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Introduction

Let i: W — V be an embedding of smooth complex manifolds. Let S be a complex
manifold. Let 7y : V' — S be a holomorphic submersion with compact fibre X, which
restricts to a holomorphic submersion my : W — S, with compact fibre Y. Then we
have the diagram of holomorphic maps

(0.1) Y —W

AN

X —V —/F
Let 1 be a holomorphic vector bundle on W. Let (£, v) be a holomorphic complex of
vector bundles on V', which together with a holomorphic restriction maps r: {ojuwr —
7, provides a resolution of the sheaf i.7.

Let Ry «€, Rmw.n be the direct images of £, 7. We make the assumption that the

Rimw.n are locally free. Then Rmy . is also locally free, and moreover we have a
canonical isomorphism of Z-graded holomorphic vector bundles on S

(0.2) Rry € ~ Rrw.n.
Also for any s € S,

(R’”V*g)s = H(Xs, §|X,) )

(0.3)
(Rmw.n)s =~ H(Ys,myy,)

(here H(X;,§x,) and H(Ys,7)y,) denote respectively the hypercohomology of ¢ x,,
and the cohomology of 7y, ).

Let w",w" be real (1,1) forms on V,W which are closed, and which, when
restricted to the relative tangent bundles T'X, TY, are the Kihler forms of

Hermitian metrics g7%,g”Y on TX,TY. Let g%°,..., g%, g" be Hermitian metrics

0n§0,--~,§m,77- v
Let (Q(Y,my),0 ) be the family of relative Dolbeault complexes along the fibres
Y, whose cohomology is equal to H(Y, 77|y).
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2 INTRODUCTION

Let Td(TY,g”Y) be the Todd form in Chern-Weil theory which is associated to
the holomorphic Hermitian connection VTY on (TY,g7Y). Other Chern-Weil forms
will be denoted in a similar way. In particular ch(n, ") denotes the Chern character
form of the Hermitian holomorphic vector bundle (7, g7).

Let PS be the vector space of smooth real differential forms on S which are sums
of forms of type (p,p). Let Py be the subspace of the a € P°, such that there exist
smooth forms 8 and 7 on S, with o = 83 + 9.

By identifying H(Y, my) to the corresponding fibrewise harmonic forms in
Q(Y,ny), the Z-graded vector bundle H(Y,7n)y) is naturally equipped with a Lo
metric, whose unambiguous normalization is given in equations (2.22), (2.23).

Let T(w",g") be the form in PS contructed by Bismut-Gillet-Soulé [14] and
Bismut-Kohler [18], using Quillen’s superconnections [32], such that

(0.4) %‘%T(ww,g") = ch(H(Y,nyy), g" ) — /Y Td(TY,g™") ch(n, g").
The forms T(w",g") are called higher analytic torsion forms. The component of
degree 0 of T'(w", g") coincides with the Ray-Singer analytic torsion of the relative
Dolbeault complex [34], which is used to define the corresponding Quillen metrics [33],
[13], [15] on det Rmw«n. By the same procedure, for 0 < i < m, we can construct
forms T'(w", ¢%) (0 < i < m) in PS.

Let ((X,¢ X),Z';X + v) be the family of relative Dolbeault double complexes,
whose cohomology coincides with the hypercohomology H (X, ¢ x). Let g (X:¢1x) be

the corresponding L2 metric on H(X,§ x). Put ch(¢, g%) = Z(—l)ich(fi,ggf). By
1=0

the same procedure as in [14], [18], we construct in Section 3.2 analytic torsion forms

T(wY,g%) € P%, such that

03)  5rT(wY,6%) = ch(H(X, 61x),6"%6) = [ TATX,g™) ch(e, o).
An important property of these analytic torsion forms is that, as shown in [18,
Theorem 3.10 and 3.11], their variations in PS/PS0 with respect to (w",g") or
(WY, g%) is expressed in terms of the Bott-Chern classes [13] of the corresponding
holomorphic Hermitian vector bundles. These Bott-Chern classes are secondary
invariants of Hermitian vector bundles, one can think of as complex analogues of
Chern-Simons classes. In particular , it follows from [18, Theorem 3.11] that the
classes of the analytic torsion forms in PS/PS? only depend on wY,w" through
gTX gTY. Note that in degree 0, these anomaly formulas of [18] specialize to the
anomaly formulas for Quillen metrics established in [15].

Before we proceed, we make certain restrictions on the various metrics. By
identifying the normal bundles Ny, ~ Ny, x to the orthogonal bundle to TY in
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INTRODUCTION 3

TX|y, Ny,;x inherits a metric gNv/x. We will assume that the metrics gé°, ..., gém
verify assumption (A) of [5, Definition 1.5] , with respect to g"NY/x g". This
assumption is a compatibility assumption on the metrics g%°,..., g™ to the metrics

g",gN¥/x | which is briefly described in Section 3.3. By [5, Proposition 1.6], one can
always find metrics g%, ..., g% verifying (A). Let Pj be the vector space of sums
of real (p,p) currents on V whose wave front set is included in Ny, /vr- Let PV0 be
the obvious analogue of PS 0

Let T'(¢, g%) € P, be the Bott-Chern current of [16] such that

EF) _
(0.6) %T(f,gg) = Td™!(Ny,x, g"¥/*) ch(n, g")d(w} — ch(§, g%).

By [17], the dependence of the class of T'(¢,¢%) in P%/PVY;O can be described
in terms of Bott-Chern classes. Since T'(§,g°) € P, by [30, Theorem 8.2.12],

/ TA(TX, ¢")T (€, ¢f) € PS.
X

Let Td(TY, TXw,g9T*w) € PY /PW0 be the Bott-Chern class of [13], such that

0.7) f—aTd(TY TX|w,gTxXIW) =
Td(TX|w,g™XI") = TA(TY, g™) Td(Ny,x, g"/x).

Since H(X,&x) ~ H(Y,ny),g?X:éx) and g¥"¥) can be considered as metrics
on the same vector bundle. Let ch(H (X, flx,gH(X*EiX),gH(Y’nlY)) € PS/P59 be the
Bott-Chern class of [13] such that

90 ~
(0.8) %ch (H(y,nly),gH(X,élx),gH(Y,nly)) =

ch (H(ley),g”‘y"”'”) —ch (H(X,ﬁlx),gH(X’ﬁ"‘)) :

Let ¢(s) be the Riemann zeta function. Let R(z) be the power series introduced by
Gillet and Soulé [26],

(0.9) R(z) =) (Z +2 C( n)) {(-n )-—.

n>1
nodd

We identify R to the corresponding additive genus.

The purpose of this paper is to prove an extension of a result of Bismut-Lebeau
[19, Theorem 0.1], which corresponds to our main result when S is a point. This
extension is stated in two Theorems.
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4 INTRODUCTION

Theorem 0.1 — The following identity holds

(0.10) CNh(H(Y,nly),gH(Xyﬁlx)’gH(Y,nlY)) _ T(ww,g") + T(wv,gﬁ)

TA(TY, TX |w, gTXIw
- [ TaTx, T o) + / (TY, TXlw, 9"~ *")
e y Td(Ny;x,9"¥/*)

ch(n, g")
- / Td(TX)R(TX) ch(¢) + / Td(TY)R(TY)ch(n) =0 in PS/PSO,
X Y

Assume now that for j > 0, Riny.& = 0 (0 < k < m), Rimy.n = 0. Then
H(X,§x) ~ H(Y,ny) is concentrated in degree 0. Moreover, we have an acyclic
complex of holomorphic vector bundles ¥ on S,

(011)  H:0 — H%X,&m) = HY(X,&m-1) = H°(X,&) — H(X,§x) — 0.

Let g* be the obvious Ly metrics on . Let ch(¥X, g%) € PS/PS? be the Bott-Chern
class of [13] such that

90 ~
(0.12)  —ch(¥, ) = ch(H (X, §x), g™ ¥4%))
m
— S (—1) ch(HO(X, ), g™ ).
=0
Theorem 0.2 — The following identity holds
(013)  TWY,¢") =Y (-)'Tw",g%) —ch(@#,g)=0 in P/PSO.

i=0

Our version of Theorems 0.1 and 0.2 is much more precise. In fact, we produce
explicit forms vy and 4, which are local on the base S, such that the left-hand side
of (0.10) or (0.13) is exactly 8y + 84. Of course this fits with the construction of
Bott-Chern classes [13] on V or W or S, where the PV:0, PW:0 or PS:0 ambiguity are
local and universal, and with the construction of the analytic torsion forms of [6] and
[18], where the anomaly formulas are themselves local on S.

Note that when S is a point, Theorem 0.1 is exactly [19, Theorem 6.1], and
Theorem 0.2 is a special case of [19, Theorem 2.1]. In [19], the results are stated

in terms of Quillen metrics on det Ry .§ ~ ®(det Rmy &)= D' ~ det R7y.m.
1=0
We now list the already known results which are compatible with Theorems 0.1

and 0.2. First, when applying ;9—8 to both sides of (0.10) or (0.13), we get a trivial

i
identity. Also using [18] and [17], one verifies easily that (0.10) and (0.13) are
compatible to variations of all the metrics involved.
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INTRODUCTION 5

Using the transitivity properties of the currents T'(£, g°) established in [17], one
verifies that (0.10) is compatible to composition of immersions.

If S is compact and Kihler, since % applied to the left-hand sides of (0.10) or

(0.13) gives a known identity, a simple application of the 90 lemma of [28, p. 149]
shows that the left-hand side of (0.10) or (0.13) is the sum of (p, p) cohomology classes
on S.

If S is compact and Kihler, then V and W are compact and Kéihler. In [11],
Berthomieu and Bismut have calculated the behaviour of the Quillen metric on the
determinant of the cohomology by a proper submersion in terms of higher analytic
torsion forms. If S is compact and Kihler, we deduce from [11] that if A is the
left-hand side of (0.10), the integral of A on a smooth complex submanifold of S
vanishes, or almost equivalently, that the pairing of A with the Chern character of
a holomorphic vector bundle on S gives 0. However the Hodge conjecture would be
needed to deduce from this fact that A vanishes in PS5 /PS50,

Let us assume that A is the ring of integers of a number field k. Suppose that
V,W, S are arithmetic varieties over Spec(A), and that

(0.14) w

AN

V—7F—=S

is a diagram of morphisms over A. We assume that my and my are smooth and
projective, and that 7 is a closed immersion. Let X,Y be the fibres of wy, mw .

Let X be the finite set of complex embeddings of k in C. If 0 € X, let V, be
the complex variety obtained by extending the scalars from A to C. Let V,, the
complex manifold Voo = [J,e5 Vo We define Wo,, Soo in the same way. Let Fi, be
the conjugation map.

Let 1 be an algebraic vector bundle on W, let (£,v) be a complex of algebraic
vector bundles on V' which resolves 7.7.

We suppose that at oo, i.e. over Vo, W, ..., objects we have considered before
have been introduced, i.e. forms wV>~,wW=, metrics g, ..., gé, g", which are Fo-
invariant.

Let CH(V),CH(W)... be the arithmetic Chow groups of Gillet and Soulé [24].
Let APP(VR) be the vector space of real smooth forms a on V., of type (p,p), with

] N . _ APP(VR)
F} a = (—1)Pa. Let APP(VR) be the quotient APP(Vg) = ——=——"—. Let a be the
Imd + Imo

embedding @ APP(VR) — Eﬁ(V) If (E, g%) is an algebraic Hermitian vector bundle

P
over V, let Td(E, g¥), ch(E, g¥) € CH(V) be the corresponding characteristic classes
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6 INTRODUCTION

of Gillet and Soulé [25]. Let Td*(T'X, g7X) € CH(V) be the modification of the class
Td introduced by Gillet and Soulé in [26].

Let us recall that in [26], Gillet and Soulé have defined ch(mw1(n, g")) € CH(S) by
the formula

(0.15) ch(mwn(n, g")) = ch(Rmw.n, g-™ ") — aT (W, g").

Similarly, we can define ch(my1(&;, g&)), ch(mv1(€, g%)).
In [26], Gillet and Soulé formulated the conjecture that the following Riemann-
Roch-Grothendieck formula holds

(0.16) ch(mw(n, g") = . [TAA(TY, g™ )éh(m,g")] -

In [27], by using [19], they proved (0.16) for the first Chern class. In [22], Faltings
has given a proof of (0.16) for arbitrary Chern classes, based on a deformation to the
normal cone technique.

By using [17, Theorem 4.13], we see that Theorem 0.1 implies that

(017) ch(myi(&,9%) — ch(mwi(n,g") = mv+ [TdA(TX, g7¥)ch(€, ¢°))
— mw. [TA4(TY, g™ )ch(n, g")]

Also from Theorem 0.2, we get

m

(0.18) ch(mvi(€,9%)) = Y_(~1)'ch(my1(&, g%)) = ach(%, g*).
1=0
So (0.17)-(0.18) are compatible with the conjectured formula (0.16) of Gillet-Soulé.
Let us now briefly describe the strategy which is used in this paper for the proof
of Theorem 0.1.

1. The case where S is a point and the general case

The general strategy of the proof of Theorem 0.1 is roughly the same as the one in
[19] for the case where S is a point. Namely, in the context of the local families index
theorem of [4], and in the formalism of Quillen’s superconnections [32], we produce a
differential form B, r on R} + R% x S, such that if d, v denotes the partial exterior
differential with respect to u,T", then

(0.19) dyrB=07+86.

If T is a closed rectangular contour in R} x R}, which bounds a domain A, we obtain
the basic identity

(0.20) /F,B=5/A'y+8/A6,

ASTERISQUE-



INTRODUCTION 7

so that /,8 € P59,
r

Theorem 0.1 will be obtained by deforming I' in R x R} to its boundary in R2.

This strategy is formally the same as in [19]. Also since the construction of the
analytic torsion forms in [18] is, roughly speaking, a perturbation of the construction
of the Ray-Singer torsion [34] using the infinitesimal deformations of the fibres X or
Y, most of the intermediate results or techniques of [19] are used in the present paper.
Therefore we refer to the introduction of [19] for a description of the techniques which
are used there, while we concentrate on some of the essential differences with [19].

2. The right-hand side of (0.20)

If S is compact and K#hler, P50 is closed in P°. In this case, if one is just interested
in establishing a non local form of (0.10), i.e. just the existence of non explicit (i.e.
non universal and non local) forms v and é such that the left-hand side of (0.10)
is 0y + 89, one can skip the technically heavy Sections 5.7-5.9, 6.6-6.8, 11.11, 12.7
and 13.13-13.14.

In the general case, because S is non compact and also because we want to obtain
the best result as possible, i.e. a local universal explicit form of the right-hand side of
(0.10), we need to study the right-hand side of (0.20) in much detail. The estimates
on this right-hand side are much harder to obtain (we have to control double integrals
in u,T and not only integrals in u or T).

3. Relative local index theory

While local index theory was used in [19], and in particular the local index
theory rescaling technique of Getzler [23], here we work in the context of the local
relative index theorem of [4]. In particular the standard Levi-Civita connection of a
Riemannian manifold is replaced by the Levi-Civita superconnection of a fibration
[4].

In this paper, we adapt in our context the rescaling techniques developed by
Berline-Getzler-Vergne [3] to establish the local families index theorem of [4].

The algebra of the families index theorem of [4] being more demanding that
the algebra for the standard local index theorem, this introduces unavoidable
complications with respect to [19)].

As explained in [4], [12], [11], the Levi-Civita superconnection of a fibration [4]
can be thought of as the adiabatic limit of the Levi-Civita connection of the total
space, when the metric is blown up horizontally, and the horizontal Clifford variables
are properly rescaled in the sense of Getzler [23]. Roughly speaking, our proof of
Theorem 0.1 can be understood, to a certain extent, as the adiabatic limit of the
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8 INTRODUCTION

proof of [19]. Still this analogy provides us only with a partial intuition of the analysis
which is needed in the proof.

4. The horizontal vector bundles 77V and THW

Using the anomaly formulas of [18], we can reduce the proof of Theorem 0.1 to the
case where wW v

=1t"w’.

Let THV, THW be the orthogonal subbundles to TX, TY in TV, TW with respect
towY,w" . In general, T#Vjy; and THW do not coincide. As explained in Section 7.5,
there is a cohomological obstruction to finding w" such that TH Viw = THW. We
are thus forced to work in the general case where 77 Viw # THW . This is in dramatic
contrast with the situation one meets in the C'°° category, where one can always
assume that TH Vi = TEW.

In [4], [14], the bundles TV, THW are used to construct unitary connections
VUK LX) YY) on Q(X, € x), QY,my). Also in [19], for T > 1, a family of
embeddings Jr: Q(Y,ny) — Q(X,€x) is constructed. Roughly speaking, in [19],
Q(Y,n)y) is viewed as a subcomplex of currents on X, localized on Y. Here, because
TH Vw # THW, the connection V*(X:41x) does not “preserve” V¥Y:mv) This has
dramatic analytic consequences. In particular, when written in matrix form as in [19],
our operators do not have the prefered asymptotic structure, which plays a key role
in the analysis of [19].

To deal with this difficulty, we construct in Chapter 7 an extension of THW to
the whole manifold V, and we conjugate the Levi-Civita superconnection of V by
an operator which measures the non coincidence of T#V with THW. Because of
the need to control various local cancellations, the extension of T7HW to V is non
arbitrary.

After conjugation, the Levi-Civita superconnection of V' becomes analytically more
pleasant, but it contains many more extra terms. As a deformation parameter 7" tends
to infinity, the fact that these terms vanish asymptotically follows from mysterious
identities established in Chapter 1.

5. The Levi-Civita superconnection B, r and its curvature Bﬁ’T

Put DX = 5~ + _G_X*, V = v + v*. In [19, Sections 8 and 9|, the analysis of
the supertraces of operators like exp(—u?(DX + TV)?) as T — +oo was done
for u > up > 0 by writing the operator DX + TV in matrix form. Still, because
local cancellations had also to be controlled as u — 0, these cancellations not being
property understood on the operator u(DX + TV), in [19, Section 13|, for u €]0, 1],
T > 1, the operator u?(D*X + TV)? had to be written in matrix form, and the local
cancellations mechanism controlled on this matrix form.
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Here, the analogue of DX + TV is a superconnection A; r. Only its square AiT is
a fibrewise elliptic operator along the fibres X. Even when u > up > 0, we are thus
forced to deal with the operator AiT and not with A, 7 itself.

Still some features of [19, Sections 8 and 9] are preserved. Namely, in Chapters 8
and 13, we calculate the asymptotics as T' — 400 of the conjugate superconnection
A, r in two different trivializations of 73 A(T5S) ® A(T*®VX) & ¢ near W. This
extends corresponding results of [19, Section 8].

6. The lower part of the spectrum of DX + TV and the asymptotics of the
Chern character superconnection forms as © — +o00

In [19, Section 9], it was shown that as u — +o00, the supertraces of operators
involving exp(—u?(DX + TV)?) converge like cexp(—Cu?), with ¢ > 0, C > 0
uniformly in T € [1, +o0o[. The proof uses in particular the fact that as T — +o0, the
nonzero eigenvalues of (DX + TV)? stay away from 0.

Here, by result of Berline-Getzler-Vergne [3, Section 9], for a given T' > 1, the Chern
character superconnection forms associated to a superconnection B, T converge as
u — oo like 0(1). Obtaining the required uniformity in T' € [1, +oo[ is more difficult.
In effect the control of the superconnection Chern character forms as u — +oo
or T — +oo involve two distinct matrix decompositions of the curvature B2 .,
which have to be shown to be compatible. The corresponding arguments are given in
Chapter 9.

7. The genus R and the higher analytic torsion forms of the exact sequence
0 -TY -TX;w — Ny,;x —0

As in [19], the genus R of Gillet-Soulé [26] appears in Theorem 0.1 through the
explicit computation in [6] of higher analytic torsion forms associated to the exact
sequence of holomorphic Hermitian vector bundles on W

As explained in Chapter 15, some of the computations of [6] and of [19, Section 14]
appear to be just a special case of the arguments used in this paper, when applied to
the family of embeddings TY — T X .

As explained in the introduction to [19], an alternative strategy to the proof of
the main result of [19] or of Theorem 0.1 is the deformation to the normal cone
technique of Baum-Fulton-MacPherson (2], [17, Section 4]. Arguments in support
of the main steps of such a program have been described by Faltings in [22]. The
deformation to the normal cone replaces the embedding i: W — V by the embedding
i': W — P(Nw,y @ 1) and the complex (£,v) by a canonical Kozsul complex on
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P(Nw,v @ 1). The deformation to the normal cone technique replaces a smooth
fibration by a singular fibration, and the whole point is to control the analytic torsion
forms through the singularity. To overcome this difficulty, Faltings replaces the given
Ké&hler metric on the smooth fibre by a metric on the log tangent space, which is not
Kéhler, hence the need to control non explicit anomaly formulas. Once the reduction
to P(Nw,v @ 1) is done, the strategy of [22] is to use a relative version of [11],
(sketched in [22, p. 75-76]) which reduces the problem to the explicit computation
of the higher analytic torsion forms of the fibration P(Ny/y & 1) — W. This final
computation is obtained by using the results of Gillet and Soulé [26], and explains
the appearance of R in (0.10).

In some sense, the program of [19] and of the present paper is an analytic version
of the deformation to the normal cone technique, in which the three steps described
before are reduced to one step. In particuler the analysis wipes out the intermediate
P(Nw,v ® 1) — W and replaces it by the exact sequence 0 — TY — TX;y —
Ny,x — 0, whose analytic torsion forms were calculated in [6].

Needless to say, the deformation of the normal cone technique was used in [17]
to evaluate the current T'(£, g%) in terms of the arithmetic characteristic classes of
[24]-]25], but the analysis of [17] only involves finite dimensional objects.

This paper has been written as a companion paper to [19], to which the reader is
referred when necessary. In particular, most of the technical comments in [19] apply
also to this paper, and have not been repeated. Let us also point out that as in
[19], finite propagation speed for solutions of hyperbolic equations [21], [35] plays an
important role in the proofs.

This paper is organized as follows. In Chapter 1, we establish various results on
the differential geometry of families of smooth embeddings, in the C*° category. In
Chapter 2, we recall the result of [14] and [18] on higher analytic torsion forms. In
Chapter 3, we describe the basic geometric setting of (0.1), and also the objects which
appear in (0.10) and (0.13).

In Chapter 4, we construct the form 3 in (0.14), and we establish (0.20).

In Chapter 5, we recall the results of [6] on the higher analytic torsion forms
associated to a short exact sequence.

In Chapter 6, we prove Theorem 0.1. The proof is based on several intermediate
results, whose proof occupies Chapters 7-13. This Chapter corresponds to [19, Section
6].

In Chapter 7, we extend THW to V.

Chapters 8-13 are devoted to the proofs of the intermediate results which were
alluded to, and correspond roughly to [19, Sections 8-13]. In Chapter 8-9, we
calculate the asymptotics of supertraces involving exp(—BﬁyT) (where B, T is the
superconnection version of u(DX + TV)), in the range u > 1, T > 1. In Chapter 10,
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we give a description of the bundles over S of the kernels of DX + TV, as T — +oo.
In Chapter 11, we establish uniform estimates on supertraces involving exp(—Ath)
(where A, r is the superconnections analogue of uDX + T'V) in the range 0 < u < 1,
1<T<1/u.If u — 0, T ~ 1/u, the corresponding supertraces are studied in
Chapter 12, and for u — 0, T' > 1/u in Chapter 13.

In Chapter 14, we establish Theorem 0.2 by exchanging the roles of © and T. The
proof is much simpler than the proof of Theorem 0.1, and is just briefly sketched.

Finally, in Chapter 15, we show that the objects appearing in [6] in the construction
of the higher analytic torsion forms of a short exact sequence are a toy model for many
of the arguments used in Chapters 8-13, even though the results of [6] are used in the
proof of Theorem 0.1.

The results contained in this paper have been announced in [10].
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1. Families of immersions and connections on the
relative tangent bundle

Let m: V — S be a submersion of smooth manifolds with compact fibre X. Let
TX be the relative tangent bundle, and let 77V be a subbundle of TV such that
TV =THV @ TX. Let g7X be a metric on TX.

In this Chapter we recall the construction in [4] of a connection V7X on TX,
which is canonically associated to these datas, and of various corresponding tensors.

Also let i: W — V is an embedding of manifolds which both fibre on S, let
i: Y — X be the corresponding fibres of W and V over S. Let g7V be a metric on
TV, let THV, THW be the subbundles of TV, TW which are orthogonal to T'X,
TY . Let g7X, gTY be the metrics induced by g7V on TX, TY. Let VIX  VTY be the
associated connections on T X, TY. The main purpose of this Chapter is to establish
various relations between the tensors associated to TX and TY.

1.1 A canonical connection on the relative tangent bundle of a fibration
Let w: V — S be a smooth submersion of smooth manifolds with compact fibre

X. Let TX = TV/S be the relative tangent bundle to the fibres X.
Let THV be a smooth subbundle of TV such that

(1.1) TV =THVeTX.

Let PTX be the projection TV =TV @ TX — TX.

Let g7X be a metric on TX. It was shown in [4, Section 1] that the datas
(m,gT*,THV) determine an Euclidean connection VIX on (T X, g7X). Let us briefly
describe the construction of [4].

Let ¢g7% be an Euclidean metric on T'S. Let VTS be the Levi-Civita connection
on (T'S,gT%). We equip TV = THV @ T X with the metric g7¥ = 7*g75 @ gTX. Let
VTV:L be the Levi-Civita connection on (T'V, g7"). Set

(1.2) VTX — PTXVTV’L.
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14 FAMILIES OF IMMERSIONS AND CONNECTIONS ...

Let VTV be the connection on TV = THV ¢ TX
(1.3) VTV = p*vTS ¢ VvTX
Let T be the torsion of VTV, Set

(1.4) S =vTVL _ygTv,

Then S is a 1 form on V with values in antisymmetric elements of End(TV).
Classically, if A,B,C € TV
S(A)B - S(B)A+T(A,B) =0,

(19 2(5(4)B,C) +(T(A,B),C) +(T(C, A), B) - (T'(B,C), A) = 0.

Then by [4, Theorem 1.9], we know that

VTX preserves g7X.

— The connection
— VTX T and the (3,0) tensor (S(.),.) do not depend on g7%.
T takes its values in 7X, and vanishes on TX x TX.
For any A € TV, S(A) maps TX into THV.
For any A,Be THV, S(A)B € TX.
If A=THV, S(A)A = 0.
Only the last statement is not proved explicitly in [4]. However it immediately follows
from (1.5) and from the fact that T takes its values in T'X.
From (1.5), we derive easily that if A € T#V, B,C € TX, then

|

(1.6) (T'(A, B),C) = (T(4,C),B) = — (§(B)C, 4) .

IfU € TS, let UH € THV be its lift in THV, so that n,U¥ = U. If U is a smooth
vector field on B, the Lie derivative operator L x# acts naturally on the tensor algebra
of TX . In particular, if U € TS, (¢7X)~'LyngTX defines a 1-form on B, with values
in self-adjoint endomorphisms of T'X .

Theorem 1.1 — The connection VTX on (T X, gTX) is characterized by the following
two properties :

— On each fibre X, it restricts to the Levi-Civita connection of (T X, g7X).
- IfU €TS, then

(L.7) V% = Lyn + 5(¢7%) ' Lyng™.
The following identities hold :
- IfA,BeTHV,
(1.8) T(A,B) = —PTX[A, B].
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-IfUEeTS, AeTX,
(1.9) TWUH,A) = 4(¢"*) ' Lyng™ A.

Proof. From its construction, it is clear that the restriction of VIX to a fibre X is
the Levi-Civita connection of the fibre. Let A be a smooth section of TX, let U be a
smooth section of T'S. Then

UH (A A) = 2(V5§A,A> ,

(1.10) H TX\—1 TX

UY (A A =2(LynA,A) + ((g )" *Lyung " A, A) .
Since V4VUH = 0, from (1.10), we obtain

(1.11) (T(UH,A4),A) = 1 {(g"*) 'Lyng™™ A, A) .

By (1.6), both sides of (1.11) define symmetric bilinear forms on T'X. So we get from
(1.11)

(1.12) T(UH, A) = L(g"*) ' Lyng™™*A.
Also
(1.13) VIXA=[U" A+ TU"H, A).

From (1.12), (1.13), we get (1.7), (1.9). Finally if U,V are smooth sections of T'S,

1.14) T(WUH, vH)=vIYvHE _gTVUH — [UH vH] =
U \ %4
(VEEVH —(viFU)H - [UH,VH)
= U, V7 - UH, V] = —PTX[UH, V]

The proof of Theorem 1.1 is completed. O

1.2 An identity on the connection on the relative tangent bundle
Let now g7V be a metric on TV which has the following properties:
— g7V induces the given metric g7 on T'X.
— THYV is exactly the orthogonal bundle to X in TV with respect to g7 .

Let VTV'L be the Levi-Civita connection on (T'V, gT"). We denote by ( , ) gTv the
scalar product with respect to g7V. Still (S(.).,.) denotes the tensor associated to
THV, g% which was described in Section 1.1.

Now we recall a result of [14, Theorem 1.2].
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16 FAMILIES OF IMMERSIONS AND CONNECTIONS ...

Theorem 1.2 — The following identity holds
(1.15) VX = pTXyTVL,

Moreover if A, A’ are smooth sections of T'S, if U,U’ are smooth sections of TX, if
Y =U'+AH Y = A'H | then

(1.16) <v5V~LY, Y’>9T

(T, =2 O

Remark 1.3. Formula (1.16) shows in particular that the second fundamental form
of the fibres X with respect to g7V can be evaluated in terms of SV.

1.3 Families of immersions and the corresponding connections on the
relative tangent bundles

Let i: W — V be an embedding of smooth manifolds. Let 7y : V. — S be a
smooth submersion with compact fibre X, whose restriction 7y : W — S is a smooth
submersion with compact fibre Y. Thus we have the diagram

(1.17) Y — W

s

X—V —F0

Let TX =TV/S, TY = TW/S be the relative tangent bundles to the fibres X, Y.
Let N,y be the normal bundle to W in V, let Ny,x be the normal bundle to Y in
X. Clearly

(1.18) NW/V = NY/X-
Let THV be a smooth subbundle of TV such that
(1.19) TV =THVeTX.

Let ]vy/ x be a smooth subbundle of TX |W such that

(1.20) TX|y = Ny,x ®TY .
Clearly

THY ~ 7*TS,
(1.21) -

NY/X >~ Ny/x .

By (1.19), (1.20), we get
(1.22) TV|, =THV|,, ® Ny,x ® TY .
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By (1.22), we see that there is a well-defined morphism

TW H =7
(1.23) Ty — T"VIw ® Ny/x,
and this morphism maps T?"-l‘,’— into a subbundle of TW.

Definition 1.4. Let THW be the subbundle of TW which is the image of %:% by the
morphism (1.23).
Clearly

(1.24) TW=THwWeTY.
Remark 1.5. The simplest case is of course when
(1.25) TRV |, =TW.

However in general this assumption is not verified.

Let now g7V be a metric on TV. Let g7 be the induced metric on TW, let
97X gTY be the induced metrics on TX, TY. Note that even is g7V is of the type
considered at the very beginning of Section 1.1, in general, 7" is not of this type.

We identify Ny, x with the orthogonal bundle ﬁy/ xtoTY inTX |W with respect

to gTXIw_ Let gVv/x be the induced metric on Ny x.
Definition 1.6. Let THV (resp. THW) be the subbundle of TV (resp. TW) which
is the orthogonal bundle to TX (resp. TY) in TV (resp. TW) with respect to g7V
(resp. g™W).

Since the splitting

TV|y =THV|, @ Ny,x ®TY

is orthogonal, one verifies immediately that TH# W coincides with the bundle defined
in Definition 1.4, associated to 77V and Ny,x = Ny;x. In particular

THW c THV|,, ® Ny,x .

Remark 1.7. The manifold W intersects the fibres X orthogonally if and only if
THEV|,, = THW.

To the triples (mv,g7*,THV) (resp. (mw,gT¥,THW)), we can associate the
objects we constructed in Section 1.1.

In particular TX, TY are now equipped with connections V7, V7Y which
preserve the metrics g7%, g7¥. We also denote by TV (resp. TY), the ten-
sor T constructed in Section 1.1, which is associated to (my,THV,gTX) (resp.
(mw, THW, g™Y)). Recall that THW c THV|, & NY/X_ If A € TB, let AHV ¢
THY AHW ¢ THW be the horizontal lift of A in THV, THW, so that 7y, AHV =
A, Ty AW = A,

Let PTY , PNv/x be the orthogonal projections T'X ly = TY, TX IY — Ny/x.
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Definition 1.8. If A€ TS, let A¥:Nv/x ¢ Ny, x be such that

(1.26) AHW _ gHV + AHNy/x |
Theorem 1.9 — The connection VTY is given by
(1.27) vTY — pTYgTX|y

Proof. Let VTV:L (resp. VTW:L) be the Levi-Civita connection on (T'V,gT") (resp.
(TW, gTW)). Let PTW be the orthogonal projection operator TV |y — TW. Clearly

(128) VTW,L — PTWVTV’L .

Let PTX PTY be the orthogonal projections TV = THV ¢ TX — TX, TW =
THW @ TY — TY. By Theorem 1.2,
vTX — PTXVTV’L

(129) VTY — PTYVTW’L .

From (1.28), (1.29), we get (1.27). a

Let VVv/x be the connection on Ny/x,

(1.30) VNvix = pNy/xgTX
Then VNv/x preserves the metric g/Vv/x.

Put
(1.31) oyTXiw = yTY g yNv/x |

Then °VTXIw is a metric preserving connection on TX|w = TY & Ny, x. Set
(1.32) A=vVTXlw _0gTXlw

Then A is a 1-form on W with values in antisymmetric elements of End(7TX|w)
exchanging TY and Ny, x.

Since VTX restricts to the Levi-Civita connection of the fibres X, if B € TY,
CeTy,

(1.33) A(B)C — A(C)B = 0.

To keep in line with our previous notation, we denote by ( , ) the scalar products
which only depend on the datas (my, THV, gTX) or (mw, TEW, gTY), while using the
notation ( , ),rv, ( , )yrw for the scalar products on TV, TW associated to the

auxiliary g7V, gTW.
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Theorem 1.10 — IfBeTY,CeTS,DeTS,
(1.34) (SV(B)cHW DHWY = (sW(B)CHW, K DHW)

— % <VEXCH’NY/X,DH7NY/X> + % <CH7NY/X,V£XDH1NY/X> .
IfBeTY,CeTS,

PTYTY(B,C?V) =TW(B,C*W) + A(B)CHNv/x

(1'35) Ny;x ~H,N N \% H\V HW
Vg CcHVy/x = pNy/xT (B,C’ ’ )+A(C "Y)B.

Proof. Take B € TY, C,D € TS. Then using the properties of SV listed in
Section 1.1, we get

<SV(B)CH’W,DH’W> — <SV(B)(CH,V + CH’NY/X),DH’V + DH,NY/X> _
<SV(B)CH’V,DH’V> + <SV(B)CH’V,DH’NY/X> +
(SV(B)CH:Nvix DHVY
Let VTV:L be the Levi-Civita connection on (T'V,g”TV). By construction THV is

orthogonal to T'X with respect to g7V, and g7V induces the metric 7% on TX.Then
using Theorem 1.2, we get

(1.36) (SV(B)CH*W,DHW) = 1 ((VEV'LC”*V,DH’V> rv
g

_ <CH,V,V£V,LDH,V>9TV 4 <V§V,LCH,V,DH,Ny/x >9Tv

— <CH,V,V£V,LDH,NY/X> v + <V£V,LOH,NY/X’DH,V>

gTV

_ H,Ny;x gTV,.L nH,V
(c YRRV L)

9

Equivalently, using (1.15), and (1.29), we obtain

(1.37) (SY(B)CHW,D*W) =1 <<v§V’L0H»W,DH’W>gTV
_ <CH,W’ VgV,LDH,W>gTV _ <V£XCH,NY/XDH,NWX>
4 (CHNv/x YTX DHNv/xY) |
Let VTW.L be the Levi-Civita connection on (TW, gT"%). Then

(1.38) <VgV,LCH,W’DH,W>gTV _ <V£W,LCH,W,DH,W>9TW )
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By construction, THW is orthogonal to TY with respect to g”", and moreover g7
induces the metric g7¥ on TY. By reapplying Theorem 1.2, we obtain

(1.39) (SW(B)CHW DHW) = L (viWtCoHW DHW -
2 B

gTW
HW oTW,L nHW
(cHW ,vEED >gTW .
From (1.37)-(1.39), we obtain
(1.40) (SY(B)CHW DHW) = (sW(B)CHW DHW)
+ _é_ (_ <V£XCHaNY/X’DHvNY/X>
+ <CHvNY/X , VEXDH»NY/X >) ,
which coincides with (1.34).
Using Theorem 1.9, we get
(1.41) PTYTV(B,Cc*V)=PTY (-VEXvB - [B,C?V"])
= PTY (~VZEwB + Vi, B~ [B,CPW] 1 [B,CHNvix))
= —VihwB — [B,C"VW] + PTY VX CHNvix
=TY(B,CHW) + A(B)CHNv/x |

which is the first identity in (1.35).
Now we use the notation of Section 1.1. By (1.2), (1.3), we get

(1.42) VX CHNYx = pNvixgEX OHNv/x = pNv/x gLV CHW
Also
(1.43) vEVeHW =vIX B+ [B,cHWY]+ TV (B,Cc*W).

Since [B,CH:W] € TY, we deduce from (1.42), (1.43) that
(1.44) PNyix v IX cHNy/x — pNv/xTV (B, CHW) + A(CHW)B,

which is the second identity in (1.35).
The proof of our Theorem is completed. O

Let fi,...,fm be a locally defined smooth basis of T'B, let f!,...,f™ be the
corresponding dual basis of T*B.

Theorem 1.11 — The following identity of tensors holds on W
H,N H,N
(Las) oA g2 AP Vi )

3 (T (YY) s 2 ) =0,
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Moreover, if B € TY, then the following identities of tensors holds on W

a H, H,N H,N
(146) £ AFO{=3(TV (F2V, 557V) , BY = (% O FX g Nvrx)
TX ¢HNy/x 1 /W ( fHW HW _
+2(VTEw 5 VX BY + 1 (TV (£2W, (W), B)} = 0.
Proof. In the sequel, g7 denotes an Euclidean metric on T'S. Also we use the notation
of Section 1.1. Clearly

H,N
am VI T = VT £ o
= VI S T Y

Using (1.47), we get
(148) VT £y ™7 — T, 2

= [fW BT+ TV (FEW, 150 = [F2V (Y] =TV (FEY, 1Y),
Also, by Theorem 1.1,

[fa87 55 ] = e £ = TV (£2W, 1579,

[FEY, FEV] = [far £V =TV (S5, £V,

Using the fact that TW (f2:W, fH.W) € TY, we deduce from (1.48), (1.49) that

(1.49)

(150) £ AFPN S (5 T ) =
FENFPAfYA (<f:,Ny/x,Tv(f5,W’f§{,W) F [far £y HNY/x >) .

Also

(L51) S2 APPSO TV (S fE) =

FENTEN ST (£ N TV PV 4 20 fY g gy

By (1.6), (1.50)-(1.51), we get

WD) 17 A7 A (N, ) =
fENFEAfIL (<f;I’NY/X,TV(ff’V,f$’V) + [fa’f‘y]H,Ny/x>) ,

which is exactly the identity (1.45).
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Take Be€TY,C € TS,D € TS. Then using Theorem 1.10, we get

1.53) (VIXwDHNvix BY = (A(CHW)DHNv/x B
C
= — (A(CHW)B, DH:Nvix)
R <VEXCH,NY/X’DH,NY/X>
+(TV(B,CH:V), DH:Nv/x} |

From (1.5),(1.53) and from Theorem 1.10, we obtain

(1.54) (VEIEwDHNvx - vTX, cHNvix B)
+ % <VgXCH’NY/X,DH’NY/X>
_ % (CHvNY/X,VngHvNY/X> - % <TV(CH,V,DH,V),B>
+ 3 (TV(CHY, D?W), B)
_% <VEXOH’NY/X,DH’NY/X> + % <CH,Ny/x’VgXDH,Ny/x>
- <SV(B)CH,V, DH,Ny/x> + <SV(B)DH,V, CH,Ny/x>
_ <SV(B)CH’V,DH’V> + <SW(B)CH'W,DH’W>
— _% <v£XC'H,NY/x,DHyNY/x>

+ % <CH,NY/X,V£XDH,NY/)(>
—(sV(B)C"W,DHW) + (sW(B)CHW, DFW) =0,

which is equivalent to (1.46).
The proof of Theorem 1.10 is completed.
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2. Kiihler fibrations, higher analytic torsion
forms and anomaly formulas

In this Chapter, we recall various differential geometric properties of Kahler fibrations
m: V — S [14]. Also we explain the local families index theorem of [4] in this context,
we recall the construction in [14], [18] of analytic torsion forms, and we explain the
anomaly formulas of [18].

This Chapter is organized as follows. In Section 2.1, we introduce the Kéhler
fibrations. In Section 2.2, we recall elementary results on Clifford algebras and
complex vector spaces. In Section 2.3, we introduce the Levi-Civita superconnection
of a fibration [4] and we state some of its properties established in [14]. In Section 2.4,
we describe the superconnection forms of [4] and [14], which depend on u €]0, +o0|,
and the corresponding transgression formulas. In Sections 2.5 and 2.6, we recall the
results of [4], [14], [3] on the asymptotics of these forms as ©« — 0 and u — +o00. In
Section 2.7, we construct the analytic torsion forms of [14], [18]. Finally in Section 2.8,
we give the anomaly formulas of [18].

In this Section, we use the notation of Chapter 1.

2.1 Kiihler fibrations

Let w: V — S be a holomorphic submersion of complex manifolds, with compact
fibres X.

We use the notation of Section 1.1, except that now TV, TS, TX = TV/S denote
the corresponding holomorphic tangent bundles, and TRV ,TrS,Tr X = TrV/S the
associated real tangent bundles.

Let JTX be the complex structure on TrX. Let THV be a smooth subbundle of
TV such that we have the smooth splitting

(2.1) TV =TV eTX.

Let g7% be a Hermitian metric on T'X.
We recall the definition of a K&hler fibration, given in [14, Definition 1.4].
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Definition 2.1. The triple (w, g7X,THYV) is said to define a Kihler fibration if there
exists a smooth real 2-form w of complex type (1,1) over V which has the following
properties :

a) w is closed.
b) TEV and T X are orthogonal with respect to w.
c) fA,Be THX

(2.2) w(A,B) = (A,JTX B) rx -

Let us now recall a simple result from [14, Theorems 1.5 and 1.7].

Theorem 2.2 — Let w be a real smooth 2-form on V of complex type (1,1), which
has the following 2 properties :

a) w is closed.

b) The bilinear map A,B € THX — w(JTX A, B) € R defines a Hermitian metric
97X on X.

For x € V, set
(2.3) TEV = {A€ TV, for any B € T, X , wz(A, B) = 0}.

Then THV is a subbundle of TV such that TV = THV @ TX. Also (7,gTX, THV)
is a Kdhler fibration, and w is an associated (1,1) form.

A smooth real (1,1) form w' on V is associated to (w,gT*,THV) if and only if
there is a real smooth closed (1,1) form n on S such that

(2.4) W —w=7%n.

Under the assumptions of Theorem 2.2, let wTX, wH the restriction of w to Tr X,
THV so that

(2.5) w=uwlX 4+,

Let VTRX be the connection on (TrX,g"®X) constructed in Theorem 1.1, which is
associated to (m, gT*X  TE V). Let VA(TRX) be the connection induced by V7rX on
A(T3X). Since TRV = THV & Tr X, there is an associated identification

(2.6) ATgV) = m*A(TrS) ® AT X) .

Let ®V be the obvious action of VA(TRX) on smooth sections of A(T%V), so that if
a, 3 are smooth sections of A(TgS), A(TgV), then

(2.7) “V((r*a)B) = (1*da)B + (—1)%E*r*a A VATRX) B,
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Theorem 2.3 — Assume that (m,g7%,THV) is a Kdhler fibration, and let w be an
associated (1,1) form. Then :

a) The connection VIRX on TrX constructed in Theorem 1.1 preserves the
complex structure of TrX. It induces the holomorphic Hermitian connection
VTX on (TX,gTX).

b) As a 2-form, T is of complez type (1,1). Also if A € THV, B € TX (resp.
AeTHV, BeTX), then T(A,B) € TX (resp. TX).

c) For any A € TrX, the 2-form (S(A).,.) on V is of complex type (1,1). Also if

AeTX,BeTX
(2.8) S(A)B=0 , S(B)A=0.
d) The following identities hold

for any A € TRS, LanwT™* =0,

VIXWTX = 0;iEXWTX =0 on THV x TrX x TrX ,
oYwH =0 on THV x THV x TV, )
oWt +ipwTX =0 on THV x THV x T X .

(2.9)

Proof. Only the second part of b) is not explicitly proved in [14, Theorem 1.7].
However if A € TV, B € Tr X, by (1.5),

(2.10) T(A,B) = PTXS(B)A.

Since (S(B).,.) is of complex type (1,1), T(A, B) is of the same complex type as A.
Our Theorem is proved. O

Remark 2.4. The second identity in the second row of (2.9) is also a consequence
of the fact that T is of type (1,1) and also of (1.6). The last identity in (2.9) says
that if A,B € TrS, w”(A¥,BH) is a Hamiltonian function whose corresponding
Hamiltonian vector field in Tr X with respect to the fibrewise symplectic form w?X
is T(AH, BH).

In [14, proof of Theorem 1.14], as a consequence of (2.8), it is shown that if

ei,...,ege is an orthonormal basis of TR X,
2¢

(2.11) D " S(ei)es =0.
1

Consider the exact sequence

(2.12) 0-TX 5TV -»7*'TS — 0.
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By identifying 7*T'S and THV, let E € T*(®VV ® Hom(THV, T X) be the extension
which defines the holomorphic structure on TV.

We extend E to a skew-adjoint section of Tg V®End(Tr V'), which exchanges Tr X
and TH V.

Theorem 2.5 — If A€ TV, B € TrX, then
(2.13) E(B)A =T(4,B).

Proof. Clearly the statement (2.13) is local on the base S. So we may as well assume
that S is Kahler. Let w® be the Kihler form of a Kéhler metric g75 on T'S. Replacing
w by w+%ﬂ'*ws , which does not modify THV or g7X, we may assume that V is Kshler,
and that w is the Kahler form of a Ki#hler metric g7¥ on TV. Then the Levi-Civita
connection VIV'L' on (TrV, g™*") induces the corresponding holomorphic Hermitian
connection on (T'V, gTV). By Theorem 1.2, if A is a smooth section of T#V and if
B, C are smooth sections of Tr X, we get

(2.14) <V§V’LA, c> - <V£V’LC,A> =2(SY(B)A,C) .
From (2.14), we obtain

(2.15) (E(B)A,C) = (SY(B)A,C) .

Using (1.5), (2.15), we get

(2.16) (E(B)A,C) = (T(A, B),C) ,

which gives (2.13). O

Remark 2.6. Of course (2.13) gives an essentially equivalent proof of most of the
properties of T stated in part b) of Theorem 2.3.

2.2 Complex Hermitian vector spaces and Clifford algebras

Let E be a complex Hermitian vector space. Let E be the conjugate vector space.
If z € E, z represents Z = z + Z € Eg, and |Z|* = 2|z|°.

Let ¢(Er) be the Clifford algebra of ER, i.e. the algebra generated by 1, U € ER,
with the commutation relation UU’ + U'U = —2 (U,U’). Then A(E") and A(E*) are
Clifford modules. Namely, if X € E, X' € E, let X* € E_*, X'* € E* correspond to
X, X' by the metric. Set

e(X) = V2X*A, e(X') = —V2ix:,

(2.17) AX) = V2ix , AX") = —V2X" A .
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Then if U,U’ € ER,

c(U)e(U') + e(U")e(U) = =2(U,U") ,

(2.18) PO N~ '
cU)au" +eUye(U) = -2(U,U" .

Also ¢(U),&(U’) acts as odd operators on A(E") ® A(E*), and
(2.19) c(U)e(U") +eU")e(U) =0.

Let J be the complex structure of Er. Note that with respect to [19, Section 5 a)],
our ¢(U) would be ¢(JU) in [19].

2.3 The Levi-Civita superconnection of the fibration

The metric g7X induces a metric gMT" DX ) on A(T*(®1X), and the connection
VTX lifts to a unitary connection VAT @V X) on A(T*O:D) X)),

Let £ be a holomorphic vector bundle on V, let g¢ be a Hermitian metric on £. Let
V¢ be the holomorphic Hermitian connection on (£, g¢).

We equip A(T*©®V X) ® ¢ with the tensor product of the metrics gA(T'(O'l)X ) and
g¢. Set

(2.20) VAT OVXI@E = AT OVX) g1 41 @ VE.

Then VAT ®VX)®¢ j5 a unitary connection on A(T*®DX) ® £.
Definition 2.7. For 0 < p < dim X, s € S, let EP be the vector space of smooth
sections of (AP(T*(®1X) ® €)| . over the fibre X. Set

dim X
(2.21) E.= @ E?, E..= € E?, E,_ = P E?.
p=0 p even p odd

We regard the E,’s as the fibres of a smooth Z-graded infinite dimensional vector
bundle over S. Smooth sections of E over S will be identified to smooth sections of
AT*OVX) ® € over V.

Let *7X be the star operator acting on A(TgX), associated to g7X. We equip E;
with the Hermitian product

1 TX
(222) «, o € E; — <O.’, 0!’>E‘9 = W /X <a N *x a’>g€ .

Let dvx, be the volume element in the fibre X;. Then if a,a’ € E;,

dim X
1
(2.23) (a, a')Ea = (ﬁ) ‘/Xs (a, a,>gATa(0,l)x®g€ d’vxs .
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Definition 2.8. If U € Tr B, if s is a smooth section of E over S, set
(2.24) VEs = VATV Xet,

Clearly, V¥ is a connection on E. Let VE' and VE" be the holomorphic and
antiholomorphic parts of VZ.

Fors € S, let 3*° be the Dolbeault operator acting on E;, and let EXS* be its
formal adjoint with respect to the Hermitian product (2.22).

The following result is proved in [14, Theorem 1.14].

Theorem 2.9 — The connection VE preserves the Hermitian product (2.22) on E.
Its curvature VE2 is of complex type (1,1). Also

(2.25) [VE”,EX] -0, [VE',EX*] —0.
By (2.1), we have the identification of Z-graded vector bundles

(2.26) AT*OVYV) @ ¢ = n*A(T*OVS) @ A(T*OVX) ® €.

Let 8° be the Dolbeault operator acting on the vector space o)f( smooth sections of
A(T*ODV)® ¢ over V. By (2.24), (2.26), the operator VE” + 8" also acts naturally
on this vector space.

The following result is established in [14, Theorem 2.8].

Theorem 2.10 — We have the following identity of operators acting on smooth
sections of A(T*OVV)® ¢ over V,

(2.27) 3 =vE +35°.
Definition 2.11. Set
(2.28) oT) = 3 f2fPe(T (3, £5)) -

Then ¢(T') is a section of 7*A(T%S) ® End(A(T*OV X) @ £). We also define c(T(1:9),
¢(T%V) by formulas similar to (2.28). By (2.17),

c(T1:9)
V2
By [14, eq. (1.41) and Theorem 2.6]

c(TOD) )
— = —17(0,1) -
V2 T

(2.29) =T0O*A

%.;ﬁl = —i [gx,wH] ,
A i[5 ]

(2.30)
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Definition 2.12. For u > 0, set

" T(LO))
B = /"—ax VE _ C(_ ,
“ uo 2v2u
. , T(Oyl))
2.31 B, =< pvE A
(2:31) w= v 22
=X mX* c(T)
B, = 0 0 vE_ oL
Vu(@" +97 ) + Wor

Then B, = B! + B!, is a superconnection on E in the sense of Quillen [32]. By [14,
Section 2], B, is exactly the Levi-Civita superconnection of the fibration in the sense
of [4, Section 3].

Let Nv be the operator defining the Z-grading on FE, i.e. Ny acts by multiplication
by p on EP.
Definition 2.13. Set
(2.32) N, = Ny + % .
Then N, is a section of 7*A(T3%S) ® End(A(T*OV X) ® €).

The following result is proved in [14, Theorem 2.6].
Theorem 2.14 — The following identities hold,

BZ?=0, Bl*=0,

B: =B, B,
(2.33) B/, B2 =0,[B,, B3] =0,
(BY,Nu] = —2u2-B" (B!, N.] = 202 B
ou ou “
By (2.9), we get
(2.34) VE" wH] =0, [VF,wf]=0.

From (2.30), (2.31), (2.34), we get the formulas

B—Z = e_i‘é)—uf!'uNV/2 (VE“ +5X) u_&zLe% y
(2.35)

s H —_— i H
B!, = ety Nv/2 (VE' + 3X*) uNV/2e= %0 |

2.4 Superconnection forms and transgression formulas

Definition 2.15. Let P° be the vector space of real forms on S which are sums of
forms of type (p,p). Let P50 be the vector space of the forms o € P5 such that there
exist smooth forms 3,y on S with oo = 98 + 9.
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We define PV, PV'0 in the same way.
Let ®: A°ven (T S) — A°¥e(T%.S) be the map a — (2iw)~de8*/2q,
If A is a square matrix, set

Td(A) = det (T-'AeTA) ,
Td'(A) = 5‘% Td(A + b)|s=0,
(Td~1)(A) = -(% T~ (A + b)[po,
ch(A) = Tr[exp(A4)].

(2.36)

The genera associated to Td and ch are the Todd genus and the Chern character.

Let P be a real ad-invariant power series on square matrices. If (F,gF) is a
holomorphic Hermitian vector bundle on V, let V¥ be the corresponding holomorphic
Hermitian connection, and let RF be its curvature. Set

F RF

(2.37) P(F,g")=P (—%) .
Then P(F,gF) is a closed form which lies in PV, and its cohomology class P(F') does
not depend on g¥. We still denote by P(F) the classes of P(F,g) in PS/PS0,

By [4, Theorem 3.4], we know that the forms ® Trs[exp(—B2)] are closed, and that
their cohomology class is constant and equal to ch(Rm.§).

By [14, Theorems 2.2 and 2.9], the forms & T, [exp(——Bﬁ)] and @ Tr, [N, exp(—B2)]
lie in PS. The following result is established in [14, Theorem 2.9].

Theorem 2.16 — For u > 0, the following identity holds
0 1 90
(2.38) %Q Trs [exp(—B2)] = —aﬁfb Trs [Nu exp(—B2)] .

If (cw)u>0 is a family of smooth forms on S, we will write that as u — 0,
oy = O(uF*t1) if for any compact set K C S, and any p € N, there is C > 0
such that the sup of a, and of its derivative of order < p on K are dominated by
C’u,k"'l.

2.5 The asymptotics of the superconnection forms as u — 0

Now we recall a result established in [4, Theorems 4.12 and 4.16] and in [14,
Theorems 2.11 and 2.16].

Theorem 2.17 — As u — 0,

(2.39) ® Tr, [exp(—B2)] = /X Td(T X, g¥*) ch(¢, g°) + O(u) .
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There exist forms C_1,Co,...,Ck,... € PS such that for ke N, as u — 0,

k
(2.40) @ Tr, [Nyexp(—B2)] =) Cju? + O(u*+1).

-1

Moreover

C_i= [ -=Td(TX,g"X)ch(t, "),

(2.41) /X 2m

Co = / (dim X Td(TX) — Td' (T X)) ch(¢) in PS/PSO.
X

2.6 The asymptotics of the superconnection forms as ©u — +o00

dim X
For s € S, let H(X,,&|x) = € HP(X,,€|x.) be the cohomology of the sheaf of
0 8

holomorphic sections of £ restricted to Xj.

We make the basic assumption that for 0 < p < dimX, the dimension
of HP(X,,£|y,) is locally constant. Then the H(X,,&|y )’s are the fibres of a
holomorphic Z-graded vector bundle H (X, ¢ | x)onS.

For s € S, set

(2.42) Ks={feE,,,5X‘f=o,5"’*f=0}.

By Hodge theory, K, ~ H(X,& | Xs)' Since the HP(X,, & | x,) have locally constant
dimension, the K,’s are the fibres of a smooth Z-graded vector bundle K on S, and
moreover we have the identification of smooth vector bundles on S,

(2.43) H(X,¢|x) >~ K.

As a subbundle of (E, g¥), the vector bundle K inherits a smooth metric g¥. Let
gH(X:€lx) be the corresponding smooth metric on H(X, ¢).

For s € S, let PX+ be the orthogonal projection operator from E; on K,. Then
PXs depends smoothly on s.
Definition 2.18. Let VK be the unitary connection on (K, g¥)

(2.44) vk = PEVE.

Using the identification (2.43), the connection VX determines a unitary connection
VHXLIx) on H(X, &)

We now have the following result in [18, Theorem 3.2].

Theorem 2.19 — The connection VH(XEIX) is ezactly the holomorphic Hermitian
connection on (H(X,&|), g X¢1x)). In particular, VECEIX) only depends on the
(1,1)-form w via the metric gTX on TX.
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Put
dim X . )
(2.45) ch(H (X, €|x), g7 *¢1x)) = 3™ (~1) ch(H'(X, £|x), g™ *:€1x))
=0

The operator Ny induces the obvious Z-grading on H(X, ¢ | x)-

By definition VH(X:£1x):2 jg the curvature of VH(X:€1x) Also as u — 400, we
use the same notation as for u — 0. We recall a result of Berline-Getzler-Vergne [3,
Theorem 9.19], also recalled in [18, Theorem 3.4].

Theorem 2.20 — As u — +o00,

(2.46) ® Tr, [exp(—B2)] = ©Trs [exp (—VH(X’5|X)’2)] +0 (-—\}-Z) ,

& Tr, [N, exp(—B2)] = & Tr, [Nv exp (—vH(X»f'X>»2)] +0 ('\;77) .
2.7 Higher analytic torsion forms
For s € C, Re(s) > 1, set

1
(2.47) ¢Ms) = —ﬁ/o us—lcb(Trs [N, exp(—B2)]
— Tre [Nv exp(—VH(x’ﬂ")’z)]) du.

In view of (2.40), it is clear that ¢!(s) extends to a meromorphic function of s € C,
which is holomorphic for [Re(s)| < 3.

Similarly, if s € C, Re(s) < 1, we define ¢?(s) as in (2.37), replacing fol by f1+°°.
In view of Theorem 2.20, it is clear that ¢2(s) is a holomorphic function of s € C,
Re(s) < 3.

Definition 2.21. For s € C, |Re(s)| < 1, set

(2.48) ¢(s) = ¢ (s) +¢3(s).

Then ((s) is holomorphic on its domain of definition.
Definition 2.22. Set

1o}
) = =
(2.49) T(w, g%) aSC(O).
Observe that the component of degree 0 of T'(w,g®) is exactly the Ray-Singer

analytic torsion [34] of the complex (E, EX). By analogy, the forms T'(w,g%) are
called higher analytic torsion forms.
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By (2.40),

(250) T(w,g) = — fo 1 (<1> T, [Nuexp(~B2)] — =2 - Co) du

du

- /1+OO‘I’ (Tfs [N exp(—B32)] — Trs [Nv exp(—VH(X’5|X)*2)]) —

+ O +I7(1) (00 — pTrs [Nv exp(—VH(X’Elx)’z)]) .

We recall the result of [14, Theorem 2.20], [18, Theorem 3.9].
Theorem 2.23 — The C* form T(w,g%) on S lies in P°. Moreover

(2.51) %T(w,gg) = ch (H(X,£|x),gH‘X’5"‘)) —/XTd(TX,gTX)Ch(ﬁ,gﬁ)-

2.8 Anomaly formulas for the analytic torsion forms

Let now (w’, g’¢) be another couple of objects similar to (w, g%). We denote with
a ' the objects associated to (w’, g¢).

Let Td(TX,g7X,g'TX) € PV/PY°, ch(¢,g¢,9¢) € PV/PV° be the Bott-Chern
classes constructed in [13, Section 1f)], such that

90 Fq(T X, gTX, ¢ TX) = TA(TX, g'TX) — TA(TX, g7,
(2.52) 2im

§Q~ € €Y — €Y _ 3
21:7['Ch(§’g g )—Ch(é',g ) Ch(&)g )

Similarly we construct the class ch (H(X,€&|y), gl Xtlx) g H(X L)) e pS )PSO,
Now we recall the anomaly formulas of Bismut-Ko&hler [18, Theorems 3.10

and 3.11], which extend in arbitrary degree the anomaly formulas for Quillen metrics

of [13], [15].

Theorem 2.24 — The following identity holds

(253) T(W,g%) ~ T(w,6%) = ch (H(X, &), g" X&), g 704100
- [ (TATx,g7%,gTF) ch, o) + TATX, gTX)ch(e, €, 1))
zZ
in  PS/PSO.

In particular, the class of T'(w, g%) in PS/P5° depends only on (g%, g%).

Remark 2.25. For the component of degree 0 of T(w, g%), the content of Theorems
2.23 and 2.24 is essentially equivalent to the curvature Theorem for Quillen metrics
established in [13], [15].
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3. Kaihler fibrations, resolutions, and Bott-Chern
currents

In this Chapter, we describe our basic geometric setting, i.e. the embedding i: W —
V, and the holomorphic submersion ny: V — S, ryy: W — S. Also 1 denotes a
holomorphic vector bundle on W, and (§,v) is a resolution of .7 by a complex of
vector bundles on V. We make the basic assumption that Ry .7 is locally free.

In this Chapter, we construct the analytic torsion norms of the family of double
complexes (E, 3 + v) along the fibres X, and we describe the Bott-Chern currents
of [16], [17].

This Chapter is organized as follows. In Section 3.1, we give our geometric setting.
In Section 3.2, we construct the analytic torsion forms of the family of double
complexes, and in Section 3.3, we describe the Bott-Chern currents of [16], [17].

3.1 A family of double complexes

Let i: W — V be an embedding of smooth complex manifolds. Let S be a complex
manifold. Let w|y : V' — S be a holomorphic submersion with compact fibre X, whose
restriction 7|y : W — S is a holomorphic submersion with compact fibre Y.

Then we have the diagram of holomorphic maps

(3.1) Y —W

i

XﬁVT'

Let n be a holomorphic vector bundle on W. Let
(3.2) Ev):0>&n 2 &n1—... 2 & —0

m
be a holomorphic complex of vector bundles on V. We identify ¢ with @ &;. Let
0

r: €|lw — 7 be a holomorphic restriction map. We make the assumption that (£,v)
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is a resolution of .7, or equivalently that we have the exact sequence of Oy sheaves
(3.3) 0 — Ov(ém) - Ov(&m—-1) = Oy (&) — 0w (n) — 0.

Then for every s € S, (§,v)|x, provides a resolution of i,7|y,.

Definition 3.1. For s€ S,0<p <dimX,0<i<m,let Ef:s be the vector space of
smooth sections of (A(T*(®1DX) ® &;)|x, on the fibre X,. Set

Bl = @ El., F,=@E, FB.=E,0F,,

(3 4) p even p odd
Ei.= @ E,, E..= P E,E.=E,.®E_,.
p—1i even p—1i odd

Then the objects in (3.4) are the fibres of infinite dimensional vector bundles on
S.

The Dolbeault operator 3~ acts fibrewise on E. Also the chain map v acts on £ as
an odd operator. We extend v to an odd operator acting on A(T*®DX) & £, so that
if @ € AP(T*OVX), f €€,

(3.5) v(@® f) = (-1)Pa®vf.

Then we have the identities

7X,2

5 0, v®2=0 , 3 v+vd: =0,

and so
(3.6) @ +v)2 =0.

Let N, Ny be the operators acting on AP(T*(®VX), ¢ by multiplication by p,s.
The operator N{f — Ny acts naturally on F, and defines a Z-grading on E, for which
=X . . =X . .

0" + v increases the degree by 1, i.e. 0 + v is a chain map.

Definition 8.2. For s € S, 0 < ¢ < dimY, let FZ be the vector space of smooth
sections of (AY(T*(®VY) ® )|y, over Y. Set

(3.7) Fi.= @ Fi, F,=@@F, F.=F,0F,.

q even q odd

Again the objects in (3.7) are the fibres of corresponding infinite dimensional vector
bundles over S. The Dolbeault operator 5Y acts fibrewise on F'.

Let N be the operator acting on A(T*(®VY) by multiplication by ¢g. Then N
acts naturally on F, and defines a Z-grading for which 3" increases the degree by 1.
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Let H(X,,&|x,) be the hypercohomology of (Ox,(£|x,),v), let H(Ys,nly,) be
the cohomology of Oy, (n]y,). Then since (3.3) is exact, for any s € S, the map
r: Ox,(&|x.) — Oy, (nly.) is a quasi-isomorphism, and so

(3.8) H(X,,&|x,) =~ H(Ys,1ly,) -

By a result of Dolbeault and by [19, Proposition 1.5], for every s € S,

H(E.,d" +v) ~ H(X,,£|x,) ,

(3.9) y
H(Fs,a ) = H(Ym?ﬂxs)

We extend r to a morphism £|w — 1, with r =0 on &, ¢ > 0. For s € S, let 5 be
the restriction map

(3.10) re:a € B — (i*®r)a € F;.

Now we recall a result in [19, Theorem 1.7].

Theorem 3.3 — For any s € S, the map rs: (Es,5X +v) — (FS,EY) is a quasi-
isomorphism of Z-graded complexes. It induces the canonical identification

(3.11) H(E,, 8" +v) ~ H(F,,d").

In the whole paper, we assume that dim H(X,&|x) is locally constant. Then the
H(Xs,€&|x,)’s are the fibres of a holomorphic vector bundle H(X,&) on S. By (3.8),
the dimension of the H(Y;,n|y,)’s is locally constant, and so the H(Ys,n|y,)’s are the
fibres of a holomorphic vector bundle H(Y,n) on S. By (3.8), (3.9), (3.11), we get the
identification of holomorphic Z-graded vector bundles on S

H(X,¢|x) ~ H(Y,nly),

(312) H(E, 5 +v)~ H(F,3").

3.2 The analytic torsion forms of the double complex

Let w", w" be real smooth (1,1) forms on V, W which have the properties a)
and b) indicated in Theorem 2.2.

To wV,wW
from one another, we will often denote them with a superscript V or W. Also g7%,
g7Y denote the Hermitian metrics on T'X, TY induced by w¥, w%.

Let Nyw,v be the normal bundle to W in V, let Ny,x be the (fibrewise) normal
bundle to Y in X. Clearly Ny,/v ~ Ny, x. We identify Ny, x to the orthogonal bundle
to TY in TX|w with respect to g7X!w. Let gNv/x be the corresponding metric on

Ny/x.

, we associate the objects considered in Chapter 2. To distinguish them
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As in Section 1.3, one verifies easily that TR W is obtained from TEV by the
construction indicated in Definition 1.4.

m
Let g%, ..., g%, g" be Hermitian metrics on &, . . ., &m, 7. We equip £ = @ &; with

i=0
m
the metric g¢ = @ ¢%. Let v* be the adjoint of v with respect to g¢. Put
=0
(3.13) V=v+v".

We equip the fibres of E (resp. F') with the Hermitian product (2.22) associated to
97%, g* (resp. g7, g").

For u > 0, let BY'% (0 < i < m), BY be the superconnections on E;, F associated
to (wY,g¢%) and to (wW, g"), whose construction was given in Definition 2.12.

Then we can construct the analytic torsion forms T'(w", %) and T'(w"%, g") as in
Definition 2.20. By Theorem 2.23,

00

(3.14) o

T(w",g") = ch(H(Y,nly), g7 ¥ 1)) — / Td(TY, g"¥) ch(n,g").
Y

To describe the analytic torsion forms associated to (w',g%), we modify the
constructions of Chapter 2. Set

— _ " T(I,O))
B = Vu(@" +v) +VE —c(—,
w = Vu( ) Wor
(3.15) 57 75 o) 4 TF o(TOD)
Y = VA )+ 9T - S
=V —=nv =V
B, =B, +B, .
As in (2.5), we write w" in the form
(3.16) WY =V TX 4 oV,
Definition 3.4. For u > 0, set
. V,H
(3.17) N, = N¥ — Nu + ""u .

The difference with respect to (2.32) is that the number operator N{§ has been
replaced by the new number operator N{f — Ng.

Then by [14, Theorem 2.6], _B_Z ,WZ verify the obvious analogue of Theo-
rem 2.14. By [14, Theorems 2.2 and 2.9], the forms & T [exp(—l—')":’2)] and
® Tr, [NZ exp(—ﬁx’z)] lie in PS. Also by [14, Theorem 2.9], the analogue of Theo-
rem 2.16 holds, i.e. for u > 0,

0 —V,2 1 90 —V —=V,2
(3.18) %Q Trs [exp(—-—Bu )] = —;-2-—1,—;@ Trs [Nu exp(—B,, )] .
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Put
Ch(f, gﬁ) = Z(_l)l Ch(f’in gEi) )
(3.19) =0
ch'(§,6%) = ) _(—1)'ich(&,¢%).
=0

Then by [14, Theorems 2.2 and 2.16], the following analogue of Theorem 2.17 holds.
Theorem 3.5 — Asu — 0,

(3.20) ® Tr, [exp(—ﬁf’z)] = /X Td(TX,g"™) ch(g, g°) + O(u).

There exist forms DY,,DY,...,DY ... € PS such that fork € N, asu — 0

k
(3.21) ® T, [ﬁ: exp(—ﬁr’z)] = ZDJ‘-/uj + O(ur+1).
-1

Moreover
|4
DY, = /X %;Td(TX,yTX)ch(E,g’E),
(3.22) DY = / (dim X Td(TX) — Td'(T X)) ch(¢)
X

- / Td(TX)ch'(§) in PS/PSO,
X

For s € S, set
(3.23) Ks={feEs,(5x+v)f=O,(—B'X*+v*)f=0}.

Then by Hodge theory, KY ~ H(X,,£|x,). Since the H(X;,&|x,)’s have locally
constant dimension, the K'Y are the fibres of a smooth Z-graded vector bundle K on
S, and moreover

(3.24) H(X,Elx)~ K.

As a subbundle of E, K inherits a smooth metric g¥. Let gH#(X:€1x) the corresponding
metric on H(X,€|x). The arguments of [18, Theorem 3.2] show that the obvious
analogue of Theorem 2.19 holds.

Put

(3.25) ch (H(X,€lx), g7 X€1)) = 37(~1)" ch(H (X, £]x), g™ X:€1))
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Then by proceeding as in [3, Theorem 9.23], the obvious analogue of Theorem 2.20
still holds.

By replacing in (2.47) B, by —B—,‘: , Ny by J—V,‘: , as in Definition 2.22, we construct
a form T'(w", g%) € PS such that the analogue of Theorem 2.23 holds, i.e.

90

i

(326) T(wvv gE) =ch (H(Xa§IX)agH(X’€IX)) - / Td(TXv gTX) Ch(§7 gﬁ) .
X

A simple modification of the arguments of [18] shows that the analogue of
Theorem 2.24 still holds.

3.3 Assumptions on the metrics on &, 7

In the sequel we assume that the metrics g%°, ..., g*= verify assumption (A) of [5,
Section 1b)] with respect to g"V¥/x, g". We describe this assumption in more detail.

Recall that Ny,y & Ny,x. On W, we have the exact sequence of holomorphic
vector bundles

(3.27) 0 -TW —TV|y — Ny;x — 0.

For y € W, let H({,v), be the homology of the complex (§,v),. Then by [5,
Section 1b)], the H(&,v),’s have locally constant dimension. So they are the fibres of
a holomorphic vector bundle H(£,v) on W.

Ifye W,U € TV|w, let 8yv(y) be the derivative of v with respect to any given
holomorphic trivialization of £ near y. Then by [5], Oyv(y) acts on H(§,v)y, and the
action depends only on the image z of U in Ny,v = Ny,x. So we will write 9,v(y)
instead of dyv(y). By [5], (8.v(y))? = 0.

Let m be the projection Ny,x — W. By [5, Theorem 1.2], we have the canonical
identification of complexes on Ny, x

(3.28) (" H(€,v), 8,0) = (v (A(NFx) ® ), V=i
Recall that V' was defined in (3.13). By finite dimensional Hodge theory,
(3.29) H(gv) > {s € élw , Vs =0} .

Let gH(&?) be the smooth metric on H(£,v) associated to the right-hand side of
(3.29), considered as a vector subbundle of §|w.

Both sides of (3.28) are now equipped with a Hermitian metric. We say that
assumption (A) is verified if (3.28) is an isometry.

By [5, Proposition 1.6], given g/¥¥/x g7 there exist g%, ..., g™ verifying assump-
tion (A) with respect to g™Vv/x, g".

ASTERISQUE



A BOTT-CHERN CURRENT 41

3.4 A Bott-Chern current

Let V¢ = @ V¢ be the holomorphic Hermitian connection on (£, g%) = QB (&, 9%).
=0
For u > 0, put

(3.30) Cy = Vs +uV.

Then C, is a superconnection on £ in the sense of Quillen [32].

By [32], the forms & Trs[exp(—C?)] are closed and their cohomology class is equal
to ch(¢). By [13, Theorem 1.9], the forms ® Trs[exp(—C2)] and ® Trs[Ng exp(—C2)]
lie in PY. If K is a compact subset of V, let || llc,(v) be a norm on the Banach
space of C! forms p on V with support in K.

Nowe we recall result of [5, Theorems 3.2 and 4.3].

Theorem 3.6 — For any compact set K C V, there exists C > 0 such that if
u € CY(V) has compact support in K, then

(3.31) l / p® Trglexp(—C2)] — / i*qu"l(NY/x,gN"/x)ch(n,g”)
X

\/— ||/J'||C1(K) )

'/ p® Tr[Nu exp(—C2)] + / i*u(Td_l)’(NY/x,gNV”‘)ch(n,g”)
X Y

\/_ el or ke -

Definition 3.7. Let P}, be the set of real currents on V which are sums of real currents
of type (p, p), whose wave front set is included in Ny}, VR = Ny /X.R- Let Pv“/;o be the
set of currents a € Py, such that there exist currents 3, on V, whose wave front set
is included in N‘*,‘V/V’R, with a = 88 + 8.

Let 6w} be the current of integration on W. Then d;wy € Pyy.
Definition 3.8. For s € C,0 < Re(s) < 1/2, let R(&, g%)(s) be the current on V

(332) R(E,g%)(s) = "t {& Ty [Ni exp(—C2)]

1
I'(s)
+(Td™Y) (Nyyx,g™NY/%) ch(n, ") (wy } du.

Clearly by Theorem 3.6, the map s — R(£,g%)(s) extends to a map which is
holomorphic at s = 0.
Definition 8.9. Let T'(¢, g%) be the current on V,

(3.33) T(&, g% = %R(ﬁ,gﬁ)(O)-
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By [16, Section 4a)], we know that T'(£, g°) is given by the formula

! du
(3:38) T(6,9) = [ ®Tr [Naa(exp(~C2) - expl(~C)]

oo 2 —1ys N du
+[ {@T’rs [NH exp(_Cu)] + (Td ) (NY/Xag Y/X)Ch(n, gn)d{W}} —’l.L_
- I‘“'(1) {ch'(&,h®) + (Td™1) (Ny,x,g"¥/*) ch(n, g")éwy } -

The following result is proved in [16, Theorem 2.5].

Theorem 3.10 — The current T(£,h¢) lies in PY,. Also the following equation of
currents holds on V

00 _
(3.35) %T(E»QE) = Td~!(Ny,x,g"¥/*) ch(n, g")é{wy} — ch(£, g%).

Remark 38.11. Since T(¢,9°) € P, it follows from [30, Theorem 8.2.12] that
/ Td(T X, g"X) T(£,¢%) is a smooth form on S. Of course this form lies in PS.
X

Also by [17, Theorem 2.5], the dependence of the class of T'(¢, g¢) in PY,/P},° with
respect to g¢ can be calculated in terms of Bott-Chern classes.
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4. An identity on two parameters differential
forms

The purpose of this Chapter is to construct a differential form 3 on R} xR’ xS and a
contour I in R} x R depending on three parameters €, A, Tp such that / B € PSO,

To prove Theorem 0.1, we will later push I" to the boundary of R’ x Rf‘,_r

This Chapter is the obvious extension of [19, Section 3] to the case of a general
S. As in [19], our results can also be obtained from general results of [5] on the
dependence of the superconnection forms on the given metrics.

This Chapter is organized as follows. In Section 4.1 we construct a basic form «
on R} x R} x S. In Section 4.2 we obtain the form 8 by a change of coordinate
of coordinates. In Section 4.3 we describe the contour I'. Finally in Section 4.4, we
establish elementary identities which will be used in Chapter 6.

In this Chapter, the assumptions and notation of Chapter 3 will be in force.

4.1 A basic identity of differential forms

For u > 0,T > 0, set
Aur =BV +TV;

(4.1) . V,H

NY =NE+ &

Then A, r is a superconnection on E. Put

0 0
(4.2) du,T = d’U:% + dTﬁ .
Then d,,r is the standard de Rham operator acting on smooth forms on R} x R}.
We prove an extension of [19, Theorem 3.3].

Theorem 4.1 — Let o, T be the form on R} x R} x S,

_4ar
T

du 1%

(4.3) Oy = . Tre [N.uz exp(—Aﬁ,T)] Tr, [NH exp(—Ai,T)] .
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Then

(4.4) du,TOlu’T =

=0 Ni‘tlz 2 *
deu[B%{Trs [ - —AZ L by )]
N 8
+ Trs [ TH ~ALr - b%Bz‘; )] }b=0

9 f [Ny 2
+ 855{ [ % exp(— A 7 - bv)]

Ny p
+ Trs [T exp(—AfL,T — V )] } ]
Proof. By the analogue of (2.33), we get

(4'5) u T — [Au T A” T] [ u T 12¢,T] = 07 [A;,T’ A%,T] =0.

From (4.5), we obtain

o " 6A;,T , aAZ,T
(46 AL = Al 2| 4 a0, 20T

Using (4.5), (4.6) and the fact that supertraces vanish on supercommutators [32],
(4.6), we get

(4.7) %Tr [Ny exp(—A2 )] =
o e (oot 2] )]
= 3.0 T, [N exp(~A2 7 — )],
00T, [N exp(—Ar — b)),
B % v, [[Buz', Xz] exp(—A2 1 — bv*)] o
- % Tr, [[Buz ,N;’z] exp(—A% r — bV)] b=0
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Using Theorem 2.14, we have

0 - 2o [ et

- 2w, [[BY NG exp(— A%~ )]
2t ottt s

- % Tre [U%A:"T exp(—AZ 1 — bv)}

b=0

b=0

By (4.7)-(4.8), we find that

49) T [ exp(-al )| -
% Trg [%AZ,T exp(—A% — bv*)] o
- 5T [ A exp(- AL )]
+ —3-% Trs [AZ‘VZ’ — ﬁ,T - bv*)] e
+ 8% Trs [NT"‘/Z exp(—Ain — bv) -
Similarly

3
(4.10) - Tr, [Nuexp(—43 7)] =

. T . / "
ob 8 [ exp ( u,T -b [ u, T 6 u,T] —b I: T a " -
Its ([A 0
b [[ wr> Nu] exp ( A% —b—Al )]
b=0

ou T
0 [ 9 0
- =Tr u, > NH exp( A% —b—A )]
ab ° [ T ] T du T b=0
=0 9 o
+ 3% Trs [NH exp (—Au’ - b—a—— " T)] -

15) 9 0
+ 6% Tr, [NH exp (—Au,:r ba— " T)] - .
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Moreover

a 4 2 a
(4.11) ab’I‘rs [[AU,T,NH]GXP( AL bau uT)]b__O

o
~ %% Tr, [[A;,T,NH] exp(—Ai, b—A" T)]
o

0
— T T | oAl exp(- AL - tw*)]

b=0

b=0

0 17}
+ T = Trs [—A; exp(—A2 . — b'u)]
b | Gu T T oo

From (4.9)-(4.11), we get (4.4). O

Remark 4.2. As in [19, Remark 3.4], Theorem 4.1 can be also considered as a
consequence of [5, Theorem 2.2].

4.2 A change of coordinates
For u > 0, T > 0, set

(412) Bu,,T = Au,uT .
Equivalently
(4.13) B,r = BY. +uTV.

Theorem 4.3 — Let B3, T be the form on R} x R} x S,

dT
T

du

(4.14) Bur = —’I‘r [(NY. — Nu)exp(—B2 1)] — —= Trs [Nu exp(— B2 )] .

The following identity holds

d N" .
(4.15)  du7fBur = udTdu |6 § Tr, exp(—B3 7 — bv*)

b
[—T P (-0 )},
o {m [ vpta )]+
+ T, [% exp (—Bﬁ,T ~ b%B};")] }b=0] :

Proof. By making the change of variables v — u, T — uT, our Theorem follows
from Theorem 4.1. O
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4.3 A contour integral

We fix constants €, A,Tp such that 0 < e <1 < A < 400, 1 < Ty < +00. Let
I' =TI'c,a,1, be the oriented contour in R} x R,

uA
Iy
AF—-- -
y Is %FI
el - — -
1 Iy I
1 1
1 1
1 ] )
0 1 To T
As indicated in the figure above, I' is made of four oriented segments I'y,...,T'y.
Also I" bounds an oriented rectangular domain A.
Definition 4.4. Let 7,6 be the forms on S
v = / 2{ Trs [NY2 exp(—B2 1 — bv*)]
A ob u u, T
N /
+Tre [ exp (—B2 . — b—‘?—BVz } dTdu,
T ’ ou ™ b=0
(4.16) P
5= /A = { T, [N exp(~ B2 1 — bv)]
Ny 2 o v
+ T, [ = exp (—Bu,T b5-BY: }b=0deu.
Theorem 4.5 — The following identity holds
(4.17) /ﬂ=5'y+65.
r
Proof. Identity (4.17) follows from Theorem 4.3 and from Stokes formula. a
Put
(4.18) R=[] & , 1<k<4

Tk
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Then identity (4.17) can be put in the form

4
(4.19) Y 1) =237 +85°).

As in [19], the proof of Theorem 0.1 will consist in making A — +o00, Ty — +00,
€ — 0 in this order in identity (4.19).

Remark 4.6. In Chapter 14, we will construct a form 3’ which is the analogue of 3
when interchanging u and 7T'. This way, we will prove Theorem 0.2.

4.4 Some elementary identities

Now, we will eliminate the differential operators 7 BV2 in the expression (4.16)
for v, d. This will prove to be useful in Chapter 6.

Proposition 4.7 — The following identities hold
(4.20)
a -NH 2 a v’
%'IYS _z—,l—;exp (—-B T_b )]
\%
a_?_ Trs N_exp( BuT—b u? € p(_B?L —bv ) )
ob 0 ' b=
8 NH VI/
= Ty | —= -B
abTr uTl exp( ) b=0
0 Nu NY v 2
— pu —-b
2q5 [ et ir >L0 ™ | r-wl,.

Proof. We write B, r in the form B, r = B, r + B, 1. By Theorem 2.14,

3 Vl/ 6 VI 1

o= [ NY.] , 5-BY: == [B,r, NJ] ,
(4.21) du” ) _‘19” u T

’U=ﬁ[ uT’NH] , ’U*:ﬁ[ uT’NH]
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From (4.21, we get

0 Nu 9 v -
(4.22) %Trs[u exp( B bauB )]b: =

0
% ’ Nu 2 1‘1/2

.0 [ N 9 NY,
= aab Trg T exp( B,r—b ” oo

U
50 [ Nu 5 NY,
= 6ab Trs _ﬁ exp ( Bu,T b " b0
) Ny,
+ =T [—” exp(—B2 ; — bv*)
ob s u T b=0
So we get the first identity in (4.21). The second identity has a similar proof. O
Definition 4.8. Let 1,0, A be the forms on S,
‘ dT'du
=2 B — buTv*
7’ / 8b |: exp( ULV )] b—0 Tu )
dT du
deu
(4.23) A= / 8b s [Nu exp(—B z)] b=0 T’
o / dT'du
- 9 p2 3. 9 hv
p=2 A 9b Trs [NH exp( Bu,T buauBu? )] 50 Tu '
0 ’" dT'du
=2 _ \%4 .
v /A 5 [NH exp(—B bua B, ] T
Proposition 4.9 — The following identities hold,
=n+4+0A=pu—0A
(4.24) YENTOA=ATO
6=0—-0A=v+0\.
Proof. Equation (4.24) follows from Proposition 4.7. O
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Then we can rewrite (4.17) in the form

/ﬂ=5n+80+2'8'a,\,
(4.25) r

/ﬁ=5u+8u—253)\,
r

and (4.19) can be rewritten as

(4.26)
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5. The analytic torsion forms of a short exact
sequence

In this Chapter, we recall the main results of [6] on the construction and the evaluation
of the analytic torsion forms associated to a short exact sequence of holomorphic
Hermitian vector bundles. Also we establish non trivial identities on such generalized
supertraces which will be needed in Chapter 6.

This Chapter is organized as follows. In Section 5.1, we give a formula for the
curvature B2 of the superconnection ®,, considered in [6]. In Section 5.2, we introduce
two conjugate superconnections €,,%,, whose curvatures reappear in Chapters 12
and 13, and whose geometric interpretation will be given in Chapter 15. In Section 5.3,
we introduce the generalized supertrace Tr; [exp(—%;‘:)] of [6]. In Section 5.4, we recall
the transgression formulas of [6] and the results of [6] on the behaviour as u — 0
or u — +o00 of the generalized supertraces. In Section 5.5, we construct the analytic
torsion forms of the exact sequence. In Section 5.6, we recall the explicit evaluation in
[6] of these analytic torsion forms. In Section 5.7, we construct equivariant analogues
of these analytic torsion forms, with respect to the obvious action of the complex
structure. In Section 5.8, we establish non trivial identities on generalized supertraces,
which will be needed in Chapter 6. Finally in Section 5.9, we give a formula for a
conjugate of a curvature operator which will be used in Chapter 13.

5.1 Short exact sequences and superconnections

Let B be a complex manifold. Let

(5.1) 0—-L—-M-—>N-—>0
i J
be a short exact sequence of holomorphic vector bundles on B.

Let g™ be a Hermitian metric on M. Then g™ induces a Hermitian metric g~
on L. We identify N with the orthogonal bundle to L on M. Therefore N inherits a
metric gV. Let PL, PV denote the orthogonal projection operators from M on L, N
respectively.
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Definition 5.1. For y € B, let I, be the set of smooth sections of (AM™) & A(N*))y
along the fibre Mg 4.

Then I, is a Z-graded vector bundle on B. Let I = I* @ I~ be the corresponding
splitting of I into its even and odd part.

Let dvps be the volume form on the fibres of M. We equip I, with the Hermitian
product

52) poct— o =(m) [ oo

Let 3" be the Dolbeault operator acting on I, and let 3""* be the formal adjoint
of 3" with respect to (5.2). Put

(5.3) pM =3 4 M.

If 2/ € N, the operators i,, and i%, act as odd operators on A(M ") ® A(N*). 1l
Z' = 2' +%Z € Nr, put

(5.4) V(Z') = V—-1(iy — i%).
Equivalently, with the notation of Section 2.2,

az
5.5 V(z) = ——l-c(—.
(5.5) (Z") =V NG

Let VL, VM VN be the holomorphic Hermitian connections on L, M, N and let RL,
RM | RN be their curvatures.

The connection VM defines a horizontal subbundle THM of TM.If U € Tr B, let
UH be the horizontal lift of U in TH M.

Let VA )BA(N®) be the connection induced by VM and VN on A(M") & A(N*).
Definition 5.2. If U € Tr B, il s is a smooth section of I, put

(5.6) Vis = VAMOIBANT

Then V! is a connection on I, which preserves the Hermitian product (5.2).
Definition 5.3. For u > 0, let &B,, be the superconnection on I

c(RM Z)

(5.7) B, = DM 4+ JuV(PNZ) + V! — 273

Of courses B, splits as

(5.8) By = B, + B, .
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As in (2.33),
B2 =0,B2=0R2 =[B!, B],
(5.9) (B!, B2] =0, [B,,BZ] =0,
0 0
(B, Nu] = 2u—-By., (B, Nu] = —2u -, .
Let e3,...,e2, be an orthogonal base of Nr. As before, we use the notation of
Section 2.2.

Definition 5.4. Let S € End®"**(A(N") ® A(N*)) be given by the formula

(5.10) S = ‘/_ Z c(ei)éle;) .

Note that taking into account the change of notation on the ¢(e;)’s with respect
to [19, Section 5 a)] which was described in Section 2.2, our S is exactly the S of [19,
Definition 5.1].

Classicaly [31, Propositions 6.4 and 6.5], we know that

vL — PLVM,

(5.11) N - pNyM

Let RANT) denote the natural action of RN on A(N*). Then RAN) acts like
1Q RAMN) on A(M™) @ A(N*).

Let VM = VL @ V¥ be the connection on M which is the direct sum of the
connections VX and V. Set

(5.12) A=VM _oygM,

Then A is a 1-form on B which takes its values in skew-adjoint elements of End(M)
which interchange L and N.

Let fi,..., fox be a base of Tr B, let f1,..., f2* be the dual base of T} B.
Definition 5.5. If Z € MR, set

2k
(AP*Z) = =) f*e(A(fa)P*2),

(5.13) ;k
AAPYZ) == f*e(A(fa)P"2).

Let Tr[R™] denote the (1,1) form on B which is the trace of RM. The following
result was proved in [6, Theorem 3.10]. Let ey,..., ez, be an orthonormal base of
Mg.
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Theorem 5.6 — For u >0, B2 € (A(T3,B) ® End(I))®Ve" is given by

2m
B =13 (Ve + (1R Z,0))°
(5.14) 1
—u
V2
Definition 5.7. If y € B, J, denotes the set of smooth sections of Ay(Ng) =
(A(N") & (A(N*)), over the fibre Mg, ,.

Since A(Ng) is Z-graded, it is also Zy-graded. If y € B, let J , (resp. J_ ) be the
set of smooth sections of ASY*"(Ng) (resp. AJ94(Ng)) over the fibre Mg 4. Clearly
Jy=Jyy®J_y

Here J = J, @& J_ will be considered as an infinite dimensional Zj-graded

vector bundle over B. Our calculations will be done in the Z;-graded algebra
A(T% B) ® End(J). Observe that B2 lies in fact in (A(T%B) ® End(J))eve.

+ 2 [PV 2| + Vs + YL E(APEZ) + § Tr[RM] + RAYD.

5.2 The conjugate superconnections €, and 9,
Now we recall identities of [6, Theorem 4.12] and [19, Theorem 5.6].
Theorem 5.8 — For u > 0, set
c(APLZ)) (—c(APLZ))
€, =e —— | Byexp | —— | ,
u Xp ( \/i u €XPp \/5
L MPNZ, pLz
D, = exp c(AP"Z) (R )
V2 2
- L RMPNZ PLZ
B, exp o(AP”2) + < > .
V2 2

(5.15)

Then the following identities hold

2m

u

c(APLei))2

V2
u|PNZ|*

+ —_——

5 +VuS+ 1 Tx[RM] + RANT)

(5.16) @2

2m
= 3> (Ve + 3 ((RM — PLA’PY)Z,e;)
1
L\ 2
+ 1 (RMPNZ, Ple;) — 3 (RMPLZ,PNe;) - ———C(Af;é é’))
N 7|2
+ y_l%ﬂ + VS + L Tr[RM] + RANT)
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Remark 5.9. In Chapter 15, we will give a geometric interpretation of the identities
(5.15), (5.16).

5.3 Generalized supertraces

Let dvyps, duny be the volume forms on the fibres of Mr, Ngr respectively. All the
smooth kernels along the fibres of Mr will be calculated with respect to the form
dup (2)/(2m)dim M,

We denote by Ny the operator in End(A(/N*)) which defines the Z-grading of
A(N*), i.e. Nu acts by multiplication by p on AP(N*). Then Ny acts like 1 ® Nyt on
ANT) ® A(N*).

For u > 0, let Q¥(Z,2')(Z,Z’ € Mr,) denote the smooth kernel associated with
the operator exp(—%®2¥). The existence and uniqueness of Q¥%(Z, Z’) are standard.

Observe that QY(Z,Z') € (A(TEB) & End(A(N") & A(N*)))°¥e". We use the
conventions of Quillen [32] described in Section 4.2. In particular Trs[QY(Z, Z’)] lies
in A®ven(T% B).

By [6, Theorem 4], we know that for u > 0, there exist ¢ > 0, C' > 0 such that if
y € B, Z € Nr, then

(5.17) |Q%(Z, Z)| < cexp(—C|Z|?).

Note that in (5.17), it is crucial that Z is restricted to vary in Nr y.
In view of (5.17) and following [6, Definition 4.4], we now set the following
definition.
Definition 5.10. For u > 0, set
Tufesp(-BD), = [ TlQUZ 2)] g
(5.18) Ne.y

mivwont-a = [ Tt D1

Note that Trs[exp(—%2)], and Trs[Nu exp(—®B2)], are only generalized super-
traces. In fact the operator exp(—%?2) is in general not trace class.

Using (5.15), and the fact that supertraces vanish on supercommutators [32], it is
clear that exp(—%2), exp(—%2), Ny exp(—%2), Nu exp(—%2) also have generalized
supertraces Trs[exp(—%2)], Trs[exp(—=D2)], Trs[Nu exp(—%2)], Trs[Nu exp(—D2)]
and that

Trs[exp(—B)] = Trslexp(—63)] = Trs[exp(-D3)],

(5.19) Trs[Nez exp(—B2)] = Trs[ N exp(—62)] = Trs[Nu exp(—D2)].
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5.4 Transgression formulas and convergence of generalized supertraces

We now recall several results of [6, Theorems 4.6, 4.8 and 7.7].

Theorem 5.11 — For any u > 0, the forms ® Trs[exp(—®B2)] are closed, lie in PB,
and their cohomology class does not depend on u > 0. The forms ® Trs[ Ny exp(—%B2)]
lie in PB. Moreover, for u > 0,

(5.20) aqu)'I‘rs [exp(—B2)] = -2—27;<I>Trs [ " exp(—%u)] .
Asu—0,
(5.21) @ Trs[exp(—B3)] = Td™ (N, g") Td(M, g™) + O(w),

@ Trs[Nez exp(—B7)] = —(Td™") (N, g") Td(M, g™) + O(u).

As u — +o00,

& Tr,fexp(~B2)] = Td(L,g") + O (711-;) ,
dim N

5 Td(L,g") + O <%) )

Remark 5.12. In [19, Section 14|, another proof of (5.22) was sketched, using the
expression (5.16) for @2. In Chapter 15, we will sketch a “simpler” proof of (5.22),
based on the explicit form of %,, and on some ideas of the present paper, when
applied to a toy case.

(5.22)
® Trs[ Ny exp(—RB2)] =

5.5 Generalized analytic torsion forms

We now reproduce the construction in [6, Section 8] of generalized analytic torsion
forms.

Definition 5.13. For s € C, 0 < Re(s) < 1/2, let B(s) be the form on B,

dim N
2

+o0o
(5.23) B(s) = % /0 us! {Qﬁs[NHexp(—%ﬁ)] ~ Td(L,gL)}dU~

One verifies in [6, Section 8a)] that B(s) extends to a function of s which is
holomorphic near s = 0.

Definition 5.14. Let B(L, M,g™) be the form on B

(5.24) B(L, M,g") = %g(O)-
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By [6, eq. (4.37), (8.2)], the following identity holds

1
B(L, M, g") = /O {@ Trs[Nux exp(—%3)] + Td(M, g*)(Td ™)' (N, g™)} ‘—Z‘-

+00 :
(5.25) +f {@ﬂS[NHexp(—%i)] - X e, gL)} 2
1
' M —1y Ny, dimN L
+ T'(1) (Td(M, g™ )(Td™)' (N, ¢7) + ——Td(L,97) | -
The following result is proved [6, Theorem 8.3].
Theorem 5.15 — The form B(L, M, gM) lies in PB. Also
90 My _ Ly Td(M,gM)

5.6 Evaluation of the generalized analytic torsion forms

We now describe the main results of [6] concerning the evaluation of the form
B(L, M, gM). Recall that the Hirzebruch polynomial A(z) is given by

z/2

We identify A to the corresponding multiplicative genus.

Let ’f&(L,M, gM) be the Bott-Chern class in PB/PB:? agsociated to the exact
sequence of holomorphic Hermitian vector bundle (5.1), which is constructed in [13,
Theorem 1.29] and is such that

(5.28) 29 Ta(L, M, g™) = Td(M, g™) — Td(L,g") Td(N, g").

The class ’fa(L, M, gM) is normalized by the fact that if the exact sequence (5.1) splits
holomorphically (and here also metrically), then Td(L, M,gM) =0 in PB/PB-°.

Let ¢(s) be the Riemann zeta function.
Definition 5.16. Put

_ 1 1(m)) et
(529) n odd . ( )
=3 (rm a3l BED) (ot
D)= > (r(1)+;j+ ) )c( )=

n>1
n odd
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By [6, Remark 8.8],
(5.30) D(z) = R(z) + F'(I)AZ,:(:I:) .

The power series R(x) was introduced by Gillet-Soulé [26] and the power series D(z)
in [6].

We identify D(x), R(z) with the corresponding additive genera. In particular
Td(L)D(N) is a well-defined element of PZ /P50,

The following result has been proved in [6, Theorem 8.5] and in [6, Appendix].
Theorem 5.17 — The following identity holds

(5.31) B(L,M,gM) = —Td"}(N,g")Td(L, M, g™) + Td(L)D(N) in PB/PB?°,

5.7 Equivariant generalized analytic torsion forms

In this Section, we discuss briefly the construction of equivariant analytic torsion
forms associated to short exact sequences. These torsion forms are distinct from the
ones of [8], which are constructed in the context of the Lefschetz fixed point formula.

Let JM be the complex structure of Mg. Observe that J™Z is a holomorphic
Killing vector field acting along the fibres of M, which preserves L and N. In particular
the Lie derivative operator L ju z acts naturally on the vector bundle A(M~)QA(N*).
Then for h € C,

<%Z+ hc(z))2 _o, (%L _ hc(z))2 —o

(532 W ) Mty
L ,%"+—fi]=o,[L,. B! — ”]:0.
[ iJMZ u 2\/5 JMZ 2\/5
Theorem 5.18 — For u >0, h € R, the following tdentity of operators in (A(T{B)

® End(I))eve® holds

(5.33)

. 2 2m
— Lipgmz + (%u - —) =-3> (Ve, + 3 ((RM +ihJMZ), 6i>)2
2v2 T

+ 3 |PVZ|* + VS + YS&(AP"Z) + § T [RM — B + RAM) + hNg.

Proof. Formula (5.33) can be proved directly. Another proof is to use Theorem 5.6
(for the case where h = 0) and to check that the coefficients of A and h? coincide in
both sides of (5.33). A still more sophisticate proof is to observe that (5.33) is in fact
a consequence of Theorem 5.6, where —hiJM is itself part of an enlarged “curvature”
RM 4 hiJM. This point is discussed in more detail in [4, Remark 3.2] (in relation
with [9]) in the context of the local families index theorem. O
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Remark 5.19. Of course we have the identity
hdim M
—
At least formally, the right-hand side of (5.33) is just the operator %2 where RM,
RN are replaced by RM — h, RN — h.

By proceeding as in [6], for u > 0, h € R, one can still define the generalized
supertraces Trg [exp (— (— Limz+ (%u - ﬁa(thMZ))z))] and Trg [NH exp (—

( — LMz + (%u - 2\C/i(z'h,JI"’Z))2))]. Note here that it is essential that h € R

for the generalized supertrace to be well-defined. Using (5.32) and proceeding as in
[6, Theorem 4.6], the obvious extension of Theorem 5.11 is still valid. In particular

2
(535) %‘TYS [exp (— ( Lipjmz + ( \/_(’l,hJMZ)) )):l
2
= 90Tt [1\;“ (— (—L,-,,JMZ + (%u - 2\0/5(th1”2)) ))] .

If A is a (g, q) matrix, set
Tdp(A) = Td(A + h),

(5.36) d4(4) = - Td(A +h)

(5.34) LTy [RM — h] = L Tx[RM)] —

(Td; ) (4) = %crd;l)(A).

By noting that the right-hand side (5.33) is the obvious modifications of B2 which
was just described, we find that the extensions of (5.21), (5.22) hold, where Td, Td™?,
(Td™!')’ are replaced by their obvious analogues Tdy, Td; !, (Td;l)’ .

Definition 5.20. For h € R, s € C, 0 < Re(s) < 1/2, let By(s) be the form on B

(5.37) Bh(s) =

) / e { [Nnexp( ( L JMZ+< \/_(thMZ))z))J

— dim %’- Tdn(L, gL)}du.

Again By(s) extends to a holomorphic function near s = 0.
Definition 5.21. Put

M) _ 8Bh

(5.38) Bn(L,M,g 25 0

The obvious extension of Theorem 5.15 is as follows.
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Theorem 5.22 — The form By (L, M, gM) lies in PB ®@g C. Also
00 Tdp(M, gM)
5.39 35 Bn(L M, My = Tdp(L, g*) — =22~

Again, we can define the Bott-Chern class Td}, (L, M, gM) as in (5.28).
By [6, Appendix], the series R(z) and D(z) converge for |z| < 2. Put

(5.40) Rp(x) =R(zx+h) , Dp(z)=D(z+h).
Theorem 5.23 — For h € R, |h| < 2m, the following identity holds
(5:41) Bu(L,M,g") =~ Td, (N, g")Tdn(L, M, ™)

+ Tdn(L)Dr(N)  in PB/PBOgg C.
Proof. The proof of (5.42) is formally the same as the proof of [6, Theorem 8.5]. O
Remark 5.24. From (5.39), we deduce that

80 0By,

5= o (Or=o = Td'(L, %) — Td'(M, g") Td"}(NV,g")

- Td(M3 gM)(Td_l)’(Na gN) .

(5.42)

By differentiating (5.41) at h = 0, we get a non trivial identity for QB—h‘(O)h =o. Of
course (5.40)-(5.42) make sense for arbitrary h € R. This is because by [6, Appendix],
Dy, extends to a meromorphic function on C, whose poles lie on the imaginary axis.

5.8 Some identities on generalized supertraces

Let da be the canonical generator of C*. Then da, da generate R** ®@gr C. If
a € A(T4B) ® A(R?*), then a can be written in the form

a = A\ + dap + dav + dadao, A p,v,0 € A(TRB).
Put
(5.43) a =y , a®=v , o=y,

First, we extend identities of [13, Theorems 1.10, 1.12], [14, Theorem 2.13] to
generalized supertraces.

Proposition 5.25 — The following identity holds,
(5.44) aé& Trs [exp(—%B2 + cNu)] =
R / dada
- Tr, |exp(—RB2Z — da2ua Lo d&2u8%" + cNu)
u ou Ou

+ % Trs [exp(—B2 + cNu)] -
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Proof. Recall that we consider only generalized supertraces. As in [6, Proof of
Theorem 4.6], one has to be quite careful in the formal manipulation of such
supertraces, especially when using the fact that the supercommutator of supertraces
vanish. For more details we refer to [6]. We have

(5.45) % Trs [exp(—B2 + cNu)] =

9 2 n OBy
55'1}5 [exp(—%u - b[ w By + c¢Nu) o
a 9 , 6%”
+ 55 Tt [exp(—%u -b [ w o |t cNu) oo
' da
= 9Trs [exp(—%ﬁ - dag% + cNH)]
" da
+ 0'Trs [exp( —R2 daaa% + cNH)]
2 a%iz " dada
—cTrs |exp(—RB2 — dEW —da [B,,, Nua| + cNu)

" da

oR
- —R2 _ dg—u
cTr [exp( Rz — da P +

da
da [B.,, Nu] + CNH)]
From (5.9), we get

/
(5.46) Trs [exp(—%ﬁ -~ d‘ag3

da
1
+ cNH)] = Eu—cam [exp(—%ﬁ + cNH)] ,

"

Trs [exp(—%i —da OB,

2uce

da
50 T cNH)] = —15Trs [exp(—BZ + cNn)] -

Using (5.45), (5.46), we get (5.44). The proof of our Proposition is completed. O

Proposition 5.26 — The following identities hold,
0 a1 1 9 OB OR!,
Ew Trs [Nu exp(—B2)] = ~ Trs [exp(—%u — da2u 9 da2u Bu )]
90 , 82
+ —%@ Trs [exp(—-%ﬁ + cNH)] P
5.47) 2 1 & Trs —B2 + cN;
(5.47) 8u26 5 [exp(—B2 + cNu)] _,
" ) dada
. [NH exp(—B2 — OB - 6% ]
U ou
03 1 33
~ 6553 [ exp(—B2 + cNH)] o0
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Proof. We obtain (5.47) by differentiating (5.44) at ¢ = 0. Note in particular that by
[6, Theorem 4.6], we have the identity of generalized supertraces

(5.48) %m [exp(~B2 + bNsg)] = Tr, [Nax exp(~B2)] .
The proof of our Proposition is completed. O

As before, we only consider generalized supertraces in the sense of Section 5.3.
Definition 5.27. For u > 0, put

(5.49)
2m 2
O, = gg’I‘rs [exp ( - (— %Z(Ve.' + 1 {((RM - iJMdada)Z, e;))? + u———lPA;ZI
+ VuS + \/——u\/_(APLZ)+da\/:E\/_(PNz)+d‘ —u\/_(PNE)

di M dada
— dada—=— + L TY[RM] + RAVY) 4 bNH)>] ,

b=0
A, = Trg :exp(—%ﬁ - da\/—_ué}/%) _ tfd\/:ﬂ@)] dada |
- e (- (o 5|
I, = Trs :NH exp (_ (%3 + daﬁ&};;))]da

By proceeding as in [6, proof of Theorem 4.6], one verifies easily that ©, and A,
are sums of (p,p) forms, II), a sum of (p + 1,p) forms, and I/, a sum of (p,p + 1)
forms.

Proposition 5.28 — For u > 0,

2

0
=01 5 Trs [exp(—B2 + cNn)] S

0?2
IY; = 9} 55 Tra [exp(~92 + oN)] g

(5.50)

Proof. Clearly

IT, = Tr, [ Nez exp(~ B2 + d (3, Nex])]

(5.51) ” 2 ” da
IT;, = Trs [NH exp(—RB; — da [B,,, NH])]

Using (5.51), and proceeding as in [6, Theorem 4.6] (we are considering only
generalized supertraces), we get (5.50). O
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Theorem 5.29 — Asu — 0,
90, = (— Td'(M,g") + dim M Td(TM, g"™))(Td™*)'(N, g") + O(u),

PA, =0(u),
(5.52)

®I1,, = O(u),

I, = O(u).

As u — +00,
dlmN

6, = 1 dim N(Td'(L,¢") — (dim L + ) Td(L, g%)) + 6( \/_),
1
®A, = O(—=)
(5.53) ‘{'7
"o _ L
IT” = 0( ﬁ)'

Proof. Let m be the projection N — B. Clearly VA(N™) 4 \/_lﬂ\/%l is a supercon-
nection on 7*A(N*). By proceeding as in [6, Theorems 4.8 and 4.9], we see that as
u — 0,

(5.54) O = {A(RM + dada)e” z“[R”]( )dme
/N T [ Nexexp(—(VA) + \/—_1'%(2))2

d‘\/_

dada
— dav—1-< (@) + dad‘dlm M )] } +0(u).

15~ 2

Also, one has the easy formula
(5.55) Trs [NH exp(— (VAT 4 \/'—_176_—(2))2

- da\/_\/_(z) d_\/_\/_(z) +
di mM dadE) [NH exp(—(vMN') + \/—_1%(2)))2] .

dlm M

dad-)]

((1 + daiz)(1 + dai,) +

Let A’ be the genus obtained from A as Td' is from Td in (2.36). Using (5.54), (5.55)
and proceeding as in [6, proof of Theorem 4.8], we see that as u — 0,

d1m M -~

(5.56) 0. = (A'(RM) + EM Z(rM))e~3 TR (Td™Y)'(-RY) + O(u).
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~ 1
Since Td(—RM) = A(RM)e™2 Tr[RM], we get

dlm M

(5.57) Td'(—RM) = (- A'(RM) + 22N A(RM))e~2 TIRM

From (5.56), (5.57), we get the first identity in (5.52). The proof of the second identity
is essentially the same and is left to the reader.

By proceeding as before, we see that as u — 0,

az)

(5:58) L, = Td(-RM)(G0)"™Y [ Tr, [Nexexp(—(vA¥) + v=T2y?
N
—da\/—_lé%)] +0(w).

Using the following identity (which can be derived from (5.55)),

(5.59) Trs [NH eXp(—(VA(N*) 4 \/—C(Z) )2 d_\/—A(z) )]

V2 V2 ~
=iz Trs [N u exp(— (VAN ¢ ‘/__1%)2)]

or the fact that the integrand in the right-hand side of (5.58) is odd in Z, we get the
third identity in (5.52). The proof of the fourth identity in (5.52) is similar.

Now we establish (5.53). Clearly

2m
(5.60) ©, = 565 Trs [exp ( —(3 Z (Ve, + L ((RM — ibJdada)Z, ei>)2

2

|PN | c(P z) a(PNz)
+u +VuS + vV—u—=(AP* Z) + dav/— + dav/—-1 +
Ve f ( ) V2 V2
W GimM o
+ I T[RM] + RAM) 10N ) | — S5 o T [exp(—@B2 + b)),
b=0

By [6, Theorem 7.7], as u — +00

0 = Trs [exp(—BZ + bNm)],_ d1mN

(5.61) 3%

—— Td(—R%Y) + 6( \/_)

Let Jk be the differential operator % acting on S;. By using the notation and the

techniques of [6, proof of Theorem 7.3|, one finds that the first term in the right-hand
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side of (5.60) is given by

1 .
(5.62) _ % [e—§ Tr[RL]+b/2d|mNdet;V(1 _ (RN + b)JEl _ uJE2)

[detg}l(l — (RM + dada)Jg! — uPLA(J% — (RN +b)Jx —u)™!
APLJZ! - %(P"A + daPV 4 daPV)(JZ — (RN +b)Jk — u)™!

dada
(APY — daPV — daP™)Jx! - uPNJ,;Z)] } .

The precise interpretation of (5.62) is that (5.62) is an infinite product over Jx €
2inZ* of determinants over M or N (in [6], determinants over Mg , Ngr are
considered, and this explains the power 1/2).

By proceeding as in [6, Theorems 7.6 and 7.7], as u — +o00, the asymptotic
expansion of (5.62) is given by
- 1
(5.63) 1 dim NA/(RF)e~2 ™RY) 4 @(T}_ﬂ) .

From (5.60)-(5.63), we find that as u — +o0,

(5.64) O,

_ dimN (_dimM

_pLy _ at(pLy,—1/2Tx[RE])
5 5 Td(—R"”) — A'(R")e )

Using (5.57) and (5.64), we get the first identity in (5.53). An obvious modification
of the previous argument shows that the last three identities hold.

The proof of our Theorem is completed. O

Remark 5.30. From (5.50), it is easy to give another proof of the last two identities in
(5.52), (5.53), by showing that the limit as u — 0 or u — +o00 of Trs[exp(—B2+cNg )]
is a closed form.

Put

90 = lim @u s
u—0

(5.65)
O = lim ©,.

u—>+o00
The forms @ and O, have been calculated in (5.52), (5.53). They are d and 8 closed.
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Theorem 5.31 — The following identities hold,

+oo
5.66) @3 [ 1T, -‘5’—‘ + 30 n"d
0

+oo
= dim M(Td(L, g%) — Td(M, g™) Td"} (N, g"))

—Td'(L,g") + Td' (M, g™) Td™' (N, ¢") + Td(M, g™)(Td"")'(N, g").

Proof. By Proposition 5.28, we find that
(5.67) oI, + oI, = 33(;92 Trs [exp(—B2 + cNu)] __,
From (5.33), (5.49), we find easily that

X M 2 dada
(5:68) O, = —Tr, [N,, ( (dadaL,.JMz + (@ + el 2) ))]

2V/2
— dim M Tr, [N exp(—®2)] + Tr, [Nu exp(-B2 + dadaNg)] "
OB 8B4
— _ 2 u u
Tr, [NH exp ( — (B + 2dau 5u T 2dau—— ] .

By (5.35)

( - (dadaL,. gz + (B +

(idadaJ™ Z)\ 2y ]2
D))

(5.69) 08 Tr, [1\; H

= % Trs [exp ( - (dad&L,-JMz + (QB“ + %}_)2) ]d“‘m
By Theorem 5.11,
(5.70) 80 Tr, [-———-— exp(—%B2 )] = 5. Trs [exp(—9B2)] .
Also one has the trivial,
(5.71) Trs [N exp(—B2 + dadaNy)) dada 6622 Trs [exp(—B2 + cNu)] om0

By Proposition 5.26,

0 82 2
(5.72) 90— 5u 1 3 Tr, [exp(—B2 + cNu)],_, =
” n 1dada
— 00 Tr, [% exp(—B2 — da2u 689];1“ - d&2ua%“ ] .
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From (5.67)-(5.72), we obtain

(5.73) %(En; + 81 — 39O,) =
581-; Trs [exp ( — (daddLiJMZ + (%u + E@%—djﬂf))]
8,

. 0 0?
+ dim ME; Trs [exp(—B2)] — 886—56 5 Trs [exp(—B2 + cNu)],_,

As we just saw, ©9 and ©, are d and O closed. Moreover by (5.50), (5.52),
(5.53), or by a simple direct proof, the limit as « — 0 or u — +oo of
%3%2; Trs [exp(—B2 + cNn)] eep 18 0 and 0 closed. By Theorem 5.11 and its extension
stated after (5.36), and by (5.73), we get (5.66). The proof of our Theorem is
completed. O

5.9 A conjugation formula

If X € Mr let X(1.9 X(0.1) be the component of X in M, M, so that X =
X(lvo) + X(Orl).

Proposition 5.32 — For u > 0, the following identity holds
(5.74) exp (—%da (APYz, PN2) — lag (APLz, PVZ) + —j—i(APLZ)
c
+ da— (PN
73

1 = 1 M . T M 2 |PNZI
=3 (Ve + 3 ((RM — iJMdada) Z, e;))* + +uS
1

sy LB

2

+ \/—_uj_(APLZ) + da —u\/_(PNz)

¢(PNz) dlm M
— dada
V2

exp( 1da (APLz,PN2) + Lda (AP 2z, PNz

+ dav—u

+1Tx [RM] + RA(N‘>)

- da—(PNz) Nz) +

(RMPN Z, PLZ) )

da 7 (PE 2
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2m

=-1 Z(vei + 3 ((RM — PLA?PY — /=1PYJM PLdada)Z, €;)
1

+ 1 (RMPNZ,Ple;)y — L (RMPLZ, PNe,)
+da <APLe,~, PNz) +da(AP"e;, PNZ)

APLe; 2
- V2 “ f cAP™e")da + \;ic(P Nego’l))da)
PNZ M )
ulpz” Vs — dad-d‘m + 1T [RM] + RAN)

2

Proof. When da = da = 0, formula (5.74) is exactly the second identity in (5.16).
Put

(5.75) K= %(APL ) + da— \/_(PNz) +da— \/_(PNz)
Observe that if X € Ng,
(5.76) [K, %(X)] = (AP"Z,X) —da(PNz,X) - da(P"z,X) .

From (5.76), we deduce that

exp(K) (s + —(APLZ) +da— \/_(PN z) + da— \/_(PN z))

(5.77) \/_
exp(—K) =
Also
[K, Ve,-] = \/_(APLez) \l/:_(PN (1 0)) \/_(PNCEO,I)),
(5.78) (K, [K,Ve,]] = - <APLZ, APLei> + <APL'Z, PNei> da

+ (APLz, PNe;)da + da (PN z, AP e;) + da (P"Nz, APLe;)
+ dad('i( - <PNz, PNe§0’1)> + <PN3, PN6§1’0)> ) .
Also the higher commutators in (5.78) vanish. From (5.78), we get

(5.79) exp(K)Ve, exp(—K) =V, — \/_(APLe,) da-*- PNegl,O))

f(
—d‘\/_(PN ey + 1((~PLA2PLZ,¢;))

— Lda((APYz,PNe;) — (APYe;, PN 2)) — 1da((APYz,PNe;) — (APYe;, PNZ))
+ 3 (V=1JMdadaP" Z, PNe;) .

From (5.77)-(5.79), we get (5.74). The proof of our Proposition is completed. O
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6. A proof of Theorem 0.1

The purpose of this Chapter is to establish Theorem 0.1, which is an identity relating
the higher analytic torsion forms T'(w", g¢) and T'(w", g") to integrals along the fibre

X of certain Bott-Chern currents on W.
4

In (4.26), we established an identity of forms in PS, ZI,? = ®(0u° + ) —
k=1

@4’)\0, these forms depending on ¢, A,Tp. In this Chapter, we study the various
T

i
terms in this equality, by making A — +oo (step a), To — +oo (step 3), € — 0 (step
4

). Divergences appear at one or more of these stages. The final identity Z I} € P50
k=1
will then be shown to be equivalent to Theorem 0.1.

When S is a point (which is the case studied in [19]), P = {0}. So in [19],
the right-hand side of the above equality is identically 0. Also, in general, P50 is
not closed under uniform convergence. Finally, as explained in the introduction, our
purpose is to obtain a local universal equality in P°/PS9. So in contrast to [19], we
have to study in much detail the right-hand side of the equality.

The organization of this Chapter is closely related to the organization of [19,
Section 6]. As in [19], we state several intermediate results, whose proof is delayed to
Chapters 7-13.

The Chapter is organized as follows. In Section 6.1, we state our main Theorem. In
Section 6.2, we introduce a rescaled metric on £, which depends on a parameter 7" > 0.
In Section 6.3, we state seven intermediate results concerning the left-hand side of
the equality. In Section 6.4, we study the asymptotics of the I?’s. In Section 6.5,
we summarize the divergences in the right-hand side of the equality. In Section 6.6,
we state five intermediate results needed in the study of the right-hand side of the
above equality. In Section 6.7, we calculate the asymptotics of the right-hand side.
In Section 6.8, we crosscheck our computations, by verifying that the diverging terms
of both sides of the equality coincide. In Section 6.9, we obtain a local equality in
PS5 /P50, Finally, in Section 6.10, we show that this equality is just Theorem 0.1.

The general outlook of the computations of this Chapter being quite similar to
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70 A PROOF OF THEOREM 0.1

[19, Section 6], the reader is referred to [19] for a more detailed discussion of some
computations. Also as explained at the end of Chapter 6, if S is compact and Kihler,
and if we are just interested in a non local equality in PS/P5S0, the reader can skip
the rather heavy Sections 6.6-6.8.

In this Chapter, we use the assumptions and notation of Chapters 3, 4 and 5.

6.1 The main Theorem

Consider the exact sequence of holomorphic Hermitian vector bundles on W

Let Td(TY, TX|w,gT*!W) € P¥ /PW:0 be the Bott-Chern class constructed in (13,
Theorem 1.29] such that

62) LFUTY, TX|w,g™¥IW) =

2im
Td(TX|w,g"*") — Td(TY, g77) Td(Ny,x, g"*/*) .

Note that the construction of [13] is local and universal.

Recall that by (3.12), we have the canonical isomorphism of holomorphic Z-graded
vector bundles on S

(6.3) H(X,{|x) ~ H(Y,nly).

Also, in Sections 2.6 and 3.2, smooth Hermitian metrics g (X:¢1x) and h(Y,7|y) were
constructed on H(X,¢|x) and H(Y,n|y). Because of (6.3), we may regard g/(X:¢lx)
and g”¥7¥) as metrics on the same Z-graded bundle H(Y, 7|y ).

For p € N, let ch (H(Y,nly), g#XElx) gHX:mlv)) ¢ pS/PSO be the Bott-Chern
class of [13, Theorem 1.29], such that

30 ~
b (H(Y, nly), g1, gH (b)) =

ch (H(Y,nly), g#0) —ch (H(X, £lx), g#X€1x)) .

(6.4)

—cC
(s

+o0
Let {(s) = Z % be the Riemann zeta function. Now we introduce the Gillet-Soulé
1
power series R [26].

Definition 6.1. Set

_ 1 L, CEn)
(6.5) R(z) = ,,22:1 (; ;t 2 &) ) ((=n)— -
n odd
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We identify R with the corresponding additive genus.
The main result of this paper is stated in Theorem 0.1. For convenience, we state
again this result, which extends [19, Theorem 6.1].

Recall that by Remark 3.11, the integral along the fibre / TAd(TX, g"*)T(¢, ¢°)
X
lies in PS.
Theorem 6.2 — The following identities hold,

(6.6)
ch(HYnY) gH(X&lx) gHYmlv)y _ (W g") + T(w", ¢f)

Td(TY, TX |w, gTXIw)
= TdTX,TXT,ﬁ_/ ’ ’

ch(n, g")

+ / Td(TY)R(Ny,x)ch(n) in  PS/P50,
Y
ch(HYly) gHX&lx) oHYmly)y _ (W g") 4+ T(w", ¢%)

TA(TY, TX |w, gTXIw)
= TdTX,TXT,E—/ ’ )
A ( g ) (5 g ) y Td(NY/X,gNY/X)

ch(n, g")

+ f Td(TX)R(TX) ch(¢) — / TA(TY)R(TY)ch(n) in  PS/PSO.
X Y

6.2 A rescaled metric on F

By the anomaly formulas of [18] stated in Theorem 2.24, one verifies easily that
we only need to establish Theorem 6.2 for one single choice of w". In the sequel, we
will assume that w" = i*wY, and we will prove Theorem 6.2 in this case.
Definition 6.3. For T > 0, we denote by ( , ); the Hermitian product on E

. . tm
associated to the metrics g7X, gé°, 97—5;-, covs Bmm on TX, &, ..., Em. Set

(6.7) Kr = {s € FE, (gx +v)s=0, (EX* +T?v*)s = 0} .

Let Pr be the orthogonal projection operator from E on Kt with respect to { , ).

In (3.24), we saw that for any T > 0, there is a canonical isomorphism of Z-graded
vector bundles

(6.8) Kr = H(X,¢|x)-
Let gf (X8lx ) be the metric on H(X,{|x) inherited from the metric ( , )p

restricted to Kr. Let VTI{ (X:£1x) pe the holomorphic Hermitian connection on
(H(X,€x),gr ).
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Put

DX =3 +3"",

DY =3 +3 ".

Recall that V = v + v*. For T > 0, set

(6.10) Kr={seE, (DX +TV)s=0}.

(6.9)

Let Pr be the orthogonal projection operator from E on Kr with respect to the
Hermitian product ( , )=(, ); on E.
Then we have the easy formula in [19, eq. (6.5)]

(6.11) T-Na@* 4 v+ 3" + T2 TN = DX 4. TV
By (6.11), we get
(6.12) Pp =T~ NuppTNu

The map s € K — T~Vus ¢ Kr is an isomorphism of Z-graded Hermitian vector
bundles. So K7 is also isomorphic to H (X,&|x).

The operators PTN\),( Pr and PrNyPr act on K7. We still denote by PTN\),( Pr
and Pr Ny Pr the corresponding operators acting on H(X,¢{|x) ~ H(Y,n|y).

Let Q be the orthogonal projection operator from F on K’ = ker(DY).

6.3 The left-hand side of (4.26): seven intermediate results

Now we state seven intermediary results contained in Theorems 6.4-6.10, which
are the obvious extension of [19, Theorems 6.3-6.9]. They will permit us to study the
left-hand side of (4.26). The proofs of Theorems 6.5-6.10 are deferred to Chapters 7-
13.

We use the same notation as in Theorem 2.17. Also we use the notation of Chapter 5
with respect to the exact sequence of holomorphic Hermitian vector bundles (6.1) on
w.

Theorem 6.4 — There are forms DY, DY in PS that as u — 0,
— — DY

(6.13) & Tr, [N,Y exp(-B,‘f"")] = ==L+ Do +0().

Moreover

DY, = [ LT, ™) chle, o).
(6.14) DY = / (dim X Td(TX) — Td' (T X)) ch(€)
X

- / Td(TX)ch'(¢) in  PS/PSO,
X
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There are forms CW,,C¥ in PS such that as u — 0,

CW
(6.15) Trs [N exp(—BY2)] = T‘l +C¥ +0(u).
Moreover

w wW TY n
ch = v o Td(TY’g )Ch(na g ) s

(6.16) 2m
cy¥ = / (dimY Td(TY) — Td'(TY))ch(n) in PS/PSO.
Y
Proof. Our Theorem follows from Theorems 2.17 and 3.5. O

Theorem 6.5 — For any compact set K C S, for any uo > 0, there exist C > 0,
§ €]0,1] such that for u > ug, T > 1,

(6.17) I"ns [(NY — Ng) exp(—B2.1)] — Tr, [NJ;’ exp(—Br;’z)” < % on K,

C
|'I‘rs [Nu exp(—B2 )] — 3 dim Ny, x Trg [e)‘:p(—B::‘;’2 H < 75 on K.

Theorem 6.6 — For any compact set K C S, there exist C > 0 such that for
u>1,T2>1,

on K,

c
(6.18) ’Trs [NY: exp(—B2 1)] — Tr, [PTN",‘ Prexp(-VEX *5"‘)'2)] ] <<

"ns [Nex exp(—B2 )] — Trs [PTNHPTexp(—Vg(X’ﬂX)’z)]' < % on K.

Theorem 6.7 — For any compact set K C S, there exist C > 0, v €]0, 1], such that
foruel0,1],0<T < 1/u,

(6.19) ’@ Trs [Nu exp(—A2 7)] — /X Td(T X, g7*)® Trs [Nu exp(—C32)]

<Cu(1+T)) on K.
For any compact set K C S, there ezists C' > 0 such that for u €]0,1], 0 < T < 1,
(6.20) | Trs [Nu exp(— A2 7)] — Trs [N exp(—A2 )]| < C'T on K.
Theorem 6.8 — For any T > 0, the following identity holds,

(6.21) ,}flno ® Tr, [NH exp(—A2 /u)] = /Y ® Trs [Ny exp(—B2-2)] ch(n, g").

Theorem 6.9 — For any compact set K C S, there ezxist C > 0, 6 €]0, 1], such that
forue€l0,1], T > 1,

. C
(6.22) ]T&rs [NH exp(-Aﬁ,T/u)] — Ldim Ny, x Tr, [exp(-BZ‘.fz)” <75 on K.
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Let Yi,..., Y4 be the connected components of the fibre Y. Then we have the local
holomorphic splitting

d
(6.23) H(Y,nly) = @ H(Y;,nly;)

j=1

and the splitting (6.23) is orthogonal with respect to g”(Y'7lv) We will write metrics
on H(Y,n|y) in matrix form with respect to the splitting (6.23).

Recall that since H(X,¢|x) ~ H(Y,n|y), the metric gf! (X:£1x) can be considered
as a metric on H(Y,n|y).

In the sequel, we will write that a smooth function f on S is 6(T~>°) as T' — +o0,
if for any compact set K C S, k € N, p € N, there is C > 0 such that if T > 1, the
sup over K of f and its derivatives of order < p is dominated by TC,;

Theorem 6.10 — As T — +oo,
[ = dim Ny, /x (gH(Y,'IIY)+0(71?))

o(T—°°)
(624) gg(X,ﬂX) —

o(T~>)

- dim Ny, /x (gH(de'lle)_'_o(Vl?))

Theorems 6.5 and 6.6 will be proved in Chapters 8 and 9, Theorem 6.10 in
Chapter 10, Theorem 6.7 in Chapter 11, Theorem 6.8 in Chapter 12, and Theorem 6.9
in Chapter 13.

6.4 The asymptotics of the I2’s
Recall that by (4.18),

(6.25) R=[ &3 , 1<k<4.
™
By (4.26),
- 0 4,,0 (1] 56 0
(6.26) ;Ik = ®(@p’ +0v°) — —— X,

In the discussion which follows, we will assume for simplicity that S is compact. If
S is non compact, the various constants C > 0 depend explicitly on the compact set
K C S on which the given estimate is valid.
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The term I?
Clearly

A du
(6.27) )= / ® Tr, [(Nyz — Nu) exp(—B2 1,)] -
€

a) A— 4o
By the obvious analogue of Theorem 2.20, as A — +o00
(6.28) I — ®Tx, [(N(,‘ ~ Na)exp (—Vp (X'ﬁ'x)"")] log(To)
1 ! \% 2 du
—I{ = | ®Trs[(N2 — Nu)exp(—B3 1,)] —
Yoo
[ @ (I (N = Ne) exp(~B )]
1

du

— Ty, [(N\’,‘ — Nu) exp (_vg(x,ax),z)] ) u

B) To — +o0

By Theorem 6.5, as Tp — +00

! v 2 du
(6.29) ® Trg [(Nuz — Ny) exp(—Bu,To)] ™

€
1
du
——>/ ® Trs [N:Z exp(—Brz”z)] o
€

By Theorem 6.6, for 1 < u < 400, Tp > 1,

(6.30) |Trs [(V)2 — Nu) exp(—B2 1,)]

C
— Trg [(N\)f - NH) exp(—Vﬁ(x:ﬂx),?)] | < ',J )
Also since the identification (3.12) preserves the Z-grading,
(631) Tx, [N — Ni) exp(—~ VEX€102)]

Trg [N\),’ exp(—Vﬁ(x’ﬂX)’z)] .

75

Let Vgo (Y1) pe the holomorphic Hermitian connection on H (Y, 1]y ) associated to
the metric gﬁ (X:£1x) Using (3.12), we find that V,ﬁ (X:€1x) corresponds to Vf‘o Ynly)

By Theorem 6.10, as Ts — +o00,
(6.32) vHYaly) _, gH(Ymly) |

To
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Using Theorems 6.5 and 6.6 and (6.31)-(6.32), we see that as Ty — 400,

+o00
(6.33) / ® (Tr, [(NY% — Nex) exp(~B27,)] —
1
Tr, [N — Vi) exp(~ w2 Xel02)] )
+o0o
— / P ('I‘lrS [N,“"{ exp(—B::‘;’2 ] —
1

Trg [N\); exp(—VH(Y’""’)’z)]) ‘_luﬂ .

From (6.28, (6.29), (6.33), we find that as Ty — +oo,

1 wa\] du
(6.34) I} — I? =/ o Trg [N“zl exp(—B,2 )] -
€

p
+ /1 e @(ns [N;‘{ exp(—Br;’2)]

— Tr, [N\’,’ exp(—VH(Y"’|Y)’2)] )%u .

7 €—0

Using Theorem 6.4, we find that as ¢ — 0,
1
(6.35) I? — %Cﬁvls—z +C¥ log(e) — I? =
1 c¥ du
— w w,2 -1
= A {‘P ’I‘I‘S [Nuz exp(—Buz )] b _’ui— — C()} 7
+o0 W,
+/ @ (Trs [N:g exp(—Bug’z)]
1

— T, [N\‘,’ exp(—VH(Y’"’Y)’z)]) % —icw,.

5) Evaluation of I}
Theorem 6.11 — The following identity holds
(6.36) I = -1 [T(w",g") —I'(1)
(ch — ®Tr, [N{,’ exp(—VH(Y’"'Y)’2)])] .

Proof. Equation (6.36) is a trivial consequence of (2.50) and (6.35).
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The term I3

The term I3 is given by

To dT
(6.37) 3 =/ ® Trs [NH eXP(—Bfa,T)] T
1

a) A— +oo
By Theorem 6.6, as A — +00

ar

To
(6.38) -1} = / o T, [pTNHPT exp (_vg(x,ax),z)] '
1 T

B) To — +oo

By making u — 400 in Theorem 6.5, and using Theorems 2.20 and 6.6, we get for
T>1

(6:39) |Tx, [PrNuPrexp (-V§ ]
—1 dim Ny, x Tr, [exp (- vH 2 ]| < % :
From (6.38), (6.39), we see that as Tp — +00,
(6.40) I} — Ldim Ny, x® Tx, [exp (-—VH (Y"IIY)’?)] log(To)
SI2= / e ('ns [PTNHPT exp (-v{;’“’*"'”*z)]
1 dT

—1 dim Ny, x Tr, [exp (-—VH(Y”’"’)’Q)]) =

7 €—0

The term I2 remains constant and equal to I3.

5) Evaluation of I3
Theorem 6.12 — The following identity holds

(6.41) I3 = ich ( HYmIY) gH(X€lx), gH(ley)) in PS/PSO.

Proof. Let dim Ny,x be the operator acting on H(Y,7|y) by multiplication by
dim Ny, ,x on H(Y;,nly;) (1 <i < d). Set

(6.42) gHnly)" _ pdim Ny gH(Vmlv)

SOCIETE MATHEMATIQUE DE FRANCE



78 A PROOF OF THEOREM 0.1

Then by Theorem 6.10, as T' — +o00

’ 1
6.43 H(Ymly)' _ _H(Y.nly) +0(—).
( ) 9r g (\/T)

By Hodge theory, the map s € K; — Prs € Kt is the canonical isomorphism of K,
with K7, these two bundles being identified to H(X,£|x). In particular if s € K,
1<T<T,

(6.44) PTI PTS = PT/S .

Using (6.44), if s,s’ € K, we get

o OPr
(6.45) — (Prs,Prs’); = <—PT3,PTs'>

oT T oT T

OP; 2
+ <PTS, a—;PTS'>T - T (NHPTS, PT3/>T .
Since P2 = Pr, then
OPr oPr _ OPr

(6.46) T Pr + Pr Pr = o

From (6.46), we see that %’;’-’l maps K into its orthogonal K7 with respect to { , ).
Therefore (6.45) is equivalent to

o 2
(6.47) ﬁ (PTS, PTS,)T = _T <NHPTS, PTS,)T .

From (6.47), we deduce
H(X£|x)
Hxgx)-1997 _ "7 2
(6.48) gr 8T TPTNHPT )

By [13, Corollary 1.30], we know that for a given Ty > 1,

(6.49) I} = Léh (H(X’€|X),gH(X,€Ix)’gg)(X,Elx)) '
Equivalently
(6.50) I} = ich (H(Y, niy),gH(X,Elx),gg(Y,nlv)) .

By (6.43) and by [13, Corollary 1.30}, as Tp — +o0,
(651) b (H(Y,7ly), gh""), gH ) =

(1]

— dim Ny, x® Tx, [exp (—v” (Yv"'Y)’z)] log(Tb) + 0(71—_T_) .
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From (6.50), (6.51), we see that
(6.52) I} — 1dim Ny, x®Tr, [exp (—VH(Y’""’)"")] log(To)
~ 1
= %Ch (H(Y’ TIIY)’gH(X{lX),gH(YJ’IY)) + O(W) .

From (6.40), (6.52), we get (6.41). O

The term I3

We have the identity
A
— — d
(6.53) =— / @ Tx, [Nos exp(-BL3)| &2
. u
a) A— +o0o
By Theorem 6.6, as A — 00,
(6.54) I9 + & T, [(N\)',{ — Nu) exp (—VH(X’El")’z)] log(A)
1
e — d
N N / & Tr, [N,‘; exp(—B,‘ff)] &=
. u
+o0o
+ / d ('I‘rs [N Xz exp(—ﬁréz)]
1
du

— Trs [(N\),( — Ng) exp (——VH(X’E|X)’2)]) -

B To — +oo

The term I} remains constant and equal to IZ.

v) €—0

By Theorem 6.4, as € — 0,
1
(6.55) I2+ %Dfle—z — DY log(e) —
1 1
3_ —V _=vi2] DIy du
I = /0 {<I> Trs [Nuz exp(—B,,z )] = Dy } -
+o00
— / ® (’I‘rs [N,‘:z exp(—Brf)]

1

du

—Trs [(N\’,{ — Nu) exp (—VH(X’€|X)’2)]) -+ iDY,.
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5) Evaluation of I3

Theorem 6.13 — The following identity holds

(6.56) I3 =1 {T(w",¢°) -T'(1)(DY
—® Ty, (N — Nap) exp (—vHXe02) |1

Proof. This follows from the obvious analogue of (2.50) and from (6.55).

The term I3

We have the identity

To ar
(6.57) I = —/ ® Trs [Nu exp(—B?2 1)) - -
1

a) A— +oo

The term IJ remains constant and equal to I}.
B) To — +oo
By Theorem 6.5, we find that as Ty — +o0
(6.58) I} + 1dim Ny, x® Tr, [exp(—B:;Q)] log(Tb)
+o00
— I = —/ <I>(’I‘1rS [NH exp(—-Bf,T)]
1
. aTr
— % dim Ny, x Trs [exp(—Bg’z)] ) -

v €—0

We proceed as in [19, p. 65]. Set

. 1 2 v dT
JP=— [ ®Trs [Nuexp(—AZr)] T
ar

1
9 = — / v, [Nurexp(—A21,.)| =
(6.59) p

B== [ o (tn [Nuexp(-42,.)]

— 1 dim Ny, x® T, [eXp(_B:g’z)] )g '
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Clearly

(6.60) 12 = JO + J2 + J? — dim Ny, x® T, [exp(—B:g’z)] log(e) .

1)  The term JY.
We have the identity

1
(6.61) JO = — / @ (Trs [Nu exp(—AZ )] — Trs [Nu exp(—AZ)]) %z

+ @ Trs [Nu exp(—AZ y)] log(e) .

By Theorem 6.7, we find that as € — 0

662) I [ TATX,G"¥) ekl (6,4 log(e)
X

1
— J} =—f0 /XTd(TX,gTX)

® Trs [N (exp(—C32) — exp(—C¢))] %

2)  The term J9.
As in [19, p. 66], we write J9 in the form

(6.63) J3 =— /E 1 {<I> Trs [NH exp(—AE,T/e)]

— A TA(TX, gTX)n:p Trs [NH exp (—C(2T/€)2)]} %

_ /11/6 {/X Td(TX,g"*)® Tr, [NH eXP(—C:lz"Z)]} g

By Theorem 6.7, there is C > 0, v €]0,1] such that for 0 < e < T <1

(6.64) 'fl) Trs [NH exp(—Az’T/E)] - / Td(TX, gTX)
b

& Tr, [NH exp(—Cly /5)2)] | < C(e +T)" < C(2T)".
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We now combine Theorems 3.6, 5.8, 6.8 and (6.64). We thus find that ase — 0
(6.65) J3 + f Td(TX,g"*)(Td™!) (Ny,x,g"¥/*) ch(n, g") log(e)
Y
1
—— = [ [ {0 [N exp(~B3)] + TATX, g7¥)(Ta"!)
Yy Jo
aT
(NY/X7 gNY/X)} T Ch(777 g”)
+o00
- / {./x Td(TX, g"*)® Trs [Nu exp(—C3-)]
1
TX —1y/ N ar
+ YTd(TX’g )(Td ) (NY/Xag Y/X)Ch(n,g") ?

3)  The term J3.
Using Theorems 2.17, 6.8 and 6.9, we find that ase — 0

+o0
(6.66) J — Ji=— / { / (® Trs [Nu exp(—B3.)]
1 Y
. dT
—1dim Ny, x Td(TY, g™")) ch(n, ")} T

4)  The asymptotics of I3.
By Theorem 2.17 and by (6.60), (6.62), (6.65), (6.66), we find that as € — 0,

(6.67)
I + {dimNY/x/ Td(TY, g"¥) ch(n,g") —/ Td(T X, g7*) ch' (€, ¢°)
Y X

+ /Y Td(TX,ng)(Td_l)’(Ny/x,gNY”‘)ch(n,g”)}log(E) — I =
1
- [{ [ a@x, g7 1 [Na(exp(~C) — exp(-cB)] }
- / +°°{ / TA(TX, g7%)® Tr, [Nax(exp(—Cla)] + / Td(TX, g7X)
1 X Y
(Td™Y) (Ny;x,g"¥/*) ch(n, g”)} %,1—1
- / / 1 {® Trs [Nu exp(—B%2)] + Td(TX, g™ ¥)
Y JO
(Td™) (Ny/x,g"7/)} = b, g")
~+o00
_// {® Trs [Nu exp(—B32-)]
Y J1

, dT
—1dim Ny, x Td(TY, ¢7¥)} - ch(n,97).
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§) Evaluation of I3
Theorem 6.14 — The following identity holds
(6.68) I3 =-—31 { /X Td(T X, gTX)T (¢, ¢°)
+ [ B@Y.TX)w, ™) chin, ")
+I'(1) ( /X Td(TX, gT%) ch’ (¢, g°)
~4dim Ny [ Ta@Y.g™)chingm) }

Proof. Using formulas (3.34) for T'(¢, g¢), (5.25) for B(TY, T X |w,g7X!%) and (6.67)
for I}, we get (6.68). O

6.5 The divergences of the left-hand side of (4.26)

4

Now we will summarize the divergences of z I? as A — +o00, Top — +00, € — 0.
k=1
As should be the case, the diverging terms lie in PS50,

a) A—o+oo
By (6.28), (6.54), which concern I?, I3, the diverging term

(6.69) {—@’nrs [(N{,‘ - NH)exp(—Vfb(X’ﬂX)’z)]

+&Tx, [(N{,f — Nn) exp(—VH(X’ﬂX)’z)] } log(A)
appears. By [20], [13, Theorem 1.27], this term lies in PS50,

B) To — +oo

By formulas (6.40), (6.58), which concern I2, I}, we get the diverging terms

(6.70) {1 dim Ny;x®Tr, [exp (—VH*12)] 4

1 dim Ny, x ® Tr, [exp(—B:g’z)] } log(To) -
By Theorems 2.16, 2.20, 2.23, this term lies in P50,
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¥) €¢—0

We get a first sort of terms in formulas (6.35), (6.55) which concern I, IZ,
1
(6.71) L{-C% + DY} 5.

Since wV is closed, it follows from (3.35), (6.14), (6.16) that —C%, + DY, lies in P50,

By equations (6.35), (6.55), (6.67) which concern I?, I2, I?, we also get the
diverging terms

(6.72) {ch — DY +dim Ny, x /Y Td(TY, gTY) ch(n, g")

- [ T XXy ', 66 + [ Tawx,g™)
X Y
(Td™" (Nyx, g™¥/*) ch(n, g") } log(e)

Using (6.14), (6.16) and the arguments of [19, p. 70, 71|, one verifies easily that (6.72)
lies in P50,

If S is compact and Kihler, P50 is closed under uniform convergence. In this case,

4 4
it is not difficult to see that since Z I? € PS5O then Z I$ € P50, The reader who
k=1 1

is only interested in this case can skip Sections 6.7 and 6.8.

In the case of a general S, P59 is no longer closed. Also recall that our final
purpose is to obtain a local equality in P5 /PS50, This is why in Sections 6.6 and 6.7,
we discuss in detail the right-hand side of (4.26).

Finally observe that since in general, exact forms are closed under uniform
convergence, part of the discussion of Sections 6.7 and 6.8 can be eliminated, if we

4
just want to show that ZI,‘:’ € PSO,
k=1

6.6 The right-hand side of (4.26): five intermediate results

Now we will state intermediate results, which are needed in the study of the
asymptotics of ®(0u’ + ov°) — %@x\o, which appears in the right-hand side of (4.26).

If h,r is a function of (u,T) € R} x R}, we denote by hor the limit (when
it exists) of h,r as u — 0. Also hg o denote the limit (when it exists) of hor as
T — +oo. Similar conventions apply to functions A},.

Let da be the canonical generator of C*. Then dada span R?>* ®g C. If 0 €
A(T34S) ®r A(R?*) we write o in the form

6.73 o = so + dao®® + dao® + dadaoc?®%@, gy, 04, 0% 09298 ¢ A(THS).
R
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Put
Ku,T = 9 Trs [NH exp(—A? - bNV)]
’ ab \/Evﬁ u b=0
k% = —1dim Ny, x Trs [(NY + 1 dim Ny, x) exp(-BY?)] ,
a a " 8 !
bur = 57 Trs [exp( — A2 = 2dau Al = 2daus Al
dada— (uNY) — bN )] i
+ da aBu ulN, H o
* . 8 " 6 ’
0; = —% dim Ny, x Trs [exp(—B,‘:V’2 — da2u%BEV - d62u%B,‘f’
0 w . dada
+ dad&(%(uNu ) + %dlm NY/X)] ,
1 82
ot = d T [exp(= g o+ eND)]
, 02
Mo = a = Trg [exp(—=BY2 + ¢(N,¥ + }dim Ny, x)] __, ,
(6.74) 9 o da
. ! _ _
T = [exp( — A%y 7+ 2dau=-B bﬁv)] o
a da
ur = [exp( ~ A%z + 2daus-B]" bﬁv*)] :
A/*
A”* — O
/ 0 2 d da
1r’u,,T = %’I‘rs NH exp(—Aﬁ’ﬁ - 2d'a'u£Aﬂ,ﬁ) R
w _ 9 2 8 i da
Tur = 7 Ts | Nu exp(—AlL 5 — 2dauz-A Yavd)|
o _wi ™
m = 4 dim Ny x Trs {exp(—Bzv’z — 2dau—BY )] ,
ou b=0

da
m* = 1 dim Ny, x Trs [exp(—Bz‘;V’2 - 2dau(%B,‘:V")]
b=

Observe that by (2.33),

ﬂ'/* — 8".',* ,
(6.75) o ~
T, = —0Ky,.
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Computations on the model of [14, Theorem 2.16], and Theorem 3.6 show that
(6.76)
POy = — /X (dim X Td(T X, g™*) — Td' (T X, g7%))® Trs [Nu exp(—C%)] ,
00,00 = /Y (dim X Td(T X, g7*) — Td' (T X, g7 *))(Td ')
(Ny;x,g™¥/%)ch(n,g"),
0 = — /Y L dim Ny, x ((dim TY + 1 dim Ny, x) Td(TY, g7¥)
- Td'(TY, gTY)) ch(n,g"),

/ _ "o _
)‘O,T—O’ 0,7 —

7T6’T=0, WOT—-O ’7!'0 —0 Wg*=0-

Again, we use the notation of Chapter 5 with respect to the exact sequence of
holomorphic Hermitian vector bundles (6.1) on W.

Put
1 dimY
1 dimY
A = (57}—-) / AT’I‘r exp( V"’Z)]
, 1 dimY 5
AT = — % / AT’I‘I‘ [exp(—V”’ )] ,
(6.77) Y

)dimyfyAT'Il' [exp(—V"’2)] ,

()
(%):m: [ 1 fexa(-972)]
(%) lm /YIIﬁ_,ﬁTr[exp(——V"’z)].

Observe that by Theorem 5.29 and by (6.76), (6.77),

I~]\

®0p,00 = by,

(6.78)
B0} = 0o

Similar trivial equalities hold for X', \"’, 7/, «”.

Now we state five intermediate results contained in Theorems 6.15-6.19. They will
be used to study the right-hand side of (4.26). The proofs of Theorems 6.15-6.19 are
deferred to Chapters 7-13.

ASTERISQUE



THE RIGHT-HAND SIDE OF (4.26): FIVE INTERMEDIATE RESULTS 87

Theorem 6.15 — For any compact set K C S, for any ug > 0, there exist C > 0,
d €]o, %] such that for u > ug, T > 1,
6 VI/II

9 2
|55 T [NH exp(— B2z - bug-BL; )] .

0 0 'y C
13 o _npW2 _ 9 WYy < =
(6.79) 3 dim Ny, x 3 Tt [exp( B,; bu 5 B,. )]

)
|% T, [Ngg exp(—B2 1 — bN.%)]

. . C
+ 1 dim Ny, x Trs [(Nra' + 1 dim Ny/x)exp(—Brz”z)] I < 75 on K.

Theorem 6.16 — For any compact set K C S, for any up > 0, there exists C > 0
such that foru > ug, T > 1,

(6.80)
% Tr, [NH exp(~B2 1 — bu%BX;/ ")] .
- 'a% Tr, [PTNHPT exp(~ VX2 _ /4 pgHX el /" p N PT)] . | < % ,
% Trs [Nuexp(—BZ r — bN,2)], _,
- % Trs [PTNHPT exp(~VHXEx)2 _pp NX PT)] o | < % on K.
Theorem 6.17 — For any compact set K C S, for any Ty > 0, there exist C > 0

such that if hy T is one of the functions 0y, r, 7, r, WZYT, forO0<u<1,0<T < T,
(6.81) |y, — hor| < Cu on K.

For any compact set K C S, there exist C > 0, v €]0,1] such that if h, T is one of
the functions Oy, ™, 1, Ty 1, for 0 <u <1,0<T < 1/u,

(6.82) |h'u,,T - hO,Tl < C(u(l + T))’Y on K.

Theorem 6.18 — For any compact set K C S, there exist C > 0, 3 €]0,1], p €]0,1]
such that if hy,T is one of the functions Ou,r, A, v, Ay, Ty 15 Ty 1, for u €]0,1],
T € [u,1],

Cu®

(6.83) |, 7/u — | < T on K,
and for u €]0,1], T > 1,
(6.84) |hu,T/u - hT| <Cu” on K.
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Theorem 6.19 — For any compact set K C S (resp. and given uo €]0,1]), there
exist C > 0, § €]0, 1] such that if hy T is one of the functions 0, T, A, Tr MuTs T
7o (resp. nu,r), for w €]0,1], T > 1 (resp. for u € [ug,1],T > 1),

(6.85) |,/ — By < T%- on K.

Theorems 6.15 and 6.16 will be proved in Chapter 9, Theorem 6.17 in Chapter 11,
the first half of Theorem 6.18 in Chapter 12, the second half of Theorem 6.18 and
Theorem 6.19 in Chapter 13.

6.7 The asymptotics of the right-hand side of (4.26)
a) A— 400

By Theorem 6.16, we see that as A — +oo,

To a
(6.86) p°—2 b Tre [PTNHPT exp(-—V;f(x’E"‘)’2
1
¢ dT
— bvg(xyﬂx) PTN\)/(PT)] b=0_,11_ log(A) -
9 & v dTdu
=2 /esug ab Trs [NH exp(—Bﬁ,T - bu%BX? )] Tu
1<TET, b=0

+2/S
<

< [NH exp(— Bu T — bu o B )]
—S b=0
7]

~ b Trs [PTNHPT exp(_vg(xyﬁlx)ﬂ

dT'du
Tu
A similar result holds for 1'%, replacing Vg (X:€lx )IPTN\)}' Pr by —V¥ (X81x)" PrN{f Pr.
Finally by Theorem 6.16,

— er_-lI-wI(X'ﬂX)’PTN\);{PT)] b_o)

To
(6.87) A0 — % Tr, [ Pr Nyt Py exp(— VHC681x)2
1
dT
— bPp N PT)] =
7] dT'du
log(A) — Al = /esu_<_1 % Trs [Nuexp(—B2 7 — bN,2)], _, T
1<T3To
o
+ ﬁ§u<+w (% Trs [Nu exp(— By r — bNuz)]
1<T<To
0 deu

-5 T [PrNuaPrexp(- V5 %402  bpr g PT)])
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From (6.86), (6.87), we see that as A — +o00,

To
(6.88) ®(DuC + A°) — (225 / PTNHPTexp( GHOEIx).2
bVH(XﬂX) P NXPT)] (fizir

To
+ @28/ D Trs [PTNHPT exp(_vg(x,qx),z
To
+bVH(X€|X) PTNXPT) (D/ 6 PTNHPTeXp( VH(X€|X)2

dT = 80
— bPrNE PT)] b=0_IT] log A — ®(B’ + o) — =@

B) To — +o0

By proceeding as in [3, Theorem 9.23], one finds quite easily that as u — +o0,

9 Trs [eﬁcp(—Bl‘j‘z”2 - bu-zB“,") = @(%),

(6.89) = 5 B)|

By using (6.80), (6.89) and making u — +o00 in (6.79), we get for T' > 1,

o ’
(6.90) |57 Trs [PrNuPrexp(~ vy €102 _ py(Xcl)
C
PTN{”{PT)] b=0’ = TS ®
By (6.79), (6.80), (6.89), (6.90), we find for u > 1, T > 1,
o
(6.91) lE)E Nexexp(— BuT—bu——B )
=0
) .
— 5 Irs [ PrNg Pr exp(_vqf{max),z _ pvHXlx) pp N X PT)] )
o o _w C
13 Il _ w2 W o~
3 dim Ny, x % Tr, [exp( B,> buauBuz )J oo l < T
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Using Theorem 6.15 and the above inequality, we find that as Ty — +o0

+00
, d
(6.92) p' -2 / 1 dim Ny/X% Tr, [exp(—-BX‘;’z - buiB:‘; ] ke
€ b=

3u B - log(Tb)
d 0 v
—_ /1'2 = 2/63"151 (% T‘I‘s [NH exp(—Bﬁ,T - bub—u-B,l‘fz )] bo
1<T<F00 -
6 w,2 a w’ deu
o 0
+2 ﬁ$u<+oo (8b Irs [NH exp(=B T B bua B. )] b=0
1<T<+o0 -
0o

— 55 T [ PrNuPrexp(—VEXE0)2 _pgHXEx) p nX PT)]

. 1o} o ’ \ dTdu
— $ dim Ny/x 57 Tre [exp(—Bry — bu—BY )] i 0) :

Ou Tu
A corresponding result holds for v!

. By Theorems 2.20, 6.15 and 6.16 and by
proceeding as before, we see that as

1
d
(6.93) Al — [ / —1 dim Ny, x Tr, [(VY + 1 dim Ny,x)exp(~B5*)| =
£

+oo
— /1 —1dim Ny, x (Trs [(N}j&’ + 1 dim Ny, x) exp(—BZ‘,&)]

— Tr, [(NV + 1 dim Ny, x) exp(—=VHEXnlv), 2)] ) ] log(7o)

—))\2=/ a

cu<t (6b [NH exp(— B —bNY, )]b 0
T<+oo
. . dTdu
+ %dlm Ny/X [( %dlm Ny/x) eXp(—BXZ’z ] ) W
9 v
1<u<+oo ([Bb [NH exp(— B bNuz)]

1<T<+o00

)
— 55 Trs [ PrNuPr exp(— V4102 _ bPTNXPT)]

+ 3 dim Ny, x ('I‘rs [(N}f{ + 1 dim Ny, x) exp(—B$’2)]

. dl'du
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By (6.92), (6.93), we see that as Ty — +o0,

o(Op! + ovt) — %g@\l

= [t 0 Io} du
- L dim Ny, x = Trs W2 _ bu— =
[2{)6/6 3 dim Ny, x ab'l'?r [exp( B, Ew BY% ) U
+00 1 o w2 W
+ 299 5 dim Ny, x — Trs |exp(—B, 2" — bu —B )
ob u b=0 u

-_— s du
(6.94) + q’(/ 3 dim Ny, x Trs [( v + 3 dim NY/X)eXp(—Br;’z)] —
e w,2
+/ Jdim Ny/x ( Tr, [(N% + § dim Ny, x) exp(— BYS?)]
1

—Tr, [(NY + § dim Ny x) exp(~ VH“""'Y“’)]) )]log(To)

— ®(Ou® + ov?) — ‘?—fcp,\z.

v) €¢—0

1. The terms p? and v? Clearly

8 . o
(6.95) / e ( - [NHexp( B2 bu%Buz]bzo

1<T<+oo
. o 0
- %dlm Ny/x% Tr, [exp(—B::‘:’2 - bU%Brz, ]b 0) Te

1 +o00
du Tl
=%/€27/u (”;,T—W;)‘JT
Then

699 [ 2 [Tt n 5 - Ezd“[(”—w

+ ﬁi}_{ oo ! _ /*)d_T
2 U J, wT/u T

Also by using the techniques of [14, Theorem 2.11], we get the counterpart as
u — 0 of (6.89), i.e. as u — 0,

(6.97) = 0(u),n"* = 0(u).
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By (6.76), Theorem 6.17 and (6.97), as e — 0,

6o) [ % [T~ [ 2w

Also, using Theorem 5.29, we get
1 +o00
du 1oy AT du - ar
(6.99) [ﬁ ’?/u (WL,T/u_"Tu)? = " / ( Tu,T/u — T )_1'1—

+/1d—u/+oo(7r’ —w'—w'*g
2 u J; u,T/u T u/

+ 192/-'-0071./‘_12
2 U Jy TT.

By Theorem 5.29 and by (6.76) and Theorem 6.17, for0 < u <1, u < T <1,
|mp| < Cwr T <OT,
|rp| < CT.

(6.100)

Also by Theorem 6.18, for0 < u <1, u<T <1,

Cu®
(6101) IW:‘»T/U - 7l'r_,r S ?ﬁ— .
From (6.100), (6.101), we deduce that there is @’ €]0, 1], such that for 0 < u < 1,
u<T<1,
(6.102) 'W;’T/u - 7r'T| < Cu®

By (6.97), (6.102), we find that as e — 0,
1 1
T
(6.103) / d_u/ (Tor/u — T —7r'*)d—
e2 U Jy ’

du naT
N NP
By Theorem 6.18, for 0 < u <1,T > 1,
(6.104) Iﬂ;,T/u - w}l < Cu”.

Also by Theorems 5.29 and 6.19, forO < u <1,T > 1,

. C
IW':L,T/u - Trill. < ﬁ )
(6.105) c
|r7| < ik
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By (6.97), (6.104), (6.105), we see that for0 <u <1, T > 1,

. Cur/?
(6106) 71';,71/“ - 71",1- - 7T,:l S -—W .

Using (6.106), we see that as € — 0,

(6. 107)
+o00 . du [+ ..dT
/ / (Tru T/u ™ L )'— / / ( T, Tju — 7TT / T
€2

By Theorem 5.29 and by (6.99), (6.103), (6.107), we find that as ¢ — 0,

! du +oo / I* +oo 2
(6.108) / o / "~ T+ / i 2 10g(e?)
£ u

_,/lgq/m(ﬂ, oy — T
o U Ju u,T/u u/

1
+/ W&log(T)g;.
0

By (6.92), (6.95), (6.108), we see that

9 ‘oo dT 3
(6.109) u°+ 1rT-——log(e) —pd =
0

Ydu [t o e O
uT/u Tp — ™ )—'T_

! 0 0
1 ! - — bu—
+ 2/0 T log(T) T + 2 15 (Bb Trs [NH exp(— BuT bua BY, )]

ZT<+00 b=0

o ’
— = Tr, [ Pr Ny Prexp(-VEX 02 _ pgHX 6% pr NX PT)] .

. 0 w,2 0 ’ dT'du
— Ldim NY/X;?-5 Tre [exp(—Buz - bu%BZg )] b=0) T

A similar result holds for 2, so that as ¢ — 0,
+o00
(6.110) v? +/ d;‘ log(e) — 3
0
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2. The term A\? Clearly

0
(6.111) / cuct ( 35 Trs [Nu exp(—B3 7 — bN,2)], _,

E-—
1<T<+o0

+ 3 dim Ny, x Trs [N + 4 dim Ny, x) exp(~ BY?)] ) dTdu

Sy

As this stage, one would like to proceed as in (6.96)-(6.110). However as u — 0,
Ky, 7 has a singular expansion of the type

A
(6.112) Fou,T = -ul + Br + O(u).

Also Ky 1/u has a singular expansion of the same type. So we use integration
by parts to overcome this difficulty.

Clearly

(6.113) /1 d;‘ ]m(nw u)——/ du /+°°6 (ulru,r — K

/( nuu+nu)-—+/ (Ke2,1 — Ez)-dFT

- [ -
1

We will not control the right-hand side of (6.113) directly, but the 89 of this
right-hand side. To do this, we will establish intermediate useful formulas, whose
purpose is to eliminate the diverging term in (6.113).

Proposition 6.20 — The following identity holds,
6.114) 272 [NV exp(—A? )] =N — N
oT S u p VavT/| — T u,T
+On, ¢ + 07l 1 — 200K, -

Proof. This identity follows from (4.9) and (4.20). a

ASTERISQUE



THE ASYMPTOTICS OF THE RIGHT-HAND SIDE OF (4.26) 95

Theorem 6.21 — The following identities hold,
6 * * 3 *
E;(weu) =0, + 90, ,
7] 7]
%(Uﬂu,T) = OuT + Tﬁﬂu,T
b
1
(6.115) ~ 903 gacp s [exp( A v+ NS bN“)] b=0
3 63 2 v *
+ 3} 5355 Ths [exp(-A 2 o+ eNY +bVT )] -
, 0 VT
+ aam [exp( —A? avT T cNY +b Tv)] b=

Proof. The first identity in (6.116) was proved in [14, Theorem 2.14]. Now we prove
the second identity. Clearly,

(6.116)

9,

£ [uN,Y exp(—Af/E’ﬁ —bNH)] Trs [—(uNV)exp( A\/_\/_ —bNH)]

(7] v 2 0
+ -a—ETrs [uNu exp(——Aﬁ,ﬁ [ ’\'/_\/—,% ,\/E\/T]

d
e [ o Al \,_] b)) _
= Tr, [%(uN,)’ )exp(—A2 - o~ bNH)]

da

8 da
+ 90 Trs [uN,Y exp(—Af/E’ﬁ - daa A\'/_ . bNH)]

6 ﬁ
+ T, [[ vl ]exp( Ay yp— dB A = bNH)]

p) da
+ Tr, [[ \/-ﬁ,uNu]exp( —A% - da- A’\’/_\/——-bNH)]
P (-4 dal 4 oNer—c [4” N
ac e |UN X VT T ey CvavT TR [ VaVT? H]) c=0
da

0

0
+ b% Tre [uNX exp(—A2 T daa A" T~ bNH —c [A'\/t—m/f, NH] )]

c=0

O
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By (2.33),

da
(6.117) T [uN,Yexp(—Af/E,\/—f aaA\/_\/— bNH)]

= 1T, [N,Y exp(—A2 VT~ d_[Aff ] —bNH)]
2

0
=-01- 32 [exp(—Af/E,ﬁ +cNY — bNH)]
33

~ {5 [exp( A2+ eNY — bNu + b [A\/_\/—NH])]bz%.

c=0

In the corresponding equality with da-2 o A:’/_ Nid signs are changed in the right-hand

side of (6.117).
By differentiating (6.116) at b = 0, and using (6.117), we get

5
Bb

i
~ 93535

33
+ 9520
3
Trs [exp( A? vavT T cNY + bﬁv)]

(6.118) %(unu;p) = — Trg [g—)—(uNX) exp(—A2 W, bNH)]

b=0

Ty, [exp( A? \/—+cN —bNH)] b=0
c=0

—_ I

[exp(—Af/Eﬁ +eNY + bVTo*)

1
+ 935205

0 7]
+%’I‘r [exp( —A? VaNT Zdaua wT
0 dada
— 2dau— bNH)]

du
O v, [uNY exp(-A2 d‘a b|A" - N
+ gy e |4Nu exp(— ALy 7 —dag A (A% Nas])
)

p) v ) da
+ % s [uNu exp(—A L /7 — daa A:'/_’\/— b [A’\/a-’ﬁ,NH] )] o

da

b=0

Also, as in (6.118), we get
6 dE
83

02
= 9l — A2 1y
= -0 E Tr [exp( Aﬁ’ﬁ+cN b\/Tv)] +4 e
o

oy
Trs [exp( Af/_\/—+cN —0/Tv - 20T [ fﬁ’aTA:'F»/‘])]c=o'
b'=0
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By differentiating (6.119) at b = 0, we get

8 8 “
(6120) %Trs [UN exp( A\/—\/— d_a A:/_,\/— b[ :I/E’ﬁ’ NH] )] b0
33
=0t —— 52055 1T [exp( A\/- T+ eNy + b\/Tv)]

c—O
3

0 0

1 \% ’

+Z:9—2—Ca—b,Trs[exp( A\/..\/—+cN u—2bT[ Vi §T \/_\/—:l)]on.
c=0

In the corresponding equality with daz; 2 A’\’/_ ST 9 is replaced by 8, VTv by vVTv*

and [AI 2] 2 An ] by [ ) Al ]

Va,vT' 9T *\/u T Va, VT 8T % \/u VT
Now using Theorems 6.19 and 6.21, we get

1 +o0
(6.121) 58/2 d%/ i(u(/-cu,T - 'ﬁl))ﬁdI =

90 / du/+oo(9u:r 0*)—+/( nuu-lrnu)—]

To the first term in the right-hand side of (6.122), we apply the trick already used
for u?, 2. Namely we write

+o0
(6.122) /du/ (Ou, — 0*)——/ du/(ﬁ’uT 9;)—‘?
2
du [*°° waT
s [ - 0

d ar  [tdu dT
(6.123) / u / Our— 0 = [ / Our — O — 07+ 03) 2=
2 U e2 U T

Vdu ! ndT
[ [ -

Also

One verifies easily that as u — 0,
(6.124) 0, =65 +O(u).
By Theorem 6.17 and by (6.123), (6.124), we see that ase — 0,

Vdu ! dT
(6.125) / du / (Our — 05) %5 + L(—0,0 + 65) log*(e?)
e2 U Jy T
1 dT
+ / (fo,7 — f0,0) = og(€?)
0
1 d'u, 1
— / —Q;—/ (eu,T - 00,'1‘ - 0* + 00)"— +/ (90 T — 00 0) lOg(T)
0 u
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Also by Theorem 5.29 and (6.78),

Vdu [to° dTr
12 —_ -6)— =
(6 1 6) Lz u L (ou,T/u eu) T

d ar
/2 : / (ou JT/u — 00,T/u —0r + 90)_

1 1/u
du T L du
22 [ (6r — 80) % =
+./’52 - /u('_r o) T+ ., / OT
1 1 +o00
* du du * * dT
+/;2 Oulog(u)7 +/52 7/; (Ou,T/u — O — Oy, + 65) T
+oo aT
_/ (GT—BOO)Tlog(a2).
1

By Theorems 5.29 and 6.17, for0 < u <1, u<T <1,

Ieu,T/u - 90,T/u| < C(U + T)‘7 < C'T’Y s

(6.127) ,
|0T - 90| <C'T.

By Theorems 3.6 and 6.18, and by (6.78), forO<u <1, u<T <1,

Cu*
0wt/ —Or| < —5,
(6.128) Ouczr =0l < 7
|60,7/u — 60| < C'(a:;)l/2 .

From (6.127), (6.128), we find that there exists o’ €]0,1] such that for 0 < u < 1,
u<T<1

(6.129) |04,/ — O0,7/u — Or + 60| < Cu®’

By (6.129), we see that as € — 0,

Ydu ! daT
(6.130) / —/ (Ou,7/u — o,7/u — O + 60) — —
e2 U Jy T

1 1
du dT
/0 - /u (0u,r/u — bo,7/u — O + OO)T .
By Theorems 5.29, 6.18 and 6.19, for0 < u < 1,7 > 1,

|0u,7/u — 07| < CuP,

. _C
(6.131) |6u/u — 05| < 755
c
07 — Ooo| < —= .
I T l \/T
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Using (6.78), from (6.124)-(6.131), we see that for 0 <u<1,T>1

* * C’u‘a’
(6.132) |6u,7/u — 61 — 6}, + 65| < -5

From (6.132), we find that as ¢ — 0,

(6.133)
1 +o00 1 +00
du NN 4/ du WY/ &
L5 Curp-troirn— [[F [ Our-tr-sire T
Using (6.126), (6.130), (6.133), we see that ase — 0,
1 +o00
d ar
(6.134) / du / Ouz/u — 02) %L 4+ 1(85 ~ B,00) log?(e?)
e2 U u T
+oo dr 1 dT +oo dar
+ ([ (00,T - ao,w)T +L (6r — 90)—17 +/1 (6r — 000)—7;-)
Vdu ! dT
lOg(€2) I / _u'/ (o'u,T/'u. - 00,T/u - GT + 00)_
o U Ju T
1 +o00
du . o.dT
+/0 7/; (0u,T/u_9T_0u+00)T
1 dT +0o0 drT
+ [ 6r -8 1og(D G = [ (o — 0.0 loB(T) T
0 1

By (6.122), (6.125), (6.134), we see that as e — 0,

(6.135) / 1 %‘f /u " Gur - o:;)g + (205 — 80,0 — 8,00 log?(?)
+ (/01(00,7' - 00,0)%,1: + 1+°°
+ /Ol(eT - eo)d?T + /1+°°(0T - 900)%) log(e?)
= /01 & /ul(eu,T ~ o 05+ 6) 0
+ /01 % /ul (Ou,7/u — O0,7/u — 0T + 90)d—TT'

Vdu [*o° . e dT
+A 7[ (Ou,T/u—HT—0u+00)?

1 dT +oo dT
+ / (60,7 — 60,0) 10g(T)-17 - / (60,7 — 60,00) 10g(T)?
0 1

dT
(60,7 — 90,00)?

1
+ /0 (Or —Oo)log(T)g.
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Clearly
, 82 2 1%
(6-136)  Kuu + Muu = 355 Trs [exp(—Aﬁ,ﬁ +c(Ny — NH)] o

32
~ 45 T [exp(- Al o+ e

Now by [14, Theorems 2.14 and 2.16], we know that there are forms H_5, H_;,
Hy € PS such that as u — 0,

62
(6137) @45 [exp(—-Afﬁ;’ s+ N - NH)] =
H., H_,
u? u

and moreover,

9 o, EH_I —o0,
2

(6.138) 28—8H0 =-DY + /X (dim X Td(T X, g7*) — Td (T X, g7%)) ch(¢, ¢°)

- / TA(TX, g7X) ch' (€, g°) .
X

Also by proceeding as in [4, Section 4], we see that as u — 0,

32
(6.139) &3 —— 5 [exp( A2 VavT T cNH)]

=1 / TA(TX, g7*)® Trs [N exp(—V4?)] + O(u).
X

Clearly the constant coefficient of (6.139) is @ and 0 closed. From (6.136)-(6.139), we
find that there are forms K_o, K_1, Ko € PS such that as u — 0,

K_ K_,
and moreover
80 90
2in 2= 0 g K1 =0,
(6.141) 3‘21{0 =-DY + / (dim X Td(TX, g7X) — Td'(T X, g7*)) ch(¢, ¢°)
X

- [ Ta@x, g (e, ).
X

ASTERISQUE



THE ASYMPTOTICS OF THE RIGHT-HAND SIDE OF (4.26) 101

Clearly

2

0
(6.142) KL +n =3+

£y Trs [exp(—BY 2 + cNJY)]

c=0
2

0 c
- %@ Trs [(-L'Xp(—B,‘:V’2 + =

2

By using again [14, Theorems 2.14 and 2.16], we see that there are forms
L_y,L_1,Lo € PS5, such that asu — 0

L_

dim Ny/x)] -0 .

L_,

* * 2
(6.143) ®(ky +m) = 2 + o + Lo +06(u),
and that
6.144 —

2 po=—C¥ + / (dim Y Td(TY, gTY) — Td'(TY, g7¥)) ch(n, g").
Y

By (6.140), (6.143) we see that as u — 0,
1 1
s du - au
(6.145) @ (/ (—Kuu + ky)— + / (=T + nu)—)
€2 u €2 u

1 1
+ (K2 — L—z)'z-e—z +(K-1— L-I)E — 2(Ko — Lo) log(e)

+ 2(K_2—L_2)+ (K_1—L_1).
From (6.141), (6.144), (6.145), we find that as u — 0,

80 ! o du ! Ldu
6.16) 320 | [ (it s+ [ ) |
+2(D(‘)’ B / (dim X Td(T X, g7X) — Td'(TX,g"™)) ch(¢, ¢*)
X
+ / TA(TX,g7%)ch'(€,6%) — CY + / (dim Y Td(TY, g7¥)
X Y

~ T&(TY,g™)) ch(n, g")) log(e) — o Ay
2im
By (6.75), we get
(6.147) 90k, = L(Only +0ml*).
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Using Theorems 6.5 and 6.19, Proposition 6.20 and (6.147), we get

_ +o00 dT
(6.148) 00 / , (kear — K)o =Tr [NZ exp(—A2 )]
€

— Trs [(Nevzv + 3 dim Ny, x) exp(—B"Z’2)]

+oo dT
w1 NN T
13

R LY Nk
2 2T — e2,T —

Clearly

(6.149)

Tr [NY exp(— A2 )] = Trs [(N% — Nu)exp(—A2,)] + Trs [Nuexp(—A2,)] .

Using [14, eq. (2.71)] and Theorem 6.4, as ¢ — 0,

Trs [(Ne‘; - NH) exp(_Ag,s)] = DYI_E + DO + 0(62) )

(6.150)
P Ty, [NH exp(—Az,s)] = / Td(TX, g7%) ch’(¢, g¢) + O(e?).
X

Also by Theorem 2.17,as ¢ — 0

(9.151) & Tr, [(Ng’ + ldimNY/x)eXP(—BZZ’z)] =
CW

-— +C¥ +1 1 dim Ny, x / Td(TY, g") ch(n, g") + O(¢?).

Using (6.97), Theorems 6.18 and 6.19 and proceeding as in (6.59)-(6.67), ase — 0,

+o00 +o0
%/ (A% €2, T — e T) —’/ /\T—
2

dT dT

6.152 1 s i o
(6.152) L T3
+o0 +o0 dT

1 II* il _1_ lI
e F o4 [
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From (6.148)-(6.152), we see that as e — 0,
80 [t dT w .
(6.153) - q)(h:ez T — + (C - D 1)—

2im Jo2 )T
— DY +/ Td(TX,g"*)ch'(€,6°) - Cy”
Y

- $dim Ny [ Td(TY,g™) chin o)

too dT | 1.5 [t _,dT +oo ,,dT
+L @)\T?+ <I>6/0 wT?+§<I>6/O T

Now by using Theorem 3.10, (6.141), (6.144), one finds easily that there is a universal
form B; € PS such that

(6.154) DY + / TA(TX,g7%)ch'(¢,9%) — CY¥
X
~ baim Nyyx | TATYg™ el g") = [ (§eim Ny TATY, ™)
+ Td(T X, g™X)(Td™"Y (Ny/x, NY”‘))ch(n,g”))+ —(B1).

By Theorem 5.11 and Proposition 5.26, we find that there is a universal form C; € pPw
such that

+00 dT Iy
(6155) | @Ar = ~}dim Nyyx TA(TY,g™)

_ 90
— Td(TX,g"*)(Td™") (Ny;x,g™¥/*) + '2i—7r(01)-

Also by Proposition 5.28, there is a universal form C, € P¥ such that

ar +400 [ “ L +287?r(02).

1 1
(6.156) <I>a “ 1, T =

From (6.153)-(6.156), we deduce that there is a universal form A2 € P% such that
when ¢ — 0,

80

> .\ dT W vyl 00,
(6.157) % . <I>(K,€2)T - Hez)? + (C—l - D—l)gi d ‘277;(142)

Ultimately, from (6.93), (6.111), (6.113), (6.121), (6.135), (6.146), (6.157) and using
the fact that 65, 69,0, 80,00 are closed, we see that as there is a canonical form H € pPS
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such that as ¢ — 0,

(6.158) @m + 2(CW - DVl)i

+o00 dT
2“1_ / (6o, — 6o 0) / (6o, — 90,00)-17

+/0 (0T—90)_+/+°° dT]

+ (D(‘,’ - / (dim X Td(T X, g7 ™) — Td'(TX, g"*)) ch(¢, ¢°)
X
+ / TA(TX,gTX)ch'(¢,¢%) — CF + ] (dimY Td(TY, gT¥)
X Y

80
~ Td'(TY,g™)) ch(n,g")) log(e) — T-H .

So by (6.109), (6.110), (6.158), we see that there are universal forms 3, v3, A3 such
that ase — 0

- 0
(6.159) <I>(3u2+8u2)—_—<1>)\2 i(DY, -c¥ )—

{(cba/+°°,,T q)a/+°° , dT
- gz% (/ ®(60r — 60) +/+°° ®(0r — oo)__>
~ 2ir (/ (o = bo 0)— + / " 2607 - aom)?)

+cY - DY + / (dim X Td(TX, g¥X) — Td' (T X, g7%)) ch(¢, ¢°)
X
- [ Tawx, g™y ', - [ (@im¥ TATY, ")
X Y

— Td'(TY, g™Y)) ch(n, g")} log(e)

— ®(0u® + 0v®) — %@AS.

ASTERISQUE



MATCHING THE DIVERGENCES 105

6.8 Matching the divergences
a) A— +oo

Clearly N{f — Ny defines the Z-grading of H(X, £|x). Therefore for T > 1, it coincides
with Pr(N{¥ — Nu)Pr. In particular

(6.160) vHXEx) pp NE Pr = VR4 pr Ny Pr

From (6.160), we get

(6.161) 2 gb [PTNHPTexp( _vH& 02 _ bv¥(x’5'x)'PTN€,‘PT)]
P

_ a0 H(X,£|x),2

= 68b Trs [PTNHPT exp(—Vr bPTNHPT)] b=0

2% Trg [PTNHPT exp(—vg(x’gl)‘)’2 + bvilf(x’g)“PTN‘)’{PT)] b=0
o

= —gé—b Tre [PTNHPT GBXIJ(—V:IIf(X’ﬂX)’2 - bPTNHPT)] b=0

By (6.161), we obtain

(6.162)
dT

— To !
593 / ;% Tr, [ PrNuPr exp(—VEXAX)2 _ pgHXEx) pp N X PT)] T

To
_(1)23/ 5 PTNHPTexp( VH(X&IX)2+va(X§lx) P NXPT)]

dT

o T

op PrNuPr] dT
T )] T

To
<I> / —Q’I‘rs PTNHPTexp(—v;i"X’f'X” bPTN{,‘PT)]

Using (6.48) and [5, Theorem 2.1], we find that the right-hand side of (6.162) is equal
to

(6.163) — ®Tr, [(N{,f _ NH)exp(_vﬁu,elx),z)]
+ @ Trs [(N\)/{ — Nu) exp(—VH(Xélx),Z)] )

By (6.69), (6.88), (6.162), (6.163), we find that, as should be the case, as A — +oo,
the divergences of both sides of (6.26) coincide. Therefore

00

4
1 _ &(8,,1 1y _ 99 541
(6.164) > I =90u! + vt — AL
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ﬂ) To — 400
By (2.33),
%Trs [exp(—BZ‘:2 b'u,aa B% )] = -0Tr, [ W exp(— sz)]
(6.165) 5 5 b=0
v _pW2 _ w’ 3 NW w,2
%% Trs [exp( Bu2 bu8 B, )]b—o 0Ty [ w2 €xp(—B,; )] .

Using (2.38), (2.39), (2.46), (2.51), (6.165), we find that the coefficient of log(7p) in
the left-hand side of (6.94) coincides with (6.70). So we get

4
(6.166) D IR =9@p? +ov?) - aa

k=1

v) € — +o00

Clearly, the coefficients of % in (6.71) and (6.159) coincide. For the coefficients of
log(e) in (6.72) and (6.159) to coincide, we should have the identity

+o00
(6.167) ©3 / + 38 / "dT

33 [ +o0

%
80 [ [* dT
-5 [/ @(6o,r — bo,0) 7 +
0

2im

/ @67 — 90)? +

dr
A (01 — 000)—1:]

+o0 dT
®(0o,7 — 90,00)?] =

/Y (dim X Td(TY, gTY) — Td'(TY, g7Y)
+Td(TX, g"*)(Td™") (Ny,x,g"¥/*)) ch(n, g")
- [ (@im X TA(TX, g7) - TA'(TX, g7%)) (e, 5°).
X

Now we give a direct proof of (6.167). By (3.34), (3.35), (6.76),

(6.168) 9,9[/ (Bo.1 ooo)—-+ +m<1>(o” 0o,oo)g]=

2im
/ (dim X Td(T X, gTX ) — Td'(TX, g"*)) ch(¢, %)
X

- [ (@im X TA(TX, g7X) ~ T(TX, 47)) Td (Nyx,6™7%) ch(n, 7).
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Also by Theorem 5.31,

+oo dT 90 ar
II _ hatall
(6.169) ©3 / + 0 / -2 / 2(0r — 00)
+00
+ / ®(0r — ew)?) = / (dim X(Td(TY, gT¥) - TA(T X, gT¥)
1 Y
Td-‘l (NY/Xa gNY/X )) - TdI(TY, gTY) + Td,(TXa gTX) Td_l (NY/X7 gNY/x)

+Td(TX, g7%)(Td ™Y (Ny;x, g"¥/%)) ch(n, ") .

Then (6.167) follows from (6.168), (6.169).

Thus we find that there are explicit universal forms u3, v3, A2 such that

4 —
= d0
(6.170) Y I} =20u + o) - ?;‘I”\a'

6.9 An identity on Bott-Chern classes and Bott-Chern currents

z/2

3 . AI n 3 .
Sha72) @2 We identify (A’/A)(z) with the corresponding

Recall that ,:f(ar) =
additive genus.
Theorem 6.22 — The following identity holds,

(6.171) ¢h ( HYmly) gH(X.€lx), gH(lev))
-TW",g") +Tw", g%

= [ TaEx,TiE ) + / B(TKTXlw,gTX'W)ch(n,g”)
X

—rQ) / Tary) A (Ny/x)ch(n) in PS/PSO.
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Proof. Using Theorems 6.11-6.14 and (6.170), we obtain the equality,
(6.172) c“fl(H(y,nly),gH(X,ﬁlx),gH(Y,nly))
- T, + T, o) — [ TATX,TTE )
- /;’B(TY, TX|w,gTX!") ch(n, g")

+ r,(l) {Cgv — & Tr, [N\); exp(—VH(Yvﬂly)Q)]

— DY +®Tr, [(N{,‘ - NH)exp(—(VH(X’€'X)’2)]
- /X Td(TX,g"*) ch’(¢,¢°) + L dim Ny, x
/YTd(TY,gTY)ch(n,g”)} € P59,
By Theorem 3.3 and by [20], [13, Theorem 1.27], it is clear that
(6.173) <I>(Trs [(N\’,‘ - NH)exp(—(VH(X’€'X)’2)]
— Tr, [N exp(- VAV )2)] ) € pSO,

Using (6.154), (6.173) and proceeding as in [19, p. 72], we get (6.171). O

6.10 Proof of Theorem 6.2
By Theorem 5.17 and by (5.30), we get
(6.174) B(TY,TX|w,g™*W) = — Td"}(Ny,x,g"*/*)TA(TY, T X |w, g7X7)

—~

+ Td(TY) (R + r’(1)%/> (Ny;x) in PV /P™0.

From Theorem 6.22 and from (6.174), we get the first equality in (6.6). Using (3.35),
we see that

(6.175) /X Td(TX)R(TX) ch(¢) — /y TA(TY)R(TY) ch(n) =
/ Td(TY)R(Ny,x) ch(n) in PS/PS°.
Y

By (6.175), we thus obtain the second equality in (6.6). The proof of Theorem 6.2 is
completed. O
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7. A new horizontal bundle on V' and the
conjugate superconnection A, r

In general THVjy, # THW. This is a potential source of difficulties. In effect, by [19,
Section 9 and Section 13|, we know that as T' — +o00, in one given fibre X, the heat
kernel of exp(—u(DX + TV)?) evaluated on the diagonal concentrates on Y like a
gaussian. Here we have a family of such fibres X . Implicitly, our study involves the
variation of the concentration of the heat kernel of exp(—u(DX + TV)?) along the
fibres X, when s € S varies infinitesimally. The connection V¥, which provides a
local trivialization of F near a given s € S, is not adequate for such a study, because
since in general TH Vw # THW , the fibres Y are not preserved by this trivialization.
Thus, we are forced to modify the horizontal bundle THV near W.

In this Chapter, we construct an extension of T#”W to a horizontal subbundle
of TV, which coincides with THV away from a neighborhood of W in V. Then by
conjugating the superconnection A, r, we obtain a new superconnection A, r, in

=(0, 1) *(0,1)
which the annoying term f"‘V?}.,TV X)BE ; is replaced by f"‘V?,(,TW X)®£

Still, once this difficulty is eliminated, a new one appears. In fact, in Chapter 13,
we also need to use local index theoretic techniques in a situation where u — 0,
T — +o0. This forces us to determine THW more rigidly than described before. In
effect the jet of order 1 of THW in directions normal to the fibres Y is also important.

This Chapter is organized as follows. In Section 7.1, we recall the expression of
DX and DY as Dirac operators [29]. In Section 7.2, we describe the exact sequence
0 - TY — TXjw — Ny;x — 0. In Section 7.3, we obtain a global coordinate
system on a neighborhood of W in V. In Section 7.4, we recall the construction in [5]
of a splitting £ = £+ @&~ near W. In Section 7.5, we give a cohomological obstruction
to the identity TH# Viw = THW . In Section 7.6, we construct an extension of THW
to V. In Section 7.7, the conjugate superconnection Au T is introduced. Finally in
Section 7.8, we give generalized Lichnerowicz’s formulas for Ai’T and Au,T.

In this Chapter, the assumptions and notation of Chapters 3, 4 and 6 are in force.
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110 A NEW HORIZONTAL BUNDLE ON V ...

7.1 A formula for DX and DY

As explained in Chapter 6, to avoid notational difficulties, we suppose that V, W
and S are compact.

We use the notation of Section 2.2. If U € Tr X (resp. TrY'), the Clifford operator
¢(U) acts naturally on A(T*®DX) ® £ (resp. on A(T*OVY) ® 7).

Let VAT @VX)8¢ (resp. VAT @VY)®n) be the connection on A(T*OVX) & ¢
(resp. A(T*(®VY) ® 57) induced by V7X and V¢ (resp. by VTY and V"). Recall that
(7.1) DX =3 +3 DY =3" +3""

Proposition 7.1 — Lete,..., ez (Tesp. €},...,€5, ) be an orthonormal basis of T X
(res. TRY ). Then

Z c(e,) VA(T.(O I)X)®€
(7.2)
(resp. DY = Z C(ez) A(T"0 DY)eny

Proof. Since the metrics g7X and gTY are fibrewise Kahler, our Proposition is a
result of Hitchin [29, p. 13], [19, Proposition 8.5]. O

7.2 The canonical exact sequence on W

We now consider the exact sequence of holomorphic Hermitian vector bundles on
w

(7.3) O—>TY—->TX|W—>Ny/X — 0.

Recall that Ny, x is identified to the orthogonal bundle to T'Y in T'X |w .
Let PTY, PNv/x be the orthogonal projection operators from T X |w on TY, Ny, x.
Let VNv/x be the holomorphic Hermitian connection on (Ny,x, g™¥/x).

Proposition 7.2 — The following identities hold

VTY — PTYVTXIW ,

(7.4) vVv/x = pNy/xgTXlw

Proof. This result follows from (5.11). a
Definition 7.3. Let °VTXIw be the connection on TX |y = TY & Ny,x,

(7.5) OYTXlw = gTY g yhNv/x
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Set
(7.6) A=VTXlw _ogTX|w

Then A is a 1-form on W with values in skew-adjoint endomorphisms of T'X | which
exchange TY and Ny, x. Since VTX is fibrewise torsion free, if U,V € TRY

(7.7) AUV - A(V)U =0.

Definition 7.4. If e1,..., ez is an orthonormal basis of TrY, set
1 2¢

(7.8) v=yop }; Ales)e; .

Then v is a section of Ny, x r. It is called the mean curvature of the fibre Y.

7.3 A coordinate system on V near W

IfyeW,Z € Ny,;xpy lett€e R -z = expff (tZ) € W be the geodesic in the
fibre X, , with respect to g7X, such that zo =y, ‘fi—ﬂ 1m0 = Z-

For 0 < € < 400, set

(7.9) B, = {Z € Ny/X’R, lZI < 6} .

For ¢0 > O small enough, the map (y,Z) € Ny,xr — expif Z € Wis a
diffeomorphism from B, on a tubular neighborhood Uz., of W in V. From now
on, we use the notation z = (y, Z) instead of z = expif (Z). We identify y € W with
(¥,0) € Ny;x,R-

Recall that dvx, dvy are the volume elements of the fibres X,Y with respect to
g%, gTY. Let dun, ,x be the volume element of Ny, x r with respect to gVv/x . Let
k(y, Z) be the smooth positive function on B, such that

(7'10) dvx (y7 Z) = k(y’ Z)de (y)vaY/X (Z) .
The function k(y, Z) has a positive lower bound on U,,. Also

(7.11) k=1 on W.

7.4 A splitting of £ near W

We use the identification (3.29), so that H(&,v) is considered as a subbundle of
&|w. Let HL(£,v) be the orthogonal bundle to H(¢,v) in &|w. Now we recall the
construction in [5, Section 3f)] of a splitting £ = £+ @ £~ near W which extends the
splitting &|lw = H(&,v) ® HL(€,v).
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We have the identity

(7.12) H(Ev)={f etlw ; V2f=0}.

For y € W, let u(y) be the smallest nonzero eigenvalue of the self-adjoint operator
V2(y). Since H (£, v) is smooth vector bundle, the function u: W — R is continuous.
Since W is compact, the function u has a positive lower bound 2b on W.

We may and we will assume that €9 > 0 is small enough so that if z € Uy,,, b is
not an eigenvalue V?2(z).
Definition 7.5. For 0 < k < m, z € WU, &, (resp. E,:"z) denotes the direct sum of
the eigenspaces of the restriction of V?(z) to £, corresponding to eigenvalues which
are smaller (resp. larger) than b.

For 0 < k < m, the ﬁ,tm are the fibres of smooth vector subbundles {ff of & over
WU, . Clearly on U,,, for 0 < k < m,

(7.13) &e=E& @& -

Set

(7.14) =P, =P &, =P ¢
k=0 k even k odd

In (7.13), (7.14), the various splittings are orthogonal. We equip £+ with the metric
gﬁzt induced by g¢.

Then v, v* preserve £ét,£~. Let V* be the restriction of V to {*. We will often
write V in matrix from with respect to the splitting £ = £t @ £,

vt o0
(7.15) V= [ 0 V‘] .
By (7.12),
(7.16) Elw=H(,v) =kerV]w.

From (3.28), (7.12), we get
(7.17) £ lw = AN} x ®1.

Let P¢* be the orthogonal projection operators from ¢ on ¢*. Let VE' be the
Hermitian connection on %, VEF = pEEVE.
Now we recall result of [5, Proposition 1.8].

Proposition 7.6 — The connection i*V¢ on & |lw = H(&,v) is exactly the holomor-
phic Hermitian connection on (H(&,v), gH(&v).
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Definition 7.7. Let V¢ be the connection on §u, =T ®E,

(7.18) VE=T @ V.
Set
(7.19) B=V¢-Vt.

Then the connection V¢ preserves the metric g%, and B is a 1-form on U, which
takes values in skew-adjoint endomorphisms of ¢ which exchange £* and £~

By Section 2.2, if Z € Ny/x,r, &(Z) acts on A(Ny, ) ®n.
Proposition 7.8 — Ifye W, Z € Ny, xR,y then

-1

7.20 VLV (y) = az).

(7.20) zV~(v) 73 (2)

Proof. Taking into account the discrepancy in the notation of [19, Section 5 a)] and
our Section 2.2, our Proposition is just [19, Proposition 8.13]. O
Remark 7.9. Clearly

(7.21) V4V = V5V + [B(Z),V].

Since ¢~ |w = ker V|w, ¥ |y = Im V|, we deduce from (7.21) that
(7.22) PEVSVPS |w = PEVSVPY |w.

7.5 A cohomological obstruction to the equality 77V |, = THW

Let p be the restriction map HY(V,T*V) — H'(W,T*Vjy) — H'(W,T*X|w). If
o € HI(V, T*V), (pa)dim Y+1 I= HdimY+1(W, Adim Y+1(T*X|W))-

Clearly TH Viw = THW if and only if THW and TX |w are orthogonal with respect

to Wy .
w
Let [wY] be the class of w" in HY(V,T*V). Then if THV|y, = THW,
(7‘23) (p[wV])dim Y+1 _ 0 in Hdim Y+1(VV, Adim Y+1(T*X|W)) .

Then (7.23) provides us with a cohomological obstruction to the equality T Vw =
THW. In particular if V,W are compact and Kshler and if H(V,T*V) is one
dimensional, the class [w"] is nonzero and fixed up to a constant. If (7.23) does
not hold, we cannot find wY such that TH Viw = THW.

This is in dramatic constrast with the situation one meets in the C*° category, when
trying, say, to establish a formula similar to Theorem 0.1 for the 7 forms of Bismut-
Cheeger [12]. In this context, one can always assume that T Vi = T W. One does
not need to proceed the way we do in the present paper for the 7] forms, essentially
because the image of K(S) ®q Z by the Chern character map spans H®V*"(S, Q).
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7.6 An extension of T7W to V
Up to now, THW is a subbundle of TW. It will be important to extend THW to
a subbundle of TV on V.

Let VTS be the trivial connection on 7}, T'S along the fibres X. We equip
TV = THV @ TX with the connection along the fibres X,

(7.24) VTV = v TS g vTX

Observe that our notation fits with (1.3).

Definition 7.10. If (y, Z) € Ny, x R, if A € TrS, let A’ € TRV be the solution of the
differential equation along t € R — z; = expy X(t2),

VIV A+ TV, (A’ d””) =0
(7.25) % =\ de ’

Ay = AHW
Since TV = THV @ T X, we can write A’ in the form
(7.26) A =AY L ATX  AHY e THY, ATX e TpX .

Theorem 7.11 — The following identities hold,

AIH,V ___AH,V
dx
TX oI TX v [ 4HV OT\ _
(7.27) VIXATX 1 7] (A ,dt) 0,
AITX AH’NY/X.

Moreover the map A € TrS — A, € (TRV)z, is a complex map.

Proof. By Section 1.1, T(A'TX, 42) = 0, and so

? dt

(7.28) VTVA' +TY (A'H v %) =0.

Since Ty (A'H:V,42) € TR X, we get (7.27).

By Section 2.1, TV is a (1,1)-form, and moreover if U € THV, V € TX (resp.
UeTHV,V € TX), then TV(U,V) € TX (resp. TX). From (7.26), we find that
if A e TS, then ATX € TV, and that if A € TS, then A’TX € TV, i.e. the map
A €TrS — A} € (TrV),, is complex. O

Using the identification (y, Z) ~ exp)X (Z), if A € TS, (y, Z) € WUe,, we can define
the corresponding A’(y’ 7z €TV.
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Let v: R — [0, 1] be a smooth function such that

Y(a) =1fora<1/2,

(7.29)
Ofora>1.

Then v (lg;l) can be considered as a C* function on V with values in [0, 1], which

vanishes on V' \ AU, .
Definition 7.12. If A€ TS, set

(7.30) ARV = (l—Z—|> A+ (1 - (@» ARV
€o €0
By Theorem 7.11, A¥W € TV, and
(7.31) v AFW = A,

Definition 7.18. Let T W be the smooth subbundle of TV which is the image of T'S
by the map A — AHW,

Using (7.25), it is clear that T W extends the given vector bundle THW on W
to the whole V.
Definition 7.14. If A€ TS, set

(7.32) AHNy;x — AHW _ pHV

By (7.31), A#:Nv/x € TX. Again, our definition of A”*Nv/x extends to V our
initial construction of A#*Nv/x given in Definition 1.8, which was only valid on W.
Remark 7.15. It is natural to ask why we did not use, instead of (7.25), the simpler
equation

TV Al __
(7.33) viva' =o.

In effect we could use as well equation (7.33) instead of (7.25) in Chapters 8-11 but
not in Chapters 12-13.

Equation (7.24) should have a clear interpretation. In effect if g7 is an arbitrary
metric on T'S whose Kihler form is w®, for € > 0 small enough, wY + %ﬂ*ws is
the Kshler form of a metric g7¥ on TV. Let VIV be the holomorphic Hermitian
connection on (T'V, gI"V). Then one verifies easily that as ¢ — 0, the connection VIV
tends to a connection V'V on TV. Using (2.10), equation (7.25) is equivalent to

TV ! __
(7.34) Vogs A =0.

Of course, we can replace everywhere the holomorphic Hermitian connections by the
corresponding Levi-Civita connections. Equation (7.34) is a way of encoding the Levi-
Civita connection in the “adiabatic limit” process where ¢ — 0, which, as we know
by [4], [12], [11] is crucial in understanding the local families index constructions of
[4].
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7.7 The conjugate superconnection Zu,T

Let f1,..., fm be a locally defined smooth basis of Tr S, and let f1,..., f™ be the
corresponding dual basis of T{ S. Let ey, ..., ez be an orthonormal basis of Tr X .

Definition 7.16. For u > 0, T > 0, set

N )

AuTexp{f ﬁ( g,Ny,x)},
N$=exp{ f"‘\/c_ (g,Ny,x)}

e 277}

(7.35)

Clearly ZU,T is a superconnection on E. Also the expression in (7.35) does not

depend on the local basis f1,..., fm. For convenience, we assume that f;,..., f,, are
such that

(7.36) [fa, f8] = 0.

In particular the forms f1,..., f™ are closed.

Theorem 7.17 — For u > 0, T > 0, the following identity hold

Ayr =uDX + TV + fo A (VHT"7 208 _Le(e)o(VIX £2571))

lfafﬁ (__ <TV( FHV H’V),e,~> _ <fg’NY/X,V fH Nv/x>

+2 <Vfa w ;I Ny/x >) C\gﬁi
can TR (e e )

+3 (g TV (Y, )
N5 =N +iwv(ei,ff’w)2(—\e/i§)f°‘
+ 5z FEV, M) 80
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Proof. By (2.31), (4.1), (7.2) and by [14, Proposition 2.4],
Aur = u S gaaevxse | 1y
’ €q

/3
" TV)
(7.38) ag AT DX)®E _ o(T”) ’
+ f ff \% 2\/—2-’11,
) dim X
Ny = Zwv(ei,ej)C(ei)C(ej) +—-

Clearly, if U € Tr X,
(7.39) [Foefa"™ ), eU)] = =2 (fa""%,U) £2.
From (7.39), we deduce that

Ny, x H,Ny,x

(a0) eI )l e o) + —?f“ (g U

Let VTrS be the locally defined flat connection on Tr S, such that VRS f, = 0. In
the sequel, we implicitly differentiate tensors in the f,’s with respect to VT®rS,
IfU € TRV,

«01) )3
(7.41) [fac(ff’NY/x), V;}ET X)®€] fac(vTXfH NY/X),
and so
(7.42) [fﬂc(f;[‘N"/x) [fa (fablNvix g A(T*‘°">X)§e]]
Of course, the higher order commutators vanish. From (7.41), (7.42), we get

Y/X

(7.43) e_fa ng 2VA(T—(0 1)X)®§ fa L‘!fg — ) —

*(0,1)
VU/T (OIX)®£+fa\/— (V HNY/X)

1faf < foY/X VTXfH NY/X>

27,2
Finally
WV (e, f. HNY/X =wV (e;, FEW),
(7'44) ( HW) V( Hf\‘; ) v, HNy,;x pH/Ny;x
V(I 55 ) = WV (£ V) + W (fa I3 )-
From (7.38), (7.40), (7.43), (7.44), we get (7.37). The proof of our Theorem is
completed. |

Remark 7.18. The most remarkable feature of (7.37) is that £ A VAL )% has

been replaced by f* A VA(T*(O VX8 . Of course f&W|y, € THEW.
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7.8 A Lichnerowicz formula for A2 ;. and A2 .

Set
(7.45) R* = R¢ + L TY[RTX].

Let K be the scalar curvature of the fibres (X, g7X). Let f!,..., f™ be a basis of Tr S,
let f!,..., f™ be the corresponding dual basis. Let ey,...,ez be a locally defined
smooth orthonormal base of T X .

If C is a smooth section of T X ® End(n}, A(TgS) ® A(T*®DX) & €), put

- a 2 2¢ * > 2
(7.46) (VQ(T (O,I)X)®§ + C(ez)) — Z (Vé\'(T (O'I)X)®£ + C’(ez))
1

AT OV X
- Vzgfl V,T.Xei)@E C(Z VTX

Then the operator (7.46) does not depend on the choice of the basis ey, ..., ez.
Theorem 7.19 — For u > 0, T > 0, the following identity holds

—u? *(0,1 3
(747) A2 7 = =5 (VATTOVBE L L(SY (e)es, SV
2

c(€) ya | 1 /av i pHv cHV\ fOSP

\/5 u f +2<S (e‘l)fa »JB > ’U.2

w?K  u? uc(es)

+ =5+ Fele)ele) R (e ) + =51

RE(es, fEVY + 32 fPRE(FEY, £57Y)

cle;
+ uT%VEiV + TV V + T2V

Proof. Formula (7.47) follows from [4, Theorem 3.6] and from the commutation
relation

[c(U),V]=0 , U€eTrX,

(749 (r.v] =o.
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Theorem 7.20 — For u > 0, T > 0, the following identity holds

HNY/X

_ 2 o) e
(7.49) Ai,T = _% {e—f"7§x7(f-y ) (Vé\i(T ©OVX)®E L <Sv(e,~)ej,ff’v>

o a £ ~ H,NY/X 2
\/§C(€j)%‘ + 4 <Sv(ei)ff’v, ;rv> fu—f )e’ A )}

2K 2
+ E_é_ + ufc(ei)C(ej)R'f(ei, e;) +

u

ﬁc(ei)faR'E (ei, f2°V)

c(e:) Ve,V
V2

Proof. Identity (7.49) follows from (7.40) and (7.47). O

Remark 7.21. With respect to (7.47), note that in (7.49) , T f"‘ViH,VV has been
changed into T'f ayt awV.

+ 3 fSPRESEY, £50) + T + TV V + T2V,
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8. A Taylor expansion of the superconnection
Air near W

The purpose of this Chapter is to give an asymptotic expansion as ' — +o0o of
the superconnection ZLT in a neighborhood of W in V, after a change of variable
in Ny/xr, Z — ZT. This Chapter is the obvious extension of [19, Section 8]. In
particular the remarkable identities of Theorems 1.10 and 1.11 play a key role in the
description of the asymptotic expansion.

This Chapter is organized as follows. In Section 8.1, we give a trivialization of
A(T*©D X) ®¢ near W along geodesics in the fibres X, which are normal to Y. In
Section 8.2, we calculate the Taylor expansion of ZLT. Finally in Section 8.3, we give
a remarkable algebraic identity which relates the constant term in the asymptotic
expansion of ZLT to the superconnection B}V .

In this Chapter, the assumptions and notation of Chapter 7 are in force.

8.1 A trivialization of A(7T*%) X) ® ¢ along geodesics normal to Y

In this Section, we use the coordinate system on V near W constructed in
Section 7.3. Also recall that the connection V¢ on & lu,, was defined in Definition 7.7.

Take z = (y, Z) € WU,,. We identify &, to &, by parallel transport with respect to
the connection V¢ along the geodesic t € [0,1] — (y,tZ). Under this identification,
¢ is identified to 5;‘:, and the identification preserves the metrics and the Z-grading
of £&. Also if z = (y, Z), V(z), V*(x), V™ (z) act as self-adjoint operators on &, £,
& -

Ifr = (y,2) € WUy, we identify TX,, A(T*OVX), to TX,, A(T*OVX), by
parallel transport with respect to VTX, VAT ®VX) along t € [0,1] — (y,tZ). This
identification preserves the metrics and the Z-grading.

Ifz = (y,2) € WUeo, (A(T*OVX) ® €),, is thus identified to (A(T*OVX) &® £),,
and this identification preserves the metrics and the Z-gradings.
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8.2 A Taylor expansion for ZI,T near W

Recall that = is the canonical projection Ny, x — W. For a > 0,s € §, set
(81) Ba,s = {Z € NY/X,R|y,7 |Z| < a} .

If0 < o < gg, let Uy s be the corresponding tubular neighborhood of Y; in X,
constructed in Section 7.3.

Definition 8.1. Take a > 0. Given s € S, let E;(a) (resp. E;) be the set of smooth
sections of *((A(T*®VX) & £)y,) on By, (resp. on the total space of Ny, x|y,)-

The E,;(a)’s, E,’s are the fibres of vector bundles E(a), Eon S. If s€ S, f,g9 € E;
have compact support, put

6 vo=(x) | { L, 9 (y,Z)vaY,x<Z>} dvv, ).

By using the construction of Section 7.3, if f € E, has compact support in B, s, we
may and we will identify f to an element of E; with compact support in U, s.

The holomorphic Hermitian connection VV¥/x induces a splitting TNy;x =
Ny;x @ THNy/X, where THNy/X is the horizontal part of TNy, x with respect
to VNv/x IfU € TrRW, let UF € T# Ny,x be the corresponding lift of U, so that
mUH =U. If U € TrS, then (U” W)H € T Ny, x is well-defined.

Recall that the connection °VTXIW on TX|y was defined in (1.31). Let
OyAT* @V X)lw be the corresponding connection on A(T*© 1 X )|y . Let 0V AT X)&0) 1w
be the connection on (A(T*©VX) & £)|w associated to OYAT @D X)W and to VE.
This connection lifts to a connection on 7*((A(T*(®V X) ® £)|w), which we still note
O (AT OV X)BE)|lw

Let e;,...,ezr be an orthonormal basis of TRY, let ezey1,...,e20 be an
orthonormal basis of Ny,x r. Then ey, ..., ez is an othonormal basis of (TrX)|w-

Now we follow [19, Definition 8.16].

Definition 8.2. Set

Z C(ez) o~<A(T‘<° DXBOIw

(8.3) =1

DNv/x = Z c(ez)ov(/\(r"0 DX)BOIw
i=20'+1
Then the operators D, DNv/x act naturally on the fibres of E.

To simplify the exposition, we will assume that Tr S is equipped with a Hermitian
metric and that VRS is the corresponding Levi-Civita connection.
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If U € TR Ny/x, (twm).«U =0, then 065}1\(T“°")X)®E)|w acts naturally on smooth
sections of m* (7}, (A(TxS)) ® (A(T*©@VX) ® &)w). Our choice of VT®S makes that
this action extends to the general case, where U € Tr Ny, x.

For T > 1, let Qr be a first order differential operator acting on smooth sections
of m* (my A(T3.S) ® (A(T*®VX) ® €)|w) over Ny,x r. Then Qr can be written in
the form

2¢'
*(0,1) v\&
(84) Qr=) aiT,y,2)°VGT
1

2¢
+ 3 bi(T,y, 2)° VNI OPXBOIw
20'+1

2m

=(0,1)
+ an(T y, 2)° VAT RO 4 4(T,y, 2),

where a;(T,y, Z), b(T,Y,2), ca(T,y, Z), d(T,y,Z) are endomorphisms depending
smoothly of (y, Z).
Assume there is C > 0, p € N such that if (y, Z) € B, /7, then

la:(T,y,2)| < C|Z] , 1<i< 20,
6:(T,y, Z2)| < C|Z* , 20 +1<£<2¢,
lea(T,y, Z2)| < C|Z] , 1 < a<2m,
|d(T,Y, Z2)| < C(12| + |ZIP).

(8.5)

We will then use the notation
(8.6) Qr =0(|1Z? 8Nvrx +|2|8Y + 2|85 +|Z| + | Z|P).

Let AMT™®VX) pbe the obvious action of A on A(T*(®1X). This action extends to
AT*ODX) B €.

Takey € W, Z € Ny, xR,y- Let 2 Dt D he the covariant differentiation operator with
respect to vé along t — (y,tZ). In the sequel, we use the notation

~

D?
V(y7 tZ)It =0 -

(8.7) VEVEV W) = 55

Then 652652V(y) depends quadratically on Z.
Definition 8.8. For T > 0, if f € E(go), let Frf € E(eovVT) be given by

(8.8) Fri,2)=f (y, %) .
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Using the trivialization of (A(T*(%1)X)®¢)[U., along geodesics normal to Y,
we find that the restriction of Xu,T to U, acts naturally on smooth sections of
A(T4S) ® E(go), and so it defines a superconnection on E(gg). Then for T > 1,
Frk'/2A, rk='/2Fz! is a superconnection on E(gov/T).

Definition 8.4. Let B be the superconnection on E,

2¢
cl€; = =
(8.9) B=DH+>" %By(ei) +1VEVLV(y)
1
~ =(0,1) o
+f*A (OVE?J(‘-:TW 080w By(ff'w))

)H

Lrap $8_C (pNyxpV(fHW (HWY _mW/ cHW (HW
SN O (PNETY (I 5) ~ TV B £5))
Now we prove the relevant extension of [19, Theorem 8.18].

Theorem 8.5 — AsT — +oo,

(8.10) Frk'/2A; rk~Y2F;! = TV* (y) + VT(DNv/x + V5V ()

1 2 oN Y s 3
+%+ﬁ@(|Z| aNv/x 4 |Z|8Y + 2|0 +|Z|+|Z|).

Proof. Let f1,..., fm be alocally defined smooth basis of Tr S, such that
(8.11) (fa> f8] = 0.

We use Theorem 7.17, which gives a formula for Z’u,T- We will establish (8.10) by
considering the various term of degree 0, 1, 2, 3 in the Grassmann variables of A(T{S).
By [19, Theorem 8.18], (8.10) holds in degree 0.

Recall that A was defined in (1.32). Then for U € TrW, A(U) € End(TX). Let
AMT*®VX) e the obvious action of A on A(T*(®D X)|W. Recall that VATV X)8¢
and OVAT VX)W can be considered as connections on m* ((A(T*©D X)&€)|w).
Set

(8.12) T, = (VA(T*<°">X)®£ _ oe(A(T'w’DX)@s)iw)
Yy
Clearly on W,
*(0,1)
(8.13) r,=AM"""% 4 B,.
Then on W,

a *ODX)® H,N
(819) 5o A (VAT OBE  Lefen)o(VIX i)

~ %(0,1) 3 H,N
= f*A (Ov(f‘}(ﬁ/ X)®€)|w + I‘(ff’w) _ %C(ei)C(VZ;Xfa Y/X)) )
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Take yo € W. Let (y!, ...,y") be a holomorphic system of coordinates on a
neighborhood W' of yo € W in W. We assume that Ny, x r =~ Nw/v,Rr is trivialized
over W, so that 7= }(W) = W x R2¢€) Set ¥ = B,, N 7~ }(W). The map
(y,2) e ¥V — expff(Z ) € V identifies V" with an open neighborhood of yo in V,
on which TrV splits into

(815) TRV = R2(£'+m) @ R2(l_[') )

Of course R2(¢+m) R2(4=f) gre integrable subbundles of TrV|y. Moreover on W,
the splitting (8.15) coincides with the splitting

(8.16) TRV =TrW o Ny/x,R .

Let p1,p2 be the projection operators from TrV on R2(¢+m) R2(€~€) regpectively.
Clearly,

~ «(0,1) ¥ 3
(8.17) Frk'/2fx A0V, OO g2t <

o n (0SATOVXEOw |, 0SAT OV XBw _ Y sEwk
f A(mef-"’(y,%) + Vﬁpzf;fyw(y,vz?) —or (v, Z/VT)) .

Since on W, fHW ¢ TRW, we find that as T — oo,

Wiy 222, H L oqzp
618 pVTREW (1,2 ) = el Gt Dlema + =012 P).

Let VTRV be the connection on TrV = TV & Tr X,
(8.19) VIRV — g3 VTS g yTRX

Recall that by Section 1.1, TV is exactly the torsion of VTRV,
Let C be the Christoffel symbol of VIRV in the trivialization of TRV considered
above. Then

(8.20) 2 W (4,12) 0m0 = ~CY(B)[EW + VIV FEM
Now by definition

(8.21) —Cy(2) Y = =Cy(F3P™)Z + T) (F7, 2) .
Also by (7.25),

(8.22) VRV FEW LTV (fEW, Z)=0.

Using (8.20)-(8.22), we obtain

(8.23) 2 15 ,12) = —C,(1EM)z.
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Also by Proposition 7.2, VNVNv/x = PNy/xyTX\w  and so with respect so the local
trivialization of Ny, x,

(8.24) (FIH = 3% — paCy (FEY)Z.
Finally, since kjw» =1 on W,
(8.25) fo,w kw =0.

By (8.13)-(8.25), we obtain

(8.26) FTkl/Zfa A (VA(Tv(o.l)Xéi) _ lc(ei)c(VTx HNy/x)) k_l/zF,;l

=(0,1) »(0,1)
17 (TG O AT B2

— Je(e)e(VIX £237)) + —=0(121 8™v/x + 2|0 +|2|0° + |2]).

ﬁ
By (1.35), on W

2¢’ 2¢'

(827) Y cle)e(VEX fa"*) = 3 eleie(Ale) fa ™
1

1
+ PNYyixTV(e;, f20V) + A(FH W)ez')
2¢’

=3 cle)e(TV (es, FEV) = T (ei, ) + AFEW )es)
1

2¢' 2¢’

= L ele)e(TV (€0 V) = B clee(T (en 1)
1

1

+ Z (A(ff,W)ei, ej) C(ei)C(ej) .

1<i<2e
2¢'+1<j5<2¢
By (7.26), on W
2¢ HN 2¢
(8.28) > cle)e(VIX fou ") = 3 cles)e (TV (es, FEV))
20741 20/+1

Also since A(f¥'W) interchanges TY and Ny;x,on W

(8.29) AMTORX(PHWY = L N (A(FEW)e;, e5) clei)ele;)-
1<i<2¢e’
20/ +1<5<2¢

ASTERISQUE



A TAYLOR EXPANSION FOR A; 7 NEAR W 127
By (8.27)-(8.29), we find that on W,

»(0,1) H,N
(8.30) AMT"OVX)(fHWY) _ Lo(e,)o(WTX £/ =
2¢ 20’

cle)e (TV (e, £2°V)) + 5 ) cles)e (TW (es, 2FW) -
1 1

Now using (1.6) and (2.11), we get
2¢

Ec(e,)c(TV(e,, V) = Z (Tv(eu V)7e_1> c(ei)c(e;)

1 1<i j<2£

= —Z<Tv(e,, VY, e:)

(8.31)
= Z <Sv(ei)f¢£{’v’ei>
1

— _ [ fHV X VioVe | —
> ,ES (ei)e; 0

1
By the same argument,

2¢'

(8.32) D cle)e (TV (es, FW)) =

1

So from (8.30)-(8.32), we obtain
(8.33) ANTZODX)(FEW) _ Lo(e,)o(VIX f20NV1%) = 0

By Theorem 7.17, (8.26) and (8.33), we see that (8.10) holds in degree 1.
Now we consider the term of degree 2 in (7.37). By Theorem 1.11, on W, we get

2¢

®:30) 4515~ 5 (TVUEY £V ) = (g0, OIX g3t o)
=1

42 (VI 1N ) )R - g S (g g5V,
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Moreover using (1.6), (7.27), and the fact that [fa, fg] =0, [fHW, ;{W] € TpW,

2¢
63 > 1rofP (- 3 (TVUEY, 1Y) ey -

(gt g g g (9 gl ) )8
2

2¢

> 3o ( -5 (T S e) +

i=20'+1
<f5’Nv/x’TV(fé{’V,€i)> +2 <VT'¥W( A ;{’V)’ei> ) cf;%)
2¢

= > 3o 3TVCEEY ) + TV )

1=2¢0'+1

+TV(FEW, é{,w), 6i>) c\(/é;_')

= 350G (PNXTY (W, £,

Using Theorem 7.17 and (8.34), (8.35), we find that (8.10) also holds in degree 2.
Finally by Theorems 1.11 and 7.17, (8.10) holds in degree 3. The proof of our
Theorem is completed. O

8.3 The projection of the superconnection B

Definition 8.6. If s € S, let EX be the set of smooth sections of m* ((A(T*©1X)
®€*)ly,) on Ny x rly..
Then E; splits into

(8.36) E,=EloE;.

The operators DH and DNv/x preserve EX. Let DH:* DNv/x.+ be the restriction of
DH DNv/x to E*. Let EJ, EX0 be the Hilbert spaces of square integrable sections of
™ (AMT*OVX)®€) |y,), 7 (AMT*OVX) ® &%) |y,) on Ny x R,v,- We equip EJ,
EZ0 with the Hermitian product (8.2). Then E? splits orthogonally as

(8.37) E!=E ' oE;?°

Let F? be the Hilbert space of square integrable sections of (A(T*(®VY) ® n)|y, over
Y. We equip F? with the Hermitian product constructed in (2.22).

Of course the EQ,E:0 ... are the fibres of corresponding vector bundles
E°, E*0, ... over S.
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Using (3.28), (3.29), (7.17), we have the identity of smooth Hermitian vector
bundles on W
(8.38) AT*OVX) R €7)|lw = AT*OVY) & ANy, x) ® (A(Ny,x) ®n).

If y €Y, let 6, be the Kshler form of the fibre Ny, x r - More precisely, if J Ny/x,y
is the complex structure of Ny, x r,y, if f, f' € Ny;x Ry, then

(8.39) 0,(f, f') = (f, INV/xRauf’y

Then 6, is a (1,1) form on the fibres of Ny, x r-
IfyeW,Ze¢ NY/X,R,ya set

2
(8.40) By = exp (—I—Z2—| + 0y> .

Then 3, € (A(N*Y/X,R) ® A(N)*//X,R))y'

By [6, Theorem 1.6] or [19, Theorem 7.4], for any y € W, By spans the 1-
dimensional L, kernel of the elliptic operator DNv/x + \/—lg\/%2 acting on the

vector space of L, smooth sections of 7* (A(-J—V_;/X) ® A(N;“,/X)) on Ny,x Ry, and
moreover Y

d’UN
8.41 2_"Twix g
( ) /NY/X,R “B” (27r)dlm Nyrx
Definition 8.7. Let ¢ be the linear map
(8.42) Y:0€ F* - n*oB € E°.

Let E’° be the image of F° by ¢. Then E° ¢ E~°.
By [19, Theorem 7.4] or by (8.41), % is an isometry, and so it identifies isometrically
the vector bundles F° and E° on S.

Let p be the orthogonal projection operator from E° on E’?. Let g be the
orthogonal projection operator from (A(T*©DX)®&)|w on A(T*OVY)® {exp(h)} ®
n. By [19, eq. (8.91)], if s € E,

(8.43)
1 Z 2 ZI 2
ps(y,Z) = —Tm Ny x ©XP (—%) Q/ exp (-l 2' ) s(y, Z")dvny, 5 (2).

Now we prove the obvious extension of [19, Theorem 8.21].
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Theorem 8.8 — The following identities hold,

v~ 'pBpy = BYY ,
(8.44) P~ p(NY — Ne)py = NV,
¥~ 'pNupy = 3 dim Ny, x .
Proof. We will establish the first identity in (8.44), by comparing the terms of verious

degrees in A(Tg S). In degree 0, this was already established in [19, Theorem 8.21].
Clearly, if U € TrW, since the identification (8.38) identifies the metrics,

- =(0,1) «(0,1)
(8.45) Y ipfe A OVA(T Wi X)®€)pr,¢ 7oA V?}({TW Y)®n
Also because B(fH'W) exchanges £~ and ¢,

(8.46) Y pBy (fY)py = 0.

If U € Ny, xRy, ¢c(U) is the sum of two operators, one which increases the degree
in A(TV—;,/ x) by 1, and the other which decreases the degree by 1.Since g is of total
degree 0,

(8.47) pc(U)p =0.
By (8.47), we get

(8.48) p%fafﬁg%(PNy/xTv(ff,w’ HW))p 0.

From (8.10), (8.45)-(8.48), we get the first identity in (8.44).

By [19, Proposition 8.4], the second identity in (8.44) holds in degree 0. Since TRY
and TH W are orthogonal with respect to w, using (7.37), (8.47), the second identity
(8.44) also holds in degree 1, i.e. both sides vanish in degree 1. In degree 2, the second
identity (8.44) follows from (7.37).

The third identity in (8.44) was already established in [19, Proposition 8.4]. The
proof of our Theorem is completed. O

Remark 8.9. Related forms of Theorems 8.5 and 8.8 are also established in Theorems
13.16 , 13.17 and 13.32, 13.34. In particular, in Theorem 13.16, a more complicate
trivialization produces a simpler expansion than the one in Theorem 8.5.
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9. The asymptotics of supertraces involving the
operator exp(—B. ;) for large values of u, T

The purpose of this Chapter is to establish Theorems 6.5, 6.6 and 6.15, 6.16. It is the
obvious extension of [19, Section 9], where the case where S is a point was considered.

In Theorems 6.5, 6.6 and 6.15, 6.16, we calculate the asymptotics of supertraces
involving the operator exp(—BﬁyT) when u or T tend to +o0o. The corresponding
problem studied in [19, Section 9] involved the operator exp(—(u(DX +TV))?). The
basic difficulty with respect to [19] is that while DX + TV is a standard elliptic
differential operator, B, r is a superconnection, and it is only when taking its square
B?"T that we get a standard elliptic operator acting fibrewise. We are thus forced to
deal directly with the operator Bﬁ,T, while in [19, Section 9], the analysis was done
directly on the simpler operator DX + TV.

Still in [19, Section 13], when establishing Theorem 6.9 in the case where S is
a point, i.e. when proving the uniform convergence as T' — +oo of supertraces
involving exp(—(u(D* + TV))?) for u € [0, 1], because the analysis involved local
index cancellation techniques which could not be applied to the operator DX + TV,
the analysis was also done on the square (DX + TV)2.

This is why, to prove Theorems 6.5, 6.6 and 6.15, 6.16, we essentially use the
techniques of [19, Section 13], i.e. we prove the required convergence by establishing
suitable estimates on the corresponding smooth kernels, these estimates being derived
by a Lax-Milgram technique to control the resolvent in a functional analytic sense,
together with commutator estimates to prove uniform regularity for the corresponding
kernels. Needless to say, the results of Chapter 8 on the asymptotics of EI,T as
T — +oo play a key role in the identification of the limit of the supertraces as
T — +o0.

Another basic difference with respect to [19, Section 9] is that for a given T > 0,
in [19], the rate of convergence as u — +oo of the considered supertraces was
O(e—°*")(this result being obtained by a trivial argument of spectral theory), while
here, the convergence is only O(%), and is less easy to obtain (it follows from the
result of [3, Theorem 9.19] explained in Theorem 2.20). While in [19, Section 9], the
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corresponding uniformity argument was obtained by showing that as " — +o00, the
module of the nonzero eigenvalues of DX + TV has a positive lower bound, here this
argument breaks down.

To solve this difficulty, we observe that the spectrum of B2 . and (u(D* +TV))?
are identical. We then express exp(—Bﬁ,T) as the sum of two contour integrals, one
along a contour in {\ € C,Re(\) > 0}, and the other on a small circle centered at 0.
To the first contour, we are able to apply arguments inspired from [19, Section 9]. As
to the second contour, we prove that the corresponding supertrace is analytic in u
near © = +00. The proof of uniformity of the convergence in T' — +o00 as u — +00
then follows from Cauchy’s residue formula.

This Chapter is organized as follows. In Section 9.1, we describe the spectrum of
BZ,T, and we express exp(—Bﬁ,T) as a sum of two contour integrals. In Section 9.2,
we give a simple scaling formula for the first contour integral. In Section 9.3, we state
two intermediate results, from which Theorems 6.5 and 6.6 follow easily. Part of the
remainder of the Chapter is devoted to the proofs of these intermediate results.

In Section 9.4, we show that Pé_f"‘ViH,w VP¢ is 0(|Z|*) near W. In Section 9.5,
by following [19, Section 9], we construct an embedding Jr of F into E. In Section 9.6,
we construct a family of Sobolev norms | |1, on the Sobolev bundle E, and we
show that ZfT verifies elliptic estimates with respect to these norms, which follow
essentially from [19, Section 9]. It is at this stage that we find most useful to have
replaced A; 1 by Avl,;r. In Section 9.7, we give functional analytic estimates for the
resolvent of .ZfT In Section 9.8, we establish regularizing properties of the resolvent of
ZiT with respect to higher Sobolev spaces. In Section 9.9, we prove uniform estimates
for the kernel of FU(AV%’T) (which is the first contour integral described before). In
Section 9.10, by using Theorem 8.5, we obtain the matrix structure of E%T with
respect to a natural splitting of E, as T' — +o0. In Section 9.11, we calculate the
asymptotics of the operator F, (Z%,T) as T — +oo. In Section 9.12, we prove our
first intermediate result of Section 9.3. Note that the argument of Sections 9.7-9.12
are already related to [19, Section 13].

In Section 9.13, we introduce a suitably rescaled version of gi’T, which depends on
three complex parameters, and we show that a corresponding operator obtained by
a contour integral on a small circle is a polynomial function of these parameters.
In Section 9.14, we prove the second intermediate result of Section 9.3. Finally
in Sections 9.15 and 9.16, we show how to use the above techniques to prove
Theorems 6.15 and 6.16.

In the whole Chapter, we use the assumptions and notation of Chapters 3-8.
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9.1 The spectrum of B? ;.
For T > 1, set

(9.1) Ar = A1 r.
Let A;? ) be the piece of At of partial degree 0 in A(T§%S). Then
(9.2) AP =DX 4+ TV,

Recall that K’ = ker DY is a smooth vector bundle on S.

If s € S, let v(s) be the smallest nonzero eigenvalue of DYs2. Then s € S —
v(s) € R} is a continous functions. Since S is compact, v has a positive lower bound
2¢ce > 0.

If C is an operator, let Sp(C) be the spectrum of C.

Theorem 9.1 — There exists Ty > 1 such that for s € S,T > Ty,
(9.3) Sp(AP?) N {A e R, A< c;} C {0}.
Proof. For a given s € S, (9.3) is exactly [19, Theorem 9.25]. Since S is compact, a
trivial uniformity argument shows that (9.3) holds. a
Set
c(TV))Z [ g _ o)
9.4 Ryr=(VF - +u |V - =L DX 4+ TV|.
04) wT ( 2v/2u 2v2u’
Then
(9-5) Bz =v’AP"? + Rur.

By [4, Theorem 2.5], R, 7 is a sum of forms of positive degree in A(TgS) with values
in first order differential operators acting along the fibre X.

For any s € S, the operators Bﬁ,T and A% are unbounded operators acting on Ej,
with domain the obvious Sobolev spaces of order 2.

Proposition 9.2 — For anyu >0,T >0,
(96) Sp(Br) = Sp(uA%).

Proof. Take A\ ¢ Sp(’u,zAg? )’2). Then we have the formal identity

07 (A -Bir)" = (r-u2aP?) -

+ (A - u2a0?) " Rur (A - u2a(?) T
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the key point in (9.7) being that since R, r has positive degree in A(TgS), the
expansion contains only a finite number of terms. Since uzA(T? )2 is elliptic of order 2,
(A — u2AY?)~1 increases the Sobolev regularity by 2. Since R, 7 is of order 1,
(A - B121,,T)_1 acts as a bounded operator on the Sobolev space of order 0. Therefore

A ¢ Sp(B2r). By exchanging the roles of B2, and uzA.(IE) 22 we find that if
A ¢ Sp(BZ 1), then X ¢ Sp(uzAgg )’2). Our Proposition follows. O

Let D = § U A be the contour in C
A

N S

ky T i
6 4
\
-1

N

~
>

A

By Theorem 9.1 and Proposition 9.2, it is clear that foru > 1, T > T

1 —u? 1 -
(9.8) exp(—Bj 1) = 5 / P A) 4 + 5 ——ixf(w ) dx.
A A— —iﬂz" s u,T

9.2 A scaling formula
For u > 0, let ¢, : A(TRS) — A(TRS) be the map

(9.9) a € A(TRS) — u™9%8> o € A(TRS).

Then 1, acts like ¥, ® 1 on A(T3S) ® E.
Proposition 9.3 — Foru >0, T > 0, the following identities hold

Bur = uwp Ary; ",
N’u? = "puva ;1 )

B} =upuBY 97",
N = NPyt

(9.10)
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Proof. By (2.31),
(9.11) BY: = uypBY ¥,

Since Byt = BY: + uTV, the first identity in (9.10) follows. The second identity is
trivial. The proof of the other identities in (9.10) is similar. O

Proposition 9.4 — For u > 0, T > 0, the following identities hold

Tr, sz_l_/ exp(——uz)\) ] o Tr [ v L exp(—uzz\)d/\] ’

“2mi Ja y B?.,r Lomi Jo A—AZ
(9.12) - *
1 exp(—u 2)\) _ 1 exp(—u?\)
s NHzm'/A A= Bt A =vuTr |Nago [ o2z P

Also, for u >0,

1 A —u?A
Tr, Nvg___/ %ldx] = $uTh, [Nl = ﬂ’u__l,ﬂ],
A i Ja

v 2mi A — BW:2
A — —ui 1
(9.13) -
1 exp(—u2\ 1 exp(—u2\
ﬁs %/ p( sz) ¢u |:27l"l, / ———_Ap( Bw’z) d/\:l .
i A A __ur A - 1
Proof. Our Proposition follows from Proposition 9.3. O

9.3 Two intermediate results

In the whole Section, u¢ denotes a fixed positive constant.
Theorem 9.5 — There ezist § €)0,1],C > 0 such that for u > ug, T > T,

exp(—u2)) mn

|Tr [(Nl ~ N )27rz a A—AZ }

1 exp(—u?\) C
w
— - i WAV < =
Tr, lNl 377 Ja - 57 d\ |_T6,
(9.14) )
exp(—u 1
|'I‘rs [NH 2 )y AT d,\] L dim Ny, x

1 exp(—u?)) C
— | === 4 < =
Trs [27”1 a A—BY? dA l— T
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There exist ¢ > 0, C > 0 such that for u > ug, T > Ty

1 exp(—u?))
s V_—_ —_— < J— 2
I’I\r [N1 omi o A— 4B d\|| < cexp(—Cu?),

(9.15) . )
exp(—u 2
o [ Na— [ B0 V|| < —~Cu?).
Tr, [ H5— A A2 d)\” < cexp(—Cu?)
Theorem 9.6 — There exist § €]0,1], C > 0 such that for u > ug, T > Tp,
1 exp(—A)
V — — —————————— —
|Trs l(Nuz Na)5 s A — Bﬁ,Td'\]
1 exp(—A) C
w
— | =E 2 < =
Tr, lNu, 2 oy d,\J | < 75
(9.16) v

27 S A - B,?L’T

1 exp(—2A) C
— [ == L < =,
s [2m' s A — B2 d’\} | =T

‘T‘I‘s [NHL exp(_A) d/\] - %dlm Ny/x

There exists C > 0 such that for u > ug, T > Tp,

u? . 2
27"2 6 A - BU,T

)

C
Ty I:PTN\);PT exp(—V:,}{(x’ﬂxm)] I < Z

1 exp(—A)
l T, [N“zm s A— Bﬁ’Td'\

(9.17)

C
— Tr [PTNHPTexp(—Vg(X’ﬂxm)] I < =

Proof. The proof of Theorems 9.5 and 9.6 will occupy the remainder of the
Chapter. O

Remark 9.7. Now we show how to derive Theorems 6.5 and 6.6 from Theorems 9.5
and 9.6. If o € A(TgS), for u > uo,

(9.18) [Yuc| < Clal .
By Proposition 9.4 and Theorems 9.5 and 9.6, and by (9.18), we find that for u > uo,
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[+ 3

T Z TOa
2
exp(—u A
l [( NH)] 27rz/ ( 5 )d)\
a - B
a2
[N 5 /A exp( Bu“;i\) d)\} ' < ']% ,
(9.19) A- =i
exp(—A)
|’I‘rs [(N )271'2 5 A — B d)‘]

Tr, [NW271m / exp(Bv¢)2 ]’_

Using (9.8) and the obvious analogue identity for Brg’z, we get the first inequality in
(6.17). The proof of the second identity in (6.17) is similar. We have thus established
Theorem 6.5. Using (9.15) and (9.17), we also obtain Theorem 6.6.

9.4 A formula for P f "‘Vfc 2wV P& |w and its normal derivative

Theorem 9.8 — If Z € Ny xR, then

P& favjﬂ,w VP |\w =0,

(9.20) ey S _
P vfzvj,é,,WVPﬁ lw =0.

Proof. Since Viw =0, eiﬁwVI;‘, = 0. By proceeding as in (7.21), we obtain

(9.21) Pt f“Vié,,W fov; = fﬁfﬁ,,wvl;v =0.

To prove the second identity, we proceed as in the proof of [19, Theorem 13.19, eq.
(13.92)]. Clearly, on U,

(9.22) P& vji,,WVPE‘ = P€‘6§£,WVP€‘,
and so

(9.23) Pﬁ‘ﬁﬁzvif,wvzaﬁ‘ = P& %52\75,5,WVP§_
Moreover

(9.24) 6§v awV = Ve uw V5V = Ve 14

[fav,z)

+ (V922 75W),v] -
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Using Proposition 7.8 and (9.24), we obtain

(9.25)  PYVEViuwVP |w =Pt %E(Vg@‘ Z — pNv/x [fEW, z]) :
By Proposition 7.2,
(9.26) VZ{‘,’,@‘ Z=pPYxviEez.
Using (1.3), (7.25), (9.26), we get
(9.27) VX Z — PNvix [fHW 7] =
PNvix (GTV fEW L TV(fEW 7)) = 0.
From (9.25), (9.27), we get the second identity in (9.20). O

9.5 An embedding of F'in F

Clearly
v _ 1 [ oexp(=u?N) ] _
Tr, [(N1 Net) 5~ A———/\_ CdA| =
. exp(—u?A)
[(Nl Nu)5m /A - d,\]
(9.28)

exp(—u?\) _
Trs [NHQ'M /A A — A2 aA| =

1 exp(—u?}) .\
2mi Ja A — AlT

So in our proof of Theorem 9.5, we may as well introduce ~ in the left-hand sides of
(9.14), (9.15).
Definition 9.9. For s € S, u € R, let E* (resp. E¥, resp. F#) be the set of sections
of A(T*©®VX) ® ¢ over X, (resp. of 7 ((A(T*OVX) & €)|w) over Ny/x Ry, resp.
of A(T*(®VY) ® n over Y;) which lie in the ' Sobolev space, and let || ||gx (resp.
| llgs, resp. || ||fu) be the corresponding Sobolev norm. We will assume that
] B (resp. || ”EO) is associated to the Hermitian product (2.22) (resp. (8.2)).
Recall that €9 > 0 was defined in Section 7.3. We take € €]0, £¢]. In the sequel
the constants in our estimates depend on . In Theorem 9.14, we w1ll choose € small
enough so that the corresponding estimates hold. Otherwise € can be assumed to be
fixed.
Let v: R — [0, 1] be taken as in (7.29). If Z € Ny, x g, set

(9.29) o(2) =~ (@) .

Trs[H
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Let ar be the locally constant function on W

va,,/x

_ _ 2\ 2
(9.30) ar = exp( TIZI )p (Z) (27r)dimNy/x )

Ny;x

Now we follow [19, Section 9 a)].
Definition 9.10. For p > 0, T > 0, let It be the linear map

(9.31) o € F* — Iro(y, Z) = (24™Nv/x qr)~12p(Z)

2
exp (49 - %) o(y) € E*.

Let Ef. be the image of F# in E# by Ir. Then Ir is an isometric embedding of Fo
into E°.

Let EX" be the orthogonal space to E in E°, let pr, ps be the orthogonal
projection operators from E° on EZ, Eg:J‘ respectively. Recall that g is the orthogonal
projection operator from (A(T*®VX) ® &)\w on A(T*©VY) ® {8} ® n.

We recall a result of [19, Proposition 9.2].

Proposition 9.11 — Ifs€E° ifye W, Z € Ny/x Ry,

2
©032) pro(y, 2) = 22 exp (—T—'zg'—) f @)
Ny;x,y

T2’ duny, . (Z')
exp (— I2 | )S(y,Z’)W-

If o € F*, we can consider k~1/2Irco as an element of E*.
Definition 9.12. For p > 0, T > 0, let Jr be the linear map

(9.33) o€ F* — Jpo =k %Iro € E*.

Then Jr is an isometric embedding from F? into E°. Let EX be the image of F* in
E*. Let EJ™" be the orthogonal bundle to E in E°.
For > 0, set

(9.34) Eft = E*nE*.

Let Pr,P+ be the orthogonal projection operators from E® on E9., E%'L. By (19,
Proposition 9.5],

(9.35) Pr =k~ 2prk/? | Pt =k 1/2ptEl/2,
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9.6 A Sobolev norm on E!

Let ej,...,e2¢ be a locally defined smooth orthogonal basis of TR X. We assume
that on W, ej,...,ez¢ is an orthonormal basis of TRY and egs41,...,€2¢ is an
orthonormal basis of Ny, x Rr.

Recall that if U € TaW, UH € T Ny,x was defined in Section 8.2. In particular
for 1 < i < 2¢, esw € TrY and so efllw S Tg Ny,x. Using the identification
B., ~ ., described in Section 7.3, e{IIW is a locally defined vector field on U, .

If se€ E, put

1slo = llsll go »
(S’S’)O = <S, S,>E0 .

Definition 9.13. For T > 1, s € E, set

(9.36)

2 — 2 —1 |2 1 2
(9.37) |slz, = [Prslg + T |p7s|, + T?|VPrs|,
2¢ Oy s 2
VAT OD X)BE L |
=+ ; I es DTS o +

2¢

2

Then (9.37) defines a Hilbert norm on E'. Also (E',| |;,) is continuously
embedded in (E®,| |,). We identify E° to its antidual by ( , ),. Then we can
identify E~! to the antidual of E'. Let | |, _; be the norm on E~! associated to
| |r,;- Then we have the continuous dense embeddings with norms smaller than 1,

oS (AT OV X)BE) |lw
Vp(%)eﬁw st

0

(9.38) E! - E° - E!.

For convenience, we introduce a metric g7 on T'S. Then the definition of |s|,, I8l 4
obviously extends to A(T}S) ® E.
Put

(9.39) Ar=Air.

Let ﬁg? ) (resp. X(>°)) be the piece of A7 which has degree 0 (resp. positive degree)
in A(T§S). Then

(9.40) Ap = AD) 4 ACO)
By (3.15), (4.1), (6.9),

(9.41) A9D =pX 4 TV.
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Set

Then Ry is a first order differential operator and moreover
(9.43) Az =A% 4 Ry

Theorem 9.14 — If € €]0,e0/4] is small enough, there exist constants C; > 0,C2 >
0,C3 > 0 such that for T > 1, 5,8’ € A(TS) ® E,

~, 2
|A§9)s|0 > Cylsl2, - Calsl?
(9.44) |<‘Z'(19)S’X'(I?)s,>ol < Clslpa |8l
|(Brs, ') | < Ca (Islzs 18lo + Islo 151z ) -

Proof. In the whole proof, C,C’... are positive constants, which may vary from line
to line.

To establish the first inequality in (9.44), we may as well assume that s € E. If
s € F, then

(9.45) |Z§9)s|z = |'pTZ§£)s‘2 + lﬁ%ﬁ(")sr

‘—¢ A(O)

’pTAT pTSI st,

— 0)—
|pTA(TO)PT3| ‘P%Ag“)PTSI
(]

By [19, Theorem 9.8], since Jr is an isometry and since S is compact, there exist
C>0,C">0suchthat forT>1,0 € F,

(9.46) [5r AP BrIr0| 2 Cllollm — C' ol o -
From (9.46), we deduce that
(9.47) '51"2;9)1-77"3‘0 >C ||J7_~15T5“F1 — C'|prs -

By (9.32), (9.35), if 0 € F,

(9.48)

0 (AT OV X)B¢)|lw
Vp( )ee|w J 4 0 < C’”U“F1 .
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From (9.48), we obtain

2¢'

(9.49) >
1

Using (9.47), (9.49), we get

oe(A(T*@'”X)@f)lw

Prs
P(%)eﬁw Pr

< Cll9z"prs e -
0

oS AT OV X)B€) |lw
Vothret, Prs|

2¢
- 72(0)— —_
(950)  [prAQprs| 2 C 21 : —C' [prslo -

If s € E, on U,,, we can write s = st + s~, st € A(T*OVX) ® ¢*. By |19,
Proposition 8.14], if s is supported in U,,,

(9.51) C(|s*|+12||s~|) < IVs| < C'(JsT| +12]|s7|) -

By [19, eq. (9.52), (9.87)] and by (9.51), if ¢ €]0,£0/4] is small enough, if s € Ej'r is
supported in Uy, then

~, 2
(9.52) |A§9)s|0 > Clls|% + C'T2 |Vs|2 + C"T |s|> — ¢ |s|? .
By [19, eq. (9.93)], if s € E vanishes on U, then
~ 2
(9.53) |A<T°>s|0 > Clsl|%: + C'T2 |52 = C" |52 .

Using (9.52), (9.53) and proceeding as in [19, p. 115, 116] and specially [19, eq. (9.97)-
(9.99)], we find that if s € ER™,

~, 2
(9.54) |A<T°>s|0 > Cls|% + C'T2 |Vs|2 + C"T |s|2 = C"" |2 .
By [19, Theorem 9.10],
5k 1O | <C IPrslle |, |-
|pT T prs 0= \/T + |st|0 )

~ pls
peA0rte|, <0 (Pl i)

vT

Using (9.54) and the second inequality in (9.55), for T > 1 large enough,

(9.55)

-~ 2
(9.56) [pEADDEs| 2 C|lpts|yn + C'T? [VPFs|,

+C"T [phs|; — C" [phs]; -
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By (9.32), (9.35)

2¢
*(0,1)
(9.57) 1Brsll g < cE : 0 ATV X8O lw
1

P(Z/2)ey, Prs

+ C'VT [Brsly -
0

Using (9.45), (9.50), (9.55)-(9.57), for T > 1 large enough, we obtain the first

inequality in (9.44). Of course small values of T' > 1 do not matter here.
Now we prove the second inequality in (9.44). Clearly

(9.58) |A(°)| ’A(O)‘ | |A§9)st'0.
By (9.41),
(9.59) |ADBts| < C (IpFsll g +T [VBhsl,) -

By [19, Theorem 9.8},
(9.60) IpTAT pT8| < C||I5rs| s -

Using (9.32), it is elementary to verify that

2¢'
(9.61) | I7 Brs|| pm < Z 0F ATV X)B) w5
1

p(Z/2)elly, Prs

+ C' |ppsl, -
0

From (9.55), (9.57)-(9.61), we get the second inequality in (9.44).
Now we prove the third inequality in (9.44). Put

(9.62) H= [DX, Z<>°>] + AC02,
Then H is a fibrewise first order differential operator, and moreover
(9.63) Rr=H+T [V, Z<>°>] .
Clearly if 5,5’ € A(T}S) ® E,
(964)  [(Hs,8)ol < C (Isly 8'lo + Islo5'l7,1 ) + [(HBrs, Brs)ol -
Observe that
i 2 UNY/X (Z)
/. | TZR@) e (TIZP) T =
. duny, 4 (Z)
i 2 _ _ 2 Y/X _ —cT
(9.65) /Ny/x TZ'(p*(Z) — 1) exp(—T|Z| )—_—_(27r)dimNy/x =0(e™%")
(T121*)P0*(2) 2y dUNy,x(Z)
[ R e Tz T = o), >0
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Moreover, if U is a smooth section of Tr X, using (9.32) , (9.65) we get

+ |5T3|0) .
)

(0.66) |IZ| V0| <
0 (A(T““’X)@olw-
Vo(z/2)et,, Prs

s

By (9.65), (9.66),

(9.67) [(HPrs,Prs')ol < C (|3|T,1 Islo + 1slo |3’|T,1) :
Also

(9.68) [V, A0 = fove, V.

By (9.20),

(9.69) Pt vif,WVPf‘ =0(2%).

By (9.37), (9.51), (9.69)
(9.70) |<Tf°‘v§£,,WVs,s'>O's
& (sl 151o +I8lo I Iy + T |{ £ VBrs,Brs'), )

Using (9.20), (9.65), we get

(9.71) T|( 2V nw VBrs,prs’) | < Clprslo rs'lo

From (9.69), (9.71), we obtain

(9.72) (7Y Vs,s') | < C (Ishy 1l + Islo 15']7.1 ) -

From (9.62)-(9.64) and from (9.72), we get the third inequality in (9.44). The proof
of our Theorem is completed. O

9.7 Estimates on the resolvent of Z%

Now we fix € > 0 as in Theorem 9.14.
If A€ L(E° E°) (resp. A € L(E~1,EY)), let ||A||*° (resp. | Al|7"") be the norm
of A with respect to the norm | |, (resp. the norms | |1 _,,| |1 ;)

Theorem 9.15 — There exist To > 1,C > 0,p € N, such that for T > T, A € A,
the resolvent (A — A2 2)~1 is such that

1
(9.73) “()\ A2)-1 ” <CL+ ).
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Proof. Recall that AY) = DX +TV. For § > 0,A > 0 set
(9.74) U= {X€C,Re()\) <6Im?*(A) — A} .

Using the first two inequalities in (9.44), and by proceeding as in [19, Theorems 11.26
and 11.27], we find that if § is small enough, and is A is large enough, for T' > 1,
AeU,

[0 - 2997 <c,

(9.75) g =i
|- AR < o+ a2
O
Take A € A. By Theorem 9.1, for T' > Ty, (A — Z,(_,Q)’z)‘l exists and moreover
~ 0,0
(9.76) H(,\ - Ag‘.’)»z)—l“ <cC.
It eU, A€ A, T > Tp, then
9.77) (A= AP = (A9 — AP+ (A = AP 2g — A) (Ao — AP L.
From (9.75)-(9.77), using obvious notations, we get
~ -1,0
(9.78) “()\ - A§9)’2)‘1“T <O+ ).
Also
(9.79) (A= AP = (hg = AP )+ (Ao — APZ) (Ao — A)(A — AQ?) 71
By (9.75), (9.78), (9.79), we obtain
~ -1,1
(9.80) H(A - AS_,9)’2)‘1“T < C(1+ )2,
Moreover, if A € A, then
(981) (A= A9 = (- AP+ (A - AP )T Ry (A - AP
+...
and the expansion terminates after a finite numbers of terms. By Theorem 9.14,
~ ql.-1
(9.82) HRT“T <cC.
Using (9.80)-(9.82), we get (9.73). The proof of our Theorem is completed. O
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9.8 Regularizing properties of the resolvent of A2.

Since W is compact, there exist a finite family of smooth functions f1,..., f; on
V with values in [0, 1], such that

q

(9.83) W= {z eV fi&) =0},
Jj=1

and that on W, df,...,df, span N;;/X,R.

Similarly, there exists a finite family of smooth sections Uy, ..., U, of Tr X (resp.
Ui,..., U, of TRY') such that for any z € V (resp. y € W), Us(z),...,Ur(z) (resp.
U{(y),...,Ul(y)) spans (TrX)s (resp. (TRY)y).

Definition 9.16. For T > 1, let 21 be the family of operators acting on E

_ Jormevx)@e 1 _LogAT OV X)86)w L
(9.84) QT - {v(l—p(2/2))Ui 37—pr vp(Z/2)Ui WpT ’

SAT* OV X)B =
O PO VT 5k |

For k € N, let Q% be the family of operators Q acting on E which can be written in
the form

(9.85) Q=Q:...Qx, Q€r.

If k € N, we equip the Sobolev fibres E* with the Hilbert norm || ||, such that if
seFE,

k
(9-86) Islze =D > 1Qslz -
£=0 Qe2%
Theorem 9.17 — Take k € N. There exists Cy > 0 such that for T > 1,

Q1,---,Qr €2r, 5,5 € A(TRS) B E,

(9.87) |<[Q1, [Qg, . [Qk,ﬁ%]]] s,s'>0. < Cklslpy 18| -

Proof. First, we consider the case when k = 1.

A T:(O,I)X @
a) The case where Q = ‘7(1(_,,,(z/2)))u.~‘E :

Observe that p(Z/2) = 1 for |Z| < €, p(Z) = 0 for |Z| > 2¢. In particular, if
2¢
p(Z) > 0, then 1 — p(Z/2) = 0. Also, [DX,V] = 715 Zc(ei)VEiV is of order 0. One
1
then finds easily that (9.87) holds

~ =(0,1) S
b) The case where Q = ‘\7175%0vg(\é:;2)u,- X)®£)lw1—,% .
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The proof of the corresponding estimate is local on W. By [19, Theorem 13.30],
we get

(9.88) |< [Q, A’(Tg),z] 8, S'>0‘ <C |3|T,1 |SI|T,1 .

Note that in [19], some special properties of the operators @ of [19, Section 13| are
used, say in [19, eq. (13.203)], but the corresponding estimates still hold, by replacing
these Q’s by our @’s.

Now we will prove that

(9.89) K[Q, ET] S,S'>O| < Clslgy 18|7, -
Note that if s and s’ lie in A(TS) ® E, then
(9.90) <[Q, RT] s, s'>0 =0.

To establish (9.89), we only need to consider the case where s and s’ lie in A(TgS)REL
or A(T%S) ® Ex™* and do not lie both in A(TgS) ® EL.

We use the notation of (9.62), (9.63). As we saw before, H is a first order differential

: ; — og(AT* OV X)BE)Iw
order operator acting fibrewise. If P =V o(Z/2)U:; ,

1 _ _
(9.91) Q= :/_T(P + prPpr — prP — Ppr).

From (9.32), (9.91), we find that if s, s’ are taken as indicated before,

(9.92) K(Q, H] s, 3,)0| <C |3|T,1 |8,|T,l .

By (9.20), we find that near W,

(9.93) Pt favf,,,,WVPf' =0(2%).

Using (9.32), (9.91) and (9.93), we obtain

(9.94) ([@TrViuwV]s o) | < Clolry 19'Ir,: -

From (9.64), (9.92), (9.94), we get (9.89). Therefore, we have proved (9.89) for this

choice of Q.
c) The case where Q = 062‘(‘2;;2;" )®E)lw

By [19, Theorem 13.30], we find that

(9.95) |<[Q, Z(qg)’ﬂ 8,31>0| < Clslp, '3/|T,1 .
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Also [Q, H] is a first order differential operator acting fibrewise. Using (9.65), (9.66),
we find easily that it verifies the obvious analogue of (9.92).
Clearly

(9.96) [Q, TV w V] =TV gy Viw V-
By (9.20), near W,

(9.97) P00y Vemw VP = 0(12]7).

a

From (9.97), we find that [Q, T f"‘Vf‘H,W V] also verifies the analogue of (9.94).
d) The case where Q = VTP f;pr -

Put

(9.98) Q1 = VT(1 - p(Z/2))P7fPF
Q2 = VTp(Z/2)Pt fPr -

Clearly

(9.99) Q=Q1+Q.

As we saw in part a) of our proof,

(9.100) pr(1—p(Z/2)) = (1 —p(Z/2))Pr =0.
Therefore
Q1 =VT(1-p(Z/2))f;,

9.101
(8-101) Qs = VT5Ep(2/2) £

Clearly, [(1 —p(Z/2))f;, ﬁ%] is a first order differential operator not depending on
T, whose coefficients vanish when p(Z) > 0. Then we find easily that

(9.102) |< [QI,Z%‘] 3,5,>0| < C|3|T,1 IsllT,l .
By [19, Theorem 13.30],

(9.103) |<[Q2,Z5ﬁ)’2] s, s’>0’ < Clslpy18'lr, -
We will show that

(9.104) '< [Qz, ET] s, 3'>' < Clslpy 18l -
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As before we take s, 8’ in EL or ER™, and s, s’ not lying both in EL. Set P = p(Z/2) f;.
Then we write the obvious analogue of (9.91), i.e.

(9.105) Q2 = VT(P + ppPpy — BrP — PBr).

Since [P, ET] is an operator of order 0 which does not depend on T, VT [P, RT] is
harmless in our estimates. Moreover near W,

(9.106) fi ~6(2)).
Using (9.66), (9.106), we find that if s € E} ™,

(9.107) I\/’T’T)TPﬁTHs|O < Clslp, -

From (9.107), we deduce that [\/T’T)TPﬁT, H ] is also harmless. The same argument
shows that the other commutators of the remaining terms in the expression (9.105)
for Q2 with H are harmless.

Finally

(9.108) [P, T favif'wv] =0.

Using (9.93) and (9.108), we control the commutators [Qz, T f"‘V§ H,WV].
This completes the case of commutators of length 1.

e) Higher order commutators.

As we saw in a), if 1 — p(Z/2) > 0, then p(Z) = 0. Therefore in the commutators
containing one of the V?I(Z;(( Z /)2‘;()}?;5, we can replace everywhere 1‘)% by 1. The

corresponding estimates are then trivial in this case.
For commutators not containing the VA(T*(O'I)X)&’S the contribution of A2
& (1-p(2/2))U; > T
to the corresponding estimates was already obtained in [19, Theorem 13.30]. More
generally, by using formulas of the type (9.91) repeatedly, one verifies that the
estimates needed to prove (9.87) for k > 1 are exactly of the same nature as before.

The proof of Theorem 9.17 is completed. O

If A e L(E™ E™), we denote by |||A|||?’m, the norm of A with respect to the
norms ||z | llzme-
Theorem 9.18 — For anym € N, there exist p,, € N, Cp, > 0 such that for T > Ty,
AEA,

(9.109) [resswze3sed]] < O+ AP

m,m-+
T
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Proof. Clearly for T > 1

(9.110) sllz,y < Clslpy -

When m = 0, our Theorem follows from Theorem 9.15 and from (9.110).

Using Theorems 9.15 and 9.17 instead of [19, Theorem 11.27 and Proposi-

tion 11.29], the proof of our Theorem proceed as the proof of [19, Theorem 11.30].
O

Ifa¢ A, put
_ 1 exp(—u2))
(9.111) Fu(a) = 5— /A D) 45,
Then
(9.112) F,(a) = exp(—u2a) if a lies inside the contour A,
=0 if a lies outside A.
Put
(9.113) F, (A ) exp( )d}\

27” A A— A2

Definition 9.19. Let F, (A Nz, z') (z,2' € X ) be the smooth kernel associated to

the operator F,,(AZ2) with respect to (2"’)‘ ("

9.9 Uniform estimates on the kernel F, (A2

Theorem 9.20 — For any a > 0, m € N, there exist C > 0, C' > 0 such that if
zeV,dX(z,Y) > a, foru>uo, T > To,

Cexp(—C'u 2)

(9.114) Fu(A7)(x,2') < ——

For any m € N, there exist C > 0, C' > 0 such that fory e W, u > ug, T > T,

(9.115)
lzussué)ﬁ(lﬂzl)m'f‘m%”? Ful )((y’ \}Z‘ ) ( \/Z‘ ))‘SCGXP(—C%?).
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For any m € N, there exist C > 0, C' > 0, such that fory e W, u > uo, T > T,

olel+|a’| 1
9.116 s - —
( : Ia|<ms:‘15'|<mr UP | 5zadg/a’ Tdim Ny x
|1Z|<EVT
|z'|<§vT

i (1) (55| s

Proof. Clearly for any p € N,

1 exp(—u2)) 2p—1 (2p —1)! / exp(—u?))
(9.117) o ) —-———-———/\ ye d\ = (-1) 2mi(u?)2—1 [, (A_Z%)gpdA

a

By Theorem 9.18, we know that there exists C > 0, ¢ € N such that if A € A,
Q €, L<p,

~. 0,0
(9.118) ||Q(,\ - A%,)-P“T < C(1+A)T.

By introducing the obvious adjoint operator with respect to the Hermitian product
(', )o, we also find that if X € A, Q' € 9%, £ < p,

~, 0,0
(9.119) ||(,\ - A7 " <ca+ .

From (9.118), (9.119), we see that if A € A, Q € 9%, Q' € 9%, £,¢' < p,

(9.120) e - a@)@ | " < ca+ .

From (9.117), (9.120), we find that if Q € 2%, Q' € 9%, there exist C > 0, C' > 0
such that

~, 0,0
(9.121) ”QFu(A%)Q’ . < Cexp(=C'u?).

By (9.121) and by Sobolev inequalities, we get (9.114). Using (9.120) and proceeding
as in [19, proof of Theorem 13.32], we obtain (9.115), (9.116).
The proof of our Theorem is completed. O
Now we establish an analogue of [19, Proposition 13.33].

Proposition 9.21 — There exist C > 0, p € N such that for T > Tp, A € AUJ, then
(9.122) loEr - 2) ”°’° < C e
VT
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Proof. This follows immediately from Theorem 9.15. O

At this stage, we are in a situation formally very similar to the one described in
[19, Section 13 0)]. Note that here, contrary to what was done in [19], the Hermitian
product ( , ), does not vary with T'. In particular, none of the subtleties involved in
the proof of [19, Proposition 13.34] does appear.

If A is an bounded operator acting on E, we write A in matrix form with respect
to the splitting E°: E9 @ Eg:"‘

so that A; =P APy, . ...
Now we give an analogue of [19, Proposition 13.35].

Proposition 9.22 — There exist C > 0, p € N, Ty > 1 such that if T > Ty, A € A,
the resolvent (A — A% ,)~! exists and moreover

(9.123) ||(A - Z%A)—l“;l’l < C1+ADP.

Proof. By Theorem 9.14, it is clear that Z%A verifies inequalities similar to (9.44).
Therefore by using the notation in (9.74), for § > 0 small enough, and A > 0 large
enough, if A € U, then

|- 0" <o,

(9.124) ~ s
|- 4307, " <ca+nne.
O

By Theorem 9.14, for T' > 1 large enough, if s € quq’l ,

- 2
(9.125) <A§?)’zs, s>0 >CT |p%s|0 .
By (9.125), we find that there is C > 0, Tp > 1 such that for T > Tp, A € AU,

~ 0,0

(9.126) “(,\ - A‘T‘flf)-lu <cC.

Using (9.124), (9.126), and proceeding as in (9.75)-(9.80), we get for T > Tp, A € AUG,
~ -1,

(9.127) “(,\ - A§E§f)~1“T < C(1+|A\)2.

Then if A € AU,

(9128) (A— A% )7 = (A - A+ (A - AR T Rra(A - AT T+
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By Theorem 9.14, we get
1,-1

(9.129) HRT,4||T <C.
By (9.128)-(9.129) and by proceeding as in (9.81)-(9.82), we obtain (9.123). a
Now we give an analogue of [19, Theorem 13.39].
Theorem 9.23 — There exist C > 0, C' > 0 such that foru>1, T > Ty,
_ 1 100 C
PrFu(AT)PT < Wik
~ 0,0 C
9.130 peF, (25| < %,
( ) prFu(AT)Pr JT
~ 0,0 C
prFy(A2)pT < —.
prFu(AT)PT =T

Proof. In view of Proposition 9.21, we can proceed exactly as in [19, p. 264-267].
Note that contrary to [19, Section 13 0)|, we do not need to introduce the operator
p of [19, Section 13] (at least for the moment!) and this simplifies the discussion
considerably. O

9.10 The matrix structure of AZ as T — +00

Recall that the operator DVY/x acting on E was defined in Definition 8.2. Let
DNv/x:= be the restriction of DV¥/x to E~. Similarly let V* be the restriction of V'
to &%,

Now we will use the notation of Chapter 8. Let E’®1:~ be the orthogonal bundle
to E’0 in E%~. The bundle E° splits orthogonally as

(9.131) E°=EgE'""L - gETC.

We write FTk1/2Z§1k‘1/2F771 as a (3,3) matrix with respect to the splitting (9.131),

Ar Br Cr
(9.132) Dr Er Fr
Gr Hr Ir

By squaring (8.10), we obtain the asymptotic expansion of (9.132). Since E'° &
E"01~ = ker V*|w, and since by Section 8.3, E"® = ker (DNv/x:= + \/—1%) C
E%~, we deduce from (8.10) that

Ar=A+0(Jz), Br=vTB+0(1), Cr=TC+0(T),
(9.133) Dr =+TD+06(1), Er=TE+0(1), Fr=TF +0(1),
Gr =TG+0O(/T), Hr =TH +O0(/T), Ir=T?I+0(T3%?).
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From (8.10), we get the analogue of [19, eq. (13.356)],

A=pB°p,
Az)
B = DNY/X,— _lc( ’%:I J_,
oo 2]
o[t 8] 7
(9.134) D=ptp¢ [DMne 4 vTTED ),

27\ 2

E =p'pP¢ (DN"/Xv* + \/—1§——)) P pt,

V2
- ptt |yt
G = P" [V, 8] p,
+,2

I=Vy"~.

Definition 9.24. Let E be the second order differential operator acting on F

(9.135) E=¢y Y(A-BE'D-CI'G)y.

Now we extend [19, Theorem 13.43].
Theorem 9.25 — The following identity holds,

(9.136) B ==&

Proof. By (9.134), (9.135), we find that

(9.137) E=q¢7! (p%zp — pBptP¢ Bp — p%P5+%p) v,
and so
(9.138) Z =~ (pBp)Zy.

Now we use Theorem 8.8 and (9.138), and we get (9.136). The proof of our Theorem
is completed. O

We give an analogue of [19, Theorem 13.41].
Theorem 9.26 — There exist p € N, C > 0 such that for A\ € A, T > Ty,

1,-1
(o)

- ~ ~ \=1 ~
(9-139) A%, + AT, ()‘ - A%‘A) A% 3 — PrJrEJr 'Pr < =77
T T/

Proof. In view of (9.133), the proof of (9.139) is the same as the proof of [19,
Theorem 13.41]. O
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Set
—y2
1 exp(—u®\) A

w2y _
(9.140) B = o | SE 5w

Let Fu,(BY*)(y,v') (y,¥' € Y) be the smooth kernel of F,(B}""?) with respect to
dvy (y'

(2,".) im

9.11 The asymptotics of the operator F,(AZ2) as T — +oo
The analogue of [19, Theorem 13.42] is now.

Theorem 9.27 — There exist ¢ > 0, C > 0 such that foru > ug, T > 1,
~ _ 0,0 cexp(—Cu?
(9.141) ”Fu(A%‘) —PrJrFu (B{m) Jr PT” %-

Proof. In view of Theorem 9.26, the proof of (9.141) is the same as the proof of [19,
Theorem 13.42]. a

9.12 Proof of Theorem 9.5
Clearly

(9.142) Tr, [(N1 — Nu)=— 2m A%d)\]

[ [ = N A 1)) i

By Theorem 9.20, for any m € N

(9.143)
N e dvx () C ,
-Lﬁ{z,dx(m’y)zs/4} Trs I:(NIV - NH)F“(A%")("L" .’L‘)] @F)Z‘E—f < == Tm exp( -C 2)
Also
(9.144)
- _dux(z) [ dvy(y)
Lﬂ{z,dx(z,Y)ss/4} [(Nl NH)F (A )( CL')] (2 )dlmX _'/);—(Qﬂ)dimlf

I L et (O] (% v%))]
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a
Using Theorems 9.20 and 9.27 and proceeding as in [19, Section 13 q)], we find that
there exist ¢ > 0, C' > 0, § €]0,1/2] such that if y € W, Z € Ny /xRy, |Z| < evT

4
(&) mommmrin (s 77)- (+75))+ ( 57)

(%) ew-l1zP) (i

aTTdimNy/x (27r)d1m Ny/x 27T

(9.145)

cexp(—Cu?)
T4 ’

dimY W
) Fu(B"*)(y,y)a| <

By (9.115), (9.145), we find that for any p € N, there is ¢ > 0, C > 0 such that if
yEeW, Z € Ny/xry 12| < 2,

(&) mmen@n (v ) (7)) £ (o 7)

2 Z .
_ p ( VT) exp(_ |Z|2) _]_'_ dlmyF (BW,Z)( )
aTTdimNy/x (27T)dimNy/x 271. u 1 y’y q

(9.146)

< cexp(—Cu?)
~ (A+1z)rTe2

Finally there is C’ > 0 such that

1

(9147) arT = (2’1”)‘1'—mNY/X

+0(e 7).

From (9.146), (9.147), we deduce that there exist ¢ > 0, C > 0, § €]0, 1/4] such that

(9.148)

/ dvy (y)
y @manY Jizicez

i -t (5)- o ) o )

~ cexp(—Cu?
T, [o(NY ~ NanaFu(BY?)]| < S2RC0).
So by Theorem 8.8 and by (9.142)-(9.144), (9.148), we obtain
cexp(—Cu?)

(9.149) ‘m [(1\7’1" - NH)Fu(A?_r)] — Tr, [N1W Fu(BY" ’2)” S — 7%

Also by (9.111), we get for u > uy,
(9.150) I'I‘rs [NIW Fu(Bfm)] | < cexp(—Cu?).

Using (9.149), (9.150), we get the first inequality in (9.14) and the “difference” of the
inequalities (9.15). Also, by using Theorem 8.8 again, we get the second inequality in
(9.14) and also the full (9.15).

The proof of Theorem 9.5 is completed. O
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9.13 The operators Y, . r
Definition 9.28. Fora € C*, b€ C,ce€ C, T > 1, set

AD? be(TV)\* «TV)
9.151 G e =-1_+<VE_____) {VE_ Al )],
(9.151) bel = Tg2 vz ) T |° 22 T

bC(TV) ) 2 [ E C(TV) (0)]
R =(VF- 22 vE — JAD L
be,T ( 2\/5 e 2\/5 T

For T' > 1, recall that Kr = ker Ag? ) and that Pr is the orthogonal projection
~ -1
operator E — Kr with respect to ( , ) =( , );. Let [A(TO )’2] be the operator in

End(E) which vanishes on K7, and coincides with the inverse of Ag? )2 on K.
Theorem 9.29 — Forac€ C*, |a|]<1,beC,ce C, T > Ty, then

2dim S

9.152) — [N o\ 3 3

27 Fy A— (ga,b,c,T p=0 1<io<p+1

0<J1,..sJp+1—ig »
Jit+FIpt1-ig<io—1

(=1)P—Jr—dptizio

(lo—1—=J1... — Jp+i—io)!

Ci1Ry e, 7CoRp e, - - - Ry, 7Cpy1 s

where in the right-hand side of (9.152), iy of the C;’s are equal to IST, and the other
1\ 1+ 1+jp4+1-ig

yeens (a2 [Agg),z]_1> .In

particular each term in the right-hand side of (9.152) is a monomial in a and a

Cj’s are respectively given by <a2 [Agf))’z] -

polynomial in b, c.

Moreover if Cy,...Cpy1 are chosen as indicated before,

(9.153)
deg.(C1Rb,c,TCoRbc,T - - - Rb,c,7Cpt1) < 2(p+ 1 —4g),
deg,(C1Rb,c,7C2Rbc,T - - - R e, 7Cpy1) =2(p+ 1 —do+ j1+ - + Jp+1—io) -

The inequality in the first line of (9.158) is an equality if and only if [CVE,A(T?)]
appears ezactly 2(p + 1 — ig) times in sequences of the form

. —1 1+ ) .
(9.154) Py [ev?, 40| (a'~’ [497] ) [cv®, AP Py,
the other C;’s being equal to IST.
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Proof. Clearly Ry 1 lies in A(TRS) ® End(E) and its partial degree in A(TRS) is
positive. Using Theorem 9.1, we find that

. L + R +
= b, yT .o
- cga’b,c’T A0).2 A00).2 c _ A2

A=A A=A

and the sum in (9.155) is a finite sum with at most 2dim S + 1 terms.
Also

)\k
(9.156) exp(—\) = go(—l)kﬁ.

(9.155)

a

By Theorem 9.1, for T > Ty, |a| < 1, 0 is the only eigenvalue of Ag,? )2 /a? lying inside
8. Using (9.155), (9.156) and the residue theorem, we get (9.152). Clearly each term
in the right-hand side of (9.152) is a polynomial in a, b, c.

If s is a smooth section of I?T, then

(9.157) APs =0
and so
(9.158) [vE, 4D s - 4P VEs = 0.

From (9.158), we deduce that
(9.159) Pr [VE, Agn] Pr=o0.

Therefore in the right-hand side of (9.152), expressions of the form Pr [cVE , AS_,? )] Pr
never appear. Now we list the other sequences of terms where [cVE , Ag? )] can appear,
and their partial degree in a and c. Clearly

—1\ 1+Jk
deg, <a2 [Ag‘,’)v?] ) Rycr > 2,

1+jk

deg, (a2 [A»E,?) ’2] _1) Rper =1,

- - -1\!
deg, PrRp.c,T (a2 A§9)’2] ) Rycr 22,
(9.160) i .
deg, ﬁTRb,c,T (02 A,(I?)"z]

- _ 0).2 -1 1+.7k
deg, PrRy T a? A;)’] ) >2,

deg, ﬁTRb,c,T (a2 -A,(_,E) )’2]
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In the right-hand side of (9.160), the even rows are dominated by the odd rows.
Therefore we deduce that the degree in ¢ of C1 Ry, 7C2 ... Ry, 7Cp is dominated by
2(p + 1 — ip), i.e. we obtain the first inequality in (9.153). The second equality in
(9.153) is trivial.

The case where there is equality in (9.153) corresponds to the case where the even
and odd right-hand sides of (9.160) are equal, and only terms of the highest degree
in ¢ appear. This excludes the first and third sort of terms in (9.160).

Our Theorem follows. O

From Theorem 9.29, we deduce that if N is one of the operators N{¥, Ny, w¥'¥#
then

(9.161) Tr, [Nél— %&w\] = Y Otmna(T)alb™c",
Tt Js AT FabeT 0<n<¢<4dim S
0<m<A4dim S

where the Og m »(T) lie in PS.

Theorem 9.30 — If N is taken as in (9.161), there exist forms O m n(00) € P and
C >0, 6 €]0,1/2] such that forT >Tp,0<n<£€<4dimS, 0 <m <4dim S,

C
(9.162) |0¢,mn(T) — Ogm,n(00)| < T -
Proof. We will show that there is a smooth form on S, h(a,b,c), depending
holomorphically on {a € C, b € C,c € C, } < |a| < 1/2, |b| < 1/2, || < 1/2},
C >0, and § €]0, 3] such that for T > Tp,

< C

ST
Using (9.161), (9.163) and Cauchy’s residue formula, we get (9.162).
In view of (3.15), (9.151), we see that %, p ., is obtained from A% by scaling

1 exp(—A)

.1 _—
(9 63) 27ri 5 A - cga,b,c,T

Tr, [N d)\] — h(a,b,c)

— the piece of degree 0 by ;15;

the piece of degree 1 by c;

the piece of degree 2 is unscaled;

the piece of degree 3 by b;
the piece of degree 4 by b2.

Put

H,Ny,x) H,Ny,x)
- c a
(9.164) Gy por = exp {—ach"ﬁ‘{/i—) } G b.c, T XD {ach"‘c(f—\-/—-z—)} .

As in (7.49), the essential effect of this transformation is to replace in the expression
(9.151) for G, .7 the term [cVE,TV] = cT favf,,,,v V by T favi,,,wv.
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The proof of (9.163) proceeds otherwise exactly as in Sections 9.6-9.11. The fact
that % < |a|] < 1 makes that all the considered quantities are well-defined. Then
the discussion of the previous Subsections can be exactly reproduced. In particular,
because of Theorem 9.1 and Proposition 9.2, in Theorem 9.15, we can replace A € A
by A € 4.

The previous scaling considerations show easily that as T — 400, Frkl/2
@a,b,c,Tk"lﬂF:,‘:l has a matrix structure similar to (9.132)-(9.134).

By the procedure indicated in Definition 9.24, we produce a second order elliptic
operator Zqp . acting on F' such that the obvious analogue of Theorem 9.26 holds.
Of course this operator does not has as simple an expression as the expression given
for Z in Theorem 9.25.

From these arguments, we obtain easily (9.163). The proof of our Theorem is
completed. O

9.14 Proof of Theorem 9.6
Clearly

(9.165) Bl;r=%11,7.

ulu’

From (9.161), we see that if NV is one of the operators N{f, Ny, w"" ¥, then

1 e - —e—
(9.166) Tr, [N% )\"f(T)dA] = > Ogmn(THu=c"mt",
s u,T 0<n<f<4dim S
d0<m<4dim S

Clearly if u > ug, for 0 <n < ¢,0 <m,
(9.167) utmtr < O

Using Theorem 9.30 and (9.166), (9.167), we find that for u > uo, T > 1,

(9.168)

1 exp(—2A) - c
Tre N—,/——dA — Opmpn(c0)u™ "M " < — .
[ 2ms 5)\—BZ’T OSnSl_;ldimS " T°

0<m<4dim S

For a given u > 0, we can calculate the limit as T — +o00 of Trs [N # J. 5 i—x_‘%}%d)\]
by the recipe already indicated in Section 9.12. We get '

| 1 [ (=) L [ o)
. A da| = T, |gNg— dr| .
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From (9.168), (9.169), we see that

—— 1 exp(—A)
(9-170) Ot,m,n(00)u™""+" = Tx, [qu——. ————=dA| .
OSNSISZ4dimS 2mi Js X — B?
0<m<4dim S
Ultimately from Theorem 8.8 and from (9.168), (9.170), we find that for u > wuy,
T>1,

1 exp(—M)
V — e —_—
Trs [(Nuz Ny) omi Js A= Bﬁ,Td/\]

— T, lNW{i/md,\H < ¢
5

“*2mi Js A — BY? = T8

(9.171) (=)
1 exp(—A 1 e
ﬁs [NH omi /; N\ — B?"TdA] 3 dlmNy/X
1 exp(—2X) C
— == 7 < =,
Trs [2111’ e ngd)\ < 7%

i.e., we obtain (9.16).

Take again N as before. By Theorem 9.30, the Oy y, »(T) are uniformly bounded.
Using (9.166), we see that for u > 1, T' > Ty,

1 —-A
(9.172) Trs |:N2— :x—pg'B;Q‘ld)\] - Z On0n(T)| < g‘
T Js AT BuT 0<n<4dim$§ u
On the other hand, by [3, Theorem 9.19], for a given T > Tp,
(9.173)
. 1 exp(—A) _ 1 exp(—A)
Jm T [N2m' s A— B2, d’\] =T [P NPz | N yEKE02 dA| .
Since the spectrum of V? (X802 i reduced to 0, we can rewrite (9.173) in the form
©174)  lim Tr, [N—— [ RN |y, [PTNPT exp(—V2 ‘X’i"‘)’z)] .

Using (9.172), (9.174), we get for u > uo, T > 1,

1 [ exp(—\) H(X,£)x),2 ¢
1 Trg |IN— | ——* — — X0 < —.
(9.175) |Trs [ — /6 . d,\] Tr, [PTNPT exp(—V 2 )] < <
From (9.175), we get (9.17). The proof of Theorem 9.6 is completed. O
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9.15 Proof of Theorem 6.15

Let 2z be an odd Grassmann variable, which anticommutes with all the other odd
variables. Put

(9.176) Adp=Aur +2Ny

Then C, 7 is a superconnection, with A(T5S) replaced by A(T3S)®A(R*). Moreover,
using Theorem 2.14, we get

8 d
(9.177) A=Al +2 (u(—,ﬁAZJ - u%A;,T) :

Also we can apply to the superconnection A2 «,r the techniques we used in Chapters 7
and 8 when dealing with A, 7. In particular as in (7.35), put

H,Ny,x H,Ny,x
(9.178) A? T = exp < fa_(i—\/—iu_-—)) A 1 exp (f“—(f7_-;——)-) .

By Theorem 7.17 and by (9.178),

(9-179) Z?l T = ;{u,T + Z(N‘),( + ,’:wV(ei, ff’W)C(Ei)f
) —u\/§

iwY
+ oz (FY, 1577219,
By Theorem 8.5 and by (9.179), as T — +o0,
(9.180) Frk'/2A3 pkV2F;t = TV*(y) + VI(DV¥rx + V4V (y)) + B
+ 2N + =0 (127 9Vx +1219" +|210° + 12| +12[°) .

vT
By Theorem 8.8, we find that

(9.181) ~1p(B + zNY)pyp = Bl + 2(N}¥ + 1 2dim Ny, x).
Finally by using Theorem 2.14 again, we get

7 a ’
(9.182)  (BY +2(Ny +1 dlmNy/x)) =B%? + ( aa BY%" — -6—635‘2’ ) .

Now it is quite clear that the techniques used above also apply to the superconnection
AY 1. In particular we find that given ug > 0, there exists C' > 0, d €]0, 1], such that
foru>wug, T > 1,

7] a ’
(9.183) l'I‘rs [NH exp(—B2 1 — bz ( 88 BY, - ua—uB}{, )]

a ” o ' C
. w2
— 3 dim Ny, x Tr, [exp( —B,y" — bz ( %Buz - ugu—BXZ )] < —=.
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By taking the components in (9.183) which are sums of forms of type (p,p + 1) or
(p+1,p), we get the first inequality in (6.79). The second inequality in (6.79) follows

from Theorem 8.8 and from the techniques of the preceding Subsections.
The proof of Theorem 6.15 is completed.

9.16 Proof of Theorem 6.16

Using (9.177) and proceeding as in Section 9.15, we find that there exists C > 0

such that for u > ug, T > 1,

8 yn B
B2 _ _ 9 pvr 9 pv
(9.184) l'I‘rs [NHexp( B2, z(u S Bl —u auBu2)>]
2
— Tr, [PTNHPT exp (— (v?‘x’ﬁ"” + 2PN PT) )] ] < % .
Also

2
(9.185) (V¥(X,€|x) + zPTN\),(PT) — (Vg(xyﬁlx),i’ _ zvg(X,Elw)PTN‘),(PT) .

From (9.184), (9.185), we get the first inequality in (6.80). The second inequality in

(6.80) can be proved as before.
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10. The asymptotics of the metric gg ¥orly) ag

T —+00

Recall that gH(X €1%) j5 the metric induced by ( , yyon H(X,£|x),and that gH(Y mly)
is the metric on H(Y,n|y) associated to g H(X.61x) yia the canonical identification
H(X,€|x) ~ HY,nly).

The purpose of this Chapter is to prove Theorem 6.10, i.e. to calculate the
asymptotics as T — +o0 of gH(Y’"l") and its derivatives over S. In the case where S
is reduced to a point, Theorem 6.10 was already established in [19, Theorem 10.9].
Here the main point is to show that the techniques of [19, Section 10] allow us to
control the derivatives of the metric.

This Chapter is organized as follows. In Section 10.1, we lift sections of ker DY to
sections of ker A,(19 ). In Section 10.2, we use the results of Section 10.1 to lift sections
of ker DY to fibrewise harmonic sections of E with respect to ( , );. Finally in
Section 10.3, we prove Theorem 6.10.

Here, we use the notation of Chapters 3, and 6-9.

We take €9 > 0 as in Chapter 7. As before we assume that V, W and S are compact.
Also we may and we will assume that S is connected.

10.1 The lift of sections of ker DY to sections of ker A§9 )

Let Y = U‘li Y; be the decomposition of Y into nonempty connected components.
Note that since S is connected, d is constant over S. However the labelling of the Y;
is only defined locally over S. By replacing S by a small compact neighborhood of
sp € S, we may as well assume that the decomposition ¥ = U‘f Y; is defined globally
over S. Let W = U‘: W; be the corresponding decomposition of W.

For 1 < j <d, set

(10.1) Bj,eo/2 = {Z € NYj/X,R, |Z| < 60/2} .

As in Section 7.3, we identify B, ., /2 to a tubular nelghborhood WUj o 0/2 of Wjin V.
Since AU, is a tubular neighborhood of W in V/, for j # j’, GILJ c0/2 N GILJ o2 = 0.
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For 1 < j < d, let F; be the vector bundle over S of smooth sections of
A(T*OVY;) ® myy, over Yj, let D¥i be the restriction of DY to Fj. Then

d
(10.2) F=F, , D'=D%.
Jj=1 Jj=1
Also ker DY = @ ker DY7, and for 1 < j < d, ker DY5 ~ H(Y;, 7)y;) is a smooth vector
bundle on S. Let Q be the orthogonal projection from F° on ker DY.
We establish the following extension of [19, Theorem 10.1].
Theorem 10.1 — For any k € N, for any smooth sections Ui, ..., Ux of TRV, for

any smooth section o of ker DYi (1 < j < d), and for any q € N, there exist C > 0
such that for T > 1,

«(0,1) ¥\ «(0,1) y\S g ~ C
(10.3) sup VT8 g0 B gro| (2) <
IGV\O‘LJ",o/z Tq
For any k' € N, for any smooth sections Uy, ...,U;, of TRW, and any smooth section

o of ker DY, there is C > 0 such that

v/,

*(0,1) & «(0,1) R
(10.4) sup |V1L\]ST oD Y)&n L VA(T DY
yeW 1 k

(Q’I‘ﬁT(Zdim NY/XaT)) 2 Jro — 0" (¥) < % .

Proof. When S is a point, the case where Uy, ...,Ux € TrX, Uj,...,U}, € TRY was
already considered in the proof of [19, Theorem 10.1].
Les co be the positive constant constructed in Section 9.1. By definition

(10.5) Sp(DY)N {)x € C, |\ < ez} C {0}.

Also by Theorem 9.1, for T'> Ty > 1,

(10.6) sp(AP) N {X € C,|A| < vz} c {0}.

Let J be the circle in C of center 0 and radius ,/cz. Then for T > Tp,

~ 1 dX

Using (10.7), it is not difficult to extend the arguments of [19] to obtain uniformity
in s € S in the estimates of [19, Theorem 10.1], i.e. to get (10.3), (10.4) when
Uy,..., U € TrX, U{,...,UL, € TrY.

Take € > 0 as in Theorem 9.14. Let E°(X \U; ) be the Hilbert bundle of sections
of A(T*(®V) X) ® £ over X \ U; . which are square-integrable. We equip E°(X \ U; )
with the Hermitian product induced by the Hermitian product of E°.
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We will show that if B is a smooth section of Tr.S, if o is a smooth section of
ker DYi,

Ep _ —oo
(10.8) ”VBPTJTal pocena,y = 0T )
By (10.7),
B Jro = —— [(n— A@)-1
(10.9) PrJro = — [(A— Ay’) " JrodA.
2mi Js

To prove (10.8), we only need to show that uniformly in A € 4,

(10.10) “vg()\ — AD) Jro

=0(T~).
EO(X\Uj )

In [19, proof of Theorem 10.1], for A € 6, T > Tp, given m € N, an explicit
construction of s, (A, T') € E,t,,(A,T) € E is given so that

tm(ANT) = (A — AD)sm(A, T) = Jro,
(10.11) $Sm(AT)=0 on V\Uj,,
Itm (A T)llgo = O(T~™/2).

By (10.11),
(10.12) A= Ao = s;m(A,T) = (A — A 1t (A, T).
From (10.11), it is clear that
(10.13) VATV XBE S (A T) =0 on V\Uj,.
So by (10.12), (10.13), we get on V' \ U; .
(10.14) VEA = AN 1Jre = VE(A - AD) "1t (A, T).
Also
(1015) VEO - AD)tm(AT) = (A — 4P) [VE, 4P ]
A= AD) A T) + (A = AD) T VEL(A,T) on V \ U

In [19, proof of Theorem 10.1], t,,(\,T) is constructed by an explicit universal
algorithm, and is calculated in [19, eq. (10.19)]. It is then not difficult to obtain
the estimate

(10.16) |VEtm(X, T)|| go = O(T (D72,
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Clearly, IV‘E, AS_,? )] is a first order differential operator acting fibrewise. In particular
forT>1,s€FE,
(10.17) |[VE AP] 5|, < € Usllz + T llsllgo) -
Also by [19, eq. (10.34)], if T > Ty, A€ 6, s € E,
0)y—
(10.18) “()\ — AD) 15”,_.;1 < CTY? ||s|| go -

By (10.15)-(10.18), we find that

(10.19) V50 - 4Q) " tm(A 1), < OT=FE.
Using (10.14), (10.19), we obtain

E p— (0) -1 < —(m-—2
(10.20) “VB(/\ Ar’) JTaI poce,) S cr=52

Since m is arbitrary, we get (10.10). So we have established (10.8).
More generally, by an obvious recursion argument, using (10.11), we find that given
k € N, if By,..., By are smooth sections of Tr.S,

=0(T~>).

10.21 ||E...EJ3J|
(1021) Vb, .-V, Priro EO(X\Uj,e)

As in [19, Theorem 10.1], we will convert (10.21) into pointwise estimates. First by
[19, eq. (10.37)], given p € N, there is C, > 0 such that if s € E,

(10.22) lsll g < CT?(||ARs]| ., +llsllz0)
Clearly
(10.23) A Prire =0.

Using (10.21) with k = 0, (10.22), (10.23) and a trivial truncation argument, we find

easily that on V\(’uj casly for p € N, the EP norm of PrJro is 6(T~°°). By Sobolev
ell+y

embedding, on V\C'uj casly
£1+3
is a result already established in [19, proof of Theorem 10.1].
By (10.23), if B is a smooth section of TrS, then

ﬁTJTo and its fibrewise derivatives are O(T"~°°), which

(10.24) VEAD Priro =0,
and so,
(10.25) [VE, AP Priro + AP VEPrJro = 0.
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Now [VE,ASP )] is a fibrewise first order differential operator. Using (10.21) with

k =1, (10.22), and also the previous estimates on the fibrewise derivatives of Pr Jro,
VEPrJrs and its fibrewise derivatives are 0(7'~°°).

we find that on X \U 1,1,
J,€(1+"2‘+Z)

By using (10.21) and by differentiating (10.25) again, we ultimately see that given

k € N, if By,..., By are smooth sections of Tr S, Vgl . ng PrJro and its fibrewise

derivatives are 6(7~°°) on X \ AU; . Finally recall formula (2.24) for VE. Since
2¢ < €9/2, from the previous estimates, (10.3) follows trivially.
Now we will establish (10.4). Let az ; be the restriction of ar to Y;. Put

. 1/2
S T) = (2 Mir% ag;)  sm(AT),
(10.26) -
' (AT) = (2d‘“‘NYj/XaT ) tm(\, T)
m ) sJ m ’ *

By [19, eq. (10.25)], s,,(A,T') has an explicit expression given by

m+1

(10.27) SN T) = k™Y2pFpt Y fa(NT ™2,
n=0

and moreover by [19, eq. (10.22)],

(10.28) foA) = %‘i

From (10.27), (10.28), we get

1 m+1
(10.29) 5 /5 s (A, T)d\ = k™Y 2pF;? <¢a+ > /5 Fa(N)dX T‘"/z) :
n=1

Sinceon W, k=1,p=1,
m+1

1
(10.30) Qr [% /5 st (A, T)d,\] =0+ n; Qr /5 faN)dx T2,

As explained before, the construction of the f,()\)’s is given by an explicit algorithm.
In particular, one sees easily that they depend smoothly on s € S. By (10.30), we
find that for k € N, if By,..., B are taken as before,

1
VE, ... VE, (Qr% /63'm()\,T)d/\ - 0)

and its fibrewise derivatives of any order are € (71—7)

In view of (10.9), (10.12), (10.30), to prove (10.4), we only need to establish a
similar uniform estimate for r(\ — ASI?))‘ltin (\,T). By (10.11),

(10.31) t,(AT) = (A = AD)sl, (A, T) — Jr(28™ N/ X ap) V20 .
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Again, as explained before, t,, (A, T) is given by an explicit algorithm. By proceeding
m
as in [19, eq. (10.32)], we find that given p > 0,
(10.32) IVE, ... VE th,(\T)| g, < CTV/2PHomdimNy;/x—m)
By [19, eq. (10.38)], for T > Ty, A € 4
(10.33) ”(,\ - Ag‘?))—ls”m < OT i3]l go -
From (10.32) with k = 0 and from (10.33), we obtain
0)y— 2(p—dim Ny, / x —m—
(10.34) |- a9 ltin()"T)”Ep < OTPH/2p=dim Ny, /x—m-1)

By taking p > 2dim X and using fibrewise Sobolev embedding, we deduce that given
g € N, for m € N large enough, (A — A,(19 ))'lt;n()\, T) and its fibre derivatives of order
< q are 0(71?) In particular

_ c
(10.35) r(A— AN (A, T)| < ok

Since Q is fibrewise regularizing, from (10.35), we see that Qr(\ — AS? ))"ltﬁn()\, T)
and its fibre derivatives are O(ﬁ)
Clearly

(10.36) VEQ - AD) (AL T) = (A - 4P) 7 [VE, 4P
A=A AT + (A= AD)IVEL (A T).

By (10.32), (10.33),

1 .
(1037) (A= AR TIVELWT)|| | < oTrtEemdimMyaem),
P

Since [VE,A&? )] is a fibrewise first order differential operator, by (10.32), (10.33),
we get

(10.38) ”()\ — A1 [vg, A;S’)] (A — A§9)—1t;n(A,T)||EP

< CT2p+1+%(p—1—dlm Ny]./x—m) .
So using (10.36)-(10.38), we find that

1 .
(10.39) IVEO - a9) 4,0, T)HE < TP/ (p=dim Ny, /x—m)
P
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By proceeding as before, we deduce that given ¢ € N, for m large enough,
VEO - Agf)))_lt:n()\,T) and its fibre derivatives of order < ¢ are 0(-\717,) Recall
that after (10.34), we found that for m € N large enough, the fibre derivatives of
(A= Ag?)_lt;n()\,T) are also 0(71?) We thus find that on W,

F — AO)y—1y i
(10.40) |vBr(A AP HLOT)| <

Since @ and [Vg, Q] are fibrewise regularizing, we deduce from (10.40) that
VEQr(» — A,(19))_1t;n(/\, T) and its fibre derivatives are @(\—}?)

By combining the previous estimates and a simple iteration argument, we get
(10.4). The proof of our Theorem is completed. O

10.2 The lift of sections of ker DY to harmonic forms in E for the metric

<7>T

Recall that by (6.12),
(10.41) Pr =TNapp7—Nu

Definition 10.2. For T > 0, let Br be the linear map
2 |2I°
(10.42) o€ F — Bro(y,Z) =k~ Y?(y, Z)p(Z) exp TO — T=5-(oW€eE.

Observe that
(10.43) Bro = TN (24mNy/x o) '2 g5

Also recall that VZ('7I¥) js a connection on H(Y,ny) =~ ker DY
Now we extend [19, Theorem 10.3].

Theorem 10.3 — For T > 0 let Cr be the linear map

(10.44) o € ker(DY) — Cro = QrPrBro € ker(DY).

For any k € N, if By,...,Bx are smooth sections of TrS, there exists C > 0 such
that for T > 1,

<

VT

If k,By,..., By are taken as before, given ¢ € N, there exists Cq > 0 such that if
1<j<d, ifT>1, and if o € ker(DY7), then

(10.45) ”vgfy”“” IR (o 1)” <

H(Yny) H(Yny) <%
(10.46) ye?;/l{)wj |(VB1 ..V, C’T) o(y). < 7Tq llell go -
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There exists To > 1 such that for T > Ty, Cr is invertible and Cr L ois uniformly
bounded. Then for T > Ty, s € K,

10.47 Prs = PrBrC7'Qrs.
T

If k,By,...,By are taken as before, if ¢ € N, there exists Cq > 0 for T > Top, if
o € ker(DY7),

H(Y, H(Y, _ C,
(10.48) sup ’(VBI( my) ..VB: "'Y)CTI) a(y)' < T—Z loll o -
yeEW\W;

Proof. By (10.41), (10.43),
(10.49) Cro = QrPp (249 Nv/x )2 1o .

So (10.45) follows from (10.4). Equation (10.46) follows from (10.3).
By (10.45), for T > 1 large enough, Cr is invertible, and C! is uniformly bounded
together with its derivatives. Then equation (10.47) was established in [19, Theorem

10.3].
d

Recall that ker DY = @ker DYi. Let Dy, Er be the diagonal and non diagonal
Jj=1

parts of Ct with respect to this splitting. Using (10.46), we find that
(10.50) “VH(Ymv) VB(me)E ” o(T~>).

Also by (10.45), for T' > 1 large enough, Dr is invertible and moreover
(10.51) Cp'=D;'(1+ ErDrY) 1.

By (10.50), (10.51), we see that if E/. is the non diagonal part of C;!, then

(10.52) Hv” Vo) g Bm) gy

| = 6(T~>).

Since the norms of finite dimensional bundles are equivalent, from (10.52), we get
(10.48).The proof of our Theorem is completed. ]

Recall that by Theorem 3.3 and by (6.23),

d
* =X *
(10.53) H*(E,d" +v)~ @ H*(Y;,my,)-
1

Definition 10.4. For 1 < j < d, let H;(E, 3 +v) be the subbundle of H*(E, 3"+ v)
corresponding to H*(Yj,n)y,) via the canonical isomorphism (10.53).
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Definition 10.5. For 1 < j < d, let K(j) be the subbundle of K corresponding to
H}(E, 7~ + v) via the canonical isomorphism K ~ H*(E, 7+ v).

For s € E, 1< j <d, let ;s € F; be the restriction of rs to ;. For 1 < j < d, let
Q; be the orthogonal projection operator from F? on K = ker(DY7).

First we recall the result of [19, Proposition 10.6].
Proposition 10.6 — For 1 < j < d, the following identity holds

(10.54) K(j)={seK , Qyrys=0  forj #j}.

Now we establish the obvious extension of [19, Theorem 10.7].

Theorem 10.7 — Letk € N, let Uy,...,Ux be smooth sections of TRV . If 1 < j < d,
if s is a smooth section of K(j), if ¢ € N, there exists Cq > 0 such that for T > 1,

*(0,1) ¥\ S *(0,1) 3\ S C,
(10.55) sup  |VATTOVXIBE | GAMTONXIBEp o) (7)< 22
TEW\U; o, /2 T

Proof. By Theorem 10.3, for T' > 1 large enough, if s € K(j),
(10.56) Prs = PrBrCr'Qrs.

By Proposition 10.6, Qrs vanishes except on W;. Therefore by (10.41)-(10.43),
(10.56), for T' > 1 large enough,

d - . 1/2
(10_57) Prs = Z TNHPT (2d1m NYj/ /xaT,j'> JTQj’CEIQjTjS )

i'=1

Clearly Q; depends smoothly on s € S. By Theorem 10.3, for T' > 1 large enough,
Cr! is bounded together with its derivatives. By using Theorem 10.1, we find that
in the right-hand side of (10.57), the term corresponding to j' = j verifies the bound
(10.55).

By Theorem 10.3, if we fix j' # j, Q#Cr lerjs and its derivatives of arbitrary
order with respect to VZ(¥v) are 6(T—°°). By Theorem 10.1, PrJrQ;:C5'Q;r;s
and its derivatives are G(T~*°) on V \ AU; .,/o. However this argument excludes
WUj ¢o/2 itself. Still, we can reproduce the proof of Theorem 10.1, with j = j,
and 0 = Q;C;'Q;rjs. Then t,()\T) is estimated exactly as in the proof of
Theorem 10.1. Here, since o and its derivatives are O(T'~°°), it is trivial to verify
that s/,(\,T') and its derivatives are also O(T'~*°). This way, we find that for 5/ # j,

~ - 1/2
TN Pr (2dlm NYJ"/XaT,j/) JrQ;Cr'Q;ris and its derivatives are O(T~°) on W.

The proof of our Theorem is completed. |
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10.3 Proof of Theorem 6.10
By definition, if s, s’ are smooth sections of K(j) and K (j') respectively, then

Prs, Prs').. (z) = (T M Pps, T-NupPrd) (z
T
(10.58) = <ﬁTT‘N“s, T_N“PTs'> (z)
= <T_NHPTS, ﬁTT_NHS,> ((l:) .

Also if ”f’T“ is the norm of Py with respect to ( , ),

(10.59) ”13T|| <1.

Using Theorem 10.7 and (10.58), (10.59), we recover the result of [19, Theorem 10.9]
that if j # j'

(10.60) (Prs, Prs'yp = O(T~*).

Also if B € TrS, by (10.7),

(061)  VEPr=o— /5 (A= AD) [VE, AD] (A - AD)ax.

By (10.17), (10.18), (10.59), (10.61), we get

(10.62) ||v§13T|| <CT.

By (10.58),

B"Y (Prs, Prs')p () = (VE(PrT~Nus), TN Prs') (z)
+ (ﬁTrNHs, vg(T-NHPTs')> (z)

(10.63) -

= <V§(T"N“PT3), PTT'N"s’> (z)

+ <T‘N"PTs, vg(ﬁTT—Nﬂs')> (z).

Using (10.59), (10.61)-(10.63) and Theorem 10.7, we find that if j # j’,

(10.64) Vi (Prs, Prs')p = O(T~).

More generally, if j# 3/, if By, ..., Bx are smooth sections of Tr S, the same argument
as in (10.63) shows that

(10.65) VB, ...Vp, (Prs, PTS')T =0(T~).

ASTERISQUE



PROOF OF THEOREM 6.10 175

Take now s € K(j). Then by Theorem 10.3, for T > 1 large enough,
(10.66) (Prs,Prs)p = (PTBTC;IQTS, BTC;IQ'rs>T .

Equivalently by (10.41)-(10.43), (10.65),

~ 2
(10.67) (PTS, PTS)T = ”.PTT—NHBTC;IQTS| Eo .

Take o € K(j). We define s/,(A, T), t,,(A, T), which are associated to o as in (10.26).
We will estimate

2 2

EO°

1

1 /6 (a0 T) = (A = AP) "1, (0, T))

(10.68) ||1~>TT—NHBT0| =

E©

Using (10.34), (10.39) and more generally the extension of (10.39) to arbitrary k € N
(where k counts the number of derivatives VE ,...,VE ), we find that for k € N,

g € N, for m large enough, (\ — A;? ))‘lt;n()\, T) and its derivatives on V of order
< k are O(T'9). Using (10.29), one finds easily that a for given ¢ € N, for m large

enough, </ sh (A, T)dA, /(/\ - Agf)))_lt;n()\, T)d/\> and its derivatives of order < k
) s
on S are O(T9). Finally, by (10.29)

2 _ 1 dvy, (y)
EoO - dem Nyj/x Y (27T)d1mY

1 /

/zvyj/x pz(—;—:;)

From the previous considerations, one deduces that for any k € N, T
5% f5 8t (A, T)dA|%0 — llo]|%0 and its derivatives on S of order < k are @(ﬁ)

m+1

1 _ duny, ,x(Z)
AP IET [ faax 2 L

2
(v, 2) iah

dimNYj/X

. ~ 2
Therefore as T — ~+o0o, T3™Nv;/x ”PTT—NHBTU”EO — ||a||i.o and its derivatives on
S are 0(—z).

Using Theorem 10.3 and (10.67), we see that if s € K (5), T™ /X (Prs, Prs), —
(Qrs,Qrs) po and is derivatives on S are 0(—=).

The proof of Theorem 6.10 is completed. O
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11. The analysis of the two parameter
semi-group exp(— A 1) in the range u €]0, 1],
T clo,*

The purpose of this Chapter is to prove Theorems 6.7 and 6.17. The main point of
Theorem 6.7 is to show the existence of C > 0, v €]0, 1] such that for v €]0, 1],
0 <T < 1/u, then

& Trs [Nu exp(—AZ 1)] — /X Td(T X, g7*)® Trs [Nu exp(—C32-)]
<Cu(1+T)).

This Chapter is the obvious extension of [19, Section 11], where Theorem 6.7 was
established when S is a point.

To establish this result, the main idea is to replace A, T by Zu T, and to apply to
A2 . the functional analytic machinary of [19, Section 11]. Of course, the local index
techmques used in [19] in the case of a single fibre, are now replaced by relative local
index techniques. We follow the approach by Berline-Getzler-Vergne [3] to the proof of
the relative local index theorem of [4]. This permits us to apply to the present problem
the techniques of [19, Section 11], to which the reader is referred when necessary.

This Chapter is organized as follows. In Section 11.1, we prove (6.20), which is the
easy part of Theorem 6.7. In Section 11.2, we show that the proof of Theorem 6.7 is
local on the fibres X . In Sections 11.3 and 11.4, we construct a coordinate system near
W and a trivialization of 3, A(Tg S) ® RA(T*OVX)®¢. In Section 11.5, we lntroduce
the conjugate superconnection Bu2,
u — 0 in the given trivialization. In Section 11.6, we reduce the proof of Theorem 6.7
to an equivalent problem on (TrX)y, (yo € W). In Section 11.7, and following (3],
we make a Getzler rescaling on the operator Zu 1, and in Section 11.8, we describe

certain key algebraic features of the new rescaled operator Ly;Z;/ T In Section 11.9,
we introduce graded Sobolev with weights. In Section 11.10, we show briefly how the

results of the previous Subsections permit us to reduce the proof of Theorem 6.7 to

and we calculate the Taylor expansion of BY; 2 as
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the problem already considered in [19, Section 11]. Finally in Section 11.11, we show
how to prove Theorem 6.17 along the same lines as Theorem 6.7.
Here, we use the notation of Chapters 3 and 6-9.

11.1 The limit as v — 0 of ® Tr, [Ny exp(—A2 7)]
For u >0, T > 0, let P, r(z,z') (z,2’ € X) be the smooth kernel of exp(——Aﬁ,T)

with respect to Z‘;:’r—’)‘é,%,&.

Ifx € A(TﬁV), if Uy,...,Uz2dimx € TrX, then iy, ...iy, . x& € A(TﬁS). Let
a™* ¢ A(TRS) be such that
max .

(11.1) iUl "'iUzdimxa = (’iU1 ...iuzdimxd’vx)a

In particular, if « is a smooth section of A(T{ V'), the integral along the fibre / ais

b's
given by
(11.2) / o= / o™ dyx .
b's b's
Proposition 11.1 — Let Ty € [0,+00[. There exists C > 0 such that for any u €]0, 1],

T € [0,To), then

(11.3) P Trs [NH exp(—Aﬁ,T)] - / Td(TX, gT*)® T, [Nu exp(—C%z)] <Cu,
. X

|® Tr [Negexp(—A2 7)] — @ Trs [Nuexp(—A2,)]| < CT.

Proof. By using the local families index theorem of [4] as in [14, Theorem 2.16], one
finds easily that for any T'> 0,z € V, as u — 0,

(11.4) ® Tr, [NHPu,T(x’ :L‘)] '(%TQ'J;{TS:%E
{Td(TX,9"X)® Trs [Nuexp(=CF2)]},

Take Tp > 0. The arguments in [4] show that there exists C > 0 such that for u €]0, 1],
Te0,To),z€V,

(11.5)  |® Trs [NuPur(z, )] (;tr);{TS:)X_

{Td(TX, g7¥)® T, [Nex exp(—C22)] }“‘“"‘ < Cu.

Finally

_dvx(z)

(11.6) @ Trs [Nuexp(-A% r)] = /X ®Trs [NuPur (7, 2)] g yaimx
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The first inequality in (11.3) follows from (11.5), (11.6).
Also

0

(1L7) o=

Trs [N exp(—A% 7)) =
19)
35 1 Trs [Nuexp(=A% 1 = b[Aur, VD] },, -

The arguments of [4], [14] show that for T' < Tp, as u — 0, the right-hand side of
(11.7) remains uniformly bounded. Thus we get the second inequality in (11.3). O

11.2 Localization of the problem

Let a* (resp. a¥) be the inf of the injectivity radius of the fibres X (resp. Y'). We
take o > 0 as in Section 7.3. Let ¢ € Ry be such that 0 < ¢ < %inf(a¥,a¥, ). If
z € V, let BX(z,a) be the open ball of center z and radius a.

Let f be a smooth even function defined on R with values in [0, 1], such that

f(t) =1for |t| < a/2,

(11.8) 0 for |t| > a.
Set
(11.9) ot) =1- £(2).

Definition 11.2. For u €]0,1], a € C, set

+
F,(a) = exp(itav/2) exp( ) fut)—,
(11.10) /‘j" ‘/_
Gu(a) = /_ exp(itav/2) exp( )g(ut) \/__
Clearly
(11.11) Fy(a) + Gy(a) = exp(—a?).

The functions Fy(a), Gu(a) are even holomorphic functions. Therefore the exist
holomorphic functions F,(a), G,(a) such that

F,(a) = F,(a?)

11.12 ~
(12 Gu(@) = Gula?).

From (11.11), (11.12), we get

(11.13) Fu(a) + Gu(a) = exp(—a).
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The restrictions of F,,,G, to R lie in S(R). Therefore the restrictions of F’u, éu to
R also lie in S(R).
From (11.13), we deduce that

(11.14) eXP(‘Ai,T) = ﬁu(Ai,T) + év"u(AiT)
Theorem 11.3 — There exist ¢ > 0, C > 0 such that for u €]0,1], T > 0, then
(11.15) ‘Trs [Nnéu(Aﬁ,T)] ‘ < cexp (;—f) .
Proof. Set
(11.16) H,(a) = /+°° exp(itv/2a) exp(;ﬁ)g(t)i.
oo 2u? uV/2m
Then
(11.17) Gu(a) = Hu(%).

By [19, eq. (13.23)], we find that for any ¢ € Ry, m € N, there exist ¢, > 0, Cp, > 0
such that

(11.18) sup |a|™ |Hu(a)| < cmexp (_sz) :
e < ’

Again there is a holomorphic function H,(a) such that
(11.19) Hy(a) = Hy(a?)
and so by (11.17), (11.19)

~ ~ /a
(11.20) Gu(a) = H, (F) .
Let A’ be the contour in C

A

N

A/

Y
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From (11.18), we deduce that

a€ed’

(11.21) sup |a|™ Iﬁu(a)| < cexp (—Tf-) .

Let H, p(a) be a holomorphic function such that

(11.22) { limy— 400 Hup(a) =0,

AP=V) =
T F

By (11.18), we see that for any m € N,

~ -C
Hu,p(a)| < cexp (_172_) .

By Proposition 9.3 and by (11.20),

(11.23) sup |a|™
a€p’

(11.24) Tr, [NuGu(42 7)| = v Trs [Nulu(43,)] -
Also

(11.25) Trs [NHH (A7 /u)] = Tr, [NHﬁu(ZzT/u)] :
Clearly

_ 1 Ha(N)
R = o [ B0
( T/ ) 271"& A A A%_‘/

Equivalently

(11.26) H.(A%,,) = =— 1 ¢d,\
2mi Jar = AT/u)p

Using (11.21), (11.26) and proceeding as in Chapter 9, we find easily that for u €]0, 1],
T>1,

(11.27) |Trs [NHI?“(Z%/“)] | < cexp (;—S> .

Using (11.24)-(11.27), we get (11.15). The proof of our Theorem is completed. =~ [
By (11.10), we see that

_ +oo
(11.28) Fu(A27) = / cos(t 2AuT)exp( )f(ut) =

—00
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Also Ai’T is a second order elliptic operator whose principal symbol is given by u21%|-2-.
Let Fy,(A2 7)(x,2') (z,2’ € X) be the smooth kernel of F,,(AZ 1) with respect to

(‘;—:’)%%'3? . Then

dv X (.’L‘)

(11.29) Tr, [NuFur(47)] = /X Tr, [NuFu(42 1)(z, 2)] TR

Using finite propagation speed [21], [35] and (11.28), we see that if z € V,
fu(Aﬁ’T)(a:, z') vanishes for ' ¢ BX(z,a) and only depends on the restriction of
A2 1 to BX(z, ).

By Theorem 11.3, we find that the proof of (6.19) has been reduced to a local
problem on a given fibre X. A probabilistic proof of this fact can also be given along
the lines of [19, Proposition 11.10]. However the argument is slightly more complicate
than in [19], because the Lichnerowicz formula in (7.47) is more involved than the
formula for one given fibre used in [19].

11.3 A rescaling of the normal coordinate Z,
Definition 11.4. For T > 0, let 87 (x) be the smooth section of 7* A(T§ S) such that

(11.30) Br(z)dvx (z) = {Td(TX, g7*)® Trs [N exp(~C22)] }o "

.
The key result of this Chapter is the following extension of [19, Theorem 11.13].

Theorem 11.5 — There exist vy €)0, 1] such that for any p € N, there is Cp > 0 such
that ifu €]0, 1]’ Te [la %]’ Yo € W; ZO € NY/X,R,y07 |Z0|S QZI’

o1, [NaFu(lo) (.32 ) (w52 )| - o (w0 )

< Cp(1+1Zo])"P(u(14+T)).

1

(1131)  —amy

Remark 11.6 . From Theorem 11.5, one derives (6.19) in the same way as in [19,
Remark 11.14] using [19, Theorem 11.13]. In particular one has to apply Theorem 11.5
in the case where Y = (. Using also Proposition 11.1, we have thus proved
Theorem 6.7.

11.4 Alocal coordinate system near 1V and a trivialization of 73, A(T.S)
BAT*OVX) & ¢
Let V™VATRS)BAT ™V X) pe the connection on 7l A(TS) & A(T*©DX) along
the fibres X, which is induced by VAT P X),
Let e1, ..., ez be an orthonormal basis of T X. Let fi1,..., fom be a basis of Tr S,
let f1,..., f™ be the corresponding dual basis of T} S.
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Definition 11.7. Let 1V vATRHBAT*VX) pe the connection on i} A(THS)
SA(T*(®1) X) along the fibres X given by

(11.32) Ly v ATRS)BAMT* OV X) _ i AITRS)BAT™ OV X)
+ 3 (8Ves, fEV) Vac(e) f* + 1 (SYFEV FV Y 18P

Let 2V ATRSBAT @V X) be the connection on 75 A(TS) ® A(T*(V X) along
the fibres X

(11.33) ZVW;/A(TRS)QA(T*(OJ)X) _ e_fv%(ff'NY/x)

H,N
Ly y ACTRS)BAT OV X) Y S5 (F )

Recall that by the results of [4] stated after (1.5),
v pH,Ny;x H,Ny;x\ __
(11.34) <s i 13 > - 0.
By (7.40), (7.43), (11.34), we get
* * = *(0,1) * * > *(0,1)

(11.35) ZVWVA(TRS)®A(T X) — VWVA(TRS)®A(T X)

+ % (<Svei’f¢£{7v> - <VTXfOIl{,NY/Xaei>) ﬁc(ei)fa

H,N H,N
+ 3 (8752w, fW — (it X g pa g,

From (11.35), it is clear that if A, B are smooth sections of Tr X, then

2™V ATRS)IBAT 0 X) (B) _
A V2

(V41X B) v H\V TX (H,Ny/x o

Sas= o+ (87 (B, 1) = (VR 17, BY ) g

Let ¢!(TrX) ~ TrX be the set of elements of length 1 in c¢(TrX). It fol-
lows from (11.36) that parallel transport along the fibres X with respect to
2y ATRS)IBAT OV X) maps ol (T X) into ¢! (TaX) & TRS, while leaving A(T.S)
invariant.

Let PTX be the projection operator TV ~THV ¢ TX — TX.

Proposition 11.8 — The following identity holds

(11.36)

(11.37) 1y ATRS)IBAT OV X),2 %((VTX)zei,eﬁc(ei)c(e,-)
+ -;—Tr [(VTX)2] + % <(SVPTXSV 4+ VIXGV)fHV, £1V>
FEfP+ L(VTXSVey, FEVY Voc(e:) .
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Also 2V™VATRSBAMTOVX)2 45 obtained from the expression (11.87) for
1gmy ATRS)BA(T OV X),2 by replacing c(e;) by c(e;) + /2 <f¢f’NY’X, ei> fe.

Proof. If A € End(TX), the action of A on A(T*(®1) X) is given by

(11.38) 3 (Ae;, e5) c(ei)c(e;) + L Tr[A].

So we find that
(11.39) VATTEONI02 - 1(TX)2e;, €5) clei)ele;) + Tr [(VTX)?] .
Using the identity
[c(es) f*, c(e) fP] = 28:; £ f7,
(11.37) follows easily. Using (7.40) and (11.33), one obtains the corresponding formula
for (2vn(,A(TiS)®A(T‘(°'1)X))2‘ 0
Recall that for u > 0, 1, : A(TRS) — A(TgS) was defined in (9.9).

Definition 11.9. For u > 0, let 2y ATRS)BAT @V X)u he the connection on
75 AT S) ® A(T*®D X)) along the fibres X,

(11.40) 2@y MTRS)BAT* OV X)u _ ¢u2v1r§‘/A(TES)®A(T*(°'1)X)¢;1 )

In the sequel, we will use trivializations with respect to the connection
2y ATRS)BAT @V X)u_ It will be often more convenient to trivialize with respect
to 2VTVATRSIBAT P X) and to apply afterwards the operator t,.

Take yo € W. If Z € (TrRX)y,, t € R — oy = expyl (tZ) € Xgyy, is the
geodesic along the fibre X, such that zo = z, %|,—o = Z. If |Z| < ¢, we identify
Z € (TrX)y, to expy(Z) € Xnyy,. Let BIX(0,a) be the open ball in (TrX),, of
center 0 and of radius . The ball BI'X (0, a) is then identified to B* (yo, ).

Let dvrx (Z) be the volume element in (TrX),,. Let ¥’(Z) be the positive smooth
function on BIX(0,¢) such that

(11.41) de(Z) = k’(Z)d’UTx(Z).

Then k'(0) = 1.

We fix Zp € Ny/x R,yo> |Z0| < a/2. Take Z € Ny;x R yo» |Z| < /2. The curve
t €[0,1] — Zo + tZ lies in BLX(0,a). We identify (n}, A(T%S) ® A(T**V X))z to
(m3 A(TES) ® A(T*OV X)) 2z, (resp. £z to £z,) by parallel transport with respect to
the connection 2V ™ ATRS)BAT* ) X) (resp. 65) alongt € [0,1] — Zp +tZ.

When Zy € Ny;x R0, |Z0] < a/2 is allowed to vary, we identify (7} A(T%S)
(X\)A(T"‘(O’l)X))Z0 (resp. £z,) to (T A(T3S) ® A(T*(O’I)X))y0 (resp. &y,) by parallel
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transport with respect to V" VATRSIBAT OVX) (resp. VE) along t € [0,1] — tZo.
Therefore the fibres of 73 A(TgS) ® A(T*(OVX) at Zy + Z and yo are identified by
parallel transport along the broken curvet € [0,1] — 2tZy,0 <t < 1/2, Zo+(2t-1)Z,
i<t<1.

2 — —

11.5 The Taylor expansion of the operator EXZ’Z
Definition 11.10. For u > 0, set

(11.42) §Xz=exp{ \/— (fa NY/X)}B zexp{f"‘\/%u(ff’N”/x)} )
Then

(11.43) Ay,r=BL+TV.

Also by Proposition 9.3,

(11.44) BY, = uyp BY 971

In the sequel, Bu2 , A2 . are considered as differential operators acting on smooth
sections of (73, A(T%S) ® (T*(0 1 X)®¢€)z, which depend smoothly on Z € (TrX)y,,
1Z| < /2.

If U € (TrX)y,, let Vy be the standard differentiation operator acting on smooth
functions on (TrX),,. Let ei1,...,ez be an orthonormal basis of (TrX)z,. For
1<i<24 let TeiZO(Z ) be the parallel transport of e; with respect to VZ* along the
curve t € [0,1] — Zo +tZ.

Let Op be the set of scalar differential operators on Bg;x (0,a/2). It is clear that,
in the considered trivializations,

A% 7, B3 € (miy A(TRS) ® c(Tr X) ® End(€))y, ® Op.
For p € N, ¢ € N, 0,4(|Z|?) will denote an expression in (7}, A(T%S) ® c(TrX)
® End(£)),,, which has the following two properties:

~ For k € N, k < p, its derivatives of order k are O(|Z|P~*) as |Z| — 0.

— It is of total length < g with respect to the obvious Z-grading of (my, A(TgS)
Bc(TrX) & End(€)),-
Theorem 11.11 — Take yo € W, Zo € Ny;x Ry, |Zo| < /2. Then in the given
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trivialization of mi, A(TS) ® c(TrX) ® & near (yo, Zo),

2 20 R
(11.45) B = —%—%Z (Vei+0(|zl) +1 (2V"5A(TQS)®A(T"(°’”X))

uz T
1

2 u2
(Z,e) +02(12I%) +00(1)) w5 +u?00(1) + elenele;)

2

Zo

RS (e:.e:) + O 2 e LS (RE (e pHW 1fasB
(RS (i) +00(12D)) + Tsele) - (B, (e FE™) +00(12D)) + 31

(RS, (727, £57%) + 00(121)) + P Voy(z) + u?u02(12 2"

- * = >* 2
Proof. By Proposition 11.8, (2V""A(TRS)®A(T ©nx )) is a 2-form on X with val-

ues in elements of length < 2 in 7, A(T%.S) ® ¢(Tr X). Let 2PV ATRS)BMT OV X), Zo
be the connection form for 2V VATRS)BAT @V X) near Zy in the trivialization of
T A(T3S) ® A(T*®D X) with respect to 2VT™VATRS)BAT@VX) By the consider-
ations we made after (11.36), we find easily that 2I'"VATRS)IBAT V' X) i5 5 1_form
with values in elements of length < 2 in (73, A(TjS) ® c(Tr X)) z,. Using [1, Propo-
sition 3.7], we see that

(11.46) ZFw{,A(T,;S)éA(T‘(O'”X),Zo(Z)
* - S *=(0,1) 2
— % (ZV vA(TR S)QAN(T X))Zo (Z, ) + @2('2'2) )
Now we use formula (7.47) for E:ﬁ = Zﬁyo and also (11.46), and we obtain
(11.45). O
Let ﬁu(Zf‘,T)(a:, '), (z,2’ € X) be the smooth kernel associated to F, (ZﬁT) with
respect to (gT")’fé,?y. Clearly

(11.47) Tr [NHﬁU(Ai,T)(:c,m)] = Tr, [Nnﬁu(gft,rr)(x,x)] .

So in Theorem 11.5, we may as well replace Aﬁ’T by gﬁT

Take yo € W. For Zy € Ny;x R,yo> |Z0| < €/2, it will be very useful to identify
(T* A(T{S) ® A(T*OVX) ® £) 7, to (7*A(T3S) & A(T*OVX) ® €),, as indicated in
Section 11.4.

11.6 Replacing X by (TrX),,

Definition 11.12. Let H,, be the vector space of the smooth sections of (7}, A(TS)®
AT*OVX) & £),, over (TrRX)y,-
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Let ATX be the ordinary flat Laplacian of Tr X. Then ATX acts naturally on H,,.
Let v(a) be the smooth function of a € R considered in (7.29). If Z € Tr X, put

(11.48) p(Z) =~ (%‘) .

Then

p(Z2)=1 |if |Z|<2a,

(11.49)
0 if |Z]| > 4.

We now fix Zo € Ny, x Rr,yos |Z0] < /2. As indicated in Section 11.4, the trivialization
under consideration of 7}, A(TxS) ® A(T*®VX) ® ¢ depends explicitly on Zo.
Therefore the action of DX also depends on Zj.

Definition 11.13. For u > 0,T > 0, let L};ﬁ?, M}Z0 be the operators acting on H,,

p—" 2 e
LL% = (- (@) (AT 4 T2P%0 ) 4 D) R r(Z0+ 2),
(11.50)
WZe 2 2 ATX =y
M, =-u*(1-p (Z))T +p°(Z2)B,:".

Let F‘u(Li’,gP)(Z, Z") (Z,Z' € (TrX)y,) be the smooth kernel associated to

ﬁu(LL’gP) with respect to k' (Zo)‘(i;’—:)’f;%;}. By using finite propagation speed [21,
Section 7.8], [35, Section 4.4], we see that for any yo € W, Zg € Ny, x R,yo» | 20| < /2,

(1151) FH(A?:.,T) ((yOv ZO)? (yO’ ZO)) = ﬁu(Li’gP)(O, 0) .

In the next Subsections, we will show that there exist v €]0, 1], such that for any
p € N, there is C > 0 such that if u €]0,1], T € [1, ], yo € W, Zo € Ny,x,R,yo
|ZO| < %I,

1

(11.52) e

~ VA
& Tn, [NeaFu(L42/7)(0,0)] = (oo, 22| <

_ <
(1 +1Zo|)P

which, by (11.51), is equivalent to (11.31), i.e. establishes Theorem 11.5.

(u(1+T))"

11.7 Rescaling of the variable Z and of the Clifford variables

For u > 0, let F, be the linear map

(11.53) heHy, —» F,he Hy, ; FLh(Z) = h(%)-
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Foru >0,T > 0, set
,Z —171,Z
(11.54) L7 = F 'Ly Fu,
' M2% = FIML2F, .

Then, we see that

(11.55) L2% M2%0 € (ny A(THS) ® c(TrX) & End(€))y, -

Let e1,...,e2¢ be an orthonormal oriented basis of (TRY )y,, let eger41,...,€2¢
be an orthonormal oriented basis of Ny, x R4, Let €!,...,e%¢ and e2¢'+1,... €%
denote the corresponding dual basis of (TRY )y, and Ny /X,R,yo- LhEN €1,..., ez and
el,...,e? are orthonormal oriented basis of (TrX )y, and (T5X)y,-

Definition 11.14. For u > 0, T > 0, set

\/§ej/\_ u .

c"-hT(ej) = u ﬁzej ) 1< .7 < 2El,
11.56 _
( ) V2ein  uT , .
Cu,T(ej) = T — %zej N 2¢ +1 S Vi S 20.

Definition 11.15. For uw > 0, T > 0, let L% M>Z e (n}, A(T%S)
® End(A(T%X)®€))y, ®Op be the operators obtained from Li”gP , M2Z0 by replacing
the Clifford variables c(e;) by the operators c, r(e;) considered in Definition 11.14.

Let ﬁu(Lz”gP)(Z, Z') be the smooth kernel associated to the operator ﬁu(Lz’gP ,

calculated with respect to k' (Zo)%;’—%’;‘r,smg;. Then ﬁu(Li”gP)(O, 0) can be expanded in
the form

I 3,20 — 3 i ; ;
(11.57) Fyr(L,7)(0,0) = E NN € Ny, ... Te,
1<i1<i2...<1p <20
1<j1<g2...<jq<2¢

®QL 1, QT e (miy MTRS) 8€),, -
Set

(1158) [Fur(Z25)(0,0)

=

= Q1,...2¢ € (miy A(TS) ® End(A(TRX) ® €))yo »

so that (11.58) is the coefficient of e! A... A2 in (11.57).
Proposition 11.16 — The following identity holds,

1 -
(1159) e Tre [NuFu(A2 1) (90, Zo), (30, Z0)] =

(—0)3m X Ty, [Nax [Fur (L352)(0,0)] mx] .
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Proof. Equation (11.59) follows from (11.51) and from [19, Proposition 11.2]. O

Let NNv/x be the number operator of A(Ny, y xr)- Then N Ny/x acts naturally on
AT X)\w-
Put

éi =1€%(Zp) , 1<i<20.

Then é,,...,é is an orthonormal basis of (TrX)z,-
By using Proposition 11.8 and Theorem 11.11, L3 can be extended by continuity
at u = 0. More precisely we have the formula

(11.60) L3Z =T~V Y”‘{ Z(ve,+4 D> (VT)%(Z,€0)é5,¢50)

1<j,j'<2¢
; H,N . o H,N ]
(&8 + (fa" 7% 5 £o)E + (£5 &) 1)
+ % <(SVPTXSV +VTXSV)ZO(Z,éi)f£I,V’ ﬁH,V>faf,6

2
+H(VTXSV)2, (2,806, S5 (€4 (5777 ) 1)1
le'e?RY (,¢5) + S f*fPRE (FEV, £577)
+ e FORE, (6, f17) bV

j 3 €
+T > FAVEV(Zo)+ Y. € AVEV(Z)
1<j<2¢ 20/ 4+1<5<2¢

+T favig,w V(Z) + T?V?(Z,).

By the fundamental identity of [4, Theorem 4.14], [7, Théoréme 2.3],if A, A’ € (TrX),
if B,B’ € TRV, then

(11.61) ((VT*)?(A4,A")PTXB,PTXB') + ((SYPTX*5V)(A,A")B, B')
+ {((VTXSV)(A,A)B,B'y = ((VT*)*(B,B")A, A" .

From (11.60), (11.61), we deduce that

20
(r62) g =T33 (Vard 3 (VO énZ8)
1<j,5'<2¢

(& +< H,Ny,x é]>f°‘ (e +<fHNy/x .‘I>fﬁ)
+ 3 <(VTX)ZO( 2V V)2, 6¢> fore

2 <(VTX)zo(ey,f£I V)Z ez> (eJ +< HNy/x’éj> fﬁ)f"‘)2
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+ e’ RE (éi,¢;) + 1 f2fPRE (F2°%, £2°W)

+ e fPRE, (e, STV }TVT N 4T 3T € AVE V(Z0)

1<j<2¢

+ Y EAVEV(Z0)+T favi,,,WV(zo) +T?V?(Z,).
20/ +1<5<2¢ “

Recall that we have the C* splitting

(11.63) TV =TH"vaoTX.

The splitting (11.63) induces the identification

(11.64) ATRV) ~ m5 A(TES) ® A(T3 X) .
Using the identification (11.64), we can rewrite Lg:? in the form

20
(11.65) LdZ =N "{ 13 (Ve +
1
2

H(VT2,2,6) ) + RS, + TYEV (Z0) + T3V2(20) JT ™%

11.8 The matrix structure of Li:iO/ T

By Proposition 11.8, Theorem 11.11 and (11.62), we get an asymptotic expression
for MuZ ‘}/T as u — 0 very similar to [19, eq. (11.59)], which we do not rewrite, because
of its sheer length. Note that in [19], the é; were noted e;.

Observe that
(11.66) L7 = M,7° + p*(Z)(TfVuwV +

“TC(TZ"éi)VizoéiV +T2V2)(Zo + Z) + T2(1 — p2(Z)) P .

If C € (yA(T{S)®c(TrX)BEnd(E), ,, let C) € (n;VA(T,*,;S)

S End(A(T{X) ® §)) be the operator obtained from C by the trivialization in-
Y
dicated in Section 11.4:) and by making the Clifford rescaling indicated in Definition

11.15. By (11.66), we get
(11.67) LY/ = M3F/T + pPw2){T 1oV V +

3
uTe(T/T &)V 5y n, V + T?V2)(Z0/T + uZ)}u T p?(uZ))PSvo .
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Clearly
Z ©)
(11.68) {f“ViH‘WV (FO + Z)} wr = fav'EH w V(o).
) %=
By Theorem 9.8,
R v43 -
(11.69) P&V fg'wVwa =0,
and so
(11.70) P VEHWV( +uZ) =0(@+Iu2|) .

Now we expand first — (TéiZ of T(Zo/T +uz )) as u — O by first using the
trivialization associated to the connection 2V™VATRS)IBAT* D X) By (11.36),

(11.71) %( 720/T¢ '(Zo/T+uZ)) \;i(éi)zo/T'F

w (St r(@en £2V) = (VP 0 ) 5 0u(ual.

Zo/T

20/Téi (2o /T+uZ))
* S t‘(@l)

trivialization induced by 2V7vA(Tr S)SAT X):u is simply obtained from (11.71) by

replacing f* by %, So for 1 < ¢ < 2¢/, we get for u €]0,1], T € [1,1/u],

as u — 0 with respect to the

The corresponding expansion of o(r

C(TZO/T 'L) 3 2
(11.72) {uT (— + Z)} =T(e' A — ze,) +0(uT|Z]),
\/— u, T
and for 2¢' +1 <3< 2¢,

c(120/Tet) Zg 3 : u?T?

(11.73) {uT-—( + Z)} =e'A—
\/§ T u,T
From (11.72), (11.73), we obtain for 1 < ¢ < 2¢/, u €]0, 1],

Zo/T gt 3)
(11.74) {u:rc(T—L)vfzo/,qé,v(@Jr z)} =

ie, + OT|Z|).

\/§ T u, T
) 2 Z
T(e A —%—-zei)Vf_ zors,V (?" + uZ) +0(uT|Z|),
and for 2¢' +1 <4 < 2¢,
. (3)
c(r2/Tel) . Zo
) 272 Z
(€' A _u iei)szo,TéiV (?0 + uZ) +0uT|Z]).
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Since Vi, =0, by proceeding as in (9.21), for 1 < ¢ < 2¢/, we get

(11.76) P VE VP, =0,
and so for 1 < i < 2¢,

i} Z _ Z
eye (2o e —of|2e
(11.77) PEVE (T +uZ) P 0( -

+ |uZ|) .

11.9 A family of Sobolev spaces with weights
Clearly

(11-78) A(Tl;.X)yo = A(Tﬁy)yo @ A(N)*’/X,R)yo .
For0<p<2(,0<q<2¢set
APD(TE X) = AP(TRY )y ® AY(Ny /% R)vo -

The various A®»9)(T% X),, are mutually orthogonal in A(T%X)y,-

Let I, (resp. I} ) be the set of smooth (resp. square integrable) sections of
(T A(THS) ® AT X) ® &)yo- For p < dimTrY, ¢ < dim Ny, xr,r < dimTRS,
let X(p q.r),50 (resE. I‘()p’ q,r)yyo)/\be the set of sAmooth (resp. square integrable) sections
of (i A™(TRS) ® AP(TRY) ® AY(Ny x ) ® E)yo over (TrX)y,.

Let ¢g7° be a Hermitian metric on T'S. Then all the previously considered vector
bundles are equipped with a Hermitian metric. Put ¢ = dim7Y, n = dim Ny, x,
s=dimTS.

Definition 11.17. For u €]0,1], T € [1,1], yo € W, Zo € Ny;x,R.yo» 1%0| < %,
$ € L(p,q,r)yo> PUL

. uZ 2(2¢' +2s—p—r)
i (14 021+ 1200
X)yo

Z VA 2(2n—q)
(1 + %p (uT)) dvrx(Z).

For y € R, let I# | T+ be the set of sections of (13 A(TES) ® ATEX) & £)y0,

(i A(TRS) ® A(TEX) ® fi)yo, which lie in the ut® Sobolev space. If s € IZO, we
write s in the form

(11.79) ‘sli,T,Zo,0=/

(Tn

— ot 1 o + o1
(11.80) s=s"+s , sTel k.
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Definition 11.18. Ifu €]0,1], T € [1, 1], y0 € W, Zo € Ny x,R,yo> |20l < &, s € I},
set

2 2 2
(11.81) sl 7,20,1 = I8lu,7, 20,0 + T7 [s* |u 1,200 T
2 2¢
2
+ E :IVeislu,T,Zo,O'

i=1

2 p(uZ)V"(T0 +uZ)s”

11.10 Proof of Theorem 11.5

The Sobolev norms (11.79), (11.81) are the obvious analogues of the corresponding
norms in [19, Definitions 11.23 and 11.25]. At least formally, the problem treated
here is the obvious analogue of the problem considered in [19], with extra Grassmann
variables f*A. However, these Grassmann variables come with no variable i, , which,
in some sense, makes them easier to deal with.

Also the estimates in (11.68)-(11.77) are the obvious analogue of the corresponding
estimates in [19, Section 11 j)|. In particular the estimates (11.70), (11.77) should be
compared with [19, eq. (11.66)].

One can then proceed formally as in [19, Section 11] and obtain (11.52). As in [19],
the Sobolev norms (11.79), (11.81) play a key role in proving the required estimates.
Of course here we deal with the kernel of F, r® Z°)(:1: z’), while in [19, Section 11],
we considered directly the kernel exp(— L3 Zo). However observe that by (11.10), by
proceeding as in [19, eq. (13.23)], for any m e N,

(11.82) sup ™ | Fu(a) — exp(—a?)| < cexp( )
|Im(a)|<c

It is then very easy to incorporate the estimates (11.82) in the arguments of [19] to
obtain (11.52). O

11.11 Proof of Theorem 6.17

The proof of (6.81) is essentially similar to the proof of Proposition 11.1.
To establish (6.82) when h, 7 = 6, 7, we use the Lichnerowiz formula for

(11.83) A?

0 0 . 9 \4
ﬁ’ﬁ+2da —A \/—+2d_ A \/——dada}‘)—u(UN“)'

ou” vV ou” vV,
given in [14, Theorem 2.15], and also in (12.39), together with the arguments given
above. Details are left to the reader.

The cas where hy T = m, 7 or hy,T = 7, 1 is obtained from the above by making
da or da equal to 0.
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12. The analysis of the kernel of ﬁu(Ai,T /u) for
T >0asu—0

The purpose of this Chapter is to prove Theorems 6.8 and the first half of
Theorem 6.18. This Chapter is the obvious extension of [19, Section 12], where the
case where S is a point was treated.

As in [19], to prove Theorem 6.8, we exploit results already established in
Chapter 11, and also we establish certain key algebraic identities, which extend
corresponding identities of [19, Section 12]. That apparently complicate computations
simplify dramatically is related in particular to the fact that we made the “right”
construction of THW in Chapter 7, and also that we chose the adequate trivialization
of the vector bundles. Once this is done, we are able to adapt the analytic framework
of [19, Section 12] to prove Theorem 6.8. The proof of the first half of Theorem 6.18
involves the control of the speed of convergence of the considered quantities asu — 0,
for T €]0, 1]. This problem was not considered explicitly in [19]. This is why we have
to give a more precise form to the estimates of [19, Section 12].

This Chapter is organized as follows. In Section 12.1, we show that the proof of
Theorem 6.8 is local on X. In Section 12.2, we construct a coordinate system near yg €
W, and also a trivialization of 73, A(T5%S) ® A(T*(®V X) ® ¢ near yo. In Section 12.3,
we replace the fibre X by (TrX)y,- In Section 12.4, we rescale the coordinate Z in
(TrX)y, and also the Clifford variables. In Section 12.5, we calculate the asymptotics
of the operator Li”gﬂ’/u, which was obtained from Ai’T Ju by such a rescaling. As in
[19, Section 12 f)], the building blocks of the operator B2, of Chapter 5, which
is associated to the exact sequence 0 — TY — TX — Ny/x — 0, appear in
this process. In Section 12.6, we briefly indicate how to establish Theorem 6.8 along
the lines of [19, Section 12]. Finally, in Section 12.7, we establish the first half of

Theorem 6.18.

In this Chapter, we use the assumptions and notation of Chapters 3-5, 6-9 and 11.
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12.1 Localization of the problem

Clearly
(12.1)  Tr, [Nuexp(-A2 7/,)| = Trs [NaFu(A22/)] + Trs [NuGu(42 1)] -

By Theorem 11.3, there exist ¢ > 0, C > 0 such that for u €]0,1], T > 0,

(122) T, [NexGu(42 7)) | < cexp(S5)-

By (12.2), we see that to establish Theorem 6.8, we just need to show that asu — 0,
(123)  ®Tr, [NuFu(427)] — / ® Tr, [Nax exp(—B22)] ch(n, g").
Y

As in Chapter 11, using finite propagation speed, the proof of Theorem 6.8 has been
reduced to a local problem on X.

Clearly
(12.4) Tr, [NHE(Aﬁ’T/u)] = Tr, [Nuf‘u(ﬁiwu)] .

Let F, (A2 . /u)(%,2')(z,2' € X)) be the smooth kernel associated to F, (Z;‘:T /) With
respect to (g%a&,%}. Then

(12.5) Trg [NHFu(Zi,T/u)] = /XTfs [NHﬁu(ZZ,T/u)(x’w)] zg_%)%g—i)?'

12.2 A local coordinate system near y, € W and a trivialization of
A(T*OV X) ®¢

Take yo € W.If Z € (TrX)y, , t € R — x; = expyx (tZ) still denotes the geodesic
in X, such that 2o = yo, ﬁ—flt:o = Z.If |Z| < a, we identify Z € (TrX )z, With
expy (Z) € X.

Take u > 0. If |Z| < a, we identify (73 A(TRS) ® AT*OVX))z, &7 to
(T A(THS)SA(T*ON X ))yos €yo by parallel transport with respect to the connection
2y (MTRSBAMT OV X)u V¢ along the curve t € [0,1] — tZ.

IfU € (TrX)y,, TU (Z) € (TrX)z denotes the parallel transport of U along the
curve t € [0,1] — tZ with respect to VTX.

12.3 Replacing the fibre X by (Tr X),,
Let ATX be the ordinary flat Laplacian on (TrX)y,-
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Definition 12.1. For u>0,T >0,y €Y, let Li:’é?/u be the operator acting on Hy,

Lyo 2 u? \rx | T2 Lex 2( 7\ A2
L)%= =p%2) (-5 AT* + 5P | +p*(2) Al 7/
(12.6) ATX ~
M = —u¥(1 - 4(2) =5~ + P (2) B3

With respect to the notation in (11.50), our Li”g‘,’/u, M} are exactly the operators
LY. .. MLO.

u,T/u’ u

Clearly

T
(127) Liv = My, +p%(2) (S F*VoawV

c(e;) T2 o\ , T2 2 +
+T—2'V51V + ?V ) + ﬁ(l —-p (Z))P€V0 .

73
Let f‘u(Ll’fé?/u)(Z, 2" (Z,Z' € (TmX)y,) be the smooth kernel associated to
F, (Li’,g?/u) calculated with respect to ‘(i;’—:)"a-%}.

12.4 Rescaling of the variable Z and of the horizontal Clifford variables

For u > 0,T > 0, set

2,90 _ p—-1rlyo
Lu,T/u—_Fu Lu,T/uFu’

(12.8)
M2% = FTIMLWFE, |

As in (11.55),

(12.9) L2%.,, MY € (miy A(TRS) ® e(Tr X) ® End )y, ® Op.
Let e1,...,e2 be an orthonormal oriented basis of (TRY )y,, let e2¢41,,€2. be an
orthonormal oriented basis of Ny, x Rr,y, Let e!,... ,e2¢ and e2¢+1 ... €2 be the

corresponding dual basis of (TRY)y, and (Ny y X.R)vo-

Definition 12.2. Let Ky, K& be the sets of smooth sections of (mjy,A(T#S)

BATRY)BANy/x) &), (miy MTRS) BATRY)BANy, x)BE*)y, over (TrX)yo-
Then K, = K} o K.

Definition 12.3. For u > 0, set

cul(e:) = \/5% A —%iei ,1<i<20

culei) =c(es), 20 +1<i<2¢.

(12.10)
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For v > 0, T > 0, let Lz’,‘f’zﬁ’/u, M3ve € End(K,,) be the operators obtained from
Li ’;9/“, M2¥° by replacing the variables c(e;) by c,(e;) for 1 <4 < 2¢/, while leaving
unchanged the operators c(e;) (2¢' +1 < j < 2£). Then

LY, Mpv € (13, A(TS) ® End(A(TRY)) ® ¢(Ny/x,r) ® End(¢)),, ® Op.

Let Fu(Lz’z?/u)(Z, Z")y (Z,Z" € (TmX)y,) be the smooth kernel associated to

F, (Li’fq’i’/u), which is calculated with respect to %%,;Z-Q. Then fu(L'Z%?/u)(Z ,Z) can
be expanded in the form

(12.11)
Fu(L3%,,)(2,2) = > ETN. . NEP Nigy ..., ®BQITTNZ,2)
1<i1 <...<ip <20
1<51<...<jq<2¢
Qli:(2,2) € (i A(TRS) @ End(A(Ny/x) 88))
Set

(12.12) [ﬁu(Lj’},{;’/u)(Z, Z)] o BE)e
(miv ATS) 8 End(A(Vy/x) 8))

Proposition 12.4 — For anyu > 0,T >0, yo € W, Zo € Ny;x R,yo- | Zo| < =, the
following identity holds

(12.18) w2 S Nrx T, [NuFu(A 2,4 (w0, uZo), (v, uZo0))] K (uZo)

(—4)3mY Ty, [NH [f‘u(Li’f{ﬁ/u)(Zo, zo)] ma"] .

Proof. Since for |Z| < 2a, p(Z) = 1, using finite propagation speed, we see that if
Zy € Ny/X,R,yo, |Zo| < @, then

(1214) F (Au T/u)(ZOv Zo)k"(Zo) = ﬁu(gi’,g?/u)(zo’ Zo) :
Identity (12.13) follows from (12.14) and [19, Proposition 11.2]. O

12.5 The asymptotics of the operator L, /., S U —0
Definition 12.5. Set

(12.15) Mg,yo — _% (Vei + % <i* (VTX)ZOZ’ ei>)2 + i*(vﬁ,2 + %Tr[VTX’z]) .
Then
(12.16) M3 e (A(TEW) ® End(£))y, ® Op.
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The splitting TW = THW & TY induces an identification
(12.17) ATHEW) ~ 7y A(T5S) @ A(TRY) .

From (12.16), (12.17), we find that

(12.18) MY € (mly A(TRS) ® A(TRY) ® c(Ny,x,r) ® End(£))y, ® Op.
Of course the contribution of ¢(Ny,x,r) to Mg’ Y0 js trivial.

Then we have the obvious extension of [19, Theorem 12.10].
Theorem 12.6 — Asu — 0,

(12.19) M3vo — M3V,

Proof. We proceed as in the proof of (11.60)-(11.65). The main difference is that
because the Clifford variables c(e;) (2¢/+1 < i < 2¢) are not rescaled, they ultimately
disappear in the limit. As in (11.62), to calculate the limit Mg Yo explicitly, we still
use the identity (11.61). The proof of our Theorem is completed. O

In what follows, we will calculate the expansion as u — 0 of the remaining terms

31y0
in L, T/

If C is a smooth section of 73, A(TS) ® c(TrX) ® End(£), if £ € Xy, is close
to yo, we denote by C3(z) the element of (73, A(T%S) ® End(A(TY)) ® ¢(Ny,/x,r)
®End(£)),, which is obtained by using the trivialization of 73 A(TS) ® c(TrX) ® £
associated to 2V VATRS)BAT @V X)u and V¢ as in Section 12.2, and by applying
the transformation on the elements of ¢(TrX)y, of Definition 12.3. In the sequel, we
still use the identification (12.17).

Let S € End(A(N") & A(N*)) be given by

=

20/ +1

(12.20) S = c(es)c(es)

Then S extends to an operator acting on A(TY) ® A(W;/ x) ® A(Ny: /x) ®n. Also
by (7.17), §w = ANy, 5 ® n. Therefore S acts on ATRY) ® A(W;/X) ® &

We use the notation of Section 5.1. In particular c(APTY Z), ¢(APTYZ) €
ATEW) ® End(A(N;/X) ® A(Ny,x)) are defined as in Definition 5.5.

Now we extend [19, Theorem 12.12].
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Theorem 12.7 — Asu — 0,

(12.21)

1 X ofred) !

1 ra e C TE; — Tk '3 o ~£ E _

{uf Vf(fWV(U‘Z)"'; \/— 're.V( Z)} uz v V+f /\(Vzvfg,wv

2¢
3 i A € ot
Vvigyzf MYIX v (fBV pTY 7) )(yo) + ; €' AVZVze.V(vo) +
clé;
S Lot vy 4.0 (utr+12)
20/ +1

1

—(V*(u2))® =

(V) (w0) + 250(u]),
(7= @2)) = (95V (o) + 0(u12"))

Moreover the following identities hold

P i*VEVPST =0,
£ [ fa R vi3 R v43
P A (T 5wV Vo, SN v (Y Py 2)

2¢'
D et AVEVE,, V) (yo) P& = -——V‘/__;P’E_E(APTYZ)PF

(12.22) 0
Pﬁ‘( > f@vs,.V) (vo)P*™ = P¢ 5, P%

i=20'+1 V2
S PNvixz|?
(VezV )2(3/0) = %‘,

(V€2 = (PE‘(VE)2P€‘ — P VAV PE [(VH)2] T P VAV PE )

Proof. Clearly

1 1
Efavif,w V(uZ) = ;favif,w V(yo) +

(12.23)
FOVGVEawV(yo) +0(u|Z[%).

Also, by using (11.71) at Zy = 0, we get, in the trivialization induced by
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2ymy ATRBAT™ OV X) and V¢,

c(Tez)

Aot viz) = 4

\/'
+u ((Sh(Z)ei, FEVY) = (VEX fae ™™ 1)
£+ 01(luZ)(VE, V (%)
+uV§ Ve, V(o) + Oo(|uZ|?)).

(12.24)

3
To calculate the corresponding {c Vil VieiV(uZ)}u, we replace in the right-hand
side of (12.24) f* by iu: and c(e;) by cu(ei). We get

(12.25)
c(re,) 3 _ 2._ ‘ _9_2_ ¢ cle:i) e
(vt vz - D X TVt 3 SRV
+ £ ((Sh(Z)es, SV - (v”f*fy’!”", )
VEV(@W) + Y (¢ ——ze Y5 VEL V(o) +0(u|Z]?).
1<i<2e
(12.26) (8V(Z)es, FEVY = = (8V(2) fEY &)

= - <Tv(f£1’v7z),ei> .

Using (7.27) and (12.26), we get

(12.27) (( v (Z)es, fV) - <VTXf}{yf"”‘ ei>yo) VE V() =

- v¢ V(%) -
vIx i NYIX LoV (FHVY 7) Viyo) = vg’,‘,,zfa’N"/X+TV(f£"",PTYZ) (v0)
By (12.25), (12.27), we obtain
1 ‘
(12.28) {c(\f/‘i’) ,e,V(uz)} == et A VE,V (%)
u 1<i<2e
o E
- VX, fa VX4V (fEV, PTYZ)V(yO)

i — C 6,
> AT+ Y STV + 0 +127).
1<i<2e 20/ +1<i<2¢
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Finally

(12.29) V(o) = D € AVEV (W) + fOVnwV (wo).-

1<i<2¢

By (12.23), (12.28), (12.29), we obtain the first identity in (12.21). The second and
third identities in (12.21) are trivial and were already obtained in [19, Theorem 12.12]
by Taylor expansion.

By proceeding as in (9.21), we get the first identity in (12.22). By Theorem 9.8,
P& ViH,wVPg— =0 on W, and so
(12.30) P&V Zvig,WV(yo)Pﬁ‘ =0.
Also by Theorem 9.8,
(12.31) PE Ve nyx g Vi V(30) P =0.
From (12.30), (12.31), we get
(12.32) P5-6’EZV§§,WV(yO)P5— =0.

Using Theorem 1.10 and Proposition 7.8, we find that

(12.33) Pf_Vi V P¢

H,N
T¥v gfa I X4TV(FEY PTY Z)

V-1

5 ¢ (PY (VR o+ TV (Y, PTY 7))

= p¢” _V_l;:‘
V2

(A(FEWYPTY Z) PE .

From (12.33), we obtain

&~ [ _ ra € 3
(12.34) P ( f /\VV%YZ S NYIX v (sBY prY Z) )P

= P& %a( fEA(fEWYPTY Z)PS™ .

Also by [19, Theorem 12.12],

i=1 i \/5

From (12.34), (12.35), we get the second identity in (12.22). The last three identities
in (12.22) were already proved in [19, Theorem 12.12]. The proof of our Theorem is
completed. O

=1

_22’ o VI 2¢' .
(12.35) P e AVEVE V() = P Y D e nA(e)PTVZ ) .
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12.6 Proof of Theorem 6.8

Recall that we reduced the proof of Theorem 6.8 to the proof of (12.3).

We claim that using Theorems 12.6 and 12.7, the proof of (12.3) is essentially
identical to the proof of [19, Theorem 6.7] given in [19, Section 12]|. In effect, by

using the arguments of Chapter 11, the obvious analogue of [19, Theorem 12.14]

holds. Namely, we obtain uniform estimates on the kernel fu(Li’g‘.’/u)(Z ,Z') and its

derivatives. Also using Theorem 12.6 and Theorem 12.7, the same arguments as in
[19] show that the analogue of [19, Theorem 12.16] holds. Namely put

(12.36) U = {X € C,Re()) < 6Im*()) — A}.

Then the analogue of [19, Theorem 12.16] asserts that if A is large enough, and if §
is small enough, for T'> 0, yo e W, A € U, as u — 0,

(12.37)
- -1
(A= LZ’%?/u)'l — P ()\ — B2 — (V")zo) P%w in the sense of distributions.

Note that the operator %3,’3“ appears in (12.37) because of Theorem 12.6 and of the
algebraic identities of Theorem 12.7.

The proof of (12.3) then continues as in [19, Section 12 i)]. a

12.7 Proof of the first half of Theorem 6.18

To establish the first half of Theorem 6.18, we will first show how to prove that if
h,T is any of the functions 8y 1, A, 7, Ay 7, T, 7, ™, 1, for T >0,

(12.38) Um hy 7y = hr.
u—0

Then we will explain how to obtain the estimate (6.83).

Clearly, the most complex expression is 8, 7, the others expressions being obtained
from 6, r by making da or da = 0, so in our proof of (12.38), we just consider the
case where h, 7 = 0, 1.

If Ae TrX,let A1O A1) be the component of A in TX,TX. By [14, Theorem
2.15] (and keeping in mind that & NY = N5f), we have the following extension of
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Theorem 7.19,

A2+ dau%A T +dau ; A, 1 — dadaN3f =

u2 »(0,1) >
_ ?(VQ}T X)®¢ 4 1(SY (e:)ej, FHV)

[ 1/aqv myv av\ [P
\/ic(ej)—u" +3 <S (e)fa" s fs > =
c(el®V) da + c(el¥Y) d6)2 u?K

(12.39) +

o V2 u 8
2 N\ fa
+ u—c(ei)c(ej)R’f(ei, ej) + uMR'g(ei, FEY)
4 V2
+ 3 F PRSIV 1) + Tc\(;i) VeV
+ TV V + T2V pm X

Let ¢(.(1:9), ¢(.(OV) € T} X ®End(A(T*®V X) be given by X € TrX — ¢(X10),
c(X©1) € End(A(T*©V X).
Now we define the fibrewise connection on 73 A(TS) ® A(R?*) ® A(T*(®V X),

(12.40) IV”;’A(Tﬁs)éA(Rz‘)@A(T"(Oal)x) —

~ 1,0 0,1
1VW*VA(T,;5)®A(T*<°J>X) | C(-( ))da C(-( ))da.
\/§ \/5

By comparing (7.47) and (12.39), it is clear that in the analysis of 6, /4,
1y ATRS)BAT* @V X) g replaced by V™V ATRS)BAR™IBAT OV X) et vy, ... w,
be an orthonormal basis of T'X, let w!, ..., w? be the dual basis of 7* X . In particular
c(.9) = wie(wy),
c(.OV) = we(w;) .

A trivial computation shows that

(12.41)

(12.42) 1VTVATROBAR™BAT OVX),2 _
1yny AMTROBAT OV X),2 | i (wkfada (S(es)wk, FEVY +
w* foda (S(eswi, fF'V)) + w'w'dada.
By (2.8) and (12.42), we obtain
(12.43) 1VTVATRSBARTIBAT VX2
1y 7y ATRS)BAT D X),2

+ w'w® fda (S(wi)wk, fEV) + w'w" f*da (S(W:)wk, fEV) + w'w'dada.
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By (1.5) and by Theorem 2.3, which asserts that TV is of complex type (1,1), we
obtain from (12.43),
(12.44) 1VTVATRS)BARHBAT @V X),2

1VW;A(TQS)®A(T'<°v1>X),2 + w' AWidads.

We define va{,A(T,;_S)éA(RZ‘)@A(T‘“’")X) from 1vn;,A(T;tS)@A(RZ*)@A(T'“’»”X) as in
(11.33). By (7.40),

(12.45) 2V ACTRS)BARBAT OV X) _ 27y MTRS)BMT OV X)
1 H,N
— (1,0) Ny/x  (1,0)\ pa
+\/§(C(. )+\/§<fa 5. >f )da

1 H.Ny;x (0, o
+ 5 (eCOD) + VI, OD) fe)da.

By (12.44),

(12.46) 277V A(TRS)BAR*)BAT* OV X),2 _

2V1r{‘,A(TﬁS)®A(T'(°'1)X),2 + w'widada.

To establish (12.38), we proceed exactly as in Sections 12.1-12.6, by replacing A(Tg .S
2 Y -1 R
by A(TS) ® A(Rz) and 2Vﬂ“,A(TﬁS)®A(T'(°’1)X) by 2V7r(,A(T§S)®A(R2')®A(T'<°")X).

In particular, trivializations are now done with respect to the connection
27y A(TRS)BAR)BA(T* OV X)u_

In view of (12.46), the operator Mg’y" in (12.15) should now be

(12.47) M3¥ = —1 (Y., + 1 ((@*(VT¥)2, — V=1JT¥dada)Z, e;))”

£ (V62 4 JTHVT?)) — dada T2

Also using (11.71) at Zp = 0 and (12.46), we see that the analogue of (11.71) at
Zo = 0 is now

(12.48) %(m) = —c\/—i-(e,-) +u(((S;’ov(Z)euf§”V>

— (VEX fawn ¥ e0) ) £ + da(z,e)) + da(z,e:) ) + Ou(juZl’).

Using (12.48) and proceeding as in (12.23)-(12.35), we find that the obvious
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extension of the first identity in (12.21) is

3

| c(rei) e 1
(12.49) {Ef fo,wV'i‘ 5 VTeiV(uZ) ) = ;z VeV (yo) +
fa VIXy gfa VX ATV (5, PTY )
2¢'

+ > et AVEVE, V(vo) + daVEV (yo) + daViV (yo) + O(u(l + |Z]%)).
1

By(12.49), the obvious extension of the second identity in (12.22) is

$ [ ra o wé N v43
(1250) P¢(f /\(VZVf:,,wV vv;’Tszff'”Y/x+TV(f£"",PTYZ>V)

2¢'
30 ATEVELY + daVEV + davEV) (o) P
=1

= p¢” (%E(APTYZ) + da\/——la% + da\/ii%?)Pf' .

By (12.47), (12.49), (12.50) and by proceeding as in Sections 12.1-12.6, we find that
given T > 0,asu — 0

(12.51) 010 — O

To establish (6.83), for greater clarity of the references, we will instead show that
there exist C > 0, o > 0, 8 > 0 such that for v €]0,1], T € [u, 1],

o

C
(12.52) '(P’I‘rs [NHexp(—Ai’T/u)] - /Y ® Trs [Nu exp(—B2.)] ch(n, g7)| < T“ﬂ .

Given the considerations we made before (12.51), the proof of (6.83) for hy, 1 = 04,1
will just be the obvious analogue of our proof of (12.52).

Using (12.2), (12.4), it is clear that to prove (12.52), we only need to show that
for v €]0,1], T € [u, 1],

~ ~ Cu®
(12.53) \@Trs [NHFu(Aﬁ,T/u)] - /Y @ Tr, [Nu exp(~%3)] ch(n, g")| < 5
By Proposition 9.3,
(12.54) Trs [NaFu(A2 21)| = 1)z T [NaFu(TA2, o )] -
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Also one verifies easily that
(12.55) / ® Tx, [ Nys exp(—B2.)] ch(n, g") =
Y

Yy /T /Y ®Tr [Ny exp(—TH?)] @Tr [exp(—-TV™?)] .

By (12.54), (12.55), we see that (12.53) is equivalent to

= (A2
(12.56) \wl /ﬁ(cbm [NHFu(TAu EAT /u)] _
Cu®
/Y ® Tr, [Nu exp(—TH2)] @ Tr [exp(—TV™?)] )[ < T
Observe that for u €]0,1],T €]u, 1], then 7"? €]0, 1]. Then to prove (12.56), we only
need to show that there exist C > 0, a > 0, # > 0 such that for u €]0, 1], T €]0, 1],

(12.57) |<I> Tr, [NHf’u(Tﬁf"l /u)] - / & Tr, [N exp(—T%H?)]

Y
Cu®
T8 *
To establish (12.57), we need to refer in some detail to the estimates [19, Section 12].
To make our references to [19] easier, we will work exactly in the context of [19], i.e.

& Tr [exp(—TV"?)] | <

when S is a point. The arguments given before make the extension to the general
case quite easy.

Let Fo(TL3Y,), (2, 2") (Z,2' € (TrX)y,) be the smooth kernel of Fy (TLYY),)

with respect to (;Lﬂ))(}iz?’g?_ By using the arguments of [19, proof of Theorem 12.14],
one finds easily that for any m € N, there exist C > 0, p € N such that for
u €]0,1],T €0, 1],

~ C
(12.58) sup  |(1+|Zo)™Fu(TLEY,) (Z0, Z0)| <
0€ENy/Xx,R,y0 ! T?
|Zo|<¢/4u

and that given M > 0, m’ € N, there exists C’ > 0,n’ € N that for u €]0,1],T €]0, 1],

plettlel o )
sgaagw P (TLI.)(2,2))

Cl

(12.59) sup < T

2,2'€(TaX)y,
|PTYZ|’|PTYZ/|SM
phorsa| ez

|a|)|allsml

Put
(12.60) Lua =P Lyt) P, Ly = P Lyt Pho,
Ly = P& L34 P&, Ly, = Pt L3%, Pt .
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Theorem 12.8 — There ezxist C > 0, n € N such that foru €]0,1],T €]0,1], yo € W,
“P£+ fu(TL3”{° )P5+ Cu ’
u,1/u u l/u T"
(12.61) . _ou
&* I 3,50 e |°
”P Fu(TL l/u)P u,1/u T" )
Proof. By [19, eq. (12.79)],
(12.62) IS |u ,1/4,0,0 < Cu Islu,l/u,o,l :
O
By (19, eq. (12.71)], for u €]0,1], A € U,
(12.63) or - 222 )—1||"1’l <CL+ ).
u,1/u u,1/u,0 -

From (12.62), (12.63), we deduce that if s € IJ ,

A L3,yo T <C 2

(12.64) [( — L3 ) s] oo S w(l+ A2 18]y 1/ 0,0 -
u,l/u,0,

Put

(12.65) Ey=X—Ly1—Ly2A\—Ly4) 'Ly 3.

By [19, eq. (12.71), (12.84)]

(12.66) 1Bullg /w0 < CL+IAD?.

By [19, eq. (12.85)]
(12.67) P& A= L3% ) P = EZ Lya(A — Lua) ™t
By proceeding as in [19, eq. (12.86)-(12.88)], we obtain

(12.68) | Bz Luz(h — L7 )s™| < C(L+ M) u st

u,1/u,0,0 — u,1/,0,0 *

Recall that the contour I' in C was defined in [19, eq. (11.115)]. Then by [19, Theorem
11.30],

~ 3 1 Fu(T\)
(12:69) TN = 3 Jo e o
u u

Also by [19, Proposition 13.10], given ¢ > 0, m € N, there is C > 0, such that for
u €]0,1]

(12.70) sup |a|™ |F, <cC.
ael’
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From (12.64), (12.67), (12.68), (12.70), we get (12.61) easily. a
If s € I, has compact support, if k = 0,1, k¥’ € N, put
(12.71) I8l z0,60y = D 12%8lu 0k
lal <k

Now we establish a refined version of [19, Theorem 12.16], closely related to [19,
Theorem 11.35] and [19, Theorem 13.41].

Theorem 12.9 — There exists C > 0 such that if o € I, has compact support, for
u €]0,1], A €T,

-1 2, ,2
(12.72)  |(Lu,1 + Lu2(A — Ly4) 'Ly — BTV — V)0 /a1

<C1+|A)%u 0 os,1/u,0,(1,4) -

Proof. The proof of (12.72) will consist in following in detail the inequalities in [19,
eq. (12.93)-(12.118)]. In particular the dependence of the constants on A € C will be
made more explicit. The precise version of [19, eq. (12.95)] is

Vet [Pz
V2 ST

(12.73) 5

(Ly1 — PSvo MJY® — X—C(APTY Z) —

u,1/%,0,—1
< Culoly1/u0,1,) -

In the right-hand sides of [19, eq. (12.99), (12.100), (12.103)] C should be replaced
by C(1 + |A|)2. Also from [19, eq. (12.111)], we get

(1274) IL:)’,2(A - Lu,4)_1L:,"4()\'U.2 - ”/ ) IL

|u,1/u,0,—1
< C(l + |/\|)2'LL |U'u,1/u,0,1 :

Finally, instead of [19, eq. (12.115)], we have

(12.75)  |(Lg2(Mw? — Ly ,)) " Lo 3 + Lg o(Lg's -ng,3)a|u,1/u’0,_1

< CQA+[A)uloly 1/u0,0,1) -

Using (12.73)-(12.75), and proceeding as in [19, eq. (12.117), (12.118)], we get
(12.72). O

If s € I, has compact support, let |s|, , be the limit as u — 0 of |s|, ,, 00- AS
in [19, Definition 12.15], if s € I, put

PNY/X
(12.76) Islo = lsl3 o + I 2\s |°° +Z|ve, sla.0 -
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Ifk=0,1,k €N, if s € I, set
(12.77) Islo (e ey = D 1275 -
lof <k’

Then by using the notation of [19, p. 195], by [19, eq. (12.72)], if A € U,
2,90 21|71 2
(12.78) H(,\ — @2 _ g ||0 <C(1+A)2.

Also by proceeding as in [19, Proposition 11.34], given k € N, there is p € N such
that

(12.79) |- @3 — oy —ISH;(M)

Theorem 12.10 — There exist C > 0, ¢ € N such that for u €]0,1], T €]0,1],
Yo €Y, A€U, if s €I has compact support,

S CA+[ADP sl o,k -

€7y _ 3% \—1pE~ _ (\ _ op2¥o _ wm,2y—1 ‘ <
(12.80) |[PE (A= L3%3,)71PE — (A - @I% — v, ]su,l/u,o,o—

Cu(1 + |A)?|slo (0,4) -
Proof. Recall that E, was defined in (12.65). By [19, eq. (12.82)]

(12.81) E;' =P (A- LYY, )T P

Then
(12.82) E;l —(A— %%,yo _ VZ:)Z)_l _
E{:l(Lu,l + Ly2(A — Lu,4)_1Lu,3 — %%yo _ ng)()‘ _ %%,yo _ VZEZ -1
Using (12.66), (12.72), (12.79), (12.82), we get (12.80). 0O
Clearly

(1283) Pf-ﬁu(Tﬁﬁi’,’{‘}u)P{_ — fu(T(%§1yO + vzf)) —

._}_ _ 73y =1 _ () _ op2¥ _ vn2)-1
57 [P (0= L2507 — (- @ — vgd) ) an.

By (12.70) and by Theorems 12.8 and 12.10, we find that there exist C > 0, k > 0
such that il s € I/ has compact support,
(12.84) |[(Fu(TLEY,) — P Fu(T(BIY + V12 P )s

w1/u u,1/u,0,0

Culslo, (0,9
— Tk .
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Take A € Ny/x R,y,- Let J{,‘}) be the Hilbert space of Ly sections of (A(T*(%1X)
®E)y, over {Z € (TrX)yo,|Z — Al < 3/2}. We equip Ji,‘}) with the natural obvious
Lo Hermitian product.

IfRBe SB(J;(‘,), let ||973||fo be the corresponding norm. By (12.84), we get

Cu(l + |A[)2+4

Tk '
Using (12.58), (12.59), (12.85) and proceeding as in [19, Section 11 p)], we find that
if Zo € Ny/xRyo» |20l < 555

~ -~ A
(1285)  ||Fu(TL3t,) - PE @@ + V)P <

(12.86)  |[(Fu(TEL%,) — P& Fu(T(@B}™ + V32)PE)(Zo, Zo)|

u,1/u
Cu®(1 + | Zo|)2¢ +4
< .
= T8

Also from (11.10), one gets the easy estimate

(12.87) | (ﬁu(T(%f’yo +V12)) — exp(~T(BI* + vgf))) (Zo, zo)l

< Cexp(—1/u?)

S T
Finally using (12.70) and proceeeding as in [19, Theorems 11.27-11.31], we see that
for any m € N, there exist C > 0, m’ € N such that for u €]0, 1], T €]0, 1],

- c
(12.88) nel® |1+ 1Zo)™ Fu(T(B*° + V) (Zo, Z0)| <
15 Y0

and that given M > 0, n’ € N, there exist C’ > 0, m’ € N such that for u €]0, 1],
T €]o,1],

glel+|e’|

o <
82°02' =

(12.89) sup T -

Z,Z’G(TRX)‘,O
IPTYZMPTYZ/ISM
By (12.58), (12.59), (12.86)-(12.89), we find that for any m € N, there exist C > 0,
a >0, 8> 0 such that for yo € Y, Zp € Ny,x Ry, | 20| < €/8u,

E, (T@" +v32)) (2,2))

(12.90) |(Fu(TL3%,) — PE exp(~T (B + V12))(Zo, Zo)|
< ———Cua .
T TA(L+ |Zo)™
Finally by making © — 0 in (12.87), and using (12.88) (or by a direct proof) for any

m € N, there exist C > 0, m' € N such that if Zy € Ny, x Ry,

(12.91) (1 +12o|)™ |exp(—T(BT* + VZéz))(Zo, Zp)| < % .
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Using (12.13), (12.90), (12.91), we get

~ ~ dv A
(12.92) [ / /Zoe Neyxmy, 2 TS [NHFU(TAﬁ,l/u)(Zo,Zo)] —-—————(;r(;fﬁm < )
Y | zol<e/8
9 9 Cu”*
— | ®Trs [exp(—TH3)] @ Tr [exp(—V™?)] | < TF
Y

By also using (12.92) in the case where Y = ¢ as in [19, Remark 11.14], (12.57)

follows easily from (12.92).
We have then completed the proof of the first half of Theorem 6.18. O
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13. The analysis of the two parameter operator
exp(—AZ 1) in the range u €]0,1], T > 1/u

The purpose of this Chapter is to prove Theorems 6.9, the second half of Theorem 6.18
and Theorem 6.19. This Chapter is the extension of [19, Section 13}, where
Theorem 6.9 established when S is a point.

For 0 < ug < u < 1, the techniques of Chapters 8 and 9 can be used. However,
here, one of the main points is to obtain uniformity of the convergence in (6.22)
for u €]0,1], T > 1/u. We are thus forced to use relative local index techniques.
In particular, while in Chapter 9, the bundle A(T*1X) in directions normal to
W was trivialized using the connection VA(T*(O'I)X ), here we have to trivialize the
bundle 73 A(Tg.S) ® A(T*(®V X) in directions normal to W using a connection which
is essentially the fibrewise connection 2y ATRS)BAT 1 X) already considered in
Chapter 11. The algebra is more involved than in [19, Section 13], but once the
right coordinates and trivializations are found, the functional analytic machine of
[19, Section 13| can be used without any substantial change. Still, inequality (6.84)
in Theorem 6.18 gives a bound on a speed of convergence as u — 0, which is uniform
in T € [1,+00][. Such a problem was not considered in [19], but the techniques of [19]
can also be used to solve this problem.

The organization of the Chapter is closely related to the organization of [19,
Section 13]. In Section 13.1, we show that the proof of Theorem 6.9 is local on a fibre
X. In Sections 13.2 and 13.3, we construct a coordinate system and a trivialization
of 7L A(T3S) ® A(T*®VX) & ¢ near yo € W. In Section 13.4, we replace X by
(TRX )yo- In Section 13.5, we rescale the coordinate Z € (TrX)y,, and we use a

Getzler rescaling [23], [3] on certain Clifford variables. The operator A2 w.T/u 1S then
replaced by an operator §£3‘y° In Section 13.6, we give an explicit formula for 583’1"’
in the considered tr1v1ahzat1on In Section 13.7, we study the asymptotics of 583’y° as
u — 0. This permits us to recover the results of Section 12 in a different tr1v1ahza.t10n.
In Section 13.8, we study the asymptotics of the operator §£3’y° as T — +o00, when the
operator $3’y° is written as a (3, 3) matrix with respect to a natural splitting of the

vector space K , on which 523‘y° acts as an unbounded operator. In Section 13.9, we
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214 THE ANALYSIS OF THE TWO PARAMETER OPERATOR exp(—A2 1) ...

calculate the asymptotics as T — +oo of Frk'/24; pk~1/2F;* in the trivialization
of 3 A(T3S) ® A(T*(®V X) which was described before. While the trivialization is
more complicate than in Chapter 8, the asymptotics is simpler. Then we relate the
asymptotics of $3’y° as T — +oo to the asymptotics of (FTkl/z‘Zu,Tk‘l/quTl)z.
In Section 13.10, we introduce a new family of Sobolev norms depending on u,T,
which extend corresponding norms already constructed in [19, Section 13 k)]. These
Sobolev norms incorporate the grading of the Grassmann variables in 7}, A(Tg S), so
as to permit an analysis of §£3’y° very similar to the one given in [19, Section 13]. In
Section 13.11, we introduce a ﬁbrewise elliptic differential operator Z¥°, which is the
analogue of an operator introduced in [19, Section 13 0)].

In Section 13.12, we take advantage of the formal similarities with [19, Section 13]
to give a short proof of Theorem 6.9.

In Section 13.13, we prove Theorem 6.19, and in Section 13.14 we establish the
second half of Theorem 6.18. The algebra involved in the proofs of both Theorems
is more complicate than before. The fact that ultimately, the algebra simplifies is a
little miracle. The organization of Section 13.13 reproduces the organization of the
whole Chapter. In Section 13.14, in our proof of the second half of Theorem 6.18, we
explain how to adapt the techniques of [19] to establish a result which has no explicit
analogue in [19)].

In this Chapter, we use the assumptions and notation of Chapters 3, 5, 6-9 and 11-
12.

13.1 A proof of Theorem 6.9: the problem is localizable on W

We fix € > 0 such that € €]0, L inf(a*,a",&0)]. Let a €]0, § inf(a*,aY,e0)]. The
precise value of a will be determmed in Section 13.3.
We use the notation of Section 11.2.

Theorem 13.1 — There exist ¢ > 0, C > 0, § €]0, 1], such that for u €]0,1], T > 1,
dim V- ~
(13.1) ’@ Trs [NaGu(42 1) | - —5 5@ T, [Gu(BL)]

-C
< s exp(—7)-
Proof. By (11.24), (11.25), we get
(13.2) Tr, [NH&,(AEL’T /u)] = P T [NHI?“(X§ /uz)] .

Using (11.21), (13.2), and proceeding as in Chapter 9, we find that there is C > 0,
C’ > 0, § €]0,1] such that for u €]0,1], T > 1

(13.3) |'I?rs [Nnﬁu(zg/uz)] ~Tr, [qNHqéu(va’z)” <cC (%i)tsexp (:5—) .
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By Theorem 8.8 and by (13.2), (13.3), we get (13.1). O

In view of Theorem 13.1, to prove Theorem 6.9, we only need to show that there
exist C > 0, § > 0 such that

C
T:S

dim Ny/x

(13.4) ’T\vs [NuFu(dl 2] - =5

T [FuBl®)]| <

Let F, (Au 1/4)(@, ') (2,2’ € X) be the smooth kernel of F, (A2 .7/.) With respect to
%{d&;& As we saw after (11.29), F, (Au 7/4)(%, T) depends only on the restriction
of Au’T/u to BX(z, a).

By (7.10), we get

(13.5) /m Trs [NHﬁu(AZ,T/u)](;:;(%z
/8

) [ e ()

T [NaF (47 ( (0 2220, 00, 222) )

k (yo, \/Z-E) duny, x (Zo)}dvy (%0) -

Now we state an extension of [19, Theorem 13.6].

Theorem 13.2 — If € €0, inf(eo,a*,a¥)], a €0, 3inf(eo,a*,a")] are small
enough, for any p € N, there exist C > 0 such that for u €]0,1], T > 1, yo € W,
Zy € NY/X,R,yo’ |Z0| < sg: then

(13.6)
a+ iz (= T NP4 (0o, 2720, 0 222 ) | | < .

There exist C' > 0, &' €]0,1/2] such that for any u €]0,1], T > 1, yo € W,
Zo € Ny/x,Ryo» |1Z0| < S, then

(%-r)dimx (%)Qdimex Trs [NHfu(Aﬁ,T/u) ((yo, Qi/Z—O (%o T/Z—O))]

_ eXp(— IZO|2) dlm NY/X i dim ¥ w,2
i o Trs [F (B )] (Y0, Y0)| <

(13.7)

C
7rd1m Ny/x 2 T&’ :

Remark 13.3. By proceeding as in [19, Remark 13.7], from Theorem 13.2, one gets
(13.4) easily.
We will then concentrate on the proof of Theorem 13.2.
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13.2 An orthogonal splitting of 7°X and a connection on 7'X

On W, we have the splitting of C°° vector bundles
(13.8) TXyw=TY & Ny;x .

Definition 13.4 . If yo € W, Zo € Ny;x R,yo> |20] < €, let TX], (Zo)’ TX?
Yo

expX (Zo)

be the subspaces of TXexp{fO (Zo) Which are obtained from T'Y,,, Ny,x 4, by parallel
transport with respect to V7X along the curve t € [0,1] — expgfJ (t2).
Then TX!, TX? are smooth vector subbundles of T X[, such that

TX |1w =TY,
(13.9) 9
Moreover on U, T X splits orthogonally into

(13.10) TX =TX'eTX2.

Let PTX" PTX? pe the orthogonal projection operators from TX on TX!, TX2. Let
vTX' yTX? pe the connections on TX!, TX?,

(13.11) vTX! = pTX'yTX : vTX? _ pTX*gTX

By Proposition 7.2, on W, VITX" vTX? restrict to VITY, VNv/x
Set

(13.12) OpTX = yTX' g yTX*
Put
(13.13) A = VTX _0yTX,

Then A’ is a 1-form on AU, with values in endomorphisms of TX exchanging T X!
and TX?2.

By construction
(13.14) i*A'=A.
Moreover if yo € W, Zg € Ny, x R,y,, then

(13.15) A, (Zo) = 0.
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13.3 A local coordinate system near y, € W and a trivialization of
1y A(THS) QA(T*OVX) ® ¢
Take yo € W. If U € (TRY )y, let t € R — y; = exp;f](TU) be the geodesic

aY

in the fibre Y, ., such that yl;=0 = yo, %%It:O = U. Since ¢ < %-, the map
U € BIY(0,e) — exp) (U) € Yryy, is a diffecomorphism.

IfU € (TRY )y,, Ul <&,V € Ny, x,Ryo, let TUV € NY/X,R,exp,‘,’O(U) be the parallel
transport of V with respect to VNv/x along t € [0,1] — exp}jO (tU).

Recall that 7 is the projection Ny,x — W. Then the map

(1316) (U’ V) € B;Z;Y(O’ 6) X NY/X,R,yo - (exp;/O(U), TUV) € 7'r-—l(‘BY(yO,e))

is a trivialization of Ny, x Ry, over BY (yo,€).
If Z e (TarX)yy, Z=U+U',U € (TRY )y,, U € Ny;x,Ryo) IU| <&, |U'| <6,
we identify Z to expifcpy @) (tuU’) € U. This identification is a diffeomorphism
Yo
from BTY (0,¢) x B;,Y)Y/ *(0,¢€) on an open neighbourhood W (yo) of yo in Xy y,- In
particular

(13.17) We(yo) N Yoyyo = BEY (0,€) x {0}.

Clearly there exists ag(e) > 0 such that for yo € W, Zy € Ny/x R yos |Zo| < €/8,
the open Riemannian ball BX(Zy,ao(e)) is contained in W, 2(yo). In particular

0 < ap(e) <e/2<b/4.
Now we take a €]0,inf(ao(c), 0%, 3a*, 3e0)].
Let °VA(T ®YX) be the connection induced by °VTX on A(T*©VX). Then
OYAT* Y X) jnduces the corresponding fibrewise connection OV A(TRS)BA(T™ V) X)
on 75 A(TES) ® A(T*OV X).
Definition 13.5 . Let 3V AMTRS)IBMT @V X) pe the connection on 7l (T S) ®A(T*©V X)
along the fibres X over .,

(13.18) 3Vw;A(T§S)®A(T*(°v1>X) — ovw;A(T,QS)@A(T*@J)X)
Tx ¢H.Ny,x VeHYV \_ areeHWypTxE \ f¥c(ei)
+(UIHSEE R TV ) = A GEM)PTX o) T2
HW H,N H,N
+ 3 ((8V () 1EW, WY — (N X g NN pagh,

In view of (1.6), (11.35), (11.38), (13.18) and using the fact that Tr[A'] = 0, it is
clear that

(13.19) 2V1r;',A(TﬁS)§A(T‘(°’1)X) - 3V1r{,A(T§S)®A(T‘(°’1)X)

LA es, e5) elen)ele;) + <A/(f£{,W)PTX1"ei> f"‘\c/(;) .
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Let us observe that by (1.34), (1.35), (13.18), we have the equality of fibrewise
connections on W,

(13.20) i*3v7r(,A(T,;S)®A(T‘(°")X) _ i*OVw;A(TQS)éA(T‘(O'l)X)

+ 3 @IV, e) —

1<i<2e

+1 <SW(-)ff’W, Iy pef
By (1.6), (13.20), we get
(13.21) i*3v1r{,A(TﬁS)®A(T‘(°’1)X) _ zu«ovw;,A(T,w)Sg‘w\(T'@'l)X)

b Y H(SMOMW ) foVacler)

1<i<2y
+ 3 (SWOFEW FV ) forP,

ie. *3VTVATRSBATIOVX) g very closely related to the fibrewise connection
1y MTRS)BAMTVY) attached to (7w, THW, gTY).
Put

(13'22) 3V7I';/A(T;‘S)®A(T-(O,l)x)’u — ,‘/)u3v1l’:/A(TﬁS)®A(T*(O‘l)X),‘/);:l )

Take u €]0,1). If Z € (TrX)y,, Z = U + U, U € (TRY)yo, U' € Ny/x R yo>
|U| < &, |U'| < e, we identify (73, A(TS) ® A(T*OV X))z (resp £z) to (n3y A(THS)
SA(T*OV X))y, (resp €yo) by parallel transport with respect to the connection
3V"VA(TRS)®A(T'(° D X)u (resp V¥¢) along the curve t € [0, 1] - 2tU(0 <t < 1/2),
U+(2t-1)U'(3 <t<1).

Let 21"1""/\(T‘°‘S)&\(T"(0 I)X) 31‘""A(F‘r“s)®A(1w(0 b X) , TS, TS be the connection
forms of2V”VA(TRS)‘@A(T'(0 I)X) 3V"VA(TRS)®A(T'(O l)x) , V&, V5 in the trivialization
associated to SV"VA(TRS)@A(T'(O VX) VE. By (13.19),

(13.23)
. A (T SYBA(TO:1) . A(T= S\BA(T*(01)
2F2VA(TRS)®A(T X) _ 3I‘2VA(TRS)®A(T X) 4 % (A'()es, e5) 5 clei)ele;)

+ <Al(ff’W)PTxl"ei> ﬁ\?/_(_.zg’l .

As in (11.36), we find that parallel transport with respect to 3y Y AMTRS)BAT OV X)
maps c!(TrX) into c'(TrX) ® T{S.

By (13.18), it is clear that the curvature of 3VTVATRSBAT @V X) j5 of length < 2
in 15 A(T3S) ® c(Tr X). By proceeding as in the proof of Theorem 11.11, we see that
3PV ATRS)BAT VX)) ig of length < 2 in 75 A(TRS) ® c(Tr X).
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By [1, Proposition 3.7], and by proceeding as in (11.46), we get

(13.24) 3FZ:/A(TI;,S)®A(T'(O'1)X)(U) — _;_ (3V7I'*VA(TRS)®A(T*(O’1)X))2 (Z, U)
Yo
+02(1Z)U if Z,U € (TRY )y, or if Z,U € Ny/x R yo -
By construction
- * S »(0,1)
(13.25) SPIVATRSIBAT™X) (1) = 0 if Z € (TRY )yor U € Ny /xRoyo -
Also by using the definition of curvature, we find easily that
(13.26) S[TVATROBATOVX) 1y _ (3VW&A(TAS>®A(T*<°-‘>X))2 (Z,U)
Yo

+0:(1ZP)U  if Z € Ny)x Ry U € (TRY )yo -

13.4 Replacing X by (TrX),,

IfU € (TarX)y, Z € We(yo), let °7U(Z) be the parallel transport of U
with respect to °V7X along the curve t € [0,1] — 2tPT¥Z, 0 < t < 1/2,
PTYZ + (2t —1)PNv/ixZ, L <t <1

Ify €Y, U € (TRY )y,, Put

4|U]
(13.27) wlU) =~ ( 37 ) .
Then
Y
wU)=1 i U] <2,
(13.28) ac¥
a
= i >
0 if Ul > 1
Let ATY be the Euclidean Laplacian on (TrRY )y,- Let €1, ..., €2 be an orthonormal
basis of (TRY )y,-

Definition 13.6 . Let L be the differential operator on (TrX)y,,
20/
(13.29) L=(1—g2(PTY Z)ATY + i 2(PTY 2) 3 V3, prv ).
1
Let (a,b) € R? — k(a,b) € [0, 1] be a smooth function such that

Kk(a,b) =1 if |a] < 1/2, |b] < 1/2,

(13.30)
=0 if |[a]>3/4 or |b| >3/4.
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If Z € (TrX)y,, put

TY N
(13.31) (P(Z)=K<|P€Z|, P wa|) |
&
Then
(13.32) p(Z)=1 |if |PTYZ|<e/2,|PNv/xZ|<e/2,

=0 if |PTYZ|>3¢/4, or |PNY/xZ| > 3¢/4.

Let ANv/x be the Laplacian on Ny, x,R,yo- We still define the vector space Hy, as in
Definition 11.12.

Definition 13.7 . For u > 0, T > 0, let 5811[,1’119’ M}‘%ﬁ’ be the operators acting on Hy,,

—ul - -
Lot = (1 - ¢ (2)(G-(L+ AN/x) £ TP 5, P
T2 PNy/xZ7 2 ~
(13.33) + -11-2-,-(P<§+ + %Pﬁ ) +¢*(2) A% 1/u >

2 ~
My = —(1 = 9*(2)) 5 (L+ ANX) + X (Z)B.
Let k" (Z) be the function defined on W, (yo) by
(13.34) dvx(Z) = k" (Z)dvrx(2).

Then kﬁv =

By construction, ¢?(Z) is equal to 1 on W /2(y0)- Also if Zo € Ny/x,R,yos |20l < §,
then BX(Zp,a) C W./2(yo). By using finite propagation speed, it is clear that if
Zo € Ny;x R,yo» |Zo| < €/8,
(1335) 'I‘fs [NHﬁu(qu‘,T/u)((yO, ZO)v (yO, ZO))] kl’(y()’ ZO)

~ Tos [NuFu( L) 20, 20)) -

13.5 Rescaling of Z and of the horizontal Clifford variables
For u > 0, T > 0, let Gy, r be the linear map H,, — H,, given by

PTY 7 N ﬁPNv/xz)
” .

(13.36) Gurh(Z) = h ( _

Set

13.37 LR = G r L PG,

( . ) M2,y0 _ G_l Ml’yOG
u, T — “Yu, T u u,T -
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Then
L2, MEY € (miy A(TRS) ® c(TrX) & End(€)),, ®Op.

Let e1,...,ezr be an orthonormal oriented basis of (TRY)y,, let eap41,..., €2 be
an orthonormal oriented basis of Ny, x R,y,- Let €,.. .e2¢ and e2¢'+1 ... e2¢ be the
corresponding dual basis of (TrY )y, and Ny, x Ry,

Recall that the vector spaces K, K;*; were defined in Definition 12.2 and that
the operators c,(e;) were defined in Definition 12.3.

Definition 13.8 . Let £2%°,M3% € End(Ky,) be the operators obtained from
583%9,‘/%12“%9 by replacing the Clifford variables c(e;) by cy(e;) for 1 < i < 2¢’, while
leaving unchanged the c(e;) for 2¢' +1 < i < 2¢.
Let F, (SEa’y")(Z 2" (Z,Z'" € (TrX)y,) be the smooth kernel associated to
max
Fu($3’y°) with respect to -‘é”TT)’f;,S—f-} We still define [F (££3’y° ] as in (12.12).

Proposition13.9 — For any u > 0, T > 0, Zo € Ny xRuyos |Z0] < L , the
following identity holds

(13.38)

(%)uimN:’/x T, [anu(Ai /) ((yo, T/Z_O) (yo, Qj/ZB))] ( 1:_/"Zq—?)
_( 3)dmY Ty [NH [F (33,1;0)(20,20)] ] ’

Proof. Using (13.35), the proof of our Proposition is the same as [19, Proposi-
tion 13.17). O

If C is smooth section of 73 A(T3S) ® ¢(TrX) ® End(¢), if z € Xy, is close
enough to yo, let C3(z) be the element of (m}, A(T{S) ® End(A(TRY)) ® c(Ny,x,R)
® End(€))y,, which is obtained by using the trivialization indicated in Section 13.3,
associated to V™VATRSIBAT @V X)u and by applying the transformation of the
elements of ¢(TrX )y, of Definition 13.8.
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13.6 A formula for £2%°
Observe that
0 u
(13.39) L3R = MIR + P2(uPTYZ + —= s X_pNvixz)

3
TE;
( { — oV V + r<C 7 Ivs,.v }u WPTYZ + —“_.TPwa z)

T2 U u
+ = V2wPTYZ + —=PMv/x2)) + (1 — p*(uPTY Z + —=PNvixZ
aV vT )) (1= VT )

PNY/XZ2 _
(TP£ Syo P~ + PE +T|————2———|P€ )

Now we establish an extension of [19, Theorem 13.18].
Theorem 13.10 — The following identity holds

u

(13.40) MI% = -3 (1 - ?(wPTYZ + WPNY/X Z)) (Lypry z + TANY/X)

2¢
u
+ ¢u<P2(uPTYZ + _\/—TPNY/X Z) {—% (\/TVPNy/x o,.ei(upryz+é‘?PNy/x Z)

i=1

31-\7rvA(T§_S)§A(T‘(°'1)X) (Orei)

+V prvore, (upry Z+3 PNY/X z) T [
+1 <Al(07‘€i)07'6j, Orer) c(®rej)c(®rer)

a_C [ ar¢ pHWy\pPTX'0,__ . £(0. . TY U pNy,x 2
+ s (A (FEW)p Tez) +T¢( Te,)] (wPTYZ + =P Z))
+%(U\/TVPNY/x Vg’:;v‘Jrei(uPTY Z+7“?PNY/X Z)

2
U [ (2pmv ATRS)BATOVX) | e
+UVPTYV3'3‘G_°7'61‘(UPTYZ+ uTPNy/xZ))+7 [( " vA(Tr 4T

2
TX 00y (uPTY Y_ pNy,x Y KwPTY 7 + 2 _pNv/xyz
(Vore,- TE )(u Z+ \/T_ Z) + ) (u + \/T )
+u? [%C(OTCi)C(OTej)RIE(OT&;,07’6_7‘) +f°‘c(\;fz)R'€( HW 0re;)
1o B pt pHW pHW TY N -1
+ifefPRE(FEV, 5 )] (uP Z+ﬁP wa)}zpu

Proof. Formula (13.40) follows from Theorem 7.20, from (13.19) and from (13.33). O

Recall that S was defined in (12.20). Since §|;V ~ ANy /x @1 S acts naturally on
A(T*OVX)® &™) w. Now we extend [19, Theorem 13.19).
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Theorem 13.11 — For any yo € Y, u €]0,1], Z € (TrX)y, such that IPTYZ| <
3e/4u, then as T — +oo0,

3
1341) T AV gV + Credge PTYz 4+ % pNy/xgz
( ) { f H,W Z \/-2- 0.’.6', ('U/ \/.]__' )

u

=T ] pap vt V+§,:u oCre) |’ V8,V § (wPTY 2)
=3 sV 2 7 J, VoreV

+VT{ ATy Vo V

+z {C( Tez)} vé Ny/szO-re } (uPTYZ) +O(U|PNY/XZ|2)’

c(ore,) } TY U SN
T { res VP *Z+ —=P"2)

2¢
-7 c(e')(vo V)(wPTY Z) + uVT M

v $re,V(uP™Y Z) + O(u |PNvixz|%),

Ny/xz
T 2 TY U SNy |PNY/XZ| -
—(V— —_— /X 7l “l p¢
uz(V)(uP Z+\/TP Z)=T 5 P
v—1
V2

+u£[

N ~ ~ _ 4
5 c(PNY/XZ),Vi vf, Nyyx gV (uPTYZ)] + O(u? |PNv/x Z|%).

Ny/x 7

Moreover

20 0 ) 3 _
(13.42) P& [f"‘ AV awV+ 3 u {c(\;;') } V5, e, V] (wPTY Z)P¢ =0,
[« 1 u

- o . S cle _
)= {f Avi”"/xz HWV+Z {_(..L).} NY/XZV°76 }(uPTYZ)Pg =0,

Z c(‘z‘)vo,e V(PTY 2)P¢ = P& S, P,
20+1
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Proof. Clearly, as T — 400
(1343) LronAve,  VPTYZ + L pNvixz) =
) u fav VT

\ ,,WV(uPTYZ)+@(u|PNY/xz| ).

T
— [NV aw VPTY 2)+ VT AV, Vs

Also since VTNy/xZ Te;(uPTY Z) = 0, using (7.27), (13.18) and by proceeding as in
(11.36), the expansion as T' — +o00 of Tﬂ%l(uPTYZ + 7"?PN"/X Z) with respect

to 3VTVATRS)BAT* Y X) i5 given by

Ore;)

(13.44) 7% 7 L _pNvixz) =

vT

(uwPTYZ +

c(°re;)

=7

(uPTY Z) + 0, (u? |PNv/x Z)%).
From (13.44), we see that as T — +o0,

(13.45) {Ti(:;ii")}s (wPTY Z + %waxz) =

V2

Since for 1 < i < 2¢, °VT¥, ,%7e;(uPTY Z) = 0, by (13.20), we get for 1 < i < 27/,

T {M }3 wPTY Z) + O(u |PVv/x Z|*).

(13.46)

SVEAGRIBATTED0 C(Jf’)( PTY Z) = — (T (fW PTY 7),%7¢;) (uPTY Z) .

From (13.46), we deduce that in the trivialization associated to 3V ATRS)BAT* @V X)
for 1 <1< 2¢, c(°7e;) lies in ¢(TRY) ® T3 S- In particular

(13.47) {ue(®re;)(wPTY 2)} = 0Q1).

From (13.43), (13.45), (13.47), we get the first identity in (13.41).
Since °VTX, ,%7e;(uPTY Z) = 0, using (13.20), it is clear that for 2¢'+1 <4 < 2¢

* * S =(0,1)
(1348) 3v;‘;‘e(ZTRS)®A(T 0,1 X)C(OTei)(UPTYZ) =0.
Therefore for 2¢' +1 <7 < 24,

(13.49) {c(o‘rei)}z (wPTY Z) = c(es) .
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From (13.45), (13.49), we get the second identity in (13.41). The third identity was
already proved in [19, Theorem 13.19].

The first identity in (13.42) follows from the fact that V"TV = 0, and also from
(7.21) and Theorem 9.8. By [19, Theorem 13.19] and by Theorem 9.8, we get the
second identity in (13.42). By Proposition 7.8,

2¢
azs0) P& S Lege v pTY Z)pe
20/ +1 \/2-

2¢
=P |1V=1 Z c(e:)e(®re;) | PE .
20/41
Now since {I';V o~ AN;‘,/ x ®n is an identification of holomorphic Hermitian vector
bundles, one finds easily that for 2¢/ + 1 < i < 2¢, ¢(°7e;) is identified to c(e;).

From (13.50), we get the third identity in (13.42). The proof of our Theorem is
completed. O

13.7 The algebraic structure of the operator 332’}{,9 asu —0
By (13.45), (13.46), (13.49), we see that asu — 0, if 1 < j < 2¢/,

0rp )Y 3
(13.51) u{c(\;;’)} (uPTY Z + \/LTPNY/XZ)
2
—ed A—Li, —w(TW(FHEW PTY 7) ¢ fo
2 J (o3 J
PNv/x z|?
+ 0 (’uz(IPTYZ|2 + |_7_|___|)) >

and if 2¢/ +1 < j < 2¢,

(13.52) {—C(O\;;j) }3 (qu Yz _“PNY/X) —
@ +0 (_ IPNy/x Z|2)
\/5 1 '

By construction the %7e; (1 < i < 2¢') span Tr X' and the O7e; (20 +1 < j < 20)
span Tr X 2. Since A’ exchanges TX! and T X?,

(13.53) 1 (A7e;,%ex)c(®re;)c(Prer) =

N

Z (A'Orej, 0T6k> c(°re;)c(®rex) .
1<j<2¢
20 +1<k<2¢
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Moreover
(13.54) A (FEW\PTX 00, € TRX2.

From (13.51), (13.52), (13.54), we see that as u — 0,

(13.55) {u% (A'(°rei)’7e;,%7er) c(®re;)c(Prex)

3
+ fa——\;i (A'(ff’W)PTXIOTe,-) }u(uPTYZ + —u,_TPNY/XZ)
. c(e
— E (A (ei)ej,exy el A —57%)-
1<j<2¢
20'+1<k<2¢

+ f“% (AL (FEW)PTY ¢;) .

From (1.33), (13.14), (13.15), we find that

(13.56) Z (A;,(ei)ej, ex) € A elex) + f“% (AL (FEW)PTY ¢;) =

1<j<2e’ V2
20/ +1<k<2¢
. (] C
> en 7 (Ayo(e;)PTY &;) + f"‘EA( fEW PTY ¢,
1<j5<2¢'
20 +1<k<2¢

which is equivalent to

(13.57) Z (A, (e:)ej, ex) € A elex)

1<j<2¢ \/-2-
20 ¥1<j<2¢ -
o« C c
+f 7 (A (FEW)PTY ¢;) = —ﬁ(APTyei)-

As we saw after (13.23), 3TV (ATRSIBAT OVX) g of length < 2 in my A(TRS)
= .\ 113
®c(TrX). By (13.24)-(13.26), it is clear that asu — 0, {uth,’T 1y, e PMY/x ZYutt,
has a finite limit given explicitly in terms of the curvature of 3V™ATRS)BA(T* D X)
restricted to W, where only the C—E%) (1 < i < 2¢') replaced by e*A and the f© survive.

Clearly

(13.58) 2V1r{,A(T§S)§>A(T"(°")X),2 _ 3Vw:,A(T,;S)®A(T*<°v1>X),2

+ [3V1r“,A(Tl‘;_S)®A(T*(°’1)X), 2V ATRS)BAT* OV X) _ 3v7r;,A(TiS)c§A(T‘(°")X):I

~ ~ 2
+ (2V1r;,A(T,;S)®A(T*<°-1>X) _ 3V7r{,A(T;‘S)®A(T‘(°’l)X)) )
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By (13.19),

(13.59)
- - > »=(0, - - > = (0, 2
(2v7rVA(TRS)®A(T ©nx)y 3y ATRS)BAMT (o 1U{)) _ % <Al2ei,ej> c(es)cle;)
1 1
+ % <A12(ff,W,f;I,W)PTX .,PTX ->fafﬁ

(a(a(sEw)prx)

C
V2
By [19, eq. (13.61)], if Z, 2’ € (TaX)y,, if U,U’ € TRY,

+ f*

(13.60) (A2(2,2")\U,U"y = (A2 (U, U"PTY Z,PTY Z') .
Also by (1.33), (13.14), (13.15), if Z, Z' € (TRX)y,, U € (TEW )yo, U’ € (TRY )yo,

(A, (DA, (U)Z',U")

= (Ay(PTY 2)A,, (U)Z',U'")

= —(Ay(U)Z', Ay (PTY Z)U")

= — (A, (U)PTY Z', A, (U")PTY Z)
= (Ayo (U) Ay, (U PTY Z, PTY Z')

= (Ay (U Ay, (U)PTY 2!, PTY Z) .

(13.61)

Moreover, by (13.18), (13.19),

(13.62)
[va(‘,A(T,;S)éA(T'(O’l)X)’ 2y ACTRS)BAT* OV X) _ 3V1r,*,A(T,;S)§>A(T'(°-1>X)]

[va{,A(TﬁS)éA(T‘(O'”X)’ 2y v A(TRS)BAMT* OV X) _ 3V7r{,A(T§_S)§A(T‘(°'1)X)]

C
V2
+ <Al(ff’W)PTX1-,V’:I‘Xf:,NY/X +TV(f;{,V’ ) _ Al(fg’W)PTX1.> fafﬂ

oS (AT PN LTV (FEY ) — A(EW)PTX))

Now we briefly explain how to calculate the limit as u — 0 of {u2¢u3

* * S #(0,1) 3
VY ATRS)BAT ¥)%(Z,e)p7} . We use (13.58)-(13.62). We claim that no
u

term in (13.62) contributes to the limit. In effect °V7X preserves the splitting
TX = TX'@® TX? Then by (13.19), it is clear that [OV™VATRIBATOVX)
2y ATRS)BMT OV X) _ 3V”(’A(TRS)§A(T*(°'1)X)] does not contribute to the limit.
Using the second identity in (1.35) and (7.27), we find that the remaining terms in

(13.62) do not contribute to the above limit.
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By Proposition 11.8, (11.61)-(11.65) and (13.58)-(13.61), we see that as u — 0,

» * o *(0, 3
(13.63) {uy, 2V NTRIBMTTEIN2 (7 g1}
u
(i (VT)50 2, &) — (A5, PTY Z, PV es)) .

From (13. 24) (13.26), (13.40), (13.55)-(13 57), (13.63), we see that as u — 0, the
operator M;," ’y° converges to an operator M ¥ given by the formula

122

(13.64) Mo =—3 (\/TVPNY/Xei + Vprve,
1

1/ . orx\2 TY 42 pTY TY PNvixz
+5<(Z (V )yo_P AyoP ) P Z+T , €4

1 PNy/xz
3 <"*(V”)Zo—\/—:r_’ P e > — 5 (VT XY}, PTY 2, PNvixe;)

_ C(AI:/’;YQ)) + 3 ((V5)2+ % 'I‘r[(VTX)Z])

Yo

Also using (13.51), (13.52), we find that as u — O,

3
aot c(®re;) TY U HNyx
(13.65) { f v,,,wv+z 7 Vi, } (uP z+ﬁp 1% Z)

1., o cle;
= —i"V¢V(yo) - f VTW(wapTyZ)V+ Z ( )VE .V (%)
20/+1

faV€ Vfg,wV(yo)

PTY Z+%W=X_

20
et A V¢ V5. V(yo
E PTY Z4 PNY;x z @ Ore; ( )

20 +1
N 2
+0 (u(|PTyZ|2 + ‘P+XZI—)) :
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Now by [19, eq. (13.102)], by (7.21) and by Theorems 9.8 and 12.7,

P£ faVTW(fHW pTyz)V(yO)PE- =0
Cc\€e
e 30 LD 9t V()P4 = S,
2041
£~ paé
P f vpryz+;>”7w_x_z £
20/

PEN € /\VPTYZ oy x V¢ V(yo)Pt =0.
1

13.66
( ) awV(@w)P¢ =0,

Identity (13.64) now plays the role of identity (12.15). Identity (13.65) replaces
(12.21), and the identities (13.66) replace (12.22).

For u > 0, let @2 be the operator defined in Theorem 5.8, which is associated
to the exact sequence of holomorphic Hermitian vector bundles on W, 0 — TY —
TX)w — Ny;x — 0. Using the previous formulas, the second identity in (5.16) and
proceeding as in [19, Section 13 i)], we find that given T" > 0,

(13.67)  lim &Tx, [Nex exp(—42 1,)] =

/Y ® Ty, [NH exp(—G;}gb%zGl,T)] ch(n,g").
Equivalently
(13.68) hm D Ty [NH exp(—A2 T/u)] / ® Trg [NH exp(—D2. )] ch(n,g").

Identity (13.68) is compatible with Theorem 6.8, because of (5.19).

13.8 The matrix structure of the operator 583’y° asT —+oo

For convenience, we introduce a Hermitian metric g7° on T'S. This metric induces
a corresponding metric on A(Tg{S).
Definition 13.12. Let Fy, (resp. Fgo) be the vector spaces of smooth (resp. square
integrable) sections of (m}, A(T%S) ® A(TRY) ®n) vo OVer (TRY )y, Let K , Kfo’o be
the vector spaces of square integrable sections of (}, A(T5S) ®A(TRY) ANy /x)®

£),0» (MivATRS) ® A(TRY) 8 A(Ny, ) ® E*) . over (TrX)yo-
We equip F with the Hermitian product
dvry(2)
0 _ TY
(1369) g, o eF’ — <0" UI) = / "), ( I) (Z) (27r)d1mY .

Y)yo

SOCIETE MATHEMATIQUE DE FRANCE



230 THE ANALYSIS OF THE TWO PARAMETER OPERATOR exp(—A42 1) ...

We equip K with the Hermitian product

, , d Z
(13.70) 8,8 € Kgo — (s,8") = / - (s,5')(2) (;T)ffn(n;z :

Jvo
We now use the notation of Chapters 7 and 8. In particular 6,, denotes the K&hler
form of the fiber Ny, x Rr,y,- Set for Z € (TrX)y,,

PNvix z|?
(13'71) :Byo(Z) = exp (0110 - 1—2_|—>

Here (3,,(Z) is considered as a section of (A(-N;,/ x) @A(N{,/ x)> . Recall that
Yo
§po = (A N;//x ® M)yo-
Definition 13.13. Let 1 be the linear map ¢ : 0 € F* — o0 3, € Kgo.
Let K;‘L be the image of Fgo in K;O’O. By [19, Theorem 7.4}, or by (8.41), ¢ is an
isometry from F) onto K} .
Let Kj»+, K>+~ be the orthogonal vector spaces to Kj» in K,
respectively. We then have the orthogonal splittings
0 )
Ky, =Ky, o Kot
K—,O = K/O @ K/O,J_,— .

-0
Ky,

(13.72)

Let p,p denote the orthogonal projection operators from K9, on K2

9, KoL with
respect to the Hermitian product (13.70).

Set
(13.73)
+
AuT-p$3’%?pa BuT—pga,yo L pe ) Cu,T=p££13L’,37'9PE ’
Dur =P pt$3%p, Eur=P pt&3%pl P, F,r =P pt 3% ptT,
Gur =P 3%,  H,p=P £2%0pt P, [,p= P& g% pet

Then we write the operator 333”’0 as a (3,3) matrix with respect to the splitting

1,—
K/O o) K/O o) K;:)O,

Au,T Bu,T Cu,T
(1374) 22’,%9 = Du,T Eu,T Fu,T
Gu,T Hu,T Iu,T

By proceeding as in Section 8.2, we know that for v € ]0,1], as T — +o0, the
differential operator SB '¥® has an asymptotic expansion of the form

(13.75) L3 =" 0,,TH? .
k<4
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Therefore as T' — +o0, the operators A, 1, By r,... have asymptotic expansions
similar to (13.75). Put

2¢'

(13.76) y= 2 D Aeies -
1

2dimY

Then v € Ny,x gr is the mean curvature of Y in X.
We now prove one of the central results of this Section.

Theorem 13.14 — For u € |0, 1], there exist operators A,, By, Cy, Dy, E, F,, Gy,
H,, I, such that as T — +o0,

(13.77)

Au,T = Au +0 (\/iT.) 3 Bu,T = \/TB‘U, +@(1) ) Cu,T = TCu + O(ﬁ) )

Dyr =VTD,+0(1), E,7=TE+0XT), Fu,r=TF,+0KT),
Gur =TGy+0(WT), Hy,r=TH,+0KT), I,r=T?I,+0(T%?.

Let P, be the operator acting on K,

2¢
- Cl€&i) &
(13.78) Py =uP* ¢ QP (WPTY Z)Vaimyvupryzy + D ( )VfNY/Z
20'+1 \/i P z

Ore;

(<p2 V4 V) (u PTY 2)
1[= _ - o _
+5 [V;Ny,xz(gav YuPTYZ), V8 n v Viny x, (P V) (u PTYZ)]
PNv/x 7|2 -
— (Vpryx 7 9)(uPTY Z) (S+ L-_2——L> } el
Then the following identities hold

(13.79) B, =pP.pt P¢

20/ 3
- 1 uc(®re;)
= p P& 2 TY fat = TR S 72 TY
Cu,=pP¢ p*(uP Z)(UE { } (VOTC‘, )(uP Z)

1 v2 .
1 2 c(e;)
+ —fa(viﬂ,WV)(uPTYZ) + > 7_— (vsmv) (u PTYZ)) P&,
u “ g1 V2

D, = P* ptP,p,

E=pt Pt (__;. ANv/x 4 % |PNvix z|? + S) P% pt,
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Gu = P& W2(uPTY Z) (%2261{@0(07‘;6@')}3 (Vo,e )(uPTYz)

1

1 o~ cles)
+Zf (Vif,wv)(uPTyz)+2£Z+:1 /2 (Vﬁm )(“PTYZ))p,

1
L=~ Pt (((p VH2 4+ (1 - p?) P€+) (uPTYZ)PE" |

Proof. Using formulas (13.15), (13.25), (13.39)-(13.42), the proof of our Theorem is
the same as the proof of [19, Theorem 13.22]. O

13.9 The asymptotics of Frk'/2A, 7k=1/2F;!

We use temporarily the same notation as in Section 8.1.

Take z = (y, Z) € WU,,. We identify &; to &, in the same way as in Section 8.1. Also
we identify (73, A(TxS) ® A(T*OV X)), to (mHyA(T3S) ® A(T**V X)), by parallel
transport with respect to the connection3V;r§’ MTRSBAT D X)
X,te[0,1] — (y,t2).

Then the restriction of ZLT to U, acts naturally on smooth sections of A(T{.S) ®
E(so), and so it defines a superconnection on E(eoVvT).

Definition 18.15 . Let € be the superconnection on E,

along the geodesic in

c(e;)

(13.80) € =D + Z = By(e:) + éﬁgﬁﬁzwy)

«(0,1)

(T (FEV, £52W))
2v2

Now we give another version of Theorem 8.5. Of course the difference is that
we have used a different trivialization of 73 A(T5%S) ® A(T*(®V X). In what follows,
YAS Ny/ X,R

Theorem 13.16 — As T — +o00, then

—%fafﬁ

(13.81) FrkY/2A, rk~2F;! = TV (y) + VT(DNY/x + V5V ()

1 2 oN % s 3
+cs:+ﬁ@(|2| aNvix +12|8Y + 12|05 +|2| + | 2| )

Proof. Inspection of the proof of Theorem 8.5 shows that the only term in
Frk'2Ark~'/2F;! which may eventually modify the expansion in (8.10) is
FTkl/zDXk—l/zFfl.

ASTERISQUE



THE ASYMPTOTICS OF FTk1/2Z1,Tk—1/2F'1_'1 233

Clearly

(1382) DX = Z C( Tez)vé\iz:*(o UX)@{
T V2

a
Using (13.82), we find by a formal argument that with respect to [19, Theorem
8.18] or to (8.10), there is an extra contribution in the present expansion of

Frk'/2DXk=1/2F21 given by

2¢

(1383) 3 [(Svr{,A(TﬁS)éA(T‘(O'I)X)_OVWI,A(TQS)QA(T‘(O'I)X)) (2), C(ez‘)] v..
20741 4 v2
+ E c(ei) (vaVA(TRS)®A(T*(° DX) _ 3l ATRS)BAT ‘)X)) () =
20’41 \/5

[(3v1r{,A(T§S)<§>A(T'(°'1)X) _ OVWDA(T,;S)@A(T‘(O'”X)) (Z),DN,,,X] )

Now by (7.27), (13.15), (13.18), it is clear that for 2¢' +1 <1 < 2¢,

(38) [ (sorvamindar e _ogramnaar o) (z), L] .

Also by (13.18),

2¢
(13.85) Z clei) (OVWVA(TRS)®A(T‘(° VX)) _ 3y A(rp )BAT 1)X)> (€:)
20'+1 ‘/5

C(ez) H Ny x Vi HV f*c(e;)
= V T (.fa T, 61;), €;j
2e'+1 < J>y V2

Z ;(3_) (<Sv(e1) aféi W> <fH Ny, x VTX HNY/X >)yfafﬂ'

Using (7.27) again, the first expression in the right-hand side of (13.85) vanishes on
W. Also by (1.6), (7.27), we get for 2¢' +1 < i < 2¢,

H,N H,N H,N )
<fOt Y/X’VZ;X B Y/X> = - <fa Y/X,Tv(fgv7ei)>

13.86
1380 = —(TV(Y S )
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Moreover using (1.5), (1.6), we obtain

(13.87)  (SV(e)fEW, f5W) = L{TV (FEW, £5¥), i)
+ 3 (TV Y e, 5W ) — L (TV (5, e), S5V
= (TG 55 ) + 3 (TV (Y e, 1577
— 3 (TV U e £
= J(TVUEW, WY+ TV BV 1) = TV (Y 1) e
From (13.85)-(13.87), we find that

2
(1388) 3 c(e:) (Ovr“,A(TiS)®A(T"(°'1)X) _3Vn(,A(T§S)§>A(T‘(°'1)X)) (e:)

26/ +1 V2
_ 1 jagpSPRTY IV, YY)
2 2v2
From (8.9), (8.10), (13.83), (13.84), (13.88), we get (13.81). The proof of our Theorem
is completed. O

Theorem 13.17 — The following identity holds

(13.89) v 'pCpy = BY".

Proof. The proof of our Theorem is the same as the proof of Theorem 8.8. Note that
here, the identity (8.48) is not needed. O

Using [19, Proposition 8.9] and Theorem 13.16, we find that as T — +oo,

(13.90) FrA, rF;' = TV*(y) + VT(DNv/x + V5,V (y))
dimY

+C— T2 e) + ().

Also
[DH,DNv/x] =0

[fo‘ A(T'(O l)X)®€ DNy/x] =0.

(f” wyH

(13.91)

By squaring (13.90), using (13.91) and comparing with (13.77), one gets an
explanation for the simplicity of formula (13.78) for ?,,.
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13.10 A family of Sobolev spaces with weights

Let g be the orthogonal projection operator from (7, A(TRS) ® ATRY)
@A(W;/x) ® £)yo on (i A(T3S) ® A(TRY) ® {exp(d)} ® n)yo. Recall that p is the

. . 0 ,0 L — 1 i
orthogonal projection operator from Ky on Kj’ and that p~ = 1 —p. By an obvious

analogue of (8.43), we know that if s € K,

1 — |PNvix z)|?
(1392) ps(Z) = m exp (T

— ’ 2
q/ exp (%) s(PTYZ + Z")duny, «(2Z') .
Ny, x,R,y0

Let ¥* be the adjoint of the map ¥ : F§ — KJ defined in Definition 13.13 with
respect to the Hermitian product (13.69), (13.70). Then

(13.93) Y =9"'p.
Definition 13.18. If Z € (TrX)y,, U € (TRY )y,, set

1/2
Jur(Z)=1+ (1 + |PTYZ|2) 0 (% uPTYZ)

2\ 1/2
(13.94) + |1+ M_ ) (__u_. IPNY/XZ|) ,
T 2vT
~ 1/2 U
=1+ (1107) o (7).

The algebra (73, A(T5.S) ® A (TRY))y, splits into

2(dim Y +dim S)
(13.95)  (mly A(TRS) ® A (TRY))yo = P (TWATRS) BATRY)), -
0

This splitting induces corresponding splittings

2(dim Y +dim S)

o _ 0
K, = @ Ki o
0
(13.96) 2(dim Y +dim S)
o 0
Fyo = @ Fr’yo ’

0
Definition 18.19. If s e K9 , set

(13.97) sl zge0 = / |sI? gu,r]*@ Y F2AmETT (Z) dur x (2)
RA )y

Jvo
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Let ( , ), 74,0 Pe the Hermitian product on Kgo which is the direct sum of the
Hermitian products on the K¢ yo S associated with formula (13.97).

If o € R, let K, Ki"‘ be the Sobolev spaces of order p of sections of

(miv ATRS) © ATRY) B ANy x) B€) |, (mivA(TRS) & ATRY) ® ANV, x) B €*)

over (TrX),,. If s € K, we write s = s* + 57, st e KEm.
Definition 13.20. If s € Kyo,

T2 1 -
(13.98) |s|uTyo’ =¥|s |uT’y0’ +T|p s |uT’y0,
o 2¢
N 1 - 2 2 : 2
+T||P Y/XZ| p 8 |u7T1y0,0+|pS|u’T1y010+ Ivei sluyTay070
1

2¢

12
+T Z Ve p SIu,T,yo,O
20741
Then (13.98) defines a Hilbert norm on K} . Let K, ! be the antidual of K] and let
| |u,T7yo’_1 be the norm on K ! associated with the norm | |, ., , on K . We

identify K9 with its antidual by the Hermitian product (, ), 7., 0

We have the family of continuous dense embeddings with umformly bounded norms
1 0 -1
(13.99) K, K, K .

In view of Theorems 13.11 and 13.14, it should now be clear that the functional
analytic arguments of [19, Sections 13 k)-13 o)] can be used without any change.
In effect, the asymptotic structure of 583”"’ as T — +4oo is exactly the same as in
[19, Section 13]. Of course, we have the extra Grassmann variables f*, but these are
exactly of the same nature as the e (1 < i < 2¢').

Details are left to the reader.

13.11 The operator =,
Definition 18.21 . For u > 0, yo € Y, let Z¥% be the operator from F, into itself

(13.100) Yo =Y Ay — BuE™'D, — CLIJ'GL)Y.

In view of (13.79), one verifies easily that Z¥° is a second order elliptic differential
operator.

If U € BLY(0,¢), we identify (mj, A(TS) ® A(T*OVY))y, nu with (my A(TRS)
-~ * * P~ *(0,
SA(T*ODY))y,, My, by parallel transport with respect to V7w ATRS)SAT ©DY),u
V7 along the geodesicin Y t € [0,1] — tU.
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Let G, be the linear map
(13.101) heF,, — Guh€F,, , Guh(U)= h(%), U € TrY,, .
Let ¥2% be the operator acting on smooth sections, of (13, A(TS)® A(T*OVY) ®
n))yo
(13.102) 2v = G;1BY?G,, .
Let £3% be the operator obtained from X2¥%° by replacing the Clifford variable c(e;)

(1<i<2¢) by V2N _ %‘51- Then X3:¥% is a differential operator acting on smooth

u
sections of (m, A(TS) ® ATRY) ® 1))y, over BLY (0,e/u).
Now we prove the obvious extension of [19, Theorem 13.43].
Theorem 13.22 — Over BTY (0,6/2u), the following identity holds
(13.103) »3vo = FW,

Proof. Using Theorem 13.17 and (13.90), the proof is formally exactly the same as
the proof of [19, Theorem 13.43] and of Theorem 9.25. 0

13.12 Proof of Theorem 13.2

Using Theorems 13.11, 13.14, 13.22, the proof of Theorem 13.2 proceeds as the
proof of [19, Theorem 13.6] in [19, Section 13 q)]. O

13.13 A proof of Theorem 6.19

Now, we will establish (6.85). Namely we show that if h, 1 is one of the fonctions
0u,T> Ny 1y Ny > Ty s Ty, then for u €]0,1), T > 1,

(13.104) |,/ — B < —1%

To make the discussion simpler, we will take h, r = 0, T, the discussion for the other
cases being much easier. Also the proof of (6.85) for hy 7 = M, (With u > ug > 0)
is essentially similar.

An evaluation of the limit of 6, r as T — +o0

First we will show that for u > 0,

(13.105) lim 6,7 =6%.

T—>+00

We will recall a few identities from [14, Theorems 1.7, 1.14 and 2.6|, which are more
precise than Theorem 2.14. Recall that w""¥ was defined in (3.16).
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Theorem 13.23 — The following identities hold

(13.106)
vE",2 =0 VE’,2 =0
v, 5] =0,[vF,5""] =0,
-VEII,UJV’H] =0, [VEI,wV’H] =0,
— ic(TV(1,0) Xk _in(TV(0,1)
5% wV’H] _ (T ) , [8X ,wV’H] _ —ie(T )’
V2 V2
VE",c(TV(l’O))] _ [(,—)X’C(TV(LO))] =0, [VE’,C(TV(O,I)):I _ [EX*,C(TV(O’U)] —0.
Proof. These results are proved in [14]. In particular the third identity was established
in [14, Theorem 1.7 and eq. (2.21)]. Of course, the reader should keep in mind that
3 in [14] is v23". O
For a € C*,u > 0,T > 0, set

" =X " 8 iwVH c(TV1:0))
Al = aud” +Tv+ VE +da(— )— ,
wT 2v/2ua

da 2u2ada’

- Vo H TV©.1)
Vo aud 4 Tt B g 0 | iw o

A, =1au +Tv*+V® +da (aa + 57502 W

(13.107)

1 _ 1 1/
Ayr =Ayr +Aur-
Then A}, 1 is a superconnection on E over S x C*.

Proposition 13.24 — The following identities hold,

—iwVH

17 _— 172 a in’H
Al =exp | —— (aax +Tv+VE +dE—) exp| ——= |,
' iwVH =X , 0 —iwV:H
AY . =exp | — (aax +To* +VZ + da—) exp [ —— | .
wT P (2u2 |a? Oa P\ 2u2 |al?
Proof. This identity immediately follows from (13.106). O
Theorem 13.25 — The following identities hold,

1”2 _ 1,2 _
Au,T = O,Au;T =0,

(13.109) V,H

w
u?

ALy =Alr+ dau-a—A;;,T + dau2

’
u,ﬂa=1 au '8_1;14-“,'1" + dadﬁ

Proof. By Theorem 13.23,
=X " a\?
(aa +Tv+ VE +d6—) =0,
ga
(13.110)

2
(EEX* +Tv* + VE + da—a—) =0.
Oa
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From (13.108), (13.110), we get the first two identities in (13.109). Then,
(13.111) AL2 = [A};},A},"T] .

By (13.107), (13.110), (13.111) we get

_ =X . V,H
Ay =A21+da (ua" _o T = ])

(13.112) .

FX* L V.H ;
+da (s + 0w | Gaaa®
2u u?

Using Theorem 13.23 and (13.112), we obtain

)2 —-X c(TV(l,O))
Ay = AL+ da (0" 4 S
(13.113)
=X+ c(TV(1,0) dd_iwv,H
Haa (W8 + T ) e

which is exactly the last identity in (13.109). The proof of our Theorem is
completed. (]

Remark 13.26. It should be pointed out that the identities in (13.109) are not special
cases of (13.106). In fact there are associated with the fibrations V x C* — S x C*,
and V x C* is equipped with the (1,1) form ﬁng, which is not closed over V x C*.

By Theorem 13.25, it is clear that

1,2 v dada
(13.114) Our = —Trs [NH exp (-2 /7., + dadaN; )] .

To study 6, 7 as T — +o00, we will proceed as in Chapters 8-9. However the situation
is subtler, because the holomorphic and antiholomorphic directions in V have now
been made in some sense independent.

Let fi,...,fm be a locally defined smooth basis of TrS. Similarly, g1,...,9m
denotes a locally defined smooth basis of T'S, g, .. .,J,, the corresponding conjugate
basis of T'S. Of course f!,..., f>™ (resp. g, ...,g™, resp. ', ...,g™) denote the dual
basis of TS (resp. T*S, resp. T*5).

Instead of Definition 7.16, we now define.
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Definition 13.27. Set

H,N- —H,N
AV = expd 95 Cloa ) g% e(ga )
wT ua V2 ua V2

9 (g™ H,N
AV expd S22 ) | T @’ )
T ua 2 ua V2 ’

(13.115) Zl, _ g c(g ’ Y/X) g c(gHNy/x)
TP\ Tw 2 wa_ 3

H,N _H,N
¢ elg™%) | 77 egh™ )
ua 2 ua V2 ’

Clearly, Au T is a superconnection on FE over S x C*, which is conjugate to A
Now we will give a formula for Au,T, which extends Theorem 7.17.
As in (7.36), we will assume that

[fou fﬁ] =0,

(13.116) -
[ga,gﬁ] =0, [gongﬂ] =0.
Let ws,...,we be an orthonormal basis of TX, let w!,...,w® be the corresponding
dual basis of T*X.
Theorem 13.28 — The following identity holds

(13.117) Alr =ad" +Tv+3% A (VAT "0 — Le(wie (VEXga ™)) -

- :g°‘10(wi)c (V%f{gf Nvs X) +

0 ?ac(g’y/x) zgg WV (gHW gHW

asl
e

H,N _H,N _H,N H,N
%(< Y/x V%f{gﬁ Y/X> _ <g[3 Y/X,V%Xga Y/x>)
< TX HNY/X E> c(wi) + gﬁ C (VTX _H, Ny/x)

] V2 a V2
G aBFY
94949 H,Ny;x —TXx =H,Ny;x
- 20af ({957, Vggway™)

_H,N: H,N _H,N HV_
(B, T sl ) = (G, Y (Y g ).
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Proof. Clearly

o o7
(13.118) [——c( HNY/X)+ (-H Ny/x ’F] - %c gg,NY/X),

o (o7
[%eto ”W+w”ﬂﬁwwﬂ

a -—

) _29°g° gHNIx o
+ Ty, 2] = ~ 2L (g gt

From (13.118), we deduce that

H,N
e Crelailed W ek W M P
(13.119) exp{ = 7 - 7 da Er Ay

Ny, x —a =H:Ny/x H,Ny,x
exp{ga clga""%) | 7° c(Ga )}=da[a g% clga ")

V2 a \/5 a @ V2

H,N _H,N —
2aa ( Viga""*,7 Y’x)+w"(gX,g}a’)]~

By (7.44) and by (13.119), we find that the coefficients of da coincide in (13.117).
Also

(13.120) 3% C%)VQET'“’ DX)BE

Using (13.120) and proceeding as in the proof of Theorem 7.17, we obtain the full
(13.117). The proof of our Theorem is completed. 0O

Remark 13.29. Needless to say, a strictly similar formula holds for AY u,7- In both

%(0,1) %(0,1)
formulas g* A VA(T X)®E g* A V;\g‘, X)8¢ have been replaced by g* A
A T-u(O 1)X A T*(O I)X S a
V—l(l,w )®§’ o A Vgc{(f,W )@5.

Now we suppose that wi,...,wse is an orthonormal basis of TY, and wap 41,
.., wge is an orthonormal basis of Ny, x.

SOCIETE MATHEMATIQUE DE FRANCE



242 THE ANALYSIS OF THE TWO PARAMETER OPERATOR exp(—AZ2 1) ...

Definition 13.30. Put

5 Z C(wz)o~(A(T“° 1)X)q@»s)mz

w;

=Ny, x 2 c(wi) SAT* O X)B€) w
e 35 g s

—~ V2 ’
(13.121) 26
Vil %iC(wi)oe(A(T“"'”X)@&nw
- - \/5 ws b
20
gV _ 3 AT o x080m.
2¢'+1 \/-2_

With the notation of Definition 8.2,

H=5H+_6_H*

(13.122) DNvix — FVvix | gvixs

Definition 13.831. Put

e
(13.123) B =ad" + az CE;;)By(e,-) + 194V 0(y)

ATV x —
+3% A ("Vﬁ_é e SO 1B, (gh W))

—H,Ny/x W,H
+ da ( 0 _2 7% c(Ga ) w )
y

i
da a V2 T2 a@?

azB
99 ¢ Ny,xmV(1,0)( HW =HW\ ~pW(1,0)/ HW -HW
a 2\/5 (P T (ga agﬁ ) T (ga 7gﬁ ))

We define B is a similar way. Then
(13.124) B! = Bl 4+ BY

is a superconnection on E over S x C*.

Now we use the same trivialization of (A(T*(1)X) ® £)|a;, as in Chapter 8.
Theorem 13.32 — AsT — +oo.
(13.125) Frk'/2AY k=Y2Fgt = Tot(y) + VT (@d" 7> + Véu(y))

” 1
+ B+ =0 (|Z|2 aNv/x 1 12|8Y + 2|05 + 2| + |Z|3) .
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Proof. To prove (13.125), we will use as much as we can the results already established
in the proof of Theorem 8.5.

By (13.117), (13.120) and by Theorem 8.5, it is clear that (13.125) holds in degree 0.
Now we consider the terms of positive degree in A(T§.S) not containing da. The term
of degree 1 in formula (13.117) for Z}"T, not containing da, is the sum of

— a factor of g*A, which preserves the total degree in A(T*®1DX) & €.
— a factor of g*A which increases by 2 the total degree in A(T3X) ® €.
Similarly the term of degree 1 in Z};T not containing da is the sum of
— a factor of g*A, which decreases by 2 the total degree in A(T{X) RE.
- a factor of g*A, which preserves the total degree in A(T*(®1)X) ® €.
If we make a = 1 in (13.118), we find that the term of degree 1 in Z}‘"T, which does

not ontain da, can be read off from the corresponding term in Zu,T by selecting those
terms which can be described as indicated before.

Now in the right hand side of formula (8.9) for 8, the term of degree 1 in A(T{.S)
preserves the total degree in A(T*(1) X) ® ¢. Thus we find easily that when making
da = 0, (13.125) holds in degree 1 in A(T{S).

The identity (13.125) for the term containing da is trivial. From now on we exclude
this term, together with the corresponding term in Z{T which contains da.

In degree 2 in A(T3S), in AL 7, we have sums of

— terms with g®g?, which increase the degree in A(T*(%:1) X) ®¢€ by 1.
— terms with §g?, which decrease the degree by 1.

Similarly in degree 2, in Z}J’T, we have

~ terms with g®g® which decrease the degree by 1.

— terms with ¢g®g? which increase the degree by 1.

Again this shows that these terms can be detected from the expression (7.37) for
Zu,T. By noting that in B, we only have terms containing g*g®, from (8.10), we find
that (13.125) holds in degree 2.

In degree 3, ZL”T is proportional to the piece of type (1,2) in Zu,T. Using Theorem
8.5 again, we find that (13.125) holds in degree 3. The proof of our Theorem is

completed. O
Remark 13.83. A corresponding result holds for Z}L:T

Put
(13.126) DNY/X70’ —_ agNY/X + EENY/X* .

Let a!/2 be the natural square root of a € C* near a = 1.
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For a € C*, put

1 VAR
13.127 = ——— —_—— —
(13.127) e a___.udlmgvxe"p{ 2|a|+|a|}

Then by proceeding as in [6, Theorem 1.6] or [19, Theorem 7.4], one verifies very
simply that for y € W, B spans the one dimensional L2 kernel of the elliptic

self-adjoint operator DNv/x:e 4 /1 g\/—? acting on the vector space of Lo sections
of w*(A(N;/X) ® A(Ny,x)) over Ny;x Ry, and moreover,

dv
all2 Ny, x —
(13.128) /. 0 G =1

We define 9, as in Definition 8.7, by replacing # by (B%. More generally, all the
objects introduced in Chapter 8 now depend explicitly on a € C*, so that the whole
construction is fibered over W x C*.

Put
" " ) in,H c(TW(l,O))
BWI — /“ay VF dal = — _ ,
“ avud + +da da 2uaa? 2v/2ua
(13.129) w1’ Y o 8 iwWH (TW(1.0)
B = a\/ud da | =— — —
* aud + V" +da da  2uaa? 2v2ua ’

w1l _ pwi” wit’
BW1 = pW1" 4 pW1’

Needless to say, B¥!" and B¥! verify identities similar to (13.108).
Now we prove the following non trivial extension of Theorems 8.8 and 13.17.

Theorem 13.34 — The following identity holds

v~ 1pBY py = BV

(13.130) , :
Y~ pBpy = B

Proof. Clearly on W x C*, 3 is of total degree 0 in A(N*y/ x) ® ANy /x)- Then the
argument of the proof of Theorem 8.8 show that the terms not containing da or da
coincide in both sides of (13.130). By the same arguments as in Theorem 8.8,

o FH Ny x . W,H . W,H
[ _f dfa ) _iw™ __iw™
(13.131) Y 'p ( = 7 5 a2 ) Y = 5 2
So to establish the first identity in (13.130), we only need to show that
1o} o
—1 -~ = =
(13.132) VTPV = o=
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Equivalently, we have to show that

(13.133) <% : ﬂa> =0.
Clearly
(13.134) %_/Z = (%I_Zli - %:-0—9) Ba
a la]@ a|al
Then
2 2
(13.135) <%,ﬂa> ~ l_a_ld—i"%’;’?/szx,a exp (—||ZT||) {%%

2 a vav/x (Z)

1.9 ad ad \\ | _VNy/x\Z)
2g a| <Gexp(|a|),eXp(|a')> (27r)dimNy/x :

af
exp( E)

One has the easy

ab ||? :
exp(g)“ = 2dimNy/x |

(13.136) .
ab af dim Ny/x @ _qimn
0 exp(—), exp(— >= —_— =20 Ry x|

(oo 2 ol

Moreover
d’UN

[ exp(-12P) s =1,

(13.137) v

dun
2 2 Y/X 3.
/Y/X |Z|® exp(— | Z] )_—_—_TrdimN"/x = dim Ny, x .

From (13.135)—(13.137), we get (13.133).
To complete the proof of the last identity in (13.137), we only need to show that

0 0
-1, = = —
(13.138) 6o = o
or equivalently that
9fa _
(13.139) < %a ,ﬂa> =0.

This identity can be proved as before. We can also use (13.128) and (13.133), from
which (13.139) follows. a
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Since Atltr‘;w does not contain differentiation operators in the a or @ direction (it is
a curvature, i.e. a tensor), by (13.115),

H,Ny,x o
~1,2 F* c(fa ) 1,2 H,Ny,
(13.140) Au,cr.ﬁl:e"p{'v—\/a* Ao, P gelfa™ ) 1

ie., Z;:‘;lm is obtained from Ai’%n:l by the same conjugation as ZﬁT is obtained
from A2 ;. in Chapter 7. By (13.140), we get

(13141) Tr, [Nuexp{-A}}, _, +dadaN}] =

Tre [NH exp (_Zzlt’,%.,:l + dad&’ﬁ&)] .

By using the Lichnerowicz formula (12.39), Theorems 13.32 and 13.34, (13.141), and
by proceeding as in Chapter 9, it should now be clear that given u > 0, as T — +o0

(13.142) T [NH exp (—Ai’},“l 4 dadEiNXz)]dada

dada

By using (13.114) and the analogue of (13.113) for BY;!, we see that (13.142) is
equivalent to (13.105).

The connection 3V ™V ATRS)BAR)BA(T V) X)

We use the notation of Chapter 12. First we extend Definition 13.5.
Definition 18.85. Let 3V ATASIBAR™BAT ®VX) e the connection on
75 A(T3S) ® A(R?*) ® A(T*(©V X) along the fibres X over A,

(13.143) 3VTVATRSBAR™IBATOVX) _ Oy ATRSBARHBAT D X)
+ (VIXf X L TV (FEV, ) = A (FEW)PTX e foc(er)
+ 3 ((8YOFEW, (o) — (g o TX g Nvix ) pagpo
+ % (e(PTX*.@0) 4 V3 (N1, 00 £2) da
+ % (c(P™X.O0) 4 VE (17, OV §2) da.
In view of (12.45), (13.18), (13.143), we see that the obvious analogue of (13.19)
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is now
(13.144) 2V1rVA(TRS)®A(R2‘)®A(T‘(° DXy _ 3VWVA(TRS)®A(R2*)®A(T‘(° D x)
1 f Cc(€;
+ 3 (A Qenreg) elen)ele) + (A (FV)PTX &) —J%l

1 1
+ EC(Psz_(l,O))da + EC(Psz'(O’l))dE'

Our fibrewise trivialization of 73 A(T3S) ® A(R?*) ® A(T*(®VX) is now done with
respect to 3V7rVA(TRS)®A(R2*)®A(T'(° 1>x)
We define the operators 581”“ ML¥o as in (13.33), where the operator gi,T /u 18

replaced by

exp{ ! \/_(fHNy/x)} (AuT/u+dau (;;A) . +

d‘u(aA) —daddef) exp{—c(fHNY/x)} .
Ou u,T/u

The operators SBZ”#’,MZ?”O are defined as in (13.37), and 32’1{,9,M3’y° as in Defini-
tion 13.8.

Using the Lichnerowicz formula (12.39) and (13.144), we get an analogue of
Theorem 13.10. Theorem 13.11 remains formally unchanged, essentially because in
(13.143), PTX"_ vanishes on Ny, x r.

The algebraic structure of 583’y° asu — 0

As in Section 12.7, we briefly explain the behaviour of 583”"’ as u — 0. The
argument given in this Subsection will be used later in establlshmg estimates on
|0u’T/u — GTI. For 1 < j < 2¢', equation (13.51) is now

(13.145) {M}g ( PTY 7 4 _u__PNY/X Z) =

. 2
& n =L, —u (TW (S PTY Z),¢5) f* +u (PTV 2,6, da

N. 2
+u(P"Z,e;)da+0 (u2 (lPTYZ|2+ I Y;Z’ ))

and for 2¢' +1 < j < 2¢, equation (13.52) is formally unchanged. Equation (13.55) is
also unchanged.
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Equation (13.58) still holds. Equation (13.59) is now
(13.146) (va{,A(TﬁS)@A(RZ‘)@A(T"(O*l)x) _ 3V7r(,A(T§S)®A(R2‘)@A(T"(o'l)X))2

= % <A,261', €j> c(ei)c(ej) + % <AI2(f5’W, flé{’w)PTXl., PTXI.> fafﬂ

IS W OAFEPTX ) + % (AP 09 &) cle;)da
+ % <A/(.)PTXz,(0’1),ej> c(ej)dﬁ _ <A’(ff’W)PTXl,,PTXz.(1'°)> fada

_ <Al(fé{,W)PTX1.,PTXQ.(0,1)> foda + <PTX2.(1,O)’PTX2'(O,1)> dada.
Also observe that if Z,Z' € (TrX)y,, if U € TRY,

(A, (2)PNv1x 7'\ U) = (A, (PTY Z)PNv1x 7' U)
(13.147) = — (A, (PTY Z)U, PNvix Z)
= — (A, (U)PTY Z, PNvix 7"y .

Put
R2/3 — 2/3gmy (MTAS)BAR?)BA(T OV X)
13.14
( 3.1 8) _ 2/3VW:/A(T1;,S)®A(T*(O'1)X) .
Clearly,

(13.149) [3v7r“,A(T{“S)«§>A(R2*)@A(T'(O’l)x) ,sz;,A(T;tS)®A(R2‘)@A(T‘(O'I)X) _
3V1r(,A(T§S)®A(R2')@A(T*(O’I)X)] _ [3vn{‘,A(T§S)®A(T*(°'1)X),
27y ATRS)BAT OV X) _ 3VWQA(TQS)®A(T*(°'1>X)]
+ [3vw{,A(T§S)®A(T‘(°’1)X)’R2 _ R3]

+ [RS,2vr{‘,A(T§S)®A(T*(°'”'X) _ 3v7r(,A(TﬁS)®A(T*(°’1)X)] " [R3,R2 _ R3] .

Observe that since TX! and TX? are orthogonal,

(13.150) [R*,R* - R*] =0.

Now we explain how to calculate the limit of {u2¢u3V":’A(Tﬁs)é’A(Rz*)‘gA(T*(o'l)X )2

(Z, ei)z,b;l}i as u — 0. We use the analogue of (13.58). Again we claim that

no term in the right-hand side of (13.149) contributes to the limit. We already
saw this after (13.62) for the first term. To see that the second term does not
contribute, we use the expression (13.18) for 3V VATRS)BAT VX)) The term
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[OV”:/A(T&S)@A(T'(O'”X ), R2 — R3| does not contribute, since R2 — R3 only contains
Clifford variables in TX 2, and °V7X preserves TX2. As to the second term in the
right-hand side of (13.18), its bracket with R? — R? does not contribute to the limit,
because of the second identity in (1.35) and (7.27). The third term in the right-hand
side of (13.149) does not contribute to the limit, because A’(.) exchanges T'X' and
TXZ2

By Proposition 11.8, (11.61), (12.46), (13.63) and by (13.146)-(13.150), we find
that as u — 0,

»* * P~ -\ = (0, 3
(13.151) {u2¢3v1rvA(TRS)®A(R2 JBAT OV X)2( 61)1/1171}“ .
((*VIX2 — /—1PTY JTXPTY dadg — PTY A2 PTY) Z,¢;)
— da <APTY‘,PNy/x(1,0)_> _ da<APTY.’PNy/x(O,1)_> .

By (12.39), (13.151), we see that as u — 0, the operator M '¥° converges to .Mg:g?
given by

26
(13.152) MO% = (\/Tvpny,xei + Vpry,
1
1/ (xoTX2 _  /—TpTY TX pTY _ DTY 42 pTY TY pNvixZ .
+3 (V3 = V=IPTYITXPTY dada — PTY A5 PTY) (PTYZ 4 —== ) e
Y/X
1 < *(vTX2P ﬁ Z,PTY6i> _ % <i*vZ;X,2PTYZ’ PNY/X6i>
N Ny, x%
+ da <APTYe,-, %> + da <APTYe,-, -P—%>
c(APTY ¢;)

2
1
— T + %C(PNY/Xegl’O))da ﬁC(PNY/Xego‘l))d—)

dim X

+4* (V&% + 3 Tr [VTX?]) — dada

Using (13.145) and the considerations which follow, we see that to the right-hand
side of (13.65), we should add

(13.153) daVry v(Y) + daVryv* (y) .-
Together with the identities (13.66), there is now the obvious
(13.154) P (daViry v(y) + daViry,v* (y)) P =0.

Then by (13.152), (13.154), and by proceeding as in Section 13.7, we find that as
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u — 0,
(13.155)
dimY N 2
1 T |PNvixZ
ur == (55) [ T {NHGXP( e+ T2 gy [RTX)
Y

+ RANY1Y) | Tr [exp(—V™2)] .

By using Proposition 5.32, (13.155) is equivalent to
(13.156) Ou,r/u — O,

a result we already established in Section 12.7. The techniques of this Subsection will
be used in Section 13.14 to establish the second half of Theorem 6.18, i.e. to obtain
the estimate (6.84).

An estimate on |0, 7/, — 0},

By the previous considerations, we find that the obvious analogue of Theorem 13.14
remains true for the new operator §£3’y° In fact, we have verified that the arguments
of the proof of Theorem 13.14 apply verbatim to our new problem. In particular the
new operator P, is still given by (13.78).

Now we explain how to extend Theorem 13.16. First we redefine the connection
3V""'/A(Tﬁ5)<§A(R2*)@A(T*m,l)X)

va{,A(Tﬁs)éA(Rz‘

in formula (13.143) by keepmg
)®AT* >V X) ynchanged, and by scaling g% into £, g* into L,
da into €2, da into 22
Deﬁmtzon 13.56. Put

c(w;)

V2
— AT* OV X)B -
47 (Vi 2O 4 B, @ W))

_H,N-
+da _3_ c(g Y/X) W,H B C(TW(I,O))
oa "2 V2 2a62 2v2a

£
(13.157) €' =ad" +a By (ws) + 1V4 V4 u(y)
1

We define €' in a similar way.

Now we prove an analogue of Theorem 13.32, where we use the trivialization
associated to 3V ATRS)IBAR™IBAT Y X) jnstead of OV ATRSIBAT VX))  For

more details, we refer to Section 13.3.
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Theorem 13.37 — AsT — +o0,

(13.158) Frk/2AY k=Y/2F;! = Tt (y) + VT(ad ' + Véu(y))

" 1 2 gN Y S 3
+ @Y + —=0(|Z|" aNv/x +|Z|8¥ +|2|0° +|Z| + |Z]").
JT (12| 1Z| 12| 1Z] +1217)
Proof. Given Theorem 13.32, we proceed as in the proof of Theorem 13.16, where we
used Theorem 8.5. With respect to (13.125), we have an extra contribution given by

20 2¢
(13.159) 1 > [e(PTYZ)da, c(w)] Vi, + 5 D, c(w)e(PTYw;)da
20/ +1 20/ 41
_ gogP PN XTV L0 (gBLW g

a 24/2

Since Z € Ny, x R, the first two terms in (13.159) vanish identically. Our Theorem
now follows from Theorem 13.32. O

The obvious analogue of Theorem 13.34 is now.
Theorem 13.38 — The following identity holds

w_lpglllpw _ B1“/111

13.160 , ,
( ) Y 1pC py = B! .

Proof. Our Theorem follows immediately from Theorem 13.34. O

It should now be clear that the same methods as in Sections 13.1-13.12 show the
existence of C' > 0, § €]0, 1] such that for u €]0,1], T > 1,

(13.161) |0u,7/0 — 03] < %

13.14 A proof of the second half of Theorem 6.18

Now we will prove the second half of Theorem 6.18, i.e. we establish the existence
of C > 0, p > 0 such that for u €]0,1], T > 1,

(13.162) |6u,7/u — 01| < CuP.

In Section 12.7 and Subsection 13.13, we gave two proofs of the fact that for T' > 0,
asu — 0

(13.163) 01/ — O

We will show how to use the formalism of the present Section 13.13 to prove (13.162).
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By the previous arguments, it is clear that the analytic formalism of the whole
Chapter 13 is very close to the one of [19, Section 13]. To simplify the references, we
will prove, in the context of [19, Section 13], i.e. when S is a point, that there exist
C > 0, p > 0 such that for u €]0,1], T > 1,

(13.164) ‘Trs [NH exp(—A2 1 /u)] - / ® Tr, [ Neg exp(—B22)] ch(n, g")| < Cu’ .
Y
The extension of (13.164) to the case where S is arbitrary or to the proof of (13.162)

will then be essentially the same.

So now we assume for simplicity that S is a point. By (11.21), (13.2) and by
proceeding as in Chapter 9, we get for u €]0,1], T" > 1,

=~ -C
(13.165) "I‘rs [NHGu(Aﬁ,T/u)” < cexp (Zf) .
So to establish (13.164), we only need to show that

(13.166) "I‘rs [NHﬁu(Ain/u)] - ./y ® Trg [NH exp(——%Tz)] Ch(n, gn) < Cu*.

Take yo € Y. We replace F, (A2 /) bY F, (583’y°) as in [19, Section 13 g)] or in
(13.38). By [19, Theorem 13.32], we know that given M > 0, there exist C > 0,
C’ > 0, such that for u €]0,1], T > 1, we have the uniform bounds

sup  (1+|Zol)™ | Fu(£35)(Z0, Z0)| < C,
Zo€Ny;x R,y

|Zo| < =4T
(13.167) olelle] Fu(£3%)(z,2))| < C’
. sup S5 ’ sC.
2,2'€(ToX)yg » 8Z2pZ'

|PTYZ|,|PTYZr|SM
|PNyix z| |PMY/x 2| </

oo | <m’

By [19, eq. (13.143)] or by (13.98), if s € K} ,

Culs| T
(13.168) 5% | ggon < T 0,0
By [19, Theorem 13.28], we get for A € U, u €]0,1], T > Tp,

(13.169) H (A - 33;’;;?;9) o

<C+|A)2.

U,T,yo
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Using (13.168), (13.169), we obtain easily

-1 OrO 2
PEt (A gim)” P < 9&‘.@%& ,
uvayO
+ 350\ =1 e || Cu(l + |A|)?
(13.170) Pt (,\ - 32“;1{;') Pt < ==
‘U,T’yo
- -1 || Cu(l + |\])?
P (A - i) P < % .
u’TyyO
By [19, eq. (13.241)], for T' > Tp,
1 ~
(13.171) Fu(sm) = o /F B, () — £28)1a).

From (11.10), (13.171), we get

~ 0,0 Cu

yYo €+ < —
P F (EB ,T) P u’T’yo —_— T b

-119,0 Cu

13.172 & F, §£3vy° < ==
( ) ( ) wTyo ~ T
0,0 Cu
P E, (£3%) p¢* < =,

(3 ) uvTvyO - T

If s € K, has compact support, put

(13.173)  slg gyon = T1P*slo oo + TPV Z] 5o 1 o

20’ 2¢
+ |P3|o T0,0 T Z |V€«8|O Tyoo+ T Z |V€1p SlO T,y0,0
20/ 41
Observe that
13.174 0T o1 = lim |s;

( ) |'3|0,T,yo,1 uﬂlo |3|u,T,yo’1
Let KJ,~, K1~ be the obvious Hilbert spaces associated to the norms | |o ., o and
I |1,T,yo,

Ifk=0,1, ¥ € N, if s € K~ has compact support, put

2 2

(13.175) 1916, 7,00,6k) = D 12506,1:0,8

lo| <K’

Recall that for yo € W, u > 0, the operator 2% (which is attached here to the exact
sequence 0 — TY — T X|w — Ny,x — 0) has been described in Theorem 5.8. Also
G, 1 has been defined in (13.36).

Now we prove an analogue of Theorem 12.9. The whole point is that while in
Theorem 12.9, T =1, here T' > 1.
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Theorem 13.39 — There exist C > 0, p € N such that if v €]0,1], T > Tp, A € U,
if s € K~ has compact support,

(13.176) [(P¢ 3% P + P& 3% Pt (n — P& v peT)=1

+ ] - - 27 ’
PEELRPY — Gr @ Grr — Vi)s < Cu(l+ |AD? Islo,7,y0,(1,4) -

uyTvy01_ 1

Proof. Consider the operator Mg:g? in (13.152), with da = 0, da = 0. First, we claim
that

- - - - T |PNv/x Z|?
(13.177) ‘ (P5 LEWPE — P MY P — TS, — L_E___L> s

u,T,yo,—1

< Culslo,ryo,1,4) -
O

First we consider the contribution of Mi’,%? to (13.177). Recall that Migﬁ’ is given by
[19, eq. (13.87)], which corresponds to (13.40). Clearly for 1 < ¢ < 2¢/,

PNvixZ
(13.178)  %re;(uPTY Z + \/LTPNY/XZ) = Ore;(uPTY Z) + © <————-” | |) _

vT
From (13.178), we find that since °7e;(uPTY Z) € (TRY )y,

(13.179)
VT PNv/x07¢,(uPTY Z + %PNY/X Z) = O(u|PNvix 7)),

PTYOre,(uPTY Z 4 —== PNv/x Z) = Or¢;(0 +©(u PTY 7|+ — PNY/XZ) :
i 77 ) = 7e:(0) [P™ 2]+ 7= |

Also by [19, eq. (13.122)], for 2¢' +1 < i < 2¢,

2 Ny/xZ|2
0_, (. pTY Y BNy/x 7y — 0., (. pTY u?|P
(13.180) “rei(uP Y Z + \/TP Z)="1e;(uP" " Z)+0 ( T .

Moreover, in the considered trivialization of X,
20

(13.181) > VB eupryzy = AN/x.
20'+1
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Also by [19, Theorem 13.19] (which corresponds to Theorem 13.11)

2¢

- c

(13.182) PET Y —(°
2441 \/ﬁ

TSy, +uVTP* E c(e,‘)VfD

20/+1

eV, V(uPTY Z + % PNvixZ)PE =

VS, VWwPTY Z)P* + 0(u?PNv/x |Z)?),

Ny/x z

22’
Z( A ——zet)von V(uPTY Z + %PNY/XZ)PF = O(u|PNvixz|%),

g-___ 2 TY U DNy, x €_=_1: Ny, x 7|2 ﬂ
PS5V (uP Z+ﬁP Z)P 5 [PV 2T+ =

[\/-1%(19”\’/:(2), v V¢ V- (uPTY 2)| + 0(u?|PNv/x Z)?).

Ny/x z ¥ pNy/x z

From (13.179)-(13.182), we get (13.177) easily.
As in [19, eq. (12.74)] and in (12.60), put

- - - +
Lyy =P E3PPY | Lyp=PY E390P,

(13.183) _
Lus=PS &30P | L,4=P esmwpt’,

Also we define L’ ,,,, L , ., , , L, as in [19, eq. (12.97), (12.104)], so that
u,2/3% “u,2/3 u 4 u 4 4

"
Lu,2/3
b

u
//4 11/4
Luya=1L, ,+—=+—=.
u, u,4 U u2

Luy2/3 = Ly o3+
(13.184)

Observe that our SBS’y" corresponds to 5.133'%?/u in Chapter 12.

Take 0 € K, with compact support. Then [19, eq. (12.99)] is now

|L;’2(/\ - Lu,4)‘1L;,3a| <CT|(x— Lu,4)“1L;’3ol

u’TYyOY—l uaT7y0)0
< Cu|(A = Lu4) 'L, 50
(13.185) | u ) |’U.,Tyy071
< O+ W) |Lys0], 1o s

<C+A)%uloly 1,04
(in the first and last inequalities, we used the fact that scalar differential operators
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preserve £ and ;). The analogue of [19, eq. (12.100)] is

"
- u,3
! a(A = Lya) 12220 < CA+ A2 Ly a0, 7 o1
“1T1y07“1
C(l + I’\|)2u " 2
S _——T—— lL |u T/uy ,0 = C(l + IAI) u Ialu ,T,y0,0 ?
"
s2 - -
'—i—()\ - Lu,4) lL"u,Sa - |(’\ - L“’4) 1L:'-,3UIu,T,yo,O
u,T,yo,—1
<C I(/\ - Lu,4)_1L;,3alu,T,yo,1
C(1+ A)%u
< C(l + I)‘l)z |L‘I'-‘s3a|u,T,yo,—l - T |L/ 3 |u ,T,y0,0
< CA+ M) uloly, 1401 0

(13.186)

L/l LII .
u,2 (A _ Lu,4)-1 ( u,3 0,3) o
u u

CcT
2 |(’\ - Lu,4)_1(LZ,3 -

u1T1y010

!
L0'3)GIU,T,'£I0 ,—1

C(1+ [AD? -

—_ —u—_ l(A - Lu74) l(szs - 0”3)0|u’T’y0’1
C(1+|))?

N |(Ly s — 0,3)0|u,T,yo,—1
C(1+|A|)?

< - T l(LZ,3 - Lg,3)0|u,T,yo,0

< C(l + |’\|)2“ |(1 + lZl)alu,T,yo,O :

The analogue of [19, eq. (12.101)-(12.103)] is

//

II2 _ 2 L
_.1‘_’_0()\ L, 4)— 203,
u u

U,T,ym—l

T
@+ 1232 - Lug) " L g0
u1T7y0a0

< 2\1/2(y _ —1lrn
(13.187) <O+ 2P0 L) B0
<+ Ny |(1 + |Z|2)1/2L6’,30 o
u,T,y0,0

<C(+ IAI)”U (1 + IZI)UIu,T,yo,O

(to establish the third inequality, some manipulations on commutators similar to the
ones in [19, Proposition 11.34] are needed).
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The analogue of [19, eq. (12.107)] is

257

1%
L§5(A = Lua) 7 =22 (i® — LYy T L 50
u,T,yo,—l
C'u, _ LII
(A= Ly 4) ()‘ L”/4) 1Lo 30
u,T,yo,1
(13.188) 24 | Lia m -1
. < CA+|A]) T T’()\ — L) Lo 30
u,T,yo,—l
C(1 + |A])%u? 4 _
S——71z |Lua(? = L) ' Lo a0, 1o

< C(1 + |A\|)?u?

T2
The analogue of [19, eq. (12.108)] is

|LG 5(A = Lu,a) 'Ly, 4(Au? — Ly y) ™ Lg 30|

91w, 7,0.0 -

u T,yO,“l

< C’u A—L _1L/ A 2 " —1L//

(13.189) |( ud) " Lua(® = L) 0’3a|u,T,yo,1
C(l + [AD?u? 1

< T |L;’4(Au Lm4) Ly 0,3 'u,T,yo,—l :

If r € Kt has compact support, put
2¢
2 2
(13.190) 7122 o = 1712 Tgor0 + D I VeiSla 1go.0 -
1
Then
(13.191) I Tyo1 S 1Tl mgo,1 -
Let | |, 1y, —1 be the corresponding dual norm. From (13.189)-(13.191), we obtain
|LG 2(A = Lu,a) " Ly, 4 (M® — LZ/,4)_1L8’3UIu,T,O,—1
1 2,,2

< ﬂi&}‘_ |L; 4()\u L"'4)_1L T .

(13.192) T e
2 mn \—1
< CA+A)*u? |(w® — L) T L g I,,Tyo,
C(1+ |\])?u? C(1 + |\])?u?
< ——T—_ |J|u,T,yo,1 = T |U|U,T,yo,1 :

y (13.188)-(13.192), we get

-

l/

(13.193)

2
- 0(1 + [A)2u

T

- L5002 ~ L) L ) o

u,T,yo,—1

|a|u)T’y011
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Also
|( 2()\u —Lm4) 1L6'3+L6/2( o. —IL”3)0|u,T,yo,—1
< CT'((/\U Lm4)—- + (L/// )-— ) ”3U|uTy00
(13.194)
< T3 |(|)‘|u +T?u |Z|)L33‘7|uTyo,

u|A|
< Cu ( l Iu ,T,y0,0 + IZUIu T,yo,O) :

By (13.177), (13.185)—(13.187), (13.193)—(13.194), we get (13.176). The proof of our

Theorem is completed. O
Using (13.167) and Theorem 13.39, we proceed as in [19, Sections 11 p) and 13 q)]

to get (13.166).

The proof of the second half of Theorem 6.18 is completed. O
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14. A proof of Theorem 0.2

In this Chapter we establish Theorem 0.2. The proof is much simpler than the
corresponding proof of Theorem 0.1. At a formal level, it simply consists in exchanging
the role of the parameters u and T in the proof of Theorem 0.1. Because of the formal
similarities, we simply sketch the main steps in the proof of Theorem 0.2, leaving the
details to the reader.

The Chapter is organized as follows. In Section 14.1 we establish an identity

Z = ®(07'° + 86"), which depends on parameters €, A,Tp with 0 < e < 1 <

A < 400, 1 < Tp. In Section 14.2, we briefly study the asymptotics of the I} 0 In
Section 14.3, we show that the divergences of the I;? add up to 0 in PS/P5°, Finally
in Section 14.4, we prove Theorem 0.2.

In this Chapter, we use the notations of Chapters 3, 4, 6. Recall that H(X,§|x) ~
H(Y,nyy) is a vector bundle on S. Also, here, we assume that for i > 1, 0 < k < m,
H'(X, &k x) = 0. This implies that for ¢ > 1, H*(Y,ny) = 0. Also the HO(X, &kx)
(0 < k < m) are holomorphic vector bundles on S.

14.1 A closed form on R} x R}
Put
(14.1) Bl 1= Auru-

Let 3, r be the form on R} x R} x §

(14.2)

aT du
T = d Tr, [N(‘;T)z exp(—B'zT)] + — Tr, [(N(‘;T)z — Nn) exp(—B{fT)] .

Using Theorem 4.1, we obtain the obvious analogue of Theorem 4.3, i.e. a formula of
the type

(14.3) du, T8y = 00u + 00, 1

SOCIETE MATHEMATIQUE DE FRANCE



260 A PROOF OF THEOREM 0.2

Let I' = I'c 4,1, be the contour considered in Section 4.3. By (14.3), we obtain the
obvious analogue of Theorem 4.5, i.e.

(14.4) / B =0y +08¢.
r
For 1 <k <4, put
(14.5) 0 = / o4 .
Tk

Then (14.4) is equivalent to

4 —
(14.6) > L =®(By° + 857).

k=1

We will make A — +o00, Ty — 400, € — 0 in this order in identity (14.6). We will
just sketch the study of the behaviour of the terms I}° (1 < k < 4), without studying
in detail the right-hand side of (14.6).

14.2 The asymptotics of the I’s

The term 1/°

We have
10 4 \% 2 du
(14.7) e = ® Trs [(N(uT)z - NH)eXP(—Bu,To)] "
€
a) A— +oo

By Theorem 6.6, since H(X,§|x) is concentrated in degree 0,

10 11 oo v 12 du
(148) 1P Il = / & T, [(Mrya — Ne) exp(=B2g,)] =
£
ﬂ) TO — +00
Clearly
(14.9) {B2;: 1 = 2(TyDX +V)2.

Over S, we have a holomorphic complex of Hermitian vector bundles

(14.10) (#,v): 0 = H'(X,&m) — - — HO(X, &) — 0,
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whose pointwise homology is concentrated in degree 0. Let v¥** be the adjoint of v
with respect to the L, Hermitian metric on % induced by (2.22). Put

(14.11) V¥ = v 4 0%,
Using the identification % ~ ker DX, we get
(14.12) V¥ — pker DXy pker D

Let V# be the holomorphic Hermitian connection on ¥. By proceeding as in Chapter 9
(in a much simpler situation), we find that for a given u > 0, as T' — +o0,

(14.13)  Trs [(N(‘;T)z — Nu)exp(—B2g, )] — — T, [NH exp(— (V¥ + uV)2] .

Since for 1 < ¢ < dimX, 0 < k£ < m, Hi(X,§k|X) = 0, the spectral sequence

associated to the complex (F, 5X +v) and the partial grading by N{f degenerates at
FE5. In particular

(14.14) H(X,&x) ~ ket V* ~ H (%,v).
By proceeding as in [19, Section 9], one derives easily from (14.13), (14.14) that as
TO - +OO,

— the spectrum of Ty DX +V converges to 00 and to the spectrum of V¥ (counted
with multiplicity).

— The nonzero eigenvalues of TyDX + V stay away from 0.

These two facts allow us to establish the required uniformity in the integral in the
right-hand side of (14.8). Using (14.13), as Ty — +o0,

+o0
(14.15) RNy _/ o, [NH exp(— (V¥ + uv)z)] %u‘

v €—0

Put

ch(%,g%) = Y (1)} ch(HO(X, &), g7 X)),
(14.16) =0
ch'(%, g%) = 3 (=1)% ch(H°(X, &x ), g™ X &01%))

i=0
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Clearly
(14.17) I2 — ch'(%, g%)log(e) —

P = - /01 @ (Tra [Naz exp(~(V* + uV)?)] = T, [Nas exp(~97)] ) 2

du

o0
- / P Tr, [NH exp(—(V¥* + uV)2)]
1 u

§) Evaluation of I{3

We have an exact sequence of holomorphic vector bundles on S

(14.18) 0 — HYX,¢) — ... — H(X, &) — H°(%,v) — 0.

Clearly the H°(X,¢;) (0 < i < m), whose direct sum is ¥, are equipped with the Lo

Hermitian metric induced by (2.22). Also since H%(%,v) ~ ker V¥, H%(%,v) is also

equipped with a Hermitian metric g#° ().

Let ch((%€, g%), (H (%, g%),gH(%’gw))) € P5/PS0 be the Bott-Chern class of [13,
Section 1f)], such that

(14.19) 2%%&‘((%, 9%), (H (%, g%), g7 #*:9)) =
ch(H (%, g%), g7 (*9™))) — ch(3, g%) .
Proposition 14.1 — The following identity holds

(14.20)
13 =~ (ch (3, 9%), (H(3,0), g7)) + (1) o' (3¢,9%)) in P/ P50,

Proof. By using the transgression formulas of [13, Theorem 1.15], one finds easily
that %(—2[{3 is just the right-hand side of (14.19). By deforming the complex
(14.18) to a split complex over P! as in [13, Section 1f)], and using the axiomatic
characterization of Bott-Chern classes in [13, Theorem 1.29] as in [13, Corollary 1.30],
we get (14.20). O

The term 10

Clearly

dr

To
(14.21) P =- /1 3 Tr, [N(‘fq:r)z exp(—Bf,T)] 7
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a) A— 400

By Theorem 6.6,

To
H(X,6x),2\] dT
(14.22) Iéo N Iél — _/ ® Tr, [Pl/TN\)/{PI/T exp (_vl/(T &) )] T -
1

B) To— +oo
Take s € E. By (6.12)
(14.23) (Puyrs, Pyrs), g = (PuyzrTNs, ByrTNes) .

Since H(X,& x) ~ H(%,v), we can represent any class in H(X,§ x) by s € ker VX,
so that s € Q°(X, &x), 55 = 0, v** = 0. From (14.23), we get

(1424) <P1/TS,P1/TS>+ = <ﬁ1/TS,}31/TS> .
Let Py be the orthogonal projection operator from E on ker V¥, Using the arguments

after (14.14), we find easily that as T' — +o0, ﬁl/T =P +@(-,_}—,). In particular if s is
taken as before,

1
(14.25) <P1/TS, P1/T5>% = (s,s) + O(T)'

From (14.25), we find that as T — +o0,

H(X, 1
(14.26) g9 /(T €x) _ gH(w) | 0(=),
and so
(14.27) THXEx) — yH#) | @(_11:).

By (14.22), (14.27), we find that as To — +o0,

H(X’£|X)>2

+
14.28 I — 12 =— °°<I>Tr Py NEP, -V ar
(14.28) 2 2 . s |41/ TNV £y/T€XP |\~ V1

T
v) €—0

I'? remains constant and equal to IZ3.
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§) Evaluation of I3

Proposition 14.2 — The following identity holds
(14.29) 2 = ich (H(X, § X),gH(X"E'X),gH(%’”)) in PS/PSO.

Proof. Since H(X,§|x) is concentrated is degree 0,

To
H(X.£x),2\] dT
(14.30) Iél = —/1 ® T, [P1/TNHP1/Texp (—VI/T 1x )] T
By (6.49)
T H(X,
(14.31) I} = lch (H( X, §x), g4, gHO s.x)) .

Using (14.26), (14.28), (14.31), we get (14.29).

The term I

This term was already studied in Section 6.4.

The term I

We have the identity

To dT

(14.32) °=[ e, [N(‘gT)z exp(— B2y ] e
1 ' T
a) A— +oo
I? remains constant and equal to I}!.
B To— +oo
By proceeding as in (14.13), we find that as Tp — +o0,
+o00
(14.33) I} 12 = f o T, [N(‘;_r)2 exp(-B;?T)] d?T.
1

7) €—0
Clearly

Foo dT
(14.34) I? = ® Tr, [Ny» exp(—A%.,)] R
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By [14, eq. (2.126)], we know that given ¢ € [0, 1], there are forms CY, (¢), C¥ (¢) in
PS, depending smoothly on ¢, such that as T — 0,

1
(14.35) ® Tr, [N exp(—A%.)] = ﬁcl’l (€) + CY (e) + 0.(T?)
and 0.(T?) is uniform in € € [0, 1]. Moreover by [14, Definition 2.25],

CY\(e) = f “;—de(Tx,g”)Mrs [exp(—C2)]

(14.36) x “m

CY (e) = / (dim X Td(TX) — Td'(T X)) ch() in PS/PSP.
X

In particular the classes of CY,(¢), C¥ (¢) in P®/P5° do not depend on «.

Also by proceeding as in (14.13), one can prove that for € € [0,1], as T — o0,
the integrand in (14.34) is uniformly bounded by O(7). Using (14.35), we find that
ase — 0

(14.37) I2 - %Cl’l(a)-él; + C§ () log(e) — Ij® =

1 CcY,(0) dT
/(; ] (Trs [N'I‘w,z exp(—A%,o)] - ,112 - O(Y(O)) —IT
oo \% 2 ar ;v
+ ) Q'I\rs [NTz exp(—AT’o)] —jT - EC—I(O) .
§) Evaluation of I3
Theorem 14.3 — The following identity holds
(14.38) 3=1 {_ S (DT WY, g%) +1'"(1)C(‘,’(0)} in PS/PSO,
k=0
Proof. The identity (14.38) follows from (2.50) and (14.37). a

The right-hand side of (14.6)
As in Sections 6.7 and 6.8, one establishes the equality

4
(14.39) > Lt =Dy +85y).
1

Of course, one needs to study in detail the right-hand side of (14.6). The situation
being much simpler than in Chapter 6, we leave the details to the reader.
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14.3 Matching the divergences

We will only check that the divergences of the I)’s vanish in PS/PS0. When
A — +oo there are no divergences (including in (6.54)), because H(X,¢x) is
concentrated in degree 0. When Ty — 400, no divergence appears. When ¢ — 0,
we get the diverging terms in (14.17), (6.55), (14.37) which refer to I'2, I{? and I

(14.40) (— b’ (%, 9%) + CY () — DY) log(e) + (DY, — C‘_’l(s))gi2 :

O
By (2.51), (6.14), (14.36), using the fact that w' is closed, (14.40) vanishes in
PS/pPSo.

14.4 Proof of Theorem 0.2
By (6.56), (14.20), (14.29), (14.38), the identity (14.39) can be written in the form

(14.41) - Jch ((%, 9%), (H(3,v),g"*))) +
ich (H(X, £|x),g”(x’5"‘),g”("'”)) +
ITWY,6%) — 1Y (-1)FT(w", g*) + 11" (1)(— ch' (%, %)
k=0

+CY(0)— DY) =0in PS/PS0,

As we saw in (14.40), the term after V(1) in (14.41) vanishes in P°/PS9. Also by
the universality of Bott-Chern classes [13, Section 1f)], using the notation in (0.11),
one has the identity

(14.42) ch ((9,9%), (H(3,v),g7®)) — ch (H(X, §x), g7 Xx), gH ) )
=ch (3{, g‘?’f) in PS/PS0.

From (14.41), (14.42), we get (0.13).
The proof of Theorem 0.2 is completed. O
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15. A new derivation of the asymptotics of the
generalized supertraces associated to a short
exact sequence

In [6], to a short exact sequence 0 — L — M — N — 0 of holomorphic
Hermitian vector bundles, we associated a superconnection 37, whose curvature 9]3%
was calculated in [6, Theorem 3.10] and in Theorem 5.6. Also in [6, Theorem 7.7],
we established (5.22) in Theorem 5.11, by calculating explicitly the generalized
supertraces as infinite determinants.

In [19, Section 14|, we briefly sketched another derivation of Theorem 5.11 by
showing that as T — +oo, the operator @2, defined in (5.16) can be written as a
(2,2) matrix whose asymptotic structure is closely related to the matrix structure of
583’,1{,9 described in Theorem 13.14 (with £+ = 0). Still in [19, Section 14], we did not
use the fact that @2 is itself the square of the superconnection @7 introduced in
(5.15). Moreover the proof of [19, Section 14] was purely computational.

In this Chapter, we come back again to the problem considered in [6] and in [19,
Section 14]. More precisely, we show that if V and W are the total spaces of M and
L,and ifi: W — V is the corresponding embedding, then the superconnection B is
just a special case of A, 7. The superconnection @ is just the analogue of ZI’ VT
and @7 is the superconnection ;1'1’ JT in the trivialization of Section 13.9. Then we
show that the asymptotics of @2., obtained in [19, Section 14] is a consequence of
Theorems 13.16 and 13.17.

In other words, it should now be clear that the main result of [19, Section 14]
should be thought of as the prototype of some of the results we proved in the context

of a general family of immersions, for the simplest such family, which is the embedding
of L in M.

This Chapter is organized as follows. In Section 15.1, we introduce the family of
immersions i = L — M. In Section 15.2, we construct the superconnections #B7, and
we relate the conjugate superconnections €7 and Dt to A; 7.

We use the assumptions and notation of Chapter 5.
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15.1 A family of immersions

Let V, W be the total spaces of M,L and let ny: V — B, mw : W — B be the
obvious projections. Then we have the diagram

(15.1) L—W

| I

M—V—/—8B
which is the obvious analogue of (3.1). Moreover, with the notation of Section 3.2,
(15.2) Nw,v = Nyw .

Let z be the generic point of M. Then the Koszul complex (73, AN *,\/—-_lz'j(z))
provides a resolution of the sheaf 7,0y, and restricts fibrewise to a resolution of
1.0L.

Now we use the notation of Chapter 3, with £ = 7j,AN*, v = \/—_1ij(z). In
particular, if b € B, Ej denotes the vector space of smooth sections of 73, (A(T/I_*) ®
A(N*)) along the fibre Mg p, and F} denotes the vector space of smooth sections of
73y A(L") on Ly .

Let THV be the horizontal subbundle of TV associated to the connection VM.
Using the splitting TV = THV & m}, M, we get the identification

(15.3) A(TRV) = (A(TRB) ® A(MR)) -
Put
(15.4) wY =80 |z[3, .

Let wM the Kihler form along the fibres of Mr. Using (15.3), we see that w™ can
be identified to a real (1,1) form on V. Then a simple computation shows that

M, i(RMz,E)M ‘
2

From (15.5), we see that w" restricts to the Kshler form w™ along the fibres M, and
moreover THV is exactly the orthogonal bundle to TV with respect to w".
Put

(15.5) Ww=w

(15.6) wW =Y.
Then by (15.4),

(15.7) wW =8|z .
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Let THW be the horizontal subbundle of TW associated to VL. Using the splitting
TW = THW @ n}y, L, we get the identification
(15.8) ATEW) = 73 (AT B) ® A(LR)) -
Then we have the analogue of (15.5), i.e.

L, iR T)y

(15.9) WV =w 5

Now to the previous datas on V or W, we can construct the objects which we
considered in Chapter 3. In particular if A, A’ € TrB,Z € MR,

(15.10) TV (AEY A'HVY = RM(A,A)Z,

the other components of TV vanishing identically. Also £ = 7y, AN* is naturally
equipped with a Hermitian metric, and the adjoint v* of v = \/—1i;(,) is given by

(15.11) v =—vV-1jZ)* A .
If V=v+v*if Z =2+ 7%, then, with the notation of Section 2.2,
ie(Z)
15.12 V = .
( ) 7

15.2 The superconnection B

Let DM = EM + '5M* be the obvious Dirac operator acting on F along the fibres
of B. In view of (2.31), (4.1), (15.10), the analogue of A, 7, which we note by ®Br,
is given by
(15.13) Br = DM + VTV + VF — oRYZ)

2v2

which fits with (5.7).
If U € TgB, let UH:Ne/m be defined as in Definition 1.8. Then one finds easily
that on W,

(15.14) UHNum = A(U)Z.

If we extend U"Nv/x to the whole V by formula (7.30), where v is taken to be 1, we
get

(15.15) UHNum = A(UYPEZ.
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Let V be the trivial connection along the fibres of M. Using (11.32), (15.10), we see
that along the fibres of M, we have the identity of connections

(15.16) Ly (MTRBI®AM)) — v 4 1 <RMZ’ ).

By (15.16), we find that the parallel transport operator 7 from PLZ to Z along
t € [0,1] — PLZ + tPN Z with respect to V™ ATrRB)®AMY)) ig given by

(15.17) T =exp (3 (RMPNZ,P"Z)) .
By (11.33), (13.18), (15.15), formula (15.17) also gives the parallel transport operator
with respect to 2V™ (AMTRB)I®AM™) ang 3y (MTRB)BAM™))

By (7.35), (15.15), the analogue of Avlyﬁ is given by

(15.18) @r = exp (%) BT exp (—C(AT};LZ)) .

Now in view of (15.17), we see that when trivializing 7 A(M") by parallel transport
with respect to 3V7™V(ATRS)I®AMY) in the directions of N (which are normal to L),
9 is replaced by @D given by

(15.19) Dr =exp (-2 (RMPNZ,PLZ))6rexp (L (RMPNZ,PLZ)) .
Equivalently,

c(APLZ)

(15.20) D7 = exp ( 7

- 2(RMPNZ, PLZ))
Bt exp (—C—(A—\I;;-Z—) + 1 (RMPNZ, PLZ>) .
As the notation indicates, formulas (15.18), (15.20) are compatible with (5.15).
From (15.20), we see that when defining Frr as in (8.8), the expansion as T' — +o00
of Fr@rFp ! is given by the right-hand side of (13.81).
The analogue of B} is the superconnection on F'

RNZ)

15.21 @ — pN 4 vr _ B2D)

( ) 1 2\/5

Then if € is given by the analogue of (13.80), by Theorem 13.186,
(15.22) v 'pCpy = BY .

Note that in [19, Theorem 14.6], we calculated directly the expansion of @2 as
T — +o00, by using (5.16).

In retrospect, formula (5.16) for @2. and the asymptotic result of [19, Section 14]
appear just as special cases of results we proved in full generality for families of
immersions.
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Remark 15.1. By (15.4), the form w" is 89 exact. If we use the notation in (7.23),
we thus find that even though in general, THW # TH Viw,
(15.23) p(W¥]) =0.

This gives a (sophisticate) confirmation to the possibility (exploited in [6]) of
deforming the complex (5.1) over P! to a split situation, where THW = THV}y .
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