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EIGENVALUES OF SUMS OF HERMITIAN MATRICES

[after A. Klyachko]

by William FULTON

Séminaire BOURBAKI

50eme annee, 1997-98, n° 845

Juin 1998

STATEMENT OF THE RESULTS

In its simplest form, the problem solved by Klyachko [K] is to describe the eigenvalues
of the sum A + B of two Hermitian n x n matrices in terms of the eigenvalues of A and
B. List the eigenvalues of a Hermitian matrix H in decreasing order: A(H) : ~l (H) >
~2(H) > ... > Write A(A) : ... > an, A(B) : /~i > ... > let

C = A + B, and A(C) : ~yl > ~ ~ ~ > Of course one always has the trace identity

The problem arose from questions in solid mechanics, where eigenvalues of symmetric
matrices determine shapes of ellipsoids. The inequality ~yl  ai + /?i was known more
than a century ago. In 1912 Weyl [We] proved the inequalities

Weyl was interested in a generalization to compact selfadjoint operators on a Hilbert

space. The inequalities in this case can be deduced easily from the finite-dimensional
case. For this and more of the early history of the subject, see [Zw].

For n = 2, these inequalities ai +  ai + 132, and 72  a2 + ,Q~ are easily
seen to be sufficient to characterize the possible eigenvalues of the sum.

This problem was featured in Gelfand’s seminar. Berezin and Gelfand [B-G] showed
that (~yl, ... , is in the convex hull of the points (ai ... an for w E 6n.
V. Lidskii [Ll] gave a more elementary proof of this, and Wielandt [Wi] proved this was
equivalent to the following inequalities
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for any subset I of ~l, n~ _ ~1, 2, ..., n} of cardinality r. Of course one has similar

inequalities by interchanging a and ~3. The case when I = ~l, r] had been given in 1949
by K. Fan.

For n = 3, there are six inequalities coming from Weyl, and five from Lidskii and
Wielandt. For a complete answer in this case, one more inequality is needed:

Other inequalities were found (see [AM], and [M-0] for related history and references),
all having the form

where I, J, and K are certain subsets of [1, n] of the same cardinality. A. Horn [H] gave
several inequalities of this type, including the complete set for n = 3 and n = 4. Horn

conjectured that necessary and sufficient conditions could be given by such inequalities,
where the subsets T7 of triples (I, J, K) of cardinality r in [1, n] that occur can be given
by induction on r. For this, write I = {i1  i2  ...  ir}, and similarly for J and K.
When r = 1, (I, J, K) is in Tï whenever i1 + ji = ki + 1. For r > 1, (I, J, K) is in T7
whenever

and, for all p with 1  p  r - 1 and all (U, V, W ) in T;,

This conjecture of Horn is still open, although we will see that something rather close to
it has been proved.
The problem is to describe which triples (I, J, K) determine inequalities, and then to

show that the inequalities obtained characterize the possible eigenvalues. The answer we
discuss is in terms of Schubert calculus. To describe this, we need to fix some notation. To

any subset J of [1, n] of cardinality r, and any complete flag F, in an n-dimensional vector
space E, there is a Schubert variety in the Grassmann variety Gr(r, E) of r-dimensional

subspaces of E:

(Here ) ) denotes cardinality.) This is the closure of the Schubert defined

by replacing the inequalities in the second description by equalities. We denote the

cohomology class of this Schubert variety (which is independent of the flag) by ~,~.
We also need a dual notation. For any subset I of ~l, n~, denote by I ~ the subset

(n + 1 - i i E l~. Set aI = The relation between these notations and the more



familiar notation for these Schubert classes using partitions is given by the equation

with A = (ir - r, ir_1- (r - 1), ..., il -1), and J = I". The partition a is identified
with a Young diagram in an r by n - r rectangle, which is outlined by a path of n steps

(horizontal and vertical) between the southwest and northeast corners of the rectangle.
The set I lists the vertical steps in drawing the segmented path from bottom to top, and
J = I" lists the vertical steps in drawing it from top to bottom. For example if n = 5,
r = 2, and / = {2, 5}, then A = (3,1); the Young diagram with 3 boxes in the first row
and 1 box in the second is obtained by moving a first step to the right, a second step
up, third and fourth steps to the right, and the fifth step up. And 7~ == {1,4}, which

prescribes the reverse trip along this path.
The codimension of ~1 is the number 1,B1 of boxes in A, which is i - ~r21), where

r is the cardinality of I. The classes 7~ form a basis for the cohomology ring of the
Grassmann variety, as I varies over subsets of [1, n] of cardinality r. (The classes ~1 and
03C3I are dual by the intersection pairing.) We say that a class uK occurs in QJ if the

expansion of the product uJ contains 7~ with a nonzero coefficient.

Theorem (Klyachko [K]).- The inequalities for those (I, J, K) of cardinality r

for which 03C3K occurs in 03C3J, for 1  r  n -1, are necessary and sufficient for the
existence of Hermitian operators A and Band C = A + B having given eigenvalues a, fl,
a,nd ~y.

Although it is stated in [K] that these inequalities are independent, P. Belkale has

recently shown that all the inequalities for which uK occurs with multiplicity greater
than 1 in uI . uJ are redundant.

It is not hard to see that all the inequalities discussed at the beginning are among those
in the theorem. For example, Weyl’s are given by I = {i}, J = { j}, K = {i + ~ - 1},
which occur because general linear spaces of codimensions z 2014 1 and j -1 meet in a linear

space of codimension i + j - 2 in if i + j  n - 1. Similarly, the Lidskii-Wielandt

equations follow from the fact that = 1, so = The last inequality for
n = 3, with 1= J = {1, 3} and K = {2, 3} comes from the unique nontrivial intersection
in Gr(2, 3) ^--’ 

Another inequality that follows from Schubert calculus (see Freede and Thompson [T-
F]) is for a triple of the form (I, J, K) of cardinality r with kt = it + jt - t for 1  t  r;

here I and J can be arbitrary, provided ir + jr  n + r.

Elementary facts from Schubert calculus imply some symmetries on the triples (I, J, K)
which give inequalities in the theorem, besides the obvious symmetry that (J, I, K) occurs
when (I , J, K) occurs. Since (I, J, K) occurs exactly when is a nonzero multiple
of the class of a point, we see that (I, J, K) occurs exactly when (KV, J, IV) occurs. The
standard isomorphism of Gr(r, n) with Gr(n - r, n) takes the class of QI to where



I~ denotes the complement of I. Therefore (I, J, K) occurs exactly when Kw)
occurs.

We write a for the sequence al,... an, and similarly for ~3 There are some
obvious properties for triples (a, (3, y) to occur as eigenvalues of Hermitian matrices A,
B, and A + B:

(i) ~y) occurs if and only if (a + + + a + b) occurs, for any constants a
and b.

(ii) (a, ~i, ~y) occurs if and only if a, ~y) occurs.
(iii) (a, occurs if and only if w,,~v) occurs, where av = (-an, ..., -al).
(iv) (a, ~3, ~y) occurs if and only if occurs, for any positive N.

These properties are seen: (i) by adding scalar matrices to A and B; (ii) by interchanging
A and B; (iii) from the fact A(~f)~; (iv) by multiplying each of the matrices
by N.

Suppose a, /3, and, are all integral, i.e., all their entries are integers. They are then
highest weights for irreducible representations V", Vp, and V, of GLn(C) or SLn(C). It is

a basic problem of representation theory to determine when V, is contained in the tensor
product representation V" 0 V~. In this case the first three properties in the above list
are also true (with a and b integers in (i)); (iii) follows from the fact that V~~ is the dual
representation to V~. Property (iv) on this list, for N an integer, however, is an open
question:

Saturation Problem.- If occurs in ® for some positive integer N, does
it follow that V y occurs in V" ® V ~ 2

Theorem (Klyachko [K]).- occurs in VN" ® for some positive integer N if
and only if the inequality is satisfied for those (I, J, K) of cardinality r for which
~K occurs in ~1 ~ for 1  r  r~ -1.

The problem of which V7 is contained in V" 0 V~ is well known to be related to

Schubert calculus, but this is quite a different relation from that occurring in Klyachko’s
theorem. For this, using (i), one may assume all the integers occurring are nonnegative,
so they correspond to partitions of lengths at most n. Then V, occurs in V" 0 Vp if

and only if, for any integer m that is at least as large as the largest integer occurring in
a, /?, or 03B3, the Schubert class corresponding to the partition 03B3 occurs in the product of
the Schubert class corresponding to a with that corresponding to /?, in the Grassmann

variety Gr(n, n + m).
The multiplicity with which this occurs is the Littlewood-Richardson coefficient cd,8’ for

which there are many combinatorial formulas. The Saturation Problem asks if 

for some positive N implies that 0. A. Buch has written a computer program
which has verified that there is no counterexample to the Saturation Problem whenever
N ~ 68. (The converse, that 0 implies 0 for all positive N, is an easy



consequence of the original Littlewood-Richardson rule for computing these coefficients;
in fact, the triples for which 0 form a semigroup [Z].) By Klyachko’s
theorem, the Saturation Problem is equivalent to the assertion that the nonvanishing of

when the three partitions have length at most n, is controlled by Schubert calculus in

smaller Grassmannians Gr(r, n). Note that Horn’s conjecture and an affirmative solution
to the Saturation Problem imply an inductive rule for determining when a Littlewood-

Richardson coefficient is nonzero. For an interesting discussion of this Saturation Problem,

including its relation to Klyachko’s work, and its failure for other classical groups, see [Z].
In fact, Klyachko’s theorems, together with a positive solution to the Saturation Prob-

lem, imply a strong version of Horn’s conjecture: a triple (I, J, K) of subsets of cardinality
r of [1, n] is in his set TT if and only if 7~ occurs in a1 . cr~.
The theorems generalize to sums of more than two Hermitian matrices, and to ten-

sor products of more than two representations. At the same time we will rephrase the

theorems, which will make the proofs easier. Fix positive integers n and m > 3. For

1  s  m, let A~ = (ai > ~ ~ ~ > be a decreasing sequence of n real numbers. For

any m-tuple I1, ..., I’~ of subsets of the same cardinality r of [1, n], with 1  r  ~ - 1,
consider the following inequality:

We say that conditions ( * ) are satisfied if the inequality is valid whenever

....’ is a nonzero multiple of the class (the class of a point) in the cohomology
of Gr(r,~n). In fact, it is an easy consequence of Pieri’s formula for multiplying a Schu-
bert class by a hyperplane, that conditions (*) imply the inequality (* j1 ", jm ) whenever

..... 03C3Im is not zero.

Theorem 1 (Klyachko).- There are Hermitian n x n matrices Hl, ..., Hm with ~(Hs) _
~s for all s and = c 1 a scalar if and only if conditions (*) are satisfied.

Theorem 2 (Klyachko).- Suppose each ~i is an integer (or a rational number). There

is a positive integer N such that the representation ® ’ ’ ’ ® contains the trivial

representation of SLn(C) if and only if conditions (*) are satisfied.

Theorem 3 (Belkale).- The conditions (*) follow from the subset of inequalities (*j1",jm~
for which ..... is equal to the class 

Theorem 1 is equivalent to the following assertion: given weakly decreasing n-tuples
~c and as, 1  s  m, with = ~s ~~ ~i, there are Hermitian matrices Hs with

= As and H = ~; HS having A(H) = ~, if and only if



for every 1  r  n- l, and subsets Il, ..., I’~ and K of [1, n] of cardinality r such that cr~
occurs in see this, apply Theorem 1 to the (m + I)-tuple (-H~, ... , H),
and the subsets ... , Conversely, if ~S 1 Hs - cl, apply this to

(-Hl, ... , -Hm-1) and H = Hm - cl to recover Theorem 1.

Similarly, Theorem 2 is equivalent to the claim that, given integral (or rational) weakly
decreasing n-tuples  and 03BBs, 1  s  m, with = 03A3s03A3i03BBsi, the representation VN
is contained in VNaI ~ ~ ~ ~ (~) for some positive integer N if and only if the same
conditions hold. When m = 2, we recover the earlier theorems. Note that these versions
of the theorems are true for m > 1.

We do not know if the inequalities that appear in Theorem 3 are independent. It may

also be remarked that the saturation problem is open for more than three representations,
i.e., if the power N can be replaced by N = 1 in the preceding assertion. This does not
seem to follow from the Saturation Problem (the case where m = 2).

It may be worth pointing out that there are no similar theorems for sums of arbitrary
matrices. For example, if A = ( o and B = ( aE o ), then A and B have eigenvalues
~E, while C = A + B has eigenvalues ~a, unrelated to the eigenvalues of A and B. On
the other hand, the theorems can be applied to the singular values of a general matrix A,
which are the eigenvalues of the matrix this is because these values, taken with

positive and negative sign, are the eigenvalues of the matrix ( A* o ).
In the next section we present complete proofs of Theorems 1-3. The final section

contains some applications, and a brief discussion of some more recent work on eigenvalues
of unitary matrices.

PROOF OF THE THEOREMS

The necessity of the inequalities in Theorem 1 is relatively elementary, and has been
known for some time, cf. [H-Z], [T-F], [J], [H-R]. Let E ~ en be an n-dimensional complex
vector space with a Hermitian inner product (, ). For any subspace L of dimension r of

E, and any Hermitian operator H on E, set (after Rayleigh)

where ul, ..., ur is an orthonormal basis of L. Equivalently, RH(L) is the trace of the

composite E --~ L, where the map from E to L is orthogonal projection. Note
that RA+B(L) = RA(L) + RB(L).

Let F.(H) be a complete flag in E with Fp spanned by eigenvectors vi , ... , vp, where
Hvi = ai(H)vi for 1  i  n. (This flag is unique if the eigenvalues are distinct; otherwise
an arbitrary choice is made.)



Lemma 1 (Hersch-Zwahlen [H-Z]).- For any subset I of ~l, n], we have

Proof. Suppose L is in Choose a unit vector ul in L ~ and note that

> aii. Choose a unit vector u2 in L n Fi2 that is perpendicular to ui, and
note that (Hu2, u2) > ~i2. Continuing in this way, we see that RH(L) > ~i. The
minimum occurs by taking L to be the span of ..., vir.

Now if is a scalar cl, and rj 0, then the intersection n 03A9Is (F,(HS)) must
contain some point L. Therefore

where c This proves that all the inequalities (~ j1 ", jm ) are satisfied. This

part of the theorem was also proved by S. Johnson [J] and Helmke and Rosenthal [H-R].
To prove the converse, we start by showing that the polyhedral cone defined by the

conditions (*) has a nonempty interior.

Lemma 2.- There are ~1, ... , ~m such that each inequality holds with strict

inequality, whenever the sum of the codimensions of the ~19 is at most the dimension

r(n - r) of the Grassmannian, and with ai > for 1  s  m and 1  i  n - l.

Proof. Let ÀS = (n - l, n - 3, ... , -(n - 3), -(n -1)) for 1  s  m. If Is = 
for all s, so Q19 = 1, then Ài = -r(n - r). Each change in an Is by replacing one
of its entries by the next smallest integer increases this sum by 2, while it increases the
codimension of 03C3Is by 1. So if Es codim 03C3Is ~ r(n - r), then

which is negative, since m > 2, so it is strictly less than ) ~g ~i ~i = 0.
We next show that it suffices to construct Hermitian operators HS with À(HS) = as,

whose sum is scalar, provided the given as satisfy the conditions (*), with each inequality
strict, each as integral, and the n integers in each as distinct. The reason for this is that
a Hermitian matrix can be written in the form H = UDU*, where D is diagonal and
U is unitary. Using the compactness of the unitary group, it suffices to find Hermitian
operators with eigenvalues arbitrarily close to the given eigenvalues as, whose sum is a
scalar. By Lemma 2 we may assume that each of the inequalities in (*) is strict, and
that the n numbers in each ÀS are rational and distinct. Finally, by multiplying each by
a large integer N, we may assume all of the eigenvalues are integers.

Because we want the argument to apply also to the setting of Theorem 2, we assume
to start only that each as is integral. (Those interested only in Theorem 1 may make



the extra assumptions of the previous paragraph.) We can also translate each as by a
constant, so we assume that an = 0 for all s. Set a~ = for 1  i  n -1. Let X be
the product of partial flag manifolds, so a point x of X is an m-tuple (E;, ... , E; ), where
each Ei is a partial flag in the fixed vector space E, where the Ei includes a vector space
Ek of dimension k exactly when ak is positive. The partial flag variety has a canonical
Plucker embedding in the product of projective spaces JP>(Ak(E)). Using the Veronese and
Segre embeddings, we have a canonical embedding of X in P(V), where V is the tensor
product of all the spaces The bundle £ which is the restriction of 0(1)
from P(V) to X, is a very ample bundle whose sections are canonically isomorphic to the
dual of the space ® ~ ~ ~ 0 (cf. [F]).

Take m general (complete) flags E;. Here general will mean that for any 1  r  n - 1,
and subsets I1, ... , 1m of [1, n] of cardinality r, the intersection n is not empty
if and only if the class rj is not zero.

Lemma 3.- Conditions (*) are satisfied if and only if the following conditions (**) are
satisfied : for general complete flags Ei in E, and any nonzero subspace F of E,

Proof. Note first that for any subset IS of [1, n],

Therefore (*) is equivalent to the following conditions (*’) : for any subsets I1, ..., I’~ of
[1, n] of cardinality r with 03A003C3Is ~ 0,

Now let E;, ... , E7 be general flags. For subsets I1, ... 1m of [1, n] of cardinality r, we
have 03A003C3Is ~ 0 ~ n (Es.) ~ ~ ~ there is an r-dimensional subspace F of E
with dim(F n n [1, A;]~ for all sand k. Note that any r-dimensional subspace F
determines subsets IS so that dim(F n Ek) _ ~IS n [1,1~] ~ for 1  ~  ~ - 1. From this the
equivalence of (*’) and (**) follows.

Note that conditions (**) involve only partial flags Ei that include subspaces Ek of
dimension k for those k with ak > 0. These general flags determine a point x in X. The
group G = SL(E) acts on X, compatibly with its natural action on P(V).

Proposition.- A general point x = (E;, ... , E; ) in X is semistable with respect to G
and .C if and only if conditions (*) are satisfied.

Proof. We use the Hilbert-Mumford criterion for stability [M-F-K]. For any 1- parameter
subgroup p : ~’‘ -3 G, there is a number p), which is nonnegative (resp. positive)



for all p if and only if the point x is semistable (resp. stable). To compute this, choose a
basis ei,..., en of E such that p(t) . ei = trtei, with rl > ~ ~ ~ > rn integers, not all zero,
and £ ri = 0. Let F, be the complete flag with Fp is spanned by ei,..., ep. Fpr a point
y = ~y1 : ~ ~ ~ : in P(E), ~°~1~ (y, p) _ -ri, where i is maximal with y~ ~ 0. By looking
at the Plucker, Veronese, and Segre mappings that embed X in P(V), one finds that

where J~ is the subset of cardinality k of [1, n] such that Ek is in S~ Jk (F,). Since this is

a linear function of (ri,..., rn), it will be nonnegative for all (rl, ... , rn) as above if and
only if it is nonnegative for (ri,..., rn) = (n - p,..., n - p, -p,..., -p), where the n - p
is repeated p times, and the -p is repeated n - p times. In this case

Now IJkn[l,p]1 = dim(Fp n Therefore

Condition (**) therefore says precisely that ~~(x, p) > 0 for all such p. Note that any Fp
occurs for some such p, so the semistability of a general x implies (**).

We now prove Theorem 1. As we have seen, we may also assume that each of the

inequalities in (*) is strict, and that the n integers in each A~ are distinct. In this case

all of the inequalities in (**) are also strict. This means that a general point x in X is
actually a stable point for the action of G and the line bundle £. If v E V is a point
representing x in P(V), stability implies that the orbit G . v is closed in V.

Choose an arbitrary Hermitian metric on E. This determines a metric on exterior and

symmetric powers, so on V = Q9 Since G . v is closed, there is a point g . v
in G . v that is closest to the origin. Replacing the given flags Ei by the flags g(E;), we
may assume that v is the closest point to the origin in the orbit, i.e., 
for all g ~ G.

For each s take an orthonormal basis el, ... , eg of E such that el, ... , e~ is a basis for
Ek for all k. Define a Hermitian operator HS on E by the rule = Àf ef for all i.

Lemma 4.- If v~~ > for all g E G, then ~s Hs is a scalar.

Proof. We may take v = Vl ® ~ ~ ~ ~) vm, where



The fact that g has a critical point at g = 1 is equivalent to the assertion that
= 0 for all g E s[(E), where ~S(g) _ ~g ~ + (z;~, ~ . vs). We claim that

for all g E From this it follows that Trace((g + g*) ~ ~;, HS) = 0 for all g E 
and this implies easily that ~S HS is a scalar. The claim is proved by a straightforward
calculation. Indeed, using the basis eî, ... , e~ for E, note that both sides vanish when
g is a strictly upper triangular or lower triangular matrix. Since both sides are additive
in g, it therefore suffices to verify the claim with g diagonal. And if 9 . ef = Ci ef, with
E 0, then = + ... + so

For the proof of Theorem 2, we assume the Ài are integral and the conditions (**)
are satisfied, but only weakly. We have seen that this makes the general point x in X
semistable. This means that there is a section s of for some positive N, that is
invariant by SL(E), with s(x) ~ 0. Since h(X, ,C®N) _ (® this means that

® VN~9 contains the trivial representation of SL(E). Conversely, if contains
the trivial representation, then there is a nonzero invariant section s of ,C®N, and then a
general point x with s(x) ~ 0 will be semistable; we conclude by the proposition that (*)
is satisfied.

Belkale [B] proves Theorem 3 as follows. Assume the inequalities specified in Theorem
3. If Theorem 3 were false, there would be a subspace F of E violating the inequality of
Lemma 3, for general complete flags Ei. Let ~(F) be the left side of the inequality in
Lemma 3. He shows that is the maximum of ~c(F) as F varies over all subspaces, and
F is a subspace of maximum dimension with /~(F) === ~c, then F is unique. (This follows a
standard argument for slopes of destabilizing subbundles.) But this means that F is the
unique point in the intersection of the corresponding Schubert varieties, so the product
of the corresponding Schubert classes is the class of a point. Since we are assuming the
inequalities in this case, this is a contradiction.

For example, if m = 3, n = 6, and r = 3, and I (s) _ {2, 4, 6~ for all s, then the

product of the Schubert classes is twice the class of a point. The corresponding inequality
is equivalent to the inequality ~S ~2 + a4 + À6  ~S ~’i + À3 + À5’ But this follows from
the inequalities À2  ~i, ~4  À3’ and À6  À5’



RELATED RESULTS

An examination of the proof shows that the same theorem is true for real symmetric
matrices, although this result is not stated in [K]. The point is that one can take the space
E to be the complexification of a real vector space ER, with its metric coming from an
inner product on ER. The real flags are Zariski dense in X, so one can take the general
flags Ei to be complexification of real flags. The resulting Hermitian operators Hs will
then come from real symmetric operators on ER. This proves that Theorem 1, in all its

variations, is valid as stated for real symmetric matrices. In particular:

Theorem 4.- Given weakly decreasing n-tuples ,~ and as, 1  s  m, with =

L.~s L.~i ~i ~ there are real symmetric matrices AS with ~(AS) _ ~S for each s, with A =

having a(A) _ if and only if

for every 1  r  n - l, and subsets ..., and K of ~1, n] of cardinality r such that
aK occurs in jIs Qls in the cohomology of Gr(r, n).

Inequalities of the form (*) have also appeared in the literature for problems about
principal ideal domains, and Klyachko’s theorem gives some insight into these problems.
If R is a principal ideal domain, any finitely generated torsion module is isomorphic to

0 R/d2 ® ~ ~ ~ 0 R/dn for nonzero ideals di with dl c d2 C ... C dn; these invariant
factors are unique if only proper ideals are included, but we allow some unit ideals at the
end. Suppose we have an exact sequence

of such modules, where A, B, and C have invariant factors az, bi, and Ci, 1  i  n. One

is interested in the possibilities for such invariants. Equivalently, one can consider n x n
matrices A, B, and C with entries in R and nonzero determinants, such that C = B . A.
One wants to relate the invariants of C to those of A and B. The invariants of A are

the same as the invariants of the cokernel of the map from Rn to Rn given by A. The
equivalence of the two versions of the problem is seen by applying the snake lemma to
the diagram:

Various divisibility conditions have been given for these invariants, all of the form



for certain subsets I, J, and K of the same cardinality r in [1, n]. There are many
instances of these inequalities in the literature (cf. [T] and [Thi]), some for the case when
R = ~~z}. The following result was proved combinatorially by Thompson [T]:
Theorem 5.- The divisibility conditions (~~~IJK) are valid whenever ~K occurs in ~J
in the cohomology of Gr(r, n).

Proof. By localizing one may assume R is a discrete valuation ring, with maximal ideal
p. Write ai = pai, bi = ~p~, ci = It is a theorem of T. Klein (see [Mac], Chapter
II) that the existence of such an exact sequence is equivalent to the nonvanishing of
the Littlewood-Richardson coefficient By Theorem 2, this nonvanishing implies the
inequalities (~I~K), which is the same as (~~~I~K).

It has been conjectured (see [T]) that inequalities of this type should suffice to determine
the existence of matrices C = BA with given invariants. In fact, we see that the converse
to Theorem 5 (assuming that Ci = would follow from a positive
solution to the Saturation Problem.

In addition to the two theorems of Klyachko discussed here, there are other interesting
ideas in [K] that we can mention only briefly. One of these relates the problem to equi-
variant vector bundles on the plane P~. (Earlier work of Klyachko described equivariant
vector bundles on toric varieties, so one may surmise that this was the origin of his work
on this problem.) The group is the torus T of diagonal 3 x 3 matrices of determinant 1.
Indeed, Klyachko had previously shown that to give a T-equivariant vector bundle of rank
n on the plane is equivalent to giving three flags Ei on a vector space E and three weakly
decreasing sequences as of integers. (The space E is the fiber of the bundle at the central
point p = [1 : 1 : I], and the filtrations and sequences are determined by looking at the
behavior of limits of points t. e, for e in E, as t. p approaches one of the three fixed points
of the torus.) When the flags are general, condition (*) is equivalent to the semistability
of this vector bundle: the ratio of the first Chern class to the rank is no larger for any
subbundle than it is for the bundle. For m bundles, there is a similar relation on 
but here one must consider equivariant coherent sheaves and not just vector bundles.

For n = 2, a traceless Hermitian matrix has the form

and the positive eigenvalue of H is the length of the vector v = (a, b, c) in R3. Changing
H to U H U* for U unitary corresponds to a rotation of the vector v. An equation
H1+~ ~ = 0 corresponds to an equation vl+~ ~ +vm = 0. The quotient moduli space
X// GL(E), constructed via GIT with respect to the ample bundle £, can be identified
with the space of m-tuples of vectors in 3-space, with given integral lengths, whose sum
is zero, modulo rotations. In particular, this gives the structure of an algebraic variety



to this moduli space of polygons. One has similar moduli spaces for all n. Theorem 1

gives a criterion for them to be nonempty. For recent work on these spaces see [H-K] and
[K-M].

There is some recent work of Agnihotri and Woodward [A-W], and, independently,
Belkale [B], that characterizes the possible eigenvalues of unitary matrices Ar, ... , Am,
each of determinant 1, whose product Ai -... - Am is the identity matrix. For A E SU(n),
its eigenvalues can be written uniquely in the form ... , with ~ aa = 0 and

We set A(A) = (al, ... , An) . The problem is to characterize the m-tuples al, ... , am
that can occur, i.e. so that as = À(As) for some AS E SU(n) with A1 . ... Am = 1. Their
result is that the answer is controlled, not by Schubert calculus, but by quantum Schubert
calculus. Necessary and sufficient conditions are that inequalities

are valid whenever the Gromov-Witten number (~l~ , ... , ~ jm )d ~ 0, for subsets I1, ... I m
of [1, n] of the same cardinality r. For this Gromov-Witten number to be nonzero, it

is necessary that ~s codim ~Is = dn + r(n - r), and then it is the number of maps
from P~ to Gr(r, n) of degree d such that, for fixed points pi, ... , p,~ in the image
of ps maps lies in a given general Schubert variety in the class The nonvanishing
of this Gromov-Witten number is equivalent to the class = qd03C3Im v occurring in
the quantum product o~l~ ~ ~ ~ ~ ~ Qjm-1, in the (small) quantum cohomology ring of the
Grassmannian Gr(r, n). There are algorithms for computing in this ring (cf. [B-C-F]),
but one does not yet have a quantum generalization of the Littlewood-Richardson rule;
nor are there simple criteria - proved or conjectured (cf. Horn’s conjecture) - for the
nonvanishing of a Gromov-Witten number.
The reason that one can expect such a relation with quantum Schubert calculus can be

seen roughly as follows. The matrices As correspond to a map from the fundamental group
of {pl, ... pm} to SU(n). By the work of Mehta and Seshadri [M-S~, one knows that
this amounts to giving a vector bundle £ of rank n and degree 0 on P~ with filtrations at
each of the points ps and weights À s, each satisfying the 
In fact, if there are such bundles, they can be found with a trivial underlying holomorphic
structure, and where the filtrations are generic. A subbundle ~’ of rank r of £ is then given
by a mapping § from P~ to Gr(r, n). The parabolic slope of F is - deg(~) -I- ~s Ài,
where IS describes the position of the r-plane ~(p~) with respect to the filtration at p~.
The bundle £ will be parabolically semistable, which means that all the parabolic slope
of all such .7" will be nonnegative.
Both of these theorems about eigenvalues imply that the possible eigenvalues that arise

form a convex polyhedron, which is explicitly described. Even the fact that it is a convex



polyhedron is not immediately obvious, but this follows from general theorems about
moment mappings in symplectic geometry (see [A-W]).

Note added in proofs: The saturation problem has been solved affirmatively by A.
Knutson and T. Tao, in "The honeycomb model of the Berenstein-Zelevinsky polytope I.

Klyachko’s saturation conjecture" math.RT/9807160.
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