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The Uniform Law for

Exchangeable and Lévy Process Bridges

F. B. Knight

Abstract. — Let X(t), 0 <t < 1, be a bridge from 0 to 0 with exchangeable increments
on D[0,1]. We obtain the n.a.s.c. for the sojourn below 0 to be uniformly distributed, or
equivalently for X to have a uniform index of the (unique) supremum. This is applied to Lévy
bridges.

It seems particularly fitting for the present author to be given an opportunity to
contribute to a volume in honor of Meyer and Neveu. Professor Meyer alone, over the
years, has rewritten, revised, and expanded not fewer than five of our research papers,
mostly as part of his herculean efforts on behalf of the Seminaire de Probabilités.
There are various anecdotes concerning these papers which, if space permitted, we
would gladly include. However, it seems fair to say that Meyer always put business
before amusement, and following his lead we must be content to do likewise. Suffice it
to say that both the subject and the author are lastingly indebted for his contributions.
The present paper, however, is already indebted to a referee, so we can hope that it,
at least, will not merit his revision.

In his famous paper [8], P. Lévy obtained the arcsine law for the positive sojourn
of Brownian motion, and also the uniform law for the positive sojourn of Brownian
bridge. Very recently ([5]) R. K. Getoor and M. J. Sharpe have obtained the necessary
and sufficient conditions for the same arcsine law to hold for a diffuse Lévy process
X on R. One purpose of the present paper is to do the analogous thing (but without
the “diffuse” assumption) for the uniform law, at least if we understand by “bridge”
the process X; —tX;,t <1.

Also in the paper [8], Lévy obtained the arcsine law for the distribution of the

last exit time g from O before t = 1. Since Lévy knew that M(t) — B(t) 4 |B(t)|,
where M(t) = max B(s) (B(s) being a Brownian motion) it followed immediately

(although he does not mention it) that the location (abscissa) of the maximum of B
in 0 < t < 1 again has the arcsine law. He also probably realized that the location of
the maximum of the bridge B° is uniformly distributed.
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F. KNIGHT

Both of these facts extend to processes with exchangeable increments whenever the
corresponding laws for the positive sojourn are valid, by virtue of the identity that the
law of the positive sojourn is the same as that of the location of the first supremum in
[0,1]. This identity has a combinatorial basis in the analogous discrete parameter case,
due to E. Sparre-Andersen. It was extended by a limit procedure to Lévy processes
by Pecherskii and Rogozin [14], and to Lévy bridges by J. Bertoin [12]. In the present
paper it is extended to processes with exchangeable increments (Theorem 1.4*). We
wish to thank a referee for sketching this proof, based on the discrete parameter case
(see Theorem 2 of W. Feller (13, XII. 8] for this case). However since this is a rather
hard result, and the others seem much more intuitive, we have indicated it and the
results depending on it with an asterisk.

For diffuse Lévy processes, the necessary and sufficient condition for the arcsine law
of positive sojourn is P{X; > 0} = %,t > 0. By contrast, for diffuse Lévy bridges
the uniform law of positive sojourn always holds. In both cases the surprising level
of generality goes back to Sparre-Andersen’s work in the discrete parameter setting
[1,2]. Indeed, a formula of [2] is used in [5]. Our debt is less concrete, although our
reasoning is already implicit in [1]. It seems that for bridges the set-up of a discrete
parameter, as in [1], only obscures the relative simplicity of the continuous parameter
case.

Both the uniform sojourn law and the uniform location of the maximum are first
obtained, in Section 1, for processes with exchangeable increments, where we rely on a
representation given in O. Kallenberg [6]. Here it seems natural to replace the notion
of bridge by the process linearly centered to vanish at ¢t = 1. For Lévy processes,
however, usage favors using the term “bridge” for a process conditioned to vanish
at t = 1. Accordingly, we treat the two concepts separately in Section 2, although,
generally speaking, the same uniform laws hold for both. In fact the two concepts
coincide only in the Gaussian case (Theorem 2.2), and the definition by conditioning
of course requires some supplementary hypothesis. We have found Condition (C) of
Kallenberg [7] to be most adaptable to our needs at this point (but see the Remarks
after Lemma 2.6).

Section 1. The uniform law for linearly centered processes with exchange-
able increments.

A certain part of the theorems we wish to prove can be formulated for an arbitrary
measurable function f(t), 0 <t < 1. Weset S(z, f) = fol Iz (f(t))dt, —c0 <z <
00. Noting that z1i)1_{1°°.5’(a:, fy=0, sl'yw{nmS(a:, f) =1, and S(z, f) is non-decreasing

and continuous to the right, we call S(z, f) the “sojourn distribution function” of
f. More generally, if X;(w) is a measurable stochastic process, 0 < ¢t < 1, we call
S(z, X (w)) the (random) sojourn distribution of X, and when X is understood from
context we abbreviate to simply S(z). In that case, it is clear that S(z) is a stochastic
process associated with X. We say that f (or X) has continuous sojourn distribution
if S(z, f) (or S(z, X), P-a.s.) is continuous in z. Now a critical result for the sequel
is
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UNIFORM LAW FOR BRIDGES

Lemma 1.1(a). Let f have continuous sojourn distribution, and let U be a uniformly
distributed random variable on (0,1). Let

fE+U)=fU); t<1-U

X(tu) = £+ Uymott) - f0) = { 100 T IOR BT
’ I =

Then P{S(0,X) <z} =z,0<z <1, that is S(0,X) has the same law as U.

Proof. Since S(z, f) is continuous, for 0 < p < 1 there is a number z, for which
S(zp, f) = p. Then if f(t) < z, we have

1
/0 I—co)(((t + )mod1) — f(£))ds
< [ e+ spmoar) - 2,)ds
0

1
= / Icoo,) f(( + s)mod1)ds
0
=p_

Similarly, if f(t) > z,, then
1
[ Femf(+ ehmod) - )ds

1

2/ I(—c0,2,) f((t + s)mod1)ds
0

=p.

Thus we have
S0,X)<p if f(U)<uzp, and
S0,X)>p if f(U)> z,.

Now P{f(U) < z,} = p, and since f has continuous sojourn distribution,

P{f(U) =25} = /0 I,y (f(s))ds = 0.

So it follows that P{S(0,X) < p} > p and P{S(0,X) > p} > 1 — p. By addition we
get P{S(0,X) = p} = 0, and finally P{S(0,X) < p} = p, as asserted.

The second appearance of the uniform law which we intend to treat concerns the
location, or argument, of the supremum. Here we shall assume that all functions or
processes considered are right-continuous and left limited, so that their paths are in
the space D [0, 1]. In the case of processes, we use the coordinate filtration, augmented
by all P-null sets. This is equivalent to the augmented topological filtration of the
complete separable metric space—see [3] for more details. This approach has the
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advantage that the supremum and the essential supremum coincide, so we need not
treat them separately.

For f € D [0, 1], we adjust the definition at 1 by setting f(1) = f(1-), and
we define f(0—) = f(1), so that f can be viewed as defined on a circle. Let
Mf = 0s<up1 f(t). We say that f has unique location of supremum (or just unique

t<

supremum) if there is a unique tp, 0 < to < 1, with M f = f(to—)V f(to), and we write
to = ArgMazxf = AM f. If this holds P — a.s. for a process X, we write AM(X) for
its location (set=0 where not unique). We note that for any f there exists at least
one tg with M f = f(to—) V f(to), so there is no problem as to existence.

Lemma 1.1(b). If f has unique supremum, and X = X (t,w) is as in Lemma 1.1(a),
then AM(X) has the same law as U.

Proof. If to = AM f, then one sees that AM(X) = (1 + to — U)(mod1), so the result
follows.

We will apply this to certain processes with exchangeable increments. From now
on, all processes considered will be assumed to have paths X(:,w) € D[0, 1], where
D[0,1] is the measurable space of right-continuous, left-limited real-valued functions
(see [3] for details). We recall ([6]) that X; has exchangeable increments if, for
each n, the joint law of {X (£) — X (%1);1 <k <n} is that same as that of

{X 1&'2 -X (Eﬁnt—l) 11<k< n} for every permutation o of {1,2,...,n}. We
will need to use the

Representation Theorem. (Kallenberg, [6]). The process X;, Xo = 0, has
ezchangeable increments if and only if it may be represented in the form

> 0; s<0
(L1) X, =at+0Bu(t) +Z__;ﬂ,~(1(t _t)—t); 1(s) = { S
where
(a) B,(t) s a Brownian bridge, 0 <t <1,
(b) a, o and B, B2,... are real-valued random variables (on the probability space

e
of X ), independent of B,(-), 0 < o, and Y B2 < oo, P-a.s.
Jj=1

(c) tj, 1 < j, are uniformly distributed on (0, 1), independent of each other and of
the random variables in (a) and (b).

Remark. Any or all of the variables in (a) and (b) may assume the value 0. The
series, if infinite, converges a.s. uniformly in ¢t < 1.

Given such a process X;, we set Y; = X; —tX;, 0 <t < 1. The following Lemma
is the key to applying Lemma 1.1(a) to Y;.
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UNIFORM LAW FOR BRIDGES

Lemma 1.2 (a) Y; has exzchangeable increments. (b) X: has continuous sojourn
distribution if and only if, in the representation (1.1),
P (UL, S:) =1, where S; = {0 # 0},
Sy = {infinitely many B; # 0}, and
S3 = {only finitely many B; # 0 and 3 B; # a} (here we define an empty sum
finite

to equal 0).

Remark. In the representation (1.1) for Y;, we have a = 0.

Proof. (a) More generally, for each n let fi(z1,...,2Zn),..., fm(Z1,...,%,) be B*/B—
measurable functions. Then the joint law of {f; (X (£), X (2) - X ()),...,X(1)-
X (2=1), 1< j < m} is invariant under permutation of the n increments. Since

Y(£)-v (L) = —#; (X (£) = X (332)), exchangeability for Y follows as a

n n n

consequence.

Turning to (b), which is much less obvious, let us first examine the set S = {only
finitely many B; # 0 and o = 0}. Since there are only countably many finite

subsets of j, it is seen that S is measurable. Now on the subset SN <¢ 3 8; = a
J

we have Y = 3°8;1(t — t;), the sum being finite, which is a random step function.

J
Obviously it does not have continuous sojourn distribution. On the other hand, over

SN <Y B # ap we have a step function plus the line ¢ (a - Eﬂj). The sojourn
J J

time at z is that of Y 3;1(t —¢;) on the line —t [a— Y 8; | + 2, 0 <t <1, which
J J

includes at most one point in each step of the former. Hence it is of Lebesque measure
0, and we have proved (b) in the case = S, or more generally on the set S.

For the general case, we need to distinguish between fixed and mobile discontinui-
ties of S(z,Y). By definition, z is a fixed discontinuity if £(S(z,Y) - S(z—,Y)) > 0,
while z is a mobile discontinuity at w € Q if S(z,Y(w)) — S(z—,Y(w)) > 0
but E(S(z,Y) — S(z—,Y)) = 0. We will first show that, if P(U3,S:) = 1,
S(z,Y) has no fixed discontinuities. By Fubini’s Theorem, E(S(z,Y) — S(z—,Y)) =
E fol Iz (Y,)ds = fol (Fy(z,8) — Fy(z—, s))ds, where Fy(z, s) is the marginal distri-
bution function of Y(s). Hence it suffices to show that the marginal distributions are
continuous. Since B,(s) is independent of the other variables and continuously distri-
buted, the conditional marginal distributions, given o # 0 and the other variables, are
continuous, hence their expectation over the other variables is also continuous. Thus
the expectations are continuous over {o # 0}, i.e. there are no fixed discontinuities
over this set. Now on {o = 0} we have infinitely many S; # 0, hence it now suffices
to treat the case P{infinitely many B; # 0} = 1. We use the observation that for
any two distribution functions F and G, if * denotes convolution and A, denotes
the jump at x (possibly 0), then supA;(F * G) = sup [(A;—,G)dF, < supA.G.

T T T
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Thus the maximum jump size is reduced through convolution, and by conditi-
oning on the sequence f§; it suffices to show that the marginal distributions of

Z B;j(1(t — t;) — t) are continuous when J; are constants with Zﬂz < oo. To this

eﬁ'ect since the ¢; are independent, it is enough to find a subsequence Jn — 00 such
that lim max P{ > Bi. (At —-tj)—t) = :z:} = 0. A single term G;1(t — t;) has a
m—oo T n=1

law with jumps (= Boint masses) of size t at 8;(1 — t), and of size 1 — ¢t at —p;t.
The sum of n such terms has jumps at the 2" possible sums of these points, which
may not be distinct. However, they become distinct if we choose only j, such that

o0
tv(@-t) X |85l < (tA(Q —1)]Bj.]- Then a sum of jump positions of index
k=n+1

Jk,k > n + 1 cannot equal the separation in the jump position of two sums of size
n which differ only at the nth term. Such a sequence j, is easily constructed by
induction on n. Beginning with a fixed subsequence, also denoted 8,(# 0) such that
Y Bn < o we set B;, = §; and, having chosen the further subsequence (8;;,...,5;.)

n
we let jn+1 > jn be any index for which

V=) Y 18l <A -1)IBsl.

k=jn+l

n
Then clearly a sum Y B3;, (1(t — t;,) — t) has all of its 2" jump points distinct, and
k=1

hence its maximum j;mp (point mass) is (¢t V (1 — t))™. Since this tends to 0, the
proof of absence of fixed sojourn discontinuities is complete.

It remains to consider the mobile discontinuities. For 0 < a < b < 1, let I = (a, b);
Sr(z) = [, : I(_c0,s](Xs)ds is the sojourn distribution of X in the interval I. We
assume, in accordance with the case at hand, that P{c # O or infinitely many
B; # 0} = 1. We now consider the conditional law of X,4¢ — X,, 0<t < b-—a,
given the processes (X,,8 < a) and (X,,b < s < 1). Slightly redundantly, we also
0, tjel
1, ti¢l’
It is not hard to see that this amounts to being given a countable number of random
variables, so the conditional joint distributions of X,4: — X, are well-defined (P-
a.s.) on the space D[a, b], and extend to a conditional probability on the coordinate
o-field. We claim that this conditional process again has exchangeable increments,
P-a.s. (i.e. Xot(b—a)t — Xa does so, as a process on D[0, 1]). Indeed, even given o,
o, and (B;, 1 < j) as well as the other assumed data, the t; for which I; = 0 are
conditionally independent and uniformly distributed on (a, b). Actually, it is not hard
to see that the B; with I; = 1 are already given, along with X and the corresponding
tj, i.e. the jumps of X outside of I are all given, and consequently so is a and the
quadratic variation coefficient o, and consequently B,(s) is also determined outside

treat as given B,(b) — B,(a) and the sequence (¢;I;,1 < j) where I; =
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UNIFORM LAW FOR BRIDGES

of I. Now inside I we can write
Xatt — Xo = (a+ 0(Bo(b) — Bo(a)))t
+ 0(Bo(a + t) — B,(a) — (B,(b) — B,(a)t)

+Y Bi(la+t—t)~t), 0<t<p-a
t;el

(1.2)

where the second term on the right is ¢ times a conditional Brownian bridge and the
t; are conditionally uniform on (a, b) and independent of the former. Then, when we
give to the B; such that ¢; € I the conditional distribution given all of (¢;I;,1 < j), the
process (X,, s ¢ I), and B,(b) — B,(a), we see that (1.2) becomes a representation
(1.1) for a process with exchangeable increments on (0, b — a), conditional on the
given quantities, P-a.s. Furthermore our hypothesis, that either o # 0 or infinitely
many 3; # 0, also holds for the conditional process, P-a.s. Indeed, o is the same
for both, and it is clear that infinitely many 8; # 0 implies, P-a.s., infinitely many
Bj # 0 with corresponding t; € I. Consequently, by what was already shown, the
conditional process with probability 1 has no fixed sojourn discontinuities.

Now fix n and let I(k) = (%2,%). Setting I = I(k), the sojourn processes
S1(j)(x), 1 < j # k < n, are all given along with the process (X;,t ¢ Ii). Hence their
discontinuities are also given, and at most denumerable in number. Hence it follows
that, P-a.s. for the conditional distribution of Sy(x)(x), there are no discontinuities
at any values of z where Sy(;)() is discontinuous for some j # k. It is easy to see
that the event that any two Sy(;)(z) and Sy)(x) have a discontinuity at the same
z is measurable; indeed, it is IL}Q {some Sj(;) and S(x) both have a discontinuity of

size at least N~! in some interval ((I —1)m~!, Im~1),—0co < I < 00}. Consequently,
since the conditional probability of any jump shared by Sy(x) is 0, this is a null event.

On the other hand, S(z) = i S1(j)(z), and each Sy(;)(z) can have jumps of size at
Jj=1

most n~!. Since they have no jumps in common, S(z) also has jump size limited by
n~!. Letting n — oo, the absence of mobile discontinuities is proved.
We can now state and prove

Theorem 1.3(a). Let X; have exchangeable increments on D[0,1], Xo =0, and let
Y, = X; —tX). Then S(0,Y) is uniformly distributed on (0, 1) if and only if, in
a representation (1.1) for X,P{o = 0 and there are only finitely many B; # 0 and
0= Y B;}=0, where Y B; =0.
finite null

Proof. To obtain a representation (1.1) of Y;, we simply set @ = 0 in that of X;.
Hence by Lemma 1.2.(b) the condition is necessary and sufficient for Y; to have
continuous sojourn distribution. Now assuming this condition, let U be adjoined to
? as a uniformly distributed random variable entirely independent of X (by product
space construction, for example). We claim that Y ((¢t + U)modl) -Y (U), 0<t <1,
has the same law as Y(t) on D[0, 1]. Indeed, this is true even if U is given, say
U = to. To prove this it suffices to take ¢y = k/n, since by right-continuity of
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path we can obtain the general case from this by letting -f; — to+. Similarly, by
writing £ = f£ for large N, we see that it is enough to prove that the joint law
of Y(4), 1 £ j < n, is the same as that of Y(&;'}il modl) - Y(£), 1 < j < n
Now the map o : Y(-f;) — y(l’%l). modl), 1 < j < n, induces a map of increments
Y() - Y(‘j%ll), 1 € j < n, which is in fact a cyclic permutation. Since Y; has
exchangeable increments, this map preserves the joint distribution of the increments.
On the other hand, each Y () is a sum from 1 to j of these increments, and, thanks
to the fact that Y'(0) =Y (1) =0, Y(Q%ﬂmodl) —Y(%) is simply the corresponding
sum of the images of these increments by o. It follows just as in the proof of Lemma
1.2 (a) that the joint law of Y(£) is also preserved, proving the sufficiency of the
condition.

Conversely, suppose that P{c =0and 0= Y B;} > 0, so that there is positive

finite

probability that Y; is a random step function ) 8;1(¢ — ¢;), or identically 0. Let us
~

J
order the B3; so that 8; < B2 < -+ < B,. Clearly the new ¢; remain independent and
uniform on (0, 1). But then, on the further subset {t; < t < --- < t,}, which has
non-zero probability, we have Y¥; < 0 for all t. Indeed, either 5y =B =--- =6, =0,

. k
or 0 > B;. In the second case, let k = min{k < n:3 B; > 0}, or 0 if the set is empty.
1

Then if k # 0 we have B; > 0, and hence Y'(1) > 0 since the subsequent §;’s are all at
least B;. This contradiction implies that the law of S(0,Y’) has an atom at 1, hence
it is not uniform, as asserted.

Let us note, finally, the
Theorem 1.3(b). Suppose that Y in Theorem 1.3(a) has unique location of supre-
mum. Then AM(Y) is uniformly distributed on (0, 1).
Proof. This follows from Lemma 1.1(b) in the same way as Theorem 1.3(a) followed
from Lemma 1.1(a).

We turn now to the extension of Sparre-Andersen’s result, mentioned in the
introduction.
Theorem 1.4*. Let X; have exchangeable increments on D[0,1], Xo = 0, and let
LAMX = inf{t: X;-VX; = max;{X;-VX.}}, i.e. the firstlocation of the mazimum.
Then LAMX has the same law as 1 — S(0, X).
Proof. Let X,(t) = X(k27"), (k—-1)2" <t <k2™™ 1<k <2" 1< n Then
Xn(k27") = E'f=o(X,.(j2'") — Xn((j — 1)27™)), for each n is an exchangeable 2"-

J
tuple of random variables. Hence by Sparre-Andersen’s theorem (see Feller, loc. sit.,

Theorem 2) we have
(1.3) LAMX, £1-5(0,Xy).

Let us assume, for the moment, that S(0—, X) = S(0, X) P-a.s.,i.e. E fol Ii0y(X,)ds =
0, and that X has an a.s. unique maximum at AMX. Then since lim,_ o X5, =
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UNIFORM LAW FOR BRIDGES

for all (¢, w), and hence limp—,o0 J(0,00) (Xn(t)) = I(0,00)(X (¢)) on {X () # 0}, by do-
minated convergence we have lim,_,, S(0, X,,) = S(0, X), P-a.s. On the other hand,
it is clear that limy oo (Xn(LAM X =)V Xo(LAM X)) = M X (= max;(X;— V Xy)),
and since AM X is unique it follows that lim, .o LAM X, = AMX. Hence by (1.3)
we obtain the result in this case.

Turning to the general case, we will replace X (t) by X(e,4,t) = X(t) + eB(t) —
6t, where B(t) is an independent Brownian motion adjoined to the probability
space (product construction if necessary) and ¢, § are positive constants. This
process has exchangeable increments, and it will be seen to satisfy our two extra
assumptions. Indeed, by Lemma 1.2 it has continuous sojourn distribution. As to
the uniqueness of AM(X(e, é,t)), if not there would be rationals 0 < 1 <713 <1
with P{sup;<,, X(€,6,t) = sup;>,, X(€,6,t)} > 0. Denoting these suprema by
M; and M, respectively, let us suppose given X(t), t < 1, along with B(t),
t < 71, and also B(t) — B(rz), 12 < t < 1. Then M, is given, and My =
X(€,6,m1)+X (r2)= X (r1)—=6(r2—11)+8upy>,, X (€,6,t)— X (¢, 6,72)+€(B(r2)—B(r1)),
where all terms on the right are given except the last, which is independent. Clearly
the conditional probability is 0 that M; = My, hence the same holds unconditionally.
Thus, by the previous argument, we have

(1.4) AMX(e,6,)) 21— 5(0,X(e,6,-)).

We now pick a sequence ex — 0, 6y — 0, such that ex6;' — 0. Then denoting
X = X (ek, bk, ) we have, since X; — X uniformly on [0, 1],

kll’n;o | X(AM X)) - X(LAMX)| <

(1.5) < klirgo | Xk (AM X)) — X(LAMX)| + kli'n:o | X(AM X)) - X(AM X})|
=0, P-as.

On the other hand, we note that

Xik(t) - X(t) — (exB(LAMX) — 6, (LAM X))
= €x(B(t) - B(LLAMX)) — 6(t — LAMX)
< —2ek(m?.x |B)

provided that t > LAM X + 4ex6; ! max; |B|. For such ¢, then, we have

Xi(t) < X(2) - exmax|B| - 6i(LAMX)
< X(LAMX) - ¢ max |B| - u(LAMX).

But for t = AM X}, we have

X(AMX,) > X (LAMX)
> X(LAMX) — € max |B| - 6x(LAMX),
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whence it follows that

(1.6) AMX; < LAMX + 4:6;! max|B|.

Since €6y — 0, it follows from (1.5) and (1.6) that limk0o AMX; = LAMX,
P-a.s.

Finally, since we have X; < X uniformly in 1 <t <1 for large k > K (n,w), while
X, — X uniformly in ¢, we see that limy_, S(0,Xx) = S(0,X), and by (1.4) the
proof of Theorem 1.4* is complete.

We have next the following

Corollary 1.4*. With X as before, S(z,X) is continuous at z = 0, P-a.s., if and
only if X has unique location of the supremum.

Proof. Let us set RAM(X) = max{s : X(s—) VvV X(s) = sup, X}. We introduce the
process X(;_¢)— — X1, which has exchangeable increments and starts at 0. Moreover,
this process is identical in law to —X;, 0 < ¢t < 1. To see this, we can apply the
mapping ¢ « 1 — ¢ on [0,1], and note that this permutes the increments of X; into
those X(;_s) — X1 but reverses order of the endpoints. Multiplying by —1 gives the
result. Now we have

RAM(X)=1-LAM (X4 — X1)
2 5(0, X1 — X1)
£ 5(0,-X)
=1-5(0-,X).

Thus we have, by Theorem 1.4 again,

E(5(0,X) - 5(0—, X)) = E(1 - $(0-, X) - (1 - 5(0, X)))
= E(RAMX - LAMX),

which completes the proof.

In the special case that X is a bridge (i.e. a = 0 in (1.1)), we can complete
Theorem 1.3 as follows.

Theorem 1.5*. For an exchangeable bridge the following are equivalent (we omit
P-a.s. in (b)-(d)).

(a) S(0,X) is uniformly distributed.

(b) S(z,X) is continuous.

(¢) S(z,X) s continuous at 0.

(d) X has a unique supremum (at AMX).

(e) LAMX is uniformly distributed.
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Proof. The proof of the converse in Theorem 1.3(a) shows that if (a) fails then so does
(c), while Lemma 1.2(b) in conjunction with Theorem 1.3(a) show that (a) and (b)
are equivalent. Since (b) trivially implies (c), (a)-(c) are equivalent. Now (c) and (d)
are equivalent by Corollary 1.4*, and (d) implies (e) by Theorem 1.3(b), since under
(d) we have LAM X = AMX. Finally, (e) is equivalent to (a)-(c) by Theorem 1.4*,
so (e) imples (d) and the argument is complete.

Section 2. The case of Lévy processes and Lévy bridges.

We first specialize to the case that X; is a measurable process with homogeneous,
independent increments, also called a Lévy process. Then its log characteristic
function may be written in P. Lévy’s form as

log E exp(iuX;) = t(u)

2.1 2 .
@1 =t[iu7—02%+/(e'“—1—

ux
1422

)G(dz)),

where the Lévy measure G(dz) satisfies G{0} = 0 and [(1 A 22)G(dz) < oo.
Conversely, any real v, g2 > 0, and such G, determine a unique Lévy process as
coordinate process on D[0, 1], and this process determines them uniquely. (see M.
Loeve, [9; Sec. 22 C and Sec 23, Ex. 9)).

Such a process X; has exchangeable increments as in Section 1. We have indeed

Theorem 2.1(a). The necessary and sufficient condition, with X; as in (2.1), to
have S(0,Y) uniform on (0, 1) is that either o # 0 or G(R) = oo.

Proof. 1t is clear that o in (2.1) equals the o of (1.1), which is therefore constant
in the present situation. Thus by Theorem 1.3, ¢ # 0 suffices for S(0,Y) to be
uniform. Similarly, by writing X; as the sum of a compound Poisson process with
intensity (Lévy) measure I(|x|>¢)(2)G(dz), and an independent process, for € > 0, we
see that fl X|>e G(dz) is a lower bound for the Poisson intensity of the jumps. Thus
if G(R) = oo there are infinitely many jumps, so P-a.s. infinitely many 3; # 0 occur,
and S(0,Y) is uniform by Theorem 1.3(a).

Conversely, if ¢ = 0 and G(R) < oo, then the process X; is simply a compound
Poisson process (possibly of rate 0) plus a uniform translation at rate (y— [ 17574G).

By Theorem 1.3(a), S(0,Y) is not uniform unless P<{0= 3" B; ¢ = 0. But, with
finite

probability exp(—G(R)), this is an empty sum. Hence, S(0,Y’) has an atom at 1 and

cannot be uniform, completing the proof.

Turning to the law of AM(Y), we have

Lemma 2.1. (a) If G(R) < 00 and o = 0, then Y does not have a unique supremum.
(b) If G(R) =00 or d # 0, then Y has a unique supremum.

Remark*. This also follows from Corollary 1.4*.
Proof. (a) This is clear since X is a compound Poisson process, and Y vanishes
identically with positive probability.
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(b) (We are indebted to Bruce Hajek for the following argument). If AM (Y (w))
is not unique, then there are rational intervals (r1,72) and (r3,74), r2 < r3, such that
S1= sup Y,= sup Y, =Gy, soitis enough to prove this has probability 0. We

r1<s<lry r3<s<lry
consider the two sides as a function of X (r3) — X (r2), with X, t < rq, and X; — X,

t > r3, asgiven. Then Sy = sup [X,—s8(X(r2)+X(1)—X(r3))—8(X(r3)—X(r2))],
r1<8<"r
where the first two terms on ;he right are given while the last is independent and has

a continuous distribution. Analogously, S; = sup [(X,; — Xr; + Xr,) — 8(X(r2) +

r3<s<ry
X(1)-X(r3))+(1—-8)(X(r3)—X(r2))]. We see that S; is decreasing in X (r3)— X (r2),
while S; is increasing. Consequently there is conditional probability 0 that they are
equal, so the result is proved.

We now have immediately, by Lemma 1.1.(b),
Theorem 2.1.(b). AM(Y) is uniformly distributed if and only if G(R) = oo or
o #0.

In his original work, P. Lévy showed that if B; is Brownian motion then the process
Y; = B; — tB; is independent of B, hence we are justified in considering the law of
Y; as that of B, conditioned by {B; = 0} (or, indeed, that of B; — ta conditioned by
{B1 = a}, for any a). When we seek to generalize the idea of this conditional process
to a general Lévy process, the first obstacle is that X; is not in general independent
of ;. Indeed, we have

Theorem 2.2. The random variable X 3 % is independent of X, if and only if
G =0, i.e. the process is Gaussian.

Proof. If G = 0, the process has the form X; = 4t + oB; for a Brownian motion B,
(or else ¢ = 0). Then X; —tX; = o(By —tB;), and the asserted independence follows
by Lévy’s result.

Conversely, suppose for fixed t < 1 that X; —tX; and X, are independent (we will
later take t = 1). Then from (2.1) we have

log Eexpi(a(X: — tX1) + 8X1)
(2.2) =log E expia((1 — t)X; + t(X: — X1)) + ¥(8)
=ty(a(l —t)) + (1 — t)p(—at) + ¥(B).

On the other hand, (2.2) can also be expressed as

log Eexpi[(8 + (1 - £)) X + (8 — at)(X1 — X:)]

(2.3) =tY(B + (1 - t)) + (1 - t)$(8 - at)

Now specializing to ¢ = §, setting (2.2) = (2.3) gives us

(2.49) L)+ 2H(=2) + () = 9B+ )+ 595 - 3).

182



UNIFORM LAW FOR BRIDGES

We will specialize further in two ways. First, taking a = 8 gives ¥(=2) + 2¢(a) =
¥(3a), which implies that

(2.5) |expy(S) exp29(a)l* = |exp(§a)|2,

where | exp(u)|? is the (symmetrized) characteristic function of X; — X], with X}
and X, i.i.d. Letting Y;, ¢ = 1,2, 3, denote 3 independent such variables, this implies
the identity in law

(2.6) Y, +2(Ys +Ys) £ 35,

Since we already know that this holds when X, is Gaussian, we assume o = vy = 0,
and writing G*(dz) = G(dr) + G(—dz) for the Lévy measure of ¥; we obtain from
(2.6) by the uniqueness of the Lévy representation

. @ b La b
(27) G (a,b]+2G (5’2 =G (3’ 3]1
This equation does have solutions—for example dG{,) = c|z|~(1+n2/in3) 4y yielding
a symmetric stable process. However, we return to (2.4) and now set § = 3. Then,
in the same way as (2.5)-(2.7) we obtain

0<a<b

a -Q «
(2.8) 3’!’(5) + ¢(T) = '/’(35),

4
and with Y;, 1 < i < 4, as before this yields ZY, 4 3Y;, and hence

=1
(2.9) 6" (@b =476, 31; 0<a<b.

Combining (2.7) and (2.9) gives

. _2_.0ab
(2.10) G*(a,b] = 3G (2,2].
By iteration, (2.9) and (2.10) give respectively

G*(a,00) =4 "G*(3 "a,00)

(2.11) 2
= (g)mG*(T"‘a, o), for all integers n,m > 0.

Since G*(a, %) is monotone, this requires that 3= < 2~™ hold whenever 4" < (2)™,
unless G* = 0. For n = 2, m = 4 this breaks down, so we have G* = 0, and hence
G =0 as was to be shown.

In view of Theorem 2.2, one cannot make any obvious sense out of X, conditioned
by X; = 0 without supplementary hypothesis, even if P{—e < X; < €} > 0 for every
€. On the other hand, if P{X; = 0} > 0, there is no difficulty. We therefore treat
this case first.
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Theorem 2.3(a). If X; is a Lévy process and P(X; = 0) > 0, we define the “Lévy
bridge” X2 to be (any) process with paths in D[0,1] having the conditional law of
(X¢| X1 =0). Then X° has ezchangeable increments, and its positive sojourn S(0, X°)
is uniformly distributed if and only if, in the representation (2.1), v — [ 574G #0
(we note that P(X; = 0) > 0 already implies 0 = 0 and G(R) < 00, so we need
a compound Poisson process with non-zero drift; conversely, a compound Poisson
process with zero drift satisfies P(X; = 0) > 0 but S(0,X°) is not uniformly
distributed)

Proof. Tt is clear that X° has exchangeable increments and X{ = 0. Hence, in the
notation of Theorem 1.3, X? = X? — tX? = Y, and the condition that S(0,X°)
be uniform is P{0 = ) B;} = 0. However, by the definition of X° we have
Y+ (X B5) — [ 152G(dz) = 0,ie. 3-8 =7 — [ 1557 G(dz) as asserted.

The corresponding result about AM(X?) is

Theorem 2.3(b). If X; is a Lévy process and P{X; = 0} > 0, then AM(X°) is
unique and uniformly distributed on (0, 1) if and only if, in (2.1), y— [ 15+ G(dz) #
0.

Remark*. This also follows, of course, by Corollary 1.4*.

Proof. We need only show that this condition is necessary and sufficient for X° to
have unique location of supremum. Since & = 0 and G(R) < 0o, we have a compound
Poisson process with drift. If the drift is 0, the process will vanish identically with
positive probability. Hence the condition is clearly necessary. Conversely, if the drift
is non- zero, the paths of the process have the form of a step function plus a fixed line
lt, l # 0. Suppose that the number of steps, say n, is given along with the ordered
sizes of the jumps say 87 < 83 < :-- < 8,. Then the corresponding times t;,...,t,
of the jumps are independent and uniform on (0, 1). Clearly any point ¢ at which
X2V X? = supX? must be in the set {0,t1,...,t,,1}. Indeed, it is not hard to
8

see that 0 and 1 are excluded, i.e. supX? > 0 (note that there must be at least one
8

jump). The right and left limit values at t; are [ 3 s; | —ltx and | 3 sj) — lty,
tj <tk tj <ty

respectively. These sums are all in a fixed finite set, while the It; are uniform and
independent. Clearly no two coincide.

We turn to defining X° when P(X; = 0) = 0. It is not hard to recognize that if
G(R) < o0 and o = 0 the definition may be quite problematical; indeed, even for G
concentrated at 2 points and P{—e < X; < €} > 0 for every € > 0, conditioning by
{—€ < X1 < €} as € — 0 may lead to a process with infinitely many jumps of size
bounded away from 0, in such a way that a limit process does not exist. Accordingly,
we consider only the case that either o > 0 or G(R) = co. Everything works smoothly
if, when o = 0, we strengthen G(R) = oo to Hypothesis (C) of Kallenberg [7], namely

Hypothesis (C). Fort >0, [* exp(ti(u))du ezists, i.e. the Fourier transform of
the law of X, is in L.
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This implies Ly, hence the law of X; has a density and P{X, = 0} = 0. It
always holds if o > 0, and, as argued in [7, §5], it is only “slightly” stronger than
G(R) = oo. Setting v(u) = o + [*, 22dG(z), indeed, Hypothesis (C) holds whenever

limu~2|logu|'v(u) = 0o, whereas ¢ > 0 or G(R) = 0o holds if limsup u~2v(u) =
u—0 u—0

00, and G(R) < oo if l%u‘ﬂlogul'u(u) = 0 for some r|> 1 (see [7, §5]). Let us
3
verify an assertion of [7], as

Lemma 2.4. Under Hypothesis (C), the law of X; has a density p(t,z) continuous
in (t,z) fort >2e>0.

Proof. Let fi(u) = exp(ty(u)) denote the Fourier transform. It is well-known (see [9,
12.1, Corollary]) that foxj each t > 0, there exists the continuous inverse transform
p(t,z) = (2m)~? f;% e~ % f,(u)du, which is a density for the law of X;. Now we have
| fe(u)| = exp —t(Z5- + [(1 — cosuz)dG(z)), which is integrable in u by hypothesis,
and monotone, continuous in ¢. Since we have

Ip(t, z2) - plt, 1) < (2m)~" / 11— exp —u(zs — 1)1 e (w)ldu,

with integrand dominated by 2|f.(u)| for ¢ > ¢, we see by dominated convergence
that p(¢,z) is uniformly continuous in z, uniformly in ¢ > €. On the other hand, for
€ < t; <tz we have

Ip(ta, 2) — plts, )| < (2m)~" / fon () = oo (w)lds

which tends to 0 as t; — ¢; uniformly in 2. Hence Lemma 2.4 follows.

We now introduce the law of X; given X; = z. Let F, = 0(X,,u < s), augmented
by all P—nullsets.

Definition 2.5. For z such that p(l,z) > 0, and A € F,, s < 1, we set
P(A| X1 =z) = E(p(1 - 8,z - X,); A)p~'(1,2).

Since, by Lemma 2.4, we have E%l+(2€)_l f:+: p(1-3,y—X,)dy = p(1-3s, z—X,)

uniformly on the probability space, it is easy to see that, for every A € F,, we have
(2.12) P(A|X;=z)= lim P(Alzr—e< X; <z +e¢).
€—0+

Indeed, by a Theorem of Vitali, Hahn, and Saks the convergence is uniform in A,
and the limit is (clearly) a probability on F,, consistent in s for s < 1 by Chapman-
Kolmogorov equation.

We next specialize to z = 0 in

Lemma 2.6. If p(1,0) > 0, let P°(A) = P(A|X1 =0), A€ F,, s <1. Then P°(A)
extends from V,<1F, to Fi— uniquely, and P°{X;_ = 0} = 1. Under P°(A), the
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process (set = 0 at t = 1) has paths in D[0,1], P°-a.s., and it i3 an inhomogeneous
Markov process with transition density

P°(t1, 5 t2,9) = p(ta — t1,y —2)p(1 — b2, —y)p ' (1 — t1,—x), 0<t; <t2 <1,

where we interpret g =0

Remark. This Lemma is also proved, by somewhat different methods, in [4]. The
hypotheses of [4] are considerably more general than ours, and the reader may refer
to [4] for more details. However, we still need Hypothesis (C) below for Theorems
2.7 and 2.8, because of its consequence (2.12), which does not hold under the general
hypothesis of [4].

Another Remark. After completion of this paper, we received the manuscript [15)]
of Fitzsimmons and Getoor, which proves Theorem 2.7 below in the setting of [4]
restricted to Lévy processes. We then observed that our method also may be extended
to that case. We have only to replace our uses of (2.12), which is employed to show
that for A € F,_s with P(A) = 1 one has also P°(A) = 1, by Definition 2.5, which
gives the same implication.

Proof. The marginal density of X; for P° is p(t,z)p(1 — t,~z)p~1(1,0) for ¢t < 1.
Indeed, this follows from the definition of P° by taking A = {X; < z} and
differentiating in z (with s = t). From this, a routine Markov property of X;, verifies
the last assertion for £ <1 —¢, € > 0. It remains to examine the behavior at ¢t = 1.
Noting that the marginal densities are invariant under the transformation ¢ « 1 — ¢
and z « —z, it follows by routine but rather tedious computation using the time-
reversed transition density, that under P° the processes X; and —X(;_¢)— have the
same joint law for € <t < 1—¢, € > 0. Since the law of X; under P, is also well-defined
for 0 < t < ¢, with X4 = 0, we can consistently define its law for 1 —e < ¢ < 1 as that
of ~X(1-¢)—, 1 —€ <t < 1. Indeed, this gives a consistent family of joint distribution
functions on 0 <t <1, with X; = 0. The fact that Xo4 = 0, and the equivalence in
law X; &> —X(;_¢)— assures us that }i_r’riXt = 0, P-a.s., so the Kolmogorov extension

of the joint law is carried by D [0, 1], with X;_ = X; = 0. This completes the
definition of P°, and finishes the Lemma.

Theorem 2.7. Assuming Hypothesis (C) and p(1,0) > 0, let X°(t) denote any
realization of the process X; for P° of Lemma 2.6, having paths in D [0, 1]. We
call X°(t) a “Lévy bridge” (from 0 to 0) corresponding to the Lévy process X;. The
positive sojourn S(0,X°) is uniformly distributed on (0, 1).

Proof. For € > 0, the conditional law of X; given {—€ < X; < €} is that of a
process with exchangeable increments, since X, is invariant under permutation of
increments. Letting ¢ — 0+, and using the fact that P°(4) = eE}r(x)l_‘_P(Al—e <X <e¢)
(as in (2.12)), we see that X° has exchangeable increments. Let S = {elements in
D[0,1] having infinitely many jumps}. Then {X() € S} € F;: indeed it suffices
that {X() ¢ S} € F1, and this can be written {J limsup,_,.,{X(.) is continuous
in ((k — 1)n~1,(k + 1)n~1) for all but at most N values of k < n}, so it suffices
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that {X(., is continuous in ((k — 1)n~!,(k + 1)n~')} € F1, which is clear. Now
either P{X() € §} = 0 or P{X(,) € S} = 1, and either probability is unchanged for
P{X() € Ss| — € < X; < €} where S; = {infinitely many jumps in 0 < ¢t < 1 — 6},
6 < 1. Letting A5 = {X() € S5}, and letting ¢ — 0, it follows that this
probability is also the same for P°. Thus, if P{X() € §} = 1, then, noting that
X°(t) = X°(t) —tX°(1) =Y°(t), S(0,X°) is uniform by Theorem 1.3. On the other
hand, if P{X() € S} = 0, then o > 0 by Hypothesis (C) (since G(R) < o0). Let
8§ = {elements in D [0, 1] having infinite variation}NS°. Then it is not hard to see
that, again, {X(, € 8} € Fi. Since P{X.) € 8} =1, it follows as before that
Po{X? € 8} = 1. Therefore, in a representation (1.1) of X?, since there are only
finitely many G; # 0, we must have 0 > 0, P-a.s. Again by Theorem 1.3, S(0, X°) is
uniformly distributed on (0, 1), as asserted.

We conclude with the result about AM(X°).

Theorem 2.8. Assuming Hypothesis (C) and p(1,0) > 0, AM(X°) is uniformly
distributed on (0,1)

Proof. We need only show the uniqueness of supremum (or apply Corollary 1.4*). Let
Ss = {paths in D[0,1 — é] having a unique supremum}. Then S; is measurable, and
it follows as in Lemma 2.1(b) (somewhat simplified) that P(X(.) € S;) = 1. Thus
P(X?) € Ss) = li—%P(X(.) € Ss| — e < X(1) < €) =1, and the proof is concluded by

letting 6 — 0.
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