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Maassen Kernels and Self-Similar Quantum Fields 

K.R. Parthasarathy 

Abstract. — In his Lecture Notes [Maj] P. Major has outlined a theory of multiple Wiener-
Itó integrals with respect to a stationary Gaussian random field £ over the Schwartz space 
S(IR^) of rapidly decreasing smooth functions in IR?. Furthermore, he has exploited the same 
to construct self-similar random fields subordinate to £. Here, we observe that the Hubert 
space of functions square integrable with respect to the probability measure P of ( can be 
identified in a natural way with the Hubert space of functions square integrable with respect 
to the symmetric Guichardet measure [Gui] constructed from the spectrum of (. Under such 
an identification, multiplication of random variables on the probability space of ( becomes 
the twisted convolution of Lindsay and Maassen [Li M 1,2] for Maassen kernels [Maa], [Mey]. 
The multiple Wiener-Ito integral of Major is described neatly by a twisted version of Meyer's 
multiplication formula (see (IV.4.1 in [Mey]). Following Lindsay and Parthasarathy [Li P] we 
introduce the weighted and twisted convolution of Maassen kernels, present a generalization 
of Meyer's formula and exploit it to construct a family of operator fields whose expectations in 
the vacuum state exhibit a simultaneous self-similarity property. Such a construction includes 
Major's examples and at the same time yields a self-similar Clifford field. 

1 An involutive Gaussian random field and the Lindsay-Maassen twisted 
convolution algebra 

Let (X, T, ra) be a <j-finite measure space equipped with an ra-preserving involution 
x —• x on X satisfying (x)~ = x. For any measure /¿, denote by L2M(^L) and L2{ii) 
respectively the real and complex Hubert spaces of functions square integrable with 
respect to \i. Then the following holds: 

Theorem 1.1 There exists a probability space (fi,.Fm>-Pm) and a linear map 
£ : L2m(m) —> L2(Pm) satisfying the following: 

(a) For each / £ L^m), £(/) is a complex-valued Gaussian random variable of 
mean 0. 

(b) For any f,geL2R(m), 

f(x)g(x f(x)g(x)dm(x). 
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K.R. PARTHASARATHY 

(c) If f{x) = f(x) and / € L^(m) then £(/) = « / ) . 
(d) The a algebra generated by { £ ( / ) , / £ LUrrC is Tm. 

Proof: For any / , g e L2

m{m] define 

f(x)g(x \(f(x)±f(x))9(x)dm(x). (1.1) 

Prom the ~ - invariance of m and Schwarz's inequality we have K±(f,g) = K±(g, /), 

f /(*)/(*)dro(*)l < I f2(x)dm(x) 

and therefore 

f(x)f(f 1 
2 

(/2(x) ± f(x)f(x))dm(x) > 0. 

In other words K+ and If _ axe non-negative definite bilinear forms on L^m) with 
non-trivial kernel (consisting of odd functions for K+ and even functions for K-). 
Hence there exist two independent real Gaussian random fields and £_ over L2R(m) 
on some probability space (fi,!Fm,Pm) for which 

Щ±(Л = о, Щ+(ЛМд) = K+(f,g),EUf)Ug) K-(f,g) (1.2) 

and Tm is generated by { £ + ( / ) , £ - ( / ) , / € L2m(m)}. Elementary algebra using (1.1), 
(1.2) and ^-invariance of m yields 

E(Mf) - M/) )2 = m-U)+*-(/))' = o (1.3) 

where f(x) — f{x). Define 

«/) = e*(/)+«-(/)• 
Clearly, f is a linear map satisfying (a) and (c). Furthermore 

E(Mf) - M/))2 = m-U)+*-(g))' f(x)g(x)dm(x) 

proving (b). Property (d) is immediate. 

Corollary 1.2 Let { £ ( / ) , / € L2R(m)} be as in Theorem 1.1. For any / in the 
complex Hilbert space L2(m) with / = /1 +1/2, where /1 and /2 are respectively 
the real and imaginary parts of / , let £(/) = f (/1) + if (/2). Then {£(/) , / € L2(m)} 
satisfies the following: 

(a) The correspondence / —• £(/) is complex linear. 
(b) For each / , £( /) is a complex-valued Gaussian random variable of mean 0. 
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(e) EeWÏ = exp § / f(x)f(x)dm(x). 

(d) If f(x) = Hi), then £(/) = Ê(f 

(e) EeWÏ = exp § / f(x)f(x)dm(x). 

Proof: The first four parts (a) - (d) are immediate from Theorem 1.1. The last part 
follows from the «-—invariance of m and the relation 

«/) = É+(A) + «+(/a) +{f)eî(g)+.«-(/»)) 

where £+ and £- are the independent real Gaussian random fields over L2R(m) with 
respective covariance kernels K+ and K- in the proof of Theorem 1.1. • 

Remark 1.3 In Corollary 1.2 define the normalised exponential random variable 

edf) by 

e £ ( / ) = e x p ( £ ( / ) - E 
2 

f(x)f(x)dm(x)) (1.4) 

for / G L2(ra). Then {e^( / ) , / € £2(TM)} is a linearly independent and total set in 
L2(Pm). Furthermore 

JEe^{f)eî(g) = exj: f(x) g(x)dm(x)i (1.5) 

( / M s ) = «*(/ + ^)exP /(^)p(x)dm(x) (1.6 

for all / , # E L2(ra). 
We shall denote by £^ C L2(Pm) the dense linear manifold generated by {e^(/), / G 

L2(m)}. Then (1.6) implies that £̂  is an algebra of random variables on (ft, Tm, Pm). 
Owing to property (d) in Corollary 1.2 we may call £ an involutive Gaussian random 
field. 

From now on we assume that (X,^F,m) is a separable, nonatomic and tr-finite 
measure space. Our aim is to identify L2(Pm) in Theorem 1.1 with L2(mr) where mr 
is the symmetric measure of Guichardet [Gui] in the space T(X) of all finite subsets 
of X, constructed from ra. We denote the Guichardet symmetric measure space by 
(r(X), J r ^ r ) so that integration with respect to mr is determined by 

T(x) 
/(<7)dmr(<7) = / ( 0 H 

oo 

n=l 

1 
n! 

f({xi,X21 • •, xn})m(dxi) • • • m(da;n) (1.7) 

for any / G L1(mr) where, on the right hand side, /({a?i,£2> • • • >sn}) is viewed as a 
symmetric measurable function of n variables Xi,X2, ...,a:n with all the x\s distinct. 
It is to be noted that the n-fold product of the nonatomic measure m has its support 
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in the subset {(xux2l ...,xn) : Xi G X and Xi ^ Xj if i ^ j } . Denote by Tn(X) the 
n-fold cartesian product of T(X) and by T^(X) C rn (X) the subset 

1£ = (0ì,<r2i...f*n)kt б П Д л П Л = 0 if l Ф1\. 

Then the product measure rap satisfies rap(rn(-X')\r(n)(-X')) = 0. For simplicity we 
write da = drar(cr) in T(X). If <7i,cr2, ...,<7n are disjoint elements of T(X) we write 
<T\ + (72 H h<rn 01 ]C*=i to denote UiLi*7*- Then one has the following Maassen's 
sum-integral formula for / € L1(rap): 

r(«)(x) 
f(<Tl,<T2,—,<7n)d(Tld<T2—d(7n = 

T(X) h<Tn=<r 
f[(T\ <тп) \da (1.8) 

For a proof see [Mey], [Li P]. Following [Maa] we introduce the space K>(X) = 
/Cpf, TO, ~ ) C L2(rar) of Massen kernels: 

K{X) = { / i o#"|/(o-)|2da < oo V a > 1}. (1.9) 

The Lindsay-Maassen twisted convolution / * g between any two Maassen kernels / 
and g is defined by 

K{X) = {/i 

<Tl+<T2=(T 
/((7i + U))P(A; + a2)dw (1.10) 

where the summation on the right hand side is over all partitions of a into a pair a\, a2 
of subsets (which can be empty). Then / * g G /C(A") and satisfies the inequality 

\a*a(f*g)(<r)\2da< 7i + U))P(A; + a2)dw \(aV3)*°g(<T)\2d<T for all o > 1. 

(1.11) 
For a proof see Proposition 3.2 in [Li P]. The ~ - invariance of ra implies the 
invariance of the associated Guichardet measure rar on T(X) under the involution 
transformation u —• u = {x\x G a;} and hence it is clear from (1.10) that f*g = g*f. 
It follows from the sum-integral formula (1.8) that * is even associative. This 
will also follow from our Theorem 1.4. Thus K,(X) becomes a commutative and 
associative algebra equipped with the involution / —• / where f(a) = f(dr). A simple 
computation shows that ( / * g)~ = / * g. 

For any ip G L2(m) define the associated exponential kernel e(<p) G K,{X) by 

e ( I P ) W = 
1 

Tl+<T2 
if a = 0 , 
otherwise. (1.12) 

Then 

e{ip) * e(^) = e(<p + rp) exp r 
<^(x)'0(a:)dra(a:), 

(1.13) 
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dp)- = e(0). (1.14) 

for any ip,i/> G L2(ra). The set E = {e(<p),<p € £2(m)} is linearly independent and 
total in L2(rar). The linear manifold £ C K(X) generated by E is an involutive 
subalgebra of K{X). A comparison of (1.12) - (1.14) with (1.4) - (1.6) leads to the 
following theorem. 

Theorem 1.4: Let £ be the complex Gaussian random field over L2(m) in the 
probability space iSl^Tm^Pm) satisfying the properties (a) - (e) of Corollary 1.2 
and property (d) of Theorem 1.1. Then there exists a unique unitary isomorphism 
V : L2(Pm) -* L2(mr) satisfying the following: 

(a) V et(<p) = e(<p) for all <p G L2(m)\ 
(b)Vg = (Vg)~ for all g € L2(Pm); 
(c) V{e^{ip)e^)) = e(ip) * e(rp) for all (f.i/j G L2(m); 

where e^(tp) and e(ip) are defined by (1.4) and (1.12) respectively. 

Proof: First observe that (e(</?),e(^)) = exp(<p,^) = (e^(<^),e^(^)) for all <p,ip G 
L2(m). The totality of in L2(Pm) and £ in L2(mr) yields the existence of a unique 
unitary operator V satisfying (a). Now (b) and (c) are immediate. • 

Remark 1.5: The map V"1 identifies the Lindsay-Maassen twisted convolution 
algebra IC(X) = /C(X,m, ~) with the ordinary multiplication algebra of random 
variables on a Gaussian random field f satisfying the involutive property f (<£) = 
£(<£)> <P € L2(m). The involution ~ of K(X, m, ~) is then carried over to the complex 
conjugation of random variables. 

We now describe a topology on )C(X).To this end consider the selfadjoint number 
operator N in L2(mr) defined by 

(Nf)(v) = (#<r)/(<r), / € L\mr) 

with maximal domain. Define 

ll/ll(a) = l|a*7|| o > i , / e / c ( X ) . (1.15) 

With the family {|| • ||(°), a > 1} of norms K,{X) becomes a topological vector space. 

Theorem 1.6 The twisted convolution operator * is continuous. The subalgebra £ 
is dense in K,(X). 

Proof: By Proposition 3.2 in [Li P] we have the inequality 

\\aNf*9\\<\\(ay/3)N /11 W(axK)Ng\ for all /, g eiC(X),a>l. 

Iflimn^0O(||/n-/||(a) + ||5n-5||(«)) : 0 for every a > 1 then the inequality 

\\aN(fn*gn-f*g)\ \\aN((fn-f)*gn)\ \\aN(f*(gn-9))\\ 
\\(aVz)N(fn-f)\\\ (<*v§) V I I + \ \ № ) N f\\ W(aV3)N [9n-g)\\ 
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implies that 

lim 
n—too 

| a N ( / n * 0 n - / * f l = 0. 

This proves the first part. 
To prove the second part consider an element (/, aNf) in the graph of the operator 

aN with / G K{X). Suppose that this element is orthogonal to every element of the 
form (e(<p),aNe(<p)). Then 

((e{<p),aNe((p)] (f,aNf) (e(v>)J (e(<fU2Nf) 
(e(v>)J + a2Nf) 
0 for all ip G L2(m) 

The totality of exponential kernels implies that / + a2N f = 0. Since the spectrum of 
N is {0,1,2, . . .} it follows that / = 0. This enables us to conclude that for any fixed 
a > 1, e > 0 and / G IC(X) there exists a g G £ such that 

lis - /1 \\aN9-aNf : e. 

Choose a = n,e = £ and denote the corresponding g by gn. Since aN is monotonic 
increasing in a for a > 1 it follows that 

lim 
n->oc 

0 « - / | | + | | a " 0 „ - a " / | 0 for every a > 1. 

2 Weighted and twisted convolution of Maassen kernels 
Following Lindsay and Parthasarathy [Li P] we shall now investigate deformations 

of the twisted convolution operator * in (1.10) by introducing a weight function 
or multiplier p inside the integral on the right hand side of (1.10). To this end 
we introduce the space M(X) of all complex-valued bounded measurable functions 
defined on r^3\X) and call any element p G M(X) a multiplier. Thus p is a function 
of three arguments <TI, <72»0"3 which are disjoint finite subsets of X. For any two 
Maassen kernels f,g G )C(X) and any multiplier p G M(X) define the weighted and 
twisted convolution f *« g by 

IJ *p9)W 
p L2(m 

p(u,(Tl,(T2)j \<j\ + <D)o(u; + G^Sdh) (2.1] 

where da; = drar(u>) as in Section 1. It is to be noted that for any fixed a G T(X), 
the complement of the set {v\u fl a = 0} in r(A") has mr - measure 0. 

Proposition 2.1 In the Hilbert space L2(mr), for any p G M(X),f,g G /C(X) the 
following inequality holds: 

\\aNf*P9\\ sup Id ||(aV5)w/| (aV3)"0l for all a 1. (2.2) 
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In particular, K{X) is closed under the multiplication operation *p. 

Proof: This is the same as the first part of Proposition 3.2 in [Li P]. 

The next proposition is a twisted and weighted version of the Wiener product for 
Maassen kernels. (See IV.4.1 in [Mey]). 

Theorem 2.2 For any multiplier p and Maassen kernel / define the operator Bp(f) 
in L2(mr) with domain K{X) and 

BP{f)g = f*Pg 

where the right hand side is given by (2.1). Then, for any given /» £ K(X),pj 6 
M(X), l < i < n , l < j < n - l , 

(BPl(/!)BP2(/2; ** . - i ( /n- l ) /» ) («) 

l<i<j<n 

n 

i<k 
fk 

i<k 
<J\kt 6k 

i>k 
fk 

X 
n-1 

/=1 
Pi 

i<k 
fk 

i<k 
fk ft, 

i<t<3 
fk 

i<k 
ft 

x 
l<i<j<n 

dxTij (2.3) 

where all the sets 0 ^ , ^ , 1 < < n, i < j are disjoint and the indices ky£ are 
kept fixed under the S-signs inside fk and p/. 

Proof When n = 2, (2.3) is same as (2.1) if we put = u>, ¿1 = 01,£2 = 02» 
We prove (2.3) inductively. Assume (2.3) for n. To prove the same for n + 1 put 
9n = /n *Pn /n+i- Then 

{Bpl{h)...BPn{fn)fn+i№ (BPl(fi) B^Afn-MV) 

X 

n-1 

*=1 
1 

3>i 
G\k •6k 

3>i 
b 

X 
n-1 

1=1 
Pt\ 

3>i 
Vii, 

3>i 
Vil] Su 

i<Kj 
Vii 

3>l 
Si 

x 
X a b c 

Pn(̂ nn-r-lĵ l»̂ 2)/r (̂ 1 +Jnn+1, /n+ikn+i +^2) 

X 
d0nn+i< 

3>i d0nn+i< (2.4) 
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Introduce new disjoint set variables 0 ^ , 0 ^ + 1 , ^ , ^ + 1 , 1 < i < n — 1 by putting 

<7in = ei ^(Tin, ain+l = £2 H <7»n, 

<7in = ei ain+l = £2 H 

Then djn + a-n+1 = <rin n (ei + e2) = <7*n and 6'n + <5n+i = £n n (ei 4- e2) = Sn. 
Substituting these new variables in (2.4) and using the sum-integral formula (1.8) we 
get 

(BP1(fi) BPn(fn)fn+l)(6) 

t<j<n-l t<*<j<n-

n-l 

fc=l 
a 

n-1 
0%k +6k + 

fc<j<n-l 
Vin+l +<7nn+l + 5n+i 

X 
n-1 

/=1 
a 

t<j<n-l 
0ij n^n+ll^nn+l. 

n+1 
n "ft, 

t<*<j<n-l 
a+1 

a+1 
n^n+ll^nn+l. 

/<j<n-l 
in+l +<7nn+l + 5n+i 

X f 
n-l 

x-1 
^in + n̂ + 0"nn+l)/n+l( 

n-l 

1=1 
Vin+l +<7nn+l + 5n+i 

X Pn ̂ nn+lj 
n-l 

1=1 
< n + * n : 

n-l 

1=1 
uin+l 

X 
iS*<JSn~i 

n-1 
n-l 

i=l 
^ n ^ n + l l ^ n n + l . 

If we now drop the primes / in the expression above it is the same as (2.3) with n 
replaced by n + 1. • 

Proposition 2.3 For any / , </, /i G K(X) and p G M(X) 

(f,9*P h) (9 ** f,h) 

where gfa) = g(a) and flf(cri,^2,0-3) p(02,01,03) 

Proof: By (2.1) and an application of (1.8) twice for the case n = 2 we have 

(f,9*P h) f(c 
<n+*n 

p(u, 01,02)9(01 +S))h{fjj + (T2)dv}d0 

f(0i + 02)p(v, 01,02)9(01 + u/)ft(ci; + (T2)d0id02d^ 
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(9qM). 

q(cri,u,(T2)9{u + à\ f(<ri + (T2)dai}hh)dy 

(9 *q M ) . 

Corollary 2.4 For any multiplier p and Maassen kernel / the operators Bp(f) 
and Bq(f) are adjoint to each other on the domain /Cpf), where q{(T\,02,03) = 
p(02,<7i,03). 

Proof : Immediate . 

Proposition 2.5 Let /», 1 < i < k be Maassen kernels. Then 

| ( / i * / a * ••• . /*)(«)! 
n 

t=l 
l(*-l)"/a/fl l 

Proof: When A; = 2, (/1 */2)(0) = (/1, /2) and hence the required inequality coincides 
with Schwarz's inequality. To deal with the general case introduce the operation A 
by 

(9 *q M). f(a + u)duj. 

Then, by Theorem 2.2, putting pi = 1 for all i and n = k we get from a repeated 
application of Schwartz's inequality in the integrating variables 0*12,0*13, ...,0in> 

l / i*---*/*(0) l 

/l(0"l2 + 013 + 0'lfc)/2(0'l2 + 023 H h 02* ) 

/fc^lfc + 0"2ik + 0'ib-lfc)d0'lik ¿0*-! A; 

(4/i|2)1/2(*i3 f*i0(^l/2|2)1/a(*aa 4 + (?2k) 

X 1/31 (̂ 13 +0*23 +¿^34 + 0k-lk) 

\fk\(<?lk + <?2k + 0k-lk) 
l<i<j<n 

dxTij 

(Aa|/i|a)1/a(*u f*u)04|/2|a)1/a(*23 f 5-2fc 

x(^ /3 |2 )1 /2 (<T23 + a34 + 0k-lk) 
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X |/4|(CT14 + <T2A + Cr34 + ¿45 + +a4k \fk\(*lk + +ok-1k 

X 
K«j<n 

(i.i)«T(1.2),(l,3)} 

dan 

(Ak-*\h\*)(a)da\ ,1/2 
{(^i/2|2: 

1/2 (A|f3|2 1/2 
MIAI2) 

1/2 (0)}-

A repeated application of the inequality above yields 

i/i fk(9)\ 
k 

J=l 
(Ak~2 /il2) (a)da}1/2. (2.5) 

For any Maassen kernel / we have from (1.8) 

{Ak\fn<r)da l / l V l + ^ 2 • ̂ Jfc+i )da\ • d(Tk+i 

o1+....+ok+1=1 

f|2(o)do 

(* + l)**|/|3(<r)(fo-

(Jfc + l)"/2/ll2. 

Now the proposition follows from (2.5). 

Proposition 2.6 Let / , fc, 1 < i < k be Maassen kernels and let p<, 1 < i < k be 
multipliers. Then 

B P I ( / I ; ^ ( / 0 / 1 1 
1=1 

[sup M)||(2fc + 1 N/2 F<ll)ll(2* + : 
,N/2 

Proof: From Theorem 2.2 we have 

l * W / i ) i W / * ) / l l 
k 

t=l 
sup N ) | | | / l | >/» * /I II- (2.6) 

From the ~ - invariance of mr we have for any Maassen kernel g 

\\9\\2 = (9*№)-
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By Proposition 2.5 and commutativity of the operation * we have 

I I / i i IM * l/l II' 
( | / i | . | / i r * l / 3 | * l / a r \fk\*\fk\~*\f\*\f\~w: 

k 

j=2 
I (2*+1 ; N/1 

(i/ii)ii}a l i e * + 1 : 
,N/2 

(l/DII2 

From (2.6) and Proposition 2.1 with p = 1 we now have 

I M W / 0 - BPt(/*)/ll2 

n 

t=l 
sup \piY 

k 

¿=1 
||(2* + i)"/V<ll2}||(2* + i)"/2/ll2 

Corollary 2.7 Let / , /» ,1 < % < k be Maassen kernels and let pi,l < i < k be 
multipliers. Then, for any a > 1, 

\\aNBPl(h) •BPhUk)f\\ 

k 

1=1 
>up btDII aV2k + 1 

n 
f< II) II (a 2fc + l ) " / | | 

Proof: From (2.3) it is clear that 

\aNBpl(h) 2*M_i(/*-i)/IŒ 
k 

1=1 
sup | f t | ) ( a " / i ) ( a * U l ) (aN\f\)(6) 

for any a > 1. The required inequality is immediate from Proposition 2.6. • 

Proposition 2.8: Let / E IC(X) have support in {(r\#<r = 1}. Define the symmetric 
operator A(f) with domain K{X) by A(f) = Bp(f) + -Bg(/) where p and q are as in 
Corollary 2.4. Suppose </ G /C(X) is such that either it has support in {<T|#<T < n} 
for some positive integer n or g 6 £. Then 

oo 

fc=0 

\A(f)kg\\ 
I B ! 

: oo. 

Proof: Let g be an n-particle element in /C(X), in the sense that its support is 
contained in {a\#<r = n} . It follows from Corollary 2.7 that 

P(/)fcsll (2 sup |pl)fe(2Jk + 1 
1+k 

2и u/iñisii 
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for all k = 0,1,2,.. . On the other hand, if g = e(<p) for some <p E L2(m), we have 

M ( / ) * f l l l < ( 2 sup \p\)k(2k + i 1/2 f||kE 2 f c - M 

12 Ml2 

Thus, in either case, 

\A(f)kg\\ Ck Kh Jb = 0 , l ,2 

for some positive constant C. Now the required result follows from Stirling's formula. 

Remark: The symmetric operator A(f) of Proposition 2.8 is essentially selfadjoint 
on the domain of finite particle vectors as well as the exponential domain £. 

3 Covariance properties of the family {Bp(f)} under a group action 

Let (X, m, ~) be a nonatomic, separable and cr-finite measure space equipped with 
an m-preserving involution as in Section 2. Suppose G is a group of transformations 
acting as measurable automorphisms of X, leaving m quasi-invariant and satisfying 
the relation gx = (gx)~ for all x € X. Let 

p(g,x) 
dm 

dmg 
(*)}1/2 (3.1) 

Let a = a(g, x) be a measurable complex-valued 1-cocycle of unit modulus in the 
sense of Mackey [Mac] for the G-action with quasi-invariant measure m. Then 

01(9x92, x) ot{gug2x)a{g2,x) a.e. x(m) (3.2; 

for each 91,92 € G. We assume that 

a(g,x) a(gyx) geG, xeX. (3.3) 

Extend the G-action to T(X) by putting 

90 
0 if a = 0, 
{ax, x e a otherwise. 

Then the Guichardet measure mr is quasi-invariant under the extended G action on 
TlX) and 

P(9,0) 
r dmr 
dmrg 1* 

1/2 
(3.4) 

is given by 

p(g,o) 1 if a = 0, 
xEo p(g,x) otherwise. (3.5) 
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Define a(g, a) by 

<X(9,<T) 
1 if a = 0, 

xEo a(g,x) otherwise. 
(3.6) 

Then we have the relations: 

Ot{g,<Tl +021 a(gi0i)a(gia2) 

OL{QIQ2,V) a(gug2(r)a(g21(T)i 

a(g,o) ot(g,0) 

p(q,0\+02) (9i,920 

p{9\92,°) p(9i,920)p{92,<r) 

p(9,v) P(9,<r)-

Consider the unitary representation g —• Ug of G in L2{m) defined by 

(Ugf)(x) a(9,9 1x)p(g,9 1x)f{g 1x), f e L2(m) (3.7) 

and its second quantization g -» T(Ug) defined by 

(T(Ua)h)(a) <x(9,9 1<r)PÌ9,9 1*)h {g-la),h£L2(mv (3.8) 

where p{g,cr) and a(g><r) are given by (3.5) and (3.6). Then g —• T(Ug) is a unitary 
representation of G in L2(mr). 

Theorem 3.1: Let p G -M(-X) and let {Bp( / ) , / € /C(JT)} be defined as in Theorem 
2.2. Then IW0) leaves KIX) invariant and 

T(Ug)BJf)T(Ug)-1h = Bpg-t(T(Ug)f)h 

for all / , h e K,(X),g e G, where 

V9 Vi>*2,*3] P(ff g-1o,go2,g-1 ̂ 2,ff V3). 

Proof: Straightforward substitution from (3.7) and (3.8) using (2.1) yields 

(Т(ид)Вр(ЛГ(ид)~Ч)(<т) 

<*{g,g x<T)p(9ì9 1°) 
V9 Vi>*2 

p(uì(Tlì(T2)a(g 1,д(ш + а2] 

x/>(# 1,ff(w + cr2)' f(<Ti + v)h(g(v + (T2))da;. 
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Writing 6i = g<Ti,gu = u/ and using the relations satisfied by a and p we get 

(T(Ug)Bp(f)T(U)-1h)(o) 

61+62=0 
P9 (^',Si,S2)a(g,g l6i] p(9,g-%)f(9-H6i+*'): 

x h(uj' + 62)a(g-\w')p(g-1,w')-

61+62=0 
pg-1^\61,62)a(g,g-1(61+û') p(9,9-HSi+û>'))f(g-l(6i+io': 

x h(u> + 62)du) 
(B„-I(T(Ut)f)h)(a) 

4 Construction of self-similar operator fields 

We shall now describe how the covariance property of the operator fields Bp(-) 
under the group action G can be exploited to construct a family of simultaneously 
self-similar fields. To this end consider a topological vector space S equipped with 
a homomorphism g —• n(g) of the group G into the group of all bicontinuous linear 
isomorphisms of 5 . Let MG(X) C M(X) be the subset of all G-invariant multipliers 
and let Mo C MG(X) be a fixed subset. Suppose that for every p e Mo there exists 
a continuous linear map LP : 5 —• K,(X) satisfying the relation 

Lp *(g)ip rp(g)T(U9)Lp <p, p€ Mo, geG, (pes (4.1) 

where TP is a homomorphism from G into the multiplicative group of all nonzero 
real scalars and T(UG) is defined by (3.8). Recall that K{X) is equipped with the 
topology induced by the family of norms given by (1.15). Define the operators 
Ap(<p),AUv), <p € S by 

Ap(<p) = Bp{Lp(p) AKv) = BMLpV)~[ p G Mo,<p € 5 (4.2) 

where Bp(-) is as in Theorem 2.2 and $(01,02,03) = p(02,0i,03)- From Corollary 
2.4 we know that Ap(<p) and A^((p) are adjoint to each other on the domain K,(X). 
With these notations we have the following proposition. 

Proposition 4.1: For any p 6 Mo, V € 5 let Af(y) denote either of the operators 
Ap((p),A^((p) defined by (4.2). Then the following holds: 

(i) For any fixed Maassen kernel / and multipliers p» G Mo, 1 < i < n the 
correspondence ((pi,(f2,.~,<Pn) -+ A&ivi)^(V2)-»APn(Vn)f from 5 x S x • • x S 
(n-fold) into K(X) is real multilinear and continuous; 

(ii) If ¿0 denotes the Maassen kernel defined by 6$(a) = 0 or 1 according as a = 0 
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or ^ 0 then 

(¿0 , AtV9 V i > * 2 ) A t (*{9)<P2 ] AtV9 Vi>*2)At (* 

n 

t=l 
TPI(9)}(6<n, A* (<Pi)A* (<P2] 9)<P2 ] 

for all g e G, fi e S, p< 6 .Mo-

Proof: The first part is immediate from Corollary 2.7. To prove the second part 
observe that (4.1) and Theorem 3.1 together with the G-invariance of the p^'s imply 

Pi)A* (<P2] TPi(9)T(Ug) Pi)A* (<P2] 

and r(Ug)6$ = ¿0. 

Remark Property (ii) of the fields {j4p(-),p G Mo] may be interpreted as the 
simultaneous self-similarity of all their expectation values in the state 6$ where the 
self-similarity parameter for Ap(-) under the action of the group G is described by the 
homomorphism rp of G into the multiplicative group iR\{0}. 

We shall now illustrate Proposition 4.1 when X = JRd, S = S(Md), the Schwartz's 
space of rapidly decreasing G°° functions in Md and G = 2Rdo(0,oo), the semidirect 
product of the additive group Md and the multiplicative group of positive real scalars 
with the group operation 

(x,a)(x' ,a ') (x + a lx',aa!) x,x ' G Md, a, a' 0. 

Put x — —x and define the measure m in X by 

dm(x) = (x^ h 
x 

dx (4.3) 

where |x| is the Euclidean norm of x and ft is a nonnegative bounded measurable 
function on the unit sphere in Md satisfying h(y) = h{—y), \y\ = 1. Then (JRd,ra, ~) 
is a nonatomic separable and a-finite measure space with m-preserving involution. 
Define the G-action on this measure space by (x,d)y = ay for all x,y G Md,a > 0. 
Then 

P(9,y) 
dm 

dmg 
y 

1/2 
Pi)A* (<P2] if 9 = (z, a) (4.4) 

Define 

<x((x,a),y) E%AX.Y (4.5) 

where x • y is the scalar product between x, y in iRd. Then a is a 1-cocycle of modulus 
unity for the G-action in Md with quasi-invariant measure m given by (4.3) and 
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furthermore a((x,a),— y) = a((x1a)yy). Following the notations in (3.5) - (3.8) we 
have 

a((x,a),a) exp za x • Eyeerî/, 
p((x,a),cr) ; fl-i(M+*)#* 

( t W ) ( y ) fl-i(M+*)#* fia-'yYfeL^m), 
{r(UM)9}(a] fl-i(M+*)#* fl-i(M+* #(a V) # G L2(mr 

Let 

(7r(x,a)<p)(j/) <p(a(y - x)) (x, a) G G, >̂ G <S(Jïd) 

With these notations we have the following proposition. 

Proposition 4.2: For each G-invariant multiplier p G M G ^ ) let Lp : S(Md) 
K(Md,my ~) be a map satisfying 

fl-i(M+*)#* y 
y€<r 

y)FJ<r),a €T(X) 

where tp is the Fourier transform of cp and Fp satisfies the relation 

FJaa] y)FJ<r),a €T(X) Fp(o) a e r(X) Г Ш 

(3P being a real scalar. Then 

Lp7T(X, a)ip a'*3* T(U{Xia))Lpip (4.7) 

for all (x,a) G G,<p G 5(iRd),p G -MG(JRd) 

Proof: We have 

Mx,a)<p)A(y) eix'ya'dô(a^y) 

By the definition of Lp we obtain 

(Lp7r(x,a)v)(a) a-deix.EveaV< a-1 
Eo 

y)Fp(o) 

Now (4.7) follows from (4.6) and the definition of T(U(Xia)) 

In order to construct functions Fpyp G MG(JRd) satisfying the properties of 
Proposition 4.2 we shall make use of the following inequality. 
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Proposition 4.3 (P. Major [Maj]) Let 0* > 0, 1 < i < n, n > 2,0X + • • • + 0n < d. 
Then 

Xl+X2-\ \-xn=x 

n 

t=l 
\Xi \0I-d dx\dx2 dxn-i 

C(0i,02> •••>0n I 0i+-+0„-d for all x € iRd, 

where |x| denotes the Euclidean norm in Md1dxj indicates integration with respect 
to the d-dimensional Lebesgue measure and C(0i,02, •-»0n) is a positive constant. 

Proof: This is done by straightforward induction in n. (For details see the proof of 
Proposition 6.3 in [Maj].). • 

Proposition 4.4 Let 7\ > 0,1 < < n, m r d 
2 

OO t d and let 

Gn(X\,X2,..,Xn) \x\ + -- + xn\ d-B- Ч=1Г> 
N 

n-1 
\Xj Ti-\(n+d) Xj € Bd. 

Then the following holds: 
(i) Gn(aari,ax2,...,axn] : ad-0-t{n+d)n GFN(XI,X2,...,XN). 
(ii) For any <p e S(Md) 

I* 
N 

t=l 
,xi) Gn{xi,...,xn) \2dm(xi)...dm(xn) 

C Su3 
X 

{l + \x\NMx)\2 for N Xj € Bd 

where C is a constant independent of (p. 

Proof (i) is immediate from definitions. To prove (ii) we denote by Ci,C2,. . . 
constants independent of (p and observe that the boundedness of h in (4.3) together 
with Proposition 4.3 implies that, for N > 2(d — /?), 

C 
N 

1=1 
2i)Gn(xiì...ìXn. |2 rfm(rci ).. .dm(xn 1 

Ci Wxtfh ,2(d-0- ITI v 
fimi**) Xl + -»+Xn=:X 

N 

j=i 
Xj\ 2r.-d ix\...dxn-i dx 

0 \4>{x)\* \x\A~vdx 

C2 sup 
M<1 

<P(x)f 
M<1 

x\ d-26 dx + C2 sup \x\N\tfi(x)\2 
l»l>i l«l>i 

ix\...dxn-i 

sup(l + |xr)|<3(x)|2 
X 
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Proposition 4.5: For each G-invariant multiplier p G Mq(1R^) let Fp be a function 
on T(Md) given by 

Fp(o)= 0 
CP(N) nEon Gn,p(̂ (l) xn(n) 

if <7 = 0 
if a = {xi,...,rrn 

where cp(n) is a scalar, cp(n) = 0 for N > NP 

Gn,p(x1,....,xn) \Xl+--+Xn\ 
d-br n j[n,p) n 

i=i 
xj <7>,p)-£(A*+d) 

- o o < 0P < d,r(j,n,p) > 0 ,^=1r( j ,n ,p) < I and £/n is the group of all 
permutations on the set {1,2, . . . ,n} . Define the linear map Lp on S(Md) by 

Mi*) e 
XeO 

x)FJa) p e MG{Rd). 

Then the following are fulfilled: 

(i) Lp is a continuous map from S(Md) into the space tC(Md, m, ~ ) of all Maassen 
kernels, satisfying 

i k^ ) i CJN) sup i+i*r: Y <p(x)\ ioi N 2(d-BB 
X 

(ii) Lpir(x,a)<p = a^r(UM)Lp(p for all (.r,a) G G,<p G S(lRd). 

(iii) If Ap(^),i4j(^),^ 6 S(Md) are defined by (4.2) then properties (i) and (ii) of 
Proposition 4.1 are fulfilled with 

rp((x,a)) A-B for all (s, a) € G p G Ma(iRd). 

Proof: This is immediate from Proposition 4.2 and 4.4. 

Remark 4.6 Note that p G Mo{JRd) simply means that p is a bounded measurable 
function of disjoint triplets (<7i, 0-2,03) of finite subsets of Md satisfying the identity 
p{a<j\,aa2,aas) = p(o,i,o,2,op3) for all a > 0. Thus Proposition 4.5 yields explicit 
examples of families of simultaneously self-similar fields {Ap(-),p G MG(JRd)} in the 
vacuum state ¿0. If the measure m defined by (4.3) has the additional property that 
the function h on the unit sphere is a constant then the self-similarity property extends 
to the group of orthogonal transformations also. It follows from Proposition 4.5, 
Corollary 2.7 and the Schwartz's kernel theorem that the real multilinear functional 
(¿0, A* ((pi)...Afn{<pn)h), (¥>i, <Pn) G S(Md) x . . . x S(Rd) are, indeed, restrictions 
of tempered distributions on (Md)n with self-similarity property under the G-action: 
(x,a)(j/i, ...,2/n) = (ayi + x, ...,ayn + x). It should be interesting to find out, under 
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what conditions on p, the operators Ap(ip) + A*p(<p) are essentially selfadjoint on the 
domain tC(Md) for all <p G S(Md). 

Remark 4.7 Consider the special case when p = 1. Then for any two Maassen 
kernels f,g,Bp{f)g = / * g. By Theorem 1.4 the operators Ap((p) = A(ip),<p G 
S(Md) of Proposition 4.5 can be identified through the unitary conjugation by V 
as multiplication operators by random variables on a Gaussian random field with 
involution. Then the example in Proposition 4.5 yields a self-similar classical random 
field subordinate to a Gaussian random field. This is just a translation of the 
construction by P. Major [Maj] in terms of Maassen kernels. 

We now conclude our discussion with the construction of a self-similar Clifford field 
by choosing an appropriate weight p. To this end we begin with a general proposition 
concerning one-particle Maassen kernels, i.e., kernels with support in {<r\#a = 1}. 

Proposition 4.8 Let (-X",ra,~) be as in Section 3, pi,P2 € M{X) and let q be a 
scalar. For any two one-particle Maassen kernels / , g, the operator BP1 (f)BP2 (g) + 
qBP2 (g)Bpl ( /) is also the operator of multiplication by a bounded measurable function 
b on T(X) if, for any x,y G X,a G T(X) such that x ^ y, {x,y} fla = 0 the following 
four relations hold: 

(i) Pi(0, {*}, ° + {2/})P2(0, {»},a) + </pi(0, {x},<r)p2(0, {y}, <r + {x}) = 0; 
(ii) Pl({x}, 0,{2/})P2(0, {»},a)0, <r + {x}) + qPl({x}, 0, er + {»})pa({y}, 0, *) = 0; 
(iii) pi(0, {x},a)p2({yh 0»*) + QPi(0, {*} ,* +{2/})P2(0, {»},a)0, <r + {x}) = 0; 
(iv) Pl({x}, 0, a + {y})p2(Q, {y}> * + {*}) + QPi({*}, 0,^)P2(0, {2/},<r) = 0. 
In such a case 6 is given by 

b(a): Pi({x},0,(7)p2(0, {*},*) gpi(0, {x}, <r)p2({^}, 0, <r)f(x)g(x)dm(x) 

Proof: This is a consequence of somewhat tedious but straightforward verification 
by using the definition of Bp(-) in Theorem 2.2 and (2.1). • 

Proposition 4.9: In Proposition 4.8 let pi = P2 = p and q = 1. Suppose that 
p(0, {x}, <r) = p({x}, 0, <r) and 

p(0,{x},<7) 
y€<r 

k(xyy) 

where fc(x,j/) is a complex-valued function of modulus unity on {(x,y) : x ^ y} C 
X x X satisfying the relation 

k(x,y) + k(y,x) = 0, 

Then, for any two one-particle Maassen kernels / , g, the following holds: 
(i) Bp(f)Bp(g) + Bp(g)Bp(f) = 2 / /(x)^(x)dm(x); 
(ii) BUf) = BJf) 
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where f(x) = f({x}). 

Proof: (i) is an immediate consequence of Proposition 4.8 whereas (ii) follows from 
Corollary 2.4. • 

Remark 4.10 It is clear from Proposition 4.9 that Bp(f) extends to a bounded 
operator in L2(mr). Indeed, 

Bp(f)Bl(f) + Bl(f)Bp(f) = 2 \f(x)\2dm(x). 

Thus the closure of the operators Bp(f),f € L2(m) yields a Clifford field. 

Remark 4.11: Choose X — Md, x = - x , 

dm(x) = |x|M h(-ßr)dx 
\x\ 

where \i is a real scalar, ft is a bounded, nonnegative and measurable function on the 
unit sphere in Md and the multiplier p in Proposition 4.9 is chosen with 

k(x,y) 
eio if x > y 

e-io if x < y 

where Md is equipped with the lexicographic order and 6 is a fixed real scalar. Then 
p is invariant under the action of the group G = JRdo(Q, oo) in T(Md). Define, for any 
<p e S(Rd) 

(Lp<p)(<r) <2>(x)\x№d-rt-P if a = {x} x e Md, 
0 i f # < ^ l , 

where (p is the Fourier transform of <p and ¡3 is a real scalar satisfying —oo < /3 < d. 
Let A(<p) denote the closure of Bp(Lp(p). Then it follows from Proposition 4.5, 4.9 
and Remark 4.6, 4.10 that the family {A((p),(p G S(Md)} satisfies the following: 
(i) A((p) is a bounded operator in L2(mr) and A(<p)* = A((p)] 
(ii) A{V)A(i>) + A(i>)A(<p) = 2j0(-xMx)\x\d~20h(fc)dx ; 

(iii) The correspondence (<£i,...,<pn) A(<pi)...A((pn) is strongly continuous; 
(iv) (50,A(7r(x,aVi)...i4(7r(x,a)^n)50) = a"n^(6^JA((pi)...A((pn)6ni)y where 

(n(xya)<p)(y) <p(a(y - x) , x,yemd a 0. 

Thus we have constructed a self-similar Clifford field with self-similarity parameter 
ß. If ß is varied in the interval (-oo,d) the fields constructed above are jointly self-
similar. If, in addition, A is a constant then, in the vacuum state, the expectation 
values of the Clifford field thus constructed are invariant under the action of the 
orthogonal group. 
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