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Quantum Cohomology Rings of Toric Manifolds 

Victor V. Batyrev 

1 Introduction 

The notion of quantum cohomology ring of a Kahler manifold V naturally 
appears in theoretical physics in the consideration of the so called topological 
sigma model associated with V ([16], 3a-b). If the canonical line bundle Ky of 
V is negative, then one recovers the multiplicative structure of the quantum 
cohomology ring of V from the intersection theory on the moduli space T\ of 
holomorphic mappings / of the Riemann sphere / : S 2 = C P 1 —* V where A 
is the homology class in H2(V, Z) of / ( C P 1 ) . 

If the canonical bundle Ky is trivial, the quantum cohomology ring was 
considered by C. Vafa as an important tool for explaining the mirror symmetry 
for Calabi-Yau manifolds [15]. 

The quantum cohomology ring QH^V, C) of a Kahler manifold V, un­
like the ordinary cohomology ring, have the multiplicative structure which 
depends on the class cp of the Kahler (1, l)-form corresponding to a Kahler 
metric g on V. When we rescale the metric g —• tg and put t —• oo, the 
quantum ring becomes the classical cohomology ring. For example, for the 
topological sigma model on the complex projective line C P 1 itself, the classi­
cal cohomology ring is generated by the class x of a Kahler (1, l)-form, where 
x satisfies the quadratic equation 

x2 = 0, (1) 
while the quantum cohomology ring is also generated by a:, but the equation 
satisfied by x is different: 

x2 — exp(-
( 
( 

A 
cp), (2) 

S. M. F. 
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À is a non-zero effective 2-cycle. Similarly, the quantum cohomology ring of d-
dimensional complex projective space is generated by the element x satisfying 
the equation 

d+l 

x ^ — exp 
(- ( 

( 
A 

ip). (3) 

The main purpose of this paper is to construct and investigate the quantum 
cohomology ring QH*(P%, C) of an arbitrary smooth compact d-dimensional 
toric manifold PE where cp is an element of the ordinary second cohomology 
group iJ 2 (Ps, C) . Since all projective spaces are toric manifolds, we obtain a 
generalization of above examples of quantum cohomology rings. 

According to the physical interpretation, a quantum cohomology ring is a 
closed operator algebra acting on the fermionic Hilbert space. For example, 
the equation (3) one should better write as an equations for a linear operator 
X corresponding to the cohomology class x: 

Xd+l = exp(- ) 
) 

y 
(p)ld. (4) 

It is convenient to define quantum rings by polynomial equations among 
generators. 

Definition 1.1 Let 
h(t, x) — E Cn(t)x

n 

be a one-parameter family of polynomials in the polynomial ring C[x], where 
x = {x{}iei is a set of variables indexed by J, t is a positive real number, J\f 
is a fixed finite set of exponents. We say that the polynomial 

h°°(x) = T. n 

is the limit of the family h(t,x) as t —• oo, if the point {c£°} n €j\/- of the 
(| AT | — l)-dimensional complex projective space is the limit of the one-
parameter family of points with homogeneous coordinates {cn{t)}neM-

Definition 1.2 Let Rt be a one-parameter family of commutative algebras 
over C with a fixed set of generators { r , } , t 6 R>o- We denote by Jt the ideal 
in C[a:] consisting of all polynomial relations among { r , } , i.e., the kernel of 
the surjective homomorphism C[x] —* Rt. We say that the ideal J00 is the 
limit of Jt as t —• oo, if any one-parameter family of polynomials h(t, x) G Jt 
(as in 1.1) has a limit, and J°° is generated as C-vector space by all these 
limits. The C-algebra 

R°° = C[x]/J°° 

will be called the limit of Rt. 
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Remark 1.3 In general, it is not true that if J°° = limf_KX>Jf, and Jt is 
generated by a finite set of polynomials {hi(t, x)..., /&*(£, # ) } , then J°° is 
generated by the limits { h 1 8 ( x ) . . , h8f>(x)}. The limit ideal J°° is generated 
by the limits hf>{x) only if the set of polynomials {hi(t,x)} form a Grobner-
type basis for Jt. 

In this paper, we establish the following basic properties of quantum coho­
mology rings of toric manifolds: 

I : If (p is an element in the interior of the Kahler cone K(P<z) C i? 2(Px;, C), 
then there exists a limit of QH^{PE C) as t —• oo, and this limit is isomorphic 
to the ordinary cohomology ring iJ*(Px;, C) (Corollary 5.5). 

II : Assume that two smooth projective toric manifolds P ^ and PE 2 are 
isomorphic in codimension 1, for instance, that Ps 1 is obtained from PE 2 

by a flop-type birational transformation. Then the natural isomorphism 
H2{P^C) = i J 2 (Ps 2 ,C) induces the isomorphism between the quantum 
cohomology rings 

QH;(PEI,C)^QH;(PE2,C) 

(Theorem 6.1). We notice that ordinary cohomology rings of Ps 1 and Ps 2 are 
not isomorphic in general. 

Il l : Assume that the first Chern class ci(Ps) of P^ belongs to the closed 
Kahler cone K(P^) C # 2 ( P E , C). Then the ring Q # * ( P S , C) is isomorphic 
to the Jacobian ring of a Laurent polynomial f<p{X) such that the equation 
f(p(X) = 0 defines an affine Calabi-Yau hypersurface Zf in the d-dimensional 
algebraic torus (C*)d where Zf is mirror symmetric with respect to Calabi-
Yau hypersurfaces in Px; (Theorem 8.4). Here by the mirror symmetry we 
mean the correspondence, based on the polar duality [6], between families of 
Calabi-Yau hypersurfaces in toric varieties. 

The properties II and III give a general view on the recent result of P. 
Aspinwall, B. Greene, and D. Morrison [3] who have shown, for a family of 
Calabi-Yau 3-folds W that their quantum cohomology ring QH*(W, C) does 
not change under a flop-type birational transformation (see also [1, 2]). 

IV: Assume that the first Chern class ci(Ps) of Ps is divisible by r, 
i.e., there exists an element h E i ? 2 ( P s , Z ) such that ci(Pu) = rh. Then 
Q ^ ( P E , C) has a natural Z/rZ-grading (Theorem 5.7). We remark that the 
ring QH*(Px, C) has no Z-grading. 

The paper is organized as follows. In Sections 2-4, we recall a definition 
of toric manifolds and standard facts about them. In Section 5, we define 
the quantum cohomology ring of toric manifolds and prove their properties. 
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In Section 6, we consider examples of the behavior of quantum cohomology 
rings under elementary birational transformations such as blow-ups and flops, 
we also consider the case of singular toric varieties. In Section 7, we give an 
combinatorial interpretation of the relation between the quantum cohomol­
ogy rings and the ordinary cohomology rings. In Section 8, we show that 
the quantum cohomology ring can be interpreted as a Jacobian ring of some 
Laurent polynomial. Finally, in Section 9, we prove that our quantum coho­
mology rings coincide with the quantum cohomology rings defined by sigma 
models on toric manifolds. 

Acknowledgements. It is a pleasure to acknowledge helpful discussions 
with Yu. Manin, D. Morrison, Duco van Straten as well as with S. Cecotti and 
C. Vafa. I would like to express my thanks for hospitality to the Mathematical 
Sciences Research Institute where this work was conducted and supported 
in part by the National Science Foundation (DMS-9022140), and the DFG 
(Forschungsscherpunkt Komplexe Mannigfaltigkeiten). 

2 A definition of compact toric manifolds 

Toric varieties were considered in full generality in [9, 11]. For the general 
definition of toric variety which includes affine and quasi-projective toric vari­
eties with singularities, it is more convenient to use the language of schemes. 
However, for our purposes, it will be sufficient to have a simplified more clas­
sical version of the definition for smooth and compact toric varieties over C. 
This approach to compact toric manifolds was first proposed by M. Audin [4], 
and developed by D. Cox [8]. 

In order to obtain a d-dimensional compact toric manifold V', we need a 
combinatorial object E, a complete fan of regular cones, in a d-dimensional 
vector space over R. 

Let JV, M = Horn (AT, Z) be dual lattices of rank d, and iVR, M R their 
R-scalar extensions to d-dimensional real vector spaces. 

Definition 2.1 A convex subset a C NR is called a regular k-dimensional 
cone (k > 1) if there exist k linearly independent elements vi,...,Vk G N 
such that 

a = {fiiVi + • • • + /î jfc | /i; G R, //* > 0} , 

and {vi, . . . , V j b } is a subset of some Z-basis of N. In this case, we call 
V1 • • • 5 vk £ N the integral generators of a. 
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The origin 0 G Nu we call the regular 0 -dimens ional cone. By definition, 
the set of integral generators of this cone is empty. 

Definition 2.2 A regular cone a' is called a face of a regular cone a (we write 
a1 -< a) if the set of integral generators of a' is a subset of the set of integral 
generators of a. 

Definition 2.3 A finite system E = {<7i,... , a s } of regular cones in iV R is 
called a complete d-dimensional fan of regular cones, if the following condi­
tions axe satisfied: 

(i) if a G E and a' -< cr, then cr' G E; 
(ii) if cr, cr' are in E, then a fi cr' -< a and a f! cr' -< cr'; 
(iii) iV R = a f 1 U . . . U ( 7 s . 

The set of all fc-dimensional cones in E will be denoted by E w . 

Example 2.4 Choose d+ 1 vectors v \ , . . . , v<i+i in a d-dimensional real space 
E such that E is spanned by v\,..., vj+i and there exists the linear relation 

vi + h Vd+i = 0. 

Define N to be the lattice in E consisting of all integral linear combina­
tions of V1,....v+d+1 Obviously, Nn = JB. Then any fc-element subset i" C 
{ v i , . . . , v d + 1 ] (fc < d) generates a fc-dimensional regular cone cr(I). The 
set E(d) consisting of 2d+1 — 1 cones cr(J) generated by J is a complete d-
dimensional fan of regular cones. 

Definition 2.5 (cf.[5]) Let E be a complete d-dimensional fan of regular 
cones. Denote by C?(E) = { v i , . . . , vn} the set of all generators of 1-dimensional 
cones in E (n = Card E ^ ) . We call a subset V = {v^,..., Vip} C G(E) a prim­

itive collection if {VÍX, . . . , V{P} is not the set of generators of a p-dimensional 
simplicial cone in E, while for all k (0 < k < p) each fc-element subset of V 
generates a fc-dimensional cone in E. 

Example 2.6 Let E be a fan E(d) from Example 2.4. Then there exists the 
unique primitive collection V = G(E(d)). 

Definition 2.7 Let Cn be n-dimensional affine space over C with the set of 
coordinates z \ , . . . , z n which are in the one-to-one correspondence Z{ <-» v¡ with 
elements of C?(E). Let V = { v ¡ 1 } . . . , V{p} be a primitive collection in C?(E). 
Denote by A('P) the (n — ̂ -dimensional affine subspace in Cn defined by the 
equations 

*«•! = ••• = Zi, = 0. 

1 3 
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Remark 2.8 Since every primitive collection V has at least two elements, 
the codimension of A(V) is at least 2. 

Definition 2.9 Define the closed algebraic subset Z(E) in Cn as follows 

Z(E) = u 
V 

A (P) 

where V runs over all primitive collections in G(E). Put 

t/(E) = Cn \ Z(E) . 

Definition 2.10 Two complete d-dimensional fans of regular cones E and 
E' are called combinatorially equivalent if there exists a bijective mapping 
E —• E' respecting the face-relation "-<" (see 2.2). 

Remark 2.11 It is easy to see that the open subset 17(E) C Cn depends 
only on the combinatorial structure of E, i.e., for any two combinatorially 
equivalent fans E and E', one has 17(E) ̂  17(E'). 

Definition 2.12 Let i?(E) be the subgroup in Zn consisting of all lattice 
vectors A = ( A i , . . . , An) such that X\V\ H h Ant?n = 0. 

Obvioulsy, -R(E) is isomorphic to Zn~d. 

Definition 2.13 Let E be a complete d-dimensional fan of regular cones. 
Define D(E) to be the connected commutative subgroup in (C*)n generated 
by all one-parameter subgroups 

ax : C * - ( C 7 \ 

*-+(*Al,...,*An) 

where A G i?(E). 

Remark 2.14 Choosing a Z-basis in i?(E), one easily obtains an isomorphism 
between D(E) and (C*)n-d. 

Now we are ready to give the definition of the compact toric manifold Ps 
associated with a complete d-dimensional fan of regular cones E. 

Definition 2.15 Let E be a complete d-dimensional fan of regular cones. 
Then quotient 

PE = (E)/D(E) 

is called the compact toric manifold associated with E. 
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Example 2.16 Let E be a fan E(d) from Example 2.4. By 2.6, £7(E(d)) = 
c<m \ { ° } - By the definition of E(d), the subgroup i?(E) C Zn is generated 
by ( 1 , . . . , 1) G Z d + 1 . Thus, D(E) C (C*)n consists of the elements ( t , , , t ) 
where f G C*. So the toric manifold associated with E(d) is the ordinary 
d-dimensional projective space. 

A priori, it is not obvious that the quotient space PE = £7(E)/D(E) always 
exists as the space of orbits of the group D(E) acting free on 17(E), and that 
PE is smooth and compact. However, these facts are easy to check if we take 
the d-dimensional projective space P^(d) as a model example. 

There exists a simple open covering of U(E) by affine algebraic varieties: 

Proposition 2.17 Let a be a k-dimensional cone in E,[vi1,. . . , t; ,^} the set 
of generators of a. Define the open subset U(a) C C n by the conditions 
Zj 0 for all j £ {¿1, . . . , ifc}. Then the open sets U(a) (a G E) have the 

properties: 

i 
U (E) = u 

eZ 

U (o); 

(ii) ifo< a', then U(a) C £ 7 ( 0 ; 
(iii) for any two cone o\,(J<i G E, one has U ( G \ ) fl U(G2) = U(aiCi 02); in 

particular, 
/7(E) = u U(a). 

<T(EE(<0 

Proposition 2.18 Let a be a d-dimensional cone in E ^ , { t^ , . . . , V{d} the 
set of generators of a. Denote by w^,..., U{d the dual to v,^,..., V{d Z-basis of 
the lattice M, i.e, (t>ljb, t^) = <5*,/; where (*,*) : N x M —+ Z is the canonical 
pairing between lattices N and M. 

Then the affine open subset U(o) is isomorphic to Cd x (C*)n~d, the action 
o/D(E) on U(a) is free, and the space of D(E)-orbits is isomorphic to the 
affine space U<r = Cd whose coordinate functions • . . , x^ are the following 
Laurent monomials in z\,..., zn : 

X ? = z-u uii 
' ' ' Zn 

dfggg 
, . . . , * 5 = zx 

dsggg 
• ' ' Zn 

sdgqfg 
. 

The last statement yields a general formula for the local affine coordi­
nates x\,..., xZ of a point p G Ua as functions of its homogeneous coordinates 

z\,... ,zn (see also [81). 

1 5 
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Compactness of P^ follows from the fact that the local polydiscs 

£>, = {* GET, : | a ? R | < l , . . . , | a : 5 | < l } , a E(D) 

form a finite compact covering of P E . 

3 Cohomology of toric manifolds 

Let E be a complete d-dimensional fan of regular cones. 

Definition 3.1 A continuous function (p : iVa —» R is called Yt-piecewise 
linear, if (p is a linear function on every cone a E E . 

Remark 3.2 It is clear that any E-piecewise linear function (p is uniquely de­
fined by its values on elements V{ of G ( E ) . So the space of all E-piecewise linear 
functions PL(J2) is canonically isomorphic to R n : cp —• (<p(vi),..., (p(vn)). 

Theorem 3.3 The space P L ( E ) / M R of all Y-piecewise linear functions mo­
dulo the d-dimensional subspace of globally linear functions on Nn is canon­
ically isomorphic to the cohomology space i f 2 (Ps , R). Moreover, the first 
Chern class c i(Pu) ; as an element o / f l " 2 (Ps ,Z) ; is represented by the class 
of the Yt-piecewise linear function a% E P L ( E ) such that ctx(vi) = • • • = 
an(vn) = 1. 

Theorem 3.4 Let i?(E)R be the H-scalar extension of the abelian group i?(E). 
Then the space .R(E)R is canonically isomorphic to . /^(PE, R). 

Definition 3.5 Let (p be an element of P £ ( E ) , A an element of i?(E)R. Define 
the degree of A relative to ip as 

degJA) = 
n 
E 
T=l 

A,-¥>(v,-). 

It is easy to see that for any (p E M R and for any A E J?(E)R , one has 
deg^(A) = 0. Moreover, the degree-mapping induces the nondegenerate pair­
ing 

deg : P L ( E ) / M R x i ? ( E ) R - R 

which coincides with the canonical intersection pairing 

tf2(PE,R)x ff2(PE,R)->R. 

1 6 
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Definition 3.6 Let C M be the polynomial ring in n variables z l i • • • ? Zn. 

Denote by SP(E) the ideal in C[z] generated by all monomials 

n 
ijep 

zj, 

where V runs over all primitive collections in (7(E). The ideal 57?(E) is 
usually called the Stenley-Reisner ideal of E. 

Definition 3.7 Let iti,... ,114 be any Z-basis of the lattice M. Denote by 
P(E) the ideal in C[z] generated by d elements 

N 

E 
»=1 

(Vi,Ul)Zi,..., 

n 
E 
«=1 

(vi, vd) zi 

Obviously, the ideal P(E) does not depend on the choice of basis of M. 

Theorem 3.8 The cohomology ring of the compact toric manifold P E is canon­
ically isomorphic to the quotient of C[z] by the sum of two ideals P(E) and 
5i?(E) : 

JT(P E , C) 2 C[z]/(P(E) + SP(E)). 

Moreover, the canonical embedding H2(P^,C) H*(P^,C) is induced by 
the linear mapping 

PL(E) ®R C -+ C[z], <p*-> 

n E 
1=1 

(pi{Vi)Zi. 

In particular, the first Chern class o/Ps is represented by the sum zi + --+zn. 

Example 3.9 Let P E be d-dimensional projective space defined by the fan 
E(d) (see 2.4). Then 

P(E(d)) = < (*i - zd+i), . . . , ( * < , - zM) >, 5P(E(d)) = < 
d+1 

n 
i=l 

Zi>. 

So we obtain 

C[zu *„+1]/(P(E(d)) + SR(Z(d)) S C[x]/xd+1. 

1 7 
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4 Line bundles and Kahler classes 

Let 7r : £7(E) —• PE be the canonical projection whose fibers are principal 
homogeneous spaces of D(E). For any line bundle C over PE , the pullback 
%*C is a line bundle over U(E). By 2.8, w*C is isomorphic to Ou^y Therefore, 
the Picard group of PE is isomorphic to the group of all D-linearization of 
CV(E)? or to the group of all characters \ : D(E) —> C*. The latter is 
isomorphic to the group Zn/M where Zn is the group of all E-piecewise linear 
functions <p such that tp(N) C Z. 

Proposition 4.1 Assume that a character x is represented by the class of an 
integral H-piecewise linear function cp. Then the space i7°(PE,£x) of global 
sections of the corresponding line bundle Cx, is canonically isomorphic to the 
space of all polynomials F(z\,..., zn) G C[z] satisfying the condition 

F(tx*zu...,tx"zn) = t deg *xF(zu...,zn) 

for all A G E(E), t G C*. 
The exponents (rai , . . . , mn) of the monomials satisfying the above condi­

tion can be identified with integral points in the convex polyhedron: 

&<P = {(a?i, . . . ,&„ )€ R>o : deg A = \lXl + . . . + Anxn, A G i?(E)} 

Definition 4.2 A E-piecewise linear function cp G PL(E) is called a strictly 
convex support function for the fan E, if <p satisfies the properties 

(i) cp is an upper convex function, i.e., 

cp (x) + cp (y) > c) (x+ y) ; 

(ii) for any two different d-dimensional cones o\, o<i G E, the restrictions 
(p\a and ip\a, are different linear functions. 

Proposition 4.3 / / ip is a strictly convex support function, then the polyhe­
dron A^ is simple ( i.e., any vertex of A^ is contained in d-faces of codimen-
sion 1), and the fan E can be uniquely recovered from Acp using the property: 

A^ = {xe MR : (vi9x) > -<p(vi)}. 

Definition 4.4 Denote by K(E) the cone in # 2 ( P E , R ) = PL(E)/MR con­
sisting of the classes of all upper convex E-piecewise linear functions ip G 
PL(E). We denote by if°(E) the interior of i f (E), i.e., the cone consisting of 
the classes of all strictly convex support functions in PL(E). 

1 8 
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Theorem 4.5 The open cone i f 0 (E) C fl*2(Ps,R) consists of classes of 
Kahler (1,1)-forms on PE, i.e., K(E) is isomorphic to the closed Kahler cone 
of PE 

Next theorem will play the central role in the sequel. Its statement is 
contained implicitly in [12, 13]: 

Theorem 4.6 A Y-piecewise linear function <p is a strictly convex support 
function, i.e., (p £ iT°(E), if and only if 

nvh) + -. - + (p[yih) > (p(vh + • • • + vih) 

for all primitive collections V = {v^,..., Vik} in C?(E). 

5 Quantum cohomology rings 

Definition 5.1 Let <p be a E-piecewise linear function with complex values, 
or an element of the complexified space PL(E)c = PL(Y) ® R C. Define the 
quantum cohomology ring as the quotient of the polynomial ring C[z] by the 
sum of ideals P(E) and QJT,): 

Q # ; ( P S , C) := C[*]/(P(E) + Q„(E)) 

where Q^,(E) is generated by binomials 

exp ( 
n 

E 
1=1 

a>i<p(vi) 

) 
) 
) 

n 

n 
¿=1 

zi z 
j = exp ( 

n 

E 
j=1 

bMvj) 
) 
) 
) 

n 

n 
7=1 

z • 
7 

running over all possible linear relations 

n 

E 
¿=1 

üiVi = 

n 

T, 
j=l 

bjvj, 

where all coefficients a,- and bj are non-negative and integral. 

Definition 5.2 Let V = {vij,........., vki C G (E) be a primitive collection, op 
the minimal cone in E containing the sum 

vp = vi1 + ....+ vik; 

1 9 



V. BATYREV 

Vji,.......vji generators of a-p. Let / be the dimension of a?. By 2.3(iii), there 
exists the unique representation of v-p as an integral linear combination of 
generators v ^ , . . . , Vjx with positive integral coefficients c i , . . . , q : 

vv = civh H Vcivjn 

We put 

Ey(V) = exp(ip(Vil + . . . + - v?K) - (p(vik)) 

= exp(ci<p(yh) + • • • + Q^(^,) - (p(vh) - . . . - ^(vjj). 

Theorem 5,3 Assume that the Kahler cone K(YJ) has non-empty interior, 
i.e., Ps is projective. Then the ideal Q^T,) is generated by the binomials 

BV{V) = zij.....zik - E cp(P) 
3i ... zc.1 

ji, 

where V runs over all primitive collections in G(E). 

Proof. We use some ideas from [14]. Let </> be an element in PL(E) repre­
senting an interior point of K(E). Define the weights ui,..., cjn of zi,..., zn 

as 

Ui = <j>(Vi) (1 < i < n). 

We claim that binomials B^V) form a reduced Grobner basis for Q^(E) 
relative to the weight vector 

u = (uu...,un). 

Notice that the weight of the monomial z^ • • • Z(k is greater than the weight of 
the monomial zc> • • • z C l because 

<£K) + • • • + </>(vik) > (t>{vh + • • - + vik) = cx<j)(vh) + . - • Ci^iVj,) 

(Theorem 4.6). So the initial ideal init^B^V)) of the ideal (B^V)) gen­
erated by BpCP) coincides with the ideal Si?(E). It suffices to show that 
the initial ideal init^Q^T,) also equals 5i?(E). The latter again follows from 
Theorem 4.6. • 

Definition 5.4 The tube domain in the cohomology space H 2 (Ps , C): 

KÇ£)c = K(Z) + iH2\PE,R) 

we call the complexified Kahler cone of P^. 

2 0 
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Corollary 5.5 Let (p be an element of H2(P?;, C), t a positive real num­
ber. Then all generators Bt(p(V) of the ideal Q^,(E) have finite limits as 
t —• oo if and only if ip G K(Y,)c- Moreover, if (p E l f (E)c , then the limit of 
QiJ^Px;, C) is the ordinary cohomology ring JH"*(PE,C). 

Proof. Applying Theorem 4.6, we obtain: 

lim 
t->oc 

BUV) = zh ' ' ' zik • 

Thus, 
lim 
t—•oo 

Qt<pÇZ) = SRÇ2). 

By Theorem 3.8, 
lim 
¿—•00 

Q # , ; ( P S , C ) = i r (ps,c). 

Example 5.6 Consider the fan £(d) defining d-dimensional projective space 
(see 2.4). Then we obtain 

QH (PS, C ) S C[x]/(xd+1 - exp(-deg^A)), 

where A = ( 1 , . . . , 1) is the generator of i?(E(d)). This shows the quantum 
cohomology ring QH*(CPd, C) coincides with the quantum cohomology ring 
for CPd proposed by physicists. 

It is important to remark that the quantum cohomology ring QH*(Pxi C) 
has no any Z-grading, but it is possible to define a Z^-grading on it. 

Theorem 5.7 Assume that the first Chern class CI(PE) is divisible by r. 
Then the ring <5i?*(Ps, C) has a natural Z/rZ-grading. 

Proof. A linear relation 

n 

E 
¿=1 

CLiVi = 

n 

E 
Ì = l 

bjVj 

gives rise to an element 

A = (ax - 61,. . . , an - bn) G i?(S). 

By our assumption, 

deg AE T= 
n 

E 
1=1 

Q>i — 

n 

E 
j = l 

bj 
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is the intersection number of CI(PE) and A 6 i?2(Pio C ) , i.e., it is divisible by 
r. This means that the binomials 

exp ( 
n 

E 
2=1 

qi cp(vi) 
) 
) 
) 

n 

n 
1=1 

I exp 

( 
( 
( 

E 

;=i 

bj cp(vj) 
n 

n 
i = l 

6i 
3 

are Z/rZ-homogeneous. 

Although, the quantum cohomology ring QH*(P^ C ) has no any Z-grading, 
it is possible to define a graded version of this quantum cohomology ring over 
the Laurent polynomial ring C[z0, z0-1] 

Definition 5.8 Let <p be a E-piecewise linear function with complex values 
from the complexified space PL(E)c = PL(S) ® R C . Define the quantum 
cohomology ring 

QfÇ(P E ,C[*o,V]) 

as the quotient of the Laurent polynomial extension C[z][zo, z0 J by the sum 
of ideals Q v ? j Z o (E) and P(E): where Q ^ 0 ( £ ) is generated by binomials 

exp ( 
n 

E 
.¿=1 

aMvi) 
( 
( 
( 

z0'-Eni =1ai) 
n 

n 
¿=1 

za — exp ( 
n 

E 
i =1 

bjip{vj) 
) 
) 
) 

z0 
(-Ei=i»>) 

n 

n 
/=1 

z • 3 

running over all possible linear relations 
n 

E 
1=1 

üiVi = 
n 

E 
j=l 

bjVj 

with non-negative integer coefficients at- and bj. 

The properties of the Z-graded quantum cohomology ring 

Q # ; ( P E , C [ W D 

are analogous to the properties of QH* (P=,C): 

Theorem 5.9 For every binomial B^V), take the corresponding homoge­

neous binomial in variables Zq,z1. . . , ZN 

BVM{V) = zh..-zih-Ev(V) zi f 
ef 

... Z3iZ0 
(*-ELi*) 

Then the elements B<piZo(V) generate the ideal Q<piZo(E), and Kahler limits of 

QHU(PZ,^C[z0,z0-1^h)]),t^oo 

are isomorphic to the Laurent polynomial extension H*(Px, C)[zq, Z0

 x] of the 
odinary cohomology ring. 
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Finally, if the first Chern class of P e belongs to the Kahler cone, i.e., c*e G 
PL(E) is upper convex, then it is possible to define the quantum deformations 
of the cohomology ring of P e over the polynomial ring C[^o]. 

Definition 5 . 1 0 Assume that c*e G PL(E) is upper convex. We define the 
quantum cohomology ring QH*(Px, C[zq]) over C[zo] as the quotient of the 
polynomial ring C[ZQ, Z \ , . . . , zn] by the sum of the ideal P(E)[zo] and the ideal 

C[z0,z1,............, zn] Uqcp, z0 (E) 

Theorem 5 . 1 1 The ideal 

C [£o>2i , . . . ,Z n ]nQp,z 0 

(E) 

is aenerated by homoqeneous binomials 

B cp, z0(P) = zh...Zh-Ey{V) zf1ji ... zc?z\ Ji c 
(*-EUi^) 

where V runs over all primitive collections V C G(Yi). (Notice that convexity 
of # e implies k — E U I ^ > O . ) 

Kahler limits of the quantum cohomology ring 

Q t f * ( P S , C [ z 0 ] ) , t —• OC 

are isomorphic to the polynomial extension 

F R ( P S , C ) f o ] 

of the odmary cohomology ring. 

6 Birational transformations 

It may look strange that we defined the quantum cohomology rings using 
infinitely many generators for the ideals Q ^ E ) and Q^ Z o (E) , while these 
ideals have only finite number of generators indexed by primitive collections 
in G(E). The reason for that is the following important theorem: 

Theorem 6 .1 Let Ei and E2 be two complete fans of regular cones such 
that G(Ei) = G(Yi2), then the quantum cohomology rings QH^P^^C) and 
QHp(P%2,C) are isomorphic. 
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Proof. Our definitions of quantum cohomology rings does not depend on 
the combinational structure of the fan E, one needs to know only all lattice 
vectors v i , . . . ,vn E G(E), but not the combinatorial structure of the fan E. 
• 

Since the equality G(Ei) = G(E 2 ) means that two toric varieties PE1 and 
PE 2 are isomorphic in codimension 1, we obtain 

Corollary 6 .2 Let P ^ andP^ be two smooth compact toric manifolds which 
are isomorphic in codimension 1, then the rings QH*(Pi, C) and QH*(P2l C) 
are isomorphic. 

Example 6 . 3 Consider two 3-dimensional fans Ei and E2 in R 3 such that 
G(Ei) = G(E 2 ) = {vu . . . , v 6 } where 

vi = (1,0,0), v2 = (0,1,0), V3 = (0,0,1), 

v4 = ( -1 ,0 ,0) , vb = (0, - 1 , 0 ) , v6 = (1,1, - 1 ) . 

We define the combinatorial structure of Ei by the primitive collections 

Vi = {vuvA}, V2 = {v2,vb}, V$ = {v^,v6}, 

and the combinatorial structure of E2 by the primitive collections 

P'1 = {vhv4}, V2 = {v2,v*>}, V3 = {vuv2}, 

P'4= {v3,v5,v6}, P'5 = { v3, v4, v6}. 

The flop between two toric manifolds is described by the diagrams: 

d 

vi< >V2 

df 

= 

df 

Vi< >V2 

# 6 
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The ordinary cohomology rings i ? * ( P S l , C ) and i J*(P S 2 ,C) are not iso­
morphic, because their homogeneous ideals of polynomial relations among 
z i , . . . , ze have different numbers of minimal generators. There exists the 
polynomial relation in the quantum cohomology ring: 

exp(v?(t>i) + (p(v2))ziz2 = exp(v?(v3) + (p(v6))zsze. 

If <p(vi) + (f(v2) < ^(^3) + ^(^6)5 then we obtain the element z^zq G £i?(Ei) 

as the limit for t<p, when t —• 00. On the other hand, if (f(v\) + <p(v2) > 
^(^3) + 92(^6)5 taking the same limit, we obtain z\z2 G 5i?(E2). 

Let us consider another simple example of birational tranformation. 

Example 6.4 The quantum cohomology ring of the 2-dimensional toric va­
riety F\ which is the blow-up of a point p on P 2 is isomorphic to the quotient 
of the polynomial ring C[#i, #2] by the ideal generated by two binomials 

xi(xi + x2) = exp(-^ 2 ) i x2 = exp(-(/>i)xu 

where x\ is the class of the (—l)-curve C\ on F\, x2 is the class of the fiber 
C2 of the projection of F\ on P 1 . The numbers (f)\ and <j>2 are respectively 
degrees of the restriction of the Kahler class <p on C\ and C2. 

Remark 6,5 The definition of the quantum cohomology ring for smooth toric 
manifolds immediatelly extends to the case of singular toric varieties. How­
ever, the ordinary cohomology ring of singular toric varieties is not anymore 
the Kahler limit of the quantum cohomology ring. In some cases, the quantum 
cohomology ring of singular toric varieties V contains information about the 
ordinary cohomology ring of special desingularizations V of V. For instance, 
if we assume that there exists a projective desingularization t/> : V —• V 
such that %j)*Kv = fcv- Then for every Kahler class cp G H2(V, C) , one has 

dimcQiW C) = d imc iT(V, C) . 

7 Geometric interpretation of quantum rings 

The spectra of the quantum cohomology ring SpecQi7*(Px;, C) , and its 
two polynomial versions 

SpecÇ#! (P E ,C [ z 0 ,* 0

- 1 ] ) , SpecQ#;(P E ,C[z 0 ]) 

have simple geometric interpretations. 
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Definition 7.1 Denote by 11(E) the (n — d)-dimensional affine subspace in 
Cn defined by the ideal P(E). 

Definition 7.2 Choose any isomorphism N = Zd, so that any element v £ 
N defines a Laurent monomial Xv in d variables X\,... ,Xd- Consider the 
embedding of the d-dimensional torus T(E) S (C*)d in (C*)n: 

(Xi,... ,Xd) —> (Xv\...,XVn). 

Denote by ©(E) the (n — d)-dimensional algebraic torus (C*)n/T(E). 

Definition 7.3 Denote by Exp the analytical exponential mapping 

Exp : g G 

where G is a complex analytic Lie group, and Q is its Lie algebra. 
For example, one has the exponential mapping 

Exp : PL(E)c -* (C*)n 

lû I—» (Ecp(vi) ,....., e cp ( vn) 

which descends to the exponential mapping 

Exp : #2(PE,C)-+e(E). 

Proposition 7.4 TheT^-orbitTcp(E) o/¿/*e point Exp(cp) e (C*)n ¿5 c/o5ed; 

and its idea/ is canonically isomorphic to Q^(E). 

Corollary 7.5 77¿e scheme SpecQ-ff^(Ps, C) ¿s ¿fee scheme-theoretic inter­
section of the d-dimensional subvariety T^(E) C Cn and the (n — d)-dimen­
sional subspace 11(E). 

Definition 7.6 Let Ñ = Z © iV. For any v e N, define {; G iV as £ = (1 , v). 
Define the embedding of the (d + l)-dimensional torus T°(E) = (C*)d+1 in 
(C*)n+1: 

(XQ , X i , . . . , Xd) - * (XQJ X 
iI,......., Xvn ). 

The quotient (C*)n+1/T°(s) is aSain isomorphic to 0 (E) . 

Proposition 7.7 The ideal of the T°ÇE)-orbit 

T ; ( E ) C C* X cn 

of the of the point (1 , Exp ((f)) € (C*)n+1 is canonically isomorphic to Q^0(E) . 
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Corollary 7.8 The scheme SpecQi/*(P E , C[z0, Zq]) is the scheme-theoretic 
intersection of the (d + 1)-dimensional subvariety T°(E) C C* x C" and the 
(n — d+ I)-dimensional subvariety C* x 11(E) C C* x C n . 

Similarly, one obtain the geometric interpretation of QH^,{P^ C[zo]), when 
the first Chern class of P^ belongs to the Kahler cone i f (£ ) . 

Proposition 7.9 The scheme SpecQ-ff*(Ps, C[z0]) is the scheme-theoretic 
intersection in C n + 1 of the (d + 1)-dimensional T°(E)-orbit of (l,Exp(<p)) 
and the [n — d+ 1)-dimensional affine subspace C x 11(E) C C n + 1 . 

The limits of quantum cohomology rings have also geometric interpreta­
tions. One obtains, for instance, the spectrum of the ordinary cohomology 
ring of PE as the scheme-theoretic intersection of the affine subspace 11(E) 
with a toric degeneration of closures of T(E)-orbits Ty>(E) >£ C n . Such an 
interpretation allows to apply methods of M. Kapranov, B. Sturmfels, and 
A. Zelevinsky (see [10], Theorem 5.3) to establish connection between ver­
tices of Chow polytope (secondary polyhedron) and Kahler limits of quantum 
cohomology rings. 

8 Calabi-Yau hypersurfaces and Jacobian rings 

Throughout in this section we fix a complete d-dimensional fan of regular 
cones, and we assume that P = PE is a toric manifold whose first Chern class 
belongs to the closed Kahler cone K(E), i.e., a := a% is a convex E-piecewise 
linear function. 

Let A = A A , the convex polyhedron in M R (see 4.1). For any sufficiently 
general section S of the anticanonical sheaf JCy1 on P represented by homo­
geneous polynomial F(z), the set Z = {tt(z) E P : F(z) = 0 } in P is a 
Calabi-Yau manifold (ci(/C^ 1) = ci(P)). 

Since the first Chern class of P in the ordinary cohomology ring i?*(P, C) 
is the class of the sum (z\ + h z n), we obtain: 

Proposition 8.1 The image of if*(P, C) under the restriction mapping to 
H*(Z, C) is isomorphic to the quotient 

ir(P,C)/Ann(z! + . . . + z n), 

where Ann(zi H h zn) denotes the annulet of the class of (z\-\ h zn) in 
H*(P,C). 
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In general, Proposition 8.1 allows us to calculate only a part of the ordinary 
cohomology ring of a Calabi-Yau hypersurface Z in toric variety P. If the 
first Chern class of P is in the interior of the Kahler cone K(Y,), then Z is 
an ample divisor. For d > 4, by Lefschetz theorem, the restriction mapping 
# 2 ( P , C ) H2(Z,C) is isomorphism. Thus, using Proposition 8.1, we can 
calculate cup-products of any (1, l)-forms on Z. 

Definition 8.2 Denote by A* the convex hull of the set G(E) of all genera­
tors, or equivalently, 

A* = {v E NK I a(v) < 1}. 

Remark 8.3 The polyhedron A* is dual to A reflexive polyhedron (see [6]). 

Theorem 8.4 There exists the canonical isomorphism between the quantum 
cohomology ring 

QH;(P,C) 
and the Jacobian ring 

C[Xt\...,XÌ1]/(Xldfj dXi, ...,X# V/dXd) 

of the Laurent polynomial 

fv(X) = -1 + 
n 

dsds 

1=1 

expivivi))-^. 

This isomorphism is induced by the correspondence 

Zi -+ XVi/exp(<p(vi)) (1 < % < n). 

In particular, it maps the first Chern class (z\ + ... + zn) of P to f<p(X) + 1. 

Proof. Let 
U : C| [zh...,zn] ^C[X?,...,Xd=1?] 

be the homomorphism defined by the correspondence 

Z i - f X ^ / e x p ^ ) ) . 

By 2.3(iii), H is surjective. It is clear that Q^(XI) is the kernel of 7i. On the 
other hand, if we a Z-basis {u\,..., Ud} C M which establishes isomorphisms 
M = Zd and iV = Z d , we obtain: 

W(P(E)) = < Xtff/dXu1 .. .,Xddf/dXd > . 
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Definition 8.5 Let Sa* be the affine coordinate ring of the T°(E)-orbit of 
the point ( ! , . . . , ! ) G C n + 1 (see 7.6). 

Definition 8.6 For any Laurent polynomial 

f(X) = a0 + 
n 

1=1 
diXVi, 

we define elements 
Fq,Fu . . . ,Fd E Sa* 

asFi = dX0f(X)dX0j (0<i< d). 

Remark 8.7 The ring 5a* is a subring of C[X 0 , X f \ . . . , Xf1]. There exists 
the canonical grading of 5a* by degree of Xq. 

It is easy to see that the correspondence 

Zq — • — Xq, 

zt^XoX^/iexv&ivi))) 

defines the isomorphism 
C [ W ) S 5 A . . 

This isomorphism maps ( -* 0 + *iH zn) to F0. 

Theorem 8.8 ([7]) Let 

Rf = SA*/<F0,Fh...,Fd>. 

Then the quotient 
RflAnn {X0) 

is isomorphic to the (d— 1)-weight subspace Wd-iHd~l(Zf, C) in the cohomol­
ogy space Hd~l(Zf,C) of the affine Calabi-Yau hypersurface inT(E) defined 
by the Laurent polynomial f(X). 

For any Laurent polynomial f(X) = ao4 Eni = 1 a{XVi, we can find an element 
(f e PL(S)c such that 

df 
do 

= exp(-(p(vi)). 

A one-parameter family tip in PL[E) induces the one-parameter family of 
Laurent polynomials 

ft(X) = -l + 
n 

E 
»=i 

exp (-cp(Vi))Xvi 

Applying the isomorphism in 8.7 and the statement in Theorem 5.3, we 
obtain the following: 
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Theorem 8 .9 Assume that cp is in the interior of the Kahler cone if (£) 
Then the limit 

RfJ Ann(X0) 
is isomorphic to 

i ?*(P ,C) /Ann(^ + . . . + 2 n ) . 

The last statement shows the relation, established in [3], between the toric 
part of the topological cohomology rings of Calabi-Yau 3-folds in toric varieties 
and limits of the multiplicative structure on (d—l)-weight part of the Jacobian 
rings of their mirrors. 

9 Topological sigma models on toric manifolds 

So far we have not explained why the ring Qi?*(Ps ,C) coincides with the 
quantum cohomology ring corresponding to the topological sigma model on V. 
In this section we want to establish the relations between the ring Q-ff£(Ps, C) 
and the quantum cohomology rings considered by physicists. 

In order to apply the general construction of the correlation functions in 
sigma models ([16], 3a ), we need the following information on the structure of 
the space of holomorphic mappings of C P 1 to a d-dimensional toric manifold 
p s . 
Theorem 9 .1 Let I be the moduli space of holomorphic mappings f : C P 1 —• 
PE- The space X consists of infinitely many algebraic varieties T\ indexed by 
elements 

A = (A i , . . . ,A„)e fJ (E) , 

where the numbers A,- are equal to the intersection numbers deg C P i ifO(Zi) 

with divisors Z{ C PE such that 7 r ~ 1 ( Z L ) is defined by the equation z\ = 0 in 
U(Y,). Moreover, if all A; > 0, thenZ\ is irreducible and the virtual dimension 
ofl\ equals 

d\ = d i m c I A = d + 
n 

E 
»=i 

A,-. 

Proof. The first statement follows immediatelly from the description of the 
intersection product on PE (3.5). 

Assume now that all A,- are non-negative. This means that the preimage 
F-1 (Zi) consists of A,- points including their multiplicities. Let TY. be the 
tangent bundle over P^. There exists the generalized Euler exact sequence 

0 df dfdfg = Op(zo e • • • © oP(zn) — > dsfg — > 0. 
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Applying /*, we obtain the short exact sequence of vector bundles on CP1. 

0 nn-d 

CPA 
0 C p i ( A i ) 0 - - - E 0 C p i ( A n ) F FE O . 

This implies that ^ ( C P 1 , /* JFE) = 0, and /i^CP1, f*Fx) = d+ Ai + • • • + An. 
The irreducibility of 1\ for A > 0 follows from the explicit geometrical 

construction of mappings f E Iy : 
Choose n polynomials / i( tf) , . . . , fn(t) such that deg /,•(<) = A,- (i = 1,... , n). 

If all | A |= Ai + • • • + An roots of {/,•} are distinct, then these polynomials 
define the mapping 

g : C 17(E) C Cn. 
The composition -kog extends to the mapping / of CP to Pu whose homology 
class is A. • 

Definition 9.2 Let 
$ : J x CP1 -> PE 

be the universal mapping. For every point x G CP1 we denote by $x the 
restriction of $ to I x a;. Choose the cohomology classes z\ = [ZJ , . . . , zn = 
[Zn] of divisors Z i , . . . , Zn on Ps in the ordinary cohomology ring H*(Pj:). 
We determine the divisors WZl,..., WZfl on T whose cohomology classes are 
independent of choice of x G CP1 as follows 

wZi=(YI)-1x(zi)={fei\f(x)ezi}. 

The quantum cohomology ring of the sigma model with the target space 
PE is defined by the relations 

Wa1 Wa2 .............Wak = E 

xewain-nWak 

exp(-deg^A), 

where a,- are cycles on Ps and Wai = (I)-1 x (ai) and the intersection W a1 n---n 
Wak on the moduli space X is assumed to be of virtual dimension zero. 

Theorem 9.3 Let PE be a d-dimensional toric manifold, (p G H2(P^^ C) 
a Kahler class. Let A0 = (Aj , . . . ,A^) be a non-negative element in i?(E), 
Q G fl"2d(Ps,C) £/ie fundamental class of the toric manifold P^. Then the 
intersection number on the moduli space I 

(Wa)-(WXl)x'-(Wz2) Y2 ....(WZn) .AS 

vanishes for all components 1\ except from A = Ao- In the latter case, this 
number equals 

exp(-deg^A). 
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Proof. Since the fundamental class Q is involved in the considered inter­
section number, this number is zero for all T\ such that the rational curves in 
the class A do not cover a dense Zariski open subset in PE- Thus, we must 
consider only non-negative classes A. Moreover, the factors (WZi)

x<* show that 
we must consider only those A = ( A i , . . . , A n) E -R(E) such that A,- > A?, i.e., 
a mapping / E 2A is defined by polynomials / 1 , . . . , / n such that deg > A,-. 

There is a general principle that non-zero contributions to the intersection 
product 

(Wai -Wa2 Wai)x 

appear only from the components whose virtual R-dimension is equal to 

E 

¿=1 

deg a¡. 

In our case, the last number is d + Aj + . . . + \ „ . Therefore, a non-zero 
contribution appears only if A = A0. 

It remains to notice that this contribution equals exp(—deg^Ao). The last 
statement follows from the observation that the points f-1 (zi) C C P 1 (i = 
1,..., n) define the mapping / : C P 1 —• PE uniquely up to the action of the 
d-dimensional torus T = PE \ (Z\ U • • • U Z n ) , and the weight of the mapping 
/ in the intersection product is f CP 1 F* (cp). 

Corollary 9.4 Let Z\ be the quantum operator corresponding to the class 
[Zi] E iJ2(PE,C) (i = l , . . . , n ) considered as an element of the quantum 
cohomology ring. Then for every non-negative element A E -R(E), one has the 
algebraic relation 

Zl1 o • • • o Zl" = exp(-deg^A) id. 

It turns out that the polynomial relations of above type are sufficient to 
recover the quantum cohomology ring Qif^PE, C): 

Theorem 9 . 5 Let A ^ ( S ) be the quotient of the polynomial ring C[z] by the 
sum of two ideals: P ( S ) and the ideal generated by all polynomials 

fîA = ^ A l . . . ^ - e x p ( - d e g ^ A ) 

where A runs over all non-negative elements of i?(E). Then A^(S) is isomor­
phic to Q # * ( P E , C ) . 

Proof. Let ify(E) be tne ideal generated by all binomials B\. By definition, 
J3p(E) C Qp(£). So it is sufficient to prove that Q^(S) C ^ ( E ) . 
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Let 
n 

E 
<w 

aw = 

n 

E 
<ww 

bjVj 

be a linear relation among v\,..., vn such that a,-, bj > 0. Since the set of all 
nonnegative elements A = ( A i , . . . , A n ) € i?(S) (A,- > 0) generates a convex 
cone of maximal dimension in H2(Px, C), there exist two nonnegative vectors 

A, A' e i?(E) such that 

A - A' = (Ai - A i , . . . , An - A'n) = (ai - &i, . . . , an - bn). 

By definition, two binomials P\ and P\> are contained in Q^(E). Hence, the 
classes oi z \ , . . z n in C[z]/J3y>(E) are invertible elements. Thus, the class of 
the binomial 

exp 
( 
( 
( 

n 

E 
1=1 

sqfdfdf 
( 
( 
( 

n 

n 
«"=1 

z-' 
I 

— exp 

( 
( 
( 

n 

E 
.¿=1 

sdfdfsfg 

) 
) 
) 

n 

n 
df 

z. 

is zero in C[s]/Bp(E). Thus, J3^(E) = <2^(£). • . 
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