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1. INTRODUCTION

Let E be an elliptic curve over a number field K. In other words, K is a finite
field extension of Q and E is a non-singular algebraic curve in the projective plane
PK over K given by an equation of the form y2z = X3 + axz2 + bz3, with a, b in
K such that 4a3 + 27b2 i= 0. For each field extension L of K, we denote by E(L)
the set of L-rational points of E; the point (0,1,0) in E(K) will be denoted by
OE. It is well known that the sets E(L) have a unique stucture of abelian group
with 0E as origin, such that Pl + P2 + P3 = OE whenever Pl, P2 and P3 are the
three intersection points (counted with multiplicity) of E with a straight line. For
example, E(C) is isomorphic to a group of the form C/A with A a lattice in C.
This already shows that the torsion subgroup E(C)tors of E(C) is isomorphic to

, Q/Z x Q/Z.
The theorem of Mordell-Weil states that E(K) is finitely generated, hence

isomorphic to Z/nlZ x Z/n2Z x Z~ with nlln2, ni > 0, n2 > 0 and r > 0. The
pair n2) is the isomorphism type of E(K)tors; the integer r is called the rank
of E(K).

1.1. Conjecture. For every integer d > 1 there exists an integer Bd such that
for every number field K of degree d (over (~~ and every elliptic curve E over K
one has:  Bd.

This conjecture is known as the strong uniform boundedness conjecture, the word
"strong" meaning that the bound is uniform in all number fields of degree d.

S. M. F.
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Let us introduce some notation. For d > 1 we define 1>( d) to be the set of
isomorphism types of the groups E(K)tors with E an elliptic curve over a number
field K with [K : Q] = d. We define S(d) to be the set of primes p for which there
exists an elliptic curve E over a number field K with [K : Q] = d and [
divisible by p. With this terminology, Conjecture 1.1 is clearly equivalent to the
statement that for all d, ~(d) is a finite set. The results obtained by Kamienny
and Mazur can now be stated as follows.

1.2. Theorem. 1

1. For d  8 the set is finite (Kamienny see also (9]).

2. The sets S(d) have density zero for all d (~9~~.

3. is finite if and only if S(d) is finite (~9~).

Furthermore, the sets 9(1), S(2), $(1) and $(2) are known:

The set ~(1) was determined by Mazur [17] in 1976, see also [18], using results of
Kubert [13]. This result was at that time known as a conjecture of Ogg ([22]), but
in fact it had already been conjectured by B. Levi ([15]) in 1908 (see a forthcoming
article by Schappacher and Schoof). The determination of ~(2) uses work of
Kamienny, Kenku and Momose (see [11]). Part 3 of Theorem 1.2 is an easy

consequence of a result of Frey (1992), which in turn is an easy consequence of
a theorem of Faltings (see §6). A "local" version of the uniform boundedness
conjecture was proved by Manin in 1969: he showed that for any number field K
and any prime p there exists an integer e > 0 such that no elliptic curve over K
has a rational point of order pe (see [16] and [23]).

1See §7 for more recent results. In particular, Conjecture 1.1 is now a theorem of Merel.



2. RELATION WITH OTHER CONJECTURES

It is easily seen that the ABC-conjecture for a number field K implies a uniform
bound for IE(K)torsl (see [4]). The same is true for the height conjecture for

elliptic curves over K (see [4]). Instead of considering elliptic curves over number
fields of degree d, one might consider abelian varieties over Q of dimension d.
Restriction of scalars a la Weil shows that Conjecture 1.1 is a consequence of:

2.1. Conjecture. For every d > 0 there exists an integer Bd with the property
that IA(Q)torsl  Bd for all d-dimensional abelian varieties over Q.

It seems almost nothing is known about this conjecture, see [24] and references
therein.

3. MAZUR’S METHOD FOR THE NUMBER FIELD Q

Let E be an elliptic curve over a number field K and P E E(K) a point of prime
order N. Let C~~ be the ring of integers of K and let Fq (q some prime power) be
a residue field of OK. Let E be the fibre over Fq of the Neron model of E, and
let P in E(Fq) be the reduction of P. Suppose that N does not divide q. Then
elementary theory of group schemes shows that P has order N. Now E is of one
of the following three types:

good reduction: E is an elliptic curve over Fq, hence ]  (ql/2 + 1)2, so
N  (ql/2 + 1)2;

additive reduction: there is an exact sequence -; E -~ ~ --~ 0 with
(  4; since Fq, one has N  3;

multiplicative reduction: there is an exact sequence 0 -~ T -~ E -~ ~ -~ 0
with T = or T = (the unique non-trivial twist) and $(Fg) =
Z/nZ for some n, so in this case one has or + 1) or 

We conclude that in order to prove that S(1) C {2, 3, 5, 7,13~, it suffices to prove
that an elliptic curve over Q with a point of prime order N ft {2, 3, 5, 7,13} does
not have multiplicative reduction at 3.



So let us suppose that we have P E E(Q) of prime order N with N not
in {2, 3, 5, 7,13}. Our goal is now to show that E does not have multiplicative
reduction at 3 (actually, with a bit more work one can show that E has potentially
good reduction at all p > 3). The idea of the proof is to interpret (E, P) as a
Q-rational point of some moduli space, and to study the reduction of that point
modulo 3.

Let Xo(N) be the coarse moduli space of generalized elliptic curves equipped
with a subgroup scheme of rank N which meets all irreducible components in all
geometric fibres ([2], [10]). It is known that Xo (N) is a projective curve over
Spec(Z), smooth over Its fibre Xo(N)FN over FN has two irreducible
components which are both smooth, of genus zero and which intersect transver-
sally in the so-called supersingular points. The genus of Xo(N) is roughly N/12
and the condition ~2, 3, 5, 7,13} means precisely that Xo(N) has positive
genus. By construction, a pair (E/S, G) with E an elliptic curve over a scheme S
and G a subgroup scheme of rank N of E gives an S-valued point of Xo(N). Points
of Xo(N) with values in an algebraically closed field k correspond to isomorphism
classes of objects (E/k, G). The Riemann surface Xo(N)(C) can be obtained
by adding two points (called the cusps 0 and oo) to (the quotient of
the upper half plane by the congruence subgroup ho(N) of The cusp
oo corresponds to a projective line with its points 0 and oo identified, equipped
with its subgroup The cusp 0 corresponds to an N-gon of projective lines,
equipped with a subgroup Z /NZ meeting all N projective lines. In fact 0 and oo
give Z-valued points of Xo (N); the complement of 0 and oo is the moduli space
for elliptic curves with a subgroup scheme of rank N.

Let Jo(N) be the Neron model over Z of the jacobian of Xo (N)Q . Its restriction
to is an abelian scheme whose fibres have dimension equal to the genus
of Xo(N). The points of Jo(N) with values in a field k of characteristic different
from N correspond to divisor classes of degree zero on Xo(N)k, modulo principal
divisors. The fibre over FN of Jo (N) sits in an exact sequence

with the group Z/nZ generated by the reduction mod N of the point c in Jo(N)(Q)
of order n given by the divisor class c = (0) - (oo).



Let T be the endomorphism ring of Jo(N); it is generated by the Hecke opera-
tors Tp (p ~ N prime) and the Atkin-Lehner involution wN. It will be convenient
to work with the Hecke operators Tm for all m > 1; these are defined as follows:

TN = -wN and one formally has the Euler product:

If one interprets S~1 ) = S~ 1 ) as the space of cuspidal mod-
ular forms of weight two on r ° (N) and uses q-expansions, these operators are given
by the usual formulas. This implies that the coefficient of qm of an eigenform with

eigenvalue am for Tm, equals am times the coefficient of q. The ring T is commu-

tative, reduced, free of rank dim(Jo (N)Q) as Z-module. The Q-algebra Q 0 T is
a product of totally real fields and Spec(T) is connected. For each prime number
p ~ N one has the Eichler-Shimura identity in 

Weil’s theorem on the eigenvalues of Frobenius endomorphisms of abelian varieties
then implies that for any homomorphism ~: T -~ C and for any prime p ~= N,
one has (  2pl/2.

The action of T on c is as follows: Tp(c) = (p+l)c for all primes N, and

wN(c) = -c. Let I ~ T be the annihilator of c. It follows that T/I = Z/nZ
and that I is generated by the Tp-p-1 (p 7~ N prime), and n (actually
one doesn’t need n). The ideal I ~ T is called the Eisenstein ideal because it
corresponds to congruences between cuspidal forms and non-cuspidal forms on

ro(N) of weight two ([17], page 37).
Let TI := lim T I 1m be the I-adic completion of T. The ideal 11 of T is

then defined to be the kernel of the map T -~ TI. In other words, ~yI is the

intersection of the minimal prime ideals p of T with T. Phrased differently:
is the union of the irreducible components of Spec(T) that have non-

empty intersection with 
Let be the abelian subvariety of Jo (N)Q generated by the tJo (N)Q,

t E 77. The Eisenstein quotient JQ is then defined by: Jq := 
Let J be its Neron model over Z. By construction, T/7/ acts faithfully on J. The
following theorem is one of the main results of [17] (see also [19]).



3.1. Theorem (Mazur). The group J(Q) is torsion, and in fact, J(Q) is gen-
erated by c, hence cyclic of order n.

Let Xo(N)Sm C Xo(N) be the biggest open part which is smooth over Z (i.e.,
Xo(N)Sm is the complement of the set of double points in characteristic N). The
points 0 and oo in Xo(N)(Z) are in fact in Xo(N)Sm(Z). Let Jo(N)
be the usual embedding of a curve in its jacobian, normalized by the condition
that oo is sent to 0. By composition with the canonical map Jo (N) -~ J we get
a morphism J.

3.2. Theorem (Mazur). (See [18J.) The morphism f is a formal immersion at
oo, away from characteristic 2. In other words, the cotangent space 
of Jz[l/2] at 0 maps surjectively to or equivalently, for each
prime p ~ 2 the map from CotO(JFp) to is non-zero.

Proof. The hypothesis that p is not equal to 2 implies that Coto(JFp) maps
injectively to Because Jo (N) is a (commutative) group scheme, we
have a canonical isomorphism 7r*Coto(Jo(N)) (7r: Jo(N) - Spec(Z)),
inducing HO(Jo(N), Composing with the pullback of
differential forms along f gives an isomorphism:

S(N, 2)

where S(N, 2) is the Z-module of cusp forms over Z of weight two on ro(N). With
this identification, the map Coto ( Jo (N) ) --> Cotoo(Xo(N)) corresponds to evaluat-
ing at oo. The Tate curve over Z ( (q) ) shows that dq is a Z-basis of Cotoo(Xo(N));
the q here can be interpreted as the function z t2014~ exp(27riz) on the upper half
plane H. So finally we see that the map on cotangent spaces corresponds to the

map:

Let p > 2 and let 03C9 ~ 0 be an eigenvector for T in Since p > 2, 03C9
has non-zero image in S(N, 2)Fp; this image is an eigenvector for T, hence it has

D



With all this, we can finish Mazur’s proof that the elliptic curve E does not have

multiplicative reduction at 3. So suppose that E has multiplicative reduction at
3. Since N > 11 > 3+1, P in E(F3) has non-zero image in ~(F3). This means
that the Q-rational point (E/Q, (P)) of Xo(N) specializes to the cusp 0 modulo
3. Let x be the Q-rational point corresponding to (E j(P), E[N~/(P)); then x
specializes to oo modulo 3. We consider E J(C~). By Thm. 3.1, f(z) is
torsion. By Thm. 3.2, is not zero (this can be seen in the completion of

Xo(N) along oo). But this is in contradiction with the following lemma, whose
proof is an elementary calculation with formal groups.

3.3. Lemma. Let R be a discrete valuation ring of characteristic 0 and with
residue field k of characteristic p. Let G be a smooth group scheme over R. Let

x E G(R) be torsion. Suppose that the valuation of p is strictly less than p-1.
Then the specialization xk has the same order as x.

4. KAMIENNY’S GENERALIZATION OF MAZUR’S METHOD

Let d > 1, K a number field of degree d, E an elliptic curve over K and P E E(K)
a point of prime order N. Let y E Xo(N)(K) be the point corresponding to

(E/(P), E[N]/(P~). The idea is now to look at the Q-rational point x := ~~ u(y),
with u: K - C, of the dth symmetric power of Xo(N). By definition,
Xo(N)(d) is the quotient by the symmetric group Sd acting on the dth power
Xo(N)d. Hence is proper over Z, smooth of relative dimension d over

Z[I/N]. To give a k-valued point of where k is a perfect field, is the
same as giving an effective divisor of degree d on 

Let JZ[1/N] be the usual map from the symmetric product
of a curve to its jacobian, normalized by the condition that d.oo is sent to 0. We
apply Mazur’s method to x and f d.

Suppose p > 2 is a prime such that N > (pd/2 + 1)2. Then at each residue
field of OK of characteristic p, E has multiplicative reduction, and P has non-zero
image in ~; in other words, all specializations to characteristic p of the K-valued
point y of Xo(N) are oo. This means that x specializes to d.oo modulo p. If

moreover f d is a formal immersion at the point d.oo modulo p, then we obtain a



contradiction as before: is torsion, is not zero and specializes to
0 modulo p. These arguments prove the following proposition.

4.1. Proposition. Let d > 1, N E S(d) and suppose that f d is a formal immer-
sion at d.oo modulo a prime p > 2. Then N  (pd/2 + 1)2. D

Recall that Xo (N) has a formal local coordinate q at oo. Hence has formal
local coordinates ql, ... , qd at (oo, ... , oo). The elementary symmetric functions
a1 = ql+ ~ ~ ~ +qd,..., ad = ql ~ ~ ~ qd are then formal local coordinates of 
at d.oo, so d~l, ... , dad is a Z-basis for 

4.2. Lemma. Let w be in Coto(J), or, equivalently, in HO( J, S~ J/Z). Then 
is a differential form on say with q-expansion 
We have:

Proof. Let g: be the canonical map. For m > 1 define

sm = qi + ... + 9d , Then

From Newton’s identities

This finishes the proof. D

4.3. Theorem (Kamienny’s criterion). Let d 2: 2 and N E S(d). Suppose
that the images Ti, ... , Td in T / II of Tl, ... , Td E T are linearly independent.
Then N  



Proof. By the q-expansion principle, Tano(Jo(N)) is a locally free T-module of
rank 1. Since Q 0 T is a product of fields, Q 0 S(N, 2) is a free Q ® T-module of
rank 1. It follows that Q 0 S(N, 2)~~yj~ (forms annihilated by is a free module

of rank 1 over Q ® (T/~yI). Let W1,... , wr be a basis of Q0 S(N, 2) [77] consisting
of normalized eigenforms for T, and write Wi = (normalized
means that a;,i = 1 for all i). Let R C Q be the ring generated by the a;,m. Then,
as a Z-module, R is free of some rank t, say. The hypothesis that Ti, ... , Td
are linearly independent means that the (as,l, ... , ai,d), 1  i  r, generate the

Q-vector space cr. Note that Lemma 4.2 implies that 
formal immersion at d.oo.

Exactness properties of Neron models show that the torsion of the quotient
Coto(Jo(N))/Coto(J) is killed by 2 (compare [18], Cor. 1.1). Hence c~l, ... , c~r can
be viewed as elements of R~1 ~2~ ® Coto ( J) .

After renumbering, we may suppose that A := is non-zero.

Recall that for all embeddings R ~ C and all prime numbers l ~ N one has

211/2, and that = d:l. For arbitrary m one has 
where is the number of positive divisors of m. Hence for the norm of 0
one has:

Suppose now that p > 2 is a prime such that f d is not a formal immersion at oo
modulo p. Then p divides the index of fdCoto(J) in It follows

that there is an a E R such that A = pa, hence also = pt. We
conclude that p  ( d ~ ) 5I2 .

Let p be a prime between (d!)5/2 and 2(d!)5/2; then f d is a formal immersion
at oo modulo p. Prop. 4.1 implies that N  (pd/2 + 1)2  2d+1(dl)5d/2, D

We end this section with some remarks. First of all, the difficulty with Kamienny’s
criterion is that one needs to know whether Ti, ... , Td are linearly independent or
not. The question of linear dependence of Ti,..., Td in T itself is easily settled: let
g := dim(Jo(N)Q), then T1,... , Tg are linearly independent in T. To prove this
(optimal) result, one remarks that it is equivalent to oo not being a Weierstrass
point on Xo (N)Q . Reduction modulo N shows that oo is not a Weierstrass point



(one finds a Vandermonde determinant, see also [14]).
Secondly, let us consider the case d = 2. We want to know the primes N for

which T{ and T2 are linearly independent. Since T{ is the identity, the question
is whether T2 acts as a scalar on J or not, so suppose that T2 acts as a scalar.
Weil’s bound implies that T2 E {-2, -1, o,1, 2}. But on the other hand we have
T2 = 2+1 modulo n (consider the image of TZ in T/I = Z/nZ). It follows that

(TV - 1)/12  num((N -1)~12) = n  5, hence that N  61. So Conjecture 1.1
is now proved for d = 2. The bounds given in Theorem 4.3 can be improved in
this case: the proof shows that for N > 61 the map /2: Xo(N)(2) - J is a formal
immersion at oo modulo 7, so that N E S(2) implies N  ((72)1/2 + 1)2 = 64.
To go further, one has to do explicit calculations for the N  61. For example,
by calculating the characteristic polynomial of T2 acting on the space of weight
two cusp forms on ro(N) one sees that T2 does not acts as a scalar modulo 5 for
N = 43, 53 and 61, which means that these three N are not in S(2).

5. WINDING HOMOMORPHISMS AND FUGITIVE SETS

In order to prove that the sets S(d) are finite for d  8 and, for all d, have density
zero, it suffices, in view of Theorem 4.3, to prove that the set of primes N such
that Ti, ... , Td are linearly dependent is finite for d  8 and has density zero for
all d. The following lemma shows that to check whether Ti, ... , Td are linearly
independent or not (for a given N), it suffices to check a finite set of relations;
this set of relations is independent of N.

5.1. Lemma. Let d > 1, let N be a prime and suppose that T{, ... , Td are linearly
dependent. Consider a non-trivial relation

which is minimal in the following sense: there is no non-trivial relation among

Ti, ... , Td with more coefficients equal to zero, and al, ... , ad have greatest com-
mon divisor equal to 1. Then  ((d-1~~~5~2 for all i.

Proof. Let ..., be the a; which are non-zero. We rewrite the equation
as:



Recall that is a product of totally real fields. Hence is canonically
isomorphic (as R-algebra) to Re, where e = dim(JQ). This gives an embedding

Re; let Vi = (v=,1, ..., denote the image of Then, by Weil’s,bound,
we have ] C i3/2 for all i and j. Since ..., are linearly independent,
there exist jl, ... , jr in ~1, ... , e~ such that A := is not zero. Let

R be the subring of R generated by all v;,;. Then, as a Z-module, R is free of
some rank t, say. Let R denote R. Then in 7f we have the relation:

and + ... + air R = R since ail , ... , have greatest common divisor equal
to 1. It follows that vsi I1 ~ ~ ~ A vir has image 0 in hence 0 has image zero
in R (it is one of the "coordinates" of v=1 I1 ~ ~ ~ A Hence we have A = 

for some A’ in R. It follows that > As in the proof of Theorem 4.3
one shows that ~N(~)~ ~ ((d-1)~)5t~2, hence the result. D

Remark. Applying Siegel’s lemma (which gives an upper bound for the smallest
non-trivial solution of a system of linear equations with coefficients in Z) one gets
more or less the same estimate.

Recall that, by definition, is the image of T in its completion TI. Hence,
for ai,..., ad in Z, one has a1T’1 + ... + adTd = 0 if and only if aiTi + ... + adTd
is in Im for all m. The finiteness of S(2) was obtained by studying the image of a
relation among Ti and T2 in T/I. We will now generalize this method and study
an arbitrary relation using the filtration T D 7 D IZ ~ ~ ~ ~. To do this, it will be
convenient not to work with the Ts, but with the ~s in T defined as follows:

The Tm can be written as linear combinations of the r~k:

with cm,k in Z. It is important to note that the cm,k with m  N do not depend
on N. For all m, let be the image of 17m in For m > 1, let v(m) denote



the number of factors in a prime factorization of m: if m = rl ~ ~ ~ tr with the 1i
prime, then v(m) = r. Note that by definition, we have r~t E I for all primes 1,
hence for all m > 1 we have qm E 

Suppose now that we have d > 1 and a prime N > d such that Tl ... , Ta are
linearly dependent. Then Lemma 5.1 gives a non-trivial relation =

0, with  C(d) for all i, where C(d) is an integer depending only on d. We
want to show that, for d  8, N is bounded, and that in general N lies in a set of
primes which has density zero.

Before treating the general case, let us deal with d  8, or, what amounts to
the same, with d = 8. Then we have bl, ... , b8 in Z,  C(8) for all i, such
that the element

of T is in 1m for all m > 0. Note that in this expression for x the second term is
in I, the third is in I2 and the fourth is in I3. Suppose first that b1 ~ 0. Since

bi = b1TJl E I n Z = nZ, one then has (N-1)~12  n   C(8), hence
N  12C(8)+1. So we may suppose that b1 = 0. Then x E I, so it will be useful
to consider the image of x in I ~I2; this is where Mazur’s winding homomorphism
comes in.

5.2. Theorem ([17], §18). Write N-1 = en, hence e = gcd(N-1,12). Let

be the kernel of the eth power endomorphism of F Jj. There is a unique
isomorphism of groups (the winding homomorphism)

which sends qi to d(~-1»2 for all primes t ~ N.

Let ~: 7/7~ --~ FN be the homomorphism defined by ~(?/) = w(y)12. Then for all
primes t ~ N, ~(r~l) = ds(1-1~.

Now suppose that b2, b3, b5 and b7 are not all zero. Then we have:

It follows that N divides the numerator of (2~2 32~3 54~5 7667~6 _ ~ hence N is at
most exp(127.C(8)). So we may now suppose that b2, b3, b5 and b7 are zero. Then



we have + b6~’3 + b8~’4) = 0. Since ~’2 is an isogeny from J to itself (this
follows from Weil’s bound), we must also have:

If b4 and b6 are not both zero, we find exp(18.C(8)). If b4 and b6 are both

zero, then we find ~ = 0, which implies that J = 0 and hence N  13. This

finishes the proof that the sets S(d) with d  8 are finite. Note, by the way, that
the reason the proof works, is that we obtained linear relations among the images
of the ~l in I/I2. This method breaks down for d = 9, since then one has to deal
with + b61J21J3 + ~9~3.

In the general case (i.e., d arbitrary) let m be minimal such that not all bi
with v(i) = m are zero. We define x := then x E Im+1. We choose

an isomorphism of groups log: FN --; Z/(N -l)Z. The fact (see [17], Thm.18.10)
that I C T is locally principal, implies that we have a homomorphism of groups:

(The tensor products are over Z.) We have = 0. To see what this means,
let us first consider where i with the lj prime. One computes
that

where we view Bi as an integer. Note that Bi does not depend on N, that Bi does
not depend on the choice of log: FN -> Z/(N -l)Z and that not all B= are zero.
Let F be the homogenous polynomial of degree m, with coefficients in Z, in the
variables X~, I  d prime, whose monomials are the with v(i) = m
and 1  i  d. Then the relation 0 = ~m(x) _ can be rewritten

as F(log 2, log 3, ...) = 0 in Z/(N-1)Z. The set of primes N with the property
that F(log 2, log 3, ...) = 0 in Z/(N-1)Z is called the fugitive set associated to
F (note that this does not depend on the choice of the logarithms on the FN).
We conclude that the set of primes N such that Ti, ... , Td are linearly dependent,
is contained in a finite union of such fugitive sets. H.W. Lenstra has given an
elementary argument, using Cebotarev’s theorem, that fugitive sets have density



zero. In an appendix to [9], A. Granville improves this result as follows: for x E R
sufficiently large, the number of primes ~V  ~ in a fixed fugitive set is bounded by
a constant times K. Murty has shown that
under the generalized Riemann hypothesis, Granville’s bound can be improved to
0((x~ log(x)) log log(x)). One expects that the actual size of a fugitive set
is 0(log log(x)).

6. AN APPLICATION OF A THEOREM OF FALTINGS

In this section we prove that S(d) is finite if and only if is finite. We begin
by recalling a result of Frey [6].

6.1. Proposition (Frey). Let K be a number field, d > 0 an integer and C a
smooth projective geometrically irreducible curve over K with C(K) non-empty.
Suppose that every non-constant morphism from C to PK has degree > 2d. Then

is finite.

Proof. Consider the morphism C(d) --> Pic~ which sends an effective divisor D
of degree d to the line bundle Oc(D) of degree d. This map induces an injection
on K-rational points, since if D1 ~ D2 are effective divisors of degree d on C such
that Dl - D2 is a principal divisor ( f ), then f is a finite morphism of degree  d
to Let X be the image of C(d) in Pic~. It suffices to show that X (K) is finite.
Suppose that X(K) is not finite. Then, by Faltings’s theorem [3, Thm. 4.2], there
exists a non-zero abelian subvariety B of Pic0C with B(K) Zariski-dense in B, and a
point Po in X(K) such that Po+B C X. For b in B(K), let Pb := b+Po E X(K) ;
let Db denote the effective divisor on C corresponding to Pb (here we use that
C~d~(K) --~ X(K) is a bijection). Then for all b E B(K) the divisors Db + D-b
and 2Do are linearly equivalent. Note that the equality Db + D-b = 2Do can

happen only for finitely many b, so there exists a b and a non-constant rational
function f on C such that Db + D-b - 2Do = ( f ). But such a f is a morphism
from C to PK of degree at most 2d. D

6.2. Corollary (Frey, [6]). Let d > 0 and e > 0 be integers, let N be prime
and suppose that 120d. Then there are, up to isomorphism, only finitely



many elliptic curves E over Q which have a cyclic isogeny of degree Ne that can
be defined over a number field K of degree at most d.

Proof. Let I: Xo(Ne) -+ Pq be a finite morphism. Take I E {2,3}, I ~ N. Since
Xo(Ne) has good reduction at I, the line bundle has a unique extension
to and induces a finite morphism PF~ of degree at most
deg( f ). An easy computation shows that where

e2 = 12 and e3 = 6 (consider the supersingular points). Hence

6.3. Corollary ([9]). Let d > 1. If S(d) is finite then is finite.

Proof. Instead of giving a proof using Cor. 6.2, we give a proof using a variant
of that corollary for the curves X1(Ne). An advantage of this is that the curves
X1(Ne)Q are fine moduli spaces for Ne > 4.

Let d > 1 and suppose that S(d) is finite. Since S(d) is finite, it suffices to
give, for each N in S(d), an integer r > 0 such that no elliptic curve over a field
of degree d has a rational point of order Nr. So let N be in S(d) and e > 0. An
elliptic curve E over a field K of degree d, together with a rational point P of
order Ne, gives a K-valued point of the modular curve hence a Q-valued
point of the symmetric product The curve is projective and
smooth over Z[I/N], and has geometrically irreducible fibres. For any field knot
of characteristic N, X1(Ne)k has at least rational points (coming
from the cusps). It follows that any finite morphism from X1(Ne)Q to Po has
degree at least Suppose that e > 1 + logN(16d/(N-l)). Then,
by ’Prop. 6.1, XI(Ne)(d)(Q) is finite. Let Xl,... , Xm be the non-cuspidal closed
points of the scheme that have non-zero multiplicity in at least one of
the finitely many effective divisors on X1(Ne)Q corresponding to the elements of

Let K= be the residue field of at x=; then Ks is a field of

degree  d. Note that Ne > 4, so X1(Ne)Q is a fine moduli space. Hence over
each K; we have an elliptic curve E= together with a point P; in E~(K~) of order
Ne. By construction, these have the property that all (E/K, P) with
E an elliptic curve over K, K of degree d and P E E(K) of order Ne, can be



obtained by extension of scalars from one of the For each i, choose
a residue field ki of the ring of integers O; of Ki such that k; has characteristic
different from N and E= has good reduction at k;. Now if (E/K, P) is obtained
by extension of scalars from P=), then OK has a residue field k which is
an extension of degree at most d of ki such that E has good reduction at k. Let
E/k be the reduction. Then ~E(k)~  + 1)2. Now take r > e such that for
all i one has Nr > + 1)2. D

7. BEYOND KAMIENNY AND MAZUR

D. Abramovich [1] has remarked that the hypothesis in Prop. 4.1 that f d is a

formal immersion at d.oo modulo a prime p > 2 can be weakened. In fact, all one
needs is that 0 for all x in Xo(N)(d)(Q) that specialize to d.oo modulo p.
Using this remark Abramovich has proved finiteness of S(d) for all d  14. For d
equal to 13 and 14 his proof uses computer computations.

Very recently (February 11), L. Merel has announced a proof of the finite-
ness of S(d) for all d. His method is to replace the Eisenstein quotient J of

Jo(N) by a bigger quotient Jw. This quotient, which he calls the winding quo-
tient, is defined as follows. Integration over {it I t E R>o} C H defines a C-
linear form on H°(X°(N)(C), 03A9). It is known that this form corresponds to
an element e in H1(Xo(N)(C), Q). Let a C T be the annihilator of e, then

Jw,Q = A result of Kolyvagin and Logachev [12], supple-
mented by work of Bump, Friedberg and Hoffstein [7], or by work of Murty and
Murty [21], shows that Jw(Q) is finite. The condition for Jw,Q to
be a formal immersion at d.oo is that Tle, ... Tde are linearly independent in the
free Z-module T.e C H1(X°(N)(C), Q). For N sufficiently large with respect to
d (to be precise, N/(log N)4 should be greater than 400d4 and greater than d8),
Merel shows this linear independence using the theory of modular symbols.

The text that follows has been added at the time the final version of this

text was written (August 1994). Shortly after this expose, Oesterlé has improved
Merel’s result: he shows that N E S(d) implies N  (3d/2 + 1)2. His proof, which
follows Merel’s proof, shows that for N prime such that > (2d)8, the
images in (T.e) 0 F3 of Tl e, ... , Tde are F3-linearly independent, and from that



he deduces that the map f d of §4 (with the Eisenstein quotient replaced by the
winding quotient) is a formal immersion at d.oo modulo 3. The proof is then
finished by Prop. 4.1 and some extra work for the primes N  37.

Merel’s work will appear in [20].
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