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DENSITIES FOR CERTAIN LEAVES 
OF REAL ANALYTIC FOLIATIONS 

C. ROCHE 1 

I.INTRODUCTION. 

Let suppose an n dimensional real analytic manifold M be given. We will 
supose M to be paracompact connected and oriented. A real analytic n — 1 
foliation with singularities T on M is determined by giving an open covering 
(Ui) of M together with real analytic integrable 1-forms U{ G ̂ (Ui) such that 
on the overlapping charts, Ui fl Uj ^ 0, there exists a non vanishing function 
9ij ' U{ fl Uj —• R* such that = QijWj. Leaves of T on Ui are unions of the 
integral manifolds of the pfaffian equation uoi = 0. 

The singular set of the foliation Sing(^7) is the analytic subspace of M 
defined by the annulation of the forms In local coordinates of M, each U{ 
can be written as 

UJi(x) = n 

/=1 

a\(x)dxl 

and locally Sing(^) is determined by the equations 

a[(x) = 0,...,ai

n(x) = 0 x e Ui. 

The hypothesis that the gij be non vanishing allowes to suppose that the 
singular set is of codimension at least 2. Such T defines on M \ Sing(^) an 
n — 1 dimensional analytic foliation: Treg. Leaves of Treg are called regular 
leaves of T. 

Morover if we suppose T to be transversally orientable, as will be done in 
this paper, Theorem A and B of Cartan in the real case [3] show that we can 
glue the 1-forms in ordej to suppose that the foliation T is given by a globally 
defined real analytic differential form a;, that is uoi = u>\Ui' 

Consider now a union T of regular leaves of such a foliation T, T is an 
immersed n—1 real analytic submanifold of M. T is called a separating solution 

1 This research was partially supported by Brazilian CNPq 
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C. ROCHE 

by Khovanskii if there are two disjoint open sets, L\ ans L2 of M such that 
M\ Sing IF) \ r = LiUL2, T = Ll\Ll\ SingfJ7) and finally a; points inside 
Li all along I \ 

In [17J we generalize this notion introducing Roman plaman hypersurfaces. 
A regular leaf V of T is so called if for each analytic path 7 : [0,1] —• M inter­
secting the set V twice, say 7(0) G V and 7(1) £ V there is an intermediate 
point, say 7(4), £ G [0,1] where the path is tangent to T. At this point, if T 
is determined by the pfaff equation to = 0 

u(l(t)W (t) = 0. 

Such a Rollian pfaffian hypersurface (Rollian leaf or Rollian ph for short) 
will be denoted { V, T, M} to emphasize the pfaffian equation verified by V. 

Khovanskii's Rolle theorem asserts that every separating solution of u = 0 
is a union of Rollian ph. Separating solutions are not easy to find but, as 
it was shown in [17], an argument of Haefliger proves that if il/\Sing(^ r) is 
simply connected, each regular leaf of T is a Rollian ph. 

In [17] we used this generalisation to prove the following general finiteness 
theorem. 

Theorem on uniform finiteness. Let Fi,...,Fq he transversally oriented 
singular foliations on M. If X is a semianalytic subset of M for each compact 
set K of M there is a constant b £ R such that for any set of Rollian pfaffian 
hypersurfaces {Vi, «F,-, M } , i = 1 , . . . , q the number of connected components 
of X fl Vi H • • • fl Vq meeting K is bounded by b. 

A carefull reading of the proof of this theorem in [17] shows that a sepa­
rating manifold is in fact a locally finite union of Rollian ph as was shown by 
Khovanskii [5]. 

As an easy consequence of this result we can mention that a Rollian ph 
{V,^7, M } is a real analytic submanifold of M closed in M\Sing(J r). 

In developping the ideas sketched in Khovanskii's work [5] [6] in joint work 
with R. Moussu, J.-M. Lion and J.-Ph. Rolin (started in [16]) we tried to con­
sider Rollian ph just as building blocks for a theory similar to that of semian­
alytic sets. By different methods the same goal is pursued by Tougeron [19]. 
This idea leads to the problem of the behaviour of the boundary of a Rollian 
ph. At present time it is not known if the closure of a Rollian ph {V, J 7, M } , V 
can be stratified with some regularity condition. In a forthcomming paper of 
F. Cano, J.-M. Lion and R. Moussu an important result on the regularity of 
the boundary V \ V of such a Rollian ph will be described. [2]. 
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DENSITIES FOR CERTAIN LEAVES 

The study of the boundary of a sole Rollian ph { V, T, M} is most usefull for 
further research if we describe the structure of the boundary of an intersection 
X C\V where X is a semianalytic subset of M. If X is open connected and 
relatively compact in M, X fl V is a finite union of leaves of the restricted 
foliation T\x each of them is a Rollian ph in X. The behabiour of V at the 
ends of M is so permited in the case the foliation can be regularly continued. 

Let's define a pfaffian subset of M as a finite intersection W = X fl V\ fl 
• • • fl Vq where X is any semianalytic subset of M and the V(s are Rollian ph 
of foliations T%. 

The following properties are known for the set dW = W\ W. See [8] [10]. 
Theorem on finiteness of the boundary. The set dW is locally axe con­
nected. Morover if Bn(p) is the euclidean open hall of center a and radius 
p for a G W the number of connected components of dW fl Ba(p) can be 
bounded by a constant depending only on the foliations T{ but not on the 
particular Rollian ph chosen. 

Let Cy(A) be the tangent cone of .4 C M at y G M. 
Curve selection lemma. Let a G dW , u G Cn(W), with \\u\\ = 1 be given, 
there is a semianalytic subset Y of M such that W fl Y is a union of paths 
7i((0,1)) one of them, say 70, can be extended in a C1 way at 0 by 7o(0) = a 
and 7o(0) = u. 

These curves are pfaffian curves. 

In this paper we show that Rollian ph have local volume properties similar 
to those of semianalytic and subanalytic sets. 

A subset Y of R n has a k-dimensional density at y G R n if the k-dimensional 
volume of By(e) fl Y, volk(By{e) fl Y) is finite for small enough e > 0 and the 
following limit exists 

ek(Y,y)= lim 
6-̂ 0+ 

volk(By(E)nY) 
EN 

This quantity is called density of Y at y. If these conditions are not fullfilled 
we can always consider the corresponding superior limit and inferior limit, 
which are denoted by 0A?(Y, y) and 0 ^ ( Y , j/) G R+ respectively. 

In a recent paper [7] Kurdyka and Raby show that subanalytic subsets have 
a density at every point. Our result is similar, but restricted to the case oi 
Rollian ph as we cannot, at present time, obtain a general decomposition into 
graphs theorem for pfaffian sets. 

Precisely, let M be an open semianalytic subset of R n 
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T h e o r e m 1. Let {V,F,M} be a Rollian pfaffian hypersurface then V has a 
density at each point of V. 

The proof of this result uses the same idea of Kurdyka ans Raby and needs 
a new result on decomposition of Rollian ph into graphs. This decomposition 
gives a precision to a similar result of Lion [8], [9] and is obtained in a more 
elementary way. Namely 

P r o p o s i t i o n 1. Let u be an integrable real analytic 1-form, in a neighbor­
hood of 0 £ R n and a small enough e > 0 be given. Then there is a unite 
number of hyperplans (Hi) and a subanalytic stratification AT of a ball Bo(p) 
such that: if {V,CJ, Bo(p)} is a Rollian ph and N € N then either 

V f)N is included in a smooth submanifold of dimension less than n — 1, 
or V fl N C Hi © H¡ - C R n is the graph of a locally e-lipschitzian analytic 

function on an open subset of H¿. 

Tha t is, up to a smaller dimensional set, each Rollian ph is a graph of 
an analytic funtion. This function can be supposed to have a very small 
derivative. 

It is known tha t strong regularity conditions for stratified objects doesn't 
imply the existence of densities. Theorem 1 gives an interesting information 
on the good behaviour of the boundary of a Rollian ph even in case a theorem 
of regular stratification happens to be obtained. 

The generalisation of theorem 1 to all pfaffian sets would be not difficult 
provided a result similar to Proposition 1 for several pfaffian equations can 
be proved. 

I I . T A N G E N T S TO S E M I A N A L Y T I C SETS AND P F A F F I A N EQUATIONS. 

Here we discuss a general stratification procedure preparing a graph de­
composition of Rollian ph. In the first two paragraphs the discusión is fairly 
general and we restrict to the case of a single pfaffian equation in the third 
paragraph in order to get the proof of Proposition 1. We will use freely the 
theory of semianalytic sets [1] and stratifications [15]. A stratification is said 
to be adapted to a set if this set is a union of strata. 

The proofs being local we will suppose from now on tha t M is an open 
semianalytic subset of R n . 

1 .S trong ly ana ly t i c submani fo lds . A subset X of M is a strongly analytic 
submanifold of M if it is semianalytic in M and a submanifold of M . Tha t is 
locally at each point ofX , X is given by the level set of an analytic submersion 
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and at each point oj M, A is determined locally by a hmte number 01 analytic 
equalities and inequalities. 

Let U be an open semianalytic subset of M, a semianalytic subset X of 
M is normal in U if X fl U can be described by a finite number of functionally 
independent analytic functions defined on U. That is, there exist n — k + 1 
analytic functions on £7, /0, / 1 , . . . , / n-fc such that 

X H U = {* G UIMx) > 0, / , (or) = 0,• • • , /„-*(*) = 0 R30 

dfi(x) A d/2(ar) A ..... A , (or) = (s) ^ 0}.fg 

In this case, X fl U is a strongly analytic submanifold of dimension k. 
We recall a fundamental result of the local theory of semianalytic sets. 

Lojasiewicz's stratification theorem. Let X he a semianalytic subset of 
M, there is a strongly analytic stratification of M adapted to X. Morover for 
each x 6 M there is a semianalytic open neighborhood U of x in M and a 
strongly analytic stratification of U adapted to X fl U such that each stratum 
is normal in U. 

The modern proof of this result is obtained as in Corollary 2.11 of [1] if we 
observe that a stratum described by all the elements of a separating familly 
in an open set U is normal in U. 

This local decomposition in normal strata will be used to obtain properties 
of the map x 1—• TXX for a strongly analytic submanifold X. 

Let U be an open set of M and N a natural number, a subset X of U x HN 

is called relatively semialgebraic over U if it is of the form 

x = U n ^ 
¿=17=1 

where each (*) is either {(x,T)EUx RN/fi.i(x,T)) = 0} m {(x,T) e 
U xR"Nfi(x,T) >0, (or) = } for fi,j polynomial m T with coefficients analytic in 
U. 

A recent result of Lojasiewicz asserts that if X C U x RN is relatively 
semialgebraic over U the closure of X in Ux R is also relatively semialgebraic 
over U [121. We have also 

Tarski-Seidenberg-Lojasiewicz Theorem. If X C U x KN is relatively 
semialgebraic over U and TT : (x,T) 1—• r is the natural projection, n(X) is a 
semianalytic subset of U. 

Consider now the Grassmann manifold Gp,p < n of p-dimensional vector 
subspaces of R n naturally embedded as a smooth semialgebraic subset of some 
RN. 
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We will need later the following remark. If T is a p-plane, T G Gp and 
0 < s < p the set of all the s-planes contained in T is an algebraic set in Gs. 
We can denote this set by GS(T). So if A" C U x Gp C U x R A ' is relatively 
semialgebraic over U the subset {(.r,I) G U x G S / 3 T G G P , L C T, (a?,T) G 
A } denoted G S (A) is also relatively semialgebraic over {/. 

For each p-dimensional strongly analytic submanifold A of Af, the map 
7x : A —• Af x Gp : # H-» (#,7^ A') has been considered by Lojasiewicz[13] 
and Verdier [20] in the subanalytic setting. 

Proposition 2. For each x G X there is a neighborhood U of x in Af such 
that the image ofjxnu is a relatively semialgebraic set over U. 

Proof. Let be given a strongly analytic stratification A/* of a neighborhooc 
U of x adapted to A so that each stratum is normal in U according to Lo 
jasiewicz's stratification theorem. Let's suppose that 5 is a stratum of Af o 
dimension p =dimA included in A. We have that if y G S TyS = TyX. It': 
easy to show that the map 7 5 has a relatively semialgebraic image, as if th< 
normal semianalytic subset S is described by the functionnally independen 
equations / 1 = 0 , . . . , fn-P = 0 and /0 > 0 the image of 7 5 is 

{(y,T) eUx R A 7#i(2/ ) AT = 0 <//„_p A T = 0, f0(y) > 0} 

considering naturally each element of Gp as an n — p-linear form. 
As finite unions, intersections and closure of relatively semialgebraic sets 

over U are relatively semialgebraic over U. It's enough now to prove that the 
image of jxnu l s the union of the closures of the images of the 7 5 for all the 
strata S of Af of dimension p included in A". That is elementary as at each 
point of A one can take analytic local coordinates because A is a submanifold 
of Af. 

For later reference for each e > 0 let's fix in each dimension p = 1,2,. . . , n 
a finite familly W p, e = {Hf(e),i = 1,.../(;>. e)}, Hf(e) G Gp such that the 
balls in R^ of center Hf(e) and radius e give an open covering of Gp. Denote 
finally Ti(e) the union of these families for every dimension. We will denote 
do the euclidean distance of R i V restricted to the Grassmann manifold. 

2.Stratification adapted to a system of pfaffian equations. Let CJI,. 
...,uq be integrable analytic differential 1-forms on A/. For each strongly 
analytic submanifold X of M we will obtain information on the solutions of 
the pfaffian system 

UJX =() .••• .u;r/ = 0 
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restricted to X. This will be done by local stratification of Af such that the 
kernel of the restricted pfaffian system is nearly parallel to a given vectorial 
soace alone each stratum. 

Denote ft the familly {ui/i = l , 2 , . . . , g } and if 

J : { l , 2 , . . . , s } - > { 1 , 2 , . . . , < ? } 

is a map put \J\ = S and ttj =1,2, . . . ,*}= 1,2, . . . ,*} . 
Let AT be a strongly analytic submanifold of Af, we will say that the familly 

ftj is transverse to N if 

dim(TxiV r 
s 

n 
i=L 

ker uj(j)(x)) = dimiV — s. 

at every point x G N. This is denoted by Qj ^ N. 
The familly ftj is a basis of ft along iV if ftj -A N and 

(*) TXN n 
S 

n 
i=i 

ker uJU)(x) = TxNf] n 
i=l 

ker Ui(x) 

at every point x G N. 
In [16] we obtained for each semianalytic subset of Af a local stratification 

adapted to it, such that a basis of ft can be chosen along each stratum. 
The following statement says that we can obtain a better precision. Such a 

stratification can be obtained so that along each stratum iV the tangent space 
of the restricted foliation, (*), is e-parallel to a fixed vector space. 

Proposition 3. Let e > 0 be fixed. IfX is a p-dimensional strongly analytic 
submanifold of Af, ft ^ X and x G X then there is a semianalytic subset Y 
of dimension at most p — 1 an p > 0 such that if c is a connected component 
of Bx(p) fl (X \ Y) we can choose a p — q-plane Hc = Hf^(e) so that the 
distance in the grasmaniann Gp-q from Hc to n^^ker u>\x(y) is less than e 
for every y G c. 

Corollary. Let ft and € > 0 be given. For each semianalytic subset X of 
Af and x G X thexe is a strongly analytic stratification of a neighborhood of 
x, Af adapted to X such that we can choose for each stratum N of Af a map 
JN from a natural interval {1 ,2 , . . . , s(N)} to {1 ,2 , . . . , q} and a vector space 
Hjv = Hf^^"s^N\e) of the familly 7i(e) verifying: 

1 )ftjN is a basis of ft along N; 
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2) dG(HN,nf=1

 }lcer u;J(i)|u;J(i)|N) < N) < e. 

The proof of the corollary is a straightforward consequence of the proof of 
proposition 1 in [16], applying Proposition 3 at each step of the induction and 
will not be reproduced here. 

Proof of Proposition 3. Let p > 0 be such that if U = B0(p) the image of 
Jxnu is relatively semialgebraic over U. 

It's clear that the assumption that Q Ar implies that if for x 6 X 
we denote by Q(x) = f lanker u(x) the set {(x,L)/x £ X,L = Q(x)} is a 
relatively semialgebraic subset of U x Gn-q. 

Next observe that if Q is any relatively semialgebraic set over ?7, Q C 
U x Gp-q then 

{x e X n U I t x x n n ker o;(ar) € <?} 

is a semianalytic subset of M. We will denote this set by Q(X, Q). It suffices 
to write this set as the natural projection of the set Gp-q(ixr\u(X fl U)) fl 
Gp-q(Q(XC\U))nQ. This latçr set being relatively semialgebraic according to 
Proposition 2. The assertion follows from the Tarski-Seidenberg-Lojasiewicz 
Theorem. 

Let's construct Y and choose the p — (/-planes by induction. Define Yb = 0, 
Xo = 0 and Qo = 0- Consider the first element H\ of the familly 7i p _ g ? c . If 
is the open ball in Gp-q with center H\ and radius 6 put Qi = \ Qo> the 
set Qi(X, Q) is a semianalytic subset of X. If X[ is the interior of this set in 
X put Xi = X[UXo. For each connected component c of Xi we know by the 
definition of Qi(X,Q) that a proper choice for Hc is clearly H\. That is at 
each point of X\ the intersections of the kernels of the forms in Q restricted 
to X are e-nearly parallel to the plane H\. 

To proceed with the next element of the familly 7i we can put if Y[ is the 
complementary to X of the closure in X of Q± (X, fi), Y\ = Y[ U Yb- So Yi is 
a semianalytic subset of X of codimension at least 1. 

Suppose that the sets X\ and Y/ have been constructed in such a way to 
have: X\ is an open semianalytic subset of X, for each connected component 
c of which ap — g-plane Hc in the familly {Hj~q(e),j < I + 1} can be chosen 
verifying the claim of proposition 3; 1/ is a semianalytic subset of X of 
codimension at least 1, Yi fl Xi = 0. It's clear that if we define Q[+1 as the 
open ball in Gp-q with center #/+1 and radius e and we put Qh= Qh1+1\Qh 
the set Qi+i(X, fi) is a semianalytic subset of X. If X'l+1 is the interior of this 
set in X put X1+1 = X'l+1 U A'/. For each connected component c of X1+1 we 
know by the definition of Q/+i(Ar. Q) that a proper choice for Hc is clearly 

H1+1 
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It is now clear that X/( p_ 9 V e) is a open and dense semianalytic subset 
of X and Y can be chosen to be it's complement to X. On each connected 
component of X \ Y the choice of p — (/-plane is done. 

3.Graph decomposition of Rollian pfaffian hypersurfaces. In this pa­
ragraph we will state the consequences of Proposition 3 for pfaffian sets and 
with the help of a Theorem of Hardt we will deduce the decomposition into 
graphs of Rollian ph. 

Proposition 4. Let Q and e > 0 be given as before. For each semianalytic 
subset X of M and x G X there is a strongly analytic stratification of a 
neighborhood of x, J\f adapted to X such that we can choose for each stratum 
Nof N a vector space in 71(e),HN such that: for any familly {Vi, u;t-, M} , i = 
1 , . . . , q of Rollian pfaffian hypersurfaces the intersection N fl X fl V\ fl • • • fl Vq 

if non void is a union of a finite number of analytic submanifolds of M : Wm. 
Morover the restriction to each of the Wm of the orthogonal projection onto 
HNRN is a local isomorphism with finite fiber and the norm of the derivative 
of a sufficiently small local section can be bounded by e. 

This proposition is a direct consequence of the corollary of proposition 3 
using the theorem on uniform finiteness. 

Let W be an analytic submanifold of M. Suppose that there is an open set 
U of some vectorial subspace E of R n such that W is the graph in E © Ex of 
a map (p from U to the orthogonal space of E, EL. Then we say [7] that W is 
an 6-analytic piece if the norm of the derivative of <p is everywhere bounded 
by 6. 

An interesting goal is to decompose pfaffian sets in 6-analytic pieces in a 
finite way. Proposition 4 approches this goal, but we cannot, at present time 
achieve a further decomposition of M to get pieces where the restriction of the 
orthogonal projection becomes one to one. The case of codimension 1 pfaffian 
sets can be treated by an specific argument which seems not to be general 
enough. We will need for this argument the following Theorem of Hardt as 
it's proved in [14]. Compare also [4], [18]. 

Let O be a real analytic manifold. 

Hardt's theorem on stratification of maps. Let f : E —> O be a proper 
continuous subanalytic map from the subanalytic closed set E of M, and let Ç 
and T be locally finite families of subanalytic subsets of M and O respectively. 
There exist a subanalytic stratification A of M adapted to each element of 
G and E and a subanalytic stratification B of O adapted to each element of 
T such that if F G A and T C E. we have f(T) G B and the restriction 
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/ | r : r - /(r) is analytically equivalent to the projection f(T) x A - /(D 
wiiere A js a simplex. 

We axe now ready to prove the decomposition in e-analytic pieces an­
nounced in Proposition 1. 

Let UJ and 6 be as in the statement of proposition 1. Let Af be the stratifica­
tion obtained in Proposition 4. We are going to use Hardt ' s theorem for each 
orthogonal projection 7 r ^ , N G Af if dimHjv = n — 1 and dimiV = n forgetting 
the frontier condition for a stratification at s t ra ta where the intersection with 
any regular solution of u = 0 is either the whole s t ra tum of dimension n — 1 
and so a semianalytic subset of M or is of dimension less than n — 1. 

Denote G the set of elements N of AT such that d i m i J ^ = n — 1 and 
dimiV = n. For each N G G consider the stratification A trivialising n^- Let 's 
show tha t in each s t ra tum T of this new stratification restricted to N any 
Rollian ph associated to u is an 6-analytic piece. Tha t is, if {V,CJ, M } is a 
Rollian ph meeting T, 7 T p | v n r is necessarily one to one. 

Suppose there exist two points x.\,xo in VC\T such tha t ITN(XI) = 7 r ^ ( ^ 2 ) -
The fiber of TTN restricted to T being isomorphic to a simplex, is connected. 
I t ' s an analytic pa th meeting the Rollian ph in two points. The fundamental 
hypothesis proves tha t this fiber is tangent somewhere inbetween, to the dis­
tr ibution u = 0. This is not possible as Y is included in N and the distribution 
uj = 0 is €-parallel to the orthogonal to this fiber everywhere in N.. 

The number of elements of G being finite the proof of proposition 1 is 
complete. 

III. T H E DENSITY OF A ROLLIAN LEAF AT A BOUNDARY POINT 

In this short chapter we will give the proof of theorem 1. The whole plan 
of the proof and the arguments are taken from the beautiful paper [7] of C. 
Kurdyka and G. Raby. We need only to verify that Rollian ph don' t behave 
more wildly than subanalytic sets. This proof uses the decomposition into 6-
analytic pieces of Proposition 1 and seems not to work with the result obtained 
in Proposition 4 alone. 

1. L imi t va lues of an 6-analyt ic pfaffian p iece . Consider a pfaffian set 
W verifying the conditions of pieces found in Proposition 4. 

Tha t is, 
-W is an analytic submanifold of IL/; 
-we can associate to W a vector subspace H C R n and e > 0 such that 
the orthogonal projection n\y : H HL —• H is a local isomorphism when 
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restricted to W; 
-for every point w e W , d G ( T w W , H ) < ( U D 

We will call such a pfaffian set, an e-horizontal piece. 
Let's denote by Uw the open set ww(W). 
We can think of W as being the graph of some kind of multivalued analytic 

mapping <pw The first problem is to understand the behaviour of W when 
its argument goes to the boundary of Uw-

Following [7] we state 

Lemma 1 . Let W be a pfafRan set which is an e-horizontal piece. Ifw£W 
then the tangent cone 

CW(W) C {(x,y) £ H x Hx/\\y\\ < e\\x\\}. 

The proof is the same of that of [7] page 757. You need only to know 
that by the Curve selection lemma you can reach the point w from inside W 
following a C1 curve j u chosen to have a given u of the tangent cone as limit 
direction at w. 

As this curve is a pfaffian set it can be chosen short enough so that it has 
no double points. If 71 is the projection TTW 0 7u, 7i behaves as a curve in an 
6-analytic piece over 71 and the argument in [7] applies. 

Corollary. If W is a pfaffian set which is an e-horizontal relatively compact 
piece, for small enough 6. Then the fiber of the projection TTW restricted to 
W is a finite set. 

The uniform finiteness theorem shows that W PI ({x} x H-1) has a finite 
number of connected components for each x in H. If one of those fibers had 
an accumulation point z we could not have at that point 

C2(W H ({x} x H1)) C C:(W) H HL C {z}. 

As Lemma 1 proves. 

For pfaffian 6-analytic pieces this shows that the underlying analytic map 
has a finite number of limit values at each point in the closure of its domain. 

2.Density of an open subpfaffian set. The subpfaffian sets are defined 
here in a naive way. The whole theory of this class is not, at present time, clear 
enough. Some further properties of these sets can be found in [2]. Precisely 
let be given a vector subspace H of R" a subset Z of H is called subpfaffian 
in H if there is a relatively compact pfaffian set W in R n such that if 7r is 
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the orthogonal projection onto H we have Z = 7r(W). If Y is a relatively 
compact subanalytic subset of Rn, Y is a finite union of subanalytic sets Y\ 
linear projections of relatively compact semianalytic sets L{ of some Rni : 
in : Rn* -+ R", Yi = m(Li). As (U D 5„U D is a a pfaffian set in Rn% WHY,- = 
TTilnriWinLi) is a subpfaffian set. Sö (U D 5„U D is a finite union of subpfaffian 
sets. It is so, also, for TriWriY). 

The following property of our subpfaffian sets is not difficult. 

Lemma 2. If Z is a subpfaffian set in some Rfc and if X is a semianalytic 
subset ofHk then Z fi X has a finite number of connected components. 

We can suppose that there is an / and a relatively compact pfaffian set 
W G R* such that if 7r is the first k coordinates projection Kl -+ Rfc, TT(W) = 
Z. As TT-^X) is semianalytic in R( the set (U D 5„U D has a finite number 
of connected components. In this particular case we have (U D 5„U D(U D 
znx. So znx has a finite number of connected components. 

This result implies, in particular, that if Z is a finite union of subpfaffian 
sets and X is a line segment the set Z fi X is a finite union of segments. 

We will say that a set Z is line-finite if it has this property for any line 
segment X. The set Z fi X is so, necessarilly, semianalytic. 

We state next a minor generalisation of an argument of [7] in a form most 
usefull. 

Proposition 5. An open line-unite subset Z of Rfc has a density at every 
point z G Rfc. Morover 

ek(Z,z)<voh(Bo( l)nCz(Z))(U 

So open subpfaffian sets have densities everywhere. 
We will not reproduce here Kurdyka-Raby's proof as it's one page long. 

We can remark that in their case the density of Z subanalytic is exactly the 
upper bound given here in proposition 5. In the subpfaffian case this fact is 
not known. 

All the arguments are ready for the proof of Theorem 1. 

3. Densities for Rollian leaves. We will give some details of the final 
argument of [7] in order to stress the difficulty in the general pfaffian set case. 
The following lemma is the point where the use of analytic pieces cannot be 
avoided. 

lemma 3. (U D 5„U D (U D 5„U D he a locally e-lipschitzian map defined on an 
open set U C R*. Let a G Ü such that (p has a limit b at a. Then for any 
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r > 0 

B(r)) < (1 + e)kvolk((U D 5„U D 5„(r))) < (1 + e)kvolk((U D 5„U D(U D 5„U D 

where T is the graph of (p and U'=b\\<e\\x-ab\\<e\\x-a-b\\<e\\x-a\\}. 

The proof is not difficult if we consider the locally 1 + 6-lipschitzian map 
(U' n Ba(j?—)fg and the 1-lipschitzian projection p : R f c x R n ~ f c R f c. Just 
observe that r n £ ( a , 6 ) ( r ) c g ( t f n 2 ? « ( r ) ) and 

C / ' n ß a ( r ^ ) C p ( r n J 5 ( a , 6 ) ( r ) ) . 

This is a good estimate, as it is shown in [7] that the set U' has the same 
density as U at point a. 

You cannot get such an estimate if you dont have a map (p at hand. In the 
case of 6-horizontal pieces W we can obtain a similar estimate but the upper 
term must be multiplied by the maximun number of points in the fiber of the 
projection 7Tw restricted to W. All the information is lost in that way. 

The proof can be concluded. Let (U' n Ba(j?—) be like in Theorem 1 and 
x € V. tm € > 0 small enough and apply Proposition 1. Let X be an 
open semianalytic neighborhood of x such that there is a finite collection 
of submanifolds (U' n Ba(j?—) of X of dimensions less or equal to n — 2 such that 
v n X \ USi is a finite union of N(e) e-analvtic pieces : fg =graph (U' n Ba(j 
1,2,.. . , Me) . Denote the domain of E It's a finite union of subpfaffian 
open sets in an n - 1 plane of R". 

If r > 0 we have 

üo /„_ i (VnB*( r ) ) = 
(U D 5„ 

E voln^(WJ)WJ. 

We can suppose, for short that x — 0, and for r small enough that only one 
limit value for each function <pej remains in the ball, namelly 0. 

Applying the majorations of the last lemma, and the remark about the 
density of the domain (U' n Ba(j?—) we get: if we denote A(e) = N(e) 9n-i(E/; ,0), 

AW 
(L + e)"" 1 

< lim inf — )—o 
voln-r(V D B0(r)) 

]*n — l 

and 

lim sup 
R-+0 

voln-i(VnBoo(r))(r)) 

7̂7 — 1 
< (L + 6T _ 1 A(e ' ) . 
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For any two real positive e and e'. 
Tha t is A(e)(l + e ) 1 " " <a(V,0) and 0 (V,0 ) < ( l + O ^ A l O -
Kurdyka and Raby conclude by showing that these two lateral densities 

coincide. T h a t is so because A is bounded as e —• 0 ( jus t use above inequalities 
to write (1 + € ) 1 - n A ( 6 ) < A(l) ( l + I ) " " 1 < A(l).) 

I t ' s clear from this proof tha t the point at stake in controlling densities of 
pfaffian sets is tha t of decomposing them into graphs. 
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