha t 

KVm +E~=  h* m(Kx +  B) + (rm)*E+ i s /i m-nef. 

Therefore (r m)*E+ =  0. Set (Y,D) = (Vm,E~). • 

It i s quite likel y that on e can prove (6.9.4 ) b y explicit blo w ups as is the 
case for (6.7.4). 

6.9.7 Lemma . (Kawamata  in  appendix to  [Shokurov91]) Let (0 G X) be  a 
three dimensional  terminal  singularity.  Then  4 / index(X) >  discrep(X). 

Proof. Kawamat a show s that in fact discrep(X ) = 1 / index(X). Howeve r we 
need onl y this weaker version . 

The clai m is clear i f index(X) <  4. If index(X) >  5 then X i s of the form 

(xy + / ( * , wr) =  0 ) /Zr (a , -a, 0,1) C C4 / Z r ( a , - a, 0,1). 
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Let k = oid f(s, t)  and consider the weighted blow up W — » C4 / Z r ( a , —a, 0,1) 
given by weights 

wt(x, y,  z, w) =  (a + ir, &r — zr — a, r, 1). 

Let X'  C  W b e the birational transform o f X. Explici t computatio n yield s 
that the unique exceptiona l diviso r has discrepancy 1/r . • 

6.9.8 Definition.  (6.9.8.1 ) A morphism /  :  Y —•  X  i s called crepant  if Ky = 
f*Kx. 

(6.9.8.2) A  log morphism /  :  (Y,Dy)  —•  (X,D X) i s called log  crepant  if 
Ky +  Dy =  f*(K x +  D x). 

(6.9.8.3) Let (X, B) be a kit threefold. B y (6.9.4) there is a terminal three-
fold (Y , D) with Q-factoria l singularitie s and a projective morphis m f  :Y  —> 
X suc h tha t f*D  = B an d Ky +  D = f*(K x +  B). Se t r(X,B) =  r(Y,D). 
By construction discrep(y , D) is the minimum o f the positive discrepancie s of 
exceptional divisor s ove r (X,B).  Thu s r(X , B) i s well defined . 

A specia l cas e o f (6.10) was proved in [Kawamata88] , th e genera l for m is 
in [Kollar89] . (6.11 ) is a strengthening of [Kawamata91c] usin g th e metho d 
of [Kollar89]. 

6.10 Theorem . (Crepant  Descent  of  Flops) Let X be  a threefold with  canon-
ical singularities.  Then 

(6.10.1) There  is  a small projective  morphism  f  :  X —+  X such  that  X  is 
Q-factorial. 

(6.10.2) If  e(X) >  0 and X is  Q-factorial then  there is a morphism q  : X' —• 
X such  that  p(X'/X)  =  1  and Kx> =  q*KX- In  particular, e(X f) =  e(X) - 1. 

(6.10.3) If  X is  Q-factorial then  H-flops  exist  for  any effective divisor  H. 
(6.10.4) If  X is  Q-factorial then  H-flops terminate  for  any effective divisor 

H. 
(6.10.5) Let  D be  a Q-Cartier Weil  divisor on  X. Then  mD is  Cartier for 

some 

l<m<-mde*(xf{X)32e{X)-\ 

6.11 Theorem . (Crepant  Descent  of  Flips) Let  (X,B) be  a threefold with 
kit singularities.  Then 

(6.11.1) There  is  a small projective  morphism  f  :  (X,B) —•  (X,B)  such 
that X  is  Q-factorial. 

(6.11.2) If  e(X,B)  >  0  and X is  Q-factorial  then  there  is  a  morphism 
q : (X',Br) ->  (X,B) such  that  (X',B')  is  Q-factorial and  kit, p{X f/X) =  1 
and K x, +  B' =  q*(Kx +  B). In  particular, e(X'B')  =  e(X, B) - 1. 

(6.11.3.1) If  X is  Q-factorial then  H-Bops exist  for  any effective divisor  H. 
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E C  X' b e the exceptional divisor. Le t (1 — a) be the coefficient of E i n B'. 
(Thus a >  logdiscrep^, B).) Le t p : E' —>  E be the normalization. The n by 
(16.5) 

K E' = p * ( i f x ' + ^ ) - D i f f ( 0 ) 

= p*(K X' +  B') +  P*(aE) - p*(B'- (l-  a)E)  -  Diff(O ) 
= p*(aE)  —  (effective Q-divisor) . 

Pick a  genera l x  £  q(E) and let x £ (7 C X be an affine neighborhood . Let 
i? C  U be very ample and let if' C  q~l{U) b e g-very ample. The n intersectin g 
dimg(E') general members of \H\ containing x and dimE—dimq(E) —  1 general 
members of |H'| we obtain a  surface B  C  X' suc h that A  = B  fl E is a curve 
contracted b y q. Thus A  has negative selfintersectio n i n B. Henc e 

KE> •  p~lA <  aE •  A = aA-B A  < 0. 

In ou r cas e dim£ " =  2  and fro m surfac e classificatio n w e know tha t th e 
minimal resolutio n o f E' i s a ruled surface . Thu s E f i s covered by rational 
curves C' X such tha t 0  > C' X • KE'  >  —3 . (In higher dimension s one can use 
[Miyaoka-Mori86].) 

Thus there are rational curves C\ =  p(Cf

x) C  X' suc h that q(C\)  is a point 
and 0  > C\ •  E >  —31ogdiscrep(X, 5 ) "1 . Le t D' be the birational transfor m 
of D  on Y. B y 5e_i we can find m i and rri2  such tha t m\E  an d m^D' are 
Car tier. Thu s 

(mxE •  C\)m 2D' -  (m 2D' •  CA)mi.E 

is Cartier an d is numerically ^-trivial . Therefor e by the base poin t fre e the -
orem [KMM87,3.1.2 ] i t descend s t o a  Cartie r diviso r o n X. Thu s (miE  • 
C\)m2D i s Cartier. 0  < —{m\E-C\)m2  <  31ogdiscrep(X, 5 )_ 1 m i m 2 , whic h 
proves 5e . 

The proo f o f 3e and 4e relie s on the Backtracking Method . 
Let /  :  X — * Z b e a small contractio n whic h we want t o flop  or flip.  The 

flop or flip of / ca n be obtained as a sequence of flops or flips where the relative 
Picard numbe r i s one. Thu s w e only need to deal with the case p(X/Z) =  1. 

Set (X°,B°)  =  (X, riH) for some 0 < r/ < 1  in case (6.10 ) and (X°,B°) = 
(X,B) i n case (6.11) . 2 e gives q\ : ( Y ^ B ?) (X°,B°)  suc h that K  +  5? = 
(q[)*(K +  B°). Le t 2?J =  K  +  £?. K  +  J5f i s kit. Henc e by (6.5.2 ) an d 
[KMM87,3-2-l] th e contraction s n  exis t an d the existenc e o f the opposite s 
follows fro m 3e - i . 

The sequenc e of flips terminates by 4e _i. Thu s eventuall y w e get a divi-
sorial contractio n r^ o :  Y ô — • X^. B y (6.5.5) =  X 1 i s the flop  (resp . 
flip) o f / . 
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In orde r t o se e 4 e conside r a  sequence of flops (resp. flips) 

(6.13.1) X ° — X 1 

Our metho d o f flipping starts with a  Y®  —• X° an d produce s a  sequenc e of 
flips 

ending finally  with a  contraction r Q

mQ :  Y ô — • X1. W e can take 

ro _  1  . yo _  y- i .  y l 

as the startin g point o f the sequenc e of flips constructing X 1 —-•  X2. I n thi s 
way th e sequenc e o f flips (6.13.1) give s another sequenc e 

(6.13.2) Y?  —  C  =  Y?  —  •  • •  — Y^  =  Y? — 

(6.13.2) i s a  sequence o f flips but whe n w e go from Y^. to Y^ -1"1 th e relevan t 
divisor may change . Indeed , D l

m. i s seminegative o n Y^. —• X2 + 1 while D{ +1 

is numerically trivia l on Y^. = Y^ 1 — > X 2 + 1 . Therefor e 

(6.13.3) J3{ + 1 = J5^ . -  CiEi  fo r some c,- > 0 , 

where E{  is the exceptiona l divisor of q\. Le t c(Ei)  b e the coefficien t of E% i n 
B j . The n b y (6.13.3 ) 

(6.13.4) c (E i ) = c ( E 0 ) ~ - ^ c 2 - . 
2 = 0 

Choose i V such tha t tha t NB°  i s a  Weil  divisor o n X°.  The n s o are th e 
birational transform s NB l o n X% fo r every i. B y 5E there is a universal M(e) 
such that M(e)(NK  +  NB{) i s Cartier for every i.  Thu s 

M(e)N(K +  B[) = (q[)*M(e)(NK + NB l) 
is a  Cartier , henc e a  Wei l divisor. Thu s M(e)NB l

rn. i s als o a  Wei l divisor. 
Comparing thi s with (6.13.3 ) w e conclude that M(e)Nc{  i s an integer . 

If Ci  =  0  fo r i  >  N  the n th e sequenc e o f flips  starting wit h X N lift s t o 
an infinit e sequenc e of flips starting with Y/^ , whic h is impossible. Otherwis e 
C{ >  l /(M(e)N) fo r infinitely man y value s o f i, hence c(Ej)  <  0 for some j . 

In cas e (6.10 ) thi s i s impossible since c(Ej)  i s the coefficien t o f Ej i n th e 
effective diviso r B{  =  r)(ql)*Hj. 

In case (6.11 ) this means that the discrepanc y of Ej i n Y(  — • X-7 is greater 
than 0 . Thu s e(X^B^)  <  e(X , B)  an d agai n w e are don e by induction. • 

One o f th e mai n application s o f (6.10 ) i s th e followin g generalization o f 
(4.7): 

Y0 --->  Y0 - > У° mo, 
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6.14 Theorem . [Kawamata88]  Let X  be  a threefold  with  log terminal  sin-
gularities. Let  D  be  a Weil  divisor  on X. Then 

oo 

£ Ox  (mD) 
m=0 

is a finitely generated  Ox-algebra. 

Proof. B y taking the inde x one cover as in (4.7 ) it i s sufficient t o consider th e 
case when Kx  i s Cartier an d henc e X  ha s canonica l singularities . 

Let p :  X —•  X  b e given by (6.10.1) . Le t D  b e the birationa l transfor m o f 
DonX. 

We apply the (K  +  el))-MMP o n X/X fo r some 0 < e  < 1 . Th e existence 
and terminatio n o f flops is given by (6.10.3-4) . Finall y w e obtain p + :  X+ —» 
X suc h that D+  i s p+-nei. B y base poin t freenes s [KMM87,3-l-2 ] ther e i s a 
morphism 

I —  • s  q 
p+ :X+  -+Y  -+X 

such tha t s(D+)  i s Q-Cartie r an d g-ample . Thu s b y (4.2 ) the exsitenc e of 
q :  Y —•  X  prove s finite generation fo r D. • 

The followin g strengthenin g of (6.11) i s needed in Chapte r 8 . 

6.15 Proposition . Let  (X,B)  be  a log terminal Q-factorial  threefold.  Then 
log flips  exist  and  any  sequence of  them is  finite. 

Proof. Le t q  :  (X , B) — > Z b e a  smal l contractio n suc h that —(K  + B) i s g-
ample. The n -(K+(l-e)B)  i s p-ample and (X,  (l-e)J3 ) is kit for 0 < e  < 1 . 
Thus th e flip  exist s by (6.11 ) (cf . (2.32.1)) . 

The proof o f termination work s in the mor e general cas e when (X , B) i s lc 
and i s kit outsid e L B J . Le t (XQ,BQ)  =  (X , J3) and conside r a sequence of log 
flips 

(XuBi) ^  Zi  {Xf,Bf)  =  (X i+uBi+1). 

Let d  C  X{  b e th e flipping  curve . B y (7.1 ) d  f l L 5 ^ J =  0  fo r al l bu t 
finitely man y value s o f i. Thu s b y shifting th e inde x i  w e may assum e tha t 
Ci H i-B{j = 0  for every i.  W e may as well replace X{  b y Xi \  LBJ-J ; hence we 
may assum e tha t LB^ J =  0 , which implies (cf . (2.13) ) tha t (X^Bi)  i s kit fo r 
every i.  Terminatio n follow s fro m (6.11) . • 

Finally w e prove a result about partia l resolutions o f singularities o f three-
folds. 
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7. TERMINATIO N O F 3-FOL D LO G FLIP S 
N E A R TH E REDUCE D BOUNDAR Y 

JANOS KOLLA R an d KENJ I MATSUK I 

In thi s chapter w e prove termination o f a sequence of 3-fold log flips near 
the reduce d part o f the boundary . Th e role of this result i s two fold. First , i t 
completes th e result s abou t existenc e an d terminatio n o f log flips proved in 
Chapters 4-6 . Second , it i s an essentia l par t o f the secon d proof o f log flips. 
(7.1) i s slightl y mor e genera l tha n th e origina l theore m i n [Shokurov91,4.1]. 
Kawamata kindl y informed us that Shokuro v himself announced th e theore m 
in this generalized for m in a  letter. 

As in Chapte r 4 , the proo f consist s of two major steps : 
(I) B y considering a finite se t o f special discrete valuations associate d t o 

the flipped  curves , we show that afte r finitely  man y flips no flipped  curve is 
contained i n (th e birationa l transfor m of ) the reduce d part o f the boundary . 

(II) Then , usin g th e finiteness  o f the Picar d numbe r o f the reduce d par t 
of th e boundary , w e show that afte r finitely  man y flips  n o flipping  curv e i s 
contained i n it . 

7.1 Theorem . Let  X  be  a normal 3-fold  and B an  effective  Q-divisor  such 
that ( X , B)  is  log  canonical.  Assume  that  X  is  Q-factorial.  Consider  a  se-
quence of  log flips starting from  ( X , B)  =  (XQ , B Q): 

(X^Bo) —>  (X UBX) ~+  (X 2,B2) —» 

00 0o" 0 i <f>t <t>2 

Z0 
Z1 Z2 

where <f >i :  X{ Z{  is a contraction of  an extremal  ray  Ri with  (Kx { +  B{) • 
Ri <  0, and (j >f : X*(= - ^ ¿ + 1 ) — • Z{ is the  log  flip. Then  after  finitely  many 
flips, all the flipping  curves  (and thus all the Sipped curves)  are disjoint from LBiL. 

Proof. Th e proo f i s given in several steps . 

s. M. F. 
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7.2 Definition.  Th e notions of semi log category are explained in Chapter 16 . 
Let (X,  B) be semi log canonical (16.9). W e say that a (not necessarily closed) 
point p E X i s a maximally log  canonical point of (X, B) if there is a divisor 
E dominatin g p such that a(E,  X,B) =  —1 . 
For example , the maximally log canonical points o f an sic surface (5 , D)  are 
the following : doubl e curve s o f S; irreducibl e component s of LD J ; close d 
points where (S,D)  is not sit; and singular point s of L D J . 

7.2.1 Proposition . If  X is  a variet y (any  dimension)  then  the  number of 
maximally log  canonical points of  (X, JB) is  finite. 

Proof Le t / :  Y —•  X b e a log resolution of (X, B). (4.12.1 ) implie s that the 
maximally log canonical points are the (general points of ) f(E{1 f l • • •  fl E{k) 
where Ei j C  Y ar e divisors with a(Ei j, X,  B) = — 1. • 

7.2.2 Notation.  Le t Si = an d D{ =  Diffs.(J3 t- -  L JB . J ) . Not e tha t by 
(16.9) (Si,Di)  i s semi lo g canonical. Furthermor e let 7r z- : S" —•  Si be the 
normalization o f 5,- and let nf(K +  D{) = K + D\. Thu s D\ =  v?(Di) +  Si 
where @i  C  S" is the divisor of double curves. Set E{ = L D ^ J . 

7.3 Firs t Reductio n Step . After  finitely  many  Hips,  no  Sipping curve  con-
tains a maximally log  canonical point of  X or  of (Si, Z ? 2 ) . 

Proof I f a maximally log canonical point of X i s contained in a flipping curve 
then afte r a  flip the number o f maximally log canonical points decrease s by 
(2.28). Essentiall y b y (16.9), a  maximally log canonical point o f (Si,Di) i s 
also a maximally log canonical point o f X. • 

7.4 Secon d Reductio n Step . After  finitely  many  flips  no flipping curve 
intersects 7Ti (Ei). 

Proof. Thi s i s achieved b y analyzing th e sequence o f pairs ( 5 f , D ^ ) . Le t 
xj)i : S  ̂—Si +1 b e the induced map. B y (7.3) w e may assume that no flipping 
curve contain s a  maximall y lo g canonical poin t o f (5 2-,Z>2). I n particular , 
Ei i s smooth a t the indeterminacies o f xpi, thus i t induce s an isomorphism 
xj)i :  Ei =  JEZ +I. Se t E  =  Ei  an d le t cr 2- : E =  Ei  b e the induce d isomorphism . 

7.4.1 Claim . Under  the above isomorphism 

Diff B i + 1 (£>?+ i " E i+1) =  xPi ( D i f f er "  Ei)  - Hi), 

where Hi is an effective  Q-divisor  and 

Supp Hi =  7r z

- 1 (-Ki(Ei) f l Hipping curve). 

90 



FLIPS AND ABUNDANCE 

Proof. Le t T{  be the normalizatio n o f fcffi ). B y construction w e have mor-
phisms 

(7.4.1.1) s?-^T i^- (S?) + =  S? +1, 

— (Ksv +  D\) i s p z-ample an d K SY +  D"+1 i s pf-ample.  I f F i s any divisor 
then by (2.28 ) 

(7.4.1.2) a(F,S»,D\)  <  a( F , S ? + 1 , Dvi + 1), 

and stric t inequalit y hold s if i s not a n isomorphis m at Center, ^ (F) . 
The coefficien t of the differen t ca n be related t o discrepancies as follows . 
Let W{  b e a  commo n good resolutio n o f (5f,Df ) an d (S^ +1,D^+1). Le t 

p G  E{ b e a  poin t an d le t p'  G  E[ C  W{  be th e correspondin g poin t o f th e 
birational transform . Sinc e W  i s a  goo d resolution , ther e i s a t mos t on e 
exceptional curv e F  C  W{  intersecting E\  a t p'  (b y further blowin g up w e 
may assum e tha t F  i s exceptiona l over both S"  an d S" +1). B y (17.2.3 ) th e 
coefficient o f p i n DiS Ei(D^ -  E {) i s exactl y -a(F,S?,D%).  Thu s (7.4.1.2 ) 
implies (7.4.1) . • 

7.4.2 Corollary . Notation  as  above.  If  a  flipping  curve  intersects  7Ti (Ei) 
then it intersects  it  at  a  point of 

7r,-(Supp(Diflf£.(i?r-E,0)). • 

In orde r t o use (7.4.1 ) w e need two further results : 

7.4.3 Lemma . [Shokurov91,  4.2] Let  0  < b { <  1 , nj , / G  N+ an d kij.lj  G  N . 
Assume that 

(7.4.3.1) d j =  ^^ +  J 2 — < 1, and 

(7.4.3.2) p = L l l + ^ ^ < i . Lidj < 1. 
3 

Then there  are  m, ra2- G N such that 

m —  1  v— ^ rrtibi 
p = h  > . 

m m 
i 

Proof. I f nj  =  1  for al l j  wit h lj  >  1 , then this is obvious . Otherwise , ther e 
exists a  unique j o suc h that rij 0 >  2 and lj 0 >  1 , for i f there were 2  or more, 
then 

p> 
l - l 1 1 1 

2 2 = 1 . 
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Similarly w e obtain = 1 . Hence 

P = 
l - l 1 
l l 

"jo ~  1 

"jo 

U. . "'Jot 
"jo i 

+ 

j#J0 
i 

kjib{ 
i 

n j o l - l 
njol 

kj0i + 

% 

j # jo njoljkjii 

njol 
bi. 

7.4.4 Lemma . Fix  a  sequence of numbers 0  < bi  < 1  and c  > 0 . Then  there 
are only  finitely  many  possible  values  m,mi £  N  such that 

m —  I 
m 

rriibi 

i m 
< 1 - c . 

Proof. I t i s easy to see that m <  c 1 an d m 2- < c 162- x . • 

7.4.5 Proof of  (7.4). Let B  =  ^2bjBj  an d le t D\  = E ^ j - B y (16.6.4), we 
can write i n the form (7.4.3.1). Let p be any of the coefficient s occurring in 
DifFEi(PÏ -  Ei). The n b y (16.6.4) p i s of the for m (7.4.3.2). Thus b y (7.4.4) 
there are only finitely many possible values for p. B y (7.4.1) a* DifFEi (D"—Ei) 
is a decreasing sequenc e of effective divisors on E whic h is strictly decreasin g 
whenever th e flipping  curv e intersect s 7Ti (E{). Sinc e there ar e onl y finitel y 
many possibilitie s for the coefficients , the sequenc e must stabilize . • 

7.5 Third Reductio n Step . After  finitely  many  flips  no  flipped  curve  is 
contained in  S* . 

Proof. B y (7.3.2) we may assume that no flipping curve intersects 7Ti (Ei). W e 
introduce anothe r versio n of difficulty (cf. (4.12.3)) : 

7.5.1 Definition. Fi x a  finite  se t o f positive number s b  = {bj}. Le t (5,1?) 
be a n si c surface . Assum e first  tha t 5 does not contai n an y maximall y log 
canonical points (i.e . i t i s skit). Le t 

db(S,D) = 
m€N+,ry€N 

E\a(E,S,D) < - 1 -
1 
m 

rJhi 
m 

In general , i f Z C  S i s the se t o f maximally log canonical points then le t 

dh(S,D) def = db  (S-Z,D). 
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7.5.2 Lemma . Le t (S,D)  be  an sic surface. Then  d\>(S,D)  < oo. 

Proof. W e may assume that S  has no maximally log canonical points. Eac h o f 
the summand s i n (7.5.1 ) i s finite by (4.12.2) . B y (7.4.4) we have only finitely 
many nonzer o summands. • 

7.5.3 Lemma. Let 
Ф* ФТ 

Xi — y Zi «— Xi+i 

be a  flip.  Assume  that  the  flipping  curve  does  not  intersect  7r t-(.£?,•). Let 
b =  {bj}  be  the  set  of  coefficients of the irreducible components B{.  Then 

dh(SuDi) >  dh(St,Df) =  d h(Si+uDi+1). 

Furthermore, the  inequality  is  strict if  contains  a flipped curve. 

Proof. Le t Ti  =  (j>i(Si).  B y constructio n w e have morphism s S{  —•  T{ <— 
S+ =  S i+1. Furthermore , -(K Si +  A) i s (5i/T 2)-ample and K s+ +  Df i s 
(Sf /T 2)-ample. I f E i s any divisor then by (2.28) a(E, Si,  A) <  a(E,  Sf,  Df) 
which shows the first  claim . 

Assume that (j)f  is not a n isomorphism . Le t C + b e an exceptiona l curve 
of <f>f. The n b y (2.28 ) an d (16.6.7 ) 

a(C+,Si,Di) <  a{C+,Sf,Df) =  -  ( l -  ^  + E rjbjm^) 

for som e ra,rj  G  N . Thus dh(Si^Di)  >  dbOSj+i, A + i )- • 

Clearly (7.5.2 ) an d (7.5.3 ) impl y (7.5) . • 

7.6 Fourt h Reduction Step . Assume  that  no  flipped curve  is contained in 
= LJ3^ * J. The n afte r finitely  many  flips  no  Ripping curve is contained  in 

Si =  I_J BZ-J. 

Proof. Usin g th e notatio n o f (7.5.3 ) w e obtain tha t T 2- =  an d Si  —>  Ti 
contracts a  curve . Thu s th e Picar d numbe r o f Si decrease s afte r a  flip.  Thi s 
cannot b e repeated infinitel y man y times . • 

7.7 Proof of  (7.1).  B y (7.5) and (7.6 ) after finitely  man y steps neithe r a  flip-
ping nor a flipped curve can be contained in the reduced part of the boundary . 
As i n (4.13.3 ) thi s implie s that th e flipping  curve s ar e disjoin t fro m th e re -
duced part o f the boundary . Thi s completes the proof . • 
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8. LOG CANONICA L FLIP S 

SEAN KEE L an d JÂNOS KOLLÂ R 

The ai m o f this chapte r i s t o prov e the existenc e o f log flips in th e lo g 
canonical case. I n (8.4) we extend this to a  general base point freeness resul t 
for lo g canonical threefolds. 

8.1 Theorem. Let  (Y", A) be  log canonical  and let  g :  Y — • Z be  a  small 
contraction such  that  Ky  + A is  g-negative. Then  the  Hip of g exists. 

Proof. Th e problem is local on Z. Thu s we may assume that Z  i s a neighbor-
hood of a point 0 G Z whic h we shrink i f necessary without further comments. 
As in (2.34) we may assume that L A J = 0 . This somewhat simplifie s the ar -
gument. 

Let Y' -»  Y  be a log resolution o f Y. Let A ' = Ay* (cf. (2.7)) . Apply th e 
log MMP to (Y' , A ') —• Z. Durin g the program every occurring pair (Y/, AJ) 
is log terminal an d Q-factorial . Lo g flips exist and terminate by (6.15). Thus 
eventually th e progra m stop s wit h / :  (X, A x) —• Z suc h that Kx  + A x i s 
/-nef, X i s Q-factorial an d (X , A x) i s log terminal . 

In genera l / is no t a n isomorphis m over Z  — 0 . If L  C  2 -  0  is a  curv e 
along which (Z , Az) i s not lo g terminal the n / is not a n isomorphism over L 
but give s a log terminal model . Therefore 

(8.1.1) m0(Kx +  AX\X - r\0)) S r(m0(Kz +  AZ)\Z - 0 ) 

for suitabl e m o > 0 . 
Let h :  V —• X b e any resolution and le t 

Kv =  h*(Kx +  Ax) +  Ys aiFi-
Since Y is le, ai > —  1 for every i. Furthermore , b y (2.23.3) X ha s the followin g 
property: 

(8.1.2) if / o h(Fi) = 0  G Z the n a { >  - 1. 

S. M . F. 

Astérisque 211 * (1992 ) 9 5 



S. KEEL,  J.  KOLLAR 

By (2.22.3 ) we need to show that Ox(n(Kx  +  A j )) is generated b y global 
sections for some n > 0. The usual base poin t freenes s theore m ([KMM87,3 -
1-2]) doe s not apply, since (X , A x) is not kit. 

Let 0 =  L A X J . W e wan t to modify our model X t o achieve that Kx+^x~ 
e0 i s /-nef for 1  e  > 0. Let p G  / ( ©) b e a generic point. The n Spe c 0Piz i s 
a lo g canonical surface singularit y an d / :  X — • Z i s a log terminal model of 
Spec 0Piz- Pro m the list o f Chapter 3  we see that ©  is negative semidefinit e 
on genera l fibers  o f 0 — • Z. Thi s implie s that a  (Kx +  Ax — e0)-extremal 
contraction neve r contract s a  component of ©. 

Let C  =  /"H0 ) (witl 1 reduced structure) . Choos e 1  > e  >  0 . Kx  + 
A x —  e @ is kit and if B C  C is an irreducible componen t such tha t (Kx  + 
A x -  € 0 ) •  B <  0 then (Kx  +  A x) •  B =  0 . I f B C  C  an d B  generate s 
a (Kx  +  A x —  60)-extremal ra y then th e flip  of B i s a  (Kx  +  Ax)-flop . 
Therefore conditio n (8.1.2 ) stil l hold s afte r suc h a  flip  and any sequence of 
such flips is finite by (6.11). 

Thus (up to renaming) w e may assume that Kx +  Ax is lc, Kx +  Ax — £0 
is kit and /-nef for 1 > e  > 0. B y [KMM87,3-l-2] ther e is an m1 > 0 such 
that mi(Kx  +  Ax — €0) is /-base poin t free . Thu s 

mi(Kx +  A x) = mi( i f x + Ax - 60 ) + m^Q 
is base poin t fre e outsid e Supp0 . Therefor e i t remain s t o prove base poin t 
freeness o n 0 itself . 

To thi s end consider the exact sequenc e 
0 -  Ox(mx(Kx  +  A x) - 0 ) - Oxim^Kx  +  A x )) 

(8.1.3) ^ ( ^ ( m ^ x +  A x ) ! © ) ^ . 
Observe that 

m^Kx +  Ax)-Q =  KX + ( Ax - 6 ) + (mi -  1)(KX  + Ax), 
and Kx  +  ( Ax —  ©) is kit by our assumptions. Thu s R1  f*Ox{mi(Kx + 
Ax) -  6 ) = 0 by [KMM87,1-2-6]. Therefor e 

(8.1.4) UOxim^Kx  +  A x )) -  f*0B[mx(Kx  +  AX)\Q) 
is surjective . Thu s i t i s sufficien t t o prov e tha t Oe(mi(Kx  +  A x ) | @ ) i s 
generated b y global sections for suitable m i > 0. 

Let Q{  be the irreducible component s of 0. B y (8.1.2) w e see that Sing0z-
and @i  fl Qj (i  ^ j)  ar e finite over Z. (Otherwis e we would get a divisor with 
discrepancy < — 1 lying over Sing02- or 02f l0j .) B y (8.1.1) mo(Kx  +  A x ) |0 
is linearl y equivalen t t o a (no t necessarily effective ) diviso r D  supporte d on 
the fiber over 0 G Z. I t is also nef, thus by (8.1.5) ra2rao(ifx  +  A x ) |0 ~  0  for 
some rri2  > 0. By (8.1.4) the constant sectio n of Oo(momirri2(Kx +  A x ) | 0 ) 
lifts t o a  sectio n o f 0 x ( ^ o ^ i ^ 2 ( ^x +  A x ) ) which i s nowhere zer o alon g 
0 . • 
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8.1.5 Claim . Let  f  :  © —•  C be  a  proper morphism  with  connected  fibers 
from a  surface  to  a  smooth  afhne  curve.  Assume  that  ©  is  normal  at  all 
generic points  of  / - 1 ( 0 ) . Let  D  be  a  (not  necessarily  effective)  Q-Cartier 
divisor supported on  / _ 1 ( 0 ) . Assume  that  D  is  nef. Then  mD  ~  0  for some 
m >  0. 

Proof. Le t S u p p / _ 1 ( 0 ) =  UCi  and le t D  =  ^2diC{.  B y addin g a  suitabl e 
multiple o f /"H0 ) t o D  w e may assume tha t 

D +  l[f- 1(0)] =  J2did wher e %  < 0, 

with equality holdin g for at leas t on e index i. Sinc e D i s nef, this implies that 
d\ = 0  for every  i.  Thu s bD  ~ - a [ / _ 1 ( 0 ) ] . • 

We ar e now ready to put th e termination o f flips in the following final form, 
due to Matsuk i an d Mori . 

8.2 Theorem . Let  (X,B)  be  a log canonical threefold. Then  any  sequence 
of (K  +  B)-log  flips  is finite. 

Proof. Th e cas e when X  i s Q-factoria l an d lo g terminal was done in ( 6 . 1 5 ) . 
Next assum e tha t X  i s lc and le t 

(Xo,B0) —  № , 5 0 — > (X 2,B2) 

( 8 . 2 . 1 ) <f>0\ S <f>t <f>i\ Stt  <h\ 
ZQ Z\  Z 2 

be a  sequence of flips. 
Let g o :  (^b , A ) ) — • (Xo,i?o) b e a  Q-factoria l lo g terminal  mode l a s i n 

( 8 . 2 . 2 ) . K  +  D 0 =  q$(K  +  B 0), thu s K  +  D 0 i s lo g terminal an d no t ne f 
on Yo/Z 0. Ther e i s a  sequenc e o f divisoria l contraction s an d flips  (whos e 
existence an d terminatio n i s guarantee d b y ( 6 . 1 5 ) ) suc h tha t a t th e end  we 
obtain (Yi,Z>i ) — ¥ Zo such that K  +  D\ i s log terminal and relativel y nef . B y 
definition, (Yi ,Di ) — • Z 0 i s a  wea k lo g canonical model ( 2 . 2 1 ) o f Y 0 —»  Z$. 
Thus b y ( 2 . 2 2 . 3 ) ther e i s a  morphis m q\  :  Y\ — > X\  suc h tha t K  +  D\  = 
ql(K +  Bi). W e can continu e a s befor e using Y\  — > X\ —>  Z\.  Thi s wa y a 
sequence o f flips on X  lift s t o a  sequenc e o f flips and divisoria l contraction s 
on Yo - B y ( 6 . 1 5 ) th e sequenc e terminates on YQ ? henc e the sequenc e o f flips 
( 8 . 2 . 1 ) i s also finite. • 

8.2.2 Lemma . Let  (X,B)  be  an  lc  threefold.  Then  there  is  a  projective 
morphism q  :  (Y , D) — • (X, B)  such  that  (Y , D) is  Q-factorial,  log  terminal 
andK +  D =  q*(K +  B). 

Proof. Le t /  :  X' —•  X  b e a log resolution o f (X, B)  wit h reduced exceptional 
divisor E.  Appl y th e (K  +  f^(B)  +  E)-MMP  o n X'/X.  B y ( 6 . 1 5 ) al l 
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the step s exis t an d th e progra m terminate s wit h q  :  (Y , D) — • (X, 5) suc h 
that K  +  D  i s g-nef . Thu s g  :  Y  X  i s a  wea k lo g canonica l mode l of 
(X, B). Sinc e (X, 5) i s lc, it i s its own log canonical model, hence by (2.22.3 ) 
K +  D =  q*(K +  B). • 

The metho d o f (8.1 ) can b e generalize d t o yiel d th e finite  generatio n o f 
log canonica l ring s fo r threefold s (X , A ) o f lo g genera l type . Thi s i s th e 
K = 3  part o f the Abundanc e Conjecture fo r lc threefolds. Mos t of the proo f 
involves analysi s o f semi lo g canonical surfaces , therefor e i t shoul d b e rea d 
after Chapte r 12 . 

If (X , A ) i s ki t the n th e resul t i s a  special  cas e o f base  poin t freeness . 
[Kawamata91d] settled th e l c case under som e technical assumptions . 

8.3 Definition.  Le t X  b e a  proper an d irreducibl e variet y ove r a field.  Le t L 
be a  line bundle o n X. W e say that L  i s big  if there is an e  > 0  such that 

/ i ° ( X , L m ) >  e r a d i m X fo r m  >  1 . 

(8.3.2) Le t /  :  X — • Z b e a  prope r morphism ; X  irreducible . Le t L  b e a 
fine bundle o n X. W e say that L  i s f-big  i f L i s big on the fiber  o f / ove r th e 
generic point o f / ( X ) . 

Thus i f / i s generically finite then every line bundle i s /-big. 
(8.3.3) Le t (X , B) b e proper , irreducibl e an d lc . W e say tha t i t i s o f log 

general type  if K +  B i s big. 

8.4 Theorem . Let  X  be  an irreducible  threefold  and  let  A  be  an  effective 
Q-divisor on  X.  Assume  that  Kx  +  A  is  log  canonical.  Let  f  :  X —»  Z 
be a  proper morphism  and  assume  that  Kx  +  A  is  f-nef  and  f-big.  Then 
m(Kx +  A ) is  f-base  point  free  for  suitable m  >  0. Thus 

oo 

f*Ox(s(Kx +  A ) ) is  a finitely generated  Oz-algebra. 
5 = 0 

Proof Th e proo f i s simila r t o th e proo f o f (8.1) . A s a  first  ste p w e reduce 
the problem to abundance o n L A J . Thi s was already don e in [Kawamata91d]. 
Here we present anothe r proo f i n the spiri t of (8.1) which however uses more. 

First w e take a  log terminal model h :  X' — • X  t o obtai n ( X ' , A R ) . A s in 
(8.1), afte r som e contractions an d flips  w e obtain / " :  ( X " , ; A " ) — • Z suc h 
that 

(8.4.1) ( X " , A " ) i s lc ; an d 
(8.4.2) K x» +  A" -  C L A " J i s kit, /"-ne f and /"-bi g for 1  > e  > 0. 
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(Here we can not exclude the possibility that we contract a  component o f 
L A ' J . ) Fro m now on we drop the " from our notation. Le t © = L A J . A S in 
the proo f o f ( 8 . 1) we obtain tha t 

( 8 . 4 . 3 ) mi(K  +  A) is /-base poin t free outside Supp© for suitable mi >  0 , 
and 

( 8 . 4 . 4 ) f*O x(mi(K +  A )) - > /*E? 0 (mi ( t f +  A ) | 0 ) i s surjective. 
Therefore ( 8 . 4 ) is implie d b y the followin g (jus t se t S  =  6  an d A  = 

Diffs(A -  6 ) ) : 

8.5 Theorem . Let  S be  a reduced surface and let A be  a Q-Weil divisor  on 
S. Let  f :  S —»  Z be  a proper morphism;  Z  afhne.  Assume  that  Ks  +  A  is 
Q-Cartier, f-nef  and  semi  log canonical. 

Then the  linear system \m(Ks  + A )| is base point free  for  suitable m  > 0. 

Proof. Mos t of the work is done in Chapter 1 2 where this is established unde r 
the additiona l assumptio n tha t Z  =poin t an d (Ks +  A ) 2 = 0 . W e use the 
notation an d terminology of Chapter 12 . As in ( 12 .4 ) w e may assume tha t S 
is semismooth. 

Let D c < S b e the union of those doubl e curves which are 
(i) eithe r containe d i n a t leas t on e irreducible compone t o f S o n which 

Ks +  A i s /-big; 
(ii) o r proper ove r Z and contained in a nonproper componen t of S. 
Let p :  S —+  S  b e the surface obtaine d b y blowing up D. Th e connected 

components of S are as follows: 
(8 .5 .1) On e (not necessarily connected) proper, smooth and semi log canon-

ical surface (X , ©) suc h that K  + 6 i s /-big on every component; 
(8.5 .2) On e (not necessarily connected ) proper sem i log canonical surfac e 

(Y!,Ei) suc h that (K  + E±)2 =  0. 
(8.5 .2) On e (not necessarily connected ) surface Y 2 whos e irreducible com -

ponents ar e no t prope r an d th e restricio n o f K +  A i s no t /-bi g on any 
component. Clearly , Y2 satisfie s th e assumptions o f ( 12 .4 .7 .1 ) , wher e B is the 
normalisation o f / (^2)-

Let Y  =  Yx U Y2 . Le t Dx =  P'^D)] U  X{ an d Dy =  p~\D)\Y. W e can 
decompose D = D1 U  D2 U  D3 wher e D 1 i s the union o f those curve s whose 
preimages unde r p  ar e bot h i n X, D 3 i s the union  o f those curve s whos e 
preimages unde r p  are  both i n Y, and D 2 ar e the rest. Togethe r wit h th e 
morphism p these fit in the following diagram : 

Dx =  D l

x U  D\ Dy 

2 :  1 J  bi r \  /  bi r 

D1 D 2 
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where the arrows marked bi r are birational. Finall y let Cx =  UL0*J . 
By (12.1.1 ) an d (12.4.7.1 ) abundanc e hold s fo r (Y^S,-) . Fo r the othe r 

components we use the following: 

8.6 Lemma * Let  ( X , © ) be an irreducible and  log canonical surface and 
f :  X —•  Z a  proper morphism;  Z  afhne.  Assume  that  K  + © is f-nef  and 
f-big. Let  C = Let  m > 0 be such that  m(K  +  0) is Cartier and let 

SieH0(C,O{m (K x +  @)\C)) 

be sections  without  common  zeros.  Let  x G  X be  an arbitrary point. 
Then there  is  an r >  0  and a section s  G  H0(X,O(rm(Kx +  0 ) ) ) such 

that 
(8.6.1) s(x)^0; 
(8.6.2) the  image of s under  the restriction map 

res :  H°(X, 0(rm(K x +  ©))) H°(C,  0(rm(Kx +  6 ) |C ) ) 

is one of the sections s^. 

Proof. Le t us prove first that k(K  +  0) is base point free for some k > 0. As 
before, w e may assume tha t K  +  0 —  eC is kit and nef for 1 e  > 0. Thu s 
k(K +  0) is base point free outside C and we are reduced to establishing bas e 
point freenes s fo r (C , (K +  0 ) |C ). (K  +  0 ) |C =  K c +  Diff(0 -  C) , hence 
base point freeness hold s by (12.2.11). Thu s we obtain base point freeness for 
k(K +  0 ). Thi s gives a factorisatio n 

f-.(x,e)t(x',e')^->z, 
such that k(K  + 07 ) is an /^ample Cartie r divisor and k(K + @) =  h*(k(K + 
&)). 

Assume first that h(x)  = h(c) for some c g C. Choos e si such that s z-(c) ^ 
0. A s in (8.1.4) res is surjective, thus there is s € H°(X, 0(m(Kx +  @))) suc h 
that res(s ) =  S{.  Sinc e s pulls back from X ', we conclude that s(x)  ^ 0 . 

If h(x) and h(C) are disjoint, choose r large enough so that in the following 
diagram the horizontal arrow s are surjective (C(x)  is the residue field of x G 
X): 

flO(rm(K +  @')) •  C(x') + flO(rm(K +  e')\h(C)) 

I- i -
UO{rm(K +  Q)) •  C(x)  + f*0(rm(K +  e)\C). 

Thus any of the s^k ca n be lifted to a suitable s. • 
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(8.7) Proof  of  (8.5).  B y (12.1.1 ) an d (12.4.7.1 ) 0(m(K Y +  S) ) i s generate d 
by normalise d section s Gj  for suitabl e m  >  0 . Thes e restric t t o normalize d 
sections 

aj\D2Y e  H°(D 2

Y,0(mp*(Ks +  A)\D Y)) =  H°(D 2

Y, 0(m (KY +  S ) | I $ ) ) . 

Thus (7 j \DY induce s a  normalised section 

PjeH0(Dl,O(mp*(Ks +  A)\Dl)). 

On D l

x w e can choos e normalised section s 

r F C E T F ° ( I ^ , 0 ( m ( t f 5 +  A ) | Z ^ ) ) 

which hav e n o commo n zeros (i f necessary w e may replac e m  b y 12m) . B y 
(12.2.11) pj  an d p *Tk exten d t o a  normalised sectio n 

SjkeH0(Cx,O(mp*(Ks +  A )\Cx)), 

and w e may assum e tha t th e Sjk  have n o commo n zeros (thi s ma y requir e 
several extension s fo r each pair ( j , k) but w e ignore this in the notation) . 

Finally b y (8.6 ) we can extend thes e t o sections 

sr

jkeH0(X,O(mrp*(Ks +  A))) 

such tha t th e s r^k hav e n o commo n zeros (w e may assum e tha t r  doe s no t 
depend o n j , k). B y constructio n s r-k an d cr j glu e togethe r t o section s of 
0(mr(Ks +  A)) without commo n zeros. • 
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9. MIYAOKA' S THEOREM S O N TH E 

GENERIC SEMINEGATIVIT Y O F T x 

A N D O N TH E KODAIR A DIMENSIO N 

OF MINIMA L REGULA R THREEFOLDS . 

N . I . SHEPHERD-BARRO N 

9.0 Introduction 

In this chapter the ai m is to prove the following results of [Miyaoka87a,88a], 
concerning norma l comple x projective varietie s X. 

9.0.1 Theorem . If  X  is  not  uniruled,  then  Q x is  genetically  semipositive 
(equivalently, Tx  is  generically seminegative). 

In recallin g wha t thi s means, w e use th e followin g notation, whic h wil l be 
fixed throughout thi s chapter: 

X :  a  normal projectiv e n-fold . 
iifi , . . . ,  Hn-i,H :  ample divisor s o n X. 
{Ci}tes •  the complet e family o f curves of the for m D\  f l . . . n D n _ i , wher e 

D{ £  \rriiHi\  and mi  > • 0. 
C :  a  geometri c generi c membe r o f {C t}. 
Then Q} x i s generically  semipositive  i f every torsion fre e quotien t o f Q x\c 

has nonnegativ e degree . 

This resul t follow s immediately fro m th e nex t result . 

9.0.2 Theorem . Assum e that  there  is  a  subsheaf £  C  Tx such  that  c\{£)  -
C >  0. Then  there  is  a  saturated T  C  Tx such  that  c^J 7) •  C >  0 and there 
is a rational curve  M through  a  generic point x  of  X such  that 

(i) M is  smooth at  x, 
(ii) TM{x)^T(x) and 
(iii) (H  •  M) <  2n(H  •  C)/(C l(jr). C). 

This resul t ca n b e extended . Defin e a  variety t o b e rationally  chain  con-
nected i f two general point s o n it ca n b e joined by a  chain o f rational curves . 

s. M. F. 
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9.0.3 Theorem . Assume  the  hypotheses  and  notation  of  (9.0.2).  Then  the 
sheaf T  defines  a  foliation on  X whose  leaves are compact and  are  rationally 
chain connected varieties. 

Remark. B y abuse o f language, w e confuse th e notion s o f foliation an d inte-
grable distribution, an d w e say that a  foliation with singularities has compact 
leaves i f the closur e o f each lea f i s a  projective variet y tha t contain s th e lea f 
as a  Zarisk i ope n subset . 

One o f the mai n consequence s of (9.0.1) concern s the secon d Chern class . 
Recall that X  i s minimal i f it ha s onl y terminal singularities and Kx  i s nef . 

9.0.4 Theorem . Suppose  that  X  is  minimal  and  that  p  :  Y —• X is  a 
resolution. Then  c 2(Y) •  p*^ p*H n-2 >  0. 

Apart fro m (9.0.1 ) t o prove (9.0.4 ) w e need a  consequence of Bogomolov's 
theorem o n unstable vector bundles, whic h is proved in Chapte r 10 . 

9.0.5 Theorem . Suppose  that  £  is  a reñexive sheaf on Y. Put  T  —  (p*£) vv, 
and assume  that  T  is  generically  semipositive  and  that  ci (T)(= p *ci(£)) is 
nef. Then  c 2(£) •  p*H x p*i?n- 2 > 0 . 

Then w e deduce 

9.0.6 Theorem . If  X  is  a minimal regular threefold,  then  K(X)  >  0. 

In th e cours e of proving this, we shall assume th e correspondin g resul t fo r 
irregular threefolds . Fo r this , we refer t o [Ueno82 ] and [Viehweg80] . 

As w e sai d above , al l o f these theorem s ar e du e t o Miyaoka , an d indee d 
our proof s o f (9.0.4 ) an d (9.0.6 ) follo w hi s ver y closel y (except for a  slightl y 
slicker use of Donaldson's theorem [Donaldson85 ] on stable bundles wit h triv -
ial Cher n classes , whic h wa s suggeste d b y conversation s wit h Kollár and 
Kotschick). However , Miyaoka' s proo f o f (9.0.2 ) use s hi s theor y o f defor -
mations o f morphisms alon g foliations [Miyaoka87a] , whereas ou r proo f seem s 
to be considerably simpler . 

9.1 Foliations 

In thi s section we prove 

9.0.2(bis) Theorem . Assume  that  T  Tx  is  a subsheaf such  that  T  is  a 
piece of  the  Harder-Narasimhan  filtration of  Tx an d /¿minióle) > 0 . (This 
notation is  explained  in  (9.1.1).) 

Then through  a  geometric generic  point x  of  X, there  is  a  rational curve 
M such  that 

(i) M is  smooth at  x, 
(ii) TM(x) C  T(x) and 
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(iii) (H-M)< 2n(H  •  C ) / ( c i ( ^) •  C). 

To prove this we carry ou t th e followin g steps : 
(1) Sho w that T  i s close d under Li e bracket. (2 ) Reduce X  modul o p. (3 ) 
Show that T  i s close d under Li e bracket an d takin g pth powers , for p > • 0. 
(4) Divide X b y T, givin g a purely inseparable morphis m p :  X —•  Y =  X/J7. 
(5) Not e that (p*c1(Y)  •  C) >  0  for p > 0 . (6 ) Find rational curves on Y. (7 ) 
Pull the m bac k to rationa l curves on X. (8 ) Lift bac k to characteristi c zero , 
and chec k the conclusion s of (9.0.2(bis)) . 

9.1.1 Som e fact s abou t vecto r bundle s 
We collect here, without proofs , some well known definitions an d theorem s 

about vecto r bundles. (Se e e.g. [Seshadri82 , Part 1 ] for an introductio n ove r 
curves and [Siu87 , Chapter 1 ] for the highe r dimensiona l properties. ) 

Let g  denote the genu s o f the curv e C  above. 
9.1.1.1 Suppose that £ is a vector bundle on C. Writ e p(£) =  deg(£)/r k{£). 

Then ther e is a  unique filtration  (th e Harder-Narasimhan  filtration  o r H.-N . 
filtration) o f £ 

0 =  £0c£iC...c£r  =  C Er = £ 

such that i f Qi = Ei / Ei-1, then Gi  is a semistable vecto r bundle an d 

u (G1)  > ...  >  p(Gr). 

Write u (G1) ) = Pmax{£)  and p(Gr)  = Pmin(£)' 
9.1.1.2 If  A  an d B  are vecto r bundles o n C  an d p min(A) >  Pmax(B), then 

Hom(A,B) =  Q. 
9.1.1.3 p(A ®B)  =  p(A) +  n(B)  an d fi(/\2  A)  =  2fi(A). 
9.1.1.4 (cha r =  0 ) If A an d B  are semistable , the n so are A 2 .A and A®B. 
N.B. I n characteristi c p  >  0 , tensor bundles  o f semistable bundle s ca n b e 

unstable. 
9.1.1.5 Fo r an y vecto r bundl e £  on  C,  th e tenso r produc t £  ®  O(A) i s 

generated b y its section s if A £  PicC with de g A >  2g  — 1 — Prnin(£)-
9.1.1.6 Given a general point x  of P(£), there is a section C o f P(£) passing 

through x , where C  correspond s to a  surjection £  — • C  with C  G PicC an d 

deg£ =  deg £ +  (rk £ -  1)  • r(2g - pmin(£)y. 

This follows immediately from (9.1.1.5) , by considering the tautologica l linea r 
system o n a suitable F(£  ® O(A). 

9.1.1.7 [Mehta-Ramanathan82] I f £ i s a torsion-free shea f on X, then there 
is a unique filtration  (th e Harder-Narasimhan  filtration) 

0 = £ 0 C . . . C  £r =  £ 
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whose grade d piece s ar e torsion-fre e an d whic h restrict s t o th e Harder — 
Narasimhan filtration o f £\c (cf. [ibid, Introduction an d 6.1]). 

9.1.1.8 If X —•> 5  is a family of varieties, wher e S is a scheme of finite type 
over a  field or excellent Dedekind domain, and £ is a torsion-free shea f on X, 
flat ove r .S, then th e point s s £  S  such that £ s i s a  stabl e (resp . semistable ) 
torsion-free shea f o n X s for m an ope n subset o f 5. 

9.1.2 Foliations i n positiv e characteristi c 

All we need is what follows . Fo r most of the proofs , we refer t o [Ekedahl87], 
see esp. [ibid,2.4,3.4,4.2] . 

9.1.2.1 Proposition. Given  a  normal variety  X  in  char,  p  > 0 , there is  a 
one-to-one correspondence  between 

(A) factorizations  X  A Y  —>  X^ of  the  geometric  Frobenius  morphism 
Fx ' X —> X^\ where  deg p = pr, and 

(B) saturated  coherent  subsheaves T Tx  such  that r k T = r, T is  closed 
under Lie  bracket  and  T is  closed  under  pth powers.  • 

Such an J 7 i s a 1-foliation. Writ e Y =  XjT. (Given T, we have Oy  = Ox, 
the algebr a o f functions annihilate d b y T. Given /9, we get T  = ker dp.) I f 
X i s smooth, then Y is smooth if and onl y if J7 i s a subbundle o f Tx • 

9.1.2.2 Proposition. Suppose  that  T  Tx  is  a saturated subsheaf.  Then 
T is  a 1-foliation if 

(i) Hornet ( A 2 ^  Tx/F)  = 0  and 
f i i J H o m o , ( F ^ , T x/f) =  0, 
where F is the  absolute  Frobenius  and  U  is  the  locus  where  both  X  is 

smooth and  T  is  a subbundle. • 

9.1.2.3 Proposition. Suppose  that  T  Tx  is  a  1-foliation.  Put  Q  — 
Tx/F, and  let  p : X Y =  XjT be  the  quotient  by  T.  Then  p*ci(Y ) = 
p - c ^ +  diG). 

Proof. W e have a  factorization o f Fx a s in (9.1.2.1(A) ) an d exac t sequence s 

0^T-+Tx^G-+0, 

0->A-+TY^B-----0, 

say, where Q  £ im(T x p*T Y) = p*A and B  £ im(T y -+ <T*TXi») = a* J* 1). 
(X an d X^  ar e conjugat e varieties ; i f Z  i s a  shea f o n X,  the n Z^  i s it s 
conjugate o n X^\)  S o 

p*Cl(Y) = p*(Cl(A) + C l (B)) = p*(Cl(A) + CJ*Ci(Tw)) =  Cl(G)+P- d ( ^ ) , 
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since d(F%ZW) =  p .  Cl(Z) fo r any shea f Z  on  X. • 

9.1.3 Proof o f (9.0.2(bis) ) (firs t step ) 
We suppose given 

such tha t T  i s a  term i n th e H.-N . filtratio n o f Tx, an d iimin {F\c) >  0  (so 
that i n particular , (ci(J r) • C) >  0). 

9.1.3.1 Lemma , (char . =  0)  T is  closed  under  Lie bracket. 

Proof. Suppos e tha t *4i,.. . ,A m ar e th e compositio n factor s i n th e H.-N . 
filtration o f T\c, wit h /i(Ai)  >  ...  >  fJt(A m). Then th e compositio n factor s 
in th e H.-N . filtratio n o f f\ 2 T \c ar e al l o f the for m A%  ®  Aj o r /\ 2 Ai,  s o 
that fimin(A 2 ?c)  =  2/ i m t -„(J r |c) . Henc e fimin(/\2 ^c)  >  / W R ( 0 | c ) , s o that 
Hom(A2 ^ | c, £  | c) =  0  and the n Hom(A 2 T, Q)  = 0. • 

Now reduc e modul o p . (Thi s will hold until the en d o f (9.1.3). ) 

9.1.3.2 Lemma , (cha r =  p  >  0) T is  closed under  Lie bracket. 

Proof. Immediat e fro m (9.1.3.1) , by specialization. • 

To prov e that T  i s closed under pth powers , it woul d be enough  t o know 
that F*T\c  i s semistable. Unfortunately , thi s need not be true. However , the 
following resul t wil l suffice. 

9.1.3.3 Proposition , (char  = p >  0) Suppose  that  £  is  a  semistable vector 
bundle of  rank r over  a curve C of  genus g, such that F*£  =  £ , say, is unstable. 
Then 

»max{£) ~  Vmin(£)  < (r r -  l)(2f f +  l )r / ( r -  1) . 

([Lange-Stuhler77] hav e alread y foun d suc h a  bound when r  =  2. ) 

Proof. Recal l first tha t F*£  =  F££^\  Suppos e that 

0->A^£^B-+0 --->O 

fits into the H.-N. filtration o f f . So  fimin(A) >  / W R ( # ) . Pu t P i =  P(B) , P  = 
P(£), P  = P ( £ ^ ) . The n w e have a  commutative diagra m 

Pi — 1—+ P  — P —^ P 

•i I -
с —---> Fc- C(1) 

0 ----> F -----> Tx ----> G---> O 
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where th e squar e is Cartesian and ¿  is the natura l inclusion. 
Let a  denot e th e composit e Pi — * C. 
By (9.1.2.2) , ther e i s a  lin e subbundl e 7i  o f Tp which i s a  foliation , suc h 

that P  =  F/H.  Sinc e the squar e i s Cartesian , w e see that 7i  — • TT*TC i s a n 
isomorphism. 

Now i f /H \w1 ^  Tfj , the n i s a  nonsingula r foliatio n o n Pi , an d P i 
maps p-to- 1 t o it s imag e i n P , givin g a  subscrol l o f P tha t destabilize s £^x \ 
Hence A/jp^f , so that 

(<§>) W|F l ^ 0 P l ( l ) ® ( 7 M v . 

By (9.1.1.6) , there is a section C  P i i n genera l positio n suc h that 

deg(OFl(l)|c0 =  deg £ +  (ikB  -  l).r2< ? - fimin (By. 

Restricting ®  to C" , we get Tc>  <- * ( O p ^ l ^ c ) ®  *AV. Hence 

2 - 2< ? < deg(£ ) +  (rk(B ) - 1 ) • r2<? - ^min(By  +  / w ( > A v ) . 

Therefore 

2 - 2g  < deg(B) +  (ik(B) -  l)(2g  +  1 - fimin (B)) - fimin(A), 

0 <  rk(B ) •  (/x(B) -  Hmin {B) + 2g + l)  +  tim%n {B) -  Vrnin(A),  an d 
A*MIN(^) -  ^rnin (B) < r •  (fimax(B) - fimin (B) + 2 g + 1). 

Let 
/J>max(£) =  №l  > /¿ 2 > •  • •  > / ^ M =  V>min(£) 

be the slope s of the compositio n factors i n th e Harder-Narasimha n filtratio n 
of £ , s o that als o pmin(B)  =  //m. 

Put Mi  =  // ; — /im. Then w e get 

Aff-<r-(Mi+1 +  2fl f + l ) , 

which leads b y descending inductio n o n i  t o 

Mx<{rr -l)r(2g+l)/{r-l), 

as stated . • 

9.1.3.4 Remark.  Thi s bound i s clearly crude . It s virtue , however , is that i t i s 
independent o f p. 
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9.1.3.5 Proposition . T  is  p-closed if  p  ;> 0. 

Proof. p(F*T\ c) =  P  • K?\c) >  P-  Then i f p >  0 , w e have, b y (9.1.3.3) , 
Hmin(FT\c) >  Hmax(Q\c)- Henc e H o m0 x (FT,  G)  = 0 for p > 0 . • 

Now le t p  :  X  - » Y  =  X /T b e th e quotien t b y T  ( p >  0) . Ther e i s 
G G  PicF suc h that p*G  = pH, an d G  is ample. B y (9.1.2.3) , 

c •  P*Cl (y)  =  P •  (c •  C l (jr)) + (c •  C l ( a ) ) 

Put ( C • CI(JF)) = 7 . Fo r all / 3 wit h 0  < / 3 <  7 , w e have ( C • p*ci(F)) >/3  •  p 
for p ^> 0. Le t /  :  C —>•  Y b e the composite . The n 

dim[/] Mor(C, Y) >  / 3 • p + n( l -  5) , 

so that for every b £ N with /3-p + n( l —  g) — 6 n >0 and for every subscheme 
B c C o f lengt h b,  we can deform / nontrivially , keeping B  fixed. 

Then b y [Miyaoka-Mori86 , Theore m 4], through a  genera l poin t o f f(C) 
there is a rational curve L suc h that 

G-L<2deg(rG)/(/3p-g). 

(N.B. [Miyaoka-Mori86 , Theorem 4 ] i s state d fo r morphism s /  :  C  —•  X 
where X  i s projectiv e an d smooth . However , the proo f give n there carrie s 
over verbati m t o th e cas e where X  i s allowe d to b e singular , provide d that 
/ ( C ) lie s in the smoot h locus of X.) 

Hence for any a  wit h 0  < a  <  /3 , we have 

L •  G < 2n • deg(/*C)/ap = 2n(C  •  H), 

independently o f p (provide d that p  ̂ > 0). 
Since p  i s purel y inseparable , L  pull s bac k t o giv e a  rationa l curv e M 

through a  genera l poin t x  o f X. • 

9.1.3.6 Lemma . M  —>  L is  purely inseparable. 

Proof. I f not, then M  —•  L  i s birational. The n 

p(M-H) =  M.p*G =  L>G< 2n(C  •  H)/a. 

This is absurd fo r p >• 0. • 
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9.1.3-7 Lemma . M  •  H < 2n(H • C)/a. 

Proof. B y (9.1.3.6) , p(M -H) =  M-p*G= p(L  • G). Then M  H  <  2n{C • 
H)/a. • 

9.1.4 Conclusion of proof of (9.0.2(bis) ) 
By (9.1.3.7 ) an d th e propertie s o f the Hilber t scheme , throug h a  gen -

eral poin t x  o f X (i n characteristic zero ) there i s a rationa l curv e M  wit h 
M H  <2n(C  -H)/a. 

This holds for all a with 0  < a < C • C \(F), an d so 

M-H<2n(C>H)/(C-c1 (F)). 

The final  thing to check is that T M(X) c—• F{x) fo r general x  G  M.  Thi s can 
be checke d after reductio n modul o p, for all p 0 , and now it i s equivalen t 
to (9.1.3.6 ) • 

9.1.5 Proof o f (9.0.2) . 

Given £  Tx  wit h c\{£)  •  C >  0 , we certainly hav e Hmax {Tx\c) >  0. 
Hence we can take as T an y term in the Harder- Narasimhan filtration  o f Tx 
such that fjtmini ^lc) >  0. • 

9.1.6 Compactifying th e leaves of T. 
The classical theorem of Frobenius et al. shows that, given T ^  Tx  close d 

under Li e bracket, th e leave s o f T exis t locall y analytically  away fro m th e 
singularities o f X an d of T. Tha t is , locally analytically ther e is a morphism 
p : X —•  Y wit h T  =  ker dp. In general the leaves are not compact; however, 
we now show (9.0.3 ) whic h say s tha t i f T i s positive in the abov e sens e of 
Miyaoka, the n the rational curve s that hav e bee n constructe d tangen t t o T 
can be bundled togethe r t o give compact leaves of T. 

Proof of  (9.0.3).  Conside r th e family {M t} o f rational curve s tangen t t o T 
constructed above . Pick a geometric generic point £ of X. Defin e inductively 
an ascendin g chai n of subvarieties V%  o f X, as follows: 

Vb = { £ } , an d for i > 0V{ is an irreducible component of the scheme swept 
out by those curve s M t passin g throug h a  general poin t o f Vi-\. 

Let m  denote the least valu e of i such that V{  = Vi+i, and put Vm =  V. 

9.1.6.1 Lemma . V  is  tangent at  its generic point  to  T. 

Proof. V  i s covered by curves M< , so that i f rj is a geometri c generi c poin t 
of V  th e generic curve M t throug h r]  i s smooth there , and the tangent line s 
TMtiv) swee p out a Zarisk i ope n subse t o f the tangent spac e Ty (r)). Sinc e 
TMtiv) C  T{rf) for all tf, it follows that Ty {rj) C  f(ri) also , as stated. • 
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9.1.6.2 Lemma . There  is  a  rational  map  a  :  X —*  Z  such  that  dimZ  < 
dimX and  kerd<r( 0 C  . F ( 0 -

Proof. B y construction , ther e i s a  uniqu e subvariet y V  a s describe d abov e 
passing throug h £ . Sinc e the Hilber t schem e of X ha s onl y countably man y 
components an d th e field C  i s uncountable, ther e is an irreducibl e algebrai c 
family o f subvarieties {V z}zez i n X  tha t cover s X, wit h th e propert y tha t 
there i s a  uniqu e membe r V  throug h £ . Henc e there i s a  rationa l ma p a  : 
X —•  Z  sendin g each point t o the subvariet y throug h it . B y (9.1.5.1) we have 
kerda(£) C  ^"(O J a s required . • 

Consider th e ma p a  :  X  — • Z, an d sa y tha t dim X —  dimZ  =  r.  I f 
kerdcr =  T  a t £ , then there i s nothing t o do . I f not , the n ther e i s an exac t 
sequence 

0 -+ A -+  a*Tz - > 0 - > O , 

where A  =  F/kevdo an d Q  = Tx/J 7-
Define W  =  D\  f l . . . f l Dm , wher e D 2 6 | m t-jfft- |  i s general , s o that W 

is generically finite  ove r Z  an d fi min(A \w)  >  m a x { / / m a a ; ( 5 \w),  0} . Let Q 
be th e Galoi s closur e o f W — • Z an d le t £  (resp . A4 ) be th e pull-bac k of 
4̂ \w  (resp . Tz ) t o Q . I t i s clea r fro m consideratio n o f the slope s of thes e 

sheaves (restricte d t o th e invers e imag e o f C)  tha t £  i s a  Galoi s invariant 
subsheaf o f M. Henc e A descend s to a subsheaf 7i  of Tz an d th e curve s {Ct} 
form a  covering family of curves on Z whos e general member misses any given 
codimension tw o subset o f Z suc h that, letting /  :  C —•  Z  b e the composit e 
of C  ^  X  -+  Z, w e have , i m t - n ( /*W) >  m a x { / w ( / * ( T z / W ) ) > 0}-

We ca n no w follo w (9.1.3 ) an d (9.1.4 ) t o find  rationa l curve s o n Z  tha t 
are tangen t t o W, so that a  trivial inductive argument complete s the proo f o f 
(9.0.3). • 

9.1.7 (9.1.3.3 ) allowe d us to avoid the followin g issue . Suppos e that X  i s a 
normal (o r smooth) n-dimensional projectiv e variety i n char , p  >  0 and tha t 
£ i s a reflexive (or locally free) sheaf on X o f rank r <  n. The n i t seem s likely 
that for £ t o be semistable whil e F*£ i s unstable should impose strong condi-
tions on X; e.g. , maybe X shoul d be uniruled. Th e exact meaning o f stability 
here i s deliberatel y unclear , bu t whe n r  =  n  =  2  and instabilit y i s take n i n 
Bogomolov's sense , the n result s along these line s hav e bee n establishe d an d 
used i n [Shepherd-Barron91] . However , when n  >  r  >  2  this is not known . 

9.2 The nonnegativit y o f th e Kodair a dimensio n fo r regula r min -
imal threefold s 

Throughout thi s section, X wil l denote a minimal threefold o f index r  an d 
irregularity q(X)  =  0 . X  ha s isolate d singularties . W e shall fix a  resolutio n 
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p :Y —•  X suc h that p  1  i s an isomorphism ove r the smooth locus X° o f X. 
Our ai m is to prove (9.0.6) , s o that w e may assume tha t pg(X)  =  0. Hence 
x(Ox) >  1. 

Theorem 9.3 . (i)  c2{Y) •  p*H > 0. (That is,  c2(Y) is pseudo-effective.) 
(ii) c2(Y) • p*D>0 for  all nef Q-divisors D onX. 

Proof, (i ) Put T  =  (p*Qy)vv . Sinc e X  i s not uniruled, b y the main resul t 
of [Miyaoka-Mori86] , (9.0.1 ) show s that T  i s generically semipositive , while 
c\{T) i s nef by definition. I t is shown in (10.12) that now c2(Y) • p*H >  0, as 
required. 

(ii) D  is a limit o f ample divisors , so that (ii ) follows fro m (i) . • 

Recall the Riemann-Roch formula , wher e n  = 0( mo d r ): 

X(Y, p*0{nKx)) 

= 2n3~23n\p*Kx)3  +  ^{P*KX) •  {Kl +  c2(Y)) +  x(Ox) 

= ^!__^!^  +  ^Kx. {K2x  + pMY)) +  x(0x) 

> xiPx)  >  I-

Proof of  (9.0.6). W e shall consider various case s separately: 
(1) K\  ±  0. 
(2) Kx  ^ 0 , K\ =  0 and ir°l9(X°) i s finite (X°  bein g the smooth locus of 

X). 
(3) Kx  ^  0 , K\  =  0 and 7r"'s(X°) is infinite . 
(4) Kx  =  0. 

Case (1) : Fix a smooth ampl e diviso r H  on X. Takin g cohomolog y of 

0 0(nKx)  0(nKx  +H)^  0H(nKx  +  H)->0 

gives an exact sequenc e 

H\X, 0(nKx  +  H)) - H\H,  0H(nKx  +  H)) 

H2(X, 0(nKx))  H\X,  Q(nKx  +  H)). 

If H  is sufficiently ample , then the first and last terms vanish, givin g 

H\H, 0H(nKx  +  H)) * H2(X,  0(nKx)). 

Assume that thes e groups are nonzero; then Serre duality o n H gives 

H\H, OH(-(n-l)Kx))^0. 
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However, OH(KX)  i s n e f and big, so that b y the Kodaira-Ramanujam van -
ishing theorem H X{H, 0 H(-(n -  1)K X)) =  0. 

Hence H 2(X, 0(nK x)) =  0 . Sinc e R  p*O y =  0 for i > 0, we get tha t 
i f 2 (Y, p*0(nK x)) =  0, and R-R. gives PN(Y) =  PN(X) >  1. 

Case (2): Le t a : X —•  X b e the finite cover inducing the universal algebraic 
cover of X °, wit h X normal . =  cr*Kx, thus X i s minimal, and it is enough 
to show that K(X)  > 0. Hence we may assume that ic *L°(X°) =  1. 

Again le t i f b e a  smoot h ampl e diviso r o n X.  The n 7r "LG(H) =  1, by 
[Grothendieck68]. A s in case (1) , we can assume tha t i f 2 ( X , 0(nKx))  ^  0 . 
So by Serre duality , ther e is a nonsplit extensio n 

0 0(K X) ->£  ^  0{nK x) - > 0. 

Assume tha t £  i s if-stable . The n i f deg i f 0 , £\H = T, say , is in-
stable. Conside r T  ®  TY =  En d T  =  G,  say. G  is polystabl e (i.e. , a 
direct su m of stable bundle s o f the sam e slope) . W e have C\{G)  =  0 and 
c2(G) =  4 c2 ( ^ ) -  ci(JF) 2 =  0, since K\ •  if = 0. Then by a theorem of [Don-
aldson85], G  is induced from a representation o f iri(H). Sinc e TT^19(H) =  1  and 
finitely generated subgroup s of complex linear groups are residually finite, this 
representation i s trivial. Tha t is , G is trivial. Henc e i f0 (End JF)  = 4, so that, 
by the Cayley-Hamilton theorem, T ha s a nonzero nilpotent endomorphism . 
This, however , contradicts the if-stability o f T. 

Hence £ is not if-stable. S o there is an exact sequence 

0 A  £  -> B -+ 0 

which destabilizes £\ then the composite arrows A — » 0{nK) an d 0{K) —>  B 
are nonzero. 

We hav e A ww =  O(A)  an d # v v =  O(B)  wit h A,B  Wei l divisor s on 
X. Pu t A\H  =  a , B\H  =  & , H\H =  h  an d KX\H  =  k.  W e obtain tha t 
a + b=(n +  l)fc, / i • (a - 6 ) > 0 and a • b < n - k 2 =  0. 

Suppose tha t (a  — b)2 >  0 . Then ( a — b)  G C++(if), th e positive cone o f 
if, s o that h 0(O(m(a —  b))) = 0(m2) fo r m >• 0. Since 6 — k and nk — a are 
effective, w e get 

fc°(C?(m(n -  l)Jfe) ) = 0 ( m 2 ) fo r m  > 0 . 

However, k  is nef and k2 =  0, so this is impossible. Hence (a — b) 2 =  0. 
Since O(a)  <-> 0(nk)  an d 0(lfe) ^ 0(b),  we get 0 (a - b)  ^ 0((n  -  l)k). 

Since k 2 =  0 and fc is nef, we find  k • (a — b)  = 0. Sinc e A : and a  —  6  both 
lie i n th e closur e o f C++(if) , th e inde x theore m give s Q  • k = Q • (a — 6) 
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in NS(iJ)(g)Q. Since Tr ^(ff) = 1  and Weil(X ) ^  Pic(#) , i t follow s tha t 
Q • Kx =  Q • (A - B) in Weil(X) <g > Q. 

There i s a  primitiv e elemen t D  G Weil(X) suc h tha t A  ~ otD,  B  ~ /3D 
and Kx  ~  K D for some a,/3, K ; G Z. Since 0(A) <-* 0(nKx) w e obtain tha t 
h0(O(nK - a)D) > 0, hence P n / c _ a ( X ) > 0. 

Case (3): By the proof o f (6.7.2) ic?9'LOC(X, P)  i s finite. (Thi s is actuall y 
true fo r any isolated 3-fol d canonica l singularity. ) Henc e finite  étale Galois 
covers X° of X° o f sufficiently hig h degree extend to varieties X  tha t factoriz e 
as 

X X x — X 

where a  i s of bounded degre e and is étale over X° , X i is minimal an d /3 is 
étale. 

Since it is enough to show that K(XI)  > 0, we may assume tha t X  = X i , 
i.e., tha t 7Ti LG(X) i s infinite. Also , we may assume tha t al l these finite covers 
are regular , since irregular minimal 3-fold s are known to have K  > 0 . 

Replacing X  b y X, we can assume tha t x{@x) > 4 . Fixing a  resolutio n 
p : Y —>  X , we get /i°(fiy) > 3. Choosing three linearly independen t section s 
in H°(Q Y), w e get a homomorphism 7 : Oy —• fly. Sa y rank 7 = r, and let 
5 denote im 7. Since Cfy  ® C?(-i*V) = Ty, Theorem 1 gives 

( c i ( f ) - r l T y ) V # " P * £ < 0 

for al l ample H, L G P ic (X) <g > Q. Sinc e KY -  p*H • p*L = Kx •  iT • L, we see, 
letting L —• ii^XÎ that 

cx(€).p*H • p ' f f* < rff • K\ = 0, 

since iiTj ^ = 0 . But ci(£) i s effective, and so 

c1(S)-p*Kx-p*H =  0. 

Since fc°(C?(ci(5)))  > 3 , we can write |ci(£) | = £  +  |M| , where |M | has no 
fixed component and dim \M\ > 2. We get M •  p*Kx •  p*# > 0. 

Suppose tha t H is sufficiently ampl e an d that S is a genera l membe r of 
\p*H\. Then by the Hodge index theorem on 5, we get Q • M\s =  Q • {p*Kx) 
in NS(5 ) ® Q. Sinc e q(X)  = 0, it follow s tha t m • />*M ~  n  • Kx fo r some 
ra,n G N, and so « ( X) > 0. 

Case (4): Since q(X) = 0, we have |  TorsPic(X)| rK x ~  0, and so K(X) > 
0. • 
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10. CHER N CLASSE S OF Q-SHEAVES 

G A B O R MEGYES I 

In thi s chapte r w e introduce th e notion s of Q-varieties, Q-sheaves , Cher n 
classes for Q-sheaves , and w e extend som e results, suc h a s th e conditio n for 
semistability an d th e Bogomolov-Miyaoka-Ya u inequalit y c f < 3c2, from 
smooth varietie s t o Q-varieties . On e o f our mai n aim s i s t o calculat e th e 
Chern classe s o f the Q-sheave s o f log differentials. Kawamata' s origina l ap -
proach wa s more analytic , usin g Cher n forms ; we take a  different , algebrai c 
approach. Thi s also enables u s to defin e Chern classe s for Q-sheaves in gen-
eral, no t just Q-vecto r bundles. 

We work over an algebraicall y closed field of characteristic 0 throughout. 

10.1 Definition. [Mumford83,  §2.] A Q-variety  i s a n irreducible , normal , 
quasiprojective algebrai c variety X  wit h onl y quotient singularities , togethe r 
with a  finite atla s of charts 

\ 
Pà Xa/G 

a. 
Ua 

where U a i s a  Zarisk i ope n subset o f X, X  = U a î7 a , pf

a i s étale, quasifinite, 
Galois, surjective , an d finit e i n a  neighbourhoo d of any singula r point , X a 

is smooth and quasiprojective , G a i s a  finit e grou p acting faithfull y o n X a , 
freely i n codimension one, so that X a —•  Xa/Ga i s finite, Galoi s and étale in 
codimension 1. We also require th e compatibilit y condition that th e natura l 
projections fro m the normalisatio n X ap o f Xa Xx  Xp  t o X a an d X@  should 
be étale. 

X ca n als o b e constructe d globall y as th e quotien t o f a  quasiprojectiv e 
variety X  b y a finite group. Take a Galois extension of the function field k(X) 
containing al l the functio n field s k(X a), an d le t X  b e the normalisation o f X 
in this field. The n G = Gal(k(X)/k(X)) act s faithfully o n X, and X  = X/G. 

S. M . F. 
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Fa =  (Jq ^ •  Oxa) •  Ther e i s also a  shor t Q-exac t sequenc e o f Q-sheave s 
0 0(-C)^  O*-*  Oc - * 0. 
(Hi) I f (X , B) i s a log canonical surface, wher e X  ha s onl y quotient singular -
ities, the n fi^(logS)  exist s a s a  Q-vecto r bundle. Le t C a =  p^1(B \u a)- B y 
the classificatio n o f Chapter 3 , there are thre e possibilities i n the neighbour -
hood o f a poin t o f C a. 

(a) (X a,Ca) i s analyticall y isomorphi c t o (A 2,a: =  0) , G a =  Z n actin g b y 
(x,y) —•  (£xXay)i wher e £  is a primitive rc-th root o f unity, (a,n ) =  1 , 

(b) ( X a , C a ) =  (A 2,xy =  0) , Ga ^  Z n actin g b y (x,y)  -  (C*,C ay), o r 
(c) (X a,Ca) =  (A?,xy  =  0) , G a i s th e binar y dihedra l grou p o f orde r An 

acting b y (x,y)  ((x,( ay) an d (x,y)  (~y,x). 
In eac h case C a ha s norma l crossings , therefore T a =  fi^logCa)  i s a locally 
free sheaf , s o Cl^ (log B) i s Q-locally free. 

Considering th e normalizatio n o f C a , w e see tha t th e G a actio n ex -
tends naturall y t o Oc%-  Therefor e w e can defin e th e Q-shea f O BV, th e Q-
normalisation o f B, by the collectio n of sheaves Oc*  o n the X a. I f 5 i , . .. ,  B s 

s 
are th e component s o f B, the n O BV =  ^&®B\,  an d w e have a  Q-exac t se -

2 = 1 
quence 

s 

0 _> n'x -  f ^ ( l o g B ) - > 0 O F L R - > 0 , 
¿=1 

whose Q-exactness follow s fro m the exactnes s of 

0 - -  n ^ ( l o g C a ) -  0 c S -  0 . 

For an y quasiprojectiv e variet y Z  w e can defin e th e Cho w rin g A*(Z)  = 
®kl™0

zAk(Z), wher e Ak  i s th e grou p o f k  dimensiona l cycle s o n Z  mod -
ulo rationa l equivalence , an d fo r Y  smooth , w e ca n als o defin e A*(Y)  = 
© ^ J ^ A ^ Y ) , wher e A k i s th e grou p o f k  codimensiona l cycle s o n Y  mod -
ulo rationa l equivalence . A  morphis m h  :  Z  —•  Y induce s a  ca p produc t 
Ak(Y) x  A t(Z) ^  A t-k(Z), [Fulton75 , §2]. 

10.4 Definition.  Fo r V  a  possibly singular quasiprojectiv e variety , w e define 

A*(F) =  Im { li m A*(Y)- > J J End(A*(Z)) } 

where Y , Z ar e quasiprojective , Y  i s smooth, an d th e ma p i s induced b y th e 
cap product (cf . [Fulton75 , §2. ] o r the definition o f opA' i n [Mumford83 , §1.]). 

This definition agree s wit h th e origina l on e for V  smooth . Moreover , A* is 
a contravariant functor, A*(V)  inherit s a natural ring structure, cap product s 
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can b e defined , an d mos t importantl y fo r ou r purposes , fo r an y coheren t 
sheaf T  011V  wit h finit e locall y free resolution , w e can defin e Cher n classe s 
ck{T) e  A k(V) [Fulton75 , §3.2] . 

In som e of the followin g w e need that X  i s Cohen-Macaulay, therefore w e 
assume i t fro m now on. A s remarked above , this assumption i s satisfied fo r 
surfaces. Th e following lemm a explains it s significance . 

10.5 Lemma . [Mumford83 , Proposition 2.1.] If X i s quasi projective and X 
is Cohen-Macaulay , then any coheren t shea f T  o n X  arisin g fro m a  Q-shea f 
T o n X ha s a  finite locall y free resolution . 

Proof. Le t n  =  dimX . Le t 0  — > £n — * £ n-i — • • .. — * £\ — » ¿ 0 —> f b e 
a resolutio n o f T, wit h Z Q,£\, . . . , £ n - i locall y free Ojf-modules . A s X a i s 
smooth, To.  has a  locally free resolutio n o f length a t mos t n . Th e morphis m 
Xa —•  X a i s flat,  sinc e X a i s Cohen-Macaula y and X a i s smooth, therefor e 
the resolution of pull s back to a locally free resolution of T \%  o f length a t 
most n.  B y Schanuel's lemma , i f f\xa ha s a  locally free resolutio n o f length 
at mos t n , the n £Q  \x a->£i lx 0 ?-- - ? ^ n - i lx a locall y free implie s that £ n | ^ 
is also locally free. Henc e £ n i s locally free an d s o T ha s a  finit e locall y free 
resolution. • 

Hence for any coheren t shea f o n X w e can define Cher n classe s in A*(X), 
and usin g thi s we can define Cher n classe s for Q-sheaves o n X. 

10.6 Definition.  Th e Cher n classe s c k o f the Q-shea f T  o n X  ar e give n by 

£k(f) =  ^c k(f)eAk(X)®Q. 
1̂ 1 

By [Mumford83 , Theore m 3.1 ] ther e exis t canonica l isomorphism s 7  : 
An-k(X) ®  Q - > A k(X)G ®  Q fo r 0  <  k  <  n , wher e n  =  dimX . Identi -
fying th e Cho w groups via 7, A*(X)  ®  Q obtains a  ring structure and w e can 
define Chern classe s in it. Ther e exists a degree map deg :  An(X)G ®  Q —• Q; 
to ge t th e correc t intersectio n number s o n X  w e have t o tak e int o accoun t 
that p  :  X  —•  X ha s degre e |G| , s o w e defin e de g :  Ao(-X' ) ®  Q — • Q 
by deg Z =  deg7(Z) / |G | fo r Z  G  A 0 ( X ) ®  Q. W e ca n defin e th e tota l 
Chern clas s b y c(£)  =  X)fc=o^(^) - ^ s a  Q _ e x a c ^ sequenc e o f Q-sheave s 
Q—+£—>J:—>G—>0onX pull s bac k to a  shor t exac t sequenc e o f sheaves 

- ^ ^ - > 0 o n J , w e have c(T)  =  c(£)c(£) . 
For a  Q-shea f o n a  subvariet y o f X  w e can no t i n genera l defin e Cher n 

classes in thi s way. W e need thi s only in on e case, for Q-sheave s o n a  curv e 
B o n a  surfac e X  wit h onl y quotien t singularitie s suc h tha t (X , B) i s log 
canonical; the n th e cove r C a C  X a i s a  curv e with a t mos t simpl e nodes a s 
singularities an d w e can define c\  fo r a Q-sheaf o n B. 
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By considerin g th e sheave s i n codimensio n 1 only, we see that Ci (Qx) = 
Kx, an d if (X, B)  i s log canonical, then ci{Vtl

x{\ogB)) =  Kx+B.  Calculatin g 
c2(£lx) an d C2 (&x(logB)) i s one of the mai n aim s o f this chapter . Fo r this , 
we nee d the notio n of the orbifol d Euler number . 

10.7 Definition. Le t X b e a quasiprojective variety with only isolated quotien t 
singularities an d le t Y  b e an ope n or closed subse t o f X. Th e orbifol d Eule r 
number o f Y i s defined a s 

eorb(Y) =  etop(Y) -  £  C 1 " ^ ) . 

where e iop i s the usua l topological Euler numbe r an d r(P ) i s the orde r o f the 
local fundamental group . I t shoul d be noted that i f Y i s closed then e o r&(Y) 
depends no t onl y on Y  bu t als o on the embeddin g Y  C  X. I n ou r case , this 
does not lea d t o an y confusion. 

10.8 Theorem . Let  X  be  a  normal  projective  surface  with  only  quotient 
singularities, B a  reduced Weil  divisor on X such  that (X,  B)  is  log canonical. 
Then 

c2(Cl1

x(logB)) =  e orb(X\B). 

Proof. Firs t w e consider the cas e B =  0 to prove that C2 (Ctx) =  e orb(X). 
Fix a  projective embedding of X. A  generic pencil of hyperplane section s 

has reduce d element s only , an d it s bas e locu s is reduce d an d disjoin t fro m 
SingX an d B.  Blowin g up this base locus we obtain a  morphism /  :  X — » P1 

with reduce d fibres.  Sinc e both side s o f the require d equality  increas e b y 1 
under blowin g up a  smoot h point , w e may assum e tha t i n fac t w e hav e a 
morphism from X, / :  X — • P1 wit h reduced fibres.  Le t g  be the genu s of the 
general fiber. 

There exist s a  Q-exac t sequenc e 

(10.8.1) 0  - f*Q^  -  fr x - + < J X / P I - > O z -+  0, 

where Z  i s a  0-dimensiona l schem e supporte d o n Sing X togethe r wit h th e 
nonsingular point s where df(x)  =  0 . 

Let P  e  Z,  P  e  U a. Assum e that f(P)  =  0 . f a =  /  op a i s a G a-invariant 
function o n X a . P  ha s degp oc/r(P) invers e image s i n X a. Fo r 0  <  |* | <C 1, 
/ ~ 1 ( f ) ha s the homotopy type of a wedge of jip circle s in the neighbourhood of 
each point Q  G  p~1 (P ) , henc e its Euler number i s 1  - fip.  Therefor e if we fix a 
small neighbourhood of P, th e intersection o f /_ 1 ( t ) wit h this neighbourhood 

pernsingx 
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has orbifol d Euler numbe r l - HP 
r(P) 

for 0  < |* | < 1 . Thu s 

etop(X) =  2(2-2g)+^( 
pez 

r(P) + L J 

and 

(10.8.2) eorb(X) =  2(2-2g)+ ] T HP 

Pez 
r(PY 

ftp ca n also be calculated as lengih(Oxa,Q/(dfa/dx, df a/dy)) b y Milnor's 
Theorem [Milnor68 , §7]. Defin e a  0-dimensiona l subschem e Z a o f Xa wit h 
ideal (df a/dx9dfa/dy)) a t eac h Q  G  pZ1{P)- Th e Oz<x defin e th e Q-shea f 
structure of Oz-

is a local complete intersection a s Xa i s smooth, so we can define Z  by 
Z\x =  g * ( Za ) , wher e i s the scheme theoretic invers e image . Z  i s also a 
local complete intersection. W e have the following lemma . 

10.9 Lemma . If  Z  is  a  zero  dimensional  local  complete  intersection  sub-
scheme of  X, then  c 2{0£) =  —  degZ. 

Proof. Bot h sides are clearly additive over subschemes with disjoint supports . 
If Z  i s a (reduced ) smoot h poin t P , the n ther e exis t smoot h hyperplan e 

sections Hi j H2 suc h that P  G  Hi fl H2l ever y point of intersection o f Hi and 
i?2 i s smoothin X  an d Hi,H 2 mee t transversall y there . Le t Y =  Hi f l i?2-
Prom the exact sequenc e 

we can calculate c 2(Iy) =  Hi H 2, henc e c 2(Oy) =  —  Hi •  H2. c 2 i s invariant 
in a n algebrai c family , al l point s o f Y ar e algebraicall y equivalen t o n if i, 
therefore c 2(Op) =  —1 . 

In the general case , since Z i s a local complete intersection, ther e exist s a 
sufficiently ampl e diviso r H suc h that 0^{H)  i s generated b y global sections 
and ther e exist Hi,H 2 G  \H\ whose local equations generat e th e ideal of Z in 
Ojtp fo r each point P G  Supp Z, and all their other intersections are transver-
sal and lie at smooth points o f X. Le t Y b e the scheme theoretic intersectio n 
of Hi  an d H2; the n from the exact sequenc e we have c 2(Oy) =  —  Hi •  H2 a s 
before, and each point of Supp Y \ Supp Z contribute s —1 . c 2{0^) =  —  deg Z 
in the general case . • 

0 ->  O(-H X -  H 2) - + O ( - f T i ) e  0 ( - # 2 ) J Y 0 
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In our case 

A r  ST  /^pdegga degpa ftp 
DES z = l. V(P) =  |G | }-AFy 

pez v  '  Pez  v  7 
hence 

(10.8.3) c2(Oz)  =  P < * ( 0 * ) =  - P deg Z = -  £  E PEZ UP r(P). 

Prom (10.8.1) , (10.8.2 ) and (10.8.3) we obtain 

c2(Cllx) = c i( /*nj , )c i (nx/ , i ) - c2(Oz ) 

(W-W) = 2 ( 2 _ 2 , ) + E ^ =  eor6(X). 

Let 5 i , 5 2 , . . . ,  J55 be the components of B. Ther e exis t Q-exact sequence s 

(10.8.5) 0  -> O(-Bi) -+Ox->  CBi  -* 0, 

(10.8.6) o^>oBi-+  0Br  ^OWi^0 

and 

(10.8.7) 0  -+ fcx -+ frxQogB)  -+@OBY  0 , 
¿=1 

where W{  is a 0-dimensional subschem e o f X supporte d a t those point s o f B{ 
which are either nodes of B{ or singular point s o f X o f type (c ) in Example s 
10.3. (Hi)  on B{. Th e Q-shea£ structure of Ow{ is given by ^p-1(winua) on 
Xa, wher e p"1 denote s the set theoretic invers e image . 

Prom (10.8.5 ) w e see that C!(0 BI) =  B I and C2{0 BI) =  B F, while fro m 

(10.8.6) an d (10.9) , C 2{OB?) =  ^{0 BI) +  ^{0 WI) =  B F - £  Thu s 

from (10.8.7 ) we obtain 
P E Wi 

r(P) 

(10.8.8) c 2(Q1

x(logB)) =  c2(Cl1

x) +  Kx-B + 
l<i<j<s 

B{ • Bj — 
2 = i PeWi 

r(PY 
1 S 

We have Q-exac t sequence s 

>oBi-+ 0Br ^OWi^0Wi^0 
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where J^Q./X  LS the conorma l Q-sheaf, obtaine d b y taking the GQ-invariant s 
of ^ a l X a , wher e C a = pZ\B{ \Ua).  No w c^Û^ \B.) = Kx • Bu while 

ciÇ^Bi/x) = "Bf  + ^ ~7p\ ' since each simple node of Ca contributes +1 

on Xa.  Henc e 

(10.8.9) cx (O^) = KX • £, +  J ] 
peWi \  > 

10.10 Lemma. ci(fi#. ) = —eorb(Bi). 

Proof. B y a n argumen t simila r t o th e above , w e ca n find a  morphis m / : 
Bi —• P1 suc h tha t / has onl y ordinar y ramificatio n point s an d thes e ar e 
all smoot h point s o f X  an d no t node s o f Bi.  Le t d  b e th e degre e o f this 
map, a  the numbe r o f ramification points , b  the numbe r o f nodes of Bi. The n 

etop(Bi) = 2d  — a — 6, and hence eorb(Bi) = 2d  — a — b — ̂ T ^ ^1 Tpï ) r (P)' 

We determin e êi(fi^.) from the Q-exac t sequence 

0 — • /*£ÎJP I — • A 1 B1 —» f^BI/F1 "" ^ 0; 

the argumen t i s similar t o Hurwitz' s formula . 
Note first  tha t ëi(f*Q^1) =  —2d.  Each ramificatio n poin t o f / and eac h 

node o f Bi  whic h i s a  smoot h poin t o f X  contribute s 1 to c i ( f i ^F1) . I f 
a nod e P G  Bi i s a  singula r poin t o f X , the n i t i s typ e (c ) i n Example s 
10.3. (Hi). Le t P  G Ua, fee  — f o  pa. O n Xa , C a = p& (Bi  \Ua)  has a 
simple nod e a t eac h Q  G p~x(P), an d Q  i s a  ramificatio n poin t o f inde x 
r(P) o f /a o n eac h branch , therefor e th e contributio n t o c i (Q^F1 ) a t P  i s 

2(r(-P) 1) + =  (̂ 2 T^RRV I f P G  is a  singula r poin t o f X whic h is 
r(P) r(P)J 

not a  nod e o f Bi  the n i t i s o f type (a)  o r (c ) in Example s 10.3. (Hi). Le t 
P G  Ua. I f P  i s o f type (a) , then o n Xa  eac h Q G  p~1(P) i s a  ramificatio n 
point o f fa o f index r(P), so the contributio n t o ci(fî^./FI) is 1 ^ y . I f P 

is of type (c) , then r(P) = 4/ , Ca ha s a  node at eac h Q G  p~1(P), an d Q  i s a 
ramification poin t o f index 21 on both branche s o f Ca, so the contributio n t o 

c i ( f2^ / f l ) a t P  i s 2(2 * +  1 = ( l - ^ y ) i n this case too. 

Hence 

ci(n^.) =  ci (/*nPI) +  c i (n^/PI) 

= -2d  +  a + b+ (1--Jpj )=- e orb(Bi). • 

PeWi 

PeBinsingX 

peBiHSingX 
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since H* is nef and not numerically trivial . 
Then 7r*£ * «-> =  T an d ci(7r*£*) •  fi" = c\{£) • H, since if is ample, 

so som e multipl e o f it ca n be moved awa y fro m th e singula r locu s of X , 
and th e sheaves 7 r * £ * , £ agre e o n the smooth locus of X. Havin g obtaine d 
the instabilit y o f / o n J, w e can now choose a  G-invarian t destabilizin g 
subsheaf, namel y the first ste p £ \ in the Harder-Narasimhan filtratio n o f T 
for H  [Miyaoka87b , Theorem 2.1] , which i s unique, therefor e G-invariant . 
Taking G-invariants, w e obtain the required destabilizin g Q-subsheaf £ = £± 
of T,  the n (10.11.1 ) follow s fro m 

ci(£i)-H ci(£i)-H 
rk^! r 

10.12 Proposition . Let  £ be  a Q-locally free sheaf  on  a normal projective 
surface X  with  only  quotient  singularities  such  that  c\{£)  is  nef and £ is 
generically semipositive,  i.e.,  for any nef divisor D on X and  for any torsion 
free quotient  Q-sheaf  T, ci(F)  •  D > 0. Then  c 2{£) > 0. 

Proof. Le t H be an ample diviso r on I, I  a positive rational number , the n 
Ht =  ci(£ ) + tH  i s an ampl e Q-divisor . Le t 0 =  £Q  C  £\ C  £\ C  . . . C 
£ s =  £ be the Harder-Narasimhan filtratio n fo r £ with respec t t o Ht, whic h 
is obtaine d b y taking th e G-invariants o f the Harder-Narasimhan filtratio n 
for £  wit h respec t t o p*H t- Le t Qi  =  ( £ z / 5 z _ i ) v v , r, - =  rk^- . £ i/£i_1 C 
Qi wit h skyscrape r cokernel , therefore C2{£i/£i-\)  >  c 2{Gi) b y (10.9), whil e 

s 
ci(£i/£i-i) =  c\(Gi)i  sinc e they agree in codimension 1. c(£) = T T c ( £ j / £ 2 _ i ) , 

¿=1 
where c is the total Cher n class , therefor e 

a2(£)> M a!(ft)5i(ai) + ci(£i)-H 
s 

l<i<j<s 1=1 

1 
2 

(c(£))2 + 
s 

»•=1 
c2(Qi) 

1 
2 

S 

i=l 

ci(£i)-H 

1 > -
- 2 

ci(£i)-H 
s 

i=l 

1 
2r{ 

ci(£i)-H 

where in the last ste p w e used the semistability o f the Gi and Lemma 10.11 . 

Let a{  = 
èi(Gi)-Ht 

TÌEÌ 
; then OL \ > a2 >  ...  as >  0  by definition o f the 

Harder-Narasimhan filtratio n an d the generi c semipositivit y o f £. B y the 
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Hodge Index Theorem, ( c i (&) ) 2 <  rfafHf. Henc e 

W ) >\{à,{S)f- ¿ ¿ 7 ^ ( ^ ) ) 2 

1 = 1 * 

>^(2i(^))2-En«f^ 

>^( (a i ( f ) ) 2 -A?) +  ( l - è r f . a ? j f l ? j 

> 5  ( ( ( ê i ( £ ) ) 2 - # t 2 ) + (i - J2r^ H?) 

= 1/2  (((c 1(£))2-Hf)+(l-ai)H?). 

Now a i =  ^ Gll;2H?)Ht
 < ^ J * * <  1 , wherea s ( c ^ ) ) 2 -  H?  -  0  a s 

* 0 , so that c 2 (£) >  0 . • 

10.13 Theorem . Let  X  be  a normal projective threefold,  B a  reduced Weil 
divisor on X, such  that (X,  B)  is  log canonical, (X, 0 ) is log terminal, K\ +  B 
is nef  and  X  is  not  uniruled.  Let  S  be  a  general  hyperplane  section  of  X; 
thenc2(n1

x(logB)\s)>0. 

Proof. X  ha s quotient singularitie s i n codimension 2, so fi^-(logjB)  ca n be de-
fined as a  Q-vector bundle except at finitely many points. S  ha s only quotient 
singularities, (S,B  \s)  i s lo g canonical , s o fi^(logi?)  \s  i s a  Q-vecto r bun -
dle. Q x \s  i s generically seropositive by (9.0.1) , therefor e s o is Q x(logB) \s> 
ci(Clx(logB) |s ) =  (Kx  +  B) \s  i s nef by assumption, therefor e w e can apply 
(10.12) t o deduce the result . • 

We prov e a generalization o f the Bogomolov-Miyaoka-Ya u inequality c f < 
3c2- Thi s inequality wa s proved for smooth surfaces o f general type in [Miya -
oka77, Theorem 4] and fo r smooth surfaces wit h c\  negativ e in [Yau77 , The-
orem 4.1 . I t wa s generalised t o c\(Q l

x(\ogB)) <  3c 2(fi^(logB)) i n [Sakai80 , 
Theorem 7.6 ] for the cas e when X  i s a smooth surface an d B  C  X i s a semi-
stable curve , which implies that Kx  +  B i s nef and (X,  B)  i s log canonical. 
[Miyaoka84, Theore m 1.1 ] deals wit h th e lo g case on surfaces wit h quotien t 
singularities whe n the curve B doe s not pass through the singular point s of the 
surface. A  version of this inequality fo r log canonical surfaces wit h fractiona l 
boundary diviso r with K x +  B ampl e is proved in [KNS89 , Theorem 12] . We 
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give a new method o f proof fo r the cas e when X  ha s onl y quotient singulari -
ties, (X , B) i s log canonical, Kx  +  B i s nef. Ou r resul t i s more genera l tha n 
[Miyaoka84] i n tha t w e also allo w the curv e B  t o pas s throug h th e singula r 
points. 

10.14 Theorem . Let  X  be  a  normal projective  surface  with  only  quotient 
singularities, B  C X a  curve such that  (X,  B)  is  log canonical and Kx  +  B is 
nef Then 

c ? ( ^ ( l o g B ) ) < 3 c 2 ( ^ ( l o g B ) ) . 

Proof. W e prove thi s theore m b y reducin g i t t o th e smoot h case . Le t T  — 
QxQogB). Le t 7 r : X* —>  X  b e a n embedde d resolutio n o f ( X , p " 1 ( J B ) r e d ) , 
let B*  =  ((7rop ) _ 1 (B)) r ed, J 7* =  7r *f. Sinc e c^J7*) —  7r*c 2(^), i t i s sufficien t 
to prove that c^J 7*) <  3 c 2 ( ^ * ) . 

J7 i s locally free of rank 2, therefore s o is J7*. T\ x —  Qa^x 0 -°S Ca)7 where 
C a =p-\B\ Ua), henc e J 7* \ ^ l j t a =  7 r* g * ^ ( l o g C Q ) C  O ^ l o g S * ) ^ , ^ , 
therefore J 7* C  fi^log  J3*) . I f B =  0, JF* C  fi^.. 

If a ; € i f°(X*,n^.( logB*)) , then < j is d-close d by [Deligne71] . (Se e also 
[Griffiths-Schmid73, 6.5 ] for a simpler proof. ) Thu s w e can prove that i f C  c—• 
Qx*(logB*) i s an invertibl e sheaf , then h°(X,  C® n) <  cn for some constant c 
[Sakai80, Lemma 7.5] . Usin g this, and th e fac t tha t ci^J 7) =  n*p*(Kx  +  B) i s 
nef, w e can follo w Miyaoka' s origina l proo f fo r th e non-lo g case [Miyaoka77, 
Theorem 4] to obtai n c?(^* ) <  3c 2(^**). • 

10.15 Corollary . [Miyaoka84 , Proposition 2.1.1 ] Let I  b e a  minima l sur -
face o f nonnegative Kodair a dimension . The n th e numbe r o f disjoint smoot h 

rational curves o n X  i s at mos t - ( 3 c 2 ( X ) -  c\{X)). 
y 

Proof. Kj^  i s nef as X  i s minimal, s o C2 <  — 2 for any smoot h rational curve 
on X b y the adjunction formula . Le t X b e the surface obtained by contractin g 
some disjoint smoot h rational curves to singular points . Contractin g a  smooth 

(n -  2 ) 2 

rational curve with selfintersectio n —  n increases c ? by ,  decreases c 2 n 
1 9 

by 2  ,  s o 3c 2 —  c ? decrease s b y a t leas t - . Kx  i s stil l nef , s o b y th e 
n 2 

previous theorem 3 c 2 ( X ) —  c\(X) >  0, which gives the boun d o n the numbe r 
of contracte d curves . • 
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11. LO G ABUNDANC E FO R SURFACE S 

LUNG-YING FON G an d JAME S MCKERNA N 

11.1 INTRODUCTIO N 

Chapters 11-1 4 present Kawamat a an d Miyaoka' s proof o f the abundanc e 
theorem fo r threefolds . 

11.1.1 Abundanc e Theorem . A  three  dimensional  minimal model  X  has 
a free  pluricanonical  system,  that  is,  there  exists  a  positive integer  m  such 
that \mKx\  has  no base  points. 

(1.22-29) contain s a  genera l introductio n t o Abundance , an d t o th e con -
tents of Chapters 11-14 . The division of labour indicated by the authors listed 
for eac h chapte r i s somewhat arbitrary ; ever y author ha s mad e a  significan t 
contribution t o eac h chapter . W e would like to thank Kawamata fo r answer -
ing questions regarding hi s original version of [Kawamata91b]. We would also 
like to thank Shepherd-Barron, an d Cort i among others for helpful discussion s 
and comments . 

The purpos e o f this chapte r i s t o gathe r togethe r an d prov e som e fact s 
concerning log abundance fo r surfaces. Thes e facts wil l be needed in Chapter s 
12-14 t o prov e the abundanc e conjectur e fo r threefolds . W e collect togethe r 
some standard definition s an d notation . 

11.1.2 Notatio n 
K(X,D) denote s th e Iitak a dimensio n o f the pai r (X,  D).  B y definitio n 

K(X,D) =  - o o if f h°(O x(nD)) =  0 for every n >  0, and K(X,D ) =  k>  - o o 
iff 

n r  h°(O x(nD)) 
0 < hmsu p — - £  —  < oo. 

One can see that K(X , D) G  {—oo, 0 , 1 , . . ., d i m X } . 
K ( X ) =  K(X,  KX) i s the Kodair a dimension of X. 

In cas e th e divisor s ar e nef , w e ca n defin e th e numerica l counterpart s (cf . 
(1.28)): 

v(X, D)  =  max{ n 6  N  U 0 |  (D n) no t numericall y 0  } . 
v{X) =  v{X,K x). 

S. M . F . 
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The log abundance theore m fo r a  normal surfac e X  assert s the following : 

11.1.3 Theorem . Let  ( X , A ) be  a  normal  surface  with  boundary  A  (see 
(2.2A) for  a  definition).  If  Kx  +  A is  Q-Cartier, nef  and  log  canonical then 
\m(Kx +  A ) | is basepoint free  for some m (and  in particular v(X,  Kx  +  A ) = 
K(X,KX +  A)). 

We need (11.1.3 ) in the case s v(Kx  +  A) = 0  and 1 , and conten t ourselve s 
with provin g thes e case s only . Reader s intereste d i n seein g th e othe r cas e 
should consul t [Fujita84] . Th e proo f presente d her e i s differen t fro m tha t 
in [Fujita84 ] a t variou s points , an d i s adapte d fro m Miyaoka' s proo f o f th e 
abundance theore m i n th e threefol d case , a s wil l be eviden t t o th e readers . 
Following Miyaoka' s idea, w e extend (11.1.3 ) t o th e sem i lo g canonical cas e 
in Chapte r 12 . 

The ide a o f the proo f i s a s follows : w e first sho w that th e linea r syste m 
\m(Kx+A)| contain s a divisor D (11.2.1) . The n we replace D with B =  Z? red? 
and appl y the lo g minimal model program to ( X , A  + B), s o that Kx  +  A + B 
becomes nef (11.3.2). The n we use a further serie s of log extremal contraction s 
to make each connected component of B irreducibl e (11.3.4) . Nex t we make a 
cyclic cover of a neighborhood of a connected component of i?, to improve how 
it sit s inside X  (11.3.6) . Finall y using some simple cohomological arguments , 
one can show that thi s component moves to any infinitesima l orde r (11.3.7) . 

11.2 EXISTENC E OF A N EFFECTIV E MEMBE R 

We start wit h th e followin g lemma . 

11.2.1 Lemma. Let  (X,  A ) be  a smooth surface  with boundary A.  If  Kx+A 
is nef  then  K ( X , K X +  A ) >  0 . In  other  words,  there  exists  a  member D  G 
\m(Kx +  A ) | for some m  >  0 . 

11.2.2 Remar k A n analog o f this result fo r threefolds i s proved in Chapte r 
9. 

Proof, (cf . [Fujita84 , §2] ) If K (X,KX) >  0  then the conclusio n is clear. Thu s 
we may assume that X  i s ruled. Ther e are two cases to consider, X i s rational 
or irrational . 

First consider the case when X i s rational. Le t G = Kx+A. G  is nef by as-
sumption. Sinc e X i s rational, h l(Ox) =  0. Therefor e if G is numerically triv-
ial, then mG  ~  0  for some m. Otherwis e h 2(mG) =  h°  (-(m -  1)G  - A ) = 0 
for m  >  2  and sufficientl y divisible . No w x(®x) =  1 , and s o Riemann-Roch 
reads 

h°(X, mG)  =  h L(X, mG)  +  \mG •  (mG -  K x) +  1. 
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Note tha t mG  — Kx =  ( m - 1)G  + A an d A is a sum of effective divisors. 
Since G  is nef, we have G  • (mG - Kx)  >  0  and therefore h°(X,mG)  >  0. 
This proves the lemma for rational surfaces . 

Next conside r th e cas e whe n X  i s irrational. W e write A  =  A i + A 2 , 
where A i an d A 2 are boundaries , i n suc h a  wa y that A x ha s no vertica l 
components, and furthermore (Kx  +  A i) • F = 0. (11.2.1 ) follow s if we show 
that \m(Kx  +  A i ) | ^  0 . Thus we may as well assume that (Kx  +  A) • F = 0 
to start with , i.e. , we prove the stronger statement : 

11.2.3 lemma . Let  (X , A) be an irrational ruled surface with boundary  A. 
Ssuppose that  A  has no vertical components  and  (Kx +  A) • F =  0 . Then 
K(X,KX +  A )>0. 

The proo f i s by induction o n the Picard numbe r p(X).  Conside r the case 
when X i s a P 1-bundle. 

p(X) =  2 , and the cone NE (X) ha s two edges. On e is the class generate d 
by F , a  fibre o f the ruling 7 r :  X —•  C  with C  of genus g  > 0. Suppos e that 
the othe r edg e is generated b y H. Sinc e F 2 =  0  and H2 <  0 (see [CKM88, 
4.4]), w e must hav e H •  F >  0. We normalize H  by taking H •  F = 1. 

Let A  = k{Ai,  where the Ai are the prime component s of A. W e have 
Ai =  aiH + P 2-, where a z G  Z and Fi = ir*(Di) for some divisor Di on C. Let 
bi = deg (Di). Sinc e Ai  i s not a vertical component , a z >  0 . W e also know 
that K x =  -2H +  P0 , with F 0 =  7r *(£>o), deg (D0) =  H2 +  2g - 2 . Henc e 

By assumption (K x +  A) •  F = 0, and so £ fc,-at- = 2 . No w £ P z- = T T * ( £ D {) 
and de g (£ A) = #2 + 2# - 2  + £ 

Look at ii • Az . I f iJ- A t- > 0, then 6,- > -a 2 i J 2 >  0. Otherwise H • Ai <  0, 
but sinc e i f i s an edge of NE(X), thi s implies that A 2 <  0. Henc e A t- is a 
section of the ruling o f X wit h negativ e selfintersection . Moreove r according 
to [CKM88 , 4.5] , the clas s o f Aj is an edge , an d so A t- is proportiona l t o 
H. B y the normalizatio n H  •  F =  1 , H  i s the clas s generate d b y A,-, and 
we can replace numerica l equivalenc e in (11.2.3.1 ) b y linear equivalence . I n 
particular, a 2- = 1  and Di = 0. 

Now we have the following tw o cases: 
Case (i) . If H • A t- > 0 for all t, then £ fc^ >  -  ( £ a t-fct-) H2 =  -2H2, an d 

so i f 2 +  2<? - 2  + >  - i f 2 +  2<? - 2 . 
Case (ii) . Th e other possibilit y i s that H  •  Ai <  0 , in which cas e H  i s 

generated b y Ax an d H •  A, > 0 for all t ^ 1 . Then £  fci&i > - 2 i f 2 +  k xH2, 
and so H2 +  2g - 2  + £ fci&i > - ( 1 - &i)if 2 + 2 ^ - 2. Not e that sinc e A is a 
boundary, ki  <  1. 

(11.2.3.1) Kx +  Д = ( - 2 + J2 W) H + E Fi. 
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When g > 1 , in either case , deg (]T) Di) > 0 , which implies (11.2.3). 
We are lef t wit h th e cas e g = 1  and de g (^ Di)  = 0 . This implies , in case 

(ii), tha t Ai =  H  is a n ellipti c curve , H 2 <  0 , ki = 1  and A z •  H =  0  for 
i > 2. Thus i J i s disjoint fro m A 2-, for i  > 2 and s o (If x + A ) | ^ = iiT# ~ 0. 
Therefore K x +  A ~ 0. 

In cas e (i) , this implies i f 2 =  0  and b{  = 0  for al l i.  The n H is the clas s 
of a  section with selfintersectio n 0 and w e denote the sectio n by H.  W e also 
replace th e numerica l equivalenc e by linear equivalence . The n Kx  ~  —2H, 
and A 2- • A j = 0  for any i  and j . Applyin g adjunction t o A t-, we see that eac h 
Ai is a smooth elliptic curve. No w 7r restricts to a n étale map fro m A 2 t o C 
of degre e a 2-. 

As th e A{  ar e disjoint , w e can find  a n étale cover p  : C —• C, s o that o n 
the fibre  produc t TT  : X —> C, th e pul l bac k by p o f A i s a  disjoin t unio n of 
n =  Yl ai section s of 7f. Sinc e p i s étale, p*(Kx) = Kx. No w if n > 3, then 
X i s actually C x P 1 , an d p*(Kx  + A) is trivial. I f n  < 3, as J2 ^iai = 2 , n 
must b e 2, and o n X, p*(A) = A i + A 2 . I t i s then clea r tha t bot h K x an d 
Ox(—Ai —  A 2 ) are th e relativ e dualizin g shea f fo r w.  Thu s p*(Kx  + A) is 
still trivial . Bu t p*(K x +  A) = 7r*p*(E Dù- Therefore p *(J2Di) ~  0, and 
r ( ^ D 2 ) = p * p * ( X ) ^ ) ^  0, where r  i s th e degre e o f py tha t i s i s a 
torsion clas s on C. Thi s finishes the proo f o f (11.2.3) when X  i s a P 1-bundle. 

Now suppos e tha t 7 r has a  singula r fibre  an d E  i s a  componen t o f th e 
singular fibre.  I f E i s not a  — 1-curve, the n E  • Kx > 0 . Since A contain s n o 
vertical component , (Kx  + A) • E > 0 . By assumption, (Kx  + A) • F =  0 , 
hence (Kx  + A) - E < 0  for some exceptional curve E  o f the singula r fibre. 
We may blow down E t o get p : X —• X ' . Se t A ' = A. W e have i f* + A = 
p*(i*Tx' + A 7 ) + aE, wit h a  =-E • (Kx +  A) > 0 . Clearly K x> + A' satisfie s 
the inductiv e assumption , henc e K (X',KX' + A') > 0. It follow s a t onc e that 
K(X,Kx +  A)  > 0 . • 

The lo g abundanc e theore m fo r th e cas e v(X,  Kx  + A) = 0  is a  direc t 
consequence of (11.2.1). 

11.2.4 Lemma. Let  X  be  a  proper surface  and assume  that  (X,  A)  is  log 
canonical If  Kx  + A is  nef then K (X, KX + A) > 0 . 

Proof W e want to find a member in \m(Kx + A) | . Fo r this let <f> : X' —» X b e 
the minimal,resolution , an d writ e Kx f +  Axf =  <l>*(Kx + A ) . Sinc e Kx + A 
is lo g canonica l an d <j>  i s minimal , Ax 1 i s a  boundary . A s Kx 1 +  AX' i s 
nef, (11.2.1 ) implies tha t \m(K x> + Ax>)\ ^  0. But H ° (m(Kx> + A*')) = 
H° (m(Kx +  A) ) , an d s o we can find  D  G \m(Kx +  A ) | . • 

11.3 T H E CAS E V (Kx +  A) = 1 

This sectio n is devoted to a  proof o f the followin g result . 
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11.3.1 Theorem. Let  (X , A) be  a normal surface with boundary A.  If  Kx + 
A is  nef, Q-Cartier,  log  canonical and v(X,  Kx  +  A) = 1 , then  \m(Kx  +  A )| 
is free for  some m. 

We first observe that to prove (11.3.1), it is enough to show that ft(X, Kx + 
A) =  1 . I n fac t suppos e M +  B G  \m(Kx +  A) |, wher e M  move s in a  pencil, 
and B  i s the fixed part. No w MB >  0, as \M\  ha s n o one dimensional bas e 
locus, an d sinc e (M  +  B) 2 =  0 , thi s implie s M(M  +  B) =  M 2 =  0 . Thu s 
\M\ i s free, an d s o it define s a  map o f S t o a  smooth curve C.  A s M •  B  =  0 
and th e numerica l clas s of M i s equivalent t o a multiple o f a fibre, the diviso r 
B i s linearly equivalen t t o th e pullbac k o f a diviso r from C.  Bu t the n some 
multiple o f B i s base poin t free . 

Here i s the first  ste p o f (11.3.1). 

11.3.2 Lemma . There  exists  a  surface X birational  to  X,  and  divisors  A , 
B and  D such  that: 

(1) (X,  A+B)  is  Q-factorial and log canonical and D G  \m(K^ +  A+B)\. 
Moreover B  =  Z) red • 

(2) K x +  A +  B is  nef. 
(3) v{X,  K x +  A) =  v{X,  Kx  +  A + B) and  K (X, K X +  A)  =  K (X, K X + 

A +  B). 

Proof. B y (11.2.4) , w e may find  D  G  \m(Kx +  A) | . Pic k a  minima l goo d 
resolution ¡1  : X 0 —•  X  o f th e pai r (X,D  +  A) , and writ e Kx 0 +  A  = 
p*(Kx +  A ) . A s (X , A) is log canonical, A  i s effective . Se t B 0 =  (/i*D) r ed 
and replac e A  with Ao , where we only include those component s of A which 
are no t component s of Bo. Wit h thi s choic e o f A 0 , A 0 +  B 0 i s a  boundary , 
and ther e is a divisor D 0 £  \m(Kx 0 +  A 0 +  Bo)\. 

We no w appl y th e lo g minima l mode l progra m t o (Xo , A0 +  B 0). W e 
inductively construc t a  sequenc e X 2-, A 2-, B{ an d D{  satisfying (1) . I f Kx { + 
A{ + Bi i s not nef , then there is a divisorial contraction 4>i  associate d t o some 
log extremal ra y o f Kx{ +A%  + B{ (clearly fa is not o f fibre type), and w e put 
Bi+1 =  fa^Bi),  A i + i =  fa^Ai),  an d A+ i =  MDi).  (B y [KMM87 , 5-1-6] 
(Xi+i, A 2_|_i + Bi+i)  i s Q-factorial an d lo g terminal. ) 

Since a t eac h ste p th e Picar d numbe r drop s b y one , thi s proces s mus t 
terminate a t som e i, and w e set X  =  X 2-, B  =  JB 2, A = A 2- and D  =  D\. 

Conditions (1 ) and (2 ) are automati c fro m th e construction . (3 ) follow s 
from th e (11.3.3 ) applie d t o the pullback s of the divisor s m(Kx +  A) and D{ 
to X 0 (cf . (13.2.4)) . • 

Note that i n fact th e pai r (X , A + B)  i s log terminal; we do not nee d this . 
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11.3.3 Lemma. Le t X be  a proper variety  of  dimension n  and  G\,GÏ two 
effective nef divisors with  the same support.  Then  v (X,Gi) = v(X, G2) and 
K ( X , G ! ) = K ( X , G 2 ) . 

Proof. Le t v(X,Gi) = V{ and K(X,G{) = /q. Choos e a\ so that a\G\  — G2 is 
effective. 

( 1 ) Let H be any ample divisor . The n 

( (a iGi )" 2 •  H"-**) > ( ( a i G i ) ^ " 1 •  G2 •  Hn~^) 

>(GV

2

2 •H n-">) > 0 , 

and therefor e v\  >  V2. 
(2) H°(mG 2 ) H°(maiGi) , therefore /c i > «2 . 

Now reverse the roles of Gi and G2 . • 

Now Riemann-Roc h for nD reads : 

X(nD) =  nD-{nD-Ky) K— ^  +  x(Ox) 

= 1

 2

 1  \D 2) +  ^D-(A  +  B)  +  X ( O X ) . 
n(n — Im) 

We know already tha t D 2 =  0 and so from now on we can assume D  • A = 0, 
since otherwis e ( 1 1 . 3 . 1 ) follow s immediatel y (becaus e h 2(nD) =  h 2(K^ — 
nD) =  0  for large n , a s G  is not numerically trivial , an d we only nee d t o 
show K ( X , KX + A ) =  1 ) . Sinc e we have chosen B s o that A  and B hav e no 
components in common, this implies that A  and B do not intersect . 

Choose an integer m  so that L  = Oj c(m(Kx +  A + B)) G  Pi c (X) an d \L\ 
is non-empty. Not e that L  is nef. 

11.3.4 Lemma . There  are  X'A', 5 ' and D' satisfying (11.3.2.1-3)  and  in 
addition 

(4) Ever y connected  component  of  B' is  irreducible. 

Proof. Pic k a n irreducibl e componen t 5  o f B. Suppos e S  meet s anothe r 
component 5  of B. No w v(X, L) = 1 , so that L 2 =  0 . But L2 =  L-(D-S) + 
L -  5, and both term s are non-negative a s L is nef. I t follow s tha t ¿ - 5 = 0 
and moreove r that (K%  + A + B — S) • S <  0. But then there is a log extremal 
ray o f (K% + A + B — S) associate d to 5, and so a log extremal contraction , 
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which must be divisorial . Suc h a contraction decrease s the Picar d numbe r of 
X, an d s o eventually w e may isolate ever y component of B. • 

Pick any prime component S of Br, an d let U  be an open subset o f X1 whic h 
retracts to S  [BPV84 , page 27] . Le t V  b e the lin e bundle O v{m{Kv +  5) ) = 
OuimiKu +  A' +  S)). 

11.3.5 Lemma . L f\s is  a  torsion  element  of  Pi c (5) (i.e  some  multiple  of 
L'\s is  isomorphic to  Os)-

Proof. I f we apply adjunction t o 5  i n U,  we get 

(Ku +  S)\s =  K s +  P 

where P  =  Dif F is effective. I f P =  0 , then S  i s elliptic or nodal rational an d 
so K s +  P =  0 . I f P ^  0  then S  i s a smooth P 1 . • 

Now we make a cover of U to improve S an d how it sit s inside U  (compare 
[Miyaoka88b], where this argument firs t appears) . 

11.3.6 Lemma . Let  U  be  a  normal analytic  space,  and  S  a  compact  sub-
space. If  the  inclusion  i  :  S —>  U induces isomorphisms 

t* :  Hj(U, Z ) H j(S, Z ) for  j =  1,2 , 

then 

(1) the  kernel  of  the restriction  map 

Pic(*7) _ > P i c ( 5 ) 

is a C-vector space.  In  particular it  is  divisible, and  torsion  free. 
Moreover if  G  is  a  Q-Cartier integral  divisor  on  U such  that  G\s  is  torsion, 
then 

(2) there  is  a  finite Galois  cover IT  :  U — » U,  etale  in codimension  one, 
such that  w*G  is a Cartier divisor, which restricts to  a divisor linearly 
equivalent to  zero  on  7r *5. 

Proof. Compar e the cohomolog y exact sequences of the exponential sequences 
on S  an d U: 

H\S,Z) 
a s 

HHS,Os) HHS,Os) H2(S,Z) 

Pi &2 03 /3 4 

HHU.Z) 
OCJJ 

H\U,O„) HHUM H2(U,Z). 
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Now Pic (U) =  H\U, 0* v), Pi c (S) = H\S, 0* S), and (33 is just th e restric -
tion map . B y assumption, /3i  and /?4 are isomorphisms, and so the kernel of 
f3s i s isomorphic to the kernel o f /32, which in turn is a subvector space of the 
C-vector spac e if 1(J7, Ou)- Henc e (1) holds. 

For (2) , let r be the smallest intege r suc h that rG is Cartier and rG\s ~  0. 
The clas s of rG\s in H2(S, Z ) i s zero, and as /?4 is an isomorphism, the class 
of rG  is zero in H2(U, Z) . A s Hl(U, Ou)  is divisible, there is a line bundle M 
on U  such that : 

Ou(rG)®Mr =  Ou • 

We ar e going to apply (11.3.6.2 ) t o ensure tha t bot h th e pullback o f Kx 
and the class of 5 are multiples o f the same Cartier divisor G, which will itself 
restrict to a divisor linearly equivalen t t o zero on the pullback of S. 

As S  i s irreducible, there is a divisor D G  \m(Ku + S)\ such that D  = eS 
for som e positive intege r e . Bu t then dS  ~  mKu,  wher e d  = e — m. Not e 
that eithe r d  and m are nonnegative o r d is negative, bu t —d<m.  Le t c be 
the highes t commo n factor o f m and d. W e may find integers ra',  d fbi an d 
&2 such that : 

m =  mfc, d  = d'c , c  — bim + 6 2^-

Let G  be the Weil divisor 6i5 + b 2Ku- W e have 

c(5 - m'G ) = (fei m + b 2d)S -  mfrS  +  b2Kv) -  0  - c{K v -  d'G), 

and so 

c(Kv +  S - (m ' + d ,)G) -  0 . 
Thus the three divisors 

( S - r o ' G ) l s , ( l ^ - d ' G ) | s an d G | 5 

are al l torsion (th e third b y (11.3.5)) . No w we apply (11.3.6.2 ) thre e time s 
to thes e divisors . Thu s ther e i s a finite  Galoi s cove r 7 r :  U —• [/, etal e i n 
codimension one , such that, if we put S  =  7r *5 and G = 7r *G, 

G\§ -  0  S  - m'G , K  U - d'G , 

and so 

The nex t lemm a show s that S  move s in U  infinitesimally (cf . [Miyaoka88b, 
4.2]). Firs t some notation; le t V be an analytic space , and S a Cartier divisor 
on V.  Denot e by Sn th e analytic subspac e of V define d by the sheaf of ideals 
Ou(-nS) an d set An =  Spec C[e]/(e) n . 

"s =  Où(S)\§ =  °s-
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11.3.7 Lemma. Let  V  be  a Cohen-Macaulay complex  space, and  S a  divisor 
on V. Assume  that  Ky  and  S are  both multiples d'  and m' of  the same Cartier 
divisor G, and  that  the  following  three conditions  hold 

(1) d!  + ( n - l )m ' 5 6 0 for any n >2, 
(2) us^Os, 
(3) the  restriction  H p(Sn,0Sn) — • H p(S,Os) is  surjective  for  every 

P 
Then S  moves  inhnitesimally  in  V,  to  any order. 

Proof. W e prove the followin g statements by induction o n n. 
( i ) n Ther e ar e prope r flat  morphism s &  : St- —• A{ (i  <  n) suc h that th e 

following diagra m i s commutative 

S{—1 •  S{ 

Ai—i >•  Ai 

( i i ) n Th e sheaves R p£n*Osn ar e locall y free. 
(iii) n u Sn ^  0 5 n -
Note tha t i f ( i ) n hold s fo r ever y n , the n S  move s infinitesimally t o an y 

order, by definition . 
For n  =  1 , w e take £ 1 t o b e th e structur e map . The n (ii) i i s automatic , 

and (iii) i i s just (2) . 
Otherwise suppos e tha t al l thre e statement s ar e tru e fo r al l integer s les s 

than n . A s Ky +  (n  —  1)5 i s Cartie r an d 5 n _i i s Cohe n Macaula y (i t i s a 
Cartier diviso r i n a  Cohe n Macaula y scheme) , we may appl y adjunctio n t o 
Sn-i' 

ws. . . =  «v ((n - 1)5 ) ® 0 Sn_, 
= Os n_d(d' +  (n-l)m')G). 

On the other hand (iii) n_i implies that usn_1 i s linearly equivalent to zero. We 
may apply (11.3.6 ) (1 ) to 5  an d 5 n _i t o deduce that G  is linearly equivalen t 
to zero on 5 „ _ i . In particular Os n^ ®  Oy(-S) ~  C?5 n_1. 

Consider th e exac t sequenc e of sheaves on V, 

Q—+)C^Osn—>Os-+0, 

where K  i s defined by exactness. I t i s clear that the suppor t o f K i s S n-i. I n 
fact 

Os =  Ov/Ov(-S)  0 S n =  Ov/O v(-(n +  1)5) 
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and s o /C = Os n_1 <8 > Oy{—S) a s a  sheaf of Oy-modules. Now we have shown 
that thi s is the trivia l line bundle o n 5 n _ i . 

Let e  b e th e imag e o f the globa l section 1  of the shea f K  i n th e vecto r 
space H°(S n,Osn)- Defin e a  C-algebr a homomorphis m fro m C[e]/(e) n t o 
H°(SN,0SN), b y sendin g €  to e . Thi s give s H°(S n, 0 Sn) a  flat  C[e]/(e) n-
module structure, which since A n i s affine, i s equivalent t o a  proper flat  mor -
phism £ n :  Sn — • An. I t i s not hard,  from the definitio n o f £n , t o chec k that 
the diagra m 

S n-1 ---------> Sn 

An—i y A n 

commutes. Thi s proves ( i )n . 
Condition (3 ) now implies ( i i ) n (see for example [Hartshorne77, II I 12.11]) . 

It follow s by duality, tha t R p£n*usn ar e als o locally free, fo r every p. (Unfor -
tunately this seems to require relative dualit y theory , see e.g. [Hartshorne66]. ) 
As us  i s isomorphic to th e trivia l line bundle , £ n*<^sn ha s a  globa l non van -
ishing section , which we may pullback to u>s n- Thu s us n i s trivial also, which 
is (ii i) n . • 

11.3.8 Example . Ther e i s a n interestin g exampl e whic h indicate s th e ne -
cessity fo r th e somewha t strang e assumption s o f (11.3.7) . Tak e X  t o b e a 
P1-bundle ove r an ellipti c curve, given by the uniqu e ran k two vector bundl e 
of degre e zero which does not split . X  ha s a  unique sectio n S  o f selfintersec -
tion zero, which does not move. Howeve r it does move to first order. O f course 
there i s no diviso r G  suc h tha t bot h th e clas s o f the curv e an d it s dualizin g 
sheaf ar e multiple s o f G. 

11.3.9. No w we check that th e condition s o f (11.3.7 ) appl y t o S  i n U.  I n 
fact (1 ) follows a s m r i s always positive , and i f d!  is negative, —d'  < m',  (2 ) 
has alread y bee n verified , an d s o we are lef t wit h (3) . Bu t a s S  i s a  curve , 
certainly 

H\Sn,0-Sn)^H\S, (0~OS) , 

is surjective, a s the obstructio n i s the secon d cohomology o f the kerne l o f the 
natural map 0§  —•  0§,  whic h always vanishes. Thi s leaves 

H0(Sn,Osn)^H°(S,Os)~C, 

which i s again certainl y surjective . 
Now we are in a position to finish the proo f of (11.3.1). Le t G  be the Galois 

group of the cove r U  —• U  of degree r. Th e Cartier divisor (rS) n pull s back, 
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under 7T , to the Cartier divisor Snr. Thu s S nr descend s to (rS) n, an d moreover 
G acts naturally on H°(S nr, 0§  ) . But thi s may b e identified, vi a £ n r , wit h 
C[e] / (e) n r . I t follow s that (remaps to A ns =  Spec (C[e ] / ( e )n r ) G , fo r som e 
s dividing r . Sinc e the Hilber t schem e is of finite type w e are done . 
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12. SEM I LO G CANONICA L SURFACE S 

DAN ABRAMOVICH , LUNG-YIN G FONG , 

JANOS KOLLAR , an d JAME S MCKERNA N 

12.1 INTRODUCTIO N 

In this chapter w e collect together som e results concerning semi log canon-
ical surfaces (se e (12.2 ) fo r the definition s an d basi c properties). Th e first of 
these i s log abundance fo r sem i lo g canonical surfaces i n th e case s v  =  0  or 
i/ =  1 . 

12.1.1 Theorem . Let  S  be  a  reduced  projective  surface  and  let  A  be  a 
Q-Weil divisor  on  S.  Assume  that  Ks  +  A is  Q-Cartier,  net  and  semi  log 
canonical and  z/(5 , Ks +  A) =  0  or 1. 

Then the  linear  system \m(Ks  +  A)\ is  base  point free  for  suitable m  >  0 
(and in  particular z/(5 , Ks +  A ) = K (5 , KS +  A) ) . 

The ide a i s t o sho w that w e can descen d section s t o S  fro m th e normal -
ization o f S (her e w e use (11.1.3)) . I n bot h case s the argument s ar e a  littl e 
delicate; we have t o analyze carefull y th e patchin g data . 

The second result i s a version of (1.13) (whic h is proved in (12.5)) . 

12.1.2 Theorem. Let  S  be  a reduced projective surface  with semi log canon-
ical singularities. Then  the  natural  map  induced  by  Cs C Os 

ip :  HP(S, C s) —•  H P(S, O s) is  surjective for  every  p. 

When S  i s smooth (12.1.2 ) i s a standard result. Therefor e w e just nee d t o 
analyze how the cohomolog y of S differ s from the cohomolog y of a resolution . 
We spli t thi s analysi s int o tw o steps; i n on e step w e consider how to resolve 
the ba d singularitie s a t isolate d point s o f 5, an d i n the othe r ste p w e remove 
the on e dimensional singula r locu s via a  finite map. Howeve r we introduce a 
new twist; rathe r than first normalizing S  fo r the secon d step, which loses too 
much information abou t th e singularitie s o f 5, w e make S  a s nice as possible 
by altering 5  a t a  finite  set o f points, an d the n normalize. 

s. M. F. 
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12.2 BASI C RESULT S 

We collect together here some of the properties of semi log canonical surface 
singularities. 

Let X  b e a  scheme with a t wors t doubl e normal crossing s in codimension 
one. Th e nex t se t o f definition s introduce s th e appropriat e notio n o f log 
canonical (thes e definition s wer e given in [KSB88 ] for surfaces) . 

12-2.1 Definition . 
(1) A n n-dimensional singularit y (x  G  X) i s called a double  normal cross-

ing point, resp. a  pinch point  if it i s analytically (o r formally) isomor-
phic t o 

(0 G  (x0x1 =  0) ) C (0 G Cn + 1 ) resp . ( 0 G (x2 =  x xx2)) C  (0 G C n + 1 ) . 

(2) A n n-fol d X  i s semismooth  i f ever y close d poin t (x  G  X) i s eithe r 
smooth or double normal crossing point o r pinch point. Th e singula r 
locus o f X  i s the n a  smoot h (n  —  l)-fol d Dx>  Th e normalizatio n 
v :  Xv —•  X  i s smooth and D v =  v~ l(Dx) —•  Dx  i s a  doubl e cover 
ramified alon g the pinc h locus . 

(3) A  morphis m /  :  Y  —•  X i s calle d a  s  entire solution i f /  i s proper , 
Y i s semismooth , n o componen t o f Dy  i s /-exceptional , an d ther e 
is a  codimensio n two closed subse t S  C  X  suc h that f\f" 1(X \  S)  : 
/ - 1 ( X \  S)  —»  X \  S  i s an isomorphism. 

(4) Le t X  b e a  reduce d scheme , A  C  X  a  Q-Wei l divisor (cf . (16.2)) . 
Let /  :  Y —>  X  b e a  semiresolutio n wit h exceptiona l divisors E  an d 
exceptional set Ex(f)  C  Y. 

f i s a  good  semiresolution (resp . a  good  divisorial  semiresolution) 
of A  C  X i f the union EUDyU f~ x(A) (resp . Ex(f) UD YU /  - 1 (A) ) 
is a divisor with globa l normal crossing s on Y. 

(5) Le t S  b e a  reduced surface . A  semiresolution /  :  T — • S i s minimal 
if u j t i s /-nef . (I n th e nonnorma l case , minima l resolution s ar e no t 
unique.) 

(6) Le t X  b e a  reduce d 5 2 scheme , A  C  X  a  boundar y (i.e. , a  Q-Weil 
divisor A  =  J^diAi  wit h 0  <  d{  <  1) . W e sa y tha t Kx  +  A  i s 
semi log  terminal (resp . divisorial  semi  log  terminal, resp . semi  log 
canonical) (frequently abbreviate d a s si t resp . dsl t resp . sic ) i f it i s 
Q-Cartier an d ther e is a goo d semiresolutio n (resp . a  goo d divisoria l 
semiresolution, resp . a  goo d semiresolution ) f  :  Y —>  X  of  A  C  X 
such that: 

KY +  fz \A) =  f*(K x +  A ) + ] T aiEi, 
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where th e E{  are the /-exceptiona l divisor s an d all a 2- >  —  1 (resp. 
a,i > — 1 resp. cii  > — 1). W e leave it to the reader to formulate th e 
analogous definitio n o f the various flavors of semi log terminal. 

(7) Le t /  :  Y —•  X b e a semiresolution . W e say X ha s semirationa l 
singularities, i f f*Oy —  Ox an d R lf*Oy =  0  for i >  0 . A s in the 
normal case , this is independent o f the semiresolution chosen . 

(8) A  scheme X (ove r an algebraically close d field) is called seminorma l 
if the following condition holds: 

Every finite an d surjective morphis m X f —>  X whic h is one-to-one 
on closed points i s an isomorphism. 

12.2.2 Notation.  Le t (X, A) be sic. Le t ¡1 : XM —> X b e the normalization . 
Let D  C  X (resp . Du C  X^) b e the double intersection locus . Thu s i^D^  : 

Du —•  D  is a double cover. Let 6 =  f i " 1 A  + D^. Thu s 

Kx* +  e =  n*(Kx +  &). 
The irreducibl e component s of X  ̂ar e frequently denote d by Xi an d then 

Qi denote s the restriction o f © to X{. 

12.2.3 Proposition . [vanStraten87]  Let S be  a surface which is semismooth 
in codimension one.  Then  S  has a minimal semiresolution. If  A C  S is a Weil 
divisor then  (.S , A) has a good semiresolution. 

Proof. Le t S  b e a surface , wit h norma l crossing s i n codimensio n one , an d 
choose a  goo d resolutio n (T 0 , A)) o f the pair (S^^D^).  I f A =  0  then 
is reduce d an d we may assume i n addition tha t KT 0 +  DQ i s nef on To/S^. 
The map Du —> Ds i s two-to-one, and defines a n involution r  o n Do. I t is 
easy to see (cf. [Artin70 ] for the general theory ) that on e can find an analyti c 
(or algebraic ) spac e T , which is obtained fro m T o by gluing togethe r point s 
of DQ  tha t ar e conjugat e unde r th e involutio n r . Moreove r i t i s not hard 
to se e that T  i s semismooth; pinc h point s correspon d t o fixed point s o f the 
involution r . Ther e i s a morphism /  :  T —•  S  wit h fibre s whic h are either 
points o r curves. Thu s /  i s projective, hence T i s also projective and so / i s 
a semiresolution . • 

The followin g is clear fro m the definitions (cf . (2.6)) : 

12.2.4 Proposition . Notation  as  above. Then 

discrep(X, A) = discrep(X" , 6 ). • 

It migh t see m from (12.2.4 ) tha t on e could define the semi log versions of 
It, lc etc. b y requiring th e corresponding notion to hold for the normalization . 
However, Kx  +  A is usually no t Q-Cartier eve n whe n A  = 0  and (X^^Q) 
is log canonical. I n dimension two one can give the following necessary (and 
sufficient) condition . 
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12.2.5 Proposition . Let  (S , A) b e a  sic  surface.  Let  Di  C  S  be  a  double 
curve such  that  / i _ 1 ( Z } i ) =  D[  U  D" has  two  components.  Then  (see  (16.6) 
for the  definition  of  Diff j 

D I F F D I ( E -  =  D I F F ^ ( E -  D ' / ) . 

Proof. Le t Si , S 2 b e analyti c neighborhood s o f D[,  D"  respectively . W e 
abuse notation , an d identif y S i an d S 2 with thei r image s unde r ¡1.  No w we 
may compute the differen t a t an y point o f D[ o r D", on the surfac e S , by first 
restricting to S i o r S2 . I n eithe r case this is equivalent t o restricting Ks +  A 
to th e doubl e curv e D\.  • 

12.2.6 Corollary . Let  (S , A) be  a  germ of  a  sic  surface.  Assume  that 
has two  irreducible  components  S±,  S%  . Then 

( S ? , E I ) S < ( C 2 , C ) O  ( S £ , E 2 ) ^ ( < C 2 , C ) . 

Proof. Not e that by (16.6) (S z-, 6 2 ) i s isomorphic to (C 2 , C ) iff 6; i s irreducibl e 
and th e differen t i s zero. • 

12.2.7 Corollary . Let  (S , B) be  a germ of  a sit surface.  Then  S  has  one  or 
two irreducible  components. 

Proof. Assum e that S has at leas t three irreducible components . The n there is 
a componen t S i whic h intersects at leas t two other component s alon g curves . 
Thus Qi  =  6 |S f contain s a t leas t tw o reduce d curves . B y Chapte r 3 , thi s 
implies that (S f ,0,-) i s not It . • 

12.2.8 Propositio n -  Definition . Let  (S , A) be  a  germ of  an  sic  surface. 
Let f  :  T  — » S  be  a  minimal  semiresolution  (of  S).  Let  E{  C  T  be  the 
exceptional divisors.  Then 

(1) 
KT +  /."'(A ) =  f*(K s +  A ) + £  a i E u 

where 0  > a { >  - 1 . Let  E  =  £ a = - i E {. 
(2) R 1f,OT(-E) =  0. 
(3) If  (S , A) is not semirational  then  A =  0  and S  is either simple  elliptic, 

a cusp  or  a degenerate cusp;  where we  define S to  be 
(i) simpl e elliptic , if  E  =  Ex(f)  is  a  smooth  elliptic  curve,  and  S  is 

normal, 
(ii) a  cusp (resp.  degenerat e cuspj, if S  is  normal (resp.  not  normal,  but 

T has  no  pinch  points,  locally  about  E),  if  E  =  Ex(f)  is  a  cycle  of 
P 1 o r a  nodal P 1 . 
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Proof. Le t v :  Tv —•  T  b e the normalization o f T. W e get a commutativ e 
diagram 

Tv v  >  5M 

" 1 M l 
T —^—•  S. 

Now g : T v — • 5" is a resolution o f 5 ". Thu s 

tfr* + gz\e)  =  g*(Ks, +  0) +  £ a,-# , 

where F z ar e the exceptional divisors of g and 0 > a2- follows from (2.19) . 
Let F =  E a i = - i ^ - The n f*E  =  F, and so to show that R 1f*0T(-E) = 

0, i t i s enough to show that R 1g*OT»(—F) =  0 , as the morphisms v  and fi 
are finite.  Bu t as 

-F =  KT* +  (g^iS) +  ¿2  ~ a^j ~  9*(Ks* +  6), 
\ O I > - L / 

this follows by Kawamata-Viehweg vanishing [KMM87 , 1-2-3]. 
Now if S i s not semirational, ^(OE)  >  1 , by (2). Applying adjunction t o 

E, w e have: 

KE = (KT + E)\E= EEEE (aiEi-f-H^E, 
0>CLi>-l 

which i s negative unles s E  =  Ex(f) an d A = 0 . Thu s H 1(OE) =  0  unles s 
E =  Ex(f) an d A = 0. In the latter case E has arithmetic genu s one, and so 
it is an elliptic curve, a cycle of P1 o r a nodal P1 . Therefor e if S is not normal 
then D**  ha s two components on every component of 5M an d every (5^ , D^) 
falls t o case (9 ) of Figure 3  in the classification o f Chapter 3 . Thu s 5  i s a 
degenerate cusp . Thi s proves  (3) . • 

12.2.9 Definition. Le t (C, A ) b e a semi log canonical curve and A a Q-divisor. 
Let n  : C = UC2- —• C be the normalization an d define A 2- by 

n*(Kc + £)\Ci = KCi+Ai. 
Assume that m(Kci+Ai)  i s an integral divisor. Fo r every P £  I _A2-J let zp 

be a local parameter at P. A  section S{ £  R(C,- , 0(m(Kci+Ai))) i s normalized 
if 5, - — (dzp/zp) m vanishe s a t P.  Thi s is easily seen to be independent o f the 
choice of zp. 
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A sectio n s  G  R ( C, 0(m(Kc  +  A ) ) ) i s normalized  if n*(s)\Ci i s normalize d 
for ever y i. 

On th e noda l curve (xy  =  0 ) C C 2 conside r the 1-for m a  =  dx/x =  —dy/y. 
Even powers of a ar e normalize d an d ther e are n o normalized section s if m i s 
odd. 

All normalize d section s for m a n affine  subspace i n th e spac e o f sections . 
This wil l be denoted b y 

R B ( C , 0 ( r o ( # C +  A ) ) ) . 

12.2.9.1 Complement.  I f C{  is such tha t LA,- J = 0  then C%  i s a  smoot h con -
nected componen t o f C  an d th e abov e definition impose s n o restrictions o n 
sections of 0(m(K +  Ai)). Fo r our purposes i t wil l be convenient t o make th e 
following convention . Assum e that C 2 i s a n ellipti c curv e suc h tha t A Z- = 0 . 
Aut(C) acts trivially o n H°(C, Oc(l2Kc)).  W e fix a nonzero section for every 
elliptic curve and cal l it (an d it s power s in H°(C,  Oc(12mKc)))  normalized . 

12.2.10 Definition.  Le t (X,A)  b e a n si c surface . A s i n (12.2.2 ) le t n  : 
( X ^ , 0 ) — • ( X , A ) be the normalization . A s section s  G  R ( X, 0(m{K x +  A))) 
is normalized  if 

n * 5 | L 0 j G  R ( L 6 j , 0(m(K^ Qj +  Diff(0 -  L O J ) ) ) ) 

is normalized . 
All normalize d section s form an affin e subspac e T N ( X , 0(m(Kx  +  A ) ) ) i n 

the spac e o f all sections . 

12.2.11 Proposition . Let  ( C , A ) be  an  sic  curve  and  let  m  be  a  natural 
number such  that  mA  is  integral. Then 

(12.2.11.1) R » ( C , 0(2m(K c +  A ) ) ) =  R N ( C F - , 0(2m(K Ci +  A , - ) ) ) ; 
(12.2.11.2) If  K c +  A  is  nef  then  T n(C,0(12m(Kc +  A ) ) ) generates 

0(12m(Kc +  A)). 

Proof. Th e first part i s clear. Usin g the first  part, it i s sufficient t o prove th e 
second fo r C  irreducibl e an d smooth . 

We distinguis h two cases: 
(12.2.11.3) de g (Kc +  A ) =  0 . The n eithe r g(C) =  1  and A  = 0  or g(C) = 

0 an d L A J i s at mos t tw o points o f C. 0(12m(Kc  +  A ) ) ha s on e section (u p 
to scalars ) an d a  suitable multiple i s normalized i f L A J i s at mos t on e point . 
If L A J =  { 0 , o o } then (dz/z) 12m i s normalized . 

(12.2.11.4) de g (Kc +  A) >  0 . Le t P  b e an y poin t differen t fro m L A J . 
Consider th e exac t sequenc e 

0 - + 0(l2m(K c +  A ) - ^ - P) -  0(12m(K c +  A)) C ( P ) + C ( L A J ) - > 0 . 
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Since 

deg(12m(Kc +  A ) - L A J -  P ) 
= deg(K c +  Um(K c +  A ) ) +  deg(( m - 1)(K C +  A ) + { A } ) -  1 
> de g Kc +  1 1 -  1  =  de g Kc +  1 0 , 

we conclud e that 

H°(C, 0(12m(K c +  A ) ) ) - * H°(C,  C ( P ) +  C ( L A J ) ) 

is surjective . • 

1 2 . 3 T H E REDUCE D BOUNDAR Y O F L C SURFACE S 

Let ( 5 , 0 ) b e a n l c surface. Ou r ai m i s t o analyz e i_© j i n th e case s whe n 

K5,e)e{o,i}. 
12.3.1 Proposition . [Shokurov91,  6.9]  Let ( 5 , 6 ) be  a  proper  lc  surface. 
Assume that  K  +  Q =  0 . Then  ( 5 , 0 ) satisfies  one  of the following  conditions: 

( 1 ) L 0 J is  connected  and  for  every  C  G  L 0J the  pair (C,  DifT(0 —  C)) is 
not kit,  (i.e.,  Dif f (0 —  C) contains  a  point with  multiplicity 1.) 

( 2 ) L 0 J is  irreducible and  for  C =  L 0 J the  pair  (C,  Dif f(0 -  C))  is  kit. 
( 3 ) L 0 J has two  connected  components,  for  every  C  C  L_O J the  pair 

(C, Dif f (0 —  C)) is  kit and  there  is a morphism onto a curve g :  S —>  B 
such that  L 0 J consists of  two  sections  of  g. (B  is  either  rational  or 
elliptic.) 

Proof. Le t h  :  5' -+ 5 b e an I t modification o f 5 an d le t K  +  O' =  h*(K  +  S). 
Then ( 5 7 , 0 ' ) i s It and i t i s sufficient t o prove that the resul t holds for ( 5 ' , 0 ; ) . 

In thi s cas e (C,  D i f f(0 ; —  C))  i s no t ki t if f C  intersect s anothe r irreducibl e 
component o f I _ 0 ' J . 

We prov e a  stronger relative version : 

12.3.2 Proposition . Let  ( 5 , 0 ) be  a log terminal surface.  Let  f  :  S — > R be 
a proper morphism  with  connected fibers.  Assume  that  K  +  0  is  numerically 
f-trivial. Let  r  G  R be  arbitrary.  Then  one  of  the  following  holds: 

( 1 ) L 0 J is  connected  in  a  neighborhood o f / _ 1 ( r ) ; 
( 2 ) L 0 J has two  connected  components  in  a  neighborhood  of  / - 1 ( r ) , 

both components  are  smooth and  there  is  a  morphism onto  a  curve 
g :  S/R —•  B/R such  that  L 0 J consists  of  two  sections  of  g. 
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Proof. I f /  i s birational then ( 1 7 . 4 ) implie s that w e have ( 1 ) . Thu s w e may 
assume tha t /  ha s positiv e dimensional fibers  and tha t L © J ^  0 . 

We appl y the (K  +  0 -  e L 0 J ) - M MP o n S/R fo r 0 < e  < 1 . Th e end result 
is a  prope r birationa l morphis m p  :  S/R —•  Z/R  suc h tha t Kz  +  p (0) i s lc 
and Kz  + p ( 0 ) —  6LJ9(0)J i s It. W e claim that 

p ( L 0 j ) =  LP (0)_J. 

Indeed, sinc e K  +  0  i s numericall y /-trivial , K  =  p*(Kz  +£>(©) ) —  0- I f 
z E  p(i_0j) —  i_p(0) J the n 

K =  p*(Kz + p ( 6 ) ) -  0  =  p\K z +  p (6) - 6 L p(0) j ) -  0 

in a  neighborhoo d of p~x(z), whic h shows that Kz  +  p(@) —  ei_p(0)j is no t 
It a t z,  a  contradiction . I n particula r L_P (0)J ^  0 . B y ( 1 7 . 4 ) th e fibers  o f 
L 0 J — > L_P(0)J ar e connected , hence i_p(0)j is connected iff L0 J is connected. 

Now w e distinguish severa l cases . 
(i) Kz  +  p (0) —  6LP(0)J i s numericall y trivia l ove r R.  Thi s ca n onl y 

happen i f th e fibers  o f Z  —+  R ar e on e dimensiona l an d i _p(0)j i s 
the unio n o f some fibers,  thu s i _p(0)j i s connecte d nea r an y fiber. 
Otherwise ther e i s a  (Kz  +  p(&) —  ei-p(0)j)-extremal contractio n 
u :  Z/R —>  V/R.  Her e there are tw o subcases: 

(ii) u  contract s Z  t o a  point. The n p(Z)  =  1 , hence any tw o curves in Z 
intersect. Thu s i _p(0)j is connected. 

(hi) u  contracts Z  t o a curve and the generi c fiber is P1 . Therefor e i_p(0)j 
intersects th e generi c fiber  i n a t mos t tw o points . Fo r an y v  £  V , 
the fiber  u" 1^) C  Z  i s a n irreducibl e curve . Thu s i f i _p(0)j is no t 
connected i n th e neighborhoo d of a fiber  o f Z —>  S  the n i _p(0)j is 
the unio n o f two sections of u near that fiber.  Thu s L 0 J also has two 
connected components. 

In orde r t o prov e ( 2 ) , consider th e morphis m u  op :  S — > V. I n a  neigh -
borhood o f ( w o p ) - 1 ( v ) , L 0 J consist s of two sections and possibl y some other 
curves C  =  UCi  C  (u  o  p)~l(v) whic h ar e p-exceptional . I f C  i s no t empt y 
then (uop)~ l(v) —  C is contractible, and the resulting contraction contradict s 
( 1 7 . 4 ) . Thu s C  i s empty an d ( 2 ) holds . • 

As a  straightforwar d corollar y we obtain: 

12.3.3 Theorem . Let  (5 , A ) be  a  proper, connected  sic  surface  such  that 
K +  A =  0 . Let  (Si,  Qi) be  the irreducible  components of  the normalization. 
Then one  of the  following  conditions is  satisfied: 

( 1 ) L 0 Z J is  connected for  every i  and for every irreducible  curve C C  L 0 J J 

the different  (C,Diff(0 i -  C))  is  not kit. 
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(2) For  every  i  and  for  every  irreducible  curve  C  C  L OIL the different 
(C ,Di f f (0 2 - -C) ) is  kit • 

The combinatoria l descriptio n o f the intersection s o f the irreducibl e com -
ponents o f S  i s ver y subtl e i n cas e (1) . (Se e [Friedman-Morrison83 ] fo r a n 
overview o f the specia l cas e o f semistable degeneration s o f surfaces.) I n th e 
second cas e the combinatoric s is easy but w e need further informatio n abou t 
the relationshi p betwee n the tw o components of L © 2 J . 

12.3.4 Theorem . Let  (5 ,© ) be an lc  surface. Let  f  :  S — • B be  a  proper 
morphism onto  a  curve,  with  connected  fibers.  Assume  that  K  +  © is  nu-
merically f-trivial  and  L © J D  C\  U  C2 where  the  Ci  are  sections of  f.  Let 
fi =  S \Ci. Then 

(1) (Si)*  D i f f c a ( 6 - Ci ) = ( / 2 ) . Di f f C 2 (6 -  C 2); let  us  call this Q-divisor 
P. 

(2) For  some m  >  0  we  have an  isomorphism  ip  : S *^B{j^K +  mP)  = 
Os(mK +  m 6 ). 

(3) Let  xpi  denote  the  composite  isomorphism 

%l>i :  0B(mK +  mP) 2  S*(S *0B(mK +  mP)) 

S* S*Os(mK +  me) 

= S *(Os{mK +  me)\Ci) 

= (Si )*0Ci(mK +  mDiff (9 -  Ci)). 

Then 

V W R 1 :  ( / R 1 o / 2 ) * O C l ( m J F F + m D i f F ( 0 - C i ) ) - + Oc2 (mK+mDifF ( e -C 2 ) ) 

and the  natural  isomorphism 

( / f V 2 ) . :  ( / f1 o /2 )*Cc 1 (mA'+mDi f f (G-C 1 ) ) - f O c 2 ( m K + m D i f f ( 0 - C 2 ) ) 

differ by  the  sheaf  multiplication (—1). 

Proof. Le t h  :  (5 ', 0 ') — • ( 5 , 0) be a  prope r morphis m suc h that K  +  0 ' = 
^*(A"+0) . The n the theore m holds for (S,  0) if f it holds for (S" , 0 ' ). Thu s a s 
in (11.2.4 ) we may reduce to the case when S i s smooth, and then by contract-
ing (—l)-curve s in th e fiber s w e may assume tha t /  :  S —•  B  i s a  P 1-bundle. 
Thus 0  consist s o f two section s an d som e fiber s (wit h coefficients) , whic h 
clearly implie s (1) . (2 ) and (3 ) are no t affecte d b y the vertica l component s 
of 0 , thu s w e may eve n assum e tha t 0  =  C\  U  C2 . B y further elementar y 
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transformations w e may als o assum e tha t C\  an d C 2 ar e disjoint . I t i s now 
clear that 

il>:Os(K +  C x+C2)<*rOB{K). 
In order to see (3 ) w e may restrict our attention to a local chart on B. Thu s 

S i s of the for m P1 x  B. Le t (s  :  t)  b e coordinates on P1 an d le t C\  =  (s  = 0) 
and C 2 =  (t  =  0) . Le t z  b e a  paramete r o n B  an d le t g(z)dz  b e a  1 -form. 
Under th e isomorphis m ip  we obtain 

ds 
ip*(g(z)dz) =  A— A g(z)dz, 

s 
where A  is an unknow n constant . Thu s ipi  is given by 

M9(z)dz) =  \g(K(z))d(K(z)). 

Changing fro m s  to t  we obtain 
dt 

il>*(g(z)dz) = -\— hg(z)dz, 

hence 
MgWz) =  -WfZ(z))d(f;(z)). 

This proves (3) . • 

12 .4 A BUNDANCE 

In thi s section we present a  proof o f (12.1.1) . 

Let /  :  T  —•  S  b e a  minima l semiresolution . B y (12.2.8.1 ) ther e i s a 
boundary A T o n T suc h that (T , AT) i s log canonical and K  +  AT =  f *(K + 
A ) . Thu s abundanc e fo r ( 5 , A ) i s equivalen t t o abundanc e fo r (T , AT)> I n 
several instance s i t wil l b e convenien t t o conside r onl y th e cas e whe n ou r 
surface S  i s already semismooth . 
12.4.1 Claim . (12.1.1)  is true  ifu  =  0 and we  are in case  (1)  of  (12.3.3). 

Proof. W e may assum e S  i s semismooth. Choos e m suc h that m (K +  &i)  i s 
a linearly trivia l Cartier diviso r for every i.  W e claim that \2m(K  +  A ) ~  0 . 

In orde r t o se e thi s w e have t o choos e section s a z- G  Osi(Ti2m(K + 0 2 ) ) 
such that the y patc h togethe r alon g the doubl e curves. B y assumption L© 2 J 
is connected and K  +  Q{  is numerically trivial ; thu s 

ffVe.-j, 0, QiJ(l2m(K +  Diff (9,- -  L8,-J))) ) 

is on e dimensional , an d i t contain s a  uniqu e normalize d sectio n pi.  Choos e 
Gi such that i t restrict s to pi.  I f C  C  L6 Z J i s a proper subcurv e then pi \C i s 
the uniqu e normalize d section of OcO-2m(K +  Diff(9Z- —  L 9 Z J ) ) | C ) . Thu s th e 
Gi automatically patc h togethe r t o a  globa l section g  G  H°(S, G(12m(Ks  + 
A ) ) ) . • 
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12.4.2 Claim . (12.1.1)  is true  in  the  following  cases: 
(1) v  =  0  in case  (2)  of  (12.3.3);  and 
(2) v  —  1 provided v (Si,@i) =  1  for every  irreducible  component  Si  of 

Su and  Si  fl Sj has  no vertical  components  for  i ^ j . 

Proof. Le t ¡1  : S^ —•  S  b e th e normalizatio n an d le t D z C  Si  b e th e invers e 
images o f the doubl e curves . B y assumptio n Di  ha s on e o r tw o irreducibl e 
components. Moreover , except when Di  i s irreducible, i t make s sens e t o talk 
about horizonta l an d vertica l component s o f 0 2 . I f v  =  0  the n (12.3.1.3) 
provides a  morphism ont o a  curve , in th e secon d case the morphis m i s given 
by abundance fo r (S 2 -,0 2 ). 

By suitabl e indexin g o f the component s 5, - ( 1 <  i  <  n)  o f S^  w e ma y 
assume th e followin g conditions 

i_02'J =  D ~ U  Df U  (vertical parts) (D f o r D+may be empty) ; an d 

Df S  n(Dt) =  KD~+1) * Di + 1 for 1  <  i  < n  - 1 . 

We distinguish tw o cases according to the behaviour o f // on the curve s Df 
and D+ . 
(chain) D f — • fJi(D^) an d D + — • /i(D+) ar e isomorphism s an d / i (Df ) ^ 

/i(D+). I f Df — • / / (Df) o r D+ — • /i(D+) i s two-to-one, let T i (resp. 
r n ) denot e the corresponding involution of Df (resp . D+) . Otherwis e 
let T i and r n b e the identity . 

(cycle) L> + S ,*(£>+ ) = ^(D~)  S  D f . 
The following obvious proposition describes H°(S,  0 (mK +  mA)) i n terms 

of 5" : 

12.4.3 Proposition . Suppose  that  m  is  sufficiently divisible.  Set 

H(i) =  H°(Si,  0 (mK +  mSi)) 

(12.4.3.1) H(i~)  =  H °{pr, 0 (mK +  mDiff(G ; -  D~)) 

H(i+) =  H°{Df ,0(mK +  mDiff(e,- -  Df)), 

and let 

(12.4.3.2) 

ф~ : Я(г) -> Я ( Г ) 

il>t : Я(») - Я(г+) 

Oi :̂ • : Я ( г + ) ^ Я ( ( г + 1 ) - ) 

фп :  Я ( п + ) - f Я ( ( Г ) (for cycle oniy) 
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be the  natural  isomorphisms. 
Then the  sections  of  H 0(S,O(mK +  raA))  are  exactly  those  sequences 

{rji G  H(i)}  which  satisfy the  following  assumptions: 

(chain) ^ ¿ + 1 ( ^ + 1 ) =  <t>i(^t(Vi)),  <f>I(Vi) i s n-invarian t and  </>$(ri n) is  r n-
invariant. 

(cycle) ip- +1(r)i+1) =  <)>i(il>t(Vi))  an d ^""(7/1 ) =  <l >n(il>i(Vn)). • 

The choic e of r/i an d th e compatibilit y conditions ^ ¿ + 1 ( ^ + 1 ) =  4>i{^f  (jli)) 
automatically determin e th e othe r rji  uniquely. Le t 7 7 denote an y se t {rji} 
which satisfy thes e compatibility conditions . 

We also need th e following : 

12.4.4 Lemma . The  image G of  Aut(Df, DifF(0i - D~))  in  H(l~) is  finite. 

Proof. Thi s i s clear unles s D f P 1 . I f this holds then Diff(6 i -  D~)  i s ki t 
in cas e v  =  0  and ha s degre e >  2  in cas e v  =  1 . Thu s Sup p Diff(© i —  D± ) 
consists o f > 3  points, henc e Aut(£) f ,Diff(6 i —  D±  )) is itself finite. • 

12.4.5 Corollary . Notation  as  above. Let  G  = { # i , . . . , gk)  Then 

(0lM®02*M®---®^)f 

descends to  a  section of 

Os{2kmK +  2kmA). 

Proof. Not e first  tha t b y (12.3.4 ) al l th e pair s (D~,Diff(0 2- -  D~))  an d 
(D^,Diff(©j —  Df))  ar e isomorphic , an d thu s al l th e correspondin g group s 
are th e same . Furthermore , an y isomorphis m obtaine d b y a  combinatio n of 
the isomorphism s i n (12.4.3.2 ) is , u p t o a  sign , induce d b y a n isomorphis m 
of th e underlyin g pairs . Therefore , th e secon d set o f compatibility condition s 
are satisfie d fo r 7 7 up t o a n elemen t o f G and u p t o a  sign . 

Therefore, i n the cycl e case , there is an elemen t g  G  G  such that 

V>f(»?i) = ±9*(<t>nWt(rin))), 

and similarl y fo r chains . B y taking th e produc t ove r al l g\  G  G an d takin g 
the squar e we get ri d o f the ambiguities . • 

12.4.6 Claim . (12.1.1)  is  true  ifv  =  1 . 

Proof Le t (5 , A) be si c with v  =  1 . A s we remarked earlier , i t i s sufficien t 
to conside r th e cas e whe n S  i s semismooth , an d henc e D  i s smooth . Le t 
D =  D Q UDi , where D Q i s the union  o f those irreducible component s suc h 
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that v (Di,Ks +  A ) =  0  and at leas t on e of the irreducible component s Si 
containing Di  ha s v = 1. 

Let 7 r : S' —•  S  be the morphism obtained by normalizing in a neighborhood 
of Z?o - Th e connected components of (S", ©') hav e either v  = 0 or v = 1  an d 
they satisf y th e assumptions o f (12.4.2.2). Thu s abundanc e hold s for (S', ©' ). 
We need to analyze the patching o f sections along 7T ~1(D0). 

12.4.7 Lemma . Assum e that  (5 , A) satisfies the  assumptions of  (12.4.2.2). 
Let p  : S — • B be  the morphism given  by  a large multiple of  K +  A. Let  A' 
be the vertical part of  A. The n L A ' J is  the union of fibers of  p.  In  particular 
for every  irreducible  C C LA ' J the  restriction (C , Diff c (A —  C)) is either not 
kit or  C is a smooth elliptic  curve  and Diffc(A —  C) = 0. Furthermore, there 
are sections 

T e  H°(S, Os(2mK +  2mA)) 

whose restriction  to  L A ' J is  the unique normalized section  of 

a A ^ ( 2 r n ( I R +  A) |LA , j ) . 

These sections  have  no common zeros. 

Proof. Th e first clai m follows from (12.3.2 ) applied to the normalization o f S. 
Let bi  G B  be the points correspondin g to L A J . Fo r some m > 1 we have 

Os(mK +  mA) = p*(0B(mK +  m J^[6f-] + mP)) 

for som e Q-divisor P.  Sinc e KB + +  ^ * s a mp l e > fo r ra » 1 , it follow s 
that ther e are sections o f OB(TUK +  rn^2[bi] + mP) takin g any preassigne d 
value at the points bi.  Furthermore these sections wil l not have any common 
zeros. • 

12.4-7.1 Complement.  I t i s easy to see that (12.4.7 ) also hold s if (5, A) is a 
semi-smooth surface , B  i s an affin e curv e an d p :  S — • B i s a prope r an d 
flat morphis m suc h tha t K  +  A is p-trivial an d every doubl e curv e o f S i s 
horizontal. 

Now we can finish th e proof o f (12.4.6). B y (12.4.7) and (12.4.1 ) we ca n 
choose section s o f Os'(2mK +  2m©/) which induc e th e uniqu e normalize d 
section of 

0(2mKs> +  2m0'|7r-1(A))). 

These section s wil l descend to S and they hav e no common zeros. • 
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12.5 HODG E THEOR Y 

In this section we prove (12.1.2). Th e following lemma is useful i n compar-
ing the cohomolog y o f S, wit h that o f a partial resolution o f S. 

12.5.1 Lemma . Consider  the  following  commutative  diagram  of  Abelian 
groups 

A! •  W  •  B'  C 

ai wl 4  7i 
A v  W  •  B  — d—> C. 

If the  rows  axe exact, a  and  /3  are surjective, and 

(12.5.1.1) d'(ker/3 ) = i m d / n k e r 7 , 

then cj  is surjective.  (The  last  condition  holds  for  example  if  there  are  com-
patible splittings  ft and  j f of  the maps  /3  and 7 , or  if 7 is  an isomorphism.) 

Proof. A n easy diagra m chase , left t o the reader . • 

We first  prove (12.1.2 ) assumin g tha t S  i s semismooth. 

12.5.2 Lemma . If  S  is  semismooth then  the  natural  map 

ip :  HP(S, C ) —• HP(S, O s) is  surjective for  every  p. 

Proof. Le t g : — • S be the normalization o f 5; i s smooth. W e compare 
the cohomolog y o f S an d .  Ther e ar e tw o relevant exac t sequences : 

(12.5.3) 0  —• C s —•  gXs*  —•  G  — • 0. 
(12.5.4) 0  —• Os — • g*Os» —•  T  — • 0 

We identify the sheaves T an d G,  which are defined at the moment as cokernels 
in (12.5.3-4) . 

Dp i s smoot h an d map s two-to-on e to D  =  Ds-  Le t r  b e th e natura l 
involution o n Dp.  Th e involutio n r  act s naturall y o n th e sheave s #*(0 JDM) 
and 3*(C JD / I). Unde r thi s action, these sheave s decompos e into invarian t an d 
anti-invariant parts ; th e sheave s T  an d G  are the n th e anti-invarian t parts . 
Let P  b e the unio n o f all the pinc h points an d le t L 2 =  O(P)  th e lin e bundl e 
defining th e doubl e cover. I t i s an eas y computation t o chec k that T  =  L " 1 . 
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Now we compare the tw o long exact sequence s o f (12.5.3) an d (12.5.4) : 
(12.5.5) 

HP-x(D,g) •  H P(S,C) >  H*(S",C)  H P{D,Q) 

kp—i ip  jp  kp 

Hp-X(D,T) •  H p(S,Os) >  H p(S»,Os») >  H P{D,T). 

Here th e diagra m commutes , an d th e horizonta l sequence s ar e exact . A s 
previously observed , since i s smooth the ma p j p is surjective . 

Now we have to find compatible splittings of the map s j p and k p; thes e ar e 
given by Hodge theory. I n fact th e cohomolog y groups H P(D^,C) decompos e 
into invariant and anti-invariant subspaces under the action of r an d H P(D, Q) 
is just the anti-invarian t part. A s such H P(D, Q)  inherits a filtration  fro m th e 
natural Hodge filtration on HP{D^, C) . No w consider the commutative square 

H*(S",C) H p(Du, C) 

(12.5.6) i P| | 

H*(S»,Os>) —>>  H p(D^ODft). 

Clearly the map s e p an d f p preserv e th e Hodg e filtrations.  Bu t th e horizonta l 
maps c p an d d p o f (12.5.5 ) facto r throug h th e horizonta l map s e p an d f p o f 
(12.5.6). Thu s there is a natural splitting of the ma p k p, compatibl e with th e 
splitting of j p . No w apply (12.5.1 ) t o deduc e i p i s surjective. • 

We are no w in a  position to prove (12.1.2) . 

Proof. Le t /  :  T  — • 5  b e a  semiresolutio n o f S.  B y (12.5.2) , th e natura l 
maps 

jp:HP(T,C)—+HP(T,OT) 
are surjective . 

We wis h t o compar e th e cohomolog y o f T an d 5 . Ther e ar e tw o relevan t 
spectral sequences ; the Leray-Serr e spectra l sequence s associated t o the ma p 
/ an d th e sheave s C T , O T- Th e respectiv e E 2 term s o f th e tw o spectra l 
sequences ar e H p(S,Rq f*Cr)  an d H p(S,Rqf*Or)- Bot h spectra l sequence s 
degenerate a t th e £ 3 level, and converg e to ff*(T,C ) an d H*(T, O T) respec -
tively. 

Let F  b e the exceptiona l locus of the ma p / . A s F i s one dimensional, th e 
only interesting cohomology groups to identify a t th e E 2 leve l ar e 

H*(S,R1UCT) =  H 1{F,CF) an d H 0(S,R1f*OT) =  H 1(F,OF). 
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The first identification i s easy; given any open neighbourhood of F, we can 
always find a smaller one which retracts to F. Fo r the second we use (12.2.8) . 
In fact if we push down the short exact sequence 

0 — y OT(-F) —> 

by / , we obtain a sequence 

0 —- Rxf.OT{-F) —• i?7.E>r 

OR —»  OF 0 

R1f*0F =  H\F,0F) —>0. 

The two spectral sequences give rise to the following commutative diagram 
of cohomology groups, with exact rows: 

;I2.5.7) 

О • Я 1 (S, Ce) 

О > H 1 (S, Os) 

H\T,CT) 

Jl 
H\T,OT) 

H\F,CF) 

We apply (12.5.1) . W e need to find a compatible splitting for k\. Le t Fj be 
the connected compnents of F. By (12.2.8) these come in three types. If Fj is 
a tree of rational curves then Hl(Fj, C ) = 0. I f Fj is a cycle of rational curves 
then H 1(Fj,C) —+  H 1(F,OF) i s an isomorphism. Finall y if Fj is a smooth 
elliptic curve then ^(T.CT) — > ^(F^CF)  factor s through i? 1 henc e 
the splitting of ki\Fj provided by Hodge decomposition works. 

¿0 i s automatically surjective , and there is a similar commutative diagram 

¡12.5.8) 

H\F,Cs) 

H1 (F,  Os) 

H2(SXT) 

H2(S,OT) 

H2(T,CF) •  О 

32 
H2(T,ÖF) • о 

(12.5.1.1) is vacuously satisfied, hence ¿2 is surjective. • 
12.5.8 Remark. On e can se e that th e kerne l o f i p i n (12.1.2) is precisely 
FlHp(S,Cs) (give n by the natura l mixed Hodge structure, cf. [Griffiths-
Schmid73]). The proof given above could have been shortened by using more 
difficult Hodg e theoretic methods. 
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CASE u(X)  =  1 

JANOS KOLLAR , KENJ I MATSUKI , an d JAME S M ^ K E R N A N 

This chapter treats the proof of the following result, proved in [Miyaoka88b] 
(see (11.1.2 ) for definitions) : 

13.1 Theorem . Let  X  be  a minimal threefold.  If  the  numerical  dimension 
v(X) is  one,  then  |raA'x | is  base  point free  for some m  >  0 . 

The mai n step s i n th e proo f ar e almos t identica l t o thos e o f Chapter 11 , 
but o f course som e steps ar e harder . Her e i s a  generalizatio n o f (11.3.2 ) t o 
dimension three . 

13.2 Lemma . Let  (A" , A) be  a  Q-factorial  kit  pair  (2.13.5),  dimX  =  3 . 
Suppose there  is a net divisor  D G  \m(Kx +  A ) | such  that X\D has  terminal 
singularities. Let  B  =  D r ed- Then  there  is  a  threefold  X,  with  boundary 
A +  B, where  B is  reduced, such  that: 

(1) The  pair  (X,  A  + B) has  Q-factorial log canonical singularities, X\B 
is isomorphic to  X\B and  there  is  a divisor D  G  \m(K^ +  A +  B)\. 
Moreover £> red =  B. 

(2) K%  + A  + B  is  nef. 
(3) v{X,  K x +  A) =  u(X,  Kx  +  A +  B) and  K (X, K X +  A)  =  K (X, K X + 

A +  B). 

Proof. B y (6.16.1 ) or (20.9 ) there i s a  projectiv e partia l resolution o f singu -
larities ¡1  : Xo —>  X  suc h that 

(1) th e diviso r B o = (p>*B) Ted i s a normal crossin g divisor , 
(2) fi  :  (X0 \  Bo)  —•  (X  \  B)  i s an isomorphism . 

As (X,  A)  ha s ki t singularities , m(K Xo +  / i^1 A + E)  =  p,*D + T = D,  wher e 
E i s the unio n o f the /^-exceptiona l divisor s an d T  i s effective an d supporte d 
on the exceptiona l locus . I n particular, SuppZ) = Sup p p,*D. No w we replace 
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/ /~ X A wit h A o where w e only include thos e component s of /i^T 1A whic h ar e 
not component s of Bo. Wit h thi s choice o f Ao, A o + B o is a  boundary , an d 
there is a divisor Do G \m(Kx0 +  A 0 +  B0 ) | 

We no w appl y th e lo g minima l mode l progra m t o (Xo , Ao +  Bo) . W e 
construct X{,  A,- , B{ and D{  satisfying (1 ) inductively. I f Kx{ +  A,- + B{ is not 
nef, ther e exists a n elementar y contractio n &  :  X{ —>  Z{  [KMM87 , 4-2- 1 an d 
3-2-1] associated to a log extremal ra y with respect t o Kx { +  At- + B2 . Clearl y 
the ma p fa  i s birational . 

If (/) { is a divisorial contraction, we set X z-+i =  Z 2 , Az-+i =  <^(A Z -) , B 2+i = 
<f>i*Bi and Di  =  fc+Di.  (B y [KMM87, 5-1-6], the image ( X ^ i , A j + i + B i + i ) i s 
Q-factorial log terminal, an d (13.2.4 ) implies that B,-+i and -Dj+i are divisors.) 

Otherwise there is a log flip, i.e., a small birational morphis m 4>f  : Xz-+i —> 
Z{. W e take A,-+i , B 2+i an d Di+i  t o b e th e birationa l transform s o f B 2 

and Di  unde r fc.  (B y [KMM87 , 5-1-11 ] the lo g flip  (X i+uAi+1 +  B z + 1 ) i s 
log canonica l and Q-factoria l i n a  neighborhood of B2 +i. Th e pluricanonica l 
class pushes acros s the flip,  because it ma y be defined using differentia l form s 
on a  complement of any codimensio n 2 locus.) 

Kxi +  A t- + B{  i s negativ e relativ e t o th e morphis m <f>{.  Since D{  G 
\m(Kxi +  A,- + Bi)\ i s supporte d o n B 2-, the exceptiona l locu s o f (j>i  i s con -
tained i n Bi.  B y (7.1 ) the proces s we have just describe d must terminat e a t 
some i , an d w e set X  —  X2 , A = A 2 , B =  B z an d D  —  D{. 

Conditions (1 ) and (2 ) are automati c fro m th e construction . (3 ) follow s 
from (11.3.3 ) and (13.2.4 ) applied to the pullbacks of the divisor s m(Kx +  A) 
and D{  to a  common resolution. • 

13.2.4 Lemma . The  set  theoretic  image  of  an effective  nef  divisor  under  a 
birational morphism is  divisorial. 

Proof. Le t /  :  X —•  Y b e a  birationa l morphism , an d le t L  b e a n effectiv e 
nef Q-Cartie r diviso r on X. W e may assume tha t L  i s Cartier. Le t M  =  /* L 
be th e cycl e theoreti c pus h forward , an d le t Mo  =  /(SuppL ) b e th e se t 
theoretic image . Writ e Mo  —  Supp M =  Co  U . .. U C{ where C{  are distinc t 
irreducible components . B y taking generic hyperplane section s of Y, we may 
assume tha t min{dimC z } =  0 . Usin g generi c hyperplane section s o n X  w e 
may assum e dim X =  2 . Choosin g a  resolutio n o f singularities fo r X  an d 
pulling bac k L , w e may assum e tha t X  i s smooth . Bu t b y the Hodg e index 
theorem the intersection matri x o f divisors supported o n the exceptiona l locus 
of /  ove r Ci  i s negative definite , an d L  i s supported o n this locus near (7; , a 
contradiction. • 

13.3 Conclusion  of  Proof of  (13.1). 
Let X  b e a  minima l threefold , i.e . a  threefol d wit h Q-factoria l termina l 

singularities suc h tha t Kx  i s nef . Suppos e that D  G  (9.0.6 ) an d le t 
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B —  -D red-

13.3.1 Lemma. There  is a threefold X, birational  to X, with  reduced bound-
ary B  such  that: 

(1) The  pair  (X,  B)  is  Q-factorial and log canonical, X\B has  terminal 
singularities, and  there  is a divisor D G  |ml£^|. Moreover  £> red =  B. 

(2) Kx  +  Bisnef. 
(3) v(X)  =  v(X, K x +  B) and  K (X) =  K (X,K^ +  B). 

Proof. Thi s i s an immediat e consequenc e of (13.2.1). • 

13.3.2 Lemma . There  is  a  threefold  X',  birational  to  X,  with  a  reduced 
boundary B'  satisfying  conditions  (1-3)  of  (13.2.1)  and 

(4) every  connected  component  of  B' is  irreducible. 

Proof. I t remain s t o modif y X furthe r t o achiev e (4) . Suppos e 5  i s a  prim e 
component o f B whic h i s no t isolate d i n B.  W e will apply th e lo g minima l 
model program t o K% + B —  S. 

Suppose w e hav e constructe d a  sequenc e o f pairs (Xj,Bj)  ((Xo,Bo)  = 
(X,B)) an d birationa l morphism s <f>j :  Xj —- > wit h respec t t o Kx,  + 
Bj —  Sj fo r j <  i — l, wher e Bj+i an d Sj+i  ar e respectively either (f)j^(Bj) an d 
4>j*{Sj), i f 4>j i s a  divisoria l contraction , o r th e birationa l transform s o f Bj 
and Sj  unde r (f)j, i f (f>j i s a log flip.  As in (13.2.1) , (Xj,Bj)  satisfie s propertie s 
(1-3). 

Suppose Si  i s still no t isolate d in Bi.  The n there is another componen t S' 
of Bi which meets Si  in a curve C (recal l X{ is Q-factorial). Le t if be an ample 
divisor an d se t C " = H  f l S f. Le t Li  b e the lin e bundle Oxi{m(K Xi +  Bi)). 
It i s automatic tha t u(S,Li\s)  =  0  and s o deg Li\c> = 0 , as the curv e C lie s 
in S'.  O n the othe r hand , as i f i s ample, S  •  C =  H •  C >  0, and s o 

(Kxt+Bi-S^.C <0. 

As Li  i s nef, th e Theore m on the Con e [KMM87, 4.2.1 ] implies there is a log 
extremal ra y R  suc h that 

(KXi +  Bi -  Si)  •  R <  0. 

with L  -  R =  0 . No w S •  R >  0 and th e suppor t o f the base  locus of Kx{ i s a 
subset o f supp (Bi)  an d s o R C  supp (Bi  —  5 ). By (8.1) , there is a log flip of 
R wit h respec t t o L  an d b y (7.1 ) this sequence of log flips terminates. Thu s 
at som e stage Si  i s isolated i n Bi. 

However i f T  i s anothe r prim e componen t o f B 1 an d T  i s isolate d i n B', 
then Ti  (th e componen t of Bi correspondin g to T ) i s isolated i n Bi  (a s each 
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<f>j onl y modifies points o f Sj). I n this way we isolate every  component o f JB' , 
one by one. • 

Proof of  (13.1.1).  Pic k a  componen t S  o f B',  an d pu t A  =  Diff 5(0). B y 
(16.9.1), th e pair  (5 , A) is semi log canonical an d s o (12.1.1) implies Ks  +  A 
is torsion . Jus t a s before , b y (11.3.6) , w e ma y find a  finite  Galoi s cove r 
7r : U —• C /i, etale in codimensio n one, such tha t 

S~m'G, K 0 +  S~d'G, an d v§  =  °u(S)\s  =  °s-

where 5  =  7r *5. NO W i f we can appl y (11.3.7) , then we may conclud e just a s 
in Chapte r 11 . Condition s (1 ) and (2 ) of (11.3.7) are automatic . 

Consider th e commutativ e squar e 

ff*(5„,C) •  H*(S n,0§J 

Hp(S,C) — ^—• H*(S,O s). 

where S n i s defined a s i n Chapte r 11 . A s the first  vertica l ma p i s an isomor -
phism (th e suppor t o f S  an d S n ar e th e same) , an d th e ma p i p i s surjectiv e 
(this i s (12.1.2)) , th e ma p p  i s surjectiv e a s well , whic h i s conditio n (3 ) of 
(11.3.7). • 
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14. ABUNDANC E FO R THREEFOLDS , 

u(X) =  2  IMPLIE S K (X) >  1 

DAN ABRAMOVICH , LUNG-YIN G FONG , an d KENJ I MATSUK I 

We continu e our treatment of Miyaoka's and Kawamata's proo f o f the abun-
dance conjecture for threefolds. I n this chapter, w e look at th e cas e v(X) =  2 . 
The method w e use in sections (14.3-4 ) i s due to Kollar . 

14.1 A  specia l case 
Let u s first conside r the followin g very special case, which gives some idea 

about th e lin e of proof i n the genera l case . 
Assume X  i s a  smooth  minima l mode l with v(X)  =  2 , an d assum e th e 

existence of a smooth member D  E  |raifx|- A s V (D,KD) =  1 , by abundanc e 
for surface s (11.3.1) , K (D) = 1  and D  i s an ellipti c surface ove r some curve. 

Let H  b e a  hyperplane sectio n of X. Kodair a vanishing o n H  give s 

H\X, mKx  +  IH) ~  H\X,  mKx  +  (/ + l)H) 
for i  >  2 , m  >  1  and /  >  0 . Bu t sinc e H  i s ample , thi s grou p vanishe s fo r 
large / . Therefor e w e get 

H\X,mKx) =  0  fo r i >2. 
We no w use Riemann-Roch . Sinc e K\  =  0 , th e coefficien t o f the leadin g 
(linear) ter m in x(n^x) i s K  •  C2(X), whic h is proportional t o 02(D),  whic h 
is nonnegative [BPV84 , p . 188] . Henc e x(n^x) >  C  fo r som e constant C , 
and h°(X,  nKx)  >  C + ^(X, nKx).  Fro m the exac t sequence 

0 -  O x (( n -  m)K x) ->  Ox(nKx) -  0 D{nKx\D) -  0 , 

we ge t h 2(D,TIKX\D) =  0  an d 

H\X,nKx) -  H\D,nK x\D) -  0 . 
Riemann-Roch on D implies that x(D, TI KX\D) i s constant. Sinc e V(KX\D) = 
1, th e abundanc e theore m o n surfaces implie s that bot h h°(D, TIKX\D) an d 
h1(D,nKx\D) gro w with n.  Henc e h l(X,nKx) grow s with n . Thi s prove s 
that K (X) >  0. 

We begi n with a  construction simila r t o that o f (13.2) . 

S. M . F . 
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14.2 Lemma . There  is a normal threefold  X', birational  to X, with  reduced 
boundary B f, and  such that 

(1) (X f,Br) has  Q-factorial log  canonical singularities  and  (X',0)  ha s 
only log  terminal singularities.  There  exists  a  divisor D'  G  |raifx'| -
Moreover B'  =  D' Ted. 

(2) K x> +B ! isnef. 
( 3 ) v(X)  =  v(X F, K X> +  B r) and  K (X) =  n(X F,Kx> +  B f). 
(4) V  =  m(Kx> +  B') is  Cartier. 
(5) IfC  is  a curve in X' with  C • (Kx> + B1) =  0, then C • Kx> >  0. If D 

is a curve in X' with  D • (Kx' +  B') >  0, then (X', B') is  log terminal 
along the  generic point  of  D. 

Proof. A s in (13.2), we can apply the log minimal model program to construct 
a threefol d X , with boundar y B  satisfyin g (1) , (2) and (3). 

Replacing m  b y a multiple , w e can assume tha t L  =  m(Kj^  + B) i s a 
Cartier divisor . 

We construc t X'  inductively . Tak e X Q = X,  B' 0 =  B  an d D' 0 =  D. 
If ther e exist s a  curv e C  i n X[  suc h tha t C  •  {Kx1. + B[) =  0  an d C  • 
Kx' <  0, then ther e is some Kx f. extrema l ra y R{ lying on the hyperplan e 
{ T |  T  • (Kx'. + B'i) = 0 }. W e have a  divisorial contractio n o r a log flip fa : 
X[ —>  X' I+1 associate d wit h Ri.  Pu t B' i±1 =  < M 5 0 ^ d D i+i =  ^ " . ( A O -

Then (1-4 ) are clearly satisfied . Sinc e (X,0 ) has log terminal singularities , 
this process will stop and gives X !. 

It remain s t o chec k inductivel y tha t i f we contract a  diviso r b y fa, we 
still hav e lo g terminal singularitie s genericall y alon g curve s havin g positiv e 
intersection wit h Kx' i+1 +  B'i+1. Sinc e v(B' i,L'i\Bf.) =  1 , (12.1.1) implie s that 
{m'L'lB' |  defines a morphism /  fro m B\ to some curve. Le t 5 be a component 
of B\  o n which L\  i s not numericall y trivial , an d le t A  : S x —>  S  b e the 
normalization. Conside r the different 6  define d by A*(i^xj +  Bf

{) =  Kg* + © 
(cf. (16.6)) . 0  lie s ove r the nonnormal locu s of B[ and the singular locu s of 
X[. Le t 0^ b e the horizonta l par t o f 6. I f the generi c fibre  F  o f / o  A is 
a smoot h ellipti c curve , the n @ h = 0 . Otherwis e F  =  P1 , an d @ H •  F =  2. 
Decompose 0 ^ a s J2ck^k +  X}d/A/ i n a neighborhood of F, wher e th e I \ 
map unde r A  to the singular locu s of X[ and the A/ to the nonnormal locu s 
of B[.  The n 

(14.2.1) YlCk +
 J2 dl =  2 ' 

By th e inductiv e assumption , (XI,  B^) ha s log terminal singularitie s alon g 
A(I \ ) an d A(A/) . I n particular, X[  is smooth alon g A(Aj ) and d\ = 1 , while 
along A(Tfc) , X\ ha s index rrik quotient singularitie s (nik > 2) and Ck =  1  — ^ 
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(See (16.6)). Th e set of solutions (di, • •  • ; m i, m 2 , • • •) of (14.2.1) can be easily 
enumerated: 

Case 1  (1,1;), 
Case 2 (1;2,2), and 
Case 3 (;2,4,4), (;3,3,3) , (;2,3,6) , and (;2,2,2,2). 
Suppose tha t fa  contract s a  Kx'.  extrema l curv e C  o n C  •  D\ <  0 

implies tha t C  C  B\.  C  • (Kx[ +  B'i)  =  0 ? a n d henc e C  i s contained i n a 
fibre o f / . C  •  B\ >  0  implies tha t C  ha s to intersec t a  componen t o f B\ 
positively. W e see at onc e that fa  can never contrac t component s that are in 
Case 3. I n Case 1 , S intersect s tw o other component s Si an d 52 of B[. X\ 
is smooth in a neighborhood of A ( F ), henc e X'i+1 i s generically smooth along 
the intersectio n o f fa(Si)  an d fa(S2).  I n Case 2 , X\ ha s only two curves o f 
Ai-singularities i n a neighborhood of A ( F ), henc e it i s canonical. Therefor e 
X[+x ha s terminal singularities i n a neighborhood of fa(X(F))  (2.28.3) , thus 
X'i+1 i s generically smooth along fa(S).  (I n fact on e can see that in this case 
A ( F ) •  K >  0, and therefore w e never have to contract A(JP). ) • 

14-3 Computing the  second Todd  class. 
We now proceed with the proof o f the abundance conjectur e and establis h 

an inequalit y involvin g the second Todd class on a resolution o f X'. Thi s is 
used in the final step whe n we apply Riemann-Roch. 

14.3.1 Lemma . X',  B'  and  V as  in section 14.2.  Let  p,  : V —•  Xf be  a 
resolution of  singularities. Then  we  have 

fi*L' •  {K\ +  c2(V)) >  L' •  (К2

Х, + ë 2(Ùx>)) . 

Proof. Let 

Then al l the 1-cycle s C{  are supported o n the singula r locu s of an d in 
particular they lie in B'. (B y (13.2.4) Xf ha s isolated singularities outsid e B'.) 
Because we are interested i n the intersection o f  ̂a{C{  with V =  m(Kx ,+Bf)^ 
we only need to consider 1-cycles on components S of Bf o n which v(L') ^  0 , 
and focu s o n cycle s C{  'horizontal' t o the map / define d i n (14.2) . The y 
are containe d i n the considere d in (14.2 ) an d we have a  complete list of 
possible singularities there . 

We can compute the numbers a\  by taking a transversal slice I\- at a general 
point P{  on C2-, and reduce the computation to the surface case . Le t fi : f2 = 
/i"1(r2) — • T z- be the resolution induced by ¡1. Notic e that the number c f + C 2 

u* (K\ + 0 2 ( F ) ) -  (K%,  + c 2 ( 0 ^ , ) ) =  £ > T C 8 - . 
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does not change on blowing up a smooth point of a surface. We may assume 
that Hi  i s the minimal resolution. I f Pi is an index point , then (10.8) (with 
5 =  0) tells us that 

(14.3.1.2) 

a i =  (K2

fi +  C2(f ,•)) -  (Kl + c 2 ( I \ ) ) 

= (Kfi -  n*KTif + e t o p ( / x - 1 ( P I ) ) " ¿ 7 . 

If th e singularity i s a Du Val singularity, the n w e can work out by explicit 
computation tha t a 2- is §, §, ^ an d ^, whe n ra2- is 2, 3, 4 and 6 repectively. 
Otherwise, a ; i s | , |  an d — | , whe n ra2- is 3, 4 and 6 respectively. No w an 
index 6 point is always accompanied by an index 2 point and an index 3 point, 
hence the sum of the corresponding a2- is at least 2. This completes the proof 
of the lemma. • 

14.3-2 Lemma. V  • c 2(Û1

x,) >  V - c 2 ( ô ^ , ( l o g B ' ) ) -  V (Kx* + B') • Br. 

Proof. B y (10.8.8), the difference c2(Û1

x,)-c2 (ûx, (logB')^ -(Kx' + B')• B' 
is an effective 1-cycl e supported o n the singular locu s of X'. • 

14.3.3 Lemma. Let  \i : V —• X' be  a resolution of  singularities. Then  we 
have 

IÏL' -{K2

v +  c2(V)) > 0 . 

Proof. B y (14.3.1) and (14.3.2), we have 
V?L' • (Kl +  c2{V)) > L' • K\ +  Lf . 0 2 ( N ^ ( l o g B ; ) ) - L' • (Kx> + B') • 

It follow s fro m (10.13) that V  • c2 (fi^,(lo g J5')) > 0. L' = m(lfx ' + -B') 
and v{B',L'\ B') = 1 , so that L ' • ( i f X ' + B') - B' = 0. Write i fx ' as ^biS^ 
where b{  > 0 and Si  ar e components of B'. Moreover Si • is equivalen t 
to a n effective sum of curves havin g zer o intersection wit h (Kx>  + B'). B y 
condition (5) of (14.2), this implies Si • V • Kx> > 0. Hence V • K\, > 0. This 
completes the proof o f the lemma. • 

14-3.4 Remarks. 
(i) Fro m the proof w e see that the inequality i n (14.3.3) is strict, unles s 

the ma p /0 has smoot h ellipti c fibres  o n all the component s o f B 
where v(L')  = 1. 

(ii) Th e above proof work s in any dimension. 

14-4 Proving that  K (X) > 0. We now can prove the main theore m alon g the 
lines of the smooth case as in (14.1). 
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14.4.1 Theorem. [Kawamata91b ] Let  X be  a minimal 3-fold  over C Sup-
pose that  u(X)  =  2. Then  K (X) > 0. 

Proof. Construc t X'  an d V a s in (14.2) . Le t p :  V —»  X' b e a desingular -
ization o f X'. Sinc e X'  i s log terminal, X'  ha s only rational singularities . 
Therefore 

(14.4.1.1) 

X(X\nL') = X(V,np*Lf) 

= ^(Kl +  c2(y)).p*L' +  X{Ov). 

(14.3.3) show s that the linear ter m in (14.4.1.1) is nonnegative. Therefor e 

(14.4.1.2) x{X',nL')  >  C fo r some constant C. 

Now look at the exact sequence: 

(14.4.1.3) 0  -+ 0X'{nL'{-B')) - > Ox>(nL') -+  0B>(nL'\B>) - + 0. 

Recall that V  =  m(KX' +  B'\ thu s nL'{-B f) =  K x> + (nm - 1)M ' where 
M' =  Kx> + B'. Tak e a  general ampl e hyperplan e sectio n H'  o f X1. Usin g 
the restriction exac t sequence and the Kawamata-Viehweg vanishing theore m 
[KMM87, 1-2-5 ] we see that 

Hl (X f, nL'(-B f) +  lHf) -  H { (X ' , nL\-B') +  (I + l)H') 

for i  >  2  an d /  >  0 . Th e las t grou p vanishe s whe n /  i s large , thu s 
H2 (X f\nL'(—B')) =  0. Moreover , since B' i s Cohen-Macaulay, 

h2 (B',nL'\ B>) =  h° (B',ojBf(-nL'\B,)) =  0 

for n  large. Therefor e w e have H 2(X',nL') =  0 for large n.  Combine d with 
(14.4.1.2), this shows that 

h°{X',nL') >  h^X^nL^ +  C. 

Thus i t i s sufficient t o prove that h l(Xr,nL') grow s linearly wit h n.  Not e 
that x(X', Kx'  +  (n — l ) ^ ') = —  x(X', ( 1 — n)Lf) ha s the same linear ter m as 
in (14.4.1.1) . Henc e it follow s fro m (14.4.1.3 ) that x(B',nLf\B>) i s actually a 
constant. The n (12.1.1 ) together wit h the vanishing o f H2(BfnL'\Br) implie s 
that bot h hP (B\nV\Bi) an d h}(B',nL'\B,) gro w with n.  W e have 

J f f 1 ( X , , n L / ) -+  Hl(B',nL'\B,) H 2(X',nL'(-B')) =  0. 

This show s tha t ^{X^nV)  grow s wit h n  an d complete s th e proo f o f the 
theorem. • 
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JÄNOS KOLLÄ R 

The aim of this chapter i s to complete the proof of abundance fo r threefolds . 
Instead o f the cohomologica l approac h o f [Kawamata85] w e present a  rather 
geometric one . Man y o f the argument s work fo r a n arbitrar y ne f diviso r B 
such that v(B)  =  2  and K (B) >  1. Th e underlying variet y ca n have arbitrary 
dimension o r eve n positiv e characteristic . W e however formulate everythin g 
for a  kit diviso r Kx +  Ax i n characteristic zero , where the necessar y flips  ar e 
known to exist . 

15.1 Definition.  (15.1.1 ) A  log  elliptic fiber space  is a  prope r morphis m g  : 
(V, A y) — • W suc h tha t g*Oy  =  Ow,  th e generi c fiber  E g i s a n irreducibl e 
curve and (Ky  +  A y ) • E g =  0 . 

(15.1.2) Le t (X , A x) b e a  lo g variety. A  log  elliptic structure  o n X  i s a 
diagram 

(X,AX) < - ^ — ( V , A V ) 

[• 
w 

where h  is a birational morphism , g  :  (V, A y) — • W i s a log elliptic fiber space 
and Ky  +  Ay =  h*(Kx  +  A x) +  wher e F  i s effective and Supp F contain s 
every /i-exceptiona l divisor . 

15.1.3 Comments.  Th e second definition i s motivated by two examples. First , 
assume tha t (V , A y) i s a  log elliptic fiber  space an d assum e tha t (X , A x) is 
obtained fro m (V , A y) b y (Ky  +  Ay)-extremal contractions an d flips.  The n 
(X, A x) has a  log elliptic structure (w e may have t o blo w up V  a  little) . 

Second, i f X ha s terminal  singularities, A x =  0  and X  i s birational t o a n 
elliptic fiber  space (V , 0) then X  ha s a n ellipti c structure. 

s. M . F. 
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15.2 Proposition . Let  (X , A x) be a proper kit  variety.  Assume  that  Kx  + 
A x is  nef and  that  X  has  a  log elliptic structure. Then  there  is  an open  set 
U C  X and  a  proper morphism fu  :  U —» Z  which  is a log elliptic fiber space. 

Proof. Le t Eg  C  V b e the generi c fiber of g. The n 

0 =  E g •  (Kv +  A y ) = E g •  h*{K x +  Ax) +  E g-F>Eg-F. 

Thus F  i s disjoin t fro m E g an d h  i s a n isomorphis m i n a  neighborhoo d of 
Eg. • 

For highe r dimensiona l fibers  th e situatio n i s more complicated . Th e fol -
lowing result (whic h is not use d i n the sequel ) generalizes [Grassi91 , 1.8]. 

15.3 Theorem . Let  X  be  a  proper variety  with  Q-factorial  terminal  sin-
gularities. Assume  that  mKx  =  0  for  some  m  >  0  and  p(X)  =  1 . Let 
p :  X —->  Z  be  a dominant rational  map with  connected fibers.  Then  p~ 1(z) 
is of  general type  for  every  general  z G  Z. 

Proof. Le t g  :  Y —•  X  b e a  proper birationa l morphis m suc h that /  =  p  o g : 
Y —+  Z  i s a  morphism. Le t E  C  Y  b e the exceptiona l divisor o f g. W e may 
assume tha t Y  i s smooth . Le t H  C  Z  b e a  divisor . The n g (f*(H)) i s a n 
effective diviso r on X, hence ample. 

g*(g(f*(H))) =  f*(H) +  Fx wher e SuppF i C  E. 

Let z  E  Z—H b e a point such that f~ x(z) i s smooth and g\f~1(z) i s birational . 
Then 

g%g(r(H)))\r\z) =  F 1\f-\z) 

is the pul l back of an ampl e divisor by the birationa l morphis m g\f~ l(z). I n 
particular it i s big. O n the other hand, Ky =  g*Kx +  F2 wher e Supp F<i =  E. 
Thus 

mKf-Ht) =  mKy\f-\z) =  mF 2\f-\z). 

Since SuppFi C  Suppi 7^ thi s implies that Kf -i^ i s big. • 
15.4 Theorem . Let  (X,  Ax)  be  a projective Q-factorial  threefold such  that 
Kx +  A x is  kit. Assume  that 

(15.4.1) Kx  +  Ax is  nef; 
(15.4.2) di m \m(Kx +  A x )| >  1  for some m >  0; 
(15.4.3) there  is  an  open  set  U  C  X and  a  proper morphism  fjj\U—>Z 

which is a log elliptic fiber space. 
Then Kx  +  Ax is  eventually free. 

15.4-4 Remark.  I f p :  X —•  Y  i s a morphism such that Kx  +  Ax =  p*(Ky  + 
A y ) the n i^x + Ax i s eventually fre e iff Ky +  Ay is . Similarly , if p :  X —Y 
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is a  (Kx  +  A)-flop the n Kx +  Ax i s eventually fre e if f Ky +  p*(Ax) is . We 
use these observation s t o change X. 

15.5 End  of  the  proof  of  (11.1.1).  Le t X  b e a  minima l threefold . Th e only 
case stil l ope n i s whe n v(X)  =  2 . W e woud lik e t o chec k th e condition s 
of (15.4 ) i n cas e Ax  =  0 . (15.4.1 ) i s assume d an d (14.4.1 ) show s (15.4.2) . 
(15.4.3) require s a  little work. 

Lt (X',  B')  b e as in (14.2) . B'  i s a semi log canonical surface wit h v(B')  = 
1. Thu s b y (11.3.1 ) i t ha s a n irreducibl e componen t whic h i s birationa l t o 
either a  ruled o r to a n ellipti c surface . W e already kno w that di m \m(Kx + 
A x ) | >  1 - Assum e that w e can construc t (X',B r) suc h tha t B'  move s in a 
pencil. W e obtain that X'  contain s a  pencil of ruled o r elliptic surfaces. X 1 i s 
not uniruled, thu s it has a  pencil of elliptic surfaces. Therefor e X i s birationa l 
to an ellipti c threefold, henc e (15.2 ) implie s (15.4.3) . 

Let u s g o back t o th e constructio n i n (14.2 ) whic h was started i n (13.2) . 
(We us e th e notatio n employe d there.) I f D  £  \m(Kx  +  Ax)\  move s in a 
pencil then w e can choos e p  :  Xo —*  X  suc h tha t D  stil l move s in a  pencil . 
This penci l survives i n al l th e contraction s an d flips.  A t th e en d w e obtai n 
(Xr,Bf) a s i n (14.2 ) suc h that B'  move s in a  pencil {B[}  an d (X',B' t) i s log 
canonical fo r genera l t.  A t leas t on e o f the movin g component s o f B[  ha s 
v(B[) =  1 . Thu s th e abov e argument applie s an d (15.4 ) complete s the proo f 
of th e abundanc e theore m fo r threefolds. • 

15.6 Definition.  W e sa y tha t a n effectiv e diviso r D  C  X  i s (Kx  +  Ax)-
trivially connected  i f for any two points x\,  x 2 G  D there is a connected curve 
xi,%2 E  C C  D such that Kx +  Ax i s numerically trivial on every irreducible 
component o f C. 

15.7 Lemma . Assume  (15.4.1  and 2).  Let  D  C X be  (K x +  A x)-trivially 
connected. Then  one  of the following  holds: 

(15.7.1) Kx  +  Ax is  eventually free  and  is composed of  a pencil, 
(15.7.2) there  is an effective divisor D' and  natural numbers d,  m such  that 

dD + D' e  \m(K x +  Ax)\, SnppD  (jL  Supp D' and  D  fl D' ^  0 . 

Proof. Le t \m(Kx  +  Ax)\ =  F+ \M\  where F  i s the fixe d part. Assum e first 
that \M\  i s composed of a free pencil . Le t p  :  X — > C  b e the correspondin g 
morphism wit h connecte d fibers.  Assum e that w e can no t find  dD  +  D' a s 
required. The n Sup p D i s a  fiber  o f p, henc e F  i s containe d i n a  unio n of 
fibers. Sinc e F i s nef, F  i s the su m of rational multiples o f fibers, hence some 
multiple o f Kx +  Ax i s the pull-bac k of an ampl e diviso r from C. 

Otherwise there is a pencil F' +  \N t\ C  \m(Kx  +  Ax)\ suc h that ever y N t 

is connected and \N t\ ha s a  base point b  £ X.  D c X i s (Kx  +  Ax)-trivially 
connected, thus if B  £  \m(Kx  +  &x)\ intersect s D  the n D  i s an irreducibl e 
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component o f B. lib  £  D  then D C  F an d an y general N t intersects  D  bu t i s 
different fro m it . I f b  £ D  the n there is a  t 0 suc h that N to intersects  D.  N to 

is connected and als o contains fr, thus we are agai n done . • 

15.8 Lemma . Assumptions  as  in  (15.7)  and  assume  that  (15.7.2)  holds. 
Then K x +  Ax +  eD is  not nef  for  e > 0 . 

Proof. B y assumption ther e is an irreducible curve C C  D such that C • (Kx + 
Ax) =  0 satisfying C  fl D' ^  0  and C  £  D'.  Thu s 

0 = C -(dD +  D') =  dC D  + C •  £>', henc e C  •  D <  0. 

Therefore C  •  ((Kx +  A x) + eD)  = eC • D <  0. • 

15.9 Corollary . Assumptions  as  in (15.4).  Then  one  of the following holds: 
(15.9.1) \n(Kx  +  A x ) I is  composed of  a free pencil  for  some n  >  0; or 
(15.9.2) there  is a log variety (X',  A x ' ) which  is log birational to  (X , A x) 

and satisfies  all  the assumptions  of  (15.4)  and such that  X'  does  not contain 
any (Kx f +  Ax f)-trivially connected  divisors. 

Proof. Assum e that X  contain s a  (Kx  +  Ax)-trivially connected divisor D. 
Then eithe r (15.7.1 ) hold s or Kx  +  Ax +  eD  i s not nef . Afte r a  sequence of 
D-flops (wit h respec t t o Kx  +  A x) the birationa l transfor m o f D  becomes 
contractible. Fo r this i t i s sufficient t o observ e that th e birationa l transfor m 
of D  unde r a  sequence of flops stays (K +  A)-trivially connected. Th e genera l 
fiber o f th e ellipti c fibration  i s disjoin t fro m Z) , thus (15.4.3 ) i s preserve d 
under flops  an d (K  +  A)-trivial contractions . Repeatin g thi s procedure , we 
eventually sto p a t X'.  • 

15.10 Theorem . Assumptions  as  in  (15.4).  Assume  furthermore  that  X 
does not contain  any (Kx+Ax)-trivially connected  divisors.  Then  fu  extends 
to a  morphism f  :  X  —•  Z  with  1-dimensional  fibers. 

Proof. B y shrinking Z  we may assume that fu i s flat.  Thus we get a morphism 
Z — » Chow(X) . (Se e [Hodge-Pedoe52 , X.6-8] fo r basi c result s abou t Cho w 
varieties.) Le t Z  b e th e normalizatio n o f the closur e o f the imag e an d le t 
g :  Ü —•> Z  b e the universa l family . Le t u  :  Ü —> X  b e the natura l morphism. 
We prove that u  i s an isomorphism . 

u i s a n isomorphis m ove r g~ x(Z). Assum e that F  C  Ü is a  diviso r con -
tracted by u.  The n g(F)  i s at mos t on e dimensional. Sinc e g has on e dimen-
sional fibers,  g(F)  i s on e dimensional . Le t E  =  g~ 1(g(F)). dimu(E)  =  2 
since a 1-dimensiona l subvariet y o f X support s onl y countably many differen t 
cycles in Chow(X) . (Thi s is the poin t wher e we need Cho w instea d o f Hilb.) 
Thus there are divisor s E\,  E<¿ C E suc h that 

dimw(Ei) =  2 ; dimu(E 2) <  1 an d Ei  f l E2 dominate s g(F). 
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We clai m that u(Ei)  i s (Kx +  Ax)-trivially connected. Indeed, u(Ei  CiE 2) C 
u(E2) an d every  curve in u(E 2) ha s zer o intersection wit h Kx  +  A ^ . An y 
two point s o f u(Ei) ca n be connected by images of fibers of E\ — • g(F) an d 
by u(Ei  HE 2). 

This contradiction shows that u  does not contrac t an y divisors. Sinc e X i s 
Q-factorial, u  can not contrac t curves , and thus u is an isomorphism . • 

15.11 Lemma . Let  X  be  a variety  with  log terminal  singularities.  Let  f  : 
X —•  Z be  a proper morphism  onto  a normal variety  Z such  that  every  ñber 
has dimension  k  for  some  fixed  k.  If  dimZ  >  2  then  assume  that  Kz  is 
Q-Cartier. Then  Z  has  only log terminal singularities. 

Proof. Choos e a projectiv e embedding of X. Fi x z  £  Z.  Le t H  C  X  b e a 
complete intersectio n o f k genera l hyperplanes . H  —•  Z i s dominant an d we 
may assum e tha t H  —•  Z i s finite over z.  H  ha s a  log terminal singularitie s 
(cf. [Reid80 , 1.13] ) thus by (20.3.1) Z  ha s a  log terminal singularit y a t z.  • 

15.11.1 Remark.  Shokuro v pointed out that under th e assumptions o f (15.11) 
if X  i s Q-factorial the n so is Z. 

15.12 Proposition . Let  f  :  (X, A x) — • Z be  a log elliptic ñber space with 
1-dimensional fíbers. Assume that  (X , A x) is  lc and nef. Then  there  is a line 
bundle L on  Z such  that 

n{Kx + A x ) ~ f*L  for  some n > 0 . 

Proof. A  genera l fiber  E Q o f /  i s eithe r a n ellipti c curv e (whic h is disjoin t 
from A x ) o r i s a  rationa l curve . I n eithe r cas e a  multipl e o f Kx +  A x i s 
linearly equivalent to zero on the generic fiber. Thus there is a (not necessarily 
effective) diviso r D  whic h i s disjoin t fro m E 9 an d i s linearl y equivalen t t o 
n0(Kx +  A x) for some n0 >  0 . Le t C 2- C Z b e the irreducibl e components of 
/(SuppZ>). W e can write D =  Y^Di wher e the D{  are those components that 
map onto C{. Le t Z{  be a general point of C{. The n D{  is nef on f~ 1(zi)^ thu s 
Di i s a rational multipl e o f f*(C{).  Henc e n 2D2- =  /*(m 2-Cz-) fo r some n2- >  0 
(possibly mi  <  0). Choose M suc h that 

MJ2^CA 

is Cartier. Then 

Мщ(Кх +  Ax) ~ f*Oz (MJ2^CA  .  • 
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(15A3) Proof  of  (15.4)'  K  \n(Kx +  Ax)I is composed of a base  poin t fre e 
pencil then we axe done. Otherwis e v{Kx  +  A x) > 2. 

By (15.9 ) ther e is a series of flops and (K + A)-trivial contractions X  —-> 
Xf suc h tha t X'  doe s not contain (K  + A)-trivially connected surfaces . B y 
(15.4.4) i t i s sufficient t o show that Kx'  +  A x' i s eventually free . (15.10 ) 
gives a proper morphis m /  :  X' —•  Z  and by (15.12) ther e is a line bundle L 
on Z  suc h that n(Kx>  + Ax> ) ~ f*L. 

I claim that L is ample. Thi s is proved using the Nakai-Moishezon criterion. 
Let H  be ample on X an d let Eg b e a general fibe r of /. The n 

(Eg •  H){L •  L) = H •  f*L •  f*L =  n2H •  (K x> + *x>) • {K x> + Ax>) >  0. 

If C  C  Z  i s an irreducibl e curv e suc h tha t C  • L =  0  then Kx'  +  A x ' i s 
numerically trivia l on / - 1 ( C ) , a  contradiction. Thu s L  is ample, and hence 
a suitabl e multiple o f L is generated b y global sections. • 
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16. ADJUNCTION O F LO G DIVISOR S 

ALESSIO CORT I 

In thi s chapte r w e discuss severa l matters  connecte d wit h th e adjunctio n 
formula fo r a  Wei l divisor S  C  X  insid e a  norma l spac e X.  Th e first  goa l 
is t o defin e a  different  Dif f whic h i s a  Q-diviso r o n S  s o that th e followin g 
adjunction formul a holds : 

Ks +  T>iR = Kx +  S\s • 

[Shokurov91,Ch.3] defines the differen t a s a divisor on the normalization S " of 
5, and uses the notio n to establish som e elementary propertie s o f log terminal 
singularities. However , i t i s desirabl e t o dea l wit h th e reduce d par t o f th e 
boundary o f a lo g divisor withou t normalizin g it . Fo r thi s reason w e defin e 
the differen t directl y o n S. 

Once th e differen t i s defined , w e us e i t t o relat e propertie s o f (X , S) t o 
(5, Diff) . 

We begin with som e preliminaries o n Weil divisors on nonnormal varieties . 
In th e following , X  i s a  pur e dimensiona l reduce d scheme . Afte r (16.7 ) w e 
always assum e tha t X  i s defined ove r an algebraicall y close d field of charac -
teristic zero. X  ma y b e reducible an d no t necessaril y S 2. K(X)  denote s th e 
sheaf o f total quotien t ring s (se e e.g. [Hartshorne77 , II.6]) . 

16.1 Definition. 
(16.1.1) A  Weil  divisorial  subsheaf  is a  coheren t Ox-modul e £ , whic h i s 

principal i n codimensio n on e an d saturated , together  with  the  choice  of  an 
embedding C C K(X). Th e condition that C  is free in codimension one implies 
C =  £** , provided X  is  S 2- Th e embeddin g C  C  K(X)  i s ver y important , 
although, followin g common useage i n th e literature , I  wil l occasionall y be 
sloppy about i t (se e 16.3.3) . 

(16.1.2) Defin e the produc t C  • £ C  K(X) i n the natura l way (i.e . C  • £ i s 
the saturatio n o f the produc t o f sheaves C£  C  K(X)).  Not e that i n genera l 
the natura l homomorphism C  ® £ —•  C  • £ i s neither injective no r surjectiv e 
(it is , however , a n isomorphism , wheneve r C  o r £  i s locall y Ox-free) . W e 

s. M. F. 
Astérisque 211* (1992 ) 171 



A. CORTI 

also write £ ' n ' fo r the produc t o f £ wit h itsel f n-times . Wit h thes e laws, th e 
set o f Weil divisorial subsheaves i s a group which we denote by WSh(X). I n a 
natural way £* = Hom(£ , Ox) =  C~ l =  {x  g  K(X)  \ x-Cc Ox)  C  K(X). 

Equivalently, le t CDiv(C7 ) be the grou p of Cartier divisors on a scheme  U. 
Then 

WSh(X) =  pro j limCDiv(X \  5 ) 

where the limi t i s over all closed subschemes S  C  X suc h that codim x S >  2. 
If X  i s norma l the n thi s i s th e usua l definition . Howeve r for nonnorma l 

schemes unexpected thing s can happen . Le t fo r instanc e 

X =  Spec C[x, y, z' l}/(x2 -  zy 2). 

The ideal s (x)  an d (y)  defin e differen t Wei l divisorial subsheave s suc h tha t 

(16.1.3) Th e grou p o f Q-Weil divisorial sheave s i s defined a s WSh(X) Q = 
WSh(X) ®  Q. 

(16.1.4) T o each uni t x  G  K(X)* ther e i s a  naturally associate d Wei l di-
visorial subshea f (x)  =  x  •  Ox C  K(X).  W e sa y tha t tw o Wei l divisoria l 
subsheaves C  and £  ar e linearly  equivalent and writ e C  ~ C!  if £ _ 1 •  C! =  (^) 
for som e x E  iiT(-X*)*. 

(16.1.5) I f £  i s a Weil divisorial subsheaf , w e define th e support  of C to b e 
the Zarisk i close d subset Supp(£ ) C  X o f points wher e C  ^ Ox-

(16.1.6) C  C iiT(X) i s effective if 0 * C  £ C  IR(JT) . 

jf#.# Definition. 
(16.2.1) A  Weil divisor on X  i s a formal linea r combination : 

D = J2n rT, 

where th e -sum extend s ove r al l point s o f codimension one r c l suc h tha t 
Ox,r i s a DVR , an d ri p ar e integers , onl y finitely many o f which are nonzero . 
The grou p o f al l Wei l divisor s i s denote d b y WDiv(X) . A s i n (16.1.3) , 
W D i v ( X ) Q =  WDiv(X ) (8) Q 

(16.2.2) Ther e i s a  natura l injectiv e grou p homomorphis m WDiv(X ) 3 
D i— y O(D)  G  WSh(X). Le t r  C  X  b e a  codimensio n one prime o f X, the n 
O(D) i s uniquely determine d b y 0 (D)r =  Ox,r  i f X i s not regula r a t T , an d 
0(D)r =  t n r •  Ox,r i f O X,T i s a DVR. 

If £  i s a  Weil divisorial subsheaf , C(D)  a s usual denotes £  •  O(D). 
We sa y that D  an d D'  ar e linearl y equivalen t i f the correspondin g sheave s 

are. 
Also, perhap s inappropriately , w e say that a  Wei l divisorial subshea f £  C 

K(X) i s a  Wei l divisor i f £ =  0 (D) fo r some Weil divisor D.  O f course, this 

(х)И = (у)И. 
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is equivalent t o sayin g that n o codimension one component of the suppor t of 
C i s contained i n the singula r locu s of X. 

16.3 Remarks and  more definitions. 
(16.3.1) Th e inclusion WDiv(X) C  WSh(X) induce s an isomorphis m 

WDiv(X) / -  ^  WSh(X) / ~ , 

and w e denote an y o f these tw o groups by Weil(X) . 
(16.3.2) Ox  C  K(X) i s a Weil divisorial subsheaf precisel y when X  i s S 2. 
(16.3.3) Th e dualizing shea f uox  (as in [Hartshorne77 , III.7] , that is , ux = 

H~d(cu'x) i f u' x i s the normalize d dualizin g complex ) i s torsio n fre e o f rank 
one, an d admit s therefor e a n embeddin g ux  C  K(X).  Sinc e we also know 
that ux  i s saturated (se e e.g. [Reid80 , App. t o §1]) , u>x  is a  Wei l divisoria l 
subsheaf precisel y whe n X  i s Gorenstei n i n codimensio n one. Thi s i s wh y 
later (16.5 ) w e shall assum e thi s conditio n (whic h is satisfied fo r exampl e if 
X ha s norma l crossing s in codimension one). I f this is the cas e then with a n 
appropriate choic e o f embedding ux  C  K{X), ux  i s actually a  Wei l divisor, 
whose linear equivalenc e class is denoted by Kx-

(16.3.4) Wei l divisors and sheave s are codimension one constructions. Thi s 
means that X  ma y always be replaced with any open subset U  C X suc h that 
codimx(X \  U)  >  2 . Thi s principl e i s use d i n man y natura l construction s 
like pullbacks an d restrictions , a s well as in many proofs (sometimes withou t 
explicit mention) . 

(16.3.5) Let p :  X' —•  X  b e a finite dominant morphism . Ther e is a natural 
pullback 

pw :  WSh(X) WSh(X') . 

This i s define d o n C  by taking U  C  X  ope n with codimx( X \  U)  >  2 , an d 
such tha t C  is locally free o n U.  The n o n V  =  p~ l(U), p w(C) =  p*(£)  i s a 
locally fre e subshea f o f -RT(V) , an d define s a  Wei l divisoria l subshea f o n X f 

(16.3.4). 
(16.3.6) Similarly , le t i  :  S ^  X  b e a subscheme of pure codimensio n one. 

Denote b y WShs'(A' ) th e subgrou p o f sheaves C  which ar e Q-Cartie r a t al l 
points P  C  S  o f codimensio n one, an d suc h tha t S  an d Supp(£ ) hav e n o 
common irreducible component s (if these condition s are satisfie d w e say that 
C has good support o n S). The n we have a natural restriction homomorphism: 

i w :  WShs(X) - » WSh(5)Q . 

This is defined as follows. I f C is Cartier at point s P  C  S o f codimension one, 
let U  C  X b e an open subset suc h that codimx(X\J7) >  2 , codims(5\{7) >  2 
and C  is Cartie r o n U.  The n o n V  =  S  D  U, i wC i s the usua l restriction o f 
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a Cartie r diviso r (and , becaus e C  has goo d suppor t o n 5, C  C K(X) induce s 
iwC C  K(S)).  Thi s determine s i wC o n 5 . I f C  G  W S h 5 ( X ) , the n £ W i s 
Cartier at point s P  C  5 o f codimension one for some n >  0 . i™ £ is defined t o 
be ^i wC№. Thi s is independent o f the choic e of n. W e also write C\S  instea d 
of i w(C). Th e whol e point o f this constructio n i s o f course that w e want t o 
define i w i n suc h a  way that i t i s functorial an d a  group homomorphism. 

Next w e state th e adjunctio n formul a fo r a  diviso r i  :  S ^  X.  I f T  i s a 
sheaf o n X, we write i*T  =  T ®  Os an d 

^[*]jr saturatio n of (i* J7/Tors\onos(i* F))> 

16.4 Proposition . Le t X  be  a normal scheme (actually  it  is  enough that  X 
is S 2), an d i  :  S ^  X  a  reduced subscheme  of  pure codimension  one.  Then 
there is  a canonical  isomorphism: 

(js =  i [*]uJx(S). 

In particular: 
(16.4.1) If  X  is  S3 an d S  is  a Cartier divisor, then  u s =  u >x ® OX(S) <g > O s. 
(16.4.2) If  UJ X(S) is  locally  free  and  S  is  S 2, then  u s =  ux(S)  ®  £><?. 

In particular  us  is  locally  free  and  S  is  Gorenstein  if  it  is  CM  (=Cohen-
Macaulay). 

(16.4.3) If  ux(S)  is  Cartier  at  every  codimension  one  point P  G  S, then 
us =  i wux(S). In  particular  then  S  is  Gorenstein  in  codimension  one,  and 
choosing suitable  embeddings  we  may  write  the  above  isomorphism  in  the 
form K s =  K x +  S\S. 

Proof. B y assumptio n X  i s C M outsid e a  se t Z  o f codimensio n three ; b y 
considering X  \  Z  w e may assum e tha t X  i s CM. 

Along th e line s o f [Hartshorne77 , III.7 ] i t i s eas y t o chec k tha t us  = 
Ext^^s^x) i s a  dualizin g shea f fo r S.  Applyin g Homo x( •  ,wx) t o th e 
exact sequence : 

0 -> O x(-S) ->O x^Os-+0 

(since 5 i s a Weil divisor, Is =  O x(-S) C  O x, wit h the notatio n o f (16.2.2)), 
we obtain a n exac t sequence : 

0 —• u> x —* u> x(S) — • u>s — • 0, 

which fits int o a  commutativ e diagra m (wit h exac t rows): 

uX(S)®OX(-S) •  u X(S) •  UJ X(S)®OS •  0 

I I I " 1 
0 •  ux  •  vx(S)  >  ws  >  0 . 
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This show s that a  :  ux(S) ®  Os ^  ws  i s surjective.  5  i s a  Wei l divisor , an d 
hence X i s smooth at ever y generic point o f S. Therefor e a  i s an isomorphis m 
at generi c points o f 5, s o ux(S) ®  Os/ToTsion0s(ux(S) ®  Os) =  ws, whic h 
is what w e want. • 

16.4-4 Example.  Le t A  C  Pn_ 1 b e a  smooth , projectivel y normal , Abelia n 
surface an d le t X  C  P n b e th e con e ove r A  wit h verte x #  £  X.  The n X  i s 
normal, l c and u>x  — Ox(—1)- Howeve r X i s no t 53 . Le t x  £  i J C  X  b e a 
hyperplane section , smooth outside i ? is not normal ; le t p :  H — • iJ b e th e 
normalisation. The n 

^ =  P*(Ob) +  O h =  Ext\0H,ux)-

The ai m i s to generalize th e adjunctio n formul a (16.4.3 ) t o the cas e wher e 
wx{S) i s onl y Q-Cartie r a t codimensio n one point s P  C  S.  Thi s i s accom -
plished i n th e following : 

16.5 Propositio n -  Definition . Let  X  be  a normal scheme,  i  :  S c—•  X  a 
reduced subscheme  of  pure codimension  one.  Assume  that  S  is  Gorenstein 
in codimension  one  and that  u>x(S)  £ WShs(X) . Then  there  is  a  naturally 
defined effective  different  Viff(0)  £  WSh(S)<Q so that: 

us.Viff(0) =  iwu;x(S). 

If Be  WShsiX)®,  we  also define the different  of  B by  Viff(B) =  Viff(0) • 
iwB. 

Proof. W e systematicall y remov e codimensio n 2  subset s Z  C  S,  wheneve r 
needed, withou t warning . 

From the adjunctio n formul a (16.4 ) w e know that u>s  =  wx(S)s- Suppos e 
that wx(S)^  i s Cartier a t ever y codimension one point P  £  S.  Conside r th e 
sequence o f maps 

(ux(S) ®  Osfn =  cox(S)®n ® 0<§n - w x(5)®n ® Os -  WA -(5)W ®  Os. 

Taking th e quotien t b y the torsio n submodule s w e obtain 

4nl -Lto x(S)W®Os 

which i s a n isomorphis m a t th e generi c point s o f S  becaus e X  i s normal . 6 
defines a  Weil divisorial subshea f V  o n S  s o that Jg]  -X > = iwu>x(S)W.  Sinc e 
the isomorphism of the adjunctio n formul a i s natural, V i s well defined (i.e. , i t 
does not depen d o n the embeddin g ux(S)  C  K(X)). Se t Viff(0)  =  \V.  • 
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We now apply th e differen t t o study log canonical an d lo g terminal singu -
larities. Th e nic e fact i s that i f Kx +  S i s log canonical i n codimensio n two, 
the differen t i s actually a  Weil divisor (i.e. , no codimension one component of 
the suppor t o f Viff i s contained i n the singula r locus of 5 ). Also , under th e 
same assumptions , w e compute th e different . 

16.6 Proposition . Let  X  be  a normal space,  S  C  X a  reduced subscheme  of 
pure codimension  one  and B a  Q-Weii divisor. Assume  that  Kx  +  S + B is  log 
canonical in  codimension  two.  Then  S  has  normal  crossings  in codimension 
one, so  the assumptions of  (16.5) are satisfied. Moreover  the different Viff(B) 
is a Q-Weil divisor  (that  is,  no codimension  one  component of  the support  of 
Viff(B) is  contained in  the  singular locus ofS), which  is denoted by  Diff (B). 

Let P  C  S  be  a  codimension  one  point of  S. The  following  computes  the 
coefficient p  of  the  different  Diff(O ) at  P: 

(16.6.1) If  S  has  two  branches  at  P  then  P £  Sup p B and  p =  0 . 
This follows from the  more  precise  result  that  one  of the  following  holds: 

(16.6.1.1) K  +  S is  It at  P,  X  is  smooth at  P,  and  S  is  a  normal crossing 
divisor at  P. 

(16.6.1.2) K  +  S is  lc but  not  It  at  P.  Then  K +  S is  Cartier  at  P.  More 
precisely, locally  analytically  at  P,  S  C  X is  isomorphic to  (C  C  T)  x  C d~2, 
where ( C C  T) =  {(xy  =  0 ) C C 2 / Z m ) an d Z m acts  with  weights  (l,q)  with 
(q,m) =  1 . 

(16.6.2) If  S  has  one  branch  at  P,  and  K  +  S is  lc  but  not  It  at  P,  then 
p=l. 
More precisely  K  +  S has  index two  at  P.  Let  7 r :  X' —»  X  be  the  index  one 
cover, and  S'  =  ^(S).  Then  S'  C  X' is  as  in (16.6.1.2). 

(16.6.3) If  S  has  one  branch  at  P  and  K  +  S  is  It  at  P,  then,  locally 
analytically at  P,  S  C  X is  isomorphic to  ( C c T ) x C d~2, where  ( C C  T) = 
((# =  0 ) C  C 2 / Z m ) an d Z m acts  with  weights  ( l ,g ) with  (q,m)  =  1 . Also, 
the local  class  group Weil((9x,p ) —  Z m , and X  is  smooth at  P  iff  m  =  1 . I n 
particular: 

m —  1 

where m  is  characterized  by  any  of  the  following  properties: 
(16.6.3.1) m  is  the  index  of  K +  S at  P; 
(16.6.3.2) m  is  the  index  of  S at  P; 
(16.6.3.3) m  is  the  order  of the  cyclic  group Weil((9x,p) . 

Proof. I  may assume that X  i s a surface. Al l the statement s then follow fro m 
the classificatio n o f lo g canonica l surfac e singularitie s i n Chapte r 3 . Tha t 
Viff(B) i s a Weil divisor also follows from the classification , mor e specifically 
from (16.6.1 ) above. I n (16.6.2) , i t i s easy to check that K s> =  {n\S') w{Ks + 
P). • 
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16.7 Corollary. Assumptions as in (16.6). Let B = ^&2\B2-. The coefficient 
of [P] in Diff (B) is 

0 in case (16.6.1); 
in case (16.6.2); 

I — L _j_ \ ^ rJ^l 

Proof. In the first two cases P £ SuppJS, so (16.6) applies directly. In the 
last case the local class group has order m. Thus mBi is Cartier at P hence 
iw(Ox(Bi)) = (ri/m)Os(P) for some rt- > 0. • 

16.8 Remark. The different is used in the following situation. Let X be a 
normal variety, and Kx + S + B a log divisor with S reduced and L 5 J = 0. 
Then if Kx + S + B is It, it should be true that Ks + Diff(B) is It (and 
conversely) in some suitable sense. Now in general 5 is a variety with double 
normal crossings in codimension one and we need to use the appropriate 
notions of semi log terminal etc. introduced in (12.2). 

Unfortunately we encounter the following technical problem: 
The birational transform of S C X in a log resolution of (X, S + B) is in 

general not a semi resolution of S since different components may get sepa
rated. Also, the exceptional role of higher normal crossing points complicates 
the formulation of the result (cf. (16.9.2)). (Recent results of Szabo seem to 
have settled this problem.) 

In dimension three one can overcome some of these problems. The results 
become somewhat cumbersome, mostly due to our choice of definition of log 
terminal. 

16.9 Proposition. Let X be a normal threefold, K + S + B a log divisor 
with S reduced. Then: 

(16.9.1) IfK + S + B is lc then Ks + Diff(B) is sic. 
(16.9.2) Let K + S + B be dlt, and f : Y —> X a good divisorial resolution. 

Assume that L B J = 0. Then, outside a number of triple normal crossing 
points at which f is an isomorphism, Ks + Diff(B) is semi It. Moreover, S 
has a semiresolution without pinch points. 

Proof. Let us prove (16.9.2) first. Let S' = f^iS). Since K + S + B is lc in 
codimension 2, S is semismooth outside a finite set. We have by definition: 

m m 
c a s e (16.6.3), for suitable r2- £ N. 

with all di > — 1 ( L B J = 0). In particular, / is generically an isomorphism 
above the normal crossing locus of S. Also, because X is divisorial It, no 

(16.9.3) KY + S' = f*(Kx + S + B) + J2<nEi 
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component o f th e doubl e curv e o f 5 ' is mappe d t o a  point . Al l this say s 
that S'  —• S is a  goo d semiresolutio n outsid e th e tripl e points . B y our def -
initions, S ' ha s n o pinc h points . Not e tha t sinc e / is divisorial , i t send s a 
neighbourhood o f the tripl e norma l crossin g locus of S f isomorphicall y to a 
neighbourhood o f the tripl e norma l crossin g locus of S.  No w from (16.9.3) 
and (16.5) we get that 

(16.9.4) KS> = (f\Sy{Ks +  Ditt(B))+Y,*iEi\S'. 

We se e late r i n (17.5) that S is S 2 an d seminormal . Thi s howeve r i s no t 
important fo r the res t o f the chapter . 

(16.9.1) is similar bu t easier : i t i s not true that S'  i s a semiresolution o f 5, 
but thi s does not affec t th e si c property (cf. [KSB88, 4.30]). • 

16.10 Corollary. Let  (x  G X) be  a  three  dimensional  germ,  S C X  a 
reduced boundary.  If  Kx  + S is divisorial  log terminal  and  S has at  least 
three components  at  x, (x  G  S  C  X) is  analytically  isomorphic  to  (0 G 
(xyz =  0 )CC3). 

Proof. B y (12.2.7) an si t poin t canno t hav e three or more components. • 

16.11 Example. Th e assumption dit is necessary i n (16.9.2) and (16.10). In-
deed, let S C  X b e (xw  = 0 ) C ((xy + zw = 0) C C4 ) . Then K x +  S is It, a s 
can be seen on any o f the tw o standard small resolutions. Kx  + S however is 
not dit. Here Ks  = Ks + Diff(0) and S has a  log canonical quadruple poin t 
at th e origin . 

The res t o f th e chapte r i s devote d t o th e classificatio n o f lo g termina l 
singularities (X, D) i n dimensio n thre e where l .Dj i s "large" . Thes e result s 
will no t b e use d later . I t give s however a goo d flavour  o f how to wor k wit h 
log terminal singularities an d wit h th e different . 

The presenc e o f a  reduce d boundar y impose s stron g restriction s o n lo g 
terminal singularities ; a n exampl e is (16.10). A key tool in classifyin g termi -
nal an d lo g terminal singularities ar e standar d coverings of various kinds (cf. 
[CKM88,6.7]): 

16.12 Lemma. Let  0 G X be  a germ of a normal variety,  D C  X a  Q-Cartier 
integral Weil  divisor.  There  is a cyclic covering  p : X1 —y  X, which  is uniquely 
determined by  the  following  properties: 

(16.12.1 ) p*D = D' C  X' is  a Cartier  divisor. 
(16.12.2) p is  étale in codimension  one  and  is  (totally)  ramified  precisely 

along the  locus  where  D is  not Cartier. 
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X' can  also be characterized as the smallest covering  of  X such  that  D r is 
Cartier. X1 is  called the  index one  cover relative  to D. • 

To a  log divisor Kx + B a s above one can associate two index one cover s 
X' —> X, relativel y to Kx + B o r B. I t is useful t o be able to relate the log 
terminal property o f X an d X' . 

16.13 Lemma. Let  X be  a normal variety,  p : X' —> X any  finite morphism 
which is étale in codimension one.  Then: 

(16.13.1) If X has  canonical (terminal) singularities,  so does X' . 
(16.13.2) Let B C X be  a boundary (possibly  empty) and  let B' = p*B. 
(16.13.2.1) Kx +  B is  le iffKx' + B' is  lc. 
(16.13.2.2) Kx +  B is  pit iffKx' + B' is  pit 
(16.13.2.3) If p  is  a cyclic cover,  X is  a threefold and Kx + B is  dit (resp. 

It), then  so  is Kx1 +  B!. Furthermore, 

(B' C Xf) {{xyz  = 0) C C3 ) & (BCX)^ ((xyz  = 0) C C 3 ) . 

Proof. (16.13.1 ) i s [CKM88 , 6.7.(ii)] . (16.13.2.1-2 ) i s proved in (20.3) . W e 
only prove (16.13.2.3) for dlt here, the It case is the same. Thi s also illustrates 
pretty well the difficulties involved in working with the notion of log terminal. 

Let / :  Y —>  X b e a good divisoria l resolution such that Ky +  f~xB +  E = 
f*(Kx +  B) + J2aiE{ wit h al l a2- > 0 where E =  ^Ei i s the /-exceptional 
divisor. Le t Y' =  (Y Xx  X'Y b e the normalized pull back , so that w e have 
a diagram : 

v' 
Y' •  Y 

p 
Xr v  X 

Let E' be the /'-exceptional set. The crux of the argument is to be able to 
construct a  good divisoria l resolution <p  :Y —>Y l\ with the property that the 
image of the (^-exceptional locus is entirely contained in E'. Th e point is that 
since p is etale in codimension one, p' can only be ramified alon g E, and since 
E i s a normal crossin g divisor, Y' ha s toroidal singularities . Se t B' =  p*(B). 

Pick a point q  G f*xB. Choos e local coordinates (x,y,z)  nea r q  G Y suc h 
that th e component s of E U  f~xB ar e the coordinat e planes . Locally , th e 
covering is the normalization of 

(td =  xaybzc) CC 1 x C 3 . 
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The loca l equation o f f^B  i s on e o f the following : (xyz  =  0) , (xy  =  0) , 
(x =  0 ) o r ( 1 =  0) . I n th e firs t cas e p'  i s unramifie d alon g th e coordinat e 
planes, thu s a  =  b  = c  =  0  an d p f i s etal e abov e q.  I n th e secon d cas e p' 
is unramifie d alon g tw o o f the th e coordinat e planes , thu s a  =  b  =  0  an d 
(f')-1 B'  C Y' Y' i s a  (double ) normal crossin g point . I n th e thir d cas e p'  i s 
unramified alon g one of the th e coordinat e planes , thu s a  = 0 . Le t T  b e th e 
normalization o f the surfac e singularit y (t d =  y bzc). The n 

[UX1b' C  y ' ] =  [ R x { O } C  R  x  Q . 

Therefore Y ' i s smoot h alon g ( / , ) 7 1 B / , excep t possibl y fo r som e curve s 
C z C  Y' o f cyclic quotien t singularitie s tha t mee t ( / / ) ^ 1 5 / transversally . W e 
begin constructing a  resolution by resolving Yf alon g C2 . (W e care only about 
a neighborhoo d of (f'^B'  i n thi s step. ) Thi s give s cp'  : Y" - > Y'.  Y"  i s 
smooth i n a  neighborhoo d of (Y)-1*  (f')-1*B'  an d (^O^H/O^ 1 5 ' + ^" i s a 

global normal crossing divisor in a neighborhood of ( y ? , ) ~ 1 ( / / ) ~ 1 B / . I t i s clear 
that a  goo d divisoria l resolution ca n no w be achieved by blowing up center s 
contained i n E"  onl y (and no t intersectin g ((p ,)~1(f,)~lB'). 

The rest is an easy consequence of the log ramification formul a (20.2) . Th e 
situation now is the following : 

p 
Y •  Y 

4 ' I 
P 

X' ——X. 

Here /  :  Y — • X'  i s a  goo d divisoria l resolution , p  i s genericall y finite,  an d 
Fj bein g an y /-exceptiona l component , p(Fj) C  E{  fo r som e /-exceptiona l 
component E{.  Writ e 

Ky +  f: lB' =  f*(K x> +B')  +  J2 bjFj. 

Then i f p*Ei =  J2j  eijFji
 w e ^ a v e

 =  Zi^i  +  rj  wit h r$  >  0 , by the log 
ramification formula . Sinc e p(Fj) C  E{ for some i, we see that 6 j >  0 . 

Finally, i f / :  Y — > X i s not th e identit y the n by our constructio n f  : Y —> 
X' i s not th e identity , thu s (B'  C  A7 ) is different fro m ((xyz  =  0 ) C C 3 ) . • 

16.14 Remark.  Th e converse to (16.13.2.3 ) i s probably also true. Here , how -
ever, the problem is to find a suitable resolutio n o f X, withou t blowin g up th e 
double locu s of B.  Thi s doe s not follo w directl y fro m Hironaka . (Recentl y 
Szabo settled thi s question. ) 
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From now on X i s a threefold, an d B C  X a  Q-Cartier reduce d boundar y 
such tha t Kx  +  B i s divisorial log terminal. W e begi n by classifying thes e 
singularities. 

16.15 Theorem . Let  x  G  B C  X  be  a three  dimensional  germ,  assume 
K +  B dlt  and B Q-Cartier.  Then: 

(16.15.1) If  B  has  three  components,  then  x  G  B C  X  is  analytically 
isomorphic to 

0e(xyz =  0 )cC3. 

(16.15.2) If  B  has  two components, both  of  which  are  Q-Cartier, then 
x G  B C  X is  analytically isomorphic  to 

0 G  (xy = 0) C C3/Zm(q1,q2,l) ^lier e (q 1,q2,m) =  l. 

(16.15.3) If  B  has  two components, neither  of  which is  Q-Cartier,  then 
x G  B C  X is  analytically isomorphic  to 

0e(z =  0)G(xy +  zf(z, t)  = 0)C C 4 / Z m ( g i , -q 2,1, a ) 
where (g z-,a,m) = (qi,q 2,m) =  1. 

Proof. (16.15.1 ) is a special case of (16.10), so let's prove (16.15.2-3) . 
Let p  :  X' —•  X b e the inde x on e cover relativ e t o Kx  +  B, an d set 

B' =  p*B.  B y (16.13.2.3) , K x> +  B' i s dlt . Not e tha t K B +  Diff(0) = 
KB +  m4 l~ 1-^? wher e P 2 C  B C  X ar e codimension two singular point s on 
X a s in (16.6.3). Als o by (16.6.3), B' is smooth atp^1{Pi), andplB ' is ramified 
in codimension one precisely at ^ m z P j . I t follows then from (16.13.2.3 ) that 
B' ha s two components. Als o then KB 1 =  (p\B')*  [KB +  Diff(0)) i s semi log 
terminal of index one, by (16.9). The n by [KSB88,4.21] B f =  B[ + B'2, wher e 
B[ an d B'2 are smooth and cross normally. 

In cas e (16.15.2) , eac h componen t of B' i s Q-Cartier an d Cartier in codi -
mension two . I t i s eas y the n t o sho w tha t X'  mus t b e smooth alon g B'. 
Indeed let p' :  X" —>  X' b e the index one cover relative to B[. Then , since B[ 
is Cartier in codimension two, p\B" :  B" —•  B[  is unramified i n codimension 
one. I t follow s tha t B"  i s regular i n codimension one. Bu t X" ha s rational 
singularities (i t is log terminal), henc e CM , so B" i s also CM , and norma l 
by the Serre criterion . Bu t then p\B" :  B'{ —> B[  is a spli t cover , sinc e it is 
unramified i n codimension one and B[ is smooth. Thi s mean s tha t p'  —  id , 
and sinc e B[ i s smooth and Cartier, X'  i s smooth. No w (16.15.2) follow s a t 
once: B'  C  XR =  (xy =  0) C C3 , and x G  B C  X i s analytically isomorphi c 
to 0  G  (xy =  0 ) C  C 3 /Z m (qi ,q 2 ,qs) . W e may assume g 3 =  1 , becaus e p 
is unramifie d alon g B\  f l B2, an d (qi,q 2^m) =  1  because p is unramified i n 
codimension one. 
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In cas e (16.15.3) , le t p' :  X" —•  X'  b e the index one cover relativ e t o B'. 
Then it is clear that, as for B', B"  = B" + B2, wher e B" and Bl£ are smooth 
and cros s normally . Then , p'\B"  :  B" —•  B' i s a spli t covering , since i t is 
unramified i n codimension one. I t follows that p r =  id and Bf i s also Cartier. 
Then X'  ha s cDV singularities an d the result follow s a t once . • 

16.16 Remark.  I t should be possible to check directly (althoug h I  did not do 
it) tha t the singularities i n (16.15.2-3) are dlt. 

If B  has only one component, it is not possible to give a compact descrip-
tion a s above . Eve n i f B i s Cartier , w e know from inversio n o f adjunctio n 
(16.9) tha t an y Q-Gorenstein deformatio n (i n particular the trivial deforma -
tion) o f a surface quotien t singularit y i s log terminal. However , under furthe r 
restrictions, i t is possible to come up with a  short list : 

16.17 Proposition . [KSB88]  Let x G  B C  X be  a three  dimensional  germ, 
assume K + B is  dlt and B is  Cartier. Also  assume that  X  is  cDV outside B. 
Then x  G  B  C  X is  analytically isomorphic  to  one of the following: 

(16.17.1) Oe (xyz =  0) C C 3 ; 
(16.17.2) 0  € (< = 0) C (x2 + f(y,z,t) =  0) C C4 where (x2 +  f(y,z,0) =  0) 

defines a Du Val  singularity; 
(16.17.3) 0  G (* = 0) C (xy + f(zr, t)  = 0)c C 3 / Z r ( a , - a, 1,0). • 
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17. ADJUNCTIO N AN D DISCREPANCIE S 

JANOS KOLLA R 

The aim o f this chapter i s to investigate th e proble m posed in Chapte r 1 6 
of comparing the discrepancie s of (X, S + B) an d (£ , Diff(JB)). Befor e formu-
lating the firs t result , we need to define some other variant s of discrep(X). 

17.1 Definition.  Le t X  b e a  norma l scheme , D  =  ^2d {D{ a  boundar y an d 
let Z  C  S  C  X  b e close d subschemes . (Mor e generally, w e may allo w X t o 
be nonnorma l a s lon g a s th e condition s o f (2.6 ) are satisfied. ) W e use th e 
following refinement s o f (1.6) : 

discrep(X, D) 

= mi{a(E,X,D)\E  i s exceptional, 0 ^ Centerx(£*)} ; 
E 

discrep(Center C  Z, X, D) 

= mi{a(E,X,D)\E  i s exceptional, 0 ^ Center*^ ) C  Z}\ 
E 

discrep(5 fl Center C  Z, X, D) 
= mf{a(E,X,  D)\E  i s exceptional, 0 ^ 5  H  Center X(E) C  Z}; 

E 

One can also define versions where we allow E t o be nonexceptional as well. 
These are denote d by totaldiscrep. O f course, totaldiscrep =  discre p if Z has 
codimension a t leas t two . W e write discrep( 5 fl Center ^  0,X , D) instea d o f 
discrep(5 fl Center C  S,X,D) whic h is misleading i n appearance . 

17.1.1 Proposition . (17.1.1.1)  Any  of  the  discrepancies  defined  above  is 
either —o o or >  —  1 and th e infimum is a minimum. 

(17.1.1.2) For  any ZcScX 

discrep(Center C  Z, X, D)  >  discrep(5 fl Center C  Z , X, D) 

> totaldiscrep(X , D); 

S. M . F . 
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(17.1.1.3) If  discrep(Cente r C  Z,  X, D)  >  —  1 then  there  is  an open  neigh-
borhood Z  C  U  C X such  that  to t aldiscrep (£/,!)) >  — 1 . 

Proof. ( 1 7 . 1 . 1 . 2 ) i s clear from the definition . 
In orde r t o see the othe r tw o claims, take a log resolution /  :  Y — • (X , D). 

If a (£ , X, D) >  - 1 fo r every divisor E  C  Y the n 

totaldiscrep(X,D) =  unn{a(E,X,D)\E C  Y} 
E 

by ( 4 . 1 2 . 1 . 2 ) . Similarly , ( 4 . 1 2 . 1 . 1 ) implie s ( 1 7 . 1 . 1 . 1 ) fo r the othe r versions . 
Assume now that there is a divisor E  C  X suc h that a(E,  X , D)  =  —  1 —  c 

for som e c  >  0 . Le t p  G  E  b e an y point . Choos e a genera l codimensio n 
one su b variety p  £ W  C  E.  Le t gi  :Y\  — > Y b e th e blo w u p o f W an d le t 
Ei C  Yi be th e exceptiona l divisor . I f gi :  Yi — • Y an d J5 t- C  ar e alread y 
defined the n le t gi+\  :  Yi+i — > Y{ Y  be the blo w up o f f l (p 2 )7 1 (£ l ) an d 
let Ei+i  b e th e exceptiona l diviso r o f Y^+i — ^ Yi. B y a n eas y computatio n 
a(Ej,X,D) =  —jc.  Le t pj  G  £7j be a  poin t suc h that gj(pj)  =  p an d le t Fj 
be th e diviso r obtained b y blowing up pj. The n 

a(Fj,X, D ) <  —  jc +  const, henc e discrep(Cente r C  / ( p ) , X, D) =  —  oo. 

Choosing p suc h that f(p)  £  Z  complete s the proof . • 

An uppe r boun d i s harder to find: 

17.1.2 Conjecture . [Shokurov88]  Let  0  G  ( X , J D ) be  an n-dimensional nor-
mal singularity.  Assume  that  Kx  +  D is  Q-Cartier. Then 

discrep(Center C  0 , X , D)  <  dimX —  1 , 

and equality  holds  only  if  X is  smooth and  0 ^ D. (cf.  (1.8)). 

17.1.3 Remark.  Assum e that th e conjectur e fail s fo r 0  G X. The n (X , D)  i s 
terminal. Thu s i f a list o f terminal singularities is known, the conjectur e ca n 
be verified . Therefor e ( 1 7 . 1 . 2 ) i s trivial i f dimX <  2 . Fo r d im X =  3  i t wa s 
checked by Markushevich (unpublished) . 

The followin g i s the eas y direction in comparing discrepancies: 

17.2 Theorem . Let  X  be  a variety and let S  + B be  a Weil  divisor.  Assume 
that S  is  reduced and K+S+B isle  in  codimension two. Assume  furthermore 
that K  +  S +  B is  Q-Cartier. Let  Z  C  S be  a closed subscheme.  Then 
( 1 7 . 2 . 1 ) 

totaldiscrep(Center C  Z,  5 , Diff(B)) >  discrep(Cente r C  Z,  X, S  +  B) 

> discrep (5 fl Center C  Z,  X, S  +  B). 
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In particular, 

(17.2.2) totaldiscrep(S , Diff(B)) >  discrep(X, S + B). 

Proof. Se t Z  =  S  i n (17.2.1 ) t o obtai n (17.2.2) . Also , th e secon d inequalit y 
of (17.2.1 ) i s obvious. Fo r the res t we need a simple lemma which we state in 
a genera l setup : 

17.2.3 Lemma . Let  f  :  Y  —•  X be  a  proper  birational  morphism  with 
exceptional divisors  Ej. Assume  that  Y  is  normal. Let  S  + B be  a Q-divisor 
on X and  let S' be  the birational transform of  S on  Y. Assume  that  (X,  S)  and 
(Y, S') are lc in codimension  two.  Let  D  C  S be  the union  of  all codimension 
one points  of  S above  which  Sf  —•  S  is  not an  isomorphism and  let  D'  C  S' 
be the  preimage of  D. Finally  let 

Ky +  f~\S +  B) =  f*(Kx  +  S + B) +  Y^ a(Ej,  S  + B)Ej. 

Then 
(17.2.4) 

(f\S% Diffs * ( / r 1 ^ -  a(E>'S  +  B)Ei)  =  Diffs(#) +  2[£>] ; and 

Ks, +  DiffS / (fZ'B  -  ¿2  E a(Ej, S + B)Ej) =  (f\S')*  (Ks  +  BiSs(B)). 

Proof. Th e lef t han d sid e of the secon d eqality i s f*(K +  S + B)\S' an d th e 
right hand sid e is f*(K +  S + B\S). Thu s th e secon d equality i s clear . 

The first  i s a  codimension one question o n S,  s o that b y shrinking X,  w e 
may assum e tha t S  i s semismoot h an d /  :  S'  —•  S i s finite.  Assum e tha t 
m(Kx +  S + B) i s Cartier. The n 

rnKs* + m(/ |5 ,) ;1(Diff(5) ) +  mD' 

= (f\S'y(m(Ks  +  DiS(B))) 

= /*  (m(Kx  +  S + B)\Sf) 

= mKs>  + mDiff5, (f^B  -  ^ 0 ( ^ , 5 +  B)E^  , 

where all the equalities ar e equalities o f divisors. Pushin g this down to S  gives 
the first  equality . • 

In orde r t o see (17.2 ) le t /  :  Y —•  X  b e a log resolution o f (X, S + B) wit h 
exceptional divisor s Ej.  Le t Ej  f l Sf =  Y^Cjk  +  Y^Djk  wher e th e Cjk  ar e 
the (/|S'/)-exceptiona l components of the intersection an d f\Djk  i s birational . 
For simplicity assume tha t S'  i s disjoint fro m f~l(B). 
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Restricting (17.2.4) to S' we obtain: 

^ ' +  (/ |5 ')r 1 (DifF(B)) +  i )' 

= f*(Ks +  Diff(B)) + Y, a(Ei>s +  B ) c 3 k -

Therefore 

(17.2.5) 
a (Cjk, S,  Diff (B)) = a(Ej,X, S +  B), an d 

a (Djk, S,  Diff ( £ ) ) =  a(Ej,X, S +  B). 

Every exceptiona l divisor over S appears a s a n irreducibl e componen t of 
Ej f l S f fo r a  suitabl e choic e o f / . The onl y problem i s tha t fiCjk)  C  Z 
does not impl y f(Ej) C  Z. Howeve r if we blow up Cjk  the n we obtain a  new 
exceptional divisor Ejk suc h that 

f(Ejk) =  f(C jk)cZ an d a{E jk,X,S +  B) =  a(E j,X,S +  B). 

This proves (17.2.1). • 

The followin g conjectur e assert s that th e inequalitie s i n (17.2) are equal -
ities. Specia l cases wer e discusse d earlie r i n [KSB88,Chapte r 6; Stevens88; 
Shokurov91,3.3]. Th e conjectur e (o r similar result s and conjectures ) wil l be 
frequently referre d t o as adjunction  (if we assume something about X  an d ob-
tain conclusions about S)  o r inversion of  adjunction (if we assume somethin g 
about S and obtai n conclusion s about X). 

17.3 Conjecture. Notation  as  in (17.2). Then 
(17.3.1) 

totaldiscrep(Center C Z, 5, Diff(B)) = discrep(Center C Z,X,S + B) 

= discrep(5 f l Center C Z,  X , S + B). 

In particular, 

(17.3.2) totaldiscrep (5, Diff (B))  = discrep (Center 0 5 ^ 0, X, S +  B). 

Unfortunately, I  d o not kno w how to prov e these i n ful l generality . Th e 
rest o f the chapte r i s devoted to proving some important specia l cases. 

The followin g technica l resul t i s crucia l i n (17.6-7). It wa s prove d b y 
[Shokurov91,5.7] for surfaces . 
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17A Theorem . Let  X,Z be  normal varieties  (or  analytic spaces)  and  let 
h :  X —•  Z be  a proper morphism  with  connected fibers.  Let  D = ^  d{D{  be 
a Q-divisor on  X. Assume  that 

(17.4.1) if  d{ < 0 then h(D{)  has  codimension at least two  in Z; and 
(17.4.2) —(Kx  + D) is  h-nef and  h-big.  (If  h is birational  then  h-big  is 

automatic.) 
Let 

9 h 
f:Y->X->Z 

be a resolution of  singularities  such that Sup p g~l(D) is  a divisor with normal 
crossings. Let 

KY =  g*(Kx +  D) + Y^ e*Ei' 
Further let 

A = ]P  e{Ei  and  F  = - ^  e t-JS,-. 
i:e,-> — 1 2:ej < —1 

Then Sup p F = Suppi_F j is  connected in  a neighborhood of  any fiber of f. 

Proof. B y definition 
rA^ -  L F , = Ky  +  (-9*(K X +  D)) +  {-A} +  {F}, 

and therefor e b y [KMM87,1-2-3] 

tff.OYCAi -  L F J ) =  0 . 

Applying /* to the exact sequence 

0 0 Y{RA~" -  L F J ) -» OYCA-1) 0 LFJ(RAN) - f 0 

we obtain tha t 

(17.4.3) / . O y ( r ^ ) -  / . ^ f / i 1 ) 

is surjective . Le t E{ be an irreducible componen t of rA~]. The n eithe r E{  is 
^-exceptional or E{ is the birational transfor m o f some Di and =  —  ei <  0. 

Thus <7*( rAn) i s /i-exceptional and 

/ . O r ( r A n ) =  M < ? x M r ^ n ) ) ) =  Oz . 

Assume that L F J has at least two connected components L FJ = i*\ U F2 i n a 
neighborhood of f"1(z) fo r some z £ Z. The n 

/ . ^ J ( r A 1 ) ( 2 ) =  / . 0 F 1 ( r i n ) ( , ) +  / . ^ ( r r ) ( i ) , 

and neithe r of these summand s i s zero. Thu s f* OLF (AAA) (z) cannot b e the 
quotient o f the cyclic module O z,z —  f * O y ( r A n ) ( y ) . • 
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17.5 Corollary . I f ( X, D) is  It then  L D J is  seminormal and it has  a semires-
olution with  normal  crossing  points only.  If  ( X , D) is  dlt  then  i_D J is semi-
normal and  S 2. If  (X,D)  is  dlt  and  every  irreducible  component  of  L D J is 
Q-Cartier then  every  irreducible  component  of  LD J is  normal. 

Proof. W e apply (17.4 ) t o h  :  X =  Z.  Le t g  :  Y X  b e a  lo g resolution . 
Then F  =  L F J is th e birationa l transfor m o f B y assumptio n F  ha s 
only norma l crossin g points . I n particular , F  i s seminorma l an d £2 . W e 
can successivel y blow up th e norma l crossin g points o f multiplicity a t leas t 3 
starting with th e highes t multiplicit y locu s to obtain a  semiresolution o f L D J 
with norma l crossin g points only. 

By (17.4.3 ) th e composite 

g*0Y(rA^) *iö x-* 0,DJ <->  g*0F --->  g*0 F{rA^) 

is surjective, an d hene e 

(17 .5 .1) 0 ^ D J £ * 9 , O L F , 

Let n :  B — * L D J b e the seminormalizsation o f LDJ . The n Bx nF — • F i s a 
homeomorphism, thus an isomorphism . Therefor e F  — • LD J factor s throug h 
n. Thu s b y (17.5.1 ) U^OB  = C* LL>J> hence n  i s an isomorphism. 

Assume no w that (X,  D)  i s dlt . Le t Z  C  L D j b e a  close d subse t o f codi -
mension >  2 . I  clai m that Z f =  Sing F f l g~1(Z) ha s codimensio n >  2  i n 
F. Assum e the contrary . The n ther e i s a n irreducibl e componen t Z"  C  Z' 
such that Z"  C  Y ha s codimensio n two and i t i s contained i n the exceptiona l 
set o f g. Therefor e Z"  i s containe d i n a n exceptiona l diviso r E  o f g. Sinc e 
Suppp""1(JD) i s a  norma l crossin g divisor , ther e i s a t mos t on e irreducibl e 
component o f F containin g Z".  Thi s contradict s Z"  C  SingF . 

Let n'  :  B' I_£> J b e th e S 2-ization o f L D J [EGA , IV.5.10.16-17]. The n 
B' x nr F  —•  F i s finite  an d birationa l o n every irreducible component . Fur -
thermore, b y the abov e considerations, it is a homeomorphism in codimension 
one. Sinc e F  i s seminorma l an d S 2, thi s implies that i t i s a n isomorphism . 
Therefore F  ->  L D J factors throug h n' . Thu s b y (17.5.1 ) ri+0 B' =  0^ Dj, 
hence n'  i s an isomorphism . 

Assume that every irreducible component of LD J i s Q-Cartier and le t D\  C 
L D J b e an irreducible component. We can replace D by D' =  D— (1/2)(LZ>J — 
D{). The n ( X , D') i s dlt an d LJD' J =  D x. Thu s D x i s seminormal an d S 2. B y 
the classificatio n o f Chapter 3 , i t i s als o smoot h i n codimensio n one, hence 
normal. • 

17.5.2 Example,  (cf . (16.11) ) Le t X  =  (xy  -  uv  =  0) C  C 4 an d 

D =  (x  =  u = 0) + (y = v = 
i 4 

0) +  -  J2( x +  2ги =  у + 2~lv =  0) . 
i=l 
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Then (X , D) i s It an d L D J i s two planes intersectin g a t a  single point. Thu s 
it i s not 52-

The most important applicatio n of the abov e connectedness result is to th e 
problem of inversio n of adjunction. Th e following theore m shows that i n th e 
notation o f (17.3) 

totaldiscrep(5, Diff (B)) >  - 1 &  discrep(Cente r CiS +  0, X, S + B) >  - 1. 

17.6 Theorem . Let  X  be  normal and  let  S  C  X be  an irreducible divisor. 
Let B  be  an effective Q-divisor such that L5 J = 0  and assume that Kx+S+B 
is Q-Cartier. Then  K x+S +  B is  pit in  a neighborhood of  S iff  K s +  Diff(B) 
is kit. 

Proof. Le t g  :  Y —•  X b e a resolution o f singularities an d a s in (17.4 ) le t 

KY =  g*(K x +  S + B) +  A-F. 

Let 5' C  Y b e the birational transfor m o f S and let F =  S'UF'. B y adjunction 

Ks> =  9*(KS +  Diff(B)) +  (A- F')\S'. 

Kx +  S +  B  i s pi t if f F'  =  0  and K s +  DiffB i s pi t if f F n 5 ' =  0 . Le t 
h :  X ->  X b e the identity . B y (17.4 ) S'  U  F' i s connected, hence F'  =  0  iff 
F ' n  5' = 0. • 
17.7 Theorem . Le t X  be  normal and  let  S  C  X be  an irreducible divisor. 
Let B  and  B' be  effective Q-divisors such that  L5 J = 0 . Assume  furthermore 
that 

(17.7.1) B'  is  Q-Cartier, K x +  S + B is  Q-Cartier, and 
(17.7.2) K x +  S + B is  pit. 
Then Kx  +  S + B + B' is  lc in a neighborhood of  S iff  K s +  Diff(J9 + B') 

is lc. 

Proof. B y (2.17.5 ) Kx  +  S  +  B +  B'  (resp . K s +  Diff( £ +  B'))  i s l c iff 
Kx +  S + B + tB' (resp . K s +  Diff(JB + tB')) i s pit fo r every 0 < *  < 1 . Thu s 
(17.6) implie s (17.7) . • 

The followin g corollar y is ver y importan t i n Chapte r 18 . (Se e (18.3 ) fo r 
the definitio n o f maximally lc.) 

17.8 Corollary . Let  X  be  normal,  Q-factorial  and  let  S  C  X  be  an  irre-
ducible divisor.  Let  ^2 diDi be  an effective  Q-divisor.  Assume  that  Kx  +  S 
is pit. Set 

A =  Diff 5(0) an d Bi  =  i wOx(Di), 
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where i  :  S — > X is  the  natural  injection  and  iw is defined in (16.3.6). 
Then Kx  +  S  +  ^2 diDi is  maximally 1c  near a point x  E  S iff  Ks  +  A  + 

^2 d{B{ is  maximally lc  near x G  S.  • 

The res t o f the chapte r i s devoted to showin g that i f the minima l mode l 
program work s in dimensio n n  the n (17.3 ) hold s fo r smal l discrepancie s fo r 
dimX =  n.  Th e precise assumptions ar e th e following . 

17.9 Assumption. Fo r the rest of the chapte r w e use the followin g special case 
of th e Lo g Minimal Mode l Program : 

(*n). Le t /  :  Y —•  X  b e a  proper birationa l morphism . Assum e that Y  i s 
normal, Q-factoria l an d dim Y <  n.  Le t D  be a Q-Weil divisor on Y suc h that 
(Y, D) i s log terminal. The n th e step s o f the (Ky  +  Z))-MM P (a s described 
in (2.26) ) al l exis t an d th e proces s terminates with a  relative minima l model 
f:(Y,D)-^X. 

We know that (*2 ) and (*3 ) hold. 

We start with the followin g result which is of considerable interest in itself . 
It i s a generalisation o f (6.9.4) . 

17.10 Theorem . Assume  (*n).  Let  (X,  B)  be  a log canonical pair, d imX < 
n. Let  f  :  Y —•  X  be  a log resolution. Let  £  be  a subset of  the  exceptional 
divisors {Ei}  such  that 

(17.10.1.1) Ifa(Ei,B)  =  - 1 then  E{  C £; 
(17.10.1.2) IfEj  C  S then  a(Ej,B)  <  0. 
Then there  is  a  factorization 

f:Y-h-+ X(S)  ^  X 

with the  following  properties: 
(17.10.2.1) h  is  a local isomorphism  at  every  generic  point  of  £; 
(17.10.2.2) h  contracts  every  exceptional  divisor  not in  £; 

K ( KY +  f:-1 \B) +  J2 -a(Et,  B )EL) 

(17.10.2.3) = K X { £ ) + g ; - 1 \B)+  -a(Ei,B)h.(Ei) 
Eice 

= g*(Kx  +  B) is  log terminal. 

Proof. Fo r a  smal l e  let 

Г -a(Ei,B) if Ei  С S; 
(17.10.3) díEi) = { 

\ max{-a (£¿ ,B ) +  e,0 } if Ei <jt  €. 
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Then 

Ky +  f:\B) +  ^2d(Ei)Ei = f*(Kx +  B) + (dj  + a (EJ9B))Ej. 

Apply the (Ky +  f~X{B) +  ]£ d(Ei)Ei)-MMP t o Y/X. Ever y extremal ra y is 
supported in (the birational transfor m of ) h*(£).  Also , an effective exceptional 
divisor is never nef . Thus the MMP stops wit h a  factorizatio n 

f:Y--* X(S)  Л X 

such that h*(£)  = 0 and h is an isomorphism at every generic point o f £. • 

17.11 Corollary . Assume  (* n). Let  (X,S  +  B) be  as in (17.2)  such  that 
dimX <  n and X is  Q-factorial. Assume  furthermore  that  either, 

(17.11.1) (X,  S + B) is pit and d = discrep(5 П Center С Z, X, S + B) <  0; 
or 

(17.11.2) (X,S  +  B) is lcandd=-l. 
Then the  equalities (17.3.1)  hold. 

Proof. Le t / :  Y — у X b e a log resolution o f (X, S + B) such that / " 1 ( Z ) i s a 
divisor with norma l crossings . Le t Sff С  У be the birational transfor m o f S. 

Let E  be the set of exceptional divisor s with discrepanc y d  such tha t S  П 
Centerx(-E") С Z. B y assumption £  ф 0. We apply the 

(KY + fr\S +  B) + ^Td(Ei)E^ -MM P on f: Y-*X. 

At the end we obtain h  : Y —->  X(£) an d g : X(£) —>  X suc h that 

К (Ky +  K\S +  B) + d(Ei)Ei)  =  g*(K + S + B). 

Let S'  С X{S) b e the birational transfor m o f S. Sinc e X  i s Q-factorial , 
the exceptiona l se t of g is exactly h*(£),  henc e S'  intersect s the exceptional 
divisor h*(£).  f(S')  П f (h* (E)) E С Z, henc e ever y irreducibl e componen t 
С CS'n K(€)  lie s above Z. 

By (16.7 ) the coefficient p(C) of [C] in D i f f ^B -  dhm(£)) i s 

p(c) = i -I + y ;ri*t + r ^ > i - i ± ^ > - d , 
m '  m m m 

and b y (17.2.3 ) a(C,  S, Diff(B)) =  -p(C).  Combinin g wit h (17.2 ) w e are 
done. • 

EjEE 
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17.12 Corollary . Assum e ( * n ) . Le t (X , S +  B) be  as  in (17.2)  such that 
dimX <  n  and  X is  Q-factorial. Then 

totaldiscrep (S, Diff (B))  =  discre p (Center OS ^ 0 , X, S +  B). 

Proof. Le t d  = discrep (Center C\S ^  0 , X, S + B). B y blowing up a  codimen-
sion on e smooth point o f S w e see that d  <  0. I f d >  —  1 then (X , S +  B) i s 
pit, thu s (17.11.1 ) implie s the require d equality . 

If d  = —  1 the n we can apply (17.11.2) . 
Finally assum e tha t d  =  —oo . W e need t o sho w that (5 , Diff(B)) canno t 

be lc. Let /  :  (Y, / -1 (5 + B) + E) — • X b e a log terminal mode l of (X, S + B) 
where E  i s the reduce d exceptional divisor. Writ e 

KY +  f-'iS +  B) +  E =  f*(K x +  S + B)-F, 

where by (2.19 ) F  i s effective and eithe r F  =  0 or SuppF =  SuppF . I n th e 
former case (X, S + B) i s lc. I n the latter case let S'  C  Y denot e the birationa l 
transform o f S. The n S'  an d E  intersec t nontriviall y an d 

A > +  DiRs'ifcHB)  +  E +  F) =  f*(K s +  Diff 5 (B)) 

contains a  component with coefficien t greate r tha n 1  by (16.7) . 
Thus (5 , Diff (B)) i s not lc . • 
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18. REDUCTION T O SPECIA L FLIP S 

ANTONELLA GRASS I and JÀNOS KOLLÀ R 

18.1 Conventions.  I n this chapter /  :  (X,K +  S + B) —•  Z denote s a  smal l 
contraction suc h tha t —(K  + S + B) i s /-ample . W e always assum e tha t 
K +  S + B i s log canonical , S i s reduced and B =  Y% b{Bi with 0  < bi  < 1 
where the Bi ar e distinct, irreducibl e an d reduced. (I n general B  i s allowed 
to hav e a  reduce d part. ) Th e assumptions impl y tha t S  an d B  hav e no 
irreducible component s in common. On e should kee p in mind tha t th e sum 
S +  B doe s not determine S  an d B uniquely . Irreducibl e component s wit h 
coefficient 1  can be either in S or in B. 

Let 0 G Z be a distinguished poin t and set C = /_ 1 ( 0 ) . I n dimension three 
C i s the whole exceptional set (after possibl y shrinking Z)  but not necessarily 
so in higher dimensions . An y irreducible curv e in C is called a flipping curve. 

We always assume that ever y irreducible componen t of S + B intersect s C. 

18.2 Definition. 
(18.2.1) Th e type of S + B i s the sequence (bi , • • •  ,bn). I t i s denoted by 

type(5 + B). W e usually d o not think of B wit h a  specified ordering o f the 
components in mind, so strictly speakin g /  ha s several types . 

(18.2.2) W e introduce a n ordering on sequences of numbers a s follows: 
{b{, • •  •  , b^) <  ,  &n) if either n  < m or n = m and bf < b\ Vf, with 

strict inequalit y holdin g for at leas t on e index i. 

18.3 Definition. Le t K + A + diDi  be a log canonical divisor on X. Assum e 
that Di are Q-Cartier Weil-divisors . W e say that K+A+Y^ d{D{  is maximally 
log canonical near Z  C  X i f (X, K + A + ]T) d\Di) i s not log canonical in any 
neighborhood of Z where d\ > di with inequality holding for at least on e index 
i. 

Warning: I t is important t o note that this definition depend s on the A and 
the Di,  not just o n A + J2diDi. 

The following i s clear: 

s. M. F. 
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18.4 Lemma. Let  K  + A + diA be  as above. 
( 18.4.1) Let f  : Y  —»  X be  a log resolution. K  + A +  ^2 d{D{ is  maximally 

log canonical  in a neighborhood of  Z iff  for  every  D{  there  is a divisor E{ C  Y 
with log discrepancy zero  such  that  f(Ei)  C  SuppD* and Z  f l f(Ei) / 0 . 

(18.4.2) There is  a  (nonunique)  sequence  d f

{ >  d{ such that  (X,K  + A + 
^2 d^Di) is  maximally log  canonical in a  neighborhood of  Z. 

(18.4.3) Assume that  K  + A + Y^diDi is  log  terminal,  LG?IJDI J = 0 , and 
Di does  not  have  any  irreducible  components  in  common  with  A  or  with 

Ek = 1  Dk. Then  we  may assume  that  d[  > d\. • 

18.5 Definition, f  : (X, K +  S + B) —y Z is  a limiting  contraction  if 
( 1 8 . 5 . 1 ) X i s Q-factorial an d / is small ; 
( 1 8 . 5 . 2 ) S  is irreducible an d /-negative ; 
( 1 8 . 5 . 3 ) every irreducible componen t of B i s /-negative ; 
( 1 8 . 5 . 4 ) K  +  S + B i s maximally log canonical in a  neighborhood of C; 
( 1 8 . 5 . 5 ) K  +  S is purely lo g terminal . 

18.6 Definition, f  : (X, K +  D) —• Z i s a  pre limiting  contraction  if 
( 1 8 . 6 . 1 ) X i s Q-factorial an d / is small ; 
( 1 8 . 6 . 2 ) there exists S C L D J suc h that S is /-negative ; 
( 1 8 . 6 . 5 ) K  +  D i s log terminal . 

18.7 Lemma. Let  f  : (X,K + S +  B) —• Z be  a  pre  limiting  contraction. 
Assume that  p(X/Z)  = 1 . Then there  is a suitable B'  such  that 

(18.7.1) K +  S + B' is  limiting. 
(18.7.2) The flip  of  K +  S +  B' is  isomorphic  to  the  Bip of K +  S +  B 

(assuming they  exist). 
(18.7.3) type(5 + B') > type(5 + B) and  if  {B} ^ 0 then type( 5 + B') > 

type(S +  B). 

Proof. Sinc e p(X/Z) = 1 , the flip  of / is independent o f the choic e o f S +  B 
( 2 . 3 2 . 1 ) . We can throw awa y the component s of B whic h are /-semipositive . 
This gives K +  S + B\. B y ( 1 8 . 4 ) we can increase th e coefficient s of B\ unti l 
we ge t B'  whic h is maximally log canonical near C. 

The type increase d o r remained unchange d i n both steps . I t i s unchange d 
only i f B = B1 an d { B i } = 0 . • 

18.8 Definition, f  : (X, K+S+B)  —* Z i s a special contraction if it is limiting, 
K +  S +  B i s It an d B  i s reduced (possibl y empty). 

Our ai m i s to sho w that i f flips of special contractions exis t the n al l flips 
exist. 
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18.9 Theorem . (In  dimension three  only.)  If  the  flip of any special contrac-
tion exists  then  the  flip  exists  for  any small  contraction  f  :  (X, K +  D) —•  Z 
such that  K  +  D is  kit. 

Proof. Thi s follow s fro m ( 1 8 . 1 1 ) and ( 18 .26 ) . 

We start wit h a n explanatio n o f the basi c idea behind th e proof . 

18.10 Reduction  Strategy.  Assum e for simplicity that X  i s Q-factorial . Firs t 
we increase the coefficients of D until K+D become s maximally log canonical. 
Then take a log resolution h  :  Y —•  X —•  Z  an d appl y the MM P to Ky +  Dy. 
Since Ky  +  Dy i s log terminal, durin g th e progra m w e stay in th e categor y 
of lo g terminal singularities . Therefor e th e progra m neve r lead s bac k t o th e 
original /  :  X —•  Z.  Moreover , each time we need to flip,  we can increase th e 
coefficients furthe r a s in the first  step . Thu s we can use descending induction 
on th e coefficient s of D. I f all technica l detail s wor k out the n ultimately w e 
are reduce d t o flips of contractions g  :  ( X ' , D ') — • Z' wher e D'  i s reduced. 

This simple picture ha s severa l technica l an d conceptua l drawbacks . 
( 1 8 . 1 0 . 1 ) W e need t o kno w termination o f flips in orde r t o appl y th e pro -

cedure. Currentl y w e know this in specia l cases only (cf. Chapte r 7 ) . 
( 1 8 . 1 0 . 2 ) Th e MMP stops when the birationa l transfor m o f K + D becomes 

nef. Thi s i s i n genera l no t th e flip,  onl y a lo g terminal model . Th e curren t 
base point freenes s theorem s ar e no t stron g enoug h to conclude the existenc e 
of the flip unless L D J =  0 . (See , however, Chapter 8.) 

(18 .10 .3 ) Th e main problem is that we are left with too many cases. Assum e 
that we need to flip g:(X', D')  ->  Z' an d D'  i s reduced. liD'-C  <  0 then D' 
contains the flipping curve C, thu s g is a special contraction. I n this case th e 
restriction g\D'  :  D'  —•  g(D')  capture s man y o f the propertie s o f g : X'  —•  Z' 
and allow s u s t o us e result s abou t (no t necessaril y small ) contraction s i n 
dimension dimX — 1 . 

However i f D' •  C >  0 then we might a s well throw awa y D r , and w e have 
no boundar y a t all . Thes e case s include al l terminal flips, which are alread y 
very difficul t t o handle . 

Our ai m i s to hav e a  reduction procedur e wher e w e always en d u p i n th e 
first case Df C  <  0  of ( 18 .10 .3 ). Thi s makes the reduction more complicated, 
but muc h more useful . 

A larg e par t o f the proo f applie s i n al l dimensions . Ther e ar e onl y two 
places where we use three dimensional results. Th e first result we need is that 
limiting flips terminate. Th e second result concerns log canonical singularitie s 
and i s discussed in detai l late r ( 1 8 . 1 5 - 2 6 ) . 

18.11 Proposition. Assume  that  flips  of pre limiting contractions  exist,  and 
that any  sequence  of  them terminates.  Then 
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(18.11.1) For  every  small  contraction  f  :  (X,D)  —•  Z  there  exists  a  Q-
factorial log  terminal model. 

(18.11.2) IfK  +  D is  kit then  the  flip  off exists. 

The followin g improve d version of (18.10) i s based o n [Shokurov91,6.4 -5]. 
Our choic e o f H' i s slightly different . Th e advantage i s that w e do not nee d 
to use semi stable flips later on. 

18.12 Log Flipping Procedure. 
Start with (X,  K  + D) arbitrar y and le t /  :  X —•  Z  b e a small contraction. 

Let T  C  Z b e the exceptiona l set of 
(18.12.1) Le t H'  b e a Cartier diviso r on Z  suc h that 
(18.12.1.1) H  =  f*H' contain s the exceptiona l locus of / . 
(18.12.1.2) H'  contain s th e singula r locu s of Z  an d th e singula r locu s of 

the suppor t o f f(D). 
(18.12.1.3) Fi x a  resolutio n TT  :  Z' ->  Z. Le t Fj  C  Z'  b e divisor s which 

generate N x(Zf/Z). W e assume tha t H'  contain s 7r (Fj) for every  j . (Thi s 
usually implie s that H'  i s reducible.) 

The main consequenc e of the las t assumptio n i s the following : 
(18.12.1.4) Le t h  :  Y —•  Z  b e any proper birational morphis m such that Y 

is Q-factorial . The n th e irreducibl e component s of the birationa l transfor m 
of H'  an d th e exceptiona l divisors generate N X(Y/Z). 

(18.12.2) W e claim tha t ther e i s a  lo g resolution h  :  Y  —>  X  —•  Z fo r 
K + D + H whic h is an isomorphism over Z\H'. Indeed , first w e can resolve 
the singularitie s o f Z\  fo r thi s w e need t o blo w u p onl y inside th e singula r 
set. The n we resolve the singularitie s o f the invers e image of H' U  D; for this 
again w e need t o blo w u p onl y inside th e singula r se t whic h is contained i n 
the preimag e of H'. 

Then Ky  +  (D + H)y i s Q-factorial and log terminal. Observ e that h*(H') 
contains / i ~ 1 ( T ) , h*(H')  i s LSEPD with respect t o h  and h*(H')  contain s al l 
exceptional divisors. 

(18.12.3) Apply the Y/Z-Minimal Model Program to Ky +  (D+H)y ove r a 
neighborhood of T. W e successively construct th e object s (hi :Y{  —>  Z,  Ky i + 
(D +  i ? ) y j . \-(D  + H)y {j contain s th e suppor t o f h*H,  an d every  flipping 
curve is contained in supp h*H  which is LSEPD. Termination o f flips needs to 
be established . I f we can perform the flips then we end up with a  Q-factoria l 
log terminal model h :  (Y, Ky +  (D + H)y) ->  Z. 

(18.12.4) Our next goal is to remove the birational transfor m H'  o f H' fro m 
(D +  H) Y. 

By definition K Y +  (D + H)Y i s /i-nef. Conside r the larges t e  in the rang e 
0 <  e  < 1  such that K Y +  (D  + H)Y -  eH'  i s /i-nef. I f e = 1  then 

KY +  DY =  KY +  (D + H)Y -  H' 
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is /i-nef , henc e h  :  Y —>  Z  i s a log terminal model . 
Otherwise w e try t o increase e  as follows . Tak e 0 < r ? <C e. The n 

J ^ +  (Z ) + # ) y - (e + 77 )ir 

is not nef. W e can apply the relative Minimal Model Program. W e successively 
construct th e object s 

(fa :Yi^Z,  K Vi +  (D + H)Vi -  ( e + r,)H<). 

By constructio n (D  +  H)y -  ( e + ri)H'  i s LSEPD, thus by (2.35 ) ther e ar e 
only finitely many (Ky  +  (D + H)y —  (e + T?)!?')-extremal rays. Therefor e we 
may assume tha t i f d i s a flipping curve, then 

(18.12.4.1) (Ky { +  (D + H) 9i -  ( 6 + ti)H<)  •  d =  -vHl  •  Q <  0, 

hence H[ • d >  0 . Als o 0 = h \H' •  C{ =  H[  - C t- + ^  <*kE k •  C z- ,  where al l th e 
ak ar e nonnegativ e integers an d th e Ek  ar e /i z-exceptional. Then Ek  •  C2 <  0 
for som e index an d C 2- C C  L(J 9 + H)y.  J . 

If these flips exist an d terminat e then we obtain 

(hk :Y k^Z, Ky k +  (D + H)yk -  ( e + r,)H' k) 

such that Ky k +  (D + H)yk —  (e + rf)H'k i s hk-nei.  Thu s w e can increase th e 
value of 6 to e f >  e + t). Next apply th e 

Minimal Model Program a s before , an d s o on. 
We claim that afte r finitely  man y steps we reach e  = 1 . Th e only question 

is the terminatio n o f flips.  This is however slightly more delicate than usual 
since we have to account for the possibilit y that we have an infinit e sequenc e 
of (K  +  (D + H)y —  €.ff)-flips durin g whic h the choic e of e changes. However 
from (18.12.4.1 ) i t follow s that fo r every such flip 

{Kyi +  {D + H)y i-H'i)-Ci<Q, 

thus our sequenc e of (K  +  (D  +  H)y  —  €fl")-flips is also a  sequenc e of (K + 
(D+H)y —  ^)-flips. Henc e we face only the usual termination proble m which 
is settled i n chapte r 7 . 

(18.12.5) If all the above flips exist and terminate then at the end we obtain 

h:(Y,Ky +  Dy)-^Z 

J^ + (Z) + #)y-(e + 77)irJ^ + (Z) 
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such that Y  i s Q-factorial, Ky  +  Dy i s log terminal and h-nef. 

18.13 Proof of  (18.11).  Le t /  :  (X, K + D) Z  b e a pre limiting contraction. 
Apply the lo g flipping procedure (18.12) . 

We clai m that durin g th e procedur e onl y pre limitin g flips  ar e used . I f 
d i s a  flipping  curv e i n (18.12.3 ) the n d  C  h^H'  an d d  •  h\H' =  0 . B y 
(18.12.1.4) there is an irreducible component Fi C  h*H' suc h that C{  -F{ -=f=-  0. 
Thus a  suitabl e irreducibl e componen t of h*H' intersect s C{  negatively. W e 
throw away those components of (D + H)y{ whic h intersect C\  nonnegatively. 
Write th e remainin g component s as S  +  B wher e the component s of S hav e 
coefficient on e and th e component s of B hav e coefficien t <  1 . 

In ste p (18.12.4 ) w e proved that C 2 •  Ek <  0 , therefor e w e obtain a  pr e 
limiting contraction . 

By assumption every step of the log flipping procedure exists and we assume 
termination. A t the end we obtain a Q-factorial log terminal model h :Y —•  Z. 

If K  +  D i s kit , the n Ky  +  Dy i s als o kit , henc e th e flip  o f /  exist s b y 
(2.29). • 

The followin g refinemen t o f (18.11) i s crucial in the nex t step . 

18.14 Proposition . Let  f  :  (X, K  +  S + B) —•  Z be  a, limiting contraction. 
Assume that  p(X/Z)  =  1 . Assum e moreover that 

(18.14.1) The  flip  of  every limiting  contraction  of  greater type  exists. 
(18.14.2) The  flip  of  every special  contraction  exists. 
(18.14.3) Pre  limiting flips  terminate. 
Then the  flip  of  f also  exists. 

Proof. A s before let T  C  Z b e the exceptiona l set o f F-1. 
As a first  step we construct a  log terminal model of (X, K +  S + B). T o do 

this we take a  log resolution p :  X' —*  X  an d appl y the (K X

f +  (S +  B)x')~ 
MMP relativ e t o a  neighborhoo d of S  C  X . I n th e cours e o f the progra m 
we have t o mak e certai n flips  wit h flipping  curve C.  Al l flipping curves ar e 
contained i n 

S U P P ( p * 5 ) C L ( 5 +  B ) X ' - I . 

By the proo f o f (2.16.2) the exceptiona l divisor of p supports a  divisor E suc h 
that —  E i s p-ample. Thu s C  •  E <  0 and th e contractio n of C i s pre limiting . 

Let B  =  J2ibiBi- T h e n type( S + B ) =  (&i,.. . A ). O n X'  th e onl y 
divisors in (S  + B)xf wit h coefficien t <  1  are the birationa l transform s B\.  I n 
order to make a contraction limiting, first we throw away those B'- which have 
nonnegative intersectio n wit h C.  The n w e can increase th e coefficient s as i n 
(18.7). Thu s th e correspondin g limiting contractio n o f C i s either specia l or 
it ha s typ e strictl y greate r than type(5 + B). 
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Thus th e existence o f the flip of C follow s fro m the existence o f limiting 
flips of greate r type and of special flips. 

At th e end we obtain g : Y —•  X whic h is a Q-factorial lo g terminal model. 
In particular , 

Ky +  (S + B)y =  g*(Kx +  S + B). 

Next let H' be a sufficiently genera l and sufficiently /-ampl e diviso r on X. 
Let H = g*H'. For some 0<e<l, K  + S + B + eH' is numerically /-trivia l 
and Ky  +  ( S + B)y +  eH is log terminal and numerically /  o  ^-trivial. Fo r 
some 0 < rj  < e  apply the MMP for 

KY +  {S + B)Y +  {e-ri)H 

to Y/Z.  Durin g the course of the program the birational transfor m o f Ky + 
(S+B)y+eH remain s numericall y trival over Z. Thu s if C% is a flipping curve 
in th e i^-step o f the program the n C%  Hi  >  0 . Therefor e th e contractio n 
corresponding to C{  is a (Ky { +  (S + J5)y.)-extremal contraction . W e clai m 
that i t is pre limiting an d of type at leas t th e type of S + B. Th e statement 
about th e type can be proved as before. 

Let S i C S be such that C  • Si < 0 . Sinc e H' •  C >  0, there is an a >  0 
such that S i + aH' i s numerically /-trivial . Thu s g*(S\ + aH) i s numerically 
/ o  (/-trivial, an d it contain s ( / o  ^)""1 (T). Th e same propertie s continu e to 
hold for its birational transfor m o n Yi for every i. By assumption C 2 • H >  0, 
hence (g*Si)i  •  C% <  0. Therefore there is an irreducible componen t of 

S u p p ( ^ S i ) , - C L ( S +  B ) Y , j 

which intersects d  negatively . 
At th e end we obtain g  : Y —•  Z  suc h that 

Ky +  (S + B)y +  (e-r))H 

is (7-nef . S  + B + (e — rj)H'  i s LSEPD with respec t t o /, and thus the flip of 
/ exist s by (2.32.2) and (2.29.1) . • 

(18.14) i s very useful i f there is no infinite increasin g sequenc e of limiting 
contractions. A t first  sigh t ther e i s no reason wh y such a  sequenc e shoul d 
not exist . [Shokurov88,91 ] discovered that ther e axe many situation s wher e 
a simila r orderin g o f the coefficients makes sense , and, at leas t conjecturally , 
there are no infinite increasin g sequences . Belo w we define some of these set s 
of sequences . Late r w e prove som e relationship s betwee n the m an d finally 
we sho w the nonexistence of infinite increasin g sequence s in low dimensional 
cases. 
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18.15 Definition. 
(18.15.1) <S n(fano) i s the set of sequences ( 6 1 , . . . , bm) suc h that ther e is an 

a smoot h an d proper Fan o variet y X  o f dimension a t mos t n  and a divisor 
Y, b{Bi suc h that p(X) =  1 , Kx +  Y ^%B%  is log canonical, log terminal outside 
Y2, Bi and numerically trivia L 

(18.15.1) iS n(global) i s the set of sequences ( 6 1 , . . . , bm) suc h that ther e is 
a prope r variet y X  o f dimension a t mos t n  and a diviso r Y  biBi  suc h tha t 
Kx +  ^2 biBi i s log canonical, lo g terminal outsid e Y  B%  a n d numericall y 
trivial. 

(18.15.2) S n(local) i s the set of sequences (&i , . . . ,& m ) suc h tha t ther e is 
a pointe d a  Q-factoria l variet y x  G  X o f dimension a t mos t n  and a divisor 
Y b{B{  suc h that x  G  OBi and Kx +  Y ^%Bi  i s maximally log canonical at x. 

(18.15.2) S n(local) i s the set of sequences ( 6 1 , . . . , bm) suc h that ther e is a 
Q-factorial variet y X  o f dimension a t mos t n , a closed subse t Z  C  X an d a 
divisor Y, biBi suc h that every Bi intersects Z and Kx +  Y biBi  is maximally 
log canonica l near Z. 

(18.15.3) <S^(local ) i s the set of sequences ( & i , . . . , 6 m ) suc h tha t ther e is 
a pointe d a  Q-factoria l variet y x  G  X o f dimension a t mos t n  and a divisor 
Bo + Y^biBi (Bo  ^ 0  is reduced bu t possibly reducible) suc h tha t x  G  nl?2-, 
Kx +  Bo is purel y lo g terminal an d Kx  +  Bo + Y biBi  i s maximall y log 
canonical at x.  (Purel y log terminal implies that B Q i s locally irreducible. ) 

(18.15.3) Sn  (local) is the set of sequences ( 6 1 , . . . , bm) suc h that there is an 
a Q-factoria l variet y X  o f dimension at most n, a subset Z  C  X an d a divisor 
Bo +  Y biBi  (Bo  7* ^ 0 is reduced bu t possibly reducible) suc h tha t ever y Bi 
intersects Z, Z C  I?o> Kx +  B0 i s purely log terminal and Kx +  B0 +  Y b%Bi 
is maximally lo g canonical near Z. 

18.16 Conjecture . The  ascending chain  condition holds  for  any of the six 
sets in  (18.15).  (Wit h respect  to  the ordering given in (18.2.2)). 

For technical reason s w e also need the following rather complicated defini-
tion. W e try to formalize the properties o f the different (16.6-7) . 

18.17 Definition.  S n(local diff ) i s the set of sequences ( 6 1 ? . . . , 6 m ) suc h tha t 
there i s a  pointe d a  variet y x  G  X o f dimension a t mos t n  an d a  diviso r 
K +  A + biBi  suc h that 

(18.17.1) x  G  nSuppB,-, 
(18.17.2) K  +  A is purely lo g terminal and K + A + Y  ^%Bi  i s maximally 

log canonica l at x. 
(18.17.3) A  = 5 (̂ 1 —  l/rrij)Aj wher e Aj are irreducible, reduce d and the 

rrij ar e natural numbers (w e allow rrij = 1); 
(18.17.4) Bi  i s Q-Cartie r fo r every i  an d Bi  =  Yj( sij/mj)^j f ° r some 

integers Sij  > 0 such that Yj  sij >  0. 
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It i s clear tha t S n (local ) C  Sn (loca l diff) . 

18.18 Definition.  Le t £  b e a  se t o f sequences. W e define tw o othe r set s of 
sequences C  and D~ X(C) a s follows : 

(18.18.1) ( 6 1 , . . . , b n) G  C if and onl y if for every 1 < j  <  n there is a subse t 
( ¿ 1 , . . . , i k(j)) o f ( 1 , . . . , n)  containin g j  suc h that (b h,..., b ikU)) G  C. 

(18.18.2) Le t D~ X(C) b e th e se t o f sequences (&i , . . . , 6 n ) suc h tha t 0  < 
b{ < 1  for every  i  and th e followin g holds: 

There is a natural number k  and positive integers r^ , integer s 0  < Shi  <  r/j, 
and th  G  {0 ,1} fo r ever y 1  < h  < k an d 1  < i  <  n suc h that 

PÄ = +  >  — b¿ + —  <  1  for every h; 
rh ~  r h r h 

г=0 
(p i , . . . ,p*) G  C; an d 
maxjs^i} > 0  for every 1 < i < n. 

(18.18.3) Th e following two properties ar e eas y to check: 

£ =  C  an d D- 1(C) =  D-\C). 

(18.18.4) Fro m (7.4.3 ) w e see that D~ 1(D~1(C)) =  D~\C). 

The barre d version s o f (18.15 ) ar e relate d t o th e other s i n a  ver y simpl e 
way: 

18.19 Proposition . 
(18.19.1) S n(local) C  Sn(local); 
(18.19.2) S{(local)  C  s {(local); 
(18.19.3) C  satisfies the  ascending  chain condition iff  C  does. 

Proof. Le t /  :  Y —•  X b e a  lo g resolution. Fo r ever y Bj  ther e i s a  diviso r 
Ej C  Y  a s i n (18.4.1) . Le t Xj  G  X b e the imag e o f the generi c poin t o f Ej. 
Let i  =  ¿ 1 , . . . , ik b e those indice s such that Xj  G  B{. The n 

KX + 
k 

L = 1 
bII 

is maximally log canonical at Xj.  Thi s proves (18.19.1), and (18.19.2) is proved 
the sam e way. 

Clearly C C C. Assum e that C  satisfies th e ascendin g chai n condition . Le t 

bi < b 2 <  . . . 
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be an infinit e ascendin g chai n wher e 

b i =  ( b i t f . . " . b i n ( iç = ) E L. 

We may assum e tha t n  = n(i)  i s constant. B y definition, fo r every  i  we have 
a coverin g of ( 1 , . . . , n) b y n  subsets . B y passing t o a  subsequenc e w e may 
assume tha t th e coverin g does not depen d o n i.  Thu s fo r every  i  w e get n 
sequences h\  £  C  such that, 

b { < b i < . . . Vj , 

and fo r ever y i  a t leas t on e o f the inequalitie s <  b^ + 1 i s strict . Thi s i s 
impossible since C  satisfies th e ascendin g chai n condition . • 

The followin g wa s pointed ou t b y Alexeev: 

18.19.4 Proposition . Assum  the  log  MMP for  dimension n.  Then 

Sn(global) C S n(fano). 

Proof. Le t (X , £ biBi)  E  5N(global). A s in (8.8.1 ) le t /  :  X' -+  X b e a smal l 
morphism suc h tha t X'  i s Q -factorial. The n (-X"' ,£M?{ ) £  <S n(global). W e 
prove by induction o n d imX' and rankPic(X' ) that . . . , bm) E  <S n(fano). 
Fix k  an d conside r the (K  +  J2^iBf

{ -  eB[)-MMP . Afte r possibl y some flips 
X' —->  X",  w e perform a  divisoria l o r a  Fan o contractio n g  :  X" —•  Z. B'l 
is positiv e o n th e extrema l ra y o f g, thu s B'l  i s no t contracte d b y g  i n th e 
divisorial case , and intersect s th e genera l fiber  in the Fan o case. 

If g  i s divisorial , then rankPic(X ;) = rankPic(X" ) >  rankPic(Z ) an d w e 
are done by induction on rank Pic. I f g is Fano then we can restrict everythin g 
to the genera l fiber  o f g and conclud e by induction o n the dimension . • 

18.20 Definition.  Le t £  b e a  se t o f sequences. W e say tha t C  has bounded 
sums i f there is an M  suc h that ]T ) b{ < M fo r every . . . , bk) E  C. 

The various cases in (18.15 ) and (18.17 ) are related b y the followin g result. 

18.21 Theorem . (Inductive  Principle) 
(18.21.1) S°(local)  C Sn-i(local diff). 
(18.21.2) Assume that  for  every n-dimensional  log canonical variety (X , K+ 

D) there  is  a Q-factorial log terminal model  f  :Y  —>  X. Then 

Sn(local diff)  C D- l(Sn-.1(global)). 

(18.21.3) If  C  has bounded  sums  then  so  does D" l(C). 
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(18.21.4) If C has the ascending chain condition and has bounded sums 
then so does D~X(C). 
Proof. We start with (18.21.1). Let(&i,--- , be a sequence in <S° (local). By 
assumption there exists an n-dimensional variety X and a divisor 5 + ^ b{Di, 
with S reduced and irreducible, such that Kx + S + b{D{ is maximally log 
canonical at a point x G C\D{ C X. Set 

A = Diffs(0) and Bi = iwOx(Di), 

where i : S —• X is the natural injection and iw is defined in (16.3.6). By 
(16.6) K + A + YJ biBi satisfies the conditions (18.7.3-4) and by (17.8) it also 
satisfies (18.17.2). Thus (bu - • • , bk) G <Sn-i(local diff). This proves (18.21.1). 

The proof of (18.21.2) is similar. Pick A ) € <Sn(local diff). By 
hypothesis there exists an n-dimensional pair ( X , K + A + ^biBi) which is 
maximally log canonical at a point x G X. Let 6j be the coefficient of Aj in 
A + biBi. Let / : Y -> X be a Q-factorial log terminal model. Let Aj C Y 
be the birational transform of Aj and let Ek C Y be the exceptional divisors. 
Pick E0 such that x G f(EQ). By (17.5) E0 is normal. Then 

0 = r(K + A + J2 biBi)\E0 = KEo + Diff(]T Ek + ] T SjAfr 

where = means numerical equivalence relative to / . By (16.6) and (7.4.3) 

D i f f £ o ( £ 25*+ £ 6jA'j) = ^2phDh, 

where Dh C EQ are divisors and the coefficients ph are computed by the 
formula in (18 .18 .2 ) for suitable rh,Shi and th- (The presence of the Ek 
are the reason of using th in (18 .18 .2) . ) If EQ is not proper then replace it 
with the general fiber of EQ —• /(EQ). The last assumption of (18 .18 .2 ) is not 
necessarily satisfied since some of the / ~ 1 ( J B 2 ) may not intersect EQ. By (18 .4 ) 
for every B{ there is an exceptional divisor Ek such that /~ 1 ( J5 2 ) intersects 
the general fiber of Ek —• f(Ek). 

Let Eo run through all exceptional divisors such that x G /(EQ). This 
proves ( 18 .21 .2 ) . 

From the formula for ph it is easy to see that 

Ph> Yl bi' 
{i:sHI?0} 

Thus Y^Ph > and hence D 1(C) has bounded sums if C has. This 
proves (18.21.3). 
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Finally, conside r (18.21.4) . Assum e that w e have a n infinit e increasin g 
sequence b 1 <  b 2 <  B y passing to a subsequence we may assume tha t 
they al l have the same length b 3 =  ..., 

We use an upper inde x j t o refer t o a formula (18.18.2 ) associate d to b 3. 
The symbols k3 ,pJ

h,rJ

h,sJ

hi, t J

h are as in (18.18.2). Th e numbers b\ are bounded 
from belo w by ¡1 =  min{6| } >  0 , and thus p3

h >  ¡1 henc e YlPh  —  & I2 which 
shows that k 3 i s bounded. Thus by passing to a subsequence we may assume 
that k 3 =  k is independent o f j . 

18.21.5 Claim . For  each fixed index  h,  {p J

h} has  an infinite nondecreasing 
subsequence. 

Proof. W e drop the index h from the notation. B y assumption 

pJ = rj _  i 
rj 

*Ji 

i 
Since p3< 1  we obtain 

Sijbji < 1 . 

The numbers bj  are bounded from below by ¡1 >  0, hence s\ are bounded from 
above by a constant. B y passing to a subsequence we may thus assume tha t 

= Si  are independent o f j. Se t u J =  Yl siM^ then u 3 i s a nondecreasing 
sequence of real numbers, and u3 <  1 . B y passing to a subsequence we may 
also assume that r 3 i s nondecreasing. Thu s 

p3 — 
r3 -  1 

r J 
u3 

rj 
= 1 

1-u3 

rj 

is also nondecreasing. 
Observe furthermor e tha t p 3 i s strictl y increasin g i f the sequenc e r 3 i s 

strictly increasing . • 

We continu e wit h th e proo f o f (18.21). B y passing t o a  subsequenc e we 
may assume that s 3

hi =  Shi  ar e all independent o f j an d rJ

h i s either constan t 
or increasing for every h. W e obtain that p 1 <  p2 <  . . . an d the sequence is 
strictly increasin g if one of the sequences rJ

h i s strictly increasing . 
We are left wit h the case when in addition r 3

h =  i s also independent of 
j . The n 

phj 
rh - 1 

h rh i 

dhi 
rh 

h 

bji 

= C 0 + Cibji 
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where the Ci are positive and independent of j . Since the sequence b J is 
strictly increasing, the same holds for YlhPhi hence for the sequence p-7. • 

18.22 Theorem. Let (X^^biBi) be log canonical at a point x G C\Bi. 
Assume that Kx and Bi are all Q-Cartier at x. Then ]P bi < dimX. 

In particular, Sn(local) has bounded sums. 

Proof. The problem is clearly local. The claim is clear if n = 1. 
By taking repeated cyclic covers we may assume that the Bi = (/2- = 0) 

are Cartier. Assume that Ylk > n = dimX. Let B = ($^ct-/,- = 0) for 
general ct- G C. Let g : Y —• X be any log resolution of (X, B + ^2Bi) with 
exceptional divisors Ej. By specializing g*B to g*Bi we obtain 

g71(B)~971(Bi) + ,52eijEj, 

where e y > 0. Thus if 0 < 6{ < 6j and £ 6J = 1 then 

a{Ej,B + - 65)5,-) = a(Ej,£огД) + £ 6 j e y . 

Repeating this procedure we eventually obtain an lc pair 

(X,B1 + --- + Bn + A) 

where the B{ axe general Cartier divisors (with coefficient one) and A = 
d{Bi is some other divisor such that £2 d\ = bi — n. 
Bv (17.2) 

(Bn, (jl^ |S„ + Diff(A)) 

is also lc. Thus A = 0 by induction on dimX. • 

18.23 Complement. The above argument in fact shows that if the Bi are 
Cartier and ^ b{ > dimX — 1 then X is smooth at x. Indeed, in this case we 
can replace 

n n —1 
J ] № by £ £ t - + A. 
2=1 i=l 

By induction on the dimension Bn-i is smooth hence so is X. 
Similarly, if the Bi and Kx are Cartier and ]T) 6t- > dimX - 2 then x e X 

is a cDV point. 

Combining (18.21) and (18.22) we obtain: 
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18.24 Corollary . Let  X  be  an  n-dimensional  Fano  variety with  p(X)  =  1 
and let  Y2 biBi be  a Q-divisor such  that  Kx  +  ^2 b{B{  is  lc and  numerically 
trivial Then  £  bi <  dimX +  1. 

In particular,  S n(fano) has  bounded  sums. 

Proof. Choos e an embedding X C  P^ an d le t y  E  Y b e the con e over X wit h 
vertex y.  Le t B[  C  Y b e the con e over B{. (B[  is Q-Cartier sinc e p(X)  =  1. ) 
It i s easy to se e that (Y , E biB'I) is lc. Thus (18.22 ) implie s (18.24) . • 

18.24.1 Remark,  ^(global ) doe s no t hav e bounde d sums . Indeed , assum e 
that D  E  I  — Kx\  i s reduce d wit h onl y nodes . Blowin g up a  nod e give s 
p :  X'  —>  X  an d p" 1(D) E  |  —  Kx f |  ha s on e mor e component s tha n D. 
Thus there are surfac e example s with arbitrary many reduced component s in 
a membe r o f |  — Kx\-

18.25 Theorem . Assume  the  log  MMP in  dimension  n  —  1 . Assume  that 
the ascending chain condition holds for <SN_2(feno). Then  the  ascending chain 
condition also  holds for  Sn-i(local) and  S^(local). 

Proof. B y (18.18.3) , (18.19.4 ) an d (18.21.2 ) 

5 n _i(local diff ) C  D- 1 (5 n ^ 2 (g loba l ) ) = J D- 1 (5 n _ 2 ( fano) ) . 

Therefore b y (18.21.4) and (18.24) the ascendin g chai n conditio n hold s fo r 
<Sn_i(local diff) . Th e rest follow s from (18.21.1) and (18.17). • 

18.25.1 Corollary. The  ascending  chain  condition  holds  for  S\(global), 
S2(local) and  S$(local). 

Proof. Conside r Si  (global). Th e onl y possible X i s P 1 an d i f K + ^fyBi is 
numerically trivia l then ]Tb 2- = 2 . Thus i f (b{)  and (&£) are tw o sequences of 
the sam e lengt h suc h tha t (bi)  < (6J) then (bi)  = (&(•) . The res t follow s b y 
(18.25). • 

18.26 Corollary. (Dimension  three  only)  Assume that  the  flip of every spe-
cial contraction exists. 

Then the  flip  of  every limiting  contraction  also  exists. 

Proof. Conside r al l limiting contraction s whos e flip does not exist . Conside r 
their types. The y give a set B  C £ 3 (local). B y the ascendin g chain condition, 
if B  is not empty , i t ha s a  maximal element ; le t / :  (X, K  + S + B) - > Z b e a 
corresponding contraction. B y (18.14) the flip of / exists, a contradiction. • 
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19. COMPLEMENT S ON LOG SURFACES 

DAVID R . MORRISON 

One of the key innovations of [Shokurov91] is the notion of ra-complement, 
which we now introduce. 

19.1 Definition. Le t X  b e a norma l variet y an d let D  b e a  subboundar y 
(2.2.4) on X. Le t S be the smalles t effectiv e Wei l diviso r o n X suc h tha t 
i_D — 5J < 0, and let Do = D — S. A n n-complement o f Kx + D is a divisor 

D e  \-nKx ~~nS-  L (n + 1 ) D 0 J | 

such that Kx  + D~*~ i s log canonical, where 

D+ =  S+-(^(n +  l)D0j +  D). 

We say that Kx  + D is n-complemented i f an n-complement exists . 
Note that nD+ is an integral divisor belonging to the linear system |— nKx\-

The defining propertie s ca n be formulated a s properties o f nD+, which must 
satisfy: 

(i) nD + —  nS — i_(n + l)DoJ i s effective, and 
(ii) Kx  + D+ i s log canonical. 

We start wit h som e easy properties o f n-complements. 

19.2 Lemma. If  Df is  a subboundary, D < D', Kx +  D' is n-complemented, 
then Kx  + D is n-complemented. 

Iff : Y —»  X is  birational, and Kx+D is  n-complemented, then  Ky+f(D) 
is n-complemented. 

Proof. I n the first case, set D+ =  ( D ' ) + , an d in the second case, set f(D)+ = 
f(D+). • 

We need a  generalization o f the notion of n-complement to cover the case 
in which the variety X  i s reducible. Ther e axe difficultie s formulatin g thi s in 
general, so we restrict our attention to curves and surfaces. 

s. M. F. 
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A variet y X  i s semismooth  in  codimension  1  if al l o f it s codimensio n 1 
singularities are normal crossing points (cf . ( 1 2 . 2 . 1 ) ) . Suc h an X i s Gorenstei n 
in codimensio n 1 , so Kx  exist s a s a  Wei l divisor (class) . Whe n dim X =  1 , 
we call X  a  semismooth  curve.  (Th e usual terminology is nodal curve. ) 

Let X  b e a  semismoot h curve , an d le t D  =  d{Di  b e a n R-Wei l divisor 
supported o n th e smoot h locu s o f X.  Th e coefficient s d{  are allowe d t o b e 
negative. W e say tha t Kx  +  D i s semilog  canonical  (sic)  i f d, - <  1 . (Sinc e 
dimX =  1 , there i s n o nee d t o tak e a  semiresolutio n befor e computin g dis -
crepancies. Th e formul a 

Kx =  (K x +  D) +  E (di) Di 

shows that —  d{ > —  1 is the correc t analogu e o f the l c condition.) Not e that 
Kx +  D  i s si c i f an d onl y i f D  i s a  subboundar y whos e suppor t lie s i n th e 
smooth part o f X. 

There is also a definition o f semi log canonical in the surface case , originally 
given in [ K S B 8 8 ] , and discusse d i n ( 1 2 . 2 ) . Thi s definition doe s require taking 
semiresolutions. W e don't repea t i t here . 

19.3 Definition.  Le t X  b e semismoot h i n codimensio n 1 , an d le t D  b e a 
subboundary whos e suppor t lie s i n th e smoot h par t o f X.  Suppos e tha t 
dimX <  2 . Let S  b e the smalles t Wei l divisor on X  suc h that L D —  SJ <  0, 
and le t D Q =  D —  S.  A n n-semicomplement  o f Kx +  D i s a divisor 

D e  \-nK x -nS-  L (n +  1)D 0J\ 

such that Kx  +  D+ i s sic, where 

D+ =  S + - ( L ( n +  l)I>o -i + 5) . 

(The onl y place where th e restrictio n o n dimension enter s is in th e definitio n 
of sic , which has onl y been give n when dim X <  2.) 

Shokurov's strateg y i n studyin g n-complement s i s t o us e inversio n o f ad -
junction ( 16 .13 , 17 .6 ) t o lif t a n n-complemen t fro m S  t o X.  Fo r thi s t o b e 
useful, w e need a n explici t analysi s o f complements in low dimension. 

19.4 Theorem. Let  X  be  a semismooth curve,  connected but  not  necessarily 
complete, and  let  D  be  a subboundary whose  support is  disjoint from  SingX, 
and lies in the  union  of the complete  components  of  X. Suppose  that  LZ? J >  0 

(so that  in  particular, D  is  effective, i.e.,  is a boundary), and  that  —(Kx  +  D) 
is nef  on  each  complete  component  of  X. Then  Kx  +  D is  1-,  2-,  3- , 4-, or 
6-semicomplemented. 
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Moreover, if  Kx  +  D is  not 1-  or 2-semicomplemented, then  X  =  P 1 and 
I_D+J =  0 . In addition,  if  X  contains  an incomplete component,  and  Kx  +  D 
is not  1-semicomplemented  then  D  has  the  form  \D\  +  \D 2 for  irreducible 
divisors Di,  D 2. 

Proof. Th e combinatoria l ingredient s i n this proof wil l seem familiar t o thos e 
who hav e studie d lo g canonical surfac e singularitie s (cf . Chapter 3) , o r Ko-
daira's classificatio n o f degenerate ellipti c curves . Ou r proo f explicitl y gives 
the diviso r D + i n ever y case. 

Let C  b e a  complete component o f X, an d le t C  fl Sing X = { P i , . . . , P^} . 
Then deg (Kx\c) =  2g — 2 + k. Sinc e deg(Kx\c) <  0 , ther e are fou r possibil-
ities: 

(I) g  = l,  k  = 0,deg(Kx\c) =  0 
(II) 0  = 0 , k  = 2,  deg(Kx\c) =  0 

(III) g  = 0,k =  l,deg (Kx\c) =  -l 

(IV) g  = 0, k  =  0, deg (Kx\c) =  -2 . 
Now D  canno t mee t component s o f type (I ) o r (II) , since deg (Kx\c) =  0 . 
Since X  i s connected , i f i t ha s a  componen t C  o f type (I ) then X  —  C an d 
D =  0 . I n thi s case, Kx  +  D i s 1-complemented , with D+  =  0 . 

Components of type (II) , however, can meet othe r component s of the sam e 
type, an d ca n mee t component s o f type (III ) a s well . Sinc e ther e ar e onl y 
two points o f intersection o n each component of type (II) , the entir e curve X 
must for m a  chai n o r a  cycle . Chain s wil l be terminated b y component s of 
type (III) , or by incomplete components. 

In th e cas e o f a cycle , D  i s agai n 0  and Kx  +  D is  1-semicomplemente d 
with D + =  0 . I n the cas e of a chain, an y complete component C  o f type (III ) 
on the en d o f the chai n wil l have a  divisor D  fl C  =  d{D{  with d{  < 1  and 
^2 ̂  <  1 . I f any di 1 =  1 , the n D  fl C =  D\  whic h is 1-semicomplemente d i n a 
neighborhood o f C wit h D + =  Di. S o we may assum e di  <  1 . Sinc e C =  P 1 , 
an n-complemen t D  wil l exist exactly when its degree n — degi_(n + l)(DnC)j 
is nonnegative. Ther e ar e onl y a few possibilities i n this case: 

(1) L2 DJ =  0 . The n Kx  +  D is  1-semicomplemented i n a  neighborhood 
of C , with D + =  D  fo r some divisor D  o f degree 1 . 

(2) L2 Z)J =  D\.  The n Kx  +  D is  again 1-semicomplemente d i n a  neigh -
borhood o f C, with D+  =D 1. 

(3) L2 DJ >  Di  +  D<i.  Thi s implie s tha t di,d 2 >  5 , an d henc e tha t 
dx =  d 2 =  \.  I t follow s tha t L3 I>J =  D x +  D 2, s o that K x +  D  i s 
2-semicomplemented i n a  neighborhoo d o f C, wit h D+  =  D  f l C = 
\D, +  \D 2. 

Putting thi s togethe r fro m th e tw o end s o f th e chain , w e se e tha t i n al l 
cases Kx  +  D  mus t b e 1-semicomplemente d o r 2-semicomplemented . I n 
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addition, i f there ar e an y incomplet e component s i n X  the n Kx  +  D  i s 1 -
semicomplemented unless  D =  \D\  +  \D 2. 

If X  ha s any component of type (IV) , tha t component must be the whole of 
X. S o X =  P 1; w e write D  =  ^2 d {Di wit h 1  > d 1 >  d2 >  . . . , and repeatedl y 
use th e fac t tha t d%  <  2 . I f di =  cf e = 1  then i f x +  i s 1-complemente d 
with D + =  Di +  D2. I f di =  1  > ¿2 ? the n C —  {Di}  ha s th e sam e numerica l 
properties a s a  componen t of type (III) . The analysi s give n above applies t o 
show that Kx  +  D i s 1- or 2-complemented, with D + +  D+, wher e D+ 
is the part o f D+ whos e support doe s not contain D\ . D + is determined fro m 
i_2(D -  Z>x) j as in (1) , (2), and (3 ) above. 

Thus, we may assume 1  > d\.  The n a n ra-complement D exist s i f and only 
if it s degre e 2n — degL_(ra + 1)D J i s nonnegative. Th e possibilities are : 

(1) L2Z) J =  0 . The n Kx  +  D i s 1-complemented, with D + =  D fo r some 
divisor D  o f degree 2. 

(2) L2D J =  £>i . The n K x +  D i s 1-complemented , wit h D + =  D x + D 
for som e divisor D o f degree 1 . 

(3) L2£> J =  Di  +  D 2. The n +  D  i s 1-complemented , wit h £> + = 

(4) L2£>J>£> I +  D 2 +  D 3. 
(a) L3D J =  D 1 +  D2 +  D3. The n K x +  D i s 2-complemented, with 

£>+ = +  \D 2 +  \D 3 +  fo r some divisor D  o f degree 1 . 
(b) L_3D_ I = D 1+D2 +  D3 +  D4. The n K x +  D i s 2-complemented, 

with 
£>+ =  iD x +  \D 2 +  i£> 3 +  \D±. 

(c) L3£> J = 2£> i +D2 +  D3. The n i f* + L> is 2-complemented, with 
D+=Dt +  \D 2 +  \D 3. 

(d) L3D J =  2Di  +  D2 +  D3 +  D 4. Thi s implie s that d x =  § , d 2 = 
d 3 =  | , d 4 =  i . Thus , iiT x + - D is 4-complemented, with D + = 
f A +  ± D 2 + iJD 3 +  \D 4. 

(e) L3D J >  2D i +  2D 2 +  D 3. 
(i) L4£> J = 2£>i+2L> 2+2£>3. The n I f x +D i s 3-complemented 

with L> + = | D i +  §£> 2 + | I >3. 
(ii) L4£> J > 3L> i + 2D 2 +  2D 3. 

( A ) L5D J =  31> i +  3D 2 +  2D 3. The n K X +  D  i s 4 -
complemented, with D + =  fD j +  § D 2 + \D 3. 

( B ) L5D J =  № 1+2>D2+2D3. I n this case, using Y ^dt<2 
one ca n sho w that u7D->  =  5D i + 4£> 2 + 3D 3 . Thus , 
i fx +  D i s 6-complemented, with D+ =  f  A +  §.D 2 + 
\D3. 

We leav e th e verificatio n tha t thi s cover s al l possibl e case s wit h ]Td 2; <  2 
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to th e reader . Her e i s a  sampl e o f the typ e o f argument tha t i s required . 
Suppose tha t L_2L> J >  D x +  D 2 +  D3 an d L3L> J >  2D X +  2D 2 +  D 3. The n 
di >  d 2 >  §,  d 3 >  |  s o tha t L_4£> J >  2£> i +  2D 2 +  2D 3. Furthermore , 
d4 <  2  - d i -  d 2 -  d 3 <  | . Thus , i _4d;j = 0  for i  >  4, and I_4D J i s supporte d 
on Di  U  D2 U  Z?3. Thi s justifies th e divisio n into case s (i ) and (ii) . 

The last statements in the theore m ar e clear . • 

The following corollary is immediate . 

19.5 Corollary . Let  D  =  Y ,d{Di be  a  subboundary  on  P 1 . Suppose  that 
each d{  has the  form  di  =  (m 2- - l)/m t- for  some  integer  ra t- >  1 , an d that 
deg(iifpi +  D)  <  0 . Then  the  integers  rrii  must  fall  into one  of  the  following 
cases: 

(1) (mi ) or  (rai,ra 2), 
(2) (2 ,2 ,m 3 ) , 
(3) (2,3,3) , 
(4) (2,3,4) , 
(5) (2,3,5) . 

Moreover, K $i +  D is  1-,  2-, 3-, 4- , o r ^-complemented in  cases  (1),  (2),  (3), 
(4), or  (5),  respectively • 

We now begin the analysis which relates complements on X t o complements 
on S.  Th e first step can b e done in arbitrary dimension . 

19.6 Theorem . Let  X  be  a smooth variety,  let Z  be  a normal variety,  and 
let h  :  X —•  Z  be  a proper morphism  with  connected fibers.  Let  D  =  ^ diDi 
be a  Q-subboundary on  X (i.e.,  a  subboundary with  di G  Q), whose  support 
is a  divisor  with  normal  crossings.  Assume  that  —(Kx  +  D)  is  h-nef  and 
h-big. 

Write D  =  S  +  Do with  S  the  smallest  effective  Weil  divisor  such  that 
LDOJ <  0 , an d suppose  that  either  S  is  irreducible,  or  dimX <  3  an d S  is 
semismooth in  codimension  1.  Given  an  n-(semi)-complement  Ds  of  Ks  + 
Diff(Do), then  in  a  neighborhood of  any fiber  of  h meeting  S,  there  exists  a 
divisor D  G  \-nKx -  nS  -  L (n +  l)D 0_i\_such that  Dift(D)  =  D s. 

If Kx  +  S is  pit or  dimX <  2  then  D  is  an  n-complement.  Moreover,  if 
Ks +  (D s)+ is  pit then  so  is K x+D+. 

Proof. Divisor s fro m th e linea r syste m |— nKx —  nS  — i_(n +  l)Z?o -i| o n X 
restrict t o divisor s i n th e linea r syste m |— nKs —  Diff (L_(n +  1)DOJ) | o n S, 
which is the syste m containin g Ds-  A  failure o f surjectivity o f the restrictio n 
map woul d be detected b y 

R'KiOxi-nKx -  ( n + 1 ) 5 -  L(n +  1 ) A M ) 

= tfKiOxWx +  h ( " +  l)(K x +  D)]). 
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But thi s latte r shea f i s 0  by Kawamata-Viehwe g vanishin g [KMM87,1-2-3] . 
Thus, th e diviso r D  exist s i n a  neighborhood of any fiber  of h intersecting S. 

K +  D+  i s l c nea r S  b y (17.7) . Sinc e K  +  D+  =  0 , (17.4 ) show s tha t 
K +  D+ i s lc in a  neighborhood of any fiber  o f h intersecting S.  • 

In orde r t o appl y this to surfaces , w e need a  lemma . 

19.7 Lemma . Let  X  be  a smooth surface,  let Z  be  a normal surface,  and let 
h :  X —•  Z be  a  birational  morphism.  Let  D  =  ]Td z\D z be  a Q-subboundary 
on X. Assume  that 

(19.7.1) if  d{ < 0 then  h(Di)  is  a point in  Z;  and 
(19.7.2) -{K x +  D) is  h-nef. 
Write D  =  S  +  Do with  S  the  smallest  effective  Weil  divisor  such  that 

LZ?O-J <  0 , an d suppose  that  S  is  a semismooth curve.  Then  every  component 
of D Q which  meets  S  has  nonnegative multiplicity  in  Do. 

Proof. Writ e Do  = D+ — D _, with D+  and D-  effectiv e such that Supp(D+) 
and Supp(£>_ ) have n o common components. B y (19.7.1) , Supp(D_ ) is con -
tained i n th e exceptiona l locu s o f h.  I f D-  ^  0 , let £  b e a  componen t of 
D- wit h D _ •  E >  0 . (Thi s exists b y negative-definiteness o f the intersectio n 
matrix of a contractible curve. ) The n sinc e D + •  E >  0 and —  (Kx +  S +  JDO ) 
is /i -nef, (Kx  +  S) •  E <  0 . I t follow s tha t E  i s a  —  1-curve disjoin t fro m S. 
Thus, blowin g down E preserve s th e assumption s o f the lemma . 

The lemm a no w follow s b y inductio n o n th e numbe r o f component s o f 
Supp(D_). • 

We can now apply (19.4 ) and (19.6 ) to classify n-complement s o n surfaces . 

19.8 Theorem. Let  X be  a smooth surface,  let Z be  a normal surface, and let 
h :  X —•  Z  be  a  birational  morphism. Let  D  =  ^  d{D{  be  a Q-subboundary 
on X whose  support  is  a divisor with  normal crossings.  Assume  that 

(19.8.1) ifdi  <  0 then  h(D {) is  a point in  Z; 
(19.8.2) -(K x +  D) is  h-nef; and 
(19.8.3) Kx  +  D is  log canonical. 
Write D  =  S  +  Do with  S  the  smallest  effective  Weil  divisor  such  that 

LDO-J <  0 , an d suppose  that  S  is  non-empty.  Then  Kx  +  D is  1-,  2-,  3-,  4- , 
or ^-complemented in  a  neighborhood of  a fiber of  h. 

Moreover, if  Kx +  D is  not 1 - or 2-complemented, then  S  =  P 1 an d L .D+ — 
5 J =  0  in a neighborhood of  a fiber ofh. In  addition, if  there is a component of 
S which  is not contained  in  a fiber of h, and if Kx +  D is  not 1-complemented, 
then in  a  neighborhood of  any fiber,  DiS s(Do) =  \P\  +  \P2 for  some points 
Pi, P2  e s. 
Proof. Sinc e Supp£ ) ha s norma l crossings , 5  i s a  semismoot h curve . B y 
adjunction (16.9) , sinc e Kx +  S +  Do is lc, Ks +  Diff D 0 i s sic . Th e norma l 
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crossing assumption implie s that Dif f (Do) i s supported o n the smoot h locus 
of S.  Moreover , —  (Ks +  Dif f Do ) i s ne f o n ever y complet e componen t of 
5. B y (19.7) , L_Diff D0J =  0 . Thu s w e may appl y (19.4 ) an d conclud e that 
Ks +  Dif f Do  i s 1- , 2- , 3- , 4- , o r 6-semicomplemente d an d tha t i t i s 1 - o r 
2-semicomplemented unless S  =  P 1 . 

If Ds  i s the n-semicomplemen t of Ks +  Diff Do,  the n by (19.6) , in a neigh-
borhood o f a fiber  o f h there is a  diviso r D  wit h Diff(D ) =  Ds  whic h is a n 
n-complement o f Kx +  D. 

Suppose that Kx +  D i s not 1 - or 2-complemented. The n by (19.4) , L D + — 
5J =  0  in a  neighborhood of S =  P 1 . Le t g  :  Y —>  X  b e a  blowup on which 
Supp g^1(D+) ha s normal crossings. Write Ky =  g*(Kx+D)+A —  F with al l 
multiplicities o f components of A bein g greater than — 1 and al l multiplicitie s 
of component s o f F bein g greate r tha n o r equa l t o 1 ; b y the connectednes s 
theorem (17.4) , F  i s connecte d in a  neighborhoo d of a fiber  o f h.  Bu t the n 
in that neighborhood, the unio n o f all components of D+ othe r than S  whic h 
have multiplicity 1  in D + woul d necessarily meet S.  Sinc e S alread y contain s 
all component s of that kin d i n a  neighborhood of itself, ther e can be no such 
components. 

The last statement follow s immediatel y fro m (19.4) . • 

19.9 Definition.  Le t X  b e a  norma l variet y an d le t D  b e a  subboundar y o n 
X. A n exceptional n-complement  o f Kx +  D is an n-complement D  such that 
there is exactly one divisor E  o f C(X) suc h that a(E,X,D)  =  —  1. Kx  +  D 
is exceptionally n-complemented  i f there exists an exceptional n-complement. 

19.10 Corollary . Let  X  and  Z  be  normal surfaces,  and let  h  :  X — • Z be 
a birational  morphism. Let  D  =  £]d 2D 2- be  a Q-subboundary on  X. Assume 
that 

(19.10.1) ifdi  <  0 then  h(Di)  is  a point in  Z; 
(19.10.2) -(K x +  D) is  h-nef; and 
(19.10.3) K x +  D is  log canonical. 

Then in  a  neighborhood of  a fiber of  h, 
either Kx  +  D is  1-  or 2-complemented, 
or Kx +  D is  exceptionally 3-,  4-, or ^-complemented. 

Proof. Fi x P  e  Z,  an d le t H  b e a  genera l hyperplan e sectio n o f Z  throug h 
P. Le t A  be the larges t nonnegativ e numbe r suc h that Kx  +  D + \h*(H) i s 
log canonical. 

We first replace D  by D =  D + Xh*(H) an d then replace X  b y a resolution 
of singularitie s g  :  Y —>  X  o n which the suppor t o f the birationa l transfor m 
A o f D ha s norma l crossings . Not e that ther e i s a t leas t on e componen t of 
multiplicity 1  in A, for if not on e could increase A . Thus , we can apply (19.8 ) 
to Ky  +  A an d obtai n a n n-complemen t i n a  neighborhood of g~ 1 ( / i " 1 (P ) ) . 
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By (19.2) , D + =  # ( A + ) will determine an n-complement o f Kx +  D in a 
neighborhood o f h"1(P). Furthermore , i f i_A+ —  5J =  0  then th e induce d 
n-complement o f D is exceptional. Th e corollary follows . • 

19.11 Corollary . Let  X and  Z be  normal surfaces,  and  let h : X —»  Z be 
a birational  morphism.  Let  D = ^ d 2 \ D z be  a Q-subboundary on  X. Assume 
that 

(19.11.1) ifdi  <  0 then h(Di) is a point in  Z; 
(19.11.2) -(K x +  D) is h-ample; and 
(19.11.3) K x +  D is log terminal. 
Suppose in  addition that  there  is  a reduced component  So  of D not  con-

tained in  a fiber of  h. Then  in a neighborhood of  any fiber  of  h meeting So, 
Kx +  D is 1-complemented. 

Proof. W e proceed as in the previous proof , replacing (X,  D) by (Y, A ). Writ e 
A =  S  + A o wit h S  th e smallest effectiv e Wei l divisor suc h tha t LA O J <  0. 
Note tha t th e birationa l transfor m o f So is an incomplet e componen t o f S 
in a  neighborhood o f any fiber o f g o h which i t meets . Sinc e Ky  +  A is It 
and —  (Ky +  A ) i s (g  o /i)-ample, w e may replace A  by S + (1 + e)A o (for 
small e  >  0) without disturbin g the assumptions . Bu t now i t i s impossibl e 
for Diff(( l +  £)Ao ) t o be \P\ +  |P2 , independen t o f e. I t the n follow s from 
the las t statemen t i n (19.8 ) tha t Ky  +  (1 + e)A  (an d hence Kx  +  D) i s 
1-complemented. • 
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20. COVERIN G METHO D A N D EAS Y FLIP S 

JÀNOS KOLLÀ R 

In thi s chapte r w e construct som e log flips by reducing thei r existenc e t o 
the cas e of flops.  Th e reduction relie s on the following : 

20.1 Proposition . Let  f  :  (C C  X) —•  (P G  Z)  be  a  small  contraction  of 
threefolds. Assume  that  there  exists  a  three  dimensional  log  terminal  sin-
gularity 0  G  Y and  a  finite  morphism  ( 0 G  Y) —•  (P G  Z). Then  finite 
generation holds  for Z (4.4).  In  particular, if  —H is an f-ample divisor,  then 
the opposite  of  f with  respect to  H exists. 

Proof. B y (4.6 ) and (6.14 ) finite  generatio n hold s for Z.  (4.2 ) gives a smal l 
modification / + :  X+ —•  Z suc h that H + i s / +-ample. Thi s i s the opposit e 
(or flip)  o f /. • 

Thus th e questio n ahea d i s t o find  condition s whic h ensur e tha t P  G  Z 
is covere d b y a  lo g termina l point . Suc h condition s ar e give n afte r som e 
preparatory remark s about ramifie d covers. 

20.2 Proposition . Let  h  :  U  —•  V be  a  finite  and  dominant  morphism 
between irreducible  normal schemes of characteristic zero. Let  B  =  ]T } b{Bi be 
a divisor on V such  that J2 B{ contains the branch locus of h. (We  allow bi = 0, 
so that  the  latter  condition  is  easy  to  satisfy.)  Let  re d /&_1(]C &%) = Yl^ij 
where h(D{j)  =  B{. Let  eij  be  the ramification index of  h at the  generic point 
ofDij. Then 

h*(Kv +  B)  =  Ku +  Y^(l-0>-bi) eij)  Dij. 

Proof. Codimensio n two subsets d o not affec t th e claim , and henc e we may 
assume tha t ¡7 , V are  smooth. Ther e i s a natural morphism h*Ky  —*  Ku,  s o 
that the verification of (20.2) reduces to computing ramifications a t the generic 
point of Dij fo r every z, j . B y localizing we are reduced to the case when U and 
V ar e on e dimensional regula r schemes , and thi s case is straightforward. • 
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20.3 Proposition . Notation  and  assumptions  as  in  (20.2).  Let  h*(Ky  + 
B) =  K V +  B. Then 

(20.3.1) logdiscrep(t/,B ) >  logdiscrep(y,£ ) >  d e g ( ^ / y ) logdiscrep(i7 , B), 
and 

(20.3.2) Ky  +  B is  lc (resp.  pit)  iff  K v +  B is  lc (resp.  pit). 

Proof. Not e first  tha t eve n i f B  i s effective , B  i s no t necessaril y so . I n th e 
definition of lc and pit (2.10 ) and (2.13 ) it is not important tha t B  b e effective. 
We use this more general cas e in the proof . I n mos t application s howeve r we 
only use the cas e when B  an d B  ar e effective . 

Let g  : W —>  V  b e a proper modification with W  norma l (e.g. , a  resolution 
of singularities). Le t Wu  b e the normalization o f W x  y U. We have a diagra m 

Wu —^—•  W 

h 
U •  V. 

Let D  =  ^2B{.  W e ma y assum e tha t g~ x i s a n isomorphis m outsid e D. 
Rewriting (2.5 ) we get that 

Kw +  redg-^D) =  g*(K v +  B) +  J2 ^(Ei,B)Eu 

where Supp^ - C  Suppf lT 1 ^) . Applyin g (20.2) t o p :  Wv ->  W w e obtain 

KWu+ied(gop)-1(D) =p*  (Kw +  vedg- 1(D)) 

= p*g*(Ky  +  B)+p*Y^ a ^ B ) E i 

= g*u(Ku  + B) +p *J2at(Ei,B)Ei. 

If p*Ei =  eijFij the n ai(Fij,B)  =  e^at(Ei,B). • 

It i s worthwhile to mention th e special  case when B  =  0: 

20.3.3 Corollary . Let  f  :  X  —>  Y  be  a  finite  and  dominant  morphism 
between normal  varieties.  Assume  that  Kx  an d Ky  are  Q-Cartier. If  X is  It 
(resp. lc)  then  Y  is  It (resp.  lc).  • 

For ease o f reference w e mention three special cases of (20.2-3) : 

20.4 Corollary . Let  h  :  U -> V be  as in (20.3). 
(20.4.1) Assume  that  h  is  etale  in  codimension  one.  Then  Ky  +  B is  lc 

(resp. pit)  iff  K\j  +  /I*J B is  lc (resp.  pit). 
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(20.4.2) Let  5  C  V be  the branch  locus of  h and  assume that  B  =  5  +  D. 
Then K v +  S + D is  lc (resp.  pit)  iff  Kv +  red h'1(S) +  h*D is  lc (resp.  pit). 

(20.4.3) Let  5  C  V  be  the  branch  locus of  h.  Assume  that  h  is  a  double 
cover and  B  =  (1/2) 5 + D.  Then  K v +  (1/2) 5 + D  is  lc  (resp.  pit)  iff 
Kv +  h*D is  lc (resp.  pit).  • 

20.5 Proposition . Let  X  be  a  normal  singularity  and  B  an  effective  Q-
divisor. Assume  that  Kx  +  B is  pit and  has index 2  or 1 (i.e. 2(K  +  B) ~  0). 
Then there  is a double cover  p :  Z —•  X such  that Z  is  canonical of index  one. 

If d im X = 3  then  finite  generation  holds for every Weil  divisor  E on  X. 

Proof. Le t D  b e a  genera l membe r o f the linea r syste m \2B\.  B y Bertin i 
theorems, D  i s irreducible an d reduced . B y (2.33) , K  +  (1/2) D i s pit . Sinc e 
2(—K) ~  D,  w e can construct a  double cover p :  Z —*  X  whic h ramifies alon g 
D. B y (20.4.3 ) Kz  i s pit . Kz  i s also Cartier , henc e Z  i s canonica l of index 
one. I n dimensio n three finite generation hold s by (20.1) . • 

20.6 Proposition . Let  X  be  a  normal  singularity  and  D  an  effective  Q-
divisor. Assume  that  Kx+D  is  lc and has index 2 (or 1). Assume  furthermore 
that L-D J is  LSEPD and  K +  D is pit outside  LDJ . Then  there  is a finite cover 
p :  Z —•  X such  that  Z  is  canonical of index one. 

If d im X = 3  then finite  generation  holds for every  Weil  divisor  E on  X. 

Proof. Th e require d cove r i s constructed i n tw o steps. B y assumption ther e 
is a regular functio n s  such that Supp( s =  0 ) = LJ5J . Le t ( 5 = 0 ) =  ^ m 2 D j 
and let m  be a natural number which is divisible by every ra2-. Let h  :  X'  —•  X 
be th e normalizatio n o f an irreducibl e componen t o f Spec x Ox[t]/(tm —  s). 
By (20.2 ) 

KX' +  r e d / T1 ^ ! ^ ) +  h*{D}  =  h*(K x +  D). 
Set D'  =  r e d / i - ^ L D j ) +  h*{D}.  (X',D')  ha s inde x 2 , is lc and pi t outsid e 
L.D'J. Furthermore , 

L£>'J =  r e d / r ^ L D j ) =  ( * = 0 ) 

is Cartier. 
Since 2(—K — L D ' J ) ~  2 { D ' } , w e can construct a  double cover p :  Z —•  X 1 

ramified alon g Supp{Z?'} . B y (20.4.3 ) 

Kz +  P^O-ITJ) =  K z +  (top =  0) 

is Cartier , l c and pi t outsid e S U P P P ~ 1 ( L D / J ) . Thu s Kz  i s als o Cartie r an d 
pit (2.17) , hence Z  i s canonical of index one. I n dimension three the flip of / 
exists by (20.1) . • 

The following resul t shows that flips exist i f the boundar y ha s a t leas t tw o 
components intersecting th e flipping  curve . Suc h flips are use d repeatedl y i n 
Chapters 2 1 and 22 . 
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20.7 Theorem . Let  X  be  a  Q-factorial  threefold.  Let  D  =  S  +  B  be  a 
Q-divisor, S  reduced  and  L B J =  0 . Let  f  :  (C C  X) ->  (P G  Z) be  a  small 
contraction with  p(X/Z) =  1 . Assume  that 

(20.7.1) K  +  D is  log canonical  and numerically  nonpositive  with  respect 
to f; 

(20.7.2) S  has  at  least  2  irreducible  components  S + and  S~  meeting  C 
such that  S~  •  C <  0 and S + •  C >  0 . 

Then the  flip  of  f exists. 

If C  -  (K +  D) =  0  then strictl y speakin g w e cannot tal k abou t th e flip of 
/ . Howeve r by (4.5 ) Z  ha s a t mos t on e other small , norma l an d projectiv e 
modification. B y slight abus e o f terminology we call i t th e flip  o f /. I t ca n 
also be defined a s the flip with respec t t o K  +  D —  5+ . 

The proo f i s done in severa l steps . Firs t we prove a weaker version : 

20.8 Lemma . Let  X  be  a  Q-factorial  threefold.  Let  D  =  S  +  B  be  a  Q-
divisor, S  reduced  and  L B J =  0 . Let  f  :  (C C  X)  —•  (P G  Z) be  a  small 
contraction with  p(X/Z) =  1 . Assume  that 

(20.8.1) K  +  D is  log terminal and  numerically negative  with  respect to  f; 
(20.8.2) S  has  at  least  2  irreducible  components  5 + an d S~  meeting  C 

such that  S~  •  C <  0 and 5 + •  C >  0. 
Then Kx  +  D is  1-complemented  in  a neighborhood of  C and  the  flip  of  f 

exists. 

Proof. Firs t we prove that K + D is 1-complemented. B y (17.5) S~  i s normal. 
By (16.9.2 ) 

Ks- +  Diff (D -  5 " ) =  (K  +  D )\S~ 
is It an d /-negative . Assum e that 5 + f l S~ C  C. The n 

S+ - XC =  (S+  nS ~)-s- C  <0 

since C C  S~  i s contractible; a  contradiction. Thu s there exists an irreducibl e 
component o f 5 + f l S~ intersectin g C  bu t no t containe d i n it . Therefor e b y 
(19.11) an d (19.6 ) K  +  D i s 1-complemented . Tha t is , there exists a  reduced 
divisor D + >  L D J suc h that K  +  D+ i s lc and numericall y 0  relative t o / . 

I claim that D+  i s LSEPD. This i s clear i f 5+ •  C >  0 . I f S+ •  C =  0  then 
C C  S +. Sinc e both S~  an d S + contai n C , no other componen t of S + B ca n 
contain C , hence they al l have nonnegative intersectio n wit h C.  Thu s 

(K +  5+ +  5 " ) •  C <  (K  +  S  + B)  •  C <  0, 

thus in D + ther e is a component which has positiv e intersection wit h C . 
Let D z =  f(D+).  The n K z +  Dz i s Q-Cartier, l c and pit outside SuppDz-

S + , S - C  therefor e D+  an d D z ar e LSEPD . Thu s th e flip  exist s b y 
(20.6). • 
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20.9 Corollary . Let  (X , K +  D) be  a Q-factorial threefold, not  necessarily 
log canonical.  Then  in  a  neighborhood of  S =  v.D j there  exists  a  Q-factorial 
log terminal  model  for  K +  D. 

Proof. Le t (Y,Ky  +  Dy) b e a  lo g resolution (wher e Dy  i s a s i n (2.7) ) an d 
apply the minima l mode l program relative t o the morphis m /  :  Y — • X i n a 
neighborhood o f S. I n doing so we might encounte r a  small contraction 

fk:Yk^Z----^X 

with respec t t o Ky k +  Dy k .  Le t C  b e th e exceptiona l curv e o f g^.  B y 
hypothesis fi(S)  •  C =  0 and C  C  / ¿ ( 5 ) . The n 0  = / ¿ ( 5 ) • C =  £c,-£ t - •  C , 
where the sum is taken over the i  such that BiC\C  ^ 0 . Not e that ^  C {B{ ^ 0 , 
because C  C  /£(£) • Thi s show s that ther e exist s a n irreducibl e component 
of L .Dyk j meetin g C  an d ne f on it . 

Let H  b e an ampl e divisor on fk :  Yfc —• X. The n i J =  f%fk(H)  —  Y  ai^i 
for som e a ; >  0  an d th e E{  ar e exceptiona l for f^.  The n Y ai^i '  C <  0 , 
and thu s there exist s a n inde x i  suc h tha t E{  • C <  0 . B y definition C 
\-Dyk_i. Therefor e the flip exists by (20.8) and termination wa s proved in (7.1) . 
Thus the (Ky  +  Dy)-MMP terminate s and give s the require d Q-factoria l log 
terminal model. • 

20.10 Lemma . Notation  and  assumptions as  in (20.7). 
(20.10.1) Assume in  addition that  2(K  + D) -  0 . Then  the  flip off exists. 
(20.10.2) Assume  in  addition  that  K  +  D =  0 . Assume  furthermore  that 

flips of  contractions  as  in (20.7)  exist if  K  +  D =  0  and K  +  D —  S+ is  It. 
Then the  flip  of  f exists. 

Proof. Le t g  :  (Y,Dy)  — • (X, D) b e a  Q-factoria l lo g terminal model . Le t 
S± C  Y b e the birationa l transfor m o f S~*~. B y assumption 

2(KY +  Dy) -  g*(2(K x +  D)) ~  0  i n case 1, 
Ky +  Dy =  g*(Kx +  D) = 0 i n case 2. 

By assumptio n I .DJ is LSEPD with respec t t o / , thu s L D ^ J i s LSEPD with 
respect t o /  o  g. Fo r 0  <  e  <  1  apply th e (Ky  +  Dy  -  eS ^ )-MMP t o 
( / o  g) :  Y —+  Z.  W e successively construct object s hk :Yk  —>  Z  suc h that 

(20.10.3.1) \-Dy k J i s LSEPD with respec t t o h k\ 
(20.10.3.2) Ky k +Dy k —€S£  is It where S£ C  Yk be the birational transfor m 

of S+; 
(20.10.3.3) 

2(KYk +D Yk)~ 0  i n case 1, 
Kyk +  Dyk = 0 i n case 2. 
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Assume that i n th e proces s we encounter a  smal l contractio n gk  :  Yk —• 
Let Ck  C  Yk  b e th e flipping  curve . The n Ck  •  S% >  0 , henc e L D y f c j ha s 
another irreducibl e componen t which intersects Ck  negatively . Furthermore , 
by (20.10.3.2 ) Ky k +  DYk i s lc, It outsid e Supp L £> n j an d Ky k +  Dyk -  5 + is 
It. 

In the first  cas e Kz k +  gk(Dyk) ha s inde x two on Zk  an d i s pit outsid e th e 
LSEPD divisor \^gk(Dy k)j. Thu s the flip of gk exists by (20.6) . I n the second 
case the flip  o f gk exist s b y assumption . B y Chapter 7  the sequenc e o f flips 
terminate. Therefor e th e progra m stop s wit h 

h:Y ^Z 

such tha t Ky  +  Dy —  eS + i s h-nei.  (2.32.2 ) implie s that th e flip  o f /  wit h 
respect t o Kx  +  D —  e S + exists . • 

Proof of  (20.7).  Le t H  b e a sufficiently genera l an d sufficientl y /-ampl e divi -
sor. The n fo r a  suitable 1  > e  > 0 , K +  D + eH i s numerically /-trivia l an d 
satisfies al l the assumption s o f (20.7). Thu s w e may assume tha t K  +  D =  0 . 
By (20.10.2 ) it is sufficient t o consider the case when in addition K+D  —  5+ i s 
It. A s in the proo f o f (20.8) we see that there exists an irreducible component 
of 5 + f l S~ intersectin g C  bu t no t containe d i n it . Therefor e b y (19.10 ) an d 
(19.6) K  +  D i s 1 - or 2-complemented . Thu s b y (20.10.1 ) th e flip  exists . • 

The following resul t applies every time in dimension three when the oppo -
site exists. Howeve r in practice i t i s usually ver y difficult t o find the divisor s 
Si require d i n the assumptions . 

20.11 Theorem . (Mori,  unpublished)  Let  f  :  X —•  Z  be  a small morphism 
with exceptional  set  C  C  X.  Let  S 1 . S 2 C  X be  effective  divisors  such  that 
Si n  52 =  C.  Assume  that  raiSi  and  171282 are  linearly equivalent  for  some 
mi, rri2 >  0 . Then  the  opposite of  f  with  respect to  S\ exists  and S^CiS^ =  0. 

Proof. Th e penci l (raiSi.rr^S^ ) l s bas e poin t fre e outsid e C ; denot e b y p : 
X —- > P1 th e correspondin g rationa l map . The n th e opposit e o f /  i s th e 
normalization o f the closur e of the image of the map px f  :  X  — ^ P1 x  Z. • 

20.12 Corollary . Let  f  :  X  —•  Z  be  a small morphism with  exceptional  set 
C C  X. Assume  that 

(20.12.1) p(X/Z)  =  1 ; 
(20.12.2) there  is  a  divisor  D  such  that  (X,D)  is  kit  and  -(K x +  D) is 

f-nef; and 
(20.12.3) there  are  effective divisors  S 1,S2 C  X such  that  Si  f l S 2 =  C. 
Then the  opposite  of  f exists  and  S*  f l S* =  0 -

Proof. 
Si x  C  =  {Si  n S3-O - S 3 - , C  <  0 

220 



FLIPS AND  ABUNDANCE 

since C  C  Ss-i  i s contractible . Therefor e b y th e base  poin t fre e theore m 
[KMM87,3-l-2], suitable positive multiples of Si are linearly equivalent . Thu s 
(20.11) applies . • 

20.13 Corollary . Let  X  be  a Q-factorial threefold.  Let  f  :  (X,K +  S i + 
S2) — • Z be  a small contraction with p(X/Z) =  1 . Assume  that  C  • (K + S\ + 
S2) <  0, C •  Si <  0 , C fl S2 +  0, K +  Si + 5 2 i s ic and i f + S x i s it. The n th e 
flip of  f exists. 

Proof. I f C  •  S 2 >  0  then (20.7 ) applies . I f C  •  S 2 <  0  then C  C  S i f l S2 . I f 
equality hold s then (20.12 ) applies , otherwis e there is a  1-complemen t B  b y 
(19.11) an d w e can apply (20.7 ) wit h S + =  B.  • 
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21. SPECIAL FLIPS 

JÄNOS ROLLAR 

The aim of the next tw o chapters i s to investigate flips  of special contrac-
tions (18.8) . Th e importance o f these i s clear fro m (18.9) . Fo r a special flip 
B i s also reduced, in fact usuall y i t is empty. W e change notation an d write 
S fo r what use d to be S + B. Thi s is important, sinc e (followin g Shokurov ) 
from (21.3 ) on B i s used for something different . 

21.1 Notation. Le t X b e a normal Q-factorial threefold and S C  X a n integral 
Weil divisor . Assum e that Kx  +  S is It. Le t / :  X —•  Z be a small (K  + S)-
extremal contraction ; i.e. , K + S is /-negative and p(X/Z) =  1 . Thus there is 
a proper curve C C X an d a finite subset P  C  Z such that /  :  X — C —• Z — P 
is an isomorphism. Th e existence of flips is local on Z\ we may pick a point 
0 G  P C  Z an d assume tha t Z  i s a small neighborhoo d of 0. Therefor e we 
may assume that C = / - 1 ( 0 ) i s connected, but in general C may be reducible. 

We assum e tha t C  •  Si <  0 for every irreducibl e componen t Si  C  S.  I n 
particular, every  Si contains C. 

We call / :  (X, S) —•  Z a special contraction. By a slight abuse of language, 
the flip  of / i s called a special  flip. 

Our aim is to construct th e flip of /. Thi s is done in several steps. Firs t we 
construct th e flip in certain special  cases. Fo r the remaining cases , we prove 
that the y exis t provide d index two flips exist. Inde x two flips turn out to be 
the hardest , they ar e discussed in the next chapter . 

21.2 Proposition . If  S is  reducible, the  flip exists. 

Proof. A s we remarked, C  C  Si  fo r every i.  Sinc e K +  S i s It, Si  D  S2 i s 
a locall y irreducible curv e (16.9) . Thu s Si  f l S2 =  C (and C is irreducible). 
Thus the flip exists by (20.12). • 

21.2.1 Convention.  Fo r the rest o f the chapter w e always assum e tha t S  i s 
irreducible. 

21.3 Definition.  Assumption s as above. 

s. M. F. 
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(21.3.1) B y (19.6,19.8 ) there i s a n n  e  {1 ,2 ,3 ,4 ,6} , calle d th e index  of 
K +  5, suc h that K  +  S i s n-complemented.  I.e . ther e is a  Q-diviso r B  suc h 
that raB is an integra l divisor, K +  S + B i s lc and ra(iiT + 5  +  B)  ~  0 . (Thi s 
B ha s nothin g t o d o with th e B  occurrin g in the definition s (18.1-8). ) 

(21.3.2) We say that K + S + B i s exceptional  if (S,Diffs(J3)) is exceptional 
in th e sens e o f (19.9) . Observ e tha t thi s ma y depen d o n th e choic e of B. 
Sometimes th e contractio n /  itsel f i s calle d exceptiona l i f the choic e of B i s 
already agree d upon . Th e sam e applie s t o th e flip  o f / . 

21.4 Proposit ion . Index  one  flips exist. 

Proof. Inde x on e means tha t B  i s an integra l Weil divisor. Sinc e 

c •  B =  -C  •  (K +  S) >  0, 

S +  B  an d f(S  +  B)  axe  reduced LSEP D divisors , an d th e flip  exist s b y 
(20.7). • 

21.5 Proposit ion . If  K  +  S +  B has  index  two  and K  +  S +  B is  It,  then 
the flip exists. 

Proof. Assum e first  that L B J  ̂0  and le t S'  C  L5J . I f C  •  Sf >  0  then th e 
flip exists b y (20.7) . I f C  •  S' <  0 then C  •  (K +  S +  S') <  C •  (K +  S) <  0; 
the flip  exist s by (20.13) . I f LB J =  0  then K +  S + B i s pit b y (2.16.3 ) henc e 
(20.5) give s the flip.  • 

Next w e apply th e Backtrackin g Metho d (6.4-5) . Th e notatio n an d con -
ventions o f (6.4-5) ar e use d throughout . 

21.6 Construction  of  qi :  Y\ — • XQ. Assum e that K  +  S + B i s no t It . Le t 
h :  XF —*  X b e a  Q-factoria l I t mode l (20.9) . B y assumptio n h  i s no t a n 
isomorphism. I f EL C  XT i s the reduce d exceptiona l divisor then Kx* +  EF + 
S' + B' =  h*(K +  S + B) i s It . 

21.6.1 Lemma . For  any irreducible  component  E  C  E F there  is  a  unique 
projective morphism  qi  :  Y\ — • X 0 with  the  following  properties 

(21.6.1.1) Y 1 is  Q-factorial and  p(Yi/X)  =  1 . 
(21.6.1.2) The  exceptional  set  of  qi is  an irreducible divisor  E\  C  Y\  such 

that under  the  birational  map  Y\  — • X <—  X 1 the  birational  transform  of  E\ 
is E. 

(21.6.1.3) qi  is  a log crepant morphism,  i.e. 

K +  E1+S1+B1= q*{K  +  S + B) 

and is  lc. 

Proof. Uniquenes s o f Y\ follow s from (6.2) . 
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The existenc e follow s fro m the (K x*+ E l +  S* + Bl -  eE)-MMP  applie d 
to X*  —> X.  W e need to check that al l flips exist an d any sequence of them 
terminates. Le t C C  X t b e a flipping curve. Sinc e Kx* + Et +  Sf +  B* is 
numerically /i -trivial, C  •  E >  0 . A s in the proo f o f (20.9) w e find  anothe r 
exceptional diviso r Ek  suc h tha t C  • Ek <  0. Thu s th e flip exists b y (20.7) 
and terminatio n follow s fro m (7.1) . 

At th e end we obtain a  morphism q'  : Y' —•  X  an d E' C  Y', which is the 
birational transfor m o f E. Furthermore , 

-eE' =  JlYj + +  5 * +  5 * ) ' - eE' 
is g'-nef. Supp(E f + St +  BtY =  Suppg'*(S + B) is LSEPD with respect to g', 
hence base point freeness applie s to —E' (2.32.2). Thu s we obtain a morphism 

, r  qi 
Y —>Yi  —>  X, 

such that —Ei  (the birational transfor m o f —E') is ^i-ample. Thu s Ei  con -
tains th e exceptiona l se t o f q\. I f D  i s a  Weil  diviso r o n Yi  the n D  = 
ql{qi(D)) +  c(D)E1 fo r some c(D) £ Q, and hence yx i s Q-factorial. • 

From now on we always assume tha t qi  : Y\ — > Xo is chosen as in (21.6.1) . 

21.6.2 Lemma . Notation  as  in (6.4). 
(21.6.2.1) K  + Sj + Ej + Bj is  lc for every j ; 
(21.6.2.2) There  are  c e,Cb >  0  such that  Sj  + ceEj +  c^Bj is numerically 

trivial on  Yj/Z for  every j . 

Proof. B y (21.6.1.3) the first part holds for j =  1 . Since SC <  0 and BC >  0, 
there is a cb >  0 such that (S+c bB)-C =  0. Let Si+ceEi+cbBi =  ql(S+c bB). 
Both of these propertie s ar e stable unde r flips and flops.  • 

21.7 Existence of  the contractions  r2-. 
Choose 0 < a b <  1 such that the coefficient of Ei i n ql(Kx +  S + abB) — 

K +  Si + abBi +  o!eEi i s positive. 

21.7.1 Proposition . Assume  that  1  > a e >  a' e is sufficiently close  to  a' e. 
Then 

(21.7.1.1) Rj  •  (K + Sj + abBj +  aeEj) <  0 for every j . 
(21.7.1.2) K  + Sj + abBj +  aeEj is  pit for every j . 
(21.7.1.3) Rj  can  be contracted. 
(21.7.1.4) There  are  bs,be >  0 such that  Rj  •  (b sSj +  beEj) <  0 for every j . 

Proof. (6.5.2 ) proves  (21.7.1.1) . 
By assumption Kx  +  S is pit. Since qi is an isomorphism outside 2? 1 ? this 

implies that K  + Si i s pit outside EiUB x. B y (21.6.2.1) K  + Si + Ex +  B x 
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is lc, thus K  +  Si  +  a\>Bi +  a eEi i s pit alon g E\  U  B x sinc e a h, a e <  1 . Thu s 
i f +  Si  +  abBi +  aeEi i s pit. B y (21.7.1.1 ) pi t i s preserved unde r flips.  Th e 
first tw o claims imply the third . 

Both K  +  S  + abB an d S  ar e negativ e o n C, thus K  +  S  + abB =  cS  fo r 
some c > 0 . Thu s 

K +  Si+ a bBi +  aeEi =  q{(K  +  S + ahB) +  (a e -  a' e)Ei 

= QiicS)  +  (a e -  a' e)Ei =  b sSi +  b eEi 

for som e b s,be >  0 . Thi s equivalence is preserved b y subsequent flips. • 

Another usefu l genera l resul t i s the following : 

21.7.2 Lemma . Notation  as  above. Then  either  Rj  •  S) >  0  or Qj •  Sj >  0. 

Proof. Sj  intersect s th e exceptiona l se t bu t doe s no t contai n it . Thu s Sj 
cannot b e seminegative o n Yj/Z. • 

21.8 Three  Kinds of  Flips of  the Backtracking Method. 
The sequence of flips in the backtrackin g metho d ca n be broken into three 

parts. Som e easy flips  i n th e beginning , som e hard flip  (hopefull y a t mos t 
one) in the middl e and then again a  sequence of easy flips.  (Any of these ma y 
be empt y i n a  given situation. ) 

21.8.1 Beginning  Flips. 
In th e first  ste p Qi  •  Ei <  0 . I f Ri •  Ei <  0  then there is no beginning flip. 

In genera l howeve r Ri •  Ei >  0 . Assum e more generally that Ri-i  •  £ ¿ -1 >  0 . 
Then Qi  •  Ei <  0 . I f Ri  •  Ei <  0  then th e beginnin g sequenc e i s finished. 
If Ri  •  Ei >  0  the n Ri  •  Si <  0  sinc e b y (21.7.1.4 ) R { •  (bsSi +  b eEi) <  0 . 
Thus th e contracte d curv e i s containe d i n Si  an d intersect s E{.  Th e flip of 
ri exist s b y (21.6.2.1 ) an d (20.7) . Sinc e th e flipping  curv e i s containe d i n 
Si, th e beginnin g sequenc e o f flips terminates (7.1) . Thu s w e eventually ge t 
a divisoria l contractio n (an d w e are finished)  o r reac h E m C  Y m suc h tha t 
Em i s seminegative on Ym/Z. Therefor e E m contain s every Ym/Z-exceptional 
curve. 

21.8.2 Middle  Flips. 
The flipping  o f rm :  Ym —>  X m i s the hardes t step . W e distinguish severa l 

cases. W e use Locus(i? m) t o denote the exceptiona l set o f r m . 
(21.8.2.1) L o c u s ^ ) =  5 m f l £ m . 
The flip  exist s b y (20.11 ) an d £ m + i an d E m+i ar e disjoint . Sinc e E m 

contains every Ym/Z-exceptional curve, Smni£m C  Sm i s the only Sm —+  f(S)-
exceptional curve. Thu s S m+i doe s not contain any exceptional curves, hence 
S m +i i s nef relative t o Y m + i —> Z. Qm+i'Sm+i  >  0 , so that i ? m + i - 5 m + i =  0 , 
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and therefor e r m + i :  Ym+i — • Xm + i contract s E m+i. Thu s X m + 1 i s the flip 
of / . W e are finished. 

(21.8.2.2) Locus(i? m) i s a proper subse t o f 5m f l -Em. 
I do not kno w any usefu l genera l resul t in this case. A n important specia l 

case is treated in [Shokurov91 , 6.11]. 
(21.8.2.3) Locus(i? m) i s disjoint fro m S m. 
In thi s cas e we need t o argu e tha t ( r m :  Ym — • Xm,K +  Em +  Bm) i s in 

some sense "simpler " than (/ :  X —*  Z,K+S+B)  an d use induction. Assum e 
that r m ca n be flipped.  The n Q m+i - 5 m +i =  0 . B y (21.7.2) Rm +i -S m+i >  0. 

(21.8.2.4) Rm  • S m >  0 . Thi s belongs to the nex t case . 

21.8.3 Final  Flips. 
These ar e th e flips  o f type (21.8.2.4 ) o r an y flip  followin g a  flip  o f typ e 

(21.8.2.3-4). 

21.8.3.1 Lemma . Assum e that Rj  •  Sj >  0. Then  Rj  •  Ej <  0, the  Sip  of  rj 
exists and  •  >  0 . 

Proof. Rj  •  Ej <  0 follows fro m (21.7.1.4) . Th e flip of rj exist s by (20.7) . 
By assumptio n Q j+1 •  S j+1 <  0. Thu s R j+1 •  S j+1 >  0  by (21.7.2) . • 

21.8.3.2 Corollary . Final  flips exist and  terminate.  • 

First w e give an eas y applicatio n o f the backtrackin g method . 

21.9 Proposition . Assum e that Kx  +  S + B is  not It  outside  Sup p S. Then 
the Sip  exists. 

Proof. Assum e first that L B J i s not empty. Le t E be an irreducible component 
of LJBJ . I f E •  C >  0 then (20.7 ) applies . Thu s assum e tha t E  •  C <  0. The n 

(K +  S + E) •  C <  (K +  S) •  C <  0, 

and therefor e th e (K  +  S +  £)-flip exists by (20.13) . 
If L B J =  0  then there i s an irreducibl e curv e D e l , no t containe d i n S 

such tha t K  +  S +  B i s not I t alon g D.  Le t h  :  X1 —•  X  b e a  Q-factoria l I t 
model o f (X,K +  S +  B) i n a  neighborhood of 5. Thi s exist s b y (20.9) . B y 
assumption ther e is an exceptional divisor E C  X1 suc h that h(E) =  D.  Usin g 
E construc t qi  :  Y\ — • Xo  a s i n (21.6) . Assum e that w e already constructe d 
r{ :  Yi  — » X2-. Usin g (21.6.2.1 ) th e followin g clai m implie s tha t n  ca n b e 
flipped: 

21.9.1 Claim . If  ri  is  small  then  E{  intersects  every  curve  in  the  extremal 
ray Ri  and  Ri  •  Si <  0 . 

Proof. Le t Pi,P2 b e th e tw o extremal rays . Y{  —• Z map s E{  t o f(D).  Le t 
C 22, - be a general fiber of E{ —• /(£>). The n F 2- • JB,- < 0 . W e can specialize 
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Fi to the central fiber to conclude that E\ is negative on at least one of 
the extremal rays of NE(Yi/Z), say Pi • Ei < 0. If Ei contains the whole 
exceptional set U of Yi/Z then Ei intersects every exceptional curve. U is 
connected, so if U (Ji E% then there is a curve D C U such that D • E{ > 0. In 
this case necessarily Pi • E{ > 0, thus E{ intersects every curve in P2 as well. 

Ri • Si < 0 is proved by induction. First let i = 1 and let D be a curve in 
i?i. Then qi(D) is an irreducible component of C, and hence 

Assume now that • St-_i < 0. Then Qi • Si > 0. Thus if Ri • Si > 0 then 
52- is Yi/Z-net. Yi is Q-factorial, hence 5Z- fl C E{ is a divisor which lies 
entirely in the central fiber of Ei/f(D). Therefore it can not be nef unless it 
is empty. If Si fl Ei = 0 and Si is Yi/Z-nef then 52- • i?z = 0 and r2- : —• X; 
contracts the whole divisor Ei. • 

If • Ri > 0 then the flip of rt- exists by (20.7). Otherwise • < 0, 
hence by (21.6.2.2) R{ • Bi > 0. Thus (K + Si + Ei) • Ri < 0 and the flip of r2-
exists by (20.13). 

The above claim also implies that the exceptional locus of r2- is contained 
in 5;, and hence the sequence of flips terminates by (7.1). • 

The second application of the backtracking method requires more delicate 
considerations. 
21.10 Theorem. Assume that index two special Rips exist. Then all special 
flips exist. 

Using (19.6) and (19.8) this is a direct consequence of two propositions 
(21.12-13) whose formulation requires a definition: 
21.11 Definition. Consider an extremal contraction with K + S + B of index 
n. For certain values of s > 1 we can write 

в = У - в { 

i=l 

S1'D = qZS-D = S- qi(D) < 0. 

where the Bl axe nonzero effective integral Weil divisors and C • Bl > 0. One 
such way is B = (l /n)(nB), but there may be others. The maximum value 
of s for which this is possible is called the type of ( / : X —• Z,K + S + B). 
(This has nothing to do with the type defined in (18.2) and no confusion is 
possible.) 
21.12 Proposition. Fix n and t > 1. Assume that index n exceptional 
special Hips of type at least t exist whenever K + S + B is It. Then all 
exceptional special flips of index n and type t exist. 
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21.12.1 Corollary. Index 2 exceptional special flips exist. 
Proof. By (21.5) index two flips exist if K + S + B is It. • 

The following is a reformulation of [Shokurov91,7.4]. The proof is a case 
by case analysis. 

21.13 Proposition. Let (/ : X —» Z, K + S + B) be an exceptional special 
contraction of index n and type t such that K + S + B is It. Then one can 
find a Bf such that one of the following holds: 

(21.13.1) K + S + B' has index 1 or 2; 
(21.13.2) (/ : X —> Z,K + S + Br) is an exceptional special contraction of 

index n' and type f and in the following diagram (n',f) lies to the right of 
(n,t). 

(6, > l ) - + ( 4 , > l ) - ( 6 , 2 ) - ( 6 , > 3 ) -
- ( 3 , > l ) - ( 4 , 2 ) - > ( 4 , 3 ) - ( 4 , > 4 ) . • 

21.14 Proof of (21.12). Let ( / : X Z,K + S + B) be an exceptional 
special contraction of index n and type t. If it is It, there is nothing to prove. 
Otherwise let h : Xf —> X be a Q-factorial It model with exceptional divisor 
Ef C X1. The proof proceeds by induction on the number of irreducible 
components of Ef. To be more precise, we consider the minimum of the 
number of irreducible components of E\ where hi : X\ —* X runs through 
all Q-factorial It models. (Usually there are infinitely many.) We call this 
number the minimal number of log crepant divisors. In what follows we let 
h : X1 —• X be a Q-factorial It model where the minimum is achieved. 

If f(Ei) (£_ S then the flip exists by (21.9). Thus assume from now on that 
f{Et) C S. Let Sf (resp. Bf) be the birational transform of S (resp. B) on 
X\ Then 

(/i|S*)*(# + S + B\S) = h*(K + S + B)\S* = KXt +St + Ei + B^S*. 

Since / is exceptional, K + S + B\S is exceptional, and therefore on there is 
at most one curve with log discrepancy zero. Every curve in E1 fl S1 appears 
with log discrepancy zero, hence El fl St is an irreducible curve. Thus there 
is a unique component E C Ef which intersects St and D = E fl Sf is an 
irreducible curve. By (21.6), E determines q\ : Y\ —• X. However, we need a 
direct construction of Y\ which provides additional information. 

21.14.1 Claim. Sf is h-nef. 

Proof. The only curve where this may fail is D. If h{D) is a curve then we do 
not have to consider D. Thus assume that h(D) is a point (this is the typical 
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case). Le t H  b e a  sufficientl y ampl e diviso r on X  disjoin t fro m h(D).  D  i s 
the onl y curve with the propert y tha t D  •  S*  <  0, thus [D]  i s an extrema l ray . 
Since D  =  Ef)S\  th e flip  exist s b y (20.13) . Afte r th e flip  (S') + becomes 
nef relativ e t o h+  :  ( X f ) + X.  Furthermor e (S*) + and ar e disjoint . 
Applying base poin t freenes s t o (S i)+ (2.32.2 ) w e obtain a  morphis m 

(X ' )+ ^u^x 
where p contract s {E f)+. Thu s s  :  U —•  X i s small. 5  is not a n isomorphis m 
since 

£>+ •  (S*)+ > 0 

hence p(D+) C  i s a  curv e contracted b y s.  Sinc e X i s Q-factorial , thi s i s 
impossible. • 

21.14-2 Construction  of  qi :  Y\ —>  X.  Sinc e S t i s /i -nef, w e can appl y bas e 
point freenes s t o obtai n 

X ^ Y ^ X . 

p contract s E l —  E, thu s q\  ha s a t mos t on e exceptiona l divisor , th e imag e 
of E.  Ther e i s a  curv e A  C  E  suc h that h(A)  i s a  poin t an d A  intersect s S 1, 

positively. Thu s p(A)  i s no t contracte d b y q\.  Sinc e X  i s Q-factorial , q\  i s 
not small , thus E\ =  p(E) i s the exceptiona l divisor of qi. 

Let Wi  C  Y\  denot e th e close d subse t wher e p~~ x i s no t defined . B y con -
struction Wi  P I Si =  0 . Sinc e 

# + s*  +  E f +  B f =  p *(isr + S x +  E 1 +  B i ) , 

we se e that i f +  S i +  E\  +  Bi i s It outsid e W\.  p  :  X1 —>  Y\  i s a Q-factoria l 
It mode l which has on e fewer exceptional divisors than h  :  X t —•  X. 

21.14-3 Applying  the  Backtracking Method. 

21.14.3.1 Claim . Suppose  that  i  <  m  (i.e.,  we  performed only  beginning 
Bips). Then 

(21.14.3.1.1) Y\  —Y{  is  an  isomorphism in  a  neighborhood of  W\.  Let 
W{ C  Yi be  the  image  of  W\. 

(21.14.3.1.2) K  +  Si +  Ei +  Bi is  pit outside  Wi  and  the  generic  point  of 
SiDEi. 

Proof. B y constructio n K  +  Si +  Ei +  Bi i s I t outsid e Wi.  Therefor e i t i s 
pit outsid e the generi c point o f Si fl Ei sinc e there are n o triple intersections . 
Assume that th e clai m holds for i  — 1. Le t D 2 _i C  Yi-i be the locu s of i? 2 _i. 
As w e showed in (21.8.1) , A _ i C  Si_i an d A_ i *  - E t - i >  0 . Therefor e 

A - i H Wi-x  C  S 2_i n  Wi-i  =  0. 

230 



FLIPS AND ABUNDANCE 

Therefore Y{-\  —•>  Y{ i s a n isomorphis m i n a  neighborhoo d o f Wi-1  an d 
(21.14.3.1.1) i s clear . 

Si-i f l Ei-i i s a  contractible curv e in 5 2-_i, henc e 

n E t - i ) . £7,- 1 < 0 . 

Therefore A _ i £  i^- i an d s o i f +  5 2_i +  +  J3 2_i i s pi t alon g 
Therefore K  +  5 t- + 2?, - + J3 2- is pit alon g Df^  whic h proves (21.14.3.1.2 ) for 
i. • 

Now conside r middl e flips.  (21.8.2.1 ) finishes  the backtrackin g method . 
(21.8.2.2) i s impossible since 5 m f l Em i s irreducible b y (21.14.3.1.2) . 

In cas e (21.8.2.3 ) the flip  o f r m i s provide d b y inductio n i n vie w o f th e 
following: 

21.14.3,2 Claim . 
(21.14.3.2.1) (r m :  Ym — • Xm,K +  Em +  B m) has  the  same  index  as  (/  : 

X->Z,K +  S + B). 
(21.14.3.2.2) The  type  of  ( r m :  Ym X m,K +  Em +  B m) is  not  smaller 

than the type  of  (/  :  X -»  Z,K  +  5 +  B). 
(21.14.3.2.3) The  minimal  number  of  log crepant  divisors  of  ( r m :  Ym —> 

X m , K  +  Em +  Bm) is  smaller than the minimal number of  log crepant divisors 
of(f:X^Z,K +  S + B). 

(21.14.3.2.4) ( r m :  Ym — • X m, K  +  Em +  B m) is  either It  or  an exceptional 
special neighborhood. 

Proof. B y definitio n o f index, n(Kx  +  5  +  B)  i s a  principa l divisor . Thu s 
n(K +  5 i +  i? i +  Bi)  =  q*n(Kx  +  5  +  B)  i s als o a  principa l divisor . Thi s 
property i s preserve d unde r flips,  an d henc e n(K  +  5 m +  E m +  Bm)  i s a 
principal divisor . Sinc e 5 m i s disjoin t fro m Locus(i? m), n(K  +  E m +  B m) i s 
a principa l diviso r in a  neighborhood of Locus(i? m). 

Let B  =  ]C(l/w)-5 2 b e the decompositio n giving the type . Sinc e C B l >  0 , 
there is an s l >  0 such that 

C •  (s 2 5 + B l) =  0 . 

Pulling i t bac k to Yi , we obtain positiv e numbers e % such that 

siS1 +  e{Ex +  B{ 

is numerically trivia l on Yi/Z. Thi s property i s preserved b y flips, and there -
fore 

s'Sm + e{Em +  BL 

(Si-! 
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is numerically trivia l on Ym/Z. Sinc e Dm i s disjoint fro m Sm an d D m'Em <  0 , 
we conclude that D m •  Bm >  0  for every i.  Thu s 

Bm 1 
n 

Bmi 

shows that th e typ e o f ( rm :  Ym — > X m , iiT + £ ,

m +  B m) i s at leas t a s large a s 
the typ e o f (/ :  X ->  Z,K  +  5  +  5 ) . 

Let W t- C C/ i C Y% (i  =  1 , m) be open neighborhoods such that Y m —- • Yi is 
an isomorphism between U m an d Ui.  The n patching y m —  Wm an d p _ 1 (?7 i ) C 
X* give s a Q-factoria l I t mode l of Ym wit h on e less crepan t divisor s tha n i n Xt --- X. 

We stil l need t o sho w that ( r m :  Ym X m, K  +  E m +  B m) i s exceptional . 
Let F' =  Em  and let K F*+D' =  D i f f ( i i : + £ m + £ m ) . The n i r+D' i s lc. Le t 6 : 
F F ; b e a log terminal model and i ^F + D =  b*(K F*+D'). If  K + Em + Bm 
is I t alon g Locus(i? m) the n there is nothing t o prove . Otherwis e L D J ha s a t 
least tw o connected components : on e is the birationa l transform o f Sm f l E m 

and th e othe r live s over Locus(i? m ). Thu s ( r m :  Ym —>  Xm,K  +  E m +  B m) i s 
either I t o r exceptiona l b y (12.3.2) . • 

After th e middl e flip,  w e have onl y final flips  left , an d thes e alway s exis t 
by (21.8.3.2) . • 
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22. INDEX T W O FLIP S 

T I E LU O 

In thi s chapte r w e outlin e som e o f the step s o f Shokurov' s proo f o f th e 
existence o f log-flip s i n th e cas e wher e / : C c X - + O E Z i s a specia l 
nonexceptional index 2  extremal contraction . Th e proo f give n in [Shokuro v 
92] i s long (abou t 3 5 pages) an d w e can no t clai m to hav e understoo d al l of 
it. 

The assumptions are : 
(22.1.1) K  +  S + B i s lc and 2(K  +  S + B) ~  0  in a  neighborhood of C; 
(22.1.2) S - C < 0 ; 
(22.1.3) K  +  S i s pit an d X  i s Q-factorial ; 
(22.1.4) (K  +  S)-C<0; 
(22.1.5) K  +  S + B i s nonexceptional in a  neighborhood of C (b y (21.12.1)) ; 
(22.1.6) K  +  S + B i s It outsid e Supp S (b y (21.9)) ; 
(22.1.7) ther e is a unique irreducibl e componen t L C  L_Diffs(B) j whic h is not 

contained i n C  (thi s follow s from (22.2)) . 

22.2 Lemma . (22.2.1)  Assume that  all  index two  Hips satisfying (22.1.1-7) 
exist. Then  all  index two  flips satisfying (22.1.1-6)  exist. 

(22.2.2) Assume  that  f  :  X -»  Z  satisfies  (22.1.1-6)  and  L Diff 5 ( J B)j (jL  C. 
Pick a  component L  C  i_Diff s{B) J  which  is not in  C. Let  L c C  Supp Diff s(B) 
be the  connected  component  of  Supp Diff s(B) containing  L.  If  L c contains 
another noncontracted  curve  then (X,  S)  is  1-complemented,  and  the  flip  ex-
ists. 

Proof. Th e firs t par t i s essentially th e statemen t tha t i f we apply th e back -
tracking method t o a n arbirtar y inde x tw o flip then th e middl e flip  satisfie s 
(22.1.7), (21.9 ) o r else it i s exceptional. 

In case (22.2.2) it is easy to see that one can find an effective divisor M suc h 
that M  i s /-nef and Sup p M =  Sup p Lc -  L.  Thu s (5 , Dif f (B) -  eM ) satisfie s 
the assumption s o f (19.11). Henc e (5,Diff(JB) —  eM) i s 1-complemented, an d 
therefore s o is (5 , Diff(0)) . • 

S. M . F. 
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22.3 Further  subdivison  of cases.  B y passing t o the analyti c categor y we may 
assume tha t ou r flipping  curv e C  i s irreducible . W e consider fou r type s of 
extremal contractions . Thes e fou r case s exhaus t al l possibilitie s i f C  i s irre-
ducible, bu t no t i f C  i s reducible. Becaus e of certain technica l detail s o f the 
inductive proof , in case (22.3.c ) w e allow the flipping curve to be reducible. 

(22.3.a) C  i s irreducible an d C  (jL  Supp(B) . In particular , K  +  S +  B i s It 
at th e generi c point o f C; 

(22.3.b') C  i s irreducible, K  +  S + B i s not I t alon g C an d ther e is a poin t 
Q £  L  suc h that (5,Diff(B) ) i s not I t a t Q.  I n this case C C Supp(S). 

(22.3.b") C  i s irreducible, K  +  S +  B  i s not I t alon g C  an d (5 , Diff(B)) i s 
It outsid e L.  I n this case C  C Supp(5); 

(22.3.c) C  i s possibly reducible, K  +  S +  B i s It a t ever y generic point of 
C an d C  C Supp(B). 

The proo f o f the existenc e of flips proceeds by induction o n two numbers : 
the heigh t o f a  Shokuro v flower and th e S-lo g difficulty . Thes e ar e define d 
shortly. 

22.4 Definition  -  Proposition.  Assum e that X  i s It an d (X , S) i s lc. B y (6.6) 
there are only finitely many exceptional divisors E suc h that discrep(i£ , X) < 
0. W e define th e S-log  difficulty of (X , S) (denote d b y <5(X , 5) o r simpl y by 
6) t o be the numbe r o f exceptional divisors E  suc h that 

(22.4.1) discrep(£ , X) <  0 an d discrep(£ , X, 5) =  - 1 . 

If /  :  Y  — * X i s a  prope r birationa l morphis m the n se t f*S  =  f^~ 1(S) + 
£ d(Ei)Ei.  B y definition d(Ei)  =  discrep(E i, X, B) -  discrep(£ 2-, X, S +  B). 
Thus (22.4.1 ) ca n be rewritten a s 

(22.4.2) d(E)  <  1 an d discrep(£; , X, S + B) =  - 1. 

22.5 Definition.  A n extremal contractio n g  :  Y — • X i s a  good  extraction  if it 
is log crepant an d satisfie s th e followin g conditions: 

(22.5.1) K  +  S +  E i s It ; 
(22.5.2) D  =  S  f l E ^  P 1; (B y (22.5.1) S  an d E  cros s normally genericall y 

along D.) 
(22.5.3) Fo r double adjunctions, w e have 

Diff D (Diff 5 (£ +  B))  =  Diff D(Diff£(S +  B))  =  1!2 P1+ + i p 2 +  P , 

where P  i s the uniqu e non-I t poin t fo r K  +  S  + B +  E o n D. 
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22.6 Lemma . There  is  a Unite chain of good extremal  extractions  in  cases 
(22.3.a) and (22.3.bn) such  that  in  the last extraction  there  is only one  non-It 
point (as  P in  (22.5.3))  on the exceptional divisor. 

Proof. I n either case the boundary of ifs+Diff (B)  has exactly one component 
passing throug h th e non-It point . W e construct th e chain inductively . Takin g 
a It model for K + S + £, h  : X* ^> X, w e apply the (Kf +  St +  Bt +  Et- eB*)-
MMP. Along the way back to X, ther e is a flip or divisorial contraction, afte r 
which we get the neighborhood of Q = C D L in case (a ) (Q £ C ^  C  fl L 
in cas e (b")) . Thi s ste p i s not a flip  since the modifications ar e done over 
X. S o it i s a divisoria l contraction . I t mus t b e a contractio n o f E t o the 
point Q  because the non-exceptional assumption. Le t us call the contraction 
5i :  (Xu E 1 =  E) -+  (X0 =  X,Q). g x i s log-crepant and K + g^S +  E is It by 
assumptions. I t implies that g~[XS and E cross normally and Ef)(gi)~1S =  P 1 . 
Also 

{K +  (g^S +  E + (g^Blg^S) \E  0 (9L)^S =  Blg^S) + \P X +  \P 2 +  P , 

where P = (g^^S f l E fl ( g i ^ L. g\  is a good extraction . Assum e that we 
have constructed a  chain of good extraction s tha t starts at X an d ends with : 

9i : (Xi,Ei)  — • (JQ_i ,Qi_i G  Ei-i). 

We are done if there is no non-It poin t o n E{ except along E{  fl (gi)~ lEi-\. 
Otherwise le t Qi  be the non-I t point . Ther e i s an irreducibl e Li  fro m th e 
reduced part of g*(K + S + B)\E{ (wher e g is the composite of all the gi). Qi  G 
Li. Moreove r Li is the only locus where g~xB intersect s E{ in a neighborhood 
of Qi.  Lookin g again fro m the Q-factorial I t model X1 usin g (K 1 +  S* + B* + 
E1 —  eB*)-MMP, w e claim that th e last ste p o f the modification tha t give s 
the neighborhoo d of Qi is a divisorial contractio n t o Qi. W e show that thi s 
step cannot be a flip.  Let C b e the flipped curve passing Qi.  By assumption 
C •  gZ xB <  0. g*B  • C =  0 implies that ther e is an exceptional divisor E' 
such that E'  •  C >  0. Ther e is no exceptional locus passing throug h Qi  and 
g*iEi-X •  C =  0, C •  (gi^Ei-i <  0. 

So C lie s in (g^Ei-i. 

D i f f U l S ( 9 i ) ; l E i J^ l B + Ei ) 

is not kit along E f\(gi)^1Ei-i an d at Qi.  Henc e by (12.3.1) i t is not It along 
C". K+fa^Ei-i+Ei  i s It before the flip and K+ig^Ei^+ig^B +  Ei is 
not I t in the neighborhood of the flipping curve. Therefor e (gi)~ lB intersects 
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Ei mor e than L 2 aroun d Q{.  Thi s i s a  contradiction . Th e nonexceptiona l 
assumption prevent s th e modificatio n being a contraction to a  curve. S o this 
modification i s a  divisoria l contractio n t o Q{.  W e check a s befor e tha t i t 
is a  goo d contraction . Th e proces s stops afte r finitely  man y step s sinc e th e 
number o f exceptional divisors in the I t mode l is finite. • 

The above lemma justifies th e following : 

22.7 Definition.  W e define the minimum number of good extremal extraction s 
needed in the lemm a the  height  of the Shokurov flower, and denot e it b y A. 

We remark that the above construction does not work in the cases (22.3.b' ) 
and (22.3.c ) sinc e condition (22.5.3) fo r a goo d extractio n woul d fail. 

22.8 Proposition. For  the cases (22.3.b') and (22.3.c)  we  have the following: 
(22.8.1) either  there  is a good extraction  of  g :  (Y,E) —>  (X,C)  such  that 

d(E) <  1; 
(22.8.2) or  the flip  of  f exists. 

Comments. Thi s formulatio n (take n fro m [Shokurov92 , 8.8]) does not mak e 
much sens e sinc e a  posterior i flips  alway s exist . Th e clai m i s tha t i f th e 
construction give n in [ibid , 8.8] fails t o yield a goo d extractio n the n th e en d 
result o f the constructio n ca n be used to produce the flip. 

The original version [Shokurov91, 8.8] claimed that one always has the first 
case. I t i s not clea r i f the secon d case is really necessary . 

The followin g eas y lemm a (whos e proof i s lef t t o th e reader ) i s use d re -
peatedly i n the proo f o f the final  theorem. 

22.9 Lemma . Let  f  :  S —->  T be  a birational map between  normal surfaces 
and D  an  effective  ample  divisor  on  S.  If  / _ 1 (Supp(Z))) is  irreducible then 
/ - ^ S u p p p ) ) isnef.  • 

The attached flow chart a t th e en d of this chapter outline s the proo f o f the 
last theorem . Her e g  :  Y —•  X i s a  goo d extractio n a s constructe d fo r th e 
cases (22.3.a,b',b",c) . Th e flow chart ignores the possibility that a t som e step 
we ended up i n case (22.8.2) , when the flip is known to exist . 

22.10 Theorem . Index  two  flips exists. 

Proof. A s we remarked earlier , w e may assum e tha t al l th e assumption s o f 
(22.1) ar e satisfie d an d w e need to consider only the case s (22.3.a,b',b",c) . 

We reduce the existence of the required flip to that of the exceptiona l cases 
when either A  or 6  is zero, for which the resul t i s known. 

Let g  :  Y —•»  X  b e th e goo d extractio n accordin g to case s (22.3.a-c) . (I f 
a goo d extractio n doe s no t exis t the n th e flip  exist s b y (22.8). ) W e hav e 
p(Y/Z) =  2 . Ther e ar e tw o extrema l rays , an d R\  correspond s to g.  Th e 
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contraction o f R 2 i s small . W e conside r th e firs t flip  accordingly . I n th e 
following w e identif y L  an d S  wit h thei r birationa l transform s o n Y  an d 
D =  S C\E. 

Assume /  i s o f cas e (22.3.a) . O n Y  th e locu s o f R 2 i s C , th e prope r 
trasform o f C i n X.  E  •  R2 >  0  and S  • R2 <  0. Th e first flip exists by (20.7) . 
If P  =  D fl L i s not o n C, K +  S + B + E i s It i n a  neighborhood of C. Afte r 
the flip,  o n X u K  +  S i +  Bi  +  Ex i s It aroun d th e flipped  C+ i n E\.  Le t R 2 

be th e ne w flipping ray o n X\. Th e locus C\ o f R2 i s in i?i . A s in (21.8 ) we 
treat onl y the cas e where C\  i s apart fro m S i an d K'+  S\  +  B\ +  E\ i s no t 
pit alon g C\.  Otherwis e th e existenc e o f flip is known an d i s followe d b y a 
divisorial contraction t o X + , the require d flip  of /. Whe n that i s so, since 

£>i =  E x n  S i C  L D i f f E l (Si  +  Bi)J , 

there i s a n L f C  L D i f f E X ( S I +  BI)J  no t i n C\  intersectin g C\  a t a  poin t Q 
and Di  a t P + . Thi s implies U irreducible . Supp(J3i ) does not contai n C\.  I f 
C\ wer e reducible, we contract a n irreducible componen t of C\ an d then take 
an extrema l ra y R  o f E\ (afte r contractio n o f a component o f C\) suc h tha t 
R -  D\ >  0 . Notic e that V  become s ample b y (22.9) . Th e existenc e o f such 
a ra y i s guaranteed by ( D i ) 2 > 0 . I f cont# contract s a  curve F  the n (12.3.1 ) 
forces 

FnD 1ni , =  P+. 
By induction on p(.Ei), we may assume that cont# is of fiber type over a curve 
after al l becaus e d  f l D x =  0 . B y (12.3.1 ) D i f f ^ S i +  B x) ha s onl y P+ = 
V f l Di a s non-pit poin t o n L f whic h contradicts ou r starting assumption. S o 
C\ i s irreducible. Thi s technique i s used later . W e are agai n i n Cas e (22.3.a) 
with smalle r A . I f P  E  C, w e have R 2 •  E >  0 , R 2 •  B >  0  and R 2 •  S <  0 . 
The flip in C  exist s b y (20.7) . C + C  E x f l Supp(Bi). A s before we consider 
only th e cas e wher e th e locu s C\ o f the ne w flipping curve R 2 i s away fro m 
Si an d (K  +  S1+B1+E1)\E1 ha s LCS along C x. I t implie s the flipped  C + i s 
irreducible an d C + f l D\ =  P + , whic h is the onl y point wher e B\  passe s D\. 
So 

S i . ( S u p p ( B i | £ i ) - C + ) =  0 . 

It mean s Supp(Bi|J^i ) — C+ i s in C\.  I n fact the y ar e equal , for otherwise we 
contract Supp(Bi|£ ,i) - C + i n Ci , C + become s ample by (22.9) . W e use th e 
same metho d a s w e did in th e firs t par t b y looking at contraction s o n E\  t o 
get a  contradiction. I f K +  S\ +  Bi +  E\ i s It alon g C\ w e go to case (22.3.c) . 
Otherwise C\  ha s t o be irreducible an d w e have case (22.3.b ;). 

Let /  b e o f case (22.3.1/) . Le t C  b e th e locu s of R2. I f C =  D  =  SHE. 
The flip in C  exist s an d S  an d E  ar e separated . I t i s followed b y a divisoria l 
contraction o f E +. W e are done . Otherwis e C  f l S =  0 . W e treat onl y th e 
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case when K  +  S + B + E has LCS along C. The n there is an irreducible U 
as a fiber of g in E, V f l D = P an d L' f)Ci =  Q. P  is the only point wher e 
2? intersects Z) . Tha t i s to say 

S •  (Supp(B|£) - If)  =  0. 

It implie s Supp(2?|2£) — 2/ is in C. I f we contract Supp(2?|2£ ) — L',L' becomes 
ample. A s before 

Supp(£|£) -  L'  = C. 

If K+S+B+E i s It along C we are in case (22.3.c). Otherwis e C is irreducible 
and w e are in case (22.3.b' ) wit h smalle r 8. 

f i s in case (22.3.b") . Th e locus of R2 i s C. E  • R2 >  0 and S • R2 <  0. The 
flip to Xi in C exists by (20.7). B y the proof o f (22.8) w e may consider only 
the cas e when D\  =  Si  fl E\ i s irreducible. Th e locus C\ o f the new flipping 
ray R 2 i s away from S\ . W e treat onl y the case when K  +  S\ + Bi + E\ is 
not I t alon g C\.  Ther e i s an irreducible V  C  i _Diff^(Si +  B\)A such tha t 
V f l Dx =  P  an d 2/ n Ci = Q . Indee d L r = C+ . P  i s the only point wher e 
2?i intersect s 2?i . We check as before that 

Supp (B i |E i ) -2 / =  Ci. 

li K  +  S\ + B\ + E\ i s It alon g Ci we are in case (22.3.c) . Otherwis e C\  is 
irreducible and we are in case (22.3.b') . 

If / i s of case (22.3.c). Th e locus C of R2 ma y not be connected. D = EC\S 
is irreducible. P  = LnD.  I f C has components passing throug h P i , P 2 o n 25, 
K + S + B + E is It in neighborhoods of those components . Henc e the flips in 
these curves exist. Afte r the flips on X\ w e may assume P + =  Li  fl 2?i is the 
only point bn Z?i where 2?i intersects Z>i. W e consider only the case when the 
locus Ci of the new flipping ray R2 i s away from Si and K+Si +B1+E1  i s not 
It alon g Ci. The n there is an L' C iJDiff^ (S i +BI)J suc h that L ' f l ^ i =  P + 

and 2 / fl Ci = Q, the non-It poin t o n C\. A s before, we can check that 

$nW(Bi\Ei)-L' =  C,. 

K + Si + Bi + Ei is kit at some point o f C\. W e are in the case (22.3.c ) wit h 
smaller 8. 

This is the end of the induction. • 

The flowchart  ignores easy flips and (22.8.2) outcom e of the procedure. 
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T H E FLO W CHAR T 

Good contractio n exist s 

First flip  exists —• $ 

f : X —• Z i s of case (a) , (b) or (c) 

a. 

g : Y —• X i s good 

Done Yes Is i? • S > 0 or ÜT + S + £  +  B It ? 

No 

Four cases : (a) , (6'), (6"), (c) 

4 
Case (a ) 

Case (a ) flip in i? , À drops o r Cas e (b ) or (c ) flip in R 

Case (6') 

Case (&') flip in R,  6 drops o r Cas e (c ) flip in R 

Case (6") 

Case (b")  flip in R,  X  drops o r Cas e (&') or (c ) flip in R 

Case (c ) 

Case (c ) flip in Ä, 5 drops 
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23. UNIRATIONALIT Y OF TH E 
GENERAL COMPLET E INTERSECTION 

OF SMAL L MULTIDEGRE E 

KAPIL H . PARANJAP E an d V . SRINIVA S 

It i s well-known that a  quadric hypersurfac e wit h a  rational point i s ratio -
nal. Similarly , a  cubi c hypersurface o f dimension a t leas t tw o is unirational 
once i t contain s a  rationa l line ; ove r an algebraicall y close d field  this latter 
condition is always satisfied. Thes e results were generalized by [Morin40], who 
showed tha t th e genera l hypersurfac e o f degree d  and dimensio n sufficientl y 
large i s unirational once it contain s a  linear spac e of sufficiently larg e dimen -
sion define d ove r the give n field; this latter conditio n being always true over 
an algebraicall y close d field.  Thi s wa s further generalize d b y [Predonzan49 ] 
to include the cas e of complete intersections . 

The paper s [Morin40,Predonzan49 ] are quit e har d t o locat e and th e onl y 
easily availabl e accoun t i s in th e boo k o f [Roth55] , wher e on e finds a  sketc h 
of the proo f fo r the resul t o f Morin. Analysin g this proof i t i s easy to recover 
a proo f o f the resul t o f Predonzan. W e present her e a  proo f o f these result s 
and som e related results . Afte r thi s paper wa s written we came to know of a 
recent pape r [Ramero90 ] where the bound s obtained by Predonzan hav e been 
improved. 

23.1 An  illustrative  example.  W e illustrate th e proo f i n th e genera l cas e by 
showing how to deduc e the unirationalit y o f a genera l quarti c o f sufficiently 
large dimensio n using a s inductive starting point th e followin g wel l known 

23.1.1 Fact.  A  smooth cubic hypersurface X  C  P£ o f dimension a t leas t tw o 
(n >  3 ) which contains a  line P k C  X C  P£, is unirational over k. 

The proof i s in severa l steps . 

(23.1.2). W e choose n sufficiently large so that a general quartic hypersurfac e 
in P £ contain s a  linea r subspac e P | (thi s choic e o f dimension i s dictate d b y 
the ambien t dimensio n fo r th e cas e o f cubics), fo r k  a n algebraicall y close d 
field. 

S. M . F . 
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To d o this consider the incidenc e locus 

Z G  xF N 

\ / 
G 

where G  =  (7(P 3 ,P n ) i s th e Grassmanian , P ^ i s th e spac e o f al l quarti c 
hypersurfaces i n P n an d Z  consist s of pairs (£ , X ), wit h L  =  P 3 C  Pn a  linea r 
subspace containe d i n a  quarti c hypersurfac e X.  The n Z  i s a  projectiv e 
subbundle o f G x  P n o f codimension ( 3 + 4 ) = 35 . Hence , if 

(dimG = ) ( n - 3)( 3 + 1 ) > 35 

then dim Z >  dimP^ ; so that we can expect the map Z  —>  F N t o be surjective . 
This is the cas e as shown in (23.2.3) . No w in X  i s a point o f P^, w e can find 
a poin t o f Z lyin g over it i f k  i s algebraically closed. 

(23.1.3). Assum e that w e have a  genera l pai r (L,X)  i n Z  define d ove r some 
field k  (no t neccessaril y algebraicall y closed) . Th e collectio n of all P 4 whic h 
contain L  =  F 3

k for m a P£~ 4 . Th e intersection P 4 f l X i s the unio n o f P3 an d 
Y C  P4 , whic h is a cubic hypersurface. Moreove r Y f l P3 i s a cubic surface . 

Let XL  — • X b e th e blo w u p o f X alon g L  an d le t E  b e th e exceptiona l 
divisor. W e have a  natura l ma p X L - » Pfc - 4 whic h i s a  fibration  b y cubic 
hypersurfaces. Moreover , we have a  natural diagra m 

E ^  P 3 x  P£~ 4 

\ / 
p n - 4 

which makes th e ma p E  —*  P£~ 4 a  fibration  b y cubic surfaces . 
Let G f =  G(Pl,Tf)  b e th e Grassmannia n o f lines i n P 3 an d le t I  C  G'  x 

P^~4 b e th e incidenc e locus o f pairs (M , i) suc h tha t th e fibre  o f E  ove r t 
contains th e lin e M.  W e already kno w that I  dominate s P£~ 4 s o suppos e 
that 
(23.1.4) 

there is a component of I tha t dominate s p n ~ 4 an d i s rational over k. 

Let K  b e th e functio n field  o f this component and (M , t) th e correspondin g 
point o f I. The n t  i s a generic point o f P£~4 an d M  i s contained i n th e fibre 
Et o f E  ove r t  £  P n " 4 . Thus , M  i s containe d i n th e fibre  Y t o f X L ove r 
t 6  p n - 4

? makin g Y t a  cubi c hypersurface o f dimension three which contain s 
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a line . Thu s Y T i s unirationa l ove r K  b y induction . No w in th e Cartesian 
diagram 

i i 
Specif ^  P£" 4 

the horizonta l arrows are dominant an d so the unirationality o f YT over K an d 
the rationalit y ove r k  o f K impl y that X L i s unirational over k. 

In orde r t o ensur e tha t conditio n (23.1.4 ) hold s we note that if  I  —>  G'  is 
dominant, the n th e generi c fibre  o f this map i s a  linea r projectiv e subspac e 
of P n ~ 4 ; i n particular , thi s generic fibre is rationa l ove r k.  Thu s i n orde r t o 
complete th e inductiv e argumen t w e must choos e ou r n  i n ste p on e so that 
Z —•  G  i s also dominant . Thi s is achieved by the conditio n (23.2.4 ) below . 

23.2 Linear  spaces  in Complete  Intersections. Le t d  =  (d i , . . . , d r ) b e a n r -
tuple o f positive integers, an d n , k  b e an y positiv e integers suc h that on e of 
the followin g condition s hold: 

(23.2.1) I f r =  1  and d  = 2  then n  >  2k. 
(23.2.2) I f r >  1  or there is i  with d{  > 2 , and di  >  1  for al l i , then 

(«-*)(*+D>E(*i*) 

23.2.3 Lemma . Let  n,  k,  d 1 ? . . . ,  dr be  positive integers  satisfying  one  of 
the conditions  above.  Let  Hi  be  hypersurfaces of  degree di  in  P n . There  is  a 
linear subspace F K C  Pn which  is contained in the  intersection  of  all the Hi. 

Proof. Le t V =  T(P n , C?p«(l)) and G  be the Grassmannian o f linear subspace s 
of dimensio n k  in P n =  P(V) . W e have the universa l shor t exac t sequenc e 

Yt —  X L 

0 - » 5 ^ V x G ^ Q - » 0 

of vecto r bundles o n G, where Q  i s of rank k  + 1 . Thi s yields a filtration  o n 
Symdi(V) x  G  such that 

( l ^ / ^ X S y m ^ V ) x  G)  =  Sym*(0 ) 

and w e have a  surjectio n 

Di :  F1(Symdi (V)  x G ) - » S ® S y m ^ ^ Q ) . 

The incidence locus 

Z =  {(F u .. . ,  Fr , L)  G  (®F=i Sym d i (F)) x G \  F{ vanishe s o n L, for al l * } 
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can alternatively b e described as the direc t su m 

Z =  ® r

i=1F1(Symdi (V)  xG). 

We nee d t o sho w that th e projectio n 7 r : Z — • ffi£ =1 Sym di (V)  i s surjective . 
If we knew that th e to p Cher n clas s of © [ = 1 Sym di(Q) i s nonzero this would 
follow easily , but ther e seems to be no direct way of proving this nonvanishing 
statement. 

For eac h poin t 2 ; = (F,L ) in Z  w e have a  linea r inclusio n of the fibre  Z L 
of Z  — • G a t L , into ©•:_ ! Symdi(V). Thus , i n order t o show the surjectivit y 
of dir  at z  i t i s enough to show the surjectivit y o f the induce d ma p 

tl>„ :  TG,L =  TZ,Z/ZL -  e?= i Sym*(Qi) =  ( 0 [ = 1 Sym  di (V))/ZL. 

Writing T Q,L =  SI  (g ) QL w e check that th e X JJZ i s the composite 

^ z ® I d j - produc e j 

5 2 ®  QL •  © 7 =1 Sym di- \Q L) ®  QL ^  0^ 1 S y md ' ( Q £ ) 

where i s the ma p induce d by the imag e of z unde r th e ma p 

©A :  Z - » S  ® © [= 1 S y m ^ - ^ Q ) . 

Since the produc t homomorphis m is surjective w e would have surjectivity of 
i\)z if we knew the surjectivit y o f <j) z. Thi s in turn would follow fo r a  suitabl e 
choice of z i f we have the stronge r condition 

r 

(23.2.4) di m Sir =  n  - k  > ^ 
i=l 

Once w e have th e surjectivit y o f dn a t som e z , w e get tha t TT  is dominant . 
Since G is complete, 7r is proper and thus we get surjectivity o f n as required . 

Since we need the lemma only for the stronge r hypothesi s (23.2.4 ) we defer 
the proo f o f the genera l case s (23.2.1-2 ) t o (23.6) . 

23.3 Definition. W e define, by induction on the positive integers r , d l 9 . . . ,  dr , 
the positiv e integers n(di , . . . ,  dr) an d k(d\,...  ,  dr) a s follow s 

(23.3.1) I f r =  1  and d x =  1  then n(l ) = 1  and fc(l) =  0 . 
(23.3.2) I f r  >  1 , di  =  1  for som e i an d d ' =  (d i , . . . ,  d?_i, d2 +i , . . . , dr ) , 

then we define n (d) =  n(d' ) + 1  and fc(d) = fc(d') 
(23.3.3) I f di  >  1  for al l z , le t d  -  1  =  (d i -  1,.. . ,  dr -  1) . W e define 

fc(d) =  n( d - 1 ) an d 

k + di-1 
di-l 

n(d) = k(d) + 
Г 

i=l 

'k(d) +  di - 1 
di-l 
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Note that we obtain the inequality 

r»(d) -k(d) 
Г 

i=l 

'k(d) + di -1\ 
К di - 1 J 

in all of the above cases, i.e. (23.2.4) is always satisfied if we take n > n(d) 
and k = k(d). 
23A Theorem. Let (X,L) be a general pair, where X = Hi fl . . . fl Hr is 
the complete intersection of hypersurfaces Hi in P n of degree d{ respectively, 
L is a linear space of dimension k contained in X which is smooth along L 
and irreducible. Then if n > n(d) and k = k(d), X is unirational. 
Proof. We prove this result by induction on the positive integers r, di,. . . , dr 

and we require the following more precise statement. 
Let the notation be as in (23.1). For each z = (F,L) in let H{(z) 

be the hypersurface in P n defined by F{ and Xz be the intersection of these 
hypersurfaces. Let U(n,d) be the open subset of Z consisting of points z = 
(F,L) satisfying the following conditions 

(23.4.1) Xz is irreducible and the complete intersection of the Hi(z). 
(23.4.2) Xz is smooth along L. 
(23.4.3) 4>z is surjective. 

23.5 Theorem. If n > n(d) and k = k(d), then for each z G J7(n,d), Xz is 
unirational. 

Since we have shown that Z —+ © [ = 1 Symdi(V) is dominant, this implies 
(23.4). 
Proof. We proceed by induction on the positive integers r, di,.. . ,d r. 

(23.5.1) r = 1 and dx = 1. 
In this case Xz is a linear space and hence it is rational. 
(23.5.2) r > 1 and d2- = 1 for some i. 
Let V = V/(Fj) so that H{(z) = F(V) C F(V) = Fn. Then F{ € SL gives 

the z-th projection of 

^ i S I - e ^ S y m 1 ' ' - 1 ^ ) . 

Since (j)z is a surjection, we have an induced surjection 

4>' : {SLI < Fi >)* - ®j^Symd'-\QL). 

Let G' C G be the sub-Grassmannian of fc-dimensional linear subspaces of 
Hi(z) and Z' C Symdi(V) x G' be the locus of pairs (F ' ,L) , where Fj 
vanish along L. Then, if we take 

= {Fi \HÌ{Z), • • • 1^.(^)^1+1 \HÌ(Z)I • • • \HÌ(Z)) 
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and z' = (F ' ,L) . Then z' lies in Z'. Note that dimV7 = n - 1 > n(d) - 1 = 
n(d') and = fc(d) = fc(d') and = X^. Further, <j>zi = 4>f is a surjection 
so that we have the result by induction in this case. 

(23.5.3) di > 1 for all i. 
Choose a splitting of the sequence 

О —> SL —> V —> QL —• О 

Then if P = F(SL), the blow up F(V)L of P(F) = P n along L = F(QL) is 
alternatively described by 

F(V)L=Fp(QLxP®Op(l)) 

The surjection (induced by the splitting chosen above) V x P -» x 
P 0 O p ( l ) gives an inclusion F(V)L C P n x P. Further, the element F 2 e 
Symdi (V) goes to the kernel of 

Symdi(QL x P e O p ( l ) ) - Sym d i (Q L ) x P 

which is Sym**-1 (QL XP®Op(1)) ® 0p( l ) . Denote these images by F{. 
The subvariety defined by the vanishing of all the F 2 is the birational trans

form of X in P(y)jr; this strict transform is just the blow up XL of X along 
L . Since X is smooth along L, this is an irreducible variety and the excep
tional locus, which is its intersection with P ( Q L ) X P , is also smooth. In 
particular, the generic fibre of XL —• P is irreducible and smooth along its 
intersection with P ( Q L ) . Further, this fibre is a complete intersection defined 
by the simultaneous vanishing of the equations F{ which axe of degree di — 1. 

Since k — k(d) = n(d — 1), we can repeat the constructions of section 
2 with V{ = QL and G[ the Grassmannian of h = k(d — 1) dimensional 
linear subspaces of P ( V / ) = L . Let Z[ C 0^=1 S y m ^ - ^ V / ) x G[ denote the 
corresponding incidence locus and 

o -+ 5i -+ v/ x G ; -> Qi 0 

be the universal sequence on G[. 
We have a surjection (j)z : S*L —• ©£ = 1 S y m ^ " 1 ^ / ) , so that we can form 

the base change 
Z" — Z[ Х ф г = 1 Symd.-1(V1

/) S I 

Then Z" is a vector bundle over the Grassmannian G[ and a rational variety. 
Let z[ : Specif —• Z" denote its generic point. From the lemma we deduce 
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that Specif —• S£ is dominant. Since the natural map S*L — {0} —• F(SL) is 
surjective we see that the map Specif —• F(SL) is also dominant. Let Y be 
the pullback of XL —> F(SL) to Specif. Then 7 is a complete intersection 
variety in P(Q£ ® i f © if) which is defined by the equations F\,... , Fr which 
are of degrees d\ — 1,... , dr — 1 respectively. Further, if L\ G ̂ ( i f ) is the 
image of ¿4, then 

L1 c P ( Q L ® / 0 c P (QL ® i f © ̂ ) c y 

Further, y is smooth along its intersection with F(Qi®K) hence in particular 
along L\. 

By the genericity of z[, the induced morphism 

<AZ; :SlLl ->eF=iSym*- 1 (Q 1 > L l ) 

is surjective. But now, if Gi is the Grassmannian of /i-dimensional subspaces 
of F(V{ ® I f © if) and Zi C © [ = 1 S y m * " 1 ^ / ® i f © if) x G x is as before, let 
z\ — (F ,Li) G Zi. Then the map for z\ is 

<f>Zl : 5 r , £ l © A" - ©Li Sym" ' - 1 ^ ! , ! , ) 

which restricts to (f>2T and hence is also surjective. 
By the induction hypothesis, Y = XZL is unirational over the field if. But 

i f is the function field of a rational variety and since Spec i f —•> F{Si) is 
dominant y —> X is dominant. Thus X is unirational. • 

23.6 Proof of (23.2.3). The result is trivial in the case (23.2.1), so we only 
need to show the surjectivity of ipz for a suitable choice of z in the case 
(23.2.2). Since the map F1(Symdi(V) x G) -» 5 ® S y m * " 1 ^ ) is surjective 
this follows from the following proposition; taking Q to be QL and U to be 
5£, the map I/j can be thought of as an element of SL ® ffi^=1 Symd2- — 1(QL) 
which can be lifted to a point z G Z, hence xj;z = ip. 

23.6.1 Proposition. Let n, k and d = (o?i,... ,d r) be chosen satisfying 
(23.2.2). Let Q be a vector space of dimension k + 1. For any space U of 
dimension n — k and there exists a map ip : U —> ©f = 1 Symdi~1(Q) such that 
the induced map 

-0(g)ld , 1 product , 
U ® Q • © [ = 1 Sym^-^Q) ® Q • © [ = 1 Sym*(Q) 

is surjective. 

Proof. Since the product homomorphism 7r : Sym d i _ 1 ((5) ® Q —> Sym d i(Q) is 
surjective, we may assume that u = n — k < dim©^= 1 Symdi~1(Q). Let X be 
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the Grassmannian of (n — fc)-dimensional linear subspaces of © [ = 1 Sym d i _ 1 (Q) 
and U C Symd*~1(Q) ® Ox be the universal subbundle. The composite 
homomorphism 

U®Q^ ©r = 1 S y m ^ - 1 ^ ) ®Q®OX^ 0 ? = 1 Sym*(Q) ® OX 

is not surjective at some point of X if and only if there is a one dimensional 
quotient of ©£_x Symdi{Q) where the image of the composite goes to zero. 

Let Y = P (©[ = 1 Symdi(Q)); we have a surjection 

®r

i=1Symdi(Q)®Oy ->CV(1) 
and thus a composite homomorphism 

U®Q®OY^ ®UI Sym^-^Q) ®<2® C ? X x y -> O x ® 
This composite is zero at all the "bad" pairs (x, y) £ X xY. 

Let T be the cokernel of the natural homomorphism on Y 
Q®Oy-> (®r

i=i SymDI-\Q)y ® 
The locus of "bad" pairs, Z C X x Y is then the Grassmanian of rank u 
quotients of T. We need to show that Z —• X is not surjective. 

Let Y = J j y m be the flattening stratification for T. We have an exact 
sequence of vector bundles on Ym 

0 - f £ r o -> Q ® 0 y m -> (®r = 1 Sym^-HQ))* ® 0y m ( l ) - T \ Y m ^ 0 
where £? m has rank ra. Thus for all y G Y î, the one dimensional quotient of 
©^ = 1 Sym^(Q) is zero on (Em)y • ©^ = 1 S y m * " 1 ^ ) . Thus it is induced from 
a one dimensional quotient of ©£ = 1 Symd* (Q/(Em)y). 

Let Am be the Grassmanian of m-dimensional subspaces of Q and let 
Em • Q ® O A t o be the universal subbundle. Let £?m be the projective bun
dle PAm(©F=i Symdi(Q ®-0Am/Em)). We have a natural morphism Bm Y 
whose image contains Ym as seen above. Thus, we can bound the dimension 
of Ym and thus also Z \ym. 

dimZ \Ym< d im5 m + w(dim^" \Yrn -u) 

Comparing with dimX = iz(dimffi£=1 Sym d i(Q) — u) we see that we would be 
done if 
(* m ) dim©r= 1 Symdi(QIEm) < (u - ra)(dimQ - m) 

Since the conditions of the proposition give us 
(*o) dim©^= 1 Symd*(Q) < u - dimQ 

we have to show that (* m ) implies (*m-|-i). But then, replacing Q by Q/Em 

we need only show that (*o) implies (*i). This is easily checked by calcula-
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