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OPERATOR ALGEBRAS, FREE GROUPS 
AND OTHER GROUPS 

PIERRE DE LA HARPE 

1. INTRODUCTION. 

Let T be a group. We denote by C[r] the group algebra of complex linear combi 
nations of elements of T, given together with the involution 

X = 
7<=r 

z77 i—• X* — *77 1 

The operator algebras of interest here are various completions of C[r]. Non abelian 
free groups are among the most studied examples of groups in this context. We 
denote by Fn the non abelian free group on n generators, where n is either an integer, 
n > 2, or n = oo, meaning an infinite countable number of generators. 

Our guiding principle is that the special case of free groups indicates typical be
haviours which hold in many other cases of geometrical interest. This has suggested 
the three main aspects of the report below : 

a survey of some properties of operator algebras associated to the Fn 's, 
an exploration of "geometric" groups giving rise to algebras with similar 

properties, 
a list of open problems (some of them are numbered, from 1 to 19, 

and others appear in the text). 
We shall concentrate on groups T which are lattices in semi-simple Lie groups 

([Rag], [Mas]) or hyperbolic [Grl], and on algebras which are either von Neumann 
algebras or C*-algebras. But we shall mention on occasions other groups and other 
algebras. Unless explicitely stated otherwise, T denotes a countable group and 
operator algebras are separable in the appropriate sense. 

Many important developments are left untouched. In particular, we say very little 
on K-theory and KK-theory related to group C*-algebras, and nothing at all on the 
Novikov conjecture. 

It is a pleasure to thank M. Bekka, G. Skandalis, A. Valette and D. Voiculescu 
for many helpful discussions. I have also benefited of the expert comments of various 
colleagues on a first draught of this work, and I'm most grateful for this to E. Bedos, 
M. Cowling, E. Ghys, T. Giordano, P. Jolissaint, V. Jones, E. Kaniuth, S. Popa, F. 
Radulescu, F. Ronga and A. Sinclair. 
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P. DE LA HARPE 

2. THE VON NEUMANN ALGEBRA W^(T). 

2.1. Generalities. 
For a Hilbert space W, we denote by C(7i) the involutive algebra of bounded 

operators on H and by U(H) the group of unitary operators on H. Any unitary 
representation TT : T —• U(H) of a group T gives rise to a morphism of involutive 
algebras C[r] —• C(H) which is again denoted by 7r, and defined by 

7T 
ET 

277 
7€r 

λΠ(y) 

We denote by W*(T) the weak closure of TT (C[T]) in C(H). 
Consider in particular the space /2(r) of square summable complex valued functions 

on T and the left regular representation 

\:T^U(l2(T)) 

where (A(7)£) (x) = £(7 xx) for all 7, x £ Y and for all £ £ r(T). The weak closure 
W^(r) of A(C[r]) is the von Neumann algebra of I\ 

There is a finite normal trace r : W£(T) —• C which extends the map C[r] —> C 
given by Yl-yer zi1 Zl > an(̂  n̂*s trace 1S faithful. Thus the von Neumann algebra 
W£(r) is finite, of the form Wj 0 Wn = (©gjWi) 0 W// with each Wi of type 
say with unit e,-, and with W// of type / /1 , say with unit e. 

One has e = 0 if and only if T contains an abelian group of finite index. Let Tf 
denote the subgroup of T of elements with finite conjugacy classes and let DT/ denote 
its commutator subgroup; then one has e = 1 if and only if either [r : Tf] = 00 
or [r : Tf] < 00 and \DTf\ = 00. See [Kan], [Sml] and [Tho]. In case T is finitely 
generated, one has either e = 0 or e = 1. (This appears in [Ka2], but it is also a 
straightforward consequence of [Kan]. Indeed e =̂  1 implies [r : T/] < 00 by [Kan, 
Satz 1]; as Tf is also finitely generated in this case, the centre of Tf is of finite index 
in Tf [Tom, Corollary 1.5], and thus also in T; consequently e = 0.) But there are 
already in [Kap] examples, due to B.H. Neumann, which show that one may have 
0 ^ e ^ 1. Here is one of these examples : for each i £ N, denote by D{ a copy of 
the dihedral group of order 8 and by C{ its center, which is of order 2 and which is 
also its derived group; let B be the direct sum of the i?, 's and let C be the subgroup 
of elements (CJ)JGN £ B such that c\ £ d for each i £ N and JlieN c» = ^ ^ s 
Neumann example is the quotient A/B] its von Neumann algebra is the direct product 
of C (with r (ei) = 1/2) and of a factor of type //1 (with r(e) = 1/2). 

For a group T, Kaplansky has observed that r(ei) is the inverse of the order of 
the derived group of T [Kap, Theorem 1]. There are formulas giving 1 — e [Fo2]. 
The sum 1 — e = e% 1S finite, and indeed = 0 whenever i2 > \T/Tf\ [Sm2]. 
When e ^ 1, one has Wj « W£(T/T0), where the von Neumann kernel r0 of T is 
defined as f]n Ker(7r : T —> U(n)), the intersection being over all finite dimensional 
representations of T [Sch, Satz 1]. 
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OPERATOR ALGEBRAS, FREE GROUPS AND OTHER GROUPS 

Let r be a group such that 0 ^ e ^ 1; I do not know whether there exists a 
group TJJ naturally associated to T and such that Wu « W^(TJJ). Here is a similar 
question : let T be a group such that W£(T) is not a II\-factor but contains a central 
projection c such that cW£(T) is a II\-factor; does there exist a group Tc naturally 
associated to Y and such that cW^(T) « W^(TC) ? 

Observe that, in case T is a hyperbolic group, is precisely the so-called virtual 
center of T, denoted by Zvirt(T) in [Cha]. 

2.2. Free groups. 
Historically, the first examples of factors of type Hi are given by Murray and 

von Neumann in [MNI], as crossed products which involve abelian groups (indeed 
subgroups of R) acting ergodically on appropriate spaces. Several years later, they 
give a new construction which is "considerably simpler than our previous procedures, 
but it is clearly related to them" [MNIV, Introduction, §5]. Among other things, they 
show the following results. Recall that a group T has infinite conjugacy classes, or 
in short is ice, if all its conjugacy classes distinct from {1} are infinite; for example, 
Fn is ice for all n > 2. 

Theorem 1 (Murray and von Neumann). 
(i) Let r be a group. Then W£(T) is a factor if and only ifT is ice. 
(ii) For each n > 2 the factor W£(Fn) does not possess Property Gamma. 
This is shown in [MNIV] : see Lemma 5.3.4 for (i), Definition 6.1.1 for Property 

Gamma and §6.2 for (ii) when n = 2; moreover Lemma 6.3.1 shows that W£(Ti *r2) 
is a factor which does not possess Property Gamma whenever Ti [respectively T2] is a 
group containing at least two [resp. three] elements (the star denotes a free product). 
About the meaning of (ii), let us recall that a von Neumann algebra M does not have 
Property Gamma if and only if it is full, namely if and only if the group Int(M) of 
its inner automorphisms is closed in the group Aut(M) of all its automorphisms (see 
[Co74, Corollary 3.8] and [Co76, Theorem 2.1]). 

Though we do not consider twisted crossed products in this report, let us at least 
mention that many of the results discussed here have "twisted formulations". For 
example, for claim (i) of Theorem 1 above, see [Pac, Proposition 1.3]. 

Claim (ii) suggests immediately the following, which is Problem 4.4.44 in [Sak]. 

Problem 1. Does it happen that W£(Fn) « W^(Fn») for n fi ri ? 
Though Problem 1 is still open, progress has been obtained recently, using Voicu-

lescu's theory of freeness in noncommutative probability spaces (see among others 
[Vo2], [VDN] and [Sk2]). For example, one must have 

either W£(Fn) « W^(Fn>) for all n,n' such that 2 < n,n; < oo 
or W{(Fn) 7fe WZ(Fn>) for all n,n' such that 2 < n < ri < oo. 

This has been first proved for n,n' < oo, independently by K. Dykema and F. Rad-
ulescu; moreover, this holds for n, n' < oo by [Ra5, Corollary 4.7]. Let us also mention 
that 
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P. DE LA HARPE 

wA*(*~= 1r„) W λ (F) 

whenever Tn is a nontrivial amenable group for all n > 1 (see [Vo2, Corollary 3.5] 
and [Dy2, Corollary 5.4]), and that 

w j ( r * r ' ) « WZ(F2) 

when T , T' are infinite amenable groups [Dy2, particular case of Corollary 5.3]. See 
also [HaVo]. 

One of the novelties connected with the results above is the discovery, due inde
pendently to K. Dykema [Dyl] and F. Radulescu [Ra4], of a continuous family of 
Hi-factors L{Fr) interpolating the free group factors. In the next theorem, we de
note by Mi *M2 the Hi -factor which is the reduced free product of two finite factors 
Mi, M2; this is a crucial notion in Voiculescu's approach [Vo2]. 
Theorem 2 (Dykema, Radulescu, Voiculescu). For each extended real number 
r such that 1 < r < 00, there exists a Ili-factor L(Fr) such that 

L(Fr) *L(Fr>) « L(Fr+r>) for all r,r ' e]l,oo], 
p(L(Fr) ® M„(C)) « L(F1+7-2(R_!)) for any r €]l,oo] and any 

projection p € L(Fr) ® Mn(C) of trace 7 G]0,00[ 
(where n is large enough), 

L(Fn) « WJ(F„) for aline { 2 , 3 , 0 0 } , 
L(Fr) ® M w L(Fri) 0 M for all r, r' G]l, 00[ whenever M is 

either £(W), or i?, or WJ(Foo), 
the isomorphism class of L(Fr) ® L(FR/) depends only on (r — l)(r' — 1), 

for aii r, r' e]ly 00]. 
In the theorem, C(7i) denotes the factor of type Too and R denotes the hyperfinite 

factor of type Hi] moreover p is of trace 7 for the trace of value 1 on the unity of 
L(Fr). The first result quoted after Problem 1 is in fact 

either L(Fr) « L{Fr>) for all r,r ' such that 1 < r,r' < 00 
or L(Fr) 96 L(Fr>) for all r,r' such that 1 < r < r' < 00 . 

Let us mention that some attention has been paid to free groups on uncountably 
many generators : if F\\ denotes such a free group, then W£(F\\) hasn't any "regular 
MASA"; also (we anticipate here on Section 3) the reduced C*-algebra C^(FM), which 
clearly is not separable, has only separable abelian *-subalgebras [Pol, Section 6]. 

2.3. Other groups. 
Considerable effort has been devoted to understand whether various factors of the 

form W^(r) are or are not isomorphic to each other. The oldest result of this kind 
follows from Claim (ii) of Theorem 1 above on one hand and from the consideration of 
locally finite groups which are ice on the other hand; this result, which is the existence 
of two non isomorphic factors of type / / 1 , is recorded as the achievement of Chapters 
V and VI in [MNIV, Theorem XVI]. Later, the same construction T i-> W£(T) has 
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been used by D. McDuff to show that there are uncountably many pairwise non 
isomorphic type II\ factors (see [McD] or [Sak, 4.3.10]). 

We shall review now how some properties of an ice group are reflected in properties 
of the corresponding factor. 

2.4. Injectivity. 

For an ice group T, A. Connes has shown that W£(T) is the unique injective factor 
of type Hi if and only if T is amenable [Co76, in particular Corollary 7.2]. 

There is a very large number of pairwise non isomorphic ice amenable countable 
groups. Let us mention ice locally finite groups, as in [MNIV, Lemma 5.6.1], and ice 
solvable groups, such as the group 

TK= a b 
0 1 e GL2(K) a e K , 6 € K 

where K is a countable infinite field (the so-called ax + b group associated to K). It is 
known that there exist uncountably many pairwise nonisomorphic groups which are 
locally finite and ice (indeed simple) [KeW, Corollary 6.12]. It is also easy to check 
that two groups TK and TK' as above are isomorphic if and only if the fields K and Kl 
are isomorphic, and there are uncountably many pairwise nonisomorphic countable 
fields (examples : the fields Ks = Q ((y/p)pes) where 5 is a set of prime numbers; 
Ks ~ Ks/ if and only if S = 5', as it follows from Rummer's theory [Bou, V, p. 
85, Theoreme 4]; I am grateful to M. Ojanguren for explanations on this). There are 
many other ways to construct uncountable families of ice amenable groups; the way 
suggested in [Wat] provides groups with pairwise nonisomorphic C "-algebras. 

Yet all these groups provide the same factor. 

2.5. Fullness. 
The proof in [MNIV] of Theorem l.ii above uses arguments which go much beyond 

free products. Indeed, one has the following, for which we refer to Effros [Efl] and 
to [BdH]. As the terminology is unfortunately not uniform (compare [Pat, page 84]), 
let us recall that, here, a group is inner amenable if there exists a finitely additive 
measure \i : V(T — {1}) —• [0,1] defined on all subsets of T — {1}, which is normalized 
by /i(r-{l}) = 1 and which satisfies ^D^~l) = fi(D) for all 7 G T and D C T-{1}. 
A group which has a finite conjugacy class distinct from {1} is inner amenable. 

Proposition 1 (Effros). If T is a group which is not inner amenable, the algebra 
WZ(T) is a full factor. 

Problem 2. Does there exist an ice group T which is inner amenable and such that 
the von Neumann algebra W£(T) is a full factor ? 

There are many examples of families of groups which are known to be not inner 
amenable, and thus to give rise to full factors. Here are some of them. 
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Let G be a connected semi-simple real Lie group without centre and without com
pact factor. It is a simple corollary of Borel density theorem that a lattice T in G is an 
ice group. (See e.g. [BkH, Proposition 2], which proves a slight strengthening of this; 
for the density theorem, see [Bol] or [Zim, Theorem 3.2.5].) Also T is not amenable 
(indeed, C.C. Moore has shown this for any Zariski-dense subgroup of G [Zim, 4.1.11 
and 4.1.15]). It can be shown that such a lattice T is never inner amenable, so that 
W£(T) is a full factor; this carries over to lattices in adjoint semi-simple Lie groups 
over local fields [HS3]. 

In case G is moreover a simple real Lie group of rank one, it is also known that 
an ice subgroup of G which is discrete (not necessarily a lattice) and which is not 
amenable cannot be inner amenable (Georges Skandalis, private communication of 
December, 1992, and [Ski]). 

Let now T be a group which is hyperbolic and non elementary (a hyperbolic group 
is said to be elementary if it contains a cyclic subgroup of finite index). Such a group 
is not necessarily ice, for example because there may exist a subgroup To of T such 
that T is the direct product of T0 and of a non trivial finite subgroup. Consider 
however 

Tf = { 7 G T : the centralizer of 7 in T is of finite index in T} . 

Then Tf is a finite normal subgroup in T and the quotient I\cc = T/Tf is ice [Cha, 
cor. 2.2.2]. If r is moreover torsion free (this implies Tf = {1}), then T is ice and is 
not inner amenable [Har4], so that W£(T) is a full factor. I do not know if this holds 
under the more general condition Tf = {!}. 

Let Bn denote the Artin braid group on n strings, let Cn denote its centre (which 
is isomorphic to Z) and let DBn denote is commutator group. It has been shown in 
[GiH] that WZ(Bn/Cn) and W^(DBn) are full factors for all n > 3. From the same 
paper, we repeat here the following. 

Problem 3. Let K C S3 be a piecewise linear knot which is not a torus knot and let 
IV denote the fundamental group of the knot complement S3 — K. Show that Tx is 
ice and not inner amenable. 

One may of course repeat for the groups above the question of Problem 1 : in par
ticular, if K and K1 are two such knots, when are W^(TK) and W£(TK') isomorphic 
? (Compare with Problems 4 and 6 below.) One may also formulate similar problems 
for other classes of groups appearing in geometry, such as mapping class groups, or 
infinite irreducible Coxeter groups which are neither finite nor affine. (The latter 
have free subgroups [Har3]; for many examples, see the references quoted in [Har5, 
nos 78-81].) Ditto for various notions of generic or random groups [Cha], [Gr2, § 9]. 

2,6. Fundamental groups. 

The fundamental group of a factor M of type II\ with trace r is the group of 
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positive real numbers 

F(M) teR% there exist a projection e G M 0 C(H) 

such that r(e) ¿ and e(M®C{H))e « Af 

* G R+ there exists a G Au¿(M (8) £(W)) 

such that r a(x) tr(x) for all x G M (8) £(W) 

defined by Murray and von Neumann. Chapter V of [MNIV] ends with the dis
appointing observation that "as to ^(M), we know nothing beyond Theorem XV" 
(which shows that the fundamental group of the injective II\ factor is R+). Today, 
we know at least two more things 

if T has Kazhdan Property (T), then T(W^(T)) is a countable subgroup 
of R+ (see [Co80], and [Po5] for a generalization), 

the fundamental group of W^FQO) is R+ [Ral]; more precisely there 
exists a one parameter group {ott)Q<t<00 of automorphisms of 
M = WZ(Foo) <g> C(H) such that r(at(x)) = tr(x) for all t G R+ 
and x G M, where r denotes the canonical trace on M [Ra2]. 

In particular W^(T) 56 W^(T') if T has Property (T) and if V is amenable or is F^. 

Problem 4. Does one have F(W£(r)) = Jr(W^(F2)) whenever T is one of the 
following groups ? 

a non elementary Fuchsian group, 
a lattice in SO°(l,n) or in PSU(1, n) for some n > 2, 
a quotient Bn/Cn of a braid group by its centre (n > 3). 

Dykema and Radulescu have shown that 

either F(W{(Fn)) = {1} for all n such that 2 < n < 00, 
and then WJ(F„) 96 W£(Fn.) for all n,n' G {2,3,...} such that n ^ n', 

or «F(WjJ(F„)) = R+ for all n such that 2 < n < 00, 
and then WJ(Fn) » WJ(F„/) for all n,n' G {2,3,...}. 

Then Radulescu has shown that the second possibility implies W£(Fn) « Wĵ Foo) 
for all n > 2. For Fuchsian groups, see [HaVo]. 

2.7. Jones9 invariants. 

Let M be a separable factor of type V. Jones has defined the invariant 

I (M) = {r€[l,oo] there exists a 7/i-subfactor N of M with index r } 

and has shown that it satisfies the following properties : 

rur2ei(M) rir2 G I(M), 
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n2 
n=l,2,... 

U {oo} С I(M), 

for each x € f(M) one has x + 2 + х-1 € I(M), 
I(M)C 4 сов»*] 

n=3,4,... 
U[4,oo]=I(Ä), 

where i2 denotes the injective II\ -factor. Moreover, if T is an ice group 

1(Г)С1(И7(Г)) 
where 2(1) = {n G N : there exists a subgroup of T of index n) . For all this, see 
[Jo83]. It is also known that 

J(M) is countable if M has Property (T), 
for example if M = W£(T) for an ice group T with Property (T) (see [PiP], and a 
generalization in [Po5]). 

A recent computation of Radulescu shows that 
IW(F00)) = I(R). 

Moreover, let s E be the index of a subfactor of R with trivial relative commutant 
obtained by iteration of Jones' "basic construction" from a commuting square; then 
s G I(w{(Fn)) for each n > 2; in particular I(WJ(F„)) fl [1,4] = I(R) 0 [1,4] for 
each n > 2. For all this, see [Ra3], [Ra5]. 

Problem 5. Let T be an ice group which has Kazhdan Property (T). Compute 
F(W*X(T)) andX(W*x(T)). 

The question about ^ ( И ^ Г ) ) appears in [Co90, section 3.10, problème 3] and 
[Co93, Section V.ll]. One could of course add a (probably even more difficult) prob
lem about the invariant C(M) = {r € [l,oo] : there exists а /Д-subf act or N of M 
with index r and with trivial relative commutant}. 

2.8. The constants of Cowling and Haagerup. 

In their work on completely bounded multipliers, M. Cowling and U. Haagerup 
have defined constants A(r) , A(G) , A(M) G [l,oo], associated respectively to 
a discrete group T, a second countable locally compact group G and a finite von 
Neumann algebra M. Moreover : 

A(G) = 1 if G is amenable, 
A(r) = A(G) if T is a lattice in G, 
A(r) = A(WA*(r)), 
A(Mi) < A(M2) if Mi is a subalgebra of the finite algebra M2, 
A(G) = 1 if G is locally isomorphic to one of 50(1, n) or 5(7(1, n) 

for some n > 2, 
A(G) = 2n — 1 if G is locally isomorphic to 5p(l, n) for some n > 2, 
A(G) = oo if G is a connected simple real Lie group with finite centre 

which is non compact and which is of real rank at least 2. 

128 



OPERATOR ALGEBRAS, FREE GROUPS AND OTHER GROUPS 

This provides many examples of pairs of lattices Ti C G\ and r2 C G2 such that 
W^{T\) is not isomorphic to any subalgebra of W£(r2). For all this, see [Haa3] and 
[CoH], as well as [LHa] for the universal covering of 5J7(l,n); there is also a nice 
review by Cowling [Cwl]. Let us finally mention that A(G) = 1 for a locally compact 
group acting properly on a locally finite simplicial tree (a result of Szwarc, see [Va3, 
Proposition 6]) or for various free products of amenable groups amalgamated onver a 
common open compact subgroup [BoP], and that A(r) = 1 for a Coxeter group T in 
the so-called "right-angled" class [Va4]; it is believed that A(r) = 1 for any Coxeter 
group T. 

Superrigidity à la Margulis suggests the following problem, again due to A. Connes. 
See [Co90, section 3.10, problème 2], [Co93, Section V.ll], and also the last question 
in [CoH] about lattices in 5p(l , l l) and in F4(_2o)-
Problem 6. Let Ti, T2 be two ice groups which have Kazhdan Property (T). Show 
that W£(Ti) and Wl(T2) are isomorphic if and only ifTi and T2 are isomorphic. 

Here is a related problem concerning rigid groups. I believe it is also due to A. 
Connes. 

Problem 7. Find an ice group T such that any automorphism of the factor W£(T) 
is inner. 

If such a group T exists, it has to be perfect and any automorphism of T itself has 
to be inner [Behl, Theorems 5.1 and 5.2], [Kal, Remark 2.3]. 

There is a notion of Property (T) for von Neumann algebras [CoJ] which is well 
adapted to the groups we discuss here : if a group T is ice, or more generally if 
the subgroup Tf of these elements of T which have a finite conjugacy class is finite, 
then W£(T) has Property (T) if and only if T has Property (T). But Jolissaint has 
observed that, if T is a group which has Property (T) and which is such that Tf is 
infinite, then W£(T) does not have Property (T) of [CoJ]. (See [Jo3], which gives also 
a characterization in terms of W£(T) of Property (T) for an arbitrary group T; for 
examples, due to Serre, of groups T which have Property (T) and which have infinite 
centres, see [HaVa, § 3.d].) 

It is known that a II\-factor with Property (T) cannot be isomorphic to a subfactor 
of W£(F2) [CoJ, Corollary 4]. Moreover, if V is a group which has Property (T), any 
homomorphism from T to the unitary group of W£(F2) has an image whose strong 
closure is a compact subgroup of U (W^{F2))\ this is a particular case of a result in 
[Rob]. 

One may ask whether there exists a sequence (Ti) = (T) , (T2) , ... of strength
enings of Property (T) such that, if T or W^(T) has and if H or W^(T') has not 
Property (Tn), then W£(T) cannot be a subfactor of W£(Tf). (This is a suggestion of 
M. Gromov.) 

Let us finally repeat here an old problem which is still open (see e.g. [Po4, § 4.3]). 

Problem 8. Let M be a factor of type II\ which is not infective. Does there exist 
a subfactor of M isomorphic to W£(F2) ? 
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2.9. The x invariant and other invariants. 

For any factor M with separable predual, A. Connes has defined an abelian Borel 
group x(^)? which is the centre of the image in the outer automorphism group 
Out(M) = Aut(M)IInt(M) of the group Int(M) of approximately inner automor
phisms of M. He has shown that x(M) = {1} if M is the injective factor of type 
Hi or if M = W£(Fn) for some integer n > 2. The invariant is meant (among other 
things) as an obstruction to a factorization as a tensor product of a full factor and 
a hyperfinite factor. A. Connes has constructed examples M such that x(M) ф {1} 
(some of these examples can be realized as group factors, but this is not used for the 
computation of their x )• He has also used the invariant x to show that there exist 
factors of type Hi which are not anti-isomorphic to themselves, and in particular not 
of the form W^(T). See [Co75], as well as [C76b, Section 3.10], [Jo79], [Jo80] and 
[Kaw]. It seems appropriate to formulate explicitely the following question. 
Problem 9. What can be said about x (WUT)) for other ice groups T ? 

In [Po2], S. Popa has made a detailed study of the maximal injective von Neumann 
subalgebras of W£(Fn). He has shown in particular that each free generator of Fn 
generates such a maximal injective subalgebra, abelian and isomorphic to W£(Z) « 
L°°(S1). He asks moreover the following problem. 
Problem 10. Classify up to isomorphism the maximal injective von Neumann sub-
algebras of the Hi-factors. 

Let us define a factor M of type Hi to be tensorially indecomposable if it 
cannot be written as any tensor product A ® В of two factors Л, В of type 11г. In 
[Pol, Corollary 6.6], Popa shows that the nonseparable factor W£(F\\) of a free group 
F\\ on uncountably many generators is tensorially indecomposable. In [Роб], he asks 
for examples of separable Hi -factors which have this property, and asks in particular 
the following. 
Problem 11. Are the WUFn) 's tensorially indecomposable ? 

Among other invariants of factors of the form M = W%(T) which should be 
investigated, obvious candidates are cohomology spaces, in particular H*{M,M) 
and if*(M, M*), where the subscript c indicates cohomology with norm-continuous 
cochains and where M* denotes the predual of M. For example, one has H^(M, M) = 
{0} for all k > 1 if M is hyperfinite, and more generally if M is isomorphic to its 
tensor product with the hyperfinite Hi -factor; does this hold in general ? (it does for 
k = 1). See [Rin], [Co78]. Recently, A. Sinclair and co-workers have observed that the 
Gromov bounded cohomology group H^(T) injects in if* (^(H, ^(H) f°r an< ^ ̂  2, 
so that one has for example Hi (/1(Fn), ll(Fn)) ^ {0}. There is now some effort to 
try and produce an example with 

Яс2«г4(^ (Г)ДА' (Г) )^0} 

but all this is quite conjectural at the time of writing. (Moreover specialists don't all 
agree about which way to conjecture; see for example [Роб].) 
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Here is another open problem, stated in [FaH], slightly related to cohomology 
considerations : if 7 is a free generator of Fn, does there exist I , F G W£(Fn) such 
that A(7) = XY — YX ? 

A more exotic project would be to study homotopy groups of the unitary group 
(with the strong topology) of 1Ii-factors of the form M = W^(T); such a unitary group 
is contractible if M is hyperfinite or if T = Foo [PoT]. The homotopy groups of the 
unitary group of a //1 -factor M with respect to the norm topology are known; firstly 
III (W(M)norm) = R by [ASS]; secondly n2*+1 (U(M)noim) = Ui(U(M)noim) = R 
and U2k (W(M)norm) = {0} for all k > 1 by [Scl]; see also [Sc2]. 

Finally, we would like at least to mention the impressive entropy computations of 
E. St0rmer for automorphisms of the factor WJ(Foo) [Sto]. 

2.10. Other representations. 

Let r be an irreducible lattice in a connected semi-simple real Lie group G without 
centre and without compact factor, let p be an irreducible unitary representation of 
G and let p\T denote the restriction of p to T. If p is not in the discrete series of 
G, then p\T is irreducible [CoS, Proposition 2.5], so that W*^T(T) = £(WP) by Shur's 
Lemma. If p is in the discrete series, then W^r(r) « W£(T) by [GHJ, Section 3.3.c]. 

Let r be an infinite group such that C^(T) is simple (see below) and let M be 
an infinite hyperfinite factor (e.g. a Powers factor R\ for some À G]0,1[). It follows 
from a result of O. Maréchal that there exists a representation w of T which is weakly 
equivalent to the regular representation and such that W*(T) « M [Mar]. It is also 
known that any properly infinite von Neumann algebra is of the form W*(PSL2(Z)) 
[Beh2], and that the same holds for large classes of finite von Neumann algebras 
Beh3 . 

In case r = Fn, finite factors of the form W*(Fn) are precisely the II\-factors which 
can be generated by n unitaries. In particular, any ice group T given together with a 
set of n generators provides a factor M = W£(T) and a representation 7r : Fn —• T —• 
U (/2(r)) such that W*(Fn) = M. For example, for each k > 2, the group PGLk(Z) 
can be generated by 2 elements [CxM, Chapter 7]; thus there exists a representation 
7T of F2 such that WJ(F2) « W^(PGLk(Z)). I don't know of any iTi-factor which 
could not be generated by two unitaries (see also the end of 4.1 below); nor do I know 
of any Hi -factor without Cartan subalgebras. (If a IIi -factor with separable predual 
has a Cartan subalgebra, then it is generated by two unitaries [Po3, Theorem 3.4]; 
however, given such a factor M, the existence of a Cartan subalgebra of M is "in 
general" an open problem.) 

Given a group T and a class of von Neumann algebras, an ambitious project is to 
classify the representations ir of T such that W*(T) is in the given class. The appro
priate kind of classification is up to quasi-equivalence : 7r and IT' are quasi-equivalent 
if there exists an isomorphism $ from W*(T) onto W*,(T) such that $ ( ^ ( 7 ) ) = n'(y) 
for all 7 6 T. For the class of finite factors, such a classification can be rephrased 
in terms of normalized characters of finite type, namely of functions of positive type 
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£ : T —> C which are normalized (£(1) = 1), central (£(77') = £(7*7)) and indecom
posable (£ = a(J + (1 — o)£n with a £]0,1[ and normalized central of positive 
type implies £ = £' = £"); see [DC*, corollaire 6.7.4 and proposition 17.3.5]. 

In case r is locally finite, factors of the form W*(T) are either the injective II\-
factor or finite dimensional factors. Characters have been classified for a few groups 
such as the group 5(oo) of permutations with finite supports of an infinite countable 
set, and related groups. These results are due to Thoma, Vershik-Kerov and Nazarov 
[Naz]. 

3. THE REDUCED C*-ALGEBRA C£(r), AND SIMPLICITY. 

3.1. Generalities. 

Notations being as in the beginning of Chapter 2, the norm closure of 7r : C[r] —• 
C(H) is denoted by C*(r). In particular, if 7r is the left regular representation A, 
one obtains the reduced C*-algebra C^(T) of V. One may also choose the universal 
representation 7run of T (say here that 7run is the direct sum of all cyclic representations 
of T, up to equivalence), and one obtains the full C*-algebra C*(r) of T. For any 
representation 7r, one has a natural morphism from C*(T) onto C*(T) which is again 
denoted by 7r. One has in particular a morphism C*(T) —> C^(r), and this is an 
isomorphism if and only if T is amenable, by a theorem of Hulanicki and Reiter [Ped, 
Th. 7.3.9]. 

In the classical case T = Z, the algebra C£(T) « C*(T) is isomorphic via Fourier 
transform to the algebra C(T) of continuous functions on the one-dimensional torus 
T. This carries over to any discrete abelian group T and its compact Pontryagin dual 
: CUT) « С(Г). 

The oldest published reference I know involving reduced C*-algebras of locally 
compact groups is [Seg]. 

3.2. Free groups. 
The following result was published in 1975 [Pow], seven years after it was found 

[Va2, page 489]. Recall first that a normalized trace on a C*-algebra A with unit is 
a linear map r : A —• C such that r(l) = 1 , r(a*a) > 0 and r(ab — ba) = 0 for 
all a, 6 e A] it follows that \r(a)\ < \\a\\ for all a £ A [DC*, Proposition 2.1.4]. The 
canonical trace on the reduced C*-algebra of a group T is the extension to C^(T) 
of the map C[T] —> C which applies Ylyer zi1 to 21, as in 2.1 above. 

Theorem 3 (Powers). The reduced C*-algebra C%(Fn) of a free group on n > 2 
generators is simple and has a unique normalized trace. 

There is a proof in Appendix 2 below. Another formulation of this theorem is 
that any unitary representation 7r of Fn which is weakly contained in the regular 
representation A of Fn is in fact weakly equivalent to A, and in particular is such that 
C*(Fn) w C^(Fn); for more of this point of view, see [BkH]; it is moreover true that 
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7r and A as above are approximately equivalent in the sense of [Vol, see in particular 
Corollary 1.4]. 

There is no analogue to Problem 1 here because computations of K\ -groups show 
that the algebras C^(Fn) are pairwise nonisomorphic [PiV, Corollary 3.7]. Concerning 
pairs Ti,r2 of non-isomorphic groups such that C^(Ti) « C^(T2), there are several 
known examples but apparently no systematic study. Let us describe two classes of 
such examples, the algebras being commutative in one case and simple in the other. 

Let first r be any infinite countable abelian torsion group. Its Pontryagin dual 
f is compact, metrisable, totally disconnected and without isolated point [because 
the locally compact abelian group T is respectively discrete, countable, torsion, and 
infinite]. Consequently f, viewed as a topological space, is homeomorphic to the 
triadic Cantor set K. Hence the C*-algebra of T is isomorphic to the C*-algebra C(K) 
of continuous functions on A', and thus does not depend on the detailed structure of 
r. 

The second example is due to G. Skandalis. Let F\, F2 be two non isomorphic finite 
abelian groups of the same order, say n, for example Z/4Z and (Z/2Z) x (Z/2Z). We 
identify both C*(F\) and C*(F2) to the same algebra A, isomorphic to Cn. For 
i G {1,2}, set T, = F{ • Z. The full C*-algebra of T, is canonically isomorphic to 
a free product with amalgamation over C, and one has more precisely C*(Tj) « 
A • C*(Z) in the sense of [Bro]. Moreover, the canonical trace : C*(Ti) —• C is 
independent on i when viewed as a map A • C*(Z) —> C. Consequently the ideal 
Ki = {x e C*(Ti) | T{(x*x) = 0} and the quotient C^Ti) = C*(Ti)/JCi are both 
independent on i. On the other hand, Proposition 2 below shows that C£(Ti) is a 
simple C*-algebra with unique trace. 

There exists however an uncountably infinite family of countable groups 
such that the C*-algebras CJ(I\) are pairwise non-isomorphic, each being simple with 
a unique normalized trace; this follows easily from McDufF's result quoted in 2.3 above 
[AkL, Corollary 9]. 

It is known that some group Banach algebras determine the group T. (Examples 
: L1(r), A(T) and B(T); this holds indeed for a locally compact group; see [Lep], 
[Wal], [Wa2] and [Wen].) But we do not discuss these algebras further here. 

3.3. Other groups with simple reduced C*-algebras. 

Theorem 3 has begotten many generalizations : see among others [Ake], [AkL], 
[Bel], [Be2], [BCH], [BN1], [BN2], [Har2], [HSk], [HoR], [PaS], [Ros]. Let us indicate 
some of these results. 

Proposition 2. Let r be a group which admits at least one of the following descrip
tions : 

(a) a free product T1 +T2 where (Ti| > 2 and \T2\ > 3, 
(b) a Zariski-dense subgroup in a semi-simple connected real Lie group without 

centre and without compact factor, 
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(c) a group PSL(n, K) for some integer n > 2 and for some ßeld K which is either 
of characteristic zero, or of characteristic p and not algebraic over ¥p. 

(d) a group of K-rational points G(K) for some Geld K of characteristic zero and 
for some connected semi-simple algebraic group G defined over K, 

(e) a torsionfree hyperbolic group which is not elementary. 
Then CUT) is simple with unique normalized trace. 

See [PaS] for (a), [BCH] for (b) and (d), [HoR] and [Ros] for (c), and [Har4] for 
(e). In (b), the subgroup is not supposed to be discrete in the ambient Lie group, 
but it is viewed as a discrete (possibly uncountable) group in the statement about 
C£(r). There is also in [BCH] a proof of (c) for the particular case of a field K of 
characteristic zero. 

The following repeats [Har2, Section 2, Question (2)]. (Question (3) of the same 
reference, same section, has been answered in [Bel].) 

Problem 12. Does there exist a group T such that CUT) is simple but has several 
traces? or such that CUT) has a unique trace but is not simple ? 

We collect below two observations resulting from a conversation with A. Valette. 
Before these, consider an amenable normal subgroup N of a group T. As the iden
tity representation of N is weakly contained in the regular representation of iV, one 
sees by induction from N to V that the regular representation of T/N (viewed as a 
representation of T) is weakly contained in the regular representation of T. In other 
words, one has a morphism of C*-algebras 7r from C^(r) onto C^(T/N). This applies 
for example to the normal subgroup Tf of elements with finite conjugacy classes in 
r, which is an amenable group [ Tom, Corollary 1.5]. 

Observation 1 : if C^(T) is simple, then V is an ice group, and more generally any 
amenable normal subgroup N of T is reduced to {1}. Indeed, the morphism 7r defined 
above has to be injective, so that N = {1}. Observe also that, if T was not ice, the 
centre of C^(T) would be strictly larger than the scalar multiples of the identity (the 
characteristic function of any finite conjugacy class of T is in this centre). 

Observation 2 : if C^(T) has a unique trace, then (again) any amenable normal 
subgroup N of T is reduced to {1}. Indeed, the composition of the morphism TT and 
of the canonical trace of C^(T/N) has to coincide with1;he canonical trace of C^(T). 

All this being said, problems of simplicity of reduced C*-algebras of groups should 
not conceal other problems. In particular, it would be pleasant to know "many" 
examples of groups T which are not C^-simple but for which two-sided ideals of 
C£(r) are classified in some way (a few examples appear in Theorem 4 of [BCH]). 
The corresponding program for the Fourier algebra ^4(r) of a discrete group T is the 
subject of [For, see in particular Theorem 3.20]. 

3.4. Other representations 

The diversity of C*-algebras of the form C*(Fn) has no limit. Indeed, let A be a 
separable C*-algebra with unit acting in some Hilbert space W, and assume that A 
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is generated as a C*-algebra by a finite or infinite sequence (ai,<Z2,...) of length n. 
As any element in a C*-algebra with unit is a linear combination of unitaries [Ped, 
1.1.11], there is no loss of generality if we assume that the a* 's are unitary. Consider 
now a free set of generators si of Fn, and define a representation 7r : Fn —> U(7i) by 
*Ui) = «. Then Cl(Fn) = A. 

In particular, there are C*-algebras with unit of the form C*(T) which cannot be 
reduced C*-algebras of discrete groups. A specific example is the algebra C 0 / C acting 
on a separable infinite dimensional Hilbert space, which is generated by the identity 
and by the compact operators : it is C*(F2) for an appropriate 7r [HRV1, Section A], 
and it cannot be of the form C^(T). (Indeed, assume firstly that T has an element 7 
of infinite order. Then 7 generates a sub-C*-algebra isomorphic to C* « C(T), 
so that the spectrum of 7 is the circle T. But the spectrum of any element in C © K 
is countable, and thus C(T) cannot be isomorphic to a subalgebra of C 0 /C. Assume 
secondly that T has an element 7 of some finite order k > 1. As T is infinite, it follows 
that any kth root of 1 appears in the spectrum of 7 with infinite multiplicity. This 
cannot happen in C 0 JC.) 

It would be interesting to understand better, for a given group I\ 

(i) which are the algebras of the form C*(T), 
(ii) what are the automorphism groups of these C*(T), 
(iii) for which 7r these algebras C*(T) are simple. 

About (ii), it is known that Inn(A)/Inn(A) is uncountable for any separable C*-
algebra A which does not have continuous trace, e.g. for A = C^(T) whenever T is 
not of type I. (See [Phi, Theorem 3.1], and compare with Problem 7 above.) It is also 
known that Inn(C^(F2)) /Inno (C%(F2)) is non trivial, where Inno(A) denotes the 
closure of the group of inner automorphisms of A determined by unitaries connected 
to 1 in the group of automorphisms of the C*-algebra A, closure for the topology of 
pointwise convergence [E1R, 4.13]. 

About (iii), see Proposition 4 of Appendix 2. 
Representations of free groups are discussed in [FTP]; see also [FTN], [Szl] and 

[Sz3]. 
In a remarkable paper of the early 50's, Yoshizawa has constructed an irreducible 

representation 7r of F2 which weakly contains any irreducible representation of F2, 
namely which is such that the natural morphism C*(F2) —> C*(F2) is an isomor
phism [Yos, § 3]. In other words, the C*-algebra C*(F2) is primitive, namely has a 
representation which is both irreducible and faithful [Ped, 3.13.7]. 

Problem 13. What are the groups with primitive full C* -algebras ? 

Let T be a group given as a discrete subgroup of some Lie group G. A natural 
way to obtain representations of T is to consider a representation p of G and its 
restriction p\T to T. If T and G are as in 2.10 above, it is a natural question to ask 
about properties of C*\T(T). Here is a partial and easy answer, from [BkH] : let G be 
a simple connected real Lie group which is non compact and with centre reduced to 
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{1}, let p be a unitary representation of G in the principal series and let T be a lattice 
in G; then C;|r(r) « C*X(T). 

Another natural representation of T to consider is />wn|I\ where pun denotes the 
universal representation of the Lie group G; if this is again a non compact simple 
connected real Lie group without centre, it is conjectured that C*(T) —• Cpun\r(T) is 
never an isomorphism, and this has been proved in many cases (e.g. if G has Property 
(T)) in [BeV]. 

4. THE C*-ALGEBRAS CUT) AND C*(T) : SOME OTHER PROPERTIES. 

4.1. Nuclearity and other Gniteness conditions. 
Given two C*-algebras A and J5, there are in general several ways to complete the 

algebraic tensor product of A and B to obtain a C*-tensor product. The algebra A is 
said to be nuclear if these ways coincide, for any B. For more on this, see [La2] and 
[Ta2]. Nuclearity for C^(T) is settled by the following result (of which (ii) has the 
remarkable property that the "only if part does not extend to the locally compact 
case). 
Theorem 4 (Takesaki, 1964, and Lance, 1973). 

(i) The algebra C (̂i<2) is not nuclear. 
(ii) Let r be a group. Then C^(T) is nuclear if and only ifT is amenable. 
It follows easily from Claim (ii) that C*(T) is nuclear if and only if T is amenable. 

(Indeed, if T is amenable, then C*(T) is isomorphic to C^(r), which is nuclear. If 
C*(r) is nuclear, then C^(T) is nuclear, because any quotient of a nuclear algebra is 
nuclear by a result of Choi and Effros [La2], so that V is amenable by (ii).) 

Besides amenability 4=^ nuclearity, there are only few known exact translations 
between properties of T and properties of C^(T) or of C*(T). For example, does 

T finitely generated CUT) finitely generated 

hold ? One may ask what is the smallest number of generators for C^(T) or C*(T). S. 
Wasserman [Was2, Section 6] has observed that this number is at least 2 for C^i^), 
because C*(i72) has a quotient isomorphic to C(T2) and because the 2-torus T2 is not 
planar. On the other hand, it is known that ^ ( ^ 2 ) and the hyperfinite //j-factor 
are both singly generated [Sai, Theorem 2.3 and following example]. 

And does 

T locally finite CU(T) approximately finite (AF) 

hold ? Known examples of groupoid C*-algebras which are AF for non obvious reasons 
[Kum] may suggest that 4= does not hold. 

What about 

T f.g. and of polynomial growth Cλ(T) ess. of polynomial growth 
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("f.g." holds for finitely generated and "ess." for essentially) ? See [KiV] for algebras 
of essential polynomial growth. 

The answer to the question 

r residually finite C*(r) residually finite dimensional [ExL] 

is negative, but can one slightly change the question to have an affirmative answer 
? The negative answer follows from properties of the group T = SL(2,Z[l/p]) where 
p is a prime, as shown to me by M. Bekka. Indeed, one one hand T is residually 
finite because it is both finitely generated and linear [Mai]. On the other hand T does 
not have Kazhdan's Property (T) because T is dense in 5L(2,R) [HaV, Propositions 
1.6 and 3.6], but the unit representation of T is isolated in the set of all its finite 
dimensional unitary representations [LuZ]; these facts imply that finite dimensional 
representations of C*(T) do not separate elements of this C*-algebra. However, I do 
not know whether <= holds or not. 

What are the properties of C£(T), or of C*(r), which are equivalent to the group 
being finitely presented ? with solvable word problem ? hyperbolic ? small cancella
tion ? of finite cohomological dimension (say over Q) ? a torsion group ? solvable ? 
Dually, what are the properties of T which are equivalent to C^(T) being simple ? 
generated by one element ? to C*(r) having Hausdorff spectrum ? (These lists can 
be extended at will.) 

4.2. Exactness. 
The C*—algebra A is said to be exact if, given any short exact sequence 

0 J B B/J 0 

of C*—algebras, the sequence 

0 A J A B A (B/J) 0 

is also exact, where g) denotes the minimal (or spatial) tensor product. For a proof 
of the following result, we refer to [Wasl], [Kill, [Ki2], [Ki3] and [HRV2]. 
Theorem 5 (S. Wassermann, Kirchberg and others). 

(i) The algebra C*(F2) is not exact. 
(ii) Let r be a group; assume that T is isomorphic to a subgroup of some locally 

compact group G such that C*(G) is a nuclear C*-algebra. Then C*(T) is exact if 
and only if T is amenable. 

Recall that the C*-algebra C*{G) of a locally compact group G is nuclear as soon 
as G is almost connected [Co76]. 

In sharp contrast, there is no known example of a group V such that C^(T) is 
not exact. For example, let T be a group and assume that T embeds as a discrete 
subgroup in some second countable locally compact group G having a closed amenable 
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subgroup P with G/P compact (a connected real Lie group G would do); then Cl(T) 
embeds in the nuclear C*-algebra C(G/P) xi T, and in particular C£(T) is exact. (This 
is an unpublished result of A. Connes which was circulating in the 1980 Kingston's 
Conference.) Also C£(r) is exact for any hyperbolic group T (unpublished result of 
Hilsum- Renault - S kandalis). 

Problem 14. (i) If T is any group (not necessarily isomorphic to a subgroup of a 
C*-nuclear locally compact group) such that C*(T) is exact, does it follow that T is 
amenable ? 

(ii) Does there exist a group T such that C^(f) is not exact ? 
Question (ii) is the open problem (PI) of [Ki3l. 

4.3. Non-existence of idempotents. 
Given a torsionfree group T, it is an old question to know whether C[r] may have 

zero divisors, and in particular idempotents distinct from 0 and 1. This is often 
attributed to Kaplansky : see [Kou, Problem 1.3], and also [Far]. The oldest result I 
know on this is that of Higman [Hig, particular case of Theorem 12]. 

Theorem 6 (Higman), The algebra C[Fn) has no zero divisor. 

Here is a more recent result, which is a particular case of [Fol, Theorem 9] and [Bas, 
§ 9]: if r is a torsionfree finitely generated linear group, then C[r] has no idempotent 
distinct from 0 and 1. 

A C*-algebra distinct from C has always zero divisors (this is easy to check via 
functional calculus) but it is a conjecture going back to Kadison and Kaplansky that 

CjJ(r) has no idempotent, except 0 and 1 

for any torsionfree group T. This would follow from a more general conjecture of P. 
Baum and A. Connes [BaC] which involves the K-theory groups Ki(C^(T)). For all 
this, see the discussion in [Va2]. 

Theorem 7 (Pimsner-Voiculescu). For each n > 2, the C*-algebra C^(Fn) has 
no idempotent distinct from 0 and 1. 

Theorem 7 has first appeared in [PiV]. There is a very nice proof of it in [Co86, 
Section 1.1], in terms of a Fredholm module over C%(F2) associated to the standard 
action of F2 on the homogeneous tree of degree 4. (Theorem 7 for Fn follows from 
the result for F2 because Fn is a subgroup of F2.) Conne's proof is so nice that minor 
variations of it have appeared in semi-popularization journals [Ef2]. There is another 
proof by Cuntz [Cu2], using the easy result that C*(F2) has no idempotent [Cho], 
[Cul]. 

It has been shown that C^(T) has no idempotent distinct from 0 and 1 for T 
a torsionfree discrete subgroup in a connected Lie group whose semi-simple part is 
locally isomorphic to a product of compact groups, of Lorentz groups 50(n, 1) [Kas], 
and of groups S?7(n, 1) [JuK]. The published proofs use KK-theory. 
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The following problem suggests another approach which could work for more 
groups. It appears in [Co90, section 2.5, problème 11]. It is open even if G is one 
of the groups 50(n, 1) or SU(n, 1) dealt with by Kasparov and Julg. This has been 
explained to me by P. Julg and A. Valette. 

Problem 15. Let T be a torsionfree subgroup of a connected semi-simple real Lie 
group G. Show that C^(T) has no idempotent distinct from 0 and 1 by analyzing the 
appropriate Fredholm module and its Chern character. 

The same problem holds for an arbitrary torsionfree hyperbolic group. 

We refer to [Co90] for explanations about the "appropriate" Fredholm module; see 
also page 77 of the same reference, and [Co93, Section IV.3]. 

Let us mention that the following algebras have also been shown to be without non 
trivial idempotent 

Cl(T) for T abelian torsionfree (this is Pontryagin Theory [Va2, Theorem 2]), 

C£(r) for T locally nilpotent torsion free [KaT] (see also [Jil, Theorem 5.1]), 

C^(r) for T a discrete subgroup of a connected simply connected solvable group 
[BaC], 

C^(T) for various groups T acting on trees as in [Pirn], 

/J(r) for T torsionfree hyperbolic [Ji2, Theorem 4.2], 
C*(r) for a group T which is free [Cohl], [Cho], or a free product of torsionfree 

abelian groups [Cul], or a free product of torsionfree amenable groups (and a few 
other cases) [JiP]. 

Note that C*(T) does have non trivial projections if T has Property (T) by [Val]; 
see also [Va5]. 

These no idempotent results have applications on the structure of various spectra : 
one appears in [Sun]; another one is the observation (suggested to me by L. Guillope) 
following Theorem 8 below. Let T be a group given together with a symmetric proba
bility measure, namely with a function p : T —> [0,1] in P(T) such that p(7_1) = p(j) 
for all 7 G r and such that $^7€rK7) = 1- To avoid trivialities, assume moreover 
that the support of p generates T. The Markov operator of the associated random 
walk on T is the operator M(p) : 12(T) —> /2(r) of convolution to the right £ i-> £ *p. 
It is obvious that M(p) is self-adjoint and that ||M(p)|| < 1, it is easy to check that 
||M(p)|| = max{\ GK : A is in the spectrum of M(p)} (see [HRV1, Lemma 8]), and 
it is a result of H. Kesten that ||M(p)|| = 1 if and only if T is amenable [Ke2]. For p 
equidistributed on a symmetric set S of generators of T, this has been reformulated 
in terms of "cogrowth" by Grigorchuck and Cohen (see [Coh2], [Sz2], [Woe]). 

Theorem 8 (Kesten). Let T be a group generated by a finite set S = { s i , s n } 
with n > 2. Let p : T —• [0,1] be defined by p(j) = ^5-11 if 7 G 5 U 5 " 1 and 
0(7) = 0 otherwise. Then : 

(i) one has \\M(p)\\ > 1 
n 

2n - 1, 
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(ii) T is free on S if and only if \\M(p)\ 1_ 
n 2n- 1 , 

(in) lfT is free on S, then the spectrum of M(p) is the interval 
n 2n 1 1 

n 
2 n - l 

Suppose now moreover that T is such that C^(T) has no idempotent distinct from 
0 and 1, and let p : T —» [0,1] be a symmetric probability measure as above. It is an 
immediate corollary of functional calculus that 

the spectrum of M(p) is an interval 

as it is the case in Theorem 8.iii. About the following problem, see [KaV] and [HRVll. 

Problem 16. Compute the spectrum and the multiplicity function of M(p) for other 
pairs for example when T is a Fuchsian group; compute also the spectral 
measure of M(p). 

It is easy to check that the spectrum of M(p) is finite if and only if the group 
r is finite [HRV3, Section 2.1]. One may also consider non-symmetric probability 
measures; it is then an open problem to know whether there exists a pair (I\p) with 
T infinite and the spectrum of M(p) finite [HRV3]. 

Of course, group C*-algebras in general do have projections. For an analysis of the 
case of C£(Z/nZ*Z/raZ), see [ABH]. 

5. RAPIDLY DECREASING FUNCTIONS ON A FINITELY GENERATED GROUP. 
Let r be a group given together with a length function L : T —» R+. For simplicity, 

we will moreover assume here that T is generated by a finite set 5 and that, for 
each 7 G r, the length £(7) is the smallest integer n such that 7 = Si...sn with 
s i , s n G S U 5_1. For each s G R, define the Sobolev space 

HS(T) = £: I C 
7€r 

|£(7)|2(1 + £(7))2S 00 

which is a Hilbert space for the obvious scalar product. The space of rapidly de
creasing functions on T is the Frechet space 

jy°°(r) 
sER 

HS(T) 

It is easy to show that the isomorphism classes of these spaces do not depend on the 
choice of the finite generating set S. 

By definition, if °°(r) is a subspace of /2(T). But H°°(T) need not be a convolution 
algebra. (There may exist £,77 G H°°(T) such that the convolution £ • 77, which is 
always well defined and in c0(r), is not in H°°(r) : this happens for example if T is 
amenable and not of polynomial growth [Jol, Proposition B].) 
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Proposition 3. Let T be a £nitely generated group. 
(i) The space H°°(T) is a subspace of C£(r) if and only if it is a subalgebra of C*λ(T) 

(ii) If the conditions of (i) hold, then the inclusion H°°(T) C C^(T) induces an 
isomophism in K-theory 

We refer to [Jol] and [Jo2] for the proof. Claim (ii) is due to A. Connes, and is 
an important step in one application of these ideas to differential topology [CoM]. A 
finitely generated group is said to have Property (RD) if it satisfies the conditions 
of Claim (i). The following appears in [Haal, Lemma 1.5]; see also [CaH], and the 
exposition in [Haa2]. 
Theorem 9 (Haagerup). Let n be an integer such that 2 < n < oo; then H2(Fn) C 
C*x(Fn), and in particular H°°(Fn) C C*x(Fn). 

Various groups have been shown to have Property (RD), and it is in particular the 
case for groups of polynomial growth, for which HS(T) C C^T) for some s depending 
on the growth, and for hyperbolic groups, for which H2(T) C Cl(T) (see mainly [Jol], 
and also [JoV] and [Har4]). The known proofs are quite different for these two classes, 
and it is an interesting open problem to find an argument covering both Zn (say) and 
hyperbolic groups. More generally, we formulate the following question (even though 
the hope for a positive answer is very small). 
Problem 17. Let T be a lattice in G = PSLn(R) such that G/T is compact (and 
n > 3); does T have Property (RD) ? 

The cocompactness hypothesis is crucial, because PSLn(Z) does not have Property 
(RD) as soon as n > 3 [Jol, Corollary 3.1.9]. The question of Problem 17 is also open 
for most Coxeter groups. 

Other rapid decay algebras have been introduced by Ogle [Ogll. 

APPENDIX 1. ON FREE GROUP. 
It is almost a tautology to say that free groups play a central role in combinatorial 

group theory, but this should not conceal the important role of free groups in other 
parts of mathematics. As an example of an old appearance of free groups in traditional 
subjects, we may quote Schottky groups, which are free subgroups of PSZ^C) [Kle, 
page 200]. 

Here are three criteria for recognizing free groups. For the first one, a convenient 
reference is the recent book of Serre [Ser, § 1.3], though the result itself is quite old 
: it appears for example in [Rei, Section 4.20], but "it is, of course, very difficult to 
claim that something is not due to Poincaré" [ChM, page 96]. 
Criterium 1. A group which operates freely on a tree is a free group. 

Let us also recall the result of Stallings and Swan according to which a torsionfree 
group which has a free subgroup of finite index is itself a free group [Swa]. 

We state now the "Table Tennis Lemma", essentially due to F. Klein: see [Mac], 
[Tit] and [Harl]. 

141 



P. DE LA HARPE 

Criterium 2. Let G be a group acting on a set X, let T\, T2 be two subgroups of G 
and let Xi,X2 be two subsets of X] assume that \T2 \ > 3. Assume that 

7 № CA, totali 7 G Ti , 7 * 1 , 
7(Xi) C l 2 for аЛ 7 € Г2 , 7 7̂  1 . 

Then the subgroup T of G generated byTi andT2 is isomorphic to the free product 
Ti*r2 ofTi andT2. (In particular, ifT\ andT2 are free ofrank rt\ andn2 respectively, 
then T is free of rank n = n\ + n2.) 

The next "quasi-geodesic criterium" is due to Gromov [Grl, 7.2.C]; see also [GhH, 
§ 5.3], or the much shorter proof in [Del]. 

Criterium 3. Let T be a 6-hyperbolic group and let 71,72 G T be such that the 
word-length relations 

| 7 ; I > l7;l + 2£ + l for i € {1,2} 

I7Ï7ÎI > max(|7i|,|72|) + 2« + l for e,rj G {1, -1} 

hold. Then the subgroup ofT generated by 71,72 is free of rank 2. 

This criterium is related to the following fact (see [Grl, 5.3.B] and [Del]). Let T be 
a hyperbolic group which is torsionfree and non elementary. Then there exists a finite 
sequence T i , T k of subgroups of T such that any pair of elements of T generates a 
subgroup which is either free of rank two or conjugated to one of the T/s. 

For other examples of free subgroups of geometrically significant groups, see among 
many others [BeL, appendice] [Bo2], [DeS], [Gla], [Harl], [Hau], [MyW] and [Wag]. 

APPENDIX 2. PROOFS OF THEOREM 3 AND PROPOSITION 2(e). 

The littérature contains a large number of proofs of Theorem 3 (see e.g. the 
references quoted before Proposition 2). On one hand, most of these proofs are minor 
variations of Powers' original proof. On the other hand however, each proof extends 
to some other groups than free groups. The following proof is convenient for the 
discussion below of some research activity on this subject between 1975 (Powers' 
paper) and now (see also [BCH]). Our first lemma is straightforward. 

Lemma 1. Let Xi, be a finite sequence of operators on a Hilbert space such 
that the image subspaces Im(Xi), ...,Im(Xk) are pairwise orthogonal. Then 

||*i + ... + Xt|| max 
i J k 

Xj 
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Proof of Theorem 3. 

Write T for Fn. 
Step one. Let rc denote the canonical trace on CX(T). Let J be a non-zero two-

sided ideal in C^(T) and choose V G J , 7 / 0 . Upon multiplying V by some 
z G C , 2 ^ 0 and by some 7 G T, we may assume that V = 1 + W where rc(W) = 0. 
We shall show that J contains a sum of conjugates of V which is an invertible element, 
and that any trace on CX(T) vanishes on W. 

Let e be a real number such that 0 < e < | . As Ap (C[T]) is dense in CX(T), we 
may choose X G Ar (C[r]) such that \\X - W\\ < e and TC(X) = 0. We may write 
X = YlxcF zxx-> wnere F is a finite subset of T — {1} and where the zx 's are complex 
numbers. 

Step two. Choose a system {si,sn} of free generators of I\ For a large enough 
number m, the reduced words smxs^m begin and end with a non-zero power of Si for 
all x G F (this is [Pow, Lemma 4]). Let C be the subset of T of reduced words which 
begin by s^™ (followed by a non-zero power of some Sj , j ^ 1, or by nothing at all) 
and set D = T — C. Then one has xC fl C — 0 for all x G F. For each integer j > 1, 
set 7,- = sis™', one has jiD fl jjD = 0 whenever i ^ j . 

Step three. Choose an integer k > 1. For each j G {l,...,fc}, let Pj denote the 
orthogonal projection of /2(r) onto the subspace l2(^jD) of functions r —• C with 
supports inside jjD. As xCC\C — 0 for all x G F, one has (1 — Pj)^fjX^Jl{\-Pj) = 0. 
Thus 

yjXyj PjX'+iPjX")* with 
X'j yj xYj-1 
X''j jjX^il-Pj) 

for each j e {l,...,k}. Set Y = \ Y^i<j<k~<ix^i As 7t-D 0 7;D = 0, Lemma 1 
implies 

11*11 1 
k 

l<j<k 
PjX'j 1 

k 
1<j<k 

PjXj'' _2_ 
y/k 

X 

For fc large enough, one has consequently ||y|| < \ and 

1 
k l<j<k 

yjW yj-1 w-x Y 2 
3 

1 

It follows that i 
k l<j<k lj Vij1 1 k <Kj<k1j is invertible. As this 

element is obviously in J , one has J = C{(T). Thus Cl(T) is a simple C*-algebra. 
Step four. Let r be any normalized trace on CUT). One has 

\r(W)-r(X)\<\\W-X\\< e 

and \T(X)\ = \T(Y)\ < -fa || X || . As this holds for all e > 0 and for all JFC > 1, one 
has r(W) = 0. Thus r = rc, and CX(T) has a unique trace. 
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One strategy of proof of Proposition 2 is to extend the validity of the previous 
proof. 

A first attempt has been do define a Powers group as a group V which possesses 
the following property : 

for each finite subset F C V — {1} and for each integer k > 1 
there exist a partition r = C Jj D and elements 71, ...,7fc in T 
such that xC fl C = 0 for all x G F and jiD fl ~fjD = 0 for all i ^ j 

in {!,...,&} . 

Step two in the previous proof shows precisely that Fn is a Powers group. 
Lemma 2. IfT is a Powers group, the C*-algebra C^(T) is simple with unique trace. 
Proof, see steps one, three and four in the previous proof. 

The conclusion of Lemma 2 can be proved with weaker hypothesis. For example, in 
the definition of "Powers group", one could replace "for all finite subset F CT — {1}" 
by "for all finite subset F inside a conjugacy class distinct from {1}", so that the 
lemma applies to the so-called "weak Powers groups". (And direct products such as 
F2 x F2 are weak Powers groups which are not Powers groups; see [BN1, Proposition 
1.4] and [Pro, Proposition 3.2].) Or one may consider reduced crossed products A xrT 
where A is a C*-algebra with unit which does not have any non trivial T-invariant 
ideal nor any T-invariant trace [HS2]. Or one may also cope with twisted reduced 
crossed products A ^c?r T, where c i T x r - ^ W i s a 2-cocycle with values in the 
unitary group of the centre of A [BN2], or even in the unitary group of A itself [Bel], 
[Be2]. 

Now comes (at least) some geometry. Let T be a group acting by homeomorphisms 
on a compact topological space ft. Say the action is strongly faithful if, for every 
finite subset F C T - { 1 } , there exists LJO G ft such that xuio ̂  u>o for all x G F. 
Recall that the action is minimal if every orbit Tu> is dense in ft. Say that 7 G T is 
hyperbolic if there exist two fixed points s1,r1 with the following properties : given 
neighbourhoods 57 of s1 and i?7 of r7 in ft, there exists an integer k > 1 such that 

7'(ft - 57 ) C Ry and 7_/(ft - Ry) C 57 

for all integers I > k. Two hyperbolic elements 7,7' G T are transverse if the 
four points 57 , r7 , , r7> are distinct. Say finally that the action of T on ft 
is strongly hyperbolic if, for each integer k > 1, there exist pairwise transverse 
hyperbolic elements 7 2 , 7 * in T. 
Lemma 3. Let T be a group acting by homeomorphisms on a compact space ft. 
Assume that the action is strongly faithful, minimal and strongly hyperbolic. Then 
T is a Powers group. 
Proof, see [Har2, Lemma 4]. 

PROOF OF PROPOSITION 2 (e). It follows easily from the three previous lemmas. 
See [Har2] and [Har4] for more details. 
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Similar arguments may be used to prove Proposition 2(a), or 2(b) in case the 
ambient Lie group has real rank 1. It is probably possible to extend this proof to 
any hyperbolic group T with virtual centre Tf reduced to {1}. For this it should be 
checked that the action of such a group T on its Gromov boundary dT is strongly 
faithful. 

However it does not seem possible to extend the proof above to cover, for example, 
groups such as PSLn(Z) and PSLn(R) when n > 3. (There is an argument in [Ha2] 
for n = 3, but it does not work when n > 4.) This suggest the following problem. 

Problem 18. Given a group T and an element 7 G T of infinite order, describe obs
tructions to the existence of a compact space ft on which T acts by homeomorphisms 
in such a way that 7 is hyperbolic. Particular problem : T = PSLn(Z) with n > 3. 
(These obstructions vanish ifT is hyperbolic; see e.g. [GhH, § 8.2].) 

A second attempt to extend the validity of the proof of Theorem 3 has been in 
terms of the following notions. Say that a group T is naively permissive if, for any 
finite subset F C T — {1}, there exists an element y G T of infinite order such that 
the canonical morphism < x,y >—>< x > • < y > is an isomorphism for each x G F 
(where < x,y > [respectively < x >, < y >] denotes the subgroup of T generated by 
{x, y} [resp. x, y]). One may observe that Lemma 6.3.2 or [MNIV] says that a naively 
permissive group is an ice group. We leave it to the reader to check that a torsionfree 
non elementary hyperbolic group is naively permissive. 

One may show on one hand that C^(T) has a unique normalized trace and that it 
is a simple C*-algebra if T is naively permissive. One may show on the other hand 
that some of the groups of Proposition 2 are naively permissive [BCH]. However the 
following is still open. 

Problem 19. If T is as in Proposition 3, is T naively permissive ? In particular, is 
PSLn(Z) naively permissive for all n > 2 ? 

A third attempt to extend the validity of the proof of Theorem 3 is in term of other 
permissive properties of groups. For this and for the proof of Proposition 2, we refer 
to [BCH]. 

Finally, in connection with Section 3.4, we state and prove the following, due to 
M. Bekka. 

Proposition 4. Let G be a non compact simple connected real Lie group without 
centre, let p be an irreducible representation of G distinct from the trivial represen
tation of G in C, let T be a lattice in G and let p\T denote the restriction of p to V. 
Then C*ir(r) does not have any non trivial two sided ideal of finite codimension. 

Proof. Let 7r be a representation of T such that C*(T) has a non trivial two-sided 
ideal J of finite codimension. The closure of J is non trivial (because C*(T) has a 
unit) and self-adjoint [DC*, proposition 1.8.2]; denote by A the C*-algebra quotient 
C*(r)/J. There exists an integer n > 1 and a quotient of A isomorphic to Mn(C). The 
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resulting C*-morphism C*(T) —> Mn(C) defines a finite dimensional representation 
a : T —> U(n) which is weakly contained in 7r, and we write this a -< 7r. 

Let now p be as in the statement to be proved. There exists a real number p such 
that p is of class Lv. (See [Cw2, théorème 2.5.2, lemmes 2.2.5 et 3.1.2] if the Lie group 
is of real rank 1; see [Cw2, théorème 2.4.2] if the Lie group is of real rank at least 2.) 
This implies that there exists an integer k > 1 such that the tensor product p®k is 
weakly contained in the regular representation \q of G. (See [Cwl], [CHH] and [How, 
pages 288 and 285].) 

Suppose now ab absurdo that n = p\T. Then 

(7 -< Ж®* (p®k) |Г •< A G | r X Ar 

where the last weak containement Xg\T -< Ap follows from [DC*, proposition 18.3.5]. 
As a®k is finite dimensional, this implies that T is amenable, which is absurd. 
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