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Introduction

In this series of papers, we investigate the relative index theorem in the framework of
algebraic analysis.

On a complex manifold X, let M be a coherent Dx-module and F' an IR-construc-
tible sheaf (for the underlying real analytic structure of X). The complex

RHomy, (M, RHom(F, Ox))

is the complex of solutions of the system of PDE represented by M in the sheaf of
generalized holomorphic functions associated to F. For example, if X is the complex-
ification of a real analytic manifold M, and F' = ory, we get the complex of Sato’s
hyperfunction solutions, or else if F' is C-constructible, we find a complex of ramified
holomorphic solutions.

A natural problem is to find conditions under which such a complex has finite
dimensional global cohomology and then to compute the corresponding Euler-Poincaré
characteristic.

In our first paper, we prove the finiteness theorem when (M, F') has compact support
and is “elliptic”, i.e.:

char(M) N SS(F) c Tx X

where char(M) is the characteristic variety of M, SS(F') is the micro-support of F' and
T%X is the zero section of the cotangent bundle.

In fact, we give a relative version of this finiteness result together with the associated
duality theorem and Kiinneth formula. Our methods rely upon results of functional
analysis over a sheaf of Fréchet algebras which are developped in the last paper of this
volume.

With finiteness, duality and Kiinneth formula at hand, we have all the basic tools
needed to get an index formula along the line of the Lefschetz fixed point theorem.
Such an approach is developped in our second paper. We attach a “microlocal Euler
class”

peu(M, F) € HES0E sop(T* X; @)

to any elliptic pair (M, F') and prove that, under natural assumptions, this class is
compatible with direct images, inverse images and external products. In particular, it
is the microlocal product of a class peu(M) attached to M and a class peu(F') attached
to F, this last one being nothing but the Kashiwara’s Lagrangian cycle of F. We also
give the index formula:

X(RT'(X; RHom(M ® F;Ox))) = /ueu(M, Firyx = /TX peu(M) U peu(F).

Note that (M, Cx) is always elliptic. Hence our results contain many results of
D-module theory. Moreover, choosing M = Dx Qo G for a coherent Ox-module G
allows us to recover classical results of analytic geometry.
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When F' = €y, our results for the pair (M, F) give an index theorem for elliptic
systems and we discuss its relations with the Atiyah-Singer theorem.
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1 Introduction

Let f: X — Y be a morphism of complex analytic manifolds, M a coherent module
over the ring Dy of differential operators on X, F' an IR-constructible object on X. In
this first paper, we give a criterion insuring that the derived direct images of the Dx-
module F' ® M are coherent Dy-modules, and we prove related duality and Kiinneth
formulas. Part of these results were announced in [20, 21].

In [22], making full use of these results, we shall associate to (M,F') a characteristic
class and show its compatibility with direct image, thus obtaining an index theorem
generalizing (in some sense) the Atiyah-Singer index theorem as well as its relative
version [1, 3].

Let us describe our results with more details, beginning with the non-relative case
for the sake of simplicity.

An elliptic pair on a complex analytic manifold X is the data of a coherent Dx-
module M and an IR-~constructible sheaf F' on X (more precisely, objects of the derived
categories), these data satisfying the transversality condition

char(M) N SS(F) C T4 X. (1.1)

Here char(M) denotes the characteristic variety of M, SS(F') the micro-support of F'
(see [12]) and T%X the zero section of the cotangent bundle 7*X.

This notion unifies many classical situations. For example, if M is a coherent Dx-
module, then the pair (M,Cx) is elliptic. If U is an open subset of X with smooth
boundary U, the pair (M,Cy) is elliptic if and only if QU is non characteristic for M.
If X is the complexification of a real analytic manifold M, then (M,Cy) is an elliptic
pair if and only if M is elliptic on M in the classical sense. If F' is IR-constructible
on X, then (Ox,F) is an elliptic pair. If G is a coherent Ox-module, we can associate
to it the coherent Dx-module G &,  Dx, and the results obtained for the elliptic pair
(G ®o,, Dx,Tx) will give similar results for G. See §8 for a more detailed discussion.

If f: X — Y is a morphism of complex analytic manifolds, we generalize the
preceding definition and introduce the notion of an f-elliptic pair, replacing in (1.1)
char(M) by char;(M), the f-characteristic variety of M (this set was already defined
in [19] when f is smooth).

The main results of this paper assert that if the pair (M, F) is f-elliptic, f is proper
on supp(M) N supp(F) and M is endowed with a good filtration, then:

1) the direct image (in the sense of D-modules) f,(M @ F) has Dy-coherent coho-
mology,

2) the duality morphism

[ (D'F @ DxM) — Dy [(M&F)

is an isomorphism (here, D denotes the dualizing functor for D-modules and D’
is the simple dual for sheaves),



ELLIPTIC PAIRS I. RELATIVE FINITENESS AND DUALITY

3) there is a Kiinneth formula for elliptic pairs,
4) direct image commutes with microlocalization.

See Theorem 4.2, Theorem 5.15, Theorem 6.7 and Theorem 7.5 below for more details.

In fact, we obtain these results in a relative situation over a smooth complex manifold
S, working with the rings of relative differential operators. This relative setting makes
notations a little heavy but it gives us the freedom on the base manifold we need in
the proofs. Even if we want the final result over a base manifold reduced to a point, in
the proofs, we need to use other bases. So, it is better to work in a relative situation
everywhere. Moreover, the base change Theorem 6.5 is a natural way to get the Kiinneth
formula for elliptic pairs.

The idea of the proof of the finiteness result goes as follows.

First, using the graph embedding, we are reduced to prove the theorem for a closed
embedding (this one does not offer much difficulty) and for a projection. Then, using
the same trick as in [8], we reduce to the case Y = S. Then it remains to treat the case
where X = Z x S, f: X — S is the second projection, M is a Dx|s-module endowed
with a good filtration and F' = GG[X] €s where G is an IR-constructible sheaf on Z. We
call it the projection case and we have to prove that in this case Rfi(F® M ®,  Ox)
is Og coherent and Og dual to Rf!RHman,S(F ® M, Qxsldx — ds]).

For that purpose, we “trivialize” F' by replacing it by a bounded complex of sheaves
of the form &, Cr,, the U,’s being relatively compact subanalytic open subsets of X
satisfying the regularity condition:

X|s

D'(Ty,) = Ty,

This construction is made possible thanks to the triangulation theorem and a result of
Kashiwara [11].

Next, we consider the relative realification Mp|s of M obtained by adding the rel-
ative Cauchy-Riemann system to the Dz gs-module M and remark that since M is
assumed to be good we may always find a resolution of Mps by finite free Dzr, g5
modules near subsets of Z® x S of the form K x A where K is a compact subset
of Z and A is an open polydisc in S. Moreover, since the solutions of the relative
Cauchy-Riemann system are the same in the sheaves of analytic functions, differen-
tiable functions or distributions with holomorphic parameters in S, we can compute
the holomorphic solutions of M as the relative analytic, differentiable or distributional
solutions of Migs.

Now, the elliptic hypothesis insures the regularity theorem, that is, the isomorphism

FoMak

Dy,

. Ox = RHom(D'F. M &f, Ox).

Applying R fi to this isomorphism, we shall compute both sides using the trivialization
of I and a finite free resolution of the relative realification of M using analytic (resp.
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differentiable) solutions for the left (resp. right) hand side. This will give us a continuous
Ogs-linear quasi-isomorphism
R, =R, (1.2)

where the components of the left (resp. right) hand side are DFN-free (resp. FN-free)
topological modules over the Fréchet algebra Os. The coherence then follows from an
extension of Houzel’s finiteness theorem [7] due to one of the authors [25]. Note that we
found no way of applying the original Houzel’s theorem in our situation since it is not
obvious to find the requested chain of nuclear quasi-isomorphisms for a given elliptic
pair.

The duality result is proved along the same lines once we have a clear construction
of the general duality morphism which makes it easy to check its compatibility with
the various simplifications and transformations used in the proof.

Note that the hypothesis that the D-module M is endowed with a good filtration
could be relaxed by using cohomological descent techniques as in [24]. However, doing
so would have cluttered the proof with unessential technical difficulties. This is why we
have preferred to stay to a simpler setting, sufficient for all known applications.

Our theorems provide a wide generalization of many classical results as shown in
the last section.

In particular, we obtain Grauert’s theorem [6] (in the smooth case) on direct images
of coherent O-modules and the corresponding duality result of Ramis-Ruget-Verdier [15,
16]. Since we treat D-modules, we are allowed to “realify” the manifolds by adding
the Cauchy-Riemann system to the module, and the rigidity of the complex situation
disappears, which makes the proofs much simpler and, may be, more natural than the
classical ones.

We also obtain Kashiwara’s theorem [9] on direct images of coherent D-modules as
well as its extension to the non-proper case of [8] (whose detailed proof had never been
published) and the corresponding duality result of [23, 24].

In the absolute case, we regain and generalize many well-known theorems concerning
regularity, finiteness or duality for D-modules (in particular those of (2, 13, 14]), see §8
for a more detailed discussion.

2 Elliptic pairs and regularity

2.1 Relative D-modules

In this section, we recall some basic facts about relative D-modules.
In the sequel, by an analytic manifold we mean a complex analytic manifold X of
finite dimension dx. Keeping the notations of [12], we denote by

7:TX — X and m:T*X — X

the tangent and cotangent bundles of X.
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To every complex analytic map f: X — Y, we associate the natural maps

X *l—f—, X xy T*Y f—» Y.

Let S be an analytic manifold. A relative analytic manifold over S is an analytic
manifold X endowed with a surjective analytic submersion ex : X — S. We often use
the notation X |S for such an object when we want to avoid confusion on the basis and
set for short dx|s = dx — ds.

A morphism f : X|S — Y|S of relative analytic manifolds is the data of a complex
analytic map f: X — Y such that ey o f = ex.

Let X|S be a relative analytic manifold over S.

Since € : X — S is smooth, the map

TX — X xsTS

is surjective. Its kernel is thus a sub-bundle of TX. We denote it by TX|S and call
it the relative tangent bundle of X|S. Its holomorphic sections form the sheaf ©xs of
vertical holomorphic vector fields on X|S. Recall that a holomorphic vector field 6 is
vertical if and only if
0(}1 o Cx) =0
for any section h of Og. The dual map
X Xs T*S ‘r—’> X

is injective. Its cokernel is thus a quotient-bundle of 7*X which is isomorphic to the
dual of TX|S. This is the relative cotangent bundle of X|S, we denote it by T*X|S
and denote by

Px|s : ™X — T*X|S

the canonical projection. The holomorphic sections of A? T*X|S form the sheaf ngl S
of relative holomorphic differential forms of degree p. To shorten the notations, we set

dx|s
Qxis = Qs -

To every morphism f : X|S — Y'|S, we associate the natural maps

TX|S —» XxyTY|S — TY|S
T'X|S o XxyT'Y[S — T'YS.

Note that we use the same notations as in the non-relative case since the context will
avoid any confusion.

The subring of Hom g (Ox,Ox) generated by the derivatives along vertical holo-
morphic vector fields and multiplication with holomorphic functions is denoted by Dxs.
We call it the ring of relative differential operators on X|S.
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The basic algebraic properties of Dx|s are easily obtained using the usual fil-
tration/graduation techniques. We will not review them here and refer the reader
to [18, 19].

As usual, we denote by Mod(Dxs) the abelian category of left Dx|s-modules and
by Coh(Dxs) the full subcategory of coherent modules. The category Coh(Dy;s) is
a thick subcategory of Mod(Dx;s) (i.e. it is full and stable by kernel, cokernel and
extensions).

A coherent Dx|s-module M is good if, in a neighborhood of any compact subset of
X, M admits a finite filtration by coherent Dy s-submodules My (k = 1,...,#) such
that each quotient My/Mj_; can be endowed with a good filtration. We denote by
Good(Dxs) the full subcategory of Coh(Dxs) consisting of good Dxs-modules. This
definition ensures that Good(Dxs) is the smallest thick subcategory of Mod(Dxs)
containing the modules which can be endowed with good filtrations on a neighborhood
of any compact subset of X.

We denote by D(Dxs) the derived category of Mod(Dxs) and by D"(Dxs) its
full triangulated subcategory consisting of objects with bounded amplitude. The full
triangulated subcategory of D®(Dxs) consisting of objects with coherent (resp. good)
cohomology modules is denoted by DY, (Dxs) (resp. Dy(Dx|s)).

We introduce similar notations with the ring Dx|s replaced by the opposite ring D;’é’l s
to deal with right Dyjs-modules. Since the categories Mod(Dx|s) and Mod(D}’(”IS) are
equivalent, we will work only in the most convenient one depending on the problem at
hand.

In the sequel, we will often need to work with bimodule structures. Let & be a field.
Recall that if A and B are k-algebras, giving a left (A,B)-bimodule structure on an
abelian group M is just giving M a left structure of A-module and a left structure of
B-module such that

a-(b-m) = b-(a-m)
(c-a)-(b-m) = (c-b)-(a-m)

for any a € A, b € B, ¢c € k and m € M. Hence, it is equivalent to consider that
M is endowed with a structure of A ®, B-module. Using this point of view it is easy
to extend to bimodules the notions and notations defined usually for modules. For
example, we will denote by Mod(Dxs ® Dxs) the category of left Dx|s bimodules and
by D(Dxs ® Dx|s) the corresponding derived category.

Let f: X|S — Y|S be a morphism of relative analytic manifolds over S.

Recall that

Dxis—vis = Ox ®10, [ Dyjs

has a natural structure of left Dy s-module compatible with its structure of right

[ 'Dyjs-module. Using this transfer module, we may define the relative proper di-

rect image of an object M of Db(’Dga s) by the formula

fisM) = Rf(M @5 Dxis-vis)

10
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It is an object of DP(Dys).
Recall also that if M (resp. N) is a right (resp. left) Dx|s-module then there is on
M Boy N a unique structure of right Dx|s-module such that
(m®en)-6 = m-0@n—meEf-n
(m®n)-h = m-h®@n=m®h-n
for any sections m, n, 6 and h of M, N, ©x|s and Ox respectively.
In the same way, if N, P are two left Dx|s-modules then there is on N ®py P a
unique structure of left Dyjs-module such that
6-(n®p) = 6-n®p+n®O-p
h-(n®p) = h-n®p=n®h-p
for any sections n, p, 6 and h of N, P, ©xs and Ox respectively.
Finally, recall the following exchange lemma which will be useful in the sequel.

Lemma 2.1 If M is a right Dx|s-module and N, P are left Dxjs-modules then the
map
Mep, N ® P) — (M&y N)&p P
mm®p) — (MAn)®p
is a canonical isomorphism.
Let X be a relative analytic manifold over S. Recall that the characteristic variety of
a coherent Dx|s-module M is a conic analytic subset of T* X |S denoted by charx)s(M)

and that
char(Dx ®p, M) = P}TsCharX 1s(M).

Hence theorem 11.3.3 of [12] gives the equality
SS(RHomDX,S(M,(’)x)) = p}}scharxw(M).

The sheaf Qx5 of relative holomorphic differential forms of maximal degree is canon-
ically endowed with a structure of right Dx|s-module which is compatible with its struc-
ture of Ox-module and characterized by the fact that, for every open subset U of X,
one has w.0 = —Low if w € Qxs(U) and 6 is a vertical vector field defined on U.

X|S

Definition 2.2 The dualizing complex for right Dx|s-modules is the complex of right
Dx\s-bimodules defined by setting

Kxis = Qxsldx|s] ®o, Pxs

and using the natural structure of right Dx|s-bimodule on the sheaf Qx5 ®oy Dxis-
The dual of an object M of D™ (DY) is

RHomDX|S(M, Kxis)

as an object of D*(DYs). We denote it by Dxs(M).
The functor Ds is the dualizing functor for right Dx|s-modules.

11
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As in algebraic geometry, the terminology used in the preceding definition is justified
by the following biduality result.

Lemma 2.3 There is a canonical sheaf involution of Qx|s Qo Dx\s interchanging its
two right Dx|s-module structures.

Proof: Let us consider the sheaf Dx s ®oy Dx\s where the tensor product uses the left
Ox module structures of the two copies of Dx|s. This sheaf is obviously endowed with
one structure of left Dx|s-module and two structures of right Dx|s-module which are
compatible with each other.

The involution

Dx|s ®oy Pxjs — Dxis ®p, Dx|s
PoQ —~» Q®P

exchanges the two right structures and preserves the left one.
Tensoring over Dxs with {2x|s using its right structure and the left structure of
Dx|s ®p, Dx|s and applying the exchange lemma 2.1 gives us the requested involution.
O

b
coh

Proposition 2.4 For any object M of D (D‘,’(p| s), the canonical arrow

M — RHomg,  (RHomp (M, Kxs),Kxs)

deduced from the involution of the preceding lemma is an isomorphism.

Proof: Since M is locally isomorphic to a bounded complex of finite free right Dx|s-
modules it is sufficient to prove the result for M = Dx|s where it is an easy consequence
of the preceding lemma and the fact that Q2xs is a locally free Ox module of rank one.

O

It follows that the characteristic variety does not change by duality:

Proposition 2.5 If M is an object of DE, (D}I’IS) then one has

coh

charx|s(M) = charx|s(D xjsM).

2.2 Relative f-characteristic variety

In this subsection, we consider a morphism f : X|S — YIS of relative analytic
manifolds over S and define the relative characteristic variety chary(M) of a coherent
DYs-module M. First, we consider the case of a relative submersion where such a
variety was already defined in [19] for S = {pt}. Next, by using the graph embed-
ding, we extend this definition to the general case. Finally, we show how the relative
characteristic variety controls the micro-support of M Gf«)éw Dx|s—y|s-
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Let f : X|S — Y|S be a relative analytic submersion over S. Since f is smooth,
we have the following exact sequence of vector bundles on X:

0— X xy T*Y|S —= T*X|S — T*X|Y —0.
f f

Working as in paragraph II11.1.3 of [19] we get the following lemmas.
Lemma 2.6 Assume M is a coherent Dxjy-module. Then

. Mg) = ¢ charx)y (Mo).

X|Y

Char)qs(pxls ®'D

Lemma 2.7 Assume M is a coherent Dx|s-module and assume Mo, No are two co-
herent Dxy-submodules of M which generates it as a Dx|s-module then

Charxw(Mo) = Cha,I‘x|y (M))
Hence, we may introduce the following definition.

Definition 2.8 Let M be a coherent Dx|s-module. One defines the relative charac-
teristic variety chargs(M) of M with respect to f to be the subset of T*X|S which
coincide on T*U|S with (/);‘Chﬁ.l'[/ly (M) for any open subset U and any coherent Dy y-
submodule My of M)y which generates My as a Dyjs-module.

It is clear that charss(M) is a closed conic analytic subvariety of 7% X|S and that
charfs(M) = charps(M) + ¥ (X xy T*Y|S).

The functor charys is additive:

Proposition 2.9 If f : X — Y is a relative analytic submersion over S and if
0—L—M-—N—0
is an exact sequence of coherent Dyx|s-modules then
charfs(M) = charss(L) U charss(N).
In the sequel we will need the following lemma essentially due to [8].

Lemma 2.10 Let f: X|S — Y'|S be a relative analytic submersion over S and let K
be a compact subset of X. Assume M is a Dyjs-module which admits a good filtration
in a neighborhood of K. Then, in a neighborhood of K, M has a left resolution by
Dy s-modules of the form

Dx|s Op,,, N

where the Dxy-module N admits a good filtration and is such that

¢7 'charx)y (N) C charss(M).

13
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Proof: In this proof, we always work in some neighborhood of K.

Since M admits a good filtration, we can find a coherent Ox-submodule Mg of M
which generates it as a Dx|s-module. Set Ny = Dx;yM,. By construction, A is a
Dx|y-submodule of M which generates it as a Dx|s-module. Obviously, Ny admits a
good filtration. Moreover, by definition,

¢ charxy (No) = charys(M).
The kernel K of the canonical Dxs-linear epimorphism
Dxis @p,,, No — M —0
is a Dx|s-module which admits a good filtration and we have

Charf|s(IC) C charﬂg(’D)qs Qp M) = charss(M).

X|Y

We may thus start over the same construction with M replaced by K and build the
requested resolution by induction. a

Now, by using the graph factorization, we will define the notion of relative charac-
teristic variety for a map which is not necessarily a relative submersion.
Let f: X|S — Y|S be any morphism of relative analytic manifolds.
Denote by
X - X xgY - Y

the relative graph factorization of f.
First, we notice:

Lemma 2.11 Assume f is a relative submersion and M is a coherent Dxs-module.
Then
charfjs(M) = iz chargs(i)s1(M)).

Hence, for a general f, the following definition is a natural extension of our previous
one.

Definition 2.12 For any coherent Dx|s-module M, we set
charfls(M) = tili;lchal‘q|5(i|sg (M))
As usual, for an object M of D%, (Dx)s), we also set

chargs(M) = |J chargs(H/(M)).
j€eZ

We also introduce similar definitions for right D x|s-modules.

14
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Note that chargs(M) is a closed conic analytic subset of 7 X|S and that
charf|s(M) = charf]S(M) + ’(/Jf(X Xy T*Y|S)
A link between the relative characteristic variety and the micro-local theory of

sheaves is given in the following theorem:

Theorem 2.13 Let f : X|S — Y|S be a morphism of relative analytic manifolds
over S and assume M is an object of D’goh(’l)}pls). Then

SS(M &g Dxis—vis) C Pxjscharsis(M).
Proof: Consider the graph factorization of f:
X — X xsY - Y.

By Proposition 5.4.4 of [12], if F is a sheaf on X, then SS(i, F) is the natural image of
SS(F). Hence, in view of the definition of charys, it is enough to prove the inclusion:
SS(HM &5 Dxis-vis)) C p~ chargs(is (M)

where we write p instead of pxxsy|s. Since

WM ®L  Dxisyis) > fjs(M) @

DXIS DX)(sY[S DXX sYlS—*YIS’

we have reduced the proof to the case where f is a relative submersion, what we shall
assume now.

Since the problem is local on X and
chargs(M) = | J charps(H’(M)),
F1/4

we may assume M is a coherent right Dx|s-module. Using Lemma 2.10, we are then
reduced to consider the case where M = M, ®;, _ Dxs, for a coherent right Dxy-

XY
module Mg. Now,
M ®£X|S Dx|s—yis =~ Mo ®7§xn’ Dx|s—vy|s
~ (Mo ®£x‘y Ox) Qs-10, f_lels'

This last sheaf is locally on X a direct sum of an infinite number of copies of M ®£x|y

Ox. Applying [12] Exercise V.5(i) (which is an easy consequence of Proposition 5.1.1(3)
[loc. cit.]) we get successively

SS(M ®£x|s Dxis-vls) = SS5(Mo ®1I;XIY Ox)
= S55(Mo®p,, Dx ®p, Ox)
= char(Mo oy Dx)

= p_1¢;lcharx|y(Mo)
= p'lcha.rﬂs(M)
where the third equality comes from theorem 11.3.3 of [12]. m]

15



P. SCHAPIRA, ]J-P. SCHNEIDERS

2.3 Relative elliptic pairs

We shall now define the main object of study of this paper.

Let D(X) denote the derived category of the category of sheaves of C-vector spaces
on X and let D*(X) denote the full triangulated subcategory of complexes with bounded
amplitude.

Recall that a sheaf F' of C-vector spaces is IR-constructible if there is a subanalytic
stratification of X along the strata of which H?(F) is a locally constant sheaf of finite
rank for any j € Z. Following [12], we denote by D%_.(X) the full triangulated sub-
category of DP(X) consisting of complexes with IR-constructible cohomology sheaves.
We say for short that an object of D% _.(X) is an IR-constructible complex. For such
an object, SS(F) is a closed subanalytic Lagrangian subset of T* X™® where X® denotes
X considered with its underlying real analytic manifold structure. We shall identify
T*X® with (T*X)® as for example in [12] and simply denote it by 7*X. In this pa-
per, we will have to consider most of the time the simple dual D’'F of F and not its
Poincaré-Verdier dual DF. Recall that since X is an oriented topological manifold of
dimension 2dx:

D'F = RHom(F,Cx) and  DF = RHom(F,wx) ~ RHom(F,Cx[2dx])

so the two duals coincide up to shift. Since F' is constructible, we have the local biduality
isomorphism F' == D'D'F.

Definition 2.14 Let f : X|S — Y|S be a morphism of relative analytic manifolds
over S. A pair (M F) is a relative f-elliptic pair if:

e M is an object of Dy, (DY)s),

coh

e F'is an object of D% _.(X),
e p~'charys(M)NSS(F) C TxX.

Such a pair is good if moreover M is an object of Dgood( g(pl s)- Its support is the set
supp(M) Nsupp(F). When f is the canonical map ex : X|S — S|S we will say for
short that (M,F) is a (good) relative elliptic pair on X|S. When S = {pt}, we drop
the word “relative” in the preceding definitions.

Since charfs(M) contains charx|s(M), a relative f-elliptic pair is a relative elliptic
pair. Moreover, on a neighborhood of supp M,

SS(F)NX xgT*S C TyxX.
In particular, an elliptic pair (M,F’) on X is the data of a complex of coherent right
Dx-modules M and an IR-constructible complex F' such that
char(M) N SS(F) C TxX.

We shall see in §8 below why this notion is a natural generalization of that of an elliptic
system on a real manifold. There, we will also explain why Theorem 2.15 below may
be considered as a generalization of the classical regularity theorem for elliptic systems.

16
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Theorem 2.15 Let (M,F) be an f-elliptic pair. Then the canonical morphism
F® M ®1§X|S Dx|s—y|s) — RHom(D'F, M ®{;Xls Dx|s—v|S),

induced by the morphism F — D'D'F, is an isomorphism.

Proof: By [12] Proposition 5.4.14, we know that if G belongs to D*(X) (and F is
IR-constructible as above), the natural morphism

F®G — RHom(D'F,G)
is an isomorphism as soon as
SS(F)*NSS(G) Cc TxX.
Hence, the conclusion follows from Theorem 2.13 by applying the preceding result to

G=Met

D5 DXIS-YIS-

When Y = S, we get:

Corollary 2.16 Let M and F be objects of D%, (D%)s) and Dy_.(X) respectively.
Assume the transversality condition

p~'charx;s(M) N SS(F) C Tx X
where p: T*X — T*X|S is the canonical projection. Then the canonical morphism

F® WM ®,§X|s Ox) — RHomy,  (D'F,M®p,  Ox)

X|S

is an isomorphism.

Definition 2.17 The dual of a relative pair (M, F) is the pair (Dx|s(M),D'F).

It follows from this definition that a relative pair is f-elliptic if and only if so is its
dual pair.

3 Tools

If X is a complex analytic manifold, we have already encountered X®, the real un-
derlying analytic manifold to X. Here, we shall also make use of X, the complex
manifold with X® as underlying space for which the holomorphic functions are the
anti-holomorphic functions on X. Recall that X x X is a natural complexification of
X® via the diagonal embedding.

17
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3.1 Dolbeault complexes with parameters

Let Z and S be complex analytic manifolds and let qz : Z x S — Z be the second
projection.

We will denote by Azxss (resp. Fzxs|s, Dbzxs|s) the sheaf of real analytic functions
(resp. infinitely differentiable functions, distributions) on Z x S which are holomorphic
in S.

We will also set

DZIRxS|s = (DfoxSIS)llexS-

using the diagonal embedding of Z® in Z x Z. Locally, operators in Dzryg)s are of
the form
Z top(2,Z, s)D;’Dg
o,
where aq,6(2,%, s) is a section of Azxss; (2 : U — €%) and (s : V — €%) being
holomorphic local coordinate systems on Z and S respectively.
For any Dzrys)s-module M we will consider the parametric Dolbeault complex

‘A.Zv.xS|S (M)

defined by setting
A s(M) = gz" A @14, M

Z

the formulas for the differentials being given locally by

) 1,
0 -Aflisw(M) - f;';(S‘iS(M) (3.1)
dz
a??@m — OaP?Qm + Z dz* ANa?? @ D,im

i=1

and

= o 41 )
0: 'Al[’I(iSIS(M) - ZZ:S‘S(M) (3.2)
dz
aA?@m - daP? @m+ Y dz' AaP?! @ Dam

=1

where (z : U — @©%) is a holomorphic local coordinate system on Z. Obviously, this
definition is independent on the chosen local coordinate system.

When M is equal to Azxsis (resp. Fzxsis, Dbzxsis) we will denote the corre-
sponding parametric Dolbeault complex simply by Ay, g5 (tesp. Fy, g5 Dbyygis)- Of
course, the natural maps

P Py s -
QZxSIS - -Asz|s - fgxsw - Db]éxSLS

are quasi-isomorphisms.

18
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Let NV be another Dyry sjs-module. Using the natural structure of Dzry ss-module
on the sheaf N ® Azxsis M we define the parametric Dolbeault complex of M with
coefficients in A by the formula

N'(M) = A.Z'.xSIS(N ®Azx5|s M)

The associated simple complex is the parametric de Rham complex of M with coeffi-
cients in N. We denote it by N"(M).

In this paper, we will only use the preceding notions when N is Fzy s|s or Dbzxss-
In this case, we have of course

f;ZSIS(M) = T1Z)’35|S®Az><sst
’Db]é’isw(M) = Db%isls ®A2xs|sM

and the differentials 0 and 9 are given locally by formulas similar to (3.1) and (3.2).

3.2 Realification with parameters

Let Z and S be complex analytic manifolds and set n = dz. Consider Z x S as a
relative manifold over S through the second projection e.
The parametric realification of a left Dzxgs-module M is the sheaf

Mmrys = Azxsis Ro,, s M-
In this formula, the Dzr, g s-module structure is described locally by the formulas

D (a®m) = D;a®m+a® D, m
Ds;(a ®m) Dz;a®m

fla®m) = fa®m

Il

where a,f and m are sections of Azxs)s and M respectively; (z : U — Q") being a
local holomorphic coordinate system on Z.
Since Az g)s is flat over Oz, parametric realification is an exact functor.
Let us consider the map
§:Zx8 — ZxZxS
(z,8) V> (z,2,9).
It is clear that
1 _ B
6 (DZxeS|S) - Dzlﬂxsls-
Hence the sheaf inverse image by 6 of a Dy, 7, gs-module is naturally a Dyr,gs-

module. Moreover, one checks easily that

M]RlS - 6_1(OZ><7><S CQq‘l(?ZxS (I_IM) = 6_1(M 07)
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where q: Z x Z x S — Z x S is the natural projection and [X] denotes the external
product of D-modules.

As usual, using “side changing” functors, we may also define the parametric real-
ification of a right Dzys)s-module M. We still denote it by Mps and check easily
that

Mpjs = A%Zs;s Boyys M = 6T (MR Q).

Parametric realification is a powerful tool to simplify problems dealing with Dz g|s-
modules thanks to the following result.

Proposition 3.1 Let K be a compact subset of Z and let A be a closed polydisc of S.
Assume M is a good Dzxs)s-module. Then, in a neighborhood of K x A, Mg has a
left resolution by finite free Dzry sjs-modules .

Proof: The assumption insures that MOz is a good Dy, 7, 5 s-module. Hence it is
generated by a coherent O, -  -module in a neighborhood of the Stein compact subset
5(K x A) of the complex analytic manifold Z x Z x S. By Cartan’s Theorem A, it is
thus finitely generated in a neighborhood of §(K x A). The conclusion follows easily.
O

In order to be able to use effectively the preceding proposition in the sequel, we need
to understand the links between parametric realification and the finiteness and duality
results. These links are made explicit in the following five lemmas. Since the proofs are
just easy computational verifications we leave them to the reader. Recall that Hom’
denotes as usual the internal Hom functor of the category of complexes of sheaves.

Lemma 3.2  a) The sheaf A)" s1s(Dzrxs)s) is naturally endowed with a structure of
left Dz s|s-module and a structure of right Dzr, g;s-module and the differential
0 is compatible with these two structures.

b) As a complex of (Dzxs|s, Dy s)s)-bimodules -A%;sw(DmeSlS) is quasi-isomor-
phic to (Dzxs|s)wris|—n| (where the realification uses the right module structure
of Dzxs|s)

Lemma 3.3 The map

0, 3
Azxs1s(Dzrxs|s) D, R Faxsls — ]:gxsw

@PeQeu +— a®®AQu
is an isomorphism of complexes of left Dzxsis-modules. Combined with the Dolbeault

quasi-isomorphism
Ozxs — fg’xswa

it induces in the derived category the isomorphism

M &L

L
= -n F
Drsis Ozxs MRs[-n] ®DZ'R><S|S ZxS|S
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for any complex of right Dzxsis-modules M. We have also similar results with F
replaced by Db or A.

Lemma 3.4 The map

Dby sisl-nl — Homp o sis (A%;<s|s(DZ“><SIS)’ Dbz sis)
(pn,y-_,_n — [wo,——r ® Q N (<pn,r+n A wO,—r) . Q]
is an isomorphism of complexes of right Dz s)s-modules. Combined with the Dolbeault

quasi-isomorphism
n 72,
Qzxsis — Dbz gs:

it induces in the derived category the isomorphism
RHOT"’DZXS'S(M> ngsls[n]) - RHmnDszs|s(MRIS[_n]’ Db;:SIs)

for any complex of right Dzysis-modules M. We have also similar results with Db
replaced by A or F.

Lemma 3.5 The natural arrow
Qzx515(Pzxsis) — Wpugisl—nl
(resp. Dby, 5s(Dzrxsis) — Dbyugsl—2n] )

of complexes of right Dy x sis (resp. Dyryg|s) modules is a quasi-isomorphism. Together
with the relative de Rham quasi-isomorphism

-1 ~ .
€ 0s —> QZ><S|s

(resp. € '0s —= Dbzyxsis )
it induces the e~ 'Qg linear pairing

Q7le5|s[n] ®é2x5|5 Ozxs — 6_105[271,]

(1‘esp. Db%IXSIS ®£Z]R xS|S foSls — C—IOS [2”] )

Lemma 3.6 Assume M is an object of DY,,(D7, 5s). We have the commutative
diagram

(M L Ozxs) c:of_loS RHomp, (M, Q% sln]) — e 105[2n]

Dzxs|s

(Mmrys ®£sz5|s Fzxs|s) ®eL—105 RHoszlesm(Mmls’ Dbzzﬂ;(sls) —s e 105[2n]

where the horizontal arrows are constructed by contraction followed by the pairings of
the preceding lemma, the first vertical arrow being the tensor product of the isomor-
phisms of Lemma 3.3 and 3.4 while the second vertical arrow is the identity.
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3.3 Trivialization of IR-constructible sheaves

In this section, we follow the notations of [12, Ch. VIII]. As in the classical theory of
simplicial complexes, the sets U(x) of [loc. cit.] are called open stars. Let us first point
out some basic facts about the topology of polyhedra.

Lemma 3.7 Let (S,X) be a simplicial set and let x € |S|. Then
(a) yeU@@) = [z,y)CU(z)
(b) yedU(x) = |[x,y[CU(x)

where U(z) denotes the open star of x in |S|.

Proof: (a) One knows that
Uz)= U lal
oDo(x)
Thus, if y € U(x), there is a ¢ D o(z) such that y € |o|. Since it is clear that ]z, y] C |o]|
and that x € U(z), one gets that [z,y] C U(z).
(b) The set {o € ¥ : ¢ D o(x)} being finite, one has the equality

T@= U T

oDo(z)

Hence, since y € OU(z), there is a simplex 0 O o(x) such that y € |o] \ |o|. Let o’
be a simplex included in o such that y € |o'|. If o' D o(z) then |z,y[ C |¢o'| C U(z)
as requested. If ¢/ p o(x) then ¢’ = ¢’ U o(x) is a simplex of ¥ included in o and
Jz,y[ C |6”| € U(z) and the conclusion follows. m]

Lemma 3.8 If (S,X) is a simplicial set and if x € |S| then one has the following
commutative diagram

aU(x) x 10,1] /OU(z) x {1} —=> U(z)

| |
oU(z) x [0,1] /oU(z) x {1} - U(zx)

where the horizontal arrows are homeomorphisms, the vertical arrows being the natural
inclusions.

Proof: Let us define the continuous application

f:0U(x) x [0,1] — U(x)
by setting f(u,t) = (1 —t)u+ tx. The preceding lemma shows that f(u,t) = f(u',t') if

either t =t/ = 1 or (u,t) = («/,t'). Moreover, it is clear that for every u € U(z) there
is v € AU (x) such that v € [z,v]. From these facts, one deduces that the continuous
map

g:0U(z) x [0,1] /0U(z) x {1} — U(z)

associated to f is bijective. Since U (z) x [0, 1] is a compact space, g is an homeomor-
phism. To conclude, it remains to note that f~}(U(z)) = 0U(z) x ]0,1]. o
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Proposition 3.9 If (S, X) is a simplicial set, then for every open star U(z) of x € |S)|
one has
Dig(Cu@) = Cogzy

Proof: 1t is clear that
Di5|(Cu@)) = RHom(Cy(z), Cs)
= Rju),(Cu(z))-
It remains to prove that the canonical arrow
Com — Rive),(Cu)

is a quasi-isomorphism on U(z). Thanks to the preceding lemma, there is a neighbor-

hood w of AU (z) in U(z) and an homeomorphism
¢:w— 0U(x) x [0,¢

such that ¢(wNU(z)) = OU(x) x |0, ¢[. We are thus reduced to show that the canonical
arrows

C — lim HV x]0,9[;T)
Vev,n>o
0 — lim HYV x]0,9[;C) (k>1)

Veyn>o
are isomorphisms when V is a fundamental system of neighborhoods of y € OU(z). But,
using homotopy, it is clear that
HE(V x J0,1[; €©) = H¥(V; C)
and the proof is complete. m]

The following proposition is the main result of this section and will be used as a
basic tool in the sequel.

Proposition 3.10 An IR-constructible sheaf F' on a real analytic manifold M is quasi-
isomorphic to a bounded complex T" of the form

) - B (DWaia——’"' fas) (DWk — - P ([}Wb —0---

1a€la : i€l " el &

where each family (Wy;, )i,er, is locally finite, the open subsets Wy ;, being subanalytic,
relatively compact, connected and such that

D;\l(([:wk,ik) =~ _W_k,ik 4
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the differential d%. being such that the induced map
(dljc")ﬁ :Cw,; — Cwyyy;

is either 0 if Wy; ¢ Wiy1,; or a complex multiple c§Iw,,, ;w, , of the canonical inclusion
map if Wi; C Wiy ;.

Moreover, if F' has compact support, we may assume that the set Iy is finite for
every k € Z.

Proof: From the theory of IR-constructible sheaves, one knows that there is a simpli-
cial set (S,X) and an homeomorphism i : |S| — M such that i~'F is a simplicialy
constructible sheaf. From a construction due to M. Kashiwara [11] one knows that such
a sheaf is quasi-isomorphic to a bounded complex T" such that each T* is a locally finite
direct sum of the sheaves Cy(,) associated to the open stars of the simplexes of ¥ where
F is non zero. Since we have just proven in the preceding lemma that for such a sheaf
one has
DI((DU(U)) >~ (Dm

the first part of the proposition is clear.
Concerning the differential of the complex, we note that if o, o’ are two simplexes
of ¥ then
Hom(Cy (), Cu(ory) = T'(U(0); Cu(onver))

hence the conclusion since U(c) is a connected open set.
In case F' has compact support K, the open stars U(c) meeting K are in finite
number and since only these stars appear in the components of 7", the sets I, are finite.
O

3.4 Topological Os-modules

Let S be a complex analytic manifold. Recall that the sheaf Og of holomorphic functions
on S is a multiplicatively convex sheaf of Fréchet algebras over S (see [7, 25]). Also
recall that if V' is a relatively compact open subset of a Stein open subset U of X then
the restriction map

I'(U; Os) — I'(V; Os)

is @-nuclear. From this it follows easily that I'(U; Oy) is a Fréchet nuclear (FN) space
and that I'(V, Og) is a dual Fréchet nuclear (DFN) space.

As in [7], we will consider Os as a sheaf of complete bornological algebras and
deal with the category Born(Os) of complete bornological modules over Os. Recall
that Houzel has shown that Born(Og) has a natural internal hom functor denoted by
L (+,-) and an associated tensor product functor denoted by - ®Os -. They are linked
by the adjunction formula

Hom BO”‘(OS)(M C;))OS N’ P) = Hom Born(os)(M’ ‘C'Os (N’ P))
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We denote by L, (-,-) the global sections of L, (-,-) considered as a bornological
vector space. For any M in Born(Os), the functor L, (M, ) has a left adjoint. We
denote it by - & M.

Following [15], an FN-free (resp. a DFN-free) Os-module is a module isomorphic to
E®QOg for some Fréchet nuclear (resp. dual Fréchet nuclear) space E. It is easily shown
that the Oy topological dual £, (M, Os) of an FN-free (resp. a DFN-free) Os-module
M is DFN-free (resp. FN-free). Moreover both FN-free and DFN-free Os-modules are
Os reflexive.

The results needed for the proof of the finiteness, duality and base change theorems
for relative elliptic pairs are summarized in the three following propositions. The first
one is Corollary 5.1 of [25] and the next two ones are easily deduced from the results
in §1-2 of [15] (see also [16]).

Proposition 3.11 Let M (resp. N') be a complex of DFN-free (resp. FN-free) Og-
modules. Assume M’ and N" are bounded from above and

v M —N

is a continuous Og-linear morphism. Assume moreover that u' is a quasi-isomorphism
forgetting the topology. Then M and N have Og-coherent cohomology.

Proposition 3.12 Let M' be a complex of FN-free Og-modules and let N' be a DFN
Ogs-module. Assume M’ is bounded from above and has Og-coherent cohomology.
Then the natural morphism of D*(QOg)

EOS(M',N) — RHomos(M',N)
is an isomorphism.

Proposition 3.13 Let M’ be a complex of FN-free (resp. DFN-free) Og-modules and
let N be an FN (resp. DFN) Os-module. Assume M’ is bounded from above and has
Os-coherent cohomology. Then the natural morphism of D~(QOg)

is an isomorphism.

In the sequel, when applying the preceding propositions, we will use the following
well-known result.

Proposition 3.14 Assume Z, S are complex manifolds. Denote by ¢ : Z x S — S
the second projection. Then, we have the following isomorphisms:

eFzxsis =~ [(Z;Fz) ® Os
eDbZ s =~ To(Z;Db%%%) @ Os = L (euFzxs)s, Os)-
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Hence, C!Db'g("éfs is a DFN-free Os-module which is the topological dual over Og of the
FN-free Os-module €,Fzxsjs. Moreover,

C*OZXS = F(Z, Oz) ® 05.
Hence, if K is a compact subset of Z, we have
&x[(Azxsis)kxs) = T(K; Az) ® Og

and €.[(Azxs|s)kxs| is a DFN-free topological Os-module. Finally, if T is another
complex manifold andp: Z xT xS — S and q: T x S — S denotes the canonical
projections, we have

PsFzxTxS|TxS = xF zx 5|18 Op .. §+Orxs-
Os

4 Finiteness

4.1 The case of a projection

Proposition 4.1 Let Z, S be complex analytic manifolds. Consider Z x S as a relative
analytic manifold over S through the second projection ¢. Let G be an object of
D% _.(Z) and set F = GX)Ts. Assume that (M,F) is a good relative elliptic pair with
e-proper support on Z x S|S. Then

Re(F & M ®£ Ozxs)

ZxS|s

is an object of D®, (Os).

coh

Proof: By “dévissage”, it is obviously sufficient to prove the result when M is a
Dzxsjs-module which admits a good filtration on a neighborhood of any compact subset
of Z x S.

It follows from the relative regularity theorem (Theorem 2.15) that the canonical

map
s L L
FeoM (’)'Dsz]S Ozxg — RHOTTL(DIF,M (t’),Dszls OZxS)
is an isomorphism. Using Lemma 3.3, we get the isomorphism
) - WL
Re, (F & M]R,|S Q/)Dzmxsls .Asz|S) (4.1)

—  Re,RHom(D'F, MRs (Ef%zm ws Fzxs|s)-

Let V be the interior of a closed polydise A of S. Since supp(M) Nsupp(F)Ne~*(A)
is compact, we can find a compact subset K in Z such that K x V is a neighborhood
of supp(M) Nsupp(F) N e~ (V). Replacing S by V and G by Gy shows that we may
assume from the beginning that GG has compact support. Moreover, by Proposition 3.1
we may also assume that Mps is quasi-isomorphic to complex £ whose components
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are free Dzmr, gjs-modules of finite rank. Since Mp|s has bounded amplitude, we may
even assume L£F = 0 for k> 0.

We know by Proposition 3.10 that D’G is isomorphic to a bounded complex T" of
the form

— P (DW,C,- — e
i€l :

where Wy is relatively compact subanalytic subset of Z such that D'(Cw,,) = T, ..
Thus G ~ D'D'G is quasi-isomorphic to a complex C" of the form

s P Cp — -
i€l Wk,t

It is clear that the sheaf (Azxs) g xs (resp. (Fzxs)yxs) is acyclic for the the functor
€lkxs, (resp. €uxs,) for any compact subset K (resp. any open subset U) of Z. Hence
we may view isomorphism (4.1) more explicitly as the morphism

&(CXCs) L O, Azxs|s) (4.2)
— e, Hom(T X Cs, L ®b,my s Fzxs|s)
in the category of complexes of Os-modules (not the derived category). Let us denote

by R; (resp. Rj;) the source (resp. target) of the preceding arrow.
The components of R, (resp. R;) are easily seen to be finite sums of the sheaves

€T ixsS, (AZX5|5|Wk,ixS) (resp.  €w,xs, (}-ZXS|S|W’W, <s) )

Hence, R (resp. R;) is naturally a complex of DFN-free (resp. FN-free) topological
Og-modules. For these natural topologies, the regularity quasi-isomorphism is clearly
continuous. Applying Proposition 3.11 we conclude that R, has Og-coherent cohomol-
ogy and the proof is complete. ]

4.2 The general case

Theorem 4.2 Let f: X|S — Y|S be a morphism of relative analytic manifolds over
S. Assume (M, F) is a good relative f-elliptic pair with f-proper support; i.e.

e M is an object ()I'DEOO(,(DKI]S),
e F is an object of D% __(X),
o ¢~ 'charys(M)NSS(F) C Ty X,
e supp(M) Nsupp(F) is f-proper.
Then f, o (M ® F) is an object of Dgooa(DY}s)-

good
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Proof: By “dévissage”, it is obviously sufficient to prove the result when M is a Dxs-
module which admits a good filtration on a neighborhood of any compact subset of
X.

Decomposing f through its graph embedding
i: X —>XxY
shows that it is sufficient to prove the finiteness theorem for the second projection
pp: X xY|S—Y|S

and the pair ij51(M) € Ob(Dg,0q(DXyyys)), FETy € Ob(DR_(X x Y)) since by the
projection formula we have

i5i(M) ® (FRICTy) ~ 45(M @ F).
From the definition of charss(M), it is clear that
chayys(ijs(M)) N SS(FEI Ty)

is contained in the zero section of T*(X x Y|S). So if Y = S, the theorem is a
consequence of the results obtained in the case of a projection.

To conclude, we will show that if f is a relative submersion and the theorem is true
for f: X|Y — Y|Y then it is also true for f: X|S — Y|S.

We will use a device introduced in [8] and extended in Lemma 2.10.

Let A be a polydisc in Y and denote by K the compact subset of X defined by

K = supp(M) N SS(F) N f1(A).

Using Lemma 2.10, it is easy to see that, in a neighborhood of K, M is isomorphic
to a complex of right Dy s-modules of the form R ®@p1y Dx|s where R is a coherent
right Dx|y-submodule which admits a good filtration and is such that

d)"lcharx’y(R) C charfg(M).

Moreover, this complex may be assumed to be bounded from above.

Since the functor f, ISt has finite cohomological dimension, it is thus sufficient to
prove the coherence on A of the cohomology of f, | o(F ® M) when M has the special
form M = Mo ®;,_ Dx|s where Mg is a coherent Dx|y-module which admits a good
filtration.

In this case, one knows that the complex f |Y!(F ® M) has Oy-coherent cohomology,
and the chain of isomorphisms

RfiI(F @ M ®1§x|s Dx|s-y|s)
— L L
= RAF® Mo iy Dxs) ®p s

—~» Rfi(F® M, ®,§m Dx|s—v]s)
—= RA(F®Mo®5  Ox)®g, Dyis

X|Y

Dx|s—y|s)

shows that f, o(F ® M) belongs to D8,q(Dys)- m]

good
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Corollary 4.3 In the situation of the preceding theorem, the well known formula:

fig(FoM) & Oy = RA(F& M) Ox)

"Dy |s
gives the inclusion:
charys(f 5 (F ® M)) C fof"™ charxis(M)

Proof: By Theorem 2.13 and Proposition 5.4.4 and 5.4.14 of [12], we know that

p;’?SChar)'ls(iW!(F ® M)) = SS(iLgl(F ® M) ®£Y1S OY)
SS(RA(F @M ey Ox))

-1

fAfTSS(FeMey  Ox)
[ 177 (SS(F) + pi|scharxis(M)).

N

N

Note that by hypothesis:
pxjschars(M) N SS(F) C Tx X.
Moreover, one has:
Pxjscharxjs(M) +f/(X xy T*Y) C Px|schar sjs(M).
Hence,

Pxjscharx|s(M) + SS(F)] N'f'(X xy T'Y) C pxscharxis(M) N4 f'(X xy T*Y)

o)
“f7H(SS(F) + pxjscharxis(M)) C “f'™ (xjscharxis(M))

and the proof is complete. ]

5 Duality

Let f : X|S — Y|S be a morphism of relative complex manifolds. Our aim in this
section is to prove that, under suitable hypotheses, duality commutes with direct images
(see Theorem 5.15 for a precise statement). The proof will use the graph decomposition
of f and various “dévissages”. Hence, it is necessary to construct first the natural
transformation:

fis1°Lxis — Dyis © fig

and to check its compatibility with respect to composition in f. This will be a conse-
quence of the explicit construction of the trace morphism for D-modules given in the
next section. We follow the lines of [24] (see also [11, 17]).
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5.1 The relative duality morphism

Recall that if f: X — Y is a holomorphic map then it induces integration maps
f.q . ngb’)’(“de’q“de SN Dbz;,+dy.q+dy

commuting with the Dolbeault operators. We will use this fact and the machinery of
distributional Dolbeault complexes of §3.1 to construct canonically the duality map for
right D-modules.

Let M be a left Dx-module. To simplify notations, we will set

Dby (M) = Db}x(pc}|{pt}(MRI{pt})-
Hence, the components are
DY (M) = Db ®p,, M
and the differentials are given in a local coordinate system z : U — @92 by

P Db @ M —> DY B0y M
dx
u®@P — PUP+Y dzi Au®D,P

i=1

and

T DY oy M —> DEE™ G, M
u@P — TueP

respectively. Also recall that we denote by Dby (M) the simple complex associated
with Dby (M).

Lemma 5.1 The differential of Dby (Dx) is compatible with the right Dx-module
structure of its components and, in D®(D), one has a canonical isomorphism:

’Db}((’Dx)[dx] -5 Q.

Proof: The compatibility of the differential of Dby (Dx) with the right Dx-module
structure of its components is a direct consequence of the local forms of 9 and 0 recalled
above.

Using the fact that Dy is flat over Ox and the Dolbeault resolution of Q% we get
the quasi-isomorphisms

Q% ©p, Dx == DY €y, Dx == DY (Dx).
Hence, Weil’s lemma shows that the natural morphism

DRy(Dx) — Dbx(Dx)
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from the holomorphic to the distributional de Rham complex of Dy is a quasi-isomorph-
ism of complexes of right Dx-modules and the conclusion follows from the Spencer

quasi-isomorphism
DRX(Dx) ~ Qx[—dx].

O

Lemma 5.2 To any morphism f : X — Y of analytic manifolds one can associate a
canonical integration morphism

fv + fiDby(Dx—y)[2dx] — Dby (Dy)[2dy].
in the category of bounded complexes of right Dy-modules.

Proof: At the level of components the integration morphism is obtained as the follow-
ing chain of morphisms:

fiDWPraxatds(Dy ) = fy (Db§(+dx atdx Of-10y f ~Dy)
~ +dx,q+d
— f,Dbg( X,qtTax ®Oy DY
—_— Db:;’,+dy'q+dy @o), Dy
Iy g+dy
= DRRTHTtY (D),
To get the second morphism one has used the projection formula, the fact that Dby is
a soft sheaf and the fact that Dy is locally free over Oy. The third arrow is deduced
from the integration of distributions along the fibers of f.
To conclude, we need to show that the integration morphism is compatible with the

differentials of the complexes involved. Thanks to the local forms of the differentials,
this is an easy computational verification and we leave it to the reader. a

Lemma 5.3 If f: X — Y and g : Y — Z are morphisms of complex analytic
manifolds, one has the following commutative diagram:

9(fiDby(Dx—y)[2dx| &p,. Dy_z) — gi(Dby (Dy)(2dy] &y, Dy_z)
12 3
91fiDbx (Dx-z)[2dx] - Dby (Dz)[2dz].
In this diagram, arrow (1) is deduced by tensor product and proper direct image from
f+, arrow (2) is an isomorphism deduced from the projection formula, arrow (3) is g,
and arrow (4) is equal to (go f),.
Proof:  Going back to the definition of the various morphisims, one sees easily that the

commutativity of the preceding diagram is a consequence of the Fubini theorem for
distributions, that is, the formula

(g0 /) (u) = g.(fs(w))

where g, and f, denotes the push-forward of distributions along g and f respectively,
u being a distribution with g o f proper support. a
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Proposition 5.4 If f : X — Y is a morphism of complex analytic manifolds then
there is a canonical integration arrow

Iy + £,(Qx[dx]) — Qy[dy]

in D®(DYP). Moreover, if g : Y — Z is a second morphism of complex analytic
manifolds then

fgof = fg OQ!(ff)
Proof: One gets the arrow [; by composing the morphisms:
[i(Qxldx]) == Rfi(Qx[dx] ©; Dx-v)
= Rf(Dbx(Dx-y)[2dx])
= fi(Dbx(Dx-y)[2dx])
— Dby (Dy)[2dy]
= Qy/[dy]

Let us point out that the second and last isomorphisms come from Lemma 5.1, that
the third one is deduced from the fact that DV (Dx_y) is c-soft and that the fourth
arrow is given by Lemma 5.2.

The compatibility of integration with composition is then a direct consequence of
Lemma 5.3. a

Corollary 5.5 If f: X|S — Y|S is a morphism of relative analytic manifolds over S

then there is a canonical arrow
Ins * fi1s(Qxisldxis]) — Qyysldyys].
|

Moreover, if g : Y|S — Z|S is another morphism of relative analytic manifolds over
S then

Joor1s = Jais © 9,51(U1s)

Proof: Using the canonical morphism
Qx[dx] ®£st Dx_.y — Qx|dx] ®£x Dx_y
and the integration morphism
Iy : RAQx[dx] @5 Dx—y) — Qyldy]
we get the morphism

Rfi(Q2x[dx] ®£ Dx_y) — Qyldy].

X|s

Since
Dx—y = Dxjs—vls ®-1p,,, f Dy
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as a (Dxs,f "Dy )-bimodule and Qy is a right Dy-module, we get a Dy,s-linear mor-
phism:

Rf!(Qx[dx] ®£X{S DXIS—»YlS) — Qy[dy].
Tensoring on both sides by €5'Q%~[~ds| and using the projection formula, we get the
requested relative integration map:

Rfi(Qxsldxs] ®I[;x)s Dx|s—y|s) — Qysldys).

The last part of the corollary is then an easy consequence of the similar result for
S = {pt}. o

Definition 5.6 One defines the direct image of a right (Dx\s, Dx|s)-bimodule M by
setting:

f (M) = Rfr((M ®7§X|s Dx|3_.y|s) ®L

L Drys Dx|s—v]s)

Lemma 5.7 There is a canonical isomorphism

[(Dx|s ©o, Dxis) ®1gx|s Dx|s—vis) 5. Dxis-y|s

X|S
- Dx|s-yis ®-10, [ 'Dyis
compatible both with the structure of left Dxjs-module and the structure of right
(f~'Dyys, f ' Dyys)-bimodule.
Proof: One has the chain of isomorphisms
&L L
[(Dx1s ®o, Dxis) & Dyjs DXIS—Y /18] @by Dxis—yis
- [Dxis O, Dx|s-ys) ®1§x[s Dx|s—y|s
= Dyjsoy|s ®<]5.\- Dx|s-y|s
= Dxjs—yis Op-10, [ 'Dys
SESEN ’D_‘(|5_.y|g ®f_1'DYiS (f_IDYIS &"f*IOy f_lDY]S)
== Dxis-v|s Op-1py, (f"'Dyis O-10, [ Dys)
In the second isomorphism we have used the exchange lemma. In the fourth line, the
last tensor product uses the structure of left f~'Oy-module of f~'Dys. In the fifth
isomorphism the last tensor product uses the structure of right f~!Oy-module of the

first factor and the structure of left f~'Oy-module of the second one. Finally, in the
last line, we have used the exchange lemma again. O

Proposition 5.8 Let M be a right Dxs-module and let Mcoo Dx\s be the associated
right Dxjs-bimodule. If f : X — Y is a morphism of relative analytic manifolds over
S then one has the following canonical isomorphism

f M i-?uLw_\- Dyys) = ils'!(M) Cl)clvly Dyis

:[S!

in the derived category D(Dyg ¢ Dyg).
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Proof: This is a direct consequence of the preceding lemma. |
Definition 5.9 The differential trace map associated to a morphism
f: X|S—Y|S
of relative analytic manifolds over S is defined to be the arrow
try £|S!’CX|S — Ky|s
in the derived category D(Dyjs ® Dys) obtained by composing the following arrows:

£|S!’CX|S - £|S!(Qxls[dx|s] ®éx Dxs)

. (i|S!QX‘S[dX|S]) ®(15y DYIS
= Qysldy|s] ®CL,Y Dy|s

where the first arrow comes from the definition of Kxs (see p. 11), the second one
being a consequence of the preceding proposition and the third one being constructed
by tensor product with the integration arrow of Corollary 5.5. By construction, try is
compatible with the composition of maps.

Proposition 5.10 Assume f : X|S — Y|S is a morphism of relative analytic mani-
folds over S. Then the differential trace map

try :LISIK'Xls — Ky s

induces a morphism
duy : ils!Q)qs(M) — Qy|s(ilng)

for any object M of Db(Dg("'S), Moreover, this morphism is functorial in M and
compatible with composition in f.

Proof: Since, by definition,
Dxs(M) = RHome|s(M, Kxis)
we have a canonical morphism
f1sPxis(M) — RHomp,  (f, oM, Ls;’CXlS)
in D(Dy]s). Composing this morphism with the morphism

RHomp, (M. [, Kxis) — RHomop, (f oM, Kvs)

associated to try gives the requested duality morphism. The construction shows that it
is natural in M. The compatibility with composition in f comes from the corresponding
property of try. a
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To conclude this section, we will show that the differential duality morphism is
compatible with the duality morphism of complex analytic geometry.

Recall that since Dy|s is an Ox-module, we have a well defined scalar extension
functor

Ex|s : Mod(Ox) — Mod(D¥s)
F - '7:®Ox Dxs.

The image by this functor of an Ox-module F is coherent as a right Dx|s-module if
and only if F is coherent as an Ox-module. For a coherent Ox-module F, one sets

Dxs(F) = RHom ,, (F, Qx|s[dx)s])
hence, we have the canonical isomorphism:
Dxs(F) ®o, Dxis = Dxis(F ®p, Dxis)-

Moreover, if f : X|S — Y|S is a morphism of relative analytic manifolds and F is a
coherent Ox-module we have the canonical isomorphism:

(RAF) @p, Dyis = f(F G0y Dxis)-
With these facts in mind, we can now state:

Proposition 5.11 Let f : X|S — Y|S be a morphism of relative analytic manifolds.
Assume F is a coherent Ox-module. Then we have the commutative diagram:

RfDx|s(F) ®p, Dy;s —> Dyis(RfiF) @y, Dy|s

LS!QXIS(]:@ox Dxis) — QYIS(LS!(’F@ox Dxis))

where the first and second horizontal arrows come respectively from the geometric and
differential duality morphisms, and the vertical arrows isomorphisms are deduced from
the compatibility with direct image and duality of the scalar extensions functors Ex|s
and Eys.

Proof: Consider the morphism

Qxisldxis] — Kxjs (5.1)
w = w®lxs.

It follows easily from the definition of the differential integration map that we have
the following commutative diagram:

RfQxsldxis] — Qysldys]

£|S!’CX|S —  Kyjs.
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In the preceding diagram the horizontal arrows are the geometric and differential trace
maps, the first vertical arrow is deduced from (5.1) by using the canonical section
1 x)s—y|s of Dx|s—y|s and the second vertical arrow is (5.1) with X replaced by Y.
Since the geometric and differential duality morphisms are directly constructed from
the corresponding trace maps the result is easily reduced to the commutativity of the
preceding diagram. a

5.2 The case of a closed embedding

Proposition 5.12 Let i : X|S — Y|S be a closed relative embedding. Then, for
every coherent right Dx|s-module M, the canonical morphism

ys1D x1s(M) — Dy s(45.M)
is an isomorphism.

Proof: Since the problem is local on X, we may assume M has a bounded resolution
by finite free right D x|s-modules. Thus it is sufficient to prove the result for M = Dxs.
Since we have

Dxs = Ox ®p

it follows from Proposition 5.11 that the result is a direct consequence of the corre-
sponding result for O-modules. Since we do not have a precise direct reference for this
well known result we recall it in the following lemma. O

Dxs

X|s

Lemma 5.13 Ifi: Z — X is a closed embedding of analytic manifolds, then for any
object F of D%, (Oz) the complex Ri\F is an object of D2, (Ox) and the geometric
duality morphism

RiyRHom, ,(F.Qz[dz]) — RHom,, (RiF, Qx[dx])
is an isomorphism.

Proof: Since the result is of local nature and the duality morphism is compatible with
composition, it sufficient to consider the case when F = Oz and

i: U — U xU"

2 - (Z,0)

where U’ (resp. U”) is an open neighborhood of 0 in €% (resp. ©).
In this case, the arrow

iggzl(lzl e RH()’ITI,O\, (i!OZ, QX [(lx])
corresponds up to shift to the arrow

1y — RHomo‘\,(ig(’)z, Qx|1])
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deduced from the arrow

iz — Home, (407, Db [1]) (5.2)
w  — (ih v i(hw))

by using the natural map from Hom,, to RHom, and the Dolbeault resolution
Qx — Db, Using the negative Koszul complex K.(z”,Ox) as a free resolution of
10z, the map (5.2) corresponds to the morphism of complexes

Q7 — Hom,, (K.(2",Ox), DbZ") (5.3)

which associates to @iw the morphism of complexes which sends A to i,(hjzw) in degree
zero and is zero in other degrees.

The target of the preceding arrow is the simple complex associated to the double
complex K below

Db’ — DO . — DHH
2” TZH .« e TZH
DYX° — DX ... Dpx

where the horizontal maps are the & Dolbeault operators, the vertical ones being mul-
tiplication by z”. In the preceding diagram the term of bidegree (0,0) is in the upper
left corner and the image of 4w by the arrow (5.3) corresponds to the section i.w of
Db¥" in bidegree (—1,1).

Since the canonical inclusion of K.(z”,{2x) in the simple complex sK is a quasi-
isomorphism, it follows that the cohomology of sK ™ is concentrated in degree zero and
that H°(sK ) is isomorphic to Qx/2"Qx.

Now we have successively

w(2') A6(2")dx" A dy”
"
w(z')AD (d_z_)

Il

LW

252"

_ 5<w(z')/\ d””)

2imz"

and this shows that i,w has the same cohomology class in H°(sK) as the section
w(2') A (d2"/2im) of K®°. Hence the arrow (**) corresponds at the level of H® to the
isomorphism

i!QZ —_— Qx/Z”Qx

) d n

hw [w(z’)/\fz]
i nQ

2"Qx

and the conclusion follows. ]
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5.3 The case of a projection

As for the finiteness theorem our starting point will be the case of a projection.

Proposition 5.14 Let Z, S be complex analytic manifolds and denote by n the com-
plex dimension of Z. Consider Z x S as a relative analytic manifold over S through
the second projection €. Let G be an object of D%__(Z) and set F = GX]Cs. Assume
that (M,F) is a good relative elliptic pair with e-proper support on Z x S|S. Then the
natural pairing

Re(M@F &, Ozxs) @5, Ra(D'F ® RHomy, (M, 0, 55ln])) — Os

identifies each complex with the Os dual of the other.

Proof: Since the dual of a relative elliptic pair is a relative elliptic pair, we need only
to show that the map

Re(D'F © RHomyp,, . (M, Q7 gs[n])
— RHom, (Re.(F @ M ®7’5sz|$ Ozxs), Os)

deduced from the duality pairing is an isomorphism in the derived category.
Using Lemmas 3.3, 3.4 and 3.6 and the regularity quasi-isomorphism, it is equivalent
to prove that the canonical map

Re(D'F @ RHomp, . (Mmys, Dbylgs)) (5.4)

1S

— RHom,_(Re,RHom(D'F, Mps ®;mesw Fzxs), Os))

is an isomorphism in the derived category.

We will work as in the proof of Proposition 4.1 and use the notations introduced
there. Using the resolution £ of Mps and the resolution 7" of D'G, we will compute
explicitly the preceding morphism. We already know that

Re.RHom(D'F, Mys ¢ Frs)

- ("*'HO‘m,(T' Ts, L &Dzmxs ] foS) = Rz

IS

Since Dbw, ;xs is acyclic for the functor €w, ;x sy we get

Re(D'F & RHomp . (Mmjs, Dby sis)

S|s

= (T ®Ts) © Homy, (L, Dzlgs)).

We denote by R; this last complex.
The components of R, (resp. R;) are finite sums of the sheaves

€ WiixS, (FWy ix8) (resp. €y ixs,(Pbw, ;xs) )
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which are FN-free (resp. DFN-free) Og-modules. Hence, R, and Rj; are naturally
complexes of topological Og-modules.
For any open subset U of Z, we know that

n,n _
€uxs15Pbiixsis = Log(€uxsis,Fuxsis, Os)

where the second member of the preceding equality is the sheaf of continuous Os-linear
homomorphisms between the FN-free Os-module €yxsis, Fuxsis and Os. Hence we get
the canonical isomorphism

R = Lo (R, 05)

for any integer k. One checks easily that these maps define an isomorphism of complexes

RS - ‘CO (R2a05)

S

Moreover, the composition of this morphism with the natural morphism
Ly (Ry Os) — RHom (R3, Os) (5.5)

gives the map (5.4).
Since R, has Og-coherent cohomology, Proposition 3.12 shows that (5.5) is a quasi-
isomorphism and the proof is complete. m]

5.4 The general case

Theorem 5.15 Let f : X|S — Y|S be a morphism of relative analytic manifolds
over S. Assume (M, F) is a good relative f-elliptic pair with f-proper support; i.e.

e M is an object of Dgooq(DY)s),

e [ is an object of D _.(X),

e ¢~ 'charys(M)NSS(F) C Tx X,

e supp(M) Nsupp(F) is f-proper.
Then the duality morphism

ilsg(D'FC*) Dyjs(M)) — Dy s({,(F © M))
is an isomorphisni.
Proof: Using the factorization of f through its graph embedding
i: X —XxY

we deduce from the results obtained for closed embeddings that the theorem will be
true if it is true for the second projection

g: X xY|S—Y|S
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and the pair
(i1 (M), FIRI Cy) € Ob(DEoa(DPry(s) X D_c(X x V).
From the definition of charss(M), it is clear that
chargs(4)s1(M)) N SS(F X Cy)

is in the zero section of T*(X x Y'|S). Soif Y = S, the theorem is a consequence of the
results obtained in the product case.

To conclude, we will show that if f is a relative submersion and the theorem is true
for f: X|Y — Y|Y then it is also true for f: X|S — Y|S.
Let us assume first that there is a coherent right Dx|y-module M, such that

M = Mo &p, . Dxis-

X|Y

One get successively:

Dy s(f,(F ® M))
VN R’HomDYls([Rf!(F ® Mo ®,§X'y Ox)] ®£Y Dyjs,Kys)
= R’HomOY (i]YI(F ® Mo), Oy) ®Oy ’Cy|5
—= i]Y!(D/F ® QXIY(MO)) ®Oy ’CY|S
-~ RAD'F® R’HO’mew (Mo, Kxyy) ®Tf;xw Ox ®s-10, [Kys)
—= Rfi(D'F ® RHomg (Mo, Kxis) ®£X|s Dx|s-y|s)
- i|51(DIF ® RHomp, (Mo ®p, , Dx|s,Kxis))
=+ [,(D'F ® Dys(M))
and the theorem is proved.

The general case is reduced to the preceding case by using Lemma 2.10 as in the
proof of Theorem 4.2.

6 Base change and Kiinneth formula

6.1 Base change

Recall that to any morphism b : S, — S of complex manifolds is associated a base
change functor

(1) : Man(S) — Man(Sy)
XlS — Xszb|Sb
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which transforms relative manifolds over S into relative manifolds over Sy. The aim of
this section is to study the behavior of relative elliptic pairs under this functor. The
main result is Theorem 6.5.

Let us fix a base change map b : S, — S. For any relative manifold X |S, we denote
by X3|Ss its image by the base change functor (-), and by bx the projection from X to
X. By construction, we have the cartesian square:

X x5 38

Tbx O Tb

Xb — Sb.
€X,

Hence, there is a canonical ring morphism
bx'Dxjs — Dx,is,
and we may introduce the following definition.
Definition 6.1 The base change functor for relative right D-modules is the functor
D(Dg(pw) - D(DS’E,|S,,)
M = b)_(lM ®"L)_(1'Dx&s Dxils,:

This functor clearly induces a functor from DE,4(D¥,s) to Dgooa(DX)s,)-
The base change functor for sheaves of C-vector spaces is the functor

D(X) — D(X)
F — b'F

This functor clearly induces a functor from D%__(X) to D%_.(X3). Since the context
will avoid any possible confusion, we denote all these functors by (-)s.

Let us consider now a morphism f : X|S — Y|S of relative manifolds. We denote
by fo : Xs|Sy — Y5|S, the image of f by the base change associated with b. One checks
easily that the square:

x L
Tbx Iby (6.1)
Xb g )/b

fo

is cartesian.

Proposition 6.2 Using the notations introduced above:

a) There is a canonical morphism
b Dyis—yis ©F 7 Dyyys, — D ,
X ZXIS=YIS Wmynipy o Jb o VS XolSy—Y2]Sy

in D?(by'Dx|s © f(TID?{)]sb)'
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b) The preceding morphism induces a natural morphism

(i[S'(M))b I ﬁ[sb!(Mb)
for M in D(DR).

¢) The morphisms in (a) and (b) are isomorphisms if either f or b is a closed em-
bedding.

Proof: Since

-1 L -1 ~ -1 ~L -1
bx Dx|s—y|s ®fb'1b)_, fo DYbISb > by Ox ®b}1f_10y fo DYble

Dy|s
and
~ -1
Dxysi-wils, == Ox, @10, f5 Drils,

the canonical morphism bx'Ox — Oy, induces the morphism in (a).
For any M in D(D‘)’a ), we construct the morphism in (b) as the chain of morphisms:
M = b'RAMESS

- Rfybx'(M ®1§x|s Dx|s—y|s) ®bL,7IDY|s Dy, s,
=5 Rfy(bx'M ®,,L)—(IDX|S bx'Dxis—vis ®z—1b;xpy|5 fo 'Dyyis,)
NN be!(b}lM ®I>L;(1'Dx|s DXbISb—’Yb|Sb)

- flz|sb!(Mb)'

This chain of morphisms is obtained using the definition of the base change functor, the
fact that the square (6.1) is cartesian, the projection formula, the morphism constructed
in (a) and again the definition of the base change functor.

To conclude the proof, it is sufficient to show that if either f or b is a closed embed-
ding then the morphism constructed in (a) is an isomorphism.

Assume f is a closed embedding. The problem being local, we may assume there
are open neighborhoods U and V of zero in €™ and €™ respectively with X = U x S,
Y=UxV xS and

L
Dxjs L D
X15-Y1s) ©yripy, o Drils,

f:UxS — UxVxS
(u,8) — (u,0,s).
Then, we get X, =U X Sy, Yo =U x V x S, and
fo:UxS, — UxVx5
(u,85) — (u,0,sp).

Moreover, bx (u, sp) = (u, b(sp)) and by (u,v, sp) = (u,v,b(sp)). In this simple geometric
situation, we have the Koszul quasi-isomorphisms:

K.(Oy;’Ul,...,’Un) — f*OX
K.(Oy,;vi0by,...,vn0by) —= [,,Ox,
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where vy, . .., v, denotes the functions on Y induced by the standard coordinates on V.
Hence, we get the isomorphisms:
bx'Ox ®,,L)-(1f_loy [ Dys, = [y 'K (Dys,ivi0by,. .. v, 0 by)
Ox, ®£—10Yb fb—IDYHs,, ~ fb_lK.(Dyb|sb; vy o by,...,un0by)

and the conclusion follows.
The case where b is a closed embedding is treated in a similar way. O

The following easy lemma will be useful in the sequel. We leave its proof to the
reader.

Lemma 6.3 Let f : X|S — Y|S be a relative submersion and let b: S, — S be a
base map. Consider X as a relative manifold over Y through the map f and assume
N is an object of D(DY,y). Then

fo : Xp|Yy — V3|V,
is the image of f : X|Y — Y|Y by the base change associated with by and
N &p_  Dxis)e = Niy, @p

D .
XY X3y X555

The behavior of the characteristic variety under base change is given by the following
result.

Proposition 6.4 Let f : X|S — Y|S be a morphism of relative manifolds. In the
diagram
T* Xp|Sp «— Xp xx T*X|S — T*X|S
t(bx)’ (bx)x

the first arrow is an isomorphism and for any object M of Db (DX,s) we have

Charmgb (M(,) C t(bx)/(bx);lcha,rﬂs(M).

Proof: Using the graph factorization of f and part (c) of Proposition 6.2 we are reduced
to the case where f is a relative submersion. In this case, assume M is generated as
a right Dx|s-module by a coherent right Dx|y-module M,. Thanks to Lemma 6.3 the
epimorphism

M, ®DX|Y Dx|s — M —0

induces the epimorphism
(Mo)ey ®Dxb|yb Dxyls, — Mp — 0.

Hence,
Cha‘rfb|5b(Mb) - ¢;1Charxblyb((M0)bY)

and the result will be true for f : X|S — Y|S and the base change by b if it is true
for f: X|Y — Y|Y and the base change by by. In other words, we are reduced to the
obvious case where Y = S. ]
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Theorem 6.5 Let f : X|S — Y|S be a morphism of relative manifolds and let
b: Sy — S be a base map. Denote by fy: Xu|Sy — Y5|S) the image of f by the base
change associated to b. Assume (M,F) is a good relative f-elliptic pair. Then

a) (My,F;) is an fy-elliptic pair in some neighborhood of supp M,

b) the canonical morphism

151 (F @ M)l — fig, (Fo © M)
is an isomorphism.

Proof: Since (M,F) is a relative elliptic pair, F' is non characteristic for bx in a
neighborhood of supp M and [12, Proposition 5.4.13] gives us an estimate of the micro-
support of Fy which together with the preceding proposition gives us (a).

To prove part (b), we will use the graph factorization of f and part (c) of Propo-
sition 6.2 to reduce the problem to the case where f : X|S — Y|S is a relative
submersion.

As in the preceding proposition, it is sufficient to treat the case Y = S. Assume
M is a right Dxjy-module and set M = Mo &, Dx;s. We have successively:

XY

[ilsg(M)]b ~ {i‘y!(MO) Qo Dy sls
= [Ly,r(MO)]by ®O)'b Dy,s,

and

ﬁwb!(Mb) ad jglsb![(Mo)by ®DX!>IY1, DXb|Sb]
= ﬁm![(MU)by] ®Oyb Dyjs,-

Hence, using Lemma 2.10, we see that the theorem will be true for f : X|S — Y|S
and the base change by b if it is true for f: X|Y — Y|Y and the base change by by.

Finally, factorizing f and b through their graphs and using once more part (c) of
Proposition 6.2, we see that it is sufficient to treat the case where f: Z x S|S — S|S
is the second projection. We may also assume that the corresponding f-elliptic pair is
of the form (M,GX Cs) where G and M are objects of D} _(Z) and Dgooq (DY, 15)
respectively, and that b : T'x § — S is the first projection. This product case is
treated in Proposition 6.6 below. O

Proposition 6.6 Let Z, S, T be complex analytic manifolds. Consider Z x S as a
relative analytic manifold over S through the second projection €. Let G be an object
of Db _.(Z) and set F = GXTs. Consider the cartesian square

ZxS8 = S

I» o |

ZxTxS L TxS
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where the maps are the canonical projections. Assume that (M,F) is a relative elliptic
pair with e-proper support on Z x S|S. Then the canonical map

b—lRC,(F ® M ®£Z><S|S Osz) ®b—105 OTxS
— Rn(p"'Fep Mt

OZxTx S
P~ 1Dzxs|s )
is an iSOII]Ol‘phiSIH.

Proof: Thanks to the regularity theorem 2.15 and Lemma 3.3, it is equivalent to prove
that the canonical morphism:

b~ Re.RHom(D'F, MR @ Fzxs) @105 Orxs

— Rn.RHom(p~'D'F,p~' Mg (XJPL_IDZm s

-7:Z><T><S[T><S)
xS|S

is an isomorphism. For short, let us denote by S; (resp. S;) the source (resp. target)
of the preceding arrow. Clearly, it is sufficient to prove that for any open polydisc A
of T, the induced morphism

Rb.(S1jaxs) — Rb:(Sjaxs) (6.2)

is an isomorphism. We will compute this morphism explicitly as in the proof of Propo-
sition 4.1. Using the notations introduced there, we already know that

Re,RHom(D'F, Mgs ®£zmxs|< Fzxs)

= e, Hom(T X1Cs, L &p Fzxs) = Rs.

ZRxs|S
Since R, has Og-coherent cohomology,
Rby(Sijaxs) = Rb.(VT'R; L0, Onxs)
~ RQ ®£5 beAxS-
Moreover, we have:
Rb,(S3axs) =~ Re.RHom(D'F, Mg @,gzm
~ ¢, Hom(T' X Cs, L &

PxFZxAxS|AxS)
xS|S

s P+Fzxax5|axS)-
Let us denote R this last complex. Since we have the isomorphism
€D xAxSsiwxaxsFzxaxsiaxs = T(W; Fw) @ T(A; Oa) ® Os
for any open subset W of Z, a direct computation shows that
Ry = Ry Op, biOaxs.
Clearly, the morphism (6.2) corresponds to the canonical morphism
R O, bsOaxs — R Sy bsOaxs.

Since R, has Og-coherent cohomology, Proposition 3.13 shows that it is an isomorphism
and the conclusion follows. O
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6.2 Kiinneth formula

Theorem 6.7 Let f, : X;|S — Y1|S and f; : X3|S — Y5|S be two morphisms of
relative manifolds. Assume

i) (M1,F1) is a good relative fy-elliptic pair with f-proper support,
ii) (Ma,F,) is a good relative fy-elliptic pair with fa-proper support.
Then:

a) (MiXg M2, Fi1[XIsF,) is a good relative fi x s fa-elliptic pair with f X s fa-proper
support,

b) the natural morphism
ﬁlS!(Fl ® Ml) S _f_2|51(F2 ® MQ) - fl Xs f2|S![(F1 SF2) Y (Ml S Mz)}
is an isomorphism.

Proof: Part (a) being obvious, we skip directly to part (b). Since
ﬂ[S! (F1® M)
has Dy, s-coherent cohomology, the formula

fi s fa= (idx, xs f2) o (fi xsidx,)

allows us to restrict to the case fo =idx,. So, we need only to prove that the canonical
map

ﬁ]s!(Fl ® M,) Xls (Fo @ M3) — ilxs—idX?JS!(Fl X sF2) ® (M, Xlg M)

is an isomorphism. Using the projection formula, we may get rid of F>. So we assume
F, = Cx,. The problem being local on Y; Xg X2, we may further assume that M, is
equal to Dy,s.
The image of f; : X;|S — Y;|S under the base change associated with €3 : Xy —
S is
f1 Xsidx2 : Xl Xs X2|X2 — Yl Xs X2|X2.

Hence, by Theorem 6.5, we have the isomorphism:

(16 (F1 @ Mi)]e, = (f1 Xsidx,) 0 [(F1 @ Mi)e ).

|X2! [(
By scalar extension, we get the isomorphism:

Jiya(F1 @ M) Bs Dxyjs = f1 Xsidxy o [(F1 X 5Cx;) ® (M1 s Dxgis)]

and the conclusion follows. m]
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7 Microlocalization

Here, we shall prove that direct image commutes with microlocalization. More precisely,
denote by £x the sheaf of (finite order) microdifferential operators on T*X (see [18]
or [19] for a detailed exposition).

Consider a morphism f : X — Y of complex analytic manifolds and the associated
diagram:

™X T X xy Y ———T*Y
f fx

and recall that the microlocal proper direct image of a right £x-module M is defined
through the formula

f'(M) = Rf‘ﬂ'!(tf/_lM ®tI}/—1gx 8X—»Y)a

where Ex_y denotes the micro-differential transfer module associated to f.
Also recall that the microlocalization of a right Dx-module M is the right £x-
module ME defined on T* X by setting

ME = ﬂ}lM ®7r)‘(11)x Ex.

In this section, we prove that, under the hypothesis of the finiteness theorem, we
have

[f{M @ F)IE = f[(M® F)E].

This result was established by Kashiwara [9] when F = Cx and f is projective. It was
also announced in a non proper case in (8].

7.1 The topology of the sheaf Cyx(0)

Let us show that the sheaf Cy|x(0) of [18] is naturally a sheaf of topological vector
spaces and that its sections on a compact subset of 7y X form a DFN space.

Proposition 7.1 Let X be a complex analytic manifold. Assume Y is a complex
submanifold of X and denote by Cy|x(0) the sheaf of holomorphic microfunctions of
order 0 on Ty X. Then, for any compact subset K C Ty X, the space

I'(K;Cy1x(0))
has a canonical DFN topology.

Proof: Locally, we may use a coordinate system (x1,...,%q4,¥1,---,Yn_q) Where Y is
defined by the equations
ry=0,---,24 =0.
Denote by (y1,: -, Yn-d,&1,---,&) the corresponding coordinates on Ty X. It follows
from [18, Theorem 1.4.5] that, for any open subset U of Ty X, the formula
0

[86- @euyds= 3 a;(y,08() (7.1

j=—00
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establishes a one to one correspondence between holomorphic microfunctions
u(z,y) € T'(U; Cyx(0))
and sequences of homogeneous holomorphic functions
aj(z,§) € T(U;Orpx(4)) (1 <0)

such that for any compact subset K C U

j;wmj(x,ﬁ)h((i—;)! < oo

for some € > 0.

Let us first construct the requested DFN topology in two special cases.

Case a. Assume K is a convex compact subset of 7y X on which & # 0. Denote by
p: T3 X — Py X the canonical projection. The preceding discussion shows that the
map

I'(K;Cyix(0)) — T(p(K) x {0}; Op; xxa)

+o0 i
u(m,y) = fk(y7£a7-) = Za—j(y)é/gk)ﬁ
Jj=0 :
is an isomorphism. Using this isomorphism, we endow I'(K;Cyx(0)) with the usual
DFN topology of I'(p(K) x {0}; Opy xxa)- If, moreover, & # 0 on K, one has

fk(y’ ér T) = fé(ya 57 T&k/é@)'
Hence, the DFN topology of I'(K’; Cy|x(0)) does not depend on k.

Case b. Let m denote the canonical projection of the bundle 7y X on its base Y
identified to the zero section. Assume K is a convex compact subset of Ty X such that
m(K) C K. It follows from (7.1) that

I'(K;Cyix(0)) — T(m(K);Oy)
u(z,y) —  ao(y,0)
is an isomorphism. We use this isomorphism to transport on I'(K; Cyx(0)) the usual
DFN topology of I'(r(K); Oy).

One checks easily that, if K; C K, are two compact subsets of Ty X of the kind

treated in case (a) or (b) above, then the restriction map

['(K3; Cy1x(0)) — T'(K1;Cy x(0))

is continuous.
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Let K be an arbitrary compact subset of Ty X. The preceding discussion shows that
we can find a finite covering (K;)ies of K by compact subsets such that I'(Kj; Cy x(0))
and I'(K; N Kj;Cy|x(0)) are DFN spaces. Thanks to the exact sequence

0 — I'(K; Cy1x(0)) = [T (K Crix (0)) = TT T(K: N K;; Cyix (0),

i€l 1,j€l

we may use o to transport on I'(K;Cy|x(0)) the DFN topology of ker 3. To show
that this topology is independent of the chosen covering, it is sufficient to show that
it is equivalent to the topology induced by a finer covering. Since such a topology is
obviously weaker, the conclusion follows from the closed graph theorem.

Since a direct computation shows that the above defined topology is independent of
the chosen coordinate systems, the conclusion follows easily. O

Corollary 7.2 Let X be a complex analytic manifold. Assume K is a compact subset
of T*X. Then
['(K; Ex(0))

has a canonical DFN topology.

Proof: Apply the preceding proposition to Cay|xxx(0). m]

Proposition 7.3 Let X, Z be complex analytic manifolds and let Y be a complex
submanifold of X. We identify T(5.y)(Z x X) and Z x Ty X. We denote by q :
Z x Ty X — Ty X the second projection. Then, for any Stein compact subset K C Z,
one has

Ri[(Czxy|zxx(0))kx1yx] = T(K;O0z) & Cy|x.

Proof: Let S be a complex manifold. Denote by ps : ZxS — S the second projection.
By classical results of analytic geometry, we know that

Rps)[(Ozxs)kxs) =~ T(K;0z) ® Os.

Using the explicit isomorphisms constructed in the proof of the preceding proposition,
the conclusion follows easily. m]

Corollary 7.4 Let Z, Y be complex analytic manifolds and denote by
f:ZxY —Y
the second projection. Assume K is a Stein compact subset of Z. Then
Rfu((Ezxy-y(0))kxTy] = T'(K; Oz) & Ey(0).

Proof: Apply the preceding proposition to Czxay|zx(yxy)(0). o
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7.2 Direct image and microlocalization

Theorem 7.5 Assume f: X — Y is a morphism of complex analytic manifolds and
(M, F) is an f-elliptic pair on X with f-proper support. Then the canonical map

[f[M®F)E — f(IM® FIE)
is an isomorphism in D%, (Ey).

Proof: Recall that we have the commutative diagram

t gl
x ' x %,y Iy

WX[ d ry

X =~ X Y

Hence, we have successively

7' [f{M @ F)] Cripy EY
= Rfn[r'MaF ®1’;X Dx_y)] Opipy, &
= Rfn[r'(M®F®F Dx_y) ®-tnipy fr E]
= Rfnr'MOF)®F,, (n'Dx.y ®rinsipy fr EY)):

Note that there is a canonical map
7T_1Dx_,y ®f,?17r;,1‘Dy f;lgy — Exy. (7.2)
Hence, we get a canonical morphism
' [f, (M & F)] @poipy v — Ll (M & F) ®nzipy Ex]. (7.3)

When f is a closed embedding, (7.2) is an isomorphism. Hence (7.3) is an isomor-
phism for any M € D2, (Dx) and any F € D% _.(X).
In the general case, consider the graph embedding

1: X — XxY

and the projection
p: X xY —Y.

Since (M,F) is an f-elliptic pair, the pair (4 M, F [X]1Ty) is p-elliptic. Since our result
holds for closed embeddings and

WMo (FRICy) ~i(Mo F),

we are reduced to prove the theorem for the pair (iyM,F [X]Cy) and the map p.
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We may thus assume that f is the second projection from X = Z x Y to Y and
that F = G[X] €y where G is an object of D%_.(Z). Moreover, working as in §4, we
may also assume that M = N @, Dx where N is a coherent Dx|y-module. In this
case,

v [f,(M® F)| ®p-ipy v
= Rfnlt' (M & F) &7y, (77" Dxy Oproip, frEy)]
= Rf,r![w‘l(,/\/ ® (GX1Cy)) ®7€_1DXIY (7r—1(9x ®f1r_l7r;10y f;lgy)]

X|Y

and
L[W}I(M QF) ®ripy Ex] = Rfnr 'V ® (GXITy)) Gr-1pyy Exyl.
Hence, we are reduced to show that the canonical arrow
T Ox ©p-1pcio, fr €y (0) — Ex—y(0)
induces an isomorphism

Rfnlr'W © (GRICy)) QF (171 0x @110, fr 6V (0)] (74)

W_IDx|)'

= Rfnlr™ (W © (GRITY)) 8, 1py, Ex-v(0)]

As a matter of fact, Ex_y ~ Ex_y(0) ®s-14,(0) €y as a (Dxyy £y )-bimodule and a
scalar extension of (7.4) gives the theorem.

Using the realification process as in §4, we may assume from the beginning that Z
is a complexification of a real analytic manifold M and that G is supported by M.

Since the result is local on T*Y (hence on Y), we may assume also that A has a
projective resolution £ by finite free Dxjy-modules (see Proposition 3.1).

As for GG, we may assume it is isomorphic to a bounded complex T" of the type

O_)... @ (DI(ai —_— e EB (DIX’k" —_— e G} (DI(bi _)0
ia€l, e ik€lx "k i€y b

where the sets I, are finite and K} ;, is a subanalytic compact subset of M (see Propo-
sition 3.10).
Hence,
No(FRC) ~L (T XTy)
and the components of this last complex are finite direct sums of sheaves of the type

Dxy © Crxy

where K is a subanalytic compact subset of M.
Note that

W_I(Dxn' ® Crxy) ®,€—1D,\-|)» (77_10x ®f;11r“,10y f,r_lgy([))) (7.5)
—= 7r_I(CI)X)KXY ®f,,‘17r;,10y fﬂ—_ng(O)
7 HDxpy © Cixy) -1,y Ex—-v(0) (7.6)

=5 (Exoy(0)kxTey
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The right hand side of (7.5) is acyclic for fr, thanks to usual properties of Stein
compact subsets. Moreover, Corollary 7.4 shows that the right hand side of (7.6) is also
acyclic for fr. Hence, the morphism (7.4) of D®(Ey(0)) is represented in C®(Ey(0)) by
the morphism

frlr™H(L @ (T"RCy)) @p-spyy, (M0 @prtgctoy, fr ()] (T7)
—  fmlr™HL @ (T B Cy)) ®p-1py,y, Ex—v(0)]
Let us denote by R’ the complex
AL @ (T ®Cy) &, , Ox]-
Its components are direct sums of sheaves of the type
Fl(Ox)kxy] =2 T(K;0z) & Oy

which are DFN-free Oy-modules. It is easy to check that the Oy-linear differential of
R is continuous with respect to the these natural topologies. Hence, we may consider
R as a topological complex of DFN-free Oy-modules. Using Corollary 7.4, we have
successively

Rfnl(Ex-y(0))kxrey] = T(K;0z) @ Ey(0)
~ [[(K;Oz) @ 17'0y] &,-10, Ev(0)
~ 77 Ail(Ox)kxy] Bp1o, Ev(0)
and (7.7) is represented as the canonical morphism
'R ®,-10, Ev(0) — 77'R ®,_10, Er(0).

Since R has Oy-coherent cohomology, Proposition 3.13 allows us to conclude the proof.
O

XY

Corollary 7.6 Let M be a coherent Dx-module endowed with a good filtration. As-
sume:

(i) f is proper on supp M,
(ii) fr is finite on ¢ f'~!(charM) N (X xy T*Y), where T*Y = T*Y \ T3Y.

Then, for j # 0, H'( f M) is a flat connection (i.e. its characteristic variety is contained
in the zero section).

Proof: The second hypothesis implies that f,(ME) is concentrated in degree zero on
T*Y. The first hypothesis and Theorem 7.5 imply that

(fM)E =~ [ (ME).
Hence, for j # 0, supp H[( LM)E] is contained in the zero section. Since £ is flat over
71D, the conclusion follows easily. m]

This Corollary has important applications when studying correspondences of D-
modules, such as, for example, the Penrose correspondence. We refer the interested
reader to [5] for more details.
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8 Main corollaries

8.1 Extension to the non proper case

In this subsection, we shall generalize Theorems 4.2 and 5.15 to a non proper situation,
using the techniques of [8, 12].

Let f : X|S — Y|S be a morphism of complex manifolds over S and let ¢ : X —
IR be a real analytic function. Set

Ay = {(z,dp(z)) : z € X}.

This is a Lagrangian submanifold of 7*X (which is not conic for a non locally constant
©). We also associate to ¢ the following subsets of X:

Zy = {zeX:p(x) <t}
U = {xeX:p(x)<t},

and denote by j; : Uy — X the open embedding. Recall finally that the image of a
subset S of T*X by the antipodal map is denoted by S°.

Corollary 8.1 Let M and F be objects of Dgooq(DY)s) and Di_(X) respectively
and assume:

i) for each t € R, f is proper on supp M Nsupp F' N Z,
ii) p~'charss(M) N SS(F) C Tx X,
iii) there is to € R such that

Ay (p~'charps(M) + SS(F)®) C 7= 1(Zu).

Then:

a) setting
Fi = jt!jt_lF = FjUn

the canonical morphisms:
fig(FtO M) — [ (FOM)
LS*(D'F}. © Dys(M)) «— ils*(D'FQDQx[sM)
are isomorphisms for t > t,

b) both
i|5!(F O M) and LS*(D/F ®© Dy s(M))

PN St o "Tb op
are objects of Dyooq(Dys).
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c¢) the natural duality morphism:
LS,(D'F ® Dxjs(M)) — Dysf s (F ® M)
is an isomorphism.

Note that replacing SS(F') by SS(F)* in hypothesis (iii), we get a similar conclusion
after interchanging f, ISt and f I5s° Also note that it would be possible to generalize to
a non proper situation the results of §6 but for the sake of brevity, we leave it to the
reader.

Proof: Let x € X. If x € suppM Nsupp F and = ¢ Z,,, then dp(z) ¢ char(M) +
SS(F)* by hypothesis (iii) and in particular dp(x) # 0. Applying Proposition 5.4.8
of [12], we find for t > tq:

SS(F;) C SS(F) + R*A,

where RYA, = {(x; Mdy(z)) : x € X, A > 0}. Since:
p~'charjs(M) N (SS(F) + RYA,) € Tx X U~ Y(Z,),

again by hypothesis (iii), we obtain that (M, F}) satisfies the hypothesis of Theorems 4.2
and 5.15 for ¢t > ty. Hence, the conclusions of these theorems apply to the pair (M, F})
and part (b) and (c) are consequences of part (a) which we shall now prove.

First, we consider the morphism

i|51(Ft®M) _’i|sg(F®M)- (8.1)

Set G = F®M®£XISDX|S_.Y|5. By Theorem 2.15, hypothesis (ii) and Proposition 5.4.14

of [12] we have:
SS(G) C SS(F) + p~'charys(M).

Since
p~'charys(M) = p~'charss(M) + ' f'(X xy T*Y),

the above morphism (8.1) is an isomorphism by Proposition 5.4.17 of [12].
To prove the second isomorphism in (a), consider the chain of isomorphisms which
follows from the regularity theorem applied first to Fj, then to F:

Rf.(D'F, ® Dy sM ®1I>’x's Dx|s-y]s)
~ Rf.RHom(F, Dx;sM ®,§x|s Dx|s-y]|s)
~ RfRj.j; "RHom(F, DxsM ®1§X|s Dx|s—v|s)
~ Rf.Rji,j;(D'F ® Dx;sM ®%

xis Dx|s-y]s)-

Set
G =D'F ® DysM ®£X’S Dx|s-yis-
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Isomorphism (8.1) applied to (D'F;, Dx;sM) tells us in particular that the projective

system
Rf.(D'F, ® DxjsM ®F__Dxis-y|s)

is essentially constant for ¢ > t,. Hence, the projective system Rf,Rj;,j; G is also
essentially constant for ¢t > t, and using the Mittag-Leffler theorem we get the isomor-
phism

Rf,G = Rf,Rj;, 5. 'G

which completes the proof. m]

8.2 Special cases and examples

In this subsection, we will consider various special situations and give the corresponding
form of Theorem 4.2 and 5.15 leaving the reader do the same thing for Theorem 6.7.
First, let us specialize our results to the non relative case taking S = {pt}.

Corollary 8.2 Let f : X — Y be a morphism of complex analytic manifolds. Assume
(M,F) is a good f-elliptic pair with f-proper support i.e.:

e M is an object of D®__,(D¥),

good

e F is an object of D% _ (X),
e char;(M)NSS(F) Cc TxX,
e supp(M) Nsupp(F) is f-proper.
Then
o f(M®F) is an object of D8, .4(DY),
o [ [Dx(M)® D'F] = Dy[f (M ® F)].

When we take F' = Cx in the preceding corollary we recover the coherence theorem
for D-modules of Kashiwara [9] (who treated only projective morphisms). Moreover,
using Corollary 8.1, we also recover the finiteness theorem for non proper morphisms
of (8] and the corresponding duality result of [24].

It is well known that an Ox-module F is coherent if and only if the induced Dx-
module F ®o, Dx is itself coherent. Moreover, this scalar extension process is com-
patible with direct images and duality (see Proposition 5.11). Applying the preceding
corollary to the pair (F ®,, Dx,Cx) we recover Grauert’s coherence theorem [6] and
Ramis-Ruget-Verdier’s relative duality theorem [15, 16] in the important special case
of analytic manifolds.

Taking Y = {pt} in the preceding corollary, we get the following absolute result:

Corollary 8.3 Let X be a complex analytic manifold. Assume (M,F) is a good elliptic
pair with compact support i.e.:
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e M is an object of D2 _,(D%¥),

good

F is an object of D%__(X),
char(M)N SS(F) Cc Tx X,

supp(M) N supp(F’) is compact.
Then the complexes

RI(X;M®F®; Ox) and  RI(X; RHomp (M ® F,Qx[dx]))
have finite dimensional cohomology and are dual one to each other.

In the special case where F' = Cx, we get an absolute finiteness and duality result
for good Dx-modules which was considered by Mebkhout in [14]. For coherent analytic
sheaves, the preceding corollary corresponds to the very classical Cartan-Serre [4] and
Serre [26]’s theorems.

In the case Y = S, Theorem 4.2 and 5.15 give information on analytic families of
absolute elliptic pairs.

Corollary 8.4 Let X|S be a relative analytic manifold and let (M, F') be a relative
elliptic pair on X|S i.e.:
o M is an object of Dgooq(D¥s),

good

e F is an object of D% _.(X),

e p~lcharxis(M)NSS(F) Cc TxX,

e supp(M) Nsupp(F) is ex-proper,
where p : T*X — T*X|S is the canonical projection. Then

Rf(F o M ®7§X|s Ox) and Rf!RH()mDX‘S(F ®M, Qx|s[(lx|s])

are objects of D2, (Os), dual one to each other, i.e. the canonical morphism:

RfiRHomyp, (F ® M, Qxsldxis]) — RHomo (RA(F & M ©f_ Ox),0s)
is an isomorphism.

Combining the preceding corollary with the base change formula, we get:

Corollary 8.5 Let X|S be a relative analytic manifold. For any s € S, denote by b
the canonical inclusion of {s} in S. Assume (M,F) is a good relative elliptic pair with
e-proper support on X|S. Then for any s € S, (My,,F,) is a good elliptic pair with
compact support (on a neighborhood of supp M,, in X,,, the fiber of X over s) and
the Euler-Poincaré index:

X(RT(X,; My, @ Fp, @’é.\»b 0Ox,,))

is a locally constant function on S.
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Proof: Let us denote by Z the ideal of holomorphic functions vanishing at s. The base
change Theorem 6.5 tells us that:

RI(X,; Ms, ® Fy, @F  Ox,,) = [0s/T @5, Reus(M @ F & Ox)l.

Xp, X|s

We know by the finiteness theorem that
Re(M®F @) Ox)

has Og coherent cohomology. Hence, it is locally quasi-isomorphic to a bounded com-
plex of finite free Os-modules. The conclusion follows easily since [Os/Z], = C.
O

Remark 8.6 Let P, : E — F, P, : E — F be two complex analytic linear differen-
tial operators between holomorphic vector bundles on X. Assume that their principal
symbols induce the same morphism of fiber bundles

oc:7'E— 7 'F.

Then, P» = (1 — A)Py + AP, is a one parameter analytic family of operators with
principal symbols equal to o. Combining this remark with the preceding corollary, we
recover, for example, the fact that the index of an elliptic operator on a compact real
analytic manifold depends only on its principal symbol.

Let us now consider a few explicit examples. For the sake of brevity, we only consider
non-relative situations.

Example 8.7 Let M be a real analytic manifold with X as a complexification and M
a good Dx-module. Then, as we have already noticed in the introduction, M is elliptic
on M in the classical sense if and only if (M, Cy,) is elliptic. In fact, SS(Cps) = T X.
Since €y ® Ox = Ay, the sheaf of real analytic functions on M and

RHOTTL(DI(DM, Ox) = BM
the sheaf of Sato’s hyperfunctions, the regularity theorem 2.15 entails the isomorphism:
RHomp, (M, Am) ~ RHom,, (M, Bu). (8.2)

This is the Petrowski theorem for D-modules which is often proved using micro-diffe-
rential equations as in [18]. Moreover, if M is compact and M is good, Corollary 8.3
asserts that the spaces

H’(R['(M; RHom, (M, By))) = Exth(M; M, By)

and
H"(RD(M; Qy @5,  M)) = Tor2™ (M; g, M),

are finite dimensional and dual to each other. Note that for solutions of elliptic operators
the duality and finiteness theorems are well-known results.
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Example 8.8 Let X be a complex manifold, U an open subset with real analytic
boundary. Then (M, Cy) is an elliptic pair if and only if the boundary dU is non
characteristic for M, that is, char(M) N T3, X C TxX. The regularity theorem yields
the isomorphism:

RHomp (M, (Ox)g) = RHomp, (M, RIy(Ox)). (8.3)

In other words, the holomorphic solutions on U of the system M extend holomorphically
through the boundary. If U is relatively compact, and M is good, we get that the spaces
ExtjDX (U, M, Ox) and Tor?fn (U; Qx, M) are finite dimensional and dual to each other.

Note that the regularity theorem is due to Zerner [27] (for the 0-th cohomology)
and [2], both in case of one equation with one unknown, then to Kashiwara [10] for
systems. The finiteness theorem is due to [2], this last result being extended in various
directions by Kawai [13].

Example 8.9 One can generalize both preceding examples as follows. Let M be a real
analytic manifold, X being a complexification of M and let U be an open subset of
M with real analytic boundary. Then (M, Cy) is an elliptic pair if and only if M is
elliptic on M on a neighborhood of U and moreover the conormal vectors to AU in M
are hyperbolic with respect to M. Then we get the isomorphism:

RHomp, (M, (Am)g) = RHomp (M, Ty(Bu)).

(i-e.: the hyperfunction solutions of M on U are real analytic and extend analytically
through the boundary), and we also get finiteness and duality results that we do not
develop here.

Example 8.10 A general situation including the preceding examples is the following.
Let X =], X, be a subanalytic ji-stratification (cf. [12, Chap. VIII]) and assume:

{ SS(F) C UaTx. X, (8.4)

charM)NTx X C TxX Va.

(In other words, F is locally constant on the strata X, and these strata are non
characteristic for M.)

Then of course, the pair (M, F) is elliptic. If, moreover, supp(M) N supp(F) is
compact we may apply Theorem 4.2 and Theorem 5.15 and we obtain new finiteness
and duality results.

Example 8.11 For any F € Ob(D%_.(X)), the pair (Ox, F) is elliptic. Since F' ~
Qx ®7’5X Ox ® F[-n] and D'F ~ R’Home(F & Ox,Ox), one recovers the classical
finiteness and duality theorem on constructible sheaves. In fact if M is a real analytic
manifold and i : M — X denote a complexification of M, to G € Ob(D¥%_.(M)) one
associates the elliptic pair (Ox, i.G).
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Example 8.12 Let M be a holonomic Dx-module and let o € X. Let B(xo, €) denote
the open ball with center zo and radius € > 0 in some local chart at zo. By a result of
Kashiwara [10], the pair (M, Cp(s,,)) is elliptic for 0 < ¢ < 1. If X is open in €™ and
F € Ob(D%_.(X)) has compact support, one proves similarly that (M, F * Cp,)) is
elliptic for 0 < ¢ <« 1. (Here “+” denotes the convolution of sheaves; cf. [12] Exercise
2.20.)
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1 Introduction

In [14], we introduced the notion of an elliptic pair (M,F) on a complex manifold
X. Recall that this is the data of a (let us say, right) coherent Dx-module M and
an IR-constructible sheaf F' (more precisely, objects of derived categories), these data
satisfying:

char(M) N SS(F) Cc Tx X, (1.1)

where char(M) is the characteristic variety of M, SS(F) is the micro-support of F,
(defined in [7]), and T%X is the zero-section of the cotangent bundle to X. More
generally, if f : X — Y is a morphism of complex manifolds, we defined the notion of
an f-elliptic pair, replacing in (1.1) char(M) by chars(M), the relative characteristic
variety.

In [14], we give four basic results on elliptic pairs: we prove a finiteness theorem
(coherence of the direct images of F' ® M, assuming (M, F) is an f-elliptic pair with
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proper support), a duality theorem (in the above situation, duality commutes with
direct images), a Kiinneth formula and we prove that microlocalization commutes with
direct images.

In this second paper on elliptic pairs, expanding results announced in [12, 13], we
will attach a cohomology class to (M, F') and prove an index formula. More precisely,
let Ap = char(M), A; = SS(F'), let dx = dimg X and denote by wx the dualizing
complex on X (hence wx ~ Cx[2dx], since X is oriented). Assuming (M, F) is elliptic,
we construct a cohomology class:

peu(M, F) € Ha%, (T*X;Crex) (= HY o, (T X; 77 wx))

that we call the "microlocal Euler class” of (M, F). This class is constructed using a
diagonal procedure, like in the proof of the Lefschetz formula for constructible sheaves
by Kashiwara [6] (see also [7, Chapter IX]), but working here in the framework of
D-modules. Set for short:

[L('!U(M) = p’eu(My(Dx)y
peu(F) = peu(Qx, F).

Then the two main results of this paper may be stated as follows.

1) One has the formula:
peu(M, F) = peu(M) *, peu(F), (1.2)
where the operation *,:
HR(T* X577 wx) x HY (T*X; 77 wx) — HRyqa, (T X377 wx)
is defined by integration along the fibers of the map:
s: T X xxT'X —T'X, s(x;6,&) = (z;& + &)
(this map is proper, thanks to the ellipticity hypothesis).

2) Assume (M, F) is f-elliptic with proper support. One knows by [14] that f (F'®
M) is Dy-coherent, and we prove the formula:

ueu(_}i!(FQZ) M)) = f, peu(M, F), (1.3)
where f, is the morphism:
HR()-H\l(T*X; W—le) — H‘(f),rtflfl(Ao,fAl)(T*Y; 71'_1(4})/)

deduced from the integration morphism Rfiwx — wy, (see [7, Chapter IX, §3]).
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These two theorems will be proved along the same lines as the corresponding results
for constructible sheaves (see [7]). We will use various commutative diagrams in derived
categories to express the compatibility of the functors involved, and as usual in these
matters we do not distinguish between commutative and anti-commutative diagrams.
Hence the results should be understood up to sign.

Using these two formulas, we find in particular that if (M, F') is an elliptic pair with
compact support, then:

X(RD(X; F @ M @%_Ox)) = /T ., Heu(M) U reu(F) (1.4)

where x(-) denotes the Euler-Poincaré index and U the cup product.

If M is a real analytic compact manifold and X is a complexification of M, then
(M, Cp) is an elliptic pair if and only if M is elliptic on M in the usual sense. Hence
formula (1.4) is similar to the Atiyah-Singer formula [1].

By formula (1.2), we see that to compute peu(M, F), it is enough to compute
separately peu(M) and peu(F). It is easily shown that peu(F') is nothing but the
" characteristic cycle” of F' constructed by Kashiwara (loc. cit.). This is a Lagrangian
cycle whose calculation is made at generic points and thus offers no difficulties (see [7,
Chapter IX, §3]). Hence the remaining problem is to understand peu(M). At this step
our results are essentially conjectural. Assume M is endowed with a good filtration and
denote by oa(M) the image of gr(M) in the Grothendieck group of coherent Or. x-
modules supported by A, the characteristic variety of M. In the last section we make
the two following conjectures (1.5) and (1.6) below:

[cha(oa(M))Un*tdx(TX)P =0 for j>2dx (1.5)

where chy(-) and tdx(TX) denote as usual the local Chern character with support in

A and the Todd class of X, respectively, and [-]’ is the homogeneous part of degree j
in GB]CHK(T*X; Crx),

peu(M) = [cha(oa(M)) U n*tdx (T X)), (1.6)

As an evidence for these conjectures, we prove that both sides of (1.6) are compatible
to proper direct images, external products and non-characteristic inverse images, and
moreover they coincide in the two extreme cases where M is holonomic or is induced
by a coherent Ox-module.

The Atiyah-Singer theorem, in its K-theoretical version, has recently been general-
ized to the relative case by Boutet de Monvel and Malgrange [3]. Our results provide a
relative index formula in the cohomological setting, and the proof of the above conjec-
tures would give a precise link with the Atiyah-Singer theorem. We hope to come back
to these conjectures in a next future.

2 Review on sheaves

In this section, we fix some notations and recall a few results of [7].
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Let X be a real analytic manifold. One denotes by 7: TX — X and 7 : T* X —>
X the tangent and cotangent bundles to X, respectively. If Y is a submanifold of X, one
denotes by Ty X and Ty X the normal and conormal bundles to Y in X, respectively.
In particular, Tx X denotes the zero-section of 7* X, that ones identifies to X. If A is a
subset of T* X, one denotes by A® its image by the antipodal map.

One denotes by § : X — X x X the diagonal embedding, and we identify X to
its image A and T*X to TX(X x X) by the first projection defined on X x X and
T*(X x X) ~T*X x T*X, respectively.

If X and Y are two manifolds, one denotes by ¢; and ¢ the first and second projec-
tion defined on X x Y.

One denotes by D(X) the derived category of the category of sheaves of C-vector
spaces, and by DP(X) the full triangulated subcategory consisting of objects with
bounded cohomology. If Z is a subset of X, one denotes by €z the sheaf on X which
is constant with stalk € on Z and zero on X \ Z.

One denotes by orx the orientation sheaf on X and by wx the dualizing complex
on X. Hence:

wx ~ orx|[dim X]

where dim X is the real dimension of X. More generally, if f is a morphism from X to
Y, one denotes by wx/y the relative dualizing complex. Hence:

-1 ®-1
wX/ysz®f wy .

One denotes by f~!, Rf., Rfi, f',®, RHom the usual classical operations on sheaves
and we denote by [X] the external product. We shall use the two duality functors:

D' F = RHom(F, Cx), 2.1)
DxF = RHO‘TTL(F,LUX). (22)

If there is no risk of confusion, we write D' or D instead of DY or Dx.

If F is an object of DP(X), one denotes by SS(F') its micro-support, defined in [7], a
closed conic involutive subset of T*X. Moreover, we shall use the functor uys of Sato’s
microlocalization along M. Recall that for F' in DP(X)

supp upm(F) C Ty X N SS(F).

Now, recall that an object F' of D?(X) is called weakly IR-constructible (w-IR-construc-
tible, for short) if there is a subanalytic stratification X = |, X, such that for all o, all
J, the sheaves H’(F),x, are locally constant. If moreover, for each z € X, each j € Z,
the stalk H’(F), is finite dimensional, one says that F' is R-constructible. One denotes
by DE_g_.(X) (resp. D%_.(X)) the full triangulated subcategory of D*(X) consisting
of w-IR-constructible (resp. IR-constructible) objects. It follows from the involutivity
of the micro-support that F' is w-IR-constructible if and only if SS(F') is a closed conic
subanalytic Lagrangian subset of 7% X.
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Let f: X — Y be a morphism of real analytic manifolds. To f one associates the
maps:

TX —» X xy TY —TY, (2.3)
T*X o X xy TV —=T*Y. (2.4)

One says that f is non-characteristic with respect to a closed conic subset A of T*Y if:
LA NN (T X) € X xy Ty Y. (2.5)
Let F € D*(X), G € D®(Y). Recall that:
(i) if f is non-characteristic with respect to SS(G), then:

SS(f'G) C'f'f71SS(G), (2.6)

(ii)) if f is proper on supp(F), then:
SS(Rf.F) C f' f~H(SS(F)), 2.7)

(iii) one has:
SS(FXIG) C SS(F) x SS(G). (2.8)

Finally, let us recall some microlocal constructions of [7, Chapter IX] that we shall use.
Let Ax and Ay be two closed conic subsets of T*X and T*Y, respectively, and
consider the diagram:

¢
™X f X Xy T*Y fx ™Y

™ 1| ™|

Xe—x—— 1 .y
Set for short:
fuAx) = f 7 (Ax), (2.9)
ffAy) = *f i (Ay). (2.10)

a) Assume f is proper on Tx X N Ax, (or equivalently, fr is proper on Ax). Using the
morphism:
Rfamn 'wx — 17 Rfiwx — 75 wy, (2.11)

we get the morphisms, for all j € Z:

fu:H,{x(T*X;W—le) — H,jf,,l(Ax)(X xy T*Y; 77 wy)
— H}“(Ax)(T*Y;‘irqu). (2.12)
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b) Assume f is non-characteristic for Ay (i.e., *f’ is proper on f-!(Ay)). Using the
natural morphism (see [7]):

R f'\ =t f~lwy — 1wy, (2.13)
we get for all j € Z, the morphisms:
B (TYmley) — Hi, (X xy T'Y ;77! flwy)
— ;,,(Ay)(T*X;’IT"IU.Jx). (2.14)

Note that the morphism (2.13) may also be obtained as follows. On a manifold Z, there
is a natural isomorphism: wglwz ~ wr+z/z. Hence we have the chain of morphisms:

Rfm'flwy =~ RS\ floryy
~  Rf\wxxyTy/x

— Wrex/x

o~ w}lwx.

¢) Using the natural isomorphism:
wx Kwy =~ wxxy,
we get the morphism:

X : H,{X (T*X; 7 wy) x HKY(T*Y;W_lwy)

— H{ oy (T X x Yimwxxy). (2.15)
d) Let Ap and A; be two closed conic subsets of T* X satisfying:
AgNA CTxX. (2.16)
Setting:
x, =0o

we get a morphism:
*,, 0 H,’;D(T*X;ﬂ'_lwx) x Hy (T*X;7 7 wyx) — Hf;tf_Al(T*X;w"lwx). (2.17)

Note that the morphism *, (which is not the cup-product) may also be defined as the
composite of:

Hi (T*X; 77 wy) x HE (T*X; 77 wx) (2.18)

jtk * *y. —1
— Higoon, T X xx T* X517 wx ® wx)

Jtk * Y. 1
:7) HA0+A1 (T X? Tf wx)

where &} is associated to the embedding T* X x x T*X e T*X x T*X and 6, to the
map "
"X xxT*X - T'X (256,6) - (z; 61+ &2)-
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3 Euler class of elliptic pairs

From now on, all manifolds and morphisms of manifolds are complex analytic. If X
is a complex manifold, we shall often identify X and X®, the real analytic underlying
manifold. We shall also identify (7*X)® with T*X®, as in [7]. We denote by dx the
complex dimension of X. Hence,

Since X is oriented, we identify the orientation sheaf oryx with the constant sheaf Cx,
and the dualizing complex wx with Cx[2dx].

We denote by Ox the sheaf of holomorphic functions on X, by Qx the sheaf of holo-
morphic dx-forms and by Dy the sheaf of rings of (finite order) holomorphic differential
operators on X. If Y is another complex manifold and if F is a sheaf of Oxxy-modules,
one sets:

FOdy) — ¢ 1oy %y,

and one defines similarly F(@x:0) or Fldx.dv)

We shall follow the notations of 7] for D-modules. In particular, Mod(Dx) denotes
the category of left Dx-modules, D(Dx) its derived category, and D%, (Dx) the full
triangulated subcategory of D(Dx) consisting of complexes with bounded and coherent
cohomology. Replacing Dx by D¥, we have similar notations for right Dx-modules. In
fact, if there is no risk of confusion, we shall often make no differences between right
and left D-modules and write Dx instead of DY.

In the sequel, we will often need to work with bimodule structures. Let k be a field.
Recall that if A and B are k-algebras, giving a left (A,B)-bimodule structure on an
abelian group M is equivalent to give M a structure of a left A ®, B-module. Using
this point of view it is easy to extend to bimodules the notions and notations defined
usually for modules. For example, we will denote by Mod(Dx|s ® Dxs) the category
of left Dx|s-bimodules and by D(Dx|s ® Dxjs) the corresponding derived category.

The characteristic variety of an object M of D?, (D) is denoted by char(M). This
is a closed conic involutive analytic subset of 7*X [10], and we have the formula (7,
Theorem 11.3.3]:

char(M) = SS(M ®£x Ox). (3.1)

As usual, one denotes by Bz x the simple holonomic left Dx-module associated to a
closed complex submanifold Z of X. We denote by f -1 £, X the operations of inverse
image, proper direct image, and external product for D-modules, and we denote by Dy
the dualizing functor. Recall that if M is a right Dx-module, then

Dx(M) = RHom, (M, Kx)

where
Kx = Qx[dx]| ®, Dx
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as a right Dx ® Dx-module. Notice the isomorphism of Dx ® D¥-modules:

8§Dx ~ By, (3.2)
which induces the isomorphism of DF ® D¥-modules:

8K x ~ BEX).

By this isomorphism, Kx is naturally endowed with a structure of a right § Dy x-
module and
6Kx = 6Qx[dx].

Let us recall the notion of an elliptic pair introduced in [14].

Definition 3.1 An elliptic pair (M,F) on X is the data of M € DE,(D¥) and
F € DY _.(X) satisfying:
char(M) N SS(F) Cc TxX.

The same definition holds for left Dx-modules.

Proposition 3.2 Let (M, F) be an elliptic pair on X. Then there are canonical mor-
phisms:

(i) &8RHomp (FOM,F @ M) — (F @ M)R(D'F @ DM) ®{;XXX Oxxx,
(i) F’ MXD'F ® DM ®1§Xxx Oxxx — bwx.

Proof: (i) Let D% denote the ring of infinite order holomorphic differential operators.
Sato’s isomorphism:
D = 6'0%¥ dx]

entails the morphism:

8§Dx — 0L dx]. (3.3)
Set for short:
P=FM.

Applying the functor ¢;'P ®qu‘le - to (3.3), then the functor RHom ¢ 1Dx (5P, "),
and using the isomorphism:

&6 RHomp, (P, P) ~ RHom -1, (5P, &6P),
we get the morphism:

8iRHomy, (P, P) — RHom 15 (03P, P @y O dx]).
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Then:

- - d
RHom -1p, (43P, a7 'P @1, Ok ldx])

~ RMom(q;'F, RHom ip, (45" M, 7P ©Lp, 0L [dx])
~ RHom(g;'F,PRIDxM &5 o, Oxxx)
~ R’Hom(q,;lF,’PQxM ®£x><x Oxxx)-

The micro-support of P X DxM QL Oxxx is contained in T*X x char(M), hence
= Dxxx

it intersects SS(g; ' F) inside the zero-section of T*(X x X). Using [7, Prop. 5.4.14],
we get the isomorphisms:

RHO’TTL((];IF,PQXM ®£Xxx Oxxx)
=~ ' DF® [’P_QXM ®£XXX OxXx]
e (FOM)R(D'F®DM)&;  Oxxx.

(ii) Set for short:
Ly =(FOM)R(D'FRDM)®  Oxxx (3-4)
Using the Dxx x-linear morphism:
FMERDF®DM — 6Kx,
we get the sequence of morphisms:

Ly — &Kx ®1l)'x)(x Oxxx
~  §Qx[dx] ®113xXx Oxxx
~ 6 [Qx [dx] ®£x Dx—_xxx ®F

6Qx[dx] ®{;x Ox
~  bwy.

6_10Xxx]

Dxxx

12

O

Using the morphisms defined in the preceding proposition, we can now construct
the microlocal Euler class of the elliptic pair (M, F'). Set:

A = char(M) + SS(F)
Then SS(Lx) C A x A* where Ly is defined in (3.4), and

supp(uaLyx) C A.
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By paraphrasing Kashiwara’s construction of the characteristic cycle of IR-constructible
sheaves, [6], we obtain the sequence of morphisms:

RHomp (FOM,FOM) — 6Ly
~ R?T*;LALX
R?T*RFA/,LALX
— Rm,RT ppabwx
Rm,RUAT " wy.

1R

Applying H°RI'(X;-), we find the morphism:
Homy, (F ® M,F @ M) — HR(T*X;7"'wx). (3.5)

(Recall that
HYT*X;7n wy) ~ HXX(T*X; Crex).)

Definition 3.3 Let (M, F) be an elliptic pair. The image of idpgas by the morphism
(3.5) is the microlocal Euler class of (M, F)

peu(M, F) € thar(M)+SS(F)(T*X§ 7 wx)
Its restriction to the zero-section of T* X is the Euler class of (M, F)
eu(M, F) € Hgpp mynsupp() (X3 wx)

If M is a left Dx-module, we define the microlocal Euler class of (M, F') as being that
of (Qx ®p, M, F). We also introduce the following notations. For M € Db, (Dx) and
F € D%_.(X), we set:

peuM) = peu(M, Cx),
peu(F) = peu(Qx, F).
4 The product formula
Let (M,F) be an elliptic pair on the complex manifold X. Set:
Ao = char(M), A, = SS(F).
Then:

peu(M) € Hy (T*X;7 'wy),
peu(F) € HR (T*X;n 'wy),
peu(M, F) € Hy 4 (T*X;7 ' wy).

The operation *, being that defined in §2, the aim of this section is to prove:
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Theorem 4.1 Let (M, F) be an elliptic pair. Then:
peu(M, F) = peu(M) *, peu(F)

The proof decomposes into several steps. In Proposition 4.2 below, and its proof, X
will denote a real analytic manifold. In this statement and its proof as well as in the
proof of Theorem 5.1, we shall not write the symbol “R” of derived functors, for short;
e.g. Hom(-,-) means RHom(:,-), 7. means Rm,, etc.

We denote by X; (i =1, 2, 3, 4) a copy of X and we write

(X xX)x (X xX)=X; x Xy x X3 x X,
For J C {1,2,3,4} and any set Z, we introduce the notation

51']‘5 H XgXZ—>HXg)<Z
eJ\{j} teJ

for the diagonal embedding sending (2¢)ecs\(j} to (%e)ees with z; = x;. Similarly, we
introduce the notation

6ijk3 H X[XZ—>HX1XZ
eeJ\{j,k} LeJ

for the diagonal embedding sending (z¢)ees\(jk} to (%e)ecs With z; = xx = ;. If there
is no risk of confusion, we simply write § for any of these morphisms.

On a product, we denote by ¢; the projection to X;.

We shall make a frequent use of the morphism of functors

55" — &; @ wy. (4.1)
Now, we assume to be given:
FeDb (X)), GeD"X), HeDX xX).

We set:
K =GXIDF
Ao =S8S(K), A,=SS(H)
A=Ti(X xX)NA;, i=0,1
We identify Tx (X x X) to T*X by the first projection. We shall assume:

Ko NAS C Tk, x(X x X). (4.2)
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Proposition 4.2 The diagrams below commute.

Hom(F,G) ® 8'H Hom(F,G ® §'H)
~ ¢y
S§K®6H Hom(F,8'(¢7'G ® H))
~ (2) §(K®@How§™)
T lpoka K @ mla uaH Tl aornpa(K ® H® W)

First, we state three lemmas whose proofs are easy verifications left to the reader.

Lemma 4.3 The diagram:

Hom(F,G) ® 8§ H Hom(F,G ® 6 H)

|

Hom(F,8'(¢7G ® H))

is isomorphic to:
7l8. 565 (K R H) —— 84,673,164, (K =1 H)
812814055 (K X1 H)
Note that the morphisms
5515!12 - 5!1251_31
or
51_315:!34 - 5!1461_31

are defined as follows. Consider a cartesian square:

Then we have the natural morphism:
prto Xy — pyo X!

defined by:
pupy A 2 AN — AFL
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Lemma 4.4 The diagram below commutes:

5!12653152—41(1( H)® WSG(’ — 51261451 (K.H)
¥y Jﬁ
Sio3(K X H) ® wx

Moreover, assuming (4.2), a, 3 and <y are isomorphisms.

Note that o is defined through:

-1 o @1 !
by BwWyx  — by

and
812654 = 815614,
and 7y is defined through:

-1

6565 @ WSt — 681565, ® wx.

Lemma 4.5 The diagram below commutes:

673 612654 (K X1 H) (KX H)

5!1234(K H) @ wx

Proof of Proposition 4.2: Diagram (1) obviously commutes. To prove that (2) com-
mutes, we decompose it in the diagram below, after applying Lemma 4.3:

K ®6H /6126“513 (KX H)
~ 1234(K-H)®WX 12 K®H®UJX 1)
Tl pota K @ T A pa H W*FA0+A1;U'A K RH® w® 1)

In this diagram, the sub-diagram (6) commutes by Lemma 4.5, the sub-diagram (5)
commutes by Lemma 4.4, the sub-diagram (4) commutes by (7, Prop. 4.3.5] and the
sub-diagram (3) obviously commutes. Hence the full diagram commutes. a

73



P. SCHAPIRA, ].-P. SCHNEIDERS

Proof of Theorem 4.1: We shall apply Proposition 4.2 with G = F, H = M
DM ®II;X)<X Oxxx (hence K = F[XIDF). Note that we have trace morphisms:

K — 6!&))(,

H — (S!qu.

Consider the diagrams:

Hom(F, F) ® Homp, (M, M) Homp (F@O M, F M)
(7)
Hom(F,F) @ §'H Hom(F,F ® §'H)
§K®6'H (8) §(K® Howd™)
T lpcua K @ Ml pa H Tl aosa ia (K © H @ wg?)
9)
Tl popbabiwx @ m.La pabiwx Tl Ao pa (bwx @ Swx @ wg™!)
W*FAOW_IWX ®7F*FA17F_1(UX W*FA0+A17T_IWX

Diagrams (7) and (10) obviously commute, diagram (8) commutes by Proposition 4.2
and diagram (9) commutes since it is obtained by applying the morphism of functors:

Tl aopa(5) ® mla ua(r) — mlagiatalt ® - @ wg™)

obtained from [7, Prop. 4.3.5] to K — &wx and H —- $iwx. To conclude the proof, it
remains to notice that the sequence of morphisms in the second column of the preceding
diagrams (7) and (8) is the same as the morphism

bHom(FQ M, FQ M) — K®H®w§"‘ =Ly

obtained in 3.2. Then, applying H°RI'(X;-) to the preceding diagram, we find the
commutative diagram:

Hom(F), F) ® Homp, (M, M) Hom,, (F®@ M, F® M)

H (T*X; 7™ wx) @ Hy, (T X;m 7 wx) Hi i, (T X7 wx)
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5 The direct image formula

Let f : X — Y be a morphism of complex manifolds, and let (M, F') be an elliptic pair
on X. Under suitable conditions that we shall recall now, it is proved in [14] that the
direct image f,(F ® M) belongs to D%, (Dy). The aim of this section is to prove that
in this situation, the microlocal Euler class of this image is the image by the morphism
(2.12) of that of (M, F).

Let us first recall the definition of chary(M), the relative characteristic variety of
M, (see [11, 14]). If f is smooth, one denotes by Dxy the sub-ring.of Dx generated
by the vertical vector fields, one locally chooses Mo, a coherent Dx|y-submodule of M
which generates it, and one sets:

chary(M) = char(Dx ®p, . Mo).

X|Y

One checks easily that this does not depend on the choice of My. In the general case
(f not necessarily smooth), one decomposes f by its graph as:

f:X—_»XXYT»Y

and one sets:
chary(M) = %'i; char, (4 M).

Let M € DB, (Dx) and let F' € DY __(X). One says that (M, F) is f-elliptic if

coh
char;(M) N SS(F) C T X.

Since chars(M) contains char(M), an f-elliptic pair is elliptic. Let D,.q(Dx) denote
the full triangulated subcategory of D2, (Dx) generated by the objects M such that
for all j € Z and all compact subset K of X, H'(M) may be endowed with a good
filtration in a neighborhood of K. If (M, F') is f-elliptic and moreover M belongs to
D?,.q(Dx), one says that (M, F) is a good f-elliptic pair. If moreover f is proper on
supp M Nsupp F, one says that (M, F) has f-proper support. It is proved in [14] that
if (M, F) is a good f-elliptic pair with f-proper support, then f (F ® M) belongs to
Dg,.q(Dy). Let Ag = char(M), A; = SS(F). We have the canonical morphism:

fut Hpon,(T* X577 lwy) — H?“(A0+A1)(T*Y;7r‘lwy).
Theorem 5.1 Assume (M,F) is an f-elliptic pair with f-proper support. Then:
peu(f,(F ® M)) = fu peu(M, F) = fu(peu(M) x, peu(F)).

Proof: 'The proof will decompose into several steps. For short, during this proof, we
will not write the symbol “R” or “L” of right or left derived functors. We introduce
the notations:

X=XxX, f=fxf:XxX—YxY.
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We denote by 6x the diagonal embedding X — X x X, and if there is no risk of
confusion, we write 6 instead of 6x. We also set for short:

Ly = (F® M)R(D'F®DM)e, Ox
Ly = f(F®M)BD(f,(FeM)) e, O

By the results of [14], we have the isomorphisms:

flx =~ HF@MERD'F©DME, Dx_y) 8, Oy
e [(F® M) (D'F©DM) ey, Oy

>~ Ly.

Consider the diagram:

fiHomp, (F® M, F ® M) Homp,, (f (F ®M),L(F®M))
(1)
fi6'Lx 8 filx 8'Ly
~ 2) ~ ®3) ~
o fui /' Taxptax Lx —— m Ly piay filx T LAy bay Ly
(4)
o fri' I Tax oy dwx —mTayhay ibwx ()
~ (6) mIaypaybifiwx T LAy oy bwy
T frl fI0A 7wy —— m a7 fiwx T LAy ™ wy

It is enough to prove it is commutative. In fact, applying H'RI'(Y;-) to it we get the
commutative diagram:

Homy, (F&M,F @& M) Homy, (f,(F @ M), f,(F ® M))

|

HR (T*X; 77 lwy) HR(T*Y ;77 wy).

Diagram (2) commutes since

f!(S! SN (5'ﬁ

is the restriction to the zero section of:

f?r!tfl_ll‘Ax R /“LAYf!
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(see [7, Prop. 4.3.4]).

Diagram (3) commutes since it is obtained by applying the natural transformation
7Ly tiay — 6' to the morphism fiLx — Ly.

Diagram (4) commutes. In fact, it is obtained by applying the morphism of functors:

Tofm' f ' Taxpiax — mTaybay fi

to Lx — fwx. Diagrams (6) and (7) obviously commute.
Using the base change formula for elliptic pairs of [14] we see that for P = Q =
F ® M the map

Hom -1p, (65" £,P: 47 £,Q @15, OFY ldy])
— Hom g, (63 £,Ps f21(47" Q @yo1p, O%5y ldv)))

appearing in Lemma 5.2 and Lemma 5.3 below is an isomorphism. Moreover, the
Kiinneth formula for elliptic pairs [loc. cit.] shows that the canonical map

f[(FOM)R f(D'F@DM)&p, Oyxy — H(F®MRID'F®DM®,  Oxxx)

is also an isomorphism. Hence, the conjunction of Lemma 5.2 and Lemma 5.3 below,
gives the commutativity of diagram (1). In the same way, Lemma 5.4 below shows that
diagram (5) commutes. O

Let f : X — Y be a morphism of complex manifolds. We will decompose f = fxf
as
XxXf_ xxy—f.yxy

5x[ 5[ 6y[

X =—— X f Y

Lemma 5.2 Let P and Q belong to DP(D¥). Then we have the canonical commuta-
tive diagram:

fiéxiHom, (P, Q) fHom 15, (5P, 47" Q @15, OFxX [dx))

|

Hom 15, (07 £,P; far(07 ' Q ®ycrpy, Oy ldv]))

|

HO’ITZ(IEIDY ((I;li!’P, {Il_li!Q ®q1—1’DY 0§9;<d)¥)[d1’])

by\Homp, (f,P, f,Q)

Proof: The kernel representation of differential operators induces the morphism of
bimodules:
6x1Dx — 0¥ ldx)
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From the relative integration map
ﬁlx!ﬂxuqx[dx] — Qxxy|x[dy],
and the Poincaré-Verdier adjunction formula, we deduce the bimodule morphism:
O%5x [dx] ®,ripy 92 Dx—y — O
Hence, we get the chain of bimodule morphisms:
0xDxy — 6x1Dx @4 1px ¢ 'Dx_y
O%xx [dx] @11y 65 Dxy
—  [O% ldy].

This chain of morphisms gives rise to the commutative diagram:

6x1Q ®‘12_le q;lpx_.y 6x1(Q ®'Dx Dx_y)

| |

- 0,dx . - - ! ~(0,d
4 'Q ®q;‘13x Og{xj‘()[dxl Oyyiox 92 "Dx_y —qQ ' ®q;11)x f;Og(x)):) [dy].

By adjunction of the tensor product, this gives us the commutative diagram:

6x1Q 6xiHom ;_1p, (Px—y, Q ®p, Px-vy)

| |

— 0,d — - ! ,a
471Q 8,1p, OXX ldx] — Hom 1/ 1p, (65 Dy, 471 Q @1, F1OX Y ldv]).

Applying the functor Hom ' Dx (¢z'P,-) to this diagram, we get the commutative
diagram:

6X!HomDX (Py Q) 6X!H0mf—1DY (P ®Dx DX—»Y; Q ®Dx DX—#Y)

|

_ _ d
Mx Hoqu—lf—lpy (92 WP Cpy Dx-y), a1 'Q @y ipy fiog?x)‘;) [dy])

where we have set for short:
- - 0,d
Mx = Homq,;lvx (6z'P,q7'Q @1y Og(xi? [dx])-

Applying f;, and using the Poincaré-Verdier adjunction formula, we get the commuta-
tive diagram:

fubxiHomp (P, Q) — &Hom ;_1p, (P ®p, Dx—y, 2 ®p, Dx-y)

| |

fuMx Mxy
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where we have set for short:

- - 0,d
Mxy = Hom 15, (5 £,P, 47" Q ®p-1p, OFKY)-

Finally, apply f2; and note that the diagram below is commutative:

fadHom s1p (P ®p, Dx—y, Q®p, Px—y) — byiHomp, (f,P, f,Q)

|

My

|

faMxy Hom g-1p, (a5 £,P, fr(07 ' Q 8y-1p,. OXY [dv)))-

Where we have set for short:
My = Hom - (‘lf’p _lfQ®— O(O’dY)[d )
Y g oy 2 L7 Iy ey 'Dy ZYxY OY])
O

Lemma 5.3 Let P and Q belong to D*(DY). Then, we have the canonical commuta-
tive diagram:

fiHom 1, (03P, 47" Q @1, O [dx]) F(QERIDP &y, , Oxxx)

| |

Hom 15, (43 1P, fr(47 ' Q ®p-1p, 0L (4y))) [,QRf,DP & Oyxy

| |

— - d
Hom 1p, (a3 £,Ps 47 ' £,Q @19y, OF5y ldv]) [,QEDS P &p, ., Ovxy

Proof: Notice that the diagram below is commutative:

A(QRDP) @pm DRZ.y ] —— filHom 215 (4P, QRIKX) @pze DRy ]

[,/ DP Hoqu‘Dr(qgli!P’_fj![(Q’CX) Spe Dy ®g;1Dx 4 'Dx-y))

LQ'HOTHDY(L’P,L/CX) Hoqu—xvy(q;lllP,LQL!’Cx)

fIQXIDf P Hoqu—lvy((]{lLP,LQICy)
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Thanks to the isomorphism

63 'Kx ®prip, Oxxx — O%X ldx),

and the canonical morphism
47
DE.y ®pe Oyxy — Oxxx,

an application of the functor -®D§pOyXy to the preceding diagram allows us to conclude.
O

Lemma 5.4 Let P belong to D®(DY¥). Then, we have the canonical commutative
diagram:

A(PRDP) @p,, , Oxxx) — fibxwx

| |

(£{PR/,DP) &p,,, Ovxy Sy fiwx
(LP QL'P) ®DYXY OYxY 5y;(¢)y

Proof: Recall that the dualizing complex for D-modules
Kx = Qxldx] ®y, Dx
has a canonical structure of right D§*-module and that
6Kx ~ §Qdx]
as D52-modules. Also recall that:

£ Kx = filKx @pe2 DE.y)

and that the trace of the duality morphism associated to f is given by the D$2-linear
integration morphism
b !IC x — Ky.

From the construction of this morphism (see [14]) it is clear that we have the canonical
commutative D&P-linear diagram:

6 f Kx —— f,6Kx
8Ky === 6Ky.
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In this diagram, the first horizontal arrow is deduced from the morphism
ﬁz;lsz — D X2-Y2,
the first vertical arrow is deduced from the duality trace map and the second vertical
arrow is deduced from the isomorphism
I!Q!Qx[dx] . é!i]QX[dx]
and the integration map
£ Qx[dx] — Qy[dy].

Let us consider the commutative diagram:

H(PRIDP @y DRE.y) — 6.f Kox — K
1

P& fDP
|

S\ PRIHomyp, (L'P,L!’Cx) —&f Kx

‘

i!p Hom'l)y (igp’ KY) I 5!’CY — 5]’Cy

By scalar extension, it gives rise to the commutative diagram:

[ (PRIDP) —— f8kx
af
[ PR f,DP (5.1)
l
.-’f.!P QLIP 6!’CY

Note that a is an isomorphism by the Kiinneth formula (see [14]).
Recall that for any holomorphic map f : X — Y and any right Dx-module M,
we have
M@y, Oy = filM &, Ox).
Also recall that the compatibility between the duality morphism for D-modules and the
Poincaré-Verdier duality morphism may be expressed by the commutative diagram

(£ Qxldx]) ®p, Oy —— Qy[dy] &, Oy

.

f(Qx[dx] &, Ox) ~
fwx wy.
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With these facts in mind, the conclusion follows easily by applying the functor
" @p,, Oy to the diagram (5.1). m|

As a particular case of Theorem 5.1, we get:
Corollary 5.5 Let M € Dgood(’Dx) and assume f is proper on supp M. Then:
peu(fM) = fu(peu(M).
Now apply these results to the map f : X — {pt}. We get:
Corollary 5.6 Let (M, F) be a good elliptic pair with compact support, i.e.:
(i) M € D}, 4(Dx) and F € Di_.(X),
(ii) char(M)NSS(F) C TxX,
(iii) supp M Nsupp F' is compact.

Then the complex RT'(X; F @ M ®{;x Ox) has finite dimensional cohomology and its
Euler-Poincaré index is given by the formulas:

X(RE(X;Fo M@k, 0x) = [ ea(M,F)
[ (hea(A) , peu(F))|x
= /T‘X peu(M) U peu(F).

Proof: The first formula follows from Theorem 5.1, the second one follows from The-
orem 4.1, and the last one from the equality:

Jro 28U = O s M,

which holds for any \; € HXJ, (T*X; 7 'wx),j = 0,1 and whose proof is left to the
reader. m]

6 Inverse image and external product formulas

Let f : X — Y be a morphism of complex manifolds and let (N, G) be an elliptic pair
on Y. We shall first study its inverse image by f.

Definition 6.1 We shall say that f is non-characteristic for the elliptic pair (N, G) if
f is non characteristic with respect to the set char(N) + SS(G) (see (2.5)).

Proposition 6.2 Assume f is non-characteristic for the elliptic pair (N,G). Then
(f~'W, f71G) is an elliptic pair in a neighborhood of f~'(supp N Nsupp G).
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Proof: The hypothesis implies that f is non-characteristic with respect to A and with
respect to G in a neighborhood of supp N N supp G. In particular, i_lN will be Dx-
coherent on a neighborhood of f~!(supp N N supp G).

Let (z;¢) € char(i_lN)ﬂSS(f‘lG), and let y = f(z). Since f is non-characteristic
for N and for G, one knows [5, 7] that there exist (y;70) € char(N) and (y;m) € SS(G)
such that ¢f'(z).m; = € for 7 = 0,1. Hence *f'(z).(mo — m) = 0 which implies by the
hypothesis that 7o — 71 = 0, hence 1o = n; = 0 since (N, G) is elliptic. m]

In view of the above proposition and Theorem 4.1, in order to calculate the microlo-
cal Euler class of ( _f_'l./\/' , f71@G), it is enough to calculate separately peu( i_l./\f ) and
peu(f~'G). As we shall see below, the microlocal Euler class of an R-constructible
sheaf is nothing but its characteristic cycle, and the functorial properties of this cycle
have been studied in [7], where it is proved in particular that it commutes to inverse
image (and external product). Hence it is enough to calculate the microlocal Euler
class of the inverse image (and external product) of coherent D-modules. Notice that
such a situation did not appear when studying direct image, where the result obtained
when treating simultaneously both M and F' was much stronger than if we would have
assumed f proper on supp M and on supp F'.

Let f: X — Y be a morphism of complex manifolds. We shall use the notations
(2.12), (2.13), (2.15) of §2.

Theorem 6.3 Let N € D2, (DY) and assume f is non-characteristic with respect to
N. Then:
peu(f~'N) = fH(pueu(N)).

Proof: The proof is similar to that of Theorem 5.1, and we shall not give here all
details. )
Set f=(f.f): X x X — Y x Y, and decompose f as:

Xxx_ N yux_f yyy
5x[ 6] Sy
Ay —~ A f A,

Set:

LY = NQN ®£\’X\' OYX)'v
Ly = [TNRDfINQL  Oxxx,
Ay = chatN A = f7'Ay,Ax = f*Ay.

Since f is non-characteristic for A, the natural morphism:
-1 —1 (0,dy-) -1 -1 (0,dx)
fr RHom 15 (63N, Oyyy’) — RHom -1p (g3 [T N, Oyix')

is an isomorphism.
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On the other-hand, the natural f;!Dy-linear morphism:
Rfu(gr 'Dy—x ®qu—le Oxxx[dx]) — Oyxx|dy]
defines the morphism:
R0 N ®fr1ycip, @1 Dy—x ®rp, Oxxxldx]) — air'N &1y, Ovxxldy],
hence the morphism:
0 [TV @ap, Oxxxldx] — filar'V @ ap, Oyxx)ldy]

and this morphism is an isomorphism when f is non-characteristic for A'. Combining
these two isomorphisms, we get the isomorphism:

fifitLy = Lx

Then, as for Theorem 5.1, the proof is decomposed by proving the commutativity of
the diagrams below. Until the end of the proof, we shall not write the symbols “R” or
“L” of derived functors, for short.

f_l'HomDY(N,N) Homyp, (i—lN,i—lN)

Fe Ly — Ly —~ i Ly ———— 8\ Lx

~ N‘ NI ~

Tt f'\ i Ay oy Ly — T f\Capafy 'Ly —=— m.Taxpax fifs 'Ly ——— mTaxpaxLx

1 |

Tt f fr 'y oy Sywy = Mlapabif twy = mlax pax6x1f " 'wy @ wx/y = Tl Ay oy Sx1wx

(]

The commutativity of the first diagram will follows from Lemma 6.4 and 6.5 below,
and that of the last one from Lemma 6.6 below. Since their proofs follow the same lines
as for the direct image, we shall omit them. The other diagrams obviously commute.

Note that in lemmas 6.4, 6.5, 6.6 below, the reversed arrows will become isomor-

phisms when assuming that M and A belong to D2, (D¥) and f is non-characteristic.
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Lemma 6.4 Let M and N belong to D*(DY). Then the diagram below commutes.

f Hom p, (N, M) —— 718y Hom -, (45 "N, a7 ' M @ cap,, O [dy])

8 f3 " Hom -1p, (65N, a7 M @1, OV (dy])

~

_ _ - d
S fL s Hom i, (65N, 47 M @1, OF (dy )

S fiHom -1p, (a5 f N, a7 M @cap,, OF)(dy])

’HomDy(i'lN,i‘lM) —*él}(Hqu;IDx(QEII_IN, T fTIM ®-1py O g?:j‘()[d D

Lemma 6.5 Let M and N belong to D®(D{¥). Then the diagram below commutes.

F8Hom i, (45N a7 ' M @i, OPdy]) —— fT16y MRIDN &y, Oy xy

813 " Hom o, (a7 N, 47 "M @1, OV [dy]) —— 6'f ' MBIDN @, Oyxy

~ ~

4 ' M&ip, OF ldy]) — 6 fify MEIDN @, , Ovxy

8 fify "Hom -1 (a5 ' N,

5!Xf{Homq2_,Dx(q;1[w, M ®,-1Dy o2 ) (dy]) « 8 fiM KDf'N &, Oyxxldy/x]

S Hom 1p, (02 7N a7 ' [T M@y, OREX1dx]) «— £ MBIDS N @p,, Oxxx

Lemma 6.6 Let N belong to D*(D). Then we have the commutative diagram:
[TNRIDSTN &, Oxxx

fifs'N®IDN &, Oyxy

|

T I NRIDN @y, Ovxy ® wx)y

|

Sxif lwy wyyy dxwx

85



P. SCHAPIRA, J.-P. SCHNEIDERS

Now let M € D, (Dx) and N € D2, (Dy).
Theorem 6.7 One has:
peu(MRIN) = peu(M) X peu(N).
Proof: We set:
Lx = MRDM@®}  Oxxx,

Ly = NQN@éYx}* Oy xy,
Lxxy = MEN)X(DMRDN) e}

DX xYxXXY OXxYxXxY:

Ax = char(M), Ay = char(N),A = Ax x Ay.

Then the diagram below obviously commutes, which completes the proof.

Hom p,, (M, M) R Homp, (N, N) Homyp, . MRIN, MEIN)

8% Lx X8 Ly §'(Lx X Ly) 8'Lxxy

~ ~ ~

Tl axbax Lx K7 laypay Ly — mlapa(Lx X Ly) — mlapaLxxy

Telax tax dwx R T LAy pay bwy —» T, DA padi(wx Kwy) — 1. Capabwxxy

~ ~ ~

LAy T wx R T Lay 77wy — 1 DA™ Hwx Rwy) =5 m A lwxxy

7 Examples

7.1 Euler class of IR-constructible sheaves

Let F be an object of D%_.(X), X being still a complex manifold. We shall prove that
ueu(F) is nothing but CC(F’), the characteristic cycle of F' constructed by Kashiwara
in [6], (see also 7, Chapter IX]). Recall that CC(F’) is obtained as the image of idp €
Hom(F, F) in HY(T*X; 7 'wx), (where A = SS(F)), by the sequence of morphisms:
RHom(F,F) <~ §(FXIDF)
« Rn,RUApa(FXIDF)
— RmRUpppbwx
~ RmRI\7m'wy.
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Proposition 7.1 Let F € D%_.(X). Then:
peu(F) = CC(F)
Proof: We start with the commutative diagram:

5;(Dx — 6;R’HomD (Qx,ﬂx)

|

CxXRwx — QXQQX®,§’Xxx Oxxx

Tensoring by ¢i 'F, then applying RHom(g;'F,-), we get the commutative diagram:

§RHom(F,F) —=  &§RHom (F ® Qx, F ® Qx)

FXIDF — F®QxD,F®QQX ®£x><x OXXX

Set
H=F@QOxRD'F®DAx®F  Oxxx

We have a commutative diagram:

FXIDF — H

| l

610.))( = 5;wx.
Hence we have a commutative diagram, in which A = SS(F'):

RHom(F, F) = RMomy, (F ® Qx, F ® Qx)

8'FXIDF — 8'H
RW.RI‘A/LA(NF DF) —= er,,RF,:pAH
Rm RUpApuabwx = Rm,RTAbwx
R, RT\m lwy = R RU AT wy.
The result follows by applying the functor H°RI'(X;-). m|

7.2 Euler class of D-modules and £-modules

Let us first recall the construction of the microlocal Euler class of a coherent Dx-module,
which of course, is a little easier than that of an elliptic pair.
Let M € D%, (Dx), and let A = char(M). The isomorphism of (Dx, Dx)-bimodules

~ R0dx)
Dx =~ BA|X)§<X

87



P. SCHAPIRA, J.-P. SCHNEIDERS

gives rise to the chain of morphisms:

RHomp (M,M) = RHom -y, (45 M,q7'M @1p, BIR)
~ (MXIDM) ®£XXX Bajxxx[—dx]
— Rm.RTAua(MX DM ®{;XXX Oxxx)

— R?I',.RFA/LA(Sng
Rm. RTAT  wy.

R

This defines the morphism:
Homp, (M, M) — HR(T*X;7"'wx)

and since this morphism is obviously the same as that constructed for elliptic pairs in
83, peu(M) is the image of id 4.

Let Ex denote the sheaf on T* X of finite order microdifferential operators of [10] (see
also [11] for a detailed exposition). We shall adapt our construction of the microlocal
Euler class to the case of coherent £x-modules.

One denotes by Cajxxx the simple holonomic £xxx-module associated to the di-
agonal embedding A — X x X, the "microlocalization” of the Dx-module Bajxxx
encountered above. Isomorphism (3.2) entails the isomorphism of (€x, Ex)-bimodules:

K:)
Ex ~ Cyx- (7.1)

Consider a coherent right £x-module A defined on an open subset U of T* X (or more

generally an object of the derived category D2, (E¥|v)).- One can adapt to this situation

the construction of the microlocal Euler class of elliptic pairs. Set
QN = RHO’YTLEX (N, gx ®7"_10X ‘ﬂ'—lﬂx[dx])
and let A = supp . Morphism (7.1) gives rise to the chain of morphisms:

RMomg (N\N) =~  RHom 1z (65" N,q7'N @15, CAR)
~ NXDN ®5Lxxx Caxxx[—dx]
« RIO\WNXDN ®5Lx><x Calxxx[—dx])

— RIA(CEH), ®F

i CAIXxX)

1

Rz twy.
Applying the functor H*RT'(U;-), we obtain the morphism:

Hom, (N,N) — HR(U; 7" wx). (7.2)
Definition 7.2 Let N' € Db, (£¥|v). The image of idy by the morphism (7.2) is

called the microlocal Euler class of A" and is denoted peu(N).
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This definition is clearly compatible to that we have made for D-modules, which
implies that if U is open in T*X and if M belongs to D, (Dx), then:

peu(€Ex ®,1p, ' Mly) = peu(M)lu. (7.3)

Remark 7.3 Let £F denote the sheaf of microlocal operators constructed in [10]. Re-
call that it is defined as:

ER = ua O [dx). (7.4)

If N € D&, (EF|v), we set

NR =N @, EX.
Then replacing Cajxxx by cgﬁ xxx in the above construction, one sees it would be
possible to define directly the microlocal Euler class of N'® for N perfect. Using the
isomorphism

(2dx) L (2dx) L R
CAlXXX Oexnx Cajxxx = CA(XxX Oe sy x CAlXxX7

one gets that peu(N) = peu(N®). In particular, yeu(N') depends only on N'E.

7.3 Euler class of holonomic modules

Let N be a holonomic £x-module defined on an open subset U of T*X, and let A
denotes its support (i.e., its characteristic variety). Then A is a closed complex analytic
Lagrangian subset of U, conic for the action of €* on T*X and there is a complex conic
smooth submanifold Ag C A which is open and dense in A. Let Ag = |, Aq, the A’s
being locally closed smooth and connected.

On each A,, the Ex-module N has a well-defined multiplicity m,, defined by Kashi-
wara in [5]. Moreover, each A, is closed in

U':=U\(A\]]A)

and defines a Lagrangian cycle [A,] in U’. Since U \ U’ has real codimension at least
two in U, the sum Y, mq[A,] defines a Lagrangian cycle on U supported by A. Let us
denote it by CC(N). Then:

CCWN) € H3(U; n~lwx).
Proposition 7.4 Let N be a holonomic £x-module. Then:
peu(N) = CC(N).

Proof: Since both terms of the formula are Lagrangian cycles, it is enough to prove the
result at generic points of A. Hence we may assume A = T3 X N U, where Z is a closed
complex submanifold of X. Since peu(N) depends only on N'® (see Remark 7.3), we
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may assume that A is a finite direct sum of sheaves Czx oy Qx on U. Hence, it
remains to prove the formula:

peu(Bzx) = [Tz X] (7.5)

This equality is a corollary of our preceding results. In fact, consider the embedding
i : Z — X and the projection a : Z — {pt}. Then Bzx = 1,(0z), and Oz =
a~(Cpty). Since the Lagrangian cycle [T3X] is the direct image by the map i of the
inverse image by a of the Lagrangian cycle € on the manifold {pt}, the result follows
from Theorems 5.1 and 6.3. m]

Corollary 7.5 Let M be a holonomic Dx-module. Then
peu(M) = peu(M ®1§X Ox).

In other words, the microlocal Euler class of a holonomic Dx-module is the same as
that of the complex of its holomorphic solutions. (Recall that this last complex is
constructible by [4].)

Proof: The result follows from Proposition 3.2 and the equality
CC(M) = CC(M &5, Ox)

proved in [5], but it can also be obtained directly, by considering the commutative
diagram below.

RHomg, (M, M) RHomp, (M ®F Ox,M @} Ox)

| |

8 (MERIDM@F  Oxxx) —=—8(M@F, Ox)E (DM @F Ox))

| |

Qx[dx] ®£x Ox = wx

7.4 Euler class of O-modules

Consider a coherent Ox-module F. To it, one can associate the right coherent Dyx-
module F ®,,, Dx. We shall show that the Euler class of this Dx-module is the natural
image of a cohomology class which belongs to ;{f;,p #(X;Qx). For that purpose, let us
introduce the following notations.

Let F and G be two Ox-modules. We set:

Do]'. = RHUInoX(]:,Qx[dx]),
FXRloG = Oxxx Qpygoy (FXG).
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Now assume F is Ox-coherent and consider the chain of morphisms:
RHomy (F,F) — §(FRoDoF) — F ®; DoF — Qx|dx].
This defines:
Hom o, (F, F) — Hgipp 5(X; Qx). (76)

Definition 7.6 Let F be a coherent Ox-module and let S denote its support. The
image of idr in HX(X;Qx) by the morphism (7.6) is called the holomorphic Euler
class of F and denoted by eup(F).

The natural morphism Qx[dx] — wx defines the morphism:
a: H¥(X;Qx) — HY(X;wx). (7.7)

Proposition 7.7 Let F be a coherent Ox-module. Then eu(F ®,, Dx) is the image
of eup(F) by the morphism (7.7).

Proof: We start with the commutative diagram:

6g0x 6!DX

|

Ox & oDoOx —— (Dx ®DDx) @ p Oxxx-

Applying the functor ¢; ' F oy then the functor RHom 7'0x (3 F,"), we get the
commutative diagram:

s RHom, (F,F) sRHomp, (F ®p, Dx,F ®p, Dx)

FXoDoF (F ®o, Dx) X D(F &y, Dx) ®£XX Oxxx-

Set
H = (¥ ®y, Dx)X D(F &y, Dx) ®1§XXX Oxxx.

Then
H ~ (F @, Dx) K D(F o, Dx) @p _n Oxxx-

On the other hand, we have the commutative diagram:

' FRloDoF —— 6" 'H

Qx [dx]

wx.
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Hence, we get the commutative diagram:

RHom g, (F,F) —— RHomy, (F ®y, Dx,F @, Dx)

| |

§'(FR oDoyF) 6‘JH
Qx[dx] wx
which completes the proof. m]

Remark 7.8 The holomorphic Euler class of a coherent Ox-module is known for long,
and O’Brian, Toledo and Tong [9] have proved that this class can be obtained as the
term of degree dx of the product of the Chern character of F by the Todd class of X.
See §7 below for further comments on this point.

Remark 7.9 One should not confuse the holomorphic Euler class eup, (-) and the
Euler class eu(-). For example, a(euo, (Ox)) = eu(Dx) and eu(Ox) = eu(Cx). If one
chooses X = P!((), it follows from Theorem 5.1 that:

/X eu(Ox) = 2, (7.8)
/Xequ(OX) = 1. (7.9)

This example also shows that the diagram below is not commutative.

Cx Ox

N

wx <—-Qx[dx]

Here, the first and second vertical arrows are defined by
6Cx — Cx Xwy,

and
60x — Ox XoDoOx,

respectively, as in the proofs of Propositions 3.2 and 3.8.

Remark 7.10 Let F be a coherent Ox-module and denote by S its support. Then
char(F @, Dx) =n"'S, hence:

peu(F ®y, Dx) = 7" eu(F ®y, Dx),
where 7* is the isomorphism:

H3(X;wx) == Hyas(T*X; 17 wx).
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8 A conjectural link with Chern classes

Let X be a complex manifold, Z a complex analytic subset and denote by Kg*(X) the
Grothendieck group of the full subcategory of D2, (Ox) consisting of objects supported
by Z. In this section we shall assume to be constructed a local Chern character:

chz : K§'(X) — & H7 (X; Cx)
j
such that if we define the local Euler character by the formula:
euz(}") = Chz(f) U tdx(TX)

(where U is the cup product and tdx(-) is the Todd class), then the local Chern character
is compatible to external product and inverse image and the local Euler character is
compatible to external product and proper direct image, this last point being what
we shall refer as the Grothendieck-Riemann-Roch theorem. Such a construction does
exists in the algebraic case (see [2]). In the analytic case, one can construct chz(-) after
shrinking X (see [3]). More precisely, let X’ be an open relatively compact subset of
X. Then one defines the natural morphism:

p: KF'(X) — K77 (X')

by realification. If F is a bounded complex of coherent Ox-modules, we associate to it
the complex F® := Ayr ®o, F, where Axr denotes the sheaf of real analytic functions
on the real analytic manifold X® underlying X. Applying Cartan’s theorem ”A” (on
the closure of X’) we see that F® defines an element of Ky?(X'). Unfortunately, the
Grothendieck-Riemann-Roch theorem (with supports) has, to our knowledge, never
been written in this case. Hence the results of this section should be considered as
conjectural, or should be stated with suitable modifications (e.g. assuming we work in
the algebraic category).

Now consider a left coherent Dx-module M endowed with a good filtration and
whose characteristic variety is contained in a closed conic analytic subset A of T*X.
Let gr(M) denote the associated graded module and set:

gr(M) = Or-x Or—1gr(Dx) W_IQT(M)-

Note that the element op(M) of K§*(T*X) defined by gr(M) locally depends only on
M, not on the choice of the good filtration [5].

Let f: X — Y be a morphism of complex manifolds. We shall use the notations
introduced in §2, in particular in (2.9), (2.12), (2.13) and (2.15).

First consider a closed conic subset Ay of 7*Y, and assume f is non-characteristic
with respect to Ay (i.e. *f’ is proper on f-!(Ay)). Then the morphisms:
fr: X’;(T*Y) — K;;IAX(X xy T*Y),

e
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and
tfi . K‘;:—llAy(X Xy T*Y) — ?L‘(Ay)(T*X)

are well-defined and if NV is a left coherent Dy-module whose characteristic variety is
contained in Ay, it follows from Kashiwara [5] that:

“fufrony W) = opean (f7'N). (8.1)
Similarly if f is proper on Ax NTxX (i.e. fr is proper on ‘f'~!(Ay)), then:
KR (T X) — Koy ay (X xy T*Y)

and
Frot K& py (X xy T*X) — K&, (T*Y)

are well-defined, and it is shown in Laumon [8] that if M is a right good Dx-module
whose characteristic variety is contained in Ay, then:

fri fonx (M) = 01,80 ([ M) (8.2)

Finally one shows easily that:
oax M)R oy (N) = oaxsay ( MEN). (8.3)

Using the Riemann-Roch-Grothendieck Theorem at the level of cotangent bundles,
Laumon (loc.cit.) has deduced from (8.2) a formula which computes the Chern charac-
ters of o, (ax)(f, M) from that of oa, (M). In order to get a class which behaves well
both under direct and inverse images, we introduce the following:

Definition 8.1 Let M (resp. N) be a right (resp. left) coherent Dx-module endowed
with a good filtration and whose characteristic variety is contained in a closed conic
analytic subset A of T* X. We define the microlocal Chern character of M and N along
A as:

pcha(M) = cha(aa(M)) U n*tdx (T X),
pucha(N) cha(oa(N)) U m*tdx (T* X).

We denote by pch) (M) the component of pchy (M) in HA(T*X; Crex), and similarly
for V.

This definition is motivated by the two following statements.

Proposition 8.2 The microlocal Chern character of the right Dx-module M ®o, §)x
is the microlocal Chern character of the left Dx-module M. In other words, if M is a
left Dx-module:

puchp (M Rox Qx) = p,chA(M).
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Proof: Recall that if F is a complex vector bundle of rank d, then denoting by c;(+)
the first Chern class:

tdx(E*) = e E)Utdy(E),
ch(A’E) = 2B,

Choosing E = TX, we get:
tdx (T*X) = ch(Qx) Utdx (T X),
hence:

cha(0A(M By, Ux)) UT*tdx(TX) = chp(oa(M))Un*ch(Q2x) Ur*tdx(TX)
chp(oa(M)) U n*tdx (T* X).

O

Theorem 8.3 Let M (resp. N) be a coherent Dx-module (resp. Dy-module) endowed
with a good filtration, and let Ax (resp. Ay) denote its characteristic variety.

(i) Assume f in non-characteristic for N'. Then:

F(uchay (N)) = pchguay) (F7'N).
(ii) Assume f is proper on supp M. Then:

fuluchay (M)) = uchg,ay)(f M)

(iii) One has:
pchpy (M) B pcha, (N) = pchayxay M N)

Notice that in the above statements (i) and (ii), M or N can either be a right or a
left D-module (of course, in (iii) they need to be of the same type). This follows from
Proposition 8.2 since

§ M &, 2x) = (M) @, Oy,
and similarly for inverse images.

Proof: In the course of the proof we shall sometimes use the following notations: if W
is a manifold, we set for short

td(W) = tdw (TW).
Then recall that if p: E — W is a complex vector bundle on W, one has:

td(E) = tdg(TE) = p*tdw (E) U p*td(W),
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which follows from the exact sequence of vector bundles on W:
0—p'E—TE —p'TW —0.

Also recall the diagram associated to f:

t el f
T*"X —— X xy T'Y L T*Y

N

(i) We may assume N is a left Dy-module. Using (8.1) and the Riemann-Roch-Grothen-
dieck theorem applied to the map ¢ f’, we obtain:

Il

chynay)Osuay) (fTN) U td(T* X) chuan) ' f' 1 froay (N)] U td(T* X)

= f\[frchayor, W) Utd(X xy T*Y)].
Hence:

Ch,fp(AY)O'fp(Ay)(f_lN) Urxtdx (T X) Unktdx(TX)
L\ [frchayon, V) U n*tdx (TX) U * f*tdy (T*Y)]
L\ frlchayony N) U tdy (T*Y)] U nictdx (T X)

Il

Il

and the result follows since tdx(T'X) has an inverse.
(ii) We may assume M is a right Dx-module. Using (8.2) and the Riemann-Roch-
Grothendieck theorem, we get:

chy,(ax)0 5, (£,(M) Utd(T*Y)) chyax) [fm' Foax (M) Utd(T*Y)

fﬂ![tfl*ChAXO'Ax (M) U td(X Xy T*Y)]

Il

Hence:

chy,(ax)0 ruax) (M) U mytdy (T*Y ) Ui tdy (TY)
= fm [tf,*ChAx OAy (M) U W*tdx(TX) U ﬂ*f*tdy (T*Y)]
= fu' [ chaxoay (M) Unitdx (TX)| U mytdy (T*Y)

and the result follows since tdy (T*Y) is invertible.
(iii) follows from (8.3) and the fact that ch(-) commutes to external product. O

As a corollary we get that if M and N are two Dx-modules with characteristic variety
contained in Ag and A; respectively, and if Ao N A; C T%X, then:

I‘LCh(Ao+A1)(M ®£x N) = pcha, (M) *u pcha, (N)
In view of Theorem 8.3, the microlocal Chern character has the same functorial prop-

erties as the microlocal Euler class.
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Let us come back to the situation of Definition 8.1 and set:
ca = codimg A.

It is clear that: _
uchi(M) =0 for j < 2ca.

Proposition 8.4 The component of degree 2c, of the microlocal Chern character of
M, that is, uch3* (M), is the characteristic cycle of M along A. In particular if M is
holonomic:

pchiy™ (M) = peu(M).
Proof: Since pchl, (M) is zero for j < 2ca,we have
pehyt (M) = [cha(oa(gr(M))PP,

and it is well-known that the term on the right-hand side is the analytic cycle on A of
the Or+x-coherent module gr(M), that is, the characteristic cycle of M. m]

Now we make the following conjectures:

Conjecture 8.5 (i) uchi (M) =0 for j ¢ [2ca,2dx],
(ii) pchi™ (M) = peu(M).

By Proposition 8.4, Conjecture 8.5 (ii) is true for holonomic Dx-modules. Moreover
it follows from Remark 7.10 and the work of O’Brian-Toledo-Tong [9] that Conjec-
ture 8.5 is true for induced Dx-modules, i.e., for modules of the type F ®,, Dx, F
being Ox-coherent.

Example 8.6 Let M be a compact n-dimensional real analytic manifold, X a com-
plexification of M, M a right coherent Dx-module, elliptic on M. By Corollary 5.6,
we have:

x(R[(M; M ®ID‘X Ox)) = /T.Xueu(M) U peu(Cpy).

Denote by o the zero-section embedding M — Ty, X and by j the embedding T3, X —
T*X. Since Ty X N char(M) is contained in M, we get:

/T.Xueu(M) U peu(Cyy) = /T Xj*ueu(M) = /M oxyg* neu(M).

M

Now assume Conjecture 8.5 (ii) is true. We get, with A = char(M):
X(RD(M; M @f Ox) = [ 03,i*lch(oa(M)) Un'tdx(TX)]
= [ ouli*ch(oa(M))] Utday (TM®).

This is the classical Atiyah-Singer index formula.
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A Coherence Criterion for Fréchet Modules

JEAN-PIERRE SCHNEIDERS

1 Introduction

In the literature, one finds essentially two general criteria to get the finiteness of the
cohomology groups of complexes of locally convex topological vector spaces. They are

(a) If w : G — F" is a compact morphism of complexes of Fréchet spaces then
dim H*(F") < 400 for any k € Z such that H*(u') is surjective.

(b) If w : G- — F" is a continuous morphism between a complex of (DFS) spaces
and a complex of Fréchet spaces then dim H¥(F") < +oo for any k € Z such that
H*(w) is surjective.

The first of these criterion was used by Cartan-Serre [3] in order to get the finiteness
of the cohomology groups of a compact complex analytic manifold with values in a
coherent analytic sheaf. It was also used by Kashiwara [5] to get the constructibility
of the solution complex associated to a holonomic differential module. The second
criterion was proved by Bony-Schapira in [2]. Both are extensions of the Schwartz
compact perturbation theorem.

In 1973, Houzel [4] has extended criterion (a) to complexes of modules over some
sheaf of bornological algebras A; the finiteness of the cohomology groups being replaced
by the pseudo-coherence of the complex in the sense of SGA6 [1] (this is the only
cohomological notion of finiteness which works well for a non necessarily coherent base
algebra).

More precisely, Houzel assumes that A is a sheaf of bornological algebras which is
complete and multiplicatively convex. The fibers of A are also assumed to be separated
and to possess the homomorphism property. Then, working with complexes null in
degree > b, he shows that in order to get the a-pseudocoherence of a complex M of
complete bornological A-modules it is sufficient to find a sequence of 7 > b—a + 1
complexes of complete bornological A-modules and bounded a-quasi-isomorphisms

M, —s Myg — oo —s M
Ur Ur_1 w1
such that u; is A-nuclear in degree > a and that the fibers of Mf are separated and
possess the homomorphism property.

Using this theorem, Houzel shows that it is possible to give a simple proof of
Grauert’s coherence theorem. This theorem has also been used by Houzel and Schapira
to give a criterion for the coherence of direct images of a coherent D-module.
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In [7], we found a situation where Houzel’s result was not sufficient to solve the
problem. What was needed was a generalization of the criterion (b) above. It is that
extension which is the subject of this paper. It is contained in the following theorem.

Theorem 1.1 Let X be a topological space with countable basis endowed with a multi-
plicatively convex sheaf of Fréchet algebras A. Let (M;)i;en, M be complexes of Fréchet
A-modules null in degree > b, let uiy1; : M; — M, be A-nuclear morphisms and
let
u:limM; — M
ieN

be a continuous morphism of A-modules. Assume that u is an a-quasi-isomorphism
and that any x € X has a fundamental system of open neighborhoods on which M and
each M; has enough sections. Then the complex M is a-pseudo-coherent over A.

We refer the reader to §4 for definitions of the various concepts used in the previous
statement. Note that the main difference with Houzel’s results is that we only need one
quasi-isomorphism to get the pseudo-coherence. This is important since, in practice, it
is much more difficult to build quasi-isomorphisms than nuclear maps. For example,
if X, S are complex analytic manifolds and U CC V are two Stein open subsets of X
then the restriction map

Tx(Ovxs) — Tu(Ovxs)

is Og-nuclear.

The proof of this theorem will be found in §4. It has essentially the same structure
as the proof of Houzel’s finiteness theorem [4]. Despite our much weaker hypothesis,
a proper use of Baire’s theorem allows us to get the pseudo-coherence of the target
complex.

2 Nuclear Perturbation Theorem

The basic finiteness tool used in this paper is Houzel’s nuclear perturbation theorem.
For the reader’s convenience, we will give a quick proof of this result for Fréchet modules
over a multiplicatively convex Fréchet algebra. We will avoid Houzel’s bornological point
of view since it is not important for our application (we are in a Fréchet framework).
To fix the vocabulary, we first give some definitions.

Definition 2.1 A Fréchet algebra is a Fréchet space endowed with a continuous (-

bilinear multiplication
cAxA— A

which is associative and admits a unit. We do not assume A commutative.
A Fréchet algebra is multiplicatively convez if any bounded subset B of A is absorbed
by an absolutely convex subset of A stable for the multiplication law.
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A (left) Fréchet module over a Fréchet algebra A is a Fréchet space M endowed with
a structure of (left) A-module in such way that the action

cAXM—M

is continuous.

A morphism of Fréchet A-modules is a continuous A-linear map. We denote by
L4(E, F) the set of morphisms of the A-module E to the A-module F'. This is naturally
a @-vector space. We turn it into a locally convex topological vector space by endowing
it with the semi-norms

gp(u) = sup q(u(r))
z€EB

associated with the bounded subsets B of E and the semi-norms ¢ of F. With this
topology La(FE, F') is complete.
A morphism u : E — F between two Fréchet A-modules is A-nuclear if

+o0
u(z) = 2_:0 A (€™, T) fm

where
e )\, is a summable sequence in C,
e e¢™ is a bounded sequence in L4(E, A),
e f.. is a bounded sequence in F'.

We denote by N4(E, F') the @-vector space of A-nuclear morphisms from F to F.
A morphism u : E — F' between two Fréchet A-modules is A-finite if

w(@) = 3 (€™2) fn

m=0

where
€,...,e? € Lyu(E,A)

fo,..onfp € F
In the rest of this section, A denotes a Fréchet algebra.

Proposition 2.2 Let u : E — F, v : F — G be two morphisms of Fréchet A-
modules. Assume that either u or v is A-nuclear then so is v o u. Hence N4(E, F) is
naturally a functor in E and F'.

Proof: Obvious. O

Proposition 2.3 [Lifting of nuclear morphisms]

Letu: FE — F,v: G — F be two morphisms of Fréchet A-modules. Assume u
is surjective and v is A-nuclear. Then there is a morphism w : G — E such that
uow=uv.
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Proof: Since v is A-nuclear one can find sequences A\, € €, €™ € La(G,A), fm € F
such that Y gv_o [Am| < +00, fm being bounded in F and e™ being bounded in L4 (G, A)
in such a way that

o) = 3 Anle™ 2

Lemma 2.5 below shows that one can even assume f,, converges to 0 in F. Since u
is surjective it is a strict morphism and one can find by Lemma 2.4 below a sequence
em € E converging to 0 and such that u(en) = fm. Let us define w : G — E by
setting

+o0
w(z) = Y Am(e™ z)em.
m=0
Obviously w is A-nuclear and u o w = v as required. m]

Lemma 2.4 Let w : E — F be a continuous € linear map between l.c.s. with a
countable basis of semi-norms. Then u is a strict epimorphism if and only if for any
sequence fn, of F' converging to 0 there exist a sequence e, of E converging to 0 such
that u(em) = fm-

Proof: The condition is necessary.

Assume f,, converges to 0 in F. Let (V;,)men be a countable fundamental system
of absolutely convex neighborhoods of 0 such that

meIN=V,, DV,

Since u(V;,) is a neighborhood of 0 in F' one can build a strictly increasing sequence of
natural numbers My such that

m > My = fm € u(Vk).
For My < m < M1 let us choose an ey, € Vi such that f, = u(em). The sequence e,
converges to 0 in E as required.

The condition is sufficient.

Let V be a neighborhood of 0 in E. We need to show that u(V') is a neighborhood
of 0 in F. If it is not the case there is a sequence f,, € F\u(V) which converges to 0
in F. Let e,, be a sequence in F converging to 0 and such that u(e,,) = fm. There is
an integer M such that e,, € V for m > M. For such an M, fy € u(v) and this is
impossible. m]

Lemma 2.5 Let \,, be a sequence of complex numbers such that

37 |Am| < +o0.

m=0
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Then, there is a sequence T, of positive real numbers converging to 0 such that
400 1
> —|Aml < +o0.
m=0 Tm

Proof: There is a strictly increasing sequence M of integers such that

+oo
3 Pl <27,

m=Mj

Let us define r,, to be 27% if M, < m < M,,. We have

Mjy1-1 1
Z _l’\ml S Q—k.
m=M; '™
Hence,
+o00 1
ST —ml <27F 4274 <ok
m=M; '™
and the conclusion follows. -

Proposition 2.6 Assume A is multiplicatively convex. Then, every A-nuclear endo-
morphism u : E — FE of the Fréchet A-module F may be written as

u= ul + u//
where v’ is A-finite and 1 — u” is invertible in L4 (E, F).

Proof: Let N
u(@) = Y An(€™ z) fm
m=0

with A, summable, e™ bounded in L4(F, A), frn bounded in E. Since €™ is bounded in
L4(E, A) and A is multiplicatively convex, there is a multiplicatively stable absolutely
convex subset By of A such that

{(e™, fa) :m,m € IN} C uBy

where p is a positive real number. Let us define u, by setting

400
Up = E Am{€™, T) frm-

m=p
We have:
x +o00 +o00
up(x) = E e Z ’\mk te ’\mx (emljm)(emz)fmJ te (emk’fmk_1>fmk'

MEg=p mi=p
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Thus, for any semi-norm ¢ in E and any bounded subset B of E, there is a constant C
such that
k = k ok
sup g(uf(z)) < C( X ) s

m=p

+o0
for any p, k € IN. Choosing p such that p Y |Am| =€ < 1, it follows that

m=p

k

Up

>

0
=0

+
k:

+o0
converges in L4(E, E) and (1 —u,) Y u’; = 1. The conclusion follows since

k=0

p—1

U= Z Am (€™, ) fm + tp.

m=0

Theorem 2.7 [Nuclear perturbation]

Letwu: E — F,v: E — F be two morphisms of Fréchet A-modules over a
multiplicatively convex Fréchet algebra A. Assume u is surjective and v is A-nuclear.
Then the A-module coker(u + v) is finitely generated.

Proof: Using Proposition 2.3, let us write —v as u o w where w : E — FE is an
A-nuclear morphism. By the preceding proposition,

w=uw+u"
where w' is A-finite and 1 — w"” is invertible in Ls(E, E). We have
utv=u—uvow=uo(l—w)=uo(l-w")—uow'.

Of course v/ = u o (1 — w") is an epimorphism and v/ = u o w' is A-finite. Since they
induce the same morphism from E to coker(u + v), coker(u + v) is finitely generated
over A. O

3 Coherence over Fréchet Algebras

We will first consider the case where the base space X is reduced to a point and work
with Fréchet modules over a multiplicatively convex Fréchet algebra.
Let us recall the notion of pseudo-coherence introduced in SGA6 [1].

Definition 3.1 Let A be any ring.

A morphism v : B — F" of complexes of A-modules is an a-quasi-isomorphism if
H®(w) is an epimorphism and H*(u’) is an isomorphism for k > a. Equivalently, we
can ask that H*(cone(u)) = 0 for k > a.
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A complex of A-modules E' is perfect if it is quasi-isomorphic to a bounded complex
F" such that F* is a finite free A-module for every k € Z.

A complex of A-modules is a-pseudo-coherent if it is a-quasi-isomorphic to a perfect
complex.

One checks that if in a distinguished triangle of complexes of A-modules,

EFE—F —G —,
+1

E and G are a-pseudo-coherent, then so is F".

The global version of our coherence criterion is the following theorem.

Theorem 3.2 Let A be a multiplicatively convex Fréchet algebra. Assume (F);en,
F" are complexes of Fréchet A-modules null in degree > b. Let uiy1 : F; — F;,, be
an A-nuclear morphism and let

w:limF, — F"
—_
iEN
be a continuous morphism of A-modules. Assume u is an a-quasi-isomorphism. Then
F" is a-pseudo-coherent over A.

This result is a consequence of the two following lemmas.

Lemma 3.3 Under the assumptions and notations of the theorem, let ¢ €)a,b] and
assume H*(F") = 0 for k > c. Then

(i) For i > 0, there is an A-nuclear homotopy
b F; — F[-1]
such that
v = fi—d[-1]oh; — hi[l]od
is zero in degrees > c.
(ii) H*"Y(F") is an A-module of finite type.

Proof: (i) We will proceed by decreasing induction on ¢ (the case ¢ = b being clear).
For i > 0 there is an
iy Fipy — F[=1]
such that
Vit1 = fipr —d[=1] o by — hia[1] od

is zero in degrees > ¢+ 1.
We have
c c _ .ctl c
dovi,, =vij; odi,, =0.

105



J.-P. SCHNEIDERS

Thus, we get a morphism
Vi1t Fipy — 2%

The map
C C . C C
Vi ofini Y — 2

is A-nuclear since f£,,; is A-nuclear.
The differential
dc—l . Fc—l VA

is a continuous epimorphism since H°(F") = 0. Since both F°~! and Z°~! are Fréchet
A-modules there is an A-nuclear morphism

hl . Fvic . Fc—l
such that
dltoh = Vi1 © [
Let us set
WE=hk ofk.. if k
i+1 © Jig1: ] #c
and

hIC = h’f—{—l o t+l 1 + h/'
By construction the homotopy
hli : R e F[—l]

is A-nuclear, and

= fi—d[-1]oh: —hl[l]od

is zero in degrees > c.
(i) Let us take i great enough so that there is an homotopy

hiyi 2 Fiyy — F[-1]
which is A-nuclear and such that
Vi1 = fiy1 —d[=1] 0 hiyy — hi[1] o d
is zero in degrees > c. It is clear that v{;{ induces a morphism
v i — 27

The arrow
1

f+lz Fit— 2!

is A-nuclear since f; +1 ; is A-nuclear.
Let us denote by
u':. . Fc—2 @ Fl-c_l Zz‘—l
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the morphism defined by
u*(a,b) = d°2(a) + vir1 firia(b).
Since H Y(viy1 © fiy1:) = H™Y(/f:), the assumptions show that

U imu* = zZL

€N
Since Z¢~! and all the F<=2 @ F¢~! are Fréchet A-modules, the conjunction of Baire’s
theorem and Banach’s homomorphism theorem shows that

imu' = Z°!

for some 7 € IN. The morphism «* is thus an epimorphism, and, since u*(0,b) is A-
nuclear, the nuclear perturbation theorem shows that u‘(a,0) has a finitely generated
cokernel. Hence H¢~!(F") = Z°~!/im d°~? is finitely generated over A, and the proof is
complete. m]

Lemma 3.4 Under the assumptions and the notations of the theorem, let ¢ € [a,b]
and assume H*(F") = 0 for k > c. Then F" is a-pseudo-coherent over A.

Proof: We proceed by increasing induction on ¢ (the case ¢ = a being clear).
We know that H°~!(F") is finitely generated over A. Hence, there is an epimorphism

' A" — HUF).
The morphism
lim He1(F;) —» H\(F)
€N
is surjective. Hence, for ¢ > 0, we can find morphisms
v 2 A" — ZNE)
which are compatible with the fi'; (i.e. filiov; = viy1) and
v Am N Zc—-l(F~)
such that ff ~1 6 u; = v. Moreover, we can ask that

Pe—rov =1

where p._y : Z7YHF") — HY(F") is the canonical projection.
This construction gives us an inductive system of morphisms of complexes of Fréchet
A-modules
wi: AM—(c—1)] — F;

1

and a morphism
w A" =(c—-1)] — F
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such that w” = f; o w; which induce an epimorphism
H Y(w) : A™ — HY(F).

It is clear that the mapping cones of w and w; are complexes of Fréchet A-modules null
in degrees > b, the transition maps

cone (w;) — cone (w;41)

induced by fi1,: being A-nuclear.
We get the following commutative diagram

A™—(c—1)] — lmF — limcone(w;) —>

+1
€N ieN
1 1 1
A™—(c-1)] — F —  cone(w) vy

where the lines are distinguished triangles. Since the first two vertical arrows are a-
quasi-isomorphisms, so is the third one. From the second line we get the exact sequence

H Y A™[—(c - 1)) — HY(F) — H(cone’ (w)) — 0

and since u is surjective, H°"!(cone’ (w)) = 0. Applying the induction hypothesis to
cone (w’), we see that it is an a-pseudo-coherent complex. Since A™[—(c—1)] is perfect,
the conclusion follows easily. m]

4 Proof of Theorem 1.1

We will now extend the result established in the preceding section to the case of Fréchet
modules over a sheaf of Fréchet algebras. Since the proof follows the same lines as in
the absolute case, we shall give, in a few lemmas, the tools needed for the extension,
and leave most of the obvious translation process to the reader.

Let X be a topological space with countable basis.

Recall that a sheaf of Fréchet spaces F on X is simply a sheaf with values in
the category of Fréchet spaces and continuous linear maps. This means that for any
countable covering U of an open subset U of X, I'(U; F) is the topological kernel of the
usual Cech map

[ITWV;F) — ][] T(VnW;F).
veu V,Wweu

A morphism of Fréchet sheaves on X is a usual morphism of sheaves of C-vector
spaces which is continuous on the sections.

A sheaf of Fréchet algebras A on X is a sheaf of Fréchet spaces endowed with a
(@-bilinear continuous multiplication

cAxA— A
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which is associative and admits a unit 1 € I'(X; A).

A sheaf of Fréchet algebras on X is multiplicatively convez if, for any open subset
U of X, any bounded subset B of I'(U; A) and any x € X, we can find a neighborhood
V of z and a multiplicatively stable absolutely convex bounded subset B’ of T'(V'; A)
absorbing Bjy.

A Fréchet module over a sheaf of Fréchet algebras A on X is a Fréchet sheaf F on
X endowed with a structure of A-module in such a way that the action map

cCAXF — F

is continuous.

Let U be an open subset of X. A Fréchet module F over a sheaf of Fréchet algebras
A on X has enough sections on U if for any z € U and any f, € F, we may find a
neighborhood V of z in X and

e )\, : a summable sequence of complex numbers,
e fm : a bounded sequence in I'(U; F),

® a,, : a bounded sequence in I'(V; A),

such that f, = g, where g € I'(V; F) is defined by

g= i /\mam(fm)lv-

m=0

A morphism of Fréchet modules over a sheaf of Fréchet algebras A on X is a mor-
phism of Fréchet sheaves which is A-linear. We denote by L 4(€, F) the set of morphisms
from the Fréchet A-module £ to the Fréchet A-module F. It is naturally endowed with
a structure of locally convex topological vector space with the semi-norms

qB(u) = supq(yy(€))
e€EB

where V' is an open subset of X, B a bounded subset of I'(V; £) and ¢ a semi-norm of
T(V; F).

A morphism u : £ — F between two Fréchet A-modules is A-nuclear if for any
x € X we can find an open neighborhood V of z and

e )\, a summable sequence of complex numbers,
e €™ a bounded sequence of L4, (€, Ayv),
e fm a bounded sequence of I'(V; F),

such that
+00
u(s) = Z /\mem(s)fm|w
m=0
for any open subset W C V and any s € I'(W, £). If in the preceding definition we use
only finite sequences, we get the notion of A-finite morphism.
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Lemma 4.1 Let u: &€ — F be a morphism of Fréchet sheaves on X and let x € X.
Assume u, : €& — F, is surjective. Then any neighborhood U of z contains a
neighborhood V' such that

VfeD(U; F) FeeT(V;E)  fiv =ule).

Proof: Of course, we may assume U is open. Let (V,)men denote a countable funda-
mental system of open neighborhoods of z in U. For any m € IN consider the cartesian
square
T(Vm;€) == T'(Vi; F)
O Tlvm
Gm — I(U;F).
U

By construction, G, is a Fréchet space and the hypothesis implies that

U imu, =T(U;F).

meN

Hence, there is m € IN such that im u,, = T'(U; F). This relation gives us the requested
result. O

Using this lemma, the reader will easily check that in the sheaf version of Proposi-
tion 2.3, Proposition 2.6 and Theorem 2.7 the conclusions remain true locally.

Lemma 4.2 Let A be a sheaf of Fréchet algebras on X, and let
u: Fy — F (i € IN)
be a family of morphisms of Fréchet A-modules. Assume that

U imwy; = F.

i€EN

Assume moreover that © € X has a fundamental system of neighborhoods on which
each F; has enough sections. Then, for any x € X, there is a neighborhood V of x and
an integer i € IN such that

(v« (F)y — Fv

is a sheaf epimorphism.

Proof: Denote by V a fundamental system of open neighborhoods of x on which each
F; has enough sections. Notice that F has also enough sections on any V € V.

Working as in the preceding lemma, it is easy to show that any U € V contains a
V € V such that the map

IV, F) xrw.r D(U; F) — T(U; F)

is surjective for some i € IN. Let W be an open subset of V and assume
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e )\, is a summable sequence of complex numbers,
e a,, is a bounded sequence in I'(W; A),
e fn is a bounded sequence in I'(U; F).

Then, we can find a bounded sequence g,, € I'(V, F;) such that (fm)v = ui(gm). Hence,

+o00 +o0
Z /\mam(fm)lw = Ui (E_O )\mam(gm)]W> .

m=0

Combining this fact with the fact that F has enough sections on U, we see that
w)w : (F)yv — Fiv
is a sheaf epimorphism. m]

With the preceding lemmas at hand, we can prove Theorem 1.1 by working as in
the proof of Theorem 3.2 but in the context of sheaves. For the sake of brevity we leave
this straightforward rewriting to the reader.

5 An application to analytic geometry

In this section, we will give an example of application of our finiteness criterion in the
case of topological modules over the algebra Og of holomorphic functions on a complex
manifold S. This corollary is used in [7] to get the relative finiteness theorem for elliptic
pairs.

Let S be a complex analytic manifold. Recall that the sheaf Og of holomorphic
functions on S is a multiplicatively convex sheaf of Fréchet algebras over S (see [4]).
Also recall that if V' is a relatively compact open subset of a Stein open subset U of X,
then the restriction map

[(U; Os) — I'(V; Os)

is C-nuclear. From this it follows easily that ['(U; Oy ) is a Fréchet nuclear (FN) space
and that T'(V, Os) is a dual Fréchet nuclear (DFN) space.

Following [6], an FN-free (resp. a DFN-free) Og-module is a module isomorphic to
E & Og for some Fréchet nuclear (resp. dual Fréchet nuclear) space E.

Corollary 5.1 Let M (resp. N°) be a complex of DFN-free (resp. FN-free) Og-
modules. Assume M" and N are bounded from above and

v M —N

is a continuous Og-linear quasi-isomorphism. Then M and N* have Og-coherent co-
homology.
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Proof: Let E be a (DFN)-space and set £ = E® Og. It is well-known that we can find
a countable inductive system (Fj, frn)new of Fréchet spaces with nuclear transition
maps such that

lim F,, = E.

n—E—l:‘J
Let us denote by f, : F,, — E the projection to the limit. Since E is separated, ker f,
is a Fréchet subspace of Fy,, and it follows from the equality

ker fo = |J ker fomn

m>n

that ker f,, = ker fy, for m > 0. The sheaf F,, = F,,®0s is obviously a sheaf of Fréchet
modules over the Fréchet algebra Og and each transition map ¢, = fmn®idos is clearly
Os-nuclear. Using the maps ¢, = f, ® idog, we get the isomorphism

lim F, = €&.
—_—
n€EN

Moreover, locally on S,
ker ¢, = ker ¢, for m > 0. (5.1)
Now, let E°, E' be two (DFN) spaces and consider a continuous Og-linear morphism
u: € — &
between the associated DFN-free Os-modules. As above,
£ =lim 72, €'=limF,,
nelN n€N

where (F2,¢%.,), (FL #L.) are inductive systems of FN-free Og-modules with Og-
nuclear transition maps. Let us fix n € IN. Working as in Lemma 4.1 it is easy to see
that for m > 0, there is a map u, : F2 — F}, such that u o ¢, = ¢m o u,. Hence,
locally, thanks to (5.1), it is possible to find a strictly increasing sequence k, € IN and
a morphism

() : (F) — (Fi,)
of inductive systems such that lim u, = u.
meN
Finally, assume we have a complex £ of DFN-free Og-modules. Using the preceding

procedure and (5.1) one sees that it is possible to find an inductive system of complexes
of FN-free Og-modules (F,,, #;,n)neNn With Og-nuclear transition maps such that

limF, ~&.

n€N

The conclusion then follows easily from Theorem 1.1 by using the well-known fact that
FN-free Og-modules have enough sections on polydiscs. a
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