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The Function exp [-p Trace y/2Â\ 

as a Laplace Transform on Symmetric Matrices 

G. Letac 

Abstract. — This note shows that if p > 0 and if S+ is the set of symmetric positive definite 
matrices, then the function on S+ defined by A H-* exp (— Trace pV2A) is the Laplace transform 
of a non positive function concentrated on S+ if n > 2. This function is explicitely computed 
for n = 2. This computation is generalized to a Lorentz cone. The link of this question with 
the inverse Gaussian distributions in probability theory is also discussed, as well as the general 
problem of considering det L(A) as a Laplace transform on symmetric matrices when L(X) is 
a Laplace transform on the real line. 

§1. Introduction. For p > 0, define the stable probability distribution of order 1/2 
on R+ : 

lip(dx) = P 
'2TT 

x~ % exp i 
P2 

2x> 
%>,+oo)(#) dx (1.1) 

Then its Laplace transform, evaluated at A > 0, is : 

poo 

'0 
exp (-Ax) fip(dx) = exp (-pv2A) (1.2) 

(See e.g. Feller 1970, p. 436 (3.4)). 

Probability distributions (1.1) can be imbedded in the three parameter family 
of the so called "generalized inverse Gaussian distributions" defined for (a, 6, A) in 
(0, +oo) x [0, +oo) x R by 

»\,a,b(dx) = {K\(Vab)) a?b *xx 1 e x p - \ { a x + bx'1) l(0,+Oo)(^)dx (1.3), 

where K\ is a Bessel function (Watson 1966, p. 91). 
Probability distributions (1.3) have a natural extension to the space of symmetric 

(n,n) real matrices, which extends nicely the fact that (1.3) is the distribution of a 
random continued fraction whose coefficients are independent and gamma distributed 
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(see Letac and Seshadri 1983). This extension has been performed by E. Bernadac 
(1992) and even been made on general symmetric cones (see Bernadac 1993 and 1995). 
In this extension, the gamma distributions are replaced by the Wishart distributions 
on symmetric real matrices or on symmetric cones. 

However, in this extension, the particular role played by A = —1/2 when speci­
alizing (1.3) to (1.1) disappears, and although the extension of (1.3) to matrices is 
natural, extension of (1.1) is not. So one can look for an other path, and instead of 
trying to generalize (1.3), through for instance continued fractions, one can try to 
generalize (1.1) to symmetric matrices through (1.2). To describe what we have in 
mind, it is better to introduce a few definitions now. 

Let E be a Euclidean space with dimension n, and let 5 be the space of symmetric 
endomorphisms of E. We equip S also with a Euclidean structure through the scalar 
product on S 

(a, 6) 
1 

n 
Trace ab. 

If 7 C R, one denotes by S(I) the set of a in 5 with eigenvalues in 7; 5(7) is convex 
if 7 is an interval. For simplicity we write S+ = S((0,4-oo)) (resp. 5+ = S([0, +oo))) 
the cone of symmetric positive-definite (resp. positive) endomorphisms. Also, if e is a 
basis in E and a is in 5 , we write [a)e as its matrix in base e. 

Let / : 7 —• R be any function. Suppose that a is in S(I) and that e is an 
orthonormal basis which diagonalizes a, with [a]e = Diag(Ai, . . . , An). Then it is a 
standard exercise to show that f(a) in S defined by 

[ / ( a J l ^ Diag ^ A O , . . . , ^ ) ; f f g w s D C (1.4) 

actually does not depend on e. Thus / : S(I) *-> S is a well defined function. 
Furthermore, if 7 is an interval and if the derivative / ' exists on 7, then / is 
differentiate, and its differential (/),(a) on a, evaluated at the point h of 5 , is 
computed as follows : defining g : Ixl —• R by : 

g(\,\) = f'(\) and P ( A , M ) = ( ( / ( A ) - ( / ( M ) ) / ( A - M ) if A ^ M 

then, if e is an orthonormal basis with [a]e = Diag(Ai,. . . , An), we have 

[ ( / ) ' (o)W]. = (p(A.,Ai)fc«), for Me = ( M (1.5) 

The proof of (1.5) is a not so easy exercise in advanced calculus. 

From (1.5), one deduces two facts. Asume that I is an open interval, and consider 
the function 

a Trace/(a) 5(7) —> R (1.6) 

Then if / ' exists, the differential of (1.6) in a is (/')(<*), from (1.5) (Note that we 
identify S with its dual through the Euclidean structure of 5 , and the differential of 
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a real function on S can then be called a gradient). Furthermore, assume that / is 
convex on J. Then (1.6) will be convex on S(I) : to see this point, assume that / " 
exists. Then, for arbitrary u in S and a in 5(7) (which is an open convex subset of 
5) , there exists a > 0 such that the function 

( - a , a) • R 11—• F(t) = Trace f(a+tu) 

is well defined. With the help of (1.5) we compute 

F"(0) = Trace f"(a)u2 . 

Since / " > 0, then / " (a ) is in 5+, as well as uf"(a)u. Thus F"(0) > 0. This 
implies that (1.6) is convex. The case where / " does not exist is then treated by 
approximation. 

To come back to our initial problem, i.e. a suitable generalization of (1.1) through 
(1.2), we consider (1.6) when / is the logarithm of the Laplace transform L of some 
positive measure /xonR. Let us assume that for all A in the open interval I 

L(A) = exp/(A) = exp(-Aar) fi(dx) < oo (1.7) 

It is well known that / is convex on I. Thus, as we have seen, (1.6) is convex, and 
one can wonder if there exists a positive measure /2 on S such that for all a in S(I) 
one has 

Det L(a) = expTrace/(a) = 
JS 

exp (— Trace(ox)) jx{dx) (1.8) 

An instance for which it is true is the case I = K and /(A) = a2X2/2 : clearly /2 is 
a suitable Gaussian distribution on 5. An other instance for which it is almost true 
is the case where I = (0, +oo) and /(A) = — p Log A, where p > 0. Here (1.7) holds 
with 

fi(dx] 
MPLO 

T(P) 
!(0,+oo)(z)d£ . 

However fx defined by (1.8) will be positive if and only if 

p € { ! , ! , § , • • . , s y 1 } L l ( S f i , + o o ) 1.9) 

This result (1.9) is due to Gindikin (1975). It has been rediscovered again and 
again : see Casalis and Letac (1994) for references, and a short proof. 

We are now able to state the aim of this note : to study the existence of a positive 
/2 in (1.8) when J = (0,+oo) and /(A) = -pV^A (compare (1.2) and (1.7)). As we 
shall see (section 5) the answer is negative for n > 2, and we shall prove this by 
computing explicitely a signed measure /2 such that (1.8) holds when n = 2. Explicit 
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calculations for n > 3 seem hopeless. Section 2 is devoted to a general study of (1.8). 
Section 3 specializes to n = 2. Section 4 studies an integral equation that we meet 
by considering the case /(A) = —py/2X and a slight extension of the problem to the 
Lorentz cone, which appears in section 5. 

§2. Properties of /2 for general n. We keep the notations of the introduction; 
furthermore we denote by 0(E) and 0(5) the orthogonal groups of the Euclidean 
spaces E and 5 . There is a natural representation of 0(E) in 0 (5) defined as follows : 
if u is in 0(£7), then for all a in 5, gu(p) = uau"1 is in 5. 

Furthermore Trace (gu{o>))2 = Trace a2, thus gu is in 0 (5 ) . An argument of 
convexity shows easily that if u is in the subgroup 0+(i?) of rotations of 0(2£), 
then gu is in 0+ (5) too. Clearly gUigu = and u*-> gu defines an homomorphism 
from 0(E) to 0 (5 ) and from 0+(E) to 0+(5) . Note also that 

uau 1 = a for all n in 0+ (E) a G R . i d s (2.1) 
waii 1 = a for all a in 5 14 = ±idjs (2.2) 

Denote by G and C?+ the respective images of 0(E) and 0+ (I?) in 0 (5 ) by w gu. It 
is easy to see that a and 6 in 5 are in the same G+ orbit —thus in the same G orbit— 
if and only if their spectrum coincide. More precisely if Ai(a) < A2(a) < . . . < An(o) 
is the sequence of not necessarily distinct eigenvalues of a, then there exists u in 
0+(25) such that 6 = uau~x if and only if Xj(a) = Xj(b) j = 1 , . . . ,n . The necessary 
condition is clear; to prove the sufficient condition, if e and / are orthonormal basis 
of E such a(Sj) = \j(a)Sj and b(fj) = \j(b)fj then one takes u in 0+(I2) such that 
w(/j-) = e^. However, if such a w has determinant —1, one has to replace / i by —/i, 
still an eigenvector of 6. 

Assume now that J and /x are as in (1.7) and suppose that (1.8) holds with a signed 
measure ji. For u in 0(E) we have : 

Trace/(a) = Trace f(gu(o>)) 

Thus (1.8) becomes 

JS 
exp ( - Trace(ax)) Jx{dx) = expTrace/(a) = exp Trace f(gu(o>)) 

s 
exp ( -Trace (agu-i(x))) jl(dx) = / exp ( - Trace(ay)) fri(dy) 

? J s 

where fii(dy) is the image of /1 by x y = pv-i(x). 

Thus /i is invariant by G and G+. Now 5 is split by G+ in orbits and the set 
of these orbits is parametrized by the increasing sequence of the eigenvalues of any 
element of the orbit, i.e. by 

H = {heRn ; h1<h2<...<hn}. 
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Choosing an arbitrary orthonormal basis e of JE, one can say that, since p, is invariant 
by G+, there exists a signed measure v on H such that if dU denotes the Haar measure 
of mass 1 on the group O+ (n) of rotation matrices of order n, then fi(dx) is the image 
of v{dh) dU by the map 

(ft, (7)»—>x with l*]. = v 

hi 0 

KL h„ 

u-1. 

In (1.8), if Ai < . . . < An are the eigenvalues of a, we ge t : 

LL 
exp-(Xih + ... + \ntn) n(dh)... n(dtn) = exp (/(Ax) + . . . + /(A„)) 

MOL 
v{dh) 

RO+(n) EX B2S 
JK 0 

. 0 A, 

u 

HJK 0 

0 h„ 

U~l (2.3) 

and (2.3) shows that the image of v(dh)dU by (h,U) t-* (ti,...,tn) = diagonal of 
U(h01°n)U-1\Sn(dh)...n(dtn). 

The task of extracting v from this information seems rather difficult for n > 3. For 
n = 2, however, things are feasible : we have to find v(dhi,dfi2) such that the image 
of 

i/(dfti,d/i2) 
JK 

2TT 
on {he K2 ; hi < h2} x [0,2?r[ 

by (ft, 0) *-+ {h, t2) = (fti cos2 + ft2 sin2 0, hi sin2 0 + ft2 cos2 0) is fi(dti)^(df2). We 
solve this problem in the next section. 

§3. How to compute ft for n = 2. 
To have a clear geometrical picture of the case n = 2, we adapt the notations. 

The Euclidean plane £ is now identified with R2 and S is identified to R3 by the 
parametrization 

R3 5 (a, 6, c) i—• M(a, 6, c) = 
a+b c 

c a—b 

Thus the scalar product in S is 

\ lYace (M(a, 6, c)M(a', 6', e')) = aa' + 66' + cc' 

which is the canonical scalar product in R3. We consider the measure /2 that we look 
for as a measure /i(da,d6,dc) on R3. Thus (1.8) can be written 

MR2 
exp-(Ai¿i+A2¿2)M(d¿i)M^2): 

2 fR3 
exp - (Ai (a+6) + A2(a—6)) /¿(da, d6, dc) 

(3.1) 
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The images of ¡1 by (a,6,c) »-> (a,6) and of /j(d£i)/z(d*2) by (¿1,^2) ^ = 
(^4^» ^ i r 2 ) coincide. We denote it by ir(da,db). 

Doing Ai = A2 in (3.1) shows that the image of /2 by (a,6,c) a is the positive 
measure n(da) defined as the image of the convolution \i * \i by the homothety 
£ I = a. 
Therefore we write : 

7R(da, dò) = 7r(da) Qa(d6) , û(da,dò,de) = irida) va(db* de) . (3.2) 

Recall that in (3.2), Qa(db) is a known positive measure and that va(db,dc) has to be 
found. Before giving two examples, we make the following remark : 

Proposition 3.1 : Let \i be a positive measure on R such that J e~xtti(dt) < 00 
for all A in the open interval J. For Ao in R, define ii°(dt) = e~Xotii(dt) 
and consider the 7r°(da), ir°(da,db) and Qfc(db) similarly associated to as in 
(3.2). Then 7r°(da) = exp(-2Aoa)7r(da), 7r°(da,d6) = exp(—4Aoa) 7r(da,d6) and 
Q°a(db) = exp(-2\0a)Qa(db). 

In particular, Qa(db) is a bounded measure n almost every where. 

Proof : (n0 *ii°)(dt) = exp(-Ao£) (ii*n)(dt) imply the three identities. Finally, since 
there exists Ao such that /x° is bounded, this implies that Qa(db) is bounded, as well 
as Qo> * almost every where. I 

Example A : Let p be > 0 and take ii(dt) = ^7-7%) +00) (*) dt. Then : 
r (P) ' 

(ti * fi)(dt) 
t2p-l 

T(2p) 
(0,+oo)(0 dt 

ir(da) 
2*P 

T(2Py 
(0,+oo)(0 dt(0,+oo)(0 dt 

7r(da, db) • 
4 

(0,+oo)(0 dt 
(0,+oo)(0 dt LK D|6|<a(û, b)dadb 

Qa(db) : 
2 

'7T 

r ( p + | ) 

r(p) 
1 - E 

Y xp-iNNN 
(0,+oo)(0 dt 

dò 
a 

(3.3) 

The constant in (3.3) has been simplified with the duplication formula of the gamma 
function : see Whittaker and Watson (1927), bottom of p. 240). 

Example B : For p > 0 we take /a = /xp as in (1.1). Hence fip*fip = \i2v and 

ir (da) P 

/7T 
exp 

P2 

a 
l(o,+oo)(a)da 

7R(da, db) -
SFF 

7T 
(a2 - 62) 5 exp 

XVX 

a2-*»2 
|B|(,|<0(o,6)dod6 

Qa(db) 
2p 

CV 
1 -

fb 
CVC 

s - T 

exp 1 
XC 

U(a2-62' 
|l |6|<«Wdò (3.4) 

We now state a theorem. 
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Theorem 3.2 : Assume that \i has no atoms. Then a signed measure ft satisfying 
(1.8) for n = 2 exists if and only if for n almost all a, Qa(db) as defined by (3.2) is 
absolutely continuous, with density qa(b), and there exists a signed measure Ka(dr) 
with bounded variation on (0, -f-oo) such that 

Qaifi) 
1 
7T , 

GG 

lb 

Ka(dr) 
VBNV 

(3.5) 

Under these circumstances, i/a(d&,dc), as defined by (3.2), is the image of Ka(dr) — 
on (0,+oo) x [0,27r[ by (r,0) t-> (6,c) = (rcos0,rsin0). 

Furthermore if fi is concentrated on (0, +oo), then Ka is concentrated on (0,a]. 

Proof : Suppose that /2 exists. Thus va(db,dc) is invariant by rotation in the 
(6,c) plane, i.e. va is the image of a measure Ka(dr)^ on (0, +oo) x [0,2*7r[ by 
(r,0) (fe,c) = (rcos0,rsin0). 

Let us observe that Qa({0}) = 0 for 7r-almost all a. If not, there exists A c M such 
that 

0 < 
GG 

*(da)Qa({0}) < i R}) , 

and since \i has no atoms, the right hand term of the above inequality is 0 : a 
contradiction. 

Denote by a(dz) the image of — on [0,27R[ by 0 *-* z = cos0. We have 
27T 

a(dz) BG (l-z2)~ *l(_ifi)(s)dz 

Thus Qa(db), defined by (3.2), is the image of Ka(dr) A(dz) by (r, z) T-+ b = rz. Hence 
Qa is simply the convolution of Ka and a in the multiplicative group M*. Furthermore, 
because of the invariance by rotation of v* in (3.2), Qai as well as a, is a symmetric 
measure. Thus, taking their restrictions to (0,-hoo), Qa is the convolution of Ka and 
a in the multiplicative group . Since a has a density, necessarily Qa must have one 
too, denoted by qa(b). The densities of Qa and a with respect to the Haar measure 

y of R+ are respectively bqa(b) and £(l-62)~*ll(o,i)(&). Thus, for b > 0 : 

bqa(b) = 
GH 

7o 7Tf 
GHG 6] 

R2 

GH 

[«w) ( ; ) ^ . ( * ) . 

which gives (3.5). 
The converse part is plain. Eventually, to see that Ka{dr) is concentrated on (0, a] 

if fi is on (0,-foo) one observes that 7r(da,d6) is on {(a, 6) ; |6| < a}, Qa(db) is on 
(—a, a). Finally one uses the Titchmarsh theorem (see Donoghiie (1969) p. 224) to 
get the result. I 
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One can test this theorem on Example A; (3.3) and (3.5) give for 0 < b < a and 
for a constant C : 

C 1 
1 
L 

2> 

a R6 

a Ka(dr) 
fr2-b2 

Denoting y = 1 — ( - ) and making the change of variable x = 1 — f - ) in the 
integral, we get 

(0,+oo)(0 dt kj 

Jo 
K(dx) 
Jy-x 

(3.6) 

where K is the image of AT0. If p > \ the solution of (3.6) is K(dx) = 
Cirrp""^ l(o,i)(x) dx. If p = | , it is Ci5o(d#)- K 0 < p < | , there are no signed measure 
if satisfying (3.6) : we get back the Gindikin result (1.9) for n = 2. 

The remainder of the paper is essentially devoted to the solution of (3.5) in the 
case of Example B, i.e. with ga(b) given by (3.4). We write it for 0 < b < a : 

2p 
/LJKJ 

1 -
(0,+oo)(0 dt 

(0,+oo)(0 dt 

2' (0,+oo)(0 dt 

exp 
-p*b* 

a(a2-62) 
1 
IT j 

HG 

/a 

Kgjdr) 
(0,+oo)(0 dt 

(3.7) 

a2 a2 
Denoting y = -5— and making the change of variable x = -5—^, we get 

a*—ir a —r 

2py exp-
P2 

a ( y - i ) ! 
1 

GHJ 

JH 

GHJ 

GHJ 

HJHGJ 
(3.8) 

where K(dx) is the image, multiplied by y/x, of Ka(dr) by r »-> x. The next section 
solves integral equation (3.7) and an extension of it. 

§4. A n integral equation 
Theorem 4.1 : Let q be > 0 and n be an integer > 2. Let ^n be a signed Radon 
measure on [0, oo) such that 

/>oo 

/0 
exp(-Ax) \(in\{dx) 

is finite for all A > 0 and such that, for all y > 0 : 

GHJGHJ 
HGJGn-l 

GHJGH 

/•OO 

GHJ 
z-y)-1"" exp(-g i ) /z„(dx) (4.1) 

ITien /i„ is unique, absolutely continuous and its density /„ is as follows : 
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(i) If n = 2p is even, then fn is a polynomial xp + g(x), with degree of g <p, and 
defined by 

poo 

/0 
xp+k~i exp(-qx) fnk\x) dx = 0, * = 0 , l , . . . ( p - l ) . (4.2) 

(ii) If n = 2p + 1 is odd, then 

fn(x) = (-q) pexp(qy) KL 
\dy 

p 
(yp+* exp(-gy)) (4.3) 

Examples : f2(x) = x • 
2 
Q 

(0,+oo)(0 dt 

2q 
x1'2 

Mx)=x2 
10 
3q 

5 
" 4 g 2 ' /5(*) = *5/2 5 

q 
.JKNBJ 15 

4q2 
GHGN (4.4) 

Proof : We prove the uniqueness. If /zn and ^ are solutions of (4.1), then /3 = ^n—^n 
satisfies for all y > 0 

GH 

HGH 
(x-2/)"7" exp(—gre)/?(dar) = 0 (4.5) 

Multiplying (4.5) by with a > 0, integrating with respect to y on (0,+oo), and 
applying Fubini (since /0°°exp(—Ax) |/?|(dx) < oo), we get for all a > 0 

0 = 
fCO 

JO 
e-*x0(x) 

GHG 

/0 
y' 1(x-y)^r~dy = 

. r(«)r(gfi) 
r(. + V) 

«no 

'0 
(0,+oo)(0 dt(0,+oo)(0 dt 

i.e. the Mellin transform of exp (—qx) xp0(dx) is 0. This implies /3 = 0. 

We now show the existence of a solution /xn of (4.1) with fin(dx) = fn(x) dx, with 
fn of C°°(0, +oo) class such that all its derivatives are slowly increasing, i.e. for all 
A > 0, limx^+00exp(-Arr)/(^(x) = 0. 
Now, changing x in s = x—y in (4.1), we get 

HJHJ 
n-1 

fl-3-
r (¥ ) 

roo 

/0 
5 ^ exp(-qs) fn(y+s) ds . (4.6) 

Because of the postulated regularity of /n, (4.6) can be derivated under the integral 
sign an arbitrary number of times. 
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(i) If n = 2p, p derivations of (4.6) yield 

NGHJ 
GJHHG 

HFGH 

/•OO 

^0 
5P"5 exp(-g*) wHy+s) ds . 

Since fn(x) = p! satisfies this relation we can take fn = xp + g where <; has degree 
< p. Finally, writing fn(y+s) = ]Cfc=o *T f*Hs)i a n ^ identifying the polynomials in 
y leads to (4.2). 

(ii) If n = 2p+l , induction on k = 0 , 1 , . . . shows from (4.1) that 

FGH d 
FGH 

k 
( j / p + s exp -qy) ( -1)" 

(p-k-l)\. 

/•OO 

GH 
(x -2 / ) p 1 *exp(-gaO/ n (x)dx . 

Derivating this formula for A; = p—1 once more gives (4.3). I 

§5. exp (— TracepV%A) for (2,2) symmetric matrices. 
We now apply the previous theory to find /x(da, cfa, dc) such that if A is a positive 

(2,2) symmetric matrix we have 

exp ( - Trace pV^A) = 
/R3 

exp -Trace A a+b 
c 

c 
a—b j 

/2(da, db, dc) . (5.1) 

In (4.1), do n = 2 and q = p2/a (a > 0). From (4.4) we get 

y exp 
GH 

a 
P 
rifa 

GH 

GH 

GHFG x 
la 
p2> 

dx 
(x-y 

and from the uniqueness in Th. 4.1 we get that K in (3.8) is 

K(dx) = 2p2y/a exj p 2 

a v 
(x-1) 

f 2a 
K p 2 

%(o,+oo)(x)dx . (5.2) 

Thus 2<ra(dr) in (3.7) is 

Ka(dr) == 4p 2 a$ exp 
p 2r 2 

FGHFGH 
a 

( a 2 - r 2 ) $ 

2 

o W - r 2 ) * 
r f l ( 0 , o ) ( r ) d r . (5.3) 

i/a(db,dc), as defined by (3.2), is the image of Ka(dr)^ by (r,0) (6,c) = 
( rcos0, rs in0) , i.e. 

va(db,dc) 
2p 2a* 

7T 
exp 

p 2 (6 2 +c 2 ) 
afa 2-*» 2-*: 2); 

x a 
.(at-P-ciy 

2 
p 2 ( a 2 _ 6 2 _ c 2 ) 1 

li»+C»<a J(&I c)d&dc 

(5.4) 
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and since ix{da,db,dc) = 7r(da) i/a(d6,dc), with 7r(da) given by (3.4), we get at last 

/2(da, dò, de) 
2p3a 

7T* 
exp 

JYHJGH 

a?-b2-c2J 

a 
( a 2 - 6 2 - c 2 ) * 

2 

p 2 ( a 2 _ 6 2 _ c 2 ) § J 
B v / ^ + c s < a ( a , 6, c) dadbdc 

as satisfying (5.1). 

One can observe that ft is never a positive measure. It is concentrated on the cone 
of revolution {(a, 6, c); >/b2+c2 < a} which is nothing but, with the parametrization 
introduced in §3, the cone of positive definite symmetric endomorphisms. The positive 
part of /2 is concentrated inside the convex hull of one sheet of the hyperboloid : 

(a, 6,c) b2 - c 2 HJGJG P2 

4 

2 
P 4 

16 
= 0 

Note the difference with Example A where, from (1.9), ft is positive if p is big enough. 
Finally, the above computation of \i shows that if n > 3, there is no positive 

measure v{dx) on the space S of symmetric (n, n) matrices such that 

HJG 
exp(— Trace Ax) v(dx) = exp —p Trace y/2A 

for all A in the cone of symmetric positive definite matrices. To see it, observe that 
this formula would be true for A only positive thus for 

A = 
a+b 

c 
0 

c 
a—b 

0 

0 
0 
0 

and this would imply that the positive measure v is linearly projected on the non 
positive measure /2. 

§6. Extension to the Jordan algebra of the Lorentz cone. 

Because of the complexity of the calculation, we have not been able to solve the 
problem of the title for n > 3. In this section we sketch a generalization of the 
problem, and we solve a significative specialization of it, extending section 5 and 
using calculations made in section 4. 

The idea is to consider the space of symmetric endomorphisms as a particular 
instance of an Euclidean Jordan algebra. An excellent reference on the subject is the 
new book by Faraut and Koranyi (1994). This object is a Euclidean space S with 
scalar product <a, 6> and a bilinear symmetric product 

SxS S (a, b) * aob, 
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such that there exists a neutral element e (i.e. o o e = a for all a) and such that for 
all a, by c, d in 5 , the following properties hold 

(1) <a, boc> = <ao6, c> 
(2) (ao&)o(cod)+(aod)o(6oc)+(aoc)o(6od) = (ao(cod))ob-f(ao(6oc))od+(ao(6od))oc. 

In the case of the space 5 of symmetric endomorphisms of a Euclidean space E 
the product a o 6 is |(a&+6a). Replacing the real numbers by complex, quaternions 
and octonions give other instances of these algebras; we shall describe a fifth instance 
with the Jordan algebra of the Lorentz cone in a moment. One can prove that these 
five instance are essentially the only ones. 

If S is such an algebra, one defines similarly two real functions called "determinant" 
and "trace" on 5. Attached to 5 is a positive integer r called the "rank" of 5 . If S is 
the space of symmetric endomorphisms of E> then r = dim E. In general we normalize 
such that 

1 
r 

Trace (a o b) = <a, b> . (6.i) 

Again, if I C R, one defines a suitable subset S(I) of S and, for / : J —• R, a map 
/ : S(I) —• 5 . The problem of extending the Laplace transform of /x on R as in (1.7) 
to a /2 on 5 such that an extension of (1.8) holds : 

exp Trace/(a) 
KJ 

exp (— Trace (a o x)) fi(dx) (6.2) 

can be raised. However, we shall be content here to consider only the Jordan algebra 
of the Lorentz cone which is the only one with rank r = 2 and the case /(A) = — p\/2A, 
with p > 0. 

We define now the Jordan algebra of the Lorentz cone by^taking first a Euclidean 
space E with dimension n > 2, where the scalar product of a and b is denoted by a.b 
and the squared norm ||a|| 2 = a 2 . On 5 = Rx E the scalar and the bilinear symmetric 
products of a = (ao, a) and b = (bo, b) are defined by 

<a, b> = ao&o + û.6 a o 6 = (<a, 6> , aob 4- boa ) (6.3) 

and we call the following quantities 2ao and aft - a 2 the trace and the determinant 
of a = (ao,a). The set C = {a G S ; ao > ||a||} is called the Lorentz cone. If E = R 2 

with its canonical Euclidean structure, 5 = R x R 2 is isomorphic to symmetric (2,2) 
real matrices by 

(OQ , (ai ,a 2 )) 
ao+ai a 2 

a 2 ao—ai 

Now if a € C = {a G 5 ; a o > | |a| |}, there exists a unique u = u(a) in C such that 
uou = a (ox u = y/a), which is given by 

uo = uo(a) = 
1/2 

[|(oo+Vdeta)] Û = u(a 
S 

2UQ 
(6.4) 
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Therefore the aim of this section is to compute the signed measure fx on S = R x E 
such that (6.2) holds when / = -p\/2A, i.e. for (oo,a) in C : 

exp - 2 p ( a 0 + v ^ F ^ ) ) 
's 

exp (-2(ao£o + a.x)) p,(dx) (6.5; 

Note that no special knowledge of Jordan algebras is required to understand and 
solve the problem (6.5) : previous explanations just gave the motivation and the 
background of it. 

We now imitate the previous sections : doing a = 0 in (6.5) gives the Laplace 
transform of the image n(dxo) of /2 by (xo,£) l"4 xo* We can also equip E with an 
orthonormal basis e and identify E with R n . Then doing a = (1 ,0 , . . . 0) in (6.5) gives 
the Laplace transform of the image 7r(dxo,dx\) of ft by (zo ,# i , . . . , x n ) h+ (#O>#I)> 

i.e. 

exp -2p(ao + y/cft—al ) 
HJG 

exp (—2ao#o — 2ai#i) 7r(dxo, d#i) 
2 

Writing Ài = CLQ + ai and À2 = OQ — a>\ shows 

exp -p(>/2ÀÌ + y/2X2) = f exp (-£o(Ai+A 2) ~ ari(Ai~A2)) 7r(d:ro,d£i) . 

Finally if 7r(dx 0,dxi) = 7r(dxo)Qx0(dxi) one sees that 7r(dxo), 7r(dxo,dxi) and 
Qxo(^ i ) are given by formulas (3.4), where (xo>£i) replaces (a, 6). 

Now /2 is invariant by the transformations gu of S defined by gu(a>0i a) = («o, ^(S)) 
when u varies in 0(15). Thus 

fi(dxo,dx) = 7r(dxo) P s O № 0 » 

where vXQ(dx) is invariant by Q(E). 
There exists a signed measure KXQ(dr) on (0,+oo) such that uXQ is the image of 

KXQ(dr)a(d0) (where a is the uniform probability measure on the unit sphere S(E) 
ofE) by (r,0) «->£=r0. 

Coming back to the basis, and writing 0 = (0 i , . . . , 0 n ) , we see that Q x o ( ^ i ) * s 

the image of KXQ{dr)cr(d0) by (r,0) h+ 0 I . Denoting by a(d0i) the image of <r(d0) 
by 0 0i, the known Q X o is the convolution in the multiplicative group R* of the 
unknown Kxo(dr) with the known a(d#i). Actually, the computation of a(d0i) is 
quite standard; the fastest way to proceed is to observe that a(d0) is the distribution 
of J?/ | |X| | , where X is Gaussian distributed in E with mean 0 and covarianceidentity. 
Thus the distributions of 0\ and of X?(X?+X|+... + X*)"1 are 

(0,+oo)(0 dt (0,+oo)(0 dt(0,+oo)(0 dt(0,+oo)(0 dt dt 
(0,+oo)(0 dt 

Since the random variable 0\ is symmetric, then : 

a(d» 1 ) = ( l - ^ ) ( n - > ) / a l ( . l l l ) ( t f 1 ) 
d9t 

(0,+oo)(0 dtJHJ 
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Working, as in Theorem 3.2, in R+ rather than R*, the analogue of the integral 
equations (3.5) and (3.7) is : 

2p 
/ 7T 

1 -
JHJ 

GHJ 

\ 2 " I 
exp 

GHJ 

x0(xl-x\) 
1 

GHJGHGH 
l>XQ 

HJ 

(0,+oo)(0 dt(0,+oo)(0 dt(0,+oo)(0 

As in (3.7) we make the change of variables : 

x — 
Xn 

xi — r 2 V = 
GF 

/»•2 /t»2 
XQ J>i 

and we get the generalization of (3.8) : 

2py% exp P2, 
XQ 

(y-r, 
(0,+oo)(0 dt 

(0,+oo)(0 dt 

HJH 

Jy 
[ x - y ^ K i d x ) D F (6.6) 

where K(dx) is the image, multiplied by a ; ( 3 - n ) / 2 , of r2~nKX0(dr) by r x. Equation 
(6.6) is essentially solved by Theorem 4.1, and keeping the notation / „ used there 
we get : 

K(dx) = 2vn 

(0,+oo)(0 dt 

7-3n 
/ n(a:) exp ( P 2 

FGGD 
HFH )%),+<») 0*0 . 

Taking the image of a ; ( n - 3 ) / 2 K(dx) by x*-*r, we get : 

Kxo(dr) : 
D-n 

4p n a;^ r " 
r(?) 

n-3 
/n 

DFDG 

^5—r2> 
exp 

(0,+oo)(0 dt 

Xo(zg-r2) 
rJ( 0,+oo)(r)dr • 

Now, uXQ(d£) is the image of KXQ(dr) <r(dO) by (r,0) »-> x = r0. Recall that the image 
of rn~ldr<r(dB) by (r,0) h+ £ = r0 is "a" Lebesgue measure of 25, i.e. is invariant 
by translation. However, to get "the11 Lebesgue measure of 25, i.e. the only one which 
gives mass 1 to any unit cube built on an orthonormal basis, we have to introduce 
a factor obtained by the computation of the volume of the unit ball. We skip this 
standard computation and obtain that dx is the image of 

2TT* 
(0,+oo)(0 dt 

n~ldT a(d6)y 

by (r, 0) h-> rO = $. Thus we get : 

(0,+oo)(0 dt 
5-n 

2pnXQ*~ 
GHJGJ 

JHJG 
3-n ̂ (0,+oo)(0 dt HJ 

XQ"~2/ 2 ^ 
exp 

GHJ 

/¥»2 __/*!>2 
XQ X 

% | | < x 0 • 
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And the final solution of (6.5) is : 

ß(dxo, dx) 
2p n + 1 

7 T ^ 

2-n 
\\xt-n{xl-^) 

3-n 
HJHJ 

GHJ 
GHJHJ 

x exp 
Tr 

*̂o(*̂o—% ) 
ü\\£\\<x0(xo,x)dxodx , 

where fn is defined in Theorem 4.1. 
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