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INTRODUCTION

Les Journées de géométrie algébrique d’Orsay se sont déroulées du 20 au 26
juillet 19992, dans le batiment de Mathématiques de I’Université Paris-Sud; elles
ont réuni prés de 300 participants. Leur objet était de faire le point sur l’état
des connaissances en géométrie algébrique complexe, en mettant en lumiere les
perspectives de recherche qui semblent les plus prometteuses.

Dans ce but, les conférences du matin étaient centrées sur 4 grands
thémes de la géométrie complexe : systémes linéaires, fibrés vectoriels, cycles
algébriques, variétés de dimension 3. L’apres-midi, des conférences plénieres
d’une heure ainsi que des conférences de 45 minutes en paralléle ont permis
d’aborder des sujets plus spécialisés.

Nous espérons que ces Actes refletent la vitalité du sujet telle qu’elle nous

est apparue lors de ces journées.

Les Journées de géométrie algébrique d’Orsay ont été organisées dans le
cadre du Projet européen Science “Geometry of Algebraic Varieties” (AGE) !,
et ont donc bénéficié, directement et indirectement, du soutien de ’Union Eu-
ropéenne (qui s’appelait encore Communauté Européenne). Nous avons d’autre
part recu un soutien financier important du Conseil Général de I’Essonne. Nous
tenons a remercier chaleureusement ces deux institutions, sans ’aide desquelles
ces Journées n’auraient probablement pas vu le jour. Nous remercions ’Univer-
sité Paris-Sud et le C.N.R.S. qui ont également contribué au succés de cette

manifestation.

Les organisateurs,

A. BEAUVILLE, O. DEBARRE, Y. LASzLO

! Contract SCI-0398-C(A).






RESUMES DES EXPOSES

V. BATYREYV : Quantum cohomology ring of toric manifolds

We compute the quantum cohomology ring QH}(Px,C) of an arbitrary d-
dimensional smooth projective toric manifold Py associated with a fan ¥ . The multi-
plicative structure of QHY,(Pg,C) naturally depends on the choice of an element ¢ in
the ordinary cohomology group H*(Pg,C). We check several properties of the quantum
cohomology rings QH7,(Pg, C) which are supposed to be valid for quantum cohomology

rings of a wide class of Kéhler manifolds.

A. BUIUM : A finiteness theorem for isogeny correspondences

Let Y be a curve in the moduli space of principally polarized abelian varieties of a
given dimension. An isogeny correspondence on Y is by definition an (irreducible) curve
Z CY xY such that for any point (y',y") of Z the abelian varieties corresponding to y'
and y" are isogenous. There are plenty of curves Y which carry infinitely many isogeny
correspondences; the union of all these Y ’s is dense in the complex topology of the moduli
space. However, we prove that for “most” curves Y there exist only finitely many isogeny
correspondences. Here “most curves” mean “all curves belonging to a dense open subset of
the space of all curves in the moduli space”, where the space of curves is given a suitable
topology, called the Kolchin topology, defined using algebraic differential equations.

F. CATANESE, P. FREDIANI : Configurations of real and complez polynomials

The present paper is devoted to the combinatorial descriptions of the connected
components of certain open sets of the space of real or complex polynomials of a fixed
degree. One instance is the open set of generic real polynomials (i.e. with distinct critical
values). Describing the connected components of the open set of real lemniscate generic
polynomials (i.e. with critical values with distinct non-zero absolute values), we give in
particular a geometric proof of the equality between the number of connected components
of the space L, of complex lemniscate generic polynomials of degree n + 1 and the number
of connected components of the space of real monic polynomials of degree n+1 with n
distinct real critical values, the lemniscate configurations occurring from real polynomials.

L. CHIANTINI, C. CILIBERTO : A few remarks on the lifting problem

We start with a projective variety X in P” and a family W of projective subvarieties
of P, parametrized by the space B, such that for any ¢t € B the corresponding fibre W,
of W is contained in some h-plane L; and W; D X NL; ; we assume that the L;’s for
variable t fill an open dense subset of the corresponding Grassmannian. We give conditions
on the degrees of X and W, which imply that the varieties W, glue together to give
a variety W (containing X ) such that W, = WNL, for all ¢t. The proofs are based on
the classical differential theory of “foci” introduced by C. Segre. Our results generalize the
theorems of Laudal and Gruson-Peskine, which deal with the case X is a curve in P3.



I. DOLGACHEV, M. KAPRANOYV : Schur quadrics, cubic surfaces and rank 2 vector
bundles over the projective plane

Let ¥ C P? be a smooth cubic surface. It is known that S contains 27 lines. Out of
these lines one can form 36 Schléfli double-sixes, i.e., collections {l1,...,ls},{l1,..., 1§} of 12
lines such that each I; meets only I}, j # ¢ and does not meet I;,j # i.In 1881 F. Schur
proved that any double-six gives rise to a certain unique quadric Q, the Schur quadric,
characterized as follows : for any ¢ the lines [; and [} are orthogonal with respect to Q.

The aim of the paper is to relate Schur’s construction to the theory of vector bundles
on PZ?. Infact, we show that the whole theory of Hulek of rank 2 vector bundles on P? with
odd ¢; can be given a ”geometric” interpretation involving some natural generalizations of
cubic surfaces, double-sixes and Schur quadrics.

R. DONAGI : Decomposition of spectral covers

A G-principal Higgs bundle over a variety X (with values in an arbitrary line
bundle on X) determines a family of spectral covers jv(p of X, one for each irreducible
representation p of G. We show that each of the Pic(ip) is isogenous to the sum, with
multiplicities, of a finite collection of abelian varieties, obtained as isotypic pieces for the
action of the Weyl group W on Pic(i() , where X is the cameral, or W-Galois, cover of
X, independent of p. The piece Prym(jv() , corresponding to the reflection representation of
W, is distinguished : it occurs in Pic(jv(p) for each p (this characterizes Prym for classical
G but not for exceptional groups such as Gz, Eg), and is essentially the moduli space
of Higgs bundles with spectral data X . Various Prym identities are recovered as the case
X =P!, G simply laced, studied previously by Kanev.

L. EIN, R. LAZARSFELD : Seshadri constants on surfaces

Let L be an ample line bundle on a smooth projective variety X of dimension n.
Demailly has introduced the Seshadri constant e(L,z) of L at z, which roughly speaking
measures how positive L is at z. For example, if L is very ample, then e(L,z) > 1 for
all z € X. We study these invariants in the first non-trivial case, when X is a smooth
surface. We prove (somewhat surprisingly) that in this case (L, z) > 1 for all except perhaps
countably many z € X, and moreover if L -L > 1 then the exceptional set is finite. On the
other hand, simple examples due to Miranda show that €(L,z) can take on arbitrary small
positive values at isolated points. The paper also contains some related examples and open

problems.

D. EISENBUD, M. GREEN, J. HARRIS : Some conjectures ezxtending Castelnuovo
theory

We propose a series of conjectures concerning the Hilbert functions of points (or
more generally zero-dimensional subschemes) in projective space. We begin by extending
the results of Castelnuovo and others on points in uniform position, and then consider

the corresponding problem without the hypothesis of uniferm position. A special case is a



RESUMES DES EXPOSES

conjectured extension of the classical Cayley-Bacharach theorem. We prove this conjecture
in projective space P" for all r < 7. Finally we make a conjecture extending Macaulay’s
theorem on the Hilbert function of graded rings, and discuss its relation to the previous

conjectures.

H. ESNAULT, M. LEVINE : Surjectivity of cycle maps

Let X be a smooth proper complex variety. We consider the cycle map from the
Chow ring to the ring of the Deligne cohomology. If this cycle map is injective (modulo
torsion), then it has to be surjective as well, and the groups HP(X,K,41) are generated by
constant functions on codimension p cycles (modulo torsion). This generalizes Jannsen’s
results concerning the cycle map with values in the Betti cohomology.

H. ESNAULT, V. SRINIVAS, E. VIEHWEG : Decomposability of Chow groups
implies decomposability of cohomology.
Let X be a smooth proper complex n-dimensional variety. We consider the cup
product map from the product of the Chow groups (modulo torsion)
CH"(V)®---® CH"" (V) —» CH"(X) ,
i=r
where Z n; =n and V is a non empty Zarisky open set in X. If it is surjective (modulo

i=1
torsion), then the corresponding map from the “edge” Hodge groups

H"(X,0x)®--- @ H""(X,0x) — H*(X, Ox)

is surjective. We give variants and discuss some problems.

D. MORRISON : Compactifications of moduli spaces inspired by mirror symmetry

We study moduli spaces of nonlinear sigma-models on Calabi-Yau manifolds, using
the one-loop semiclassical approximation. The data being parameterized includes a choice
of complex structure on the manifold, as well as some “extra structure” described by means
of classes in H?. We formulate a simple and compelling conjecture about the action of the
automorphism group on the Kahler cone, which would enable the construction of a partial
compactification of the moduli space using Looijenga’s “semi-toric” method. We then explore
the implications which this construction has concerning the properties of the moduli space

of complex structures on a “mirror partner” of the original Calabi-Yau manifold.

C. VOISIN : Miroirs et involutions sur les surfaces K$

On construit une série d’exemples de “symétrie miroir” en considérant des variétés
de Calabi-Yau du type (E x S)/(j,%), ou S est une surface K3 munie d’une involution :
agissant par (—1) sur H?%(S), et E une courbe elliptique munie d’une involution j telle
que E/j 2 P!. On utilise les travaux de Nikulin pour construire l'involution miroir sur
H2(S,Z), et le théoréme de Torelli pour construire ’application miroir holomorphe

((Ex8)/(5,i), @) — ((E' x 8)/(5",1"), o) .
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Quantum Cohomology Rings of Toric Manifolds

Victor V. Batyrev

1 Introduction

The notion of quantum cohomology ring of a Kéhler manifold V' naturally
appears in theoretical physics in the consideration of the so called topological
sigma model associated with V' ([16], 3a-b). If the canonical line bundle Ky of
V is negative, then one recovers the multiplicative structure of the quantum
cohomology ring of V from the intersection theory on the moduli space 7, of
holomorphic mappings f of the Riemann sphere f : §? = CP! — V where )
is the homology class in Hy(V,Z) of f(CP?).

If the canonical bundle Ky is trivial, the quantum cohomology ring was
considered by C. Vafa as an important tool for explaining the mirror symmetry
for Calabi-Yau manifolds [15].

The quantum cohomology ring QH,(V,C) of a Kahler manifold V, un-
like the ordinary cohomology ring, have the multiplicative structure which
depends on the class ¢ of the Kéhler (1,1)-form corresponding to a Kahler
metric g on V. When we rescale the metric ¢ — tg and put ¢t — oo, the
quantum ring becomes the classical cohomology ring. For example, for the
topological sigma model on the complex projective line CP? itself, the classi-
cal cohomology ring is generated by the class z of a Kahler (1, 1)-form, where
z satisfies the quadratic equation

= 0, (1)

while the quantum cohomology ring is also generated by z, but the equation
satisfied by z is different:

2= exp(= [ ), @)

S.M.F.
Astérisque 218* (1993) 9



V. BATYREV

A is a non-zero effective 2-cycle. Similarly, the quantum cohomology ring of d-
dimensional complex projective space is generated by the element z satisfying
the equation

2! = exp(- /A @)- (3)

The main purpose of this paper is to construct and investigate the quantum
cohomology ring QHy(Pyx, C) of an arbitrary smooth compact d-dimensional
toric manifold Py where ¢ is an element of the ordinary second cohomology
group H%(Py, C). Since all projective spaces are toric manifolds, we obtain a
generalization of above examples of quantum cohomology rings.

According to the physical interpretation, a quantum cohomology ring is a
closed operator algebra acting on the fermionic Hilbert space. For example,
the equation (3) one should better write as an equations for a linear operator
X corresponding to the cohomology class z:

Al = exp(—//\cp)id. (4)

It is convenient to define quantum rings by polynomial equations among
generators.

Definition 1.1 Let
h(t,z) =) ca(t)a”
neN
be a one-parameter family of polynomials in the polynomial ring C[z], where
z = {z;}ics is a set of variables indexed by I, t is a positive real number, N’
is a fixed finite set of exponents. We say that the polynomial

h*(z) = Z "

neN
is the limit of the family h(t,z) as t — oo, if the point {c¢P}nen of the
(| M| —1)-dimensional complex projective space is the limit of the one-

parameter family of points with homogeneous coordinates {cn(t) }nen-

Definition 1.2 Let R; be a one-parameter family of commutative algebras
over C with a fixed set of generators {r;}, t € R5o. We denote by J; the ideal
in C[z] consisting of all polynomial relations among {r;}, i.e., the kernel of
the surjective homomorphism C[z] — R;. We say that the ideal J* is the
limit of J; as t — oo, if any one-parameter family of polynomials h(t,z) € J;
(as in 1.1) has a limit, and J* is generated as C-vector space by all these
limits. The C-algebra
R*® = Clz]/J*
will be called the limit of R;.

10



QUANTUM COHOMOLOGY RINGS OF TORIC MANIFOLDS

Remark 1.3 In general, it is not true that if J* = limy_,o J;, and J; is
generated by a finite set of polynomials {hi(t,z)...,he(¢,2)}, then J*® is
generated by the limits {h$°(z),...,h?(x)}. The limit ideal J* is generated
by the limits h{°(z) only if the set of polynomials {h;(t,z)} form a Grébner-
type basis for J;.

In this paper, we establish the following basic properties of quantum coho-
mology rings of toric manifolds:

I:If o is an element in the interior of the Kahler cone K (Pg) C H(Pg, C),
then there exists a limit of QHt*q,(PE, C) as t — oo, and this limit is isomorphic
to the ordinary cohomology ring H*(Pyx, C) (Corollary 5.5).

II : Assume that two smooth projective toric manifolds Py, and Py, are
isomorphic in codimension 1, for instance, that Py, is obtained from Py,
by a flop-type birational transformation. Then the natural isomorphism
H%*(Py,,C) & H%(Py,,C) induces the isomorphism between the quantum
cohomology rings

QH::(PEU C) = QH‘;(PE” C)

(Theorem 6.1). We notice that ordinary cohomology rings of Py, and Py, are
not isomorphic in general.

III : Assume that the first Chern class ¢;(Pyx) of Py belongs to the closed
Kahler cone K(Py) C H*(Pyg, C). Then the ring QH}(Py, C) is isomorphic
to the Jacobian ring of a Laurent polynomial f,(X) such that the equation
fo(X) = 0 defines an affine Calabi-Yau hypersurface Z; in the d-dimensional
algebraic torus (C*)? where Z; is mirror symmetric with respect to Calabi-
Yau hypersurfaces in Py (Theorem 8.4). Here by the mirror symmetry we
mean the correspondence, based on the polar duality [6], between families of
Calabi-Yau hypersurfaces in toric varieties.

The properties II and III give a general view on the recent result of P.
Aspinwall, B. Greene, and D. Morrison [3] who have shown, for a family of
Calabi-Yau 3-folds W that their quantum cohomology ring QH;(W, C) does
not change under a flop-type birational transformation (see also [1, 2]).

IV: Assume that the first Chern class ¢;(Pyx) of Py is divisible by r,
i.e., there exists an element h € H%(Py,Z) such that ¢;(Ps) = rh. Then
QH}(Px, C) has a natural Z/rZ-grading (Theorem 5.7). We remark that the
ring QHj(Pyx, C) has no Z-grading.

The paper is organized as follows. In Sections 2-4, we recall a definition
of toric manifolds and standard facts about them. In Section 5, we define
the quantum cohomology ring of toric manifolds and prove their properties.

11



V. BATYREV

In Section 6, we consider examples of the behavior of quantum cohomology
rings under elementary birational transformations such as blow-ups and flops,
we also consider the case of singular toric varieties. In Section 7, we give an
combinatorial interpretation of the relation between the quantum cohomol-
ogy rings and the ordinary cohomology rings. In Section 8, we show that
the quantum cohomology ring can be interpreted as a Jacobian ring of some
Laurent polynomial. Finally, in Section 9, we prove that our quantum coho-
mology rings coincide with the quantum cohomology rings defined by sigma
models on toric manifolds.

Acknowledgements. It is a pleasure to acknowledge helpful discussions
with Yu. Manin, D. Morrison, Duco van Straten as well as with S. Cecotti and
C. Vafa. I would like to express my thanks for hospitality to the Mathematical
Sciences Research Institute where this work was conducted and supported
in part by the National Science Foundation (DMS-9022140), and the DFG
(Forschungsscherpunkt Komplexe Mannigfaltigkeiten).

2 A definition of compact toric manifolds

Toric varieties were considered in full generality in [9, 11]. For the general
definition of toric variety which includes affine and quasi-projective toric vari-
eties with singularities, it is more convenient to use the language of schemes.
However, for our purposes, it will be sufficient to have a simplified more clas-
sical version of the definition for smooth and compact toric varieties over C.
This approach to compact toric manifolds was first proposed by M. Audin [4],
and developed by D. Cox [8].

In order to obtain a d-dimensional compact toric manifold V', we need a
combinatorial object ¥, a complete fan of regular cones, in a d-dimensional
vector space over R.

Let N, M = Hom (N, Z) be dual lattices of rank d, and Ngr, Mg their
R-scalar extensions to d-dimensional real vector spaces.

Definition 2.1 A convex subset 0 C Npg is called a regular k-dimensional

cone (k > 1) if there exist k linearly independent elements vy,...,vx € N
such that

o= {muvr+ -+ mve | i € R, p; > 0},
and {vi,...,vr} is a subset of some Z-basis of N. In this case, we call
v1,...,U € N the integral generators of o.

12



QUANTUM COHOMOLOGY RINGS OF TORIC MANIFOLDS

The origin 0 € Ngr we call the regular 0-dimensional cone. By definition,
the set of integral generators of this cone is empty.

Definition 2.2 A regular cone ¢’ is called a face of a regular cone o (we write
o' < o) if the set of integral generators of ¢’ is a subset of the set of integral
generators of o.

Definition 2.3 A finite system ¥ = {o1,...,05} of regular cones in Ny is
called a complete d-dimensional fan of regular cones, if the following condi-
tions are satisfied:

(i) if o € ¥ and ¢’ < 0, then ¢’ € &;

(ii) if o, 0’ are in ¥, then 6 N o' <0 and o N0’ < 0';

(111) NR= oyU..-Uos.
The set of all k-dimensional cones in ¥ will be denoted by X(*).

Example 2.4 Choose d + 1 vectors vy, ...,v441 in a d-dimensional real space
E such that E is spanned by vy, ...,v441 and there exists the linear relation

v+ +vg1 =0.

Define N to be the lattice in E consisting of all integral linear combina-
tions of vy,...,v441. Obviously, Ng = E. Then any k-element subset I C
{v1,...,v411} (k < d) generates a k-dimensional regular cone o(I). The
set $(d) consisting of 2¢*! — 1 cones o(I) generated by I is a complete d-
dimensional fan of regular cones.

Definition 2.5 (cf.[5]) Let ¥ be a complete d-dimensional fan of regular
cones. Denote by G(X) = {v1,...,v,} the set of all generators of 1-dimensional
conesin £ (n = Card (). We call a subset P = {v;,,...,v;,} C G(E) a prim-
itive collection if {v;,...,v;,} is not the set of generators of a p-dimensional
simplicial cone in ¥, while for all k¥ (0 < k¥ < p) each k-element subset of P
generates a k-dimensional cone in X.

Example 2.6 Let ¥ be a fan ¥(d) from Example 2.4. Then there exists the
unique primitive collection P = G(X(d)).

Definition 2.7 Let C" be n-dimensional affine space over C with the set of
coordinates zy, . . ., z, which are in the one-to-one correspondence z; «+ v; with
elements of G(X). Let P = {v;,...,v;,} be a primitive collection in G(X).
Denote by A(P) the (n — p)-dimensional affine subspace in C" defined by the
equations

Zi1="'=2i,=0-

13



V. BATYREV

Remark 2.8 Since every primitive collection P has at least two elements,
the codimension of A(P) is at least 2.

Definition 2.9 Define the closed algebraic subset Z(X) in C" as follows
2(5) = JAP),
P

where P runs over all primitive collections in G(X¥). Put
UE)=Cc"\ Z(%).

Definition 2.10 Two complete d-dimensional fans of regular cones ¥ and
Y’ are called combinatorially equivalent if there exists a bijective mapping
¥ — X' respecting the face-relation ”<” (see 2.2).

Remark 2.11 It is easy to see that the open subset U(X) C C" depends
only on the combinatorial structure of ¥, i.e., for any two combinatorially
equivalent fans ¥ and ¥’, one has U(X) = U(X').

Definition 2.12 Let R(X) be the subgroup in Z" consisting of all lattice
vectors A = (Ay,..., ;) such that \jv; + -+ -+ A\, = 0.

Obvioulsy, R(X) is isomorphic to Z™9.

Definition 2.13 Let ¥ be a complete d-dimensional fan of regular cones.
Define D(X) to be the connected commutative subgroup in (C*)" generated
by all one-parameter subgroups

ay : C*—(C)",
t— (th, ... ")
where A € R(X).
Remark 2.14 Choosing a Z-basis in R(X), one easily obtains an isomorphism

between D(X) and (C*)~.

Now we are ready to give the definition of the compact toric manifold Py
associated with a complete d-dimensional fan of regular cones X.

Definition 2.15 Let ¥ be a complete d-dimensional fan of regular cones.
Then quotient
Py =U(X)/D(%)

is called the compact toric manifold associated with .

14



QUANTUM COHOMOLOGY RINGS OF TORIC MANIFOLDS

Example 2.16 Let ¥ be a fan ¥(d) from Example 2.4. By 2.6, U(X(d)) =
C4+1\ {0}. By the definition of X(d), the subgroup R(X) C Z" is generated
by (1,...,1) € Z%*1. Thus, D(Z) C (C*)" consists of the elements (t,...,1),
where t € C*. So the toric manifold associated with ¥(d) is the ordinary
d-dimensional projective space.

A priori, it is not obvious that the quotient space Py = U(X)/D(X) always
exists as the space of orbits of the group D(X) acting free on U(X), and that
Py is smooth and compact. However, these facts are easy to check if we take
the d-dimensional projective space Py as a model example.

There exists a simple open covering of U(X) by affine algebraic varieties:

Proposition 2.17 Let o be a k-dimensional cone in I, {v;,...,v;} the set
of generators of o. Define the open subset U(oc) C C" by the conditions
zj # 0 for all j & {i1,...,1}. Then the open sets U(o) (¢ € ) have the
properties:

(i)

u(E) = Ul
D))
(i) if 0 < o', then U(o) C U(0');
(iii) for any two cone g1,09 € X, one has U(o1) NU(oq) = U(o1 Noy); in

particular,
uE) = |J U).
oex@
Proposition 2.18 Let o be a d-dimensional cone in @, {v;,...,v;,} the
set of generators of 0. Denote by u;,,...,u;, the dual to v;,...,vi, Z-basis of

the lattice M, i.e, (vi,,u;) = k1, where (x,%x) : N x M — Z is the canonical
pairing between lattices N and M.

Then the affine open subset U(o) is isomorphic to C% x (C*)"~¢, the action
of D(X) on U(0o) is free, and the space of D(X)-orbits is isomorphic to the

affine space U, = C? whose coordinate functions z{,...,z5 are the following
Laurent monomials in z1,...,2, :
v1,U; Vp,U; v1,U; Uy , U
z{ = zi RURAAL ’1), e, ZG = z§ "’>---z,(," fal

The last statement yields a general formula for the local affine coordi-
nates z{,...,zJ of a point p € U, as functions of its homogeneous coordinates
21,..., zn (see also [8]).

15
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Compactness of Py follows from the fact that the local polydiscs
D,={z €U, :|2]|<1,...,|g7|< 1}, 0 €@

form a finite compact covering of Py.

3 Cohomology of toric manifolds

Let ¥ be a complete d-dimensional fan of regular cones.

Definition 3.1 A continuous function ¢ : Ngr — R is called X-piecewise
linear, if ¢ is a linear function on every cone o € X.

Remark 3.2 It is clear that any ¥-piecewise linear function ¢ is uniquely de-
fined by its values on elements v; of G(X). So the space of all L-piecewise linear
functions PL(X) is canonically isomorphic to R™: ¢ — (¢(v1),...,¢(vn)).

Theorem 3.3 The space PL(X)/Mpg of all L-piecewise linear functions mo-
dulo the d-dimensional subspace of globally linear functions on Ng is canon-
ically isomorphic to the cohomology space H*(Pg,R). Moreover, the first
Chern class ¢;(Ps), as an element of H*(Py,Z), is represented by the class
of the L-piecewise linear function as € PL(X) such that ag(vy) = -+ =
ag(v,,) =1.

Theorem 3.4 Let R(X)r be the R-scalar extension of the abelian group R(X).
Then the space R(X)R is canonically isomorphic to Hy(Pg, R).

Definition 3.5 Let ¢ be an element of PL(X), A an element of R(X)g. Define
the degree of A relative to ¢ as

deg,(A) = Z Aip(vi).

It is easy to see that for any ¢ € Mg and for any A € R(X)g, one has
deg,(A) = 0. Moreover, the degree-mapping induces the nondegenerate pair-
ing

deg : PL(X)/Mgr x R(X)r — R

which coincides with the canonical intersection pairing

H?*(Px,R) x Hy(Px,R) = R.

16
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Definition 3.6 Let C[z] be the polynomial ring in n variables zy,..., 2.
Denote by SR(X) the ideal in C|[z] generated by all monomials

II =
v;€EP

where P runs over all primitive collections in G(X). The ideal SR(X) is
usually called the Stenley-Reisner ideal of .

Definition 3.7 Let uy,...,uq be any Z-basis of the lattice M. Denote by
P(X) the ideal in C|[z] generated by d elements

n n

Z(v,-, u) 2, ... ,Z(v,—, Ug) 2;.

i=1 i=1
Obviously, the ideal P(X) does not depend on the choice of basis of M.

Theorem 3.8 The cohomology ring of the compact toric manifold Py, is canon-
ically isomorphic to the quotient of C[z] by the sum of two ideals P(X) and
SR(X) :

H*(Py, C) = Clz]/(P(X) + SR(X)).
Moreover, the canonical embedding H?(Ps, C) — H*(Psx,C) is induced by
the linear mapping

PL(Z)@rC — Clz], o i pi(vi)2i.

In particular, the first Chern class of Py, is represented by the sum 21+ - -+ 2,.

Example 3.9 Let Py be d-dimensional projective space defined by the fan
Z(d) (see 2.4). Then

d+1
P(S(d)) =< (21— 2a1); -, (2a = za11) >, SR(E(d)) =< [J 2 >

i=1

So we obtain

Clz1,- .., za+1)/(P(2(d)) + SR(Z(d)) & C[z]/z*H.

17
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4 Line bundles and Kahler classes

Let 7 : U(X) — Py be the canonical projection whose fibers are principal
homogeneous spaces of D(X). For any line bundle £ over Py, the pullback
7*L is a line bundle over U(X). By 2.8, 7*£ is isomorphic to Oy x). Therefore,
the Picard group of Py is isomorphic to the group of all D-linearization of
Oy(z), or to the group of all characters x : D(X) — C*. The latter is
isomorphic to the group Z"/M where Z" is the group of all £-piecewise linear
functions ¢ such that ¢(N) C Z.

Proposition 4.1 Assume that a character x is represented by the class of an
integral L-piecewise linear function ¢. Then the space H'(Py, L) of global
sections of the corresponding line bundle L,, is canonically isomorphic to the
space of all polynomials F(z1,...,2,) € C[z] satisfying the condition

F(t’\lzl, e, t’\"zn) = tdegvAF(zl, )
for all A€ R(X), te C".

The exponents (my,...,m,) of the monomials satisfying the above condi-
tion can be identified with integral points in the convex polyhedron:

Ay = {(z1,...,2a) € Ry 1 deg, A = Mz1 4 -+ 4+ Azn, A € R(E)}

Definition 4.2 A Y-piecewise linear function ¢ € PL(X) is called a strictly
convez support function for the fan ¥, if ¢ satisfies the properties
(i) ¢ is an upper convez function, i.e.,

e(z) + ¢(y) 2 ¢(z +y);

(ii) for any two different d-dimensional cones 01, 03 € X, the restrictions
|, and ¢|,, are different linear functions.

Proposition 4.3 If ¢ is a strictly conver support function, then the polyhe-
dron A, is simple ( i.e., any vertex of A, is contained in d-faces of codimen-
sion 1), and the fan ¥ can be uniquely recovered from A, using the property:

Ay = {x € Mg : (vi,z) > —p(vi)}.

Definition 4.4 Denote by K(Z) the cone in H%(Px,R) = PL(X)/Mg con-
sisting of the classes of all upper convex X-piecewise linear functions ¢ €
PL(X). We denote by K°(X) the interior of K(X), i.e., the cone consisting of
the classes of all strictly convex support functions in PL(X).

18
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Theorem 4.5 The open cone K°(X) C H%(Ps,R) consists of classes of
Kdhler (1,1)-forms on Py, i.e., K(X) is isomorphic to the closed Kihler cone
Of P):.

Next theorem will play the central role in the sequel. Its statement is
contained implicitly in [12, 13]:

Theorem 4.6 A X-piecewise linear function ¢ is a strictly convexr support
function, i.e., o € K°(Z), if and only if
p(vi) + -+ (Vi) > p(vi + -+ +vi)

for all primitive collections P = {vi,,...,v;} in G(2).

5 Quantum cohomology rings

Definition 5.1 Let ¢ be a I-piecewise linear function with complex values,
or an element of the complexified space PL(X)c = PL(X) ®r C. Define the
quantum cohomology ring as the quotient of the polynomial ring C[z] by the
sum of ideals P(X) and Q,(%):

QHy(Ps, C) := Clz]/(P() + Qy(%))

where Q,(X) is generated by binomials

exp (Z ai‘P(vi)) H 7" — exp (Z bj<P(Uj)) H Z;’j
i=1 i=1 j=1 Jj=1

running over all possible linear relations
n n
E a;v; = E ijj,
i=1 j=1

where all coeflicients a; and b; are non-negative and integral.

Definition 5.2 Let P = {v;,,...,v;,} C G(X) be a primitive collection, op
the minimal cone in ¥ containing the sum

vp =0 + ...+ v,
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Vj,...,V; generators of op. Let I be the dimension of op. By 2.3(iii), there
exists the unique representation of vp as an integral linear combination of
generators vj,, ..., vj; with positive integral coefficients cy,...,q:

vp = C1vj, + - - + vy,
We put
E (P) = exp(p(vi, 4+ ... +v3,) — o(vi)) — ... — p(v3,))
= exp(c1p(vj,) + -+ + ap(v;) — @(viy) — ... — (v3,))-

Theorem 5.3 Assume that the Kdhler cone K(X) has non-empty interior,
i.e., Py is projective. Then the ideal Q,(X) is generated by the binomials

B¢(P) =2 %y — ﬁP(P)z;: tee Z;:,

where P runs over all primitive collections in G(X).
Proof. We use some ideas from [14]. Let ¢ be an element in PL(X) repre-

senting an interior point of K(X). Define the weights w;,...,wy, of 21,..., 2,
as

wi =¢(v;) (1 <i<n).

We claim that binomials B,(P) form a reduced Grébner basis for Q,(X)
relative to the weight vector

w=(w1,...,wWn)

Notice that the weight of the monomial z;, - - - z;, is greater than the weight of
the monomial 27 - - - 2/, because

¢(’U,'1) +t ¢(vik) > ¢(Ui1 +-ot vik) = cl¢(vj1) +o Cld’(”ﬁ)

(Theorem 4.6). So the initial ideal init, (B,(P)) of the ideal (B,(P)) gen-
erated by B,(P) coincides with the ideal SR(X). It suffices to show that
the initial ideal init,Q,(X) also equals SR(X). The latter again follows from
Theorem 4.6. m]

Definition 5.4 The tube domain in the cohomology space H%(Pg, C):
K(X)c = K(Z) +iH)(Pg,R)

we call the complezified Kahler cone of Py.
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Corollary 5.5 Let ¢ be an element of H?(Px,C), t a positive real num-
ber. Then all generators By,(P) of the ideal Qu,(X) have finite limits as
t — oo if and only if p € K(X)c. Moreover, if p € K(X)c, then the limit of
QH;,(Ps, C) is the ordinary cohomology ring H*(Pg, C).

Proof. Applying Theorem 4.6, we obtain:
Lim Byy(P) = 2y - - 2i-

Thus,
lim Quy(%) = SR(E).

By Theorem 3.8,
lim QHy, (P, C) = H*(Pg, C).
t—o0
a

Example 5.6 Consider the fan ¥(d) defining d-dimensional projective space
(see 2.4). Then we obtain

QH;(PE9 C) = C[x]/(md-’-l - exp(_deggo)‘))’

where A = (1,...,1) is the generator of R(X(d)). This shows the quantum
cohomology ring QH, ;(CP“, C) coincides with the quantum cohomology ring

for CP? proposed by physicists.

It is important to remark that the quantum cohomology ring QH3(Px, C)
has no any Z-grading, but it is possible to define a Zy-grading on it.

Theorem 5.7 Assume that the first Chern class ¢;(Py) is divisible by 7.
Then the ring QH}(Py, C) has a natural Z/rZ-grading.

Proof. A linear relation

n n
D aivi =) bjv;
i=1 j=1
gives rise to an element
A= (a1 —-bl,...,a,,-—bn) € R(E)

By our assumption,

deg, A = zn:ai - zn:bj
i=1 j=1
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is the intersection number of ¢;(Px) and A € Hy(Pyx, C), i.e., it is divisible by
r. This means that the binomials

exp (Z a,~<p(v,-)) H z} — exp (Z bjcp(vj)> H z;"
i=1 i=1 j=1 j=1
are Z/rZ-homogeneous. O

Although, the quantum cohomology ring Q H;(Py, C) has no any Z-grading,
it is possible to define a graded version of this quantum cohomology ring over
the Laurent polynomial ring C[zp, z;'}].

Definition 5.8 Let ¢ be a X-piecewise linear function with complex values
from the complexified space PL(X)c = PL(X) ®r C. Define the quantum
cohomology ring

QH;(Ps, Clz0, 7,'])
as the quotient of the Laurent polynomial extension C[z][zo, 23] by the sum
of ideals Q, ,,(£) and P(X): where Q, (%) is generated by binomials

n n n n ) n
exp (Z ai‘P(Uz’)) z(()— Yiz10i) H 2% — exp (Z bj‘P(Uj)) z((]_ 2j=155) H z;j
i=1 i=1 j=1 =1

running over all possible linear relations

n n
E a;v; = E ijj
i=1 Jj=1

with non-negative integer coeflicients a; and b;.
The properties of the Z-graded quantum cohomology ring
QH,(Px,Clz, 7))
are analogous to the properties of QH*(Py, C):

Theorem 5.9 For every binomial B,(P), take the corresponding homoge-
neous binomial in variables zy, z1, . .., 2y

I
B‘Pyzo (P) = Zil e Zik - E¢(p)z;: “ee z;’zék—21=l c’).
Then the elements B, ,,(P) generate the ideal Q,.,(X), and Kdihler limits of
QH:‘P(PE’ C[an 26_1])7 t— 00

are isomorphic to the Laurent polynomial extension H*(Py, C)|zo, 25 1 of the
odinary cohomology ring.
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Finally, if the first Chern class of Py belongs to the Kahler cone, i.e., ax €
PL(X) is upper convex, then it is possible to define the quantum deformations
of the cohomology ring of Py over the polynomial ring C[z).

Definition 5.10 Assume that ay € PL(X) is upper convex. We define the
quantum cohomology ring QH(Psx, C[zo]) over C[z)] as the quotient of the
polynomial ring C|[zg, 21, . . ., z,] by the sum of the ideal P(X)[2¢] and the ideal

Clz0, 21, -+ 2n) N Qp (%)
Theorem 5.11 The ideal
Clz0, 21, - 2n) N Qp 2 (X)
is generated by homogeneous binomials
Bya(P) = ziy -+ 2iy — Ep(P)z3 - - z;:z(()k—Eiﬂc.)

where P runs over all primitive collections P C G(X). (Notice that convezity
of as implies k — Zi.__l ¢ >0.)
Kahler limits of the quantum cohomology ring

QHZP(PE, C[ZO]), t— o0
are isomorphic to the polynomial extension
H*(Pg, C)|z)

of the odinary cohomology ring.

6 Birational transformations

It may look strange that we defined the quantum cohomology rings using
infinitely many generators for the ideals Q,(X) and Q. (%), while these
ideals have only finite number of generators indexed by primitive collections
in G(X). The reason for that is the following important theorem:

Theorem 6.1 Let ¥; and Ly be two complete fans of reqular cones such

that G(X1) = G(X2), then the quantum cohomology rings QHy(Px,, C) and
QH;(Psx,, C) are isomorphic.
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Proof. Our definitions of quantum cohomology rings does not depend on
the combinatiorial structure of the fan ¥, one needs to know only all lattice

vectors vy, ...,V € G(X), but not the combinatorial structure of the fan X.
O

Since the equality G(¥;) = G(X3) means that two toric varieties Py, and
Py, are isomorphic in codimension 1, we obtain

Corollary 6.2 Let Py, and Py, be two smooth compact toric manifolds which
are isomorphic in codimension 1, then the rings QHy(P1, C) and QHy (P2, C)
are isomorphic.

Example 6.3 Consider two 3-dimensional fans £; and 5 in R3 such that
G(%1) = G(Z;) = {v1,...,ve} where

v = (1,0,0), Vg = (0, 1,0), V3 = (0,0, 1),

vs = (=1,0,0), vs = (0,-1,0), ve = (1,1,-1).

We define the combinatorial structure of ¥; by the primitive collections
P1 = {v1,v4}, Py = {va,v5}, P3 = {v3,v5},

and the combinatorial structure of ¥y by the primitive collections
Py = {v1,v4}, Py = {vs,vs}, Py = {v1, 02},

’Pl’l = {U3’ Us, vﬁ}a Pg = {’U3,'U4, ’Uﬁ}.

The flop between two toric manifolds is described by the diagrams:

U1 ) = V1 U9
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The ordinary cohomology rings H*(Pyx,,C) and H*(Pg,, C) are not iso-
morphic, because their homogeneous ideals of polynomial relations among
21,...,2¢ have different numbers of minimal generators. There exists the
polynomial relation in the quantum cohomology ring:

exp(p(v1) + ¢(v2)) 2122 = exp(p(vs) + ¢(ve)) 2326

If o(v1) + ¢(ve) < ¢(v3) + ¢(vs), then we obtain the element 2326 € SR(X;)
as the limit for ¢, when ¢t — oco. On the other hand, if p(v1) + ¢(v2) >
o(v3) + ¢(vg), taking the same limit, we obtain 2129 € SR(X2).

Let us consider another simple example of birational tranformation.

Example 6.4 The quantum cohomology ring of the 2-dimensional toric va-
riety F} which is the blow-up of a point p on P? is isomorphic to the quotient
of the polynomial ring C|[z;, 23] by the ideal generated by two binomials

z1(z1 + 22) = exp(—¢2); =5 = exp(—¢1)z,

where z; is the class of the (—1)-curve C; on Fj, z is the class of the fiber
C, of the projection of F} on P!. The numbers ¢; and ¢, are respectively
degrees of the restriction of the Kahler class ¢ on C; and Cj.

Remark 6.5 The definition of the quantum cohomology ring for smooth toric
manifolds immediatelly extends to the case of singular toric varieties. How-
ever, the ordinary cohomology ring of singular toric varieties is not anymore
the Kahler limit of the quantum cohomology ring. In some cases, the quantum
cohomology ring of singular toric varieties V' contains information about the
ordinary cohomology ring of special desingularizations V' of V. For instance,
if we assume that there exists a projective desingularization ¢ : V' — V
such that 1*Ky = Ky+. Then for every Kahler class ¢ € H%(V, C), one has

dimcQH(V, C) = dimcH*(V', C).

7 Geometric interpretation of quantum rings

The spectra of the quantum cohomology ring Spec QH;(PE, C), and its
two polynomial versions

Spec QH,(Px, C[z, z5"]), Spec QH(Px, Clz))

have simple geometric interpretations.
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Definition 7.1 Denote by II(X) the (n — d)-dimensional affine subspace in
C" defined by the ideal P(X).

Definition 7.2 Choose any isomorphism N & Z¢ so that any element v €
N defines a Laurent monomial X" in d variables X3,..., X4 Consider the
embedding of the d-dimensional torus T'(X) & (C*)? in (C*)™:

(X1, Xa) = (X7, .., X™).
Denote by ©(X) the (n — d)-dimensional algebraic torus (C*)*/T(X).
Definition 7.3 Denote by Exzp the analytical exponential mapping
Exp : G- G

where G is a complex analytic Lie group, and G is its Lie algebra.
For example, one has the exponential mapping

Ezp : PL(X)c — (C*)"
@ () ef(t))
which descends to the exponential mapping
Ezp : H*(Py,C) — O(%).

Proposition 7.4 The T(X)-orbit T,(X) of the point Exp(yp) € (C*)" is closed,
and its ideal is canonically isomorphic to Q,(X).

Corollary 7.5 The scheme Spec QH(Pyx, C) is the scheme-theoretic inter-
section of the d-dimensional subvariety T,(X) C C" and the (n — d)-dimen-
sional subspace II(X).

Definition 7.6 Let N = Z@ N. For any v € N, define 4 € N as = (1,v).
Define the embedding of the (d + 1)-dimensional torus T°(¥) & (C*)%*! in
(C*)n+l: ) )

(Xo, X1,. .., Xa) = (Xo, X™, ..., X™).

The quotient (C*)"+!/T°(X) is again isomorphic to O(T).
Proposition 7.7 The ideal of the T°(X)-orbit
T(X)cc xcC"
of the of the point (1, Ezp (p)) € (C*)"*! is canonically isomorphic to Q, ., (T).
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Corollary 7.8 The scheme Spec QH(Psx, Clz, 25 1) is the scheme-theoretic
intersection of the (d + 1)-dimensional subvariety T;(X) C C* x C" and the
(n — d + 1)-dimensional subvariety C* x II(X) C C* x C".

Similarly, one obtain the geometric interpretation of Q H(Pg, C[zo]), when
the first Chern class of Py belongs to the Kéhler cone K ().

Proposition 7.9 The scheme Spec QHy(Px, Clz]) is the scheme-theoretic
intersection in C™*! of the (d + 1)-dimensional T°(X)-orbit of (1, Ezp(y))
and the (n — d + 1)-dimensional affine subspace C x II(T) C C™*1.

The limits of quantum cohomology rings have also geometric interpreta-
tions. One obtains, for instance, the spectrum of the ordinary cohomology
ring of Py as the scheme-theoretic intersection of the affine subspace II(X)
with a toric degeneration of closures of T(X)-orbits T,(X) < C". Such an
interpretation allows to apply methods of M. Kapranov, B. Sturmfels, and
A. Zelevinsky (see [10], Theorem 5.3) to establish connection between ver-
tices of Chow polytope (secondary polyhedron) and Kéhler limits of quantum
cohomology rings.

8 Calabi-Yau hypersurfaces and Jacobian rings

Throughout in this section we fix a complete d-dimensional fan of regular
cones, and we assume that P = Py is a toric manifold whose first Chern class
belongs to the closed Kéhler cone K(X), i.e., & := a5 is a convex X-piecewise
linear function.

Let A = A,, the convex polyhedron in Mg (see 4.1). For any sufficiently
general section S of the anticanonical sheaf IC“,1 on P represented by homo-
geneous polynomial F(z), the set Z = {n(2) € P : F(z) = 0} in P is a
Calabi-Yau manifold (c1(Ky') = c1(P)).

Since the first Chern class of P in the ordinary cohomology ring H*(P, C)
is the class of the sum (z; + - - - + 2,), we obtain:

Proposition 8.1 The image of H*(P,C) under the restriction mapping to
H*(Z,C) is isomorphic to the quotient

H*(P,C)/Ann(z; + -+ + zn),

where Ann(zy + - - - + 2,,) denotes the annulet of the class of (z1+ -+ 2,) in
H*(P,C).
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In general, Proposition 8.1 allows us to calculate only a part of the ordinary
cohomology ring of a Calabi-Yau hypersurface Z in toric variety P. If the
first Chern class of P is in the interior of the Kahler cone K(X), then Z is
an ample divisor. For d > 4, by Lefschetz theorem, the restriction mapping
H*P,C) — H*(Z,C) is isomorphism. Thus, using Proposition 8.1, we can
calculate cup-products of any (1,1)-forms on Z.

Definition 8.2 Denote by A* the convex hull of the set G(X) of all genera-
tors, or equivalently,
A*={v € Ng|a(v) <1}.

Remark 8.3 The polyhedron A* is dual to A reflexive polyhedron (see [6]).

Theorem 8.4 There exists the canonical isomorphism between the quantum
cohomology ring

QH(P,C)
and the Jacobian ring

CIX{, ..., XF/(X10f/0X,...,Xi0f/0X,)

of the Laurent polynomial

FolX) = 14 3 explp()) X

This isomorphism is induced by the correspondence
zi — X"/ exp(p(vi)) (1<i<n).
In particular, it maps the first Chern class (z1+ ...+ zn) of P to f,(X)+1.

Proof. Let
H : Clz,...,2.) = C[X{E,..., X

be the homomorphism defined by the correspondence
zi = X% [ exp(p(vi)).

By 2.3(iii), H is surjective. It is clear that Q,(X) is the kernel of H. On the
other hand, if we a Z-basis {uy,...,us} C M which establishes isomorphisms
M =2 Z% and N = Z4, we obtain:

H(P(E)) =< ch')f/aXl, .. .,Xdaf/aXd >.
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Definition 8.5 Let Sa. be the affine coordinate ring of the T°(X)-orbit of
the point (1,...,1) € C™*! (see 7.6).

Definition 8.6 For any Laurent polynomial

f(X) = a0+zainia

i=1
we define elements
Fy,Fy,...,Fj € S

as F; = 0Xof(X)0Xo, (0 < i < d).

Remark 8.7 The ring Sa- is a subring of C[Xo, X{,..., XF!]. There exists
the canonical grading of Sa- by degree of Xj.
It is easy to see that the correspondence

zg — — X,
zi = Xo X" [(exp(p(vi)))
defines the isomorphism
Clz]/Qy(2) = Sa-.
This isomorphism maps (—zg + 21 + -+ - 2,) to Fj.
Theorem 8.8 ([7]) Let
Rf = SAa/ < Fo,Fl,...,Fd >.

Then the quotient

Rf / Ann (X 0)
is isomorphic to the (d—1)-weight subspace Wy_1H*}(Z;, C) in the cohomol-
ogy space H*"Y(Z;, C) of the affine Calabi-Yau hypersurface in T() defined
by the Laurent polynomial f(X).

For any Laurent polynomial f(X) = ao+)_-; a;X ¥, we can find an element
¢ € PL(X)c such that

=2 = exp(—p(v)-
ag

A one-parameter family t¢ in PL(X) induces the one-parameter family of
Laurent polynomials

fil(X)=-1+ Z exp(—tp(v;)) X ™.
i=1

Applying the isomorphism in 8.7 and the statement in Theorem 5.3, we
obtain the following:
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Theorem 8.9 Assume that ¢ is in the interior of the Kihler cone K(X).
Then the limit
Ry, /Ann(X))

s 1somorphic to

H*(P,C)/Ann(z; + - -+ + 25).

The last statement shows the relation, established in [3], between the toric
part of the topological cohomology rings of Calabi-Yau 3-folds in toric varieties
and limits of the multiplicative structure on (d—1)-weight part of the Jacobian
rings of their mirrors.

9 Topological sigma models on toric manifolds

So far we have not explained why the ring QH;(Px, C) coincides with the
quantum cohomology ring corresponding to the topological sigma model on V.
In this section we want to establish the relations between the ring Q H;(Px, C)
and the quantum cohomology rings considered by physicists.

In order to apply the general construction of the correlation functions in
sigma models ([16], 3a ), we need the following information on the structure of

the space of holomorphic mappings of CP! to a d-dimensional toric manifold
Py.

Theorem 9.1 Let T be the moduli space of holomorphic mappings f : CP! —
Pyx. The space I consists of infinitely many algebraic varieties Iy indexed by
elements
A= (A1,...,An) € R(X),

where the numbers \; are equal to the intersection numbers degep: f*O(Z;)
with divisors Z; C Py such that 771(Z;) is defined by the equation z; = 0 in
U(X). Moreover, if all \; > 0, then I, is irreducible and the virtual dimension
of I equals

n
dy=dimehy=d+ ) _ N
i=1
Proof. The first statement follows immediatelly from the description of the
intersection product on Py (3.5).
Assume now that all \; are non-negative. This means that the preimage
f~YZ;) consists of ); points including their multiplicities. Let Fy be the
tangent bundle over Py. There exists the generalized Euler exact sequence

0— O = 0p(Z2)® - @ Op(Z,) = Fx — 0.
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Applying f*, we obtain the short exact sequence of vector bundles on CPL.

0 — Oggd = Ocpi(M) ® -+ ® Ogpr(An) — f*Fz — 0.

This implies that h!(CP!, f*Fz) = 0, and h°(CP!, f*Fs) =d+ A1+ + An.

The irreducibility of Z) for A > 0 follows from the explicit geometrical
construction of mappings f € Zy:

Choose n polynomials fi(t),. .., fu(t) such that deg fi(¢) = i (i = 1,...,n).
Ifall | A |= A1 + -+ + A, roots of {f;} are distinct, then these polynomials
define the mapping

g: C-oUE)cc.
The composition Tog extends to the mapping f of CP! to Py whose homology
class is . a

Definition 9.2 Let

® : IxCP!'- Py
be the universal mapping. For every point z € CP! we denote by &, the
restriction of ® to Z x x. Choose the cohomology classes z; = [Z1],..., 2, =
[Z,] of divisors Zi,...,Z, on Py in the ordinary cohomology ring H*(Pg).
We determine the divisors W,,,..., W, on Z whose cohomology classes are
independent of choice of z € CP! as follows

W, =8;(Z)={f €T |f(2) € Z}.

]

The quantum cohomology ring of the sigma model with the target space
Py is defined by the relations

Wal ° Wa2 .... Wak = Z exp(_degsﬂA)’

AEWay N+ Way

where ¢; are cycles on Py and W,, = ®;(«;), and the intersection Wy, N---N
W, on the moduli space 7 is assumed to be of virtual dimension zero.

Theorem 9.3 Let Py be a d-dimensional toric manifold, p € H*(Pg,C)
a Kihler class. Let \° = (\},...,)0) be a non-negative element in R(X),
Q € H%(Pg, C) the fundamental class of the toric manifold Px. Then the
intersection number on the moduli space T

(Wa) - (W )M - (W) (We )™

vanishes for all components I, except from X = Xg. In the latter case, this
number equals

exp(—deg,\).
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Proof. Since the fundamental class {2 is involved in the considered inter-
section number, this number is zero for all Z) such that the rational curves in
the class A do not cover a dense Zariski open subset in Py. Thus, we must
consider only non-negative classes . Moreover, the factors (W,,)¥ show that
we must consider only those A = (Ay,...,A,) € R(X) such that \; > X!, i,
a mapping f € 7, is defined by polynomials fi,..., f, such that deg f; > A;.

There is a general principle that non-zero contributions to the intersection
product

appear only from the components whose virtual R-dimension is equal to
Z deg ;.
i=1

In our case, the last number is d + XY + ... + AJ. Therefore, a non-zero
contribution appears only if A = 0.

It remains to notice that this contribution equals exp(—deg,Ao). The last
statement follows from the observation that the points f~!(Z;) ¢ CP! (s =
1,...,n) define the mapping f : CP! — Py uniquely up to the action of the
d-dimensional torus T = Py \ (Z; U---U Z,), and the weight of the mapping
f in the intersection product is fp: f*(¢). O

Corollary 9.4 Let Z; be the quantum operator corresponding to the class
[Z) € HYPx,C) (i = 1,...,n) considered as an element of the quantum
cohomology ring. Then for every non-negative element A € R(X), one has the
algebraic relation

ZMo...0ZM = exp(—deg,A) id.

It turns out that the polynomial relations of above type are sufficient to
recover the quantum cohomology ring QHy(Px, C):

Theorem 9.5 Let A,(X) be the quotient of the polynomial ring Clz] by the
sum of two ideals: P(X) and the ideal generated by all polynomials

By=2] ... 20— exp(—deg,\)

where A runs over all non-negative elements of R(X). Then A,(X) is isomor-
phic to QH}(Pyx, C).

Proof. Let B,(X) be tie ideal generated by all binomials B)y. By definition,
B,(X) C Q,(X). So it is sufficient to prove that Q,(X) C B,(Z).
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Let . n
Z a;v; = Z ijj
i=1 j=1

be a linear relation among vy, ..., v, such that a;, b; > 0. Since the set of all
nonnegative elements A = (Ay,...,A;) € R(X) (A; > 0) generates a convex
cone of maximal dimension in H2(Py, C), there exist two nonnegative vectors
A, X' € R(X) such that

A=N= =X, A=) = (a1 = by,...,an — by).

By definition, two binomials P, and Py are contained in Q,(¥). Hence, the
classes of z1,..., 2, in C[z]/B,(X) are invertible elements. Thus, the class of
the binomial

exp (E a;@(vi)) H z} — exp (Z b,-(p(vj)) H z;"
i=1 i=1 j=1 j=1
is zero in C[z]/B,(X). Thus, B,(X) = Q,(X). a.
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A Finiteness Theorem for Isogeny Correspondences

Alexandru Buium

0. Introduction

Let Aj, be the moduli space of principally polarized abelian varieties
over C of dimension g > 2 with level n structure, n > 3; we will view A, , as an
algebraic variety over C. Moreover, let Y C A, , be a curve (by which we will
understand an irreducible, closed, possibly singular subvariety of dimension
1). By an isogeny correspondence on Y we will understand an (irreducible,
closed, possibly singular) curve Z C Y x Y for which there exists a quasi-
finite map Z’ — Z from an irreducible curve Z’ with the property that the

two abelian schemes over Z’ deduced by base change via
Z'-ZCYxY i=1,2

(p: = i-th projection) are isogenous. Note that two abelian schemes over Z’
are called isogenous if there exists a surjective homomorphism between them
with kernel finite over Z’; so we do not require our isogenies preserve, say,
polarizations.

The question which we address in this paper is: how many isogeny cor-
respondences can exist on a “sufficiently general” curve Y C Ay ,?

It is easy to see that there exist “lots” of curves Y C Ay, carrying in-

finitely many isogeny correspondences: more precisely, the union of all such

S.M.F.
Astérisque 218** (1993) 35
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Y’s in Ay »(C) is dense in the complex topology of Ay ,(C) (see the Propo-
sition from Section 1). Nevertheless, our main result here will imply in par-
ticular that “most” curves Y C Ay, carry at most finitely many isogeny
correspondences (see Theorem 1 below).

Indeed, let C'(Ay,,) be the set of all (irreducible, closed, possibly singular)
curves in Ay ,; we will put a natural topology on C(A,,,) which we call
the Kolchin topology such that C(A, ) becomes an irreducible Noetherian

topological space and then we will prove in particular the following:

Theorem 1. There exists a dense Kolchin open subset Cy of C(A, ) such
that any curve Y belonging to Cy carries at most finitely many isogeny cor-

respondences.

Remark. If a curve Y C Ay, carries at most finitely many isogeny corre-

spondences Z then any such Z must have only finite orbits.

Let’s define in what follows the Kolchin topology on C(A,,). More
generally one can define the Kolchin topology on the set C'(A) of all (irre-
ducible, closed, possibly singular) curves embedded in a given (irreducible,
possibly singular) algebraic variety A over C. Indeed, we consider first the
“jet scheme” jet (A), cf. [Bi]; recall that this is by definition an A-scheme
with a C-derivation § of its structure sheaf, characterized by the fact that
for any pair (Z,d) consisting of an A-scheme Z and a C-derivation d on Oz
there is a unique horizontal morphism of A-schemes Z — jet (A); “horizon-
tal” here means “commuting with 6 and d”. For instance, if 4 = A" =
SpecC[y1,...,yn] then jet (A) = SpecC{y1,...,hn} where C{y1,...,yn} is
the ring of é-polynomials in yy,...,y, with coefficients in C (which by defi-

nition is the ring of polynomials with coefficients in C in the infinite family
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@ 9
j J
Now for any Zariski closed subset H of jet (A) we denote by Cy(A) the set

into yg-i"'l)).

of variables y:”, ¢ >0, 1< j<n, with C-derivation é sending y
of all curves Y € C(A) such that the image of the natural horizontal closed
immersion jet (YY) — jet(A) is contained in H. One easily checks that the
sets Cy(A) are the closed sets of a topology which we call the Kolchin topol-
ogy (one has to use the non-obvious fact that jet (Y) is an irreducible scheme
which follows from correctly interpreting a theorem of Kolchin, [K] p. 200).
We will check in Section 2 below that C'(A) with the Kolchin topology is an

irreducible Noetherian topological space.

Remark. Intuitively a subset of C(A) is Kolchin closed if it consists of all
curves Y € C(A) which “satisfy a certain system of algebraic differential
equations on A”. As the proof of Theorem 1 will show, the “system defining”
C(Agn) N\ Cp has “order 6” (i.e. “comes from jets of order 6”) and is highly

nonlinear.

Actually we can do much better than in Theorem 1, namely we can
“bound asymptotically” (for Y € Cp) the number of isogeny correspondences
on Y “counted with certain natural multiplicities” (see Theorem 1’ below).
We need more notations. For any curve Y C A, ,, we denote by p(Y") the genus
of a smooth projective model of Y. Moreover, for any isogeny correspondence
Z CY xY welet [Z:Y]; denote the degree of the map Z C ¥ x ¥ 25 Y,
t=1,2and put (YY) =3 [Z:Y]; =) [Z:Y], € NU{cc}., where Z runs
through the set of all isogeny correspondenceson Y (we put 7(Y") = 0 if this set
is empty). This i(}") is the “number of isogeny correspondences counted with
multiplicities™: [or alternative descriptions of i(Y") we refer to Lemmas 1 and

2 from Section 1. Finally. we shall fix a smooth projective compactification

37



A. BUIUM

Ay of Ay, and a very ample line bundle O(1) on A, ,; then for any curve
Y C Ayn we shall denote by deg(Y') the degree of the Zariski closure of Y in

A, with respect to O(1).

We can state the following strengthening of Theorem 1:

Theorem 1'. There exist a dense Kolchin open subset Co of C(Ay ) and

two positive integers mi, mo such that for all Y € Cy we have
i(Y) <my deg(Y) + map(Y)

Remark. A careful examination of the proof leads to an explicit value for

mg. But determining such a value for m; seems much harder.

We close this introduction by giving a consequence of Theorem 1’. To
state it note that the set A, ,(C) of C-points of A, ,, has a natural equivalence
relation on it given by isogeny: two points in Ay ,(C) will be called isogenous
if the corresponding abelian C-varieties are isogenous. Each isogeny class in
Agn(C) is dense in the complex topology because it contains the image of
a Sp(2g,Q)-orbit on the Siegel upper half space. For any y € A, ,(C) we
denote by I, C Ay ,(C) the isogeny class of y. Then Theorem 1’ will imply

the following:

Theorem 2 There exist a dense Kolchin open subset Cy of C'(A, ) and two
positive integers my, mo such that for all Y € Cy and for any point y € Y (C)
outside a certain countable subset of Y(C), the set Y(C) N I, is finite of

cardinality at most my deg(Y') + map(Y).

Remark. As the proof will show, the countable subset of Y (C) appearing in

the above statement can be taken simply to be the set of all points in Y(C)
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whose coordinates lie in the algebraic closure of the smallest field of definition

of the embedding Y C Ay 5.

The paper is organized as follows. In Section 1 we make some remarks
on isogeny correspondences and we deduce Theorem 2 from Theorem 1’. In
Sections 2 — 4 we introduce and review a series of concepts from [B1, Ba, Bs]
and provide complements to that material; a rough sketch of the strategy of
the proof of Theorem 1’ is given at the end of Section 2. The main body of

the proof of Theorem 1’ is contained in Sections 5 — 7.

Acknowledgement. The author is indebted to P. Deligne for his inspiring
comments and suggestions. An earlier version of the present paper was written
while the author was visiting the University of Paris VII and (as a Humboldt
Fellow) the University of Essen. The final version of the paper was written
while the author was a member of the School of Mathematics at the Institute
for Advanced Study in Princeton (NSF Grant No. DMS 9304580). Thanks go
to all these institutions for hospitality and support. Last but not least thanks

go to Dottie Phares for her excellent typing job.

1. Some easy remarks on isogeny correspondences

Let k C F be an extension of algebraically closed fields of characteristic
zero, k # F'; in applications we shall be interested in both situations when
F=Cand k=C.

Let Ak denote the moduli A-scheme of principally polarized abelian va-
rieties over k of dimension g >2 with level n structure, n >3. For any curve

Y. C Ag (le. irreducible closed k-subvariety of A of dimension 1) we
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may introduce exactly as in Section 0 the notion of isogeny correspondence
Zk CYr x Yy on Yy and we may define i(Y%) similarly. On the other hand,
we may consider on the set Agx(F') of F-points of Ay the equivalence relation
given by isogeny: two points in Ay(F) are called isogenous if the correspond-
ing abelian F-varieties are isogenous (over F'). For y € Ax(F) we denote by

I, r C Ap(F) the isogeny class of y.

Lemma 1. Let Y, C Ay be a curve and y € Yi(F) \ Yi(k). Then we have:

i(Yy) = card(Yi(F) N I, F)

Proof: Let L = k(Y}) be the field of rational functions on Y}, and let ¢o: L — F
be the k-embedding corresponding to y. Since Yy (F)N I, p C Yi(F) \ Yi(k)
each point in Y (F) NI, r identifies with a k-embedding &: L — F’; note that
the compositum of the fields eoL and €L in F is algebraic over both oL
and €L (because the abelian F-variety corresponding to &, being isogenous
to the one corresponding to o, must be defined over an algebraic extension
of ¢gL). Therefore the ideal ker(¢o ® e:L @x L — F) in L ®; L is non-
zero so it corresponds to a curve Zi(s) C Yj x Yj, which clearly is an isogeny
correspondence. We have constructed a map € — Zj(¢) from the set Y, (F)N
I, r to the set of all isogeny correspondences on Y}, which is clearly surjective
and whose fiber at an isogeny correspondence Z;, C Y x Y}, has precisely

[Z) : Yi]1 elements. This closes the proof of the Lemma.

Lemma 2. LetY) C Ay be a curve, fix a k-embedding ¢: L = k(Y;.) — F, let

X be the abelian F-variety deduced via ¢ and for any o € Aut (F/k) denote
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by X the abelian F-variety deduced via ¢ from X. Consider the groups

G(X) = Aut(F/cL)
G'(X) = {0 € Aut(F/k); X° is isogenous to X'}

Then i(Y})) equals the index [G'(X): G(X)).

Proof: Let y € Yi(F) \ Yi(k) be defined by €. Then clearly Yi(F)N I,
identifies with the coset set G'(X)/G(X) and conclude by Lemma 1.

Let’s show how Theorem 1’ from Section 0 implies Theorem 2. Denote
A, simply by A and assume Co,m;,mqe are as in Theorem 1’. For any
Y € Cp let k C C be a countable algebraically closed field of definition of the
embedding Y C A and let Y C Aj be the embedding of k-varieties giving rise
toY C A; then Yi(k) is a countable subset of Y(C). Let y € Y(C) \ Yi(k);
by Lemma 1 (applied to F' = C) we have

card (Y(C) N I,) = i(Yy) <i(Y) < my deg(Y) + map(Y)

which proves Theorem 2.
We close this section by proving the following assertion (which was made

in Section 0):
Proposition. The union in A, ,(C) of all curves carrying infinitely many

isogeny correspondences is dense in the complex topology of Ay ,(C).

Proof: Step 1. Note that there exists at least one curve Y C A = A, ,, carry-
ing infinitely many isogeny correspondences. Indeed, let E — S = A:~\{0,1}
be the Weierstrass elliptic family, let X = E' xg ... xg E (g times) be viewed

as a principally polarized abelian scheme over S and make a base change
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S’ — S, S’ some irreducible curve over C, such that X’ := X x¢ S’ — 5’ has
a level n structure. Then the closure Y in A of the image of the naturally

induced map S’ — A has i(Y) = oc (e.g. use Lemma 1).

Step 2. Consider any curve Y C A with #(Y) = oc (which exists by
Step 1). Then, starting from Y, we shall produce a family of curves Y=
with ¢(Y*) = oc and whose union is dense in the complex topology of A(C).
Indeed, let £ C C be a countable algebraically closed field of definition for
the embedding Y C A and let Y, C Ax be the embedding of k-varieties from
which Y C A is deduced; upon enlarging k we may assume i(Y}) = oc. Take
any point y € Y(C) \ Yi(k) and consider the isogeny class I, = I, ¢ of y in
A(C). For any point z € I, let Y denote the Zariski closure in Ay of the
image of the morphism SpecC — Aj, defined by z and let Y# C A be the
curve over C obtained from Y;? by base change k£ C C; clearly z € Y*(C).
We claim that i(Y}?) = oc. This will close the proof of the Proposition, for
then ¢(Y*) = oc and I, C UY*(C) the union being taken for all z € I,;; but
I, is already dense in the complex topology of A(C). To check the claim
let X,, X, be the abelian C-varieties corresponding to y, z; since they are
isogenous, G'(X,) = G'(X.) (notations as in Lemma 2). Now let L, L, be
the fields of rational funcitons on Yy, Y7 and let e: L — C, €,: L, — C be the
k-embeddings defined by y and z, respectively. Since X, X, are isogenous
the compositum of the fields €L and €,L, in C is finite over both €L and
€,L,. In particular, one of the indices [G'(X,): G(X,)] and [G'(X;): G(X)]
is finite if and only if the other is so. Now our claim follows from Lemma 2

and our Proposition is proved.
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2. Introducing the é-field U

The most economic way of presenting the proof of Theorem 1’ is to use
the setting of 6-fields and the theory of Ritt-Kolchin which goes with them [K]
(a 6-field is by definition a field F' of characteristic zero with a fixed derivation

on it always to be denoted by é: F — F).

Instead of dealing with many é-fields it is still better to deal with one
universal é-field in Kolchin’s sense; for convenience we recall the definition of
this concept. First there is an obvious notion of morphism of é-fields and of
6-subfield (morphisms of §-fields are by definition field homomorphisms which
commute with the fixed derivations). If F; — F5 is a morphism of §-fields we
say that Fy is 6-finitely generated over F} if there exist z1,...,z, € Fy such
that F» is generated as a field by F; and the elements 651‘]', 1>0,1<j<n.
A é-field U is called universal if for any é-subfield Fy of it which is 6-finitely
generated over Q and for any morphism of é-fields F; — F, with Fy é-finitely
generated over Fj there is a morphism of §-fields F, — U over Fy. By [K] p.
134 there exists a universal §-field U whose constant field {z € U; éz = 0}
has the same cardinality as C hence is isomorphic to C. From now on we
fix such an U, identify its constant field with C and write z’, =, z'”,...
instead of 6z, 6%z, 6%z,... for # € U. For any C-variety A the set A(U) of
its U-points has a natural topology called the Kolchin topology defined as
follows (cf. [B1]): for any Zariski closed subset H of jet (A) let Ag(U) denote
the set of all points SpecU — A in A(U) whose unique horizontal lifting
SpecU — jet(A) has the image contained in H. Then the sets Ay (U) are
by definition the closed sets of the Kolchin topology on A(U) (note that this

is what Kolchin calls in [K] the 6-C-topology and is slightly different from
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the topology considered in [B;] where we do not assume the open sets are
“defined over constants™). By [K] p. 200 if A is irreducible in the Zariski
topology then A(U) is irreducible in the Kolchin topology. Moreover, by
a theorem of Ritt [R] p. 10 the Kolchin topology on A(U) is Noetherian.
Note that if we are given a morphism of algebraic C-varieties A — B then the
induced map A(U) — B(U) is continuous in the Kolchin topology of A(U) and
B(U). Moreover, any map A™(U) = U™ — A™(U) = U™ whose components
are defined by é-polynomials fi,..., fn € C{y1,...,¥m} is continuous in the
Kolchin topology. Coming back to the set C'(A) of curves in A, it is easy to
see that the Kolchin open sets of C(A) defined in Section () are precisely the
sets of the form Co(A) = {Y € C(A); Y(U)NQ # 0} where Q is Kolchin
open in A(U) (to check this just apply the “6-Nullstellensatz” [K] p. 148).
Noetherianity of Kolchin’s topology on A(U) already implies Noetherianity
of the Kolchin topology on C(A). Let’s check that C(A) is irreducible in the
Kolchin topology. It is sufficient to check that Co(A) # @ whenever Q # 0.
We may assume A is affine. Then by Noether normalization we may easily
assume A is the affine space A". Now if Cy(A) is empty for some non-empty
Q C A(U) = U™ there exists a non-zero é-polynomial P € C{y1,...,h,}
such that for any choice of polynomials fi,..., f, € C[t] we have the equality
P(fi(t),..., fa(t)) =0. By [K] p. 99 this implies P = 0, a contradiction.

Now Lemma 1 (applied to k = C and F' = U) shows that Theorem 1’ is
implied by the following;:

Theorem 1”. There exist a dense Kolchin open subset Cy of C(Ay ) and

positive integers my, ma such that for any curve Y € Cy and for any isogeny
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class I C Ay ,(U) N\ Ag n(C) we have:
card(Y(U) N I) <mydeg(Y) + map(Y)

From now on we concentrate ourselves on Theorem 1”. The very rough
idea of its proof is the following. We will find Kolchin open sets 21, Q2 of
Ay n(U), positive integers my, my and a map b:; — U which is “constant on
isogeny classes” such that for any curve Y C A, , with Y(U)NQ1NQe # O we
have that Y(U)NQy = Y(U) N\ Y(C) and the restriction of b to Y(U) N\ Y(C)
is given by a rational function on Y of degree at most m; deg(Y)+map(Y). A
moment’s reflection shows that this implies Theorem 1" (see the first lines of
Section 6 for a few more details). The map b will be constructed in Section 6
as a (quite explicit) differential algebraic invariant of “6-Hodge structures” of
abelian U-varieties. The latter structures will be introduced in Section 3 and
morally they are a differential algebraic (simplified) version of usual variations
of Hodge structure. An argument different from ours for the existence of the

map b was given by P. Deligne in a letter to the author [D].

3. Review of some é-linear algebra

We shall “recall” and complete some discussion made in [B;] on “6-Hodge
structures”. Let D = U[6] = ZU&* be the ring of linear differential operators
on U generated by U and 6. By a é6-Hodge structure (of weight 1 and dimen-
sion g) we understand a pair (V, W) consisting of a D-module V of dimension
2g over U and of a U-linear subspace W of V' of dimension g. We have an
obvious notion of isomoprhism of é-Hodge structures and we denote by H, the
set of isomorphism classes of such objects. We say that (V, W) has §-rank g if

the U-linear map W C V S vov, /W is an isomorphism (where V' 2, Vis
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the multiplication by é in the D-module V') and we denote by H, ég ) the set of
isomorphism classes of 6-Hodge structures of 6-rank g. There is a natural map
®: Hég ) A9 (U) = U? defined as follows. For any §-Hodge structure (V, W)
of é-rank g choose a U-basis wy,...,wy of W; then wy,...,wy, dwy,...,0w,

will be a U-linear basis for V hence one can write
82w+ abw + pw =0

where o, 8 € gly(U) are suitable g X g matrices and w is the transpose of
(w1,...,wg). Then we define ® by attaching to (V,W) the characteristic
polynomial

det(zl, —v) =29 +v1297 ' + .- + v,

of the matrix v = 8 — o?/4 — o/ /2 (where we identify polynomials as above
with vectors (v1,...,vy) € U9). It is trivial to check that changing the basis
wi,...,wg of W amounts to replacing the matrix v by a matrix conjugated

to' it so ® is well defined. Now let

_ | M1 Mo -
M = [le M22] € glay(U), M;; € gly(U)

By [K] pp. 420-421, there exists a matrix

_|Bun B2
B = [B21 Bzz] € GLyy(U)

such that B’ = M B and B is unique up to right multiplication by a matrix
in GLgg(C). It is trivial to check that deg Mj» # 0 if and only if

det [B}l Bl‘-’] £0

/
11 12
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Let glgg(U)(g) be the set of all matrices M € glag(U) with det Mo # 0.
There is a natural map I': glag(U )(9) — Hég ) defined as follows. For any M €
glag (U)@ let V = U?9 (viewed as a D-module via the D-module structure of
each factor) and let W be the U-linear subspace of U?¢ spanned by the rows
of the g x 2¢g matrix (Bi, Bi2) where B € GLog(U) is such that B’ = MB.
By the above discussion on determinants (V, W) has §-rank g. By uniqueness
of B up to GLg4(C)-action the isomoprhism class of the é-Hodge structure
(V,W) depends only on M and not on the choice of B; so we got a well defined
map I as desired. It is an easy exercise of linear algebra to compute explicitly

the composed map & o I': glyg(U)@9 — AI(U) = UY; the result is

®(T(M)) = det(zI, —v) where
v=p0-a/4-d)2
o= Ml M5 — Miy — MyaMas M5!
B = =M, + MM M1y + MyaMaa M35 My — Mia Moy

So we see that ® oI is defined by g rational fractions whose denominators are
powers of det My, and whose numerators are 6-polynomials with coefficients
in Q in 4¢? variables; in particular ®oT is continuous in the Kolchin topology.
Intuitively it should be viewed as a (highly) non-linear differential operator

of order 2.

4. Review of internal versus external Gauss-Manin connection
In this section we review some material from [Bs] and [Bs], chapter 5; we
refer to loc. cit. for details of proof.

Let Y be a smooth C-variety and TY = Spec (Qdy) its tangent bundle;
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then there is a natural map V:Y(U) — (TY)(U) continuous in the Kolchin
topology defined as follows.

One first defines it for Y = A% ; here we identify
ANU)=U", (TAY)(U) =0

and put V(uy,...,un) = (u1,...,un,ul,...,u)y). Nextif Y C AN is a closed
subvariety and we embed TY naturally into TAY then we define V: Y (U) —
(TY)(U) to be the restriction of the analogous map for AV, Finally if Y’
is arbitrary we define V be gluing the V’s of its affine pieces. Note that if
y € Y(U) then Vy can be veiwed as vector in the Zariski tangent space T, Yy
of Yu:=Y ®c U at y. Of course, there is an intrinsic definition of V but we
won’t need it here.

Now let X — Y be a smooth projective morphism of smooth C-varieties,
let y € Y(U) be a point and X, the fiber at y. Then we dispose of an

“internal” Kodaira-Spencer map
pt:DercU — H'(X,,T)

associated to the morphism X, — SpecU (here T' denotes the tangent sheaf)

and also of an “external” Kodaira-Spencer map
/)‘;Xt: T,Yy — H'(X,,T)

associated to the morphism Xy — Yy. One can easily prove the following

formula:

(*) Pyt (8) = p(Vy)
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Similarly we dispose of an “internal” Gauss-Manin connection
int. 1
V'y" .DGI'CU e EndC(HDR(_« y))

and (assuming for simplicity that Y is affine) of an “external” Gauss-Manin

connection

VeXt: DeI'UO(YU) — EndU(H%)R(Xu/Yu))

See [Ka] for background on Gauss-Manin connection. On the other hand
the trivial lifting of é from U to Xy, Yy induces an endomorphism 6* €
Endc(Hpg(Xv/Yv)). For any O(Yy)-module E and any ¢ € E let’s agree to
denote by ¢(y) the image of ¢ in E/my,FE where m, is the maximal ideal of
the local ring of Yy at y. For instance, if ¢ € H°(Yy,T) is a vector field then
¢(y) € T, Yy is the corresponding tangent vector; if ¢ € H°(Yy, Q) is a global
1-form then ¢(y) is an element in the dual of T} Yy while if ¢ € H}p (Xv/Yv)
is a relative de Rham class then ¢(y) € Hjz(X,) is the corresponding de
Rham class on the fiber. With this convention let w € Hjg(Xv/Yr) and let
6, € H(Yu,T) be such that §,(y) = Vy. Then one can prove the following
formula ([B3] Chapter 5):

(%) Vit (8)(w(y)) = (8w + V*(8,)w) ()

From now on let X/Y be an abelian schieme of relative dimension g > 1.
The space H'! (Xy,eT) naturally identifies with Homy (H?(X,,Q), H'(X,, 9))
so for each element of this space we may speak about its determinant which
will be a U-linear map between the g-th exterior powers of HO(X,.Q) and
H'(X,.0). Then formula (%) casily implies that the set YW/(U) of all y €
Y(U) such that (lor/)‘f,;‘"((\) # 0 i~ a Kolchin open subset of Y(U) (which
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may of course be empty but which is certainly non-empty when ¥ = A, ,
and X — Y is the universal abelian scheme because in this case any g-fold
product of an elliptic curve with j-invariant belonging to U \. C provides an
example of y for which det pir*(6) # 0 ).

A key role in what follows will be played by the map h:Y(U) — H,
defined to attaching to each y € Y(U) the 6-Hodge structure represented
by (V,W) where V = Hj)p(X,) (viewed as a D-module via Vi'*) and W =
H°(X,,Q). Using the relation between “Kodaira-Spencer” and “Gauss-Ma-
nin” as explained in [Ka] we see that h—l(H_((,g)) =Y(U) so if the latter is

non-empty we dispose of an induced map
h:Y(g)(U) — Hgg)

The map h has the remarkable (easily checked) property that if y,2 € Y(U)
are such that X, and X, are isogenous then h(y) = h(z). In particular
Y(g)(U ) is saturated with respect to the isogeny equivalence relation.
Assume in addition that Hjp(X/Y) and H°(X,Qx/y) are free O(Y)-
modules (this is anyway the case if we replace Y by the Zariski open sets
of a covering of it which will be allowed later). Then take an O(Y)-module
basis w of the first module having the form wy,...,wy, wgt1,...,wsy Where
the first g elements form a basis of the second module. For any vector field
7 € DeryO(Yy) on Yy we may write V**(7)w = (N, 7)w where N is a
2g x 2g matrix of 1-forms on Y. The latter defines a morphism of C-varieties

TY — glag(C) which at the level of U-points gives the map still denoted by
N:(TY)(U) — gla(V)

sending each tangent vector ¢t € T,Yy into the matrix (N(y),t). Denote
by (TY)9(U) the preimage via N of glgg(U)(g); it is a Zariski open subset
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of (TY)(U). Then one checks using (*#) that the map h: Y9 (U) — HY

coincides with the composition:
ToNoV:YOU) - (TY)(U) - glog(U)@ — H
In particular the composition
x=®ohYOWU) - Hég) - AIU)=U"*

is continuous in the Kolchin topology. Intuitively x should be viewed as a

“third order non-linear differential operator”.

5. The case dim Y=1

Assume Y is an irreducible (possible singular) curve over C; we will
systematically apply the preparation made in Section 4 to the smooth locus
of Y. Choose a non-zero C-derivation 7 of the function field C(Y'); then 7
induces a U-derivation of the function field U(Yy) of Yy so we may (and will)
also view T as a rational vector field on the smooth locus of Yy. Of course 7
has neither zeroes nor poles in Y (U) \ Y (C) and all singularities of the curve
Yy lie in Y(C).

For any y € Y(U) \ Y(C) we denote by 3’ the unique element in U* =
U\ {0} such that Vy = y'7(y). Moreover we simply denote by y”,y"”,... the
usual derivatives of ¥’ as an element of U. An& element ¢ in the function field
C(Y) will be systematically viewed as a rational map ¢: Y (U)- - - ->=AY(U) =
U; if ¢ # 0 then obviously ¢ has neither zeroes nor poles in Y(U) \ Y (C).
For any ¢ € C(Y) and any y € Y(U) \ Y(C) we have the following (easily
checked) formula: ¢(y)' = y'(7¢)(y).
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Assume we are given an abelian scheme X/Y of relative dimension g > 1.
Formula (%) from Section 4 (applied to the smooth locus of Y) says that for
any y € Y(U) N\ Y(C) we have

Py (8) = Pyt (y'7(y)) = ¥ p™(7)(y)
where p***:DeryO(Y) — H'(X,Tx/y) is the natural “external” Kodaira-
Spencer map of X/Y, Ty = relative tangent sheaf of X/Y. Exactly as
in Section 4 we may consider the determinant det p***(7) which identifies
with an element in C(Y). (Recall we assumed Y small enough, so that the
various vector bundles appearing in section 4 are trivial.) If we assume this
rational function is non-zero then it has neither zeroes nor poles in Y (U) \
Y(C); so we get by the above equalities that if Y(9)(U) is non-empty then
Y@ (U) = Y(U)NY(C). Assume from now on that Y(9)(U) # 0 (equivalently
that det p**(7) # 0 in C(Y)). There is a finite set of closed points § C Y
containing all singular points of Y, all zeroes and poles of 7 and of det p®**(7),

such that if Y7 =Y \ S, X; = inverse image of Y], we have a basis of the free

O(Y1)-module HL,(X1/Y1) of the form

Wiy e ey Woy VT, ..., V(T )w,
where wy,...,wy is a basis of the free O(Y7)-module HO(XI,QX/Y). Note
that Y1(U) N\ Y1(C) = Y(U) \ Y(C). Then the map N:(TY)(U) — glay(U)

from Section 4 has the form:

0 ul
ur(y) — [UN'A(?!) UN229(7J)

where Naj, Nog are g X g matrices with entries in O(Y;). Now we compute

] forallu e U, y € Y1(U)

the image of any y € Y(U) \ Y(C) via the map

X=30ToNoV:YO(U) - (TY)O(U) - glyy (V) — HY — U9
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Using the formula of ® o I" from Section 3 plus the above formula for N, we
get that x(y) equals the characteristic polynomial of v = 3 — o?/4 — o//2

where

a=—y"(y") ", — y' Nar(y)

B=—(y")"Na(y)

Substituting the expressions of & and (3 in that of v, we get

v=0(y),+ (¥')°R(y)

where o(y) =y /2y’ — (3/4)(y" /y’)? is the “Schwartzian” of y and R is some

g X g matrix with entries in O(Y}). In case g = 1 we simply get:

x() =0+ ¥)’Ry), yeYU)\Y(C)

for some regular function R € O(Y;). So if, moreover, Y = A! \ {0,1}
and X is the Weierstrass elliptic curve over Y, then by universality of U the
map Xx:U \ C — U is surjective. Coming back to arbitrary g >1 and taking
products of g elliptic curves with various j-invariants in U \ C, one sees that

the map yx: AE,{’,)L(U) — U9 is surjective too.

6. The basic “fifth order map”

The main idea in what follows is to construct non-empty Kolchin open
sets Qp and Qp of Q := A_S,”,,{(U) and a map b:Qp — AY(U) = U with the
following properties: 1) for any points y,z € Qp belonging to the same
isogeny class in Ay ,(U) we have b(y) = b(z) and 2) for any curve Y C A,

with Y(U)NQp NQp # @ we have Y(U)NQp = Y(U) N\ Y(C) and there

53



A. BUIUM

exists a rational function s € C(Y") \ C such that the restrictions of b and
s to Y(U) \ Y(C) coincide (this makes sense because s viewed as a rational
map Y (U)- - - ->=A'(U) = U has all its poles contained in Y(C)). Then
we will prove that there exist an effective divisor W C A and two positive
integers my, may such that upon letting Qw = Ay ,(U) \ W(U) we have that
deg s <m deg(Y) + maop(Y) whenever Y(U)NQp NQp N Qw # 0. This
construction will end the proof of Theorem 1”. Indeed, let Cy be the set of all
Y € C(Ag,n) such that Y(U)NQpNQpNQw # 0;if I C Ag o (U)\ Ay 1(C) is
any isogeny class then for Y € Cy we have INY (U) = IN(Y(U)\Y(C)) hence
INY(U) will be contained in a fiber of the restriction of b to Y(U) \ Y(C)
hence in a fiber of the restriction of s to Y(U) \ Y(C), consequently

card (I NY(U)) < deg s <my deg(Y) + mop(Y)

and Theorem 1” will be proved. In this section we construct our “basic map”
b; intuitively b will appear as a “non-linear differential operator of order 5”.
In the next section we will construct W and estimate deg s.

Start by considering the maps D,T,E: A9(U) — A!'(U) defined as fol-

lows: for v = (v1...,vq) € U9,

D(v) = D(2¢ + v1297" + -+ vg) = disc(z? +v1297 + - +vy)
T(v) = —v;
E(v) = 4g(g — 1)D(v)(D(v)" — 4(g — 1)T(v)D(v)) — (29 — 1)*(D(v)")?

where “disc” means “discriminant”. Note that D and T are regular maps of
algebraic varieties while E is not; yet E' is continuous in the Kolchin topology

(intuitively E is a non-linear differential operator of order 2). Consider the
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Kolchin open set Qp = Q \ x~}(D~1(0)) of A, ,(U) (which is non-empty
because the map x:Q — UY appearing at the end of Section 4 is surjective)
and also consider the Zariski open set A% (U) = A9(U) \ D71(0). Then we
may consider the maps S: A%,(U) — AY(U), P: A9(U) — A'(U) defined by:

S(v) = E(v)99~Y D(v)?9lo=1+1
P(’U) = (E(v)g(g_1))’D(v)29(9_1)+1 _ E(U)g(g_l)(D(v)29(9‘1)+1)’

The maps S and P are continuous in the Kolchin topology so we may con-
sider the Kolchin open set Qp = @ \ x~!(P~!(0)) which is non-empty also
by surjectivity of x:Q — U9. Now we define our “basic map” to be the
composition

b=Sox:Qp — AH(U) - AY(U)

Clearly b maps each pair of points belonging to the same isogeny class into the
same point (because x has this property). Now let Y C A, , be a curve with
Y(U)NQpNQp # 0 in particular, by Section 5, Y9(U) = Y(U) \ Y(C).
Also by Section 5 we have

x(y) = det(zl, — o(y)I; — (¥')°R(y)), y€Y{U)\NY(C)

where R is some g X g matrix with entries in the function field C(Y). In

particular we get:

(*) T(x(v)) = tr(a(y)Ig+(¥')*R(y)) = go(v)+ (') *t(y), y € Y(U)N\Y(C)

where t = tr R € C(Y) and “tr” denotes of course the trace of a matrix.

Using the behavior of the discriminant of a polynomial with respect to linear
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changes of variable, we get

(¥%)

D(x(y)) = D(det((z — o(y))I, — (y')*R(y))) = D(det(zI, — (y')*R(y))) =
= (¥)?9Vd(y), yeYU)\Y(C)

where d = D(det(zI, — R)) € C(Y). Since Y(U)N Qp # 0 there exists
Yo € Y(U) \ Y(C) such that D(x(yo)) # 0; by (**) d # 0 in C(Y). Since d
viewed as rational function on Y (U) has neither zeroes nor poles in Y (U) \
Y (C), it follows from (**) that D(x(y)) # 0 for all y € Y(U) \ Y(C) hence
Y(U)NQp =Y (U)\Y(C). Now a tedious but straightforward computation

with formulae (%) and (*x) yields:
(%) E(x(y)) = ()" *?e(y), yeY(U)\Y(C)

where e = 4¢(g — 1)d(72d — 4(g — 1)td) — (29 — 1)%(7d)? € C(Y). From (*x)

and (*%*) we get:

(k) b(y)=S(x(¥) =s(y), yeYU)NY(C)

where s = e9(9=1) /429(s-1)+1 ¢ C(Y). We claim that s ¢ C, equivalently,

Ts # 0. But, indeed, deriving (k*xx), we get
y'(15)(y) = P(x())/D(x(y)**~D*,  y e Y(U)\Y(O)

Since Y(U)NQpNQp # O, there exists y; € Y(U)\Y (C) such that P(x(y1)) #
0 and D(x(y1)) # 0 so we must have (7s)(y;) # 0 hence 7s # 0 as an element
of C(Y) and our claim is proved.

To conclude the proof of Theorem 1” we need to bound deg s in terms

of deg(Y) and p(Y') which will be done in the next section.
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Remark. The main point in the last step of the proof above was the “mira-
cle” that, for y € Y(U) \ Y(C), both D(x(y)) and E(x(y)) were expressible
in the form of a product of some power of y’ with a sutiable rational function
in C(Y). In case of D(x(y)), this “miracle” is the reflection of remarkable
properties of the discriminant. In a similar way the “miracle” for E(x(y)) is
the reflection of remarkable properties of what may be called the “differential
resultant” of two é-polynomials; this interpretation is of course irrelevant for
the proof (but it was quite relevant for the way we were led to the somewhat
tricky definition of F). Deligne’s arguments in [D] avoid this “miraculous”

point in our proof.

7. Bounding deg s

First let’s recall various trivial facts related to degrees on curves. Let L
be a function field of one variable over C of genus p. Then for any f € L
we define deg f = deg(f)oo (Where (f)oo is the negative part of the principal
divisor associated to f of the smooth projective model of L) if f # 0 and
deg f = 0if f = 0. This is of course nothing but the “usual height” of the
point (1: f) on the projective line. Similarly if w € Q} /c is a 1-form we let
degw = deg(w)oo if w # 0 and degw = 0 if w = 0. Finally, if 7 € DercL,
T # 0 we write deg 7 = deg(7)oo. Here (W)uo, (7)o have the obvious meaning

analogue to (f)co. It is trivial to check that:

(i) deg(r,w) < deg7 + degw
deg fw < deg f + degw
deg7f < deg 7+ 2deg f
deg(f1 + f2) < deg f1 + deg f>
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deg f1f2 < deg f1 + deg f2

Note that by Riemann-Roch there always exists 7 € DercL, 7 # 0 with
deg 7 < 2p. For any matrix M = (fi;),fi; € L it will be convenient to denote
by deg M the maximum of the numbers deg f;;.

Now let us come back to the set C(A) of curves in A = A, , and recall
that we have fixed a projective compactification A of A and a very ample line
bundle O(1) on A. For any two functions ¢,v:C(A) — N and any subset C’
of C(A) we write ¢(Y) < ¥(Y), Y € C’ if and only if there exists a constant
m > 0 such that ¢(Y)<my¢(Y) forallY € C'.

After these notational preparations we may proceed to proving the exis-
tence of the desired bound for deg s.

Let X/A be the universal abelian scheme over A, let R be the field of ra-
tional functions on A and let Xz = X x sSpec R. Pick any R-basis w,...,ws,

of H}p(Xr/R) such that wy,...,w, is an R-basis of H(Xg,) and write
Vw; = Zwij R wj, w;ij € Q};/C, 1<i,7<2¢9

where V is the Gauss-Manin connection of Xg/R. There clearly exists an
integer N >1 and a divisor W on A whose associated line bundle is O(N)

such that, upon letting V be A \ W, the following hold:
1) VCA,
2) wi,...,ws, is a basis of the O(V)-module H}, (X/A)v,

3) wi,...,wy is a basis of the O(V)-module of relative regular 1-differentials

of X/A over V,
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4) w;; are regular on V,

5) (wij)oo <W for all i, j (where (wij)oo is the divisor of poles of w;; on A).

Put W = W N A and let’s check that with this W we have
deg s < deg(Y) + p(Y), Y e

which will close the proof of Theorem 1”. Recall from Section 6 that we
defined Cj to be the set of all Y € C(Ay ;) such that Y(U)NQpNQpNQw # 0;
moreover we defined s by the formula s = e99~1) /d?9(9—1+1 ¢ C(Y). Now if

Y € C) and if w;; are the restrictions of w;; to Y, then obviously we have
deg wij K deg(Y), Y € Cy

Using formulae (i) we easily check that the matrices N2;, Nag in Section 5

may be chosen to satisfy
deg Noj,deg Nap < deg(Y) + p(Y), Y €eCy

Clearly the matrix R in Section 5 can be expressed explicitly in terms of Ny,

Nao; using (i) again we get
deg R < deg(Y) + p(Y), Y e Cy
Finally, if ¢, d, e, s are as in Section 6, we deduce step by step (using (i)) that
deg t,deg d,deg e, deg s < deg(Y) + p(Y), Y €Cy

and Theorem 1” is proved.
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CONFIGURATIONS OF REAL AND COMPLEX POLYNOMIALS
by
Fabrizio CATANESE, Paola FREDIANI

This article is dedicated to the memory of Mario Raimondo.

§0. Introduction.

The purpose of this article is to give a geometric explanation of the sur-
prising equality (cf. [C-P],[Ar1],[Ar3]) between, on one hand, the number of
configurations of (complex) lemniscate generic polynomials, and , on the other
hand, the number of configurations of real monic Morse polynomials with the
maximal number of (real) critical points.

This discovery occurred when Arnold gave a series of talks at the Scuola
Normale in 1989 on the subject of catastrophe theory, and there was somehow
a bet whether there could be a geometrical correspondence between the two
sets.

Afterwards, Arnold developed a quite general theory concerning the ubig-
uity of Euler, Bernoulli and Springer numbers (cf.[Arl], [Ar2], [Ar3]) in the
realm of singularity theory.

In this article, among other things, we prove the equality of the above
two numbers by geometric methods.

It would of course be very interesting to extend the type of correspondence
introduced here to a more general context, like the case of spaces of universal
deformations of 0-modular isolated singularities. In a different direction, we
plan to extend these type of results to the case of real algebraic functions,
using the results of [B-C].

Let us explain now in some detail what are our present results.

We adopt here the notation and terminology of [C-P] and [C-W] : given a

polynomial P(z) we consider |P(z)| as a (weak) Morse function , and we define

S.M. F.
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the big lemniscate configuration of P to be equal to the union of the singular
level sets of | P| (the so called lemniscates). P is said to be lemniscate generic
if P has distinct roots and every level set ', = {z : |P(2)| = ¢} has at most
one ordinary quadratic singularity. Two big lemniscate configurations I'y,T'y
are said to be isotopic if there is a path o in the space of diffeomorphisms of
C such that o(0) is the identity and ¢(1)(T;) = I's.

One of the main results of [C-P] was that there is a bijective correspon-
dence between isotopy classes of big lemniscate configurations and connected
components of the space £, of lemniscate generic polynomials. Assume now
that P € R[z] : then, if P is lemniscate generic, automatically all the critical
points of P are real; thus, letting (n + 1) be the degree of P, P has n distinct
real critical values which are different from zero.

Let £, be the open set of complex lemniscate generic polynomials of
degree (n + 1), let £, r be the set of real lemniscate generic polynomials (
an open set in the space of real polynomials), let finally GM, ( which is
called the “Set of generic maximally real polynomials” ) be the open set of
real polynomials with n real and distinct critical values : thus £, r C GM,,
and every component of GM,, is the closure ( in GM,,) of a finite number of
components of £, r.

If Pisin GM, and y; < ... < y, are the critical points, we associate to
P the sequence u; = P(y1),...,un = P(yn), a snake sequence ( cf. [Da], [Ar3]
), what simply means that (—1)*(u; — u;41) has constant sign.

If P is lemniscate generic and real, there is another way of ordering
the critical values, namely by increasing absolute values : we let Y, r =
{(wy,.ccywr) € R : 0 < |wy| < ... < |wy|} be the space of admissible critical
values. Clearly Y, r has exactly 2" connected components homeomorphic to
R"™.

Main Theorem.

(a) Each connected component of £, contains exactly 2"*! connected

components of L, r.

(b) The number of connected components of £, g mapping to a fixed

component of Y, r equals the number of components of GM,, whence the

62



CONFIGURATIONS OF REAL AND COMPLEX POLYNOMIALS

number of connected components of GM, equals twice the number K, of
connected components of £,; the number instead of components of GM, N

{monic polynomials} equals K,.

(c) (cf. Arnold [Arl] ) The number of components of GM, equals the
number of snake sequences (this means, for fixed wy, ..., w,, the number of

snake sequences u1, ..., 4, that can be obtained by permuting wi, ..., w,).

(d) ( cf. [Ar1],[C-P] ) The number of components b, of L, r gives rise
to the following exponential generating function :

95 (b /)" = / 4/(1 — sin(2¢)) = 2(sec(2t) + tan(2t)).

e) the number of snake sequences equals the number of isotopy classes of

lemniscate configurations multiplied by 2.

The above result is related to a curious rediscovery of Riemann’s existence
theorem, done by Thom in 1960 ([Thom)]) In fact, in 1957 C. Davis ([Da])
showed in particular that for each choice of n distinct real numbers there is a
real polynomial of degree (n + 1) having those as critical values ( in fact, up
to affine transformations in the source, a unique one for each snake sequence
formed with those numbers), and a similar question was asked for complex
polynomials.

Thom remarked that by Riemann’s existence theorem the answer is that
for each choice of n distinct complex numbers and an equivalence class of
admissible monodromy there exists exactly one polynomial,up to affine trans-
formations in the source, having those points as critical values and the given
monodromy.

In this paper we link the two answers by describing explicitly, even when
the branch points are not all real, the monodromies which come from real
polynomials.

In fact, in [C-P] it was shown also that every big lemniscate configuration
occurs for some real polynomial for which the monodromy tree (cf.[C-W]) is
linear (that is, homeomorphic to a segment).

Here, in a similar vein, we establish another result (which is essential in

order to establish our main theorem), which allows us to understand the lem-
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niscate configurations which come from real polynomials as the ones obtained
from “snake” linear trees ( theorem B stated below is an abridged version of
theorems 2.1, 2.3 and 2.12 ) :

Theorem B.

Given wy,...,w, € R with 0 < |w;| < ... < |wy], there is a canonical
choice of a geometric basis of 71(C — {wy,...,w,},0) such that the real lem-
niscate generic polynomials P having wy,...,w, as critical values, correspond
exactly to the monodromy trees which are “snake” linear trees.

Also, for each fixed choice of wy,...,w, as above, if n > 4 there is some
lemniscate configuration which cannot be obtained with a real polynomial.

To get the flavour of the second statement one should remark that the
monodromies which come from real monic polynomials, (whose number is
K, ~ O((2/m)*(n)!")) are quite few compared with all the possible mon-
odromies, whose number is (n + 1)»~2. Nevertheless, since the number of
lemniscate configurations is exactly K,, we initially hoped that there would
be a bijection between the set of real monodromies and the set of lemniscate
configurations.

From theorem 2.1 it is then easily seen that, fixing the (real) critical val-
ues, and a linear tree in the canonical basis, the snake condition is equivalent
to the condition that the associated polynomial is real.

In this way part b) of the main theorem is proven.

Finally, the proof of a) of the main theorem is a straightforward conse-
quence of Lefschetz’ fixed points theorem, while c) follows from the quoted
result of Davis, which we reprove ( in 2.3) with a small precision, for the sake
of completeness.

Parts d),e) follow then from a),b),c) and the results of [Arl],[C-P].

Section 2 contains also other miscellaneous results.

In the third section we employ the branch points map used by several
authors ([Da],[Lo],[Ly],[C-W],[C-P],[Ar3] ) in order to give a quick proof of a
generalization of Davis’ theorem along the same lines. Later on, we prove in
theorem 3.7 a much more precise result, namely that the monodromies of real
generic polynomials are given, in a canonical basis, by trees obtained from a

snake linear trees by adding, in a symmetric way, pairs of isomorphic trees
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( see section 3 for a more precise statement). From this result it is possible
to calculate the number of connected components of the space of real generic
polynomials of degree equal to n + 1, but we have not yet found a simple
formula for it.

The proof that we give of 3.7 is completely algebraic, implies in particular
a third proof of the quoted theorem of Davis ( after the ones given in [Da],

[Ar2], and in 2.1, 2.3 ), and is susceptible of generalizations.
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1. Notation, set-up, preliminary results.

(1.1) Definition.

a) Let P € R[z] be a polynomial of degree (n+1): P is said to be maximally
real if all the critical points of P ( the roots y,..., yn of its derivative) are real.
We let M,, be the closed set of maximally real polynomials. Its interior M!,
corresponds to the polynomials with real distinct critical points and contains
the open set GM,, of the maximally real polynomials which are also generic,
i.e., are such that the branch points of P, wiz., the real numbers u; = P(y;),
are distinct.

b) If P is maximally real there is a standard ordering y; < ... < y, of the
critical points, hence we have, for P as above, also a canonical ordering u; =
P(y1),...,un = P(yn) of the branch points, which we shall call the source

ordering.

(1.2) Definition-remark.

i) A sequence uj,..., u, of real numbers is said to be a weak up-down sequence
if (—1)(u; — uig1) < 0, a weak down-up sequence if (—1)*(u; — ujyq) > 0, a
weak snake sequence if one of the two above holds. A snake sequence will be

a weak snake sequence where u; # u;4, for each z.
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ii) if P is a maximally real polynomial, then its branch points u; = P(yy), ...,

un, = P(yn), taken with the source ordering, yield a weak snake sequence.

(1.3) Definition.

a) A polynomial P € C[z] of degree (n + 1) is said to be generic iff it has n
distinct branch points.

b) P is moreover said to be lemniscate-generic if the branch points have n
distinct absolute values different from 0.

c¢) If P is lemniscate generic, then there is a standard ordering for the branch

points, by which we get another sequence wy, ..., w, with 0 < |w;| < ... < |wp|.

(1.4) Remark.

A polynomial P € R[z] which is lemniscate generic is automatically maximally
real, and there are three distinct orderings for the set of its branch points, the
source, the standard and the target ordering ( the first never coincides with
the last).

We want to define the Hurwitz space H, of polynomials. To do this, we

consider the notion of source equivalence.

(1.5) Definition.
i) Two polynomials P, Q € C|z] are said to be source equivalent (P ~ Q)
iff there exists an isomorphism ¢ : C — C (¢ € A(1,C)) such that Q = P o .
ii) The Hurwitz space H, of polynomials is the quotient V,/A(1,C) of
the space V,, of polynomials of degree (n+1) in C[z], by the relation of source

equivalence.

We want now to define the real part of the Hurwitz space.

In order to do it, let us observe that the operation P — P of complex con-
jugation of coefficients of P passes to the quotient, since if Q) = P o ¢, then
Q = P o @, as it is easy to verify.

The fixed locus for complex conjugation is given by V,, N R[z], and the next

proposition determines the fixed locus inside H,,.
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(1.6) Proposition.

If Q € C[z] is (source-) equivalent to @, then @ is equivalent to a real
polynomial P € R[z]. Whence the real part H, r of the Hurwitz space H,, is
indeed the image to the quotient of V;,, N R[z].

Proof. We can clearly replace Q by any other polynomial which is equivalent
to @, and therefore we can assume that @ is of the form

1 -1 -2
Q=" 4ap 12"V Fanz" P + ag.

If p(2) = az + B, and Q@ = Q o ¢, then we immediately get a™+! = 1,
and 8 = 0.
Let a be a square root of a, so that @ = a/a, and set P(z) = Q(az).
Then P(z) = Q(az) = Q(aaz) = Q(az) = P(2).
Q.E.D.

Unfortunately, it is not true that two real polynomials P,Q are equivalent iff
there exists a ¢ in A(1,IR) with @ = P o ¢, as it is shown by the example of
P=242241,Q=2*-22+1

But this holds true if the polynomials are generic :

(1.7) Proposition.

If P,Q € R|z] are A(1,C) equivalent, then they are A(1,R) equivalent if
they cannot be written as a composition of two polynomial maps of strictly
lower degree. In particular, if U, is the open set of generic polynomials, then
the image to the quotient of U, N R|[z] is the quotient (U, N R[z])/A(1,R).

Proof. We can clearly assume, replacing P and @ by A(1,R) equivalent

polynomials, that P and @ are of the following “Tschirnhausen” form
P=+42"" 4 a, 12"V dan_g2" 24 ... + ay,

Q = i2n+l + bn_lz"_l + bn_gz""z + + bg.

Since there are @ # 0, 8 € C such that Q(z) = P(az + ) we get as
before B = 0,a™t! = £1.
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Then b; = a'a;, whence o' € R whenever a; # 0.

If @ € R, we are done, else, there is a minimal m such that a™ € R, and
a; = 0 if z is not divisible by m. In the latter case there is a polynomial R of
degree (n + 1)/m such that P(z) = R(z™).
The proof is over, since a polynomial of the form R(2™) can only be generic
if m = 2 and R is linear : but in this case a € R. Q.E.D.

(1.8) Corollary:

The generic real Hurwitz space of polynomials, that is, the quotient (U, N
R[2])/A(1,R), is isomorphic to the quotient of the space T, r of generic real
Tschirnhausen polynomials

{PIP(z) = 2" 4 apn_12" V4 ap_p2™ 2 + ... +ap, a; €R,

and P is a generic polynomial}
by the involution ¢ which sends P(z) to P(—z). In particular, for n even, the
generic real Hurwitz space is isomorphic to the space of monic generic real
Tschirnhausen polynomials.

The quotient R[z]/A(1,R) is also isomorphic to the quotient of the space

N, r of normalized real polynomials
{P|P(z) = £2" a2 4+ apn_12™" 1+ ... +ayz,a; € R}
by the involution ¢ which sends P(z) to P(—z).

Proof.
The first assertion was already proven, the second follows in an entirely
similar way.

(1.9) Remark.
Un/A(1,C) is an open set in V,,/A(1,C) & Tp/pnt1, where T, is the

space of complex (Tschirnhausen) polynomials of the form
P(z)=2""" +an12" " tanp2" P+ + ag,

and where pin41 is the group of (n 4+ 1)'® roots of unity in C. The difference
T, — Uy is called the bifurcation hypersurface A, (cf. [C-W]).

The group extension associated to the Galois cover T, — A, — U, /A(1,C) &
(Tn, — Ay)/pn+1 is described in the main theorem of [C-W].
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(1.10) Definition-remark.

i) Let us denote by H!, be the generic Hurwitz space, i.e., the quotient
Un/A(1,C), and by H;, g its real part. If we set moreover U, r = Un N R[z],
then M, g = Un,r/A(L,R).

ii) Inside U, r we let GM,, be the subset of those generic polynomials
for which the critical points ( or, equivalently, the critical values ) are real. It
is clear that GM,, is a union of connected components of U, N R|[z], and that
each component of GM,, is made up of A(1,IR)-orbits. The polynomials in
GM,, are said to be mazimally real and generic.

iii) Let £, be the open set in U, consisting of lemniscate generic complex
polynomials, and let £, r be its real part. Clearly these open sets are made
of equivalence classes, whence one can define the lemniscate generic Hurwitz

space LH,, and similarly its real part LH, r.

In [C-W] and [C-P] ( where, though, H, was denoted Z,) a key importance
had the study of the critical value fibration, associating to a generic polyno-
mial P the unordered set of its n critical values :
(1.11)

Yot Hyy — Wy = {B = {w,..,wp}|w; € C, and w; #w; for ¢ #j}.

We recall some definitions and results from the two cited papers, which are a

consequence of Riemann’s existence theorem

(1.12) Results and definitions concerning the critical value fibration.

a) ¥n : H), » W, is an unramified covering space whose fibre over B is
the set of conjugacy classes [p] of monodromies y : 71 (C — B,z¢) — Snt1,
such that the image of u is a transitive subgroup, and each element of a
geometric basis of 7 (C — B,z¢) is mapped to a transposition. Here, two
homomorphisms p and p' as above are said to be in the same conjugacy class
iff there exists an inner automorphism ¢ of 8,41, such that u = Dpopu'op™1;
and a geometric basis is a basis of n loops v; (¢ = 1,...,n) formed by a segment
joining zo with a small circle around w;.

b) Since the group B, = m(W,,{1,...,n}), called Artin’s braid group,
acts (cf.[Bir]) as a group of automorphisms of 71 (C — {1, ...,n},z¢), the mon-

odromy of 1, is such that o sends [u] to [z oo™1].
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c) the elements in a fibre of t,, once a geometric basis ~v1,..y, for
71(C — B, zo) has been fixed, can be put in a bijective correspondence with
E,, the set of isomorphism classes of edge labelled trees with n edges ( we take
(n + 1) unlabelled vertices which represent the set P~1(zg), and we adjoin n
edges, labelled by an integer from 1 to n, corresponding to the transpositions
p(7i), and joining the two vertices moved by the above transposition ).

d) Let ¥, C W, be the subset {{w1,...,wn}|0 < |w1]| < ... < |wan|}, so
that £, = ¢¥;1(Yx).

Let A, be the image of m1(Yy,{1,...,n}) — m(Wp,{1,...,n}) : then the
connected components of £, correspond to the A, —orbits on E,.

(1.13) Remark.
1) Writing r; = |w;|— |w;—1| and n; = w;/|w;|, we see that Y,, is homeomorphic
to (S1)* x (R*)", hence m;(Y;) = Z". The images T; of the generators of
m1(Yy) are the braids, which keep fixed the points 1,...,n different from j, and
move j in a circle around the origin (¢ > e27tj).

ii) each connected component of LH,, being a finite connected covering
of Y,,, is also homeomorphic to (5*)" x (R*)".

iii) the real part of ¥,, Y, r = {(w1,...,wn) ER" : 0 < |wq| < ... < |wp]}
is homeomorphic to {—1,+1}" x (R+)".

iv) 1, commutes with complex conjugation.

From the last part of the previous remark it follows that %, carries the real
part LH, r of the lemniscate generic Hurwitz space to Y, g, but we are going
to see soon that LH, g is far from being the full inverse image of Y, r, which
consists of (n 4 1)"~22" disjoint copies of R*.

(1.14) Lemma.
Each connected component A of LH,, contains exactly 2" connected compo-
nents of LH, R.

Proof. Each connected component A of LH, is homeomorphic to (S5*)™ x
(R*)™, and for each point r = (r1,...,r,) € (R*)", the set 4, = (S!)" x
{r}, which is invariant by conjugation, contains only a finite number of self

conjugate points.
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We apply now the Lefschetz’s fixed point formula to f = complex conju-
gation on A,.
Since A, is a covering of (S*)", and f induces, via the covering projection,
the standard conjugation on (S')", we see immediately that f acts as —1 on
Hy(A,,Z).
Thus, the number of fixed points of f on A, is exactly 2".
Now, the real part of A is a closed submanifold of A, whence, it union of
components of ANy, (Y, r), which is a trivial covering of Y, r. Our assertion

follows then immediately.

Q.E.D.

(1.15) Corollary
For each connected component A of LH,, the restriction ¢, of ¥, to the

real part of A is injective to Y, r if and only if it maps surjectively to Y, r.

§2. Statement and proof of the main theorems.

In this section, before giving a proof of the main theorem, we will give a
characterization of the monodromies of maximally real polynomials as “snake”
linear trees.

This will be done geometrically, whereas a second proof, of algebraic
nature, will be given in section three, where we will more generally charac-
terize the monodromies of real generic polynomials ( identifying them as self

conjugate monodromies).

(2.1) Theorem.

Let (wy,...,wy) € Y, r (thus w; € R, and 0 < |wy| < ... < |wy|). Then
there is a canonical choice of a geometric basis of 71(C — {w1, ...,wn},0) such
that for each real lemniscate generic polynomial P having w, ..., w, as critical
values, the edge labelled monodromy tree 7 of P can be determined as follows.
Let y3 < ... < yn be the critical points of P, let u; = P(y1),...,un = P(y,) be
the snake of its critical values, and let moreover o be the permutation such
that u; = w,(;)-

Then the tree 7 is a linear tree consisting of n consecutive segments with
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labels (from left to right) o(1),...,0(n).

(2.2) Choice of the canonical basis ( see figure 1)

Let = be the planar graph consisting of the union of n circumpherences y;,
of radius € << 1 and with centres in the n points w;, together with the
complement in R of n open intervals of radius € centered around the n points
w;.

Clearly C— {w,...,w,} is homotopy equivalent to =, thus it suffices to choose
the geometric basis inside 7 (Z, 0).

Let «; be the loop based at 0 which consists of a “right turning” symplicial
path é; from 0 to P; = (w; — €[sign w;]), followed by x; run counterclockwise,
and finally followed by the inverse of é;. Here, a symplicial path is said to
be right turning if, whenever the path, after following an edge, comes to a
node, then takes as next edge the one to the right. We might observe that
the inverse of a right turning path is left turning.

Sm ‘h\ qﬂ\ Im 0 )

Figure 1 : Choice of the canonical basis for m;(C — {wy,...,ws},0)

Proof of theorem 2.1

Consider P as a map of ]P‘(IC = CU {00} to itself, and consider the graph
© = P71(PL). We consider Py as a graph with vertices wy, ..., w, and oo,
and therefore also (n+1) edges. Letting as usual the weight of a vertex be the
number of edges stemming from it,© has one vertex (oo) of weight 2(n + 1),

n vertices of weight 4 at the critical points yi, ..., y, and all the other vertices
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of weight 2.

Whence, an easy calculation yields the number (—2n) for the topological
Euler-Poincare’s characteristic x(0).

Let us now disregard the vertices of weight 2 in ©, and remark that © contains
PL. We are left then with (3n+1) edges, (n +1) of which are intervals in Pg.
The remaining 2n are in conjugate pairs, each contained either in the upper
or in the lower half plane. Therefore through each critical point y; passes
exactly one edge F; contained in the upper half plane.

Claim : We contend that the other end point of E; must be co (compare figure
2).

In fact, otherwise, the other end point of E; should be a critical point y;, with
i # j. We can clearly assume ¢ < j, and we shall see that if j =741 we have
a contradiction. In fact, in this case we would have three edges, namely E;,
its conjugate, and the interval [y;, y;] mapping to the interval with ends u;, u;
and not containing co. But this contradicts the local structure of the map P
at the simple critical point y; ( the local degree is 2). If instead, 7 > i + 1,
since the y;’s and oo are the only singular points of y©, the other end point of
E;4+) must be a critical point yg, with : + 1 < k¥ < j. By induction on |j — 1|,
we finally find a contradiction.

AVaWAR)

’ o

Q.E.D for the claim.

x

Figure 2: A polynomial of degree 6 and its graph @ = P~(PR).

The critical points of P are partitioned into two sets : the set of local

minima for |P| g, and the set of local maxima for |P|jgr. I y; is a local
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minimum, then the edge E; maps bijectively to the interval with ends u; and
oo which contains 0 ; if instead y; is a local maximum, then the edge E; maps
bijectively to the interval with ends u; and oo which does not contain 0. We
clearly have a pair of conjugate roots of P for each local minimum of |P|| g,
and all the remaining roots are real.

Observe moreover that we have a real root exactly in each interval in R
between two consecutive maxima of |P||gr, and that one cannot have two
consecutive minima.

In order to describe the monodromy p of P, we want to determine explicitly
the transposition 7; of the roots of P obtained by the liftings of the path ~;

described above.

Clearly a lifting of 7; is contained in the graph P~1(=) (see figure 3) . We
remark that since P is orientation preserving, the lifting of a right turning

path will be right turning too.

Figure 3 : A polynomial of degree 4, part of the graph P~1(Z), the associated

monodromy tree, the lemniscate configuration.

(2.2) Sublemma

1) If y; is a local minimum of |P| g, the corresponding 7,(;; permutes

the pair of conjugate roots of P lying on E; and its conjugate.

2) If y; is a local maximum, as well as y;41, ¥i—1, To(;) Permutes the pair

of real roots lying in the two intervals with endpoint y;.
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3) If y; is a local maximum, but y;41,yi—1 arelocal minima, 7,(;y permutes

the non real root in E;;; with the non real root in the conjugate of E;_;.

4) In the remaining cases, 7,(;) permutes the neighbouring real root with

the non real root in the union of E;;; with the conjugate of E;_;.

Proof.

Let &; be the small circle around y; which is the local inverse image of x;. Then
P~1(E) has four nodes on ¢; which partition it into 4 arcs, each mapping to
a semicircle in ;.

These nodes are called upper, left, lower, right, with obvious meaning.

1) Lifting the path é; with initial point the root on E;, we end up to the upper
node, then lifting x; we end up in the lower node, finally the lifting of the
inverse of §; gives the conjugate of the first part of the path, therefore the end
point is the conjugate root of the one we started with.

2) Lifting the path ; with initial point the real root on the left of y;, we end
up to the left node, then lifting x; we end up in the right node, finally lifting
the inverse of §; we get to the real root on the right of y;.

In the remaining two cases the situation changes since we have to lift some
semicircles to a neighbourhood of a critical point, whence the lifts will be one

of the above mentioned 4 arcs around the critical points.

3) We lift the path 6; with initial point the root on the conjugate of E;_;,thus
we end in the left node around y;, since when we approach y;_; we have to
turn right, then we proceed to the right node : when we approach y;4+1 we
have to turn left, thus we end up to the non real root in E;j ;.

4) The proof is similar to case 3 : if we approach y;_; we have to turn right,
if instead we approach y;4; we have to turn left.

Q.E.D. for the Sublemma.

In order to finish the proof of theorem 2.1, we recall that the roots of our

polynomial P are partitioned as follows :

a) a conjugate pair is associated to critical points which are local minima of
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|P‘|R7

b) a single real root is associated to a sequence of consecutive (in the source

ordering) local maxima of |P||g,

c) a single real root is associated to any local maximum of |P| g, which is
either y; or y,.

Recall also that one cannot have two consecutive local minima. We associate
to P the linear edge labelled tree 7 consisting of n consecutive segments with
labels (from left to right) o(1),...,0(n).

We take a bijection of the roots of P with the vertices of T as follows

B) assume that y;, yiy1 are local maxima for |P||g: then to the root corre-
sponding according to b) we associate the vertex v lying between the edges
labelled o () and o(z + 1)

@) if y; is a local minimum for |P|| g, we take any bijection between the two
roots associated according to a) and the two vertices of the edge labelled o(7)

v) if y1 (resp. yn) is a local maximum for |P| g, the root corresponding
according to c) will be associated to the end of o(1) (resp. : a(n)).
According to the meaning of the monodromy graph, and by sublemma 2.2 the

monodromy of 7,(;) is the transposition 7,(;) permuting the two vertices of

the edge labelled o(z).
Q.E.D.

For the reader’s convenience, we reformulate in our context the result of Davis

quoted in the introduction ( with essentially the same proof).

(2.3) Theorem (C.Davis, cf. [Da])

For each weak snake sequence uj,...,u, of real numbers, there exists
exactly one maximally real Tschirnhausen polynomial, and exactly one (max-
imally real) normalized polynomial whose snake sequence of critical values is
the given one.

In particular, if uy, ..., u, are “lemniscate generic” (i.e., there is a permutation

o such that if u; = w,(;), then 0 < |w;| < ... < |wy|) each linear monodromy
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tree as in theorem 2.1 comes from a real polynomial.

Proof. Let us prove the assertion first in the case where we have a snake
sequence ( thus u;,u;41 are distinct).

A first remark is that the snake sequence associated to P(—z) is the reverse
of the snake sequence associated to P ( that is, up,...,u;) whence the snake
sequence is only A%(1,R)-invariant (moreover, by corollary 1.8, every nor-
malized polynomial is A*(1, R)-equivalent to a unique Tschirnhausen one.
Remark that the space of normalized maximally real polynomials has two com-
ponents, mapping to the space of up-down, respectively down-up sequences.
The crucial point is that a maximally real polynomial determines a natural
source ordering of the critical points yi,...,y, thus the space of monic nor-
malized maximally real polynomials is isomorphic to a subspace of the space
of complex monic normalized polynomials taken together with an ordering of
the critical points.

More precisely, we have
C={(¥1,-un)lyi €ER, y1 <yp... <yn} =R x(R¥)"

inside {(y1,...,yn)|y: € C} = C".

There is a surjective polynomial map, homogeneous of degree (n + 1),
B : C* — C" associating to (y1,...,yn) the branch points u; = Py(y;) of
the normalized polynomial P, = [([;—; ,.(# — ¥:)). The claim is that 3
( or —B, if n is even) maps the above C = R x(R*)"*~! to the space V of
up-down sequences, which is again R x(R*)"~!. A first remark is that 3 is
unramified on the open set of C™ where all the y;’s are distinct . This follows
from Riemann’s existence theorem, which shows indeed more, as follows.

If all the y;’s are distinct, once a geometric basis for m1(C — {uy,...,un}) is
fixed, to each y; is associated a transposition 7;, and if u; = uj, the trans-
positions 7; and 7; are disjoint. Conversely, given (uj,...,uy), we can give in
a continuous way, for each (uj,...,u,) in a neighbourhood of (uy,...,u2), a
homomorphism of a free group in n elements to 71 (C — {uy,...,u,}) taking
the z-th generator to a geometric loop around u;.

For each choice of the 7;’s as above, we can use the monodromy determined

by the products of the 7.’s, to construct a continuous family (parametrized
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by the points (uy,...,%,)) of Riemann surfaces isomorphic to C, together with
source classes of pointed polynomial maps (this means, with a choice of a
fixed point over the base point for the fundamental group), and an ordering
of the (distinct) critical points.

Therefore the intersection of the inverse image of the given neighbourhood U
of (u3, ..., us) with the open set where the y;’s are distinct is homeomorphic to
a product of U with a finite discrete space. A second remark is that 3 is closed
( in fact, being homogeneous, it induces a map between the corresponding
projective spaces, and we can use the compactness of projective space ).

A third remark is that g is finite, as it follows from Riemann’s existence
theorem.

Since f is unramified on C, 3(C) is an open set in V. Since f is closed, the
image of the closure of C is closed. If 8(C) would not be the entire V, there
would be a point in the closure of C mapping to the interior of V. But this is a
contradiction, since obviously if u;, u;4; are distinct, also y;, y;4+1 are distinct.
We have thus proven that 8 : C — V is unramified, surjective, closed, whence
it is a covering map. Since V is simply connected, 8 : C — V is a homeomor-
phism.

In the general case when some u;, u;41 are not distinct, observe that since
is closed, B maps the closure of C, C to the closure V of V; thus surjectivity is
proven in general. Unicity follows since C maps surjectively via a proper and
finite map to V: the general fibre is one point, thus connected, therefore any
fibre is connected, thus reduced to one point.

The last assertion follows immediately from theorem 2.1.

Q.E.D.

(2.4) Definition.

Given distinct real numbers ¢, < t3 < ... < t, we consider the number K,
of up—down sequences that can be formed out of #,...,t,. It is easy to see
that this number is independent of the choice of #,,...,¢,. In fact there is
a bijection of the above up—down sequences with the set of permutations o
of {1,...,n} such that (1) > 0(2) < o(3) > ..., which we will call up-down
(abstract) snakes. Similarly we can define down-up snakes, snakes, and then

the number for down-up sequences formed with #,,.....t, is equal to K,, and
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the number of snakes is 2K,,.

(2.5) Remark.

The number K, of up-down snakes equals the number of connected compo-
nents of the open set W, in the space V (V = (R x(R*)*1)) of up-down
sequences, given by the sequences uy,...,u, where all the u;’s are distinct.

(2.6) Main Theorem.

(a) Each connected component of £, contains exactly 2"*! connected

components of L, r.

(b) The number of connected components of £, r mapping to a fixed
component of ¥, g equals the number 2K, of snakes, whence the number of

connected components of £, equals K.

(c) (cf. Arnold [Arl] ) the number of connected components of GM,N
{monic polynomials} equals the number K, of up-down snakes ; the number

of connected components of GM,, equals 2K,,.

(d) ( cf. [Arl],appendix to [C-P] ) the number of components b, of L, r

gives rise to the following exponential generating function :
28 (bp/n!)t" = /4/(1 — sin(2t)) = 2(sec(2t) + tan(2t)).

(e) ( cf. appendix to [C-P] ) the number K, of up-down snakes ( which
by b) equals the number of components of £,) is equal to the number of
sequences Zg,...., Ln—2, such that z; is an integer with 0 < z; < ¢, and such
that for each integer m there are at most two i’s with z; = m.

Proof. Recall that the number of connected components of £, equals the
number of connected components of the quotient LH,, whereas the inverse
image of any connected component of LH, r consists (cf. 1.8) of 2 connected
components of L, r.

Therefore a) is an immediate consequence of lemma (1.14).

79



F. CATANESE, P. FREDIANI

To prove b), it suffices to show that the number of connected compo-
nents of LH, r mapping to a fixed component of ¥;, r equals K,. But this
follows from the last assertion of theorem (2.3), since two snake sequences
yield isomorphic linear trees (according to 2.1) if and only if they are the re-
verse of each other (although not needed, we recall that if P(z) yields a snake
sequence, P(—z) yields the reverse snake sequence, and that P(z) and P(—z)
are source equivalent).

Then the number a;, of connected components of £,, equals K, since by a) the
number of connected components of £, r equals 2"*1a,,, while, by what we
have just seen, it equals 2K, times the number of components of Y, r, which
is 2". To prove c), recall that Davis’ theorem 2.3 shows that the map which
associates to a polynomial with distinct real critical points its snake sequence
of branch points yields a homeomorphism of the quotient GM,/A*(1,R)
with the space W' of snake sequences formed of n distinct points. Whence,
the number of connected components of GM,, equals the number of connected
components of W'. But W' is just given by two disjoint copies of the open set
W considered in remark 2.5, which has K, components. Thus c) is proven.
d) and e) follow immediately from a), b),c) and the cited papers. To avoid con-
fusion, we only remark that K, is denoted by a,—; in [C-P], where it is proven
that L,(a,/n!)t" = 1/(1 — sin(t)), whereas [Arl] shows that ,(K,/n)t" =
sec(t) + tan(t): a baby calculus verification shows d).

Q.E.D.

We want now to consider, for a given choice of critical values, the lemniscate
configurations that can be obtained from real polynomials. Before doing this,
we recall the connection between monodromy trees and lemniscate configura-
tions.

The big lemniscate configuration I'p of a polynomial P : C — C is the union
of the preimages of 0 under P together with the singular level sets of |P|.
Denoting by A, = {z € C: |P(z)| = ¢}, we have

(2.7) Tp=P7'O)U |J A

i=1,..,k

where wy, ..wy, are the critical values of P. If p; is a critical point of multiplicity

m; — 1, the lemniscate A),,| has a singularity consisting of m; smooth curves
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intersecting with angles 7/m;. In the case m; = 2 this singularity is called a
node.

If P is lemniscate generic, let wy,...,w, be the critical values of P with the
usual order 0 < |w;]| < ... < |w,|. We have a monodromy edge labelled tree
once a geometric basis vy, ..., of 71 (C — {wy,...,w,},0) is fixed.

In [C-P] ( cf. also [B-C]) it was proven that the isotopy class of the em-
bedding of I'p in C is completely determined by a rooted (connected) tree g
whose vertices correspond to the connected components of I' p (the root corre-
sponds to A|y,|), and whose edges correspond to the connected components
of Uizo,... kD |w;|+e (if we set wg = 0, and we choose € > 0 a sufficiently small
real number such that € < |w;| and |w;| + € < |wit1]).

The main theorem of [C-P] would in particular describe the class of graphs
obtained from lemniscate configurations and show that there is a bijection
between connected components of £, and the isomorphism class of such trees.
To describe abstractly the correspondence associating to an edge labelled tree
T the associated lemniscate rooted tree g, it was convenient ( cf. ibidem) to

give the following

(2.8) Definition

Given an edge labelled tree 7 with n edges, the k-skeleton 7 of 7 is the
subgraph of 7 with the same vertices and with the edges whose label is < k.
To T one associates a rooted graph g, whose vertices correspond to the con-
nected components C of the various skeleta 7, with 7 corresponding to the
root, and with an edge connecting C and C' if C C €' and C is a component of
Tk, C' is a component of Tp41.

The k-partition Py of T is the partition of {1,..k} determined by the compo-

nents of 7; of dimension 1.

(2.9) Remark.
Given two edge labelled trees 7,7’ with n edges, they determine the same
lemniscate tree g if and only if they determine, for each k, the same k—partition
Pr ( the proof of this statement is phrased in slightly different terms in [C-P],
pages 630-631).

We restrict from now on to linear trees 7.
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(2.10) Remarks.

1) There is a natural correspondence which associates to a permutation 7
the linear edge labelled tree 7 with n edges labelled 7(1),...,7(n) from left to
right. This correspondence induces a bijection between the set of isomorphism
classes of linear edge labelled trees with n edges and the family of left cosets
in the symmetric group S, for the subgroup of order two generated by the
reflection r sending ¢ to n — 2.

2) Let wy, ..., w, be "lemniscate generic” real numbers taken with the standard
order (0 < |w;| < ... < |wy|). Then there is a permutation 1 giving the target
ordering of the given numbers (; < #; < ... < t,), and t; = wy(;).

Notice that 1 depends only upon the sign of w;. The condition that the
monodromy associated to 7 comes from a real polynomial can thus be phrased
by the condition that o =1~ o 7 is an abstract snake (cf. 2.4 ).

(2.11) Corollary.

For each sequence of critical values wy, ..., w, such that 0 < |w;| < ... < |wy|,
the lemniscate configurations of real polynomials are the image of the map
from the set of n-snakes to the set of those nested partitions P, ....P, coming
from lemniscate trees g, which associates to a snake o (cf. 2.4) the nested
partitions corresponding as in 2.8 to 7 = 9 o o (% is the permutation, as in
2.10)2, comparing the standard with the target ordering) .

In the statement of 2.11 we did not bother so much about specifying the image
set : the main reason for this is that we know a priori that the above map
factors through the equivalence relation o ~ oor, thus we can view it as a map
between {n—snakes modulo reflection} — {lemniscate configurations}, where
we know that both sets have cardinality K,. Thus the lack of surjectivity will
be measured by the lack of injectivity (1.15 states the same principle from
the opposite point of view of fixing the lemniscate configuration and asking
whether all choices of signs are achieved by a real polynomial yielding the

given configuration).

(2.12) Theorem.

For n > 4 and for each sequence of real numbers wy,...,w, such that 0 <

|wi] < ... < |wy|, the lemniscate configurations of real polynomials having
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wy, ..., Wy as critical values are not all the possible lemniscate configurations.

Proof. It will suffice, by the remarks we have just made, to exhibit two non-
isomorphic edge labelled linear trees 7, 7' yielding the same nested partitions.
The rest of the proof follows by several steps :

2.13) Define an inner reflection to be the operation associating to a linear tree
f as above the tree 7' obtained by picking up a 1-dimensional component B of
the k-skeleton and reversing it (that is, if B is a segment with labels A4, ..., hy
from left to right, B™ will be the segment with labels hs,..., Ay from left to
right).

Define an inner reflection to be even iff the number b is even, odd otherwise.

2.14) an inner reflection does not affect the associated nested partitions

(whence, the associate lemniscate configuration remains the same)

2.15) We claim that if ¢y~ o7 is a snake o, applying an inner reflection we get
7' and then ¥p~1o7' = ¢' is a snake if and only if the reflection is odd. In fact,
defining ¢~1(B) as the segment with labels ¥ ~1(h1),..., "2 (hs), " }(B") =
¥»~1(B)", therefore if 1)~!(B) is a snake also 1»~'(B)" is a snake. The only
problem to check whether o' is a snake comes by comparing ¥ ~1(ho) with
¥»~1(hy), and ¥~ 1(hy) with =2 (hp41), where hg, hp41 are the labels respec-
tively preceding and following B. But since B is a component of the k skele-
ton, hg, hp4+1 are > k, whence for instance 1)~!(hg) is either bigger than all of
¥~1(h1),...,%071(hp), or smaller. Thus we have a snake if and only if either
¥~1(B) and ¥~1(B)" are both up-down, or they are both down-up. But this
clearly holds if and only if b is odd.

2.16) For each j with 1 < j < n, there exists a snake o with o(j) = n. In fact
wy, is either the biggest or the smallest of wy, ..., w,, and it suffices to observe
that for each ¢, given arbitrary 7 distinct real numbers, it is possible to form
with them an up-down sequence and also a down-up sequence ( this applies

after dividing ws,...,wn—1 in two sets of respective cardinalities (; — 1) and

(n—7))-

2.17) Let j be even, take 7 such that the associated snake o has o(j) = n,
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and operate on the corresponding 7 the odd inner reflection corresponding
to the segment B of 7,,_; lying to the left of n. The resulting 7" is obviously
non isomorphic to 7, but it yields a snake.

Q.E.D.

(2.18) Remark. For n = 3 and for each sequence of real numbers w;, ..., w,
such that 0 < |w;| < ... < |wy|, the 2 possible configurations are achieved by
real polynomials.

For n = 4 we get 4 out of 5 for each choice of the signs of wy,...,w,. The
missing configuration varies.

For n = 5 we get 11 out of 16 configurations for each choice of the signs.

For n = 6 there is a choice for which we get 34 configurations out of 61, and

a choice for which we get 37 ones.

From 1.15 and 2.12 follows immediately the following

(2.19) Remark. For n > 4 there exist lemniscate configurations g such that
the signs of real numbers wy,...,w, (with 0 < |w1| < ... < |wy|) which are
the critical values of a real polynomial yielding the given configuration g are
subject to some restrictions.

For n < 5 there exist configurations g such that no such restriction occurs.

Question : for which n does there exist a configuration g for which all the

possible signs for wy, ..., w, can be realized?

(2.20) Example. Given a lemniscate generic real polynomial P, we can
compose P with a real affinity in the target. Clearly, if we replace P by
aP(a € R*), then aP remains lemniscate generic and with the same lemnis-
cate configuration. If instead we replace P by P + ¢ (¢ € R), we remain in
the same component of M,, but P + ¢ is lemniscate generic if and only if,
assuming without loss of generality that the critical values of P are positive,
¢ # —w;, or, for ¢ < j,¢ # 1/2(w; — wj).

Therefore, it is easy to see that we range in (1/2)n(n+ 1)+ 1 distinct compo-
nents of £, r, thus a natural question is whether one hits (1/2)n(n +1) +1

distinct components of £,.
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The answer is negative, as it is shown by the case where n = 4, the critical
values are 1,2,3,4, and the snake linear tree is —1 — 4 — 2 — 3—. In fact, for

¢ = —(2 — ¢€), we get the same configuration as for P.

(2.21) Definition. A real polynomial of degree n + 1 is said to be totally
real if it has n 4+ 1 distinct real roots. Clearly, a totally real polynomial is

maximally real.

(2.22) Proposition. The space of totally real lemniscate generic polynomials
of degree n + 1 has 2(m!)? components for n = 2m, and 2(m!)((m + 1)!)

components for n = 2m + 1.

Proof. Remark that a lemniscate generic polynomial is totally real if and
only if the associated snake of critical values uy,..., u, has alternating signs.
Therefore the critical values w, ..., w, must be partitioned according to their
sign into two disjoint sets of respective cardinalities m,n — m. It is easy now
to count'the number of snakes obtainable by w,...,w,, and we conclude by
theorem 2.6.

Q.E.D.

§3. Components of the space of real generic polynomials.

We start this section by generalizing the theorem of Davis to the case of

non maximally real polynomials.

We begin by setting up some notation.

Assume that P is a polynomial with k real critical points y; < ... < y; and
m pairs ((1,(1).-.(Cm, Cm) of complex conjugate critical points (n = k 4 2m).
As usual, the A*(1,R) source -equivalence class of P (or of —P) is uniquely

represented by the normalized polynomial

(3.1) Pic=[{ G- I G-6)-0)
i=1,.k j=1,.m
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We consider the critical values u; = P, ¢(y;), which form a weak snake se-
quence, and the conjugate pairs of critical values (v;, ;) = (Py,¢((;), Py,¢((5))-
Let H be the upper half plane in C, and H its closure. Naturally, conjugate
pairs of complex numbers are parametrized by points of H.

Similarly to the proof of 2.3, we let

C" ={(y1,y0)lyi ER,pn Sy Sy} x H” 2 Rx(RZ°)F x H™

embedded inside C", by associating to (y1,...,y&)(C1,---,(m) the n—tuple
(Y15 -y Yk, C15C1y ooy Cmy Cm ). We consider again the branch point map, the sur-
jective polynomial map, homogeneous of degree (n+1), 8 : C* — C™ associat-
ing t0 (Y1, -+s Yk €15 C1y ooy my Cm ) the ordered set (uy, ..., Uk, V1,01, - Vm, T )-

Finally, we let 8" : " = R x(R2%)*~1xH"™ — V" = R x(R2°)*-1 xH™
the composition with the projection associating to (41, ..., Uk, V1, D1, ..., Um, Om )
the point [(u1,...,ux), {v1,01},...{vm, Om }], where we view now (ui,...,u) as
a point of the space V of weak up-down sequences (down-up if n is odd).
We have the following analogue of the theorem of C. Davis (except for unicity,
which does not hold) :

(3.2) Proposition. The map " :C — V" is surjective.

Proof. The map 8" : C" — V" is closed and finite and the boundary of C”

maps to the boundary of V. Let C' be the open set in C" where y; < y,... <

Yk, GG ¢ R, G # (G, for all ¢, 5.

Define similarly V'. Then C" —C' maps to V" —V'. Moreover, as we know, "

is unramified, whence open on C'. If the open set 5"(C') would not contain

V', there would be a point in V' which belongs to 8"(C"") =closure of 5"(C"),

a contradiction again.

Therefore " (C") =closure of 3"(C') contains the closure of V', that is, V".
Q.E.D.

(3.3) Remark. The A*(1,R) source -equivalence classes of generic monic
real polynomials with exactly k real critical values correspond to the inverse
image 8"~ (V*), where V* is the open set in V' where all the u;’s are distinct.
We shall not pursue this point of view, since we shall determine the connected
components of 8"~!(V*) by a different method.
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(3.4) Remark. A necessary condition for an algebraic function f : C — P
to be real is that the branch locus B is self conjugate (hence, the branch
points will be k real critical values w;y,...wx and m pairs (v1,91)...(VUm, Om)
of complex conjugate critical values where v; lies in the upper half plane). If
B is self conjugate, moreover, it is easy to see that f is real if and only if
complex conjugation on P! lifts to C. This means that complex conjugation
sends the class of the monodromy p to itself (of course we have to express
both monodromies in a fixed basis of 7).

Assuming that 0 is not a critical value, we choose a geometric basis of m; (P* —
B,0) by choosing loops 71, ..,7x around the w;’s as in 2.2, and by choosing
pairs of self conjugate loops (§;,8;) around the pairs (v;, ;).

Figure 4 : choice of the canonical basis for a real polynomial

For use in the calculation, we observe that, if we separate the real branch
points into the set of negative ones w; < .. < wy < 0 and the set of positive
ones 0 < wi < .. < w}, we have

(3.5) ¥ =) TN T ) T O
and similarly for the 4, ’s. We can thus rephrase 3.4 as follows :

(3.6) p is the monodromy of a real algebraic function if and only if there exists
a permutation a of period 2 ( induced by conjugation on f~(0)) such that,
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setting 7 = p(y;h), 7 = p(vi ) v; = p(85), v = w(8j), pica = 1y s e,

and similarly p}_,, we have :

_ -1 [ 1 =1 '
aTi0 = PiaTip;_y , AT, & = p;_1Tip;_; , QU&= Vj.

We can now characterize the monodromies of generic real polynomials

(3.7) Theorem.

Let w; < .. < w] <0< w < .. < w}, be distinct real numbers # 0,
and let (v1,91)...(Vm, Um ) m distinct pairs of conjugate complex numbers with
v; in the upper half plane.

Set k =s+r,n=2m+k,B = {w;,..,w;,wl, ., wFtU{vi, o1 }... U{vm,0m}

Then there is a canonical choice of a geometric basis of 7;(C — B, 0) (as

in 3.4), such that the edge labelled monodromy trees 7 (in E,, and with
the branch points as labels) coming from generic real polynomials are exactly
those obtained as follows.
Take a snake linear edge labelled tree 7" in Ej, having wy,..,w;,wy, .., w},
as labels ( snake with respect to the ordering of the wi’s in R), and let o'
be the canonical permutation on the vertices of 7' which is the product of all
the transpositions corresponding to the ”local minima” edges, i.e., the edges
which have a label of the same sign of its neighbours .

Then 7 is made out of a subtree isomorphic to 7' and of the union 7*
of an unordered pair of edge labelled graphs 77*, 7%, (simply connected but
not necessarily connected), with respective labels obtained by choosing m
among the labels vy,..v,, ,01,...,0m, which are isomorphic under the natural
isomorphism a* which exchanges the edge v; and the edge v; in such a way
that a* agrees with a' on the common vertices of the subgraphs 7', 7* ( thus

o' and a* together define an involution « on 7).

(3.8) Remark.
A more efficient way to label 7 is to use the target ordering for the edges
of the snake linear tree ( hence those labels are numbers from 1 to k), and

numbers " for v;, numbers ¢’ for o; (cf. figure 5).
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Proof of theorem 3.7.

Let 7 be the monodromy tree associated to u, let E* be the subgraph
consisting of the edges labelled by the w}" ’s, define E~ analogously and let
finally 7' = EY U E~.

We shall show later that 7' is a tree.

Let moreover S; be the the subgraph consisting of the edges labelled by the
w}"s with j < ¢ (resp. S} for the w;"s with j < ¢). Define moreover, for a
subgraph S, supp(S) as the union of the vertices of S.

By the formulae 3.6. a carries supp (.5;) into itself, and since p is the
monodromy of a polynomial, p; acts on S; as a product of cycles corresponding

to the supports of the connected components of S;. In particular, 3.6 implies
+
J
sent to itself, thus by induction « leaves the support of every component of

that the support of the connected component of S; containing the edge w7 is

S; invariant for each j.

Recall that the edge w}" corresponds to the transposition 7; and let {a,b} =
supp (7;). We have three cases :

1) {a, b}n supp (Sj-1) =0,
2) {a,b}N supp (S;-1) = {b}

3) {a, b} C supp (Sj-1).

Since by 3.6 we have an equality a{a,b} = p;—1{a, b}, in case 1) a({a,b}) =
{a, b}, in case 2) a(a) = a,a(b) = p;—1(b) # b, in case 3) a and b belong
to different components of Sj_;, whence by our previous remark a(a) =
pica(a), a(b) = pica(b).

Let a be such that a(a) = ¢ # a. If j is minimum such that a € supp (Sj;),
we must be in case 1), and then a(a) = b = 7j(a).

Conversely, if case 1) holds, and the edge 7; is not a component of E*, then
7; appears in the cycle decomposition of a ( in fact, if a,b are the vertices of
7j, we can assume then that there is a smallest ¢ > 7 such that a belongs to
supp (S;)), and then a(a) = p;_1(a) = j(a) = b.

In order to consider the case where the edge 7; is a component of E* (note

that the argument for E~ is completely analogous) we first prove that 7' is
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connected. In fact, we saw that a preserves the connected components of
E*,E~,whence if A, B are two connected components of 7', they are left
invariant by o and there exists an edge v; = p(6;) connecting A and B : but
then also v} = p(8;) connects A and B, contradicting the fact that 7 is a
tree.

If now the edge 7; is a component of E*, then there exists a component 4 of
E~ intersecting the edge 7; in a vertex a, which must then be a fixed point
for a.

The conclusion is that a acts on supp (7') as the product of those transposi-
tions 7;,7; such that the edge corresponding to 7; is a connected component
of Sj but not of E* ( similarly for 7}).

We prove now that 7' is a snake linear tree.

E* is a union of disjoint linear trees : else, there is b belonging to edges
Tj,Thy Tk, With j < h < k, and j, h, k minimal with this property.

But then,a(b) must equal pp—1(d) and px—1(b). By our choice of k, px—1(b) =
ph—17h(b), thus b = 7,(b), a contradiction.

Using that the transpositions giving the cycle decomposition of a are disjoint,
we immediately see that the components of E* are snake linear trees. In fact,
if the edge 7; intersects S;_;, then either both of its vertices lie in S;_;, or «
fixes one of two vertices.

T' is linear : otherwise, since the intersection points of E* and E~ are left
fixed by a, if a vertex a would belong to, say, two edges of E* and one edge
of E~, then a would act as the identity on the vertices of two adjacent edges
of Et, what is easily seen to be impossible.

Since if an edge of EY intersects E~ then its vertices are left fixed by a,
it follows that 7' is also snake linear.
We set then 7* to be the union of the edges of 7 not in 7'.

If A is a connected component of 7*, then A intersects 7' in a vertex a.
Assume that a(A) = A: then, since a(a) = a in this case, @ would have a
fixed edge in A, contradicting 3.6.

Therefore a(A) and A have disjoint edges, are clearly canonically isomorphic,
and a(A) intersects 7' in a(a).

The rest of the proof is now straightforward.
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In fact, conversely, a tree 7 with the stated properties defines an involution

« satisfying 3.6, and we conclude by remark 3.4. Q.E.D.

Figure 5 : A generic polynomial of degree 13, its monodromy tree , and its

graph © = P71(PR).

(3.9) Remark.

A first observation is that for each generic real polynomial P, there is an
equivalent polynomial Q(z) = P(z + ¢) such that all the real critical values
are positive. Therefore the connected components of the open set of real
generic polynomials of degree n + 1 with k real critical values correspond to
the set of orbits of the braid group B,(2m + k = n) on the isomorphism
classes of edge labelled trees 7 as in theorem 3.7 (where, though, the role of
T*, 75 cannot be interchanged). Here the braid group acts in the standard
way ( cf. [C-W]) on the labels 7' and " ( that is, the standard generators
0j,j =1,..m — 1, of By, act by letting v; become v;4;, whereas the new v;
is the old v;11 conjugated by the old v;, and similarly for v, ). For each
subgraph , say 7%, we have two more subgraphs, 7]*’,’[1*“, whose connected
components (which can be reduced to a vertex) correspond to the connected

components of the complement of P~'(PR) which are contained in the upper
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half plane and map to the lower half plane (resp.: to the upper half plane).
Notice that in this case the roles of 7;*,7,*, are distinguished since we only
look at A*(1,R)-orbits.

The geometric picture is illustrated in figure 5.

It is clear that the action of the braid group respects the subtrees given by
these connected components , and that it can transform any such tree to any
other with the same number of edges.

Using the above remarks one can find , for each snake linear tree 7' with &
edges, the number of the braid group orbits on the set of trees 7 which have
T' as the ”snake” part.
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A FEW REMARKS ON THE LIFTING PROBLEM

by Luca Chiantini and Ciro Ciliberto*

0. Intro ion

Let X be a reduced, non-degenerate variety of dimension n in Pr, the projective
space of dimension r over an algebraically closed field k of characteristic zero. If
W is an irreducible variety of dimension n+m and degree s containing X, then for a
general point t in the grassmannian Grass(h,r) of the h-planes in Pr, with h+n2r, the
corresponding h-plane L, intersects X along a subvariety X=XNL, lying on the
irreducible variety Wi=WnL, of dimension h+n+m-r and degree s.

Conversely, assume we have the following situation:

(0.1) Let X be a reduced, non-degenerate variety of dimension n in Pr, let B be a
smooth scheme and f: B—>Grass(h,r) a dominant smooth morphism, h+n>r. For any
te B we let L; be the h-plane corresponding to the point f(t)e Grass(h,r). Let W in
BXPr be a family of projective varieties flat over B. For te B we let W, be the fibre
of W over t. We suppose that the general fibre W, of W is irreducible of dimension
h+n+m-r and degree s, and that for te B one has LoOW2X=XNL,.

In such a situation it is not true in general that there is a variety W of dimension
n+m and degree s containing X and such that W=WnL, for te B: e.g. a general
plane section of an irreducible curve of degree five in P3 lies on a conic, whereas
there are such quintic curves lying in no quadrics.

The lifting problem consists in looking for suitable conditions on the variety X
and the family W ensuring the existence of the variety W such that W=WnL, for
te B.

* Both authors have been supported by MURST and CNR of ITtaly. The research has been

performed in the framework of Europroj’s project “Hyperplane sections”.

S.M. F.
Astérisque  218** (1993} 95
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The problem has been first considered for the case of curves in P3, i.e. n=1,
r=3, by Laudal [5], who gave a solution later refined by Gruson and Peskine [3].
Gruson-Peskine's result asserts that if X is a reduced, irreducible curve of degree d
in P3, whose general plane section lies on some curve I of degree s, and if d>s2+1,
then X lies on a surface of degree s whose general plane section is I'. Curves arising
from sections of a null-correlation bundle show that the bound d>s2+1 is sharp (see
[3], [12]). More results on the lifting problem, especially for curves in P3, have
been found by Strano with a purely algebraic approach relating the lifting problem
to the syzigies of the resolution of the ideal of X, (see [11], [9] and [6]).

Inspired by Gruson-Peskine's result mentioned above, we will restrict ourselves
to the search of a function D(s,h,r,n,m) such that, if (0.1) holds, the lifting problem
has a positive answer for d>D(s,h,r,n,m). And one could be so optimistic to try to
find an optimal such function, i.e. a function D(s,h,r,n,m) with the above properties
and such that there are counterexamples to the lifting problem for d<D(s,h,r,n,m),
e.g. in Gruson-Peskine's case (h=2, r=3, n=m=1) the optimal function is D(s)=s2+1.
The question, if one puts in this form, makes sense only if dim W=dim X+1, i.e.
only if m=1 (see however § 3). Consider in fact the following:

Example: Let V be a smooth projection of the Veronese surface in P4, which is
known to be not contained in any quadric 3-fold. Let X be an irreducible curve cut
out on V by a hypersurface of degree d>3. By the theorem of Bezout X does not lie
on any quadric 3-fold in P4, whereas its general hyperplane section is contained on
a quartic rational curve, hence it does lie on a quadric surface in P3.

Hence in the present paper we will mainly restrict our attention to the case m=1,
and we will determine a function D(s,h,r,n) such that if X has dimension n and
degree d>D(s,h,r,n), and if there is a family W as in (0.1) with m=1, then there is a
variety W of dimension n+1 such that W =WnL, for te U. The proof makes use of
the differential-geometric concepts of foci and of focal locus for families of
projective varieties, a classical notion firstly systematised by C. Segre [10] for
families of linear subspaces and recently extended in [1] to any family of projective
varieties. Similar ideas are already present in implicit form in [3]. We collect in § 1
all basic facts about foci and focal loci of a family which we need in the sequel. In §
2 we show that, if the lifting problem for X and the family W as in (0.1) with m=1
has a negative answer, then the points of X either lie in the focal locus of W or X,
lies in the singular locus of W, for t a general point in B. Then by estimating the
degrees of these loci, we prove the following:
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Theorem (0.2).- Let X be a reduced, non-degenerate, projective subvariety of
dimension n and degree d in Pr and let us suppose there is a family W as in (0.1)
with m=1. If

d>D(s,h,r,n):=(r+h-3)s+k(k-1)(r-n-1)+2ek-2
where s-1=k(r-n-1)+e, 0<e<r-n-1, then the image W of W in Pris a variety of
dimension n+1 and degree s, containing X and such that W =WnL, for te B.

Our function D(s,h,r,n) is not optimal in general. Slight improvements can be
obtained in some cases with a more detailed analysis in the same vein of our proof
below: for example the case of codimension two, n=r-2, has been recently carefully
investigated by E. Mezzetti [7], whose result fully generalizes Gruson-Peskine's
theorem to the case r<5. She also makes a nice conjecture on the optimal function
D(s,r-1,r,r-2). However we point out that, although in general not optimal, our
function D(s,h,r,n) is asymptotically optimal. Indeed for instance in the case of
curves we have that D(s,r):=D(s,r-1,r,1)=[s2/(r-2)]+0(s) and we find in § 3 curves
X in Pr of degree d=d(s)>>0 with d<D(s,r) but with D(s,r)=d(s)+0(s), for which the
lifting fails. These curves, as well as the curves in P3 achieving Gruson-Peskine's
bound, are obtained as sections of suitable rank two vector bundles on certain
rational normal scrolls. At the end of § 3 we will also briefly discuss an extension
of theorem (0.2) to the case m>1.

In conclusion we want to mention that our approach via the focal loci has
unexpected close relationships with Strano's algebraic approach mentioned above.
We do not exploit this in the present paper, but we hope to come back on this
subject in the future.

1. Generalities on foci.

In this section we let:

B be a non singular scheme of dimension b

W  inside BXPr be a family, flat over B, of irreducible projective varieties of
dimension w

V  be a desingularization of W

After having shrinked B we may assume that V is flat over B, with smooth and
irreducible fibres. Indeed, we may assume that for te B, the fibre V, of V—B over
t is a desingularization of the corresponding fibre W, of W—B.

The natural morphism u: V—BXPr yields the map of sheaves du: Ty—u*Tpxpr
which is generically injective, and therefore injective, since Ty is locally free. The
cokernel of du is, by definition, the normal sheaf N, to the map u, thus we have the
exact sequence
(1.1 ) 0—>TV—)U*TBxpr—)Nu—-)O
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and we notice that, in general, N, is not necessarily torsion free.

We let p: BXxPr—B and q: BXPr—Pr be the projections. Then we have another
natural map dq: u*Tpxpr—u*q*Tpr which is surjective. The kernel of dq is a locally
free sheaf T(q) of rank b on V and we have the exact sequence

(1.2) 0-T(q)—>u*Tpxpr—u*q*Tpr—0
The above sequences (1.1) and (1.2) fit into the commutative exact diagram
0 0
2 l
0-L - T(@ —*> N,
d d I
0—>TV —)U*TBxpr——) Ny— 0
al d

u*q*Tpr =U*q*TPr
\2

0
where 0 is the differential of the map qou, A is the characteristic map for the family
V and L is the kernel of A.

Since we are in characteristic 0, q is smooth at the general point of W. So if we

set wo=dim q(W), then we have
rk d=w,, rk L=rk Ty -wo=b+w-w,, rk A=wo-w
where of course wo-w =dim q(W)-w>0.

Next we consider the restriction of A to a general fibre of V—B. Take te B and
let V; be the corresponding fibre of V—B. Let U be an affine open neighborhood
of t in B over which Tp trivializes. Then over p-1(U) the map dq: Tgxpr—q*Tpr has
a trivial kernel. Accordingly T(q) also trivializes over V=u-1p-1(U), hence we have
an isomorphism
(1.3) T(qQ)v = Ov®

Now we denote by N; the normal sheaf to the induced map u=qouyy, : V(—Pr,
and we prove the following basic:

Proposition (1.4).- One has Ny v, = N
Proof. Consider the following commutative exact diagram:
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0 0
l l
0> Tyv,—» v'q*Tprivv &> N — 0
l l d
Tvivi = u*Tpxprivi = Nuyjvi— 0
al l
Nv,v —B—u*Nprpxpr | vi
d l
0 0

Since V—B is smooth, we have Ny, v =Tg ® Oy, Similarly one has u*Npr gxpr | v.=
Tp,.® Ov,. A straightforward local computation shows now that f is in fact an
isomorphism. The assertion follows then by the diagram. q.e.d.

In view of the isomorphism (1.3) and by proposition (1.4), we may interpret the
restriction A, of the characteristic map A to a fibre V, as a map
7\42 Ovtb - Nt
We notice that on a suitable dense open subset A;of V, the kernel of A, coincides
with Li=Liy,. Hence at a general point pe V, we have
k Ay = Wo-w
Futhermore if pe V is a general point, then we have
dim ((qou)1((qou)(p))) = b+w-wo
and the map
TV,p - u*TBxpr,p
is injective.
Now we are in position to give the following:

Definition (1.5).- A point pe V is called:
i) a focus, or a focal point, if the map
Ap: T(@)ek(p)—>Nyek(p)

has rank r<w,-w;
ii) a fundamental point if the fibre (qou)-1((qou)(p)) has dimension 3>b+w-wy;
iii) a cuspidal point, if the map

Tv’p - U*TBxPr‘p

is not injective.

The focal (resp. fundamental, cuspidal) locus is the set of all focal (resp.
fundamental, cuspidal) points of V. V, is a focal (resp. fundamental, cuspidal) fibre
if it is contained in the focal (resp. fundamental, cuspidal) locus.
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Remark (1.6).- i) The cuspidal locus is the set of all points pe V such that
Torl(Ny,k(p))#0, hence it is the torsion locus of Ny, thus it is Zariski closed. Notice
that if p is a cuspidal point, then p'=u(p) is a singular point of W, otherwise N,
would be locally free at p. Accordingly p' is singular in the fibre of W—B in which
it sits.
ii) The focal locus is closed off the cuspidal locus. Indeed it is then defined as the set
of points where the map

APA: APT(qQ)—>APN,, (p=rk A)
drops rank.

Proposition (1.7).- A fundamental point is either a focal or a cuspidal point.
Proof. Consider the commutative exact diagram
0
2
T(@p —*p— Nup
\! [
Tv P —)u*TBxpr'p—) Nu,p—) 0
3, d

u*q*Tpr,p =u*q*T|>r,p

0
and set Dy=ker dp. By assumption, since p is a fundamental point, we have dim
Dp>b+w-wo. If p is not cuspidal, then the map
Tv,p d U*TBxpr,p
is injective, hence Dy, is nothing but the kernel of A,, g.e.d.

In the next two examples the reader will find an easy application of the above
definitions and propositions and the description of a situation which shows that in
general the behaviour of the focal and cuspidal loci can be rather tricky.

Example (1.8).- The classical trisecant lemma [5] says that a general chord of a
reduced, non-degenerate space curve C is not a trisecant. An easy proof of this fact
follows by proposition (1.7).

Let C' be the regular locus of C and let A be the diagonal in C'xC'. We set
B=C'xC'-A, and cosider the incidence correspondence

V={(x,y,z)e BxP3: zeline joining x and y}

V is a smooth familiy of lines defined over B, and we use for it the notation
introduced above. Since C is non-degenerate, we have that q: V —P3 is dominant.

Hence we have b=2 ., w=1 , wo=3
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thus L has rank 0, i.e. L=0. Let te B be a general point. On the corresponding line
V. we have the map
M Ovi2— Ne=v (1)?

which is given by a 2x2 matrix A, of linear forms. Since the general fibre V| is not
focal because rk A=w,-w=2, then the focal locus on V, consists of at most two
points, defined by the quadratic equation det(A)=0, unless V is a focal fibre. On
the other hand the points in q-1(q(V)NC') are clearly fundamental points of V and
since V is smooth they are focal points. Hence q(V,) intersects C at two distinct
points, where the intersection has to be transverse, since the tangent lines to C form
a 1-dimensional system only.

Essentially the same argument can be applied more generally to control the
dimension of the family of (n+2)-secant lines to a variety of dimension n in Pn+2,
thus proving a theorem of Z. Ran's [8], whose approach is based on differential
geometric ideas which are very close to the ones we introduce in the present paper.

Note that if C is a smooth complete intersection of a quadric cone Q and of a
smooth quadric, then the vertex of the cone gives rise to a fundamental point of V.
So any line V( such that q(Vy) is contained in Q has at least three focal points, thus is
a focal fibre. A general point on such a line is a focal point which is not a
fundamental point.

Example (1.9).- We sketch now an example which shows the existence of
fundamental points which are not foci and an example of a focal locus which is not
Zariski closed.

Let C be a smooth conic in P2. Let py,...,pg be general points on C and po...., p12
be four more general points in P2. Let us consider the rational map f: P2— P2
determined by the two-dimensional linear system of all quartics through the points
P1,....p12. Consider now the smooth family p: V—P1given by the pencil of lines
through y=pi2. The map f induces a map q: V—P2 and accordingly a map u=pxq:
V—PIxP2, Since f contracts C, every point x of C, regarded as a point of the line
xy of V, is a fundamental point for q: V—P2. Furthermore there are two points x,
x" of C such that the lines xy, x'y are tangent to C. The points x, x', regarded as
points of the lines xy, x'y, hence as points of V, are clearly cuspidal point with
respect to q: V—P2. In view of proposition (1.7), the general point of C is a focus,
but x and x' are not foci. In fact with our usual notation, we have b=w=1, wo=2 but
the map

Ax: T(q)@k(x)>Ny®k(x)
is non-zero, since N,®k(x) has dimension 2, acquiring a 1-dimensional torsion
summand, and the image of A is exactly the torsion summand. The same holds for

X.
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2. Bounds for the degree of the focal locus.

In this section we prove the theorem (0.2) stated in the introduction, by giving a
bound for the degree of the focal locus of a family W as in (0.1), with m=1. The
bound will be derived from Castelnuovo's bound on the genus of projective curves.

Let V be a reduced, irreducible, non-degenerate, projective subvariety of degree
s and dimension n in Pr and let m: V'V be a desingularization of V. We denote by
S(V) the reduced variety formed by the union of all codimension one irreducible
components of Sing(V) and by s(V) its degree. We let H' be the pull-back by 7 of a
general hyperplane section of V. Then H' is smooth and irreducible by Bertini's
theorem. For all divisors D of V', we define the degree of D to be

deg(D):=D-H'n-1
In particular we have deg(H')=s. Notice that the degree can be interpreted as a
homomorphism of Pic(V') in Z.

Notice that if Y is a reduced subvariety of V of pure dimension n-1 and D is an
effective divisor on V' such that m(D)US(V)2Y, then deg(Y)<deg(D)+s(V). Indeed
if Y' is the union of all components of Y not contained in S(V), then
deg(Y")<deg(n(D))=deg(D).

Proposition (2.1).- Let V be as above. Then
s(V)< [k(k-1)/2]-(r-n)+ke

where s-1=k(r-n)+e, O<e<r-n. Moreover, if K' is the canonical class of V', one has

deg(K")<(1-n)s-2s(V)+k(k-1)(r-n)+2ek-2
Proof. A curve C' which is the pull-back via &t of a general curve section C of V is
smooth and irreducible. Indeed mc: C'—>C is the normalization morphism for C.
We denote by g (resp. g') the arithmetic genus of C (resp. C'). Of course every
point of CNS(V) is singular for C, hence

0<g'<g-s(V)
Since C is a non-degenerate curve in Prn+1, Castelnuovo's bound yields
g<[k(k-1)/2]-(r-n)+ke

whence the estimate for s(V) easily follows. Furthermore the adjunction formula
yields

2¢'-2=K"C'+(n-1)H"-C'=deg(K")+(n-1)s
whence the estimate for deg(K') follows. q.e.d.

Remark (2.2).- The first part of proposition (2.1) can be extended as follows. Let V

be a reduced variety of degree s and of pure dimension n21 in Pr and let Si(V) be

the Zariski closure of the locus of singular points of codimension i in V. Then
deg(Si(V))<s2i
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In fact consider a general Pr-n-2 and project V from this Pr-n-2 into a Pn+! as a
hypersurface V'. Take a general polar of V' in Pn+1, The cone from the original Pr-
n-2 gver V" is a hypersurface of degree s-1 passing through all singular points of V.
Now it is easy to see that the cones over V from the Pr-n-2's of Pr cut out V set
theoretically and indeed scheme theoretically along the smooth points of V. This
yields that the family of hypersurfaces like V" above has no base points on V except
at the singular points. Hence if we take n-1 general such hypersurfaces, their
intersection with V contains a one-dimensional component C passing through all
isolated singularities of V and singular there. By Fulton's version of Bezout's
theorem [F, pg. 223], we have
deg(C)< s(s-1)n-1<sn
On the other hand the theorem clearly holds for n=i=1, whence the assertion.

We now go back to consider our original reduced, irreducible, non-degenerate
variety X of dimension n in Pr with the family W as in (0.1), with m=1. For this
family W we use the notation we introduced in § 2, e.g. V is a desingularization of
W, etc. In particular we have the morphism q: W—Pr and we denote by W the
Zariski closure of q(W), which is an irreducible subvariety of Pr.

Proposition (2.3).- One has dim W2n+1 and if dim W=n+1, then deg(W)=s.

Proof. For a general h-plane L, corresponding to a general point te B, WNL, is
irreducible and it contains W which has dimension h+n-r+1. Hence clearly dim
W2n+1 and if the equality holds, then WNL=W, whence the assertion. q.e.d.

Assume now dim W 2> n+2. Consider then a general projection T of W onto
Pn+2. We denote by W ' the image of W via the map px(moq): W—BxPn+2, We may
assume, after perhaps having shrinked B, that:

i) 7t: W—Pn+2 js dominant;

ii)  m maps X birationally onto its image;

iii)  if h<n+2 then = restricts to an isomorphism to W, for all te B;

iv)  if h>n+2 then = restricts to a birational map to W, for all te B; furthermore,
since dim W =h+n-r+1<n, then all components of S(x(W,)) are birational
projections of components of S(W) and s(W)=s(mr(W))), for all te B;

v) W 'SBis flat.

Then we may look at V as a desingularization of W ' and we denote by u' the

obvious map V—BxPn+2 and by q' the composition of u' with the projection onto

the second factor.

Proposition (2.4).- Every point xe q"-1(n(X)) is a fundamental point.
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Proof. Since q' is dominant, then a general fibre of q' has dimension b+h-r-1. Pick
xe V such that y=q(x) is a general point of X. The Shubert cycle Gy of h-planes of
Pr containing y has codimension r-h in Grass(h,r). By the construction of W the
projection on B of the fibre q-1(y) contains f-1(Gy). Hence dim q-1(q(x))=b+h-r, and
then for such a xe V one a fortiori has dim g-1(q'(x))=b+h-r, whence the assertion.
q.e.d.

We are now in position to conclude the:

Proof of theorem (0.2). We keep the above notation. If dim W=n+1, we are done
by proposition (2.3). Assume that dim W 2>n+2. Let t be a general point in B and let
V. be the corresponding fibre of V—B and let F, be the focal locus of V, in relation
with the family W . Since n(X) has codimension one in (W), propositions (1.7)
and (2.4) yield
q'(FYUSW))on(Xy)
so that
d=deg(X)=deg(m(X))=deg(m(Xy)<deg(q'(F))+s(m(Wy)
Look now at the characteristic map
)»(I Ovlb—) N[
relative to the family W . Since q' is dominant, A is generically surjective. Hence,
off the cuspidal locus, F, is contained in some effective divisor D whose first Chern
class is c1(N,) defined by a non-zero section of Oy,(c1(Ny) given by Ar-b+1),. One
has
c1i(N9)=K¢+(n+3)H,
where K; is the canonical class of V, and H; is the pull-back of a hyperplane of Pn+2
via the map q'. Therefore
d<deg(K)+(n+3)s+s(t(Wy))
Then proposition (2.1) yields
d<(r-h+3)s+k(k-1)(r-n-1)+2ek-2=D(s,h,r,n)
a contradiction. q.e.d.

3. Comments, examples and extensions.

In this section we collect a few remarks and an example which shows that
theorem (0.2) is asymptotically sharp. At the end of the section we briefly discuss
an extension to the case m>2 of theorem (0.2).

Remark (3.1).- In the case of curves n=1, one has to take h=r-1, and our function
D(s,h,r,n) becomes a function D(s,r)=[s2/(r-2)]+o(s). In particular for r=3 one has
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D(s,3)=s(s+1), and we thus recover Laudal's theorem [5] later extended by Gruson
and Peskine [3] (see the Introduction).

Example (3.2).- Let M be a smooth threefold of degree r-2 in Pr, r=5. Such
threefolds are described in [4]: M is a scroll in planes over a rational curve and
Pic(M) is freely generated by the class F of a plane and by the hyperplane class H.
The canonical class of M is

Kum = -3H+(r-4)F
In what follows we will need the:

Lemma (3.3).- h1(Opq(aH+bF))=0 for any a€e Z and for any b>0.
Proof. It is well known that the assertion holds for b=0. We proceed by induction
on b. The exact sequence

0— Oy(aH+bF)— Opm(aH+(b+1)F)—Op(aH)—0
shows that h1(Oy(aH+(b+1)F))=0, since h!(Oy(aH+bF))=0 by induction and
h1(Og(aH))=0. q.e.d.

We will assume from now on that the class H-(r-4)F is effective on M,
representing a smooth irreducible quadric surface Q inside M.

Let Y be a union of r-1 disjoint lines in M, each contained in a plane of M. We
will assume Y to be general under the above conditions. We make the following:

Claim (3.4).- Let S be a surface in M containing Y then deg(S)2r-1.

Proof of the claim. It goes by induction on r, the case r=5 being trivial. Assume
r>6 and let S be a surface of minimal degree containing Y. Then perform a
projection of M from a point of one of the lines of Y to a scroll M' in Pr-1. Then the
remaining lines of Y are projected to a set Y' of r-2 general lines of M, contained
in the projection S' of S. Then by induction deg(S)-1=deg(S")>r-2, whence
deg(S)2r-1. q.e.d.

Let wy be the dualizing sheaf of Y and let /y the ideal sheaf of Y in M. Then
Oy = Oy(-2H-Ky-H-F) = wy(-H-F-Ky) =
= Ext2(Oy,Om(Kpm))(-H-F-Ky) = Ext2(Oy,Om(-H-F)) = Ext!(Iy(H+F), Oy)
The map
Ext!(Zy(H+F),Om)—>HO(Ext! (Iy(H+F),On)) = HY(Oy) =k
is surjective, since its cokernel sits inside
H2(Hom(Iy(H+F),0y)) = H2(Om(-H-F)) =0
So a constant in k = HO(Oy) = HO(Exs! (/y(H+F),Opm)) lifts to an extension
0-0Ou—E—=I(H+F)—0
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with E locally free of rank two: indeed Ext!(E,Oy) turns out to be zero since

Ext1(Om,0wm) is such and Oy = Hom(Ow,0m)— Extl(Iy(H+F),Op) = Oy is surjective

by construction. Furthermore c1(E)=H+F and cy(E) = deg(Y)=r-1. Let X be a curve

which is the O-locus of some section of E(aH), for a>>0, which is clearly non-

degenerate. We may also assume X to be smooth and irreducible. Its degree is
d=deg(X)=H-ca(E(aH))=a2(r-2)+(a+1)(r-1)

Let X, be a general hyperplane section of X.

Claim (3.5).- X, is contained in some curve of degree s=(a+1)(r-2).
Proof of the claim. In fact X, sits on the general hyperplane section M, of M, and
we have the exact sequence
0- Opm,—E— Iy, (H+F)—0

where Y, is the general hyperplane section of Y and E, is Ej,. Note that Y,
consists of r-1 points in Pr-1, hence Y, is degenerate, i.e. h0(Jy,(H))20. Hence
hO(Eo(-F))=0 since h1(Opm,(-F)))=0. From the exact sequence

0—O0m,—Eq(aH)— Ix,((2a+1)H+F)—0
we have h0(Jx,((a+1)H))#0 proving the claim. q.e.d.

We remark now that hO(E)#0 yields h0(/x((a+1)H+F))#0, hence X lies on
surfaces of degree (a+1)(r-2)+1. On the other hand we make the following:

Claim (3.6).- If r>7 then X is not contained on any surface of degree 6<(a+1)(r-2).
Proof of the claim. We argue by contradiction. Let S be such a surface and assume
it has minimal degree, so that it is reduced and irreducible. By the theorem of
Bezout S has to lie on M since a>>0, hence h0(Jx(S))#0.

Notice that S-F-(a+1)H has negative degree, hence hO(Om(S-F-(a+1)H))=0. Thus
if hO(E(S-F-(a+1)H))#0, then hO(/y(S-aH))#0 contradicting the claim (3.4), since
deg(S-aH)=0-a(r-2)<r-2. Hence we have hO(E(S-F-(a+1)H))=0 which yields
h1(Om(S-F-(2a+1)H))#0. Let S=aH+BF in Pic(M) hence S-F-(2a+1)H=(0.—2a—
1)H+(B-1)F. By lemma (3.3) we must have B<0. Then by the Kodaira vanishing
theorem we must have a>2a+1.

Remark now that

S-Q-H=(aH2+BF H)-(H-(r-4)F)=20+
Since S and Q are irreducible and distinct, it is clear that 20+3>0. But then, since
deg(S)=our-2)+B<(a+1)(r-2)
we should have
2a+1)(r-4)<ou(r-4)<(a+1)(r-2)
i.e. r<6, a contradiction. q.e.d.

Finally we notice that we have
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s-1=a(r-2)+(r-3)
hence with the notation of theorem (0.2), we have k=a, e=r-3. Hence
D(s,r)=(r-2)(a2+5a+4)-2(a+1)
and therefore
3.7 D(s,r)-d=(r-2)(5a+4)-(a+1)(r+1)=0(a)=0(s)
If r>7 then, according to theorem (0,2), we have D(s,r)>d, but (3.7) shows that
indeed the optimal function differs from our D(s,r) by a function 3(s,r)=0(s).

Remark (3.8).- In the proof of theorem (0.2) an important role is played by the
hypothesis that the general fibre W of W is irreducible. Sometimes this assumption
can be replaced by the assumption that X itself is irreducible. For example if
n+m=r-1, i.e. W is a hypersurface in L; and s is the minimal degree of such a
hypersurface containing X, then W is clearly irreducible if n>2, and the same
happens by monodromy if n=1.

Remark (3.9).- Let us go back to the proof of theorem (0.2). One of the main
points there is the fact that the focal locus F; is contained in some effective divisor
D whose first Chern class is cj(Ny). This follows from the consideration of the map
of generically maximal rank
7\.12 Ov,b—> Nt

where b=dim B>dim Grass(h,r)=(h+1)(r-h)>rk N=r-h+1. Let us then consider the
map

A1) Ar-b+10y, b — det(Ny)
whose image gives rise to a linear system & of divisors in the linear system
Oy, (det(Ny))l, the so called focal linear system introduced in [7]. If dim & is
sufficiently large, then one has better estimates for the degree of the focal locus,
thus improving the estimate for the function D(s,h,r,n). This idea, exploited in [7],
is very useful in the case n=r-2. However it does not seem equally useful in the case
of varieties of high codimension, in particular for curves.

Remark (3.10).- Let we weaken the hypotheses in (0.1) in the following way: f:
B —Grass(h,r) is no more necessarily dominant, but the union of the h-planes
parametrized by the points of f(B) is dense in Pr and b2r-h+1. Then the map A, is
still generically surjective and the proof of theorem (0.2) still goes through, except
that proposition (2.3) could fail to hold.

For instance let us take for X the disjoint union of three lines on a smooth
quadric surface W in P3 and let us take for B the set of all tangent planes to W. For
all te B the corresponding plane L, meets X at three points on a line W, and these
lines form a two-dimensional flat family W verifying the assumptions of (0.1),
modified as above. Of course proposition (2.3) does not hold for such a family,
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inasmuch as for a general point te B, the corresponding plane L, is such that WNL,
is reducible.

In order to let theorem (0.2) still work if f: B—Grass(h,r) is not dominant we
must therefore make the following assumptions:
i) the union of the h-planes parametrized by the points of f(B) is dense in Pr and
b2r-h+1;
ii)  for a general point te B, the corresponding plane L, is such that WL, is
irreducible, where as usual W is the Zariski closure of q(W).

Condition ii) is rather unpleasant. However it is automatically verified if, for
instance, f(B) is dense in some Schubert cycle.

In conclusion we want to briefly point out the following extension of theorem
(0.2) to the case m=>2:

Proposition (3.11).- Let X be a reduced, irreducible, non-degenerate variety of
dimension n>2 in Pr, and suppose we have a situation like in (0.1) with h+n>r.
Suppose that d>(2rs)?™. Then there is a variety Y containing X, with dim Y=n+m-i
and deg(Y)_<_(2rs)2i such that for te B general, one has LoW Y oX,.
Proof. We proceed by induction on m. The case m=1 follows by theorem (0.2). Let
m2>2. Now we use the notation introduced in § 2. As in proposition (2.3) we see that
dim W2p+m and if the eqauality holds then deg(W)=s. So we may assume dim
W2>n+m+1 and we make a general projection m to Pn+m+1 The statement of
proposition (2.4) still holds. Hence as in the proof of theorem (0.1) we have

q'(FouSing(m(Wp)on(X)
Since dim X>2 and therefore X is irreducible, we have either Sing((W))om(X,)
or q'(F)or(X,). Now we claim that in either case ®(X;) is contained in some
irreducible subvariety of m(W,) of codimension one and of "low" degree. In fact in
the first case one can prove, with an argument already used in remark (2.2), that
(Sing(m(Wy)) is certainly contained in some hypersurface of degree s-1 not
containing (W,). In the latter case we notice that the map A;: Oy,» = N; relative
to the family W ' is generically of maximal rank. Hence we can consider the focal
linear system inside 10y, (det(N))I=IKvy, +(n+m+2)Hy,| (see remark (3.9)), and by
proposition (2.1) we have

deg(Ky,+(n+m+2)Hy,)<2rs?
Now, after may be a base change, we have a new family of varieties verifying (0.1)
with m replaced by m-1. Futrthermore since

(2rs2)2™<(2rs)2™<d

by induction we have that there is a variety Y containing X, with dim Y=n+m-1-i
and

deg(Y)<[2r(2rs2)]2'=(2rs)2*!

108



A FEW REMARKS ON THE LIFTING PROBLEM

such that for te B general, one has LoW Y 2X,. This proves our assertion.
q.e.d.

It is useless to say that the hypothesis d>(2rs)?™ is very rough and could be
refined as well as the bound for the degree of Y. It is also possible that the
hypothesis dim X>2, which we introduced for technical reasons, could be dropped.
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SCHUR QUADRICS, CUBIC SURFACES AND RANK 2 VECTOR
BUNDLES OVER THE PROJECTIVE PLANE

I.Dolgachev and M.Kapranov *

Let ¥ C P2 be a smooth cubic surface. It is known that S contains 27
lines. Out of these lines one can form 36 Schlifli double - sizes i.e., collections
{li,...,l6},{l1, ..., I} of 12 lines such that each I; meets only I}, j # i and does not
meet l;,j # i, see n.0.1 below. In 1881 F. Schur proved [S] that any double - six
gives rise to a certain quadric @ , called Schur quadric which is characterized as
follows: for any ¢ the lines /; and I} are orthogonal with respect to (the quadratic

form defining) Q.

The aim of the present paper is to relate Schur’s construction to the theory
of vector bundles on P? and to generalize this construction along the lines of the

said theory.

Let us describe the vector bundle interpretation of the Schur quadric. Note
that the first six lines {ly,...,lg} of a double - six on ¥ define a blow-down = :
¥ — P? which takes the lines /; into some points p; € P2. These points are in
general position i.e. no three of them lie on a line. Let P? be the dual projective
plane and H; C P? be the lines corresponding to p;. The union H of these
lines is a divisor with normal crossing in P2. Let E(H) = Q}-,z(log H) be the
corresponding vector bundle (locally free sheaf) of logarithmic 1-forms on P2
The twisted bundle E = E(H)(—2) is a stable rank 2 bundle on P? with Chern
classes ¢; = —1,¢; = 4 (see [DK]). For such bundles K.Hulek [Hul] has defined
the notion of a jumping lhine of the second kind (shortly JLSK). This is a line
I C P? such that the restriction of E to the first infinitesimal neigborhood 1) of

l is not isomorphic to Oy @ Oy1y(—1). Hulek has shown that such lines form a

* Research of both authors supported in part by NSF.

S. M. F.
Aslérisque 218** (1993) 1M1
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curve C(E) in the projective plane of lines in P? i.e. in P?. Now the result is as

follows.

Theorem 1. The space P? containing the cubic surface ¥ is naturally identified
with the projectivization of H'(P?, E(—1))*. Under this identification the Schur
quadric Q@ becomes dual to the zero locus of the quadratic form given by the

cup-product

2

H'(P?, E(~1)) ® H'(P*, B(~1)) — H*(P*, \(E(-1))) = HX(P*,0(~3)) = C.

The intersection ¥.N Q is mapped, under the projection m : & — P2, to the curve

of JLSK C(E).

More generally, the whole theory of Hulek [Hul] of rank 2 vector bundles on
P? with odd ¢; can be given a "geometric” interpretation involving some natural
generalizations of cubic surfaces, double - sixes and Schur quadrics. This is done
in §2 of the paper. This interpretation implies Theorem 1.

The outline of the paper is as follows. In §0 we recall some known (and
less known) facts about cubic surfaces and Schur quadrics. In §1 we give a
short overview of Hulek’s theory of monads corresponding to vector bundles with
¢; = —1. In §2 we give an interpretation of Hulek’s theory mentioned above.
In §3 we consider bundles of logarithmic 1-forms corresponding to arrangements
of 2d lines in P? in general position. The main result of this section is that all
these bundles satisfy certain condition of ¥ - genericity in the sense defined in
§2, which makes working with bundles satisfying this condition easier. Finally, in
§4 we consider various examples of the previous constructions corresponding to

some special types of vector bundles.
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§0. Cubic surfaces.

0.1. Here we recall some standard known facts about cubic surfaces. All the
proofs can be found either in [H], Ch.V, §4 or in [M] or can be easily reconstructed
by the reader. Let pi, ..., ps be six distinct points in the projective plane P2.
Assume that no three of these points lie on a line. Denote by Z the union of
the points p; and by Jz C Op(v) the sheaf of ideals of Z. The linear system
P(H®(J2(3))) of cubic curves through Z is of dimension 3 and defines a rational

map

f:P? = P(H(Jz(3)*) = P®

whose image is a cubic surface, denoted ¥. The rational map f comes from
a regular map f' : Blz(P?) — P*® where Blz(P?) is the blow up of Z. Let
7 : Blz(P?) — P? be the projection. If we further assume that the points p; do
not lie on a conic then f’ is an isomorphism and ¥ is nonsingular. If p; do lie on

a conic then ¥ is singular and f’ blows down this conic to a singular point of X.

Suppose ¥ is nonsingular. Then ¥ has 27 lines on it. They can be grouped

into three subsets:

{l],...,lg}, {lll,,lé}, {Tn,‘j, 1 _<_ 1 <] S 6} (01)

The lines [; are the images under f' of the exceptional lines 7~!(p;). The lines [
are images under f' of proper transforms of the conics C; C P? passing through
Z — {pi}. Finally the lines m;; are images of the proper transforms of the lines
< pi,p; > joining the points p; and p;.

The first two groups of lines form a double - siz which means that
LNnl=0, Lnli=0, Lnl#0 iff i#j. (0.2)

Every set of 6 disjoint lines on ¥ can be included in a unique double - six from
which ¥ can be reconstructed uniquely. There are 36 double - sixes of ¥.. Every
double - six defines two regular birational maps 7, : ¥ — P2, 7, : ¥ — P2, each

blowing down one of the two sixes (sixtuples of disjoint lines) of the double - six.
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1

The birational map 7, o ;' : P2 — P? is given by the linear system of quintics
P 1 g y q

with double points at p;. The two collections of 6 points in P? given by {m(l;)}
and {m;(l})} are associated to each other in the sense of Coble (cf.[DO],[DK]).

0.2. Here we shall discuss somewhat less known facts about the determinantal
representation of a cubic surface [B]. A modern treatment of this can be found

in [G],[Gi]. Consider the homogeneous ideal of the subscheme Z i.e.

Iz = P H(P?, T2(n)) (0.3)

n>0

in the graded ring R = C [T, Ty, T5). It is easy to see that the ring R/Iz is Cohen
- Macaulay hence of homological dimension 1. Any four linearly independent
cubic forms vanishing on Z represent a minimal set of generators of Iz. According
to the Hilbert-Burch theorem ( see [No],7.5) the ideal Iz is generated by the
maximal minors of some 3 x 4 matrix of homogeneous linear forms. In other

words, we have a resolution
0— R(—4)> - R(=3)* = Iz — 0.
This resolution gives the resolution of the sheaf Jz(3):
0 — Opy(—1)* — O‘;’(V) — Jz(3) — 0.
We can rewrite this resolution in the form
0— Op2(-1)@I* 5 Op2 @ L* — Tz(3) = 0 (0.4)

where vector spaces I* and L* of respective dimensions 3 and 4 are defined
intrinsically as follows:

L* = H°(P*, J2(3)); (0.5)
I* = Ker{H*(P?,0(1) @ L*) — H°(P?, Jz(4))}. (0.6)

Note that one can also obtain (0.4) from the Beilinson spectral sequence

applied to the sheaf J7(3). It gives also an isomorphism
I~ H'(P?, Jz(1)).
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It will be convenient for us to regard henceforth our projective plane P? as
P(V*) where V is a 3-dimensional vector space. With this choice of notation,
the map v in (0.4) is given by a linear map I* ® V* — L*. We shall be more

interested in the transpose of this map which we denote by
g:L— 1@V =Hom(V*I). (0.7)

Choosing bases in V, I we can regard g as a 3 by 3 matrix of linear forms on L.

Here is the classical result on the determinantal representation.

0.3. Proposition. The map ¢ is an embedding. The locus
Y ={z € P(L): rank g(z) <2} (0.8)

is a nonsingular cubic surface in P(L) = P? isomorphic to Blz(P(V*). An
explicit blow-down m; : ¥ — P(V*) takes ¢ € ¥ into Ker g(z) € P(V*). It is
isomorphism outside the set Z = {p;,.,ps} C P(V*) = P? (see n. 0.1). The
dual blow-down 7y : ¥ — P(I*) takes z € ¥ into (Img(z))*t € P(I*). It is an
isomorphism outside a six - element set Z** = {q1,...,q¢} C P(I*) (this is the set

assoclated to Z ).

Note that a given cubic surface ¥ C P? has many non-equivalent determi-
nantal representations corresponding to different ways of blowing down ¥ onto a

P? (i.e. to different choices of a double - six).

0.4. All the other attributes of the cubic surface ¥ can be easily found from the
map ¢g. For example, the set Z can be recovered in terms of ¢ as follows. Consider

the partial transposes of (0.7):
gv :V* - I ®L* = Hom(L, I).
gr: I" -V ®L*=Hom(L, V).

Then
Z ={z€ P(V"): rank gy(z) <2}. (0.9)

The 12 lines of the double - six can be written in the form A, = P(A,), 4!, =
P(A'), z € Z where A, and A’ are 2-dimensional vector subspaces in L defined

for z € Z as follows:
A. = Ker(gv(z2)); (0.10)
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A', = Ker(g1(2)), (0.11)

where z+ C V is the 2-plane orthogonal to z € P(V*). Thus if Z = {pi,...,ps}
then the line A,, is what was denoted in n.0.1 by /; and the line A} is I].

The classical theorem of F. Schur [S] can be stated as follows.

0.5. Theorem. There exists a unique, up to a scalar factor, symmetric bilinear
form C(z,y) on L with the following property: C(z,y) = 0 whenever z € A,,y €
A, for some z € Z (i.e. the corresponding lines of the double - six are orthogonal

with respect to C). This form is non-degenerate.

Proof. a) Non-degeneracy: Suppose such a form C exists and is degenerate.
Let K be the kernel of C. Suppose dim K = 1. Then for any 2-dimensional
subspace A C L not meeting K its orthogonal (with respect to C) is a 2-subspace
containing K. Since P(A,), P(A!,) form a double - six, K can lie on no more
than one among the A, and no more than one among the A’,. Hence there is a
4-element subset Zy C Z such that for z € Zy both A, and A’, do not contain K.
For such z the space A’, should coincide with A} and hence contain K. Hence
for z1 # 22 € Zo we have A] N A’ # {0} which is a contradiction. The cases

dim K = 2,3 are similar and left to the reader.

b) Uniqueness: If there are two non-proportional forms C;,C, with the re-
quired property then for any A, p the linear combination AC; + uC5 also satisfies
this property. However, there will be always such A, ¢ that the linear combination

is non-zero but degenerate. This contradicts a).

0.6. It remains to prove the existence part of Theorem 0.5. To do this, let
us take the second symmetric power of the map ¢ in (0.7) and use the natural

decomposition

5’-’(I®V)=</\I®/\V) o (S*I®S*V). (0.12)

By projecting S%¢ to the first summand, we get a linear map
y proj g o279 g !

2

S’L — S*(1IeV)— (/\m /\ V). (0.13)

Note that dim S?L = 10, and dim(A* I ® A* V) = 9. Hence the map (0.13) has

non-trivial kernel. (We shall see later that this kernel is in fact 1-dimensional).
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0.7. Proposition. If B is a non-zero form from the kernel of (0.13) then B :
L* — L is invertible and C = B~! : L — L* is a bilinear form on L satisfying

the conditions of Theorem 0.5.
We shall concentrate on the proof of this proposition.

0.8. A form B € S?L lying in the kernel of (0.13) is classically called "apolar
to all the quadratic forms given by 2 x 2 minors of g”, cf. [B]. In general, if E
is a vector space then quadratic forms G € S*E, H € S?E* are called apolar
if (G, H); = 0 where (-,-); is the natural pairing S?E @ S?E* — C. Note the
particular case when G has rank 2 i.e. G = e- f is the symmetric product of two
vectors e, f € E. In this case the apolarity of G and H means that H(e, f) = 0.

We shall need a different description of the map dual to (0.13). Let us denote

this map by
2 2

s: \NI"e® \v* — S°L*. (0.14)

Let us chose volume forms on V and I. Then we can write A V* =V, A>I* = L.

It is immediate to see that there are identifications

AV =V = H(P(V*),0pw+(1)); (0.15)
ANI"=1 = H(P(V"),J3(5); (0.16)
S’L* = H°(P(L),0(2)) = H(P(V*),J%(6)). (0.17)

Indeed, (0.15) follows by definition of O(1); the identification (0.16) expresses
the fact that the Cremona transformation m, o w7 : P(V*) — P(I*) is given by
the linear system of quintics with singular points p;, see n. 0.1. Finally, to see
(0.17) we note that the embedding of the cubic surface ¥ into P(L) = P? is given
by the linear system of cubics in P(V*) through p;, so L* is the space of cubic
polynomials on V* vanishing at p;. The second symmetric power of this space
maps therefore to the space of polynomials of degree 6 vanishing at p; together
with their first derivatives i.e, to the RHS of (0.17); this map is easily seen to be

an isomorphism.
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0.9. Lemma. Under identifications (0.15) - (0.17) the map 6 corresponds to the

multiplication map
HO(P(V*),0(1))@H° (P(V*),J5(5))— H"(P(V*), J3(6)).

In other words, quadrics in P(L) are identified with sextics in P(V*) with
double points at p; € Z and quadrics from the image of ¢ correspond to sextics

containing a line.

Proof of the lemma: We have the commutative diagram

Sq, S?

L
gl 1 (0.18)
Hom(V*,I) -2 Hom(A2V* A1)

where the map Sq takes z — 22, the map ) takes ¢ — /\2 ¢ and the map on
the right is the same as in (0.13). We keep the volume forms in I and V and
identify correspondingly the spaces /\2] and /\2V with V* and I*. For any
¢ € Hom(V* I) of rank 2 the second exterior power \* ¢ € I* @ V* is a tensor
of rank 1. Hence it can be written in the form ¢* @ v* for some * € I*, v* € V*.
This shows that the restriction of the map A o ¢ to the cubic surface ¥ C P(L)

coincides with the composition
S "5 p(1*) x P(V*) 385 p(I* @ V) (0.19)

where 7; are the blow-downs from n. 0.3.

The map Aog : P(L) — P(I*®V™*) is given by the linear system @ of quadrics
which is the projectivization of the image of the linear map 6 from (0.14). The
system @ is spanned by the 2 x 2 minors of the matrix of linear forms on L
defining the determinantal representation of ¥. In other words, the preimage of
the linear system of hyperplane sections of P(I* ® V*) under A o g is the linear
system of quadric sections on ¥ which is (the projectivization of) the image of

the canonical pairing
H°(P(I*),0(1))®H°(P(V*),0(1)) — H"(Z,0(2)).

By Theorem 0.3, we can make an identification of the projective spaces P(I*)

and
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P(H°(P(V*), J§(5))*). Under the rational map P(V*) — P(I*) given by the
linear system of sections of J3(5), zeroes of these sections are preimages of the

lines in P(I*) and the resulting map
H°(P(V*),0())@H" (P(V*), J5(5))— H(2,0(2))= H°(P(V*), 73(6))

coincides with the natural multiplication map from the assertion of the lemma.

So the lemma is proven.

0.10. We continue to prove Theorem 0.5 and shall now use Lemma 0.9. Let us
consider some particular sextics with double points at Z = {p1,...,ps}. Let C;
be the unique conic through Z — {p;}. We can take a sextic curve which is the
union of two lines < p;,p; >, < pi,ps > and two conics Cy,Cy. By means of
(0.17) this sextic corresponds to some quadric @;; xs. Moreover, since the quintic
< pi,ps > U Cr U C; belongs to the linear system of quintics singular at points
of Z, the quadric Q;j s lies in the image of the map 6 from (0.14). Now let us
take j = s. Then our sextic can be represented as the union of two cubic curves

through Z namely
<pi,p; >U C; and < pg,p; >U Ci.

Since such cubics correspond to hyperplanes in P(L), we conclude that the quadric
Qijk; 1s in fact the union of two planes, say H;j and Hy;. Moreover, H;j cuts
out the cubic surface ¥ along 3 lines /;,;,m;; (see n. 0.1). The plane Hj; cuts
out the lines [;,l},mg; on ¥. Since the (quadratic form defining the) quadric
Qijx; = Hij U Hy; is apolar to our chosen B € S?2L. we conclude that the

equations of H;; and Hji (belonging to L*) are B - orthogonal.

0.11. Let us now prove Proposition 0.7 and hence Theorem 0.5. The form B is a
linear map L* — L. For any linear subspace U C L we define its polar subspace
(with respect to B) to be

Us = B(UY),

where U~ denotes the orthogonal subspace of U in L*. If B is non-degenerate
then Uj is the orthogonal complement of U in L with respect to the inverse form
B~ € S?L*. If B is degenerate and i C L* is its kernel then Uz is contained
in 't for any U.
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We shall apply the previous notation for projective subspaces in P(L). In
particular, if H C P(L) is a hyperplane whose equation does not lie in K = Ker B
then Hg is a point called the pole of H.

Let us prove that B is non-degenerate. Let the double - six be {l1,...,ls},
{h,...,14}. Assume first that B is of rank at least 3. Then at most one hyperplane
H;; belongs to the kernel of B. Without loss of generality we may assume that
all planes H;; are not in the kernel except maybe Hss. Consider the plane His
spanned by lines [; and !} (which intersect). Its equation (in V*) is orthogonal
with respect to B to equations of similar planes Hj;, Ho3, H3; (see n. 0.10).
Hence (ng)ﬁ = Hy; N Hyz N Hj; and this intersection is easily seen to be the
point Ij Nl;. In this way we show that each I; N [; is the pole of some plane Hj;,
where (¢, ) # (5,6). Since these points obviously span P(L), the form B must
be non-degenerate. Now assume that B is of rank at most 2. Since the planes
Hiyy,Hy3,Ho4, Hys are linearly independent, at least one of them is not in the
kernel of B. Let it be Hyy. Similarly we find that Hsy and Hsg are not in the
kernel. Their three poles I{ Nly,15 N1y, 1L Nl are not on a line. This contradicts
the assumption that B is of rank at most 2.

It remains to show that [* = I!. We have already seen that the point {} NI,
is the pole of the plane H,, spanned by ; and /. Similarly, I} N l; is the pole of
H,y3 = Span(ly,1}). Hence I = Span(l}{ Ny, i Nl3) is the orthogonal complement
of Hy; N Hyz = [;. Similarly we prove that [} = l;" for other z.

Theorem 0.5 is completely proven. The reader should compare this rather
cumbersome proof with a more straightforward one based on the theory of vector

bundles (Theorem 2.17 below).

0.12. Definition. The quadric @ C P(L) defined by C(z,z) = 0 where C is
the quadratic form given by Theorem 0.5, is called the Schur quadric (associated
with the double - six {A.,A"}).

0.13. Example. Let us consider the following 4-dimensional space L:

L= {(fcl,...,x5) €C’: Y a =o}

and define the cubic surface ¥ C P(L) by the equation Y 2% = 0 (the Cleb-

sch diagonal surface). The symmetric group Ss acts on C° by permutations of
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coordinates and preserves L and ¥. The line

1++V5 1+ 5
9\/_T2+333=~T2+ ,)\/_

pa &

l={:c€P(L): T, + :c3+1'4=0}

lies on ¥ and so do all the lines obtained from [ by the action of S5. It is known
[Bu] that the S5 - orbit of I consists of 12 lines which form a double - six. Their
equations can be found in [B], p.168. The two sextuples of lines constituting this
double - six are orbits of the alternating group As C Ss. So one sextuple is the
As - orbit of [ and the other is the A5 - orbit of the line

1-+5 1-+5

Ty =

2 2

l’={x: Ty + T2 + x1+x3+x4=0}

So I' is line of the second sextuple corresponding to ! (because [N !’ = @). The
lines [ and !’ are orthogonal with respect to the bilinear form C(z,y) = ZLI T;Y;
on L. By symmetry, all the other corresponding pairs of lines of our double - six
are also orthogonal with respect to C. Thus the Schur quadric @ associated to

this double - six is given by the equation Z?=1 z? =0.
§1. An overview of Hulek’s theory.

1.1. Let E be a stable rank 2 vector bundle on P? = P(V) with ¢ (E) =
—1, c2(E) = n. According to Le Potier [L] and Hulek [Hul], the bundle E can

be realized as the middle cohomology of a monad
H ® Op()(~1) = M ® Qby(1) =5 H' @ Opqy. (1.1)
where

H=H'(E(-2))=2=C""', M=H'(E(-1))2¥C", H'=H'(E)~2C"!
(1.2)
and the maps a and J are defined as follows. Let 2!(1) be identified with ©(—2)
where © is the tangent bundle of P(V). Let ¢t : V ® Opyy(—1) — 2'(1) be the
Euler homomorphism twisted by O(—1) (see [OSS]). It allows one to identify

Hom(H @ Op(yy(~1),M ©@Q'(1)) = Homg(H @ V*, M). (1.3)
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The map « is induced by the cup - product
a: HI(E(—‘Z))(EV* = H' (E(—-‘l))@HO (Op(‘/)(l))—> HI(E(—I)). (1.4)

Similarly, we have a map t* : Q!(1) — V* @ Op(y) which allows us to identify

Hom(M ® Q'(1),H' ® Opvy) & Home(M @ V* H'). (1.5)
After this identification the map 8 is induced by the cup - product
b: H'(E(-1))@V* = H'(E(-1))@H’(Opny(1))— H'(E). (1.6)
The cup - product pairing
2
B:M@M = H'(E(-1))®H'(E(-1))— H? ((/\ E)(—z)) =
= H*(Opw)(-3)) = C (1.7)

is a symmetric non - degenerate bilinear form on M. We regard it as an isomor-
phism

B: M — M. (1.8)
The spaces H and H' are dual to each other by means of the Serre duality and

the isomorphism
2
E = E@NE = E(-1).
With respect to the constructed pairings the monad (1.1) is self - dual in the
sense that f = a*(—1). Equivalently, if A € V* and a(\) : H — M is the linear
map defined by the pairing a and similarly b(\) : M — H' is the map defined by
b then
b(A) = a(A)* o B.

This shows that the monad (1.1) is completely determined by the pairing (1.4) and

the symmetric bilinear form B. The pairing must satisfy the following properties

(cf. [Hul]):

(al) The map a(A) is injective for generic A € V'*.

(«2) For any h € H the map ap(h): V* — M defined by the pairing a is of rank
> 2.

(a3) For any A\, \ € V* we have b(\")oa(X) = b(A)oa(A') where b(A) = a(A)* o B
and similarly for b(\').
Note that by a theorem of Grauert-Miilich, the last two properties imply the

first one.
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1.2. Theorem. Let V,H, M be linear spaces of respective dimensions 3,n — 1
and n and n > 2. Let us fix a non-degenerate symmetric bilinear form B on M.

By assigning to each a € Hom(H ® V* M) satisfying (al) — (a3) the map
a=(1d®t)o(a®1d): H® Opan(-1) — M @Q'(1),

we get a bijective correspondence between equivalence classes of self - dual monads
(1.1) modulo action of the group O(M, B) x GL(H) and isomorphism classes of
stable rank 2 vector bundles E on P(V) with ¢;(E) = —1 and c3(E) = n.

1.3. Let ! be a line in P? and E be a stable bundle as in Theorem 1.2. Let

A € V* be a linear form defining [. We have a canonical exact sequence
0 — E(-1) 2 E — E|; — 0,

which together with the fact H°(E) = 0 which follows from the stability of E,

gives an isomorphism
H°(E|))=Ker{H'(E(-1)) » H'(E)}=Ker{a()\): M — H}. (1.9)
Since E|; 2 O(p) @ O(¢) with p 4+ ¢ = —1, we obtain that
Ejz20¢0(-1) e ranka(A) =n — 1.

A line ! is called a jumping line if E|; # O & O(—-1). It follows from the Grauert
- Milich theorem [OSS] that the set of jumping lines is a proper Zariski closed
subset of the dual plane P(V*). This set is known to be 0 -dimensional for a

generic E.

1.4. In [Hul] the notion of a jumping line of the second kind (shortly JLSK)
was introduced. Let I{!) be the first infinitesimal neighborhood of  in P(V'). We

use the exact sequence
’ A
0= Opw)(=2) = Opy = Oy = 0 (1.10)

to obtain

H°(E|y»)= Ker{s(\) : H'(E(-2)) — H'(E)}. (1.11)
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Here the map s(\) corresponds to the canonical pairing
S’ (V)@ H'(E(-2)) — H'(E))

evaluated at A2. In the notation of the previous subsections, s()) is the compo-
sition

a(AM)*oBoa(A\): H—-M — M*— H*.

We say that [ is a JLSK if s(\) is not bijective. Since the source and target
of s(\) have the same dimension, ! is a JLSK if and only if H°(E|;1))# 0.

Let us introduce a rational quadratic map
y:P(V*) = P(S’H*), X\ s())

By property (al), for a generic line | € P(V*) the value ¥(\) is well defined and
is an non-degenerate quadric in P(H). We denote by C(E) the set of all JLSK
of E. Thus outside a finite set of points in P(V*) the set C(E) is equal to the
preimage, under «, of the locus of degenerate quadrics in P(H). So we get that
C(EY is a closed subscheme in P(V*) defined by the equation dety(I) = 0. We
shall consider C(E) as a closed subscheme of P(V*) defined by this equation. So
C(E) is a (possibly reducible) curve of degree 2n—2 containing the set of jumping

lines of E in the usual sense.

1.5. One can give another interpretation of the curve C(E). Consider the rational
map

o:P(V*) = P(M*), X~ Im(a(M\)t C M*.

It is defined on the complement of the set of jumping lines of E. A non-jumping
line ! is a JLSK of and only if the hyperplane o(l) C P(M) is tangent to the
quadric defined by B(m, m) = 0. Let us denote by @ the dual quadric in P(M*)
(which parametrizes the hyperplane tangent to {B(m,m) = 0}; so it is given by

the inverse quadratic form C = B~!). Then

lisaJLSK ifandonlyif o(l)€ Q.
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§2. Generalized Schur quadrics and cubic surfaces.

2.1. Let E be a stable rank 2 vector bundle on P? = P(V) with ¢; = —1, ¢; = n.
As we mentioned in the previous section, its monad (1.1) defines (and is uniquely

defined by) the following linear algebra data: a linear map (tensor)

a: HQV* - M (2.1)
and a quadratic form (the cup - product)

B:M@M—C. (2.2)

Our aim in this section is the study of the geometry of some algebraic varieties

naturally associated to a and B (and hence to E).

2.2. We denote by @ C P(M*) the quadric defined by the equation C(m,m) =0
where C is the quadratic form on M* inverse to B, see n.1.5. We shall call @
the Schur quadric of E. We shall see later in this section how the classical Schur

quadric of a double - six is a particular case of this construction.

2.3. By taking various partial transposes of the tensor a, we construct the fol-

lowing linear operators:

ay : M* — H*®V = Hom(H,V); (2.3)
ay :V* - H*® M = Hom(H, M); (2.4)
ag: H—> M®YV =Hom(M*,V). (2.5)

These operators define determinantal varieties in P(M*), P(V*), P(H) consisting
of points whose images (under the corresponding a) are operators not of maximal
rank. Before going into details, let us recall some well known facts about varieties
of matrices of given rank.

Let Ly, Ly be vector spaces of respective dimensions ny,ns. We denote by
Hom(L,, Ly), C Hom(L;, L,) the variety of linear maps of rank < r. We assume
that » < min(n;,n;). Then the following is true [ACGH],[R].
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2.4. Proposition.
a) The codimension of Hom(Ly, L), in Hom(L;, L) is equal to (n; —r)(ny—r).
b) Hom(Ly, L,), is irreducible and Cohen - Macaulay;
c) The degree of (the projectivization of) Hom(L;, Ls), is equal to
"‘ﬁ*‘ (np +9)! 4!
(r+i)! (ng—r =)t

=0

d) Let ¢ € Hom(L,, L;), be a linear map of rank k < r. Then the multiplicity
of Hom(Ly, L), at ¢ is given by

M (g k=) i

multy(Hom(Lq, Ly),) = H k=Dl —r =)
=0 ' '

2.5. Let us return to the situation of n. 2.3. We define the variety ¥ C P(M*)
as follows
Y ={p€ P(M"):rank ap(p) <2}. (2.6)

This is an analog of a cubic surface in P*, cf. Proposition 0.3.

Note that dim M = n, dim H = n — 1, dim V = 3. Therefore, by Propo-
sition 2.4, the variety Hom(H, V), has codimension n — 3 in Hom(H, V') and so
dim ¥ > 2. Generically, one would expect that dim ¥ = 2.

We shall call the tensor a (and the bundle E) ¥ - generic if for any p € &
the rank of aps(p) is exactly 2. We shall see in section 3 that if n is a square then
Y - generic bundles exist. Since being ¥ - generic is an open condition, this will
imply that such bundles form an open dense subset in the moduli space. We shall
also see that for (some other) open dense subset in the moduli space the variety
Y is indeed a surface. However, there are important particular cases when ¥ is

reducible and contains components of higher dimension, see n. 3.5 below.

2.6. Consider now the partial transpose ay of the tensor a given in (2.4). We
define the determinantal variety Z C P(V*) by

Z={XeP(V"): rank ay(\) <n-—2}. (2.7)

It will be important for us to consider Z as a scheme with the scheme structure

given naturally by (2.7). This means that we choose bases in H and M and
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regard ay as a (n — 1) X n -matrix whose entries are linear forms in A\. The n

maximal minors of this matrix are taken to be the equations of the subscheme Z.

Since Hom(H, M ),,—» has codimension 2 in Hom(H, M), generically one ex-
pects Z to be 0-dimensional and reduced. If this is indeed the case, we shall
call the tensor a (and the bundle E) Z - generic. It follows from [Hul] that
Z -generic bundles exist for any values of n. Namely, the so-called Hulsbergen
bundles will be Z -generic (see also §4 for discussion of these bundles). Thus Z
-generic bundles form an open dense subset in the moduli space.

If a is Z-generic then, by Proposition 2.4. c), the degree of the 0- dimensional
scheme Z equals deg Hom(H, M),_» = (;) Moreover, the multiplicity of any
point A € Z in Z is at least (n—g(k)) where 7(\) = rank ay(\)

The meaning of Z is as follows.

2.7. Lemma. The support of the scheme Z is precisely the set of jumping lines
of E.

Proof: This immediately follows from considerations of n.1.3.

2.8. Let Jz C Op(y+) be the sheaf of ideals of the subscheme Z. By construction
of Z (see n. 2.6), maximal minors of the (n—1) xn - matrix ay are global sections

of Jz(n — 1). In invariant terms, we consider the linear map
ay, :HQM* -V (2.9)

and, by taking its (n — 1) -st symmetric power, we get a linear map

n—1 n—1

NHES \ M= S (HeM*)— S"7'V =H(P(V*),0(n - 1)) (2.10)

whose image is contained in H°(P(V*), Jz(n — 1)). It will be convenient for us

to rewrite (2.10) as

n—1 n

A:M® (/\ H® /\ M*) —  H'(P(V*),Jz(n-1)). (2.11)

The 1-dimensional vector space /‘\"—1 H®A"™ M* can be chased away by choosing
bases in H and M.
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2.9. Proposition. Ifdim Z = 0 then the operator A in (2.11) is an isomorphism.
In other words, the linear system of curves of degree n —1 through Z is generated

by maximal minors of ay.

Proof: We associate to ay, in a standard way, a morphism a of sheaves on P(V*)

and denote its cokernel by F:
0— H®Opyey(—1) = M @ Op(ye) = F = 0 (2.12)

(the fact that @ is injective, follows from dim Z = 0). We claim the following;:

2.10. Lemma. F is isomorphic to Jz(n — 1). Under this isomorphism the
natural map M — H°(Jz(n — 1)) corresponds, up to a scalar multiple, to the
map A from (2.11).

Clearly, Lemma 2.10 implies our proposition in virtue of the exact cohomo-

logical sequence of (2.12).

Proof of the lemma: The assertion follows from the well-known resolution of
Eagon-Northcott of the ideal of a determinant variety defined by maximal minors
(see [No], Appendix C.1). However we prefer to give an elementary proof here.
We choose a bases hy,...,h,_; € H and m,,...,m,, € M. This makes it possible
to speak about the determinant det{v;,...,v,] of a system of n vectors in M (this
is just |b;;| where v; = 5 b;;m;). We define a morphism of sheaves ¢ : F —
Jz(n —1) i.e. a morphism ¥ : M ® Op(y»y = Jz(n — 1) vanishing on Im(a),
as follows. Let m = m(}) be a local section of M ® Op(y-.) i.e. an M - valued
function in A homogeneous of degree 0. We put ¥(m) to be the homogeneous (of

degree n — 1) function

X det [m(X), ay(\)(B1), oo, av(A)(hnei)]-

This defines . It is clear that 1 is injective. The fact that v is surjective follows

by comparing Chern classes of 7 and Jz(n—1). The rest of the lemma is obvious.

2.11. We continue to assume that dim Z = 0. Let S be the blow up of P(V*)
along Z and 7s : S — P(V™) be the canonical projection. In virtue of Proposition
2.9 the linear system of curves of degree n — 1 through Z defines a regular map
p: S — P(M*). A generic point s = 15'(X) € S, A € P(V*) goes under p into
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the hyperplane in P(M) consisting of m such that A(m) € H*(P(V*), Jz(n—1))
vanishes at A as well. Here A is as in (2.11). The interpretation of A in Lemma
2.10 shows that p(S) is contained in the determinantal variety ¥ C P(M*) as
an irreducible component. We shall denote variety p(S) (typically a surface) by
¥ c.

2.12. Suppose that our bundle E is ¥ - generic. Then we have a regular map
Tyt L — P(V*)

which takes pp € ¥ C P(M*) to the linear subspace Im(aar(x)) C V (this subspace
has dimension 2 by the assumption of ¥ -genericity). The map 7y is the analog
of the blow-down of a cubic surface onto a plane.

If the bundle F is not ¥ -generic, the map g will be defined on the open
part Xy C ¥ consisting of u such that aps(p) has rank exactly 2.

For A € P(V*) the fiber 75" () is the projective space P(Ker av(A)*). The
dimension of this fiber is equal to n—rank ay(A)—1. Hence 7y is an isomorphism
over the complement of Supp(Z). On the other hand, if the rank of ay(A) is small
the fiber w5 ' () will have dimension > 2 and the variety £ will be reducible. We

shall see in §3 that such situations do occur for stable bundles.

2.13. Proposition. Assume that E is Z - generic and no n — 1 points of Z lie
on a line. Then:

(a) The map p: S — X is an isomorphism (so, in particular, ¥' = £);

(b) T is a projectively Cohen - Macaulay surface in P(M*) of degree (n—1)*—(3).

Proof: Introducing the Hilbert function H(Z,t) = h°(Opv+(t)) — h°(Tz(1)),

and applying exact sequence (2.12), we have
HZn-1)=1/2)n(n+1)—n=(1/2)n(n-1)=

H(Zn-2)>H(Z,n-3)=(1/2)(n-1)(n-2).

This gives
n—1=min{t: H(Z,t)= H(Z,t —1)}.

By [DG], this implies that the linear system of curves of degree n — 1 through Z
maps S = Blz(P?) isomorphically into P(H°(Jz(n))*) = P(M*). By [Gi] the

129



I. DOLGACHEV, M. KAPRANOV

image of this map i.e., the variety ¥', is projectively Cohen - Macaulay. Recall
that this means that the projective coordinate ring of £’ is Cohen - Macaulay. In
particular, we get that ¥' is projectively normal i.e., for any & > 0 the restriction
map

H(P(M*), O(k))— H° (', O(k))

is surjective. Since the rational map P(V*) — X is given by the linear system
of curves of degree n — 1 through Z, we obtain the assertion about the degree
of ¥'. Since E is Z - generic, the fiber of the map 7y : £ — P(V*) over each
point z € Z is isomorphic to P!. Since ¥’ and ¥ coincide outside the union of
the fibers 7y '(z), 2 € Z, this implies that &' = &. Q.E.D.

2.14. Let z € Z C P(V*). We denote the fiber
m5'(2) = P(Ker(ayv(z)*)C P(M*) by A..

The corresponding linear subspace Ker(ay(z)*) C M* of which A, is the projec-
tivization, will be denoted by A,.
Consider the space
H,=Ker ay(z) C H.

We also consider the linear subspace

Al = () Ker ag(h) c M*
heH,

and denote its projectivization by A, C P(M™).

The collection of projective subspaces A., A, =z € Z, forms the analog of a

Schlifli double - six on a cubic surface in P3.

In our case A lies on ¥ but A, does not, in general, do so. Indeed, the
typical situation (see Proposition 2.13) is that ¥ is a surface, that for any z € Z
we have rk(a(z)) = n—2 and so dim A, = 1, dim 4, = n—-3. So forn > 5
A, cannot lie on . The relation of A’ with the component ¥’ = p(S) C T is as

follows.

2.15. Proposition. Assume that E is Z - generic. Then A’ is a subspace of

codimension 2 in P(M*) which intersects the surface ¥' along a curve. The image
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of this curve under the projection g : £ — P(V™*) is the unique curve of degree

n — 2 which passes through the points z' € Z \ {z}.

For the case n = 4 we get the standard description of the second sextuple
of lines of the double - six on the cubic surface as the inverse image of quadrics
containing some 5 of the 6 points of Z. For n > 5 instead of the property that
A’ lies on &' we have that A, N ¥’ is a curve (instead of a set of isolated points,

as one would expect by dimension count).

Proof: Since the rank of ay(z) equals n — 2, we have dim(H,) = 1. Thus A/, is
the kernel of the map ay(h) : M* — V where h is any non-zero vector from H..
Note that the rank of this map equals 2. In fact, otherwise Z would contain a
line as an irreducible component. This shows that dim(A.;) = n — 2. Now let
us observe that A, = P(A’) intersects each A, for 2’ # z. Indeed, the sum of
linear subspaces A’, + A,/ is contained in the hyperplane of zeroes of the linear
form a(h,z') € M = (M*)*, where a is as in (2.1).

Let {H(M\)}aepr be the pencil of hyperplanes in P(M*) which contain the
subspace A’.. It cuts out a pencil P of curves on £ with the base locus A, N .
For each z' # z one of the hyperplanes H()) contains the line A,,. Thus each
A, contains one of the base points of the pencil P. Under the rational map
P(V*) — P(M*) (given by curves of degree n — 1 through Z) the preimage of
the pencil {H(A)} is some pencil of curves of degree n — 1 passing through Z.
Let C be its moving part and F' be its fixed curve. Let d be the degree of F' (zero
if = 0). Curves of the pencil C have degree n — 1 — d. Suppose that they pass
through some m points say, z1, ..., 2, of Z. Then, since z; remain basic for C after
the blow - up, curves from C have the same tangent direction at each z; # z. The
curve F' passes through the remaining (1/2)n(n — 1) — m points of Z. Consider
a typical curve C € C. Let C be its proper transform in S = Blz(P(V*)). Since

C moves, its self - intersection index is non - negative so we get
0<C?*<(n—-d-12-2m-1)-1=n—-d)(n-d—1)—2m—(n—d - 2).

If n —d—2 >0, we obtain that (n — d)(n —d — 1) — 2m > 0 thus there exists
a plane curve of degree n — d — 2 passing through z;,..., 2. Together with the
curve F'| it defines a curve of degree n — 2 passing through all the points of Z.

But Lemma 2.10 and the exact sequence (2.12) show that this is impossible. So
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we must have d = n — 2 and hence m = 1, so F'is a curve of degree n — 2 which
passes through all the points of Z except z. If there is another curve, say, F',
with this property then we would have a pencil of curves of degree n — 2 through
Z — {z}. This pencil must then contain a curve passing also through 2. This, as

we have just seen, is impossible.

2.17. Up until now we worked exclusively with the tensor a from (2.1). Now we
take into account the non-degenerate quadratic form B € S?M* from (2.2). Let
C = B! be the inverse quadratic form on M*. The following result justifies the

name "Schur quadric” for the quadric defined by C.

2.17. Theorem. Let z € Supp(Z). Then A, is contained in the orthogonal
complement (A’z)é of A!, with respect to C . If, moreover, rk ay(z) = n—2 then

we have equality A, = (Az)é.

Proof: For any A € V* let
b(A)=a(A\)*oB: M -—H"
where a()) is the map induced by the a from (2.1). Then
B7Y(A) = {m e M:(b(X)(m),h) =0, VA€ V* heH,=Ker (av(2))}.
For any m € A} = ay(z)(H) we write m = a(z)(h') for some h' € H and obtain
BN av(z)(E),k) = (BN av(2)(h), k') = (0, 1) = 0.
Here we use the property (a3) from n.1.1. Thus we obtain
Ay C B7I(A).

If rank (a(z)) = n — 2 then dim A, =2, dim H, =1 and dim A/, = n — 2. Thus
the dimensions of the spaces A} and B~!(A') are the same so these spaces are

equal. Theorem is proven.

2.18. Remark. Let Z be any set of (g) points in P? such that no curve of
degree n — 2 contains Z and no lines pass through n — 1 points of Z. The linear

system of curves of degree n—1 through Z defines a rational map of P? into P"~!
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whose image is a nonsingular surface X classically known as a White surface [R)].
If n = 4, this is a cubic surface. The surface X is given by vanishing of maximal
minors of a 3 X (n — 1) matrix of linear forms. A modern proof of these results
can be found in [DG] and [Gi].

Every White surface comes equipped with a set of (;’) lines E,,z € Z corre-
sponding to exceptional curves of the blow - up Blz(P?) and a set of (}) curves
C. of degree (n—2)(n—4)/2+1. The curve C, is the image of the (unique) plane
curve of degree n — 2 passing through Z — {z}. Each curve C; spans a subspace
E! of codimension 2 in P"7!. We have E; N E, =0 but E.N E!, # 0 for 2’ # 2.
This situation is analogous to a configuration of a double - six on a cubic surface.

Propositions 2.13 and 2.15 imply that for a ¥ - generic stable bundle E the
variety ¥ is a White surface. However, by counting constants it follows that not
every White surface comes in this way, as soon as n > 5. Although one can

reconstruct a linear map
a: HeV*=C"!lgC® — M=C"

from a determinantal representation of X, there does not exist, in general, a
quadratic form B on M such that a satisfies the property (a3) from n.1.1. By
Theorem 1.2 the existence of such a B is necessary and sufficient in order that
X = I for some Z - generic bundle E. It seems likely that these conditions are
equivalent to the existence of a ”Schur quadric” for the "double - six” {E,, E'}
i.e., a quadric @ in P"~! such that E, and E/, are orthogonal with respect to the

(quadratic form defining) Q.

2.20. The role of the Schur quadric @ (see n.2.2) in the description of jumping

lines of the second kind is given by the following remark.

2.21. Proposition. Let £y C £ be the open set of jt such that the rank of ay (i)
equals 2 (so £g = X if the bundle is ¥ - generic). Let ng : ¥g — P(V*) be the
projection defined in n. 2.12. Then the curve C(E) of jumping lines of second
kind coincides with the closure of 75(Q N Zp).

In particular, when the bundle E is ¥ - generic, we have C(E) = 75(Q N X)

Proof: This is a reformulation of what has been done in n.1.5.
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As an application of our formalism of Schur quadrics let us prove a statement
about the singular tangent lines of the curves of JLSK which strengthens, under
assumptions of genericity, a theorem of Hulek. More precisely, Hulek [Hul] has

proven the following fact.

2.22. Theorem. Let | € C(E) be a JLSK of E. Suppose that E|; & O(-1 —
k)® O(k) with k > 1. Then ! is a singular point of the curve C(E) of multiplicity
2k and for any line T in the tangent cone of C(E) at [ the intersection index of
C(E) and T at l is at least 2k + 2.

Assume that E is Z - generic. Then every singular point [ of C'(E) is a double

point (a node or, possibly, a cusp of type y? = z"). Theorem 2.22 gives that in
this case there exist at least one line T' through the point ! with intersection index

> 4.

We claim that the case of the cusp does not occur for Z-generic E. Call an
ordinary double point p of a plane curve C' a bifleznode if each of the two branches

has a flex at this point i.e. each of the two tangents has the intersection index
>4 with C at p.

2.23. Theorem. Assume that the bundle E is Z - generic. Then every singular

point of C(E) corresponding to a jumping line is a biflexnode.

Proof: Let z € Z be a singular point of C(E) corresponding to a jumping line.
Then z € Z. The branches of C(E) at z correspond to the points of intersection
of the line A, and the Schur quadric ). Note that @) cannot be tangent to A,
since otherwise we would have A, N A", # @ which contradicts Proposition 2.15.
This proves that the point z is an ordinary node.

Although Theorem 2.22 allows us to finish the proof, we prefer to give an
independent proof based on the properties of the Schur quadric.

Now let = be one of the two points of @ N A, and let II be a hyperplane
in P(M*) which is spanned by the point « and the codimension 2 subspace A,.
Let Q(z) denote the quadric in A’ cut out by Q. For any point y € Q(z) the
line < x,y > is contained in . This implies that II is tangent to @ at z. Let
C(E) = £ N Q be the proper inverse transform of the curve C(E) in ¥, under
the blow-down 7y : ¥ — P(V*). Let 7 be the tangent line to C(E) at z at the

branch corresponding to z and let 7 be its proper inverse transform on ¥.
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Under the correspondence between hyperplanes in P(M*) and curves of de-
gree n — 1 in P(V*) through Z, the hyperplane IT corresponds to the reducible
curve 7+ C, where C, is the plane curve of degree n — 2 passing through Z — {z}.

This implies that ¥ C II and so
T,(F) =N T,(S) = Tu(Q) N T(E) = T(C(E)).

This shows that 7 is tangent to C(E) at the point z. Obviously this implies that
7 is a flex tangent at the branch of C(E) at z corresponding to x. Theorem is

proven.

§3. Logarithmic bundles.

3.1. Consider a projective plane P> = P(V), dim V = 3. Let H = (Hy, ..., Hn)
be an arrangement of m lines in P(V) in general position (i.e., no three of these
lines have a common point). Let E(H) = Q}D(V)(log H) be the sheaf of 1-forms on
P(V) with logarithmic poles along H;. Since H is a divisor with normal crossings,
E(H) is locally free i.e. we can and will regard it as a rank 2 vector bundle. It
was proven in [DK] that this bundle is stable.

We further suppose that the number of lines is even: m = 2d. In this case
c1E(H) = 2d — 3. The normalized bundle E,om(H) = E(H)(—d + 1) is a stable
bundle with ¢; = —1,¢; = (d — 1)%. In this section we apply considerations of

§81,2 to bundles E\orm(H).
3.2. It was shown in [DK] that the bundle E(H) has a resolution of the form
0—I@Opy(—1) — W ©Opny — E(H) — 0. (3.1)

In (3.1) the space W is defined as

W = {((1.1,...,(12,1) e C*. Zui = 0}. (3.2)

The space I is defined as follows. Let f; € ¥* be a linear equation of the line H;.

Then I is the space of relations among ( fi, ..., foq) 1.€.,
I= {((1,.....«2,,)ec‘~"’:Z(,,.f',v=o}. (3.3)
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The map 7 is induced by the canonical map
t:IQV W, (a,..,a2a) Qv — (alfl(v:), ...,azdf?d(‘l))) (3.4)

called the fundamental tensor of H.

3.3. By twisting the resolution (3.1) with O(—d + 1) we get a resolution for
Ernorm(H) = E(H)(—d+1). From this it is immediate to find the data defining the
Hulek’s monad for Eporm(H) (see §1). To formulate the answer neatly, let again
fj € V* be the equation of H;. For any m > 1 denote by 8/9f; : S™V — S™~1V
the derivation corresponding to f; regarded as a constant vector field on V*. We

define the following map

tmy : STV I - S™T'V W, (3.5)
Op dp

_—. 3.6

p®(a1’ 7a2d)H (alafl’ 702d8f2d) ( )

where we regard S™ 1V ®W as the space of collections (q1, ..., ¢24) of polynomials
g; € S™'V summing up to 0.
Now the vector spaces in the monad for E, o, (H) have the form
H = H' (Eyorn(H)(=2))= H' (E(H)(~d - 1))= Ker (ta-1)); (8.7)
M = H'(E(H)(—d))= Ker (t(4—2)); (3.8)
H' = H' (E(H)(—d + 1))= Ker (t(43)), (3.9)
as it follows immediately from the resolution (3.1). For example, the map ¢(4_y) :
SV @I — S¥2V @ W in (3.7) appears as the map
H2(P(V),0(~d—2) @ I)— H*(P(V),0(-d - 1) @ W)
in the long exact sequence of cohomology of the resolution (3.1) tensored with
O(—d—-1).
As regards maps in the monad (1.1), we shall only need the explicit form of

the operator
bpy M -V @H' (3.10)

defined by the map b in (1.1). Namely, bas is induced by
Ypoldr: S Veol-Vestvael (3.11)

where 3 : S472V — V © S?3V is the canonical GL(V) - equivariant embedding.
The map a in (1.1) is dual to b by means of the form B.

The following is the main result of this section.
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3.4. Theorem. Any bundle E,om(H) is ¥ -generic (see n. 2.5).

Proof: In the notation of §2 we have to prove that
apy(M*) N Hom(V*,H*); = {o0}. (3.12)

We have a commutative diagram

M* 2 Hom(V* H*)

Mo Hom(V*, H')

where the left vertical arrow is induced by the form B and the right vertical arrow

— by the isomorphism H* = H' (see n. 1.2). It is enough therefore to prove that
by (M) nHom(V*, H'); = {0}. (3.13)

Let m = Y p; ® z; be an element of M C S~ 2V ®1,s0 p; € SV, z; € I. The
element m is mapped by by into an element of Hom(V*  H'), if and only if there
isveV such that each pi equals vq; for some ¢; € S43V and also E @z, € H'.
Each z; € I is in fact a vector z; = (argl) .. (2(1)) such that Z] 1 z(])f] = 0.
Since m belongs to M = Ker (t(4—1)), we have, by (3.5) and (3.6):

d(vy; .
Z %) g’f‘l -0, j=1,..2d. (3.14)
J

By applying Leibnitz’ rule for /9 f; and taking into account the fact that ). ¢; ®
z; € H' = Ker(t(4-3)), we get the equalities

@)Y aPq=0, j=1,.,2d (3.15)

We claim that these equalities imply that ¢; = 0 for all 7. Indeed, let X : S4=3V —

C be any linear functional. Consider the vector
y = Z M), € 1.
i

If we write y in terms of its components: y = (y(l)’ ”_’y(?d)) then (3.15) implies
that
fiyP =0, j=1,..2d.

137



I. DOLGACHEV, M. KAPRANOV

Let J = {j : fj(v) = 0}. Since the lines {f; = 0} are in general position, |J| < 2.
For j ¢ J we have therefore y/) = 0. Since y € I, we have

2d

0=y 5 =Y 4y,

J=1 JeJ

which means that we have a nontrivial linear relation among |J| < 2 elements of
{f1,-, f2a}. This contradicts the general position of {f; = 0} so the vector
y € I is zero. In other words, for any linear functional A : S43V — C we have
S>> A(gi)z; = 0in I. This means that 5. ¢; ® z; = 0 in S¥ %V @ I and Theorem

3.4 is proven.

3.5. Let Z be the subscheme of jumping lines of Eomm(H). As was shown in
[DK] (Proposition 7.4), the lines H; belong to Z. Moreover,

Enorm(H)]H; = OH‘(I —(l)@OH'.(d—Q). (3.16)

Denote, as usual, by f; € V* the equation of H;. The equality (3.16) means that
the matrix ay (f;) (see formula (2.4)) has rank n—d—1. By Proposition 2.4 d) this
implies that the multiplicity of each H; as a point of Z is at least (d—1)(d—2)/2.
The total degree of Z, however, equals to (72') where n = ¢y Eporm(H)) = (d—1)2.
Thus one expects that for d > 4 there will be many other jumping lines apart
from Hy, ...., Hagq.

Let us also note that the fibers of the map 7y : & — P(V™*) introduced in
n. 2.12 over points H; € P(V*) are projective spaces of dimension d — 2. This
means that for d > 4 the determinantal variety 3 (”cubic surface”) will be always

reducible.
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§4. Examples.

4.1. In this section we shall illustrate geometric constructions of §2 on some
particular classes of bundles. The example with cubic surfaces and Schur quadrics
(which motivated the present paper) will be considered in n.4.4.

In each of the examples below we shall indicate the value of n = ¢; (we

assume ¢; = —1) and describe the following geometric objects (all introduced in
§2):
a) The subscheme Z C P(V*) of jumping lines. If dim Z = 0 then deg Z = (}).
b) The determinantal variety ¥ C P(M™) (the analog of the cubic surface). It
comes with a natural map p : BlzP(V*) — £ whose image is a component

of ¥. The map p is given by the linear system of curves of degree n — 1 in
P(V*) through Z.

c¢) The Schur quadric @ C P(M*).
d) The curve C(E) C P(V*) of JLSK. Its degree is 2n — 2. It can be described
as mx(Xo N Q) where 7y : X9 — P(V™*) is the projection of the generic part
of ¥ introduced in n. 2.12.
e) The projective subspaces A;, A,z € Z (the analog of the double - six).
By M(—1,n) we shall denote the moduli space of stable rank 2 vector bundles

on P? with ¢; = —1, ¢; = n. It is an irreducible variety of dimension 4n — 4, see

[Hu1],[0SS].

4.2. The case n = 2. This case was considered in [Hul]. The features are as
follows:
a) Z consists of just one point zg € P(V*). This point corresponds to the

1-dimensional kernel of
ay : V* — Hom(H, M) = C°.

b) The determinantal variety & C P(M*) = P! coincides with P(M*). The
regular map p : BlzP(V*) — ¥ is the natural projection Bl,,P? — P1.
¢) The Schur quadric @ C P(M*) = P! consists of two distinct points.
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d) The curve C(E) is n(p~!(Q)) where 7 : BlzP(V*) — P(V*) is the pro-
jection. In other words, C(E) is the union of two distinct lines through zg.

e) The "double - six” is as follows: A., = P(M*), A, =0.

4.3. The case n = 3. There may be several possibilities for Z which were
also listed by Hulek [Hul]. We shall consider only the most generic case when
Z consists of three distinct non-collinear points. In this case the features are as

follows:

b)The variety ¥ C P(M*) again coincides with P(M*) = P2. The regular
map BlzP(V*) — P(M*) = X resolves the standard Cremona transformation
c¢: P(V) = P2 —» P? = P(M*) defined by quadrics through Z (three points).
If we choose homogeneous coordinates z; in P(V*) in which Z consists of points
(1,0,0),(0,1,0),(0,0,1) then c is given by the formula t; = z,24,t] = ToTo,t3 =
zox; where t; are appropriate coordinates in P(M™*).

c¢) The Schur quadric Q € P(M*) is the conic ¢2 + t2 + t3 = 0.

d) The curve C(E) is the inverse image of this conic under the Cremona
transformation defined in b). In other words, the equation of C(E) is z3z? +
zizl + 2222 = 0.

.e) The subspaces A, are coordinate lines {t; = 0} in P(M™*), the subspaces

A', are the opposite points of the coordinate triangle i.e., points {t; = t; = 0}.
z PP p g I J

4.4. The case n = 4. The moduli space M(—1,4) has dimension 12. As shown
in [DK], an open dense subset in M(—1,4) is provided by normalized logarithmic
bundles

where H = (H,, ..., Hg) is an arrangement of 6 lines in P(V) = P? in general po-
sition. We consider only such bundles E. Let p; € P(V*) be points corresponding
to lines H; C P(V). We first assume that p; do not lie on a conic (i.e., H; are
not all tangent to a conic). In this case:

a) Z = {p1,--,ps}-

b) The variety & C P(M*) = P? is the cubic surface obtained by blowing
up Z.

¢) The quadric @ is the classical Schur quadric associated with the double -
six {l; = A, I} = A},.} (see §0). This follows from Theorem 2.17.
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d) The curve C(E) is the image under 7 : ¥ — P(V*) of the intersection
¥ N Q. The intersection is non singular of degree 6 and genus 4; the projection
will have nodes at p; since each the six lines {; C ¥ blown down to p; by 7s meets
Q@ twice.

e) The subspaces Aj,, A}, form the standard double - six associated to the

blow-down 7y.

If all p; do lie on a conic I' C P(V*), the situation changes. In this case E(H)
is the Schwarzenberger bundle associated to I' (see [Sch1,Sch2], [DK]) and the
features are as follows:

a) Z equals the conic I' (so dim Z = 1).

b) The variety ¥ is the union of a smooth quadric surface @ and a plane
II. The projection 7y : ¥ — P(V*) maps II bijectively to P(V*) and projects
Q@ = P! x P! to one of its P! - factors which is then being embedded into P(V*)
as the conic T'.

¢) The ”Schur quadric” is the surface @ from n. b).

d) The curve C(E) coincides with I' (taken three times).

e) For any z € Z =T the lines A, and A/, both coincide with the generator
of @ = P! x P! mapped into z by 7g, see n.b).

4.5. Bring’s curve as C(E). Consider the situation of Example 0.13: the cubic
surface ¥ is given by equation 23 + ... + 23 = 0 where z; are linear functions on
M* constrained by }_ z; = 0. The Schur quadric corresponding to double - six
described in n. 0.13 is given by Y z? = 0. The intersection C = ¥ N Q i.e. the

curve given in P* by equations

Zar;:Z:v?:Zaf? =0

is known as Bring’s curve [K] [Hu2]. The blow-down of the first six lines of the
double - six described in n. 0.13 gives 6 points py,...,ps in P? forming an orbit
of the alternating group As [Hu2]. These points will be the nodes of the sextic
curve mg(C) C P? i.e., of the projection of C to P?, which is also called Bring’s
curve. The equation of 7g(C') can be found in [Hu2], p. 82.

Thus Bring’s curve can be represented as the curve of JLSK of a certain
bundle on P?: the (normalized) logarithmic bundle of the configuration of lines

dual to p;.

141



I. DOLGACHEV, M. KAPRANOV

4.6. Hulsbergen bundles. Let ¢i,...,¢, be n points in general position in
P(V). There exists an n — 1 -dimensional family of stable rank 2 bundles E on
P(V) with ¢y = —1,¢; = n such that {q1,...,¢n} is the set of zeros of a section of
E(1) (see [Hul]). They are called Hulsbergen bundles. For such E the subscheme
Z of jumping lines of E is reduced and consists of (’2') lines < ¢;,¢; >. We denote
by f; linear functions on V* corresponding to ¢; € P(V). The linear system of

curves of degree n — 1 through Z has a basis formed by the curves

Fi=]]fi=0
i#g

This system maps the surface S = Blz(P(V*)) to the surface ¥ C P(M*) = P"~1

given, in natural homogeneous coordinates (i1, ...,t,), by equations

(,.ljt*) (Zn: a%)= 0,j=1,.,n—3

i=1

where (aj1,...,ajn),j = 1,..,n — 3 is a basis of the space of linear relations
among the vectors f;. In the coordinates t; the ”Schur quadric” @ is given by
the equation Y ¢;t? = 0 so the curve of JLSK in P(V*) has the equation

n

Z aF?=0.

=1

(cf. [Hul] n. 10.5). Note that p: S — ¥ blows down the proper transforms of
the lines I; to singular points of £ which have the coordinates (1,0, ...,0), ...,
(0,...,1). These points belong to aj; (Hom (V*, H*);). So Hulsbergen bundles

are not X - generic in the sense of n. 2.5, although they are Z - generic.
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1 Introduction

To a vector bundle £ — X and an endomorphism ¢ : E — E one associates
a spectral cover 7 : X > X , whose fibers 771(z), £ € X, are given by the
eigenvalues of ¢,. If ¢ is, more generally, a K-valued endomorphism (a “Higgs
bundle”) ¢ : E — E ® K, where K is a line bundle on X, we still get a cover
7 : X — X, but now X is contained in the total space |K| of K, since the
eigenvalues live in K. The eigenspaces of ¢ give a sheaf L on X, which is a line
bundle if ¢ is regular [BNR,B]. (Even more generally, K can be allowed to be a
vector bundle on X, as long as a symmetry condition (trivial in case K is a line
bundle) is imposed on ¢: the case where K is the cotangent bundle of X arises
in [S]. In this work we will consider only the case of a line bundle K.) One way
to construct these objects is to let g : |[K| — X denote the natural projection,
and let 7 be the tautological section of 7% K. Then 7xp — 7 is a 7} K-valued
endomorphism of 7% E. Now L is the cokernel of 7} ¢ — 7, considered as a sheaf
on its support X := Supp(L) C |K]|.

This situation arises frequently in the study of completely integrable Hamil-
tonian systems on a manifold M which can be written as a Lax equation de-
pending on parameters [AvM,B,G,H,K]; here X is the parameter space, often
the affine line or P!, and the flow of the system is linearized on the Picard
variety PicX (or the Jacobian, when X is a curve). The linearization map
typically gives an isogeny from the Liouville tori of the completely integrable
system to (an Abelian subvariety of) PicX, by sending a point of M where the
Lax equation is regular to the eigen line bundle computed at that point.

The vector bundle E — X often has G-structure, where G is some reductive
Lie group. In other words, E is associated to a principal G-bundle V — X via
a representation p : G — GL(V) of G. The endomorphism ¢ then becomes a
section of adV ® K, where adV is the associated bundle of Lie algebras V x¢ g.
In [AvM], Adler and van Moerbeke raised the question of the dependence of
the resulting cover 5(:,, on the representation p. If the situation comes from a
completely integrable system as above, then the Liouville torus, which depends
on the differential equation but not on the particular Lax equations or on the
representation p, should occur, up to isogeny, as a subvariety of PicX, », for all
p- One may therefore expect to find a natural, Prym-type subvariety of each
chX,,, together with correspondences between pairs X X » whose images
in the Picard varieties should be isogenous to this generalized Prym. More
generally, one may wish to describe all correspondences acting on each X, » (or
between pairs) over the base X, and to find the isogeny decomposition of PicX, »
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into isotypic pieces under this action. One of these isotypic pieces should be
common to all X,, and this would be the generalized Prym.

Several special cases of this situation, arising from orthogonal groups, are
well known in Prym theory, e.g. Recillas’ trigonal construction [R], my tetrag-
onal construction [D1,D2], and Pantazis’ bigonal construction [P]. The case of
the exceptional group G, is discussed in [KP]. Other examples, related to the
geometry of families of Del Pezzo surfaces, are given in [K]. In that work, Kanev
gives a solution of Adler-van Moerbeke’s question, under a few hypotheses: the
base X is P!, the principal bundle V is trivial, the Lie algebra g is simple
of type A,, D,, or E,. Under these assumptions he constructs, for each Y,,,
a Prym-Tyurin variety Prym(fp /X)cJ ac(X, ,) and a correspondence whose
image is Prym(f »/X). The Prym-Tyurin varieties for different representations
are isogenous, and even isomorphic if both representations are minuscule.

The purpose of this work is to analyze the decomposition of the Picard vari-
eties of general spectral covers for a reductive group G. We will show (Theorem
8.1) that there is a distinguished isotypic component of Pz'cj(:,,, corresponding
to the reflection representation A of the Weyl group W. When G is one of
the classical simple groups, this is the unique piece common to Picj(v,, for all
non-trivial representations p of G. For some exceptional groups the uniqueness
fails, as we see in Sections 10,11.

Our approach throughout is based on the observation that the geometry
of the spectral covers reflects not so much the representations of G' as those
of its Weyl group W. Various questions about a spectral cover 3(;, simplify
considerably when the emphasis is placed on the action of W rather than on
the way fp sits inside K. Here is what we do in more detail:

The spectral covers X, , decompose into subcovers X, », indexed by W-orbits
of weights A. There are infinitely many distinct covers X p OT X, but they fall
into only a finite number (2", where r = rank,;(G)) of birational classes, cf.
lemma (3.3). In section 2 we construct an abstract W-Galois cover X — X
which dominates all X,. In good cases, points of X over z € X parametrize
chambers in the dual of the unique Cartan subalgebra t(¢(z)) containing ¢(z),
so we call X — X the cameral cover. With very few exceptions (listed in
(4.3)), the spectral covers X, are forced to be singular as soon as X contains
a compact curve, while the cameral cover X and its quotients by the parabolic
subgroups serve as natural desingularizations, as long as the endomorphism ¢
remains regular. For example, this happens for g = so(2n) and any non-trivial
representation. (For the standard, 2n-dimensional representation of so(2n),
Hitchin notes these accidental singularities in [H], and attributes them to the
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vanishing of the Pfaffian.) In particular, it is unrealistic to hope that the eigen-
sheaf L will “generically” be a line bundle on X, p OT X):In typical situations we
get torsion free sheaves on X, which come from line bundles on the cameral X.
(The original situation, where G = GL(n) and p is the standard representation,
is thus quite atypical!)

The ring of natural correspondences on X, is described in §6 in terms of
the Weyl group W and the parabolic subgroup Wp determined by A. The
question of decomposing the spectral Picards is translated to decomposition of
the permutation representation Z[W/W,] as W-module. Some general results,
based on Springer’s representation and the work of [BM], are reviewed in Section
9. These results clarify the general form of the decomposition, but do not seem
to imply the uniqueness of the common component. We thus work out the
uniqueness for classical groups, and the non-uniqueness for some exceptional
groups, by direct computations, in Sections 8, 10 and 11.

In this group-theoretic context, actually writing down the decomposition
in any given case is very easy. In §12, we write down some formulas for the
projection of a spectral Picard onto any generalized Prym. In the case of the
projection to the distinguished Prym we recover Kanev’s formulas (with minor
modifications, which we explain). Kanev’s construction, which is very geomet-
ric, is motivated by the interpretation of certain Weyl groups as symmetries of
line configurations on rational surfaces. Our point is that similar formulas work
much more generally, and require only elementary group theory. J.Y. Merindol
informed me, during the Orsay conference, that he has also obtained projection
formulas (onto the distinguished Prym) for arbitrary reductive groups, remov-
ing Kanev’s restriction to “simply laced” groups, of types A,, D,, E,.

For our purpose in this paper, we can take G to be any complex reduc-
tive group, but the resulting spectral and cameral covers depend only on the
semisimple part G,, of G, as does the distinguished Prym. There is however
a more natural subvariety of PicX, consisting up to isogeny of Prym(f ) to-
gether with a number (equal to the dimension of the center of G) of copies of
PicX. This corresponds to the reflection representation of W on the weights
of G, which decomposes up to isogeny into the weights of G, and a trivial rep-
resentation. In a sequel to this work [D3] we will describe this enlarged Prym
in terms of W-equivariant bundles on X, and interpret it as a moduli space of
generalized Higgs bundles on X with given spectral invariants. Combined with
work of Markman on the existence of Poisson structures [M], this leads to an
algebraically completely integrable Hamiltonian system, generalizing those of
Hitchin, Jacobi-Mumford-Beauville [B], and so on. The construction extends
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to Higgs bundles with values in a vector bundle K, as in [S], where K is the
cotangent bundle of X.

My interest in these questions arose from conversations with M. Adler and
P. van Moerbeke, P. Griffiths, and V. Kanev, about their works [AvM,G K],
followed by discussions with L. Katzarkov and T. Pantev about the G, case,
which they analyzed in [KP], and with E. Markman about the general version of
Hitchin’s system. Conversations with C. Curtis and N. Spaltenstein provided
valuable information about Weyl group representations. I also enjoyed and
benefitted from discussions with A. Beauville, A. Kouvidakis, R. Lazarsfeld
and E. Previato.

2 Cameral covers.

Given a principal Higgs bundle (V,¢) on X, we are going to construct a W-
Galois cover X — X, which we call the cameral cover of (V, ¢). It is indepen-
dent of the choice of a representation. For each representation p : G — GL(V),
the spectral cover X will break into pieces indexed by W-orbits of weights of
p- Each of these pieces will be the image, under an appropriate morphism,
of the cameral cover X, in fact of a certain parabolic quotient X /Wp If the
Higgs bundle is regular, we also have for each weight A a line bundle Ly on X.
It descends to a line bundle on the quotient X / Wp, but only to torsion-free
sheaves on X, X, », ‘usually” of rank 1 on X.

We start with some elementary observations on components of the spectral
covers X First, if p is reducible:

(V. p) = &(Vi, pi),

then the spectral cover X, — X is just the union of the covers 5(:,,,. - X.
We may thus restrict attention to irreducible p. Next, consider the weight
decomposition of V' with respect to a maximal torus T C G:

(2.1) V = ®repVr = ®Baennc Puewa Vi,

where Ag is the lattice of weights of G, D C Ag is the set of weights of p,
and C is the closed Weyl chamber (determined by a Borel B D T'). There is a
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corresponding decomposition of the spectral cover:

(22) ;va= Z m,\j(::\.

AeDNC

Here my = dimV) are the multiplicities, and the X, are constructed as follows:

Recall that Chevalley’s theorem [Hul] says that the restriction map
Clgl® - C[t]",

from ad-invariant polynomial functions on the Lie algebra g to W-invariant
polynomial functions on the Cartan subalgebra t, is an isomorphism. This
implies that for any weight A, there is a unique ad-invariant polynomial function

Py : g — Clz]

(the values are polynomials in one variable ), whose restriction to the Cartan
t is the W-invariant function

II @—p): t— Clz].
pEWA
The ad-invariance implies that Py makes sense on the bundle of algebras ad(V).
The quantity P)(¢) then gives a morphism between the total spaces of the line
bundles:
Pu(g): IK| - K™,

where N = #(W).

Definition 2.3. The spectral cover X, determined by the Higgs bundle
(V,p) and the weight X is the inverse image by Px(¢) of the 0-section.

By construction, X, is a subscheme of |K/|, finite of degree N over X. The
decomposition (2.2) now follows from (2.1) and the definitions of X,, X); in

fact,
. I];[C(PAOP))'"* = char(p(¢))-

From now on, instead of the (usually reducible) cover X,, we consider the
collection of spectral covers X,. We note that an irreducible p determines an
“extremal” X, corresponding to the W-orbit of extremal weights for p. It
occurs with multiplicity 1 in fp. Equality 5(;, = X, holds if and only if the
representation p is minuscule. In general, Weyl’s character formula gives an
explicit way of reconstructing X, , from this extremal piece X,.
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Although in general there are infinitely many non-isomorphic covers X, As
they fall into only a finite number of birational equivalence classes. Next we
construct an object X which dominates all of them.

Using Chevalley’s theorem again, we have an injective ring homomorphism
C[t]" ~ Clg]® — Clg].

Taking Spec, we find a surjective, G-invariant morphism of affine varieties

(2.4) g — t/W.

We can then form the fiber product

The projection w : g — g is a finite morphism which is W-Galois; we call it
the cameral cover of the Lie algebra g. A regular semisimple element g € g is
contained in a unique Cartan subalgebra t. The fiber 77!(g) can be identified
with the set of Borels containing t, or equivalently with the set of chambers in
t*.

Given a Higgs bundle (V, ) on X, we relativize the previous construction
to define X: Since (2.4) is G-invariant and C*-equivariant, it extends to a
morphism

lad(V) ® K| — |(t ® K)|/W

so we can form the fiber product witk t ® K as in (2.5), then pull back to X
via ¢:

Definition (2.6). The cameral cover determined by the principal Higgs
bundle (V, ) is given by 7 : X — X, where

X = ¢"(|lad(V) ® K| Xoxyw [t ® K)
and 7 1s the projection on the first factor.

We can describe the fiber 771(z) over z € X in several ways, e.g. as the set
of prints (in t ® K ) which are conjugate (via elements of V,) to the semisimple
part of p(z) € ad(V,) ® K,. If p(z) is regular semisimple, hence contained in
a unique Cartan t, C ad(V,) ® K, the fiber can be more simply described as
the set of Borels through t,, or chambers in t;. When g = gl(n) on sl(n), a
point of the fiber is given by an ordering of the eigenvalues of ¢(z).
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For each )\, consider the morphism
j,\:g=gxt/wt—+ng
sending
(9,8) = (g, A1)
Clearly P, o j) =0, so j) factors through a morphism
i,\igﬁé,\={P,\=0}\CgXC.

Since the covers X, X are (locally) obtained as pullbacks via ¢ of g, g\ respec-
tively, this globalizes to a morphism

(27) i,\ X - X,\.

Finally, for each ), the line bundle Ly on X is induced from the correspond-
ing Borel-Weil-Bott line bundle on the flag variety G/B. These bundles are the
main object of study in [D3], and will not be further discussed here.

3 Parabolic subgroups.

Fix a Cartan subalgebra t C g and a Borel subalgebra b O t, with correspond-
ing maximal torus T' and Borel subgroup B in G. Let R C t* be the root
system, R* the positive roots with respect to b, S = {a;,---,a,} the simple
roots, and C' the closed Weyl chamber. We recall (e.g. [Hu2], §30) that there

is a natural bijection between the following sets,
(3.1)
(1) Parabolic subalgebras p D b
(2) Parabolic subgroups P D B.
(3) Subsets Sp C S
(4) Subgroups Wp C W generated by reflections in simple roots.
(5) Faces Cp of C.
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This goes as follows: to the subset Sp associate the reductive (Levi) subal-
gebra lp spanned by the root spaces g, with a in
Rp := RN span(Sp),
and then
p:=lpb=lpupCg
where up is spanned by g, with @ in Rt — Rp. We can also get the parabolic

group directly as
P .= BWPB

where Wp is the subgroup of W generated by the reflections o, in simple roots
a € Sp. Conversely, P determines Wp as its Weyl group, i.e. it determines the
normalizer

Np := Np(T) = PN Ng(T),
hence also its image Wp := Np/T in W = Ng(T')/T. Now Wp determines
Sp = {a € S|lo, € Wp}.
Finally, we define the face
Cp := (Span(Sp))* = {fixed points of Wp in C}.
The subgroup Wp is recovered as the stabilizer of (all, or any one of) the points
in the interior C% of Chp.

Thus g, G correspond to the subset S and the group W, and the face Cq
is the vertex; b, B correspond to @, (1), C; minimal parabolics correspond to
singletons Sp, = {a;}, subgroups Wp, = (0,,;), and to walls of C; maximal
parabolics to S\ {a;} and to edges of C' (if g is semisimple; otherwise, Cp
modulo the center is an edge).

Returning to the cameral cover, we define the intermediate cover Xp — X
corresponding to a parabolic P D B (or subset Sp C S) as the quotient

(3.2) Xp=X/Wp.
Thus Xg = X and Xp = X. We see immediately:

Lemma (3.3). The map iy : X — X, of (2.7) factors through Xp if (and
generically, only if) X is in the face Cp.

(One interpretation of the generic statement is that over the whole g, gp —
g is a birational morphism whenever A is in the interior of face Cp.)
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4 Accidental singularities.

Fix a parabolic P and a weight ) in the interior CJ of the corresponding face.
What is the expected behavior of the birational morphism iy : Xp — X, of
(3.3)? Consider the simplest case: g = sl(n), with its standard representation p,
so A is the fundamental weight w;, and p the corresponding maximal parabolic.
In this case both Xp and X parameterize the eigenvalues of p(¢(z)), for z € X,
so iy is an isomorphism. (These are the standard spectral covers con31dered,
e.g. in [BNR].)

We would like to point out that this situation is quite atypical. In fact, for
any g and almost any A, the birational map

ir:gPp — 8\

will fail to be an isomorphism over a non-empty divisor in g, consisting of
elements g € g at which distinct weights A, w accidentally take the same value.
Most points of this divisor will actually be regular semisimple. As a result, we
expect ¢ : Xp — X, » to fail to be an isomorphism as soon as X (contains, or)
is a complete curve, and no regularity requirement on ¢(z), ¢ € X will improve
this situation.

Let t € t be regular, i.e. a(t) # 0 for each root @ € R. Then ¢y has an
accidental singularity at ¢ iff (A — wA)t = 0 for some w € W \ Wp. Hence:

ix has no accidental singularities at regular semisimple points

Yw € W\ W,, A — w) vanishes only at singular points <

(4.1) Yw € W, X — w) is a multiple of some root.

This is therefore a necessary condition for iy = gp — g to be an isomorphism.

Lemma (4.2). Condition (4.1) implies that p is mazimal parabolic, so A
equals a multiple of a fundamental weight, modulo the center.

To see this, we may as well divide by the center and assume that g is
semisimple. Let {a;} be the simple roots, {w;} the fundamental weights, and
o; € W the reflection perpendicular to a;. Write A = 3 m;w;, m; > 0. Then
A — 0;A = m;a;, so m;a; — mjcy should be a root multiple for every 7,j. By
the definition of a simple set of roots, m; and —m; must have the same sign.
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We conclude that at most one m; is # 0, i.e. A isa multiple of w; as claimed.
Q.E.D.

For each Dynkin diagram there are therefore, up to homothety, only finitely
many possibilities for A such that i) is an isomorphism (on regular semisimple
elements, or equivalently, everywhere). For the classical algebras and for G,
we see easily that the possibilities are:

A, wi,wy
By : wi,wy
B, : vy (n>23)
C, : w (n>3)
D, : none
Gy : wi,we

We note that the spectral curves considered by Hitchin[H] are the X, for
the classical algebras and for the standard representation p, of highest weight
wy. These are minuscule for types A, C, D but have the additional weight 0 for
B.,, and i, is an isomorphism for types A, B, C but has accidental singularities
for D,,. Accordingly, his spectral curves are (generically) non-singular for A,,
C,; always singular for D,; and reducible for B,.

5 Isotypic decomposition of Pic.

Consider, in this and the next section, the general situation of a finite group
W acting faithfully on a variety X , with quotient X. We get actions of Z[W]
on X, hence on H,(X,Z) and on Pic(X). Given an irreducible Z[W]-module
A, we consider its equivariant maps to PicX:

(5.1) Prymy(X) := Homw (A, PicX).

this is an algebraic group, and an abelian variety if PicX is, e.g. if X is non-
singular and projective.

For each e € A we get an evaluation map

eval, : Prymy(X) — PicX.
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The kernel of eval, is finite, for any e # 0, since Z[W]e has finite index in
the irreducible module A. Up to isogeny we may therefore think of PrymA(f )
as an algebraic subgroup of PicX; but this is usually unnatural, since changing
e can result in a different (isogenous) copy of Prym,(X) inside PicX.

A W-submodule A’ C A of finite index determines a restriction map
Res: PrymyX — PrymyX
of finite kernel and cokernel. Therefore, Pryms X makes sense up to isogeny if

A is only an irreducible Q[W]-module.

From now on, we will assume that all irreducible representations of W are
defined over Q. We can then choose a set {A;}, i € W, of irreducible Z[W]-
modules whose complexifications give all the irreducible representations. Z[W]
then decomposes as a two-sided W module, up to isogeny:

(5.2) ZW] ~ @i i ® A},

where W acts on the left on A; and on the right on A}. We obtain the corre-
sponding isotypic isogeny decomposition:

(53) chf ~ ®; \; Q7 PrymAif.

6 Subgroups, subcovers, correspondences.

Fix a subgroup Wp of W. The action of W on X restricts to an action of Wp,
giving an intermediate cover Xp:

~ ~ P
X—ZXP—”—)X

There is no natural action of W on Xp or on Pic(y p), but Pic(jf p) can still
be decomposed into its isotypic components with respect to the action of the
(“Hecke”) ring Cp of correspondences on Xp over X. This has the following
elementary description:

(6.1) A correspondence on Xp over X is a top dimensional cycle, or linear
combination of components, of

XP Xx YP = (Y/Wp) Xx (Y/Wp)
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The set of components is given by the quotient
W\(W X W)/WP X Wp ~ WP\W/WP,

i.e. by double Wp-cosets in W. Each double-coset C = WpwWp, w € W, gives
an effective correspondence:

Ic =1, := {(@Wp,zw'Wp)|w' € C/Wp, z € X}.

These correspondences are independent (as long as the action of W is faithful),
and if X is irreducible, these I, form a Z-basis for all correspondences. So, as
a group, Cp = Z[Wp\W/Wp].

(6.2) When Wp = (1), the ring of correspondences is just the integral group
ring C; ~ Z[W], acting naturally on X and hence on Pic(X). In general, there
is an injective pullback map

mp: Cp — Cy = Z[W]

IC = E Iw
weC
satisfying
W;)ICJ ’ 7!';:.[32 = #(WP) ' Tr;;(ICl ’ Ivz)'
We can thus identify Cp with the subring of Q[W] generated (as abelian group)
by
I,
(WP) ,,%:c

as C runs over the double Wp cosets in W. (The image will usually not contain
the identity element.)

We can now describe several ways of decomposing Pic(Xp) into natural
components:

(6.3) The ring of correspondences Cp acts naturally on Pic(Xp), so every
integral representation of Cp determines a generalized Prym variety as in (5.1),
and these can be grouped into isotypic components as in (5.3).

(6.4) We can map Pic(Xp) to ch(X ) via 7p, and intersect the image with the

isotypic components A; ® Prymy, X (with respect to the W action) in Pic(X),
defined in (5.3).

(6.5) The direct image sheaf 7FZ on X is associated to the W-cover X by the
permutation representation Z[Wp\W]:

P Z ~ ZWp\W] xw X.
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The decomposition of Z[Wp\W] into irreducible W-representations (over Q)
determines a decomposition of ’Z, hence of H'(X,Z), and hence an isogeny
decomposition of Pic(Xp).

We see that all these decompositions are essentially the same (up to isogeny,
i.e. the connected components agree). In terms of the decomposition (5.3) of
PicX, the image of 7} in (6.4) is given up to isogeny by

(6.6) ®:M; @ Prymp, X C @; A; ® Prymy X,
Where the multiplicity space M; is given by the Wp-invariants (A;)"?. By
Frobenius reciprocity, this corresponds exactly to the decomposition of Q[Wp\W]:
QWr\W]~ & A ® A] ® Q,
so (6.4) and (6.5) agree.
To compare with the action of the ring of correspondences, we note that
Q®Cp = Q[Wp\W/Wp] = Endqw)Q[Wp\W]

= EndQ[w](GBiM ®A ®Q)
= @®:;Endq(M; ® Q) = @:i(EndM;) ® Q,

and the action on PicXp ~ @:M; ® Prymm(y ) is consistent with this de-
composition, i.e. EndM; acts as 0 on M; ® PrymAjf if j # ¢, and through
its action on M; if j = i. So the generalized Pryms obtainable from (6.3) are
precisely those Prymy,(X) for which M; = A¥? is non-zero, and the isotypic
decomposition is the same as the one obtained from (6.4) or (6.5).

Let 1y denote the permutation representation of W on W; cosets, or its
character. We note for subsequent use the following corollary of Frobenius
reciprocity:

Lemma (6.7). If W;, W; are subgroups of W, then
(13, L,) = dim(L3y )" = #(W,\W/W5),

where the left side denotes the inner product of characters, and the right side is
the number of two sided cosets.
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7 An example.

Consider the symmetric group W = S;. It has 3 subgroups of order 2, generated
by (23), (13), and (12), and a normal subgroup As, of order 3. The W-cover
X — X has corresponding intermediate covers X;, Xz, X3, X. W has character
table:

| 1 G Cs
1 1 1 1
€ 1 -1 1
pl1 2 0 -1

where C; is the conjugacy class of elements of order ¢; 1 is the trivial charac-
ter, ¢ the sign character, and p the character of the 2-dimensional reflection
representation A:

A=ZedLf
(12)e= e (12) f=—e— f
(2)e=—e—f (23) f= f

We obtain the decompositions,

PicX ~ PicX + Prym.X + A ® PrymyX
PicX ~ PicX + Prymef

PicX; ~ PicX + e ® Prym,\j{"
PicX, ~ PicX + (—e—f) ® PrymyX
PicX; ~ PicX + f ® Prym,\:f

8 The distinguished Prym.

As explained in the introduction, the linearization of algebraically completely
integrable systems via spectral covers suggests that there should be a unique, or
at least a distinguished, nontrivial irreducible representation A # 1 of W such
that the Prym variety Prym, occurs in Xp for all proper subgroups Wp # W.
As the example in §7 shows, this is not true for all finite groups W, in fact not
even for Weyl groups if we allow Wp to be an arbitrary subgroup. Restricting
attention only to the Weyl subgroups, we are left in the above example with
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X, X; and X3, each of which contains the trivial piece PicX and at least one
copy of Prymy X.

This picture generalizes as follows. For any Weyl group W of a reductive Lie
group G, all representations are defined over Q. We can describe three natural
irreducible representations: the trivial representation 1, the sign representation
€, and the reflection representation of W acting on the weight lattice A of the
semisimple part of G. Of these, 1 occurs in 1} for any Wp C W, and ¢ does
not occur in leVP for any proper Weyl subgroup Wp.

Theorem (8.1). (1) The Prym variety PrymyX corresponding to the re-
flection representation A occurs with positive multiplicity in Pic(f p) for any
proper Weyl subgroup W, # W.

(2) For the classical groups, A is the only nontrivial irreducible representa-
tion of W with this property.

Proof.

(1) mult(Pryma X, PicXp) = mult(A,1},) = (by Frobenius)
= dim(A)"? = (compare (3.1))
= dim(Cp[center) > 0.

(2) For a given Weyl group W, the question is: Find all irreducible W-
representations V such that VWP # (0) for each proper Weyl subgroup Wp #
w.

For type A,,i.e. G=SL(n+1) and W = S, take Wp, = S, correspond-
ing to a Dynkin subdiagram of type A,_;. Then over Q:

Ly, =1@A,

so no representation other then (1 and) A is common to all 13}, as required.

Consider the Weyl group W of type B,, with the nodes labeled as in [Bo] so
that oy, -, a,_1 are long and a, is short. Let W; denote the Weyl subgroup
obtained by deleting ;. In the standard permutation representation of W
on the 2n vectors *e¢;, 1 < i < n, the stabilizer of ¢, is W;, so we get the
decomposition

ly,=10AdN

where A is the n-dimensional reflection representation of W, and A’ is the
(n — 1)-dimensional (reflection) representation of S, pulled back to W.
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More generally, W; is the stabilizer in W of ¢; +- - - +¢;. We see from (6.7)

et 3 i=1,2 1
(1, 10) = #(W\W/W,) = {2 =121

In particular, for ¢ = n we have by part (1) a decomposition
1y =10A0V

for some representation V satisfying 0 = (V,1}},), and in particular

= (V,X’). So again, 1 and A are the only irreducible representatlons common
to the lw‘ for all . The same argument works with no change for type C,,. For
D, the only change is that W,,_; is the stabilizer of &; + -+ + €,_1 — €5; but
W, is still the stabilizer of €, + - - - + &,, so we still have

(1W1 ) lw,.) = 27

and this case follows as well. Q.E.D.

9 Remarks on Springer’s correspondence.

In fact, we can say much more about the decompositon of 1}}., or more generally
of lwp, into irreducibles. The picture is clearest for type A,; in this case, the
irreducible representations V), of W = S, are parametrized by partitions A of
n+1, as are the conjugacy classes (in GL(n+1)) of Levi subgroups, the conju-
gacy classes in W of Weyl sugbroups W), and the unipotent conjugacy classes
in GL(n + 1) (or the nilpotent classes in gl(n +1)). These classes are partially
ordered (e.g. by inclusion of unipotent class closures), and Young’s rule says
that the decomposition matrix (my,), giving the multiplicity of V) in lv“‘;”, is
a triangular matrix with 1's on the diagonal.

In fact, my, is the Kostka number [J], defined as the number of semistan-
dard tableaux on u of type A. The uniqueness of A of course follows from the
triangularity of the decomposition matrix. Explicitly, the representations 1, A
and ¢ correspond to the partitions (n), (n — 1,1), and (1"). The partitions
which occur in the 1}, are those with at most two parts:

(9.1) 1y, = ®i—gVa-jj if 2 <n.
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For other groups, the picture is somewhat more complicated. To a Levi
subgroup L C G (e.g. to the Levi L(P) of a parabolic P) we can associate the
(unipotent) conjugacy class O, of a regular unipotent element u € L. In general,
this correspondence may no longer be bijective. We say that a conjugacy class
is of parabolic type if it comes from some L(P). For a unipotent u, consider
the Springer fiber

B, := {Borel subgroups of G containing u}.

Springer and others construct an action of W on B,, hence on its cohomology
H*(B,). Alvis and Lusztig [AL] identify H*(B,) with 13} , in case u is regular
unipotent in L(P) as above. On the other hand, the top cohomology H'"?(B,)
decomposes into irreducible W- representations S, , indexed by the irreducible
local systems ¢ on O,. (In case A,, O, is simply connected so ¢ is trivial.) The
Springer correspondence

(Oua K) = Oue
gives all irreducible W-representations.

The triangularity part of Young’s rule has an analogue for arbitrary W,
due to Borho and MacPherson[BM]: any component of H*(B,,) (i.e. of lwp, by
[AL]) is of the form S, , for some unipotent v (and local system ¢ on O,) such
that O, D O,.

Since the Springer correspondence has been completely determined (see, e.g.
[Ca] §13.3), the triangularity result provides a powerful tool for analyzing the
decomposition of permutation representations of W. Yet we do not see how to
use it for our purposes, since it only provides block-triangularity. Two things
can go wrong:

e The largest non regular (=“subregular”) unipotent class corresponds to
the reflection representation. But it may fail to be simply connected, and
may thus contribute to more than a single irreducible W-representation
which cannot be excluded; or

e There may be unipotent classes, strictly smaller (= in the closure of)
the subregular, but containing in their closure all unipotent classes of
parabolic type.

We will see below that for the exceptional groups both problems do occur.
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10 Decomposition for Gs.

In this section and the next we show that the uniqueness (part (2) of Theorem
(8.1))

can fail for some exceptional groups. We do this by explicit calculation.

The Weyl group W (G5) is isomorphic to the dihedral group Diheds, of order
12, generated by a rotation r, of order 6, and a reflection s. The character table
is, in the notation of [Se]:

| %1 92 ¥s % x1 Xxe

1 1 1 1 1 2 2
r,r! 1 1 -1 -1 1 -1

r? p2 1 1 1 1 -1 -1
rs 1 1 -1 -1 =2 2

s, sr%, 572 1 -1 1 -1 0 0
sr,sr3 sr7! 1 -1 -1 1 0 0

Here 1 = ¢, A = x1, € = ¢. There are only two non-trivial Weyl subgroups,
say Wi = (s) and Wy = (sr). We see then that the characters of 1}, and 1},
are, respectively, (6,0,0,0,2,0) and (6,0,0,0,0,2). The decomposition is thus:
(10.1) Ly, = ¥1 + ¥4 + x1 + Xo-

This can also be seen very explicitly: let H denote W; = (1, s), then Q[W/H] =:

1%1 = + Y3 + X1 + X2,

U, decomposes into:

1 ~ QH+rH+r*H+r"H+r*H+r'H]
Y3 ~ Q[H—rH+r’H—r*H+r*H—r'H|
x1 ~ QH-rH-r*H+r?HH-rH—-r"H+r"Hj
X2 ~ QH-rH+7H—-r?HH-rH+r*H-rH].

The decomposition for U, := 1}}, is obtained similarly.

Theorem (8.1) is thus false for G,: there are two non-trivial pieces common
to all Pic(Xp), namely A = x; and x».
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__ These Pryms can be described more explicitly as follows: The cover X! =
X /W1, of degree 6 over X, is the fiber product of its two intermediate covers:

X =%/6%), X'=%/0),

of degrees 2,3 respectively over X. From the decomposition of permutation
representations:

142 = ti+ys
15 = Y1+x2
We find
PicX' ~ PicX + Prymy, X
PicX" ~ PicX + Prym,,X,
hence
Prym,,X ~ Prym(X"/X)

Prym, X + Prym,,X ~ Prym(X'/X")
Prym, X ~ Prym(X'/(X',X")).

We note that W(G;) has the outer automorphism s ~ sr, r + r, which
exchanges W, and W, ¢35 and 14, and fixes 1,19, x1, X2; so the above de-
composition of PicX! is transformed to the corresponding decomposition for
PicX?.

Starting with arbitrary X and (branched) covers X', X" of degrees 2,3, we
construct X"!, of degree 6, and then set

X'=X'xx X", X=X xxX",

recovering the previous situation. If X is a curve of genus g, and X', X" have
respectively 2n,2m simple ramification points over disjoint branch loci in X,
we find for the Pryms of types vy,s, x1, x2 the dimensions

9,9—14+n,29—-2+m+2n,29g—2+m.

In particular, we see that the three components Prymy,, Prym,,, Prym,,
common to PicX! and PicX? have different dimensions, and in general there
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will be no nontrivial maps between them. If we take X = P!, the common piece
Prym,, becomes the Jacobian of the trigonal curve X". But the distinguished
piece, Prym,,, still seems to be neither a Jacobian nor a classical Prym.

It is also interesting to compare this with the explicit description of the
Springer correspondence, in [Ca]. There are 5 unipotent conjugacy classes in
G3, denoted there G, (the regular unipotents), G2(a;) (the subregulars), Ar,
A; and 1. These are in descending order (the partial order is a total order for
G,). The Springer correspondence then sends:

Gy » P
Ga(a1) = Yaxa
.21 = X2
A — s

1 — 4y,

where y; comes from the trivial local system on the subregular orbit, and v,
from the nontrivial rank-2 local system (the fundamental group is S3). In the

terminology of §9, the unipotent class associated to (the Levi of) W, is A ,
and all characters allowed by Borho-MacPherson’s triangularity do occur. But
the unipotent class associated to W is A;, and one character (1) allowed by
[BM] is missing.

11 The decomposition for Eg.

We use Schlifli’s description of the exceptional Weyl group W := W(Es), as
incidence-preserving permutations of the 27 lines on a general cubic surface
(cf.[CCNPW], p.26). For the “lines” we take the 27 = 6 + 6 + 15 objects:

a; , bj y Cij = Cji (Z,]=1,,6,Z§é])
Two lines are incident if they lie in one of the 45 = 30+ 15 “tritangent planes”:

(ai,bj,c.-j) , (c,-j,ck,,cmn) (i,---,n distinct € {1,,6})
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There are 72 “sixes” of pairwise non-incident lines, arranged in 36 = 1420+ 15
“double-sixes” in which each line of one of the sixes meets all but one of the
lines in the other six:

s = {a1, ay, a3, as, a5, ag}

/

S = {bl’ bg, ba, b4, b5, b6}

sijk = {ai, @j, ak, Cem, Ctn, Cmn}

/

Sijk = {Cjk, Ciky Cij, bn, bm, be }

sij = {ai, b, Ciks Cjty, Cjm, cj,,}

’ = —
Sij = {aja bj, Ciky Cit,  Cim, ci,,} = ;i

Each “six” sy determines an involution o; € W which exchanges s; with s; and
fixes the remaining 15 lines.

We label the six fundamental weights w; as follows:

(This seems simpler than the notation in [Bou].) The corresponding reflec-
tions 0;, 1 < i < 6, generate W. Explicitly, for 1 < i < 5, 0; corresponds to the
double-six s;;41,5};,1; it preserves the partition of the lines into a's, ¥'s and
s, and exchanges indices 7,7 + 1. The last reflection, g, corresponds to sy23,

S13-
The Weyl subgroup W; is generated by {o;|j # i}, and is the stabilizer in
W of w;. It has a simple description as stablilizer of a set of lines:

W; : the line b;

W, : the disjoint pair {b, by}

W3 : the disjoint triple {b;,bs,b3} (or {a4,as,a6})
Wy : the disjoint pair {as, ag}

Ws : the line ag

Ws : the disjoint “six” s (or s').
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The graph automorphism takes the permutation representation U; := 1y,
to Ug_i;, 1 < ¢ < 5. We are thus concerned with the four fundamental rep-
resentations Uy, Uy, Us, U, of dimensions 27,216,720, 72 respectively. We note
that U; is the permutation representation of W on the 27 lines, and Us is the
permutation representation on the 72 roots.

The character inner products U; - U; are given in the following table:

|l v, U, Uy Us

Uy | 3 4 5 3

(1L1) U | 4 10 17 6
Us | 5 17 36 9

Us | 3 6 9 5

The computation can be done by a straightforward application of lemma, (6.7).
For example, U; - U; is given by the number of orbits of W; on the 27 lines.
These orbits are:

U, = b
10 lines incident to b, (=ai, c1i, 1 #£1)
16 non-incident lines (= a1, bi,ci5, 1,5 #1)
U2 = bl)b2
5 lines meeting both (= ai,i #1,2,and c12)
10 lines meeting one of by,b, (= a1, a2, ¢4, Ciy 1 # 1,2)
10 lines meeting neither (= b, cij,i,7 #1,2)
Us = by, by, bs
3 lines meeting all 3 (= aq,as,a6)
© lines meeting 2 (= a1, a2, a3, c12, C13, C23)
9 lines meeting 1 (=6j,1<i<3,4<j<6)
6 lines meeting none (= by, bs, b, Cas, Ca6, C56)
Us = 6ds
6b's
15¢'s

Other rows are similarly computed as numbers of W;-orbits on pairs, triples
and sixes of disjoint lines. Here are the orbits on sixes:
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Orbits of _ Orbit size Orbit description

wy 16 sr 35
16 ELN
40 neither

w2 #(sp N {b1,b2}) #(s7 0 {b1,b2})
5 2 [
2 1 1
20 1 0
5 0 2
20 0 1
20 0 0

W3 #(or 0 {b1,b3,53)) | #(sy N {ag,a5,a6}) | #(s] N {b1,b2,53}) | #(s] N {ag,a5,a6})
2 0 3 3 0
2 3 0 0 3
2 0 0 0 0
18 0 1 1 0
18 1 0 0 1
9 0 2 2 0
9 2 0 0 2
6 1 0 1 0
6 0 1 0 1

Wg 1 s
20 Sijk
30 855
20 sijk

The analogue of (8.1) in this case is:

Proposition (11.2).

(i) Uh = 1@ ADE, where A is the 6-dimensional reflection representation of
W (Eg), and = is an irreductble 20-dimensional representation.

(ii) Each U; contains 1 and A with multiplicity 1. The multiplicity of = in
Uh, Uz, Us, Us 1s, respectively, 1,2,3,1.

Proof. The multiplicities of 1, A in U; are always 1. The irreducibility of
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the remaining piece = in U; and its multiplicity in the U; then follow from (the
first row of) (11.1). Q.E.D.

In particular, we again have two different non-trivial Pryms, P, and Fx,
which occur in all spectral Picards Pic(X,). Using the rest of the information
in (11.1), we can work out the complete decomposition of the Us;.

We find in the Atlas [CCNPW] that the simple group
W :i=ker(e: W — Z/2)

has 20 irreducible characters. Of these, 10 merge in pairs to give 5 charcters
of W which we denote by their dimensions: 10, 20,60, 80,90. (These are the
characters which vanish on W\ W+*.) Each of the 10 remaining irreducible
characters of W splits into a pair of irreducible characters of W; the dimensions
are 1,6,15,15,20, 24, 30,60, 64, 81. We denote each of these 20 characters by its
dimension followed by a + or — according to its sign on the reflections o; (which
are all in the same conjugacy class in W, class 2c in Atlas notation). The two
15-dimensional pairs are separated by their values on products (in W) of two
commuting 0;,0;: we write 15% (respectively 15') for the pair where these
values are positive (respectively negative), lifting the character xs (respectively
x7) of W*, in Atlas notation.

Proposition (11.3). The decomposition of the permutation representa-
tions U; into irreducibles is given by:
Uy = 1oADE (A=6", E==20%
Us = 1oA® Ed 15" ¢ 30t
U, = 16 A®2E0 15" @ 30+ @ 60+ @ 64+
Us = 10AD3ED2-157®2-30"93-60" d2-64" 960090
24" o 817

Proof.

We claim that the decomposition above is the only one consistent with
Table (11.1), with the known dimensions of the U;, and with the values of their
characters x; on a simple reflection o, say the one which exchanges a’s and ¥'s
(i.e. corresponding to the double six s, s', or the root ag):

xi(0) = #(Wi—cosets fixed by o)
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= 15,30,66,140 for ¢ =1,6,2,3 respectively.

These numbers count the i-tuples of disjoint lines which are preserved by o.
For example, the 140 triples, for ¢ = 3, are of the form:

< a;, b,', Cjk > (60)
< cij, ik, Cie > (60)
< Cij, Cik, Cjk > (20)

Here are the main steps:

e We must have A = 6% or 6~ and = = 20*, 20~ or 20; since x1(0) = 15,
6%(0) = £4, 20%(0) = £10, 20(0) = 0, we must have A = 6+, = = 20+,

o There are two new components in Us, by (11.1). The dimensions should
add up to 45 and the values on ¢ to 15, so one must be 30" and the other
either 157 or 15'*. The 36-dimensional representation 1} of W+ on
double-sixes is decomposed in the Atlas as 1 @ 15 @ 20. Since Ug must
contain a lift of these, it decomposes as stated.

e We have already seen the multiplicities of 1, A, = in U, Us. The difference
U; — 1 — A — 2Z has inner product 4 with itself and 9 with Us;, so it must
be the sum of 4 distinct characters. Since the inner product with U is 2,
two of these must be 15%, 30%*. Let v, § be the remaining two characters.
We have

vy(1)+6(1)=216—-1-6—-2-20—15—30 = 124
y(0)+8(0) = 66-1—-4-2-10—5—10= 26
so these characters must be 60" and 647, as claimed.

o Write U; as 1§ADIZDk-15T®(4—k)-30T @ L-64TH(5—£)-60T DY m,é,,
where the €, are new characters, the m, non-negative integers, and the
coefficients 4 — k, 5 — ¢ are determined by (11.1). Evaluating the self-
product and values on 1,0, we find:

Y m? = 25— (K2 + (4 —k)?) — (& + (5 0)?)
Y Maa(l) = 233415k — 4L
Y mgeql(0) = 154 5k — 6¢.

170



DECOMPOSITION OF SPECTRAL COVERS

The first equation gives

Y mi <4,
the second gives, after some fiddling, that k = 2, there are exactly four
€q’s, with all m, =1, and that ¢ = 2 or 3, which yields respectively

4 e,(1)=255 or 251
4 €a(0)=13 or T.

The only solution is £ = 3 with the ¢,’s equal 90,81%,60,24*.

Q.E.D.

12 Projection formulas.

We conclude by writing down explicitly some correspondences on spectral covers
which induce on the spectral Picards the projection to the spectral Pryms. The
method is very general, so we return to the setting of §6. W is an arbitrary
finite group, V an irreducible representation of W, vy € V' a vector fixed by a
subgroup Wp C W . We then have a natural projection

pr: Up:=1y, =C[W/Wp] - V

w = Wy.

Assume now that V is either real or quaternionic, so there is a W-invariant, non-
degenerate bilinear form <,> on V. We then get a W-equivariant transpose
map:

i=(pr)}:V — Up

v Z <v,wyy > wW.
U)EW/WP

The composite:

c=cpy=topr: Up — Up
Wo W Yuew/wp < Wolg, WV > W
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is then the desired correspondence on Up giving the projection to the V-factor.
It satisfies

c® =qc
for a constant ¢ which depends on our choice of <,>. It can be computed
directly:

q-dimV =Trace(c) = > < wv,wyy >= #(W) |vo?,
P

SO
dimUp 2
(12.1) 0= .

It can also be computed by considering

d:i=proi: V —» V
Vo Yuewwp < U, WU > W

By Schur’s lemma, ¢ is multiplication by the scalar g, which is determined by:

q < v,V >=< vg,C vy >= Z < v, wyp >2,
‘wEW/Wp
)
2
< vp,wyy >

12.2 - .
( ) g < vp,Vp >

wGW/Wp
(The compatibility of (12.1) and (12.2) amounts to the identity:

<wg,wyy > 1 )
<vg,vp >  dimV’

Average,cw

In the ring Cp of correspondences (6.1), we have

(12.3) c= Z < vg,wvpg > I,.

weWp\W/Wp
When the representation V is rational it is therefore natural to choose <, > so
that the coefficients < vg, wvy > will be integers.

When W is a Weyl group, all irreducible representations V are rational, so
the above applies. The integral correspondence ¢ = cpv acts on the spectral
Picard, Pic(Xp), projecting it to a copy of Prymy (X ). Projections to different
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copies of Prymv(f ) are obtained by varying the initial vector vy within the
fixed subspace (V)"?. When V is the reflection representation A, these vy can
be taken to be the fundamental weights w; in the face Cp of the Weyl chamber
determined by the subgroup Wp, cf. (3.1).

In [K], Kanev obtains (essentially) formula (12.3) for the projection and
analogues of (12.1), (12.2) for the eigenvalue g, in case the base X is P!, the
Lie algebra is of type A,, D,, or E,, and the representation V of W is the reflec-
tion representation A. (But Wp is an arbitrary Weyl subgroup, which by our
preliminary observations in §§2,3 is equivalent to considering spectral covers X o
for arbitrary representations p of G. In other words, Kanev considers the distin-
guished Prym, Prymy(X,), in Pic(X,), arbitrary p.) His approach is based on
the construction, for each A € A (corresponding to our choice of vy € V), of a lat-
tice N(A, A) with bilinear pairing (,). For g of type A,, D,,, E,,, these lattices are
interpreted as cohomology of an appropriate rational surface, with A recovered
as the primitive cohomology. Kanev’s correspondence differs from our ¢ by (a
sign, since the primitive cohomology is negative definite, and) a translation by a
multiple of >1,
(= projection onto 1). When PicX is trivial (e.g. under his assumption that
X = P!), this translation is immaterial, and yields an effective representative
of the correspondence. (In general it would map Pic(Xp) to the sum of PicX
and Prymy(X).)

For example, when G = GL(n), W = S,, the fundamental spectral covers

are X;, 1< i < n—1, of degree ( T: ) over X. A Z-basis for the correspon-
dences on X; is given by I, i, 0 < j < i, sending an i-tuple to all other i-tuples

intersecting it with cardinality j. Kanev’s formula for the projection of Pic()?;)
to Prymy(X) is

Jj=0

while ours gives:

i ) i2
e=> (-l
i=0

At the Orsay meeting, I was informed by J.Y. Merindol that he had also
obtained extensions of Kanev’s results, similar in spirit to the formulas in this
section. It seems that he still considers only the distinguished Prym, Prym,\f
(and takes X = P!), but removes the restrictions on the type of the reductive
Lie algebra g.
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SESHADRI CONSTANTS ON SMOOTH SURFACES

Lawrence EIN*
Robert LAZARSFELD**

Introduction

Let X be a smooth complex projective variety of dimension n, and let L be
a numerically effective line bundle on X. Following Demailly [De2], one defines
the Seshadri constant of L at a point z € X to be the real number

. L-C
G(L,.’L) = égf; ;n—,_.(-C—)- s

where the infimum is taken over all irreducible curves C passing through z,
and m;(C) is the multiplicity of C' at z. It is profitable to view e(L,z) as a
local measure of how positive L is at z. For example if L is very ample, then
e(L,z) > 1; on a surface X the same is true more generally if L = Ox(D)
for an ample effective divisor D 3 z which is smooth at z. In general, if
f : Bl;(X) — X denotes the blowing up of X at ¢ and E = f~!(z) is the
exceptional divisor, then for € > 0 the R-divisor f*L — e FE is nef if and only if
€ < €(L,z). (Consult [De2, §6] for other interpretations.) Similarly, one defines
the global Seshadri constant

e(L) = ngﬁ( e(L,z).

Thus Seshadri’s criterion for ampleness states that e(L) > 0 if and only if L is
ample.

Recent interest in Seshadri constants stems from the fact that they govern
a simple method for producing sections of adjoint bundles Kx + kL (c.f. [De2,
(6.8)]). In brief, by means of vanishing theorems on the blow-up Bl,(X), a
lower bound on €(L, ) yields an explicit value of k such that Kx + kL has a
section which is non-zero at z (see (3.4) below). We shall see in §3 that Seshadri

*Partially supported by NSF Grant DMS 91-05183
**Partially supported by NSF Grant DMS 89-02551

S.M.F.
Astérisque  218** (1993) 177
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constants alone cannot account for the known results on global generation and
very ampleness of adjoint bundles ([Rdr], [Del], [EL]). However they remain
very interesting in their own right as measures of local positivity. The subtlety
of these invariants is reflected in the fact, pointed out by Demailly, that they
are already rather difficult to compute on surfaces.

The purpose of this note is to study Seshadri constants in this first non-
trivial case, when X is a smooth projective surface. One might anticipate that
in general €(L, z) could become small on fairly arbitrary algebraic subsets of X.
Somewhat surprisingly, our main result shows that this is not the case:

THEOREM. Let L be an ample line bundle on a smooth complex projective
surface X. Then €(L,z) > 1 for all except perhaps countably many points
z € X, and moreover if ¢;(L)? > 1, then the set of exceptional points is in fact
finite. More generally, given an integer e > 1, suppose that

c1(L)? > 2% ~2e+1 and ¢ (L)-T'>e for every irreducible curve I C X.

Then ¢(L,z) > e for all but finitely many z € X.

On the other hand, simple examples (constructed by Miranda) show that e(L, z)
can take on arbitrarily small values at isolated points. We hope that this gives
some sense of the kind of picture one might hope for in higher dimensions.

The proof of the theorem is completely elementary, the essential point
being simply to view the question variationally. Specifically, suppose that L is
an ample line bundle, and C' = Cy C X is a curve with m = m,(C) > C - L for
some point ¢ = z¢ € C. By combining a simple computation in deformation
theory (§1) with the Hodge index theorem, we show that (C,z) cannot move
in a non-trivial one-parameter family (Cy,z;) with m,,(C;) > m for all ¢. In
other words, pairs (C,z) forcing €(L,z) < 1 are rigid, and the first statement
of the Theorem follows at once. We were inspired in this argument by work of
G. Xu [Xu], who uses related but much more elaborate calculations to study
geometric genera of subvarieties of general hypersurfaces in projective space.
We present some examples and open questions in §3.

We have benefitted from discussions with J. Kolldr, W. Lang, R. Miranda,
Y.-T. Siu, H. Tsuji, E. Viehweg, G. Xiao, and G. Xu.

§1. Deformations of Singular Curves on a Surface

This section is devoted to a proof, in the spirit of [Xu], of an elementary
lemma concerning the deformation theory of singular curves on a surface. While
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the result in question is certainly well known in the folklore, we include an
argument here for lack of a suitable reference and for the convenience of the
reader.

We consider the following situation. X is a smooth complex projective
surface, and we suppose given a one-parameter family

{Ci3 ¢ bien

consisting of curves C; C X plus a point z; € C}, parametrized by a smooth
curve or small disk A. Setting C = Cp and z = z¢ for 0 € A, the deformation
determines a Kodaira-Spencer map

p:ToA — H(C,N),

where N = O¢(C) is the normal bundle to C' in X.

LEMMA 1.1. Assume that m,,(C;) > m for all t € A. Then p(%) €
H°(C, N) vanishes to order > (m — 1) at z.

REMARK. We say that a section s € H°(C,N) vanishes to order > k at a

(possibly singular) point y € C' if s is actually a section of the subsheaf N®m§ C
N, where m, is the maximal ideal sheaf of y.

PROOF OF LEMMA 1.1: We simply make an explicit computation. Specifically,
the assertion is local on C and A, so we can assume that A is a small disk with
coordinate ¢, and that C lies in an open subset U of C% with coordinates (z,w),
and z = (0,0). The total space C C U x A of the deformation is then defined
by a power series F(z,w,t) = fi(z,w) where C; = {fi = 0}. We may suppose
that z, = (a(t), b(t)) for suitable power series a(t), b(t). Then the curve defined
by
¢i(z,w) =qer F(z + a(t),w + b(t),1)

has multiplicity > m at (0,0) for all t € A. Expanding ¢,(z,w) = ¥ ¢i(z, w)t*
as a power series in t, it follows that ¢; € (z,w)™ for all ;. On the other hand,

3fo 9o

) oF
$1(z,0) = 2= (2,w) - a'(0) + Z=(z,w) - V(0) + —- (2, w,0),

and since —aé(z,w), %%(z,w) € (z,w)™ ™!, we find that

aF m—1
o (2,0,0) € (2,0)"

But 2F|C is the local expression for p( 4y € H°(C, N), and the lemma follows.
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COROLLARY 1.2. In the situation of the Lemma, assume in addition that
C is reduced and irreducible, and that the Kodaira-Spencer deformation class
p(%) € H°(C,N) is non-zero. Then C-C > m(m — 1).

PROOF: This follows from the Lemma plus the fact that ¢;(NN') represents C-C.
In more detail, let f : Y — X be the blowing-up of X at z, with exceptional
divisor E C Y. Then f*C = C' + kE, where C' C Y is the proper transform
of C, and k = mz(C) > m. Note that C' is the blowing-up of C at z. Put
s = p(£), so that 0 # s € H°(C,m™! ® Oc(C)). Then s induces a non-zero
section

s' € H'(C', f*(0c(€)) ® Oy ((1 = m)E)|c)-

This implies that deg f*(Oc(C))|cr > (m = 1)E - C' = k(m —1). It follows
that

C-C = deg Oc(C) = deg f(Oc(C))lc > k(m — 1) > m(m — 1),

as claimed. J

§2. Proof of the Theorem

We now give the proof of the theorem stated in the Introduction.

As in the statement, let L be an ample line bundle on the smooth surface
X. Then there are only finitely many algebraic families of reduced irreducible
(i.e. integral) curves on X of bounded degree with respect to L. Therefore for

fixed d > 0 the set

Sa = {(C,l')

z € C C X an integral curve , m,(C)>C-L, C-L < d}

is parametrized by a finite union of irreducible quasi-projective varieties. Con-
sequently

S= {(C,w)

z € C C X areduced irreducible curve , m,(C) > C - L}

consists of at most countably many algebraic families. The first statement of
the theorem will follow if we prove that each of these families is discrete.

Suppose to the contrary that there exists a non-trivial continuous family
{ (Ct,z¢) }ien of reduced irreducible curves C; C X, plus points z; € Cy, with

(*) mg =ger mult,, (C;) > Cy- L for all t € A.
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Without loss of generality we may assume here that A is a smooth irreducible
curve (or a disk). Since each C; is reduced, we have my(C;) = 1 for all but
finitely many y € C;. So it follows from (*) that the curves {C;} must them-
selves move in a non-trivial family. Hence for general t* € A the corresponding
Kodaira-Spencer map

Te & — H(Cex, Ne, /)

is non-zero. Let C = Cy« and m = my. for such a point t* € A. Corollary 1.2
then implies that C - C > m(m — 1). On the other hand, (C?)(L?) < (C - L)?
thanks to the Hodge index theorem, and since C - L < m — 1 by assumption,
we find:

m(m —1) < (C?)(L*) £ (C-L)* £ (m - 1)~

This is a contradiction when m > 1, which proves the first statement of the
Theorem.

Suppose next that L? > 2. To prove the finiteness of the exceptional points,
it is enough to show that S = S; for some d, i.e. that any reduced irreducible
curve C' with m = m,(C) > C - L for some z € X has bounded L-degree. To
this end observe first that there exists a large integer N with the property that
for any point y € X there is a divisor Dy € |N - L| with my(Dy) > N. Indeed,
it follows from Riemann-Roch that for n > 0:

n?L?

R’ (X,nL) ~ >n?,

whereas it is only (";’l) ~ "72 conditions to impose an n-fold point at y € X.

Suppose now that C is a reduced irreducible curve with m = m,(C) > C- L
for some z € X. Setting D = D,, we claim next that C' must appear as a
component of D. In fact, if C were to meet D properly, then

m-N <m,(C) -my(D)<C-D=N(C-L),

whence m < C - L, a contradiction. But once we know that C appears as a
component of D, € [N - L|, we find that

C-L<D,-L=N-L%

which gives the required bound.

Finally, fix e > 2, and assume that L? > 2¢? —2e+ 1 and that I'- L > ¢
for all curves I' C X. Suppose that C C X is an integral curve such that
m =m,(C) > L. If (C,z) moves in a non-trivial family satisfying this same
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condition, then the lower bound on C - L shows that C itself must move. Then
one argues as above that

(22 —2e + 1)m(m —1) < (L*)(C?*) < (C- L) < (em —1)%
But we claim this is a contradiction when m > 2. In fact the function
f(m) = (2€¢* = 2e + 1)m(m — 1) — (em — 1)*

is increasing for m > 1, and f(2) > 0. Hence pairs (C,z) with m,(C) > &L
are rigid. The finiteness of the exceptional points is similarly proved much as
before.

This completes the proof of the Theorem.

§3. Complements, Examples and Open Problems

We collect in this section some applications, examples and open questions.

We begin with an example, given by Miranda, to show that e(L, z) can take
on arbitrarily small values at isolated points. Miranda’s construction improves
and simplifies a more cumbersome example we had produced where e(L, z) < -;—

EXAMPLE 3.1. Let D C P? be an irreducible plane curve of degree d with
a point € D of multiplicity m. Let D' be a second irreducible curve of degree
d, meeting D transversely. Choosing D’ generally, we may suppose that all the
curves in the pencil spanned by D and D' are irreducible. Blow up the base-
points of the pencil to obtain a surface X, admitting a map f : X — P! with
irreducible fibres, among them D C X. Observe that f has a section S C X
meeting D transversely at one point. Fix an integer a > 2. It follows from the
Nakai criterion that the divisor L = aD 4+ S on X is ample. But L-D =1
whereas m,(D) = m, so ¢(L,z) < L. Note that by taking suitable a we can
make L? arbitrary large, and by taking L to be a multiple of aD + .S we can
arrange that L - I’ be bounded below by any preassigned integer. il

As Viehweg points out, once one has an example of a surface where (L, z)
is small at isolated points, one gets examples of higher dimensional varieties
where the Seshadri constant becomes small on a codimension two subset:

EXAMPLE 3.2. Let (X,L) be as in Example (3.1), and for n > 3 let ¥ =
X x P2 and put N = p}(L) ® p3(Op(1)). By taking curves in X x {z}, one
sees that

e(N,(z,2)) < e(L,z) forall z€ P2
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In particular €(N,y) can be arbitrarily small in codimension two. i

It would be very interesting to understand whether Seshadri constants are
otherwise well-behaved:

PROBLEM 3.3. Let L be an ample line bundle on a smooth projective variety
X. Does there always exist a point z € X at which e(L,z) > 1?7 If L™ > 0 is
e(L,z) > 1 off a subset of codimension twc?

Unfortunately the elementary methods of the present paper do not seem to shed
much light on this question.

As noted in the Introduction, bounds on Seshadri constants lead to state-
ments on the existence of sections of adjoint bundles. On surfaces, adjoint
bundles are well understood thanks to the celebrated theorem of Reider [Rdr].
It is interesting to compare Reider’s results with the statements obtained from
our main Theorem. To this end recall first the well-known:

PROPOSITION 3.4. Let X be a smooth complex projective variety of di-
mension n, and let L be an ample (or nef and big) line bundle on X. Fix a
point z € X and a positive integer k > Rl/n_,zy IfL™ > (%)", then Kx + kL has
a section which does not vanish at z.

SKETCH OF PROOF: Let f:Y — X be the blowing up of X at z, and denote
by E C Y the exceptional divisor. Setting e = €(L,z) we have the linear
equivalence of R-divisors:

k-f*L —nE= g(f*L— €E) + (k — g)f*L,

and therefore k - f*L — nE is nef and big. On the other hand Ky = f*Kx +
(n—1)E, whence f*(Kx +kL)—E = Ky + (k- f*L—nE). Kawamata-Viehweg

vanishing then gives
H'(Y,O(f*(Kx + kL)—E)=0
which in turn implies the existence of the required section. [

In particular, taking e = 2 in the main theorem implies:

COROLLARY 3.5. Let X be a smooth complex projective surface and let L
be an ample line bundle on X such that L? > 5 and T"- L > 2 for all irreducible
curves I' C X. Then at all but finitely many points ¢ € X, Kx + L has a
section which is non-vanishing at z.

On the other hand, it is a consequence of Reider’s theorem that under the
hypotheses of (3.5), Kx + L is in fact globally generated. Hence we may view
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our main theorem here as a sort of local Reider-type result, which however holds
only off a finite set. A proof of the global generation of K x + L using vanishing
theorems for Q-divisors appears in [EL, §1].

While the results of the present paper give a fairly complete picture of the
behavior of the Seshadri constants e(L, z) for a given line bundle L on a smooth
surface X, it is less clear what happens as L varies. The essential question here,
which is in effect posed by Demailly [De2, (6.9)], is the following:

PROBLEM 3.6. Let X be a smooth projective variety, and for an ample line
bundle L consider the global Sheshadri constant e(L) defined in the Introduc-
tion. As L varies are these constants bounded away from zero? In other words,
setting

€(X) =det inf{e(L) | L ample on X },
is it always the case that ¢(X) >0 7

Our sense is that there may well exist surfaces where e(X) = 0, although we have
been unable to construct any. This ties in with the following considerations.

Given an ample line bundle L on a smooth projective variety X, define
v(L) to be the least integer v such that vL is very ample. Note that if X is a
curve of genus g, then v(L) < 2g + 1 for all ample L. In general, if there is a
fixed v such that v(L) < v for every ample line bundle L on X, then ¢(X) > L.
On the other hand, the following example, due to Kollir, shows that it need
not be the case in general that v(L) is bounded from above.

EXAMPLE 3.7. [Kollar]. We give an example of a surface X carrying a
family of ample line bundles L,, such that v¥(L,) — oo with n.

We start with an elliptic curve E, and put Y = E x E. Fix a point P € E,
and define on Y the divisors:

h =pri(P), v=pr;(P), 6= diagonal C E x E.
Next, given a positive integer n > 2 consider the divisor
My=n-h+(n*=n+1)-v—(n-1)6
Then M2 = 2 and M, - v > 0, and consequently M, is ample. [Proof: The
inequalities imply by Riemann Roch that M, has a section, and since Y is
homogeneous it follows that M, is in any event nef. If M, - C = 0 for some
effective curve C, then the Hodge index theorem shows that C? < 0, which

is absurd. Hence the Nakai criterion applies.] Finally, let R = v + h, and let
B € |2R| be a smooth divisor.
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For our surface X we take the double cover f : X — Y of ¥ branched
along B. Let L, = f*(M,). Then L, is ample and we claim that the natural
inclusion

*) H'(Y,0y(n- M) — H(X,0x(n - Ln))

is an isomorphism. It follows that n-L, cannnot very ample, and hence v(L,) >
n. For the claim, observe that f,Ox = Oy & Oy(—R), and therefore

f*(ox(n . Ln)) = OY(TI * Mn) @ OY(n : Mn - R)

So to verify that the map in (*) is bijective, it suffices to prove that H°(Y, Oy (n-
M, — R)) = 0. But this follows from the computation that (n - M, — R)? < 0.
[Note that the specific choices we have made are relatively unimportant; the
essential point is simply that M,, - R grows much more quickly than M, -M,.] I

Finally, we note that the definition of the Seshadri constant of a line bundle
at a point can be generalized to measure positivity along a subvariety. Let X be
a smooth projective variety, and let ¥V C X be a subvariety, say smooth to fix
ideas. Let f : Bly(X) — X be the blowing up of X along V| with exceptional
divisor E C Bly(X). Given an ample line bundle L on X, define the Seshadri
constant of L along V to be

e(L,V) =sup{e| f*L — € E is nef}.

Paoletti [P] has investigated these invariants when V is a curve in P?® (or a
general smooth threefold X'), and L = Ops(1). In this case (L, V') detects such
classical information as the presence of multisecant lines, but it seems to be a
more delicate invariant. Paoletti proves the striking result that under suitable
numerical hypotheses, (L, V) governs the gonality of the curve V. It would
be interesting to see what other concrete geometric properties are influenced
by these imvariants. It would also be useful to develop some techniques for
computing or estimating e(L,V'); some first steps in this direction appear in

[P].
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HiGHER CASTELNUOVO THEORY

David Eisenbud, Mark Green, Joe Harris!

0. Introduction

1. The geometric case: Castelnuovo theory
2. The algebraic case

3. Cayley-Bacharach theory

4. A stepwise formulation

0. Introduction.

In this paper and others to follow, we intend to set out a series of con-
jectures concerning the Hilbert functions of points (or more generally, zero-
dimensional subschemes) in projective space; or, more generally still, the
Hilbert functions of graded Artinian rings. We were first led to make some
of these conjectures in Eisenbud-Harris [1982] in the course of our work on
Castelnuovo theory. A special case of these was proved independently by us
in that paper and by Miles Reid — though as Ciliberto later noted [1987] we
were both anticipated by G. Fano [1894]. Recently, we saw how our con-
jectures might be generalized; and in this form they relate to a number of
other areas: for example, another special case is equivalent to a conjectured
generalization of the classical Cayley-Bacharach theorem (as we will also dis-
cuss here); another to the Kruskal-Katona and Clements-Lindstrém theorems
of combinatorics (see, for example, Kleitman-Green [1978]); and still others,
which we intend to describe in a later paper, to questions about the existence
of exceptional linear series on complete intersection curves.

Good references for unexplained terminology are Arbarello-Cornalba-
Griffiths-Harris [1985] or Eisenbud-Harris [1982].

1The authors are grateful to the NSF — the second through grant number
DMS 88-02020 for partial support during the preparation of this work

S.M.F.
Astérisque 218** (1993) 187



D. EISENBUD, M. GREEN, J. HARRIS

1. Castelnuovo theory.

Recall that a set of points in projective space is in uniform position if the
Hilbert function (= postulation) of a subset depends only on the cardinality
of the subset. Castelnuovo theory is concerned with the possible Hilbert func-
tions of points in uniform position. Its origins are classical: Castelnuovo first
used estimates on the Hilbert functions of points to derive his upper bound on
the genus of an irreducible nondegenerate curve C in projective space P” in
terms of the degree d of C'. Castelnuovo’s argument has been reproduced too
many times to repeat in detail here (see, for example, Eisenbud-Harris [1982]
or Arbarello-Cornalba-Griffiths-Harris [1985]), but briefly what he shows first,
by completely elementary means, is that if ' C P"~! is a general hyperplane
section of C then -

o(C) < 3 WP Tr(0))

=1
or, in other words, the genus of C is bounded by the sum over all £ of the
failure of I to impose independent conditons on hypersurfaces of degree £.
Curves of maximal genus for their degree therefore are likely to be those whose
hyperplane sections I have the smallest possible Hilbert function hAr. Next,
Castelnuovo shows that among all configurations I' of d > 2n + 1 points in
uniform position in P!, the ones with minimal Hilbert function are exactly
those lying on rational normal curves; he calculates his bound w(d,n) on
the genus of a curve accordingly. Finally, since if I' is a subset of a rational
normal curve any quadric containing I" will contain the rational normal curve,
he shows that if C is a curve achieving his bound the quadrics containing C
must cut out in P™ a surface whose hyperplane section is a rational normal
curve (in particular, a surface of degree n — 1, the minimum possible degree
for a nondegenerate surface in P™).

In Eisenbud-Harris [1982], we undertook to extend the results of Casteln-
uovo — in particular, his characterization of curves of maximal genus for their
degree as lying on rational normal scrolls — to curves of high, but not maxi-
mal genus. This involved asking, for example, “What is the second smallest
possible Hilbert function of a collection of points?” and in general, “What
configurations of points have small Hilbert function?” What emerged was the
following philosophy: The way to achieve a configuration I' C P in uniform
position having small Hilbert function is to put I" on a positive-dimensional
variety with small Hilbert function - in effect, on a curve of smallest pos-
sible degree, and of largest possible genus given that degree — which is the
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intersection of the hypersurfaces of low degree containing I'.

To be specific, let I' C P" be a nondegenerate collection of d points in
uniform position; let hAr be its Hilbert function, so that for example hr(2) is
the number of conditions imposed by I' on quadrics. Castelnuovo says that if
d > 2r 4 3, then I must impose at least 2r + 1 conditions on quadrics; and if
hr(2) = 2r +1 exactly, then I" must lie on a rational normal curve. Extending
this, it turned out that if d > 2r + 5 and if hr > 2r + 2 then necessarily
I had to lie on an elliptic normal curve (Fano [1894],Eisenbud-Harris [1982],
Reid [unpublished]). We deduced in particular that if a curve C' C P™ had
genus exceeding a bound m;(d, n) (substantially lower than m(d,n)), then the
quadrics containing C' have to cut out a surface of degree n in P”, which
allowed us to classify such curves. Both we and Miles Reid went on to con-
jecture that this pattern would persist, at least for a while: for a < r, we
conjectured, under the hypothesis d > 2r + 2a + 1 we could conclude that
either Ar > 2r + o + 1 or I lay on a curve of degree r + &« — 1 or less in P".

In all of these cases, the latter conclusion — that I' lay on a curve of small
degree — would follow immediately if one knew that the intersection of the
quadrics containing I' was in fact positive dimensional. This observation last
year suggested to us a seemingly trivial restatement. If we hypothesize that
T is cut out by quadrics, we can ask: given hr(2), what is the largest possible
d? In other words, What is the largest number d(h) of points of intersection
of a linear system of quadrics of codimension h in the space of all quadrics
in P", given that the intersection of those quadrics 18 zero-dimensional? In
these terms, we may summarize the state of our knowledge as of 1981 (and
its origins) as follows:

dr+1)=r+1 (elementary)
dr+2)=r+2 (elementary)

d(2r —1)=2r —1 (elementary)

d(2r)=2r (elementary)

d(2r +1) =2r +2 (Castelnuovo)

d(2r +2)=2r +4 (Fano, Eisenbud-Harris, Reid)
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The conjectures mentioned above extend this pattern to:

d2r+3)=2r+6

d(3r—3)=4r—6
d(3r — 2) = 4r — 4.

Note that this conjectured bound on the number of points is sharp, if it
holds: for A < 2r, of course, any configuration of A points in linear general
position will be cut out by quadrics and will impose independent conditions
on quadrics; and for 2r+2 < h = 2r+a < 3r—2 we can take I" the interseciton
of a linearly normal curve of degree r + a — that is, a curve of degree r + «
and (maximal) genus @ — with another quadric. Note, moreover, that in the
last case — d(3r — 2) = 4r — 4 — there is also another example we can use to
show that the bounds is sharp: we can take I" the intersection of a rational
normal scroll X C P" with two more quadrics.

This last example suggests that at this point the pattern of d(h) increasing
by 2 each time stops. Indeed, corresponding to the two examples above in
case h = 3r — 2 there are two examples to suggest that the next value of d
should be

d(3r — 1) = 4r.

On the one hand, the maximal genus of a curve of degree r + a in P" increases
by 2 from a = r — 1 to a = r, with the result that a curve of degree 2r — 1
and genus r — 1 in P” will lie on the same number of quadrics as a curve
of degree 2r and genus r + 1 (that is, a canonical curve). Thus we can take
I" the intersection of a canonical curve in P" with a quadric to arrive at a
configuration of 4r points imposing only 3r — 1 conditions on quadrics. On
the other hand, in the latter example, if we replace the rational normal surface
scroll S, which has degree r — 1, with a linearly normal surface of one larger
degree r (for example, a del Pezzo surface or a cone over an elliptic normal
curve), the intersection of our surface with two quadrics will again have degree
4r and impose 3r — 1 conditions on quadrics.

Similar examples indicate that for the next r — 3 steps d(h) will increase
by 4 each time we increase h: by way of an example, we can take I' the
intersection of a surface of degree r — 1 + 3 with two further quadrics. When
we get to the case h = 4r — 5, however, we get a new example: the intersection
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of a threefold rational normal scroll X with three additional quadrics, and
thereafter we can increase the degree of I' by 8 while increasing Ar(2) by only
1 by increasing the degree of X by 1.

By now the pattern seems relatively clear, and we may state the

CONJECTURE. Starting with the value d(r + 1) = r + 1, the successive differ-
ences of the function d(h) are:

) O ,1 (r — 1 times);
2,2, i ,2 (r — 2 times);
4,4,......... ,4 (r — 3 times);
ok—1 . ok-1 (r — k times);
21'—3, 21‘—3,

272,

Where do we wind up at the end of this string? Here we have our first
surprise: the last predicted value of d is

that is to say, the largest possible number of isolated points of intersectin of
r quadrics in P is 27. The fact that the terminal case of the conjecture is
simply the Bézout theorem is striking. But more intriguing is the next case:

d <r2 +r) _or _gr2,

2

or, in other words,

*)
The largest number of points of a complete intersection of quadrics in P"

that another independent quadric can contain is 27 — 2772,
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Let us express this conjecture in closed form. It will also be useful to
replace the variable A, corresponding to the number of conditions imposed by
a set of points I' on quadrics, with the absolute number m of independent
quadrics containing I' — that is, (r';Q) — h.

First, some notation: given r, any number m > r 4+ 1 can be uniquely

written in the form

b

m=(r+1)+(2

)-I-c, b>e¢c>0.

With this notation, we make the

CONJECTURE (I,,r). IfT is any nondegenerate collection of d points in uni-
form position in P" lying on m independent quadrics whose intersection is
zero-dimensional, then

d<(2b—c+41)-277%1,

In particular, the statement (*) above is simply the case (Iy41,r) of this con-
jecture.

As suggested above, examples show that this bound, if indeed it holds,
is sharp: for m quadrics, we can take I' the intersection of r — b — 1 quadrics
with a linearly normal variety of degree 2b — ¢+ 1 and dimension r —b—1 in
P” (for example, the divisor residual to ¢ + 1 planes in the intersection of a
rational normal (r — b)-fold scroll in P” with a quadric).

Conjecture (I) remains an open problem in general, though we have been
able to verify it for all r > 5 (note that all cases with r < 4 are covered by
existing theorems of Castelnuovo, Fano, Eisenbud-Harris and Reid). We have
also been able to verify the special case (Ir41,r) for all r < 6; we will give a
proof in §3 below.

2. The algebraic case.

What happens if we omit the hypothesis of uniform position from our
basic Conjecture (I), or for that matter if we allow arbitrary (nondegenerate)
zero-dimensional subschemes of P"? This problem is one that has a purely
algebraic formulation. Passing to the homogeneous coordinate ring of the
configuration I' C P” modulo a general linear form, it becomes the question:
what is the largest possible length e(m) of an Artinian ring of the form

R=k[x1,...,mr]/f
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where [ is the ideal generated by an m-dimensional vector space of homoge-
neous quadric polynomials in zq,...,2,7

The extreme cases m = (T'ZH) and m = r are exactly the same as before:
the corresponding values of e are r + 1 and 2". In between, though, the
successive differences are quite different: they are expressed in the

CONJECTURE. Starting with the value e(r) = 27, the (negative) successive
differences of the function e(m) are:

or—2 gr=3 or=4 ... ,4,2,1,
or=3 orTt . ,4,2,1,
4’ 2’ 17

2,1,

1.

In other words, they are the same successive differences as the function d, in
a different order.

As strange as the conjecture may sound, it also has been completely
verified for r < 5 (including cases where the value of e differs from that of d).
It should also be noted that the conjectured last two values of the function e
before the Bézout case (e(r +1) =27 — 2772 ¢(r+2) =27 —2""2 —2773) are
the same as for the function d; and these two values have also been verified
for r <6.

As in the geometric case, it will be useful to have a form of the conjecture
that applies to individual values of the function e. To do this, we write an

arbitrary m < (r';l) in the form

r+1 7
= — — > 0.
m ( 5 ) (2) v, u>v 20

With this notation, we make the

CONJECTURE (II,,). Let ' C P" be any nondegenerate, zero-dimensional
subscheme of degree d. If T' lies on m quadrics whose intersection is zero-
dimensional, then

d<2*4+2°4+r—u—-1
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Equivalently, if R is an Artinian ring of the form
R = k[z4,...,2.]/1,

where I is the ideal generated by an m-dimensional vector space of homoge-
neous quadric polynomials in z,,...,z,, then

dimg(R) < 2"+ 2 +r—u—1.

As in the case of Conjecture (I), this bound is sharp, if indeed it holds.
To construct examples, let A C  C P" be subspaces of dimension v and u+1,
respectively. Let I'; be a 0-dimensional complete intersection of quadrics in A,
consisting of 2” points. Let C be a curve in 2 given as a complete intersection
of quadrics and containing I'; (that is, choose a regular sequence of quadrics
in Q restricting to the quadrics in A cutting out I'y and add v — v more
quadrics in € containing A to form a regular sequence of length u. Let H be
a hyperplane section of C. Let py,...,pr—u—1 be r — u — 1 additional points
in P" that, together with €2, span P"; and set

F=HUF1 U{pl,---,Pr—u—l}-

3. Cayley-Bacharach theory.
There is another way to interpret the statement (*) (equivalently, (IT,41,))
above, which is as an extension of the classical Cayley-Bacharach theorem.
We start by reviewing the statement of the modern Cayley-Bacharach
theorem. If T is a zero-dimensional scheme and I'' C T' a closed subscheme,
we define the residual subscheme of I' in T’ to be the subscheme I'"' of T
defined by the sheaf of ideals

Ipu = Ann(l'p/ /Ir‘)

In English: ' is the smallest subscheme of I' such that any product of func-
tions vanishing on I'" and I'"” vanishes on I'. For example, if I" is reduced then
I is the complement of I in T

In general, however, it is not true that the degree of I'" is the difference
deg(T")—deg(T") (nor is either inequality valid); and the residual of the residual
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of a subscheme I'' C T will not in general equal I'. One circumstance, however,
in which residuation does behave well is if T is locally a complete intersection
(or even locally Gorenstein): in this case, by liaison (Peskine-Szpiro [1974])
we do have

deg(I") + deg(I") = deg(T),

and the residual of the residual of I is again I". In this case, we say that I"'
and I' are residual to each other in I'.

Note also that if the ideal of I'' in I is locally principal, then the equality
on degrees holds (though it is not in general true in this case that the residual
of the residual of I' is V).

With this, we may state a

MODERN CAYLEY-BACHARACH THEOREM. (Davis-Geramita-Orecchia [1985]):
Let T' C P" be a complete intersection of hypersurfaces X,,..., X, of degrees
dy,...,d,, and let T',T" C T be closed subschemes residual to one another.

Set
m:—r—l—{—Zdi.

Then, for any £ > 0, we have
RO(PT, I/ (£)) — R°(P",Ir(£)) = K (P, Irn (m — £)).

In English: the number of hypersurfaces of degree £ containing I'' (modulo the
ideal of T') is ezactly the failure of T" to impose independent conditions on
hypersurfaces of degree m — L.

According to Semple and Roth [1949], p. 98, the classical Cayley-Bacharach
Theorem concerns the special case of where I is a reduced complete intersec-
tion of points in the plane. It asserts that if

degree I'' = (m ._23 + 2)

and the right hand side of the above equality is 0, then the left hand side is as
well. This was asserted by Cayley without the hypothesis that the right hand
side is 0 (which is automatic if m — £ = 0 and degree I'" = 1), and corrected
by Bacharach (Math. Annalen 26, p. 275). The most commonly stated form
of the Theorem is this:
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CLASSICAL CAYLEY-BACHARACH THEOREM. Let I' C P” be a reduced com-
plete intersection of hypersurfaces X;,..., X, of degrees dy,...,d,. Then any
hypersurface of degree m = % d; — r — 1 containing a closed subscheme of T'
of degree [[d; — 1 contains T.

This Cayley-Bacharach theorem says in particular that if  C P" is a
complete intersection of quadrics, then any hypersurface X C P” of degree
r—1 containing all but one point of I" contains I'. We could ask more generally:
Suppose {2 is the complete intersection of r quadrics in P”. What is the largest
degree g(k) of a subscheme of §2 that a hypersurface of degree k, not containing
2, can contain? By Bézout in P"1, a hyperplane can contain at most 277!,
so that g(1) = 27!, while Bézout in P" says that g(r — 1) = 2" — 2 and
g(r) = 2" — 1. These two remarks are the cases k =1 and k =r — 1 of

CONJECTURE (III;,). (Generalized Cayley-Bacharach). Let & C P" be a
complete intersection of quadrics. Any hypersurface of degree k that contains
a subscheme T' C Q of degree strictly greater than 2™ — 2"~* must contain (.

There is an appealing boundary case:

CONJECTURE (III;,, BOUNDARY CASE). Moreover, if X is a hypersurface
of degree k with deg(X N Q) = 2" — 2"~% the scheme residual to X N § in Q
is a complete intersection of quadrics in a subspace PTF.

Note that the inequality in case (I1I ) of this conjecture is exactly the
conjecture (Il,41,,) above.

We will prove below the conjecture (II1y ,) for all £ and r < 6. To do
this, it will be useful to introduce yet another conjecture:

CONJECTURE (IV,,). Let I' C P" be any subscheme of a zero-dimensional
complete intersection of quadrics, let d = deg(I'), and suppose that T fails
to impose independent conditions on hypersurfaces of degree m — that is,
RY(P7,Ir(m)) # 0. Then

d>2mtL

Note that this conjecture is independent of the dimension r of the ambient
projective space (in particular, we do not assume that I' spans P").

CONJECTURE (IV,,, BOUNDARY CASE). Equality holds in Conjecture (IV,,)
if and only if T is itself a complete intersection of quadrics in P™*1,

THEOREM 1. The following are equivalent:
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a. (II1,,) for all k and r;
b. (IVy,) for all m.

In particular, either one implies (IIl . ), and hence (II,4, ), for all r.
Moreover, for any value of m, (IV,,) implies (IIIy ,) for all k and r with
r —k —1 = m and in particular (Il 4,,,) for r = m + 3. (The same is true
for the boundary cases of (IV,,) and (IIl ,)).

PROOF: We first prove that (IV,,) implies ([II,_p—1,r). We apply the
modern Cayley-Bacharach Theorem. To begin with, assume (IV,,), and let
Q C P be a complete intersection of quadrics. Let X be any hypersurface
of degree .k = r — m — 1 not containing 2, and let I' be the subscheme of
Q residual to the intersection 2 N X. By Cayley-Bacharach I' must fail to
impose independent conditions on hypersurfaces of degree m = r — 1 — k.
By assumption, deg(T') > 2"~* and correspondingly deg(X N Q) < 27 —27~%,
(The boundary case of (IV,,) easily implies the boundary case of (IIL,_p—1,r)
as well.)

Now assume (IIl; ) for all r. Let I’ be any subscheme of a complete
intersection of quadrics and suppose that I' fails to impose independent con-
ditions on hypersurfaces of degree k. Assuming that I" spans a projective
space P", take 2 a complete intersection of quadrics in P™ containing T,
and let T C Q be the subscheme of 2 residual to I'. By Cayley-Bacharach,
I lies on a hypersurface of degree n — 1 — k not containing ; it follows
that deg(I") < 2" — 2"~!~* and hence that deg(T") > 2F*!. Moreover, if we
have equality in the last inequality, then I is itself a complete intersection of
quadrics. u

As promised, we will prove (III ,) for all k and r < 6 by establishing;:
THEOREM 2. Conjecture (IV,,) holds for m < 3.

We will make use of the following simple result several times.

LEMMA. Let Q@ C P" be a finite subscheme, and let m be a nonnegative
integer. Suppose that every form of degree m vanishing on a codegree 1
subscheme of §) (that is, on a subscheme of degree one less than ) vanishes
on all of Q. If H C P7 is any hypersurface of degree k, and © is the subscheme
residual to H N S, then any form of degree m — k vanishing on a codegree 1
subscheme of © vanishes on all of ©.
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PROOF OF THE LEMMA: To say that a form G vanishes on a codegree 1
subscheme of © is to say that ((G)+ Ze)/Ze is a 1-dimensional vector space,
or equivalently G € (Zg : m) for some maximal ideal m of QOg.

Now let F' be the form of degree k defining H,let I' = HN{Q, and let © be
the subscheme residual in © to I'. If G is a form of degree m — k vanishing on
a codegree 1 subscheme of ©, then G € (Zg : m), so F'G € (Zg : m) and FG
vanishes on a codegree 1 subscheme of Q. Since F'G has degree m it follows
from our hypothesis on © that F'G vanishes on £, and thus G € (Zg : F) = Tg
— that is, G vanishes on ©. (]

PROOF OF THEOREM 2: First we show that (IV,) holds for any m in case
the linear span of the scheme I' is a projective space of dimension n < m + 2.
The modern Cayley-Bacharach Theorem implies that a complete intersection
of quadrics in P™ imposes independent conditions of hypersurfaces of degree
n, and any proper subscheme of it imposes independent conditions on hy-
persurfaces of degree n — 1, from which we get the case n < m + 1. If, on
the other hand, n = m + 2, let Q be a complete intersection of quadrics in
P™*2 containing T, and let I C  be the subscheme residual to I' in Q. By
Cayley-Bacharach the subscheme I' lies in a hyperplane P™*! ¢ P™+2, We
thus have
deg(T') < 2m*!

and hence

deg(T) > 2m+1,

Note, moreover, that if equality holds in the last inequality, then I must
be a complete intersection of m + 1 quadrics in P™*!. It follows that the
restriction map

H(P™*2 Tq(2)) — H(P™, I1(2))

must have a kernel. In other words, the linear system of quadrics cutting out
) contains a reducible element Q¢ = Hy U Lo, with Ly = P™+! 5 I'. Since
Q) is a complete intersection, I is residual to I, and thus L; vanishes on T,
contradicting the hypothesis that I' spanned P™+2,

Conjecture (IV,;) is immediate for m = 0 or 1; we will deal with the
remaining two cases in turn. By what we have just done we may assume that
T spans a space of dimension n > m + 2, and we wish to show that deg' >
2m+1 We may as well assume that I' is minimal among schemes failing to
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impose independent conditions on hypersurfaces of degree m and thus that
any hypersurface of degree m containing a subscheme of I" of codegree 1 in T’
must in fact contain I'.

Case i. m = 2. Suppose that I' spans a space of dimension r > 5. Then we
can find a proper subscheme of I" of degree at least r contained a hyperplane
HinT =P";let I' = HNT be the degree of I''. Let © be the residual scheme
tol"in I

By the Lemma, O fails to impose independent conditions on hyperplanes.
By the case m = 1 of our conjecture we have

deg(©) = 4,
sO
d = deg(T') > deg(I") + 4
>r+4
29,
as desired.

Case ii. m = 3. Say I' spans a linear space P" of dimension r > 6 and fails to
impose independent conditions on cubics. We must show that degI" > 17. By
Castelnuovo theory for schemes (see Eisenbud-Harris [1992]) any subscheme
of P in linearly general position imposes independent conditions on m-ics if
d < mr+ 1. If T were in linearly general position, then taking m = 3 and
r = 6 we find deg’ > 3r +1 = 19, and we would be done. Thus we may
assume that there is a hyperplane H C P intersecting I' in a subscheme
I'" = HNT of degree s > r +1 > 7; we suppose that s is the maximal degree
of such a subscheme. Let © C I' be the subscheme residual to I'' in I". Since
the ideal of I'V in I is principal, we have deg © + deg" = degT’, so we must
show that s + degree © > 17. Thus we may assume that degree © < 9.

By the Lemma, O fails to impose independent conditions on quadrics.
By the case m = 2 we must have deg(©) > 8. If degree ©® = 8, then by
case m = 2, © must be contained in a P3. It follows that some subscheme of
length > 8 containing © is contained in a hyperplane in P". Thus s > 9, and
we are done.

It remains to treat the case where degree © = 9. If O lies in a hyperplane,
then s > degree © =9, so we are done. If © were in linearly general position
in P” then since © imposes dependent conditions on quadrics it follows as
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above that deg® > 2r + 1. Since r > 6, this contradicts the assumption
deg® = 9. Thus we may find a hyperplane section @ = H' N©® C O of
degree t > r+12> 7.

Let = be the subscheme of O residual to ©®'. By the Lemma, = fails to
impose independent conditions on hyperplanes, so degree = > 3. Since @' is
cut out in © by just one equation, deg @ = deg®' + deg=>7+3=10. =

4. A stepwise formulation.

Another way of approaching Hilbert functions is to ask, simply: suppose
we know the value h(m) of the Hilbert function of a graded ring in degree
m. What can we say about the value in degree m + 1?7 In this generality, the
answer was supplied by Macaulay, who proved that if we wrote

h(m) = (‘;;;) T (a;)

with @y, > @m—1 > ... > a1 2 0, then h(m + 1) satisfied the inequality

m+1 m—1+1 1
h(m+1)=(in:1)+<a T;+ )+...+(a12+ )

Moreover, this bound is sharp. In line with what we have suggested above,
however, we now ask what the estimate should be if we assume in addition
that the ring is of the form

R=klzy,...,z.)/I

where I contains a regular sequence of length r in degree 2. Based on examples
and some partial proofs, we make the

CONJECTURE (V,,,). Under this hypothesis, if h(m) is as above, the value
h(m + 1) of the Hilbert function of R satisfies the inequality

. Am Am—1 ax
o= (L7 ) (47 ot (3),
This is sharp, if true; an example would be the ideal generated by the

squares of the variables together with the lexicographical ideal of appropriate
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size in degree m. Moreover, if we sum up the estimates for h(m) over all m,
we arrive at the same estimate for the length of R in terms of A(2) given in
Conjecture III; thus Conjecture (V) in general implies Conjecture (III).

Moreover, Conjecture (V) is true if the ideal of I contains the squares of
the variables. This follows from the Kruskal-Katona Theorem (see Kleitman-
Green [1978]), which is equivalent to the monomial case, and a deformation
argument. Of course it follows in turn from this that the Theorem is true if
I contains a “sufficiently general” regular sequence of quadrics.

In this setting, the hypothesis that the ideal I C k[z,,...,z,] defining
R contains a regular sequence specifically of quadrics is artificial. Conjecture
(V) generalizes directly to the case where we assume just that I contains
a regular sequence (fi,..., f2) of homogeneous polynomials of arbitrary de-
grees. The case where the f; are powers of the variables then follows from
the Clements-Lindstrém Theorem, also treated in Kleitman-Green [1978]; we
intend to devote a future paper to this and the cases of it that we can prove.
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Surjectivity of cycle maps

Héléne Esnault and Marc Levine

Introduction

The complicated nature of the theory of cycles of codimension two and
higher became apparent with Mumford’s paper [M], which showed that p, = 0
is a necessary condition for the representability of the group of zero-cycles on a
smooth projective surface over C. This was generalized by Roitman [R] when
he showed that the vanishing of all the groups H°(Q7), ¢ > 1, is necessary
for the representability of the group of zero-cycles on a smooth projective
variety over C. Bloch, Kas and Lieberman [BKL] investigated the zero-cycles
on surfaces with p; = 0, showing that the group of zero- cycles was in fact
representable, at least if the surface is not of general type; Bloch [Bl] has
conjectured that p, = 0 is sufficient for the representability of the zero-cycles
on a smooth projective surface. The case of surfaces of general type is still
an open problem, although there has been some progress, most recently by
Voisin [V].

Bloch’s proof in [Bl] of Mumford’s infinite dimensionality theorem views
the diagonal in X x X as a family of zero-cycles on X, parametrized by X, and
goes on to consider the consequences of the generic triviality of this family.
This may be the first appearance of this point of view. Coombes and Srinivas
used this idea in [CS] to get a decomposability result for H1(K,) of a surface.
Bloch and Siinivas [BS] push this approach further, making a study of the
cycle groups on a smooth variety X which relies on a partial decomposition of
the diagonal in X x X. They have applied this method to give some examples
for which certain cycle groups are representable. This approach was recently
used by Paranjape [P] in his discussion of the cycle groups of subvarieties of
projective space of small degree and small codimension. Schoen [S] has also
applied this method to give generalizations of the Mumford-Roitman criterion
for non-representability to the Chow groups of cycles of positive dimension.
Jannsen [J] used the ideas of Bloch and Srinivas in his discussion of smooth
projective varieties X for which the rational topological cycle maps

CHP(X)®Q — H(X,Q)

S.M.F.
Astérisque 218 (1993) 203
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are injective. For such a variety, Jannsen shows that the diagonal in X x X
decomposes in CH*(X x X)g into a sum of product cycles

A=Ay x B+ A; x B' +...+ Ay x B¢

where A; is a dimension : cycle, B' is a codimension 7 cycle, and d = dim(X).
One consequence of this decomposition is that the total cycle map

d 2d

CH’(X)® Q —» P HE(X,Q)
p=0 q=0
is an isomorphism; in particular, X has no odd cohomology.

In this paper, we prove an analog of Jannsen’s result, considering the
cycle map to rational Deligne cohomology rather than Betti cohomology. As-
suming injectivity of the Deligne cycle maps, we arrive at a decomposition of
the diagonal into a sum of codimension one cycles on products of the form
[ip1 x DY, with dim(T;41) =4 + 1, cod(D?) = i (see Theorem 1.2 for a more
precise statement). The consequences of this decomposition are a surjectiv-
ity statement for certain cycle maps to Deligne cohomology and some other
related maps (Theorem 2.5), a vanishing result for certain Hodge numbers
(Theorem 3.2), and a decomposability result for the K-cohomology (Theo-
rem 4.1). If we assume that all the rational cycle class maps for a smooth
projective variety X are injective, then

(1) all the rational Hodge cycles on X are algebraic (Corollary 2.6)
(2) the Abel-Jacobi maps

cl™: CH™(X a1y — J™(X)

are all surjective (Corollary 3.3)
(3) the Hodge numbers A?9(X) all vanish for |[p — ¢| > 1.
(4) the maps
CH?(X)® C* — HP(X,Kpt1)

are all surjective.
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The results on the Hodge numbers are a direct generalization of the re-
sults of Mumford-Roitman mentioned above. This points the way to some
possible generalizations of Bloch’s conjecture to a conjecture on the repre-
sentability of cycle groups of higher dimension (see Questions 1 and 2 in §3).
What is novel about the situation is that it involves all the groups of cycles
of dimension 0 to s rather than the cycles of a single dimension s. Schoen
has raised similar questions in his paper [S], from a slightly different point of
view, replacing the injectivity assumption with an assumption that the gen-
eralized Hodge conjecture holds, and that the group of dimension s cycles is
representable; we haven’t attempted to reconcile these two points of view.

We would like to thank Uwe Jannsen and Kapil Paranjape for sending us
preliminarly version of their manuscripts, which have greatly influenced this
work. This joint paper arose out of conversations while the second author
was visiting at the University of Essen; he would like to thank the University
of Essen for its gracious hospitality and the DFG Schwerpunkt “Komplexe
Mannigfaltigkeiten” for its generous support.

§1. Decomposition of the diagonal

In this section, we show how the injectivity of the cycle map to Deligne
cohomology leads to a decomposition of the diagonal. If X is a smooth pro-
jective variety, we let Z"(X) denote the group of codimension n cycles on X,
CH"(X) the group of cycles modulo rational equivalence. We let Z,(X) and
CH,(X) denote the group of dimension n cycles and cycle classes. If X is
defined over C, we have the cycle class map

c™: Z™M(X) — HF(X,Z(n)).
This map passes to rational equivalence, giving the map
cl™:CH™(X) — Hy'(X,Z(n)).

We refer to an element of Z"(X)q as a Q-cycle. We also denote by cl®
the maps induced by clI™ after extending the coefficient ring. For the basic
properties of Deligne cohomology and the cycle map, we refer the reader to

[B].
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Let Hg™(X) denote the group of codimension n Hodge cycles on X:
Hg"(X):={z € H*™(X,Z(n)) | 2 ®1 € F"H*"(X,C)}.
We have the exact sequence describing H3*(X,Z(n)) as an extension:

H2n—l (X, C)

0
T HTUX, Z(n) + FTHT(X, C)

— H}(X,Z(n)) —» Hg"(X) — 0.

The nt* intermediate Jacobian, J"(X), is the complex torus on the left-hand
side of the above sequence.

Lemma 1.1. Let X be a smooth projective variety over C of dimension d.
Suppose the Q-cycle class map

cl™: CHY(X)g — HE(X,Q(n))

is injective. Let D be a pure codimension 1 = d — n closed subset of X, and
let v be a codimension d Q-cycle on X x X, supported on X x D. Then there
are closed subsets D' and I" of X, codimension d Q-cycles v» and 4% on X x X
such that

(1) D' has pure codimension i + 1 and I" has pure dimension i + 1.
(2) «- is supported on T' x D and ~° is supported on X x D'.
(3) v =7 ++" in CH{(X x X)g.

Proof. If D has irreducible components Dy,...,D,, we can write v as a sum
vy=7'+... 47

with 47 supported on X x D;. Thus we may assume that D is irreducible.
Write v as a sum, ¥ = 4' + v/, such that each irreducible component of the
support of v/ dominates D, and no irreducible component of the support of v
dominates D. Since v" is supported on X x pa(supp(v")), and pa(supp(y"))
has codimension at least i +1 on X, we may assume that v = +'. We may then
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find a smooth projective variety D, mapping birationally to D by p: D - D,
and a Q-cycle 4 on X x D such that

(1) for each y € D, X x y and # intersect properly on X x D.
(if) (idx x p)«(7) = .

Indeed, for a resolution of singularities r: E — D, and a subvariety Z of
X X D, there is a subvariety W of X x E which is generically finite over Z.
Thus each cycle v as above can be lifted to a Q-cycle yg on X x E. Having
done this, we may further blow-up E via D — E so that each component of
~E has proper transform to X x D which is flat over D, giving us the desired
resolution D and Q-cycle 7.

For a point y € D, let vy be the Q- cycle px.((X x y)-¥). Each ~, has
codimension n on X. Fix a point 0 € D. Since D is connected, the cycles
vo and v, are homologous on X, for each y in D. Thus c™(yy — ) is in
J™(X)q, for each y € D. Let cl: D — J*(X)g be the map

cl(y) = " (vy = 10)-
In similar fashion, we have the map ch: D — CH"(X)q defined by
ch(y) = vy — v mod rational equivalence.

Both ch and ¢l extend by linearity to maps

ch: CHy(D) -»CH"(X)g
cl: CHy(D) »J™(X)q.

The map cl factors further through the Albanese map
ap: CHy(D) — Alb(D).

Clearly we have cl™ o ch = cl; since the map cl" is injective by hypothesis,
this implies that ch factors through Alb(D) as well.
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_Take an embedding of D in a PV, and let C be a smooth linear section
of D of dimension one; we assume that C contains 0. By the weak Lefschetz
theorem, the map Alb(C) — Alb(f)) is surjective; in particular, this implies
that, for each y € D, there is a Q-zero cycle ay, supported on C, such that
cl(y) = cl(ay). As the map ch factors through Alb(D), we have ch(y) =
ch(ay).

Take y to be a geometric generic point of D over C, so C(y) = C(D) =
C(D). The zero-cycle ay is defined over some finitely generated field extension
of C(f)); by specializing a, and changing notation, we may assume that the
zero-cycle a, is defined over a finite extension L of C(D), of degree say M.
Let b, be the zero cycle 77 *Nmp c(py(ay). Then by is defined over C(D),
by is supported on C and ch(y) = ch(by). In particular, there is a unique
Q-cycle 4> on X x D such that

(iil) px«((X xy) - H2) = px+((X x by) - %), for y a geometric generic point of
D over C.

(iv) each irreducible component of supp(4-) dominates D.

Let S = px(supp(¥)N X x C). Since the fibers of supp(¥) over D all have
dimension ¢, S has dimension at most ¢ + 1. By (iii) and (iv), 4» is supported
on S x D. Since ch(y) = ch(b,), (iii), together with the localization sequence

for the Chow groups, implies there is a codimension one closed subset D' of
, and a cycle 5° € CH?~*(X x D), supported on X x D', such that

(v) ¥ =% 4+ 7 x D+ 4" in CH* (X x D)q.

Let T' be a pure dimension ¢ + 1 closed subset of X containing S and
supp(7o), let D' be a pure codimension ¢ + 1 closed subset of X containing
p(D'). Take v: = (idx x p)u(¥2 + 70 x D), 7" = (idx x p)«(§"). Since
(idx x p)«(¥) = 7, we have

v =4 +~"in CHY(X x X)g
~" is supported on X x D'
v is supported on I' x D,

as desired. O

208



SURJECTIVITY OF CYCLE MAPS

Theorem 1.2. Let X be a smooth projective variety over C of dimension d,
and let A be the class of the diagonal in CH4(X x X)g. Suppose the Q-cycle
class maps

cl™: CH"(X)g — HZ'(X,Q(n))

are injective for n = d,d — 1,...,d — s, for some integer s, 0 < s < d — 2.
Then there are closed subsets X = D°, D, ..., D**! T';,..., 441, and cycles
TiyeoosYs, YT € CHd(X x X)g such that

(1) D' has pure codimension 1, I'; has pure dimension 1.
(2) ~i is supported on T'y41 x D*, fori =0,...,s

(3) v**! is supported on X x D*t1.

(4) A=v+... 47+ in CHY(X x X)q.

Proof. We first apply Lemma 1.1 to the cycle Aon X x X, withn=d,¢: =0
and D = X. This gives us the Q-cycles vy and 7!, a codimension one closed
subset D! and a dimension one closed subset I'; with 4, supported on I'; x X,
4! supported on X x D! and with A = 4; +~! in CH4(X x X)g. This proves
the case s = 0. The general case follows by induction on s, applying Lemma
1.1 to the cycle v**! supported on X x D*+1, 0

Note. We have systematically indexed our cycle groups by codimension rather
than dimension for notational convenience. However, it seems instructive to
view the hypotheses of Theorem 1.2 as requiring the injectivity of the rational
cycle maps for cycles of dimension 0 to s.

§2. Surjectivity

In this section, we use the decomposition of the diagonal given in §1 to
study the surjectivity of the cycle map.
Let X be a smooth projective variety over C of dimension d. Let v be in
CH?(X x X)q, supported on a product I' x D, with T' C X of pure dimension
J, D C X of pure codimension ¢. Let p: I - T, ¢:D — D be birational
maps, with I’ and D smooth and projective. If Z is a subvariety of I' x D,
then there is a subvariety W of I' x D, with (p x ¢)(W) = Z, and with W
generically finite over Z. In particular, there is a cycle ¥ € CH] ‘T x D)g

with (p x ¢)«(¥) =
The cycle v determines the homomorphisms

7a: Hp(X, Q(b)) — Hp(X, Q(b))
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by
¥+(n) = pax(pi(m) U l*(7)), for n € Hp(X, Q(b)).
Let f:I' = X, g:D — X be the obvious maps, and let pD:f‘ x D — D,

Py I'xD — T denote the projections. The cycle 4 determines homomorphisms
Yot HH(T, Q(b)) — Hp™ E(p, Q(b—1)) by

F+(n) = pp.(PE(M) Ul (7)), for n € HH(T,Q(b)).

Lemma 2.1. Let n € H$(X,Q(b)). Then

(1) = Fu(Fu(g*(m)))

Proof. We have

7+(n) = P2+ (P} (n) U cl*(%))
= pax(pi(n) U cl*((g x £)«(%)))
= pax (P} (1) U (g x £)a(cl (7))
= p2.((g x F)x((g x £)*(p¥(n)) U cli™*(%))) (projection formula)
= fu(Ppu(PE(g* () U ™ (#)))
= fu(Fx(g™(m)))-

O

The Deligne cohomology groups H), and H}, of a point * are easily com-
puted; we give here a partial computation:

For k > 0, we have

Hp(+, Q(=k)) = Q(~k)
Hp(+,Q(1 + k)) = C/Q(k)
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Let px: X — * be the projection to a point. Using the cycle class map cl®,
we obtain the maps

clf _y: CH™(X) ® Hp(*,Q(—k)) = HF(X,Q(n — k))
el CHM(X) @ Hp(*,Q(1 + k)) —» HF'(X,Q(n + 1 + k)),

defined by

clg _x(n®a) = cl™(n) U px(a)
i k(n® B) = cl™(n) U px(B),

for o € HY(*,Q(—k)), 8 € Hp(X,Q(1 + k)) and n € CH"(X).

Lemma 2.2. Let Y be a smooth irreducible projective variety over C of
dimension dy. Then, for k > 0, we have

Hp(Y,Q(~k)) = Q(-k)
Hp(Y,Q(1 + k)) = C/Q(1 + k).

The map
clgy: CHY (Y) ® Hp(*, Q(0)) — H3™ (Y, Qdy))

is surjective. If 1 : x —» Y is a point of Y, the maps
e HY (%, Q(=k)) — HZY(Y,Q(dy — k)), k>0
and

L Hy(%, QL+ k) — HYY Y, Q(dy + 1+ k), k>0

are isomorphisms.

Proof. The computation of H), and H}, follow directly from the isomorphism

Hy(Y,Q(~k)) = H(Y,Q(—k)) N F*H'(Y,C)
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and the short exact sequence

0 H(Y,C)
H(Y,Q(1 + k) + FP*H(Y,C)

— Hp(Y,Q(1 + k)) — HY(Y,Q(1 4+ k)) N F***HY(Y,C) — 0,
together with the identities (for k > 0)

F~*H'(Y,C) = H'(Y,C)
FYWHYY,C)=0
FY**HY(Y,C) = 0.

For the surjectivity statement, we have the exact sequence

H*¥~4(Y,C)

0
THS Y, Zdy — k) + P EEY (Y, C)

— HYY (Y, Z(dy — k))

— H?¥(Y,Z(dy — k))n F&~*H%4v (Y, C) — 0.
For k = 0, this is just the exact sequence
0 — Al(Y) — HEY (Y, Z(dy)) — H** (Y, Z(dy)) — 0;

and the cycle class map ¢l? breaks up into degree map to H2?v (Y, Z(dy)) =
Z and the Albanese map a: CHo(Y )y — Alb(Y). As both these maps are
surjective, clg}{) is surjective as well. For k < 0, we have

HE™ (X, Q(dy — b)) = H* (Y, Q(dy — k).

As this latter group is isomorphic to Q(—k), generated by the class of a point,
the map ¢, is an isomorphism as claimed. The computation of the group
HZY T X, Q(dy + 1+ k)) is similar. o
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Lemma 2.3. Let X be a smooth projective variety over C of dimension d,
let T' be a closed subset of pure dimension ¢ + 1, D a closed subset of pure
codimension i, and let v € CHd(X x X)q be a Q-cycle supported on T' x D.
Then, for all n,k > 0, v.(H%(X,Q(n — k))) is contained in the image of
elg _y, and Ye(HY T (X,Q(n + 1+ k))) is contained in the image of ety

Proof. Asin the paragraph preceeding Lemma 2.1, we let p: r-I,¢D->D
be birational maps, with I and D smooth and projective. Let ¢ - X,
f:D — X be the obvious maps, and let ¥ € CH'(T' x b)@ be a Q-cycle with
(g9 x f)«(¥) =~. By Lemma 2.1, we have

(1) = g+(3x(f*(n)))

for n € Hf(X,Q(b))). Also, the homomorphism 7, 0 g* maps Hp(X,Q(b)))
to HS™*(D,Q(b — 1)), and ¢* maps H%(X,Q(b))) to HE(T,Q(b))). Since
HD(F Q(b))) = 0 for a > 2i 4 3, and H3 (D, Q(b—i))) = 0 for a < 2i, we
need only consider four cases:

(1) a=2n=2t,b=n—Fk;

(2) a=2n+1=2i+1,b=n+1+k;

(3) a=2n=214+2,b=n—k;

(4) a=2n+1=214+3,b=n+1+k.

For cases (1) and (2), it follows from Lemma 2.2 that f*(H,D(D Q(-k))
is in the image of cl} _,, and that f,(HL(D,Q(1 + k)) is in the image of
cli’k. For case (3) , it follows from Lemma 2.2 that HETHT,Q(i +1—k)) is
generated by cl('.)j"_lk(CH’H(I‘) ® HY(x,Q(—k)), i.e., by the classes of points

of any dense Zariski open subset of . fzisa point of T, let 4, be the
divisor pp, (¥ -z x D), when the intersection 4 Nz x D has codimension one

on I' x D. Then #,(z) is the class in H3(D,Q(1))) of 4., when the latter is
defined; using the projection formula, we see that

F(HEHT,Q( +1 - k))) C ey _(CH' (D) ® HY(*, Q(=k))).

Following ¥, by f., and using the compatibility of cycle classes with proper
pushforward, we see that

Y (Hp(X,Q(b))) C elg 2, (CHH(X) @ Hp (%, Q(—F))).

Case (4) is similar, and is left to the reader. a
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Lemma 2.4. Let X be a smooth projective variety over C of dimension d,
let D be a closed subset of pure codimension s+ 1, and let v € CHd(X x X))o
be a Q-cycle supported on X x D. Then

() (HF(X,Q(n — k))) = v(HY T (X,Q(n+ 1 +k))) =0, forn < s + 1,
and for all k > 0.
(ii) v«(H3(X,Q(n —k))) is contained in the image of clf _y, and

vo(HE (X, Q(n+1+k))) is contained in the image ofclfy, forn = s+1,
and for all k > 0.

(iii) v«(H%*(X,Q(n))) is contained in the image of clf,, forn = s + 2.

Proof. The proofs of (i) and (ii) are similar to the argument in the proof of
the preceeding lemma, and are left to the reader. For (iii), let D — D be a
resolution of singularities, and let f: D — X be the obvious map. Arguing
as in the preceeding lemma, we see that ~v,.(H%'(X, Q(n))) is contained in
f*(HD(D Q(1))). Since the cycle class map cl': CH'(D) — H3(D, Z(l)))
is an isomorphism, we find that v,(HZ*(X,Q(n))) is contained f,(CH!(D)),
proving (iii). O

Theorem 2.5. Let X be a smooth projective variety over C of dimension d.
Suppose there is an integer s, with 0 < s < d — 2, such that the Q-cycle class
maps

cl™: CH"(X)q — H3'(X,Q(n))
are injective forn =d,d —1,...,d — s. Then the maps

clp _i: CHM(X) @ HY(*,Q(—k)) — HF'(X,Q(n — k))
and

cl{"k:CH"(X)®HID( Q(1+k)) —» HF(X,Q(n+1+k))
are surjective forn =0,...,8+ 1 and for all k > 0. The map
clpo: CHH(X)®Q — HY(X,Q(n))

is surjective for n = s + 2. In particular, if the Q-cycle class maps cl™ are
injective for all n > 0, then the maps clj _, and cl are surjective for all
n > 0 and for all k > 0.

Proof. This follows from Theorem 1.2, and Lemmas 2.3 and 2.4, noting the
the map A, is the identity. m|
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Corollary 2.6. Let X be a smooth projective variety over C of dimension
d. Suppose the Q-cycle class maps

cl™: CH"(X)g — H3'(X,Q(n))

are injective for all n. Then the group Hg¢"(X) ® Q of rational Hodge cycles
of X is generated by the classes of algebraic cycles for all n.

Proof. The surjectivity of the rational cycle class map
CH"(X)o — H¢g"(X)®Q

follows directly from Theorem 2.5. O

Remark. We will show in the next section that the injectivity of the cycle
maps implies that the intermediate Jacobians of X are generated by the classes
of algebraic cycles which are algebraically equivalent to zero.

§3. Hodge numbers and the failure of injectivity of the cycle map

We proceed to examine some consequences of Theorem 1.2 for the Hodge
numbers of a smooth projective variety, and derive a criterion for ensuring that
the cycle class maps are not injective. This can be viewed as a generalization
of the theorems of Mumford-Roitman ([M], [R]) on the non-representability
of the group of zero cycles on smooth projective varieties with non-trivial
holomorphic p-forms for p > 1. What is novel in this setting is that it is
not clear which cycle group is contributing to the lack of injectivity, although
there is an obvious question one can pose (see Question 1 below).

For a smooth projective variety X over C, we let H?¢(X) denote (p, ¢)-
component in the Hodge decomposition of H*(X,C), and let h?4(X) =
dim¢c(HP?(X)). Let cl™"(y) denote the cohomology class in H™"(X) of
v € CH™(X)g. f Y and Z are smooth projective varieties over C, with Z of
dimension a, and if v is in CH}(Y x Z), we have the homomorphism

Yo: HPU(Y) — Hp+b—a,q+b—a(Z)

defined by v.(n) = p2«(p}(n) U Clb’b(’)’))~
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Lemma 3.1. Let X, D and I' be smooth projective varieties over C, with
maps f:D — X, g:T' — X. Let 4 be in CH¥T' x D), and let v = (g x f).(%).
Then v, = f. 044 0 g*.

Proof. The proof is the same as the proof of Lemma 2.1. a

Let CH™(X )pom denote the group of cycles homologous to zero, modulo
rational equivalence, and let CH"™(X )y, denote the group of cycles alge-
braically equivalent to zero, modulo rational equivalence.

Theorem 3.2. Let X be a smooth projective variety over C of dimension d.
Suppose there is an integer s, 0 < s < d — 2 such that the Q-cycle class maps

c™: CH"(X)g — HH'(X,Q(n))
are injective for n = d,d — 1,...,d — s. Then the Hodge numbers h??(X)

vanish if

(i) p+g<2s+2andlp—gq|l>1,
or if

(i) p+¢g>2s+2andp< s+ 1.

In particular, if the Q-cycle class maps cl™ are injective for all n > 0, then
the Hodge numbers h?9(X) vanish if |p — ¢q| > 1. In addition, the cycle class
map cl™ induce a surjection

cd™ CH™(X)ag — J"(X)

forn < s+ 2.

Proof. For (i), first suppose p + ¢ = 2n is even. By Theorem 2.5, the map
cy _CH"(X)® HY(%,Q(—=k)) » HE(X,Q(n — k))
is surjective for all ¥ > 0. On the other hand, for £ = n, we have

HE'(X,Q(n — k)) = HE'(X,Q(0)) = H*"(X,Q),
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and the map clf _, is the usual topological cycle class map to singular co-
homology (after twisting by @Q(—n)). Since the topological cycle class map
lands in H™"(X), the surjectivity of ¢lf _, forces the vanishing of the Hodge
numbers h?9(X) if p # ¢. This proves (i) for p + ¢ even.

For p+¢ = 2n—1 odd, consider the groups CH™(X )hom and CH™(X )q1g4.
As the difference of two cycles belonging to the same connected component
of a family of cycles on X goes to zero in the quotient group

CH”(X)hom/CHn(X)alg’

this latter group is generated by the connected components of the union of
the Chow varieties of degree t cycles of codimension n on X, for varying t.
In particular, CH™(X )hom/CH™(X )alq is a countably generated group. On
the other hand, cI"(CH™(X ),14) is an abelian subvariety A of J"(X), with
tangent space Ty(A) contained in the the subspace H"~1"(X) of Ty(J™(X)).
By Theorem 2.5, the restriction of ¢I™ to CH™(X )hom gives a surjective map

CH " (X)hom @Q — J(X)® Q.

Thus, the complex torus J®(X)/A is a countably generated group, which is
impossible unless J"(X) = A. But, as

To(JMX)) = HO"X)® H'"" Y(X) & ... & H (X)),

the Hodge numbers h?9(X) vanish if |p — ¢| > 1, completing the proof of (i).
The same argument, using the surjectivity of

el": CH"(X g — HE'(X,Q(n))
for n < s+ 2, as given by Theorem 2.5, shows that
cd":CH™(X)ag — J"(X)

is surjective for n < s + 2.
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For (ii), we use the decomposition

A=y+...+7 +7

of the diagonal A given by Theorem 1.2, with «; supported on ;41 x Dt Take
resolutions of singularities DI -5 DI T — I';, and let ¢*: I — X, f' D' X
be the obvious maps. Take Q- cycles % on I'; x D! with (g x fz D7) =
vi. We note that ¢*(HP9(X)) = 0 if p+ ¢ > 2i, for dimensional reasons.
Applying Lemma 3.1, we see that A, = v:*! as endomorphisms of H?(X),
for p+ ¢ >2s+2. Let D = D*t1 let D — D be a resolution of singularities
of D, and let f: D — X be the obv1ous map. Take a Q-cycle ¥ on X x D such
that *ys"'] (idx X f)«(¥); applying Lemma 3.1 again, we see that

HP4(X) = A(HP(X)) = 4:H (HP9(X) € f(HP=*~11=71(D)),

the second equality being valid for p + ¢ > 2s + 2. In particular, we have
HP(X)=0if p+ ¢ >2s+2and p < s+ 1, proving (ii). a

Corollary 3.3. Let X be a smooth projective variety over C of dimension
d. Suppose that the Q-cycle class maps

c™: CH"(X)g — HEY(X,Q(n))

are injective for all n. Then the Hodge numbers h?%(X) vanish if |[p—q| > 1,
and the cycle class maps

cd™:CH™(X)ag — J™(X)

are surjective for all n.
Proof. This follows directly from Theorem 3.2. O
If we adjoin the identities h?9(X) = h9P(X) = h4~P4=9(X) to the

information supplied by Theorem 3.2, we obtain a nice picture of the Hodge
diamond of X, assuming that the Q-cycle maps ci™ are injective for n =
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d,d—1,...,d —s. Here the stars represent all the coordinates (p,q) where it
is possible that A??(X) # 0; in this example d = 20, s = 5.

* ok
* ok %
ok X
x Kk
* ok X
*x ok k
ok ok x x kK X %
ok ok ok Kk Kk kX
Xk ok kK ok x X
X ok ok ok Kk k%
I
ok ok ok ok kK X
R
X ok ok ok K K Kk K %
* ok X
b . S
* kX
* ok ok
* kX
* ok
0 s+1 d—s—1 d

Theorem 3.2, taken in the light of Bloch’s conjecture that the zero-cycles
on a smooth projective surface with p, = 0 should be detected by the Albanese
map, leads to the following:
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Question 1. Let X be a smooth projective variety over C of dimension d.
Suppose there is an integer s > 0 such that the Hodge numbers h??(X)
vanish if

(i) p+¢<2s+2and |p—gq| >1,
and if
(i) p+¢>2s+2and p< s+ 1.

Then are the cycle class maps
clP: CHP(X) — HZ(X,Z(p))
injective for p =d,d—1,...,d— s? If not, are at least the Q-cycle class maps
cl’: CH(X) © Q — Hz (X, Q(p))

injective for p=d,d—1,...,d — s?
In light of the proof of Theorem 3.2, it might be better to replace (ii) with

(i1)" There are smooth projective varieties Y7,...,Y; of dimension dx —s—1
and morphisms Y; — X inducing a surjection of Q-Hodge structures

@iH*(Yi’C) ® Q(_S - 1) - eafz‘-i_—x23+2Hn(X’ C)’

or even

(i1)" For each n > 2s+2, there is a pure Q- motive (i.e. a compatible collection
of Galois representations, together with Hodge and Betti realizations, in
the sense of Deligne [D] and Jannsen [J2]) M, of weight n — 2s — 2 and
an isomorphism of Q-motives M, @ Q(—s — 1) —» H"*(X). i

As far as we know, the integral question is unsettled even for torsion
cycles, except for zero-cycles (Roitman [R2], Bloch [Bl]) and for codimension
two cycles (Murre [M]).

In any case, the contrapositive of Theorem 3.2 gives a criterion for the
failure of the injectivity of the cycle map.
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Corollary 3.4. Let X be a smooth projective variety over C of dimension d.
Suppose there is an integer s, 0 < s < d — 2, such that some Hodge number
h?9(X) is non-zero, with

(i) p+q¢<2s+2and|p—gq|>1,
or with

(i) p+g>2s+2andp<s+1.

Then there is an integer n, d — s < n < d such that the Q-cycle class map
cd™: CH'(X)g — HFH(X,Q(n))

is not injective. O

Nori [N] has given examples of projective varieties with CH"(X),®Q # 0,
but with J*(X) = 0 as generic complete intersections of sufficiently high de-
gree in certain smooth quadrics. It would be interesting to check the Hodge
numbers of these varieties, to see if similar non-injectivity results could be
obtained by applying Corollary 3.4. With reference to Question 1, one could
ask if the minimal s satisfying the conditions of Corollary 3.4 points to pre-
cisely the cycle group of highest codimension for which the cycle class map
fails to be injective, i.e.,

Question 2. Let X be a smooth projective variety over C of dimension d. Let
s be the minimal integer such that some Hodge number h?¢(X) is non-zero,
with

(i) p+¢<2s+2and |p—gq|>1,
or with

(ii) p+¢g>2s+2andp<s+1

(supposing such an s exists). Then does the Q-cycle class map
cl™:CH"(X)g — Hp(X,Q(n))

have a non-trivial kernel for n = d — s? ]
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§4. Relations with K-theory

The injectivity of the cycle maps, and the ensuing decomposition of the
diagonal given by Theorem 1.2, have consequences for higher K-theory, most
notably Kj, although one can say something about the other K-groups as
well. This leads to a generalization of a result of Coombes and Srinivas [CS],
who showed that the map

CH'(X) ® K;(C) — HY(X,K,)

is surjective, assuming that the group of zero-cycles modulo rational equiva-
lence on X is representable.

Using the Gersten resolution (see [Q]) of the K-sheaves K, on a smooth
variety X over a field k, one arrives at the exact sequence

0 — H*(X,Kp) — Kp(k(X)) = @rex Kp-1(k(z)),

where X (P) is the set of codimension p points of X. In particular, the map
H°(X,K,) — Ky(k(X)) is injective; thus, if p:Y — X is a proper birational
map of smooth varieties, the maps

p HY(Y,Kp) = HY(X,K,); p*HY(X,K,) — HY(Y,K,)

are inverse isomorphisms. If we require X to be smooth and projective,
the group H°(X,K,) is thus a birational invariant (assuming resolution of
singularities for varieties over k). In particular, we may define the group
K,(X)9e™ for X an arbitrary projective variety over C by setting K,(X)9¢" =
HO(X, Kp), where X — X is a resolution of singularities. We have

Ko(X)9e" = Z;
Ky(X)e" = CX,

for X an arbitrary projective variety over C. The groups K,(X)%¢" for p > 1
are more mysterious, and in general contain K,(C) as a proper summand.
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The cup product in K-theory gives rise to the natural maps

Ko(X) ® K,(C) =K y(X)
HP(X,Ky) @ Ko(X)P" —HP(X, Kpty),

we call the image of these maps the decomposable part of K,(X) or of
H?(X,Kp4q), respectively. There is a possibly larger subgroup of
HP(X,Kp4q), which we now describe.

Let ZP(X,q) be the group

ZP(X,(])= @ I{q(i.)gen,
zeX (@)

where Z is the closure of z in X. Via the Gersten resolution for K4, we
have the natural map

ZP(X,q) = HP(X,Kptq):

We call the image of this map the geometrically decomposable part of
H?(X,Kp4q). For ¢ =0,1, the decomposable part and geometrically decom-
posable part of H?(X,K,14) agree; in general, the geometrically decompos-
able part contains the decomposable part. We extend the definition of the
decomposable and geometrically decomposable parts to the rational versions
Ky(X)q and HP(X,Kp44)g in the obvious way.

Theorem 4.1. Let X be a smooth projective variety over C of dimension d.
Suppose the Q-cycle class maps

cl™: CH" (X))o —» HE(X,Q(n))

are injective forn = d,d—1,...,d—s, for some integer s,0 < s < d—2. Then
the groups HP(X,K,14)q are geometrically decomposable for 0 <p < s+ 1.
In particular, the map

CHP(X)®C*®Q — H?(X,Kpt1)o
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is surjective for 0 < p < s+ 1.

Proof. The bi-graded ring @, (H?(X,K,)q satisfies the Bloch-Ogus axioms
[BO] for a twisted duality theory; in particular, if v is a codimension d cycle on
X x X, v gives rise to the endomorphism v,: H?(X,Kpiyq)o = HP(X,Kp149)0,
and the obvious analog of Lemmas 2.1 and 3.1 hold. We apply Theorem 1.2,
retaining the notation of that theorem. The vanishing of H?(Y,K,,) for
p > dim(Y") and for p < 0, together with the decomposition of the diagonal

A=v+...+7 +7*!

implies that, on H?(X,Kp4q),

AL = Tom1e T if0<p<s
T Yer 5T fp=s+1

For Y smooth of dimension dy, the map
CHY(Y)® K (C) = H¥ (Y, K4y +4)

is surjective; arguing as in the proof of Lemma 2.3, we see that the image
Yp—1x(HP(X,Kp4q)) is in the decomposable part of HP(X,Kp4q). Similarly,
the argument of Lemma 2.3 shows that ~v,,(H?(X,Kp44)) is in the geomet-
rically decomposable part of HP(X,K,44). Finally, arguing as in the proof
of Lemma 2.4, we see that y{T!(H?(X,Kp4q)) is in the geometrically decom-

posable part of HP(X,Kp44). This proves the theorem. O
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Decomposability of Chow groups implies
decomposability of cohomology

Héléne Esnault, V. Srinivas and Eckart Viehweg

Let X be an n-dimensional complete irreducible smooth variety defined over
the field € of complex numbers. For any Zariski open subset V' of X, we have
the following graded rings.
(1) Gna CH!(V)q, where CH(V)q is the Chow group of algebraic cycles of
i=0
codimension ¢ on V' with rational coefficients, modulo rational equivalence
(see [F], Chapter 8, Prop. 8.3).
(ii) Q) H(V)/N'H{(V), where H'(V) = H'(V,,,Q) is the singular cohomol-
ogy of the underlying complex manifold V,,, and
NH'(V)= lim ker (H'(V) — H'(V - 2))

codim Z>a

defines Grothendieck’s coniveau filtration (here Z runs over the Zariski
closed subsets of V' of codimension > a).

il GB H°(V,Hi,), where M, is the sheaf for the Zariski topology associated
g

to the presheaf
Ur— Hi(U) = Hi(Uan’Q)'

(iv) We also have a graded ring associated to X: é H(C(X)), where
i=0

Hi(C(X)) == lim H(V) = lim B (V)/N'H(V)

vex vex
= lim HY(V, H}))
vex

S.M.F.
Astérisque  218** (1993) 227
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Here the direct limits are over the non-empty Zariski open sets V in X,
and C(X) denotes the function field of X. The first equality defines the
cohomology of the function field; the right side of the equality is clearly
a birational invariant of X.

In (ii), (iii), (iv) above, we consider only cohomology in degrees up to n,
since the singular cohomology of an affine variety of dimension n vanishes in
degrees larger than n, by the weak Lefschetz theorem (this implies that for any
variety V of dimension n, we have H{(V) = N'H{(V) for i > n).

Theorem 1 Let X be a smooth complete variety of dimension n over C. Sup-
pose there exists a non empty Zariski open subset V. C X, and positive integers
n1,...,n. with 3;n; = n, such that one of the following product maps is sur-
jective:

(1) CH"(V)q®:---® CH™(V)q — CH"(V)q
(@) H"(V)/N*H"(V)® --- @ H(V)/N'H" (V) — H"(V)/N*H"(V)
(1) H'(V,Hy ) @ -+ ® H'(V,Hy') — H(V, HY)
(w) H™(C(X)) ®--- ® H™(C(X)) — H"(C(X))
Then the cup product map for the coherent cohomology
H"(X,0x)® H*(X,0x)®--- @ H" (X,0x) — H"(X,Ox) (%)

s surjective.

The proof of (i) is motivated by Bloch’s proof [B] of Mumford’s theorem
that for surfaces X with H2(X,Ox) # 0, the Chow group of 0-cycles CH?(X)
is not ‘finite dimensional’ (see also the ‘metaconjecture’ in Chapter 1 of [B2]).
Many other variants of Bloch’s method have been considered by several authors.
The method involves the action of correspondences on the cohomology. At the
referee’s suggestion, we try to make this argument with some care, though this
type of reasoning is well known to experts.

The proofs of (ii), (iii) and (iv) are a consequence of the mixed Hodge struc-
ture on the cohomology of the open sets V' (see [D]). For V = X the surjectivity
of the map (ii) trivially implies that () is surjective, using the Hodge decom-
position on cohomology, since the ring @H'(X,Ox) is a graded quotient of
®(H{(X)/N'H{(X))® C.
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The proof of the theorem

We first discuss (i). Let C = X — V| and let k¥ C € be a countable algebraically
closed field of definition of X, C and V. Let Xy, Cp, Vo be the corresponding
models over %, and for any extension L of k, let X = X X L, etc. We embed
k(Xy) — C as a k-subalgebra, and consider the generic point of X, as a closed
point 7 € Xk(x,), hence as an element of CH"(Xy(x,))q- By assumption, its
image under the composite

CH"(Xy(x,))q — CH"(X)q — CH"(V)q

decomposes as

Zmnl. DRI .mnr

finite

where m,, € CH"(V)q. The m,, are defined over a subfield L C € which is
finitely generated over k(Xj), and (see [B2], Lecture 1, Appendix, Lemma 3)

the natural map
CH"(Vp)q — CH"(V)q

is injective, so

S My - e, =[] (1)

finite
holds in CH™(VL)q.
Let F be the algebraic closure of k(Xj) in L; since L is finitely generated over
k(X,), F is a finite algebraic extension of k(X,). We can find a non-singular
affine F-variety W with function field L. The graded ring

P CH (VL)

i>0
is the direct limit of the graded rings
@ CH (Vr xp W),

i>0

where W’ runs over the non-empty Zariski open sets in W (see [B2], Lecture 1,
Appendix, Lemma 1). So after replacing W by a nonempty open subset, we
may assume given classes m,, € CH™(Vp xp W) such that (1) holds in

CH"(VF XF W)Q,
where [n] now denotes the image in CH"(Vp xp W)q of the earlier class

[n] € CH™(Vi(x,))q C CH"(VF)q.
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Let P € W be a closed point. Then there is a homomorphism of rings

f @ CH (Vr xp W) — @ CH(Vy xr Spec F(P)),

i>0 i>0

where f : Vi Xp Spec F(P) — Vg xp W is induced by the inclusion of P into
W (f is a morphism of non-singular F-varieties, hence by [F], Prop. 8.3, such
a homomorphism f* exists). Then f*[r] is just [5] considered as an element of

CH"(Vi(xo))a C CH"(Vp(p))q. Hence

S F*(ma) e f ma) = o] ©)
finite
holds in CH"(Vr(p))q, Where f*(my,,) € CH™(Vpp))q.

Hence, we are reduced to the situation when (1) holds, where L is a finite
algebraic extension of k(Xp), and m,, € CH'(Vy)q.

By resolution of singularities, we can find a projective non-singular k-variety
Zy, together with a k-morphism g : Zyg — Xj, such that the induced map on
function fields is the given inclusion k(Xy) — L. Since L is a finite extension
of k(Xy), the morphism oy is generically finite.

The (flat) k-morphism Spec L — Z, given by the inclusion of the generic
point gives rise to a natural surjective homomorphism of graded rings

Cl: @ CH! (Xo Xk Zo)g — @ CH"(Vy)a,

i>0 i>0

such that if [A,,] € CH™(Xo X Zy)q is the class of the transposed graph of gy,
then CI([Ay,]) is just [§] € CH™(VL)q. The kernel of

CH"(Xo xx Zo)g — CH™(V;)

consists of the subgroup generated by the classes supported on subsets of the
form (Cy xx Zy) U (Xo Xk Dp), as Dy runs over all proper subvarieties of Z,
(see [B2], Lecture 1, Appendix, Lemma 1, and [F], Prop. 1.8). Thus we have
an equation

[Ao] =Y My, - - - My, =0+

in CH™(Xo X Zy), where for some divisor Dy C Z,, we have

Mn.’ S CH"‘(XO Xk ZO)Q, M, — m, € CH"‘(VL)Q
Y% € CH"(Xo Xk Zo)g, suppyo C Co X Zo
by € CH"(XO Xk Zo)Q, Supp(so C Xy xx Dy
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Thus if Z = Zy x4 €, 0 : Z — X the induced map, M;,. = (M,,)c, ¥ = (10)c,
6= (50)(1:, C = (Co)q;, D= (.Do)q;, then

(Ac] = XMy, e My, =y 48 )

in CH™(X x Z)q, where v is supported on C' x Z, and § is supported on X x D
(in the rest of this proof, x denotes x¢).

Elements of CH"(X x Z)q act on H"(X) as follows. First, there is a cycle
class homomorphism of graded rings

PCH (X x Z) » P H*(X x Z)

i>0 i>0

(see [F], Chapter 19, Cor. 19.2(b)). By [F], Prop. 16.1.2 and Example 19.2.7,
an element « € CH"(X X Z)q yields mappings

o, :CH(X)qg » CH(Z)q, o :CH'(Z)q— CH'(X)q
on Chow groups, and
o, : H(X) - H(Z), o :H(Z)— H(X)

on cohomology, where if p : X x Z — X, and ¢ : X x Z — Z are the projections,

then a.(z) = ¢.(p*(z) U @), and o*(y) = p«(¢*(y) U ). Since X, Z are proper

and smooth over €, the required operations exists on cohomology as well as

Chow groups. Further, if « is the class of the transposed graph of a morphism

f:Z — X, then a, = f*, and a* = f,, where f* is the natural map on

cohomology, and f, is the Gysin map (see [F], Prop. 16.1.2 and Example 19.2.7).
On the level of cohomology, the Gysin (push forward) map

¢ H™(X x Z) » H™(2)

is defined via Poincaré duality. As we see below, an equivalent (up to sign)
description of ¢, is as follows: one may use the Kiinneth isomorphism

H"Xx2Z2)2 (P H(X)® H(2)
i+j=m
to project onto the summand H?*(X)® H™ ?"(Z), and then use the canonical
isomorphism degy : H**(X) =0 (for any non-singular projective variety T

over € of dimension d, let degy : H2¢(T) = @ denote the natural isomor-
phism). The map p, is defined similarly.
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To see that the two procedures for defining ¢. are equivalent up to sign, note
that the natural isomorphism (induced by degx, ;)

H™(X)® H™(Z) = H*™(X x Z) = @
is the tensor product of the natural isomorphisms
H"(X) 5@, H™2)5Q

(this is because a similar assertion is valid for integral cohomology — now we are
comparing two isomorphisms Z ® Z = Z, which are equal because the natural
orientation on X x Z is the product orientation of those on X and Z). Now if
x € H™(X x Z), then ¢.(z) defined via Poincaré duality is the unique element
of H™~?"(Z) such that for any z’ € H*"~™(Z), we have

degxxz(z U ¢"(z)) = degz(qu(z) U 2').
But z U ¢*(z') depends only on the Kiinneth component of = in
H™(X)® H™?(2).
If this Kiinneth component of z is 3°; p*z; U ¢*y;, then
U (2) =+ Xj:p*(rj) Ug'(y; Uz,
so that

degy(g.(2) U a') = degxxz(v U ¢"(¢')) = £ }_ degx (z;) degz(y; U ).
J

On the other hand, the second procedure for defining ¢.(z) yields the element
; degx (z;)y;, whose cup product with z' is 3°; degx(x;)(y; U z'), which thus
has the same image under deg, as ¢.(z) U z’, up to sign.

The cup product on the cohomology of X X Z is compatible up to signs
with the Kiinneth decomposition, and the cup products on the cohomology of
X and Z respectively. This is because we may view the Kiinneth component

H(X)® H(Z) Cc HY (X x Z)
as image of the mapping given by

@y pzUqy.
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Now our assertion follows because the cup product is functorial, associative,
and commutative up to sign.

In particular, the action of @ € H?"(X x Z) on H"(X) (via a.) or on H*(Z)
(via o*) is determined by the Kiinneth component of o in H*(X) ® H"*(Z). If
a=3Y,;p"z; ® ¢"yi, then

a*(z) == Zdegz(y; U 2)z;,
where y; U z € H**(Z), and degy, : H**(Z) — Q is the natural isomorphism.
The Kiinneth decomposition, as well as the action of classes of elements of

CH"(X x Z)q on cohomology, are compatible with the Hodge decompositions
on the various cohomology groups. Hence for « € CH™(X x Z)q, the map

o : H*(Z,C)/F*H"(Z,C) - H"(X,C)/F'H"(X,C)
depends only on the image of the class of oz under the composite

CH(X x Z)q — H™(X x Z,C) —» H"(X,C) ® H"(Z,T) —
H™(X,0x) @ H(Z,9¢).

Here the last map is a tensor product of projections onto appropriate summands
of the Hodge decompositions. This is because if y € H"(X,C) is of Hodge
type (p,q), 2 € H*(X,0Ox) (i.e. is of type (0,n)), and z € H*(X,Ox), then
deg,(y U 2)z is 0, unless y has type (n,0). Let

St @z € H'(X)® H'(X)

be the Kiinneth component of type (n,n) of the diagonal of X x X, whose
inverse image

Y ti®o*(z:;) € HY(X)® H"(Z)
is the Kiinneth component of type (n,n) of A,. Then
0. =[A]*: H(Z,C) —» H*(X,C)

is given by
2 Y degy(0*z; U 2)t;.
J

On the other hand, if ap; € H*™(X x Z) is the cohomology class of M, , then
[My, - - - M, " : H"(Z) — H(X)
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is determined by the (n,n)th Kinneth component of the cohomology class
Qp, U -+ U ayp,. Further, the map on the Hodge components of type (0,n)

= [Mrlu Tt M:lr]* : Hn(Zv OZ) - Hn(X’OX)
depends only on the Hodge component of type (0,n) ® (n,0) in
H"(X,C)® H"(Z,C)

of o, U---Uap,. Thisis just o;, U---Ua,, , where o}, is the Hodge component
of oy, in H™(X,0x) ® H'(Z,Q%)q). Hence £ is expressible in the form

£(2) = Z degz(Yn, U+ Uyn, U 2)zp, U+ U zp,,

finite

for suitable y,, € H(Z,Q)), and z,; € H" (X, Ox). In particular,
image £ C image (H"‘ (X,0x)®--- @ H"(X,0x) — H"(X, OX)) .

The correspondence 7, maps H"(Z) into N®*H"(X), where a is the codi-
mension of C' in X, whereas é, maps H"*(Z) into N'H"(X) (see [B], and [J],
proof of (10.1)).

Hence on the Hodge components of type (0,n), the map

o.: H'(Z,C) —» H"(X, C)
maps H"(Z,0z) into
image (H™ (X,0x)® - ® H"(X,0x) — H"(X,0x)).

Finally, we note that o, 0 0* : H*(X,C) — H"(X, C) is multiplication by the
degree of o; hence it is an isomorphism. Hence o, is surjective, z.e.,

H"(X,0%)®--- ® H(X,0x) — H™(X,0x)

is surjective.

This proves that if the map (i) is surjective, so is the map (). Hence to
complete the proof of the theorem, it suffices to show that if any of the maps
(ii), (iii) or (iv) is surjective, so is (*). From Hodge theory (see [D]), there is a
surjection

oy : H(V)® C — H'(X,0x)
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for any non empty Zariski open set V' C X, which is compatible with cup
products; this is just the quotient modulo the subspace F!(H*(V) ® C), where
Fi(H (V) ® C) is the Hodge filtration for Deligne’s mixed Hodge structure on
Hi(V). Further, for any inclusion of Zariski open sets W C V C X, the triangle

HV)®€C ——— H(W)®C
N e
H"(X,0x)

commutes, by functoriality of the mixed Hodge structure.

Hence there is a commutative diagram of graded rings
@ (H (V)/N'H(V)® C —— g_"% H(V,H,) @ C —— é;OHf(m(X)) ®C

N b

éHi(X70X)

=0

where a, 3 and v are induced by the 6y for all open W C V, and are all
surjective (incidentally the horizontal maps are known to be injective by [BO]).
The surjections «, 8 and v immediately imply that if the maps in (ii), (iii) or
(iv) respectively are surjective, then so is (). m]

From the formulation of the proof, it appears that (ii), (iii) and (iv) are
directly related to (x) via the maps «, § and 7, while the relation between (i)
and (*) is indirect. It is possible to give another proof (which is really more or
less a reformulation of the old one) which looks more like the proof in the other
three cases, as follows.

We make use of the existence of a cycle class homomorphism
D CH (X)q — D H(X, Vy/z),
i=0 i=0
where Q5 is the sheaf of absolute Kéhler i-forms (see [S], for example; the

proof below is motivated by the proof in [S] of the infinite dimensionality the-
orem for zero cycles). If k, X, are as in the proof above, this induces a ring
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homomorphism

D CH (X)q — P H (X, 0%/x,) = H' (X0, Ox,) @k /-

=0 1=0

Suppose [ : H*(X,,0Ox,) — k is a non-zero linear functional such that the
composite

1
Hm(X% OXO) X Hnr(XOvOXo) - Hn(XOv OXo) — k
is zero. Then the induced homomorphism

CH"(X)q® - ® CH"(X)q — CH"(X)q —— H"(X0,0x,)@% s

. el

Qv
clearly vanishes. We claim that

a) for any P € C, [P] € CH"(X)q lies in the kernel of the map (defined
above using the functional /)

wi CH'(X)q — U

(b) if k(Xp) — C yields the point n € X, corresponding to the generic point
of Xy, then u([n]) #0.

These properties follow from certain properties of the cycle map
CH™(X)q — H"(Xo,Ox,) ®k Qg/ks
discussed below. If P € X has ideal sheaf I, then there is an exact sequence
1/ 5 QY x, ® Op — Qbyx, — 0. (4)
The image of A" ¢ under the composite
Hom(AI/T?, Q% x, ® Op) = Extx (Op,Qx/x,) — Hp(X,Qx/x,) —

— H™"(X, Q%) x,) = H"(Xo, Ox,) ® Qg i
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is the cycle class of P (this follows from the definition of the cycle class given
in [S]). If @ € X, is the image of P (note that () need not be a closed point),
then the sequence (4) may be rewritten as

¥
where y is the natural surjection. Thus

rank 9 = tr.deg. (k(Q)/k).

Hence if P € C, so that Q € Cy C Xy but Cy # Xo, then rank ¢y < n, and
A"+ = 0. This proves (a).

Secondly the linear functional
l: H*(Xo,0x,) — k

is determined, via Serre duality, by a unique w € H(Xo, %, sk)- The embed-
ding k(Xo) < € used to determine € X also yields an embedding

HO(X()’QnXo/k) - Q;cl(Xo)/k - Q%/k’

and it is shown in [S] that p(n) is the image of w under this map. In particular
it is non-zero.

Further remarks

1. The theorem has been stated in the present form, as urged by the referee.
However, possible applications would seem to be in the direction that if
the cup product on coherent cohomology is not surjective, then none of
the other products (i)-(iv) is surjective. This is because it is presumably
easier to directly compute the cup product on coherent cohomology than
to compute any of the products (i)-(iv), in most situations.

2. One might hope (this is consistent with the philosophy outlined in [B2],
Chapter 1) that if

H"(X)/N'H"(X)® --- @ H"(X)/N'H" (X) — H"(X)/N'H"(X)
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is not surjective, then for any non empty open set V C X,
CH"(V)q®:--- @ CH"(V)q — CH"(V)q

is not surjective. In an earlier version of the paper, the authors had
claimed to prove this, but the argument was found to be incomplete.
This statement is purely algebraic, and suggests an analogous theorem in
arbitrary characteristics, if we interpret H'(X) as a suitable l-adic coho-
mology group, equipped with Grothendieck’s coniveau filtration, defined
as before.

However, note that if (x) is surjective, then the image of
H™(X)®- -+ ® H" (X) - H"(X)

is a @Q-Hodge substructure, which after tensoring with €, maps onto
HO™(X). Hence this image maps onto the smallest quotient Hodge struc-
ture with the same space H(®". According to Grothendieck’s generalized
Hodge conjecture, this smallest quotient is just H"(X)/N'H"(X). Thus
the surjectivity of the map in (ii) for V = X is conjecturally equivalent
to that of ().

. Of course, it would be very interesting to have information in the converse
direction to the theorem. For example, for n = 2 and surfaces of general
type for which H?(X,0Ox) = 0, one also knows that H'(X,0x) = 0, so
that CH'(X) = Pic(X) is a finitely generated abelian group. Now the
implication (¢) = (x) is equivalent to Bloch’s conjecture that CH?(X) =
Z. (Here and below, by ‘(i) or ‘(x)’ we mean the surjectivity of the
corresponding map, for some choices of ny,...,n,; these choices will be
fixed in each discussion.) This is because the subgroup of CH?(X) of
cycles of degree 0 is a divisible group ([B2], Lemma 1.3), so if it is finitely
generated, it must be 0. Note that () and (i¢) are equivalent for surfaces;
a generalisation of Bloch’s conjecture is the assertion that (ii) => (7).

However, (x) = (44t) is false in general. If X is the Jacobian of a general
curve of genus 3, then the natural map

H'(X,Q) — H°(X,Hy)

is surjective for 1 < 2, while the cokernel for ¢ = 3 is the Griffiths group of
codimension 2 cycles (with rational coefficients) homologous to 0 modulo
algebraic equivalence, by results of [BO]. But Ceresa [C] has shown that
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this Griffiths group is a non-zero Q-vector space. Hence the map (ii7) is
not surjective, while (x) (and even (¢)) is always surjective on an abelian
variety (see [B3]).

We do not know an example where the map (iv) is known to be surjective.

. In contrast to the situation in (iv), Bloch (see [B2], 5.12) wonders whether
the graded ring

P H (C(X),Z/mZ) = lim P H (Van, Z/mZ)

i=0 vcX i=0
is generated by H'(C(X),Z/mZ) as a Z/mZ-algebra. If n = 2, this is
known, from the Merkurjev-Suslin theorem, and Bloch (loc. cit.) states
that

HY(C(X),Z/mZ)®*" — H"(C(X),Z/mZ)

is always surjective. More generally, Kato has conjectured that for any
field K containing a primitive I*" root of unity, the Galois cohomology
ring with Z/IZ coefficients, | # char K, is generated by H'(K,Z/IZ).
One may be tempted to argue using inverse limits that in view of the
above conjectures, one should expect that

@D H(C(X), Q) = D H(C(X), Q) ®
i=0 i=0
is generated by H'(C(X),Q,) as a @Q;-algebra. However, the inverse sys-
tems ‘
{HI(G(X)’ z/lmz)}mZI
do not satisfy the Mittag-Leffler condition, so the surjectivity of multipli-
cation maps need not be preserved under taking inverse limits.

. If R = @ R is a graded Q-algebra, define z € R, to be r-decomposable
=0
if there is an expression

T = Z TiYi
i=1

where the z;,y; € R are homogeneous of degree > 0. If z is not r-
decomposable, we say that x is r-indecomposable.
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Nori [N] has shown that if X is a proper smooth variety of dimension n
over € with H"(X,Ox) # 0, then for any non-empty open subset V. C X
and any r > 0, CH"(V)q contains elements which are r-indecomposable
in @; CH!(V)q. Nori’s proof involves an argument analogous to the sec-
ond proof of (i) = (*) using the cycle class.

In a similar vein, suppose X is a smooth proper variety of dimension n
over a universal domain 2, such that HE(X,Q,) # N'HZ(X,@,). Then
one may raise the following questions.

(1) For any non-empty open set V' C X and any r > 0, does CH"(V)q
contain r-indecomposable elements?

(2) Does H((X), @) contain elements which are r-indecomposable in
@ H;t(Q(X)a Ql)?

for each r > 07 Is this true at least when Q = € and H*(X,Ox) # 0?7
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Compactifications of moduli spaces
inspired by mirror symmetry

David R. Morrison

The study of moduli spaces by means of the period mapping has found its
greatest success for moduli spaces of varieties with trivial canonical bundle,
or more generally, varieties with Kodaira dimension zero. Now these moduli
spaces play a pivotal réle in the classification theory of algebraic varieties,
since varieties with nonnegative Kodaira dimension which are not of general
type admit birational fibrations by varieties of Kodaira dimension zero. Since
such fibrations typically include singular fibers as well as smooth ones, it is
important to understand how to compactify the corresponding moduli spaces
(and if possible, to give geometric interpretations to the boundary of the
compactification). Note that because of the possibility of blowing up along
the boundary, abstract compactifications of moduli spaces are far from unique.

The hope that the period mapping could be used to construct compacti-
fications of moduli spaces was given concrete expression in some conjectures
of Griffiths [25, §9] and others in the late 1960’s. In particular, Griffiths con-
jectured that there would be an analogue of the Satake-Baily-Borel compact-
ifications of arithmetic quotients of bounded symmetric domains, with some
kind of “minimality” property among compactifications. Although there has
been much progress since [25] in understanding the behavior of period map-
pings near the boundary of moduli, compactifications of this type have not
been constructed, other than in special cases.

In the case of algebraic K3 surfaces, the moduli spaces themselves are
arithmetic quotients of bounded symmetric domains, so each has a minimal
(Satake-Baily-Borel) compactification. In studying the moduli spaces for K3
surfaces of low degree in the early 1980’s, Looijenga [35] found that the Satake-
Baily-Borel compactification needed to be blown up slightly in order to give
a good geometric interpretation to the boundary. He introduced a class of
compactifications, the semi-toric compactifications, which includes the ones
with a good geometric interpietation.

S.M.F.
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In higher dimension, the moduli spaces are not expected to be arithmetic
quotients of symmetric domains, so different techniques are needed. The
study of these moduli spaces has received renewed attention recently, due to
the discovery by theoretical physicists of a phenomenon called “mirror sym-
metry”. One of the predictions of mirror symmetry is that the moduli space
for a variety with trivial canonical bundle, which parameterizes the possi-
ble complex structures on the underlying differentiable manifold, should also
serve as the parameter space for a very different kind of structure on a “mir-
ror partner”—another variety with trivial canonical bundle. This alternate
description of the moduli space turns out to be well-adapted to analysis by
Looijenga’s techniques; we carry out that analysis here.

In the physicists’ formulation, one fixes a differentiable manifold X which
admits complex structures with trivial canonical bundle (a “Calabi-Yau man-
ifold”), and studies something called nonlinear sigma-models on X. Such an
object can be determined by specifying both a complex structure on X, and
some “extra structure” (cf. [40]); the moduli space of interest to the physicists
parameterizes the choice of both. The roles of the “complex structure” and
“extra structure” subspaces of this parameter space are reversed when X is
replaced by a mirror partner.

Most aspects of mirror symmetry must be regarded as conjectural by math-
ematicians at the moment, and in this paper we conjecture much more than
we prove. In a companion paper [41], we consider formally degenerating vari-
ations of Hodge structure near normal crossing boundary points of the mod-
uli space, and describe a conjectural link to the numbers of rational curves
of various degrees on a mirror partner. In the present paper, we extend
these considerations to boundary points which are not of normal crossing
type, and formulate a mathematical mirror symmetry conjecture in greater
generality. In addition, we find that when studied from the mirror perspec-
tive, a “minimal” partial compactification of the moduli space—analogous to
the Satake-Baily-Borel compactification—appears very natural, provided that
several conjectures about the mirror partner hold.

One of our conjectures is a simple and compelling statement about the
Kahler cone of Calabi-Yau varieties. If true, it clarifies the role of some of the
“infinite discrete” structures on such a variety, which nevertheless seem to be
finite modulo automorphisms. We have verified this conjecture in a nontrivial
case in joint work with A. Grassi [21].

The plan of the paper is as follows. In the first several sections, we re-
view Looijenga’s compactifications, describe a concrete example, and add a
refinement to the theory in the form of a flat connection on the holomorphic
cotangent bundle of the moduli space. We then turn to the description of the
larger moduli spaces of interest to physicists, and analyze certain boundary
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points of those spaces. Towards the end of the paper, we explore the math-
ematical implications of mirror symmetry in constructing compactifications
of moduli spaces. We close by discussing some evidence for mirror symmetry
which (in hindsight) was available in 1979.

1 Semi-toric compactifications

The first methods for compactifying arithmetic quotients of bounded sym-
metric domains were found by Satake [46] and Baily-Borel [5]. The com-
pactification produced by their methods, often called the Satake-Baily-Borel
compactification, adds a “minimal” amount to the quotient space in complet-
ing it to a compact complex analytic space. This minimality can be made
quite precise, thanks to the Borel extension theorem [10] which guarantees
that for a given quotient of a bounded symmetric domain by an arithmetic
group, any compactification whose boundary is a divisor with normal cross-
ings will map to the Satake-Baily-Borel compactification (provided that the
arithmetic group is torsion-free).

Satake-Baily-Borel compactifications have rather bad singularities on their
boundaries, so they are difficult to study in detail. Explicit resolutions of sin-
gularities for these compactifications were constructed in special cases by Igusa
[30], Hemperly [27], and Hirzebruch [28]; the general case was subsequently
treated by Satake [47] and Ash et al. [1]. The methods of [1] produce what are
usually called Mumford compactifications—these are smooth, and have a di-
visor with normal crossings on the boundary, but unfortunately many choices
must be made in their construction. The Satake-Baily-Borel compactification,
on the other hand, is canonical.

Some years later, Looijenga [35] generalized both the Satake-Baily-Borel
and the Mumford compactifications by means of a construction which can
be applied widely, not just in the case of arithmetic quotients of bounded
symmetric domains. Looijenga’s construction gives partial compactifications
of certain quotients of tube domains by discrete group actions. A tube do-
main is the set of points in a complex vector space whose imaginary parts
are constrained to lie in a specified cone. Whereas Ash et al. [1] had only
considered homogeneous self-adjoint cones, Looijenga showed that analogous
constructions could be made in a more general context.

The starting point is a free Z-module L of finite rank, and the real vector
space Lg := L ® R which it spans. A convex cone o in Lg is strongly convez
if o N (—o0) C {0}. A convex cone is generated by the set S if every element
in the cone can be written as a linear combination of the elements of S with
nonnegative coefficients. And a convex cone is rational polyhedral if it is
generated by a finite subset of the rational vector space Lg := L ® Q.
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Let C C Lr be an open strongly convex cone, and let I' C Aff(L) be
a group of affine-linear transformations of L which contains the translation
subgroup L of Aff(L). If the linear part I'g := I'/L C GL(L) of T preserves
the cone C, then the group I' acts on the tube domain D := Lg +iC. We wish
to partially compactify the quotient space D/I', including limit points for all
paths moving out towards infinity in the tube domain.

Looijenga formulated a condition which guarantees the existence of partial
compactifications of this kind. Let C be the convex hull of CN Lg. Following
[35], we say that (Lg,C,Tg) is admissible if there exists a rational polyhedral
cone IT C C, such that I'o.Il = C;. Given an admissible triple (Lg,C,Ty),
the (somewhat cumbersome) data needed to specify one of Looijenga’s partial
compactifications is as follows.!

DEFINITION 1 [35] A locally rational polyhedral decomposition of Cy is a
collection P of strongly convex cones such that

(i) C4+ is the disjoint union of the cones belonging to P,
(ii) for every o € P, the R-span of o is defined over Q,

(iii) if o € P, if T is the relative interior of a nonempty face of the closure
of o, and if r C C4, then 7 € P, and

(iv) if II is a rational polyhedral cone in C4., then I meets only finitely many
members of P.

(The decomposition P is called rational polyhedral if all the cones in P
are relative interiors of rational polyhedral cones. This is the same notion
which appears in toric geometry [19, 43], except that the cones appearing in
P as formulated here are the relative interiors of the cones appearing in that
theory.)

For each I'g-invariant locally rational polyhedral decomposition P of C,,
there is a partial compactification of D/T" called the semi-toric (partial) com-
pactification associated to P. This partial compactification has the form
D(P)/T, where D(P) is the disjoint union of certain strata D(o) associated
to the cones ¢ in the decomposition. The complex dimension of the stratum
D(o) coincides with the real codimension of the cone ¢ in Lg; in particular,
the open cones in P correspond to the 0-dimensional strata in ’5(7’) The del-
icate points in the construction are the specification of a topology on ’5(73),

1We have modified Looijenga’s definition slightly, so that the use of the term “face” is
the standard one (cf. [45]): a subset F of a convex set S is a face of S if every closed line
segment in S which has one of its relative interior points lying in F also has both endpoints
lying in F.
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and the proof that the quotient space D(P)/T" has a natural structure of a
normal complex analytic space. For more details, we refer the reader to [35]
or [50].

The construction has the property that if P’ is a refinement of P, then
there is a dominant morphism D(P')/T' — D(P)/T. Blowups of the boundary
can be realized in this way.

A bit more generally, we can partially compactify finite covers D/I" of
D/T, built from L' C L of finite index, I'y C GL(L') N Ty of finite index in
Tp, and I := L' x T}, by specifying a I'y-invariant locally rational polyhedral
decomposition P’ of C,.

There are two extreme cases of a semi-toric compactification. The Satake-
Baily-Borel decomposition Pspp consists of all relatlve interiors of nonempty
faces of C;. The resulting (partial) compactlﬁcatlon D(PSBB)/ T is the Satake-
Baily-Borel-type compactification of D/T'. This is “minimal” among semi-toric
compactifications in an obvious combinatorial sense; I do not know whether
a more precise analogue of the Borel extension theorem holds in this context.
The strata added to D/T include a unique 0-dimensional stratum D(C), which
serves as a distinguished boundary point.

At the other extreme, if every cone o € P is the relative interior of a
rational polyhedral cone & which is generated by a subset of a basis of L,
then the associated partial compactification is smooth, and the compactifying
set is a divisor with normal crossings. We call this a Mumford-type semi-toric
compactification. We will spell out the structure of the compactification more
explicitly in this case, giving an alternative description of D(P)/T.

We can think of producing a Mumford-type semi-toric compactification in
two steps. In the first step, we construct a partial compactification D(P)/L
of D/ L which is Tg-equivariant; in the second step we recover D(P)/I" as the
quotient of D(P)/L by Ty.

The first step is done one cone at a time. Given o € P, there is a basis
2, ...,¢ of L such that

0 =Ryolt + - +Rsol* for some k < r.

Let {2;} be complex coordinates dual to {¢’}, so that z = ) 2;¢ represents
a general element of L¢c. Consider the set D, := Lg + i0. Translations by
the lattice L preserve D,, and coordinates on the quotient D, /L C Lc/L can
be given by w; = exp(27iz;). In terms of those coordinates, D,/L can be
described as

Dy/L={weC":0< |w;j| <1forj<k,|w;|=1forj>k}
We partially compactify this to
(Do /L)” :={w € C":0< |w;| <1forj<k,|wj]=1forj> k}.
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(We have suppressed the o-dependence of ¢/, zj, wj to avoid cluttering up the
notation.) We call any w € (D,/L)~ with w; = 0 for j < k a distinguished
limit point of D, /L. Note that any path in D, along which Im(z;) — oo for
all 5 < k, maps to a path in D,/L which approaches such a distinguished
limit point. The set DLP(o) of distinguished limit points is a subset of the
stratum D(c), and is a compact real torus of dimension dimg DLP(o) =
r — k = dim¢ 13(0). When k = r, the distinguished limit point is unique, and
it coincides with the 0-dimensional stratum D(c) of D(P).

The partial compactification D(P)/L can now be described as a disjoint
union of the (D, /L)™’s, with (D, /L)~ lying in the closure of (D, /L)~ when-
ever 7 is the relative interior of a face of 7. This space ﬁ(’P) /L is smooth and
simply-connected, and the induced action of I'y on it has no fixed points. The
action of I'g permutes the various (D, /L) ’s, a finite number of which serve
to cover D(P)/T after we take the quotient by I'g. We have thus achieved an
alternative description of Mumford-type compactifications.

Later in this paper, we will be concerned with recognizing when a complex
analytic space has the structure of a semi-toric compactification. We can
take a first step in that direction by formalizing the structure of (D,/L)~
near the distinguished limit point when & = r in the following way. For a
complex manifold 7', we say that p is a mazimal-depth normal crossing point
of B C T if there is an open neighborhood U of p in T' and an isomorphism
¢ : U — AT such that o(U N (T—B)) = (A*)" and ¢(p) = (0,...,0), where
A is the unit disk, and A* := A—{0}. There are thus r local components
Bj := ¢ 1({v; = 0}) of BNU, with p = B;N---NB,, where v; is a coordinate
on the j*® disk.

2 Cusps of Hilbert modular surfaces

We now give an example to illustrate the construction in the previous section:
the cusps of Hilbert modular surfaces, as analyzed by Hirzebruch [28] and
by Mumford in the first chapter of [1]. Let PGL*(2,R) = PSL(2,R) act by
fractional linear transformations on the upper half plane $. Let K be a real
quadratic field with ring of integers O, and let PGL* (2, K) be the group of
invertible 2 x 2 matrices with entries in K whose determinant is mapped to a
positive number under both embeddings of K into R, modulo scalar multiples
of the identity matrix. The map ® : K — R? given by the two embeddings of
K into R induces an action of PGL*(2,K) on $ X .

A Hilbert modular surface is an algebraic surface of the form $ x $/I’
for some arithmetic group I' C PGL*(2, K) (that is, a group commensurable
with PGL*(2,90k)), often assumed to be torsion-free. The Satake-Baily-
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Borel compactification of a Hilbert modular surface adds a finite number
of compactification points, called cusps. Small deleted neighborhoods of such
points have inverse images in §) x §) whose I'-stabilizer is a parabolic subgroup
I'par of the form

k
rpa,z{(“'o ‘;):kez,aem},

where % C Ok is an ideal, and € € D% is a totally positive unit such that
€A = A. We can analyze a neighborhood of a cusp by studying appropriate
partial compactifications of ) x §/T'par.

The elements in ['p,; with k = 0 form the translation subgroup, which we
identify with 2. This is a free abelian group of rank 2. Let (a,a'), (8,8') be
a Z-basis of (). Define a map H x H — C? by

(w1, w2) — ————1-——(,3'11)1 — Bwa, —a'wy + aws),

of' —o'f
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and let D denote the image of $ x $ in C2. Under this map, ®(2) is sent
to the standard lattice L := Z?, and ®(T'p,,) is sent to a subgroup of Aff(L)
with the translation subgroup 2 of I'p,; mapped to the translation subgroup
L of Aff(L). As in section 1, we form the quotient in two steps: first take the
quotient $) x £/2A = D/L, and then take the quotient of the resulting space
by the group I'g := I'par /2.

Mumford shows how to partially compactify the space D/L C L ® C* =
(C*)? in a ['p-equivariant way, so that the quotient by I'y gives the desired
partial compactification of $) x §)/I'par. The map of H x H — C? was designed
so that the image would be a tube domain D := R? 4+ i C, where C is the cone

C ={(y1,92) : ay1 + By2 > 0,a'y1 + B'y2 > 0}.

The boundary lines of the closure C have irrational slope, and in fact Cy =
C is an open convex cone. To construct a I'g-invariant rational polyhedral
decomposition P, let ¥ be the convex hull of CN®(2A). The vertices of ¥ form
a countable set {v;};cz which can be numbered so that the edges of ¥ are
exactly the line segments v;7;77. If we let o; be the relative interior of the
cone on 7;7;471, and let 7; be the relative interior of the cone on v;, then P :=
{oj}jez U {7j}jez is a DTo-invariant rational polyhedral decomposition. An
explicit example of this construction is illustrated on p. 52 of [1], reproduced
as figure 1 of this paper.

The resulting partial compactification of D/L adds a point p; for each o3,
and a curve B; = P! for each 7, with B;NB;,1 = pj. This can be pictured as
an “infinite chain” of P!’s, as in the top of figure 2 (which is also reproduced
from [1], p. 46). The generator [diag(e, 1)] of I'g = I'par /2 acts by sending v;
to vj4m for some fixed m. Taking the quotient by I'g leaves us with a “cycle”
of rational curves, of length m (as depicted in the bottom of figure 2). We
arrive at Hirzebruch’s description of the resolution of the cusps.

Conversely, suppose we are given a normal surface singularity p € S (w1th
S a small neighborhood of p) which has a resolution of singularities f : T — S
such that B := f~1(p) is a cycle of rational curves, that is, B = By +- - -+B,, is
a divisor with normal crossings such that B; only meets B;t;, with subscripts
calculated mod m. Much of the structure above can be recovered from this
information alone. In fact, by a theorem of Laufer [33] these singularities are
taut, which means that the isomorphism type is determined by the resolution
data. We will work out in detail some aspects of this tautness, in preparation
for a general construction in the next section.

The starting point is Wagreich’s calculation [54] of the local fundamental
group (S — p) for such singularities, which goes as follows. Let S := S—p =
T — B. The natural map ¢ : m1(S) — m1(T) induced by the inclusion S C T
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Figure 2.

is surjective. Since T retracts onto a cycle of P'’s, the group 1 (T) = 1 (S?)
is infinite cyclic, and the universal cover T of T contains an infinite chain
B=-+ B + B.1+1 + --- of P'’s lying over the cycle B. The kernel of ¢
is my (T B), and by a result of Mumford [42] this is a free abelian group
generated by loops around any pair of adjacent components B,, B].,_l of B.
In this way, we recover the two steps of the quotient construction, and
the compactification T of the intermediate quotient T — B. Let S be the
universal cover of S (and of T - §) To complete the discussion of tautness,
we should exhibit an isomorphism between S and an open subset of ) x 6,
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which descends to a m(T)-equivariant map (T — B) — (§ x $)/2. The
easiest way to do this is to consider an extra piece of structure on p € S:
a flat connection on the holomorphic cotangent bundle Q5. We discuss this

structure, and how to use it to determine the mapping from StoHxH= D,
in the next section. (To give a complete proof of Laufer’s tautness result
along these lines, we would also need to show how the connection is to be
constructed; we will not attempt to do that here.)

3 The toric connection

Let (Lg,C,T¢) be an admissible triple, with associated tube domain D =
Lg + iC and discrete group I' = L x 'y C Aff(L). We will define a flat
connection on the holomorphic cotangent bundle of the quotient space D/T'.

The intermediate quotient space D/L is an open subset of the algebraic
torus L¢/L = L @z C* = (C*)’k(L). We identify the dual of the Lie algebra
Lie(Lc/L)* of that torus with the space of right-invariant one-forms on the
group L¢/L. Any basis of Lie(L¢/L)*, when regarded as a subset of the space
of global sections of the sheaf QILC /L freely generates that sheaf at any point.
We can therefore define a connection Vi on Qic /L the toric connection,
by the requirement that Vioric(a) = 0 for every a € Lie(L¢c/L)*. Since the
group L¢/L is abelian, the connection Vi is flat.

The action of Aff(L) on L¢ descends to an action of GL(L) on L¢/L which
preserves the space of right-invariant one-forms. In particular, the GL(L)-
action will be compatible with the toric connection. Thus, if we restrict Vigric
to D/L, it commutes with the action of I'g and induces a connection on the
holomorphic cotangent bundle of (D/L)/T'y = D/T, still denoted by Vigric.

Let 0 C Lr be the relative interior of a rational polyhedral cone which
is generated by a basis £,...,£" of L, and let z1,..., 2, be the coordinates
on L¢ dual to {¢/}. The one-forms dlogw; := 2midz; are right-invariant
one-forms on L¢/L which serve as a basis of Lie(L¢/L)*. If we compactify
the open set D,/L C L¢/L to U, := (D,/L)~, then the forms dlogw;
extend to meromorphic one-forms on U, with poles along the boundary B, :=
(Dy/L)™ = (D,/L). In fact, the forms dlogws,...,dlogw, freely generate
the sheaf Q}ja (log B, ) as an Oy, -module. The flat connection Vi,ic therefore
extends to a flat connection on Q_(log B,) for which the dlogw; are flat
sections. Note that the connection does not acquire singularities along the
boundary, but extends as a regular connection to the sheaf of logarithmic
differentials.

If P is a rational polyhedral decomposition of C;, we get in this way an
extension of the flat connection Vi from Q% /L to the sheaf of logarithmic
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differentials on D(P)/L with poles on the boundary (D(P)/L) — (D/L). As
this extended connection still commutes with I, there is an induced extension
of Vioric from QD/F to QA( )/r(log B), where B := (D(P)/T") — (D/I'). This

holds for any Mumford-type semi-toric compactification.

The existence of this toric connection on D/T" depends in an essential way
on I" being a group of affine-linear transformations of L. If D admits an action
by a larger group I'yiz which includes discrete symmetries that do not lie in
Aff(L), then Vo may fail to descend to the quotient D/T'yig. For example,
if L = Z acts on the upper half plane ) by translations, then the associated
flat connection Viorc has the property that Vieric(d7) = 0, where 7 is the
standard coordinate on §). The flat section d7 is invariant under translations
T — 7+ n, but if we apply Vioric to the pullback of the flat section d7 under
the inversion 7 — —1/7 we get

Vioric(t72dr) = =273 dr @ dr,

which is not 0. In particular, the connection V.. does not descend to the
j-line $/SL(2,Z).

We now want to explain how the abstract knowledge of the flat connection
Vioric and of a Mumford-type semi-toric compactification of D/T" can be used
to recover the structure of D and of I'. Suppose we are given a complex
manifold T, a divisor with normal crossings B on T, and a flat connection V
on QX(log B) By the usual equivalence between flat connections and local
systems [16], the flat sections of V determine a local system E on T. Such a
local system is specified by giving its fiber E at a fixed base point * (which we
choose to lie in T' — B), together with a representation of 71 (7T, ) in GL(E).

We first restrict the connection and the local system to T'— B. If we pass
to the universal cover S of T — B, the flat sections give a global trivialization
of the bundle E ® OA = 91 There is a natural map int, : S — E* which

s
at—»/&,
*

where @ is the unique flat section of E (a holomorphic 1-form on S) such that
@l, = a € E. (Notice that if we vary the basepoint %, we simply shift the
image of the map by some constant vector in E*.)

On the other hand, if we consider V on T and pass to the universal cover
T of T, the flat sections of E will trivialize the bundle QL (log B), where B

is a divisor with normal crossings in T, the inverse image of B C T. We

sends s € S to the functlonal
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once again encounter the intermediate quotient space T - E, and its partial
compactification T'.

At any maximal-depth normal crossing point p of B cC T, let v; =0
define the j** local component B; of the boundary at p. There is a unique
flat section @; of QL (log B) defined locally near p, such that &; — dlogv;
vanishes at p. It follows that &; — dlogv; is a holomorphic one-form in a
neighborhood of p, and so that ay,...,Q, is a basis for (flat) local sections of
Q}r\(log §) Using the global trivialization, we may regard each «; := @;|. as
an element of E. We let L, C E* be the lattice spanned by the dual basis
2,....0" to ai,...,a, and let o0p C Ly, ® R be the relative interior of the
cone generated by £%,..., ¢".

If we are to recover the structure of the semi-toric compactification, we
need a certain compatibility among the L,’s and the o,’s: they should be
related to a common lattice and a common cone, independent of p. We
formalize this as follows.

DEFINITION 2 We call (T, B, V) compatible provided that

1. each component of B contains at least one mazimal-depth normal cross-
ing point,

2. the lattices L, for mazimal-depth normal crossing points p all coincide
with a common lattice L C E*,

3. the natural map int, : 5§ — E* = L¢ descends to a map (f - §) —
(Lc/L) which induces an isomorphism of fundamental groups, and

4. the collection P of relative interiors of faces of the op’s is a locally
rational polyhedral decomposition of a strongly convex cone C;.

Suppose that (T, B, V) is compatible, let C be the interior of C;, and let
D = Lg +iC. The action of 71(T) on L¢c permutes the set of maximal-
depth normal crossing points of B C T, and so preserves P and C. Thus,
T := 71 (T — B) acts on D, and there is an induced map (T — B) — (D/T).

We can now recover the compactification T' from this data (or at least
its structure in codimension one). For any maximal-depth normal crossing
boundary point p of B C T, there is a neighborhood U, of p in T and a
natural extension of the induced map U, N (T — B) — L¢/L to a map U, —
’13(’P) /L. We cannot tell from the behavior of these extensions what happens
at “interior” points of boundary components (those which do not lie in any
U,), but we can conclude that there is a meromorphic map T — D(P)/L
which does not blow down any boundary components. This map is 7 (T)-
equivariant, so it descends to a map T — D(P)/T.
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4 Moduli spaces of sigma-models

A Calabi- Yau manifold is a compact connected orientable manifold X of di-
mension 2n which admits Riemannian metrics whose (global) holonomy is
contained in SU(n).2 Given such a metric, there exist complex structures on
X for which the metric is Kahler. The holonomy condition is equivalent to
requiring that this Kahler metric be Ricci-flat and that there exist a nonzero
holomorphic n-form on X (cf. [7]). On the other hand, if we are given a
complex structure on a Calabi-Yau manifold, then by the theorems of Calabi
[11] and Yau [60], for each K&hler metric g there is a unique Ricci-flat Kahler
metric g whose Kéahler form is in the same de Rham cohomology class as that
of g. (We have implicitly used the topological consequence of Ricci-flatness:
Calabi-Yau manifolds have vanishing first Chern class.)

Examples of Calabi-Yau manifolds are provided by the differentiable man-
ifolds underlying smooth complex projective varieties with trivial canonical
bundle. One can apply Yau’s theorem to a Ké&hler metric coming from a
projective embedding in order to produce a metric with holonomy contained
in SU(n), where n is the complex dimension of the variety. As explained in
[7], if the Hodge numbers hP* vanish for 0 < p < n and if the manifold is
simply-connected, then the holonomy of this metric is precisely SU(n).

Physicists have constructed a class of conformal field theories called non-
linear sigma-models on Calabi-Yau manifolds X (cf. [22, 29]). We consider
here an approximation to those theories, which should be called “one-loop
semiclassical nonlinear sigma-models”. Such an object is determined by the
data of a Riemannian metric g on X whose holonomy is contained in SU(n)
together with the de Rham cohomology class [b] € H%(X,R) of a real closed
2-form b on X.

Two such pairs (g,b) and (¢',d') will determine isomorphic conformal field
theories if there is a diffeomorphism ¢ : X — X such that ¢*(g') = g, and
o*([t']) — [b] € H?(X,Z). It is therefore natural to regard the class of [b]
in H?(X,R)/H?(X,Z) as the fundamental datum. We denote this class by
[6] mod Z.

The set of all isomorphism classes of such pairs we call the one-loop semi-
classical nonlinear sigma-model moduli space, or simply the sigma-model mod-
uli space (for short). This may differ from the actual conformal field theory
moduli space, for several reasons: first, there may be additional isomorphisms
of conformal field theories which are not visible in this geometric interpre-
tation, second, there may be deformations of the nonlinear sigma-model as

2There is some confusion in the literature about whether “Calabi-Yau” should mean
that the holonomy is precisely SU(n), or simply contained in SU(n). In this paper, we
adopt the latter interpretation.
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a conformal field theory which do not have a sigma-model interpretation on
X (cf. [2, 59]), and third, the putative conformal field theory may fail to
converge for some values of the input data (g,b) (although it is believed to
converge whenever the volume of the metric is sufficiently large). For our
present purposes, we ignore these more delicate questions about the confor-
mal field theory moduli space, and concentrate on the sigma-model moduli
space we have defined above.

We focus attention in this paper on the case in which the holonomy of the
metric g is precisely SU(n), n # 2. For each such metric, there are exactly two
complex structures on X for which the metric is Kahler (complex conjugates
of each other).> Thus, there is a natural map from a double cover of the
sigma-model moduli space to the usual “complex structure moduli space”,
given by assigning to (g,b) one of the two complex structures for which g is
Kéhler. The fibers of this map can be described as follows. If we fix a complex
structure on X, then the corresponding fiber consists of all B+iJ mod Z €
H*(X,C)/H%*(X,Z) (modulo diffeomorphism) with B denoting the class [b],
for which J is the cohomology class of a Kahler form. (The metric g is uniquely
determined by J, by Calabi’s theorem.) This quantity B+i J mod Z describes
the “extra structure” S which was alluded to in [40]. This is often called the
complezified Kahler structure on X determined by (g, b).

The natural double cover of the sigma-model moduli space will be locally
a product near (g,b), with the variations of complex structure and of com-
plexified Kahler structure describing the factors in the product, provided that
neither the Kéhler cone nor the group of holomorphic automorphisms “jumps”
when the complex structure varies. (The non-jumping of the Kahler cone was
shown to hold by Wilson [55] in the case of holonomy SU(3), when the com-
plex structure is generic.) We will tacitly assume this local product structure,
and separately study the parameter spaces for the variations of complexified
Kahler structure and of complex structure.

With a fixed complex structure on X, the parameter space for complexified
Kéhler structures on X can be described in terms of the K&hler cone K of
X, and the lattice L = H?(X,Z)/(torsion). We must identify any pair of
complexified Kahler structures which differ by a diffeomorphism that fixes
the complex structure, that is, by an element of the group Iy = Aut(X) of
holomorphic automorphisms. The natural parameter space for pairs (g,b)
such that g is Kahler for the given complex structure thus has the form D/T,
where D = {B+iJ : J € K} and ' = L x Iy is the extension of I'y by
the lattice translations. This is exactly the kind of space encountered in the

3More generally, as we will show elsewhere, if h2'9(X) = 0 there are only a finite number
of complex structures for which g is Kahler. The number depends on the decomposition of
the holonomy representation into irreducible pieces.
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first part of this paper: a tube domain modulo a discrete symmetry group of
affine-linear transformations which includes a lattice acting by translations.

A common technique in the physics literature is to consider what happens
along paths {tz mod I'};_, o, which go from z € D out towards infinity in the
tube domain. Many aspects of the conformal field theory can be analyzed per-
turbatively in ¢ along such paths. It seems reasonable to hope that such limits
can be described in a common framework, based on a single partial compact-
ification of D/T. This hope (together with a bit of evidence, discussed below)
leads us to conjecture that (Lg, K, Aut(X)) is an admissible triple, in order
that Looijenga’s methods could be applied to construct compactifications of
D/T. We formulate this conjecture more explicitly as follows.

THE CONE CONJECTURE Let X be a Calabi- Yau manifold on which a com-
plez structure has been chosen, and suppose that h>°(X) = 0. Let L :=
H?(X,Z)/torsion, let K be the Kdhler cone of X, let Ky be the convez hull
of KN Lq, and let Aut(X) be the group of holomorphic automorphisms of X.
Then there exists a rational polyhedral cone II C Ky such that Aut(X).II =
Ky.

The Kéahler cone of X can have a rather complicated structure, analyzed
in the case n = 3 by Kawamata [31] and Wilson [55]. Away from classes of
triple-self-intersection zero, the closed cone K is locally rational polyhedral,
but the rational faces may accumulate towards points with vanishing triple-
self-intersection. The cone conjecture predicts that while the closed cone
K of X may have infinitely many edges, there will only be finitely many
Aut(X)-orbits of edges. Other finiteness predictions which follow from the
cone conjecture include finiteness of the set of fiber space structures on X,
modulo automorphisms.

Many of the large classes of examples, such as toric hypersurfaces, have
Kihler cones K such that K, = K is a rational polyhedral cone. For these, the
cone conjecture automatically holds. A nontrivial case of the cone conjecture—
Calabi-Yau threefolds which are fiber products of generic rational elliptic sur-
faces with section (as studied by Schoen [49])—has been checked by Grassi
and the author [21]. In addition, Borcea [9] has verified the finiteness of
Aut(X)-orbits of edges of K in another nontrivial example, and Oguiso [44]
has discussed finiteness of Aut(X)-orbits of fiber space structures in yet an-
other example.* All three examples involve cones with an infinite number of
edges.

For any X for which the cone conjecture holds, the Kahler parameter space
D/T will admit both a Satake-Baily-Borel-type “minimal” compactification,

4Neither of these constitutes a complete verification of the cone conjecture for the three-
fold in question.
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and smooth compactifications of Mumford type built out of many cones o C K
as above.

5 Additional structures on the moduli spaces

Of particular interest to the physicists studying nonlinear sigma-models has
been the “large radius limit” in the Kéahler parameter space. This is typically
analyzed in the physics literature as follows (cf. [566, 57]). The quantities
of physical interest will be invariant under translation by L. Many such
quantities vary holomorphically with parameters, and their Fourier expansions

take the form .
D et (+)
neL*

The coefficients c, for n # 0 are called instanton contributions to the quantity
(*), and in many cases they can be given a geometric interpretation which
shows that they vanish unless 7 is the class of an effective curve on X. A
“large radius limit” should be a point at which instanton contributions to
quantities like (*) are suppressed [24, 3].

If we pick a basis £1,...,£" of L consisting of vectors which lie in the
closure of the Kéhler cone, write n = Y n7¢; in terms of the basis {¢;} of L*
dual to {¢/}, and express (*) as a power series in w; := exp(27i z;), where
{z;} are coordinates dual to {£7}, then the series expansion

Z Cn w;'l ~--w,’.’r (*%)

neL*

involves only terms with nonnegative exponents [4]. If convergent,® this will
define a function on (D,/L)~, where o is the relative interior of the cone
generated by £%,...,¢". Thus, approaching the distinguished limit point of
D, /L (where all w;’s approach 0) suppresses the instanton contributions, so
the distinguished limit point is a good candidate for the large radius limit. We
can repeat this construction for any cone ¢ C K which is the relative interior
of a cone generated by a basis of L, obtaining partial compactifications which
include large radius limit points for paths that lie in various cones o.
Among the “quantities of physical interest” to which this analysis is ap-
plied are a collection of multilinear maps of cohomology groups called three-
point functions. These maps should depend on the data (g,b), and should
vary holomorphically with both complex structure and complexified Kihler

5From a rigorous mathematical point of view, the Fourier coefficients c, can often be
defined and calculated, but no convergence properties of the series (*) or (**) are known.
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structure parameters. Certain of these three-point functions (related to Wit-
ten’s “A-model” [58]) would depend only on the complexified Kéhler struc-
ture, while others (related to Witten’s “B-model”) would depend only on
the complex structure. The B-model three-point functions can be mathe-
matically interpreted in terms of the variation of Hodge structure, or period
mapping, induced by varying the complex structure on the Calabi-Yau man-
ifold [15, 40, 23].

In [41], we discuss a mathematical version of the A-model three-point
functions, expressed as formal power series near the distinguished limit point
associated to the relative interior o of a rational polyhedral cone generated
by a basis of L. (The coefficients ¢, of this power series are derived from the
numbers of rational curves on X of various degrees.) The choice of o is an
additional piece of data in the construction which we call a framing.

These formal power series representations of A-model three-point func-
tions can be regarded as defining a formal degenerating variation of Hodge
structure, which we call the framed A-variation of Hodge structure with fram-
ing 0. Now there are manipulations of these formal series which suggest that
the underlying convergent three-point functions (if they exist) will not depend
on the choice of o and will be invariant under the action of Aut(X).

We must refer the reader to [41] for the precise definition of framed A-
variation of Hodge structure. But for reference, we would like to state here
a conjecture which suggests how the various framed A-variations of Hodge
structure will fit together, along the lines being discussed in this paper.

THE CONVERGENCE CONJECTURE Suppose that X is a Calabi-Yau mani-
fold with h>°(X) = 0, endowed with a complex structure, which satisfies the
cone conjecture. Let L := H?(X,Z)/torsion, let K be the Kdihler cone of X, let
D := Lg + 1K be the associated tube domain, and let T := L x Aut(X). Then
there is a neighborhood U of the 0-dimensional stratum D(K) in the Satake-
Baily-Borel-type compactification ﬁ(’PSBB) /T, and a variation of Hodge struc-
ture on U N (D/T'), such that for any o C K which is the relative interior of a
rational polyhedral cone @ C K, generated by a basis of L, the induced formal
degenerating variation of Hodge structure at the distinguished limit point of
D, /L agrees with the framed A-variation of Hodge structure with framing o.

If this variation of Hodge structure exists, we call it the A-variation of
Hodge structure associated to X.

6 Maximally unipotent boundary points

In the previous section, we discussed how to let the complexified Kahler pa-
rameter B + i J approach infinity, analyzing certain partial compactifications
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and boundary points of the sigma-model moduli space in the B + i J direc-
tions. We now turn to compactifications and boundary points in the trans-
verse directions—the directions obtained by varying the complex structure
on the Calabi-Yau manifold. We consider what happens when the complex
structure degenerates.

The local moduli spaces of complex structures on Calabi-Yau manifolds
are particularly well-behaved, thanks to a theorem of Bogomolov [8], Tian
[51], and Todorov [52], which guarantees that all first-order deformations are
unobstructed. In particular, there will be a local family of deformations of
a given complex structure for which the Kodaira-Spencer map is an isomor-
phism. More generally, we consider arbitrary families 7 : ) — S of complex
structures on a fixed Calabi-Yau manifold Y, by which we mean: = is a
proper and smooth map between connected complex manifolds, and all fibers
Y, := m~(s) are diffeomorphic to Y. We will often assume that the Kodaira-
Spencer map is an isomorphism at every point s € S, so that S provides good
local moduli spaces for the fibers Y.

To study the behavior when the complex structure degenerates, we par-
tially compactify the parameter space S to S. There is a class of boundary
points on S of particular interest from the perspective of conformal field the-
ory. According to the interpretation of [40, 41], these points can be identified
by the monodromy properties of the associated variation of Hodge structure®
near p € S. We first review from [41] these monodromy properties for normal
crossing boundary points, and then extend the definition to a wider class of
compactifications and boundary points.

Let p be a maximal-depth normal crossing point of B C S, where B :=
S — S is the boundary, assumed for the moment to be a divisor with normal
crossings. Let U be a small neighborhood of p in S, and write BN U in the
form By + --- + B,. If we fix a point s € U— B, then each local divisor B;
gives rise to an monodromy transformation TU) : H*(Y,,Q) — H"(Y,,Q),
which is guaranteed to be quasi-unipotent by the monodromy theorem [32].

DEFINITION 3 A mazimal-depth normal crossing point p of B € S is called a
maximally unipotent point” under the following conditions.

1. The monodromy transformations T around local boundary components
B;j near p are all unipotent.

6The variation of Hodge structure in question is the usual geometric one (cf. [26]) asso-
ciated to a variation of complex structure. These might be called “B-variations of Hodge
structure” by analogy with the previous section.

"When dim(S) = 1, this definition is equivalent to the one given in [40].
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2. Let NU) :=1og TV, let N := ZajN(j) for some aj > 0, and define

Wo := Im(N")
Wy = Im(N""!)NnKerN
W, = (Im(N""%)nKer(N)) + (Im(N™"!) N Ker(N?)).

Then dim Wy = dim W; = 1 and dim W, = 1 + dim(S).

3. Let g% g%, ..., g" be a basis of Wy such that g° spans Wo, and define mi*
by NU gk = mi*g0 for 1 < j,k < r. Then m := (m’*) is an invertible
matriz.

(The spaces Wy and W, are independent of the choice of coefficients {a;}
[14, 17], and the invertibility of m is independent of the choice of basis {g*}.)

Given a maximally unipotent point p € S, we define the canonical loga-
rithmic one-forms dlogg; € I'(U, 1(log B)) at p by

k=1 (g |w)me; )
(9°|w)

where (my;) is the inverse matrix of (m7*), and w is a section of the sheaf
a3 /s of relative holomorphic n-forms on the family of complex structures

1
27

dlogg; := d(

parameterized by S. The elements g* € H"(Y,,Q) have been implicitly ex-
tended to multi-valued sections of the local system R"7*(Qy) in order to
evaluate (g*|w); the monodromy measures the multi-valuedness of the result-
ing (locally defined) holomorphic functions (g¥|w). The fact that each dlogg;
as defined above has a single-valued meromorphic extension to U follows from
the nilpotent orbit theorem [48]. In [41] we show that the canonical one-forms
are independent of the choice of basis {g*}, and also of the choice of relative
n-form w; that for any local defining equation v; = 0 of B;, the one-form
dlogg; — dlogv; extends to a regular one-form on U; and that dlogqy, ...,
d log g, freely generate the locally free sheaf ng(log B) near p.

The canonical logarithmic one-forms can be integrated to produce quasi-
canonical coordinates qi, ..., g near p, but due to constants of integration,
these coordinates are not unique. That is, if we attempt to define

gj = exp (27rz' ZZ=1(;§’)TL“>’>W;)

we find that changing the basis {g*} will alter the g;’s by multiplicative con-
stants (cf. [39]). To specify truly canonical coordinates, further conditions
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on the basis {g*¥} must be imposed, as discussed in [40, 41]. For example,
by demanding that g span Wy N H"(Y,,Z)/torsion and that ¢°,...,g" span
W, N H™(Y,,Z)/torsion we can reduce the ambiguity in the g;’s to a finite
number of choices.

With no ambiguity, we can use the canonical logarithmic one-forms to
produce a (canonical) flat connection V on the holomorphic vector bundle
Q1 (log B) by declaring dloggqy, ..., dlogg, to be a basis for the V-flat sec-
tions, that is, V(dlogg;) = 0. Notice that the connection V is regular along
the boundary divisor B. This connection is what we will use to extend the
definition of maximally unipotent to a more general case.

We now consider partial compactifications S of S which are not neces-
sarily smooth, and whose boundary is not necessarily a divisor with normal
crossings.

DEFINITION 4 Let £ C S—S be a connected subset of the boundary. We say
that = is maximally unipotent if there is a neighborhood V of E in S and a
flat connection Vynip on Q},~g such that for some resolution of singularities
f:U — V which is an isomorphism over VN S, we have

1. the new boundary B := U—f~Y(V NS) on U is a divisor with normal
crossings,

2. the flat connection Vi, extends to a connection on Qf (log B) (also
denoted by Vnip),

3. for every mazimal-depth normal crossing point p of B C U, we have
Vunip(dlogg;) = 0 for each canonical logarithmic one-form dloggq; at
p, and

4. (U, B, Vunip) is compatible in the sense of definition 2.
We call V pip the maximally unipotent connection determined by =.

Note that dloggqs,...,dloggq, is a basis for the vector space of local so-
lutions of Vynjpe = 0 near p. By analytic continuation of solutions, the
connection Vi, is unique if it exists. The requirement of compatibility is
quite strong, essentially guaranteeing that the structure of S near = resembles
that of a semi-toric compactification.

7 Implications of mirror symmetry

Mirror symmetry [18, 34, 13, 24] predicts that Calabi-Yau manifolds should
come in pairs,® with the roles of variation of complex structure and of com-

8The most recent results 2, 59] suggest that it is birational equivalence classes of Calabi-
Yau manifolds which come in pairs.
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plexified Kéhler structure being reversed between mirror partners. We wish
to formulate a precise mathematical version of these mirror symmetry predic-
tions, taking into account the semi-toric compactification structure we have
studied in this paper. The resulting statements are unfortunately rather tech-
nical, but they appear to be completely general. We hope the reader will bear
with the technicalities.

Our conjectures involve the A-variations of Hodge structure introduced in
[41], whose essential ingredients are the numbers of rational curves of various
degrees on a Calabi-Yau manifold. Our first mathematical conjecture about
mirror symmetry is carefully formulated in [41], and can be stated as follows.

THE MATHEMATICAL MIRROR SYMMETRY CONJECTURE (Normal Crossings
Case) Let Y be a Calabi- Yau manifold with h>°(Y) =0, and let 7: Y — S
be a family of complex structures on'Y such that the Kodaira-Spencer map is
an isomorphism at every point. Let S C S be a partial compactification whose
boundary is a divisor with normal crossings. To each mazimally unipotent
normal crossing boundary point p in S there is associated the following:

1. a Calabi-Yau manifold X with h?°(X) =0,
2. a lattice L of finite index’ in H?(X,Z)/torsion,

3. the relative interior o C H?(X,R) of a rational polyhedral cone & which
is generated by a basis £,... 0" of L, and

4. a map u from a neighborhood of p in S to ((H*(X,R)+ic)/L)~, deter-
mined up to constants of integration by the requirement that p*(d log w;)
is the canonical logarithmic one-form dloggq; on S at p (as defined
in section 6), where 21,...,z, are coordinates dual to ¢*,...,¢", and
wj = exp(2mi z;),

such that
a. o is contained in the Kdhler cone for some complez structure on X, and

b. u induces an isomorphism between the formally degenerating geometric
variation of Hodge structure at p and the A-variation of Hodge structure
with framing o associated to X.

9The reason for allowing such an L rather than insisting on H2(X, Z)/torsion itself is
that our basic defining condition on the family S—that the Kodaira-Spencer map be an
isomorphism at every point—is invariant under finite unramified base change. So we must
allow finite unramified covers of the parameter spaces.
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Put more concretely, if we calculate the geometric variation of Hodge struc-
ture near p € S using appropriate quasi-canonical coordinates qj, we should
produce power series expansions for B-model three-point functions (for Y')
whose coefficients agree with the ¢, which are derived from the numbers of
rational curves on X. This is precisely the type of calculation pioneered by
Candelas, de la Ossa, Green, and Parkes [12] in the case of the quintic three-
fold.

This first version of our mathematical mirror symmetry conjecture de-
pends rather explicitly on the choice of a maximally unipotent (normal cross-
ing) boundary point. And unfortunately, if we move from point to point
along the boundary of S, or if we vary the compactification S by blowing
up the boundary, we can produce many such boundary points. On the other
hand, if X is a mirror partner of Y for which the cone and convergence con-
jectures hold, there are many framed A-variations of Hodge structure (with
different framings) associated to X. In fact, given framings o and o' which
belong to rational polyhedral decompositions P and P’, respectively, there is
always a common refinement P’ of these decompositions. Geometrically, the
corresponding compactification D(P")/T is a blowup of both D(P)/T' and
D(P')/T. Analytic continuation on the common blowup D(P")/T from a
point in the inverse image of D(o) to one in the inverse image of D(¢') will
give an isomorphism of the A-variations of Hodge structure.

Each of the various maximally unipotent normal crossing boundary points
will conjecturally lead to a mirror isomorphism. We wish to fit these various
mirror isomorphisms together, thus removing the dependence of the conjec-
tures on an arbitrary choice of boundary point. In fact, the mirror symmetry
isomorphism is expected by the physicists to extend to an isomorphism be-
tween the full conformal field theory moduli spaces, and so, presumably, to
compactifications as well. Thus, the structure of the semi-toric compactifi-
cations which is natural from the point of view of variation of complexified
Kahler structure on X should be reflected in the structure of compactifications
of the complex structure moduli space My of Y.

This philosophy suggests two things about the compactified parameter
spaces S of complex structures on Y. First, there should be a compatibility
between compactification points whose mirror families are associated to the
same space X, and the same Kahler cone K. In fact, we should be able to
extend our mathematical mirror symmetry conjecture to arbitrary maximally
unipotent subsets of the boundary for any compactification, not just ones
whose boundary is a divisor with normal crossings. And second, there should
be some kind of minimal compactification of the coarse moduli space My
of complex structures on Y, whose mirror compactified family would be the
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Satake-Baily-Borel-type compactification of D/T'.

The compatibility between compactifications can be recognized by means
of the flat connection Vni, which we used to identify maximally unipotent
subsets of the boundary. We extend our mirror symmetry conjecture to the
general case as follows.

THE MATHEMATICAL MIRROR SYMMETRY CONJECTURE (General Case) Let
Y be a Calabi- Yau manifold with h>°(Y) =0, let 7 : Y — S be a family of
complex structures on Y such that the Kodaira-Spencer map is an isomor-
phism at every point, and let S C S be a partial compactification. To each
mazimally unipotent connected subset = of the boundary S—S there is associ-
ated the following:

1. a Calabi-Yau manifold X satisfying the cone and convergence conjec-
tures,

2. a subgroup I' C Aff(H%(X,R)) whose translation subgroup L is a lattice
of finite index in H?(X,Z)/torsion,

3. a locally rational polyhedral decomposition P of a cone C. (which coin-
cides with the convez hull of C4 N Lg) that is invariant under the group
Iy:=T/L, and

4. a map p from a neighborhood U of E in S to ’B(P)/I‘, determined up
to constants of integration by the requirement that the flat connection
Vioric 0n D/T pulls back to Vypip on UNS, where V yyip is the mazimally
unipotent connection determined by =,

such that

a. for some complex structure on X, the interior C of C; is contained
in the Kdahler cone and T'g is contained in the group of holomorphic
automorphisms, and

b. u induces an isomorphism between the geometric variation of Hodge
structure over U N S and the A-variation of Hodge structure associated
to X.

A priori, the map p determined by compatibility of the connections would
only be a meromorphic map; we are asserting that it is in fact regular, and a
local isomorphism.

There is one further refinement of this conjecture which could be made:
we could demand that the map p also respect the quasi-canonical coordinates
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determined by choosing integral bases ¢°,...,g". This would reduce the am-
biguity in the choice of u to a finite number of choices, but would require
a compatibility among such integral quasi-canonical coordinates at various
boundary points.

Finally, suppose that My is the coarse moduli space for complex struc-
tures on a Calabi-Yau variety Y such that A>°(Y)=0. (This coarse moduli
space is known to exist as a quasi-projective variety, once we have specified a
polarization, thanks to a theorem of Viehweg [53].) In this case, we conjecture
the existence of a Satake-Baily-Borel-style compactification, as follows.

THE MINIMAL COMPACTIFICATION CONJECTURE There is a partial com-
pactification (My)spp of the coarse moduli space My with distinguished
boundary points p1,...,pr which are mazimally unipotent, such that the data
associated by the mathematical mirror symmetry conjecture to p; consists of:
(1) a Calabi- Yau manifold X; (with a complez structure specified that deter-

mines the group Aut(X;) of holomorphic automorphisms and the Kihler cone
K; of X;), (2) the group

T, := (H*(X;,Z)/torsion) x Aut(X;),

and (3) the locally rational polyhedral decomposition P; which is the Satake-
Baily-Borel decomposition Pspp of the cone (K;); (the convex hull of K; N
H2 (X]) Q))

A related conjecture has been made independently by Batyrev [6].

8 Mumford cones and Mori cones

In the fall of 1979, Mori lectured at Harvard on his then-new results [36] on the
cone of effective curves. In order to show that his theorem about local finite-
ness of extremal rays fail when the canonical bundle is numerically effective,
he gave an example. (A similar example appears in a Japanese expository
paper he wrote a few years later, which has since been translated into En-
glish [37].) The example was of an abelian surface with real multiplication,
that is, one whose endomorphism algebra contains the ring of integers Ok
of a real quadratic field K. For such a surface X, the Néron-Severi group
L := HY(X)N H%(X,Z) is a lattice of rank 2. The Kahler cone of X lies
naturally in Lg, and is an open cone K bounded by two rays whose slopes
are irrational numbers in the field K (cf. [38, 20]). Rays through classes of
ample divisors [D] € L N K can be found which are arbitrarily close to the
boundary, but the boundary is never reached. This phenomenon indicated
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that Mori’s results on the structure of the dual cone KXV C H,(X,R) could
not be extended to the case of abelian surfaces. The picture Mori drew for
this example was remarkably similar to figure 1.

The Hilbert modular surfaces in fact serve as moduli spaces for abelian
surfaces with endomorphisms of this type (cf. [20, Chap. IX]), although a bit
more data must be specified, which determines the group I'. Now Mumford’s
figure 1 was drawn in some auxiliary space being used to describe this “com-
plex structure moduli space”, while Mori’s version of figure 1 depicted the
Kahler cone in H1, and so is related to “complexified K&hler moduli” of the
surfaces. The setting is not quite the same as the one in the present paper,
since h%0 # 0. However, mirror symmetry for complex tori does predict that
each cusp in the complex structure moduli space will be related to the Kéhler
moduli space for the abelian varieties parametrized by some $ x §/T", with the
' determined by the cusp. (This is not completely clear from the literature; I
will return to this point in a subsequent paper.) In fact, under this association
the Mumford cone from figure 1 corresponds precisely to the (dualized) Mori
cone.

Mirror symmetry might have been anticipated by mathematicians had
anyone noticed the striking similarity between these two pictures back in
1979!
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Miroirs et involutions sur les surfaces K3

Claire Voisin*

§0 - Introduction

0.1. On propose dans ce travail une construction explicite de la “mirror
symmetry” prédite par les physiciens et portée récemment a ’attention des
mathématiciens par le travail de D. Morrison ([21]), pour un certain nombre de
familles de variétés de Calabi-Yau, construites a ’aide de surfaces K3 munies
d’une involution. Les numéros 0.2 a 0.5 sont une tentative de description des

idées des physiciens sur le sujet (voir aussi [21]).

0.2. La prédiction du phénomeéne de miroirs entre variétés de Calabi-Yau
provient de la théorie des supercordes et des o-modéles et de la recherche
d’un modéle consistant mathématiquement et physiquement, rendant compte
de différents types d’interactions, refletées dans ’allure générale de ’action S,
et quantifiable. L’action classique en théorie des cordes (se propageant dans
une variété Riemannienne (M, g)) associe & une surface de Riemann avec bords
(X,7) et a une application ¢ : ¥ — M son énergie S(p) = / lde||® dAs;
les solutions classiques sont des extrémales de S, par rapport & ¢ et «.
L’introduction de fermions (variables anticommutatives & considérer comme
des sections tordues de p*TM), permet d’ajouter & cette action des termes
fermioniques, ou interviennent la connexion de Levi-Civita de M, et la

courbure de M.

* Avec le support partiel du projet Science “Geometry of Algebraic
varieties”, Contrat SCI-0398-C(A)

S.M.F.
Astérisque  218** (1993) 273



C. VOISIN

L’action peut enfin étre modifiée par I'ajout d’une terme du type
Su(p) = [5 ¢*w, ol w est une 2-forme fermée sur M. La somme de ces trois
actions est invariante sous certaines transformations. L’action classique est
invariante par difféomorphisme de ¥ et changements conformes de métrique
~. L’introduction des variables fermioniques permet de définir au moins
localement la supersymetrie, et ’existence de deux supersymetries dont le
supercommutateur engendre les transformations conformes, recherchée pour

des raisons physiques, conduit a prédire I’existence d’une structure complexe
sur M.

Les physiciens cherchent a quantifier la théorie, c’est-a-dire a calculer des
valeurs probables de certaines fonctionnelles (les “observables”) sur I’espace
des applications ¢ : ¥ — M (et d’autres données comme les variables
fermioniques), ayant des valeurs fixées sur le bord de ¥. L’instrument

principal est fourni par les intégrales de Feynman.

Pour préserver les symétries de 1’action lors de ce processus de quantifi-
cation, les physiciens sont menés a imposer certaines conditions a la variété
M, dont dimg M = 10, et en supposant, dans une théorie a la Kaluza-Klein,
que M = R* x K avec K compacte de dimension 6, la préservation de la syper-
symétrie meéne a imposer que (K, gx) soit une variété Kéhlerienne a courbure
de Ricci nulle, c’est-a-dire une variété de Calabi-Yau. (Ce résultat qui résulte
d’un calcul perturbatif au deuxiéme ordre, est d’ailleurs contredit par le calcul

des termes d’ordre supérieur).

En admettant la possibilité de quantifier rigoureusement la propagation
des supercordes dans une variété de Calabi-Yau de dimension trois, on est
amené & associer a la donnée d’une telle variété X, d’'une forme de Kahler

n (correspondant a une métrique de Kéhler Einstein) et d’une classe réelle
dans H%(X) (correspondant au terme / ©* X de laction), une théorie N = 2

b
surperconforme des champs. a = 7+ i) est alors un élément de H! (Qx) tel

que Re « soit une classe de Kahler.

0.3. Gepner [14] a conjecturé que cette correspondance est bijective a
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condition de ne considérer que les théories conformes a charges U(1) entiéres
et & charge centrale ¢ = 9. D’autre part, il existe une involution naturelle
sur ’espace des théories N = 2 surperconformes, qui consiste a considérer la
méme théorie conforme des champs sous-jacente, mais a changer le signe de
certaines “charges” g, determinées comme les valeurs propres d’un opérateur

de I’algeébre superconforme, représentée sur ’espace de Hilbert de la théorie.

Si X est une variété de Calabi-Yau, et o € H' (Qx), ’espace tangent &
la variété paramétrant les déformations de (X, ) se scinde naturellement
en H'(Tx) ® H'(Qx). Witten [24] a expliqué comment construire un
isomorphisme entre H! (Tx) ® H! (Qx) et les champs primaires “chiraux”
(correspondant & H! (Tx)) ou “antichiraux” (correspondant & H' (Qx)) de
charge conforme h = 2 de la théorie conforme associée, qui décrivent I’espace
tangent aux déformations (générateurs) de la théorie conforme. L’effet
de linvolution mentionnée ci-dessus est le suivant: les champs primaires
“chiraux” satisfont la condition h = 2¢, tandis que les “antichiraux” satisfont
h = —2q. A supposer que la théorie superconforme obtenue par involution
provienne d’une donnée (X’,a'), on doit donc avoir des isomorphismes
HY(Tx) ~ H' (Qx:),H! (Qx) ~ H' (Tx'); (X',o') est appelé le miroir de
(X, @). Notons que les isomorphismes ci-desus doivent étre obtenus comme la
différentielle de I’application miroir, dont I’existence résulte de la conjecture

de Gepner.

0.4. Finalement, un des aspects les plus fascinants de cette application
miroir réside dans la formule précise, annoncée par les physiciens, comparant
l'accouplement de Yukawa sur H! (T'x) et la forme d’intersection sur H! (Q2x/)
ot (X’,o') est le miroir de (X,a). L’accouplement de Yakawa sur H' (Tx)
est la forme cubique v donnée par 'application naturelle S3H! (Tx) —
H?® (A3Tx). Ce dernier espace est rendu isomorphe & C par le choix d’une
section de K$?. La formule est alors la suivante: soit u € H'(Tx) et
v € H! (2x/) I’élément correspondant & u par l'isomorphisme : H! (Tx) ~
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H'{Qx:). Alors:

0 vw=[ 7+ 5 g (f»)

£

ou la somme est effectuée sur toutes les composantes de ’ensemble des
applications holomorphes f : P! — X, et olt n(f) est un entier. Aspinwall
et Morrison [4], ont montré, en utilisant la définition précise de n(f) (cf [24])
que n(f) = 1 pour une immersion P! C X’ avec fibré normal O(—1) ® O(-1),
ainsi que pour les familles données par les revétements ramifiés d’une telle

courbe.

0.5. Les exemples connus de phénomeéne de miroir sont essentiellement fournis
par les intersections complétes “du type Fermat” dans les espaces projectifs
anisotropes, et leurs quotients par des sous-groupes du groupe d’isomorphimes

agissant sur celles ci en préservant “la” forme holomorphe.

Cela tient a la construction de Gepner, qui constitue une des évidences
pour la conjecture de Gepner, et qui produit une série de théories supercon-
formes satisfaisant les conditions de 0.3, essentiellement obtenues par pro-
duits tensoriels de modeles Ej (connus) formant une série discréte indicée
par les entiers. Le k'*™® modele de la série discréte a une charge centrale
¢k = 3k/k + 2. Pour obtenir, en composant les modeéles E,,---, Eg,, une

théorie conforme E) de charge centrale ¢ = 9, on doit imposer la condi-
5

tion 32 ki/ (ki +2) =9, ce qui est équivalent au fait que ’hypersurface de
1

5

Fermat M) définie par ZX f‘“ = 0 dans ’espace projectif inhomogene
i=1

P(d/ (k1 +2),---,(d/ (ks + 2)), ot d = PPCM (k; + 2), est a fibré canon-

ique trivial.

Gepner (1) suppose alors que E k) est la théorie conforme des champs

(1) En fait, Gepner n’a noté cette correspondance que pour les hypersur-
faces de Fermat dans ’espace projectif usuel. L’extension au cas anisotrope
est due Greene-Vafa-Warner [16].
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associée a la propagation des cordes dans M) et donne les justifications
suivantes: H! (T M k)) et H' (Q M k)) ont la dimension de ’espace des champs
primaires “chiraux” et “antichiraux” respectivement de charge conforme h = 2
de E(y) (cf. 0.3). De plus M(y) et E(xy ont le méme groupe d’automorphismes,
représenté de fagon isomorphe sur les générateurs de E(;y et sur H 1 (TM(k))
et H' (Qur,,,).

Enfin les sous-groupes agissant trivialement sur la (3,0)-forme de My,
d’une part, de facon compatible avec la supersymétrie d’autre part sont

identiques.

Dans [15], Greene et Plesser ont montré comment l'involution de 0.3
peut-étre realisée concrétement sur les modeles Eyy construits par Gepner, et
ceux qui en sont déduits en prenant ’espace des invariants par un sous-groupe
H des isomorphismes de Ej) compatibles avec la supersymétrie. La théorie
conforme miroir est obtenue en prenant ’espace des invariants de Ey par un
sous-groupe H', dual natural de H. Cela suggere que le miroir géométrique
(0.3) de M)/H (probablement munie de la forme o la plus naturelle du
point de vue géométrique) est My)/H'. Roan [23] a montré rigoureusement
que M) /H et M)/H' admettent des désingularisations qui sont des variétés

de Calabi-Yau et a exhibé un isomorphisme naturel:

H! (TM(k) p H) ~ H! (Q Moy H,) .

0.6. Les variétés que l'on considere dans ce travail sont obtenues par
désingularisation de quotients X = F x S/(J,7) ou j est I'involution standard
d’une courbe elliptique, de quotient E/j ~ P1, et i est une involution sur une

surface K3 S, de quotient T' = S/i rationnelle.

En utilisant les résultats de Nikulin on montre comment (avec quelques
exceptions) on peut associer a i, caractérisée par son action H(i) sur H2(S,Z),
une involution miroir H(i’). On construit dans la section 2 une correspon-
dance bijective entre les structures complexes ¢ invariantes marquées de S et

les formes « invariantes sous H(i'), satisfaisant la condition (Rea)? > 0.
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Dans la premiére section on calcule les nombres de Hodge de X et ses
accouplements de Yukawa. On voit facilement alors que X = ExS /(7,17) et
X' =ExS8'/(j,i), ou (S',i) est une surface K3 munie d’une involution 4’

agissant comme H(i') sur H2(S’,2), satisfont:

ba(X) = R2N(X') |, by(X') = hB(X).

De plus, la construction de la section 2, ainsi que la contruction des
miroirs pour les courbes elliptiques, [10], fournissent l’application miroir
(X,a) — (X',o’), mais seulement sur un sous-espace de la famille parame-

trant les données (X, ).

Dans la troisiéme section, on calcule le comportement asymptotique des
accouplements de Yakawa de X, lorsque S dégéneére, et 'on montre que le
résultat obtenu confirme la formule 0.4.1, lorsque 'on fait tendre la partie

réelle de o' vers 'infini.
§1 - Construction de variétés de Calabi-Yau

1.1. Soit S une surface K3 munie d’une involution ¢ holomorphe, agissant
par —1 sur la deux forme holomorphe w € H?0(S). Le lieu fixe de i est
alors contitué d’une union disjointe de courbes lisses C1,---,Cn de genres

respectifs g1,---,gn.

Par le théoreme de l'indice de Hodge, et par la relation C? = 2g; —
2,C;C; = 0, on voit qu’il existe au plus un entier 7 tel que g; > 1, et que si
un tel entier existe, C; est rationnelle pour j # 4. Si d’autre part toutes les

courbes C; sont de genre 0 ou 1, on a les quatre possibilités suivantes:
1.1.1.

o) N=0

i) Toutes les C; sont rationnelles.

i) L’une des courbes C; est elliptique et les autres sont rationnelles.
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ili) N =2 et Cy,C sont elliptiques.

En effet, notons T la surface quotient S/i,U = T\UC;, et V = S\UC;.
Notons ¢ : V. — U, : S — T les applications quotients. Par le théoreme
de Castelnuovo, T est rationnelle, donc simplement connexe, des que N > 0.

Supposons N # 0; on a la suite exacte de faisceaux de Z/2Z modules sur U:
(1.1.1) 0—(2/22)y — ¢ ((2/22)y) — (Z2/2Z)y — 0,

qui montre que Ker o* : HY(U,Z/2Z) — H'(V,Z/2) est isomorphe & Z/2Z.
Par ailleurs on a le diagramme commutatif suivant de suites exactes de

cohomologie relative :

0 — HYU,Z/27) — @H°(C;,1/21) — H2(T,1/21)

el Lo Ler

0 — H\(V,2/21) — ®H(C;,1/22) — H?(S,1/21)
as

ol les applications ag et ar s’identifient par la dualité de Poincaré aux ap-
plications ®Hs (C;,Z/22) — H, (S,2/2Z) et ®H, (C;,2/2Z) — H, (T,2/2Z)

induites par les inclusions de C; dans S et T'.

Ceci montre que le noyau ar est de rang 1 et necessairement engendré
par & [C;].

Si au moins deux des courbes C; sont elliptiques, soit Cy et Cq, elles
sont homologues dans S, par le théoréme de l'indice, donc aussi dans T,

puisque H2(T,Z) n’a pas de torsion, et [C1] + [C2] est dans Kerar. On a
donc [C1] + [Cs] = Z[C,-] ce qui entraine iii).

1.2. Fixons une courbe elliptique E, munie d’une involution j telle que le
quotient E/j soit isomorphe & P1. Le lieu fixe de j est alors constitué de quatre
points p1,---,ps. Soit k = (j,¢) linvolution agissant sur le produit E x S.

k a pour lieu fixe les courbes disjointes p; x Cs,7 = 1,---,4,s = 1,---, N.
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Les variétés que ’on considérera sont obtenues par éclatement des quotients

E x S/k le long de U pr X Cs. Ce que l'on notera: X = (E ;\g'/k) On a:
(r,8)

1.3. Lemme: X est lisse, a fibré canonique trivial et est simplement connexe

dés que N > 0.

Démonstration: La lissité est facile & montrer; X peut-étre définie de
maniére équivalente comme le quotient ExS /% de ’éclatement de F x S
le long des courbes p, x Cs, par I'involution k agissant naturellement sur
ExS. Comme k a au moins un point fixe 0 dés que N > 0, et agit
par —1 sur m;(E x §,0), on a m(X) = 0. Donc H%(X,Z) n’a pas de
torsion et il suffit de montrer que le pull-back ¢* (¢; (Kx)) est nul dans
H%(E x S,Z) ot ¢ : E x S — X est 'application quotient. Soit D le diviseur
exceptionnel de I’éclatement 7 : ExS— Ex S,onap*Kx =K rrhs D,
et KEZS‘ =T17*Kgxs + D. Comme Kgyxs est trivial, on en déduit que ¢*Kx

est aussi trivial.

1.4. Par le Lemme 1.3 on voit donc qu’on a, pour chaque type d’involution ¢
comme en 1.1 (avec N > 0) un type de déformations de variétés de Calabi-Yau
de dimension trois simplement connexe. La suite de cette section est consacrée
a la description de la structure de Hodge, de ’accouplement de Yukawa, et de

la forme d’intersection de ces variétés.

1.5. On commence d’abord par calculer les nombres de Hodge de X.
En utilisant la représentation X = ExS /75, on voit que H?(X,Q) =
H%(E x S,Q)* est l'espace des invariants sous k de H2(E x §,Q). De
méme H3(X,Q) = H 3(E’—;(/‘S', Q)™ cette égalité étant un isomorphisme de

structures de Hodge. 1l vient alors:

1.6 Lemme: H?(X,Q) est engendré librement par les classes des diviseurs
exceptionnels D,., = 77! (p, x Cs),H*(E,Q) et H?*(T,Q). De plus on a:
rang H*(T,Q) = 10+ N — N’, oi N’ = Zg;.

Démonstration: k agit sur H2(E x S,Q) = @ D] - Q ® H*(S,Q) &
(rys)

280



MIROIRS ET INVOLUTIONS SUR LES SURFACES K 3

H?(E,Q) en laissant fixe les [D, ], et comme (j,7) sur la somme H?(E) @
H?(S). j agit trivialement sur H?(T), et ’espace des invariants sous i de
H?2(S,Q) est isomorphe & H?(T,Q). by(T) = rang H*(T, Q) se calcule par la
A(T) + e»(T)

12

Enfin, le diviseur 3 C; de T est un membre du systéme linéaire |-2Kr|,
puisque 0 = Ks = ¢*Kr + 10* (3 C;) et que H?(T,Z) est sans torsion; on
a donc: 4KZ = (XCi)% = 1(T ¢*Ci)% = 2(XCi)%, ou dans le dernier
terme C; est considéré comme une courbe de S. Finalement comme les C;
sont disjointes et que K est trivial, on trouve: (3 Ci)% = 2(3 gi) — 2N,
dott K2 = N’ — N et by(T) = 10— K3 = 10+ N — N".

formule de Noether: On a x (Or) =1= avec ¢y = by + 2.

Pour le calcul du nombre de Hodge h*!(X) = dim H* (Q%) on a:

1.7 Lemme: H?'(X) est engendré librement par les jr .. (77, (H° (Qc,)))

—~—

ou 7.5 : Dps — pr X Cs est la restriction de 7 et j.s : Dy < E x S est
I'inclusion, et par H° (Qp) @ H! (Qs)” & H* (Og) ® H® (9%).

Démonstration: On a H2(X) = H2}(E x S)* et
H*(E X S) = @D jrs (77 (H° (0c,))) © H' (0p)

(rys4)

®H! (Qs) @ H' (Op) ® H° (0%) .
k agit trivialement sur le premier terme et agit comme (j,7) sur les deux

derniers. Comme j agit par —1 sur H!(E) (j,i) agit par —1 ® H(i) sur
H'(E) ® H?(S), ce qui donne immédiatement le résultat.

1.8 Corollaire: On a by(X) =11+ 5N — N’ et h2}(X) =11+ 5N’ - N.

Démonstration:

by(X) = by(E) + bo(T) + #{(r,$)} =14+ 10+ N = N + 4N = 11 + 5N — N’

RPN(X) =Y k% (Qc,)+1+h! (Qs)” = 4N'+1+10-N+N' = 11+5N'-N,

r,8
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o I'égalité h! (Rs)™ = 10— N+ N’ vient de h! (Qs) = 20 = Al (Q5) ™ +b2(T),

et du Lemme 1.6.

1.9. La ”mirror symmetry” X; < X5 est supposée échanger les nombres b et
h%1)ie. by (X1) = A% (X2),bs (X2) = h*! (X;) et d’aprés le corollaire 1.8,

——

on voit qu’a supposer que le miroir X, de X; = E751 ( 7 il) soit encore de

la forme X, = E?Sz / (_;72), cela revient & échanger les nombres N et N’,
i.e.. Ny = Nj, N, = Nj. Ceci bien siir n’est possible que si Nj > 0 (on exclut
désormais le cas N = 0). On montrera dans la section suivante en utilisant les
travaux de Nikulin, comment étant donné une involution ¢; sur une surface
K3 S agissant par —1 sur H° (Q% ) on peut construire un second type ip
d’involution sur une surface K3, satisfaisant la méme condition, & condition
que N7 > 0 et a I’exception d’un cas (cf. 2.17), et telle que Ny = Ny, N{ = Na.

1.10. On va décrire maintenant la forme d’intersection sur H%(X,Q), dans
la base décrite en 1.6. Notons (d + o + ) € H*(X,Q) =~ @ (Drs)Q @

r,8

H*(T,Q) ® H*(E,Q). On a alors:

1.11 Lemme: (d+ o+ B)% = (d3)X +3 (dza)X +3 (aQﬂ)X. De plus
pour d = Y d.,D,, on a (d®), = Y d3 D3 avec D3, = 8 — 8g,, et

T,8)

(dza)x =-2%d?,(Cs-a)p. Enfin (azﬁ)x = (a2)T - [ B.

Démonstration: Soit ¢ : ExS— X I’application quotient, 7 : ExS —
E x S éclatement et p;, ps les projections de F x S sur E et S respectivement.

On utilise aussi la notation ¢ : S — T pour I’application quotient.
On a alors
3 1 * 3 1 * * * * _\3
(d+a+f)y =5 (P (d+a+bd))gmg =5 (@ d+pif+pipiae).

Comme ¢*d est supporté sur les diviseurs exceptionnels de 7 et que les
courbes éclatées sont contenues dans des fibres de p;, on voit facilement
qu'on a les relations suivantes dans ’anneau de cohomologie de ExS:
(p}*,B)2 =0, VB8 € H*E),pi{B-d = 0, V3 € H?(E),Vd supporté sur les
diviseurs exceptionnels de 7,d - (p3y)® = 0, Vv € H?(S),Vd supporté sur
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les diviseurs exceptionnels. Cela montre immédiatement la premiére assertion
du Lemme. Comme les diviseurs exceptionnels sont disjoints on a d’autre
part D, - Dy o = 0 pour (r,s) # (r',s') et donc (d*), = > d3, (Dr,s)},
(o), = 3 d%, (D2, ). Finalement (Dys)% = %(go*D,.,s)%;-:g =
4 (Dﬁi}%
de E x S au dessus de p, x C;. Le fibré normal de p, x Cs dans E x S étant
égal & Oc, ® K¢, on a D, s ~ P (Oc, ® KE’I) D = Op,,,(—1), soit

) r’ler,a

2
(Dr,s):;’f;"s = (OD,-,,(].))DT,’ =2 — 293, et (Dr,s)i( =8 — 8gs

ou dans le dernier terme D, ; est considéré comme le diviseur

Enfin (D2, a) , = 4 ((¢* D)’ p3 0 9*a) — =2(D}piovta) g =
2 (Pz* (D,..)* - a)s = =2(Cs-p*a)g = —2(Cs-p*a)r ou l'on a utilisé
Iégalité

P2x (Dr;s)zEf;-g = —C, dans H%(S). On aaussi (a?8) , = 3 ((go*a)z-cp*ﬂ)i_,xs

X
= % (Pfﬁ : (P;‘P*Q)Z)E;—g = % (fE B) - (<P*a)25 = fEﬁ . (az)T, ce qui termine
la preuve du lemme.

1.12. On va calculer maintenant ’accouplement de Yukawa sur H' (T’x). Cet
accouplement est une forme cubique dépendant du choix d’une section w non
nulle de K x, et peut se définir en termes de variations infinitésimales de struc-
ture de Hodge de la fagon suivante: la variation infinitésimale de structure

de Hodge de X est décrite par une application ¢ = @ ©P? : H (Tx) —
p+g=3

@ Hom (H" (Q5), Hit! (Qg(_l>). Le composé 12 0p?! 030 donne alors

(p,9)
une application ¢ : S*H! (Tx) — Hom (H*°(X), H**(X)) qui est la forme

cubique cherchée moyennant lisomorphisme Hom (H3°(X), H*3(X)) ~ C
donnée par w®?.

1.12.1. Par les résultats de Griffiths décrivant la variation infinitésimale de
structure de Hodge en termes d’accouplements de Yoneda, on peut aussi
définir ¢ comme le produit S3H' (Tx) — H3 (A3Tx), le dernier terme étant

isomorphe & C par la multiplication avec w®2.

1.12.2.  On utilisera aussi la variante suivante: w fournit, via ¢3° un
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isomorphisme H' (Q%) ~ H' (Tx). La forme cubique 3, vue sur H! (%)
est alors obtenue comme le produit S*H! (Q%) — H3 (A3 (9%)) suivi de
I'isomorphisme: w=! : H3 (A® (0%)) & H®(Kx)~C.

D’apres le lemme 1.7 on a une décomposition naturelle:

H' (9%) ~ P H® (Q,) @ H' ()" @ H' () & H® (0%) @ H' (0%).
(r,s)

En utilisant I'isomorphisme H! (Tx) ~ H' (Q%) de 1.12.2, on obtient

une décomposition naturelle:

H' (Tx) = D H® (%c,) © H' (Ts)* & H' ().
(ry8)

Dans cette decomposition, il est clair que le sous-espace W = H' (T5)+69
H' (TE)
correspond aux déformations de X données par une déformation de E x S

préservant l'involution k.

Sur W, la variation de structure de Hodge ®¢?*? préserve la décomposi-

tion de la structure de Hodge de X en somme de H? (E x S)inv et @ H' (C,),

(rs)
' " . ' , . . g
et ’on a donc: <p|2“,‘1, =2l 4+ o 31 ou ¢ 2! décrit la variation de structure

de Hodge de U pr X Cs, lorque S varie infinitésimalement en préservant
(rys)
Vinvolution i et ¢ 2! décrit la variation de structure de Hodge de E x S

lorsque E et, S varient.

Soit :
0?1 W — D Hom (H® (Qc,) , H' (Oc,))
(r,s)
et 90“2’1 .

W — Hom(H" () ® H' (Qs)” @ H' (Op) ® H® (9%),
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H? (OE) ® H! (Qs)” ®H° (k) ® H? (Os))

La fleche ¢ 2! décrit la restriction de ’accouplement de Yukawa a W,

modulo l'identification donnée par w:

W ~ H° (QE) ®H1 (Qs)_ o H! (OE) ®HO (Q%)

W* ~ H' (Op) ® H' ()™ & H® () ® H? (05),
par la relation: ¥(u) = <u, cpgl(u)(u)>, pour u € W. Finalement, si on écrit
u = (ug,us) pour u € W, avec ug € H' (Tg),us € H! (Ts)+, il est clair
que ¢ (ug,us) = ¥ (ug,us), ou ¥’ est 'accouplement de Yukawa pour la
variété E x S, restreint & H (Tg) x H' (Ts)t ¢ H' (Tgxs). D’aprés 1.12.1
on a: ¥’ : S3(ptH! (Tg) + p3H! (Ts)) — (A3 (p}TE @ p5Ts)) est donnée par
le produit et on voit immédiatement que ¢’ (ug,us) = 391 (ug) @ ¥2 (ug) ou
Y1 (ug) = ug € H (Tg) , 2 (us) = u% € H? (AzTg). On a donc montré:

1.13 Lemme: Sur W, l'accouplement de Yukawa est décrit a un coefficient
pres par ¢ (ug, us) = 3¢ (ug) Y2 (us), ot ¥, est une forme linéaire non nulle
sur H! (Tg) et 1, est une forme quadratique non dégénérée sur H* (T5)+.
Si 'on choisit une 2-forme ws € H?°(S), fournissant un isomorphisme
H! (T3)+ ~ H'(5)™ , 1, s’identifie & la forme d’intersection sur H! (Qg)".

1.14. On revient & Papplication ¢ 2! qui décrit les accouplements de Yukawa

du type ¥(w,n,7), pour w € W,n € @HO(QCA),'Y € H' (Q%) ou ¢ est

(ry8)
la forme trilinéaire symétrique correspondant a la forme cubique 1. Le fait

que ¢ ! soit & valeurs dans @ Hom (H® (Q¢,), H' (Oc,)) est équivalent &
(r:8)
I’annulation des termes ¢ (w,n,w) ouw € W, n € @ H®(Qc,), et des termes

(rys)
¢(w7nr,s’nr’,s') pour w € W> Nr,s € HO (Qp,-xC,) Nr s € HO (Qp,./ xC,,) et

(r,8) # (', s").

D’autre part, comme ¢ 2! décrit la variation de structure de Hodge de

UCS lorsque S varie infinitésimalement (en préservant i), elle est obtenue

S
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par le composé de la projection W — H! (T5)+, de D’application v :
HY (Ts)" — @ H' (T¢,), différentielle de I’application naturelle Def(S, i) —

Def (U C s) , et de I’application décrivant la variation de structure de Hodge
de UCS : @Hl (Te,) — UHom (H° (Qc,),H' (Oc,)). 1l est bien
] S S

connu que cette derniére fleche est duale de produit: @HO Qc,)®? —

S

UHO (Qg?) Finalement la fleche v : H! (T5)+ — LJH1 (Tc,) se dualise,
S S
modulo le choix d’une forme wgs € H>?(S), en une fléche:

1.14.1. v : ®H° (Q%f) — H'(Qgs)™, qui permet de réécrire les accouple-
ments (w, 7,7) sous la forme 1)(w,n,v) = (w,v'(ny))g pour w € H* (Ts)t ~
H'(Qs)”

n,v € @ H°(Q,,xc,)- On utilisera dans la section 3 l'interprétation suiv-

(rys)
ante de ’application v’ :

1.15 Lemme: Fixons w € H°(Ks),0 € H°(—2Kr) une equation pour
C = UCs; pour P € H° (—2K7), la forme méromorphe %, a poles d’ordre
2 le long de UC; est sans résidus sur C. Sa classe dans H?(S,C) est en fait
dans F*H?(S)~, et son image dans H' (2s)™ ne dépend que de la restriction
Pic € ®H® (Q22?). Ceci fournit 'application v’ & un coefficient prés.

Cette correspondance, qui est une variation due a Clemens ([8] de la
construction de Griffiths [17] est décrite précisement dans [8]. On résume
ici 'argument: f&ﬁ étant antiinvariante sous ¢ n’a pas de résidu sur C. Elle
définit donc une classe dans H?(S,C). Comme elle est & pole d’ordre au
plus 2 le long de C, la théorie de la filtration par ’ordre du pdle pour la
construction de la structure de Hodge mixte sur H?(S\C) montre que %“—’
définit une classe dans F'H?(S,C)~, donc dans F1H?(S)~. Si P s’annule
le long de C, %“i n’a pas de pole et définit un multiple de w. Donc la classe

de % dans H' (Qs)” ne dépend que de Pjc. Notons finalement que la suite
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exacte 0 —» Or 5 —2Kp — ng — 0 et H! (Or) = 0 montrent la surjectivité
de la restriction H° (2Kr) — H° (28?).

Il reste & montrer que I’application ainsi construite est bien égale a
/. Mais il suffit pour cela de noter que P € H® (—2K. T|C) détermine une
déformation infinitésimale £, de C' dans T, et donc une déformation in-
finitésimale 6;) i-invariante de S; on a donc wune application
V" HO (—2KT|C) — H'(Ts)*. On peut montrer alors, comme dans le cas
des hypersurfaces [7], que ©*?(v"(P)(w) est égale a la classe de Pw/o dans
H!'(Qs)”, ot 920 : H' (Ts)* — Hom(H?°(S),H! (Qs)”) est la variation

infinitésimale de structure de Hodge de S.

Il reste alors a voir que v” : H° (-2Kp|c) — H* (Ts)* est duale de
v: H' (Ts)" — H! (T¢) (modulo le choix de w).

1.15.1. On montre d’abord que " est donné par le cobord associé a la suite

exacte:
1.15.2. 0 — Ts 2% o*Tr — NcT — 0.

Considérons une déformation infinitésimale de C dans T :

C.cTxC,

1 !
C. = SpecCle]/e?

correspondant & P € H® (NcT).

La déformation infinitésimale

™

S. LT xC,
|
C.
de S qui lui est associée par v” est le revétement double de T x C, ramifié le
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long de C,. Le diagramme

0 0 0
l ! !
0 — Tg —> Ts,|s — O — O

l l l

0 — ¢*'Tr — ¢*Trycyr — Os — 0

l l l

0 — NcT = NeT — 0
l l
0 0

ou la seconde ligne est scindée et ou la classe d’extension de la premieére ligne
est v"(P), tandis que la section de NcT obtenue grace au scindage est P,

donne maintenant 1.15.1. En dualisant 1.15.2 on obtient :
1.15.3. 0— ¢*Qr — Qs = NcS* -0

et on en déduit que le dual de v est donné par l'application H! (Ts)t ~
H'(Qs)” — H'(T¢)t induite par o, ot a est donné par le scindage
Qsjc = NcS* @ Q¢. De fagon équivalente, le dual de v" est I'application
V" : H' (Ts)”™ — H' (T¢) induite par la décomposition Tsjc ~ Tc & NcS.

1.15.4. On montre enfin 1’égalité de v et »"’: On considére une déformation

Se — T, «— C.
infinitésimale l l l , avec parametre infinitésimaux u €

C. C. C.
H'(T¢),v € H' (Ts). On a le diagramme commutatif suivant:
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0 — Ts — Tsys — Os — 0

l l l

0 — Tsc — Tsgc — Oc — O

l l l

0 — TC ——->TC¢|C—>00——->O

ou les classes d’extension de la premiére et derniére ligne sont respectivement
v et u, et la fleche verticale T, |c — T¢,|c est donnée par le scindage naturel
Ts,ic =~ Tc,jc ® NcS. On en déduit immédiatement que u = v"'(v), et que

le lemme 1.15 est prouvé.

Le calcul de l'accouplement de Yukawa se termine enfin par la preuve
de:

1.16. Lemme: La restriction de I’accouplement de Yukawa au sous-espace
@HO (Qc,) de H! (0%) ~ H! (Tx) est nulle.
.8
Démonstration: On utilise la troisiéme description suivante de X. Soit
E/j = P, ¢, : E — P! lapplication quotient, de lieu de branchement A =
{p1,---psa} C P'. De méme, soit T = S/i,¢ps : S — T l'application quotient,
ramifiée le long de C = UC, C T. L’application (¢1,92)E xS — P! x T
fournit une application (¢71,p2) : ExS—PlxT ot ExSetPlxT sont
les éclatés de E x S et P! x T respectivement le long de U pr x Cs.

(r)s)

Cette application descend en une application ¢ : X — PL x T et fait de
X le revétement double de Y = P! x T, ramifié le long du transformé propre

de A x TUP! x C. On notera I I’évolution agissant sur X au dessus de Y.

Comme Y est I’éclaté de P! x T le long de U pr X Cs on a une inclusion
("'»3)
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Bt 0T = @ H® (Qc,) — H' (Q%), ot j,, : B s — Y est linclusion du
(ry8)
diviseur exceptionnel au dessus de p, x C; et T,l., s . Brs — Cjs est la restriction

de 7 :Y — P! xT. On a alors: @jr,s* 0T, = %o (@ji,“ o T;,s) :
(7"3) (r’s)

P H® (Qc,) — H' (9%).
(r,8)

Soit n € @ H® (Qc,); alors
(r,8)

3 3

Pirseorim) | =¢* Birsorn| @)

(ry8) (rys)

dans H® (A3 (Q%)) ow: ¢* : H® (A3 (Q%)) — H3 (A® (£2%)) est induite par
e*p*Qy — Qx.

Mais A3 (Q%,) = K{‘?z et w, (A3 (Qg()) = Ky & Oy, et comme
application m* (A% (Q%)) ™ A3 (©%) s’annule doublement le long du lieu de
ramification de =, on voit que Papplication induite A% (Q%) — 7 (A3 (2%))
se factorise par A3 (Q%,) 2 Oy, ou o est I’équation du diviseur de ramifi-
cation dans Y. Comme H?3(Oy) = 0, Papplication ¢* : H3 (A3 (Q%)) —
H3 (A3 (Qg()) est nulle.

Utilisant la définition 1.12.1 de 'accouplement de Yukawa, on obtient

donc le Lemme 1.16.

L’accouplement de Yukawa de X est maintenant complétement calculé,

et les numéros 1.12 a 1.16 se résument de la fagon suivante:

1.17 Proposition:  Soit (w+ ug+ug) € @ H°(Qc,) ® H' (2s)” @
(r,s)
H'(QE) ~ H'(Tx) ou I'isomorphisme dépend du choix de ws € H2(S),

weg € H° (QE). Alors ¢(w+us+uE)=3(1/(w2)-us)+3/ uE/uzs ou
E S
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7 @ H° (ng) — H' (Qs)” est décrite en 1.14.1 et 1.15.
(r,3)
1.18. Il y a évidemment une analogie entre la forme d’intersection cubique

sur H' (2x) (Lemme 1.11) et la forme cubique de la proposition 1.17.

Dans la section suivante on construira le miroir X, = ng;Sg / (j’z-:-lfz)
de X; = E, x5/ (j:;l), et on montrera qu'on a: dimH!(Qr,) =
dim H! (Qs,)”,

dim H! (Q7,) = dim H' (Qs,)”, et le rang du sous espace de H' (Qx,) en-
gendré par les diviseurs exceptionnels de X; est égal au rang du sous espace
de H' (9%,) engendré par la cohomologie des diviseurs exceptionnels de X».
Cependant la forme d’intersection du Lemme 1.11, calculée sur H! (Qx,),
n’est pas une spécialisation de I’accouplement de Yukawa sur H! (Qg(z), a
cause du terme en d® qui est non nul. Dans la 3¢me section de cet article, on
suggere une interprétation possible de ce défaut, en spéculant sur la formule

0.4.1.

§2 - Miroirs

2.1. On va utiliser dans cette section les résultats de Nikulin ([11], [1], [22])
sur les involutions ¢ sur les surfaces K3 S, agissant par —1 sur la deux forme
holomorphe wg de S. L’involution i agit par une isométrie H (i) sur H%(S,Z) et
H?(S,C), et par hypothese la forme wg est dans H2(S,C)~. Par le théoréme
de l'indice de Hodge appliqué aux surfaces S et T' = S/i (T est lisse, projective
et H2%(T) = 0), on voit que H?(S,Z)” muni de la forme d’intersection de
S est de signature (2,b; — 2). Par le théoréme de Torelli pour les surfaces
K3, et la surjectivité de I’application des périodes, on peut associer a chaque
involution H (i) sur H%(S,2) satisfaisant cette condition sur la signature de
H?~, et définie & conjugaison preés par le groupe des isométries de H%(S,Z)
une famille de surfaces K3 S; munies d’une involution ¢ agissant par H(z) sur

H2(S,2).

2.1.1. On considére en effet D = {w € P(H?*(S,C)7)/w-w=0et w-w > 0}
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et U C D, défini par la condition : Ja € H?(S,Q)",a # 0 et a-w = 0. Alors
U a deux composantes connexes isomorphes et chaque point ¢t de U parameétre
une surface K3 Sy, projective car H2 (S;,Z)" est orthogonal & H2?(S,) donc
de type (1,1), et contient un élément de self-intersection > 0. Comme S; est
projective, il existe une classe de Kahler entiere ¢ € H? (S;,Z) N HV1 (S,)
et comme w € Uyc € H?(S;,Z)*. Comme H(i) agit trivialement sur
H?(S,,2)*, H(:) préserve c, et est donc une isométrie de structure de Hodge
préservant une classe de Kéhler. Donc par [27], Th. 11.1, H(i) est induite

par une involution ¢ sur S;.

2.1.2. On travaillera en fait sur D, pour H(i) fixé. Les points de D\U
correspondent a des surfaces K3 S munies d’une involution ¢’ n’agissant pas
comme H (i) sur H%(S,Z). Par exemple lorsque la courbe de ramification de
Papplication quotient S; — S;/i¢ acquiert un nceud, par une dégénération
de Lefschetz, on peut construire une résolution simultanée de la famille
(8,7) mais linvolution agissant sur la fibre centrale n’a plus le méme type
topologique que ¢;. Cela est dii au fait que l’espace total de la résolution
simultanée est une petite résolution d’une variété de dimension trois avec un
point double, et I'involution agissant sur cette variété de dimension trois ne
se prolonge pas a la petite résolution; elle se prolonge en un isomorphisme de

I'une des petites résolutions sur 'autre.

Ceci étant dit, on voit que ces différentes familles sont essentiellement
caractérisées par la classe de conjugaison de I'involution H (%) et le résultat de
Nikulin que P’on utilisera est le suivant (cf [11],[22]):

2.2 Théoréme :

1) La classe de conjugaison de H(7) (qui est déterminée par la classe
de l'immersion primitive H%(S,Z)~ C H?(S,Z) ne dépend que de la classe
d’isométrie du réseau H2(S,Z)~ muni de la forme d’intersection induite.

ii) Cette classe d’isométrie est sujette aux conditions:

a) Sign H?(S,2)™ = (2,0~ - 2)
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b) Le conoyau K de l'application H%(S,Z)~ — H?(S,Z)~* donnée par

la forme d’intersection est un groupe de 2-torsion.

iii) La classe d’isométrie du réseau H?(S,2)~ est déterminée par trois
invariants (b7 ,k,68) ot by = rang H?(S,Z)", k = rangz .z K et § € {0,1}

est I'entier déterminé de la fagon suivante:

La forme d’intersection sur H2(S,Z)~ se prolonge uniquement en une
forme quadratique & valeurs dans Q sur H2(S,Z)"*. On peut construire
alors une fonction quadratique g sur K & valeurs dans Q/2Z, en posant
g(Z) = q(z) (mod2Z). On pose § = 0 si § est & valeurs dans Z/2Z,6 = 1

sinon.

2.3. On revient maintenant a la situation géométrique ¢ : S — T = S/i du
§1. On rappelle que N = nombre de composantes de la courbe de ramification
et N’ = somme des genres des composantes de cette courbe. On commence

par calculer les invariants b, , k en fonction des nombres N et N'. On a:
2.4 Lemme:

i)b; =12—- N+ N’

i) k=12-N-N'
Démonstration:

i) a été montré en 1.6 (compte-tenu de by = 22 — b).

ii) 2¥ est le discriminant de la forme d’intersection induite sur H%(S,2)~,

donc aussi le discriminant de la forme d’intersection induite sur H?(S,Z)*.

D’autre part, on a une suite exacte:

(2.4.1) 0 — H2(T) & H2(S,2)* — (2/2)N~! -0
N
En effet, reprenant la notation C' = U C; pour le lieu de ramification
s=1
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de ¢, et notant U = T\C,V = S\C, on a le diagramme commutatif suivant :

H2(S,2/21) = H2(T,1/21)

! !
HY(V,1/21) — HXU,2/21) — H'(U,2/22) — H*(V,2/2)

l 1 — H3U,Z/2Z) — 0

@ H'(C,,2/21) = @ H'(C,,2/21)

l l

0 0

ou la ligne du milieu est induite par la suite exacte 1.1.1. On en déduit
immédiatement que le conoyau de ¢, est égal au conoyau de 3, et comme
H3(V,2/22) et H*(U,2/22) sont de dimension (sur Z/2Z) N — 1, on a coker
¢+ ~ (Z/22)N-1. D’autre part les applications de ¢, de 2.4.2 et ©* de 2.4.1

sont reliées par la relation suivante:

Considérons le composé

*ydual
v:HXS,27) ~ HS,2)" —HXS,2)* L BTy~ HAT)

Poincare Poincare
alors la réduction de 1y mod 2 est égale & ¢,. Comme la fleche H%(S,Z)* —
H?(S,Z)** est surjective et que 1’on sait que ¢* a un conoyau de 2-torsion on
obtient immédiatement coker * ~ (Z/2Z)V~! et donc 2.4.1. est démontré.

Sur H%(T) C H%*(S,Z)* la forme d’intersection de S est égale & 2 fois
celle de T qui est unimodulaire. Donc son discriminant est égal a 2%2(T). La
suite exacte 2.4.1 montre alors que: discr H%(S,Z)t = 202(T)=2(N=1) ' ce qui
donne k =10+ N-N'-2(N-1)=12-N-N'.

Les entiers IV et N’ déterminent donc b, et k. Le Lemme suivant permet
de construire topologiquement la “mirror symmetry” échangeant les nombres

N et N', compte-tenu du théoréme de Nikulin:
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2.5 Lemme: Soit i une involution sur S agissant par (—1) sur H*%(S) et
d’entiers N, N', § associés satisfaisant N > 0, N’ > 0 et (N, N',6) # (5,1,0).
Alors H?(S,Z)~ contient un plan hyperbolique.

Démonstration:

2.5.1. Supposons d’abord N’ > 2. Soit L C H?(S,Z)~ ® Z/2Z un sous espace
isotropique maximal pour la forme d’intersection réduite modulo 2 (7). Soit
L C H?(S,Z)~ I'image réciproque de L par 'application de réduction mod 2.
La forme ( ) restreinte & L est divisible par 2, soit { ), =2( ) et ( ) est
unimodulaire. ( ); étant indéfinie et n’étant pas paire, (on peut toujours le
supposer par un choix adéquat de L), ( ), est diagonale, soit dans une base
convenable (e;), (z,z); = a:f+a:§—-2a:,2 Notons que de k = 12— N—-N' >0
et N' > 2ontire N <10et by > 4lc>(f qui montre bien que ( ), est indéfinie.
On voit alors facilement que ’ensemble {z € L, (z,z); = 0} engendre modulo
2 'hyperplan {}.Z; = Omod2}. On en déduit qu'il existe z € L tel que
(z,z) = 0 et 'image de z dans H%(S,Z)~ a une réduction mod 2 qui n’est pas
dans Ker (™) car les éléments satisfaisant cette derniére condition engendrent
un espace de codimension N’ > 2 dans L®Z/2Z. On peut supposer que z est
primitif dans L, et alors il existe y € H?(S,Z)~ tel que (z,y) = 1. Comme
(y,y) est pair = et y engendrent un plan hyperbolique dans H?(S,2Z).

2.5.2 Supposons maintenant N’ = 1: de k = 12— N — N’ > 0 on tire N < 11.
SiN=11onak=0etb, =2 et laforme d’intersection sur H2~ est paire,
unimodulaire et définie positive, ce qui est absurde. Donc N < 10 et b, > 3.
Reprenons maintenant la construction de 2.5.1: on a L C H?(S,Z)~ avec
( ) indéfinie de la forme (z,z); = z? + 73 — Z z2.
i>2

2.5.3 Supposons qu’il existe 2 € L primitif tel que (z,z); = 0 et z est
divisible par 2 dans H?(S,Z)~; alors * = 2y, et la projection de y dans
H?(S,2)~ ®2/2Z n’est pas dans Ker (7) donc il existe z € H2(S,Z)~ tel que
(z,y) =1 et comme en 2.5.1, H?(S,Z)~ contient un plan hyperbolique.

On sait d’autre part que le noyau de L ® Z/2Z — H?*(S,2)~ @ 2/22
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est de rang 1, représenté par un élément z = ) xz;e; € L, avec z; = 0 ou 1.
Comme = = 2y,y € H*(S,2Z)” on a: (z,z) = 4(y,y) = 2(z,z),, et comme
(y,y) est divisible par 2, on a (z,z); divisible par 4. Si (z,z); =0, on a fini
par ce qui précede. Comme b; = 13 — N < 12 on voit que (z,z); = —4 ou
—8 sont les possibilités restantes. Si (z,z); = —8, et £; = 2 = 0 on prend
z' =+ 2e; + 2e; et alors (z,2'); = 0.

Si (x,z); = —8 et z; = 1 on prend 2’ = z + €; et alors (2/,2"); = 0.
De méme si o = 1,z; = 0. Dans tous les cas on est ramené & la situation

2.5.3 et donc H?(S,Z)~ contient un plan hyperbolique.

Supposons donc (z,z); = —4. Si’'une des coordonnées z;, 2 est nulle,
soit xy, il suffit de prendre z’ = z + 2ey, et alors (z/,2"); = 0. Siz; =25 = 1,
et 'une des coordonnées z;,i > 2 de = s’annule, soit z3, il suffit de prendre

t' = x + 2e; + 2e3 pour obtenir (z’,2'); = 0.

En conclusion, si 2.5.3 n’est pas satisfait, on doit avoir: toutes les
coordonnées de z sont égales a 1. Comme (z,z); = —4 on a donc rang
L = 8, soit encore 12— N + N' =8 et N = 5. De plus on a:

8
2.5.4. H?(S,Z)” est engendré par e;---es et y = %Zei, la forme
1

d’intersection sur H?(S,Z)~ étant donnée par (z,z) = 2 (a:% + 22 — Z x?)
i>2
dans la base (sur Q) de H2(S,Q)~ donnée par les e;.

Le dual H%(S,Z)~* est engendré par les ) z;e} tels que ) z; = Omod 2,
et l'application ) donnée par { ) : ¢ : H?(S,Z)~ — HZ?*(S,Z)™* est

determinée par les conditions:

Y(e;) = 2ef, pour i = 1,2;¢(e;) = —2e} pour ¢ > 2. La forme
( ), obtenue par prolongement de ( ) & H?(S,Z)~* est donc telle que

1 1 -
(Y xwief, > ziel), = 3 <E €;T;€;, E eiw,’ei> ong =1,1< 2, ¢ = -1,
; i
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i > 2. Ce qui donne encore (3 z;e}, Y zie}), = 1 <x% +z% — E x?> Mais
i>2

S xiel € H(S,2)” <= Y z; = 0mod2 <= 2? + z} — fo = Omod 2.
i>2
Donc la fonction (z,z), est a valeurs dans Z/2Z et 6 est nul.
Le cas peut étre exceptionnel 2.5.4 est donc caractérisé par les invariants

N =5N'"=1,6 =0 et le lemme est démontré.
2.6. Construction de la “mirror symmetry” topologique:

Supposons que H?(S,Z)~ contienne un plan hyperbolique P. Soit rp
la réflexion par rapport & P, définie sur H?(S,Z) par la condition rpp =
Idp,rppr = —Id,1. Considérons l'involution i = rp o H(z). Pour i, on a
H%(S,2)+" = H2(S,Z)~ N PL. Donc H2(S,2)~()" a la signature correcte
(2,62=() — 2). De plus, on a clairement k' = k, §' = §, ot k' et §' sont les
invariants de 2.2 iii associés & ', puisque k' et §’ sont determinés par la forme
discriminante g de 2.2 iii, qui est la méme pour H?(S,Z)~ et H%(S,Z)~ NP,
donc aussi pour H2(S,2)~ et H2(S,2)~(") = (H2(S,Z)~ n P+)L.

Ecrivant ¢/ = H(i;) pour une involution i; agissant sur une surface
K3 S (cf 2.1), H(i;) agissant sur (—1) sur H2%(S;), on a les entiers N; et
N| définis comme en 2.3, pour (S1,1;) et par le Lemme 2.4 appliqué a S; et

S, on a:
2.6.1:
12— N+ N, =b;(S1)=bf(S)+2=12+ N-N'
k(S1)=k(S)=12-N; - N, =12-N-N'

On en déduit immédiatement: Ny = N/, N/ = N.

On appellera (H?(Sy,Z),H (i1)) (ou par abus (Si,4;)) le miroir
topologique de (H?(S,Z), H(i)) (ou par abus (S,4)): le théoréme de Nikulin
justifie ceci puisqu’il montre que la classe de conjugaison de H(i;) ne dépend
pas du choix du plan P. Remarquons que lopération (S,7) — (Si,41) est

clairement involutive.
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2.7. Cette construction montre aussi que le cas (N, N’,6) = (5,1,0) est bien
une exception au Lemme 2.5, compte-tenu de la classification compléte des
invariants (IV, N’, 6) possibles données par Nikulin ([22]). En effet, d’une part
il existe bien une involution d’invariants (5, 1, 0) associés, d’autre part, il
n’existe pas d’involution d’invariants (1, 5, 0), donc, par la construction 2.6,
pour I'involution d’invariants associés (5.1.0), H%(S,Z)~ ne contient pas de

plan hyperbolique.

2.8. Soit maintenant donnés (H? (S1,Z),H (i1)) et son miroir topologique
(H?%(S2,2),H (i2)), ou H (i1) et H (i2) satisfont la condition 2.2 ii) a): On
va construire précisément un isomorphisme entre le domaine D; des périodes
marquées pour Si, et I’ensemble D) des formes n € H?(S,, C)+ telles que
(Ren)? > 0.

2.9. Ce qu’on appelle domaine des périodes marquées pour (Si,i;) est
lensemble D; = {w € P(H?*(S;,C)”)/w? = 0,ww > 0}. Un point général
de D; détermine une structure complexe sur S;, avec une involution %,
agissant comme H(i;) sur H2(S;,Z) (cf 2.1.1), ainsi qu'un marquage de
(H?(S1,2),H (i1)), mais d’aprés 2.1.2 ces données différent en général. Ceci
étant noté, la construction est la suivante:

2.10. Le plan hyperbolique P C H?(S;)” est fixé. P posséde deux éléments
a,8 € Py bien définis au signe pres, tels que o? = 2,8% = -2, et o8 = 0.
Soit w € D;(w définie & un coefficient pres); alors w ¢ P ® C car sinon on
aurait : P® R = (Rew,Imw) C H2(S;,R)™, ce qui contredit le fait que la
forme d’intersection sur P®R est indéfinie, tandis que celle de (Rew, Imw) est
définie positive. Notons @, C H? (S;)~ le sous-espace complexe de dimension

trois engendré sur C par P et w.

Comme la forme d’intersection de H?(S;,C)” a une restriction non
dégénérée sur P, @, se scinde en la somme directe orthogonale: Q, = P L A,

ol A est la droite complexe @, N P+. On a alors:

2.11 Lemme: La forme d’intersection de H?(S;,C)”, restreinte & Q,,, est

non dégénérée.
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Démonstration: Soit u € P ® C, tel que w + u engendre A. Il suffit de
montrer que (w + u)? # 0.

Comme w+u est orthogonal & P, on a: Yv € P, (w+u)-v =0 = wv+uwv.

En particulier (w + u)? = w? + u? 4+ 2wu = —u?, puisque w? = 0.

Si (w+u)? =0,u? =0,etdoncu=XI/,ouAeCetv € PRR
On a u # 0, car sinon w serait orthogonale a P; ceci entralnerait que Rew et
Imw sont orthogonales & P, et contredirait le fait que la forme d’intersection
de H?(S;,R)7, restreinte & P est la signature (1,b; — 3), tandis qu’elle est

définie positive sur (Rew,Imw).

Maintenant, de wu + u? = 0,u? = 0, on tire wu' = 0, avec u’ réel # 0,
d’olt Rew - v’ = 0 = Imw.u’ = 0, ce qui contredit le fait que u'? = 0, tandis
que { ) est définie négative sur l'orthogonal de (Rew,Imw) dans H? (S;)~.
L’hypothese (w + u)? = 0 est donc absurde.

2.12. Soit o/ = %a, B = %,8, et x € A tel que x%> = 1, ou «, 3 sont définis
au signe pres en 1.10 et x est défini au signe pres.

(¢, B', x) fournissent une base de @,,, et on peut écrire: w = Ao’ +puf'+
vx, ou (A, u,v) sont des coordonnées homogenes, pour P(Q,). On a v # 0
puisque w # P (cf 2.20). On a alors:

2.13. Lemme: Soit w € P(Q,,) telle que.w? = 0, soit n = i (i\—Eﬁ) X € A.

Alors on a I’équivalence des deux conditions suivantes:
i) wo >0
ii) (Ren)? >0

Démonstration: Comme o et 3’ sont réels, on a @ = A\’ + 7 B +7 X.

Comme x est orthogonal a P, qui est réel, X est orthogonal & P, et ’on a:

2.13.1.
W = A\ — pfi + vUXX

W= 2402 =0
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Quitte & remplacer w par £ et A par \' = %, p par ' = £, on peut supposer

v=1.
On a alors n = i(X — p’)x. 2.13.1 devient
2.13.2.
Do = M — 0T + XX
w2=A2-p241=0
Maintenant Ren = 2(n +7) = 1 (i()\’ —w)x —i(} - ';I’)Y) d’ou

(Rem)? = 2(=(N = ) = (X = 7)? + 20V = p)(X' = 7')xx). D'aprés 2.13.

2 ii) on a (N —_;IL’)(X' — %) > 0 et il vient: 2(Ren)?/(N — )X =) =
/ / - —_—
—-% (%, — ﬁ, + ir: Z,) + xXx. Utilisant 2.13.2 ii) sous la forme X + =
-7
X le-/ il vient : 2(Ren)?/(X = )X = &) = Re((X' — )X + 7)) + xX =

Y — p'I' + xX = ww. Le Lemme est donc prouvé.

2.14. Notons finalement que n € A C H2(S;,C)” N PL = H?(S,,C)* ne
dépend pas du choix de x a +1 pres, et ne dépend que du point projectif
défini par w dans P (H 2(8, C)“). On a donc bien construit une application
M, clairement holomorphe: M; : D; — D4. 1l reste a voir que M; est un

isomorphisme. On a d’abord:
2.15 Lemme: Soit n € Dj; alors n? # 0.

Démonstration: Ecrivons 7 = Ren + iIm#; alors 72 = 0 entraine Re7 -
Imy = 0, et (Ren)? = (Imn)2. Comme (Ren)? > 0, si n? = 0, H(S,R)"
contient un plan réel sur lequel la forme d’intersection est définie positive, ce
qui contredit le fait que la signature de H? (S5,R)* est (1,bF(S2) — 1). Par
I'isomorphisme H?2 (Sy,R)* ~ H2(S;,R)” N PL, voyons n € D} comme un
élément de H?(S1,R)™, orthogonal & P. Soit Q, l'espace de dimension 3
complexe engendré par P et 7. Ecrivons enfin p = ey avec € € C*, et x2 =1

(Lemme 2.15); Le Lemme suivant est évident:
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2.16 Lemme: Pour ¢ # 0 fixé, il existe un unique couple (), 1) de complexes
tels que \2 — p?2 +1=0et i(A—p) =e.

Posant alors w = Ao/ + uB’ + x, on note que le point projectif défini par
w dans P(Q,) ne dépend pas du choix de ¥, et satisfait w? = 0, et ww > 0,
par le Lemme 2.13. On a donc construit M; ' : Dj — D;.

Echangeant S; et S, on dispose de My : Dy — D et M{l : D] — Da,.
Le couple (My,M; ') : Dy x D} — D} x D, fournit une application “miroir”

holomorphe et bijective. Ces résultats se résument de la fagon suivante:

Théoréme: Soit S; une surface K3 munie d’une involution ¢; telle que
H (i1) agit par (—1) sur H%%(S;). Supposons que les invariants (Ny, N7, 6)
associés satisfont N; > 0 et (Ny,N{,61) # (5,1,0). Fixons un plan P
hyperbolique dans H? (S;,2Z)”. Alors il existe un miroir (H? (Ss,Z), H (i2))
topologique de (HZ?(S1,Z),H (i1)), qui ne dépend pas du choix de P, et
satisfait No = N{,N) = N;,62 = 61, et un isomorphisme de domaines de
périodes marquées: (MI,MZ_I) : D1 x D{ — D} x Dy (qui dépend de P).

2.18 Remarques:

a) Une direction possible d’investigations sur la structure de I’applica-
tion miroir serait l’analyse de la compatibilité avec I’action des groupes

orthogonaux, de maniére a supprimer autant que possible le marquage.

b) Il y a évidemment d’autres choix possibles pour Mj: pour tout réel
A # 0, on pourrait aussi bien définir M} (w) = AM;(w). Peut-étre I’étude de

a) fournirait elle des raisons pour privilégier 'une de ces applications.

c) Comme noté en 2.1.2 il existe un ouvert U] de Dy, avec U; C U] C D,
(ot Uy est défini en 2.1.1) sur lequel la structure complexe sur S; paramétrée
par t € U] est effectivement compatible avec une involution ¢; sur S, agissant
comme H (i) sur H?(S;,2). 1l serait intéressant de décrire précisément U
et son image M; (U]) C D) pour comprendre le domaine de définition de
I’application miroir géométrique (0.3, 2.2.1); il y a en effet une incertitude sur

le domaine de définition de la forme « de 0.2, pour laquelle le miroir (X', ')
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serait défini; la condition “Re o K&dhler” est probablement trop contraignante;
cependant la condition (Ren)? > 0 de 2.8 est trop faible.

(Cette derniére remarque suppose la lecture des numeéros suivants, ol
I’on contruit a ’aide de 2.17 la “mirror symmetry” pour les variétés X de la

section 1).

2.19. On revient maintenant aux variétés de Calabi-Yau
X, = E;1 x5,/ (j:_zrl) construites dans la section 1. On suppose que le

miroir topologique de (S1,11) existe. On supposera donné un marquage de

2.19.1 H*(X,,2) c @ H' (C.,2) & H' (B1) @ H? (5,,2)7,

(rys)
incluant un marquage de chacun des termes intervenant dans cette décompo-
sition. L’inclusion de 2.19.1 induit le @ isomorphisme de 1.5 : H3(X,Q) ~
H 3(E"—>\</S ,Q)". De méme on se donne un marquage de

H?(X,,2) C H? (Ey,2) & H? (51,2)* €D (Dr.) -
(rs)

2.20. L’application miroir a été construite explicitement pour les courbes
elliptiques (cf. [10], [2]). Cette application que nous noterons (m;,m;")
pour la distinguer de la précédente, est I'involution sur ’espace paramétrant
la donnée d’une courbe elliptique E ~ C/T', ou I' = (e, e3) est un réseau
d’orientation positive dans C, et d’une classe de type (1,1) ag telle que
Re ([ ag) > 0, simplement définie de la fagon suivante: soit e; = Te1,7 € C;
alors Im 7 > 0 et j détermine E. D’autre part soit A = [, ag. Alors ReA > 0
et A détermine ag. On associe alors a (E1, ag, ) le couple (ag,, E2) , ou E5 est
définie par: 7o = i\; et ag, est définie par: A = f g @E, = —i711. On a utilisé
la notation (mi,m; 1) par analogie avec 'application M, et pour souligner
le fait que application miroir préserve la structure de produit de l’espace
considéré ci-dessus en échangeant les facteurs. Ici my (11) = Ay = —im, et

mo = MmM;j.

2.21. On effectue maintenant la synthése du théoreme 2.17, et de la

construction 2.20.
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Donnons nous une deux forme sur X; de la forme ag, + ag, ou
Re [pag, > 0 et (Reags,)? > 0 (plus précisément as, € My (Uh) ot Uj
est définie dans la remarque 2.1.8.c). Alors via m;' ag, détermine une
courbe elliptique marquée E, , et via M, ! &g, détermine une surface K3
marquée S, munie d’une involution i, agissant comme H (i) sur H? (S2,2)
qui est marqué. De méme pour une structure complexe sur X;, on a la
droite projective H*? (X;) C H®(X;,C) qui détermine, grace au marquage,
les droites projectives H':* (E;) c H'(E;,C) , et H>°(S;) C H?(51,C)".
Via m; et M, on alors des formes ap, € H!(Qg,), et as, € H' (Qs,),
avec Re [ ap, > 0,(Reas,)’” > 0 d’ott une deux forme ag, + as, sur
X,. On définit le miroir de (X1, ag,,as,) comme étant (X3, ap,,as,) avec
X, = Ey X S3/(j2,12) olt ja est linvolution (—1)g, ~ C/Ts.

2.22. Comme on a Ny = N et Nj = Nj, le lemme 1.8 montre que X;
et X, satisfont by (X;) = h%!(X,) et by (X2) = h*!'(X;). L’application
miroir que l’on a construite ici est donc parfaitement conforme a la “mirror
symmetry” prédite par les physiciens (0.3). On peut noter cependant que
I’on n’a construit ici ’application miroir que sur un sous-espace H; X K;
du produit { structure complexe marque sur X;} x { formes de type (1, 1)
sur X; satisfaisant certaines conditions de positivité }, H; étant I’ensemble
des structures complexes pour lesquelles X; est du type E’;;Sl/ (J1,%1) et
K, correspondant a ’ensemble des formes sur X; de type ag, + as,. Cete
application est a valeurs dans les sous-espace Hs X K, correspondant pour
Xo.

2.23. Si l'on tient pour vraie la conjecture sur l’existence de la ”mirror
symmetry”, on peut imaginer que l'on a construit ici I’application miroir
des physiciens, restreinte a un sous-espace du type H; x K], mais il est
possible que K| ne soit pas I’espace I; considéré ci-dessus mais par exemple
un translaté de K» par une constante c¢(X;) € H' (Qx,) supportée par les
diviseurs exceptionnels de X;. On propose méme dans la section suivante une
valeur de ¢(X;) qui rendrait valide les prédictions des physiciens concernant
la comparaison des accouplements de Yukawa et la forme d’intersection, en

prenant la limite de 0.4.1 de fagon adéquate. Mais ceci est trés spéculatif et
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il est peut-étre préférable de considérer le probléme suivant comme ouvert:

2.24. Probléme : A quel sous-espace de H! (2x, ), naturellement isomorphe
a K, correspond (via le miroir des physiciens supposé égal au notre) le sous-
espace de ’espace des structure complexes sur X, constitué des variété du
type By x Sa/(j2,i2)?

83 Accouplements de Yukawa et formes d’intersection.

3.1. On se propose dans cette section de “tester” la formule 0.4.1 pour
l’application miroir construite en 2.17, 2.21, au sens suivant: supposons que
la formule 0.4.1 soit bien donnée par une série convergente; supposons aussi
que o satisfasse: Rea’ est une forme de Kahler; alors on doit pouvoir prouver
que Paccouplement de Yukawa sur X; := miroir de (X’,¢ca’), oul ¢ est un réel
positif tendant vers +o0o, correctement normalisé, converge vers une forme
cubique isomorphe & la forme d’intersection v — [y, v® sur H! (Qx+). (Ce

type de calcul a été aussi effectué dans [3] pour certaines variétés du type 0.5).

3.2. On travaillera avec I'hypothese naive 2.23. Cela signifie qu'on sup-
posera que le miroir (X2,af, + as,) de (Xi,ap, + ag,) construit en 2.21
s’identifie au miroir des physiciens (X3,a2) — (X1,01), a condition de
poser ay = ap, + as, + ¢(X2), o1 = ag, + as, + ¢(X1) ou c¢(X2) €
H'(Qx,) (resp.c(X;) € H'(Qx,)) est une constante supportée sur les di-
viseurs exceptionnels de X, (resp. de X;). A ce moment la on doit
avoir la variante suivante de 3.1: Supposons ap, > 0,as, > 0; alors pour
teRY,t - +oo,e” f..: tf* (apy tas, )+ e(Xa) 0 dés que f : P! — X, n’est
pas un revétement d’une courbe rationnelle P, C X, fibre de I'une des
applications 7., : D,s — C,, de 1.7. On doit donc pouvoir prouver que
Paccouplement de Yukawa sur X; ; := miroir de (X2,t(ag, + as,) + ¢(X32))

converge vers une forme cubique isomorphe & la forme sur H! (Qx,):

3
(321) v v+ Z e f"l Jirae(Xa)) (/ fl:,r,sv> xn(fk,r,s)
P1

X2 fkyry’:Pl _'P}‘s

ol fr.rs est la composante de I’ensemble des applications holomorphes de P!
0y p

dans X, donnée par les revétements ramifiés de degrés k de P}, . Evidemment
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il faut pouvoir donner un sens a la somme de cette série. On peut utiliser pour

cela le résultat de Aspinwall et Morrison [4], et le lemme suivant :

3.3 Lemme: Pour une déformation générique X} de Xs, et pour g(Ca) >
1, les courbes rationnelles obtenues par déformation de P}, consistent en
exactement 2g(C2) — 2 courbes rationnelles P C X}, de fibré normal
Np:1 X} ~ Op1(—=1) ® Op:(-1).

Démonstration: On reprend les notations de 1.16. X5 est la désingularisa-

tion du revétement double de P! x T, ramifié le long de la surface d’équation
AsF = 0 ot Ay € H®(Opi(4)) et Fy € H®(—2Kr,). Soit Cy = | JCs,o

la courbe d’équation F» = 0 dans Tp. C3 est une composante de C.
L’application composée: H° (—Kr,) — H°(Qc,) — H® (Qc,,) est surjec-
tive, et il existe donc Gy € H°(—Kr,), telle que pour chaque s tel que
g(Ca,) > 1 la restriction de G2 a Cp, ait exactement 2g(Cy,s) — 2 zéros.
Soit By € H° (Op1(4)) générique. On vérifie facilement que pour ¢ € C assez
petit, la surface d’équation Ay F» + tB>G3 est singuliere seulement le long de
Ay = F5, = G5 = 0 avec des singularités quadratiques ordinaires de rang 3
(nceuds) aux points de pa . X C2 s N {G2 = 0} pour g(Cs,) > 1, et avec des
singularités quadratiques ordinaires de rang 2 le long des courbes p, x Cs ,,
avec g(C2,5) = 0. On pose t = v? et on considére la variété de dimension
quatre W obtenue comme le revétement double de P! x T' x A (A un petit
disque, muni de la coordonnée v) ramifié le long de I’hypersurface d’équation
Ay F> + v2B,G2. 1l n'est pas trop difficile de montrer que W admet une

désingularisation W, satisfaisant:

i) les fibres de I’application naturelle W Z A donnée par la coordonnée

v sont lisses;

ii) pour v # 0 7~!(v) est une désingularisation du revétement double
de P! x T ramifié le long de la surface d’equation AsFy + v?B2G2, obtenue
par éclatement des courbes singulieres p, x Cy s avec Cy s rationnelle et par
petite résolution des nceuds au dessus des points p, x Cz,; N {G2 = 0} pour
9(Ca) 2 1.
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iii) 771(0) est isomorphe & X,.

On a donc montré que dans 77" (v) les courbes P}, , sont remplacées par
les 2g (Csy,s) — 2 courbes exceptionnelles de la petite résolution de W, pour
g (CZ,.S) 2> 1.

3.4. Par le Lemme 3.3, et par le résultat de Morrison et Aspinwall, on peut
faire alors n (fx,rs) = 29 (Cs,s) — 2 pour tout k > 1 et 2g(Cy ) > 1, dans la

formule 3.2.1. On admettra que ceci reste vrai pour g (C2 ) = 0.

On peut alors pour les valeurs adéquates de c¢(X3) assurant la conver-

gence de la série, remplacer 3.2.1 par :

Yy ive [ v

+ - X 3
2 — p1 A2 (X2
Z ( 9 (CZ,s) 2) € f 3"8 ( )/ (]' —€ Prs ( )) (/ )

T,

3.4.2

3.5. La forme v}, est facile a décrire dans la base @ (Da,rs) QB H? (T2, Q)@
(rys)

H?(E,,Q) de H?(X,,Q) compte-tenu de 0 = / a = B, pour
P

1 1
T8 Pr,s

o € H2(T5,Q), B € H?(E»,Q), et /P [Darw] = 0, pour (,s") #

T8

(r, s),/ [D2,r,s] = —2. Du Lemme 1.11, on tire immédiatement :
P2

T,

(3.5.1)
—f,, o(X2)

Zr,s di,s I:(DQ,,.,S):;( — 8(29(02,5) _ 2) e_ fr‘r,, C(Xz)/ <1 e 1 )]
+3(d2a)x + 3(0{2,3))(

otd=Y d,Dar..

7,8

3.6. D’aprés 1.11, on a Dj . = 8 — 8g(Ca), et Pon voit donc que le
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= —3, Cest-

‘f-l,, c(xz)) o

. - 1 C(XQ)
premier terme s’annule pour e f"m /1=

a-dire e f'lv' (%)

—im/2) " [Da,rs)-

= -1, soit [p, ¢(X2) = im, ou encore: c(X2) =

Pour cette valeur de la constante c(X3) 'accouplement 35 prend la

forme simplifiée :

3.6.1 Yp(d+a+B) =3 (d*a)y, +3(d*0)y,-

Or d’aprés la proposition 1.17 c’est précisément la forme générale
de l'accouplement de Yukawa 1 pour X;, puisque l'on a dans la base
@(r,s') H° (QC],s’) @ H' (QSI)— o H! (QEI) de H' (TX1) LY (w +us, + uEl)

=3 (v'(w?)us,) +3/ U, / u%,, et que :
Ey Sy

rang @ (Dg.rs) - C = 4Ny = 4N| = rang @ (Qc,,s')
(r,s) (r,s’)

rang H? (T,,C) =10 + N, — Ny = rang H' (Qg,)” .

On continue désormais en supposant dans ’hypothese 2.23 que ¢(X2) =

—in/2) Dy .

8
3.7. Il reste maintenant a raffiner 3.6, en montrant que les accouplements 1
et 1) deviennent bien isomorphes ”a la limite”, c’est-a-dire lorsque la structure

complexe sur X; dégénére, ou lorsque la forme ag, de X, tend vers l'infini.

On reprend d’abord les notations de §2, et on étudie la différentielle de
M, : D, — D) (cf. 2.14), et sa compatibilité avec les formes d’intersection

sur TDy) = wt/ (w) et TD!, = H' (Qg,)*, ot n = My(w). On a:
(w) 2(n) 2

3.8 Proposition: Soit 7 = M;(w), et pour t € Rt soit w, = M !(tn). Alors
lorsque t tend vers 400, wy converge vers o — ', et convenablement multipliée,
la différentielle (dM,),,, tend vers un isomorphisme (a' — ' 1/ (o =B ~
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H' (Qs,)", compatible avec les formes d’intersection.

Démonstration: On reprend les notations de 2.10. 2.13. On a donc
we = Mo+ +x € P(Qu) = P(Q), et tn = i (X, — u})x, avec
A2 —p2+1=0.

Soit n = ex; on a donc: A, — pj = —ite et N} + p} = L, soit

tte?

AN =1 (”s ite) et pj =1 1 (= +ite). Lorsque t tend vers 0o, — (,?E) wy

converge donc vers o — 3.

On calcule maintenant la différentielle dM () : dw — dn, avec dw €
w/ (w), ot wt est 'orthogonal de w dans H? (S;,C)". Ona X =w-o/, 4’ =
—w- ', et n =1i(N — p')x. En différentiant ces relations, on obtient:

381 dw = dNo' + dy'B + dx,dN = dw-d,dy' = —dw - f, dy =
i(dX —dp')x + (N — p)dx; d’ow:

3.82 dn = i(d\N —dp)x + i(N — p)(dw — dNo' — dp'B’). Soit u =
(W 4+ X) (e + ') + x € wt; alors I'espace engendré par u et Q2, I'orthogonal
de Q. dans H?(S;,C)”, est naturellement isomorphe & w'/w, et 1'on a en
appliquant 3.8.1 et 3.8.2.

3.8.3 dMy(o)(v) = i(X — p')v pour v € QF, et

dM(w)(u) = (N =g u+ti(u-o +u-B)x —i(N =)
(u-a)-o'=(u-B)-B) = i(N =) u—((4'+N)a'+ (4 +X) ).
Ceci fournit encore:

3.8.4 l(/\, dMl(w)(v) = v, pour v € QL, et i(—,\%,;?del(w)(U) =u-—(p+
)@ + ﬁ')

Faisons maintenant 1, = tn avec t — 400, et soit wy = M ! (n;).

On a alors A, + py = = — 0, uy — X, et par le calcul précédent

ite
~(Fw—d-p.
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<ut, Qj;) converge donc vers < X Wj) , qui est naturellement isomorphe a
(o = B)*/
(o/ — B'), par linclusion (x,Wz1) C (o — B')* et par 3.8.4 (/\, Ty M)
converge vers I'isomorphisme composé: (o' — ﬂ') / (o o (x,Qf;> o~
H?(5,,C)" N P+t = H?(S,,C*) ~ TD). 1l est clair que cet isomor-
phisme préserve les formes d’intersection sur ces espaces, induites par celle
de H?(S;,C)”. La proposition 3.8 est donc montrée.

3.9. La proposition 3.8 montre que la différentielle de I’application miroir,
restreinte au sous-espace H (Tg,) ® H! (Ts,)* de H' (Tx,) et & valeur dans
H'(Qg,) ® H'(Rs,)" ©¢ H'(Qx,) converge, & condition de prendre la
limite dans le précisé en 3.8, vers une application transformant la limite de
l’accouplement de Yukawa v de Xj, restreinte & H! (Tg,) & H' (Ts,)*, en
P’accouplement ¢4 de 3.6.1 sur H (Qg,) ® H' (Qs,)7, lorsque as, “tend vers

P’infini”.

Il reste maintenant a étudier le comportement asymptotique des ac-
couplements de Yukawa du type ¢ (w,w,ug,) (ici ¢ est la forme trilinéaire

associée & ¥, w € @Hl (Qc,.,), us, € H' (2s,)7). On ne fera pas cette

(rys)
étude en considérant des limites du type as, — tas,, t € R,t — +00, mais en

construisant des dégénérations adéquates de S;; pour compléter ce travail il
resterait encore 4 montrer qu’on peut réaliser la limite 3.8 et les limites 3.10,
3.14 en méme temps. De plus les propositions 3.13, 3.17, 3.19 ne donneront

une confirmation du fait que 1 devient isomorphe a v¥5 “a la limite” que dans

les cas ou C; = UCI,S n’a pas de composantes rationnelles et sous des hy-

S
pothéses géométriques supplémentaires sur T;. (cf. 3.20.1). On va d’abord

étudier le comportement de I’application v’ (1.14.1) lors d’une dégénération
de Lefschetz de la courbe de ramification C; C T, telle que la fibre centrale
ait p nceuds imposant les conditions indépendantes & H° (—Kr,). On utilisera

pour cela le lemme 1.15.

3.10. Soit Fy € H® (—2Kr,) définissant une courbe ayant p nceuds q1,---,¢p

imposant des conditions indépendantes & H® (—Kr,).
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Soit F{ € H® (—2Kr,) telle que F(q;) # 0.

Pour t petit, la courbe C? d’équation Fy + tF] est lisse; soit ¢ = v?,
et soit X = T; x A le revétement double de T} x A ramifié le long de la
surface d’équation Fy + v?F]. X a des nceuds au dessus des points (g;,0),
et un choix de petite résolution en chacun des nceuds fournit une application
lisse X E» Ty x A. La fibre centrale )?0 est la désingularisation minimale

de X, et admet une involution i dont le quotient est 1'éclaté de T; aux

points ¢;. On a H? ()?0,2) ~ H? ()?v, Z) mais sous cet isomorphisme on a :

H? ()?v, Q>— = H? ()?0, Q)_o @ [E4,] Q ot E,; est la courbe exceptionnelle
1 ll i

de X, au dessus de q;-

Ici 4; est l'involution générique de X, , au dessus de 7. Sur A, on a

le fibré vectoriel H1'! de fibre H(;} > H' (Q5 ) et le sous-fibré H'!” défini

sur A* par H(l;l)_ =H! (Q)? )— se prolonge naturellement en H11™ C K\
v/ i

tel que H(léi_ ~ H! (Q)?o)io ® @[Eq‘] C, ou [Ey,] est la classe de Ey, vue

comme un élément de H! (Q < )
0

Soit (wy),ca une section partout non nulle du fibré H?® sur A de
fibre 'H(z;(; = H° (Q% ) Pour P € (-2Kr), on définit une section ¢p

de HY1" sur A* par pp(v) = v/ (P), ot v, est 'application v’ de 1.14.1,

v

pour la courbe d’équation Fy + v2F}, et pour w = w,. Par le lemme 1.15,

¢ p(v) est la projection dans H? (Q e ); de la classe de la forme méromorphe

v

Pw,/ (Fi + vF]) sur X,. On a le lemme suivant:

3.11 Lemme: i) Si P s’annule en ¢;,V: € {1,---,p},p se prolonge
holomorphiquement en 0.

ii) De plus si P s’annule doublement en ¢;, ¢p(0) € H? (Qfo) , et
io
op(0) = vj(P), ou v est Papplication v’ de 1.14.1, pour la courbe normalisée

Ty C )/(\o, qui est la courbe de ramification du revétement double )/(T) — ﬁ, et
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pour la deux forme wy. (PIC;J est alors considéré comme une section de 0\202 .
1

iii) en général vpp se prolonge holomorphiquement en 0, et il existe
un isomorphisme naturel @resy, : ®H® (Oy,(—2K7)) ~ GH®(O,) tel que

vpp(0) = Zresq-' (Pl(h') (Eq)-

Démonstration: Au voisinage de ¢;, on pose f; = F;/F]. On peut trouver
des coordonnées locales z,y pour Ti, telles que fi = —(z2 + y?). Alors, au
voisinage de (g;,0), X est décrit par I’équation u? = —(z% +y?) + v?, dans des
coordonnées (u, z,y, v) paramétrant un ouvert de C* centré en 0. La famille de
formes méromorphes pw,/ (F1 + v?F} ) fournit une famille continue de deux-

formes fermées sur les ouverts X\B N X,, ou B est un voisinage dans X de

la surface de ramification U CY. Donc si (7y),ea est une famille continue de

1
classes d’homologie supportées en dehors de BN X,, f% Puw,/ (F + v?F]) se

prolonge continument en 0, et f% vPw,/ (F | + v2FY) tend vers 0 avec v.

D’autre part, Hy (X,,Z)” est engendré par les classes supportées sur
X,\B N X, (pour B petit) et les classes des sphéres évanescentes S2(v),
décrites dans les coordonnées (u,z,y,v) par: u = vug,z = vZo,Yy = VYo, avec
o, Zo, Yo réels et uf + z§ + y§ = 1. La limite de SZ (v) est égale & la classe
de E,, dans H%(X,,2). 52 (v) est aussi homologue au contour suivant: on
remplace S2,(v) par la réunion Ty, (v) de S2,(v) N |ug| > 3 et de I'ensemble
{(u,z,y,v)/u = (v/2)ei? ,z = ve“’xl xp réel, y = ve'¥y,,y; réel avec 0,0’ €
[0,7] et €% (22 4+ y?) = 1 — 1€}, qui est une partie d'un fibré en cercle au
dessus du cercle évanescent de C?, décrit par: u =0, z = vz, Yy = vY1,%1, Y1
réels, et 22 + y? = 1. T,,(v) est construit pour éviter I’ensemble {u = 0}. On
vérifie facilement que, au voisinage de ¢;, on a w, = <p%u ou ¢ est une

fonction non nulle. Il reste & montrer:

o dr AN d
3.11.1 i) si ¥(z,y) s’annule en 0, / ibi——y a une limite finie quand v

Tq;(v) u?
tend vers 0, nulle si ¥ s’annule a 'ordre 2.

i) si 9(0) # 0, / M

a une limite finie non nulle lorsque v
Tgi(v)
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tend vers 0.

3.11.2 i) peut se montrer en supposant que 1 est homogene de degré 1 ou 2 en
z et y. Comme les T;,(,) sont isomorphes par la multiplication par v, on voit

immédiatement que dans le premier cas fT - zlwiz_;\dz est constant, tandis que
q;(v

3&:?—‘11 est constant.

dans le second cas L
v qu‘(‘v)

dz ANd
Pour 3.11.1 ii), on suppose ¥ = 1, alors v / w est constant.

3
Tg;(v u

dz A dy
u3

Pour voir que v / est non nul, on se place dans le quadrique

Tyiv
projective de dimensioxi‘(d)eux Q@ d’équation U? + X2 +Y? = V? dans P3
de coordonnées homogenes (U, X,Y,V): elle contient la quadrique affine
u? + 2% + y2 = 1 et on vérifie que ZZ4% engendre H' (Q)P"™™, ce qui
se montre par la construction 1.15 appliqué au revétement double Q@ —
P%,(U,X,Y,V) — (X,Y,V), tandis qu’il est bien connu que $2(1), donc T(1)

engendre Ho(Q,Z)PHim,
Le Lemme 3.11 résulte de 3.11.1 de la fagon suivante:

i) si P s’annule en zéro Puw,/ (F; + v*F}) a une limite finie pour 7,

Yo
supportée dans X,\B N X, et aussi pour v, = Ty,(v); donc ¢p se prolonge

holomorphiquement en zéro.

ii) si P s’annule doublement en zéro, on a lirr(L) Puw,/ (F1 + v’ F} )=
V—
Tgi(v)

0 = / ©p(0), tandis que par la définition de v, (cf 1.15) on a lin%)

Eq.‘ v—
[y, Pwu/ (FL+v°F) = [ 9p(0) = [ »(P) pour (7,),ea une famille
continue de classes d’homologie supportées dans X,\B N X,. Comme

qu‘ vo(P) =0, on a donc ¢p(0) = vy(P).

iii)  lisomorphisme @Res,, est fourni par 3.11.1 i)
Py ~ -3 (P/Fl’(q,-) xvaqi(v) %). On a alors qui ep(0) =

-2 Resqi(P),f,y vpp = 0 pour v supportée dans Xo\B N Xy. Ce qui mon-
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tre 3.11. iii).

3.12. On travaille encore avec les hypotheses et les notations de 3.10. On
note A, (respA,) le disque de coordonnées w(resp.v); soit p = Ay — Ay
le revétement double donné par v = w?. Sur A, on a la famille de courbes
C: 5 A, de fibre C?. On a aussi les fibrés F = Rr, (k* (—2KT,)), ou
k : C; — Ty est 'application naturelle, et 1" . Notons F’ le fibré vectoriel

sur A,, défini comme le noyau de l’application d’évaluation composée de
F — HO (-21@1,03) et de H° (-21@],03) — @D (04 (~2K1,)). Daprés

3.11, l'application v’ = (vy),ca. Se prolonge ent une application que l'on
notera encore ' : F' — HY". On en déduit donc aussi une application
V' p*F' — (HY'7). Considérons maintenant sur A, la famille p*C? = Aw,
et soit G le fibré vectoriel RO7¥ (k¥* (—KT)), ou k¥ = ko p : p*C! —
T,. Notons G’ le sous-fibré de G défini comme le noyau de I’application
d’évaluation, composée de § — H° (—KT.lcf) et de H® (_KTﬂC;’) -

@HO (Og (=K1,)). L’application naturelle donnée par le produit: u :

SlZQ — p*F induit alors une application: p' : S2G' — p*F’, et 'on a une
application composée pu” = v’ oy’ : S2G' — p*HV1". Pour w # 0, d’aprés
1.14, on a pour n,y € G, ~ H® (Qy,xcr) et a € 'H(l;})— ~ H'(Qx,)”
Pégalité: ¥, (n,v,0) = u"(n®7) -x, @, ol ¥, est la forme trilinéaire associée
a 'accouplement de Yukawa sur X ,, := E) TXW / (]:;1)

Les accouplements pug (10 ® 7o) ‘%, @0, pour mo,Yo € G, et g €

H! (Q }0) @ X (E,,) - C décrivent donc une limite des accouplements v,,.
Cette limite est complétement décrite dans la proposition suivante:

3.13 Proposition. G} est isomorphe & la somme directe Gj & Y, Cg;, ol

o ~ Ker H® (‘“KT|C;’> — @ (=K7yq,) et pour no = ng + Zaqi € Gy, ol

?

ny € Gy et ay, €C, on a

u (n52) = vh (1®2) + Y a2, - By
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Démonstration. Choississons des éléments f; € H°(—Kr,) tels que
fi(qi) # 0,fi(g;) = 0, pour i # j. Alors G’ admet une base de sections
holomorphes donnée par w - f; pour ¢ = 1,---,p et 1 X g pour g € Gy (on
considére G’ comme un sous-fibré du fibré trivial H® (=K7,) ® Oa,). Gy et
(w - fi), donnent une base de G§. Pour g € G{, g* s’annule doublement en g;,
Vi, et donc pg (¢?) = v§(g?) par 3.11. ii). Pour g € G,i=1---p, gf; s’annule
en q;,Vj, et donc par 3.11.i, 1})i£n’O v, (wg - fi) = 0, soit ug (g (wfi),) =0.

De méme, si 7 # j, f; f; s’annule en gi, Vk, et donc lin‘{) vy, (vfi- fj) =0,
w—

soit pg ((wfi)g (wfj),) = 0. Enfin on a pouri =1,---,p, pug ((wf,»)?z) =lim

w—0

vv' (f2) = Res,, (ff) -E; par 3.11.iii, ce qui montre 3.13, & condition de choisir
de fagon adéquate I’isomorphisme @ (wfi)y - C =~ @ (wfi) Cq,.

3.14. On va maintenant considérer un type complétement différent de
dégénérations de S;. On suppose dans ce qui suit que la courbe C; de
ramification de ¢ : S§; — T) n’a que des composantes elliptiques. C; peut
avoir une ou deux composantes dans ce cas, d’apres 1.1.1, et dans la suite
“cas 1” et cas ii, signifient que la premiére, ou la seconde de ces conditions

respectivement, est satisfaite.

Dans le cas i), h® (=K7,) = 1 et le diviseur de I'unique section o de
— KT, est une courbe elliptique connexe, qu’on supposera lisse. Dans le cas
if), R® (=K1,) = 2, et le diviseur d’une section générique o de —K7, est une
courbe elliptique connexe et lisse, puisqu’en particulier chaque composante de
C, appartient & |- K7, |. Dans les deux cas on choisit o telle que V(o) =: E,
est lisse elliptique connexe et ne rencontre pas C;. Soit F; € H° (—=2K7,) une
équation pour C;. Soit A un disque de coordonnée t. La surface C d’équation
0% + tFy dans T} x A est lisse. Soit ¢ : X — Ty x A le revétement double
ramifié le long de C. X est lisse, 7 : X — A est lisse au dessus de A*, pour A
petit et ses fibres sont des surfaces S} — T; comme ci-dessus. Pour ¢t = 0, X,
est la surface a croisements normaux obtenue en récoltant deux copies de T; le
long de E,. Sur X, l'involution de X agit en inversant les deux composantes

de X().
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Pour ¢t # 0, on reprend la notation v; : H® (—2KT1|0;) — H! (QS;)

de 1.14; la proposition suivante décrit le comportement asymptotique de
(Vt,)tEA“

3.15 Proposition:

i) Le fibré Hi' sur A*, de fibre H.}' ~ H! (QS;) s’étend en un fibré
HL! sur A, tel que I'involution (i%),c5. sur H!! s’étende en une involution
i1 sur HY!, et que la forme d’intersection (i), non dégénérée, donnée par la
dualité de Serre sur Htl 1~ H1 (QS;), s’étende en une forme d’intersection

’ ’ ’ I 1 1 -
non dégénérée sur Hy', et Hy' , qu’on notera { ).

ii) Pour P(t) une section holomorphe de H° (—2K7,) ® Oa, telle que
P(0) # 0 soit un multiple non nul de o2,v}(P(t)) € H;"' s’étend en une
section holomorphe de H'1™, et v{(P(0)) satisfait: (v§(P(0)),v5(P(0))), =
0,15(P(0)) # 0.

Démonstration: (cf. [28]) On considére sur X le fibré vectoriel de rang
2 Qx/a (Log Xo) := Qx (Log Xo) /7* (2a (Log0)); En coordonnées locales
X est décrit par u?> = 02 + t, ol o est une coordonnée sur Ty, u une
coordonnée sur X: posant £ = u — o,y = u+ o on a donc zy = t.
Qx (Log Xo) est engendré localement par d?”, iyu et dz, ou z est une coordonnée
supplémentaire sur 77, tandis que Q4 (Log0) est engendré par %. Donc
Qx (Log Xo) /m*Qa (Log0) est engendré par 42, g—yﬂ,dz, avec la relation 4 +
%‘i = 0. Pour ¢ # 0, on a Qx (Log Xo) /7*Qa (Log0),x, = Qg:, et sur A*
on a HY! ~ Rlm, (x (Log Xo) /m*Qa (Log0)). On vérifie facilement que
sur Xo ~ T} Ug, T} on a: Qx (Log Xo) /m*Qa (Log0) s =~ Qg3 (Log Es) et
Qx (Log Xo) /m*Qa (Log 0)|T12 =~ Q72 (Log E;). On a donc une suite exacte:

0 — (Qx (Log Xo) /7*Qa (Log0)),x,
— Qq1 (Log Eq) ® Q72 (Log Eg) — Qr, (Log Es) g, — 0.

3.15.1

Comme H° (QTII (Log Eo)) = 0, on en déduit
H°(Qx (Log Xo) /7*Qa (LogO))IXo =0.
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Comme le faisceau dualisant de X, est trivial et que le déterminant de

Qx (Log Xo) /7*Qa (Log0) est également trivial on a aussi
H? (Qx (Log Xo) /7*Qa (Log0)),x, =0
donc H' (Qx (Log Xo) /7*Qa (Log0)),x, est constant et
HY! = R'm, (x (Log Xo) /7*Qa (Log0))

est localement libre et fournit ’extension cherchée de Hi*. Clairement
I'involution ¢ agissant sur X au-dessus T; X A agit sur

Qx (Log Xo) /7*Qa (Log0)
et donc aussi sur H1.

Finalement, comme le fibré dualisant relatif de X/A est trivial,
et que R'm, (Qx (LogXo)/7*Qa (Log0)) est libre de fibre
HY = H (Q x (Log Xo) /7*Qa (Log0), x,) ,Vt € A, la dualité de Serre rela-
tive fournit H1>! ~ ('Hl’l)v. Ceci montre i), avec I'information supplémentaire

suivante:
3.15.2: MM = H (Qx (Log Xo) /7* 02 (Log0),x, )

Pour montrer ii) on utilise la description suivante de v; (cf. preuve de
1.15). Soit C* C St la courbe de ramification du revétement double St — T;.
En utilisant P’application i} qui agit sur Qtsl ct> On obtient une décomposition

canonique:

3.15.3: nglc‘ ~ QC; <) (Nél)v ~ —KT”C; &) KT‘|C;. Ceci fournit une inclu-
1

sion naturelle: H° (—2K T1|Cl:) — H° (Q st (=K )IC}) qui composée avec le
cobord

d:H° (QS: (—KT,),C}> — H! (QS;) associée a la suite exacte: 0 — Qg —
QS} (-Kr,) — Qs; (_‘KTI)|C} — 0 fournit v;.

Pour mettre cette construction en famille, on considére dans X la surface

d’équation u = 0, lieu de ramification de ¢ : X — T} x A. Cette surface est
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clairement isomorphe & un voisinage de F, dans T;. L’involution ¢ de X agit

sur Qx (Log Xo) /m*Qa (Log0)(,=¢; ce qui fournit une décomposition:

3.15.4 Qx (Log Xo) /7*Qa (L°g0)|{u=o} ~ L1 ® Ly, ou L; et Ly sont des
fibrés en droites sur {u = 0}. Par restriction a la courbe C} d’équations
u=0, 02+ tF, =0, 3.15.4 induit 3.15.3. Cependant on vérifie facilement
que L; ~ Or,,Ly ~ Or,, (et non pas Ly ~ —Kr,,Ls ~ Kr,), de sorte
que la restriction de 3.15.4 & C} ne fournit 3.15.3 que modulo I'isomorphisme

Oc¢t ~ —Kr7,|c: fourni par o € HY(-Kr,).

3.15.5 Considérons la courbe ES? C {u = 0} définie par 2 = 0. On peut
aussi I'identifier & un diviseur de Xy, faisant partie du systéme linéaire |- K'r, |
sur Xg, puisqu’elle est décrite par I’équation v = 0 dans X,. Alors 3.15.4,

restreint a ES,Z), fournit:

Qx (Log Xo) /7*Qa (Log 0)|E(’) ~ O ® O, d’ot une application:

jo: H° ((=Km,), g0 ) = H° ((@x (Log Xo) /7*Qa (Log0) (=K)) o)

donnée par l'inclusion du premier facteur; finalement la suite exacte:

0 — (2x (Log Xo) /7*Qa (Log 0))|xo
— (2x (Log Xo) /7*Qa (Log0) (—K13))1x, =
(QX (Log Xo) /W*QA (Log O) (—I(Tl ))|E¢(,2) -0

fournit :
8 : HO (Qx (Log Xo) /n*Qa (Log0) (~ K1), E9>) o
— H' (Qx (Log Xo) /7*Qa (Log0) (~ K1), )
d’ot finalement une fleche
vy =08p030: H° (_KTllEE,’)) — H! ((QX (Log Xo) /7*Qa (LogO))lxo)

qui par ce qui précede est la limite des fleches :

vioo: HY (~Kpep) % H* (~2Kn0r) % H' ().
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3.15.6. On termine la preuve de 3.15. ii)

Soit P(t) = ac? + tQ(t) une section de H° (=2Kr,) ® Oa. Alors
%P(t)IC} converge vers ac € HP° (—K

vi (P(®)jcr) = v(ao).

' (1. e I
T EY On en déduit qu }1_{1(1)

Notons que ao € Ker (_KT,|E(’)) — H° (-.I(TllEo) donc
Jo(ao) € [Ker H° ((Qx (Log Xo) /7*Qa (Log0) (_KT'))IES’)) —

H° ((QX (Log Xo) /7*Qa (Log0) (_KTl))IEa>] ~

H° ((9x (Log Xo) /70 (Log0) (~K1,)) 5, ) -

Notons jy(ao) € H° ((QX (Log Xo) /7*Qa (LogO))lEa) l'image de

Jo(ao) par cet isomorphisme. Considérons la suite exacte: (cf 3.15.1)

0— (QX (Log Xo) /7*Qa (L080)|xo) -

3.15.7
Qr; (Log E;) @S2 (Log Ey) — (2x (Log Xo) /7*Qa (Log0)) 5, — 0.

Elle donne
85 : H° ((Qx (Log Xo) /m*Qa (Log 0))|E,> -

H' ((Qx (Log Xo) /7*0a (Log0)) x, )

et il immédiat de montrer que :
8o © jo(ao) = 8y (jo(a0))
dans
H' ((9x (Log Xo) /7*Qa (Log0)) 1, ) -

On a donc: }in& v <P(t)|0;> = 8y (Jjo(ao)). Comme il résulte de
3.15.7 que §) est injective, on a &) (jo(ac)) # 0, pour o # 0. En-
fin il est facile de vérifier que é; (jy(ao)) est de self intersection 0 dans
H! ((QX (Log Xo) /7*Qa (Log0), Xo) pour { ), donnée par la dualité de

Serre. Donc 3.15 (ii) est prouvé.
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3.16. On utilise maintenant la proposition 1.17 et la proposition 3.15 pour
étudier la limite des accouplements de Yukawa sur X} := E; x S}/ (j1,3}),
du type ¥(w,n,y) pour w € H' (Q% ) ,n,7v € D, H® (Qp,xc;)a lorsque S}
dégénere comme en 3.14. On considére d’abord le cas i). On a d’abord en
reprenant les notations précédentes, la conséquence immédiate suivante de
1.17 et 3.15.

3.17. Proposition:

as 1) Soit (wq une section holomorphe de H!!  sur A. Soit o le
Cas i) Soit ea tion hol he de H!:! A. Soit o 1
générateur de H° (—Kr,): alors o)ct est un générateur de H° (QC;) o~
(‘KTIICI)) pour t # 0, et donc a = (ap,0,-+,ap,0), pour o, € C peut
étre considéré comme un élément de @, H° (Qp,xc;) pour t # 0. On a alors
lim ¢ (wi, o, ) = Y, a2 {wo, vj(0?)), ot wo € Hy'', vf(0?) € Hy'" est défini

en 3.15. ii, et est non nul de self intersection 0.

3.18. Le cas ii) est un peu plus compliqué: les courbes C} ont alors
deux composantes, et il est naturel si I'on veut obtenir une limite cor-
recte de ’accouplement de Yukawa de z!, de les ordonner en passant i un
revétement double de A, c’est-a-dire a un disque A,,, muni de p: A, — A
donnée par t = w?.
(0 + w1 (w)) (0 + wp2(w)) ot pa2(w), p1(w) € H® (=K7T,) sont holomorphes
en w. C¥" est la réunion de C}; (décrite par I’équation o + wep;(w) €

H® (—Kt,) et C}%, (décrite par 'équation o + weps(w)).

Alors Iéquation 0% + tF; peut s’écrire sous la forme

Alors o + wcpz(w)w]w1 est un générateur de H° (—KTHC:“’:)’ et s’annule

sur C}’; de sorte qu’il est naturel de l'identifier & un générateur de
H° (Qcp, ) € B® (Qcp, ) @ H® (Qcp, ) ~ H° (Qcp). On a donc une trivial-
isation naturelle de @ H® (Q,, x CP,) (otir € {1,---,4},s € {1,2}, donnée

(r,s)
par:

a = (ap, 1y Qlpy 2,7 "y Qpy 1,0py2) — E Ap,,s (‘7 + wS"s’lC;‘j,xpr)
(r,s)

ou s’ =2pour s=1,5 =1 pour s = 2.
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La proposition 3.15 et la proposition 1.17 donnent alors immédiatement

(avec les notations de 3.16):

3.19. Proposition: (Cas ii) Soit (1), une section holomorphe de H'!".

Alors on a lim Y (x,,Q) = (X%af,hs {x0,5(0%)), olt v(0?) € Hy'
r,s
satisfait: vg(0?) # 0 et (vg(0?),v5(0?)), = 0.

3.20. On va maintenant rassembler les résultats 3.13 et 3.17, 3.19. On fera

I’hypotheése suivante sur T7:
3.20.1
i) Cy n’a pas de composantes rationnelles.

ii) Si Cy a une composante de genre > 1 (donc C; est connexe par
(1.1), Cy admet une dégénération de Lefschetz sur une courbe C; dont la

normalisée C o est elliptique et connexe.

iii) Soit Tl la surface obtenue en éclatant les nceuds ¢; de Cj; alors
I'unique section de —K i définit une courbe lisse F,. On a alors sous les
hypotheéses 3.20.1:

3.21. Théoréme: Si g(C;) > 1, considérons une dégénération de Lefschetz
de Cy comme en 3.20 ii; puis faisons dégénérer la courbe 51:, sur 2F,, comme
en 3.14. Si C) a deux composantes elliptiques, faisons dégénérer C; sur 2E,.
Alors quitte a passer a un revétement ramifié de la base de la dégénération,
I’accouplement de Yukawa ¢ de X; = E;;Sl / (j1,%1) admet une limite
naturelle, qui est isomorphe (comme cubique) a la forme d’intersection
corrigée ¥4, sur H' (Qx,), et isomorphisme M : lim H'! (9%, ) — H' (Qx,)

qui transforme lim 4 en ) peut-étre choisi de la fagon suivante:
- M induit: @ H® (Q,xc,) > @) (Dre) C,Vr €{1,---,4}
S s!

- M induit H® (Qg,) >~ H' (Qg,) et H' (Qs,)” ~ H' (Qs,)", le dernier

isomorphisme étant compatible avec les formes d’intersection.
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Démonstration: Dans le premier cas en faisant la synthése de 3.13 et 3.17,

on voit qu’il existe (aprés passage & un revétement ramifié de la base), une
N{-1

limite naturelle de @HO (Qp, x Cs) isomorphe a @ Cpr®C-0, ou
s i=1,C=1

(o) = H® (—K %, ), une limite lim H! (Qg,)” munie d’une forme d’intersection
limite non dégénérée, et des classes E,,,vi(0?) € H'(Qs,)” satisfaisant
EZ = -2,14(0%)% = 0,p4(0?) # 0,Eq, - Eg; = 0, Ey, - 15(0?) = 0, telles
que: pour w € limH!(Qs,)”,n € @HO (Qp, xCs),n = (ag;,r0r), on

T8

ait (limy)(w,n,n) = <w Zai,,‘Eq..+Za2V6(02) > D’autre part

(limy)(w + 7 + ug) = 3(limy)(w,n,n) + 3(w - w) x y(ug) ou 7 est une
forme linéaire non nulle sur H® (Qg) (cf. 1.17).

Rappelons d’autre part la formule 3.6.1 qui décrit ¥4 : Y5(d+ x + B) =

3(d2X)X2 + 3(X, X)Sz : sz IBa pour ﬂ € H' (QE’) X € H! (952 )+ ) d =
4,N,
Z drsDy,s, avec la relation (Lemme 1.11) (d%*x) x, =

r=1,s'=1

~23 " d2, (Cor - X)s,-

r,s’

Il reste simplement & noter que X; a par hypothése les invariants N; =
1, N{, et X, a donc les invariants N, = N{, Ny = 1. Donc nécessairement
la courbe C> a une composante elliptique et No — 1 = N — 1 composantes

rationnelles.

L’existence d’un isomorphisme M transformant lim ¢ en v, et jouissant

des propriétés énoncées dans le théoréme 3.21 est alors claire:

Supposons que la composante elliptique de C; est la composante Cy y:.

Il suffit alors de faire:
a) M (1) = V%Dg’r,,' pour i =1,Nj — 1, M(0p,) = Dar,n;.

b) M(Ey) = Cpi pour i = 1,---, Ny — 1, M( 1/(',(02)) = CZ,N,’>
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puis d’étendre l’application M construite en b) (Eq,,v4(0%)) =~ (Ca;) en
un isomorphisme M : lim (H ! (Qg,)_> — H'(Qs,)" préservant les formes

d’intersection.

Le second cas se montre de facon similaire.
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