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Compactifìcations of moduli spaces 
inspired by mirror symmetry 

David R. Morrison 

The study of moduli spaces by means of the period mapping has found its 
greatest success for moduli spaces of varieties with trivial canonical bundle, 
or more generally, varieties with Kodaira dimension zero. Now these moduli 
spaces play a pivotal role in the classification theory of algebraic varieties, 
since varieties with nonnegative Kodaira dimension which are not of general 
type admit birational fibrations by varieties of Kodaira dimension zero. Since 
such fibrations typically include singular fibers as well as smooth ones, it is 
important to understand how to compactify the corresponding moduli spaces 
(and if possible, to give geometric interpretations to the boundary of the 
compactification). Note that because of the possibility of blowing up along 
the boundary, abstract compactifications of moduli spaces are far from unique. 

The hope that the period mapping could be used to construct compacti­
fications of moduli spaces was given concrete expression in some conjectures 
of Griffiths [25, §9] and others in the late 1960's. In particular, Griffiths con­
jectured that there would be an analogue of the Satake-Baily-Borel compact­
ifications of arithmetic quotients of bounded symmetric domains, with some 
kind of "minimality" property among compactifications. Although there has 
been much progress since [25] in understanding the behavior of period map­
pings near the boundary of moduli, compactifications of this type have not 
been constructed, other than in special cases. 

In the case of algebraic K3 surfaces, the moduli spaces themselves are 
arithmetic quotients of bounded symmetric domains, so each has a minimal 
(Satake-Baily-Borel) compactification. In studying the moduli spaces for K3 
surfaces of low degree in the early 1980's, Looijenga [35] found that the Satake-
Baily-Borel compactification needed to be blown up slightly in order to give 
a good geometric interpretation to the boundary. He introduced a class of 
compactifications, the semi-toric compactifications, which includes the ones 
with a good geometric interpietation. 

S. M. F. 
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In higher dimension, the moduli spaces are not expected to be arithmetic 
quotients of symmetric domains, so different techniques are needed. The 
study of these moduli spaces has received renewed attention recently, due to 
the discovery by theoretical physicists of a phenomenon called "mirror sym­
metry" . One of the predictions of mirror symmetry is that the moduli space 
for a variety with trivial canonical bundle, which parameterizes the possi­
ble complex structures on the underlying differentiable manifold, should also 
serve as the parameter space for a very different kind of structure on a "mir­
ror partner"—another variety with trivial canonical bundle. This alternate 
description of the moduli space turns out to be well-adapted to analysis by 
Looijenga's techniques; we carry out that analysis here. 

In the physicists' formulation, one fixes a differentiable manifold X which 
admits complex structures with trivial canonical bundle (a "Calabi-Yau man­
ifold"), and studies something called nonlinear sigma-models on X. Such an 
object can be determined by specifying both a complex structure on X, and 
some "extra structure" (cf. [40]); the moduli space of interest to the physicists 
parameterizes the choice of both. The roles of the "complex structure" and 
"extra structure" subspaces of this parameter space are reversed when X is 
replaced by a mirror partner. 

Most aspects of mirror symmetry must be regarded as conjectural by math­
ematicians at the moment, and in this paper we conjecture much more than 
we prove. In a companion paper [41], we consider formally degenerating vari­
ations of Hodge structure near normal crossing boundary points of the mod­
uli space, and describe a conjectural link to the numbers of rational curves 
of various degrees on a mirror partner. In the present paper, we extend 
these considerations to boundary points which are not of normal crossing 
type, and formulate a mathematical mirror symmetry conjecture in greater 
generality. In addition, we find that when studied from the mirror perspec­
tive, a "minimal" partial compactification of the moduli space—analogous to 
the Satake-Baily-Borel compactification—appears very natural, provided that 
several conjectures about the mirror partner hold. 

One of our conjectures is a simple and compelling statement about the 
Kahler cone of Calabi-Yau varieties. If true, it clarifies the role of some of the 
"infinite discrete" structures on such a variety, which nevertheless seem to be 
finite modulo automorphisms. We have verified this conjecture in a nontrivial 
case in joint work with A. Grassi [21]. 

The plan of the paper is as follows. In the first several sections, we re­
view Looijenga's compactifications, describe a concrete example, and add a 
refinement to the theory in the form of a flat connection on the holomorphic 
cotangent bundle of the moduli space. We then turn to the description of the 
larger moduli spaces of interest to physicists, and analyze certain boundary 
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points of those spaces. Towards the end of the paper, we explore the math­
ematical implications of mirror symmetry in constructing compactifications 
of moduli spaces. We close by discussing some evidence for mirror symmetry 
which (in hindsight) was available in 1979. 

1 Semi-toric compactifications 

The first methods for compactifying arithmetic quotients of bounded sym­
metric domains were found by Satake [46] and Baily-Borel [5]. The com­
pactification produced by their methods, often called the Satake-Baily-Borel 
compactification, adds a "minimal" amount to the quotient space in complet­
ing it to a compact complex analytic space. This minimality can be made 
quite precise, thanks to the Borel extension theorem [10] which guarantees 
that for a given quotient of a bounded symmetric domain by an arithmetic 
group, any compactification whose boundary is a divisor with normal cross­
ings will map to the Satake-Baily-Borel compactification (provided that the 
arithmetic group is torsion-free). 

Satake-Baily-Borel compactifications have rather bad singularities on their 
boundaries, so they are difficult to study in detail. Explicit resolutions of sin­
gularities for these compactifications were constructed in special cases by Igusa 
[30], Hemperly [27], and Hirzebruch [28]; the general case was subsequently 
treated by Satake [47] and Ash et al. [1]. The methods of [1] produce what are 
usually called Mumford compactifications—these are smooth, and have a di­
visor with normal crossings on the boundary, but unfortunately many choices 
must be made in their construction. The Satake-Baily-Borel compactification, 
on the other hand, is canonical. 

Some years later, Looijenga [35] generalized both the Satake-Baily-Borel 
and the Mumford compactifications by means of a construction which can 
be applied widely, not just in the case of arithmetic quotients of bounded 
symmetric domains. Looijenga's construction gives partial compactifications 
of certain quotients of tube domains by discrete group actions. A tube do­
main is the set of points in a complex vector space whose imaginary parts 
are constrained to lie in a specified cone. Whereas Ash et al. [1] had only 
considered homogeneous self-adjoint cones, Looijenga showed that analogous 
constructions could be made in a more general context. 

The starting point is a free Z-module L of finite rank, and the real vector 
space LR ~ L ® R which it spans. A convex cone a in LR is strongly convex 
if a Pi (—a) C {0}. A convex cone is generated by the set S if every element 
in the cone can be written as a linear combination of the elements of S with 
nonnegative coefficients. And a convex cone is rational polyhedral if it is 
generated by a finite subset of the rational vector space L Q := L ® Q . 
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Let C C LR be an open strongly convex cone, and let T C Aff(L) be 
a group of affine-linear transformations of L which contains the translation 
subgroup L of Aff(L). If the linear part To := T/L C GL(L) of T preserves 
the cone C, then the group T acts on the tube domain V := LR+ i C. We wish 
to partially compactify the quotient space V/T, including limit points for all 
paths moving out towards infinity in the tube domain. 

Looijenga formulated a condition which guarantees the existence of partial 
compactifications of this kind. Let C+ be the convex hull ofCDLq. Following 
[35], we say that (LQ,C,TO) is admissible if there exists a rational polyhedral 
cone II C C+ such that To.II = C+. Given an admissible triple (LQ,C,TO) , 
the (somewhat cumbersome) data needed to specify one of Looijenga's partial 
compactifications is as follows.1 

DEFINITION 1 [35] A locally rational polyhedral decomposition of C+ is a 
collection V of strongly convex cones such that 

(i) C+ is the disjoint union of the cones belonging to V, 

(ii) for every a £ V, the №-span of a is defined over Q, 

(Hi) if a £ V9 if r is the relative interior of a nonempty face of the closure 
of a, and if T C C + , then r G V, and 

(iv) if U is a rational polyhedral cone in C+, then Ii meets only finitely many 
members ofV. 

(The decomposition V is called rational polyhedral if all the cones in V 
are relative interiors of rational polyhedral cones. This is the same notion 
which appears in toric geometry [19, 43] , except that the cones appearing in 
V as formulated here are the relative interiors of the cones appearing in that 
theory.) 

For each To-invariant locally rational polyhedral decomposition V of C+, 
there is a partial compactification oiV/T called the semi-toric (partial) com­
pactification associated to V. This partial compactification has the form 
V(V)/r, where V(V) is the disjoint union of certain strata V(a) associated 
to the cones a in the decomposition. The complex dimension of the stratum 
V(a) coincides with the real codimension of the cone a in LR; in particular, 
the open cones in V correspond to the O-dimensional strata in V{V). The del­
icate points in the construction are the specification of a topology on P('P), 

1 W e have modified Looijenga's definition slightly, so that the use of the term "face" is 
the standard one (cf. [45]): a subset T of a convex set S is a face of S if every closed line 
segment in S which has one of its relative interior points lying in T also has both endpoints 
lying in T. 
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and the proof that the quotient space V ( V ) / T has a natural structure of a 
normal complex analytic space. For more details, we refer the reader to [35] 
or 50. 

The construction has the property that if V is a refinement of V, then 
there is a dominant morphism V(V')/Y —• V(V)/T. Blowups of the boundary 
can be realized in this way. 

A bit more generally, we can partially compactify finite covers V/Y' of 
V/Y, built from V C L of finite index, T'0 C GL(L') n T 0 of finite index in 
To, and Y' := V x Y'Q, by specifying a To-invariant locally rational polyhedral 
decomposition V of C+. 

There are two extreme cases of a semi-tone compactification. The Satake-
Baily-Borel decomposition VSBB consists of all relative interiors of nonempty 
faces of C_j_. The resulting (partial) compactification V ( V S B B ) / T is the Satake-
Baily-B or el-type compactification ofV/T. This is "minimal" among semi-toric 
compactifications in an obvious combinatorial sense; I do not know whether 
a more precise analogue of the Borel extension theorem holds in this context. 
The strata added to V/Y include a unique 0-dimensional stratum V(C), which 
serves as a distinguished boundary point. 

At the other extreme, if every cone a € V is the relative interior of a 
rational polyhedral cone a which is generated by a subset of a basis of L, 
then the associated partial compactification is smooth, and the compactifying 
set is a divisor with normal crossings. We call this a Mumford-type semi-toric 
compactification. We will spell out the structure of the compactification more 
explicitly in this case, giving an alternative description of V(V)/Y. 

We can think of producing a Mumford-type semi-toric compactification in 
two steps. In the first step, we construct a partial compactification V(V)/L 

of V/L which is To-equivariant; in the second step we recover V(V)/Y as the 
quotient of V(V)/L by IV 

The first step is done one cone at a time. Given a £ V, there is a basis 

* V . . , r of L such that 

a — R>0l1 + . . .+ R> ûk 
>0*> for some k < r. 

Let {ZJ} be complex coordinates dual to {lj}, so that z = Ylzj^ ljrepresents 
a general element of Lc- Consider the set Va := LR +icr. Translations by 
the lattice L preserve Va, and coordinates on the quotient Va/L C Lc/L can 
be given by wj = exp(27rzZj). In terms of those coordinates, VGjL can be 
described as 

Da /L = {w € C r : 0 < Kl < 1 for j < fc, \Wj \ = 1 for j > k} 

We partially compactify this to 

(Da/L- := {w e Cr : 0 < \wA < 1 for j < k, \wj\ = 1 for j > k} 
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(We have suppressed the cr-dependence of V, Zj, Wj to avoid cluttering up the 
notation.) We call any w G (Va/L)~ with Wj = 0 for j < k a, distinguished 
limit point of Va/L. Note that any path in 2V along which Im(^j) —> oo for 
all j < k, maps to a path in V^/L which approaches such a distinguished 
limit point. The set DLP(a) of distinguished limit points is a subset of the 
stratum V(a), and is a compact real torus of dimension dimRDLP(cr) = 
r — k = dime T)(cr). When k = r, the distinguished limit point is "unique, and 
it coincides with the O-dimensional stratum V(a) of V(V). 

The partial compactification V(V)/L can now be described as a disjoint 
union of the (Va/L)~~'s, with (VT/L)~ lying in the closure of (2V /L)- when­
ever r is the relative interior of a face of a. This space V{V)/L is smooth and 
simply-connected, and the induced action of To on it has no fixed points. The 
action of To permutes the various (2?<r/L)~,s, a finite number of which serve 
to cover V(V)/T after we take the quotient by IV We have thus achieved an 
alternative description of Mumford-type compactifications. 

Later in this paper, we will be concerned with recognizing when a complex 
analytic space has the structure of a semi-toric compactification. We can 
take a first step in that direction by formalizing the structure of (Va/L)~ 
near the distinguished limit point when k = r in the following way. For a 
complex manifold T, we say that p is a maximal-depth normal crossing point 
of B C T if there is an open neighborhood U of p in T and an isomorphism 
ip :U -+ Ar such that (p(U fl (T-B)) = (A*)r and (p(p) = ( 0 , . . . , 0), where 
A is the unit disk, and A* := A—{0}. There are thus r local components 
Bj := <£-1({t>j = 0}) of JBnJ7, withp = Bid - • -nBr, where Vj is a coordinate 
on the jth disk. 

2 Cusps of Hilbert modular surfaces 

We now give an example to illustrate the construction in the previous section: 
the cusps of Hilbert modular surfaces, as analyzed by Hirzebruch [28] and 
by Mumford in the first chapter of [1]. Let PGL+(2,R) = PSL(2,R) act by 
fractional linear transformations on the upper half plane $)• Let K be a real 
quadratic field with ring of integers OK, and let PGL+(2, K) be the group of 
invertible 2 x 2 matrices with entries in K whose determinant is mapped to a 
positive number under both embeddings of K into R, modulo scalar multiples 
of the identity matrix. The map $ : K —> R2 given by the two embeddings of 
K into R induces an action of PGL+(2, K) on S) x h 

A Hilbert modular surface is an algebraic surface of the form S) x S)/T 
for some arithmetic group T C P G L + ( 2 , i f ) (that is, a group commensurable 
with PGL+(2,DJR:)), often assumed to be torsion-free. The Satake-Baily-
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I = c o n v e x h u l l o f R+ X 3R f\ *(0l). 
E 

Ex. ; 

positive 
guadrant 

*,n Coocd'i^oMS for" 
which (I) ((x) = Zz 

x= SB.Y 

a =- V3.Y 

Figure 1, 

Borel compactification of a Hilbert modular surface adds a finite number 
of compactification points, called cusps. Small deleted neighborhoods of such 
points have inverse images in S) x SS whose T-stabilizer is a parabolic subgroup 
Fpar of the form 

Fpar — { 
( 
( 

ek a 
0 1 1 : k e Z,a € 21}, 

where 21 C OK is an ideal, and e € £>£ is a totally positive unit such that 
€ 21 = 21. We can analyze a neighborhood of a cusp by studying appropriate 
partial compactifications of fj x ^/rpar. 

The elements in rpar with k = 0 form the translation subgroup, which we 
identify with 21. This is a free abelian group of rank 2. Let (a, a ') , (/3,/?') be 
a Z-basis of $(21). Define a map fi x ft —• C2 by 

(tüi,iü2) I—> 
1 

a/3' 6 a'/3 
(B'w1 -Bw2 - a'w1 + aiü2 ), 
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and let V denote the image of S) x ft in C2. Under this map, <1>(21) is sent 
to the standard lattice L := Z2, and $(rpar) is sent to a subgroup of Aff(L) 
with the translation subgroup 21 of rpar mapped to the translation subgroup 
L of Aff (L). As in section 1, we form the quotient in two steps: first take the 
quotient f) x #/21 = V/L, and then take the quotient of the resulting space 
by the group T0 := Tpar/2l. 

Mumford shows how to partially compactify the space V/L C L ® C* = 
(C*)2 in a To-equivariant way, so that the quotient by To gives the desired 
partial compactification of ft x $)/Tp3iT. The map of # x S) —> C2 was designed 
so that the image would be a tube domain V := R2 + iC, where C is the cone 

C = {(2/1,2/2) : Oiyi + ßy2 > 0,a'y1+ß,y2 > 0 } . 

The boundary lines of the closure C have irrational slope, and in fact C+ = 
C is an open convex cone. To construct a To-invariant rational polyhedral 
decomposition V, let E be the convex hull of CD<fr(2l). The vertices of E form 
a countable set {vj}jez which can be numbered so that the edges of E are 
exactly the line segments VjVj+i. If we let <TJ be the relative interior of the 
cone on Vj-Vj+i, and let TJ be the relative interior of the cone on Vj, then V := 
{aj}jez U {Tj}jez is a To-invariant rational polyhedral decomposition. An 
explicit example of this construction is illustrated on p. 52 of [1], reproduced 
as figure 1 of this paper. 

The resulting partial compactification of V/L adds a point pj for each <jj, 
and a curve Bj = P 1 for each T J , with JBj;C\Bj+i = pj. This can be pictured as 
an "infinite chain" of P^s, as in the top of figure 2 (which is also reproduced 
from [1], p. 46). The generator [diag(e, 1)] of To = Tpar/2l acts by sending Vj 
to Vj+m for some fixed m. Taking the quotient by To leaves us with a "cycle" 
of rational curves, of length m (as depicted in the bottom of figure 2). We 
arrive at Hirzebrueh's description of the resolution of the cusps. 

Conversely, suppose we are given a normal surface singularity p £ S (with 
S a small neighborhood of p) which has a resolution of singularities / : T —> S 
such that B := /-1(p) is a cycle of rational curves, that is, B = 2?H VBm is 
a divisor with normal crossings such that Bj only meets 23j±i, with subscripts 
calculated mod ra. Much of the structure above can be recovered from this 
information alone. In fact, by a theorem of Laufer [33] these singularities are 
taut, which means that the isomorphism type is determined by the resolution 
data. We will work out in detail some aspects of this tautness, in preparation 
for a general construction in the next section. 

The starting point is Wagreich's calculation [54] of the local fundamental 
group 7Ti(S— p) for such singularities, which goes as follows. Let S := S — p = 
T-B. The natural map ¿ : 7Ti(5) —• iri(T) induced by the inclusion S C T 
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wd/ii 

h*h/ M 
1 

Divide by yo 

-tt?H/r 
wd / T2 E 

Figure 2. 

is surjective. Since T retracts onto a cycle of P^s, the group tti(T) = iri(S ) 
is infinite cyclic, and the universal cover T of T contains an infinite chain 
B = h Bj + Bj+i + ••• of P^s lying over the cycle B. The kernel of l 
is 7ri(T - B), and by a result of Mumford [42] this is a free abelian group 
generated by loops around any pair of adjacent components Bj, Bj+i of B. 

In this way, we recover the two steps of the quotient construction, and 
the compactification T of the intermediate quotient T — B. Let S be the 
universal cover of S (and of T — B). To complete the discussion of tautness, 
we should exhibit an isomorphism between S and an open subset of $) x S), 
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which descends to a 7ri (T)-equivariant map (f-B) (H * h) /2. ESS 
easiest way to do this is to consider an extra piece of structure on p £ S: 
a flat connection on the holomorphic cotangent bundle We discuss this 
structure, and how to use it to determine the mapping from S to ft x 9) = V, 
in the next section. (To give a complete proof of Laufer's tautness result 
along these lines, we would also need to show how the connection is to be 
constructed; we will not attempt to do that here.) 

3 The tone connection 

Let (Z/Q,C,ro) be an admissible triple, with associated tube domain V = 
L$> + iC and discrete group T = L xi T0 C Aff(L). We will define a flat 
connection on the holomorphic cotangent bundle of the quotient space V/T. 

The intermediate quotient space V/L is an open subset of the algebraic 
torus Lc/L = L <g>z C* ^ (C*)rk(L). We identify the dual of the Lie algebra 
Lie(Zc/£)* of that torus with the space of right-invariant one-forms on the 
group Lc/L. Any basis of Lie(Lc/L)*, when regarded as a subset of the space 
of global sections of the sheaf ft\c/L, freely generates that sheaf at any point. 
We can therefore define a connection Vtoric on ^c /£> the toric connection, 

by the requirement that Vt0ric(a) = 0 for every a € Lie(Lc/£)*. Since the 
group Lc/L is abelian, the connection Vtoric is flat. 

The action of Aff (L) on Lc descends to an action of GL(L) on Lc/L which 
preserves the space of right-invariant one-forms. In particular, the GL(L)-
action will be compatible with the toric connection. Thus, if we restrict Vt0ric 

to V/L, it commutes with the action of TQ and induces a connection on the 
holomorphic cotangent bundle of (V/L)/T0 — V/T, still denoted by Vt0ric-

Let a C LR be the relative interior of a rational polyhedral cone which 
is generated by a basis I1,... ,£r of L, and let z \ , . . . , zr be the coordinates 
on Lc dual to {#'}. The one-forms d logWj := 2nidzj are right-invariant 
one-forms on Lc/L which serve as a basis of Lie(Lc/£)*- If we compactify 
the open set Va/L C Lc/L to Ua := (Va/L)~, then the forms dlogu>j 
extend to meromorphic one-forms on Ua with poles along the boundary Ba := 
(Va/L)~ — (Va/L). In fact, the forms dlogwi,... ,d\ogwr freely generate 
the sheaf f^ ( log Ba) as an 0^-module . The flat connection Vtoric therefore 
extends to a flat connection on Q^(logJ5a) for which the dlogti^ are flat 
sections. Note that the connection does not acquire singularities along the 
boundary, but extends as a regular connection to the sheaf of logarithmic 
differentials. 

If V is a rational polyhedral decomposition of C+, we get in this way an 
extension of the flat connection Vtoric from O1 

lùV/L 
to the sheaf of logarithmic 
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differentials on V(V)/L with poles on the boundary (V(V)/L) - (V/L). As 
this extended connection still commutes with To, there is an induced extension 
of Vtoric from fti,/r to n^)/r(logB), where B := (V(V)/T) - (V/T). This 
holds for any Mumford-type semi-toric compactification. 

The existence of this toric connection on V/T depends in an essential way 
on r being a group of affine-linear transformations of L. If V admits an action 
by a larger group rDig which includes discrete symmetries that do not lie in 
Aff(L), then Vtoric may fail to descend to the quotient V/T\>ig. For example, 
if L = Z acts on the upper half plane ft by translations, then the associated 
flat connection Vt0ric has the property that V t 0 r i c ( ^ ) = 0, where r is the 
standard coordinate on H The flat section dr is invariant under translations 
T H r T + n, but if we apply Vtoric to the pullback of the flat section dr under 
the inversion f H - l / r w e get 

Vtoric' ( r ~ 2 dr) = -2r~3 dr ® d r , 

which is not 0. In particular, the connection Vt0ric does not descend to the 
j - l inei î /SL(2,Z). 

We now want to explain how the abstract knowledge of the flat connection 
Vtoric and of a Mumford-type semi-toric compactification of V/T can be used 
to recover the structure of V and of I \ Suppose we are given a complex 
manifold T, a divisor with normal crossings B on T, and a flat connection V 
on ri^(logJB). By the usual equivalence between flat connections and local 
systems [16], the flat sections of V determine a local system E on T. Such a 
local system is specified by giving its fiber E at a fixed base point • (which we 
choose to lie in T — B), together with a representation of 7ri(T,*) in GL(E). 

We first restrict the^connection and the local system to T — B. If we pass 
to the universal cover S of T — B, the flat sections give a global trivialization 
of the bundle E ® OS = fik. There is a natural map int* : S —• E* which 

sends s G S to the functional 

a i—> 
) 
) 

8 

df 
a, 

where a is the unique flat section of E (a holomorphic 1-form on S) such that 
S|* = a € E. (Notice that if we vary the basepoint * we simply shift the 
image of the map by some constant vector in E*.) 

On the other hand, if we consider V on T and pass to the universal cover 
T of T, the flat sections of E will trivialize the bundle f2iv(log J3) , where B 

is a divisor with normal crossings in T, the inverse image of B C T. We 
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once again encounter the intermediate quotient space T — B, and its partial 
compactification T. 

At any maximal-depth normal crossing point p of B C T, let Vj = 0 
define the ,? t h local component Bj of the boundary at p. There is a unique 
flat section Sy of fiiv(logB), defined locally near p, such that otj — dlogVj 

vanishes at p. It follows that otj — dlogVj is a holomorphic one-form in a 
neighborhood of p, and so that S i , . . . , ar is a basis for (flat) local sections of 
ftk(log£). Using the global trivialization, we may regard each aj := Sj |* as 
an element of E. We let Lp E*C be the lattice spanned by the dual basis 
I1,..., £r to a i , . . . , a r , and let crp C Lp ® R be the relative interior of the 
cone generated by I1,..., l r . 

If we are to recover the structure of the semi-toric compactification, we 
need a certain compatibility among the Lps and the aps: they should be 
related to a common lattice and a common cone, independent of p. We 
formalize this as follows. 

DEFINITION 2 We call (T,B, V) compatible provided that 

1. each component of B contains at least one maximal-depth normal cross­
ing pointy 

2. the lattices Lp for maximal-depth normal crossing points p all coincide 
with a common lattice L C E*, 

3 . the natural map int* : S —• E* = Lc descends to a map (T — B) —> 
(Lc/L) which induces an isomorphism of fundamental groups, and 

4^ the collection V of relative interiors of faces of the ap's is a locally 
rational polyhedral decomposition of a strongly convex cone C+. 

Suppose that (T, B, V) is compatible, let C be the interior of C+ and let 
V = LR + iC. The action of TTI(T) on Lc permutes the set of maximal-
depth normal crossing points of B C T, and so preserves V and C. Thus, 
r:= T T I ( T - J B ) acts on v, and there is an induced map (T — J3) —> (V/Y). 

We can now recover the compactification T from this data (or at least 
its structure in codimension one). For any maximal-depth normal crossing 
boundary point p of B C T, there is a neighborhood Up of p in T and a 
natural extension of the induced map Up n (T - B) —> Lc/L to a map Up —• 
V(V)/L. We cannot tell from the behavior of these extensions what happens 
at "interior" points of boundary components (those which do not lie in any 
uP), but we can conclude that there is a meromorphic map T -+ V(V)/L 
which does not blow down any boundary components. This map is Tri m -

equivariant, so it descends to a map T-+V(V)/Y. 
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4 Moduli spaces of sigma-models 

A Calabi- Yau manifold is a compact connected orientable manifold X of di­
mension 2n which admits Riemannian metrics whose (global) holonomy is 
contained in SU(n). 2 Given such a metric, there exist complex structures on 
X for which the metric is Kahler. The holonomy condition is equivalent to 
requiring that this Kahler metric be Ricci-flat and that there exist a nonzero 
holomorphic n-form on X (cf. [7]). On the other hand, if we are given a 
complex structure on a Calabi-Yau manifold, then by the theorems of Calabi 
[11] and Yau [60], for each Kahler metric g there is a unique Ricci-flat Kahler 
metric g whose Kahler form is in the same de Rham cohomology class as that 
of g. (We have implicitly used the topological consequence of Ricci-flatness: 
Calabi-Yau manifolds have vanishing first Chern class.) 

Examples of Calabi-Yau manifolds are provided by the differentiable man­
ifolds underlying smooth complex projective varieties with trivial canonical 
bundle. One can apply Yau's theorem to a Kahler metric coming from a 
projective embedding in order to produce a metric with holonomy contained 
in SU(n), where n is the complex dimension of the variety. As explained in 
[7], if the Hodge numbers hp>° vanish for 0 < p < n and if the manifold is 
simply-connected, then the holonomy of this metric is precisely SU(n). 

Physicists have constructed a class of conformal field theories called non­
linear sigma-models on Calabi-Yau manifolds X (cf. [22, 29]). We consider 
here an approximation to those theories, which should be called "one-loop 
semiclassical nonlinear sigma-models". Such an object is determined by the 
data of a Riemannian metric g on X whose holonomy is contained in SU(n) 
together with the de Rham cohomology class [b] € H2(X,R) of a real closed 
2-form b on X. 

Two such pairs (g, b) and (g , V) will determine isomorphic conformal field 
theories if there is a diffeomorphism ip : X —• X such that <p*(g') = <?, and 
<p*([b'])-[b] e H*(X,Z). It is therefore natural to regard the class of [b] 
in H2(X,R)/H2(X,Z) as the fundamental datum. We denote this class by 
[b] mod Z. 

The set of all isomorphism classes of such pairs we call the one-loop semi-
classical nonlinear sigma-model moduli space, or simply the sigma-model mod­
uli space (for short). This may differ from the actual conformal field theory 
moduli space, for several reasons: first, there may be additional isomorphisms 
of conformal field theories which are not visible in this geometric interpre­
tation, second, there may be deformations of the nonlinear sigma-model as 

2 There is some confusion in the literature about whether "Calabi-Yau" should mean 
that the holonomy is precisely SU(n) , or simply contained in SU(n) . In this paper, we 
adopt the latter interpretation. 

255 



D. MORRISON 

a conformai field theory which do not have a sigma-model interpretation on 
X {ci. [2, 59]), and third, the putative conformal field theory may fail to 
converge for some values of the input data (g, b) (although it is believed to 
converge whenever the volume of the metric is sufficiently large). For our 
present purposes, we ignore these more delicate questions about the confor­
mal field theory moduli space, and concentrate on the sigma-model moduli 
space we have defined above. 

We focus attention in this paper on the case in which the holonomy of the 
metric g is precisely SU(n), n ^ 2 . For each such metric, there are exactly two 
complex structures on X for which the metric is Kahler (complex conjugates 
of each other). 3 Thus, there is a natural map from a double cover of the 
sigma-model moduli space to the usual "complex structure moduli space", 
given by assigning to (p, b) one of the two complex structures for which g is 
Kahler. The fibers of this map can be described as follows. If we fix a complex 
structure on X, then the corresponding fiber consists of all B + i J mod Z £ 
H2(X, C)/H2(X,Z) (modulo diffeomorphism) with B denoting the class [6], 
for which J is the cohomology class of a Kahler form. (The metric g is uniquely 
determined by J, by Calabi's theorem.) This quantity B+i J mod Z describes 
the "extra structure" S which was alluded to in [40]. This is often called the 
complexified Kahler structure on X determined by (#,6). 

The natural double cover of the sigma-model moduli space will be locally 
a product near (#,&), with the variations of complex structure and of com­
plexified Kahler structure describing the factors in the product, provided that 
neither the Kahler cone nor the group of holomorphic automorphisms "jumps" 
when the complex structure varies. (The non-jumping of the Kahler cone was 
shown to hold by Wilson [55] in the case of holonomy SU(3), when the com­
plex structure is generic.) We will tacitly assume this local product structure, 
and separately study the parameter spaces for the variations of complexified 
Kahler structure and of complex structure. 

With a fixed complex structure on X, the parameter space for complexified 
Kahler structures on X can be described in terms of the Kahler cone K of 
X, and the lattice L = H2(X, Z)/(torsion). We must identify any pair of 
complexified Kahler structures which differ by a diffeomorphism that fixes 
the complex structure, that is, by an element of the group To = Aut(X) of 
holomorphic automorphisms. The natural parameter space for pairs (g,b) 
such that g is Kahler for the given complex structure thus has the form V/T, 
where V = {B + i J : J G K} and r = L x To is the extension of To by 
the lattice translations. This is exactly the kind of space encountered in the 

3 M o r e generally, as we will show elsewhere, if h 2 , 0 ( X ) = 0 there are only a finite number 
of complex structures for which g is Kahler. The number depends on the decomposition of 
the holonomy representation into irreducible pieces. 
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first part of this paper: a tube domain modulo a discrete symmetry group of 
affine-linear transformations which includes a lattice acting by translations. 

A common technique in the physics literature is to consider what happens 
along paths {tz mod r } t _ K x » which go from z G V out towards infinity in the 
tube domain. Many aspects of the conformal field theory can be analyzed per-
turbatively in t along such paths. It seems reasonable to hope that such limits 
can be described in a common framework, based on a single partial compact­
ification oiV/T. This hope (together with a bit of evidence, discussed below) 
leads us to conjecture that (LQ,/C, A u t ( X ) ) is an admissible triple, in order 
that Looijenga's methods could be applied to construct compactifications of 
v/r. We formulate this conjecture more explicitly as follows. 

T H E CONE CONJECTURE Let X be a Calabi-Yau manifold on which a com-
plex structure has been chosen, and suppose that h2>°(X) = 0. Let L := 
H2(X, Z)/torsion, let K be the Kahler cone of X, let JC+ be the convex hull 
of JCDLq, and let Aut(X) be the group of holomorphic automorphisms of X. 
Then there exists a rational polyhedral cone U C /C+ such that Aut(X).II = 
K+. 

The Kahler cone of X can have a rather complicated structure, analyzed 
in the case n = 3 by Kawamata [31] and Wilson [55]. Away from classes of 
triple-self-intersection zero, the closed cone JC is locally rational polyhedral, 
but the rational faces may accumulate towards points with vanishing triple-
self-intersection. The cone conjecture predicts that while the closed cone 
K of X may have infinitely many edges, there will only be finitely many 
Aut(X)-orbits of edges. Other finiteness predictions which follow from the 
cone conjecture include finiteness of the set of fiber space structures on X, 
modulo automorphisms. 

Many of the large classes of examples, such as toric hypersurfaces, have 
Kahler cones K such that /C+ = K is a rational polyhedral cone. For these, the 
cone conjecture automatically holds. A nontrivial case of the cone conjecture— 
Calabi-Yau threefolds which are fiber products of generic rational elliptic sur­
faces with section (as studied by Schoen [49])—has been checked by Grassi 
and the author [21]. In addition, Borcea [9] has verified the finiteness of 
Aut(X)-orbits of edges of K in another nontrivial example, and Oguiso [44] 
has discussed finiteness of Aut(X)-orbits of fiber space structures in yet an­
other example.4 All three examples involve cones with an infinite number of 
edges. 

For any X for which the cone conjecture holds, the Kahler parameter space 
V/Y will admit both a Satake-Baily-Borel-type "minimal" compactification, 

4 Neither of these constitutes a complete verification of the cone conjecture for the three­
fold in question. 
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and smooth compactifications of Mumford type built out of many cones a C K 
as above. 

5 Additional structures on the moduli spaces 

Of particular interest to the physicists studying nonlinear sigma-models has 
been the "large radius limit" in the Kahler parameter space. This is typically 
analyzed in the physics literature as follows (cf. [56, 57]). The quantities 
of physical interest will be invariant under translation by L. Many such 
quantities vary holomorphically with parameters, and their Fourier expansions 

take the form 

E 
r}€L* 

Cr, e 2ni z-Tf 
. (*) 

The coefficients cv for 77 7^ 0 are called instanton contributions to the quantity 
(*), and in many cases they can be given a geometric interpretation which 
shows that they vanish unless rj is the class of an effective curve on X. A 
"large radius limit" should be a point at which instanton contributions to 
quantities like (*) are suppressed [24, 3]. 

If we pick a basis t1,..., £r of L consisting of vectors which lie in the 
closure of the Kàhler cone, write rj = Ylv^j m terms of the basis {£j} of L* 
dual to {#'}, and express (*) as a power series in Wj := exp(27riZj), where 
{zj} are coordinates dual to {£J}> then the series expansion 

E 
WEL 

Cr, v1 

w1 = 
Wn 
r 

(**) 

involves only terms with nonnegative exponents [4]. If convergent,5 this will 
define a function on (Va/L)~, where a is the relative interior of the cone 
generated by £ 1 , . . . , £ r . Thus, approaching the distinguished limit point of 
VJL (where all Wj's approach 0) suppresses the instanton contributions, so 
the distinguished limit point is a good candidate for the large radius limit. We 
can repeat this construction for any cone a C K which is the relative interior 
of a cone generated by a basis of L, obtaining partial compactifications which 
include large radius limit points for paths that lie in various cones a. 

Among the "quantities of physical interest" to which this analysis is ap­
plied are a collection of multilinear maps of cohomology groups called three-
point functions. These maps should depend on the data (#,&), and should 
vary holomorphically with both complex structure and complexified Kahler 

5 From a rigorous mathematical point of view, the Fourier coefficients c-q can often be 
defined and calculated, but no convergence properties of the series (*) or (**) are known. 
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structure parameters. Certain of these three-point functions (related to Wit-
ten's "A-model" [58]) would depend only on the complexified Kàhler struc­
ture, while others (related to Witten's "JS-model") would depend only on 
the complex structure. The B-model three-point functions can be mathe­
matically interpreted in terms of the variation of Hodge structure, or period 
mapping, induced by varying the complex structure on the Calabi-Yau man­
ifold [15, 40, 23]. 

In [41], we discuss a mathematical version of the A-model three-point 
functions, expressed as formal power series near the distinguished limit point 
associated to the relative interior a of a rational polyhedral cone generated 
by a basis of L. (The coefficients cv of this power series are derived from the 
numbers of rational curves on X of various degrees.) The choice of a is an 
additional piece of data in the construction which we call a framing. 

These formal power series representations of A-model three-point func­
tions can be regarded as defining a formal degenerating variation of Hodge 
structure, which we call the framed A-variation of Hodge structure with fram­
ing a. Now there are manipulations of these formal series which suggest that 
the underlying convergent three-point functions (if they exist) will not depend 
on the choice of a and will be invariant under the action of A u t ( X ) . 

We must refer the reader to [41] for the precise definition of framed A-
variation of Hodge structure. But for reference, we would like to state here 
a conjecture which suggests how the various framed A-variations of Hodge 
structure will fit together, along the lines being discussed in this paper. 

T H E CONVERGENCE CONJECTURE Suppose that X is a Calabi-Yau mani­
fold with h2'°(X) = 0, endowed with a complex structure, which satisfies the 
cone conjecture. Let L := H2(X, Z)/torsion, let K be the Kahler cone of X, let 
V : = LR + i/C be the associated tube domain, and let Y := L x A u t ( X ) . Then 
there is a neighborhood U of the 0-dimensional stratum V(K) in the Satake-
Baily-Borel-type compactification V(VSBB)/Y, and a variation of Hodge struc­
ture onUn (V/Y), such that for any a C K which is the relative interior of a 
rational polyhedral cone a C /C+ generated by a basis of L, the induced formal 
degenerating variation of Hodge structure at the distinguished limit point of 
Va/L agrees with the framed A-variation of Hodge structure with framing a. 

If this variation of Hodge structure exists, we call it the A-variation of 
Hodge structure associated to X. 

6 Maximally unipotent boundary points 

In the previous section, we discussed how to let the complexified Kahler pa­
rameter B + iJ approach infinity, analyzing certain partial compactifications 
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and boundary points of the sigma-model moduli space in the B + iJ direc­
tions. We now turn to compactifications and boundary points in the trans­
verse directions—the directions obtained by varying the complex structure 
on the Calabi-Yau manifold. We consider what happens when the complex 
structure degenerates. 

The local moduli spaces of complex structures on Calabi-Yau manifolds 
are particularly well-behaved, thanks to a theorem of Bogomolov [8], Tian 
[51], and Todorov [52], which guarantees that all first-order deformations are 
unobstructed. In particular, there will be a local family of deformations of 
a given complex structure for which the Kodaira-Spencer map is an isomor­
phism. More generally, we consider arbitrary families TT : y —* S of complex 
structures on a fixed Calabi-Yau manifold Y> by which we mean: 7r is a 
proper and smooth map between connected complex manifolds, and all fibers 
Y8 : = 7r _ 1 ( s ) are diffeomorphic to 7 . We will often assume that the Kodaira-
Spencer map is an isomorphism at every point s G S, so that S provides good 
local moduli spaces for the fibers Y8. 

To study the behavior when the complex structure degenerates, we par­
tially compactify the parameter space 5 to 5. There is a class of boundary 
points on S of particular interest from the perspective of conformal field the­
ory. According to the interpretation of [40, 41], these points can be identified 
by the monodromy properties of the associated variation of Hodge structure 6 

near p G S. We first review from [41] these monodromy properties for normal 
crossing boundary points, and then extend the definition to a wider class of 
compactifications and boundary points. 

Let p be a maximal-depth normal crossing point of B C S, where B := 
S — S is the boundary, assumed for the moment to be a divisor with normal 
crossings. Let U be a small neighborhood of p in 5, and write B fl U in the 
form B\ + • • • + Br. If we fix a point s G U—B, then each local divisor Bj 
gives rise to an monodromy transformation T(j) : Hn(Ys,Q) —• i f n (Y s , Q ) , 
which is guaranteed to be quasi-unipotent by the monodromy theorem [32]. 

DEFINITION 3 A maximal-depth normal crossing point p of B G S is called a 
maximally unipotent point 7 under the following conditions. 

1. The monodromy transformations T(j) around local boundary components 
Bj near p are all unipotent. 

6 T h e variation of Hodge structure in question is the usual geometric one (cf. [26]) asso­
ciated to a variation of complex structure. These might be called "jB-variations of Hodge 
structure" by analogy with the previous section. 

7 W h e n d im(S) = 1, this definition is equivalent to the one given in [40]. 
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2. Let №j> := \ogTv>, let N := Eaj N(j) for some o,j > 0, and define 

W0 = Im(iVn) 
W = Im(Ar_1)nKeriV 
W2 = (lm(ATn-2) n Ker(JV)) + (imCiV"-1) I I Ker(iV2)). 

Then dim W0 = dim W1 = l and dim W2 = 1 + dim(S). 

3. Letg0,g1 •••,Gr be a basis 0JW2 such that pu spans Wq, and define Mjk 
by N (j) gk = m3kg" for 1 < j , k < r. Then m := (m3 ) is an invertible 
matrix. 

(The spaces Wq and W2 are independent of the choice of coefficients {aj} 
[14, 17], and the invertibility of m is independent of the choice of basts {gk}. 

Given a maximally unipotent point p € 5 , we define the canonical loga­
rithmic one-forms dlogqj ET (U, Q1/2 (logB)) at p by 

1 
2TTZ 

dlogqj := d ( 
Erk=1(gk|w} mkj 

(g0|w] 8 
where (irikj) is the inverse matrix of (rajfc), and a; is a section of the sheaf 
^y/s °^ rela^ive holomorphic n-forms on the family of complex structures 
parameterized by 5. The elements gk G Hn(Y8,Q) have been implicitly ex­
tended to multi-valued sections of the local system i?n7r*(Qy) in order to 
evaluate (gk\w)\ the monodromy measures the multi-valuedness of the result­
ing (locally defined) holomorphic functions (gk\u)). The fact that each dlog<^ 
as defined aboye has a single-valued meromorphic extension to U follows from 
the nilpotent orbit theorem [48]. In [41] we show that the canonical one-forms 
are independent of the choice of basis {gk}, and also of the choice of relative 
n-form uj\ that for any local defining equation Vj = 0 of Bj, the one-form 
dlogqj — dlogVj extends to a regular one-form on U\ and that dloggi, . >., 
d\ogqr freely generate the locally free sheaf Q^(logB) near p. 

The canonical logarithmic one-forms can be integrated to produce quasi-
canonical coordinates <ji, . . . , qr near p, but due to constants of integration, 
these coordinates are not unique. That is, if we attempt to define 

qj = exp 
( 
( 2iri 

Erk = 1 (gk |w] mkj 

(g0|w) ) 
we find that changing the basis {g } will alter the g/s by multiplicative con­
stants (cf. [39]). To specify truly canonical coordinates, further conditions 
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on the basis {gK} must be imposed, as discussed in [40, 41J. For example, 
by demanding that g° span Wo fi Hn(Ys, Z)/torsion and that g°,..., gr span 
W2 H Hn(Y8JZ)/torsion we can reduce the ambiguity in the g/s to a finite 
number of choices. 

With no ambiguity, we can use the canonical logarithmic one-forms to 
produce a (canonical) flat connection V on the holomorphic vector bundle 
fi^(log-B) by declaring dloggi, . . . , dlogqr to be a basis for the V-flat sec­
tions, that is, V(dlogqj) = 0. Notice that the connection V is regular along 
the boundary divisor B. This connection is what we will use to extend the 
definition of maximally unipotent to a more general case. 

We now consider partial compactifications 5 of 5 which are not neces­
sarily smooth, and whose boundary is not necessarily a divisor with normal 
crossings. 

DEFINITION 4 Let E C 5—5 be a connected subset of the boundary. We say 
that S is maximally unipotent if there is a neighborhood V of S in S and a 
flat connection Vunip on Qyns such that for some resolution of singularities 
f : U —» V which is an isomorphism over V fl S, we have 

1. the new boundary B := U-f-^VHS) on U is a divisor with normal 
crossings, 

2. the flat connection Vunip extends to a connection on f2^(logJB) (also 
denoted by VuniP/> 

3. for every maximal-depth normal crossing point p of B C U, we have 
Vunip(dlogqj) = 0 for each canonical logarithmic one-form d logqj at 
p, and 

4. {UjJD, Vunip) is compatible in trie sense of definition z. 

We call Vunip the maximally unipotent connection determined by H. 
Note that d log q±,..., d log qr is a basis for the vector space of local so­

lutions of VunipC = 0 near p. By analytic continuation of solutions, the 
connection Vunip is unique if it exists. The requirement of compatibility is 
quite strong, essentially guaranteeing that the structure of 5 near S resembles 
that of a semi-toric compactification. 

7 Implications of mirror symmetry 

Mirror symmetry [18, 34, 13, 24] predicts that Calabi-Yau manifolds should 
come in pairs,8 with the roles of variation of complex structure and of com-

8The most recent results [2, 59] suggest that it is birational equivalence classes of Calabi-
Yau manifolds which come in pairs. 
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plexified Kahler structure being reversed between mirror partners. We wish 
to formulate a precise mathematical version of these mirror symmetry predic­
tions, taking into account the semi-toric compactification structure we have 
studied in this paper. The resulting statements are unfortunately rather tech­
nical, but they appear to be completely general. We hope the reader will bear 
with the technicalities. 

Our conjectures involve the A-variations of Hodge structure introduced in 
[41], whose essential ingredients are the numbers of rational curves of various 
degrees on a Calabi-Yau manifold. Our first mathematical conjecture about 
mirror symmetry is carefully formulated in [41], and can be stated as follows. 

T H E MATHEMATICAL MIRROR SYMMETRY CONJECTURE (Normal Crossings 
Case) Let Y be a Calabi-Yau manifold with h2>°(Y) = 0, and let TT : y —• S 
be a family of complex structures on Y such that the Kodaira-Spencer map is 
an isomorphism at every point Let S C S be a partial compactification whose 
boundary is a divisor with normal crossings. To each maximally unipotent 
normal crossing boundary point p in S there is associated the following: 

1. a Calabi-Yau manifold X with / r , u ( X ) = 0, 

2. a lattice L of finite index? in H2 (X, Z)/torsion, 

3. the relative interior a C H2 (X, R) of a rational polyhedral cone a which 
is generated by a basis I1,..., £r of L, and 

4- a map [i from a neighborhood ofp in S to ((H2(X,R) + ia)/L)~, deter­
mined up to constants of integration by the requirement that ji*(d\ogWj) 
is the canonical logarithmic one-form dlogqj on S at p (as defined 
in section 6), where z\,...,zT are coordinates dual to I1,... ,£r, and 
Wj := exp(27TZZj), 

such that 

a. a is contained in the Kâhler cone for some complex structure on X, and 

b. /x induces an isomorphism between the formally degenerating geometric 
variation of Hodge structure atp and the A-variation of Hodge structure 
with framing a associated to X. 

9 T h e reason for allowing such an L rather than insisting on i / 2 ( X , Z)/torsion itself is 
that our basic defining condition on the family S—that the Kodaira-Spencer map be an 
isomorphism at every point—is invariant under finite unramified base change. So we must 
allow finite unramified covers of the parameter spaces. 
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Put more concretely, if we calculate the geometric variation of Hodge struc­
ture near p £ S using appropriate quasi-canonical coordinates qj, we should 
produce power series expansions for S-model three-point functions (for Y) 
whose coefficients agree cn with the which are derived from the numbers of 
rational curves on X. This is precisely the type of calculation pioneered by 
Candelas, de la Ossa, Green, and Parkes [12] in the case of the quintic three­
fold. 

This first version of our mathematical mirror symmetry conjecture de­
pends rather explicitly on the choice of a maximally unipotent (normal cross­
ing) boundary point. And unfortunately, if we move from point to point 
along the boundary of 5, or if we vary the compactification S by blowing 
up the boundary, we can produce many such boundary points. On the other 
hand, if X is a mirror partner of Y for which the cone and convergence con­
jectures hold, there are many framed A-variations of Hodge structure (with 
different framings) associated to X. In fact, given framings a and <x' which 
belong to rational polyhedral decompositions V and V, respectively, there is 
always a common refinement V" of these decompositions. Geometrically, the 
corresponding compactification V(V")/T is a blowup of both V(V)/T and 
V(V')/T. Analytic continuation on the common blowup V(V")/T from a 
point in the inverse image of V(a) to one in the inverse image of V(a') will 
give an isomorphism of the A-variations of Hodge structure. 

Each of the various maximally unipotent normal crossing boundary points 
will conjecturally lead to a mirror isomorphism. We wish to fit these various 
mirror isomorphisms together, thus removing the dependence of the conjec­
tures on an arbitrary choice of boundary point. In fact, the mirror symmetry 
isomorphism is expected by the physicists to extend to an isomorphism be­
tween the full conformal field theory moduli spaces, and so, presumably, to 
compactifications as well. Thus, the structure of the semi-toric compactifi­
cations which is natural from the point of view of variation of complexified 
Kahler structure on X should be reflected in the structure of compactifications 
of the complex structure moduli space MY of Y. 

This philosophy suggests two things about the compactified parameter 
spaces S of complex structures on Y. First, there should be a compatibility 
between compactification points whose mirror families are associated to the 
same space X, and the same Kahler cone K. In fact, we should be able to 
extend our mathematical mirror symmetry conjecture to arbitrary maximally 
unipotent subsets of the boundary for any compactification, not just ones 
whose boundary is a divisor with normal crossings. And second, there should 
be some kind of minimal compactification of the coarse moduli space My 
of complex structures on Y, whose mirror compactified family would be the 
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Satake-Baily-Borel-type compactification of V/T. 
The compatibility between compactifications can be recognized by means 

of the flat connection Vunip which we used to identify maximally unipotent 
subsets of the boundary. We extend our mirror symmetry conjecture to the 
general case as follows. 

T H E MATHEMATICAL MIRROR SYMMETRY CONJECTURE (General Case) Let 
Y be a Calabi-Yau manifold with h2>°(Y) = 0, let w : y —» S be a family of 
complex structures on Y such that the Kodaira-Spencer map is an isomor­
phism at every point, and let S C S be a partial compactification. To each 
maximally unipotent connected subset E of the boundary S—S there is associ­
ated the following: 

1. a Calabi-Yau manifold X satisfying the cone and convergence conjec­
tures, 

2 . a subgroup T C Aff(tf2(X,R)) whose translation subgroup L is a lattice 
of finite index in H2(X, Z)/torsion, 

3. a locally rational polyhedral decomposition V of a cone C+ (which coin­
cides with the convex hull of C+ H L Q ^ that is invariant under the group 
T0 : = V/L, and 

4- a map fi from a neighborhood U of E in S to V(V)/T, determined up 
to constants of integration by the requirement that the flat connection 
Vtoric on V/T pulls back to Vunip on UOS, where Vunip is the maximally 
unipotent connection determined by E, 

such that 

a. for some complex structure on X, the interior C of C+ is contained 
in the Kàhler cone and TQ is contained in the group of holomorphic 
automorphisms, and 

b. fi induces an isomorphism between the geometric variation of Hodge 
structure over U fl S and the A-variation of Hodge structure associated 
to X. 

A priori, the map fx determined by compatibility of the connections would 
only be a meromorphic map; we are asserting that it is in fact regular, and a 
local isomorphism. 

There is one further refinement of this conjecture which could be made: 
we could demand that the map ¡1 also respect the quasi-canonical coordinates 
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determined by choosing integral bases g°,... ,gr. This would reduce the am­
biguity in the choice of /x to a finite number of choices, but would require 
a compatibility among such integral quasi-canonical coordinates at various 
boundary points. 

Finally, suppose that Ady is the coarse moduli space for complex struc­
tures on a Calabi-Yau variety Y such that /i 2 '°(Y)=0. (This coarse moduli 
space is known to exist as a quasi-projective variety, once we have specified a 
polarization, thanks to a theorem of Viehweg [53].) In this case, we conjecture 
the existence of a Satake-Baily-Borel-style compactification, as follows. 

T H E MINIMAL COMPACTIFICATION CONJECTURE There is a partial com­
pactification (MY)SBB of the coarse moduli space Aiy with distinguished 
boundary points p i , . . . ,p*. which are maximally unipotent, such that the data 
associated by the mathematical mirror symmetry conjecture to pj consists of: 
(1) a Calabi- Yau manifold Xj (with a complex structure specified that deter­
mines the group Aut(Xj) of holomorphic automorphisms and the Kahler cone 
Ki ofXj), (2) the group 

Tj = (tf 2(X,-,Z)/torsion) xi Aut(Xj). 

and (3) the locally rational polyhedral decomposition Vj which is the Satake-
Baily-Borel decomposition VSBB of the cone (K.j)+ (the convex hull of Kj D 
H2(Xj,Q)). 

A related conjecture has been made independently by Batyrev [6]. 

8 Mumford cones and Mori cones 

In the fall of 1979, Mori lectured at Harvard on his then-new results [36] on the 
cone of effective curves. In order to show that his theorem about local finite­
ness of extremal rays fail when the canonical bundle is numerically effective, 
he gave an example. (A similar example appears in a Japanese expository 
paper he wrote a few years later, which has since been translated into En­
glish [37].) The example was of an abelian surface with real multiplication, 
that is, one whose endomorphism algebra contains the ring of integers DK 
of a real quadratic field K. For such a surface X , the Neron-Severi group 
L := H^X{X) fl H2(X,Z) is a lattice of rank 2. The Kahler cone of X lies 
naturally in LR, and is an open cone /C bounded by two rays whose slopes 
are irrational numbers in the field K (cf. [38, 20]). Rays through classes of 
ample divisors [D] G L fl JC can be found which are arbitrarily close to the 
boundary, but the boundary is never reached. This phenomenon indicated 

266 



COMPACTIFICATIONS OF MODULI SPACES AND MIRROR SYMMETRY 

that Mori's results on the structure of the dual cone /C v C H2(X,R) could 
not be extended to the case of abelian surfaces. The picture Mori drew for 
this example was remarkably similar to figure 1. 

The Hilbert modular surfaces in fact serve as moduli spaces for abelian 
surfaces with endomorphisms of this type (cf. [20, Chap. IX]), although a bit 
more data must be specified, which determines the group T. Now Mumford's 
figure 1 was drawn in some auxiliary space being used to describe this "com­
plex structure moduli space", while Mori's version of figure 1 depicted the 
Kahler cone in if 1 , 1 , and so is related to "complexified Kahler moduli" of the 
surfaces. The setting is not quite the same as the one in the present paper, 
since / i 2 ' 0 ^ 0. However, mirror symmetry for complex tori does predict that 
each cusp in the complex structure moduli space will be related to the Kahler 
moduli space for the abelian varieties parametrized by some fixfi/T, with the 
T determined by the cusp. (This is not completely clear from the literature; I 
will return to this point in a subsequent paper.) In fact, under this association 
the Mumford cone from figure 1 corresponds precisely to the (dualized) Mori 
cone. 

Mirror symmetry might have been anticipated by mathematicians had 
anyone noticed the striking similarity between these two pictures back in 
1979! 
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