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MIRROR SYMMETRY IN DIMENSION 3

by Maxim KONTSEVICH

Séminaire BOURBAKI

47eme année, 1994-95, n° 801

Juin 1995

1. CALABI-YAU MANIFOLDS

1.1. Definition and first properties

A Calabi- Yau manifold is a compact connected Riemannian manifold X of even
dimension 2n with holonomy group contained in SU(n) C O(2n, R). In other words,
it is an n-dimensional complex manifold with a Kahler metric with and

a holomorphic volume element non-vanishing everywhere vol E r(X, Kx) such that

voll is equal to the Riemannian volume element arising from the metric. The
volume element vol defines a holomorphic trivialization of the canonical line bundle

Kx = ~n (T~ ) . Thus = 1. In what follows we will not fix the holomorphic
volume element, i.e. we are free to multiply it by a non-zero complex number. In

1954 E. Calabi [13] conjectured and in 1976 S.-T.Yau [59] proved the following

Theorem (Yau). If X is a compact complex manifold with Kx = 0 E Pic(X)
and with a Kähler metric g E then there exists a unique Calabi-Yau Kahler
metric gCY E 5~1~1 (X) such that [gcy] = [g] E H1 (X ).

Theorem (Bogomolov-Beauville, [12,7]). If X is a Calabi-Yau manifold then

there exists a finite covering Y --~ X which is isometrically isomorphic to A x H x C
where

1) A is a complex torus with a flat Kähler metric (the holonomy group of
A is trivial ),

2) H is a 1-connected hyperkahler manifold (the holonomy group of H is contained
in the quaternionic unitary group Sp(l) c 0(4l, R) and ~rl (H) _ ~id}),

3) C is a Calabi-Yau manifold in the proper sense, i.e. 7ri (H) = ~id} and
= 0.

Notice that the factors of type 3) in this decomposition are always projective



algebraic varieties. Also, complex manifolds arising as factors of the second type
(the third type respectively) can be characterized as connected simply connected
smooth projective varieties with a trivial canonical class which admit a holomorphic
symplectic form (for which h1,0 = = 

... 
= hd2mx-l,o - 0 respectively).

1.2. Moduli spaces

Each complex manifold X defines a deformation functor Defx. For a germ of
based analytic space (S, so) the set Defx(8, 80) is the set of equivalence classes of
analytic families of manifolds XS parametrized by S, s E S with the fixed isomor-

phism X.

Theorem (Bogomolov-Tian-Todorov, [11,53,55,45]). If X is a Calabi-Yau

manifold then the local deformation theory of complex structures on X is un-

obstructed. In other words, the deformation functor is representable by a germ
of complex manifold of dimension equal to rkH1(X,Tx) = rkH1(X,An-lTx) -

.

The group of biholomorphic transformations of any Calabi-Yau manifold is an
extension of a complex torus by a discrete group. In general, automorphism groups
cause trouble in constructing moduli space. We will overcome this difficulty by con-
sidering marked polarized Calabi-Yau manifolds. Namely, for a given Calabi-Yau
manifold X consider the set of equivalence classes of Calabi-Yau manifolds Y to-

gether with an isomorphism of graded rings iy : H* (Y ; Z) ~ H* (X ; Z) inducing the
identification of cohomology classes of Kahler forms. This set has a natural structure
of a complex analytic space. We denote its connected component containing X by

MmarkedX. This space is a complex manifold of dimension equal to 
For algebraic X with the integral polarization we can forget marking and get

an algebraic space of finite type Mx (moduli space) with orbifold singularities.
We define the period map from MmarkedX to the complex projective space

C)) by formula

It follows from the Kodaira-Spencer theory that the period map is locally an

embedding. On the vector space C) we have a pseudo-hermitean form



where a and ~3 are smooth closed n-forms on X. This form induces a pseudo-Kahler
metric on an open subset of C)) by formulas analogous to formulas for the
Fubini-Study metrics. The pullback of this pseudo-metric to by the period
map is everywhere defined and strictly negative. Thus, after changing the sign we
get a canonical Kahler metric on the moduli space called the Weil-Petersson metric.

For complex tori and for hyperkahler manifolds moduli spaces are pretty well
understood, they are hermitean symmetric domains locally.

From now on we will consider only 3-dimensional Calabi-Yau manifolds in the
proper sense. If X is such a manifold then it has the following diagram of Hodge
numbers:

Calabi-Yau metrics on X depend on b complex parameters (moduli of complex struc-
tures) and a real parameters (classes of Kahler forms). The cone over the image of
the period map is (locally) a complex Lagrangian cone in H3 (X ; C) ~ C2b+2. The
symplectic form on H3 (X ; C) is the Poincaré pairing.
1.3. Constructions

A large class of Calabi-Yau manifolds can be obtained as complete intersections
in Fano varieties, i.e. complex algebraic manifolds with very ample anticanonical
class (see [49,tangent61]). The simplest example is a quintic 3-fold, i.e. a smooth

hypersurface in CP4 given by a homogeneous equation of degree 5 in 5 variables.
Our next example is an intersection of two cubics in Cp5. The rule is that the sum
of degrees of equations should be equal to the number of variables.

One can replace projective spaces by products of projective spaces, by weighted
projective spaces, by flag varieties etc. One of most general construction covering
90% of examples is due to V. Batyrev [4,5], it is based on the consideration of toric
Fano varieties.

Also one can start from a Calabi-Yau manifold admitting an action of a finite
group preserving the holomorphic volume element and try to resolve singularities of
tlie quotient space. By results of S. Roan, D. Markushevich et al. [47,40,48,39,10]
for all finite subgroups r C SU(3) the quotient space X := C3/r admits a resolution
of singularities X’ with the trivial canonical class. Some other singularities (like the
toric ones) also have such resolutions.



Earlier constructions (due to F. Hirzebruch [29]) were obtained following defor-
mation arguments from the next section. Some other constructions were proposed
by C. Voisin [56].

Playing with all this hundreds of thousands of families of 3-dimensional mani-
folds can be constructed, but still up to now only a finite number of different families
of Calabi-Yau manifolds in the proper sense is known. E. Calabi conjectured that
there are finitely many connected families of Calabi-Yau manifolds in any given
dimension.

1.4. Rational curves

H. Clemens and R. Friedman [19,22] introduced a construction transforming
the topology of 3-dimensional complex manifolds using rational curves. We define

on X as a smooth complex rational curve C C X, C ~ CP1 with

the normal bundle Nc = (Tx)lc/Tc isomorphic In a sense, it

is typical for rational curves because the degree of the normal bundle is

and in the space of a-connections on a 2-dimensional C°°-bundle N over CP~ with

-2 the set of connections giving holomorphic bundles equivalent to

C~ ( -1 ) ® C~ ( -1 ) is open and dense with the complement of real codimension 2.
It is easy to see that (-l, -I)-curves are isolated and do not disappear after

small deformations of the complex structure on X. As we will see, it is reasonable

to expect infinitely many (-1, -1 )-curves on Calabi-Yau manifolds.
H. Clemens’ idea was to take a finite set of non-intersecting ( -1, -I)-curves

contract each of them to a point and try to deform the resulting analytic

space X’ into a smooth manifold via flat deformations.

Locally all (-1, -1)-curves are alike. There exists a neigbourhood of Ci in X

analytically isomorphic to a neigbourhood of the zero section in the total space of

the vector bundle O( -1) 3 O( -1) over Cpl. The result of the contraction of Ci
into a point is an analytic space with the simple quadratic singularity looking like

In fact, this singular space can be obtained as a result of contraction of a

(-1, -1)-curve on another 3-dimensional complex manifold X with the trivial canon-
ical class. This manifold X is not necessarily a Kahler one. The passing from X



to X is called flop and it is very important in Mori’s theory of minimal models of
algebraic varieties.

We can try to deform the complex structure on X’ outside singular points and

modify it near these points as

where i G I are small parameters. Topologically it is a simple surgery: we replace
x in X by ( D3 x with the common boundary ( S2 x 

Theorem (Tian [54]). The deformation theory of X’ is unobstructed. If we choose
a holomorphic volume element on X then the tangent space T to the local moduli
space at the base point is inserted naturally into the following exact sequence:

where the last map is defined on the base vectors as i ~ [Ci] E H2(X; C) .
One can normalize holomorphic volume elements on deformed manifolds by the

condition ~~, vol = 1 where ~y E H3 (X; Z) is a non-trivial cycle. Local parameters Ei
can be defined as integrals of normalized forms vol over the vanishing cycles (S3)2.
One can check that the vector of Ei lies in the kernel of the last arrow in Tian’s

theorem.

Hence if we have enough rational curves Ci such that fundamental classes of
Ci span H2 (X ; Z) and there is a linear relation Li Ei[Ci] = 0 E H2 (X ; C) with all
numbers Ei non-zero, then there is a deformation Y of X’ which is a smooth space
with 7ri (Y) = and H2 (Y; Z) = 0. By a classification theorem of C. T. Wall [57],
the manifold Y is diffeomorphic to the connected sum of several copies of S3 x S3.

Complex manifolds appearing in such a way are not Kahler ones because the
second Betti number is zero. Nevertheless there is a pure Hodge structure on their
cohomology by deformation arguments. Hence we can realize moduli spaces from sec-
tion 1.2 as "boundaries" of larger smooth moduli spaces with natural Kahler metrics.
Also we can increase dimensions of these moduli spaces by contracting/deforming
more and more rational curves. M. Reid [46] conjectured that the moduli spaces of
all 3-dimensional Calabi-Yau manifolds (in the proper sense) can be connected in
such a way. It seems to be true. Physicists prove.d [26], without using computers,
by purely abstract arguments that all the thousands of complete intersections in
products of projective spaces are on the boundary of only one connected component
of moduli space of complex structures on ( S3 x S3 ) # ... # ( S3 x S3 ) .



2. STRING.S AND MIRROR SYMMETRY

2.1. Few words about string theory

String theory is a project for the Grand Unification of all interactions in Nature.
The total Feynman integral is taken over the space of maps from all surfaces to

the target pseudo-riemannian manifold M. The action functional is the Dirichlet
functional plus some fermionic terms. The theory is supersymmetric only for 10-
dimensional manifolds with special metrics close enough to Einstein metrics. In

order to have a chance to be related to the physical world this manifold should be

approximately equal to the product of the Minkowski space R~ and a six-dimensional
manifold X of very small size. This X is essentially the Calabi-Yau 3-fold. The

spectrum of particles of the physics arising in 4 dimensions is determined by the

string theory on X.

It was later realized that one can replace X by any (2, 2)-supersymmetric con-
formal field theory with the central charge c = 3. We want to mention here that

the whole notion of conformal field theory is completely rigorously defined in math-

ematical terms [52,23]. One of important unresolved problems is the description of
the conformal theory corresponding to a given Calabi-Yau manifold.

In fact, there is an additional parameter in theory. It is called a B-field and can

be identified with an element of R). This field multiplies the contribution
of each map cp from a closed surface £ to X by the topological factor exp ~~ (B)) .
The total moduli space of conformal field theories close to the theory associated

with a given Calabi-Yau manifold X has the structure of the product of two Kahler

complex manifolds of dimensions a = h2n (X ) and b = h1 (X). The field B and
a real parameters of the Kahler class of X together form complex coordinates in a

domain of H2(X; C). The string theory on X is not well-defined when the size of
X is too small. In a sense the Feynman integral is not convergent in this case.

There are two classes of observables in N = 2-theory which depend only on

a part of parameters [58]. In the B-model correlators depend only on the complex
structure of X and in the A-model they depend only on the symplectic structure

of X together with the B-field. Moreover, one can argue that the correlators are

holomorphic functions of parameters.

2.2. Discovery of Mirror Symmetry

The correspondence between Calabi-Yau manifolds and conformal field theories

is locally one-to-one. Globally there is no reasons for this, and there is no natural

way to reconstruct the manifold from its string theory. For example, for the target



lattice) the automorphism group of a version of the superstring theory
is the Monster group, i.e. much larger than the symmetry group of the target.

In supersymmetric conformal field theories there is no intrinsic difference be-
tween the A and B model. Based on this, Lerche-Vafa-Werner [35] and Dixon [20]
conjectured that Calabi-Yau manifolds come in pairs giving equivalent string the-
ories. The A-model on one manifold X is equivalent to the B-model on the dual
manifold Y and vice versa. Hodge diagrams of dual manifolds should be mirror
reflections of each other, = (Y). At the same time Green and Plesser

[25] proposed a first explicit pair of points in the moduli of Calabi-Yau manifolds as
candidates to the Mirror symmetry and proposed very convincing arguments. Physi-
cists [15, 27] made a table of Hodge numbers (a, b) for all 7868 families of Calabi-Yau
manifolds arising as complete intersections in products of projective spaces. Very
surprisingly the plot of this numbers in the plane Z2 was almost symmetric, with

only a few (~ 10) exceptions.
The first actual calculation by Candelas et al. [17] of correlators gives an ex-

tremely beautiful prediction relating numbers of rational curves and Picard-Fuchs

equations. We reproduce the results of their calculations in 3.3. Physicists realized
that one can make explicit calculations in both A and B models by a standard trick
in supersymmetry. One can show formally that the Feynman integral in the A-model
is equivalent to the summation over all holomorphic curves on X and the B-model

corresponds to the Hodge theory. The reason is that the Feynman integral over the

space of all maps can be localized to the space of holomorphic maps and constant
maps respectively.

3. PREDICTIONS FROM MIRROR SYMMETRY

3.1. Results from symplectic topology

Let X be a 3-dimensional Calabi-Yau manifold on which all rational curves are

smooth ( -1, -1 )-curves and they do not intersect each other. Then there is a finite
number nd of these curves in each degree d = [C] E H2 (X ; Z), d 7~ 0. This number
does not change if we vary the complex structure on X a little bit. We want to
define analogous numbers for an arbitrary 3-dimensional Calabi-Yau manifold, also
including curves of higher genus. The simplest way to do it, after Y. Ruan [50], is
the following.

We perturb generically the almost-complex structure on X leaving it compatible
in the evident way with the symplectic Kahler form. Then, by Gromov’s theorem [28]



there is a nice compactification of the space of smooth holomorphic curves C C X
of a given area (equivalently, of a given homology class). By theorems of D. McDuff
[41] this compact space is stratified by smooth manifolds with the dimension given
by indices of appropriate a-operators. All this works for an arbitrary compact sym-
plectic manifold. The case of ci(Tx) = 0 and dimR(X) = 6 is exceptional because
this index is equal to zero for all degrees d and all genera g. Thus the set of curves
of given degree and genus is finite.

We associate with any such curve a sign with values in ~+1, -1~. Namely,
each curve is a solution of a non-linear differential equation (the Cauchy-Riemann
equation). We can linearize the problem near each solution and get an invertible
linear differential operator

This operator acts from a complex vector space to another complex vector space, but
it is not C-linear. Nevertheless the principal symbol of 9 is C-linear. We can choose
an invertible C-linear operator 8 with the same principal symbol. The quotient
a~ o (8)-1 is an invertible R-linear operator of the form (Id + compact operator).
The space of such operators has two connected components labeled by the sign of
the determinant of a finite-dimensional approximation. This is the sign which we
attach to curves.

We define the "number of curves" nd,g E Z as the sum of signs over all curves
of degree d and genus g.

Theorem (Ruan). The number nd,g is independent of the choice of generic almost-
complex structure. It is invariant under continuous deformations of the symplectic
form on X.

In fact, Y. Ruan made this statement only for genus zero curves, but his argu-
ment works for higher genera too. If nd,o  0 for some d then there are unavoid-

ably whole continuous families of rational curves for arbitrary integrable complex
structure compatible with the symplectic form. It follows from the positivity of

multiplicities of complete intersections in algebraic/analytic geometry.
The number of curves used in string theory is not the same as the number

. 
defined above. It is not an integer number in general. The reason is that in string
theory one wants to count in a sense the number of equivalence classes of holo-

morphic maps from curves to X. Any such a map is a composition of a (ramified)



covering map C -~ C’ and an embedding C’ ~ X. The space of ramified cover-

ings has a positive dimension, and one needs an additional perturbation argument
in an auxiliary space which is an infinite-dimensional orbifold with finite isotropy
groups. The intersection theory on orbifolds relevant to physics contains non-trivial
denominators.

For example, ramified coverings of degree k of a ( -1, -1 )-curve give the contri-
bution equal to 1~1~3. This formula was proposed by P. Aspinwall and D. Morrison
[3] and recently checked by Yu. Manin [38] using a new definition [34] of numbers

(so called Gromov-Witten invariants) which we will not reproduce here. Hence

3.2. Two Lagrangian cones

For a 3-dimensional Calabi-Yau manifold X with = 0 we define two

complex lagrangian cones ,CA(X ) and The second cone ,CB (X ) is simply
the cone over the image of the period map. It lies in the symplectic vector space
Hodd(X; C) == H3(X; C). .

In order to describe the first cone we need to construct a certain analytic func-
tion (prepotential) in an open domain of the complex vector space H2 (X ; C) :

Here w E n2(X) is a closed 2-form and Li3(z) == ~~ 1 zk jk3, Izl  1 is the usual

3-logarithm function. One expects that the series defining F converges absolutely
in some domain "Re[w] --; -oo". The cubic term in the formula for F represents
the contribution of constant holomorphic maps from rational curves to X.

We define an analytic function F~2~ of homogeneity degree 2 in a conical domain
of the vector space V := H2 (X ; C) C C by formula F~2~ (x, t) := where x E

C) and t E C B ~0~. Let us consider the graph of the differential of F{2~. It is
clear that it is a Lagrangian cone in the symplectic vector space Heven (X) .
We define ,CA(X ) to be the analytic continuation of this graph.
Mirror Conjecture. For dual varieties X, Y, the associated cones are equivalent
after linear symplectic transformations:



Some open domains in projectivizations of cones LA(Y) can be identi-
fied with some open domains in H2 (X ; C), H2 (Y; C) respectively. Mirror symmetry
give rise to a certain biholomorphic map between these domains in affine spaces and
domains in the moduli spaces of dual manifolds. This map is called the mirror map.
Affine coordinates on the second cohomology correspond to so-called flat coordinates
on moduli spaces.

3.3. Example of quintics

The most popular example is a quintic 3-fold. Hodge numbers here are a = 1
and b = 101. The dual family of varieties consists of resolutions of singularities of

quotient spaces

where the group C PGL(5, C) acts by diagonal transformations xj ~ 03BEjxj
preserving the equation from above and the volume element dx1 039B ... A dx5:

The cone GA(X) comes from the function in one variable

which is defined for Re(t)  to = -7.590....

The variation of Hodge structures on 1-parameter family of dual manifolds Y
can be described by a fourth-order linear differential equation:

It has four linearly independent solutions in domain «1, IArg zl « 1:



The Mirror prediction [17, 42] is the following identity:

One can write easily a computer program and get numbers

Miraculously, all numbers nd coming from the mirror prediction are integers.
It is still not proven. It is known that all rational curves up to degree 4 on generic
quintics are smooth (- l, -1 )-curves. Results of the mirror prediction for generic
quintics were confirmed by more or less direct algebro-geometric calculations up to

degree 4 [21,34]. Another remarkable virtue is that the exponent of the ratio of

periods appearing in the mirror map expands into a series with integral coefficients
in appropriate algebraic coordinates on the moduli space of complex structures of
Y. In the case of quintics one has

This fact was recently proved by B. Lian and S.-T. Yau [36] for complete intersections
in projective spaces using p-adic results of B. Dwork.

3.4. Other examples

There are hundreds of other manifolds for which numbers of rational curves of

small degrees were computed and mirror predictions checked (see [21,33,37,6,56,30,
31,16,18]).

An evident trouble is that there are rigid Calabi-Yau manifolds X with 
= 0 which cannot have any mirror manifold Y because hl (Y) > 0 for any Kahler
Y. Still one can count curves on X and make generating functions. Physicists
conjectured that the dual variation of Hodge structures comes from certain higher
dimensional Fano varieties [14]. For example, the H7 of cubics in CP8 looks like the
H3 of a non-existing mirror to one of rigid manifolds. Mathematically more natural

possibility of Hodge structures on non-Kahler 3-dimensional manifolds, as in 1.4,
has not been explored yet.



The most general construction of dual manifolds for complete intersections in
toric varieties was proposed by V. Batyrev and L. Borisov [5] in terms of the usual
duality between convex polyhedra.

P. Aspinwall, B. Green and D. Morrison [2] studied the behavior of A and
B models under birational transformations. It seems that both cones are invariant

under such transformations. For the B-model it is clear because-the moduli space and

the variation of Hodge structure of birationally equivalent manifolds are essentially
the same. If we apply the simplest birational transformation (the flop) then we
get new numbers of curves but the whole analytic continuation of the cone of the
A-model will be the same.

We do not discuss higher dimensional generalizations here (see [43,44,24,1,32]).

4. HOLOMORPHIC ANOMALY EQUATIONS

We describe in this section predictions for numbers of curves of positive genus
from remarkable papers by Bershadsky, Cecotti, Ooguri and Vafa [8,9]. It is impos-
sible to explain here all the arguments of physicists. We just formulate final results
in mathematical terms.

4.1. Flat coordinates on Kahler manifolds

The moduli space of Calabi-Yau manifolds carries a natural Kahler metric (Weil-
Petersson metric). We describe now a general construction applicable to arbitrary
manifold M with a real-analytic Kahler form w.

Denote by M the same manifold M endowed with the complex structure conju-

gate to the original one. The diagonal submanifold Md2ag of M x M is totally real.

Hence the differential form w on Md2ag has the analytic continuation to the holo-

morphic form wC in a neighbourhood U of Mdiag. Thus U is a complex symplectic
manifold. By the Kahler property submanifolds M x ~m} ~ U where m E M are

Lagrangian. It means that we have a Lagrangian foliation of [T. It is well known that

leaves of such a foliation carry a natural flat affine structure. Hence we construct

holomorphic affine structures on open subsets of M depending antiholomorphically
on points of M. For functions on affine space there are canonically defined higher
derivatives which are symmetric covariant tensors.

Resume. For any smooth function f on a Kahler manifold M we defined its canon-

ical higher derivatives E r (M, Sk (TifO) *).
Analogously, if L is a hermitean line bundle over M such that the curvature



form of L is proportional to w and s is a smooth section of L then higher derivatives
of s are defined. The reason is that the pullback of L to M x M carries a flat
connection along the Lagrangian foliation as above.

4.2. Equations

Let X be a 3-dimensional Calabi-Yau manifold and fl4 x be its moduli space.
We consider now M = not as an algebraic space but as an orbifold. It carries

the Weil-Petersson metric WWP and a hermitean line bundle L with fiber over each

point (X) equal to (H3 ~° (X ) ) * .
Physicists claim that there are canonical global objects

for all integers g, k > 0 obeying inequality 2 - 2g - k  0. This inequality is exactly
the condition of hyperbolicity for surfaces of genus g with ~ k punctures. The first
constraint on these objects is that locally there exist sections Fg of L29-2 such that
global sections 8k(Fg) are its derivatives. Thus everything can be obtained from
83(Fo), and Fg for g > 2.

The second constraint is an explicit formula for a3 (Fo ) . Namely, the Kodaira-
Spencer theory defines a map Its third tensor power gives
a map of vector bundles - H3 (X, 039B3TX) = This tensor field is

equal to 83(Fo) after obvious identifications. Because this construction is complex-
analytic we have

0) = 0 . In general one can write the formula for a(a~(Fo)), l~ > 4
with the r.h.s. equal to an expression quadratic in  k and linear in 83 (Fo ) .

Holomorphic anomaly equations:

l)~(Fi))=~o-~~p .
Here x(X) is the Euler characteristic of X and 03C90 is certain canonical (1,1)-

form on M. Namely, there are holomorphic vector bundles over M with fibers
at (X) equal to H~ (X, niTX)). By Hodge theory these bundles are endowed with
natural hermitean forms. We define closed ( 1,1 )-form cjo on M by formula



The operator Contraction maps sections of S3 ( ® S2 ( TM * ® L2 ®
L4-2g to sections of (TMl ) * 0 It is essentially the contraction with natural
hermitean forms on TM and L.

One can deduce formulas for and get expressions quadratic in previ-
ous objects and linear in 83(Fo). Terms in this formula correspond to the boundary
divisors of the moduli space of stable complex curves of genus g with k punctures.

It is not possible to compute Fg inductively using these equations. In each step
one has certain indeterminacy. Namely, one can add to Fg any global holomorphic
section of L2-29 satisfying certain growth conditions at infinity (see 4.3). Thus the
number of unknown parameters is finite. Up to now it is unknown how to fix this

indeterminacy and what is the Hodge-theoretic meaning of holomorphic anomaly
equations.

The generating function F of all Fg is (locally) a function on the total space of
bundle L*. It satisfies a nice system of differential equations of type a(exp(,~’)) _
82(exp(F)).

4.3. Predictions

Flat structure in an open domain U of the moduli space My arising from the

Mirror symmetry is the limit of canonical affine structures (from 4.1) when the base

point m E My tends to a point "-oo" on some compactification of the moduli space,
which is usually an intersection of normally crossing compactification divisors. Also

the line bundle L is trivialized in U. Thus all objects a(a9(F~)) can be considered as
real-analytic functions on a domain of H2 (X ; C) after applying the mirror map. We

can consider them as analytic functions in two groups of variables ~cv~, ~c~~) , where
again w is a closed 2-form on X. The next step is to evaluate these functions at the

limit [w.] -~ -oo using the analytic continuation. We get as a result holomorphic
symmetric tensor fields on a domain of H2 (X; C).

The predictions of Mirror symmetry are as follows:

genus=o: 
This symmetric 3-tensor is called the Yukawa coupling.

genus=l: = 81 24 03A3dnphysd,1exp UdW))
genus> 2: = constantgx(X) + 03A3dnphysd,gexp(d03C9). The con-

stant term comes from the contribution of constant maps to X.

Rational numbers nd gys are not equal to integers nd,g. The difference comes



again from multiple coverings. In genus 1 we have the following relations:

Again, a few predictions for elliptic curves were checked by algebraic geometers.
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