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CODIMENSION O N E FOLIATIONS IN C P n , n > 3, 

W I T H K U P K A C O M P O N E N T S 

D. Cerveau and A. Lins Neto 

1. INTRODUCTION 

1.1 - Bas ic notions: 

A codimension one holomorphic foliation in a complex manifold M can be 

given by an open covering (Ua)aeA of M and two collections (wa)aqA and 

(9ap)uar\Upj:<j>, such that: 

(a) For each a G A, wa is an integrable (wa A dwa = 0) holomorphic 1-form 

in Î7 a , and wa ^ 0. 

(b) If VOL fl Up ^ <f> then wa = gap • wp, where # a / 3 € (9*(i7 a D Up). 

Recall that 0(V) is the set of holomorphic functions in V and 0*(V) = 

{g e o(V)\g(P) ? o Vp e v } . 
Let ^ = f f J 7 r v ) r v < = 4 , ( r ^ ) / v C 4 Y ^ m r 7 . n r 7 ^ ^ be a foliation in Af. The sin

guiar set of T. SiT), is by definition S (J7) = 
EA 

S a , where 5 Q = {p G 

# a | w a ( p ) = 0 } . It follows from (a) and (b) that S ( J 7 ) is a proper analytic 

subset of M. The integrability condition implies that for each a G A we can 

define a foliation Ta (in the usual sense) in Ua — Sa^ whose leaves are solutions 

of wa = 0. Condition (b) implies that if UaHUp ^ then Ta coincides with 

Tp in Ua n Up - S ( J 7 ) . Hence we have a codimension one foliation defined in 

M - S ( J 7 ) . A leaf of T is by definition, a leaf of this foliation. 

If SiJ7) has codimension one components, then it is possible to find a new 

foliation Ti = {Ua)a€A, (wQ)aGA, (9otß)uanUß?4>) such that (SF1) ) has no 

S. M. F. 
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components of codimension one, 5 ( ^ i ) C S{F), and the leaves of T and 

T\\{M — S(T)} are the same (in fact wa = fa • wa, fa £ 0(Ua)). Prom now 

on all the foliatons that we will consider will not have codimension 1 singular 

components. 

1.2 - T h e Kupka set: 

In 1 9 6 4 I.Kupka proved the following result (see [K]); 

1 . 2 . 1 T H E O R E M . Let w be an integrable holomorphic 1-form defined in a 

neighborhood ofp E Cn, n > 3 . Supose that wp = 0 and dwp ^ 0 . Then there 

exists a holomorphic coordinate system (# , y, 2 3 , . . . , zn) defined in a neighbor

hood Uofp such that x(p) = y(p) = 0 and w = A(x, y)dx + J5 (x , y)dy in this 

coordinate system, where A(0,0) = B(0,0) 0 and If (0,0) If (0,0) ¿ 0 . 

In fact Kupka proved this result in the real context, but his proof adapts 

very well in the holomorphic case. 

1.2.2 Remarks: Let w,A,B and U be as in Theorem 1 . 2 . 1 . 

(i) The set {(x, y, 2 3 , . . . , zn) G U\x = y — 0 } = V is containned in U. If 

the singular set S of w has no codimension 1 components, then V is 

a smooth codimension 2 piece of 5 and ( 0 , 0 ) is an isolated solution of 

A(x, y) = B ( x , y) = 0 . By taking a smaller U if necessary we can suppose 

that 5 fl U = V. 

(ii) The foliation induced by w = 0 in U is equivalent to the product of the 

singular foliation in U D { ¿ 3 = c 3 , . . . , zn = cn} C C2 x ( 0 3 , . . . , cn) given 

by Adx + Bdy = 0 (or by the differential equation x = —B,y = A), by 

the codimension 2 foliation in Î7 given by x = c i ,y = C2. The singular 

set in this case is V = = ?/ = 0 } . 

Let T = ( ( t / a ) a € A , H a )aeA, (9<*p)uanurf<i>) be a foliation on M . We define 

the Kupka set of JF by K(?) 
Aea 

i f a, where 

Ka = {p£ Ua\wa(p) = 0 and dwa(p) ^ 0} 
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CODIMENSION ONE FOLIATIONS IN CPn 

Since wa = gapwp in Ua H Up ^ <̂>, we have dwa = dga/? Awp + gapdwp which 

implies that Ka fl Up = Kp C\Ua. It follows from (i) that K^T) is a smooth 

complex codimension 2 submanifold of M. In fact K(!F) = S(T) — W(^") 

where W(^*) 
a£A 

wa,wa = {Peua\wa(p 0 and dwa(p) = 0 } . Observe 

that WY.77) is an analytic subset of M. 

1.2.3 Definition: We say that K is a Kupka component of ^ if K is an 

irreducible component of 5 ( ^ ) and i f C K(T). Observe that a Kupka com

ponent of T is in particular a smooth connected codimension 2 analytic subset 

of M. 

Let V be a connected codimension 2 submanifold of K{F). It follows from 

the local product structure (see 1.2.1 and 1.2.2) that there exists a covering 

(Bi)içi of V by open sets of M , a collection of submersions (if>i)i£i, &i —> 

C2, and a 1-form w = A(x, y)dx + B(x, y)dy defined in a neighborhood C of 

(0,0) G C2, such that: 

(a) ipi(Bi) C C for evere i G / . 

(b) (0,0) is the unique singularity of w in C and V n = ^ ( O j O ) , for 

every i G / . 

(c) F(Bi is represented by w* = i/>*(w). 

We will say that ,F has transversal type w or X along V, where X is the 

vector field —Bd/dx + Ad/dy. The linear transversal type of T along V is, by 

definition, the linear part of X at (0,0) in Jordan's canonical form, modulo 

multiplication by non-zero constants. Let L be the linear part of X at (0,0) 

in Jordan's canonical form. We have the following possibilities: 

(i) L is diagonal with eigenvalues Ai ^ A2. 

(ii) L is diagonal with eigenvalues Ai = A2 7̂  0. 

(iii) L is not diagonal with eigenvalues Ai = A2 ^ 0. 

Observe that, since §f (0,0) - §J(0,0) ^ 0, we have tr(L) ^ 0 and so the 

possibilities Ai = A2 = 0 or Ai = —A2 cannot occur. 

In case (i) the two eigendirections of L induce via the submersions two 
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line subbundles of the normal bundle v(V) of V in M. We will call these 

line bundles L\ (relative to Ai) and L2 (relative to A2). It is clear that 

v(V) = L\ © ¿2- In case (iii) L has just one eigendirection which induces in 

the same way a line subbundle L\ of v(V). In the case of Kupka components 

we have the following (see [G.M- L.N]): 

1.2.4 - T H E O R E M . Let dim(M) > 3 and K be a Kupka compact component 

of ?\ We have: 

(a) In case (i), if C(L{) is the first Chern class of L{, i = 1,2, considered in 

H*(K,C), then AiC(L2) = A2C(Li). 

(b) In case (iii) we have C{L\) = 0. 

(c) In case (i), if A2/Ai = p/q, where pyq G Z+ are relatively primes and 

C(L\) ^ 0, then X is linearizable. 

1.3 - Codimension 1 foliations of CPn, n > 3 : 

A holomorphic foliation in CPn can be given by an integrable 1-form w = 

n 

2=0 

(a) 

W{dzi (w A dw = 0), with the following properties: 

w0,...,wn are homogeneous polynomials of the same degree > 1 

(b) ÍR(W) 
n 

2=0 

WiZi 0 (R 
n 

¿=0 

Zid/ozi is the radial vector field). 

This form can be obtained as follows: let TT: Cn+1 - { 0 } -> CPn be the 

canonical projection and T = ( (J7a)a€A, K ) a € A , {9a(3)uar\u^<i>) be a folia

tion in CPn. Let ^ * = ((C/2)o€A,(^i)o€A,(pS/j)a«n^«) be the foliation 

in Cn+1 - { 0 } defined by U* = T R " 1 ^ ) , < = 7r*(wa) and ^ = 5a/3 o TT. 

Since for 17* fl Up PI [7* ^ <f> we have g*^ • • #*a = 1, we can use Cartan's 

solution of the multiplicative Cousin's problem in Cn+1 - { 0 } (see [G-R]) to 

obtain an integrable 1-form rj in Cn+1 - { 0 } such that for any a G A, we have 

ri\U* = ha • w*, where /ia G (Ua) Prom Hartog's Theorem (see [G-R]), 

77 extends to a holomorphic 1-form ¡1 in Cn+1. If \i = + Mfc+i + • • • is the 
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Taylor development of fi at 0, where the coefficients of fij are homogeneous 

of degree j and ¡ik ̂  0, then it is easy to see that w = is integrable. We 

leave it to the reader the proof of the following facts: 

(c) S(w) = S(?*) = n-i(S(f))U{0}. 

(d) L* is a leaf of T* iff L* = ^(L), where L is a leaf of T. 

(e) If k = degree (t») > 2, then K(f*) = ^{K^)) = {pe Cn+1|u;(p) = 0 

and dw(p) ¿ 0 | . 

When degree (w) = 1 we can have w = z\dz-i — Z2<lz\ and in this case 

K{F*) = {*! = z2 = 0 } = tt-HA"^) U { 0 } . 

Observe that condition (b) is equivalent to conditions (c) and (d) and means 

that the lines through the origin are tangent to the leaves of F*. 

Observe also that given an integrable 1-form w in Cn+1 satisfying (a) and 

(b) we can induce a foliation F(w) in CPn as follows: let (E/t-)JL0 be the cover

ing of CPn by affine coordinate systems, where U{ = { [^o : . . •: zn] G CPn\z{ ^ 

0}. Let fa: Ui -> Cn, fa[z0:...: zn] = (20/**'> • • •, .. •, W*2) = 
(4,-Define i/t- = V*07?), where *?* = H(*f = 1) = 

0 } . Let t/>¿: Ui -» C n , ф([г0: ...:zn] = /Zi, Zi+i/Zi, . . . , znJz2) = 

(#0, • • • . • . ?#n) Define r/¿ = ti m where 77* = wUzi = 1 = 

j"#i 
Wj(z0ì...,z¿-i, ,Zi+i,....zn)dzj. It is not difficult to see that if dg(w) = 

fcthen r¡i\V¡nUj (x^fijlUiHUj. Hence T{w) Wj(z0ì...,z¿-i, 1,Zi+i,....zn)dzj. 

is a foliation on CPn. 

Remark: Two integrable 1-forms w and r¡ in Cn+1, with properties (a) and 

(b) define the same foliation iff w = À • rj where À G C*. 

It follows from the above considerations that the space of foliations in CPn 

can be written as U m > i P m , where Pm is the projectivization of the following 

space of polynomial 1-forms: In {w\w <i=0 Widzi,dg(wi) m Vi 

0 , . . . , n , w A dw 0, 
n 

¿=0 
Z3W3 0 and the set [w0 = • • • = wn = 0} has all 

irreducible components of codimension > 2 } . 
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Observe that Im is an open subset of the following algebraic set 

Em = {w\dg(w) = ra, w A dw = 0, 
n 

i = 0 

Z{Wi = 0 } 

Problem - Describe in some way the irreducible components of Pm. Let us 

see some examples. 

1,3.1 - Example: Let f,g be homogeneous polynomials in Cn+1, n > 3, 

where dg(f) = k > 1, = ^ > 1 and fc/^ = p/q where p and q are 

relatively primes. Assume that: 

(*) V z e {/ = g = 0 } - { 0 } we have df (z) A dg(z) ¿ 0. 

We will use the notation / in g ( / = 0 intersects p = 0 transversely) in this 

case. We observe that Noether's lemma implies that if / and g satisfy (*) 

then { / = g = 0 } is a complete intersection. 

Let w = qgdf — pfdg. It follows from Euler's identity that iR,(w) = 0. 

Moreover w A dw = 0 because w = f.g.r), where 77 = q& — p ^ and drj = 0. 

Therefore w induces a foliation in CFn, F{w), such that: 

(i) 5(^(u ; ) ) = ir{p 96 0 I u;(p) = 0} = 5 (singular set) 

(ii) 2T(^(.u;)) = 7r{p ^ 0 I / (p) = p(p) = 0} = K (Kupka set) 

(iii) fq/gp, considered as meromorphic function on CPn, is a first integral of 

T{w). This follows from the fact that w = gp+1 fl"qd{fq/'gp). 

(iv) w £ Pn where n = k + £ — 1. 

As a consequence of the techniques developed in [G.M-L.N.] it is possible 

to prove the following result: 

1.3.2 T H E O R E M . Let To = F(w), where w is as in example 1.3.1. Then 

there exists a neighborhood U of To in Pn such that if T £ ZV then there are 

polynomials f and g of degrees k and t respectively, and T = T{qgdf—pfdg). 

As a consequence we have: 
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CODIMENSION ONE FOLIATIONS IN CPn 

1 . 3 . 3 COROLLARY. There are irreducible components in Pm (for all m > 1 ) 

whose foliations are defined by meromorphic functions in CPn, n > 3 . 

Concerning Kupka components we will prove in § 3 the following result: 

1 . 3 . 4 THEOREM A . Let T be a foliation of CP71, n > 3 , which has a Kupka 

component K of the form {[z] \ f(z) = g{z) = 0 } where f and g are homo

geneous polynomials and f JTÎ g. Let dg(f)/dg(g) = p/q where p and q are 

relatively primes. Then: 

(a) If dg(f) = dg(g), then T is the foliation induced by the form fdg — gdf. 

In particular f/g is a first integral ofT. 

(b) If dg(f) < dg(g) then T is induced by a form of the type qg\df - pfdgi, 

where gi = g + h.f is homogeneous and dg(g\) = dg(g). In particular 

fq/g\ is a first integral of T. 

1.3.5 Example: A logarithmic form is one of the type 

(*) W = fl . . . fr 

r 

3=1 

dfj 

Si 

where Ai , . . . ,Ar £ C* and / i , . . . , / r are holomorphic functions. When 

/ i , . . . , fr are homogeneous polynomials in Cn+1, dg(fi) > 1 for i = 1 , . . . , r, 

and 
r 

¿=1 
Kdg(fi) = 0 , then w induces a foliation T(w) in CP71, where T(w) £ 

Pm, m = 
r 

¿=1 
< * < ? ( / . ) - 1 . Observe that 

r 
iidg(fi) = 0 is equivalent to the con

dition 
n 

¿=0 
ZiWi = 0. We will use the notations F{ {[z] £ C P " m = o) 

and Fij { W e Cpn ji(z) 
fi(z) 0 } if * 7a 3- We will assume that 

fi>• • • > fr are irreducibles. The foliation ji(z) induced by w in CPn has the 

following properties: 

(i) For every i = 1 r F* = Fi - S(F(w)) is a leaf of T{w). 

(Ü) The holonomy of Ff is linearizable and is conjugated to a subgroup of the 

group of linear transformations of C generated by the set Í9j I 9j(z) = 
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exp(2wi\j/Xi).z, j = l , . . . , r , j ¿ i}. The holonomy of a leaf L ^ 

Ff,...,F* is trivial. 

(iii) For any i ^ j , Fij C S(T(w)). Moreover, if À,- ^ Xj then F¿j - V is 

contained in the Kupka set of T(w), where V = {[*] I 4f«0O A dfAz) = 

0 } U V ' , V ' = 
k # i,j 

{W I A W = 0} In particular K(T(w)) C F 

(iv) The function f*1 ... f£r (in general multivalued) is a first integral of 

T(w). The following result is known: 

1.3.6 T H E O R E M . (J. Omegar) - Let f0 be the foliation induced by w in CPn, 

n > 3, where w is like in (*) of 1.3.5. Assume that / i , . . . , fr are irreducibles 

and for some i G { 1 , . . . , r}, say i = 1, we have: 

(a) Fi is smooth. 

(b) For any subset { j i , . . . , js} C { 2 , . . . , r } where ji < • • • < js and any 

p G Fi n Fj1 n • • • fl Fj then Fi, Ft.,..., Fi. intersect multitransversely 

at p . 

(c) For some j > 1 we have \j/Xi £ R . 

Then there exists a neighborhood U of To in Pm such that if T G It-

then T is induced by a logarithmic form of the same type of w, say r) = 

0 1 , . . . , P r 
r 

3 = 1 

dgj 
9j 

where dg(gj) = dg(fj),j = l,..-,r. 

It follows that: 

1.3.7 COROLLARY. There are irreducible components in Pm (for all m > 1) 

whose foliations in an open and dense subset are defined by logarithmic forms. 

1.3.8 Definition: We say that a meromorphic 1-form w, defined in some 

complex manifold M, has an integrating factor, if there exists a meromorphic 

function / in M , called an integrating factor, such that, d( j) = 0. Remark 

that for w as in (*) of 1.3.5, the function / = fi... fr is an integrating factor. 

In §3 we will prove the following result: 
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1 . 3 . 9 THEOREM B . Let J7 be a foliation in CPn, n > 3 , such that there is 

an analytic subset N C S^) with the following properties: 

(a) cod(N) = 2 and N = {[z] G CPn | f(z) = g(z) = 0 } , where f and g are 

homogeneous polynomials on Cn+1. 
(b) K(T) H N is open and dense in N and moreover for any connected com

ponent C of K(T) fl N the linear part of the transversal type of T at C 

has eigenvalues Ai(C) ^ 0 ^ A2(C), where A2(C)/Ai(C) £ R. 
(c) For any p G N — K(T), T can be represented in a neighborhood ofp by 

a holomorphic form which has an integrating factor. 

Then there exists a closed meromorphic 1-form rj in CPn which represents 

T outside its divisor of poles. In particular T is induced by a homogeneous 

1-form in Cn+1 which has a meromorphic integrating factor. 

Furthermore T is of logarithmic type if we assume that: 

(d) K(T) is dense in each irreducible component of codimension 2 of 

(e) For any connected component C of K(T) the transversal part of T at C 

has linear part non degenerated (i.e. 0 is not an eigenvalue). 

Remarks: 

1.3.10 - It will follow from the proof that condition (b) can be replaced by; 

(b') A2(C)/Ai(C) ^ Q and the transversal type is linearizable. 

1.3.11 — In [C-M] the authors give some sufficient conditions for a holomor

phic integrable 1-form have a local integrating factor. One of their results 

implies that (c) follows from (b) and 

(c') For some neighborhood U of p G N - K(F), T\U has a finite number of 

analytic leaves which intersect multitransversely in the points of N. 

1.4 An example: Let K be the twisted cubic in CP3, which is defined in 

homogeneous coordinates (x,y,z,w) G C4 by the equations / = g = h = 0, 

where 

(*) / = XW - YZ, q = XZ — Y2 and h = YW - Z2. 
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We will prove here that there exists no foliation in CP3 having K as a Kupka 

component. 

Let Uq and U4 be the affine coordinate systems in CP3, whose points are 

of the form [1 : u : v : w] and [x : y : z : 1], respectively. Then K C Uo U U4. 

Moreover K fl Uo and K fi U4 can be parametrized by (fo(t) = [1 : t : t2 : t3] 

and <p4(s) = [s3;s2 : s : 1] respectively, where <po(t) = <p4(s) iff s = 1/t. 

Let fo(u,v,w) = f(l,u,v,w) = w — uv, go(u,v,w) — g(l,u,v,w) — v — u2, 

f4{x,y,z) = f(x,y,z,l) = x - yz and h4(x,y,z) = h(x, y, z, 1) = y - z2. 

Remark that K fi U0 = {/0 = go = 0 } and i f fl C74 = { / 4 = /i4 = 0 } . 

Suppose by contradiction that there exists a foliation T on CP3 whose 

Kupka set contains K. Let it; be a homogeneous integrable 1-form in C4 such 

that ÌR(W) = 0 and it; represents ^ Let w = 
3 

2 = 0 

OLidZi, where dg(a.i) = A:, 

i = 0, . . . 4 . If wo = it; I {zo = 1} = ai(l,u,v,w)du + 0*2(1,u, v,w)dv + 

« 3 ( 1 , u, v,w)dw and u>4 = it; | {z4 = 1} = ao(x, y, 2 , l)cfo + a\(x, y, 2 , l)dy + 

^ 2 ( ^ 5 Î/? 2 , l ) d 2 , then T\Uo is represented by wo and T\U4 by W4. Moreover in 

Uo H t/4 we have u>o = £~(fc+1)it;4. 
Now, consider the maps z/>o, t/>4: C3 —• C3 given by ipo{u, v, it;) = (iz, <7o(̂ 5 it;), 

fo(u,v,w)) and %jj4(x,y,z) = (f4(x,y,z),h4(x,y,z),z). It is not difficult to 

see that ^ 0 and t/>4 are diffeomorphisms, so that we can consider (u, go? / 0 ) and 

( / 4 , / 1 4 , 2 ) as coordinates in ?7o and [/4 respectively. Moreover ipo(K CiUo) = 

{ / 0 = #0 = 0 } and ip4(KC\U4) = { / 4 = h4 = 0}. Observe also that the inverse 

maps of ^ 0 and xjj4 are polynomials, so that we can write 

w0 = A(u, g0, fo)du + B(u, g0, fo)dg0 + C(u, g0, fo)dfo 

w4 = D(f4,h4,z)df4 + E(f4, h4, z)dh4 + F(f4, h4, z)dz 

where A, B, C, D, E and F are polynomials. Let us analyze wo. Consider the 

vector field 

X = 
ÔC 

dgo 

dB 

dfo 

d 

du 
'OA 

,dfo 
dc 
du 

d 

dgo 

dB 

du 

dA 

dgo 

d 

dfo 

As the reader can see, the integrability condition is equivalent to ix{wo) = 0. 

Moreover, in the proof of Kupka's Theorem (1.2.1) it is proved that the flow 
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of X leaves invariant the Kupka set. Since {/o = go = 0 } C K(T) fll/o, we 

must have X(u, 0,0) = dc 
dg0 

dB 
dfo (u,0,0 _d_ 

du so that, 

( i ) 
dA 
df0 

[u.0,0 dc 
du 

u,0,0 and 
dB 
du 

(u,0,0) 
dA 
dgo 

(« ,0 ,0) . 

On the other hand, since K C StJ7), we can write 

u>o = (ai(u)g0+a2(u)fo)du+(bi(u)go+h(u)fo)dgoHci(u)9o+c2(u)fo)dfo+.(u)9o+c2(u)fo)dfo+• • 

where a i , . . . , c2 are polynomials in u and the dots mean terms of order > 2 

in (<7o,/o)- This implies that: 

X = (Cl(u) - b2(u)) d_ 
du 

a2(u) 
d_ 

9o0 
d 

dfo 

where the dots mean terms of order > 1 in (<7o,/o)- Prom (1) we get that 

ai = a2 = 0 and X(u,0,0) = (ci(u) — & 2 ( « ) ) ^ . On the other hand, since 

K C K{F), we must have dw0(u, 0,0) ^ 0 VM e C, and this implies that 

ci(u) — ^ ( u ) 7^ 0 Vu € C. Hence ci — 62 = c, c ^ 0 a constant, because c\ — 62 

is a polynomial. Prom these considerations it is easy to see that: 

(2) dwo\K H Uq = cdgo A d/0. 

With an analogous argument it is possible to conclude that 

(3) dw±\K fl £/4 = cd/4 A d/14, where c ^ 0 is a constant. 

Now, recall that wo = x (fc+1)w4 in Uo fl [/4. Since x = along i f fl £/4 and 

^4 ( 0 , 0 , z) = 0, we have: 

dw0\K r\U0nU4 = W 4 ( 0 , 0 , z) ^-3(fc+1)^4(0,0, z) 

which together with (2) and (3) implies that: 

(4) cdgo A dfo = 2 - 3 ( f c + i ) ^ 4 A a long K n Uq n ^ g = ̂ -3(fc+1)^4(0,0, z) 
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As the reader can verify easily, we have the following relations 

' fo\U0DU4 = x-2f4\u0nu4 
goiUoHUi = x-¿\zf4-yh4]\U0nU4 

This implies that 

(5) 

dg0Adf0\KnU0nU4 = yx^dh4Adf4\KnU0nU4 = z-10dh4Adf4\KnU0nU4 

because yx 4 = z 10 along K fl U4. 

Finally, from (4) and (5) we get that 10 = 3(fc + 1), where k £ N, which is 

a contradiction. 

This example motivates the following: 

Problem: Are there foliations on CPn, n > 3, which admit a Kupka com

ponent which is not a complete intersection? 

We think that the answer is no. 

2. BASIC RESULTS 

In this section we will state and prove some of the results that we will need 

in §3. 

2.1 Definitions: Let <p: —> R be a C2 function, where U C Cn is an open 

set. We say that ip is strictly fc-subharmonic (briefly s.k — s.) or (n — k + 1)-

pseudoconvex, if for any z 6 U the dd-matrix of cp at z, which is defined 

by 

H (z) d2<p 
^dzidzj 1 < ¿, j < n 

has at least k positive eigenvalues. Observe that H^z) is a hermitian matrix, 

so that all its eigenvalues are real. Moreover, if / : V —• U is a biholomorphism 

then 

Hipof(w) = Pt.HM(™))-P 
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where P is the jacobian matrix of / at w. This implies that the concept of 

s.k — s. can be defined in complex manifolds: if M is a complex manifold of 

dimension n and (p: M —• R is C2, we say that cp is s.k — s. if for any p G M 

there is a holomorphic local chart a: U —• V C Cn, p G U, such that cp o a"1 

is s.k — s.. It is clear that if /3: C/i —• Vi, p G C/i, is another holomorphic chart, 

then (p o is 5.A: — 5.. 
We say that a connected complex manifold M is k-complete, k> 1, if there 

exists & s.k — s. function <p: M —• R such that: 

(*) lim = +oo, 
p—•oo 

that is, for any sequence (pn)n>i in without accumulation points, we 

have lim (p(pn) = +oo. We observe that a, s.k — s. function, k > 1, cannot 
n—•oo 

have a local maximum. This fact follows from the maximum principle for 

subharmonic functions, as the reader can verify easily. Hence there are no 

s.k—s. functions on compact manifolds. Remark also that property (*) implies 

that: 
(i) For any r G R the sets cp 1(—oo,r] and tp *(r) are compact. 

(ii) inf {<p(p) | p G M} = m > —oo, and there exists po G M such that 

ip(p0) = m. 
When k = n = dim(M) a, s.k — s. function is also called a strictly subhar

monic function. 

2.2 Extension of Meromorphic forms: 

The main result of this section is the following: 

2.2.1 THEOREM. Let M be a k-complete complex manifold, where k > 2. 

Let C be a compact subset of M and w be a meromorphic (resp. holomor

phic) t-form defined on M — C. Then w extends to a meromorphic (resp. 

holomorphic) t-form on M. 

Proof: Let cp: M —> R be a s.k-s. function such that lim (p(p) = +oo. Since 
p—xx> 

a s.k — s function is 5.2 — s. if k > 2, we can assume that k = 2. Let m = 

105 



D. CERVEAU, A. UNS NETO 

inf{<p(p) | p £ M} and r = svp{cp(p) | p £ C } , so that M - C c ^~1( r ,+oo) 

and it; is defined on ^~1( r ,+oo) . The idea is to prove the following: 

Assertion 1: If w can be extended to + 0 0 ) , where s < r, then there 

exists e > 0 such that iu can be extended to (p~x(s — e, + 0 0 ) . 

Since y?_1[m,+00) = M, then assertion 1 clearly implies the theorem. On 

the other hand, assertion 1 is implied by the following: 

Assertion 2: Suppose that w has been already extended to < ^ _ 1 ( s , + 0 0 ) , 

where s < r. Given p £ (p"1^), there exist a neighborhood V of p such that 

w can be extended to V U (p^ls, + 0 0 ) . 

Assertion 1 follows from assertion 2 because <p x(s) is compact. In order 

to prove assertion 2 we use Levi's Theorem: 

Levi's Theorem: (see [S] for the proof). Let W C V C C71"1 be open 

sets, where W ^ <f> and V is connected. Let / be a meromorphic (resp. 

holomorphic) function defined in (W x A(r)) U (V x [A(r) - A(r/)]), where 

A(r) = {z £ C I |^| < r} and 0 < r ' < r. Then / can be extended to a 

meromorphic (resp. holomorphic) function on V x A(r). 

An open set A of the form (W x A(r)) U (V x [A(r) - A(r')]) is called a 

Hartog's domain. The set A = V x A(r) is called its envelope of holomorphy. 

Another fact we will use is the following: 

LEMMA 1. Let <p:U - ^ R b e a s . 2 - s. function, where U C Cn is an open set 

(n > 2). Letp £ U be such that <p(p) = s. Then there exist a biholomorphism 

a: Vi —• Ui and a Hartog's domain A C V\ such that 

(a) OeV1,a(0)=peU1CU 

(b) a(A) C Ui and p £ a(A), where A is the envelope of holomorphy of A. 

For the proof see the §8 of [S-T]. 

Assertion 2 follows from Levi's Theorem and Lemma 1. In fact, given p £ 

^ " ^ ( s ) , by taking a local chart we can assume that p = 0 £ Cn and <p:U —• R , 

0 £ U C Cn. Since (p(0) = 5 and w is defined in ip~l(s, + 0 0 ) C U, we can 

write w; = frdzr, where / = ( ¿ 1 , . . . , it), i± < " - < it, dzi = dzi1A - • -Adzi£ 
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and / / is a meromorphic (resp. holomorphic) function on ^~1(5 , +00). Let a 

and A be as in lemma 1 and gi = / / o a"1, I = (¿1 < • • • < it). Prom Levi's 

Theorem gi can be extended to a meromorphic (resp. holomorphic) function 

on A. Hence / / can be extended to a meromorphic (resp. holomorphic) 

function on a(A). Since a(A) is a neighborhood of p = 0, then assertion 2 is 

proved. I 

Now we consider the following situation: let / 1 , . . . , fk be homogeneous (non 

constant) polynomials in Cn+1 and . . . , /*) = i\p] G CPn | fx(p) = 

••• = A(p) = o}. 

2.2.2 THEOREM. M = C P " - . . . , / * ) is t-complete, where £ = n-k+1. 

Proof: Let dg(fj) = dj, j = 1,...,& and G [N] be such that 

diQi = • • • = dFCGA: = 9 > 0. Put Gj = ff, so that dg{Gj) = 9, j = 1, . . . , fc, 

and V(fu...,/*) = V(Gi, . . . , Gib). Define V: M R by 

¥>([*]) = 
E L o M 2 

9 

^-3(fc+1)^4(0,0, z) 

where [ ] = tt: Cn+1 - {0} —• CPn is the canonical projection and z = 

( ¿ 0 , . . . , zn). It is easy to see that ip is well defined and real analytic on 

M. Moreover, since M = CPn - V(Gi,..., G*), we have lim y>(p) = 
p—• oo 

lim y>(p) = +00, where V = V(Gi , . . . ,Gfc). Let us prove that <p is -

5.. Fix [z°] = [j?o:-..:^nl G We can suppose that Zq ^ 0, so that 

[z°] = [l:a?5,... where x° = ^ / z q . In a®116 coordinate system 

(z i , . . . ,zn) = [1: rri:... :#n] G Cn, tp can be written as <p = — y?2> 

where <pi(x) = £g(l -+ 
n 

j =1 
) and (p2(x) = 

A; 
gj(x)2 where gj(x) = 

Gj(l,o:i,...,a:n). Therefore we have = gf?^ - H<p2. A direct computa-
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tion shows that i L , = ( a ¿ ¿ ) i < ¿ , j < n and = (bij)i<ij<n, where 

au(x) 1 + 
1 + 

I i2 Fil 1 + 
n 

1 + 
\Xj\ 

2 

tt¿j(*c) ~~~ X¡Xj 1 + 
n 

i=i 
N 2 

2 

bij = 
r<5 

1 + i 
Ta 

A: 

1 + 

1 + 

2 

where AJ.s = 5rff* — S s f ^ - Observe that the quadratic form associated to 

is 

Qi{x,w) = 

1 + 
WidijWj = 1 + 

n 

1 + 
w 2 

-4 
n 

i=l 
H 2 

1 + 

WidijWj = 

Hence it is positive definite. For some fixed x 6 Cn — V, V = { # i = • • • = 

gfc = 0 } , let i f (s) = {w e Cn 
n 

i = i 

bij(x).Wj = 0, for all z = l , . . . , ra}. 

Assert ion: dim(J{T(:r)) > n - A; + 1 for all x E Cn - V. 

Proof: Since x E Cn — V, let us assume for instance that g\{x) ^ 0. From 

now on we will omit the point x in the notation. Let S be the space of 

solutions of the linear system: 

(6) 
n 

i=i 

WidijWj = 5 = 2, . . . , k 

Since in (6) we have k — 1 equations, we have dim(5) > ra — k + 1. So it is 

enough to prove that S C K(x). Observe that (6) is equivalent to 

(7) 
n 

dxj 

dgs 
dxj 

Wj 
9s 
9i 

n 

dxj 

#5-1 
ox,- dxj 5 —— 2, . . . , . 
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On the other hand (7) implies that if r ^ s then 

n 

j = 1 
tswj = 9r 

n 

i=i 

dgs 
dxj 

Wj - gs 
n 

j = 1 

dgr 
dxj 

j = 1 

Therefore, if w G 5 , then 
n 

i=l 
4.™ ; = o for all r ^ 5. Hence, if w G 5, then 

n 

i=l 

bijWj = 
n 

j = 1 

j = 1 
-2 

n 

j=l r<s 

-i 
'rs 

j = 1 

n 

j = 1 
IP,!2 

-2 

r<5 

"t 

'rs 

n 

j=l 

j = 1 = 0 

This proves the assertion. 

Now if w G K(x) — { 0 } , we have 

w H^w = qQi(x,w) -

n 

i,j=l 

WibijWj = qQ\{x,w) > 0 

This implies that has at least n — A: + 1 positive eigenvalues. 

2.2.3 COROLLARY. Let k < n— 1 and / 1 , . . . , / * be homogeneous non constant 

polynomials on Cn+1. Then any meromorphic l-form defined in a neighbor

hood of V ( / i , . . . , / A ? ) C CPn, can be extended to a meromorphic l-form in 

CPn. 

2.3 Noether's lemma of second order: 

Let / , g: U —• C be two analytic functions and V = { / = g = 0 } , where U C 

Cn is an open set. If W C V, we say that / intersects g transversely outside 

W (briefly /TTJ # out of W) if for any z £V -W we have df(z) A ¿ 0 ( 2 ) ^ 0. 

Classical Noether's lemma can be stated as follows: 
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2 . 3 . 1 NOETHER'S LEMMA. Let f,g, U,V and W be as above. Suppose that: 

(a) W is an analytic subset of U, where cod(W) > 3 . 

(b) H1(U-W,0) = {1}. 

If h:U —• C is an analytic function such that h\V = 0 , then there are 

analytic functions a,f3:U —• C such that h = a.f + (3.g. 

When U = CN, n > 3 , / and g are homogeneous polynomials, W = { 0 } , 

and / ITT g out of { 0 } , then we have the following: if h is a homogeneous 

polynomial with h\V = 0 , then there are homogeneous polynomials a and /3 

such that h = a.f + /3.g, where dg(a) + dg(f) = dg(/3) + dg(g) = dp(/i). In 

particular if dg(h) < min{dg(f),dg(g)}, we must have h = 0 . This assertion 

follows from Noether's lemma because ff1(CN — { 0 } , O) = { 1 } for n > 3 (see 

[ C ] ) . Here we axe mainly interested in the case where the 1-jet of h is 0 along 

V. 

2.3.2 Definition: Let U C CN be an open set, F C ¡7 be a codimension k 

smooth complex submanifold and h:U —> C be analytic. We say that the t-jet 

of h is zero along V if for any z° = ( z j , . . . , z%) £ V there is a holomorphic 

coordinate system x = ..., xn) defined in a neighborhood A of z° such 

that: 

(a) V fl A = { x i = • • • = xk = 0 } 

(b) h{x) = 

(b) h{x) 

(zj,..., z%) £ 

wherein the above notation a = (<J i , . . . ,<7fc); M=0" iH h*7*^ andaa: A —• 

C ¿5 holomorphic for alia such that \a\ = ¿ + 1 . We wse £/ie notation jy(h) = 0 

¿0 say that the t-jet of h is zero along V. 

2 . 3 . 3 T H E O R E M . Let f,g:Cn —• C be homogeneous polynomials, n > 3 , 

where /711 5 out of 0 6 CN. Let V = { / = g = 0 } and V* = V - { 0 } . Ifh 

is a homogeneous polynomial with jy* (h) = 0, then there are homogeneous 

polynomials a, b and c such that h = a/2 + bf.g + eg2, where dg(h) = dg(a) + 

2dg(f) = dg(b) + dg(f) + dg(g) = dg(c) + 2dg(g). 
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Proof: Since fD g out of 0, for any z° E V* there is a holomorphic coordinate 
system ( # 1 , . . . , xn) defined in a neighborhood Uzo such that: 

(a) f(x) = a?i, g(x) = X2 Vz E f/2o, so that J72o fl V = {#1 = X2 = 0} . 
(b) f(x) = a?i, g(x) = + (3(x)xiX2 + 7 ( ^ ) ^ 2 ? ^x G where «,18,76 O(l7^o). 

It follows that it is possible to find a convering (Ui)i^i of Cn — {0} by open 
sets and three collections {a,-},-^/, {/3i}t-eJ? {7t}*€/? where c*i,/3,-,7,- G 0{Ui) 
and ft|*7z- = ( a i / 2 + A / 3 + 7 i 5 2 ) l ^ . When C/intfj / ^ we have aijf2+^ijfg+ 
jijg2 = 0, where ay = oy - a*, ftj = /3̂ - - /?,• and 7^ = jj - 7,- E C?(£/,- n £/,-). 
Observe that this relation implies that g\UiDUj divides ot^j2\UiClUj. This fact 
together with fT) g out of 0 implies that a,-j = 8{jg, for some 6{j E C?(t/i PI L7̂ ). 
Now, if UiC\UjnUk ^ 0 we have (S{j+6jk + 6ki)g = ^ + 0 ^ + 0 ^ = 0, and so 
8ij + 8jk + Ski = 0. It follows from Cartan's solution of Cousin's problem that 
there exists a collection (<52)zG/, 6{ E 0(Ui), such that S{j = 6j — 6{. Therefore 
we can define a function a E 0(Cn — {0}) by 

a\Ui = ai - 6ig 

Similarly, there are a collection (£t)«€J> Si E 0(Ui), and 7 E 0(Cn — {0}) 
such that jlUi = 7,- — Let hi = h — af2 — yg2. It is clear that: 

hi\Ui = fijg + Si9f2 + Sifg2 = (ft + fc/ + si9)fg = cpifg. 

If UiHUj 7̂  we have (ipj—y>i)fg = 0, so that ipi = Therefore there exists 
(3 E O(Cn-{0} ) such that (3\Ui = <pu i E / , and we have h = af2+/3fg+jg2. 
Now, from Hartog's theorem, a, /3 and 7 can be extended to holomorphic 

functions on Cn, which we call a,/3 and 7 also. Let a = 
j>o 

(b) h{x) 
j>0 

j>o 

and 7 = 
j>0 

7j , where ay,/?; and 7j are homogeneous of degree j . It is clear 

that if i i , j2 and j3 are such that j1+2dg(f) = J2+dg(f)+dg(g) = h+2dg(g), 
then we have /1 = a , / 2 + aj2/g + o>j3g2. So we can take a = a,-, 6 = a7-
and c = a^3. 

Remark: We will need the above result only to prove (a) of theorem A. 
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3. P R O O F S 

3.1 P r o o f of Theorem B : 

Let T be a foliation on CPn which satisfies hypothesis (a), (b) and (c) of 

Theorem B . The idea is the following: let w be a homogeneous integrable 

1-form in Cn+1 which represents T as in §1.3. We will prove that there exists 

a homogeneous polynomial / such that d(w/f) = 0 and dg(f) = dg{w) + 1. 

After that we will use some results containned in [C-M] to conclude the proof. 

Let N = Ni U- • -UNr be the decomposition of N in irreducible components. 

Prom the hypothesis we have that for each i = 1 , . . . , r, NiC\K(T) is open and 

dense in N{. Since Ni — Ktf) is algebraic we have that cod w^Ni — K (J7)) > 1, 

and so, N{ fl K(F) is connected. 

Observe now that hypothesis (b) and Poincare's linearization Theorem im

ply that Ni fl K(T) is of linearizable transversal type. This means that 

there exist \ \ and \ \ with A^/A^ ^ R with the following property: (1) 

Vp € Ni fl K{T) there exists a local chart (x,y,z):U C x C x Cn"2, 

such that U C\ Ni D K(T) = {(x,y,z)\x = y = 0} and T\U is the foliation 

defined by the 1-form wu = \\xdy — \l2ydx. If we divide wu by \\xy we get 

the form OL\J = ^ — a ^ , where a = A^/A^ ^ R. Observe that QL\J is closed, 

so that wu has an integrating factor. 

LEMMA 2. Let i £ { l , . . . , r } be fixed. There exists a neighborhood Ai of 

Ni in CPn, and a meromorphic closed 1-form rji on Ai such that if Pi is the 

divisor of poles of rn, then f\{Ai — Pi) is represented by r)i\(Ai — P2). 

Proof: It follows from the considerations before Lemma 2 and from hypoth

esis (c) that it is possible to find a convering of Ni by open sets of CPn, 

(Uj)jeJ and a collection (aj)j^j such that: 

(i) If j,k,£ e J are such that Uj fl Uk fl Ue ^ </>, then Uj,Uj fl Uk and 

UjnUkCiUe are simply connected. Moreover by using the local structure 

of analytic sets, we can suppose also that Uj fl iVz-, Uj fl Uk fl Ni and 

Ui C\Uk r\UpC\ Ni are simply connected. 
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(ii) J = Jx u J2 where Uj fl (N{ - K{T)) = <t> if j G J i , 
(xj,yj 

C Uj fl t/fc.K(F) 

(xj,yj 
C Uj fl t/fc. and if k G J 2 is such that Uj CiUk ^ </> then there 

is £ G J i with I/* C Uj fl t/fc. 
(iii) For each j G «7, olj is a c/osed meromorphic 1-form on Uj, such that 

aj = Wj/fj, where / j G 0(Uj) and is a holomorphic 1-form which 
represents T^Jj. We can assume also that the singular set of Wj is of 
codimension > 2. 

(iv) For each j G J i , there is a local chart (xj,yj, Zj):Uj —> C x C x Cn~2 

such that a,- = ^ — a^- , where a ^ R is as before. In this case 

î j = Xjdyj — ayjdxj and / j = Xjyj. 
(v) If j , G J is such that Uj C\Uk ^ <f>, then there exists a meromorphic 

function gjk, defined on Uj fl C/fc, with aj = gjk^k- This function is 
obtainned as follows: since Wj and Wfc define the same foliation on UjOUk 
and their singular sets have codimension > 2, we can write Wj = hjkWk, 
where hjk G 0*(Uj fl £4). Therefore = fkhjk/fj as the reader can 
verify easily. Moreover, the collection (gjk)Ujf\Uk 7̂  <f> satisfies the cocycle 
condition gjkgktgtj = 1 on Uj DUkDUe if this set is non empty. 

Assertion: If j,k G J are such that Uj CiUk ̂  <t>, then gjk is a constant, 

Proof: Observe first that aj = gjka implies that dgjk A ak = 0 because aj 
and ak are closed. 

I5* case: k G J i , so that ak = ^ - a ^ . Let zfc = (z1 , . . . , zn~2) and 
9jk = <7- Relation dg A ak = 0 implies that outside the set of poles of g we 
have jf? = 0, 1 < r < n — 2, and Xkj^ + aVk-§^ = 0. This implies already 
that g does not depend on z^. Therefore 5 = g(xk,yk) and we can suppose 
that g is defined in a neighborhood of (0,0) G C2. From now on we will omit 
the indexes k. Let P be the set of poles of g. Suppose first that P D { x = 0} . 
In this case, it is not difficult to see that there are a disk A C {y = 0} and 
an annulus A C {x = 0} such that g has no poles on W = (A — {0}) x A. 
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Consider the Laurent development of g in W: 

m,n= —oo 
oo 

m,n= —oo 
bmnxmyn, bmn e C 

Fromxf* + a y g i 0 we get 
oo 

m,n= —oo 
bmn(m + na)xmî/n = 0, which implies 

that bmn(m + na) = 0 Vm, n G Z. Since a ^ Q, this implies that bmn = 0 if 

(m, n) ^ (0 ,0) . Therefore g|W is constant, which implies that g is constant. 

If {x = 0 } (/L P , then it is possible to find a disc A C {y = 0 } and an 

annulus A C = 0} such that 5 is holomorphic on A x A. In this case g 

admits a Laurent development on A x A and so g is constant by the same 

argument as before. 

2nd case: j,k G J2 . In this case let £ G J i be such that J7¿ C Uj fl 

Observe that gjk • • ̂  = 1 on Ut = Ut fi £/j fl Í7fc. By the firs case gk¿ 

and gtj are constants. Hence is constant on Ui, and so on Uj fl C/*. This 

proves the assertion. 

Now, if j,k G J \ and Uj nUk ^ $ then 3 ^ = 1. In fact, on f7j fl Uk we 

have: 

a . = 
dyj 

Vi 
a 

dxj 
9jk 

dyk 
0 

dxk 

xk 
gjkO¿k-

Prom (i), there is p0 G Uj (1 Uk n N{. It is clear that p0 = (0,0, *?) in the 

chart [xj,yj,Zj) andp0 = (0,0, z°k) in the chart (xk,yk,zk). By analyzing the 

sets of poles of otj and ak we get that either {yj =0}f)Uk = {yk = 0 } fl Uj 

and = 0 } D Uk = { z * = 0 } D ̂ , or {w = 0 } fl Uk = = 0 } fl and 

= 0 } n Uj = {XJ = 0 } n *7fc. 

On the other hand, by comparing the residues of aj and ak around {XJ = 

0 } , {yj = 0 } , {xk = 0} and {yk = 0 } , we obtain in the first case that gjk = 1 

and in the second case that 1 = — agjk and —a = gjk. Well, these last 

relations imply that a2 = 1, which is not possible. Therefore gjk = 1. So we 

have proved that if j , k G J \ is such that UjC[Uk ^ (j> then Qfj = ak on UjC\Uk. 
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It follows that we can define a closed meromorphic 1-form fji on B{ = 
jeJi 

Uj 

byf}i\Uj = aj. 

Let us prove that 77; can be extended to A,- = 
jeJi 

jeJi Let rji be defined on 

Ai by 

(vi) r)i\Bi = fji 

(vii) If j G J 2 then UjHBi ^ (j). Therefore there is k G J\ such that UkC\Uj ^ </> 

(because Bi D Ni fl K^J7)). We put 7/z|t/j = gkj&j- Observe that this 

definition is natural because r]i\Uj nUk = fji\Uj fl Uk = ak\Uj DUk = 

ghjUjlUjClUk-

Let us prove that 77,- is well defined. We can consider g = (gjk)Ujnuk?<t> 33 a 

cocycle in H1^, C*), where ZY = (C/j fl Ni)j^j. It is not difficult to see that 

if g is trivial in Hl(U,C*) then r?t- is well defined. Let Ux = (Uj fl iV,)i€Jl 

and ^ 1 = {gjk e Q \ j,k e J i } . Then 5 ^ = 1 for any gjk G £ 1 and so Qx 

is trivial in Hl(Ui,C*). On the other hand, since cod^(iVi — if( .F)) > 1 it 

follows that any closed path 7 : [0,1] —• Ni with end points in Ni fl K(T) is 

homotopic, with fixed end points, to a path 7 : [0,1] —• Ni fl K^J7). It follows 

that the monodromy of a closed path as above (with respect to Q) is trivial. 

This implies that Q is trivial, as the reader can check by himself. This ends 

the proof of Lemma 2. | 

From Lemma 2 we get for each Ni , i = 1 , . . . , r, a neighborhood Ai and 

a closed meromorphic 1-form m on Ai such that, if Pi is the divisor of poles 

of ?7j, then rji represents T on Aj - Pi. Furthermore if C is a connected 

component of Ai fl Aj then t/z|C = Kj{C)r)j\C, where A ^ C ) is a constant 

in C*. Let Uo = {[1: zi:...:zn] | ( 2 1 , . . . , zn) G Cn} and wo be a polynomial 

integrable 1-form which represents f on [/0- Then wo can be extended to 

CPn as a meromorphic 1-form with poles in L0 = {[z] G Cn | z0 = 0 } . Since 

w0\Ai and rji represent the same foliation, we have that wo\Ai = where 

fi is a meromorphic function on Ai. On the other hand, if C is a connected 
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component of Ai fl Aj then we have 

fAiÂC)vAc = Me = w0\c = UnAc 

which implies that fAC = Xij(C)fAC. Since A,-,(C) is a constant, it follows 

that fi \C jeJi C This implies that we can define a closed 1-form 6 on 

A = 
r 

¿=1 

Ai by 9\Ai = 
fi 

Now, by corollary 2.2.3 of §2.2, 0 can be extended 

to CPn, because A is a neighborhood of N = {/ = g = 0 } and 2 < n — 1. We 

call 0 this extension. Let P be the divisor of poles of 0. Fix po E CPn — P 

and for each path 7: [0,1] -+ CPn — P with 7(0) = po, put 

/ (7) = exp e 
' 7 

We will prove now that if 7 is a closed path then / (7) = 1. It is easy to see that 

this will imply that we can define a holomorphic function F: CPn — P —• C 

by F(p) = / (7 ) , where 7(0) = po and 7(1) = p . 

Let 7 be a closed path. Since CPn is simply connected, 7 is homologous in 

CPn — P to 71H h7fc where each jj is a small cycle envolving an irreducible 

component of P . So it is sufficient to prove that if 7 is a small cycle envolving 

an irreducible component of P , say Q, then exp[J^8] = 1. Now, since N = 

{/ = g = 0 } , it follows from Bezout's Theorem that Q 0 Ni ^ (j> for some 

i. It follows that we can deform 7 keeping it closed along the deformation, 

to a small cycle 7 envolving Q and containned in Ai. Since 6\Ai = this 

implies that f 0 = f ^ = 27r i ra , m E Z. Hence / (7) = 1. 

The above argument implies also that F\Ai — ct/2-, where cz- is a constant. 

Since rji = wo I fi is closed, we get that 77 = wo/F is closed. Hence the first part 

of the theorem is proved. It follows also that if w is a homogeneous integrable 

1-form on Cn+1 which induces T then w has a meromorphic integrating factor 

say F = g/h. Let us prove that g and h are homogeneous polynomials such 

that dg(g) - dg(h) = dg(w) + 1. 
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In fact, let dg(w) = k. Since F is an integrating factor, we have dF A w = 

Fdw. On the other hand, iR,(w) = 0 implies that (k + l)w = LR(W) = 
+ d(iRw) = ifldw, where LR is the Lie derivative. Therefore we get 

iR(dF)w = FiR(dw) = (k + l)Fw =• iR(dF) = (k + l)F 

Integrating iR(dF) = (k + we get that F(tz) = m,n= —oo if z is not a 

pole of F. Hence g and h are homogeneous and m,n= —oo — dg(h) = k + 1. We 

can suppose that g and / 1 do not have common factors. Let g = g^1 ... g!^ 

be the decomposition of g in irreducible factors, where fci,..., km > 1. 

LEMMA 3. There are A i , . . . , Am G C and a homogeneous polynomial <p such 

that 

(8) hw 
9 

m 

hw 
A; 

dg}-
9j 

•d 1 

where tfi = Si •••0™"*, 0 < lj < kj - 1, 
m 

hw 
*jdg(gj) = 0, and iA have no 

common factors and dg((p) = dg(xf>). 

The proof of the above result can be found in [C-M]. 

Now let us assume hypothesis (d) and (e) of Theorem B and prove that T 

is of logarithmic type. First of all, if we multiply the right hand side of (8) 

by g[1+1.. we get the form 

(9) y = 9i---gmd<p-<pgi...gm 
m 

4 
dgj 
9j 

9\ • • - 9m 
m 

i=i 

dgj 
9j 

which is holomorphic in Cn+1. Observe that if U = A2- = 0 for some i G 

{ 1 , . . . , m } , then gi is a factor of t] and gi plays no essential role. Hence we 

can suppose that either £{ ^ 0 or A t 0 for all i = l , . . . , m . With this 

condition G{ = {[z] G CP71 | gi(z) = 0} is invariant under T, which implies 
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that if i ^ j then Gij = {[z] \ g{(z) = gj(z) = 0 } C S(T). Since Gij has 

codimension 2, hypothesis (d) implies that the set 

A = üf (J0nGyn{[z] G C P n I dgi(z)Adgj(z) ¿ 0, ^ 0 and P r ( ^ ) ^ 0 for r =¡¿ ? 

is open and dense in In order to simplify the notations we will put i = 1 

and j = 2. Now we will prove that: 

(i) If > 0 and ¿ 2 = 0 then the linear part of the transversal type of T at 

G12 is degenerated. 

(ii) If l\ = £2 = 0 then the quotient of the eigenvalues of the linear part of 

the transversal type of T at G12 is — A2/A1 (or — A1/A2) 

(iii) If ¿ 1 > 0, ¿2 > 0 then the above quotient is -1*11\ (or - ¿ i / ¿ 2 ) . 

In fact, since A is open and dense in G 1 2 , let p G Cn+1 — { 0 } be such that 

[p] G A. We know that cp(p) ^ 0 and gr(p) ^ 0 for r > 2. This implies that 

the form 

i > 3 
3 9i 

has a holomorphic primitive, say hi, defined in a simply 

connected neighborhood U of p . Therefore we can write: 

(10) 
hw 

9 u 

dgi 

9i 
A2 

dg2 

92 
dhi + d 

h2 

dhi + d 
h2 

where h2 = <p/ge33 ...gfc, h2(p) ± 0. 

Ijt 

Proof of (i): Since £2 = 0 we have A2 ^ 0. Let a be a branch of h2 and 

/3 be a branch of h^1^1*2 exp(/ii/A2) defined in U. These branches can be 

defined because /12 (p) ^ 0. Observe that d(agi)(p) A d(f3g2)(p) ^ 0, so that 

there is a local coordinate system (x,y,z) G C x C x C71"1 around p, such 

that x = agi and y = /?#2- It is easy to see that in this coordinate system we 

have 
h2 a dx 

x 
A2 

dy 

y 
d(x-l> Ai 

dx 

x 
A2 

dy 

y 

dx 

h2 

If we multiply fi be we get (—tiy + Xix£ly)dx + X2xei+1dy. Therefore 

the transversal type of T in G12 is given by the vector field X2xil+1d/dx + 

(£iy - \ix£ly)d/dy. Since £1 > 0, this proves (i). 
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P r o o f of (ii): Since l\ = £2 = 0 we have Xx ̂ 0 ^ X2 and 

µ = 
dgi 

9i 
A2 

dg2 

92 
dh3 

where /13 = hi + h2. Let a = exp(hs/X2). We have dgi(p) A d(ag2)(p) ^ 0, 

therefore there exists a local coordinate system (#,y, z) G C x C x Cn_1 

around p, such that gì = x and ag2 = y. In this coordinate system we have 

fi = Ai ̂  + A2 so that = Aij/drr + X2xdy, therefore the quotient of the 

eigenvalues of the normal type is —A2/A1 (or — A1/A2). 

Proo f (iii): In this case we can write (10) as 

µ = -\i^ 
Si 

A 2 ^ + d 
92 A19? 

where hz = h2 + hig^g2. Since dgi(p) Adg2(p) i=- 0, there exists a coordinate 

system (#, y, z) G C x C x Cn~l around p such that x — gi and y = g2. If we 

multiply // by xil+1 .yi2+l .h^1 we get 

/*3 V1+1.y*2+1./i = -£xydx - £2xdy + Xih^x^y^dx + X2h^xilJtlyÌ2dy 

+ h-1x£*+1ye*+1dh. 

It is not difficult to see that this implies (iii). 

Now from (i) and hypothesis (e) it follows that either li = • • • = £m = 0 or 

h • • • £m > 0. In fact, if this is not the case, then there are i ^ j such that 

£i > 0 and £j = 0, which cannot happen by (i). If £1 = • • • = £m = 0 then 

T is logarithmic and we are done. Let us suppose that l\... £m > 0. In this 

case, it follows from (iii) that for any i ^ j the quotient of the eigenvalues of 

the linear part of the normal type of T at Gij is rational. Let us prove that 

this case cannot occur. 

In fact, since in N fl K(J7) the quotient of the eigenvalues of the normal 

type is not real, then in the above situation, there exists p G Cn+1 — { 0 } such 

that [p] eK(f)nN 
i # j 

Gij. In this case p G K(7r*(J7)) and so there exists 
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a coordinate system (x, y, z) G C x C x Cn 1 around p such that 7r*(^r) is 

defined by the form 9 = xdy + aydx, where a ^ R . On the other hand let ^ 

be as in (8). Its set of poles is P 

i 
{9i = 0 } , it is closed and represents 

7T*(^7) outside P. Therefore there exists a meromorphic function fi on U such 

that 

hw 

9 \U 
fi(xdy + aydx) 0 = d(fi(xdy + aydx)) d{xyfx) 

dy 

y 

dx 

x 

As we have seen in the proof of Lemma 2, the last relation implies xyfi = c, 

c a constant. This implies that P (1U = {x = y = 0 } . Therefore there are 

i ^ j such that {gi = 0} fl U = {x = 0} and = 0} fl ¿7 = {y = 0 } , and so 

[p] ^ ftj, a contradiction. This completes the proof of Theorem B . | 

3.2 P r o o f o f Theo rem A: 

We will use Theorem 1.2.4 of §1 (cf. [G.M.-L.N.]) . We need some prelim

inary results. 

LEMMA 4. Let V M be a holomorphic vector bundle with fiber C2, where 

M is compact. Assume that V = Ei © E2 = F1 © F2, where E1,E2,Fi and 

F2 are holomorphic line bundles, such that c(Ei) / 0 and qc{E\) = pc(E2), 

where p , q G Z, 0 < q < \p\ (c = first chern class). Then: 

(a) If p ^ q then F{ = Ej for some i,j G { 1 , 2 } . Moreover, if we assume 

i = j = l then c(F2) = c(E2). 

(b) Ifp = q (i.e. c(Ex) = c(E2)) then c(P¿) = c(Ei) for i = 1,2. 

Note : As in 1.2.4, we denote by c(-) the first Chern class considered as an 

element of H2(M,C). 

Proof: Let U = (Ua)a£A be a covering of M by trivializing open sets of 

the Ei's and P2's, where UariUp and UaC\U^r\U1 are simply connected if 

they are not empty. For each a £ A and ¿ = 1,2 let ela: —• P""1(C/a) and 

fa: Ua —*• P~~l{Ua) be holomorphic local sections such that ela(p) G Ei(p)-{0} 
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and flip) E Fi(p) - { 0 } , p E [7a, where E{(p) and Fi(p) denote the fibers of E{ 

and F{ over p. It follows that for all p E Ua, {ea(p), e2 (p)} and {/^(p), f2(p)} 

axe basis of P-1(p) . Therefore there is a matrix Aa = (a^) such that E 

0 ( [ 7 a ) , Aa = det(Aa) E 0*(C7a) and ej, = a j j / i + aj,2/2 on Ua. On the 

other hand there are collections {gaß}uanuß?<f> and {hlaß}uQnuß?<f>, * = 1,2, 

where tfaß E 0 * ( [ 7 a fl Up) and ej, = ga = Ä J ^ / J <mUanUß?<l> 

for i = 1,2. These collections are in fact cocycles (i.e. if Ua fl 17/3 fl [77 ^ </> 

then giß-g^-giya = 1 and h^ß.h^.h^ = 1) and c(J5t-) (resp. c(Ft)) can be 

represented in H2(U, Z) by the 2-cocycle 

( i i ) 

resp. n^7 = i 
2TIV-1 

H [7/3 = fp\Ua n C/^, 
uar\Udnu^^4> 

resp. n^7 = 
2TTV-1 

H [7/3 = fp\Ua n C/^, 

where the £g's are branches of the logarithm arbitrarily chosen. 

Now, if we set Gaß 
9ocß 

0 

0 

9lß 
and Haß = 

his 
0 

0 

hie 
then it is not 

difficult to see that on Ua fl Uß ^ <j> we have GaßAß = AßHaß or equivalently 

(12) 

' (i) ri^»» = a i1^ 
(Ü) Pa/ja" = Pa/ja" 
(i") Pa/ja" = a°h*ß Pa/ja" 

, (iv) ̂  = afhlß. 

For fixed a E A let / a = a^a^2a21a22/A2, where Aa = det(Aa). Let us 

prove that there is / E 0(M) such that / | [ 7 a = f a - In fact, if we take the 

product of the relations (i)... (iv) we get 

(13) ( 1 2 \2 11 12 21 22 H [7/3 = fp\Ua n C/^, 

On the other hand the relation G^A^ = AaHap implies that fli^fl^A/j = 

ha(3hlp^P, and so (glpgl^/fàphlp)2 = A2 /A2 . This relation together 

with (13) implies that f a \ U a H [7/3 = fp\Ua n C/̂ , which proves the existence 

o f / . 
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Now, since M is compact, / is a constant. We have two case to consider: 

1st case: / ^ 0. In this case the G 0*(Ua) for all a. This together with 

the relations in (12) imply that all cocycles in (11) are equivalent and so all 

Chern classes involved are equal. This case, of course, cannot happen in case 

(a). 

2nd case: / = 0. Observe that the relations in (12) imply that for all i, j G 

{ 1 , 2 } , the collection {alJ}a£A defines a divisor in M. Since / = 0, one of 

these divisors is = 0. Suppose for instance that a12 = 0 for all a G A. 

This implies that E\ = Fi and al^,a22 G 0*(Ua) for all a G A, because 

A<* = aj^a^2 G 0*(Ua) in this case. Analogously, if a^1 = 0 for all a G A we 

get Ei = F2 and c(E2) = c(Fi). The remaining cases are similar and we leave 

them for the reader. | 

Now let / and g be homogeneous polynomials on C n + 1 , n > 3, such that 

/ m 5. Let F = {[z] G C P n | / (b ) = 0 } , G = {[*] | g(*) = 0 } and K = F f l G . 

We denote by v —• i f , F -» F and G —> G the normal bundles of if , F and G 

in CPn respectively. Let F = F\K, G = G|if . We will use the notation c(-) 

to denote the first Chen class of a holomorphic vector bundle in HpR of the 

corresponding base. It is well known that: 

(a) v = F 0 G and c{y) = c(F).c(G) (c f. [G-A]) 

(b) c(F) = c(F)\K and c(G) = c(G)| /f . In particular c (F ) , c(G) ^ 0, because 

c (F) ,c (G) ^ 0 and dim(/f) > 0 (cf. [G-A]) . 

(c) dg(f).c(G) = dg(g).c(F). 

Assertion (c) follows easily from Theorem 1.2.4 and example 1.3.1, as the 

reader can verify. 

Suppose now that T is a foliation of CPn having K as a Kupka component. 

Let dg(f)/dg(g) = p/q where p, q are relatively primes and p < q {p = q iff 

P = Q= i ) . 
Let Ai and A2 be eigenvalues of the normal type of T at K. Let us prove 

first that Ai ^ 0 ^ A2. In fact, let us suppose by contradiction that A2 = 
0. In this case Ai ^ 0, because K C K(F). Let E\ and E2 be the line 
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subbundles of v induced by the eigendirections of Ai and A2 respectively. 

Then v = F(&G = Ei®E2. It follows from Lemma 4 that c(F) = c(Ei) and 

c(G) = c{E2) or c(G) = c(Ei) and c(F) = c(E2). Let us suppose for instance 

that c(F) = c(£?i) and c(G) = c(E2). Now (a) of Theorem 1.2.4 implies that 

0 = A2c(i?i) = Xic(E2) and so c(E2) = c(G) = 0, a contradiction. 

On the other hand, if Ai ^ A2 we can define E\ and E2 in the same way 

and get the following relations (assuming c(F) = c(Ei)): 

\ic{E2) = X2c(E1) 

c(F) = c(E1),c(G) = c(E2) 

pc(G) = qc(F) 

hi = E 
Ai q 

We can conclude from the above arguments that: 

(i) A2 + 0 9É Ai and A2/Ai G Q+ 

(ii) If A2 7^ Ai then A2/A1 = p/q. 

We want to prove that A2/A1 = p/q in all cases, but before that we will 

prove the followingt result. 

LEMMA 5. The transversal type of J7 at K is always linearizable and diagonal 

Proof: Let A2/A1 = r/s where r, s G Z+, 0 < s < r and (r, s) = 1. Let us 

suppose by contradiction that the transversal type is either non linearizable 

or linearizable but not diagonal. In this case, by Poincare-Dulac Theorem, we 

must have 1 = s < r and the transversal type is equivalent to the vector field 

X = xd/dx + (ry + xr)d/dy. The dual form of X is w = (ry + xr)dx — xdy, 

therefore by Kupka Theorem (1.2.1), there is a covering (£/«)<*€A of K by 

open sets of CPn, where each Ua is the domain of a chart (xa, ya, za):Ua -+ 

C x C x Cn_2 such that 

(i) If Uà fi Up <t> then it is connected. 

(ii) KnUa = {xa = ya = 0} 

(iii) f\Ua is defined by the form (rya + xra)dxa - xadya = wa. 

(iv) There is a multiplicative cocycle (gap)uanUf3?<f> such *hat if UariUp ^ <f> 

then gaf3 G 0*(Ua H Up) and wa = 3 « / ? ^ on Î7a fl Up. 
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Now observe that xar 1iua is closed because 

rr+ l 
dxa 

xa 4 - ) 

Observe also that {xa = 0} is the unique analytic separatrix of T through 

K fl Ua. It follows that on Ua fl Uß ^ </> we must have xa = haßXß where 

haß £ 0*(Ua fl £//3). In particular (xQ)ae>i defines an analytic divisor on 

U = 

a€A 
Ua- On the other hand we have 

(14) 
Wa 

Tr+l 
Xa 

9aß 

(haß)'*1 

Wß 

Xß 
faß 

Wß 

Xß 
faß e 0(Ua H Uß). 

This implies that: 

0 = di 
Wa 

Tr+1 
Xa 

dfaß 
Wß 

Xß 
dfaß A Wß = 0. 

Therefore fap is a first integral of F \ U a n £//3. As the reader can verify by 

using the Taylor series of faß = 
ra,n>0 

flmn(^)^!/J, the relation dfaßAwß = 0 

implies that is a constant. In fact this constant is 1 because the residues 

of x~r~1wct and x~~r~1wp around {xa = 0} are both equal to 1. It follows 

that x~r~1wct = x~Zr~lwp and so there exists a closed meromorphic 1-form fj 

defined on U = 

a 

Ua such that fj\Ua = xar xwa and fj defines T\U outside its 

divisor of poles. By Corollary 2.2.3 of §2, fj can be extended to a meromorphic 

closed 1-form 77 on CPn which defines T outside its divisor of poles. Let 

Г]* = Ж*{Т)). 
It follows from Lemma 3 of §3.1 that there exist homogeneous polynomials 

5i5 • • • 53m? <p and ip on Cn+1, a i , . . . , am £ C and ¿ 1 , . . . , £m non negative 

integers such that: 

(v) tí* = 
m 

i = i 

a. 
dgj 

9j 
4-) 
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(vi) 
m 

(vi) 
,ajdg{9j) = ü 

(vii) i/> = . . .gfe and dcj(^) = dgty). 

Let a G A be fixed. We have 

(15) 
m 

j = l 

ttj 
d#j 

95 

R\U = ua 
Xa 

Xa 
d Va 

Va ••v\u« 

From Bezout's theorem, for every j = 1 , . . . , m we know that Gj fl i f ^ 0, 

where Gj = { [ 2 ] | <7j(s) = 0 } . If a is such that Ua fl Gj fl i f ^ </>, we can 

conclude from (15) that: 

viii) Gj fl (7a = {xa = 0} m = l 

Then (vi) implies that aidg(gi) = 0 ai = 0. But this implies that 

77 = d(^) and its residue around {xa = 0} is zero, a contradiction. | 

LEMMA 6. I f A I = A 2 then p = q = 1 and is induced by the form on 

C^fdg-gdf. 

Proof: Let w be an integrable homogeneous 1-form on Cn+1 which induces 

T. The foliation defined by w on Cn+1 is JF* = **T. Moreover, if K* = 

^ ( I f ) - { 0 } , then K* C I f ^ * ) and the transversal type of J7* at if* is 

lineaxizable and diagonal with equal eigenvalues. 

Let po G if*. We assert that there exist a chart (x,y,z):U - > C x C x Cn 1 

around po and a function A G (9* (if* fl £/) such that: 

(i) K*MJ = {x = y = 0} 

(ii) / | [ / = x ,3 | /7 = y 

(iii) w|{7 = A(z)(:rdy — ydx) + 6, where 0 denotes terms of order highter than 

1 in (a,y) . 

(iv) The local expression of the radial vector field in U is 

R\U = mx 
d 

dx 
nx 

d 

dy 

d 

dzi 
m dg :/) n = agig . 
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Observe that (i) and (ii) follow from the implicit function theorem and the 

fact that df(p0) A dg(p0) ^ 0. Let R\U = Ad/dx + Bd/dy + 
n - l 

Gjd/duj. 

From Euler's identity we have R(x) = mx and R(y) = ny, which implies 

that A = mx and 5 = ny. The proof of (iv) can be done as follows: let 

L i , . . . , Ln_i be homogeneous linear polymials such that Li(po) ^ 0 and 

df(po) Adg(p0) AdLi(po) A - • • Ad£n_i(p0) 7^ 0. Take Zj = Lj/Li for j > 2 and 

zi a branch of £g(Li) defined in a neighborhood oipo. Then (#, y, 2 1 , . . . , zn-i) 

is a diffeomorphism in a neighborhood {7 of po and moreover R\U = mxd/dx+ 

nyd/dy + d/dzi. 

Now since the linear part of the normal type of J7* at i f* has Ai = A2 

and is diagonal, then for each section {z = c} the dual form has linear part 

xdy — ydx, which implies that the linear part of w\{z = c} is of the form 

A(z)(xdy — ydx). Therefore the linear part of w\U with respect to (x, y) if of 

the form 

Wi = A(z)(xdy — ydx) 
n - l 

i = i 

(Aj(z)x + Bj(z)y)dzj 

It follows from the integrability condition w A dw = 0, that = Bj = 0 

for j = 1 , . . . , n — 1, as the reader can verify directly by taking the linear part 

ofwA dw with respect to (# ,y) . This proves (iii). 

We can conclude from the above facts, that there exists an open covering 

(Ua)a6A of K* and two collections (Aa)aeA, ((xa, ya, za))a€A, where Aa € 

(9*(if * fl Ua) and (xa, ya, 2 a ) : (7Q -> C x C x C71""1 is a local chart such that 

(i) K* nUa = {xa = ya = 0} 

(ii) / |J70 = and g\UQ = ya-

(iii) w|{7a = Aa(za)(xadya — yadxa) + 0a, where 0a denotes terms of order 

highter than 1 in (#Q,ya). 

(iv) R\Ua = mXa^r+nya-e- + ¿7-

Now, if K* fi Ua n 17/3 7^ 0 and p G if* H Ï7Q fl Í7/? then 

dw(p) = 2AQ(p)ctea(p) A dya(p) = 2Ap(p)dxp(p) A dyp(p). 
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Since xa = xp = / and ya == yp = g on {7a fl £//?, then we must have 
&a(p) = &a(p). Hence we can define a holomorphic function A: i f* —* C* 
such that A\UaOK* = Aa for every a G A Let us prove that A is constant. 

Let dg(w) = > 1 (dg(w) = degree of the coefficients of and the two 

jet of w along K* fl f/Q be 

^xa,ya)w = A(zot)(xcldyot - y0cfa0) 

n - l 

1=1 
^xa,ya)w = A(zot)(xcldyot - y0cfa0)^xa,ya)w 

Q(x y*,Za)dyot Q(x y*,Za)dyot 

where P and Q are homogeneous of degree two in (xa, j /a) . Since iR(w) = 0, 

get 

0 = iR(w) = A(2a)(n - m)xaya 0 = iR(w) = A(2a)(n - m)xaya0 = iR(w) = A(2a) 

where #3 denotes terms of order highter than 2 in (xa,ya). This implies that 

(v) Ax = Ci = 0 and (n - m) A + P i = 0. 

On the other hand, we have seen in the proof of Theorem B that iR(dw) = 

(k + l)w. From this we get 

(k + l)A(xadya - yadxa) + 0a iR(dA)(xadya - yctdxa) 

2A(mxadya — nyadxa) 

Bi(yadxa + xadya) + r 

where r denotes terms either of order highter than 1 in (xa,ya) or terms in 

the dz'jS. Comparing these expressions we get: 

(vi) (k + 1)A = iR(dA) + 2mA - Bi = iR(dA) + 2nA + Bx 

Therefore, 

(vii) iR(dA) = (k + l - m - n)A = £A 

Equation (vii) implies that A(tp) = t£A(p) for all t G C* and p G K*. 

Now, if £ = 0 then we can define a holomorphic function cp:K —• C by 
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^([P]) = A(P) and this implies that A is constant. On the other hand, if 

£ > 0, let M': CN+1 —• C be linear. In this case we can define a meromorphic 

function on K by <p(\p]) = A(p)/Mi(p). Since M is arbitrary, it follows that 

A must vanish in some point p € if*, a contradiction. Analogously, if £ < 0 

the function cp = M"£A must have some pole, and so A also, which is again 

a contradiction. Therefore A is constant and moreover k + 1 = m + n. 

Let p = w — A(fdg — gdf). It is not difficult to see that the 1-jet of p 

along K* is zero and that p is homogeneous of degree k = m + n — 1. From 

Theorem 2.3.3 we can conclude that /x = f2p>i + fgp>2 + # 2 / i 3 > where / / i , //2, ^3 

axe 1-forms with homogeneous coefficients and 

(viii) k = 2m + dg(pi) = m + n + dg(p2) = 2n + dg(fiz) 

unless some of the / i / s are = 0. Now, if m = n, (viii) and k + l = m + n = 

2m = 2n, implies that /xi = p2 = — 0> and so = A(fdg — #d/). Let us 

suppose by contradiction that1 m > n for instance. In this case k = m + n — 1 

implies that pi = p,2 = 0, and so 

w = A(/dp - pd/) + g2p,3. 

Since 2#(w) = 0, we get 

0 = A(n - m)fg + g2iR(pz) = g(A(n - m ) / + gÍR(ps)). 

This implies that g divides / which is a contradiction. Hence m = n and 

w = A(fdg — gdf), which proves the lemma. | 

COROLLARY. A2/AI = p/g = m/n. 

Now let us suppose that 1 < p < q (i.e. dg(f) < dg(g)). Let w be a 

homogeneous integrable 1-form on CN+1 which induces T on C P N . 

LEMMA 7. In the above situation w has an integrating factor. 

Proof: We know from Lemma 5 that the transversal type of T at K is 

linearizable. This implies that there exists a covering of K by open sets 
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(Ua)aeA and coordinate systems ((xQ, ya, za): Ua —• C x C x Cn 2 ) a € A such 

that: 

(i) i f fl Ua = {xa = ya = 0} 

(ii) ^iC/a is defined by wa = pxadya - qyadxa 

(iii) If UaC\Uß ^ <f> then it is connected and there exists pa/3 G 0*(Ua fi C//3) 

such that iua = gaßwß on UanUß. 

(iv) If UaC\Ußf)Uy ^ <j) then it is connected and gap'9ß^'9ia = !• 

We will consider two cases: 

l5* case: 1 < p < q. In this case we will prove that there exists a closed 

meromorphic 1-form on U 

a 

I7a, which defines T outside its poles. 

Oberve first that 1 < p < q implies that {xa = 0} fl Uß = {xß = 0 } fl Ua 

and {ya = 0}nUß = {ya = 0 }nC/a . This follows from the fact that the vector 

field X = pxd/dx+qyd/dy has only two analytic smooth séparatrices through 

(0,0) , which are {x = 0 } and {y = 0 } , and they correspond to two differet 

eigenvalues q and p. Let T/Q = x~ly~lwa — pdya/ya-qdxa/xa. If UaDUp ^ 0 

and /ia/j = Xßyßgaß/xaya, then 7/A = / 1 ^ 7 7 ^ and haß G ö*(J7a fl Uß) because 

Xß/xQ and y ^ / y a G 0*{Ua CiUß) by the first observation. On the other hand, 

0 = drja = dhaß A rjß dhaß A Wß = 0 =^ haß is a first integral of 

pxßd/dxß + qyßd/dyß = ï haß is a constant. 

Now, if we compare the residues of rja and rjp around {xa = 0} fl Up we get 

hap = 1. This implies that r}a\Ua n ETa = 170 It/a fl and so there exists a 

closed meromorphic 1-form fj on V 
a 

Ua such that fj\Ua = r/a for alla e A 

and 77 represents T\U outside its poles. It follows from Corollary 2.2.3 that 

this form can be extended to a closed 1-form t] on CPn which represents T 

outside its poles. This implies the 1st case. 

2nd case: 1 = p < q. In this case we have still {xa = 0}DUp = {xp = 0}nUa 

by the same reason as in the 1st case, but {ya = 0}f)Up = {yp—cxp = 0}nUa, 

where c is a constant, as the reader can verify easily. For each a G A, let 
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VOL = y<x/xa- Let us prove that if Ua fl Uß ^ </> then there constants aaß E C * 

and baß E C such that <pa = aaß(pß + 6 a ^ . 

In fact, we have 

d(pa=Xaq 1Wa = Xaq 1gaßWß = 
XQL 

q+1 

9aßd(pß = aaßd(fß 

where aaß E <9*(i7a fl IT*). The above relation implies: 

0 = d2<pa = daaß A d(fß daa/? = 0 = ^ aa^ is a constant => aaß E C*. 

?a = <*aß<Pß + Oaß 
Now let w be a merorphic 1-form on CPn which represents T outside its 

poles (we can take w such that ir*(w) = w/Mk+l, where dg(w) = k and M is 

linear). For each a E A, there exists a meromorphic function fa on Ua, such 

that ii)|C/a = fad(pa. If £/a fl Up ^ (j) then 

w|J7a = fadtpa = fa^aßd^ß = fßdifß. 

Therefore fß = aaßfa, and so dfa = on £7an This implies that we can ffi ~ ffi on UaftUp. This implies that we can 

define a meromorphic closed 1-form 0 on U 

a 

Í7a such that 6\Ua = dfa\fa 

for each a E A. By Corollary 2.2.3 this form can be extended to a closed 

1-form 6 on CPn. With an argument similar to that we have done before in 

the proof of Theorem B , it can be proved that there exists a meromorphic 

function / on CPn such that df/f = 0. Clearly for each a E A, we have 

f\Ua = c/a, c a constant. This implies that d(w/f) = 0 and so w has an 

integrating factor and w also. This proves the lemma. | 

Let A/B be the integrating factor of w. From Lemma 3 we have 

Bw 

A 

m 

f = 1 
El dgj 

9j V 
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where A = 1 ... g!^ is the decomposition of A in irreducible factors, ip = 

gil...g^9 0 < £j < kj-1, 
m 

*jdg(9j) = 0, <p and V> have no common 

factors and dg(cp) = dg(^). We can suppose also that for any j G { 1 , . . . , m} 

we have either ^ 0 or Aj ^ 0. 

Let us consider the 1st case in the proof of Lemma 7. In this case we can 

suppose that for any a € A: 

Bw 

A 
TT"3 dx* 7T* P 

dlja 

dx* 
q 

dx* 

dx* 
v 

dy*a 

Vi 
q 

dx* 

dx* 

On the other hand for j G { 1 , . . . , m} we have from Bézout's Theorem that 

Aj = {gj = / = g = 0} - { 0 } ̂  (j) and for a point p G A j fl Î7Q (for some a) 

we get 
m 

i=l 
Ai 

dx* 

5i 
dx* dx* 

dx* 

dx* 
9 

dx* 
oc 

dx* 

This implies that either {gj = 0} fl Ua = = 0} and A; = - g or {gj = 

0} fl Ua = { j / a = 0} and Aj = p. Since in the right member the poles are of 

order 1, we get also £j = 0. Moreover {gj = 0} fl 7r_1(?7) coincides with one 

of the divisors { # * = 0 } or { y a = 0} (U = Ua)- Therefore m = 2 and we 

can suppose that 

Bw 

A 
dgi 

gi 

dg2 

52 
and pdg(gi) = qdg(g2). 

Observe that we have also {g\ = g2 = 0} D { / = g = 0 } . From Noether's 

Lemma (2.3.1), we get gi = aif+/3ig and p2 = ot2f+f32g where o?i, . . . ,/32 are 

homogeneous polynomials. On the other hand, {g\ = g2 = 0} is connected by 

Lefschetz's Theorem and {g\ = g2 = 0} C S(F*) as we have seen after Lemma 

3. This implies that {gi = g2 = 0} = { / = g = 0 } . In fact, { / = # = 0 } is an 

irreducible component of {gi = g2 = 0} and if it has another component, say 

TV, then N fl { / = 5 = 0} - { 0 } ^ <j>. Hence if * G N fl { / = 3 = 0} - { 0 } , 
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then dgx(z) A dg2(z) = 0. But this implies that z E { / = g = 0 } - K{F*) 

which is not possible. Therefore {gi = g2 = 0} = { / = g = 0 } . 

By Noëther's lemma the matrix ai 
o¿2 

Pi 
02 

is invertible. Since dg(f) < 

dg(g) this is possible only if /3i and « 2 are constants and fa = 0. Hence: 

Bw 

A 
P 

dgi 

9i 
dgi di 

dgif 
T is induced by pfdgi — qgidf. 

In the 2nd case we can suppose that ^ = 7r*(w>//). Therefore if p E ({gj = 

/ = g = 0 } - { 0 } ) fl fl-^C/a), we have 

m 

dgi 

d0i 

0j 
dgi ardiva O 7TÌ a<xd(yoc/xl) 

where aa is a constant. This implies that Xj = 0, j = 1, . . . , m. Moreover 

(p/ip\Ua = aaVa/Xa + ba m = 1, £i = q and Bw/A = d((p/gf). Now, let 

77 = ^d((p/gl) = ^ — K we apply the same argument as in the Is* case 

for 77 we can conclude that g± = a±f and (f = &2f + (32g, where a\ and /32 are 

constants. This proves Theorem A. | 
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