
Astérisque

CH. BONATTI

X. GÓMEZ-MONT
The index of holomorphic vector fields on singular varieties I

Astérisque, tome 222 (1994), p. 9-35
<http://www.numdam.org/item?id=AST_1994__222__9_0>

© Société mathématique de France, 1994, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1994__222__9_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


The Index of Holomorphic Vector Fields 
on Singular Varieties I1 

Ch. Bonatti and X. Gómez-Mont 

Given a complex analytic space V with an isolated singuarity at there 
is a way to associate to a holomorphic vector field X on V an index at p a 
la Poincaré-Hopf Ind(X, V,p) (see [Se],[GSV]). The objective of this series of 
papers is to understand this index. In the present paper we relate it to the 
^-multiplicity: 

fiv(X,p) dime 
Ocn,p 

(fi / í ,A ' i , . . . , X " 

where / 1 , . . . ,fe are generators of the ideal defining V C Cn, X3 are the 
coordinate functions of a holomorphic vector field that extends X to a neigh­
bourhood of 0 in Cn and the denominator denotes the ideal generated by the 
elements inside the parenthesis in the ring Ocn,P of germs of holomorphic 
functions at p. The main results are: 

Theorem 2.2. Let (V, 0) C Bi C (Cn, 0) he an analytic space in the unit ball 
Bi which is smooth except for an isolated singularity at 0. Let Qr denote the 
Banach space of holomorphic vector fields on Vr with continuous extensions 
to dVr, r < 1, with its natural structure as an analytic space of infinite 
dimension. Then: 

a) The function V-multiplicity at 0 

M ,0) :6r • Z+ U loo) 
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C BONATTI, X. G6MEZ-MONT 

is upper semicontinuous and it is locally hounded at those points X 

where X has an isolated singularity on V at 0. 

b) The subsets of Qr defined by , 0) > A' are analytic subspaces and the 

minimum value of fly ( , 0) in 0 r is attained on an open dense subset Ti 

of 6 r . 

c) The subset of Qr formed by vector fields whose critical set at 0 has 

positive dimension is an analytic subspace of Qr. 

We introduce the Euler characteristic xv(X, 0) of X G 6 r at 0 in (2.10) 

and show: 

Theorem 2.5. For X G 0 r with an isolated singularity at 0, s <C r and 

0 <C e, we have: 

1) For any family of vector fields {A~/}/GT, parametrized by a finite dimen­

sional analytic space ( T , 0) —• (0r, A') such that the V- multiplicity at 

0 of the general vector field Xt of the family is minimal /.ty, we have: 

Xv(X,0) = xT(OZT,„O{x}) 

where the right and hand side is the Euler characteristic of higher torsion 

groups. 

2) For Z e U(X, s) we have 

Xv(X,0) = \'V(S,0)-f 

Z(pj)=0 
Pí€Ve-{0} 

Hv(Z,Pj) 

3) For X G 0 r with an isolated critical point at 0> we have: 

0 < Y V ( X Q ) < / / V ( X 0 ) 

and Xv(X, 0) = /iv(X,-0) if and only if the universal critical set Zr is 

TTi-anaflat at (A, 0) (in particular this happens in Ti). 

Let X £ Or, we say that the critical set of X does not bifurcate if there 

is e > 0 and s > 0 such that for Y G U ( A \ t ) C OR we have that the only 
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INDEX OF HOLOMORPHIC VECTOR FIELDS 

critical point of Y on Vs is 0, (that is, X has an isolated singularity at 0 as 
well as any sufficiently near vector field in 0 r and there is no other critical 
point uniformly in a neighbourhood Vs of 0). 

Theorem 2.6. Let (V,0) C Bi C (Cn,0) be an analytic space which is 
smooth except for an isolated singularity at 0, then the set of points in 0 r 
whose critical set does not bifurcate contains the connected dense open subset 
Ti C ©r consisting of vector fields with minimum V-multiplicity 

Theorem 3.1. Let (V,0) C Bi C (Cn,0) be an analytic space which is 
smooth except for an isolated singularity at 0, then there is an integer K such 
that 

Indw{X, F,0) Xv(X.0) + K 

for X in the dense open set O' of vector fields in 0 r with an isolated singularity 
at 0. For X in the dense open set of Q' where the universal critical set Zr is 
Qr-anaBat we have 

Indw(XM0) = uv(X<0) + K 

Corollary 3.2. Let (V,0) C Bx C (Cn,0) be an analytic space which is 
smooth except for an isolated singularity at 0, then there is a constant L such 
that Ind\y(X, V,0) > L for every germ of holomorphic vector field X on V 
with an isolated singularity at 0 on V. 

In the first section we analyse the index on smooth compact manifolds with 
boundary. We prove: 

Proposition 1.1. Let X and Y be C1-vector fields defined on the compact 
manifold with boundary (W,dW) and non+vanishing on dW and let [Tx] 
denote the fundamental class of the graph ofX/ \\X\\ on the sphere bundle S of 
unit tangent vectors ofW restricted to dW (with respect to some Riemannian 
metric on W). Then 

Ind(X, dW, W) - Ind(Y, dW, W) = [Tx] • [r_y] 

li 



C BONA7TI, X. GÔMEZ-MONT 

where we do the intersection in homology of S. 

In the second section we develop the properties of the ^-multiplicity, and 
in the third we compare the ^-multiplicity with the topological index. 

1. The index of vector fields on manifolds with boundary 

Let W be a compact oriented manifold of dimension m with boundary, dW, 
oriented in the natural way. Given a never vanishing C°-vector field X in a 
neighbourhood of dW, the index of X on the boundary ofW, Ind(A, 3W, W) 
may be defined by extending X to a vector field X on W with isolated singu­
larities, and then adding up the indices at the singularities of X. The index 
is independent of the chosen extension X (see [Mi],[Se]). 

To understand the dependence of the index on the manifold W, we will 
prove that the difference of the indices of 2 vector fields may be computed 
exclusively in terms of boundary data: 

Proposition 1.1. Let X and Y he C1-vector fields defined on the compact 
manifold with boundary (W,dW) and non-vanishing on dW and let [Fx] 
denote the fundamental class of the graph ofX/ \\X\\ on the sphere bundle S of 
unit tangent vectors ofW restricted to dW (with respect to some Riemannian 
metric on W). Then 

Ind(X, dW, W) - Ind(Y. dW, W) = [Tx] • [r_y] 

where we do the intersection in homology of S. 

Proof. Since the index and the fundamental classes do not change if we make 
a small perturbation, we will assume that A' and Y are in general position. 
Namely we will assume that if the zeroes Z C C x W of the vector fields 
{Xt = (1 — t)X + tY}te[0^] intersect <9U\ say at 0/, then at 0*: Xt has a zero 
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INDEX OF HOLOMORPHIC VECTOR FIELDS 

of multiplicity 1 and the projection of Z to W is transversal to the boundary 
dW. 

The intuitive idea of the proof is very simple. The above family connects 
X with Y, and the only way the index as a function of t G [0,1] can change 
is if a zero leaves W at dW, or if a zero arrives at W through dW. By the 
transversality conditions we are assuming, this will happen every time Xt has 
a zero on dW, and it will give a contribution of ± 1 , depending whether the 
index of is ±1 and whether the point is arriving or leaving W. One has to 
prove that one obtains the same sign from the contribution of the intersection 
[Tx] • [r_y] at the above point on dW. 

Let p be a boundary point, and consider the convex hull C = (X(p),Y(p)) 
in TPW. If 0 is not contained in C, then the vector fields Xt do not vanish 
at p for t G [0,1]. If 0 is contained in C, then there is exactly one value of t 
where Xt vanishes at p. Note that this condition means that X(p) and Y(p) 
are linearly dependent with distinct orientation, and this is equivalent to the 
fact that Tx and T_y intersect. So the only point left is to show that one 
obtains the same sign from the intersection [Tx] • [F_y] at p as the difference 
of the indices Ind(X<+e, dW, W) - Ind(X*-e, dW, W). 

To simplify notation, let {x\,... , xn) be coordinates around p = 0, where 
W and dW are defined by xn > 0 and xn = 0 respectively. Let Z = 
( Z i , . . . ,^n) be a C1-vector field with a critical point at 0 of multiplicity 
1, Y = (Yi , . . . , Yn) a C1-vector field with Y\ (0) > 0, and we are interested in 
computing the contribution to the index of the family Z + tY, when t passes 
through 0 in the positive direction. 

Let DZ(0) be the derivative of Z at 0. It is an invertible matrix and the sign 
of det[DZ(0)] is Ind(Z, 0), and hence it also Ind(Z*,0*), where 0* is the zero 
of Zt near to 0. (One may think that everything extends to a neighbourhood 
of dW outside of W, so as to "see" 0* for all small values of and not only 
for the ones that are in W). A simple calculation shows that the curve 0* 
intersects dW with velocity vector 

(d0t/dt)(ü) = -[DZiO^YiO) 
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and hence the zero set is entering W if dxn[—[DZ(0)]~lY(f$)] is positive, and 

is leaving W if it is negative. By Crammer's rule, we have 

d x n i - l D Z i O ) ] - ^ ) ] 
1 

det[£>Z(0)] 

dZl/dXl dZn/dx1 

dZl/dxl 
. Y1 

dZnldxn-X 
(0) 

(1 .1) = -det[A]/det[£>Z(0)] 

where the matrix A is defined by the above formula. Hence we obtain for 

e > 0: 

Ind(Ze, W,dW) - Ind(Z_£, W,dW) •• Ind(Z, 0)Sign(- det[A]/ det[DZ(0)]) 

(1.2) -Sign[det[A]] 

We will now compute [r^+y]}- [r_(2_y)]. Dividing by Z1 + Y1 (respectively 

by Y1 — Z1), which is positive, amounts to taking coordinates in the sphere 

bundle, so TZ+Y and T^z-Y) are *ne graphs of the functions 

7 + ( x i , . . . ,a;n_i) 

((Z2 + Y 2 ) / ^ 1 + Y 1 ) , . . . , (Z» + Yn)l{Zl + Y1 ) (x1 , . . . ,x„_!,0) 

7 ( x i , . . . ,a;„_i) 

= ((Y2 - Z2)/{Yl - Z 1 ) , . . . , (Yn - Zn)/(Yl - Z 1 ) ( x 1 , . . . , ! „ . , , 0) 

The intersection number [r^+y] • [r_(z-y)] is equal to the sign of determinant 

of the matrix obtained by grouping the derivatives of the graphs of 7+ and 

7 : 

det In-l 
In-l 

In-l 
In-l 

(0) = det[r>7" - Dj+}(0) 

A simple calculation shows that 

(Dy) ij 
1 

( l ' H O ) ) 2 
det 

y HO) 
y '(0) 

JL[Yi±Zl№ 
^[I-iZ'KO) 
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Hence 

(1.3) \Ih- - £>7+1,Ч 
2 

(y i (0))2 
det 

ГУЧО) 
У* (О) 

(yi(0))2 
(yi(0))2 

We now need to use a formula involving determinants: Let A — [aij] be an 
5 X 5 matrix, and let B = (ba) be the (s — 1) x (s — 1) matrix whose general 
term is 

(1.4) bij = det «il 
«il 

« l i 
Oji 

z, j = 2, . . . , n, then we have that 

(1.5) ( a n ) - 2 d e t [ - 4 ] : det[£] 

This formula may be proved first for diagonal matrixes, and then by showing 

that both sides are left invariant under the elementary operations of rows and 

columns. 

Consider the matrix A in (1.1). Let A' be the matrix obtained by mov­

ing the last row to the first. We have det[.4] = (-l)"""1 det [4'], and let B 

be the matrix obtained from A' as in (1.4). Nothing that [Dy~ - Dy+] = 

-2B/Y\G)2 we have by (1.5): 

det[A] = (- l)n_1 det[A'] = ( - l )n-1y1(0)2"ndet[ß] 

= ( - l ) n - 1 y 1 ( 0 ) 4 " n d e t [ D 7 - - D7+]/(-2)n-1 

Hence det [A] and det[Z?7 — Dy~*~] have the same sign. Using (1.2) we obtain: 

Ind(Ze, W,dW) - Ind( Z.£,W,dW) = -Sign[detL4l] = - Sign [det [Dj~ - Dj+]] = 

= [ r_(Z_r) ] • [TZ+Y] = [TZ-Y] • [ r_(z+y)] 

This proves the Proposition. 

If we denote by Vec(dW)+ the set of C1-vector fields defined and never 

zero on a neighbourhood of dW, the Index is an integer valued function with 

Vec(dW)+ as a domain: 

Ind: Vec(dW)+ Z 
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Let (W',dW) be another compact manifold with boundary and <j>:dW —> 
dWf an orientation preserving diffeomorphism of the boundaries. We may 
extend this diffeomorphism to a diffeomorphism of a neighbourhood of the 
boundaries </>: W\ —• W[. Given a non-singular C°-vector field X defined on 
the neighbourhood W\ of dW, we may transport it via <j> to a vector field X' 
defined on W[, 

(1.6) 
Indaw: Vec(dW)+ Z 

laddW.: Vec(dW')+ 
i a 
Z 

It follows from Proposition 1 that for X,Y G Vec(dW)+ we have: 

lnd(X, dW, W) - Ind(y, dW, W) = [Ts]-[T.y] = [Td,x).[T<t>m.Y) 

= ind(0. A', ow, W) - ind(</>.y, aw, W) 

And hence for variable X, and a fixed 1' we obtain: 

IndaH"(^*A") Inda„/(A) - (lndaw(Y) - lnddW>(<f>*Y)) 

Hence we may complete (1.6) by a map a which is substraction by an integer. 
This integer may be computed by taking the difference of the two indices with 
respect to any pair of vector fields in Vec(W)+. To see who this integer is, let 
Z be the vector field in Vec(W)+ which is always pointing inward. In this case, 
by the relative Poincaré-Hopf Index Theorem (see [Pu]), it is x ( M ) — x (^M) , 
where \ is the Euler Poincaré characteristic. Hence we obtain: 

Corollary 1.2. Let (W, dW) and (\V,dW) be manifolds with diffeomorphic 
boundaries and <f> a diffeomorphism of a neighbourhood of the boundaries. 
Then for any C°-vector field defined and non-vanishing on a neighbourhood 
of dW we have 

Ind(X,dW,W) Ind(^X, dW\ W) + [\(W) - x{W')} 

16 
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Remark. The above result may be also obtained from Pugh's Poincaré* Hopf 
Index Theorem for compact manifolds with boundary ([Pu]) since it expresses 
the index as the Euler-Poincaré characteristic of the manifold with boundary 
plus a contribution of the tangency behaviour of the vector field with the 
boundary. Hence taking the difference of both extensions we obtain that the 
difference of the indixes will be the difference of the Euler-Poincaré character­
istics of the manifolds, since the boundary contributions are equal and hence 
cancel each other. 

We will now give another explanation of the ambiguity of the definition of 
the index as a number just from its behaviour at the boundary. 

Let (W, dW) be a compact manifold with boundary, choose a Riemannian 
metric on W and let T1 W be the unit sphere bundle in the tangent bundle of 
W, and S = TXW \e\v its restriction to the boundary. The natural projection 
p: S —• dW has the structure of an (m — 1) sphere bundle over dW. S has 
dimension 2(m — 1) and its cohomology groups Hq(dW, Z) may be calculated 
using the spectral sequence of the fibration, since the cohomology bundles 
Rqp*(Zs) over dW are non- vanishing except for dimension 0 and n — 1 (since 
it is a sphere bundle) and both of them are trivial bundles with Z as fibers, 
since the monodromy group is acting trivially (it sends the fundamental class 
to itself, since everything is oriented). The spectral sequence degenerates since 
Hp(dW, Rqp* (Zs)) is non-zero only for q = 0, n — 1. Hence the cohomology of 
S consists of 2 copies of the cohomology of dW glued together in the middle 
dimension: 

HP(S, Z) = Hp(dW, Z) for 0 < p < m - 2 

#P(S, Z) = Hp^m~l\dW, Z) for m < p < 2m - 2 

(1.7) 

o —• Hm^(dw, z) jy™-1^, z) H°(dw, z) —+ o 

We are interested in the middle group H^faZ). H^idW.Zs) = 
(BjHm~1(dWj, Zs), where {<9Wj} are the connected components of dW, say 
r of them. Hence Hrn~1(S, Z) has a submodule canonically isomorphic to 
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7ir, obtained by pulling back the fundamental classes of the boundary com­
ponents. The quotient group is again canonicaly isomorphic to Zr, but there 
is no canonical splitting. Hm~~1(S, Z) is hence free of rank 2r. 

If X is a C° vector field on W, non-vanishing on dW, the fundamental class 
[Tx] of the graph of X/ \\X\\ restricted to dW is an element of Hm-i(dW, Z). 
It is the class [Tx] which carries the topological information of the index. Since 
it is a section of p, it projects to ( 1 , . . . ,1) in (1.7). The difference of two 
such fundamental classes will produce integers on each boundary component. 
If one wants to obtain an integer for a vector field, then one has to choose a 
splitting of (1.7), which is a non-canonical operation. This is carried out by 
choosing the bounding manifold W. 

2. Holomorphic vector fields on singular spaces 

Let p G V be a point of a complex analytic space of dimension N and 
let (V,p) C B i C (Cn,0) be a local embedding of V into the unit ball Bi . 
We will denote V fl Br by Vr, where Br is the ball around 0 and radius 
r < 1 in Cn. The ring Oy,p of germs of holomoprhic functions at p may 
be represented by the quotient C?cn,o/J\ where J is the ideal of germs of 
holomorphic functions on (Cn,0) vanishing on V. A germ of a holomorphic 
vector field at p is a derivation 

X: 0\/,P —• 0v,p 

(see [Ro]). Given a holomorphic vector field on (V, 0), it gives rise to a diagram 

C*cn,o 
C*cn,p 

x 

X 

Ос»,о 

Ov.p 

We can always lift X to a derivation X on C?cw,o- ^0 see this let ( 2 1 , . . . , zn) 
be coordinates of Cn, and let Aj be IT- liftings to C?cw,o of X(K(ZJ)). One 
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easily checks that X = A; "WT makes the above diagram commutative on 

the generators and applying linearity and Leibnitz's rule, we see that the 

diagram is commutative. X will send the ideal J defining V to itself, and 

conversely, any such derivation will induce a holomorphic vector field on V. 

A germ of a holomorphic vector field at (V, 0) induces a (usual) holomorphic 

vector field on the smooth points of V near 0. 

If X is a holomorphic vector field defined on the non-singular points of V, 

then using an embedding of V into Cn, we may express X = £^ -^i^f"? where 

Xj are holomorphic functions on V — S'mg(V). If V has a normal singularity at 

p then, by the second Riemann's Removable Singularity Theorem ([Fi], p.120), 

the functions Xj extend to holomorphic functions on V and the vector field 

obtained with these extensions gives a holomorphic extension of the vector fied 

X from V — SingV to V. Hence for normal singularities, holomorphic vector 

fields on V coincide with (usual) holomorphic vector fields on V — Sing(V). 

If (V,p) C Bi C (Cn,0) is an analytic space then the sheaf of holomorphic 

vector fields 0 y is coherent ([Ro]). We shall denote by 0 r the Banach space 

of continuous vector fields defined on Vr and holomorphic in VJ., with the C°-

norm. We will also denote the ball {Y 6 0 r / \\X - Y\\ < e} by U(X,e). The 

ring of germs of holomorphic vector fields 0\/p is endowed with the analytic 

topology. Recall that a sequence {-Yn} converges to X in ©v,p if they are all 

defined in a small neighbourhood Vr C V of p, and they converge in 0 r (see 

[G-R]). Note that by the Weierstrass approximation theorems, 0 r is dense 

in 0y,p, so that many properties for germs will follow by considering similar 

properties in 0 r . 

Proposition 2.1. Let (V,0) Ç Bi C (Cn,0) be an analytic space which 

is smooth except for an isolated singularity at 0, then the subset Q'r C 0 r 

consisting of holomorphic vector fields that have at 0 an isolated singularity 

is a connected dense open subset in Qr. 

Proof. Assume that X has an isolated critical point at 0. For s < r small, 

X restricted to dVs does not vanish. Let 2s be the minimum value of ||X|| 
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on dVs. If Y G Qr with ||Y|| < e, then X + Y cannot vanish on dVs (for 
then X(q) = — Y(q)). This implies that Ar + Y will have an isolated critical 
point at 0, since if it vanished on a set of positive dimension passing through 
0, this set would have to intersect dVs (otherwise, one would have a compact 
complex manifold in Vs of positive dimension). This shows that Q'r is open 
in 6 . 

Let X0 G 6 r and let e > 0 be given. To each vector field X in U(X0,£) 
we can associate to it the dimension of its critical set at 0, dim0({X = 0}). 
Let Y be a vector field where this minimum is attained. We claim that Y 
has an isolated singularity at 0. So assume that Y does not have an isolated 
singularity at 0. 

Let PT(V - {0}) C Cn x P£_1 be the (complex) projectivized tangent 
bundle of V — {0}, denote by Pr its closure and 7r: Pr —• Vr its projection to 
the first factor. Pr is an analytic space, 7r is a proper holomorphic map which 
is a complex projective bundle outside of 0 and the fibre over 0 is the tangent 
cone of V at 0 (see [Wh]). Let .4 = .4i U • • • U AM be the decomposition in 
irreducible components of {Y = 0} C Vr passing through 0. By assumption 
A does not reduce to 0. Let Ty C Pr be the closure of the graph of Proj(Y) 
on Vr — A. Ty has dimension N = dim(l>). The intersection of Ty with 
TT~1(A) has dimension at most n — 1, since it is contained in the boundary 
of the graph of Y, which has dimension N. Since -K~1(Aj) has dimension 
N — 1 + dim(Aj) > N — 1, we may choose points in 7r-1(Aj) — Ty. That is, 
there are points PJ G Aj — {0} arbitrarily close to 0 and vectors VJ tangent 
to Vr at PJ such that Proj(^j) is disjoint from Ty. Since Vr is a Stein space, 
there is a vector field Z on Vr such that Z(PJ) = VJ. We claim that Y + tZ, 
for small values of t ^ 0 will have singular set at 0 of dimension smaller than 
the critical set of Y, contradictino; the choice of Y. 

To see this, let s < r so that .4 fl V* = {Y = 0} fl Vs. Without loss of 
generality, we may assume that pj G Vs (since the set of points that do not 
satisfy the defining condition of pj is a proper subvariety of each Aj). Let C 
be the set of points of Vs x C where Y + tZ vanishes and let p: Vs x C —• C 
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be the projection to the second factor. 
We claim that the Aj's are irreducible components of C. To see this, 

consider (Y + tZ)(p) = 0 for p near to pj. By the way we chose Z(pj), one 
may conclude that Z(p) is linearly independent with Y{p) if Y(p) ^ 0. Hence 
(Y + tZ)(p) ^ 0. If Y(p) = 0, then for * ̂  0 we have (Y + tZ)(p) = tZ(p) + 0. 
This implies that the decomposition into irreducible components of C in a 
neighbourhood of (0,0) is of the form C = Ai U • • • U Am U C\ U • • • U Cr. Hence 
the irreducible components Ck are not contained in p~~l{0) and its intersection 
with p~1(0) does not contain any Aj. Hence C^rip""1(0) has dimension strictly 
smaller than the dimension of A. By the theorem of upper semicontinuity of 
the dimension of the fibers of a holomorphic map, we conclude that (C\ U • • -U 
Cr) fl p""1(^o) has dimension smaller than the dimension of A, for t0 ^ 0. But 
this set is exactly the critical set of Y + toZ. This contradicts the hypothesis 
that the minimum dimension of its critical set is attained at Y. Hence Y has 
isolated singularities. This shows that 0', is dense in 0r . 

To see that 0^. is connected, let A' an Y belong to 0^., then consider the 
family {X + tY}t£c- The critical set C of the family consists of (t,p) G C x V 
such that (X + tY)(p) = 0 . C is an analytic subvariety, containing the line 
Co = C x {0}. By hypothesis (0,0) and (1,0) lie on CQ and in no other 
irreducible component of C. Hence Co is an irreducible component of C. The 
other irreducible components of C intersect Co on a finite number of points. 
Hence all points of Co except a finite number represent vector fields with 
isolated singularities. Hence, Q'r is connected. • 

From now on, we assume that V C Bi C Cn is a smooth variety of 
dimension N except for an isolated singularity at 0 (V non-smooth at 0). Let 
J = (/l(^), ••• >fe(z)) be the ideal sheaf defining Vr in Br. Consider the 
Banach space 0 r as an infinite dimensional analytic space (see [Dol]) and let 
e: 0 r x Vr —• Cn be the valuation map 

e(X, zo) = e J J 9 , ' i I 0 ej(X, zo d_d_ 
= X(z0) 
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It is an analytic function on the Banach space 0 r x Vr, linear in the first 
variable. The universal critical set Z = Zr is the analytic subvariety of 
Qr x Vr defined by the sheaf of ideals 

(2 .1) Jr = (A(z ) , . . . , fe(z), e\X, z),en(X, z)) C O0rxBr 

The above generators of the ideal J r give a finite presentation of Oz as an 
C*0xB-module: 

(2.2) КУ г X ХЭГ OerxBr Oz 0 

where the map $ is matrix multiplication with (f\,... , /g, e 1 , . . . , en). 
Let 7Ti and 7T2 be the restriction to Z of the projections to the factors ©r 

and Br, respectively. We analyse first 7r2. Since V has an isolated singularity 
at 0, all vector fields on V vanish at 0. hence Go C Z, where 0O = 0 r x {0} 
is the zero section. This means that 7r^"1(0) = Go, which is a subvariety of 
Qr x Br of codimension n. By restricting 7r2: Z — Go —• Vr — {0} we see that 
the fiber t t J 1 ^ ) , with p G Vr — {0}, is a vector space of codimension N in Qr 
(since Vr is Stein and N = dim Vr) and hence 7r̂ "1(Vr — {0}) has the structure 
of a vector bundle over Vr whose fibers have codimension N in Qr. Hence 
7rJ1(Vrr — {0}) is smooth of codimension n in Qr x Br (the same codimension 
as Go). Let Qsing C Z be the closure of 7r.J1(y — {0}). Set theoretically 
2 = Go U Qsing? but Z will in general have a non-trivial scheme structure on 

e«. 
We now view Z as a space over 0,, via the projection -K\: Z —• 0 r . The 

fibre ^(X) over the vector field A" is set theoretically the critical set {z G 

Vr/X(z) = 0} of X. Recall that the process of restricting to a 7r-fibre {X} x 

Cn is carried out by tensoring with Qo@rXBr0{A'}xBr• In particular, Oz ® 
OQrxBrO{x}xBr ^as suPPort on the critical set of X and for an isolated 

singularity of X at p, its dimension is the V -multiplicity of X at p G Vr: 

(2.3) UV(X,P) = dime Ocn.p 
(/i / r , A 1 , . . . , A n ) 
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Note that /iy(X,p) depends exclusively on X |v, since the contribution from 
choosing another extension to Cn is cancelled by the terms ( / 1 , . . . and 
that it is strictly positive exactly at the critical set {-X" = 0 } of X. Note 
that ( 2 . 3 ) is the corank of $ in (2 .2) over the point (X, 0 ) , or equivalently, 
(2 .2 ) gives a way to express the ^-multiplicity as a corank of a matrix with 
parameters. We will exploit this expression to describe the dependence of 
the V-multiplicity on X; but technically it wil be simpler to consider an 
approximation of $ on infinitesimal neighbourhoods of 0 Q . 

We will now analyse the structure of Z at the zero section Go. Let K, = 
( z i , . . . , zn) C OerxCn be the ideal of definition of Go, and denote by GQ the 
jth infinitesimal neighbourhood of Go defined by the sheaf of ideals /CJ+1 C 
OerxCn generated by the monomials in z of degree j + 1. As a space, it 
consists of Go but its function theory remembers the Taylor series in the 
^-variables up to order j . Using the presentation (2 .2) of we note that 
$((/CJ'+1)®*+n) C /CJ+1, so that it will induce an exact commutative diagram 

(2 .4 ) 

l+n 
l+n 

ÖerxBr 0* » 0 

l+n 
xbr 

(Kj+1) l+n 

0 

xbr 
(Kj+1) l+n 

0 

OSj 

0 

• 0 

where is the analytic intersection of Z and 0 Q , and its denning ideal is 
spanned by J and Prom the inclusions 

(2 .5 ) J = (J,/C) D • • • D (TXj+l) D (l,JCi+2) D---D2 

we obtain the inclusions of analytic spaces 

(2 .6 ) 0o = Z1 c • • • c ZJ c Z^X C---CZ 

$J in (2 .4) is a sheaf map between free sheaves over Go, so it may be identified 
with a (finite dimensional) vector bundle map between (trivial) bundles over 
Go- Hence <F may be represented by a (finite dimensional) matrix with 
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parameters. Denote by &(X): (9{x},Br,o/mJ+1 - • ^ { X } , B r , o / m J + 1 5 where m 
is the maximal ideal in 0{x},Br,o> the restriction of & to the point (X,0) 
and define 

fi(Zj,X): = corankc[$j(X)] dime 
OCn,p 

(fu...Je,X\...,X-,zi+\...,zíl+1) 

We have for j < k: 

1 < ti(Zj,X) < ft(Zk\X) < fiv(X,0) 

Theorem 2.2. Let (V,0) C Bi C (C7\0) be an analytic space which is 
smooth except for an isolated singularity at 0, and let 0 r denote the Ba-
nach space of holomorphic vector fields on Vr with continuous extensions to 
dVr, r < 1, and let Z, Z^ = ZnQ30 C 0 r x Br be the universal critical set 
and its approximation sets. Then, there is a descending sequence of analytic 
subvarieties of finite codimension Ak, .4A+1 C Ak\ and an integer J such that: 

a) Z> fi ( 0 - AJ) = Zk PI (0 - AJ) for j , k > J 
b) /iV(X,0) = v(Zj,X) for X i AJ and j > J. 
c) The function V-multiplicity at 0 

fiv( ,0) :6r Z+U{oc} 

is upper semicontinuous and it is locally hounded at those points X 
where X has an isolated singularity on V at 0 (Qr has for this the 
topology whose closed sets are the analytic subsets). 

d) The subsets of Qr defined by /./.( , 0) > A" are analytic suhspaces and the 

minimum value of fly ( , 0) in 0 r is attained on an open dense subset Ti 

of er. 
e) The subset of 0 r formed by vector fields whose critical set at 0 has 

positive dimension is the analytic subspace of 0 r defined by C)A3. 
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Proof. For every j , the inclusion (J,/CJ'+2) C (J,./CJ'+1) induces an exact 

sequence of sheaves on 6 r x Br 

OQRXBJFCJ+1 

(2.7) 0r x Br MÇJ+2\0M-n j+1 OQRXBJFCJ+1 Zj+1 0 

U0rXBr /(IRJ+I)®E+n OQRXBJFCJ+1 Zj+1 0 

0 0 0 
where the first 2 columns may be interpreted as (finite dimensional) vector 

bundle maps over ©o- The corank of &+1(X) is equal to the corank of 

&(X) if and only if Kj+1/Ki+2(X) is contained in the image of &+l(X). 

The increase in the corank from &(X) to $-?+1(Ar) is the codimension of 

Image[*i+1(-Y)] fi /ICj+2(X)] C )Cj+1/JCj+2(X). 

A stratification of ©o consist of a disjoint decomposition of @o by subsets 

]?! , . . . ,TS where each I \ is an analytic subvariety minus another analytic 

subvariety (the ones that will actually appear have finite codimension). Since 

©o is irreducible there is one and only one component that is open. We will 

assume that for any stratification of 0O this open component is the first one 

We may first find a stratification of ©o so that the corank of $J+1(A) 

is constant on each strata. Then one may further stratify according to the 

dimension of Jm$-7+1 fl (/CJ+1 //C;+2)(Ar). In all, we obtain a stratification 

{rj+1, . . . , Pc+1} of ©o such that the codimension of Im^+1^(K^1 /K^2){X) 
is constant on the stratification, say dj*1 onT^+1. Since the numbers d3*1 are 

defined as coranks of a matrix with parameters, they behave upper semicon-

tinuosly, in the sense that if Ti is in the closure of r£+1, then d{+1 > d{+1. 

Due to this property, we may assume that r{+1 consists of all those points X 
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Df © o w h e r e t h e minimum is attained (i.e. d{+1 < 4+1 for k > 2), We have 

ti(zi+\x)>n(zj,x) + 4+'- xeOo 

d[ has to be 0 for j large, due to the fact that the sum of these numbers gives 
a lower bound to n(Z*,X), which is finite for X with an isolated singularity 
at 0. If d{+1 = 0, in T{+1 we have 

ICj+1/JCi+2 C Image[$j+1] 

or equivalently on the open set T[+1 we have 

K3+1 С (I.KJ+1) 

This last implies also that on T[+1 we have 

(2.8) JCj+k C (Z , /Cj+fc+1), k > 2 

which means that {Ak = 0O — r^}fc form a descending family of analytic 
spaces of 0 o , for k > j where d{ = 0. The intersection of the above family 
consist of those points where n(Z^X) is infinite. This set is exactly the set 
{(X, 0)/0 is not an isolated critical point of X at 0}. 

(2.8) also implies that if d{ = 0, then for k > j we have T\ C Tk+1. Let 

Ti 
K 

rf, which by the previous remark reduces to a finite intersection. 

Y\ is the open dense subset of 0O consisting of vector fields with minimum 
V-multiplicity at 0, and equal to d\ +r/j H \-d{ . Let T\ = 7ri(ri) . From 
the above description, the theorem is clear. • 

Now we begin to analyse the other component Zs\ng of Z. 

Lemma 2.3. The V-multiplicity of the holomorphic vector field XonVat 
a smooth point pofV coincides with the multiplicity (or the index) of the 
vector field X\y at p. 
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Proof. We may find coordinates (^i , . . . , z n ) around p such that J — 

(z;v+i,. . . ,^n) and the condition that the vector field X is tangent to V 

is that Xj G J for j = N + 1 , . . . , n . Hence 

/Jiv(X,p) = dime öcn,o 
(ZN+i,... ,2n,A\... ,An) 

= dime öcn,o 
(ZN+i,... ,2n,A\... , 

(2.9) = dime OĈ X{0},0 
;A'1(5,0),...,A^(5,0) 

/*(*|v,p) 

A sheaf T on 0 r x Br is Qr-anaflat ([Dol], 66) if for every point (A", z) there 

is a finite locally free resolution 

0 —> C„ —• • £n —>T —• 0 

in a neighbourhood of (AT, z) such that its restriction to {A"} x Br is also an 

exact sequence. 

Proposition 2.4. If p ^ 0 is an isolated critical of X G Qr, then Ozr is 

Qr-anaûat at (X,p). 

Proof. If (A",p) G Zr with p ^ 0 an isolated singularity of X, then Lemma 

2.3 shows that Zr at (A",p) is a complete intersection: 

2"x,p = (zpf+i,... , zn, A"1,. . . ,XN). 

The generators of Jx,p form a regular sequence, so the Koszul complex of the 

regular sequence ([G-H], p.688) gives a finite locally free resolution of Ozr-

The restriction of this complex to {A'} x Cn is the Koszul complex of the 

restricted generators, who also form a regular sequence. Hence the restricted 

sequence is also exact. So Ozr is 0r - anaflat at (AT,p). • 

Let now X G 0 r with an isolated critical point at 0, let s < r be such that X 

is non-vanishing on Vs — {0}, and let 2s = mm{\\X(z)\\ / z G dV8} and consider 
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the ball U = U(X, e) C 0 r . The projection map t t j : ZF = Z fl (U x BA) U 
is a finite map by Propositin 2.1 (see [G-R], where a finite map is a closed 
map with finite fibers). We want to analyse the sheaf TS\+OZ'- The points of 
Z' — (0O fl U) are 7Ti-anaflat by Proposition 2.4 and the points of I \ C Go, 
consisting of (TV, 0) with TV of minimal V-multiplicity \iy at 0, are also 7Ti-
flat (since they have constant multiplicity (see [Do2], p.58)). Hence TCI*OZ* 

is locally free on 7Ti(ri) = T\ of rank 

(2.10) µv+ 
V(Pi)=0 

PJ£VS-{0} 

Vv(Y,Pj) y E U fl f i 

where the V-multiplicity of Y at 0 is py. This number is independent of s, for 
s sufficiently small and of Y G U fl Ti. We will call it the Euler characteristic 
ofX at 0, and denote it by xV(X,0) (See [Ser]). 

A family of holomophic vector fields parametrized by the irreducible and 
reduced complex space of finite dimension T is a holomorphic map </>: T —• 0r . 
The family <j> induces a map (<f>,ids):T x Vs —• 0 r x Vs, and we will denote 
((/>,idS)*(Z) C T x Vs by ZT,S> Let KIT'- ZT,S —• T be the projection to the 
first factor. If TTIT is a finite map, then ^\T*OZT,s is a coherent sheaf on T, 
and hence is locally free on a Zarizki dense set T' of T, say of rank r. For 
t E T' we have 

r = uv(Xu0) + 
A\(Pi )=0 

P i € V s - { 0 } 

/*v(Art,pj) 

and for t £ T we have 

(2.11) r = x№2T. . ,0{*})4 
-V,(;>J)=0 

P j € V , - { 0 } 

/*v(Art,pj) 

where 

(2.12) xlOI(OZT^O{T}) :(-1),^,b,,.,(°*...(...,'c,w) 
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is the Euler characteristic of torsion groups of OzTf8f(tt0) over 0{ty, where 

Tor0(OzTt8,O{i}) = nv(Xt,0) (see [Do2]). Recall from Proposition 2.1 that 

Qfr C 0 r is the open dense subset consisting of vector fields having an isolated 

critical point at 0. 

Theorem 2.5. For X G ®'r, and 0 < e, we have: 

1) For any family of vector fields {Xt}t£T, parametrized by a finite dimen­

sional analytic space (T, 0) —• (0r, Ar) such that the V-multiplicity of 

the general vector field Xt of the family is minimal \xy we have: 

(2.13) Xv(A',0) \o°r(02T..,0{X}) 

2) For Z e U(X, e) we have 

(2.14) Xv(Xt0) = xv(Z,0) + 

Z(PJ)=0 
Pj€A' . - {0} 

Pj€A'.-{0} 

3) ForXe Q'r we have: 

0 < xv(X,0) <ttv(X,0) 

and x v 0 ) = ßv(X, 0) if and only if ZR is iri-anaüat at (X, 0) (in 

particular inti). 

Proof. Let X G 0 r with an isolated critical point at 0, let s < r be such that 

X is non-vanishing on Vs — {0}, 2s = min{||-Y(z)|| / z G dVs} and consider 

the ba l lU = U ( A : , s ) C 0 r . 

1) xv(X, 0) is defined by (2.10), where Y has minimal multiplicity fly at 

0. If an element X\ of a family {Xt} has minimal V- multiplicity at 0, then 

the general element will have at 0 minimal multiplicity fiy. At these points 

ZT,S will be T-flat, since they represent 0r-anaflat points of 2r, and so the 

general rank of KiT*OzT,a ls again (2.10). (2.11) applied to X on Vs gives 

r = XT{°ZT,S,°{X}), hence we obtain (2.13). 
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2) Take a 1-parameter family {Xt}teT=c in U(A", s) which contains X and 
Z such that the general element has minimal ^-multiplicity at 0. x(A, 0) is 
defined by (2.10), where Y has minimal multiplicity nv at 0. Since this is 
the only condition needed to apply part 1 of the theorem, assume that Y is 
near to Z. Assume that Z vanishes at 0 ,p i , . . . ,pc. Then part of Y is near to 
each part of the critical set of Z. Since ZT,S is T-flat at p i , . . . ,pc, there are 
actually as much multiplicity near pi for Y as for Z at pj. The multiplicity 
of Y near 0 is xv(Z^O) again by definition (2.10) applied to Z, where a new 
e' < e is used in the definition in order to get rid of p i , . . . ,pc. Hence we 
obtain (2.14). 

3) Consider a 1-parameter family which contains X with 0 as only critical 
point in Vs and whose general element has minimal ^-multiplicity. Then 
KI*Ozc is a coherent sheaf on C whose rank is \ y ( X , 0), by part 1. Hence 
the dimension of n\*Ozc ® 0{o} is greater than or equal to the general rank. 
If the rank is constant, then Z is -K\- anaflat. • 

Let X E ©r? we say that the zero set of X does not bifurcate if there is 
s > 0 and s > 0 such that for Y E U(A",t) C ©r we have that the only 
critical point of Y on Vs is 0, (that is, X has an isolated singularity at 0 as 
well as any sufficiently near vector field in @r and there is no other critical 
point uniformly in a neighbourhood Vs of 0). The critical set of a vector field 
X on Vr does not bifurcate if and only if the zero section Oo coincides (as 
sets) with ZR in a neighbourhood of (A\0) in 0 r x Vr. 

Theorem 2.6. Let (V,0) C Bi C ( C ' \ 0 ) be an analytic space which is 
smooth except for an isolated singularity at 0. then the set of points in Qr 
whose critical set does not bifurcate contains the connected dense open subset 
Ti C ©r- consisting of vector fields with minimum V-multiplicity 

Proof. Using previously introduced notation, what we have to prove is that 

©sing H Ti = (j) or equivalently that if (A\ 0) E © s i n g then the ^-multiplicity 

at 0 cannot be minimal. 
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If ( X , 0) G ©sing, then we may find a 1-parameter linear family {Xt = 

X + tY} in 0 r such that its critical set 

C = {(*, z) G C x Br/z G Vrì Xt(z) = 0} 

has at least 2 local irreducible components at (AT, 0), the zero section Co = 

C x {0} and the others, say C\. Formula (2.14) applied to Z = X + eY is 

(2.15) Xv(X,0) = xv(X + eY,0) + 

X+eY(PJ)=0 

pv(X + eY,Pj) 

The points pj G C\ have a strictly positive contribution to the right hand side 

of (2.15), hence xv(X,Q) > Xv(X + sY,0). From this inequality we obtain 

that fiv(X, 0) cannot be minimal, for in that case \ \ / ( X , 0) = pv(X, 0) would 

also be minimal. • 

Example. Let Xt = tz\-^ + ¿ 2 ^ + (2* — 1)^3^7 be a family of vector 

fields on C3 and let V be the surface defined by / = z\ — 2223 . Xt is tangent 

to V, since df(Xt) = 2tf. As vector fields in C3, Xt has 0 as only critical 

point, except if t = 0 or 1/2. X0 has a line of critical points, but on V it has 

an isolated critical point. For t ^ 0,1/2 one has that 

(z\ - z2z3,tz1,z2,(2t - 1)23) = ( 2 1 , 2 2 , 2 3 ) 

so that the V-multiplicity is 1 for / ^ 0,1/2. For f = 0, one has 

{z\ - z2z3,tzi, z2, (2t - 1)23) = [z\, 22 , 23) 

so that the F-multiplicity is 2 for * = 0. So we see the upper semicontinuity 

behaviour of the ^-multiplicity. 
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Remark. For a family {X + tY} with X + sY of minimal V- multiplicity we 

have 

Xv(X,0) = ßv(X,0) - dim[To4,TxB JOzT,„(t,0VO{t})} 
This second term can be computed as the codimension of 

(tfi,tft,t(X* + tY1 ),...,t(Xn + tYn)) 

in 
(t) fi (A,..., /^Y1 + /V1,... , Ä'n + tYn) 

(see [Do2]). 

3. The index of holomorphic vector fields 

Let y be a (reduced complex) analytic space of complex dimension iV, 
with compact singular set and with boundary, dV, a smooth manifold of 
real dimension 2N — 1 oriented in a natural way. Let W be an orientable 
differentiate manifold of real dimension 2N with boundary dW diffeomorphic 
to dV (orientation preserving). We may extend this diffeomorphism to a 
diffeomorphism of a neighbourhood of the boundaries </>: V —• W. Given a 
C°-vector field X on V;, non-singular on <91\ we may transport it via <j> to a 
vector field X' defined on W and then define the index of X onV as the index 
of X' on W7, and denote it by Ind^ (À', V, dV). This number depends on the 
choice of manifold TV, but as we have seen in the first section, the choice of a 
different W changes the index by an integer uniformly for all vector fields. 

Given an analytic space Vy one may choose as TV a desingularization of V. 
In case V is a germ of a hypersurface with an isolated singularity defined by 
the equation / = 0, then TV can be defined by / = s, for sufficiently small e 
(or more generally, if V is a complete intersection, or a smoothable germ with 
an isolated singularity, then TV can be the smoothening (see [Se])). 
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If p is an isolated singular point of V and X is a holomorphic vector field 
defined in a neighbourhood of p non-vanishing in a pointed neighbourhood 
of p, then the index of X at p Ind\v{X,V,p) is defined as hx<iw(X, V, c?V), 
where V is a sufficiently small neighbourhood of p in V, and W is a manifold 
with dW « dV. The function Indjy(-, V,p) is well defined up to adding an 
integer, choice that depends on the election of the bounding manifold W. 

The objective of this section is to compare the index with the ^-multiplicity 
of X at 0. We recall that at a smooth point of V, if one uses the model of a 
ball as bounding a neighbourhood of the boundary of a smooth point, then 
the index coincides with the multiplicity (Lemma 2.3). 

Theorem 3.1. Let (V,0) C Bi C (C",0) be an analytic space which is 
smooth except for an isolated singularity at 0, then there is a constant K 
such that 

(3.1) Indw(X, V, 0) = xv(X, 0) + K 

for X in the dense open set 0 ' of vector fields in 0 r with an isolated singularity 
at 0, where xv denotes the Euler-Poincare characteristic of X at 0. For X in 
the dense open set of 0 ; where the universal critical set Zr is Qr-anaflat we 
have 

(3.2) Indw(X, V, 0) = Liv(X. 0) + K 

Proof. If X E 0 r is a vector field on V whose critical set does not bifurcate, 
then the index is locally constant at since the index on the boundary 
remains constant, and it is equal to the sum of the local indices, but the only 
critical point is located at 0. Hence the index is constant on the connected 
set B of Theorem 2.6. By Theorem 2.2.d the minimum of the ^-multiplicity 
is attained on a dense open subset Ti C B. 

Hence there is an integer K satisfying (3.2) for X G Ti (due to the fact 
that both functions are constant there). 
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Let now X G ©r with an isolated critical point at 0, let s < r be such that 
X is non-vanishing on V8 — {0} , and let 2s = mm{\\X(z)\\ /z G dVs} and 
consider the ball U = U(Xye). For Ar + tY G f1 fl U we have 

lndw(X, V, 0) = lndw(X + tY, V, 0) + 
X+*y(Pi )=0 
P j€V„-{0} 

InduK-X + t y , ^ - ) 

And hence 

Indw(X, V, 0) = [ x v ( A + *y, V, 0) + A1 + 
-V+/y(Pi)=0 
P i € V . - { 0 } 

^y(A" + tY,pj) 

since A" + ^y has minimal V-multiplicity at 0 and (3.1) and the fact that 
at the smooth points the V-multiplicity is equal to the index (Lemma 2.3). 
Using now (2.15) we obtain (3.1). (3.2) follows now from Theorem 2.5.3. 

Corollary 3.2. Let (V,0) C Bi C (Cn,0) be an analytic space wich is 
smooth except for an isolated singularity at 0, then there is a constant L such 
that Indw(X, V, 0) > L for every germ of holomorphic vector field X on V 
with an isolated singularity at 0 on V. 

Proof. Let K be as in Theorem 3.2. Since \v(X, 0) > 0 for any X G 0 ' , we 
have 

Indiv(XV,0) > A" 
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