Astérisque

K. R. PARTHASARATHY Maassen Kernels and self-similar quantum fields

Astérisque, tome 236 (1996), p. 227-247

http://www.numdam.org/item?id=AST_1996__236__227_0

© Société mathématique de France, 1996, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Maassen Kernels and Self-Similar Quantum Fields

K.R. Parthasarathy

Abstract. — In his Lecture Notes [Maj] P. Major has outlined a theory of multiple Wiener-Itô integrals with respect to a stationary Gaussian random field ξ over the Schwartz space $S(\mathbb{R}^d)$ of rapidly decreasing smooth functions in \mathbb{R}^d . Furthermore, he has exploited the same to construct self-similar random fields subordinate to ξ . Here, we observe that the Hilbert space of functions square integrable with respect to the probability measure P of ξ can be identified in a natural way with the Hilbert space of functions square integrable with respect to the symmetric Guichardet measure [Gui] constructed from the spectrum of ξ . Under such an identification, multiplication of random variables on the probability space of ξ becomes the twisted convolution of Lindsay and Maassen [Li M 1,2] for Maassen kernels [Maa], [Mey]. The multiple Wiener-Itô integral of Major is described neatly by a twisted version of Meyer's multiplication formula (see (IV.4.1 in [Mey]). Following Lindsay and Parthasarathy [Li P] we introduce the weighted and twisted convolution of Maassen kernels, present a generalization of Meyer's formula and exploit it to construct a family of operator fields whose expectations in the vacuum state exhibit a simultaneous self-similarity property. Such a construction includes Major's examples and at the same time yields a self-similar Clifford field.

1 An involutive Gaussian random field and the Lindsay-Maassen twisted convolution algebra

Let (X, \mathcal{F}, m) be a σ -finite measure space equipped with an *m*-preserving involution $x \to \tilde{x}$ on X satisfying $(\tilde{x})^{\sim} \equiv x$. For any measure μ , denote by $L^2_{\mathbb{R}}(\mu)$ and $L^2(\mu)$ respectively the real and complex Hilbert spaces of functions square integrable with respect to μ . Then the following holds:

Theorem 1.1 There exists a probability space $(\Omega, \mathcal{F}_m, P_m)$ and a linear map $\xi: L^2_{\mathbb{R}}(m) \to L^2(P_m)$ satisfying the following:

(a) For each $f \in L^2_{\mathbb{R}}(m)$, $\xi(f)$ is a complex-valued Gaussian random variable of mean 0.

(b) For any $f, g \in L^2_{\mathbb{R}}(m)$,

$$\mathbb{I}\!\!E\,\overline{\xi(f)}\xi(g)=\int f(x)g(x)dm(x).$$

(c) If $\tilde{f}(x) \equiv f(\tilde{x})$ and $f \in L^2_{\mathbb{R}}(m)$ then $\xi(\tilde{f}) = \overline{\xi(f)}$.

(d) The σ algebra generated by $\{\xi(f), f \in L^2_{\mathbb{R}}(m)\}$ is \mathcal{F}_m .

Proof: For any $f, g \in L^2_{\mathbb{R}}(m)$ define

$$K_{\pm}(f,g) = \int \frac{1}{2} (f(x) \pm f(\tilde{x})) g(x) dm(x).$$
(1.1)

From the ~ - invariance of m and Schwarz's inequality we have $K_{\pm}(f,g) = K_{\pm}(g,f)$,

$$|\int f(\tilde{x})f(x)dm(x)| \leq \int f^2(x)dm(x)$$

and therefore

$$K_{\pm}(f,f) = \frac{1}{2} \int (f^2(x) \pm f(\tilde{x})f(x))dm(x) \ge 0.$$

In other words K_+ and K_- are non-negative definite bilinear forms on $L^2_{\mathbb{R}}(m)$ with non-trivial kernel (consisting of odd functions for K_+ and even functions for K_-). Hence there exist two independent real Gaussian random fields ξ_+ and ξ_- over $L^2_{\mathbb{R}}(m)$ on some probability space $(\Omega, \mathcal{F}_m, P_m)$ for which

$$I\!\!E\xi_{\pm}(f) = 0, \quad I\!\!E\xi_{+}(f)\xi_{+}(g) = K_{+}(f,g), \quad I\!\!E\xi_{-}(f)\xi_{-}(g) = K_{-}(f,g)$$
(1.2)

and \mathcal{F}_m is generated by $\{\xi_+(f), \xi_-(f), f \in L^2_{\mathbb{R}}(m)\}$. Elementary algebra using (1.1), (1.2) and \sim -invariance of m yields

$$I\!\!E(\xi_+(f) - \xi_+(\tilde{f}))^2 = I\!\!E(\xi_-(f) + \xi_-(\tilde{f}))^2 = 0$$
(1.3)

where $\tilde{f}(x) = f(\tilde{x})$. Define

$$\xi(f) = \xi_+(f) + i\xi_-(f).$$

Clearly, ξ is a linear map satisfying (a) and (c). Furthermore

$$I\!\!E \ \overline{\xi(f)} \ \xi(g) = K_+(f,g) + K_-(f,g) = \int f(x)g(x)dm(x)$$

proving (b). Property (d) is immediate.

Corollary 1.2 Let $\{\xi(f), f \in L^2_{\mathbb{R}}(m)\}$ be as in Theorem 1.1. For any f in the complex Hilbert space $L^2(m)$ with $f = f_1 + if_2$, where f_1 and f_2 are respectively the real and imaginary parts of f, let $\xi(f) = \xi(f_1) + i\xi(f_2)$. Then $\{\xi(f), f \in L^2(m)\}$ satisfies the following:

- (a) The correspondence $f \to \xi(f)$ is complex linear.
- (b) For each $f, \xi(f)$ is a complex-valued Gaussian random variable of mean 0.

(c) $I\!\!E \ \overline{\xi(f)} \ \xi(g) = \int \overline{f}(x)g(x)dm(x).$ (d) If $\tilde{f}(x) \equiv \overline{f(\tilde{x})}$, then $\xi(\tilde{f}) = \overline{\xi(f)}.$ (e) $I\!\!E e^{\xi(f)} = \exp \frac{1}{2} \int f(\tilde{x})f(x)dm(x).$

Proof: The first four parts (a) - (d) are immediate from Theorem 1.1. The last part follows from the \sim -invariance of m and the relation

$$\xi(f) = \xi_+(f_1) + i\xi_+(f_2) + i(\xi_-(f_1) + i\xi_-(f_2))$$

where ξ_+ and ξ_- are the independent real Gaussian random fields over $L^2_{\mathbb{R}}(m)$ with respective covariance kernels K_+ and K_- in the proof of Theorem 1.1.

Remark 1.3 In Corollary 1.2 define the normalised exponential random variable $e_{\xi}(f)$ by

$$e_{\xi}(f) = \exp(\xi(f) - \frac{1}{2} \int f(\tilde{x}) f(x) dm(x))$$
 (1.4)

for $f \in L^2(m)$. Then $\{e_{\xi}(f), f \in L^2(m)\}$ is a linearly independent and total set in $L^2(P_m)$. Furthermore

$$I\!\!E \ \overline{e_{\xi}(f)} e_{\xi}(g) = \exp \int \overline{f(x)} \ g(x) dm(x), \qquad (1.5)$$

$$e_{\xi}(f)e_{\xi}(g) = e_{\xi}(f+g)\exp \int f(\tilde{x})g(x)dm(x)$$
(1.6)

for all $f, g \in L^2(m)$.

We shall denote by $\mathcal{E}_{\xi} \subset L^2(P_m)$ the dense linear manifold generated by $\{e_{\xi}(f), f \in L^2(m)\}$. Then (1.6) implies that \mathcal{E}_{ξ} is an algebra of random variables on $(\Omega, \mathcal{F}_m, P_m)$. Owing to property (d) in Corollary 1.2 we may call ξ an *involutive Gaussian random field*.

From now on we assume that (X, \mathcal{F}, m) is a separable, nonatomic and σ -finite measure space. Our aim is to identify $L^2(P_m)$ in Theorem 1.1 with $L^2(m_{\Gamma})$ where m_{Γ} is the symmetric measure of Guichardet [Gui] in the space $\Gamma(X)$ of all finite subsets of X, constructed from m. We denote the Guichardet symmetric measure space by $(\Gamma(X), \mathcal{F}_{\Gamma}, m_{\Gamma})$ so that integration with respect to m_{Γ} is determined by

$$\int_{\Gamma(x)} f(\sigma) dm_{\Gamma}(\sigma) = f(\emptyset) + \sum_{n=1}^{\infty} \frac{1}{n!} \int f(\{x_1, x_2, \cdots, x_n\}) m(dx_1) \cdots m(dx_n) \quad (1.7)$$

for any $f \in L^1(m_{\Gamma})$ where, on the right hand side, $f(\{x_1, x_2, \dots, x_n\})$ is viewed as a symmetric measurable function of n variables x_1, x_2, \dots, x_n with all the $x'_i s$ distinct. It is to be noted that the *n*-fold product of the nonatomic measure m has its support

in the subset $\{(x_1, x_2, ..., x_n) : x_i \in X \text{ and } x_i \neq x_j \text{ if } i \neq j\}$. Denote by $\Gamma^n(X)$ the *n*-fold cartesian product of $\Gamma(X)$ and by $\Gamma^{(n)}(X) \subset \Gamma^n(X)$ the subset

$$\{\underline{\sigma} = (\sigma_1, \sigma_2, ..., \sigma_n) | \sigma_i \in \Gamma(X), \sigma_i \cap \sigma_j = \emptyset \text{ if } i \neq j \}.$$

Then the product measure m_{Γ}^{n} satisfies $m_{\Gamma}^{n}(\Gamma^{n}(X)\setminus\Gamma^{(n)}(X)) = 0$. For simplicity we write $d\sigma = dm_{\Gamma}(\sigma)$ in $\Gamma(X)$. If $\sigma_{1}, \sigma_{2}, ..., \sigma_{n}$ are disjoint elements of $\Gamma(X)$ we write $\sigma_{1} + \sigma_{2} + \cdots + \sigma_{n}$ or $\sum_{i=1}^{n} \sigma_{i}$ to denote $\bigcup_{i=1}^{n} \sigma_{i}$. Then one has the following Maassen's sum-integral formula for $f \in L^{1}(m_{\Gamma}^{n})$:

$$\int_{\Gamma^{(n)}(X)} f(\sigma_1, \sigma_2, ..., \sigma_n) d\sigma_1 d\sigma_2 ... d\sigma_n = \int_{\Gamma(X)} \{ \sum_{\sigma_1 + \dots + \sigma_n = \sigma} f(\sigma_1, ..., \sigma_n) \} d\sigma.$$
(1.8)

For a proof see [Mey], [Li P]. Following [Maa] we introduce the space $\mathcal{K}(X) = \mathcal{K}(X, m, \sim) \subset L^2(m_{\Gamma})$ of Massen kernels:

$$\mathcal{K}(X) = \{ f | \int a^{\#\sigma} |f(\sigma)|^2 d\sigma < \infty \quad \forall \quad a > 1 \}.$$
(1.9)

The Lindsay-Maassen twisted convolution f * g between any two Maassen kernels f and g is defined by

$$(f * g)(\sigma) = \sum_{\sigma_1 + \sigma_2 = \sigma} \int f(\sigma_1 + \tilde{\omega})g(\omega + \sigma_2)d\omega$$
(1.10)

where the summation on the right hand side is over all partitions of σ into a pair σ_1, σ_2 of subsets (which can be empty). Then $f * g \in \mathcal{K}(X)$ and satisfies the inequality

$$\int |a^{\#\sigma}(f * g)(\sigma)|^2 d\sigma \leq \int |(a\sqrt{3})^{\#\sigma} f(\sigma)|^2 d\sigma \cdot \int |(a\sqrt{3})^{\#\sigma} g(\sigma)|^2 d\sigma \text{ for all } a \geq 1.$$
(1.11)

For a proof see Proposition 3.2 in [Li P]. The \sim - invariance of m implies the invariance of the associated Guichardet measure m_{Γ} on $\Gamma(X)$ under the involution transformation $\omega \to \tilde{\omega} = \{\tilde{x} | x \in \omega\}$ and hence it is clear from (1.10) that f * g = g * f. It follows from the sum-integral formula (1.8) that * is even associative. This will also follow from our Theorem 1.4. Thus $\mathcal{K}(X)$ becomes a commutative and associative algebra equipped with the involution $f \to \tilde{f}$ where $\tilde{f}(\sigma) = \overline{f(\tilde{\sigma})}$. A simple computation shows that $(f * g)^{\sim} = \tilde{f} * \tilde{g}$.

For any $\varphi \in L^2(m)$ define the associated exponential kernel $e(\varphi) \in \mathcal{K}(X)$ by

$$e(\varphi)(\sigma) = \begin{cases} 1 & \text{if } \sigma = \emptyset ,\\ \prod_{x \in \sigma} \varphi(x) & \text{otherwise.} \end{cases}$$
(1.12)

Then

$$e(\varphi) * e(\psi) = e(\varphi + \psi) \exp \int \varphi(\tilde{x}) \psi(x) dm(x), \qquad (1.13)$$

$$e(\varphi)^{\sim} = e(\tilde{\varphi}). \tag{1.14}$$

for any $\varphi, \psi \in L^2(m)$. The set $E = \{e(\varphi), \varphi \in L^2(m)\}$ is linearly independent and total in $L^2(m_{\Gamma})$. The linear manifold $\mathcal{E} \subset \mathcal{K}(X)$ generated by E is an involutive subalgebra of $\mathcal{K}(X)$. A comparison of (1.12) - (1.14) with (1.4) - (1.6) leads to the following theorem.

Theorem 1.4: Let ξ be the complex Gaussian random field over $L^2(m)$ in the probability space $(\Omega, \mathcal{F}_m, P_m)$ satisfying the properties (a) - (e) of Corollary 1.2 and property (d) of Theorem 1.1. Then there exists a unique unitary isomorphism $V: L^2(P_m) \to L^2(m_{\Gamma})$ satisfying the following:

(a) $V e_{\xi}(\varphi) = e(\varphi)$ for all $\varphi \in L^2(m)$;

(b) $V\bar{g} = (Vg)^{\sim}$ for all $g \in L^2(P_m)$;

(c) $V(e_{\xi}(\varphi)e_{\xi}(\psi)) = e(\varphi) * e(\psi)$ for all $\varphi, \psi \in L^{2}(m)$;

where $e_{\xi}(\varphi)$ and $e(\varphi)$ are defined by (1.4) and (1.12) respectively.

Proof: First observe that $\langle e(\varphi), e(\psi) \rangle = \exp(\varphi, \psi) = \langle e_{\xi}(\varphi), e_{\xi}(\psi) \rangle$ for all $\varphi, \psi \in L^2(m)$. The totality of \mathcal{E}_{ξ} in $L^2(P_m)$ and \mathcal{E} in $L^2(m_{\Gamma})$ yields the existence of a unique unitary operator V satisfying (a). Now (b) and (c) are immediate.

Remark 1.5: The map V^{-1} identifies the Lindsay-Maassen twisted convolution algebra $\mathcal{K}(X) = \mathcal{K}(X, m, \sim)$ with the ordinary multiplication algebra of random variables on a Gaussian random field ξ satisfying the involutive property $\xi(\tilde{\varphi}) = \overline{\xi(\varphi)}, \varphi \in L^2(m)$. The involution \sim of $\mathcal{K}(X, m, \sim)$ is then carried over to the complex conjugation of random variables.

We now describe a topology on $\mathcal{K}(X)$. To this end consider the selfadjoint number operator N in $L^2(m_{\Gamma})$ defined by

$$(Nf)(\sigma) = (\#\sigma)f(\sigma), f \in L^2(m_{\Gamma})$$

with maximal domain. Define

$$||f||^{(a)} = ||a^N f||, \ a > 1, \ f \in \mathcal{K}(X).$$
(1.15)

With the family $\{\|\cdot\|^{(a)}, a > 1\}$ of norms $\mathcal{K}(X)$ becomes a topological vector space.

Theorem 1.6 The twisted convolution operator * is continuous. The subalgebra \mathcal{E} is dense in $\mathcal{K}(X)$.

Proof: By Proposition 3.2 in [Li P] we have the inequality

$$||a^N f * g|| \le ||(a\sqrt{3})^N f|| ||(a\sqrt{3})^N g||$$
 for all $f, g \in \mathcal{K}(X), a > 1$.

If $\lim_{n\to\infty} (\|f_n - f\|^{(a)} + \|g_n - g\|^{(a)}) = 0$ for every a > 1 then the inequality

$$\begin{aligned} \|a^{N}(f_{n} * g_{n} - f * g)\| &\leq \|a^{N}((f_{n} - f) * g_{n})\| + \|a^{N}(f * (g_{n} - g))\| \\ &\leq \|(a\sqrt{3})^{N}(f_{n} - f)\| \|(a\sqrt{3})^{N}g_{n}\| + \|(a\sqrt{3})^{N}f\| \|(a\sqrt{3})^{N}(g_{n} - g)\| \end{aligned}$$

implies that

$$\lim_{n\to\infty} \|a^N (f_n * g_n - f * g\| = 0.$$

This proves the first part.

To prove the second part consider an element $(f, a^N f)$ in the graph of the operator a^N with $f \in \mathcal{K}(X)$. Suppose that this element is orthogonal to every element of the form $(e(\varphi), a^N e(\varphi))$. Then

$$\langle (e(\varphi), a^N e(\varphi)), (f, a^N f) \rangle = \langle e(\varphi), f \rangle + \langle e(\varphi), a^{2N} f \rangle \\ = \langle e(\varphi), f + a^{2N} f \rangle \\ = 0 \text{ for all } \varphi \in L^2(m).$$

The totality of exponential kernels implies that $f + a^{2N} f = 0$. Since the spectrum of N is $\{0, 1, 2, ...\}$ it follows that f = 0. This enables us to conclude that for any fixed $a > 1, \varepsilon > 0$ and $f \in \mathcal{K}(X)$ there exists a $g \in \mathcal{E}$ such that

$$||g-f||+||a^Ng-a^Nf||<\varepsilon.$$

Choose $a = n, \varepsilon = \frac{1}{n}$ and denote the corresponding g by g_n . Since a^N is monotonic increasing in a for a > 1 it follows that

$$\lim_{n \to \infty} ||g_n - f|| + ||a^N g_n - a^N f|| = 0 \text{ for every } a > 1.$$

2 Weighted and twisted convolution of Maassen kernels

Following Lindsay and Parthasarathy [Li P] we shall now investigate deformations of the twisted convolution operator * in (1.10) by introducing a weight function or multiplier p inside the integral on the right hand side of (1.10). To this end we introduce the space $\mathcal{M}(X)$ of all complex-valued bounded measurable functions defined on $\Gamma^{(3)}(X)$ and call any element $p \in \mathcal{M}(X)$ a multiplier. Thus p is a function of three arguments $\sigma_1, \sigma_2, \sigma_3$ which are disjoint finite subsets of X. For any two Maassen kernels $f, g \in \mathcal{K}(X)$ and any multiplier $p \in \mathcal{M}(X)$ define the weighted and twisted convolution $f *_p g$ by

$$(f *_p g)(\sigma) = \sum_{\sigma_1 + \sigma_2 = \sigma} \int p(\omega, \sigma_1, \sigma_2) f(\sigma_1 + \tilde{\omega}) g(\omega + \sigma_2) d\omega$$
(2.1)

where $d\omega = dm_{\Gamma}(\omega)$ as in Section 1. It is to be noted that for any fixed $\sigma \in \Gamma(X)$, the complement of the set $\{\omega | \omega \cap \sigma = \emptyset\}$ in $\Gamma(X)$ has m_{Γ} - measure 0.

Proposition 2.1 In the Hilbert space $L^2(m_{\Gamma})$, for any $p \in \mathcal{M}(X), f, g \in \mathcal{K}(X)$ the following inequality holds:

$$||a^N f *_p g|| \le \sup |p| ||(a\sqrt{3})^N f|| ||(a\sqrt{3})^N g|| \text{ for all } a > 1.$$
(2.2)

In particular, $\mathcal{K}(X)$ is closed under the multiplication operation $*_p$.

Proof: This is the same as the first part of Proposition 3.2 in [Li P].

The next proposition is a twisted and weighted version of the Wiener product for Maassen kernels. (See IV.4.1 in [Mey]).

Theorem 2.2 For any multiplier p and Maassen kernel f define the operator $B_p(f)$ in $L^2(m_{\Gamma})$ with domain $\mathcal{K}(X)$ and

$$B_p(f)g = f *_p g$$

where the right hand side is given by (2.1). Then, for any given $f_i \in \mathcal{K}(X), p_j \in \mathcal{M}(X), 1 \leq i \leq n, 1 \leq j \leq n-1$,

$$(B_{p_1}(f_1)B_{p_2}(f_2)\cdots B_{p_{n-1}}(f_{n-1})f_n)(\delta)$$

$$=\sum_{\Sigma\delta_i=\delta} \int \prod_{k=1}^n f_k((\sum_{ik}\tilde{\sigma}_{kj})$$

$$\times \prod_{\ell=1}^{n-1} p_\ell(\sum_{j>\ell}\sigma_{\ell j},(\sum_{i<\ell}\sigma_{i\ell})+\delta_\ell,(\sum_{i<\ell< j}\sigma_{ij})+\sum_{j>\ell}\delta_j)$$

$$\times \prod_{1\le i< j\le n} d\sigma_{ij}$$
(2.3)

where all the sets $\sigma_{ij}, \delta_k, 1 \leq i, j, k \leq n, i < j$ are disjoint and the indices k, ℓ are kept fixed under the Σ -signs inside f_k and p_ℓ .

Proof When n = 2, (2.3) is same as (2.1) if we put $\sigma_{12} = \omega$, $\delta_1 = \sigma_1, \delta_2 = \sigma_2$. We prove (2.3) inductively. Assume (2.3) for n. To prove the same for n + 1 put $g_n = f_n *_{p_n} f_{n+1}$. Then

$$(B_{p_1}(f_1)...B_{p_n}(f_n)f_{n+1})(\delta) = (B_{p_1}(f_1)\cdots B_{p_{n-1}}(f_{n-1})g_n)(\delta)$$

$$= \sum_{\Sigma\delta_i=\delta} \int \prod_{k=1}^{n-1} f_k((\sum_{ik}\tilde{\sigma}_{kj})$$

$$\times \prod_{\ell=1}^{n-1} p_\ell(\sum_{j>\ell}\sigma_{\ell j}, (\sum_{i<\ell}\sigma_{i\ell}) + \delta_\ell, (\sum_{i<\ell< j}\sigma_{ij}) + \sum_{j>\ell}\delta_j)$$

$$\times \sum_{\varepsilon_1+\varepsilon_2=(\sum_{i=1}^{n-1}\sigma_{in})+\delta_n} p_n(\sigma_{n\,n+1},\varepsilon_1,\varepsilon_2)f_n(\varepsilon_1+\tilde{\sigma}_{n\,n+1})f_{n+1}(\sigma_{n\,n+1}+\varepsilon_2)$$

$$\times \left(\prod_{1\leq i< j\leq n} d\sigma_{ij}\right) d\sigma_{n\,n+1}.$$
(2.4)

Introduce new disjoint set variables $\sigma'_{in}, \sigma'_{in+1}, \delta'_n, \delta'_{n+1}, 1 \le i \le n-1$ by putting

$$\sigma'_{in} = \varepsilon_1 \cap \sigma_{in}, \quad \sigma'_{i n+1} = \varepsilon_2 \cap \sigma_{in},$$
$$\delta'_n = \varepsilon_1 \cap \delta_n, \quad \delta'_{n+1} = \varepsilon_2 \cap \delta_n.$$

Then $\sigma'_{in} + \sigma'_{in+1} = \sigma_{in} \cap (\varepsilon_1 + \varepsilon_2) = \sigma_{in}$ and $\delta'_n + \delta'_{n+1} = \delta_n \cap (\varepsilon_1 + \varepsilon_2) = \delta_n$. Substituting these new variables in (2.4) and using the sum-integral formula (1.8) we get

$$(B_{p_1}(f_1) \cdots B_{p_n}(f_n)f_{n+1})(\delta) =$$

$$= \sum_{\substack{(\sum_{i=1}^{n-1}\delta_i) + \delta'_n + \delta'_{n+1} = \delta}} \int \prod_{k=1}^{n-1} f_k (\sum_{i < k} \sigma_{ik} + \delta_k + \sum_{k < j \le n-1} \tilde{\sigma}_{kj} + \tilde{\sigma}'_{kn} + \tilde{\sigma}'_{kn+1})$$

$$\times \prod_{\ell=1}^{n-1} p_\ell ((\sum_{\ell < j \le n-1} \sigma_{\ell j}) + \sigma'_{\ell n} + \sigma'_{\ell n+1}, (\sum_{i < \ell} \sigma_{i\ell}) + \delta_\ell,$$

$$\sum_{i < \ell < j \le n-1} \sigma_{ij} + \sum_{i < l} (\sigma'_{in} + \sigma'_{in+1}) + \sum_{\ell \le j \le n-1} \delta_j + \delta'_n + \delta'_{n+1})$$

$$\times f_n (\sum_{i=1}^{n-1} \sigma'_{in} + \delta'_n + \tilde{\sigma}_{nn+1}) f_{n+1} (\sum_{i=1}^{n-1} \sigma'_{in+1} + \sigma_{nn+1} + \delta'_{n+1})$$

$$\times p_n (\sigma_{nn+1}, \sum_{i=1}^{n-1} \sigma'_{in} + \delta'_n, \sum_{i=1}^{n-1} \sigma'_{in+1} + \delta'_{n+1})$$

$$\times (\prod_{1 \le i < j \le n-1} d\sigma_{ij}) (\prod_{i=1}^{n-1} d\sigma'_{in} d\sigma'_{in+1}) d\sigma_{nn+1}.$$

If we now drop the primes \prime in the expression above it is the same as (2.3) with n replaced by n + 1.

Proposition 2.3 For any $f, g, h \in \mathcal{K}(X)$ and $p \in \mathcal{M}(X)$

$$\langle f,g*_ph\rangle = \langle \tilde{g}*_qf,h\rangle$$

where $\tilde{g}(\sigma) = \overline{g(\tilde{\sigma})}$ and $q(\sigma_1, \sigma_2, \sigma_3) = \overline{p(\sigma_2, \sigma_1, \sigma_3)}$.

Proof: By (2.1) and an application of (1.8) twice for the case n = 2 we have

$$\langle f, g *_p h \rangle = \int \bar{f}(\sigma) \{ \sum_{\sigma_1 + \sigma_2 = \sigma} \int p(\omega, \sigma_1, \sigma_2) g(\sigma_1 + \tilde{\omega}) h(\omega + \sigma_2) d\omega \} d\sigma$$
$$= \int \bar{f}(\sigma_1 + \sigma_2) p(\omega, \sigma_1, \sigma_2) g(\sigma_1 + \tilde{\omega}) h(\omega + \sigma_2) d\sigma_1 d\sigma_2 d\omega$$

$$= \int \{ \sum_{\omega + \sigma_2 = \gamma} \int \bar{q}(\sigma_1, \omega, \sigma_2) \tilde{g}(\omega + \tilde{\sigma}_1) \bar{f}(\sigma_1 + \sigma_2) d\sigma_1 \} h(\gamma) d\gamma$$
$$= \langle \tilde{g} *_q f, h \rangle.$$

Corollary 2.4 For any multiplier p and Maassen kernel f the operators $B_p(f)$ and $B_q(\tilde{f})$ are adjoint to each other on the domain $\mathcal{K}(X)$, where $q(\sigma_1, \sigma_2, \sigma_3) = p(\sigma_2, \sigma_1, \sigma_3)$.

Proof : Immediate .

Proposition 2.5 Let $f_i, 1 \leq i \leq k$ be Maassen kernels. Then

$$|(f_1 * f_2 * \cdots * f_k)(\emptyset)| \le \prod_{i=1}^k ||(k-1)^{N/2} f_i||.$$

Proof: When k = 2, $(f_1 * f_2)(\emptyset) = \langle f_1, f_2 \rangle$ and hence the required inequality coincides with Schwarz's inequality. To deal with the general case introduce the operation A by

$$(Af)(\sigma) = \int f(\sigma + \omega) d\omega.$$

Then, by Theorem 2.2, putting $p_i = 1$ for all *i* and n = k we get from a repeated application of Schwartz's inequality in the integrating variables $\sigma_{12}, \sigma_{13}, ..., \sigma_{1n}$,

$$\begin{split} |f_1 * \cdots * f_k(\emptyset)| \\ &= |\int f_1(\tilde{\sigma}_{12} + \tilde{\sigma}_{13} + \cdots + \tilde{\sigma}_{1k}) f_2(\sigma_{12} + \tilde{\sigma}_{23} + \cdots + \tilde{\sigma}_{2k}) \\ &\cdots f_k(\sigma_{1k} + \sigma_{2k} + \cdots + \sigma_{k-1\,k}) d\sigma_{1k} \cdots d\sigma_{k-1\,k}| \\ &\leq \int (A|f_1|^2)^{1/2} (\tilde{\sigma}_{13} + \cdots + \tilde{\sigma}_{1k}) (A|f_2|^2)^{1/2} (\tilde{\sigma}_{23} + \cdots + \tilde{\sigma}_{2k}) \\ &\times |f_3|(\sigma_{13} + \sigma_{23} + \tilde{\sigma}_{34} + \cdots + \tilde{\sigma}_{3k}) \\ &\cdots |f_k|(\sigma_{1k} + \sigma_{2k} + \cdots + \sigma_{k-1\,k}) \prod_{\substack{1 \le i < j \le n \\ (i,j) \ne (1,2)}} d\sigma_{ij} \\ &\leq \int (A^2|f_1|^2)^{1/2} (\tilde{\sigma}_{14} + \cdots + \tilde{\sigma}_{1k}) (A|f_2|^2)^{1/2} (\tilde{\sigma}_{23} + \cdots + \tilde{\sigma}_{2k}) \\ &\times (A|f_3|^2)^{1/2} (\sigma_{23} + \tilde{\sigma}_{34} + \cdots + \tilde{\sigma}_{3k}) \end{split}$$

$$\times |f_4|(\sigma_{14} + \sigma_{24} + \sigma_{34} + \tilde{\sigma}_{45} + \dots + \tilde{\sigma}_{4k}) \dots |f_k|(\sigma_{1k} + \dots + \sigma_{k-1\,k}) \\ \times \prod_{\substack{1 \le i < j \le n \\ (i,j) \notin \{(1,2), (1,3)\}}} d\sigma_{ij} \\ \dots \\ \le (\int (A^{k-2}|f_1|^2)(\sigma)d\sigma)^{1/2} \{ (A|f_2|^2)^{1/2} * (A|f_3|^2)^{1/2} * \dots * (A|f_k|^2)^{1/2} (\emptyset) \}.$$

A repeated application of the inequality above yields

$$|f_1 * \cdots * f_k(\emptyset)| \le \prod_{j=1}^k \{ \int (A^{k-2} |f_j|^2)(\sigma) d\sigma \}^{1/2}.$$
(2.5)

For any Maassen kernel f we have from (1.8)

$$\int (A^k |f|^2)(\sigma) d\sigma = \int |f|^2 (\sigma_1 + \sigma_2 + \dots + \sigma_{k+1}) d\sigma_1 \dots d\sigma_{k+1}$$
$$= \int \sum_{\sigma_1 + \dots + \sigma_{k+1} = \sigma} |f|^2 (\sigma) d\sigma$$
$$= \int (k+1)^{\#\sigma} |f|^2 (\sigma) d\sigma$$
$$= ||(k+1)^{N/2} f||^2.$$

Now the proposition follows from (2.5).

Proposition 2.6 Let $f, f_i, 1 \le i \le k$ be Maassen kernels and let $p_i, 1 \le i \le k$ be multipliers. Then

$$||B_{p_1}(f_1)\cdots B_{p_k}(f_k)f|| \le (\prod_{i=1}^k (\sup |p_i|)||(2k+1)^{N/2}f_i||)||(2k+1)^{N/2}f||.$$

Proof: From Theorem 2.2 we have

$$||B_{p_1}(f_1)\cdots B_{p_k}(f_k)f|| \le (\prod_{i=1}^k \sup |p_i|)|| |f_1|*\cdots*|f_n|*|f|||.$$
(2.6)

From the \sim - invariance of m_{Γ} we have for any Maassen kernel g

$$||g||^2 = (g * \tilde{g})(\emptyset).$$

By Proposition 2.5 and commutativity of the operation * we have

$$\| \|f_1\| * \cdots * \|f_k\| * \|f\| \|^2$$

= $(|f_1| * |f_1|^{\sim} * |f_2| * |f_2|^{\sim} * \cdots * |f_k| * |f_k|^{\sim} * |f| * |f|^{\sim})(\emptyset)$
 $\leq \{\prod_{j=1}^k \|(2k+1)^{N/2}(|f_j|)\|\}^2 \|(2k+1)^{N/2}(|f|)\|^2.$

From (2.6) and Proposition 2.1 with p = 1 we now have

$$||B_{p_1}(f_1)\cdots B_{p_k}(f_k)f||^2 \leq \{\prod_{i=1}^k \sup |p_i|^2 \prod_{i=1}^k ||(2k+1)^{N/2}f_i||^2\} ||(2k+1)^{N/2}f||^2.$$

Corollary 2.7 Let $f, f_i, 1 \leq i \leq k$ be Maassen kernels and let $p_i, 1 \leq i \leq k$ be multipliers. Then, for any $a \geq 1$,

$$||a^N B_{p_1}(f_1) \cdots B_{p_k}(f_k)f|| \le (\prod_{i=1}^k (\sup |p_i|)|| (a\sqrt{2k+1})^N f_i||)|| (a\sqrt{2k+1})^N f||.$$

Proof: From (2.3) it is clear that

$$|a^{N}B_{p_{1}}(f_{1})\cdots B_{p_{k-1}}(f_{k-1})f|(\delta)$$

$$\leq (\prod_{i=1}^{k} \sup |p_{i}|) (a^{N}|f_{1}|) \ast \cdots \ast (a^{N}|f_{k}|) \ast (a^{N}|f|)(\delta)$$

for any $a \ge 1$. The required inequality is immediate from Proposition 2.6.

Proposition 2.8: Let $f \in \mathcal{K}(X)$ have support in $\{\sigma | \#\sigma = 1\}$. Define the symmetric operator A(f) with domain $\mathcal{K}(X)$ by $A(f) = B_p(f) + B_q(\tilde{f})$ where p and q are as in Corollary 2.4. Suppose $g \in \mathcal{K}(X)$ is such that either it has support in $\{\sigma | \#\sigma \leq n\}$ for some positive integer n or $g \in \mathcal{E}$. Then

$$\sum_{k=0}^{\infty} \frac{\|A(f)^k g\|}{k!} < \infty.$$

Proof: Let g be an n-particle element in $\mathcal{K}(X)$, in the sense that its support is contained in $\{\sigma | \#\sigma = n\}$. It follows from Corollary 2.7 that

$$||A(f)^k g|| \le (2 \sup |p|)^k (2k+1)^{\frac{k+n}{2}} ||f||^k ||g||$$

for all k = 0, 1, 2, ... On the other hand, if $g = e(\varphi)$ for some $\varphi \in L^2(m)$, we have

$$||A(f)^k g|| \le (2 \sup |p|)^k (2k+1)^{\frac{k}{2}} ||f||^k e^{\frac{2k+1}{2} ||\varphi||^2}.$$

Thus, in either case,

$$||A(f)^k g|| \le C^k k^{\frac{k}{2}}, \quad k = 0, 1, 2, \dots$$

for some positive constant C. Now the required result follows from Stirling's formula.

Remark: The symmetric operator A(f) of Proposition 2.8 is essentially selfadjoint on the domain of finite particle vectors as well as the exponential domain \mathcal{E} .

3 Covariance properties of the family $\{B_p(f)\}$ under a group action

Let (X, m, \sim) be a nonatomic, separable and σ -finite measure space equipped with an *m*-preserving involution as in Section 2. Suppose G is a group of transformations acting as measurable automorphisms of X, leaving *m* quasi-invariant and satisfying the relation $g\tilde{x} = (gx)^{\sim}$ for all $x \in X$. Let

$$\rho(g,x) = \{\frac{dm}{dmg}(x)\}^{1/2}.$$
(3.1)

Let $\alpha = \alpha(g, x)$ be a measurable complex-valued 1-cocycle of unit modulus in the sense of Mackey [Mac] for the G-action with quasi-invariant measure m. Then

$$\alpha(g_1g_2, x) = \alpha(g_1, g_2x)\alpha(g_2, x)$$
 a.e. $x(m)$ (3.2)

for each $g_1, g_2 \in G$. We assume that

$$\alpha(g,\tilde{x}) \equiv \overline{\alpha(g,x)}, \quad g \in G, \quad x \in X.$$
(3.3)

Extend the G-action to $\Gamma(X)$ by putting

$$g\sigma = \begin{cases} \emptyset & \text{if } \sigma = \emptyset, \\ \{gx, x \in \sigma\} & \text{otherwise.} \end{cases}$$

Then the Guichardet measure m_{Γ} is quasi-invariant under the extended G action on $\Gamma(X)$ and

$$\rho(g,\sigma) := \left\{ \left(\frac{dm_{\Gamma}}{dm_{\Gamma}g} \right)(\sigma) \right\}^{1/2}$$
(3.4)

is given by

$$\rho(g,\sigma) = \begin{cases} 1 & \text{if } \sigma = \emptyset, \\ \prod_{x \in \sigma} \rho(g,x) & \text{otherwise.} \end{cases}$$
(3.5)

Define $\alpha(g,\sigma)$ by

$$\alpha(g,\sigma) = \begin{cases} 1 & \text{if } \sigma = \emptyset, \\ \prod_{x \in \sigma} \alpha(g,x) & \text{otherwise.} \end{cases}$$
(3.6)

Then we have the relations:

$$\begin{aligned} \alpha(g,\sigma_1+\sigma_2) &= \alpha(g,\sigma_1)\alpha(g,\sigma_2),\\ \alpha(g_1g_2,\sigma) &= \alpha(g_1,g_2\sigma)\alpha(g_2,\sigma),\\ \alpha(g,\tilde{\sigma}) &= \overline{\alpha(g,\sigma)},\\ \rho(g,\sigma_1+\sigma_2) &= \rho(g,\sigma_1)\rho(g,\sigma_2),\\ \rho(g_1g_2,\sigma) &= \rho(g_1,g_2\sigma)\rho(g_2,\sigma),\\ \rho(g,\tilde{\sigma}) &= \rho(g,\sigma). \end{aligned}$$

Consider the unitary representation $g \to U_g$ of G in $L^2(m)$ defined by

$$(U_g f)(x) = \alpha(g, g^{-1}x)\rho(g, g^{-1}x)f(g^{-1}x), \quad f \in L^2(m)$$
(3.7)

and its second quantization $g \to \Gamma(U_g)$ defined by

$$(\Gamma(U_g)h)(\sigma) = \alpha(g, g^{-1}\sigma)\rho(g, g^{-1}\sigma)h(g^{-1}\sigma), h \in L^2(m_{\Gamma})$$
(3.8)

where $\rho(g,\sigma)$ and $\alpha(g,\sigma)$ are given by (3.5) and (3.6). Then $g \to \Gamma(U_g)$ is a unitary representation of G in $L^2(m_{\Gamma})$.

Theorem 3.1: Let $p \in \mathcal{M}(X)$ and let $\{B_p(f), f \in \mathcal{K}(X)\}$ be defined as in Theorem 2.2. Then $\Gamma(U_g)$ leaves $\mathcal{K}(X)$ invariant and

$$\Gamma(U_g)B_p(f)\Gamma(U_g)^{-1}h = B_{pg^{-1}}(\Gamma(U_g)f)h$$

for all $f, h \in \mathcal{K}(X), g \in G$, where

$$pg^{-1}(\sigma_1, \sigma_2, \sigma_3) \equiv p(g^{-1}\sigma_1, g^{-1}\sigma_2, g^{-1}\sigma_3).$$

Proof: Straightforward substitution from (3.7) and (3.8) using (2.1) yields

$$(\Gamma(U_g)B_p(f)\Gamma(U_g)^{-1}h)(\sigma)$$

= $\alpha(g,g^{-1}\sigma)\rho(g,g^{-1}\sigma)\sum_{\sigma_1+\sigma_2=g^{-1}\sigma}\int p(\omega,\sigma_1,\sigma_2)\alpha(g^{-1},g(\omega+\sigma_2))$
 $\times \rho(g^{-1},g(\omega+\sigma_2)) f(\sigma_1+\tilde{\omega})h(g(\omega+\sigma_2))d\omega.$

Writing $\delta_i = g\sigma_i, g\omega = \omega'$ and using the relations satisfied by α and ρ we get

$$\begin{split} &(\Gamma(U_g)B_p(f)\Gamma(U_g)^{-1}h)(\sigma) \\ &= \sum_{\delta_1+\delta_2=\sigma} \int pg^{-1}(\omega',\delta_1,\delta_2)\alpha(g,g^{-1}\delta_1)\rho(g,g^{-1}\delta_1)f(g^{-1}(\delta_1+\tilde{\omega}')) \\ &\times h(\omega'+\delta_2)\alpha(g^{-1},\omega')\rho(g^{-1},\omega')^{-1}d\omega' \\ &= \sum_{\delta_1+\delta_2=\sigma} \int pg^{-1}(\omega',\delta_1,\delta_2)\alpha(g,g^{-1}(\delta_1+\tilde{\omega}'))\rho(g,g^{-1}(\delta_1+\tilde{\omega}'))f(g^{-1}(\delta_1+\tilde{\omega}')) \\ &\times h(\omega'+\delta_2)d\omega' \\ &= (B_{pg^{-1}}(\Gamma(U_g)f)h)(\sigma). \end{split}$$

4 Construction of self-similar operator fields

We shall now describe how the covariance property of the operator fields $B_p(\cdot)$ under the group action G can be exploited to construct a family of simultaneously self-similar fields. To this end consider a topological vector space S equipped with a homomorphism $g \to \pi(g)$ of the group G into the group of all bicontinuous linear isomorphisms of S. Let $\mathcal{M}_G(X) \subset \mathcal{M}(X)$ be the subset of all G-invariant multipliers and let $\mathcal{M}_0 \subset \mathcal{M}_G(X)$ be a fixed subset. Suppose that for every $p \in \mathcal{M}_0$ there exists a continuous linear map $L_p: S \to \mathcal{K}(X)$ satisfying the relation

$$L_p \pi(g)\varphi = \tau_p(g)\Gamma(U_g)L_p \varphi, \ p \in \mathcal{M}_0, \ g \in G, \ \varphi \in \mathcal{S}$$
(4.1)

where τ_p is a homomorphism from G into the multiplicative group of all nonzero real scalars and $\Gamma(U_g)$ is defined by (3.8). Recall that $\mathcal{K}(X)$ is equipped with the topology induced by the family of norms given by (1.15). Define the operators $A_p(\varphi), A_p^{\dagger}(\varphi), \varphi \in S$ by

$$A_p(\varphi) = B_p(L_p\varphi), \quad A_p^{\dagger}(\varphi) = B_{\tilde{p}}((L_p\varphi)^{\sim}), \quad p \in \mathcal{M}_0, \quad \varphi \in \mathcal{S}$$
(4.2)

where $B_p(\cdot)$ is as in Theorem 2.2 and $\tilde{p}(\sigma_1, \sigma_2, \sigma_3) = \overline{p(\sigma_2, \sigma_1, \sigma_3)}$. From Corollary 2.4 we know that $A_p(\varphi)$ and $A_p^{\dagger}(\varphi)$ are adjoint to each other on the domain $\mathcal{K}(X)$. With these notations we have the following proposition.

Proposition 4.1: For any $p \in \mathcal{M}_0, \varphi \in \mathcal{S}$ let $A_p^{\#}(\varphi)$ denote either of the operators $A_p(\varphi), A_p^{\dagger}(\varphi)$ defined by (4.2). Then the following holds:

(i) For any fixed Maassen kernel f and multipliers $p_i \in \mathcal{M}_0$, $1 \leq i \leq n$ the correspondence $(\varphi_1, \varphi_2, ..., \varphi_n) \to A_{p_1}^{\#}(\varphi_1)A_{p_2}^{\#}(\varphi_2)...A_{p_n}^{\#}(\varphi_n)f$ from $S \times S \times \cdots \times S$ (*n*-fold) into $\mathcal{K}(X)$ is real multilinear and continuous;

(ii) If δ_{\emptyset} denotes the Maassen kernel defined by $\delta_{\emptyset}(\sigma) = 0$ or 1 according as $\sigma = \emptyset$

or $\neq \emptyset$ then

$$\begin{split} \langle \delta_{\emptyset} \,, A_{p_{1}}^{\#}(\pi(g)\varphi_{1})A_{p_{2}}^{\#}(\pi(g)\varphi_{2})...A_{p_{n}}^{\#}(\pi(g)\varphi_{n})\delta_{\emptyset} \rangle > \\ &= \{\prod_{i=1}^{n} \tau_{p_{i}}(g)\} \langle \delta_{\emptyset}, A_{p_{1}}^{\#}(\varphi_{1})A_{p_{2}}^{\#}(\varphi_{2})...A_{p_{n}}^{\#}(\varphi_{n})\delta_{\emptyset} \rangle \end{split}$$

for all $g \in G$, $\varphi_i \in S$, $p_i \in \mathcal{M}_0$.

Proof: The first part is immediate from Corollary 2.7. To prove the second part observe that (4.1) and Theorem 3.1 together with the G-invariance of the p_i 's imply

$$A_{p_i}^{\#}(\pi(g)\varphi_i) = \tau_{p_i}(g)\Gamma(U_g)A_{p_i}^{\#}(\varphi_i)\Gamma(U_g)^{-1}$$

and $\Gamma(U_g)\delta_{\emptyset} = \delta_{\emptyset}$.

Remark Property (ii) of the fields $\{A_p(\cdot), p \in \mathcal{M}_0\}$ may be interpreted as the simultaneous self-similarity of all their expectation values in the state δ_{\emptyset} where the self-similarity parameter for $A_p(\cdot)$ under the action of the group G is described by the homomorphism τ_p of G into the multiplicative group $\mathbb{R}\setminus\{0\}$.

We shall now illustrate Proposition 4.1 when $X = \mathbb{R}^d$, $S = S(\mathbb{R}^d)$, the Schwartz's space of rapidly decreasing C^{∞} functions in \mathbb{R}^d and $G = \mathbb{R}^d o(0, \infty)$, the semidirect product of the additive group \mathbb{R}^d and the multiplicative group of positive real scalars with the group operation

$$(x,a)(x',a') = (x + a^{-1}x',aa'), \ x,x' \in I\!\!R^d, \ a,a' > 0.$$

Put $\tilde{x} = -x$ and define the measure m in X by

$$dm(x) = |x|^{\mu} h(\frac{x}{|x|})dx$$
 (4.3)

where |x| is the Euclidean norm of x and h is a nonnegative bounded measurable function on the unit sphere in \mathbb{R}^d satisfying h(y) = h(-y), |y| = 1. Then (\mathbb{R}^d, m, \sim) is a nonatomic separable and σ -finite measure space with m-preserving involution. Define the *G*-action on this measure space by (x, a)y = ay for all $x, y \in \mathbb{R}^d, a > 0$. Then

$$\rho(g,y) = \left\{\frac{dm}{dmg}(y)\right\}^{1/2} = a^{-\frac{1}{2}(\mu+d)} \text{ if } g = (x,a).$$
(4.4)

Define

$$\alpha((x,a),y) = e^{iax \cdot y} \tag{4.5}$$

where $x \cdot y$ is the scalar product between x, y in \mathbb{R}^d . Then α is a 1-cocycle of modulus unity for the G-action in \mathbb{R}^d with quasi-invariant measure m given by (4.3) and

furthermore $\alpha((x,a), -y) = \overline{\alpha((x,a), y)}$. Following the notations in (3.5) - (3.8) we have

$$\begin{aligned} \alpha((x, a), \sigma) &= \exp \ ia \ x \cdot \Sigma_{y \in \sigma} y, \\ \rho((x, a), \sigma) &= a^{-\frac{1}{2}(\mu+d)\#\sigma}, \\ (U_{(x,a)}f)(y) &= e^{i \ x \cdot y} a^{-\frac{1}{2}(\mu+d)} f(a^{-1}y), f \in L^2(m), \\ \{\Gamma(U_{(x,a)})g\}(\sigma) &= e^{ix \cdot \Sigma_{y \in \sigma} y} a^{-\frac{1}{2}(\mu+d)\#\sigma} g(a^{-1}\sigma), \ g \in L^2(m_{\Gamma}) \end{aligned}$$

Let

$$(\pi(x,a)\varphi)(y) = \varphi(a(y-x)), \ (x,a) \in G, \ \varphi \in \mathcal{S}(\mathbb{R}^d).$$

With these notations we have the following proposition.

Proposition 4.2: For each G-invariant multiplier $p \in \mathcal{M}_G(\mathbb{R}^d)$ let $L_p : \mathcal{S}(\mathbb{R}^d) \to \mathcal{K}(\mathbb{R}^d, m, \sim)$ be a map satisfying

$$(L_p \varphi)(\sigma) = \hat{\varphi}(\sum_{y \in \sigma} y) F_p(\sigma), \sigma \in \Gamma(X)$$

where $\hat{\varphi}$ is the Fourier transform of φ and F_p satisfies the relation

$$F_p(a\sigma) = a^{d-\beta_p - \frac{1}{2}(\mu+d)\#\sigma} F_p(\sigma), \ \sigma \in \Gamma(X),$$
(4.6)

 β_p being a real scalar. Then

$$L_p \pi(x, a) \varphi = a^{-\beta_p} \Gamma(U_{(x,a)}) L_p \varphi$$
(4.7)

for all $(x,a) \in G, \varphi \in \mathcal{S}(\mathbb{R}^d), p \in \mathcal{M}_G(\mathbb{R}^d)$.

Proof: We have

$$(\pi(x,a)\varphi)^{\wedge}(y) = e^{ix \cdot y} a^{-d} \hat{\varphi}(a^{-1}y).$$

By the definition of L_p we obtain

$$(L_p \pi(x, a)\varphi)(\sigma) = a^{-d} e^{ix \cdot \Sigma_{y \in \sigma} y} \hat{\varphi}(a^{-1} \sum_{y \in \sigma} y) F_p(\sigma).$$

Now (4.7) follows from (4.6) and the definition of $\Gamma(U_{(x,a)})$.

In order to construct functions $F_p, p \in \mathcal{M}_G(\mathbb{R}^d)$ satisfying the properties of Proposition 4.2 we shall make use of the following inequality.

Proposition 4.3 (P. Major [Maj]) Let $\theta_i > 0$, $1 \le i \le n$, $n \ge 2, \theta_1 + \cdots + \theta_n < d$. Then

$$\int_{x_1+x_2+\cdots+x_n=x} \prod_{i=1}^n |x_i|^{\theta_i-d} dx_1 dx_2 \cdots dx_{n-1}$$

$$\leq C(\theta_1, \theta_2, ..., \theta_n) |x|^{\theta_1+\cdots+\theta_n-d} \text{ for all } x \in \mathbb{R}^d,$$

where |x| denotes the Euclidean norm in \mathbb{R}^d , dx_j indicates integration with respect to the *d*-dimensional Lebesgue measure and $C(\theta_1, \theta_2, ..., \theta_n)$ is a positive constant.

Proof: This is done by straightforward induction in n. (For details see the proof of Proposition 6.3 in [Maj].).

Proposition 4.4 Let $r_j > 0, 1 \le j \le n, \sum_{j=1}^n r_j < \frac{d}{2}, -\infty < \beta < d$ and let

$$G_n(x_1, x_2, ..., x_n) = |x_1 + \dots + x_n|^{d-\beta - \sum_{j=1}^n r_j} \prod_{j=1}^n |x_j|^{r_j - \frac{1}{2}(\mu+d)}, x_j \in \mathbb{R}^d.$$

Then the following holds:

(i) $G_n(ax_1, ax_2, ..., ax_n) = a^{d-\beta - \frac{1}{2}(\mu+d)n}G_n(x_1, x_2, ..., x_n).$ (ii) For any $\varphi \in S(\mathbb{R}^d)$ $\int |\hat{\varphi}(\sum_{i=1}^n x_i)G_n(x_1, ..., x_n)|^2 dm(x_1)...dm(x_n)$

$$\leq C \sup(1+|x|^N)|\hat{\varphi}(x)|^2 \text{ for } N > 2(d-\beta)$$

where C is a constant independent of φ .

Proof (i) is immediate from definitions. To prove (ii) we denote by $C_1, C_2, ...$ constants independent of φ and observe that the boundedness of h in (4.3) together with Proposition 4.3 implies that, for $N > 2(d - \beta)$,

$$\begin{split} \int |\hat{\varphi}(\sum_{i=1}^{n} x_{i})G_{n}(x_{1},...,x_{n})|^{2} dm(x_{1})...dm(x_{n}) \\ &\leq C_{1} \int |\hat{\varphi}(x)|^{2} |x|^{2(d-\beta-\sum_{j=1}^{n} r_{j})} (\int_{x_{1}+\cdots+x_{n}=x} \prod_{j=1}^{n} |x_{j}|^{2r_{j}-d} dx_{1}...dx_{n-1}) dx \\ &\leq C_{2} \int |\hat{\varphi}(x)|^{2} |x|^{d-2\beta} dx \\ &\leq C_{2} \sup_{|x|\leq 1} |\hat{\varphi}(x)|^{2} \int_{|x|\leq 1} |x|^{d-2\beta} dx + C_{2} \sup_{|x|>1} |x|^{N} |\hat{\varphi}(x)|^{2} \int_{|x|>1} |x|^{d-2\beta-N} dx \\ &\leq C \sup_{x} (1+|x|^{N}) |\hat{\varphi}(x)|^{2}. \end{split}$$

K.R. PARTHASARATHY

Proposition 4.5: For each *G*-invariant multiplier $p \in \mathcal{M}_G(\mathbb{R}^d)$ let F_p be a function on $\Gamma(\mathbb{R}^d)$ given by

$$F_p(\sigma) = \begin{cases} 0 & \text{if } \sigma = \emptyset\\ c_p(n) \sum_{\pi \in \mathcal{G}_n} G_{n,p}(x_{\pi(1)}, ..., x_{\pi(n)}) & \text{if } \sigma = \{x_1, ..., x_n\} \end{cases}$$

where $c_p(n)$ is a scalar, $c_p(n) = 0$ for $n > n_p$,

$$G_{n,p}(x_1,...,x_n) = |x_1 + \cdots + x_n|^{d-\beta_p - \sum_{j=1}^n r(j,n,p)} \prod_{j=1}^n |x_j|^{r(j,n,p) - \frac{1}{2}(\mu+d)},$$

 $-\infty < \beta_p < d, r(j,n,p) > 0, \sum_{j=1}^n r(j,n,p) < \frac{d}{2}$ and \mathcal{G}_n is the group of all permutations on the set $\{1, 2, ..., n\}$. Define the linear map L_p on $\mathcal{S}(\mathbb{R}^d)$ by

$$(L_p \varphi)(\sigma) = \hat{\varphi}(\sum_{x \in \sigma} x) F_p(\sigma), \ p \in \mathcal{M}_G(\mathbb{R}^d).$$

Then the following are fulfilled:

(i) L_p is a continuous map from $\mathcal{S}(\mathbb{R}^d)$ into the space $\mathcal{K}(\mathbb{R}^d, m, \sim)$ of all Maassen kernels, satisfying

$$\|(L_p \varphi)\| \le C_p(N) \sup_x (1+|x|^N)^{\frac{1}{2}} |\hat{\varphi}(x)| \text{ for } N > 2(d-\beta_p).$$

(ii) $L_p\pi(x,a)\varphi = a^{-\beta_p}\Gamma(U_{(x,a)})L_p\varphi$ for all $(x,a) \in G, \varphi \in \mathcal{S}(\mathbb{R}^d)$.

(iii) If $A_p(\varphi), A_p^{\dagger}(\varphi), \varphi \in \mathcal{S}(\mathbb{R}^d)$ are defined by (4.2) then properties (i) and (ii) of Proposition 4.1 are fulfilled with

$$\tau_p((x,a)) = a^{-\beta_p}$$
 for all $(x,a) \in G$, $p \in \mathcal{M}_G(\mathbb{R}^d)$.

Proof: This is immediate from Proposition 4.2 and 4.4.

Remark 4.6 Note that $p \in \mathcal{M}_G(\mathbb{R}^d)$ simply means that p is a bounded measurable function of disjoint triplets $(\sigma_1, \sigma_2, \sigma_3)$ of finite subsets of \mathbb{R}^d satisfying the identity $p(a\sigma_1, a\sigma_2, a\sigma_3) \equiv p(\sigma_1, \sigma_2, \sigma_3)$ for all a > 0. Thus Proposition 4.5 yields explicit examples of families of simultaneously self-similar fields $\{A_p(\cdot), p \in \mathcal{M}_G(\mathbb{R}^d)\}$ in the vacuum state δ_{\emptyset} . If the measure m defined by (4.3) has the additional property that the function h on the unit sphere is a constant then the self-similarity property extends to the group of orthogonal transformations also. It follows from Proposition 4.5, Corollary 2.7 and the Schwartz's kernel theorem that the real multilinear functionals $\langle \delta_{\emptyset}, A_{p_1}^{\#}(\varphi_1)...A_{p_n}^{\#}(\varphi_n)\delta_{\emptyset} \rangle, (\varphi_1, ..., \varphi_n) \in \mathcal{S}(\mathbb{R}^d) \times \cdots \times \mathcal{S}(\mathbb{R}^d)$ are, indeed, restrictions of tempered distributions on $(\mathbb{R}^d)^n$ with self-similarity property under the *G*-action: $(x, a)(y_1, ..., y_n) = (ay_1 + x, ..., ay_n + x)$. It should be interesting to find out, under what conditions on p, the operators $A_p(\varphi) + A_p^{\dagger}(\varphi)$ are essentially selfadjoint on the domain $\mathcal{K}(\mathbb{R}^d)$ for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$.

Remark 4.7 Consider the special case when $p \equiv 1$. Then for any two Maassen kernels $f, g, B_p(f)g = f * g$. By Theorem 1.4 the operators $A_p(\varphi) = A(\varphi), \varphi \in \mathcal{S}(\mathbb{R}^d)$ of Proposition 4.5 can be identified through the unitary conjugation by V as multiplication operators by random variables on a Gaussian random field with involution. Then the example in Proposition 4.5 yields a self-similar classical random field subordinate to a Gaussian random field. This is just a translation of the construction by P. Major [Maj] in terms of Maassen kernels.

We now conclude our discussion with the construction of a self-similar Clifford field by choosing an appropriate weight p. To this end we begin with a general proposition concerning *one-particle Maassen kernels*, i.e., kernels with support in $\{\sigma | \#\sigma = 1\}$.

Proposition 4.8 Let (X, m, \sim) be as in Section 3, $p_1, p_2 \in \mathcal{M}(X)$ and let q be a scalar. For any two one-particle Maassen kernels f, g, the operator $B_{p_1}(f)B_{p_2}(g) + qB_{p_2}(g)B_{p_1}(f)$ is also the operator of multiplication by a bounded measurable function b on $\Gamma(X)$ if, for any $x, y \in X, \sigma \in \Gamma(X)$ such that $x \neq y, \{x, y\} \cap \sigma = \emptyset$ the following four relations hold:

(i) $p_1(\emptyset, \{x\}, \sigma + \{y\})p_2(\emptyset, \{y\}, \sigma) + qp_1(\emptyset, \{x\}, \sigma)p_2(\emptyset, \{y\}, \sigma + \{x\}) = 0;$ (ii) $p_1(\{x\}, \emptyset, \sigma)p_2(\{y\}, \emptyset, \sigma + \{x\}) + qp_1(\{x\}, \emptyset, \sigma + \{y\})p_2(\{y\}, \emptyset, \sigma) = 0;$ (iii) $p_1(\emptyset, \{x\}, \sigma)p_2(\{y\}, \emptyset, \sigma) + qp_1(\emptyset, \{x\}, \sigma + \{y\})p_2(\{y\}, \emptyset, \sigma + \{x\}) = 0;$ (iv) $p_1(\{x\}, \emptyset, \sigma + \{y\})p_2(\emptyset, \{y\}, \sigma + \{x\}) + qp_1(\{x\}, \emptyset, \sigma)p_2(\emptyset, \{y\}, \sigma) = 0.$ In such a case b is given by

$$b(\sigma) = \int p_1(\{x\}, \emptyset, \sigma) p_2(\emptyset, \{x\}, \sigma) + q p_1(\emptyset, \{\tilde{x}\}, \sigma) p_2(\{\tilde{x}\}, \emptyset, \sigma) f(\tilde{x}) g(x) dm(x).$$

Proof: This is a consequence of somewhat tedious but straightforward verification by using the definition of $B_p(\cdot)$ in Theorem 2.2 and (2.1).

Proposition 4.9: In Proposition 4.8 let $p_1 = p_2 = p$ and q = 1. Suppose that $p(\emptyset, \{x\}, \sigma) \equiv \overline{p(\{x\}, \emptyset, \sigma)}$ and

$$p(\emptyset, \{x\}, \sigma) = \prod_{y \in \sigma} k(x, y)$$

where k(x, y) is a complex-valued function of modulus unity on $\{(x, y) : x \neq y\} \subset X \times X$ satisfying the relation

$$k(x,y) + k(y,x) \equiv 0.$$

Then, for any two one-particle Maassen kernels f, g, the following holds:

(i) $B_p(f)B_p(g) + B_p(g)B_p(f) = 2\int f(\tilde{x})g(x)dm(x);$ (ii) $B_p^{\dagger}(f) = B_p(\tilde{f})$ where $f(x) \equiv f(\{x\})$.

Proof: (i) is an immediate consequence of Proposition 4.8 whereas (ii) follows from Corollary 2.4.

Remark 4.10 It is clear from Proposition 4.9 that $B_p(f)$ extends to a bounded operator in $L^2(m_{\Gamma})$. Indeed,

$$B_p(f)B_p^{\dagger}(f) + B_p^{\dagger}(f)B_p(f) = 2\int |f(x)|^2 dm(x).$$

Thus the closure of the operators $B_{p}(f), f \in L^{2}(m)$ yields a Clifford field.

Remark 4.11: Choose $X = \mathbb{R}^d$, $\tilde{x} = -x$,

$$dm(x) = |x|^{\mu} h(\frac{x}{|x|}) dx$$

where μ is a real scalar, h is a bounded, nonnegative and measurable function on the unit sphere in \mathbb{R}^d and the multiplier p in Proposition 4.9 is chosen with

$$k(x,y) = \left\{egin{array}{cc} e^{i heta} & ext{if } x > y \ -e^{-i heta} & ext{if } x < y \end{array}
ight.$$

where \mathbb{R}^d is equipped with the lexicographic order and θ is a fixed real scalar. Then p is invariant under the action of the group $G = \mathbb{R}^d o(0, \infty)$ in $\Gamma(\mathbb{R}^d)$. Define, for any $\varphi \in \mathcal{S}(\mathbb{R}^d)$

$$(L_p\varphi)(\sigma) = \begin{cases} \hat{\varphi}(x)|x|^{\frac{1}{2}(d-\mu)-\beta} & \text{if } \sigma = \{x\}, \ x \in \mathbb{R}^d, \\ 0 & \text{if } \#\sigma \neq 1,. \end{cases}$$

where $\hat{\varphi}$ is the Fourier transform of φ and β is a real scalar satisfying $-\infty < \beta < d$. Let $A(\varphi)$ denote the closure of $B_p(L_p\varphi)$. Then it follows from Proposition 4.5, 4.9 and Remark 4.6, 4.10 that the family $\{A(\varphi), \varphi \in \mathcal{S}(\mathbb{R}^d)\}$ satisfies the following: (i) $A(\varphi)$ is a bounded operator in $L^2(m_{\Gamma})$ and $A(\varphi)^* = A(\bar{\varphi})$; (ii) $A(\varphi)A(\psi) + A(\psi)A(\varphi) = 2 \int \hat{\varphi}(-x)\hat{\psi}(x)|x|^{d-2\beta}h(\frac{x}{|x|})dx$; (iii) The correspondence $(\varphi_1, ..., \varphi_n) \to A(\varphi_1)...A(\varphi_n)$ is strongly continuous; (iv) $\langle \delta_{\emptyset}, A(\pi(x, a)\varphi_1)...A(\pi(x, a)\varphi_n)\delta_{\emptyset} \rangle = a^{-n\beta} \langle \delta_{\emptyset}, A(\varphi_1)...A(\varphi_n)\delta_{\emptyset} \rangle$, where

$$(\pi(x,a)\varphi)(y) = \varphi(a(y-x)), \ x,y \in \mathbb{R}^d, \ a > 0.$$

Thus we have constructed a self-similar Clifford field with self-similarity parameter β . If β is varied in the interval $(-\infty, d)$ the fields constructed above are jointly self-similar. If, in addition, h is a constant then, in the vacuum state, the expectation values of the Clifford field thus constructed are invariant under the action of the orthogonal group.

References

- [Li M 1] Lindsay, J.M., Maassen, H.: The stochastic calculus of bose noise, Preprint, 1988.
- [Li M 2] Lindsay, J.M., Maassen, H.: An integral kernel approach to noise. In: Quantum Probability and Applications III (Proceedings, Oberwolfach 1987). Accardi, L., von Waldenfels, W. (eds). LNM 1303, pp. 192-208. Springer, Berlin 1988.
- [Li P] Lindsay, J.M., Parthasarathy, K.R.: Cohomology of power sets with applications in quantum probability, Commun. Math. Phys. 124, 337-364 (1989).
- [Maa] Maassen, H.: Quantum Markov processes on Fock space described by integral kernels. In: Quantum Probability and Applications II. Accardi, L., von Waldenfels, W. (edrs). LNM 1136, pp. 361-374, Springer, Berlin 1985.
- [Mac] Mackey, G.W.: Induced Representations of Groups and Quantum Mechanics, W.A. Benjamin, Inc., New York 1968.
- [Maj] Major, P.: Multiple Wiener-Itô Integrals, LNM 849, Springer, Berlin 1981.
- [Mey] Meyer, P.: Quantum Probability for Probabilists, LNM 1538, Springer, Berlin 1993.

K.R. Parthasarathy Indian Statistical Institute, Delhi Centre, 7, S.J.S. Sansanwal Marg, New Delhi - 110016, India e-mail: krp@isid.ernet.in