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Variations on a Theme by Bismut 

D. W. Stroock, 0. Zeitouni 

Abstract. — Let M be a compact, connected, Riemannian manifold of dimension d> let 
{Pt : t > 0} denote the Markov semigroups on C(M) determined by ^A, and let pt(x,y) 
denote the kernel (with respect to the Riemannian volume measure) for the operator Pt. (The 
existence of this kernel as a positive, smooth function is well-known, see e.g. [D].) Bismut's 
celebrated formula, presented in [B], equates Vlog(pt( • ,y)) with certain stochastic integrals 
(see (20) below.) Various derivations of this formula and its extensions can be found in [AM], 
[EL] and [N]. In this note, we give a quick derivation of Bismut's and related formulae by lifting 
considerations to the bundle of orthonormal frames, using Bochner's identity, and applying a 
little elementary stochastic analysis. Some consequences of these identities are then explored. 
In particular, after deriving a standard logarithmic Sobolev inequality, we present (see (26)) 
a sharp pointwise estimate on the logarithmic derivative of the heat kernel in terms of known 
estimates on the heat kernel itself. 

§1 Bismut's Formula and Variations 

Let O(M) denote the bundle of orthonormal frames associated to M, equipped 
with the L6vi-Civita connection. (Throughout, we will take our basic reference 
for differential geometry to be the book [BC]. In particular, see Chapter 7 for an 
explanation of 0{M).) The advantage gained by moving considerations to O(M) 
is that many differential geometric quantities resemble their classical analogs. For 
example, if ( e i , . . . , e^) denotes the standard orthonormal basis in Rd and £ i , . . . , £<t 
are the corresponding basic vector fields on O(M) (i.e., is the horizontal vector 
field on O(M) for which dn<£k(f) = fe* at each f G 0(M))1 then we can define the 
gradient f € O(M) i—• Vf<p 6 R d for tp € Cl(M) so that 

(1) B B S = VfQ = 
d 

1 
£fc(f)(<P°*-)efc, 

where 7r: O(M) —• M denotes the fiber map. Similarly, if, for F € C 2 ( 0 ( M ) ) , 

(2) AF 
d 

w=1 

C2kF 
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then 

(3) A<p = A(<p o 7r), <P e c2{M) 

is well-defined as a function on M and, in fact, gives the action of the standard 
Laplacian (Laplace-Beltrami operator) on (p. 

Next, let <f>: T(0(M)) —• o(d) (the Lie algebra of d x d skew symmetric matrices) 
denote the connection 1-form determined by the L6vi-Civita connection (cf. §5.2 in 
[BC]). That is, for any f G O(M) and Xf G Tf (O(M)), 0(X f) is determined so that 

HXf sX f -A(*(Jf f )) 

is the horizontal component of J£f, where, for A G o(d), X(A) G T(0(M)) is the 
vertical vector field such that 

A(A)F(f) = gf 
ds 

F(Re.Af i=0 f € O(M), 

and Ro • O(M) —• O(M) is the natural right action given by .Rofv = fOv for 
0 € 0(d), f G C?(M), and v 6 R d. Then, the curvature 2-form $ : T(0(M)) x 
T(0(M)) —• o(d) is defined to be the horizontal part of the exterior derivative d<f> 
otó: 

(4) $(X f ,r f ) = # ( H X f , H r f ) , XhYfeTf(0(M)). 

As a consequence of the fact that the Levi-Civita connection is torsion free and the 
second structural equation (cf. Theorem 4 in §6.2 of [BC]), one finds (cf. §5.3 of [BC]) 
that the commutator of <£* with is vertical and is given by 

(5) [«*,«*] (f) = -A (* M ( f ) ) where Qk,l = Q(Ck,Cl) 

In particular, for (p G C2(M), 

£k£i(<P o 7r) = €/€*(<p o 7T), 

and, for (p G C 3(M), 

tl^iUpoTT) = £*€?(<£ O 7r) - A($fc/)€fc(v?0 7T) 

= £*£*(<£ o TT) 
d 

j=1 
($M e *> e i ) R <* g i (^ 0 7 r )-

Hence, after summing with respect of we arrive at the Bochner identity 

[Ql A V<p = VA<p + RicVy>, 

292 



VARIATIONS ON A THEME BY BISMUT 

where Ric : 0{M) —• Rd <8> Kd is the Ricci curvature (symmetric) matrix 

(7) Ric^j = 
d 

k=l 
Qk,iek,Ej) 

Rd 

Bochner's identity is the starting point for a great deal of analysis on M. To wit. 
let {Pt : t > 0} denote the Markov semigroups on C(M) determined by | A . Then, 
as an application of (6), we find that 

(8) 
d 
dt VPt<P 

1 
2 AVPt<p 

1 
2 RicVPty>, 

where the action of A on an Kd-valued function is component by component; and, 
from (8), one has 

d 
dt 

VPtP |2 (VP,v,AVPtV>)Rd (vpt<p,mcVPt<p)Ri. 

At the same time, an easy computation leads to 

A\VPt<p\ 2 2(VPt<p,AVPt<f)Ri -2||Hess(Ptv)| 2 
H.S.' 

where Hess/ = ((CkClf)) is the Hessian matrix of / e C2(M) and II • HH.S. is the 
standard Hilbert-Schmidt norm for d x d matrices. Hence, we find that 

d 
dt 

VPtv 2 1 
2 A\VPt<fi 2 Hess(Ptv) 2 

H.S 
(VP tV>,RicVP tv>)R(J 

< 1 
2 

AlPt^l 2 <*\VPt<pf, 

where 

(9) a = inf {(e,Ric(f)e)R(J f € 0 ( M ) and |e| = l } . 

In particular, for T e (0, co), 

d 
dt 

Pr-t | V P t V 
ez < - a P T _ t |VPt¥> i2' f. 6(0,T), 

and so 

(10) IVPrvl 2 : e - a T P 2 (IVd 2: Te(o ,oo). 

The estimate in (10) is very useful as it stands. For example, when a > 0, it 
leads immediately to the well known fact that the spectral gap for A as an operator 
on L2(M) is at least a. However, as Bismut [B] noticed, (8) can be effectively 
combined with elementary probability theory to replace estimates like (10) with 

293 



D. W. STROOCK, O. ZEITOUNI 

intriguing equalities. To see this, let (2U,#2IJ,/J) be the standard Wiener space of 
Rd-valued paths and, for each f G 0(M), use #f: [0, oo) x 2U —• O(M) to denote the 
progressively measurable solution to the Stratonovich stochastic differential equation 

( I I ) dFt(t,W) 
d 

1 
н и м и odw (t)k with 5f(0,w) = f. 

Next, define Af : [0, oo) x 2U —• Rd <g> Rd by the integral equation 

(12) mBESBl = 1 
1 
2 

rt 

4 
i4f(r, w)Ric(î f(r, w)) dr, t € [0,oo). 

Then, from (8) and Ito's formula, one finds that, for each T £ (0, oo), 

(13) M(*,w) = Af(tAT,w) VPr-tATVj (î f(*AÏ\w)) 

is an R^-valued martingale. In particular, this means that 

(14) [ V P H ( f ) : E\Af(T)V<pfa(T)) 

Since it is obvious that (cf. (9)) 

(15) A f(T,w) n2 
Hop 

<e~°T (T,w) € [0,oo) x2U, 

(14) represents a considerable sharpening of (10). For example, from (14) and (15), 
we know that 

(16) \VPT(p\ < e dt 
2 

Pr(|V^|). 

(Notice that although Vip is defined only on O(M), |V^| is well-defined on M itself.) 
To see why (16) represents an improvement on (10), we follow the reasoning of D. 
Bakry and M. Emery [BM] to derive from it the logarithmic Sobolev inequality 
(17) 

PT (<p log (p) — Pr<p log PT<P < 
1 
2 

T 

0 
e ~

atdt PT 
IVd 2 

q 
V>€C 1(M; (0,co)). 

Indeed, note that, 

2 
d 

dt 
Pt (PT-t<p log Pr-tf) =Pt 

|VPr-tV 
|2' 

Pr-tf 

< ea(t-Y)Pt (flr-I |Vd) 
2\ 

PT-M 
< e^-^Pr 

Vq|2 

q 
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where we have used (16) to get the first inequality and the Markov property and 

(J¥-t|Vv>|) 2 4(pT-t(Y>*Vv>*)' 2 

< 4(Pr-t<p) < 4(Pr-t<p)2 {Pr-tf) Pr-t 
Vq|2 

q 
to get the second. 

In addition to (17), (14) leads immediately to a remarkable identity, which, because 
it was discovered1 originally by Bismut, we call Bismut's formula. Namely, by 
applying Ito's formula to first (cf. (13)) t € [0,T] i—> tM(t) and then t e [0,T] i—• 
Pr-t<p(df(t)), we see that 

TE\MT)V<p(Sf(T))] E 
T 

'0 
Af(t)VPr-t<p(3f(t)) dt 

= E 
T 

JO 
A<(t)dw(t) 

T 

Jo 
Vflr-tV (*f(*))rfw(*) 

= E 
•T 

O 
Mt)dw{t)(tpo*(Vf(T)) - [ P H ( f ) J 

= E 
T 

/0 
Af(*)dw(t)^OIR(J f(r)) 

where all the stochastic integrals here are taken in the sense of Ito. (More generally, 
the notation dw(£), as opposed to "odw(£)", will be used to indicate Ito, as opposed 
to Stratonovich, stochastic integration.) Thus, in conjunction with (14), we arrive at 
Bismut's formula 

(18) [Vflrvl(f) T-1E 
rT 

O 
Af(t)dw(t)<po*(&(T)) 

Before examining (18) further, we remark that essentially the same line of reasoning 
leads to a related formula. Namely, let : t > 0} denote the Markov semigroup 
given by 

«Pt*(f) E *(*f№) 9ec(O(M)). 

Clearly, [Ptip] OTT Bt(QoTT) for ip e c(M\ but what is perhaps less obvious is that 

(19) VPrv(f) pPrV?](f) J-
T 

/0 
Ric(ff f(0)dw(0vo7r(yF(R)) 

1 Actually, after deriving his formula by a quite different line of reasoning, Bismut [B] offers a 
second derivation which, even if it is not identical, is closely related to the one which we give here. 
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To derive (19), first note that, from (6), 

2 d 
dt q3 t(VP T-t^ = Bt RicVPr-t¥> «e(o,T), 

and therefore 

2№r (V?)] ( f ) -2 VJVd(f) = E 
rT 

F0 
Ric(Sf(í)) [vpT-M$f(t))] 

= E 
T 

'0 
Ric(£f(*)) dw(t) 

T 

0 
[VPT-t<p]fa(t))dw(t) 

= E 
T 

O 
Ric(ï f(0)dw(t)^o7r(ï f(r)) 

§2 Estimates and Applications 

We conclude this note with an examination of the potential applications of Bismut's 
formula (18). To begin with, we follow Bisjnut by converting (18) into the statement 
that 
(20) 

[Vlog(pr(-,î/))](0 [Vpr( •,!/)] (0 
PT{4V>y) 

= T~ 1I 
rT 

0H 
Af(t)dw{t) *(3fCn )=y 

where Pt(x,y) denotes the kernel (with respect to the Riemannian volume measure) 
for the operator Pt. (The existence of this kernel as a positive, smooth function is well-
known, see e.g. [D].) Indeed, as soon as one shows that the conditional expectation 
value on the right makes sense and admits a version which is continuous in y 6 M, 
there is no question that (20) is simply a dramatic re-interpretation of (18). For 
this purpose, first observe that there is no problem about the interpretation of 
Jq Af (£, w) dv/(t) under the conditional measure. Namely, although this integral arose 
as an Ito integral which is defined only up to a set of //-measure 0, it makes perfectly 
good sense as a classical Riemann-Stieltjes integral for each w € 2U. In particular, 
this means that there is no question about the meaning of the right hand side and no 
doubt that (20) holds for P(T,7r(f), -)-almost every j / G M , where P(T,x, •) is the 
transition probability function whose density is pr(x> • )• 

Now, let T e (0, oo) be given, set Tn = (1 - 2"~n)7\ and define 

Gn.T(Uv)=E 
fn 

o 
Af(t)dw(t)Fn,T h*{*fPn)),v) 

where Fn.T(1,t,v) 
P2—TU,V) 
ртЫд,у) 
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We know from (18) that 

T [Vflrvl(f) 
Pt(7t(0,3/) 

lim 
n—foo M 

Gn,T(hy)<p(y) dy. 

Thus, our problem comes down to showing that there exists a Gr(f, •) € C(M;Rd) 
to which G„,r(f,-) oo 

1 
converges uniformly. But, since 

G»,T(f,y)-G !»-i,r(f,y) = E 
Tn 

Tn-1 
i4f(t)áw(t)i!,»,Tl F.*(?f(r„)),y) n > 1, 

our problem comes down to estimating the quantities 

£<r(f ,i/) = № 
TN-L 

Af(t)dvf(t)Fn,T [U*{3,(Tn)),y 

However, by standard (cf. Chapter 5 of [D]) estimates, 

M(T) sup 
t€(0,T] 

sup 
EnEM 

(2nt) 2 
1 

Vt{^V¡) < oo and E(T) inf 
EnEM 

Pr(Z,V)>0, 

while, by Holder's and Burkholder's inequalities, 

Bn,T(f>y) < E 
Tn 

'T.-1 
Af(t)dw(i) 

D+L' 1 
d+1 E Fn,T f,n(Ff(Tn)),Y) 1+1 

d 
d 
d+1 

<de 2t 
2 

(T2-n) 1 
2 i|^».r(f,-,»)| 

1 
d+1 

<de |a-x 
2 

M(T1 
VTE(T) 

1 
d+1 2 n 

2(d+1) 

which is more than enough to justify (20). 
Obviously, the preceding argument is extremely crude and leads to far from optimal 

estimates. In order to remedy this situation, we return again to (18) and consider 
general <p € C(M\ (0,oo)). Next, recall (see, for example, Lemma 3.2.13 in [DS]) the 
application Jensen's inequality which says that, for any probability measure /x and 
non-negative / £ L}{ii) with integral 1, 

t¡)f d\i < /log/d/x + log e* da for all measurable with i/>f € Î O-O* 

take 

ip = A 
T 

O 
(e,¿ f(*)dw(*))R d 

and /= 
V°*(3t(T)) 

РгЧ>Ш) 
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and conclude from (18) that, for every A > 0 and e € 5 d _ 1 , 

AT (e,Vftv(f)) Rd 
PTq(TT(f)) 

<hT(T(f),q) •f logE exp A 
T 

'0 
(e,4f(*)dw(*)J R<* 

where 

(21) 
hr(x,<p) 

M 

Q5$° 
PT<p(x) 

log v (0 
P t ¥ > X ) 

Pr(*,£)<# 

= P r t a log y>)(x) PT<p(x) log PTV(X) 
Pr¥>(x) 

Finally, observe that 

E exp E 
T 

to 
(e,Af(t)dw(t)) Rd 

A2 

2 

T 

'0 
Af(t)Te 2 dt = 1, 

and therefore, by (15), 

logE exp A 
T 

O 
'e,>if(*)dw(*)] Rd < 

A2 

2 

T 

/0 
e~a tdf. 

Hence, after minimizing with respect to A > 0, we arrive at 

(22) \VPT<fi\(x) 
PTV{X) 

< T - 1 2hT(x,<p)Ea(T). where Ea(t) = 
t 

/0 
e~aT dr. 

The estimate in (22) has several potentially interesting features. For one thing, 
it is a complement to the logarithmic Sobolev inequality in (17). Indeed, (17), the 
second part of (21), and (22) yield: 

(23) 

|VPr¥> E 5X° 
PT<P{X) 

< 2EJT) 
J"2 

(Pr<filogw)(x) - PT<fi(x)logPT<P(X)) 

< 
EJT)2 

j»2 Pr 
IVd 2 

Q 
(x). 

In addition, (22) enables one to pass from estimates on f>r(x,y) to estimates for 
|Vpr( • >y)\{x)- Namely, by taking tp = ptr(• ,3/) in (22), we obtain 

(24) Vlogp ( 1 + 6 ) T (- ,2/) |(x) Vp(l+e)r(-»J/)|0z) 
P(i+*)r(*» J/) 

< r _ 1 2Ea(T)H(>T(x,y), 

where 

(25) Ht,T(x,y) 
M 

P«r(£,y) 
P(l+e)T(*ty) 

log PeT( ,̂y) 
P(i+e)r(a;.y) 

Pr(x,£)d£<log b«r(- ,») | | 
p51+E°t5X.Y° 
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To test that (24) is reasonably sharp, we consider the case when (cf. (9)) a > 0 and 
use some of the beautiful estimates given by Cheeger, Li, and Yau in [CY] and [LY]. 
Namely, in that case, (cf. Proposition 5.5.1 and Theorem 5.5.11 in [D]), on the one 
hand, there exists a universal ad £ (0, oo) such that 

(2irt) 2 
1 

|pt(-,»)Hu <a>d 
(2nt)i 

Vol(»,VS) 
< ad 

(2TTt) d 1 
VoI(y,vT) 

0 < t < T, 

where Vol(y, r) is the Riemannian volume of the Riemannian ball of radius r around 
y. On the other hand, a > 0 implies (cf. Theorem 5.6.1 in [D]) that 

(2*T)<pr0r(f),tf) >exp 
dist2(7r(f),2/i 

2T 

where distance is measured in the Riemannian metric. Hence, after putting these 
together with (24), we find that, when a > 0: 

(26) 

7l0gP( 1 + F)3 Y)|(x) 

dist(x, J/) 
[l + c)*I 

T-1/2 21ogad -hdlog 1 + c 
l 

2 log 
(27reT) 

Vol(yVET 

which is surprisingly close to what one knows to be true in the classical, Euclidean 
setting. 

Discouraging Observation: Experience in such matters makes one suspect that 
estimates like (22) (equivalently, the first inequality in (23)) are easier to derive by a 
direct analytic argument than they are by way of a probabilistic formula like Bismut's. 
Unfortunately for stochastic analysis, the one here is no exception. Indeed, recall (cf. 
the derivation of (17)) that 

2 [PT (<p log (p)-Pr<P log PTip) 
»T 

/0 
Pr-t 

Vqt|2 

Qt 
dt, 

where <pt = Pt<p. Next, integrate by parts to get 

2fPt{<plog<p) -Pr<plogPT(p) E-a(T) \VPT<p |2 

PrV> 

T 

to 
E-a{t)PT-t(Fa{t)) dt, 

where 

Fait) 3 
2 
A 

VQT2 

qt 
d 
dt 

IVtftl2 

qt 
- a 

VQT2 
ft 
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Since, by elementary computation and the equality preceding (9), 

Fa(t) llHessf^)! |2 
H.S. ft 

(Vqt,RicVqt) Rd 
ft 

2(Vy?t,Hess(y?t)Vy>f)|t, 
ft 

Vft* 
fî 

— Q \Vft\2 

ft 
> l_ 

ft 
Hess(v?t)Vv?t 

Vqt 
\Vtpt\Vft 

ft 

i2 
>o, 

we now get that 

(27) E-a(T) 
VPTq|21 

PT(p 
< 2 Pr(^log^) - PT<plogPT(p) 

Finally, after an application of Jensen's inequality, one sees that (27) is actually a 
little sharper than the first inequality in (23). 

Of course, with twenty-twenty hindsight, one sees how to amend Bismut's formula 
so that (27) comes out of a probabilistic argument. Namely, exactly the same sort of 
calculation which led to (18) shows that 

[ V J H ( f ) = B 
T 

'0 
r,(t)Af(t)dw(t)<poir($f(T)) 

for any 7j € C1([0,:T];K) satisfying 77(0) = 0 and v(T) = 1. Hence, just as in the 
passage from (18) to (22), 

\VPTf(x) 
PTf(x) 2hr(x] cp) 

•T 

lo 
e-atri(t)2 dt 

for any such n. But this means that one cannot do better than to take v(t) E-a(t) 
E-a(t) 

in which case one gets (27) in the form 

(28) VPTVI(X) 
PT<P(X) 

2hT(x,<p)E-a(T)-K 
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