Isao NAKAI
 A rigidity theorem for transverse dynamics of real analytic foliations of codimension one

Astérisque, tome 222 (1994), p. 327-343
http://www.numdam.org/item?id=AST_1994__222__327_0
© Société mathématique de France, 1994, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A rigidity theorem for transverse dynamics of real analytic foliations of codimension one

Isao Nakai

The purpose of this paper is to prove
Theorem 1. Let $\left(M_{i}^{n}, \mathcal{F}_{i}\right), i=1,2$, be real analytic and orientable foliations of n-manifolds of codimension 1 and $h:\left(M_{1}^{n}, \mathcal{F}_{1}\right) \rightarrow\left(M_{2}^{n}, \mathcal{F}_{2}\right)$ a foliation preserving homeomorphism. Assume that all leaves of \mathcal{F}_{1} are dense and there exists a leaf of \mathcal{F}_{1} with holonomy group $\neq 1, \mathbb{Z}$. Then h is transversely real analytic.

This applies to prove the following topological rigidity of the Godbillon-Vey class of real analytic foliations of codimension one.

Corollary 2. Let $\left(M_{i}, \mathcal{F}_{i}\right), h$ be as in Theorem 1. Then $h^{*}\left(\operatorname{GV}\left(\mathcal{F}_{2}\right)=\right.$ $\operatorname{GV}\left(\mathcal{F}_{1}\right)$ holds.

Here $\operatorname{GV}\left(\mathcal{F}_{i}\right) \in H^{3}(M, \mathbb{R})$ denotes the Godbillon-Vey class of \mathcal{F}_{i}, which is represented by the 3 -form $\alpha \wedge d \alpha^{\alpha}$ with a $C^{\infty}-1$-form α on M such that $d \theta=\theta \wedge \alpha$ holds with a $C^{\infty}-1$-form θ defining \mathcal{F}. It is easy to see that the Godbillon-Vey class is invariant under C^{2}-diffeomorphisms. Ghys, Tsuboi [9] and Raby [18] proved the invariance under C^{1}-diffeomorphisms, while the invariance is known to fail in some C^{0}-cases (see [5,9,11]). (Corollary 2 seems to admit the various generalisations allowing the existence of compact leaves. But we will not touch on those generalisations. See also the papers $[5,7]$.)

The proof of the C^{1}-invariance due to Ghys and Tsuboi is based on a certain rigidity for C^{1}-conjugacies of transverse dynamics of foliations along compact leaves as well as minimal exceptional leaves cutting Cantor sets on transverse
sections. The proof of Theorem 1 is based on the topological rigidity theorem for pseudogroups of diffeomorphisms of \mathbb{R} (Theorem 3(1)).

To state Theorem 3 we prepare some notions. Let Γ_{+}^{ω} be the pseudogroup of real analytic and orientation preserving diffeomorphisms of open neighbourhoods of the line \mathbb{R} respecting 0 . We call a mapping $\phi: G \rightarrow \Gamma_{+}^{\omega}$ of a group G to the pseudogroup Γ_{+}^{ω} a morphism if the set $\phi(G)_{0}$ of germs of $\phi(f), f \in G$ form a group and ϕ induces a group homomorphism of G to $\phi(G)_{0}$. Therefore $\phi(f): U_{\phi(f)}, 0 \rightarrow \phi(f)\left(U_{\phi(f)}\right), 0$ is a real analytic diffeomorphism of open neighbourhoods of $0 \in \mathbb{R}$ for $f \in G$ representing the germ of $\phi(f)$. We call $\phi(G)_{0}$ the germ of $\phi(G)$ and say ϕ is solvable (respectively commutative, etc) if $\phi(G)_{0}$ is so. The orbit $\mathcal{O}(x)$ of an $x \in \mathbb{R}$ is the set of those x_{l} joined by a sequence $\left(x_{0}, x_{1}, \ldots, x_{l}\right)$ with $x=x_{0}, x_{i+1}=\phi\left(f_{i}\right)\left(x_{i}\right), x_{i} \in U_{\phi\left(f_{i}\right)}, i=0, \ldots, l-1$ for arbitrary $l \geq 0$. The basin $B_{\phi(G)}$ of 0 is the set of those x for which the closure of the orbit $\mathcal{O}(x)$ contains 0 . If $\phi(G)$ is non trivial, i.e. $\phi(f) \neq \mathrm{id}$ for an $f \in G, B_{\phi(G)}$ is an open neighbourhood of $0[17]$. Morphisms $\phi, \psi: G \rightarrow \Gamma_{+}^{\omega}$ are topologically (resp. $C^{r}-$) conjugate if there exists a homeomorphism (resp. C^{r}-diffeomorphism) $h: U, 0 \rightarrow h(U), 0$ of open neighbourhoods of 0 such that $U_{\phi(f)}, \phi(f)\left(U_{\phi(f)}\right) \subset U, U_{\psi(f)}, \psi(f)\left(U_{\psi(f)}\right) \subset h(U)$ and $h \circ \phi(f)=\psi(f) \circ h$ holds on $U_{\phi(f)}$ for all $f \in G$. We call h a linking homeomorphism (resp.linking diffeomorphism) and we denote $h: \phi \rightarrow \psi$.

Theorem 3 (The rigidity theorem for pseudogroups). Let $\phi, \psi: G \rightarrow$ Γ_{+}^{ω} be morphisms which are topologically conjugate with each other and h : $\phi \rightarrow \psi$ a linking homeomorphism.
(1) If $\phi(G)_{0}, \psi(G)_{0}$ are not isomorphic to \mathbb{Z} and non trivial, the restriction $h: B_{\phi(G)}-0 \rightarrow B_{\psi(G)}-0$ is a real analytic diffeomorphism.
(2) If $\phi(G)_{0}, \psi(G)_{0}$ are non commutative, h is unique and there exist even positive integers i, j such that $\left|h\left(\epsilon x^{i}\right)\right|^{1 / j}: \tilde{B}_{\phi(G)}^{\epsilon} \rightarrow \tilde{B}_{\psi(G)}^{\epsilon}$ is a real analytic diffeomorphism for $\epsilon= \pm 1$. Here $\tilde{B}_{\phi(G)}^{\epsilon}$ is the set of those x such that $\epsilon x^{i} \in$ $B_{\phi(G)}$ and $\tilde{B}_{\psi(G)}^{\epsilon}$ is the set of those x such that $x^{j}\left(\right.$ resp. $\left.-x^{j}\right) \in B_{\psi(G)}$ if h maps \mathbb{R}^{ϵ} to $\mathbb{R}^{+}\left(\right.$resp. $\left.\mathbb{R}^{-}\right)$.

Now we apply the above rigidity theorem to the analytic action of the surface group on the circle S^{1}. Let Σ_{g} be the oriented closed surface of genus g and $\Gamma^{g}=\pi_{1}\left(\Sigma_{g}\right)$. For $r=1, \ldots, \infty$ and ω, Diffr${ }_{+}\left(S^{1}\right)$ denotes the group of orientation preserving C^{r}-diffeomorphisms of the circle. The suspension M of a homomorphism $\phi: \Gamma^{g} \rightarrow \operatorname{Diff}_{+}^{r}\left(S^{1}\right)$ is the quotient of $S^{1} \times D^{2}$ by the product $\phi \times \Gamma$ with a discrete cocompact subgroup $\Gamma^{g} \simeq \Gamma \subset \operatorname{PSL}(2, \mathbb{R})$ acting freely on the interior of the Poincare disc D^{2}. The second projection of $S^{1} \times D^{2}$ induces the submersion of M onto $\Sigma_{g}=D^{2} / \Gamma$ with the fiber S^{1}. Since the action $\phi \times \Gamma$ respects the foliation of $S^{1} \times D^{2}$ by the discs $x \times D^{2}, x \in S^{1}$, the suspension M is a foliated S^{1}-bundle of which the fibres are the quotients of the discs. In this way the topology of foliated S^{1}-bundles interchanges with that of the actions of Γ^{g} on S^{1}. The Euler number eu (ϕ) of a homomorphism $\phi: \Gamma^{g} \rightarrow \operatorname{Diff}_{+}^{r}\left(S^{1}\right)$ is defined to be that of the S^{1}-bundle associated to ϕ. The Milnor-Wood inequality [15,22] asserts

$$
|e u(\phi)| \leq\left|\Upsilon\left(\Sigma_{g}\right)\right|=2 g-2
$$

The Euler number enjoys the following relations with the orbit structure:
(1) $\mathrm{eu}(\phi)=0$ if there exists a finite orbit,
(2) If eu $(\phi) \neq 0$, there exist a minimal set $\mathcal{M} \subset S^{1}$ of ϕ, an $x \in \mathcal{M}$ and an $f \in \operatorname{stab}(x)$ such that $\left.\phi(f)\right|_{\mathcal{M}} \neq i d$ [13], and if $r=\omega$ all orbits are dense [6] (see also [16]),
(3) If $|\mathrm{eu}(\phi)|=\left|\chi\left(\Sigma_{g}\right)\right|$ and $r \geq 2$, all orbits are dense [6],
where $\operatorname{stab}(x)$ denotes the stabiliser of x consisting of $f \in \Gamma^{g}$ with $\phi(f)(x)=$ x. Homomorphisms $\phi, \psi: \Gamma^{g} \rightarrow \operatorname{Diff}_{+}^{r}\left(S^{1}\right)$ are C^{s}-conjugate if there exists a C^{s}-diffeomorphism h of S^{1} such that $\psi(f) \circ h=h \circ \phi(f)$ holds for $f \in$ Γ^{g}. We say ϕ, ψ are topologically conjugate if $s=0$, semi conjugate if h is monotone map of degree one (possibly discontinuous). We call h a linking homeomorphism and denote $h: \phi \rightarrow \psi$. It is known that the Euler number (and the bounded Euler class) concentrate the homotopic property of the action, namely

Theorem(Ghys [3]). ϕ, ψ are semi conjugate if and only if $\phi^{*}\left(\chi_{\mathbb{Z}}\right)=\psi^{*}\left(\chi_{\mathbb{Z}}\right)$
in the bounded cohomology group $H_{b}^{2}\left(\Gamma^{g}: \mathbb{Z}\right)$, where $\chi_{\mathbb{Z}} \in H_{b}^{2}\left(\right.$ Diff $_{+}^{0}\left(S^{1}\right)$: $\mathbb{Z})=\mathbb{Z}$ is the generator, the bounded Euler class.

Theorem (Matsumoto [13]). If $\mathrm{eu}(\phi)=\mathrm{eu}(\psi)= \pm \chi\left(\Sigma_{g}\right), \phi, \psi$ are semi conjugate, and if $2 \leq r$, they are topologically conjugate with each other, and in particular, conjugate with a discrete cocompact subgroup of $\operatorname{PSL}(2, \mathbb{R})$ naturally acting on S^{1} the boundary of the Poincaré disc.

Theorem Ghys [8]. If a homomorphism $\phi: \Gamma^{g} \rightarrow$ Diff $_{+}^{r}\left(S^{1}\right)$ attains the maximum of $|\mathrm{eu}(\phi)|$ and $3 \leq r, \phi$ is C^{r}-smoothly conjugate with a discrete cocompact subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

In contrast to the above results, the properties of homomorphisms with $|e u(\phi)| \varsubsetneqq\left|\chi\left(\Sigma_{g}\right)\right|$ are less known (see [16]). Applying Theorem 3 to the action of the stabiliser subgroup $\operatorname{stab}(x)$ on $\left(S^{1}, x\right)$ for an $x \in S^{\mathrm{I}}$, we obtain

Corollary 4. Let $\phi, \psi: \Gamma_{g} \rightarrow \operatorname{Diff}_{+}^{\omega}\left(S^{1}\right)$ be homomorphisms with $|\mathrm{eu}(\phi)|$, $|\mathrm{eu}(\psi)| \neq 0,\left|\chi\left(\Sigma_{g}\right)\right|$, which are topologically conjugate, and $h: \phi \rightarrow \psi$ a linking homeomorphism. Assume that for an $x \in S^{1}$, the stabiliser subgroup $\operatorname{stab}(x) \subset \Gamma_{g}$ of x is not isomorphic to \mathbb{Z} and non trivial. Then h is a real analytic diffeomorphism and orientation preserving or reversing respectively whether $\mathrm{eu}(\phi)=\mathrm{eu}(\psi)$ or $\mathrm{eu}(\phi)=-\mathrm{eu}(\psi)$.

The statement remains valid for morphisms of groups G into $\operatorname{Diff}_{+}^{\omega}\left(S^{1}\right)$ replacing the condition on the Euler number by the existence of a dense orbit.

The author would like to thank Matsumoto, Minakawa, Nishimori, Tsuboi and Moriyama for their helpful comments.

2. Sequence geometry

In this paper $f^{(n)}$ denotes the n-fold iteration $f \circ \cdots \circ f$ of $f: U_{f} \rightarrow f\left(U_{f}\right)$ in Γ_{+}^{ω}. Let $\mathcal{X}=\left\{x_{i}\right\}, \mathcal{Y}=\left\{y_{i}\right\}, i=1.2 \ldots$ be monotone sequences of positive numbers decreasing to 0 . Define the address function $\operatorname{add} \mathcal{y}(x)$ of an $x>0$ relative to \mathcal{Y} to be the smallest integer i such that $y_{i} \leq x$. It is easy to see that $\operatorname{add} y(x)$ is a decreasing function of x and $y_{\text {add } y(x)-1}>x \geq y_{\text {add }} y(x)$.

Define the address function add, $\boldsymbol{x}, \mathcal{y}$ by

$$
\operatorname{add}, x, y(i)=\operatorname{add} y\left(x_{i}\right)
$$

for $i=1,2, \ldots$ The address function enjoys the following inequality for a triple of sequences \mathcal{X}, \mathcal{Y} and $\mathcal{Z}=\left\{z_{i}\right\}$.

Proposition 6. Let \mathcal{X}, \mathcal{Y} and $\mathcal{Z}=\left\{z_{i}\right\}$ be sequences of positive numbers decreasing to 0 . Then

$$
\operatorname{add} \mathcal{Y}, \mathcal{Z}(\operatorname{add}, \mathcal{x}, \mathcal{Y}(i)-1) \leq \operatorname{add}_{\mathcal{Y}, \mathcal{Z}}(i) \leq \operatorname{add} \mathcal{y}, \mathcal{Z}\left(\operatorname{add}_{\mathcal{X}, \mathcal{Y}}(i)\right)
$$

for $x_{i}-1<y_{0}$.
We say two functions $P, Q: \mathbb{N} \cup 0 \rightarrow \mathbb{N} \cup 0$ are equivalent if there exist integers c_{1}, \ldots, c_{4} such that

$$
Q\left(i+c_{1}\right)+c_{2} \leq P(i) \leq Q\left(i+c_{3}\right)+c_{4}
$$

holds for all sufficiently large i.
Now let $\phi: G \rightarrow \Gamma_{+}^{\omega}$ be a morphism, and let $x_{0} \in U_{\phi(g)}, y_{0} \in U_{\phi(f)}$ be positive and sufficiently small and assume that $x_{i}=\phi(g)^{(i)}\left(x_{0}\right), y_{i}=\phi(f)^{(i)}\left(y_{0}\right)$ are decreasing to 0 as $i \rightarrow \infty$, replacing $f . g$ by their inverses if necessary, and denote $\mathcal{X}=\left\{x_{i}\right\}, \mathcal{Y}=\left\{y_{i}\right\}$.

Proposition 7. The equivalence class of the address function add \mathcal{X}, \mathcal{y} is independent of the choice of the initial values x_{0}, y_{0}.
proof. To prove the statement let $x_{0} \neq x_{0}^{\prime}>0, y_{0} \neq y_{0}^{\prime}>0$ and define the sequences $\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}$ similarly with $x_{0}^{\prime}, y_{0}^{\prime}$. It is easy to see

$$
\operatorname{add}{x^{\prime} . . r^{\prime}(i)}=i+c
$$

for sufficiently large i, where

$$
c=\left\{\begin{array}{lll}
\operatorname{add} \mathcal{x}\left(x_{0}^{\prime}\right), & \text { if } \quad x_{0} \geq x_{0}^{\prime} \\
1-\operatorname{add}_{\mathcal{X}^{\prime}}\left(x_{0}\right) & \text { if } \quad x_{0}^{\prime}>x_{0}, x_{0} \neq x_{j}^{\prime}, j=0,1, \ldots \\
-\operatorname{add}_{x^{\prime}}\left(x_{0}\right) & \text { if } \quad x_{0}^{\prime}>x_{0}, x_{0} \in x^{\prime \prime}
\end{array}\right.
$$

From Proposition 6 we obtain

$$
\begin{equation*}
\operatorname{add}_{\mathcal{X}, \mathcal{Y}}(i+c-1) \leq \operatorname{add}_{\mathcal{X}^{\prime}, \mathcal{Y}}(i) \leq \operatorname{add}_{\mathcal{X}, \mathcal{Y}(i+c)} \tag{1}
\end{equation*}
$$

for sufficiently large i. Similarly we obtain

$$
\begin{aligned}
\operatorname{add}_{\mathcal{X}^{\prime}, y}+c^{\prime}-1 & =\left(\operatorname{add} y \cdot y^{\prime}\left(\operatorname{add} x^{\prime}, y-1\right)\right. \\
& \leq \operatorname{add}_{\cdot 1}, y^{\prime} \\
& \leq \operatorname{add}_{y . y^{\prime}}\left(\operatorname{add}_{\mathcal{x}^{\prime}, y}\right) \\
& =\operatorname{add}_{x^{\prime}, y}, c^{\prime}
\end{aligned}
$$

with

$$
c^{\prime}=\left\{\begin{array}{lll}
\operatorname{add} y^{\prime}\left(y_{0}\right), & \text { if } & y_{0}^{\prime} \geq y_{0} \\
1-\operatorname{add} y\left(y_{0}^{\prime}\right), & \text { if } & y_{0}>y_{0}^{\prime}, y_{0}^{\prime} \neq y_{j}, j=0,1, \ldots \\
-\operatorname{add} \mathcal{y}\left(y_{0}^{\prime}\right), & \text { if } & y_{0}>y_{0}^{\prime}, y_{0}^{\prime} \in \mathcal{Z}
\end{array}\right.
$$

and by (1),

$$
\operatorname{add}_{\mathcal{X}, \mathcal{Y}}(i+c-1) c^{\prime}-1 \leq \operatorname{add}_{\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}}(i) \leq \operatorname{add}_{\mathcal{X}, \mathcal{Y}}(i+c)+c^{\prime}
$$

for sufficiently large i. This completes the proof.

3. Formal invariants for non solvable pseudogroups

It is shown in the paper [17] that the non solvable group $\phi(G)$ contains diffeomorphisms $\phi(f), f \in G$ with Taylor expansion at $x=0$

$$
\phi(f)(x)=x-\frac{K}{i}\left(x^{i+1}+\cdots\right),
$$

$K \neq 0$ with i greater than an arbitrary large integer. So let

$$
\phi(g)(x)=x-\frac{L}{j}\left(x^{j+1}+\cdots\right),
$$

$L \neq 0, i<j$ for a $g \in G$. We call the i, j the orders of the flatness for $\phi(f), \phi(g)$ respectively. By Proposition 6 the equivalence class of the address function
add \mathcal{X}, \mathcal{Y} is independent of the choice of x_{0}, y_{0}. We denote the equivalence class by $\operatorname{add}_{\phi(g), \phi(f)}$.

First we consider the orbit \mathcal{Y} of y_{0} under $\phi(f)$. It is known ([20]) that with a suitable analytic coordinate we may assume $\phi(f)$ has the Taylor expantion

$$
\phi(f)(x)=x-\frac{K}{i}\left(x^{i+1}+\left(-A+\frac{i+1}{2}\right) x^{2 i+1}+\cdots\right)
$$

which is formally conjugate with

$$
\phi^{\prime}(f)(x)=\exp -\frac{\kappa}{i}\left(\frac{x^{i+1}}{1+.4 x^{i}}\right) \partial / \partial x
$$

The $-i A / K$ is known as the residue of f. By a result due to Takens [20] there exists a C^{∞} diffeomorphism $\lambda: \mathbb{R}, 0 \rightarrow \mathbb{R}, 0$ i-flat at 0 such that $\lambda \circ$ $\phi(f)=\phi^{\prime}(f) \circ \lambda$ holds on $U_{\phi(f)}$ shrinking $U_{\phi(f)}$. Introducing the coordinate $\tilde{x}=\xi_{i, A}(x)=x^{-i}+A \log x^{-i}$ for $x>0, \phi^{\prime}(f)$ induces the translation $\tilde{\phi}(f)=\exp K \partial / \partial \tilde{x}$ on the \tilde{x}-line at ∞. Let $y_{n}^{\prime}=\lambda\left(y_{n}\right)$ and $\tilde{y}_{n}=\xi_{i, A}\left(y_{n}^{\prime}\right)$ for $n=0,1, \ldots$ Then
(a)

$$
\tilde{y}_{n}=\tilde{\phi}(f)^{(n)}\left(\tilde{y}_{0}\right)=\tilde{y}_{0}+n K
$$

(The existence of the coordinate \tilde{x} with Property (a) is proved by the sectorial normalisation theorem [12,21] as well as the existence of the solution of Abel's equation by Szekeres [19]. Those results imply the existence of the nomalising diffeomorphism λ real analyticity off 0 . But the differentiability at 0 is not an obvious consequence. The analyticity of the conjugacy h off 0 in Theorem $3(1)$ follows from that of λ. In this paper the smoothness of h (Proposition 9) is first proved and analyticity is proved by the uniqueness (Proposition 10) and the convergence of the formal conjugacy due to Cerveau and Moussu [2].)

We apply the same argument to the slow dynamics $\phi(g)$. Let $\mu: \mathbb{R}, 0 \rightarrow \mathbb{R}, 0$ be a C^{∞} diffeomorphism j-flat at 0 such that $\mu \circ \phi(g)=\phi^{\prime}(g) \circ \mu$ holds on $U_{\phi(g)}$, where $\phi^{\prime}(g)(x)=\exp -\frac{L}{j}\left(\frac{r^{j+1}}{1+B \cdot r^{j}}\right) \partial / \partial x$ with a constant B. Let
$\tilde{\tilde{x}}=\xi_{j, B}(x)=x^{-j}+B \log x^{-j}$ for $x>0$. On the $\tilde{\tilde{x}}$-line, $\phi^{\prime}(g)$ lifts to the translation $\tilde{\tilde{\phi}}(g)=\exp L \partial / \partial \tilde{\tilde{x}}$ at ∞.

Let $x_{n}^{\prime}=\mu\left(x_{n}\right)$ and $\tilde{\tilde{x}}_{n}=\xi_{j, B}\left(x_{n}^{\prime}\right)$ for $n=0,1, \ldots$ Then $\tilde{\tilde{x}}_{n}=\tilde{\tilde{x}}_{0}+n L$, from which we obtain the estimate for the $\phi(g)$-orbit $\mathcal{X}, x_{n}=(n L)^{-1 / j}+$ $o\left(n^{-1 / j}\right)$ for $n=0,1, \ldots$ To compare \mathcal{X} to \mathcal{Y}, let

$$
\begin{equation*}
\tilde{x}_{n}=x_{n}^{-i}+A \log x_{n}^{-i}=(n L)^{i / j}+o\left(n^{i / j}\right) . \tag{b}
\end{equation*}
$$

From (a) and (b) we obtain

$$
\begin{equation*}
\operatorname{add}_{\phi(g), \phi(f)}(n)=\frac{L^{i / j}}{I_{i}^{i}} n^{\frac{i}{j}}+o\left(n^{\frac{i}{j}}\right) . \tag{c}
\end{equation*}
$$

Proposition 8. $L^{\frac{i}{j}} / K$ and $\frac{i}{j}$ are topological invariants for the pseudogroup generated by $\phi(f)$ and $\phi(g)$.

Proof. Assume h is orientation preserving. The linking homeomorphism h sends the pairs of the orbits of x_{0} under $\phi(f), \phi(g)$ to that of $h\left(x_{0}\right)$ under $\psi(f), \psi(g)$, and those pairs have the same topological structure and define the same address function up to the equivalence relation. By (c) the i / j is the exponent of the address function and $L^{\frac{i}{j}} / K^{\nu}$ is its coefficient, which are clearly invariant under the equivalence relation. If h is orientation reversing, an alternative argument goes through.

4. Proof of The Theorem 3 for non solvable pseudogroups

First we prove Theorem 3(1) for non solvalle pseudogroups. If the linking homeomorphism h is orientation reversing, the homeomorphism $-h$ is orientation preserving and links ϕ to the reversed pseudogroup ψ^{\prime} consinting of the orientation preserving diffeomorphisms $\psi^{\prime}(f):-U_{f} \rightarrow-f\left(U_{f}\right), f \in G$ defined by $\psi^{\prime}(f)(x)=-\psi(f)(-x)$. So we assume that h is orientation preserving throughout this section. Let $\psi(f)(x)=x-\frac{K^{\prime}}{i^{\prime}}\left(x^{i^{\prime}+1}+\ldots\right)$ and $\psi(g)(x)=x-\frac{L^{\prime}}{j^{\prime}}\left(x^{j^{\prime}+1}+\ldots\right)$. First assume $(i, j)=\left(i^{\prime}, j^{\prime}\right)$ and h is orientation preserving for simplicity. By a linear coordinate transformation we may
assume $K=K^{\prime}$ and then it follows $L=L^{\prime}$ from Proposition 8. By an analytic coordinate transformation we may assume

$$
\psi(f)(x)=x-\frac{K}{i}\left(x^{i+1}+\left(-A^{\prime}+\frac{i+1}{2}\right) x^{2 i+1}+\cdots\right) .
$$

Let $\lambda^{\prime}: \mathbb{R}, 0 \rightarrow \mathbb{R}, 0$ be a C^{∞}-diffeomorphism j -flat at 0 such that $\lambda^{\prime} \circ \psi(f)=$ $\psi^{\prime}(f) \circ \lambda^{\prime}$ holds on $U_{\psi(f)}$, where

$$
\psi^{\prime}(f)=\exp -\frac{K^{-}}{i} \frac{x^{i+1}}{1+A^{\prime} x^{i}} \partial / \partial x .
$$

Let $\tilde{y}=\xi_{i, A^{\prime}}(x)=x^{-i}+A^{\prime} \log x^{-i}$. Since $\delta(f)^{(n)}\left(x_{0}\right) \rightarrow 0$, we see $K>0$.
On the \tilde{x}-line the diffeomorphism $\phi(g)$ induces the "non-linear translation"

$$
\tilde{\phi}(g)(\tilde{x})=\tilde{x}+\frac{i}{j} L \cdot i^{\frac{i-j}{i}}+o\left(\tilde{x}^{\frac{i-j}{i}}\right)
$$

from which

$$
\tilde{\phi}(f)^{(-n)} \circ \tilde{\phi}(g) \circ \tilde{\phi}(f)^{(n)}(\tilde{x})=\tilde{x}+\frac{i}{j} L(n K)^{\frac{i-j}{i}}+o\left(n^{\frac{i-j}{i}}\right)
$$

from which

$$
\lim _{n \rightarrow \infty} n^{\frac{j-i}{i}}\left(\tilde{\phi}(f)^{(-n)} \circ \tilde{\phi}(g) \circ \tilde{\phi}(f)^{(n)}-\mathrm{id}\right) \partial / \partial \tilde{x}=\frac{i L}{j} K^{\frac{i-j}{i}} \partial / \partial \tilde{x}
$$

holds at the end of the \tilde{x}-line. The flow of the above limit vector field is approximated arbitrarily closely ly the discrete dynamical system of type

$$
\tilde{\phi}(f)^{(-n)} \circ \tilde{\phi}(g)^{(m)} \circ \tilde{\phi}(f)^{(n)}, \quad m=0,1, \ldots
$$

with a sufficiently large $n>0$ ([17]).
Similarly the $\tilde{\psi}(f), \tilde{\psi}(g)$ define the vector field $\frac{i L}{j} K^{\frac{i-j}{i}} \partial / \partial \tilde{y}$ on the \tilde{y}-line. The lift $\tilde{h}_{+}: \tilde{x}$ - line, $\infty \rightarrow \tilde{y}$ - line, ∞ of the restiction h_{+}of h to \mathbb{R}^{+}sends the orbit of

$$
\tilde{\phi}(f)^{(-n)} \circ \tilde{\phi}(g)^{(m)} \circ \tilde{\phi}(f)^{(n)}
$$

to that of

$$
\tilde{\psi}(f)^{(-n)} \circ \tilde{\psi}(g)^{(m)} \circ \tilde{\psi}(f)^{(n)}
$$

Therefore \tilde{h}_{+}is compatible with the above flows respecting time hence it is a translation by a constant α_{+}(see [17] for a detailed argument) and

$$
h_{+}(x)=\lambda^{\prime(-1)} \circ \xi_{i, A^{\prime}}^{-1}\left(\xi_{i, A} \circ \lambda(x)+\alpha_{+}\right)
$$

which is i-flat at 0 . Similarly we can show that the restriction h_{-}of h to \mathbb{R}^{-} is of the form

$$
h_{-}(x)=\lambda^{\prime(-1)} \circ \xi_{i, A^{\prime}}^{-1}\left(\xi_{i, A} \circ \lambda(x)+\alpha_{-}\right)
$$

with a constant α_{-}, which is i-flat at 0 . With both the above smoothness of h_{+}and h_{-}, we see that the linking homeomorphism h is a C^{i}-smooth diffeomorphism on a neighbourhood of 0 and i-flat at 0 .

Proposition 9. The linking homeomorphism h is C^{∞}-smooth on a neighbourhood of 0 .

Proof. Since $\phi(G)_{0}$ is non solvable, the i can be chosen arbitrary large. Therefore h is C^{∞}-smooth at 0 . The smoothness off 0 is clear by the form of $h_{ \pm}$ above presented.

By the proposition $\phi(f)$ and $\psi(f)$ are C^{∞}-conjugate. Since the residues A, A^{\prime} are invariant under formal conjugacy relation of germs of analytic diffeomorphisms, we obtain $A=A^{\prime}$ hence $\tilde{\phi}(f)=\tilde{\psi}(f)$ and

$$
\left\{\begin{array}{lll}
\lambda^{\prime} \circ h_{+} \circ \lambda^{(-1)}=\exp \frac{-\alpha_{+}}{i} \lambda & \text { on } & \mathbb{R}^{+} \\
\lambda^{\prime} \circ h_{-} \circ \lambda^{(-1)}=\exp \frac{-\alpha_{-}}{i} \lambda & \text { on } & \mathbb{R}^{-}
\end{array}\right.
$$

where χ denotes $\frac{x^{i+1}}{1+A x^{i}} \partial / \partial x$.
Proposition 10. $\alpha_{+}=\alpha_{-}$and the germ of h at 0 is unique.
Proof. Since $h_{+}^{(-1)} \circ \phi(g) \circ h_{+}=\psi(g)$ and $h_{-}^{(-1)} \circ \phi(g) \circ h_{-}=\psi(g)$ hold on \mathbb{R}^{+}and \mathbb{R}^{-}respectively at 0 , we obtain the formal equalities

$$
\lambda^{(-1)} \circ \exp \frac{\alpha_{+}}{i} \nprec \circ \lambda^{\prime} \circ \phi(!) \circ \lambda^{\prime(-1)} \circ \exp \frac{-\alpha_{+}}{i} \chi \circ \lambda=\phi(f)
$$

and

$$
\lambda^{(-1)} \circ \exp \frac{\alpha_{-}}{i} \chi \circ \lambda^{\prime} \circ \phi(g) \circ \lambda^{\prime(-1)} \circ \exp \frac{-\alpha_{-}}{i} \chi \circ \lambda=\phi(f)
$$

This shows that $\lambda^{\prime(-1)} \circ \exp \frac{\alpha_{+}-\alpha_{ \pm}}{i} \gamma \circ \lambda$ commutes with $\phi(g)$, and by formal calculation, it follows $\alpha_{+}=\alpha_{-}=\alpha$ (since $i \neq j$). Therefore $h=\lambda^{(-1)} \circ$ $\exp \frac{\alpha}{i} \chi \circ \lambda^{\prime}$.

Next assume $h^{\prime}=\lambda^{(-1)} \circ \exp -\frac{\beta}{i} \chi \circ \lambda^{\prime}$ satisfies $h^{(-1)} \circ \phi(g) \circ h^{\prime}=\psi(g)$. Then it follows $\alpha=\beta$ from a similar argument. This shows the uiqueness of h.

By a result due to Cerveau and Moussu [2], a formal conjugacy is convergent to give a real analytic conjugacy for non solvable groups of germs of diffeomorphisms. Therefore the Taylor series of h at 0 is convergent to an analytic diffeomorphism \tilde{h} linking $\phi(G)_{0}$ to $\psi(G)_{0}$. Then the uniqueness of the linking homeomorphism (Proposition 10) asserts that the germ of h is nothing but the \tilde{h} real analytic on a neighbourhood of 0 . The analyticity propagates to whole $B_{\phi(G)}$ by the same argument in the proof of Theorem 1 in $\S 6$. This completes the proof of Theorem 3 for the case $(i, j)=\left(i^{\prime}, j^{\prime}\right)$ and h is orientation preserving.

Now we prove the theorem for general non solvable pseudogroups. Assume that $\phi(f), \phi(g)$ and $\psi(f), \psi(g)$ have the orders of flatness i, j and i^{\prime}, j^{\prime} respectively. By Proposition 7, we may write $i^{\prime} / i=j^{\prime} / j=p / q$ with even positive integers p, q. Define the lift $\phi_{p}^{\epsilon}: G \rightarrow \Gamma_{+}^{\omega}$ by $\phi_{p}^{\epsilon}(f): U_{\phi_{p}^{\epsilon}(f)} \rightarrow \phi_{p}^{\epsilon}(f)\left(U_{\phi_{p}^{\epsilon}(f)}\right)$, $\phi_{p}^{\epsilon}(f)(x)=\left(\epsilon \phi(f)\left(\epsilon x^{p}\right)\right)^{1 / p}$ for $\epsilon= \pm 1$, where $U_{\phi \epsilon_{p}(f)}$ is the preimage of $U_{\phi(f)}$ by $x: \rightarrow \epsilon x^{p}$. Define the lift $\psi_{q}^{\epsilon}: G \rightarrow \Gamma_{+}^{\omega}$ similarly. Then $\phi_{p}^{\epsilon}(f), \phi_{p}^{\epsilon}(g)$ have the orders of flatness $p i, p j$ respectively. The linking homeomorphism h lifts to the orientation preserving homeomorphism $K^{\epsilon}=\left(\epsilon h\left(\epsilon x^{p}\right)\right)^{1 / q}$ of $U_{p}^{\epsilon}=\left\{x \mid \epsilon x^{p} \in U\right\}$ to $U_{q}^{\epsilon}=\left\{y \mid \epsilon y^{q} \in h(U)\right\}$, which is linking ϕ_{p}^{ϵ} to ψ_{q}^{ϵ} for $\epsilon= \pm 1$.

Proposition 11. (1) ϕ is solvable if and only if ϕ_{p}^{1} is solvable if and only if ϕ_{p}^{-1} is solvable.
(2) $B_{\phi_{p}^{\varepsilon}}=\left\{x \mid \epsilon x^{p} \in B_{\phi}\right\}$ for $\epsilon= \pm 1$.

Proof. The homomorphism of pseudogroups which asigns $\phi_{p}^{\epsilon}(f)$ to $\phi(f)$ for $f \in G$ induces a group isomorphism of the germs $\phi(G)_{0}$ to $\phi_{p}^{\epsilon}(G)_{0}$ for $\epsilon=$ ± 1. So Statement (1) is clear. Statement (2) for the basin follows from the definition.

By the result obtained previously in this section, the lift K^{ϵ} is a unique real analytic diffeomorphism. In particular h is unique and the restriction $h: B_{\phi}(G)-0 \rightarrow B_{\psi}(G)-0$ is a real analytic diffeomorphism. This completes the proof of Theorem 3 for non solvable pseudogroups.

5. Proof of Theorem 3 for solvable pseudogroups

Theorem 12 ([17]). A solvable subgroup H of the group of germs of analytic diffeomorphisms of \mathbb{R} respecting 0 is C^{ω}-conjugate with one of the following:
(1) H consists of linear functions ax with the cocfficients a in a subgroup L of \mathbb{R}^{*}.
(2) H consists of $f^{(\alpha)}=x+\Omega K x^{i+1}+\cdots, \alpha \neq 0$ with α in a subgroup $\Lambda \subset \mathbb{R}, 1 \in \Lambda$. Here $f \in H, f(x)=x+K r^{i+1}+\cdots$ and $f^{(\alpha)}$ is the unique real analytic diffeomorphism with the Taylor expantion $f^{(\alpha)}(x)=x+\alpha K x^{i+1}+\cdots$ such that $f^{(\alpha)} \circ f=f \circ f^{(\alpha)}=f^{(\alpha+1)}$. If Λ is dense in \mathbb{R}, those $f^{(\alpha)}$ are written as $\exp \alpha \chi$ with an i-flat real analytic vector ficld χ on \mathbb{R}. (for the definition of the α-times iteration $f^{(\alpha)}$ see the papers [17.19].)
(3) H consists of those $f^{(\alpha)}$ and $-f^{(n+\beta)}$ with $\alpha \in \Lambda \subset \mathbb{R}$ and a $\beta, 2 \beta \in \Lambda$ and f satisfies the relation $f(-x)=-f(r)$.
(4) H consists of those f^{α} in (2) and $a f^{(n+\beta(a))}$ with a in a subgroup $L \subset \mathbb{R}^{*}, a^{i} \neq 1$. Here f satisfies the relation $a^{-1} f(a x)=f^{\left(a^{i}\right)}$ for $a \in L$ and $\beta: L \rightarrow \mathbb{R}$ is a function and $\operatorname{res}(f)=0$. i.c. f is formally and C^{∞}-conjugate with $\exp K x^{i+1} \partial / \partial x, K \neq 0$.

In Cases (1),(2) and (3), the H is commutative. and in Case (4), H is non commutative but solvable.

Since the members of our pseudogroups $\phi(G), \psi(G)$ are all orientation preserving, the germs $\phi(G)_{0}, \psi(G)_{0}$ are C^{ω}-conjugate to one of the H in Cases (1),(2) and (4). In the following we assume the germs are of the form in those cases and prove the the analyticity of the restrictions h_{+}, h_{-}of the linking homeomorphism h to $\mathbb{R}^{+}, \mathbb{R}^{-}$on a neighbourhood of 0 . The differentiability propagates to whole $B_{\phi(G)}-0$ by the same argument as in the proof of theorem 1 in $\S 6$.

Case (1). Assume $\phi(G)_{0} \neq \mathbb{Z}$. This assumption is equivalent to that the linear term group L_{ϕ} of $\phi(G)_{0}$ is a dense subgroup of \mathbb{R}^{*}, in other words, all orbits are dense nearby 0 . Let $\log L_{\phi}$ denote the subgroup of \mathbb{R} consisting of the logarithms of the linear terms of $\phi(f), f \in G$. Since h sends the $\phi(G)$ orbit of an x to the $\psi(G)$-orbit of $h(x), h$ induces a homomorphism \tilde{h} of the subgroups $\log L_{\phi}$ to $\log L_{\psi}$, which extends to a linear function $k x$. By this form we see $\log \circ h \circ \exp (x)$ is an affine transformation $k x+l$, from which $h(x)=(\exp l) x^{k}$ for $x>0$. A similar argument shows the analyticity of h_{-}.

Case (2). In this case the germs of $\phi(f)^{(n)}$ are of the form $\exp \alpha \chi$ with a flat analytic vector field χ and α in a subgroup $\Lambda \subset \mathbb{R}$. The hypothesis that $\phi(G)_{0}$ is not isomorphic to \mathbb{Z} implies that Λ is a dense subgroup. Let $\Lambda^{\prime} \subset \mathbb{R}$ be the group associated to $\psi(G)$. The correspondence of $\phi(G)$-orbits and $\psi(G)$-orbits in \mathbb{R}^{+}by h induces a linear transformation of Λ to Λ^{\prime}, which describes the h conversely. Therefore the h_{+}is real analytic off 0 , and similarly it is shown that h_{-}is analytic off 0 .

Case (4). Let $\phi(G)_{0}^{0} \subset \phi(G)_{0}$ denote the subgroup consisting of the i-flat germs of diffeomorphisms $\phi(f)^{(\alpha)}, \alpha \in \Lambda \subset \mathbb{R}$ of $\phi(G)$, and $\psi(G)_{0}^{0} \subset \psi(G)_{0}$ the subgroup consisting of j -flat germs of diffeomorphisms $\psi(f)^{(\alpha)}, \alpha \in \Lambda \subset \mathbb{R}$. It suffices here to prove the analyticity of h for the case $i=j$.

Lemma 13. Let $\phi(f), \psi(f): \mathbb{R}, 0 \rightarrow \mathbb{R} .0$ be germs of analytic diffeomorphisms with the linear term x and the order of flatness $i \geq 1$, and let $h: \mathbb{R}, 0 \rightarrow \mathbb{R}, 0$ be a germ of homeomorphism such that $h \circ \phi(f)=\psi(f) \circ h$. Then h is differentiable at 0 .

Proof. By C^{∞} - coordinate change we may assume $\phi(f)=\exp -\frac{K}{i} \frac{x^{i+1}}{1+A x^{i}} \partial / \partial x$ and $\psi(f)=\exp -\frac{L}{i} \frac{x^{i+1}}{1+B x^{i}} \partial / \partial x$, and by a linear coordinate transformation, $K=L>0$. These diffeomorphisms lift to the translations by K respectively on the \tilde{x}-line, $\tilde{x}=\xi_{i, A}(x)=x^{-i}+A \log x^{-i}(x>0)$, and the \tilde{y}-line, $\tilde{y}=\xi_{i, B}(y)$. And these translations are conjugate by the lift $\tilde{h}: \tilde{x}-$ line $\rightarrow \tilde{y}-$ line of h. So we obtain an extimate $|\tilde{h}(\tilde{x})-\tilde{x}-T| \leq K$, with a constant T, from which

$$
\xi_{i, B}^{-1}\left(\xi_{i, A}(x)+T+K\right) \leq h(x) \leq \xi_{i, B}^{-1}\left(\xi_{i, A}(x)+T-K\right)
$$

This implies the differentiability of h at 0 .
Next let $\phi(g)(x)=a x+\cdots, a \neq 0,1$ be a diffeomorphism non commutative with $\phi(f)$ and $\psi(g)(x)=a^{\prime} x+\cdots a^{\prime} \neq 0,1$. By assumption $\psi(g) \circ h=h \circ \phi(g)$ holds, and by the differentiability of h at 0 , we obtain $a=a^{\prime}$.

Lemma 14. Let $h: \mathbb{R}, 0 \rightarrow \mathbb{R}, 0$ be the germ of a mapping commutating with a linear function ax. If h is differentiable at $0, h$ is linear.

Proof. By the commutativity, $h\left(a^{i} x\right) / a^{i} x=h(x) / x$ for all x and $i=0,1, \ldots$ By the differentiability, $h(x) / x$ is a constant independent of x.

By the Poincaré linearization theorem $\phi(g), \psi(g)$ are analytically conjugate with $a x$. Here Lemma 14 applies to say that the germ of h at 0 is linear. In this situation the relation $h \circ \phi(f)=\psi(f) \circ h$ admits the unique linear map h. This completes the proof of Theorem 3.

6. Proof of Theorem 1and Corollaries 2,4

Proof of Theorem 1. Let L be a leaf of \mathcal{F}_{1} with holonomy group $\neq 0, \mathbb{Z}$. Then the image $h(L)$ has holonomy isomorphic to that of L and, by Theorem 4, h is transversely analytic on a deleted neighbourhood $U-L$ of an $x \in L$. Let $x^{\prime} \in M_{1}$ be an arbitrary point. The leaf $L_{x^{\prime}}$ of \mathcal{F}_{1} containing x^{\prime} is dense by assumption, hence a point $x^{\prime \prime} \in L_{x^{\prime}}$ is contained in $U-L$. Clearly the translation $T_{x^{\prime}, x^{\prime \prime}}$ along a path in $L_{x^{\prime}}$ sending the transverse section at x^{\prime} to that of $x^{\prime \prime}$ is analytic, and the germs of h at $x^{\prime}, x^{\prime \prime}$ link the $T_{x^{\prime}, x^{\prime \prime}}$ to the transverse dynamics $T_{h\left(x^{\prime}\right), h\left(x^{\prime \prime}\right)}$ along $h\left(L_{x^{\prime}}\right)=L_{h\left(x^{\prime}\right)}$. Therefore the transverse
analyticity of h at $x^{\prime \prime}$ induces the transverse analyticity on a neighbourhood of x^{\prime}. This completes the proof of Theorem 1.

Proof of Corollary 2. The Godbillon-Vey class $\operatorname{GV}(\mathcal{F})$ of \mathcal{F} may be defined by the pull back $\rho(\mathcal{F})^{*} c$ of a cocycle $c \in H^{3}\left(B \Gamma_{\mathbb{R}}^{\infty}, \mathbb{R}\right)$ of the classifying space $B \Gamma_{\mathbb{R}}^{\infty}$ of the pseudogroup $\Gamma_{\mathbb{R}}^{\infty}$ of orientation preserving C^{∞}-diffeomrphisms of open subsets of \mathbb{R} by the classifying map $\rho(\mathcal{F}): M \rightarrow B \Gamma_{\mathbb{R}}^{\infty}$ ([1]). Since $h(\mathcal{F})=\mathcal{F}^{\prime}$ and h is transversely real analytic, if follows $\rho\left(\mathcal{F}^{\prime}\right) \circ h=\rho\left(\mathcal{F}^{\prime}\right)$, from which $\operatorname{GV}(\mathcal{F})=h^{*} \operatorname{GV}\left(\mathcal{F}^{\prime}\right)$. This completes the proof of Corollary 2.

Proof of Corollary 4. Let $\phi, \psi: \Gamma^{g} \rightarrow \operatorname{Diff}_{+}^{w}\left(S^{1}\right)$ be homomorphisms and $h: \phi \rightarrow \psi$ a linking homeomorhism. Let $\operatorname{stab}\left(x_{0}\right) \subset \Gamma^{g}$ be the stabiliser of an $x_{0} \in S^{1}$. Then h links the restriction of ϕ to $\operatorname{stab}\left(x_{0}\right)$ to that of ψ. Assume that $\phi\left(\operatorname{stab}\left(x_{0}\right)\right)$ is not isomorphic to \mathbb{Z} and non trivial. Then by the rigidity theorem (Theorem 3), h is a real analytic diffeomorphism on a deleted neighbourhood $U-x_{0}$ of x_{0} in S^{1}. By a result due to Ghys [6], if $|\mathrm{eu}(\phi)| \neq 0$, all orbits are dense in S^{1}. So, for any $y \in S^{1}$, there is a $g \in G$ such that $\phi(g)(y) \in U-x_{0}$. Then the equality $h \circ \phi(g)=\psi(g) \circ h$ implies that h is a real analytic diffeomorphism at y. This completes the proof of Corollary 4.

References

[1] R. Bott, A. Haefliger, On characteristic classes of Γ-foliations, 1039-1044, 78, No. 6, 1972, Bull. A.M.S..
[2] D. Cerveau, R. Moussu, Groupes d’antomorphismes de \mathbb{C} et équations differentielles $y d y+\cdots=0$, Bull. Soc. Math. France, 116, no. 4, 459-488, 1988.
[3] E. Ghys, Groupes d'homéomorphismes du cercle et cohomologie bornée, Contemp. Math., 58, III, 1987, 81-106.
[4] Actions localement libres du groupe affine, Invent. Math., 82, 479-526, 1985.
[5] —, Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier, Grenoble, 37, 4, 59-76. 1987.
[6] -, Classe d'Euler et minimal exceptionnel, Topology, 26, No.1. 93-105, 1987.
[7] —, L’invariant de Godbillon-Vey, Astérisque, 177-178, 155181, 1989.
[8] —, Rigidité différentiable des groupes fuchsins, Preprint Ecole Normale Supérieure de Lyon, no. 73, 1992.
[9] E. Ghys, T. Tsuboi, Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1, Ann. Inst. Fourier, Grenoble, 38, 1, 215-244, 1988.
[10] G. Hector, V. Hirsch, Introduction to the geometry of foliations Part B, Vieweg. Wiesbaden, 1983.
[11] S. Hurder, A. Katok, Differentiability, rigidity and Godbillon-Vey class for Anosov foliations, jour Publ. IHES, no. 72, 5-61, 1990.
[12] Yu.S. Il'yashenko, Finiteness Theorem for limit cycles, Translations of Mathematical Monographs AMS, 94, 1991.
[13] S. Matsumoto, Some remarks on foliated S^{1}-bundles, Invent. Math., 90, 343-358, 1987.
[14] -, Problems in Nagoya. Conference on dynamical systems in Nagoya University organised by Shiraiwa (1990).
[15] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv., 32, 215-223, 1957-1958.
[16] H. Minakawa, Examples of exceptional homomorphisms which have nontrivial euler numbers, Topology, 30, No.3. 429-438, 1991.
[17] I. Nakai, Separatrix for conformal transformation groups of $\mathbb{C} .0$, Preprint, Hokkaido Univ., 1991.
[18] G. Raby, L'invariant de Godbillon-Vey est stable par C^{1}-difféomorhpisme, Ann. Inst. Fourier, Grenoble, 38-1, 205-213. 1988.
[19] G. Szekeres, Fractional iteration of entire and rational functions, J. Austral. Math. Soc., 4, 129-142, 1964.
[20] F. Takens, Normal forms for certain singular vector fields, Ann. Inst. Fourier, Grenoble, 23,2, 163-195. 1973.
$[21]$ S.M. Voronin, Analytic classification of germs of maps $(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$ with identical linear part, Funct. Anal.. 15. no.1, 1-17, 1981.
[22] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math, Helv. 46, 257-273, 1971.

Department of Mathematics
Hokkaido University Sapporo, 606, Japan
nakai@math.hokudai.ac.jp

