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FOUNDATIONS OF TWISTED ENDOSCOPY 

Robert E. Kottwitz, Diana Shelstad 

Abstract. — This book develops the foundations of a general theory of twisted en
doscopy: definition of endoscopic groups, study of the correspondance between twisted 
conjugacy classes and conjugacy classes in endoscopic groups, definition of transfer 
factors, and finally the stabilization of the elliptic part of the twisted trace formula. 
The book also develops a theory of duality and Tamagawa numbers for the hyperco-
homology of complexes T -» U of tori. 
Résumé (Fondements de l'endoscopie tordue). — Ce livre développe les bases de la 
théorie générale de l'endoscopie tordue: définitions des groupes endoscopiques, étude 
de la correspondance entre classes de conjugaison tordue et classes de conjugaison sur 
un groupe endoscopique, définition du facteur de transfert, enfin stabilisation de la 
partie elliptique de la formule des traces tordue. Le livre développe également une 
théorie de dualité et de nombres de Tamagawa pour l'hypercohomologie de complexes 
T U de tores. 

© Astérisque 255, SMF 1999 
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INTRODUCTION 

In this paper we begin a study of the foundations for a theory of twisted endoscopy 
for reductive groups. While we build on standard endoscopy as developed, for exam
ple, in [Kl], [КЗ], [L2], [LSI] and [Si], there are new features which will be described 
below and which in turn shed further light on the earlier theory. 

In our setting F is a local or global field of characteristic zero, G is a connected 
reductive group defined over F, в is an F-automorphism of G and to is a quasicharacter 
on G(F) if F is local or on G(A) trivial on G(F) if F is global. Endoscopy for (G, 0, to) 
concerns the representations 7r of G(F) or G(A), as appropriate, for which 7г о 0 is 
equivalent to о; 0 7г. More generally, and for the most part conjecturally, we may 
consider L-packets or Arthur packets П for which П о 0 = и ® П. Associated with 
such representations is a (0, LO)-twisted invariant harmonic analysis: an Arthur trace 
formula, (0, a;)-twisted characters, (0, u;)-twisted orbital integrals and so on. Twisted 
endoscopy has played a role in a variety of problems. For example, the early paper 
[LL] of Labesse and Langlands on standard endoscopy for SL(2) is at the same time 
a study of a twisted endoscopy problem for GL(2): 7г = ш <8> 7Г, and in the study 
of automorphic representations of unitary groups in three variables [R] we find the 
twisted endoscopy associated with base change. 

We will begin by introducing endoscopic groups, or better endoscopic data, for 
(G,0, a), where a is a Langlands parameter for со. Our definitions were announced 
several years ago and indeed were used to recast the definitions for standard endoscopy 
in [LSI]. What remains perhaps as a surprise is the effort required in the general 
case to accommodate the possible lack of a suitable embedding of the L-group of an 
endoscopic group in the L-group of G. The basic theme of endoscopy is transfer from 
H to G, or more properly, transfer from a z-extension Hi of H to G. At the level of 
F- or A-points on the groups, examples such as base change or symmetric square for 
GL(2) have relied on concretely defined norm mappings. For the general case we take 



2 INTRODUCTION 

another more abstract approach, one which is well adapted to arguments involving 
the relevant systems of roots and restricted roots. 

Now suppose that F is local. With the notion of norm mappings from sufficiently 
regular classes of elements in G(F) to classes in Hi (F) we can turn to the matching of 
(0,UJ)-twisted orbital integrals on G(F) with stable orbital integrals on Hi(F). The 
first goal of this paper will be to construct transfer factors. In analogy with standard 
endoscopy [LSI] these are the weighting factors for the (0,a;)-twisted integrals needed 
to achieve the matching with the integrals on Hi (F). Again as in the standard case 
they are quite elaborate for they must carry a great deal of information about the 
values of characters on the groups G(F) and Hi(F). There are new features. We 
need a slight generalization of the comparative study of the embeddings of L-groups 
of maximal tori in the L-group of a reductive group from [LS2] in order to construct 
one of our terms. We replace the Galois cohomology of standard endoscopy with 
Galois hypercohomology (for some complexes of tori of length 2) and introduce a 
pairing on hypercohomology that encompasses both the Langlands pairing for tori 
and Tate-Nakayama duality. We then gather all three cohomologically defined terms 
Ai, Ai, A2 from the standard case into one term involving this pairing, although for 
the purposes of proof of canonicity and so on we have found it convenient to write 
this one term as a product of two, Ai and Ani. 

The first five chapters of the paper, which treat transfer factors, are organized as 
follows. The first chapter reviews results of Steinberg on semisimple automorphisms 
of semisimple groups. These results are used repeatedly in the rest of the paper, often 
without comment. At the end of this chapter one finds the definition of a-data and 
X-data for twisted endoscopy. 

The second chapter begins by giving the definition of endoscopic data (H, H, s, E) 
for (G, 0, a). The group % is an extension of WF by H and £ is an L-homomorphism 
from HtoLG. It is not always the case that the identity map from H to itself can be 
extended to an //-isomorphism from 7itoLH^ which forces us to use z-pairs (Hi, )> 
consisting of a z-extension Hi of H and an //-embedding of H % in LHi extending 
the natural inclusion of H in Hi. The existence of such L-embeddings is proved in 
Lemma 2.2.A. 

The third chapter introduces the abstract norm mapping which relates conjugacy 
classes in H(F) and twisted conjugacy classes in G(F). For this one first constructs 
a bijection from the set of twisted conjugacy classes in G(F) to the analogous set for 
a quasi-split inner form of (G,0). Unfortunately, unless the center of G is trivial, this 
map is not canonical, and there may in fact be no choice for it which is defined over 
F. For most of this paper we treat only the special case in which this difficulty does 
not occur (in other words we assume that the 1-cochain za in (3.1) is trivial); then in 
(5.4) we explain the modifications needed in the general case. 
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INTRODUCTION 3 

The fourth chapter gives the definition of the relative transfer factor A (71,8; 71? 5), 
which should be thought of as the ratio 

A(7l^)/A(71,5) 

of absolute transfer factors, these being canonical only up to a non-zero scalar (inde
pendent of 7i,(5 of course). In the case of standard endoscopy our relative transfer 
factor coincides with the one in [LSI], except that [LSI] takes -̂extensions of G 
while our more general situation forces us to take -̂extensions of H instead. The 
relative transfer factor is the product of four terms, the third of which, Am, is the 
most complicated. 

The fifth chapter uses the relative transfer factors to define absolute transfer factors 
A(71, (J) and lists their most important properties (see Lemmas 5.1.B, 5.1.C and 
Theorem 5.1.D). In case G is quasi-split and 6 preserves an F-splitting splo there is 
a particular normalization Ao(7i,(S) of the absolute transfer factor, depending only 
on splG, just as in the standard case [LSI]. Let Bo be the Borel subgroup appearing 
in the splitting spl<3 and let A be a 0-stable generic character on the F-points of 
the unipotent radical of Bo. Then one hopes [Sh] that the representations having 
Whittaker models for A will serve as base points in tempered //-packets, and in (5.3) 
this leads us to multiply the absolute factor Ao (71, 8) by a suitable local -̂factor so 
as to obtain another absolute transfer factor AA(7I, £), depending only on the generic 
character A. In (5.5) we give the definition of matching functions. 

Before trying to understand the complicated factor Am in the relative situation 
of (4.4), the reader may find it useful to study the absolute analogue of Am given in 
(5.3). We now sketch this material under a number of simplying hypotheses, in the 
hope that the main idea will come through as clearly as possible. So let us assume for 
the moment that G is quasi-split, semisimple and simply connected. In particular a 
and to are then trivial. Assume further that 0 preserves some F-splitting of G. Let T 
be a 0-stable maximal F-torus of G that is contained in some 0-stable Borel subgroup 
B of G. Note that we do not assume that B is defined over F. Let TQ denote the 
torus TI (1 — 8)(T) (the coinvariants of 6 on T). We think of the canonical surjection 
N : T TQ as an abstract norm map. Let 8 G G(F) and 7 G TQ(F), and assume that 
7 is sufficiently regular. We say that 7 is a norm of 8 if there exist elements t G T(F) 
and g G G(F) such that N(t) = 7 and 986(g)-1 = t. Applying a G V := Gal(F/F) 
to the equality g80(g)~1 — t and using that N(t) — 7 as well as the fact that 7 is 
sufficiently regular (so that the twisted centralizer of t is the group of fixed points of 
0 on T) we see that the 1-cocycle ta := gcr(g)~1 takes values in T and satisfies the 
equality 

t-a(t)-1 = tae(ta)-1. 
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4 INTRODUCTION 

This equality simply says that the pair (ta 1, t) is a 1-hypercocycle of Y in the complex 
T > T. The class inv(7,8) of this 1-hypercocycle lies in the hypercohomology group 
j j i ( i r r ± 4 r ) . 

Now suppose that we are given a twisted endoscopic group H for (G,0) and 
an admissible isomorphism over F from TQ to a maximal F-torus T# of H. Let 
7H be the element of T#(F) corresponding to 7 under this isomorphism. The 
term Ani(7#,#) in the absolute transfer factor is obtained by pairing the element 
inv(7,(J) G T -̂—4 T) with the following element A in the dual hypercohomol
ogy group H^Wp^f^Af). 

Assume for simplicity that H — LH. Using %-data we embed LTH in LH, and then 
we compose this with the embedding of LH in LG that is part of our endoscopic data, 
obtaining an embedding £TH oi% LTH m LG. Let LGX denote the subgroup oiLG given 
as the semidirect product of the Weil group WF and the identity component of the 
group of fixed points of 0 on G. Note that LGL is the L-group of a twisted endoscopic 
group G1 of G. Again using our %-data, we embed LTH in LG1, and then we compose 
this with the canonical inclusion LG1 <—> LG, obtaining another embedding £1 of LTH 
in LG. Replacing £TH by a conjugate under G we may assume that £rH and £1 agree 
on TH . Then the difference between £rH and £1 is measured by a 1-cocycle A of 
in T, and (1 — 0)(-A-1) is the coboundary of an element ST G T coming from the 
element s appearing in our endoscopic data. The class of the hypercocycle (A-1, ST) 
is the desired element A in H^WF,? ^ 4 f). 

Now we turn to our global results. In [L2] Langlands stabilized the elliptic regular 
terms in the trace formula; our second main goal in this paper is to do the same for 
the twisted trace formula (see [R] for the case of quadratic base change for unitary 
groups in three variables). Although the stabilization process is not difficult, it is 
surprisingly lengthy, partly because of the generality of the situation we consider. To 
ease the reader's task we will now summarize the main steps in the process. 

Let F be a number field and G a connected reductive group over F. To make 
this introduction a little simpler we will assume that the center Z(G) of G contains 
no non-trivial split torus. Let 6 be an automorphism of G over F, and let a be an 
element of 

i/1(WF,Z(G))/ker1(WF,Z(G)). 

Note that a determines a quasicharacter UJ on G(A), trivial on G(F). The construction 
of UJ from a is due to Langlands, but in this paper we find it convenient to use Borovoi's 
method [Bo] instead (see the proof of Theorem 5.1.D(2) for a review of Borovoi's 
method). We assume that UJ is unitary and trivial on Z(G)E(A). Consider the Hilbert 
space 

L2 :=L2(G(F)\G(A)) 
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INTRODUCTION 5 

and let 
/ € C~(G(A)). 

Then / gives us a convolution operator R(f) on L2. Moreover 0 and UJ give us unitary 
operators i?(0),Rw on L2; i?(0) is given by composition with 0_1 and R(UJ) is given 
by pointwise multiplication by UJ. The composition 

R(f)R(8)R(uj) 

is an integral operator with kernel 

K(h,g)=uj(g) ]T /(h-158(g)). 
SeG(F) 

Let (5 G G(F) be 0-semisimple and strongly 0-regular. Write Is for the 0-centralizer 
Cent6>((̂ , G) of (5. As in (3.3) we denote by T$ the centralizer in G of I®; then T<$ is a 
maximal torus of G preserved by Int(£) o 0 and Is coincides with the fixed points of 
Int(£) o 0 on Ts. We say that 6 is 9-elliptic if the identity component of 

h/Z(G)9 

is anisotropic over F. 
Denote by G(F)E the set of S G(F) that are 0-semisimple, strongly 0-regular and 

0-elliptic. Denote by Ke(h,g) the corresponding part of the kernel K(h,g): 

Ke(h,g):=uj(g) £ /(h'160(g)). 
SEG(F)E 

We are interested in the part of the twisted trace formula coming from G(F)E, namely 

Te(f) := / Ke(g,g)dg/dx, 
JG(F)\G(A) 

where dg is the Tamagawa measure on G(A) (which is used to form the convolution 
operator R(f)) and dx is the counting measure on G(F). As usual we can rewrite 
Te(f) as a sum of twisted orbital integrals (see (6.1.1)) 

(1) Te(f) = J2cG-c5-T(I5)-05e(f)-

Here r(Is) denotes the Tamagawa number of the diagonalizable group Is, and Ose(f) 
denotes the twisted orbital integral 

/ ^(g)f(g-1se(g))dg/dt. 
JlS(A)\G(A) 

The numbers CQ and cs are defined in (6.1) (note that CQ is 1 since we assumed 
that Z(G)° is anisotropic). The sum is taken over a set A of representatives for the 
0-conjugacy classes of elements 6 G G(F)E such that UJ is trivial on Is(A). 

The next step (see (6.2)) is to rewrite (1) by combining the terms indexed by 3,5' 
whenever 5,3' are 0-conjugate under G(A). Fix an element 6 G A. The set of 5' G A 
such that 5' is 0-conjugate to S under G(A) is in natural bijection with a certain finite 
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6 INTRODUCTION 

abelian group (namely the dual finite abelian group to the group B = B§ defined 
in (6.2)). Using that u is trivial on /5(A), we associate to a an element /3(a) G Bs-
If /3(a) is non-trivial, then the total contribution of the #-conjugacy class of ô under 
G (A) is 0; otherwise it is \Bs\ times 

cG - es -T(IS) -Oso(f). 
Therefore 
(2) Te(f)= T cG*cô-\BÔ\-T{Iô)-OôeU), 

ôeAi 
where Ai is a set of representatives for the #-conjugacy classes under G(A) of elements 
S G G(F)e such that uo is trivial on Is(A) and the element /3(a) G Bs is trivial. 

To proceed further we need to define an obstruction obs(5). For standard endoscopy 
this obstruction is due to Langlands [L2, p. 137]. Let G*, ip, 8* and go be as in (1.2). 
Thus G* is a quasi-split inner form of G, ip : G —> G* is an inner twisting, 0* is an 
F-automorphism of G* preserving an F-splitting, and g$ G G*c has the property that 

0* =lnt(ge)^-\ 
As in (3.1) we choose, for each a G T, an element u(a) G G*c such that 

ipaiip)'1 = Int(u(<r)), 
and we also define a morphism 

m : G G* 
of algebraic varieties over F by 

m(S) -mQe1-
Then, as in (3.1), 

a(m)(6) =u(a)-1m(5)za0*(u(<j)) 
for a 1-cochain za of T in Zsc (F), where Zsc denotes the center of G*c. The image ~za 
of za under 

Zsc -> Z|c := Zsc/(1 - 6>*)ZSC 
is a 1-cocycle (see Lemma 3.1.A). 

Let (B,T) be a 6>*-stable pair in G* with T defined over F. Put V := (1 — 0*)T 
and U :=T/V. Note that the map 

TT : G* -> G* 
induces a map 

Z2C -> C7. 
Let 7 be an element of U(A) such that 
(3) cr(7) = i*<j 
for all a G T. Let S G G(A). We say that 7 is a norm of 5 if there exist 6* G T(A) 
and # G G*c (A) such that 
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introduction 7 

(4) the image of S* in U(A) equals 7, and 
(5) 6*=gm(8)0'(g)-1. 
Now let 7 be an element of U(F) satisfying (3), let S G G(A) and suppose that 7 

is a norm of S. Suppose further that 7 is fixed by no non-trivial 0*-invariant element 
of the Weyl group of T, so that S is strongly ^-regular. Then in (6.3) we define an 
element 

obs(<J) G H\A/F,TSC (1~r)07) n 
depending only on the 0-conjugacy class of S under GSC(A), and having the property 
that obs(5) is trivial if and only if 6 is -̂conjugate under GSC(A) to an element of 
G(F). 

Continue with 7 G U(F) as above and assume further that T^* is anisotropic over 
F. We denote by Te(/)7 the part of the sum (2) indexed by elements 8 G Ai for 
which 7 is a norm. Define an abelian group £(T, 0,F) by 

£(r,0, F) := H1 (WF,V ^ f/Z(G)) 
where 

is dual to 
V ф. T 

T 1 - 0 V. 
By duality (see Lemma C.2.C) 

£(T,0,F) ~ Homeont^^A/F,^ i i z ^ F),CX). 

There is a natural homomorphism (see (6.4)) 

(6) &(T,0,F)^H\WF,Z{G))/ker1(WF,Z(G)). 

If there is no element of Ai having 7 as norm, then Te(/)7 = 0. Otherwise we fix 
such an element 80 G Ai, and we also fix an element 

«o G£(T,0,F) 

mapping to a under (6) (see (6.4) for a proof of the existence of fto). For any element 
8 G G(A) having 7 as norm we have (see (6.3)) an element 

mv(60,6) e H1 (A,Tsc {1~n°*) V), 

and the map 
8 h-> inv(̂ o, 8) 

sets up a bijection from the set of 0-conjugacy classes under GSC(A) of elements 
8 G G(A) having 7 as norm to the set 

Co := kev[H\A,Tsc (1~r)o7) V) ^ iJ^A,Gsc)] 

(the map whose kernel we are taking is of course induced by the inclusion Tsc —> Gsc)-
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8 INTRODUCTION 

For any element 8 G G(A) having 7 as norm we define the twisted orbital integral 

Om(/):= / u(g) fig'186(g)) dg/dt. 
JlS(A)\G(A) 

Define a function $ on Co by putting 
*(x) = (6b8(6),Ko)06O(F) 

where 8 G G(A) has norm 7 and is such that 
inv(£o, 8) = x. 

Define an abelian group 
£(T, 0, F) := im[tf1 (F, Tsc i l z ! > ^ y) ^ #1 (F, T 1-0 y)] 

and a set 
P(T,0,F) := kerftf1 (F,T ^ > V) H1 ff^G)]. 

It is not hard to see that V(T,6, F) is the image under 
H1 (F,Tsc (1-0) V) -+ H H ^ T ^ ( 1 - 0 ) V) 

of 
ker[ff1(F,T8C (1"e')o" V) -»• F 1 ^ , ^ ) ] 

and consequently that £>(T, 0, F) is a subset of £(T, 0,F). There is a natural bijec-
tion between D(T, 0,F) and the set of 0-conjugacy classes under G(F) of elements 
8 G G(F) having 7 as norm. Replacing F by Fv or A in these definitions, we get 
£(T,6,FV), V(T,0,TV), £(T,6, A), £>(T,0,A) satisfying the analogs of the properties 
of £(T, 0, F), £>(T, 0, F) mentioned above. 

In (6.4) we check that $(x) depends only on the image of x in £(T, 0,A), and 
therefore $ may be regarded as a function on the image of Go in £(T, 0, A), namely 
£>(T,0,A). We extend $ to a function on all of £(T, 0,A) by making it 0 on the 
complement of P(T,0, A). 

Since c<5, 1^1, T(1«5) depend only on T, we obtain a rational number CT depending 
only on T by putting 

CT := CG • C50 • \Bs0 \ • T(I$0). 
Since obs(<5) = 1 for any 5 E A\ (see Lemma 6.3.A), we have 

Teifh = CT  M 0 (x) 
xGS 

where S is the set 
im[X>(T,0,F) ->£(T,0,A)]. 

To simplify notation we now write F for £(T,0, A) and Fo for 
im[£(T,0,F) ->£(T,0,A)]. 

In (6.4) we show that 
S = £>(T,0,A) П 4 
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INTRODUCTION 9 

Therefore 

(7) Te(/)7 = CT M 0 (X) 
xGE0 

Lemma 6.4.A says that the subgroup EQ of E is discrete and that the quotient 
E/EQ is compact. Moreover it says that the function $ on E is locally constant and 
compactly supported. Applying the Poisson summation formula to E0, E and $, we 
get 

(8) Te(/)7 = c T ^ / *(e)<e,0cfe, 

where the sum is taken over all characters £ on the compact group E/Eo and de is 
the unique Haar measure on E giving E/E0 total measure 1. 

In (6.4) we check that the kernel &(T,0,F)i of the map (6) maps onto the Pon-
tryagin dual of E/E0 and that the kernel of this surjection has order 

dT:=\kev2(F,Tsc^^V)\. 

In (6.4) we define the Tamagawa measure dexam on E and use it to define the Tam-
agawa number r{£) of the compact group E/EQ, Then 

(9) Te(/)7 = crd^riSy1 ^2°lo(f), 
K 

where K runs over the inverse image under the map (6) of the element a, and where 

0KSo9U)= f (e,K)0Sce(f)deTam 
•/£>(T,0,A) 

(here Se is such that inv(<5o> 6e) = e). In Lemma 6.4.B we show that 
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CT-d-1 -r(^)-1 
is a constant aG independent of T, and we give a simple formula for aG in terms of 
ZiG). 

In the last part of (6.4) we find a formula (see (6.4.16)) 
(10) re(/)7 = a G ^ 0 ^ ( / ) , 

K 

analogous to (9), but which holds even when there is no element ¿0 € Ai having 7 
as norm (in which case Te(/)7 = 0). Summing (10) over 7, we get Theorem 6.4.C, 
which says that 
(11) Te(f)=aG £ 0;(f). 

(T,7,*) 

Our next goal is to rewrite the expression (11) for Te(f) in terms of stable trace 
formulas for endoscopic groups H associated to (G,0,a) (see (7.4.4) for the final 
result). In (7.1) we give a different interpretation of elements in &(T, 6, F), which 
we then use in (7.2) to describe the index set appearing in (11) in terms of elliptic 
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endoscopic data (if, H, s, f) for (G, 0, a) and elliptic strongly G-regular elements 7# G 
if (F) such that 

<r(lfH) = TfHZa (<r€T). 

In (7.3) we define absolute adelic transfer factors AA(7I,£) and show (Corollary 
7.3.B) that for 7i G #i(F) as above 

AA(7i,<5) = <obs((J),/c>. 

We then use the adelic transfer factor to define a global notion of functions with 
matching orbital integrals. 

Finally, assuming that / admits matching functions fHl, we show in (7.4) that 
Te(f) can be written as the sum over (U, s, f) of (the 0#-elliptic strongly G-regular 
part of) the stable 0#-twisted trace formula for fHl. Here (see (7.3)) 9H is an F-
automorphism of H of the form Int(x) for some x G H^(F) (if the 1-cochain za is 
trivial, we may take 9H = id//). This concludes our summary of the stabilization 
process. 

The appendices to this paper prove various facts about Galois hypercohomology 
for complexes 

T f U 

of F-tori. The main point of Appendix A is to construct the local pairing (A.3.12) 

H\F,T -4 U) ® H^WF.U -4 f) -> Cx . 

The construction is complicated and unfortunately relies on lengthy cocycle calcu
lations; we wish we knew a more conceptual approach. In addition this appendix 
develops properties of the pairing and of the hypercohomology groups themselves. 
Appendix B classifies inner forms of (G, 9) over p-adic fields. Although this result 
is not needed in the rest of the paper, it gives a clearer picture of the objects we 
are studying. Appendix C has the global duality theorems we need (Lemmas C.2.A, 
C.2.B, C.2.C, C.3.B) as well as a compactness theorem (Lemma C.2.D). Appendix D 
reviews Tate-Nakayama duality in the form we need. Appendix E generalizes work of 
Ono [O] and Oesterle [Oe] by putting Tamagawa measures on the hypercohomology 
groups 

H\klF,T -4 17) 

and proving a formula (Lemma E.3.D) for 

vol(H°(A/F,T -U C/)i) v o l ^ A / i ^ T 4- f/)i)_1. 

The following notation is used throughout the paper: F denotes a local or global 
field of characteristic 0, F an algebraic closure of F, T the Galois group of F/F, WF 
the Weil group of F/F, and (in the global case) A = A^ the adele ring of F. Given a 
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INTRODUCTION 11 

connected reductive F-group, we write G for the connected reductive complex group 
dual to G, and we write LG for the L-group 

LG:=QX WF. 

For a connected reductive group G over any field we write Gder for the derived group 
of G and Gsc for the simply connected cover of Gder- We denote by 7r the natural 
map 

Gsc ~~G. 
We write Gad for the quotient of G by its center Z(G). Given a maximal torus T in 
G we put 

Tder = T fl Gder 
TBC=7r-1(T) 
Tad=T/Z(G)cG/Z(G) = Gad; 

these are maximal tori in Gder? Gsc, Gad respectively. We use superscripts to denote 
invariants and subscripts to denote coinvariants (for the action of a group—typically 
T—or the action of a single automorphism—typically 6). We write Int(#) for the 
inner automorphism 

g H> xgx'1 (g G G) 
obtained from an element x in a group G. We write Ators for the torsion subgroup 
of an abelian group A. We sometimes write AD for the Pontryagin dual of a finite 
abelian group A. The notation we use for global hypercohomology groups is explained 
in Appendix C. 
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CHAPTER 1 

AUTOMORPHISMS AND L-GROUPS 

We collect some well-known results and add a few observations for which we have 
been unable to locate a reference. Our main object is then to define suitable a-data 
and %-data [LSI] for twisted endoscopy. 

1.1. Automorphisms 
We start with a connected reductive group G over a field F of characteristic zero. 

By a pair in G we mean a couple (i?,T), with B a Borel subgroup of G and T a 
maximal torus in B, and by a splitting of G we mean a triple (£,T, {X}), where 
(B,T) is a pair in G and {X} is a collection of root vectors, one for each simple root 
of T in B. Recall that G is quasi-split over F if and only if it has an F-splitting, i.e. 
one preserved by T = Gal(F/F) (e.g. [LSI]). 

Suppose that 0 is an automorphism of G defined over F. We call 0 quasi-semisimple 
if the restriction of 0 to the derived group of G is semisimple. Since F has charac
teristic zero 0 is quasi-semisimple if and only if it preserves a pair (B,T) in G, i.e. 
we have 0(B) = B and 0(T) = T (see [St, Sect. 9]). Then write G1 for the identity 
component of the group of fixed points of 0 in G. We have the following structure 
result, due to Steinberg. 

Theorem l.l.A 
(1) G1 is reductive. 
(2) Suppose that the pair (B, T) in G is 0-stable. Set B1 = BnG1 and T1 = TnG1. 

Then (Bl,Tx) is a pair in G1. Denote by R(B,T) the set of roots of T in B. 
Then R(BX ,TX) is contained in 

{ares = a|Ti :aeR(B,T)}. 
If a E R(B,T) then ares G R(B11T1) if and only if there is a 0-fixed element 
in the span of the root spaces for those /3 G R(B,T) such that (3res = ares. 

(3) Let (B1 ,TX) be a pair in G1. Then there exists a 0-stable pair in G such that 
B1 — BnG1 andT1 =THG1. 

(4) With T and T1 as above, we have T = Cent(T*,G) = Cent(T\G). 
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Most of this is proved in [St]. The rest is straightforward. See also (1.3). 
We continue with 0-stable (B,T) and the attached (^1,T1). Then 0 acts on the 

Weyl group fl(G,T) of T in G. Denote by Q(G,T)e the group of fixed points of 
0. Then by (4) above, Norm^G1) coincides with Norrn^G1) and so tyG1^1) 
embeds in Sl(G,T)0. We identify ^(G1^1) with its image. Note that the condition 
that UJ e ft(G, T) lie in ft(G, T)° can be given by any one of UJ0 = 0UJ, u(Te) = T° or 
^(T1) = T1. If (G, £7) is another 0-stable pair in G then up to G1-conjugacy we have 
that C7 coincides with T and C is conjugate to B under n(G,T)6>. Finally, a maximal 
torus which is 0-stable and contained in some 0-stable Borel subgroup, i.e. which is 
a component of a 0-stable pair, will be called 6-admissible. Observe that there exist 
-̂admissible maximal tori defined over F. 

We will be particularly concerned with automorphisms which preserve splittings. 
Suppose then that 8 preserves spl = (B,T, {-X"}). This implies that the simple roots 
in R(B1,T1) are exactly the restrictions to T1 of the simple roots in R(B,T). As 
a consequence, the embedding of the Weyl group ^(G1,!11) in Cl(G,T)e is surjec-
tive. We shall not distinguish in notation between f^G^T1) and tl(G,T)d. Further, 
(B1 ,TX) determines (B,T) uniquely and any two 0-stable pairs in G are conjugate 
under G1. Thus for any 0-stable pair (G, U) in G there is a splitting (C,U,{Y}) 
preserved by 6. 

If G is simply connected then the group G° of fixed points of 0 in G is connected, for 
any semisimple 0 [St]. If 0 preserves a splitting (B, T, {X}) we have, by the comment 
on Weyl groups in the last paragraph, that for any G the group G6 is connected if 
and only if T9 is connected. If G is adjoint then 

X*(Te) = X*(T)e := X*(T)/(1 - 0)X*(T) 

is torsion-free and so Te is connected. This implies that for any G with 0 preserving 
a splitting we have 

G9 = G1Z(G)e 

where Z(G) is the center of G. 

1.2. Quasi-split forms and L-groups 

We now restrict our attention to a field F that is either local or global: 0 is an 
arbitrary automorphism over F of a connected reductive group G over F. To fix 
quasi-split data it is useful to take a quasi-split group G* over F with an inner class 
\I> — = (Int g) o : g e G*} of inner twistings ip : G G* and check that the 
choice of i\) within this class has no effect on our constructions. The group G* has 
an F-splitting splo* = (i?*,T*, {X*}) and we may choose g$ G G*c such that the 
automorphism 

0* := I n t ( ^ ) ^ - 1 
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1.3. RESTRICTED ROOTS 15 

of G* preserves spl<3*. The automorphism 0* is uniquely determined by spl<3* and 
so (7(0*) = 0* for all a G Gal(F/F), and 0* is defined over F. We will see that the 
choice of splc* has no effect on our constructions. 

Suppose G,p,r\o are L-group data for G: G is a connected reductive group over 
C, p is an L-action of T on G and nG : \I>(G)V \£(G) is a T-bijection between 
canonical based root data (see [Kl]). The automorphism 0 of G induces bijections 
0 : *(G) *(G) and 0V : *(G)V -> #(G)V. Then 0 will be an automorphism of G 
which induces the bijection rjc • 0V • on \£(G). For convenience we fix once and 
for all a T-splitting spl^ = (i?,T, {#}) of G and assume it is preserved by 0. 

As always, LG will denote the semi-direct product G xi for the action given by 
p. The automorphism 0 X lwF of LG will be denoted L0. 

1.3. Restricted roots 
Suppose G is quasi-split over F and 0 preserves the F-splitting spl = (£,T, {X}) 

of G. Here we review, somewhat repetitively, more detailed information about the 
root systems of 0-twisted centralizers of 0-semisimple elements, i.e. of the fixed points 
of quasi-semisimple automorphisms of the form Int S o 0 for S G G. This will enable 
us to introduce a-data and x~data in a convenient form. 

Until we discuss a-data and x-data we need only that F is of characteristic zero. 
There will be no harm in taking G simply connected. Then, in particular, G6 and T6 
are connected. Set 

i?res(G,r) - {ares = a\Te : a G R(G,T)}. 

For the purposes of this paper, ares is a restricted root. Then: 
(1.3.1) Rres(G,T) is a root system in 1-1 correspondence with the set of 0-orbits 

in #(G,T), 
(1.3.2) the irreducible components of i?res(G,T) are in 1-1 correspondence with 

0-orbits of irreducible components of i?(G, T), 
(1.3.3) an irreducible component of i?res(G,T) is reduced unless it corresponds to 

a 0-orbit of components of i?(G, T) with the following property: each component D 
in this 0-orbit is of type A2n and for some positive integer m, 0m preserves and acts 
nontrivially on D. 

(1.3.4) The set of indivisible roots in i?res(G,T) coincides with R(Ge,Te). 
We classify ares G i?res(G,r) as follows. 

Type R± : 2ares, |ares i #res(G,T) 
Type R2 : 2ares G i?res(G,T) 
Typei?3 : |aresGi?res(G,r) 
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16 CHAPTER 1. AUTOMORPHISMS AND L-GROUPS 

Let la be the cardinality of the #-orbit of a G i?(G,T) and 
ia-i 

Na=Y^ 0ia 
i=0 

Let SeT. 
(1.3.5) if ares is of type R\ then the roots in the 0-orbit of a are mutually perpen

dicular and 0laXa = Xa\ ares is a root for G° and it is a root for the connected fixed 
points Gse of Int 6 o 6 if and only if Na{8) = 1, 

(1.3.6) if ares is of type R2 then in the notation of (1.3.3) la = 2m and a + 0ma 
is a root; again 6laXa = Xa and ares is a root for G6', and it is a root for G5e if and 
only if Na(S) = 1. 

(1.3.7) if ares is of type R3 then a = (3 + dmp with /? of type #2 and m as in (1.3.3); 
la = m and 0mXa = -Xa; ares is not a root for Ge but it is a root of G60 if and only 
if Na{6) = - 1 . Note also that AT a = N/3. 

The results (1.3.1),..., (1.3.7) are to be found mainly in [St]. See also [Spr, 
Chapter 11]. Some additional, but very simple, arguments are needed for the case 6 
permutes the irreducible components of R(G,T) nontrivially. Details are left to the 
reader. 

Now assume F is either local or global. We have also the dual 8 and Rres(G,T) 
which we may identify as 

{(av)res = c*vU : av e RV(G,T)}. 
Note that T6 is connected because G is adjoint and 9 preserves a splitting. Then: 

(1.3.8) ares •->• (av)res is a well-defined T-bijection from Rres(G,T) to Rres(G,T). 
This bijection preserves types: if nares is also a restricted root (n = |,2) then so is 
w(av)res and n(av)res is the image of nares. 

Observe that (av)res € X*(f9) = X*(f)9 has its coroot in X*(T)e. 
(1.3.9) If ares is of types Ri or R3 then the coroot of (av)res is Na. Otherwise 

(type R2) it is 2Na. 
The proof of (1.3.8) and (1.3.9) follows easily from the arguments for the earlier 

assertions. For example, to compute the coroot of (av)res, see [Spr, p. 292] for type 
Ri and a simple. This extends to all a of type R\ by the Weyl group action. For 
types i?2 and R3 we reduce quickly to an explicit calculation in a root system of type 
A2. 

Following [LSI, (2.2), (2.5)] we attach a-data and %-data to i?res(G,T), or to 
Rres(G,T) via ares a^es since this bijection respects T and a ^ —a. We may and 
shall assume that for all ares € i?res(G,T) we have: 

(1.3.10) anares = aares and XnaTes = Xares if nares G i?res(G,T). 
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CHAPTER 2 

ENDOSCOPY 

2.1. Definitions 
Again F will be either local or global and 0 will be an automorphism over F of 

a connected reductive group G over F. Endoscopic data are attached to a triple 
(G,0,a) where a is an element in H1(WF,Z(G)) if F is local, or in the quotient of 
^(WF, Z(G)) by the everywhere locally trivial elements if F is global. We fix once 
and for all a 1-cocycle a of Wp in Z(G) representing a. This choice will have no effect 
on our definitions. From a we obtain a quasicharacter LJ on G(F) if F is local, or on 
(2(A) trivial on G(F) if F is global. 

We call the tuple (#,%,$,£) endoscopic data for (G,0,a) if: 
(2.1.1) H is a quasi-split group over F, 
(2.1.2) % is a split extension of WF by H such that the L-action pu of WF on H 

determined by this extension (see (2.2)) coincides with pn (see (1.2) for a discussion 
ofptf), 

(2.1.3) s is a 0-semisimple element of G, i.e. the automorphism Int(s) o 0 is quasi-
semisimple, 

(2.1.4) £ : % LG is an L-homomorphism satisfying the following two conditions: 
(2.1.4a) Int(s) o L0 o £ = a' • f where a' : -> Z(G) is a 1-cocycle which is 

equivalent to a if F is local, or is everywhere locally equivalent to a if F is global, 
(2.1.4b) £ maps i7 isomorphically onto the identity component of Centos, G), the 

group of fixed points of Int(s) o 0. 

Observe that if we define the automorphism L6a> of LG by 

Lea,(gxw)=d{g)a'{w)-1 xw 

for ^ E G and w G VFF, then the equation in (2.1.4a) may be replaced by the inclusion 
£{H) CCenU0o,(s,LG). 
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Let us be more precise about the terminology used in this definition. In (2.1.2) 
when we say that % is an extension of Wp by H we mean that H is a normal subgroup 
of the topological group H and that we are given an isomorphism of topological groups 
H/H ~ WF . In particular H is closed in T-L and the composition of Ti —> Ti/H and 
the isomorphism Ti/H —>- Wp is a continuous, open homomorphism p : Ti —> WF-
When we say that the extension Ti of WF by H is split we mean that there exists a 
continuous homomorphism 

c : WF -> H 
such that p o c is the identity map on WF. In (2.1.4), when we say that £ is an 
L-homomorphism we mean that it is a continuous homomorphism £ : % -» LG such 
that the composition 

Ti 4 LG -> WF 

is equal to p : W —> WF and such that the restriction of £ to H is a homomorphism of 
algebraic groups from H to G. The map h(w) c(w)h is a homeomorphism from 
H x Wf to % and therefore Ti is locally compact and Hausdorff. Moreover £ o c splits 
£(%) WF, SO that (h,tu) i-» £(c(w)h) is a homeomorphism from H x WF to £(%), 
which shows that £ induces an isomorphism of topological groups from Ti to £(%). In 
particular £(%) is locally compact, which implies that it is a closed subgroup of LG. 

We call (#,%,$,£) elliptic if £(Z(i7)r)° is contained in Z(G). By standard endo
scopic data for a group G we will mean data for (G,id,triv), i.e. the data of [LSI] 
(see also [L1],[L2],[S1],[K1]). In general endoscopic data for (G,0,a) coincides with 
that for the quasi-split triple (G*,0*,a), where (G*,0*) is as in (1.2). 

An isomorphism from (#,%, s,£) to (#',%', s',£') is an element g £ G such that 

(2.1.5) <tf (TOJT1 - W ) and 
(2.1.6) gsd(g)-1 = s' modulo Z(G). 

Let # be such an isomorphism. We use £ and £' to identify Ti and W with subgroups 
of L G . Then (2.1.5) becomes 

gUg-1 = H\ 
and we write (3 for the isomorphism 

ß:H-*H' 

obtained by restricting Int(#) to H. Let w G WF- We claim that there exists x € H 
such that 

(2.1.7) pH> {w) o /3 o Int(x) = /8 o pH{w). 
To prove this we choose an element hw £ Ti having image w in WF- Then 

PH{W) and Int(/^)|^ differ by an inner automorphism of H. By (2.1.5) PH'(W) 

and Int^/i^g - 1 )^, differ by an inner automorphism of Hf. It then follows from the 
trivial equality 

Int(ghyjg'1) o Int(#) = Int(#) o lnt(hw) 
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that there exists x G H such that (2.1.7) holds. Pick F-splittings of H and H', and let 
a : H —> H' be the unique F-isomorphism dual to B-1 and preserving F-splittings; 
it follows from (2.1.7) that a is defined over F. 

By an automorphism of (#,%,£,£) we mean an isomorphism from it to itself; 
these form a group Aut(iJ, T-L,s,£). As above an automorphism g determines auto
morphisms /3 G Aut(if) and a G AutF(H) (with a preserving the chosen F-splitting 
of H). We write OutF(H) for AutF(#)/#ad(F). The map g \-> a is a well-defined 
homomorphism 

(2.1.8) Aut(ff,ft,*,f) -» OutF(#). 

We denote by Out(iy,?/,s,f) the image of the homomorphism (2.1.8). 
Let K denote the kernel of (2.1.8). We claim that K = HC, where C is the 

subgroup of Z(G) consisting of elements z G Z(G) such that 

a(z)z~1 G Z(G)H# 

for all a G T. It is easy to see that H C K and that Z(G) fl K = C. It remains to 
prove that any element g G K belongs to HZ(G). Since a is trivial, /3 is inner, and by 
modifying g by an element of H we may assume that g centralizes H. Without loss 
of generality we may assume that s belongs to T, part of a 0-stable pair (2?, T) in G. 
Since g centralizes H, it centralizes (Td)°. Since the centralizer of (Te)° in G is T, 
we conclude that # G T. Then (2.1.6) implies that 0 fixes the image of g in T/Z(G). 
Since (T/Z(G))6 is connected (see (1.1)), # is of the form tz for some £ G (Te)° and 
ze Z(G), and therefore p G HZ(G). 

It follows from the equality if = HC that 

tf/fT = C/(CnfO 

= C/(Z(G)nff) 

= (Z(G)/Zx)r, 

where Zi is defined by 

Zi := Z(G) n £ 

= Z(G) n (7^)°; 

in other words 
K/H = zT 

where 
Z:= Z{G)jZx. 

We see from this discussion that there is a natural exact sequence 

1 -4ZF4 Aut(H,H, s, 01H Out (if, ft, s, 0 -»• 1, 
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and from this it follows that there is a natural exact sequence 

1 7T0(Zr) -> 7T0(Aut(ff,«,8,0) -> Out(ff, H, H, s e ) 1 . 

2.2. z-pairs 

Here we comment briefly on the role of the datum H and introduce the notion of z-
pair needed to formulate transfer in twisted endoscopy. Thus suppose that (i7, %,£,£) 
is a set of endoscopic data for (G,0,a). Along with L-group data (ff, PH,VH) for H 
we have fixed a T-splitting spl^ = (BH,TH, {XH}) for z.e. spl^ is preserved by 
pH- By the definition of % there is a split exact sequence 

l- ^H-^ n^W F-^ l. 

Let £ be the subgroup of H consisting of all elements h G H such that the re
striction of Int(/i) to H preserves spl^; it is clear that Z is closed in % and hence 
that Z is locally compact. Since the topologies of Wp and H have countable bases, 
so do those of % (since it is homeomorphic to the product of H and WF) and its 
subgroup Z. Since H/Z(H) acts simply transitively on the set of splittings for H, 
the projection p : T-L —» Wf maps Z on£o WF with kernel Z(H), so that p induces a 
bijective continuous homomorphism 

Z/Z(H) -> w>. 

Since Z/Z(H) and Wf are locally compact and the topology of Z/Z(H) has a count
able base, this homomorphism is a homeomorphism [Sm, Theorem 1.1]. Therefore Z 
is an extension of WF by Z(H). 

Use PH to form Li7. Then the identity map from H to H can be extended to an 
L-isomorphism % —> LH if and only if the extension Z is a split extension of WF by 
Z(H), and any two such isomorphisms differ by a 1-cocycle of WF in Z(H). However, 
such an isomorphism does not always exist. In the case of standard endoscopy (6 — id, 
a = 1) we may replace G by a suitable central extension, for example a -̂extension 
in the terminology of [K2], and then such an isomorphism % ~ LH does always exist 
(see [LI]). In general, even if G is itself semisimple and simply connected, such an 
isomorphism H~LH need not exist. We will work instead with ^-extensions of H. 

We should perhaps recall that a -̂extension of H is a connected reductive group 
Hi together with a surjective homomorphism H\ -> H having the following three 
properties. The first property is that the derived group of Hi is simply connected. 
The second is that the kernel Zi of the homomorphism Hi -> H is a central torus in 
Hi. The third is that the torus Zi is an induced torus, in the sense that its character 
group X*(T) has a Z-basis permuted by the Galois group V. The main fact about 
^-extensions of H is that they exist (see [LI]). 

For any z-extension Hi -> H the homomorphism Hi(F) -> H(F) is surjective, 
since the first Galois cohomology group of any induced torus is trivial. Therefore 
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giving an irreducible representation of H(F) is the same as giving an irreducible 
representation of Hi(F) whose central character is trivial on Zi(F), and for the 
purposes of representation theory it is rather harmless to pass from H to Hi. When 
% is not isomorphic to the L-group of H, there is an unavoidable twist built into 
the picture. In this case we must consider representations of H\{F) whose central 
character restricts in a certain way to Z\ (F) (non-trivially in case H is not isomorphic 
to the L-group). 

Returning to our main discussion, let Hi be a -̂extension of H. Then we have an 
exact sequence 

l->Zi-»iJi-».ff->l 
with Z\ a central torus in Hi. Dual to this is 

1 -> H -> Hx -+ Zi -> 1 

and so we may regard H as a subgroup of Hi. We may assume that the restriction 
of ph1 to H is pH and embed LH naturally in LH\. There is also a natural extension 
of A ->Zi to LHi -+LZi. 

Lemma 2.2.A. — The inclusion of H in Hi can be extended to an L-homomorphism 

£Hl :H^LHi. 

Any such L-homomorphism induces an isomorphism of topological groups from H to 
its image £#XCH), which is necessarily a closed subgroup ofLH\. 

Recall the splitting (B,T,{X}) used to form LG. We are free to replace (i, c) 
by (gs0(g)~1, lnt(g) o £) for any g G G. Therefore we may assume that s G T. 
Then (B,T) is an Int(^) o 0-stable pair in Centg-(s, G)° and by making another such 
replacement, this time with g G Centos, G)°, we may assume that £(BH) — Bn£(H) 
and £(Tff) = Tn£(#) = (T*)°-

Consider the subgroup U of H consisting of all x G H such that the restriction of 
Int(#) to H preserves the pair (BH,TH)- Then U is closed in H and the projection 
p : H —> WF maps U onto WF with kernel 7//. The natural map U/TH -> WF is an 
isomorphism of topological groups (use the same proof as we used for Z). Thus we 
have an exact sequence 

l->75r->W->WF->l. 
Let x G U. Then x normalizes TH and hence normalizes T as well, since T is the 
centralizer of TH in G. Thus U acts (by conjugation) on T, and the kernel of this 
action is closed. Moreover this kernel has finite index, since any element x G LG that 
normalizes T must act on T by PG(W) times some element of the Weyl group, where 
w is the image of x in WF . Therefore this kernel is open of finite index, hence contains 
TH , hence is the inverse image under p : U -¥ WF of an open subgroup of finite index 
in WF . We conclude that the action of U on T factors through 

U -> WF -> Gd(K/F) 
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for some finite Galois extension K/F. 
By enlarging K we may assume that pc also factors through Gal(K/F). Since U 

normalizes T we get a subgroup UG ofLG by taking UG — UT\ clearly the projection 
LG ->> WF maps onto WF with kernel T. Note that UG contains all elements of 
LG = G x WF of the form x — 1 x w for w G Wk. Indeed, let 2/ be any element of U 
such that p(y) = w. Then both x and 2/ centralize T, so that x?/-1 G G does as well, 
which implies that xy~x G T. Therefore UG is the full inverse image under 

LG G x Gal(if/F) 

of a subgroup of G x Gal(K/F) which maps onto Gal(K/F) with kernel T. The 
extension uG of Gal(K/F) by T gives rise to a 2-cocycle of Gal(K/F) in T. By a 
result of Langlands [LI, Lemma 4] (see also [La]) the inflation of this 2-cocycle to 
WF is the coboundary of a continuous 1-cochain of WK/F in T. This 1-cochain gives 
us a continuous homomorphism WF —> UG splitting the exact sequence 

l - + r - » £ f c - > W F - > l , 
or in other words the continuous 1-cochain gives us an isomorphism UG — LU, where 
U is the F-torus such that X*(U) = X*(T) as Gal(K/F)-modules, with Gal(K/F) 
acting on X* (T) in the way determined by the extension 

1 T -> U'G -> Gal(if/F) 1. 

Since Z is obviously a subgroup of U and hence of ZYG? we draw the following con
clusion from the discussion above: there exists an F-torus U and an injective L-
homomorphism Z —>• LU'. 

Now we are ready to show that H —>• Hi can be extended to an L-homomorphism 
£#1 :H -> LHi. Consider the group 

Ui := (Z№) x W)/Z(ff) 

and its closed subgroup 
Zi := (Z(Hi) x Z)/Z(ff) 

(we embed Z(H) diagonally in Z(Hi) xH). Of course Hi (respectively, Zi) is an 
extension of WF by Hi (respectively, Z(Hi)). There is an obvious L-homomorphism 
% <-» Hi extending ^ -ffi, so that to construct ^ it is enough to show that the 
identity map Hi ->> ifi can be extended to an L-homomorphism Hi LHi. Thus it 
is enough to show that there is a continuous homomorphism WF —>* Zi splitting the 
exact sequence 

1 -» Z(#i) Zi -> WF 1 
(of course we used that Zi is the subgroup of Hi consisting of all elements x such 
that the restriction of Int(x) to Hi preserves the splitting of Hi obtained from our 
fixed splitting of H). 
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Recall that we have an injective L-homomorphism Z -> LU and in particular an 
embedding Z(H) <-> U. Define a complex torus V" by V = (Z(ffi) x U)/Z(H). There 
is an obvious injective L-homomorphism Zi -> LF, induced by 

Z(Hi) x Z -> Z(^i) x LU = (Z(#i) x ¿7) x 

Restricting 2i -> LF to Z(Hi) we get Z(#i) <-> V, and we put 1? = V/Z(Hi). The 
exact sequence of complex tori with Galois action 

1 -> Z(Hi) ->V->W->1 

is dual to an exact sequence of F-tori. The Langlands isomorphism of HL(WF, V) 
with the group of quasi-characters on V(F) (respectively, (V(A)/V(F))T) in the local 
(respectively, global) case shows that 

H\WF,V) -+H1(WF,W) 

is surjective (see the proof of Lemma 4 of [LI] and also [La]). The composition 

ZY ^ Lv -+ Lw 

is trivial on Z(Hi) and hence induces an L-homomorphism <p : WF -> LW. By the 
discussion above there exists an L-homomorphism i\) : WF —> LV whose composition 
with LV —> L W coincides with (p. Clearly the image of WF under ip is contained in the 
image Z2 of Z\ in LV. Therefore the existence of the continuous section ij) shows that 
Z2 is homeomorphic to Z(Hi) x WF and hence that Z2 is locally compact. Since Z\ 
is locally compact and its topology has a countable base, we conclude that Z\ —> Z2 
is a homeomorphism. Therefore can be viewed as the desired splitting of the exact 
sequence 

l-tZ^HJ-t Zx-tWF -tl, 
and the proof that €m exists is finally complete. 

It remains to prove that £HX induces an isomorphism of topological groups from 
Ti to £//i(^) and that ^Hx(Ti) is closed in LH. This follows from the existence of a 
section c : WF —> Ti of p : T-L WF (use the same argument we used to show that 
£ : H -> £(H) is a homeomorphism and that £(H) is closed in LG). 

By a z-pair for Ti we will mean a pair (Hi, £HI ) with # 1 a -̂extension of H and 
Eh an L-embedding of Ti in L#i extending H ^ Hi. Observe that £#i determines 
a character XHX on Zi(F) (F local) or on Zi(F)\Zi(A) (F global). This character 
has parameter 

WF С H eCW1 hKA1 lZ1 
where c is any section for Ti WF- We note in passing that Aĵ  is the inverse of 
the character constructed in [LSI, 4.4] for standard endoscopy. 

To explain the significance of A#i we recall that the purpose of endoscopic data for 
(G, 0, a) is to study representations n of G(F) or G(A) for which TT O 9 = UJ ® n. We 
shall consider an example where we have available the Langlands parametrization, 
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namely tempered //-packets for F archimedean. Here the automorphism 9 preserves 
L-packets as does multiplication by u (this may be checked from the definition of 
the parametrization [L3]). We see also that if n has parameter ip : WF —• LG then 
II o ^ = {?r o ^ : 7T G 11} has parameter L0 o (p and u <g> U = {u> <g> n : n G n} has 
parameter a - (p. So we conclude that n o 0 « u 0 II if and only if 

S A= {s EG : Int(s) o L6 o <p = a • 

is nonempty. 
Any sGG has a unique twisted Jordan decomposition 

s = ut = W(u) 

with u unipotent in G and t 0-semisimple in G. It is easy to see that if s G Sv with 
twisted Jordan decomposition s = ut = t8(u), then £ G 5<̂  and ii G Cent(<p,G)°, 
a connected group which acts by left translations on 5^; therefore every connected 
component of S1 contains a -̂semisimple element. 

Assume s G S1 is ̂ -semisimple, so that if = Centos, G)° is reductive. Set H equal 
to the subgroup of LG generated by H and the image of (p and give % the topology 
induced from LG. Then we have a split exact sequence 

\->H-+H-±WF->\. 

We define pu as we must, after fixing a splitting of H. As in the proof of Lemma 2.2.A 
we introduce U in order to see that the action of WF on T factors through Gdl(K/F) 
for some finite Galois extension K/F, and hence that the same is true of pw We take 
H to be a quasi-split group over F with L-group (i7,p^). Then (77,^,5,^), where 
£ is the inclusion of T-L in LG, is a set of endoscopic data for (G,#,a) and the image 
of (p is contained in H. If (HI,£HI) is a z-pair for H then o is a parameter <£i 
for Hi. The packet x attached to (pi has the property that for each representation 
7r in it, Zi(F) acts as A^. Conversely any packet for Hi with this property defines 
a parameter cp for G with Int(s) o L0 o ip — a • (p. In line with the general Langlands 
conjectures, we expect 11^ to transfer to n. This is known, for example, for standard 
endoscopy [SI], and for base change under the assumption % = LH [B]. 

For the (dual) transfer of functions from G{F) to Hi(F) we shall therefore consider 
functions fHl on Hi (F) for which 

fH>(zh) = \Hl(z)-1fHl(h) 
for all z G Zi(F) and all h G Hi(F). We will do this also for F nonarchimedean and 
for the adelic analogue in the global case, since conjecturally tempered L-packets (or 
more generally Arthur packets, whatever F) have similar properties. 
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CHAPTER 3 

NORM MAPPINGS 

3.1. The setting 
We continue with (G,0,a) as in Chapter 2, although most of the time we may 

work with any field F of characteristic zero. Recall (see (1.2)) that the automorphism 
0* of G* preserves an F-splitting and is of the form Int(^)^^-1- Since i\) is an 
inner twisting we may choose, for each a G I\ an element u(a) G G*c such that 
\l)a(^)~l = Intn(cr). 

The 0-conjugacy class of 8 G G(F) is {g~l86(g) : g G G(F)}. Denote by GZ(G,0) 
the set of all such classes. Then the map m : 6 \-+ ^(S)g^1 from G(F) to G*(F) takes 
g-18e(g) to 

^(g-lM8)m9))9e = ^9)-1m(8)6\^(g)) 
and so induces a map 
(3.1.1) Cl(G,6)^Cl(G\0*) 
which we also denote m. This map on classes is bijective but need not respect the 
action of T = Gal(F/F), i.e., as we shall say, need not be defined over F. 
Lemma 3.I.A. — For a G T define za G G* by za = gou(cr)cr(ge)~10*(u(cr))~l. 

(1) The 1-cochain za ofT takes values in the center Zsc of G*c, and its image in 
Zf = Zsc/(1 - 6*)ZSC is a 1-cocycle. The class z of this cocycle in H J(F, Zf) 
is independent of the choice of go. 

(2) Suppose C G Cl(G,6) and a G T. Then (i(m)(C) = zam(C). 
(3) // z is trivial we may so choose go that m, as map on classes, is defined over 

F. 
Let 8 G G(F). A simple calculation shows that 

<j(m)(8) = u(a)-1m(8)zae*(u(a)). 
This proves (2). To see that za is central just apply a to the equation 

» * = I n t ( ^ ) W 1 . 
Because u(o~) involves a choice, za is well-defined only up to (1 — 6*)ZSC. Computing 
coboundaries, we find that 

dz = (l-6*)du. 
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Thus the image of zG in Zsec is a 1-cocycle depending only on the choice of g$. Clearly 
this choice does not affect the class z of za in H1(F,Zf'). This proves (1). 

Finally, if z is trivial we may multiply g$ by an element of Zsc to obtain za in 
(1 - 9*)ZSC. Then a(m)(S) is 0*-conjugate to m(S) and (3) follows. 

For most purposes it is enough to consider the case z is trivial. This includes 
standard endoscopy, base change, and transpose-inverse on GL(n), for example. That 
then will be our assumption until (5.4), as it saves a great deal of notation. 

With z trivial we may continue the argument for (3) above and choose go,u(cr) so 
that za is trivial and hence 

(3.1.2) <r(rn)(5) = u{a)-lm(8)e*(u((j)). 

3.2. Abstract norms 

If G is abelian we call the projection N$ of G onto GQ := G/(l — 6)G the abstract 
norm map for G. Clearly N$ maps G(F) homomorphically to a subgroup of GQ(F). 

If (if, H, s, E) is a set of endoscopic data for (G,0,a) then the isomorphism f : H -» 
(G6)0 yields an isomorphism G$ ^ H over F. We call 7 G #(F) the norm of 
5 G G(F) if 7 is the image of Ne(5) under the latter isomorphism. 

For general G we start with the elements S of G(F) which are 0-semisimple in the 
sense that the automorphism Int 8 o 0 is quasi-semisimple. Because 

Intm(5)o0* = < / ; I n t ( W \ 

m induces a bijection between the set G/SS(G, 0) of 0-conjugacy classes of 0-semisimple 
elements in G(F) and G/ss(G*,0*), the corresponding set for (G*,0*). 

Suppose that (#, T) is a 0*-stable pair in G*, ft is the Weyl group of T in G* and 
the subgroup of elements which commute with 0*. Recall that each element of 

Qe* is represented by a 0*-fixed element of G* (see (1.1)). 

Lemma 3.2.A 
(1) Each O G G/ss(G*,0*) meete T. 
(2) The image of O HT in TQ* is a single Q,9* -orbit. 

If 6 is 0*-semisimple then there is a pair (B(S),T(S)) in G* preserved by Int((5) o0*. 
Suppose Bo T(J))0 = (5, T). Then we find that g~l66{g) lies in T, and (1) follows. 

US eT then (B,T) is Int ((J) o 0*-stable. Thus if g~1S0*(g) also lies in T we have 
that both (T°)° and g^fg'1 are maximal tori in Cent*?*(6, G*)°, and (2) follows. 

We now map 0 G G/ss(G*,0*) to the fi61*-orbit in T0* given by the lemma. Thus 
we have a bijection 

(3.2.1) G/ss(G*,0*)-^T^/f]r. 

If also (B' ,T') is 0*-stable then we have a canonical bijection 

ÏWÎÏ* ^П./(п')в 
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induced by conjugation by a suitable 0*-fixed element of G*, and this bijection is 
compatible with the bijections (3.2.1) for (B,T) and (B',T'). 

The composition 

(3.2.2) GZss(G,0) -+ G/ss(G*,0*) -> Te*/Sl9* 

yields an abstract norm map N$ for #-semisimple #-conjugacy classes in G{F). We 
may assume that T is defined over F. Then it is easy to check that each arrow respects 
the action of T, i.e. NQ is defined over F. 

3.3. Strongly G-regular norms 

Returning now to the set (H, H, s, f) of endoscopic data for (G, 0, a), we shall first 
establish: 

Theorem 3.3.A. — There is a canonical map 

AH/G : ClSS{H) -» G/ss(G,0) 

from semisimple conjugacy classes in H{F) to 6-semisimple 6-conjugacy classes in 
G(F). This map is defined over F in the sense that it respects the action of T = 
Gal(F/F). 

Suppose (BH,TH) is a pair in H and (B,T) is a #*-stable pair in G*. To save 
notation, we will make use of the fixed splittings spl^ = (B, T, {X}) of G and spl^ = 
{BH,TH, {XH}) of H\ in addition we assume s G T, £(TH) = (T*)° and £(BH) C B, 
as we may. To (BH,TH) and (BH,TH) is attached an isomorphism T# ->> TH and to 
(#, T) and (/?, T) is attached an isomorphism T -> T. Because (B, T) is 0*-stable 
the latter isomorphism induces 

(r*.r=(f?)0~(T*)°. 

We have therefore attached to (BH,TH) and (B,T) a chain of isomorphisms 

f „ ~ r / , 4 ( r * ) ° ~ ( T , * r 
which then yields TH — TQ*. This isomorphism transports = f£(iJ,T#) to a 
subgroup of tte* — f](G*,T)6,,K and so induces 

(3.3.1) TH/nH->Te*/ne*. 

We therefore have 

ClSS(H) -+ TH/nH -> Te*/ne* -> G/ss(G*,0*) -> G/ss(G,0) 

yielding a map 
A„/a:CUH)->CUG,0). 

It is independent of all choices. 
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To see that AH/G is denned over F it remains only to check that (3.3.1) is defined 
over F, and for this it is enough to prove the following. 

Lemma 3.3.B. — IfTn is defined over F then we may choose BH D TH and 6* -stable 
(J5,T) with T defined over F, so that the attached isomorphism TH -> To* is defined 
over F. 

Suppose that TH is defined over F. Let BH D TH and let (B, T) be a 0*-stable pair 
with T defined over F. Write rj for the attached isomorphism TH -> TQ* . Reviewing 
the constructions, we see that a^rj'1 is given by an element ua G il0* which it is 
convenient to view as ft((G*C)0^, T9*). A familiar argument using Steinberg's theorem 
on rational points in semisimple conjugacy classes in simply connected quasi-split 
groups then shows that there exists g G (G*C)0 such that cr(g)g~1 normalizes T0* and 
induces ua. We replace (B,T) by (B,T)9 and then n by Int(#_1) o rj to obtain the 
desired isomorphism over F. 

An F-isomorphism TH -> TQ* as in the lemma will be called an admissible embed
ding of TH (in GQ, the set of 0-conjugacy classes in G), and TH will be called a norm 
group for T. 

To define norms in H(F) we start with the most regular elements. Recall that 
Cent0(<5, G) is the group of fixed points of Int(J) o0. Call 0-semisimple 6 G G 0-regular 
if G50 — Centre?, G)° is a torus and strongly 0-regular if Cent#(£, G) is abelian. In 
the latter case, T§ — Cent(G50,G) is a maximal torus in G stable under lnt(8) o 0 
and Cente(6, G) coincides with the set of fixed points of Int(£) o 0 in T<$. Call 7 G H 
G-regular if the image of the conjugacy class of 7 under AH/G consists of 0-regular 
elements, and strongly G-regular if the image consists of strongly 0-regular elements. 

The twisted centralizer Cent#((S, G) of a strongly 0-regular 0-semisimple element 
is a torus if G is semisimple and simply connected. Indeed, by Theorem 8.1 in [St] 
the twisted centralizer of any 0-semisimple element is connected in this case. How
ever, in general the twisted centralizer of a strongly 0-regular 0-semisimple element 
is disconnected; in other words it is a diagonalizable group, not a torus. This phe
nomenon occurs for the transpose-inverse automorphism of GL(n) when n is odd, say 
n = 2fc+l, in which case the twisted centralizer of any strongly 0-regular 0-semisimple 
element is isomorphic over F to x {±1}. 

Lemma 3.3.C 
(1) A G-regular element in H is regular. 
(2) A strongly G-regular element in H is strongly regular. 

Let S lie in the image of the class of 7 under AH/G and T) be a 0*-stable pair in 
G*. Then there is 5* in T such that 5* is 0*-conjugate to m(S) and such that the image 
of (5* in TQ* is equal to the image of 7 under some admissible embedding TH —> To*. 
Because the twisted centralizers of S and 6* are isomorphic, S is (strongly) 0-regular 
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if and only if 8* is (strongly) 0*-regular. The condition for 6* to be 0*-regular is of 
course that (G*)s*d* have no roots. We observe from (1.3) that this is equivalent to: 

(3.3.2) for a G R{G*,T) we have 

JNa(8*) ^ 1, for a of types RU R2 
\N<X{8*) # - 1 , for a of type R3. 

The condition that 7 be regular in H is that no ((av)res)v be a root of the centralizer 
of 7 in H. By (1.3.9) this means: 

(3.3.3) for aH = ((av)res)v G R(H,TH) we have 

OLH{I) = Na(6*) ^ 1, for a of types i?i,f?3 
and) = Na(5*)2 ^ 1, for a of type U2. 

But (3.3.2) implies (3.3.3) and so (1) is proved. For (2), suppose that 5* is strongly 
0*-regular. This means that no nontrivial element of fte (G*,T) may be realized in 
Cent0*(<S*,G*). Recall that every element of ftr(G*,T) may be realized in (G*)0* 
because 0* preserves a splitting. If 7 is not strongly regular in H then there is a 
nontrivial element U>H of Q(H^TH) which fixes 7. Embedding fin in QE* we can then 
produce an element of Cent<9*(£*,G*) which realizes the (nontrivial) image of UJH, a 
contradiction, and so the lemma is proved. 

Turning to F-rational points, (2) of Lemma 3.3.C implies that the stable conjugacy 
class of strongly G-regular 7 G H(F) is the intersection of its conjugacy class in H(F) 
with H(F). We define the stable 0-conjugacy class of strongly 0-regular 7 G G(F) to 
be the intersection with G(F) of its 0-conjugacy class in G(F). 

Now suppose 7 G H(F) is strongly G-regular. We say that 7 is a norm ofSE G(F) 
if 6 lies in the image of the conjugacy class of 7 under AH/G- If this image contains 
no points of G(F) then we say 7 is not a norm. Observe that either 7 is a norm of 
exactly one stable 0-conjugacy class of strongly 0-regular elements in G{F) or it is not 
a norm. If (ffi,̂ Hi) is a z-pair for % we say that 71 G H\(F) is strongly G-regular 
if its image 7 in H(F) is, 71 is a norm of 8 if 7 is, and so on. 

If strongly G-regular 7 G TH{F) is a norm of 5 £ G(F) and TH To* is an 
admissible embedding then we may choose S* G T and g G G*c such that 

(3.3.4) 7 has image Ne*(5*) under TH -± Te* and 
(3.3.5) 8*=gm(8)0*(g)-1. 

In (3.3.5) # G G*c has been identified with its image in G*. Then 
(3.3.6) Int(p) o %f) : Cent^, G) -» Tr is defined over F. 

This is clear because 
(Int(^^)a(Int(^)^)-1 =Intt;(<7), 

where v(a) = gu(a)a(g)~1 is readily seen (Lemma 4.4.A) to lie in Tsc. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 





CHAPTER 4 

RELATIVE TRANSFER FACTORS 

4.1. The setting 
Throughout Chapter 4, F will be local. Once again (H, T-L, s, £) is a set of endoscopic 

data for (G,0,a) and (HI,^HX) 1S a ^-pair for W,. Our plan is to define a relative 
transfer factor A(71, 71? <5), for 71, 7̂  strongly G-regular in Hi(F) and norms of, 
respectively, 5 G G(F), and then to show that it is canonical. This relative factor will 
be a product of four terms AI,AH,AIII and Arv- In our setting the terms Ai = Anix 
and A2 = Ain2 of standard endoscopy [LSI] combine naturally as the single term 
Am. Each of Ai,An,Arv will be a quotient of the form Ai(71, 5)/A\(7y1,5), and so 
on. Each term will depend on additional data (admissible embeddings, a-data or 
X-data). However, the main theorem of this chapter, Theorem 4.6.A, will assert that 
the effects of these choices cancel when we assemble the relative transfer factor. 

We continue with 7i,7x and 5,5 as above. Let 7,7 G H(F) be the images of 7i,7i 
under Hx -> H and set TH = Cent(7, if), TH = Cent(%#). Let TH TE* and 
TH —> T$* be admissible embeddings. Here we make the choices BH,B,T and BH, 
etc. of Lemma 3.3.B and maintain the assumptions of the proof of Theorem 3.3.A, 
but only the resultant admissible embeddings will affect the terms in the transfer 
factor. Let g,g G G*c and 5* G T, J* G T have the properties of (3.3.4) and (3.3.5). 
Let .Rres denote the restricted roots of R{G*, T) and it!resV those of R(G, T), equipped 
with the Galois action for T; similarly define RRES and i?resV for T. Finally we choose 
a-data and %-data for RRES (or RresV) and RRES (or i?resv) as in (1.3). 

4.2. The term Ai 
We define Ai(7i,J) = Ai(7, J) by adapting a construction from [LSI]. The au

tomorphism 6* of G* lifts to an automorphism 6*c of G*C. Let GX be the group of 
fixed points of 6*c and TX = Tsc D GX. Recall that these groups are connected and 
R(GX,TX) is contained in RRES. Thus we have a-data {aa : a G R(GX,TX)}. Fix an 
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F-splitting of Gx. Then to Tx,{aa} and this splitting we may attach the element 
\{AA}(TX) of HL(F,TX) defined in [LSI, 2.3]. 

On the other hand, we may use the endoscopic datum s to define an element ST,O of 
7To((TX)R), as follows. The group TX is the group of coinvariants of 6 in Tad = T jZ(G) 
which we may identify with (7Id)jd using T ~ T. Since s lies in T we may project 
first to 7Id and then to (T^Q , so obtaining an element $T,0-

Lemma 4.2.A 
(1) ST,0 «5 r-invariant and 
(2) 5T,0 depends on the admissible embedding TH -» TQ* but not on the choice of 

BH,B leading to TH -> TQ*. 

Suppose h G % normalizes TH and write 

f (ft) — g x w e G x WF. 

Then both E(h) and u> normalize T and preserve the subgroup T := (T ) ; therefore 
the same is true of g, and the discussion in (1.1) implies that the image of g in 0 (GT) 
belongs to fl(G,T)e and hence that # itself belongs to TG1. Therefore £(/i) can be 
written as tx with t G T and # fixed by L0, and it follows immediately from (2.1.4a) 
that 

(4.2.1) ^(h)s^(h)-1 = a'iw^se^r1. 

Now we prove part (1) of the lemma. Let a G T and write arH for the action of 
a on TH obtained from the natural action of a on TH via the isomorphism TH — TH 
determined by BH,BH- Then OTH differs from pu{?) by an element of the Weyl 
group of TH in H, and therefore there exists h G 1~L such that h normalizes TH and 
acts on it by CFTH. It is then immediate from (4.2.1) that GTH fixes tne image of s in 
(Tad) 00. 

Finally we prove part (2) of the lemma. In order to get s we have chosen 5, BH , 
splg, spl^ and we have assumed that s G T, £(7}/) = Tn£(H) and = Sflf (if), 
which we can achieve after replacing (s,£) by 

°(s,0 := (^(srSlnt teW) 

for some g € G. These choices give us an admissible embedding TH — TQ, an element 
sf e TQ (project 5 into TQ), an isomorphism T§ ~ T-g and an element s" G (s" is 
the image of s' under the isomorphism TQ ^ T )̂. We want to show that s" depends 
only on the admissible embedding resulting from all these choices. This follows from 
the following assertion: if different choices cause the admissible embedding TH — TQ 
to be replaced by its composition with uo G Q,(G*,T)D then s" is replaced by u"1^). 

We now verify this assertion. Using conjugation by elements of G1 fixed by V we 
may assume that spl^ remains the same. Similarly, using conjugation by elements 
of H fixed by T we may assume that spl£> remains the same. Changing B to u(B) 
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for u G Q(G*,T) fixed by 0 and T obviously causes a change in (TH — TQ,S") of the 
form given above. Changing BH to U>H(BH) for UJH G FL(H,TH) fixed by T changes 
T# ~ To by UJH and does not change s"; however, it follows from (4.2.1) that COH fixes 
s", so that our assertion is still correct. There is still one kind of change possible. We 
can replace (s, £) by 9(s, £) for g G Norm(T, G) whose image u in fi(G, T) is fixed by 
0 and has the property that a>-1(B)n^(H) = #nf (#). Thus T# ~ is replaced by 
its composition with u~x and s" is replaced by u(s). This proves our assertion and 
concludes the proof of the lemma. 

We may now define ST,O to be the class of ST,O in 7r0((Tx)r). Let •) denote the 
Tate-Nakayama pairing between jff^F,!1*) and 7r0((f*)r) (see [Kl]). Then we define 

Ai(7,«) = <A{aa}(r*),8T|tf). 
We need to understand how Ai(7,<5) depends on the choice of F-splitting for Gx. 

To simplify notation we write I for Gx. Suppose that we replace our chosen F-splitting 
spl/ for I by Int(g)(spl/), where g G 1(F) is such that Int(#) is defined over F. Let 
z G HX(F, Z(I)) denote the image of g under the boundary map 

IAD(F)-> H1(F,Z(I)) 

for the exact sequence 
1 -> Z(I) - + I -+ Jad 1; 

then z is represented by the 1-cocycle 
a \-> g~xa(g) 

of T in Z(I). It follows from (2.3.1) of [LSI] that \{AA}(TX) is multiplied by the 
image z' of z under 

H1(F,Z(I)) -^HL(F,TX). 

Therefore Ai(7,£) is multiplied by (Z',ST,O)-
Although the expression {Z',ST,O) appears to depend on T, it actually does not, 

as we will show by finding a more useful way to write it. As usual (see [LI]) the 
maximal torus TX of I and the element ST,O G (TX)T determine an endoscopic group 
J of I together with an element sj G Z(J)T'. Let us recall the construction. We start 
by defining J to be the identity component of the centralizer of ST,O in I (pick an 
embedding TX <-» I belonging to the canonical conjugacy class of such embeddings). 
The natural action of V on TX preserves the root system of TX in /, and since ST,O 
is fixed by T, the action of T preserves the root system of TX in J as well. Fix a 
splitting of J with TX as its torus component. Then for each a G T we denote by u}a 
the unique element of the Weyl group of TX in J such that Upcr preserves the positive 
Weyl chamber determined by our splitting of J. Then there is a unique action pj of 
T on J, preserving the chosen splitting, such that pj(cr) coincides with uaa on TX. 
We take J to be a quasi-split group whose dual group is (J, pj). It is immediate that 
ST,O is an element of Z(J)T; we denote this element by sj. 
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We used TX to get J, but in fact (J,sj) depends only on (iJ,%,s,£) and not on 
TH* TO see this we need to compare the root systems of J and H. Without loss of 
generality we may assume that G is semisimple and simply connected, so that I — Ge 
and TX = TE. It follows from (1.3) that the map 

r̂es (# )res 

induces a type-preserving bijection 

Rres(G,T) -* RRES(G,T) 

and thus also induces a bijection 

Rres(G, T)red ~> R(I,TE), 

where the subscript red indicates the subset of all reduced roots. Therefore 

ares »-> ((av)res)v 

is a bijection 

(4.2.2) Rres(G,T)re4^R(lTe). 

Recall also from (1.3) that ((av)res)v is given by 

Na if ares is of type Ri 
2Na if ares is of type R2-

The root system of H (see (1.3)) consists of all the reduced elements ares of 
Rres(G,T) such that (Na)(s) = 1 together with all the non-reduced elements cvres 
of RTes(,G,T) such that (Na)(s) = —1. Replacing non-reduced roots ares by ares/2, 
we get a bijection from the root system of H to the set of all ares in Rres(G,T)red 
such that 

(Na)(s) = 1 if ares is of type R± 
(2Na)(s) = 1 if ares is of type R2. 

It is obvious that the bijection (4.2.2) carries this subset of RTes(G,T)Ted over to the 
subset of R(I,To) consisting of all elements /3 such that (3(s) — 1; in other words we 
have constructed a natural bijection 

(4.2.3) R(H,Te)-*R{J,To). 

Since we have assumed that G is semisimple the automorphism 6 has finite order, 
say order d. Let / be the isomorphism 

f:X*(Te)Q^X*(To)Q 

defined as follows: identify X*(Te)q with (X*(T)Q)0 and X*(To)® with {X*(T)Q)9', 
then f becomes the map from the coinvariants to the invariants given by 

x 
d 

M 

i=l 
OHx). 
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Note that for ares in RRES(G, T) the bijection (4.2.2) carries ares into a positive rational 
multiple of /(ares), and the analogous statement holds for the bijection (4.2.3), which 
means that the isomorphism / carries Weyl chambers for H over to Weyl chambers 
for J. The isomorphism / is obviously equivariant for the action of ft(G,T)E, and it 
carries the Weyl group of H over to the Weyl group of J, yielding an isomorphism 
between these two groups. 

We are finally ready to show that the L-action of T on J just depends on H, not 
on T#. Suppose that TH is replaced by TFH. Then for a £ T the action of a on T'H 
differs from its action on TH by an element of the Weyl group of H (identify T'H with 
TH over F using an inner automorphism of H over F). Therefore the action of a on 
the maximal torus (T')X of I differs from its action on TX by an element of the Weyl 
group of J. Therefore the L-action of a on J obtained from {T')X coincides with the 
one obtained from TX. 

It is convenient to pursue these considerations one step further, for use in (5.3). 
Consider the special case in which TH is the torus component of an F-splitting of H, 
so that the Galois action on TH preserves some Weyl chamber for TH in H. As before 
we have T and TH — TQ as in Lemma 3.3.B. Then TE is a maximal torus of 7, and TE 
transfers to J (since we can use this particular TH to construct J). It is clear from 
the remarks made earlier that the Galois action on T6 preserves some Weyl chamber 
for T6 in J, which means that TE is the torus component of some F-splitting of J. 

Now we return to the factor Ai(7,£). Recall that replacing spl/ by Int(#)(splj) 
has the effect of multiplying Ai(7,£) by (Z'^STJ)- The torus TX transfers to J, so 
that we can choose 

TX -> J. 

Then (z7, ST,O) is equal to {zj, sj), where zj denotes the image of zf under 

HX{F,TX) -> HL{F, J), 

sj e Z(J)T is as before, and (zj,sj) is the usual pairing between iJx(F, J) and 
7To(Z(J)F). Clearly zj can also be described as the image of z under the map 

H\F,Z{I)) ^H\F,J) 

coming from the canonical embedding of Z{I) into the center of J. In particular it is 
now clear that (zj,sj) is independent of TH- It follows that the relative factor 

Ai(7i,£;7i J ) = AI(7,(J)/AI(7,*) 

is independent of the choice of F-splitting for GX. 

4.3. The term An 

The term An(71, S) = An (7,5) will be a quotient, with the numerator a product 
over Galois orbits O in RRES = RTES(G*,T) and the denominator a product over Galois 
orbits OH in RH = R(H,TH). The a-data and x-data of (1.3) serve for i?res, -RresV 
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and (i?resV)v which contains RH so that they serve for RH as well. Observe that T 
preserves the type R\,R2 or i?3 of an element of RRES, and so we may speak of the 
type of a Galois orbit O. Also recall that if we write a restricted root as ares, with 
a e i?(G*,T), then a is uniquely determined up to 0-orbit so that the term Na of 
(1.3) is well-defined. 

Suppose O is of type R\ or R2. Then the contribution to the numerator of An (7, S) 
from the orbit O is 

XOCH 
Na(6*) - Ï 

XOCH 

where ares is a representative for O. Because o~XaTes = Xaâ si °~aocTes = flffares, 
a(Na) = N(aa) and ad* = S* modulo (1 - 0*)T (see (3.3.4)), we conclude that 
this term does not depend on the choice of ares. Nor does it depend on the choice of 
6*. 

If O is of type #3 then the contribution is 

Again the choice of representative ares for O does not matter. 
The contribution to the denominator of An (7, S) from the orbit OH in RH is 

X a M ( J V a ( ¿ * ) + l ) . 

XOCH aHh) - 1 
XOCH 

where an is an(y) element of OH-
The term An (7,8) may be written in another way. Any a £ R with the property 

that (av)res = (a#)v, for some an G RH, will be said to be /rora H. We may use the 
same terminology for the 0-orbit of a, for ares or for the Galois orbit of ares. Recall 
that if (av)res = OLHW then: 

(4.3.1) aH{v = 
Na(S*) if ares is of type Ri or R3 
(Na(S*))2 if ares is of type R2. 

Lemma 4.3.A. — A//(7, S) is the product over representatives ares for the Galois orbits 
in Rres of: 

(4.3.2) XcKres 
Na(S*) - 1 

aû:res 
for orbits of type Ri and not from H, 

(4.3.3) Xotres 
[Na(6*)-l)(Na(6*) + iy 

aHh) - 1 
for orbits of type R2 such that both ares and 2ares are not from H, 

(4.3.4) Xc^(Na(S*) + V 

for orbits of type Rs from H, and 1 for the remaining orbits. 
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If ares is of type Ri and from H then (4.3.1) shows that the contribution to An (7, S) 
from the T-orbit of ares is 1. So the contribution from all orbits of type R\ is given 
by (4.3.2) over those orbits not from H. 

Now suppose ares is of type R2. We have the three cases: (i) ares, 2ares are not 
from H, (ii) ares is from H, 2ares is not from if, (hi) ares is not from H and 2ares 
is from H. For (i), the contribution to An (7,6) from the orbits of ares and 2ares is 
given by (4.3.3). For (ii), (4.3.1) implies that the contribution is 

Xû:res 
'(Na(6*)-l)(Na(6*) + lY 

Xû:res 
divided by 

Xares 
(Na(ô*))2 - 1 

au!res 
and so is trivial. For (hi), the contribution is given by (4.3.4), and the lemma is 
proved. 

4.4. The term A M 

This is the one genuinely relative term, i.e. in general, AHI(7I,#;7I,5) is not 
defined as a quotient. Further it is the only term where the dependence on 71,7! is 
not through 7,7. (Recall that 7 is the image of 71 under H1(F) -> H(F), and so on.) 
In fact, in (5.1) we will prove that 

Aiii^ni,*;^,*) = AHI(^I)"1AIII(7I,<J;71,5) 

for zi G Zx(F) = ker[#i(F) -+ H(F)], where XHl is the character from (2.2). It is 
nevertheless useful to describe separately the rather special case Hi — iJ, for this 
reveals a structure on which we may build for the general case. 

Thus we assume for the next several paragraphs that Hi — H. To begin, we 
recall the tori S = 5(T,T) and U = U(T,T) from [LS2]. Because both f and f are 
isomorphic to T we have isomorphisms T —>• T and T -> T. When convenient, we 
use these isomorphisms to identify T with T (over F), X*(T) with X*(T), and so on. 
Then 

S=(TxT) /{(z,z-1):zeZ} 

and 
U = (Tsc x z"1) : z e Zsc}, 

where Z = Z(G) and Zsc = Z(GSC). Thus X*(S) is the lattice in X*(T) x X*(T) 
given as {(A,/i) : A - \i G X*(Tad)} and X*(U) is the lattice in X*(TSC) x X*(TSC) 
given the same way. 

Recall that we may identify U as 

(fscxfsc)/{{z,z):zeZsc}, 
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where as usual the subscript sc indicates objects in the simply connected covering of 
the derived group of G. There is another way of describing U that is convenient also 
when we come to 5. Namely, 

U — T'ad X TSCl 
where there is a twisted Galois action on this product: a G V acts by 

(*adJsc) (c7T(̂ ad),a(a;(cr))(aT(̂ ad)) '^(Jsc)). 
Here u(a) is the element o^o^1 of the Weyl group of T and a(u(cr)) : Tad -> Tsc 
is given by £ad »-» (<̂ (̂ )(̂ ad))(̂ ad)-1' wnere âd ŝ an element of Tsc mapping to 
fad- The isomorphism from U to Tad x Tsc takes the element of U represented by 
(£sc> ?sc) £ ŝc x ̂ sc to (£sc, £sc£ where £sc denotes the image of £sc in Tad. Similarly, 
S = fxfsc. See the proof of Lemma 3.5.A in [LS2]. 

By 1 — 6 : U -> 5 we will mean more precisely the map induced by 

(tsc,tsc)^((i-e*)(t),(i-e*)(t)), 

where t,t are the images of tSĉ sc in T,T. The dual homomorphism 1 — 6 : S —> U 
can be realized as the map 

T x Tsc y L'a.d x Tsc 
given by 

(Msc) *"> ((1 _ #ad)*ad, (1 - #sc)£sc), 
where £ad is the image of t in Tad. 

We shall define an element 

V = inv(7, J;7, J) 

of HX(F, U ̂ 4 S) and an element A of if X{WF, 5 ^ 4 C?). Then we set 

A M ( 7 ^ ; 7 J ) - ( V , A ) . 

These hypercohomology groups and the pairing (•, •) are discussed in Appendix A. 
We have 5* — gm(8)6*(g)~1 and that No*(5*) G TQ* is equal to the image of 7 

under TH -> To*. Write ^cr^)-1 = Intu((j) as in (3.1) and set v(a) — gu(a)a(g)~1 
as in (3.3). 

Lemma 4.4.A 
(1) v(a) lies in Tsc. 
(2) (l-0*)v(<r)=<r(8*)-16*. 

We have arranged that 

a(m)(S) = ufc)-1™^* 

(see (3.1.2)). From this and 
gm(6)e*(9rl =6* 
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we conclude that 
V(<T)-16*0*(V((T))=(T(8*). 

Since cr(<5*) = S* modulo (1 — 6*)T we deduce that 

(v(<T)t)-15*0*(v(<r)t)=6* 

for some t G T. But Cent#*(J*,G*) = T°* and so we conclude that v(a) lies in Tsc, 
as asserted in (1). In particular all four elements in the equation 

v(a)-18*0*(v(a))=<T(8*) 

commute with each other, and (2) is then immediate. 
Observe also that the coboundary dv of v(a) is g(du)g~1 = du since du takes 

values in Zsc. 
We make the same constructions for 7,^ and thus have 6 ,v(o~) along with 5*,v(a). 

Let V(a) be the image in U of (^(o-)"1, v(a)) G Tsc x Tsc under the natural projection, 
and let D be the image of (<$*, (J*)"1) G T x T in 5. Because (dv'1, dv) = {du^.du) 
we have that V is a 1-cocycle and (2) of Lemma 4.4.A shows that 

(l-(9)(V((T)) = <T(I>)i?-1 

for all (j G T. We conclude that (V, D) represents a class V in H(7 —̂4 5). It is 
readily verified that as long as the embeddings T# -» T#*, T# —• T#* remain fixed the 
element V is uniquely determined by 7 G TH(F), 7 G TH(F), S and 5. Moreover the 
embedding T# —> T$* is determined by the element 7 and the requirement that 7 1-» 
N0(6) G T̂ *, and the analogous assertion is true for the other admissible embedding 
as well. For this reason we denote V by inv(7,5] 7,5). 

We turn now to constructing A. To the endoscopic datum s we attach the element 
su of U following the prescription of [LSI, Section 3.4], which we now review. Recall 
that we are working under the assumptions of the proof of Theorem 3.3. A. Now choose 
s G Tsc having the same image as s in 7ad and use the isomorphisms T ~ T, T ~ T 
to obtain ST G TSC and G Tsc. Then the class su of (ST,SJT) in U is independent of 
the choice of s. In our present more general setting, su is not necessarily T-invariant. 
We will construct a 1-cocycle A of WF in S such that 

suwisu)'1 = (l-6)(A(w)) 

for all w G WF- Then A will be the class of (_A_1,st/) in the dual hypercohomology 

group H1(WF,S —> U) (see Appendix A). 
Let G1 be the identity component of the fixed points of 6 in G. Then G1 is 

preserved by WF. Set LG1 = G1 x WF with this inherited action of WF- Then LG1 
is an L-group, for we may use the ^-stable T-splitting spl^ = (i3, T,...) to construct 
a T-splitting splgl = (B1 = B D G1,T1 = T fl G1,...) of G1 (recall Chapter 1 
and [St] on root vectors) and LG1 embeds naturally in LG. Also, T1 is a maximal 
torus in both G1 and £(H); both R(Gl,Tl) and R(£(H),Tl) have the actions TTyTY 
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derived from the Galois actions on T,T and are contained in i?resV5 RresV - Thus 
we have %-data for them. To the data for i?(£(#), T1) is attached an embedding 
LTH <-> LH [LSI, Sect. 2 . 6 ] . We compose this with the given fH : LH -» U (recall 
our assumption Hi = H) and ( : H LG to obtain an embedding £TH :LTH ^ LG 
extending the isomorphism TH -> T1. On the other hand, if we identify T1 as (T0)0 
then TH -> T1 extends to an isomorphism LTH -> L(Te*), and at the same time the 
%-data for R(GX,Tl) yield an embedding 

L{Te*) ^ LGX ^ LG, 
where the embedding of LG1 in LG is the natural one. Thus we obtain a second 
embedding £1 : LTH LG. But then £TH — AT • £ 1 , where ar is a 1-cocycle of WF 
in T with VFF acting wa the Galois action on T. As usual [LSI] we transport ar to 
T without change in notation. Replacing T by T we obtain also a 1-cocycle of 
WF in T. It will be convenient now to identify T with T as tori over C. Consider 
then x(w) := a^{w)/aT{w). Our constructions will be seen to yield naturally an 
element xsc(w) of Tsc with #(w) as image under the natural projection; this requires 
an extension of the Second Lemma of Comparison in [LS2] as we shall explain in the 
proof below. Then set 

A(w) = (aT(w),xsc(w)). 
This is an element of S. We will be done with our constructions for Am (in the case 
Hi = H) as soon as we have checked the following. 

Lemma 4.4. B 
( 1 ) A is a 1-cocycle OJWF in S. 
( 2 ) ( 1 - 9)(A(w)) = suw(su)-1 for all w <E WF. 

First we describe xsc (w) explicitly. Recall from ( 1 . 1 ) that 

QMH^T1) CdiG^T1) cn(G,T), 
so that n(H,TH) acts on T. If a G T then aT = u;(cr)crT, where u(a) G Q(H,TH)-
Thus TY C Q(H, TH) X TT and we can proceed as in (3.4) of [LS2]. First we construct 
objects in G1 instead of in G. Thus 

mi(w) = ri(w)ni(w) x w 
and so on. Again we shall index the corresponding objects for H by s. Thus 

ms(w) = rs(w)ns(w) x w 
and ar{w) is given by 

£o£H(ms(w)) = aT(w)mi(w). 
Similarly, 

£ o ^H(ms(w)) = aT(w)Wii(w). 

ASTERISQUE 255 



4.4. THE TERM Am 41 

Set 
C(W) = ri(W)rS(W)~1 

and 
C(W) =fi(W)rS(W)~1. 

We argue exactly as in the proof of Lemma 3.4.A of [LS2]—the Second Lemma of 
Comparison—to show that 

â (u>)-1 = c(i(;)6(ct;)(x;(c('M;)~1aT('w;)~1)f(a;,cr)-1, 

where UJ = U(<T) and 6,f are as denned in (3.4) of [LS2]. We conclude then that 
X(W) — A^(W)/AT(W) is given by 

c(iy)~16(o;)~:La;(c(ii;))r(a;,(7)(a; - 1)(CLT(W)). 

Each term of this product lifts naturally to Tsc. Indeed, the first four of them are 
given in terms of elements constructed in (G1)sc or Hsc and projected into G, and of 
course these projection maps factor through Gsc- The last term lifts to a(u)(a,T(w)) 
with a(u) = a(u(<r)) as before. Therefore we obtain XSC(W) in Tsc projecting to X(W) 
in T. Thus A(w) G 5. To show that A is a 1-cocycle we follow the argument in the 
proof of Lemma 3.5.A of [LS2]; the analogue of their Lemma 4.2.A, which is needed 
for that argument, goes through without modification. So (1) of our lemma is proved. 

For (2), we observe that (2.1.4a) implies that 

s6(aT(W))mi(W)S~1 = a' (w)ciT(w)mi(w) 

and thus 

(4.4.1) (1 - 6)AT(W) = SWRIS^A'IW)-1. 

On the other hand, 

(1 - 0SC)XSC(W) = (1 - fl8C)[6M"1a(a;)(aT(ti;))] 
as the remaining terms of XSC(W) are fixed by 8SC. But b{u))~l = n5(cj)ni(c<;)_1, with 
ns((jj) in the fixed points of Int(ssc) o 6SC and n\(u)) in the fixed points of 0SC, where 
SSC has image sad m âd- Thus (1 — flscM^)-1 — ^(^sc)-1^ = Q;(^)(5)-1- Next 
we compute (1 - 6sc)(a(UJ)(aT(W))) as a(u;)((l — 0)(IT(W)) = a(a;)(5^T(5)_1), and so 
(1 - ŝc)̂ sc(̂ ) = a^j^rW)"1. 

Recalling the precise meaning of 1 — 9 as map from 5 to C/, we conclude that 

(l-0)A(W) = (8adwT(8^)-1,a(Lj)(wT(8))''1). 

Finally, when U is realized as Tad x ŝc the element su becomes (sad?l) and so 
SUW(SU)~1 is also equal to (5ad^T(5ad)_1,«((̂ )(̂ T(5))_1) and we are done. 

We turn now to the general case. Thus (H1, H) is an arbitrary z-pair. Recall 
that Zi denotes the kernel of Hi -> H. We shall modify our arguments for the special 
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case Hi = H by replacing the torus 5 by a torus Si as follows. Start with the exact 
sequence 

1 Zi THl A TH 1. 
Form a pull-back diagram from this exact sequence together with the homomorphism 

AT: T -> TH 

obtained by composing the projection map T To* with the isomorphism TH ^ To* 
provided by our admissible embedding; thus we get a commutative diagram 

Ti • T 

N 

THl —^ TH 
in which Ti is the fiber product 

{(Mtfx) € T x THl : JV(t) =p(tHl)}; 

of course Ti T is surjective with kernel Zi. Note that T\ is a torus and that 
the automorphism 0* of T lifts naturally to an automorphism 6i of T\ that acts 
trivially on the subgroup Z\ of T\: for (M#i) £ Ti the automorphism #i is given by 
0i(MhJ = (0*(fi),tHl). Set <JJ = (<J*,7i) e Ti and ^ = (T G TV 

We identify T\ with T\ over F. Then S\ is defined to be the quotient of Ti x T\ 
given by 

X\Si) = {(A,^) G X*(Ti) x X*(Ti) : A — /i G X*(Tad)}. 
Thus 5i ~ Ti x Tad with twisted Galois action on the second factor as before, and 
we have an obvious exact sequence 

1 -> Zi -> Si -» S -> 1. 

Recall the homomorphism 
1-0:U- >S. 

There is a natural lifting of 1 — 6 to a homomorphism 

1-0:U-+SU 

obtained as follows. The automorphism Oi of Ti is trivial on Zi, and therefore 1 — #i : 
Ti -> Ti has Zi in its kernel and hence yields 1 - 9i : T -» T\. The same is true for 
T so that we get a map 

l - 0 i :TxT^Ti xTi, 
which carries the kernel of T x T -> 5 into the kernel of T\ x T\ Si and hence 
induces a map 

1-01 : S-» 5i, 
which we compose with the obvious map 

U->S 
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to get the lifting 
1 0 : U Si. 

Recall that we have already defined a 1-cocycle V of T in U. Now define an element 
D\ of Si by taking the image under 

Ti x Ti -> 5i 
of (<JJ, (^i)-1) € Ti x Ti. Recall from Lemma 4.4.A that 

(1 - 0*)v(a) = a(S*)~x • 6*. 
Therefore the image of v(0) under 

Tsc T ^> Ti 
is given by (a^*)-1 • <5*, 1) G T x THl, and since (cr^*)"1 • <**, 1) = crO*?)"1 • (J? we 
conclude that (V,Di) satisfies the hypercocycle condition 

(l-6)V = a(Di)'D-\ 
Thus we have produced an element 

Vi eH^F^U ^ Si). 
We need to produce a class 

Ai eH^WpJi ±Au) 
so that we can define Am by 

Am(7i,(5;7i J ) = <Vi,Ai>. 
Recall that we already have defined an element su G U. However the construction 
of the 1-cocycle A of Wp in S breaks down since it used the assumption Hi — H. 
Fortunately the construction can be modified so as to produce the desired 1-cocycle 
in Si. 

We define 
6 : LTH -> LG 

just as before. We no longer have the embedding 
frn : LTH -+ LG. 

Instead we work with 
ZTH • LTH -»• LH1 

defined as the composition of the L-homomorphism 
LTH -> LH 

used before and the obvious inclusion 
LH^LHi. 
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We can no longer compare £1 and £TH directly; we need the intermediary Ti and the 
L-homomorphisms 

£:H^LG 

and 
in, :U^ LH1. 

Now consider the subgroup U of Ti consisting of all elements h G Ti that normalize 
TH and act on it by GTH > where cr denotes the image of h under 

in, :U^L H1. 

and crTff denotes the action of a on Tftr given by the identification TH — TH- Then 
it is easy to see that the projection Ti WF maps U onto WF- Since U is locally 
compact and its topology has a countable base we see that U/TH is isomorphic as 
topological group to WF-

Use the splitting (Z3#, TH , •..) of H to get a splitting (Z?^, THX , . . .) °f Then 
we have an isomorphism T//1 ~ 7/̂  extending TH — TH and there is a unique L-
homomorphism 

in, :U^L H 1. 

extending both £Th and the embedding THX — THX ^ Hi. The map £Th is a homeo
morphism onto its image (see (2.1) for this kind of argument) and the image of U under 
£#i is contained in the image of £Th , so that there exists a unique L-homomorphism 

a0 : U -+ 

such that £'TH O ao is equal to the restriction of fjji to ZY. Let a : U -» LTH1 be 
the composition of c*o with the map LTi/1 LTH1 induced by the map TH1 -> THX 
sending t to t~x. 

Let t G LTH and write & (£) = x x w G G1 x W> C G x WF- Then £i(£) normalizes 
T1 := (T*9)0 and therefore normalizes T as well. We claim that £i(t) acts on T by 
cr̂ , where cr is the image of w in T and cr̂  denotes the action of cr on T coming from 
the identification T ~ T. Indeed, the action of GT on T is given by some element 
y xw with y belonging to the normalizer of T1 (and hence to the normalizer of T as 
well). Since x xw and y xw both act by GTH on T1, we conclude that x and 2/ have 
the same action on Ti and therefore that they have equal images in Q,(G,T)D. This 
proves our claim. It now follows immediately that £i(LT#) • T is isomorphic to the 
L-group of T via the unique L-homomorphism 

£ : LT <H> LG 

extending both £1 (use the obvious inclusion LTH T dual to N : T -» TH ) and 
f ~ T ^ G . 

Let h E U and write £(/1) = g x w € G x WF- Then eH normalizes T1 and T 
and acts on T1 bv CTT„. AS above it follows that £(h) acts on T bv GT. where cr is 
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the image of w in I\ Therefore £(U) is contained in the image E1 of LT under and it 
follows that there exists a unique L-homomorphism 

f3:U->LT 

such that o /3 is equal to the restriction of £ to U. Together a and f3 give an 
L-homomorphism 

ax (3:U -> L(THL x T). 

The restriction of a x ¡3 to TH embeds TH in THI X T, and the quotient of THX X T 
by the image of TH is equal to T\. Therefore the map 

<p:WF= U/fH -> L(THL x T)/TH = LTx 

induced by a x /3 gives us a 1-cocycle ar of WF in T\ defined by 

<p(w) — CLT(W) x w e LT\. 

Let w G WF- We can define CLT(W) more concretely as follows. Pick G W such 
that u(w) maps to w under U —)> WF. Write £i(l x w) = t(w)£(u(w)) with ¿(1/;) G T 
and write £rH(l x W) — t\(w)£)H1{u(w)) with £i(w) G T^. Then the element of Ti 
represented by (¿1(11;), t(w)~1) G TH! x T is equal to ar(w). 

Applying L0 to the equation defining t(w), we find that 

(1 -0)(t(w)) = s-1 - <JT(S) - a'(w). 
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It follows that 

(4.4.2) (1 - 0)(aT(w)) = s • CTT(S)-1 • a 'H"1 G f. 

The rest of the construction is just the same as in the case Hi = H. Prom the 
second torus T we get a^(w) and the element x(w) := a^iw)/(ar(w) G T\ is the 
same as the previously considered x(w) 6 T ^ Ti. Therefore we use the same lifting 
#sc (w) G Tsc as before. Again 

A(w) = (oT(ii;),rrscH) G Ti x Tsc = 5i 

is a 1-cocycle of WF in Si and the class of (A^^su) is the desired element 

Ai G ^ № , S i ± 4 17). 
The next lemma will be needed in (5.5). 

Lemma 4.4.C. — Let 7, 71, <J be as in (4.1), and Ze£ 7 denote the identity component 
of the twisted centralizer of S in G. As usual let uo be the quasicharacter on G(F) 
obtained from a. Then the restriction of to to 1(F) is trivial. 

The 1-cocycle a!(w) appearing in (4.4.2) lies in the class a. It follows from (4.4.2) 
that the image of the 1-cocycle a'(w) becomes a coboundary when it is pushed forward 
using the inclusion of Z(G) in T followed by the canonical surjection 

T -*T/(1-0)T. 
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Let LU* denote the quasicharacter on G*(F) obtained from a. The pushforward of a' 
to T corresponds to the restriction of LU* to T(F), and its pushforward to T/(l - 6)T 
corresponds to its restriction to (Te)°(F). But (T0)0 can be identified with J, and 
thus we see that the restriction of LU to 1(F) is trivial, as desired. 

4.5. The term Aiv 

We define Arv(7i,£) = Ary(7,5) to be the quotient of 

DG0(S) = | det[Ad(<J) o 6 - 1]; Lie(G)/ Lie(Cent(G^, G))|̂ /2 

by 
Bif(7) = |det[Ad(7) - l];Lie(ff)/Lie(TH)|J/2. 

Observe that using the isomorphism Int(^) o ip : G -> G* provided by (3.3.6) we may 
rewrite DGO(S) as 

DG*o*(6*) = |det[Ad(<P) o0* - l];Lie(G*)/Lie(T)|^/2. 

The discriminant Do*$*($*) is easily computed using the root-space decomposition 
provided by a 0*-splitting (B, T,...). We obtain a product over 0-orbits of roots a in 
i?, i.e. a product over ares € î res- If ctres is of type .Ri or R2 then the corresponding 
contribution is 

\Na{6*) - 1\^2 

and if ares is of type R3 it is 

|JVA(0 + 1\^2. 

On the other hand, 

D„(1) = l[\aH(1)-l\f. 
OLH 

In these expressions we have written | • \p for the unique absolute value on F extending 
I • \F on F. A now familiar comparison yields: 

Lemma 4.5.A. — &iv{li,$) is the product of: 
(4.5.1) \Na(5*) - l\f, 1/25F 
where fli indicates the product over ares of type R\ and not from H, 
(4.5.2) ft, \(Na(6*) - l)(Na(6<) + 1) 1/2F 
]Q2 indicating the product over ares of type R2 with both ares and 2ares not from H, 
and 
(15.3) n3 \Na(5') + l\V\ 
where Y\3 indicates the product over ares of type R3 and from H. 
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4.6. Canonicity 

We may now set A(71,5; 7l5 5) equal to the product of the four terms: 

AI(7,«)/AI(7,J) 

Aii(7,<*)/An(7,3) 

Am(7i,(J;71,5) 

AIV(7^)/Aiv(7J) 

(recall that 7,7 are the images of 71,71 in H(F)). The terms depend variously on 
(TH -> T*., {aQ}, {Xa}) and (TH -> TV, {a«}, {**}). 

Theorem4.6.A. — A(7i,5;71,5) ¿5 canonical. 

We shall check the effect when: 

(4.6.1) we replace (TH -> T0*,{aa},{xa}) by data (TH -> IJ.,{aa/},{xa'}) which 
are conjugate in the sense that there exists g G (G*c)e*c such that 

(1) Int(#_1) induces isomorphisms B -> B', T -> T' and thus T#* -> T^, the 
latter two over F, 

(2) Tif -» is the composition of TH TV with T0* -» T#*, 
(3) Int(#) transports {aa}, to {aa/}, {xa'}> 

(4.6.2) we change the a-data alone, and 

(4.6.3) we change the %-data alone. 
Assume (4.6.1). Then Lemma 3.2.B of [LSI] implies that Ai(7,£) is multiplied 

by (g,ST,*?)-1 where g is the class of a gc(g)~~1 in H1(F,TX) (note that it is not 
necessary to pass to the simply-connected cover of the derived group of Gx). The only 
other term in A that is affected is Am. Instead of pairing the class Vi of (V, D\) 
with Ai (notation of (4.4)) we pair the class V[ of (V, D\) with the same Ai, where 
V'V-1 is the 1-cocycle a \-> (go~(g)~l, 1) of V in U. Thus V'V-1 is the image of g 
under 

ff^F.T*) H1(F1Ue) -» Hl(F,U ^4- Si). 

It then pairs with Ai as (g,ST,6>)« We conclude that A is unchanged by (4.6.1). 
Now let us change the a-data alone (4.6.2). Only Ai and An are affected. If {aa} 

is replaced by {aaba} then by Lemma 3.2.C of [LSI] Ai(7,<5) is multiplied by 

(4.6.4) n*«(6«)' 
where the product is over representatives a for certain symmetric orbits of V in the 
roots of Tx in Gx. As in (4.2), we note that ST,O is a standard endoscopic datum for 
Gx, with endoscopic group, say, J. Our Ai(7,<5) coincides with the (standard) Ai for 
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(Gx, J) evaluated on appropriate elements of J(F) and TX(F). Thus Lemma 3.2.C 
of [LSI] says that the product in (4.6.4) is over symmetric T-orbits that are outside 
J, and, as we saw in (4.2), these are the symmetric T-orbits in Rres represented by 
roots ares that are either of type Ri and not from H or else of type R2 such that both 
ares and 2ares are not from H. 

It remains to check that we get the inverse of (4.6.4) from the change in An. First, 
asymmetric orbits are easily seen to make no contribution to the change in An (we 
can argue as in Lemma 3.3.A of [LSI]). From (4.3.2), (4.3.3) and (4.3.4) we find the 
symmetric orbits contribute as we wish. 

It remains to replace {\a} by %-data {xaCa} (4.6.3). We shall argue for the case 
Hi = if, leaving to the reader the (immediate) extension to the general case. First we 
apply an argument for standard endoscopy to measure the effects of changing %-data 
on the embeddings LTH ^ LH and L(TE*) ^ LG1. In each case (2.6.3) of [LSI] 
applies and we conclude that our present cocycle ar (notation of (4.4)) is multiplied 
by a quotient of cocycles, say cs/ci. Thus the term Am(7,(5;7, (J) is multiplied by 

(c„7>/(ci,7o) 

where 70 is the image of 5* G T in TQ*(F) and •) is the Langlands pairing. 
We evaluate separately the numerator and denominator following Lemma 3.5.A 

of [LSI]. The numerator is a product n^aHv indexed by roots a#v representing 
pairs ±OH of T-orbits in RHV - If OH is symmetric, attach to 7/7 the element 8aH 
Qf Tom (F±aHv) as in the cited lemma; if OH is asymmetric we have instead the 
element r)CiH . Then: 

AaHv = (aHv(aH(öaH )) OH symmetric 
CaHy («H(7a/fV )) OH asymmetric. 

For the denominator the index set is instead pairs ±Oi of T-orbits in i?(Gfl,T1), i.e. 
in the elements of type Ri,R2 in i?resV- If <̂ iv represents ±Oi then the corresponding 
contribution is Aaiv. 

To compare the numerator and denominator we set 

В ry V = 
"res 

(aTesv(Na(SaTes )) O symmetric 
(aresv (7ares V ) ) O asymmetric 

for aresv representing a pair ±0 of T-orbits in i?resv- Then the contribution to 

<c«,7>/<ci,7o> 
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from ±0 is: 
#c*resv • (£<*resv) 1 = 1 if aresv is of type Дь from Я 
(Baresv)~l if aresv is of type Дь not from H 
(̂ aresv )2 • (Baresv )"2 = 1 if aresv is of type Я2, from Я 
(̂ Qresv)~2 if aresv is of type Я2, not from Я 
£aresv if aresv is of type Д3, from Я 
1 if C^res^ is of type Ä3, not from Я. 

We compare this with the change in An- That change is calculated from (4.3.2), 
(4.3.3) and (4.3.4) using the method for the proof of Lemma 3.3.D of [LSI]. We see 
easily that the result cancels with the change in Am, and so we are done. 

From (4.6.1), (4.6.2), (4.6.3) we conclude that the choice of 
(TH-+Te*,{aah{x«}) 

has no effect on the relative transfer factor A(ji,S;7f1,S). Nor does the choice of 
(TH —> To*, {a -̂}, {Xa}) by similar arguments (only Am requires examination). The
orem 4.6.A is therefore proved. 
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CHAPTER 5 

THE NOTION OF TRANSFER 

5.1. Transfer factors: definition and first properties 
We keep the assumptions and notation of (4.1). First we define the absolute transfer 

factor A(71,(J) for 71 strongly G-regular in Hi(F) and S strongly 0-regular in G(F). 
If no such 71 is a norm then set A = 0. Otherwise, fix some (7?, 5°) with 7° a norm 
of 5°. Define A(7?, 6°) arbitrarily (in Cx). Then set 

(5.1.1) A(7i,«) = A(7i,*;7i,OA(7?,«°) 
for all 71 strongly G-regular and 5 strongly 0-regular. As we have not done so already, 
we define 

A(7i,*;7iJ) = 0 
if 71 is not a norm of S and 7y1 is a norm of 6. Then A (71, S) — 0 unless 71 is a norm 
of 5. 

We remark that for all 71,7y1 and 6,5 we have 

A(7i,<J) = A(7i,(J;7!, J)A(7!,5) 
provided that 7X is a norm of 5. This is an immediate consequence of the transitivity 
property for relative transfer factors: 

Lemma 5.1A. — A^1,61;7?,<52)A(72,52;7?,̂ 3) = A(7j,(J1;7?,<J3) provided 7J ts a 
norm of 6l (i = 2,3/ 

We may as well assume 7J is a norm of S1. Since Ai,An,Aiv are naturally quotients 
we may replace A by Am. Now we can follow closely the idea of the proof of Lemma 
4.1.A of [LSI]. Because of the mountain of notation and the transparency of the 
argument we leave the details to the reader. 

Lemma5.I.B. — A(7i,<5) is unchanged when 71 is replaced by a stably conjugate el
ement in Hi (F). 



52 CHAPTER 5. THE NOTION OF TRANSFER 

71 has image 7 under Тцх -> 7я. To define the various terms Ai(7i,J), e£c. 
we may choose any admissible embedding Тн -> Те* we wish. Inspection of the 
terms ДьДцДгу shows that each term depends on 71 through the image 5* of 7 
under this embedding. If we replace 71 by a stable conjugate 7[, and thus 7 by 
a stable conjugate 7' in H(F), then we may form the composition of Тн T#* 
with this stable conjugation to obtain an admissible embedding Cent(7;,i7) -> T#* 
under which the image of 7' is 5*. We use this embedding to define Ai(7(,£), e£c. 
Then Ai(7{,<5) = Ai(7i,J), and similarly for An,Aiv- It remains then to compare 
A HI (7i, <S; 7i, S) to Д ш (71, <J; 7i, 5). Here we need further argument for the case Hi ф 
H. An examination of the construction of Zi etc. shows that the stable conjugation 
of 71 and 7I provides natural isomorphisms between the tori associated to 71 and 
those associated to 7(, and then that Дщ (7i, 7i, 5) coincides with Дщ (71, (J; 7X, 5). 
This completes the proof. 

Recall the character XHl on ZX{F) = ker(#i(F) -> H(F)) from (2.2). 

Lemma5.1.C. — A(*i7i,<J) = Ля1(̂ 1)~1А(7Ь(5) /or ¿1 € ^i(F). 

We have only to prove that 

Aiii(^i7b£;7iJ) = Ая1(^1)"1Аш(7Ь($;71,5). 

We recall the exact sequence 

1 -+ Zi -> Si -> s 1 

of (4.4). The map Zi —>• Si induces a homomorphism 

Zi(F) ^ H\F,U Si) 

(see Appendix A) and dual 

H\WF,Si ^U)^ H^WFJI). 

Let A2 be the image of Ai under the latter map. Then we see that replacing 71 
by Z171 multiplies A(7i,5;71?5) by (zi,A2)~1, where (•,•) indicates the Langlands 
pairing. Thus we have to show that A^1 is the Langlands parameter for A^j. Indeed, 
it is immediate from our definitions that A^1 is represented by the following 1-cocycle 
z(w) of WF in Zi: z(w) is the image of ti (w) under the canonical surjection Тцх -> Zi, 
where ti(w) is as in the concrete definition of ar{w) given in (4.4). It then follows 
from the definition of ti(w) that z(w) is a Langlands parameter for Хщ. 

There is a natural injection 

Z(G)o Z(tf), 
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obtained as follows. Choose a #*-stable pair (B,T) in G*. Then we have 

Lie(r£) = Lie(rsc)** 

= Lie(Tad)** 

= Lie(T£); 

this, together with the fact that Tad is connected, implies that 
rriQ* . rpQ* 

is surjective and hence that 
Tr -+ r £ 

is surjective as well. Applying the snake lemma to 
1 > Z(G*) • T ¥ Tad > 1 

J1-0* j1"^* l~e* 

1 > Z(G*) • T • Tad > 1 
we conclude that the natural map 

Z(G*)0* -+ Te* 

is injective. Composing this map with any F-embedding 

3 :Te.-+H 

in the canonical iJ(F)-conjugacy class of such embeddings we get a map 

Z{G*)e* -+ H 

whose image is central in H. The resulting injection 

Z{G)9 -* Z{H) 

is independent of the choice of j and is defined over F. 
Using the composed map 

Z{G) -+ Z(G)e -+ Z(H), 

we form the fiber product C of Z(Hi) and Z(G) over Z(H). An element of C(F) is 
a pair 

(zuz)eZ(H1)(F)xZ(G)(F) 

such that the images of z\ and z in Z(H)(F) are equal. 
Lemma 5.1.C has the following generalization: there exists a quasicharacter Ac on 

C(F) such that 
A(zi7i,*<&) = Ac(^i^)_1A(7i,J) 

for all (z\,z) G C(F). From this point of view the content of Lemma 5.1.C is that 
the restriction of Ac to the subgroup Z\(F) of C(F) is equal to A^. 
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It is enough to show that there exists a quasicharacter Ac on C(F) such that 
Am (^171,^7!, 5) = Ac(^i,^)"1A(7i,(J;71, J) 

for all (z\,z) in C(F). For this we need to understand how 
Vi £H\F,U ±A Sx) 

changes when (71,(J) is multiplied by (zi,z). Recall from (4.4) the exact sequence 
1 -> Zi -> Ti -> T -> 1. 

It is clear that G can be identified with the inverse image of Z(G) under T\-+T and 
that Si is equal to 

№ xro / iCcc -^ i ceC} . 
Recall that Vi is the class of the 1-hypercocycle (V, Di). Multiplying (71, S) by (zi,z) 
does not change V and multiplies Di by the image of (zi, z) under the map Xi -> Si 
given by ¿1 1 ^ (¿1,1) (think of Si as (7\ x Ti)/G). Thus Vi is multiplied by the 
image of (zi,z) under the homomorphism 

C(F) -+ Ti(F) -» ifx(F, U ̂ -4 Si), 

which shows that Ac does indeed exist. 
We consider now the question of how A (71, (J) is affected when S is replaced by 

a stable conjugate, say 6' = /i_1£#(/i), with in G(F). Then cr i-> cr(/i)/i_1 is a 
1-cocycle of T in the (abelian reductive) group Cental, G) and, as usual, we see that 

ker f i /^Cent^G)) H\F,G)] 

classifies the #-conjugacy classes in the stable 0-conjugacy class of 8. But 0-conjugacy 
is too coarse an equivalence for our present setting and we are lead to a hypercoho-
mology group instead. 

Let Ts denote the centralizer of Gse in G. Then T$ is a maximal torus in G, whose 
inverse image under the canonical homomorphism TT : Gsc —> G we denote by T|c. Let 
6s denote the automorphism Int(#) o 9 of G. We write the element h above as n(hi)z 
with hi in Gsc and z in the center of G. Then cr(/ii)/if1 lies in X|c and 

(1 - e5)7r(a(hi)hil) = a{6{z)z-1)(6(z)z-1)-\ 

Thus the pair 
(cr ^ a(hi)h^\6(z)z-1) 

defines an element inv(£, <$') of 

HURT? 
(i-e5)o7r 

Vs) 

where Vs denotes the subtorus (1 — 0s)(Ts) of Ts. 
Next we shall construct a class K0 in the dual 

H^WFM^ ÌTSU). 
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Our first step is to pass from ^-invariant T$ in G to 0*-invariant T in G*. We do 
this by means of the isomorphism lnt(g) oip of (3.3.6). Observe that this isomorphism 
maps T5 to T over F and transports 66 to 0*. It is thus sufficient to construct KS in 

H\WF,V->f*d) 

where V denotes the subtorus (1 - 6)(T) of T. 
Note that V is the kernel of N : T TH. Therefore V embeds in 7\ as the 

kernel of the natural surjective homomorphism T\ -» Tux, which means that we may 
identify V with the quotient Ti/Tj^. In (4.4) we constructed a 1-cocycle ar of WF 
in Ti satisfying 

(5.1.2) (1 - 0)(aT(w)) = s • CTT(S)-1 • a 'H"1 . 

Write br for the image of ar under the canonical surjection 

fx fi/fHl = V. 

Then, still writing 1 — 6 for the map V -» Tad induced by 

1-0 : f ->f, 

we find that 
( I -? ) (6TW) = « ^ T W 1 ; 

we define K$ to be the class in 

H\WF,V ^f^) 

of the hypercocycle (b^1,^). 

Theorem 5.1.D 

(1) A(7i,«') = <inv(*<n,K*>A(7i,«). 
(2) 7/(5' - h-HBih) with h € G(F), then 

A(7l,«n=u,(/i)A(7i,<5), 

where uo is, as usual, the quasi-character on G(F) obtained from a. 

We have only to consider Am. First we replace 6 by 8' in (3.3.4) and (3.3.5). Then 
g,S* are replaced by gip(hi) and 5*6*(z)z~1 (we use ip to identify the centers of G 
and G*). Thus v(a) becomes 

(¿1)' = (WWr1^) = St • {9*{z)z-\\). 

which may be calculated as 

[(int(5) o V0(fci"(M_1)W"M$)_1; 
in other words t/(cr) is the product of v(a) and the cocycle obtained from /II<T(/II)-1 
via the isomorphism T$ ~ T. Moreover £j* becomes 

(¿1)' = ( W W r 1 ^ ) = St • {9*{z)z-\\). 
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Therefore V is replaced by V, the product of V and the element of 

H\F,U ^>Si) 

obtained as the image of 

inv(M') € H\F,T!C -> VS) = H1 (F,TSC -»• V) 

under the map 
HX(F,TSC -> V) JT^F, C7 -» 5i) 

induced by the obvious map of complexes from the complex Tsc -> V to the complex 
U —> Si (17 is a quotient of Tsc x Tsc, so that there is an obvious map Tsc -» U\ 
similarly there is an obvious map Ti —> Si which we compose with the embedding of 
V in Ti as the kernel of Ti —> Tnx to get a map V -> Si). Part (1) of the lemma now 
follows from the fact that the dual map 

H\WF, Si^U)^ H^WF, V -+ fad) 

sends Ai to KS-
It remains to prove (2). We use Borovoi's method [Bo] of constructing the Lang

lands pairing between G(F) and H1(WF, Z(G)). There is a canonical homomorphism 

(5.1.3) d : G{F) H1 (F, T|c A T*) 

defined as follows. Let g G G(F) and write g = n(gi)t for gi G GSC and t eT$. Then 
map # to the class of the hypercocycle 

(^(tfi)"1 ,̂*)-
Let b be an element of H1(WF,Z{G)) and let b be a 1-cocycle representing b. 

Then (ft"1,1) is a 1-hypercocycle of WF in 
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Ti A (T«5)ad, 

and the value of the Langlands pairing between q G G(F) and b is defined to be 

(¿1)' = (WWr1^) = St 

(use the pairing in (A.3)). We used b 1 rather than b in order to ensure that this 
Langlands pairing coincides with the usual one when G is a torus (note the minus 
sign in (A.3.13)). 

There is an obvious homomorphism 

(5.1.4) H^F.If A Ii) -> H\F,TF {1~65)o7r) V5) 

obtained from the map from the complex T|c A T$ to the complex T|c ^ 6 ̂ °w> Vs 
given by the identity map on T|c and by 1 — 05 from Ts to Vs. A simple calculation 
shows that if Sf = ft_1(J0(/i) with h G G(F), then inv(<5,5') is equal to the image of 
h~x under the composition of the maps (5.1.3) and (5.1.4). 
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Therefore A (71,5') is equal to A (71, S) times 

(¿1)' = (WWr1^) = St 

where K5 is the image of K& under the map (dual to (5.1.4)) 
HHWF,V6 -> (TsU) -+ Hl{WF,T8 (TsU) 

induced by the map of complexes from Vi -» (T<5)AD to Ts -» (Ti)ad given by 1 - 05 : 
Vi -» T<5 and the identity map from (T«5)AD to itself (the map 1 -0s : Ts -» Ti is trivial 
on the kernel of the canonical surjection Ts -> Vi and hence induces 1 — 6s : Vs -» Ti). 

It follows from what we have done that ^ is represented by the hypercocycle 

((i-e)(bTl),s) 

of W>, which by (5.1.2) is equivalent to (a',1), or, in other words, the image of a 
under the canonical isomorphism 

H\WF,Z{G))^H\WF,fs -+ (TsU) 

(use that Ts -» (Ts)sA is surjective with kernel Z(G)). Therefore (d(/i-1),^) is the 
value of the Langlands pairing on h~x G G(F) and a-1 G H1(WF,Z(G)), and this 
value is equal to u(h) by definition of u. The proof of the lemma is now complete. 

5.2. Proof of a lemma needed in (5.3) 

In this section we assume temporarily that we are dealing with standard endoscopy, 
so that H is now an endoscopic group of G and 5 is an element of Z(H)T'. Moreover 
we assume that G is quasi-split and choose a pair (B,T) in G defined over F. We 
also choose a pair (BH,TH) in H defined over F. We write Z for the center of G. 
Let p denote half the sum of the L?-positive coroots for T. Then p G X*(Taci) and of 
course 2p lies in the image of X*(T). Let a G Fx. Then t := p(a) is an element of 
Tad(F) whose square lies in the image of T(F). Applying the boundary map for the 
exact sequence 

l->Z->T->Tad->l 
to the element t G Tad(F) we get an element 

zeH^F.z) 

whose square is trivial. The group Z embeds canonically into the center of if, inducing 
a map 

H1(F,Z)^H1(F,H), 

and we denote by h the image of z under this map. There is a natural map (see [K3]) 

H1(F,H)^no(Z(H)r)D, 

and thus we may pair h with s G Z(H)r, obtaining (h,s) G {±1}. 
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The main result of this section, Lemma 5.2. A, gives a simple formula for (/i, s). Let 
VQ (respectively, VH) denote the complex representation X*(T) ® C (respectively, 
X*(TH) <£> C) of T. Then the difference VH — VQ is a virtual representation W of 
T having dimension 0. The determinant det(W) is the character on T given by 
det(VG)-1 det(V/j), and by local classfield theory we may regard det(W) as a character 
on Fx (since the square of det(W) is trivial it does not matter how we normalize the 
isomorphism of local classfield theory). 

Lemma 5.2.A. — There is an equality 

(h,s) = (det(W0)(a). 

A routine reduction step allows us to replace G by Gsc and thus assume that G itself 
is semisimple and simply connected. The first step is to use duality to understand 
the boundary map 

Tri{F)^H\F,Z). 
We have (Langlands duality) 

Komcont(T*d(F),£x) = Hl{WF 
1 Lsc ) j where Tsc is the inverse image of f under Gsc -»* G (embed T as a maximal torus in 

G), and we also have (duality for finite abelian F-groups) 

HomCff1 (F, Z), Cx ) = H1 (F, Z), 

where Z denotes the kernel of 
Gsc ~~* G, 

so that Z fits in a short exact sequence 

(5.2.1) 1 -> Z -> fsc -> f -» 1. 

The boundary map Tad(F) iif1(F, Z) is dual to the map 

Hl(F,Z)^ H\FXc) 
induced by the inclusion map 

Z ~* ŜC5 
or maybe its negative, depending on sign conventions; however, since z — 1, this 
sign question is irrelevant for us. The conclusion of this discussion is that for any 
X £ Hl(F,Z) the value of (z,x) *s equal to (a,p(x)), where p(x) denotes the image 
of x under the map 

H1(F,Z)->H1(WF,CX) = Homcont (FX,CX) 

induced by 
p : Z -»> Cx 

(regard p as an element of X*(TSC) = X,(Ta<j) and restrict it to the subgroup Z of 
fsc). 
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The number (/i, s) is equal to (z*, s'), where z' denotes the image of z under 

H1(F,Z)^ H1(F,TH) 

and s' denotes the image of s under 
Z{Hf fTH. 

Choose an isomorphism TH -+ T over F such that 
TH-^T^ G 

belongs to the canonical G(F)-conjugacy class of embeddings TH —> G and such that 
jBif-positive roots of TH in H are carried into ^-positive roots of T in G. Consider 
the analogue of (5.2.1) for T#, viewed as maximal torus in G: 
(5.2.2) 1 -+ Z -> (fH)sc -+ fH -> 1. 
Then {z',s') = (z,x)i where x denotes the image of s' under the boundary map 

Tjj- ^H^F.Z) 

for (5.2.2). Combining this with what was done before we conclude that (ft, s) is equal 
to(a,p(x)>. 

To proceed further we must determine p(x). Choose s" G (TH)SC mapping to 
sf e TTT. Then x is the class of the 1-cocycle 

G >-> (S'TW) 

of T in Z. Our chosen isomorphism TH —> T allows us to view p as a character on 
(TH)SC Then p(x) is the homomorphism 

T^{±1} 
given by 

a H. />((S")-V(S")) = (o-\p) - p)(s") = (p- a-1 (p))(s"). 
The character p — cr_1(p) on (TW)SC is equal to 

M 
aeA(a) 

a, 

where A(a) denotes the set of positive roots of TH in G such that a (a) is negative 
(positive and negative with respect to B use the isomorphism TH — T dual to our 
chosen isomorphism TH — T). It is clear that the character p — v~l{p) descends to 
a character on TH- Therefore (ft, s), as a function of a, is the character T —>• {±1} 
given by 

A n 
aGA(a) 

a(s), 

viewed as a character on Fx by local classfield theory. Here we have written s rather 
than s' since we are now identifying Z(H) with a subgroup of TH-
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We are going to show that 

I J a(a) = (-1)W>I 
aEA(a) 

where \A(a)\ denotes the cardinality of A(a). We may as well fix a G T and abbreviate 
A(a) to A. In order to prove this equality we consider the orbits O of a in the set of 
roots of TH in G. If O is an orbit, so is —O. If O = — (9, we say that O is symmetric; 
otherwise we say that it is asymmetric . Since a(s) = s, every element of O takes the 
same value on s. In particular, if O is symmetric, then AS = ±1 for a G O. Our 
isomorphism TH —T was chosen so that every positive root of TH in if is a positive 
root of TH in G, and, moreover, a preserves the set of positive roots of TH in H\ it 
then follows that no element of A is a root of TH in H, or in other words no element 
a G A satisfies a(s) = 1. It follows immediately that for any symmetric orbit O 

n 
aeAHO 

(-i)iAn (±o>i.(-i) 

If O is asymmetric, then — O is disjoint from O and we write ±0 for the union of 
O and -O. We claim that 

I I «(*) = L 
a€An(±0) 

Since a(s) = P(s)~l for a G 0, /3 G — (9, it is enough to show that 

(5.2.3) \AHO\ = |i4fl(-0)|. 
This is easy to see. Arrange the orbit O in a circle in the obvious way, so that a 
rotates the circle, and indicate the positive roots in O by pluses and the negative 
roots by minuses. Then \A fi 0\ is the number of pluses that a takes into minuses, 
and |AD (—0)\ is the number of minuses that a takes into pluses. These two numbers 
are equal (just think about it). Again using (5.2.3), we have that 

(_l)l<An(±0)| = ^ 

which means that 

r j <*(*) = (-i)iAn(±o>i. 
a£An(±C) 

Putting together the contributions of all orbits, we conclude that 

I l 4 ) = (-i)|A|. 
aeA 

as claimed. 
The last step of the argument is to recognize that (— is a determinant. Until 

now we have been using the natural Galois action of a on TH- We now write an for 
this action. We also have the natural Galois action of a on T, which we denote by 
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<TG. Using our chosen isomorphism TH — T, we can compare OH and GQ\ indeed, 
there exists a unique element uoa of the Weyl group of T in G such that 

0~H = &G^a-

Since O~G preserves the set of ̂ -positive roots of T in G, the set A can also be described 
as the set of positive roots a of T in G such that uiaa is negative, and therefore \A\ 
is equal to the length of ua and (—l)'"4' is equal to 

det(uA;X*(T)) 

which is of course also equal to 
det((7G;X*(T))-1det((j/f;X*(r)). 

This concludes the proof of the lemma. 

5.3. Whittaker normalization of transfer factors (quasi-split case) 
In this section we impose two further conditions on (G,0,a): we assume that G 

is quasi-split and that 0 preserves some F-splitting of G. We refer to an F-splitting 
that is preserved by 0 as an (F, 0)-splitting. As before let GX denote the group of 
fixed points of 0SC on Gsc and recall from (1.1) that 

(fl,T) H> (BX,TX) 

sets up a bijection between the set of 0-stable pairs (B,T) in G and the set of pairs 
in GX, where BX (respectively, TX) denotes the inverse image of B (respectively, T) 
under 

GX -t G. 
Let {B,T, {XA}) be a ^-stable splitting of G. Let O be an orbit of 0 in the set of 
simple roots of T in Lie(JB). Then put 

XQ :— M XA, 
Q 6 D 

an element of the root space of GX corresponding to the orbit O. Thus, starting from 
a 0-stable splitting (B, T, {XA}) of G, we have constructed a splitting (BX, TX, {XQ}) 
of GX, and it is clear that this construction yields a T-equivariant bijection from the 
set of 0-stable splittings of G to the set of splittings of Gx. In particular, giving an 
(F, 0)-splitting of G is the same as giving a splitting of GX 

In the theory of Whittaker models for representations of G(F) one begins with a 
Borel subgroup B of G and a generic character 

A : N(F) -> Cx , 
where N denotes the unipotent radical of B. Generic characters of N(F) arise as 
follows. Let 

%l) : F -> Cx 
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be a non-trivial additive character and let (B,T, {Xa}) be an F-splitting of G. The 
choice of {Xa} yields a surjective homomorphism 

N n 
A 

Gn 

over F, with a running through the set of simple roots of T in Lie(B). Composing 
this with the map 

n 
a 

G1 GN 

which sends (xa) to J2a x<*i we a homomorphism 

N^Ga 

defined over F. In particular we get a homomorphism 

N(F) -> F 

which when composed with ip yields a generic character A on N(F). Every generic 
character on N(F) arises in this way for some choice of splitting with B as its Borel 
component. We refer to (B, A) as Whittaker data for G. 

If B is 0-stable and A o 6 = A, then we say that (B, A) is 0-stable. The significance 
of this is obvious: if a representation TT of G(F) has a Whittaker model for A with 
(L?, A) 0-stable, then 7r O 6 also has a Whittaker model for A. 

Let (H,H,s,£) be a set of endoscopic data for (G,0,a) and let (i?i,fHi) be a 
z-pair for Ti. Our goal in this section is to define transfer factors A\(71, S) for 
(H^Ti^s^^Hi^Hx) depending only on the choice of 0-stable Whittaker data (JE?o, A) 
for G. One can hope that when these transfer factors are used, representations with 
Whittaker models for A will serve as natural base points in tempered L-packets (see 
[Sh]). 

First we define transfer factors Ao(7i, S) depending only on the choice of an (F, 6)-
splitting (L?o,T0, {X}), generalizing a definition in (3.7) of [LSI]. We had better be 
explicit about the norm map we are using. In the non-quasi-split case we had to 
choose G*, 0* and go and then introduce the map 

m : G -» G* 

over F. In the case at hand we of course take G* = G, 6* = 9, go = 1, so that m is 
the identity map. 

The definition of A0(7i,£) is simpler than that of the relative transfer factor. As 
before we maintain the assumptions and notation of Theorem 3.3.A. Let 71 be a 
strongly G-regular element in i?i(F), with image 7 in H(F), and suppose that 7 is 
a norm of an element S € G(F). Let TH denote the centralizer of 7 in H and, as in 
Lemma 3.3.B, choose BH D TH and 0-stable (B,T) with T defined over F, so that 
the attached admissible embedding TH T$ is defined over F. 
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As in Chapter 4 we fix a-data and %-data for -Rres- In Chapter 4 we have already 
defined factors Ai(7,6), An (7,6) and Arv(7, The factor Ai depends on the choice 
of a-data and on the choice of (F, #)-splitting for G (recall that this is the same as 
the choice of F-splitting for Gx). The factor An depends on the choice of a-data and 
%-data. The factor Arv is independent of all choices. 

Now that we are in a quasi-split situation we can also define an absolute factor 
Am (71,8), depending only on the choice of x-data. First we will define an element 

inv(7i,<J)€ ff^^sc 1 - 0 ri), 
where, as before, 7\ is the torus obtained as the fiber product of Tnx and T over 
TH- AS before, 1 — 9\ is trivial on Z\ C T\ and hence induces a map T -> T\ whose 
composition with the natural map Tsc —>> T is the map denoted by 

Tsc 1 - 0 Ti 

above. By definition of the norm map there exist g G GSC(F) and 5* G T such that 
(1) 7 has image Ne(5*) under TH -> TQ and 
(2) 6*=gMia)-\ 
Define a 1-cocycle VQ(U) of T by 

vo(o~) :=flfa(p)_1; 
the proof of Lemma 4.4.A shows that VQ(G) lies in TSC(F) and that 

(1-0)V0(<T)=<T(5*)-16*. 
As in (4.4) we define an element G Ti by (JJ = (5*, 71). Then 

1-0)V0(<T)=<T(5*)-16*. 
which means that (^1,^i) satisfies the hypercocycle condition and hence yields the 
desired element inv(7i,5), independent of the choice of g and 5*. 

Of course we need to define an element AQ of the dual hypercohomology group 

HHWF.T, 1-0! Tad) 
so that we can define Am (71, S) by 

Am (71,6) = (inv(7i,<J), A0). 
Near the end of (4.4) we defined a 1-cocycle ar of WF in T\ and showed that 

(1 — Oi)(ar(w)) = s • GT(S)~1 G fad 
(the factor a'(w)-1 disappeared since it is central and we are now working with Tad 
rather than T). Thus (a^1,^) satisfies the hypercocycle condition and hence yields 
the desired element Ao-

We now define the transfer factor Ao by putting 

A0(7i,<*) = AI(7,<J)AII(7,*)AIII(7I,<J)AIV(7,*). 
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The arguments used in (4.6) show that A0 is independent of the choice of admissible 
embedding TH -> T$ and the choice of a-data and %-data. 

Lemma 5.3.A. — The relative transfer factor is given in terms of A0 by 

A(7i,«;71,J) = A0(7i^)/A0(7i J ) -

Clearly it is enough to prove that 

Ani(7i,(J;71,5) = Am(7i,(5)/Aiii(71J). 

This follows easily from the definitions: use the obvious map from the complex 

Tac x T00 1-01 T3 x T1 

to the complex 
U 1-0 Si 

as well as the dual map between the dual complexes. 
It follows from this lemma that Ao is a scalar multiple of the transfer factor A 

of (5.1). Therefore A0 enjoys the same properties as A (see Lemmas 5.1.B, 5.1.C 
and Theorem 5.1.D). Moreover, the discussion at the end of (4.2) tells us how A0 
is affected by changing the choice of (F, 0)-splitting of G. As we have seen, giving 
an (F, 0)-splitting splo of G is the same as giving an F-splitting of I := Gx. Let 
g £ hd(F) and let z be the image of g under the boundary map 

hd{F)^ Hl{F,Z(I)) 

for the exact sequence 
1 -+ Z{I) I -+ /ad -+ 1. 

Let (J, sj) be the endoscopic group for I attached to (H,7i,s,^) as in (4.2). Let zj 
denote the image of z under the map 

H^Zfjyj^ H (F,J) 

induced by the canonical embedding of Z(I) in the center of J. Then replacing splo 
by Int(<7)spl(3 has the effect of multiplying A0 by (ZJ,SJ). 

Recall the 0-stable Whittaker data (B0,\) from before. We are finally ready to 
define the transfer factor A \ (71, S). Choose a non-trivial additive character 

iP : F Cx 

and then choose an (F, 0)-splitting splo = (#o,T0, {X}) with B0 as its Borel compo
nent such that i\) and splo determine the given 0-stable Whittaker data. Let Ao(7i, 5) 
be the transfer factor obtained from splo- Choose a splitting 

(BH,o,TH>0,{Y}) 

for H. Let VQ denote the representation of T on 

X*(Tn)d<?>C. 
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where the superscript 9 indicates fixed points under 9. Let VH denote the represen
tation of T on 

X*(TH,o)®C. 
Note that VQ and VH have the same dimension, so that 

V:=VG- VH 
is a virtual representation of dimension 0. Consider the local -̂factor £L(V,I/)). Here 
we are following the notation of [T, (3.6)], so that 6L(V,ift) is the normalization used 
by Langlands. For a e FX let ipa be the additive character defined by 

^o(̂ ) = il>(ax). 
Then 

eL(V^a) = (det(V))(a)eL(V^) 
(see (3.6.6) in [T]). 

One other property of £L(V,I/>) is worth noting. Since V is defined over R (even 
Q), property (3.6.8) of [T] implies that 

(eL(V^))2 = (det(V))(-l), 
where det(V) is again being regarded as a character on Fx. 

We define A\(ji,S) by 
Ax(11,6)=eL(V,№ohi,6). 

We must show that A A is independent of the choice of ip and spl^ giving rise to 
(Bo, A). Keep ip fixed for the moment. Then any two choices for splo are conjugate 
by an element of NX(F), where Nx denotes the unipotent radical of B§. Therefore 
Ao(7i, S) is the same for the two splittings, and so is AA(7I, S). NOW replace ip by ipa 
for a e FX. To compensate for this change in if? we replace splo by Int(p(a))(splcO, 
where p is half the sum of the B0-positive coroots of T0, so that p G X*(TQ/Z(G)) 
and p(a) G (TQ/Z(G))(F) has the property that a(p(a)) = a for every simple root of 
To. Since the roots of TQ in I are the restrictions to TQ of the roots of To in G, we 
have 

To DZ(G) = Z(I), 
so that T$/Z(I) embeds in T0/Z(G). Clearly p factors through T§/Z(I), and since 
(p, /3) — 1 for every root (3 we see that p can also be described as half the sum of the 
positive coroots for TQ in /. 

Replacing spl^ by Int(p(a))splo has the effect of multiplying A0 by (zj,sj), for 
zj G HX(F, J) obtained from p(a) G Iad(F) as before. By Lemma 5.2.A, applied to / 
and its endoscopic group J, the number (ZJ,SJ) is equal to (det(W))(a), where W is 
the virtual representation Vj — Vi. Replacing ip by ipa has the effect of multiplying 
£L(V,IP) by (det(V))(a). To show that A A is left unchanged we must show that 

det(V)det(W) = 1. 
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For this we may as well assume that G is semisimple and simply connected. The 
representations VQ and Vi of T are isomorphic: the former is X*(T0)d 0 C and the 
latter is X*(T0)Q 0 C. The representations VH and Vj of T are also isomorphic: the 
former is X*(TH,O) 0C and the latter is X*(Tj) (g>C, where Tj is the torus component 
of some F-splitting of J. Choose T and an admissible embedding TH,O — TQ as in 
Lemma 3.3.B. Then X*(TH,o) 0 C is equal to X*(T)e 0 C, while X*(Tj) 0 C is equal 
to X*(T)e 0 C by the remarks near the end of (4.2). This shows that VH and Vj are 
indeed isomorphic. Therefore V is the negative of W as virtual representation, and 
hence det(V) det(W) = 1, as desired. 

We are now finished proving that A A depends only on (Bo, A). Clearly AA enjoys 
the same properties as Ao and A (see Lemmas 5.1.B, 5.1.C and Theorem 5.1.D). 
Replacing (Bo, Ao) by Int(#)(Bo, Ao) for g G I&d(F) multiplies AA by the same factor 
as it does Ao, namely (ZJ,SJ). 

As a check that our definition is the right one, let us examine the simplest case: 
standard endoscopy for SL2. Let E be a quadratic extension of F and choose r G E 
such that r ^ F. Suppose that r2 = ur + v with v G F. Consider the embedding i 
of Ex in GL2(F) given by sending a + br (a, b G F) to the matrix 

a bv 
b a + bu 

(the matrix of multiplication by a + br in the F-basis {l,r} for E). Let TE be the 
F-torus 

{̂/ G Fx : JVs/F(j/) = 1}. 

Then i gives an embedding 
TE SL2. 

Consider the standard splitting (B,T, X) of SL2: B is the subgroup of upper trian
gular matrices, T is the subgroup of diagonal matrices, and X is the root vector 

0 1 
0 0 

Let ̂  be a non-trivial additive character; we get a character A on the unipotent radical 
N of B by sending 

1 xN 
0 1, 

to ip(x). 
Of course TE is an endoscopic group for SL2 (take s to be the unique non-trivial 

element of T|). If we use Gal(F/F) to form the L-groups of H = TE and G = SL2 
there is a unique G-conjugacy class of L-homomorphisms 

£ : LH -> LG 

ASTÉRISQUE 255 



5.3. WHITTAKER NORMALIZATION OF TRANSFER FACTORS (QUASI-SPLIT CASE) 67 

such that the restriction of £ to TE belongs to the canonical conjugacy class of embed-
dings TE -> G. Working through the definitions in [LSI], one finds that the transfer 
factor Ao, relative to £ and the F-splitting above, is given by 

A0(2/, i{y)) = coE/F((y ~ y)/(r - r)) • Aw(y, i(y)) 

for regular elements y G TE(F) where LOE/F denotes the unique character on Fx of 
order 2 that is trivial on NE/F(EX)-

We claim that 

eL{V^)=\ {ElF^)uE/F(-l). 

Recall that \(E/F,ip) is characterized by the following property: for any representa
tion U of the Weil group WE of E 

eL(Izd(U),tl>) = eL(U^E)X(E/F^)di^u\ 

where Ind(C/) is the representation of WF induced by U and I\)E is the additive 
character i\) o trE/F on E- Taking U to be the trivial one-dimensional representation 
of WE and using that the factor SL is 1 for the trivial one-dimensional representation 
(and any additive character), we see that 

\(E/F,*l>)=eL(y',il>) 

where V is the virtual representation UJE/F — 1 (VE/F is now being viewed as a 
character on T, and 1 stands for the trivial character on T). On the other hand it is 
obvious that V is the virtual representation 1 — OOE/F-, and therefore 

\(E/F,i>)=eL(V,i>)-\ 

Since V is defined over R, we have 

edV^)-1 =e£(^)(det(V0)(-l), 

and of course det(V) = UJE/F- This proves that 

\(E/F,il>)=eL(y,il>)ujE/F(-l). 

Combining the expressions we have found for A0 and €L(V, ip), we find that for the 
Whittaker data (B,X) above 

Ax(y,i(y)) = \(E/F,il>)ujE/F((y ~y)/(r - T))Aw(y,i(y)) 

for regular elements y G TE(F). 

Use the transfer factors A A to transfer characters 6 on TE(F) to invariant distri
butions Tran(0) on SL2(F). Then, as is remarked near the end of §2 of [LL], one has 
the equality 

Tran(0) = XTT+W -XTT-(*), 
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where XTT+(0)> Xn-(0) are the characters of certain representations 7r+(0) and n~(0) of 
SL2(F), obtained as follows. Extend 0 to a character on Ex. Attached to 0 there is 
an irreducible representation n(0) of GL2(F). When restricted to 

{geGL2(F):det(g)€NE/F(E*)}, 
it splits into two irreducible pieces, 7r+(0) and 7r~(0), and 7r+(0) can be characterized 
as the piece having a Whittaker model for A (namely the representation 7r(0, V>) re
ferred to in [LL]). Thus the normalization A\ for the transfer factors has the effect 
of causing the coefficient of X-K+($) m the character identity above to be 1, the signif
icance of 7r+(#) being that it is the member of the L-packet {7r+(0), TT~(0)} for the 
group 

{g G GL2(F) : det(g) G NE/F(EX)} 
having a Whittaker model for A. Our reason for introducing A\ is the hope that the 
analogous phenomenon occurs in general. 

5.4. Transfer factors in general (non-trivial za) 
Recall from (3.1) the 1-cochain za of T in the center Zsc of G*c. Let z„ denote the 

image of za in 
Zf := ZSC/(1-0*)ZSC. 

Recall (see Lemma 3.1.A) that za is a 1-cocycle. Until now we have assumed that 
za = 1. We now drop this assumption and see what changes are needed. 

Let (H, ?l,s,£) be a set of endoscopic data for (G, 0, a) and let (H\, £H± ) be a z-pair 
for T-L. Let (BH,TH), (B,T) and 

TH = Tg 
be as in Lemma 3.3.B. The obvious map 

Zsc -> Z(G) ^ T 

induces a map on coinvariants for 8 
Zf -+ TE* ~ TH, 

whose image lies in the center Z(H) of iJ, and the resulting map 
(5.4.1) Zf -> Z(H) 
is independent of all choices. We use (5.4.1) to view za as a 1-cocycle in Z(H). 

Rather than elements of TH(F) we now consider elements 7 G TH(F) such that 
(j(<y) = <yza (с e Г). 

We say that such an element 7 is a norm of strongly ^-regular 0-semisimple 5 G G(F) 
if there exist 6* G T(F) and g G G*C(F) satisfying (3.3.4) and (3.3.5). Given such 
j,5,5*,g we define (as in (3.3) and (4.4)) 

v(a) := guia)a(g)-1. 
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Just as in the proof of Lemma 4.4. A (but taking into account zai which was assumed 
to be trivial in that lemma), we see that 

(1) v(a) lies in TSC(F), and 
(2) (l-0*)v(o) = 5*o(5*)-1z(T. 
Now suppose that 7, 6 is another such pair of elements. Then, just as in (4.4), we 

use v(a), via), 5*, 5 to get a class 

v eH^F.u 1-0 S). 

It is now clear how to define the relative transfer factor A (7, <5; 7,5) in case Hi = H. 
The terms Ai, An, Am, Arv are exactly the same as before; of course in defining 
Am we use the class V discussed above. Now consider the case Hi ^ H. We may as 
well assume that there exists some 70 G H(F) such that 

cr(7o) = 7O2<T (a G T) 
(otherwise our problem is vacuous). Pick an element 701 G Hi(F) such that 701 ^ 70. 
Then put 

*i W :=7oi <K7oi); 
clearly zi(a) is a 1-cocycle of T in Z(Hi) and zi(a) \-> za for all a G I\ 

Given 7, 6 as before we choose an element 71 G Hi(F) such that 

(1) <7(7i) = 7i*i(*) ( ^ r ) 
(2) 71 1-̂  7 under Hi -> if; 

use the vanishing of i7x(F, Zi) to show that 71 exists. Suppose that 7, J, 7X are 
another such triple. Then we define A(7i,<J;71,5) as in Chapter 4. Only the term 
Am requires comment. The point is that we can define £*, S1 and 

Vi eHx{F,U 1-0 Si) 
exactly as in Chapter 4 (the definitions are the same word-for-word). 

The role played by the elements 7, 71 above is easy to understand once one makes 
the following remarks. We fix 70 and 701 as before. Define maps 

m:H ->H 
mi : Hi Hi 

by 

m(S) := ¿70 (6 G H) 
mi(5i) := ¿1701 (¿1 E Hi). 

Define 0H G AutF(#) and 0^ G AutF(Bi) by 

0H := Int(7o) 
9Hl := Int(7oi). 
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Then m,mi induce bijections 

H(F)->{7eH(F)\ a (1) = jza} 

HX{F) -> {71 G #i(F) I (7(71) = 71*1 {*)}. 
Moreover 

m(x~186H{x)) = x_1m(J)a: (x G ff) 

^ ( f ^ i ^ f e ) ) = {7eH(F)\a(1)=jza} (2/ G ffi). 

In other words, working with conjugacy classes of 7 G H{F) satisfying 

¿7(7) = ~fZa 

is equivalent to working with 0#-conjugacy classes in H(F). 

5.5. Definition of matching functions 

Let (H,W,s,€) be a set of endoscopic data for (G,0, a) and let (H1, Eh,) be a 
z-pair for 'H. Let AHI be the quasicharacter on Zi(F) constructed in (2.2). There is 
an exact sequence 

1 -> Z±(F) -> HX(F) H(F) -> 1 
(use the vanishing of i/*(F, Zi)). 

We keep the assumptions and notation of (5.4). Fix Haar measures dg on G(F) 
and dh on H(F). Let / G GC°°(G(F)) and let /Hl be a smooth function on #i(F), 
whose support is compact modulo Z\ (F) and that satisfies 

/Hl(^) = Afr1W"1/HlW 

for all 2: G ^i(F) and all ft G #i(F). For strongly ^-regular 0-semisimple 6 e G(F) 
such that a; is trivial on /(F) we put 

Ose(f):= f cu(g) f^156(g)) dg/dt. 
Jl(F)\G(F) 

Here I = Cent$(5,G) and dt is a Haar measure on /(F); the twisted orbital integral 
Ose(f) depends on the choice of dt. For strongly 0HR-regular 6H 1 -semisimple SH € 
iJi(F) we put 

OsHeH(fHl):= I fH*(h-HH0H(h))dhldu. 
JTH{F)\H{F) 

Here TH = CenteH (SH,H) and is a Haar measure on TH(F). We also define 

5 0 ^ H ( / H I ) : = E ° ^ H ( / H I ) , 

where the sum is taken over a set of representatives for the 6H-conjugacy classes under 
H(F) of elements S'H G H\(F) in the OH-conjugacy class of SH under H(F). 
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We may as well assume that there exists 70 G H(F) such that 

^(7o) = 7ô r (<r G T) 

and which is the norm of a strongly 0-regular 0-semisimple element SQ G G(F) (oth
erwise H is irrelevant). As in (5.4) we choose 701 G Hi(F) such that 701 »-)• 70. We 
say that SH G H\(F) is strongly G-regular if mi(SH) is strongly G-regular, and we 
say that SH is a norm of S G G(F) if mi(^) is a norm of (5. As in (5.1) the relative 
transfer factor of (5.4) plus the choice of (701, ¿0) allows us to define an absolute 
transfer factor by picking any non-zero complex number c and putting 

A(7i,<J) := cA(7i,(J;7i0,*o), 

which we also view as a function on Hi(F) x G(F) by putting 

A(5H,8) :=A(mi(<JH),<*). 

We say that / and fHl have matching orbital integrals if 

(5.5.1) S06HeH(fHl) = 5>(fo,<J)0M(/) 
6 

for every strongly G-regular SH G H\(F). The sum (which might be empty) is 
taken over a set of representatives for the 0-conjugacy classes under G(F) of elements 
S G G(F) whose norm is SH- Note that for each S in the sum the restriction of u to 
1(F) is trivial. This follows from Lemma 4.4.C (which remains valid even when za is 
non-trivial). Note also that the product 

A(SH,8)Ode(f) 

depends only on the 0-conjugacy class of S under G(F) (use Lemma 5.1.D(2)). In the 
equality above we use compatible measures on our twisted centralizers. As usual we 
have isomorphisms 

TH ^ TE* 

and 
Cent^G) ~TE . 

We see from the exact sequence 

0-»Lie(T'*) ->Lie(T) 1-0* Lie(T)->Lie(T^)~>0 

that the top exterior powers of Lie(T^*) and Lie(T *̂) are canonically isomorphic. 
Pick a non-zero element in the dual of these top exterior powers and use it to get 
Haar measures dt on TE* (F) and du on T$*(F). We use dt to form Ose(f) and du to 
form SOsHeH(fHl)- One hopes that for any / there exists some fHl having matching 
orbital integrals. Of course the notion of matching depends on the choices of dg, 
dh and A (•,•)> each of which is well-defined only up to multiplication by non-zero 
complex numbers. 
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Let x be a character on a closed subgroup ZQ of Ze(F) (Z denotes Z{G)). In ap
plications one must often consider smooth functions / on Gf compactly supported 
modulo Zo, such that 

f(zg) = x(*r7fo) 
for all g G G(F) and z G ZQ. Consider the expression 
(5.5.2) ^ A ( W ) C M / ) 

6 
on the right side of (5.5.1) (with Ose(f) defined by the same integral as before). Recall 
from (5.1) the group C(F) and the quasicharacter Ac on it. The group C contains 

D := ker[Z(G) -» Z{H)} = ker[Z(G) -» Z(G)0] 

as a subgroup (see (5.1) for a proof of the injectivity of Z{G)Q -> Z(H)). For z G 
D(F) fl Z0 we have 

*(SH,z6) Oz So{f) = Xciz^xizr^ AH H^O seif). 
Therefore the sum in (5.5.2) vanishes unless AcX is trivial on D(F) D ZQ (make the 
change of variable S —> zS in the sum). 

Now assume that AcX is trivial on D(F) fl ZQ. Let Zoi denote the inverse image 
under 

Z{HX)(F) -»• Z(H)(F) 
of the image of Z0 under 

Z(F) -+ Z0(F) Z(ff)(F). 
Let C(F)o denote the inverse image of Z0 under 

C{F) Z(F). 
Then there is an exact sequence 

1 D (F)°fl Z0 -> C(F)0 -> Zoi -> 1. 
Note that x can be viewed as a character on C(F)0 (use C(F)0 —> ZQ) and that 
our hypothesis that AcX is trivial on D{F) fl ZQ implies that AcX 1S a well-defined 
character xi on ZQ\. Note that the restriction of xi to Z\(F) is A#i (Lemma 5.1.C). It 
is now appropriate to consider smooth functions fHl on iJi(F), compactly supported 
modulo ZQI , such that 

fH>(zh)=Xl(z)-1fHl(h) 
for all h G H\(F) and z G ZQ\. We again say that / , fHl have matching orbital 
integrals if (5.5.1) holds. 
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CHAPTER 6 

BEGINNING OF THE STABILIZATION 

6.1. Preliminaries 
Let F be a number field and G a connected reductive group over F. Denote by 

AQ the maximal split torus in the center Z(G) of G. As usual we have the product 
decomposition 

AG(A) = J4g(A)I x %G 

where 

OG := Hom(X*(AG),M) = X*(AG) ® R 
i4G(A)i := {a G ^ ( A ) | |A(a)| = 1 for all A G X*(AG)}. 

Let 0 be an automorphism of G over F. Then 0 acts on AQ and hG and we assume 
that the natural map 

K% -+ (Ut ah := OG/(1 - 0)^ hG 

from ^-invariants to 0-coinvariants is an isomorphism (this is automatically the case 
if 6 has finite order). Let a be an element of 

HL{WF,Z{G))/ ker \WF, Z(G)). 

Note that a determines a quasicharacter u on G(A), trivial on G(F). We assume that 
uj is unitary as well as trivial on 21G (viewed as subgroup of AG(A)) and Z(G)^(A). 

As usual we denote by a a 1-cocycle representing the class a. Let K be a finite 
Galois extension of F that splits G. Then the restriction of a to WK is a homomor-
phism ax :wk Z(G), and the condition that u be unitary is equivalent to the 
condition that the image of CLK be relatively compact in Z(G). 

There are unitary operators R(0), R(LO) on 

L2 := L2(G(F)StG\G(A)) 
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defined by 
R(UJ)IJJ = UJI/J 

R(u)ijj = UJ^ (pointwise multiplication) 
for ip e L2. For 

/€<7C°°(G(A)/a&) 
there is the usual convolution operator R(f) on L2, given by 

(RW№ = 
G(A)/*°G 

f(g)îp(hg) dglda, 

where dg is the Tamagawa measure on G(A) and da is the Haar measure on 21^ 
determined by the lattice 

Hom((X*(G)R)^,Z) 

in %IQ. Define a function 
JzC?{G{h)l*G) 

by 
f(g) = 

lj1a12a 
f(ga)dao/da 

where daa is the Haar measure on 21G determined by the lattice 
Hom(X*(G)R,Z) 

in 21G- The composition 
R(f)R(0)R{u) 

is an integral operator with kernel 

K(h,g)=u(g) JiKlM<J9))\ 
SeG(F) 

in other words the value of the operator on ib G L2 is the function 

h 
G(F)*G\G(A) 

K(h,g)ijj(g)dg/dx, 

where dx is the Haar measure on G(F)21G that induces daa on the open subgroup 
Mg. 

Let S G G(F) be 0-semisimple and strongly 0-regular. Write Is for the 0-centralizer 
Cent̂ ((5, G) of 5. As in (3.3) we denote by Ts the centralizer in G of i j ; then is a 
maximal torus of G preserved by Int(5) o 0 and /<$ coincides with the fixed points of 
Int(J) o 6 on Ts. We say that 5 is 6-elliptic if the identity component of 

hlZ{Gf 

is anisotropic over F. 
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Denote by G(F)e the set of 8 £ G(F) that are #-semisimple, strongly 0-regular and 
^-elliptic. Denote by Ke(h,g) the corresponding part of the kernel K(h,g): 

Ke(h,g):=u>(g) £ f^159(g)). 
seG(F)E 

We are interested in the part of the twisted trace formula coming from G(F)e, namely 

Te(f) := / Ke(g,g)dg/dx. 
JG(F)2lG\G(A) 

As usual we can rewrite Te(f) as a sum of twisted orbital integrals. The first step 
is to rewrite Te(f) as 

£ / u>(9) f (g-186(g)) d9/dy, 
s JlS(F)mG\G(A) 

where dy is the Haar measure on Is(F)$LG inducing daG on the open subgroup 21G, 
and where the sum is taken over representatives 8 for the 0-conjugacy classes in G(F)e. 
By our hypothesis on 6 the map 

6 - 1 : OG/S^ -+ KG/KeG 

is an isomorphism. Therefore / is also given by 

/(#) = CG 
*G/*$G 

f(a 1g0(a))daG/da, 

where 

cG := det(0-l;SlG/ak) . 
It follows that 

/5(F)2lG\G(A) 
u(g)f(g-1S9(g))dg/dy = cG 

IS(F)*G\G(A) 
iv(g)f(g-16e(g))dg/dz1 

where dz is the Haar measure on Is(F)$lG that induces da on the open subgroup WG. 
This integral is 0 unless u is trivial on /5(A), in which case it equals 

cG measdt/dz(Is(F)WG\I6(A)) 
/,(A)\G(A) 

uj(g) f^166(g)) dg/dt, 

where dt is the Tamagawa measure on Is (A) (see (E.2), where we defined the Tama-
gawa measure on C(A) for the diagonalizable group C = ker[T -» U]; the definition 
makes sense for any diagonalizable group and in particular for Is). We write Ose(f) 
for the twisted orbital integral 

75(A)\G(A) 
u;(g)f(g-160(g))dg/dt 

Since 6 is ̂ -elliptic the identity component of AG is the split component of Is. The 
measure 

mezsdt/dz(Is(F)WG\Is(A)) 
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would be the Tamagawa number 

r(/j):=meas(J«(F)\J,(A)i) 

of Is if we were using the canonical measure in Definition E.l.E on 

Slg? = Hom(A'*(/5)r,R), 

namely |(X*(/(5)r)tors|~1 times the Haar measure determined by the lattice 

Hom(X*(^)r,Z). 

Instead we are using the Haar measure determined by the lattice 

Hom((X*(G)r)",Z). 

The ratio between these two measures is 

cs := |(X*(/5)r)tors|-Vok[Hom(X*(/,)^Z)^Hom((X*(G)r)^,Z)]|-1. 

Therefore 

(6.1.1) Te(f) = YsCG'CS'JILA45* °"(/) 
5eA 

where A is a set of representatives for the 0-conjugacy classes of elements 8 G G{F)e 
such that UJ is trivial on /¿(4). 

6.2. Combining terms according to 0-conjugacy classes in G(A) 

Our next goal is to rewrite (6.1.1) by combining the terms indexed by 8,8' whenever 
8,8' are -̂conjugate under G(A); this procedure will lead to (6.2.2). Fix an element 
8 G A. To simplify notation we temporarily drop the subscript 8 from Ts and We 
write 6T for the automorphism Int(5) o 9. The map of complexes 

[i - » f ] [f 02f] 

induces a map 

Hl(WF,f) ^H2{WF,f ^%f) 

which we compose with the map 

Hl{WF,Z{G)) -+H\WF,f) 

induced by the natural injection 
Z{G) -> f 

to get maps 

H\WF, Z(G)) -> H2(WF,f 1-0 f) 

ker1 (WF,Z(G)) -> kev2(WF,f ±% f). 
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These in turn give rise to maps 

a : H1(WF,Z(G))/kev1(WF,Z(G)) -+ H2(WF,T 1 - 0 f)/ker2(T^F, f 1 -0 f) 

¡3 : ker(a) -> cokfker1^, Z(G)) ker2(WF,f 1 - 0r f)]. 
Using that the restriction of u to 1(A) is trivial, we will now check that a belongs 

to ker(a). Choose a representative a G HX(WF, Z(G)) for a and let b denote the 
image of a in H1(WF,T). Then b is a global Langlands parameter for the restriction 

LJT of u to T(A). By Lemma C.3.B the image of 6 in H2(WF,f 1-0r f) is locally 
trivial if and only if the restriction of U>T to 1(A) is trivial. Therefore a belongs to 
ker(a) if and only if the restriction of u to 1(A) is trivial. 

Applying the homomorphism (3 to a, we get an element /?(a) of the finite abelian 
group 

B := cokpter1^, Z(G)) -> ker2(WF,f 1 - 0r f)]. 

Denote by A$ the set of 8' G A such that 8,8' are -̂conjugate under G(A). We will 
see that there is a natural bijection from As to the finite abelian group 

BD :=Hom(£,Cx) 

dual to B. 
We begin by noting that if 8' G G(F)e is -̂conjugate to 8 under G(A), then Is'(A) 

is conjugate to 1(A) under G(A), and therefore UJ is automatically trivial on Is'(A). 
Let 8' G As. Then 8f is -̂conjugate to 8 under G(F). Write V for the subtorus 
(1 — OT)T of T and U for the quotient T/V. As in (5.1) the difference between 8' and 
8 is measured by an element 

mv(S,S')eH\F,Tsc (1-'r)°*> V), 

where Tsc denotes the inverse image of T under the natural map 

7r : Gsc G. 

This invariant depends on the #-conjugacy classes of 8,8' under GSC(F). We get a 
cruder invariant 

inv'(M') G H1 (F, T 1-0r V) - ff1^,/) 
depending only on the 0-conjugacy classes of 8,8' under G(F) by taking the image of 
inv(<5,<5') under the map on hypercohomology induced by the obvious map of com
plexes 

[Tsc i i z ^ N V] -> [T 1 v] 
(use 7T : Tsc —>• T and 1 : —> V). Note that it would also be easy to define inv'((5,8') . 
directly as an element of Hl(F, I). The map 8' \-> mv'(8,8') is a bijection from As to 

kerfker1^,/) ^kerx(F,G)]. 
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Using the exact sequence 

1 H^FJ) -> HX(F,T ̂ % T) 1-0r -> U(F) 

and its adelic analog (see (C.4) for the definition of HX(A, /)), we see that 

kerx(F, J) = ker1 (F,T 1-0r T). 

We have a commutative diagram whose vertical maps are bijective 

ker1 (F, T -> T) • ker1 (F, G) 

i i 
ker2(WF,f -+f)D y ker1 (WFlZ(G))D. 

The left vertical arrow is the duality isomorphism of Lemma C.3.B, and the right 
vertical arrow is the bijection defined in [Kl]. The commutativity of the diagram 
follows from that of 

ker1 (F, T) • kerx(G) 

i i 
k e r 1 ^ , ? ) ^ • ker1 (WF,Z(G))D. 

It follows that there is a natural bijection from As to 

ker[ker2(VTF,f ^% f)D -> k e r 1 ^ , Z(G))D], 

which is indeed the finite abelian group dual to B. 
Let 6' e A<$. Then we can pair 

inv'(M') £BD 

with 
/3(a) e B, 

obtaining 
(invU<5'),/?(a)>eCx. 

We need to express this number in terms of the character u obtained from a. Using 
the natural injections 

H\F,TSC 1-0r V) -• H1 (F,Tsc I I ^ N T) 

H1 (F, T ^% V) -> H1 (F, T ^% T) 

we view inv(<5,5'), inv'(5,6') as elements of 

H\F,TSC (1-0r ̂ ^ T ) 

H\F,T 1-0r ̂ %T) 
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respectively. Choose an element 
teH°(A/F,T ±^%T) 

whose image in 
ker^F.T ^%T) 

is inv'((5, Sf). By definition of the pairing between 

k e r ^ T ^ V T ) 
and 

ker2(W>,f ^hf) 
we have 

(inv'(«5, S'), /3(a)) = (t, /3(a)), 
where the second pairing is induced by the one between 

H°{k/F,T ^%T) 
and 

iI2(W>,T iz*^. T). 
There is a distinguished triangle 

(6.2.1) [Tsc A T] ^ [Tsc (1 - 0r) 00 T ] ^ [ T ^ % T ] ^ 1 3 3 1 6 4 [Tsc A T][l] 

where 71, 72, 73 are given by the vertical maps below 
Tsc 7T T 

1 1-0T 

-*sc (l-0T)o7r T 

7T 1 
T l-0T T 

-l 
TSc 7T T 

and dual to (6.2.1) is the distinguished triangle 

[f A f/Z(G)][-l] -> [f 1203a f] -> [f g°(1-?r)) f /Z(G)] - > [ f 4 f /Z(G)]. 
We have 

(t,J8(a)) = <73(«),a)-1, 
where the second pairing is induced by the one between 

H°(A/F, [Tac A T][l]) = H\klF,TM A T) 
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and 
H\WF,f^ n3 f/Z(G)) = H\WF, Z(G)). 

There is a canonical homomorphism (see (5.1.3)) 
d : G(A) -tH^A^Tsc A T). 

Choose h e G(A) such that 
8' = h-169(h). 

Then from the proof of Theorem 5.1.D(2) we have 
7l(d(h-1)) = mvA(6,5'), 

where invA(#, 5') denotes the image of mv(5,5') under 

HHF,TSC (1- 0R)OR T) -> H\A,TSC (1- 0R)OR T). 

The distinguished triangle (6.2.1) gives three long exact sequences, one each for F, A 
and A/F. In this way we get a double complex of hypercohomology groups for F, A, 
A/F and the three complexes in the triangle, the relevant portion of which is 

H1 (A, Ri) 

I 
H°(A/F,R3) n3 H^k/FM 

I 
H1(F,R2) n3 H^Ra) 

I 

H1 (A, R\) —H1 (A, R2) 
where we have denoted by 

Ri n3 R2 n3 Rz n3 Ri[l] 
the distinguished triangle (6.2.1). The elements we have been considering are 

t > 73 (*) 

mv(S,6') > inv'(<5,<5') 

dih)-1 • invA(<J,<J') 
By homological general nonsense the image of d(h) under 

H1 (A,Ri) ^ H1 (A/F,Ri) 

ASTÉRISQUE 255 



6.3. DEFINITION OF AN OBSTRUCTION 81 

is equal to 73 (t) for some t as above. Therefore 

<7s(*),a>=o;(/»)-1, 

which when combined with our previous work yields the equality 

(inv'(M'), 0(a)) =«(/»), 
expressing the value of the pairing in terms of u>, as desired. 

From the equality 
6' = h^SOih) 

we see that 

OMf)=cj{h)-1OS0(f) 

= (inv'(«,«'),)8(a)>-10M(/). 

Consider the part of the sum in (6.1.1) indexed by elements 8' G A«s. Since c& — c$ 
and T(IS') = T(IS) this part of the sum is equal to 

cG'CS -r(Is) -Ose(f) 

times 

E 
S'eAg 

<inv'(<J,«,),)9(a)>-1 = 
|B| if/3(a) = 1, 
0 if/3(a) ¿1 . 

To indicate the dependence of B on <5 we now denote it by Bg. We conclude that 

(6.2.2) Te(f) = 
d<EAi 

CG-Cf\B6\-T(I5)-06o(f), 

where Ai is a set of representatives for the 0-conjugacy classes under G(A) of elements 
8 G G(F)e such that 

(1) a; is trivial on Is (A), and 
(2) the element /?(a) G is trivial. 

6.3. Definition of an obstruction 

The next step in the stabilization of Te (/) requires that we introduce an obstruction 
obs(J). For standard endoscopy this obstruction is due to Langlands [L2, p. 137] (see 
also [K3, §6] for a generalization to the case of arbitrary semisimple elements). 

Let G*, splo*, -0, 0* and go be as in (1.2). Thus G* is a quasi-split inner form of 
G with F-splitting splo*, and IP : G -» G* is an inner twisting (an F-isomorphism 
such that ^cr(^)-1 is inner for all a G T). Moreover 0* is an F-automorphism of G* 
preserving splc*, and go G G*c has the property that 

0* =Tnt(g0)tl>Oil>-1. 

As in (3.1) we choose, for each a G T, an element u(a) G G*c such that 

IPG^)-1 = Int(u(<7)), 
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and we also define a morphism 
m : G -+ G* 

over F by 
m(6) := mOe1-

Then, as we saw in (3.1), 
(6.3.1) <r(rn)(6) = u(a)-1m(S)za6*(u(a)) 

for the 1-cochain 
za := geu(a)a(go)-le*(u((j))-1 

of T in ZSC(F), where Zsc denotes the center of G*c. Recall from Lemma 3.1.A that 
the image za of za under 

Zsc ^Zf := ZSC/(1-8*)ZSC 

is a 1-cocycle. We do not assume, as we did when defining transfer factors, that zG is 
trivial. 

Let (B,T) be a 0*-stable pair in G* with T defined over F. Put V := (1 - 0*)T 
and U :=T/V. Note that the map 

^ : ŝc G* 
induces a map 

Zf U. 
Let 7 be an element of U(A) such that 

(6.3.2) a(7) = 7 ^ 

for all <r £ r. Let S G G(A). We say that 7 is a norm of S if there exist 6* G T(A) 
and g G G*C(A) such that 

(6.3.3) the image of (5* in U(A) equals 7, and 
(6.3.4) 6*=gm(6)0*(g)-1. 

Now let 7 be an element oiU(F) satisfying (6.3.2), let 6 G G(A) and suppose that 
7 is a norm of 8. Suppose further that 7 is fixed by no non-trivial 0*-invariant element 
of the Weyl group of T, so that S is strongly 0-regular. We are going to use ¿,7 to get 
an element 

obs(<J) G H^A/F.Tsc (1~n°*> V). 
Choose 5* G T(A) and p G G*C(A) satisfying (6.3.3) and (6.3.4). As in (3.3) and 

(4.4) we define 
v(a) := (̂o-)cr(̂ )"1 (cr G T). 

Just as in the proof of Lemma 4.4. A (but taking into account za, which was assumed 
to be trivial at that time), we see that 

(1) v(a) lies in TSC(A), and 
(2) (l-^M(j)=(JV(<J*)-1^. 
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Observe that the coboundary dv of v is 

g(du)g~l = du 

and takes values in ZSC(F). Clearly (i;(cr)_1, S*) is a 1-hypercocycle of T in 

TSC(K)/TSC(F) {1~n°n) T(A)/T(F). 

We need to understand the effect of the choices of i/;, u(a), go, 5*, g on the 1-
hypercocyle; of course \j) is only allowed to vary within its inner class 

* := = (Int(z)) o^0\X£ G*SC(F)}. 

For the moment we keep the same choices for ip, u(a), go- Using that 7 is fixed by 
no non-trivial element of ft(T, G*)e , one sees that any other choice g' for g is of the 
form g' = tg for some t G TSC(A), and then as our new choice for 6* we are forced to 
take 

(<**)' = s*TE*(T)-1. 

It follows that our 1-hypercocycle is multiplied by the 1-hypercoboundary 

(dtitO'd)-1). 

Suppose that we replace xj), u(cr), go by ix'(cr), Choose # G G*C(F) such that 

?// = lnt(x) o ^. 

Then 
^ = 6*(x)gex-1z 

for some 2 G ZSC(F). Since # is well-defined up to ZSC(F), the image z of 2: in Z|C(F) 
is well-defined. It is not hard to check that the 1-cocycle z'a of T in ZJC(F) obtained 
from our new choices is related to the old one by 

z'^Mdz)-1. 

Define 7' G U(F) by 
i = 7^_1; 

then 

<KV) = 7% (a € T) 
and 7' is a norm of 8 relative to u'(a), g'e (take (5*)' = 5*z~x and = ga;-1). For 
these choices of (£*)' , the 1-hypercocycle remains unchanged. 

We now fix the choices of -0, u(a), go once and for all. The class obs(<5) of our 
1-hypercocycle in 

H\klF,Tsc (1-0R)12 (T) 

is well-defined. The obvious short exact sequence of complexes 

1 -> [TSC (1-0R)12 v\ -+ [TSC (1-0R)12 T] -+ [i -> £/] 1 
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gives rise to a long exact sequence 
1 -> H\A/F,TSC {1~n°n) V) -> H\k/F,TSC (1~n<"> T) -> H°(A/F,U) -> • • • 

and since the image of obs(J) in H°(A/F, U) is represented by 7 G U(F) we conclude 
that obs((5) lies in the subgroup 

HHA/F,TSC^(1-0R)12^V). 

Lemma 6.3.A. — The element obs(S) depends only on the 6-conjugacy class of 8 under 
GSC(A), andobs(8) is trivial if and only if 8 is 0-conjugate under GSC(A) to an element 
ofG(F). 

The (easy) proof of the first statement is left to the reader. Now we prove the second 
statement. Suppose that 8 is -̂conjugate under GSC(A) to an element of G(F). We 
want to show that obs(£) is trivial. Without loss of generality we may assume that 
8 G G(F). Then it is possible to choose 8* G T(F) and g G G*C(F) satisfying (6.3.3) 
and (6.3.4), and for such £*,p the corresponding 1-hypercocycle is trivial. 

Conversely suppose that obs(J) is trivial. Then it is possible to choose 8*,g satis
fying (6.3.3) and (6.3.4) and such that 8* G T(F) and v(a) G TSC(F) for all a G T. 
Let V̂sc denote the unique inner twisting 

ŝc : Gsc -> G;c 
lifting t/;, and put 

h:=^-1(g)eGsc(A) 
xa := haih)'1 (a G T). 

Then an easy calculation shows that 
</>SC(#<T) = ^(oXa)"1, 

which means in particular that 
AM € G*SC(F) 

and hence that 
Xa e GSC(F). 

It is immediate from the definition of xa that it is a 1-cocycle that is locally a 1-
coboundary. By the Hasse principle 

ker1(F,G8C) = {l}, 
and therefore there exists y G GSC(F) such that 

xG = ycriy)'1-
It follows that the element 

h' := y-xh 
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belongs to GSC(A), and an easy calculation shows that 
mitiSeih')-1) = ̂ ( v r ^ O W M ) ( v x ( y ) E G*(F); 

therefore 
h'SOiti)-1 

belongs to 
G(F) n G(A) = G(F), 

and the proof is complete. 
We continue with 7,5 as above, and choose 6*,g satisfying (6.3.3) and (6.3.4). 

Then g is well-defined up to left multiplication by an element of TSC(A). Define 
tl>' :G(A)^G*(A) 

by 
ij)1 := Int(^) o ip. 

Write TS(K) for the centralizer of Cent̂ (<J,G(A)) in G(A). Then induces a T-
equivariant isomorphism 
(6.3.5) TS(K) -> T(A) 
that carries 

06 := Int(<5) o 0 
over to #*; note that this isomorphism is independent of the choice of 8*,g. 

Let 5' E G(A) and assume that 8' is -̂conjugate to 8 under G(A). We now define 
an element 

mvfo^ef f^rBc (1~no7) V) 
that depends only on the 0-conjugacy classes of 8,5' under GSC(A) and is trivial if and 
only if 8, 8' are -̂conjugate under GSC(A). A 1-hypercocycle representing mv(8,8f) is 
defined as follows. Choose h E G(A) such that 

8' = hT180(h). 
Write h as 

h — TTR(hi) 
with t E Tj(A) and ftx E GSC(A). Then 

(a H> ^,(^1)/ir1)^*(^,W)^W-1) 
is the desired 1-hypercocycle. Of course the local components of inv(<5,8') coincide 
with the local invariants defined in (5.1). 
Lemma 6.3.B. — There is an equality 

obs(J') = obs(J) invA/F (8,8'), 
where inv&/F(S,8') denotes the image ofinv(8,8f) under 

tfi(A,Tsc (1-0R)12 V) -> H1 (A/F,Tsc (1-0R)12 V). 
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can serve as 6* for 5'. For this g' we have 

v'(a) = 9'u{a)a{9'rl 
= v(a)-i>'(h1a(h1)-1). 

Therefore 

(v'(a)-\(6*)') = (V(<T)-\6*) • ( ^ ( M O ^ ' M W ' M - 1 ) , 

which proves the lemma. 
In order to define obs(£) we needed to choose a 0*-stable pair (B, T) with T defined 

over F and a norm 7 G U(F) of 5. Suppose that (B',T') and 7' are another such 
triple. Then there exists x G (G*c)e* (F) such that xTx"1 = V and #7#_1 = 7', and, 
since 7 is fixed by no non-trivial element of 

ft(T,G*)*\ 

the element x is unique up to right multiplication by an element of TSC(F) fixed by 
0*. Therefore the isomorphism 

Int(x) :T~T' 

is independent of the choice of x and in particular is defined over F. From X" we get 
V and obs((5)'. The isomorphism above induces an isomorphism 

H1(A/F,T8C (1~N°* V) ~ H^A/FXc (1~n™ V) 

under which obs(£) goes over to obs(5)'. Indeed, suppose that 5*,g satisfy (6.3.3) and 
(6.3.4) relative to 7. Then x5*x~x,xg satisfy them relative to 7'. The two 1-cocycles 
we get are related by 

v'(a) = xv(a)a(x)~1 

= x(v(a) • a(x)~1x)x~1 

and since 

aix^x G TSC(F), 

we see that the 1-hypercocycle (i/(cr)-1,x8*x-x) representing obs(5)' is obtained by 
applying Int(x) to the 1-hypercocycle {v{a)~l,6*) representing obs(J). 
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6.4. £(T,0,F), E{T,6,F), £(T,0,A) 

We continue with ip, u(cr), g$, za, B, T, U, V as in (6.3) and again consider an 
element 7 G U(F) satisfying (6.3.2) and having trivial stabilizer in 

ft(T,G*)r. 

Moreover we assume that T0 is anisotropic over F. We denote by Te(/)7 the part 
of the sum (6.2.2) indexed by elements S G Ai for which 7 is a norm. We are headed 
toward (6.4.16), a formula for Te(/)7. When summed over 7 this formula yields the 
main result of this section, Theorem 6.4.C. 

The obstruction defined in (6.3) lies in 

H\A/F,TSC± (1-0R)12 ̂ V ) . 

Define an abelian group &(T, 0, F) by 

£(T,0,F) := H\WF,V (1-0R) Af/Z(G)) 

where 
v A T 

is dual to 
T 1-0r V. 

Our hypothesis that T^* is anisotropic implies that 

H\WF,V ^ f/Z(G)) = Hl{WF,V 1-0 f/Z(G))ved. 

By duality (see Lemma C.2.C) 

SHT,0,F) Homcont(ff1(Wr8C (1~n°* V),C*)-

There is a distinguished triangle 

(6.4.1) [TSC A r | ^ [ T S C (1-0R)12 V]^[T^UV]^1-0[Tsc A T][l] 

where 71, 72, 73 are given by the vertical maps below 

Lsc 7T T 

1 l-e* 

Tsc (l-0*)on 
V 

7T 1 

T 
1-0* V 

-1 

T 
-*sc 

7T T 
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and dual to (6.4.1) is 

(6.4.2) [f 4 T/Z(G)][-1] -> [V A f ] -> [V ^ 4 f/Z(G)] -+ [f A f/Z(G)]. 

Prom (6.4.2) we get a long exact sequence of hypercohomology with respect to WF, 
and since 

H^WF.T A f/Z(G)) = H^WF, Z(G)) 
part of this exact sequence is 

(6.4.3) • £(T,0,F) ^ ( ^ ^ ( G ) ) -> ff2^,^ f )-*••• . 

In particular we get a natural map 

(6.4.4) £(T,0,F) -» F1(WF,Z(G))/ker1(^F,^(G)) 

by composing the map 
^(TAF)^ H1(WF,Z(G)) 

in (6.4.3) with the natural surjection 

H^WFiZiG)) -> iJ1(WF,Z(G))/ker1(WF,Z(G)). 

If there is no element of Ai having 7 as norm, then Te(/)7 = 0. If there is such an 
element ô G Ai, then a lies in the image of the map (6.4.4), as we now verify. Since 
S G G (F) there exist ô* G T(F) and g G G*C(F) satisfying (6.3.3) and (6.3.4). The 
restriction of ïnt(g)oip to T0 gives an F-isomorphism T$ ~T that carries #T = Int(J)o0 
over to 0*. By definition of Ai 

(1) a; is trivial on i$(A), and 
(2) the element /3(a) G is trivial. 

Therefore there is a representative a G /^(WV, Z(G)) for a whose image under 

(6.4.5) Hl{WF,Z(G)) - + #2(WF,f ^ 4 f) 

is trivial. Since the map 

tfÇWptZiG)) - > Jf2(W>,7 4 f) 

in (6.4.3) factors through (6.4.5), we conclude that a lies in the image of 

R{T^F)^H\WF,Z{G)) 

and hence that a lies in the image of (6.4.4). 
We now assume that there is an element of Ai having 7 as norm. We fix such an 

element ¿0 G Ai, and we also fix an element 

KOe&(T,0,F) 

mapping to a under (6.4.4). For any element S G G (A) having 7 as norm we have 
(see (6.3)) an element 

invOfo,*) e i ^ T s e (1~n°* V) 

ASTÉRISQUE 255 



6.4. £(T,0,F), £(T,0,F), £(T,0,A) 89 

and the map 
S M» inv(£0,£) 

sets up a bijection from the set of 0-conjugacy classes under GSC(A) of elements 
ô G G (A) having 7 as norm to the set 

Co := kerftf^Tse (1~r)o7r) V) -> H\A,GSC)] 

(the map whose kernel we are taking is of course induced by the inclusion Tsc -» Gsc). 
For any element S G G (A) having 7 as norm we define A-group schemes Is and Ts 

by 

I* = Cents (S, G) 

TS = CentG(7°). 

As before (see (6.3.5)) there is a canonical isomorphism over A 

T1 = T 

that carries 7̂  into I :— Te . We use this isomorphism to carry the Tamagawa 
measure on 7(A) over to a Haar measure dt on 7 (̂A), and we put 

Ose(f) := 
'/,(A)\G(A) 

u(9)f{9-X&9(g))dgldt. 

Define a function $ on Co by putting 

*(x) = (obs(*),Ko>OM(/) 
where 8 G G(A) has norm 7 and is such that 

inv(#o, 8) = x. 

Suppose that 8, 8' are 0-conjugate under G(A). We will now check that 

(6.4.6) <obs(<5), Ko)Ose(f) = <obs(<5'), *o)OMf). 

Choose h G G(A) such that 
8' = h-186{h). 

Then 
OMf)= 00(h)-1 Ose(f) 

and 
(mv(8,8'),K0) = uo(h) 

(see the proof of Lemma 5.1.D(2)), and the equality (6.4.6) now follows from Lemma 
6.3.B. 

Define an abelian group 

£(T,0,F) := im^1 (F,TSC (1~n°* V) -> H1 (F,T ^ V)] 

and a set 
V(T,0,F) := kerLtf1 (FT -i=^> V) -+ HHF,G)]. 
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It is not hard to see that V(T, 0, F) is the image under 

H1 (F, TSC (1-0R)12 V) H1 (F, T 1-0+ V) 

of 
ker[ff1(F,T8C (1~N™ V) - 4 H\F,GSC)] 

and consequently that D(T,0,F) is a subset of £(T, 0,F). There is a natural bijec-
tion between P(T, 0, F) and the set of 0-conjugacy classes under G{F) of elements 
S G G(F) having 7 as norm. Replacing F by FV or A in these definitions, we get 
E(T,6,FV), V(T,6,FV), £(T,0, A), £>(T, 0, A) satisfying the analogs of the properties 
of £(T,0,F), £>(T,0,F) mentioned above. 

From (6.4.6) it follows that $(x) depends only on the image of x in £(T, 0, A), and 
therefore $ may be regarded as a function on the image of Co in £(T, 0,A), namely 
X>(T, 0,A). We extend $ to a function on all of £(T, 0,A) by making it 0 on the 
complement of P(T, 0, A). 

Since c<$, 12̂ 1, T(J<$) depend only on T, we obtain a rational number CT depending 
only on T by putting 

CT := % • cs0 - \Bs0 \ - T(IS0). 
Since obs(£) = 1 for any 6 G Ai (see Lemma 6.3.A), we have 

Te(/)7 = cT$^*(aO, 
xes 

where S is the set 
im[P(T,0,F)^<?(T,0,A)]. 

Obviously 5 is contained in the subset 
S' :=X>(T,0,A) nim£(T,0,F) 

of £(T, 0, A), where im £(T, 0, F) denotes 
im[£(T,0,F) ->£(T,0,A)]. 

In fact 5 = S", as we will now check. It is enough to prove the following stronger state
ment: if c is an element of £(T, 0, F) whose image in £(T, 0, A) belongs to T>(T, 0, A), 
then c belongs to V(T, 0,F). Let c be such an element. By restriction of scalars we 
may assume that F = Q. Now consider the commutative diagram with exact rows 

H^Tk^T) N tf^ T s e(1-0R)1 V y £(T,0,Q) • 1 

iJ1 (M, Tsc ->> T) HL{R,T%C^V) • 5(T,0,R) • 1 
coming from the distinguished triangle (6.4.1). Choose an element c0 of 

H1 (Q, Tsc) (1-в*)07Г V) 
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whose image in £(T, 0, Q) is c, and let c0(oo) denote the image of c0 in 

H (M., Tsc (i-e*)off (V). 
Consider the set X of elements 

duGff^Tsc AT) 
such that 7i(dR)co(oo) has trivial image in 

iJ1(R, Gsc). 
By our hypothesis that the image of c in £(T, 0,R) belongs to D(T, 0,R), the set X 
is non-empty. It is easy to see that X is open in 

tf^Tse AT). 
By Lemma C.5.A there exists 

de&iQiTn A T ) 
whose image d(oo) in 

HL{R,Tsc AT) 
belongs to X. It follows that 7i(d)co has trivial image in 

H1 (Ж, Gsc)-
Prom Kneser's vanishing theorem 

H1(QP,GSC) = {1} 

together with the Hasse principle 
ker1(Q,Gsc) = {l} 

it follows that 71(d) Co has trivial image in 
HHQ,GSC), 

which shows that c lies in P(T, 0, Q). 
To simplify notation we now write E for £(T, 0, A) and EQ for 

im[£(T,0,F) ->£(T,0,A)]. 
Since we defined $ to be 0 on the complement of £>(T,0,A), the equality S = S' 
implies that 

(6.4.7) Te(f)y = CT 
M 

I 9 Z 
0 (v) 

For any finite place w of F at which T is unramified we put 

€{T,e,Ov) : = imf / f^a ,^ ilz!>^(1-0R)12/^(C^T 1*0 V)] 
= im[V(Ov)/imTsc(Ov) -+ V(Ov)/imT(Ov)] 

= H\Ov,T 1-0R V). 
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Here we used Lemma C.l.A, which also implies that £(T,6,Ov) is a subgroup of 
£(T,6,FV). 

It follows from Lemma C.l.B that £(T, 0,A) is the restricted direct product of 
the groups £(T,0,Fv) with respect to the subgroups £(T,0,OV). We give each finite 
group £(T, 0, Fv) the discrete topology and give £(T, 0, A) the restricted direct product 
topology. It is easy to see that this topology agrees with the one £(T,0, A) inherits 
as a closed subgroup of 

cok^T -4 £/) -> cok[2lT (V] 

as well as the one it inherits as a quotient of 
cok^T -4 £/) -> cok[2lT -> v] 

Lemma 6.4.A. — The subgroup Eo of E is discrete and the quotient E/EQ is compact. 
The function $ on E is locally constant and compactly supported. 

The subgroup E0 of E is a subgroup of 

im[H\F,T ^ V) -> H\k,T ^ V% 

which is discrete in 
Hl{k,T ±^V) 

by Lemma C.3.A; therefore E0 is discrete in E. 
The quotient E/E0 is equal to 

cokfcok^Tsc A T) -+ cok1 (F,TSC (1"̂ )Q7r) V)]. 

For any complex T -4 £/ the natural surjection 

c o k ^ T -4 £/) -> cok[2lT -> Sic/] 
has compact kernel by Lemmas C.2.D and C.3.A. Therefore the compactness of E/E0 
follows from the (obvious) surjectivity of 

cok[2lTsc A aT] -> cok[2lTsc (1"r)Q7r) 21 ]̂. 

Now we prove the statement about 0. Without loss of generality we may assume 
that F — Q and that / is a product 

F = n fv 
V 

of functions 

fv e 
CC°°(G(QV)) if vis finite, 
C~(G(R)/a&) if « = oo. 
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Write the Tamagawa measures dg on G(A) and dt on 1(A) as products 

dg = n 
v 

de31 

dt = n 
v 

de3a3 

in such a way that dgv (respectively, dtv) gives G(Ov) (respectively, I{Ov)) measure 
1 for all but finitely many finite places v of Q (pick Z-structures on G and I). For 
d G G(A) having norm 7 write S(v) for the -̂component of 6. We use the Fv-
isomorphism 

h(v) — I 
to carry dtv over to Is(v)(Fv). Let uv denote the -̂component of u. Clearly 

Os9(f) = l[Osiv)9(fv) 
V 

where Os(v)$(fv) is defined by 

/ ^v(g)fv(9~1S(v)e(g)) dgv/dtv. 
Jl5(V)(FV)\G(FV) 

Moreover 
(obs((J),«o) = (inv(<$0,<$),«o) 

by Lemmas 6.3.A and 6.3.B, and the /̂-component of 

inv(«0,«) G tf^Tsc (1"̂ )0?r) V) 
is equal to 

inv(<J0,<J(t;)) G H^F^Tscc1 k^T[2lT -> Sic/] F). 
The product 

(6.4.8) <inv(*0,*(t;)),«o>0^(/t,) 
depends only on the 0-conjugacy class of S(v) under G(FV), and we define a function 
$v on £(T,0,Fv) as follows. On the complement of V(T,0,Fv) we define $v to be 0 
and for x G V(T, 0, Fv) we define $tf(a?) to be the product (6.4.8) for any G G{FV) 
having norm 7 and such that the image of inv(<$o, S(v)) in £(T,9,FV) equals x. 

Clearly 
0 = 0 3a 

V 
n 

What we must show is that for all but finitely many finite places v of F the function 
$v is equal to the characteristic function of £(T,0,OV). 

In fact at all but finitely many finite places v of F we are in the following situation. 
For simplicity we temporarily let F denote a p-adic field with valuation ring Ö and 
residue field k. We have a connected reductive group scheme G over Ö and an 
automorphism 0 of G over O. We have a character u on G(F), trivial on G(ö). We 
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have a strongly 0-regular 0-semisimple element ¿0 € G(0) whose image in G(k) is 
strongly 0-regular. Thus the centralizer in G of the (9-group scheme 

J = Cent*((Jo,G) 
is a maximal torus T in G over O stable under 

0T :=lnt(60)o6 

and 
I = T0T 

We also have Haar measures dg, dt on G(F), 1(F) that give measure 1 to G(0), 
1(0). Finally we have a character K0 on £(T,0, F), trivial on £(T, 0, (9). Let £ be an 
element of G(F) that is 0-conjugate to ¿0 under G(F). Let / denote the characteristic 
function of G(0). What we must show is that 

<inv(<J0, <*), «o> / uo(g)f(g-186(g)) dg/dt 
Jl(F)\G(F) 

is 1 if the image of inv(($o, 5) in £ (T, 0, F) belongs to £(T,6,0) and is 0 otherwise. 
The map 

9 H> g~1S06(g) 
from G to G induces a closed immersion 

I\G^G 

over (9, whose image X is the 0-conjugacy class of 8Q. Since X is a closed subscheme 
of G we have 

G(0)flX(F) = X(0). 
Let Oun denote the valuation ring in the maximal unramified extension Fun of F in 
F. Then by smoothness of G -> J\G 

X(Oun) = I(Oun)\G(Oun) 

and therefore 
X(O) = [I(Oun)\G(Oun)f^FUn/Fl 

We conclude that as G((9)-space X(0) is isomorphic to a disjoint union of copies of 
I(0)\G(0), one copy for each element of 

kev[Hl(OJ) ^H^O^G)}. 

Since Hx(0,G) = {1}, this kernel is 

H1(0,I) = H1(0,T ±^>V) 

= £(TAO). 

The statement we needed follows easily from these last remarks, and the proof of the 
lemma is now complete. 
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By Lemma 6.4.A it is legitimate to apply the Poisson summation formula to Fo, 
E and and thus from (6.4.7) we get 

(6.4.9) Te (/)7 = or £ f *(e) (e, 0 DE, 

where the sum is taken over all characters £ on the compact group E/EQ and de is 
the unique Haar measure on E giving F/F0 total measure 1 (for the quotient of de 
by the discrete measure on F0). 

Let £(T, 0, F)i denote the kernel of the map (6.4.4) 

£(T, 0, F ) H1 (W>, Z(G))Iker1 (WF,Z(G)). 

It follows from Lemma C.3.B that the natural pairing between &(T, 0 ,F) and 

^ ( A / F . ^ e ^ ^ y ) 

induces a surjection 

£(T,0,F) Homcont (cok1 (F,TSC l iz !>4 V),CX) 

with kernel 
Hom(ker2 (F,TSC i i z !>^ V),CX). 

Let ft G £(T,0, F ) . Then the corresponding homomorphism 

cok1 (F,TSC (1-no7) y ) ^ C x 

factors through 

E/E0 = cok1 (F,TSC (1-0r)os F)/im cok1 (F,TSC A T) 

if and only if its pull-back to 
cok1 (F,TSC A T ) 

is trivial, and this is the case if and only if the image of K under the map (6.4.4) is 
trivial, since 

Homcont(cok1 (F,TSC A T),CX) = Hx{WF,f A (f)ad)/kerx(WF,f A (f)ad) 

= H\WF, Z(G))I k e r 1 ^ , Z(G)), 

where we have written (T)ad for T/Z{G). We conclude that £(T,0,F)i maps onto 
the Pontryagin dual of E/EQ and that the kernel of this surjection has order 

DT:=\KET2(F,Tsc±^>(1-0) V)\. 

It then follows that 

Te(/)7 = cTd^ £ / (c, *>0M(/) de, 
„ JV(T,0,A) 

where K runs over the inverse image under the map (6.4.4) 

£(T, 9, F) -»• tf1^, Z(G))/ker1(W^F, Z(G)) 
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of the element 
a G F1(^F,Z(G))/ker1(^F,Z(G)), 

and where Se denotes an element of G(A) having norm 7 and such that inv(#o, fie) — e. 
The measure de on E depends on the global group E0. To define twisted ^-orbital 

integrals we need a Haar measure on E defined purely locally. This measure, which 
we will refer to as the Tamagawa measure on E, is defined as follows. We have seen 
that at unramified finite places 

£(T,0,Ov) = H^O^T 1-0+ V). 

Therefore £(T,0, A) is an open subgroup of 

H1(F,Z)^H1(F,) 

We define the Tamagawa measure dexam °n E to be the restriction of the Tamagawa 
measure (see (E.2)) on 

ff1(A,T ±1-0+ ̂ V) 
to its open subgroup £(T, #, A). Recall that we are using I to denote the diagonalizable 
group Te*. Define a finite algebraic group A by 

A = 1/1°. 

According to the prescription in (E.2), the Tamagawa measure ctexam is equal to 

Y[deTtim(v), 
v 

where dexam(̂ ) is the Haar measure on the finite group 
s(T,e,Fv) 

that gives points measure |A(FV)|_1. 
Define r(£) to be the measure of the compact group E/EQ with respect to the 

quotient of the Tamagawa measure on E by the discrete measure on E0. Define 
Odooif)' a tested K-orbital integral, by putting 

OS0e(f)= [ (e,K)Osee(f)deT*m, 
JV(T,0,A) 

with Se as before (of course we lift e to an element of Co when defining (e, K) and Se). 
It is immediate that our last expression for Te(f)1 is equivalent to 
(6.4.10) Te(/)7 = crd^riS)-1 £O?0,(/), 

K 

where K runs over the inverse image under the map (6.4.4) of the element a. We write 
ar for the constant 

aT : = CT • d^1 • T(S)~X 

= cG • cSo • \B6o\ • r(I5o) • d?1 • T(£)-1 
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appearing in (6.4.10). 

Lemma 6.4.B. — There is an equality 

aT = \MZ(G)r)\ • \kev1(F,Z(G))\-1 • fro&T1 • \M^i n (Z(G)T)°)\, 

where 
Zt := Z(G) n (f e)° 

(we abbreviate 0* to 6) and 
Z:= Z(G)/Z1. 

Note that Z\ is independent ofT; therefore ar is independent ofT, and from now on 
we will denote it by ao. 

To simplify notation we denote the distinguished triangle (6.4.1) by 

[Ti -> f/i] -+ [T2 -> U2] -> [T3 -+ Us] -+ [Tx -> U!][i\ 

or even just 
Si->S2->S3->Si[l], 

and for i = 1,2,3 we put 

0< : = ker[2lTi 2li/J, 

aj : = cok[2lTi -» 2lc/J. 

We also abbreviate £(T,6,F) and £(T,0, A) to <f(F) and £(A) respectively. 
Consider the double complex 

jy°(A,Si)i Jr°(A,S2)i #°(A,S3)i -» frH^SiH JTH^SaH £(A) 

iJ°(A,Si) -> tf0(A,S2) -> #°(A,S3) -> ^ ( ^ S i ) -> ff^^Sa) -> £(A) 

Sii -> Sfe -> »3 -+ «i ~> «2 -> ^3 

with the Tamagawa measures on the groups in the first two rows and the canonical 
measures (see (E.2)) on the real vector spaces in the bottom row. We will compute 
the t-value of the top row using Lemma E.l.D. The t-values of the columns are all 
1 (note that 2t3 is trivial and has the discrete measure). Therefore the alternating 
product of the t-values of the rows is 1. The t-value of the middle row is 1 by Lemma 
E.2.A. The lvalue of the bottom row is 

(6.4.11) u~1v^1V2Vs1wiw2~1ws 

by Lemma E.2.C (we use the notation of that lemma: u, Vi, Wi, Xi, C%, Wi). 
Therefore the lvalue of the top row is equal to the inverse of (6.4.11). 
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We have just seen that the t-value of the bottom row of the double complex 
ff°(F,Si) H°(F,S2) #°(F,S3) -+ ffH^Si) H1(F,S2) £(F) 

F°(A,Si)i -> ff°(A,S2)i -> #°(A,S3)i ^ ( ^ S O i -+ //1(A,S2)i 5(A) 
is equal to the inverse of (6.4.11). We put the discrete measures on the discrete groups 
in the top row; since the top row is exact its t-value is 1. Applying Lemma E.l.D to 
the double complex above we find that 
(6.4.12) u - V W V ^ 1 ^ = tf)-1^) (1-0r)os -1^)-1^)^)-1®-1 
where 

7f :=T>(2WCA<) 

fc^lker^F.IWt fi)! 
/ := |ker[£(F) -> 5(A)]|. 

Lemma E.3.E implies that 
rfkjirlkh-^viw-1: 

using this to simplify (6.4.12), we find that 

и~^71юз = (т»)-1т(£)ГЧИ)-1Ц. 
Since W3 = {1}, both ^3 and W3 are 1. Trivially we have 

r£=r(J,0) 

k\ = dT 

and (see the discussion in (6.2)) the finite abelian groups B$0 and 

ker[£(F) -> 5(A)] 

are dual, so that 
\BSO\ = I. 

We conclude that 
{BsMhJd^TiS)-1 ^uikf)-1. 

The next step is to evaluate u and k\. By Lemma C.3.B 

ker2(F,Tsc AT) 

is dual to 
ker1(WF,Z(G)) = ker^ZfG)); 

therefore 
k\ = Iker^F,^^))!. 
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To compute u we consider the long exact sequence of hypercohomology obtained from 
the distinguished triangle 

[Y3 -> X3] -+ [Y2 -+ X2] -+ [Yx -+ X,] -+ [Y3 -» X3}[1] 
(recall that we are using the notation of Lemma E.2.C). The relevant portion of this 
long exact sequence is 
(6.4.13) 

H°(F,Yi -+ Xi) -+ H1 (F,Y3 -» X3) -+ H\F,Y2 -> X2) -+ Hl{F,Yx X{). 
Clearly 

H°(F,Yi ->• Xi) = X*(G)r, 
and since the map Y3 -> X3 is injective with cokernel X*(I) it is also clear that 

H1(F,Y3->X3)=X*(I)r. 
For i = l,2 the group 

Hx{F,Yi 0 C Xi 0 C) = cok[(^ ® C)r -> № 0 C)r] 
is trivial (for i = 2 use that T0* is anisotropic) and therefore the global analogs of 
the exponential sequences at the beginning of (A.3) lead to the conclusion that 

7ro(ker[& -+ fif) = H1 (F, Yi -» Xi). 
The exact sequence (6.4.13) yields an exact sequence 

0 -+ cok[X*(G)r -+ X*(/)r] 7T0(kev[V ^ (f )ad]r) -+ 7r0(Z(G)r) -+ /f -> 1, 
where (T)ad denotes T/Z(G) and K denotes 

cok[if1(F,y2 -+ X2) -> tf^F, Yi -> Xx)]. 
Bearing in mind that u = \K\, we find that 

u = \MZ(Gf)\ • \cok[X*(G)r -»• X*(/)r]| • |7T0(ker[y ->• T/Z{G)f)\-1. 
We need to determine the kernel of 

TÇO<J>:V -+T/Z(G). 
Note that 

V = T/{f6f 
and that the map 9 o <f> is induced by 

9 o(l-6) :f->f/Z(G). 
As was remarked at the end of (1.1), the group 

(f/Z(G))« 
is connected, and therefore 7? induces a surjection 

(f*)° (f/Z(G))e 
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(reduce to the case in which G is semisimple and then use that the induced map on 
Lie algebras is an isomorphism). Prom this it follows that the kernel of 7? o (1 — 0) is 
equal to (Te)°Z(G), and hence that the kernel of 

V -> f/Z(G) 
is equal to 

Z(G)/(Z(G)n(fe)°) = Z. 
At this point we know that ar is the product of 

\iro(Z(G)r)\• Iker^ZCG))!-1 • M ^ ) ! " 1 
and 
(6.4.14) cG • c5o • I cok[X*(G)r -» X*(I)T]\. 
It remains to show that the constant (6.4.14) is equal to 

|7ro(Z1n(Z(G)r)0)|. 
For the remainder of the proof we simplify notation by writing X for X*(G)r and 

Y for X*(/)r. Consider the natural map 
Xe ^Xe 

from 0-invariants to 0-coinvariants. Our hypothesis that 
9& -+ Me 

is an isomorphism implies that 
Xe <g>R X9 ®R 

is an isomorphism; therefore, since X6 is torsion-free, the map 
X9->X9 

is injective with finite cokernel. We now note that 
cG = \det(0-l^G/^eG)l 

= \det{0-l-X/Xe)\ (duality) 

= \cok[X/Xd ±=^X/Xe]\ 
= \cok[X9 -> X9]\. 

Note also that the map X -> Y factors through the canonical surjection X -» X9, 
yielding 

Xe^Y; 
therefore 

I cok[X*(G)r -> X*(/)rl| - I cok\Xe -+Y]\. 
Composing Xe -> Xo and XQ Y, we get 

Xe -> Y, 
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which is also injective. Indeed Y 0 E maps to X*(AeG) 0 E = X# 0 E and the 
composition 

(Xa (8) M -> Xe 0 Ж. Xa (8) M -> 
is the natural isomorphism 

Xa (8) M -> Xe 0 Ж. 
Therefore 

X0 —¥ Y/Ytors 
is also injective, and 

cso = irtorsr^cokpomt^Z) -+ Hom^^Z)]!"1 

- lytorsl^lcok^-^ Y/Y^-1 

= \cok[X0 ^Y]\~\ 

It follows that the constant (6.4.14) is equal to 

| cok[X* ->X0]\ • | cok[Xa ->Y]\-\ cok[Xe -> Y]\~\ 

which in turn is equal to 
\kev[Xe^Y]\ 

(use again that Xe —> Y is injective). Since 
X0(g)R^Y ®R 

is injective, we have 

keríXe -> Y] = кег[(ХДог8 ->• Yt0rS] 

= kernten-> (X-(ÏW torsi 
= ker л-[S в tors —ï Л' Ö tors 

where S is the split torus whose character group is X. It is easy to see that the dual 
(use Q/Z) of the finite abelian group (X* (Tutors is 

(X* (Tutors, 
and that the dual of this group (now use Cx) is TTO(T0). Therefore 

| ker[Xfl -> Y]\ = | ker[7r0(Se) -+ TT0(T )̂]| 

- \(S0n(fe)°)/(Sd)°\. 
Of course 5 is equal to 

(Z(G)r)°, 
and since (S^)° is the connected component of the identity in 

S0 nif0)0 = Z1n(Z(G)T)°, 
we conclude that 

|ker[X,^y]| = |7r0(Z1n(Z(G)r)0)|. 
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This completes the proof of the lemma. 
So far we have shown the following. Suppose that there exists 60 G Ai having 7 as 

norm. Then 

(6-4.15) Te{f), = aoY^OleU), 
K 

where ao is the constant defined in Lemma 6.4.B. We need an analog of (6.4.15) that 
remains valid even when there is no element ¿0 G Ai having 7 as norm (in which case 
Te(/)7 is 0). To accomplish this we define a generalization 0"(f) of 0$Qe(f). If there 
is no element S G G(A) having 7 as norm we define 0*(f) to be 0. Otherwise we 
fix an element ¿0 G G(A) having 7 as norm, and for each e G Co we pick an element 
Se G G(A) having norm 7 and such that 

inv(£o, 5) = e. 
As before the product 

<e,«>0M(/) 
depends only on the image of e in £>(T, 0, A) and as function on £>(T, 0, A) is locally 
constant with compact support (see the proof of Lemma 6.4.A). Therefore it makes 
sense to define 0*(f) by 

0$(f) := / <obs(<S0)e, ^)06ee(f) ^Tam, 
JV(T,0,A) 

and by Lemma 6.3.B the integral is independent of the choice of ¿0. 
We will now check that 

(6.4.16) Te( / )7=aG^0*(/) , 
K 

where, as before, the sum is taken over the set of ft G .£(T, 0, F) mapping to a under 
(6.4.4). If the set of such ft is empty, both sides of (6.4.16) are 0. Now assume that the 
set of such ft is non-empty. It follows from the exactness of (6.4.3) and the injectivity 
of 

H2(WF,f ^% f) -+ H2(WF, vAf) 
that a(a) and (3(a) are trivial (recall that a, ¡3 were defined near the beginning of (6.2)) 
and hence that the restriction of u to 1(A) is trivial (see the discussion following the 
definition of a and ¡3). Therefore, if there is any element of G(F) having norm 7, 
then there is an element ¿0 G Ai having norm 7; it follows from Lemma 6.3.A that 

0«(f)=Ole(f) 

and thus (6.4.16) is a consequence of (6.4.15). 
It remains to consider the case in which there is no element of G(F) having norm 

7. Then Te(f)7 = 0 and we must show that 

E 0 " ( / ) = °-
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We may as well assume that there is an element ¿0 G G(A) having norm 7 (otherwise 
0*(f) = 0 for all K). Let K denote the kernel of the map from £(T, 0,F)i to the 
Pontryagin dual of F/Fo. We have seen before that K is the finite abelian group dual 
to 

ker2(F,Tsc ̂ (1-0r)os HV), 

or in other words dual to 

cok[HHA,Tsc (1-0r)os V) -> H\A/F,TSC (1-0r)os V)]. 

It is enough to show that for all /c 

£AR'(/) = o, 

and for this it is enough to show that 

53<obs(«0),*,>=0. 

Suppose this last sum is non-zero. Then obs(̂ o) is the image of some element 

, e ^ ( A , r 8 C ^ (1-0r)os y). 

Modifying x by an element of 

HHF,TSC (1-0r)os (V), 

we may assume that x~x has trivial image in 

H\A,GSC) 

(to prove this use Lemma C.5.A together with the vanishing of HX{FV, GSC) for finite 
places v). Then there exists 6 G G(A) having norm 7 such that 

inv(£o, 8) — x~x. 
It follows from Lemma 6.3.B that obs(£) is trivial and from Lemma 6.3.A that S is 
0-conjugate under GSC(A) to an element of G(F), and this contradicts our assumption 
that no element of G(F) has norm 7. 

Now we can formulate the main result of this section. Consider the set of triples 
(T, 7, K) consisting of 

(1) a 0*-stable maximal F-torus T in G* such that T0* is anisotropic and such 
that there exists a 0*-stable Borel subgroup of G* over F containing T, 

(2) an element 7 G U(F) (recall that U = TQ*) satisfying (6.3.2) and such that the 
stabilizer of 7 in Q,(T,G*)0* is trivial, 

(3) an element K G £(T, 0, F) whose image under (6.4.4) is a. 
Two such triples (T, 7,«), (T',^',K') are said to be equivalent if there exists an 

element g G (G*c)r (F) such that 
(1) the restriction i of Int(#) to T maps T to T" and is defined over F, 
(2) i maps 7 to 7', 
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(3) the isomorphism from £(T, 0,F) to &(X",0,F) induced by i maps ft to ft'. 
Summing (6.4.16) over 7, we get the following result. 

Theorem 6.4.C. — There is an equality 

Te(f) = aG £ 0*(/), 
(T,7,«) 

where the sum is taken over a set of representatives for the equivalence classes of 
triples (T, 7, ft) as above. 

We conclude this section by noting that for a given / there are only finitely many 
equivalence classes of triples (T, 7, ft) for which 0*(f) is non-zero. Indeed an argument 
of the type used in the beginning of the proof of Proposition 8.2 in [K3] shows that 
there are only finitely many equivalence classes of pairs (T, 7) such that there exists 
S e G(A) having norm 7 and lying in the support of / . Therefore it is enough to fix 
(T, 7) and show that there are only finitely many ft such that 0*(f) is non-zero, and 
this follows easily from the proof of Lemma 6.4.A. 
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CHAPTER 7 

END OF THE STABILIZATION 

We continue with the assumptions of the previous chapter. Our goal in this chapter 
is to rewrite the expression for Te(f) given in Theorem 6.4.C in terms of stable trace 
formulas for endoscopic groups H associated to (G,0, a) (see (7.4.4) for the final 
result). 

7.1. &(T,6,F) revisited 
Let T and &(T,#,F) be as in (6.4). As usual we write U for To*; note that 

U = (Te)°. There is a canonical G-conjugacy class of embeddings T ->> G; the 
restrictions of these to U form the canonical G-conjugacy class of embeddings U -> G. 

Consider the set S of pairs (77,5), where n : LU LG is an L-homomorphism whose 
restriction to U belongs to the canonical G-conjugacy class of embeddings U —> G, 
and where s G G satisfies 
(7.1.1) Int(s) oL0or] = b-n 
for some (continuous) 1-cocycle b of WF in Z(G). We say that (rj,s), (rj'^s') are 
equivalent if there exists g G G such that 

(1) Int(#) o (c • 77) = 7/ for some 1-cocycle c of WF in U, and 
(2) gse(g)-1 = s' modulo Z(G) 
(c • 77 denotes the L-homomorphism LU -> LG defined by 

(c • rj)(uw) = r](cwuw) 
for all w G WF, U G U). Write 5 for the quotient of S by the equivalence relation 
above. 

There is a canonical element of 5, obtained as follows. As in (4.4) we write G1 for 
the identity component of the fixed points of 6 in G and form the semidirect product 

LG1 := G1 xi WF 
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for the inherited action of WF on G1; there is an obvious embedding 

LGl <-+ LG. 

Choose an embedding U -» G1 lying in the canonical G1-conjugacy class of such 
embeddings. A familiar argument based on [LI, Lemma 4] shows that U —> G1 can 
be extended to an L-homomorphism 

m :LU^LG\ 

which we can also view as an L-homomorphism from LU to LG. Then (171,1) lies in 
S and its equivalence class is independent of all choices. 

We now define a map from S to &(T, 0,F). Let x G S and choose a representative 
(77, s) G S for x such that 77 coincides with 771 on U. Use 771 to identify U with its 
image in G and let T denote the centralizer of U in G; then T is 0-stable and the 
obvious isomorphism U ~ {Te)° extends canonically to an isomorphism T ~ T. Then 
77 and 771 differ by a 1-cocycle t of WF in T: 

77(7̂ ) = twr)i(w) (w G VFF) 

(we view tw as element of T in this equality). Note that Int(s) fixes U pointwise and 
hence that s G T ^ T . The equation 

Int(s) o L0 o 77 = b • 77 

yields the equation 

(1-0X*-1) = 6-<9s. 

It follows that (£_1,s) is a 1-hypercocycle of WF in 

f 7To(l-0*) r/Z(G). 

Any other such representative for x is of the form (Int(t) o (u • 77), tfszö^)-1) for 
some t G T, some 1-cocycle it of W> in U and some 2? G Z(G). Recalling the exact 
sequence 

1->V ->T->*7->l 
and its dual 

l - > [ / - * T - > y - * l , 
we see that the class of (t 1,s) in 

H1(WF,V(1-0r)os^(TU)=fi{T,9,F) 

is independent of the choice of representative for x. 

Lemma 7.LA. — This construction yields a bijection from S to &{T,9,F). 
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Suppose that x, x' G S map to the same element of &(T,0,F). Choose represen
tatives (77,5), (77', s') for xyX as above. Conjugating (77, s) by suitable t G T we may 
assume that s = s' modulo Z(G) and t = t' modulo U. It is then clear that (77, s) 
and (77', s') are equivalent. The surjectivity of the map is an easy consequence of the 
surjectivity of 

H^wF,f^ ¿7(7) = 7r (crGT)n (f)ad) -4 HHWF,V^A 1-0 (f)ad), 

which in turn follows from the vanishing of H2(WF, U). 

7.2. A map (H^H) »-> (T,7,/c) 

Let (H,H,s,t;) be a set of elliptic endoscopic data for (G,0,a). As in (5.4) we use 
the natural map 

Zf -> Z(tf ) 
to view Zo- as a 1-cocycle in Z(H). Let 7я be a strongly G-regular element of H(F) 
such that 

¿7(7) = 7r (crGT) (1-0r) os 
The centralizer TH of 7# in if is a maximal F-torus in if, and we assume that 7# is 
elliptic in the sense that TH/Z(H) is anisotropic over F. 

Choose a 0*-stable pair (B,T) in G* with T defined over F and an admissible iso
morphism TH — TQ* . As before we write U for T#*. Use this admissible isomorphism 
to carry 7H over to an element 7 G (7(F) satisfying 

¿7(7) = 7r (crGT). 
Let [/ ~ TH -» if be an embedding in the canonical ff-conjugacy class of such 
embeddiners. and extend it to an L-homomorDhism 

VH:LU = LTH^H 

(use [LI, Lemma 4] once again to prove existence of the extension). Then (f OTJH,S) 
is an element of <S; in fact (use (2.1.4a)) 

Int(s) о L0 о £ о 77я = a! * (£ 0 ?7я) 
for a 1-cocycle a' of Ĥ F in Z(G) that represents 

a G Я1 (WF, Z(G)) / ker1 (WF, Z(G)). 
Since 77Я is well-defined up to 1-cocycles in U and conjugation under ff, the equiv
alence class of (£ о 77я,5) is well-defined, and the construction in (7.1) produces a 
well-defined element к G A(T, 0, F) from (£ о 77Я, s). Clearly к maps to a. 

The triple (T,7, я) we have just constructed is of the type considered at the 
end of (6.4), and its equivalence class is independent of all choices. We say that 
(Я,?^,8,£,7я) and (H',s' ,^'H) are equivalent if there exists an isomorphism 
from (Я,Я,5,£) to (H',W, s',£') (see (2.1)) such that the associated isomorphism 
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a : H H' (well-defined up to inner automorphisms) carries the if(F)-conjugacy 
class of 7# into the #'(F)-conjugacy class of j'H. 

Lemma 7.2.A. — The construction described above sets up a bisection from equivalence 
classes of quintuples (!/",%, s, £, 7#) to equivalence classes of triples (T,7,K). 

We simply describe the inverse construction, leaving it to the reader to check that 
it really is the inverse. Start with (T, 7, K). Put U = T$* and let (77, s) be an element 
of S whose class in S corresponds to K, under the bijection in Lemma 7.1.A. It follows 
from the discussion in (7.1) that s is -̂conjugate to an element of T and hence that 
s is 0-semisimple. Define H by 

H := Centos, G)° 

and let H be the subgroup of LG generated by H and T)(WF)\ it follows from (7.1.1) 
that TJ(WF) normalizes H and hence that we have a split exact sequence 

1-+H->H->WF^ >1. 

We define p-u as we must, after fixing a splitting of H. It is obvious that pu factors 
through Gal(K/F) for any finite Galois extension K of F in F that splits T. We take 
H to be a quasi-split group over F with L-group (H, pu). Then (if, s, £), where £ 
is the inclusion of H in LG, is a set of endoscopic data for (G, 0, a). By the definition 
of H the map 77 factors through W, yielding 

n:LU^n. 

Dual to U -» .ff are embeddings i : [7 —>• if, well-defined up to i7(F)-conjugacy. For 
all a G T o~(i) is conjugate to i under H(F). A standard argument using Steinberg's 
theorem on the existence of rational elements in rational conjugacy classes shows that 
i can be chosen so that it is defined over F. Then put T# = i(U) and 7# = ¿(7). 
Clearly 7h is strongly G-regular. Since U/ im Ẑ c is anisotropic, both (i7, 5, £) and 
T# are elliptic. This completes the construction of (#,7-/, s,£,7#) from (T, 7, ac). 

7.3. Absolute transfer factors for global 7 

Let (H,H, s,£) be a set of elliptic endoscopic data for (G,0,a) and let (-Hi,£jfi) 
be a z-pair for % (see (2.2)). We consider elements 7 G satisfying 

(7.3.1) <7(7) = 7*<r (*er). 

We assume that there exists an elliptic strongly G-regular element 70 G satis
fying (7.3.1) and arising as a norm of some element So G G(A) (otherwise (if,H,s,£) 
is not needed for the stabilization of Te(/)). We fix such an element 70 as well as an 
element 701 G H\(F) mapping to 70; this lets us define a 1-cocycle 

^lW := 7(^(701) 
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of T in Z(Hi) (as in (5.4)). We are then interested in elements 71 G Hi(F) or iJi(A) 
such that 

(7.3.2) *(7i) = 7i*i(*) (*er ) . 

Suppose that 71 G i?i(A) satisfies (7.3.2) and that its image 7 in i?(A) is strongly 
G-regular and elliptic and arises as a norm of an element 5 G G(A). Then we define 
the adelic relative transfer factor 

AA(7i><*;7oi,<*o) := J J A(7i(^M(^); 7oi, <*o(̂ )) 
V 

where the product is taken over all places v of F. The local relative transfer factors 
were defined in (5.4). Of course 71 (v), 5(v), So(v) denote the -̂components of 71, 
5, 60 respectively. The statement "7 is strongly G-regular" means that 7 G i7reg(A), 
where Hreg denotes the Zariski open set of strongly G-regular elements in if; this 
condition on 7 guarantees that the product defining AA has only finitely many terms 
different from 1. 

The construction in (7.2) produces from (H, H, S, E and 70 a triple (To, 70,̂ 0) 
(well-defined up to equivalence), and from ¿0 we get obs(Jo), which can be paired 
with KQ. We define an absolute transfer factor by 

AA(7i><*) := AA(7i?*;7oi,*o)<obs(<J0),«o>. 

In the next lemma we make the additional assumption that 71 lies in if 1 (F). Then 
the construction in (7.2) produces from 71 a triple (T, 7, ft), and from 8 we get obs(J), 
which can be paired with ft. 

Lemma 7.3.A. — For 71 G Hi(F) there is an equality 

AA(7i 7oi, ¿0) = (obs(<5),ft)(obs(J0),̂ o)_1. 

Recall that the definitions of the individual factors Ai,..., Arv involve auxiliary 
choices, although their product does not. In proving this lemma it is convenient to 
choose global a-data and %-data for Rres(G*^To) and Rres(G*,T) as well as a (global) 
F-splitting of Gx (recall that Gx is the group of 0*c-fixed points in G*c); we then use 
the localizations of the global objects to define the local factors Ai,..., Aiv-

With these choices Ai(7i,5), An(71,8) and Arv(7i,#) are all 1 (and the same is 
true for 701, 80). Indeed Ai(7i,5) = Ai(7,£) is of the form 

(Aa,st,0) 

with &T,O € 7To((Tx)T) and AA equal to the image under 

H1(F,Tx)-^H1(k,Tx) 

of the class 
\{aa}{Tx)£H\F,T*) 
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constructed from the a-data for T and the splitting for Gx, and of course the value 
of the pairing is 1 since AA comes from an element of if1(F, Tx). 

Next consider An(71,5) = An(7,5). The factors in the numerator of An(7,5) 
involve £*, which we may assume lies in T(F). In our present setup the image of 5* 
in To*(F) need not be F-rational; however its image in (T^e* is indeed F-rational. 
Let ares G i?res(G*,T) and assume that ares is of type R\ or R2. Then the total 
contribution of the T-orbit of ares to the numerator of the adelic factor An (7, S) is 
equal to 

Xc*res 
iVaW*) - 1 

X cil00 
where x«res is an idele-class quasicharacter for the field of rationality E of aTes. Since 

Na(6*) - 1 
Cokw12z 

E, X214z 

the idele-class quasicharacter takes the value 1 on it. The same reasoning applies to 
the other factors contributing to the numerator and denominator of An(7,<J). 

It is clear from the product formula that Arv (7, S) = 1. To finish the proof of the 
lemma we must now show that 

(7.3.3) Ain(7i,<J;7oi,*o) = <obs(<J), «>(obs(J0), fto)"1. 

For the rest of this proof we will write 7X, 7, J, T, K for 701, 70, ¿0, T0, ^o, so that 
our notation will be consistent with that of (4.4). Recall from (4.4) the tori 

S = (T x T)/Z 

W = (Tsc x Tsc)/Zsc 

(we switched notation from U to W since we are already using U to denote Te*), as 
well as the extension S\ of S by Z\. 

The adelic factor Am (71,5; 701, ¿0) is equal to the product 

(7.3.4) l[{V1(v),A1(v)) 
V 

with Ai(v) and Vi(v) as in (4.4) and (5.4). Since we chose global x-data, the con
structions used to form Ai (v) can be carried out globally, yielding 

Ai eH^Wr.S! 1-0 W) 

such that Ai ^ A±(v) for all v. To get a 1-hypercocycle representing Vi(v) we must 
choose elements 6*,6. It is now convenient to assume (as we may) that (5* G T(F) 
and 6* G T(F). We will use this global pair <5*,5* at every place v of F. Let C denote 
the kernel of the surjection 

Ti x Ti Si. 
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It is not hard to see that the constructions in (4.4) and (5.4) lead to a 1-hypercocycle 
of r in the complex 

(Tsc xTsc)(A) 1-0 (Ti xTi)(A) 
ZSC(F) C(F) 

We denote the class of this 1-hypercocycle by Vi. For any place v the image of Vi in 
Hi(Fv^wlz 0-1 Sl) 

is Vi(v); therefore the expression (7.3.4) is equal to 
(7.3.5) <Vi,Ai>, 
where Vi denotes the image of Vi in 

H\klF,W ^ 4 S i ) . 
Note also that Vi can be mapped to an element 

Vi' e H\k/F,TSC x Tsc (1 - 01)or Ti x T\) 
and that Vi is simply the image of V'/ under the map on hypercohomology induced 
by the obvious map 

(7.3.6) [Tsc x Tsc ^ Ti x Ti] -+ [W ^ 5i]. 
Therefore (7.3.5) is equal to 

(Vi',A'/) 
where A" denotes the image of Ai in 

H^WF^ T1 xT1 xf^ifUxi(T)U a2ad) 
(use the dual of (7.3.6)). 

Recall that I\ was defined to be the fiber product of THX and T over TH — T$*. 
Therefore the kernel V of T -> Te* can be regarded as a subtorus of Ti. Moreover 
the map 

1 - 0i : T -> Ti 
of (4.4) is simply the composition 

T 1-0* v – T1. 
Therefore we have a natural map of complexes 

(7.3.7) [Tsc x Tsc (1 - 01)or V xV)-> [Tsc x Tsc (1 - 01)or TX x Ti]. 
To prove the lemma it is enough to show that (obs(<S), obs(J)-1) maps to V'/ under 

the map induced by (7.3.7) and that A" maps to (K,K) under the map induced by 
the dual of (7.3.7). As the verification of these two facts is simply an exercise in using 
the relevant definitions, we leave it to the reader. The proof is now complete. 
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Corollary 7.3.B. — The absolute transfer factor A A (71, $) is independent of the choice 
of (joi,60), and ¿/71 e H^F) 

AA(7i^) = <obs(<J),K>. 

This follows from Lemmas 7.3.A and 5.1.A. 
We now use the adelic transfer factor AA(7I , 6) to define a global notion of functions 

with matching orbital integrals. Recall that we are dealing with a function 

/ € C?(G(A)/WG). 
The assumption (made in (6.1)) that 

Hg – (hg) o024 

is an isomorphism implies that 
HG ->• Z(G)e(A) 

is injective and that its image in Z(H)(A) is equal to %n (use also that (H,H,s,£) 
is elliptic). Let Z0i denote the inverse image under 

Hi(A) tf(A) 

ofS&. 
Let C be as in (5.1). Then by the discussion following Lemma 5.1.C there is a 

quasicharacter Ac on C(A) such that 

A(*i7i,*<J) = Ac(̂ 1 )̂-1A(7l7<5) 

for all (zi,z) G C(A), and by Lemma 5.1.C the restriction of Ac to the subgroup 
Zi(A) of C(A) is equal to A/̂ . The injectivity of 

-+ Z(G)0(A) 

implies that Z0i can be identified with a subgroup of C(A). We consider smooth 
functions fHl on ifi(A), compactly suported modulo Z0i, such that 

fHl(zh) = \c(z)-1fH*(h) 

for all h G Hi(A) and z G Z0i. 
We want to say what it means for /, fHl as above to have matching orbital integrals. 

By restriction of scalars we may assume that F = Q, so that / can be written as 
a linear combination of products of local functions. Since we want our notion of 
matching to be linear, we may as well assume that / is a product of local functions 
fv. We also want our notion of matching to be local. Write the Tamagawa measure dg 
on G(A) (respectively, dh on H(A)) as a product of local measures dgv (respectively, 
dhv). Write the adelic absolute transfer factor as a product of local absolute transfer 
factors Av; for instance one could take (for local elements 71, S) 

AW (71, (J) = Av(7i,(J;7oi,(Jo(v)) 
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at every finite place v of Q and 
Aoo(7i,(5) = Aoc(7i,¿5701,¿0(00)) • (obs(£0),tto) 

at the infinite place of Q. Using these local measures and local transfer factors, we now 
have a local notion of matching functions (see (5.5)) for each place v of Q. Suppose 
that fHl as above is a product of local functions f^1 and that fv, f^1 have matching 
orbital integrals for all v. Then we say that / and fHl have matching orbital integrals. 

As in (5.4) we use the elements 70, 701 to define automorphisms 

6H :=Int(7o) G AutF(H) 
6Hl :=Int(7oi) G AutF(#i) 

and work with elements SH G Hi(F) rather than elements 71 G Hi(F) satisfying 
(7.3.2). 

Suppose that / , fHl have matching orbital integrals and that SH £ Hi(F) ls 
strongly G-regular (in the sense of (5.5)). Let 7 denote the corresponding element 
of H(F) satisfying (7.3.1). Use the Tamagawa measure du on TH(A) to define the 
orbital integral 

OsHeH(fHl) := / fHl{h-HH9H{h))dhldu 
JTH(A)\H(A) 

and then define its stable analog by 

SOSHeH(fHl)^T,°^0H(f H l ), 

where S'H runs over a set of representatives for the 0#-conjugacy classes under H(A) 
of elements S'H G Hi (A) in the 0#-conjugacy class of SH under H(A). 

Lemma 7.3.C. — There is an equality 

soSHeH(fHl) = o';(f). 

By linearity (and restriction of scalars from F to Q) we may assume that / and 
fHl are products of local functions with matching orbital integrals. We may as 
well suppose that there exists S G G(A) having norm 7 (otherwise both sides of the 
equality we are trying to prove equal 0). Write the Tamagawa measure du on TQ* (A) 
as a product of local measures duv and let dt°v denote the Haar measure on T° (Fv) 
that is compatible with duv in the sense of (5.5). Note that the Tamagawa measure 
dt on Te* (A) is given by 

dt = J~J dtv 
V 

where dtv = l ^ ^ ) ! " 1 ^ (recall that A := T0*/(Te*)°). 
Clearly SOsHeH{fHl) is the product of (obs(Jo),̂ o) and 

I I X ) ^vdfuS(v)e;jol,So(v))Os(V)E0(fv), 
v eeV(T,0,Fv) 
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where dt°v is used to form Os(v)ee{fv) and S(v)e denotes an element of G(FV) having 
norm 7 and such that 

mv(6(v),6(v)e) = e. 
On the other hand it follows from Corollary 7.3.B and the definition of dexam that 
0*(f) is the product of (obs(<$o), «o) and 

\{\A{FV)\-1 Yl &v(7i,6(v)e;7ouS0(v))Os{v)ee(fv), 
v eeV(T,0,Fv) 

where Os(v)ee(fv) is now formed using dtv = \A(Fv)\~1dt®. This proves the lemma. 

7.4. Final step in the stablization of Te(f) 

Recall from Theorem 6.4.C the equality 

Te(f) = aG ]T 0*(/). 
(T,7,«) 

By Lemma 7.2.A we may rewrite this equality as 

(7A1) Te(f) = aG £ E ° T ( / ) ' 

(H,n,s,0 7 
where the first sum is taken over a set of representatives for the isomorphism classes 
of elliptic endoscopic data for (G, 0, a) and the second sum is taken over a set of rep
resentatives for the orbits of Out(iJ, H, s,£) (see (2.1)) on the set of if(F)-conjugacy 
classes of elliptic strongly G-regular 7 G H(F) satisfying (7.3.1). 

Let a G Out(iJ,7-/,s,f) and suppose that a fixes the if(F)-conjugacy class of 7. 
Modifying a by an inner automorphism over F (a is now defined over F, but this 
does not matter), we may assume that a fixes 7. Then a preserves the centralizer 
TH of 7 and its action coincides with that of some element of £l(G* ,T)E*. Since 7 is 
strongly G-regular, we conclude that a fixes TH pointwise and hence that a is inner. 
Therefore 
(7.4.2) TeU) = M 

(H,n,s,i) 

aG-\(H,H,8,ti)-1YjO"U) 

7 
where 

\(H,n,s,e) := |Out(ff, (1 - 01)or I 
and the second sum is now taken over a set of representatives for the iJ(F)-conjugacy 
classes of elliptic strongly G-regular 7 G H(F) satisfying (7.3.1). 

The contribution of (H,'H,8,() to Te(f) is 0 unless there exists 70 as above that 
arises as the norm of some element ¿0 € G(A); we discard all (i7,7^,s,£) for which 
no such pair (70,̂ 0) exists. Now consider (H,H,s,£) for which (70, ¿0) exists and fix 
such a pair. Choose a 2-pair (L/ i ,^) for T-L. As in (7.3) choose 701 G H\(F) and get 
6H, OH,, AA(7I,<$). 
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We now assume that for each (H,H,s,£) as above there exists a function fHl on 
Hi(A) whose orbital integrals match those of / (in the sense of (7.3)). Then, using 
Lemma 7.3.C, the equality (7.4.2) becomes 

(7.4.3) Te(/)= TSD aG^XiH^s^r'T^SOs^Af111), 
5 (1 - 01) SH 

where SH runs through a set of representatives for the 0#-conjugacy classes under 
H(F) of OHX -elliptic strongly G-regular elements SH G H(F). In order to make 
sense of SOsHeH(fHl) we must ^ $H to an element of Hi(F) (since Ac is trivial 
on Zi(F) the quantity SOsHeH(fHl) is independent of this lifting). Now define a 
rational number L(G, 0, H) by 

i(GAH) := aG • A(ff,«,«,0_1 • |TT0(^(^)r)|-1 • | ker1^, Z(F))|. 

Then (7.4.3) is equivalent to 

(7.4.4) Te(f)= Yl i>(GAH)ST?(fH*), 
(H,U,s,$,) 

where ST**(fHl) is defined by 

|7ro(Z(^)r)||ker1(F,Z(^))|-1^50^H(/Hl). 

Of course one hopes that there is a stable ##-twisted trace formula for fHl of which 
ST** is the #ij-elliptic strongly G-regular part. The constant 

M Z ^ I I k e r ^ Z t f f ) ) ! - 1 

is equal to the Tamagawa number r(H) (see [Kl]), and it is an easy exercise in using 
the relevant definitions to see that it is also equal to the constant a# associated to 
the pair (H,6H) in Lemma 6.4.B. 
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APPENDIX A 

HYPERCOHOMOLOGY OF COMPLEXES OF TORI 
OVER LOCAL FIELDS 

A.l. Group hypercohomology 
Let G be a group. Let A* be a complex of G-modules with boundary map /:  

>• A'1 -4 A0 -4 A1 -s- • • • . 
Let 

y P2 4 Pi A P0 ->• Z -»• 0 
be the standard resolution of the trivial G-module Z by free G-modules P». Then the 
<?ro«p hypercohomology H'(G, A') is the cohomology of the complex U associated to 
the double complex 

Kmn = EomG(Pm,An); 
thus 

Lr = 0 Kmn 
m-\-n=r 

and the differential d : Lr —> Lr+1 is given by 
d = f + (-l)nd 

on the subgroup Kmn. Note that Kmn can be identified with Cm(G, An), the group 
of m-cochains of G in An. We refer to elements of U as r-hypercochains of G in A* 
and denote U by Cr(G,yl#). Of course r-hypercochains on which d is trivial will be 
referred to as r-hypercocycles . 

Suppose that G is finite. Then we have the standard complete resolution 
• Pi -> P0 -> P_i -+ • • • 

of G, the resolution that yields the Tate cohomology groups Hr(G, A) (r G Z) for any 
G-module A. Using this complete resolution to form a double complex 

Kmn = RomG(Pm,An) (m,n G Z), 
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we again take the cohomology of the associated complex, obtaining Tate hypercoho-
mology groups 

Hr(G,A*) 
for any complex A* of G-modules. 

Suppose that G is profinite and that A* is a complex of smooth G-modules (recall 
that smooth means each element has open stabilizer). Now Gm(G, An) denotes the 
group of continuous m-cochains of G in An (continuous for the discrete topology on 
An), and we will take Gr(G, A*) to be 

0 Cm(G,An) 
m-\-n=r 

with differential 
d:Cr(G,Am)^Cr^(G,Am) 

as before. We refer to elements of Gr(G, A*) as continuous r-hypercochains of G in 
A\ 

Suppose that F is a field and that Fsep is a separable algebraic closure of F. Let V 
denote the profinite group Gal(Fsep/F). Let A* be a complex of smooth T-modules. 
We write Hr{F,Am) and Gr(F, A0) instead of Hr(T,Am) and Gr(r, A0) and refer to 
elements of Cr(F, A9) as r-hypercochains, it being understood that these are required 
to be continuous. 

In all three theories there are restriction, corestriction and inflation maps, as well 
as Shapiro isomorphisms, just as for group cohomology. A quasi-isomorphism from 
one complex to another induces an isomorphism on hypercohomology. A short ex
act sequence of complexes, or more generally a distinguished triangle in the derived 
category of (smooth) G-modules, yields a long exact sequence of hypercohomology 
groups. 

The applications of group hypercohomology to twisted endoscopy involve com
plexes of length 2. Suppose that A, B are (smooth) G-modules and that / : A —> B is 
a G-map. We write Hr(G,A —> B) for the r-th hypercohomology group of A —)> B, 
regarded as a complex concentrated in degrees 0 and 1. In particular 

H°(G, AAB)= kei[AG -> BG] 

and H1 (G, A -+ B) is the quotient of the group of 1-hypercocycles by the subgroup of 
1-hypercoboundaries, a 1-hypercocycle being given by a pair (a, b) with a a 1-cocycle 
of G in A and b an element of B such that f(a) = <96, and a 1-hypercoboundary 
being given by a pair of the form (<9a, /(a)) for a G A (we write da for the 1-cocycle 
a i—y a~1a(a) of G in A). 

For complexes of length two the two spectral sequences of hypercohomology reduce 
to long exact sequences. The first long exact sequence is 
(Al.l) 

• HR(G,A A- B) A HR(G,A) 4 HR(G,B) ARZ HR+1 (G,AAB)^---, 
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where the map i is given by 
(a, b) !->• a 

for any hypercocycle (a, b) G Cr(G, A) 0 Gr X(G, 5), the map / is induced by 
( a - A - B) 

and the map j is given by 
b h-> (0, b) 

for any cocycle b in Cr{G,B). The second long exact sequence is 

• JT(ker(/)) A Hr(A -4 B) A JT-^coktf)) A iT+1 (ker(/)) • • • 
where we have abbreviated Hl{G, •) to if *(•) and where the map i' is given by 

a \-> (a, 0), 
the map j' is given by 

(a, 6) H> 6, 
and the map &' is given by the composition of the boundary maps 

Hr~HG,cok(f)) ^ IT(GM(f)) 
and 

Hr(G,im(f)) -> Hr+1(G,ker(f))-

A.2. Tate-Nakayama pairing for hypercohomology 
Let F be a local field of characteristic 0. As usual write T for Gal(F/F). Let T* 

be a complex of F-tori with boundary map /: 

— > T_1 -4 r° 4 r1 • • •. 
We get a complex X* of smooth T-modules by putting 

Xm :=X*(T-M) 
and taking as boundary map 

Xn - Xm + 4 

the map 
(-l)m/* : X*(T"M) -> X*(T"(M+1)); 

thus the complex X* looks like 

—> X^T1) ^ 4 X*(T°) A x*^-1) 
We write CN(F,T#) and HN(F,TM) instead of CN(F,T#(F)) and HN(F,T*(F)). 

For a single torus T there is a cup-product pairing 
CN(F, T) ® CN' (F, X* (T)) -> CN+N' (F, GM), 
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denoted by a ® b H+ a • b. This pairing satisfies 

d(a • b) = (da) • b + (-l)na • db. 

We now define a cup-product pairing 

Cr(F,T') ® CS(F,X9) -> Cr+s(F,Gro), 

denoted a ^ 6, as follows: by linearity it is enough to define a ̂  b for 

aeC'(F,Tfc) (j + fc = r) 

and 
beCm{F,Xn) = Cm(F,X*(T-n)) (m + n = s), 

and for such a, b we put a ̂  b = 0 unless —n = fc, in which case we put 

a w 6 = (-l)J'fca • 6, 

an element of 
Cr+s(F,Gm) 

since j + m is then equal to r + 5. As before we write d for the differentials in the 
complexes Cr(F,T#) and CS(F,X9). Then for a G Cr(F,T#) and 6 G Cs(F,Xm) one 
checks that 

d(a w 6) = (da) w b + (-l)ra - db. 
Therefore this pairing induces a cup-product 

Hr(F,Tm) 0 Hs{F,Xm) -+ Hr+s(F,Gm). 

Combining this with the Hasse invariant 

H2(F,Gm)^Q/Z 

we get a Tate-Nakayama pairing 
(A2.1) Hr(F,T*)®H2-r(F,Xm) ->Q/Z. 

Suppose that K is a finite Galois extension of F and that T* is a complex of tori 
split by K. In the same way as above we get a Tate-Nakayama pairing 

(A.2.2) Hr(KlF,Tm(K))®H2-r{K/F,X*) -> Q/Z. 

If, moreover, the complex T* is bounded, then this pairing induces a perfect duality 
of finite abelian groups for all r G Z. To prove this use induction on the length of the 
complex. For a complex of length 1 the statement reduces to Tate-Nakayama duality 
for tori. For the induction step consider a complex of length n + 1, which we may as 
well assume is concentrated in degrees 0 through n: 

rpO y rpl y . . . y r£n 

Then the complex consisting of T° in degree 0 is a quotient of T* with kernel 

T1 -» y Tn. 
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The induction step now follows from the induction hypothesis together with the long 
exact sequence of hypercohomology coming from the short exact sequence of com
plexes above (as well as the analogous long exact sequence involving the hypercoho
mology of Xm). 

It is harder to formulate duality theorems for the pairings (A.2.1). We will limit 
the discussion to the case of interest in this paper: a complex T ~> U of length 2, 
concentrated in degrees 0 and 1 (of course T, U are F-tori). We write Hr(F,T 4 U) 
for the hypercohomology of the complex T(F) -> U (F), again placed in degrees 0 and 
1. The corresponding complex X* of character groups is given by 

r ( ( / ) 4 r ( r ) , 
placed in degrees —1 and 0. The r-th hypercohomology group of this complex is 
canonically isomorphic to 

Hr+1(F,X*{U) A r ( T ) ) , 
with 

x*(u) Ax*(T) 
placed in degrees 0 and 1. Thus the Tate-Nakayama pairing becomes 

(A2.3) Hr(F,T 4 U)®H3-r(F,X*(U) A X*(T)) Q/Z. 
Now suppose that F is p-adic. Then Hr(F,A) = 0 for r > 3 and any smooth 

T-module A. Therefore Hr(F,A -4 B) = 0 for r > 4 and any map / : A -> B of 
smooth G-modules (use (A.1.1)). Thus the groups being paired in (A.2.3) are both 
0 if r > 4. If F is archimedean and r = 2,3, then ifr(F,T -4 U) coincides with 
Hr(F/F,T(F) -4 Z7(F)), so that we already have a duality theorem in this case. 

Lemma A.2.A. — If F is p-adic and r = 2,3 then the pairing (A.2.3) induces an 
isomorphism 

Hr(F,T 4 U) -> Hom(iJ3-r(F,X*(C7) 4 X*(T)),Q/Z). 
f* 

Moreover for r = 2,3 the abelian group H3-r(F,X*(U) ^ X*{T)) is finitely gener
ated; for r = 3 it is free as well 

It is part of one variant of Tate-Nakayama duality for tori that 
Hr(F,T) -> Hom(if2-r(F,X*(T)),Q/Z) 

is an isomorphism for r = 1,2. The first statement of the lemma follows from this, 
the 5-lemma and the exact sequences (A.1.1) for T -» U and X*(U) -> X*(T). The 
last statement of the lemma follows from (A. 1.1) for X*(U) -» X*(T) together with 
the fact that iT(F,X*(T)) and ^(F,X*(i7)) are free of finite rank for i = 0 and 
finite for i = 1. 
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In (A.3) we will prove a duality theorem involving Hr(F,T -A U) for r = 0,1 and 
all F, archimedean as well as non-archimedean. For this we will need a variant of the 
pairing (A.2.3). 

A.3. Another pairing 
Consider the commutative diagram of exponential sequences 

0 • X*(U) • Lie(I7) • U • 1 

0 • X*(T) > Lie(f) • f > 1, 
where the vertical maps are dual to / . We regard this diagram as a short exact 
sequence of complexes of length 2, and get boundary maps on hypercohomology: 

Hr(F,U A f) -+ Hr+1(F,X*(U) A X*(T)). 
Combining this with the pairing (A.2.3) and using the exponential map to embed 
Q/Z in Cx , we get a pairing 

(A3.1) Hr(F, T -4 U) 0 H2~r(F, U 4 f) -> Cx , 
independent of the choice of square-root of —1 in C. However the pairing (A.3.1) is 
not adequate for defining transfer factors, which involve elements of a variant of 

H\F,U ->f) 
that uses the absolute Weil group Wp of F rather than the Galois group T. What we 
need are hypercohomology groups 

Hr(WF,U -4f) 
that take into account the topology on WF-

The first step is to define groups Cm(WF,f) for m > 0. Write C^s(WF,f) for 
the m-cochains of WF in T with WF regarded as abstract group. For m = 0 we put 

C°(WF,f) = C°abs(WF,f). 
For m = 1 we let Cl(WF,T) be the subgroup of Clha(WF,T) consisting of 1-cochains 
tw (w G WF) such that 

(1) w \-> tw is a continuous map WF —> T, and 
(2) tw is a 1-cocycle. 
Note that 

C H W F ^ ^ C ^ W K / F . T ) , ( 1 - 0 1 ) 
K 

where K ranges over the finite Galois extensions of F in F that split T, and 
C\WK/F,f) 
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denotes the group of abstract 1-cocycles tw whose restriction to the subgroup Kx of 
WK/F is a continuous homomorphism 

Kx -» f. 

For m > 2 we put 
CM(WF,T) = {l}. 

In this way we get a complex (C*(WF, T),d) 

C°(WF,f) A C\WF,T) -> 1 -» 1 -> 1 ->.. . 

where 9 is the usual coboundary map sending t G T to the 1-cocycle w-T12 w (t) 

We denote by HM(WF,T) the m-th cohomology group of this complex. Trivially 

HM(WF,T) = {1} (m>2). 

For m = 0 we have 
ff°(W>,f) = H°(F,f) = fr. 

For m = 1 we have 
^ ( W ^ f ) = Homcont(T(F),Cx). 

This theorem of Langlands is contained in his unpublished paper "Representations of 
abelian algebraic groups" and another proof can be found in [La]. 

Let 
1-»T ->U -¥V ->1 

be an exact sequence of tori. Then 

1 -> V- U Tf -> 1 

is exact, and 
1 C*(WF,V) -> C#(WF,£7) CM(WF,T) -> 1 

is an exact sequence of complexes. The only non-trivial point is the surjectivity of 

CHWFM^CHWFIT), 

which is equivalent to the surjectivity of 

H\WF,U)^H1(WF,f), 

and this, by the theorem of Langlands mentioned above, is equivalent to the surjec
tivity of 

Homcont(C/(F), Cx) -+ Homcont (T(F), Cx), 
a well-known fact that we will review in the proof of Lemma A.3.A. 

Now let T -A U be a map of F-tori. We define the group of r-hypercochains of 

WF in U -4 f by putting 

Cr(WF,U -4 f) = Cr(WF,U)eCr-1(WF,f). 
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Of course C*(WF, U -4 T) forms a complex with differential as before, and we define 

HR(WF,U -4f) 

to be the r-th cohomology group of this complex. Trivially 

HR(WF,U -4f) = {l} (r>3). 

In an analogous way we define groups 

HR(WK/F,U^ T) 

for any finite Galois extension K of F in F that splits T and U. The inflation maps 

Hr(wK/F,u -4 f) -> i r (wF, j / 4 f) 

are isomorphisms. 
A map of complexes 

T f U 

V f U' 

from \T -4 U] to FT" A> U'] is a quasi-isomorphism if and only if 

Û' T V 

Û f f 
is a quasi-isomorphism. Moreover 

1 -> CM(WFLU') -> C*(WF,T' X [ / ) - > C*{WF,T) -+ 1 

is an exact sequence of complexes, which implies that the cone on 

C*(WF, Û' ^ f') -> C*(WF, ÛÂÎ) 

is an acyclic complex. It follows that 

HR{WF, Û' î> f') ~ HR{WF, Û -4 f ). 
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1 -> T X T' x [/ [/'->! 
is a short exact sequence. In this exact sequence we have in mind the obvious maps; 
of course a minus sign is needed somewhere but as its exact placement is a matter of 
taste, we leave this choice to the reader. Suppose we have such a quasi-isomorphism. 
Then 

1 -> T X T' x [/ [/'->1 
is exact, and therefore 
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An exact sequence of complexes or, more generally, any distinguished triangle 

pi Ux] -+ [T2 -> U2] [T3 -+ U3] -+ [Ti -> 

induces a long exact hypercohomology sequence 

>HR(WF,U3 ->f3) ^HR(WF,U2 ->f2) ^H^WF.U! -+fi) 

Lemma A.3.A. — T/iere ¿5 a canonical isomorphism 

H2(WFIUA f) = RomCONT(H°(FYT -4 t/),Cx). 

The analogue of (A.l.l) holds for HR(WF,U -4 f). Since H2(WF,U) is trivial, 
we conclude that 

H2(WF,U -4 f) = cok^W^C/) H^WF.T)} 

and hence by Langlands's duality theorem that 

H2(WF,U -4 f) = cok[HomCOnt(C/(F),Cx) ^ Homcont(r(F),Cx)]. 

Finally, every quasi-character \ on T(F) that is trivial on 

ker[T(F) t/(F)] 

is the composition with 
T(F) -+ [7(F) 

of a quasi-character on U(F). Indeed, we may view x as a character on an open 
subgroup of V(F), where V = im[T -» [7], and we need to extend \ to U(F). It can be 
extended to \v on V(F) since Cx is an injective abelian group. Let Ky (respectively, 
KJJ) denote the maximal compact subgroup of V(F) (respectively, U(F)). We can 
write xv as the product of a unitary character and a quasi-character with positive 
real values. The former extends to U(F) by Pontryagin theory and the latter extends 
to U(F) since 

V{F)/KV U(F)/Ku 
is the inclusion of one real vector space in another for archimedean F and the inclusion 
of one discrete group in another for non-archimedean F. Similarly we see that any 
quasi-character on ker[T(F) -> 17(F)] can be extended to a quasi-character on T(F). 
We conclude that 

H2{WF, uAf) = Homcont(ker[T(F) -+ [7(F)], Cx), 

as desired, since 
#°(F,T -UU)= ker[T(F) -> U(F)]. 

The case r = 1 is more interesting, as it brings us to the main point of this 
appendix, the construction of a pairing (•, •) between 

HX(F,T -Uu) 
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and 

H^iWp^u AT), 

extending the pairing (A.3.1) between 

H\F,T -Uu) 

and the subgroup 
H^FyU A f ) 

of HL(WF,U AT). 
In order to motivate the definition of this pairing we recall the method used by 

Langlands to establish the isomorphism 

H^WK^,?) = Homcont(T(F),Cx) 

for a torus T split by a finite Galois extension K of F in F. The key point is to 
show that the homology group Hi(WKjF,X*(T)) (take the homology of WK/F &S an 
abstract group) is canonically isomorphic to T(F); then, because Cx is an injective 
abelian group, one has 

Kom(H1(WK/F,X*(T)),Cx)= HlHS(WK/F,llom(X*(T),Cx)) 

= HlbB(WK/F,f), 

where the notation i£[bs indicates that we regard WK/F as an abstract group when 
taking cohomology. Finally, it is easy to see that the resulting isomorphism 

Hom(T(F),Cx) = Hihs(WK/F,f) 

induces an isomorphism 

Homcont (T(F), Cx) = H1 {WK/F , f) • 

The key isomorphism 
HX(WK/F,X.{T))^T{F) 

is obtained as follows. The subgroup Kx of WK/F is of finite index, so that there is 
a restriction map 

Res : H!{WK/FtX,(T)) -»• HX(KX,X*(T)). 

Since Kx acts trivially on X*(T), we have 

Hi(K*,X*(T)) = X.(T) ®ZH1{KX,1) 

= X,{T) ®ZKX 

= T(K). 

Thus the restriction map can be thought of as a map 

HiiWK^X.iTfi^ TiK), 
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and one then shows that the map is injective with image T(F), yielding the desired 
isomorphism. 

To see what to do for hypercohomology we should view the isomorphism above as 
an isomorphism 
(A3.2) H^WK/FMT)) -+ H°(K/F,T(K)). 
Moreover we have the Tate-Nakayama isomorphism 

H-^K/F.X^T)) -> H\K/F,T(K)). 

The Tate group H^iK/F.X^T)) is the subgroup of the coinvariants of Gal(i^/F) 
(equivalently, of WK/F) on X*(T) consisting of elements whose norm (from K to F) 
is trivial. The coinvariants are the 0-th homology group HQ(WK/F,X*(T)), and we 
denote by HO(WK/F,X*(T))Q the subgroup of elements whose norm is trivial. Then 
the Tate-Nakayama isomorphism can also be thought of as an isomorphism 

(A3.3) H0(WK/F,X.(T))0 -»• H\KIF,T{K)). 
The isomorphisms (A.3.2) and (A.3.3) suggest the possibility of defining an isomor
phism 

(A3.4) H0(WK/F,X*(T) 4 X*(U))o H\K/F,T(K) -+ U(K)) 
for a suitable subgroup 

Ho(WK/F,X* (T)hx.(U))o 
of the 0-th hyperhomology group 

H0(WK/F,X.(T)hx.(U)) 
of WK/F w^h coefficients in the complex 

X*(T) hx*(U\ 
placed in degrees 0 and 1. 

We need a concrete description of this hyperhomology group. We simplify notation 
by writing X for X*(T) and Y for X*{U). For m > 0 we write CM(X) for the group 
of m-chains of WK/F m X, so that HM(WK/FiX) is the m-th homology group of the 
complex 

...->C2(X) ACi(X) ACo(X). 
We then get a double complex 

... > c2(X) > d(X) > C0(X) 

... > C2(Y) > d(Y) > C0(Y) 
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with vertical maps induced by /* : X -> У, and from this double complex we get the 
complex 

.. • ^ e c2(y) A c0(i) e d ( y ) Д с0(У), 
with a given by 

a(xuy2) = (dxi,f*xi -dy2) 
and ¡3 given by 

(3(x0,yi) = f*x0 - дуг. 
Then H0(WK/F,X -¥ Y) is the quotient 

ker(/?)/im(a), 
and we refer to elements of ker(/3) as O-hypercycles. Of course CQ(X) = X, and we 
denote by CQ(X)Q the subgroup of X consisting of elements whose norm (from К to 
F) is trivial. Note that Co(X)0 contains the image of 

C i ( i ) 4 c o ( i ) , 
so that (ker(/?))o contains im(a), where by (ker(/?))0 we mean those pairs (#o,2/i) in 
ker(/3) such that x0 € Co(X)0. We define H0(WK/F,X Y)0 to be the subgroup 

(ker(/3))0/im(a) 
of H0(WK/F,X -> Y). 

Now we are ready to begin defining the map (A.3.4). We write C°(T) for the 
group C°(K/F,T(K)) of 0-cochains of Gal(#/F) in T{K) and Z\T) for the group 
Z1(K/F,T(K)) of 1-cocycles of Gal(Jf/F) in T(K). We are going to define maps 

ф:С1(Х)^ С°(Т) 

^:Co(X)0^ Z\T) 

making the diagram 

(A3.5) 
C2(X) d Ci(X) d Co(X)0 

0 0 

0 C°(T) a Z( (T= 
commute. Both <j> and ip will be functorial in T. Viewing (A.3.5) as a map between 
two complexes of length 3, we see that (A.3.5) induces maps 

H^WK/F^) ^ H\KIF,T{K)) 

H0(WK/F,X)o -»• H\K/F,T(K)), 

and 0, i\) will be so defined that these two maps are the isomorphisms (A.3.2) and 
(A.3.3) respectively. 
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Let us assume for the moment that we have maps </>,ip as above and see how to 
define (A.3.4). Consider the diagram 

C1(X)<&C2(Y) a Co(I)oed(F) /3 C0(Y)o 

000 </>©</> 4, 

c°(T)eo 7 Z1(T)eC°(U) 6 Z1 (U). 

where a,/? are as before, 7 is given by 

7(*o,O) = (0to,/(*o)) 

and S is given by 
S(h,uo) = f(h) -du0. 

Since 0,-0 are functorial in T and the diagram (A.3.5) commutes, the diagram above 
also commutes, and hence induces a map 

ker(p)/ im(a) -> ker(5)/ im(7). 

Since we have used Co(X)o rather than CQ{X) in this diagram we have 

H0(WK/F,X -+ Y)0 = ker(/3)/im(a). 

It is clear from the definitions that 

H\K/F,T(K) -> U(K)) = ker(£)/im(7). 

Thus we have constructed the desired map 

H0(WK/F,X -+ Y)0 -+ H\K/F,T(K) -+ U{K)). 

Let us check that this map is an isomorphism before entering into the definition of 
the maps 0,-0. Indeed, it is enough to apply the 5-lemma to the commutative diagram 
with exact rows 

ffi(X) -> ffiOO -> H0(X->Y)o -» H0(X)o H0{Y)0 

i i 1 1 1 
H°(T(K)) H°(U(K)) -> if1(T(K) -¥ U(K)) HX(T(K)) H^UiK)) 

where to save space we have omitted WK/F from the notation in the top row and 
K/F from the notation in the bottom row. 

It remains to define 0, -0. In order to define </> we must recall how to define the 
restriction map Res on group homology. Let G be a group, let X be a G-module, and 
let if be a subgroup of finite index in G. Choose a section 

s : H\G -> G 

for the projection map 
p : G -> H\G 
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(in other words choose representatives for the cosets Hg of if in G). Having chosen 
this section, we may identify the left if-set G with a disjoint union of copies of if, 
then get a map of left if-sets 

t:G-^ H 
defined by taking the identity map on each copy of if inside G; explicitly t(g) (g G G) 
is determined by the equation 

9 = t(g)s(p(g)). 
Since the standard resolution 

y P2G -> PXG -> P0G Z -> 0 
of the trivial G-module Z is by definition the chain complex associated to the simplicial 
complex consisting of a single simplex whose vertices are the elements of G, and since 
the same is true for if, the if-map t induces a map of complexes of left if-modules 
from PG to P#H, the standard resolution of the trivial if-module Z. Explicitly the 
map 

pG pH 
is given as follows: PG (respectively, P%) is the free Z-module with basis Gm+1 
(respectively, ifm+1) and the map sends an (m + l)-tuple (g0,... ,gm) of elements of 
G to the (m + l)-tuple (£(#o), • • • ? t(gm)) of elements of if. 

The if-map PG -t P% induces a map 
P%®Z[H]X ->P£®Z[jf] X. 

In addition we have the natural map 
P%®z[G]X ^P%®Z[H]X 

given by 
2/ ® a? i-* ] P gy®gX' 

geH\G 
Composing these two maps, we get a map of complexes of abelian groups 

Rea:C.(G,X)->C.(H,X), 
and the induced map on homology is the restriction map 

Res : H.(G,X) ^ H.{H,X). 
Let us make this explicit for m = 1. Then an element of C\ (G, X) is a map g xg 

such that xg = 0 for all but finitely many elements g £ G. Tracing through our 
definitions, we find that the map 

Res:C1(G,X)->C1(H,X) 
above is given by 

(g н> xg) н- (h H- TUs(g')xg)) 
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where the product is taken over the set of pairs (g,g') EGx (H\G) such that 
s{g')g = hs(g'g). 

Now we return to our particular situation, in which G = WK/F and H = KX. As 
above we fix a section 

a : Gd(K/F) -> WK/F, 
and, as usual, this section gives us a 2-cocycle <v,r of Gdl(K/F) in Kx, defined by 
the equation 

s(a)s(r) = a<J^Ts{ar) 
for cr, r G Gal(AT/F). 

We are almost ready to define (f>. Recall that the Langlands map is given by the 
composition of the map 

Res:iJ1(^/F,X)^if1(Kx,X) 
and the isomorphism 

H1(Kx,X)-+X®zKx =T(K). 
The latter map sends a 1-cycle a \-t xa of Kx in X to the element 

[ J Xaia-1) G T(K), 
a<EK* 

where xa (a 1) denotes the value of the homomorphism xa : GM —> T on the element 
a"1 G Gm(K) = Ifx. Therefore it is natural to define 

<t> :Cn (Wk-f X) -+ C°(K/F,T(K)) = T(K) 
as the composition of the map 

Res : CI(WK/F,X) -> d(KX,X) 

(which depends on s) and the map 
Ci(KX,X) ->T{K) 

sending a 1-chain a \r+ xa to 
J 7 Xaia-^eTiK). 

a 6 K+ 
Elementary manipulations then show that (j) sends a 1-chain w i-> xw of WK/F in -X" 
to the element 

7 = n 
12a 

a(xw)(s(o~w)w s (a) ) 

= n 
cr.r.a 

a(xw)(s(o~w)w s (a) ) 

of T{K), where the first product is taken over 
(w,a)eWK/FxGs\(K/F) 
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and the second product is taken over 
(<7,r,a) G Gal(K/F) x Gal(K/F) x ifx. 

Since we eventually need to define ip and show that d(f> = -00, we might as well 
calculate d(j) now. In other words for p e Gal(K/F) and 7 G T(iiT) as above we must 
calculate 7_1p(7)- Applying p to the second expression for 7, making the change of 
variable a -» p~la in the product, and combining this with the inverse of the second 
expression for 7, we find that 

Making the change of variable a -» par-1 in the first of these expressions, making 
the change of variable a -> pa in the second, and then recombining them, we find 
that 

7"V(7) = [PGT~l(Xas{T)) ~ P<7(Xas(T))](ap,*)-
a,T,a 

Recall that the boundary d(xw) of the 1-chain Xyj is the element 

^ ^ (u) Xyj xw). 
wewK/F 

Comparing this with the expression for 7_1p(7) we find that 

(A3.6) d<Kxw)(p) = l[p<T(d(xw))(aPia). 
a 

Now we turn to the map ip. Recall that the Tate-Nakayama isomorphism 

H'^K/F.X) -> H1(KIF,T{K)) 
is given by the cup-product with the fundamental class in 

H2(K/F,KX). 
In defining <t> we chose a section of 

WK/F -» Ga\(K/F) 

7 V(7) = TT ^(3a«(r))(p(ap-w) ^^ r ) . 
cr,r,o 

The 2-cocycle relation for aa T gives 

a(xw)(s(o~w)ws a(xw)(s(o~w)w(a)) 
and thus 7 1p(7) is the product of 

I T ^ ( M r ) ) ^ - 1 ^ ) a ( x w ) ( s ( o ~ w ) 
cr.r.a 

and 
n 
a,T,a 

*(Xas(T))(%tP-ia)-
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and thus obtained a particular 2-cocycle ap^ lying in the fundamental class. A (—1)-
cochain in X is a 0-chain in X, namely an element ¡1 G X, and its cup-product with 
the 2-cocycle aPy(T is the 1-cochain of Gal(K/F) given by 

(A3.7) H pa(p)(ap,a). 
aGGal(K/F) 

If ¡1 G X is a (—l)-cocycle, in other words if NK/F(/i) = 0, then the 1-cochain (A.3.7) 
is a 1-cocycle. Thus it is natural to define the map 

^ C o p O o - ^ T ) 

as follows: an element of Co(X)o is an element fi G X whose norm is 0, and we define 
il)(n) to be the 1-cocycle (A.3.7). 

Looking back at the equality (A.3.6), we find that ipd = <90, as desired. Let us now 
verify that </>,̂  satisfy all the conditions we want. It is obvious that 00 are functorial 
in T, and by construction <j> and induce the isomorphisms (A.3.2) and (A.3.3) 
respectively. All that remains to check is that <\>d — 0 (part of the commutativity of 
the diagram (A.3.5)), and this follows immediately from the commutativity of 

C2(WK/F,X) — d ( W K / F , X ) 

Res Res 
C2(K*,X) — d ( K x , X ) 

plus the fact that the map 
d(Kx,X) ->T(K) 

that we used to define 0 is trivial on 1-boundaries. 
We have seen that </),tp have all the desired properies and that 0,̂ 6 together yield 

an isomorphism (A.3.4). However we chose a section s of 
WK/F -> G<A{K/F) 

while constructing </>,t/), and we need to check that the isomorphism (A.3.4) is inde
pendent of this choice. Let s' be another section and let $ $ be the corresponding 
maps. Let ba be the 1-cochain of Gal(if/F) in Kx defined by 

s'(a) = b<js(a). 

Define a homomorphism 
k : Co(X)0 -+ C°(T) 

by sending an element ¡1 G X whose norm is trivial to the element 

k(ji) := I I a(xw)(s(o~w)w 
<REGA\(K/F) 

of T(K). Clearly k is functorial in T, and a routine calculation shows that 

4>' -4> = kd 
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and 
v — \j) = dk. 

It then follows easily that the isomorphism (A.3.4) does not change when s is replaced 
by s1. 

The first step in the definition of the canonical pairing between HX(F,T A U) 

and H^Wprf A f) is now complete. Fortunately the remaining steps are shorter. 
Since Cx is an injective abelian group there are canonical isomorphisms 

Rom(Hi(WK/F,X)Xx) = Hibs(WK/F,Kom(XXx)) 

- Hlbs(WK/F,T), 

where the subscript abs indicates that we regard WK/F as an abstract group when 
taking group cohomology. Indeed, the injectivity of Cx implies that 

Eom(Hi(WK/F,X),Cx) 

is the cohomology of the complex 

Hom(P* ®z[wK/F] X,CX)= Homz[H,K/F](P\Hom(X,Cx)), 

where P# is the standard resolution of the trivial W /̂F_m°dule Z, and this complex 
coincides with the one whose cohomology groups are 

TFLBS(^K/F,Hom(X,Cx)). 

It is immediate that the analogous statement holds for hyperhomology and hyper-
cohomology; in particular there is a canonical isomorphism 

(¿.3.8) Eam(H0(WK/F,X 4 Y),CX) ~ Hlhs(WK/F,U A f). 

This gives a Cx -valued pairing between 

H0{WK/F,XH Y) 

and 
Hlhs(wK/F,u A?) 

and hence a pairing between the subgroups 

H0(WK/F,X 4 Y)0 C H0(WK/F,X h Y) 

and 
HHWK/F, uA-f)c Hlbs(wK/F, uA-f). 

Combining this last pairing with the canonical isomorphism (A.3.4), we get a pairing 
(•, •) between 

H^K/F.TiK) Au(K)) 

and 
HHWK/FIUAT). 
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To make this more explicit we need to give a formula for the pairing between 
H0{WK/F,xhY) 

and 
Hlbs{wK/F,u AT). 

Consider a O-hypercycle (x,yw) and a 1-hypercocycle (uw,t). Thus x G X, (yw) G 
d(Y) with 

f*x = d(yw) = ]P (w~Xyw ~ У™) 

and t G f, (uw) G Zibs(WV/F,t/) with 
f(uw) = (dt)w = Г1*)®. 

Then the value of the pairing on the classes of these two elements is given by 

x(t) П y™(uwl)i 
wewK/F 

where we now view X, Y as the character groups of Г,С/ respectively. 
At this point we have a pairing 

(A3.9) H^K/F.TiK) -4 U(К)) ®HL{WK/F,U Л f) -> Cx 
for every finite Galois extension К of F in F such that T and U split over К. Suppose 
that K' D К is another such Galois extension of F. Then we also have a pairing 

(A3.10) H^K''/F,T(K') -4 U(К')) ® H^W^/p,U Л f) -> Cx . 
We need to show that the pairings (A.3.9) and (A.3.10) are compatible with the 
inflation maps 

inf : H\K/F,T(K) -4 U(К)) -> HX{K'/F,T{K') А £/(#')) 
and 

inf : H^WK/F.U Л f) -+ H^WK'/F^U -4 f). 
This compatibility is an immediate consequence of two other compatiblilities. The 
first is the compatibility of the pairings 

H0(WK/F,X 4У)®Hlbs{WK/F,uA?)^c* 
and 

H0(WK,/F,X h Y)®Hlbs(wK,/F,u A f) -> cx 
with the maps 

p. : H0(WK,/F,X h Y) Я о № / Р Д 4 Г) 
and 

inf : FFIBS(WK/F) uAf)^ Htbs(WK,/F, U A f), 
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where p* denotes the map induced by the canonical homomorphism 
P : WKi/F -> WK/F. 

This first compatibility is obvious. 
The second compatibility is the commutativity of the diagram 

H0(WK,/F,X^Y)o • H1^'/F,T(K') U(K')) 

(A3.LL) P. | inf| 

H0(WK/F,X ->y)0 • H1(K/F,T(K)-+U(K)) 
where the horizontal maps are the isomorphisms (A.3.4). We will now sketch the 
proof of this commutativity. Consider the commutative square 

WK,/F • Gal(K'/F) 

•i i 
WK/F • Gai(tf/F). 

In order to define the isomorphism (A.3.4) for K/F we need to choose a section 
s : Gal(K/F) -> WK/F 

of 
WK/F -> G&\{K/F) 

and then define maps <j>^j) as before, and we must do the same for K'/F by choosing 
s' : Gal(K'/F) -»WKF 

and defining maps (j)' ̂ ' analogous to <j>^j). Since (A.3.4) is independent of the choice 
of section we may assume that s, s' are related as follows: first choose s', then choose 
for each a e Gdl(K/F) an element a e Gsl(Kf/F) mapping to a under the canonical 
surjection 

Ga\(K'/F) -+ Gal(K/F), 
and finally define s by 

s(a)=p(s'(a)). 
Use s and s' to obtain fundamental 2-cocycles aa?r and a'a, , for K/F and K'/F 

respectively. Consulting the proof of Theorem 6 in Chapter 13 of [AT] we find that 
°>CT,T= J I ^pTa'p^(a'p^)~l. 

peG&\(K'/K) 
Consider the diagrams 

C0(WK,/F,X)o V Z\K'IF,T{K')) 
P* inf 

Co(WK/F,X)0 0 — Z \ K I F , T { K ) ) 
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and 
Ci(WW,X) 0 C°(K'/F,T(K')) 

p. inf 

Cx(WKIF,X) 2 C°(K/F,T(K)), 

where p* in the first diagram sends x £ X (with Nx = 0) to itself and p* in the 
second diagram sends a 1-cycle xw> of WK'/F m X to the 1-cycle 

w H» M Xwt 
w' £p~1(w) 

of WK/F m -X"- These two diagrams do not commute. Indeed, let us define a homo-
morphism 

c : Co(WK./F,X)0 -> C°(K'/F,T(K')), 
functorial in T, by the formula 

C (u) n 
il21 

>M)K,<x)> 

where cr ranges over Gal^'/F) and p ranges over GdX{K'/K). Then after lengthy 
calculations one finds that 

inf ocj) o = (/>' + cd 
inf oip op* = ip' + 9c. 

It now follows easily that the diagram (A.3.11) commutes. 
We are done checking that the pairings (A.3.9) are compatible with inflation. We 

conclude that the pairings (A.3.9) induce a pairing 

(A3.12) ^(F.T -Uu)® HX(WF, U -4 f) -> Cx . 
This is the pairing (•, •) that we wanted to define. 

It remains to discuss some properties of the pairing, starting with its compatibility 
with the exact sequence (A. 1.1) for 

HX(F,T -4 U) 

and its analogue for 

H^WF.U Af). 

The relevant portions of these sequences are 

>H°(F,U) A Hl(F,T —y U) AH\F,T) —> ••• 

and 
—yH°(wF,f) -4H1{WF,U->f) - 4 H 1 ^ ^ ) ->.... 

The first compatibility is that 

(A3.13) (j(u),z) = ( a? ) ) "1 
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for all u e H°(F,U) and all z e ^{WF.U T); the pairing on the right side 
of the equality is Langlands's pairing between U(F) and ^(WF^U). The second 
compatibility is that 

(A3.14) (z,]®) = (i(z)3 
for all zeH1{F,T -4 U) and all te H°(WF,f); the pairing on the right side of the 
equality is obtained from the Tate-Nakayama isomorphism 

(Xr)0~ H\F,T), 
where (Xr)o denotes the torsion elements in the coinvariants Xp, together with the 
canonical pairing 

(Xr)o ®H°(WF,f) 
obtained by viewing elements of X as rational characters on the torus T. 

Before stating the next property of the pairing we need to topologize the group 
Hl(F,T U). Recall the exact sequence 

• T(F) -+ U(F) -> Hl(F,T -4 U) -> iJ1(F,T) ->•••. 

We use the unique structure of topological group on H1 (F, T -A U) for which the 
mapping 

17(F) -> H\F,T -At/) 
is continuous and open. Thus we have an isomorphism of topological groups from 
U(F)/f(T(F)) to an open subgroup of HX(F,T -4 U), and in fact this subgroup is 
of finite index since if1(F, T) is finite. 

Our pairing yields a map 

(A3.15) H\WF,U f) -+ Homcont(H\F,T -4 t/),Cx). 
Lemma A.3.B. — The map (A.3.15) is surjective and its kernel is the image of the 
identity component of TT under the natural map 

j:H°(WF,f)- ^H1(W FiuAf). 
The lemma follows immediately from the compatibilities discussed above together 

with the fact that 
H\WF,T) -+ Homcont(H°(F,T)Xx) 

is an isomorphism and 
H°(WF,f) ^ H o m ^ ^ T ) , ^ ) 

is surjective with kernel equal to the identity component of Tr (use these facts for U 
as well as T). 

The lemma suggests the introduction of the quotient group 

H^WFIGA f)red := H^WF.OA f)/im(fr)°; 
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there is then an induced isomorphism 

(A3.16) H\WF,Û F A f) red ^ Homeont^1^^ A ^),CX). 
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APPENDIX B 

INNER TWISTS OF A GROUP PLUS AUTOMORPHISM 

Let F be a field of characteristic 0, F an algebraic closure of F, and write T for 
Gal(F/F). Let G* be a connected reductive group over F. Recall that an inner twist 
of G* is a pair (G,t/0 consisting of a connected reductive group G over F and an 
F-isomorphism : G -> G* such that for all a £ T the isomorphisms cr(ip),ip differ 
by an inner automorphism of G* over F; such an isomorphism ip is referred to as an 
inner twisting. Two inner twists (G,^) and (G',^') are isomorphic if there exists an 
F-isomorphism a : G —>• G' such that iß* a and ^ differ by an inner automorphism 
of G* over F. Given an inner twist (G,V>) we get a 1-cocycle a XJJG^)-1 of T in 
G*d(F), and this construction yields a bijection from the set of isomorphism classes 
of inner twists of G* to the set f f G * d ) . 

Consider the exact sequence 

1 Z -)> G*sc -»> GId 1 
where G*c denotes the simply connected covering group of G*d and Z denotes its 
center. Then we have the boundary map 

H\F,GlA)^H2{F,Z). 

For a p-adic field F this map is bijective, and thus in this case inner twists of G* are 
classified by elements of if2(F, Z). 

We are going to generalize the well-known results reviewed above. Now let 6* be 
an F-automorphism of G*. By an inner twist of (G*,0*) we mean a triple (G,0,i/>) 
consisting of a connected reductive group G over F, an F-automorphism 0 of G, and 
an F-isomorphism ip : G G* such that 

(1) for all (j G r the isomorphisms G($))$ differ by an inner automorphism of G* 
over F, and 

(2) 0* and iß6xß~l differ by an inner automorphism of G* over F. 
We say that two inner twists (G,0,^),(G',0', are isomorphic if there exists an 

F-isomorphism a : G -> G' such that 
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(1) ip'a and ij) differ by an inner automorphism of G* over F , and 
(2) a~l6'a and 0 differ by an inner automorphism induced by an element of G(F). 
Let Z denote the center of G*. For each a G T choose uG G G*(F) such that 

^o-(^)"1 = Int(wff). Then cr H> Int(wff) is a 1-cocycle of T in G*(F)/Z(F) and the 
coboundary cP)T := upp(uT)u~^ of ^ is a 2-cocycle of T in Z(F). 

Choose go G G*(F) such that 

0* =lnt(g0)tl>Ofl>-1. 

Applying a G r to this equation, we find that 

Int(<*-(s,)u-V**M) 
is trivial and hence that 

ASTÉRISQUE 255 

Z<T := goua(j(go) 10*(u(T1) 
belongs to Z{F). It is not hard to verify that the coboundary of the 1-cochain za is 
given by 

d(za) = (i - e*)(c0,r)-

Thus (cp>r, za) is a 2-hypercocycle of T in the complex 

Z . 1 - 0 * z1 

and it is easy to see that the class of this 2-hypercocycle in 

H2(F,Z ±1-0+^UZ) 

is independent of the choices of uG and go. It is also easy to see that if (G,0,ip), 
(G,,0,,^t) are isomorphic, then the associated elements of H2{F,Z x~e 1-0+> Z) are 
equal. 

Lemma B.l. — Suppose that G* is semisimple and simply connected and that F is 
p-adic. Then the construction above sets up a bisection from the set of isomorphism 
classes of inner twists of (G*,0*) to the set 

H2(F,Z± 1-0+ ^Z). 

The proof involves routine but lengthy cocycle calculations, which we leave to the 
reader, and uses the following facts about Galois cohomology over p-adic fields: for 
every inner form G of the simply connected group G* the set H1 (F, G) is trivial and 
the natural maps 

Gad(F)/ imG(F) ->H\F,Z) 
and 

H1(F,G*d)-+ H2(F,Z) 
are bijective. 



APPENDIX C 

HYPERCOHOMOLOGY OF COMPLEXES OF TORI 
OVER NUMBER FIELDS 

C.1. Basic definitions 
Let F be a number field. As usual write F for an algebraic closure of F and T for 

Gal(F/F). For any finite extension K of F in F we write AK for the adele ring of 
K\ in case K — F we write simply A. We write A for the direct limit of the rings 
AK (the limit being taken over the directed set of finite extensions K of F in F). 
Of course A is a smooth T-module and AK can be identified with the fixed points of 
Gsl(F/K) in A. 

In this appendix we study global duality theorems for complexes T -4 U of length 
2 located in degrees 0 and 1, where T,t7 are F-tori and / is a homomorphism defined 
over F. We start by defining groups 

H\F,T Л U) := ff-(F,T(F) 4 17(F)), 

#¿(A,T Л f/) := H*(F,r(Ä) Л *7(Ä)), 

H*(A/F,T -4 t/) := H*(F,T(S)/T(ß) Л U(K)/U(F)), 
where, as in Appendix A, we denote by if*(F, A*) the hypercohomology of T with 
coefficients in a complex A* of smooth T-modules. There is an obvious long exact 
sequence 

(C.l.l) • H\F,T -4 17) -» if*(A,T -4 U) -» H\A/F,T -4 U) -> • • • 

As usual iT(A,T -4 17) can be expressed as a restricted direct product of local 
groups. To accomplish this we begin by letting 5 be a finite set of places of F 
containing all infinite places and all finite places at which either T or U is ramified. 
For a finite place v of F we write Ov for the valuation ring of Fv and kv for its residue 
field. For v £ S the tori T, U and the homomorphism / extend naturally to Ov; for 
every finite extension Kw of Fv the group T(Ow) can be identified with the maximal 
compact subgroup of T(KW), and the analogous statement holds for U. For every 
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place v of F we choose an algebraic closure Fv of Fv and an embedding F Fv, and 
for finite places v we write Fv for the maximal unramified extension of Fv in Fv and 
0„n for the valuation ring of F"n. For any place v of F we put 

Hl(FViT -4 C/) := H\FV,T(FV) -4 C/(FV)) 

and for ^ ^ 5 we put 

H\Ov,T -4 C/) := H\G&{F^IFv),T{0™) -4 [/(Of)). 

Lemma C.LA. — Consider a place v £ S. Then the group 

is given by 

H\0V1T -4c/) 

ker[T(Ov) -Uu(Ov)} i = 0 

cok[T(a) -4 c/(a)] i = i 
[{1} <>2. 

Moreover the natural map 

H\Ov,T -4 U) H\FV,T -4 U) 

is injective for all i. 

We begin by proving the first statement. It is enough to show that for any finite 
extension Kw of Fv in F"n 

^{KwIFv,T{Ow) -U U(Ow)) 

is given by 
\er[T(Ov) 4- U(Ov)] i = 0 

< cok[r(00) -4 U(Ov)] i = 1 
{1} i>2. 

Using the long exact sequence (A. 1.1) for the complex 

T(Ow) -4 U(Ow), 

we see that it is enough to check that 

Hi(Kw/Fv,T(Ow)) = {l} 

for all i (and the same for U). Using the obvious filtration on T(Ow), we reduce to 
proving that 

Wikv/k^Tikv,)) = {1} 

H\kw/kv,(UeT)(kw)) = {1} 
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for all i. By periodicity it is enough to prove this for i — 0,1, and since in both 
cases the Herbrand quotient is trivial (the Galois modules being finite) it is enough 
to consider the case i = 1, which can be handled by Lang's Theorem. 

The second statement of the lemma follows from the first except for i — 1, in which 
case we must show that 

cok[T(a) -4 U(Ov)] -> cok[T(Fv) -4 U(FV)} 
is injective. In other words we must show that any element 

ueU(Ov)Df(T(Fv)) 
lies in f(T(Ov)). Put 

C = ker[T -» U] 
V = im[T->U]. 

Clearly u G V(Ov). Consider the natural isogeny 
/ : T/C° -> V 

induced by / . By our hypothesis on u there exists x G (T/C°)(FV) such that f(x) — u\ 
since x belongs to the compact subgroup / (V(Ov)) it belongs to (T/C°)(Ov). It 
is enough to show that x lies in the image of T(Ov)\ but this is clear since 

T(Ov) -> (T/C°)(Ov) 
is in fact surjective (use smoothness of the map T —» T/C° of schemes over Ov 
plus surjectivity of T(kv) -> (T/C°)(fcw), a consequence of Lang's Theorem for the 
connected group C°). 

Lemma C.l.B. — The group Hl(K,T -4 U) is canonically isomorphic to the restricted 
direct product over all places v of F of the groups Hl(Fv,T -A- U), the restriction being 
with respect to the subgroups Hl(Ov,T A> U) forv ^ S. Fori > 2 the restricted direct 
product is in fact a direct sum. 

Let K be a finite Galois extension of F in F that splits both T and [7, and let SK 
denote the union of the set of infinite places of F and the set of finite places of F that 
ramify in K. For each place v of F we choose a place w of K lying over v. The first 
step is to show that 

^(^/F,T(AK)-4c/(AK)) 
is the restricted direct product of the groups 

H\KW/FV,T{KW)^U{KW)) 
with respect to the subgroups 

H\KwlFv,T{Ow) A U(Ow)) (v $ SK) 
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(the proof of Lemma C.l.A shows that they are indeed subgroups). This is easy: use 
that taking hypercohomology for the finite group GdX(K/F) commutes with direct 
limits and products and then apply Shapiro's Lemma. The second step is to take the 
direct limit over K. This too is easy, but one must keep in mind that for any K and 
any v £ SK 

H\Kw/Fv,T(Ow) -4 U(Ow)) = H\0V1T -4 U) 

(a consequence of the proof of Lemma C.l.A). The second statement of the lemma 
follows immediately from the vanishing statement for i > 2 given in Lemma C.l.A. 

Our next task is to topologize our hypercohomology groups. First consider the 
local case. Give 

H°(FV,T Au)= kev[T(Fv) -4 U(FV)] 

the topology it inherits as a closed subgroup of T(FV). Give 

H\FV1T-UU) 

the unique structure of topological group for which the canonical injection 

cok[T(Fv) -4 U(FV)] -> H\FV,T 4 U) 

is continuous and open (as we did in Appendix A). For i > 2 give the group 

H\FV,T -UlJ) 

the discrete topology. Note that in the unramified situation considered earlier the 
subgroup Hl(Ov,T 4 U) is compact and open in H1(FV1T Au) for all i. 

Now consider the global case. We put the discrete topology on Hl(F,T A> U) for 
all i. Give 

H°(A,T -Uu)= ker[T(A) -U 17(A)] 

the topology it inherits as a closed subgroup of T(A). Give 

H^A.T -A 17) 

the unique structure of topological group for which the canonical injection 

cok[T(A) -4 U(A)] -> H^A.T -A U) 

is continuous and open. Note that /(T(A)) is closed in [7(A), as follows easily from 
the equality 

(C.1.2) U{Ov) n f(T(Fv)) = f(T(Ov)) 

for v £ S (see the proof of Lemma C.l.A) together with the compactness of 

T T / c n a ) ) . 
u 6 S 

ASTÉRISQUE 255 



C.2. DUALITY FOR W (A/F, T 4> £/) 147 

For i > 2 give i72(A,T —> 17) the discrete topology. It is easy to see that for all i 
the topology we have just given if*(A, T -4 U) agrees with its natural topology as a 
restricted direct product (Lemma C.l.B). 

Finally we topologize the groups Hl(A/F,T -4 U). Give 

H°(A/F,T -4 17) 

the topology it inherits as a closed subgroup of [T(A)/T(F)]r (the structure of topo
logical group we use on [T(A)/T(F)]r is the unique one for which the subgroup 
T(A)/T(F) is open and inherits its usual topology; recall that T(A)/T(F) has finite 
index in [T(A)/T(F)]r). Now consider the natural homomorphism 

(C.1.3) / : [T(A)/T(F)f -»• [U(A)/U(F)]r. 

Write [T(A)/T(F)]\ for the kernel of the natural surjective homomorphism 

H : [T(A)/T(F)]T -+ (JT.(T) <G> M)R 

defined by 
(A, #(*)>= log |A(*)| (AeX*(T)r), 

where | • | denotes the usual absolute value on Ax (of course we use that (A /F Y -
Ax /Fx). Recall that there is a natural splitting of H (by restriction of scalars assume 
F = Q; then A(R)° C T(A) provides the splitting, where A denotes the biggest 
Q-split subtorus of T), so that [T(A)/T(F)]r decomposes as the direct product of 
[T(A)/T(F)}\, a compact group, and the real vector space (X*(T) 0 E)r, which we 
denote simply by 21T- One consequence of this product decomposition is that the 
image of (C.1.3) is closed in [U(A)/U(F)]T. We give 

H^A/F^T -4 U) 

the unique structure of topological group for which the map 

cok [[T(A)/T(F)]r [U(A)/U(F)]T] -> H^A/F.T A U) 

is continuous and open. For i > 2 give 

iT(A/F,T -4 U) 

the discrete topology. 

C.2. Duality for H*(A/F,T -4 U) 

We keep the notation of the previous section. We write X for X*(T) and Y for 
X*(U). As in the local case (see (A.2)) there is a Tate-Nakayama pairing 

(C.2.1) ifr(A/F,T -4 U) 0 H3~r(F,Y 4 l ) 4 Q/Z, 
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the Q/Z coming from the canonical isomorphism 
tf2(A/F,Gm) = Q/Z. 

It is part of one variant of Tate-Nakayama duality for tori that 
Hr(A/F,T) = {l} (r>3) 

and that for r = 1,2 the map 
Hr(k/F,T) ->Hom(#2"r(F,X),Q/Z) 

obtained from the Tate-Nakayama pairing is an isomorphism (see Appendix D for a 
review of this). 

Lemma C.2.A. — For r > 4 the groups Hr(A/F,T -4 U) vanish. For r = 2,3 the 
pairing (C.2.1) induces an isomorphism 

Hr(A/F,T -4 17) -» Hom(tf3-r(F, Y A X),Q/Z). 

Moreover for r = 2,3 £Ae abelian group H3~r(F,Y X) finitely generated; for 
r = 3 it is free as well. 

The vanishing for r > 4 follows from the vanishing of iIr(A/F, T) for r > 3 using a 
long exact sequence of the form (A. 1.1). The duality statement for r = 2,3 is proved 
the same way as in the p-adic case (Lemma A.2.A): use the facts reviewed above, the 
5-lemma and the exact sequences (A. 1.1) for T -» U and Y X. The last statement 
of the lemma is also proved in the same way as in the p-adic case. 

Of course we want a duality theorem for r = 0,1 as well, but for this, as in the 
local case, we need to use Weil groups and introduce another pairing. We write WF 
for the Weil group of F/F\ it is the projective limit of the Weil groups WK/F for 
finite Galois extensions K of F in F. We again need hypercohomology groups 

Hm(WF,U -4f) 
that take into account the topology on WF- We get cochain groups Cm(WF,T) and 
cohomology groups Hm(WF1T) by copying the definitions given in the local case 
(copy word-for-word with one exception: replace Kx in the local case by k^/Kx in 
the global case). Trivially 

Hm(WF,T) = {1} (m>2). 
For m — 1 

H\WF,T) = Homcont(F°(A/F,T),Cx). 
This theorem of Langlands is contained in his unpublished paper "Representations of 
abelian algebraic groups" and another proof can be found in [La]. Finally we define 
the group of m-hypercochains 

Cm(WF, u -4 f) := Cm(WF, U) 0 Cm~l(yVF,T) 
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and define 
Hm(WF,U -4f) 

to be the ra-th cohomology group of the complex of hypercochains. Trivially 

ffm(WF, U-Uf) = {1} (m > 3). 

Now we can formulate a duality theorem for r = 0. 

Lemma C.2.B. — There is a canonical isomorphism 

H2(WF,UA f) -+ HomCOnt(#°(A/F,T -4 f/),Cx). 

The proof of this lemma is essentially the same as that of Lemma A.3.A. To see 
that 

Homcont(tf°(A/F, U), Cx) -+ Homcont(^0(A/F, T),CX ) 

-> Homcont(iJ°(A/F,T -4 *7),CX) -> {1} 

is exact use the direct product decomposition 

[T(K)/T(F)]r = [T(A)/T(F)][ x aT 

discussed in (C.l). 
It remains to give a duality theorem for r = 1. As in the local case we need a 

pairing 

(C.2.2) H^A/F, T -4 U)^H1(WF,U A f) -> Cx . 

The definition of the pairing is again the same as in the local case, and the global 
pairing satisfies the analogs of (A.3.13) and (A.3.14). Our pairing yields a map 

(C.2.3) H\WFiuA> f) -> Homcont^A/F.T -4 *7),CX). 

Lemma C.2.C. — The map (C.2.3) is surjective and its kernel is the image of the 
identity component of Tr under the natural map 

H°(WF,f) -+H1(WF,U £>f). 

This is proved the same way as in the local case (Lemma A.3.B). Note that the 
lemma suggests the introduction of the quotient group 

H\WF,U f^ f)red := H\WF,U f^ f)/im(fr)°; 

there is then an induced isomorphism 

(C.2.4) H\WF,uZ f f)red ^ Homcont(H\A/F,T -4 C/),CX). 

We finish the section by defining a closed subgroup 

ir*(A/F,T -4 U)i 
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of W{klF,T -4 U), in analogy with the subgroup [T(A)/T(F)][ of [T(A)/T(F)]r, 
and showing that it is compact. Recall the groups X = X*(T) and Y = X*(U) as 
well as the real vector spaces 

2lT = Hom(Xr,l:) 

2tu = Hom(rr,K) 
from (C.l). The exact sequence 

(C.2.5) 0 -> Hom(cok[yr -> Xr], R) ->• Hom(Xr, R) -> Hom(Fr, R) 

-> Hom(ker[yr -> Xr],E) -> 0 

shows that 

Hom(cok[Fr -> Xr],K) = ker[2lT -» XV• 

Hom(ker[yr -)• Xr],E) = cok[2lT -> XV 

We now define a homomorphism 

if : H°(A/F, T -4 U) -> ker[2lT -»• Sic/]. 

By the discussion above it is equivalent to give a homomorphism 

cok[Fr -»• XT] -> Hom(#°(A/F,T -4 t/),E). 

Let A € Xr. Then this second homomorphism sends the class of A in cok[yr -> Xr] 
to the following element of 

Eom(H°(A/F,T Au),R). 

View the diagram 
T f U 

y4 I 
Gm • 1 

as a homomorphism from the complex [T -A U] to the complex [Gm —» 1]. This 
homomorphism of complexes yields a map 

H°(A/F,T -Uu)-> H°(A/F,Gm) = kx/Fx 

which we then compose with 

log | • | :AX/FX R 

to get the desired element of 

Rom(H°(A/F,T -4t/),R). 

Similarly we define a homomorphism 

# : H\A/F, T -4 17) -> cok[2lT -> »£/] 
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by using an element À G ker[Fr -> Xr] to get a map of complexes from [T 4 U] to 
[1 ->Gm] given by 

m f U 

A 

1 co1m 
which in turn yields a map 

H\A/F,T 4 [7) -> H0(A/F,Gm) = AX/FX 

which, as before, we compose with log | • | to obtain an element of 

Rom(H\A/F,T -4 C7),R). 

It is easy to see that the following diagram commutes 
(C.2.6) 
1 -> #°(A/F,T -> [/) -> H°(A/F,T) -> H°(A/F,U) -» H^A/F.T -> [7) -> ... 

if u u u 

0 --» ker[aT ->• 2lt/] -> aT -> xv -» cok[2lT -> 2li/] -» 0 

The map 
H°(A/F,T) -> H°(A/F,U) 

is compatible with the splittings of 

H :H°(A/F,T) ->aT 

H :H0{A/F,U) ->»(y, 
and therefore the maps 

H : H°(A/F, T 4 U) -+ ker[2lT %u] 

H : HX(A/F, T 4 17) -> cok[2lT -> a^] 

have natural splittings as well, yielding direct product decompositions 

H°(A/F, T 4 C7) = H°(A/F, T 4 [7)i x ker[2lT -> a^] 

H\A/F,T -4 C7) = H\A/F,T 4 [/)! x cok[2lT -> Xv 

where H^A/F, T 4 £7)i (i = 0,1) denotes the kernel of H on fT(A, F, T 4 £7). 
Similar considerations apply to iJ2 and Hs. Write DT for Hom(Xr,Q/Z). The 

exact sequence 

(C.2.7) 0 -+ Hom(cok[yr -> Xr],Q/Z) -> Hom(Xr,Q/Z) -> Hom(yr,Q/Z) 

-> Hom(ker[yr -> Xr], Q/Z) -> 0 
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shows that 

Hom(cok[yr -» Xr],Q/Z) = ker[L>T -> Dv] 

Hom(ker[Fr -> Xr],Q/Z) = cok[DT -> Dv]. 

The Tate-Nakayama pairing for T induces an isomorphism (see Lemma D.2.A) 

H:H2(A/F,T) —» DT-

We now define a homomorphism 

H : H2(A/F, T AU)^ kev[DT -> DV]. 

This works the same way as for H°: given A G Xr we get a map 

H2(A/F,T -4t/)-> H2(A/F,Gm) = Q/Z. 

Finally we define a homomorphism 

# : H3(A/F,T -4 C7) -+ cok[DT -> A/]-

This works the same way as for H1: given A G ker[Fr --> Xr] we get a map 

H3(A/F,T 4 [/) H2(A/F,Gm) = Q/Z. 

For i = 2,3 we let Hl{A/F,T -4 C/)i denote the kernel of H on Hl(A/F,T -4 17) 
and for i > 4 we put 

Hl(A/F,T -4 C/)i := iT(A/F,T -4 C7) = 1. 

For T itself we of course write 
#°(A/F,T)i 

for the subgroup [T(A)/T(F)][ of i7°(A/F,T) and 

if2(A/F,T)i 

for the kernel of the natural isomorphism 

H:H2(A/F,T) —> DT, 

namely, the trivial subgroup of H2(A/FYT); for ¿^0,2 we put 

ff*(A/F,T)i =Hi(A/F,T). 

Note that #°(A/F,T)i is compact, ^(A/F.T^ is finite, and for i > 2 i7*(A/F,T)i 
is trivial (see Appendix D). 

It is easy to see that the following diagram commutes 
(C.2.8) 
••• H2(A/F,T -> C7) -> #2(A/F,T) -> H2(A/F,U) -> HS(A/F,T -> C7) 1 

u if if u 

0 ker[L>T -» Du —̂  .DT —̂  -Di/ —**• cok[£>T - » - > 0 
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Since the middle two maps H are isomorphisms, the last map H is an isomorphism 
and the first map H is surjective. The surjectivity of all the maps H we have defined 
implies that the groups 

(C.2.9) • iT(A/F,T -4 U)x -> fT(A/F,T)i -> JJ*(A/F,tf)i -> ••• 

form a long exact sequence. 
Suppose T -4 U is replaced by quasi-isomorphic T' A IT'. Thenff*(A/F,T 4 U)x 

does not change for i = 0,1,3 but it can change for i = 2, which means that for i = 2 
this subgroup is somewhat artificial. Nevertheless it will be useful later. 

Lemma C.2.D. — The group Hl(A/F,T -4 U)i is compact for ¿ = 0,1, finite for 
i = 2 and trivial for i > 3. 

The group iJ°(A/F,T -4 C/)i is closed in the compact group H°(A/F,T)1 and 
is therefore compact. The group Hl{A/F,T -4 U)i contains as closed subgroup of 
finite index the compact group 

#°(A/F,E0i//(#°(A/*,.T)i) 
and is therefore compact. The statements for i > 2 follow from the analogous ones 
for Hl(A/F,T) (i > 1) together with the long exact sequence (C.2.9). 

C.3. Duality for ker*(F,r -4 U) and cok*(F,T -4 U) 

We keep the notation of the previous sections. Consider the natural map 

iT(F,T -4 U) -> iT(A,T -4 U). 

We write ker*(F,T -4 U) for its kernel and cok*(F,T -4 U) for its cokernel, and 
we give cok*(F,T —> U) its natural quotient topology. Since Hl(A,T —» £/) is a 
restricted direct product of local groups we may also describe ker*(F,T -4 U) as 

ker[iT(F,T -4 U) -> J[H\FV,T -4 U)]. 
V 

Note that the long exact sequence (C.l.l) gives rise to short exact sequences 

(C.3.1) 1 -+ cdk*(F,T -4 £/) -> H*(A/F,T -4 [/) -> ker*+1(F,T -4 U) -> 1. 

Lemma C.3.A. — For all i the image of Hl(F,T -4 U) in Hl(A,T -4 U) is discrete. 
For all i the map 

cok*(F,T -4 U) -+ H*(A/F,T -4 17) 

induces an isomorphism of topological groups from cok*(F,T -4 U) to an open sub

group ofH*(A/F,T -4 U). 
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For i > 2 both statements are trivial since in this case Hl(A, T —> U) and 
Hl(A/F,T -4 U) have the discrete topology. Next consider i = 0. Let C denote 
the diagonalizable group ker[T -» U]. Then 

H°{F,T f Au)=C(F) 
is certainly discrete in 

H°(A,T f Au) = C(A). 
To prove the second statement it is enough to show that 

C(A) -» ker[T(A)/T(F) U(A)/U(F)] 
is an open mapping (recall that T(A)/T(F) is open in [T(A)/T(F)]r). Consider the 
closed subgroup 

B~{te T(A)|/(t) e U (F)) 
of T(A). Since 17(F) is discrete in'17(A), the subgroup C(A) of B is open in B. 
Therefore the mapping 

C(A) -> B/T(F) = ker[T(A)/T(F) -> U(A)/U(F)] 
is indeed open. 

Now we consider i = 1. To prove the first statement it is enough to check that 
the intersection of the subgroup imfF1 (F,T -4 U)] of H1(A,T -4 U) with the open 
subgroup U(A)/f(T(A)) of i7X(A,T -4 17) is discrete, and since 

im[£/(F)//(T(F)) -+ C/(A)//(T(A))] 

has finite index in this intersection (use the finitenesss of ker*(F, T)) it is even enough 
to check that the image of U(F)/f(T(F)) in U(A)/f(T(A)) is discrete. We have the 
product decomposition 

T(A)I x aT -> t/(A)i x ac/ 
and therefore 

tf(A)//(T(A)) = ([/(^^/(TCA)!)) x &LUI№T)). 

Of course the image of U(F)/f(T(F)) in f/(A)//(T(A)) lies in the subgroup 
[7(A)! //(T(A)!). 

Consider the discrete subgroup f(T(F)) of J7(A)i and form the quotient group 
U(A)i/ f(T(F)); 

it has the discrete subgroup 
U(F)/f(T(F)) 

and the compact subgroup 
/(T(A)!)//(T(F)). 
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Therefore the image of 
U(F)/f(T(F)) 

in the quotient group 

(C/(A)1//(T(F)))/(/(T(A)1)//(T(F))) = U (A)i / f(T (A)i) 

is discrete, as desired. Here we used the following fact about topological groups: let G 
be a Hausdorff topological group, let T be a discrete (hence closed) subgroup of G and 
let N be a compact normal subgroup of G; then TN/N is discrete in G/N. To prove 
this it is enough to find a neighborhood U C G of the identity such that UNDTN — N\ 
in fact any neighborhood U of the identity such that UN C G\(T\(TnN)) will do; 
such U exist since N is compact and G \ (T \ (T fl N)) is an open set containing TV. 
In this proof we have used A \ B to denote the complement of B in A. 

Finally we prove the second statement of the lemma for i = 1. It is enough to show 
that 

U(A) [U(A)/U(F)f/f([T(A)/T(F)f) 

is an open mapping, but this is obvious since U(A)/U(F) is an open subgroup of 
[U(A)/U(F)]T and for any subgroup H of any topological group G the natural map 
G -> G/H is open. 

Now we come to the main result of this section, a duality theorem involving 
ker* (F,T A U) and cok* (F,T A U). For this we will need the following groups: 

ker*(F,F A X) :=ker ff'(F,FAl) - X X – n 
V 

' HHF„,Y A x) 

ker'(W>,^-4f) :=ker H*(WF,U AT)-*' n 
v 

ker'(W>,^-4f) :=ker 

k e r 1 ^ , ! / -4f)red :=ker ker'(W>,^-4f) :=ker n 
v 

ker'(W>,^-4f) :=ker 

In each case the product is taken over all places v of F. 

Lemma C.3.B. — The groups ker*(F, T —> U) are finite for all i and vanish except for 
i = 1,2,3. For i = 1,2,3 £/ie dual finite abelian groups are given by 

Horn (hsr1(F,T -A C/),CX) = ker2(WF,U A f) 

Horn (ker2(F,T -A t/),Cx) = k e r 1 ^ , ^ A f)red 

Horn (ker3(F,T -4 t/),Q/z) = ker^F,^ A X). 
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The groups cok*(F, T —> U) vanish fori > 4. Fori < 3 there are duality isomorphisms 

Homcont (cok°(F,T 4 17),Cx ) = H2(WF, U 4 f)/ker2(WF, U -4 f) 

Homcont ( c o k ^ T 4 C7),CX) = tf1^^ 4 f)red/ker1^,¿7 4 f)red 

cok2(F,T 4 U) = Horn (H^F^Y A X)/ker1(F,F A X),Q/z) 

cok3 (F,T 4 t7) = #3(A/F,T 4 C7) = Horn (H°(F,Y A X),Q/z) . 

Moreover both H1 (F, F A X)/ker1 (F,y A X) and iJ°(F,y A X) are finitely 
generated abelian groups (the second one is even free). 

We begin by proving that ker* (F,T 4 U) vanishes except for i = 1,2,3. This is 
obvious for i = 0. For i > 4 we consider the commutative square 

iT"2(A/F,[7) — H ^ i A / F ^ T ->U) 

(3 

ker*"1 (F,C7) 7 ker'(F,T->E7). 
The map a is part of a long exact sequence of type (A. 1.1); thus it follows from the 
vanishing of i^-1(A/F, T) for i > 4 (see Lemma D.2.A) that a is surjective. Since 
/3 is also surjective (recall (C.3.1)) it follows that 7 is surjective; since ker*_1(F, U) 
vanishes for i > 4 (see the discussion preceding Lemma D.2.C) we conclude that 
ker* (F, T 4 U) vanishes, as desired. 

The vanishing of cok*(F, T 4 U) for i > 4 follows from (C.3.1) and Lemma C.2.A. 
Moreover (C.3.1) and the vanishing of ker4(F,T 4 17) give the equality 

cok3(F,T 4 U) = tf3(A/F,T 4 C7), 

and the duality isomorphism for cok3(F, T 4 U) follows from the duality isomorphism 
for H3(A/F,T 4 U) (see Lemma C.2.A). The last statement of the lemma follows 
from the last statement of Lemma C.2.A. 

It remains to consider cok*(F,T 4 U) and keri+1 (F,T 4 U) for i = 0,1,2. Of 
course we use the exact sequence (C.3.1). We begin with i = 0,1. It is easy to see 
that the maps 

H : H°(A/F,T 4 U) -> ker[2lT -+ 

H : HX(A/F,T 4 £7) -> cok[*T 2tt/] 

remain surjective when restricted to the subgroup cok* (F, T --> U) of Hl(A/F,T —> 
U). In other words Hl(A/F,T 4 I7)i maps onto keri+1 (F,T 4 £7) for i = 0,1; of 
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course the kernel of this map is open (use Lemma C.3.A) in H*(A/F,T -4 U)u a 
compact group by Lemma C.2.D. Therefore ker*+1(F,T -4 U) is finite for i — 0,1. 

Applying the functor Homcont(-,Cx) to the exact sequence (C.3.1) and keeping in 
mind that cok*(F,T -4 17) is open in Hl(A/F,T -4 C7), we find that 

Homcont (ker*+1(F,T -4 U),CX) 

is equal to 

ker [Homcont (/T(A/F,T A t/),Cx) Homcont (iP(A,T A t/),Cx)] 

and 
Homcont (cok*(F,T4c/),Cx) 

is equal to 

Homcont (jT(A/F,T 4 C7),Cx) / Homcont (keri+1(F,T 4 E/),CX) . 

Using global duality (Lemmas C.2.B and C.2.C), local duality (Lemmas A.3.A and 
A.3.B), and the fact that Hl(A,T -4 U) is a restricted direct product of local groups 
(Lemma C.l.B), we find that the duality isomorphisms for ker*+1 and cok* (i = 0,1) 
given in the statement of the lemma are indeed valid. 

Finally we consider cok2(F,T -4 U) and ker3(F,T -4 U). By global duality 
(Lemma C.2.A) and local duality (Lemma A.2.A and the discussion preceding it in 
the archimedean case) the map 

a : #2(A,T -4 U) -> H2(A/F,T -4 U) 

is canonically isomorphic to the map 

/3 : 0Horn (H1 ( F „ F 4 X),Q/z) -+ Horn ( f f ^ F 4 l ) , Q / z ) , 

where Hl(Fv,Y A X) denotes Tate hypercohomology (respectively, ordinary hy-
percohomology) in the archimedean (respectively, non-archimedean) case. Since the 
group ker3(F,T —>• U) is equal to cok(a), we conclude that it is also equal to cok(/?). 
It is easy to see that the natural map 

H\FV,Y 1^X)->H\FV,Y A X) 

is surjective for each archimedean v, and therefore cok(/3) is also equal to the cokernel 
of 

0Hom(tfv,Q/Z) -* Hom(tf,Q/Z), 
V 

where we have written Hv (respectively, H) as an abbreviation for iJ1(Fv,F F X) 
(respectively, HX(F,Y A X)) . 
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Let vo be any place of F. Then the kernel of H —> HVO is finite. Indeed this follows 
easily from the finiteness of the groups iJ1(F, F) and 

ker[cok[yr -+ Xr] -> cok[y -> X]]. 

For each of the finitely many elements in H that belong to the kernel of H iJVo 
but do not belong to the kernel of H —> Ylv HV choose a place v of F such that the 
element has non-trivial image in HV. Let S be the finite set of places obtained in this 
way, including VQ. Then the maps 

H n 
V 

HV 

H n HV 

ves 
have the same kernel, call it K. It follows that 

0Hom(#v,Q/Z) -> Hom(#,Q/Z) 
ves 
0Hom(tfv,Q/Z) -> Hom(tf,Q/Z) 

V 

have the same cokernel, namely Hom(if, Q/Z), and we conclude that 

ker3(F,T -4 17) = Hom(K,Q/Z) = Horn (W (F ,y A X),Q/z) . 

In the course of the proof we saw that K is finite, which shows that ker3(F, T 4 U) 
is finite. Applying the exact functor Horn(•, Q/Z) to the exact sequence 

0 -> kerx(y 4 l ) - > HX(Y F X° HL(Y A X)/kerx(y A l ) 4 0 

(in which we have abbreviated HL(F, •) to HL(-)) and comparing with (C.3.1), we find 
that the duality isomorphism for cok2(F, T 4 U) given in the statement of the lemma 
is indeed valid. 

We finish by giving two alternative descriptions of ker1 (WF, U 4 T)red that use T 
rather than WF . For this we define groups 

H\F,U F 4 f)red := H\F,UA f)/im(fr)° 

HHFV,U±> f)red := H1{FV,UA f)/im(frW)° 

ker1(F,C/4f)red :=ker 1 (F, ft 4 f )RED -> J J ff 1 FF # ^ )̂red 

where T(v) denotes Gal(Fw/Fv). 
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Lemma C.3.C. — The natural maps 

kerx(F, U -4 f )red -» k e r 1 ^ , £ -4 f )red 

ker^F, C/ -4 f )red -> ker2(F, r 4 l ) 

are isomorphisms. 

The injectivity of the first map follows from the (obvious) injectivity of 

H^F, U -4 f) -> JI^WF, -4 f). 

To prove surjectivity of the first map consider a 1-hypercocycle (uw,t) of W> in 

[U -4 T] that represents an element x G ker1(P1̂ F, U -4 T)rea. Then the 1-cocycle uw 
of WF in U represents the image of x under the natural map 

Hl(WF,U -4 f)red -+ H\WF,U), 

and it is evident that the image of x belongs to 

kevl(WF,Û) :=ker H1 (WF, Û) —•>• JJJ H1 (WFv, Û) 

By Lemma D.2.C the natural map 

kev^F.U) -+tei1(WF,U) 

is an isomorphism. Therefore by modifying (uw,t) by the coboundary of a suitable 
O-hypercochain we may assume that uw comes from a 1-cocycle ua of T. Then (ua, t) 

represents an element of ker*(F, U -4 T)red mapping to x. 
Next we prove that the second map is an isomorphism. This map comes from 

the boundary map for the global analog of the commutative diagram of exponential 
sequences occurring at the beginning of (A.3), regarded as a short exact sequence of 
complexes of length 2. Since 

#2(F,Lie(C7) -»Lie(f)) =0 

tf^F, Lie(U) -+ Lie(f)) = Lie(f r)/imLie({7r) 

we see that 

H^F, U -4 f )red ^ H2(F, Y A X), 

and since this holds locally as well, the second map in the lemma is indeed an iso
morphism. 
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C.4. Diagonalizable groups 
Recall that an abelian linear algebraic group over F is said to be diagonalizable if 

it can be realized as an algebraic subgroup of a torus over F (such groups are also 
called groups of multiplicative type). Our duality theorems for hypercohomology give 
duality theorems for the cohomology of diagonalizable groups C over F, simply by 
embedding C in a torus T over F and considering the complex T —> U where U is 
the quotient torus T/C and / is the canonical surjection. It is then immediate that 

H\F,C) = Hl(F,T -4 U) 

Hi(Fv,C) = Hi(Fv,T -4[7). 

We define groups Hl(A,C) and Hl(A/F,C) by 

iT(A,C) :=Hl(A,T -4[7) 

iT(A/F,C) := JEP(A/F,T 4 £/) 

(it is easy to see that the groups on the right side obtained from various T are all 
canonically isomorphic to each other). 

Note that 

T(A) -> 17(A) 
T(A)/T(F) U(K)/U(F) 

need not be surjective (they have the same cokernel in any case), as one sees already 
for 

GM A Gm 
over Q (an idele for Q which is a non-square unit at every odd prime cannot be a square 
in A£ for any number field K because infinitely many primes of Q split completely in 
K). Therefore Hl(F, C(A)) need not coincide with iT(A, C), and fP(F, C(K)/C(F)) 
need not coincide with fP(A/F, C). In fact for any finite abelian group C with trivial 
T-action we have, for any finite Galois extension K of F in F, 

H1(K/F,C(AK)) = T[H1(KW/FV,C) 
V 

T[H1(KW/FV,C) 
V 

and therefore H1(F,C(A)) is the union over K of these subgroups of \[v iJ1(Fv,C); 
this union is much smaller than HX(A,C), which is the restricted direct product 
of the local groups iJ1(Fv,C), the restriction being with respect to the subgroups 
Hl(F™/Fv,C) for finite places v. (Elements in ^^(Ky,/FV1 C) are trivial at 
all places that split in X, hence are trivial infinitely often, while an element of the 
restricted direct product can be non-trivial locally everywhere, e.g. for C = {±1}.) 
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duality statements involving Y -4- X can be converted to statements involving 
X*(C). For example it follows from Lemmas C.3.B and C.3.C that ker2(F, C) and 
ker*(F, X*(C)) are dual finite abelian groups (see [M, Theorem 4.20] for another 
proof of this). Another example is provided by iJ1(A/F, C), as we now check. Recall 
that 

Homcont(tf1 (A/F,C),CX) = Hl(WF,U 4 f)red. 

Using that the kernel of U 4 T is finite, one sees easily that 

H1 (WF, U 4 f) = H1 (F, U 4 f) 

and hence that 

i J 1 ^ , ^ 4 f)red - H\F,UA f)red 

= 2(F, r F A l ) (see proof of Lemma C.3.C) 

= H1(F,X*(C)). 

Noting that Hl(F,X*(C)) is finite and that i71(A/F, C) is compact (use Lemma 
C.2.D), we conclude that ^(A/F.C) and H1(F,X*(C)) are dual finite abelian 
groups (the pairing has values in Q/Z since we used the exponential map to re-

late H^WF, U -4 T)red to ^{F.X^C)) and is in fact just the obvious cup-product 

pairing to iJ2(A/F, Gm)). Since U 4 T is in general neither surjective nor injec-

tive, the duality statements involving H2(WF, [/ -4T) probably cannot be simplified 
(unless C is finite or a torus). 

C.5. Density of HX(Q,T -+ U) in H1 (M,T -> £/) 

In this section we assume that F = Q. Let T be a torus over Q. Recall that 
(1) HX(Q,T) -> H^R.T) is surjective (see [H, Thm. A.12]), 
(2) T(Q) is dense in T(R) (see [L2, Lemme 7.18] for a proof of this result of Serre). 
These statements have a common generalization involving hypercohomology. Let 

T 4 U be a map of Q-tori. 

Lemma C.5.A. — The natural map 

iJx(Q,T -4 U) -> H\R,T 4 £7) 

/ms dense image. 
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It seems that iP(A,C) is the "right" group and that iT(F,C(A)) is the "wrong" 
one. In any case our duality theorems for T U give duality theorems for C involving 
if* (A, C) and H *(A/F, C). Since we have the dual exact sequence of character groups 

0->y A l 4 r ( C ) 4 0 , 
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Choose a surjective homomorphism U' —>• U where U' is of the form 
U' = RK/q(S) 

for some finite extension K of Q and some split torus 5 over K (RK/q denotes 
restriction of scalars). Then use this homomorphism to form a pull-back diagram 

V —̂ —> U' 

i i 
T —^—> u 

f' f 
which we regard as a quasi-isomorphism from [Z" —> U'] to [T —> U]. The lemma for 
[X" —> V] is equivalent to the lemma for [T —> £/], and thus we may as well assume 
that U is of the form 

RK/q(S)-
Then H1 (Q, U) and H1 (R, C7) are both trivial, and we get a commutative diagram 
with exact rows 

T(Q) • C/(Q) • HX(Q,T -» £/) • H^Q.T) • 1 

T(R) • C/(R) • Jff1(R,T-^i7) > H^R.T) > 1. 
The lemma follows from (1), applied to T, and (2), applied to U. 



APPENDIX D 

DUALITY FOR TORI OVER NUMBER FIELDS 

D.1. Preliminaries 
Let F be a number field and let F, T, A and so on have the same meaning as in 

Appendix C. Let T be a torus over F and write X for its character group X*(T), a 
smooth T-module. We define groups 

£P(A,T) :=ir(F,T(A)) 
H*(A/F,T) := H\F,T(S)IT(F)). 

Recall that for i > 1 
Hi(A,T)=@Hi(Fv,T). 

V 
For i > 0 we define ker*(F, T) (respectively, cok* (F, T)) to be the kernel (respectively, 
cokernel) of the natural map 

H\F,T) —¥Hi(A9T). 

The long exact sequence of cohomology for 

1 -> T(F) -> T(A) -> T(A)/T(F) -> 1 

gives rise to short exact sequences 

1 -> cok*(F,T) -> iJF(A/F,T) keri+1(F,T) -> 1. 

D.2. Duality 
We review a variant of Tate-Nakayama duality for T. This was done in [Kl] as well, 

though at that time there was no convenient reference for that particular variant. Now 
there is, namely Milne's book [M], and we take this opportunity to give references 
for the statements we need. 
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LemmaD.2.A. — For r > 3 the groups Hr(A/F,T) vanish. For r — 1,2 the cup-
product pairing 

Hr{k/F,T) ® H2~r(F,X) -> #2(A/F,Gm) = Q/Z 

induces an isomorphism 

Hr(A/F,T) Horn (#2~r(F,X),Q/Z). 

For r = 0 there is a canonical isomorphism 

Homcont (tf°(A/F,T),Cx) = H\WF,f). 

Moreover the group H1 (A/F, T) is finite. 

The statement regarding r > 3 follows from [M, Corollary 4.21]. The statement 
regarding r = 1,2 follows from [M, Corollary 4.7]. The statement regarding r = 0 is 
a result of Langlands (see [La] and [M, 1.8]). The last statement follows from duality 
and the (obvious) finiteness of HX(F,X). 

Let A be any smooth T-module. We denote by kerr(F, 4̂) the kernel of the natural 
map 

(£.2.1) Hr(F,A)^J[Hr(Fv,A). 
V 

Recall that Hr(Fv,A) vanishes for r > 3 for finite places v. 

Lemma D.2.B. — For r > 3 the map (D.2.1) is an isomorphism. Therefore the group 
kerr(F, ̂ 4) vanishes except for r = 1,2. 

The second statement follows from the first since ker°(F, A) obviously vanishes. 
Now we prove the first statement. For finite groups A the statement is a theorem 
of Tate [M, Theorem 4.10(c)], and since cohomology of T commutes with direct 
limits the statement holds for all torsion groups A. Therefore the statement holds 
for torsion-free groups A and r > 4, as one sees by considering the torsion group 
B := (A ®z Q)A4? using the isomorphism 

Hr{F,A)^Hr~1{F,B) 

and its local analogs. Now we handle the general case. Choose an exact sequence 

0-> K -¥ I -> A^O 

where I is a direct sum of T-modules of the form Z[Gal(K/F)] for finite Galois exten
sions K of F in F. Note that K and I are torsion-free, so that the desired statement 
for r > 4 follows from the 5-lemma and our previous work. For r = 3 we have 

H3(F,I) = Y[H3(Fv,I) = 0; 
V 
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to see this use Shapiro's lemma to reduce to the case J = Z and then use [M, Corollary 
4.17]. Once again we conclude from the 5-lemma that (D.2.1) is an isomorphism for 
r = 3. _ 

Next we discuss duality for kerr(F,T). Note that kerr(F,T) and kerr(F,T(F)) are 
defined differently: the first is the kernel of 

Hr(F,T)^Y[Hr(Fv,T(Fv)) 
V 

and the second is the kernel of 

Hr(F,T)^l[Hr(Fv,T(F)). 
V 

Actually these two subgroups of Hr(F,T) coincide for r > 2; for this it is enough to 
note that the natural map 

Hr(Fv,T(F))^Hr(Fv,T(Fv)) 
is an isomorphism for r > 2 (the quotient group T(FV)/T(F) is a Q-vector space and 
hence has trivial cohomology in positive degrees). We conclude from this discussion 
and Lemma D.2.B that kerr(F,T) and kerr(F, X) vanish except for r — 1,2. 

Lemma D.2.C. — For r = 1,2 the groups kerr(F, T) and ker3-r'(F, X) are dual finite 
abelian groups. Moreover 

ker2(F,X) ~ k e r ^ f ) ~ ker^W^f), 
where ker1 (WF,T) of course denotes the kernel of 

H^WF^^UNHHWF^T). 
V 

For r — 2 the duality statement is given in [M, Theorem 4.20(a)]; it is also easy to 
prove directly (apply the functor Hom(-,Q/Z) to the exact sequence 

Hl(k,T) -» iJ1(A/F,T) ker2(F,T) -+ 1 
and use duality for i71(A/F,T) (Lemma D.2.A) together with local duality). 

For r = 1 we begin by choosing a finite Galois extension K of F in F that splits 
T. We have the exact sequence 

T(A) -> H°(K/F,T(AK)/T(K)) -> ker1 (tf/F,T) -> 1 
where ker1 (If/F, T) denotes the kernel of the natural map 

H\KIF,T(K)) -> H\K/F,T(AK)) = ($Hl{Kw/Fv,T{Kw)) 
V 

(for each place v of F pick a place wotK lying over v). Since H1 (if, T) and i/1 (Kw, T) 
are trivial, we have 

ker1 (K/F,T) ~ ker1 (F,T). 
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Dividing by NK/F(T(AK)), we get another exact sequence 
($T(FV)/NKw/F„(T(Kw)) -> H°(K/F,T(AK)/T(K)) ker1 (K/F,T) -»• 1. 

V 

Therefore Horn (ker1(F, T), Q/Z) is canonically isomorphic to the kernel of 

Horn (H°(K/F,T(AK)/T(K)),Q/Z) -+ l[llom (H°(KW/FV,T(KW)),Q/Z) . 
V 

Applying Tate-Nakayama duality in its standard form, we see that this kernel is 
canonically isomorphic to the kernel of 

H2(K/F,X) -»• T\H2(KW/FV,X), 
V 

which we denote by ker2 (K/F, X). Note that H2(K/F,X) is finite and hence that 
ker2(K/F, X) is also finite. Since ^(K^X) is trivial, we have the exact restriction-
inflation sequence 

0 -> H2(K/F,X) -> H2(F,X) -> H2(K,X) 

as well as its local analogs. Moreover ker2 (K,K) is trivial, since by classfield theory 
H2(K,Z) = H\K,qiZ) = Homcont(A£/Kx,Q/Z) 
H2(KW,Z) = H\KW,Q/Z) = Homcont(^,Q/Z). 

Therefore 
ker2(K/F, X) ~ ker2(F,X), 

and we conclude that Horn (ker1(F, T),Q/Z) is canonically isomorphic to the finite 
abelian group ker2(F, X). It then follows that ker1 (F,T) is also finite. 

It remains to prove the last statement of the lemma. The isomorphism 
ker2(F,X) -ker^F,?) 

follows immediately from the isomorphism 
H1{F,f)^H2 {F,X) 

obtained from the exponential sequence 
0 -> X -> Lie(f ) f 1 

as well as its local analogs. The isomorphism 
ker1 (F,f) = ker1 (WF,T) 

can be proved the same way as Lemma 11.2.2 of [Kl]. 
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APPENDIX E 

TAMAGAWA NUMBERS FOR COMPLEXES OF TORI 

In this appendix we define Tamagawa measures on the groups 

H*(A/F,T -4 U) 

H*(A/F,T -4 U)i 

W(A,T -4 U) 

H*(A,T -4 U)i 
and study the Tamagawa numbers 

vo\(Hl(A/F,T Au)i) 

(see Lemma E.3.D) as well as some variants (see Lemma E.3.E). In case T -4 U is 
surjective with finite kernel C, our results reduce to those of Oesterle [Oe] for C; in 
case U is trivial they reduce to those of Ono [O] for T. 

E.l. Measured complexes 
The results in this section are slight generalizations of results in [Oe, §§3-4]. Con

sider a complex 
A0 -> A1 -> A2 -+ • • • 

of locally compact Hausdorff abelian topological groups. Put 
Bi = im^-1 -»• A1} (B° = 0) 
Z* = ker[A{ -»• Ai+1] 
IP (A") = Z'/B*. 

Of course we put the subspace topologies on Bl and Zl and the quotient topology on 
Hl(A'). We say that A* is a topological complex if for all i > 0 Bt+1 is closed in Al+1 
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and the canonical map 
AI/ZI -> BI+1 

is an isomorphism of topological groups. We say that a topological complex A* has 
compact cohomology if HL(A*) is compact for all i and trivial for all but finitely many 
i. By a topological short exact sequence we will mean a short exact sequence that is 
isomorphic to one of the form 

0 -+ B -> A A/B -+ 0 

for a closed subgroup B of A (we give B the subspace topology and A/B the quotient 
topology). 

Lemma E.I.A. — Let 

0 A# £# C* 0 

be a topological short exact sequence of complexes of locally compact Hausdorff abelian 
topological groups (in other words for all i > 0 

0 -> A* -> BI -> CL -> 0 

is a topological short exact sequence). If A* ,BM are topological complexes with compact 
cohomology, then so is C*. 

Fix i > 0 and put 

A = A* 
B = ker[£* -+ CW] 

D = im^-1 -> B1} 

E = ker[Bi BW] 

A0 = imf^"1 -> A% 

Of course we interpret A~L ,B~L ,C~X as 0. Our hypotheses imply the following state
ments: 

(1) A,Aq,D,E are closed subgroups of B, 
(2) B D E D D D Ao, 
(3) BdAd Ao, 
(4) E/D is compact, 
(5) (A n E)/A0 is compact, 
(6) i + E is closed in B, 
(7) the natural map A/(A n E) (A + E)/E is an isomorphism of topological 

groups, 
(8) B/(A + E) is compact. 
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Only the last statement deserves comment. Note that the natural injection B/E —>• 
BL+1 carries B/E into a closed subgroup of 

ker[^+1 Ai+% 

and since Hl+1(A*) is compact, we conclude that the quotient of B/E by (A + E)/E, 
namely B/(A + E), is compact. 

We need to show that the image of D in B/A is closed (equivalently, that A + D 
is closed in B), that 

D/(AHD) -> (A + D)/A 

is a homeomorphism, and that B/(A + D) is compact (note that B/(A + D) is 
isomorphic as topological group to Hl(C*)). We will show that these three statements 
follow from (l)-(8). Dividing by A$, we reduce immediately to the case in which 
Ao = 0. 

We begin by showing that the obvious surjective homomorphism 

s : A&E -> A + E 

is proper. Let K be a compact subset of A + E. By (7) the set 

KA := {a G A\3e G E such that a + ee K} 

has compact image in A/(A D E), and since A D E is compact by (5) it follows that 
KA is compact. Let 

KE = (K-KA)nE, 

a compact subset of E (here K — KA denotes the set of elements of the form x — y 
for x G K and y G KA)- Then s-1(if) is closed in the compact set KA ® and is 
therefore compact. 

Since s is proper and A + E is locally compact Hausdorff (by (6)), 5 is a closed 
mapping, and it follows that the image of A ® D, namely 4̂ + £>, is closed in A + 2£ 
and hence in Z? (again by (6)). This was the first point we needed to check. 

Consider the groups 
BDA + EDA + D. 

We have seen that both subgroups are closed in B. Furthermore B/{A+E) is compact 
by (8), and (A + E)/(A + D) is compact as well, being a quotient of the compact 
group E/D (use (4)). Therefore B/(A + D) is compact; this was the third point we 
needed to check. 

We have seen that s is closed; therefore s induces an isomorphism of topological 
groups 

(A®E)/(ADE) -+A + E, 

and it follows that the natural map 

A + E -> E/(AnE) 
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is continuous and hence that 
a:E/(AnE)-*(A + E)/A 

is a homeomorphism. We want to verify the second point, namely that 

j : D/(AHD) -> (A + D)/A 
is a homeomorphism. For this it is enough to show that j is closed, and since (A+D) jA 
is closed in (A + E)/A by previous work, it is enough to check that 

i : D/(A PiD)-> E/(A nE) = (A + E)/A 

is closed (use that a is a homeomorphism). Since E/(A fi E) is locally compact 
Hausdorff, it is enough to show that i is proper. Consider a compact subset K of 
E/(An E) and let KE denote its inverse image in E. Then KE is compact by (5). 
The inverse image of K in D/(A fl D) is (D fl KE)/(A fl D), a compact subset of 
D/(An D). Thus i is indeed proper, and we are done with the proof of the lemma. 

Next we discuss complexes in which each group is equipped with a Haar measure. 
We say that a Haar measure on a discrete group is discrete if it gives points measure 
1. Let A0 be a topological complex with compact cohomology having the further 
property that A1 is a discrete group for all but finitely many i. Assume that for each 
i > 0 we are given a Haar measure dcii on A1 and suppose that dai is discrete for all 
but finitely many i. We refer to A*, with the given measures, as a measured complex. 

Given a measured complex A*, we define a positive real number t(Am) as follows. 
For each i > 0 pick a Haar measure dz{ on the subgroup Z% of A% with dzi discrete for 
all but finitely many i; then take as Haar measure on B% ~ A1-1 /Z1-1 the quotient 
measure dbi :— dai-i/dzi-i (for i = 0 take the discrete measure on B° = 0); then 
take as Haar measure on Hl(Am) = Zl/Bl the quotient measure dzijdb^ finally put 

oo 
t(Am) = ^meas^A*))*-1)''. 

¿=0 
Each term in the product is finite since Hz(Am) is compact, and all but finitely many 
terms are equal to 1 since Hl(Am) is 0 with the discrete measure for all but finitely 
many i. Moreover t(A*) is independent of the choice of auxiliary measures dz{. Note 
that if ddi is replaced by c\da{ (with ci = 1 for all but finitely many i), then t(A*) is 
multiplied by J]So 4 ^ • 

We extend the definition of t(A*) to finite topological complexes 
Am = [A0 -> A1 -» • An] 

with compact cohomology and given Haar measures dai on A1 by regarding A* as an 
infinite complex 

A0 -> A1 -» > An -> 0 -> 0 • • • 
and taking the discrete measure on Am = 0 for all m > n. Suppose that 

1 -> A0 -» yl1 ̂  A2 -> 1 
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is a topological short exact sequence, and regard 
Ao Ai _> A2 

as a complex with three terms. Put Haar measures dai on A1 for i = 0,1,2. Then 
the lvalue of our complex is 1 if and only if 

da,2 = dai/ddo. 

Lemma E.l.B. — Suppose that A1 and dai are discrete for alii > 0 and that Hl(A*) — 
0 for all i > 0. Then t(Am) = 1. 

This is obvious. 

Lemma E.l.C. — Let A* be a finite measured complex such that A1 is compact for all 
i. Then 

oo 
*(A#)=Umeasda,(Ai)(-1)\ 

¿=0 
Without loss of generality we may assume that meas^ (A1) = 1 for all i. We must 

then show that t(Am) = 1. To calculate t(A') we choose the Haar measure dzi on 
the compact group Zi so that meaSd̂ (Zj) = 1; then meas(fl"*(A*)) = 1 for all i and 
hence t(A%) = 1. 

Lemma E.l.D. — Let Alj (i > 0, j > 0̂  be a double complex of locally compact Haus-
dorff abelian topological groups. Assume that each row and column of the double 
complex is a topological complex with compact cohomology. Assume further that we 
are given on each group A^ a Haar measure daij. Finally we suppose that there ex
ists a non-negative integer N such that for all pairs with i > N or j > N the 
following three statements hold: 

(1) A1* and da^ are discrete, 
(2) the j-th cohomology group of the i-th row A1* is trivial, 
(3) the i-th cohomology group of the j-th column A*i is trivial. 
Note that each row A10 and column A*i is a measured complex. Then there is an 

equality 
oo oo 
rjf(^«)(-ir = J J t ^ y - D ' 
¿=0 j=0 

(the products are finite by Lemma E.l.B). 

We denote by 

Zij := kev[Aij -> A***1] 

Bij := i m ^ ' - 1 -> Aij] 
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the cycle and boundary groups for the rows of the double complex. We begin by 
reducing to the case in which the double complex has only finitely many non-trivial 
columns. Truncate each row at degree N to obtain a new double complex Cu with 

Cij 
A* j <N 
ZiN j = N 
0 j>N, 

and put the discrete measure on each discrete group Clj (j > N). Note that the 
column ZlN has trivial cohomology (calculate the total cohomology of the double 
complex Ali [i > 0, j > N) two ways). It is easy to see that every row and column of 
Cu has the same lvalue as the corresponding row or column of A%i. Our reduction 
step is complete, and we now assume that Ali — 0 for j > N. 

We want to use induction on the number of non-trivial columns. To get a complex 
having fewer columns we consider 

A01/B01 • A02 v A03 > ... 

An/Bn A12 A13 

A211 В21 А22 А23 

To compare this with the original double complex we need three other double com
plexes, one having a single column and two having three columns: 

zoo zoo > Аоо > Boi Boi ^ Aoi > А01/В01 

zio zw > Аю у вп ви ^ Ап ¥ А11/В11 

Z20 Z20 ¥ А20 у В21 В21 ^ А21 > А21 /В21 

Note that Zl° is compact for all i and trivial for all but finitely many i. Applying 
Lemma E.l.A to the two double complexes with three columns we find that B%1 and 
Aml/Bml are toplogical complexes with compact cohomology. 

Pick Haar measures dz^ on Zi0, discrete for all but finitely many i\ then as Haar 
measure on Bl1 take the quotient measure dbn := daio/dzio and as Haar measure 
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on All/Bl1 take the quotient measure dan/dbn. With these measures all four of the 
double complexes obtained from Ali also satisfy the hypotheses of the lemma. It is 
not hard to see that if the lemma is true for all four of these double complexes then it 
is true for the original double complex A%K Thus by induction it is enough to prove 
the lemma in the following two special cases: 

(1) Aij consists of a single column, 
(2) Ali consists of three columns A* -¥ B* -> C*, and each row of the double 

complex forms a topological short exact sequence 

0 A1 -> Bl -> Cl -> 0. 

The first special case is covered by Lemma E.l.C. 
It remains to prove the lemma in the second special case. Applying the methods 

above to the rows rather than the columns, we reduce to proving the lemma in the case 
of a double complex with three rows and three columns, with all rows and columns 
forming topological short exact sequences: 

A0 • B° • C° 

1 i i 
A1 • B1 • C1 

1 1 1 
A2 • B2 • C2 

Pick Haar measures dao,dai,dbo,dbi on A0,AX,B°,BX respectively. Define Haar mea
sures on A2,B2^,CX by 

dd2 := dai/dao 
db2 := dbi/dbo 
dco := dbo/dao 
dci := db\jda\. 

From these we get two Haar measures on C2, namely dx :— db2lda2 and dy := 
dci/dco. The lemma is equivalent to the statement that dx equals dy. Dividing by 
Ao, we reduce to the case in which AQ is trivial. Then the closed subgroups A1 and B° 
of B1 have trivial intersection. Moreover, the map A1 ->> B1/B° is a closed injection, 
which means that the kernel of B1 C2 is the direct product of A1 and B°. The 
measures dx and dy are both equal to the quotient measure dbi/(dai x dbo). This 
finishes the proof. 

In (E.2) we will need the following construction. Let X be a finitely generated 
abelian group. In the real vector space Hom(X, E) we have the lattice Hom(X, Z). 
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Definition E.l.E. — The canonical measure on Hom(X, E) is the Haar measure 

I Storsi 1dxì 

where Xtors is the torsion subgroup of X and dx is the Haar measure on Hom(X, M) 
that gives measure 1 to the compact group 

Hom(X,M)/Hom(X,Z) 

(use the discrete measure on Hom(X, Z)). 

Lemma E.l.F. — Let 
XN -> XN-\ —> • • • —> X\ —> XQ 

be a finite complex of finitely generated abelian groups, and assume that every homol
ogy group Hi(XM) is finite. Let A* be the measured complex 

Hom(X0,IR) -> > Hom(Xn,M) 

(for each i use the canonical measure on Hom(JQ,M)). Then 

t(A')-1 = n 
n 
i=0 

O(xi)tor.i/iffi(x:) 

Consider the double complex 
X{ X{ X{ 

Hom(X0,K) Hom(Xi,R) Hom(Xn,R) 

Ko X{ Kn 
where X* denotes the discrete group Hom(Xj, Z) and Ki denotes the compact group 

Eom(Xi,R)/X*. 

Put the discrete measures on the groups in the top row, put the canonical measures 
on the groups in the middle row, and put the Haar measures with total mass 1 on the 
groups in the bottom row. Lemma E.l.D implies that 

t(A')-1 = 
n 

n 
i=0 

O(xi)tor.i/iffi(x:)ir (1 - 1 • 

It remains to prove that 

(s.i.i) 
n 

TT(l№)tors|/|^(x;)|)(-ir = 
z=0 

n 
n i J № ) l ( - 1 } ' . 
¿=0 

Assume for the moment that X{ is free for all i. Then 
HHXT) = Exti(X.,Z). 
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From the short exact sequence 
0 Z -> Q -> Q/Z -> 0 

we get the long exact sequence 
• Ext'(X.,Z) Ext'(X.,Q) -» Ext*(X.,Q/Z) -> • • • 

and since Q and Q/Z are injective we have 
Ext*(X.,Q) =Hom(Hi(X.),Q) =0 
Ext*(X.,Q/Z) = Hom№(X#),Q/Z). 

Therefore H2+1 (X*) and Hi(X9) are dual finite abelian groups, and in particular they 
have the same cardinality. This proves (E.l.l) when the Xi are free. 

Now we prove (E.l.l) in general. We can find a complex of abelian groups 
Y. = [Yn -+ • • • -+ Y0] 

with each Y% free of finite rank and a quasi-isomorphism 
Y.^X. 

with Yi -> X{ surjective for all i. Put Zi := ker[Y$ ->> X*]. Then each Zi is free 
of finite rank and Z# is an acyclic complex. To construct Y. start by picking any 
surjection YQ -» X0 with YQ free of finite rank. Take Y\ free of finite rank mapping 
onto X\ Xx0 YQ. Then Z\ maps onto Zo, and by the snake lemma the kernels of 
Z\ —> Zo, Y\ —> Yb, X\ -> Xo form an exact sequence. By iterating this construction 
we get the desired complex. 

Put the discrete measures on the groups Xi,Y{,Zi. Applying Lemma E.l.D to the 
double complex 

Z. -+ Y. -+ X. 
we find that 

t(X.)t(Z.) = t(Y.). 
We also have the dual double complex 

x ; -> Y; zi -> E. 

where 
Ei := Ext^X^Z). 

Again using discrete measures on all groups, and applying Lemma E.l.D, we find that 
t(x;)t(z:) = t(Y;)t(E.). 

Moreover 
t(z:)t(z.) = t(Y;)t(Y.) = 1 

by the special case done before. Combining these equalities, we find that 
t(x:)t(x.) = he.), 
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which is equivalent to (E.l.l) since by Lemma E.l.C 

t(E.) = 
n M |E1| (-1)9 

¿=0 
and Ei has the same cardinality as (-X*)tors-

E.2. Tamagawa measures on H*(A,T -> U) and iP(A/F,T -> U) 

We use the same notation as in (CI). In Appendix C we topologized the groups 
iT(A,T -4 U) and Hl(k/F,T 4 U). Now we define canonical Haar measures, called 
Tamagawa measures, on them. Put 

C := ker[T -> U] 
V := im[T -> U] 
W := cok[T -> £7] 

A := C/C°. 

Then V,W are F-tori, C is a diagonalizable F-group, and A is a finite abelian F-
group. First consider H°(A,T 4 £/) = C(A). For the identity component C° of C 
we have the usual Tamagawa measure (see [O]) on C°(A); write it as a product of 
local measures dc°v on C°(FV), and abuse notation by also writing dc® for the unique 
Haar measure on C(FV) that induces dc°v on the open subgroup C°(FV). Put 

dcv = \A(Fv)\~ldc°v 

dc = TT (iĉ . 
V 

We define the Tamagawa measure on i7°(A, T —>• £7) to be dc. Suppose that v is a 
finite place such that T and £7 are unramified and dc°v gives measure 1 to C°(Ov). 
We now verify that dcv gives measure 1 to C((9V), so that the product measure <ic 
makes sense. 

Note that A(Ov) — A(FV), since A is proper over Ov (the groups C,A over Fv 
extend naturally to groups over Ov), and note also that 

C(Ov)^A(Ov)=A(Fv) 

is surjective (use smoothness of the map C -> A of schemes over (9V plus surjectivity 
of C(kv) -> A(kv), a consequence of Lang's Theorem for the connected group C°). 
Therefore C°(Ov) has index |A(FV)| in C(Ov), and we conclude that dcv indeed gives 
measure 1 to C(Ov). At such a place v it is clear from what we have done that 

C(FV)/C°(FV)=A(FV), 

so that we could equally well have defined dcv by dividing by \C(Fv)/C°(Fv)\ 
instead of |A(FV)|. At ramified places this can lead to different local measures, and 
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so we would then obtain an alternative Tamagawa measure on tf°(A,T -4 17). There 
seems to be no reason to prefer one choice over the other, but we made a choice 
(randomly) and will stick to it throughout this paper. 

Next consider HX(A,T -4 £/). On W(A) we have the usual Tamagawa measure 
dw; write it as a product of local measures dwv. Consider the exact sequence (see 
(A.l)) 

1 -> H\FV,C) H^F^T -4 [/) -> W{FV) 

Let diVy denote the restriction of dwv to the image of Hl(Fv,T -4 U) in W(FV), 
an open subgroup of finite index in W(FV). As topological group this subgroup is 
isomorphic to the quotient of Hl(Fv,T -4 U) by the discrete finite group HX(FV1 C), 
and so we may define a Haar measure dxv on HX(FV1T —>> U) by requiring that its 
quotient by the discrete measure on H1(FV^C) be equal to dw„. Then put 

dyv = \A(Fv)\~ldxv 

dy = Y[dyv. 
V 

We leave it to the reader to check that if v is a finite place such that T, U are unramified 
and dwv gives measure 1 to W(Ov), then dyv gives measure 1 to iJ1(0v,T -4 U); for 
this one uses the equality 

\H1(Ov,C)\ = \A(Fv)\. 

We define the Tamagawa measure on Hl(A, T -4 U) to be dy. Note that ^(F^)!-1 is 
the same factor that appeared before. Again we have an alternative: we could divide 
by \C(FV)/C°(FV)\ instead of |A(FV)|. What matters is that we use the same factor 
both times. 

Finally, for all i > 2 we define the Tamagawa measure on the discrete group 
Hl(A,T U) to be the discrete measure. Note that for all i the Tamagawa measure 
on Hl(A,T -4 U) does not change when T -4 U is replaced by a quasi-isomorphic 
complex V A U'. 

For a single torus T we define Tamagawa measures on Hl(A,T) as follows. On 
iJ°(A, T) — T(A) we take the usual Tamagawa measure and for i > 1 we take the 
discrete measure on the discrete group iJ*(A,T). 

Lemma E.2.A. — Let 

[Ti -+ C/i] [T2 -+ U2] -+ [T3 -+ U3] -+ [Ti -+ 

be a distinguished triangle. Let A* denote the long exact sequence 

#°(A,Ti -> C/i) fr°(A,r2 -> U2) -> #°(A,T3 C/3) -> ^ ( A , ^ -> Ui) -> ••• . 
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Then t(A*) = 1 (use Tamagawa measures on all groups in the complex A*). In 
particular for any T -A U the complex 

H°(A,T U i7°(A,T) AT H°(A,U) -> H\A,T -> U) • • • 

has t-value 1. 

The second statement follows from the first, applied to the distinguished triangle 

[1 -> U] -+ [T -> U) -> [T -> 1] -> [[/ -> 1]. 

The first statement follows from the following local statement. Let v be a place of F. 
Define diagonalizable groups C\,..., CQ by 

d = kev[Ti -+ Ui] 
Ci+3 = cok[Ti -> 17«] 

for i = 1,2,3. The distinguished triangle gives rise to an acyclic complex of diagonal
izable F-groups 

c w c2 ^ c w c w c5 -> c6. 
Put 

Si = ker[Ci -» Ci+i] = im[C<_i d] 
(take Ci — \ for z outside the range 1, ...,6). We have short exact sequences 

1 -> Si -> Ci -> Si+i -> 1. 

For all i pick a non-zero invariant differential form dsi of top degree on Si. For i 
outside the range 2,..., 6 the group S* is trivial, and we assume dsi = 1 for such i. 
We get a non-zero invariant differential form dci of top degree on d by putting 

dci := dŝ  0 d«i+i. 

Then dci (respectively, dsi) gives us a Haar measure |dci| (respectively, |dsi|) on 
Ci(Fv) (respectively, Si (Ft,)), and the restriction of |dsi+i| to the open subgroup 

Ci(Fv)/Si(Fv) 

coincides with the quotient measure |dci|/|dsi|. 
Define groups Hi,..., HQ by 

Hi = H°(Fv,Ti^Ui) = Ci(Fv) 
Hi+s = Hl(FVyTi -» Ui) 

for i = 1,2,3. Then the first six terms in the local analog of A* are 

H1-^H2^ >H6. 
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There is an obvious commutative diagram 
Hx > H2 > ••• • H6 

\, \, \> 
C!(FV) > C2(FV) > > C6(FV) 

in which the vertical arrows are isomorphisms for i — 1,2,3 and have finite kernel and 
cokernel for % = 4,5,6. Put a Haar measure dhi on Hi by requiring that the quotient 
of dhi by the discrete measure on 

kev[Hi -+ d(Fv)} 
be equal to the restriction of \dci\ to the open subgroup 

im[Hi ^ d(Fv)]. 
We can finally formulate the local statement that we need to prove: the complex 

jy°(Ti -> Ux) -> H°(T2 -+ U2) -> H°(T3 -> U3) H1^ ->[/!)->... 
(in which we have abbreviated Hl(Fv,-) to Hl(-)) has lvalue 1, where we use the 
measures dhi, • • •, dh6 on the first six terms in the complex and the discrete measures 
on the remaining groups. To prove this we define groups 

Zi := im[ffj_i Hi] 
for i = 1,..., 6 (take H0 = 1). There are natural maps 

Zi —> Si(Fv) 
for i = 1,..., 6, and these maps have finite kernel and cokernel. Put a Haar measure 
dzi on Zi by requiring that the quotient of dzi by the discrete measure on 

ker[Z< -> Si(Fv)] 
be equal to the restriction of \dsi\ to the open subgroup 

im[Zi -> Si(Fv)]. 
To prove that the lvalue of our local complex is 1 it suffices to prove that dhi/dzi = 

dzi+i for i = 1,..., 5 and also that dhi/dzi is discrete for i = 6. Assume first that i 
is in the range 1,..., 5 and consider the measured double complex (whose rows are 
short exact sequences) 

Zi > Hi > Zi+i 

Si(Fv) • d(Fv) > Ci(Fv)/Si(Fv) 
(use the measures dzi, dhi, dzi+\, \dsi\, \dci\, \dci\/\dsi\ and recall that |dc*|/|dsi| is 
the restriction of ||ds 1+1 The kernels and cokernels of the vertical maps are finite, 
and by the snake lemma the alternating product of their orders is 1; therefore the 
alternating product of the t-values of the columns is 1. It then follows from Lemma 
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E.l.D that the lvalue of the first row is equal to the lvalue of the second row, namely 
1, which means that dhi/dzi = dzi+\. 

For i = 6 we have the measured double complex 

ZQ > HQ y HQ/ZQ 

S6(FV) — C6(FV) • 1 

and again the vertical maps have finite kernel and cokernel. Using the snake lemma 
as before, we conclude that the lvalue of the top row is 1 if we use dz$, dh§ and the 
discrete measure on if6/Z6, which means that dhQ/dze is discrete. 

Next we need Tamagawa measures on Hl(k/F,T -4 U). Let dyi denote the 
Tamagawa measure on i7*(A,T -4 U); we take its quotient by the discrete measure 
on the discrete subgroup 

im \H\F,T -4 [/) -> H\k,T -4 [/)] , 

obtaining a Haar measure dy{ on the open subgroup 

cok* (F,T -Uu) 

of fP(A/F,T -4 17); finally we define the Tamagawa measure on Hl(A/F,T -4 U) 
to be the unique Haar measure whose restriction to cok*(F, T -A U) coincides with 
dyt. Note that for i > 2 this Tamagawa measure is discrete. We follow the same 
procedure for a single torus T: as Tamagawa measure on iJ°(A/F,T) we take the 
unique Haar measure inducing the usual Tamagawa measure on the open subgroup 
T(A)/T(F) and for i > 1 we take the Tamagawa measure to be the discrete measure 
on the discrete group fP(A/F,T). 

Lemma E.2.B. — Fix i > 0 and let A9 denote the complex 

ker*(F,T -> U) ^W{F,T -+U)-> Hl(A,T U) 

-h£P(A/F,T ->U)^> keri+1 (F,T -> U). 

Make A* into a measured complex by using the Tamagawa measures on 
and H^A/F, T -4 U) and the discrete measures on the other three groups. Then 
t(A') = 1. 

This is an immediate consequence of the definitions. 
There are still more Tamagawa measures to define. In (C.2) we defined a compact 

subgroup #*(A/F,T 4 C/)i of /P(A/F,T -4 U). For i > 2 we take as Tamagawa 
measure on if*(A/F,T -4 U)i the discrete measure on this discrete group. The 
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groups H°(A/F,T -4 12a and U^A/F.T 4 f/)i are the kernels of 

H : H°(A/F, T -Uu)-> ker[«T -> Sty] 

: tf^A/F, T -4 17) -> cok[2tT -)• 2l[/] 

respectively. We will put canonical measures on kerplr -> 2t[/] and cok[2lT ->• 2lc/] 
and then define the Tamagawa measure on Hl(AlF,T -4 U)i (¿ = 0,1) by requiring 
that the quotient of the Tamagawa measure on Hl(A/F,T -4 U) by the Tamagawa 
measure on Hl(A/F,T -4 U)\ yield the canonical measure on ker[Slx Sit/] (resp., 
cok[Slr —> Sit/]) for i = 0 (resp., i = 1). 

Recall that 

cok[3lT Sir/] = Horn (ker[yr -> Xr],R) 

= Hom (X*(W)T,R) ; 

thus we have the lattice 
Hom(X*(W)r,Z) 

inside the real vector space 
cok[SlT -> Sit/]. 

Of course we take as canonical measure on cok[SlT —> Sit/] the unique Haar measure for 
which the quotient of the vector space by the lattice gets measure 1 (for the quotient 
of the canonical measure by the discrete measure on the lattice); in other words we 
are viewing cok[SlT -> Sit/] as Hom(X*(W)T, R) and using the canonical measure in 
Definition E.l.E. 

For ker[Slr -> Sit/] the definition of canonical measure is less obvious. Recall that 

ker[SlT -> Sit/] = Horn (cok[yr -» Xr], R) ; 

thus we have the lattice 
Horn (cok[yr ->Xr],Z) 

inside the real vector space kerfSlr —> Sit/]. However there is a second natural lattice, 
namely the sublattice 

Hom(X*(C)r,Z). 
Just as above this sublattice determines a Haar measure da on the vector space 
ker[SlT -> Sit/], and for our canonical measure on kerfSlx -> Sit/] we take the measure 

KX^ C f^-'-1da; 

in other words we are viewing kerfSlr -> Sit/] as Hom(X*(C)r, R) and using the 
canonical measure in Definition E.l.E. 

Note that the kernel and cokernel of SIT -> Sit/, as well as the canonical measures 
on them, do not change if T —> U is replaced by a quasi-isomorphic complex V U' 
That is why we preferred to use X*(C)r rather than cok[yr -» Xr]. Consequently 
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the Tamagawa measure on H*(KIF,T -4 [7)i also remains unchanged for i — 0,1 
and trivially the same is true for i > 3 as well. However for i = 2 the group 

H2(A/F,T -4 C/)i 

itself can change when T -> U is replaced by X" -> U'. 
In 21T we have the lattice Hom(Xr,Z), which we use as above to get a canonical 

measure on 21̂  and a Tamagawa measure on H°(A/F,T)i. The restriction of this 
measure to the open subgroup T(A)i /T(F) is of course the usual Tamagawa measure 
on that group. 

Let 
[Ti -+ C/i] -+ [T2 -+ U2] -> [T3 C/3] [Ti -> Ï7i][l] 

be a distinguished triangle (of complexes of F-tori). Put the canonical measures on 

ker[2lTi -+Ï&U.] 

and 
cok[aT< -> Slf/J 

for i = 1,2,3. Let A9 be the measured complex 

ker[2lTl 2tt/J ker[2lT2 -> 9Lu2] -> ker[2lr3 -» 2tt/8] -> 
cok[2lTl -> ai/J -> cok[2iT2 —• 2tc/2] —̂  cok[aTs -> 2ttf8] 

with ker[2lTi -> 2lc/i] placed in degree 0. 
Put 

d = kev[Ti -+ [/«] 

and 
wi = cok[Ti -> Ui] 

for 2 = 1,2,3. The distinguished triangle gives rise to an exact sequence 

0 -> X*(W3) -> X*(W2) -> X*(W!) -> X*(C3) -+ X*(C2) -+ X*(d) -+ 0 

which in turn gives rise to a complex 

X*(W3f -> X*(W2)r -> -ï*(Wi)r X*(C3)r -+ X*(C2)r X*(Ci)r 

with X*(Ws)r placed in degree 0. Denote by H% the i-th cohomology group of this 
complex. 

Let Xi := X*(Ti) and Yi := X*(Ui) for i = 1,2,3. There is a dual distinguished 
triangle 

[Y3 -> X3] -»• [Y2 X2] -> [Fi Xi] -+ [Y3 ->• X3}[1}. 

Put 
u = I CQULHHF, Y2 -»• X2) -»• X(F,Ki -»• 
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and for i = 1,2,3 put 

Vi = I coklH^F, Yt Xi) ->• X*(Ci)r]| 

ri;* = I kerftf1^, Y; -»• X«) -> X*(Ci)r]l 

= \H1(F,X*(Wi))\ 

(the map 
X*(W2)T -> X^ X*(Q)r 

is part of a long exact sequence of the kind described at the end of (A.l)). 

Lemma E.2.C. — There are equalities 
5 

t(A*) = T[\Hi\i~1)i 
i=0 

= U~1VÏ1V2V^1WiW21Ws. 

The first equality follows immediately from Lemma E.l.F. We get t(Am) rather 
than its inverse since we switched from homological degree i to cohomological degree 
5 — i. Now we check the second equality. There is a commutative diagram 

X*(W3)F -> X*(W2)T -> X*{W{f -> JT(3) JT(2) -» #(1) 

i | 11 11 

X*(W3)r -> X*{W2)T -» X*(^i)r X*(C3)r -» X*(C2)r -> X*(Ci)r 
where we have written H(i) as an abbreviation for 

Hl(F,Yi -» Xi). 

Apply Lemma E.l.D to the commutative diagram above (use the discrete measure 
on each group). The top row is part of the long exact sequence coming from our 
distinguished triangle and is therefore exact except at the right end, which means 
that its lvalue is 

|cok[#(2) -> i^l)]!"1 =u~1. 
The £-value of the bottom row is of course 

ni#i(-1)i-
¿=0 

The t-value of each of the first three columns is 1, and the t-values of the last three 
columns are wsv^1, w2^2~\ wiv± We conclude from Lemma E.l.D that 

5 
п 
г=0 

|#г|( 1) = и 1V11V2V31WiW21W3, 

as desired. 
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Corollary E.2.D. — Let T -» U be a complex of F-tori. Let A* denote the complex 

ker[2lT -» 2li/] -» 21T -> 21(7 -> cok[2lT Sit/] 

with ker [2lT —̂  Sit/] placed in degree 0 and use the canonical measures above to make 
A* into a measured complex. Then 

t(Am) = d/e 

where d (resp., e) is the cardinality of the kernel (resp., cokernet) of the natural map 

cok[yr ^XT] X*(C)r. 

Apply the first equality in Lemma E.2.C to the distinguished triangle 

[1 -+ U] -> [T -> U] -> [T -+ 1] -> [U -> 1]. 

E.3. Generalization of Ono's formula for r(T) 

We write 
vol(iT(A/F,r -4 U\) 

for the measure of the compact group Hl(A/F,T -4 U)i with respect to Tamagawa 
measure, and we use parallel notation in the case of a single torus T. Thus 

vol (#°(A/F,r)i) =r(T)|ker1(F,T)|, 

where r(T) denotes the Tamagawa number of T, since the group T(A)i/T(F) has 
index Iker^^T)! in H°(A/F,T)1. Ono [O] proved that 

r(r) = |ker1(F,r)|-1|ff1(F,X*(T))| 

= | ker1 (i^,T)|-11(A/F1,T)| (by duality). 

Thus Ono's result can be reformulated as the equality 

(£.3.1) vol(ff°(A/F,T)i) vol^A/F,!1))-1 - 1. 

Our next goal is to prove an analogous formula involving 

vol(iT(A/F,r 4f / ) i ) . 

Lemma E.3.A. — Let A9 denote the complex 

H°(A/F,T U H°{A/F,T) -+ H°(A/F,U) -> H\A/F,T U) • • • . 

Make A* into a measured complex by putting the Tamagawa measure on each group. 
Thent(A0) = 1. 
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We apply Lemma E.l.D to the following double complex. 

-»• ker'(F,r->-C0 -»• ker* (F,T) -»• W(F,tf) -> keri+1 (F, T -»• £/) -> 

-»• Hl(F,T^U) -> Hl{F,T) -> H*(F,U) -»• fTi+1(F,r->I/) -)• 

Hl(F,T^U) #¿(A,T) Я'(А, I/) Hi+1(A,T -> С/) 

H^A/F.T-^U) -> iï* (À/F, T) H^A/F.U) -> Hi+1(A/F,T -» t/) 

ker*+1(F,r->[7) -+ ker*+1 (F,T) -> ker*+1 (F,C7) -> ker*+2 (F,T J7) -> 

We put the discrete measure on each group in the first, second and fifth rows. We put 
Tamagawa measures on the groups in the third and fourth rows. Then by Lemma 
E.2.B (and its analog for a single torus) the lvalue of each column is 1. Therefore, by 
Lemma E.l.D the alternating product of the t-values of the rows is 1. The £-value of 
the first row is inverse to that of the fifth row, so that these two contributions cancel 
in the alternating product. The lvalue of the second row is 1 by Lemma E.l.B, and 
that of the third row is 1 by Lemma E.2.A. We conclude that the lvalue of the fourth 
row is 1, which is what we needed to prove. 

Lemma E.3.B. — Let A* denote the complex 

H°(A/F,T -> U)± -> ff°(A/F,T)i -> H°(A/F,U)i -> H^A/F.T -> U)x -> • • • . 

Make A* into a measured complex by putting the Tamagawa measure on each group. 
Then 

t(Am) = e/d, 

where d, e are as in Corollary E.2.D. 

Consider the double complex whose first row is the complex in this lemma, whose 
second row is the complex in Lemma E.3.A, and whose third row is 

ker[SlT -> fHv] -> 2lT -> Stf/ -> cok[2lT -> 2l*y] -> 1 -» 1 -> 
ker[DT Dv] —)• DT -> Du —>• cok[DT Dv] -» 1 -» • • • . 

We put Tamagawa measures on the groups in the first and second rows. We put the 
canonical measures of (E.2) (resp., discrete measures) on the real vector spaces (resp., 
discrete groups) in the third row. Clearly the lvalue of each column is 1. Therefore 
by Lemma E.l.D the alternating product of the f-values of the three rows is 1. The 
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lvalue of the second row is 1 by Lemma E.3.A; therefore the lvalue of the complex 
in this lemma is inverse to the t-value d/e (use Corollary E.2.D) of the third row. 

Lemma E.3.C. — There is an equality 

vol(#°(A/F,T -4 C/)i)voliH^A/F.T -4 U)1)-1\H2{k/F,T -4 U)x\ = e/d, 

where d, e are as in Corollary E.2.D. 

Consider once again the complex in Lemma E.3.B. It satisfies the hypotheses of 
Lemma E.l.C. Therefore the alternating product of the total masses of the groups in 
the complex is equal to e/d. Applying Ono's equality (E.3.1) to T and U, we get the 
statement of the lemma. 

The equality of Lemma E.3.C is indeed a generalization of Ono's equality, but it 
has the defect that the quantities d,e,|iJ2(A/F,T -4 U)i\ can change when T -4 U 
is replaced by a quasi-isomorphic complex V A> U1Our next result eliminates this 
defect. 

Lemma E.3.D. — There is an equality 

vol(#°(A/F,T -4 C/)i)voltf1 (A/F,T -4 U)^'1 = vw'\ 

where 

v: = \ cokiH^F.Y A l ) ^ X*(C)r}\ 

w : = I k e r ^ ^ F 4 l ) ^ X*(C)T]\ 

= \H1(F,X*(W))\. 

Let I denote 
c o k ^ F , Y 4 l ) - + X*(C)r]. 

We have two exact sequences (see (A.l)) 

1 -> H1(F,X*{W)) -»• H1 (F, Y F X*(C)r -> J -> 1 

1 cok[Yr Xr] -» H1 (F, Y A l ) ^ ker[H1(F,Y) -»• Hl(F,X)] -> 1. 

Thus we have an exact sequence 

1 -»• D -»• i?1 Hl(F,T^U) -> k e r ^ F . Y ) -> H^^X)] -> E-> I-t 1, 

where we have written D (resp., E) for the kernel (resp., cokernel) of the natural map 

cok[Yr ->Xr] ->X*(C)r. 

Since each group in the exact sequence is finite, we see that 

(£.3.2) 1 = dur1|ker[ff1(F,y) -»• ff^F, X)]|e_1t;. 

By duality the map 
H2{A/F,THl (F U) ker [i>r -> #[/] 
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can be thought of as the map 

Horn (H\F,Y A X) ,Q/Z) -> Horn (cok[Fr -> XR],Q/Z), 

and therefore 
ker^1 (F,Y) -^H^F.X)] 

is dual to 
H2(A/F,T -4 J7)i. 

Thus the equality in this lemma follows from (E.3.2) and the equality in Lemma 
E.3.C. 

Next we reformulate our results in terms of A rather than A/F. We put 

cok^T -4 U)x := cok*(F,T -4 U) D Hl(k/F,T -4 U)i. 

By the Tamagawa measure dt on 

cok* (F,T-4 [/) 
we of course mean the quotient of the Tamagawa measure on 

H\A,T Au) 
by the discrete measure on 

im[iT(F,T -4 U) -> Hl(A,T -4 U)], 

and by the Tamagawa measure on 

cok*(F,r-4t/)i (* = 0,1) 
we mean the Haar measure dt\ having the property that dtjdt\ is the canonical 
measure (see (E.2)) on 

kerplT %u] if i = 0, 
cok[aT»t/] ifi = l. 

For i = 0,1 we define Tamagawa numbers 

T\T -4 U) := vol(cok*(F,T -4 U){). 
Because the maps 

H : H°(A/F, T -4 17) -> ker[StT -> 2l[/] 

iJ : H^A/F, T-Uu)-> cok[2tT -> fHv] 

remain surjective when restricted to 

cok* (F,T -4 U) (¿ = 0,1) 

the sequences 

1 -» cok*(F,T -4 f/)i -» fP(A/F,T -4 C/)i keri+1(F,T -4 U) -> 1 
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are exact for i = 0,1, and therefore 
vol(JT(A/F,T -4 U)x) = r{(T -4 U)k(i + 1) (i = 0,1), 

where k(i) denotes 
Iker*(F,T A U)\, 

which immediately yields the following reformulation of Lemma E.3.D. 
Lemma E.3.E. — There is an equality 

r°(T -4 UMl^iT -f 4 C/)A;(2))-1 = vw'1. 
One final remark is needed. When we defined Tamagawa measures on 

JEP (A, T -4 U) and Hl (A/F, T -4 U) 
for i = 0,1 we noted that there is an alternative normalization. However this alterna
tive normalization has the effect of multiplying the measures for i = 0,1 by the same 
factor, so that the quantity 

vol(#°(A/F,T -4 U^woliH^A/F.T -4 U)^-1 
does not change, and Lemmas E.3.C, E.3.D and E.3.E remain valid. 
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