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1. INTRODUCTION

Quantum mechanics is often distinguished from classical mechanics by a state-
ment to the effect that the observables in quantum mechanics, unlike those in
classical mechanics, do not commute with one another. Yet classical mechanics is
meant to give a description (with less precision) of the same physical world as is
described by quantum mechanics. One mathematical transcription of this corre-
spondence principle is the that there should be a family of (associative) algebras
An depending nicely in some sense upon a real parameter 1i such that Ao is the
algebra of observables for classical mechanics, while An is the algebra of observ-
ables for quantum mechanics. Here, ~ is the numerical value of Planck’s constant
when it is expressed in a unit of action characteristic of a class of systems under
consideration. (This formulation avoids the paradox that we consider the limit
~ -~ 0 even though Planck’s constant is a fixed physical magnitude. )

The first order (in 1i) deviation of the quantum multiplication from the classi-
cal one is to be given by the Poisson bracket of classical observables. This idea goes
back to Dirac [Di], who emphasized the analogies between classical Poisson brack-
ets and quantum commutators. It played an important role in much of Berezin’s
work [Bel] [Be2] on quantization.

Although the terminology and much of the inspiration comes from physics,
noncommutative deformations of commutative algebras have also played a role of
increasing importance in mathematics itself, especially since the advent of quantum
groups about 15 years ago.

In the theory of formal deformation quantization, the "family of algebras ,A~"
is in fact a family *n of associative multiplications on a fixed complex vector
space A. More precisely, this family is given by a sequence of bilinear mappings
S. M. F.
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The condition for associativity of the product is that

for n = 0, 1 , 2, ....
The problem of formal deformation quantization is to classify such families up

to equivalence, where an equivalence between formal deformations B = Bo, J3i,...
and B’ = Bo, Bi, ... is, intuitively speaking, a formal family A - A of

maps such that b) = (a) *~ (b). More precisely, such a family is
given by a sequence G = Go, G1 , ... of linear maps from A to A which satisfy the
conditions

for n = 0, 1 , 2, ....
It is often useful to think of the deformation quantization as giving an asso-

ciative algebra structure on the space of formal power series with coefficients

in A and an equivalence as giving an isomorphism between such algebras.
In attempting to solve the existence problem recursively for the Bj ’s, one finds

at each stage an equation of the form 8 Bj = Fy, where F is a quadratic expression
in the terms determined previously; a similar equation arises for each Gj in the
equivalence problem. The operator 8 goes from bilinear to trilinear (or linear
to bilinear) A-valued functionals on A and is precisely the coboundary operator
for Hochschild cohomology with values in A of the algebra A with multiplication
given by Bo. (In the equivalence problem, one normally assumes the product
*o as given, so that Bo = Bo, and Go is assumed to be the identity.) This

cohomological approach to the deformation of algebras was established in the
1960’s by Gerstenhaber [Ge].

A program to apply the methods of Gerstenhaber to algebras of interest in
classical and quantum mechanics was laid out in 1978 by Bayen, Flato, Fronsdal,
Lichnerowicz, and Sternheimer [BFFLS]. (Another survey of the current state of



the art may be found in [FS].) The aim of this program has been to develop as much
as possible of quantum mechanics in terms of the deformed algebra structures,
without using the customary representations in Hilbert spaces. Here, A is taken to
be the space C°° (M) of smooth complex-valued functions on a manifold M which
represents the classical phase space. The undeformed product *o (i.e. Bo) is taken
to be the usual pointwise multiplication, so that (A, *~) is the algebra of classical
observables. Next, following Dirac, it is assumed that the "limit" [(a *h b -

(i.e. Bl (a, b) - is equal to a given classical Poisson bracket

{a, b} on A. This bracket should be a Poisson structure in the sense that it satisfies
the axioms of a Lie algebra together with the Leibniz identity {ab, c} = {a, c)b +
a{b, c}. In this context, a formal deformation B = Bo, Bi,... is called a *-product
(or star-product) if each of the bilinear maps Bj is a differential operator in each of
its arguments, annihilating the constant functions when j > 1. These conditions
make the *-product local and insure that the constant function 1 remains as the
unit element. Occasionally, the parity condition Bj(a,b) = is also

imposed.
From here on, we will use the terms "*-product" and "(deformation) quanti-

zation" interchangeably.
Among the Poisson manifolds (manifolds equipped with Poisson structure),

the symplectic manifolds are of particular interest. We recall that a symplectic
manifold is a manifold M equipped with a closed non-degenerate 2-form. Accord-
ing to Darboux’s Theorem, such a manifold is always locally isomorphic to R2n
equipped with the symplectic form expressed in coordinates (ql, ... , qn, pl, ... , pn)
as Ei dpi. The Poisson structure

is invariant under all diffeomorphisms preserving the symplectic form, so there
is a well-defined Poisson structure on any symplectic manifold. Non-symplectic
manifolds arise for instance as quotients of symplectic manifolds by symmetry
groups and as the classical limits of quantum groups.

The fundamental example of a *-product is the Moyal- Weyl product on R2~
with the Poisson structure just described. It comes from the composition of oper-
ators on coo(Rn) via Weyl’s identification [Wy] of such operators with functions



on R2n, and was used by Moyal [My] to study quantum statistical mechanics from
the viewpoint of classical phase space. The term Bl in the formal series for this
product is just i/2 times the "Poisson operator" (a, b) ~ {a, b}, and the full series
is essentially the exponential of Bl. We will define the "powers" of the Poisson
operator which enter in this series in a slightly more general setting. Let V be
a vector space, and let 7r be a skew-symmetric bilinear functional on V*. The
formula {a, b} _ 7r(da, db) defines a Poisson structure on V. Associated to the
bilinear operator 7r is a unique differential operator n : C°° (V x V) - C°° (V x V)
with constant coefficients for which {a, b} = 0*II(a ® b); here, a ® b is the function
(y, z) H a(y)b(z), and 0* : C°° (V x V) - Coo(V) is restriction to the diagonal.
Now we define the Moyal-Weyl product on V by

The space with this product will be called the Weyl algebra of V and
denoted by W(V).

If (xl, ... , zm ) are linear coordinates on V, then the Poisson brackets {Xr, xs}
are constants 7rrs (the components of 7r), and the operator Bj in the expansion of
the Moyal-Weyl product is

On a general Poisson manifold, the Leibniz identity implies that the Poisson
bracket is given by a skew-symmetric contravariant tensor (or "bivector" ) field 7r,
called the Poisson tensor, via the formula {a, b} _ 7r(da, db). If the rank of the
tensor 7r (i.e. the rank of the matrix function which represents
it in local coordinates, or the rank of the corresponding mapping from 1-forms to
vectors) is constant, then by a theorem of Lie [L] the Poisson manifold is locally
isomorphic to a vector space with constant Poisson structure. Hence such Poisson
manifolds, which are called regular, are always locally deformation quantizable; the
problem is to patch together the local deformations to produce a global *-product.

There is one case in which the patching together of local quantizations is easy.
The Moyal-Weyl product on a vector space V with constant Poisson structure is
invariant under all the affine automorphisms of V, since the notion of "operator



with constant coefficients" used in defining the powers of the Poisson operator is
invariant under such transformations. As a consequence, we can construct a global
quantization of any Poisson manifold M covered by local isomorphisms with V for
which the transition maps are affine. Such a covering exists when M admits a flat
torsionless linear connection for which the covariant derivative V7r is zero.

Torsionless Poisson connections already play an important role in the treat-
ment of deformation quantization in [BFFLS]. Just as the term Bi in the defor-
mation is determined by the Poisson structure (up to equivalence, and exactly, if
the parity condition is satisfied), so the term B2 is essentially determined by a
Poisson connection, which exists (but is not unique) on any regular Poisson man-
ifold. (Note that existence of a connection with V7r = 0 implies that the Poisson
structure must be regular.) The existence of a deformation quantization in the

presence of a flat torsionless Poisson connection was first established in [BFFLS]
by replacing the partial derivatives in (1) by covariant derivatives with respect to
parallel vector fields.

When our Poisson manifold does not admit a flat torsionless Poisson connec-

tion, the hard work begins. [BFFLS] and [Gu] began a careful analysis of the
Hochschild cohomology space ~3 (,~, A) which is home to the obstructions to suc-
cessive construction of B3, B4, .... It was soon found that the obstructions could

be chased into the de Rham cohomology space HdeRham (M), so there is no ob-
struction to constructing a deformation quantization when the 3rd Betti number
of M is zero. This step involved in an crucial way the much smaller Chevalley
cohomology space of A considered as a Lie algebra via the Poisson
bracket. (Deformations of this Lie algebra were studied in [V], a paper which
was important for all these developments.) After further results in special cases

(e.g. cotangent bundles), it was proven by de Wilde and Lecomte in [DeLl] that
a deformation quantization exists on any symplectic manifold, so that at least in
this case the obstructions in HaeRham (M) were only illusory. Their proof (as well
as the version in [DeL2]) involved rather complicated calculations which made the
result look rather "technical".

Some later versions of the existence proof still relied on patching together local
Moyal-Weyl products with nonlinear coordinate changes. In [KM2], Karasev and
Maslov give further details of a proof, whose first outline was sketched in [KM1],
which reduces the patching to rather standard sheaf-theoretic ideas. Their main



idea is to realize the deformed algebra as operators on a sheaf of "wave-packets"
built by gluing together standard sheaves over R2n with the aid of operators of
Fourier integral type. In fact, this sheaf of wave packets can be constructed only
when a certain quantization condition (elucidated in [DaP] and equivalent to a
standard condition in the theory of geometric quantization [Cz] ) is satisfied, but
the corresponding sheaf of operators always exists-it is only the "representation"
which is missing when the condition is not satisfied.

Another proof of the existence of deformation quantization which uses patch-

ing ideas was given by Omori, Maeda, and Yoshioka [OMYI]. Although their

proof still involves substantial computations, it uses a fundamental idea which is

also basic in the proof of Fedosov (who discovered it independently). Each tangent
space of a Poisson manifold M can be considered as an affine space with a constant

Poisson structure, so it carries a natural Moyal-Weyl quantization. In this way,

the tangent bundle TM becomes a Poisson manifold with the fibrewise Poisson

bracket, and with a fibrewise quantization. To quantize M itself, we may try to

identify a subalgebra of the quantized algebra C°° (TM) [[~C]] with the vector space
in such a way that the induced multiplication on C°° (M) [[fii]] gives a

deformation quantization of M. Such an identification is called a Weyl structure

in [OMY1]. Weyl structures are investigated from a classical viewpoint in [EW],
where they are seen to be closely related to exponential mappings.

An affine space V with constant Poisson structure carries a Weyl structure

defined as follows. Let (xl, ... , xm) be affine coordinates, and let (yl, ... , y~)
be the corresponding linear coordinates on a typical tangent space, so that the

coordinates on TV are (xl, ..., xm, yl, ..., with Poisson structure defined by
= and all other brackets between coordinate functions zero. The Weyl

structure then consists of those "functions" u(x, y, h) which are invariant under the

translations (x, Y, Ii) H (x + c, y - c, ~). The restriction map Y, h) - u(x, 0, ~)
is then an isomorphism, with inverse v(x, h) ~ u(x, y, h) = v(x + y, h) . Now the

fibrewise Moyal-Weyl product (i.e. with the yj as quantized variables, and Xj as

parameters) goes over under this isomorphism to the usual Weyl-Moyal product
on V (i.e. with the Xj as quantized variables). The existence proof in [OMYl]
involves patching together the local Weyl structures arising from a covering of a

symplectic manifold M by coordinate charts. The patching is rather complicated,
and it uses at one point the gluing operators of [KM].



A simpler existence proof based on gluing together Moyal-Weyl products was

given by De Wilde and Lecomte. They keep a key idea of [OMYI] (the use of
a local non-inner derivation related to scaling) but eliminate the machinery of

Weyl manifolds to give a proof by patching using fairly standard methods of Cech

cohomology. Deligne [De] has developed these ideas further, using among other

things the theory of gerbes, to give a classification of *-products in terms of Cech

cohomology. It agrees with the one described in Section 3 below.
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2. FEDOSOV’S CONSTRUCTION

Fedosov overcomes the difficulty of patching together local Weyl structures

by, in effect, making the canonical coordinate neighborhoods "infinitely small".
To understand his idea, we should first think of elements of the deformed algebra

as sections of the bundle W(TM) over M whose fibre at x E M is
When M is an affine space, the global Weyl structure described above

can then be identified with a space of parallel sections of this bundle with respect
to a certain flat connection on W (T M). In a similar way we get a Weyl structure,
and hence another construction of the deformation quantization, on any manifold
with a flat torsionless Poisson connection.

Of course we are most interested in dealing with the case where M does not
admit a flat Poisson connection, and this is where the most interesting part of
Fedosov’s proof comes in. In effect, he says that the tangent bundle of every
symplectic (or regular Poisson) manifold does admit a flat Poisson connection, if
one gives the appropriate extended meaning to that concept. Namely:

. The connection is constructed, not on the tangent bundle, but on the bundle

W(TM) of Weyl algebras. The "structure Lie algebra" of this connection,
in which the connection forms take values, is W(R2n) acting on itself by the
adjoint representation of its Lie algebra structure. Since the full Weyl algebra
is used, and not just the quadratic functions which generate linear symplectic
transformations, the structure group effectively allows nonlinear transforma-



tions of the (quantized) tangent spaces. Since even linear generating functions
are included, the structure group even allows translations.

. Actually (this idea was also used in [OMYI]), it is not the full Weyl algebra
of R2n which serves as the typical fibre, but only a certain quotient: the

f ormal Weyl algebra FW (R 2n), consisting of formal Taylor expansions at the
origin. Geometrically, one can think of this step as the replacement of the

(quantized) tangent bundle by a formal neighborhood of the zero section.
This step may appear to be inconsistent with the inclusion of translations in

the structure group, since these do not leave the origin fixed. In fact, the

effect is to force us to forget the group and to work only with the structure
Lie algebra. A beneficial, and somewhat surprising, result of this effect is that
a parallel section with respect to a flat connection is not determined by its

value at a single point. This situation is very close to that in formal differential

geometry, where the bundle of infinite jets of functions on a manifold M has

a flat connection whose sections are the lifts of functions on M. (See Section
1 of [Ts] for a nice exposition, with references.)

Fedosov uses an iterative method for "flattening" a connection which is similar

to that used in many differential geometric problems. (See [Mi-Ru] for an example,
and [Ru] for a recent survey.) Given a local trivialization of a bundle over a

manifold, a connection is given by a 1 form § with values in the Lie algebra g; the

curvature of the connection is the Lie algebra valued 2 form S~~ == d~ + 2 [~, ~] .
If the curvature is not zero, we may try to "improve" the connection by adding
another Lie algebra valued 1 form f. The curvature zero condition for § + 6 is

the quadratic equation df + [~, E] = -S~~ - 2 [E, EJ. Rather than trying to solve

this equation exactly, we linearize it by dropping the The operator

d + [~, ] is the covariant exterior derivative D~, so our linearized equation has

the form

From the Bianchi identity, = 0 it appears that the obstruction to solving (2)
for f lies in a cohomology space. This is not quite correct, since D~ _ ],
which is not zero because the connection § is not yet flat.

Up to now, we have essentially been following Newton’s method for solving

nonlinear equations. At this point, we add an idea similar to one often attributed



to Nash and Moser. (See Section 111.6 of [S] for an exposition of this method with
original references.) Since the linear differential equation (2) is only an approx-
imation to the nonlinear one which we really want to solve, it is unnecessary to
solve it precisely. Rather, it suffices to solve it approximately and to compensate
for the error in the later iterations which will in any case be necessary to take

care of the neglected quadratic term - 2 [E, E]. Such approximate solutions are con-
structed by some version of the Hodge decomposition. In the differential geometric
applications mentioned above, the full story involves elliptic differential operators,
Sobolev spaces, and so on, but in the case at hand, it turns out that the "Hodge
theory" is purely algebraic and quite trivial.

2.1 On the formal Weyl algebra

The coefficients of the connection forms which we will use are sections of the

bundle FW(TM). Rather than measuring the size of these forms by the usual
Sobolev norms involving derivatives, we shall use a pointwise algebraic measure-
ment.

In the formal Weyl algebra FW(V) of a Poisson vector space V, we assign the
weight 2 to the variable n and the weight 1 to each linear function on V. We denote
by FWr(V) the ideal generated by the monomials of weight r. Because the kth
term in the expansion of the *-product involves 2k derivatives and multiplication
by nk, we obtain a filtration of the algebra FW(V). We will also occasionally
use the classical grading, compatible with the commutative multiplication but not
with the *-product, which assigns the weight 0 to h and 1 to each linear function
on V.

The Lie algebra structure which we will use for the formal Weyl algebra is
the quantum Poisson bracket [Di] defined by [a, b] = *~ b - b *~ a). The
factor makes the quantum bracket reduce to the classical one (rather than
to zero) when h - 0. In addition, the quantum and classical brackets are equal
when one of the entries contains only terms linear or quadratic in the variable on
V, and they share the property [FWr(V), FWs(V)] C FWr+s-2(V), so that the
adjoint action of any element of FW2(V) preserves the filtration.

Next we introduce the algebra W(V) = FW(V) Q9 A*(V), whose elements
may be considered as differential forms on the "quantum space whose algebra
of functions is FW (V )" . W(V) inherits a filtration by subspaces YVr (V ) from



the formal Weyl algebra, and a grading from the exterior algebra. We can also
consider W(V) as the algebra of infinite jets at the origin of differential forms
on the classical space V, in which case we generally use the classical grading. In
this way, W(V) inherits the exterior derivative operator, which we denote by 8.
Remarkably, 8 is also a derivation for the quantized algebra structure on W(V).

We may describe the operator 8 in terms of linear coordinates (Xl,..., xm)
on V. With an eye toward the case where V is a tangent space, we denote the
corresponding formal generators of FW (V ) by (yl, ..., y~, ~) and the generators
of A*(V) by (dxl, ... , dxm). Then W(V) is formally generated by the elements
? (8 1, ~ ® 1, and 1 (g) dxi, and we have g) 1) = 1 (g) b(~ (g) 1) = 0, and
8(1 @ dXi) = 0. Notice that 8 decreases the Weyl algebra filtration degree by 1
while it increases the exterior algebra grading by 1.

Since 8 is essentially the de Rham operator on a contractible space, we expect
the cohomology of the complex which it defines to be trivial. Fedosov makes this
explicit by introducing the dual operator 8* of contraction with the Euler vector
field ~i y2 ® -2.... More precisely, 8* maps the monomial y21 ~ ~ ~ @dx’ 1 n ~ ~ ~ 
to

(This operator is not a derivation for the quantized algebra structure.) A simple
computation (or the Cartan formula for the Lie derivative by the Euler vector
field) shows that, on the monomial above, we have 88* + s*s = (p + q)id, so that if
we define the operator b-1 to be ~+g b* on the monomial above, and 0 on 1 ~ l, we
find that each element u ofW(V) has the decomposition u = ss-1 u + b-1 s~c +?~~c,
where the "harmonic" part xu of u is the part involving only powers of h and
no Yi’S or dx2’s, i.e. the pullback of u by the constant map from V to the origin.
In other words, we have reproduced the usual proof of the Poincare lemma via a
homotopy operator from H to the identity.

When the Poisson vector space V is symplectic, the operator 8 has anot her
description. For any a E FW (V ), = If is the

matrix of the symplectic structure, inverse to we get ~a/~yi = 03C9ijyj, a],
and hence 8(a 0 1) = = dx2, a ~ 1] . It follows from
the derivation property that a similar equation holds for any element of W(V);
i.e. the operator 8 is equal to the adjoint action of the element Lij dXi



(which is just the symplectic structure itself).
Of course, all the considerations above apply when V is replaced by a sym-

plectic vector bundle E and W(V) by the space of sections of the associated
bundle W(E) = FW (E) @ ~* (E). In particular, when E is the tangent bundle of
a symplectic manifold M, the operator 8 and its relatives act on the algebra of
differential forms on M with values in FW (TM). Note that these operators are
purely algebraic with respect to the variable in M, with 8 being just the adjoint
action of the symplectic structure considered as an FW(TM)-valued 1 form.

2.2 Flattening the connection

We are now ready for the iteration procedure to construct a flat connection
on the bundle of Weyl algebras. For simplicity we describe the procedure in local
canonical coordinates, but all the constructions are in fact intrinsic. We begin
with an arbitrary (linear) Poisson connection on the tangent bundle of the sym-
plectic manifold M. (In fact, one can even start with a connection with torsion-the
torsion would be killed after the first iteration [Fe4].) This connection induces a co-
variant differentiation operator on the dual bundle, i.e. on the linear functions on
fibres. In coordinates {xl, ... , xm) on M and the corresponding basis (yl, ... , ym)
of linear functions, the connection form is a 1-form with values in the Lie alge-
bra sp(m), whose elements may be identified with linear hamiltonian vector fields
and hence with quadratic functions. Thus the connection form can be written as

03C6 = 1 2 03A3 0393ijkyiyj~dxk. If we consider the same form (with the y2’s now interpreted
as formal variables) as taking values in the bundle FW (T M), it becomes the con-
nection form for the associated connection on that bundle. Even if this connection

were flat, it would not be the correct one to use for quantization, since its parallel
sections would not be identifiable in any reasonable way with functions on M; in-
stead we must use for our first approximation ~o = {~ wkj yj + 2 ~ 

To start the recursion, one calculates using the fact that the connection is
symplectic and torsion free (see [Fe3]) that

where is the symplectic form and R is the curvature of the original linear symplec-
tic connection, considered as a 2 form with values in the Lie algebra of quadratic



functions. The term -1 ® w appears even when the linear connection is flat, but
it causes no trouble because it is a central element of the Weyl Lie algebra and
therefore acts trivially in the adjoint representation.

We will now try to construct a convergent (with respect to the filtration)
sequence 03C6n of connections whose curvatures On tend to the central element -1~03C9.
Fedosov calls this central element the Weyl curvature of the limit connection; to

simplify notation, we will write H = H + 1 ® VJ for the form which should be zero,
and we call this the effective curvature .

As suggested above, we let ~n+1 - ~n + En+l, where is a section of

W(TM) which is an approximate solution of the linearized equation for zero ef-
fective curvature Dn~n+1 + On = 0. The operator Dn = D03C6n will have the form
d+8 + [en, ], where cn is an FW (TM)-valued 1 form. We will try to arrange for
cn to lie in FW2(TM) so that the operator [cn, ], like d, is filtration preserving.
Since 8 lowers the filtration degree by 1, the principal part of the differential op-
erator Dn will actually be the algebraic operator 8 (and not d as it would be if we
measured forms by the size of their derivatives.)

Instead of solving Dn~n+1 +On = 0, then, we try to solve the simpler equation
8En+l + fin = 0. In fact, we cannot solve even this equation exactly, because the

Bianchi identity gives Dnn = 0 instead of 03B4n = 0. (The term 1 ® w is killed by
both operators.) Nevertheless, we do the best we can and let the errors take care
of themselves later. Thus, we simply define -b-1 (S~n) and try to live with
the consequences.

From the recursion relation On + Dn~n+1 + 1 2[~n+1, ~n+1], we find

after a straightforward calculation using the decompositions Dn = d + 8 + ]
and u = 88-1u + 8-18u + x~ that

Using Dn = d + 8 + ] again, we can rewrite this as

By the Bianchi identity DnOn = 0, we get



Suppose now that fin E Wr(TM) with r > 1. Then Hilin = 0 and E

Wr+1 (T M), so that cn E W2(TM) and hence all the terms on the right hand side
of the equation above belong to 

Since Ho = R has filtration degree 2, we conclude that fin has degree at
least n + 2, and en+i has degree at least n + 3, so the sequence ~n converges to

a connection form § for which the curvature is H = -1 ® w. This curvature is

a central section, so the connection on FW(TM) associated to § by the adjoint
representation FW (T M) is flat. Since the adjoint action is by derivations of the

multiplicative structure, the space of parallel sections is a subalgebra of the space
of all sections.

The last step in Fedosov’s construction is to show by a recursive construction
similar to the one above that each element of is the harmonic part
of a unique parallel section of FW(TM), so that is identified with

the space of parallel sections and thus inherits from it an algebra structure, which
is easily shown to be a deformation quantization associated with the symplectic
structure w.

3. CLASSIFICATION OF *-PRODUCTS

Using techniques similar to those in [Gu] and building on earlier work of
Flato, Lichnerowicz, Sternheimer, and Vey, S. Gutt showed around 1980 that the
construction of star products on a symplectic manifold involves a choice within
an affine space of dimension b2(M) at each power of ~. The proof involved an

analysis.of Hochschild and Chevalley cohomology with differentiable cochains null
on constants. We refer to [FS] for a more detailed discussion of the state of the
theory through the early 1980’s.

Fedosov [Fe4] showed that his iterative construction of a connection on the
bundle FW(TM) can be modified so that the curvature becomes £ ~C~ ® for

any sequence of closed 2 forms Wj such that who is the original symplectic structure
W. He also showed that the isomorphism class of the resulting *-product depends
precisely on the sequence of de Rham cohomology classes [Wj] e H2 (M, R) and in
particular is independent of the initial choice of connection.

This left open the question of whether every *-product is isomorphic to one
obtained by Fedosov’s construction. A positive answer to this question has given
by Nest and Tsygan. Using a noncommutative version of Gelfand-Fuks cohomol-



ogy, they construct in [NT1] for each deformation quantization a characteristic
class in H2(M, R)[[~]] with constant term w. In [NT2], they show that this class
determines the *-product up to isomorphism and that it agrees with Fedosov’s

curvature for the *-products constructed by his method. By Moser’s classification

[Ms] of nearby symplectic structures by their cohomology classes, the isomorphism
classes of *-products on a symplectic manifold are thus in 1-1 correspondence with

isomorphism classes of formal deformations of the symplectic structure.
One consequence of this classification is that there is (up to isomorphism) a

unique deformation quantization whose characteristic class is independent of n.

Although one might think that this special quantization is somehow the natural

- one, there is considerable evidence that the others are important as well. For

instance, Fedosov [Fe5] shows that one needs to introduce *-products with non-
constant characteristic class to make deformation quantization compatible with

symplectic reduction. In addition, work in progress by Emmrich and the author

suggests that *-products with nonconstant characteristic classes may be related to

geometric phases and deformations of symplectic forms which arise in the analysis
of coupled wave equations [LtF].

4. TRACE AND INDEX

4.1. Strongly closed *-products

A trace on a deformed algebra is by definition a linear functional

on the compactly supported functions T : ~-m~2C[[~]] whose formal
extension to satisfies the usual condition T(a *~ b) = T(b *~ a). The

negative powers of n (m is the dimension of M) are admitted because, when

M = R2n , the "natural" trace coming via the Weyl correspondence from the trace

of operators is

In [CoFS], a *-product is called strongly closed if the functional (3) still defines

a trace. It is shown there that in the obstruction theory for the classification of

strongly closed *-products Hochschild cohomology should be replaced by cyclic

cohomology [Co]. The existence of a strongly closed *-product on an arbitrary



symplectic manifold was shown in [OMY2]. Fedosov [Fe4] constructed a trace for
each of his *-products, in which the linear functional (3) is applied not to a but to a
series ~ G~ (a) ~~ , where the Gj are differential operators with Go the identity. By
the classification of [NT2], it follows that every *-product on a symplectic manifold
is equivalent to a strongly closed *-product. It is further shown in [NT2] that the
set of traces for a *-product on a symplectic manifold forms a 1-dimensional module
over C[[~]], so the trace is essentially unique.

4.2. Index theorems

The index of an elliptic operator is defined as the difference between the

dimension of its kernel and that of its cokernel, which can also be interpreted as
the difference between the traces of the projections on these two spaces. These two

projections can be replaced by other pairs of operators more amenable to analysis,
so that index theory comes down to a theory of computations of traces, which can
then be applied in purely algebraic settings [Co]. In the context of deformation

quantization, a setting for such theorems was given in [CoFS], while a detailed
proof of an index theorem announced in [Fe2] may be found given in [Fe4]; other
versions are in [NTI], and [NT2].

A basic ingredient in the algebraic formulation of index theorems is the ap-
propriate counterpart of an elliptic operator. This can be defined in several ways;
we present here one found in [Fe4].

Let M N (A) denote the algebra of N x N matrices with entries in a C-algebra
A. Any *-product *1i on the Poisson manifold M induces a deformation (which
we also denote by *1i) of the product in the algebra of matrix

valued functions; simply identify COO(M, MN(C)) [[~t]] with ,NIN (C°° (M) ~[~t]] ) and
use the *-product on the matrix elements. For convenience, we will denote this

(deformed) algebra by M N (M) . A trace for the *-product on C°° (M) [[fi~]] induces
in the usual way a trace on MN(M)-take the sum of the traces of the diagonal
elements. (We note that Fedosov [Fe4] constructs a deformation, with trace, of
the algebra of endomorphisms of any complex vector bundle E over a symplectic
manifold M; the starting data in this case are a linear connection on E and
the usual symplectic connection on M. The index theorem extends to this more
general setting. )

The domain and range of an ordinary elliptic operator are spaces of sections



of vector bundles. Since any bundle is a subbundle of a trivial bundle, in the

algebraic setting the bundles may be replaced by projections, i.e. elements pi and

p2 in MN(M) such that p~ = In the "usual case", M is a cotangent
bundle T*X, and the projections are the pullbacks of matrix valued functions on

X, for which the most commonly used *-products coincide with ordinary matrix

multiplication. )
An operator between sections of vector bundles is replaced in the algebraic

setting by an element a of MN(M) such that a*hp1 = = a. Ellipticity in the

analytic case follows from the existence of an inverse modulo compact operators;
in our algebraic setting this becomes an element such that pi - r *1i a

and p2 - a *1i r have compact support.
The 4-tuple £ = (pl, p2, a, r) is called an elliptic element. Its index is defined

as

The classical, or geometric, limit of an elliptic element is the 4-tuple of symbols

cr(~) = obtained by setting ~ = 0 in all the objects in E.

Here, cr(pi) and cr(p2) are projections onto vector bundles over M, and a(a) and

r(r) are maps between these bundles which are inverse to one another outside a

compact subset of M. These data define an element of K-theory with compact

supports over M, which then has a Chern character in H~ (M, C).
As a symplectic manifold, M carries a compatible almost complex struc-

ture unique up to homotopy and hence a well defined Atiyah-Hirzebruch class

E H* (M, C). Also determined by the symplectic structure is its de Rham

cohomology class [w]. This completes the data needed for the statement of the

index theorem, which is the following formula (in which evaluation on the funda-

mental homology class .of M is written as integration):

Remarks

The left hand side of the index formula is by definition a series in h-m/2C[[h]],
while the right hand side is a polynomial of degree at most m/2 in 

When M is compact, the conditions to be satisfied by a and r are vacuous;

we can even take a and r to be zero. In this case, the index just depends on the



element of K-theory defined by the projections pi and p2. If N = 1) pi = 1) and

p2 = 0, we get the formula:

This is consistent with the idea (see for instance [BoG]) that functions on M may
often be identified with operators on a space whose dimension is given, via the
Riemann-Roch theorem, by the right hand side of the formula above.

In a very recent manuscript [Fe6], Fedosov observes that the density in the
integral above essentially defines the trace, and he attempts to use the work of
Tamarkin [Ta] to characterize this density by its invariance properties. So far,
this approach has succeeded only in the case where M carries a flat symplectic
connection.

5. SOME QUESTIONS

A fundamental question remains. Is every Poisson manifold deformation
quantizable ? This question may be broken into the following two parts. Is every
Poisson manifold locally deformation quantizable? Is every locally deformation
quantizable Poisson manifold globally deformation quantizable? (It is not hard to
show that deformation quantizations of two open subsets which are equivalent on
the intersection of the sets can be "patched" to produce a deformation quantiza-
tion of the union.) Donin [Do] has given an algebraic reformulation of Fedosov’s
method which shows, in particular, that there is a deformation quantization of the
field of rational functions on any Poisson algebraic variety.

The algebra is the Lie algebra of (a 1-dimensional central extension
of) the group of symplectic transformations of M. Is there a version of deforma-
tion quantization which applies to this group? This problem is related to, but not
totally solved by, the *-exponentials of [BFFLS]. What is the corresponding index
theorem? For homogeneous symplectic transformations of cotangent bundles, this
would be an index theorem for elliptic Fourier integral operators. (See In

the cotangent bundle case, it is hard to find examples of homogeneous symplectic
transformations which are not isotopic to cotangent lifts of diffeomorphisms (for
which the index problem reduces to the pseudodifferential case). For general sym-
plectic manifolds, on the other hand, there are plenty of examples, so this index
theorem would be of real interest.



We have completely ignored in this paper the problem of strict deformation
quantization, where one seeks a deformation which is not merely a formal power
series in h but actually exists as an algebra for sufficiently small n. For example, the
reader may consult [Be2], [Ri] and [Wi2] for some of the analytical and geometric
aspects of this problem and [CaGR] for the related problem of convergence of the
series in h which define the *-product.
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