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Large deviations and martingales 

for a 

typed branching diffusion, 1 

S. C. Harris, D. Williams 

Abstrac t . — We study a certain family of typed branching diffusions where the type of 
each particle moves as an Ornstein-Uhlenbeck process and binary branching occurs at a rate 
quadratic in the particle's type. We calculate the 'left-most' particle speed for the branching 
process explicitly, aided by close connections with harmonic oscillator theory. The behaviour 
of the system changes markedly below a certain critical temperature parameter. 

In the high-temperature regime, the study of various 'additive' martingales and their use 
in a change of measure method provides the proof of the almost sure speed of spread of the 
particle system. 

Also, we briefly mention how to use the martingale results of the branching diffusion model 
in representations of travelling-wave solutions for the associated reaction-diffusion equation. 

1. Introduction 
Our aim is to produce a series of papers on a certain family of typed branching 
diffusions each with rich structure. The present paper introduces the simplest (binary-
branching) model and (except for a 'sneak preview' of the critical-temperature phase 
in the Section 9) studies this model only in the high-temperature phase in which there 
is a high degree of ergodicity. Here, many standard methods are applicable, though 
we have been able to carry them through only because the model's close relation to 
the harmonic oscillator allows explicit calculations; the first calculations also have a 
long history in probability going back to Cameron and Martin - see Sections 5.13-5.15 
of Ito and McKean (1965). Some of the calculations necessary for our approach are 
rather complicated; and these are only sketched here - see Harris (1995) and Harris 
and Williams (1995) for more details. We deal with the substantive points of rigour, 
but skip some details of rigour to keep the text to an appropriate length. 

We begin by recalling how certain 'linear' expectations for the branching process 
may be calculated by considering a one-particle system, and we derive certain 
martingale properties. We then study in some detail the large-deviation heuristics 
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for the problem, emphasizing the role of Legendre transformations. Next, we use a 
method of Neveu to establish uniform-integrability properties of certain martingales; 
this requires calculation of an expectation which reflects the non-linearity of the 
system, and we are saved only because Meyer's opérateur carré du champ behaves 
well. By exploiting a change-of-measure technique ('exponential tilting' in the 
exotic/quixotic terminology of statisticians), we prove the results suggested by large-
deviation theory. The martingale methods have the significant bonus that they imply 
existence of monotone travelling waves associated with the model. In the present 
context, it may not be easy to establish the existence of these waves by analysis. 
Neveu's method of proving lack of uniform integrability of certain martingales will be 
important for proving uniqueness in some cases, non-existence in others, for monotone 
travelling waves. This idea is developed in full for a simpler problem in Champneys, 
Harris, Toland, Warren and Williams (1995); in the present context, it requires 
difficult a priori estimates. We also refer the reader to the Champneys et al paper 
for a list of references to which the present paper is equally indebted. 

Further study of the high-temperature regime is made in Harris (1995), and will be 
continued in other joint papers. The changes of measure have some bizarre features 
which we wish to discuss further, bringing in important ideas from Chauvin and 
Rouault (1988, 1990). The long-term behaviour of the 'Gibbs-Boltzmann' measure 
J\(t) which assigns mass J\(t,k) as at (6.1) to the point (Xk(t),Yk(t)) is the 
most fascinating aspect of the high-temperature phase. Note that the fundamental 
martingale Z^(t) gives the 'partition function'. The study of the long-term behaviour 
of J\ is closely related to that of the 'excited-state' martingales for our system. 

A major challenge for the binary-branching model is the low-temperature regime 
(9 < 8r) in which all of the methods used here fail: the expected number of particles 
in a region blows up, though the number of particles remains almost surely finite. 
Other models present other challenges. 

2. The Branching Model 

We consider a typed branching diffusion where, for time t > 0, 

N(t) is the number of particles alive, 
Xk(t) in R is the spatial position of the fcth-born particle, 
Yk(t) in R is the 'type' of the fcth-born particle, 

(N(t);Xi(t),...,XN(t)] Yi(t),...,>N(i)) is the current state of the particle system. 

The type moves on the real line as an Ornstem-Uhlenbeck process associated with the 
differential operator (generator) 

x(t,k){ KL 
JKH -y 

д 
ду 
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where 0 is a positive real parameter considered as the temperature of the system. The 
spatial motion of a particle of type y is a driftless Brownian motion with variance 

A(y) := ay2, where a > 0. 

The breeding of a type y particle occurs at a rate 

R(y) := ry2 + p, where r, p > 0, 

and we have one child born at these times (binary splitting). A child inherits its 
parent's current type and (spatial) position then moves off independently of all others. 
Particles live forever (once born!). 

Let Px,y and Ex*y represent probability and expectation when the process starts 
from (JV;X,Y) = (l;x;2/). 

For starting point (iV;X; Y) = (1;0;0), we have 

F°>°(N(t) = 11 aiYxis): s < t)) = exp 
to 

i?(Fi(5) )d5 

and on the set {N(t) > k} we have 

(2.1) V0fi(xk(t) € FI (,{N(3), Y(s) :s < t)) 

'F 

2TT 

KJ 

^0 
A(Yk(s)) ds 

GHG 
exp 

x2 
2f'A(Yk(s))ds 

) dx, 

where Yk{s) is the type of the unique 'ancestor' alive at s of the fc-th particle alive at 
time t. 

We are going to consider r, p, a as fixed, and look at the effects of changing the 
temperature 0. One of our main concerns is: what is 'the velocity of the leftmost 
particle'; to be precise, what is the value of 

Vel := lim L(t)/t 
t—•oo 

(we prove that the almost sure limit does exist), where 

Lit) := inf 
l<fc<AT(t) 

FG 

The temperature controls the balance of competition between the ergodic mixing 
of the Ornstein-Uhlenbeck process (which increases with 0) and the large breeding 
rate and large diffusion coefficient for the X-motion away from the type-origin. This 
is reflected in the answer 

Vel = -c(0) 
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where 

(2.2) m 2 = 
2a (r + p + 

2(2r + p)2> 
0 - 8 r 

+00 

for 9 > 8r, 

for 9 < Sr. 

When 0 is very large, the system may be approximated by a 'mean field' model in 
which A(Y) is replaced by its mean a and R(Y) by its mean r+p under the (standard 
normal) invariant law of the type process. 

In all but the last section of this paper, 
we assume that 9 > Sr. 

The challenging low-temperature cases and many other things are left to other 
occasions. 

3. Calculations using the One-Particle System 
Let (£, T)) be a process behaving like a single particle's space and type motions in the 
branching model described above. Thus, f is a Brownian motion controlled by an 
Ornstein-Uhlenbeck process 77, and (£, rj) has formal generator W, where 

CHF)(x,y) 1 
2 Чу) 

d2F 
dx2 ' 

-(QeF){x,y): 1 
2 ETi 

d2F 
'dx2 

в 
2 

fd2F 
dy2 y-

dF 
dy. 

Of course, 77 is an autonomous Markov process with generator Q$ and with (standard 
normal) invariant density 

ф(у) := (2тг)-*ехр(-*2/2). 

For functions hi,ti2 on R, we define the Ь2(ф) inner product: 

(/ii,/i2>0 := 
JR 

hi{y)h2(y)<l>{y)dy. 

The following principle is used repeatedly. 
(3.1) LEMMA: 'Prom One to Many'. For any non-negative Borel function f on 

R x R, we have 

LKL 
N(t) 

k=l 

f(Xk(t)yYk(t)) = E * , Y exp 
BFR 

/0 
R(rj3)ds FGHVG 

This principle is often combined with a change-of-measure formula for Ornstein-
Uhlenbeck processes. We use OU(0, ¡1) to represent an Ornstein-Uhlenbeck process 
with variance 9 and drift parameter /i, thus with generator § - liy-§z-
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(3.2) LEMMA: 'Change of Measure between OU processes'. Let rj be an OU(0, /x) 
under PM. For 6 6 K, we can define a new probability measure P$, equivalent to PM 
on every Tt, via the Radon-Nikodym derivative 

FHJGF 

FDSG 
: exp 

FDBC 

29 
BVGHN (tfi - A2 

29 

•t 

JO 

FNVF (u-6) 
29 

' 2 
Vo on Tf 

Under Pg, n is an 0\J(9,6) process. 

Let us remind ourselves of how these results may be combined. Define 

(3.3) ^min •— " 
I e -8r 

4a 

Let a, A, fi € R, with the following convention which we always use for A: 

(3.4) Amin < A < 0. 

Suppose for example that we wish to calculate (for a positive Borel function h) 

(3.5) Required := E0,v 
N(t) 

HFC 

exp{aYk(t)2 + \Xk(t)}h(Yk(t)). 

We find that 

Required = E\0 exp NJH *A2 
t 

Jo 
ar\\ ds + 

JK 

0 
(rtf + p) ds >h(rit) 

= E* exp{Quad}%t), 

where 

(3.6) Quad := ari} - ^(rfi - 0t) + DSFDFG 
ß2 - \e2 

26 
LML 

KLK 
7i2ds + pt + ip y2, 

where 

02-0(8r + 4aA202-0(8r 

We now choose fi so that the coefficient of the integral on the right-hand side of (3.6) 
is zero: 

(3.7) P = P\:= è- '02-0(8r + 4aA2), 

and we write rpx for tp with this fi: indeed, we shall write 

%PJJK e± /r02-0(8r + 4aA2) 
49 
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Then 

(3.8) Required = exp [(p + 6^)t + ф^у2] Е*л exp {(a - i>l)rfi}MOK 

However, it is well known that, for the law, rjt has the normal distribution 

(3.9) В GFG 6(\-е~2»г) 
2\i 

so that the expression 'Required' is easily calculated explicitly: if h = 1, it will be 
finite for all finite t if and only if a < ф* • 

In particular, on taking a = ф^ and h = 1 , and making obvious use of the 
branching property, we obtain the following lemma. 

(3.10) LEMMA. For 

Amin < A < 0, 

the expression 

(3.11) ZZ{t) := 
Arm 

DG 
02-0(8r + 4aA202-0(8r + 4aA2FD 

where 

(3.12) FFFGJSS в- 02-0(8r + 4aA2 
40 

(3.13) 02-0(8r + 4aA202-0(8r + 

defines a martingale Zx (under each Pe,w measure,). 

Since A < 0 and the non-negative martingale Zx converges, we must have 

lim inf [Xjb(0 + cA t] > -oo, a.s., 

whence 

lim inf * 1 L(t) > - сл , a.s., 

and we have the lower bound: 

(3.14) lim inf ГгЩ > -c{0) := -inf{c* : Amin < A < 0}. 

This formula for c(0) agrees with that at (2.2). 
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It is easy to check that the function c is convex on (Amm,0), and achieves its 
minimum at a unique point A(0). We shall prove later that the martingale is 

uniformly integrable for A € ^A(0),O^, and use this in obtaining the upper bound 

(3.15) lim sup rlL{t) < -c(0), a.s.. 

4. Large-Deviation Heuristics. 

(4.1) Feynman-Kac heuristics. We wish to find the rate of growth in numbers of 
particles out along rays in space-time, that is, we wish to calculate 

(4.2) A(7) := lim i_1logE 
t—•OO 

fN(t) 

KLMO 
!{**(<)<-7*} (7 > 0). 

Large-deviation theory makes us conjecture the existence of the limit A(7) and also 
that 

(4.3) A(7) : inf lim ; 
A<0 i->oo 

MogE 
N(t) 

k=l 
exp(A7¿) exp {\Xk(t)\ 

= inf lim t 1 loi 
A<0*-*oo 

exp(A7¿)E exp 
LOM 

Jo 
{l\2A + R}(r>(s))ds\ 

= Lrf{JS?(A) + A7}f 

where, by the Feynman-Kac formula, E(X) is the rightmost eigenvalue of the self-
adjoint operator on L2(<f>) defined by 

Cx := Qe + i\2A(y) + R(y). 

We find that for 

Amin •— 
HNFG 

4a 
< A < 0, 

we have 

(4.4) E(X) = p+(9- /0(0 - 8r - 4aA2)), '4 = p + 8ipx = —AcA. 

The expression E(X) + A7 is minimized when A = A7, where 

(4.5) E'(Xy) = - 7 , whence A7 = 72(0 - 8r) 
fo(472 + oi>)' 
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and hence 

(4.6) A(7) = P+(0- /a-1(^-8r)(472 + 0a))/4-

It is now tempting to guess that c(0) is given by 

(4.7) c(0) = sup{7 : A(7) > 0} = inf{-£(A)/A : Amin < A < 0} 

= inf{cA : Amin < A < 0}, 

in agreement with what we had previously. This guess that, in this particular 
situation, 'expectation' and 'particle' wave-speeds agree, is proved rigorously by 
martingale techniques in Section 6. 

Since C\ is self-adjoint relative to (•, -)^, we have 

(4.8) E(\) = snp {{g,C\9)<t> • (9,9)4> = 1} = snp{U(X;9) : (g^)^ = 1} 

where 

U(\;g) := {Rg,g)<, - *%',<?'>* + ^{¿9,<?>*• 

Moreover, the supremum at (4.8) will be obtained at the eigenfunction corresponding 
to E(\): 

(4.9) 9Ì(y) = (2tix/e)iexp{^y2}. 

Our arguments have therefore suggested the formula 

(4.10) A(7) = inf supX7(A;g), 
A<0 g 

where 

(4.11) LJX; g) := (Rg,gU - \9{g',g'U + iA2(Aff,ff>^ + A7. 

(4.12) Discussion. It is helpful to note that Mercer's Theorem applied to the Feynman-
Kac semigroup appearing in (4.3) gives (as t —• oo) 

(4.13) Eo,y 
N(t) 

* = 1 
eAX»W/(yfc(t) € dz) ~ exp[tE(\M(y)9'x(z)<t>(*)dz, 

equivalently, 

(4.14) Eo,v 
JV(t) 

fc=l 

exx>Mh(Yk(t)) ~ exp[tE(\M(y)(glhU. 
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Note how this tallies with the martingale property of Zx . 
However, (3.8) and (3.9) with a = 0 give the exact form of (4.13), and imply in 

particular that 

(4.15) E°'° 
N(t) 

= i 

exp [XXk(t)] = {1 + - e'2^)M 1 exp {(p + 0^)t) . 

The existence of A(7) at (4.2) and proof that A(7) is given by (4.3) and (4.10) may 
be obtained from this by saddle-point techniques. 

(4.16) Heuristics based on the rate-functional for occupation densities. We now link 
the above heuristics to the dual approach which more properly belongs to large-
deviation theory. One of the great Donsker-Varadhan theorems (see, for example, 
Deuschel and Stroock (1989)) makes precise the idea that the probability that a 
process 77 with generator Qe will have occupation density tg2<j> by time t (where, of 
course, {g,g)<i> = 1) is roughly 

exp(-tJ(fl)), where 1(g) :=x(t,k){( 

(For ergodic self-adjoint processes, the rate functional for occupation densities relative 
to the invariant measure agrees with the Dirichlet norm.) Thus, we guess the expected 
number of particles with type histories having densities tg2 with respect to (/> by time 
t to be roughly 

exp (t[(Rg,gU-ei(g)j), 

and, by (2.1), the expected number of these particles with X-values at time t near to 
—jt should be about 

exp (t{(Rg,g)+ -B 1(g) - i^/(Ag9g)A] 

By Laplace-Varadhan asymptotics, the expected total number of particles with X-
values near — jt is roughly 

exp *sup (Rg,g)+-0I{g) - \i2/(Ag.gU : (g,g)^ = 1 \ 

However, from (4.11), we see that 

(4.17) inf £7(A)ff) = (Rg,gU -91(g) - \i2/{Ag^, 

so that we are in the usual situation where the key thing to linking the dual pictures 
is to be able to interchange the sup and inf. 
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(4.18) Duality. Let us expand on the duality. See Harris (1995) for details. The 
optimizing g1 which gives the supremum of the right-hand side of (4.17) is 

(4.19; 07 := 
a(0 - 8r) 
472 + 0a 

i 
exp 1 -

( a ( 0 - 8 r ) \ 
\¡ 472 + 0a J 4 

Everything checks. With A7 as at (4.5), we have 

(4.20) 9x7 = 07 > 

and indeed it is true that 

sup inf L7(A,p) = inf supL7(A,$) = L7(A7,£7). 

Particles with X-values close to -7¿ at time t axe likely to have type histories by time 
t with occupation densities close to ¿(<77)20. 

The following Legendre-conjugate expressions hold (we already saw the first at 
(4.3)): 

(4.21) A(7) = jbrf{E(A) + A7] £(A) = sup{A(7)-7A}, 

If, for Amin < A < 0, we write 7A for the 7 value which achieves the supremum on the 
right-hand side of (4.21), then the functions 

A 7A from (-Amin,0) to (0,oo), and 
7 A7 from (0, oo) to (—Amin,0) 

are inverses of each other. 

(4.22) Remarks. When we move on to our rigorous treatment, we find the familiar 
story: getting a lower bound for Vel is quite easy, while obtaining the best upper 
bound is much more tricky. The fact (now known to us) that the expected number 
of particles near — 7£ for 0 < 7 < c(9) is large for large t does not guarantee that we 
shall continue finding particles in that region. 'Expectation wavefronts' and particle 
wavefronts can differ. The martingale techniques in the next section are safe but not 
always applicable. 

(4.23) A formula concerning Y. From (4.15) with A = 0, 

E°'°N(t) ~ const exp {(p + e^)t} , 

as one would expect from the formula (4.4) with A = 0. We can use (3.8) to calculate 
the expected number of F-values in any subregion of R at time t. Indeed, writing the 
answer in a form symmetrical in ^+ and we have 
(4.24) 

E°>°#{k<N(t):Yk(t)6dy} 

dy 

exp YTYKGH 02-0(8r + 4aA202-0(8 
2 sinh ant iGHG 

\/2ir(0/no) sinh/io* 
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For large t, it is as if, given N(t)1 each Y-value is normally distributed with mean 
0 and variance ( 2 ^ ) ~ 1 , that is, each with density a constant multiple of (<7o)0> *n 
agreement with (4.13). 

(4.25) Heuristics on the long-term behaviour of Y. (These remain heuristics here: 
rigorous treatment is a matter for a different paper.) If we believe that expectation 
and particle wavefronts agree here, we will guess that (provided 0 > 8r) we have, 
almost surely, 

(4.26)(?) lim r 1 sup 
k<N(t) 

Yk{t? 
02-0(8r + 
JGFJJ 

Ap + 0-J0{0-8r) 
1 + Jl - 8r/0 

We might very well believe this to hold when 0 = 8r, too. 

5 . Uniform integrability of Zx for A G ( A(0),OJ 

Recall that for A G (Amin,0), where 

Amin •— 
LMIOJJ 

4a 

we define 

KLUIH 0 ± , / 0 2 - 0 ( 8 r + 4aA2) 
40 < £ : = - ( p + Wr)A. 

and that 

02-0(8r + 
N(t) 

k=l 
exp 02-0(8r + •f A [Xk(t) + cjt] 

Recall too that X(0) is the unique point in (Amin,0) at which the convex function c~ 
achieves its minimum c(0). 

We want to show that, for A € ^A(0),o), the martingale Zx is Cp bounded for 
some p > 1. To do so, we need the following important estimate the proof of which 
is given in Section 7. 

(5.1) LEMMA: An Cp bound for the Zx martingales. Given A € (Amm,0) and c > 0, 
there exist T > 0 and K in [0, oo) such that for p G [1,2], 

E0'* (\Zx(t)\p) < Kep^+e)y* (y G R, t G [0,T]). 

Given Lemma 5.1, the following lemma from Neveu (1987) works very effectively. 
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(5.2) LEMMA (Neveu), Letp G (1,2]. For any finite sequence of positive independent 
random variables W\,..., Wn in Cp and any sequence of positive real numbers 
c i , . . . ,cn, we have 

MOUY 
n 

MOKOP 
ckWk 

n 

k=l 

< & W ) , 

where pp(W) := E ( W ) - WWY for W e &>. 

(5.3) THEOREM. Let A € (A(0),O). Then, for some p > 1, is (for every PX'*J 
bounded in Cp. Thus, under each Fx*y, 

Zx (oo) exists almost surely and in C1. 

Moreover, PX»V {Z^(oo) = 0) = 0 for all pairs (x,y). 

Proof (guided by Neveu). Fix A G ^A(0),OJ. We know that A »-* cA is strictly 

increasing on ^A(0),O^. Hence, for some p > 1 and e > 0, both of which we now fix, 
we shall have 

(5.4) pX CpA - CA > 0. V A — Pip\ > Pe-

Now 

Zx (* + *) = 

JYGJ 

fc=i 

02-0(8r + 4aA202-0(8r + 

where Ŵ0,1"6 behaves like the branching process started with one particle starting at 
(0,3/*) where yk = ¥*($)• Applying the conditional version of Neveu's Lemma 5.2 
yields 

02-0(8r + 4aA202-0(8r + 4aA202-0(8r 
ATM 

HGJ 
02-0(8r + 4aA202-0(8r + 4 

By Lemma 5.1, there exist T > 0 and K <oo such that for y € K and * € [0,T], 

02-0(8r + 4aA202-0(8r + 4aA202-0(8r 
JJGGG 

fc=l 

> p\{Xk(*)+c-;s)+p(1,;+e)Yk(8y 
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We now concentrate on the P°*° measure for simplicity. Using the methods in Section 
3, we find that 

E°-° (Zx(a + t)p) - E°'° (Zx(s)p) 

< KE°'C 
'WW 

^=1 
epX{xk(»)+c^s)+p(^+C)Yk(s)2 

< KepXc*' i _ ( i _ e - M ( < * - * ; . ) -
02-0(8r + 4aA2 

02-0(8r + 4aA2 

M%M£M 

02-0(8r + 4aA2 

Because of (5.4), this term decays exponentially as a -* oo. Thus, we have found that 
there exist T > 0, K < oo, t > 0, such that for * € [0, T], 

E°'° (Z\- (s + t)p) - E°'° (Zx(3)p) < Ke~° (s > 0) 

Finally, we have, for allt > 0 and s € [0, T], 

oo 

m=l 
; E0,0 (Zx(ms + s)p - Zx(ms)p < K 

OO 

m=l 
* e-ims < OO 

and thus Zx is indeed bounded in Cp under P°»°. Similar arguments apply to Vx'v. 

For the last part of the theorem, we use the following lemma. 

(5.5) LEMMA. Let A G (Amin,0). Then (as a function of(xyy)), 

P*'y (Z^(oo) = 0) = 0 or 1. 

Proof First note that 

Fx>y {Zx(oo) = 0) = P°'y(eAxZA(oo) = 0) = P0'*(ZJ(oo) = 0) =: u(y). 

Thus it is clear that the probability is independent of the spatial start position. 

For all* > 0,2/El, 

u(y) = E* (I {ZA-(oo) = 0} ) = E* (E( I {ZA-(oo) = 0} | Tt) 

= Ey 
/N(t) 

\ k=l 

u(Yk(t)) <Ey u{Y1(t)) 

Hence u(rjt) is a bounded submartingale, whence it converges. Since rj is recurrent, 
u(-) must be constant on R, whence (why?) u(-) = 0 or 1. • 
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6- Proof that rxL{t) -> -c(0), a.s. 

Let us work with the P°'° measure. Let A G ^A(0),o). Because Z^{oo) exists in 
C1 and is almost surely strictly positive, and since Z^(0) = 1, we can define a new 
probability measure Qx = Q°'° equivalent to P on Too via 

dQx 
LMOJ 

FDXF On Too, whence 
FCHV 

BJBN I * 

GG?VFC 

It is now easy to show that (d/d\)Zx (t) is also a P-martingale, so that 

MMZ,-(l)- 02-0(8r + 4 

is a Qx -martingale. For t > 0, 1 < j < N(t), let 

(6.i) 02-0(8r + 02-0(8r + 4aA202-0(8r + 4aA2M£K 
02-0(8r + 4aA202-0(8r + 4aA202-0(8r + 

so that we have J\(-, •) > 0 and £ £ r / JA(«, Jfc) = 1. Then, 

MA(i) = 
JV(t) 

fe=i 

^ J A ( * , * ) { ( ^ ) ' r * ( * ) a + X„(t) + (AcJ)'O 

02-0(8r + 4aA2 
iV(t) 

fe=l 
J A ( * , * ) t t ( * ) M 

Af(t) 

fc=l 
Mt,k){Xk(t) + (\ci)'t} 

02-0(8r + 4aA2 
Af(t) 

fc=l 
h(t,k)Yk(t)2 + L(t) + (\ci)'t. 

Then, with VA(*) := <fc=l JA(*,*)n(*)a. 

JHG 
BJFGJ 

CFHCV GHFG 

BJ 
VJF Vx(t) 

t 
and the idea is to show that both terms on the right tend almost surely to zero: 

(6.2) t^Vxi^^O a.s., rxMx{t)-^Q a.s., 

whence we shall have 

lim sup Lit) 
t < — (AcA)', a.s.. 
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Since (AcA )' —* c(0) as A J, A(0), we therefore have the desired upper bound 

lim sup Lit) 
t < -c(0), a.s., 

and the fact that 

t"lL{t) -> -c(0), a.s. 

will be proved. It therefore remains only to prove (6.2). 

Proof that t^Vxit) —• 0 a.s,. We know from Section 3 that 

02-0(8r + 4aA202-0(8r + 4aA2 Их := §^0(0-8г-4аА2), 

where JJ is an OU(9,nx) process started at 0 under P£A. Thus, since an OV(0,fix) 
process is ergodic, Q ° ' ° ( V a ( £ ) ) tends to a limit as t —• oo, and is therefore bounded 
in t. For n € N, Jensen's inequality tells us that 

^х'0Ш)п)<^х'0 
fN(t) 

BFCX 
Jx(t,k)Yk(t)2n = KAv2tn), 

and this expression is again bounded in t. 

We now need the fact that 

(6.3) DSTHF \Vx(t)- в 
2цх 

is a martingale. 

This follows by combining the methods of Section 3 with the fact that if 77 is an 
OU(0, n) process, then 

HTGH HKYH в 
2,iJ 

is a martingale. 

In harmonic-oscillator language, this martingale is a Second excited state' martingale; 
the previous ones have been 'ground state'. 

It is now trivial to prove that, for any 6 > 0, 

(6.4) HFDN \Vx(t)-
9 

2цх 
-* 0, a.s.. 
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For choose an integer n such that 2n6 > 1, and use Doob's submartingale inequality 
to see that for any integer T > 1, 

P sup 
te[T-i,T\1 

Vx(t)-
9 

VFCB >eT6 

< P sup 
t€[T- l ,T] 

Vx(t) 
9 

VNB 

, 2 n 
e 4 n t > €2nji2n6e4fjLxn(T-l) 

< 1 
: €2n2*2n6e4n\n(T-1) 

_e4MAnTE XGXB 0 
2/iA 

v 2n 

CVNCV 
c2n 

1 
CDVBN 

(Un a constant), 

and since £ \/T2n6 converges, the result (6.4) follows from the Borel-Cantelli Lemma. 

Proof that t~lM\(t) -* 0 a.s.. Jensen's inequality gives 

02-0(8r + 4aA2 N(t) 

k=l 
Jx(t,k){(^)'Yk(t)2+Xk(t) + (Xc '̂Y-x(t,k){(^ 

We can show that (Zx )"1(d2/d\2)Zx is a Q\-martingale, where 

GJFG JFGJ 
3A2" 

VBFJVC 

N(t) 

fc=l 
x(t,k){(^)'Yk(t)2+Xk(t) + (Xc^'Y-x(t,k){(^)'Yk(t)2JHJB 

Then 

O x (MA(*)2) < Q x x(t,k){(^)'Yk(t)2+Xk( 
W(t) 

NGBVN 
^(* ,* ) { (^r )"n(Oa + ( A C R R * } 

VBJVB A " ( o ) 
, A 2 , 

A A 2 Z T ( o ) - ( ^ ( M ^ M ) - ^ ) " ' 

<*i(A) + tf3(A)t, 

for some finite JIFF's. Doob's submartingale inequality now yields 

Qx (sup {a-1 \Mx(s)\ : 2n~x < 3 < 2n} > c) < Qx | sup I Mx(s)\ > c2n": 

<(e2"-1)-2{^1(A) + 2^2(A)}, 

and the Borel-Cantelli Lemma completes the proof. 
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7. Proof of Lemma 5.1 

(At last, an expectation calculation which is not of the elementary 'linear' form.) 

Our branching process has statespace 

BVB C 

n>l 

{n} x Rn x Rn). 

Its formal generator Q is given by 

(7.1) G = G a + Go + Gr, 

where for n > 1, x, y G Rn, we have 

(7.2) 

(QAF)(n;x;y) = 
n 

*=1 

CXBNX 
d2F 
CFSF 

(&F)(n;x;y) 
n 

fc=l 

0 
2 

rd2F 

XBFH 
•Vk 

dF 

FDGD 

(ÇRF)(n;x;y, 

k=l 

, R(Vk)\F(n + 1; (x, xi,); (y, Vk)) - F(n; x; yH, 

where (x,xk) := (xi,...,xn,xk) G Rn+1. 
(7.3) PROPOSITION: Local-martingale condition. If F : [0, oo) x I -• R and 

FDF 

FGH 
JJGF (t;n;x;y) = 0 for t > 0,n > l,x,j/ G Rn, 

£ften F(*;iV(£);X(£); Y(£)) «5 a /oca/ martingale. 

We know that 

(7.4) M*;n;x;y) := 
n 

k=l 

* e1>ÏVk+H*k+c-t) 

leads to the martingale Zx(t) = /ia (t; N(t); X(t); Y(t)). Now, Zx jumps when a new 
particle is born; but any jump of Zx is of magnitude no greater than the current 
value of Zx. If, therefore, we introduce the stopping time 

Sn:= inf{*:Z^"(*)>n}, 

then Zx stopped at Sn never exceeds 2n. Hence, Zx is locally in C2 (relative to any 
Pa;,y). We may now conclude that 

Zx (t)2 — A(t) is a local martingale 
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where 

A(t) := 
t 

to 
9 

d 
et. 

FGCX (s;N(s);X(s);Y(s))ds. 

We find that - and this nice fact is crucial -

(7.5) dA(t) 
dt 

N(t) 

*=1 
(aX2 + 40(iPx)2 + r)Yk(t)2+p ie2i,-Y„(t)2+2X(Xk(t)+c-t) 

The methods of Section 3 give tight bounds on E°'vA(t) and in particular show that 
it is finite for small t. We can use Fatou's Lemma to deduce from the fact that 
(Zx)2 — A is a local martingale that 

(7.6) E°'v [Zx(t)2] < E°«A(t) + e2*> y\ 

In this way, we can prove the following result. 
(7.7) LEMMA: An C2 bound for Z\~. Given A < 0 and e > 0, there exist T>0 and 

K < oo such that 

E°'v (Zx(t)2) < Ke2^+t^ [yen, te[o,T]). 

Granted this result, we can use the monotonicity of £p-norms, namely 

E | X | < ( E [ m P ] ) - < ( E [ | X | 2 ] ) ' forpe [1,2] 

to tell us that for p G [1,2], 

E°'y (Z7(t)p) < # f epWA+c)y2 (yGR, te [0,T]), 

and Lemma 5.1 follows. 
Remark In the case when E°iVA(t) is always finite, then, because Zx(t) is in C2 fo 
E0,y, the existence and uniqueness parts of the Meyer decomposition theorem sho\ 
that (Zx)2 — A is a true martingale. Thus, equality holds in (7.6). 

8. The travelling-wave and reaction-diffusion equations 
We just remark for now that, as McKean (1975) has taught us, for A(0) < A < 0, 

(8.1) w(x,y) := Ex'y e - * r ( ~ ) 

is a solution, monotone in x and tending to 0 [respectively, 1] as x —• -oo [x —• oo] 
for each j / , of the travelling-wave equation 

(8.2) 1 
2 My) 

d2W 

dx2 
JGV dw 

' dx 
R(y)w(w - 1 ) 0 

' 2 
d2w 

,dy2 
GH 

GGJ 

GHG 
= 0. 
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Then u(t, x, y) := w(x — cx t, y) solves the reaction-diffusion equation 

(8.3) du 
dt 

1 
2 My) s

d2u 
dx2 

• R(y)u(u - 1 ) 9 
2 

'd2u 
<dy2 

du 
"dy, 

associated with our problem. Further discussion of these equations is deferred to 
sequels to this paper. 

9. The first expectation calculation for the critical case 6 = Sr 

(9.1) THEOREM. If 6 = 8r, then 

lim rMogE0'0^ 
t-+oc 

k < N(t) : Xk(t) > c(6a)*t2 > 0 if cKir^ip+ie), 

< 0 if c>7r_1(p+id). 

Thus, the expectation wavefront (in the positive direction) is essentially the parabolic 
curve x = (8a)^Tr-l(p+ie)t2. 

Proof. From (4.15), we find that 

(9.2) x(t,k){(^)'Yk(t)2 k < N(t) : Xhlt) 
ty/Öä 

e dx :E°'° 
N(t) 

KHJK 
exp 

fi\Xk(t) 
tVëâ 

e(p+\6)t 
MKLJMHJG 

Eei\S(t) 

where S(t) is a random variable with characteristic function 

(9.3) Eei\S(t) l + № 

cosh A + \9t\~l sinh A J 

Some of the following analysis could be derived probabilistically along the route 
suggested by Donati and Yor (1991) and Chan. Dean. Jansons and Rogers (1994). 
However, complex analysis deals very effectively with what we need. 

The function f* : C —• C where 

ft(z) : = cosh z + \6tz 1 sinh z 

is entire and of exponential order 1. All of its roots are purely imaginary; for if u + iv 
is a root, we find that 

sin v 
cosv 

ucoshu + i ö J s i n h u 
v sinh u 

(—vcoshn) 
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whence 

(\92t2 + u2) sinh u coshu + \0tu (sinh2 u + cosh2 u) = -v2 sinh u coshu, 

and if it ^ 0, the two sides of this equation have different signs. Thus the zeros of ft 
are at points ±tvi(£), ±iv2(t)^..., where vi(t)yV2(t), • • • are the positive roots (labelled 
in increasing order) of the equation 

sinv cosv + $0* = 0. v 

We see from a graph that v(n)/n -* 7r, SO that J ] vn(*)~2 < °°, an^ /*(') *s °* genus 1 
in the language of Hadamard's factorization theorem - see Section 8.2 of Titchmarsh 
(1952). Using the fact that ft(z) is even in z, we obtain from Hadamard's Theorem 
the formula 

Eei\S(t) 
oo 

%P 

1 
l + A2/t/„(*)2 

This means that we can regard S(t) as a sum 

S(t) = 
OO 

n = l 

Wn(t) 

of independent variables, Wn(t) having characteristic function [l+\2/vn(t)2] i . With 
Ri(t) denoting S(t) - Wx(t), we have 

V[S(t) >x]> TP[Wi(t) > x\Rx(t) > 0] = iP[Wi(0 > 

But Wi(t) has the same distribution as W/vi(t), where 

Ee<w = (l + A2)_i, 

and W has density J T - 1 ^ where Kq is the usual modified Bessel function. Now, 
vi(t) < 7r for every t\ and so, for x > 0, 

P[Wi(t) > x] = P[W > vi(t)x] > P[W > icx] 
e-*x 

s/lx ' 
(1 + 0(1/*)). 

Since 

E0,0# < 7V(t) : Xk(t) > c(9a)h2 
x(t,k){( 

(1 + i*t)i 
P[5(«) > ct], 

the first part of the theorem follows. 
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Provided that \v\ < we have 

E*v5W = mJv) 
l + \0t 

cosv + \vtv~1 s i n v 

I * 

Now, let c be an arbitrary but fixed number with c > ir~l(p +¿0). Choose and fix vo 
with 0 < vo < 7r and such that CVQ > (p + J0). Noting that vi(t) f n when 11 oo, we 
realize that we can find to with v\(to) > VQ such that 

sup rat(vo) < 00 • 
t>t0 

But, for c > 0, 

P[5(t) > ct] < e~CVotE [eVoS; S > ct) < e-CVotmt(v0). 

The second part of the theorem now follows. • 

(9.4) Remark It is obvious from (9.3) that the distribution of S(t) converges to the 
distribution with characteristic function (A/ sinh A)̂  which has tail behaviour roughly 
like e"~*lxL Assuming that at time t we have EN(t) particle positions each of which 
when divided by (0a)^t has this limiting distribution, would lead to the correct answer 
for the approximate asymptotic wavefront in this l0 = 8r' case. However, you should 
contrast the following observations. If 0 > 8r, then, for any subinterval T of E, we 
have 

(9.5) 
E°>°# {jfc < N(t) : Hxk(t) e r ) 

E°-°iV(t) 
JLJGBVB 

where L is the normal law of mean 0 and variance ay/0/(e - 8r); but assuming that 
we have EN(t) particle positions each of which when divided by y/t has this limiting 
normal distribution, would lead to too low a wavespeed in our earlier work. In (9.5), 
we are here attaching too little weight to the particles far from the origin which play 
a more significant role. 'Central Limit Theorems' such as (9.5) focus too heavily on 
deviations of 'average' magnitude, not on the large deviations which concern us. 
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