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The Uniform Law for 
Exchangeable and Levy Process Bridges 

F . B . Knight 

Abstract. — Let X(t), 0 < t < 1, be a bridge from 0 to 0 with exchangeable increments 
on D[Q, 1]. We obtain the n.a.s.c. for the sojourn below 0 to be uniformly distributed, or 
equivalently for X to have a uniform index of the (unique) supremum. This is applied to LeVy 
bridges. 

It seems particularly fitting for the present author to be given an opportunity to 
contribute to a volume in honor of Meyer and Neveu. Professor Meyer alone, over the 
years, has rewritten, revised, and expanded not fewer than five of our research papers, 
mostly as part of his herculean efforts on behalf of the Séminaire de Probabilités. 
There are various anecdotes concerning these papers which, if space permitted, we 
would gladly include. However, it seems fair to say that Meyer always put business 
before amusement, and following his lead we must be content to do likewise. Suffice it 
to say that both the subject and the author are lastingly indebted for his contributions. 
The present paper, however, is already indebted to a referee, so we can hope that it, 
at least, will not merit his revision. 

In his famous paper [8], P. Levy obtained the arcsine law for the positive sojourn 
of Brownian motion, and also the uniform law for the positive sojourn of Brownian 
bridge. Very recently ([5]) R. K. Getoor and M. J. Sharpe have obtained the necessary 
and sufficient conditions for the same arcsine law to hold for a diffuse Levy process 
X on R. One purpose of the present paper is to do the analogous thing (but without 
the "diffuse" assumption) for the uniform law, at least if we understand by "bridge" 
the process Xt — tX\% t<l. 

Also in the paper [8], Levy obtained the arcsine law for the distribution of the 
last exit time g from 0 before 4 = 1. Since Levy knew that M(t) - B(t) = |B(t)|, 
where M(t) = max B(s) (B(s) being a Brownian motion) it followed immediately 

8<t 
(although he does not mention it) that the location (abscissa) of the maximum of B 
in 0 < t < 1 again has the arcsine law. He also probably realized that the location of 
the maximum of the bridge B° is uniformly distributed. 
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F. KNIGHT 

Both of these facts extend to processes with exchangeable increments whenever the 
corresponding laws for the positive sojourn are valid, by virtue of the identity t ha t the 
law of the positive sojourn is the same as that of the location of the first supremum in 
[0,1]. This identity has a combinatorial basis in the analogous discrete parameter case, 
due to E . Sparre-Andersen. It was extended by a limit procedure to Levy processes 
by Pecherskii and Rogozin [14], and to L6vy bridges by J. Bertoin [12]. In the present 
paper it is extended to processes with exchangeable increments (Theorem 1.4*). We 
wish to thank a referee for sketching this proof, based on the discrete parameter case 
(see Theorem 2 of W. Feller [13, XII. 8] for this case). However since this is a ra ther 
hard result, and the others seem much more intuitive, we have indicated it and the 
results depending on it with an asterisk. 

For diffuse Levy processes, the necessary and sufficient condition for the arcsine law 
of positive sojourn is P{Xt > 0} = > 0. By contrast, for diffuse Levy b r i d g e s 
the uniform law of positive sojourn a lways holds. In both cases the surprising level 
of generality goes back to Sparre-Andersen's work in the discrete parameter sett ing 
[1,2]. Indeed, a formula of [2] is used in [5]. Our debt is less concrete, al though our 
reasoning is already implicit in [1]. It seems tha t for bridges the set-up of a discrete 
parameter , as in [1], only obscures the relative simplicity of the continuous parameter 
case. 

Both the uniform sojourn law and the uniform location of the maximum are first 
obtained, in Section 1, for processes with exchangeable increments, where we rely on a 
representat ion given in O. Kallenberg [6]. Here it seems natural to replace the notion 
of bridge by the process linearly centered to vanish at t = 1. For L6vy processes, 
however, usage favors using the term "bridge" for a process conditioned to vanish 
at t = 1. Accordingly, we t reat the two concepts separately in Section 2, al though, 
generally speaking, the same uniform laws hold for both. In fact the two concepts 
coincide only in the Gaussian case (Theorem 2.2), and the definition by conditioning 
of course requires some supplementary hypothesis. We have found Condition (C) of 
Kallenberg [7] to be most adaptable to our needs at this point (but see the Remarks 
after Lemma 2.6). 

Section 1. The uniform law for linearly centered processes with exchange­
able increments. 

A certain part of the theorems we wish to prove can be formulated for an arbitrary 
measurable function /(£), 0 < t < 1. We set S(x1 f) = J* I(-oo>x]U(t))dt, - o o < x < 
oo. Noting that lim 5 ( x , / ) = 0, lim 5 ( x , / ) = 1, and 5 ( x , / ) is non-decreasing 

X—•— OO X—•-f-OO 
and continuous to the right, we call S(x,f) the "sojourn distribution function" of 
/ . More generally, if Xt(w) is a measurable stochastic process, 0 < t < 1, we call 
S(x,X(w)) the (random) sojourn distribution of X, and when X is understood from 
context we abbreviate to simply S(x). In that case, it is clear that S(x) is a stochastic 
process associated with X. We say that / (or X) has continuous sojourn distribution 
if 5 ( x , / ) (or S(x,X), P-a.s.) is continuous in x. Now a critical result for the sequel is 
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UNIFORM LAW FOR BRIDGES 

Lemma 1.1(a). Let f have continuous sojourn distribution, and let U be a uniformly 
distributed random variable on (0,1). Let 

X(t, w) = /((« + U)modi) - f(U) = 
f(t + U)-f(U); 
/(* + [ / - !)- / ( [ /<x); 

t< 1-U 
\-U <<<wt<\ 

Then P{S(0,X) < x} = x, 0 < x < 1, that is S(0,X) has the same law as U. 

Proof. Since S(x, f) is continuous, for 0 < p < 1 there is a number xp for which 
S(xp, f) = p. Then if f(t) < xp we have 

< 

Jo 
/(-oo,o](/((* + *)modl)-/(t))cfa 

rl 

Jc 
I(-ooto](f((t + 3)modl) - xp)d« 

./o 
/(_«>,*,]/((*+ *)niodl)d5 

Similarly, if f(t) > xp, then 

< 

<x 
/(-oo,o](/((* + «)modl)- / ( t ) ) i fa 

.1 
J(-oo,*p]/((t + 5)modl)d5 

=p. 

Thus we have 
5 ( 0 , X ) < p if f(U)<zp, and 
S ( 0 , X ) > p if f(U)>xp. 

Now P{f(U) < xp} = p, and since / has continuous sojourn distribution 

P{f(U) = xp} = 
-1 

lo 
/ { „ } ( / « ) * = <>. 

So it follows that P{S(0,X) < p} > p and P{S(0,X) > p} > 1 - p. By addition we 
get P{5(0, A") = p} = 0, and finally P{S(0, X) < p} = p, as asserted. 

The second appearance of the uniform law which we intend to treat concerns the 
location, or argument, of the supremum. Here we shall assume that all functions or 
processes considered are right-continuous and left limited, so that their paths are in 
the space D [0,1]. In the case of processes, we use the coordinate filtration, augmented 
by all P-null sets. This is equivalent to the augmented topological filtration of the 
complete separable metric space-see [3] for more details. This approach has the 
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advantage tha t the supremum and the essential supremum coincide, so we need not 
t rea t them separately. 

For / € D [0, 1], we adjust the definition at 1 by setting / ( 1 ) = / (1—), and 
we define /(0—) = / ( 1 ) , so tha t / can be viewed as defined on a circle. Let 
Mf = sup f(t). We say tha t / has unique location of supremum (or jus t unique 

0<t<l 
supremum) if there is a unique to, 0 < to < 1, with Mf = f(to—) V/(£o)> and we write 
t0 = ArgMaxf = AMf. If this holds P - a .s . for a process X , we write AM(X) for 
its location ( se t=0 where not unique). We note tha t for any / there exists a t least 
one to with Mf = f(to—) V f(to)> so there is no problem as to existence. 

L e m m a 1 . 1 ( b ) . / / / has unique supremum, andX = X(t,w) is as in Lemma 1.1(a), 
then AM(X) has the same law as U. 

Proof If to = AMf, then one sees tha t AM(X) = (1 + to — l / ) ( m o d l ) , so the result 
follows. 

We will apply this to certain processes with exchangeable increments. From now 
on, all processes considered will be assumed to have paths X(•,«;) G D[0,1], where 
D[0,1] is the measurable space of right-continuous, left-limited real-valued functions 
(see [3] for details). We recall ([6]) tha t Xt has exchangeable increments if, for 
each n , the joint law of {X (£) - X ( ^ p ) ; 1 < k < n) is t ha t same as t ha t of 

{X ( ^ ) - X ( ^ i ^ ) ; 1 < k < n } for every permutat ion a of { 1 , 2 , . . . , n } . We 

will need to use the 

R e p r e s e n t a t i o n T h e o r e m . (Kallenberg, [6]). The process Xt, Xo = 0, has 
exchangeable increments if and only if it may be represented in the form 

( i . i ) Xt = at + aB0{t) 
OO 

3=1 
fy(l(t - « i ) - * ) ; l(s) = 

' 0; 

i ; 

s < 0 

s > 0 

where 
(a) BQ(t) is a Brownian bridge, 0 < t < 1, 
(b) a, a and ft,ft,... are real-valued random variables (on the probability space 

of X), independent of B0(-), 0<a, and 
oo 

w< 
3? < OO, P-O.5. 

(c) tj, 1 < j , are uniformly distributed on (0, 1), independent of each other and of 
the random variables in (a) and (6). 

Remark . Any or all of the variables in (a) and (b) may assume the value 0. T h e 
series, if infinite, converges a.s. uniformly in t < 1. 

Given such a process Xt, we set Yt = Xt - tXi, 0 < t < 1. The following Lemma 
s t he key t o applying Lemma 1.1(a) t o Yt. 
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UNIFORM LAW FOR BRIDGES 

L e m m a 1.2 (a) Yt has exchangeable increments, (b) Xt has continuous sojourn 
distribution if and only if, in the representation (1.1), 

P ( u ^ S i ) = 1, where Si = {a ^ 0 } , 
52 = {infinitely many fij ^ 0} , and 
53 = {only finitely many ^ 0 and ^2 ^ a } (here we define an empty sum 

finite 
to equal 0). 

Remark. In the representation (1.1) for Yt, we have a = 0. 

Proof, (a) More generally, for each n let fx(xi,..., a : n ) , . . . , fm(x\,..., xn) be Bn/B— 

measurable functions. Then the joint law of {ft (X ( £ ) , X ( £ ) - X (£)),...<w<x̂ $ùù,w<<xxx 

X i1^)» 1 < J < m } is invariant under permutat ion of the n increments. Since 

Y (£) ~ Y ( ^ ) = ~ E ( * ( £ ) X (£) - X (£)),..., X (£) - X (£)),..., exchangeability for y follows as a 
<w 

consequence 

Turning to (b), which is much less obvious, let us first examine the set S = {only 
finitely many ^ 0 and a = 0} . Since there are only countably many finite 

subsets of j , it is seen tha t 5 is measurable. Now on the subset S fl <w< a 

we have Y = 

<w 
X (£) - X ( the sum being finite, which is a random step function. 

Obviously it does not have continuous sojourn distribution. On the other hand, over 

sn 
3 

X (£) - X ( we have a step function plus the line t a -
j 

<x The sojourn 

t ime at x is t ha t of 
7 

fyl (t - tj) on the line -t a 

3 

x< I + x, 0 < t < 1, which 

includes at most one point in each step of the former. Hence it is of Lebesque measure 
0, and we have proved (b) in the case ft = 5 , or more generally on the set S. 

For the general case, we need to distinguish between fixed and mobile discontinui­
ties of S(x, Y). By definition, a: is a fixed discontinuity if E(S(x, Y) — 5(x—, Y)) > 0, 
while x is a mobile discontinuity at w € ft if S(x,Y(w))x<— S(x—,Y(w))<x<> 0 
but E(S(x,Y)<x- S(x-,Y))<<= 0. We will first show tha t , if P ( ^ = 1 S ' i ) < x < = 1, 
S(x1Y) has no fixed discontinuities. By Fubini's Theorem, E(S(x,Y<x<— S(x—,F)) = 
E JQ I{xy(Ys)ds = JQ(FY (X, S) - i*V ( x - , s))d$, where F y ( x , 5) is the marginal distri­
bution function of Y(s). Hence it suffices to show tha t the marginal distributions are 
continuous. Since BQ(s) is independent of the other variables and continuously distri­
buted, the conditional marginal distributions, given a ^ 0 and the other variables, are 
continuous, hence their expectation over the other variables is also continuous. Thus 
the expectations are continuous over {a / 0} , i.e. there are no fixed discontinuities 
over this set. Now on {a = 0} we have infinitely many # ^ 0, hence it now suffices 
to t rea t the case P{infinitely many /?» ^ 0} = 1. We use the observation tha t for 
any two distribution functions F and G, if * denotes convolution and Ax denotes 
the j u m p at x (possibly 0), then s u p A x ( F * G) = sup J(Ax-yG)dFyw<<< supAxG. 

X X X 
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Thus the maximum jump size is reduced through convolution, and by conditi­
oning on the sequence Pj it suffices to show that the marginal distributions of 
oo 
^2Pj(l(t — tj) — t) are continuous when Pj are constants with < oo. To this 
i=i j 
effect, since the tj are independent, it is enough to find a subsequence jn —» oo such 

that lim max PI J2 X (£) - X (£)),..., "~ *jn) ~" 0 = x\ = 0. A single term ftl(* — tj) has a 
771 00 * ln=l J 

law with jumps (= point masses) of size t at Pj(l — t), and of size 1 — t at — 
The sum of n such terms has jumps at the 2n possible sums of these points, which 
may not be distinct. However, they become distinct if we choose only jn such that 

00 
(t V (1 - t)) X) \Pjk I < (* A (! _ *))l#7« I- Then a sum of JumP positions of index 

k=n+l 
jk,k > n + 1 cannot equal the separation in the jump position of two sums of size 
n which differ only at the nth term. Such a sequence jn is easily constructed by 
induction on n. Beginning with a fixed subsequence, also denoted Pnd1 0) such that 
J2Pn < 00 we set Pj1 = Pi and, having chosen the further subsequence (Pj{,..., Pjn) 
n 

we let jn+i > jn be any index for which 

( * v ( l - * ) ) 
00 

w<c< 
| A | < ( * A ( l - t ) ) | / ? i . | . 

Then clearly a sum Pjk(l(t ~ tjk) ~ *) ^ °^ 2n jump points distinct, and 
k=l 

hence its maximum jump (point mass) is (t V (1 — t))n. Since this tends to 0, the 
proof of absence of fixed sojourn discontinuities is complete. 

It remains to consider the mobile discontinuities. For 0 < a < b < 1, let J = (a, 6); 
Sj(x) = /a61(-.ootx](Xs)ds is the sojourn distribution of X in the interval J. We 
assume, in accordance with the case at hand, that P{a ^ 0 or infinitely many 
Pj ^ 0} = 1. We now consider the conditional law of Xa+t — Xai 0 < t < b — a, 
given the processes (X3,s < a) and (X81b < s < 1). Slightly redundantly, we also 

. f 0; t- G / 
treat as given BQ(b) - BQ(a) and the sequence (tjlj, 1 < j) where Ij — < . 

I 1) £7 ? •* 
It is not hard to see that this amounts to being given a countable number of random 
variables, so the conditional joint distributions of Xa+t — Xa are well-defined (P-
a.s.) on the space J5[a, b], and extend to a conditional probability on the coordinate 
cr-field. We claim that this conditional process again has exchangeable increments, 
P-a.s. (i.e. Xa+(6_a)t - Xa does so, as a process on D[0, 1]). Indeed, even given a, 
a, and (Pj, 1 < j) as well as the other assumed data, the tj for which Ij = 0 are 
conditionally independent and uniformly distributed on (a, b). Actually, it is not hard 
to see that the Pj with Ij = 1 are already given, along with X and the corresponding 
tj, i.e. the jumps of X outside of / are all given, and consequently so is a and the 
quadratic variation coefficient a, and consequently B0(s) is also determined outside 
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UNIFORM LAW FOR BRIDGES 

of I . Now inside J we can write 

( 1 . 2 ) 

Xa+t - Xa = ( a + a(BQ(b) - BQ(a)))t 

+ a(B0(a + 1 ) - £0(a ) - (B0(6) - B0(a)t) 

tj€l 
Pj(l(a +t - tj) - *), 0<t<\b-a 

where the second term on the right is a times a conditional Brownian bridge and the 
tj are conditionally uniform on (a, b) and independent of the former. Then, when we 
give to the Pj such tha t tj G / the conditional distribution given all of (tjlj, 1 < j ) , the 
process (X8, s $ J ) , and BQ(b) - B0(a), we see tha t ( 1 . 2 ) becomes a representation 
( 1 . 1 ) for a process with exchangeable increments on ( 0 , b — a) , conditional on the 
given quantit ies, P-a.s . Furthermore our hypothesis, tha t either a ^ 0 or infinitely 
many Pj ^ 0 , also holds for the conditional process, P-a.s. Indeed, a is the same 
for both , and it is clear tha t infinitely many Pj ^ 0 implies, P-a.s. , infinitely many 
Pj 0 with corresponding tj G / . Consequently, by what was already shown, the 
conditional process with probability 1 has no fixed sojourn discontinuities. 

Now fix n and let I(k) = X (£)w<<<<c - X (£)),..., Setting / = I(k), the sojourn processes 
5 /y ) ( r r ) , 1 < j ^ k < n , are all given along with the process (Xt> t $ h)- Hence their 
discontinuities are also given, and at most denumerable in number. Hence it follows 
tha t , P-a .s . for the conditional distribution of 57(fc)(x), there are no discontinuities 
at any values of x where Sj^)(x) is discontinuous for some j ^ k. It is easy to see 
t ha t the event tha t any two Sj^(x) and Sj(*.)(%) have a discontinuity at the same 
x is measurable; indeed, it is Ufl {some and Sj^) both have a discontinuity of 

size at least iV"1 in some interval ((/ — l j m " 1 , / m - 1 ) , —oo < I < oo}. Consequently, 
since the conditional probability of any jump shared by S/(fc) is 0 , this is a null event. 

n 
On the other hand, S(x) = Yl ^i(j)(x)^ and each Si(j)(x) can have jumps of size at 

i=i 
most n - 1 . Since they have no jumps in common, S(x) also has j u m p size limited by 
n - 1 . Lett ing n —• oo, the absence of mobile discontinuities is proved. 

We can now s ta te and prove 
T h e o r e m 1 . 3 ( a ) . Let Xt have exchangeable increments on D [ 0 , 1 ] , XQ = 0 , and let 
Yt = Xt - tX\. Then 5 ( 0 , Y) is uniformly distributed on (0, 1 ) if and only if in 
a representation (1.1) for X,P{a = 0 and there are only finitely many PJ ^ 0 and 

0 = 
finite 

& } = o, where 
null 

pj = 0 . 

Proof. To obtain a representation ( 1 . 1 ) of Yt, we simply set a = 0 in tha t of Xt. 
Hence by Lemma 1.2.(b) the condition is necessary and sufficient for Yt to have 
continuous sojourn distribution. Now assuming this condition, let U be adjoined to 

as a uniformly distributed random variable entirely independent of X (by product 
space construction, for example). We claim tha t Y((t + C/)modl) - Y(U), 0 < t < 1 , 
has the same law as Y(t) on jD[0, 1 ] . Indeed, this is t rue even if U is given, say 
U = to. To prove this it suffices to take to = fc/n, since by right-continuity of 
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path we can obtain the general case from this by letting ~ ~> ¿0+. Similarly, by 

writing £ = for large N, we see that it is enough to prove that the joint law 

of y ( i ) , 1 < j < n, is the same as that of Y(&±& modi) - F ( £ ) , 1 < j < n. 

Now the map a : Y(i) —• y(i£±zl modi), 1 < j < n, induces a map of increments 

Y(n) ~~ Y(^p-)j 1 < j < n, which is in fact a cyclic permutation. Since Yt has 
exchangeable increments, this map preserves the joint distribution of the increments. 
On the other hand, each Y(i) is a sum from 1 to j of these increments, and, thanks 

to the fact that Y(0) = Y(l) = 0, ^ ( i ^ m o d l ) - Y(±) is simply the corresponding 
sum of the images of these increments by a. It follows just as in the proof of Lemma 
1.2 (a) that the joint law of Y(i) is also preserved, proving the sufficiency of the 
condition. 

Conversely, suppose that Pia = 0 and 0 = 
finite 

0j} > 0, so that there is positive 

probability that Yt is a random step function n 

x<c 
X (£) - X (£ or identically 0. Let us 

order the so that /?i < #2 < • • • < /3n. Clearly the new tj remain independent and 
uniform on (0, 1). But then, on the further subset {ti < ¿2 < — < *n}> which has 
non-zero probability, we have Yt < 0 for all t. Indeed, either /?i = 02 = • • • = Pn = 0, 

k 
or 0 > In the second case, let k = min{k < n : Y^Pj > 0}, or 0 if the set is empty. 

1 
Then if k ^ 0 we have /3% > 0, and hence Y(l) > 0 since the subsequent /J/s are all at 
least This contradiction implies that the law of 5(0, Y) has an atom at 1, hence 
it is not uniform, as asserted. 

Let us note, finally, the 

Theorem 1.3(b). Suppose that Y in Theorem 1.3(a) has unique location of supre-
mum. Then AM(Y) is uniformly distributed on (0, 1). 

Proof. This follows from Lemma 1.1(b) in the same way as Theorem 1.3(a) followed 
from Lemma 1.1(a). 

We turn now to the extension of Sparre-Andersen's result, mentioned in the 
introduction. 

Theorem 1.4*. Let Xt have exchangeable increments on -D[0,1], XQ = 0, and let 
LAMX = inf{* : Xt-VXt = maxt{Xt_VXt}}, i.e. the first location of the maximum. 
Then LAMX has the same law as 1 - 5(0, X). 

Proof. Let Xn(t) = X{k2~n), (ik - l)2~n < t < Jb2"n, 1 < k < 2n, 1 < n. Then 
Xn(k2-n) = £j=o(*nO '2-n) - Xn((j - l)2~n)), for each n is an exchangeable 2n-
tuple of random variables. Hence by Sparre-Andersen's theorem (see Feller, loc. sit., 
Theorem 2) we have 

(1.3) LAMXn = l-S(0,Xn). 

Let us assume, for the moment, that 5 ( 0 - , X) — 5(0, X) P-a.s., i.e. E J0 I{0y(X,)ds = 
0, and that X has an a.s. unique maximum at AMX. Then since limn_+oc, Xn = X 
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UNIFORM LAW FOR BRIDGES 

for all (*,w), and hence limn_>ooI(0 iOO)(Xn(t)) = I(0tOO)(X(t)) on {X(t) ^ 0}, by do­
minated convergence we have limn_>oo 5(0, Xn) = 5(0, X), P-a.s. On the other hand, 
it is clear that limn-+00(Xn(LAMXn-)<x<VXn(LAMXn))<<x = MX (= maxt(Xt- VX t ) ) , 
and since AMX is unique it follows that limn_Kx> LAMXn = AMX. Hence by (1.3) 
we obtain the result in this case. 

Turning to the general case, we will replace X(t) by X(e,6,t) = X(t) + eB(t) -
6t, where B(t) is an independent Brownian motion adjoined to the probability 
space (product construction if necessary) and c, 6 are positive constants. This 
process has exchangeable increments, and it will be seen to satisfy our two extra 
assumptions. Indeed, by Lemma 1.2 it has continuous sojourn distribution. As to 
the uniqueness of AM(X(e,6,t))y if not there would be rationals 0 < r\ < r 2 < 1 
with P{sup t < r i X(€,6,t)< = sup t > r 2 X(e,6,t)}<x>< 0. Denoting these suprema by 
Mi and M 2 , respectively, let us suppose given X(t), t < 1, along with B(t), 
t < r i , and also B(t) — Bfo), T2 < t < 1. Then Mi is given, and M2 = 
X ( e , 5 , r i ) + X ( r 2 ) ^ X ( n ) - ( 5 ( r 2 - r i ) + s u p t > r 2 X ( 6 , 6 , t ) - X ( e , X (£) cvw< 6,r2)+e(B(r2)wcb<-B(ri))x<w, 
where all terms on the right are given except the last, which is independent. Clearly 
the conditional probability is 0 that Mi = M 2 , hence the same holds unconditionally. 
Thus, by the previous argument, we have 

(1.4) AMX(e, 6, •) = 1 - S(0, X(e, 6, •)). 

We now pick a sequence —• 0, 6k —• 0, such that 6k6k

 1 —• 0. Then denoting 
Xk = X(ek,6k, •) we have, since Xk —» X uniformly on [0,1], 

lim \X(AMXk)<x- X(LAMX)\ <x< 
k—HX> 

(1.5) < Urn \X k{AMX k)<< - X(LAMX)<\ + lim \X(AMXk) - X(AMXk)<x\ 

= 0, P-a.s 

On the other hand, we note that 

Xk(t) - X(t) - (e kB(LAMX)<x - 6 k(LAMX))<x< 
= e k(B(t<< - B(LAMX))<x<x - 6k(t - LAMX) 
< -2e*(max|B|)w 

provided that t > LAMX + 4ek6k

 1 max* \B\. For such t, then, we have 

Xk(t) < X(t) - ek max \B\ - 6 k(LAMX)<< 

< X(LAMX)< - ek max |B| - Sk(LAMX). 

But for t — AMXk, we have 

Xk(AMXk) > Xk(LAMX)x< 
> X(LAMX)w< - ek max\<B\ <- 6k(LAMX), 
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whence it follows that 

(1.6) AMXk < LAMX + tekS^1 max\B\. 

Since ekS^1 —• 0, it follows from (1.5) and (1.6) that lim^oo AMXk = LAMX, 
P-a.s. 

Finally, since we have Xk < X uniformly in £ < t < 1 for large k > K(n, w), while 
Xk —• X uniformly in t, we see that lim^oo 5(0, X*) = 5(0, A"), and by (1.4) the 
proof of Theorem 1.4* is complete. 

We have next the following 

Corollary 1.4*. With X as before, S(x,X) is continuous at x = 0, P-a.s., if and 
only if X has unique location of the supremum. 

Proof. Let us set RAM(X) = max{s : X(s-) V X(s) = supt X}. We introduce the 
process X(i_t)- — -Xi, which has exchangeable increments and starts at 0. Moreover, 
this process is identical in law to — Xt, 0 < t < 1. To see this, we can apply the 
mapping t <-• 1 — t on [0,1], and note that this permutes the increments of Xt into 
thosexw<<x<x — Xi but reverses order of the endpoints. Multiplying by —1 rives the 
result. Now we have 

RAM(X) = 1 - LAM(X(i_4)- - Xi) 

£ S ( 0 , X ( 1 _ t , _ - X i ) 

= S ( 0 , - X ) 
= 1 - 5 ( 0 - , * ) . 

Thus we have, by Theorem 1.4 again, 

E(S(0,X) - 5 ( 0 - , X)) = E(l - 5 ( 0 - , X) - (1 - 5(0, X))) 
= £( iL4MX - LAMX), 

which completes the proof. 

In the special case that A" is a bridge (i.e. a = 0 in (1.1)), we can complete 
Theorem 1.3 as follows. 

Theorem 1.5*. For an exchangeable bridge the following are equivalent (we omit 
P-a.s. in (b)-(d)). 

(a) 5(0, X) is uniformly distributed. 
(b) 5(x, X) is continuous. 
(c) 5(x, X) is continuous at 0. 
(d) X has a unique supremum (at AMX). 
(e) LAMX is uniformly distributed. 
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Proof. The proof of the converse in Theorem 1.3(a) shows that if (a) fails then so does 
(c), while Lemma 1.2(b) in conjunction with Theorem 1.3(a) show that (a) and (b) 
are equivalent. Since (b) trivially implies (c), (a)-(c) are equivalent. Now (c) and (d) 
are equivalent by Corollary 1.4*, and (d) implies (e) by Theorem 1.3(b), since under 
(d) we have LAM X = AMX. Finally, (e) is equivalent to (a)-(c) by Theorem 1.4*, 
so (e) imples (d) and the argument is complete. 

Section 2. The case of Levy processes and Levy bridges. 
We first specialize to the case that Xt is a measurable process with homogeneous, 

independent increments, also called a Levy process. Then its log characteristic 
function may be written in P. Levy's form as 

log25 exp(iuXt) = tip(u) 
(2.1) 

= t[iu~f — a2 I 
2 

eiux _ 1 iux 
L + x2 )G(dx)]i 

where the Levy measure G(dx) satisfies G{0} = 0 and / ( 1 A x2)G(dx) < oo. 
Conversely, any real 7, a2 > 0, and such G, determine a unique Levy process as 
coordinate process on D[0, 1], and this process determines them uniquely, (see M. 
Loeve, [9; Sec. 22 C and Sec 23, Ex. 9]). 

Such a process Xt has exchangeable increments as in Section 1. We have indeed 

Theorem 2.1(a). The necessary and sufficient condition, with Xt as in (2.1), to 
have 5(0, Y) uniform on (0, 1 ) is that either a ^ 0 or G(R) = 00. 

Proof. It is clear that a in (2.1) equals the a of (1.1), which is therefore constant 
in the present situation. Thus by Theorem 1.3, a ^ 0 suffices for 5(0, Y) to be 
uniform. Similarly, by writing Xt as the sum of a compound Poisson process with 
intensity (Levy) measure I^x\>€)(x)G(dx)t and an independent process, for e > 0, we 
see that /jX|>6 G(dx) is a lower bound for the Poisson intensity of the jumps. Thus 
if G(R) = 00 there are infinitely many jumps, so P-a.s. infinitely many (3j ̂  0 occur, 
and 5(0, Y) is uniform by Theorem 1.3(a). 

Conversely, if a = 0 and G(R) < 00, then the process X* is simply a compound 
Poisson process (possibly of rate 0) plus a uniform translation at rate (7 — X I-Pi2 dG). 

By Theorem 1.3(a), 5(0, Y) is not uniform unless P 0 = 
finite 

ft = 0. But, with 

probability exp(—G(R)), this is an empty sum. Hence, 5(0, Y) has an atom at 1 and 
cannot be uniform, completing the proof. 

Turning to the law of AM(Y), we have 

Lemma 2.1. (a) IfG(R) < 00 and (7 = 0, then Y does not have a unique supremum. 
(b) IfG(R) = 00 or a ^ 0, then Y has a unique supremum. 

Remark*. This also follows from Corollary 1.4*. 

Proof, (a) This is clear since X is a compound Poisson process, and Y vanishes 
identically with positive probability. 
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(b) (We are indebted to Bruce Hajek for the following argument). If AM(Y(w)) 
is not unique, then there are rational intervals (riyr2) and fa^4), r2 <r3j such that 
Si = sup Y3 = sup Ya = 52, so it is enough to prove this has probability 0. We 

ri<8<r2 rz<8<r4 
consider the two sides as a function of Xfo) — X(r2), with Xt, t < r2l and Xt — Xr31 
t > r3, as given. Then 5X = sup [Xs-s(X(r2)+X(l)-X(r3))-s(X(r3)-X(r2))], 

n<«<r2 
where the first two terms on the right are given while the last is independent and has 
a continuous distribution. Analogously, S2 = sup [(Xs — Xr3 + XT2) — s(X(r2) + 
X(l)-X(r3))+(l-8)(X(r3)-X(r2))]. WeseelhatSi is decreasing in X(r3)-X(r2), 
while S2 is increasing. Consequently there is conditional probability 0 that they are 
equal, so the result is proved. 

We now have immediately, by Lemma l.l.(b), 

Theorem 2.1.(b). AM(Y) is uniformly distributed if and only if G(R) = 00 or 
wx<<x 

In his original work, P. Levy showed that if Bt is Brownian motion then the process 
Yt = Bt — tB\ is independent of B\, hence we are justified in considering the law of 
Yt as that of Bt conditioned by {B\ = 0} (or, indeed, that of Bt — ta conditioned by 
{Si = a } , for any a) . When we seek to generalize the idea of this conditional process 
to a general Levy process, the first obstacle is that X\ is not in general independent 
of Yt. Indeed, we have 

Theorem 2.2. The random variable X^ — | is independent of X\ if and only if 
G = 0, i.e. the process is Gaussian. 

Proof. If G = 0, the process has the form Xt = 7t + aBt for a Brownian motion Bt 
(or else (7 = 0). Then Xt — tX\ = a(Bt — tB\), and the asserted independence follows 
by Levy's result. 

Conversely, suppose for fixed t < 1 that Xt — tX\ and X\ are independent (we will 
later take t = h). Then from (2.1) we have 

(2.2) 

logEexpi(a(Xt -tXi) + ßXx) 

= log£exp»a(( l - t)Xt + t{Xt -Xt)) + 1>{ß) 

=*tf(a(l - *)) + (1 - tW-at) + i>{ß). 

On the other hand, (2.2) can also be expressed as 

(2.3) 
logEexptfO? + q(1 - t))Xt + (ß- at)(Xi - Xt)] 

=tip(ß + a(l -1)) + (1 - t)ip(ß - at) 

Now specializing to t = | , setting (2.2) = (2.3) gives us 

(2.4) 
1 

2 
•ib 

a 
'2 

+ 
1 
<w 

< 
a 

2 
+ 4>(ß) = 

l 
2 

*(ß 
x< 

2' 
<x 

1 

1T 
<x<< 

a, 

2' 
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We will specialize further in two ways. First, taking a = /3 gives il>{-£-) + 2ip(a) = 
-0(|a), which implies that 

(2.5) |exp^ <w 
2 

exp2^(a)| = |exp 
.3 
2̂ <xw< 

where |exp^(^)|2 is the (symmetrized) characteristic function of X\ — X[, with X[ 
and X\ i.i.d. Letting Y*, i = 1,2,3, denote 3 independent such variables, this implies 
the identity in law 

(2.6) Fx+ 2(y2 + y3) = 3Fi. 

Since we already know that this holds when X\ is Gaussian, we assume a = 7 = 0, 
and writing G {dx) = G(dx) + G(-d:r) for the Levy measure of Y\ we obtain from 
(2.6) by the uniqueness of the L6vy representation 

(2.7) G*(a,b] + 2G' a 
2 
9 
2J 

< <x 
v3 

6, 
3J' 

0 < a < 6. 

This equation does have solutions-for example dG*x^ = c|x|~(1+/n2/Zn3) dx, yielding 
a symmetric stable process. However, we return to (2.4) and now set f = /?. Then, 
in the same way as (2.5)-(2.7) we obtain 

(2.8) 3V>i a 
2' f tb - a , 

2 <x< . a 
2 

and with Y{, 1 < i < 4, as before this yields 4 
i=l 

Yi = 3Yi, and hence 

(2.9) G*(o,6] =4_1G* < 
<x 

<x 
< 0 < a < 6. 

Combining (2.7) and (2.9) gives 

2.10) G*(a,b] 2 
3 
•cr a 

< 
6, 

'2J-
By iteration, (2.9) and (2.10) give respectively 

G*(a,oo) = 4-nG*(3-no,oo) 
(2.11) 

< 
2 

< 
mG*(2-ma,oo), for all integers n, m > 0. 

Since G*(a, oo) is monotone, this requires that 3"n < 2~m hold whenever 4~n < (|)m, 
unless G* = 0. For n = 2, m = 4 this breaks down, so we have G* = 0, and hence 
G = 0 as was to be shown. 

In view of Theorem 2.2, one cannot make any obvious sense out of X, conditioned 
by X\ = 0 without supplementary hypothesis, even if P{—e < X\ < e} > 0 for every 
€. On the other hand, if P{X\ = 0} > 0, there is no difficulty. We therefore treat 
this case first. 
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Theorem 2.3(a), If Xt is a Livy process and P(X\ = 0) > 0, we define the "L6vy 
bridge" X° to be (any) process with paths in D[0,1] having the conditional law of 
(Xt\Xi = 0). Then X° has exchangeable increments, and its positive sojourn 5(0, X°) 
is uniformly distributed if and only if in the representation (2.1), 7 — / j^jdG ^ 0 
(we note that P(X\ = 0) > 0 already implies a = 0 and G(R) < 00, so we need 
a compound Poisson process with non-zero drift; conversely, a compound Poisson 
process with zero drift satisfies P(X\ = 0) > 0 but 5(0, X°) is not uniformly 
distributed) 

Proof. It is clear that X° has exchangeable increments and X° = 0. Hence, in the 
notation of Theorem 1.3, A? = Xt° - tX? = Yt°, and the condition that 5(0, X°) 
be uniform is P{0 = X (£) - X (£)),..., = 0. However, by the definition of X° we have 
7 + ( £ & ) - / jfeG(dx) = 0, i.e. £ & = 7 - / j^G(dx) as asserted. 

The corresponding result about AM(X°) is 

Theorem 2 .3(b) . If Xt is a Levy process and P{XX = 0} > 0, then AM(X°) is 
unique and uniformly distributed on (0, 1) if and only if, in (2.1), 7 — / jf^G(dx) ^ 

u. 

Remark*. This also follows, of course, by Corollary 1.4*. 

Proof. We need only show that this condition is necessary and sufficient for X° to 
have unique location of supremum. Since a = 0 and G(R) < 00, we have a compound 
Poisson process with drift. If the drift is 0, the process will vanish identically with 
positive probability. Hence the condition is clearly necessary. Conversely, if the drift 
is non- zero, the paths of the process have the form of a step function plus a fixed line 
It, 1^0. Suppose that the number of steps, say n, is given along with the ordered 
sizes of the jumps say s\ < s2 < • • • < sn. Then the corresponding times ¿ 1 , . . . , tn 
of the jumps are independent and uniform on (0, 1). Clearly any point t at which 
A"t°_ V X° = supAv must be in the set {0,*i,. . . ,£n>l}- Indeed, it is not hard to 

see that 0 and 1 are excluded, i.e. sup X?>0 (note that there must be at least one 

jump). The right and left limit values at tk are 
wc< 

Sj — Itk and 
tj<tk 

Sj 

respectively. These sums are all in a fixed finite set, while the Itk axe uniform and 
independent. Clearly no two coincide. 

We turn to defining X° when P(X\ = 0) = 0. It is not hard to recognize that if 
G(R) < 00 and a = 0 the definition may be quite problematical; indeed, even for G 
concentrated at 2 points and P{-c < X\ < c} > 0 for every e > 0, conditioning by 
{—e < X\ < e} as e —• 0 may lead to a process with infinitely many jumps of size 
bounded away from 0, in such a way that a limit process does not exist. Accordingly, 
we consider only the case that either a > 0 or G(R) = 00. Everything works smoothly 
if, when a = 0, we strengthen G(R) = 00 to Hypothesis (C) of Kallenberg [7], namely 

Hypothesis (C). Fort > 0, / ^ o e x p ( ^ ( ^ ) ) d ^ exists, i.e. the Fourier transform of 
the law of X* is in L\. 
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This implies L2, hence the law of Xt has a density and P{X\ = 0} = 0. It 
always holds if a > 0, and, as argued in [7, §5/, it is only "slightly" stronger than 
G(R) = 00. Setting v(u) = a2 + j2ux2dG(x), indeed, Hypothesis (C) holds whenever 
\imu~2\\ogu\~lv{u) = 00, whereas a > 0 or G(R) = 00 holds if lim sup u~2u(u) = 

00, and G(R) < 00 if limu~2\logu\rv(u) = 0 for some r\> 1 (see [7, §5/,). Let us 
u—tO 

ven/y an assertion of [7], as 
Lemma 2.4. Under Hypothesis (C), the law of Xt has a density p(t,x) continuous 
in (t, x) for t > c > 0. 

Proof Let ft(u) = exp(ti/)(u)) denote the Fourier transform. It is well-known (see [9, 
12.1. Corollary!) that for each t > 0, there exists the continuous inverse transform 
p(^x) = (27r)-1 >oc 

J-00v 
e utxfT(U)DUJ which is a density for the law of Xt* Now we have 

\ft{u)\ = e x p - * <cv< 
2 / ( 1 — costt#)dC?(.r)), which is integrable in u by hypothesis, 

and monotone, continuous in t. Since we have 

\p(t1x2)-p(t1x1)\<(2w)-1 |1 - exp -u(x2 - xi)\\ft(u)\du, 

with integrand dominated by 2|/€(w)| for t > c, we see by dominated convergence 
that pit, x) is uniformly continuous in x, uniformly in £ > e. On the other hand, for 
e < t\ < t2 we have 

b ( ^ 2 , r r ) - ^ 1 , x ) | < ( 2 7 r ) - 1 \ft2(u) - fti(u)\du, 

which tends to 0 as t2 —* ¿1 uniformly in x. Hence Lemma 2.4 follows. 

We now introduce the law of Xt given X\ = x. Let ^ = cr(Xu, u < s), augmented 
by all P-nullsets. 

Definition 2.5. For x such that p(l,x) > 0, and A G T8, s < 1, we set 
P(A|Xx = x) = £(p( l - 5,x - XJ) ; I4)p-1( l ,x) . 

Since, by Lemma 2.4, we have l i m ^ e ) 1 f*** p(l — s,y—X8)dy = p(l — s, x—Xa) 

uniformly on the probability space, it is easy to see that, for every A G T9, we have 

(2.12) P{A\Xx=x) = lim 
e-+0+ 

P(J4|X - e < Xi < x + e). 

Indeed, by a Theorem of Vitali, Hahn, and Saks the convergence is uniform in A, 
and the limit is (clearly) a probability on TB, consistent in s for s < 1 by Chapman-
Kolmogorov equation. 

We next specialize to x = 0 in 

Lemma 2.6. 7/p(l,0) > 0, let P°(A) = P(A\XX = 0), A G ̂ , 5 < 1. Then P°(A) 
extends from Va<iFa to T\- uniquely, and P°{X\-. = 0} = 1. Under P°(A), the 
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process (set = 0 at t = 1) has paths in J0[0,1], P°-a.s., and it is an inhomogeneous 
Markov process with transition density 

w<p0t2 ,y )=p( t2 - t1 , yw<-x)p( l - t2 j -yx<^$)p , :<wl ( l - t i0<w<tx <t2 < 1, 

where we interpret § = 0 

Remark. This Lemma is also proved, by somewhat different methods, in [4]. The 
hypotheses of [4] are considerably more general than ours, and the reader may refer 
to [4] for more details. However, we still need Hypothesis (C) below for Theorems 
2.7 and 2.8, because of its consequence (2.12), which does not hold under the general 
hypothesis of [4]. 

Another Remark. After completion of this paper, we received the manuscript [15] 
of Fitzsimmons and Getoor, which proves Theorem 2.7 below in the setting of [4] 
restricted to L6vy processes. We then observed that our method also may be extended 
to that case. We have only to replace our uses of (2.12), which is employed to show 
that for A G Pis with P(A) = 1 one has also P°(A) = 1, by Definition 2.5, which 
gives the same implication. 

Proof. The marginal density of Xt for P° is p(t,x)p(l - t, — x)p"1(li0) for t < 1. 
Indeed, this follows from the definition of P° by taking A = {Xt < x) and 
differentiating in x (with s = t). Prom this, a routine Markov property of Xt, verifies 
the last assertion for t < 1 — c, c > 0. It remains to examine the behavior at t = 1. 
Noting that the marginal densities are invariant under the transformation t +-*> 1 — t 
and x — x, it follows by routine but rather tedious computation using the time-
reversed transition density, that under P° the processes Xt and — X(i_t)- have the 
same joint law for e < t < 1—c, c > 0. Since the law of Xt under P0 is also well-defined 
for 0 < t < c, with Xo+ = 0, we can consistently define its law for i — e < £ < 1 as that 
of —-Y(i_t)_, 1 — c < t < 1. Indeed, this gives a consistent family of joint distribution 
functions on 0 < t < 1, with Xi = 0. The fact that Xo+ = 0, and the equivalence in 
law Xt <-+ -Xf i_ tw assures us that limX* = 0, P-a.s., so the Kolmogorov extension 

v ' t->i 
of the joint law is carried by D [0, 1], with Xi_ = X\ = 0. This completes the 
definition of P° , and finishes the Lemma. 

Theorem 2.7. Assuming Hypothesis (C) and p(l ,0) > 0, let X°(t) denote any 
realization of the process Xt for P° of Lemma 2.6, having paths in D [0, 1]. We 
call X°(t) a "Levy bridge" (from 0 to 0) corresponding to the Levy process Xt. The 
positive sojourn 5(0, X°) is uniformly distributed on (0, 1). 

Proof For c > 0, the conditional law of Xt given {—e < X\ < c} is that of a 
process with exchangeable increments, since X\ is invariant under permutation of 
increments. Letting e 0+, and using the fact that P°(A) = l\m^P(A\-€ < Xi < c) 

(as in (2.12)), we see that X° has exchangeable increments. Let 5 = {elements in 
¿[0,1] having infinitely many jumps}. Then {X^ € 5} G T\\ indeed it suffices 
that X (£) - X (£)),..., £ 5} G Tu and this can be written (Jiv^msuPn~>oo{^() ls continuous 
in ((k - l)n~x,(k + l)n_1) for all but at most N values of k < n} , so it suffices 
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thatwx<cccc is continuous in ((& - l j n " "1 ,^ + ljn""1)} G T\, which is clear. Now 
either P\X^ G 5} = 0 or P{X(.) G 5} = 1, and either probability is unchanged for 
P{X(.) e Ss\ — e < Xt < c} where Ss = {infinitely many jumps in 0 < t < 1 — £}, 
6 < 1. Letting As = X (£) - X (£)),..., G 5$}, and letting c —• 0, it follows that this 
probability is also the same for P°. Thus, if P{X^ G 5} = 1, then, noting that 
X°(t) = X°(t) - tX°{l) = y°( t ) , 5(0, X°) is uniform by Theorem 1.3. On the other 
hand, if P{X(.) G S) = 0, then (7 > 0 by Hypothesis (C) (since G(R) < oo). Let 
S = {elements in D [0, 1] having infinite variation}fl5c. Then it is not hard to see 
that, again, {X^ G S} G T\. Since P{X(.) G 5} = 1, it follows as before that 
P°{Xfo G S} = 1. Therefore, in a representation (1.1) of A*t°, since there are only 
finitely many ^ 0, we must have a > 0, P-a.s. Again by Theorem 1.3, 5(0, X°) is 
uniformly distributed on (0, 1), as asserted. 

We conclude with the result about AM(X°). 

Theorem 2.8. Assuming Hypothesis (C) and p(l ,0) > 0, AM(X°) is uniformly 
distributed on (0,1) 

Proof We need only show the uniqueness of supremum (or apply Corollary 1.4*). Let 
Ss = {paths in Z)[0,1 — 6] having a unique supremum}. Then S& is measurable, and 
it follows as in Lemma 2.1(b) (somewhat simplified) that P(X(.) G Ss) = 1. Thus 
P(Xfo G S6) = limP(A'(.) e S6\-c< X(l) < e) = 1, and the proof is concluded by 
letting 6 —• 0. 
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