Astérisque

D. Cervieau
 Alcides Lins Neto
 Codimension one foliations in $C P^{n}, n \geq 3$, with Kupka components

Astérisque, tome 222 (1994), p. 93-133
http://www.numdam.org/item?id=AST_1994__222__93_0
© Société mathématique de France, 1994, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

CODIMENSION ONE FOLIATIONS IN $\mathbf{C} P^{n}, n \geq 3$, WITH KUPKA COMPONENTS

D. Cerveau and A. Lins Neto

1. Introduction

1.1 - Basic notions:

A codimension one holomorphic foliation in a complex manifold M can be given by an open covering $\left(U_{\alpha}\right)_{\alpha \in A}$ of M and two collections $(w \alpha)_{\alpha \in A}$ and $\left(g_{\alpha \beta}\right)_{U_{\alpha} \cap U_{\beta} \neq \phi}$, such that:
(a) For each $\alpha \in A, w_{\alpha}$ is an integrable ($w_{\alpha} \wedge d w_{\alpha}=0$) holomorphic 1-form in U_{α}, and $w_{\alpha} \neq 0$.
(b) If $U_{\alpha} \cap U_{\beta} \neq \phi$ then $w_{\alpha}=g_{\alpha \beta} \cdot w_{\beta}$, where $g_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$.

Recall that $\mathcal{O}(V)$ is the set of holomorphic functions in V and $\mathcal{O}^{*}(V)=$ $\{g \in \mathcal{O}(V) \mid g(p) \neq 0 \forall p \in V\}$.

Let $\mathcal{F}=\left(\left(U_{\alpha}\right)_{\alpha \in A},\left(w_{\alpha}\right)_{\alpha \in A,(}\left(g_{\alpha \beta)} U_{\alpha} \cap U_{\beta} \neq \phi\right)\right.$ be a foliation in M. The singular set of $\mathcal{F}, S(\mathcal{F})$, is by definition $S(\mathcal{F})=\bigcup_{\alpha \in A} S_{\alpha}$, where $S_{\alpha}=\{p \in$ $\left.U_{\alpha} \mid w_{\alpha}(p)=0\right\}$. It follows from (a) and (b) that $S(\mathcal{F})$ is a proper analytic subset of M. The integrability condition implies that for each $\alpha \in A$ we can define a foliation \mathcal{F}_{α} (in the usual sense) in $U_{\alpha}-S_{\alpha}$, whose leaves are solutions of $w_{\alpha}=0$. Condition (b) implies that if $U_{\alpha} \cap U_{\beta} \neq \phi$, then \mathcal{F}_{α} coincides with \mathcal{F}_{β} in $U_{\alpha} \cap U_{\beta}-S(\mathcal{F})$. Hence we have a codimension one foliation defined in $M-S(\mathcal{F})$. A leaf of \mathcal{F} is by definition, a leaf of this foliation.
If $S(\mathcal{F})$ has codimension one components, then it is possible to find a new foliation $\mathcal{F}_{1}=\left(\left(U_{\alpha}\right)_{\alpha \in A},\left(\tilde{w}_{\alpha}\right)_{\alpha \in A},\left(\tilde{g}_{\alpha \beta}\right)_{U_{\alpha} \cap U_{\beta} \neq \phi}\right)$ such that $S\left(\mathcal{F}_{1}\right)$ has no S. M. F.
components of codimension one, $S\left(\mathcal{F}_{1}\right) \subset S(\mathcal{F})$, and the leaves of \mathcal{F} and $\mathcal{F}_{1} \mid\left(M-S(\mathcal{F})\right.$) are the same (in fact $w_{\alpha}=f_{\alpha} \cdot \tilde{w}_{\alpha}, f_{\alpha} \in \mathcal{O}\left(U_{\alpha}\right)$). From now on all the foliatons that we will consider will not have codimension 1 singular components.

1.2 - The Kupka set:

In 1964 I.Kupka proved the following result (see [K]);
1.2.1 Theorem. Let w be an integrable holomorphic 1 -form defined in a neighborhood of $p \in \mathbf{C}^{n}, n \geq 3$. Supose that $w_{p}=0$ and $d w_{p} \neq 0$. Then there exists a holomorphic coordinate system $\left(x, y, z_{3}, \ldots, z_{n}\right)$ defined in a neighborhood U of p such that $x(p)=y(p)=0$ and $w=A(x, y) d x+B(x, y) d y$ in this coordinate system, where $A(0,0)=B(0,0)=0$ and $\frac{\partial B}{\partial x}(0,0)-\frac{\partial A}{\partial y}(0,0) \neq 0$.

In fact Kupka proved this result in the real context, but his proof adapts very well in the holomorphic case.
1.2.2 Remarks: Let w, A, B and U be as in Theorem 1.2.1.
(i) The set $\left\{\left(x, y, z_{3}, \ldots, z_{n}\right) \in U \mid x=y=0\right\}=V$ is containned in U. If the singular set S of w has no codimension 1 components, then V is a smooth codimension 2 piece of S and $(0,0)$ is an isolated solution of $A(x, y)=B(x, y)=0$. By taking a smaller U if necessary we can suppose that $S \cap U=V$.
(ii) The foliation induced by $w=0$ in U is equivalent to the product of the singular foliation in $U \cap\left\{z_{3}=c_{3}, \ldots, z_{n}=c_{n}\right\} \subset \mathbf{C}^{2} \times\left(c_{3}, \ldots, c_{n}\right)$ given by $A d x+B d y=0$ (or by the differential equation $\dot{x}=-B, \dot{y}=A$), by the codimension 2 foliation in U given by $x=c_{1}, y=c_{2}$. The singular set in this case is $V=\{x=y=0\}$.
Let $\mathcal{F}=\left(\left(U_{\alpha}\right)_{\alpha \in A},\left(w_{\alpha}\right)_{\alpha \in A},\left(g_{\alpha \beta}\right)_{U_{\alpha} \cap U_{\beta} \neq \phi}\right)$ be a foliation on M. We define the Kupka set of \mathcal{F} by $K(\mathcal{F})=\bigcup_{\alpha \in A} K_{\alpha}$, where

$$
K_{\alpha}=\left\{p \in U_{\alpha} \mid w_{\alpha}(p)=0 \text { and } d w_{\alpha}(p) \neq 0\right\}
$$

Since $w_{\alpha}=g_{\alpha \beta} w_{\beta}$ in $U_{\alpha} \cap U_{\beta} \neq \phi$, we have $d w_{\alpha}=d g_{\alpha \beta} \wedge w_{\beta}+g_{\alpha \beta} d w_{\beta}$ which implies that $K_{\alpha} \cap U_{\beta}=K_{\beta} \cap U_{\alpha}$. It follows from (i) that $K(\mathcal{F})$ is a smooth complex codimension 2 submanifold of M. In fact $K(\mathcal{F})=S(\mathcal{F})-W(\mathcal{F})$ where $W(\mathcal{F})=\bigcup_{\alpha \in A} W_{\alpha}, W_{\alpha}=\left\{p \in U_{\alpha} \mid w_{\alpha}(p)=0\right.$ and $\left.d w_{\alpha}(p)=0\right\}$. Observe that $W(\mathcal{F})$ is an analytic subset of M.
1.2.3 Definition: We say that K is a Kupka component of \mathcal{F} if K is an irreducible component of $S(\mathcal{F})$ and $K \subset K(\mathcal{F})$. Observe that a Kupka component of \mathcal{F} is in particular a smooth connected codimension 2 analytic subset of M.

Let V be a connected codimension 2 submanifold of $K(\mathcal{F})$. It follows from the local product structure (see 1.2.1 and 1.2.2) that there exists a covering $\left(B_{i}\right)_{i \in I}$ of V by open sets of M, a collection of submersions $\left(\psi_{i}\right)_{i \in I}, \psi_{i}: B_{i} \rightarrow$ \mathbf{C}^{2}, and a 1-form $w=A(x, y) d x+B(x, y) d y$ defined in a neighborhood C of $(0,0) \in \mathbf{C}^{2}$, such that:
(a) $\psi_{i}\left(B_{i}\right) \subset C$ for evere $i \in I$.
(b) $(0,0)$ is the unique singularity of w in C and $V \cap B_{i}=\psi_{i}^{-1}(0,0)$, for every $i \in I$.
(c) $\mathcal{F} \mid B_{i}$ is represented by $w_{i}^{*}=\psi_{i}^{*}(w)$.

We will say that \mathcal{F} has transversal type w or X along V, where X is the vector field $-B \partial / \partial x+A \partial / \partial y$. The linear transversal type of \mathcal{F} along V is, by definition, the linear part of X at $(0,0)$ in Jordan's canonical form, modulo multiplication by non-zero constants. Let L be the linear part of X at $(0,0)$ in Jordan's canonical form. We have the following possibilities:
(i) L is diagonal with eigenvalues $\lambda_{1} \neq \lambda_{2}$.
(ii) L is diagonal with eigenvalues $\lambda_{1}=\lambda_{2} \neq 0$.
(iii) L is not diagonal with eigenvalues $\lambda_{1}=\lambda_{2} \neq 0$.

Observe that, since $\frac{\partial B}{\partial x}(0,0)-\frac{\partial A}{\partial y}(0,0) \neq 0$, we have $\operatorname{tr}(L) \neq 0$ and so the possibilities $\lambda_{1}=\lambda_{2}=0$ or $\lambda_{1}=-\lambda_{2}$ cannot occur.

In case (i) the two eigendirections of L induce via the submersions ψ_{i}, two
line subbundles of the normal bundle $\nu(V)$ of V in M. We will call these line bundles L_{1} (relative to λ_{1}) and L_{2} (relative to λ_{2}). It is clear that $\nu(V)=L_{1} \oplus L_{2}$. In case (iii) L has just one eigendirection which induces in the same way a line subbundle L_{1} of $\nu(V)$. In the case of Kupka components we have the following (see [G.M- L.N]):
1.2.4-Theorem. Let $\operatorname{dim}(M) \geq 3$ and K be a Kupka compact component of \mathcal{F}. We have:
(a) In case (i), if $C\left(L_{i}\right)$ is the first Chern class of $L_{i}, i=1,2$, considered in $H^{2}(K, \mathbf{C})$, then $\lambda_{1} C\left(L_{2}\right)=\lambda_{2} C\left(L_{1}\right)$.
(b) In case (iii) we have $C\left(L_{1}\right)=0$.
(c) In case (i), if $\lambda_{2} / \lambda_{1}=p / q$, where $p, q \in \mathbf{Z}_{+}$are relatively primes and $C\left(L_{1}\right) \neq 0$, then X is linearizable.

1.3-Codimension 1 foliations of $\mathbf{C} P^{n}, n \geq 3$:

A holomorphic foliation in $\mathbf{C} P^{n}$ can be given by an integrable 1-form $w=$ $\sum_{i=0}^{n} w_{i} d z_{i}(w \wedge d w=0)$, with the following properties:
(a) w_{0}, \ldots, w_{n} are homogeneous polynomials of the same degree ≥ 1.
(b) $i_{R}(w)=\sum_{i=0}^{n} w_{i} z_{i} \equiv 0\left(R=\sum_{i=0}^{n} z_{i} \partial / \partial z_{i}\right.$ is the radial vector field).

This form can be obtained as follows: let $\pi: \mathbf{C}^{n+1}-\{0\} \rightarrow \mathbf{C} P^{n}$ be the canonical projection and $\mathcal{F}=\left(\left(U_{\alpha}\right)_{\alpha \in A},\left(w_{\alpha}\right)_{\alpha \in A},\left(g_{\alpha \beta}\right)_{U_{\alpha} \cap U_{\beta} \neq \phi}\right)$ be a foliation in $\mathbf{C} P^{n}$. Let $\mathcal{F}^{*}=\left(\left(U_{\alpha}^{*}\right)_{\alpha \in A},\left(w_{\alpha}^{*}\right)_{\alpha \in A},\left(g_{\alpha \beta}^{*}\right)_{U_{\alpha} \cap U_{\beta} \neq \phi}\right)$ be the foliation in $\mathbf{C}^{n+1}-\{0\}$ defined by $U_{\alpha}^{*}=\pi^{-1}\left(U_{\alpha}\right), w_{\alpha}^{*}=\pi^{*}\left(w_{\alpha}\right)$ and $g_{\alpha \beta}^{*}=g_{\alpha \beta} \circ \pi$. Since for $U_{\alpha}^{*} \cap U_{\beta}^{*} \cap U_{\gamma}^{*} \neq \phi$ we have $g_{\alpha \beta}^{*} \cdot g_{\beta \gamma}^{*} \cdot g_{\gamma_{\alpha}}^{*}=1$, we can use Cartan's solution of the multiplicative Cousin's problem in $\mathbf{C}^{n+1}-\{0\}$ (see [G-R]) to obtain an integrable 1-form η in $\mathbf{C}^{n+1}-\{0\}$ such that for any $\alpha \in A$, we have $\eta \mid U_{\alpha}^{*}=h_{\alpha} \cdot w_{\alpha}^{*}$, where $h_{\alpha} \in \mathcal{O}^{*}\left(U_{\alpha}^{*}\right)$. From Hartog's Theorem (see [G-R]), η extends to a holomorphic 1 -form μ in \mathbf{C}^{n+1}. If $\mu=\mu_{k}+\mu_{k+1}+\ldots$ is the

Taylor development of μ at 0 , where the coefficients of μ_{j} are homogeneous of degree j and $\mu_{k} \not \equiv 0$, then it is easy to see that $w=\mu_{k}$ is integrable. We leave it to the reader the proof of the following facts:
(c) $S(w)=S\left(\mathcal{F}^{*}\right)=\pi^{-1}(S(\mathcal{F})) \cup\{0\}$.
(d) L^{*} is a leaf of \mathcal{F}^{*} iff $L^{*}=\pi^{-1}(L)$, where L is a leaf of \mathcal{F}.
(e) If $k=\operatorname{degree}(w) \geq 2$, then $K\left(\mathcal{F}^{*}\right)=\pi^{-1}(K(\mathcal{F}))=\left\{p \in \mathbf{C}^{n+1} \mid w(p)=0\right.$ and $d w(p) \neq 0\}$.

When degree $(w)=1$ we can have $w=z_{1} d z_{2}-z_{2} d z_{1}$ and in this case $K\left(\mathcal{F}^{*}\right)=\left\{z_{1}=z_{2}=0\right\}=\pi^{-1}(K(\mathcal{F})) \cup\{0\}$.

Observe that condition (b) is equivalent to conditions (c) and (d) and means that the lines through the origin are tangent to the leaves of \mathcal{F}^{*}.

Observe also that given an integrable 1-form w in \mathbf{C}^{n+1} satisfying (a) and (b) we can induce a foliation $\mathcal{F}(w)$ in $\mathbf{C} P^{n}$ as follows: let $\left(U_{i}\right)_{i=0}^{n}$ be the covering of $\mathbf{C} P^{n}$ by affine coordinate systems, where $U_{i}=\left\{\left[z_{0}: \ldots: z_{n}\right] \in \mathbf{C} P^{n} \mid z_{i} \neq\right.$ $0\}$. Let $\psi_{i}: U_{i} \rightarrow \mathbf{C}^{n}, \psi_{i}\left[z_{0}: \ldots: z_{n}\right]=\left(z_{0} / z_{i}, \ldots, z_{i-1} / z_{i}, z_{i+1} / z_{i}, \ldots, z_{n} / z_{2}\right)=$ $\left(x_{0}^{i}, \ldots, x_{i-1}^{i}, x_{i+1}^{i}, \ldots, x_{n}^{i}\right)$. Define $\eta_{i}=\psi_{i}^{*}\left(\eta_{i}^{*}\right)$, where $\eta_{i}^{*}=w \mid\left(z_{i}=1\right)=$ $\sum_{j \neq i} w_{j}\left(z_{0}, \ldots, z_{i-1}, 1, z_{i+1}, \ldots, z_{n}\right) d z_{j}$. It is not difficult to see that if $d g(w)=$ k then $\eta_{i}\left|V_{i} \cap U_{j}=\left(x_{j}^{i}\right)^{k+1} \eta_{j}\right| U_{i} \cap U_{j}$. Hence $\mathcal{F}(w)=\left(\left(U_{i}\right)_{i=0}^{n},\left(\eta_{i}\right)_{i=0}^{n}\left(\left(x_{i}^{j}\right)^{k+1}\right)_{i \neq j}\right)$ is a foliation on $\mathbf{C} P^{n}$.

Remark: Two integrable 1-forms w and η in \mathbf{C}^{n+1}, with properties (a) and (b) define the same foliation iff $w=\lambda \cdot \eta$ where $\lambda \in \mathbf{C}^{*}$.

It follows from the above considerations that the space of foliations in $\mathbf{C P} P^{n}$ can be written as $\cup_{m \geq 1} P_{m}$, where P_{m} is the projectivization of the following space of polynomial 1-forms: $I_{m}=\left\{w \mid w=\sum_{i=0}^{n} w_{i} d z_{i}, d g\left(w_{i}\right)=m \quad \forall i=\right.$ $0, \ldots, n, w \wedge d w=0, \sum_{i=0}^{n} z_{j} w_{j} \equiv 0$ and the set $\left\{w_{0}=\cdots=w_{n}=0\right\}$ has all irreducible components of codimension $\geq 2\}$.

Observe that I_{m} is an open subset of the following algebraic set

$$
E_{m}=\left\{w \mid d g(w)=m, w \wedge d w=0, \sum_{i=0}^{n} z_{i} w_{i} \equiv 0\right\}
$$

Problem - Describe in some way the irreducible components of P_{m}. Let us see some examples.
1.3.1 - Example: Let f, g be homogeneous polynomials in $\mathbf{C}^{n+1}, n \geq 3$, where $d g(f)=k \geq 1, d g(g)=\ell \geq 1$ and $k / \ell=p / q$ where p and q are relatively primes. Assume that:

$$
\begin{equation*}
\forall z \in\{f=g=0\}-\{0\} \text { we have } d f(z) \wedge d g(z) \neq 0 \tag{*}
\end{equation*}
$$

We will use the notation $f \bar{\pi} g(f=0$ intersects $g=0$ transversely) in this case. We observe that Noether's lemma implies that if f and g satisfy (*) then $\{f=g=0\}$ is a complete intersection.

Let $w=q g d f-p f d g$. It follows from Euler's identity that $i_{R}(w)=0$. Moreover $w \wedge d w=0$ because $w=f \cdot g \cdot \eta$, where $\eta=q \frac{d f}{f}-p \frac{d g}{g}$ and $d \eta=0$. Therefore w induces a foliation in $\mathbf{C} P^{n}, \mathcal{F}(w)$, such that:
(i) $S(\mathcal{F}(w))=\pi\{p \neq 0 \mid w(p)=0\}=S$ (singular set)
(ii) $K(\mathcal{F}(. w))=\pi\{p \neq 0 \mid f(p)=g(p)=0\}=K$ (Kupka set)
(iii) f^{q} / g^{p}, considered as meromorphic function on $\mathbf{C} P^{n}$, is a first integral of $\mathcal{F}(w)$. This follows from the fact that $w=g^{p+1} f^{1-q} d\left(f^{q} / g^{p}\right)$.
(iv) $w \in P_{n}$ where $n=k+\ell-1$.

As a consequence of the techniques developed in [G.M-L.N.] it is possible to prove the following result:
1.3.2 Theorem. Let $\mathcal{F}_{0}=\mathcal{F}(w)$, where w is as in example 1.3.1. Then there exists a neighborhood \mathcal{U} of \mathcal{F}_{0} in P_{n} such that if $\mathcal{F} \in \mathcal{U}$ then there are polynomials \tilde{f} and \tilde{g} of degrees k and ℓ respectively, and $\mathcal{F}=\mathcal{F}(q \tilde{g} d \tilde{f}-p \tilde{f} d \tilde{g})$.

As a consequence we have:
1.3.3 Corollary. There are irreducible components in P_{m} (for all $m \geq 1$) whose foliations are defined by meromorphic functions in $\mathbf{C} P^{n}, n \geq 3$.

Concerning Kupka components we will prove in $\S 3$ the following result:
1.3.4 Theorem A. Let \mathcal{F} be a foliation of $\mathbf{C} P^{n}, n \geq 3$, which has a Kupka component K of the form $\{[z] \mid f(z)=g(z)=0\}$ where f and g are homogeneous polynomials and $f \pi g$. Let $d g(f) / d g(g)=p / q$ where p and q are relatively primes. Then:
(a) If $d g(f)=d g(g)$, then \mathcal{F} is the foliation induced by the form $f d g-g d f$. In particular f / g is a first integral of \mathcal{F}.
(b) If $d g(f)<d g(g)$ then \mathcal{F} is induced by a form of the type $q g_{1} d f-p f d g_{1}$, where $g_{1}=g+h . f$ is homogeneous and $d g\left(g_{1}\right)=d g(g)$. In particular f^{q} / g_{1}^{p} is a first integral of \mathcal{F}.
1.3.5 Example: A logarithmic form is one of the type

$$
\begin{equation*}
w=f_{1} \ldots f_{r} \sum_{j=1}^{r} \lambda_{j} \frac{d f_{j}}{f_{j}} \tag{*}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{r} \in \mathbf{C}^{*}$ and f_{1}, \ldots, f_{r} are holomorphic functions. When f_{1}, \ldots, f_{r} are homogeneous polynomials in $\mathbf{C}^{n+1}, d g\left(f_{i}\right) \geq 1$ for $i=1, \ldots, r$, and $\sum_{i=1}^{r} \lambda_{i} d g\left(f_{i}\right)=0$, then w induces a foliation $\mathcal{F}(w)$ in $\mathbf{C} P^{n}$, where $\mathcal{F}(w) \in$ $P_{m}, m=\sum_{i=1}^{r} d g\left(f_{i}\right)-1$. Observe that $\sum_{i=1}^{r} \lambda_{i} d g\left(f_{i}\right)=0$ is equivalent to the condition $\sum_{i=0}^{n} z_{i} w_{i} \equiv 0$. We will use the notations $F_{i}=\left\{[z] \in \mathbf{C} P^{n} \mid f_{i}(z)=0\right\}$ and $F_{i j}=\left\{[z] \in \mathbf{C} P^{n} \mid f_{i}(z)=f_{j}(z)=0\right\}$ if $i \neq j$. We will assume that f_{1}, \ldots, f_{r} are irreducibles. The foliation $\mathcal{F}(w)$, induced by w in $\mathbf{C} P^{n}$ has the following properties:
(i) For every $i=1, \ldots, r, F_{i}^{*}=F_{i}-S(\mathcal{F}(w))$ is a leaf of $\mathcal{F}(w)$.
(ii) The holonomy of F_{i}^{*} is linearizable and is conjugated to a subgroup of the group of linear transformations of \mathbf{C} generated by the set $\left\{g_{j} \mid g_{j}(z)=\right.$
$\left.\exp \left(2 \pi i \lambda_{j} / \lambda_{i}\right) . z, \quad j=1, \ldots, r, \quad j \neq i\right\}$. The holonomy of a leaf $L \neq$ $F_{1}^{*}, \ldots, F_{r}^{*}$ is trivial.
(iii) For any $i \neq j, F_{i j} \subset S(\mathcal{F}(w))$. Moreover, if $\lambda_{i} \neq \lambda_{j}$ then $F_{i j}-V$ is contained in the Kupka set of $\mathcal{F}(w)$, where $V=\left\{[z] \mid d f_{i}(z) \wedge d f_{j}(z)=\right.$ $0\} \cup V^{\prime}, V^{\prime}=\bigcup_{k \neq i, j}\left\{[z] \mid f_{k}(z)=0\right\}$. In particular $K(\mathcal{F}(w)) \subset \bigcup_{i \neq j} F_{i j}$.
(iv) The function $f_{1}^{\lambda_{1}} \ldots f_{r}^{\lambda_{r}}$ (in general multivalued) is a first integral of $\mathcal{F}(w)$. The following result is known:
1.3.6 Theorem. (J. Omegar) - Let \mathcal{F}_{0} be the foliation induced by w in $\mathbf{C} P^{n}$, $n \geq 3$, where w is like in $\left(^{*}\right)$ of 1.3.5. Assume that f_{1}, \ldots, f_{r} are irreducibles and for some $i \in\{1, \ldots, r\}$, say $i=1$, we have:
(a) F_{1} is smooth.
(b) For any subset $\left\{j_{1}, \ldots, j_{s}\right\} \subset\{2, \ldots, r\}$ where $j_{1}<\cdots<j_{s}$ and any $p \in F_{1} \cap F_{j_{1}} \cap \cdots \cap F_{j_{s}}$ then $F_{1}, F_{j_{1}}, \ldots, F_{j_{s}}$ intersect multitransversely at p.
(c) For some $j>1$ we have $\lambda_{j} / \lambda_{1} \notin \mathbf{R}$.

Then there exists a neighborhood \mathcal{U} of \mathcal{F}_{0} in P_{m} such that if $\mathcal{F} \in \mathcal{U}$ then \mathcal{F} is induced by a logarithmic form of the same type of w, say $\eta=$ $g_{1}, \ldots, g_{r} \sum_{j=1}^{r} \eta_{j} \frac{d g_{j}}{g_{j}}$, where $d g\left(g_{j}\right)=d g\left(f_{j}\right), j=1, \ldots, r$.

It follows that:
1.3.7 Corollary. There are irreducible components in P_{m} (for all $m \geq 1$) whose foliations in an open and dense subset are defined by logarithmic forms.
1.3.8 Definition: We say that a meromorphic 1 -form w, defined in some complex manifold M, has an integrating factor, if there exists a meromorphic function f in M, called an integrating factor, such that, $d\left(\frac{w}{f}\right)=0$. Remark that for w as in $\left(^{*}\right)$ of 1.3.5, the function $f=f_{1} \ldots f_{r}$ is an integrating factor.

In $\S 3$ we will prove the following result:
1.3.9 Theorem B. Let \mathcal{F} be a foliation in $\mathbf{C} P^{n}, n \geq 3$, such that there is an analytic subset $N \subset S(\mathcal{F})$ with the following properties:
(a) $\operatorname{cod}(N)=2$ and $N=\left\{[z] \in \mathbf{C} P^{n} \mid f(z)=g(z)=0\right\}$, where f and g are homogeneous polynomials on \mathbf{C}^{n+1}.
(b) $K(\mathcal{F}) \cap N$ is open and dense in N and moreover for any connected component C of $K(\mathcal{F}) \cap N$ the linear part of the transversal type of \mathcal{F} at C has eigenvalues $\lambda_{1}(C) \neq 0 \neq \lambda_{2}(C)$, where $\lambda_{2}(C) / \lambda_{1}(C) \notin \mathbf{R}$.
(c) For any $p \in N-K(\mathcal{F}), \mathcal{F}$ can be represented in a neighborhood of p by a holomorphic form which has an integrating factor.
Then there exists a closed meromorphic 1-form η in $\mathbf{C} P^{n}$ which represents \mathcal{F} outside its divisor of poles. In particular \mathcal{F} is induced by a homogeneous 1-form in \mathbf{C}^{n+1} which has a meromorphic integrating factor.

Furthermore \mathcal{F} is of logarithmic type if we assume that:
(d) $K(\mathcal{F})$ is dense in each irreducible component of codimension 2 of $S(\mathcal{F})$.
(e) For any connected component C of $K(\mathcal{F})$ the transversal part of \mathcal{F} at C has linear part non degenerated (i.e. 0 is not an eigenvalue).

Remarks:

1.3.10 - It will follow from the proof that condition (b) can be replaced by;
(b') $\lambda_{2}(C) / \lambda_{1}(C) \notin \mathbf{Q}$ and the transversal type is linearizable.
1.3.11 - In [C-M] the authors give some sufficient conditions for a holomorphic integrable 1 -form have a local integrating factor. One of their results implies that (c) follows from (b) and
(c') For some neighborhood U of $p \in N-K(\mathcal{F}), \mathcal{F} \mid U$ has a finite number of analytic leaves which intersect multitransversely in the points of N.
1.4 An example: Let K be the twisted cubic in $\mathbf{C} P^{3}$, which is defined in homogeneous coordinates $(x, y, z, w) \in \mathbf{C}^{4}$ by the equations $f=g=h=0$, where

$$
\begin{equation*}
f=X W-Y Z, \quad g=X Z-Y^{2} \text { and } h=Y W-Z^{2} \tag{*}
\end{equation*}
$$

We will prove here that there exists no foliation in $\mathbf{C} P^{3}$ having K as a Kupka component.

Let U_{0} and U_{4} be the affine coordinate systems in $\mathbf{C} P^{3}$, whose points are of the form [1:u:v:w] and $[x: y: z: 1]$, respectively. Then $K \subset U_{0} \cup U_{4}$. Moreover $K \cap U_{0}$ and $K \cap U_{4}$ can be parametrized by $\varphi_{0}(t)=\left[1: t: t^{2}: t^{3}\right]$ and $\varphi_{4}(s)=\left[s^{3} ; s^{2}: s: 1\right]$ respectively, where $\varphi_{0}(t)=\varphi_{4}(s)$ iff $s=1 / t$. Let $f_{0}(u, v, w)=f(1, u, v, w)=w-u v, g_{0}(u, v, w)=g(1, u, v, w)=v-u^{2}$, $f_{4}(x, y, z)=f(x, y, z, 1)=x-y z$ and $h_{4}(x, y, z)=h(x, y, z, 1)=y-z^{2}$. Remark that $K \cap U_{0}=\left\{f_{0}=g_{0}=0\right\}$ and $K \cap U_{4}=\left\{f_{4}=h_{4}=0\right\}$.

Suppose by contradiction that there exists a foliation \mathcal{F} on $\mathbf{C} P^{3}$ whose Kupka set contains K. Let w be a homogeneous integrable 1-form in \mathbf{C}^{4} such that $i_{R}(w)=0$ and w represents \mathcal{F}. Let $w=\sum_{i=0}^{3} \alpha_{i} d z_{i}$, where $d g\left(\alpha_{i}\right)=k$, $i=0, \ldots 4$. If $w_{0}=w \mid\left\{z_{0}=1\right\}=\alpha_{1}(1, u, v, w) d u+\alpha_{2}(1, u, v, w) d v+$ $\alpha_{3}(1, u, v, w) d w$ and $w_{4}=w \mid\left\{z_{4}=1\right\}=\alpha_{0}(x, y, z, 1) d x+\alpha_{1}(x, y, z, 1) d y+$ $\alpha_{2}(x, y, z, 1) d z$, then $\mathcal{F} \mid U_{0}$ is represented by w_{0} and $\mathcal{F} \mid U_{4}$ by w_{4}. Moreover in $U_{0} \cap U_{4}$ we have $w_{0}=x^{-(k+1)} w_{4}$.

Now, consider the maps $\psi_{0}, \psi_{4}: \mathbf{C}^{3} \rightarrow \mathbf{C}^{3}$ given by $\psi_{0}(u, v, w)=\left(u, g_{0}(u, v, w)\right.$, $\left.f_{0}(u, v, w)\right)$ and $\psi_{4}(x, y, z)=\left(f_{4}(x, y, z), h_{4}(x, y, z), z\right)$. It is not difficult to see that ψ_{0} and ψ_{4} are diffeomorphisms, so that we can consider $\left(u, g_{0}, f_{0}\right)$ and $\left(f_{4}, h_{4}, z\right)$ as coordinates in U_{0} and U_{4} respectively. Moreover $\psi_{0}\left(K \cap U_{0}\right)=$ $\left\{f_{0}=g_{0}=0\right\}$ and $\psi_{4}\left(K \cap U_{4}\right)=\left\{f_{4}=h_{4}=0\right\}$. Observe also that the inverse maps of ψ_{0} and ψ_{4} are polynomials, so that we can write

$$
\begin{aligned}
& w_{0}=A\left(u, g_{0}, f_{0}\right) d u+B\left(u, g_{0}, f_{0}\right) d g_{0}+C\left(u, g_{0}, f_{0}\right) d f_{0} \\
& w_{4}=D\left(f_{4}, h_{4}, z\right) d f_{4}+E\left(f_{4}, h_{4}, z\right) d h_{4}+F\left(f_{4}, h_{4}, z\right) d z
\end{aligned}
$$

where A, B, C, D, E and F are polynomials. Let us analyze w_{0}. Consider the vector field

$$
X=\left(\frac{\partial C}{\partial g_{0}}-\frac{\partial B}{\partial f_{0}}\right) \frac{\partial}{\partial u}+\left(\frac{\partial A}{\partial f_{0}}-\frac{\partial C}{\partial u}\right) \frac{\partial}{\partial g_{0}}+\left(\frac{\partial B}{\partial u}-\frac{\partial A}{\partial g_{0}}\right) \frac{\partial}{\partial f_{0}}
$$

As the reader can see, the integrability condition is equivalent to $i_{X}\left(w_{0}\right)=0$. Moreover, in the proof of Kupka's Theorem (1.2.1) it is proved that the flow
of X leaves invariant the Kupka set. Since $\left\{f_{0}=g_{0}=0\right\} \subset K(\mathcal{F}) \cap U_{0}$, we must have $X(u, 0,0)=\left(\frac{\partial C}{\partial g_{0}}-\frac{\partial B}{\partial f_{0}}\right)(u, 0,0) \frac{\partial}{\partial u}$, so that,

$$
\begin{equation*}
\frac{\partial A}{\partial f_{0}}(u, 0,0)=\frac{\partial C}{\partial u}(u, 0,0) \text { and } \frac{\partial B}{\partial u}(u, 0,0)=\frac{\partial A}{\partial g_{0}}(u, 0,0) . \tag{1}
\end{equation*}
$$

On the other hand, since $K \subset S(\mathcal{F})$, we can write

$$
w_{0}=\left(a_{1}(u) g_{0}+a_{2}(u) f_{0}\right) d u+\left(b_{1}(u) g_{0}+b_{2}(u) f_{0}\right) d g_{0}+\left(c_{1}(u) g_{0}+c_{2}(u) f_{0}\right) d f_{0}+\ldots
$$

where a_{1}, \ldots, c_{2} are polynomials in u and the dots mean terms of order ≥ 2 in $\left(g_{0}, f_{0}\right)$. This implies that:

$$
X=\left(c_{1}(u)-b_{2}(u)\right) \frac{\partial}{\partial u}+a_{2}(u) \frac{\partial}{\partial g_{0}}-a_{1}(u) \frac{\partial}{\partial f_{0}}+\ldots
$$

where the dots mean terms of order ≥ 1 in $\left(g_{0}, f_{0}\right)$. From (1) we get that $a_{1} \equiv a_{2} \equiv 0$ and $X(u, 0,0)=\left(c_{1}(u)-b_{2}(u)\right) \frac{\partial}{\partial u}$. On the other hand, since $K \subset K(\mathcal{F})$, we must have $d w_{0}(u, 0,0) \neq 0 \forall u \in \mathbf{C}$, and this implies that $c_{1}(u)-b_{2}(u) \neq 0 \forall u \in \mathbf{C}$. Hence $c_{1}-b_{2} \equiv c, c \neq 0$ a constant, because $c_{1}-b_{2}$ is a polynomial. From these considerations it is easy to see that:

$$
\begin{equation*}
d w_{0} \mid K \cap U_{0}=c d g_{0} \wedge d f_{0} \tag{2}
\end{equation*}
$$

With an analogous argument it is possible to conclude that

$$
\begin{equation*}
d w_{4} \mid K \cap U_{4}=\hat{c} d f_{4} \wedge d h_{4}, \text { where } \hat{c} \neq 0 \text { is a constant. } \tag{3}
\end{equation*}
$$

Now, recall that $w_{0}=x^{-(k+1)} w_{4}$ in $U_{0} \cap U_{4}$. Since $x=z^{3}$ along $K \cap U_{4}$ and $w_{4}(0,0, z)=0$, we have:

$$
d w_{0} \mid K \cap U_{0} \cap U_{4}=x^{-(k+1)} d w_{4}(0,0, z)=z^{-3(k+1)} d w_{4}(0,0, z)
$$

which together with (2) and (3) implies that:

$$
\begin{equation*}
\tilde{c} d g_{0} \wedge d f_{0}=z^{-3(k+1)} d f_{4} \wedge d h_{4} \text { along } K \cap U_{0} \cap U_{4}, \quad \tilde{c}=c / \hat{c} \tag{4}
\end{equation*}
$$

As the reader can verify easily, we have the following relations

$$
\left\{\begin{array}{l}
f_{0}\left|U_{0} \cap U_{4}=x^{-2} f_{4}\right| U_{0} \cap U_{4} \\
g_{0}\left|U_{0} \cap U_{4}=x^{-2}\left[z f_{4}-y h_{4}\right]\right| U_{0} \cap U_{4}
\end{array}\right.
$$

This implies that
$d g_{0} \wedge d f_{0}\left|K \cap U_{0} \cap U_{4}=y x^{-4} d h_{4} \wedge d f_{4}\right| K \cap U_{0} \cap U_{4}=z^{-10} d h_{4} \wedge d f_{4} \mid K \cap U_{0} \cap U_{4}$
because $y x^{-4}=z^{-10}$ along $K \cap U_{4}$.
Finally, from (4) and (5) we get that $10=3(k+1)$, where $k \in \mathbf{N}$, which is a contradiction.

This example motivates the following:
Problem: Are there foliations on $\mathbf{C} P^{n}, n \geq 3$, which admit a Kupka component which is not a complete intersection?

We think that the answer is no.

2. BASIC RESULTS

In this section we will state and prove some of the results that we will need in §3.
2.1 Definitions: Let $\varphi: \rightarrow \mathbf{R}$ be a C^{2} function, where $U \subset \mathbf{C}^{n}$ is an open set. We say that φ is strictly k-subharmonic (briefly $s . k-s$.) or ($n-k+1$)pseudoconvex, if for any $z \in U$ the $\partial \bar{\partial}$-matrix of φ at z, which is defined by

$$
H_{\varphi}(z)=\left(\frac{\partial^{2} \varphi}{\partial \bar{z}_{i} \partial z_{j}}(z)\right) 1 \leq i, j \leq n
$$

has at least k positive eigenvalues. Observe that $H_{\varphi}(z)$ is a hermitian matrix, so that all its eigenvalues are real. Moreover, if $f: V \rightarrow U$ is a biholomorphism then

$$
H_{\varphi \circ f}(w)=\bar{P}^{t} \cdot H_{\varphi}(f(w)) \cdot P
$$

where P is the jacobian matrix of f at w. This implies that the concept of $s . k-s$. can be defined in complex manifolds: if M is a complex manifold of dimension n and $\varphi: M \rightarrow \mathbf{R}$ is C^{2}, we say that φ is $s . k-s$. if for any $p \in M$ there is a holomorphic local chart $\alpha: U \rightarrow V \subset \mathbf{C}^{n}, p \in U$, such that $\varphi \circ \alpha^{-1}$ is $s . k-s .$. It is clear that if $\beta: U_{1} \rightarrow V_{1}, p \in U_{1}$, is another holomorphic chart, then $\varphi \circ \beta^{-1}$ is $s . k-s .$.

We say that a connected complex manifold M is k-complete, $k \geq 1$, if there exists a $s . k-s$. function $\varphi: M \rightarrow \mathbf{R}$ such that:

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \varphi(p)=+\infty \tag{*}
\end{equation*}
$$

that is, for any sequence $\left(p_{n}\right)_{n \geq 1}$ in M, without accumulation points, we have $\lim _{n \rightarrow \infty} \varphi\left(p_{n}\right)=+\infty$. We observe that a $s . k-s$. function, $k \geq 1$, cannot have a local maximum. This fact follows from the maximum principle for subharmonic functions, as the reader can verify easily. Hence there are no $s . k-s$. functions on compact manifolds. Remark also that property (*) implies that:
(i) For any $r \in \mathbf{R}$ the sets $\varphi^{-1}(-\infty, r]$ and $\varphi^{-1}(r)$ are compact.
(ii) $\inf \{\varphi(p) \mid p \in M\}=m>-\infty$, and there exists $p_{0} \in M$ such that $\varphi\left(p_{0}\right)=m$.
When $k=n=\operatorname{dim}(M)$ a $s . k-s$. function is also called a strictly subharmonic function.

2.2 Extension of Meromorphic forms:

The main result of this section is the following:
2.2.1 Theorem. Let M be a k-complete complex manifold, where $k \geq 2$. Let C be a compact subset of M and w be a meromorphic (resp. holomorphic) ℓ-form defined on $M-C$. Then w extends to a meromorphic (resp. holomorphic) ℓ-form on M.

Proof: Let $\varphi: M \rightarrow \mathbf{R}$ be a $s . k-s$. function such that $\lim _{p \rightarrow \infty} \varphi(p)=+\infty$. Since a $s . k-s$ function is $s .2-s$. if $k \geq 2$, we can assume that $k=2$. Let $m=$
$\inf \{\varphi(p) \mid p \in M\}$ and $r=\sup \{\varphi(p) \mid p \in C\}$, so that $M-C \subset \varphi^{-1}(r,+\infty)$ and w is defined on $\varphi^{-1}(r,+\infty)$. The idea is to prove the following:

Assertion 1: If w can be extended to $\varphi^{-1}(s,+\infty)$, where $s \leq r$, then there exists $\varepsilon>0$ such that w can be extended to $\varphi^{-1}(s-\varepsilon,+\infty)$.

Since $\varphi^{-1}[m,+\infty)=M$, then assertion 1 clearly implies the theorem. On the other hand, assertion 1 is implied by the following:

Assertion 2: Suppose that w has been already extended to $\varphi^{-1}(s,+\infty)$, where $s \leq r$. Given $p \in \varphi^{-1}(s)$, there exist a neighborhood V of p such that w can be extended to $V \cup \varphi^{-1}(s,+\infty)$.

Assertion 1 follows from assertion 2 because $\varphi^{-1}(s)$ is compact. In order to prove assertion 2 we use Levi's Theorem:

Levi's Theorem: (see [S] for the proof). Let $W \subset V \subset \mathbf{C}^{n-1}$ be open sets, where $W \neq \phi$ and V is connected. Let f be a meromorphic (resp. holomorphic) function defined in $(W \times \Delta(r)) \cup\left(V \times\left[\Delta(r)-\overline{\Delta\left(r^{\prime}\right)}\right]\right.$, where $\Delta(r)=\{z \in \mathbf{C}| | z \mid<r\}$ and $0<r^{\prime}<r$. Then f can be extended to a meromorphic (resp. holomorphic) function on $V \times \Delta(r)$.

An open set A of the form $(W \times \Delta(r)) \cup\left(V \times\left[\Delta(r)-\bar{\Delta}\left(r^{\prime}\right)\right]\right)$ is called a Hartog's domain. The set $\hat{A}=V \times \Delta(r)$ is called its envelope of holomorphy. Another fact we will use is the following:

Lemma 1. Let $\varphi: U \rightarrow \mathbf{R}$ be a $s .2-s$. function, where $U \subset \mathbf{C}^{n}$ is an open set $(n \geq 2)$. Let $p \in U$ be such that $\varphi(p)=s$. Then there exist a biholomorphism $\alpha: V_{1} \rightarrow U_{1}$ and a Hartog's domain $A \subset V_{1}$ such that
(a) $0 \in V_{1}, \alpha(0)=p \in U_{1} \subset U$
(b) $\alpha(A) \subset U_{1}$ and $p \in \alpha(\hat{A})$, where \hat{A} is the envelope of holomorphy of A.

For the proof see the $\S 8$ of $[\mathrm{S}-\mathrm{T}]$.
Assertion 2 follows from Levi's Theorem and Lemma 1. In fact, given $p \in$ $\varphi^{-1}(s)$, by taking a local chart we can assume that $p=0 \in \mathbf{C}^{n}$ and $\varphi: U \rightarrow \mathbf{R}$, $0 \in U \subset \mathbf{C}^{n}$. Since $\varphi(0)=s$ and w is defined in $\varphi^{-1}(s,+\infty) \subset U$, we can write $w=\sum_{I} f_{I} d z_{I}$, where $I=\left(i_{1}, \ldots, i_{\ell}\right), i_{1}<\cdots<i_{\ell}, d z_{I}=d z_{i_{1}} \wedge \cdots \wedge d z_{i_{\ell}}$
and f_{I} is a meromorphic (resp. holomorphic) function on $\varphi^{-1}(s,+\infty)$. Let α and A be as in lemma 1 and $g_{i}=f_{I} \circ \alpha^{-1}, I=\left(i_{1}<\cdots<i_{\ell}\right)$. From Levi's Theorem g_{I} can be extended to a meromorphic (resp. holomorphic) function on \hat{A}. Hence f_{I} can be extended to a meromorphic (resp. holomorphic) function on $\alpha(\hat{A})$. Since $\alpha(\hat{A})$ is a neighborhood of $p=0$, then assertion 2 is proved.

Now we consider the following situation: let f_{1}, \ldots, f_{k} be homogeneous (non constant) polynomials in \mathbf{C}^{n+1} and $V\left(f_{1}, \ldots, f_{k}\right)=\left\{[p] \in \mathbf{C} P^{n} \mid f_{1}(p)=\right.$ $\left.\cdots=f_{k}(p)=0\right\}$.
2.2.2 Theorem. $M=\mathbf{C} P^{n}-V\left(f_{1}, \ldots, f_{k}\right)$ is ℓ-complete, where $\ell=n-k+1$.

Proof: Let $d g\left(f_{j}\right)=d_{j}, j=1, \ldots, k$ and $q_{1}, \ldots, q_{k} \in[N]$ be such that $d_{1} q_{1}=\cdots=d_{k} q_{k}=q>0$. Put $G_{j}=f_{j}^{q_{j}}$, so that $d g\left(G_{j}\right)=q, j=1, \ldots, k$, and $V\left(f_{1}, \ldots, f_{k}\right)=V\left(G_{1}, \ldots, G_{k}\right)$. Define $\varphi: M \rightarrow \mathbf{R}$ by

$$
\varphi([z])=\ell g\left(\frac{\left(\sum_{j=0}^{n}\left|z_{j}\right|^{2}\right)^{q}}{\sum_{j=1}^{k}\left|G_{j}(z)\right|^{2}}\right)
$$

where [] $=\pi: \mathbf{C}^{n+1}-\{0\} \rightarrow \mathbf{C} P^{n}$ is the canonical projection and $z=$ $\left(z_{0}, \ldots, z_{n}\right)$. It is easy to see that φ is well defined and real analytic on M. Moreover, since $M=\mathbf{C} P^{n}-V\left(G_{1}, \ldots, G_{k}\right)$, we have $\lim _{p \rightarrow \infty} \varphi(p)=$ $\lim _{p \rightarrow V} \varphi(p)=+\infty$, where $V=V\left(G_{1}, \ldots, G_{k}\right)$. Let us prove that φ is $s . \ell-$ s.. Fix $\left[z^{0}\right]=\left[z_{0}^{0}: \ldots: z_{n}^{0}\right] \in M$. We can suppose that $z_{0}^{0} \neq 0$, so that $\left[z^{0}\right]=\left[1: x_{1}^{0}, \ldots, x_{n}^{0}\right]$, where $x_{j}^{0}=z_{j}^{0} / z_{0}^{0}$. In the affine coordinate system $\left(x_{1}, \ldots, x_{n}\right)=\left[1: x_{1}: \ldots: x_{n}\right] \in \mathbf{C}^{n}, \varphi$ can be written as $\varphi=q \varphi_{1}-\varphi_{2}$, where $\varphi_{1}(x)=\ell g\left(1+\sum_{j=1}^{n}\left|x_{j}\right|^{2}\right)$ and $\varphi_{2}(x)=\sum_{j=1}^{k}\left|g_{j}(x)\right|^{2}$, where $g_{j}(x)=$ $G_{j}\left(1, x_{1}, \ldots, x_{n}\right)$. Therefore we have $H_{\varphi}=q H_{\varphi_{1}}-H_{\varphi_{2}}$. A direct computa-
tion shows that $H_{\varphi_{1}}=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and $H_{\varphi_{2}}=\left(b_{i j}\right)_{1 \leq i, j \leq n}$, where

$$
\begin{aligned}
a_{i i}(x) & =\left(1+\sum_{j \neq i}\left|x_{j}\right|^{2}\right) /\left(1+\sum_{j=1}^{n}\left|x_{j}\right|^{2}\right)^{2} \\
a_{i j}(x) & =-x_{i} \bar{x}_{j} /\left(1+\sum_{j=1}^{n}\left|x_{j}\right|^{2}\right)^{2} \\
b_{i j} & =\sum_{r<s} \bar{\Delta}_{r_{s}}^{i} \Delta_{r_{s}}^{j} /\left(\sum_{j=1}^{k}\left|g_{j}\right|^{2}\right)^{2}
\end{aligned}
$$

where $\Delta_{r_{s}}^{i}=g_{r} \frac{\partial g_{s}}{\partial x_{i}}-g_{s} \frac{\partial g_{r}}{\partial x_{i}}$. Observe that the quadratic form associated to $H_{\varphi_{1}}$ is
$Q_{1}(x, w)=\sum_{i, j} \bar{w}_{i} a_{i j} w_{j}=\left(1^{!}+\sum_{j=1}^{n}\left|x_{i}\right|^{2}\right)^{-4}\left[\sum_{i=1}^{n}\left|w_{i}\right|^{2}+\sum_{i<j}\left|w_{i} x_{j}-w_{j} x_{i}\right|^{2}\right]$.
Hence it is positive definite. For some fixed $x \in \mathbf{C}^{n}-V, V=\left\{g_{1}=\cdots=\right.$ $\left.g_{k}=0\right\}$, let $K(x)=\left\{w \in \mathbf{C}^{n} \mid \sum_{j=1}^{n} b_{i j}(x) . w_{j}=0\right.$, for all $\left.i=1, \ldots, n\right\}$.

Assertion: $\operatorname{dim}(K(x)) \geq n-k+1$ for all $x \in \mathbf{C}^{n}-V$.
Proof: Since $x \in \mathbf{C}^{n}-V$, let us assume for instance that $g_{1}(x) \neq 0$. From now on we will omit the point x in the notation. Let S be the space of solutions of the linear system:

$$
\begin{equation*}
\sum_{j=1}^{n} \Delta_{1 s}^{j} w_{j}=0, \quad s=2, \ldots, k \tag{6}
\end{equation*}
$$

Since in (6) we have $k-1$ equations, we have $\operatorname{dim}(S) \geq n-k+1$. So it is enough to prove that $S \subset K(x)$. Observe that (6) is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\partial g_{s}}{\partial x_{j}} w_{j}=\frac{g_{s}}{g_{1}} \sum_{j=1}^{n} \frac{\partial g_{1}}{\partial x_{j}} w_{j}, \quad s=2, \ldots, k \tag{7}
\end{equation*}
$$

On the other hand (7) implies that if $r \neq s$ then

$$
\sum_{j=1}^{n} \Delta_{r s}^{j} w_{j}=g_{r} \sum_{j=1}^{n} \frac{\partial g_{s}}{\partial x_{j}} w_{j}-g_{s} \sum_{j=1}^{n} \frac{\partial g_{r}}{\partial x_{j}} w_{j}=0
$$

Therefore, if $w \in S$, then $\sum_{j=1}^{n} \Delta_{r s}^{j} w_{j}=0$ for all $r \neq s$. Hence, if $w \in S$, then

$$
\begin{aligned}
\sum_{j=1}^{n} b_{i j} w_{j} & =\left(\sum_{j=1}^{n}\left|g_{j}\right|^{2}\right)^{-2} \sum_{j=1}^{n} \sum_{r<s} \bar{\Delta}_{r s}^{i} \Delta_{r s}^{j} w_{j} \\
& =\left(\sum_{j=1}^{n}\left|g_{j}\right|^{2}\right)^{-2} \sum_{r<s} \bar{\Delta}_{r s}^{i}\left(\sum_{j=1}^{n} \Delta_{r s}^{j} w_{j}\right)=0
\end{aligned}
$$

This proves the assertion.
Now if $w \in K(x)-\{0\}$, we have

$$
\bar{w}^{t} H_{\varphi} w=q Q_{1}(x, w)-\sum_{i, j=1}^{n} \bar{w}_{i} b_{i j} w_{j}=q Q_{1}(x, w)>0
$$

This implies that H_{φ} has at least $n-k+1$ positive eigenvalues.
2.2.3 Corollary. Let $k \leq n-1$ and f_{1}, \ldots, f_{k} be homogeneous non constant polynomials on \mathbf{C}^{n+1}. Then any meromorphic ℓ-form defined in a neighborhood of $V\left(f_{1}, \ldots, f_{k}\right) \subset \mathbf{C} P^{n}$, can be extended to a meromorphic ℓ-form in $\mathbf{C} P^{n}$.

2.3 Noether's lemma of second order:

Let $f, g: U \rightarrow \mathbf{C}$ be two analytic functions and $V=\{f=g=0\}$, where $U \subset$ \mathbf{C}^{n} is an open set. If $W \subset V$, we say that f intersects g transversely outside W (briefly $f \pi g$ out of W) if for any $z \in V-W$ we have $d f(z) \wedge d g(z) \neq 0$. Classical Noether's lemma can be stated as follows:
2.3.1 Noether's Lemma. Let f, g, U, V and W be as above. Suppose that:
(a) W is an analytic subset of U, where $\operatorname{cod}(W) \geq 3$.
(b) $\hat{H}^{1}(U-W, \mathcal{O})=\{1\}$.

If $h: U \rightarrow \mathbf{C}$ is an analytic function such that $h \mid V \equiv 0$, then there are analytic functions $\alpha, \beta: U \rightarrow \mathbf{C}$ such that $h=\alpha . f+\beta . g$.

When $U=\mathbf{C}^{n}, n \geq 3, f$ and g are homogeneous polynomials, $W=\{0\}$, and $f \pi g$ out of $\{0\}$, then we have the following: if h is a homogeneous polynomial with $h \mid V \equiv 0$, then there are homogeneous polynomials α and β such that $h=\alpha . f+\beta . g$, where $d g(\alpha)+d g(f)=d g(\beta)+d g(g)=d g(h)$. In particular if $d g(h)<\min \{d g(f), d g(g)\}$, we must have $h \equiv 0$. This assertion follows from Noether's lemma because $\hat{H}^{1}\left(\mathbf{C}^{n}-\{0\}, \mathcal{O}\right)=\{1\}$ for $n \geq 3$ (see [C]). Here we are mainly interested in the case where the 1 -jet of h is 0 along V.
2.3.2 Definition: Let $U \subset \mathbf{C}^{n}$ be an open set, $V \subset U$ be a codimension k smooth complex submanifold and $h: U \rightarrow \mathbf{C}$ be analytic. We say that the ℓ-jet of h is zero along V if for any $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right) \in V$ there is a holomorphic coordinate system $x=\left(x_{1}, \ldots, x_{n}\right)$ defined in a neighborhood A of z^{0} such that:
(a) $V \cap A=\left\{x_{1}=\cdots=x_{k}=0\right\}$
(b) $h(x)=\sum_{|\sigma|=\ell+1} a_{\sigma}(x) x_{1}^{\sigma_{1}} \ldots x_{k}^{\sigma_{k}}$
where in the above notation $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right),|\sigma|=\sigma_{1}+\cdots+\sigma_{k}$, and $a_{\sigma}: A \rightarrow$ \mathbf{C} is holomorphic for all σ such that $|\sigma|=\ell+1$. We use the notation $j_{V}^{\ell}(h)=0$ to say that the ℓ-jet of h is zero along V.
2.3.3 Theorem. Let $f, g: \mathbf{C}^{n} \rightarrow \mathbf{C}$ be homogeneous polynomials, $n \geq 3$, where $f \pi g$ out of $0 \in \mathbf{C}^{n}$. Let $V=\{f=g=0\}$ and $V^{*}=V-\{0\}$. If h is a homogeneous polynomial with $j_{V^{*}}^{1}(h)=0$, then there are homogeneous polynomials a, b and c such that $h=a f^{2}+b f . g+c g^{2}$, where $d g(h)=d g(a)+$ $2 d g(f)=d g(b)+d g(f)+d g(g)=d g(c)+2 d g(g)$.

Proof: Since $f \cap g$ out of 0 , for any $z^{0} \in V^{*}$ there is a holomorphic coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ defined in a neighborhood $U_{z^{0}}$ such that:
(a) $f(x)=x_{1}, g(x)=x_{2} \forall x \in U_{z^{0}}$, so that $U_{z^{0}} \cap V=\left\{x_{1}=x_{2}=0\right\}$.
(b) $h(x)=\alpha(x) x_{1}^{2}+\beta(x) x_{1} x_{2}+\gamma(x) x_{2}^{2}, \forall x \in U_{z^{0}}$, where $\alpha, \beta, \gamma \in \mathcal{O}\left(U_{z^{0}}\right)$.

It follows that it is possible to find a convering $\left(U_{i}\right)_{i \in I}$ of $\mathbf{C}^{n}-\{0\}$ by open sets and three collections $\left\{\alpha_{i}\right\}_{i \in I},\left\{\beta_{i}\right\}_{i \in I},\left\{\gamma_{i}\right\}_{i \in I}$, where $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathcal{O}\left(U_{i}\right)$ and $h\left|U_{i}=\left(\alpha_{i} f^{2}+\beta_{i} f g+\gamma_{i} g^{2}\right)\right| U_{i}$. When $U_{i} \cap U_{j} \neq \phi$ we have $\alpha_{i j} f^{2}+\beta_{i j} f g+$ $\gamma_{i j} g^{2} \equiv 0$, where $\alpha_{i j}=\alpha_{j}-\alpha_{i}, \beta_{i j}=\beta_{j}-\beta_{i}$ and $\gamma_{i j}=\gamma_{j}-\gamma_{i} \in \mathcal{O}\left(U_{i} \cap U_{j}\right)$. Observe that this relation implies that $g \mid U_{i} \cap U_{j}$ divides $\alpha_{i j} f^{2} \mid U_{i} \cap U_{j}$. This fact together with $f \cap g$ out of 0 implies that $\alpha_{i j}=\delta_{i j} g$, for some $\delta_{i j} \in \mathcal{O}\left(U_{i} \cap U_{j}\right)$. Now, if $U_{i} \cap U_{j} \cap U_{k} \neq \phi$ we have $\left(\delta_{i j}+\delta_{j k}+\delta_{k i}\right) g=\alpha_{i j}+\alpha_{j k}+\alpha_{k i}=0$, and so $\delta_{i j}+\delta_{j k}+\delta_{k i}=0$. It follows from Cartan's solution of Cousin's problem that there exists a collection $\left(\delta_{i}\right)_{i \in I}, \delta_{i} \in \mathcal{O}\left(U_{i}\right)$, such that $\delta_{i j}=\delta_{j}-\delta_{i}$. Therefore we can define a function $\alpha \in \mathcal{O}\left(\mathbf{C}^{n}-\{0\}\right)$ by

$$
\alpha \mid U_{i}=\alpha_{i}-\delta_{i} g
$$

Similarly, there are a collection $\left(\varepsilon_{i}\right)_{i \in I}, \varepsilon_{i} \in \mathcal{O}\left(U_{i}\right)$, and $\gamma \in \mathcal{O}\left(\mathbf{C}^{n}-\{0\}\right)$ such that $\gamma \mid U_{i}=\gamma_{i}-\varepsilon_{i} f$. Let $h_{1}=h-\alpha f^{2}-\gamma g^{2}$. It is clear that:

$$
h_{1} \mid U_{i}=\beta_{i} f g+\delta_{i} g f^{2}+\varepsilon_{i} f g^{2}=\left(\beta_{i}+\delta_{i} f+\varepsilon_{i} g\right) f g=\varphi_{i} f g
$$

If $U_{i} \cap U_{j} \neq \phi$, we have $\left(\varphi_{j}-\varphi_{i}\right) f g \equiv 0$, so that $\varphi_{i}=\varphi_{j}$. Therefore there exists $\beta \in \mathcal{O}\left(\mathbf{C}^{n}-\{0\}\right)$ such that $\beta \mid U_{i}=\varphi_{i}, i \in I$, and we have $h=\alpha f^{2}+\beta f g+\gamma g^{2}$. Now, from Hartog's theorem, α, β and γ can be extended to holomorphic functions on \mathbf{C}^{n}, which we call α, β and γ also. Let $\alpha=\sum_{j \geq 0} \alpha_{j}, \beta=\sum_{j \geq 0} \beta_{j}$ and $\gamma=\sum_{j \geq 0} \gamma_{j}$, where α_{j}, β_{j} and γ_{j} are homogeneous of degree j. It is clear that if j_{1}, j_{2} and j_{3} are such that $j_{1}+2 d g(f)=j_{2}+d g(f)+d g(g)=j_{3}+2 d g(g)$, then we have $h=\alpha_{j_{1}} f^{2}+\alpha_{j_{2}} f g+\alpha_{j_{3}} g^{2}$. So we can take $a=\alpha_{j_{1}}, b=\alpha_{j_{2}}$ and $c=\alpha_{j_{3}}$.

Remark: We will need the above result only to prove (a) of theorem A.

3. Proofs

3.1 Proof of Theorem B:

Let \mathcal{F} be a foliation on $\mathbf{C} P^{n}$ which satisfies hypothesis (a), (b) and (c) of Theorem B. The idea is the following: let w be a homogeneous integrable 1 -form in \mathbf{C}^{n+1} which represents \mathcal{F} as in $\S 1.3$. We will prove that there exists a homogeneous polynomial f such that $d(w / f)=0$ and $d g(f)=d g(w)+1$. After that we will use some results containned in $[\mathbf{C - M}]$ to conclude the proof.

Let $N=N_{1} \cup \cdots \cup N_{r}$ be the decomposition of N in irreducible components. From the hypothesis we have that for each $i=1, \ldots, r, N_{i} \cap K(\mathcal{F})$ is open and dense in N_{i}. Since $N_{i}-K(\mathcal{F})$ is algebraic we have that $\operatorname{cod}_{N_{i}}\left(N_{i}-K(\mathcal{F})\right) \geq 1$, and so, $N_{i} \cap K(\mathcal{F})$ is connected.

Observe now that hypothesis (b) and Poincaré's linearization Theorem imply that $N_{i} \cap K(\mathcal{F})$ is of linearizable transversal type. This means that there exist λ_{1}^{i} and λ_{2}^{i} with $\lambda_{2}^{i} / \lambda_{1}^{i} \notin \mathbf{R}$ with the following property: (1) $\forall p \in N_{i} \cap K(\mathcal{F})$ there exists a local chart $(x, y, z): U \rightarrow \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-2}$, such that $U \cap N_{i} \cap K(\mathcal{F})=\{(x, y, z) \mid x=y=0\}$ and $\mathcal{F} \mid U$ is the foliation defined by the 1 -form $w_{U}=\lambda_{1}^{i} x d y-\lambda_{2}^{i} y d x$. If we divide w_{U} by $\lambda_{1}^{i} x y$ we get the form $\alpha_{U}=\frac{d y}{y}-a \frac{d x}{x}$, where $a=\lambda_{2}^{i} / \lambda_{1}^{i} \notin \mathbf{R}$. Observe that α_{U} is closed, so that w_{U} has an integrating factor.

Lemma 2. Let $i \in\{1, \ldots, r\}$ be fixed. There exists a neighborhood A_{i} of N_{i} in $\mathbf{C} P^{n}$, and a meromorphic closed 1-form η_{i} on A_{i} such that if P_{i} is the divisor of poles of η_{i}, then $\mathcal{F} \mid\left(A_{i}-P_{i}\right)$ is represented by $\eta_{i} \mid\left(A_{i}-P_{i}\right)$.

Proof: It follows from the considerations before Lemma 2 and from hypothesis (c) that it is possible to find a convering of N_{i} by open sets of $\mathbf{C} P^{n}$, $\left(U_{j}\right)_{j \in J}$ and a collection $\left(\alpha_{j}\right)_{j \in J}$ such that:
(i) If $j, k, \ell \in J$ are such that $U_{j} \cap U_{k} \cap U_{\ell} \neq \phi$, then $U_{j}, U_{j} \cap U_{k}$ and $U_{j} \cap U_{k} \cap U_{\ell}$ are simply connected. Moreover by using the local structure of analytic sets, we can suppose also that $U_{j} \cap N_{i}, U_{j} \cap U_{k} \cap N_{i}$ and $U_{j} \cap U_{k} \cap U_{\ell} \cap N_{i}$ are simply connected.
(ii) $J=J_{1} \cup J_{2}$ where $U_{j} \cap\left(N_{i}-K(\mathcal{F})\right)=\phi$ if $j \in J_{1}, \bigcup_{j \in J_{1}} U_{j} \supset N_{i} \cap K(\mathcal{F})$, $\bigcup_{j \in J_{2}} U_{j} \supset N_{i}-K(\mathcal{F})$ and if $j, k \in J_{2}$ is such that $U_{j} \cap U_{k} \neq \phi$ then there is $\ell \in J_{1}$ with $U_{\ell} \subset U_{j} \cap U_{k}$.
(iii) For each $j \in J, \alpha_{j}$ is a closed meromorphic 1-form on U_{j}, such that $\alpha_{j}=w_{j} / f_{j}$, where $f_{j} \in \mathcal{O}\left(U_{j}\right)$ and w_{j} is a holomorphic 1-form which represents $\mathcal{F} \mid U_{j}$. We can assume also that the singular set of w_{j} is of codimension ≥ 2.
(iv) For each $j \in J_{1}$, there is a local chart $\left(x_{j}, y_{j}, z_{j}\right)$: $U_{j} \rightarrow \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-2}$ such that $\alpha_{j}=\frac{d y_{j}}{y_{j}}-a \frac{d x_{j}}{x_{j}}$, where $a \notin \mathbf{R}$ is as before. In this case $w_{j}=x_{j} d y_{j}-a y_{j} d x_{j}$ and $f_{j}=x_{j} y_{j}$.
(v) If $j, k \in J$ is such that $U_{j} \cap U_{k} \neq \phi$, then there exists a meromorphic function $g_{j k}$, defined on $U_{j} \cap U_{k}$, with $\alpha_{j}=g_{j k} \alpha_{k}$. This function is obtainned as follows: since w_{j} and w_{k} define the same foliation on $U_{j} \cap U_{k}$ and their singular sets have codimension ≥ 2, we can write $w_{j}=h_{j k} w_{k}$, where $h_{j k} \in \mathcal{O}^{*}\left(U_{j} \cap U_{k}\right)$. Therefore $g_{j k}=f_{k} h_{j k} / f_{j}$ as the reader can verify easily. Moreover, the collection $\left(g_{j k}\right)_{U_{j} \cap U_{k}} \neq \phi$ satisfies the cocycle condition $g_{j k} g_{k \ell} g_{\ell j} \equiv 1$ on $U_{j} \cap U_{k} \cap U_{\ell}$ if this set is non empty.

Assertion: If $j, k \in J$ are such that $U_{j} \cap U_{k} \neq \phi$, then $g_{j k}$ is a constant.
Proof: Observe first that $\alpha_{j}=g_{j k} \alpha$ implies that $d g_{j k} \wedge \alpha_{k}=0$ because α_{j} and α_{k} are closed.
$1^{s t}$ case: $k \in J_{1}$, so that $\alpha_{k}=\frac{d y_{k}}{y_{k}}-a \frac{d x_{k}}{x_{k}}$. Let $z_{k}=\left(z^{1}, \ldots, z^{n-2}\right)$ and $g_{j k}=g$. Relation $d g \wedge \alpha_{k} \equiv 0$ implies that outside the set of poles of g we have $\frac{\partial g}{\partial z^{r}} \equiv 0,1 \leq r \leq n-2$, and $x_{k} \frac{\partial g}{\partial x_{k}}+a y_{k} \frac{\partial g}{\partial y_{k}} \equiv 0$. This implies already that g does not depend on z_{k}. Therefore $g=g\left(x_{k}, y_{k}\right)$ and we can suppose that g is defined in a neighborhood of $(0,0) \in \mathbf{C}^{2}$. From now on we will omit the indexes k. Let P be the set of poles of g. Suppose first that $P \supset\{x=0\}$. In this case, it is not difficult to see that there are a disk $\Delta \subset\{y=0\}$ and an annulus $A \subset\{x=0\}$ such that g has no poles on $W=(\Delta-\{0\}) \times A$.

Consider the Laurent development of g in W :

$$
g(x, y)=\sum_{m, n=-\infty}^{\infty} b_{m n} x^{m} y^{n}, \quad b_{m n} \in \mathbf{C}
$$

From $x \frac{\partial g}{\partial x}+a y \frac{\partial g}{\partial y} \equiv 0$ we get $\sum_{m, n=-\infty}^{\infty} b_{m n}(m+n a) x^{m} y^{n}=0$, which implies that $b_{m n}(m+n a)=0 \forall m, n \in \mathbf{Z}$. Since $a \notin \mathbf{Q}$, this implies that $b_{m n}=0$ if $(m, n) \neq(0,0)$. Therefore $g \mid W$ is constant, which implies that g is constant.

If $\{x=0\} \not \subset P$, then it is possible to find a disc $\Delta \subset\{y=0\}$ and an annulus $A \subset\{x=0\}$ such that g is holomorphic on $\Delta \times A$. In this case g admits a Laurent development on $\Delta \times A$ and so g is constant by the same argument as before.
$2^{n d}$ case: $j, k \in J_{2}$. In this case let $\ell \in J_{1}$ be such that $U_{\ell} \subset U_{j} \cap U_{k}$. Observe that $g_{j k} \cdot g_{k \ell} \cdot g_{\ell j} \equiv 1$ on $U_{\ell}=U_{\ell} \cap U_{j} \cap U_{k}$. By the firs case $g_{k \ell}$ and $g_{\ell j}$ are constants. Hence $g_{j k}$ is constant on U_{ℓ}, and so on $U_{j} \cap U_{k}$. This proves the assertion.

Now, if $j, k \in J_{1}$ and $U_{j} \cap U_{k} \neq \phi$ then $g_{j k}=1$. In fact, on $U_{j} \cap U_{k}$ we have:

$$
\alpha_{j}=\frac{d y_{j}}{y_{j}}-a \frac{d x_{j}}{x_{j}}=g_{j k}\left(\frac{d y_{k}}{y_{k}}-a \frac{d x_{k}}{x_{k}}\right)=g_{j k} \alpha_{k} .
$$

From (i), there is $p_{0} \in U_{j} \cap U_{k} \cap N_{i}$. It is clear that $p_{0}=\left(0,0, z_{j}^{0}\right)$ in the chart $\left(x_{j}, y_{j}, z_{j}\right)$ and $p_{0}=\left(0,0, z_{k}^{0}\right)$ in the chart $\left(x_{k}, y_{k}, z_{k}\right)$. By analyzing the sets of poles of α_{j} and α_{k} we get that either $\left\{y_{j}=0\right\} \cap U_{k}=\left\{y_{k}=0\right\} \cap U_{j}$ and $\left\{x_{j}=0\right\} \cap U_{k}=\left\{x_{k}=0\right\} \cap U_{j}$, or $\left\{y_{j}=0\right\} \cap U_{k}=\left\{x_{k}=0\right\} \cap U_{j}$ and $\left\{y_{k}=0\right\} \cap U_{j}=\left\{x_{j}=0\right\} \cap U_{k}$.

On the other hand, by comparing the residues of α_{j} and α_{k} around $\left\{x_{j}=\right.$ $0\},\left\{y_{j}=0\right\},\left\{x_{k}=0\right\}$ and $\left\{y_{k}=0\right\}$, we obtain in the first case that $g_{j k}=1$ and in the second case that $1=-a g_{j k}$ and $-a=g_{j k}$. Well, these last relations imply that $a^{2}=1$, which is not possible. Therefore $g_{j k}=1$. So we have proved that if $j, k \in J_{1}$ is such that $U_{j} \cap U_{k} \neq \phi$ then $\alpha_{j}=\alpha_{k}$ on $U_{j} \cap U_{k}$.

It follows that we can define a closed meromorphic 1-form $\tilde{\eta}_{i}$ on $B_{i}=\bigcup_{j \in J_{1}} U_{j}$ by $\tilde{\eta}_{i} \mid U_{j}=\alpha_{j}$.

Let us prove that $\tilde{\eta}_{i}$ can be extended to $A_{i}=\bigcup_{j \in J} U_{j}$. Let η_{i} be defined on A_{i} by:
(vi) $\eta_{i} \mid B_{i}=\tilde{\eta}_{i}$
(vii) If $j \in J_{2}$ then $U_{j} \cap B_{i} \neq \phi$. Therefore there is $k \in J_{1}$ such that $U_{k} \cap U_{j} \neq \phi$ (because $\left.B_{i} \supset N_{i} \cap K(\mathcal{F})\right)$. We put $\eta_{i} \mid U_{j}=g_{k j} \alpha_{j}$. Observe that this definition is natural because $\eta_{i}\left|U_{j} \cap U_{k}=\tilde{\eta}_{i}\right| U_{j} \cap U_{k}=\alpha_{k} \mid U_{j} \cap U_{k}=$ $g_{k j} \alpha_{j} \mid U_{j} \cap U_{k}$.

Let us prove that η_{i} is well defined. We can consider $g=\left(g_{j k}\right)_{U_{j} \cap U_{k} \neq \phi}$ as a cocycle in $\check{H}^{1}\left(\mathcal{U}, \mathbf{C}^{*}\right)$, where $\mathcal{U}=\left(U_{j} \cap N_{i}\right)_{j \in J}$. It is not difficult to see that if \mathcal{G} is trivial in $\check{H}^{1}\left(\mathcal{U}, \mathbf{C}^{*}\right)$ then η_{i} is well defined. Let $\mathcal{U}_{1}=\left(U_{j} \cap N_{i}\right)_{j \in J_{1}}$ and $\mathcal{G}_{1}=\left\{g_{j k} \in \mathcal{G} \mid j, k \in J_{1}\right\}$. Then $g_{j k}=1$ for any $g_{j k} \in \mathcal{G}_{1}$ and so \mathcal{G}_{1} is trivial in $\check{H}^{1}\left(\mathcal{U}_{1}, \mathbf{C}^{*}\right)$. On the other hand, since $\operatorname{cod}_{N_{i}}\left(N_{i}-K(\mathcal{F})\right) \geq 1$ it follows that any closed path $\gamma:[0,1] \rightarrow N_{i}$ with end points in $N_{i} \cap K(\mathcal{F})$ is homotopic, with fixed end points, to a path $\tilde{\gamma}:[0,1] \rightarrow N_{i} \cap K(\mathcal{F})$. It follows that the monodromy of a closed path as above (with respect to \mathcal{G}) is trivial. This implies that \mathcal{G} is trivial, as the reader can check by himself. This ends the proof of Lemma 2.

From Lemma 2 we get for each $N_{i}, i=1, \ldots, r$, a neighborhood A_{i} and a closed meromorphic 1-form η_{i} on A_{i} such that, if P_{i} is the divisor of poles of η_{i}, then η_{i} represents \mathcal{F} on $A_{i}-P_{i}$. Furthermore if C is a connected component of $A_{i} \cap A_{j}$ then $\eta_{i}\left|C=\lambda_{i j}(C) \eta_{j}\right| C$, where $\lambda_{i j}(C)$ is a constant in \mathbf{C}^{*}. Let $U_{0}=\left\{\left[1: z_{1}: \ldots: z_{n}\right] \mid\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}\right\}$ and w_{0} be a polynomial integrable 1 -form which represents \mathcal{F} on U_{0}. Then w_{0} can be extended to $\mathbf{C} P^{n}$ as a meromorphic 1-form with poles in $L_{0}=\left\{[z] \in \mathbf{C}^{n} \mid z_{0}=0\right\}$. Since $w_{0} \mid A_{i}$ and η_{i} represent the same foliation, we have that $w_{0} \mid A_{i}=f_{i} \eta_{i}$, where f_{i} is a meromorphic function on A_{i}. On the other hand, if C is a connected
component of $A_{i} \cap A_{j}$ then we have

$$
f_{i} \lambda_{i j}(C) \eta_{j}\left|C=f_{i} \eta_{i}\right| C=w_{0}\left|C=f_{j} \eta_{j}\right| C
$$

which implies that $f_{j}\left|C=\lambda_{i j}(C) f_{i}\right| C$. Since $\lambda_{i j}(C)$ is a constant, it follows that $\frac{d f_{j}}{f_{j}}\left|C=\frac{d f_{i}}{f_{i}}\right| C$. This implies that we can define a closed 1 -form θ on $A=\bigcup_{i=1}^{r} A_{i}$ by $\theta \left\lvert\, A_{i}=\frac{d f_{i}}{f_{i}}\right.$. Now, by corollary 2.2.3 of $\S 2.2, \theta$ can be extended to $\mathbf{C} P^{n}$, because A is a neighborhood of $N=\{f=g=0\}$ and $2 \leq n-1$. We call θ this extension. Let P be the divisor of poles of θ. Fix $p_{0} \in \mathbf{C} P^{n}-P$ and for each path $\gamma:[0,1] \rightarrow \mathbf{C} P^{n}-P$ with $\gamma(0)=p_{0}$, put

$$
I(\gamma)=\exp \left[\int_{\gamma} \theta\right]
$$

We will prove now that if γ is a closed path then $I(\gamma)=1$. It is easy to see that this will imply that we can define a holomorphic function $F: \mathbf{C} P^{n}-P \rightarrow \mathbf{C}$ by $F(p)=I(\gamma)$, where $\gamma(0)=p_{0}$ and $\gamma(1)=p$.

Let γ be a closed path. Since $\mathbf{C} P^{n}$ is simply connected, γ is homologous in $\mathbf{C} P^{n}-P$ to $\gamma_{1}+\cdots+\gamma_{k}$ where each γ_{j} is a small cycle envolving an irreducible component of P. So it is sufficient to prove that if γ is a small cycle envolving an irreducible component of P, say Q, then $\exp \left[\int_{\gamma} \theta\right]=1$. Now, since $N=$ $\{f=g=0\}$, it follows from Bézout's Theorem that $Q \cap N_{i} \neq \phi$ for some i. It follows that we can deform γ keeping it closed along the deformation, to a small cycle $\hat{\gamma}$ envolving Q and containned in A_{i}. Since $\theta \left\lvert\, A_{i}=\frac{d f_{i}}{f_{i}}\right.$, this implies that $\int_{\gamma} \theta=\int_{\hat{\gamma}} \frac{d f_{i}}{f_{i}}=2 \pi i m, m \in \mathbf{Z}$. Hence $I(\gamma)=1$.

The above argument implies also that $F \mid A_{i}=c_{i} f_{i}$, where c_{i} is a constant. Since $\eta_{i}=w_{0} / f_{i}$ is closed, we get that $\eta=w_{0} / F$ is closed. Hence the first part of the theorem is proved. It follows also that if w is a homogeneous integrable 1-form on \mathbf{C}^{n+1} which induces \mathcal{F} then w has a meromorphic integrating factor say $F=g / h$. Let us prove that g and h are homogeneous polynomials such that $d g(g)-d g(h)=d g(w)+1$.

In fact, let $d g(w)=k$. Since F is an integrating factor, we have $d F \wedge w=$ $F d w$. On the other hand, $i_{R}(w)=0$ implies that $(k+1) w=L_{R}(w)=$ $i_{R} d w+d\left(i_{R} w\right)=i_{R} d w$, where L_{R} is the Lie derivative. Therefore we get

$$
i_{R}(d F) w=F i_{R}(d w)=(k+1) F w \Rightarrow i_{R}(d F)=(k+1) F
$$

Integrating $i_{R}(d F)=(k+1) F$, we get that $F(t z)=t^{k+1} F(z)$, if z is not a pole of F. Hence g and h are homogeneous and $d g(g)-d g(h)=k+1$. We can suppose that g and h do not have common factors. Let $g=g_{1}^{k_{1}} \ldots g_{m}^{k_{m}}$ be the decomposition of g in irreducible factors, where $k_{1}, \ldots, k_{m} \geq 1$.

Lemma 3. There are $\lambda_{1}, \ldots, \lambda_{m} \in \mathbf{C}$ and a homogeneous polynomial φ such that

$$
\begin{equation*}
\frac{h w}{g}=\sum_{j=1}^{m} \lambda_{j} \frac{d g_{j}}{g_{j}}+d\left(\frac{\varphi}{\psi}\right) \tag{8}
\end{equation*}
$$

where $\psi=g_{1}^{\ell_{1}} \ldots g_{m}^{\ell_{m}}, 0 \leq \ell_{j} \leq k_{j}-1, \sum_{j=1}^{m} \lambda_{j} d g\left(g_{j}\right)=0, \varphi$ and ψ have no common factors and $d g(\varphi)=d g(\psi)$.

The proof of the above result can be found in [C-M].
Now let us assume hypothesis (d) and (e) of Theorem B and prove that \mathcal{F} is of logarithmic type. First of all, if we multiply the right hand side of (8) by $g_{1}^{\ell_{1}+1} \ldots g_{m}^{\ell_{m}+1}$ we get the form

$$
\begin{equation*}
\eta=g_{1} \ldots g_{m} d \varphi-\varphi g_{i} \ldots g_{m} \sum_{j=1}^{m} \ell_{j} \frac{d g_{j}}{g_{j}}+g_{1}^{\ell_{1}+1} \ldots g_{m}^{\ell_{m}+1} \sum_{j=1}^{m} \lambda_{j} \frac{d g_{j}}{g_{j}} \tag{9}
\end{equation*}
$$

which is holomorphic in \mathbf{C}^{n+1}. Observe that if $\ell_{i}=\lambda_{i}=0$ for some $i \in$ $\{1, \ldots, m\}$, then g_{i} is a factor of η and g_{i} plays no essential role. Hence we can suppose that either $\ell_{i} \neq 0$ or $\lambda_{i} \neq 0$ for all $i=1, \ldots, m$. With this condition $G_{i}=\left\{[z] \in \mathbf{C} P^{n} \mid g_{i}(z)=0\right\}$ is invariant under \mathcal{F}, which implies
that if $i \neq j$ then $G_{i j}=\left\{[z] \mid g_{i}(z)=g_{j}(z)=0\right\} \subset S(\mathcal{F})$. Since $G_{i j}$ has codimension 2 , hypothesis (d) implies that the set
$A=K(\mathcal{F}) \cap G_{i j} \cap\left\{[z] \in \mathbf{C} P^{n} \mid d g_{i}(z) \wedge d g_{j}(z) \neq 0, \quad \varphi(z) \neq 0\right.$ and $g_{r}(z) \neq 0$ for $r \neq 1$
is open and dense in $G_{i j}$. In order to simplify the notations we will put $i=1$ and $j=2$. Now we will prove that:
(i) If $\ell_{1}>0$ and $\ell_{2}=0$ then the linear part of the transversal type of \mathcal{F} at G_{12} is degenerated.
(ii) If $\ell_{1}=\ell_{2}=0$ then the quotient of the eigenvalues of the linear part of the transversal type of \mathcal{F} at G_{12} is $-\lambda_{2} / \lambda_{1}\left(\right.$ or $\left.-\lambda_{1} / \lambda_{2}\right)$
(iii) If $\ell_{1}>0, \ell_{2}>0$ then the above quotient is $-\ell_{2} / \ell_{1}\left(\right.$ or $\left.-\ell_{1} / \ell_{2}\right)$.

In fact, since A is open and dense in G_{12}, let $p \in \mathbf{C}^{n+1}-\{0\}$ be such that $[p] \in A$. We know that $\varphi(p) \neq 0$ and $g_{r}(p) \neq 0$ for $r>2$. This implies that the form $\sum_{j \geq 3} \lambda_{j} \frac{d \dot{g}_{j}}{g_{j}}$ has a holomorphic primitive, say h_{1}, defined in a simply connected neighborhood U of p. Therefore we can write:

$$
\begin{equation*}
\left.\frac{h w}{g}\right|_{U}=\lambda_{1} \frac{d g_{1}}{g_{1}}+\lambda_{2} \frac{d g_{2}}{g_{2}}+d h_{1}+d\left(\frac{h_{2}}{g_{1}^{\ell_{1}} g_{2}^{\ell_{2}}}\right)=\mu \tag{10}
\end{equation*}
$$

where $h_{2}=\varphi / g_{3}^{\ell_{3}} \ldots g_{m}^{\ell_{m}}, h_{2}(p) \neq 0$.

 defined because $h_{2}(p) \neq 0$. Observe that $d\left(\alpha g_{1}\right)(p) \wedge d\left(\beta g_{2}\right)(p) \neq 0$, so that there is a local coordinate system $(x, y, z) \in \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-1}$ around p, such that $x=\alpha g_{1}$ and $y=\beta g_{2}$. It is easy to see that in this coordinate system we have

$$
\mu=\lambda_{1} \frac{d x}{x}+\lambda_{2} \frac{d y}{y}+d\left(x^{-\ell_{1}}\right)=\lambda_{1} \frac{d x}{x}+\lambda_{2} \frac{d y}{y}-\ell_{1} \frac{d x}{x^{\ell_{1}+1}}
$$

If we multiply μ be $x^{\ell_{1}+1} . y$ we get $\left(-\ell_{1} y+\lambda_{1} x^{\ell_{1}} y\right) d x+\lambda_{2} x^{\ell_{1}+1} d y$. Therefore the transversal type of \mathcal{F} in G_{12} is given by the vector field $\lambda_{2} x^{\ell_{1}+1} \partial / \partial x+$ $\left(\ell_{1} y-\lambda_{1} x^{\ell_{1}} y\right) \partial / \partial y$. Since $\ell_{1}>0$, this proves (i).

Proof of (ii): Since $\ell_{1}=\ell_{2}=0$ we have $\lambda_{1} \neq 0 \neq \lambda_{2}$ and

$$
\mu=\lambda_{1} \frac{d g_{1}}{g_{1}}+\lambda_{2} \frac{d g_{2}}{g_{2}}+d h_{3}
$$

where $h_{3}=h_{1}+h_{2}$. Let $\alpha=\exp \left(h_{3} / \lambda_{2}\right)$. We have $d g_{1}(p) \wedge d\left(\alpha g_{2}\right)(p) \neq 0$, therefore there exists a local coordinate system $(x, y, z) \in \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-1}$ around p, such that $g_{1}=x$ and $\alpha g_{2}=y$. In this coordinate system we have $\mu=\lambda_{1} \frac{d x}{x}+\lambda_{2} \frac{d y}{y}$, so that $x y \mu=\lambda_{1} y d x+\lambda_{2} x d y$, therefore the quotient of the eigenvalues of the normal type is $-\lambda_{2} / \lambda_{1}$ (or $-\lambda_{1} / \lambda_{2}$).

Proof (iii): In this case we can write (10) as

$$
\mu=\lambda_{1} \frac{d g_{1}}{g_{1}}+\lambda_{2} \frac{d g_{2}}{g_{2}}+d\left(\frac{h_{3}}{g_{1}^{\ell_{1}} g_{2}^{\ell_{2}}}\right)
$$

where $h_{3}=h_{2}+h_{1} g_{1}^{\ell_{1}} g_{2}^{\ell_{2}}$. Since $d g_{1}(p) \wedge d g_{2}(p) \neq 0$, there exists a coordinate $\operatorname{system}(x, y, z) \in \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-1}$ around p such that $x=g_{1}$ and $y=g_{2}$. If we multiply μ by $x^{\ell_{1}+1} \cdot y^{\ell_{2}+1} \cdot h_{3}^{-1}$ we get

$$
\begin{aligned}
h_{3}^{-1} x^{\ell_{1}+1} \cdot y^{\ell_{2}+1} \cdot \mu=-\ell_{1} y d x-\ell_{2} x d y & +\lambda_{1} h_{3}^{-1} x^{\ell_{1}} y^{\ell_{2}+1} d x+\lambda_{2} h_{3}^{-1} x^{\ell_{1}+1} y^{\ell_{2}} d y \\
& +h_{3}^{-1} x^{\ell_{1}+1} y^{\ell_{2}+1} d h .
\end{aligned}
$$

It is not difficult to see that this implies (iii).
Now from (i) and hypothesis (e) it follows that either $\ell_{1}=\cdots=\ell_{m}=0$ or $\ell_{1} \ldots \ell_{m}>0$. In fact, if this is not the case, then there are $i \neq j$ such that $\ell_{i}>0$ and $\ell_{j}=0$, which cannot happen by (i). If $\ell_{1}=\cdots=\ell_{m}=0$ then \mathcal{F} is logarithmic and we are done. Let us suppose that $\ell_{1} \ldots \ell_{m}>0$. In this case, it follows from (iii) that for any $i \neq j$ the quotient of the eigenvalues of the linear part of the normal type of \mathcal{F} at $G_{i j}$ is rational. Let us prove that this case cannot occur.

In fact, since in $N \cap K(\mathcal{F})$ the quotient of the eigenvalues of the normal type is not real, then in the above situation, there exists $p \in \mathbf{C}^{n+1}-\{0\}$ such that $[p] \in K(\mathcal{F}) \cap N-\bigcup_{i \neq j} G_{i j}$. In this case $p \in K\left(\pi^{*}(\mathcal{F})\right)$ and so there exists
a coordinate system $(x, y, z) \in \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-1}$ around p such that $\pi^{*}(\mathcal{F})$ is defined by the form $\theta=x d y+a y d x$, where $a \notin \mathbf{R}$. On the other hand let $\frac{h w}{g}$ be as in (8). Its set of poles is $P=\bigcup_{i}\left\{g_{i}=0\right\}$, it is closed and represents $\pi^{*}(\mathcal{F})$ outside P. Therefore there exists a meromorphic function f_{1} on U such that

$$
\left.\frac{h w}{g}\right|_{U}=f_{1}(x d y+a y d x) \Rightarrow 0=d\left(f_{1}(x d y+a y d x)\right)=d\left(x y f_{1}\right) \wedge\left(\frac{d y}{y}+a \frac{d x}{x}\right)
$$

As we have seen in the proof of Lemma 2, the last relation implies $x y f_{1}=c$, c a constant. This implies that $P \cap U=\{x=y=0\}$. Therefore there are $i \neq j$ such that $\left\{g_{i}=0\right\} \cap U=\{x=0\}$ and $\left\{g_{j}=0\right\} \cap U=\{y=0\}$, and so $[p] \in G_{i j}$, a contradiction. This completes the proof of Theorem B.

3.2 Proof of Theorem A:

We will use Theorem 1.2.4 of $\S 1$ (cf. [G.M.-L.N.]). We need some preliminary results.

LEMMA 4. Let $V \xrightarrow{P} M$ be a holomorphic vector bundle with fiber $\mathbf{C}_{.}^{2}$, where M is compact. Assume that $V=E_{1} \oplus E_{2}=F_{1} \oplus F_{2}$, where E_{1}, E_{2}, F_{1} and F_{2} are holomorphic line bundles, such that $c\left(E_{1}\right) \neq 0$ and $q c\left(E_{1}\right)=p c\left(E_{2}\right)$, where $p, q \in \mathbf{Z}, 0 \leq q \leq|p|$ ($c=$ first chern class). Then:
(a) If $p \neq q$ then $F_{i}=E_{j}$ for some $i, j \in\{1,2\}$. Moreover, if we assume $i=j=1$ then $c\left(F_{2}\right)=c\left(E_{2}\right)$.
(b) If $p=q$ (i.e. $c\left(E_{1}\right)=c\left(E_{2}\right)$) then $c\left(F_{i}\right)=c\left(E_{1}\right)$ for $i=1,2$.

Note: As in 1.2.4, we denote by $c(\cdot)$ the first Chern class considered as an element of $H^{2}(M, \mathbf{C})$.
Proof: Let $\mathcal{U}=\left(U_{\alpha}\right)_{\alpha \in A}$ be a covering of M by trivializing open sets of the E_{i} 's and F_{i} 's, where $U_{\alpha} \cap U_{\beta}$ and $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ are simply connected if they are not empty. For each $\alpha \in A$ and $i=1,2$ let $e_{\alpha}^{i}: U_{\alpha} \rightarrow P^{-1}\left(U_{\alpha}\right)$ and $f_{\alpha}^{i}: U_{\alpha} \rightarrow P^{-1}\left(U_{\alpha}\right)$ be holomorphic local sections such that $e_{\alpha}^{i}(p) \in E_{i}(p)-\{0\}$
and $f_{\alpha}^{i}(p) \in F_{i}(p)-\{0\}, p \in U_{\alpha}$, where $E_{i}(p)$ and $F_{i}(p)$ denote the fibers of E_{i} and F_{i} over p. It follows that for all $p \in U_{\alpha},\left\{e_{\alpha}^{1}(p), e_{\alpha}^{2}(p)\right\}$ and $\left\{f_{\alpha}^{1}(p), f_{\alpha}^{2}(p)\right\}$ are basis of $P^{-1}(p)$. Therefore there is a matrix $A_{\alpha}=\left(a_{\alpha}^{i j}\right)$ such that $a_{\alpha}^{i j} \in$ $\mathcal{O}\left(U_{\alpha}\right), \Delta_{\alpha}=\operatorname{det}\left(A_{\alpha}\right) \in \mathcal{O}^{*}\left(U_{\alpha}\right)$ and $e_{\alpha}^{i}=a_{\alpha}^{i 1} f_{\alpha}^{1}+a_{\alpha}^{i 2} f_{\alpha}^{2}$ on U_{α}. On the other hand there are collections $\left\{g_{\alpha \beta}^{i}\right\}_{U_{\alpha} \cap U_{\beta} \neq \phi}$ and $\left\{h_{\alpha \beta}^{i}\right\}_{U_{\alpha} \cap U_{\beta} \neq \phi}, i=1,2$, where $g_{\alpha \beta}^{i}, h_{\alpha \beta}^{i} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$ and $e_{\alpha}^{i}=g_{\alpha \beta}^{i} e_{\beta}^{i}, g_{\alpha}^{i}=h_{\alpha \beta}^{i} f_{\beta}^{i}$ on $U_{\alpha} \cap U_{\beta} \neq \phi$ for $i=1,2$. These collections are in fact cocycles (i.e. if $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \phi$ then $g_{\alpha \beta}^{i} \cdot g_{\beta \gamma}^{i} \cdot g_{\gamma \alpha}^{i}=1$ and $h_{\alpha \beta}^{i} \cdot h_{\beta \gamma}^{i} \cdot h_{\gamma \alpha}^{i}=1$) and $c\left(E_{i}\right)\left(\right.$ resp. $\left.c\left(F_{i}\right)\right)$ can be represented in $\check{H}^{2}(\mathcal{U}, \mathbf{Z})$ by the 2-cocycle

$$
\left\{\begin{array}{c}
m_{\alpha \beta \gamma}^{i}=\frac{1}{2 \pi \sqrt{-1}}\left(\ell_{g}\left(g_{\alpha \beta}^{i}\right)+\ell_{g}\left(g_{\beta \gamma}^{i}\right)+\ell_{g}\left(g_{\gamma \alpha}^{i}\right)\right) \tag{11}\\
\operatorname{resp.} n_{\alpha \beta \gamma}^{i}=\frac{1}{2 \pi \sqrt{-1}}\left(\ell_{g}\left(h_{\alpha \beta}^{i}\right)+\ell_{g}\left(h_{\beta \gamma}^{i}\right)+\ell_{g}\left(h_{\gamma \alpha}^{i}\right)\right)
\end{array} \quad U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \phi\right.
$$

where the ℓg 's are branches of the logarithm arbitrarily chosen.
Now, if we set $G_{\alpha \beta}=\left(\begin{array}{cc}g_{\alpha \beta}^{1} & 0 \\ 0 & g_{\alpha \beta}^{2}\end{array}\right)$ and $H_{\alpha \beta}=\left(\begin{array}{cc}h_{\alpha \beta}^{1} & 0 \\ 0 & h_{\alpha \beta}^{2}\end{array}\right)$, then it is not difficult to see that on $U_{\alpha} \cap U_{\beta} \neq \phi$ we have $G_{\alpha \beta} A_{\beta}=A_{\beta} H_{\alpha \beta}$ or equivalently

$$
\left\{\begin{array}{l}
\text { (i) } g_{\alpha \beta}^{1} a_{\beta}^{11}=a_{\alpha}^{11} h_{\alpha \beta}^{1} \tag{12}\\
\text { (ii) } g_{\alpha \beta}^{1} a_{\beta}^{12}=a_{\alpha}^{12} h_{\alpha \beta}^{2} \\
\text { (iii) } g_{\alpha \beta}^{2} a_{\beta}^{21}=a_{\alpha}^{21} h_{\alpha \beta}^{1} \\
\text { (iv) } g_{\alpha \beta}^{2} a_{\beta}^{22}=a_{\alpha}^{22} h_{\alpha \beta}^{2}
\end{array}\right.
$$

For fixed $\alpha \in A$ let $f_{\alpha}=a_{\alpha}^{11} a_{\alpha}^{12} a_{\alpha}^{21} a_{\alpha}^{22} / \Delta_{\alpha}^{2}$, where $\Delta_{\alpha}=\operatorname{det}\left(A_{\alpha}\right)$. Let us prove that there is $f \in \mathcal{O}(M)$ such that $f \mid U_{\alpha}=f_{\alpha}$. In fact, if we take the product of the relations $(i) \ldots(i v)$ we get

$$
\begin{equation*}
\left(g_{\alpha \beta}^{1} g_{\alpha \beta}^{2}\right)^{2} a_{\beta}^{11} a_{\beta}^{12} a_{\beta}^{21} a_{\beta}^{22}=a_{\alpha}^{11} a_{\alpha}^{12} a_{\alpha}^{21} a_{\alpha}^{22}\left(h_{\alpha \beta}^{1} h_{\alpha \beta}^{2}\right)^{2} \tag{13}
\end{equation*}
$$

On the other hand the relation $G_{\alpha \beta} A_{\beta}=A_{\alpha} H_{\alpha \beta}$ implies that $g_{\alpha \beta}^{1} g_{\alpha \beta}^{2} \Delta_{\beta}=$ $h_{\alpha \beta}^{1} h_{\alpha \beta}^{2} \Delta_{\beta}$, and so $\left(g_{\alpha \beta}^{1} g_{\alpha \beta}^{2}\right)^{2} /\left(h_{\alpha \beta}^{1} h_{\alpha \beta}^{2}\right)^{2}=\Delta_{\alpha}^{2} / \Delta_{\beta}^{2}$. This relation together with (13) implies that $f_{\alpha}\left|U_{\alpha} \cap U_{\beta}=f_{\beta}\right| U_{\alpha} \cap U_{\beta}$, which proves the existence of f.

Now, since M is compact, f is a constant. We have two case to consider: $1^{s t}$ case: $f \neq 0$. In this case the $a_{\alpha}^{i j} \in \mathcal{O}^{*}\left(U_{\alpha}\right)$ for all α. This together with the relations in (12) imply that all cocycles in (11) are equivalent and so all Chern classes involved are equal. This case, of course, cannot happen in case (a).
$2^{\text {nd }}$ case: $f=0$. Observe that the relations in (12) imply that for all $i, j \in$ $\{1,2\}$, the collection $\left\{a_{\alpha}^{i j}\right\}_{\alpha \in A}$ defines a divisor in M. Since $f \equiv 0$, one of these divisors is $\equiv 0$. Suppose for instance that $a_{\alpha}^{12} \equiv 0$ for all $\alpha \in A$. This implies that $E_{1}=F_{1}$ and $a_{\alpha}^{11}, a_{\alpha}^{22} \in \mathcal{O}^{*}\left(U_{\alpha}\right)$ for all $\alpha \in A$, because $\Delta_{\alpha}=a_{\alpha}^{11} a_{\alpha}^{22} \in \mathcal{O}^{*}\left(U_{\alpha}\right)$ in this case. Analogously, if $a_{\alpha}^{11} \equiv 0$ for all $\alpha \in A$ we get $E_{1}=F_{2}$ and $c\left(E_{2}\right)=c\left(F_{1}\right)$. The remaining cases are similar and we leave them for the reader.

Now let f and g be homogeneous polynomials on $\mathbf{C}^{n+1}, n \geq 3$, such that $f \pi g$. Let $F=\left\{[z] \in \mathbf{C} P^{n} \mid f(z)=0\right\}, G=\{[z] \mid g(z)=0\}$ and $K=F \cap G$. We denote by $\nu \xrightarrow{P} K, \hat{F} \rightarrow F$ and $\hat{G} \rightarrow G$ the normal bundles of K, F and G in $\mathbf{C} P^{n}$ respectively. Let $\tilde{F}=\hat{F}|K, \tilde{G}=\hat{G}| K$. We will use the notation $c(\cdot)$ to denote the first Chen class of a holomorphic vector bundle in $H_{D R}^{2}$ of the corresponding base. It is well known that:
(a) $\nu=\tilde{F} \oplus \tilde{G}$ and $c(\nu)=c(\tilde{F}) . c(\tilde{G})(\mathrm{cf}.[\mathbf{G}-\mathrm{A}])$
(b) $c(\tilde{F})=c(F) \mid K$ and $c(\tilde{G})=c(G) \mid K$. In particular $c(\tilde{F}), c(\tilde{G}) \neq 0$, because $c(F), c(G) \neq 0$ and $\operatorname{dim}(K)>0($ cf. [G-A]).
(c) $d g(f) \cdot c(\tilde{G})=d g(g) \cdot c(\tilde{F})$.

Assertion (c) follows easily from Theorem 1.2.4 and example 1.3.1, as the reader can verify.

Suppose now that \mathcal{F} is a foliation of $\mathbf{C} P^{n}$ having K as a Kupka component. Let $d g(f) / d g(g)=p / q$ where p, q are relatively primes and $p \leq q(p=q$ iff $p=q=1$).

Let λ_{1} and λ_{2} be eigenvalues of the normal type of \mathcal{F} at K. Let us prove first that $\lambda_{1} \neq 0 \neq \lambda_{2}$. In fact, let us suppose by contradiction that $\lambda_{2}=$ 0 . In this case $\lambda_{1} \neq 0$, because $K \subset K(\mathcal{F})$. Let E_{1} and E_{2} be the line
subbundles of ν induced by the eigendirections of λ_{1} and λ_{2} respectively. Then $\nu=\tilde{F} \oplus \tilde{G}=E_{1} \oplus E_{2}$. It follows from Lemma 4 that $c(\tilde{F})=c\left(E_{1}\right)$ and $c(\tilde{G})=c\left(E_{2}\right)$ or $c(\tilde{G})=c\left(E_{1}\right)$ and $c(\tilde{F})=c\left(E_{2}\right)$. Let us suppose for instance that $c(\tilde{F})=c\left(E_{1}\right)$ and $c(\tilde{G})=c\left(E_{2}\right)$. Now (a) of Theorem 1.2.4 implies that $0=\lambda_{2} c\left(E_{1}\right)=\lambda_{1} c\left(E_{2}\right)$ and so $c\left(E_{2}\right)=c(\tilde{G})=0$, a contradiction.

On the other hand, if $\lambda_{1} \neq \lambda_{2}$ we can define E_{1} and E_{2} in the same way and get the following relations (assuming $c(\tilde{F})=c\left(E_{1}\right)$):

$$
\left\{\begin{array}{l}
\lambda_{1} c\left(E_{2}\right)=\lambda_{2} c\left(E_{1}\right) \\
c(\tilde{F})=c\left(E_{1}\right), c(\tilde{G})=c\left(E_{2}\right) \\
p c(\tilde{G})=q c(\tilde{F})
\end{array} \Rightarrow \frac{\lambda_{2}}{\lambda_{1}}=\frac{p}{q}\right.
$$

We can conclude from the above arguments that:
(i) $\lambda_{2} \neq 0 \neq \lambda_{1}$ and $\lambda_{2} / \lambda_{1} \in \mathbf{Q}_{+}$.
(ii) If $\lambda_{2} \neq \lambda_{1}$ then $\lambda_{2} / \lambda_{1}=p / q$.

We want to prove that $\lambda_{2} / \lambda_{1}=p / q$ in all cases, but before that we will prove the followingt result.

Lemma 5. The transversal type of \mathcal{F} at K is always linearizable and diagonal.
Proof: Let $\lambda_{2} / \lambda_{1}=r / s$ where $r, s \in \mathbf{Z}_{+}, 0<s \leq r$ and $(r, s)=1$. Let us suppose by contradiction that the transversal type is either non linearizable or linearizable but not diagonal. In this case, by Poincaré-Dulac Theorem, we must have $1=s \leq r$ and the transversal type is equivalent to the vector field $X=x \partial / \partial x+\left(r y+x^{r}\right) \partial / \partial y$. The dual form of X is $w=\left(r y+x^{r}\right) d x-x d y$, therefore by Kupka Theorem (1.2.1), there is a covering $\left(U_{\alpha}\right)_{\alpha \in A}$ of K by open sets of $\mathbf{C} P^{n}$, where each U_{α} is the domain of a chart $\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right): U_{\alpha} \rightarrow$ $\mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-2}$ such that
(i) If $U_{\alpha} \cap U_{\beta} \neq \phi$ then it is connected.
(ii) $K \cap U_{\alpha}=\left\{x_{\alpha}=y_{\alpha}=0\right\}$
(iii) $\mathcal{F} \mid U_{\alpha}$ is defined by the form $\left(r y_{\alpha}+x_{\alpha}^{r}\right) d x_{\alpha}-x_{\alpha} d y_{\alpha}=w_{\alpha}$.
(iv) There is a multiplicative cocycle $\left(g_{\alpha \beta}\right)_{U_{\alpha} \cap U_{\beta} \neq \phi}$ such that if $U_{\alpha} \cap U_{\beta} \neq \phi$ then $g_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$ and $w_{\alpha}=g_{\alpha \beta} w_{\beta}$ on $U_{\alpha} \cap U_{\beta}$.

Now observe that $x_{\alpha}^{-r-1} w_{\alpha}$ is closed because

$$
\frac{w_{\alpha}}{x_{\alpha}^{r+1}}=\frac{d x_{\alpha}}{x_{\alpha}}-d\left(\frac{y_{\alpha}}{x_{\alpha}^{r}}\right)
$$

Observe also that $\left\{x_{\alpha}=0\right\}$ is the unique analytic separatrix of \mathcal{F} through $K \cap U_{\alpha}$. It follows that on $U_{\alpha} \cap U_{\beta} \neq \phi$ we must have $x_{\alpha}=h_{\alpha \beta} x_{\beta}$ where $h_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$. In particular $\left(x_{\alpha}\right)_{\alpha \in A}$ defines an analytic divisor on $U=\bigcup_{\alpha \in A} U_{\alpha}$. On the other hand we have

$$
\begin{equation*}
\frac{w_{\alpha}}{x_{\alpha}^{r+1}}=\frac{g_{\alpha \beta}}{\left(h_{\alpha \beta}\right)^{r+1}} \frac{w_{\beta}}{x_{\beta}^{r+1}}=f_{\alpha \beta} \frac{w_{\beta}}{x_{\beta}^{r+1}}, \quad f_{\alpha \beta} \in \mathcal{O}\left(U_{\alpha} \cap U_{\beta}\right) \tag{14}
\end{equation*}
$$

This implies that:

$$
0=d\left(\frac{w_{\alpha}}{x_{\alpha}^{r+1}}\right)=d f_{\alpha \beta} \wedge \frac{w_{\beta}}{x_{\beta}^{r+1}} \Rightarrow d f_{\alpha \beta} \wedge w_{\beta}=0
$$

Therefore $f_{\alpha \beta}$ is a first integral of $\mathcal{F} \mid U_{\alpha} \cap U_{\beta}$. As the reader can verify by using the Taylor series of $f_{\alpha \beta}=\sum_{m, n \geq 0} a_{m n}\left(z_{\beta}\right) x_{\beta}^{m} y_{\beta}^{n}$, the relation $d f_{\alpha \beta} \wedge w_{\beta}=0$ implies that $f_{\alpha \beta}$ is a constant. In fact this constant is 1 because the residues of $x_{\alpha}^{-r-1} w_{\alpha}$ and $x_{\beta}^{-r-1} w_{\beta}$ around $\left\{x_{\alpha}=0\right\}$ are both equal to 1 . It follows that $x_{\alpha}^{-r-1} w_{\alpha}=x_{\beta}^{-r-1} w_{\beta}$ and so there exists a closed meromorphic 1-form $\hat{\eta}$ defined on $U=\bigcup_{\alpha} U_{\alpha}$ such that $\hat{\eta} \mid U_{\alpha}=x_{\alpha}^{-r-1} w_{\alpha}$ and $\hat{\eta}$ defines $\mathcal{F} \mid U$ outside its divisor of poles. By Corollary 2.2.3 of $\S 2, \hat{\eta}$ can be extended to a meromorphic closed 1-form η on $\mathbf{C} P^{n}$ which defines \mathcal{F} outside its divisor of poles. Let $\eta^{*}=\pi^{*}(\eta)$.

It follows from Lemma 3 of $\S 3.1$ that there exist homogeneous polynomials $g_{1}, \ldots, g_{m}, \varphi$ and ψ on $\mathbf{C}^{n+1}, a_{1}, \ldots, a_{m} \in \mathbf{C}$ and $\ell_{1}, \ldots, \ell_{m}$ non negative integers such that:
(v) $\eta^{*}=\sum_{j=1}^{m} a_{j} \frac{d g_{j}}{g_{j}}+d\left(\frac{\varphi}{\psi}\right)$
(vi) $\sum_{j=1}^{m} a_{j} d g\left(g_{j}\right)=0$
(vii) $\psi=g_{1}^{\ell_{1}} \ldots g_{m}^{\ell_{m}}$ and $d g(\varphi)=d g(\psi)$.

Let $\alpha \in A$ be fixed. We have

$$
\begin{equation*}
\left[\sum_{j=1}^{m} a_{j} \frac{d g_{j}}{g_{j}}+d\left(\frac{\varphi}{\psi}\right)\right]\left|U_{\alpha}=\frac{d x_{\alpha}}{x_{\alpha}}-d\left(\frac{y_{\alpha}}{x_{\alpha}^{r}}\right)=\eta\right| U_{\alpha} \tag{15}
\end{equation*}
$$

From Bézout's theorem, for every $j=1, \ldots, m$ we know that $G_{j} \cap K \neq \phi$, where $G_{j}=\left\{[z] \mid g_{j}(z)=0\right\}$. If α is such that $U_{\alpha} \cap G_{j} \cap K \neq \phi$, we can conclude from (15) that:
(viii) $G_{j} \cap U_{\alpha}=\left\{x_{\alpha}=0\right\} \Rightarrow m=1$

Then (vi) implies that $a_{1} d g\left(g_{1}\right)=0 \Rightarrow a_{1}=0$. But this implies that $\eta=d\left(\frac{\varphi}{\psi}\right)$ and its residue around $\left\{x_{\alpha}=0\right\}$ is zero, a contradiction.

Lemma 6. If $\lambda_{1}=\lambda_{2}$ then $p=q=1$ and \mathcal{F} is induced by the form on $\mathbf{C}^{n+1} f d g-g d f$.

Proof: Let w be an integrable homogeneous 1 -form on \mathbf{C}^{n+1} which induces \mathcal{F}. The foliation defined by w on \mathbf{C}^{n+1} is $\mathcal{F}^{*}=\pi^{*} \mathcal{F}$. Moreover, if $K^{*}=$ $\pi^{-1}(K)-\{0\}$, then $K^{*} \subset K\left(\mathcal{F}^{*}\right)$ and the transversal type of \mathcal{F}^{*} at K^{*} is linearizable and diagonal with equal eigenvalues.

Let $p_{0} \in K^{*}$. We assert that there exist a chart $(x, y, z): U \rightarrow \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-1}$ around p_{0} and a function $\Delta \in \mathcal{O}^{*}\left(K^{*} \cap U\right)$ such that:
(i) $K^{*} \cap U=\{x=y=0\}$
(ii) $f|U=x, g| U=y$
(iii) $w \mid U=\Delta(z)(x d y-y d x)+\theta$, where θ denotes terms of order highter than 1 in (x, y).
(iv) The local expression of the radial vector field in U is

$$
R \left\lvert\, U=m x \frac{\partial}{\partial x}+n x \frac{\partial}{\partial y}+\frac{\partial}{\partial z_{1}}\right., \quad m=d g(f), \quad n=d g(g) .
$$

Observe that (i) and (ii) follow from the implicit function theorem and the fact that $d f\left(p_{0}\right) \wedge d g\left(p_{0}\right) \neq 0$. Let $R \mid U=A \partial / \partial x+B \partial / \partial y+\sum_{j=1}^{n-1} G_{j} \partial / \partial u_{j}$. From Euler's identity we have $R(x)=m x$ and $R(y)=n y$, which implies that $A=m x$ and $B=n y$. The proof of (iv) can be done as follows: let L_{1}, \ldots, L_{n-1} be homogeneous linear polymials such that $L_{1}\left(p_{0}\right) \neq 0$ and $d f\left(p_{0}\right) \wedge d g\left(p_{0}\right) \wedge d L_{1}\left(p_{0}\right) \wedge \cdots \wedge d L_{n-1}\left(p_{0}\right) \neq 0$. Take $z_{j}=L_{j} / L_{1}$ for $j \geq 2$ and z_{1} a branch of $\ell g\left(L_{1}\right)$ defined in a neighborhood of p_{0}. Then $\left(x, y, z_{1}, \ldots, z_{n-1}\right)$ is a diffeomorphism in a neighborhood U of p_{0} and moreover $R \mid U=m x \partial / \partial x+$ $n y \partial / \partial y+\partial / \partial z_{1}$.

Now since the linear part of the normal type of \mathcal{F}^{*} at K^{*} has $\lambda_{1}=\lambda_{2}$ and is diagonal, then for each section $\{z=c\}$ the dual form has linear part $x d y-y d x$, which implies that the linear part of $w \mid\{z=c\}$ is of the form $\Delta(z)(x d y-y d x)$. Therefore the linear part of $w \mid U$ with respect to (x, y) if of the form

$$
w_{1}=\Delta(z)(x d y-y d x)+\sum_{j=1}^{n-1}\left(A_{j}(z) x+B_{j}(z) y\right) d z_{j}
$$

It follows from the integrability condition $w \wedge d w=0$, that $A_{j}=B_{j} \equiv 0$ for $j=1, \ldots, n-1$, as the reader can verify directly by taking the linear part of $w \wedge d w$ with respect to (x, y). This proves (iii).

We can conclude from the above facts, that there exists an open covering $\left(U_{\alpha}\right)_{\alpha \in A}$ of K^{*} and two collections $\left(\Delta_{\alpha}\right)_{\alpha \in A},\left(\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right)\right)_{\alpha \in A}$, where $\Delta_{\alpha} \in$ $\mathcal{O}^{*}\left(K^{*} \cap U_{\alpha}\right)$ and $\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right): U_{\alpha} \rightarrow \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-1}$ is a local chart such that
(i) $K^{*} \cap U_{\alpha}=\left\{x_{\alpha}=y_{\alpha}=0\right\}$
(ii) $f \mid U_{\alpha}=x_{\alpha}$ and $g \mid U_{\alpha}=y_{\alpha}$.
(iii) $w \mid U_{\alpha}=\Delta_{\alpha}\left(z_{\alpha}\right)\left(x_{\alpha} d y_{\alpha}-y_{\alpha} d x_{\alpha}\right)+\theta_{\alpha}$, where θ_{α} denotes terms of order highter than 1 in $\left(x_{\alpha}, y_{\alpha}\right)$.
(iv) $R \left\lvert\, U_{\alpha}=m x_{\alpha} \frac{\partial}{\partial x_{\alpha}}+n y_{\alpha} \frac{\partial}{\partial y_{\alpha}}+\frac{\partial}{\partial z_{\alpha 1}}\right.$.

Now, if $K^{*} \cap U_{\alpha} \cap U_{\beta} \neq \phi$ and $p \in K^{*} \cap U_{\alpha} \cap U_{\beta}$ then

$$
d w(p)=2 \Delta_{\alpha}(p) d x_{\alpha}(p) \wedge d y_{\alpha}(p)=2 \Delta_{\beta}(p) d x_{\beta}(p) \wedge d y_{\beta}(p)
$$

Since $x_{\alpha}=x_{\beta}=f$ and $y_{\alpha}=y_{\beta}=g$ on $U_{\alpha} \cap U_{\beta}$, then we must have $\Delta_{\alpha}(p)=\Delta_{\beta}(p)$. Hence we can define a holomorphic function $\Delta: K^{*} \rightarrow \mathbf{C}^{*}$ such that $\Delta \mid U_{\alpha} \cap K^{*}=\Delta_{\alpha}$ for every $\alpha \in A$. Let us prove that Δ is constant.

Let $d g(w)=k \geq 1(d g(w)=$ degree of the coefficients of $w)$ and the two jet of w along $K^{*} \cap U_{\alpha}$ be

$$
\begin{aligned}
j_{\left(x_{\alpha}, y_{\alpha}\right)}^{2} w & =\Delta\left(z_{\alpha}\right)\left(x_{\alpha} d y_{\alpha}-y_{\alpha} d x_{\alpha}\right) \\
& +\sum_{i=1}^{n-1}\left(A_{i}\left(z_{\alpha}\right) x_{\alpha}^{2}+B_{i}\left(z_{\alpha}\right) x_{\alpha} y_{\alpha}+c_{i}\left(z_{\alpha}\right) y_{\alpha}^{2}\right) d z_{i} \\
& +P\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right) d x_{\alpha}+Q\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right) d y_{\alpha}
\end{aligned}
$$

where P and Q are homogeneous of degree two in $\left(x_{\alpha}, y_{\alpha}\right)$. Since $i_{R}(w)=0$, get

$$
0=i_{R}(w)=\Delta\left(z_{\alpha}\right)(n-m) x_{\alpha} y_{\alpha}+A_{1}\left(z_{\alpha}\right) x_{\alpha}^{2}+B_{1}\left(z_{\alpha}\right) x_{\alpha} y_{\alpha}+C_{1}\left(z_{\alpha}\right) y_{\alpha}^{2}+\theta_{3}
$$

where θ_{3} denotes terms of order highter than 2 in $\left(x_{\alpha}, y_{\alpha}\right)$. This implies that (v) $A_{1} \equiv C_{1} \equiv 0$ and $(n-m) \Delta+B_{1} \equiv 0$.

On the other hand, we have seen in the proof of Theorem B that $i_{R}(d w)=$ $(k+1) w$. From this we get

$$
\begin{aligned}
(k+1) \Delta\left(x_{\alpha} d y_{\alpha}-y_{\alpha} d x_{\alpha}\right)+\theta_{\alpha}=i_{R} & (d \Delta)\left(x_{\alpha} d y_{\alpha}-y_{\alpha} d x_{\alpha}\right) \\
& +2 \Delta\left(m x_{\alpha} d y_{\alpha}-n y_{\alpha} d x_{\alpha}\right) \\
& -B_{1}\left(y_{\alpha} d x_{\alpha}+x_{\alpha} d y_{\alpha}\right)+r
\end{aligned}
$$

where r denotes terms either of order highter than 1 in $\left(x_{\alpha}, y_{\alpha}\right)$ or terms in the $d z_{j}^{\prime} s$. Comparing these expressions we get:
(vi) $(k+1) \Delta=i_{R}(d \Delta)+2 m \Delta-B_{1}=i_{R}(d \Delta)+2 n \Delta+B_{1}$

Therefore,
(vii) $i_{R}(d \Delta)=(k+1-m-n) \Delta=\ell \Delta$

Equation (vii) implies that $\Delta(t p)=t^{\ell} \Delta(p)$ for all $t \in \mathbf{C}^{*}$ and $p \in K^{*}$. Now, if $\ell=0$ then we can define a holomorphic function $\varphi: K \rightarrow \mathbf{C}$ by
$\varphi([p])=\Delta(p)$ and this implies that Δ is constant. On the other hand, if $\ell>0$, let $M: \mathbf{C}^{n+1} \rightarrow \mathbf{C}$ be linear. In this case we can define a meromorphic function on K by $\varphi([p])=\Delta(p) / M^{\ell}(p)$. Since M is arbitrary, it follows that Δ must vanish in some point $p \in K^{*}$, a contradiction. Analogously, if $\ell<0$ the function $\varphi=M^{-\ell} \Delta$ must have some pole, and so Δ also, which is again a contradiction. Therefore Δ is constant and moreover $k+1=m+n$.

Let $\mu=w-\Delta(f d g-g d f)$. It is not difficult to see that the 1 -jet of μ along K^{*} is zero and that μ is homogeneous of degree $k=m+n-1$. From Theorem 2.3.3 we can conclude that $\mu=f^{2} \mu_{1}+f g \mu_{2}+g^{2} \mu_{3}$, where $\mu_{1}, \mu_{2}, \mu_{3}$ are 1-forms with homogeneous coefficients and
(viii) $k=2 m+d g\left(\mu_{1}\right)=m+n+d g\left(\mu_{2}\right)=2 n+d g\left(\mu_{3}\right)$
unless some of the μ_{j} 's are $\equiv 0$. Now, if $m=n$, (viii) and $k+1=m+n=$ $2 m=2 n$, implies that $\mu_{1} \equiv \mu_{2} \equiv \mu_{3} \equiv 0$, and so $w=\Delta(f d g-g d f)$. Let us suppose by contradiction that $m>n$ for instance. In this case $k=m+n-1$ implies that $\mu_{1} \equiv \mu_{2} \equiv 0$, and so

$$
w=\Delta(f d g-g d f)+g^{2} \mu_{3}
$$

Since $i_{R}(w)=0$, we get

$$
0=\Delta(n-m) f g+g^{2} i_{R}\left(\mu_{3}\right)=g\left(\Delta(n-m) f+g i_{R}\left(\mu_{3}\right)\right)
$$

This implies that g divides f which is a contradiction. Hence $m=n$ and $w=\Delta(f d g-g d f)$, which proves the lemma.

Corollary. $\lambda_{2} / \lambda_{1}=p / q=m / n$.
Now let us suppose that $1 \leq p<q$ (i.e. $d g(f)<d g(g)$). Let w be a homogeneous integrable 1 -form on \mathbf{C}^{n+1} which induces \mathcal{F} on $\mathbf{C} P^{n}$.

LEMMA 7. In the above situation w has an integrating factor.

Proof: We know from Lemma 5 that the transversal type of \mathcal{F} at K is linearizable. This implies that there exists a covering of K by open sets
$\left(U_{\alpha}\right)_{\alpha \in A}$ and coordinate systems $\left(\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right): U_{\alpha} \rightarrow \mathbf{C} \times \mathbf{C} \times \mathbf{C}^{n-2}\right)_{\alpha \in A}$ such that:
(i) $K \cap U_{\alpha}=\left\{x_{\alpha}=y_{\alpha}=0\right\}$
(ii) $\mathcal{F} \mid U_{\alpha}$ is defined by $w_{\alpha}=p x_{\alpha} d y_{\alpha}-q y_{\alpha} d x_{\alpha}$
(iii) If $U_{\alpha} \cap U_{\beta} \neq \phi$ then it is connected and there exists $g_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$ such that $w_{\alpha}=g_{\alpha \beta} w_{\beta}$ on $U_{\alpha} \cap U_{\beta}$.
(iv) If $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \phi$ then it is connected and $g_{\alpha \beta} \cdot g_{\beta \gamma} . g_{\gamma \alpha} \equiv 1$.

We will consider two cases:
$1^{\text {st }}$ case: $1<p<q$. In this case we will prove that there exists a closed meromorphic 1-form on $U=\sum_{\alpha} U_{\alpha}$, which defines \mathcal{F} outside its poles.

Oberve first that $1<p<q$ implies that $\left\{x_{\alpha}=0\right\} \cap U_{\beta}=\left\{x_{\beta}=0\right\} \cap U_{\alpha}$ and $\left\{y_{\alpha}=0\right\} \cap U_{\beta}=\left\{y_{\alpha}=0\right\} \cap U_{\alpha}$. This follows from the fact that the vector field $X=p x \partial / \partial x+q y \partial / \partial y$ has only two analytic smooth separatrices through $(0,0)$, which are $\{x=0\}$ and $\{y=0\}$, and they correspond to two differet eigenvalues q and p. Let $\eta_{\alpha}=x_{\alpha}^{-1} y_{\alpha}^{-1} w_{\alpha}=p d y_{\alpha} / y_{\alpha}-q d x_{\alpha} / x_{\alpha}$. If $U_{\alpha} \cap U_{\beta} \neq \phi$ and $h_{\alpha \beta}=x_{\beta} y_{\beta} g_{\alpha \beta} / x_{\alpha} y_{\alpha}$, then $\eta_{\alpha}=h_{\alpha \beta} \eta_{\beta}$ and $h_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$ because x_{β} / x_{α} and $y_{\beta} / y_{\alpha} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$ by the first observation. On the other hand,
$0=d \eta_{\alpha}=d h_{\alpha \beta} \wedge \eta_{\beta} \Rightarrow d h_{\alpha \beta} \wedge w_{\beta}=0 \Rightarrow h_{\alpha \beta}$ is a first integral of $p x_{\beta} \partial / \partial x_{\beta}+q y_{\beta} \partial / \partial y_{\beta} \Rightarrow h_{\alpha \beta}$ is a constant.

Now, if we compare the residues of η_{α} and η_{β} around $\left\{x_{\alpha}=0\right\} \cap U_{\beta}$ we get $h_{\alpha \beta} \equiv 1$. This implies that $\eta_{\alpha}\left|U_{\alpha} \cap U_{\beta}=\eta_{\beta}\right| U_{\alpha} \cap U_{\beta}$ and so there exists a closed meromorphic 1-form $\tilde{\eta}$ on $U=\bigcup_{\alpha} U_{\alpha}$ such that $\tilde{\eta} \mid U_{\alpha}=\eta_{\alpha}$ for all $\alpha \in A$ and $\tilde{\eta}$ represents $\mathcal{F} \mid U$ outside its poles. It follows from Corollary 2.2 .3 that this form can be extended to a closed 1-form η on $\mathbf{C} P^{n}$ which represents \mathcal{F} outside its poles. This implies the $1^{\text {st }}$ case.
$2^{\text {nd }}$ case: $1=p<q$. In this case we have still $\left\{x_{\alpha}=0\right\} \cap U_{\beta}=\left\{x_{\beta}=0\right\} \cap U_{\alpha}$ by the same reason as in the $1^{s t}$ case, but $\left\{y_{\alpha}=0\right\} \cap U_{\beta}=\left\{y_{\beta}-c x_{\beta}^{q}=0\right\} \cap U_{\alpha}$, where c is a constant, as the reader can verify easily. For each $\alpha \in A$, let
$\varphi_{\alpha}=y_{\alpha} / x_{\alpha}^{q}$. Let us prove that if $U_{\alpha} \cap U_{\beta} \neq \phi$ then there constants $a_{\alpha \beta} \in \mathbf{C}^{*}$ and $b_{\alpha \beta} \in \mathbf{C}$ such that $\varphi_{\alpha}=a_{\alpha \beta} \varphi_{\beta}+b_{\alpha \beta}$.

In fact, we have

$$
d \varphi_{\alpha}=x_{\alpha}^{-q-1} w_{\alpha}=x_{\alpha}^{-q-1} g_{\alpha \beta} w_{\beta}=\left(\frac{x_{\beta}}{x_{\alpha}}\right)^{q+1} g_{\alpha \beta} d \varphi_{\beta}=a_{\alpha \beta} d \varphi_{\beta}
$$

where $a_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$. The above relation implies:
$0=d^{2} \varphi_{\alpha}=d a_{\alpha \beta} \wedge d \varphi_{\beta} \Rightarrow d a_{\alpha \beta} \wedge w_{\beta}=0 \Rightarrow a_{\alpha \beta}$ is a constant $\Rightarrow a_{\alpha \beta} \in \mathbf{C}^{*}$.
$\Rightarrow \varphi_{\alpha}=a_{\alpha \beta} \varphi_{\beta}+b_{\alpha \beta}$.
Now let \hat{w} be a merorphic 1-form on $\mathbf{C} P^{n}$ which represents \mathcal{F} outside its poles (we can take \hat{w} such that $\pi^{*}(\hat{w})=w / M^{k+1}$, where $d g(w)=k$ and M is linear). For each $\alpha \in A$, there exists a meromorphic function f_{α} on U_{α}, such that $\hat{w} \mid U_{\alpha}=f_{\alpha} d \varphi_{\alpha}$. If $U_{\alpha} \cap U_{\beta} \neq \phi$ then

$$
\hat{w} \mid U_{\alpha}=f_{\alpha} d \varphi_{\alpha}=f_{\alpha} a_{\alpha \beta} d \varphi_{\beta}=f_{\beta} d \varphi_{\beta}
$$

Therefore $f_{\beta}=a_{\alpha \beta} f_{\alpha}$, and so $\frac{d f_{\alpha}}{d_{\alpha}}=\frac{d f_{\beta}}{f_{\beta}}$ on $U_{\alpha} \cap U_{\beta}$. This implies that we can define a meromorphic closed 1-form $\hat{\theta}$ on $U=\bigcup_{\alpha} U_{\alpha}$ such that $\hat{\theta}\left|U_{\alpha}=d f_{\alpha}\right| f_{\alpha}$ for each $\alpha \in A$. By Corollary 2.2.3 this form can be extended to a closed 1-form θ on $\mathbf{C} P^{n}$. With an argument similar to that we have done before in the proof of Theorem B, it can be proved that there exists a meromorphic function f on $\mathbf{C} P^{n}$ such that $d f / f=\theta$. Clearly for each $\alpha \in A$, we have $f \mid U_{\alpha}=c f_{\alpha}, c$ a constant. This implies that $d(\hat{w} / f)=0$ and so \hat{w} has an integrating factor and w also. This proves the lemma.

Let A / B be the integrating factor of w. From Lemma 3 we have

$$
\frac{B w}{A}=\sum_{j=1}^{m} \lambda_{j} \frac{d g_{j}}{g_{j}}+d\left(\frac{\varphi}{\psi}\right)
$$

where $A=g_{1}^{k_{1}} \ldots g_{m}^{k_{m}}$ is the decomposition of A in irreducible factors, $\psi=$ $g_{1}^{\ell_{1}} \ldots g_{m}^{\ell_{m}}, 0 \leq \ell_{j} \leq k_{j}-1, \sum_{j=1}^{m} \lambda_{j} d g\left(g_{j}\right)=0, \varphi$ and ψ have no common factors and $d g(\varphi)=d g(\psi)$. We can suppose also that for any $j \in\{1, \ldots, m\}$ we have either $\ell_{j} \neq 0$ or $\lambda_{j} \neq 0$.

Let us consider the $1^{s t}$ case in the proof of Lemma 7. In this case we can suppose that for any $\alpha \in A$:

$$
\frac{B w}{A} \left\lvert\, \pi^{-1}\left(U_{\alpha}\right)=\pi^{*}\left(p \frac{d y_{\alpha}}{y_{\alpha}}-q \frac{d x_{\alpha}}{x_{\alpha}}\right)=p \frac{d y_{\alpha}^{*}}{y_{\alpha}^{*}}-q \frac{d x_{\alpha}^{*}}{x_{\alpha}^{*}}\right.
$$

On the other hand for $j \in\{1, \ldots, m\}$ we have from Bézout's Theorem that $A_{j}=\left\{g_{j}=f=g=0\right\}-\{0\} \neq \phi$ and for a point $p \in A_{j} \cap U_{\alpha}$ (for some α) we get

$$
\sum_{i=1}^{m} \lambda_{i} \frac{d g_{i}}{g_{i}}+d\left(\frac{\varphi}{\psi}\right)=p \frac{d y_{\alpha}^{*}}{y_{\alpha}^{*}}-q \frac{d x_{\alpha}^{*}}{x_{\alpha}^{*}}
$$

This implies that either $\left\{g_{j}=0\right\} \cap U_{\alpha}=\left\{x_{\alpha}^{*}=0\right\}$ and $\lambda_{i}=-q$ or $\left\{g_{j}=\right.$ $0\} \cap U_{\alpha}=\left\{y_{\alpha}^{*}=0\right\}$ and $\lambda_{j}=p$. Since in the right member the poles are of order 1 , we get also $\ell_{j}=0$. Moreover $\left\{g_{j}=0\right\} \cap \pi^{-1}(U)$ coincides with one of the divisors $\left\{x_{\alpha}^{*}=0\right\}$ or $\left\{y_{\alpha}^{*}=0\right\}\left(U=\bigcup_{\alpha} U_{\alpha}\right)$. Therefore $m=2$ and we can suppose that

$$
\frac{B w}{A}=p \frac{d g_{1}}{g_{1}}-q \frac{d g_{2}}{g_{2}} \text { and } p d g\left(g_{1}\right)=q d g\left(g_{2}\right)
$$

Observe that we have also $\left\{g_{1}=g_{2}=0\right\} \supset\{f=g=0\}$. From Noëther's Lemma (2.3.1), we get $g_{1}=\alpha_{1} f+\beta_{1} g$ and $g_{2}=\alpha_{2} f+\beta_{2} g$ where $\alpha_{1}, \ldots, \beta_{2}$ are homogeneous polynomials. On the other hand, $\left\{g_{1}=g_{2}=0\right\}$ is connected by Lefschetz's Theorem and $\left\{g_{1}=g_{2}=0\right\} \subset S\left(\mathcal{F}^{*}\right)$ as we have seen after Lemma 3. This implies that $\left\{g_{1}=g_{2}=0\right\}=\{f=g=0\}$. In fact, $\{f=g=0\}$ is an irreducible component of $\left\{g_{1}=g_{2}=0\right\}$ and if it has another component, say N, then $N \cap\{f=g=0\}-\{0\} \neq \phi$. Hence if $z \in N \cap\{f=g=0\}-\{0\}$,
then $d g_{1}(z) \wedge d g_{2}(z)=0$. But this implies that $z \in\{f=g=0\}-K\left(\mathcal{F}^{*}\right)$ which is not possible. Therefore $\left\{g_{1}=g_{2}=0\right\}=\{f=g=0\}$.

By Noëther's lemma the matrix $\left(\begin{array}{ll}\alpha_{1} & \beta_{1} \\ \alpha_{2} & \beta_{2}\end{array}\right)$ is invertible. Since $d g(f)<$ $d g(g)$ this is possible only if β_{1} and α_{2} are constants and $\beta_{2} \equiv 0$. Hence:

$$
\frac{B w}{A}=p \frac{d g_{1}}{g_{1}}-q \frac{d f}{f} \Rightarrow \mathcal{F} \text { is induced by } p f d g_{1}-q g_{1} d f
$$

In the $2^{n d}$ case we can suppose that $\frac{B w}{A}=\pi^{*}(\hat{w} / f)$. Therefore if $p \in\left(\left\{g_{j}=\right.\right.$ $f=g=0\}-\{0\}) \cap \pi^{-1}\left(U_{\alpha}\right)$, we have

$$
\sum_{j=1}^{m} \lambda_{j} \frac{d g_{j}}{g_{j}}+d\left(\frac{\varphi}{\psi}\right)=a_{\alpha} d\left(\varphi_{\alpha} \circ \pi\right)=a_{\alpha} d\left(y_{\alpha} / x_{\alpha}^{q}\right)
$$

where a_{α} is a constant. This implies that $\lambda_{j}=0, j=1, \ldots, m$. Moreover $\varphi / \psi \mid U_{\alpha}=a_{\alpha} y_{\alpha} / x_{\alpha}^{q}+b_{\alpha} \Rightarrow m=1, \ell_{1}=q$ and $B w / A=d\left(\varphi / g_{1}^{q}\right)$. Now, let $\eta=\frac{g_{1}^{q}}{\varphi} d\left(\varphi / g_{1}^{q}\right)=\frac{d \varphi}{\varphi}-q \frac{d g_{1}}{g_{1}}$. If we apply the same argument as in the $1^{\text {st }}$ case for η we can conclude that $g_{1}=\alpha_{1} f$ and $\varphi=\alpha_{2} f+\beta_{2} g$, where α_{1} and β_{2} are constants. This proves Theorem A.

References

[C] H. Cartan, Sur le premier problème de Cousin, C.R. Acad. Sc. 207 (1938), 558-560.
[C-M] D. Cerveau and J.F. Mattei, Formes intègrables holomorphes singulières, Astérisque 97.
[G-A] Griffths - Adams, Topics in Algebraic and Analytic Geometry, Princeton University Press, 1974.
[G.M.-L.N.] X. Gomez - Mont and A. Lins Neto, Structural stability of singular holomorphic foliations having a meromorphic first integral, to appear in Topology.
[O] J. Omegar, Persistência de folheações definidas por formas logaritmicas, thesis IMPA 1990.
[K] I. Kupka, The singularities of integrable structurally stable pfaffian forms, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1431-1432.
[S] Y.T. Siu, Techniques of extension of analytic objects, Marcel Dekker Inc., N. Y. 1974.
[S-T] Y.T. Siu and G. Trautmann, Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes in Math. 172 (1971).
D. Cerveau

IRMAR - Université de Rennes I - Campus de Beaulieu 35042 - Rennes Cedex.
A. Lins Neto

IMPA - Estrada Dona Castorina 110 - Jardim Botânico
CEP 22460 - Rio de Janeiro - Brasil

