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ABSTRACTS

C. BONATTI and X. GOMEZ-MONT. The index of holomorphic vector
fields on singular varieties I

Given an analytic space V with an isolated singularity p, a Poincaré-Hopf
type of index, Ind(X, V, p) is associated to every holomorphic vector field X
tangent to V for which p is an isolated zero.

In this paper this topological index is related to the algebraic multiplic-
ity uy(X,p). In particular, it is shown that the set of indices Ind(X,V,p),
where X is tangent to V' with an isolated zero at p, admits a minimum which
is reached for X in the open dense subset of vector fields of smallest V-

multiplicity.

M. BRUNELLA. Vanishing holonomy and monodromy of certain centres
and foci

In this paper we study a particular class of germs of analytic differential
equations on the real plane, which present a singularity of the type centre -
focus. For these singularities it is defined a monodromy map, which is a germ
of analytic diffeomorphism on the real line. A complexification of these germs
allows to introduce (following R. Moussu and D. Cerveau) their vanishing
holonomy. We study the relation existing between monodromy and vanishing

holonomy; corollaries about normal forms are obtained.



ABSTRACTS

D. CERVEAU. Théorémes de type fuchs pour les tissus feuilletés

Apreés avoir rappelé des résultats pour certains bien anciens - et souvent
méconnus - concernant les d-tissus sur un ouvert de C™ on s’intéresse a la
dynamique des 3-tissus feuilletés hexagonaux globaux. Bien souvent - c’est le
cas sur les espaces projectifs - un tel objet va présenter des singularités. On
se propose, moyennant des hypothéses de type Fuchs, de donner une descrip-
tion des feuilles comme niveaux de fonctions multivaluées de type Liouville
(XXilog fi+H, f; et H holomorphes). Ce travail est motivé par la description
de la variété des feuilletages algébriques de codimension un sur des espaces
projectifs CP(n).

D. CERVEAU and A. LINS NETO. Codimension one foliations in CP",
n > 3, with Kupka comporents

We consider holomorphic foliations of codimension one in CP(n), n > 3,
with a Kupka component. We prove that if the Kupka component is a com-
plete intersection, then the foliation has a first integral of the type f?/g9,
where p,q are positive integers with (p,q) = 1, f and g are homogeneous
polynomials in C™*! such that p degree (f) = g degree (g) and the Kupka

component is {f = g = 0} in homogeneous coordinates.

J. ECALLE. Compensation of small denominators and ramified linearisation

of local objects

We show, on typical examples, how local objects (i.e. germs of analytic
vector fields or diffeomorphisms of C¥) which, due to resonance or small de-
nominators, fail to possess an analytic linearisation, may still be reduced to
their linear part by means of ramified changes of coordinates. The latter are
not merely formal, but canonically resummable in spiral-like neighbourhoods

of the ramified origin 0 of C¥. Apart from its obvious bearing on local dynam-

ics, ramified linearisation leads to an extension of the concept of holonomy.



ABSTRACTS

J.E. FORNAESS and N. SIBONY. Complex dynamics in higher dimen-
sion I

We study global questions of iteration for holomorphic self maps of P*.
After discussing some basic properties of holomophic and meromorphic maps
in P, we describe the maps f in P? for which there exists a variety V'
satisfying f~!(V) = V. We show that for a Zariski dense set of holomorphic
maps in P2 the complement of the critical orbit is Kobayashi hyperbolic. We
then study expansive properties of the maps in the interior of the complement
of the critical orbit, under suitable hyperbolicity assumptions. We finally

classify maps in P? such that the orbit of the critical set is a variety.

Y. ILYASHENKO. Normal forms for local families and nonlocal bifurca-
tions

The study of nonlocal bifurcations from the topological point of view re-
quires not only topological, but smooth normal forms of the families of differ-
ential equations near singular points. In the first part of the paper a survey
of these normal forms is presented. In the second part these normal forms are
applied to the study of the bifurcations of planar vector fields. A complete
list of polycycles appearing in generic two or three parameter families (Zoo of
Kotova) is presented.

The proof of the finite cyclicity of elementary polycycles occuring in typical

finite parameter families of planar vector fields is outlined.

V.P. KOSTOV. Regular linear systems on CP* and their monodromy groups

In this paper we prove that the p + 1 Jordan normal forms of the mon-
odromy operators of a regular linear system on CP! with p+ 1 poles and the
possible reducibility of the monodromy group define an analytic stratification

of (GL(n,C))? - the space of monodromy groups of such systems.



ABSTRACTS

J.F. MATTEI and M. NICOLAU. Equisingular unfoldings of foliations
by curves

We prove the existence of a versal equisingular unfolding of a given holo-
morphic foliation F' with isolated singularities on a compact complex surface.
Under suitable cohomological assumptions the parameter space is isomorphic
to the product of the spaces parametrizing the (local) versal equisingular un-
foldings of the germ of F' at its singular points. As an application it is shown
that any equisingular unfolding of a germ of polynomial foliation on (C2,0)
is still polynomial.

M. EL MORSALANI, A. MOURTADA and R. ROUSSARIE. Quasi-
regularity property for unfoldings of hyperbolic polycycles

Some years ago Yu. Ilyashenko proved that the return map of any planar
analytic hyperbolic polycycle has a quasi-regularity property. This implies
that the polycycle is isolated among limit cycles, a key step in the proof that
any polynomial planar vector field has just a finite number of limit cycles.

Here one proves a similar property for analytic one-parameter unfoldings
of hyperbolic polycycles. As a consequence one deduces that some special
unfoldings, with an unbrocken connection and a fixed product of again value
ratios, have a finite cyclicity i.e., that the number of created limit cycles is
bounded. Such unfoldings arrives for instance in quadratic vector fields, so
that the result solves some of the cases in a general program formulated else
where about the Hilbert’s 16" Problem for quadratic vector fields.

I. NAKAIL. A rigidity theorem for transverse dynamics of real analytic foli-
ations of codimension one

We prove a topological rigidity theorem for transverse dynamics of real
analytic foliations of codimension one (Theorem 1) as well as for pseudo-
groups of real analytic diffeomorphisms of open neighbourhoods of 0 in the
real line R (Theorem 3). We apply those results to prove the topological
rigidity of analytic actions of the surface group I'Y on the circle S (Corollary
4) and also the topological invariance of the Godbillon-Vey class (Corollary
2).



ABSTRACTS

R. PEREZ-MARCO et J-C. YOCCOZ. Germes de feuilletages holomor-
phes a holonomie prescrite

Les germes de singularités irreductibles de feuilletages holomorphes de type
Siegel sont définis par un champ de vecteurs holomorphe avec valeurs propres
A1,X2 en 0 € C, tels que A\; - Ay # 0 et @ = —A3/A; soit réel positif. L’holomie
d’une des séparatrices determine le feuilletage.

Etant donné un germe holomorphe f(z) = €2™* + z + O(2?), on construit
un tel feuilletage avec holonomie f. On obtient alors ’équivalence entre la
classification analytique de ce type de germes de singularités et la classifica-
tion analytique de germes de difféomorphismes holomorphes de (C,0). La

condition optimale arithmétique pour la linéarisation est obtenue.

C. ROCHE. Deunsities for certain leaves of real analytic foliations
Khovanskii’s theory applies for non spiralating leaves of real analytic folia-
tions as was shown in a joint work with R. Moussu. This theory proves that
these leaves behave much like subanalytic subsets at least for the finiteness
properties. Here it is shown that Kurdyka-Raby’s technique can be applied
to prove the existence of densities in each boundary point of a non spiralating
leaf. This result doesn’t use regularity assumptions on the boundary set of a

very few results are known on these sets.

M. SHISHIKURA. The boundary of the Mandelbrot set has Hausdorff
dimension two

The boundary of the Mandelbrot set M has Hausdorff dimension two and
for a generic ¢ € M, the Julia set of z — 22+ ¢ also has Hausdorff dimension
two. The proof of these statements is based on the analysis of the bifurcation
of parabolic fixed points. This paper is an attempt to explain the main point

of the proof, using the notion of geometric limit of rational maps.



ABSTRACTS

D. TISCHLER. Perturbations of critical fixed points of analytic maps

We consider perturbations of a locally defined analytic function which has
a critical point which is also a fixed point. The second derivative at the fixed
point determines an inequality for the positions of the critical point, critical
value and fixed point of the perturbed analytic function relative to some
reference point. We apply this to the case of critical points of polynomials
where the reference point is another fixed point. We also use the topological
description of polynomials, all of whose critical points are fixed, to examine
some inequalities relating the positions of critical points and critical values

for polynomials which depend on the branching of the polynomial.
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The Index of Holomorphic Vector Fields
on Singular Varieties I'
Ch. Bonatti and X. Gémez-Mont

Given a complex analytic space V with an isolated singuarity at p, there
is a way to associate to a holomorphic vector field X on V an index at p a
la Poincaré-Hopf Ind(X, V, p) (see [Se],[GSV]). The objective of this series of
papers is to understand this index. In the present paper we relate it to the

V-multiplicity:

. Ocn
X,p) = dim P
#v(X.p) C e fo XL, X"
where fy,..., fo are generators of the ideal defining V' C C™, X7 are the

coordinate functions of a holomorphic vector field that extends X to a neigh-
bourhood of 0 in C™ and the denominator denotes the ideal generated by the
elements inside the parenthesis in the ring Ogn , of germs of holomorphic

functions at p. The main results are:

Theorem 2.2. Let (V,0) C B; C (C",0) be an analytic space in the unit ball
B, which is smooth except for an isolated singularity at 0. Let ©, denote the
Banach space of holomorphic vector fields on V,. with continuous extensions
to 0V,, r < 1, with its natural structure as an analytic space of infinite

dimension. Then:
a) The function V-multiplicity at 0
pv(,0):0, — Z1 U {oo}
1Research partially supported by CONACYT-CNRS and CONACYT-CNPq. The sec-

ond author was a Guggenheim fellow during this research, and he would like to thank Bo
Berndtson for useful conversations.

S.M.F.
Astérisque  222** (1994) 9



C. BONATTI, X. GOMEZ-MONT

is upper semicontinuous and it is locally bounded at those points X

where X has an isolated singularity on V at 0.

b) The subsets of ©, defined by u( ,0) > K are analytic subspaces and the

minimum value of py( ,0) in ©, is attained on an open dense subset I’y
of ©,.

c) The subset of ©, formed by vector fields whose critical set at 0 has

positive dimension is an analytic subspace of ©,.
We introduce the Euler characteristic vy (.X,0) of X € ©, at 0 in (2.10)

and show:

Theorem 2.5. For X € O, with an isolated singularity at 0, s < r and
0 < &, we have:

1) For any family of vector fields { X, }ser. parametrized by a finite dimen-
sional analytic space (T,0) — (0©,,.X) such that the V- multiplicity at
0 of the general vector field X, of the family is minimal py, we have:

xv(X,0) = \¢" (01,5 O1x3)

where the right and hand side is the Euler characteristic of higher torsion

groups.

2) For Z € U(X,¢€) we have

xv(X,0) =\ (Z,0) + Z v (Z,pj)

Z(pj)=0
p;€Ve—{0}

3) For X € O, with an isolated critical point at 0, we have:
0 < v (X,0) < v (X,0)

and xv(X,0) = py(X,0) if and only if the universal critical set Z, is

m1-anaflat at (X,0) (in particular this happens in T} ).

Let X € ©,, we say that the critical set of X does not bifurcate if there
is € > 0 and s > 0 such that for ¥ € U(X.s) C O, we have that the only

10



INDEX OF HOLOMORPHIC VECTOR FIELDS

critical point of Y on Vj is 0, (that is, .X has an isolated singularity at 0 as
well as any sufficiently near vector field in ©, and there is no other critical

point uniformly in a neighbourhood Vj of 0).

Theorem 2.6. Let (V,0) C B; C (C",0) be an analytic space which is
smooth except for an isolated singularity at 0, then the set of points in O,
whose critical set does not bifurcate contains the connected dense open subset

I'; C O, consisting of vector fields with minimum V -multiplicity.

Theorem 3.1. Let (V,0) C B, C (C",0) be an analytic space which is
smooth except for an isolated singularity at 0. then there is an integer K such
that

Indw (X, V.0) = \v(X.0) + I

for X in the dense open set @' of vector fields in ©,. with an isolated singularity
at 0. For X in the dense open set of ©' where the universal critical set Z, is

©,-anaflat we have

Indw(X,V,0) = pyv(X,0) + K

Corollary 3.2. Let (V,0) C B; C (C",0) be an analytic space which is
smooth except for an isolated singularity at 0, then there is a constant L such
that Indw(X,V,0) > L for every germ of holomorphic vector field X on V

with an isolated singularity at 0 on V.

In the first section we analyse the index on smooth compact manifolds with

boundary. We prove:

Proposition 1.1. Let X and Y be C!-vector fields defined on the compact
manifold with boundary (W,0W) and non-vanishing on OW and let [['x]
denote the fundamental class of the graph of X'/ || X || on the sphere bundle S of
unit tangent vectors of W restricted to OW (with respect to some Riemannian
metric on W). Then

Ind(X,0W, W) — Ind(Y.0W,W) = [Cx] - [[—y]

1



C. BONATTI, X. GOMEZ-MONT

where we do the intersection in homology of S.

In the second section we develop the properties of the V-multiplicity, and

in the third we compare the V-multiplicity with the topological index.

1. The index of vector fields on manifolds with boundary

Let W be a compact oriented manifold of dimension m with boundary, W,
oriented in the natural way. Given a never vanishing C°%-vector field X in a
neighbourhood of W, the index of X on the boundary of W, Ind(X, 0OW, W)
may be defined by extending X to a vector field X on W with isolated singu-
larities, and then adding up the indices at the singularities of X. The index
is independent of the chosen extension X (see [Mi],[Se]).

To understand the dependence of the index on the manifold W, we will
prove that the difference of the indices of 2 vector fields may be computed

exclusively in terms of boundary data:

Proposition 1.1. Let X and Y be C!-vector ficlds defined on the compact
manifold with boundary (W,0W') and non-vanishing on 0W and let [T x]
denote the fundamental class of the graph of X/ ||.X|| on the sphere bundle S of
unit tangent vectors of W restricted to OV (with respect to some Riemannian
metric on W). Then

Ind(X,0W, W) — Ind(Y.0OW. W) = [I'x] - [T -y]
where we do the intersection in homology of S.

Proof. Since the index and the fundamental classes do not change if we make
a small perturbation, we will assume that X' and Y are in general position.
Namely we will assume that if the zeroes 2 C C x W of the vector fields
{X: = (1-1)X + 1Y }4¢[o.1) intersect OV, say at 0, then at 0;: X; has a zero

12



INDEX OF HOLOMORPHIC VECTOR FIELDS

of multiplicity 1 and the projection of Z to W is transversal to the boundary
ow.

The intuitive idea of the proof is very simple. The above family connects
X with Y, and the only way the index as a function of ¢ € [0, 1] can change
is if a zero leaves W at W, or if a zero arrives at W through OW. By the
transversality conditions we are assuming, this will happen every time X; has
a zero on OW, and it will give a contribution of 1, depending whether the
index of X; is £1 and whether the point is arriving or leaving W. One has to
prove that one obtains the same sign from the contribution of the intersection
[Cx] - [C-y] at the above point on OTV.

Let p be a boundary point, and consider the convex hull C = (X (p), Y (p))
in T,W. If 0 is not contained in C, then the vector fields X; do not vanish
at p for t € [0,1]. If O is contained in C, then there is exactly one value of ¢
where X; vanishes at p. Note that this condition means that X (p) and Y (p)
are linearly dependent with distinct orientation, and this is equivalent to the
fact that 'y and I'_y intersect. So the only point left is to show that one
obtains the same sign from the intersection [I'x] - [['—y] at p as the difference
of the indices Ind(X ¢4, OW, W) — Ind(X;—., W, W).

To simplify notation, let (z1,...,2,) be coordinates around p = 0, where
W and OW are defined by z, > 0 and z, = O respectively. Let Z =
(Z1,...,Z,) be a C'-vector field with a critical point at 0 of multiplicity
1,Y = (Yi1,...,Ys) a Cl-vector field with Y;(0) > 0, and we are interested in
computing the contribution to the index of the family Z + tY, when ¢ passes
through 0 in the positive direction.

Let DZ(0) be the derivative of Z at 0. It is an invertible matrix and the sign
of det[DZ(0)] is Ind(Z,0), and hence it also Ind(Z;,0;), where 0, is the zero
of Z,; near to 0. (One may think that everything extends to a neighbourhood
of OW outside of W, so as to “see” 0, for all small values of ¢, and not only
for the ones that are in W). A simple calculation shows that the curve 0

intersects OW with velocity vector

(d0,/dt)(0) = —[DZ(0)]'Y(0)

13



C. BONATTI, X. GOMEZ-MONT

and hence the zero set is entering W if dz,,[-[DZ(0)]~'Y(0)] is positive, and

is leaving W if it is negative. By Crammer’s rule, we have

aZl/Basl 6Z"/8x1
dz,[-[DZO) Y O) = Trp 707 aZIE/axl . oz /62) ©)
Y! . Yy»
(1.1) — — det[A]/ det[DZ(0)]

where the matrix A is defined by the above formula. Hence we obtain for
€>0:

Ind(Z,,W,0W) — Ind(Z_,, W,0W) = Ind(Z, 0)Sign(— det[A]/ det[DZ(0)])
(1.2) = —Sign[det[A]]

We will now compute [['z4y]; [[—(z-y)]. Dividing by Z' + Y (respectively
by Y1 — Z%), which is positive, amounts to taking coordinates in the sphere

bundle, so I'z4y and I'_(z_y are the graphs of the functions

’)’+(.’L‘1,... ,il?n_.l)
=((Z2+Y>»/(Z* +YY),... . (Z"+ YN /(Z' + YY) (21,... ,Tn-1,0)
7—(1:1,... ,xn_l)

= (Y2 = Z%)/(Y' = ZY),... ,(Y" = Z") /(Y = ZY)(zy,... , Zn_1,0)

The intersection number Iz, y]-[['—(z-y,) is equal to the sign of determinant
of the matrix obtained by grouping the derivatives of the graphs of ¥+ and

v o

det [1{) + g‘;ﬁ] (0) = det[Dy~ — Dv*](0)

A simple calculation shows that

Yi0) Y& 2(0)
(07)s = gy d"t[ Vi) RV Z(0)

14



INDEX OF HOLOMORPHIC VECTOR FIELDS

Hence

71 it
(13) [D'Y— - D7+]ij = 2 [) (0) 3a:jZ (0)]

TTOrE v 20

We now need to use a formula involving determinants: Let A = [a;;] be an

§ X s matrix, and let B = (b;;) be the (s — 1) x (s — 1) matrix whose general

term is

1.4 bi; = det | 111 "”]
(1.9 j=der[mm o
1,7 =2,...,n, then we have that

(1.5) (a11)¥7% det[A] = det[B]

This formula may be proved first for diagonal matrixes, and then by showing
that both sides are left invariant under the elementary operations of rows and
columns.

Consider the matrix A in (1.1). Let A’ be the matrix obtained by mov-
ing the last row to the first. We have det[4] = (=1)"~! det[A4'], and let B
be the matrix obtained from A’ as in (1.4). Nothing that [Dy~ — Dy*] =
—2B/Y'(0)? we have by (1.5):

det[A] = (=1)" "' det[4'] = (=1)""'Y(0)?~" det[B]
= (-1)""'Y}(0)* " det[Dy~ — Dy*]/(-2)"!

Hence det[A] and det[Dy~ — Dy*] have the same sign. Using (1.2) we obtain:
Ind(Z., W,8W) — Ind(Z_., W,0W) = —Sign[det[A]] = —Sign[det[Dy~ — Dy*]] =
=[—(z-v)]-[Cz+v] =[z-v]- [[-(z4v)]

This proves the Proposition. [

If we denote by Vec(OW)?* the set of C!-vector fields defined and never
zero on a neighbourhood of 01, the Index is an integer valued function with
Vec(0W)* as a domain:

Ind: Vec(OTI)t - Z

15



C. BONATTI, X. GOMEZ-MONT

Let (W’',0W’) be another compact manifold with boundary and ¢: W —
OW' an orientation preserving diffeomorphism of the boundaries. We may
extend this diffeomorphism to a diffeomorphism of a neighbourhood of the
boundaries ¢: W; — W/. Given a non-singular C%vector field X defined on
the neighbourhood W; of W, we may transport it via ¢ to a vector field X’
defined on Wj.

Indow: Vec(0W)t — Z

(1.6) ¢ l o
Indgw:: Vec(OW")t — Z

It follows from Proposition 1 that for X, Y € Vec(9W)*t we have:

Ind(X, 6W, W) - Ind(Y, 8W, I’V) = [F\] . [P_y] = [FB.X] . [F¢.‘_y]
= Ind(¢,X.0W', W') — Ind(¢,Y, W', W')

And hence for variable X, and a fixed ¥ we obtain:

Indawl((ﬁ*X) = Indaw(‘\’) - (Indaw(Y) - Indawl(¢*Y))

Hence we may complete (1.6) by a map « which is substraction by an integer.
This integer may be computed by taking the difference of the two indices with
respect to any pair of vector fields in Vec(1W)*. To see who this integer is, let
Z be the vector field in Vec(W)* which is always pointing inward. In this case,
by the relative Poincaré-Hopf Index Theorem (see [Pu]), it is x(M) — x(0M),

where x is the Euler Poincaré characteristic. Hence we obtain:

Corollary 1.2. Let (W,0W) and (W, 0W') be manifolds with diffeomorphic
boundaries and ¢ a diffeomorphism of a neighbourhood of the boundaries.
Then for any C°-vector field defined and non-vanishing on a neighbourhood
of OW we have

Ind(X,0W, W) = Ind(,.X, 00 . TV') + [\(W) — x(W")]
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Remark. The above result may be also obtained from Pugh’s Poincaré- Hopf
Index Theorem for compact manifolds with boundary ([Pu]) since it expresses
the index as the Euler-Poincaré characteristic of the manifold with boundary
plus a contribution of the tangency behaviour of the vector field with the
boundary. Hence taking the difference of both extensions we obtain that the
difference of the indixes will be the difference of the Euler-Poincaré character-
istics of the manifolds, since the boundary contributions are equal and hence
cancel each other.

We will now give another explanation of the ambiguity of the definition of
the index as a number just from its behaviour at the boundary.

Let (W,0W) be a compact manifold with boundary, choose a Riemannian
metric on W and let T'W be the unit sphere bundle in the tangent bundle of
W, and S = T'W |aw its restriction to the boundary. The natural projection
p:S — OW has the structure of an (m — 1) sphere bundle over 9W. S has
dimension 2(m — 1) and its cohomology groups H7(dW, Z) may be calculated
using the spectral sequence of the fibration, since the cohomology bundles
Rip,(Zs) over OW are non- vanishing except for dimension 0 and n—1 (since
it is a sphere bundle) and both of them are trivial bundles with Z as fibers,
since the monodromy group is acting trivially (it sends the fundamental class
to itself, since everything is oriented). The spectral sequence degenerates since
HP(0W, R%p,(Zs)) is non-zero only for ¢ = 0, n—1. Hence the cohomology of
S consists of 2 copies of the cohomology of OV glued together in the middle

dimension:
H?(S,Z) = HP(OW,Z) for 0 < p < m — 2
H?(S,Z) = HP~(m=D(9W, Z) for m < p < 2m — 2
(1.7)
0 — H™ 1 (0W,Z) 25 H™"Y(S,Z) - HO(OW,Z) — 0

We are interested in the middle group H™~(S,Z). H™ Y(0W,Zs) =
®;H™"1(0W;, Zs), where {OW;} are the connected components of OW, say

r of them. Hence H™~!(S,Z) has a submodule canonically isomorphic to

17
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Z", obtained by pulling back the fundamental classes of the boundary com-
ponents. The quotient group is again canonicaly isomorphic to Z", but there
is no canonical splitting. H™~1(S, Z) is hence free of rank 2r.

If X is a C° vector field on W, non-vanishing on W, the fundamental class
[Cx] of the graph of X/ | X|| restricted to OW is an element of Hy,_1(0W, Z).
It is the class [I"x] which carries the topological information of the index. Since
it is a section of p, it projects to (1,...,1) in (1.7). The difference of two
such fundamental classes will produce integers on each boundary component.
If one wants to obtain an integer for a vector field, then one has to choose a
splitting of (1.7), which is a non-canonical operation. This is carried out by

choosing the bounding manifold V.

2. Holomorphic vector fields on singular spaces

Let p € V be a point of a complex analytic space of dimension /N and
let (V,p) C B; C (C™,0) be a local embedding of V into the unit ball B;.
We will denote V N B, by V.., where B,. is the ball around 0 and radius
r < 1in C". The ring Ov, of germs of holomoprhic functions at p may
be represented by the quotient Ogn o/J, where J is the ideal of germs of
holomorphic functions on (C",0) vanishing on V. A germ of a holomorphic

vector field at p is a derivation
X: OV,p — Ov’p
(see [Ro]). Given a holomorphic vector field on (V, 0), it gives rise to a diagram

X

Ocnp ——  Ogrp
w ] lm
OV,p ;’ 0"’.;)
We can always lift X to a derivation X on Ogn o. To see this let (z15-+- y2n)

be coordinates of C", and let 4; he 7- liftings to Ogn o of X(7(z;)). One
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easily checks that X = EA]-;,,—% makes the above diagram commutative on
the generators z;, and applying linearity and Leibnitz’s rule, we see that the
diagram is commutative. X will send the ideal J defining V to itself, and
conversely, any such derivation will induce a holomorphic vector field on V.
A germ of a holomorphic vector field at (V,0) induces a (usual) holomorphic
vector field on the smooth points of V near 0.

If X is a holomorphic vector field defined on the non-singular points of V,
then using an embedding of V' into C", we may express X = Y X ,-3%, where
X are holomorphic functions on V —Sing(V'). If V has a normal singularity at
p then, by the second Riemann’s Removable Singularity Theorem ([Fi], p.120),
the functions X; extend to holomorphic functions on V' and the vector field
obtained with these extensions gives a holomorphic extension of the vector fied
X from V — SingV to V. Hence for normal singularities, holomorphic vector
fields on V' coincide with (usual) holomorphic vector fields on V' — Sing(V).
If (V,p) C B; C (C",0) is an analytic space then the sheaf of holomorphic
vector fields Oy is coherent ([Ro]). We shall denote by ©,. the Banach space
of continuous vector fields defined on V, and holomorphic in V., with the C°-
norm. We will also denote the ball {Y € ©,/||X —Y|| < ¢} by U(X,¢). The
ring of germs of holomorphic vector fields Oy, is endowed with the analytic
topology. Recall that a sequence {X,,} converges to X in Oy, if they are all
defined in a small neighbourhood V. C V of p, and they converge in O, (see
[G-R]). Note that by the Weierstrass approximation theorems, ©, is dense
in ©y,p, so that many properties for germs will follow by considering similar

properties in O,.

Proposition 2.1. Let (V,0) C B; C (C",0) be an analytic space which
is smooth except for an isolated singularity at 0, then the subset ©.. C ©,
consisting of holomorphic vector fields that have at 0 an isolated singularity

is a connected dense open subset in ©,.

Proof. Assume that X has an isolated critical point at 0. For s < r small,

X restricted to OV, does not vanish. Let 2z be the minimum value of || X]||
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on 0V;. If Y € O, with ||Y|| < ¢, then X + Y cannot vanish on 9V; (for
then X(q) = —Y(¢)). This implies that X + Y will have an isolated critical
point at 0, since if it vanished on a set of positive dimension passing through
0, this set would have to intersect 9V, (otherwise, one would have a compact
complex manifold in V of positive dimension). This shows that ©/, is open
in ©.

Let Xo € O, and let € > 0 be given. To each vector field X in U(Xy,¢)
we can associate to it the dimension of its critical set at 0, dimo({X = 0}).
Let Y be a vector field where this minimum is attained. We claim that Y
has an isolated singularity at 0. So assume that ¥ does not have an isolated
singularity at 0.

Let PT(V — {0}) C C" x P&™! be the (complex) projectivized tangent
bundle of V' — {0}, denote by P,. its closure and 7: P, — V. its projection to
the first factor. P, is an analytic space, 7 is a proper holomorphic map which
is a complex projective bundle outside of 0 and the fibre over 0 is the tangent
cone of V at 0 (see [Wh]). Let 4 = 4, U---U 4, be the decomposition in
irreducible components of {Y = 0} C V). passing through 0. By assumption
A does not reduce to 0. Let I'yy C P,. be the closure of the graph of Proj(Y)
on V., — A. T'y has dimension N = dim(V,). The intersection of I'y with
7~1(A) has dimension at most n — 1, since it is contained in the boundary
of the graph of Y, which has dimension N. Since 771(4;) has dimension
N — 1+ dim(4;) > N — 1, we may choose points in 7~1(4;) — T'y. That is,
there are points p; € A; — {0} arbitrarily close to 0 and vectors v; tangent
to V, at p; such that Proj(v;) is disjoint from I'y-. Since V; is a Stein space,
there is a vector field Z on V. such that Z(p;) = v;. We claim that Y 4+ tZ,
for small values of ¢ # 0 will have singular set at 0 of dimension smaller than

the critical set of Y, contradicting the choice of Y.

To see this, let s < r so that ANV, = {}Y = 0} N V,. Without loss of
generality, we may assume that p; € 1§ (since the set of points that do not
satisfy the defining condition of p; is a proper subvariety of each A;). Let C
be the set of points of Vi x C where Y + #Z vanishes and let p: V, x C — C
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be the projection to the second factor.

We claim that the A;’s are irreducible components of C. To see this,
consider (Y + tZ)(p) = 0 for p near to p;. By the way we chose Z(p;), one
may conclude that Z(p) is linearly independent with Y'(p) if Y'(p) # 0. Hence
(Y+tZ)(p) # 0. If Y(p) = 0, then for t # 0 we have (Y +tZ)(p) = tZ(p) # 0.
This implies that the decomposition into irreducible components of C in a
neighbourhood of (0,0) is of the form C = 4;U---UA,UC U---UC,. Hence
the irreducible components C}, are not contained in p~!(0) and its intersection
with p~1(0) does not contain any A;. Hence C;Np~*(0) has dimension strictly
smaller than the dimension of A. By the theorem of upper semicontinuity of
the dimension of the fibers of a holomorphic map, we conclude that (C;U- - -U
Cr) N p~1(to) has dimension smaller than the dimension of A, for ¢y # 0. But
this set is exactly the critical set of Y + toZ. This contradicts the hypothesis
that the minimum dimension of its critical set is attained at Y. Hence Y has
isolated singularities. This shows that O/, is dense in O,.

To see that @, is connected, let X' an Y™ belong to O, then consider the
family {X +tY }sec. The critical set C' of the family consists of (¢,p) € CxV
such that (X + tY)(p) = 0. C is an analytic subvariety, containing the line
Lo = C x {0}. By hypothesis (0,0) and (1,0) lie on Ly and in no other
irreducible component of C. Hence Ly is an irreducible component of C. The
other irreducible components of C intersect £y on a finite number of points.
Hence all points of £y except a finite number represent vector fields with

isolated singularities. Hence, ©!. is connected. O

From now on, we assume that V C B; C C" is a smooth variety of
dimension N except for an isolated singularity at 0 (V non-smooth at 0). Let
J = (fi(2),..., fe(z)) be the ideal sheaf defining V. in B,. Consider the
Banach space ©, as an infinite dimensional analytic space (see [Dol]) and let

e: 0, x V., — C" be the valuation map

i1 0 ;1 0 ; 0
e(X,z) =e (Za’,zlazj , zo) = Zn’,:ga = ZeJ(X, zo)a—zj = X(29)
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It is an analytic function on the Banach space ©, x V,, linear in the first
variable. The universal critical set 2 = Z, is the analytic subvariety of
O, x V, defined by the sheaf of ideals

(2.1) I, = (fi(2),..., fe(2),e} (X, 2),... ,e"(X,2)) C Oo,xB,

The above generators of the ideal Z,. give a finite presentation of Oz as an

Oo xp-module:
(2.2) 0g4n 2 0o, xp, — Oz — 0

where the map @ is matrix multiplication with (fi,..., fe,el,... ,e").

Let m; and w5 be the restriction to Z of the projections to the factors ©,
and B, respectively. We analyse first m». Since V" has an isolated singularity
at 0, all vector fields on V' vanish at 0. hence ©¢ C Z, where ©9 = 0, x {0}
is the zero section. This means that 75 1(0) = Oy, which is a subvariety of
©, x B, of codimension n. By restricting mo: Z — ©9 — V,. — {0} we see that
the fiber 7, *(p), with p € V. — {0}, is a vector space of codimension N in O,
(since V; is Stein and N = dim V) and hence 75 '(V,. — {0}) has the structure
of a vector bundle over V,. whose fibers have codimension N in ©,. Hence
75} (V; — {0}) is smooth of codimension n in ©, x B, (the same codimension
as ©g). Let Ogng C Z be the closure of 73 '(V — {0}). Set theoretically
Z = Qg U Oging, but Z will in general have a non-trivial scheme structure on
©o.

We now view Z as a space over O, via the projection m1: 2 — ©O,. The
fibre 771 (X) over the vector field X is set theoretically the critical set {z €
V./X(z) = 0} of X. Recall that the process of restricting to a w-fibre {X} x
C™ is carried out by tensoring with Qo ,n. Ox}xB,. In particular, Oz ®
Oo,xB,0(x}xB, has support on the critical set of X and for an isolated

singularity of X at p, its dimension is the V-multiplicity of X at p € V;:

C)C".p
(Fi- o fe XL X7

(2.3) py (X, p) = dimg
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Note that uy (X, p) depends exclusively on X |y, since the contribution from
choosing another extension to C” is cancelled by the terms (fi,..., fe) and
that it is strictly positive exactly at the critical set {X = 0} of X. Note
that (2.3) is the corank of ® in (2.2) over the point (X,0), or equivalently,
(2.2) gives a way to express the V-multiplicity as a corank of a matrix with
parameters. We will exploit this expression to describe the dependence of
the V-multiplicity on X; but technically it wil be simpler to consider an
approximation of ® on infinitesimal neighbourhoods of ©y.

We will now analyse the structure of 2 at the zero section ©y. Let K =
(21,...,2n) C Oo,xcn be the ideal of definition of O, and denote by 63 the
7! infinitesimal neighbourhood of ©¢ defined by the sheaf of ideals K7*! C
Oeo, xc» generated by the monomials in z of degree j + 1. As a space, it
consists of @ but its function theory remembers the Taylor series in the
z-variables up to order j. Using the presentation (2.2) of Z, we note that

P((KI+1)®n) ¢ I+, 5o that it will induce an exact commutative diagram

ogft%, 2, 0o, xB, — 0z —0
l l

(24)  oghn j(tnyetn 2L 06 yp, /Kt — Oz —0
l |
0 0 0

where Z7 is the analytic intersection of Z and ©}, and its defining ideal is

spanned by Z and K7*!. From the inclusions

(2.5) J=(Z,K)D---D(T,KI*tY > (Z,K*?) >...2T
we obtain the inclusions of analytic spaces

(2.6) §op=2"'Cc-..c2iczitlc...cz

®7 in (2.4) is a sheaf map between free sheaves over Oy, so it may be identified
with a (finite dimensional) vector bundle map between (trivial) bundles over

©¢. Hence & may be represented by a (finite dimensional) matrix with
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parameters. Denote by ®/(X): O;x}B,.0/m*' = O(x}B,,0/m’*!, where m
is the maximal ideal in O(x} B, 0, the restriction of @’ to the point (X,0)
and define

OCn’p

u(2%, X): = corankg[®/(X)] = dimg - . .
(.fla--- wf(»‘ 1a"' ’Xna’:i’.i-l,'-- ,Z':;+1)

We have for j < k:

1< pu(27,X) < p(2F X) < pv(X,0)

Theorem 2.2. Let (V,0) C B; C (C",0) he an analytic space which is
smooth except for an isolated singularity at 0, and let O, denote the Ba-
nach space of holomorphic vector fields on V,. with continuous extensions to
OV,, r<1,andlet Z, 27 = ZnG)é C O, x B, be the universal critical set
and its approximation sets. Then, there is a descending sequence of analytic

subvarieties of finite codimension A¥, A*+! C A*, and an integer J such that:

a) 2in(©—-AN)=2kn(O© - A47) for j. k> J.
b) pv(X,0) = pu(2/,X) for X ¢ A7 and j > J.
c) The function V-multiplicity at 0

wv(,0):0, — Ztu {OO}

is upper semicontinuous and it is locallv bounded at those points X
where X has an isolated singularity on V at 0 (©, has for this the
topology whose closed sets are the analvtic subsets).

d) The subsets of ©, defined by p( ,0) > I are analytic subspaces and the
minimum value of jiy( ,0) in O, is attained on an open dense subset I
of O,.

e) The subset of O, formed by vector ficlds whose critical set at 0 has

positive dimension is the analvtic subspace of ©, defined by NAJ.
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Proof. For every j, the inclusion (Z,K7*2) C (Z,K’*!) induces an exact

sequence of sheaves on O, x B,

0
A
]CJ+1/]CJ+2
» l
27) O84%n J(Kit)ettn YL 0o 4, /K*? — Ozisn — 0
! !
O84n /(K2 2y 0o g, /K1 — Oz — 0
! l
0 0 0

where the first 2 columns may be interpreted as (finite dimensional) vector
bundle maps over ©g. The corank of ®+!(X) is equal to the corank of
®3(X) if and only if K/+1/KI*+2(X) is contained in the image of ®I*1(X).

The increase in the corank from ®7(X') to ®/*1(X) is the codimension of
Image[®+ (X)] N K+ /KIH2(X)] € KIF/KI+2(X).

A stratification of ©¢ consist of a disjoint decomposition of @ by subsets
Iy,...,I's where each I'; is an analytic subvariety minus another analytic
subvariety (the ones that will actually appear have finite codimension). Since
Oy is irreducible there is one and only one component that is open. We will
assume that for any stratification of ©¢ this open component is the first one
r.

We may first find a stratification of ©y so that the corank of ®/+1(X)
is constant on each strata. Then one may further stratify according to the
dimension of Im®i*! N (K+1/K7+2)(X). In all, we obtain a stratification
{Ti*1 .. T9*1} of @ such that the codimension of Im®i+1N(Ki+1/KCi+2)(X)
is constant on the stratification, say df *1on I‘{ *+1. Since the numbers df-' +1are
defined as coranks of a matrix with parameters, they behave upper semicon-

tinuosly, in the sense that if F{,“ is in the closure of I‘{l'H, then df;“ > df;"'l.

Due to this property, we may assume that F{H consists of all those points X
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of ©¢ where the minimum is attained (i.e. d{+1 < df;"'l for k > 2). We have
(2 X) > w20, X)+dtt X €6,

d{ has to be 0 for j large, due to the fact that the sum of these numbers gives
a lower bound to (27, X), which is finite for X with an isolated singularity

at 0. If d{"'l =0, in I"{'H we have
K3t /K3*? € Image[®71)
or equivalently on the open set I‘{'H we have
Kitt c (T.K7%?)
This last implies also that on 1"{"“ we have
(2.8) K3tk c(Z, 0%k k> 2

which means that {4F = ©y — 'Y}, form a descending family of analytic
spaces of Qg, for k > j where d{ = 0. The intersection of the above family
consist of those points where p( 27, X) is infinite. This set is exactly the set
{(X,0)/0 is not an isolated critical point of X at 0}.

(2.8) also implies that if dJ = 0, then for k > j we have I'* C T'**+1, Let

I = n]."’f , which by the previous remark reduces to a finite intersection.
k

I’y is the open dense subset of Oy consisting of vector fields with minimum
V -maltiplicity at 0, and equal to d' +d? +---+d?~*. Let T'; = 71 (I';). From

the above description, the theorem is clear. O

Now we begin to analyse the other component Z,, of Z.

Lemma 2.3. The V-multiplicity of the holomorphic vector field X on V at
a smooth point p of V' coincides with the multiplicity (or the index) of the

vector field X |y at p.

26



INDEX OF HOLOMORPHIC VECTOR FIELDS

Proof. We may find coordinates (z1,...,z,) around p such that J =
(#2N+1,--- ,2,) and the condition that the vector field X is tangent to V
isthat X’ € J for j =N +1,...,n. Hence

. Ogn 0
X,p)=di — ~
ﬂV( p) mC(ZN+1,...,Zn,‘\l,...,.\"')
-_.—dll'l'lc OCH’O =
(ZN+1,... ,Z,,,.Yl,... ,‘?N)
. Ocw~
(2.9) = dimc o7 x{0}.0 =p(X|v,p) O

(X1(,0),....X7(3,0))

A sheaf F on O, x B, is ©,-anaflat ([Dol], 66) if for every point (X, z) there

is a finite locally free resolution
0—Ly—+— Lo — F—0
in a neighbourhood of (X, z) such that its restriction to {X} x B, is also an

exact sequence.

Proposition 2.4. If p # 0 is an isolated critical of X € ©,, then Oz_ is
©.-anaflat at (X, p).

Proof. If (X,p) € 2, with p # 0 an isolated singularity of X, then Lemma

2.3 shows that 2, at (X, p) is a complete intersection:
I‘\',p = (ZN+1, ces s Z,,,‘Yl, oo ,XN).

The generators of Zx , form a regular sequence, so the Koszul complex of the
regular sequence ([G-H], p.688) gives a finite locally free resolution of Oz, .
The restriction of this complex to {X'} x C" is the Koszul complex of the
restricted generators, who also form a regular sequence. Hence the restricted

sequence is also exact. So Oz, is ©,- anaflat at (X,p). O

Let now X € O, with an isolated critical point at 0, let s < r be such that X
is non-vanishing on V,—{0}, and let 2 = min{|| X (z)|| /z € 8V,} and consider
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the ball U = U(X,€) C O©,. The projection map 71: 2’ = ZN(UxB,) - U
is a finite map by Propositin 2.1 (see [G-R], where a finite map is a closed
map with finite fibers). We want to analyse the sheaf 71+ Oz:. The points of
2’ — (09 N U) are m-anaflat by Proposition 2.4 and the points of I'; C Oy,
consisting of (W,0) with W of minimal V-multiplicity uy at 0, are also -
flat (since they have constant multiplicity (see [Do2], p.58)). Hence 71+ Oz
is locally free on m1(T'y) = T of rank

(2.10) pv + Z pv(Y,p;)  Yeunoy
Y(p;)=0

p;€V,—{0}
where the V-multiplicity of Y at 0 is yty/. This number is independent of s, for
s sufficiently small and of Y € UNT;. We will call it the Euler characteristic
of X at 0, and denote it by x4 (.X,0) (See [Ser]).

A family of holomophic vector fields parametrized by the irreducible and
reduced complex space of finite dimension T is a holomorphic map ¢: T — O,.
The family ¢ induces a map (¢,id;): T x Vy — O, x V;, and we will denote
(¢,ids)*(Z) C T x Vs by Zrs. Let mi7: Zrs — T be the projection to the
first factor. If m 7 is a finite map, then m7+Oz,., is a coherent sheaf on T,
and hence is locally free on a Zarizki dense set T’ of T, say of rank r. For
t € T' we have

r=pv(X,00+ > pv(Xep))

Xi(pj)=0
pj€V.—{0}
and for t € T we have
(2.11) r=x¢"(0z.,,.0y) + Z v (X, pj)
X(pj)=0
pj€V.—{0}

where

(2.12) X (Ozy.,, Opy) = D _(-1)"Torf,

q

Ozt,s,(t,o)’ O{t})

’T‘xB.(t,O)(
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is the Euler characteristic of torsion groups of Oz, , ., over Oy, where
Tor’(Oz,.,, Ogy) = v (X, 0) (see [Do2]). Recall from Proposition 2.1 that
©!. C O, is the open dense subset consisting of vector fields having an isolated

critical point at 0.

Theorem 2.5. For X € O/, s € r and 0 < €, we have:

1) For any family of vector fields {X,},¢T, parametrized by a finite dimen-
sional analytic space (T,0) — (©,,X) such that the V-multiplicity of

the general vector field X, of the family is minimal py we have:
(2.13) X‘/(‘Y.O) = \Bor((’)z.r‘a. C){.\’})

2) For Z € U(X,¢) we have

(2.14) WX, 00=\v(Z.00+ > wv(Zp;)

Z(])j):O
p;€Vs—{0}

3) For X € ©/ we have:
0 < vv(X.0) < puv(X,0)

and xv(X,0) = py(X,0) if and only if Z, is m -anaflat at (X,0) (in

particular in Ty ).

Proof. Let X € ©, with an isolated critical point at 0, let s < r be such that
X is non-vanishing on V, — {0}, 2¢ = min{||X(z)|| /2 € 8V} and consider
the ball U = U(X,¢) C O,.

1) xv(X,0) is defined by (2.10), where ¥ has minimal multiplicity py at
0. If an element X; of a family {X;} has minimal V- multiplicity at 0, then
the general element will have at 0 minimal multiplicity puy. At these points
27, will be T-flat, since they represent ©,-anaflat points of Z,, and so the
general rank of 77+ Oz, , is again (2.10). (2.11) applied to X on V;, gives

tor

r=x""(Ozz,,O{x}), hence we obtain (2.13).
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2) Take a 1-parameter family {X;};er=c in U(X, ¢) which contains X and
Z such that the general element has minimal V-multiplicity at 0. x(X,0) is
defined by (2.10), where Y has minimal multiplicity puy at 0. Since this is
the only condition needed to apply part 1 of the theorem, assume that Y is
near to Z. Assume that Z vanishes at 0, py,...,p.. Then part of Y is near to
each part of the critical set of Z. Since Zr s is T-flat at py,... ,p., there are
actually as much multiplicity near p; for ¥ as for Z at p;. The multiplicity
of Y near 0 is xy(Z,0) again by definition (2.10) applied to Z, where a new
g’ < € is used in the definition in order to get rid of p;,...,p.. Hence we
obtain (2.14).

3) Consider a 1-parameter family which contains X with 0 as only critical
point in V; and whose general element has minimal V-multiplicity. Then
m1+Oz is a coherent sheaf on C whose rank is yy(X,0), by part 1. Hence
the dimension of 71+ Oz, ® Oyoy is greater than or equal to the general rank.

If the rank is constant, then Z is m- anaflat. O

Let X € ©,, we say that the zero set of X does not bifurcate if there is
€ > 0 and s > 0 such that for Y € U(X,s) C O, we have that the only
critical point of Y on Vj is 0, (that is, .\ has an isolated singularity at 0 as
well as any sufficiently near vector field in ©, and there is no other critical
point uniformly in a neighbourhood V; of 0). The critical set of a vector field
X on V, does not bifurcate if and only if the zero section O coincides (as

sets) with Z, in a neighbourhood of (X.0) in ©, x V;.

Theorem 2.6. Let (V,0) C By, C (C",0) be an analytic space which is
smooth except for an isolated singularity at 0. then the set of points in ©,
whose critical set does not bifurcate contains the connected dense open subset

Iy C ©, consisting of vector fields with minimum V -multiplicity.

Proof. Using previously introduced notation, what we have to prove is that
Osing N T’y = ¢ or equivalently that if (.X.0) € Oy,g then the V-multiplicity

at 0 cannot be minimal.
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If (X,0) € Oging, then we may find a 1-parameter linear family {X; =
X +tY'} in O, such that its critical set

C={(tz)eCxB,/z€V,,Xy(z) =0}

has at least 2 local irreducible components at (X,0), the zero section Co =
C x {0} and the others, say C;. Formula (2.14) applied to Z = X + €Y is

(2.15) xv(X,0)=xv(X +e¥,00+ Y py(X +eY,p;)

X+e¥(p;)=0
pjevs —{0}

The points p; € C; have a strictly positive contribution to the right hand side
of (2.15), hence xv(X,0) > xv(X + €Y,0). From this inequality we obtain
that py(X,0) cannot be minimal, for in that case Yy (X, 0) = uv(X,0) would

also be minimal. O

Example. Let X; = tzla%] + 29 322 + (2t — 1)::38%3 be a family of vector

fields on C2 and let V' be the surface defined by f = 22 — z523. X, is tangent
to V, since df(X;) = 2tf. As vector fields in C3, X, has 0 as only critical
point, except if t = 0 or 1/2. X, has a line of critical points, but on V' it has

an isolated critical point. For ¢ # 0,1/2 one has that
(22 — 2323, t21, 20, (2t — 1)z3) = (21, 22, 23)

so that the V-multiplicity is 1 for ¢ # 0,1/2. For t = 0, one has
(22 = zp23, 121, 20, (2t — 1)23) = (23, 22, 23)

so that the V-multiplicity is 2 for ¢ = 0. So we see the upper semicontinuity

behaviour of the V-multiplicity.

31



C. BONATTI, X. GOMEZ-MONT

Remark. For a family {X +tY} with X'+ Y of minimal V- multiplicity we
have
xv(X,0) = py(X,0) — dim[Tore,,, o (Ozp, 00y Ot1y)]

This second term can be computed as the codimension of
(tf1y s tfo, t(XT Y1), (X" 4+ tY™))

in
ONO(fryoe s fo XY X" 1Y)

(see [Do2]).

3. The index of holomorphic vector fields

Let V be a (reduced complex) analytic space of complex dimension N,
with compact singular set and with boundary, 9V, a smooth manifold of
real dimension 2N — 1 oriented in a natural way. Let W be an orientable
differentiable manifold of real dimension 2N with boundary 0W diffeomorphic
to 9V (orientation preserving). We may extend this diffeomorphism to a
diffeomorphism of a neighbourhood of the boundaries ¢: V' — W', Given a
C%-vector field X on V', non-singular on V', we may transport it via ¢ to a
vector field X’ defined on W’ and then define the index of X on V as the index
of X’ on W', and denote it by Indy (X.1.9V"). This number depends on the
choice of manifold W, but as we have seen in the first section, the choice of a
different W’ changes the index by an integer uniformly for all vector fields.

Given an analytic space V, one may choose as 1V a desingularization of V.
In case V is a germ of a hypersurface with an isolated singularity defined by
the equation f = 0, then W can be defined by f = ¢, for sufficiently small ¢
(or more generally, if V' is a complete intersection, or a smoothable germ with

an isolated singularity, then TV can be the smoothening (see [Se])).

32



INDEX OF HOLOMORPHIC VECTOR FIELDS

If p is an isolated singular point of V' and X is a holomorphic vector field
defined in a neighbourhood of p non-vanishing in a pointed neighbourhood
of p, then the indezx of X at p Indw (X, V,p) is defined as Indw (X, V', V"),
where V” is a sufficiently small neighbourhood of p in V', and W is a manifold
with OW =~ 8V. The function Indw (-, V,p) is well defined up to adding an
integer, choice that depends on the election of the bounding manifold W.

The objective of this section is to compare the index with the V-multiplicity
of X at 0. We recall that at a smooth point of V, if one uses the model of a
ball as bounding a neighbourhood of the boundary of a smooth point, then

the index coincides with the multiplicity (Lemma 2.3).

Theorem 3.1. Let (V,0) C B; C (C",0) be an analytic space which is
smooth except for an isolated singularity at 0, then there is a constant K
such that

(3.1) Indw (X, V.0) = vi+(X.0) + K

for X in the dense open set ©' of vector fields in ©,. with an isolated singularity
at 0, where xy denotes the Euler-Poincaré characteristic of X at 0. For X in
the dense open set of ©' where the universal critical set Z, is ©,-anaflat we

have

(3.2) Indw (X, V,0) = uv(X.0) + K

Proof. If X € O, is a vector field on V' whose critical set does not bifurcate,
then the index is locally constant at ., since the index on the boundary
remains constant, and it is equal to the sum of the local indices, but the only
critical point is located at 0. Hence the index is constant on the connected
set B of Theorem 2.6. By Theorem 2.2.d the minimum of the V-multiplicity
is attained on a dense open subset I'; C B.

Hence there is an integer I satisfying (3.2) for X € I'; (due to the fact

that both functions are constant there).
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Let now X € O, with an isolated critical point at 0, let s < r be such that
X is non-vanishing on V, — {0}, and let 2¢ = min{||X(2)||/z € dV.} and
consider the ball U = U(X,¢). For X +tY € T; N U we have

Indw(X,V,0) = Indw(X +tY,V,0)+ > Indw(X +1Y,V,p;)
X+ty(p;)=0
p;€Vs—{0}

And hence

Indw(X,V,0) = [xv(X +tY.V,0)+ K]+ )  pv(X +1tY,p))
N+1ty(pj)=0
p;€V,—{0}
since X + tY has minimal V-multiplicity at 0 and (3.1) and the fact that
at the smooth points the V-multiplicity is equal to the index (Lemma 2.3).
Using now (2.15) we obtain (3.1). (3.2) follows now from Theorem 2.5.3.

Corollary 3.2. Let (V,0) C B; C (C",0) be an analytic space wich is
smooth except for an isolated singularity at 0, then there is a constant L such
that Indw(X,V,0) > L for every germ of holomorphic vector field X on V

with an isolated singularity at 0 on V.

Proof. Let K be as in Theorem 3.2. Since yy(X,0) > 0 for any X € @, we
have
Indw(X,V,0)> K O
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VANISHING HOLONOMY AND MONODROMY
OF CERTAIN CENTRES AND FOCI

MARCO BRUNELLA

Introduction

Let w(z,y) = A(z,y)dz + B(x, y)dy = 0 be the germ of an analytic differ-
ential equation on R2, with an algebraically isolated singularity at the origin:
A(0,0) = B(0,0) = 0, dimp T < +oc.

The singularity w = 0 is called monodromic if there are not separatrices
at 0. In this case, given a germ of an analytic embedding (R*,0) <> (R2,0)
transverse to w outside 0, it is possible to define a monodromy map P, ,:
(R*,0) — (R*,0), following clockwise the solutions of w = 0; P, is a germ
of homeomorphism of (R*,0) analytic outside 0. If P, , = id then w = 0 is
called centre. Otherwise P, , is a contraction or an expansion (by the results
of Eca.lle, I’yashenko, Martinet, Moussu, Ramis... on “Dulac conjecture”)
and w = 0 is called focus.

The simplest monodromic singularitics are those for which the linear part
M, of the dual vector field v(z,y) = B(x, y);% - Az, J')% is nondegenerate,
i.c. invertible. We distinguish two situations:

i) the eigenvalues A, p of M, are complex conjugate, non real, with real part
different from zero. Then w = 0 is a focus and it is analytically equivalent
to wyin = 0, where wy;;, denotes the linear part of w (Poincare’s linearization
theorem).

ii) the eigenvalues A, jt of M, are complex conjugate, non real, with zero

S.M. F.
Astérisque 222** (1994) 37
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real part. Then if w = 0 is a centre there exists an analytic first integral
(Lyapunov-Poincaré theorem, see [Moul] and references therein) and w = 0
is analytically equivalent to zdz + ydy = 0. If w = 0 is a focus the ana-
lytic classification is a difficult problem, which requires the theory of Ecalle-
Martinet-Ramis-Voronin to pass from the formal classification to the analytic
one ([M-R]). The monodromy is an analytic diffeomorphism tangent to the
identity, and two such equations are analytically equivalent if and only if their
monodromies are ([M-R]).

In this paper we shall study the simplest degenerate monodromic sin-
gularities, i.e. those with A = p = 0, w;in # 0, and with “generic” higher
order terms. Modulo a change of coordinates ([Mou2]), we may work in the
following class.

Definition. Let w = Adz + Bdy = 0 be the germ of an analytic differ-
ential equation on R2, with an algebraically isolated singularity at 0. This
singularity is called monodromic semidegenerate if the first nonzero quasiho-

mogeneous jet of type (1,2) of w is
wo(z,y) = 2°dz + (y + az®)dy

with a? < 2. Notation: w € M SD(a).

We will denote by P, the monodromy map of w € M SD(a) corresponding
to the embedding (R*,0) — (RZ%,0), t — (¢,0). P, is a germ of analytic
diffeomorphism tangent to the identity ([Mou2]), and we may consider B, as
the restriction to R* of a germ of biholomorphism of (C,0), tangent to the
identity, again denoted by F,.

Let w € MSD(a) and let Q2 be the germ of holomorphic 1-form on C?
obtained by complexification of w. Using a resolution of the singularity we

may define as in [Mou3] and [C-M] the vanishing holonomy of Q: it is a
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subgroup H(2) C Bh(C,0) = { group of germs of biholomorphisms of (C,0)},
generated by f,g € Bh(C,0) satisfying the relation (f o g)? = id.

Our result is a computation of P, in terms of H(f2). A similar result
was remarked by Moussu in the (simpler) case of nondegenerate monodromic
singularities ([Moul]).

Theorem. Let w = 0 be monodromic semidegenerate, then

Pw=[f’g]

In particular, H(Q?) is abelian if and only if w = 0 is a centre. This
means, by [C-M], that a nontrivial space of “formal-analytic moduli” can
appear only if w = 0 is a centre (and a = 0, see below): for the foci, formal
equivalence = analytic equivalence. Hence our situation is very different from
the situation of equations of the type zdz + ydy + ... = 0, where the difficult
case is the case of foci whereas all the centres are analytically equivalent (here
the vanishing holonomy is always abelian, generated by a single f € Bh(C,0),
and the monodromy is given by f2, see [Moul]). On the other hand, it is no
more true that the monodromy characterizes the equation: it may happen
that w;,ws € MSD(a) have the same monodromy without being analytically
equivalent.

A consequence of the above relation between monodromy and vanishing
holonomy is the following normal form theorem for centres, based again on the
results of [C-M]. Let us before remark that wo(z,y) = 23dz + (y + az?)dy = 0
is a centre for any a € R (but a first integral exists if and only if a = 0).

Corollary 1. Let w € MSD(a) be a centre and let a # 0, then the germ
w = 0 s analytically equivalent to wy = 0.

We don’t know a similar explicit and “simple” (polynomial?) normal

form for foci, even in the case a # 0; but the triviality of the space of formal-
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analytic moduli seems here a useful tool. The classification of centres with
a = 0 requires arguments of the type Ecalle - Martinet - Ramis - Voronin (cfr.
[C-M]).

As another corollary of the above theorem we give a positive answer to
a quescion posed by Moussu in [Mou2].

Corollary 2. Let w = 0 be a monodromic semidegenerate centre, then
there exists a montrivial analytic involution I : (R2,0) — (R2,0) which pre-
serves the solutions of w =0: I*(w) Aw = 0.

The above computation may be generalized to the case of germs w whose

first nonzero quasihomogeneous jet of type (1,n) is
wo(z,y) = 2" 1dz + (y + az™)dy

with a? < n ([Mou2]). The vanishing holonomy H(f) for these germs is
generated by f,g € Bh(C,0) satisfying (f o )" = id ([C-M]). But now,
if n > 3, the relation between commutativity of H(Q) and triviality of P,
becomes more complicated; in particular, it is no more true that there is
equivalence between “H({2) abelian” and “P,, = id”.

The computation of P, in terms of H(Q) for n > 3 is straightforward,
once one has understood the case n = 2. Hence, for sake of simplicity and
clarity, we have choose to limit ourselves to the semidegenerate monodromic
singularities.

Acknowledgements: 1 thank R. Moussu and A. Verjovsky who read the

manuscript and suggested me some improvements of the exposition.

Resolution of singularities and vanishing holonomy

Let w € MSD(a) and let Q2 be its complexification. We recall the desin-
gularization of Q and the construction of H(§2) ([C-M], [Mou3]).
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We denote by M the complex manifold of dimension two covered by 3

charts U; = {(z;,y;)} ~ C?, j = 1,2,3, glued together by the identifications

z, = _1_ T3 = L£2Y2 T3 = T11
Y2 1 1
Y1 = T2y s = To s = z2y

Let h : M — C? be the holomorphic map whose expressions h; in the charts

U; are
hi(z1,91) = (@1y1,91),  ha(x2,92) = (T2y2,2293), ha(xs,ys) = (z3,25ys)

The divisor Z < h—1 ((0,0)) is a union of two copies of CP!, which intersect

transversally at a point p. If Z; = Z N Uj, then
Zi={y1=0}, Zp={22=0}U{y2=0}, Zs={x3=0}

The map hlp\z : M\ Z — C?\ {(0,0)} is a biholomorphism.

On M there is naturally defined an involution j : M — M given, in every
chart Uj, by j(z;,y;) = (Z;,7;). The set M® of fixed points of j is a real
analytic manifold, the map h restricts to a real analytic map AR : MR — R2,
ZR % (hR®)=1((0,0)) = ZN MP® is a union of two copies of RP! intersecting
transversally at p. The map h®|yr\zr : MR\ ZR — R?\ {(0,0)} is a
real analytic diffeomorphism. The manifold M® is covered by the charts
UJR def UinM® ~R?, j=1,2,3, and we will denote again with (z;,y;) the
corresponding coordinates.

From now on we will consider only the germs of the previous objects (M,
h, MR etc.) along Z or ZR, denoted by the same symbols.

Define Q = h*(Q). Its local expressions are

Q=41 [(1+ Ol ))dys + (Ol [))da1]
Q2 = 2293 [(222 + 2023 + 25 + O(|22y2)))dyz + (y2 + O(|z292]))d2]
Q3 = 3[(1 + 2ay® + 243 + O(|z3]))dzs + (O(|z3|))dys]
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The only singularities of the foliation F defined by Q are:
— the point p (= (0,0) in Us), where e ﬁsﬂg has a singularity of the

type “2:1 resonant saddle”:
Qz = 2z9dys + yodxs + h.o.t.

— the points

. 1 )
g1 =(z2=-a+iV2-a%y; =0) = (23 =0,y3 = =(—a — iV/2 — a?))

2

72 = (22 = —a—iV2 —a?,y; =0) = (23 = 0,93 = %(—a+i\/2-—a2)) =j(q1)
where ), has hyperbolic singularities (the ratio of the eigenvalues is not real)
if a # 0, and saddles with 4 : 1 resonance if a = 0.

We denote by Wy ~ CP! the component of Z containing ¢, and g,, and
by W; ~ CP! the other component; Wy \ {p, ¢1,¢2} and W; \ {p} are regular
leaves of F.

Let L=cl(h~'({y=0})\Z)={yz =0} and r = LNWy = (3 = 0,y3 =
0). Let v; : [0,1] = Wo \ {p, a1, 92}, j = 1,2, be two paths LImYs
such that v;(0) = v;(1) = r, ind,,(g:) = &;;.

To these paths there correspond two germs Xz h
<

W,

of biholomorphisms f; : (L,r) — (L,r), Re .
3

given by the holonomy of the foliation F.

We set f,g € Bh(C,0) equal respectively to fi, fo expressed using the coor-
dinate z3 on L.

Definition ([C-M)]). The vanishing holonomy H(2) of € is the subgroup
of Bh(C,0) generated by f and g.

An elementary computation shows that

a

f(0)=—:i- e:rp(—2_\/2_=az) g 0)=—i- exp(-i-#——\/_—az)
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in particular, H(Q) is hyperbolic (i.e. |f'(0)] # 1, |¢'(0)| # 1) if and only if
a #0.

Near the singularity p there exists a first integral, of the form z,y2 + h.o.t.
([C-M]). This implies that the holonomy of F along 7; * 2 or 72 * 71 (which
are freely homotopic in Wo \ {p,q1,92} to small paths around p) is periodic,
of period 2. Hence:

(fog) = (g0 f)? =id

Remark that from the fact that €2 has real coefficients we deduce that

9(z) = f~1(2)

and, because p is a real point of M, f o g and g o f are real:

(fog)(2)=(fog)(z) and  (gof)(z)=(g0f)(2)

Now we turn to the real 1-form w. Clearly, AR : MR — R? gives a
resolution of the singularity. We set It = cl((h®)~}({y =0,z > 0}) \ ZR) =
LN M®N{z3 > 0}, then the holonomy of the foliation § defined by & =
(RR)*(w) along the “polycicle” Z® produces a germ of analytic diffeomor-
phism of (I*,r). Using the coordinate z3 on [* and complexifying the result
we obtain a germ of biholomorphism of (C,0) which is nothing else that the

(complex) monodromy P, of w (for the appropriate choice of orientation of
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Proof of the theorem

Let '™ C M be a germ of complex line, j-symmetric, transverse to F,
passing throught a point p~ of Wy near p with coordinates (in the chart Us)
(—€,0), € € R* small. Let I'y = I'" N M® be its real part; it is a germ of real
line transverse to G. The holonomy of G along the polycycle composed by the
segment from p~ to p and WE def Wi N MR gives a germ of homeomorphism

k= (T, p™) = (Tay,p™), where Ty = Ty N{y2 < 0}, Tgy = Ty N{yz > 0}.

On the other hand, we may consider a path v : [0,1] — Wy \ {p,q1,¢2}
with 7(0) = y(1) = p~ and ind,(p) = 1, indy(q1) = ind,(g2) = 0. The
holonomy of F along 7 induces a germ of biholomorphism K~ : (T~,p~) —

(I'—,p~), which is an involution because of the first integral of Q) near p.
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Lemma.

k™=K~ |p-

Proof.

let AT, A~ C M be two germs of complex lines, j-symmetric, transverse
to F and passing throught (0, €), (0, —€) (in the chart U;). Let At, Ay be their
real parts, AT_ = Af N{z, < 0}, A;_ = Ay N{z2 < 0}. The homeomorphism
k= is the composition of a homeomorphism k;” from I'y_ to Agj_, an analytic

diffeomorphism k* : Ay — A, and a homeomorphism k5 from Af_ to T'g,.

Because W1 \ {p} is simply connected, A+ %

o= .

the path which joins (0, —€) to (0,€) along o ks \‘,‘. n ”
=
WR\ {p} is contractible in W; \ {p} (endpoints S v
fixed) to a path 4 contained in {|yz| < €}. P~ = '.' %,
Hence k* is the restriction to Ay of a _ /
r'..- Ka /

biholomorphism K* : A~ — A%, obtained from the’

holonomy of F along this path 4. A

We choose € so small that 2 has a first integral argy% + ... defined on
Ue = {|z2| <€, |y2| < €}. Hence every leaf of F|y, different from a separatrix
at p either does not intersect UR = U, N MR or it intersects UR along two
segments “symmetric” w.r. to the z-axis. We deduce that:
i) if t € A;_, then K*(t) € A}_ is the only intersection of AJ_ with the leaf
of F|u, through t;
ii) if s € Tg_, then K~ (s) € I'y, is the only intersection of I'y, with the leaf
of F|y, through s.

From these two remarks, it is clear that k; o (K*| Ao_—) o ki is equal to
K‘lro__, ie k™ = K‘lro__. Q.E.D.

Obviously, a similar result holds if we start from I'* = germ of complex

line j-symmetric passing throught (¢,0) = p*, etc..
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As a consequence, the complex monodromy F, : (C,0) — (C,0) may be
computed as the holonomy of F along a path 7 : [0,1] — W, \ {p,q1, ¢},
%(0) = 7(1) = r, as in the following picture:

This path is homotopic to 75! *y7! %47} * 45!, hence
P,=glofloflog™?
and from (g o f)? = id we conclude
P,=fogoflog™ =|[f,g]

Q.E.D.

Proof of corollary 1

It is sufficient, using the path-lifting argument of [C-M], to show that the
vanishing holonomies H(f?) and H () are holomorphically conjugate. The
“assertion 1”7 of [C-M], pag. 478, is here replaced by

Assertion 1,: if w € MSD(a) then there are analytic coordinates (z,y)

near (0,0) s.t. w is, modulo multiplication by a nonvanishing germ:
w(z,y) = 23dz + (y + az?)dy + f(z,y)(2ydz — zdy), f € R{z,y}
The proof of this normal form lemma is achieved as in [C-M]: 2 = 0 has a

separatrix X* + 2aX?Y + 2Y? = 0 (in suitable coordinates, preserving the

46



VANISHING HOLONOMY AND MONODROMY

class M\SD(a)), which is a separatrix also for 2YdX — XdY = 0. Hence:
QA (XPdX + (Y +aX?2)dY) = (X* + 2aX%Y +2Y?) . Hy(X,Y)dX AdY

QA(2YdX — XdY) = (X* 4+ 2aX?Y 4 2Y?) - Hy(X,Y)dX AdY
(2YdX — XdY) A (X3dX + (Y +aX?)dY) = (X* +2aX%Y +2Y?) . dX AdY

and from these formulae the assertion 1, follows.
Let us denote by fo, go the generators of H(€p); [fo,go] = id because wp

is a centre, moreover

fo(0) = f'(0) =
90(0) =¢'(0) =

and |A| # 1 because a # 0.
From the commutativity and the hyperbolicity of H(Q2) we deduce that

A
1_-1
D)

H(R2) is holomorphically conjugate to the group generated by

Z Az and zH%z

For the same reasons, H(f)p) also is holomorphically conjugate to that linear

group, hence to H(f2). Q.E.D.

Proof of corollary 2

Consider the germ f o g € Bh(C,0): it is real ((f 0 g)(Z) = (f 0 g)(2)),
periodic with period 2, and conjugates H(Q) with itself thanks to [f, g] = id:
(fog)og=(goflog=go(foy)
(foglof=fo(gof)=fo(fog)

As in corollary 1, we use the path-lifting technique of [C-M] to suspend (f og)
and to obtain a germ of biholomorphism I : M — M , which preserves F:
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I*(©) A © = 0. From the fact that (f og) is a real involution, we obtain that
I is also a real involution. Taking the projection on C2 and the restriction to
R? we obtain the required analytic involution. Q.E.D.

Remark: if a # 0 the result follows also from corollary 1: wy is invariant by

(x,y) ~ (-z,y).
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Théorémes de type Fuchs pour les tissus feuilletés

D. Cerveau
IRMAR - RENNES

Apres avoir rappelé des résultats pour certains bien anciens - et
souvent méconnus - concernant les d-tissus sur un ouvert de C" on
s'intéresse a la dynamique des 3-tissus feuilletés hexagonaux globaux.
Bien souvent - c'est le cas sur les espaces projectifs - un tel objet va
présenter des singularités. On se propose, moyennant des hypothéses
de type Fuchs, de donner une description des feuilles comme niveaux
de fonctions multivaluées de type Liouville (X4;Log f; + H, f; et H
holomorphes). Ce travail est motivé par la description de la variété des
feuilletages algébriques de codimension un sur les espaces projectifs
CP(n).

I- Généralités

§ L1. d-tissus sur un ouvert de C*.

Dans ce qui suit on use et abuse de la référence [C , G] ainsi que de
I'exposé de Beauville au séminaire Bourbaki [B]. Tous les énoncés sont
locaux et 'on doit entendre "quitte & diminuer l'ouvert de définition U".

Définition 1. Un d-web ou un d-tissu # sur un ouvert U de C" est la
donnée de d-feuilletages holomorphes #; de codimension un en
position générale. On note ¥ = [%,,...,% 4.

Localement chaque feuilletage #; est donné par les niveaux d'une
submersion holomorphe u; ; on note ¥; = #(du;). Si d < n, tout d-web est
localement difféomorphe au d-web standard [#(dx,),...,#(dx,)], ou
%q,...,%, est un systéme de coordonnées local de C".

Un d-web ¥ =[%,,...,% ;] sur U est linéaire si toutes les feuilles
des feuilletages Z; sont les traces sur U d'hyperplans affines.

Un d-web est linéarisable s'il est difféomorphe 4 un d-web linéaire.

S.M.F.
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Exemple : web associé a une courbe algébrique.

Cet exemple est fameux. Soit I' ¢ CIP(n) une courbe algébrique de
degré d suffisamment générale pour que ce qui suit ait un sens. Soit X,
un point général de l'espace dual CP(n) ; si X est voisin de X,

I'hyperplan % (vu dans CIP(n)) coupe la courbe I' en d points distincts,
notés A(¥),...,A4(%).

Par dualité ces d-points définissent d-hyperplans passant par ¥
que l'on décide étre les feuilles de notre d-web. On munit ainsi un

voisinage U de ¥, d'un d-web que l'on note #1(I) ; ce d-web est par
construction linéaire. Si z;, i = 1,...,d, sont des coordonnées locales prés

du point A %), on peut choisir les u;= 2;(A;) comme fonctions
définissant nos d-feuilletages : #(IN) = [#(du,),..., F(duy)]. Mais d'autres
choix sont évidemment possibles ; ainsi si w est une forme différentielle
holomorphe sur T, les fonctions :

AX)
[ w
4%y
définissent pour ¥ e U(%;) des fonctions donnant encore nos
feuilletages ; notamment :
A,-(i‘)
(1) | w=e2us®)
AX)

o £;“(¢) est holomorphe au voisinage de u;%).

Rappelons ici la fameux théoréme d'Abel :
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da A%
(2) La somme Y, I w estindépendante de ¥ e U(%,) .
=1 Aiao)
On traduit alors (1) et (2) par:
d go.w
(3) 21 ¢ @)du;=0.
=
On introduit la :

Définition 2 : Soit #(I") = [#(du,),...,# (du,)] un d-web sur l'ouvert U de
C". On appelle relation abélienne une relation de la forme :

d
(4) Z f,-(ui) dui =0
=1

ou les f; sont holomorphes au voisinage de u;(x,) e C, x5€U.
L'ensemble des relations abéliennes constitue un espace vectoriel
Ab(¥) dont la dimension M(¥’) s'appelle le rang du web ¥

Revenons au web #(I') associé & une courbe de degré d dans
CP(n). On peut démontrer qu'en fait toutes les relations abéliennes
sont de type (3) ; une conséquence du théoréme d'Abel est donc la
suivante :

MW (T))=gT) <Mnd)

ou g(I') est le genre de la courbe I" et M(n,d) le maximum du genre
pour une courbe de degré d dans CPP(n) (Castelnuovo).

Dans sa thése Chern démontre que pour un d-tissu sur un ouvert
U de C" on a toujours l'inégalité :
MW)<M(nd).

On voit ainsi que le maximum du rang est précisément réalisé par les
d-webs linéaires #(I') associés aux courbes extrémales, i.e. celles ayant
le genre maximum dans un degré donné.

Voici péle méle des résultats connus concernant les d-webs
linéaires et concernant la linéarisation.

Théoréme 1 (Lie-Poincaré-Wirtinger-Griffiths). Soit # un d-web
linéaire sur U c C* possédant au moins une relation abélienne
Y fiu)du;=0, f;= 0 pour tout i. Alors il existe une courbe algébrique I
dans CP(n), U c C" c CP(n) tel que ¥ = %) |y .
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Concernant la linéarisation on a le :

Théoréme 2 (Chern-Griffiths). Soit # un d-web sur U c C" de rang
maximal M(n,d);sin 23 et d <n+loud 2 2n alors ¥ est linéarisable.

Ainsi pour n = 3 et d # 5 tout d-tissus de rang maximal est
linéarisable. Pour n = 2 le théoréme est inopérant ; ainsi on peut
construire un 5-tissu du complément dans CIP(2) d'une courbe v, de
rang maximum et qui ne soit pas linéarisable. Cet exemple est da a Bol
: on se donne quatre points B; en position générale et I'on considére le
feuilletage #; dont les feuilles sont les droites passant par B;. On ajoute
a nos quatre feuilletages 7, le feuilletage #5 dont les feuilles sont les
coniques passant par les B; (fig. ).

On a M(2,5)= % (5-1)5-2) = 6 et le 5-webs ci-dessus est effectivement

de rang 6, ce qui n'est pas si facile a établir.
En dimension deux les d-tissus de rang maximal qui sont
linéarisables ont été récemment classifiés par A. Hénaut dans [H].

§ 12. Les 3-tissus en dimension deux.
Leur rang est inférieur ou égal a 1. Si 'on dispose d'une relation
abélienne non triviale pour % = [#(du,), #(du,), F(duj)] :

(5) el(ul)dul +e2(u2)duZ +e3(U3)dU3= 0

il est clair que chaque ¢; est non identiquement nulle. On peut alors
choisir des primitives L; de £; de sorte que
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Visiblement en un point générique (L,,L,) est un difféomorphisme
local. Dans les coordonnées locales (L,(u,),Ly(usy)) le web ¥ a pour
feuilles les lignes horizontales, verticales et les paralléles a la deuxiéme
bissectrice.

Si H,, H,, H; définissent %', H; = H/(u;), et vérifient (6) un calcul
élémentaire assure que :

)] H;=A.L;+a;, 1i=123

ouieC*eta;eC.

Un triplet (u,,uy,u3) tel que ¥ = [F(du,), F(du,), F(dus)] et vérifiant
(6), s'il en existe, sera dit basique. Evidemment un triplet basique est
caractérisé par deux de ses éléments et deux triplets basiques
s'échangent par une transformation affine (d'apres 7).

Considérons maintenant une courbe elliptique E c CIP(2) ; le trois
web linéaire #(E) est de rang un (théoréme d'Abel) et 1'associativité de
la loi d'addition sur la cubique se traduit par I'hexagonalité du web
vV (E).

Définition 3. Un 3-web # sur U c C2 est hexagonal si en chaque point
m les "hexagones" se "referment"” (cf. [B] et fig. )

Le fait remarquable est qu'un 3-tissu est hexagonal si et
seulement s'il posséde une relation abélienne non triviale.

La proposition suivante relie nos différentes notions :

Proposition 1. Soit #" = [#, #9, 73] un 3-web sur un ouvert U de CZ;
soient w; des formes différentielles définissant %; telles que
w1+wg9+wg=0 ; sont équivalents :

(i) # est hexagonal

(ii) si m € U, il existe uy,u,,us et g holomorphes au voisinage de m,
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£ unité, tels que :
w;=§8 du,-
(iii) il existe une 1-forme holomorphe fermée © telle que
dwi =0A w;.
Preuve:

1) (i) « (ii) d'apres la proposition 1.
2) (ii) ¢ (iii) : supposons que l'on ait défini O, et ©, vérifiant
dw;=0jrw;, j=12,i=123
sur un petit ouvert U’ c U. Alors
0=(0;-0x)Aw;, i=123

et par suite 0= 0,-0,.

Compte tenu de cette remarque il suffit de construire ©
localement le recollement sera automatique ; au voisinage de m € U,
on pose :

0= %g, ou g est fourni par (ii).
8) (iii) = (ii) : soit m € U ; &u voisinage de m on a : © =%g ol g est une
unité.
Ecrivant w;=g.w'; on constate que :
dwi=%g Awi+gdw.i=ggg Awi .

Par suite les w'; sont fermées et localement w'; =du; .
La condition w+w,+w4 = 0 fournit la relation abélienne :
du+duy+dug=0.

§ L3. Webs globaux sur les surfaces. Structures affines.

Soit S une surface holomorphe ; on peut définir un 3-web sur la
surface S par la donnée de trois feuilletages holomorphes %,,%,,%;
partout deux a deux transverses. Cette définition est en fait restrictive
si ce n'est maladroite. Revenons en effet au web #(E) associé a une

courbe elliptique E. Visiblement #(E) se laisse définir sur S = le(2)—
E*, ou E* est la courbe duale de E : E* est une sextique a neuf point
cuspidaux. Il est a peu prés évident que #(E) ne provient pas de 3-
feuilletages : par un argument géométrique élémentaire on voit que
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nos 3-feuilletages locaux sur un petit ouvert sont permutés lorsque l'on
suit un chemin tournant autour de la sextique E*.

Pour palier a ce fait on note IT: T9S —— S le fibré vectoriel
naturel dont la fibre est I'espace #(2,d) des polynomes homogénes de
degré d en deux variables. Pour d=1, TS est le fibré cotangent de S ;
soit 9(2,d) ¢ #(2,d) I'hyper-surface algébrique constituée des
polynémes ayant au moins une droite multiple. Introduisons
'hypersurface is I1 N c T9S définie dans une carte trivialisante y@
associée a une carte locale y : U— C2de S :

(d)
YU —Y— C?2x22,d)

ni lpn

U Y . 2

par is I1 N IT7YU) = y“9-1C2 x Z(2,d)).

Définition 4. Un d-web # sur la surface S est la donnée d'un
recouvrement % = (U)),; par des ouverts munis de sections
v,:U,— T9S, [oW'; = idy,

telles que :

1) I'image de %/, n'est pas contenue dans Yis I1

2) W,/ UinU;=h; ¥;/U;nU;
oules h; € O(U;nU,) sont des unités.
L'ensemble singulier de # noté Sing # est par définition 1'ensemble
analytique défini par :

(Sing #) N U; = ¥4 Dis D).

Le web % est sans singularité ou ordinaire si Sing # = ¢ .

Remarques.

1) Soit #” un d-web sur la surface S ; si S est simplement connexe, ¥
est donné par d feuilletages #; en position générale (aux points non
singuliers). L'ensemble singulier Sing #” est constitué des singularités
éventuelles des 7 et des contacts entre les #; .

2) Du point de vue local il résulte de 1) que l'on retrouve la méme
notion que précédemment.
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3) D'aprés 2) on peut définir la notion de feuilles locales et par
prolongement analytique la notion de feuilles globales. Alors que pour
un feuilletage les feuilles ne se recoupent pas c'est tout a fait possible
ici... et de fagon sauvage comme nous le verrons.

Désignons par S; le groupe des permutations de 'ensemble [1,...,d]
; 8i S est muni d'un d-web on a une action évidente de I1,(S-Sing #',m)
sur S, définie de la fagon suivante :

soient y un lacet en m € S-Sing ¥, et U un petit voisinage
simplement connexe de m ; U est muni de d-feuilletages #,,...,%; tels
que:

V|y=1%1,..9,.

Partant de la feuille locale 4(¥;),, de #; passant par m on peut suivre
par continuité cette feuille le long de 7 ; on revient avec l'une des
feuilles £(% ; ;))(n) de ¥'|y par m.
On note

o : [1,(S-Sing ¥ ,m) — S,
cette action et on l'appelle"' monodromie primaire. Si la monodromie
primaire est triviale le d-web est donné par d-feuilletages
(éventuellement singuliers) globaux.

Voici quelques exemples :
1) Soit # 'z le 3-web associé a une courbe elliptique ; ¥ est défini sur

dP(Z)—E* ; la monodromie primaire

og: CP(2-E* —> S,
est surjective.
2) Soit €2 muni du 3-web [F(dx,),F(dx,), F(dx +x,)] ; si
A =Zw +Zw,+Zw+Zw, est un réseau le quotient C%A est muni d'un
3-web hexagonal sans singularité. La monodromie primaire est
triviale.
3) De méme la variété de Hopf H, = C>-{0} / Aid, |A| > 1, est muni
d'un 3-web hexagonal & monodromie primaire triviale.

4) Soit P(x) un polyndme a une variable ; la famille de courbes :
(y—<)® =P(x)
est solution de 'équation différentielle :
3 1P ‘(x)}
V=9 Py
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et définit un 3-web sur C2.
Les feuilles s'obtiennent par translation paralléle a 1'axe des y de la
courbe :
y3=P(x).
Par un point générique passent 3 feuilles distinctes ; pourtant ce web

ne correspond pas a la donnée de 3 feuilletages. En faitsi £ : D— X=
C—{x,,..x )} est le revétement universel de € moins les racines de

P le relévement par (£y) : DxC — X xC de notre 3-web - qui
est donné par "P(x)?3 dy - % P’(x)dx" - conduit & un unique

feuilletage sur D x C donné par P(x)dy - 91- P'(%)dx" ou P désigne le

relévement & D de P(x)?3 .
On notera que ce trois web est hexagonal

5) En fait toute équation différentielle P(x,y,y") = 0 ou P € Clx,y,z] est
un polynéme de degré d en z conduit & un d-web sur C2 avec
singularités, web qui s'étend évidemment & CIP(2).

Considérons maintenant un 3-web hexagonal # sur la surface S
et soit m € S - Sing # un point de base - Si U est un voisinage ouvert
suffisamment petit de m, % lu est donné par les niveaux de u,u,,u; €

O(U) tels que :

D'apreés (7) on sait que les u; sont définis 4 une transformation
affine pres, ce qui conduit au principe de prolongement analytique : si
7y est un chemin d'origine m, on peut, en recouvrant y par des ouverts
U, munis de triplets basiques, effectuer le prolongement analytique du
triplet (u,, u,, ug).

En résulte une représentation de monodromie :
Mon % : I1,(S-Sing ¥ ,m) — «Lff(2)
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du groupe de Poincaré de S-Sing # dans le groupe des
transformations affines de C2. Si y(¢) est un lacet en m, y(0) = y(1) = m,

et(litl, 12‘2) le prolongement analytique de (x4, u,) le long de ¥ au point
Y&)(3, d9) = (&, 1), alors Mon ¥ (y) est défini par :

Mon #(y) (uy,u,y) = (ui.uzl)

Si le lacet y est invariant par la monodromie primaire, ce qui est le cas
si par exemple #” est donné par trois feuilletages, alors

Mon #(7) (uy,uy) = A(u,,uy) + (ay,a;), A€eC*, a;eC.

Un dernier point, d'importance, est le fait qu'un web hexagonal sur la
surface S muni naturellement S—Sing # d'une structure affine. Les
feuilles de notre web sont des droites pour cette structure. Rappelons
qu'une structure affine sur une variété M" est la donnée d'un atlas de
cartes (U;,p;) tel que les q),-ocpj'l soient des transformations affines de C*.
Dans notre cas si m € S—Sing #" et (u,,u,,u3) est un triplet basique, en
m on prend par exemple comme carte en m le difféomorphisme local
(wq,ug,ug) & valeur dans I'hyperplan de C3: {x+y+2=0}. On ne
confondra pas cette notion de structure affine avec celle de variété
affine en géométrie algébrique.

Ainsi le web hexagonal #(E) associé a une courbe elliptique muni

]P\OIE(Z)-—E* d'une structure affine. Pour voir les droites pour cette
structure affine on parameétre E au moyen de fonctions elliptiques
(P,P)=F:

F:C/A — Ec CP(2).

Se donner un point ¥ de ]P\G,C(Z)— * c'est se donner trois points
alignés distincts A (%), A,(¥), A3(¥) de la cubique.
Si I'on écrit A; = F(u,), u; € C/A, finalement se donner un point de

PPC(2)-E* clest se donner un triplet (;,u,,14) € C3 mod A3 tel que :
1) u;+uy+uz=0 (condition d'alignement)
2) uy;#u;
3) les u; sont définis & permutation preés.

Ainsi ]PVC(2)—E* s'identifie & "'hyperplan” ¥,
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de l'espace Symg C/A :
Symg C/A = {(uy, uy, u3)€(C/A)3, uAu )

(g, g, ug)~ W1y Yoz Uora) O €Sl

et la structure affine de PC(2)-E* est celle qu'hérite ¥, de C3.

La structure affine induite sur une surface M par un 3-web
hexagonal sans singularités est une structure de similitude, i.e. les
changements de cartes ¢ : C3—— C? vérifient :

lo)-o(l = Alx—y1
ou A € R* et | | dénote la norme euclidienne sur C2~R%,

D. Fried a classé les structures de similitudes sur les variétés
réelles compactes. On déduit de sa classification qu'une surface
compacte complexe munie d'un 3-web sans singularité est revétue par
le tore (réel) T4 ou bien S3xS! (ot1 'on retrouve les exemples 2) et 3) )

[F].
Voici quelques problémes :
L4. Problémes.

1.4.1 : Soit I" une courbe algébrique dans CIP(2) ; a quelle condition peut-
on munir CIP(2)-T" d'un 3-web hexagonal sans singularités ? Plus

généralement sous quelle condition peut-on munir CP(2)-T" d'une

structure affine. On examinera spécialement la cas ou I est
irréductible.

I.4.2 : Classifier les d-webs (singuliers) sur CIP(2) dont toutes les feuilles
sont des courbes algébriques. Il s'agit de montrer que ces d-webs sont
donnés par une famille de courbes paramétrée par c € CIP(1) :

P(xy.c)=c® ayx,y) + cd-1 ay(xy) +.+ayxy)=0.
Pour d = 3, classifier parmi ceux-ci, ceux qui sont hexagonaux.

1.4.3 : Soit I' comme dans 1.4.1 ; supposons que I' soit irréductible et que

les singularités de I" soient des croisements ordinaires ; le z; du
complément de I" dans CIP(2) est alors isomorphe & Z/pZ ou p =
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degré(I).
Si CP(2)-I" est muni d'un 3-web # - hexagonal ou non - la
monodromie primaire :
0:Z/pZ — Sy
est déterminée par s = o(1), s? = id.

Comme ou bien s2 =id ou bien s® = id suivant le type de la
permutation s, pour que la monodromie primaire soit non triviale il est
donc nécessaire que l'entier p soit un multiple de 2 ou 3.

Dans le cas oﬁs=s0=(; g i’ ),soit

n:X — CIP(2)

un revétement ramifié le long de 3.T" ; alors 1'image inverse de ¥ est
un feuilletage #; 5 de X dont toutes les singularités sont dans z~X(I).
Inversement si # est un feuilletage de la surface X dont toutes les
singularités sont sur z~X(I") I'image directe de ¥ est un 3-web dont la
monodromie primaire est engendrée par s),. Ces remarques font
penser qu'il est possible de classer les courbes nodales irréductibles dont
le complément peut étre muni d'un 3-web hexagonal.
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II - Tissus feuilletés et variétés de feuilletages sur les espaces
projectifs.

$ I1 .1. Définitions et premiéres propriétés.

La notion de tissu feuilleté a été introduite par Etienne Ghys qui
classifie les variétés réelles compactes de dimension 3 munies de tels
objets [G]. Nous ne parlerons ici que de 3-tissus feuilletés, et en fait d'un
type particulier de 3-tissus feuilletés : ceux dont la monodromie
primaire est triviale.

Le modele local d'un 3-tissu feuilleté est la donnée d'un triplet de
feuilletages ¥ = (%4,%,,%3) obtenu par pull-back par une submersion
locale o : C*— C2 d'un 3-web local sur C2. Localement les
feuilletages de codimension deux (¥; N¥)),, coincident avec le
feuilletage par les fibres de o ; Ghys appelle ce feuilletage de
codimension deux l'axe du tissu feuilleté

N

Le trois tissu feuilleté ¥ est hexagonal s'il I'est en restriction & une
section plane transverse a l'axe ; cette notion ne dépend pas bien
entendu du choix de la section plane. Du point de vue équations de
Pfaff on peut définir ¥ par trois 1-formes holomorphes w,,w,,w; telles

que:
w;Adw;=0 i=1,2,3 (condition d'intégrabilité)
wHwy+wy=0.

L'axe est alors défini par le systéme de Pfaff {w,,w,} .

Soit # un 3-tissu feuilleté défini par w,,w,,w5 comme ci-dessus : la

droite de formes différentielle t — w, = tw,H1-t)w, est bien définie

(projectivement) et ne dépend pas du choix des w;. Comme la trois
forme w, Adw, dépend quadratiquement du parameétre ¢ et s'annule

61



D. CERVEAU

pourt = 0,1,-21- elle est identique-ment nulle. Est donc attaché au 3-tissu

feuilleté une droite de feuilletages pivotant autour de l'axe. Si le 3-tissu
feuilleté est hexagonal, alors pour n'importe quel choix de ¢,,t,,¢5, ¢; # t,
le 3-tissu défini par w, ,w,,w, sera évidemment hexagonal.
L'hexagonalité est donc en fait une propriété de la droite de
feuilletages.

§ I1.2. Variété des feuilletages algébriques sur les espaces projectifs
complexes.

Un feuilletage holomorphe singulier ¥ de codimension un sur
l'espace projectif CIP(n) se définit par la donnée d'un ensemble
algébrique Y c CP(n), cod Y>2, et dun recouvrement ouvert
U = (Uy);q de CP(n)-Y chaque U; étant muni d'un feuilletage
holomorphe #; de codimension un, ¥; sans singularités, tel que :

9’,-|U,.nt = ?ilUint chaque fois que U;nU;# ¢ .
Via les théorémes d'Hartogs et de Chow on démontre qu'un tel
feuilletage ¥ est défini en coordonnées homogenes
x=(x;: %9 :..... : X,,1) par une 1 forme homogeéne :
w=2Yax)dx;, a;homogenesde degréd+1
avec:

() X x;a;x)=0 (identité d'Euler)

(B) w Adw=0 (condition de Frobenius)

(y) codSw)22 ot S(w)={x/a;x)=0 Vi=1,..,n+l}.

L'entier d est par définition le degré du feuilletage % ; si D € CP(n) est
une droite générale, d est précisément le nombre de points de D ou ¥
n'est pas transverse a D ; on dit que Z est un feuilletage algébrique de
degré d. On note Z(CIP(n),d) l'ensemble des feuilletages algébriques

de degré d. Soit Ang

l'espace vectoriel des formes différentielles sur C**! homogeénes de

degré d+1 satisfaisant (a) :
n+l1
A,l, 4= { Y afx)dx;, a;homogene de degré d+1,Y x;a(x)=0 } .
=1

On note 4, , A} dl'ensemble des formes w € Al 4 satisfaisant la

condition d'intégrabilité (8) et par P#,, ; 'espace 4, ;/~ ot I'équivalence
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~ est définie par:
w~w o w=Aw, LeC*.

Visiblement P#, ; est une intersection de quadriques dans P A,f d-

L'espace #(CP(n),d) s'identifie donc naturellement & l'ouvert de
Zariski IPS, ; des éléments satisfaisant la condition y. Un probléme
naturel si l'on veut s'intéresser a la dynamique des feuilletages
holomorphes de CIP(n) est de donner la décomposition en composantes
irréductibles de la variété algébrique P, ;.

Pour n 2 3 cette décomposition n'est connue que dans lescasd =1
etd=2!

Nous allons essayer de montrer comment la théorie des webs et
plus généralement des tissus feuilletés peut aider & donner la
décomposition de #(CPP(n),d) tout du moins pour de "petits" n et d. Par
un trois tissu feuilleté sur CIP(n) on entend la donnée de 3 feuilletages
71,9 9,73 € F(CP(n),d) tels que au voisinage d'un point générique nos
trois feuilletages définissent localement un 3-tissu feuilleté.

$ II.3. Quelques composantes de la variété PS, ;.

Remarquons d'abord que 5,, = Aé dest un espace vectoriel ; le

probléme de la décomposition en composantes irréductibles de PS,,
est donc trivial. Considérons w, € 4,4 et soit L : C*! — C3 une
submersion linéaire ; la forme pull-back L*w, est visiblement un
élément de #, ;. Introduisons :

92,4 = {L‘wz,wzef 94> L:C*1— C3 submersion linéaire }

ou l'adhérence est prise de fagon ordinaire dans A', 4- On déduit sans
peinede [C,L] le:

Théoréme. ]PJ,? d est une composante irréductible de PS, ;.
La composante PS 2,,,d s'appelle composante des feuilletages

triviaux sur un deux plan. Considérons un élément L*w,, L*w, € § r2z,d ;

pour L et w, génériques 4, ; est lisse en L*w, ; comme L*J 2,4 est un
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espace vectoriel l'intersection 5, ; N Ty, S, ;de S, ; avec son espace
tangent en L*w, contient un espace vectoriel de dimension dim 4, ;.
Notamment une droite tracée dans cette intersection nous donne une
droite de feuilletages sur CIP(n) ; trois points sur cette droite conduisent
a un 3-tissu feuilleté de CIP(n), tissu feuilleté avec singularités.

Introduisons maintenant ce que l'on appelle les composantes
logarithmiques. Désignons par #(n+l,v) l'espace vectoriel des
polyndmes homogenes de degré v ; pour V1,---,Vp €ntiers positifs tels que
2 v;=d+2 on introduit le sous ensemble de 5, ; :

dP;
Zei':’.id,vp = { w=P1...Pp mi P_:,Pieg(n"'l,vi), miVFO, liEC } .

ou cette fois encore l'adhérence est prise au sens ordinaire. On
démontre ([C,, M,] dans le cas affine, [0] dans le cas projectif qui nous

intéresse ici) le :

Théoréme. Les P 21’:fvp sont des composantes irréductibles de P.#, ; .

Malheureusement on n'obtient pas toutes les composantes avec nos
deux théorémes comme on peut le voir dans le cas quadratique d = 2

([Ce,M,], [Cq,LD). Prenons un point général w € X =Z€’:.’ivp ; on peut
encore exhiber des espaces linéaires dans l'intersection Y N Ty Y de

P ,
différentes fagons d'ailleurs. Si w=P1..Pp ) Ai dTI:‘ on peut par
i=1
P .
exemple considérer la famille QPz...Pp( /11%@ + Y dpizl )) ,
=1

P ap;
Q € #(n+1, v1) ou bien lorsque p > 3 la famille Py..Pp Y ¢ P—zl ou ici
=1

les P; sont fixés et les ¢; parcourent I'hyperplan Y #;v; = 0. Si I'on prend
une droite générale dans I'une de ces deux familles, puis trois points
sur cette droite on construit un 3 tissu-feuilleté qui, miracle, s'avere
hexagonal : c'est un exercice facile.

Nous allons voir que l'on peut en quelque sorte caractériser les

composantes logarithmiques par cette propriété. C'est 1'objet du
chapitre suivant.
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III - Théoréme de Fuchs pour les tissus feuilletés et applications

Dans ce chapitre on s'intéresse a des 3-tissus feuilletés sur l'espace
projectif CPP(n) ; comme nous avons en vue des résultats concernant
les composantes de la variété des feuilletages de degré d donné on
supposera que la monodromie primaire est triviale. Nous préciserons
ensuite comment adapter nos méthodes au cas général. Un tel tissu
feuilleté # est donc donné par trois feuilletages algébriques ¥=

(#1,92,93), F;#F, définis par les formes homogeénes ;03,03 € A . d
vérifiant 'identité d'Euler et :

wirdw; =0

01 + 0y + ©3=0
L'axe du tissu feuilleté est le feuilletage de codimension deux #; N 2.

Au tissu # on associe comme précédemment la droite de feuilletages :
o; =tog + (1-t) oy .

Dans toute la suite on suppose »; et wg choisis de fagon telle que
cod Sw; =22, i=12.

Tous les résultats énoncés sont valables pour n = 2, dimension ot
les deux notions tissu et tissu feuilleté coincident.

IIL1. Points singuliers. Points singuliers réguliers

Soit #° défini par (w;,09,03) comme ci-dessus ; l'ensemble
singulier Sing ¥ s'écrit en coordonnées projectives :
Sing ¥ ={meC™, w Awy=0).
Notons que sim € o Sing % alors 'axe du tissu feuilleté trivialise
localement#”. =

Lemme : Soit m € C*- Sing ¥; il existe une unique 1-forme

holomorphe © ;,, définie au voisinage de m telle que dw; ,, = © ;,AW; 1,
i=123.

Preuve : On peut trouver des coordonnées x = (x,%g...) au voisinage
de m telles que :
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wy =gy dx;

wy =gy dxg
ou les g; sont des unités holomorphes au voisinage de m.
Comme w+wq doit étre intégrable on a :

0 = (g1dx; + godxg) A (dgyadxy+dgaondxy) = (g1dg2 + £1d81) A dxg A
dxg.

La fonction holomorphe A =§—; ne dépend donc que de x,%9.
Ona:

d d,
dw1= (dh g2)AW1 (&52 dx2+ £3 )Aw1

1
81

d d
dw——gl/\wz (—sz) (ax2 dxg + gz)/\w2.

(2 dga ):si@ . :
On pose O ,, = P dxg + — = g 08 O’ vérifie encore dw; =0 ', A

Wi my alors: (0 5, - O ) Aw; ;=0 et par suite ©,=0,. =

D'aprés le lemme il existe une 1-forme © définie sur vl Sing
W vérifiant dw; = © A w; ; il est innocent de constater que O s'étend de

fagon rationnelle a Cl.Si W est hexagonal O est fermée, ce qui est la
version tissu feuilleté de § 1.2 prop. 1.

Corollaire : cod Sing #" = 1.

Démonstration : Si cod Sing # = 2, la 1 forme © s'étend alors

holomorphique-ment a tout ! (Hartogs).
Mais une identité du type

dwi =0A w;
est impossible pour des raisons de degré.

Remarque : En fait la 1-forme rationnelle ©® a ses composantes
homogenes de degré -1.

Rappelons qu'une 1-forme o méromorphe sur l'espace projectif
est logarithmique si o et da sont a péles simples le long d'un diviseur a
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croisements normaux. Les formes logarithmiques sont fermées : on
peut trouver ce résultat dans [D] ou le déduire de calculs élémentaires
de [C,, L]

Introduisons I'hypersurface Y c Sing ¥ constituée de I'adhérence
des points ou Sing #” est de dimension pure n-1.

Proposition 1 : Si ¥ est a croisements normaux et © et dO© a pdles
simples alors O est fermée et #” est hexagonal.

Preuve : Visiblement © a ses pdles le long de ¥ ; soit L une forme
linéaire suffisamment générale pour que ¥ U (L=0) soit encore a

croisements ordinaires. Si R =X x; axi désigne le champ radial on a :
l

iR dwi =(d+2)w,- .
Par suite :

i R dw,- =9(R )wi
implique que O(R) =d+2. En résulte que la 1 forme o :

a=0-(d+2) (—iLL
vérifie Ly a = 0 = a(R) et définit une 1-forme sur CP(n) qui est
visiblement logarithmique donc fermée ; il en est de méme pour ©. =

On suppose dans la suite que # est hexagonal. Soient m € .

Sing # un point de base et (u,ug,u3) un triplet basique en m ; par
prolongement analytique on définit un triplet multiforme basique
(1,g,0g), 3 ;= 0, sur C**! - Sing ¥.

Nous allons décrire les &; prés de Sing #'.

Désignons comme précédemment par Y c Sing # 1'adhérence
des points de Sing #" de dimension pure n-1. Soit mge (Sing # - %),

comme cod Sing #', m 2 2, si U est une petite boule centrée en m,on a :
IN;(U-Sing %, m)=0.

Par suite chaque détermination v; de #; est uniforme sur U et s'étend

holomorphiquement & U tout entier par le théoréme d'Hartogs. Ainsi

le triplet basique (%1,%,%3) s'étend a tout cl_y,
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Soit ¥ = ikeJI T la décomposition en composantes irréductibles de

I'hyper-surface Y. Si m est un point générique de ¥ les espaces Ker
w;(m) sont identiques ; ils peuvent étre ou bien transverses ou bien

égaux a l'espace tangent T, 3.

Définition 5 : Une composante irréductible Ej de X c Sing ¥ est une
composante de contact transverse si en tout point générique m € 3/,
T, 2’ = Kerwgm), i =1,2.

Remarque : Soit Y7 une composante de Y ; si >/ n'est pas de contact

transverse alors (37 —(E—E")) lisse est une feuille commune des %; .
Proposition 2 : Soit Zj une composante de contact transverse ; soit m
un point générique de I’. Alors toute détermination v; de u; se
prolonge holomorphique-ment et uniformément au voisinage de m.

Preuve : Puisque m est générique le feuilletage #; , i = 1,2, est donné au

voisinage de m par les niveaux d'une submersion y;, y;(m)=0 et y{l(O)

est tranverse a Zj en m.

Soit m’ € y71(0) - 3/ et v; une détermination de Z; définie au voisinage

de m’. Alors v; se factorise dans y;, i.e. il existe £; holomorphe tel que :
v;=£€;oy; ; comme ¢;oy; est holomorphe dans un domaine ly;| <&, on
étend v; de fagon uniforme au voisinage de m.

Proposition 3 : Soit Zj une composante de contact transverse et m un
point générique de ¥’ N Sing #};gq,- Alors la forme fermée rationnelle
O est holomorphe en m.

Preuve : Supposons qu'il n'en soit pas ainsi ; alors les poles de © en m
coincident avec ¥,,. Soit x une submersion en m telle que ¥, = (x=0)

; visiblement on a :
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9=l¢i—x +d(£-.:) ou A €C, hestholomorpheenm et pelN.

Mais les égalités :
dwi=9/\wi=[l +d(p. )]Aw,
impliquent que x=0 est feuille des %;. Ce qui est absurde. =

On introduit l'ensemble Y’ < Y constitué de l'union des
composantes 3/ de ¥ qui sont feuilles communes des %;,i=12;

d'apres la proposition 2 le triplet basique (%,%9,i3) multiforme est en
fait défini sur C**1-3",

Soit m un point de ¥’ ; comme l'ensemble singulier des w;, i = 1,2,
est de codimension 2, pour m générique les #; sont réguliers en m et

A}

2 =X est feuille des #; ;, au sens ordinaire.

Définition 6 : Soit m un point générique de X’ ; on dit que # a un
contact tangentiel d'ordre 1 en m s'il existe un systéme de coordonnées
locales y1,...,¥p+1 €n m tel que :

) 351(0=%,=%,=Sng¥,m

2) wq =aq dy,, a; unité

3) wg =agd(ya), ag et o unités

4) dyy Ada n'est pas identiquement nul le long de yIl(O) .

Remarque :
1) Les conditions 1, 2, 3 traduisent que le point m est non singulier

pour les ¥; et que Z',m est une feuille. La condition 4 permet de

contréler le contact des feuilletages #; et F3le long de ¥’ c Sing ¥#'.
2) La condition 4) est intrinséque i.e. ne dépend pas du choix des
coordonnées yy,...,y 41 Vérifiant 1,2,3.
3) Dans les coordonnées y1,y9,...,¥p+1,» W1 A Wo s'écrit :
wqAwg=aj.agy; dy; rda

et par conséquent wy A wp s'annule le long de ¥ ;, avec multiplicité
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générique un ; c'est visiblement une caractérisation des points de
contact tangentiel d'ordre 1.

L'ensemble des points de Y.’ qui ont un contact tangentiel d'ordre
supérieur a un constituent un sous ensemble analytique fermé de Y.'.
Onala:

Proposition 4 : Soit m un point de ¥’ N Sing #};44. tel que wy et wg ne
s'annulent pas en m. Alors si #” est & contact tangentiel d'ordre un en

m,0 est au pire a pdle simple le long de E:m.

Preuve : Supposons # a contact tangentiel d'ordre un en m et soit
¥Y15--»Yn+1 un systéme de coordonnées comme dans la définition :

w)=ap dy 1

wg =ag d(y ), a; unité.
De dw;=0© Aw; on tire I'existence de fonctions méromorphes q; telles
que:

daj dag
=H toaywy= 72‘ +ogWwy.
En résulte que :
dai dag
wlA‘a—1=w1A—E+a2w1Aw2.

Comme les w; A d_;z:; sont holomorphes, et que w; A wy est a zéro
simple le long de y; = 0, @ est au pire & pdle simple le longdey; =0;il
en est évidlemment de méme pour ©. =

Définition 7 : Soit m un point de X’ N Sing #7;44 ; 0N dit que m est un
point singulier régulier de #  si la forme fermée rationnelle © est au
pire a pole simple le long de Y. en m.

On a donc l'implication :

m point de contact tangentiel d'ordre 1 = m singulier régulier. Les
points singuliers réguliers forment un ouvert de Sing # ; si m;

appartient 4 une composante Z'j de Y’ et est singulier régulier alors
presque tout point de 3./ est singulier régulier. Nous dirons que % est
a singularité réguliere le long de ¥Y.
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§ III 2. Formes normales prés d'un point singulier régulier.

Dans ce paragraphe nous décrivons les #; prés d'un point

singulier régulier. Comme nous l'avons vu les %; se laissent prolonger

au complément de I'hypersurface ¥’ formée des composantes de Sing
¥ qui sont feuilles des ¥;.

Rappelons comment se décrit le groupe de Poincaré du
complément de I'hypersurface ¥'. On se donne un point de base m

dans le complément de ¥’ et A une droite générale passant par m,.
Cette droite coupe les composantes ¥ de 3’ aux points a;, i = 1,...,6() ;
on trace alors dans A des lacets y’, d'extrémité m(, d'indice 1 par
rapport aux points a;: et d'indices 0 par rapport aux

autres aﬁ ; suivant Lefsetchz les y{ engendrent I1;(CPP(n)-X',m) [L].

Soient (&;,#g,l3) une détermination fixée en my du triplet basique

(@21,Ug,l3) ; la monodromie
Mon # : I1}(CP(n)-X’,mg) —> Aff(2)

est décrite par les Mon % (7"; ), ou les y: sont définis comme ci-dessus.
Comme on 'a vu dans § 1.3, si y € I1;(CIP(n)-X',m) I'application affine
Mon #(y) est du type :

(@1, Bg) — AlyXHy, Eg) +(ay()ag(y))
avec A(y) e C* et a(y), b(y) e C.

Définition 8 : L'é1ément 7 est dit parabolique si A(y) = 1, hyperbolique

sinon.
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Nous allons travailler avec les objets suivants :

- m un point de base comme ci-dessus

- mjun point de X’ N Sing ;44

- P; un polynéme homogeéne irréductible tel que 7= P;I(O)

- V; un petit polydisque centré en m;

- 71 un lacet obtenu en joignant par un chemin ¢; mgp & un cercle v';
tracé autour de X dans Vj, 7j d'indice un autour de 37 (on dira que y;
est un lacet élémentaire).

- © la 1-forme fermée rationnelle telle que dw; = © A w;.

Proposition 5 : Si y; est parabolique, les d"y; s'étendent par
prolongement analytique le long de y; de fagon uniforme autour de

Vin > ; plus précisément les Z; sont du type &; log Pj+f; ou g eC et
f ; € O(V; -39).

L'intégrale 5{; | © est un entier ; si de plus le point m j est singulier
‘Yj .
régulier alors f; s'étend méromorphiquement le long de >N V;.
Preuve : Si y; est parabolique, visiblement les prolongements

analytiques le long de 7;, des différentielles d ; sont uniformes et se
laissent définir sur V; -3 au voisinage de m ;- En résulte l'existence de
g; et f; comme dans I'énoncé ; on peut préciser la nature des f; comme

suit. Localement © s'écrit au voisinage de mo :

@= dP +d(
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ouij= % I ©, h est holomorphe sur V), njeIN et P; ne divise pas A.
Y]
Au voisinage de mpon a (§ 1.2 prop. 1) :
w;=g d;, gholomorphe au voisinage de my, et

_dg
8= g

Comme les d ; sont uniformes, g se laisse prolonger analytiquement
de fagon uniforme le long de 7; et par suite sur V; -37;
nécessairement :
1 1 dg
bogiz ] © = iz | B
‘/j j
est entier.
Si m; est un point singulier régulier, O est a pole simple, donc
l'entier n; est nul. On en déduit que :

o-% _ , 9 Sl vdh, AeZ et heo(V)
i P j -

4
Par suite
g= P}ﬁU, Aje Z et U unité.
De:
. dP;
w; =g,dzi =P;'J.U( SJTJI +dfz )
on tire que f; est méromorphe. ]

Remarque : La fagon de "joindre” mg & y’; pour construire y; n'importe
pas dans I'énoncé ; en effet si ¥; est un autre lacet obtenu en joignant

mga 7:,- par un chemin Ziona visiblement

je 2mje Aj.
J J

Le prolongement analytique & de g le long de ¥; vérifie :

2m

P
d‘g =0= l +dh /‘LjEZ.
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Par suite suerona:
~ %
g’|VJ=ch|VJ ou CjEC

et g est uniforme au voisinage de VR il en est de méme du

prolongement analytique des d; le long de 7;. Par suite ¥; est aussi
parabolique.

Ainsi le fait d'étre parabolique est une propriété de la composante
3 "J et non pas du lacet s dans toute la suite on parlera de composante

parabolique ou de composante hyperbolique.
Onale:

Théoréme (de Fuchs pour les webs paraboliques) : Soit #” un web
hexagonal sur CIP(n) défini par les forme de Pfaff w;,wq,w3. Si toutes

les composantes de Y’ c Sing # sont paraboliques et si % est a
singularités réguliéres le long de Y., il existe des entiers gj € Z tels que

wc
d( Iﬁ; ) =0, i=12,3 08 P=P;..P, est une équation réduite de
1

Y’. De plus, il exxste (i) € C et h; polyndmes homogeénes tels que :

dPl dh;
(l) + g, 1=1,2,3
P"l P" RN Pt pY
3 . a1 g1
avec Y, }.J(l)=0=z h; et degréh;=degré P’ ..PyF .
=1 =1

Remarques:
1) Le feuilletage #; = #(w;) posséde alors l'intégrale premiére

IG)= Y, Afi) . Log P by
l)= l). it g1 g-1
20 % BLJ Pt P!
ce qui justifie I'appellation théoréme de Fuchs.
11 est facile de voir que les formes ®; sont alors dans l'adhérence
d'une composante de la variété des feuilletages décrite dans § I1.2.
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2) Le feuilletage #; = #(w,) posséde alors l'intégrale premiére
A(1)] Log P, + ((1 t)h2+th1)
A-DI(2)+tI(1)=X [(1-)Aj (2)+A ( )] Log qu_l .P"P_l

Preuve du théoréme : Soient m( un point de base dans le complément
de Sing ¥ et y; des lacets comme dans la proposition 5 ; on pose

j 0.
Comme on I'a vu les g; sont dans Z. Les 7j engendrant I'homotopie du

dpP;
complément de Y’ la forme différentielle G—qu p. est exacte dans
J
C™1_3"; en fait [C,, M,] :

O = qu \f(dPJ,PJ) + d( \f(h;ﬂs(nl;l)...I,\S(np;P)) ) ou h est
™ est homogene de degré 0.

)]

holomorphe et le quotient

De:

dP; (
= = i
dw,—G)Aw,-[qu P; +d anp

on déduit que la forme différentielle :
wi

-1 g1
P} ..Pﬁ" exp

ni-1 np—l
N

est fermée, résultat qui n'utilise pas d'ailleurs le fait que les
singularités soient réguliéres. Si maintenant # est a singularité
réguliere le long de 3’ alors O est a pdles simples et donc les n; et & sont

nuls. Danscecasona:

d( Pl P"P ) 0

Finalement [C,, M,] on trouve (i) et h; comme dans I'énoncé. m
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Remarque : Les A,(i) correspondant & des indices g; négatifs sont nuls.

Faisons maintenant une étude analogue dans le cas hyperbolique ;
nous gardons les mémes notations que précédemment. Si le lacet y; est

hyperbolique et (Z;, Zg) une détermination de (%;, @ig) en my, la
monodromie le long de y; est du type :

@y, T —— Ay . @y, Tp) +(@y(raly)

ou cette fois A(y;) # 1.

On peut voir agir la monodromie sur les différentielles d@; et I'on a

Mon(y;)
@E1didy) ——2 Aly). dEydTy) .

Par suite, si I'on écrit au voisinage de m :
0;=g.d%;, i=1,2, g holomorphe au voisinage de m

_dg
6= 4
on constate que le prolongement analytique & de g a pour monodromie
Mon(y;) 1
A&
On pose : 1—(17—) = 274D o5 j est, pour l'instant, défini modulo Z et

l'on écrit le prolongement analytique & dans V; comme :

g=P} ™ .U oi U est uniforme sur V; - (P;= 0).

Notons que ? est uniforme et :

d dP; qu _, dP; ( h )
@——E—(l—uj) +7 =kj'—1§l +d P_"J
J

ou: A;= I O, he€6(V)), njeN et h est non divisible par P;.

2m

On peut maintenant choisir p; et U de sorte que 1-u; = 4;.
Evidemment si © est a pole simple le long de (Pj=0),onan;= O Dans

ce cas on aura :

76



THEOREMES DE TYPE FUCHS

g:P}—”j.U ot cette fois Ue0*(V)), U=exp h.

Le prolongement analytique de Z; le long de 7; dans V; - (P; = 0) sera
alors de la forme :

Z=P M. W+c;, W;eOVj-(Pj=0)), c;eC

avec :
ck(l_ezutuj)=ak(7j)v k=1)2) em””j=l(7j)¢ 1.
Ona:
- 1-u; —1 .
0;=g.dl; = P; U (w; P/ W,dP;+ P/ d W;)

=HUj UWide+ UdeWi.

Afin de préciser la nature de W; le long de (P; = 0) choisissons en m; des
coordonnées yq,....yn4+1 telles que y; = P. Dans ces coordonnées w;

s'écrit :
w;=a;dy1+y1 kEz:z Bix dyy, ot les a; et B; 5, sont holomorphes.
Comme :

w; = UW,dy; +Uy d W;

les W; vérifient le systéme d'équations différentielles linéaires avec
second membre :

W o
KiWity15, =T i=1,2
(%)
aW; &.&

(k) - U k=2,..n+1 i=1,2
On remarquera que deux solutions uniformes W(,1 ) et W(f) de ce

systéme coincident nécessairement ; en effet les équations (k)
indiquent que Wfl)— W,-(z) ne dépendent que de y; et sont de plus solution

de:

aW;
p1 Wity 5~ =0.
Comme puq est non entier cette équation différentielle a pour seule
solution uniforme la solution nulle et donc W?) = W,-(Z).
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Lorsque ¥ est & points singuliers réguliers, on sait que U est une
unité holomorphe ; en résulte que le second membre de notre systéme
est holomorphe. Puisque le systéme (*) posséde une solution il est
complétement intégrable, ce qui se traduit par les équations aux
dérivées partielles :

ilﬁ.& ) E_z,g
aye %’k k=2..n+1
Bir u 9¢;

KUY 1%, U =3

Le théoréme de Poincaré (a parameétre y;) permet de trouver W;"
holomorphe en yj,...,y,+1 telle que :

ay% W, = ﬁ—,‘f , k=2,.n+1.

On cherche W;’ holomorphe solution de (x) sous la forme
Wi' = Wi" +Li()'1)
soit & résoudreen L; :

3L a; aW"
Hj Lilyp) + ylay =T - HW -0 3y = HO LI -

oH;
Mais la condition d'intégrabilité implique que ?el =0, €=2..n+1.

Comme p; est non entier, notre équation posséde une unique solution
holomorphe L; ; du fait de I'unicité ona W; = W;" sur V;—(P;=0) et W;
s'étend de fagon holomorphe a V;.

Nous sommes donc en mesure d'énoncer la :

Proposition 6 : Si le lacet v; est hyperbolique (A(y;) # 1) le prolongement
analytique "a V;" des Z; le long de 7; est du type P?j .W;+c;ouW;e
O(V;-(P;=0)) et les c;, pjeC vérifient :

(@ E™ =Ay), pjeZ et 1-pj=5-]©

U

2m

a;(y;) a;(y;)
B ci=7 ll(;') l2i1£ﬂj .
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De plus si # est & singularité réguliere le long de (P;=0) alors les W;
sont holomorphes sur V;.

On a évidemment des remarques analogues a celles suivant la
proposition 5.

Remarques : Le choix du lacet élémentaire y; n'importe pas ; les y; ne
dépendent que de la classe d’homologie de y;. Toutefois les ¢; eux
dépendent du choix de 7;.

§ III . 3. Webs hyperboliques abéliens.

Si % est un 3-tissu feuilleté hexagonal parabolique, i.e. dont toutes
les composantes de ¥’ sont paraboliques alors I'image de
Mon : I1;(CP(n) - X' mg) —> Aff(2)
est un groupe abélien (ici un groupe de translation). Il en est de méme
lorsque l'intersection de Y’ avec un plan générique CIP(2) est une
courbe nodale puisque dans cette éventualité I1;(CPP(n) — X’ mg) est

abélien.

Définition : Le 3-tissu feuilleté hexagonal # sera dit abélien si la
représentation de monodromie Mon : I1{(CP(n)-X’ my) — Aff(2) a

son image abélienne.

Cette définition ne dépend évidemment pas du choix du point de
base mg. Soit #” un 3-tissu feuilleté abélien hyperbolique ; on peut

trouver une composante ¥/ de 3’ et un lacet élémentaire vj €
[11(CP(n) - X' m) tel que A(y;) #1:

Mon(y;)
(81, 8By) ——2 Aly). (&y, Bp) + (a1(r)) a5(r)) .

On peut alors choisir le triplet basique (Zy,#9,%3), @1 + g + %g =0, de
sorte que ay(y;)=ag(y;))=0 : il suffit pour cela d'ajouter au triplet
initial les constantes

a 1(71') (12(7 l.)

1= 301 2= 2010 Ba=brde
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Du fait de l'abélianité on aura pour un tel triplet et tout
y e I1)(CP(n) - X' my) :
Mon(rj)

(g, Gg) — Aly).(Hy, GEg).
Onale:

Théoréme (de Fuchs pour les tissus feuilletés abéliens hyperboliques).
Soit #” un tissu feuilleté sur CIP(n) défini par les 1-formes wq,wq,wg. On

suppose ¥ hyperbolique abélien a singularités réguliéres le long de ¥’
et 'on désigne par P;...P, = 0 une équation réduite de Y.’ dans cl

11 existe un triplet basique 4,%9,l3 du type :
% =P{L.P)? Q

ol les @; sont des polynémes homogeénes tels que @ +Q9+Q3 = 0 et les
uj sont définis par :

A-pj= 2m I ©
les y; étant des lacets élémentaires autour deP;j=0.

Preuve : Supposons A(y1) # 1 avec nos notations usuelles.

D'aprés la proposition 6 le prolongement analytique d'une
détermination d'un élément d'un triplet basique suivant y;est du type

P‘;I . Wi +c 1
avec W; holomorphe. Comme pour un choix convenable initial du
triplet basique l'image du groupe de monodromie sera linéaire, on peut

supposer ¢y = 0 et écrire P‘ltl W; sous la forme :

j 2]

Pf 1...P: P.U; o U; est holomorphe le long de vy avec 1-u;= 2z -

Invoquant le fait que les Yj engendrent le groupe de Poincaré de CIP(n)
- Y’ et de nouveau la propos1t10n 6 on constate que U; s'étend de fagon
uniforme 3 C*1 -3’ et se prolonge holomorphiquement le long de la

partie lisse de Y.’ ; le théoréme d'Hartogs permet de prolonger U; a tout

C**len une fonction holomorphe @; qui sera visiblement homogéne. m
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Remarques :
1) Le feuilletage F(w;) = F(twgH1-t)w;) posséde l'intégrale
premiére P‘I‘ 1..1’: P, [tQoH1-t)Q4] ; on peut évidemment en prendre le

logarithme :
)y Ky Log Pj +Log (¢t Q2 +(1-t) Q1)

et sous cette forme on voit clairement la différence entre tissus

paraboliques et tissus hyperboliques (abéliens) ; dans le cas
paraboliques les points de "multi-formités" (P;=0) sont fixés et les

résidus A; dépendent linéairement de ¢ alors que dans le contexte
hyperbolique les résidus sont fixes et une branche tQq + (1-£)Q bouge.

Dans le cas hyperbolique les nombres y; apparaissant dans les
intégrales sont directement liés aux périodes de la forme O alors qu'il
n'en est pas ainsi dans le cas parabolique.

2)si W =W (wq,wg,w3) est abélien hyperbolique alors la droite
twg + (1-t)wg est située dans une certaine composante IP 25':,_’.‘,1‘/‘) de
la variété P4, ;.

3) Concernant les degrés des P; et des @, on remarque que :

iR O =d+2
ol R est le champ radial et d+1 est le degré des composantes des w;.
Par suite si v; = degré(P;)on a:
Z A.j Vj =d+2

soit :

jg (l—ﬂj)Vj =d+2.

Comme #; est nécessairement projective on a :
2vip; +v(@)=0
soit :
h Vj + V(Qi) =d+2.

Ce qui précise le point 2 : les w; sont dans P ‘:}.’,’f,ﬁv(gi) .
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§ III . 4. Exemples de tissus hyperboliques non abéliens.

Nous allons commencer par des exemples en dimension deux et
nous allons cette fois travailler dans une carte affine C2 de CP(2).
On désigne par w, une 1-forme homogeéne :
wy,=a,dx+b,dy
ou a, et b, sont des polyndmes homogénes de degré v ; on note P, le
polynéme homogéne :
Py =xa,+yb,
et 'on suppose dans toute la suite que P, ; est non identiquement nul

1
et réduit. Soit P, ; = ‘f[I L; la décomposition en facteurs irréductibles
=

w
de Py, L; formes linéaires ; la forme rationnelle 5 Vl est fermée et
v+

s'écrit :
wy é_L_l =
Ppy ~ W L’ #jeC Zpj=1,
1 w
Hi= 9 .[ ﬁ:l , o1 les 7; sont des petits cycles autour de Lj=0.

%

Proposition 7 : Soient £, un polyndme homogéne de degré v et w la

forme différentielle :
w=w, + f,(xdy-ydx) .

On désigne par O la forme rationnelle :

dL
=3 (1+) T

Alors do=0rw.
w, dL;
Preuve : Comme P, =Xy 7. estferméeona:
J
dP dL
dwv= -( vil )va OAw,.

P v+l
D'un autre coté :
d(f,(xdy—ydx)) = (v+2)f, . dx A dy

et
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v+l
© A fxdyydx) = f,. Y, (4u) dx A dy = (v42)f, . dx A dy =
J=1

d(f,(xdy—ydx)) .
Dot le résultat. =

Remarque : La forme © ne dépend pas du choix de f,.

Corollaire : Soient w, comme ci-dessus, f, 1, fy 2, fy 3 trois polyndmes
homogenes de degré v non nuls distincts tels que f, 1+ f, 9+ fy 3=0et
trois nombres complexes non nuls ¢; tels que & +eg+£3= 0. Alors les
formes différentielles :

w; =g wy + f, j(xdy-ydx)

engendrent un trois web hexagonal sur CP(2) a singularités
régulidres. Ce trois web est hyperbolique dés que I'un des p; est non

entier. En général un tel tissu est non abélien.

Preuve : D'aprés la proposition 7 et la remarque seule la non abélianité
est & prouver. Supposons qu'un tel web soit abélien et désignons par w;
les homogénéisées des w; dans C3. D'aprés notre théoréme de Fuchs
les w; posséderaient une intégrale premiére de type Liouville. Sa

restriction a la carte C2 procurerait une intégrale Liouville des w; .

En résulterait que l'holonomie projective ([Cy, Mg]) de la
singularité 0 des w; serait un groupe abélien. Mais un calcul explicite

montre que générique-ment sur les y; et £, ; il n'en est pas ainsi ™) g

Conjecture : Soit w0 = (wy,ws, w3) un 3 web sur CP(2), w; comme
dans le corollaire. Soit # un 3 tissu feuilleté sur CIP(n) tel que dans une
certaine section plane CIP(2) —» CP(n), ¥ coincident avec %9, alors
W est trivial au-dessus de #79.

) Un travail sur les webs de ce type est en cours d'élaboration par un de mes
éleves Frank Loray.
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§ III . 5 . Remarques sur les tissus feuilletés non hexagonaux.

Sur CP(2) il n'y a pas grand chose a dire puisque la donnée de
deux feuilletages algébriques quelconques de méme degré F(w,) et
F(wq) conduit & un 3-tissus feuilleté : en effet wg = -w;-wg est

automatiquement intégrable.

La premiére dimension ou apparait de fagon effective la
contrainte d'intégrabilité de la droite de feuilletage two+(1-t)wq est la

dimension 3. Nous supposons donc n 2 3. Comme d'habitude tout le

discours sera fait en coordonnées homogeénes sur €™, Soit donc # un
3 tissu feuilleté sur CIP(n) donné par les 1-formes w;,i=1,2,3 ¥ w; =
0, wy Adwg + wg A dwq = 0. On rappelle que l'ensemble singulier Sing
¥ = {m, wy A wy(m) = 0} est nécessaire-ment de codimension m. On

note toujours O l'unique 1-forme rationnelle, & composantes de degré -
1, telle que :

dw,- =0 A w;.
Evidemment dans ce paragraphe on suppose © non fermée : d©® #0;
sid est le degré des feuilletages #(w;)on a :

igdw;=(d+2)w; =i O.w;
n
ouR=Y x; Bxi est le champ radial d'Euler.
i=1 i

Voici quelques propriétés de O, pour certaines déja rencontrées :
1) dOAw;=0 et par suite il existe a rationnelle telle que :
2) dO=a. wj Awy, degré a =-2d-4 ; notamment ip dO© =0
3) la trois forme rationnelle © A dO est non identiquement nulle ; en
effet :
iROAdO=ip ©.dO +irdO A O =(d+2).dO 0.

De plus :
4) OAdO=a.OrwjAwg=0a.dwjAwg=-a.dwgAwy.

Proposition 7:Si ¥ = ¥ (wq,wg,w3), wy+wg +wg =0, est un tissu
feuilleté non hexagonal sur CIP(n) il existe une fraction rationnelle R
non constante telle que wy A wg A dR =0 ; en particulier les feuilles de

I'axe sont tracées sur des hypersurfaces de CIP(n) .
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Preuve : En dérivant 4) on obtient :
0=d.dO=da rwj A wg+aldwy A wg—wj A dwy]
qui conduit aprés multiplication par © a :
O=darwiArwar©®.

Faisant agir le champ radial par produit intérieur, il vient :

0=(d0a).a.w1/\ wogAO-ip ©.darwyAwy
soit, puisque d0a =-2(d+2) et ip O =(d+2):

0=(@+% d‘;a)/\wlA wy .

On peut donc trouver deux fonctions rationnelles K; et Ky, degré
K;=—(d+2) telles que :

1
O+5 2 d‘;‘ -K1w1+ K2w2

Remarquons que, puisque O est supposée non fermée, les K; ne

peuvent étre simultanément nuls. Pour des raisons de commodités
nous supposerons K; et Ky non identiquement nuls ; ce qui est loisible
quitte a faire une combinaison linéaire des w;.

Par dérivation on obtient :
a.wi A wy =d€-)=K1w1+ K2W2 +dK1 AW+ dK2 AWy .
En multipliant par dwq on a:
0=dKgAwgArdw;=0a.dKagAOAw; Awq.
De méme :
0=dKjAOAw;Arwg.

En procédant comme précédemment par action du champ radial, on
obtient :

dK, dKy
(0+% LY Awyawg=0= ((~)+K ) AwqAwgy.

Finalement en éliminant ©, on constate que :

dK; dKy dK, d

Kll ) AW AWg = (2 1_ a) AW AWg = (2 —da) AWAWY
qui indique que les fonctions ratlonnelles K /Ky ,Klz /o, Kg /o satisfont

a l'énoncé. Reste tout de méme a vérifier qu'elles sont non constantes !

85



D. CERVEAU

C'est l'objet du :

Lemme : Les K;/Kj, K12/a , Kg /o ne sont pas toutes constantes.

Preuve:Sitelestlecas a=c;K;,Ky=cy.K; ot c;eC et:

1d dK.
9+§ 7& =9+T11 =K1(w1+c2w2).

On a par suite :
dK;
d(w 1+02w2) =0 (w1+c2w2) =- Tl A (w1+c2w2)

qui indique que la forme différentielle K;.(w,+cowg) est fermée et donc
© aussi ; ce qui est absurde. =

On note K(«fxe # ) l'ensemble des fractions rationnelles R

vérifiant
dRAwiAwe=0.
On constate que si R € K(«dxe %), R est de degré 0 et constante sur les
feuilles de l'axe ; K(sfxe ¥ ) est un corps non réduit aux constantes
d'aprés la proposition 7.
On introduit l'entier #(%"):

W) = sup { p e IN tel qu'il existe Ry,....,R, € K(dxe ¥) vérifiant
dR1A..AdR, %0 }
Puisque les éléments de K(«¢fxe # ) sont constants sur les feuilles de
I'axe on a visiblement 1 < (%) < 2. Si 1(¥# ) = 2 les feuilles de 1'axe sont
les composantes connexes des fibres d'une application rationnelles.

Proposition 8 : Si (%) = 1, il existe R € K(«xe ') tel que K(fxe ¥) =
CR.

Preuve : Soit CIP(1) — CIP(n) une droite générale ; les restrictions R
a CP(1) des éléments R de K(sfxe ¥ ) forment un sous corps du corps

des fractions rationnelles & une variable : d'aprés le théoréme de
Luréth il existe Ry € K(«fxe %) tel que :
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K(dtze ¥)| cp1y = C(Ro), Ro=Ro|ceq) -
SiR e K(sdxe %" ) alors :
dR AdRy=0 puisque 7(¥)=1
et
RO'CP(I) =r(Ro|cp(1)) ou reC@).

Par suite R=r(R(). m

Remarque : On peut bien sr définir aussi le corps K(«fxe # ) dans le
cas hexagonal ; génériquement si # est hexagonal parabolique ou
hyperbolique abélien on a K({fxe # )= C. On peut produire des
exemples explicites de # hexagonaux pour lesquels 7(#") = 1. Par
contre je ne connais pas d'exemples de tissus feuilletés non
hexagonaux tels que 7(#") = 1. En fait la proposition qui suit fait penser
qu'il sera bien difficile d'en construire.

ope . ap L pnd
Proposition 9 : Soit w, =P1...Pp£‘, A;p, unélément de Virevp T 2
i=1 i
3,A;j#Aj, P;#Pjpouri#jet P; réduits. Supposons qu'il existe un tissu
feuilleté % tel que F(w;) soit l'un des feuilletages de #". Si 1(¥") = 1,

alors #” est hexagonal.

Preuve : Elle est un peu lourde. Il existe wg,w3, wi+wg+wg=0 tels
que

¥ = W(wy,wg,wg) ; pour vérifier I'hexagonalité on travaille en fait
avec la droite two+(1-t)w; ce qui nous permet de supposer que wg est

pnd

1Yp et plus précisément

voisin de w1 ; on en déduit que wq est dans

s'écrit :
de; .
we=Q1..¢p )y pi'ai- avec @;#@Q; pour i#j.

SiP= Py..Pjet Q= Ql...Qp sont C—colinéaire il est clair que #
sera hexagonal. Si tel n'est pas le cas il se peut toutefois que P et @ aient
des composantes communes. On écrit P et @ sous la forme :

P=F.G, Q=G.H avec F,G,H réduits sans branches communes, 1'un
des F,G,H pouvant éventuellement étre égal a 1.
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Soit Ry tel que K(#) = C(Ry).

Lemme : La fraction rationnelle non constante F/H appartient a
KW ) ; notamment il existe r € C(¢) tel que F/H =r(Ry).

Preuve : Remarquons que

_(dF dG

dw= )Aw1

dG dH

dwg= ( )sz

Comme wq Adwg +wg Adwy=0 on obtient :

(dF dH)Awlsz—O et IFI‘GK(‘W') |

F
Remarque : Noter que nécessairement T est homogeéne de degré 1.
Par suite seule G peut étre éventuellement égal a 1.

Maintenant, puisque Ry e K(¥#) on peut trouver des fractions
rationnelles A; et Ay, non toutes deux nulles telles que :

Wy Wy
dRO =A1. —P_ + Al? .

w w
Comme ?1 eta2 sont fermées, on a par dérivation :

Wi w2
0=dA;rp + dAg A Q

et par suite :
0=dAjrAwirwg.

Ainsi les A; sont aussi dans K(¥) et il existe r; € C(¢) tels que : A; =r;(R).
Supposons A non identiquement nul ;ona:

dRO wl

"2
"1(R0) =" (RO)

r
Par suite, si r_f est non constant on constate par différentiation que R,

est intégrale premiere de w, ; mais ce discours ne dépendant pas du
choix de wy sur la droite de feuilletages, tout élément de cette droite a
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R\ comme intégrale premiére : c'est impossible puisque wjA wg # 0.

r
En résulte que ;% =ceCet:

dRy _wy w2
rl( RO) = P +cC. Q .
Notons F}', Gy, Hp les composantes irréductibles de F, G, H et écrivons :

ol les aj, B, sont pris dans la liste des 4; et v, ¢ dans la liste des u;.
D'apres le lemme il existe ry € C(¢) tel que :
dF dH w
ro(Ro) ( ) Fl +c _Qg
soit encore :

dF dGy, dH,
ro<Ro>(>:F -3 H“) =S 7l +Z6pemy) G +Zee -

Par 1ntégrat10n sur des cycles elementau'es autour des G =0 on

constate que :
ﬁk +C.YE = 0.

Par suite ro(R() ne peut avoir de poles que le long des F;=0 et Hp = 0.
Mais pour des raisons de multiplicité ro(Ry) ne peut avoir de poles le
long des F;j=0 et Hp=0;ainsi ro(Ry) est constante : ro(Rg) =cqg e C.
Vlslblement co#0.

Finalement :

{aj=co=—cee (qui implique que c#0)
B

k+07k=0
et:
wy dF de
FG=%F *XhG,
Wy _ 5 PrdGr o dH
GH= > ¢ G, "¢ H"

La droite de feuilletages twq + (1-t)w se laisse écrire :
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twg+(1-twy =G { cod [ 1-t) F -~ H]+ ):p,, [(l—t)F cH1}

dF,
=GFt{CO F +z k G }

N ¢
ot Fy=(1-t)F-_H.

Finalement twg +(1-t)w; posséde l'intégrale premiére Ft.H.Gfk/ co,

ce qui
montre que le tissu feuilleté est hexagonal abélien. m

Lorsque 7(#) = 2 il existe suivant Siegel [Si] des fractions
rationnelles Qy,...,Q;, s 2 2 telles que :

KWw)= C(er"’Qs) .
Moralement, il existe une surface S dont le corps des fonctions
rationnelles est K(#") munie d'un web ¥ et une application P : CIP(n)
— S telle que ¥ =P* ¥ s > cette affirmation est correcte sur un

ouvert de Zariski de CP(n). En effet si K(¥') = 2, les feuilles de I'axe,

tout du moins les feuilles génériques, sont les composantes connexes
des fibres d'une application rationnelle (R, Ry), R; € K(W)

algébriquement indépendantes. On récupére une relation
d'équivalence qui restreinte & un ouvert de Zariski produit par
passage au quotient une variété analytique S munie effectivement
d'un 3-web puisque les feuilles de # sont compatibles avec la relation
d'équivalence.

Si¥ = %(w,,wg,ws) les w; appartiennent vraisemblablement a

des composantes de type 1,2, 4 ou lon substitue aux submersions
linéaires
L : €™ — €3 des fractions rationnelles.
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IV - Quelques exemples de tissus feuilletés avec monodromie primaire
non triviale.
Soient P; , @, et V des polyndmes homogénes de degré respectif v;,

S, V, 1rréduct1bles et sans composantes communes, j=1..p, k=1..q.
Soient ¢’ un entier tel que 1 <q’ <q et Ay,...,Ap, H1,..., lq des nombres

complexes tels que :

1 g 2 &
0=) A;vi+ ), upbp=73 op+ 3 6p+Vv+ Ai;v:.
jgijjéikk3§=:1k3k=§'+lk Jg]]
Soit X I'hypersurface d'équation P;...P,.Q...Q¢ =0 ;la formule

= P}{l..P;P [ qu..-Q:“ (Q1...Qq')l/3 (Qg41-- Qq)2/3 v]=FiF

définit une fonction multiforme sur C**- X ; cette fonction
multiforme est homogeéne de degré 0 du fait des contraintes sur les A et
les u. On peut calculer la monodromie de F en choisissant des lacets
élémentaxres aj, B, autour de P 0 et @ =0 respectivement. Si

F=F;+Fgestune détermmatlon de F en un point base me clx
ona:

Mon(a).F = e#™i F=e®™jE; +Fy), j=1,.p
Mon(B;).F = Fy +e2"'/3 Fy pour k=1.q'
Mon(B,).F = Fy+¢™/3 Fy pour k=1.g".
Remarquant qu'il existe une relation abélienne (linéaire) entre F+ Fy

Fy +e%*3F,, F,+¢™3 F, on munit ainsi CP(n) d'un trois tissu
feuilleté mais avec monodromie primaire non triviale. Je pense savoir
démontrer que si les 4 et les u sont choisis suffisamment
génériquement alors la feuille générique est dense et se recoupe sur un
ensemble dense. Il serait intéressant d'étudier la topologie de tels objets
pour desp, q, vj, 8, petits.

Je remercie A. Hénaut qui m'a amené a réfléchir sur les webs ;
J.-P. Dufour pour m'avoir invité a participer & Montpellier & un
atelier tissu. Et tout particuliérement Frangoise Dal'bo qui m'a initié &
la géométrie affine.
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CODIMENSION ONE FOLIATIONS IN CP*, n > 3,
WITH KUPKA COMPONENTS
D. Cerveau and A. Lins Neto

1. INTRODUCTION

1.1 — Basic notions:
A codimension one holomorphic foliation in a complex manifold M can be

given by an open covering (Uy)aea of M and two collections (wa)aea and

(9aB)U.nUs#¢, Such that:

(a) For each o € A, w, is an integrable (wq A dwe = 0) holomorphic 1-form
in Uy, and w, # 0.
(b) If U, NUg # ¢ then wo = gag - wg, where gog € O*(Us N Up).
Recall that O(V) is the set of holomorphic functions in V and O*(V) =

{9€ O(V)lg(p) #0 Vp e V}.
Let F = ((Ua)aca, (Wa)aca(9aB)UanUs#4) b€ a foliation in M. The sin-

gular set of F, S(F), is by definition S(F) = U Sa, where S, = {p €
a€A

Ua|wa(p) = 0}. It follows from (a) and (b) that S(F) is a proper analytic
subset of M. The integrability condition implies that for each o € A we can
define a foliation F, (in the usual sense) in Uy — S, whose leaves are solutions
of we = 0. Condition (b) implies that if U, NUg # ¢, then F, coincides with
Fsin Uy NUg — S(F). Hence we have a codimension one foliation defined in
M — S(F). A leaf of F is by definition, a leaf of this foliation.

If S(F) has codimension one components, then it is possible to find a new

foliation F; = ((Ua)aca, (Wa)aca, (§ap)U.nUs#4) such that S(F) has no

S.M.F.
Astérisque 222** (1994) 93
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components of codimension one, S(F;) C S(F), and the leaves of F and
F1|(M — S(F)) are the same (in fact we = fo - Wa, fo € O(Us)). From now
on all the foliatons that we will consider will not have codimension 1 singular

components.

1.2 — The Kupka set:
In 1964 I.Kupka proved the following result (see [K]);

1.2.1 THEOREM. Let w be an integrable holomorphic 1-form defined in a
neighborhood of p € C™, n > 3. Supose that w, = 0 and dw, # 0. Then there
exists a holomorphic coordinate system (z,y, z3, . . . , 2n) defined in a neighbor-
hood U of p such that z(p) = y(p) = 0 and w = A(z, y)dz + B(z,y)dy in this
coordinate system, where A(0,0) = B(0,0) = 0 and $2(0,0) — $4(0,0) # 0.

In fact Kupka proved this result in the real context, but his proof adapts

very well in the holomorphic case.

1.2.2 Remarks: Let w, A, B and U be as in Theorem 1.2.1.

(i) The set {(z,y,23,...,2,) € Ulz = y = 0} = V is containned in U. If
the singular set S of w has no codimension 1 components, then V is
a smooth codimension 2 piece of S and (0,0) is an isolated solution of
A(z,y) = B(z,y) = 0. By taking a smaller U if necessary we can suppose
that SNU = V.

(i) The foliation induced by w = 0 in U is equivalent to the product of the
singular foliation in U N {z3 = c3,...,2n = cn} C C% X (c3,...,Cn) given
by Adz + Bdy = 0 (or by the differential equation & = —B,y = A), by
the codimension 2 foliation in U given by z = ¢;,y = c;. The singular
set in this case is V = {z = y = 0}.

Let F = ((Ua)aeas (Wa)aea, (9ap)v.nU,s#4) be afoliation on M. We define

the Kupka set of F by K(F) = U K, where
a€A

Ko = {p € Us|wa(p) = 0 and dw,(p) # 0}
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Since wy = gapwg in U, NUp # ¢, we have dw, = dgop Awg + gopdws which
implies that K, NUg = Kz NU,. It follows from (i) that K(F) is a smooth
complex codimension 2 submanifold of M. In fact K(F) = S(F) — W(F)

where W(F) = U Wa, Wo = {p € Ua|wa(p) = 0 and dw,(p) = 0}. Observe
a€A

that W (F) is an analytic subset of M.

1.2.3 Definition: We say that K is a Kupka component of F if K is an

irreducible component of S(F) and K C K(F). Observe that a Kupka com-

ponent of F is in particular a smooth connected codimension 2 analytic subset

of M.

Let V be a connected codimension 2 submanifold of K (F). It follows from
the local product structure (see 1.2.1 and 1.2.2) that there exists a covering
(B:)ier of V by open sets of M, a collection of submersions (v;)ier, ¥i: Bi —
C?, and a 1-form w = A(z,y)dz + B(z,y)dy defined in a neighborhood C of
(0,0) € C2, such that:

(a) ¥i(B;) C C for evere i € I.

(b) (0,0) is the unique singularity of w in C and V N B; = 4;(0,0), for
every i € I.

(c) F|B; is represented by w} = ¢¥(w).

We will say that F has transversal type w or X along V, where X is the
vector field —B93/0x + Ad/dy. The linear transversal type of F along V is, by
definition, the linear part of X at (0,0) in Jordan’s canonical form, modulo
multiplication by non-zero constants. Let L be the linear part of X at (0,0)

in Jordan’s canonical form. We have the following possibilities:

(i) L is diagonal with eigenvalues A\; # A.
(ii) L is diagonal with eigenvalues \; = Ay # 0.
(i) L is not diagonal with eigenvalues A\; = Ay # 0.
Observe that, since 42(0,0) — %—’3(0,0) # 0, we have tr(L) # 0 and so the
possibilities A; = A = 0 or A\; = —)\5 cannot occur.

In case (i) the two eigendirections of L induce via the submersions v;, two
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line subbundles of the normal bundle »(V) of V in M. We will call these
line bundles L; (relative to A;) and L, (relative to Az). It is clear that
v(V) = L, ® Ls. In case (iii) L has just one eigendirection which induces in
the same way a line subbundle L; of v(V). In the case of Kupka components
we have the following (see [G.M- L.N]):

1.2.4 - THEOREM. Let dim(M) > 3 and K be a Kupka compact component
of F. We have:

(a) In case (i), if C(L;) is the first Chern class of L;, i = 1,2, considered in
H?(K, C), then A\;C(L2) = A\2C(Ly).

(b) In case (iii) we have C(L;) = 0.

(c) In case (i), if \a/\y = p/q, where p,q € Z, are relatively primes and
C(L1) # 0, then X is linearizable.

1.3 - Codimension 1 foliations of CP", n > 3:

A holomorphic foliation in CP™ can be given by an integrable 1-form w =
n
Z widz; (w A dw = 0), with the following properties:
=0
(a) wo,...,w, are homogeneous polynomials of the same degree > 1.

n n
(b) ip(w) = z w;izi=0(R= Z 2;0/0z; is the radial vector field).
1=0 1=0

This form can be obtained as follows: let m: C"*! — {0} — CP™" be the
canonical projection and F = ((Ua)aeas (Wa)aea, (9ap)UanUs24) be a folia-
tion in CP™. Let F* = ((Us)aea, (Wh)aca, (955)U.nUs34) be the foliation
in C"*! — {0} defined by U} = 7~1(Us), ws = 7*(wa) and g5 = gap o 7.
Since for Uz N Uz NUJ # ¢ we have gi5 - g5 - g5, = 1, we can use Cartan’s
solution of the multiplicative Cousin’s problem in C™*! — {0} (see [G-R]) to
obtain an integrable 1-form 7 in C™*! — {0} such that for any o € A, we have
n|U% = hq - wk, where h, € O*(U2). From Hartog’s Theorem (see [G-R]),
n extends to a holomorphic 1-form y in C™*. If p = pg + prs1 + ... is the
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Taylor development of p at 0, where the coefficients of u; are homogeneous
of degree j and pj # 0, then it is easy to see that w = p; is integrable. We

leave it to the reader the proof of the following facts:

(c) S(w) = S(F*) ===1(S(F)) u{0}.
(d) L* is a leaf of F* iff L* = n~1(L), where L is a leaf of F.
(e) If k = degree (w) > 2, then K(F*) = n~}(K(F)) = {p € C"*|w(p) =0
and dw(p) # 0}.
When degree (w) = 1 we can have w = z;dzy — 22dz; and in this case
K(F*) ={z1 = 20 =0} = =~ 1(K(F)) U {0}.
Observe that condition (b) is equivalent to conditions (c) and (d) and means

that the lines through the origin are tangent to the leaves of F*.

Observe also that given an integrable 1-form w in C™*! satisfying (a) and

(b) we can induce a foliation F(w) in CP™ as follows: let (U;)%, be the cover-

(xaa""wé-l’x::+1?"-,xiz)' Define 7; = ¢:(n:)’ where 7} = wl(zi =1) =
Z wj(z0,...,2i-1,1, Zi41,.. ., 2n)dz;. It is not difficult to see that if dg(w) =
J#i

k then m;|VinU; = (25)¥+1n;|UsNU;. Hence F(w) = ((U)ig, (m:) o (#1)*1)i;)

is a foliation on CP™".

Remark: Two integrable 1-forms w and 7 in C"*!, with properties (a) and
(b) define the same foliation iff w = A - 7 where X € C*.

It follows from the above considerations that the space of foliations in CP™
can be written as Up,>1 P, where P, is the projectivization of the following
space of polynomial 1-forms: I, = {wlw = Y I, widz;,dg(w;) = m Vi =

n
0,...,n, wAdw=0, szwj = 0 and the set {wo = --- = w, = 0} has all

1=0

irreducible components of codimension > 2}.
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Observe that I, is an open subset of the following algebraic set

E, = {w|dg(w) = m,w Adw =0, Zziwi =0}

=0

Problem - Describe in some way the irreducible components of P,,. Let us

see some examples.

1.3.1 - Example: Let f,g be homogeneous polynomials in C**!, n > 3,
where dg(f) = k > 1, dg(g9) = £ > 1 and k/{ = p/q where p and q are

relatively primes. Assume that:

(%) V z € {f = g =0} — {0} we have df(z) Adg(z) # 0.

We will use the notation fM g (f = 0 intersects g = 0 transversely) in this
case. We observe that Noether’s lemma implies that if f and g satisfy (*)

then {f = g = 0} is a complete intersection.
Let w = qgdf — pfdg. It follows from Euler’s identity that ig(w) = 0.
Moreover w A dw = 0 because w = f.g.n, where n = qé}t - pii-g2 and dn = 0.

Therefore w induces a foliation in CP", F(w), such that:

(i) S(F(w)) =7{p#0| w(p) =0} = S (singular set)
(i) K(F(w))=n{p#0] f(p) =9(p) = 0} = K (Kupka set)
(iii) f9/gP, considered as meromorphic function on CP™, is a first integral of

F(w). This follows from the fact that w = gP+! f1=9d(f7/gP).
(iv) w € P, wheren=k+¢— 1.

As a consequence of the techniques developed in [G.M-L.N.] it is possible

to prove the following result:

1.3.2 THEOREM. Let Fo = F(w), where w is as in example 1.3.1. Then
there exists a neighborhood U of Fy in P, such that if ¥ € U then there are
polynomials f and § of degrees k and { respectively, and F = F(qgd f -p fdg).

As a consequence we have:
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1.3.3 COROLLARY. There are irreducible components in Py, (for all m > 1)

whose foliations are defined by meromorphic functions in CP™, n > 3.
Concerning Kupka components we will prove in §3 the following result:

1.3.4 THEOREM A. Let F be a foliation of CP™, n > 3, which has a Kupka
component K of the form {[z] | f(z) = g(z) = 0} where f and g are homo-
geneous polynomials and f M g. Let dg(f)/dg(g) = p/q where p and q are

relatively primes. Then:

(a) If dg(f) = dg(g), then F is the foliation induced by the form fdg — gdf.
In particular f/g is a first integral of F.

(b) Ifdg(f) < dg(g) then F is induced by a form of the type qg,df — pfdg,,
where g1 = g + h.f is homogeneous and dg(g.) = dg(g). In particular
f9/g} is a first integral of F.

1.3.5 Example: A logarithmic form is one of the type

(%) w=f1...f,ZA,-%i
i=1 J

where A1,...,A, € C* and fy,..., fr are holomorphic functions. When

fi,..., fr are homogeneous polynomials in C**!, dg(f;) > 1fori=1,...,r,

and ) Aidg(f:) =0, then w induces a foliation F(w) in CP", where F(w) €
=1

P,,m= Zr: dg(fi;)—1. Observe that Xr: Aidg( f;) = 0 is equivalent to the con-
i=1

i=1

dition ) z;w; = 0. We will use the notations F; = {[z] € CP" | fi(z) = 0}

=0
and F;; = {[z] € CP" | fi(z) = fj(z) = 0} if i # j. We will assume that
fi,..., fr are irreducibles. The foliation F(w), induced by w in CP™ has the
following properties:
(i) For every i =1,...,r, F} = F; — S(F(w)) is a leaf of F(w).
(i) The holonomy of F} is linearizable and is conjugated to a subgroup of the

group of linear transformations of C generated by the set {g; | g;(z) =

99



D. CERVEAU, A. LINS NETO

exp(2miX;/Ai).z, j=1,...,r, j # i}. The holonomy of a leaf L #
Fyr, ..., FY is trivial.

(iii) For any i # j, Fi; C S(F(w)). Moreover, if A\; # \; then F;; — V is
contained in the Kupka set of F(w), where V = {[z] | dfi(2) A df;(2) =
0}uVv, v’ = | J{[e]| fu(2) = 0}. In particular K(F(w)) C | J Fi;.

k#i,j i#j
(iv) The function f;'...f> (in general multivalued) is a first integral of

F(w). The following result is known:

1.3.6 THEOREM. (J. Omegar) — Let Fy be the foliation induced by w in CP",
n > 3, where w is like in (*) of 1.3.5. Assume that fi,..., f, are irreducibles

and for some i € {1,...,r}, say i = 1, we have:

(a) Fy is smooth.
(b) For any subset {ji,...,js} C {2,...,r} where j; < --+ < js; and any
p€ FyNF; N---NFj, then F\,F},...,F;, intersect multitransversely
at p.
(c) For some j > 1 we have A\;/\ ¢ R.
Then there exists a neighborhood U of Fy in P,, such that if ¥ € U
then F is induced by a logarithmic form of the same type of w, say n =

91,1 Gr Zlnj%gf where dg(g;) = dg(f;), i =1,...,.
J=

It follows that:

1.3.7 COROLLARY. There are irreducible components in P, (for allm > 1)

whose foliations in an open and dense subset are defined by logarithmic forms.

1.3.8 Definition: We say that a meromorphic 1-form w, defined in some
complex manifold M, has an integrating factor, if there exists a meromorphic

function f in M, called an integrating factor, such that, d(%) = 0. Remark
that for w as in (*) of 1.3.5, the function f = f; ... f, is an integrating factor.

In §3 we will prove the following result:
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1.3.9 THEOREM B. Let F be a foliation in CP™, n > 3, such that there is
an analytic subset N C S(JF) with the following properties:

(a) cod(N) =2 and N = {[z] € CP" | f(z) = g(z) = 0}, where f and g are
homogeneous polynomials on C™t1.

(b) K(F)NN is open and dense in N and moreover for any connected com-
ponent C of K(F) N N the linear part of the transversal type of F at C
has eigenvalues \1(C) # 0 # A2(C), where X2(C)/A1(C) € R.

(c) For any p € N — K(F), F can be represented in a neighborhood of p by
a holomorphic form which has an integrating factor.

Then there exists a closed meromorphic 1-form n in CP™ which represents
F outside its divisor of poles. In particular F is induced by a homogeneous
1-form in C™*! which has a meromorphic integrating factor.

Furthermore F is of logarithmic type if we assume that:

(d) K(F) is dense in each irreducible component of codimension 2 of S(F).
(e) For any connected component C of K(F) the transversal part of F at C

has linear part non degenerated (i.e. 0 is not an eigenvalue).

Remarks:

1.3.10 — It will follow from the proof that condition (b) can be replaced by;
(b’) A2(C)/A1(C) ¢ Q and the transversal type is linearizable.

1.3.11 — In [C-M] the authors give some sufficient conditions for a holomor-
phic integrable 1-form have a local integrating factor. One of their results

implies that (c) follows from (b) and
(c’) For some neighborhood U of p € N — K(F), F|U has a finite number of

analytic leaves which intersect multitransversely in the points of N.

1.4 An example: Let K be the twisted cubic in CP3, which is defined in
homogeneous coordinates (z,y,z,w) € C* by the equations f =g = h =0,

where
(*) f=XW-YZ, g=XZ-Y?and h=YW - Z2
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We will prove here that there exists no foliation in CP? having K as a Kupka

component.

Let Uy and Uy be the affine coordinate systems in CP3, whose points are
of the form [1:u:v:w]and [z:y: z: 1], respectively. Then K C Uy U Us.
Moreover K N U and K N Uy can be parametrized by @o(t) = [1: ¢ : 2 : 3]
and @q4(s) = [s%;s% : s : 1] respectively, where @o(t) = pa(s) iff s = 1/t.
Let fo(u,v,w) = f(1,u,v,w) = w — uv, go(u,v,w) = g(1,u,v,w) = v — u?,
fi(z,y,2) = f(x,y,2,1) = = — yz and hy(z,y,2) = h(z,y,2,1) = y — 22
Remark that K N Uy = {fo = go =0} and K NUy = {fs = hy =0}.

Suppose by contradiction that there exists a foliation F on CP® whose
Kupka set contains K. Let w be a homogeneous integrable 1-form in C* such
that ip(w) = 0 and w represents F. Let w = i}aidzi, where dg(a;) = k,

i=
i=0,...4 Ifw =w]| {20=1} = au(l,u,v,w)du + a2(1,u,v,w)dv +
a3(1,u,v,w)dw and wy = w | {24 = 1} = ao(z,y,2,1)dz + o (z,y,2,1)dy +
az(z,y,2,1)dz, then F|Uj is represented by wo and F|Us by ws. Moreover in
U, N U, we have wo = z=(k+Dqy,.

Now, consider the maps vy, 14: C3 — C3 given by ¥ (u, v, w) = (u, go(u, v, w),
fo(u,v,w)) and Y4(z,y, 2) = (fa(z,y, 2), ha(z,y,2),2). It is not difficult to
see that 1 and 14 are diffeomorphisms, so that we can consider (u, go, fo) and
(fa, ha, z) as coordinates in Uy and Uy respectively. Moreover ¢o(K NUp) =
{fo = go = 0} and v4(KNU4) = {fs = ha = 0}. Observe also that the inverse

maps of ¥y and 14 are polynomials, so that we can write
wo = A(u, go, fo)du + B(u, go, fo)dgo + C(u, go, fo)dfo
wy = D(f4, ha, 2)dfs + E(fs, ha,2)dhy + F(fs, hg, z)dz
where A, B,C, D, E and F are polynomials. Let us analyze wqy. Consider the

vector field

K= (L) 2, (24 20) 0 (28 04) 0
“\ g0 0Ofy) Ou 0fo Ou ) 0go Oou 39go) Ofo

As the reader can see, the integrability condition is equivalent to ¢x(wo) = 0.

Moreover, in the proof of Kupka’s Theorem (1.2.1) it is proved that the flow
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of X leaves invariant the Kupka set. Since {fo = go = 0} C K(F) N Uy, we

must have X(u,0,0) = (-f,’TCo - —g%) (u,0, O)a%, so that,
0A ocC 0B 0A
(1) 5%(1&,0,0) = 5&—(11,0,0) and a—u(u,O, 0) = %;(u,0,0).

On the other hand, since K C S(F), we can write

wo = (a1(u)go+az(u) fo)du+(by (u)go+b2(u) fo)dgo+(c1(u)go+c2(w) fo)dfo+. . .

where a,,...,cy are polynomials in u and the dots mean terms of order > 2
in (go, fo). This implies that:

X = (c1(u) - bz(u))b% +a2(u)5a§; - al(u)aif0 +...

where the dots mean terms of order > 1 in (go, fo). From (1) we get that
a1 = a2 = 0 and X(u,0,0) = (c;(u) — ba(u))Z. On the other hand, since
K C K(F), we must have dwg(u,0,0) # 0 Vu € C, and this implies that
c1(u) —ba(u) # 0 Vu € C. Hence ¢; — ba = ¢, ¢ # 0 a constant, because ¢; — by

is a polynomial. From these considerations it is easy to see that:
(2) dwo|K N Up = cdgo A dfp.

With an analogous argument it is possible to conclude that

3) dws|K N Uy = édfy A dhy, where ¢ # 0 is a constant.

Now, recall that wo = 2z~ (¥*Dw, in Uy N Uy. Since x = 2% along K N Uy and

w4(0,0, 2) = 0, we have:

dwo|K N Uy N Uy = 2~ *+Vdwy (0,0, 2) = 273+ dw, (0,0, 2)
which together with (2) and (3) implies that:
(4) édgo A dfy = 273V df, Adhy along KNUyN U, &= c/é.
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As the reader can verify easily, we have the following relations

{ foIUo N U4 = .'13_2f4|U0 n U4
goon NU, = .’D‘z[zf‘; - yh4]|U0 NU,

This implies that

()
dgo/\dfolI(nUonU4 = ym'4dh4 /\df4|KﬂUoﬂU4 = Z_lodh4 /\df4|IX’nUoﬂU4

because yz~* = 2710 along K N Uj.

Finally, from (4) and (5) we get that 10 = 3(k + 1), where k € N, which is
a contradiction.

This example motivates the following:
Problem: Are there foliations on CP™, n > 3, which admit a Kupka com-

ponent which is not a complete intersection?

We think that the answer is no.

2. BASIC RESULTS

In this section we will state and prove some of the results that we will need
in §3.
2.1 Definitions: Let ¢: — R be a C? function, where U C C™ is an open
set. We say that ¢ is strictly k-subharmonic (briefly s.k — s.) or (n — k + 1)-
pseudoconvex, if for any z € U the 89-matrix of ¢ at z, which is defined
by

? ..
H,(z) = (333';;' (z)) 1<4,57<n

has at least k positive eigenvalues. Observe that H,(2) is a hermitian matrix,
so that all its eigenvalues are real. Moreover, if f: V' — U is a biholomorphism
then

Hpop(w) = P'.Hy(f (w)).P
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where P is the jacobian matrix of f at w. This implies that the concept of
s.k — s. can be defined in complex manifolds: if M is a complex manifold of
dimension n and ¢: M — R is C?, we say that ¢ is s.k — s. if for any p € M
there is a holomorphic local chart o: U — V C C®, p € U, such that poa™!
is s.k — s.. It is clear that if 3: U; — Vi, p € U, is another holomorphic chart,
then o 871 is s.k — s..

We say that a connected complex manifold M is k-complete, k > 1, if there

exists a s.k — s. function ¢: M — R such that:
() Jim ¢(p) = +oo,

that is, for any sequence (pnp)n>1 in M, without accumulation points, we

have lim ¢(p,) = +00. We observe that a s.k — s. function, k¥ > 1, cannot
n—oo

have a local maximum. This fact follows from the maximum principle for
subharmonic functions, as the reader can verify easily. Hence there are no
s.k—s. functions on compact manifolds. Remark also that property (*) implies
that:
(i) For any r € R the sets ¢~!(—o0,7] and ¢~!(r) are compact.
(ii) inf {p(p) | p € M} = m > —oo, and there exists pg € M such that
¢(po) = m.

When k£ = n = dim(M) a s.k — s. function is also called a strictly subhar-

monic function.

2.2 Extension of Meromorphic forms:
The main result of this section is the following:

2.2.1 THEOREM. Let M be a k-complete complex manifold, where k > 2.
Let C be a compact subset of M and w be a meromorphic (resp. holomor-
phic) ¢-form defined on M — C. Then w extends to a meromorphic (resp.

holomorphic) €-form on M.

Proof: Let ¢: M — R be a s.k—s. function such that lim ¢(p) = +o0. Since
p—oo

a s.k — s function is s.2 — s. if k > 2, we can assume that k = 2. Let m =
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inf{p(p) | p € M} and r = sup{p(p) | p € C}, so that M — C C ¢~ (r, +00)

and w is defined on ¢~!(r,+00). The idea is to prove the following:

Assertion 1: If w can be extended to ¢~!(s,+00), where s < r, then there
exists € > 0 such that w can be extended to ¢~1(s — &, +00).
Since ¢p~1[m,400) = M, then assertion 1 clearly implies the theorem. On

the other hand, assertion 1 is implied by the following:

Assertion 2: Suppose that w has been already extended to ¢~1(s,+00),
where s < r. Given p € p~1(s), there exist a neighborhood V of p such that
w can be extended to V U p~1(s, +00).

Assertion 1 follows from assertion 2 because ¢~!(s) is compact. In order

to prove assertion 2 we use Levi’s Theorem:

Levi’s Theorem: (see [S] for the proof). Let W C V C C™~! be open
sets, where W # ¢ and V is connected. Let f be a meromorphic (resp.
holomorphic) function defined in (W x A(r)) U (V x [A(r) — A(r")]), where
A(r) ={2 € C| |zl < r} and 0 < ' < r. Then f can be extended to a
meromorphic (resp. holomorphic) function on V' x A(r).

An open set A of the form (W x A(r)) U (V x [A(r) = A(r)]) is called a
Hartog’s domain. The set A = V x A(r) is called its envelope of holomorphy.

Another fact we will use is the following:

LEMMA 1. Let ¢:U — R be a 5.2 —s. function, where U C C" is an open set
(n >2). Let p € U be such that ¢(p) = s. Then there exist a biholomorphism
a:V; — U, and a Hartog’s domain A C V; such that

(a) 0eVi,a(0)=pelU, CU
(b) a(A) C Uy and p € aA), where A is the envelope of holomorphy of A.
For the proof see the §8 of [S-T].

Assertion 2 follows from Levi’s Theorem and Lemma 1. In fact, given p €

©~1(s), by taking a local chart we can assume that p=0 € C" and ¢: U — R,
0 € U C C™. Since ¢(0) = s and w is defined in ¢p~1(s,+00) C U, we can

write w = Zf;dz;, where I = (il, .. .,ie), < - <ip,dzy= dzilA- --Adz;,
I
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and fr is a meromorphic (resp. holomorphic) function on ¢~1(s,+00). Let o
and A be as in lemma 1 and g; = froa™!, I = (i; < --- < ig). From Levi’s
Theorem gy can be extended to a meromorphic (resp. holomorphic) function
on A. Hence fr can be extended to a meromorphic (resp. holomorphic)
function on a(A). Since a(A) is a neighborhood of p = 0, then assertion 2 is

proved. N

Now we consider the following situation: let fi,.. ., fi be homogeneous (non
constant) polynomials in C**! and V(f,..., fx) = {[p] € CP" | fi(p) =
= fulp) = 0}.

2.2.2 THEOREM. M = CP"-V(f1,..., fx) isf-complete, where { = n—k+1.

Proof: Let dg(f;) = dj, j = 1,...,k and ¢1,...,qx € [N] be such that
dig1 = - =drgr = q¢ > 0. Put Gj =f;-“,so that dg(G;) =¢q,j =1,...,k,
and V(f1,..., fr) = V(G1,...,Gk). Define op: M — R by

¢([2]) = ¢g (——————(Zj=o - ) )

Yy 1Gi(2))?

where [ ] = m: C™*1 — {0} — CP™ is the canonical projection and z =

(20,...,2n). It is easy to see that ¢ is well defined and real analytic on

M. Moreover, since M = CP™ — V(Gy,...,Gk), we have lim ¢p(p) =
p—oo

lin‘1/<p(p) = 400, where V = V(G4,...,Gk). Let us prove that ¢ is s.f —
p—)

s.. Fix [2] = [20:...:28] € M. We can suppose that z§ # 0, so that

0 _

[2°] = [1:29,...,28], where 29 = 20/2. In the affine coordinate system

n k
where ¢;(z) = £g(1 + Z|w,|2) and po(z) = Z|gj(m)|2, where g;(z) =

i=1 i=1
Gj(1,z1,...,z,). Therefore we have H, = ¢H,, — H,,. A direct computa-
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tion shows that H, = (ai;j)i1<i,j<n and H,, = (bij)1<i,j<n, Where

aiiz) = (1 + Z|x,-|2) /(1 +j2:;|zj|2)z

J#i

aij(z) = —:c,-'m‘j/ (1 + zj: |$j|2)

2
. . k
by =Y 5,04, / (Z |gj|2)
1=

r<s

where Al = grgg-? - gsgi-f. Observe that the quadratic form associated to
H,, is

i,j i<j

Qi(z,w) = Zmiaijwj = (13+ Z |mi|2) [Z Jwi|* + Z wiz; — wjz;|*
Jj=1

Hence it is positive definite. For some fixed z € C* -V, V = {¢g; =

gr =0}, let K(z) = {w € C™ | Zb,-j(:v).wj =0,foralli=1,...,n}.

i=1
Assertion: dim(K(z)) >n—k+1forallz e C"-V.

Proof: Since z € C" — V, let us assume for instance that g;(z) # 0. From
now on we will omit the point = in the notation. Let S be the space of

solutions of the linear system:
(6) ZAIst §=2,...,k

Since in (6) we have k — 1 equations, we have dim(S) > n — k+ 1. So it is
enough to prove that S C I(z). Observe that (6) is equivalent to

dg9s = 9g1 _ .
(7 Zaxj > 5o —w;, s=2,...,k.
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On the other hand (7) implies that if 7 # s then
) 8
ZA{,sw,- = g’ZaTjwj T 9s aTjwj =0
J=1 Jj=1 J

Therefore, if w € S, then ZAﬁswj = 0 for all » # s. Hence, if w € S, then
Jj=1

-2
> bijwj = (Z |ng2) SN &AL
ji=1 j=1

j=1r<s

j=1 r<s

($0r) 5 ) -

This proves the assertion.
Now if w € K(z) — {0}, we have

thAPw = QQI("E,w) - Z wibijwj = qu(a:,w) >0

i,j=1
This implies that H, has at least n — k + 1 positive eigenvalues. I

2.2.3 COROLLARY. Letk < n-1and fi,..., fr be homogeneous non constant
polynomials on C™**t1. Then any meromorphic {-form defined in a neighbor-
hood of V(fi1,...,fr) C CP", can be extended to a meromorphic £-form in
cpPn.

2.3 Noether’s lemma of second order:

Let f,g:U — C be two analytic functions and V = {f = g = 0}, where U C
C™ is an open set. If W C V, we say that f intersects g transversely outside
W (briefly fM g out of W) if for any z € V — W we have df(z) A dg(z) # 0.

Classical Noether’s lemma can be stated as follows:
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2.3.1 NOETHER'S LEMMA. Let f,g,U,V and W be as above. Suppose that:

(a) W is an analytic subset of U, where cod(W) > 3.
(b) HY(U - W,0) = {1}.

If h:U — C is an analytic function such that h|V = 0, then there are
analytic functions a, 3: U — C such that h = a.f + B.g.

When U = C”, n > 3, f and g are homogeneous polynomials, W = {0},
and f M g out of {0}, then we have the following: if h is a homogeneous
polynomial with h|V = 0, then there are homogeneous polynomials @ and 3
such that h = o.f + B.g, where dg(a) + dg(f) = dg(B) + dg(g) = dg(h). In
particular if dg(h) < min{dg(f),dg(g)}, we must have h = 0. This assertion
follows from Noether’s lemma because H'(C" — {0},0) = {1} for n > 3 (see

[C]). Here we are mainly interested in the case where the 1-jet of h is 0 along

V.

2.3.2 Definition: Let U C C” be an open set, V C U be a codimension k
smooth complex submanifold and h: U — C be analytic. We say that the £-jet

of h is zero along V if for any 2° = (29,...,20) € V there is a kolomorphic
coordinate system z = (21,...,%,) defined in a neighborhood A of z° such
that:
(a) VNA={z;=---=x,=0}
(6) h(z)= D ao(z)af...a7*

lo=+1
where in the above notation o = (01,...,0k), |o| =014+ +0k, andas: A —

C is holomorphic for all o such that |o| = £+1. We use the notation j& (h) = 0
to say that the £-jet of h is zero along V.

2.3.3 THEOREM. Let f,g:C"™ — C be homogeneous polynomials, n > 3,
where fM g out of 0 € C™. Let V ={f =¢g=0} and V* =V - {0}. Ifh
is a homogeneous polynomial with ji,.(h) = 0, then there are homogeneous
polynomials a,b and c such that h = af? + bf.g+ cg?, where dg(h) = dg(a) +
2dg(f) = dg(b) + dg(f) + dg(g) = dg(c) + 2dg(9).
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Proof: Since fMN g out of 0, for any 2% € V* there is a holomorphic coordinate

system (z1,...,2,) defined in a neighborhood U,o such that:

(a) f(z) ==z1, g(z) = x2 Yz € Uy, so that U NV = {z; = 22 =0}
(b) h(z) = a(z)2? + B(z)z122 + v(z)z, Vz € U,0, where o, 3,7 € O(U,0).
It follows that it is possible to find a convering (U;);er of C™ — {0} by open
sets and three collections {a;}ier, {Bi}ier, {7vi}ier, where i, Bi,vi € O(U;)
and h|U; = (i f>+Bifg+7ig?)|Ui. When U;NU; # ¢ we have o f2+08;;fg+
vijg% = 0, where a;; = aj — a;, 8ij = Bj — Bi and vi; = v; —vi € O(U; NTj;).
Observe that this relation implies that g|U;NU; divides a;; f2|U;NU;. This fact
together with fT g out of 0 implies that a;; = 6;;g, for some 6;; € O(U;NU;).
Now, if U;NU;NU}, # ¢ we have (6;;+0;k+6ki)g = cij+ajr+ar; =0, and so
6ij + 6k + 6ki = 0. It follows from Cartan’s solution of Cousin’s problem that
there exists a collection (6;)ier, 6; € O(U;), such that é;; = §; — 6;. Therefore
we can define a function oo € O(C™ — {0}) by

aIU,' =Q; — 5,‘9

Similarly, there are a collection (g;)ier, i € O(U;), and v € O(C™ — {0})
such that v|U; = v; — €;f. Let hy = h — af? — yg?%. It is clear that:

h|Ui = Bifg+ 6igf? + eifg® = (Bi + 6:f +€ig)fg = vifg.

IfU;NU; # ¢, wehave (p;—¢i)fg = 0, so that p; = ¢;. Therefore there exists
B € O(C™—{0}) such that 8|U; = ¢;, i € I, and we have h = af2+3fg+vg>.
Now, from Hartog’s theorem, o, 3 and v can be extended to holomorphic
functions on C", which we call o, 3 and 7 also. Let o = Zaj, 8= Z,Bj
Jj20 i20
and vy = Z’)’j, where o, 3; and +y; are homogeneous of degree j. It is clear
>0
that if j1, j» and j3 are such that ji +2dg(f) = ja2+dg(f)+dg(g) = ja+2dg(g),
then we have h = aj, f> + aj, fg + j,g%. So we can take a = aj,, b = o,

and c = oj,. 1

Remark: We will need the above result only to prove (a) of theorem A.
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3. PROOFs

3.1 Proof of Theorem B:

Let F be a foliation on CP™ which satisfies hypothesis (a), (b) and (c) of
Theorem B. The idea is the following: let w be a homogeneous integrable
1-form in C™*! which represents F as in §1.3. We will prove that there exists
a homogeneous polynomial f such that d(w/f) = 0 and dg(f) = dg(w) + 1.
After that we will use some results containned in [C-M] to conclude the proof.

Let N = N U- - -UN, be the decomposition of N in irreducible components.
From the hypothesis we have that for each ¢ = 1,...,r, N;NK(F) is open and
dense in NV;. Since N;— K (F) is algebraic we have that cody,(N;— K (F)) > 1,
and so, N; N K(F) is connected.

Observe now that hypothesis (b) and Poincaré’s linearization Theorem im-
ply that N; N K(F) is of linearizable transversal type. This means that
there exist A\{ and A with A\i/\} ¢ R with the following property: (1)
Vp € N; N K(F) there exists a local chart (z,y,2):U — C x C x C"2
such that U N N; N K(F) = {(z,y,2)|z = y = 0} and F|U is the foliation
defined by the 1-form wy = M xdy — Aiydz. If we divide wy by Mizy we get
the form ay = % —a4®, where a = Aj/A} ¢ R. Observe that ay is closed,

so that wy has an integrating factor.

LEMMA 2. Let i € {1,...,r} be fixed. There exists a neighborhood A; of
N; in CP", and a meromorphic closed 1-form 7; on A; such that if P; is the
divisor of poles of n;, then F|(A; — P;) is represented by n;|(A; — P;).
Proof: It follows from the considerations before Lemma 2 and from hypoth-
esis (c) that it is possible to find a convering of N; by open sets of CP",
(Uj)jes and a collection (a;);es such that:

(i) If j,k,¢ € J are such that U; N Up N Up # ¢, then U;,U; N Uy and
U; NU, NUyg are simply connected. Moreover by using the local structure
of analytic sets, we can suppose also that U; N N;, U; N U N N; and
U; NU, NUgN N; are simply connected.
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(if) J = J1 U Jy where U;N(N; — K(F)) =¢if j € Jq, U U; O N;nK(F),
JE€
U U; D N; — K(F) and if j,k € J; is such that U; N Uy # ¢ then there
JE€J2
isfe J, with U, C Uj N Ug.

(iii) For each j € J, ¢ is a closed meromorphic 1-form on Uj, such that
aj = w;/f;, where f; € O(U;) and w; is a holomorphic 1-form which
represents F|U;. We can assume also that the singular set of w; is of
codimension > 2.

(iv) For each j € Jj, there is a local chart (z;,y;,2;):U; = C x C x C"*~2

such that o; = %yj’l - aéf_j-, where a ¢ R is as before. In this case
J J

w; = z;dy; — ay;dz; and f; = z;y;.

(v) If 4,k € J is such that U; N U # ¢, then there exists a meromorphic
function g;i, defined on U; N Uy, with a; = gjrox. This function is
obtainned as follows: since w; and wy, define the same foliation on U;NUj
and their singular sets have codimension > 2, we can write w; = hjrw,
where hj, € O*(U; N Ug). Therefore gjr = firhjk/f; as the reader can
verify easily. Moreover, the collection (g;x)v,nu, # ¢ satisfies the cocycle
condition g;jkgrege; = 1 on U; N Uk N Uy if this set is non empty.

Assertion: If j,k € J are such that U; N Uy # ¢, then gjj is a constant.

Proof: Observe first that a; = gjra implies that dgjr A o = 0 because o;

and oy are closed.

1%t case: k € Ji, so that ap = iy“: - adf:. Let zx = (21,...,2""2) and
gjk = g. Relation dg A o = 0 implies that outside the set of poles of g we
have 532-"; =0,1<r<n-2,and xkgfz + ayka—zﬂ; = 0. This implies already
that g does not depend on 2. Therefore g = g(z,yx) and we can suppose
that g is defined in a neighborhood of (0,0) € C2. From now on we will omit
the indexes k. Let P be the set of poles of g. Suppose first that P D {z = 0}.
In this case, it is not difficult to see that there are a disk A C {y = 0} and
an annulus A C {z = 0} such that g has no poles on W = (A — {0}) x A.
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Consider the Laurent development of g in W:

oo

m,n=—00

[e o]
From m%‘i + aygg- = 0 we get Z bmn(m + na)z™y"™ = 0, which implies

m,n=—co
that byn(m + na) = 0 Vm,n € Z. Since a ¢ Q, this implies that b,,, = 0 if
(m,n) # (0,0). Therefore g|W is constant, which implies that g is constant.

If {z = 0} ¢ P, then it is possible to find a disc A C {y = 0} and an
annulus A C {z = 0} such that g is holomorphic on A x A. In this case g
admits a Laurent development on A x A and so g is constant by the same

argument as before.

2"¢ case: j,k € Jo. In this case let £ € J; be such that U, C U; N Ug.
Observe that gjk - gke - gej = 1 on Up = Uy, NU; N Ug. By the firs case gie
and gg; are constants. Hence g;i is constant on Uy, and so on U; N Uy. This
proves the assertion.

Now, if j,k € Ji and U; N Uy # ¢ then gjx = 1. In fact, on U; N Uy we

have:

From (i), there is pp € U; N Ux N N;. It is clear that po = (0,0, z}’) in the
chart (z;,y;,2;) and po = (0,0, 29) in the chart (zk, Yk, 2x). By analyzing the
sets of poles of a; and ay we get that either {y; = 0} N U, = {yx =0} NTj;
and {z; = 0} NUx = {z = 0} NUj, or {y; = 0} NUi = {2z =0} NU; and
{ys, =0} NU; = {z; =0} N k.

On the other hand, by comparing the residues of «; and o4 around {z; =
0}, {y; = 0}, {zx = 0} and {yx = 0}, we obtain in the first case that g;jx =1
and in the second case that 1 = —agjr and —a = gjr. Well, these last
relations imply that a? = 1, which is not possible. Therefore g;x = 1. So we
have proved that if j, k € J; is such that U;NUg # ¢ then a; = o on U; NU.
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It follows that we can define a closed meromorphic 1-form #j; on B; = U U;
JE€N1
by 7:|Uj = e;.
Let us prove that 7j; can be extended to A; = U Uj. Let n; be defined on
jeJ
A; by:

(vi) mi|Bi = i

(vil) If j € J; then U;NB; # ¢. Therefore there is k € J; such that UpNU; # ¢
(because B; D N; N K(F)). We put 0;|U; = gijoj. Observe that this
definition is natural because n;|U; N Ui = 7;|U; N Uk = o|U; N U =
gkjajIUj N Ug.

Let us prove that 7; is well defined. We can consider g = (gjk)v,nU,#¢ as a
cocycle in H*(U,C*), where U = (U; N N;)jes. It is not difficult to see that
if G is trivial in H'(U,C*) then 7 is well defined. Let 2 = (U; N N;)jey,
and G, = {gjx € G | j,k € J1}. Then gjx = 1 for any gjx € G; and so G;
is trivial in H!(U;,C*). On the other hand, since cody,(N; — K(F)) > 1 it
follows that any closed path 7:[0,1] — N; with end points in N; N K(F) is
homotopic, with fixed end points, to a path 4:[0,1] — N; N K(F). It follows
that the monodromy of a closed path as above (with respect to G) is trivial.
This implies that G is trivial, as the reader can check by himself. This ends
the proof of Lemma 2. |

From Lemma 2 we get for each N; , 7 = 1,...,r, a neighborhood A; and
a closed meromorphic 1-form 7; on A; such that, if P; is the divisor of poles
of n;, then 7; represents F on A; — P;. Furthermore if C is a connected
component of A; N A; then 7;|C' = X;;(C)n;|C, where A;;(C) is a constant

integrable 1-form which represents F on Uy. Then wy can be extended to
CP" as a meromorphic 1-form with poles in Ly = {[2] € C" | 29 = 0}. Since
wo|A; and 7; represent the same foliation, we have that wo|A; = fin;, where

fi is a meromorphic function on A;. On the other hand, if C is a connected
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component of A; N A; then we have
fiXij(C)nj|C = fimi|C = wo|C = f;n;|C

which implies that f;|C = A;;(C)fi|C. Since A;;(C) is a constant, it follows
that '%—|C = %IC’. This implies that we can define a closed 1-form 6 on

A= U A; by 0|A; = % Now, by corollary 2.2.3 of §2.2, § can be extended
i=1

to CP™, because A is a neighborhood of N = {f =g =0} and2<n-1. We

call 4 this extension. Let P be the divisor of poles of §. Fix po € CP™ — P

and for each path v:[0,1] — CP™ — P with v(0) = po, put

I(y) = exp [/70]

We will prove now that if -y is a closed path then I(y) = 1. It is easy to see that
this will imply that we can define a holomorphic function F: CP®* — P — C
by F(p) = I(y), where 7(0) = po and (1) = p.

Let 7 be a closed path. Since CP™ is simply connected, -y is homologous in
CP"—P toy1+---+7 where each v; is a small cycle envolving an irreducible
component of P. So it is sufficient to prove that if 7y is a small cycle envolving
an irreducible component of P, say @, then exp| f,y 6] = 1. Now, since N =
{f = g = 0}, it follows from Bézout’s Theorem that @ N N; # ¢ for some
i. It follows that we can deform 7 keeping it closed along the deformation,
to a small cycle 4 envolving @ and containned in A;. Since 0|4; = '—if{_i, this
implies that f,y 6=/, % = 2wim, m € Z. Hence I(y) = 1.

The above argument implies also that F'|A; = c; fi, where c; is a constant.
Since n; = wo/ fi is closed, we get that 7 = wo/F is closed. Hence the first part
of the theorem is proved. It follows also that if w is a homogeneous integrable
1-form on C™*+! which induces F then w has a meromorphic integrating factor
say F = g/h. Let us prove that g and h are homogeneous polynomials such
that dg(g) — dg(h) = dg(w) + 1.
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In fact, let dg(w) = k. Since F is an integrating factor, we have dFF A w =
Fdw. On the other hand, ig(w) = 0 implies that (k + 1)w = Lg(w) =

irdw + d(igw) = i pdw, where Lg is the Lie derivative. Therefore we get
ir(dF)w = Fig(dw) = (k+1)Fw = ig(dF) = (k+ 1)F

Integrating ig(dF) = (k + 1)F, we get that F(tz) = t*+1F(z), if z is not a
pole of F. Hence g and h are homogeneous and dg(g) — dg(h) = k+ 1. We

can suppose that g and A do not have common factors. Let g = gf‘ oo ghm
be the decomposition of g in irreducible factors, where k,...,kn > 1.
LEMMA 3. There are Aq,...,\ € C and a homogeneous polynomial ¢ such
that

hw dg ®
8 — =) \j—2+d (—)
® : le ’

where i = gf‘ e g 0L € < kj -1, Z)\jdg(gj) = 0, ¢ and v have no
i=1
common factors and dg(yp) = dg(¢).

The proof of the above result can be found in [C-M].
Now let us assume hypothesis (d) and (e) of Theorem B and prove that F
is of logarithmic type. First of all, if we multiply the right hand side of (8)

by gi*! ... glr*1 we get the form

d,
(9) N=01...9mdp — ©g;. ngZ ggj+ge1+1 gm+1z)‘ g,
j

Jj=1

which is holomorphic in C™t!. Observe that if £; = X; = 0 for some i €
{1,...,m}, then g; is a factor of  and g; plays no essential role. Hence we
can suppose that either ¢; # 0 or A\; # 0 for all ¢ = 1,...,m. With this
condition G; = {[z] € CP" | gi(z) = 0} is invariant under F, which implies
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that if ¢ # j then Gi; = {[2] | gi(z) = g;j(2) = 0} C S(F). Since Gi; has
codimension 2, hypothesis (d) implies that the set

A = K(F)NGi;n{[z] € CP" | dgi(2)Adg;(z) #0, ¢(z) # 0 and g,(2) # 0 for r # 1

is open and dense in G;;. In order to simplify the notations we will put ¢ =1

and j = 2. Now we will prove that:

(i) If ¢4 > 0 and ¢ = O then the linear part of the transversal type of F at
G2 is degenerated.
(ii) If £ = €2 = 0 then the quotient of the eigenvalues of the linear part of
the transversal type of F at G2 is —Aa/A1 (or —A;/A2)
(iii) If £, > 0, & > 0 then the above quotient is —£5/¢; (or —£;/¢2).

In fact, since A is open and dense in G2, let p € C™*! — {0} be such that
[p] € A. We know that ¢(p) # 0 and g,(p) # 0 for r > 2. This implies that
the form Z )\j% has a holomorphic primitive, say h;, defined in a simply

23 7
connected neighborhood U of p. Therefore we can write:

hw dg; dgo hs
10 | =A% 4 %2 L ah +d =
(10) A2 132 an, (ge ) -

where hy = /g% ... g, hy(p) # 0.

Proof of (i): Since ¢, = 0 we have A\ # 0. Let « be a branch of h;l/el and

B be a branch of hA’/ 12 exp(h1/A2) defined in U. These branches can be
defined because hy(p) # 0. Observe that d(ag;)(p) A d(Bg2)(p) # 0, so that
there is a local coordinate system (z,y,z) € C x C x C™*~! around p, such
that £ = ag; and y = Bg,. It is easy to see that in this coordinate system we

have

d d d d dz
B= Al-—x+/\2 y+d( _z’)-)\1—x+>\2—y—flm

If we multiply x be 2841y we get (—£1y + A\1z8y)dz + Aazb1+1dy. Therefore
the transversal type of F in Gy, is given by the vector field A\oz%+19/0z +
(61y — \z81y)/8y. Since ¢; > 0, this proves (i).
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Proof of (ii): Since ¢; = ¢, = 0 we have \; # 0 # )2 and

d d
M=A15&+A2 92

— +dhs
1 g2

where hy = h; + hy. Let o = exp(hs/\2). We have dg;(p) A d(ag2)(p) # 0,
therefore there exists a local coordinate system (z,y,2) € C x C x C"~!
around p, such that g = r and ags = y. In this coordinate system we have

n=2A1 ‘i—’ + )\2%, so that zyu = A\ydx + A22dy, therefore the quotient of the
eigenvalues of the normal type is —A2/A;1 (or —A1/A2).

Proof (iii): In this case we can write (10) as

dg dga hs
=AM—+— +d
g ' )} 2 g2 (gf’gg’

where hy = hy + h, gf’ gff;’. Since dg; (p) Adga(p) # 0, there exists a coordinate
system (z,y,z) € C x C x C"~! around p such that z = g; and y = go. If we
multiply p by zf1+1.y%+1 b1 we get

hylaftlyfatl Y = b yde — byxdy + A\hy et ybet de + Ahs ey dy

+ h;lxe""lye’“dh.

It is not difficult to see that this implies (iii).

Now from (i) and hypothesis (e) it follows that either ¢; = --- = ¢, =0 or
4...8, > 0. In fact, if this is not the case, then there are ¢ # j such that
¢; > 0 and ¢; = 0, which cannot happen by (i). If ¢4 = --- = {,,, = 0 then
F is logarithmic and we are done. Let us suppose that ¢; ...¢,, > 0. In this
case, it follows from (iii) that for any ¢ # j the quotient of the eigenvalues of
the linear part of the normal type of F at Gj; is rational. Let us prove that
this case cannot occur.

In fact, since in N N K(F) the quotient of the eigenvalues of the normal
type is not real, then in the above situation, there exists p € C**! — {0} such

that [p] € K(F)NN — U Gij. In this case p € K(7*(F)) and so there exists
i#j
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a coordinate system (z,y,z) € C x C x C*~! around p such that 7*(F) is
defined by the form 6 = zdy + aydz, where a ¢ R. On the other hand let hTW

be as in (8). Its set of polesis P = U{g,- = 0}, it is closed and represents

7*(F) outside P. Therefore there exists a meromorphic function f; on U such
that

th v fi(zdy + aydz) = 0 = d(f1(zdy + aydz)) = d(zyfr) A (% + a%)

As we have seen in the proof of Lemma 2, the last relation implies zy f; = c,
c a constant. This implies that PNU = {z = y = 0}. Therefore there are
i # j such that {g; =0}NU = {z =0} and {g; =0} NU = {y = 0}, and so
[p] € G;j, a contradiction. This completes the proof of Theorem B. I

3.2 Proof of Theorem A:

We will use Theorem 1.2.4 of §1 (cf. [G.M.-L.N.]). We need some prelim-

inary results.

LEMMA 4. Let V5 M bea holomorphic vector bundle with fiber C2, where
M is compact. Assume that V = E; @ E; = F} ® F5, where Ey, E,, F; and
F, are holomorphic line bundles, such that c¢(Ey) # 0 and qc(E1) = pc(E»),

where p,q € Z, 0 < g < |p| (c = first chern class). Then:

(a) If p # q then F; = E; for some i,j € {1,2}. Moreover, if we assume
i =j =1 then ¢(Fz) = c(E»).

(b) If p=gq (i.e. c(E1) = c(E)) then c(F;) = c(Er) fori=1,2.

Note: As in 1.2.4, we denote by ¢(-) the first Chern class considered as an
element of H%(M,C).

Proof: Let U = (Uy)aca be a covering of M by trivializing open sets of
the E;’s and F;’s, where U, N Ug and U, N Ug N U, are simply connected if
they are not empty. For each o € A and i = 1,2 let e} : U, — P~1(U,) and
fi:Uy — P~(U,) be holomorphic local sections such that e (p) € E;(p)—{0}
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and fi(p) € F;(p)—{0}, p € U,, where E;(p) and F;(p) denote the fibers of E;
and F; over p. It follows that for all p € Uy, {eL(p), €2(p)} and {f1(p), f2(p)}
are basis of P~1(p). Therefore there is a matrix Ao = (a¥) such that o/ €
O(Uy), Aq = det(Ay) € O*(Uy,) and €, = ail fl + ai2f2 on U,. On the
other hand there are collections {g}g}v.nUs%s and {h%g}u.avsse, i = 1,2,
where gl g, hi 5 € O*(Us NUp) and €}, = g geh, gb = higfs on UaNUp # ¢
for ¢ = 1,2. These collections are in fact cocycles (i.e. if Us NUgNU, # ¢
then ggﬂ.gz,,y.gf;a =1 and hi 4.k}, .hi, = 1) and c(E;) (resp. c(Fi)) can be
represented in H2(U,Z) by the 2-cocycle

(11)

i 1 i i i
Mogy = m(zg(gaﬁ) + ey(g,@»y) + fg(g'ra))
{ Ua N UB n U‘Y 7& ¢

resp. iy, = g=bmr (b () + Ly () + (i)
where the £g’s are branches of the logarithm arbitrarily chosen.
1 hl
Now, if we set G = (gaB g ) and Hyp = ( of (2) ), then it is not
0 955 0 hig
difficult to see that on U,NUg # ¢ we have Go3Ag = AgHyp or equivalently
(i) ghgag' = ad'hls
(i) ghga = al2h2,
(111) ggﬁaf} = aﬁlhiﬂ

(1v) g250% = aZ2h2,

(12)

For fixed o € A let fo = allal?a?'a??2/A2Z, where A, = det(A,). Let us

a a Ta Ta a)l

prove that there is f € O(M) such that f|[Uy = fo. In fact, if we take the
product of the relations (7) ... (iv) we get

(13) (9ap9ap)’ap af’af af = ag'ag’ay af’ (haghls)?

On the other hand the relation GogAg = AqHop implies that giﬁggﬂAg =
heshlsls, and so (g45925)?/(hLsh%45)2 = AZ/A%. This relation together
with (13) implies that f,|Us, N Us = f3|Ua N Ug, which proves the existence
of f.
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Now, since M is compact, f is a constant. We have two case to consider:

1°! case: f # 0. In this case the a¥} € O*(U,) for all a. This together with
the relations in (12) imply that all cocycles in (11) are equivalent and so all
Chern classes involved are equal. This case, of course, cannot happen in case
(a).

2" case: f = 0. Observe that the relations in (12) imply that for all i,j €
{1,2}, the collection {a/},c4 defines a divisor in M. Since f = 0, one of
these divisors is = 0. Suppose for instance that al? = 0 for all @ € A.
This implies that E; = F and all,a?? € O*(U,) for all @ € A, because
Ay = alla?? € O*(U,) in this case. Analogously, if al! = 0 for all @ € A we
get By = F3 and ¢(E3) = ¢(F}). The remaining cases are similar and we leave
them for the reader. J

Now let f and g be homogeneous polynomials on C"*1, n > 3, such that
fM g. Let F = {[z] € CP" | f{z) =0}, G = {[2] | g(z) =0} and K = FNG.
We denote by v L e , F = F and G — G the normal bundles of K, F and G
in CP" respectively. Let F' = F|K, G = G|K. We will use the notation c(-)
to denote the first Chen class of a holomorphic vector bundle in H? , of the

corresponding base. It is well known that:

(a) v=F @G and c(v) = ¢(F).c(G) (c f. [G-A])

(b) ¢(F) = ¢(F)|K and ¢(G) = ¢(G)|K. In particular ¢(F), ¢(G) # 0, because
c(F),c(G) # 0 and dim(K) > 0 (cf. [G-A]).

(c) dg(f)-<(G) = dg(g)-c(F).

Assertion (c) follows easily from Theorem 1.2.4 and example 1.3.1, as the
reader can verify.

Suppose now that F is a foliation of CP" having K as a Kupka component.
Let dg(f)/dg(g) = p/q where p,q are relatively primes and p < q (p = ¢ iff
p=q=1).

Let Ay and A, be eigenvalues of the normal type of F at K. Let us prove
first that A\; # 0 # A;. In fact, let us suppose by contradiction that Ay =
0. In this case A; # 0, because K C K(F). Let E; and E; be the line
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subbundles of v induced by the eigendirections of A\; and A2 respectively.
Then v = F® G = E, ® E,. It follows from Lemma 4 that c(ﬁ‘ ) = c(F1) and
c(G) = c(E,) or ¢(G) = ¢(E;) and ¢(F) = c(Ez). Let us suppose for instance
that ¢(F) = ¢(B;) and ¢(G) = c¢(E3). Now (a) of Theorem 1.2.4 implies that
0 = Aoc(E1) = A c(E2) and so ¢(E;) = ¢(G) = 0, a contradiction.

On the other hand, if A; # Ay we can define F; and E; in the same way
and get the following relations (assuming ¢(F) = ¢(E)):

o(F) = o(Br),e(@) = e(B) = 2=

)\10(E2) = )\QC(E]_) \ p
2

4 . Mg

pe(G) = qe(F) v

We can conclude from the above arguments that:

(l) Ao ;é 0 7-‘- A; and )\2/)\1 € Q+.
(i) If Ao # A; then A2/A; =p/q.
We want to prove that A2/A; = p/q in all cases, but before that we will

prove the followingt result.
LEMMA 5. The transversal type of F at I is always linearizable and diagonal.

Proof: Let A3/ =r/s where r,s € Z4, 0 < s < r and (r,s) = 1. Let us
suppose by contradiction that the transversal type is either non linearizable
or linearizable but not diagonal. In this case, by Poincaré-Dulac Theorem, we
must have 1 = s < r and the transversal type is equivalent to the vector field
X =28/0z + (ry + 2")8/0y. The dual form of X is w = (ry + z")dz — zdy,
therefore by Kupka Theorem (1.2.1), there is a covering (Uqy)aea of K by
open sets of CP™, where each U, is the domain of a chart (zq, Yo, 2a): Us —
C x C x C"~2 such that

(i) If Uo NUg # ¢ then it is connected.
(i) K MUy = {Za = yo = 0}
(i) F|Uy is defined by the form (ryq + z5)dzs — 2adya = we.
(iv) There is a multiplicative cocycle (gag)v.nus%¢ such that if Uy NUp # ¢
then gog € O*(Uy NUp) and wy = gopws on Uy N Ug.
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1

Now observe that z;"~'w, is closed because

Vo _ BTa_ 4 (Y
zot! To art )’
Observe also that {z, = 0} is the unique analytic separatrix of F through
K NU,. It follows that on Uy, N Ug # ¢ we must have z, = hogzs where
hag € O*(Us NUg). In particular (z4)aca defines an analytic divisor on

U= U U,. On the other hand we have
a€A

Waq _ 9ap wg _ wg
A9 o8 = Mgy iag ~Josgmm Jan € OWNTp).

This implies that:

Weq w
0=d(—57) = dfap A —o7 = dfag Awg = 0.

Therefore fog is a first integral of F|U, N Ug. As the reader can verify by
using the Taylor series of f,3 = Z amn(28)23 Y3, the relation df,sAwg = 0

m,n>0
implies that f,g is a constant. In fact this constant is 1 because the residues

of 77w, and x/;r'lwg around {z, = 0} are both equal to 1. It follows

that ;" 1w, = zgr_lwg and so there exists a closed meromorphic 1-form 7

definedon U = U U, such that §|U, = z;""'w, and 7 defines F|U outside its

divisor of poles. By Corollary 2.2.3 of §2, 7 can be extended to a meromorphic
closed 1-form 7 on CP™ which defines F outside its divisor of poles. Let
n* = a*(n).

It follows from Lemma 3 of §3.1 that there exist homogeneous polynomials
J1s--+y9m, ® and ¥ on C*"*! a,,...,a,, € C and ¢1,...,¢,, non negative

integers such that:

J

o, 99 9
V) 7 ;aj )

124



CODIMENSION ONE FOLIATIONS IN CP™

(vi) Za,dg(g,) =0

=1
(vii) ¢ = g' ... g5 and dg(p) = dg(¥).
Let o € A be fixed. We have

(15) [f: 0,2 +a§ >} va = £2—a(22) —np,

From Bézout’s theorem, for every j = 1,...,m we know that G; N K # ¢,
where G; = {[2] | gj(2) = 0}. If « is such that Uy N G; N K # ¢, we can

conclude from (15) that:

(vili) GjNUg ={2a =0} =2 m=1
Then (vi) implies that a;dg(g1) = 0 = a; = 0. But this implies that

= d(£) and its residue around {z, = 0} is zero, a contradiction. i
n b

LEMMA 6. If \; = Ay then p = q = 1 and F is induced by the form on
Ctlfdg — gdf.

Proof: Let w be an integrable homogeneous 1-form on C™*! which induces
F. The foliation defined by w on C"*! is F* = n*F. Moreover, if K* =
71 (K) — {0}, then K* C K(F*) and the transversal type of F* at K* is
linearizable and diagonal with equal eigenvalues.

Let po € K*. We assert that there exist a chart (z,y,2):U - CxCx C"~!
around pg and a function A € O*(K* NU) such that:

(i) K*NU={z=y =0}
(ii) flU==2,9lU=y
(ili) w|U = A(z)(zdy — ydz) + 0, where 6 denotes terms of order highter than
1in (z,y).
(iv) The local expression of the radial vector field in U is
0

0 0
RIU mxa_'l'nmég"'_a_z_la m—dg(f), n—dg(g)'
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Observe that (i) and (ii) follow from the implicit function theorem and the
n—1
fact that df(po) A dg(po) # 0. Let R|U = A9/dz + Bd/dy + Y  G;0/0u;.
j=1
From Euler’s identity we have R(z) = ma and R(y) = ny, which implies
that A = mz and B = ny. The proof of (iv) can be done as follows: let
Ly,...,L,—1 be homogeneous linear polymials such that L;(po) # 0 and
df (po) Adg(po) AdL1(po) A+ - AdLn—1(po) # 0. Take z; = L;/L, for j > 2 and
z, a branch of £g(L,) defined in a neighborhood of py. Then (z,y, z1,...,2n-1)
is a diffeomorphism in a neighborhood U of py and moreover R|U = mzd/dz+
nyd /8y + /0.

Now since the linear part of the normal type of F* at K* has A\; = A,
and is diagonal, then for each section {z = ¢} the dual form has linear part
zdy — ydz, which implies that the linear part of w|{z = c} is of the form
A(z)(zdy — ydz). Therefore the linear part of w|U with respect to (z,y) if of

the form
n—1

wy = A(2)(edy — ydz) + Y _(A;(2)e + Bj(2)y)dz;
ji=1

It follows from the integrability condition w A dw = 0, that A; = B; =0
for j =1,...,n—1, as the reader can verify directly by taking the linear part
of w A dw with respect to (z,y). This proves (iii).

We can conclude from the above facts, that there exists an open covering
(Ua)aea of K* and two collections (Aq)aeas ((Za, Yas 2a))aca, Where Ay €
O*(K*NU,) and (Zq, Ya, 2a): Us — C x C x C"~1 is a local chart such that

(i) K*NUqg = {24 = yo = 0}
(ii) flUa = 24 and g|Us = Yo
(il) w|Uqy = Aa(2a)(adYa — Yadza) + 04, where 6, denotes terms of order
highter than 1 in (z4,Yq).
(iv) R|Uqy = mxa% + nya% + ail .
Now, if K*NU,NUg # ¢ and p € K*NU, NUp then

dw(p) = 2A4(p)dza(p) A dya(p) = 2A5(p)dzs(p) A dys(p)-
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Since zo = zg = f and yo = yg = g on U, N U, then we must have
Aq(p) = Apg(p). Hence we can define a holomorphic function A: K* — C*
such that A|U,NK* = A, for every o € A. Let us prove that A is constant.

Let dg(w) = k > 1 (dg(w) = degree of the coefficients of w) and the two
jet of w along K* N U, be

Ieama)¥ = A(2a)(TadYa — YadTa)

n—1

+ Z(Ai(za).’lfz + Bi(za)xaya + Ci(ZCt)yczx)dzi

i=1

+ P(xa, Ya, Za)dxa + Q(mm Ya, za)dya

where P and @ are homogeneous of degree two in (24, Yo ). Since ig(w) = 0,

get
0= iR(w) = A(za)(n - m)xaya + Al(za)xi + Bl(za)xa?/a + Cl(za)yi + 63

where 03 denotes terms of order highter than 2 in (z4,yo). This implies that

(v) Ai=Ci=0and (n—m)A+B; =0.
On the other hand, we have seen in the proof of Theorem B that i g(dw) =
(k + 1)w. From this we get

(k + 1)A(20dYa — Yodzo) + 00 = tp(dA)(TadYa — YadZa)
+ 2A(Mmzodye — NYadzy)
— B1(YadZo + Tadya) + 7

where r denotes terms either of order highter than 1 in (z4,ys) or terms in

the dz}s. Comparing these expressions we get:

(vi) (k4 1)A =ip(dA) + 2mA — By = ig(dA) + 2nA + B;

Therefore,
(vii) ip(dA) =(k+1—m —n)A =(A

Equation (vii) implies that A(tp) = t*A(p) for all ¢ € C* and p € K*.
Now, if £ = 0 then we can define a holomorphic function ¢: K — C by
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¢([p]) = A(p) and this implies that A is constant. On the other hand, if
£>0, let M:C"t! — C be linear. In this case we can define a meromorphic
function on K by ¢([p]) = A(p)/M*(p). Since M is arbitrary, it follows that
A must vanish in some point p € K*, a contradiction. Analogously, if £ < 0
the function ¢ = M~¢A must have some pole, and so A also, which is again
a contradiction. Therefore A is constant and moreover k + 1 = m + n.

Let p = w — A(fdg — gdf). It is not difficult to see that the 1-jet of u
along K* is zero and that p is homogeneous of degree kK = m + n — 1. From
Theorem 2.3.3 we can conclude that u = f2u; + fgus + g°ps, where g, pa, 3

are 1-forms with homogeneous coefficients and

(vili) k= 2m +dg(p1) = m+n + dg(p2) = 2n + dg(us)
unless some of the p;’s are = 0. Now, if m = n, (viii) and k+1=m+n =
2m = 2n, implies that p; = ps = p3 =0, and so w = A(fdg — gdf). Let us
suppose by contradiction that m > n for instance. In this case k =m+n—1

implies that g, = pe =0, and so
w = A(fdg — gdf) + g°s.
Since igp(w) = 0, we get
0= A(n—m)fg+g*ir(us) = g(A(n — m)f + gir(pa)).

This implies that g divides f which is a contradiction. Hence m = n and
w = A(fdg — gdf), which proves the lemma. I

COROLLARY. A2/A; =p/q=m/n.

Now let us suppose that 1 < p < ¢ (i.e. dg(f) < dg(g)). Let w be a

homogeneous integrable 1-form on C"*! which induces F on CP™.

LEMMA 7. In the above situation w has an integrating factor.

Proof: We know from Lemma 5 that the transversal type of F at K is

linearizable. This implies that there exists a covering of K by open sets
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(Ua)aeca and coordinate systems ((ZTq, Yas 2a): Ua = C X C X C*~2)4¢4 such
that:

(i) KNUqs = {za = ya =0}
(if) F|Uq is defined by we = predye — qYadrq
(iii) If Uy N Upg # ¢ then it is connected and there exists gog € O*(Us N Up)
such that wy = gapwpg on Uy N Usg.
(iv) f UoNUgNU, # ¢ then it is connected and gag.9gy-gva = 1.

We will consider two cases:

1°! case: 1 < p < q. In this case we will prove that there exists a closed

meromorphic 1-form on U = Z U,, which defines F outside its poles.

o

Oberve first that 1 < p < ¢ implies that {zo = 0} NUg = {zg =0} N U,
and {yo = 0}NUs = {yo = 0}NU,. This follows from the fact that the vector
field X = pzd/dz+qyd/dy has only two analytic smooth separatrices through
(0,0), which are {x = 0} and {y = 0}, and they correspond to two differet
eigenvalues g and p. Let 7o = 251y wo = pdya/Ya—qdza/To. HUaNUs # ¢
and hag = 2Ys90s/TaYa, then o = hopng and heg € O*(Uq NUp) because
zg/zo and yg/ya € O*(UaNUp) by the first observation. On the other hand,

0 = dna = dhag Ang = dhog Awg = 0 = hyg is a first integral of
prpd/0z3 + qyp0/dyg = hap is a constant.

Now, if we compare the residues of 1, and ng around {z, = 0} NUs we get
hap = 1. This implies that n|Us N Ug = ng|Us N Us and so there exists a

closed meromorphic 1-form 7 on U = U U, such that 7j|Uy = ny foralla € A

and 7 represents F|U outside its poles. It follows from Corollary 2.2.3 that
this form can be extended to a closed 1-form n on CP™ which represents F

outside its poles. This implies the 1% case.

2"¢ case: 1 =p < g. In this case we have still {z, = 0}NUs = {z5 = 0}NU4
by the same reason as in the 1°* case, but {yo = 0}NUs = {yg—czj = 0}NUa,

where c is a constant, as the reader can verify easily. For each o € A, let
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Pa = Ya/T%. Let us prove that if Uy NUg # ¢ then there constants a,s € C*
and b,s € C such that ¢, = aagpg + bags.

In fact, we have

g+1
e e X
d‘)oa = zaq lwa = xaq 1gaﬁwﬁ = (l'—ﬁ> gaﬁdwﬁ = aaﬂd<p,@

[e

where aqg € O*(Uy N Ug). The above relation implies:
0=d?p, =dags Adpg = dags Awg =0 = a,g is a constant = a,g € C*.

= Pa = aappp + bap-

Now let @ be a merorphic 1-form on CP™ which represents F outside its
poles (we can take 1 such that 7*(w) = w/M*+!, where dg(w) = k and M is
linear). For each o € A, there exists a meromorphic function f, on U,, such

that W|Uy = fodpe. If Uy NUg # ¢ then
W|Ua = faldpo = fatapdps = fadps.

Therefore f3 = anpfa, and so -’fi% = d—;f on U,NUp. This implies that we can

define a meromorphic closed 1-form fonU = U U, such that 9|Ua =dfo|fa

for each @ € A. By Corollary 2.2.3 this form can be extended to a closed
1-form 6 on CP". With an argument similar to that we have done before in
the proof of Theorem B, it can be proved that there exists a meromorphic
function f on CP™ such that df/f = 6. Clearly for each a € A, we have
flUa = c¢fq, ¢ a constant. This implies that d(w/f) = 0 and so ¥ has an

integrating factor and w also. This proves the lemma. [

Let A/B be the integrating factor of w. From Lemma 3 we have

Bw _ <~ dgi ¢
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where A = g¥* ... gk is the decomposition of A in irreducible factors, 1 =

gf‘ b, 0< 4 < k-1, Z/\jdg(gj) = 0, ¢ and ¢ have no common
j=1
factors and dg(y) = dg(v)). We can suppose also that for any j € {1,...,m}
we have either £; # 0 or A; # 0.
Let us consider the 1% case in the proof of Lemma 7. In this case we can

suppose that for any o € A:

Bw dYa dz, dy?, dz?,
— | (Ue) = = ( ——q——> =pa _g=e

Ya To Yo zg

On the other hand for j € {1,...,m} we have from Bézout’s Theorem that
Aj={gj =f =g=0}- {0} # ¢ and for a point p € A; N U, (for some )
we get

dgi v dz?,

Z,\ = +d(; ?) = pd ya il ere
This implies that either {g; = 0} N Uy = {¢f = 0} and X\; = —q or {g; =
0}NU, = {y: = 0} and A; = p. Since in the right member the poles are of
order 1, we get also £; = 0. Moreover {g; = 0} N 7~ (U) coincides with one
of the divisors {z} = 0} or {y% =0} (U = UUO,). Therefore m = 2 and we

can suppose that

IfTw = pd;%l- - q% and pdg(g1) = qdg(g2)-

Observe that we have also {g1 = g2 = 0} D {f = g = 0}. From Noéther’s
Lemma (2.3.1), we get g1 = a1 f+ 319 and g2 = oo f+ (29 where ay, ..., 32 are
homogeneous polynomials. On the other hand, {g; = g2 = 0} is connected by
Lefschetz’s Theorem and {g; = g» = 0} C S(F*) as we have seen after Lemma
3. This implies that {g; = go =0} = {f = g =0}. In fact, {f = g =0} is an
irreducible component of {g; = g, = 0} and if it has another component, say
N, then NN{f =g =0} - {0} # ¢. Hence if z € NN {f = g = 0} — {0},
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then dg;(z) A dg2(z) = 0. But this implies that z € {f = g = 0} — K(F*)
which is not possible. Therefore {g; = go =0} = {f = g = 0}.

By Noéther’s lemma the matrix (gl gl) is invertible. Since dg(f) <
2 P

dg(g) this is possible only if 8; and ay are constants and 8, = 0. Hence:

Bw — pdﬂ - qﬁ = F is induced by pfdg, — qg:1df.
A g1 f
In the 2™ case we can suppose that B2 = 7*(@/f). Therefore if p € ({g; =

f=9g=0}-{0})Nnn~1(U,), we have

DN 2 +d() = aad(pe o) = dad(ya/z8)

j=1 J

where a, is a constant. This implies that A; = 0, j = 1,...,m. Moreover
o/Y|Us = agya/zd +be = m =1, £; = q and Bw/A = d(p/g]). Now, let
n= %d(cp/g‘l’) = %‘? - q%gll. If we apply the same argument as in the 1°¢ case
for n we can conclude that g; = a3 f and ¢ = a3 f + B29, where a; and B, are

constants. This proves Theorem A.
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1. REMINDER ABOUT LOCAL OBJECTS. THE THREE MAIN
ANALYTIC FACTS.

By local objects we will understand either local analytic vector fields (or fields for short)
onC” at0:

(1.1) X =Y Xi)o (Xi(z) € C{z}; Xi(0) =0)
i=1

or local analytic selfmappings (or diffeos, short for diffeomorphisms) of C¥ with 0 as fixed
point :

(1.2) fizi— fi(z) (G=1,...,v) (fi(z) € C{z}; f(0)=0)
or again, equivalently, the related substitution operators :
(1.3) FiprFop¥oof (¢(z)andp o f(z) € C{z})
Throughout, we will assume diagonalisability of the linear part and work with (ana-

lytic) prepared forms of the object on hand. That is to say, we will deal with vector fields
given by :

(1.4) X=x"4+%" 8,
(1.4') X"n = Z z\,‘:t,'a,‘.
(1.4") B,, = homogeneous part of degree n = (ny,...,n,) with n; > ~1

and with diffeos given by :

(1.5) F={1+) B,}F™
(1.5 Firp(zy,... 2) S o(tizy,. .. Luzy)
(1.5") B, = homogeneous part of degree n = (ny,...,n,) with n; > -1

Of course, n-homogeneity means that for each monomial z™ = z*' ...zJ" :
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(1.6) Bnz™ = fymz™™  with By €C.

Note that, for any given B,,, at most one component n; may assume the value —1.

The scalars \; and ¢; are the object’s multipliers. Together, they constitute its
spectrum. If the spectrum is “random”, the object turns out to be formally and even
analytically linearisable (see below) and that about ends the matter, as far as the local
study is concerned. For interesting problems to arise, at least one of three specific compli-
cations C, C2, Cs (see below) must come into play. Then numerous difficulties, mostly due
to divergence, have to be sorted out. Yet the remarkable thing is that three easy, formal
statements Fy, Fy, F3 (F for formal) and three non-trivial, analytic theorems A,, A3, A3
(A for analytic) suffice, between themselves, to give a fairly comprehensive picture of the
whole situation. In this paper, we shall be mainly concerned with statement A3 about the
effective, ramified linearisation of local objects. Nonetheless, both for completeness and
orientation, we shall begin with a brief review of all six statements. But first, we list the
three “complications”.

C;. Resonance.

For a vector field, this means additive resonance of the ; :

1.7 }i‘m; Ai=0 or (17) Zu: midi =Aj; (mi €N)

=1 =1

and for a diffeo it means multiplicative resonance of the ¢; :

(1.8) [Te)m=1 o @8) [[@™ =¢mieN)
i=1 i=1

C:. Quasiresonance.

This means that among all the non-vanishing expressions a(m) = < m, A > or a(m) =
£™ — 1 (with all m; > 0 except at most one that may be = —1) there is a subinfinity that
tends to 0 “abnormally” fast, thus violating the two equivalent diophantine conditions :

(1.9) ST 27*log(1/w(2*)) <+00  (A.D. Bruno)

(1.9 §* € Y k~2log(1/w(k)) <+oco  (H. Riissmann)

with (k) = inf |a(m)| for my +...m, < k. (Clearly, 1/2 < §*/S < 2).
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Cj3. Nihilence.

It amounts to the existence of a “first integral” in the form of a power series H :
(1.10) X.H(z) =0 or H(f(z)) = H(z) with H(z) € C[[z]] = C[[z4,...,z.,]]
along with the existence of small denominators :

(1.11) inf |a(m)| = 0 for a(m) # 0.

Note that conditions (1.10) presupposes resonance, but that condition (1.11) differs from
(1.9) in that it involves no arithmetical condition.

Resonance is fairly common, if only because it includes all diffeos tangent to the iden-
tity map, for which indeed ¢; = €, = ...£, = 1. Quasiresonance is decidedly exceptional
in single objects, but becomes inescapable when one studies parameter-dependent families
of objects. Nihilence is common with volume-preserving or symplectic objects, where it
may occur, respectively, from dimension 3 and 4 onwards.

All three complications may coexist. They may even occur in layers. Indeed, when-
ever the ordinary or first-level multipliers of an object X or F' are involved in multiple
resonance, there is a natural notion of reduced object X™d or F*d acting on the algebra
of resonant monomials, and endowed with its own multipliers (second-level multipliers),
which may in turn give rise to setond-level resonance, quasiresonance or nihilence; and
so forth. This daunting multiplicity of cases and subcases makes the existence of univer-
sally valid statements like A;, Az, As (infra) all the more remarkable. But first let us go
through the formal statements F, F3, F3 which, though fairly trivial, will clear the ground
for A;, A2, A3 and settle some useful terminology.

Fi. In the absence of resonance, a local object is formally linearisable.

The proof is straightforward. Indeed, inductive coefficient identification yields formal,
entire changes of coordinates :

(1.12) B iz y  with gy = AP (z) =z;{1+...}

(1.13) k™ yz with 7= kPy) = yi{l+...}

which take us from the given analytic chart £ = (z;) to a formal chart y = (y;) where
the object reduces to its linear part Xi® or Fii*, But to pave the way for the forthcom-
ing analytic study, we require explicit expansions for h°®* and ¥°"*, or rather for the
corresponding formal substitution operators @, and ©_1. We use the variables ;
throughout :

(1.14) Oent 9(2) E o h™(z)  (#(2),¢0h™(2) € Clla]])
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(1.15) 04 v(2) E pok™(z)  (p(z),p 0 k™(z) € Cllz]))

Written down in compact form, those expansions read, for a vector field :

(1.16) Ot =Y 5" B, E 143 Y servr By, g,
r21 wi
(1.17) 0L =) 5 B.=1+..
and for a diffeo :
(1.18) O =Y 8B Z 143 Y sy, L,
r21  wi
(1.19) On =) 8 B.=1+..
There being no resonance, the cumbersome n = (ny,...,n,) indexation can be replaced by

the handier w = Y n;\; indexation (using any determination \; = log¥; for a diffeo) and
each of the above expansions reduces to the contraction of a mould M*® with a comould B,
(see §12). Here, the relevant comould B, is defined by :

(1.20) Bs;=1and B, .. =B, ...B,
from the homogeneous parts B,, of the local object (see (1.4), (1.15)) after reindexing from

n to w. The relevant moulds involve only the spectrum of the object and are defined as
follows for each sequence w = (wy,...wy) :

(1.21) S®=5%=8%=6%=1 (¢ = empty sequence)
(1.22) SYW=(=1) (& Wa... &)7'  with Wi=wy +...w;
(1.23) §Y=( 0 ... w)'  with W=w;i+...w,

v v

(128)  S¥=(=1 el (a—c )1 (1-e ) with [w]| =wi4...0r
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A

(1.25) &Y = (e 5 D7l(e =1t

In the case of a field, the moulds S*,5° are symmetral and the comould B, is cosymmetral
(see §12). In the case of a diffeo, the moulds §°,&° are symmetrel and the comould B,
is cosymmetrel (see §12). Contraction of like-natured moulds and comoulds yields formal
automorphisms :

(1.26) Ohn(p-¥) = (O5kv) (Oi¥)

So the only thing left to check is that the substitution operators ©Z2 just defined do satisfy
the linearisation identities :

(1.27) X =oxlirg~!

(1.28) F =9xlirg~!

This in turn readily follows from the obvious identities :

(1.29) [wl|S¥ = —s¢'

(1.30) loll 8 = +3¢

(1.31) ellwllsw = Su) _ Sw' + Sw'l _ Swm i
(1.32) Wl gw _ gw | gw

with w = (w1,... wr)i W] =w1 + .. w0 = (W1,... wWro1)jw = (W2,... W)

F,. In the presence of resonance, there are formal changes of coordinates which bring
the local object to a prenormal form (containing only resonant monomials) and even to a
normal form (containing a “minimum number” of resonant monomials, with in front of
them scalar coefficients which are formal invariants of the object).

A resonant monomial is of couse any z™ = zy'!...z[* such that < m,A >= 0 for
a field or £™ = 1 for a diffeo. This case being of secondary concern to us here, we refer
to [E.2] [E.3] [E.7] and also to §10 infra, where we shall investigate the overlap between
resonance and ramified linearisation. We may note in passing the rule of thumb : one
(resp. several) degree of resonance implies the existence of finitely (resp. infinitely) many
independent formal invariants.
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F3. Any non-degenerate local object (even if resonant) can be linearised by means of a
formal-ramified change of coordinates.

We now ramify the coordinates z; (relative to a prepared form (1.4) or (1.5)), i.e. we
regard them as elements of C = C\{0}.

Non-degenerate means A; # 0 for a field and 3;76(.),1 for a diffeo ( (,-,(.), le (.Z)
A formal-ramified change of coordinates is any formal transformation of the form :
(1.33) vi = zi{1+ @i(2)}

with formal series @;(z) without constant term and of type :

(1.34) Z Goy,. 0, E1 o LY (as € C)
or of type
(1.34") Z Qoy . aying,n, T30 oo 2p" (logzy)™ ... (logz, )™ (arn €C)

with real positive powers o; ranging over some discrete subset of (R*)” and integers n;
constrained by :

(1.35) limsup (ny +...n) /(o1 4+ ...0,) < +0
or by the stronger conditions :
(1.36) limsup n;/o; <400  (for i=1,...,v)

Lastly, the transformation of ¢; into £,~ means that, for a diffeo, we may replace each

multiplier 4; € C by some 2 i€ C that lies over £;, subject only to E 790 1 For this to be

possible, £; must be # 0, but it may well be = 1. Thus, non- degeneracy for a diffeo is not
the “ezponential” of non-degeneracy for a field.

Strictly speaking, formal-ramified linearisability has to be established for resonant (or
nihilent) objects only, because otherwise entire linearisation is available by proposition Fj.
For explicit formulae relative to resonant objects, see §10 infra. But we will use ramified
linearisation also, and even mostly, in the absence of resonance, to overcome the divergence
caused by quasiresonance.

Now, let us come to the real thing - the three analytic statements A;, Az, A3.
A,. The Siegel-Bruno-Russmann theorem about the innocuousness of diophantine small

denominators : Any non-resonant and non-quasiresonant local object (i.e. any object free
of C1,C2,C3) can be analytically linearised.
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The first result in this direction was obtained by Siegel, but under an unnecessarily
strong diophantine condition. The proof of A;, under the probably optimal diophantine
condition (1.9) (see §10) is due to A.D. Bruno [B] for fields and to H. Riissmann [R] for
diffeos. In the introductory paras of [E.8], we gave an essentially similar proof, but in a
concise form which easily extends to a host of other situations. We must here give a sketch
of this method, because we will require it in the sequel.

It is based on the process of arborification-coarborification, expounded in [E.8], and
recalled in §12. The idea is to replace contracted sums of type > M°B, by formally

<
equivalent sums ) M * B _, using the dual operations of arborification :

(1.37) Me = > sh (5) M (fields) or _ ctsh (2) MY (diffeos)

and coarborification :

<

(1.38) Bw =) sh (f ) B (fields) or Y ctsh (:) B (diffeos)

Here, the boldfaced symbols w = (wi,...,wr) (resp. S= (wi,...,wr)<) denote se-
quences of w; with a full (resp. arborescent) order on them, and the coefficients sh (é)
(resp. ctsh ( é )) are equal to the number of order-preserving bijections (resp. surjections)

of & into w. For details, see [E.8] and §12 infra.

Each sum (1.37) or (1.38) contains many terms - close to ! on average. It is predictable
therefore, and readily verified, that coarborification By, — B _ should entail a drastic
@

reduction of norms :

(1.39) IBwlip,pr < C".r! (C = Cp p = Cste)

(1.40) "B‘f, lp,pr <C"

with norms relative to two bounded neighbourhoods D' C D of 0 in C” :

(1.41) lello =sup ¢(z) for z€D  (p€Cla})

(1.42) IBllo,pr =sup Byl for [lpllp <1 (B € EndC{z})
14

Moreover, for any € > 0, one may chose D, D’ so that C < e.

142



COMPENSATION OF SMALL DENOMINATORS

<
By the same token, one would expect arborification M¥ — M“ to bring about a
corresponding increase in norm. Fortunately, however, this is seldom the case, due to
massive cancellations in the sums (1.37). In the present case, for instance, we have the
easy identities :

(1.43) 59 = II @)

(1.44) 55, =] (¢* -1

the only difference with (1.23) and (1.25) being that now each sum &; = Y w; extends to
<

all j posterior (or equal) to ¢ relative to the arborescent order of &. The bounds for §¢

<
and §“ are therefore almost as good as those for §“ and & . Indeed, under Bruno’s
diophantine condition (1.9) we have :

(1.45) |s¥|<cm ;  |8¥Y|<gcem

< <
(1.46) |8¥|1<cm 5  |8Y|<cCm

w = (w1,...w,) and a constant C' depending on the spectrum A or £. The inequalities
(1.46) are implicit in Bruno’s paper [B]. The inequalities (1.45) are easy and could be had
under slightly weaker diophantine conditions than (1.9). See also [Y].

Pairing the estimates (1.40) and (1.46) and using (12.22), we immediately deduce the
normal convergence of the arborified expansions :

(1.47) ol=Ys" B, (feld) or Zsf B (diffeo)

In contrast, the original, non-arborified expansions (1.17) and (1.19) do not converge in
norm, at least in the presence of small denominators.

A,. Theorem about the resurgent normalisation of resonant local objects : For resonant

local objects, the normalising change of coordinates is usually divergent, but resurgent with
respect to one or several “critical times” z. Moreover, the Bridge Equation holds :

(1.48) A.u z(z,u) = A, z(z,u)

with on the right-hand side ordinary differential operators R,, which, taken together, con-
stitute a complete system of holomorphic invariants of the object. Lastly, the z(z,u) are
usually resummable, but only in sectors of the (z,u) space.

143



J. ECALLE

Since this whole topic of resonance-cum-resurgence has been dealt with at lenght in
[E.2] and [E.3], and is only of incidental relevance to the present study (see §§9 and 10), we
will limit ourselves to a few cursory indications. The ingredients of the Bridge Equation
are three. First, a so-called formal integral :

(1.49) z(z,u) = {z1(2,U1,. . ., up—1), .., Zu(2, U1, . . . Us—1)}

which is a general (i.e. parameter-saturated) formal solution of the differential system
associated with a field X

(1.50) 0; zi(z,u) = Xi(z(z,u)) (0:= g—;; i=1,...,v)
or of the difference system associated with a diffeo f :
(1.51) zi(z +1,u) = fi(z(z,u)) (t=1,...,v)
It is thus a formal, non-entire chart (z,u,...,u,—1) in which the object assumes the
simplest conceivable form, namely :
(1.52) = _6_ fizm 241
. =% or : z

The precise shape of z(z,u) varies considerably from case to case. For a simple example,
see below in §10. Many more are given in [E.2] [E.3] [E.5] [E.6] [E.7] [E.8].

The symbols A.‘,, on the left-hand side of (1.48) denote pointed alien derivations. (See
§12). Their indexes w range over an enumerable, and usually discrete, subset of (.:

Lastly, the A, on the right-hand side of (1.48) are ordinary differential operators in z
and u, subject to no other a priori constraints than :

(1.53) [A,,8]=0 forafield (8= (‘_;9;)
(1.54) [Aw,expd] =0 for a diffeo  (expd = translation of step 1.)

The A, are both analytic invariants (an analytic change of coordinates leaves them
unchanged) and holomorphic invariants (they are holomorphic functions of the object,
when the latter ranges over a given formal class). For a full treatment, see [E.3] [E.8] and
for the overlap with ramified linearisation, see [E.8] chap. 3 and §10 infra.

A3. Any non-degenerate local object (whether or not affected by Cy,C;,C3) can be
linearised by means of a seriable-ramified change of coordinates.
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Non-degeneracy, we recall, is a very mild requirement, meaning simply A; # 0 for a

field and ¢;#0,1 for a diffeo.

For the precise definition and properties of seriability, we will have to wait until §§2,3
but for the moment we may say that a seriable-ramified change of coordinates is a formal
change of type (1.34) or (1.34') with condition (1.35) or its strengthened variant (1.36),
which furthermore can be resummed in a unique way, by means of a suitable Borel-Laplace
procedure, to a sum that is defined, analytic in a ramified, spiralling neighbourhood of the
origin, i.e. in a neighbourhood, not of 0 € C¥, but of 0 € C’. These linearisation domains

(] L]
are optimally large, and seriable-ramified linearisation, while less simple than analytic
linearisation, retains the latter’s essential feature, which is “formalisability”, namely the
quality for a function germ ¢(z) of being totally and constructively reducible to a formal
object @(z).(*)

Before concluding this introductory section, let us introduce the idea of compensation,
on which seriable-ramified linearisation rests. Assume non-resonance for a start. Then by
statement Fj, the local object X or F' can be reduced, by means of a formal, entire change
of coordinates @ept, to its linear part XU or Flin, But if we allow for ramifications, we
find a huge group INV of formal-ramified changes of coordinates ©;,y, which involve only
resonant monomials y° = y7* ...y and leave the linear part of the object invariant :

(1.55) vir Yyl =y{l+ Ea,y"} with <0,A >= Za.v\,- =0 (o; €RY)
The idea therefore is to look for ramified transformations of the form :

(1.56) Oser = Oent O

v

H es_e: = ein,,@;lt

(with ser, ent, inv for seriable, entire, invariant) where the divergence present in Oepy (due
to quasiresonance or nihilence) is offset by a similar divergence in O;,y.

For instance, if we are dealing with a local diffeo of C! of type :
(1.57) fizma{+) ans”} (=500 >0)
and if A* is strongly liouvillian, we are faced with complication C; (quasiresonance) and
the entire linearisation ©ey¢ usually involves an infinity of monomials c,z™ with nearly
integral nA* and very large coefficients ¢, :
(1.58) Cn =an(f" — 1)'1 +...; nA* =m + €,; €, exceptionnally small

which hopefully may be neutralised by a ramified transformation ©;,, involving monomials
of type caz™/A",

(*) This is sometimes referred to as germ quasianalyticity, but the meaning of this term
has been so over-stretched that we prefer to keep it for function gquasianalyticity of Denjoy-
Carleman or related types.
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The procedure is not different in the case of resonant objects, with factorisation (1.56)
replaced by (10.2) or (10.3).

Now it so happens that ©! is simpler to calculate than . So we will look for
explicit expansions :

(1.59) Opt =) Si(z)B.  (fields)

(1.60) Opr =) S(z)B.  (diffeos)

which differ from (1.17) and (1.19) only in that the moulds M*(z) being contracted with
the comould B, are no longer constant, but functions §¢,(z) or &2,(z) of z = (z1,...,2,)
that must meet three main requirements :

First, they must be compensators in z, i.e. sums of monomials which remain small
though their coefficients may be very large.

Second, they must satisfy the following equations :

(1.61) (lwll + X'®) §8(c) = §e(z)  (fields)

(1.62) (@I Fliny §%(2) = 89 () + §¥(z)  (diffeo)

(with w, ||w||,w as in (1.32)) which ensure that the operators ©;.! defined by (1.59), (1.60)
are indeed solutions of the linearisation equations (1.27), (1.28).

Third, they have to be symmetral (for fields) or symmetrel (for diffeos) functions of
the sequence w = (w,.. . wy), to ensure that the operators ©.! be formal automorphisms
(like O} in (1.26)). However, we don’t have to worry about this last requirement, since
it is an automatic consequence of equations (1.61), (1.62).

In the present paper, we shall prove the theorem about seriable-ramified linearisability,
not for all local objects, but only for an important subclass : the girators (i.e. vector fields
with purely imaginary eigenvalues );) and girations (i.e. diffeos with eigenvalues £; of
modulus 1). The reasons for this restriction are two :

Reason one : Linearisation is specially relevant for girators or girations because, in the

presence of analytic, entire linearisation, we have in the y chart continuous or discrete
orbits :

(1.63) yi(t) = yi(0) eM* (t € R; for girators)

(1.64) yi(n) = yi(0) €7 (n € Z; for girations)
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which “girate” indefinitely at a fixed distance from the origin. In the absence of analytic
linearisability, the dynamics become much more complicated, but ramified linearisation
sheds some light on it.

Reason two : Only for girators and girations may one find simple and nearly “canonical”
expansions of type (1.59) or (1.60) with truly explicit moulds §%(z) of §&(z). For other
objects, such expansions still exist, but the construction is more arduous and involves a
far higher degree of arbitrariness, so that we must postpone it to a future paper.

The main results are stated and proved in §8§5,6,7,8,10. The next three paras (§§2,3,4)
introduce the necessary machinery of compensation and seriability and §9 investigates the
link with resurgence.

2. SYMMETRIC COMPENSATORS.

Compensators are usually finite sums Y a;2% which, due to internal cancellations,
remain small even though the a; may be large. The most basic ones are the symmetric
compensators :

2.1 Definition : symmetric compensator of order r

def
(2.2) 200010 00 4 Ty 20r (z € (E;ao,al,. ..,0r ERY)

Here, * denotes the multiplicative convolution of holomorphic functions on C, defined as
°

follows :

(2:3) p1xp3(2) = /lz ‘Pl(zl)‘PZ(z/zl)ézill

for z close to 1 and, in the large, by analytic continuation. Convolution being commutative,

2%99 s a symmetric function of the o}, uniform for z ranging over C. For distinct o;
N L]

we have :
(2.4) 20000 = Z 2% H (oi — ¢7j)'l
0<i<r  j#i
and in case of repetitions :
(1+no) ny
(2.5) 270 et (ol )TN0, )™ . (B, ) 2700

with o; # o; for ¢ # j; 3,, = 0/00;; and with a§1+"‘) denoting a subsequence of 1 + n;
identical o;. We have in particular :
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(2.5" 27077 = (1/r1)2%(log2)" f g =01 =...0,=0
Compensators multiply according to the rule :

(26) zao,...,a,.zro,...,r. = } :z"‘o+"io""»"r+.+'ir+.

with a sum extending to all (i,,J,) such that :

(2.6") intjn=nfor n=0,1,...,r+s
(2.6") 0=io$i15...$ir+,=r
(2.6") 0=jo<n<...<Jjr4s =3

The quickest derivation of (2.6) is by formula (4.10) which relates symmetric and symmetral
compensators, the latter obeying the universal multiplication rule (12.4). That same for-
mula (4.10), combined with the integral representation (4.8) of symmetral compensators,
also yields the following useful bounds :

(2.7) [z70 7| < (1/r!) |log 2|"|2|°
200510r logz |"| z |”*
(28) zgg,...,ﬂ,. = 10g To 1'_0.

valid for any z € C with |z|] < ¢ < 1, and 0; > 0, 0. = inf 0;. Moreover,for0<z <1:
L]

(2.9) (=1)Tz0r >0

3. COMPENSATION AND SERIATION.

We are going to introduce germs of functions which, though defined on ramified neigh-
bourhoods of 0 € f;: and having generically divergent asymptotic series, yet retain most of
L]

the regularity proper to holomorphic germs at 0 € C.

Fundamental spiralling domains.
For each real pair zy, k¢ such that :

3.1) O<zp<e™<1
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let D = Dy, x, denote the connected part of ¢ defined by :

(3:2) Dzo,xo = {7 |2]|log 2| < zo|log o[}

zo is the “radius” of D and ko measures the speed at which its boundary D coils in
towards 0. The smaller xo, the more D resembles the covering space of a punctured disc.

The norms || ¢ || and || ¢ ||3,,, on ramified polynomials.
A ramified polynomial is a finite sum of the form :

(3.3) p(z) = Z ao,r 2°(log z)" (o real > 0; r integral > 0)

On the algebra spanned by such polynomials we introduce the usual uniform norms :

def .
(34) llell® =sup le(2)l (llpll® < +oo iff sup(r/o) < ko)

as well as the compensation norms defined by :

def .
(3:5) o Zmp < inf {3 140112717 } < el
with an inf relative to all possible finite decompositions of ¢(z) :
(3.51) SD(Z) = EAazU = ZAao,...,hzam“"a'

into sums of compensators of arbitrary order r, but with r < kg0;.

The norms ||  ||? are obviously multiplicative, but so are the norms || e ||;‘:,mp :

(3.6) lerezllomp < N1 llcmpllzlicoms

because for any fundamental domain D = Dy, , :

(3.7) 127117 = |zZ| (by (2.8)) if r < Ko0;.
(3.8) =8 25| = |=g | |23 (by (2.6) and (2.9))

The latter identity stems from the fact that for 0 < z < 1 all terms on the right-hand side
of (2.6) have the same sign, namely (—1)"2.
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The algebras of seriable or compensable functions.

For any discretef additive semigroug T € R* and any fundamental spiralling domain
D, we denote by Ser”"P(z) and Comp”*?(z) the closure under || o ||? and || e ||;’f,mp of the
algebra of ramified polynomials (3.3) with coefficients o in T, and we put :

(3.9) Ser(z) Z | J Ser™?(2)
T,D

(3.10) Comp(z) df U CompT'P(z)
T.D

Clearly Ser(z) and Comp(z) are both seminormed algebras. Their elements are known as
seriable and compensable (germs of)) functions respectively. Ser(z) contains Comp(z) but
it is unclear to us whether the inclusion is strict.

3.11 Proposition : Asymptolic ezpansions

Each seriable or compensable (germ of) function ¢(z) admits a unique asymptotic
ezpansion of the form :

(3.12) é(z) = Za,’r 2%(logz)" with rfo <&

for some finite k and z going radially to 9 Although the coefficients admit universal bounds
in terms of T and D :

(3.13) lags| < CT2. ]l

(3.14) lao,r| < DZPN0l|omp
the series ¢(2) is usually divergent.

3.15 Proposition : Resummation of ¢ .
Each ¢(2) is resummable to p(2) by an appropriate Borel-Laplace procedure :

(3.16) B(2) ™ GeTH7P) = P(t) B h(r) > h(8) > (2)
for p > 0 large enough.

Proof of Propositions 3.11 and (3.15).

The arrows 1 and 4 in (3.16) simply denote the change of variable z = e~*t~?. Arrow 2
denotes the formal or term-wise Borel transform (12.29) and arrow 3 the Laplace transform
(12.28), which reverses it. Under arrow 1 the monomials of (3.12) become :

(3.17) P, (2) = z°(log 2)" N Q.r(t) = (—1)'6""t'“”"(1 + pt_l logt)”
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and under arrow 2 they become functions on R* :

0if <o

(1) SR {1+ } i T>0

which can be rendered as smooth as one wishes (at the singularity 7 = o) by choosing p
large enough. Finally, arrows 3 and 4 take Q,,r(r) back to Q,,-(t) and P, .(z) Now, for ¢
and p large enough, any given D = D, x, contains the image of the half-plane Re(t) > ¢o
under t — z = e~*~P. Therefore, the summation procedure (3.16) clearly applies to all
ramified polynomials from a given algebra Ser”?(z) and yields the universal bounds (3.13)
which remain valid under closure, thus ensuring the existence of an asymptotic expansion
@(z) of type (3.12) for all elements ¢(z), polynomial or not, of ST"P(z). It also ensures
that for any such pair ¢, @ the function :

(3.18) Qo () = {

(3.19) ) EY a5, Qar(r)

obtained after step 2, and which for each finite 7 contains only a finite number of non-
vanishing terms, has at most exponential growth

(3.20) |9(7)| < Const .e"" (r €RY)
although the coefficients a,  may themselves fail to possess ezponential bounds :
(3.21) lim sup ]a,,,.ll/" < 400

so that, for too small a choice of p, we might have ended up with a 9(r) of faster-than-
exponential growth.
The same results hold a fortiori for compensable functions.

Remark 1 : Stability under composition.
The algebra Ser(z) is clearly stable under composition :

(3.22) g pop=9p(y)  (if ¥(0)=0)
The same holds, though less obviously so, for Comp(z).

Remark 2 : Choice of a critical “slow time”.
The auxiliary variable ¢ used in (3.16) is known in general resummation theory as a
critical slow time. Here, it depends on p only. If 4 Lim sup(r/o) = 0, then any positive

p goes. If K > 0, then any p > k goes. But x may be unknown, in which case one may
choose a still slower time, valid for all k. For instance :

(3.23) log(1/2z) =t + (log t)(loglogt)
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(3.24) log(1/z) =t + (logt)?.

Remark 3 : Justification of the term “seriable”.

Most of the time, the Borel-Laplace resummation of divergent series ¢(2) = 3" an€,(2)
involves critical times t = h(z) relative to which the monomials e,(t) = €n(z) decrease
subezponentially as t goes to co. Their Borel transforms é,(7) are therefore analytic on (;,
and, for each value of 7, calculating Y a,én(7) involves summing an infinite series, usually
for small values of 7, and then resorting to analytic or quasianalytic continuation (See for
ex. [E.5], chap 2). In the present instance, however, each monomial e,(t) has a strictly
exponential rate of decrease, leading to €,(7) which vanish for small 7 > 0 and to finite
sums ) anén(7) (for each given 7). We have therefore a much simpler procedure, under

which the contribution of each single monomial e,, remains clearly individualised and can
be dealt with “serially”.

In the sequel, we will apply the terms seriable and compensable not only to (germs of)
functions ¢(z) but also to the corresponding asymptotic series 3(2).

Examples of seriable functions ¢(z) with divergent series ¢(z).

Example 1 :

(3.25) F2)E Y a2 =Y nl g7eleeed

n>0 n>0
with fixed o, 8 (0 < @ < §) and
(3.25") a+n=o0f <o} L...<{op=B+n.

The seriability of ¢(z) follows from the estimates (2.7), while its divergence follows from
direct coefficient calculation : see the next examples.

Example 2 :

We take ¢(z) as above, but with @ = 0, 8 = 1 and with coefficients o] equally spaced
in o™. An immediate calculation yields the obviously divergent, “decompensated ” series :

(3.26) F(z) = Y PO (1P (p 4 g He(p + )l (p!) T ()
P,920
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Example 3 :

Again, we take @(z) as in (3.25) but with :
(3.27) a=0,=1;00=n;0f =03 =...00=1+n
Using formula (2.5) we get :

o0 _ %1

3.28 5(z)= (1) |ap (—z z )]
(3.28) #(=) Z (=1) [ & 90 =01 /] o=
and after some regrouping of terms this becomes :
(3:29) @(z) = #(z) — z6(z(1 + zlog z)~*) € C[[z, zlog z]]
with
(3.29") B(z)=-) nla"*

The divergent series 9(z) is resurgent in z = z~!. It has sectorial sums, which are regular
only in sectorial neighbourhoods of z =9, with finite apertures. However, the two terms

on the right-hand side of (3.29) balance each other in such a way that, although @(z) is
left to diverge, the resurgence in it is “compensated away”, so that the sum ¢(z) is now
regular in a fundamental neighbourhood D of (.), with infinite aperture.

This phenomenon is relevant for all resonant local objects and will be investigated in
§89,10. Indeed, putting z = z~! and anticipating on the notations of §9, we find :

(3.30) #(z)=V"(z)  with = (‘;’) = ( J_'i) with p = —1
(3.31) @(z) = V(z) with p = —1

where f)"(z) is the “simplest ” resurgent monomial, and vc"o(z) the “simplest ” compensated-
resurgent monomial.

Example 4 : The Riemann zeta function ((s) :
Denote by u(n) the arithmetical Mébius function and put :

(3.32) o(z) € (N2 og(z ) = Y w(n)eEM? (2 €C)
n>1
(333)  $(t)E p(eTt P8 = (I (27t + plogt)) = Y p(n)n27P08 /2

Clearly, the Riemann hypothesis is true iff the series z/;(t) is Borel-Laplace summable to
the function 1(t), for each given p > 0, with summation abscissa t = 1. The question, of
course, is whether, underneath this “overconvergence”, there lies hidden an expansion of
¢(2) into a series of compensators :

(334) Z [1(11)2‘008 n)/2 _ Eaao,...,o, 2901010r

n>1
with the desired domain of absolute convergence, namely |z| < e~.
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Seriable functions of several variables. Rigid algebras.

A function ¢(z,...,2,) defined in a neighbourhood of (.) € c’ respectively of the
form :

(3.35) (sup |zi)(sup |log zi])*® < zo (0 < 20;0 < ko)

or of the form :

(3.36) sup (|zi| |logzi|)™ <zo (0 <z0;0 < ;)
L]

is said to be weakly (resp. strongly) seriable if for each positive (resp. non-negative) vector
v
a = (ay,...,a,) with a; > 0 (resp a; > 0) and for any fixed z = (z1,...,2,) in (.Z , the

function :
(3.37) Pas(t) E p(ant™, .. 5t™)  (t€C)

is a seriable function of its one variable ¢.

A subalgebra RIG of seriable functions ¢(2) with asymptotic expansions ¢(z) is said
to be rigid if all ¢(z) are convergent. For instance, a formal entire power series ((2) of one
or several variables is automatically convergent if seriable.

4. SYMMETRAL AND SYMMETREL COMPENSATORS.

The symmetric compensators of the preceding sections are simplest from the theoret-
ical point of view, but for applications we shall require siz new compensators which, when
viewed as moulds (see §12), turn out to be either symmetral or symmetrel (see §12) func-
tions of the sequence w = (wy,...,w,). Those six compensators go in pairs of mutually
inverse moulds :

(41) 1° = §20(2) X §8,(2) = Seore(2) X Ecore(2) = Scoim(2) X 8 coim(2)
relative to mould multiplication (see §12). Here co stands for compensation, re for real, im
for imaginary.

The compensators from the first pair are symmetral; easily deducible from the sym-
metric compensators; and of use in the study of differential equations or vector fields.

The compensators from the second and third pairs are symmetrel; not reducible to
finite combinations of symmetric compensators; and of use in the study of difference equa-
tions or diffeomorphisms.
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A. The symmetral compensators S5,(z) and 52,(2).

Their simplest definition is by factorisation :

(4.2) Seo(2) = 5°(z) x S* with S99 (2) = @1t wr QWL Wr

(4.3) §,(2) = 5°xS%(z)  with §¥irwe(z) = gt Guasr

from the symmetral moulds S°® and §° introduced in (1.22), (1.23).
We also have the inductive characterisation by :

(44) (Fell = 28:)Se6(2) = =Seo(z) x I* |lof|=|lo]|=wi+...0r

(4.5) { (Jlo|l = 20;) §&(z) = +I°* x §5,(2)  I*® asin (12.9)

with the initial conditions :

(4.6) Se(1)=85(1)=1° (1° as in (12.8))

or alternatively :

(4.7) Se(0) = 5°%52,(0)=S*° (if Re(w;) > 0)

The symmetral compensators also admit useful integral representations :
(4.8) SEr e (3) = (=1)" / 2l ol dy
with integration along the multipath {z < z; < ... < 2, <1}, and

(4.9) St (5) = / 2 el da,

with integration along the multipath {z < 2, < ... < z; < 1}. Lastly, they are linked to
the symmetric compensator of §2 by the following formulae :

v v v
0, wy, W2,..., W,
(4.10) Serrer (2) = 2 [ L0w1,witwz,ewitwr
Ala\) :: wy,0
1, W2,..cy Wr,
(4'11) 5::,...,0:,(2) — (_l)rz = zw1+...w..,Wg+...w,.,...,w,.,0
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B. The symmetrel compensators S,..(z) and §Z,.(z).

Their simplest definition is by factorisation :
(4.12) Score(2) = 8e(2) x S* with &@irtr(z) = grtwr G wr

(413)  8e(2) =6°XS8%(2)  With SZrer(z) = geiter Suier

from the symmetrel moulds §* and &° introduced in (1.24) and (1.25).

We also have the inductive characterisation by :

(414) eI1SSre(2/€) = Soore(z) x (1° + I°) ™

(4'15) e"." S't.:ore(z/c) = (1. + I.) X s:ore(z)

with the initial conditions :

(4'16) Sc.ore(l) = 5:ore(1) =1°
or alternatively

(4.17) Score(0) = 5% 8core(0) =8°  (if Re(wi) >0)

The preceding definitions give rise to factors (1 —exp LYJ.')—I and (1 —exp 3,-)‘1. Yet,

due to internal cancellations, for any given z on C the scalars S&i:“r (2) and &1 47 (2),
L]

as functions of the sequence w = (wy,...,w,), are free of singularities on R" (though not
on C") and therefore deserve the label of “compensators”. That fact is easiest to derive
from the following “integral” representations (4.19) (4.20), which involve the compensation
measures dg :

(4.18) 8a(t) = bae,..0,(®) = 3 65i(t) [[(0i—0))™" (6 = Dirac)

=0 J#i

and mirror the integral formulae (4.8) (4.9) for the symmetral compensators.
(4.19) S (2) = 0001 ... 09 / o875, (1)

with 09 = 1 and o; = exp cY:,-: exp(wy + ... w;)
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(4.20) S (2) = (-1 / groitos s, ()
with 09 =1 and o; = exp 3;: exp(wi + ... wy).

C. The symmetrel compensators 53 .(z) and &2 (2).

After the symmetrel real-compensators (core) indexed by real sequences w = (wy, ... wr),
we shall require symmetrel imaginary-compensators (coim) indexed by pure imaginary
sequences :

(4.21) w = (w,...wr) = (2miw},... 2miw}) with w} € RY
The new compensators still admit remarkable factorisations :

(4'22) Sc.oim(z) = sx.m(z) x8*

(4.23) & loim(2) = &° x5n(2)
with the elementary, scalar-valued moulds S* and &° as in (1.24), (1.25) and with non-

elementary moulds S;,(z) and &{,,(z) which, up to a trivial factor, are convergent power

series of z :
(4.24) S@rn(z) and & (2) € 2~ Wit C{z}

The moulds 82;,(z) and &, (2) are therefore mized power series, with components
drawn from several spaces z=*C{z}. However, despite this composite character, they
admit an easy, direct definition (see (4.29) below) so that equations (4.22) (4.23) should
be viewed as characterising S, (2) and &;,,(z) rather than 82, (2) or §oim(2). To define
the latter moulds, the quickest way is to introduce a linear operator 6 acting on all positive

powers of z according to :

odeft 27 1 AN +_
(4.25) 0.:°F S +t5— ) —— if ce€R*-N
n>0
def 1 1 2"
2 0.2° = — 2° —_
(4.26) z 5 2 logz+2m, E — if o €N
n>0;n#o

For any z on C and |z| < 1, the series (4.25) and (4.26) converge towards a ramified
function J(z) equal in both cases to the integral

1 4
(4.27) Jz) = - [ A

27 Jo 21— 2

dz; (when 0 < argz < 27)
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so that, for any z on C and close to 0, we have :
L] L]

(4.28) J(e¥™z) - J(2) =

Next, for imaginary w; and real w} as in (4.21), we put :

(4.29) S (1) B @i+l g et g, | 9w

corm

where each 6 acts on all terms to its right, and not just on its immediate neighbour. Thus

62°62% should really read 6(2°6(z")).

This defines the mould &2;,.(z) and its multiplicative inverse S2;.(2), according to
(4.1).

For the coming applications, we require the induction formulae :

(4-30) IS im(e2™2) = Sgim(2) x (17 + 1)
(4.31) el 8 8im(€?™2) = (1° + I7) X Eim(2)
with || e || = |w|| = w1 +...w, and 1° + I* as in §12. Unlike in the earlier examples,

however, the present mductmn falls far short of characterizing the mould S (z) and
$:°,m(z) even in combination with initial conditions involving the values of those moulds
forz=0o0rz=1.

Lastly, from (4.27) and (4.29) we deduce the crucially important integral representa-
tions :

(4.32) St (2) = (27”) A AR CTD R G0 SR

coim (zl - zg)(ZQ - 23) cee (Z,- - Z)

(4.33) e ,u,(z)=(§%)' /ol ((21/2)“’"(z2/2)“” (2r/2)* L dan

com z—21)(21—22)...(2r—1 — Zr)

In (4.32) we integrate successively in 21, 23, . ..,2, and let each z; bypass the following vari-
ables zi11,Zit2,...,2r, 2 to the right. In (4.33) we integrate successively in z,,z,_1,...,21
and let each z; bypass the preceding variables z;_;, zi—2,...,21, z also to the right. We may
take the variable z first on the segment [9, }] and then let it range freely over the universal

covering of C \{(.), L o.o}
We now have at our disposal all the compensators which we shall require in the sequel,
but we still lack the main information about them, namely their bounds, both before and

after arborification. These bounds will be established singly, when each will first be needed,
and then a general synopsis will be appended to the concluding section §11.
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5. RAMIFIED LINEARISATION OF GIRATORS (SEMI-MIXED
SPECTRUM).

Recall that girators are non-degenerate vector fields 27iX with purely imaginary spec-
trum. Their study is obviously equivalent to that of vector fields X with real spectrum
(A1,A2,...,A;) and with the non-degeneracy condition, meaning :

(*) diagonalisable linear part
(**) no vanishing eigenvalue (A; # 0)
Three cases may occur :

(i) all A; have the same sign.
(ii) there is one positive (or negative) A; and all others have the opposite sign.
(iii) there are at least two positive and two negative A;.
Case (i) is entirely trivial, since it ensures analytic linearisability. Indeed, it rules out

small denominators, even diophantine ones, so that the expansions (1.16) and (1.17) of

the linearisators G)(ﬁllt become normally convergent, even prior to arborification, due to the

obvious bounds :
(5.1) |S¥| < c/r!; |5¥| < ¢/r! (C = Const; w = (w1,...,wr))

which in case (i) improve upon (1.45), (1.46) and match with the bounds (1.39) for B,,.

That leaves only case (i), which will be dealt with in the present section, and the
significantly more complex case (iii), to be studied in the next section.

So, let us for the moment consider a girator 27X, with X of semi-mixed real spectrum
(A1,-++,A). We may assume :

(5.2) A1 <0; A2>0, A3>0,..., A, >0

and we easily check that there always exist analytic prepared forms (1.14) with homoge-
neous components B,, such that :

(53) ny > l/ﬂo >0
(5.4) np—w/Ad =—Mm2A2 +..0,A0)/ A 2 1/kg >0
for some suitable finite constant ko. As usual, n = (ny,...,n,) and w =< n, A >= In;A;.

Proposition 5.1. (Seriable linearisation of semi-mixed girators.)

The following ezpansion

(5.5) 0zl =5 5%(x)B,  (with 2 = 7/M)

159



J. ECALLE

relative to a prepared form of type (5.3), (5.4), defines an inverse linearisator O3 and is

normally convergent on a spiral-like domain C xC¥~1 of the form

(5.6) {lz1] |logz1|*® < zo; ||z2| £ To;. .., |zs| £ z0}

Proof. In agreement with the general contraction rule, the sum (5.5) stands for :

(5.7) D &4 (21)By, ... By,
which in the non-resonant case may be re-indexed to :
(5.8) > surer(21)B,, ...By,

with w; =< n;, A>=n;1 A +...+n;,A,.

Using the derivation rule (4.5) of symmetral compensators, one checks (1.61), so that
the series (5.5) formally satisfies the conjugacy equation (1.27) and therefore defines a
formal linearisator. Next, we must establish the convergence of the expansion (5.5). Re-
verting to the definition (4.3) of §,(2) (or its counterpart in the case of vanishing indexes
w;) we may count the powers of z; in each term :

(5’9) 5:2""’“'(21) z;h,1+nz,1+..,n.-,t (with n; = (ni,l’ . ,ni,u))

Using z; = =7 M and discounting possible logarithmic factors (log z1)" (with r' < r) we

find a finite number of terms of the form :

(5.10) 27 =27 (1=0,1,...,0)

with

(5.11) 62 =n11+n21+...ni-11

(512) U:’ = (n.',l —w,'//\l) + (n.‘+1‘1 - w.-+1//\1) +... ('n,-,] - wr//\l)

Using (5.3), (5.4) we find :

(5.13) ol 2 i/ke; of > (r—1)/ke; 0i 21/Ko

Each expression (5.9) is therefore, due to (4.11), of the form :

(5.14) z7°7 with 0 > /Ko for 1 =0,1,...,v.

Using the estimates (2.7), (2.8) for symmetric compensators, we find for (5.9) bounds of

the form :
1 KO) r/Ko

log —
og p

(5.15) = <|m1|
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which, paired with the obvious estimates

—(n1,1+n2,1+...001)
(5.16) ":1:1 rtmatet OB, BB |

) < r!Const

(for suitable polydiscs D, D') ensure the normal convergence of the expansion (5.5) on a
domain of the form (5.6).

Remark 1. If B,,.z; = 0 for each n (and one may always achieve this by premultiplying
X by an analytic unit), the direct linearisator admits the normal convergent expansion :

(5.17) Ouer = Y S55,(21)Bs  (with 21 = z7/™)

Even without the assumption B,,.z; = 0, a similar expansion holds, with a slightly modified
comoulds B,.

Remark 2. For a non-resonant spectrum, the constant xg in (5.3), (5.4) may be chosen
as small as we wish. This is a favourable circumstance, since k¢ turns out to measure the
“spiralling speed” of the ramified domain (3.2) where seriable linearisation holds.

Remark 3. For a resonant spectrum, with one or several degrees of resonance, there is
a limit to the smallness of the acceptable constants kg, due to the generic presence of
unremovable resonant monomials ™ (unremovable, that is, under formal, entire changes
of coordinates). In that case, there is usually one optimal domain (3.2), which cannot be
improved upon, and where seriable linearisation holds.

Remark 4. For a canonical factorisation of the seriable linearisator O, see §8 in the
non-resonant case and §10 in the resonant case.

6. RAMIFIED LINEARISATION OF GIRATORS (GENERAL SPECTRUM).

Consider as before a girator 27:X, but assume now that X has more than one positive
Ai and more than one negative \;. Formula (5.5) for ©;.! continues to make formal sense,
but becomes unsatisfactory from the point of view of analysis, because it entails negative
powers of z;, irrespective of whether ); is positive or negative. In order to end up with
positive powers only, we must ”compensate” or ”seriate” not in one, but in at least two

variables.

Let A; be one of the negative \; and \; one of the positive \; and put :
(6.1) =z =27 (A <0<)y)

Instead of considering compensators 5¢(21) of z; only, we shall use mized compensators
52,(21,22) which will involve only positive powers of z; and negative powers of 23, that is
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to say only positive powers of both z; and z3, but which will otherwise retain all the useful
properties of §2,(z1) and §,(22). The passage from §:,(z1) and §,(22) to §,(21,22) is
achieved by an important mould-theoretical operation, known as mizing.

Definition 6.1. (Mould mixing)

To any pair A®, B® of moulds with real indices w;, the mizing associates a mould C*
defined by :

(6.2) CWrrwr def Z H:,";;"’w'é“’(‘)""’”"("')A“"(""H)""”'*(")

o<m<r
TE€EIy

with a sum eztending to all permutations 7 of the set {1,...,r} and involving the conjugate
mould B :

(6.3) Berswr def (=1)7BWrr-wn
as well as universal disorder coefficients :

(64) HE = 56, 61)86,( G2). .. 86,( )

which assume only the values 0,+1'—1 and are made up of the following ingredients :

(6.5) 5% wi twipr + ... wp
o ol 122 of(s 40
(g i
S {PYTEASTY e

C* is called the “mizture” of A® and B*, and denoted by (A* mix B°®).
Lemma 6.1 (Main properties of mould mixing)

(6.9) {A® and B® symmetral} => {A® mix B°® symmetral}

(6.10) {A® symmetral} = {A® mixA® = A°}
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(6.11) (C* x A®) mix (C* x B*) = C* x (A® mix B®)

Moreover, the mizing “separates signs” in the sense that the definition (6.2) of C“rr“r
involves only terms A®1%1 and BP1rPr2 such that :

A def . ~ def .
(6.12) ai=ai+...0r, 20 (Vi<ry) and Bi= Bi+...0r, <0 (Vi<ry)

The shortest way to prove the above lemma is by introducing on the free commutative
algebra generated by the symmetral symbols A“ and B“ a derivation operator D and an
infinity of “integration” operators I{° acting as follows :

DAY ' xA*, DB* ¥ *xB*; DB* ¥ B xI*

D(ﬁﬂ“""ﬁ'Aa"""a‘) déf Eﬂl,...,ﬂ,Aag,...,a, _ B’ﬂl,...,ﬂ,_lAah...,a,

I:O(ﬁﬂl,m;ﬂrAal e ) def E BB Bi fBit1esBriwo,an 0y
0<i<r

Wo [ 3B1yesBr A1 ,me.yery | del (381,00, Br y W0, 01 4oty X AQig1yee, O
0 (B Be A A A
0<i<s

and then to observe that I{° and IZ° reverse D :
DIy =DI2 =1 (Vwo)

and that (6.2) may be written :

C¥Wirwr — Z S, ‘Sl) P ( LG,-)C“’"""“'

€1,y000y€p
=%
with the following induction :

DC¥rrwr = @ CW2rsr

€1 4000y€Ep €2y000y€p

W yeee )Wy W1 W2 yeee Wy
Cq,...,e, = elIc; Cez,...,e,

The details are formal and left to the reader.
Lemma 6.2. (Definition and properties of mized compensators)

(6.13) Seo(21,22) X §(21,22) =1°

(6.14) 52(21,22) & §2,(21) mix §25(22) = §° x(5°(21) mix §*(22))
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(6.15) (W1 + .. wp — 210, — 220,,)Se Y (21, 29) = —SEtr“r=1(2y, 23)

(616) (w1 +.. .. wy—21 0,1 - 226,,) S’:g """‘"(zl, 22) = S:’J""’”'(zl, 22)

For an‘g sequence w = (wy,...wy), of whatever signs, the mized compensators S%(zy,22)
and §(z1,22) involve only positive powers of z1 and negative powers of z;.

Proof : (6.13) defines SZ,(z1,22) indirectly in terms of 52 (z1,22) and (6.14) defines
52,(21,22) directly in terms of the one-variable compensators 5¢,(z;) or the even more
elementary moulds S°(z;), defined as in (4.3). The equivalence between the last two
terms of (6.14) follows from (6.11) and (4.3). The derivation rules (6.15) and (6.16) follow
from the derivation rules (4.4) and (4.5) applied to the identity (6.2) with the symmetral
moulds :

(6.17) A*,B*,B°
replaced by
(6.18). 5:_0(21), 520(22)7 Sc.o(z'l)

Lastly, the concluding remark in Lemma 6.2 about the “separation of signs” in mixed
compensators follows from (6.12) with (6.18) in place of (6.17).

Now, let us return to a general girator 27iX with truly mixed spectrum. As in the
preceding section, one establishes the existence of prepared analytic forms (1.14) with
homogeneous components B, such that :

(6.19) Z ng > —)\1/&1 >0 (/\1 < 0)
Ai<0

(6.20) Y oni>4d/r>0 (A2 >0)
Ai>0

for some suitable finite constants x;,k;. The reason for this is that one may go from
any analytic form (1.14) to one satisfying (6.19), (6.20) by means of a formal change of
variables which involves no small denominators (not even diophantine) and is therefore
not merely formal, but analytic.

Proposition 6.1. (Seriable linearisation of general girators)

The following exzpansion

(6.21) O =Y 52(z1,2)B,
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with 21,27 as in (6.1), with a mized compensator §:,(21,22) as in (6.14) and with a
comould B, relative to a prepared form of type (6.19)(6.20), defines an inverse linearisator

O} which involves only positive powers of all variables z; (and of logzy,log z; in case of

resonance). Such as it stands, the ezpansion (6.21) generally fails to converge in norm,
but its arborified counterpart :

<
(6.22) 05t = ) 5c(21,22)B

18 always normally convergent on a spiral-like domain of (.:2 xC"~? of the form

(6.23) {llogmll"‘ sup |z;| < xo} X {|log:z2]"2 sup |z;| < :co}
2i<0 Ai>0

Proof of Proposition 6.1 :
As usual, the contracted sum (6.21) stands for :

(6.24) > su ¥ (21,22)Ba, ... Ba,
with w; =< n;, A >. Recalling the definition (6.1) of 21, 22, we see that :
(625) Xlin S:o(zl, 22) = —(21 3,1 + 22312) 5:0(21, 22)

Using the derivation rule (6.16), we check (1.61), so that the series (6.24) formally satisfies
the conjugacy equation (1.27) and therefore defines a formal linearisator.

But when we turn to the question of convergence, we find that mixed compensators
no longer admit good estimates of types (5.15) with r! as a denominator. Indeed, for |z;|
and |z2| small enough, we have :

(6.26) 5:)1,...,:‘.:,(21’ 22) — 2 H:’l';‘;..,w,-S:‘:"o‘l'(l),u.;Wg(m)(zz) S:’J(m-n),...,w:(r)(zl)
mm

(6.27) IS:J""’W'(ZI,h)I < 2 |S:::(1),...,W,(m)(22)| . |S‘c-’;(m+1),...,w,(r)(zl)|
™,m

(6.27bis) |55 (21,22) < D (|logas|™ /m) (llogas|™™™ /(r —m))
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For badly mixed sequence w; (the worst being the alternate sequence (—1)'w; > 0)
the sum (6.27) may contain more than r!2~7 terms, but of course less than (r + 1)}, so
that we get bounds of type :

(6.28) S (21, 22)| < CoCy(|log 21| + [log z2|)"

Using the special case when the indices w; are very small, plus some combinatorics, one
verifies that the estimates (6.28) are essentially sharp. In view of the equally sharp bounds
(1.39) for B,, this means that the expansion (6.21) is, generally speaking, divergent in
norm. So we must take recourse to arborification and use the following lemma :

Lemma 6.3 (Mixing and arborification)

<
Take A®, B® and their mizture C* as defined in (6.2). Let C * denote the arborification
of C* as defined in (12.17). Then, for any arborescent sequence S= (w1,- .. wr)< we have

< <
(629) Cw = E H:’"mbsr(l),u.,u,(m) Au,(m+l),...,w,(,)
o< m<r
x€ETy

<
with coefficients HY  still defined l)y :

n,m

<
(6.30) HE = 5,(01)se( ©2)...5¢,( &)

but with partial sums L/o.\’,' now relative to the arborescent order of S

6.31 &‘:i“é‘ w;j for all j equal or posterior to i in S.
i

and with signs €; reflecting the compatibility, or otherwise, of the substitution m with the
arborescent order &

(6.32) 6 {t z}f r::__<1(7:)_1_<(?n (i root of & )

(6.33) . {+ if 7 (i) <7() (i- antecedent of 1)

- if mE) < 77I(io)

(6.33) holds when i has a (necessarily unique) antecedent i in & and (6.32) holds when

.. <
i 13 a least element, or root, of w.
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The verification of the above lemma is straightforward, by induction on the length r of
cf:, but its significance is startling. Indeed, the right-hand sides of (6.2) and (6.29) contain

exactly the same number of terms, namely (r+1)!, and both sums involve coefficients H ,‘,‘"m

<
or H ,‘,‘,’m which assume only the values 0,41, —1. However, the arborification construction
(12.17) implies :

S S
(6.34) c¥ =3 sh (w) cv

< <
S w
(6.35) He, = E sh (w) H,‘:,’m
with sums ¥ involving on average r!2~" terms. Now, what the lemma 6.3 says, in essence,
< <

is that in spite of this the C% and H ,f:’m are not significantly larger than the unarborified
C“ and HY,,

If we now apply (6.29) to the triplet (6.18) in place of (6.17), we get for the mixed
compensators the following estimates :

Lemma 6.4. For |21| € 1 < |22| and real indices w; :

<

(6.36) IS& (21, 22)] < CoCy(|log 1| + |log za])"
&

(6.37) | §co (21,22)] < CoCy(|log 21| + |log z2|)"

which in view of (6.1) are no worse than the estimates (6.28). But these have to be paired
with the estimates for B . :

(638) ”z_(nr'-m"r)B(nx,...,n,-)< "'Dn,'Dz <Cr

which are much better than the corresponding estimates for B,. Taking the “preparation”
(6.19), (6.20) into account, we immediately obtain the normal convergence of the arborified
expansion (6.22), and therefore of the seriable linearisators ©Z!, on domains of the form
(6.23), which ends the proof of Proposition 6.1.

Remark 1. By regrouping in (6.21) all terms S, B, relative to sequences w = (wy,.. . wy)
that differ only by the order of the w;, we can restore normal convergence in a seemingly
simpler way than through arborification. Such regroupings are indeed useful when it comes
to actually calculating the seriable linearisators, but for the purpose of proving normal
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convergence, they are “too large” for an easy identification of cancellations, and there is
no convenient alternative to arborification.

Remark 2. If there exists an analytic prepared form such that :
(639) B,,.:cl = B,,..'r,g =0 (VZ)

(which is exceptional, even after premultiplication of X by an analytic unit), then the
direct linearisator admits the expansion :

<
(6.40) Oser = Y Soo(21,22)Be =Y Seo(21,22)B

with normal convergence of the arborified sum (to the right). Even without assuming
(6.39), there exists a variant of (6.40), with a slightly modified comould B,.

Remark 3. For a non-resonant spectrum, seriable linearisation involves positive real
powers of z;,z; and positive integral powers of the remaining x;. The constants «; and k,
in (6.19) (6.20) may be chosen as small as we wish, leading to excellent domains of seriable
linearisation.

Remark 4. For a resonant spectrum, seriable linearisation also involves logarithms of z;
and z,. The constants x; and k, cannot, generally speaking, be chosen smaller than a
certain optimal size, which depends on the resonance relations.

Remark 5. For a canonical factorisation of the seriable linearisator Og,, see §8 in the
non-resonant case and §10 in the resonant case.

Remark 6. There exist other explicit seriable linearisations, with expansions of type
(6.21), but with better domains of convergence, namely domains of type (3.36) instead of
type (3.35) as in (6.23). However, these fine-tuned linearisations involve more than two
ramified variables z; = x; YA and rely on higher-order compensators S (21, 22, 23,...)
obtained by repeated use of “mould mixing” (see lemma 6.1).

7. RAMIFIED LINEARISATION OF GIRATIONS.

Unlike girators, whose study reduces to that of vector fields with real spectrum,
girations (that is to say diffeomorphisms with multipliers of modulus 1) differ markedly
from diffeomorphisms with real eigenvalues.

Let us first consider a one-dimensional giration :

(7.1) frz—lz+ Z anz™tl; (C,0) — (C,0)

n>1
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and let us lift f to a giration f of (C,0) :

(7.2) fiz—lz+ Z apz™t; (C,0) — (C,0)
s . bt o' e o' e

by choosing for £ € C a determination fe (.: :

(7.3) b=e* = 2™ (A*eR%)

It is essential for our purpose that A* should be # 0. Let us assume for definiteness that
it is positive. With f and f we associate the substitution operators F' and I.'" with their

(common) homogeneous parts B, as in (1.5).

Of course, linearisation (resp. normalisation) difficulties arise for f only if £ is liouvil-
lian (resp. a root of unity), but for the lifted f seriable linearisation becomes possible as
L]

soon as £#1 , which can always be achieved, even if £ = 1.

Proposition 7.1 (Seriable linearisation of one-dimensional girations)

The following ezpansions :

<
(74) Ot = D Eloim(2/u) B =D 8 im(2/u)B
with the symmetrel compensators introduced in (4.23) and :
(7.4bis) z=zY*"; A\, >0; u fized on (.Z but close enough to 9
(7.4ter) toim = Seaiadrs By =B, ... By ; wj = Anj = 2mid*n;

define an inverse linearisator of the giration f . The unarborified expansion (in the middle)

L]
i3 almost never normally convergent, but its arborified counterpart (to the right) always is,
on spiral-like domains of the form :

(7.5) {lz| - |log z|*® < zo|log zo|"°} (z € (.Z, 0<zo<e™<1)

Proof of Proposition 7.1.

That O} as defined by (7.4) satisfies the linearisation equation (1.28) directly follows
from (1.62) and (4.15). So the real issue is normal convergence. For this, we need :
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Lemma 7.1. Consider indices w} > 0 and w; = 2miw}, and define a mould Q° by

(76) le,...,w,(z) — zw;+...w: 5,«’1',-",‘”;-(2) - ozw; . ozw:

coim

with 6 as in (4.27) and &, as in (4.29). The mould Q° and its symmetrel arborification

coim

<
Q° (see (12.19)) admit essentially the same bounds, namely :

(.7 1Q“(2)] < (C(€))(|zlog 2| + | log(1~ 2)|)"

(7.8) 1% (2)| < (C(€)) (|2 1log 2| + |log(1- 2)])"
for|z| <1and0<e<w} (z€C; z€C).

<
This is unexpected, since in view of (12.19), the Q% are sums of many terms Q¥,
sometimes as many as r! or even more, due to possible sequence-contractions (12.7). How-
ever, as usual with mould arborification, there happen to exist handy identities which

<
explain why Q“ is no larger than Q. They read :
1T .
(79) Qw(Z) = / H (Z;d'. (Z,'_l - Z,')_ldz,') (zo dé‘ z)
0 =1

r

(7.10) Q% (s) = /0 1 I G e —z) M) (20 % 2)

i=1

In (7.10) i_ denotes the unique antecedent of ¢ within the arborescent order & or, if ¢ has

no antecedent (if it is a root or least element), we put i_ 4 0 and 20 4l , . In both

(7.9) and (7.10) we integrate first in those variables z; whose index i is largest and we
systematically circumvent the still unused variables z; (j prior to ¢ within w or (4<J) to the
right, like this :

(7.11) 0 % 1
\/
2

Identity (7.9) is merely a rewriting of identity (4.33) in terms of Q. Identity (7.10) follows
from (7.9) by putting :

(7.12) M=% (2) def (z—= )'l(zl - 22)_1 voi(Zr-1 — z:,-)_1 = M5 755 TE()
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and by observing that the coefficients M*, regarded as functions, define a symmetral mould
(see §12) but when regarded as functionals on the space of analytic functions on [0,1]" :

1
(7.13) M®:p— / P21y 2e)M* 0% (2)d2y . . . d2,
0

with integration rule (7.11)), those same coefficients define a symmetrel mould (see §12). In
other words, the function M*® satisfies identities of type (12.6) whereas the functional M*
satisfies identities of type (12.7). This difference stems from the fact that the integration
rule (7.11) is not preserved under reshufflings of the sequence (2i,...,2), which calls for
corrective terms corresponding precisely to sequence-contractions (12.7). Using (7.9) and
(7.10) we now find the induction formulae :

1 -
(7.14) Q“*“(2) =/0 7t (2= 21)71Q%(21)dn
< 1, <
(7.15) Q% (2) = /0 20 (2= 2)71Q% (21)dz
(7.16) Q‘f" ow" ®(z) = Q‘f" (z)Q“j“ (2)...

with right-side circumvention of z by z; (for z on [0, 1]). Here, w; ew (resp. w;e é) denotes
L
the fully ordered sequence (resp. the arborescent sequence) consisting of w; followed by

< <
the fully ordered sequence w (resp. the arborescent sequence é), and W' @ w" ... denotes

< <
the arborescent sequence obtained by juxtaposition of w',w" .... From (7.14) (7.15) (7.16)
we infer (7.7) and (7.8) by induction on r, which proves lemma 7.1.

We may now revert to the expansions (7.4) and rewrite them as :

(7.17) > @@ (z/u)) (=~ I"B,) = E(u""""Q‘i’ (z/u))(=z"1"B )

with the usual bounds on B, and B . which, combined with (7.7) and (7.8), yield the normal

convergence of the arborified expa.r‘lsion (7.4), along with the generic normal divergence of
the unarborified expansion.

Remark 1 : There exist for Og; expansions analogous to (7.4), but with a slightly re-
defined comould B,.

Remark 2 : In the non-resonant case (i.e. for an irrational A*) we have a seriable
linearisation of the form :

(7.18) z = k(y) € y Clly,y"/*]]
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and the spiralling index ko may be chosen as small as one wishes. The series k***(y) is
convergent if A* is diophantine, and generically divergent if A* is liouvillian. Yet k®¢*(y) is
always seriable and therefore summable by the methods of §3.

Remark 3 : In the resonant case (i.e. for a rational A*) we have :
(7.19) z=k*(y) €y Clly,y"/™(logy)*/™]  (meN; ne Q")

which makes it plain that the spiralling constant ¢ in (4.5) cannot be taken smaller than
K.

Remark 4 : For the canonical factorisation of Ose; and k®*, see §8 in the non-resonant
case and §10 in the resonant case.

Remark 5. Seriability and conformal maps. Connection with the Douady-Ghys
lemma.

We shall be pairing local diffeos f,g of C with “opposite” multipliers £,£’, or rather
lifted diffeos f,g of C with multipliers £,£’ such that :

(7.20) log ¢ +log ' = 0 (mod 27i); log £ +log £'=0 (exactly)
(7.21) frzmlo+... with €=, A" >0,z€C
(7.22) gzl ot... with £=e™/\ x>0, z€C

For the moment we forget about g and start with a given f. We fix € on (;, small enough
(] L]

( € close to 0) and real (arg e= 0) and introduce on (.Z three sectorial neighbourhoods

D', D?, D? of 0, with apertures respectively 2r,2w\*, 2w )* :

(7.23) D {z€C; 0<argz < 2m, |z| < €}

(7.24) p* ¥ {z € (.:; 0<argz <2mw)*, |z| < e’\‘}

(7.25) D3 4! domain of ¢ enclosed by the ray I from 0 to s'\‘ , by its image f (I), and

by any given curve I joining f)“ to f (e)“) without crossing itself, nor I, nor f (I).
° ° .
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Lastly, we denote by k% the conformal mapping from D* to D7 that preserves (.)
(4,7 = 1,2,3). Obviously, k*(z) = z*" and k}?(z) = 2}/,

The Douady-Ghys lemma
k'? conjugates f with the one-turn rotation r :
L] L]

(7.26) f=k*b ro k3 (with r (z) def e*™iz)

and the correspondence :
(7.27) ngd-g k'"%oro k3! (with same r)
o o 04 .

though dependent on the choice of € and I, induces an intrinsic, one-to-one correspondence
between analytic conjugacy classes of diffeos f and g of type (7.21) and (7.22).

Let us now reinterpret this result in the light of seriability. We replace the domain
D! by D?, which has the same aperture 2r\* as D3, and we observe that :

(7.28) k%0 fo k¥ (z) = €2z (Vz € D?)

since k%30 f ok%? leaves invariant 0 and the circle |z| = e. If we now introduce the seriable
linearisation k* and put :

(7.29) K2 =k ok (k(z) ¥ 07l.2)

that defines a map k which leaves 0 invariant as well as the radii {argz = 0} and {argz =

27A*}, so that k(z) must be the sum of a real, convergent power series k(z) of the form :
(7.30) k(z)=2z{1+) dnz""} € 2R{z"/*}
But Proposition 7.1 shows that k* is a seriable function with asymptotic series k®".

Therefore the map k%2 in (7.29), as indeed all conformal maps k™7 of this section, are also
seriable at 0.

Moreover, in the non-resonant case (A* irrational) we have the obvious factorisations

(see also §8) between asymptotic series :

(7.31) Bl=aoPywob (B'(z)=2+...)
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(7.32) B3 =510 Pyye0d (l::l's(z) =z 4+ .. J)
(7.33) f=ator¥od  (fl@)=eNz 4.
(7.34) g=b"o r.'l/’\‘ ob  (g(z) =€ Nz 4..)
with

(7.35) Pr(2) & 2*; Pjpe(a) & a/Y

(7.36) X (2) € 2"V rt/X (z) & 2Ny

and with entire, but usually divergent power series &, b of the form :
(7.37) iz) =2+ ana"; b(z) =z + Z bpz™t!

Indeed, due to the small denominators present in their coefficients @y, by, the series & and b
are not only generically divergent, but hopelessly so : when divergent, there is no canonical
way of summing them separately, even in sectorial neighbourhoods of 0. When combined,
however, @ and b undergo compensation and yield either seriable series k31 k'3 as in

(7.31), (7.32) or plain convergent series f,g asin (7.33), (7.34).

Remark 6. Extension to Carleman classes C(M) :

The alternative approach outlined in Remark 5, being based on conformal mappings,
doesn’t extend smoothly to higher dimensions, and even in dimension 1, like all geometrical
methods, it fails in the face of classes C(M) of power series larger than the convergent or
“analytic” class A = C(1). Indeed, let M, = (m,)? be defined for o > 0, with logm,
positive, convex and growing to +0o as o goes to +o0o. Then the linear operator :

(7.38) M:z®— Maz® € M,2° (Yo €eRY)

turns the convergent class A into the so-called Carleman class C(M) 4 M. A which, just

like A, enjoys stability under all useful operations, including postcomposition by elements
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of the form £z + o(z). However, for every Carleman class C(M), no matter how large, the
conjugacy equation :

(7.39) hofi=faoh (fi(@) ="z +..., fa(z)=e"Nz+...)

for a given pair fi,fo in C(M), may fail to have solutions hin C(M), due to small de-
nominators which, for strongly liouvillian multipliers £ = exp(27i\*), can be as small
as one wishes. Within a class C(M), therefore, neither the conjugacy problem, nor the

linearisation problem, nor the correspondence between conjugacy classes cl(f) and cl(g})

as in (7.21), (7.22), can be tackled by conformal mapping, but the methods based on
seriability still apply with only slight changes. Actually, all it takes is to redefine the
symmetrel compensators & o, , still using formula (4.29) but with the operator M~1.6.M
in place of 6, and to define M-seriability of a series ¢(z) = Xa,z° as meaning that, after
changing variables :

(7.40) @(2) = §(t) with z=e™".t™° and p positive large
and Borel-transforming %(t) into z/;('r), we have the bounds :
(7.41) |$(r)] < Const. M,e*"  (r € RY)

instead of (3.20). If we do this, expansion (7.4) still gives us a M-seriable linearisator O}
of f, while formula (7.27) becomes :

(7.41) } g def foerg ro heer
with
(7.41bis) B0 (2) = Buurz, B(a) = O3L3; 1 (2) =

and still yields an intrinsic, one-to-one correspondence cl(f) — cl(;) between conjugacy
L] L]

classes of diffeos of types (7.21) and (7.22) but in the class C(M).

Remark 7.Seriable linearisation of girators in higher dimension.

In dimension larger than one, the study of girations doesn’t run exactly parallel to
that of girators. Given a collection of v multipliers £; on the unit circle of C, we face the

choice of lifting them into multipliers £;= exp(27i)}) on C with real numbers A} of one
sign only, or of mixed signs. The first choice leads to linearisators that are close in form
to (7.4), yet involve an infinity of independent ramified monomials z{*. The second choice

avoids this infinity, but at the cost of less explicit formulae. See the concluding section
§11.
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8. GENERALISED HOLONOMY. CORRESPONDENCES BETWEEN
CONJUGACY CLASSES OF LOCAL OBJECTS.

In this section, we shall have two concerns. First, factorising (canonically and
explicitly) the seriable linearisators of local objects. Second, generalising the notion of
holonomy; that is to say, associating with a local object Ob (field or diffeo) a local diffeo
fmv of ‘.:,, in such a way that the analytic conjugacy class of Ob should determine that of

inv
f

L]

For our first purpose, we will provisionally assume Ob to be non-resonant (that re-
striction will be lifted in §10), but our second construction will apply right away to all
cases, resonant and non-resonant.

We recall the definition of the invariant algebra INV 1ntroduced in §1. For any given
local object X or F with diagonal linear part X'® or F , INV is the algebra of formal
power series spanned by all monomials :

(8.1) z% =z ...z (0i €RY, z; € ?)
invariant under XU® or I."‘h "

(8.1bis) X'in 2% = 0; Fun.z’ =z7

Proposition 8.1. Factorisation of seriable linearisators.
Assuming non-resonance, all seriable linearisators hitherto defined factor as follows :

(82) eser - eent e 6;: = einV ee_nlt

IllV’

or scalarly (mark the reversals) :
(8.2172'8) hoer — kinv ° hent; koer — gent o hinv

into a usually divergent “integral part” Oy, which preserves entire series, and a usually
divergent “invariant part” ©,,,, which preserves INV and commutes with the linear part
of the girator or giration. The substitution operators Ocny and Oiny (we also recall Oger
for completeness) possess the following ezpansions in the case of girators :

(8:3)" Oser = 3 Seo(2)Be (83) O =3 5%(2)B.
(84) Oem =Y S°B. (84") ©;l=Y5'8
(8.5) Oy =Y 5°(2)B, (8.5')* ©;l =3 5°=)B.
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and in the case of girations :

(8.6)* Oser = 3 Scoim(2)Be (8:6')  ©Opr =X 8coim(2)Be
(8.7) Oent =Y. S°B. (87) ©;=3y6°B.
(8.8) Oy =3 S5 (2)B. (8.8 ©;! =3 85.(2)B,

Proof and comments :

The 12 above expansions involve standard mould-comould contractions of type LA°B,
and the way to deduce the expansions of O¢yy and ©;,y from those of O, is by using the
canonical factorisations A®° = A} x A3 of compensators along with the identity

(8.9) Y (41 x 43)B. = () 43B.)(Y_ AiB.)

which is valid as soon as the differential operators B,, which go into the making of the
comould B, commute with A}, that is to say, do not act on the variable or variables
(if any) present in the mould A}. Note that there is no restriction here on the mould
A3. This explains why the four star-marked formulae (...)* in Proposition 8.1 hold only
when the B, don’t act on the variable(s) carried by the corresponding mould. But even
when this is not the case, as with diffeos, the formulae (...)* retain their validity after
a slight redefinition of the comould B,. Observe that the scalar moulds S*,5°,8°,&°
appearing in the formulae, are defined as in §1. The one or two variable compensators
52.(2), 58(2), colm(z),a‘}m,m(‘z) are the same as in sections 5,6,7. Lastly, the moulds
5°(2),5° (z), S, (2),80n(z) are defined as in (4.2) (4.3) (4. 22) (4.23) in the case of one
ramified variable, and by using mould mixing as in (6.14) in the case of two ramified
variables.
Now, let us address the construction of the “generalised holonomy” operator F'
®inv
Denote by }.2 any rotation of r; turns in each component (.: of (.: :

(8.10) 1.2¢(zl, .1:,,) = cp(e”""‘z cefmrvg) (ri€l)

Then, for any girator X or any lifted giration F' with seriable linearisator Og,, put

(8.11) F “e;'ReO,, =6, RO}
®inv . )

or scalarly :

(8.11bis) finv =h*Tor o k™ = K™ o r o hi™

The middle and right terms in (8.11) and (8.11bis) are indeed equal,because the factors
6! in 6! (see (8.2)) commute with }.2 and cancel out. Moreover, as a product of two

seriable factors ©X1

=1 with an elementary R in between, F_ is automatically seriable.
° o inv
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Now, the above construction of F is not intrinsic. Suppose indeed that we calculate,
o inv
according to the formulae of sections 5,6,7, different seriable linearisators ©},, relative to
different charts i = 1,2,.... These linearisators will factor into :

(8.12) 0l = (Oent) - (65,)  (1=1,2,..)

with identical Oy but chart-dependent factors © . connected by :

(8.13) e, =0Jel  (,7=123...)

Consequently, we also get chart-dependent holonomies F! , mutually connected by :

mv

(8.14) F' = ei‘,{vf'fme{,fv (6,5 =1,2...)
with
(8.15) 0}, = (0} )(0},) ™" = (0k,) ' (O;)

The last term shows that Ol'l’"v is seriable and the middle term shows that it preserves INV.
Therefore, if the factors ©;, implicit in the O}, preserve a rigid subalgebra RIG of INV
(see end of §3), so do the connection factors 6:;;’;,, which means that they correspond to
power series i::,{v € RIG. But being also seriable elements of a rigid algebra, the series l'é:,’w

are in fact convergent. Therefore we have proved :

Proposition 8.2. Invariance of the holonomy class F.

Whenever the seriable linearisators Oge; of a local object Ob (girator or giration) draw
only on a rigid subalgebra RIG of the invariant algebra INV (and such is the case for
all linearisators constructed in sections 5,6,7) the various (generalised) holonomies Ij‘inv

relative to a given multirotation R but to different charts, are all conjugate according to
L]

i

(8.14) with convergent connection factors ©;;,.

The “convergent conjugacy class” of F,
1s therefore well-defined and dependent only on the analytic conjugacy class of Ob.
Now, let us look for the mould expansion of the holonomy Ij’inv of a girator 2mi X,

assuming for simplicity that the condition for the validity of the star-marked formulae are
met. Using definition (8.11) along with expansions (8.3)* and (8.3') we find :

F_, =(I5(2)B.) R (X Se(2)B.)
(8.16) L
=R(L(R  554(2))Ba)(L Seo(2)Bs)
and finally :
(8.17) F,,=R(}_ D*(2)B.)
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with the customary order reversal :

(8.18) D*(2) = (S24(2)) X (R 82(2))

Due to (4.2) (4.3) or (6.13)(6.14) this becomes :

(8.19) D*(2) = (5°(2)) x (13—15°(Z))

For girators with semi-mixed spectrum (see §5) we have only one ramified variable :
(8.20) z=zn=2"" (M <0)

and, due to (4.2) (4.3), the mould D*(z) simplifies to :

(8.21) D*(z) = 2I*1 82 (e1)

with e; = exp(2mir;/A;) and 2wl = xl_““'“/'\‘. In other words, the ramified variable z,
factors away and a mere constant e; becomes responsible for the compensation effect. For
girators with truly mixed spectrum, on the other hand, we have (see §6) two ramified
variables :

8.21 z2=(z1,22) = zl_l/h,z"l/)" with A\; <0< A;
2

which do not factor out and remain essentially involved in the compensation, which is now
more directly apparent in (8.18) than (8.19).

To conclude, let us observe that the correspondence f—g studied in
L] L]
the preceding section (for girations) is essentially the same (up to ramification) as the corre-

spondence f— fmv of the present section, since g is analytically conjugate to
L] L] L]

Pyy.0 finv o Py.. Moreover, like in Remarks 5 and 6 of §7, the “holonomy” correspondence
L]

Ob — }:'inv extends, thanks to seriability, to non-analytic classes C(M) while retaining its

basic invariance property.

9. LINK BETWEEN COMPENSATION AND RESURGENCE.

In the case of resonant objects, the seriable linearisators Oge, still exist, with un-
changed expansions into series of compensators, but instead of their usual factorisation
Oent O into two hopelessly divergent factors, they admit (see §10) an alternative factori-
sation 6,,0,6;“1, into two resurgent (and usually resummable) factors. But since effective
resurgence prevents regular summation in a full neighbourhood of 9 and since on the other
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hand ©Oger, on account of its seriability, does have a regular sum in such a full neighbour-
hood, it follows that the resurgence present in both factors ©,,, and 9.;:, must somehow
cancel out. This is indeed the case, as we shall see in the next section. But as a prepara-
tion, we must first study the interplay of resurgence, seriability and compensation in the
simplest possible context, namely that of resurgent monomials. To that end we will have

to study the following moulds :
{55 {S5(2),55()

(9.1) { ls 14

PP} Vale)¥ae)

\

and pay full attention to their intricate symmetries and interconnections.

All eight moulds listed in (9.1) are symmetral (see §12) and those bracketted together
are mutually inverse (for mould multipliation, see §12). The first pair are scalar-valued
moulds; all others are divergent series of decreasing powers of a complex variable z, but
for simplicity we drop in this section the usual twiddle (~) indicative of formalness.

The moulds of the first line are indexed by sequences w = (wy,...,w,) with real or
complex w;. They were already defined in (1.22) (1.23) for the first pair and in (4.2) (4.3)
for the second pair.

o

The moulds of the second line are indexed by sequences n = (9, ...,n,) withn; = (“" )
and real or complex w; and o;.

The V7,37 are so-called resurgence monomials and their definition is given by the
following induction :

(9.2) OER MOES
(9.3) (@1 + - @y + B )V (2) & _Ymtea ()0
(9.4) @1+ .. owp + B P () B g pon P ()

The vZZ,, 7 depend on a complex parameter p, which is left unwritten for the sake of
brevity. They are called compensated resurgence monomials, for reasons that will become
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plain in a moment (Proposition 9.1). Their shortest definition is by means of the mould
factorisation :

(9.5) Veo(2) & (21°1P 32 (2 + plog 2)) x (V*(2))

(96) Pi(2) E (#7(2)) x (11V° (2 + plog 2))
(with || @ || = w1 +...w, as usual) which mirrors the definition of S%,, 5¢, in terms S°,5°.
Proposition 9.1. (Compensation of resurgence in vZZ,(z) and ¥1(2))

Each monomial V1 (2) and V] (z) is a resurgence constant, meaning that all their
alien derivatives vanish :

9.7 AL V(2) = Bu, ¥A(2) =0 (Ywo €C; ¥ = (m,-..,0r))

Proof : We start from the alien derivation rules for resurgent monomials (see e.g. [E.1]
or [E.3]) :

(9.8) AV = Y VIVT(2)
n=n'7*

(9.9) A ¥(2) == 3 w1 (VI
n=n'n’

Applying this to the factorisations (9.5) and (9.6) in conjunction with the rule (12.39),
which in the present instance yields :

(9.10) Ay (Z11P ANz + plog 2)) = (ALAT)(z + plog 2)
(with A®* = V* or ¥*) we immediately arrive at (9.7).

Proposition 9.2. (Seriability of Vc?,(z) and ¥ (z2))

Each monomial VIi(z) and ¥1(2), belongs to Z1OIC[[z=, 27 log 2]] (with ||o|| =
01+ ...0r) as well as to the algebra Ser(z™!) of seriable series (z ~ o0) and can
therefore be resummed by the procedure of §3 in a full neighbourhood of 9 € C. Moreover,

each VI(z) and V1(2) is also compensable, with the ezplicit expansions (9.29) and (9.50)
into convergent series of compensators.
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Proof : The factorisations (4.2) (4.3) and (9.5) (9.6) make explicit the horizontal arrows
1 and 2 in diagram (9.1). The way to prove Proposition 9.2 is by studying the vertical
arrows 3 and 4. The following two lemmas will do this for us :

Lemma 9.1. ({V°(z),¥°(z)} in terms of {S°*,5°}). .

(9.11) vﬂ(z) - (z + am )n . (Z + awr)a..sw
(9.12) ¥W(2) = (24 0u,)" .. (24 8,)" 5%

Lemma 9.2. ({v:o(z)’v::o(z)} in terms Of {S:O(Z), S:o(z)}) ¢

(9.13) VI(2) = (24 0,)7 ... (24 8., )" §(2)

(9.14) Vg,(z) =(2405,)7...(24 08.,)°" §%(2)
Here (z + 8.,)? is short-hand for :

olo—1)...(c —n+1) ,
n!

(915)  (248.)7 =2"(1+2710.)" =2+ )
n>1

tr—n(aw)n

with 8, = 8/0w. To prove the above lemmas, we now subdot all w-indexed or 7-indexed
moulds to denote multiplication by the same factor e/®!l# in both cases :

(9.16) AY o 47 3 Wiz g0

(9.17) AT 4" def Wiz gn

and we observe that the identites (9.11), (9.12), (9.13) (9.14) simplify to :

(9.18) V() = 00) .. (8,)7 5"
(9.19) ()= (00)" (@) 8
(9.20) V() = @)™ (@) ()
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(9.21) V()= @)™ () ()

although their interpretation is still according to (9.15) after elimination of the exponential
factors ell’ll?. We readily check that the series ?q(z) and }:‘n(z) as defined by (9.18) (9.19)
satisfy the induction :

(9'22) 0,1.)'“ y~--,'7r(z) - _1’)'11 yeenyfir—1 (Z).(ew,zzﬂr)

(9-23) 3,?"1"","'(,@ — (ewlzzdl ).?'nv"'vﬂr(z)

which is equivalent to the relations (9.3) (9.4) which characterize V(z) and ¥"(z). This
proves lemma 9.1.

The derivation of (9.13) (9.14) is not so straightforward. Putting z. = z + plogz we
observe that (9.5) (9.6) translate into the relations :

+ (%) (Cwl Ze zg,_) (v:l:,-..,ﬂr (Z))

(9.24) e ,nr(z) ~ (v” e )) (e22)
(9.25) az?m,...,,,,(z) _ + (er1727) (;:Z:,...,m(z))

- () (e ()

co

which provides an inductive definition of Vq (2) and Vn (2). Next, using the differentiation
®co ®co
rules (4.4) (4. 5) for the compensators Sw(z) and Sw(z), we check that, if we now regard

v (z) and V' (z) as being defined by (9.20) (9.21), they still satisfy the characteristic
mductlon (9. 24) (9.25). This shows the equivalence of both definitions and proves lemma
9.2.

Now, we require complex coefficient cg and dg defined by the generating function
(9.27) :

(9.26) dypronr & (—1)mEen e
a ny a ny
(9.27) H(Z-I-aw‘)ﬂ. def Z ::" ,’:: Lorto)=(ni+..n,) ( ;ll)! ( ;:r)l
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(9.28) Oui € 0y 4 0ripy +...0,, (i=1,....7)

Using these coefficients, we find that equations (9.20) (9.21) immediately translate into
the following expansions of Vg(z) and ¥ (2) into convergent series of compensators :

(9.281)1'3) vg‘;,...,n,(z) = z%1t..0r Z c::,,::: (p/z)n1+...nrswl ,0("1),.-.,wr,0("r)(zp)
n;

(9.28ter) POl (7)) = Z01t0r Z d::::::::: (P/z)m+...n, 50("1),w1 ,...,0("'),u,(2p)
ng

where 0(*) denotes a subsequence of n; consecutive zeros. This vindicates the claim about
the compensability (in the sense of §3) of vc?,(z) and ¥ (z) and terminates the proof of
Proposition 9.2.

Remark : For the simplest conceivable instance of compensated resurgence, corresponding

tor=1and g = (“") = (f}) , see (3.28) (3.29).

(4%

10. RAMIFIED LINEARISATION OF RESONANT OBJECTS.

Resonant local objects present us with a rich situation, as they fall within the purview
of two of the formal statements F; and two of the analytic statements A; of §1. Indeed,
on the one hand, resonant local objects can be brought to a normal form (containing
only resonant monomials with formally invariant coefficients) by a change of coordinates
that is not merely formal (statement F3) but also resurgent (statement A;) with regular
summability in sectorial neighbourhoods of 9 On the other hand, resonant, non-degenerate

local objects admit ramified linearisations which are not merely formal (statement F3) but
may be chosen to be seriable (statement A3) with regular summability in full spiral-like
neighbourhoods of 0.

This dual nature, and in particular the passage from sectorial to full neighbourhoods
of 0, calls for a close study of the interplay between, first F; and F3, then A; and Aj.

Interplay of F; and F; : from formal-entire normalisation to formal-ramified
linearisation.

Statement F; is classic and statement F3 follows from statement A3 with its explicit
expansions of the linearisation map into convergent sums of compensators. Nonetheless,
it is interesting to study directly the passage from normal to linear forms, if only because
it helps understand the compensation of resurgence. (See (10.25) and (10.26)).
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We will restrict ourselves to vector fields, which we will write as dynamical systems
(with respect to a complex time z) first in a normal, entire (but generally non-analytic)
chart £ = (z;), then in a linear, ramified chart y = (y;) :

(10.1) 8 zi=zi{li+ ) cime™} (1<Si<y; <Am>=0)

(10.2) 9 yi = yi\i (1<i<v)

and we will look for ramified changes of coordinates :

(10.3) zi=Mn(y) and yi= @)  (1<i<w)
of the form (1.35) or the still better form (1.36)

Example 1. Vector fields with one degree of resonance : Simplest type.

This is the type (p,p) = (1,0). See e.g. [E.3]. In this case, the normal form is as
follows :

(10.4) 9; zi = zi{\i + Tiz™} 1<i<v)

with 2™ =z ...z (m; €N)and:

(10.5) <mA>=0; <m,7>=-1

For any real vector @ = (a4, ...,a,) normalised to A :

(10.6) <a A >¥ Y adi=1  (aeR)

we have the ramified linearisation :

(10.7) z; = Ki™(y) = yi{1 + y™ logy*}™ (1<i<v)
with an explicit reciprocal linearisation :

(10.8) yi = hi*(z) = 2;{1 + z™ log z®} ™ (1<i<v)

which, unlike (10.7), is valid only if « is also orthogonal to 7 (i.e. < a,7 >= 0). Both
linearisations have the required form (1.35) and when :

(10.9) {m; =0} = {a; = 0} (Vi)

they even have the better form (1.36).
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The quickest way to check (10.7) (10.8) is to compare the formal integrals of (10.4)
and (10.2), which read :

(10.10) T; = u;eMi with v™ =1

(10.11) yi = v;ehi’ with v™ logv® = -1
with the identities :

(10.12) z=z "=y ™ + logy”
(10.13) u; = vi(v™)" (V7)

Example 2. Vector fields with one degree of resonance : General type.

This is the type with general “level” p € N* and general “residue” p € C. The normal
form is now as follows :

r—1

(10.14) d.xi =zi(1+pz™) (A + Y Ma™ + riz™P)
g=1
with (10.5) still in force and
(10.15) <mXM>EY mA=0 (1<q<p-1)
From (10.14) we calculate the formal integral :
p—1
(10.16) T; = u;zl' exp {/\;z‘ + Z A:-’zi—q/’}
g=1
with
(10.17) z2=z.+plogz,; u™ =1; (1—q/p)A! =21 (W)
This can be rewritten as :
(10.18) z; =u; expAi(z)  (with Ai(2) = Aiz + o(2))
and yields an explicit ramified linearisation :
(10.19) z; = K (y) = yi exp{Ai(y "™ +log y*) — Ai(y™P™) — A logy®}
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which is indeed of the form :

(10.20) B (y) = yi{l + @i(y™,y™ log y*)}

(10.20bis) pi(a,b) € C{a,b}

and hence of the form (1.35) or even (1.36) if a is chosen so as to meet condition (10.9)
(on top of (10.6)).

Example 3. Vector fields with one degree of resonance : Nihilent type.

This is the case p = 400, but although fields with finite level p have (v —1)(p+1)+1
formal invariants in their normal form, the fields of infinite level still have finitely many
invariants. We may however start from any normal or prenormal (see statement F in §1)
form :

(10.21) 0:xi = zi{Ai + Y Ma™}
1<¢

and arrive at the ramified linearisation :

(10.22) zi = K™ (y) = yiexp {(log D0 /\?y"")}

1<¢
with (10.6) and (10.20) as usual.

Example 4. Vector flelds with several degrees of resonance.

Whenever the resonance degree u is > 2, there exist infinitely many formal invariants
and the normal form (10.1) is generally divergent. One may still construct formal integrals
(1.49) and deduce from them ramified linearisations, as was done in the previous examples,
but one may also take recourse to explicit expansions into sums of compensators, such as
(5.5) or (6.21). Note that these expansions, when applied to normal (or prenormal) forms,
undergo a drastic simplification, because the compensators in them carry only vanishing
indexes (w; = 0), so that they become polynomials of log z;, for one or several variables z;.
In the case of vector fields with a general complex spectrum (irreducible to girators), it is
advisable to introduce one ramified variable per degree of resonance and to make repeated
use of mould mizing (see §6) in order to construct compensators of several variables.

Example 5. One-dimensional, resonant diffeos.

They are local diffeos = — f(z) with multipliers £ = f'(0) equal to roots of unity.
If nilpotent (i.e. if some of their iterates reduce to the identity map) such diffeos possess
analytic linearisations. Otherwise, they have a definite level p € N* and can be linearised
by a formal ramified change of coordinates y = h(z) with h(z) in C[[z, z? log z]].
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But let us leave these formal aspects for the real thing, namely the analytic study,
with the phenomenon of resurgence compensation leading to seriability.

Interplay of F; and F; : from resurgent normalisation to seriable linearisation.

As we saw in §8, for non-resonant local objects, seriable linearisators admit the
canonical factorisation

(10.23) Oger = Ocny 72

mv

For resonant local objects this becomes :

(10.24) Oser = Opor O72

mv

or alternatively :
(10-24bi3) eser = (enor elin) . (einv elin)_l

with an entire change of coordinates Oy, taking the object into a normal form, and a
simple ramified change of coordinates ©y;, taking that normal form into the linear form
(such as in the above examples). Like (10.23), the factorisation (10.24) is essentially unique,
at least for a given normal form, but the factorisation (10.24bis) has a larger element of
arbitrariness. in it.

Now, for any seriable linearisation O, both factors in (10.24) are resurgent and
satisfy the same bridge equation :

(1025) [ A.w, enor] = _enorAw (Vw € Q)

(10.26) [ A, Oiny] = —OimvAs  (Vw € Q)

with respect to the same “resurgence lattice” 2 and the same holomorphic invariants A,,.
.

Here, the A, are the usual pointed alien derivations (see §12) acting on z = z~™ (for level

one) or z = z~™ (for level p) or some suitable resonance monomial in the multiresonant

case (see [E.3] or [E.7]) and the A,, are ordinary differential operators intrinsically attached
to the object (see §1).

Equation (10.25) is of course nothing but equation (1.48) in operatorial form (and with
a minus sign), but the remarkable thing is that ©;,, should satisfy the same equation. The
immediate consequence is that :

(10.26bis) [ &u,er..i] = +A.0.,

mv
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so that for each w :
(10.27) [ A.w, Oger] = | A.w, enorlei;i + Onor[ ‘iw,ei:'] =0

which means that O, is a resurgence constant : the resurgence in both factors of (10.24)
cancels out. This in turn explains how O, can have a regular sum in a full neighbourhood

of 0, while the resurgent factors ©y,; and 6;3, have regular sums in sectorial neighbour-

hoc;ds only.

We may also observe (reasoning on a girator for definiteness) that while the factors
02! and ©2! admit convergent mould expansions involving the moulds V*(z) and ¥*(z)

of §8, the product ©X! admits simultaneously two types of expansions : one (already
encountered in §5 and §6) involving the plain compensators S5,(2) and 52,(z2); and another

involving the compensated resurgence monomials V3 (z) and ¥, (2) studied in §9.

We cannot enter into details for lack of space, but the following two examples will
clarify the preceding points.

Example 6. Vector fields with one degree of resonance. Compensation of
resurgence.

This is example 1 studied from the analytic angle. Here, the general bridge equation
(1.48) involves holomorphic invariants of the form (see [E.3] or [E.7]) :

v—1
(10.28) A, =u™, {Aga, +Y 4L u,-a.,,.}

i=1

with constant coefficients A!,. In the normal chart this becomes :

(10.29) A, =1I“*A,
with :
(10.30) A, = { CALXT ) "Ai,:t.-@,‘}
i=1
v .
(10.31) S miAlL=0
=1
(10.32) IY = goWemwz™"

(10.33) oi(w) = ni(w) + (z T;n;(w)) m; f w= Zn,-(w)/\;

i=1 i=1
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Due to the resonance, the ni(w) are not determined by w, but the o;(w) are. If we
now revert to the notations of example 1 and choose :

(10.34) ag=1/M50=a3=...a,=0
the normal variable z; and the linear variables y; are connected by :
(10.35) zTTm=y™™ +(1/ M) logyy

Using the unpointed alien derivations A, and A, relative to 2 = 2™ and 2’ = y™™, we
obtain for the factors (10.24) of O, two parallel bridge equations :

(10.36) [Au, Onor] = —Onor-(z7“) *A,,)

(1037) [AL” einv] = _einw(ya(w) yl—w/)q ‘Aw)

which make perfect sense if we interpret them component-wise, isolating on both sides
the power series in ™ and y™ and regarding the other variables (minus one) as mere

parameters, inert under alien différentiation. In this identification process, the factor

Y “/M1 must of course be interpreted as an entire series of log y;, via the obvious formula.

Example 7. Resonant local diffeos of C. Compensation of resurgence.

This is the analytic counterpart of example 5, as well as the resonant counterpart of
the example studied under remark 5 of section 7.

Let us consider two local diffeos f; with multipliers £; = 1 and levels p; = 1 (to
simplify) but with general residues p; :

(10.38) fi(z) = = + ajz® + (a;)2(1 + pj)z® +. .. (G=1,2; a; #0)

Let us also consider the usual formal iterators f]‘ of the form :

(10.39) fi@)y=37" = pjlogz+ Y cjpna”
n>1

and characterised by :
(10.40) fofi(z) =1+ fi(z)
so that for any r € Z :

(10.41) FH(e¥™ire) = (72" £} (2) — 2mirp;
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Next, consider the formal series f;j of the form :

(10.42) fij(2) = = + z$ij(z) with &;;(z) € C[[z,zlogz]]
and characterised by :

(10.43) ft="Ffijofr  with (4,5) = (1,2) or (2,1)

If we now denote by T any rotation of r turns :
(10.44) r () et g2miry (z € (.:, rel")
and if we assume :

(10.45) a; =az =1; 2mir(py — p2) =1

then, using (10.41), we readily check the following formal linearisation equations :

(10.46) fi=fizor ofy with fld-ﬁ-‘: ofy
(10.47) f2—1= faro r ofiz with £, 7'.—1 ofz

But iterators f;‘(z) are resurgent in z = 7! and satisfy the bridge equation :

(10.48) Do fr = —Avexp(~wfl)  (Vw € 2miZ*)

Therefore if we assume that f; and f; have the same holomorphic invariants, that is to
say, if the coefficient A4, in (10.48) do not depend on j, we immediately check that the
series f,-j are resurgence constants :

(10.49) A, fij=0 (Vo)

with seriable sums f;; which, unlike the sectorial sums f} of the iterators, are defined and
regular in a full, spiral-like neighbourhood of 0, so that the linearisation equations (10.46)

(10.47), from formal, become effective. This is possibly (after the examples of §9) one of
the simplest instances of resurgence compensation.
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11. CONCLUSION AND SUMMARY.

We have shown in this paper that girators and girations admit seriable linearisations
. . . . v .
valid in ramified neighbourhoods of 0 € C . Actually, as we propose to show in a follow-up
L] L]

investigation, all local analytic objects (whether vector fields or diffeos) under the sole
assumption of non-degeneracy (no vanishing multipliers) also admit seriable linearisations,
although for them the relevant constructions are somewhat less explicit than for girators
and girations, and the geometric-dynamical interpretation somewhat less direct than (1.63)
(1.64).

To conclude, let us review the main merits of seriable linearisation.

M1) Like analytic-entire linearisation, seriable-ramified linearisation z; = k{*'(y) is
y X i Y
“quasianalytic” in the sense that the formal series kI constructively determine kfe’.

(M2) But unlike analytic linearisation, whose existence is guaranteed only in the
absence of the three complications Cy, Cy, C3 (resonance, quasiresonance, nihilence), seri-
able linearisation holds in all cases, subject only to non-degeneracy.

(M3) Even when analytic linearisation is available (according to statement Ay of section
1), the size of the Siegel linearisation domain is no continuous function of the multipliers
of the object. It is highly sensitive to their arithmetical properties : when the sum S in
(1.19) is large, the Siegel domain tends to be very small. The spiral-like domain of seriable
linearisation, on the other hand, depends continuously on the multipliers and is always
fairly large.

(M4) The optimal spiralling speed of the domain of seriable linearisation can be explicitly
specified in function of the resonance or quasiresonance of the multipliers.

(M5) For resonant objects, there is a remarkable interplay between seriability and com-
pensated resurgence, which gets reflected in the symmetry between plain compensators and
compensated resurgence monomials (see §9 ans §10).

(M6) Seriable linearisation leads to a generalisation of the notion of kolonomy (see §8) and
provides a systematic, unified method for constructing intrinsic correspondences between
analytic conjugacy classes of local objects (see §8).

(MT) Seriable linearisation, suitably reinterpreted, eztends to non-analytic local objects
(defined for instance by power series in Gevrey or more general Carleman classes), which
are ez hypothesi beyond the pale of geometry, and yet give rise to non-trivial conjugacy
problems (see for ex. §7, remark 6, for the extension of the Douady-Ghys lemma to non-
analytic classes).

12. REMINDER ABOUT MOULDS; ARBORIFICATION; RESURGENT
FUNCTIONS; ALIEN DERIVATIONS.

The following ultraconcise reminders are no substitute for full definitions, but refer-
ences are appended to each subsection.
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A. Moulds and comoulds.

A mould A® is a family {A¥ = A“1*r} of elements of a commutative algebra
A, indexed by sequences w of w; ranging through a commutative semigroup Q. Mould
multiplication is defined by :

,
(12.1) A3 = A7 X A3 & A = 37 A gy

=0

For any three sequences w,w',w" we put :

! "
(12.2) sh (w ":J ) = number of order — preserving bijections of w' ® w" into w

! "
(12.3) ctsh ( v ;}w ) = number of order — preserving surjections of w' @ w" into w

A mould A° is said to be symmetral or symmetrel if A’ =1 and if for any pair o', w" :

(12.4) AY' 4@ =3 sh W' g0 (symmetral
. = “ ymmetral)

(12.5) AY' 49" =Y ctsh WY g0 (ymmetrel
. = w ymmetrel)

For instance :

(12.6) AT AP = AW1W2Ws | AW2,01,08 4 fwa,Ws,en (symmetral)

(12.7) A¥1 4919 = jdem + A¥r1T@nws 4 guUnwites (symmetrel)
The simplest moulds are 1° and I® :

(12.8) 1P =1; 1909 =0 ifr>1

(12.9) I =1 (Vwy); I =0 ifr=0o0r r>2

1° is neutral respective to mould multiplication X and I°® is neutral respective to mould
composition 0 (which we don’t require here).

Comoulds B, have sequences w = (wi,...w,) as lower indexes. They usually as-
sume values in bialgebras B of differential operators, endowed with a non-commutative,
associative product and a commutative co-product o :

(12.10) c:B—-BQ®B
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Most comoulds are either cosymmetral or cosymmetrel :

! "
(12.11) o(Bw) = Zsh (w ::’ ) B ® Buww (cosymmetral)
! "
(12.12) o(Bw) = Ectsh (w ":J ) Buw @ By (cosymmetrel)

Thus if the B,,; are ordinary derivations, we have :
(12.13) o(B,;)=B,,®1+1Q8,,

and the comould B, defined by:

(12.14) Bo,.. v B, ...B,,

is cosymmetral.

The contraction of a mould A® with a comould B, is a sum of the form :
(12.15) ©=) A°B.=) A“By

extending to all sequences w, including w = 0. If A® and B, are well-matched (i.e. sym-
metral and cosymmetral, or symmetrel and cosymmetrel), their contraction O is a formal
automorphism :

(12.16). 0(©)=00
For details and examples, see [E.1],[E.3],[E.8].

B. Arborification and coarborification.

Arborification means replacing fully ordered sequences w by sequences & with an ar-
borescent partial order on them (i.e. each element w; has at most one immediate antecedent
wi_).

< <
For any pair (w, a<;) we define sh (:) and ctsh (:) as the number of order-preserving

bijections (resp. surjections) of &S into w.

Symmetral arborification-coarborification obeys the formulae :

» &
(12.17) AY =) "sh (w> AY
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<
(12.18) Bw =Y sh (:) B

Symmetrel arborification-coarborification obeys the formulae :

5 _ &\ o
(12.19) AY = ctsh NE

<
(12.20) Bw =Y ctsh (:) By

<
Whereas (12.17) or (12.19) define A, neither (12.18) nor (12.20) suffice to determine
B < . So we add other natural conditions. For instance, for differential operators B, as in

(12.13) and a comould B, as in (12.14), we define B< by :
(12.21) Bs v < {B,,... Bule
by letting each B, in {...} act on ¢ alone if w; has no antecedent in é, or on the coefficients

of B, if w;_ is the (unique) antecedent of w; in S

Since arborification and coarborification (whether symmetral or symmetrel) are dual
operations, we have :

(12.22) =Y 4'B.=Y a%B

. . . <
but in very numerous instances the seemingly harmless passage from e to e restores normal
convergence.

For details and examples, see [E.8].

C. The algebras RES of resurgent functions.

There are three models : formal, convolutive, geometric. The formal model ﬁES

consists of formal series like :

(12.23) $(z)=) anz™ (neN or R*)
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or of a more general type :

(12.24) #(2)= anea(z)  (n(2) > €nta(2))

with each “monomial” e,(z) decreasing subexponentially as z —»o.oe (.:
The product here is the (formal) multiplication of (formal) series.

v
The convolutive model RES consists of pairs :
(12.25) $= (f,},?;’a) = (minor, major)
of germs é (¢) and t\pf ) at (.) € (.: in the {-plane conjugate to the z-plane.

The minors (,/c\a (¢) are assumed to be endlessly continuable in the (-plane, along any

(discretely punctured) broken line. The majors <\;a (¢) are defined up to regular germs at 9

and relate to the minors as follows (for ¢ close to 9) :
(12.26) (0 =p ()= (e7™¢)

The product here is convolution (*), which for integrable functions (at 0) reduces to minor
L]
convolution :

A A < A A
(12.27) Se b= [ B B-ada o (~0)

The geometric model °RES of direction 6 consists of holomorphic germs ¢(z) which
are defined and have (at most) subexponential growth in half-planes Re(ze*?) > z(y) > 0.
The product here is ordinary, point-wise multiplication.

The passage from the convolutive model to the geometric model of direction 8 is via
the Laplace transform L, which reduces to :

(1228) 0= [

? (Qe¢dC
arg (=60
when g (¢) is integrable at (.)

The passage from the geometric (resp. formal) models to the convolutive model is via
the effective (resp. formal or term-wise) Borel transform B :

(12.29) o(z) =5 (¢) = % / = o(2)e*dz

001
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(12:30) )5 O =5r; [ el

27t

for 0o;, 007,003 suitably located at infinity.

For details and examples, see [E.1], [E.3], [E.5], [E.8].

D. Alien derivations.
These are linear operators A,,, with indexes w in (.Z, which are useful on three accounts.

First, they are easy to handle, being derivations :
(12.31) Au( P1* $2)=(Dw $1)* P2+ 91 H(Auw $2)

Second, they measure the singularities of minors (,/3(() over the point w, which is

essential, since those singularities are responsible for the divergence of the corresponding
series ¢(z) in the formal model.

Third, they enable us to describe, by means of so-called resurgence equations :

(12.32) Eo(($,00 $) =0

the close connection which usually exists between the behaviour of 4;(( ) near 0 and near

its other singularities w. This self-reproduction property is an outstanding feature of all
resurgent functions of natural origin.

Alien derivations act as follows on the convolutive model :

(12.33) Au : g__. ((5";) = ‘Zw__- ( ‘3‘9’ S\o,w)
with :
(12_34) é\w (() def E €p 611 S/;ﬂ,...,n (C'l'w)
e.~=:l: W1 yeee Wy
e €1ye0ey€p—1,+
(1235) ‘zw (C) d=f Z 661,...,6,_1 Q/; 1 1 (C +w)
€i=* W1 yeeeyWp~1,Wyp
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first for ¢ close to 0 on the radius arg( = argw, and then in the large by analytic con-

tinuation. Here, the w; (with w, = w) denote the successive singularities of ] (€) on the

/\(l;---yfr

segment [0,w] and ¢ (¢ +w) denotes the determination of $ (¢ 4+ w) that corresponds
L] wy

to the right (resp. left'.)"'circumvention of w; if €; = + (resp. € = —). Lastly, the weights
6° are given by :

Iq! Iq!
€14yeeey€p—1 - i p'q' = p‘q'
(12.36) 6 syl

where p and ¢ are the number of + and — signs in (€, ...,6—1).

The alien derivations A, generate a free Lie algebra. There being no danger of
confusion, we retain the same symbols A, to denote their (pulled-back) action in the
maultiplicative models (formal or geometric). We also introduce the pointed alien
dertvations :

(12.37) A A,

which act in the multiplicative modéls tensored by ezponentials exp(— ) z), and obey the
rules :

(12.38) [A.,8]=0 (with @=8/dz)
(12.39) Ao (pof)=(Dup)of+(Bp)of. Ay f

if f(2) =2z+ o(2).
For details and examples, see [E.1], [E.3], [E.7], [E.8].
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COMPLEX DYNAMICS IN HIGHER DIMENSION. 1.
John Erik FORNAESS & Nessim SIBONY

1. Introduction

Given a polynomial equation P(x) = a,a™+---+ag = 0, in one variable, z,
one asks what are the solutions. The main advantage of the complex number
system is that if x is allowed to be complex then the solutions always exist.
However, to find the actual values of the solutions is impossible. One can only
find approximate solutions.

A traditional method is Newton's method. One starts with a value z¢ and
finds inductively a sequence {z,}, 2,41 = 2, — }:,((4') If o is near a simple

Ty)
root, this sequence converges to this root.

Shréder [Sc] was the first to study Newton’s method for complex numbers.
He was led to the study of iteration of the rational function R(z) := z — %él).
Mainly he studied the local behavior of rational functions near attractive
fixed points, R(z9) = zo, | R'(20) |< 1. He actually studied general ratio-.
nal functions rather than the special ones from Newton’s method, because
he discovered that Newton’s could be replaced by infinitely many rational
functions.

If instead one considers polynomial equation in two (or more) variables,
P(z,y) = Q(z,y) = 0, where P(x,y) = 5 a, mz™y", one is likewise led to
study iteration of rational fonctions in two or more variables. In this case
Newton’s method takes the inductive form

(x'n+1 B yn+l) = R(l‘,l, yn)

where the rational map R is given by
1
P'('Qy - PyQ;r

As in one variable there is an infinite family of other rational maps that could
be used as well. The simplest one is R(x,y) = (z,y) — A(P,Q) where A is

R(x,y)=(x,y)— (PQy_QPy’QPz"PQ:c)-

S.M.F.
Astérisque 222** (1994) 201
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a constant matrix equal to the inverse of the Jacobian matrix of (P,Q)" at
some point close to a fixed point.
More precisely consider the mapping in C? given by

(P’Q) = (%T - (T - 2.1/)29 %?] - x2) .

Obviously (0, 0) is a root of the system P = 0, Q = 0. If we apply the Schroder

method to this system with A = we get in homogeneous coordinate

20
0 2
the mapping f[z : y : t] = [2(2 —2w)? : 222 : t*] which is a holomorphic map
in P2. For any invertible matrix B the map g = I — B(P, Q) in homogeneous
coordinates is a holomorphic map of P2.

The analogue of Schroder’s study indicated above is the local study of R
around attractive fixed points. This was studied extensively in dimension 2,
starting by Leau [Le] in the end of the last century and carried through by
Lattes [La] and Fatou [Fa).

As far as the global study of iteration is concerned, that is, if we start with a
value zg, perhaps far from the roots of the polynomial, does Newton’s method
still converge? Schroder was able to decide this only for quadratic polynomials.
In this case he found that there is a circle in the sphere, C U {oc0} = P!,
dividing it into two open sets. Each of these open sets contains one of the two
roots and each starting point xo in these open sets give a sequence {z,} by
Newton’s method converging to the root in the same open set.

The global study of iteration in one variable only became possible in the
second decade of this century after the introduction by Montel of normal
families, in particular the normality of the family of holomorphic maps from
the unit disc to the sphere P! minus three points is crucial.

The analogue of this in higher dimensions was unavailable at Fatou’s time,
so essentially all the study of iteration of rational maps was local.

In this paper we will discuss mainly global questions of iteration of rational
maps in higher dimension. The analogue of Montel’s Theorem comes from the
Kobayashi hyperbolicity of the complement of certain complex hypersurfaces
in P*, the complex projective space of dimension k.

We start, here, with some basic facts on holomorphic endomorphisms of P*
(i.e. holomorphic maps). For simplicity we sometimes restrict our attention
to P2. In a forthcoming paper we will study the structure of Julia’s and Fatou
components.

In section 2 we discuss some basic properties of holomorphic and meromor-
phic maps on P¥.

Section 3 is an estimate of the number of periodic points, counted without
multiplicity.
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Then in section 4 we give a description of the family of exceptional maps.
This family generalizes the map z — z¢ on P! which is characterized by the
property that the points {0, 00} are totally invariant.

In section 5 we discuss the Kobayashi hyperbolicity of the complement of
part of the critical orbit. We show that this holds for a Zariski dense set of
maps. See Theorem 5.3 for a precise statement.

In section 6 we consider expansive properties of the map in the complement
of the closure of the critical orbit under suitable hyperbolicity assumption and
finally, in section 7, we classify critically finite maps in P2.

2. Holomorphic maps, Fatou and Julia sets.
We first describe the holomorphic maps from P* to P*.

THEOREM 2.1. Letf be a non constant holomorphic map fromP* toP*.
Thenf is given in homogeneous coordinates by [fo : f1 : -+ : fi] where eachf;
is a homogeneous polynomial of degreed and thef; have no common zero
except the origin.

Proof. Let {29 : 21 : +-+ : 2] be homogeneous coordinates in Pk, We
can assume that the image of f is not contained in any (z; = 0) (otherwise
rotate coordinates). By the Weicrstrass-Hurwitz Theorem [Gu] it follows that
each of the meromorphic functions f;- o f is a quotient of two homogeneous

polynomials gJL of the same degree.

Let F denote the map [ﬁ'o . --- 1 Fy] where the f’j’s are homogeneous
polynomials of the same degree obtained by dividing out common factors
from the polynomials gf -IIG,. We will show that F is a lifting of f to Ck+1,

For this we only need to show that the F'  have no common zeros except the
origin. Suppose to the contrary that p € C*+! | (0) is a common zero. Choose
a local lifting f = [fo: : fi]) of f in a neighborhood of p- We may assume
that one of the f; = 1. Say fo = 1. Then it follows that F = F f; and that
Fy(p) = 0. But this implies that the common zero set of the F is a complex
hypersurface, which implies that they have a common factor, contradicting
that we have already divided out all common factors.

Let 'H denote the space of non constant holomorphic maps on P* and
Hg4 the holomorphic maps given by homogeneous polynomials of degree d.
Observe that H is stable under composition.

On the other hand there are the (not necessarily everywhere well defined)
maps of degree d from P* to P*, which are given in homogeneous coordinates
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by [fo: f1:---: fi], but now the degree d homogeneous polynomials f; are
allowed to have common zeros. This later space is easily identified with PV
where N = (k + 1)%2 - 1.

We will also consider the space M, of meromorphic maps, consisting of
those [fo : - -+ : fx] in PN which have maximal rank on some nonempty open
set.

It follows from Bezout’s theorem that for f in Hy the number of points in
f~'(a) is d* counting multiplicity. Consequently f is of maximal rank and
hence Hq C M4 C PV,

In analogy with one complex variable we define the Fatou set and Julia
sets of a holomorphic map f in H,4. More precisely we have the following
definition.

DEFINITION 2.2. Given f : P¥ — P¥ in H,. 0 < ( < k — 1, a point p € P*
belongs to the Fatou set F if there exists a neighborhood U(p) such that for
every q € U(p) there exists a complex variety X'y through g of codimension ¢
and {f" |x,} is equicontinuous.

Observe that Fy is the largest open set where {f"} is equicontinuous. We
call Fy the Fatou set. Also observe that each F; is openand Fo C F; C --+ C
Fr—1-

Correspondingly, let J, = P*\F,. We call 7, the Julia set.

THEOREM 2.3. The Julia set of a holomorphic map inHg, d > 2, is always
non empty.

Proof. Assume Fy = P*¥. Let h be the limit of a subsequence {f™*}. Then
h is a non constant holomorphic map of finite degree. As in one variable this
contradicts that the degrees of f"* are unbounded. see [Mi].

THEOREM 2.4. The setsH, andM, are Zariski open sets of PV. In par-
ticularHq and Mg are connected. If f € H,. then the critical set of f is an
algebraic variety of degree(k + 1)(d — 1).

Proof. Consider Y, the analytic set in PV x P* defined by the equation
f(z) = 0. Let 3", be the projection of 3" in P". Then ¥, is equal to PV\H,.
Since the projection is proper, by Tarski Theorem, we get that ), is an
analytic set. The fact that M, is Zariski open follows from the equation
PY\M, = N.epr{f; J(f,2) = 0} where J(f.:) is the Jacobian of the lifted
map on Ck+1,

Let f={[fo:f1: - fr] € Ha. Then the critical set of f is the projection
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under the canonical map IT : C*+1 — P* of the critical set of (fo, f1,- - , fx)-
The degree of this set is clearly < (k+1)(d—1) so the degree of the critical set
of f in P* is < (k+1)(d—1). On the other hand for the map [2& : 2f : - - - : zf]
the critical set has degree (k + 1)(d — 1) and therefore since Hq is connected
we get that for any f € Hgy the critical set has degree exactly (k + 1)(d — 1).

3. Periodic points.

We show that the fixed point set of f € H, is discrete. More precisely we
have :

THEOREM 3.1. Letf : PF — P* be a holomorphic map of degreed > 2,
andg be a meromorphic map of degreed’ < d. LetQ) be the Zariski dense open
subset whereg is holomorphic. There can be no compact algebraic curveZ
such thatf = g onZ NQ andZ NQ # (. Ifg is holomorphic, the number of
points wheref = g equals(d**! — d’**+')/(d - d') counted with multiplicity ifg
is holomorphic.

The proof is to apply the Bezout theorem. We include it for the convenience
of the reader.

Proof.Suppose that {f = g} contains an open set of a compact complex
subvariety Z of dimension one. We will arrive at a contradiction. First we
write f = [fo: fi:--: fiJand g = [go : g1 ¢ --+ : gk), where the f;’s
are homogeneous holomorphic polynomials of degree d > 1 and the g;’s are
homogeneous holomorphic polynomials of degree d' > 1, d < d. Hence we
can lift f, g to map on C**!, F = (fo.f1, -+, fx), G = (go,--- , k). Also
the variety Z lifts to conic two dimensional surface X in C*+!, Introduce one
more complex variable ¢ and consider the A + 1 equations f; — gd=d’ g; = 0.
These are homogeneous equations of degree d in C**+2, Hence the common
zero set is a conic complex variety Y. Consider at first the intersection with
the hyperplane ¢t = 0. Then the equations reduce to fo = f; =--- = fi = 0.
Since f is a well defined holomorphic map this zero set consists only of the
origin. The natural projection of ¥ to P**! is therefore a compact complex
space which does not intersect the hyperplane ¢t = 0 at infinity. Hence the
image is a compact subvariety in C**! and hence must be finite. This means
thatY consists of a finite number of complex lines in C¥*+2 through the ori-
gin. Suppose next that p is in Z N Q, so f(p) = g(p). Then there exists a
complex value ¢ # 0 and (zo,---.z) # 0 such that p = [z9 : -+ : 2] and
filzo, -, 2k) = td“d'gj(zo,’-- .21). Hence the point (29, -+, zx,t) belongs
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to Y. But this implies that Y is two dimensional, a contradiction. Hence we
have shown that there is no such Z. In the case g is holomorphic this implies
that {f = g} is finite. Next we need to count the number of points. First
we count the number of solutions using Bezout’s theorem on the equations
fi —t%=%g; = 0. There are d**! of these. However d’**+! of these occur at the
point [0:0: ---: 1], so this gives d**+! — @’*+1 solutions, but rotation of ¢ by
a d — d' root of unity produces an equivalent solution, so the total number of
solutions to f = g is (d**! — d’*+1)/(d — d'). This complete the proof of the
Theorem.

Using the above Theorem in the case g = Id we obtain the number of
periodic points.

COROLLARY 3.2. Letf : P* — P*. f € H,. d > 2. The number of periodic
points of ordern counted with multiplicity is(d"**1) —1)/(d™ - 1).

We show that any holomorphic map of degree d > 2 has infinitely many
disjoint periodic orbits.

THEOREM 3.3. Letf : P2 — P? be a holomorphic map of degreed > 2.
Then there exists infinitely many distinct periodic orbits.

Proof. Recall that we have shown in Corollarv 3.2 that the iterate f™ has
d?" + d™ + 1 fixed points counted with multiplicity. So to prove the theorem
we only need to control the multiplicity. The control is trivial in dimension
one but less obvious in higher dimension.

LEMMA 3.4. Let 0 be a fixed point for a germ at zero of a local holomorphic
mapf : C?2 — C2. Assume that 0 is an isolated point of { f*(z,w) = (z,w)} for
all integersn > 1. Then there exists an integer N such that for all iteratesf™,
n > 1, the inequality|| f*(z,w) — (z.w) ||> ¢, || (z,w) ||V, ¢n > 0 holds in
some neighborhood (depending onn) of zcro.

We prove at first the lemma before we continue with the proof of the
theorem.

Proof of the Lemma. Let the eigenvalues of f' be e, 4. Then we can assume
that the map f has the form f(:.w) = a: + Buw + P(z,w),yw + Q(z,w)
where P, @ vanish to at least second order and 3 = 0 if o # 7. Then f* =
(a2 4 Brw+ Pp(2,w),y"w+Q,(z.))) for some constants (3, and functions
P,,Q, vanishing to at least second order. It follows that the estimate holds
immediately if | « |,| 7 |# 1 with N = 1. Next consider the situation where
say la |# 1, | v |= 1. Then 8 = 3, = 0 so the situation is equivalent to
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the case with «,~ reversed. We write v = €2 where 6 belongs to the unit
interval. If  is irrational it follows again that the estimate in the lemma holds
for N = 1. Suppose then that § = p/q for relatively prime integers p, g where
p=0,g=1o0rq>2andpe€ {1,2,---,9g— 1}. In that case the estimate
holds with NV = 1 for all powers f" as soon as n is not a multiple of ¢g. To
handle the missing case, we can replace f by the iterate f9. This then is the
case when v = 1. So we can write f = (az + P(z,w),w + Q(z,w)).

We consider for this the more general case o # 1 because we will anyhow
need this below. The equation az + P(z,w) = z can be solved implicitly
in a small neighborhood of zero. We obtain z = h(w) for some holomorphic
function A vanishing at least to second order at the origin. We can now rewrite
the map f in terms of holomorphic functions P’'(z,w), Q'(z,w) vanishing to at
least first order at the origin and Q" (w) vanishing to some finite order k£ > 1
at the origin as:

f(z,w) = (a(z = h(w)) + h(w) + (z = h(w))P'(z,w),

w4 Q"(w) 4 (z = h(w))(Q'(z.w)).

For any point (zg,wo) close to zero, let (z,,w,) = f™(z0,wp). We will
write (zp,wn) = (h(wo) + Ap,wo + 6,) and inductively estimate the error
terms (Ap,6,). So at first, (Ag. ) = (20 — h(wp).0). We get (2n41, Wnt1) =
f(zn, wn) = (a(h(w0)+An —h(wo+6,))+(h(wo +5n)+ (h(wo) +An— h(w() +
‘Sn))Pl(h(wo) + An,wo + 611)7 wo + 6, + Ql(“’O +6,)+ (h(wO) +A, - h(wo +
6n))Q (h(wo) + An,wo + 6,)) = o(Ay, + h(wy),wo + 6, + Q'(wy)). Hence it
follows that (Ap+1,0n+1) = (@A, +0(] An || 60 ) 6n + Q' (wo) + o(| An |,
| 8» 1)). From this we inductively prove the estimates (A,,8,) = (a™Ag + o(]

Do, Q' (wo) |))), nQ' (wo) + o| Ap. Q'(20) |)).

With these error estimates we estimate f(zg, wo)— (2o, wo). We get | (2, —
20, Wp—wo) |=| (An—20,6,) 2] ((a"=1) | Ag.nQ'(w0)) | —o(] Ao, Q" (wo) |)-
Hence for all n such that " # 1. we have that | f*(z,w) — (z,w) |> en(|
z — h(w) | + | Q'(w) |) close enough to the origin for some ¢,, > 0. But if
| z |<| w | the second factor is of order of | w |¥ while if | z |>| w | the first
factor is at least | z | /2, so the estimate of the lemma follows with N = k
in all these cases. In particular we are done when | o |# 1, | v |= 1 (or vice
versa).

We continue with the case when both o and v have modulus one. Suppose
at first that o =  and they are irrational rotations. Then f* = (a”z+f,w+
Pp(z,w),y"w + @n(z,w)) as above and clearly the estimate of the Lemma
holds with N = 1. Suppose next that o = v = ¢?™?/9 where (p,q) = (0,1)
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orqg>2andp=1,---,9 — 1 relatively prime to ¢q. Then the estimate of
the Lemma holds for all iterates with n not a multiple of ¢ and N = 1. It
remains to consider iterates which are multiples of ¢q. But this reduces to the
case = v = 1 and f arbitrary.

First consider the case when 3 # 0. We may then assume that 3 = 1. So the
map has the form f = (z + w+ P(z,w),w+ Q(z,w)) where P,Q vanish to at
least second order at the origin. There are several cases to consider. Assume at
first that P,Q vanish on the z-axis. Then f(z.0) = (z,0), contradicting that
0 is an isolated point of {f(z,w) = (z,w)}. Next assume that P = wP’'(z,w)
while Q(z,0) = az®+--- for some integer ( > 2 and a # 0. Inductively we see
that f* = (z +nw(1+ O(| (z,w) |)) + O(| z° |).w + Npaz® + o(| (w, 2%) |)). If
| w |<| 2 |¢~1/2 then the second component of f” —Id is at least of the order of
| (z,w) ||® while if | w |>| 2 |*~1/2, the first component is at least of the order
of || (z,w) ||*=1/2 . Hence the estimate in the lemma follows. Now consider
the case when P(z,0) = az¥ + - for some integer k > 2 and some constant
a # 0, while Q(z,w) = wQ'(z,w). Then note that w + P(z,w) vanishes on
a complex manifold w = h(z) for some holomorphic function / vanishing to
finite order at least 2 at the origin.

Make the change of coordinates w’ = w — h(z), ' = z. In this coordinate
system f has the same linear terms. But f(:'.0) = (', h(2")Q'(z’, h(2')) and
the second component can only vanish to finite order at the origin. (Otherwise
in the (z,w) coordinate system f(z,h(z)) = (z,/(z)) and there is a whole
curve of fixed points.) But then we are back in the previously considered
case.

The next case is when P(2,0) = az¥+.-., Q(s.0) = bz*+ - - - for integers
k,¢ > 2 and numbers a,b # 0. In this case we can again use the same coor-
dinate change as above, w’ = w — h(z), =/ = = with h(z) + P(z,h(z)) = 0 to
reduce to the case P(z,0) = 0.

Next consider the case when /3 = 0. Then the map has the form f(z,w) =
(z + p(z,w),w + Q(z,w)) where P.(Q) vanish to at least second order. In-
ductively we can then prove the estimate f" = (z + nP + o|| (P,Q) |),
w+nQ + ol (P,Q) IN). Hence || f" — Id [2]| (P.Q) 2l (=,w) IV for
fixed N, close enough to the origin. The last inequality is just the Lojasiewicz
inequality since (0,0) is an isolated fixed point of f.

Now we investigate the case when o # 5 but they both have modulus one.
In both and @ are irrational, then f”(:.w) =a"z+ -+ ,y"w + --- and it
is clear that f — Id vanishes to first order for any n. Next assusme that ¢ is
irrational and that v = p/q where (p.q) = (0.1) or ¢ > land 0 < p < g is
relatively prime to g. But now this case follows as ahove when | a |# 1 and
is rational. So assume that both ¢ and # are rational. Then for some iterates,
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the map is of this form with both powers equal one. In that case the above
applies. If one of the eigenvalues is one and the other is different from one,
then this case is also handled above, and if both are different from one we are
also done. Hence we have covered all cases.

Having thus finished the proof of the lemma we can continue with the proof
of the theorem. Suppose that there are only finitely many periodic orbits.
Then for some point p the multiplicity of f* — Id at p can be chosen arbitrarily
large. Taking local coordinates we can assume p = 0. From the lemma we have
| f*(z,w) = (z,w) |> ¢ | (z,w) |V . Let Py denote the Taylor polynomial of
f™ — Id of order N. Then for r sufficiently small | f* — Id — Py |<]| f* - Id |
on the sphere around zero of radius r. Hence by Rouché’s Theorem [AY] the
multiplicity of f* — Id at zero is at most N2, a contradiction.

4. Exceptional varieties.

For a rational map on P!, a finite set E is exceptional if f~1(E) = E.
Similarly we introduce the following notion.

DEFINITION 4.1. Letf : P* — P* he inH,; andV a compact subvariety
inP*. ThenV is exceptional if f~'(V) = V.

If V is exceptional, necessarily f(V) = V also. Let f : P¥ — P* denote a
holomorphic map of degree d > 2. Assume f has an exceptional hypersurface
V. Note that replacing f with an iterate we may assume that each irreducible
branch of V' is mapped to itself. Hence any collection of irreducible branches
of V is also exceptional.

PROPOSITION 4.2. LetVy,---,V; denote irreducible branches of the excep-
tional variety of f. AssumeV; is the zero set of the irreducible polynomialh;.
Then) , degree(h;) < k + 1. In particular there are at mostk + 1 irreducible
branches of the exceptional set, and if there arek + 1 they are all linear.

Proof. Let w : C¥t1 — P¥ be the natural projection. We denote by V; the
pull back of V; to C¥*1. Denote also by f the lifted map f = (fo, f1,- - y f)
to Ck*+1, Then V; is an irreducible homogeneous complex hypersurface, so we
can write it as V; = {hi(z0,21,-++ .21) = 0} for an irreducible homogeneous
polynomial h;.

LEMMA 4.3. LetX be an exceptional hvpersurface forf € Hy. AssumeX =
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{h = 0} whereh is a homogeneous polynomial. Then there exists a non zero
constantc such thath, f satisfy the Bottcher functional equationh o f = ch®.

_ Proof. Since X is totally invariant, the polynomial h o f only vanishes on

X the pull back of X to C**!. However the degree of this composition is
(degh) - d. Hence the equality follows.

We continue the proof of the proposition. An exceptional variety given
by h = 0 as above is part of the critical set of f. Moreover the Jacobian
determinant of f has (ITh;)¢~! as a factor. From Theorem 2.4 it follows that
> degh; <k+1.

PROPOSITION 4.4. The set of holomorphic maps without exceptional hy-
persurfaces is a nonempty Zariski open set inH ;.

Proof. We identify homogeneous polvnomials i of degree ¢ < k + 1 with
their space of coefficients PVt and we define 3, := {(f,h) € Hq x PNe ;
ho f = ch? for some constant c}. If f has an exceptional varicty then (f, h)
is in ), for some h and some ( < k + 1. The projection of Y, on H, is
again an analytic variety. Since there exists one map in each H, which is not
exceptional, the proposition follows.

We will next discuss the various possibilities in P2. At first suppose that
there is an exceptional variety V; which is a line. By a linear change of
coordinates we can suppose that this line is given by {[z : w : t]};t =0, i.e.
V} is the hyperplane at infinity. Since 17 is totally invariant this means that
f is a polynomial map of degree d on C?(z,w). Moreover the condition that
the map is well defined on P? simply means that the highest degree terms of
the two components of the polvnomial are of degree d and have no common
zeros except at the origin. This means that if the hyperplane at infinity is
exceptional, then the map has the form [z : w : ] — [fo : fi : t%] where
the functions fo(z,w,0), f1(z,w.0) have nondegenerate degree d-terms. Next
assume that the exceptional varicty contains two complex lines. We may then
assume that they are given by t = 0. w = 0 respectively. It follows that f; has
the form w?. Hence in this case the map las the form [z : w : t] — [fo : w? : ¢9]
where fo is a homogeneous polynomial of degree d with a nonzero coefficients
in front of the z¢ term.

Then consider the case when the exceptional variety contains three lines.
We may assume that two of them are given by t = 0, w = 0 so that the map
has the above mentioned form. We first consider the possibility that all three
lines intersect at the same point. i.e. [1:0:0]. Hence the third line must have
the form w = « in the t = 1 coordinate svstem. But this contradicts that the
line is exceptional because all roots of ! = a“ define lines in the preimage.
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So the three lines only intersect in pairs. Hence we can assume that the lines
are 2 = 0, w = 0, t = 0. But then we see that the map fy, must be of the form
fo = Zd.

In conclusion we have proved :

THEOREM 4.5. 1. If the mapf € Hy has an exceptional variety containing
one complex line, then we can assume thatf has the form[fo([z : w : t]) : fi([z:
w : t]) : tY] where the functionsfy(z,w.0), fi(z,w,0) have nondegenerate
degreed-terms.

2. If the mapf € Hy has an exceptional variety containing two complex
lines, then we can assume thatf has the form[fo([z : w : t]) : w? : t] where
the functionfy(z,0,0) = 2.

3. If the mapf € H, has an exceptional variety containing three complex
lines, then we can assume thatf has the form[:? : w? : t9).

Assume next that the exceptional variety {h = 0} is cubic, but not a
product of three lines. There are three possibilities, first {h = 0} is the union
of an irreducible quadric and a complex line, second {h = 0} is a smooth torus
and finally {h = 0} could be a singular cubic variety.

We will show that none of these cases can occur.

If {h = 0} is the union of an irreducible quadric @, and a complex line
L, notice that f |g and f |1 are both exceptional maps on P2. Hence they
must have two critical points. Since these critical points must be intersection
points of @ and L, it follows that QN L consists of two points. We can assume
that Q@ = (zw = t2) and L = (¢ = 0) after a linear change of coordinates.

By Theorem 4.5 we can also assume that f has the form [fy : f; : t%]. Hence
we have the identity

fofi — 24 = c(zw — 2)4

for some ¢ # 0, see Lemma 4.3.

It follows that fof; = H;'i=1 (t2 —c;(zw—1?)) for distinct constants c;. Hence
some irreducible factor go of fo will divide some term t2—c;(zw—t?) while some
irreducible factor g; of f; will divide another term t? — ¢;(zw — t2), ¢; # c;.
Let p be a common zero of go and g;. It follows that fo(p) = fi(p) =t(p) =0
so f is undefined at p.

This controdiction proves that an exceptional variety cannot consist of an
irreducible quadric and a line.

Our next case is when the exceptional set {h = 0} := V is a smooth cubic.

We are grateful to R. Narasimhan for proving that this is impossible. His
argument goes as follows. '

Let Q := P2\V. Then f is a covering map of Q, f : Q@ — Q. It is known
that 71 () is finite ([D}]), in fact 7 (Q) = Z/3Z. Moreover fx* : m1(Q) — 71(Q)
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is injective and hence bijective. But this is impossible since f is nontrivial.
Hence the exceptional set cannot be a torus.

We turn to the remaining cubic case, when {h = 0} is irreducible and
singular.

If {h = 0} has a normal crossing singularity then 7;(Q) is still Z/3Z ([D])
so Narasimhan’s proof above still applies. So suppose that {h = 0} has a cusp
singularity. Then the normalization of the exceptional set is a P! and the map
restricted to it has only one critical point. Since f is d to 1 on {h = 0} this
is impossible.

There is only one remaining possibility for the exceptional set, namely a
nonsingular quadratic curve. In this case we can assume h has the form zw—2
and that fof; — f2 = (zw — t?)<.

Then d must be an odd integer : if d = 2k is even, we can write

fofi = (f2 = (s = )°) (fo + (s = £2)F)

and we can show as above that f,, f; and f, must have a common zero
contradicting the assumption that f is well defined.

We discuss now finite exceptional sets.

THEOREM 4.6. For fixedd > 2 the setH, of holomorphic mapsf fromP* —

P* that have no exceptional finite set is a nonemptv Zariski open set of Hg.

Proof. Given f € Mg, and a € P* let ®;(a, f) denote the solutions of
f(z) = a. If E is an exceptional finite set, then f induces a bijection of E. If
a is in F then f~!(a) is one point, i.c. all the ®;(a, f) coincide. Hence Hg
is a Zariski open set in Hy. Since there arec maps without exceptional points,
Hp is nonempty.

Next we give an example of a holomorphic map on P? with an exceptional
point belonging to the Julia sct. contradicting the situation in P! where all
exceptional points are superattractive

flz:w:t]) = [’ + Xt 2t 4 P2, w))

where P is any homogeneous polynomial of degree d. Then p=[0:0: 1] is
an exceptional point : f~!(p) = p. If | A |> 1 then the point is in the Julia
set, since the two eigenvalues of f’(p) are A and 0. However, it follows from
the stable manifold theorem. see [Ru] or [Sh]. that p € Fi, since one of the
eigenvalue of f at p is zero.
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THEOREM 4.7. There exist constantsc(d) so that for anyf : P2 — P2,
f € Hg, any finite exceptional set has at mostc(d) points.

Proof. We can assume that d > 3 since ¢(2) < ¢(4). Observe that the
degree of the map f is d?, counting multiplicity. Notice that an exceptional
point (wether it is fixed or on a periodic orbit) can have only one preimage.
Hence, necessarily, all exceptional points lie in the critical set. Let p be an
exceptional point. Assume at first that p is a regular point of the critical set
C and f(p) is a regular point for f(C'). Then we can choose local coordinates
near p and f(p) such that the map has the form (z,w) — (z,w") for some
integer £. So the map is locally ¢ to 1. But by Theorem 2.4, ¢ < 3(d—1) + 1,
and this last number is < d? if d > 3. Hence p cannot be exceptional. It
follows that p is a singular point of C or f(p) is a singular point of f(C).
Since f(C) has degree at most 3d(d — 1) and the number of singular points
of C or f(C) is bounded by Bezout’s Theorem. by a constant, the Theorem
follows.

5. Generic hyperbolicity in P2,

One of the main tools in holomorphic dynamics in one variable is Montel’s
Theorem, more precisely, a family of holomorphic maps from the unit disc to
P1\{0,1, 00} is locally equicontinuous.

We want to prove here an analogue for maps on P2. We recall some prop-
erties of the Kobayashi-Royden infinitesimal distance, and we refer to Lang’s
book [La] for background. Let A(0,r) denote the disc of radius r centered at
the origin in C.

DEFINITION 5.1. Let M be a complex manifold and (p,€) be in the unit
tangent bundle. Define

Kpy(p, &) = inf{%; Jp : A(0,r) — M holomorphic, ¢(0) = p, ¢'(0) = &}.

In case M is the unit disc A(0,1). 'y is the Poincaré metric, more precisely

Ku(z,6) = ks
If f: M — N is a holomorphic map. then f is distance decreasing, i.e.

Kn(f(p). f'(p)€) < Kar(p.&).

If f is a covering map, then f is a local isometry, i.e.

Kn(f(p). f'(M&) = Kn(p.£).
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DEFINITION 5.2. The complex manifold A is Kobayashi hyperbolic if for
every p € M there exists a neighborhood U(p) and a constant ¢ > 0 such that
forallge U, Km(g,§) 2c|&].

The integrated form of Ky is then a distance dys, the Kobayashi metric,
on M. If M is hyperbolic and complete with respect to das, we say that M is
complete hyperbolic. If M C N is an open subset of a complex manifold N
with a hermitian metric ds, then A is said to be hyperbolically embedded,
if M is Kobayashi hyperbolic and for every p € JA there is an open neigh-
borhood U(p) in N and a constant ¢ > 0 such that Ka(g, &) > cds(g,§) for
every q € U(p)N M. This definition is independent of the choice of Hermitian
metric on V.

THEOREM 5.3. Fix an integerd > 2. Then there exists a Zariski dense open
setH’ C Hy with the following properties. If f € H' andC' denotes it’s critical
set. Then

i) No point of P? lies inf™(C) for three differentn, 0 < n < 4.

ii)P?\ (Ui:o (c )) is Kobavashi complete hvperbolic and hyperbolically
embedded inP?.

We prove first a lemma.

LEMMA 5.4. Letf = [z¢ : w® : #]. There exists an arbitrarily small pertur-
bationg of f such that the five (reducible) varietiesg™(C), n = 0,--- ,4 have
no triple intersections.

Proof. We will find such a g by choosing a suitable (3,3) matrix A arbi-
trarily close to the identity and letting g = ¢4 := A(f). This ensures that the
critical set of g is the same as the critical set of f. Let us denote by Cy, Cy,
C3 the components (z = 0), (w = 0). (t = 0) respectively. For each choice
of integers 0 < n3 < ng < ng < 4 and 1 < m.ma,m3g <3 let A, ,, denote
those matrices A for which ¢"(C,,,), i = 1.2.3 have a triple intersection.
Then A, ,, is necessarily a closed subvariety. Namely we consider the com-
plex manifold P2 x G where G is the space of invertible matrices. In there
consider the complex varieties 1), := {¢'{(C'). A}. By Tarski’s proper map-
ping theorem these are varieties and the projection to G is proper with one
dimensional compact fibers. Hence the projection of the intersection of any
three of these is a complex subvariety of G. again by Tarski’s proper mapping
theorem.

Hence, if the lemma is false. then some 4, ,,, = G. Notice that if the m,’s
are all distinct, then A4, ,, must be empty (near the Identity). Hence, by the
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symmetry in the situation we may assume that m; =1, 1 < mg, mg < 2.
Consider next the special case g = [z¢ + et : w? + et? : t?]. Observe that if
h(z) = 2% + € then g"(w = 0) = {[z : 1"(0) : 1]} and ¢g"((z = 0)) = {[~™(0) :
w : 1]}. It is clear that if some m; = 2, there are no triple intersections if
€ # 0 is small enough. It remains to consider the case when all the m; = 1,
t=1,2,3.

First let us prove that n; > 0. Consider at first the family g = [2¢ + ew? :
w? : t%]. Then g*(C)) are lines of the form z = n,w (in (¢t = 1)) where the
N are distinct for suitable small € while g = 0. Next consider for fixed € the
maps ges = [2¢ + ew? 4+ 6t? : wt : t7]. The image of g(Cy) is parametrized by
[ew? + 6 : w?: 1]. In general

g"(Cy) = [ + O(8) (. - - - .u"zd_‘) +6+0(8%): w? 1].
It follows that the intersection points with ') are estimated by
w=(=6/n,)"""(1+ 08",

Hence their w-coordinate is —&/1), - (1 + O(8'/")) which rules out triple
intersections with C;.

Hence we are reduced to the case 1 < n; < no < n3z < 4. Observe that in
the previous case we may assume that the intersections of the various images
of Cy with C; have different modulus, otherwise modify €. This will enable us
to deal with the next case when n; = 1. Assume that there always is a triple
intersection when n; = 1 for some n,. n3 as above. Let p be such a triple
intersection. Notice that there are at most d preimages of p, all of which are in
C4 and all with the same | w | value. But necessarily also, one of these points
must be in g"271(C;)NC; and one of these points must be in g"*~1(Cy)NCy,
which contradicts that such intersection points have different modulus.

Hence we have only one more case to consider, n; = 2, ny = 3, n3 = 4. For
this consider a map far from the Identity composed with 4, namely g = [t :
z% : w?). Then the orbit of Cy is (: = 0) — (w=0) = (t=0) — (2 =0) —
(w = 0). In particular the images ¢*(C}). ¢*(C), g*(C1) have no point on
common. Hence this is true as well for some small perturbations of f. This
completes the proof of the lemma.

We will use the following two theorems by M. Greene.

THEOREM 5.5 ([Grl]). IfV is a compact complex manifold andD,,--- , Dy,
are hypersurfaces (possibly singular). thenV'\D is complete hyperbolic and
hyperbolically embedded provided

1) There is no non constant holomorphic mapC — 1\ D.
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2) There is no non constant holomorphic mapC — D; N---ND; \(D;, U---U
D;,) for any choice of indices{iy,- -+ ,ip. j1. -+, je} = {1,--+,m}.

THEOREM 5.6 ([Gr2]). Supposef is a holomorphic map fromC toP* omit-
tingk + 2 distinct irreducible compact hypersurfaces. Thenf(C) is contained
in a compact complex hypersurface.

We now prove Theorem 5.3.

Proof. By the Lemma and Tarski’s Theorem there exists a Zariski dense
open set H' C Hy satisfying condition 1 of Theorem 5.3. We prove 2. Let
f € H' we will show that Q := PQ\U?,:O f™(C) satisfies the conditions of
Greene’s Theorem. Let ¢ be a holomorphic map from C to 2. By Theorem
5.6 ¢(C) is contained in an algebraic subvariety X'\ Ui:o f™(C). Then ¢(C)
omits at least three points in X. Hence ¢ is constant. Similarly we check
condition 2. This completes the proof of Theorem 5.3.

If three varieties have a common point, then their image under a map must
also have a common point. Hence we get the following immediate corollary.

COROLLARY 5.7. Fix an integerd > 2. Letf € H', defined in Theorem 5.3,
and letC denote it’s critical set. Then

1. No point lies inf™(C) for three differentn, k —4 < n < k ifk < 3.

2. P2\ (UZ::_4 f"(C)) , k < 0 is Kobayashi complete hyperbolic and hy-
perbolically embedded.

We show next that generically components of f™(C') have genus larger then
1.

PROPOSITION 5.8. For everyd > 2, n € Z, there exists an open set§) C
Hq such that for everyg € Hy there is an open neighborhoodU(g) of g such
thatU(g)\Q is a countable union of compact subsets of varieties. Moreover,
for every f € Q, all the irreducible components of f*(C) have genus at least
one.

Remark. We define the genus of a singular curve to be the genus of the
normalization.

We first prove a lemma.
LEMMA 5.9. For eachn € Z, there exists a nonempty open subsetV of Hy so

that for eachf € V, with critical setC. each irreducible component of f*(C) is
a compact curve of genus at least 1.
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Proof. We study the maps
froi= 2%+ rwtd 4 rtwd s st otz 0t oz 4 rw2dTY
for complex numbers r close to zero. Note that these maps are symmetric in

the coordinates. Hence it suffices to study the map in the (¢t = 1) coordinates
in the set | z |,| w |< 1. There the map has the form

(2, w) 2% 4 rw + rw?! w4 rz4rzd1
z,w) — \ .
’ 14 rzw?1 4+ rwzd=1" 1 4+ rzwt=1 4 rwzd-1!
We compute the Jacobian determinant .J. We obtain

J = d2(zw)d_l =214 (d-1)"HQ + (d - D)+ rR(z,w) + TZQ(z, w)

where @ vanishes to order at least d and R vanishes to order at least 2d — 1
and each term contains a factor (zw)?~!. Consider the set | z |,| w |< sa
for some small s4 > 0 independant of r. Suppose that J(z,w) = 0. It follows
that | zw |> kq | r |>/(=V for some fixed constant kg > 0. This implies that
the gradient of J is nonzero. It follows that inside this disc of radius sq4, the
critical set consists of d — 1 branches cach of which is a small perturbation
of zw = cr?/4=1, Since {J = 0} is closc to {zwt = 0} and since there is a
closed noncontractible curve in {zwt = 0} joining [0: 0: 1], [0 : 1 : 0] and
[1:0:0], it follows that each irreducible branch of C' has genus at least one.
For any fixed n > 0 and for » small cnough the n'* forward image of the
noncontractible curves in C are still noncontractible in f?(C). Since there is
no nonconstant holomorphic map from P! to a compact Riemann surface of
genus larger or equal to one, it follows also that each irreducible branch of
f7™(C) has genus > 1. The same argument holds for an open neighborhood

of f. in Hy.

Proof of the Proposition. There is a proper subvariety Y of H4 such that
for h € ) there exists a regular point in /" (C},) of sheet number strictly less
than the local maximum.

For each g € Hg\ ) there is an open neighborhood Uy of g and a proper
subvariety X of Uy such that for # € X there exists a point (z1,22) € S :=
h™(C}) and a polydisc A1 x A, around (=), z3) such that S is a ramified cover
over A; and either the number of irreducible branches of the germ S, .,y is
less than maximal or one of them has sheet number larger than minimal.

For maps h € Uy\X the irreducible branches have constant topology.

The lemma now implies the proposition.
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6. Expansion in the presence of hyperbolicity.

We show that periodic orbits of holomorphic self maps of P* are non attrac-
tive in the complement of the critical orbits under the hypothesis of Kobayashi
hyperbolicity.

THEOREM 6.1. Letf : P¥ — .P’" be a holomorphic map with critical setC.
LetC be the closure ofUJf“:O fI(C). Assume thatP*\C is Kobayashi hyper-
bolic and hyperbolically embedded. Ifp is a periodic point forf, f¢(p) = p,
with eigenvaluesAi, Ao, , A andp € C, then| \; |> 1,1 < i < k. Also|
A1 -+ Ak |> 1 orf is an automorphism of the component of P*\C containingp.

Proof. We show at first that the cigenvalues of the derivative of the ¢**
iterate at the periodic point are all at least one. Let U := P*\C and let
Uy := U\f~'(C). Observe that U; C U. As f : Uy — U is a covering map
we obtain that the infinitesimal Kobavashi metric at a point # and tangent
vector & satisfy

Ky(f(z), f'(x)§) = K¢, (v.&) > Ky (x,§).

So if z ¢ C, and f*(x) = z, then all cigenvalues \; of (f¢)'(z) have modulus
at least one.

Next we consider the Jacobian determinant of the ¢*" iterate. First, let Q
be a component of U, p € €2, and let Q, C Q be the connected component of
f~4(€) containing p. Let M be the universal covering of Qp and 72 M — Q,
the projection. Observe that A is hvperbolic and that for the Kobayashi
metric biholomorphic mappings are isometries. Also observe that (M, ffor =:
7’) is the universal cover of 2. Pick any nonvanishing holomorphic k-form o
at p. Fix a Hermitian metric on TAI. Let | || be a volume form on the space
of (0, k) forms, such that holomorphic automorphisms preserve the volume.
Fix a point ¢ € M with n(q) = p. Define

EY (p.q.a) :==f{|| 5 [2:9(q) = p.gu(7) = a}

where g runs through all holomorphic maps with non vanishing Jacobian from
M to Q with g(q) = p. Similarly define

E§(p,q.0) == inf{]| 5 [I2:9(¢) = p.7(q) = p. 9. (7) = a}

where g runs through all holomorphic maps with non vanishing Jacobian and
7(q) = p from M to Q¢, g(q) = p. To proceed we need a lemma.
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LEMMA 6.2. The extremal maps exist and are surjective.

We prove the lemma for EJf

. The proof for Eé’i is the same.

Proof of lemma. Let g, be a minimizing sequence. Consider the g,’s
as maps from M to PF\C which is hyperbolically embedded. Then g, is
equicontinuous with respect to a metric on P¥. Hence by Ascoli theorem
there exists a subsequence g,, — g and g(p) = p and det ¢’ # 0 and hence g
has values in Q. Let § be such that 7/ 0 g = g and §(q) = q. If | det §'(g) |< 1
then by the chain rule, this will contradict that g is extremal. Since M is
hyperbolic we must have that | det §’(¢q) |< 1, ([K, Thm 3. 3]). Hence, it
follows that § is an automorphism, ([K, Thm 3. 3]), and hence g is surjective.

We next continue with the proof of the last assertion of the theorem. Since
f*¢ is a covering map from Q, to . since f'(p) =p

(+) Egl(p g, 0) = EQ'(f'(0) a. (FO)(P)(a))-

If Qp = Q, then (*) implies that | det(f¢)'(p) |= 1. Hence f¢ is an auto-
morphism of Q ([Ko]).

If Q, is a proper subset of 2, then the Lemma implies that E{;{ (z,) >
EMY(z,c). Hence | det(f*)'(p) |> 1.

Observe that EM (p, g, ) =|| v ||, where 7’(gq)y = . Since || || is invariant
under biholomorphisms, this is independent of g. We will denote by EY (p, «)
this volume form.

Remark 6.3. Ifk = 1, then Theorem 6.1 says that attractive, rationally
indifferent and Cremer points are inC.

The following result generalizes a classical result of Fatou and Julia on
rational maps on P!. Let f : P* — P* and let C = C; U--- U C; denote the
irreducible components of the critical set.

DEFINITION 6.4. We say that a Fatou componentQ C P* is a Siegel domain
if there exists a subsequence f"¢ converging to the identity map onQ.

PROPOSITION 6.5. LetC' denote the critical set of a holomorphic mapf :

P% — Pk of degree at least 2. Assume that the complement of the closure
of s, f~™(C) is hyperbolically embedded. Then

JC U Unsn £77(C) = J(O).

N>0
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Hence all periodic points with one eigenvalue of modulus strictly larger than

1 are inJ(C).

Proof. Assume that p ¢ J(C). Then 3N such that B(p,r) does not intersect

U,>n f~™(C). This implies that for n > N, f*(B(p,r))N Ureo f*(C) = 0.
Hence f" is a normal family on B(p,r), which proves the statement.

THEOREM 6.6. Under the assumptions of Theorem 3.3 we have : If there is
a componentU of the Fatou set of f such thatf"(U) does not converge u. c.c
toC, thenU is preperiodic to a Siegel domainQ withdoQ C C.

Note : This does not exclude that part of the Siegel domain is in C.

Proof. Let U be a component of the Fatou set satisfying the hypothesis of
the theorem. Assume that f™ does not converge to C on compact subsets of U.
Then there exist a nonempty open subset U/ C U and a neighborhood N of C
and a subsequence f"i such that f*i(U’) N N = (). Moreover we may assume
that f* — h on U’ Since Npr\c(f(z), f'(2)(§)) > Kpr\c(z,§), and the
Kobayashi metric is upper semicontinuous, it follows that h is nondegenerate.
Let Q be the Fatou component containing (U’). On Q there is a subsequence
such that f**+1~"¢ — I and Q is periodic under f¢. Let Ey denote the
Kobayashi volume form with respect to holomorphic maps of maximal rank at
every point on the complex manifold .X. Denote Epk\ f-me(c) by En. We have
Eo(x,a) < Bm(2,0) < En(2.0) = Eo(f™(2), Df"™(z)(a)) for any 0 <
m < m’'. Taking limits and using the upper semicontinuity of the Kobayashi
volume form gives Epx\c(z,a) = Ey, (v, a) for 2 € Q\C. Let ' = |J f~™(C).
Passing to the limit we obtain that Epi\c(2,a) = Epk\¢/(z,a) for z € Q\C
nonempty. -

If a point of 9 is not in C, then Epi\¢/(2,«) must blow up, see ([FS],
Theorem 8.4) which is a contradiction.

The proof of Theorem 1.8 shows that if U is a Fatou component which is
not preperiodic to a Siegel domain, then all limit functions are in C.

We are going to prove the dual statement of Theorem 1.7 for non attractive
fixed points.

Remark 6.7. The same statement holds if instead of C we consider an
analytic variety A such that the complement of the closure of\Jr—, f™(A) is

hyperbolic, in which caseJ C (Vyso U,sv f7"(4) := J(A). In general we
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don’t haveJ = J(A) :

Example : [z:w:t] = [(z=2w)?: 22 : 3] (z = aw) = (Z = ((@—2)/a)?W)
and preimages of lines are lines. The union of the closure of Uf~"(C') equals
P2.J # P2

COROLLARY 6.8. Assume that the complement of the closure of

is hyperbolic and hyperbolically embedded. Then any Siegel domain is a
Fatou component and a domain of holomorphy which is hyperbolic.

Proof. Let 2 be a Siegel domain. It is clear that QN o, f~"(C) = 0.
Hence Q is a component of P¥\.J(C) which is clearly locally Stein. The domain

Q is hyperbolic since Q@ C P*\ |22, f~"(C).
We describe more precisely the behavior of f at a fix point when some of
the eigenvalues are of modulus 1.

PROPOSITION 6.7. Letf : P* — P* be a holomorphic map inMHgq, d > 2.
Assume(Q := P*\C is Kobayashi hyperbolic.

Suppose p is a fix point for f, f(p) = p, and p € J\C. Let Ay,---, A¢ be
the eigenvalues of f'(p). Assume | \; |=1,1<i<s,|A;j |>1for j > s. Then
there exists a subvariety ) through p such that f|s~ is linearizable.

We first prove a Lemma.

LEMMA 6.8. Letg be a holomorphic map fromC*® toC*®. Assumeg(0) = 0
andg’(0) = A is unitary. If(g™) is a normal family in a neighborhood of 0,
theng is linearizable.

Proof. Observe first that (A") and (A~") are bounded. Define, as in one

variable,
N-1

. 1 s .
o(z) = 1\}1_1‘1;0N Z A7 og’.
Jj=0
The mapping ¢ is well defined in a neighborhood of 0 and ¢(g(z)) = Ap(z).
We proceed to prove the proposition.

Proof. We know that f is a local isometry from Q; = P¥\f~1(C) to
Q = P*\C. Let dg denote the Kobayashi distance of 2, and let B(p,r) be the
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ball of radius r and center p for dg. Since Q; C Q, do(f(2), f(p)) > da(z,p).
The Kobayashi distance induces the topology of €2, hence we can assume
that f is invertible in a neighborhood of B(p,r) and let g = f~!. We have
g9(B(p,r)) C B(p,r), and the family g™ is normal. Let h = lim g™¢ and define
S := h(B(p,r)). Clearly we have g(3°) C ¥_. If we consider the sequence
g™+1T™, we can assume hjy~ is identity. It follows that ) is contained in
the complex manifold S := {q € B(p,7) h(q) = ¢}. Let > be the connected
component of S through p. 3 is a complex manifold of dimension s, gl"z is

normal hence by the Lemma g5~ is linearizable around p, and the same result
holds for f.

Example. Let f[z : w:t] = [Azt + 22 : w? + ct? : t?] where | A |= 1 is such
that Az + 22 is linearizable in a neighborhood of 0 in C. Let p = [0 : wy : 1]
where wy is such that f(p) = p. One easily check that if | ¢ |>> 1 then p & C
and that f is linearizable in a disc through p.

In one dimension, it is well known that if the Julia set J of R: P! — Pl is
disjoint from the closure of the orbit of the critical set then J is hyperbolic in
the dynamical sense, i.e. there exists an infinitesimal metric in a neighborhood
of J such that R is expanding for that metric.

We prove here a similar result in higher dimension.

THEOREM 6.9. Letf € Hq, f : P¥ — P* d > 2. LetC = |, 5, f*(C).
AssumeP*\C is Kobayashi hyperbolic and hyperbolically embedded. LetX
be a compact set inJ, the Julia set of f. Assumef(X) C X andX NC = 0,
then there exists a continuous volume formE in a neighborhood of X, and a
constantk > 1 such that

E(f"(2), (") (v)a) > k" E(z, ).
Hereoa: denotes a nonvanishing holomorphick-form.

Proof. Let (Q;), 1 < j < ¢ denote the components of U := P?\C inter-
secting X. Define 2 = U§=1 2;. Observe that for every j, the components of
f~1(Q;) are contained in one of the ;. 1 < s < (. We claim that there is an N
such no component of £~ (Q) coincide with one of the 2,’s. Otherwise, since
the number of components is finite, there are two integers nj, no such that
say a component of f="1(f;) is equal to Qs and a component of f~"2({y)
is equal to Q; and hence f"1*"2 is an isometry of the Kobayashi hyperbolic
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domain €2;. As a consequence (?; is a Siegel domain, contradicting that X is
in the Julia set and intersects 2.

Let Q' := f~N(Q), fV is a covering map from €’ to Q. Denote by E(p, )
the volume form E} (p, ) constructed in the proof of Theorem 6.1. Observe
that E(p, ) is continuous and that for all p in Q'

EN (), f'(p)) = E§l (p, o) > EY (p, )

the inequality holds since no component of Q' coincide with a component of
Q. The continuity of F implies the theorem.

7. Classification of critically finite maps in P2,

In the study of iteration of rational maps R : P! — P! the case where
every critical point is preperiodic or periodic is quite central, see ([Th]). Here
we consider the corresponding problem in higher dimension. The question
was raised by McMullen [B].

It is quite difficult to construct non trivial examples of critically finite maps
in dimension 2. Some examples where studied in [FS]. It is proved in [FS]
that the map g : P2 — P2 defined by

glz:w:t]=[(z —2w)?: (2 = 2t)?: 27

has P? as Julia’s set. It is probably an interesting question to study maps in
Hg close to g, as was done in one variable by M. Rees [Re].

DEFINITION. LetF : M? — M? be a finite holomorphic self mapping of
a compact complex manifold of dimension 2. Denote byC the critical set.
LetC’; be the irreducible components of C. We assume that eachC; is periodic
or preperiodic,

C; — F(C;) = --- — FY(C;) = --- — Fi+ni(Cy) = F5(Cy)

wherel; > 0, n; > 1 are (minimally chosen) integers. We then say thatF is
critically finite. We say thatF is strictly critically finite if all the mapsF™ :
Ft+i — P4+ are critjcally finite self maps (on possibly singular Riemann
surfaces).

Observe that F is critically finite if V' := |J)_, F"(C) is a closed complex

hypersurface of M, in this case we define TV = F~1(V) which is a complex
hypersurface containing V.

223



J. E. FORNAESS, N. SIBONY

We recall the following result, see ([Su],[Th]).

THEOREM 7.2. LetR : P! — P! be a rational map of degreed > 2. Assume
thatR is critically finite. Then the only Fatou components of R are preperiodic
to superattractive components.

Recall that 2 is a superattractive component if Ip € 2, 3¢, R¢(p) = p and
(R%)'(p) = 0. The theorem shows in particular that if R is critically finite and
if every critical point is preperiodic that the Julia set of R is P!.

We give here a proof of Theorem 7.2 that does not use Sullivan’s non
wandering theorem nor the construction of an expanding metric.

Proof. Let 2 be a Fatou component for R. It follows from Theorem 6.6
that © is not preperiodic to a Siegel domain and that all the limits are in
U;‘io RI(C) which is finite. Replacing R by some iterate we can assume that
all the possible limits a1, as, - - - ,a, are fix points for R. Let U, Us,--- ,U, be
neighborhoods of a;,as,- - ,a,, 2 by 2 disjoint and such that R(U;) are also
2 by 2 disjoint. Let w CC Q. For n > Ny, R"(w) C UJr-:l U; but since R(U;)
are disjoint there exists jo su¢h that for n > No, R*(w) C Uj,. Hence {R"}
converges to aj, =: a. Let A := f'(a), clearly | A |< 1.

Assume that | A |= 1, A = €?"*®, The map R cannot be linearizable near a
since the corresponding Fatou component requires an infinite orbit of critical
points. Similarly if o is rational or a Cremer point, see ([Mi]). So | A |< 1
but then if A # 0 we still need an infinite orbit of critical points. So finally
A =0 and 2 is preperiodic to a superattractive Fatou component.

We will need to apply the above theorem to Riemann surfaces with singu-
larities whose normalizations are biholomorphic to P!. More precisely, let X
be an irreducible analytlc set of dimension 1, let X denote it’s normalization
with covering map 7 : XoX. Iffisa holomorphic map from X to X, we
will denote by f the lifted map from X to X. We will say that a point p in X
is critical for f if 7~(p) is critical for f.Itis straightforward to verify that
p is critical if and only if f restricted to a neighborhood of p is not injective.
The terminology of Julia sets and Fatou components extends to this context.

DEFINITION 7.3. LetX be a compact analytic set. Iff : X — X is holo-
morphic, we will say thatf is critically finite if X = P! and the orbit of the
critical set is finite.

Observe that this implies that f Pl - Plis critically finite. If a is a fixed
point in X, we will say that it has eigenvalue \ if f'(@) = X where 7(a) = a.
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The following version of the above theorem is then clear.

THEOREM 7.4. Letf : X — X be ad to 1 holomorphic map from an irre-
ducible compact analytic set to itself. Assume thatX = Pl. If f is critically
finite, then the only Fatou components for f are preperiodic to superattractive
basins.

Proof. We just apply the above theorem to f ‘X > X.

We will need the following result which shows that if an algebraic curve X
is invariant under f then f is not injective on .X.

PROPOSITION 7.5. LetX C P? be an algebraic curve of degreer. Letf :
P2 — P2 be a holomorphic map which isd* to 1. Assume thatf(X) C X. If f
is anf to 1 map onX, thenl > d.

Proof. Let H be a generic complex plane such that the number of points
in HN X is r. Suppose that H = {z» = 0}. Let f* = [f& : f?* : f3] in
homogeneous coordinates. The number of points of X N {f} = 0} is r{™.
So there exists a homogeneous polynomial h, of degree r¢™ vanishing on
X N {f® = 0} but not identically. Let 7 : C* — P? be the canonical map,
and denote X = 71(X). Define &, = (h,, f&'/f%, hnf?/f2, hn) from X with
values in C3. The map is weakly holomorphic in X so there exists p such that
for every n, z5®, extend as a holomorphic map. Since z§®, is homogeneous
of degree p + rf™ we can assume that the extension is also homogeneous of
degree p+rf™. Let g, be this extension, g, = f™ on X. Then by Theorem 1.5
we should have p 4+ r€™ > d" for every n, which implies £ > d.

COROLLARY 7.6. If f(X) = X, and if f is holomorphic of degreed > 2 thenf
does not induce an automorphism on.X.

THEOREM 7.7. Letf : P2 — P? be a holomorphic map with critical setC.
Assume thatf is strictly critically finite and thatP?\C is hyperbolic. Then
the only Fatou components of f are (preperiodic or equal to) superattractive
components. In particular if no critical point is periodic, then the Julia set

of f isP2.

Proof. Recall that V := |J;2, f7(C) is a closed hypersurface of P? and
that every irreducible component of V' is preperiodic or periodic. Without
lack of generality (replacing f by an iterate if necessary), we can assume
that every component is preperiodic to some irreducible V; which is invariant
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under f. Let VJ denote the normalization of Vj. Observe first that VJ cannot
be a hyperbolic Riemann surface since one of the iterates of f will be the
identity on V; and we have seen in Theorem 3.1 that this is not possible. So
V; can be P! or a torus T. Let A denote the singular set of V. Then A consists
of intersections of different branches as well as self intersections and cusps.
Note that A is a finite set, {a1, a2, - ,a,}. We can assume all superattractive
periodic points with respect to some V; are fixed.

Fix a Fatou component 2. Assume at first that the iterates f™ |  converges
u. c. c. to A. The argument is the same as in Theorem 5.2. Replacing f
by an iterate we may assume that f" | Q converges u. c. c. to a;. We will
show that this implies that a; must be superattractive, completing the proof
in this first case. For this, let A\;, A\ be the eigenvalues of f’ at a;. Since
{f™} is normal on Q it follows that necessarily | A; |,| A2 |< 1. Suppose that
a; € V; say. Then we exclude at first the possibility that Vi is a torus. If V;
is a torus, then if f | V; is not an automorphism, then this contradicts that a,
is a nonrepelling fixed point. So necessarily f | V; is an automorphism. This
is impossible by Theorem 3.1. Hence we may assume that Vi = PL. Since
f | V4 is critically finite, the eigenvalue corresponding to f | V; at a; is zero.

Assume at first that V; has a cusp singularity at a; which is mapped
to itself. In local coordinates we can parametrize this singularity as t —
(tP +t7 + - --) for some integers 1 < p < ¢, where ¢ is not a multiple of p.
If f has a nonzero eigenvalue at 0, then we may assume that f(z,w) = (O(|
z,w |?),aw + O(] z,w |?)) for some nonzero «. Clearly this contradicts that
f maps this singularity to itself.

Hence a; can be assumed to be a reducible singular point of V and all
branches of V' there, which are mapped to themselves by some iterate are
nonsingular. If these branches are not all tangent to each other then both
eigenvalues of f’ must be zero, so we are done. Assume next that there are
two such irreducible branches that are tangent. We may assume these have
the form w = 0 and w = az¥ + O(| z |F*!) for some integer k > 1. If there
is a nonzero eigenvalue at a; we may again assume that f has the form:
(z,w) = (O(| z,w |?),Bw + O(] z,w |?)) for some nonzero B. This is again
impossible. It remains to consider the case when there is one nonsingular
branch, w = 0 which is mapped to itself and at least one more branch which
is mapped to w = 0. So again we may assume that the other eigenvalue is
nonzero and then that the map has the form f(z,w) = (O(w* | z,w |?),
ow + w * O(| z,w |) for some nonzero . Hence no other branches can be
mapped into the z-axis.

The second case to consider is when for some nonempty open subset w CC
) there exists some subsequence {f"i} converging to h with values in V;\
(neighborhood of order € of A =: A,). We first assume that (2 intersects some
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preimage of V. Then some forward orbit of ) intersects some Vj. Clearly this
intersection must be with the Fatou set of the restriction map to V;. But since
this restriction is critically finite this implies that any such Fatou component
is superattractive as a Fatou component of V; for a superattractive fixed point
p. It remains to show that this is a superattractive fixed point for f on P2
as well. If p € A this is as in the first part of the proof. So we may assume
that p is a nonsingular point of V. So we may assume that V; = (w = 0) near
the origin and that f has the form f(z,w) = (z¥ + O(| z [F+},wx | z,w |),
oaw + w * O(] z,w |) for some k > 1. Computing the Jacobian we see hat this
forces them to have a branch of the critical set through the axis, implying
that p € A, a contradiction. Note that if we replace f by a high iterate, the
set A may increase, but the argument in the first part still applies. So if some
forward orbit of Q intersects V;, then this is a superattractive basin, and we
are done.

Hence we can assume that Q does not intersect any preimage of V. Since
the Kobayashi infinitesimal metric of P?\1” does not blow up in directions
parallell to V1\ A, when we approach 17, we find that h is nonconstant.

We can assume that V; = P! or a torus. Then the image of h cannot contain
a repelling periodic point. Say if f(p) = p, | f* (p) |> 1. Then {f™i+¢i} will
have some derivative blowing up in w. So ‘7’1 = P! and the image of h will be
in a Fatou component of f | V;. Hence Q is preperiodic to a superattractive
component. Indeed f | V; has a superattractive component since f | V; is
critically finite, the same proof as above shows that the superattractive points
with respect to f | V] is superattractive.

The only remaining case is when f" | 2 does not converge to V. But this
cannot happen, by Theorem 6.6, because P?\V is hyperbolic.

We now consider some cases when we do not assume that for some N,
P2\ UY_, 77(C) is hyperbolic.

THEOREM 7.8. Assume thatf : P2 — P? is strictly critically finite. Suppose

that for some irreducible componentCy of the critical set we havef(Cp) = C.

Then the only Fatou components are preperiodic to superattractive basins.
We start at first with two lemmas of independent interest.

LEMMA 7.9. Suppose thatg : P? — P? is a holomorphic map of degreed and

thatg maps a compact complex hypersurfaceZ to itself and thatZ is contained

in the critical set of g. Then we have the estimatedist(f(z), Z) = o(dist(z, Z)).

Proof of the Lemma. We reduce this to a local statement in C?. Let X,Y

227



J. E. FORNAESS, N. SIBONY

be one dimensional closed analytic subsets of the unit ball B containing zero.
Suppose that f : B — B, f(0) = 0, is a holomorphic map with f(X) C Y
such that the Jacobian of f vanishes on X. Moreover assume that

Moreover assume that f is a finite map. Then for every constant ¢ > 0 there
exists a neighborhood V' of 0 such that dist(f(p),Y) > cdist(p, X) for all
p € V. Note that we may assume that X,Y are irreducible at zero. After
changes of coordinates we may assume that X can be parametrized by ¢t —
(t?,t9(g(t)) where g(0) =1 and 1 < p < ¢. Similarly Y can be parametrized
by 7 — (77,79 (¢'(7)) where ¢’(0) = 1 and 1 < p’ < ¢'. Next observe that in
a small enough neighborhood of 0, we can measure the distance to X parallell
to the w-axis, i.e. dy := dist((z9,wo), X N{(20,w) € X} > dist((z0,wo), X) >
%dw. To prove that, the left inequality is obvious. For the right inequality,
observe at first that if we consider any smooth curve in X, then the total
variation in w is less than € times the total variation in z. It follows that
the bidisc A((zo,wo); dw/2) does not intersect .X. Hence the right inequality
follows. If the derivative % vanishes, it follows from considering the image
of lines parallell to the w-axis that dist(f(p),}") < cdist(p, X) for all p close
enough to zero. Hence we are left with the case that gﬁ # 0 at the origin.
The image of lines parallell with the origin are therefore nonsingular curves
(near 0). Note that since the Jacobian vanishes on X, necessarily these lines
must hit Y tangentially except possibly at the origin. However this implies
by continuity that %{;‘ # 0 and %% = 0 at the origin, where we have written
f = (f1, f2). Next consider a line L parallell to the w-axis through (zo,wo).
Inside L consider the straight line v of lenght r from (29, wp) to the nearest
point q in {(zo, w)N X}. Consider the image f(7y). Then the horizontal length
of this image is of order of magnitude r, while the vertical lenght is o(r) where
the little o(r) refers to an expression bounded by an arbitrarily small multiple
of r as the neighborhood shrinks. Also there must be a point on Y with the
same z-coordinate as f(z9,wp) with a w-coordinate differing by o(r). But this
shows that dist(f(z0,w0),Y) < edist((zg.w9).-X) as desired.

LEMMA 7.10. Letf € H, f : P2 — P2. IfCy is a critical invariant compo-
nent, then except for Siegel domains all limit functions for{f"} in a Fatou
component are in the closure of | J2~, f"(C).

Proof of the Lemma. By the previous lemma there exists a neighborhood
U of Cy such that f(U) CC U. It is easy to construct enough algebraic hy-
persurfaces contained in U and to show that P?\U is hyperbolic.

Let Q be a Fatou component for f, which is not a Siegel domain. If f™°(Q)
intersects U for some ng, then all possible limits are in Cp. Otherwise f"()
stays in the hyperbolic set P?\U and the argument about Siegel domains
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of Theorem 1.8 applies to show that Q is preperiodic to a Siegel domain, a
contradiction.

The proof of the theorem then follows the same lines as the previous the-
orem.

We give here an example of a critically finite map on P? where the Julia
set has nonempty interior, but the Julia set is not all of P2. This contrasts
with the one dimensional case where the Julia set is either everything or has
empty interior.

Define f : P2 — P2, [z : w: t] = [(: — 2w)? : 2% : t?]. Then the critical
orbits are

(z=2w) > (z=0)> (w=0)> (z =w) «

(t=0) «.

First, observe that f is strictly critically finite.

Note that inside (¢ = 0) the map is of the form z — gz_;z)j which is strictly
preperiodic. Hence the Julia set contains all of (¢ = 0). Since (¢t = 0) is
critical, there is, (Lemma 7.9) an open neighborhood U of (¢ = 0) such that
f™(U) — (t = 0). Hence if we restrict to any nonempty open subset of U,
the iterates cannot be a normal family there, since there is no superattractive
point on (¢ = 0). However the point [0 : 0 : 1] is an attractive fixed point, so
has a nonempty open basin of attraction. Hence the Fatou set is nonempty
as well.

One can also give a direct proof. Note that f maps the space of lines to
itself. (w = az) — (w = (1 —2a)~2z) and high iterates of an open set of lines
cover the space of all lines. One shows that the Fatou set is just the basin of
attraction of [0 : 0 : 1]. It is Kobayashi hyperbolic since if || (z,w) || is large
enough, then f¥[z:w :1] — (t = 0). And on the dense set of periodic lines,
the map is exceptional so has only two Fatou components. As in the end of
the proof of Theorem 5.7 the derivatives of the iterates of f must blow up on
any open set disjoint from the basin of attraction of [0 : 0 : 1]. Hence the Julia
set has nonempty interior. However int .J is not Kobayashi hyperbolic since it
contains (t = 0).

Note that if [P(z,w) : Q(z,w)] is any rational map on P! which is strictly
preperiodic, critically finite, the same argument works to show that the map
[P(z,w) : Q(z,w) : t%] has nonempty Fatou set and Julia set with interior,
d = deg P, Q. This is a class of examples where the complement of the closure
of s f™(C) is not Kobayashi hyperbolic for any rational map [P : Q).
Indeed [0 : 0 : 1] is superattractive. The action of f on (¢ = 0) has Julia set
P! and f maps lines to lines. Hence the argument is as above.
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Normal forms for local families
and nonlocal bifurcations

Yu. S. Ilyashenko

INTRODUCTION

This paper deals with two closely related topics:

1. Finitely smooth normal forms for local families.

2. Bifurcations of polycycles of few- and many- parameter families. Here

“few” is “no greater than 3"

The exposition is the summary of two large paper [I,Y3] and [K,S] which
are to be published in the forthcoming book [I]. Therefore all the proofs are
brief in this text; there detailed exposition would bhe found in the book, quoted
above.

It appears, that for the study of nonlocal behavior of the orbits of vector
field from the topological point of view, the smooth normal forms of vector
field near singular points are necessary. For instance, consider a separatrix
loop of a hyperbolic saddle (Figure 1).

o

FIGURE 1

We want to know, wether the positive semiorbits winging inside the sepa-
ratrix loop come to or off this loop. The topological normal form of the field
near the saddle is one and the same for all the ficlds and give no information
on the subject; it is

S.M.F.
Astérisque 222** (1994) 233
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Meanwhile, the smooth normal form in the nonresonant case is
=X, Y=-ly

A1 > 0, =)z < 0 are the eigenvalues of the singular point. The correspondence
map of the entrance semitransversal I't onto the exit one I'" is equal to

Az) =22, X =X/ N\

Suppose A # 1. Then the correspondence map in the small neighborhood of
O on I't has a large Lipshitz constant; in the case A > 1 this constant tends
to zero as the neighborhood contracts to a point. The smooth map from I't
to I'~ along the orbits cannot neutralize this contraction; therefor in the case
A > 1, the separatrix loop is orbitally stable from inside. In the same way, it
is unstable if A < 1.

The example motivates the study of smooth normal forms of local families.

On the other hand, the bifurcations of polycycles are closely related with
to Hilbert 16** problem, as is discussed below.

§1. NUMBERS RELATED TO THE HILBERT 16** PROBLEM.

Consider a family of differential equations

d'j _ -Pn(mﬁ y)
(1) dr — Qn(z,y)

where P, and @, are polynomials of degree no larger than the fixed constant
n. The following definition is popular in the survey literature.

Definition 1. The Hilbert number H(n) is the maximal possible number of
limit cycles of the equation of the family (1).

It is obvious, that H(1) = 0 . Indeed, a linear vector field has no limit
cycles at all.

Nothing is known about the numbers H(2); its mere existence is an open
problem.

One can figure out, why Hubert has chosen the family (1) for the study
of limit cycles. In the end of the last century polvnomial families gave prob-
ably the only natural example of finite parameter families of vector fields.
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Now, when the mode and viewpoints have reasonably changed, generic fi-
nite parameter families became respectful. Therefore a smooth version of the
Hilbert 16** problem may be stated; it is written between the lines of some
text due to Arnold [AAIS].

Hilbert-Arnold conjecture. The number of limit cycles of the equation
of the typical finite parameter family (here and below “family” means “ C*
family of vector fields in S? ”) with the compact base is uniformly bounded
with respect to the parameter.

This conjecture is closely related to some nonlocal bifurcation problem. We
will first state it and then recall necessary natural definitions.

Conjecture. Cyclicity of any polycycle appearing in the typical finite pa-
rameter family is finite.

Definition 2. A polycycle is a finite union of singular point and continual
phase curves of the field which is connected and cannot be contracted along
itself to any proper subset.

A limit cycle is generated by a polycvcle v in the family
i=v(z.€), €85’ eecBCR"

if the path €(t) in the parameter space exits such that for any ¢ € (0, 1] the
equation corresponding to €(t) has a limit cycle I(t) , continuously depending
on the parameter ¢, (1) =1, and

l(t)y > vyast—0

in sense of the Hausdorff distance.

Cyclicity of the polycycle in the family is the maximal number of limit
cycles generated by this polycycle and corresponding to the parameter value,
close to the critical one; the last corresponds to the equation with the poly-
cycle.

Theorem (Roussarie). The equations of the family with the compact base
and the polycycles having finite cvclicity only have a uniformly bounded num-
ber of limit cycles.

Therefore the last Conjecture implies the Hilbert-Arnold one. Some bifur-
cation numbers related to these Conjectures, are naturally defined.

Recall that a singular point of a planar vector field is called elementary if
it has at least one nonzero eigenvalue. A polvevele is called elementary if all
its vertexes are elementary.
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Definition 3. B(n) is the maximal number of limit cycles which can be
generated by a polycycle met in a typical n-parameter family.

E(n) is the maximal numbers of limit cycles which can be generated by an
elementary polycycle in a typical n-parameter family.

C(n) is the maximal number of limit cycles which can bifurcate in a typical
n-parameter family from all the polycycles of the field, corresponding to the
“critical” value of the parameter.

Conjecture. B(n) ezists and is finite for any n.
This Conjecture is stronger then Hilbert-Arnold one.

§2. STATEMENTS OF RESULTS.

Theorem 1 (Ilyashenko & Yakovenko). For any n the number E(N)
exists.

Theorem 2 (Kotova). C(3) = ~.

This means that for any IV one can find a generic 3-parameter family, in
which some differential equation generates more than N limit cycles.

Moreover, a complete list of polycycles which can generate limit cycles and
appear in generic 2 and 3- families is given; this is so called “Zoo of Kotova”,
Table 1 below.

Theorem 3. B(2) = 2.
Theorem 4. C(2) = 3.

Last two theorems are due to Grosowskii. Druzkova, Chelubeev and Sere-
gin.
Theorem 5 (Stanzo). For generic three parameter families there is a count-
able number of topologicaly nonequivalent germs of bifurcation diagrams.

In this form the Theorem 5 is an easy consequence of the Theorem 2. In fact
Stanzo describes the topological and even the smooth structure of bifurcation
diagrams for unfoldings of the phase portrait called “lips”(Figure 2), and
constructs the invariants of the topological structure of these diagrams.

As a by product of this study a generalized Legendre duality is found.

Comments to the Table 1. In the Table 1 all the polycycles which can
appear in the generic 2 and 3 parameter families are presented. For sure,
“all” means “all equivalence clases™: the equivalence relation is a following.
Two polycycles are equivalent, if theyv have diffcomorphic neighborhoods in R?
and a diffeomorphism of one of them to another exists which transforms one
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o) F
o )|

FIGURE 2. Lips

polycycle to another in such a way, that for a correspondent singular points
the multiplicity and other characteristics shown in the table coincide. We do
not claim, that the equivalent polyvcycles have equivalent unfoldings; on the
contrary, for the most part of cases already investigated this is not the fact.
The presence or absence of a punctured heteroclynic curve distinguishes two
nonequivalent polycycles in the cell 3.9. Abbreviations in the table mean the
following:

res resonant sadoble,
k-degen degeneration in the nonlinear terms of codimension k,
/=0 J,divv dt = 0, where v is the correspondent vector field, t is

time and + is a separatrix loop.

The sign @ means that the correspondent case is investigated, but not
published; the capital letter stands for the name of the author. In case, when
the result is already published, the abbreviations mean

B Bogdanov, T Takens, L Lukianov, L-R Leontovich, Roussarie, R Reun,
L.W Li Weign, DRS Dumortier, Roussarie, Sotomayor. Most part of the
references may be found in [AAIS].

The authors of papers in preparation are

K Kotova, Ch Chelubeev, G Grosovski, S Seregin, St Stanzo.

They are young Moscow mathematicians.

83. NORMAL FORMS FOR LOCAL FAMILIES

The detailed exposition is published in [IY1]. therefore we give only a brief

summary here.

237



Y. S. ILYASHENKO

21 22 @] 23 24 25
o T T And 5 e,
O )2
& degen. @ Lukianov

@ ©

26 27 O 28 29

‘
X Y M | OO &
& res. or f-O i 8 @ A

321 322 323 324
NL
> <_<> e ©® =
NN
39 Dl ~
S — X = X' + - e

& degen. e ® an infinite series
9 -
B \(E N

S~
TABLE 1

238




NORMAL FORMS FOR LOCAL FAMILIES

Theorem 6. 1. The deformations of the hyperbolic germs of vector fields in
a fix point which is nonresonant or oneresonant (all the resonance relations are
the consequences of a single one (A\,r) =0, r € Z}, X is a tuple of eigenvalues
of a singular point) have polynomial integrable normal forms with respect to
C*k-equivalence for any k < oo.

2. Analogous statement holds for germs of diffeomorphisms with the only
change: (\,r) = 0 must be replaced by A" = 0, where X is a tuple of multo-
plicators of the fix point.

3. Deformations of saddlenodes of vector field in R™ (one eigenvalue is zero)
having finite multiplicity and no supplementary resonances are C* equivalent
for any k to the linear suspension over one dimensional polynomial integrable
family.

The explicit formulae are listed in [IY1], and we shall not repeat it here.
Note that the elementary singular points of the planar vector fields fall under
conditions of the previous theorems. The list of finitely smooth normal forms
of their unfoldings will be given in §6 and used below.

The above theorem exhausts the positive results of this kind. Unfoldings
in the other cases corresponding to the codimension one degenerations has

functional module of smooth classification, or have no reasonable classification
at all.

Theorem 7. [IY2] 1. Typical one parameter deformation of germs of one
dimensional diffeos with multiplicator A = 1 or A = —1 has the functional
modules of C!-classification.

2. The same is true for the Andronov-Hopf families: deformations of planar
vector fields with A\ 2 = tiw,w # 0.

The modules in the above theorem are explicitly described.

The deformations of saddle suspensions over the above families are finitely
smooth equivalent to linear suspensions over these families.

The result form the end of the long chain built by Belitski, Bogdanov,
Brjuno, Dumortier, Kostov, Roussarie, Samovol, Takens. See [B], [Bo], [Br],

[D], [K], [R], [S], [T].

84. Lips orR WHY C(3) = o0?

Consider a vector field in R? having two saddlenodes Oy, Oy of multiplic-
ity two and a saddle connection, like it is shown in Figure 2. These three
requirements produce a vector field with degeneration of codimension 3.
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Theorem 8 (Kotova). For any N in a typical 3 parameter family such a
vector field with “lips” may be met that its unfolding will have the equations
with more than N limit cycles.

Remark. This theorem immediately implies Theorem 2.
Sketch of the proof. The finitely smooth orbital versal deformation of a
saddlenode of multiplicity two has the form [IY1]:

&= (22+¢)(1+ax)™?
y==y

Consider the unfolding of “lips”. After the suitable reparametrization and
coordinate change near saddlenodes one obtain the following local systems
near O; and O, respectively (see Figure 2):

t= (224 )(14a@))™, y=—y
(4.1) = (22 +8A+bE))L, y=y

where £ = (g,6,1) € (R3,0) and A = 0 corresponds to the saddle connec-
tion.

Now consider the limit cycle equations. This will be an equation for the
fix points of the Poincaré map; written in the appropriate form. For this
sake decompose the Poincaré map for the unfolding of the polycycle, in the
domain, where it is defined, into the composition of the four maps, shown in
the figure 3.

FIGURE 3
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The transversals I'},I'] are taken in the ncighborhood of the point Oy,
where the normalizing chart for the local family is defined. Let I'f be the
entrance and I'] the exit transversal through which the phase curves enter in
and come off the mentioned neighborhood of O,. Let z; and y; be restrictions
of the y-function of the normalizing chart to I'} and I'] respectively. Then
the correspondence map

Arc F'l" - IT

along the phase curves will take the form
Al(.’l’]) =M., Y1 = Cl(s);rl
Ci(c) > 0ascs—0

This map is called the funnel In fact

Ci (<) = ¢(e) exp(——=)
2 1
NG NG

An analogous construction near the point O, gives the transversals 'y, Ty
with the charts x5, y» and the correspondence map

T
(—5 + arctan

) = 0(1).

Aa(z2) = y2,y2 = Co(8)r2.Co(6) = 0 as 0 — 0,

Ca(8) = (¢(6)) ™" exp %

The map As is called is shower.
There are also two regular maps along the phase curves depending on € as
a parameter:
fe:T7 - TF and g : 5 =T},

The Poincaré map A : T — R D T'f for any fixed ¢ is a composition
A:gE-OAQOf::OA]

The limit cycle equation has the form

or equally

(4.2) Agofio =g
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The last equation will be studied below.

Note that the function g: is not a germ but an actual function on a seg-
ment. The situation completely loses locality and, therefore, the following
construction goes.

Chose the curve

v ={&(e)}, &) = (¢,6(c). X(€)), A(e) =0,
with the endpoint zero in the parameter space such that
fe(z1) =0 for &, =0, &= 7(e),
Ci(e)C2(8(e)) =1
The left hand side of (4.2) for small € will be the rescaling f. of the smooth
function f. () with f,.)(0) = 0:
fe(a1) = CTH(e) 0 foey 0 CLe) (1)

The limit of the rescaled smooth function with the zero value in zero is
linear. The Figure 4 shows that for a function g: properly chosen the limit
cycle equation (4.2) for £ = 0 may have a prescribed number of solutions, and
a situation is structurally stable.

Y: A

v

/ X

FIGURE 4

This proves the Theorem 8.
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85. BIFURCATION DIAGRAM FOR THE “LIPS“
AND GENERALIZED LEGENDRE DUALITY.

In the first half of this section the bifurcation diagram for “lips” will be
described. This will give the sketch of the proof of the Theorem 5.

5.1 Bifurcation diagram and Legendre transformation.

Recall that the point in the parameter space of the family of vector fields
belong to the bifurcation diagram if the corresponding vector field is not
structurally stable in its domain. ‘

We will describe the intersection of the bifurcation diagram (BD) for “lips”
with the narrow funnel U centered on the curve

e=6,A=0
Let
b—¢ A
NG
(51) U={(E,6,)\)|61€J, A]EO’}

Here o = [—A, A] is such a segment, that
A > max|g7 |, A> max(g;')

Let (g,61, A1) be the new coordinates in U. Consider only those point on the
BD which correspond to semistable limit cycle. Fix a small value of €. The
limit cycle equation (4.2) has the form

(5.2) Ca(6)f=(C1(e)x) = g7 (2)

Suppose that € runs the curve in U having a definite limit point (0,6, A;) in
the chart (g,81, A1) , see (5.1). Then the solution of (5.2) g:* is given by the
intersection of the graph of f: and the rescaled graph of f: which is almost
a straight line. When the parameters 6;,A; change, these “almost straight
lines” changes also; the bifurcation diagram contains the points corresponding
to the tangency of these graphs (Figure 5).

In the case, when € = 0, the set of parameters (é;, A1), corresponding to
the tangencies (2) on the Figure 5. will form the part of the “blown up vertex”
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Y. A

@‘\
)

FIGURE 5

of BD in the funnel U. This set will be the Legendre transformation of the
graph of g;! on the parameter plane (a,b) of the straight lines

Y2 = azy — b,

b= =X, a = f3(0) exp(~361)

The last formulae may be easily obtained analyzing the rescaling in the left
hand side of (5.2).

Therefore, the intersection BD NU contains a surface, which becomes dif-
feomorphic to a cylinder over the Legendre transformation of a graph of g;*
after the blowing up (5.1). This proves the Theorem 5, §2.

Now discuss the intersection

E=BDNUN{c=¢p}, ¢0>0
Then the lines would be replaced by the curves, still forming the two pa-

rameter family; the parameter values corresponding to tangency with the
graph of go ! belong to ¥. This intersection is equal, up to some details, to
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the generalized Legendre transformation of the graph of ¥. First recall some
classical definitions [A].

5.2. Dual second order differential equations..

Definition 4. A two parameter family of curves in the plane is the divergent
diagram of maps:

(5.3) RZE QLR QCR3

Remark. In the generic case near a typical point O of Q2 both maps ¢ and
v are regular (have rank 2). Consider the set ¥(Q) = {(a,b)} C R? as a space
of parameters and the set ¢(Q2) = {(p,q)} C R? as a phase space. The level
curves of the germ ¢ : (Q,0) — (R%,0;), O = ¢(O) form the germ of a one
dimensional foliation in R3. The image of this foliation under the map ¥ is
the two parameter family of plane curves (in the naive sense), see Figure 6a.

Remark. Let (¢,a,b) be the local chart near O, and let ¢ = (p1,p2).
Denote by dot the derivation with respect to t along the level curves of ¥ :

a = const, b = const in (©2, ©). Then the function
b
@1

p=

is the derivative of a function y = f() with the graph ¢(¢_1(a, b)) for suitable
a and b. The function %{- may be also expressed through a, b, t, ¢, and @s

as a function ¢q on (2, 0). But in the generic case functions z, y, p form a
chart in (2, O). Therefore one can write

q=®(x.y,p)
The curves {p(¢~(a,b) | (a,d) € ¥(Q, O)} are the graphs of the solutions of
the differential equations
(5.4) y' = o(x,y,y)
Therefore, in a genetic case, the diagram (5.3) near a genetic points, gives a
germ of a second order differential equation.

Definition 5. The local second order differential equation is the genetic di-
agram (5.3) near a regular point of a map v, with the phase space Im ¢ and
a parameter space Im .

Now define the differential equation dualto the previous one. For this sake
we should nearly change the roles of the maps ¢ and .
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‘ (P ‘ w‘
D —>
X,y

Q CR’ ab
a
(-~
X,y Q CR’ ab
FIGURE 6

Definition 6. The second order differential equation dual to the one de-
scribed in definition 5, is the same diagram (5.3) considered near a regular
point of a map ¢ with the phase space Im " and a parameter space Im ¢
(see Figure 6 b)

5.3. Generalized Legendre duality.

The definition of the generalized Legendre duality is naturally realized with
the constructions of the Figure 5.

Definition 7. The generalized Legendre transformation of the planer curve
v with respect to the family (5.3) with the parameter space Im 1) is the set 4
of the parameters a = (a, b) such that the curves

v and (¢! ()
are tangent.

Remark. For the family
y=ar—>

(the maps ¢ and 3 have the form

(z,az —b) < (a.h.x) 5 (a.D))

the definition 7 give the classical Legendre transformation. The following
theorem is a classical.
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Theorem [A]. The Legendre transformation is an involution for the genetic
germ of a curve y. Then means that the curve 4 obtain from -y gives the same
curve v after a Legendre transformation.

The equivalent statement: the Legendre transformation is the inverse to
itself on the set of genetic germs of curves.

Theorem 9. (Stanzo). The generalized Legendre transformations with re-
spect to dual two parameter families, in sense of Definition 6, are inverse to
each other on the set of genetic germ of plane curves.

Remark. The first proof of this theorem was given by Stanzo and will be
published in [K,S]. Here I reproduce the proof, proposed by Cromov without
looking to the explicit statement of the theorem. I allow myself to reproduce
here approximately a fragment of our conservation. I ask Gromov, does he
know the fact called the “Generalized Legendre duality”. He says “ I don’t,
but the proof must be similar to the classical one. The crucial point is, that the
curves of the first family passing through one and the same point correspond
to the curve of the dual family on the parameter plane. Let me find the proof
in some classical book, for the traditional Legendre transformation”. We try
to find it in some books of Klein and fail. “Well, — says Gromov, — in this
case of lines it looks like what follows” — and he gave a sketch of the proof of
the theorem [A], which will be extended below to the general context.

This proof is based on incidence reasons only. We will give a sketch of it
using the consequences of some genericity assumptions without formulating
them explicitly.

The principal fact used below is that the tangent line is the limit of chords.
Similarly, the curve of the two parameter planar family tending to some curve
7 in a point ¢, is a limit of the “chordal” curves of the family passing through
the points a and 3, where 3 is the point of the same curve v tending to a.

Consider two dual families of planar curves given by diagram (5.3). Define
by A, B, ... points on Im . Let ® and ¥ 4 be the curves of the dual families,
correspondent to the parameter values A4 and « respectively:

Bo = p(¥7 (), T4 = v(p (4)).
Let

E)a = d)_l(a/)a \i:’\ = 97-](‘4)’
®={P,|a€Im ¢}, v={T,4 | A€Im ¢}

Take a curve v C Im ¢, a point A € y and a curve &, € ¢ tangent to y at a
point A. Let v* be the generalized Legendre transformation of v with respect
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to the family ®. We want to prove that the curve of the family ¥ tangent to
the curve v* in the point « is ¥4, that is to say, corresponds to the point A.
This will give the desired duality.

Instead of this study the “chordal” curve; the curve of the family ¥ passing
through « and the nearby point 3 € v*. Let C be corresponding point of Im ¢:

Ueda, B Ue=9(p~}(C)).

The point 3 corresponds, by definition of v*, to the curve ®5 of the family
®, tangent to -y in the point B close to A. We state that the point C corre-
sponding to the “chordal” curve ¥¢ is to the point of intersection of ®, and
®4 (see Figure 7). Indeed, the curve

\I[C —_ (’9_1 (C«)
has a non empty intersections with the curves
Ty =¢~a) and T = =1 (8)

because these curves form the total inverse image of o and 8 with respect to
the map 9, and the curve ¥(¥¢) contains o and 3. Therefore the image

C= <p(zzc) belongs to ®a = (1" ) and O = <p(1Z;3).

This means that the point C is the intersection point of ®, and ®4.
On the other hand C tends to A, as B tends to 4. This proves the theorem.

FIGURE 7

Remarks. 1. The generalized Legendre duality may be extended to higher
dimensions.

2. After my talk in the conference on Dynamical systems in Triest, June 92,
Zakalukin communicated me that this generalized Legendre duality may be
derived from some of his recent results (though the statement was unknown
to him before).
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86. BIFURCATIONS OF ELEMENTARY POLYCYCLES.

In this section the weakened version of the Theorem 1 is discussed.

6.1 Statement of result and four steps of the proof..

Theorem 10 (Ilyashenko & Yakovenko). An elementary polycycle met
in a typical finite parameter family generates only finitely many limit cycles
in this family.

We will give the brief sketch of the proof here; the detailed exposition is
given in [IY3]. This proof splits into four steps.

Step I. Replace the Poincaré equation for limit cycles (the equation for
fix points of the monodromy map) by the functional-Pfaffian system with
the polynomial Pfaffian equations. This step uses the normal polynomial
forms for the unfoldings of elementary singular points mentioned in §3 and
summarized in the Table 2 below. The Poincaré equation is singular: its right
hand side is not defined in the full neighborhood of zero point in the space of
phase variables and parameters. The functional-Pfaffian system is regular in
a likely neighborhood.

Step II. Replace the functional-Pfaffian system by purely functional system
which is regular in the entire neighborhood of zero. This is done using the
Khovanskii procedure [Kh].

Step III. Generalize Gabrielov finiteness theorem from real analytic to
finitely smooth case. This means, find a sufficient property for finitely smooth
maps of real manifolds with boundary to have a uniformly bounded number
of universe images of the regular value of the map. This leads to the definition
of the so called nice maps.

Step IV. The Khovanski procedure reduces the estimate of the cyclicity
of elementary polycycle of the upper estimate of the regular solutions of the
so called “special chain map”. The simplest, not exactly the necessary one,
example of the special chain map is the following:

(6.1) g=Pof, f:B—R", P:RY - R",

B C R"™ is a ball; f is generic, P is polvnomial.

Theorem 11 [IY3]. For any fixed polynomial P and for generic f, the map
(6.1) is nice.

We will now explain these four steps in more details.
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6.2 Step I. Reduction to functional-Pfaffian system.

Theorem 12 [IY3]. The generic unfoldings of elementary singular points of
the vector fields in the plane are finitely smooth equivalent to ones listed in
the Table below. The correspondence maps for these unfoldings satisfy the
Pfaffian equations listed in the column 3 of the same table.

Type Normal form Pfaffian equation for
the correspondence map
Nonresonant =z, xdy = Ae)ydx >0, y >0
saddle y=-AE)y, A>0
Resonant t=z(2 + fu(u,c)),

saddle y=-y, u=2amy" (fu(z™, &) — ma™) fu(y™, €)dz
is the resonant monial, +nzy™ 1 f (z™,e)dy =0
fu=P, 1% *>0,y>0

ut (1 4+ a(su*)

P,,_l(u,e) =& + sou+
L;l.—l

cte
Degenerated z=g,(z,¢), a. zdy = ydz
elementary y=-y
singular gu = Pu_1(z,€) £ 2t b. gu(z,e)dy — ydz =0,
point 1+ a(e)z*), Puoq y>0
(saddlenode) is the same as before
TABLE 2

Commentary. The case a in the third row of the Table corresponds to the
map of the transversals crossing the central manifold.
The case b corresponds to the map of the segment transversal to the stable
manifold onto segment transversal to the central one.
Let now 7 be an elementary polycvele met in a typical k-parameter family.
Denote by
A (r.g)— Ar,2)

the Poincaré map of this polycycle defined for some domain in the space of
phase variable z on transversal and parameter <. This domain contains in its
closure zero point corresponding to the polvevele. The limit cycle equation
has the form

(6.2) Alr.s)=x

Our goal is to prove the existence of the upper estimate for number of solutions
of this equation. The solution of (6.2) is intersection point of the cycle with
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transversal I', see Figure 8. Replace this equation by the system corresponding
to the intersection points of the limit cvcles generated by v with transversals
separating the singular points Oy, . ..., from the other part of the polycycle,
Figure 8.

FIGURE 8

Let I"}' and I';" be the entrance and cxit transversals in the neighborhood
of the point O;. Let A;j be the correspondence map of I't to I'7. Consider
the normalizing charts near the singular points, sce Table 2. Let x;, y; be
the restrictions of the appropriate coordinate functions of these charts to I‘;’
and I'; respectively. Then the equation (6.2) may he replaced by the system

Y1 = Aq(rq,9)

(6.3)
Yn = An(-rnw S)

1 = fu(Yn.€)

Traditionally the correspondence equations bring the main difficulties. After
the Table 2 is written down they become standard. The explicit formulae for
them may be derived from this table. What about the functions f;, we only
know that they are regular and generic.

The correspondence maps A; are solution of the Pfaffian equations from
the Table 2. Replace these maps in the svstem (6.3) by the corespondent
equations; we will obtain the system

wi(a1.1.¢)
(6.4) xo = fi(y1.€)

The 1-forms w; have the polynomial coefficients with respect to  and . This
is the end of the step I.
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Step II. Khovanskii procedure..

This procedure allows to replace Pfaffian equations once more by the “func-
tional” ones, but the system constructed this time appears to be regular. The
algorithm is described in [Kh], its realization may be found in [[Y3]. The
following system is obtained as a result

(6.5) F(jrf.e) =a
Here
(66) f(y>€) = (fl(ylws)a--'vfu(ynss))v

e = (¢1,...,€k) € B is a parameter, B is a hall in R*¥. The notation on the
left hand side of (6.5) is explained by the following

Definition 8. Let C (C of Cartesian) denote the space of all maps
f: Rk 0) - (R".0)

of the form (6.6). The (n,C) jet of the map (6.6) in a point (y, €) is the set of
maps (6.6) (maps from the space C) which difference with f is n-flat in the
point (y,€). The space of all jets j&f, f € C is denoted by J2.

The map F is polynomial:
F: RN - ]Rn+k

for appropriate N.Next two steps allow to prove that the map (6.5) has a
uniformly bounded number of regular inverse images of any of its regular
values.

6.4. Step IIL. Finitely smooth maps with Gabrielov property..

The following theorem of Gabrielov is well known.

Theorem [G]. Let M be a compact analytic set in the real space and g :
M — R™ an analytic map. Than for any a € R™ the number of connected
components of the inverse image g~ (a) is uniformly bounded with respect to
a.

If the map (6.5) would be analytic, then the system (6.5) would have a
uniformly bounded number of isolated solutions by the previous theorem.
Unfortunately, the map (6.6) is only finitelv smooth. In the general case the
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Gabrielov theorem for finitely smooth maps is obviously wrong. We must
find the sufficient local conditions for the finitely smooth map to have a uni-
form bound for the number of the inverse images of any of its regular values.
These sufficient conditions were obtained analyzing the original proof of the
Gabrielov theorem.

Analytic sets form the so called stratified manifolds [W], [M]. Therefor we
will consider the smooth ones, referring to the necessary definitions in [M].

Let M be a stratified manifold. Denote by sk A, the skeleton of M, the
union of its strata of all the dimensions lower than the maximal one; the
last is called the dimension of Al. Consider a complete flag in R™ with the
orthogonal projections ;:

(6.7) R™ B R™! 5 ... 5RO R = {0}

Definition 9. The map g : M — R™ of m-dimensional compact stratified
manifold in R™ is called nice if a flag (6.7) and a commutative diagram

Mm im o pgmel Jmot g B g0
(6.8) gml gm_1l “"l gol
rR™ Iz, gm-l Izl T2, R T, RO

exist having the following properties:
(6.9) M™ =M, M"' =gk M, g, =g,

M’ is a j-dimensional stratified manifold, i; is a natural embedding. On
all the strata of MJ of the higher dimension the following dichotomy holds:
either g; is regular in any point of the stratum. or rank df; < dim M7 on
entire stratum.

Remark. The maps g; are well defined by map g, the flag (6.7) and the
diagram (6.8).

Definition 10.. The contiguity number for the stratified n-dimensional man-
ifold is the maximal number of n-strata adjacent to the n — 1 strata in the
small neighborhood of the points of these last strata, see Figure 9.

Denote the contiguity number for m; in (6.8) by v;.

Theorem 13. . If the map g, is nice and (6.8) is the correspondent diagram
with the contiguity number v;, then the number of inverse images of any
regular values g admits the following estimate

#{g—l(a)} < 2_]'.;’/1 et Vot #{-‘IO}
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S

FIGURE 9

< The proof goes by induction by j. Suppose the likely estimate for g,,—1 :
M™=1 — R™"! is obtained. Eliminate from M™ all the higher strata where
the rank of dg drops. This does not change the number of regular preimages
and the map g with the domain narrowed in this way still remains to be nice.
Take a regular value b of g,,—1 and consider a function

p(a) = #g7"(a) for a € R' = 7;'b.

This function is piecewise constant and jumps in the points of the image of
the visible contour of M™ only. The magnitude of each jump is, roughly
speaking, no larger than v,,, and the number of jumps is no larger than

1
om=1 V1o " Vip—1- #{‘AIO}

by the induction assumption, see Figure 10. For the values of a close to —co
and oo, ¢(a) = 0. Therefore its maximal value is no greater than one half of
its oscillation, which may be in turn estimated;

J =

osc ¢ < .J- vy

This proves the theorem. >
The theorem shows that the nice map has the Gabrielov property. Now we
have to prove that the map

(6.10) 9: (y,€) = (F(je.foe).e) € R™HE
with the generic f € C is nice.

6.5. Step IV. Thom-Boardmann like classes..

We replace the family of equations (6.5), (6.6) by a single equation

g=(a,2)
g is the map (6.10), because we want to have a uniform estimate of the number

of regular inverse images with respect to <. In order to investigate the map
g, introduce some notations used for the nice maps.
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=
R e

FiGURE 10

Definition 11. . The criminant set X'y of the map g : M™ — R™ of the
stratified manifold is the union of sk A" and the set of critical points of g on
the n-strata of M : ¥ = {z € higher strata | rank dg < n}

We say that the map g agrees with the stratification M of M", or M
stratifies g, if the following dichotomy holds: each n-stratum M, € M en-
tirely consist either or regular, or of critical points of g. The skeleton of the
stratification which stratifies g will be called the essential criminant set of g (
it is defined up to a choice of stratification which agrees with g).

Remark. The sufficient condition for the map ¢ to be nice is the existence
of the commutative diagram (6.8) with the properties (6.9) and the following
one:

each M7~! is the essential criminant set for the map g; : M7 — RJ.

Fix a polynomial map F in (6.10) and a flag (6.7).

Theorem 14. . There exist algebraic sets K; in the jet space Jgf” such that:
codim K; =1,
the set K; is the “universal criminant set” in the following sense:
if the n + l-jet extension of f € C' is transversal to K; for any l, then the
map g (6.10) is nice.

The constructions goes by induction with respect to | = m — dim M7 in
(6.8). It is like the classical one, due to Thom- Boardmann.
Let M™ C R*** m = n+k be the ball in the space of y, €, phase variables
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and parameters in (6.6). Let f € C be a Cartesian map (6.6)
M™ - R"
Consider the first universal criminant set

K1 = {jg*'f | rank dg, >m, 7 € int B} U {j2*'f | z € B}

where Z is the source of the jet jAt!f, g is the map(6.10).
The set K; is obviously an algebraic variety in J2*!.
The following construction makes use of two important remarks.
1. Consider a map

RreaRf — RT-H.
T (911 ey gre 1y ) ()

and suppose that g = (g1, ...,9r), h = (h1,....1y) and rank dg|g=0 = 7.
Then the set of critical points of the restriction of A onto the set g = 0 is
given by the equations

g=0,dp A...ANdg, ANdhy A...Adhs =0

This fact lies in the foundation of the classical Thom-Boardmann construc-
tion.

2. Consider a semialgebraic set K in the jet space J& for some L given by
the polynomial system

G=0, G=(Gy,...G))

with the additional requirement rank dg|K = r.
Suppose that the L-jet extension of a map f € C' is transversal to K. Then
the map

9=G-j'f

has rank r on the set {g = 0}.
These remarks allow to proceed the construction of the universal criminant
sets K, using the following theorem of Whitney.
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Theorem. . For any algebraic variety K in the affine space there is a semi-
algebraic set K, which is in fact a manifold such that:

1. For any point x € K a system G of polvnomials exist such that in some
neighborhood U of x

KNnU={G=0}nU,
rank dG = codim K

on KN U;_
2. dim(K \ K) < dimK.

This concludes the proof of Theorem 14.

6.6 Cartesian transversality theorem..

To conclude the proof of Theorem 10 we need a Cartesian analogue of the
classical Thom'‘s transversality theorem.

Theorem 15. . Let C, as before, be a space of maps of the form (6.6), and
let K be an algebraic variety in the space J&. Then a generic map f € C has
L-jet extension which is transversal to all the strata of K.

This theorem is proved by Shelkovnikov. The proof is analogous to that of
the classical transversality theorem.
This concludes the proof of the Theorem 10.
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REGULAR LINEAR SYSTEMS ON CP! AND THEIR
MONODROMY GROUPS
V.P. KOSTOV

1. INTRODUCTION

1.1

A meromorphic linear system of differential equations on CP! can be pre-
sented in the form
X = A@)X (1)

where A(t) is a meromorphic on CP! n x n matrix function, ” - ” = d/dt.
Denote its poles a1,... ,ap+1, p > 1. We consider the dependent variable X
to be also n x n-matrix.

Definition. System (1) is called fuchsian if all the poles of the matrix-
function A(t) are of first order.

Definition. System (1) is called regular at the pole a; if in its neighbour-
hood the solutions of the system are of moderate growth rate, i.e.

IX(t—apll=0(t—a;|™), N;€R, j=1,...,p+1

Here || - || denotes an arbitrary norm in gi(n, C) and we consider a restriction
of the solution to a sector with vertex at a; and of a sufficiently small radius,
i.e. not containing other poles of A(t). Every fuchsian system is regular, see
[1). The restriction to a sector is essential, if we approach the pole along a
spiral encircling it sufficiently fast, then we can obtain an exponential growth
rate for ||X]||.

Two systems (1) with the same set of poles are called equivalent if there

exists a meromorphic transformation (equivalency) on CP!

X W)X (2)

S.M.F.
Astérisque  222** (1994) 259
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with W € O(CP'\{ay,...,ap+1}) and det W(t) # 0 for t € CP\{ay, ..., ap+1}
which brings the first system to the second one. A transformation (2) changes
system (1) according to the rule

A(t) = WY W (H) + W () AW (2) 3)

1.2

The monodromy group of system (1) is defined as follows: fix a point a # a;
for j = 1,...,p + 1, fix a matrix B € GL(n,C) and fix p closed contours on
CP! beginning at the point a each of which contains exactly one of the poles
a; of system (1), see Fig. 1. The monodromy operator corresponding to such
a contour is the linear operator mapping the matrix B onto the value of the
analytic continuation of the solution of system (1) which equals B for t = a
along the contour encircling a;; we assume that all the contours are positively
orientated. Monodromy operators act on the right, i.e. we have B — BM;.
The monodromy operators M, ..., M, corresponding to a,,...,a, generate the
monodromy group of system (1) which is a presentation of the fundamental
group m (CP\(ay,...,ap+1) into GL(n, C); we have

Mp+1 = (M1....Mp)—1 (4)
for a suitable ordering of the points a; and the contours, see Fig. 1.

It is clear that

1. the monodromy group is defined up to conjugacy due to the freedom in
choosing the point a and the matrix B.

2. the monodromy groups of equivalent systems are the same.

The monodromy group of a regular system is its only invariant under mero-
morphic equivalence.

Capital Latin letters (in most cases) denote matrices or their blocks; by I
we denote diag(1,...,1).

1.3

It is natural to consider GL(n, C)? as the space of monodromy groups of regular
systems on CP! with p+1 prescribed poles (because the operators M;, ..., M,
define the monodromy group of system (1)). Condition (4) allows one to con-
sider M, as an analytic matrix-function defined on GL(n, C)?. Of course, in a
certain sense, M, ..., M, are ’equal’, i.e. anyone of them can play the role of
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M,1,. We define an analytic stratification of (GL(n, C))? by the Jordan normal
forms of the operators Mj,..., My, and the possible reducibility of the group
{M,...,M,}. Fixing the Jordan normal form of M;,..., M, is equivalent to
restricting the matrix-function Mpy; = (M;...M,)™! to a smooth analytic
subvariety of GL(n,C)?, but if we want to fix the one of M, as well, then
we a priori can say nothing about the smoothness of the subset of GL(n,C)?
(called superstratum) obtained in this way. The basic aim of this paper is to
begin the study of the stratification of GL(n,C)? and the smoothness of the
strata and superstrata.

Throughout the paper ’to fix the Jordan normal form’ means ’to define the
multiplicities of the eigenvalues and the sizes and numbers of Jordan blocks
corresponding to each of them’, but not to fix the eigenvalues as well; this is
called ’to fix the orbit’.

2 The stratification of the space
of monodromy groups

Definition. Let the group {M,...,M,} C GL(n,C) be conjugate to one in
block-diagonal form, the diagonal blocks (called big blocks) being themselves
block upper-triangular; their block structure is defined by their diagonal blocks
(called small blocks). The restriction of the group to everyone of the small
blocks is assumed to be an irreducible matrix group of the corresponding size.
The sizes of the big and small blocks are correctly defined modulo permutation
of the big blocks (if we require that the sizes of the big blocks are the minimal
possible) and define the reducibility type of the group.

\

A B 0 A B
Example : The reducibility type | 0 C 0 | has two big (( 0 C )
0 0 @
and Q) and three small blocks (4, C and Q).

Definition. A stratum of GL(n,C) is its subset of matrices with one and
the same Jordan normal form. A group {M,...,M,} C GL(n,C) defines a
stratum of GL(n,C)P: the stratum is defined by

1) the reducibility type of the group;

2) the Jordan normal forms of the small and big blocks of the matrices
M,..., My, and the ones of the matrices M; themselves;

3) two groups whose matrices M, ..., M, are blocked as their reducibility
type belong to the same stratum if and only if the corresponding M; are conju-
gate to each other by matrices (in general, different for the different ;) blocked
as the reducibility type.
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A stratum is called irreducible if its reducibility type is one big and at the
same time small block.

A reducible stratum is called special if there exists a pair of small blocks of
the same size, belonging to one and the same big block, such that the restric-
tions of the matrices M; to them have the same Jordan normal form for all
j=1,...,p+1.

Remark: Suppose that the definition of a stratum doesn’t contain 3). Then
some of the reducible strata defined in this way will turn out to be reducible
analytic varieties (see the example below; note the double sense of 'reducible’).
The good definition of a stratum is obtained when the strata defined above
are decomposed into irreducible components if this is possible. After such a
decomposition we obtain again a finite number of strata.

Example: Let the reducibility type be ( P Q ), P,Q and R being 3 x 3.

0 R
A1 0000
0 X0O0O0 a
Let M, ..., My, have distinct eigenvalues. Let M; = 3 g 3 f\ (1) 8
0000 XD
0 00O0O0 A

For a = 0,b # 0 and for a # 0,b = 0 the Jordan normal forms of the P— and
Q@-block of M; and of M, itself are the same (M; has one eigenvalue - X —
and three Jordan blocks, of sizes 3, 2 and 1 respectively). In the first case the
dimension of the intersection of the subspace invariant for M; upon which M,
acts as one Jordan block of size 3 with the subspace invariant for all operators
M; is equal to 1, in the second case it is equal to 2. It can be checked directly
that the two matrices (corresponding to (a,b) = (x,0) and (a,b) = (0, %), * # 0)
aren’t conjugate to each other by a matrix blocked in the same way.

Remark: The following example shows that the definition of a stratum
of GL(n,C)® is still not good — there exist several connected components for
irreducible strata in which every operator Mj, j =1,...,p has one eigenvalue
only. On the other hand-side, let there exist M; with at least two different
eigenvalues. Consider two systems belonging to the same stratum. One can
deform continuously the sets of their eigenvalues, i.e. perform a homotopy
from the first into the second set, keeping their product equal to 1 and their
multiplicities unchanged, i.e. different (equal) eigenvalues remain such for ev-
ery value of the homotopy parameter. Whether for any such homotopy there
exists a homotopy of the monodromy group, irreducible for every value of the
homotopy parameter — this is an open question.
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Example: The monodromy groups of the following three systems are ir-
reducible. Every monodromy operator M;, M,, M3 is conjugate to one 3 x 3-
Jordan block. The eigenvalues of M, and M, are equal to 1, the ones of M3 in
the first case are equal to 1, in the second case — to e*™/3 in the third case -
to e?™/3. By t;, j = 1,2,3 we denote 1/(t — a;).

010 0 -1 0 0 0 O
001 |ty+]10 0 0 |tz2+] 0 0 -1 |23
000 1 0 0 -1 0 O

X = X

(/0 10 0 —26/27 0 0 -1/27 0 T
X=|l001|t+] 0 0 0)t2+(0 0 -1 |#lXx
_(o 0 o) (1 -1/3 1 -1 1/3 -1) |
o [/o 10 0 —19/27 0 0 -8/27 0 7
X=1loo1|t,+}0 0 0 |ta+]| O 0 -1 |t X
_(o 0 o) (1 —4/3 2) (-1 4/3 _2)

Definition. Consider a subset £ of GL(n, C) consisting of matrices blocked as

a given reducibility type. A stratification of this set is defined by

1) the Jordan normal forms of the small blocks, taking into account whether
two small blocks have common eigenvalues or not

2) two matrices with the same reducibility type and orbits of the small
blocks belong to the same stratum if and only if they can be conjugated with
one another by a matrix blocked as the reducibility type.

Lemma 2.1. Any stratum from this stratification is a connected smooth
algebraic variety.

The lemma is proved at the end of Section 3.

Definition. A superstratum of GL(n,C)" is defined by the Jordan normal
forms of the matrices Mj,..., M,+;1. Hence, every superstratum consists of a
finite number of strata.

Evidently, every stratum and superstratum is locally an analytic subvariety
of (GL(n,C))*.

Theorem 2.2.

1) All irreducible strata are locally smooth analytic subvarieties of GL(n, C)P.

2) All strata and superstrata in which at least one of the matrices M;,
j=1,...,p+1 has n different eigenvalues are globally smooth irreducible semi-
analytic subvarieties of GL(n,C)? (’semi-analytic’ means ’defined by a finite
number of equalities and by inequalities of the kind P # 0°).

3) A reducible group {M,...,M,} (in block upper-triangular form, same
as the reducibility type) is o singular point of its superstratum only in case that
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if Quij, - - -, Qssj are the restrictions of M; to the small blocks of the reducibility
type, then there ezist linear relations of the kind

arvar trQu; + ...+ a,var trQ.,; =0 , j=1,...,p+1 , o €Z

Here ’var tr’ denotes the possible variation of the trace when every eigenvalue
varies independently (equal eigenvalues have equal variations) and the stratum
to which {M,...,M,} belongs is fired. Hence, the singular points of a super-
stratum are contained in one or more of its reducible strata - last equalities
mean that for a fized reducibility type the multiplicities of the eigenvalues of the
small blocks Qkrj,j =1,...p +1 for which oy # 0 remain the same.

4) Every reducible stratum is locally a smooth analytic variety.

5) An upper-triangular group with M; having one eigenvalue only , j =
1,...,p+1, is a singular point of its superstratum.

3 Proof of Theorem 2.2.

0°. We prove 1) in 1° — 3°, 2) and 3) in 4° — 7°, 4) in 8° — 13° and 5) in 14°.
The proofs of the lemmas involved are given after the proof of the theorem.

1°. Prove 1) (see 1°—3°). Fix the Jordan normal forms of Mj, ..., M,. This
defines a smooth subvariety 7 of (GL(n,C))?. If we fix the Jordan normal
form of M,y (or, equivalently, of M;_,}l), then this defines a smooth analytic
subvariety S of GL(n,C). Let the group M = {M,,..., M,} be irreducible.
We prove that the differential of the mapping

(Ml,...,Mp) — Mp+1 = (M] ...Mp)-1

is non-degenerate at M; in fact, we prove (what is equivalent) that the differ-
ential of the mapping

(Ml,...,MP)HMle:Ml...Mp (*)

is such, see 2° — 3°. Hence, the graph of the mapping (*) is a smooth analytic
subvariety of 7 x GL(n, C), transversal at M to the smooth analytic subvariety
U =T x §; therefore their intersection is locally a smooth analytic subvariety.

2°. The differential of (*) is the sum of two terms — the first (denoted by ®,)
is obtained when M; are conjugated by matrices of the kind G; = I+¢Y}, i.e. we
move infinitesimally along the orbit without changing the eigenvalues. Hence,
®, is the coefficient before ¢ in the product Gi'MiG,...G;'M,G,. Note
that for small values of € the group {G7' MGy, ...,G,*M,G,} is irreducible.
The second term (denoted by A,) is obtained when we change infinitesimally
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the eigenvalues (every eigenvalue changes independently, for every M;,j =
1,...,p).
3°. Lemma 3.1.

8,(M;Y) = &,(My,..., My Yi,...,Y,) =

= [MI,K]Mz cee Mp + M]_[Mz,)’Q]Ma .o .Mp + ...+ M1 e MP—I[MINY;’] =
=M1...MP‘PP(Nl,...,Np;Zl,...,Zp)
where \I’P = [N1,Z1] + ...+ [NP’ZP] N Zj = S;IM;I}/_,'Sj ) Nj = SJ-—IMJ'SJ' )
S; =Mj4...Mp,j=1,...,p—1,5, = 1. Hence, the groups {M,...,M,}
and {Ny,...,Np} coincide.
The lemma is checked directly.

Lemma 3.2. Let M; = Q;'J;Q; where Q; € GL(n,C) and J; is the
Jordan normal form of M;. Then

AM, V) =ViMy... M, + MyVoMs... M, + ...+ MyM, ... M,_,V,

where V; = Q;'D;Q;, D; being a diagonal matriz whose diagonal entries are
the variations of the eigenvalues of Mj, i.e. of the diagonal entries of J; (equal
eigenvalues have equal variations). We have

p
Ap=M1--'Mpr , KP=ZSJ.-1MJ.—1‘/]‘SJ. , SJ'=MJ-+1...MP , SP=I

i=1

The lemma is checked directly.

Lemma 3.3. Let the group {M,...,M,} be irreducible. Then for every
matriz L € gl(n,C), t(Mp41L) = 0 there ezist matrices Y,...,Y, such that
L=29%,(M;Y), see Lemma 3.1.

Lemma 3.4. For every d € C there erist matrices 1,...,V,, see Lemma
3.2., such that tr(Mp41A,(M;V)) =d.

The first statement of the theorem follows from Lemmas 3.3. and 3.4.
Really, for L € gi(n,C) choose Vi,...,V, such that tr(M,14,(M;V)) =
tr(Mp41L). Hence, tr(M, (L — A,)) = 0 and we can choose Y;,...,Y, such
that L — A, = &,(M;Y).

4%, Prove 2) and 3). To this end we use a similar idea to the one of the
proof of 1). We show for what groups M the tangent spaces to the graph of (*)
(denoted by T'(*)) and to the variety U, see 1°, are transversal. The space TU
contains the tangent space to 7, therefore it suffices to find the cases when the
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sum of the projections of the spaces T'(*) and TU into GL(n, C), the space of
M}, is the whole space gl(n,C). Similarly to Lemmas 3.1. and 3.2. we find
that the projection of TU into GL(n, C) is equal to

Apir(Mpi1, Y1, Voy1) = [Mp_-;-ll,YpH] + Vo1

where Y,1; € gl(n,C) and if ;_,,11 = Q;_,I_IJP.,.IQPH, Jp+1 being the Jordan
normal form of Mp_-l-lla QP-H. € GL(TL, C)a then ‘/P+1 = Q;-}l-le+1Qp+h Dp+l
being diagonal, whose diagonal entries are the variations of the eigenvalues of
M },. Hence, the two varieties I/ and the graph of (*) are transversal if and
only if every matrix L € gi(n,C) can be presented as

L= £p(M;Y)V7 Yp+1’ .VP+1) =
,(M;Y) + Ap(M; V) + Api1 (Mps1, Yor1, V) (+%)

Present (**) with Y41 = Vp41 =0, i.e. with A,4; =0, in the form
L'=(M;...Mp)"'L = L,(M;Y; V) = U,(N; Z)+£,(M; V) (%%

From now on we most often consider equation (***) instead of equation (**)
(if we can solve (***), then we can solve (**) ).

5%, Let the reducible group M be in block upper-triangular form (same
as the reducibility type). Decompose any matrix A € gl(n, C) in blocks, the
decomposition being induced by the sizes of the small blocks of the reducibility
type. Then for the following ordering of the blocks operator L, see (***),
is block upper-triangular: if the blocks are denoted by Qis, k (s) being the
number of row (of column) of blocks, then Q,, precedes Q,s, if and only if
ky—s1 < ky—sgo0r k; —s; = ky— s, and k; < ky. Hence, it suffices to consider
the action of £, upon matrices ¥;,V},j =1,...,p+ 1 whose elements outside
a fixed block are equal to 0.

Lemma 3.5. Denote by Q;ji. the restriction of My fork =1,...,p or M},
for k =p+1 to the block Q;;. Then equation

p+1

> QikZk — ZiQjjk = A
k=1

has a solution for any matriz A €gl(n,C) if and only if the two following
conditions don’t hold sitmultaneously:

1) Qi; and Q;; are of the same size (denoted by l);

2) there ezists a matriz B € GL(l,C) such that B~ 'QiB = Qjjk for
k=1,...,p (hence, for k=p+1 as well).
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Note that for 7 > j the left hand-side of the equation gives the restriction
of the image of operator £}, to the block Q;; (k, has no influence upon blocks
under the diagonal). Conditions 1) and 2) together are a private case of the
non-smoothnes condition from 3) of the theorem.

The block upper-triangular form of operator £, implies that one could try
to solve equation (***) successively for each block, in the opposite order of
the blocks. If we fail at one of them, then, probably, we can’t solve equation
(**) (’probably’ means that solving equation (***) is not equivalent to solving
equation (**)). If conditions 1) and 2) from the lemma hold simultaneously,
then it doesn’t follow from Lemma 3.5. that we can solve (***). If they don’t,
but the non-smoothness condition from 3) of the theorem holds, then we can
solve equation (***) restricted to all blocks Q;; under the diagonal, i.e. with
i > j. For i = j operator ¥, can give a solution only for matrices L' with
trL'|g,; = 0. Hence, operator £, must be used to make the trace of L'|g,; equal
to 0 and he’ll fail to do it for all small blocks simultaneously exactly if the
variations of the traces of the small blocks are linearly dependent.

7°. We proved in 6° that for strata verifying the non-smoothness condition
from 3) of the theorem equation (**) possibly can’t be solved and, hence, the
variety U, see 1°, might not be transversal to the graph of (*). We prove now
that non-transversality would imply local non-smoothness of their intersection.
Introduce in GL(n,C) local coordinates ¢ = (gi,...,gn2) such that at the
intersection point of I{ and the graph of (*) the projection of U/ into GL(n,C),

i.e. S, should be given by equations ¢; = ... = ¢, = 0, s =dimS. Hence, the
points of non-transversal intersection of the graph of (*) and U/ are the ones
where the differential of (*) degenerates and we have ¢; = ... =g, = 0. These

are the singular points of the intersection of the image of (*) with {g; =... =
gs = 0}, i.e. with U.

If a superstratum of (GL(n, C))? contains among the Jordan normal forms
of M;, j =1,...,p+1 one with distinct eigenvalues, then their variations are
independent and we never have conditions 1) and 2) of Lemma 3.5. fulfilled
together. On the contrary, if there is at least a pair of equal eigenvalues in
every M;,j =1,...,p+1, then it is always possible to find a reducibility type
such that conditions 1) and 2) of Lemma 3.5. will be fulfilled together.

Irreducible strata and superstrata in which at least one of the operators
M; is with distinct eigenvalues are connected. Really, let this be M,,,. The
image of (*) is a semi-algebraic subset of GL(n, C) for every fixed set of Jordan
normal forms of M, ..., M,. The differential of (*) is non-degenerate, hence,
the image is an open subset of GL(n,C). Hence, if the Jordan normal forms
of Mi,..., M, are fixed, then the points of the graph of (*) for which M,,, is
not with distinct eigenvalues is locally a proper subvariety of the graph. This
completes the proof of 2) and 3) of the theorem.
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8°. Lemma 3.6. Let the group M be reducible. Then in its neighbourhood
U € (GL(n,C)) there ezists a holomorphic and holomorphically invertible
matriz C such that it conjugates every group of the intersection of U with the
stratum to which M belongs to one blocked as the reducibility type.

The proof of 4) is similar to the one of 1). We consider the mapping (*)
defined for Mi,..., M, blocked as the reducibility type, making use of the
lemma. Denote the set of these matrices by . Consider the following subset
of (¥)?: the multiplicities of the eigenvalues of every operator Mj,..., M, and
their distribution among the small blocks are fixed and the Jordan normal
forms of the small blocks as well. Denote this set by 7" and consider (*) as a
mapping (*):7" — . For M}, € T fix the multiplicities of its eigenvalues,
their distribution among the small blocks and the Jordan normal forms of the
small blocks. This defines a subset &' C Z.

Lemma 3.7. 7' and S’ are smooth analytic subvarieties.

The intersection of the graph of (*) with &' x 7"’ (denote it by R) consists
of a finite number of strata of (GL(n,C))? (not necessarily of a single one).
Really, though the eigenvalues of M; and the Jordan normal forms of their
small blocks are fixed, the Jordan structures of M; depend on the elements in
the blocks above the diagonal as well.

Example : Consider the matrix . For ¢ # 0 it is conjugate

O O O »w

b
d
1
A

O >0 e

1
A
0
0
to one 4 x 4 Jordan block. For ¢ = 0, a +d # 0 it is conjugate to a matrix with

one 3 X 3- and one 1 x 1-block, for ¢ = a+d = 0 it is cojugate to a matrix with
two 2 x 2-blocks.

9%, In the case of non-special strata we have

Lemma 3.8. Every reducible non-special stratum consists of a finite num-
ber of smooth analytic varieties.

10°. We prove 4) of the theorem for reducibility types with one big block
only; for such with several big blocks the proof is similar. The proof is carried
out by induction with respect of the number k of small blocks. Let k = 2. Set
M; = ( ]g’ g’ ) Let the stratum be special, i.e. the Jordan normal forms

J

of P; and R; be the same for j =1,...,p+1 (for non-special strata the answer
is given by Lemma 3.8.). By Lemma 3.5., equation (***) in which all matrices
are block upper triangular (as Mj;) can’t be solved only if the sizes of P; and
R; are equal and we have B-'!P;,B=R; ,j=1,...,p+1 for some matrix B.
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Really, we first solve equation (***) for the diagonal blocks as in the irreducible
case and then for the block B.
Let P, = R;, j =1,...,p+ 1. Denote by C the space of matrices blocked

A B
as ( 0 C>' Then we have

Lemma 3.9. The image of operator L, restricted to C is either C or C N
{N € C|tr(N|g) = 0}. The second case occurs only if Q; = [D, P;] for some
matriz D, j=1,...,p+1.

Lemma 3.10. Let M; = ( };’ %’ ) be conjugate to ( };j lg > Then
j i

: = [D;, P;] for some square matrices D;. The opposite implication is also
J PR q J
true.

Hence, for k¥ = 2 the only case in which equation (***) can’t be solved is
the one when M; can be simultaneously conjugated to the form < B0 >

0 B
But in this case the reducibility type has two big blocks.

11°. Let the reducibility type contain k > 3 small blocks. Let in the block
decomposition induced by the sizes of the small blocks C U D be the set of
blocks in the first row, B U D - the one of blocks in the last column and A
~ the set of all other blocks on and above the diagonal, see Fig. 2. Item 3)
from the definition of the stratification of (GL(n,C))? implies that once the
stratification of the restriction of the group M to A is defined, its definition for
M| 4uB, M|auc, M|ausucup does not change the one of M| 4.

Fix a stratum of M| 4,p and a stratum of M|, ¢ such that their restrictions
to A coincide. The stratification of M|supucup imposes (for every stratum)
analytic conditions on the block D. The restrictions M;|p, j = 1,...,p, consist
of a finite number of smooth analytic varieties for every stratum of T, see
Lemma 2.1.. In (*) M,4:|p is presented as an analytic function of Mj,..., M,
restricted to the corresponding strata. To prove the local smoothness of M|p
it suffices to prove that the graph of Mp41|p is transversal to the level sets
M41|p where M, is restricted to some stratum of I, as in the proof of 1).

12°. Introduce the following notation for the blocks of M;:

P& @ ... Qe-2 D
T

0 Uy ... Uz S
0 0 V ... He2 S
0 0 O W Si-2
0 0 0 0 R
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The tangent space to the graph of M,,|p contains the space

Y= {Y¥ = (M. M)p S((N1P) X — X2(N1x))

j=1

X J‘-’ is of the size of D; see the definition of £,. Really, to see this it suffices
to restrict in ¥, and £, the matrices Z; to D to obtain X ;’. The space ) is
not the whole space D (the space of matrices of the size of D) if and only if
P and R are of the same size and we have N;|p = B™}(N;|r)B, j = 1,...,p,
see Lemma 3.5.. This implies that M;|p = B~'(M;|g)B. Without loss of
generality assume that M;|p = Mj|p, j=1...,p+ 1.

13°. The tangent space to the graph of (*)|p contains as well the space

Y= (YIY = (M. My)|p S (N51R) X0 — XM 1))+

j=1

' P
(My ... Mp)lg, D_(Njle)X;}1,Y C V!

i=1

where Y, (X7, X}) is of the size of D, (of D, of S;) and X} belong to the
subspace

P
Y = {2 (Mjlr)X] — Xj(M;|r)) = 0}
j=1
As M;|p = M;|r and M|p(= M|R) is irreducible, then we have either Y! =D

or Y! = DN{trY = 0} (D is the space of matrices of the size of D); the second
case occurs only if

P
trZ(MﬂQl)X} =0 V(Xll,...,X;) e) (% * %)

=1

(the proof of this fact is similar to the one of Lemma 3.9.). Then condition
(****) must be a corollary of equation

(M;lr) X - X;(M;|z)) =0

)
=1

J

As in the proof of Proposition 3.17., we prove that the group M is conjugate
to one blocked as M, with M;|g, =0, j =1,...,p. In this case note that the
stratifications of the sets of monodromy groups blocked as
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PO Q ... Q- D T 0 Up ... Uea S
0 T U, Ueeo S 0 P Q ... Qo D
0 0 V He, S, 0 0V ... H_, S,

) . ) and e ) )
00 0 ... W S 0 0 0 ... W 8.,
00 0 ... 0 R 00 0 ... 0 R

are isomorphic, the isomorphism being generated by the conjugation with the
permutation matrix which permutes the lines of blocks in which P and T are.
Hence, the smoothness of the stratification of the block D for fixed strata of
the other blocks follows from the inductive assumption applied to the set of
monodromy groups blocked as

P Q ... Q-2 D

0 V ... He—, S
0 0 ... W S
o 0 ... O w

This proves 4) of the theorem.

14°. Prove 5). If in (**) all matrices except L are upper-triangular, the
diagonal entries of each M; being equal, then the image of £, belongs to the
subspace of matrices whose left lowest element is equal to 0. As in 7°, this
implies non-smoothness of the corresponding superstratum at M.

Proof of Lemma 8.3.: 1°. Making use of Lemma 3.1., we prove that every
matrix L € gl(n,C), trL = 0 can be presented as L = ¥,(M; X) (it would be,
of course, more precise to write ¥,(N, Z); we hope that the reader will not ge
mixed up).

Proposition 3.11. Let J be a Jordan matriz. Then any matriz A €
gl(n, C) can be presented in a unique way as A = [J, X]+Y, where [Y , *J] = 0;
tJ denotes the transposed of J.

Proof: Let the matrix J have one eigenvalue only. Then the matrices com-
muting with *J are shown on Fig. 3. The numbers on one and the same interval
are the same, all other numbers are equal to zero, see [2]. The intervals are
parallel to the diagonal and they begin and end at the bords of the blocks. The
block decomposition is in accordance with the Jordan structure. The number
of intervals of a diagonal (of an off-diagonal) block is equal to the size (to the
least of the sizes) of the block.
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If on Fig. 3. we assume that the sum of all the elements lying on one and
the same interval is equal to 0 (for every interval) and that no other conditions
are imposed on the matrix, then we obtain the definition of an arbitrary matrix
presentable as [J, X] for some X € gl(n,C) (the reader will check this easily,
because one needs to consider the action of the operator [J,.] on every block
on Fig. 3. separately).

If J has several eigenvalues, then one must take a direct sum of figures like
Fig. 3. corresponding to the different eigenvalues. The proposition is proved.

Corollary 3.12. Let M; = Qj'J;Q; where J; is the Jordan normal form
of M;. Then for a fized Q; (Q; is not unique) any matriz A € gl(n,C) can be
presented as A = [M;, X]+7, [Y,Q;7'(*J;)Q;] = 0.

2°. Proposition 3.13. (Schur’s Lemma) If there ezists a non-scalar
matriz S € gl(n,C) such that [S,M;] = 0, j = 1,...,p, then the group
{M, ..., M} is reducible.

Proof: Without loss of generality one can assume that S is in Jordan normal
form. If it has at least two different eigenvalues, then M; must be all block
diagonal and the proposition is proved. If not, then Fig. 4. ( it is the transposed
of Fig. 3.) shows one possible way how to choose the invariant subspace in
the case when there are Jordan blocks of different sizes; for the case of Jordan
blocks of the same size see Fig. 5. The vectors to the right describe the invariant
subspaces. Asteriscs denote elements which can be arbitrary.

3°. Proposition 3.14. For every group M = {M;,..., M.} there ezists a
group K = {K},...,K,} such that

i) M and K are simultaneously (ir)reducible;

i) the images of the mappings U, : (Xy,...,X,) — [N, Xi]+. ..+ [Np, X,
for Nj = M; and for N; = K; are the same;

1) the matrices K; have one and the same Jordan normal form.

For the rest of the proof of the lemma we consider the Jordan normal forms
of Mi,..., M, to be the same, making use of the proposition.

Proof: We have [My, Xi1] + [My, Xa] = [My + oM, X1] + [M2, X, — aX)].
Hence, the change (M;,M;) — (M, + aM,, M,) preserves the image of ¥,
and the (ir)reductibility of the group. If M; + aM, fails to be non-degenerate,
then we replace it by M; + aM, + BI for a suitable §; the image and the

(ir)reductibility are preserved again. If M; and M, have different Jordan normal
forms, then either

1) one of them (say, M;) belongs to a stratum S; of GL(n,C) from the
closure of the stratum S, to which belongs the other or
i) this is not the case.
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In case t) either

11) the whole line M; + aM,, o € C belongs to the closure of S, or
12) for almost all o the matrix M; + aM; belongs to a stratum S; of a
higher dimension.

In case 1) we choose o € C such that My +aM; € S, (or My +aM,+ 81 €
S3). In case i2) we choose a € C such that M, +aM,; € S; (or My +aM,+0I €
S3). Case 1), in fact, coincides with 12). Hence, after a finite number of
transformations all conditions of the proposition will be fulfilled, due to the
finite number of strata of GL(n, C).

Proposition 3.15. Let all the matrices M, ..., M, have the same Jordan
normal form, i.e. let M; = Q;'J;Q;, where Q; € GL(n,C) and the Jordan
matrices J; belong to the same stratum of GL(n,C), i.e. they have the same
Jordan normal form. Set J; = J. Then the (ir)reducibility of the group and the
image of the mapping ¥, (with N; = M;, see Proposition 3.14.) are preserved
if the group {My, ..., M,} is replaced by the group {Q;'JQ;},i =1,...,p.

In accordance with this proposition, during the rest of the proof of the
lemma we consider Mj,..., M, to be from one and the same orbit. To prove
the proposition it suffices to notice that the image of ¥, does not depend on
the eigenvalues of the matrices J; if the eigenvalues vary so that the Jordan
normal forms of M; are preserved and the matrices Q; are fixed. The set of
invariant subspaces is also preserved under such a change of the eigenvalues.
The details are left for the reader.

4°. Proposition 3.16. Let'M; = Qj'JQ;, see Proposition 3.15., and
let the image of the mapping ¥, with N; = M;, see Proposition 3.14., be
not the whole of sl(n,C). Then there ezists a non-scalar matriz V such that
[V,Q1 Q1 = 0,5 =1,...,p.

Proof: Regard gl(n,C) as a vector space of dimension n%. Denote its co-
ordinates by zx,, 1 < k,s < n. Let S; be the set of elements on one interval
on Fig. 3., see the proof of Proposition 3.11. Define the linear forms ¢; on
gl(n,C) as ; = Ts; Tks- Set d = fp;. Suppose (which is not restrictive)
that @Q; = I, i.e. M; = J is in Jordan normal form. Then the image of the
mapping X; — [M;, X,] is given by ¢; = 0,5 =1,...,d. Hence, the image of
the mapping ¥, with N; = M; is a subspace of sl(n, C) described by a system
of equations of the kind ¢ = Z;?:l sjpp; =0, s; € C. Fix one such equation. It
denotes the set of zeros of a linear form (of z4,) on gl(n,C). The coefficients
of the form are the coordinates of an n x n-matrix V' commuting with *J, see
Proposition 3.11.

The conjugation X — Q;IJ Q; induces an automorphism of gi(n,C): ¥ =
AX where A is n? x n? and X is considered as a vector column (the (k 4 1)-st
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column of the matrix X follows the k-th one). The matrix A is explicitely
described below. The form ¢ can be presented as ¢ = X where ¢ is a vector-
line of size n?; if V is considered as a vector-column, then we have !¢ = V.
After the conjugation the form ¢ changes to pA~1. Really, if Y = AX are the
new coordinates, then X = pA~'Y.

We have pA~Y =t Y{(A™!)!g =t (pA7'Y). The n-vector-column(A~1)!¢
is (in the sense above) equal to an nxn-matrix. This is the matrix (*Q;)V (*Q;)!

m n p
Really, forn =3 let Q; = ( g r s ) . Then we have A = LR = RL where
t u v

7100

L= ( 0 710 ) corresponds to multiplying by Q;* to the left and
0 0 Q;t
ml ql tI

R = ( nl rl ul ) corresponds to multiplying by @Q; to the right. It is
pl sI ol

clear how to construct L and R for arbitrary n. Hence, ‘tA~! =! (L7!)'R7},

i.e. *A~! is the matrix of the transformation X — (*Q;)X(*Q;)~!. We have

[((QHV(@) (\@N(I(Q;) ] =0.

The linear form ¢ describes a subspace of sl(n,C) to which the image of
every mapping X — [Qj'lJ ®j,X) belongs. Hence, the matrix V corresponding
to ¢ plays the role of the matrix ‘QjV‘Qj’1 above as well, i.e. it commutes
with *J and Y(Q;)*JHQ;"),7 = 2,...,p, i.e. ['V,J] = ['V,Q71JQ;] = 0. The
proposition is proved.

5°. Sum up the proof of the lemma. Suppose that the image of ¥, is not the
whole of sl(n, C). Then one can replace the group M by another group which
satisfies the conclusion of Proposition 3.15. (namely, that all generators belong
to one and the same orbit), without changing the image of ¥,. This leads to
the existence of the nonscalar matrix *V' commuting with the generators of the
new (irreducible!) group which is a contradiction with Proposition 3.13. The
lemma is proved.

Proof of Lemma 3.4.: It suffices to vary any eigenvalue of any of the matrices
M, ..., M,.

Proof of Lemma 3.5.: The proof resembles the one of Lemma 3.3. Con-

Qaik QO > The left hand-side of the equation in
jik
Lemma 3.5. is the restriction of the action of ¥, with N; = P; to the left lower
block; ¥, is defined in Lemma 3.1.
Like in Proposition 3.16. we show that if the equation from Lemma 3.5.

has no solution for some choice of the right hand-side, then there exists a

sider the matrices P, =
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nonscalar matrix V whose right upper and diagonal blocks are equal to 0 such
that ['V,P] = 0,k = 1,...,p. Conjugating V" and P),..., P, by one and the
same block-diagonal matrix, we can achieve the following form of 'V: zeros in

the left lower and in the diagonal blocks, the right upper block being of the
I

form V' = < S 3, ), where the blocks S and T are equal to 0; we assume that
Qiir 1s of size n; < n, where ny is the size of Q;jx. The size r of I is equal to
the rank of !V, S and/or T can be empty.

The condition ['V, P;] = 0 implies that for r < n; < n, last ny — r columns
of QiV' and last n, — r rows of V'Q;;x are equal to 0. Hence, we must have
that the elements in last n; — r rows and first n; — r columns of Q;; must be
zeros for k = 1,...,p, i.e. the group {Qii},k = 1,...,p is reducible which
is a contradiction. If r = n; < n,, then the elements of last n, — r columns
and first ny — r rows of Q;jx must be zeros (for k = 1,...,p), i.e. the group
{Qj;x},k = 1,...,p is reducible which again is a contradiction. Finally, if
T = n; = ny, we have Qux = Qjjk,k =1,...,p which gives the result claimed
by the lemma.

Proof of Lemma 3.6.: We prove the lemma in the case of one big and two
small blocks. In the general case the proof consists in repeating the same con-
struction the necessary number of times. There exists a holomorphic and holo-
morphically invertible matrix C'(e) conjugating M;(e) with its Jordan normal
form; € denotes the local coordinates in the neighbourhood of M. The invari-
ant subspaces of M;|.—o are described on Fig. 4 and Fig. 5. One of them
must be invariant for Ma|c=o,. .., Mpt1]e=o. But then at least one such sub-
space must be invariant for Ms,..., M, for all € € U as well - the number
of invariant subspaces is finite, the set of values of ¢ for which an invariant
subspace of C'"1M;C’ is such for C'"'M;C’, j = 2,...,p+ 1 as well is closed.
Hence, there exists a cojugation with a permutation matrix such that all the

matrices M; will be blocked as follows: ( é g ) The superposition of the

two conjugations gives the necessary matrix C.

Proof of Lemma 3.7.: We have 7' = T* x D where D is the subspace
of (gl(n, C))? consisting of the p-tuples of matrices with the same reducibility
type as the ones of X, the elements of whose small blocks and of the blocks
outside the big blocks are 0 and the elements of whose superdiagonal blocks in
the big blocks are arbitrary. 7" is the set of matrices the elements of whose
off-diagonal blocks are 0 and whose small blocks are same as the ones of 7.

Consider a fixed small block. A matrix of the size of the small block —
T = D7'JD , J being its Jordan normal form which is fixed - can be locally
parametrised by the matrix D and by the eigenvalues of J; for D one can
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fix a subspace of minimal dimension (D is not defined uniquely but modulo
multiplication by matrices commuting with J). Hence, for every small block
one can introduce local coordinates (d,g) where d are the coordinates of D
and g are the ones of the eigenvalues of J. The matrices with a fixed Jordan
normal form depend analytically on (d,g) and their locally smooth analytic
variety is an analytic fibration over the base g. One can locally parametrise
T* as follows: for every M; parametrise its every small block independently
as above; denote the coordinates by (dy,91),...,(ds,gs). If the second small
block has eigenvalues equal to such of the first one, then we set g,; = gy for
the corresponding eigenvalues and obtaining a subset g’ of g. In the analytic
fibration (di, g1) X (dz, g2) + (d1, 1) consider the subset {gs; = g1, } - this is an
analytic subvariety of the initial one. We obtain in the same way the subspaces
g3, ---,9, (considering the fibrations (dy,g1) x (ds,g3) — (d1,1) etc.). The
variety obtained in this way (setting gs; = g1x) is a smooth analytic subvariety
of the initial one. Replacing in the reasoning above g, and g, by g, U g, and
g3, we obtain the subspaces g3,...,g, etc. Finally, we obtain the subspace
GUGUGIU...Ugl D C gyU...Ug, and the necessary smooth analytic
subvariety, i.e. 7* which has local coordinates (d,...,ds,g1,95,--.,9%¢ 1)
(constructed for every M; separately).
For &' the proof is similar to the one for 7.

Proof of Lemma 8.8.: 1°. Consider the case when the reducibility type is
( 61 g ), i.e. it consists of one big and two small blocks. Consider M;.

Suppose that its blocks A and C are in Jordan normal form for all values
of the coordinates upon which the elements of R (see 8° of the proof of the
theorem) depend. A holomorphic conjugation to such a form exists (locally).
Let ), be an eigenvalue of M;. Then condition tk(M; — \I) < a;,a; € N
(’rk’="rank’) defines a finite number of smooth subvarieties 7;(1) of T7'. The
same is true for M,... yM,. If we consider conditions tk(M, — A\,J) < a,
, § = 1,...,p simultaneously, then this defines a finite number of smooth
analytic subvarieties 7. Applied to M4, (i.e. for s = p+1), these conditions
define a finite number of smooth analytic subvarieties S; of S’. The graph of
(*) restricted to 7" intersects S} x 7, and the intersection (for each (k, 5)) is
a smooth analytic subvariety. This is proved in the same way as of 1) of the
theorem, considering the restriction of equation (***) to each block on or above
the diagonal (in the big blocks), in the opposite to the order of the blocks as
described in 5° of the proof of the theorem. This is possible because the strata
are non-special and we don’t have problems with Lemma 3.5.

On each (S7,7}") consider conditions rk(M, — A\, I)> < b, ,s=1,...,p+1.
They define smooth analytic subvarieties; the graph of (*) restricted to 7
intersects S} x 7, and the intersection is a smooth analytic variety. Then we
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consider conditions rk(M,—A,J)* < ¢, etc. These conditions define the closures
of the strata; they are connected with the finding of the Jordan normal form of
M, (more precisely — how many blocks and of what size correspond to the given
eigenvalue). When rk(M, — A,I) is maximal possible, then this doesn’t define
a subvariety, but the compliment to the analytic varieties from which the other
strata are composed. In the case of one big and two small blocks the proof of
the smoothness is easy because the B-blocks of the matrices (M, — A,I)* are
equal to ©F_o P/Q,R¥7 where P, = M,|a, Q, = M,|p, R, = M,|c, i.e. they
depend linearly on Q,.

29. Let the reducibility type consist of one big and r small blocks:

Qll Q12 Ql,r—-l er
0 Q2 ... Q-1 Qo

0 0 Qr-—l,r—l Qr—l,r
0 0 .. © Qe

In this case the proof is carried out by induction with respect to r, in
the same way as in 1°; the roles of A, B and C are played respectively by

Qll Q12 ves Ql,r—l Ql
Ll 0 Qo Qe r .
Q = . O : , : and Q.. It is assumed that
0 0 ... Q1,1 Qr-r

the @'- and Q,.-blocks of M, ..., M, are restricted to irreducible components
of given strata. Smoothness of strata is proved as it is explained in 1°. For the
case of many big blocks the lemma is proved in the same way.

1 "
Proof of Lemma 3.9.: Set in operator L, see (**¥), Y; = }8’ }};;f,',, )

Find first Y] , Y;" and V; , j = 1,...,p+1 as in the irreducible case; they solve
the restriction of equation (***) to the A- and C-blocks. After this the equation
can be solved for the B-block as well if its trace after the fixing of Y , ¥}" is 0. If
not, then we can try to make the substitution Y; — Y, +U; (or Y}" = Y]" +Uj;)
where U; are matrices of the size of P; such that 3°%_,[U;, P;] = 0. This will
not change the A- and C-blocks. It will fail to change the trace of the B- block
if and onmly if tr}°%., U;Q;(=tryto, Q;U;) = 0 for every set of U; such that
TialU;, P =0.

Proposition 3.17. Let tryf_, U;Q;(= tryf_; Q;U;) = 0 for every set of
U; such that TF_,[U;, P;] = 0. Then Q; = [P;, D% for some matriz D° of the
size of Pj, j=1,...,p+1.

The lemma follows from the proposition, setting D = —D°.
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Proof : Condition try_, U;Q; = 0 must be a corollary from condition

*_1lUj, Pj] = 0. Every such corollary is of the form try_%_,(U;, P;JD° = 0.

We have try5_, [U;, P;]D° = tr ©F_, (P;D°U; — D°P;U;). Hence, we must have
Q= [PJ D 0]'

Proof of Lemma 8.10.: For every € € C the matrix P er ) is con-

0 A
jugate to M7 = ( 1(";, 1(3) ) Hence, the matrix < 8 %j ) belongs to the
j
tangent space to the orbit of M for every ¢, i.e. Q; = [P;, D;] for some D;.
I -D;
0 I
Proof of Lemma 2.1.: We combine the ideas used in the proofs of Lemmas
3.7. and 3.8. For every stratum of ¥ the Jordan normal forms of its small
blocks define smooth analytic varieties in ¥. This is proved as the smoothness
of T*, see the proof of Lemma 3.7. Let A be an eigenvalue of M € £. Then
conditions k(M — M) < a;, i = 1,2,..., a; € N define a finite number of
smooth analytic varieties, see the proof of Lemma 3.8., which are the closures
of a finite number of strata. The lemma is proved.

The opposite implication follows from M; = S'M?S with § =
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EQUISINGULAR UNFOLDINGS OF FOLIATIONS
BY CURVES
Jean Francois MATTEI and Marcel NICOLAU*

0. Introduction. Let F denote a holomorphic foliation by curves with iso-
lated singularities on a complex surface M. The first author constructed in
[M] a versal equisingular unfolding, parametrized by a smooth space of pa-
rameters K1°°, of the germ of the foliation F' at one of its singular points g;.
The aim of this paper is to show the existence of a versal equisingular unfold-
ing of the global foliation F' when Af is compact. In this case the parameter
space K. of the versal unfolding can be singular. The problem of finding
conditions on F' assuring the triviality of any unfolding has been considered
by X. Gomez-Mont in [G-M].

An equisingular unfolding of F is an unfolding admiting a reduction of the
singularities “with parameters”. It is claimed in [M] that there is a one-to-
one correspondence between equisingular unfoldings of F' and locally trivial
unfoldings (cf. Definition 1.6) of the reduction F of F preserving the divisor
which comes from the singular points of F. So we are led to construct a versal
locally trivial unfolding of a (possibly non saturated) foliation by curves. The
construction of the versal space is carried out in the first two sections. The
key point is the identification of locally trivial unfoldings with a certain type
of deformations of the complex structure of the underlying manifold. Then
we consider the relationship between the global versal space K, and the local
versal spaces K!°°. We show that under some cohomological assumptions
K. is smooth and naturally identified with the product []J K°¢. Finally we
apply the above results to show that any equisingular unfolding of a germ of
algebraic foliation is still algebraic.

1. Locally trivial unfoldings of foliations by curves.

Let M be a n-dimensional compact complex manifold and let TM be its
holomorphic tangent bundle. Given a holomorphic vector bundle E over M
we denote by O(E) the sheaf of germs of holomorphic sections of E. In

*Partially supported by grant PB90-0686 from DGICYT.

S.M. F.
Astérisque 222** (1994) 285
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particular Op = O(C) and Oy = O(TM) are respectively the sheaves of
germs of holomorphic functions and holomorphic vector fields on M.

By a (singular) holomorphic foliation on M we mean a locally free O y-
submodule F' of ©s which is closed under the Lie bracket of vector fields.
The singular locus S(F) of F is the analytic subset whose complementary
M — S(F) is the maximal open set on which F defines a foliation in the usual
sense, i.e. without singularities. The foliation F is called saturated if one has

T'(U,0)NT(U - S(F).F) = (U, F)

for any open subset U C M. It is well known that a foliation F is saturated if
and only if codimS(F') > 2. In fact it follows from Hartogs’ extension theorem
that if there is given an analytic subset © C M of codimension greater than
one and a non singular foliation F’ on A/ — T then there is a unicuely defined
saturated foliation F' on M which coincides with F/ on M — X. In particular
S(F) C .

A foliation by curves is a locally free subsheaf F of © 4 of rank one. There-
fore a foliation by curves is determined by a pair (L, x) where L is a line bundle
over M and K : L — TM is a non identically zero bundle morphism. The
bundle morphism & induces an injective morphism of sheaves O(L) — Oy
and we identify O(L) with its image in ©3;. Then S(F) is the set of those
points z € M for which k : L. — T.M is the zero map.

In an equivalent way a holomorphic foliation by curves can be defined
by a collection of local holomorphic vector ficlds & € T'(U;,©pr) such that
U = {U;} is an open cover of M and &; = uj; - & on U; N U; for suitable non
vanishing holomorphic functions wj;. Then L is the line bundle associated to
the 1-cocycle {uj;}. Moreover, if o; : U; — L are non vanishing sections with
0;j = uj; - 0; then kK : L — TM is the bundle morphism determined by the
condition & o 0; = &;. The singular locus S(F') is just the union | JSing(¢;)
where Sing(&;) is the subset of U; where ; vanishes.

To any foliation F' there is naturally associated a saturated foliation *F'
which coincides with F' outside S(F). In the case of a foliation by curves
SF can be described as follows. Assume that F is defined by local vector
fields &; € T'(U;, © i) where each U; is holomorphically equivalent to an open
polidisc A of C*. Let z!,...,z" be the coordinates on U; induced by the
identification U; = A and set & = ) £70/d=". Let v; be a m.c.d. of the
functions &!,..., €7 and define & = ¢; i/vi- Then codim(Sing(é;)) > 2. Since
the foliation on U; N U; defined by { j is saturated there is a holomorphic
function 4;; such that & = 1;; { jon U; NUj. Furthermore the functions 4;;
do not vanish. If not Sing(é ;) would he of (odlmension one. Hence the local

vector fields &; define a saturated foliation *F called the saturation of F.
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1.1. Example. Let a saturated foliation F' and an analytic hypersurface
D on M be given. One can find an open cover {U;} of M with the property
that there exist §; € I'(U;, Opr) and h; € T'(U;, Ou) such that the collection
{&:} defines F and h; = 0 defines D on U; (i.e. if f € I'(W,Op) vanishes
on D then f = X-h; on WNU;). Set n; = h; - &. The collection of vector
fields {7;} defines a non saturated foliation by curves F'? with singular locus
S(FP) = DU S(F) and whose saturation is just F. With more generality
and for any given positive integer k € N* one can define the foliation F*-P
as the foliation by curves defined by the local vector fields ngk) = (h)F - &
In section 3 we will consider locally trivial unfoldings of foliations by curves

obtained in this way.

From now on F' will be a fixed foliation by curves on a compact manifold
M defined by a pair (L,k). Let Q be an open neighbourhood of 0 in C™.
The product 2 x M is endowed with a holomorphic foliation Fy of the same
codimension as F' obtained as the product of F' by the foliation on (2 consisting
of a single leaf; i.e. Fy is the foliation defined by the subsheaf pri©@q @ pr3 F
of Oqxm. Here pr; and pr, denote respectively the natural projections from
Q2 x M onto the first and second factors. We call Fy the trivial unfolding of
F parametrized by Q.

1.2. Definition. Let W be an open subset of @ x M and let ¥ : W —
U(W) C Q x M be an C-analvtic diffeomorphism over the identity of Q0 such
that the restriction of U to W N ({0} x M) is the identity. We say that ¥
is a relative automorphism of the trivial unfolding Fq if there is a bundle
morphism ! : (T x L)|W — (T x L)|¥(1V) over ¥ such that the diagram

(TQx L)W X (TQ x TM)|W

\wl lw.

(TQ x L)|¥(W) ~25, (TQ x TM)|¥(W)
is commutative, where ¥, denotes the tangent map of ¥,

1.3. Remark. Let ¥ be a local biholomorphism over the identity of Q
and inducing the identity on {0} x A{. Suppose that ¥ maps the singular
locus S(Fq) of Fg identically into itself and preserves the foliation Fy outside
S(Fq). If the foliation F is saturated then ¥, induces a bundle morphism ¥#
fulfiling the conditions required in the above definition. This is no longer true
in general if the foliation is not saturated and in this case ¥ need not to be an
automorphism of the trivial unfolding. Nevertheless there is a particular type
of non saturated foliations for which this property still holds. It is considered
in Proposition 1.5.
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Assume ¥ : W — ¥(W) is a holomorphic diffeomorphism such that W,
U(W) are subsets of Q x U where U is a coordinate open subset of M, with
coordinates z = (2},...,2"), on which F is defined by a holomorphic vector
field £&. Let s = (s!,...,s™) denote the linear coordinates on Q. Then ¥ is a
relative automorphism of Fy, if and only if it is of the form U (s, 2) = (s, ¥ (s, 2))
where 1) is a holomorphic map such that (0. z) = z and fulfiling

(1) $u€ = (uo T ¢,
(2) df*a;iu:(v,‘oql_l)-& for p=1,...,m,

for suitable functions u,v, on W. For example, if ¢ = ¢(t,z) denotes the
local flow of € and 0 = o (s, z) is a holomorphic function with ¢(0, 2) = 0 then
U(s, z) = (s,p(0(s, 2), 2)) is a relative automorphism of the trivial unfolding.
The following proposition states that any relative automorphism of Fy is
locally of this form.

1.4. Proposition. Let ¥(s,z) = (s,¢(s,z)) be a relative automorphism of
Fq with domain W C Q x M. Assume U =1 N ({0} x M) is an open subset
of M holomorphically equivalent to an open polidisc on which F is defined by
a holomorphic vector field £. Let o = ©(t. z) be the local flow associated to €.
Then there is a holomorphic function 0 = o (s, z) defined in a neighbourhood
W' of U in W with 0(0,z) = 0 and such that v¥'(s,z) = ¢(o(s, z),z) on W'.

Proof. Because of (2) a function o = o(s, =) fulfils the required conditions if

and only if o is a solution of the total differential equation (with parameter
zeU)

0
(3) 5’;0[;[(313) = 7’;1(3*‘:)
0(0,2) =0.

The existence of such a function o outside the singular locus S(Fg) of Fn can
be easily seen by using local coordinates w!,...,w™ such that £ = §/0w™. In
particular the integrability condition of the equation (3), i.e.

Ov, Ov,
) ds” ~ Osh
is fulfiled outside S(Fq). But equalities (4) must then also be verified on the
singular set by continuity. So the complex Frobenius theorem with holomor-

phic parameters applies showing that (3) has a unique solution defined in a
neighbourhood of {0} x U in W. 1

Let F*'D denote a foliation of the type defined in Example 1.1. A relative
automorphism of (F¥'P)gq is also a relative automorphism of Fy. The converse
is not true in general. In the following proposition we consider a particular
situation in which the converse still holds. It will be used in section 3.

for v =1,...,m,
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1.5. Proposition. Assume F is saturated and let D be a hypersurface of
M. Let ¥ be a given relative automorphism of Fqo. If ¥ is the identity on
Q x D then it is also a relative automorphism of the trivial unfolding (FP)gq.

Proof. Using the notation in the above proposition we can write ¥ locally
as ¥ = ¢(o(s,z),2) for a given function o. Suppose D is defined by the
equation h(z) = 0, set £ = h - £ and denote by ¢ = @(t, z) the local flow of
€. Then $(t,2) = $(a(t, 2), z) where a = a(t, z) is the holomorphic function
determined by the equation

%(ti(t,:) = h(P(t, 2))
a(0,z) =0.

Since z = ¢(t,2) for any z € D we have a(t,z) =0 for z € D — S(F'). The
foliation F' being saturated D—S(F') is dense in D. So a(¢, -) must vanish on D.
From this fact we deduce that a(t, z) = I(z)-b(#, =) with b(t, z) = t+2b(t, 2).

The maps ¥(s,) are also the identity on D by hypothesis. The above ar-
gument also shows that o(s,z) = h(z)-7(s,z). The implicit function theorem
implies the existence of a function 6 = 4(s, z) defined for small s such that
7(s,z) = b(6(s, 2),2). So we can write ¥'(s,z) = 3(6(s, z), 2) showing that ¥
is a relative automorphism of (F' Dya. 1

Let U C M be open. Two relative automorphisms ¥ and ¥’ of F, whose
domains contain {0} x U are identified if they coincide in a neighbourhood of
{0} xU in 2 x M. The set Go(U) of these equivalence classes is a group under
the composition of automorphisms. When U runs over the open subsets of M
the family {Gq(U)} defines a sheaf Gg of non abelian groups over M.

In order to obtain a versality theorem for locally trivial unfoldings we
are led to consider (germs of) analytic spaces as spaces of parameters. So
the general space of parameters we will be the germ (5,0) at 0 € C™ of a
(possibly non reduced) analytic space S defined by S = supp(Ogq/Z) where
is a coherent sheaf of ideals of Oq. The restriction Fs of F to S x M will be
called the trivial unfolding of F parametrized by S. The restrictions to S x M
of the elements of Gg form a sheaf of non abelian groups over M denoted by

Us.

1.6. Definition. A (germ of) locally trivial unfolding (F, M, x, S, ) (some-
times simply denoted by F ) of F parametrized hy (S.0) is given by an analytic
space M, a proper C-analytic morphism 7 : M — S and a holomorphic iso-
morphism ¢ : M — My := ©~1(0) in such a way that there exists an atlas
{(W;, #:)} of M, where ¢; : W; — &(1V;) C S x M are C-analytic diffeomor-
phisms, fulfiling

(l) p1‘10¢,' =T,
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(1) ¢i|Mo =71,
i) ¥;; = ¢io¢'.'l is a section of Gs.
J J

For s close to zero M, := n~1(s) is a compact complex manifold and we
can think of 7 : M — § as a family of deformations of the complex manifold
M = M,. The restriction F; of F to M, is a foliation by curves locally
isomorphic to F' = * Fy.

1.7. Remark. Let M be a complex manifold, 7 : M — € a proper holo-
morphic map and ¢ : M — My := 771(0) a biholomorphism. Let a saturated
foliation F on M which is transverse to the fibres of 7 (outside S(F)) be
given. Then ¢ induces a well defined saturated foliation ¢*F on M. Therefore
in the case of saturated foliations one can define the (general) notion of un-
folding of F' parametrized by the smooth space  as a 5-tuple (F, M, 7,Q,:)
where the foliation F is saturated and transverse to the fibres of 7 and such
that *F = F.

Two locally trivial unfoldings (F. M. 7. S.1) and (F',M' 7", S,//) of F
parametrized by (S,0) and defined respectively by the atlas {(W;, #;)} and
{(W}], #})} are said to be isomorphic if there is a C-analytic isomorphism over
the identity of S, ® : M — M/, such that: (i) ®os = ¢ and (ii) ¢} 0 ® o ¢;!
are sections of Gg.

The underlying analytic space M of a locally trivial unfolding F is obtained
by glueing together open subsets of S x A/ by means of relative automorphisms
U;; € T(U; NU;,Gs). Assume that & are local vector fields defining F on
U; and let ¢; = ¢;(t, z) denote the corresponding local flows. By virtue of
Proposition 1.4, ¥;; = (pr;, ¢;j) where ¢; is of the form

Yij(s,2) = pi(oij(s.2).2)

for suitable functions o;;. Given 9/9s € TyS. let 0£(9/0s) denote the coho-
mology class of the cocycle associating to U; N U the section of O(L) given

by
OU;J' >
= (2 )&
s=0 ( 05 s=0

The C-linear map or : ToS — H'()M.O(L)) defined in this way only depends
on the isomorphism class of the unfolding and is called the Kodaira-Spencer
map of F.

Given a morphism of germs of analytic spaces f : (T,0) — (S, 0) the fibered

Nij
bis = 03)

product T'x s M is constructed by means of sections ‘Ilfj = (pr1,¢{j) of Gr
where ’l/){j = t;; o (f x 1). In this way Txs.M is endowed with a locally
trivial unfolding f*F of F parametrized by (T.0) called the pull-back of F
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by f. A locally trivial unfolding (F, M, x, S, ) of F is called versal if for any
other locally trivial unfolding (F', M’,7’,5’,.) of F there is a morphism of
germs of analytic spaces f : (S’,0) — (S,0) such that: (i) 7' and f*F are
isomorphic and (ii) dof is unique. In this case the Kodaira-Spencer map of
F is an isomorphism. If the morphism f itself and not only its linear part is
unique then the unfolding F is called universal

We end this paragraph by showing that any locally trivial unfolding is
globally differentiably trivial. This is a consequence of the existence of the
“exponential map” stated in the proposition below. This exponential map
is also used in the proof of the versality theorem 2.5. Let (F, M, x,S,¢) be
a locally trivial unfolding of F defined by an atlas {(W;,¢;)} of M as in
Definition 1.6. Assume that F is defined on U; = «~1(W; N M,) by a local
vector field &; and let p; = ¢;(t, z) be the associated flow. Let us consider
S x L as a vector bundle over S x Al and let. 4 : § x M — 8§ x L denote the
zero section. In this situation we have

1.8. Proposition. By shrinking S if necessary we can find an open neigh-
bourhood V of v(S x M) in S x L and a C*™° map gr : V — M over the
identity of S and holomorphic with respect to S such that the restriction of
$:; 0 gr to VN p~L(U;) can be written in the form

(5) gr(s,z,t) = (s.pilai(s.z.1), 7))

where t denotes the linear coordinate on L|U; induced by the choice of €; and
a; = ai(s,z,t) is a C> function depending holomorphically on s and t and
fulfiling

(6) a;(0.2,0) =0
0(1,‘ - _
(7) - (0.2.0)=1.

Proof. A straightforward computation shows that the condition for the map-
ping gr to admit a local writing like (5) does not depend on the choice of &;
nor on the choice of ¢;. Thus there is a globally defined sheaf S over S x L
whose elements are the germs of such mappings. The restriction Sy of S to
M = v({0} x M) is locally isomorphic to the sheaf S over {0} x C"* x {0}
which is the restriction of the sheaf over S x C* x C whose elements are the
germs of C* functions a = a(s, z.t) depending holomorphically on s and ¢
and fulfuling conditions (6) and (7).

By means of partitions of unity one sees that Sy is locally soft (“mou”).
This implies that Sy is globally soft (cf. [G, th. 3.4.1]) and it admits a section
on y({0} x M). Since v({0} x M) has a fundamental system of paracompact
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neighbourhoods in § x L the above section can be extended to a section of
S on a neighbourhood V of y({0} x Al) (cf. [G, th. 3.3.1]). Because of the
compacity of M the domain V can be taken as a neighbourhood of y(S’ x M)
in §' x L for a suitable neighbourhood S’ of 0 in S. §

1.9. Corollary. By shrinking S if necessary we can find a C* diffeomor-
phism gr : S x M — M over the identity of S and holomorphic with respect
to S which takes the leaves of the foliation F in {s} x M onto the leaves of
Fy in M,.

Proof. Set gr =gro~. I

2. Locally trivial unfoldings of F' as families of complex structures
on M.

For a given holomorphic vector bundle E over M let A%*(E) denote the
space of differential forms on A of type (0. k) with valuesin E, i.e. A%*(E) =
C>(M, AFTM*QFE). Set T = TAM&TM. We recall that a complex structure
7 on M close to the original one is given by an involutive subbundle 70! of
T such that 7 = T'0 @ T%! and T°!' N TAI = 0. Here 7% = TO.I, In this
situation there is a unique element w € A%'(TA[) such that T°! = T9! :=
(id — w)(TM). Involutiveness of TO! is equivalent to the integrability of w,
i.e. to the condition dw — 1/2[w,w] = 0. Thus complex structures on M close
to the original one are parametrized by a neighbourhood of zero in the space

J defined as )
J ={w e A>N(TA)|dw - E[uw] = 0}.

Given a family of deformations 7 : M — S of the complex manifold M =
My = n~'(0) and a differentiable trivialization g : S x M — M (i.e. a
diffeomorphism over the identity of S, depending holomorphically on S and
fulfiling g|{0} x M = id ) there is a family of complex structures on M for
which ¢ is holomorphic. This family of complex structures is parametrized
by a family {w,} of elements of .J depending holomorphically on S and such
that wy = 0. We will say that {w,} is the family of elements of J associated
to M and the differentiable trivialization g. Conversely, given a holomorphic
family {ws} of real analytic elements of .J with wy = 0 there is a (uniquely
determined) family of complex structures on A/ which is parametrized by {ws}
(cf. [W, Prop. I1.3.2] and [D]).

Given w € J close to zero and a diffeomorphism h of M which is C'-close
to the identity we will denote by " = w o I the unique element of .J such that
h: My — M, is holomorphic.

Let us consider now the pair (L, ~) defining the foliation by curves F on
M. The bundle morphism & induces injective C-lincar maps & : A%¢(L) —
AR (TM). We will identify A% (L) with its image in A%*(TAI). In this way
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the elements of Jp = J N A%!(L) close to zero can be thought as a certain
type of complex structures on M. In this paragraph we will see that locally
trivial unfoldings of F' are naturally parametrized by families of elements of
JF.

A diffeomorphism h of M which is C!-close to the identity will be called
tangent to F if, in any local chart (U,z = (z!,...,z")) of M on which F is
defined by a vector field &, it can be written

(8) h(z) = (=), 2)
where b = b(z) is a certain differentiable function close to zero and ¢ = (¢, 2)
is the local flow associated to &.

2.1. Proposition. Let w € .Jp be close to zero and let h be a diffeomor-
phism of M tangent to F. Then v» = w o h belongs to Jp.

Proof. The statement heing purelv local we can assume that M is just the

domain of the local chart (U,z = (z',...,z")) in which h is given by (8).

Clearly ¥ = w o h is integrable so we only have to see that i belongs to
A%L(L). In order to prove this we need the following identities

9) onP = €7 .01 for 3=1,...,n

(10) ha€ = (14 £(D) - § +E(D) - €.

The first one follows directely from the chain rule. The second equality can
be easily checked on U—Sing(£) by taking local coordinates {w?,...,w"} on

which ¢ = 8/0w™. Then (10) must also be verified on Sing(£) by continuity.
From (10) one gets the identities

(11) §(h) = 1+£< ) - €7,
(12) E(h%) = &(b) - 37

Let us writew = Y, wrdZ* @€ = PIERY wrE?dz*©0/02° and let (1,. .. C"
be w-holomorphic local coordinates. They must verify d¢* = w(¢®), that is

ace 50C¢°
(13) 0?”\ = Zw)\fﬁgi_u.

3

The vector 1-form ¢ is determined by the condition that the functions (%o h
are 1-holomorphic, i.e.

(14) (¢ oh) = (¢ oh).
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We want to prove that ¢ can be written ¥ = 3, ¢sdz® ® & where 95 are
C® functions. If this were the case then equality (14) could be written, using

(13),

1) > %;;(éh" + ) wagPont)
B A

OhP o
ZWZP +Z£* 5" )%

[ad

0 6 g a¢
where 9° = 3", 1sdz%. Since (-817
use of (9) and (11), that (15) is equivalent to

ﬂ(5b+Zw,\57f\ fﬁ (14 &(D) + Zw)‘f(h)‘ ) - °.
A

is an invertible matrix we see, making

But the expression

b + waah*—uu b)+ Zme(h*» ¥

defines ¢° as a differential form of type (0.1) because the function (14+&0)+
S, wxa&(h*)) does not vanish by hipothesis. Thus ¢ = 1° ® £ is an element
of Jr fulfiling (14). This concludes the proof. §

2.2. Remark. Let {w,;} be a family of elements of Jr with wy = 0 and
depending holomorphically on s € S and let h; be a holomorphic family
of diffeomorphisms of M tangent to F' such that hg = id. Then the same
argument shows that ¢ = w; o i is a holomorphic family of elements of Jp.

Let gr be the exponential map for the unfolding F constructed in Propo-
sition 1.8. The restriction gr of gr to the zero section is a differentiable
trivialization of M. In this situation we have

2.3. Proposition. The family {ws} of elements of J associated to M and
gF Is in fact a family of elements of .Jp.

Proof. By construction the composition ¢; o gr. where ¢; : W; — S x M is a
local chart of M defining the locally trivial unfolding F, is a diffeomorphism
tangent to F. The restriction of {w,} to g7'(1V;) coincides with 0,0 (¢; 0 gr)
which, by virtue of Remark 2.2, is a family of integrable local sections of
TM" ® L. Here 0, denotes the family of .J which is constantly equal to
zero. |
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2.4. Proposition. Let {ws} be a given holomorphic family of real analytic
elements of Jp with wy = 0. Then there exist a locally trivial unfolding
(F,M,7,S,1) of F and a real analytic trivialization g : S X M — M such
that {ws} is the family of vector 1-forms induced by M and g.

Proof. For a given point € S x M let W, C S x M be a coordinate neigh-
bourhood of z in which Fs is defined by a vector field £ with associated local
flow ¢ = ¢(t,z). We will construct a structure of C-analytic space on the
topological space S x M by giving, for any point x € S x M, a local chart
¢z : Wy — S x M, where W, C W/ is a neighbourhood of z, with the prop-
erties: (i) ¢, is holomorphic when we consider on W, the complex structure
defined by {w;s}, and (ii) ¢, can be written in the form

bz(s,2) = (s5.0(b(s.2). 2))

where b = b(s, z) is a real analytic function depending holomorphically on
s € S such that b(0,z) = 0. Then the compositions ¢, o qb;,l will be sections
of Gs and we will obtain an analytic space M endowed with a trivial unfolding
F of F. The differentiable trivialization will then be given by the map which
identifies S x M with the topological space which underlies M.

Assume z € S x M does not belong to the singular locus S(Fs) of Fg.
In a neighbourhood of z we can find local coordinates (s,w!,...,w™) with
£ = 8/0w™. Then ¢(t,w!,...,w") = (w',...,w" +t). Since the elements of
{ws} are real analytic one can prove as in [W, Prop. I11.3.2] that there is a
real analytic function @™ = w"(s,w!,...,w") depending holomorphically on
S with w™(0,w!,...,w") = w" such that (s,w',...,w" "1, %") is a system of
local coordinates holomorphic with respect to {ws} on a certain neighbour-
hood of z. In this case we set

b(s,w,...,w") = " (s.w!,... w") — w"

getting ¢, (s, wl,...,w") = (s,wl,...,w" "1, w").

Let now z € S(Fs). On W] set £ =3 ;£P9/0:° and w, = 3, wadz* ® ¢
where w) = wy(s, 2). Let us consider on 1V/ x C the non-singular vector field
£= £+0/0t. Themap ¢ : W, xC — TV, xC given by @(s, z,t) = (s, ¢(t, 2), 1)
is a holomorphic diffeomorphism fulfiling ¢, (9/t) = €. The family {@,} of
real analytic vector 1-forms on T/ x C defined as

Ws = Zw,\(lf’\ C)é
A

is holomorphic with respect to S and integrable. Let W; and W, stand for
W, xC and W, endowed with the complex structure defined by {@,} and {w,}
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respectively. The canonical projection 7 : W; — W; is holomorphic. Asin the
non-singular case one can see that, if we consider on W/ x C the only complex
structure for which ¢ : W, x C — )’/\VIL is holomorphic, then there is a real
analytic function z"+! = 2"*1(s, 21,..., 2", t) holomorphic with respect to S
such that (s,zl,...,2", z"*!) is a system of holomorphic local coordinates.
Let b = b(s, z1,...,2") be the function defined by the condition

2" (s, 2t 2 (s, 2) =0

and set (s, z1,...,2") = (s,2',...,2",b(s,z1,...,2™)). Then the composi-

tion ¢, = m o ¢ o ¢ fulfils the required conditions. |

The above propositions illustrate the way in what locally trivial unfoldings
of F' can be thought as a certain tvpe of deformations of the complex structure
of M. Namely those parametrized by holomorphic families of clements of Jg.
Kuranishi’s theorem (cf. [K]) states the existence of a versal space for the
deformations of a complex structure on a compact manifold. The proof of this
theorem given by Douady in [D] can be adapted here to obtain the following

2.5. Theorem. Let F be a foliation by curves on a complex compact
manifold M. There is a germ of analytic space (Ky,.,0) parametrizing a versal
locally trivial unfolding F of F.

2.6. Remarks. (i) As in the proof of Kuranishi’s theorem one can see
that there is an open neighbourhood V of 0 in H!(A, O(L)) and an analytic
map ® : V — H?(M,O(L)) such that (L},,0) is identified with the germ
at 0 of ®-1(0). Moreover the jet of order two of ® at 0 is the quadratic
map v — [v,v]. This implies in particular that I, is smooth in the case
H?(M,O(L)) = 0. Here the braket [, ] refers to the structure of graded Lie
algebra on H*(M,O(L)) induced by the inclusion of sheaves O(L) < O .

(ii) Throeugh the proof of the theorem one sees that if H(M,O(L)) = 0
then the unfolding F is universal.

Sketch of the proof. Let us fix a real analytic Hermitian metric on L and a
real analytic Riemannian metric on A/. From these metrics one constructs an
Hermitian product on A%*(L) in a standard way. The differential complex

A%0(L) 2 A0 (L) 2 0Ly — . — A(L)
is elliptic and if we denote by 9 the adjoint operator of & with respect to the

above Hermitian product then the Laplacian A = 99 4 90 is a real analytic
elliptic operator. The space

N ={we A (L)| (I« - %[ww]) + 0w = 0}
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is a finite dimensional submanifold whose tangent space at 0 is the space
H! = H'(M,O(L)) of harmonic elements of A%!(L). The elements of N
are real analytic because they are solutions of an elliptic equation with real
analytic coefficients.

Let (K}, 0) be the germ at 0 of the intersection Ky, = NNJp. The analytic
space Ky, can also be defined as (cf. [K, p. 83])

K, = {w € N | Hw,w] = 0}

where H denotes the orthogonal projection of A%2?(L) onto the space HP?
of harmonic elements. A neighbourhood of 0 in K}, can be thought as a
holomorphic family of real analytic elements of Jr. Proposition 2.4 implies
that this family defines a locally trivial unfolding F of F' parametrized by the
space K, itself.

Let gr denote the exponential map for the unfolding F constructed in
Proposition 1.8. Given n € A%°(L) close to zero then h, = gron is a
diffeomorphism of M tangent to F. By virtue of Proposition 2.1 there is a
map

p: A"(L) x Ky, — Jp

defined in a neighbourhood of (0, 0) such that p(n,w) = woh,. One can adapt
here Douady’s proof of Kuranishi's theorem to see that p is an isomorphism
when restricted to E x K. where E is a subspace of A°°(L) complemen-
tary to ker{0 : A%%(L) — A%Y(L)} = HO(M.O(L)). From this fact and
Proposition 2.3 it follows the versality of the unfolding F. §

3. Equisingular unfoldings.

In this paragraph we assume that M has dimension 2 and that the foliation
by curves F is saturated. In this case the singular locus S(F) is a finite set
{q1,...,qx} C M. We recall that F is called reduced at a singular point g; if
there are local coordinates w!,w? centered at ¢; such that F is defined in a
neighbourhood of g; by a vector field with a 1-jet of the form

w! i— + Aw __0_
Jw! w?
where A € C is not a strictly positive rational number.

There is a procedure of reduction of the singular foliation F' similar to
the reduction of singular plane curves (cf. [S]). More precisely there exist
a compact manifold M, a divisor D C M, a saturated foliation F on M
and a holomorphxc map @ : M — M with the following propertles (1)
maps M-D biholomorphically onto Al — {q,... ,(Ik} identifying FIM D

with FIM — {qi,...,q¢}, (i) the singularities of F' are reduced and (iii) if
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z€D-S(F ) then the leaf of F through z is transverse to D or contained
in D if z is a regular point of D and is a local irreducible component of D if
z is a singular point of D. Furtheremore the 4-tuple (F M D, w) which is
called the reduction of F is unique up to isomorphism. We denote by Dy the
union of all the irreducible components of D which are dicritical, i.e. those
components which are generically transverse to F.

An unfolding (F, M, n,Q,¢) of F parametrized by an open neighbourhood
Q of 0in C™ (cf. Rema.rk 1.7) is said to be equisingular if there exist a
complex manifold M a hypersurface D C M., a saturated foliation .7:' on
M and a holomorphic map IT : M — M such that: (i) IT maps M=D
biholomorphically onto M — S(F) identifying F I.M D with F|M - S(F),
(ii) F is transverse to the fibres of m o IT outside its singular locus and (iii)
the restriction of (.7-' .M D,II) to n~'(0) = (M) is the reduction of Fy.
Then the 4-tuple (.7-' .M D, IT) is unique up to isomorphism and is called the
reduction of F. Because of the unicity of the reduction of a foliation there
is a biholomorphism Y from M onto (7 o IT)~!(0) making commutative the
diagram

H;;\;{

| |
M — M

and such that T*F = F. We can thus think of the 5-tuple (F, M,%',Q,T)
as an unfolding of the reduction F of F. Here 7@ = mo II. As above Dy will
denote the union of all the dicritical irreducible components of D.

The first author proved in [M] that any unfolding of a germ of foliation at
a reduced singularity is trivial. From this fact he deduces that for any equi-
singular unfolding F of F' the corresponding reduction Fisa locally trivial
unfolding of F. Furthermore, if ¢ : .M — Q x M are the local charts trivializ-
ing F then the compositions (j) ;o d’,. are the identity on ©Q x Dg. This implies
using Proposition 1.5 that FDo is in fact a locally trivial unfolding of FDo,
It is also shown in [M, Lemme 1.3.1] that, conversely, given a locally trivial
unfolding F' of FDo parametrized by Q there is an equisingular unfolding F
of F also parametrized by © such that its reduction F is the saturation 3(.7-' "
of F'. These facts suggest the following

3.1. Definition. An equisingular unfolding of F' parametrized by a germ
of analytic space (S,0) is a locally trivial nnfolding (FPo, M, 7, S, T) of FDo

where (F, M, D, w) is the reduction of F and FP0 has the meaning of exam-
ple 1.1.
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Because of the above remarks in the case S is smooth the above definition
of equisingular unfolding is equivalent to the first one. The notion of versal
equisingular unfolding has an evident meaning and its existence is a corollary
of Theorem 2.5.

3.2. Theorem. Let F be a foliation by curves with isolated singularities
on a compact surface M. There is a germ of analytic space (K,,0) which
parametrizes a versal equisingular unfolding of F'.

3.3. Remarks. (i) The space I is nothing but the parameter space K.
of the versal locally trivial unfolding (f T’°,A7,%,f(,,,'f) of FDo. So the
tangent space of K. at 0 is naturally identified with H l(JT/f , O(f/)) where L
is the line bundle associated to the foliation by curves FDo_ Furthermore if
H2(M,O(L)) = 0 then K, is smooth.

(ii) In the case I, is smooth there is an equisingular unfolding in the first
sense (F, M, m, K¢,t) of F whose reduction is just “‘(.7? Do), Then any other
equisingular unfolding of F' parametrized by a smooth space is a pull-back of

F.

For a given germ of singular foliation by curves on (C2,0) there is a versal
equisingular unfolding of it parametrized by a (germ of) smooth space. This
local versal space is constructed by the first author in [M]. In our situation and
using the above notation the parameter space '1°¢ of the versal equisingular
unfolding of the germ of F' at a singular point g; turns out to be isomorphic to
HY(D;, O(L)) where D; = w~!(q;). The versality property of the local versal
spaces K1°¢ induces a “localization” map

-loc -loc

(16) X:Ke — NP x ... x KP°.

In certain cases the map Yy is in fact a biholomorphism. More precisely

3.4. Theorem. Let F be a foliation by curves with isolated singularities on
a compact surface M defined by a pair (L, x). Assume that H'(M,O(L)) = 0.
Then the differential map doy of \ at 0 is an isomorphism. Moreover if
H?(M,O(L)) also vanishes then I, is smooth and v is an isomorphism.

Proof. For each ¢ = 1,...,k let B; and B be open neighbourhoods of ¢;
identified by a suitable local chart to the polydiscs A(1) and A(1/2) of C? of
polyradius 1 and 1/2 respectively. Assume that the open sets B; are disjoint.
Set U = UB;, V = M — UB; and define B; = @ Y(B;), U = w=}(U) and
V = w~}(V). Notice that any section of L on I'NV can be extended because
of Hartogs’ theorem to a section on U. Using this fact and the identifications
induced by w the Mayer-Vietoris secuence gives

299



J. F. MATTEI, M. NICOLAU

0 — H'(M,0(L)) S HY(T,0@) @ H'(V.0(L)) & B (UnV,0(L)) —
- BX(M,0@)) % BXU, o) @ BHX(V.0(L) & HAUAV,0(L)) — 0.

The intersection U NV is the union of two Stein open subsets. Thus
H2(UNV,0(L)) = 0. A theorem by Andreotti and Grauert [A,G] states that
H*(U,0(L)) = @:-;1 H*(B;,O(L)) is isomorphic to @;;1 H*(D;,0(L)) and
also implies that the restriction of 3* to H*( U, O(f,)) is the zero map. It
is also proved in [M] that H?(D;, O(Z)) = 0. Using now the Mayer-Vietoris
sequence which computes H*(M,O(L)) by means of the decomposition M =
U UV one can see that H!(M,O(L)) = 0 implies that the restriction of 3! to
H(V,O(L)) is injective and therefore o' maps H' (M, O(L)) isomorphically
onto @le HY(D;,O(L)) but this map is just the differential doy of x at O.
The same exact sequence also shows that in the case H2(M,O(L)) = 0 then
the restriction of ' to H'(V, O(L)) is surjective and H2(V,O(L)) = 0. This
implies H2(M, O(L)) = 0 concluding the proof. §

Let us apply the above result to the case of a foliation by curves on P2.
Recall that line bundles Ly an P? are classified by its Chern class d € Z 2
H?2(P2,Z) and that there are non identically zero morphisms Ly — TP? if
and only if d < 1 (cf. [G-M,0-B]). It is also known from Serre’s computations
that H(P2?, O(L)) = 0 for any d € Z and that H*(P%, O(L)) = 0 for d > -3.
So we obtain

3.5. Corollary. Let F = (L4, k) be a foliation by curves on P? with isolated
singularities qi,...,qk. Let K. (resp. L!°°) denote the parameter space of
the versal equisingular unfolding of F (r: esp of the germ of F' at q,) Then
the tangent map at 0 of the localization morphism x : K¢ — K°¢ x - - - x Ky loc
is an isomorphism. The map Y itself is an isomorphism if d = 1 O 1 -2.

3.6. Remarks. (i) Asit is pointed out in [G-M,0-B] the foliations by curves
on P? having an associated line bundle L, with Chern class d = 1,0, -1, -2
are those obtained respectively by projectivization of the vector fields

0 0 . 0
X —4’\10 +. \20~ +«\3‘a?
on C? such that X;, X5 and X3 are homogeneous polinomials of degree 0,1, 2
or 3.
(ii) The space K, is not smooth in general as it is shown by the examples

studied by I. Luengo in [L].

Finally we come back from global to local foliations and using the above
methods we obtain
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3.7. Theorem. Let ¢ be a polynomial vector field on C? having an isolated
singularity at the origin. Let F¢ denote the germ of foliation by curves at
0 defined by €. Then any equisingular unfolding of F is algebraic. More
precisely the versal equisingular unfolding of F¢ is given by an integrable
holomorphic differential form

w=a(z,t)dz +b(z.t)dz2 + ZC’(Z t)d

on an open subset C2 x U of C> x CP where p is the dimension of the versal
space and a, b, c¢; are functions which are polvnomials with respect to the
coordinates z = (z1, z2) of C>.

Proof. The foliation F¢ extends to a foliation by curves F on P? having only
isolated singularities at ¢; = 0.¢2..... qr. Let (f ,J’\f\f ,D,w) denote the re-
duction of F. Let us chose a straight line C' in P? which do not meet any
singular point of F. There is a positive number m € N* such that the line
bundle associated to the foliation F™ ¢ (c¢f. Example 1.1) is Ly, i.e. its Chern
class is zero. Set C = w~}(C). Then the argument used to prove the above
theorem can be repeated to show that the parameter space K’ of the versal
locally trivial unfolding (.7-' m ‘,J\A # L'.Y) of F™ ‘€ is smooth and can be
identified with the product Al°¢ x --- x L'}°°. Moreover one can prove as in
[M, Lemme 1.3.1] that there is an eqmsmgulm unfolding (in the first sense)
(F,M,r,K' 1) of F whose reduction is just the saturation of F™ €. Then
F is algebra.lc and the germ at zero of the restriction of F to the subspa,ce
K¥° x {0} x - -+ x {0} of K’ is the versal equisingular unfolding of F¢. §
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QUASI-REGULARITY PROPERTY FOR UNFOLDINGS OF
HYPERBOLIC POLYCYCLES
M. El Morsalani, A. Mourtada and R. Roussarie

1. INTRODUCTION.

Let X be a real analytical vector field on R2. A polycycle I' of X is an
immersion of the circle, union of trajectories (Singular points and separatrices
whose o and w limits are contained in this set of singular points). Moreover
one supposes that I' is oriented by the flow of X and that a return map
P(z) along I is defined on some interval o with one end point on I' : o is
parametrized by analytical variable x € [0,2], {r =0} = o NT = {q} and
P(z) : [0,z9] — [0, z1] for some g €]0. 2]

We say that I' is an _hyperbolic polyvcycle if all the singular points in vy
are hyperbolic saddle points. Let {p;,... ,p} the set of these singular points
listing in the way they are encountered when we describe I' starting at g. We

!
i

define the _hyperbolicity ratio of p;. i = 1,... ,k to be r; = Ei Shere -y
7

"
i
w! are the eigenvalues at p; (p}, uf > 0).

The Poincaré map P(z) is analytic for > 0, and extends continuously at
0 by P(0) =0.

In 1985, Yu. Ilyashenko [I1] introduced a notion (the almost-regularity)
similar to the following one up to a composition by the logarithm :

Definition.  Let g(z) : [0,29] — R « function, analytic for x > 0, and
continuous at x = 0. One says that g is _quasi-reqular if:

QR,) g(z) has a formal expansion of _Dulac type. This means that there

ezists a formal series:
o<

g(x) = ZJ"\"P;(lnm)

=0

S.M.F.
Astérisque 222** (1994) 303
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where A; is a strictly increasing sequence of positive real numbers 0 < g <
A1 < ... tending to infinity and for each i, P; is a polynomial, and § is a
formal expansion of g(z) in the following sense:

Yn>0 g(z) — ix’\"}’i(lnm) = o(z*").
=0

QR,) Let G(§) = g(e™¢) for £ € [€o = —logxg, 0.
Then G has a bounded holomorphic extension in a domain Q(C) C C
where QC) ={( =&+ in|&* > C(1 +n*)} for some C > 0.

In the same paper [I1], Ilyashenko proved that the shift map 6(z) = P(z)—z
is quasi-regular. The property QR; was already established by Dulac in [D].

As a consequence of the Phragmen-Lindeldf theorem (see [C]) a flat quasi-
regular function (g(z) = o(z™),Vn) is necessarily equal to zero, and it follows
from this that I' cannot be aceumulated by limit cycles of X ( a limit cycle
of X is an isolated periodic orbit).

This result was a first step in the solution of the ” Dulac problem”, for which
one needs to look not only at hyperbolic polycycles but more generally at all
elementary polycycles. As it is well known, this general solution ( [EMMR],
[E1], [E2], [I2], [I3]) involved more elaborated technics, and we limit ourselves
to the hyperbolic polycycles in this paper.

Here we want to consider the unfoldings ({X'»,T") of a hyperbolic polycycle
T, germs of finite parameter family (X)), with Xy = X defined by a represen-
tative family on V x W where V' is a neighborhood of I" and W neighborhood
of 0 in the parameter space.

As it was shown in [R], it is useful to obtain quasi-regularity property for
1-parameter unfoldings, in order to study finite cyclicity for general unfoldings
of hyperbolic polycycles. In the present paper, we extend to any 1-parameter
unfoldings a result of [R], proved there for hyperbolic loops (singular cycles
with just 1 singular point):

Theorem 1. Let (X, ,I') a 1-parameter analytic unfolding of an hyperbolic
polycycleT for Xy with k vertices. Let P(x,¢€) the unfolding of the return map
where z is some analytic parameter defined as above for Xo. Let 6(x,€) =
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laié(w, 0)

P(z,e) — z. Let g(m,e) = iﬁ;(m)ei (i.e: é6;(x) = T B

i=0

) the formal

expansion of 6 in e.

Then, there exists some R > 0 ( depending on r1(0),... ,7(0)) such that
for Vi € N, z'R§;(x) is quasi-regular.

Remarks.

1) Given an unfolding X, and a transversal o ~ [0, z;] chosen as above for
Xo, the return map P(z, A) is defined in a domain D = Ucew [(€), z1] where
a(e) is a continuous function, such that a(0) = 0. So, given any z €]0, z,], the
return map P(z, \) is defined for x if |€| is small enough. From this it follows
that the functions é;(z) in the above theorem, are defined for Vz €]0, z4].

2) Theorem 1 extends Ilyashenko’s one which corresponds to the quasi-
regularity of 6o(x).

The generalization brought by theorem 1 is useful to study unfolding of
identical polycycles, i.e polycycles such that é(z) = P(z) — z = 0. Suppose
for instance that A = € € R. Then, if (I, X)) is an identical polycycle, one
can write:

8(x,€) = €"6(x,¢€)

for some n > 1, with a function &(z,€) such that &(z,0) # 0. Then from
theorem 1, we have that é(z,0) has a non-trivial Dulac expansion.

_So, the equation for limit cycles {6(x,€) = 0}, which is equivalent to
{6(z, €) = 0}, has the same properties that in the non-identical case (6(x,0) #
0).

This allows us to develop for some identical unfoldings a proof similar to the
one for unfolding of non-identical polyvcycles. In [R] these ideas were applied
to prove the finite cyclicity of any analytic unfolding of loops (Singular cycles
with just one singular hyperbolic point). Here we extend it to some polycycles
with 2 singular points:

Theorem 2. Let (X, T') an analytic unfolding of an hyperbolic 2-polycycle
I’ (a polycycle with 2 singular points py, pa ). Let ri()), ro()\) the A\-depending
hyperbolicity ratio at py, ps. Suppose that:
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1) For all A, r1(A)r2(A) =1
2) at least one of the two saddle connexions remains unbroken (for all \).
Then (X),T") has a finite cyclicity.

Remark.

A part the conditions 1,2, no other conditions are imposed on (X,TI') and
the polycycle I may be identical. The non-identical case was already worked
out in a previous paper [EL.M]. Moreover, if r;(0) = 1"2(0)_1 ¢ Q, a result of
finite cyclicity was obtained in [M], without the conditions 1,2.

The conditions 1,2 in the theorem 2 may seem very restrictive. Netherthe-
less the theorem has the following natural application to polynomial vector
fields. Let P, be the family of all polynomial vector fields of some even de-
gree 2p, p > 1. It is easy to extend Ps, in an analytic family of vector fields
on the sphere (X»). This family (.X'y) is equivalent to P, on the interior
of a 2-disk D?, whose boundary &D? corresponds to the "circle at infinity
Yoo - Singular points of (X)) appears at infinity in pairs of opposite points
(p,q) and a consequence of the even degree is that the tangential eigenvalues
at p,q are opposite and the same for the two radial eigenvalues. It follows
that the product of the ratios of hyperbolicity at p and ¢ is one. Then if for
some value )¢ (that we can suppose equal to 0), X, = X has just a pair
of singular points p,q on 7. and if there exists a connection I'; of p and ¢
in int(D?), one can apply theorem 2 to the unfolding (X,I") where I' is one
of the 2 polycycles containing I'; and an arc I's of 74 joigning p and g; we
have 71(A)r2(A) = 1 as noted above and the connection I'y at infinity remains
unbroken. This applies to the quadratic family P, and allows to prove the
finite cyclicity of some of the 121 possible cases of periodic limit sets listed
for this family in [DRR] (cases labelled: H;, HJ in this article).

In the first paragraph, we prove the theorem 1. Of course, we hope that
the quasi-regularity property proved here will have a more general application
that the one given in theorem 2 and proved below in the second paragraph.
In fact the proof uses the existence of a well ordered expansion for 6(z, ) at
any order of differentiability. This expansion was established for unfoldings
like in theorem 2 in [E1.M] and we recall it bellow. In this paper it was used to
prove the finite cyclicity in the non-identical case. Here, we use it to reduce in
some sense the general case to the non-identical case, by the method already
described in the loop case in [R]. This is made in the second paragraph.

Firstly a natural ideal in the space of parameter functions germs, the
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coefficient Ideal J is associated to any unfolding of identical graphic . If
{#1,...,¢:1} is a system of generators for J, and, in our case, when it exists
a well- ordered expansion for é(z, ), one can divide é(z, A) in the ideal:

8(,A) =Y ¢i(Ni(x, )

with functions é;(z,A) having also a well-ordered expansion. The theorem
1 is then used to prove that "for most of indices ¢”, 8;(z,0) is quasi-regular
and then has a non-trivial Dulac expansion; and we can apply, as in [R] for
the loop case, a derivation-division algorithm similar to the one used for the
non-identical case. Here we will use the precise procedure developed in [El.M]
for the non identical case.

2. QUASI-REGULARITY PROPERTY

2.1 Reduction to the quasi-regularity property for saddle transitions.—
We recall here a definition used in [I1]:

DEFINITION 1 [I1].— A domain L of C is said to be of class T if it
contains a domain Q(C) of the form

QC)={(=&E+m& 2 CL+7")}.
for some C > 0.

In the neighbourhood of each saddle point p;, choose as in [I1] a chart
analytical in (z;,y;, €) in which the field X, takes the form

{ I; = x;
Ui = —yi[ri(e) + a7 yi fi(xi, yi, €)]

where n; € N and n; > r;(0) and the functions f; are analytical on A; =
{lzi] <1} x {Jyi| < 1}X] — €0, €0[ and satisfy

sup | fi |[< inf (1,7;(€)/2).
A lel<]

e|<]eo|

Denote by o; = {(zi,y:); ¥ = 1}, 0ff = 0:N[0. 1] x {1}, 7; = {(w;, y:); @ = 1},
mF = 7,0 {1} x [0,1], D;i(.,€) the Dulac map which send o} on 7;f

yi = Di(vi.€) = Di(x;)
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and G;(.,€) the analytical map which send 7; on ;41 (with cyclic notation)

Ti41 = Gi(yiwf) = Gi.c(?/i)-

The return map on af’ is given by

P(:El,é) = Glc,e o Dk.c 0GL-1.0 Dy_1e0---0 Gl,e o -Dl,e-

Put H]_ = Dl, H2 = Gl,... ) Hgk_l = Dk. HQk = Gk and agree that the
composition is made with respect to the first variable

P(zy,€) = Hop 0 Hop—y 0---0 Hi(x1,€),

for all n € N, we can write

anP n n n
e (:1,‘1,6) = § : § s § All,m,fh,u-mu,lhkx

P2kt q2r=lak=1par—1+qr_1=l_1=1 L=1
)

9 ( o 2kH2k

am’l’uelhk

alzk-1H2k_1 oh H,
W OHQk_Q O...OH[(.’I‘],E)) X ... X ( afll ((l‘l,f))

OHf_)k_l o.. .OH[(J'].F))X

the coeflicients Ay, p, g,.... por.gor € 2.

Using [I1], we see that the maps ¥y — H;0 H;_j0---0 Hy(x1,0) are quasi-
regular and their continuation to the complex plane, after conjugacy by the
map e~¢, send a domain of class Z on a domain of class Z. Furthermore, the
analytical maps G; can be naturally continued to complex disks in biholomor-
phic maps and their partial derivatives of all order 8%G;/02% €% (x;,0) are
quasi-regular. So the Theorem 1 is a consequence of the Lemma 1 below.

2.2 Quasi-regularity for unfolding of hyperbolic saddle transition.—
This section is devoted to the proof of the following Lemma

LEMMA 1. Let P be a saddle point of an analytical planar field Xq
and X an analytical unfolding of Xo near P ( the parameter X belonging
to some neighbourhood V™ of 0 in R™ ). Let D(.,\) the Dulac map defined
as above and r(X) the hyperbolicity ratio of the saddle point P()\). Let R =
Max(1,7(0)), then for alln € N andp+q1 + ¢ + - - + ¢m = n, the map

nR 9"D
: [ m
DTN

r— 2

(.0)
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s quasi-regular.

Remark—.

The Lemma for n = 0 is proved in [I1]; the proof in the general case is
based on this one. The multiplying function z"® is not the best one for
some values of (p,q1,...,qm). But this choice allows an easy estimate of the
constant R in Theorem 1: If we put R; = Max(1,r;(0)) then in Theorem 1,
take R = R;--- Rg. The result of this Lemma and the remark above show
that Theorem 1 may be extended to any unfolding X with m > 1: the maps
xy > PRI P/ONT .. AIm(z1,0) are quasi-regular.

Proof of Lemma 1.— We use the notations of [I1]. Choose an analytical
chart (z,y,\) so that the field .X') takes the form

(2.2.1) { vo=a
gy ==yl +a"yf(r.y, )]

with n > ro = r(0) and f analytical on A = {|v| < 1} x {|y] < 1} x V™ and
satisfying

(2.2.2) sup Il < inf (1.r(X)/2)

the family (X) is induced by the family (.X,,) given by

(2.2.3) { ez
2. g =—ylr() + a"yf(x,y, M)

where p = (g, A) € V™! ¢ R™*! and r(u) = ro + po. Denote by ot =
{(z,y);y =1and z € [0,1]}, 7+ = {(2,y);2 = 1 and y € [0,1]} and D(., p)
the Dulac map which sends ot on 71

y = D(x. ).

Extend the real field X, to a field X, defined on C? with local variables (z, w)
and complexify the parameter A to \ € V& c C?

(2.2.4) { ‘o= -
w = —wlr+ z2"wf(z.w, )]

we keep the parameter i real for reason given below.
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We will say that the complex family (2.2.4) as above, with up € R belongs
to the Siegel domain because the ratio of hyperbolicity remains real. Denote
by do and d; the punctured disks of coordinate z

do = {(z,w);0 < |z] £ 1,w =0},

di = {(z,w);0< |z] < 1l,w =1},

and by fi:;, c/l\l their universal covering with base point respectively on (1,0),
(1,1) and with coordinate ( = —Lnz. Denote also by d, the punctured disk
of coordinate w

do = {(z,w);0< |w| <1,z =1}

and by dp his universal covering with base point on (1,1) and coordinate
v = —Lnw. Let us show that for A € V7, € small enough and C' > 0 big
enough, there exists a map D holomorphic in ((, X) € Q(C) x V&, analytical
in po €] — €, €[ and with values in d; furthermore, for A € V™ = V& NR™,
the map D is the complex continuation of the map D defined on ot C d;.

Let ¢ = £+ in € Q(C) and of the union of the two segments [0, ], [, (]
parametrized by the arc-length s (see fig. 2a): s(0) =0, s(§)=¢, s()=
&+ |n| = S. Let o and 7, the curves on fig. 2b defined by

Mm=7v1: [0,5]—Cx {1}, s— (Exp(-a‘(s)),1),

Yo=70: [0,5]—Cx{0}, s— (Exp(a‘(s)=(),0),

and u = r(pu)Lnz + Lnw the first integral of the linear field associated to the
field X,,. The formula

9 (101?) = 20l () + Re(="wf(z,w, 3)]

and the hypothesis (2.2.2) show that through each point p = (2, w) with z # 0
and |w| < 1 passes a curve, solution of the system (2.2.4), which cover the
segment [z, z/|z|] of the curve 7y under the projection 7, : (z,w) — 2 and
which is entirely contained in the polydisk P = {|z] < 1, |w| < 1}. Let us show
now that if p = (2,1) = (Exp(—(),1), then this curve can be extented to a
curve 7, which cover the curve 7, o under the projection 7, and is contained in
the intersection of P with the surface ¢, (the complex solution of the system
(2.2.4) passing through p ). To prove this point, an estimate of u along this
curve is usefull. Parametrize the arc of 3 defined above by s € [0,¢]; on the
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end of this arc, we have |w| < 1. Hence, suppose that the curve ¥, exists for
s € [0,T] with T > £ and differentiate u along this curve

u=z"wf(z, w,’):);

one can compute |z"w| < |z™w| = |z TH|.|z"w| = |z 7H0|.|e*|; along the curve
J¢, we have e7¢ < |z| < 1, and |z7#°| < A = Sup(e*¢,1); therefore, we
get |u] < A.le¥|. Put v(s) = |u(F:(s)) — u(p)|; as along the curve J; we have
|dt/ds| = 1, one can easily verify that

|dv/ds| < A.e™mFr(8) < e FE+(s),

From now on, the same arguments as in [I1] can be used; so we conclude that
for C > 0 big enough, we get v(s) < 1 along the curve 7, for all ¢ € Q(C) and
for all p = (,uo,X) €] — €, e[xVZ. The extension of th curve 7, for s € [0, 5] is
done as in [I1] and we put

D¢y i) = v(Fe(8)) = u(Fe(S)) = r(10)¢ + h(¢, )

with |h((, p)| = v(S) < 1; the same estimate as above shows that h((, x) — 0
as ( — oo and ¢ € Q(C) uniformly on p €] — €, e[xVE.

Remark that for po € C, the results above are false in domains of class
Z , but still valid in domams of the form w(C,C") = {(&,n); &€ > C(1+
C h 2)1/ 2}. Unfortunately, the Phragmen- Lindelsf theorem does not apply on
such domains. R R

The extension map D is holomorphic in (¢.A) € Q(C) x V& and analytic

in po €] — €, €[ and we have D(x, ) = e‘D(‘L““”'”i")‘) for = €]0, o) and p =
(po, A) € Vm'H Denote by F((, o, X) = e~ P(Cn0.A)s the analytic extension of
the partial denvatives O"D/[OxPpd AT ... A% to the domain QC)x]—¢, e[x VT
is a function of the form

14 n—p+l1
epc Z 0[ l anql FAQM
=1 OCgAT AW
with a; € Z. As the function F is bounded on Q(C)X] — €, e[x V& and holo-
morphic in ({, A), we begin by studying the functions 0" F/duy; but we have

f)((, p) = —Lnw(t(S), p, 1r). Then if we put w, (#(S), p, ) =(0"w/Oug)(¥(S), p, 1),
we see that it suffices to study the functions uw,, = w,/w. Let us begin by

the function u;: using the fact that »(;) = ro + 1o and the second line of the
system (2.2.4), we get

Wy = —wi[r+"wf] —w
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and then %; = ui2"wf; — 1, where f;; and f; are holomorphic functions in
(z,w,X) bounded on £ = {|z] < 1} x {|w| < 1} x V&. Put vy = |uy|, then
one can easily show that |dv;/ds| < Ajjv|e*| + 1 where 4;; = A.S; and
$1 = Sup{|f1(z,w,N)|, (z,w,\) € L}: so we get

dvl

| d I S ‘4|’U|€_%Q£ +1
s

for some constant A;; this yield after integration between s = 0 and s = £+ ||
v < Al‘le?£(e,-1,(g+|,,|)e—%0-5 _1)

and this show that there exists B; > 0 such that |e=™¢u, (¢, yt)| < By for all
(¢, 1) € UC)X] — €, e[xVT .

Remark that the multiplying function can be replaced by the function (!
and this is optimal for the linear part of the field. The same procedure and
an induction on n permit us to show that there exist B, > 0 such that
le=m¢u, (¢, u)| < By, for all (¢, 1) € QC)x] — €, [x VT .

Now, let V& = di(0,a1) X «-+ X dn(0,a,,) where a; > 0, (C})ien some
strictly increasing sequences with Cy = C' and tending to some C’' < oo
and (ai;)ien some strictly decreasing sequences with a; o = a;, tending to
some a’; > 0 for all 7 = 1,...,m. The theorem of derivation under the
integral sign and the Cauchy’s integral formulas show that for all n € N and
P+q+q+ -+ qm = n, there exist B, ;.,.... q., > 0 such that

anF
ACPUGAT L N

|e=(P+aro) (C.1)] < Bpguarse.. am

for all (¢, u) € Q(C")x] — €,€[xd1(0.a’y) X -+ x d,,(0,a’,) and this finish the
proof of Lemma 1.

3. FINITE CYCLICITY RESULT.

3. .1 The well ordered expansion for the shift map

We consider a real analytic family of vector ficlds X, on the plane. This
family depends on a parameter A € R*, for some A € N. Suppose that
for A = 0, X, has an identical hyperbolic polvevele Ty with two vertices Py
and P;. In order to study the cvelicity of Ty in the family X, we restrict
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ourselves to a fixed neighbourhood U of I'y in the plane. We choose U as
union of three sets A;, Ay and A3 i.e U = 4A; U Ay U A3, and we denote W a
neighbourhood of A = 0 in R*. Now X'y will be represented in 4; x W, A3 x
W and Az x W respectively by X1, X7 and X} three analytic vector fields
depending analytically in (m,\) € R?> x R}. The three charts verify the
following properties :

i) In A; with local coordinates (z1,y;), 41 = {(z1,¥1);|z1] < 2 and |y;| <
2} the family X} has a unique singular point P;()), which is an hyperbolic
saddle point situated in the origin of A; i.e P;(A) = 0. Also the stable
separatrix and the unstable one are respectively the axis oy; and ozx;. Finally,
the 1- jet of X3 in 0 is equal to :

J1X10) = a—c?] —r (M % (3.1.1)
this formula defines on W an analyvtic function r;(A): the hyperbolicity ratio
of the saddle point P;.

ii) In A, with local coordinates (72,y2), A2 = {(22,¥2); |z2| < 2 and |yz| <
2}, the family X2 has a unique singular point P()\) which is an hyperbolic
saddle point, situated in the origin i.c () = 0.The 1- jet of X3 in 0 is given
by : 5 5

jl(—X,‘\?)(O) =Y2 D1
the stable and unstable separatrices of (—X73) at 0 are respectively the axis
ozo and oys; and the hyperbolicity ratio of (—=X3) at P, is ra()).

— ra(A) 2

(3.1.2)

iii) In A3 the vector field X3 has no singularities. Furthermore the points
Qi(1,0), 5;(0,1) in the two charts A; i = 1,2 and the regular segments of
I'y joining them are contained in A3 (figure 3).

The family X verifies the two following conditions :
a) forall A in W r1(A) = ra(N).

b) at least one of the saddle connections remains unbroken for all \.
Remark.
The condition a) is equivalent to the first condition in Theorem 2.

Now let us define the maps that will permit us to study the cyclicity of T.
Firstly consider:

oi ={(zi,y:) € Ajyyi =1} and 7= {(v;.y;) € Ajjz; =1} i=1,2
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of ={(zi,y;) €0i;2; >0} and 7 ={(2;,yi) € ;¥ 20} i=1,2

the segments o;, 7; are parametrized respectively by z;, y; ¢ = 1,2 and are
transversal to the vector field X for all A in W.

The flow of X3, A € W in Aj; defines two analytic diffeomorphisms, the regular
transition maps, R; » and Rs )

Rl,,\:‘rl'" — 09, Rg,A:T;' — 0

The flow of X} in A; (resp of (—X3) in A4») defines the transition map D, )
(resp Dy ) called the Dulac map.

Diy:0f — 1, Day:1f — o0y
the map Ds 5 (resp D, ) is analytic for 21 > 0 (resp y2 > 0), but it’s extended
by continuity in 0: D; »(0) = 0 and D- x(0) = 0 for all A in W.

Remark.

To define the above maps, we have perhaps to reduce the neighbourhood
W to a some smaller one.
Finally the shift map will be defined by :

85(z,A\) = Riyo0Di0Ra(a D5 x\(z)
where £ = y, is the parametrization of the transversal 7.
Proposition 1. Given K arbitrary integer, there exists a neighbourhood

Wy C W of 0 in RA, analytic functions 7,.’}' : Wi — R such that on [0, o] X
Wy the map 6(x,A) has the form :

Doz, = Y Ak pep(a))  if r(0)¢Q
ir(0)+j<K+1

96z, N) = > SO top(x ) if r(0)==% Peqprg=1
0<j<i<K+1 1

where r()\) is the common hyperbolicity’s ratio of X} at P; and (—X?%) at Ps.
The function w is defined by: let ay(\) = r(0) — r(A),

(A _q p \
w(x,A) = ar(A) orai(d) £0
—Ina, for a;(A) =0
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éx(z, ) is a C* function, k-flat at = 0 for any A.

In order to prove this proposition we have to extend the field X in the
complex domain; besides we’ll restrict ourselves to the case r(0) = 1 because
the other cases are resolved in the same way.

3. .2 The complex continuation of é

The family X, A € R? has a natural holomorphic extension Xs. This
extension is obtained by extending the vector fields Xi t = 1,2,3 to holo-
morphic ones in domains extending the different charts A; x W.

In the following we will denote this holomorphic extension by X5 , Xe CA,
we will work with the same notations as in the real domains with caps symbols
to subline that we are in the complex ones.

We can suppose, up to a holomorphic conjugacy, that the vector fields X;\j are
defined in the charts A; : polydisks |x;|> + |y:|*> < 2;(x;,y:) € C%,i = 1,2.
The origin in each chart A; is the only singular point with hyperbolic 1-jet:

0 15}
1y 1 — v -~ i
7 X57(0) = x; ox (1 —a)y 3y,
F=X32)(0) = yaro — (1= @)Xy o
"0y Oy.

where 1 -0, (X) = r(X) is the complex continuation of the hyperbolicity ratio.
We define :
oi ={(xi,yi) €EAi;yi =1} and 7 = {(xi,y:) € Ai;x; =1}

of is (resp 777) a sector in o; (resp in 7;) defined by :

s
of ={(xi,yi) € 0ii|Arg(x;)| < By}  0< 6o < )
respectively

it ={(xi.yi) € Ti:|Arg(yi)| < 6o}
the disks o;, 7; are transversal to the local invariant manifolds of X%.
The Dulac and the regular transition maps defined above have unique holo-
morphic extensions. So the shift map has a unique holomorphic extension
noted by é(z, A) in (75 \ {0} x W) and prolonged in 0 by 0.
Let the function @(x, \) be the continunation of the real one defined above.
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Theorem 3. For any arbitrary integer I, there exists a neighbourhood W g
of 0 in W C C? and holomorphic functions 7?,’1‘ : W — C continuation of

the real functions 'y,l; such that on 75 x W the function g(x,X) has the
form :

SN = > FROWD + ¢ (x,)
0<<i<K

where ¥X is a function of class C™| in the real sense, I{—flat in x = 0.

Remark.

This development is what we call the well ordered expansion of order
K. The monomials x'G’ are totally ordered by the lexicographic order :
x'w? X x™&" if and only if i < m or i = m and j > n.

The proposition 1 is an immediat consequence of theorem 3, it suffices to
restrict all the different neighbourhoods. charts and functions in C* and C?
respectively to RA and R2.

Proof of the theorem 3.

Given an integer I # 0 we may apply the results of [R]. There exists a
neighbourhood W of 0 in C*, some transversals depending on the parameter
e CA, 5; (resp T;) tangent to o;in 0 (resp to o;) such that the Dulac maps :
f)l,i : 51" — 77 and l~)2’;\~ : 3":_}" — 09 are written under the form :

- e ke e s
D sE) =%+ Y &K+ +arpaXf o+ (&,
1<G<i<K

-~ ~ ~ ~ KAl T e
D,5(¥2) =¥2+ Z Bii¥ed + -4 Brp1a¥s T8+ 5 (F2, A)
1<j<i<K+1
where o;; ,E,'j are holomorphic functions on W 7,7:}\—, ~%{ are CK in the real
sense, K—flat resp. tox; = 0.y, =0.
The same arguments as in [R] work here because X% and (-—X%) have respec-

~

tively the same hyperbolicity ratio r(\) in P, and P.
Now there exist ¢, 5 ¢ = 1,2 (resp ¢,z ¢ = 1,2) holomorphic diffeomor-
phisms defined by the flow of X& between o; and 7; (resp 7; and 7;.)

(,95'3: 0 — T, (')'._'X LT, — T
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with VA € Wk, ¢,3(0) = ¢,5(0)=0 i=1,2.
So the Dulac maps :

D, 5: ot — 7 and D,5: Tt — 0y
are written :
D, 5(x1) = (¢74 0D, 500, 5) K1)
DQ,X(y2) = (419,_,_‘1): o DQ,X o d)gj\") (;’2)

by using the lemma 2 below we obtain that the Dulac maps have the following
development for a choosen K :

Di(x;)=x1+ Y Qi (VX + -+ g xBTS + gk (x1,A)
1<<i<K

Da(y2)=y2+ . BiNyi& + -+ Brp1ays 'O + ¢k (2, )
1<j<i<K

the functions «;j, 3;j, ¥4 have the same properties as &;j, B:j, ¥

Lemma 2. Let f be a holomorphic function of ot x W i where ot is a sector
as the ones defined below. If f(0.)\) = 0 then there exists a holomorphic
function g such that :

S(x(1+1),A) = (1+a,(A\g)a(x.A) +g
if a#0:&(ax,\) = (1+0(@1))F(x,\) — Ina(l + o(a;)
B(ax(1+1£),%) = (1 +0(a1))2(x.X) — Ina(1 +0(@)) + g

To finish the proof, we have to develop :
5(x, %) = ( soD, ;0R, ) (x) - D, 5(x)
where R, 5 and R, 5 are the regular transition maps. We can write them as :
R, 5(x) = bo(}) + by(N)x + ba(A)x> + - - + b (N)xX + o(xK)
R, 5(x) = a1(\)x + as(N)x® + a3(X)x* + - + ag (V)xF + o(xK)

Using again the lemma 2, we find the expansion of 8.
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3. .3 Division in the ideal of coefficients

Let’s recall some definitions and results from [R] :
For all zy €]0,¢0], the domain of the function 6;(z) = é(x,)) and for all
A € W, 6 is an analytic function in (2, A). Then we can write it as follows :

[o ]

6(z,N) = Za;(/\. xo)(a — )" (3.3.1)

=0
for x close to zg.

Consider the ideal J,, generated by the germs of the functions a; in A = 0.
We will note them by a;. In [R], it is proved that the ideal J,, does not depend
on the point zg # 0. J is called the ideal of coefficients associated to 6. J C O
the ring of the germs of analytic functions in A = 0.

In the following we will suppose that .J # O ic &(x,0) = 0. This corresponds
to the case: I'g is identical. The other case .J = O, ie §(z,0) # 0, was studied
in [El.M] and corresponds I'y non identical. The definitions introduced here
are available also in the complex domain.

So let J the complexified ideal of J. It's easy to see that J = J, for any

Xo € 75 where Jy, is the ideal of coefficients of g(x,X), extension of §(z, A)
defined above.

Proposition 1. Let "7,’]‘, K > 2 the cocfficients of the expansion of 8 to an

~K
order K. Given any k such that 1 < k < K then the germ '7,; € J for
0<j<i<k.

Proof.

We will apply the same algorithm as in [El.][]
Consider the well ordered development of & up to order K :

SN = > AEXD 458 XTG4 9K (x, ) (3.3.2)
0<j<i<k

For x # 0, the germ in A = 0 of the function A — gx(X) = g(x,X) is in J.

Moreover each monomial in (3.3.2), apart the first one which is equal to 1,
corresponds to a nonzero power of x. It follows that :

g(x- X) = oo + Yo (x. X) (3.3.3)
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where o (x, X) — 0 when x — 0, uniformly in \. Because the ideal
J is closed we conclude that 3 has its germ in J.

Suppose now that we have proved that the germs of ?g are in J for all the
monomials x!@J < x™" where < is the order introduced above. We use also
the lexicographic order between the couples (i, j) < (m,n). Let :

Omn =6 — Z ?{;xlaj
(i.J)<(mn) (3.3.4)
=K Qx5 + -+ K (x, )

For each x # 0, the germ in X = 0 of the function A — smn(x, X) isin J.
But we have to remark that the sequence of monomials x*@? does not form a
scale of infinitisimals in x ( in uniform way in X), because the ratio of x*@’
and x'@!, for j < 1, is equal to &7+ and does not tend to zero, uniformly in
X, if x — 0. So we cannot apply directly to 7% | the same argument we have
applied to 7. We will apply it after a first step where we will transform Smn
by division and derivation. This is based on the following observation : if a
function ¢(x, X) has a well ordered development up to some order K, like the
function g, then for Vs,! € R and any order of derivation r < I, the function

< 0" ~ N .
A xlwsa—xf(x, A) has a germ in A = 0 in J, for Vx # 0.

Starting with the monomials x'&7, i, J € N, the derivation with respect
to x produces more general monomials x**5?13J, So, firstly we extend the

total order introduced above in a partial one hetween these new monomials.
For i, € N and s,l € Z we take :

xitiEagr < gitkaigs ooy ) <J or
- i=j,l=FkF and r>s.

the notation ” f +- - - ” will be for a sum of f and a combination of monomials
with larger order.
Now let us explain our first step. Starting with Ag = é;np, we divide it by
x™:
Ay =x"mAg =38 Gn 438 S 4+ Ry (3.3.5)

Imn=1

with R; = ¥Ex~™ of order (I’ — m). is more differentiable and flatter than
the last term in + - - -

If n = 0, our first step is achieved: A} =7,,,, + ¢1(x, X) where ¢ (x, X) —
0 when x +— 0, uniformly in X. and we can repeat now, the argument used
above for 7.
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~

ow

If n > 0, after noticing that = —x~1781  we have :
~ OA .
By =Xl — 3K 5 4k Ry (3.3.6)

where R is a convenient remaining term as R, above. Repeating n — 1 times
again the same procedure, we obtain finally :

Bt = n?: Tt (3.3.7)
= 11!717\711 + Pn+1 (x* ’\)

with a convenient remaining term R, ;. Now ¢, 4+, has an expansion whose
first monomial has a positive power in x. so that ¢p4+1(x,A) — 0 when
x +— 0, uniformly in A. As above this implies that the germ of 3% is in J.

3. .4 The proof of theorem 2

As O is noetherian, J has a finite svstem of generators q~51, 52, cee, 51; where
(#1, #2, - - , 1) are holomorphic in W.
Using the proposition 1 and the same arguments as in theorem 7 of [R],we
can write g(x, X) under the form :

8(x, %) =Y 6:i(M)h! (x,}) (3.4.1)

where K is an arbitrary integer,the functions h¥(x, X) are holomorphic for
x # 0 and have the well ordered expansions of order K. We deduce the
following proposition in the real domain :

Proposition 2 [R]. Let (¢1,¢2,- -+ ,¢;) analytic functions in W whose germs
in XA = 0 generate the ideal of coefficients .J. Let K an arbitrary integer, then
there exists a neighbourhood Wy C W in R* and functions hX (x,)), with
1 < ¢ <1 having well ordered expansions of order K :

hE(z,\) = DXRE (2, )+ K (2. ))  in [0,z x Wk

K1 K _ AN . om, n iK K41
D h‘i (.’E,A) - _S_ : ’)m\n‘lr wh o+ '”+7l\'+1,1‘1‘ w
o<n<m< K\
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the hX are analytic for z # 0. They permit us to write §(z, ) as follows :

)
8(z, ) =D di(MRf (z,)) (3.4.2)

i=1

we can choose a system of generators (¢, @, -, ¢;) verifying some prop-
erties as in [R] :

i) (¢1, @2, -+, ¢1) is minimal in the sense that it is a basis of the vector space
J/MJ where M is the maximal ideal of O.

ii) For A = 0 the values of h/(z,0) of the expression (3.4.2) don’t depend
on K. So we can define the functions h;(z) = h¥(z,0) for any K. In the
neighbourhood of z = 0, we can associate to them a formal power serie called
the Dulac’s development, we note by :

D>h;(z) = Z A (o)™ (= Inx)™ (3.4.3)
0o<n<m

where 7: . (0) = 7iX (0) for any i > Sup{m.n}. This development is unique.
We obtain it from (3.4.2) by remarking that for A =0: z™w™ = 2™(—Inz)".
The functions h; are analytic for 2 # 0 and h; # 0. But, we cannot assert that
D>h; # 0, this would be true if h; was quasi-regular. If D®h; # 0 then it will
be equivalent to ™ or z™Inx . This equivalency allows us to define an order
of flatness between the h; such that D>h; # 0 by : order(h;) < order(h;)
if and only if hj/h; — 0 when 2 — 0. We say that order(h;) = oo if
D°°h,' = 0.

iii) There exists an index s,0 < s <[ such that :
order(h;y) < order(hs) < --- < order(hs) < 0o

and
order(h;) = oo for j>s+1

we say that h; are ordered.

The properties i,ii,iii of the system (¢1,¢2.---,¢;) are not sufficient to
conclude the finite cyclicity of I'. That is why, we consider the map of
desingularization of the set {A\ ¢1¢2--- ¢ = 0}.

There exists ¢ : W Wa proper analytic map of a compact domain W onto
W neighbourhood of 0 € R*. ¢ is the map of Hironaka’s desingularization.
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We consider the family X5 = X, for A € W. Take D = § 1{0} we
associate to X3 at every pomt Xo € D, an ideal of coefficients noted J C (9

ring of analytic germs at X=0. As D is compact, the cyclicity of 'y in X
will be finite if this is true for the X5-germ at every Ao € D.

~ Let g(m,i) = 6(.z',<p(X)) the shift map of X, Xin a neigh’}\)ogrhood of
Ao € D. Then it’s easy to see that J; will be generated by ¢;(\) = ¢; o
©(A). Furthermore, there exists W3, a neighbourhood of Ag with coordinates
21,22, -+ ,Z2a(where Mg = (0,0,0,---,0)) such that :

$i(X) =N ] :f; (3.4.4)

i=1
the functions u,(X) are analytic and nonzero for all Xe on , p§ are integers.
i
Let’s note H 2P = ;i (A), then c,b;(’):) = ‘ll,'(X)‘L/',‘(X).
j=1

Propos1t10n 3 [R]. From the system ( d)] dn . .31) we can extract a system

(qﬁ,,,gb,,, . ,¢,L) possessing properties i,ii,iii as (@1, ¢2,--- ,¢;). i.e there
exists s,0 < s < L such that if 6(x, ) = ZL] $;jHJ~’"(x,X) then order(H;) <
order(Hz) < - -+ < order(H;) < oo and order(Hj) = oo, where H; is defined
as below.

Remark.

The division of é in J3 is not degenerated in a sense we will explain below.

Until the end we are going to work with the family ‘YX,E(LL‘,X), aij,H,-K, e
and we will show the finite cyclicity of Ty for this family.

From now on, we discard the caps in the notation X,$, ... So that, we
suppose we have a family X with :

8(z,\) = Zo W ()

where
order(hy) < order(hs) < -+- < order(hg) < oo
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and
order(h;) =00 i>s

and ¢;(A) = u;(A)PA) with ¥;(X) = H;\=1 :;-); and (z, 22, -+, 25) local coor-
dinates in W),

Lemma 3 [R]. Consider W; = {A € W), \ [¢i(A\)| > |¢;j(A)| for j # i}.
Let I = {i\ Ao € W;}. Then we have the following results :

i) Let © € I then there exists an analytic arc A(¢) : [0,&0] — W), with
A(0) = Ao such that :

order(1; 0 X)e=o < order(’j 0 X)e=o for j#i

i) U;erW; is a neighbourhood of Ag.

Proposition 3. Ifi € I then D>h; # 0. This means that I C {1,2,---,s}.

Proof.
Let ¢ € I and A(¢) the analytic arc in 1) . Let us consider the subfamily
depending on 1-parameter :

Xe = ‘Y,\(s) e [0,50]

let &(z,€) the map & associated to this family. obviously, 8(z, ) = &(z, A(¢))
where §(z, A) is the shift map of .X'). So. for a given integer K, we can write :

L
8(z,e) =Y ¢ 0 M) (2. A(¢)) (3.4.5)
Jj=1

for all indices j : ’
R (2,A0)) = hj(x) + O(e)

and

di(A(€)) =aje™ +0(=™) a; #0
We replace in equality (3.4.5) to obtain :

8(z,€) = a;hi(x)=" + O(™) (3.4.6)
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the formula (3.4.6) indicates that up a multiplication by nonzero coefficient,
hi(z) is the principal part of the development of & in serie of e. Furthermore,
by theorem 1 of this article, there exist quasi regular functions I;(z), up to
some factor 27E, such that :

8(x,€) = ely(z) + 2 Ls(x) + - - + () + O(e7) (3.4.7)
for any integer j.
If we equalize the two expressions (3.4.6) and (3.4.7), we find that :
aihi(x) =1, (v)

as h;(z) is not identically zero, its Dulac’s development that coincides with
the one of I;(z) is not identically null. (Here I, is eventually quasi- regular
because it is the first non zero term in the expansion (3.4.7).)

Remember that ¢;(z,\) = u;(A\)¢;(X) with w;(X) # O for every A € W,,,
so we may find a real r : 0 < r < 1 such that : if V" = {X;]|¢i(A)| > r|¢;(N)]
for @ # j} then Ui_,V/" is a neighbourhood of Ao.

To end the proof, we remark that we have the same situation as in para-
graph 8 of [R), therefore we can conclude that for all i : 1 < 7 < s, there exists
N; € N, a neighbourhood 1V; of A, and a real x; : 0 < x; < zo such that
6(z, \) has less than N; zeros in [0. ;] for all A € V" N W,.
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A rigidity theorem for transverse dynamics of real
analytic foliations of codimension one

Isao Nakai

The purpose of this paper is to prove

Theorem 1. Let (M, F;),i = 1.2, be real analytic and orientable foliations
of n-manifolds of codimension 1 and h : (M}, F) — (M}, F>) a foliation
preserving homeomorphism. Assume that all leaves of F; are dense and there
exists a leaf of F; with holonomy group # 1.Z. Then h is transversely real

analytic.

This applies to prove the following topological rigidity of the Godbillon-Vey

class of real analytic foliations of codimension one.

Corollary 2. Let (M;,F;),h be as in Theorem 1. Then h*(GV(F,) =
GV(F1) holds.

Here GV(F;) € H3(M,R) denotes the Godbillon-Vey class of F;, which
is represented by the 3-form o A da with a C'*° -1-form o on M such that
df = 0 A a holds with a C* -1-form 6 defining F. It is easy to see that the
Godbillon-Vey class is invariant under C?>-diffeomorphisms. Ghys, Tsuboi
[9] and Raby [18] proved the invariance under C!-diffeomorphisms, while the
invariance is known to fail in some C-cases (see [5,9,11]). (Corollary 2 seems
to admit the various generalisations allowing the existence of compact leaves.
But we will not touch on those generalisations. See also the papers [5,7].)

The proof of the C'-invariance due to Ghys and Tsuboi is based on a certain
rigidity for C-conjugacies of transverse dynamics of foliations along compact

leaves as well as minimal exceptional leaves cutting Cantor sets on transverse

S.M.F.
Astérisque 222** (1994) 327



sections. The proof of Theorem 1 is based on the topological rigidity theorem
for pseudogroups of diffeomorphisms of R (Theorem 3(1)).

To state Theorem 3 we prepare some notions. Let I'{ be the pseudogroup
of real analytic and orientation preserving diffeomorphisms of open neighbour-
hoods of the line R respecting 0. We call a mapping ¢ : G — I'{ of a group G
to the pseudogroup I'Y a morphism if the set ¢(G)o of germs of ¢(f),f € G
form a group and ¢ induces a group homomorphism of G to ¢(G)o. There-
fore ¢(f) : Uscs), 0 = &(f)(Ug(s)), 0 is a real analytic diffeomorphism of open
neighbourhoods of 0 € R for f € G representing the germ of ¢(f). We call
#(G)o the germ of ¢(G) and say ¢ is solvahle (respectively commutative, etc)
if ¢(G@)o is so. The orbit O(z) of an x € R is the set of those z; joined by a se-
quence (Zo, Z1, ..., T1) With = 2o, 7;41 = &(fi)(xi), ;s € Uys,),i =0,...,1—1
for arbitrary I > 0. The basin Byg) of 0 is the set of those 2 for which the
closure of the orbit O(z) contains 0. If ¢(G) is non trivial, i.e. ¢(f) # id for an
f € G, By(g) is an open neighbourhood of 0 [17]. Morphisms ¢,% : G — I'{
are topologically ( resp. C"-) conjugate if there exists a homeomorphism (resp.
C7-diffeomorphism) h : U,0 — h(U), 0 of open neighbourhoods of 0 such that
Us(): #(HUs()) C UsUys), ¥ (F)Uys)) C W(U) and ho ¢(f) = ¢(f) o h
holds on Uyy) for all f € G. We call I a linking homeomorphism (resp.linking
diffeomorphism) and we denote h : ¢ — .

Theorem 3 (The rigidity theorem for pseudogroups). Let ¢,v: G —
I'Y be morphisms which are topologicallv conjugate with each other and h :

¢ — v a linking homeomorphism.

(1) If (G)o, ¥(G)o are not isomorphic to Z and non trivial, the restriction
h : Byg) — 0 — Byg) — 0 is a real analytic diffeomorphism.

(2) If $(G)o, ¥(G)o are non commutative, h is unique and there exist even
positive integers i,j such that |h(ex?)|'/7 : Bs)((?) — pr(G) is a real analytic
diffeomorphism for € = +1. Here B ) is the set of those x such that ez* €
By(g) and pr(G) is the set of those x such that xJ(resp. — x7) € Byg) if h
maps R¢ to Rt (resp. R™).
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Now we apply the above rigidity theorem to the analytic action of the
surface group on the circle S1. Let £, be the oriented closed surface of genus
g and 'Y = 11(Ey). For r =1,...,00 and w, Diff} (S') denotes the group of
orientation preserving C"-diffeomorphisms of the circle. The suspension M of
a homomorphism ¢ : 'Y — Diff7, (S?) is the quotient of S x D? by the product
¢ x I with a discrete cocompact subgroup I'Y ~ I' C PSL(2, R) acting freely
on the interior of the Poincaré disc D?. The second projection of S x D?
induces the submersion of M onto S, = D?/T with the fiber S'. Since the
action ¢ x I respects the foliation of S! x D? by the discs z x D%,z € S!, the
suspension M is a foliated S!-bundle of which the fibres are the quotients of
the discs. In this way the topology of foliated S'-bundles interchanges with
that of the actions of I'Y on S'. The Euler number eu(¢) of a homomorphism
¢ : T'9 — Diff} (S?) is defined to be that of the S'-bundle associated to ¢.
The Milnor-Wood inequality [15,22] asserts

leu(@)] < [\ (Sg)| =29 - 2.

The Euler number enjoys the following relations with the orbit structure:

(1) eu(¢) = 0 if there exists a finite orbit,

(2) If eu(@) # 0, there exist a minimal set M C S! of ¢ , an r € M and
an f € stab(z) such that ¢(f)|m # id [13]. and if r = w all orbits are dense
[6] (see also [16]),

(3) If leu(®)| = |x(E4)| and r > 2, all orbits are dense [6],
where stab(z) denotes the stabiliser of & consisting of f € I'Y with ¢(f)(z) =
x. Homomorphisms ¢,9 : ['Y — Diff} (S') are C*-conjugate if there exists
a C*-diffeomorphism h of S! such that ¢(f) o h = h o ¢(f) holds for f €
I'9. We say ¢, are topologically conjugate if s = 0, semi conjugate if h is
monotone map of degree one' (possibly discontinuous). We call h a linking
homeomorphism and denote h : ¢ — . It is known that the Euler number
(and the bounded Euler class) concentrate the homotopic property of the

action, namely

Theorem(Ghys [3]). ¢, are semi conjugate if and only if $*(\z) = ¥*(xz)
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in the bounded cohomology group HZ(T9 : Z), where xz € HZ(Diff} (S?) :
Z) = Z is the generator, the bounded Euler class.

Theorem (Matsumoto [13]). If eu(¢) = eu(y)) = £x(E,), ¢, are semi
conjugate, and if 2 < r, they are topologically conjugate with each other,
and in particular, conjugate with a discrete cocompact subgroup of PSL(2, R)

naturally acting on S! the boundary of the Poincaré disc.

Theorem Ghys [8]. If a homomorphism ¢ : T9 — Diff} (S') attains the
maximum of |eu(¢)| and 3 < r, ¢ is C"-smoothly conjugate with a discrete

cocompact subgroup of PSL(2, R).

In contrast to the above results, the properties of homomorphisms with
leu(d)| S |x(X4)| are less known (see [16]). Applying Theorem 3 to the action

of the stabiliser subgroup stab(z) on (S!,2) for an 2 € ST, we obtain

Corollary 4. Let ¢,¢ : I'y — Diff{(S!) be homomorphisms with |eu(d)|,
leu(®)| # 0,|x(Xq)|, which are topologically conjugate, and h : ¢ — 9 a
linking homeomorphism. Assume that for an x € S, the stabiliser subgroup
stab(z) C T'y of z is not isomorphic to Z and non trivial. Then h is a real

analytic diffeomorphism and orientation preserving or reversing respectively

whether eu(¢) = eu(y)) or eu(d) = —eu(v’).

The statement remains valid for morphisms of groups G into Diff{(S?)
replacing the condition on the Euler number by the existence of a dense orbit.
The author would like to thank Matsumoto, Minakawa, Nishimori, Tsuboi

and Moriyama for their helpful comments.

2. SEQUENCE GEOMETRY

In this paper f(*) denotes the n-fold iteration fo---o f of f : Us — f(Uy)
inTY. Let X = {z;},Y = {yi},i=1.2.... be monotone sequences of positive
numbers decreasing to 0. Define the address function addy(z) of an z > 0
relative to Y to be the smallest integer i such that y; < z. It is easy to see

that addy(z) is a decreasing function of @ and Yagay(x)-1 > T > Yaddy(z)-

330



A RIGIDITY THEOREM

Define the address function addy y by

add_}"y(i) = ad(ly(m,-)
for 2 = 1,2,.... The address function enjoys the following inequality for a
triple of sequences X', ) and Z = {z;}.

Proposition 6. Let X,) and Z = {z;} be sequences of positive numbers

decreasing to 0. Then
addy,z(add‘\',y(i) -1)< a(l(‘l,\',z(i) < addy,z(addx‘y(i))

forz; — 1< yo.
We say two functions P,Q : NUO — N U0 are equivalent if there exist
integers ¢y, ..., cq4 such that

Qi+ c1)+ca < P(i)<Q(i+c3)+cq

holds for all sufficiently large i.

Now let ¢ : G — T'Y be a morphism, and let 29 € Ug(gy, Yo € Ug(y) be pos-
itive and sufficiently small and assume that x; = ¢(g)(?(20), yi = ¢(f)®(%0)
are decreasing to 0 as ¢ — oo, replacing f. g by their inverses if necessary, and

denote X = {z;},Y = {vi}.

Proposition 7. The equivalence class of the address function addy,y is in-

dependent of the choice of the initial values xq. Y.

proof. To prove the statement let 29 # a5 > 0,90 # yo > 0 and define the

sequences X', )’ similarly with 2f, yj. It is easy to see
addyr y(i)=i4c
for sufficiently large i, where

add y(zg), if a9 > ag
c= 1- add,\-:(xo) if ;T(I) > 2. o ;é ;1?9, 3=0,1,...
—add y» (”Eo) if ;1‘6 > rg. 10 €N
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From Proposition 6 we obtain
(1) ardd,\(,y(i +c-1)< a,d(l,\'r,y()') < addx,y(i + C)

for sufficiently large i. Similarly we obtain
a.ddxl,y +cd-1= (ad(ly‘yr(ad(l‘\"’y - 1)
S a.dd,\-,‘y,
S a(l(ly‘yl(a(l(lxl’y)

=addy y+ c

with
addy- (yo), if yo>wo
d =< 1-addy(yy), if vo>wp ¥o#y;, 5=0,1,...
—addy(y), if yo>wyo. w€Z
and by (1),

addy y(i+c—1) — 1< addy y (i) <addy y(i+c)+c
for sufficiently large i. This completes the proof.

3. FORMAL INVARIANTS FOR NON SOLVABLE PSEUDOGROUPS

It is shown in the paper [17] that the non solvable group ¢(G) contains

diffeomorphisms ¢(f), f € G with Taylor expansion at z = 0

K .
¢(f)(z) =z - T(;z:”'l +--0),
K # 0 with ¢ greater than an arbitrary large integer. So let
L i+
d(g)(z) = - G ),

L#0,i< jforage G. Wecall the i, j the orders of the flatness for ¢(f), ¢(g)

respectively. By Proposition 6 the equivalence class of the address function
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add x,y is independent of the choice of 29, yo. We denote the equivalence class

by addg(g),e(5)-
First we consider the orbit ) of yo under ¢(f). It is known ([20]) that with

a suitable analytic coordinate we may assume ¢(f) has the Taylor expantion

K ; i+1, 4
¢(f)(z) =2 - 7(3’ oy (-A+ T)x2 o,
which is formally conjugate with
LK, zit!
¢'(f)(@) = exp— —(3 — 7)9/0z.

The —iA/K is known as the residue of f. By a result due to Takens [20]
there exists a C*® diffeomorphism A : R.0 — R,0 i-flat at 0 such that Ao
#(f) = ¢'(f) o A holds on Uy sy shrinking U s). Introducing the coordinate
= &a(x) = 27"+ Alog 27 for v > 0, ¢'(f) induces the translation
qz(f) = exp K0/0% on the Z-line at co. Let y), = A(y») and §, = &; a(y),) for
n=20,1,.... Then

(a) n = ()™ (50) = Jo + nK.

(The existence of the coordinate & with Property (a) is proved by the sectorial
normalisation theorem [12,21] as well as the existence of the solution of Abel’s
equation by Szekeres [19]. Those results imply the existence of the nomalising
diffeomorphism A real analyticity off 0. But the differentiability at 0 is not
an obvious consequence. The analyticity of the conjugacy h off 0 in Theorem
3(1) follows from that of A. In this paper the smoothness of h (Proposition
9) is first proved and analyticity is proved by the uniqueness (Proposition 10)
and the convergence of the formal conjugacy due to Cerveau and Moussu [2].)

We apply the same argument to the slow dynamics ¢(g). Let 4 : R,0 — R,0
be a C* diffeomorphism j-flat at 0 such that p o ¢(g) = ¢'(g) o pu holds

P

on Ug(g), where ¢'(g)(x) = exp - %(H_—F;:;)O/c');lr with a constant B. Let
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% = & p(x) = 79 4+ Blog =7 for x > 0. On the i-line, ¢'(g) lifts to the
translation ;(g) =exp L 8/0% at ~c.

Let 2/, = p(z,) and 2, = & p(2),) for n = 0,1,.... Then Z, = Zo + nL,
from which we obtain the estimate for the ¢(g)-orbit X, z, = (nL)~'/J 4

o(n=1/3) for n = 0,1,.... To compare A’ to Y, let
(b) B = 25" + Alogay’ = (nL)" + o(n'l).
From (a) and (b) we obtain

Ll i
(c) addy(g).4()(n) = —= n7 +o(n3).
Proposition 8. L3 /K and f are topological invariants for the pseudogroup

generated by ¢(f) and ¢(g).

Proof. Assume h is orientation preserving. The linking homeomorphism h
sends the pairs of the orbits of x¢ under ¢(f), d(g) to that of h(xo) under
¥(f),v¥(g), and those pairs have the same topological structure and define
the same address function up to the equivalence relation. By (c) the i/j is
the exponent of the address function and Li /K is its coefficient, which are
clearly invariant under the equivalence relation. If & is orientation reversing,

an alternative argument goes through.

4. PROOF OF THE THEOREM 3 FOR NON SOLVABLE PSEUDOGROUPS

First we prove Theorem 3(1) for non solvable pseudogroups. If the linking
homeomorphism h is orientation reversing. the homeomorphism —h is orien-
tation preserving and links ¢ to the reversed pseudogroup 1’ consinting of
the orientation preserving diffeomorphisms ¢'(f) : =Uy — —f(Uy),f € G
defined by ¢'(f)(z) = —¢(f)(—2). So we assume that h is orientation pre-
serving throughout this section. Let ¢'(f)(x) = = — %i(:v'"*'1 +...) and
Y(g)(z) =z — f.—,’(:r:j""1 +...). First assume (¢, j) = (¢, ') and h is orienta-

tion preserving for simplicity. By a linear coordinate transformation we may
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assume K = K’ and then it follows L = L’ from Proposition 8. By an analytic

coordinate transformation we may assume

1+ 1

5 )x2i+1 +)

Y()(E) == (@ 4 (-4 4

Let ) : R,0 — R, 0 be a C*°-diffeomorphism j-flat at 0 such that X o ¢(f) =
¥'(f) o X holds on Uy y), where

L zit!

Y'(f) =exp — TIiT A d/0x.

Let § =& a(z) = 27" + A’ log 27", Since 6(f)(")(29) — 0, we see K > 0.

On the z-line the diffecomorphism ¢(g) induces the "non-linear translation”
d(9)(F) = & + 5,1: P4 o(i T
from which
$(£)™ 0 §(g) 0 $(£)(F) = & + LMA = +o(n'T)
from which
lim 0P (G 0 dlg) 0 A — id) 0/0F = 3'],51{‘—7"'5/3@

holds at the end of the Z-line. The flow of the above limit vector field is

approximated arbitrarily closely by the discrete dvnamical system of type

$(N)Mod(g)™ o d(f)™,  m=0,1,...

with a sufficiently large n > 0 ([17]).
Similarly the 9(f),v(g) define the vector field ’[ iL f i 3/83/ on the g-line.

The lift Ay : Z — line, 00 — § — line, o of the restiction hy of h to R sends
the orbit of
$() ™ 0 (g)™ 0 ()™
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to that of
()™ 0 ()™ 0 ().

Therefore h, is compatible with the above flows respecting time hence it is a

translation by a constant a4 (see [17] for a detailed argument) and

h(z) = NV 0 671(6a 0 M(@) + ay),

which is i-flat at 0. Similarly we can show that the restriction h_ of h to R~

is of the form
ho(z) = XN 0 g7L (€4 0 Ma) + ),

with a constant a_, which is i-flat at 0. With both the above smoothness
of hy and h_, we see that the linking homeomorphism h is a Ci-smooth

diffeomorphism on a neighbourhood of 0 and i-flat at 0.

Proposition 9. The linking homeomorphism h is C*°-smooth on a neigh-
bourhood of 0.

Proof. Since ¢(G) is non solvable, the i can be chosen arbitrary large. There-
fore h is C*-smooth at 0. The smoothness off 0 is clear by the form of h4

above presented.

By the proposition ¢(f) and ¥(f) are C*>-conjugate. Since the residues
A, A’ are invariant under formal conjugacy relation of germs of analytic dif-

feomorphisms, we obtainA = A’ hence ¢(f) = ¥(f) and
MohtoX=D =exp =*X on R*
NMoh_oX=D =exp===X on R7,
where x denotes %0/ oz.
Proposition 10. a4 = a_ and the germ of I at () is unique.
Proof. Since h{™ 0 ¢(g) 0 hy = %(g) and 1h'"" 0 é(g) o h— = ¥(g) hold on
R* and R~ respectively at 0, we obtain the formal equalities

—QY

* o X = ¢(f)

2D 6 exp a__+\/o N od(g)o pUly oexp —
i i
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and

2= x o A= ¢(f).

“yoXNod(g)o NV oexp

A= exp

This shows that A" o exp 222+ \ 0 X commutes with ¢(g), and by formal
calculation, it follows oy = a_ = « (since i # j). Therefore h = A(=D o
exp $xo\.

Next assume h’ = A(=D oexp — —\ o X satisfies B'("V o ¢(g) o ' = ¥(g).

Then it follows o = 3 from a similar argument. This shows the uiqueness of

h.

By a result due to Cerveau and Moussu [2], a formal conjugacy is con-
vergent to give a real analytic conjugacy for non solvable groups of germs of
diffeomorphisms. Therefore the Tavlor series of h at 0 is convergent to an
analytic diffeomorphism % linking ¢(G)o to ¢'(G)o. Then the uniqueness of
the linking homeomorphism (Proposition 10) asserts that the germ of h is
nothing but the h real analytic on a neighbourhood of 0. The analyticity
propagates to whole By gy by the same argument in the proof of Theorem 1
in §6. This completes the proof of Theorem 3 for the case (4, 7) = (¢, ;') and
h is orientation preserving.

Now we prove the theorem for general non solvable pseudogroups. Assume
that ¢(f), #(g) and ¢(f),(g) have the orders of flatness 7, j and ¢’, j’ respec-
tively. By Proposition 7, we may write i'/i = j'/j = p/q with even positive
integers p,q. Define the lift ¢ : G — T'y by 6(f) : Uge(s) — ¢;,(f)(U¢;(f)),
¢5(f)(x) = (ed(f)(exP))/? for € = +1. where Usge,(s) is the preimage of Uy y)
by z :— exP. Define the lift 5 : G — T'{ similarly. Then #5(f), $5(g)
have the orders of flatness pi,pj respectively. The linking homeomorphism
h lifts to the orientation preserving homeomorphism K¢ = (e h(ez?))!/? of
Us = {z| ex? € U} to U; = {y| ey? € h(U)}. which is linking @5 to 3¢ for
€e==+l1.

Proposition 11. (1) ¢ is solvable if and only if ¢}, is solvable if and only if

¢, is solvable.
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2) Bge = {z| ex? € By} for e = £1.
5 ¢

Proof. The homomorphism of pseudogroups which asigns ¢5(f) to ¢(f) for
f € G induces a group isomorphism of the germs ¢(G)o to ¢5(G)o for € =
+1. So Statement (1) is clear. Statement (2) for the basin follows from the

definition.

By the result obtained previously in this section, the lift K¢ is a unique
real analytic diffeomorphism. In particular  is unique and the restriction
h: B4(G) — 0 — By(G) — 0 is a real analytic diffeomorphism. This completes

the proof of Theorem 3 for non solvable pseudogroups.

5. PROOF OF THEOREM 3 FOR SOLVABLE PSEUDOGROUPS

Theorem 12 ([17]). A solvable subgroup H of the group of germs of analytic
diffeomorphisms of R respecting 0 is C*-conjugate with one of the following:

(1) H consists of linear functions ax with the cocfficients a in a subgroup
L of R*.

(2) H consists of f(*) = x + aKa™*!' 4+ ... .« # 0 with « in a subgroup
ACR,1€A. Here f € H, f(z) = a+ Ko™t +... and f(® is the unique real
analytic diffeomorphism with the Taylor expantion f(®)(z) = z+aKz**t!1 4. ..
such that f‘(“)of = fof(e) = flat) [If A is dense in R, those f(®) are written
as exp ax with an i-flat real analytic vector ficld \ on R. (for the definition
of the a-times iteration f(*) see the papers [17.19].)

(3) H consists of those f(*) and —f**? witha € ACR and a 3,28 € A
and f satisfies the relation f(—x) = —f(r).

(4) H consists of those f~ in (2) and af“*+%“) with a in a subgroup
L C R*,a* # 1. Here f satisfies the relation a=' f(ax) = f(“i) fora € L and
B : L — R is a function and res(f) = 0. i.e. f is formally and C*-conjugate
with exp Kz't10/9z, K # 0.

In Cases (1),(2) and (3), the H is commmutative. and in Case (4), H is non

commutative but solvable.
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Since the members of our pseudogroups ¢(G), ¢(G) are all orientation pre-
serving, the germs ¢(G)o, ¥(G)o are C*-conjugate to one of the H in Cases
(1),(2) and (4). In the following we assume the germs are of the form in those
cases and prove the the analyticity of the restrictions h4,h_ of the linking
homeomorphism A to R*, R~ on a neighbourhood of 0. The differentiabil-
ity propagates to whole Bygy — 0 by the same argument as in the proof of

theorem 1 in §6.

Case (1). Assume ¢(G)o # Z. This assumption is equivalent to that the
linear term group Ly of ¢(G)o is a dense subgroup of R*, in other words, all
orbits are dense nearby 0. Let log Ly denote the subgroup of R consisting of
the logarithms of the linear terms of &(f). f € G. Since h sends the ¢(G)-
orbit of an z to the ¢/(G)-orbit of h(x). I induces a homomorphism k of the
subgroups log Ly to log Ly, which extends to a linear function kz. By this
form we see logo h o exp (z) is an affine transformation kz + !, from which

h(z) = (exp l)z* for > 0. A similar argument shows the analyticity of h_.

Case (2). In this case the germs of &(f)(?) are of the form exp ay with
a flat analytic vector field x and « in a subgroup A C R. The hypothesis
