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CONFIGURATIONS OF REAL AND COMPLEX POLYNOMIALS 

by 
Fabrizio CATANESE, Paola FREDIANI 

This article is dedicated to the memory of Mario Raimondo. 

§0. In troduc t ion 

The purpose of this article is to give a geometric explanation of the sur­
prising equality (cf. [C-P],[Arl],[Ar3]) between, on one hand, the number of 
configurations of (complex) lemniscate generic polynomials, and , on the other 
hand, the number of configurations of real monic Morse polynomials with the 
maximal number of (real) critical points. 

This discovery occurred when Arnold gave a series of talks at the Scuola 
Normale in 1989 on the subject of catastrophe theory, and there was somehow 
a bet whether there could be a geometrical correspondence between the two 
sets. 

Afterwards, Arnold developed a quite general theory concerning the ubiq­
uity of Euler, Bernoulli and Springer numbers (cf.fArl], [Ar2], [Ar3]) in the 
realm of singularity theory. 

In this article, among other things, we prove the equality of the above 
two numbers by geometric methods. 

It would of course be very interesting to extend the type of correspondence 
introduced here to a more general context, like the case of spaces of universal 
deformations of 0-modular isolated singularities. In a different direction, we 
plan to extend these type of results to the case of real algebraic functions, 
using the results of [B-C]. 

Let us explain now in some detail what are our present results. 

We adopt here the notation and terminology of [C-P] and [C-W] : given a 
polynomial P(z) we consider |P(-2r)| as a (weak) Morse function , and we define 
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the big lemniscate configuration of P to be equal to the union of the singular 
level sets of \P\ ( the so called lemniscates). P is said to be lemniscate generic 

if P has distinct roots and every level set Tc = {z : \P(z)\ = c] has at most 
one ordinary quadratic singularity. Two big lemniscate configurations Fi ,r2 
are said to be isotopic if there is a pa th a in the space of diffeomorphisms of 
C such tha t <J(0) is the identity and cr(l)(Ti) = I V 

One of the main results of [C-P] was tha t there is a bijective correspon­
dence between isotopy classes of big lemniscate configurations and connected 
components of the space Cn of lemniscate generic polynomials. Assume now 
that P £ R[z] : then, if P is lemniscate generic, automatically all the critical 
points of P are real; thus, letting (n + 1 ) be the degree of P , P has n distinct 
real critical values which are different from zero. 

Let Cn be the open set of complex lemniscate generic polynomials of 
degree (n + 1), let £ n , R be the set of real lemniscate generic polynomials ( 
an open set in the space of real polynomials), let finally GAin ( which is 
called the "Set of generic maximally real polynomials" ) be the open set of 
real polynomials with n real and distinct critical values : thus £ n , R C GAinj 
and every component of GMn is the closure ( in GMn) of a finite number of 
components of £ n , R -

If P is in GA4n and yi < ... < yn are the critical points, we associate to 
P the sequence Ui = P(yi)ywn = P(yn) , a snake sequence ( cf. [Da], [Ar3] 
), what simply means that ( — — U j + i ) has constant sign. 

If P is lemniscate generic and real, there is another way of ordering 
the critical values, namely by increasing absolute values : we let Yn,R = 
{(w\, . . . j W n ) £ R n : 0 < < ... < \wn\} be the space of admissible critical 
values. Clearly VN>R has exactly 2n connected components homeomorphic to 

M a i n T h e o r e m . 

(a) Each connected component of Cn contains exactly 2n+1 connected 

components of £ n , R -

(b) The number of connected components of £ n , R mapping to a fixed 
component of Yn,R equals the number of components of GMn-> whence the 
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number of connected components of GMn equals twice the number Kn of 
connected components of Cn\ the number instead of components of GMn fl 
{monic polynomials} equals Kn. 

(c) (cf. Arnold [Arl] ) The number of components of GMn equals the 
number of snake sequences (this means, for fixed wi,wn, the number of 
snake sequences w i , u n that can be obtained by permuting wi , ...ywn). 

(d) ( cf. [Arl],[C-P] ) The number of components bn of £ n j R gives rise 
to the following exponential generating function : 

2En(6n/n!)tn 4 / (1 - sin(2*)) = 2(sec(2£) + tan(2*)). 

e) the number of snake sequences equals the number of isotopy classes of 
lemniscate configurations multiplied by 2. 

The above result is related to a curious rediscovery of Riemann's existence 
theorem, done by Thorn in 1960 ([Thorn]) In fact, in 1957 C. Davis ([Da]) 
showed in particular that for each choice of n distinct real numbers there is a 
real polynomial of degree {n + 1) having those as critical values ( in fact, up 
to aflfine transformations in the source, a unique one for each snake sequence 
formed with those numbers), and a similar question was asked for complex 
polynomials. 

Thorn remarked that by Riemann's existence theorem the answer is that 
for each choice of n distinct complex numbers and an equivalence class of 
admissible monodromy there exists exactly one polynomial,up to affine trans­
formations in the source, having those points as critical values and the given 
monodromy. 

In this paper we link the two answers by describing explicitly, even when 
the branch points are not all real, the monodromies which come from real 
polynomials. 

In fact, in [C-P] it was shown also that every big lemniscate configuration 
occurs for some real polynomial for which the monodromy tree (cf.[C-W]) is 
linear ( that is, homeomorphic to a segment). 

Here, in a similar vein, we establish another result (which is essential in 
order to establish our main theorem), which allows us to understand the lem-
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niscate configurations which come from real polynomials as the ones obtained 
from "snake" linear trees ( theorem B stated below is an abridged version of 
theorems 2.1, 2.3 and 2.12 ) : 

T h e o r e m B. 

Given ...,wn G R with 0 < < ... < \wn\, there is a canonical 
choice of a geometric basis of TTI(C — {w;i,...,ii;n},0) such tha t the real lem­
niscate generic polynomials P having w\,wn as critical values, correspond 
exactly to the monodromy trees which are "snake" linear trees. 

Also, for each fixed choice of wn as above, if n > 4 there is some 
lemniscate configuration which cannot be obtained with a real polynomial. 

To get the flavour of the second statement one should remark tha t the 
monodromies which come from real monic polynomials, (whose number is 
Kn ~ 0 ( (2 /7r )n(n) ! ) ) are quite few compared with all the possible mon­
odromies, whose number is (n + l)n~"2. Nevertheless, since the number of 
lemniscate configurations is exactly ifn, we initially hoped tha t there would 
be a bijection between the set of real monodromies and the set of lemniscate 
configurations. 

From theorem 2.1 it is then easily seen tha t , fixing the (real) critical val­
ues, and a linear tree in the canonical basis, the snake condition is equivalent 
to the condition that the associated polynomial is real. 

In this way part b) of the main theorem is proven. 
Finally, the proof of a) of the main theorem is a straightforward conse­

quence of Lefschetz' fixed points theorem, while c) follows from the quoted 
result of Davis, which we reprove ( in 2.3) with a small precision, for the sake 
of completeness. 

Par t s d),e) follow then from a),b),c) and the results of [Arl],[C-P]. 
Section 2 contains also other miscellaneous results. 

In the third section we employ the branch points map used by several 
authors ([Da],[Lo],[Ly],[C-W],[C-P],[Ar3] ) in order to give a quick proof of a 
generalization of Davis' theorem along the same lines. Later on, we prove in 
theorem 3.7 a much more precise result, namely that the monodromies of real 
generic polynomials are given, in a canonical basis, by trees obtained from a 
snake linear trees by adding, in a symmetric way, pairs of isomorphic trees 
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( see section 3 for a more precise statement) . From this result it is possible 
to calculate the number of connected components of the space of real generic 
polynomials of degree equal to n + 1, but we have not yet found a simple 
formula for it. 
The proof tha t we give of 3.7 is completely algebraic, implies in particular 
a third proof of the quoted theorem of Davis ( after the ones given in [Da], 
[Ar2], and in 2.1, 2.3 ), and is susceptible of generalizations. 

A c k n o w l e d g e m e n t s . 

The present cooperation took place in the framework of the SCIENCE 
contract n. SCI-0398-C(A). The first author is a member of G.N.S.A.G.A. 
and of the M.U.R.S.T. 40% Program "Geometria Algebrica". 

1. N o t a t i o n , s e t - u p , pre l iminary resul ts . 

(1 .1) Def in i t ion . 
a) Let P £ TR[z] be a polynomial of degree (n + 1 ) : P is said to be maximally 
real if all the critical points of P ( the roots y \ , y n of its derivative) are real. 
We let M.n be the closed set of maximally real polynomials. Its interior M!n 
corresponds to the polynomials with real distinct critical points and contains 
the open set GA4n of the maximally real polynomials which are also generic, 
i.e., are such tha t the branch points of P , wiz., the real numbers Ui — P (y i ) , 
are distinct. 
b) If P is maximally real there is a standard ordering y\ < ... < yn of the 
critical points, hence we have, for P as above, also a canonical ordering u\ = 
P(yi)yun = P(yn) of the branch points, which we shall call the source 
ordering. 

(1 .2) Def in i t ion-remark. 

i) A sequence w i , u n of real numbers is said to be a weak up-down sequence 
if ( — iy(ui — Ui+i) < 0, a weak down-up sequence if ( — l)l(ui — i ^ + i ) > 0, a 
weak snake sequence if one of the two above holds. A snake sequence will be 
a weak snake sequence where U{ ^ Ui+i for each i. 
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ii) if P is a maximally real polynomial, then its branch points u\ = P(?/i), 
un = P (yn ) , taken with the source ordering, yield a weak snake sequence. 

(1 .3) Def in i t ion . 
a) A polynomial P £ C[z] of degree (n + 1) is said to be generic iff it has n 
distinct branch points. 
b) P is moreover said to be lemniscate-generic if the branch points have n 
distinct absolute values different from 0. 
c) If P is lemniscate generic, then there is a s tandard ordering for the branch 
points, by which we get another sequence ttfn with 0 < < ... < \wn\. 

(1 .4) R e m a r k . 
A polynomial P £ R[z] which is lemniscate generic is automatically maximally 
real, and there are three distinct orderings for the set of its branch points, the 
source, the s tandard and the target ordering ( the first never coincides with 
the last). 

We want to define the Hurwitz space Tin of polynomials. To do this, we 
consider the notion of source equivalence. 

(1 .5) Def in i t ion . 
i) Two polynomials P , Q £ C[z] are said to be source equivalent ( P ~ Q) 

iff there exists an isomorphism ĉ> : C —» C (<£> E C)) such tha t Q = P o (p. 
ii) The Hurwitz space Tin of polynomials is the quotient Vn/A(l,C) of 

the space Vn of polynomials of degree (n + 1 ) in C[z]y by the relation of source 
equivalence. 

We want now to define the real part of the Hurwitz space. 
In order to do it, let us observe that the operation P —> P of complex con­
jugation of coefficients of P passes to the quotient, since if Q = P o <py then 
Q = P o as it is easy to verify. 
The fixed locus for complex conjugation is given by Vn fl and the next 
proposition determines the fixed locus inside 7in. 
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(1 .6) P r o p o s i t i o n . 

If Q G C[z] is (source-) equivalent to Q, then Q is equivalent to a real 

polynomial P G TR{z]. Whence the real part Wn,R of the Hurwitz space 7in is 

indeed the image to the quotient of Vn fl R b l . 

Proof. We can clearly replace Q by any other polynomial which is equivalent 

to Q, and therefore we can assume that Q is of the form 

Q = zn+1 + an^z71'1 + an-2zn-2 + + a0. 

If (p(z) = OLZ + /?, and Q = Q o ĉ >, then we immediately get an+1 = 1, 

and /3 = 0. 

Let a be a square root of a , so tha t a = a/a, and set P(z) = Q(az). 

Then P ( s ) = Q(az) = Q(aaz) = Q(as) = P (* ) . 

Q.E.D. 

Unfortunately, it is not t rue that two real polynomials P,Q are equivalent iff 

there exists a ip in A ( l , R ) with Q — P o as it is shown by the example of 

p = z* + zi + l , Q = z*-z2 + l. 

But this holds t rue if the polynomials are generic : 

(1 .7) P r o p o s i t i o n . 

If P , Q G R[z] are A(1,C) equivalent, then they are A ( 1 , R ) equivalent if 

they cannot be written as a composition of two polynomial maps of strictly 

lower degree. In particular, if Un is the open set of generic polynomials, then 

the image to the quotient of Un fl R[z] is the quotient (Un fl R[z ] ) /A( l , R ) . 

Proof. We can clearly assume, replacing P and Q by A ( 1 , R ) equivalent 

polynomials, tha t P and Q are of the following "Tschirnhausen" form 

P = ±zn+1 + an^z"-1 + an.2zn-2 + + a0. 

Q = ±zn^ + b^z"-1 + bn_2zn~2 + + b0. 

Since there are a / 0, /5 G C such that Q(z) = P(az + ¡3) we get as 

before 3 = 0,an+1 = ± 1 . 
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Then bi = ala,i, whence a* £ I t whenever a{ ^ 0. 

If a £ R , we are done, else, there is a minimal m such tha t am £ I t , and 

a* = 0 if z is not divisible by m. In the latter case there is a polynomial R of 

degree (n + l ) / m such that P(z) = R(zm). 

The proof is over, since a polynomial of the form R(zm) can only be generic 

if m = 2 and R is linear : but in this case a £ I t . Q.E.D. 

(1 .8) Corol lary. 

The generic real Hurwitz space of polynomials, tha t is, the quotient (J7nn 

R[z ] ) /A( l , I t ) , is isomorphic to the quotient of the space TnjR. of generic real 

Tschirnhausen polynomials 

{P\P(z) ±zn+1 + an^z*1-1 + an-2zn-2 + + a0 , a{ £ I t , 

and P is a generic polynomial} 

by the involution ¿ which sends P(z) to P(—z). In particular, for n even, the 

generic real Hurwitz space is isomorphic to the space of monic generic real 

Tschirnhausen polynomials. 

The quotient I t [ z ] /A( l , I t ) is also isomorphic to the quotient of the space 

-Nn,R °f normalized real polynomials 

iP\P(z) = ±*n+1 + anzn + a^z"-1 + + aiz, a{ £ R } 

by the involution ¿ which sends P(z) to P(—z). 

Proof. 

The first assertion was already proven, the second follows in an entirely 

similar way. 

(1 .9) R e m a r k . 

E/n/A(l ,C) is an open set in Vn /A( l ,C) = Tn/ / /n+i , where Tn is the 

space of complex (Tschirnhausen) polynomials of the form 

P(z) = zn+1 + an„xzn-x + an-2zn~2 + + a0, 

and where fin+i is the group of (n + l)th roots of unity in C. The difference 

Tn — Un is called the bifurcation hypersurface An (cf. [C-W]). 

The group extension associated to the Galois cover Tn — An —> J7n/A(l, C) = 

(Tn — An)///n_j_i is described in the main theorem of [C-W]. 
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(1-10) Def in i t ion-remark. 

i) Let us denote by l~Cn be the generic Hurwitz space, i.e., the quotient 

Un/A(l, C) , and by H'n R its real part . If we set moreover Un,n = UnC\ R[^], 

then K . R ^ M V . R ) -

ii) Inside Un,n we let GMn be the subset of those generic polynomials 

for which the critical points ( or, equivalently, the critical values ) are real. It 

is clear that GM.n is a union of connected components of Un fl R[z] , and that 

each component of GMn is made up of A ( l , R ) - o r b i t s . The polynomials in 

GMn are said to be maximally real and generic. 

iii) Let Cn be the open set in Un consisting of lemniscate generic complex 

polynomials, and let Cn,n be its real part . Clearly these open sets are made 

of equivalence classes, whence one can define the lemniscate generic Hurwitz 

space £Wn, and similarly its real part £7 iN,R-

In [C-W] and [C-P] ( where, though, Wn was denoted Zn) a key importance 

had the study of the critical value fibration, associating to a generic polyno­

mial P the unordered set of its n critical values : 

(1.11) 

i/>n • "H'n ~* Wn = {B = {wi,...ywn}\wi G C, and Wi ^ Wj for i ^ j } . 

We recall some definitions and results from the two cited papers, which are a 

consequence of Riemann's existence theorem 

(1 .12) R e s u l t s and definit ions concerning the critical value f ibration. 

a) ifrn 7~tn ~* Wn is an unramified covering space whose fibre over B is 

the set of conjugacy classes [//] of monodromies // : 7Ti(C — J3, xo) —> <Sn+i, 

such that the image of ¡1 is a transitive subgroup, and each element of a 

geometric basis of — Byx0) is mapped to a transposition. Here, two 

homomorphisms fi and y! as above are said to be in the same conjugacy class 

iff there exists an inner automorphism <p of <Sn+i, such that (i = Dipofi' o c ^ " 1 ; 

and a geometric basis is a basis of n loops ji (z = 1 , n ) formed by a segment 

joining #o with a small circle around w^. 

b) Since the group Bn = 7Ti(Wn, {1, ...,ra}), called Artin 's braid group, 

acts (cf.[Bir]) as a group of automorphisms of 7Ti(C — { 1 , n } , #o), the mon-

odromy of iftn is such that a sends [/J] to [// o cr-1]. 
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c) the elements in a fibre of x/>ny once a geometric basis 71 , . . j n for 
7Ti(C — B , X Q ) has been fixed, can be put in a bijective correspondence with 
Eny the set of isomorphism classes of edge labelled trees with n edges ( we take 
( n + 1) unlabelled vertices which represent the set P - 1 ^ ) , and we adjoin n 
edges, labelled by an integer from 1 to n, corresponding to the transpositions 
^(7^), and joining the two vertices moved by the above transposition ). 

d) Let Yn C Wn be the subset {{wly ...,wn}\0 < \wi\ < ... < \wn\}, so 
tha t £ n = ^ 1 ( y n ) . 
Let An be the image of 7r i (yn, { 1 , n } ) —> 7r i (W„, { 1 , n } ) : then the 

connected components of Cn correspond to the An—orbits on En. 

(1 .13) R e m a r k . 
i) Writing n = I — I and rji = Wi/\wi\, we see that Yn is homeomorphic 
to (S1)71 x ( R + ) n , hence 7Ti(yn) = Zn. The images Tj of the generators of 
7Ti(yn) are the braids, which keep fixed the points 1 , n different from j , and 
move j in a circle around the origin (t 1—> e2nitj). 

ii) each connected component of CTin, being a finite connected covering 
of Fn, is also homeomorphic to (S1)*1 x (R+)n . 

iii) the real part of Yn,Yn^ = {(wu...,wn) £ R n : 0 < < ... < \wn\} 
is homeomorphic to {—l,+l}n x (R+)n . 

iv) tj)n commutes with complex conjugation. 

From the last part of the previous remark it follows that ^n carries the real 
part £WN?R of the lemniscate generic Hurwitz space to Yn,R> but we are going 
to see soon tha t £7iNJR is far from being the full inverse image of Y ^ R , which 
consists of (n + l)n~22n disjoint copies of R + . 

(1 .14) L e m m a . 
Each connected component A of CHn contains exactly 2n connected compo­
nents of £WN,R-

Proof. Each connected component A of CHn is homeomorphic to (Sl)n x 
( R + ) n , and for each point r = ( n , . . . , r„ ) G ( R + ) n , the set Ar ^ (S1)" x 
{r} , which is invariant by conjugation, contains only a finite number of self 
conjugate points. 
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We apply now the Lefschetz's fixed point formula to f = complex conju­
gation on Ar. 
Since Ar is a covering of (S1)*1, and / induces, via the covering projection, 
the s tandard conjugation on (S1)71, we see immediately tha t / acts as —1 on 
ffi(Ar,Z). 
Thus, the number of fixed points of / on Ar is exactly 2n. 
Now, the real par t of A is a closed submanifold of A, whence, it union of 
components of Afl^"1 (FNJR) , which is a trivial covering of Ynj&. Our assertion 
follows then immediately. 

Q.E.D. 

(1 .15) Corol lary 
For each connected component A of CHn the restriction (pn of ij)n to the 

real part of A is injective to Y ^ R if and only if it maps surjectively to Yn,R-

S2. S t a t e m e n t and proof of t h e m a i n t h e o r e m s . 

In this section, before giving a proof of the main theorem, we will give a 
characterization of the monodromies of maximally real polynomials as "snake" 
linear trees. 

This will be done geometrically, whereas a second proof, of algebraic 
nature, will be given in section three, where we will more generally charac­
terize the monodromies of real generic polynomials ( identifying them as self 
conjugate monodromies). 

(2 .1) T h e o r e m . 

Let ( w i , w n ) G Yii,R (thus wi G H , and 0 < \w\ \ < ... < |u?„|). Then 
there is a canonical choice of a geometric basis of 7Ti(C — wn}, 0) such 
that for each real lemniscate generic polynomial P having t ^ i , w n as critical 
values, the edge labelled monodromy tree T of P can be determined as follows. 
Let yi < ... < yn be the critical points of P , let u\ = P(yi)y ...,wn = P(yn) be 
the snake of its critical values, and let moreover a be the permutat ion such 
that Ui = wff(iy 

Then the tree T is a linear tree consisting of n consecutive segments with 
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labels (from left to right) < r ( l ) , c r ( n ) . 

(2 .2) C h o i c e of t h e canonical basis ( see figure 1) 

Let 3 be the planar graph consisting of the union of n circumpherences Xi, 
of radius e < < 1 and with centres in the n points t ^ , together with the 
complement in R of n open intervals of radius e centered around the n points 

Clearly C— {wiywn} is homotopy equivalent to 3 , thus it suffices to choose 
the geometric basis inside 7 T i ( 3 , 0 ) . 
Let ji be the loop based at 0 which consists of a "right turning" symplicial 
pa th Si from 0 to Pi = (wi — efsignwj]), followed by \i run counterclockwise, 
and finally followed by the inverse of Si. Here, a symplicial pa th is said to 
be right turning if, whenever the path , after following an edge, comes to a 
node, then takes as next edge the one to the right. We might observe tha t 
the inverse of a right turning pa th is left turning. 

Figure 1 : Choice of the canonical basis for ^ ( C — {wi,w5}, 0) 

P r o o f of t h e o r e m 2.1 

Consider P as a map of P ^ = C U {oo} to itself, and consider the graph 
0 = P _ 1 ( P ^ ) . We consider P ^ as a graph with vertices i ^ i , w n and oo, 
and therefore also (n + 1) edges. Letting as usual the weight of a vertex be the 
number of edges stemming from i t , 0 has one vertex (oo) of weight 2(n + 1), 
n vertices of weight 4 at the critical points y i , y n and all the other vertices 
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of weight 2. 

Whence, an easy calculation yields the number (—2n) for the topological 

Euler-Poincare's characteristic x ( ® ) -

Let us now disregard the vertices of weight 2 in 0 , and remark tha t 0 contains 

F R - We are left then with (3n + 1 ) edges, (n + 1 ) of which are intervals in P ^ . 

The remaining 2n are in conjugate pairs, each contained either in the upper 

or in the lower half plane. Therefore through each critical point yi passes 

exactly one edge E{ contained in the upper half plane. 

Claim : We contend that the other end point of Ei must be oo (compare figure 

2 ) . 

In fact, otherwise, the other end point of Ei should be a critical point y^, with 

i zfz j . We can clearly assume i < j>, and we shall see that if j = i + 1 we have 

a contradiction. In fact, in this case we would have three edges, namely 

its conjugate, and the interval [yt-, yj] mapping to the interval with ends w2-, Uj 

and not containing oo. But this contradicts the local structure of the map P 

at the simple critical point yi ( the local degree is 2). If instead, j > i + 1, 

since the y^'s and oo are the only singular points of y 0 , the other end point of 

# ¿ + 1 must be a critical point y*, with i + 1 < k < j . By induction on \j — i\y 

we finally find a contradiction. 

Q.E.D for the claim. 

Figure 2: A polynomial of degree 6 and its graph 0 = P 1(Pi>). 

The critical points of P are partitioned into two sets : the set of local 

minima for | P | | R , and the set of local maxima for | P | | R . If yi is a local 
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minimum, then the edge E{ maps bijectively to the interval with ends U{ and 
oo which contains 0 ; if instead yi is a local maximum, then the edge E{ maps 
bijectively to the interval with ends Ui and oo which does not contain 0. We 
clearly have a pair of conjugate roots of P for each local minimum of | P | | R , 

and all the remaining roots are real. 
Observe moreover tha t we have a real root exactly in each interval in R 
between two consecutive maxima of | P | | R , and tha t one cannot have two 
consecutive minima. 
In order to describe the monodromy fi of P , we want to determine explicitly 
the transposition r2- of the roots of P obtained by the liftings of the pa th 7,-
described above. 

Clearly a lifting of j i is contained in the graph P ~ 1 ( S ) (see figure 3) . We 
remark tha t since P is orientation preserving, the lifting of a right turning 
pa th will be right turning too. 

Figure 3 : A polynomial of degree 4, part of the graph P *(3) , the associated 
monodromy tree, the lemniscate configuration. 

(2 .2) S u b l e m m a 

1) If yi is a local minimum of | P | | R , the corresponding rff(j) permutes 
the pair of conjugate roots of P lying on Ei and its conjugate. 

2) If yi is a local maximum, as well as y » - i , Tff(2-) permutes the pair 
of real roots lying in the two intervals with endpoint yi. 
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3) If yi is a local maximum, but yi+\, y,_i are local minima, rff^ permutes 

the non real root in £"¿+1 with the non real root in the conjugate of £ ¿ - 1 -

4) In the remaining cases, r^ j ) permutes the neighbouring real root with 

the non real root in the union of Ei+\ with the conjugate of 

Proof. 

Let & be the small circle around yi which is the local inverse image of \i- Then 

P""1(5) has four nodes on & which partition it into 4 arcs, each mapping to 

a semicircle in Xi-

These nodes are called upper, left, lower, right, with obvious meaning. 

1) Lifting the pa th S{ with initial point the root on we end up to the upper 

node, then lifting Xi we end UP in the lower node, finally the lifting of the 

inverse of Si gives the conjugate of the first part of the path , therefore the end 

point is the conjugate root of the one we started with. 

2) Lifting the pa th Si with initial point the real root on the left of y^, we end 

up to the left node, then lifting Xi we end up in the right node, finally lifting 

the inverse of Si we get to the real root on the right of y2. 

In the remaining two cases the situation changes since we have to lift some 

semicircles to a neighbourhood of a critical point, whence the lifts will be one 

of the above mentioned 4 arcs around the critical points. 

3) We lift the pa th Si with initial point the root on the conjugate of i ^_ i , t hus 

we end in the left node around y2, since when we approach yj_i we have to 

turn right, then we proceed to the right node : when we approach yi+i we 

have to turn left, thus we end up to the non real root in Ei+i. 

4) The proof is similar to case 3 : if we approach yj_i we have to turn right, 

if instead we approach yj+i we have to turn left. 

Q.E.D. for the Sublemma. 

In order to finish the proof of theorem 2.1, we recall tha t the roots of our 

polynomial P are partitioned as follows : 

a) a conjugate pair is associated to critical points which are local minima of 
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\Р\\л, 

b) a single real root is associated to a sequence of consecutive (in the source 
ordering) local maxima of | P | | R , 

c) a single real root is associated to any local maximum of | P | | R , which is 
either yi or yn. 

Recall also tha t one cannot have two consecutive local minima. We associate 
to P the linear edge labelled tree T consisting of n consecutive segments with 
labels (from left to right) < r ( l ) , c r ( n ) . 

We take a bijection of the roots of P with the vertices of T as follows 

/3) assume tha t i/i, Vi+i are local maxima for | P | | R : then to the root corre­
sponding according to b) we associate the vertex v lying between the edges 
labelled a(i) and a(i + 1) 

a) if yi is a local minimum for | P | | R , we take any bijection between the two 
roots associated according to a) and the two vertices of the edge labelled <r(i) 

7) if yi (resp. yn) is a local maximum for | P | | R , the root corresponding 
according to c) will be associated to the end of cr(l) (resp. : cr(n)). 
According to the meaning of the monodromy graph, and by sublemma 2.2 the 
monodromy of 7<r(£) is the transposition permuting the two vertices of 
the edge labelled cr(i). 

Q.E.D 

For the reader's convenience, we reformulate in our context the result of Davis 
quoted in the introduction ( with essentially the same proof). 

(2 .3) T h e o r e m ( C . D a v i s , cf. [Da]) 

For each weak snake sequence U i , . . . , u n of real numbers, there exists 
exactly one maximally real Tschirnhausen polynomial, and exactly one (max­
imally real) normalized polynomial whose snake sequence of critical values is 
the given one. 

In particular, if u i , u n are "lemniscate generic" (i.e., there is a permutat ion 
a such tha t if Ui = wff(i), then 0 < < ... < \wn\) each linear monodromy 
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tree as in theorem 2.1 comes from a real polynomial. 

Proof. Let us prove the assertion first in the case where we have a snake 
sequence ( thus u ^ r ^ + i are distinct). 
A first remark is that the snake sequence associated to P(—z) is the reverse 
of the snake sequence associated to P ( that is, un , . . . , u i ) whence the snake 
sequence is only A + ( l , R)-invariant (moreover, by corollary 1.8, every nor­
malized polynomial is A + ( l , R)-equivalent to a unique Tschirnhausen one. 
Remark tha t the space of normalized maximally real polynomials has two com­
ponents, mapping to the space of up-down, respectively down-up sequences. 
The crucial point is tha t a maximally real polynomial determines a natural 
source ordering of the critical points yi , . . . ,yn thus the space of monic nor­
malized maximally real polynomials is isomorphic to a subspace of the space 
of complex monic normalized polynomials taken together with an ordering of 
the critical points. 
More precisely, we have 

C = { ( y i , y „ ) | y * € R , yi < y2... < Vn} = R x ( R + ) n " 1 

inside {(yi, . . . ,y„)|y* e C } ^ C n . 
There is a surjective polynomial map, homogeneous of degree ( n + 1), 
(3 : Cn —> Cn associating to (yi , . . . ,yn) the branch points U{ = Py(yi) of 
the normalized polynomial Py — f(Y\i=zl n(z — yi)). The claim is tha t /3 
( or —/3, if n is even) maps the above C = R x ( R + ) n _ 1 to the space V of 
up-down sequences, which is again R x ( R + ) n _ 1 . A first remark is that (3 is 
unramified on the open set of Cn where all the y ^ s are distinct . This follows 
from Riemann's existence theorem, which shows indeed more, as follows. 
If all the y^'s are distinct, once a geometric basis for 7Ti(C — { ^ i , u n } ) is 
fixed, to each y2- is associated a transposition r^, and if Ui = Uj, the trans­
positions Ti and Tj are disjoint. Conversely, given (u1,...,un) we can give in 
a continuous way, for each ( w i , u n ) in a neighbourhood of (u1,...,un) a 
homomorphism of a free group in n elements to 7Ti(C — {wi,...,wn}) taking 
the z-th generator to a geometric loop around Ui. 
For each choice of the r^s as above, we can use the monodromy determined 
by the products of the r / s , to construct a continuous family (parametrized 
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by the points un)) of Riemann surfaces isomorphic to C, together with 

source classes of pointed polynomial maps (this means, with a choice of a 

fixed point over the base point for the fundamental group), and an ordering 

of the (distinct) critical points. 

Therefore the intersection of the inverse image of the given neighbourhood U 

of ( w j , w ° ) with the open set where the y^s are distinct is homeomorphic to 

a product of U with a finite discrete space. A second remark is tha t /3 is closed 

( in fact, being homogeneous, it induces a map between the corresponding 

projective spaces, and we can use the compactness of projective space ). 

A third remark is that /3 is finite, as it follows from Riemann's existence 

theorem. 

Since /3 is unramified on C, /3(C) is an open set in V. Since /3 is closed, the 

image of the closure of C is closed. If (3(C) would not be the entire V, there 

would be a point in the closure of C mapping to the interior of V. But this is a 

contradiction, since obviously if Ui,Ui+i are distinct, also y^, Vi+i are distinct. 

We have thus proven tha t /3 : C —• V is unramified, surjective, closed, whence 

it is a covering map. Since V is simply connected, /3 : C —> V is a homeomor-

phism. 

In the general case when some ^¿,^¿+1 are not distinct, observe tha t since /3 

is closed, /3 maps the closure of C, C to the closure V of V; thus surjectivity is 

proven in general. Unicity follows since C maps surjectively via a proper and 

finite map to V: the general fibre is one point, thus connected, therefore any 

fibre is connected, thus reduced to one point. 

The last assertion follows immediately from theorem 2.1. 

Q.E.D. 

(2 .4) Def in i t ion . 

Given distinct real numbers t\ < t2 < ... < tn we consider the number Kn 

of up-down sequences that can be formed out of £i,... ,£n. It is easy to see 

that this number is independent of the choice of £i,. . . ,£n. In fact there is 

a bijection of the above up-down sequences with the set of permutat ions a 

of (1,..,n) such tha t cr(l) > cr(2) < cr(3) > which we will call up-down 

(abstract) snakes. Similarly we can define down-up snakes, snakes, and then 

the number for down-up sequences formed with ¿1, tn is equal to A"n, and 
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the number of snakes is 2Kn. 

(2 .5) R e m a r k . 
The number Kn of up-down snakes equals the number of connected compo­
nents of the open set W, in the space V (V 2 ( R x ( R + ) n - 1 ) ) of up-down 
sequences, given by the sequences t t i , . . . ,un where all the u^s are distinct. 

(2 .6) M a i n T h e o r e m . 

(a) Each connected component of Cn contains exactly 2n+1 connected 

components of £ N , R -

(b) The number of connected components of £ N , R mapping to a fixed 
component of Y"NJR equals the number 2Kn of snakes, whence the number of 
connected components of Cn equals Kn. 

(c) (cf. Arnold [Arl] ) the number of connected components of GMn^ 
{monic polynomials} equals the number Kn of up-down snakes ; the number 
of connected components of GAin equals 2Kn. 

(d) ( cf. [Arl],appendix to [C-P] ) the number of components bn of £ N > R 

gives rise to the following exponential generating function : 

2Xn(bn/n\)tn 4/(1 - sin(2*)) = 2(sec(2t) + tan(2*)Y 

(e) ( cf. appendix to [C-P] ) the number Kn of up-down snakes ( which 
by b) equals the number of components of Cn) is equal to the number of 
sequences #n-2> such that Xi is an integer with 0 < X{ < i, and such 
that for each integer m there are at most two i's with X{ — m. 

Proof. Recall tha t the number of connected components of Cn equals the 

number of connected components of the quotient CHn, whereas the inverse 

image of any connected component of £WN,R consists (cf. 1.8) of 2 connected 

components of £ N , R -

Therefore a) is an immediate consequence of lemma (1.14). 
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To prove b ) , it suffices to show tha t the number of connected compo­
nents of CHn,№ mapping to a fixed component of yN)R equals Kn. But this 
follows from the last assertion of theorem (2.3), since two snake sequences 
yield isomorphic linear trees (according to 2.1) if and only if they are the re­
verse of each other (although not needed, we recall that if P(z) yields a snake 
sequence, P(—z) yields the reverse snake sequence, and tha t P(z) and P(—z) 
are source equivalent). 

Then the number an of connected components of Cn equals Kn since by a) the 
number of connected components of £ N ) R equals 2n+1an, while, by what we 
have just seen, it equals 2Kn times the number of components of Y ^ R , which 
is 2n. To prove c), recall tha t Davis' theorem 2.3 shows tha t the map which 
associates to a polynomial with distinct real critical points its snake sequence 
of branch points yields a homeomorphism of the quotient QMn/A+(l, TV) 
with the space W ' of snake sequences formed of n distinct points. Whence, 
the number of connected components of GA4n equals the number of connected 
components of W . But W ' is just given by two disjoint copies of the open set 
W considered in remark 2.5, which has Kn components. Thus c) is proven, 
d) and e) follow immediately from a), b),c) and the cited papers. To avoid con­
fusion, we only remark that Kn is denoted by a n - i in [C-P], where it is proven 
tha t En(an /n! ) tn = 1/(1 - sin(t)), whereas [Arl] shows tha t Y,n(Kn/n\)tn = 
sec(t) + tan(£): a baby calculus verification shows d). 

Q.E.D. 

We want now to consider, for a given choice of critical values, the lemniscate 
configurations tha t can be obtained from real polynomials. Before doing this, 
we recall the connection between monodromy trees and lemniscate configura­
tions. 
The big lemniscate configuration Tp of a polynomial P : C —» C is the union 
of the preimages of 0 under P together with the singular level sets of | P | . 
Denoting by Ac = {z £ C : |P (* ) | = c} , we have 

(2.7) rP = p-1(o)u 
2 = 1 , . . . , * 

A|ti;,-h 

where w\, ..Wk are the critical values of P . If pi is a critical point of multiplicity 
mi — 1, the lemniscate has a singularity consisting of mt- smooth curves 
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intersecting with angles 7r / ra i . In the case rrii = 2 this singularity is called a 
node. 
If P is lemniscate generic, let w\,...,wn be the critical values of P with the 
usual order 0 < \w\\ < ... < \wn\. We have a monodromy edge labelled tree 
once a geometric basis 7 i , . . . ,7n of 7Ti(C — {u;i,...,ttfn},0) is fixed. 
In [C-P] ( cf. also [B-C]) it was proven that the isotopy class of the em­
bedding of Tp in C is completely determined by a rooted (connected) tree g 
whose vertices correspond to the connected components of Tp (the root corre­
sponds to A | W n | ) , and whose edges correspond to the connected components 
of Uj=o , . . . ,A:A|u , i . |+€ (if we set wo = 0, and we choose e > 0 a sufficiently small 
real number such tha t e < \wi \ and \wi \ + e < \wi+i\). 

The main theorem of [C-P] would in particular describe the class of graphs 
obtained from lemniscate configurations and show tha t there is a bijection 
between connected components of Cn and the isomorphism class of such trees. 
To describe abstractly the correspondence associating to an edge labelled tree 
T the associated lemniscate rooted tree gy it was convenient ( cf. ibidem) to 
give the following 

(2 .8) Def in i t ion 
Given an edge labelled tree T with n edges, the ^-skeleton 7* of T is the 
subgraph of T with the same vertices and with the edges whose label is < k. 
To T one associates a rooted graph gy whose vertices correspond to the con­
nected components C of the various skeleta 7jt, with T corresponding to the 
root, and with an edge connecting C and C if C C C and C is a component of 
7 i , C is a component of 7*+i. 
The fc-partition Vk of T is the partition of {1, ..&} determined by the compo­
nents of Tk of dimension 1. 

(2 .9) R e m a r k . 
Given two edge labelled trees T , T1 with n edges, they determine the same 
lemniscate tree g if and only if they determine, for each the same ^-part i t ion 
Vk ( the proof of this statement is phrased in slightly different terms in [C-P], 
pages 630-631). 

We restrict from now on to linear trees T. 
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(2 .10) R e m a r k s . 

1) There is a natural correspondence which associates to a permutat ion r 
the linear edge labelled tree T with n edges labelled r ( l ) , r { n ) from left to 
right. This correspondence induces a bijection between the set of isomorphism 
classes of linear edge labelled trees with n edges and the family of left cosets 
in the symmetric group Sn for the subgroup of order two generated by the 
reflection r sending i to n — i. 

2) Let w i , w n be "lemniscate generic" real numbers taken with the s tandard 
order (0 < \ w \ \ < ... < |ti;n|). Then there is a permutat ion if> giving the target 
ordering of the given numbers (ti < t2 < ... < tn) , and t{ = w^y 

Notice tha t tft depends only upon the sign of Wi. The condition tha t the 
monodromy associated to r comes from a real polynomial can thus be phrased 
by the condition tha t a — or is an abstract snake (cf. 2.4 ). 

(2 .11) Corollary. 

For each sequence of critical values W\,wn such that 0 < \ w \ \ < ... < \ w n \ , 
the lemniscate configurations of real polynomials are the image of the map 
from the set of n-snakes to the set of those nested partit ions Vi, ....Vn coming 
from lemniscate trees which associates to a snake a (cf. 2.4) the nested 
parti t ions corresponding as in 2.8 to r = ift o a is the permutat ion, as in 
2.10)2, comparing the s tandard with the target ordering) . 
In the statement of 2.11 we did not bother so much about specifying the image 
set : the main reason for this is tha t we know a priori tha t the above map 
factors through the equivalence relation a ~ <jor, thus we can view it as a map 
between {n-snakes modulo reflection} —• {lemniscate configurations}, where 
we know tha t both sets have cardinality Kn. Thus the lack of surjectivity will 
be measured by the lack of injectivity (1.15 states the same principle from 
the opposite point of view of fixing the lemniscate configuration and asking 
whether all choices of signs are achieved by a real polynomial yielding the 
given configuration). 

(2 .12) T h e o r e m . 

For n > 4 and for each sequence of real numbers wn such tha t 0 < 
\wi\ < ... < |wn|, the lemniscate configurations of real polynomials having 

82 



CONFIGURATIONS OF REAL AND COMPLEX POLYNOMIALS 

...,wn as criticai values are not ali the possible lemniscate configurations. 

Proof. It will suffice, by the remarks we have just made, to exhibit two non-

isomorphic edge labelled linear trees T , T1 yielding the same nested partitions. 

The rest of the proof follows by several steps : 

2.13) Define an inner reflection to be the operation associating to a linear tree 

f as above the tree T ' obtained by picking up a 1-dimensional component B of 

the A?-skeleton and reversing it ( that is, if B is a segment with labels hi,ft¿ 

from left to right, Br will be the segment with labels /&&,...,/&! from left to 

right). 

Define an inner reflection to be even iff the number b is even, odd otherwise. 

2.14) an inner reflection does not affect the associated nested partitions 

(whence, the associate lemniscate configuration remains the same) 

2.15) We claim tha t if o r is a snake cr, applying an inner reflection we get 

t' and then o r' = a1 is a snake if and only if the reflection is odd. In fact, 

defining ^~1(J9) as the segment with labels ^>~1(fti), . . . , ' 0 ~ 1 ( / i f c ) , ' 0 ~ 1 ( J 3 r ) = 

^>"~1(i?)r, therefore if ^ _ 1 ( i ? ) is a snake also ^ _ 1 ( i ? ) r is a snake. The only 

problem to check whether cr1 is a snake comes by comparing ^_1(^o) with 

^/,~1(^i)) and V > _ 1 ( ^ & ) with i />""1( / i5+1) , where / Ì 0 , / Ì 6 + I are the labels respec­

tively preceding and following B. But since B is a component of the k skele­

ton, h0, /¿6+1 are > k, whence for instance ii>~l(h0) is either bigger than all of 

^ -1(^ i )> • V7""1(^ò)? or smaller. Thus we have a snake if and only if either 

^~"X(S) and ^ _ 1 ( S ) r are both up-down, or they are both down-up. But this 

clearly holds if and only if b is odd. 

2.16) For each j with 1 < j < n, there exists a snake a with a(j) = n. In fact 

wn is either the biggest or the smallest of w\, . . . , i i ; n , and it suffices to observe 

that for each z, given arbitrary i distinct real numbers, it is possible to form 

with them an up-down sequence and also a down-up sequence ( this applies 

after dividing w\,wn-i in two sets of respective cardinalities (j — 1) and 

2.17) Let j be even, take r such tha t the associated snake a has a(j) = n, 
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and operate on the corresponding T the odd inner reflection corresponding 
to the segment B of Tn-i lying to the left of n . The resulting T ' is obviously 
non isomorphic to T , but it yields a snake. 

Q.E.D. 

(2 .18) R e m a r k . For n = 3 and for each sequence of real numbers t ^ i , w n 
such tha t 0 < \ w \ \ < ... < \ w n \ , the 2 possible configurations are achieved by 
real polynomials. 

For n = 4 we get 4 out of 5 for each choice of the signs of . . . ,wn. The 
missing configuration varies. 

For n = 5 we get 11 out of 16 configurations for each choice of the signs. 
For n = 6 there is a choice for which we get 34 configurations out of 61, and 
a choice for which we get 37 ones. 

From 1.15 and 2.12 follows immediately the following 

(2 .19) R e m a r k . For n > 4 there exist lemniscate configurations g such that 
the signs of real numbers i ^ i , w n (with 0 < \ w \ \ < ... < \ w n \ ) which are 
the critical values of a real polynomial yielding the given configuration g are 
subject to some restrictions. 

For n < 5 there exist configurations g such that no such restriction occurs. 

Q u e s t i o n : for which n does there exist a configuration g for which all the 
possible signs for w i , w n can be realized? 

(2 .20) E x a m p l e . Given a lemniscate generic real polynomial P , we can 
compose P with a real affinity in the target. Clearly, if we replace P by 
aP(a G R*) , then aP remains lemniscate generic and with the same lemnis­
cate configuration. If instead we replace P by P + c ( c £ R ) , we remain in 
the same component of Ain-> but P + c is lemniscate generic if and only if, 
assuming without loss of generality that the critical values of P are positive, 
c ^ — t O j , or, for i < j , c ^ \/2{wi — Wj). 

Therefore, it is easy to see that we range in ( l / 2 ) n ( n + 1) + 1 distinct compo­
nents of £ n ? R , thus a natural question is whether one hits ( l / 2 ) n ( n + 1) + 1 
distinct components of Cn. 
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The answer is négative, as it is shown by the case where n = 4, the critical 
values are 1,2,3,4, and the snake linear tree is —1 — 4 — 2 — 3—. In fact, for 
c = — (2 — e), we get the same configuration as for P. 

(2 .21) Def ini t ion. A real polynomial of degree n + 1 is said to be totally 
real if it has n + 1 distinct real roots. Clearly, a totally real polynomial is 
maximally real. 

(2 .22) P r o p o s i t i o n . The space of totally real lemniscate generic polynomials 
of degree n + 1 has 2 ( m ! ) 2 components for n = 2m, and 2 ( m ! ) ( ( m + 1)!) 

components for n = 2m + 1. 

Proof. Remark tha t a lemniscate generic polynomial is totally real if and 
only if the associated snake of critical values ui,...,un has alternating signs. 
Therefore the critical values wi, ...,wn must be partit ioned according to their 
sign into two disjoint sets of respective cardinalities m, n — m. It is easy now 
to count the number of snakes obtainable by W i , w n , and we conclude by 
theorem 2.6. 

Q.E.D. 

§3. C o m p o n e n t s of the space of real generic p o l y n o m i a l s . 

We start this section by generalizing the theorem of Davis to the case of 
non maximally real polynomials. 

We begin by setting up some notation. 

Assume that P is a polynomial with k real critical points j/i < ... < and 
m pairs (d,Ci)---(Cm>Cm) of complex conjugate critical points (n = k + 2m). 
As usual, the A + ( 1 , R ) source -equivalence class of P (or of — P) is uniquely 
represented by the normalized polynomial 

(3-1) Pnc 
i = 1 

(* - Vi) 
j=l,..m 

( * - C > ) ( * - C > ) 
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We consider the critical values = Pyx(yi), which form a weak snake se­
quence, and the conjugate pairs of critical values (vj,Vj) = (Pyx(Cj)-> -Fy,<(0))-
Let H be the upper half plane in C, and H its closure. Naturally, conjugate 
pairs of complex numbers are parametrized by points of H. 
Similarly to the proof of 2.3, we let 

C" = {(yu-,yk)\yi 6 R , y i < y2... < Vk) x Hm ! R x ( ^ ° ) M x H m 

embedded inside Cn, by associating to ( y i , y * ) ( C i > • Cm) the n - tup le 
( j / i , j / j b , Ci> Ci? Cm? Cm)- We consider again the branch point map , the sur-
jective polynomial map, homogeneous of degree (n + 1), /3 : Cn —> Cn associat­
ing to (yi , . . . ,y*,Ci ,Ci , - - - ,Cm,Cm) the ordered set ( u u u * , v i , « i , v m , v m ) . 

Finally, we let /3" : C" = R x ( R ^ ° ) M x H m V" = R x ( R ^ 0 ) ^ x H m 
the composition with the projection associating to ( u i , M * , v i , i > m , vm) 
the point [ ( w i , U f c ) , ^ i } , . . . { i ; m , vm}]y where we view now ( w i , i / * ) as 
a point of the space V of weak up-down sequences (down-up if n is odd). 
We have the following analogue of the theorem of C. Davis (except for unicity, 
which does not hold) : 

(3 .2) P r o p o s i t i o n . The map /3" : C —> V" is surjective. 

Proof. The map /3" : C" —> V" is closed and finite and the boundary of C" 
maps to the boundary of V". Let C be the open set in C" where yi < y2... < 

y*, C; i R , Ci ̂  G> ^ all i, j . 
Define similarly V'. Then C" — C maps to V" — V . Moreover, as we know, j3u 
is unramified, whence open on C. If the open set /?"(£') would not contain 
V , there would be a point in V which belongs to /9"(C") ^closure of /3"(C), 
a contradiction again. 
Therefore /9"(C") ^closure of /3"(C) contains the closure of V , tha t is, V". 

Q.E.D. 

(3 .3) R e m a r k . The A + ( 1 , R ) source -equivalence classes of generic monic 
real polynomials with exactly k real critical values correspond to the inverse 
image /?,,_1(V*), where V* is the open set in V' where all the u^s are distinct. 
We shall not pursue this point of view, since we shall determine the connected 
components of /3"~1(V*) by a different method. 
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(3 .4) R e m a r k . A necessary condition for an algebraic function / : C —• P1 

to be real is that the branch locus B is self conjugate (hence, the branch 

points will be k real critical values Wi}...Wk and m pairs ( v i , V i ) . . . ( v m , v m ) 

of complex conjugate critical values where Vi lies in the upper half plane). If 

B is self conjugate, moreover, it is easy to see tha t / is real if and only if 

complex conjugation on P1 lifts to C. This means that complex conjugation 

sends the class of the monodromy ¡1 to itself (of course we have to express 

both monodromies in a fixed basis of 7Ti) . 

Assuming tha t 0 is not a critical value, we choose a geometric basis of 7Ti(P1 — 

i?,0) by choosing loops 71 , . . , 7* around the w^s as in 2.2, and by choosing 

pairs of self conjugate loops (Sj^Sj) around the pairs (VJ,VJ). 

Figure 4 : choice of the canonical basis for a real polynomial 

For use in the calculation, we observe that , if we separate the real branch 

points into the set of negative ones wj < .. < < 0 and the set of positive 

ones 0 < < .. < we have 

(3.5) ft = ( 7 Í T 1 ( 7 Í ) - 1 - . . . ( 7 t i ) - 1 ( 7 Í h t i . . " 7 Í 

and similarly for the ji 's. We can thus rephrase 3.4 as follows : 

(3.6) ¡1 is the monodromy of a real algebraic function if and only if there exists 

a permutat ion a of period 2 ( induced by conjugation on /~"1(0)) such tha t , 
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setting Tj = Kit)»» = Kit)»» = Kit)»» = Kit)»» т _ 1 т - 1 •r-.\, 
and similarly Pi_i, we have : 

ar{a = pi-iTip^ , ar[a = p'i-\T'iPi-\ > <*Vja = v'j-

We can now characterize the monodromies of generic real polynomials 

(3-7) T h e o r e m . 

Let wj < .. < < 0 < < .. < tu+, be distinct real numbers ^ 0, 
and let (viyvi)...(vmyvm) m distinct pairs of conjugate complex numbers with 
Vi in the upper half plane. 

Set k = s + r, n = 2m + k,B {ws ,..,w1 ,wf9..,w+}U{vuv1}...\J{vmjvm} 
Then there is a canonical choice of a geometric basis of 7r1(C — J3,0) (as 

in 3.4), such tha t the edge labelled monodromy trees T (in En, and with 
the branch points as labels) coming from generic real polynomials are exactly 
those obtained as follows. 
Take a snake linear edge labelled tree T' in Ek, having wj,.., w1, w1+ ,w*y.., 
as labels ( snake with respect to the ordering of the w^Js in Ft), and let a' 
be the canonical permutat ion on the vertices of T ' which is the product of all 
the transpositions corresponding to the "local minima" edges, i.e., the edges 
which have a label of the same sign of its neighbours . 

Then T is made out of a subtree isomorphic to T ' and of the union T* 
of an unordered pair of edge labelled graphs 7^,7^*, (simply connected but 
not necessarily connected), with respective labels obtained by choosing m 
among the labels v\,..vm ,Ui,. . . ,t?m, which are isomorphic under the natural 
isomorphism a* which exchanges the edge V{ and the edge Vi in such a way 
that a* agrees with a' on the common vertices of the subgraphs T ' , T* ( thus 
a1 and a* together define an involution a on T ) . 

(3 .8) R e m a r k . 
A more efficient way to label T is to use the target ordering for the edges 

of the snake linear tree ( hence those labels are numbers from 1 to &), and 

numbers i" for i^, numbers if for Vi (cf. figure 5). 
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P r o o f of t h e o r e m 3.7, 

Let T be the monodromy tree associated to let E+ be the subgraph 
consisting of the edges labelled by the t u ^ ' s , define E~~ analogously and let 
finally V = E+UE~. 
We shall show later that T1 is a tree. 
Let moreover Si be the the subgraph consisting of the edges labelled by the 
u/+'s with j < i (resp. SI for the wjys with j < i). Define moreover, for a 
subgraph Sj supp(«S) as the union of the vertices of S. 

By the formulae 3.6. a carries supp (Si) into itself, and since // is the 
monodromy of a polynomial, pi acts on Si as a product of cycles corresponding 
to the supports of the connected components of Si. In particular, 3.6 implies 
tha t the support of the connected component of Sj containing the edge is 
sent to itself, thus by induction a leaves the support of every component of 
Sj invariant for each j . 

Recall tha t the edge corresponds to the transposition Tj and let {a, 6} = 
supp (TJ). We have three cases : 

1) {<2 ,6}n S U p p (Sj-i) = 0, 

2) {a,6}H supp (Sj-1) = {b} 

3) {a, b} C supp (Sj-!). 
Since by 3.6 we have an equality a{ayb} = /9j_i{a,6}, in case 1) a ({a ,6}) = 
{a, 6}, in case 2) a(a) = aya(b) = pi-\(b) ^ 6, in case 3) a and b belong 
to different components of whence by our previous remark a(a) = 
/9t--.i(a),a(6) = Pi-i(b). 
Let a be such tha t a(a) — c ^ a. If j is minimum such that a G supp ( 5 / ) , 
we must be in case 1), and then a(a) = b = Tj(a). 
Conversely, if case 1) holds, and the edge Tj is not a component of E~*~y then 
Tj appears in the cycle decomposition of a ( in fact, if a, b are the vertices of 
T j , we can assume then that there is a smallest i > j such that a belongs to 
supp (Si)), and then OL(O) = pi-i(a) = Tj(a) = b. 

In order to consider the case where the edge Tj is a component of E+ (note 
that the argument for E~ is completely analogous) we first prove that T ' is 
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connected. In fact, we saw that a preserves the connected components of 

E+yE~ywhence if A, B are two connected components of T ' , they are left 

invariant by a and there exists an edge Uj = V>(Sj) connecting A and B : but 

then also v1- = p>(Sj) connects A and S , contradicting the fact tha t T is a 

tree. 

If now the edge Tj is a component of , then there exists a component A of 

E~~ intersecting the edge Tj in a vertex a, which must then be a fixed point 

for Of. 

The conclusion is tha t a acts on supp ( T ' ) as the product of those transposi­

tions Tj^r'j such tha t the edge corresponding to Tj is a connected component 

of Sj but not of E+ ( similarly for TJ) . 

We prove now tha t T' is a snake linear tree. 

E+ is a union of disjoint linear trees : else, there is b belonging to edges 

T j , ThyTky with j < h < ky and j , hy k minimal with this property. 

But then,a(6) must equal ph-i(b) and pk-i(b). By our choice of k,pk-\{b) = 

Ph-iTh(b\ thus b = Th(b)y a contradiction. 

Using tha t the transpositions giving the cycle decomposition of a are disjoint, 

we immediately see that the components of E+ are snake linear trees. In fact, 

if the edge Tj intersects £ ¿ - 1 , then either both of its vertices lie in Si-\y or a 

fixes one of two vertices. 

T7 is linear : otherwise, since the intersection points of 22+ and E~ are left 

fixed by a , if a vertex a would belong to, say, two edges of E+ and one edge 

of E~~, then a would act as the identity on the vertices of two adjacent edges 

of £*+, what is easily seen to be impossible. 

Since if an edge of E+ intersects E~ then its vertices are left fixed by a , 

it follows tha t T7 is also snake linear. 

We set then T* to be the union of the edges of T not in T ' . 

If A is a connected component of T*, then A intersects T ' in a vertex a. 

Assume tha t a ( A ) = A: then, since a(a) = a in this case, a would have a 

fixed edge in A, contradicting 3.6. 

Therefore a ( A ) and A have disjoint edges, are clearly canonically isomorphic, 

and oc{A) intersects T ' in a(a). 

The rest of the proof is now straightforward. 
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In fact, conversely, a tree T with the stated properties defines an involution 
a satisfying 3.6, and we conclude by remark 3.4. Q.E.D. 

Figure 5 : A generic polynomial of degree 13, its monodromy tree , and its 

graph e = p-1(pJo-

(3 .9) R e m a r k . 

A first observation is tha t for each generic real polynomial P , there is an 
equivalent polynomial Q(z) = P(z + c) such that all the real critical values 
are positive. Therefore the connected components of the open set of real 
generic polynomials of degree n + 1 with k real critical values correspond to 
the set of orbits of the braid group Bm(2m + k = n ) on the isomorphism 
classes of edge labelled trees T as in theorem 3.7 (where, though, the role of 
T*^2 cannot be interchanged). Here the braid group acts in the standard 
way ( cf. [C-W]) on the labels V and i" ( tha t is, the s tandard generators 
cry, j = 1, ..m — 1, of Bm act by letting Uj become i^+i , whereas the new Vj 
is the old i/y+i conjugated by the old Vj, and similarly for ^-+i) . For each 
subgraph , say 7^*, we have two more subgraphs, T* yT* , whose connected 
components (which can be reduced to a vertex) correspond to the connected 
components of the complement of P _ 1 ( P ^ ) which are contained in the upper 
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half plane and map to the lower half plane (resp.: to the upper half plane). 
Notice tha t in this case the roles of 7^*, 7^*, are distinguished since we only 
look at A+( l , ]R)-orbi t s . 

The geometric picture is illustrated in figure 5. 

It is clear tha t the action of the braid group respects the subtrees given by 
these connected components , and that it can transform any such tree to any 
other with the same number of edges. 

Using the above remarks one can find , for each snake linear tree T ' with k 
edges, the number of the braid group orbits on the set of trees T which have 
T' as the "snake" part . 
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