ASTÉRISQUE 257

COHOMOLOGIE, STABILISATION ET CHANGEMENT DE BASE

Jean-Pierre Labesse

Avec deux appendices:

Changement de base pour les représentations cohomologiques de certains groupes unitaires

Laurent Clozel et Jean-Pierre Labesse

Ensembles croisés et algèbre simpliciale Lawrence Breen

Société Mathématique de France 1999

Jean-Pierre Labesse

Institut de Mathématiques, UMR 7586, Théorie des Groupes,

Université Paris 7, Case 7012, 2, place Jussieu, 75251 Paris cedex 05.

 $E\text{-}mail: {\tt labesse@math.jussieu.fr}$

Laurent Clozel

Université Paris-sud, Département de Mathématiques, Bâtiment 425,

91405 Orsay Cedex.

 $E ext{-}mail: {\tt clozel@math.u-psud.fr}$

Lawrence Breen

Université Paris XIII, Institut Galilée, Avenue J.-B. Clément, 93430 Villetaneuse.

E-mail: breen@math.univ-paris13.fr

Classification mathématique par sujets (1991). — 11F70, 11F72, 11E72, 11F75, 11R34, 11R39 18G30, 22E55.

Mots clefs. — Représentations automorphes, formule des traces, changement de base, conjugaison stable, cohomologie non-abélienne, ensembles croisés.

COHOMOLOGIE, STABILISATION ET CHANGEMENT DE BASE

Jean-Pierre Labesse

suivi d'un appendice par Laurent Clozel et Jean-Pierre Labesse

et d'un appendice par Lawrence Breen

Résumé. — Dans le texte principal de ce volume nous introduisons la notion d'ensemble croisé (qui généralise celle de module croisé) et nous étudions la cohomologie galoisienne de ces objets. Ces considérations cohomologiques sont la clef de la stabilisation de tous les termes elliptiques de la formule des traces tordue. Puis nous prouvons l'existence du transfert endoscopique stable dans le cas du changement de base cyclique. Nous déduisons d'une stabilisation conditionnelle de la formule des traces tordue l'existence du changement de base faible (descente et relèvement) dans certains cas, en particulier pour les représentations automorphes, sur les groupes semisimples simplement connexes, qui sont de Steinberg en deux places finies. Un appendice co-signé avec L. Clozel, est consacré au cas de certains groupes unitaires. Dans un second appendice L. Breen replace la cohomologie des ensembles croisés dans le cadre de l'algèbre simpliciale.

Abstract (Cohomology Stabilization and Base Change). — In the main article of this volume we introduce the concept of a "crossed set" (a generalization of crossed modules) and we study the Galois cohomology of these objects. This is the key to the stabilization of all elliptic terms for the twisted trace formula. We then prove the existence of the stable transfer for cyclic base change. We deduce from a conditional stabilization of the twisted trace formula the existence of weak base change in some cases, in particular for automorphic representations on simply connected semi-simple groups which are Steinberg at two places. In an appendix by L. Clozel and myself, we study the case of certain unitary groups. In a second appendix L. Breen rephrases crossed sets in the framework of simplicial algebra.

TABLE DES MATIÈRES

Cohomologie, stabilisation et changement de base, par JP. Labesse.	1
Introduction	3
1. Préliminaires cohomologiques	9
1.1. Ensembles croisés et modules croisés	_
1.2. Cohomologie à valeurs dans un ensemble croisé	
1.3. Cohomologie galoisienne	21
1.4. Cohomologie adélique	24
1.5. Un lemme sur les tores anisotropes	27
1.6. Cohomologie abélianisée d'un groupe réductif	28
1.7. Retour sur quelques résultats de Kottwitz	37
1.8. Abélianisation de complexes de groupes réductifs	
1.9. Sous-groupes elliptiques	44
2. Conjugaison stable, intégrales orbitales et norme	49
2.1. Groupes et automorphismes	49
2.2. Restriction des scalaires et algèbres cycliques	50
2.3. La conjugaison stable	52
2.4. Norme pour le changement de base	54
2.5. Image de la norme, cas local	
2.6. Image de la norme, cas global	
2.7. Intégrales orbitales et intégrales κ -orbitales	67
3. Transfert local	71
3.1. Conjugaison au voisinage d'éléments semi-simples	71
3.2. Définition du transfert	76
3.3. Transfert aux places non-archimédiennes	78
3.4. Transfert aux places décomposées	81

 3.5. Transfert K-fini aux places archimédiennes. 3.6. Transfert et représentations des séries principales. 3.7. Transfert non-ramifié : le lemme fondamental. 3.8. Fonctions cuspidales et stabilisantes. 3.9. Transfert et représentation de Steinberg. 	
4.1. Partie elliptique de la formule des traces et applications	
Bibliographie	113
Appendices	117
A. Changement de base pour les représentations cohomologic certains groupes unitaires, par L. Clozel et JP. Labesse	
certains groupes unitaires, par L. Clozel et JP. Labesse	
certains groupes unitaires, par L. Clozel et JP. Labesse Présentation A.1. Fonctions de Lefschetz et d'Euler-Poincaré archimédiennes A.2. Sur certains groupes unitaires A.3. Comparaison des formules de traces A.4. Un théorème de Kottwitz A.5. Le théorème principal	119

COHOMOLOGIE, STABILISATION ET CHANGEMENT DE BASE

J.-P. Labesse

INTRODUCTION

Motivations

Soit G_0 un groupe réductif connexe sur un corps de nombres F. Soit H la forme intérieure de G_0 quasi-déployée. Soit E une algèbre cyclique de degré ℓ sur F. Soit G la restriction des scalaires à la Weil de E à F de G_0 :

$$G = \operatorname{Res}_{E/F} G_0$$
.

Le résultat principal est un théorème de changement de base faible entre représentations automorphes pour H et G. Nous traiterons le cas d'un groupe réductif quelconque avec toutefois des limitations techniques : nous serons contraints d'imposer des hypothèses de cuspidalité et de stabilité qui simplifient suffisamment la comparaison des formules de traces. Nous pouvons par exemple prouver l'existence de fonctorialité par changement de base cyclique entre représentations automorphes cuspidales qui sont de Steinberg en deux places finies pour les groupes semi-simples et simplement connexes arbitraires.

Les restrictions que nous imposons sont, pour l'essentiel, le reflet de notre mauvaise connaissance du transfert endoscopique en général : nous ne disposons du lemme fondamental que pour le « changement de base stable ». La stabilisation complète de la formule des traces pose aussi des problèmes non résolus. Mais, même dans le cadre simplifié où nous nous plaçons, de longs préparatifs techniques sont nécessaires. Je vais tenter d'expliquer pourquoi.

Considérations techniques

Nous utilisons une méthode désormais classique : la comparaison de deux formules des traces. Il y a sur ce sujet une littérature abondante lorsque G_0 est une forme intérieure ou extérieure de GL(n); on citera, sans prétendre être exhaustif : [JL], [Lan1], [DKV], [AC], [Rog], [Lab3], [Clo3], [Clo4].

Pour un groupe réductif connexe arbitraire, on dispose déjà de nombreux résultats techniques. Le transfert des fonctions de G à H sur les corps locaux au voisinage d'éléments réguliers est facile et classique. Par ailleurs, on dispose aussi depuis longtemps du lemme fondamental 'stable' pour l'élément neutre de l'algèbre de Hecke aux places non ramifiées dû à Kottwitz [Ko3]. On dispose enfin de la stabilisation de la formule des traces tordue pour les éléments elliptiques réguliers, due à Kottwitz et Shelstad ([KS]). Ceci fournit, pour certaines paires de fonctions (ϕ, f) qui se correspondent par le transfert, et pour lesquelles les groupes endoscopiques autres que H donnent une contribution nulle, une identité de formule des traces

$$I^G(\phi) = c I^H(f) .$$

L'annulation des contributions des autres groupes endoscopiques peut être obtenue en faisant appel à une technique également due à Kottwitz [Ko6] : on utilise comme fonctions en certaines places finies des pseudo-coefficients de représentations de Steinberg. Ces techniques ont, par exemple, été utilisées dans [Clo2] et [Lab1] pour la preuve (incomplète, cf. infra) du lemme fondamental pour le changement de base.

Mais nous allons voir que, pour le théorème de changement de base que nous voulons établir, les techniques évoquées ci-dessus semblent insuffisantes, principalement parce qu'elles ne donnent pas assez d'informations sur le lieu singulier. Il a été observé dans [Lab3] que, pour des groupes autres que GL(n), une identité de formule des traces limitée aux paires de fonctions à support régulier en certaines places, semble insuffisante pour établir le changement de base : il manque des informations supplémentaires du type rigidité ou finitude à priori (cf. [Lab3, VI.6.2]), dont on dispose pour GL(n), mais qui sont pour l'instant hors de portée pour les autre groupes. Ces informations supplémentaires sont utiles pour les raisons suivantes.

- (a) Pour prouver l'existence de relèvements, il faut par exemple établir, qu'après « séparation des caractères infinitésimaux », le terme spectral de la formule des traces pour H ne s'annule pas identiquement sur la famille de fonctions f considérées. Sans résultat de finitude a priori, des arguments de positivité, faisant usage de fonctions de type positif, semblent indispensables.
- (b) De même, pour la descente automorphe on doit prouver la non annulation de la formule des traces tordue pour G, après séparation des caractères infinitésimaux. Ici l'argument est l'indépendance linéaire des familles finies de caractères. Sans résultat de finitude a priori, là encore il n'est pas clair que l'on puisse se contenter des fonctions à support régulier.

Pour parer l'objection (a) nous travaillerons avec des fonctions de type positif approchant la mesure de Dirac, ce qui, du côté spectral, donne des termes tous positifs et assure la non nullité. Il conviendra donc de prouver le transfert inverse au moins pour des fonctions à support petit au voisinage de l'origine. La difficulté (b) est

surmontée si on dispose du transfert endoscopique pour des fonctions de support compact arbitraire, ce qui sera établi.

L'utilisation des fonctions élémentaires régulières en une place non ramifiée permet dans une certaine mesure de se contenter de la stabilisation des éléments réguliers dans la formule des traces. C'est le point de vue adopté dans [Lab1] et [Lab3]. Mais cela suppose de se limiter aux groupes de type adjoint. Pour éviter cette restriction, peu naturelle, nous avons besoin de la stabilisation de tous les termes elliptiques de la formule des traces tordue. Comme nous l'avons déjà rappelé, on dispose, dans le cas tordu, de la stabilisation des termes elliptiques fortement réguliers établie par Kottwitz et Shelstad dans [KS]. Cependant, les techniques utilisées ne s'étendent pas immédiatement au cas singulier, entre autre parce qu'elles reposent sur des propriétés de l'hypercohomologie des complexes de tores à deux termes $[T \to U]$. Or, on verra que, pour traiter le cas général, des complexes à trois termes $[S \to T \to U]$ sont indispensables. Il était aussi utile de systématiser des considérations de cohomologie non abélienne. Cela nous a contraint à reprendre l'ensemble de la stabilisation.

Structure de l'article

Un premier chapitre est consacré à des sorites cohomologiques. Nous espérons convaincre le lecteur que le formalisme cohomologique que nous introduisons est le cadre naturel de l'étude géométrique de l'endoscopie, c'est-à-dire de la conjugaison stable. La notion d'abélianisation, dégagée par Borovoi dans [Bo1], était déjà présente dans les travaux de Deligne [D] et chez Kottwitz ([Ko4] et [Ko5]), quoique sous un déguisement peu transparent. Cette notion s'avère très commode pour traiter de questions relatives à la cohomologie des groupes réductifs généraux tout en gardant le bénéfice de théorèmes sur les groupes semi-simples et simplement connexes, comme par exemple ceux de Kneser. La méthode de construction la plus naturelle, et la plus générale, fait appel au module croisé

$$[G_{SC} \to G]$$
.

L'utilisation de ce module croisé m'avait été suggérée par Breen dès 1990. Cette approche a d'ailleurs été choisie, sous l'influence de Breen, dans [Bo2] et reprise dans [Bo3] et [Mi2]. Mais l'abélianisation de la cohomologie d'un groupe réductif ne suffit pas à notre propos car, par exemple, la conjugaison stable fait intervenir des complexes de groupes réductifs et, comme nous le verrons, les caractères endoscopiques sont les caractères des groupes de cohomologie abélianisée de ces complexes de groupes. Pour définir de tels objets nous avons été amenés à introduire une variante à paramètre de la notion de module croisé que nous appellerons ensemble croisé (les ensembles croisés sont des 2-groupoïdes d'un type particulier) et à étudier la cohomologie galoisienne de ces objets. Cela permettra, aux paragraphes suivants, de donner des définitions naturelles des groupes et ensembles intervenant dans la stabilisation des termes elliptiques de la formule des traces tordue, et des preuves simples de leurs propriétés,

en évitant presque totalement de faire appel aux dualités de Poitou-Tate et de Tate-Nakayama (qui jouent un rôle essentiel chez Langlands dans [Lan2] et chez Kottwitz qui définissait les abélianisés par une double dualité, alors qu'ici nous n'invoquerons Tate-Nakayama qu'en deux occasions dont l'une sert simplement à faire la comparaison avec les résultats de Kottwitz!) et limitera le recours aux z-extensions.

Dans un second chapitre nous étudions la conjugaison stable et la norme pour le changement de base. Nous rappelons tout d'abord la définition de la norme et le théorème d'existence qui est dû à Kottwitz [Ko1]. Nous établissons ensuite la proposition 2.5.2 qui, quoique pour l'essentiel connue de Kottwitz (communication orale), est publiée pour la première fois ici. Cette proposition montre que, sur un corps local, les éléments elliptiques sont des normes pourvu que leur image dans l'abélianisé en soit une. Nous donnons ensuite la construction de l'obstruction qui permet de tester si un élément adélique qui est localement partout une norme est une norme 'globale' i.e. la norme d'un élément rationnel. Nous suivons pour cela la méthode utilisée par Kottwitz dans [Ko5] pour l'endoscopie ordinaire, que nous généralisons au cas du changement de base. L'utilisation des abélianisés pour des complexes de groupes se révèle essentielle. Nous définissons enfin les intégrales κ -orbitales.

Dans un troisième chapitre nous étudions le transfert des fonctions lisses sur G(F)où F est un corps local, vers H(F). Le résultat principal de cette partie est la preuve de l'existence de ce transfert (3.3.1), ainsi que du transfert réciproque pour les fonctions à support assez petit au voisinage de l'origine (3.3.2). Cette preuve repose, pour les corps non-archimédiens, sur la méthode de descente aux centralisateurs, basée sur le fait suivant (proposition 3.1.7): les intégrales orbitales stables pour une fonction de support petit au voisinage d'un élément semi-simple sont celles d'une fonction sur le centralisateur de cet élément, au voisinage de l'identité. Comme les centralisateurs d'éléments qui se correspondent via la norme sont des formes intérieures d'un même groupe réductif, on invoque alors l'existence du transfert entre formes intérieures dû à Waldspurger pour les groupes p-adiques. Pour les corps archimédiens le résultat de descente 3.1.7 est aussi valable, mais ce type de technique ne respecte pas la K-finitude dont nous aurons besoin pour séparer les caractères infinitésimaux au moyen de multiplicateurs d'Arthur. Nous déduirons le transfert K-fini aux places archimédiennes des théorèmes de Paley-Wiener scalaires dus à Clozel et Delorme, compte tenu de travaux antérieurs de Shelstad et de Clozel. Nous montrons aussi comment contrôler les séries principales non-ramifiées même dans le cas d'une extension ramifiée. La proposition 2.5.2 permet de vérifier que la représentation de Steinberg a pour changement de base la représentation de Steinberg. Elle permet aussi de compléter la preuve du lemme fondamental pour le changement de base (proposition 3.7.2).

Dans un quatrième chapitre nous étudions la stabilisation de la formule des traces tordue. La stabilisation complète n'est pas connue en général, mais une stabilisation partielle des termes géométriques a été établie dans divers cas particuliers : pour les termes elliptiques réguliers de la formule des traces ordinaire (non tordue) la stabilisation est due à Langlands [Lan2] et a été étendue à tous les éléments elliptiques par Kottwitz dans [Ko5]; pour la formule des traces tordue la stabilisation des éléments fortement réguliers est due à Kottwitz et Shelstad [KS]. Nous effectuons la stabilisation de tous les termes elliptiques de la formule des traces tordue dans le cas du changement de base. Toutefois nous n'achevons la stabilisation de la formule des traces que sous des hypothèses impliquant que seuls les termes elliptiques contribuent, et que seul intervienne le groupe endoscopique H qui est attaché au caractère endoscopique trivial $\kappa = 1$. Pour cela, on impose que les fonctions annulent les intégrales orbitales des éléments non elliptiques ainsi que toutes les intégrales κ -orbitales si $\kappa \neq 1$. Nous exploitons ensuite l'identité de formules des traces issue de la stabilisation. On obtient une identité spectrale qui permet d'établir dans certains cas l'existence de fonctorialités. Nous n'énoncerons dans cette introduction les résultats que dans un cas simple; nous renvoyons au corps de l'article pour des énoncés plus généraux faisant intervenir un ensemble de places (G^*, H) -essentiel. Si G_0 est semi-simple et simplement connexe, et si nous supposons que les représentations sont de Steinberg en deux places finies, nous obtiendrons en 4.6.1, un résultat de descente de G à H par changement de base faible (i.e. compatible presque partout avec le changement de base local). Si de plus le groupe G_0 est quasi-déployé nous prouverons en 4.6.2 un théorème de relèvement de H à G. Ce résultat, qui était la motivation première pour la rédaction de cet article, permet la généralisation, à tous les groupes quasi-simples, simplement connexes et déployés, du théorème de [BLS] sur l'existence de cohomologie cuspidale (4.7.1).

Commentaires et perspectives

De nombreuses versions préliminaires de ce texte ont circulé sous le titre : « Changement de base conditionnel pour les groupes réductifs ». Le texte s'est progressivement enrichi, et les centres d'intérêts principaux se sont déplacés au point qu'il a paru souhaitable de changer le titre.

Nous nous sommes efforcés de traiter dans les premières sections la situation la plus générale, et en particulier nous avons tenté d'introduire les objets cohomologiques dans la généralité qui semble nécessaire pour la stabilisation de tous les termes elliptiques de la formule des traces tordue par un automorphisme presque-semi-simple arbitraire. C'est la raison pour laquelle nous avons introduit la notion de groupe réductif quasi-connexe; en effet, si les centralisateurs « stables » ne sont pas toujours connexes ils sont au moins quasi-connexes. Les groupes quasi-connexes ne sont pas utiles pour le cas du changement de base car, dans ce cas, les centralisateurs stables sont connexes. Nous espérons revenir prochainement sur le cas général.

Nous avons progressivement abandonné cette généralité; en particulier, la définition de la norme n'a été donnée que pour un seul groupe endoscopique dans le cadre du

changement de base, et a fortiori dans les applications. Nous n'avons pas tenté de faire intervenir les autres groupes endoscopiques (ni d'autres automorphismes que ceux issus du changement de base cyclique), car cela supposerait, pour être utilisable, de disposer pour de telles situations endoscopiques du lemme fondamental ce qui, en général, semble pour l'instant hors de portée.

Remerciements

Je tiens à remercier Lawrence Breen, Laurent Clozel, Michael Harris, Guy Henniart, Robert Kottwitz et Richard Taylor pour leur remarques et suggestions, ainsi que Günter Harder et Christian Kaiser pour m'avoir signalé une erreur dans une version préliminaire de cet article, et enfin le rapporteur qui m'a permis de corriger, outre quelques lapsus fâcheux, une définition incorrecte de la cohomologie adélique pour les groupes réductifs quasi-connexes non connexes.

CHAPITRE 1

PRÉLIMINAIRES COHOMOLOGIQUES

On peut associer aux groupes réductifs connexes, de façon fonctorielle, des groupes de cohomologie galoisienne « abélianisée ». Les groupes de cohomologie abélianisée d'un groupe G réductif connexe ont été introduits par divers auteurs ([D], [Bo1], [Mi2]). Comme cela avait déjà été observé par Borovoi, on retrouve ainsi, de façon directe, des constructions faites par Kottwitz par double dualité dans [Ko4] et [Ko5] et qui sont essentielles dans l'étude de la conjugaison stable. La cohomologie abélianisée peut se construire au moyen de l'hypercohomologie à valeurs dans des complexes de longueur 1, d'un type particulier, appelés modules croisés. Le concept de module croisé, dû à J.H.C. Whitehead, est un cas particulier d'objets étudiés notamment par Breen (voir par exemple [Br1]) Conduché et Loday. Cela ne sera pas suffisant pour nos besoins; par exemple pour abélianiser la cohomologie de certains complexes de groupes réductifs, nous sommes amenés à introduire des objets, que nous baptiserons ensembles croisés, qui ne semblent pas avoir été décrits dans la littérature. La structure de module croisé apparaîtra comme un cas particulier de la notion d'ensemble croisé.

Dans toute la suite, sauf mention expresse du contraire, les complexes seront placés en degrés homologiques positifs ou nuls :

$$\cdots \to X_2 \to X_1 \to X_0$$

Nous noterons de la même façon la cohomologie et l'hypercohomologie en considérant les objets comme des complexes de longueur 0.

1.1. Ensembles croisés et modules croisés

Soient A un groupe et X un ensemble topologiques. On appelle action de A sur X la donnée d'une application continue

$$\begin{array}{cccc} A\times X & \to & X \\ (a,x) & \mapsto & \lambda(a)*x \ , \end{array}$$

qui définit un homomorphisme

$$A \to \mathrm{Bij}(X)$$

du groupe A dans le groupe des bijections de X sur lui-même. On utilisera souvent le symbole

$$A \Rightarrow X$$

pour représenter une action de A sur X. On notera A_x le stabilisateur de $x \in X$.

Dans la suite les actions $A \Rightarrow X$ seront souvent de la forme suivante : l'ensemble X est un groupe, on dispose d'un couple d'homomorphismes (f,g) de A dans X et on définit une action λ par

$$\lambda(a) * x = f(a) x g(a)^{-1}.$$

Par exemple, lorsque A = X agit sur lui-même par conjugaison on a $f = g = id_X$. Lorsque l'action de A sur X est définie au moyen de la translation à gauche via un homomorphisme f on écrira parfois $A \to X$ au lieu de $A \Rightarrow X$. C'est le cas particulier de l'action définie au moyen d'un couple (f, g) avec pour g l'homomorphisme trivial.

Définition 1.1.1. — On appellera ensemble croisé la donnée d'un sextuple

$$\mathfrak{X} = (X, A, B, \lambda, \mu, \rho)$$

formé d'un ensemble X (appelé base de l'ensemble croisé), d'un groupe A (appelé groupe de l'ensemble croisé), d'un ensemble B fibré en groupes au dessus de X (dont les fibres seront appelées fibres de l'ensemble croisé) munis de topologies et de trois flèches continues

$$\lambda: A \times X \to X$$
, $\mu: A \times B \to B$ et $\rho: B \to A \times X$

telles que

- (i) $A \times X \longrightarrow X$ définit une action $(a, x) \mapsto \lambda(a) * x$ de A sur X.
- (ii) $A \times B \to B$ définit une action $(a, b) \mapsto \mu(a) * b$ de A sur B compatible avec la structure de fibré en groupes de B, c'est-à-dire que $\mu(a)$ définit un isomorphisme de B_x sur $B_{\lambda(a)*x}$.
- (iii) L'application $\rho: B \to A \times X$ est un morphisme de fibrés en groupes au dessus de X (on munit $A \times X$ de la structure de fibré trivial) : la restriction ρ_x de ρ à la fibre B_x de B au dessus de $x \in X$ (appelée application fibre), est un homomorphisme de B_x dans A. On suppose de plus que l'image de ρ_x est incluse dans le stabilisateur A_x de x:

$$\rho_x(B_x) \subset A_x \subset A$$
.

(iv) On impose enfin les compatibilités suivantes : pour b et β dans B_x on demande que

$$\mu(\rho_x(\beta)) * b = \mathrm{Ad}_{B_x}(\beta) b$$

et pour $\alpha \in A$

$$\rho_{\lambda(\alpha)x}(\mu(\alpha) * b) = \operatorname{Ad}_A(\alpha) \rho_x(b)$$
.

Il résulte de (iv) que $\rho_x(B_x)$ est un sous-groupe normal de A_x et que $\ker \rho_x$, le noyau de ρ_x , est un sous-groupe du centre de B_x . On écrira souvent

$$\mathfrak{X} = [B \to A \times X \to X]$$

mais on prendra garde que dans cette notation l'action μ est sous-entendue. Lorsque le fibré B est un fibré trivial :

$$B = D \times X$$

au lieu de

$$[D \times X \to A \times X \to X]$$

on utilisera la notation

$$[D \xrightarrow{X} A \Rightarrow X]$$

qui se rapproche de la notation usuelle pour les complexes de longueur 2, et rappelle que pour tout x l'image de D est dans le « noyau » de l'action de A sur $X:\rho_x(D)$ agit trivialement sur x. L'indice X sous la flèche rappelle qu'en général l'application ρ_x dépend du point x dans la base. Lorsque de plus l'application fibre ρ_x est indépendante de x:

$$\rho = \rho_0 \times \mathrm{id}_X$$

on utilisera la notation

$$[D \to A \Rightarrow X]$$
.

On appellera « ensemble croisé en groupes » un ensemble croisé à fibré trivial dont la base X est un groupe, et tel que l'action du groupe A sur la base soit définie par un couple d'homomorphismes (f,g) de A dans X.

Remarque. — Nous avons adopté l'expression « ensemble croisé » faute d'une meilleure idée. Elle ne semble pas recouvrir de terminologie déjà usitée. Il s'agit d'un concept proche de celui, classique, de « module croisé » rappelé ci-dessous ; l'expression « complexe croisé » que nous avions utilisée dans une version antérieure de ce texte a été abandonnée car elle est déjà présente dans la littérature avec un contenu différent.

Soit

$$\mathfrak{X} = [B \to A \times X \to X]$$

un ensemble croisé. L'ensemble d'homotopie en degré 0 pour $\mathfrak X$ est l'ensemble des orbites de A dans X :

$$\pi_0(\mathfrak{X}) := \lambda(A) \backslash X$$
.

Les groupes d'homotopie en degré 1 sont les groupes

$$\pi_1(\mathfrak{X},x) := \rho_x(B_x) \backslash A_x$$
.

Les groupes d'homotopie en degré 2 sont les groupes abéliens

$$\pi_2(\mathfrak{X}, x) := \ker(\rho_x)$$
.

On définit de façon évidente les morphismes d'ensembles croisés. On appelle quasiisomorphisme un morphisme qui induit des isomorphismes sur les ensembles et groupes d'homotopie, pour les points de base qui se correspondent.

Par exemple, si X=A=G est un groupe, l'action de G sur lui-même étant la conjugaison, et B étant l'union disjointe des centralisateurs G^x des x dans G, l'ensemble croisé

$$[\coprod_{x \in G} G^x \to G \times G \to G]$$

ainsi défini, est quasi-isomorphe à l'ensemble croisé

$$[1 \rightarrow 1 \rightarrow \mathcal{C}]$$

concentré en degré 0, défini par l'ensemble \mathcal{C} des classes de conjugaison dans G. Un module croisé (cf. [Br1], [Bo3], ou [Mi2]) est un petit complexe de groupes

$$[B \to A]$$

où B est muni d'une action de A, qui donne naissance, par décalage, à un ensemble croisé en prenant pour base l'ensemble réduit à un point :

$$[B \rightarrow A \rightarrow \{ pt \}]$$
.

Dans un ensemble croisé, pour chaque $x \in X$, le petit complexe

$$[B_x \to A_x]$$

est un module croisé.

Certains des modules croisés $[B \to A]$ que nous rencontrerons seront du type très particulier suivant : l'application ρ de B dans A envoie le centre Z_B de B dans le centre Z_A de A et, par passage au quotient, induit un isomorphisme $\dot{\rho}$ entre groupes d'automorphismes intérieurs

$$\dot{\rho}: \operatorname{Int}(B) \to \operatorname{Int}(A)$$
;

l'action de A sur B est définie en inversant cette flèche. On a un quasi-isomorphisme :

$$[Z_B \to Z_A] \to [B \to A]$$
.

De tels modules croisés seront dits super-stables ; ils sont en particulier stables au sens de [Co].

Les morphismes de modules croisés permettent de définir des ensembles croisés comme suit : Soient $X,\,Y,\,C$ et D des groupes avec des actions ξ de X sur $Y,\,\nu$ de C sur D et des morphismes

$$p_X: Y \to X$$
 et $p_C: D \to C$

définissant deux modules croisés

$$\mathfrak{M}_0 = [Y \to X]$$
 et $\mathfrak{M}_1 = [D \to C]$.

On suppose donné une paire de morphismes (f,\tilde{f}) donnant naissance à un diagramme commutatif :

$$\begin{array}{ccc} D & \xrightarrow{\tilde{f}} & Y \\ \downarrow p_C & & \downarrow p_X \\ C & \xrightarrow{f} & X \end{array}$$

qui entrelace les actions de C sur D et de X sur Y, c'est-à-dire que la paire (f, \tilde{f}) définit un morphisme de modules croisés

$$\mathfrak{M}_1 \to \mathfrak{M}_0$$
.

L'action de X sur Y composée avec f définit une action de C sur Y; on note A le groupe produit semi-direct :

$$A = C \ltimes Y$$

$$(c, y) = (c, 1)(1, y) = (1, \xi(f(c)) * y)(c, 1).$$

Supposons que l'on dispose d'un autre diagramme commutatif

$$\begin{array}{ccc}
D & \xrightarrow{\tilde{g}} & Y \\
\downarrow p_C & & \downarrow p_X \\
C & \xrightarrow{g} & X
\end{array}$$

définissant aussi un morphisme (g, \tilde{g}) de modules croisés. On définit des actions de A sur X et sur $B = D \times X$ en posant, pour $x \in X, y \in Y, c \in C$ et $d \in D$:

$$\lambda(c,y) * x = f(c) p_X(y) x g(c)^{-1}$$
 et $\mu((c,y)) * (d,x) = (\nu(c) * d, \lambda(c,y) * x)$

et pour chaque x une flèche ρ_x de B_x dans A:

$$\rho_x(d) = (p_C(d), r_x(d))$$
 avec $r_x(d) = \tilde{f}(d)^{-1} \cdot \xi(x) * \tilde{g}(d)$.

On voit que

$$\lambda(\rho_x(d)) * x = x$$

et comme

$$r_x(d_1d_2) = \tilde{f}(d_1d_2)^{-1} \cdot \xi(x) * \tilde{g}(d_1d_2) = \tilde{f}(d_2)^{-1} \cdot r_x(d_1) \cdot \tilde{f}(d_2) \cdot r_x(d_2)$$

soit encore

$$r_x(d_1d_2) = \xi(f(p_C(d))) * r_x(d_1) \cdot r_x(d_2)$$

on voit que ρ_x est un homomorphisme. On laissera au lecteur le soin de vérifier les compatibilités entre μ et les actions adjointes. On a ainsi défini un ensemble croisé :

$$\mathfrak{X} = [D \xrightarrow{X} A \Rightarrow X]$$

que nous noterons aussi

$$[\mathfrak{M}_1 \Rightarrow \mathfrak{M}_0]$$
.

On peut décrire l'homotopie de \mathfrak{X} au moyen de celle des deux modules croisés. L'ensemble $\pi_0(\mathfrak{X})$ est le quotient de $\pi_0(\mathfrak{M}_0)$ sous l'action de $\pi_0(\mathfrak{M}_1)$ définie par f et g.

Considérons $x \in X$. Notons $\pi_0(\mathfrak{M}_1)_x$ le stabilisateur de l'image de x dans $\pi_0(\mathfrak{M}_0)$, sous l'action de $\pi_0(\mathfrak{M}_1)$. Le groupe $\pi_1(\mathfrak{X}, x)$ s'insère dans une suite exacte :

$$1 \to \pi_1(\mathfrak{M}_0, x) \to \pi_1(\mathfrak{X}, x) \to \pi_0(\mathfrak{M}_1)_x \to 1$$

Enfin, soit

$$\overline{r}_x:\pi_1(\mathfrak{M}_1,1)\to\pi_1(\mathfrak{M}_0,1)$$

la restriction de l'application r_x à $\pi_1(\mathfrak{M}_1,1)$; c'est un homomorphisme et

$$\pi_2(\mathfrak{X},x) = \ker \overline{r}_x$$
.

Lemme 1.1.2. — Supposons que l'on dispose de deux modules croisés \mathfrak{M}'_0 et \mathfrak{M}'_1 , d'un ensemble croisé

$$\mathfrak{X}' = [\mathfrak{M}'_1 \Rightarrow \mathfrak{M}'_0]$$

comme ci-dessus, et de morphismes de modules croisés

$$\mathfrak{M}_1 \to \mathfrak{M}_1', \qquad \mathfrak{M}_0 \to \mathfrak{M}_0'$$

induisant un morphisme d'ensemble croisé :

$$\mathfrak{X} \to \mathfrak{X}'$$
.

Si les deux morphismes de modules croisés ci-dessus sont des quasi-isomorphismes alors les ensembles croisés $\mathfrak X$ et $\mathfrak X'$ sont quasi-isomorphes.

Démonstration. — C'est une conséquence immédiate de la description de l'homotopie de \mathfrak{X} en terme de celle des \mathfrak{M}_i .

Remarque. — On prendra garde au fait suivant : les modules croisés super-stables, sont des ensembles croisés dont l'homotopie est abélienne, mais un morphisme de modules croisés super-stables, définit un ensemble croisé dont l'homotopie n'est pas nécessairement abélienne comme le montre l'exemple ci-dessous. On se place sur un corps algébriquement clos de caractéristique zéro. Le module croisé

$$\mathfrak{M}_0 = [SL(2) \to PGL(2)]$$

est super-stable : il est quasi-isomorphe à

$$[\mu_2 \to 1]$$

où μ_2 est le groupe des racines carrées de 1. Le module croisé

$$\mathfrak{M}_1 = [1 \to C]$$
 avec $C = \mu_2 \times \mu_2$

est évidemment super-stable. On définit un homomorphisme

$$\phi: C \to PGL(2)$$

en posant

$$\phi(-1,1) \equiv \begin{pmatrix} -\lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
 et $\phi(1,-1) \equiv \begin{pmatrix} 0 & -\lambda' \\ \lambda' & 0 \end{pmatrix}$

les congruences étant modulo le centre de GL(2). On considère l'ensemble croisé

$$\mathfrak{X} = [1 \to C \times SL(2) \Rightarrow PGL(2)] = [\mathfrak{M}_1 \to \mathfrak{M}_0].$$

Le groupe $\pi_1(\mathfrak{X}, 1)$, qui est l'image réciproque de $\phi(C)$ dans SL(2), est un groupe d'ordre 8 non abélien extension centrale de C par μ_2 :

$$1 \to \mu_2 \to \pi_1(\mathfrak{X}, 1) \to C \to 1$$
.

1.2. Cohomologie à valeurs dans un ensemble croisé

On considère maintenant un ensemble croisé

$$\mathfrak{X} = [B {\rightarrow} A \times X \to X]$$

muni d'une action continue d'un groupe Γ , c'est-à-dire que l'ensemble de base X, le groupe A et le fibré B sont munis d'une action continue de Γ , compatible aux structures de groupes sur A, de fibré en groupes sur B et qui commute aux diverses flèches. Les formules que nous allons donner, définissant les cocycles en cohomologie galoisienne pour les ensembles croisés, ne surprendront pas les spécialistes de cohomologie non abélienne : elles généralisent les formules utilisées pour définir ce qu'il était convenu d'appeler le \mathbf{H}^2 non abélien (cf. par exemple [Spr]). Elles sont désormais classiques pour les modules croisés ([Bo3] [Mi2]).

On appelle 0-cochaîne à valeurs dans cet ensemble croisé, un triplet de cochaînes continues (x, a, b) à valeurs dans X, A et B_x , en degrés 0, 1 et 2 respectivement. On dit qu'une 0-cochaîne (x, a, b) est un 0-cocycle si pour tout triplet σ , τ et $\nu \in \Gamma$:

$$\lambda(a_{\sigma}) * \sigma(x) = x$$

$$\rho_x(b_{\sigma,\tau}) = \partial a_{\sigma,\tau} \quad \text{où} \quad \partial a_{\sigma,\tau} := a_{\sigma} \cdot \sigma(a_{\tau}) \cdot a_{\sigma\tau}^{-1}$$

et

$$\sigma_{\mu(a)}(b_{\tau,\nu}) \cdot b_{\sigma,\tau\nu} = b_{\sigma,\tau} \cdot b_{\sigma\tau,\nu}$$
 où $\sigma_{\mu(a)}(b) := \mu(a_{\sigma}) * \sigma(b)$.

Considérons une cochaîne (x, a, b) et un couple (α, β) formé d'une 0-cochaîne α à valeurs dans A et d'une 1-cochaîne β à valeurs dans B_x ; on note

$$\xi(\alpha,\beta)*(x,a,b)$$

la cochaîne (x', a', b') définie par

$$x' = \lambda(\alpha) * x, \qquad a'_{\sigma} = \alpha \left(\rho_x(\beta_{\sigma}) a_{\sigma}\right) \sigma(\alpha)^{-1}$$

et

$$b'_{\sigma,\tau} = \mu(\alpha) * (\beta_{\sigma} \, \sigma_{\mu(a)}(\beta_{\tau}) \, b_{\sigma,\tau} \, \beta_{\sigma\tau}^{-1}) .$$

On dira que deux cochaînes (x, a, b) et (x', a', b') sont cohomologues si il existe un couple (α, β) avec

$$\xi(\alpha, \beta) * (x, a, b) = (x', a', b').$$

Lemme 1.2.1. — C'est une relation d'équivalence dans l'ensemble des 0-cocycles.

Démonstration. — On observe tout d'abord que

$$\xi(\alpha, \beta) = \xi(\alpha, 1)\xi(1, \beta) = \xi(1, \mu(\alpha) * \beta)\xi(\alpha, 1).$$

Il est clair que l'action des couples du type $(\alpha, 1)$ est une action du groupe A. Pour x fixé, on vérifie que l'action des couples du type $(1, \beta)$ est une action du groupe des 1-cochaînes à valeurs dans B_x ; en effet, si

$$b'_{\sigma,\tau} = \beta_{\sigma} \, \sigma_{\mu(a)}(\beta_{\tau}) \, b_{\sigma,\tau} \, \beta_{\sigma\tau}^{-1}$$

et si

$$b_{\sigma,\tau}^{\prime\prime} = \beta_{\sigma}^{\prime} \, \sigma_{\mu(\beta a)}(\beta_{\tau}^{\prime}) \, b_{\sigma,\tau}^{\prime} \, {\beta_{\sigma\tau}^{\prime}}^{-1}$$

alors

$$b_{\sigma,\tau}^{\prime\prime} = \beta_{\sigma}^{\prime} (\beta_{\sigma} \, \sigma_{\mu(a)}(\beta_{\tau}^{\prime}) \, \beta_{\sigma}^{-1}) (\beta_{\sigma} \, \sigma_{\mu(a)}(\beta_{\tau}) \, b_{\sigma,\tau} \, \beta_{\sigma\tau}^{-1}) \, {\beta_{\sigma\tau}^{\prime}}^{-1}$$

et donc

$$b_{\sigma,\tau}^{\prime\prime} = (\beta_{\sigma}^{\prime}\beta_{\sigma})\,\sigma_{\mu(a)}(\beta_{\tau}^{\prime}\beta_{\tau})\,b_{\sigma,\tau}\,(\beta_{\sigma\tau}^{\prime}\beta_{\sigma\tau})^{-1}\,.$$

On en déduit que c'est une relation d'équivalence sur l'ensemble des 0-cochaînes. Pour montrer qu'elle préserve les cocycles il suffit de le prouver pour l'action des couples du type $(\alpha, 1)$ et $(1, \beta)$. La vérification de ce fait est une suite de calculs sans surprise. Voici, à titre d'exemple, le calcul le moins immédiat. On suppose que

$$b'_{\sigma,\tau} = \beta_{\sigma} \, \sigma_{\mu(a)}(\beta_{\tau}) \, b_{\sigma,\tau} \, \beta_{\sigma\tau}^{-1}$$

et on veut vérifier que

$$\sigma_{\mu(a')}(b'_{\tau,\nu}) \cdot b'_{\sigma,\tau\nu} = b'_{\sigma,\tau} \cdot b'_{\sigma\tau,\nu}$$

avec $a'_{\sigma} = \rho_x(\beta_{\sigma}) a_{\sigma}$. On voit que

$$\sigma_{\mu(a')}(b'_{\tau,\nu}) \cdot b'_{\sigma,\tau\nu} = \beta_{\sigma} \, \sigma_{\mu(a)}(\beta_{\tau}) \left[\sigma_{\mu(a)} \tau_{\mu(a)}(\beta_{\nu}) \right] \left[\sigma_{\mu(a)}(b_{\tau,\nu}) \, b_{\sigma,\tau\nu} \right] \beta_{\sigma\tau\nu}^{-1}$$

Par ailleurs

$$b'_{\sigma,\tau} \ b'_{\sigma\tau,\nu} = \beta_{\sigma} \ \sigma_{\mu(a)}(\beta_{\tau}) \ b_{\sigma,\tau} \left[(\sigma\tau)_{\mu(a)}(\beta_{\nu}) \right] b_{\sigma,\tau\nu} \ \beta_{\sigma\tau\nu}^{-1} \ .$$

Comme

$$\sigma_{\mu(a)}(b_{\tau,\nu}) \cdot b_{\sigma,\tau\nu} = b_{\sigma,\tau} \cdot b_{\sigma\tau,\nu} \,,$$

il suffit de prouver que pour tout $\beta \in B$

$$\sigma_{\mu(a)} \tau_{\mu(a)}(\beta) = \operatorname{Ad}(b_{\sigma,\tau}) * [(\sigma \tau)_{\mu(a)}(\beta)]$$

ce qui revient à montrer que

$$Ad(b_{\sigma,\tau}) = \mu(\partial a_{\sigma,\tau})$$

mais ceci résulte de ce que $\rho_x(b) = \partial a$.

On définit l'ensemble de 0-cohomologie

$$\mathbf{H}^0(\Gamma; \mathfrak{X}) = \mathbf{H}^0(\Gamma; B \to A \times X \to X)$$

comme le quotient de l'ensemble des 0-cocycles, par cette relation d'équivalence. On observera que l'on peut normaliser les cocycles représentant une classe de cohomologie.

Lorsque (X, e) est un Γ -ensemble pointé (c'est-à-dire que $e \in X$ est Γ -invariant), l'ensemble de 0-cohomologie est un ensemble pointé par la classe de $(e, 1_A, 1_B)$. On peut alors également définir

$$\mathbf{H}^{-1}(\Gamma; \mathfrak{X}) := \mathbf{H}^{0}(\Gamma, 1 \to B_e \to A_e)$$

οù

$$[1 \to B_e \to A_e]$$

est l'ensemble croisé obtenu en faisant agir B_e sur A_e par translation à gauche via ρ_e . C'est l'ensemble des classes de couples (a,b) avec $a \in A_e$ et b une 1-cochaîne à valeurs dans B_e tels que

$$\rho_e(b_\sigma) = a \, \sigma(a)^{-1}$$
 et $\partial b_{\sigma,\tau} = 1$

modulo l'action de B_e : on fait agir $\beta \in B_e$ par

$$a \mapsto \rho_e(\beta)a$$
 et $b_{\sigma} \mapsto \beta b_{\sigma}\sigma(\beta)^{-1}$.

On laissera au lecteur le soin de vérifier que c'est un groupe pour la loi induite par le produit :

$$(a, a') \mapsto a.a'$$
 et $(b_{\sigma}, b'_{\sigma}) \mapsto b_{\sigma} \cdot \mu(\sigma(a)) * b'_{\sigma}$.

Si, dans la définition de l'action de B_e sur A_e , on utilise la translation à droite au lieu de la translation à gauche, on obtient le groupe opposé. On dispose enfin du groupe abélien

$$\mathbf{H}^{-2}(\Gamma;\mathfrak{X}) := \mathbf{H}^{0}(\Gamma, \ker \rho_{e})$$
.

Les espaces de cohomologie sont fonctoriels pour les morphismes d'ensembles croisés qui entrelacent les actions de Γ . En particulier on a la proposition suivante :

Proposition 1.2.2. — Un Γ -quasi-isomorphisme induit un isomorphisme en cohomoloqie.

Démonstration. — Soit

$$[B{\to}A\times X\to X]\to [D{\to}C\times Y\to Y]$$

un quasi-isomorphisme d'ensembles croisés compatible aux actions de Γ . On notera f_i les applications entre les constituants en degrés i=0, 1 et 2. Montrons l'injectivité. Soient (x,a,b) et (x',a',b') deux cochaînes représentant deux classes de 0-cohomologie dans

$$\mathbf{H}^0(\Gamma, B \rightarrow A \times X \rightarrow X)$$

et ayant même image dans

$$\mathbf{H}^0(\Gamma, D \rightarrow C \times Y \rightarrow Y)$$

c'est-à-dire que

$$(f_0(x), f_1(a), f_2(b))$$

et

$$(f_0(x'), f_1(a'), f_2(b'))$$

sont cohomologues. Par hypothèse il existe $\gamma \in C$ tel que

$$\gamma * f_0(x) = f_0(x')$$

autrement dit $f_0(x)$ et $f_0(x')$ sont dans la même orbite; or f_0 induit une bijection entre les ensembles d'orbites de A dans X et C dans Y; donc il existe $\alpha \in A$ tel que $\alpha * x = x'$. Quitte à changer les représentants des classes on peut donc supposer x = x'. Les 1-cochaînes $c = f_1(a)$ et $c' = f_1(a')$ ne diffèrent alors que par le cobord d'une 0-cochaîne à valeurs dans le stabilisateur C_y de $y = f_0(x)$ et l'image d'une 1-cochaîne à valeurs dans D donc, compte tenu de l'isomorphisme des groupes de 1-homotopie et quitte à changer les représentants des classes, on peut supposer que a = a'. Maintenant les cochaînes b et b' on des images dans D qui ne diffèrent que par une cochaîne à valeurs dans

$$\ker[D_y \to C_y]$$

qui par hypothèse est isomorphe à

$$\ker[A_x \to B_x]$$

et on peut donc supposer b = b'. Passons à la preuve de la surjectivité. Étant donné une cochaîne (y, c, d) représentant une classe dans

$$\mathbf{H}^0(\Gamma, D \rightarrow C \times Y \rightarrow Y)$$

il existe x tel que $f_0(x)$ soit dans l'orbite de y et modulo équivalence on peut supposer $f_0(x) = y$. L'orbite de y est rationnelle, c'est dire que y et $\sigma(y)$ sont dans la même orbite; il en est de même pour x et il existe donc une cochaîne a telle que

$$a_{\sigma} * \sigma(x) = x;$$

on voit que $f_1(a)$ ne diffère de c que par une 1-cochaîne à valeurs dans le stabilisateur de y et on peut modifier les choix de a et c de sorte que

$$f_1(a) = c$$
.

Maintenant le bord de c est image d'une 2-cochaîne d et le bord de a est image d'une 2-cochaîne b; on voit que $f_2(b)$ ne diffère de d que par une 2-cochaîne à valeurs dans

$$\ker[D_y \to C_y]$$

mais, par hypothèse f_2 induit un isomorphisme de

$$\ker[B_x \to A_x]$$

sur ce noyau et on peut modifier b de sorte que l'on ait

$$f_2(b) = d$$
.

Comme l'image de b dans A est le bord de a, on a

$$\sigma_{\mu(a)}(b_{\tau,\nu}) \cdot b_{\sigma,\tau\nu} = z_{\sigma,\tau,\nu} \cdot b_{\sigma,\tau} \cdot b_{\sigma\tau,\nu}$$

avec

$$z_{\sigma,\tau,\nu} \in \ker[B_x \to A_x]$$
.

Comme

$$f_2(z_{\sigma,\tau,\nu}) = 1$$

ceci implique que

$$z_{\sigma,\tau,\nu}=1$$
.

Les ensembles de cohomologie sont aussi fonctoriels en Γ ; on a des morphismes d'inflation et de restriction pour des quotients ou des sous-groupes. Si Σ est un sous-groupe de Γ et si $\mathfrak X$ est un ensemble croisé muni d'une action de Σ on définit de façon standard un ensemble croisé induit

$$\operatorname{Ind}_{\Sigma}^{\Gamma}\mathfrak{X}$$
.

Les constituants de $\operatorname{Ind}_{\Sigma}^{\Gamma}\mathfrak{X}$ sont les ensembles et groupes de fonctions f sur Γ à valeurs dans les ensembles et groupes qui définissent \mathfrak{X} avec la condition

$$f(\sigma\gamma) = \sigma(f(\gamma))$$
 pour tout $\sigma \in \Sigma$

et on fait agir Γ par

$$(\gamma' f)(\gamma) = f(\gamma \gamma')$$
 pour $\gamma' \in \Gamma$.

Le lemme de Shapiro est valable pour la cohomologie des ensembles croisés :

Lemme 1.2.3. — L'application naturelle

$$\mathbf{H}^0(\Gamma, \operatorname{Ind}_{\Sigma}^{\Gamma} \mathfrak{X}) \to \mathbf{H}^0(\Sigma, \mathfrak{X})$$

induite par l'évaluation en l'unité $f \to f(1)$ et la restriction à Σ des cochaînes, est une bijection.

Démonstration. — On construit une application réciproque de la façon suivante : Soit (x, a, b) un cocycle pour Σ à valeurs dans \mathfrak{X} . On prolonge ces Σ-cochaînes en des Γ-cochaînes en préservant les relations de bord suivantes faisant intervenir $\sigma \in \Sigma$:

$$\rho_x(b_{\sigma,\tau}) = a_{\sigma} \cdot \sigma(a_{\tau}) \cdot a_{\sigma\tau}^{-1}$$
 pour $\sigma \in \Sigma$ et $\tau \in \Gamma$

 $_{
m et}$

$$\sigma_{\mu(a)}(b_{\tau,\nu}) \cdot b_{\sigma,\tau\nu} = b_{\sigma,\tau} \cdot b_{\sigma\tau,\nu}$$
 pour $\sigma \in \Sigma$, τ et $\nu \in \Gamma$

et de façon arbitraire par ailleurs. On peut par exemple imposer $a_{\tau}=1$ si $\tau\notin\Sigma$ et $b_{\tau,\nu}=1$ si $\tau\nu\notin\Sigma$; ceci détermine le prolongement des cochaînes a et b. On définit des fonctions

$$\gamma \mapsto \tilde{x}(\gamma)$$
 $\gamma \mapsto \tilde{a}_{\tau}(\gamma)$ et $\gamma \mapsto \tilde{b}_{\tau,\nu}(\gamma)$

en posant

$$\tilde{x}(\gamma) = \lambda(a_{\gamma}^{-1}) * x \qquad \tilde{a}_{\tau}(\gamma) = a_{\gamma}^{-1} \rho_x(b_{\gamma,\tau}) a_{\gamma\tau} \quad \text{et} \quad \tilde{b}_{\tau,\nu}(\gamma) = \mu(a_{\gamma}^{-1}) * (b_{\gamma,\tau} b_{\gamma\tau,\nu} b_{\gamma,\tau\nu}^{-1})$$

On voit que

$$\tilde{x}(1) = x$$
 $\tilde{a}_{\tau}(1) = a_{\tau}$ et $\tilde{b}_{\tau,\nu}(1) = b_{\tau,\nu}$ pour tout τ et $\nu \in \Sigma$.

Des vérifications fastidieuses, mais sans surprise, montrent que

$$\tilde{x}(\sigma\gamma) = \sigma(\tilde{x}(\gamma)) \quad \tilde{a}_{\tau}(\sigma\gamma) = \sigma(\tilde{a}_{\tau}(\gamma)) \quad \text{et} \quad \tilde{b}_{\tau,\nu}(\sigma\gamma) = \sigma(\tilde{b}_{\tau,\nu}(\gamma)) \quad \text{pour tout } \sigma \in \Sigma.$$

On a ainsi défini une cochaîne à valeurs dans $\operatorname{Ind}_{\Sigma}^{\Gamma}\mathfrak{X}$ dont l'image par évaluation en $\gamma=1$ et restriction à Σ redonne le cocycle (x,a,b). Il convient enfin de vérifier les relations de fermeture et la compatibilité aux relations d'équivalence, ce qui comme précédemment résulte de calculs directs.

Dans le cas d'un module croisé $[B \to A]$, on dispose du groupe abélien

$$\mathbf{H}^{-1}(\Gamma, B \to A)$$
,

du groupe de $\mathbf{H}^0(\Gamma, B \to A)$, et d'un ensemble pointé de 1-cohomologie en posant :

$$\mathbf{H}^{i}(\Gamma, B \to A) = \mathbf{H}^{i-1}(\Gamma, B \to A \to \{ \mathrm{pt} \})$$
.

On a pour i = -1, 0 et 1 des suites exactes

$$\mathbf{H}^{i-1}(\Gamma, \operatorname{coker}(\rho)) \to \mathbf{H}^{i+1}(\Gamma, \ker \rho) \to \mathbf{H}^{i}(\Gamma, B \to A) \to \mathbf{H}^{i}(\Gamma, \operatorname{coker}(\rho))$$

et

$$\mathbf{H}^0(\Gamma,B) \to \mathbf{H}^0(\Gamma,A) \to \mathbf{H}^0(\Gamma,B \to A) \to \mathbf{H}^1(\Gamma,B) \to \mathbf{H}^1(\Gamma,A) \to \mathbf{H}^1(\Gamma,B \to A) \ .$$

Pour un ensemble croisé dont l'application fibre est indépendante du point base

$$[D \to A \Rightarrow X]$$

le complexe $[D \to A]$ est un module croisé, et on a une suite exacte de groupes, d'ensembles et d'ensembles pointés

$$\mathbf{H}^0(\Gamma, D \to A) \Rightarrow \mathbf{H}^0(\Gamma, X) \to \mathbf{H}^0(\Gamma; D \to A \Rightarrow X) \to \mathbf{H}^1(\Gamma, D \to A)$$
.

Considérons un morphisme de modules croisés

$$\mathfrak{M}_1 \to \mathfrak{M}_0$$
.

On sait lui associer un ensemble croisé

$$\mathfrak{X} = [\mathfrak{M}_1 \to \mathfrak{M}_0]$$

et on a une variante des suites exactes ci-dessus :

$$\mathbf{H}^0(\Gamma, \mathfrak{M}_1) \to \mathbf{H}^0(\Gamma, \mathfrak{M}_0) \to \mathbf{H}^0(\Gamma; \mathfrak{X}) \to \mathbf{H}^1(\Gamma, \mathfrak{M}_1) \to \mathbf{H}^1(\Gamma, \mathfrak{M}_0)$$
.

Considérons un complexe de groupes abéliens de longueur ≤ 2 , muni d'une action de Γ . On lui associe un ensemble croisé en groupes et la cohomologie à valeurs dans un tel

ensemble croisé en groupes n'est autre que l'hypercohomologie usuelle du complexe de groupes abéliens. On dispose alors de groupes de cohomologie abéliens en tous degrés.

Pour un module croisé $[B \to A]$ super-stable on peut aussi définir des groupes de cohomologie abéliens, en tous degrés, en posant

$$\mathbf{H}^i(\Gamma, B \to A) := \mathbf{H}^i(\Gamma, Z_B \to Z_A)$$
.

Ils coïncident avec les ensembles et groupes de cohomologie définis directement en degrés -1, 0 et 1, compte tenu du quasi-isomorphisme

$$[Z_B \to Z_A] \to [B \to A]$$
.

1.3. Cohomologie galoisienne

Soit F un corps parfait et \overline{F} une clôture algébrique. On notera Γ le groupe de Galois absolu :

$$\Gamma = \operatorname{Gal}(\overline{F}/F) = \lim \operatorname{Gal}(K/F)$$

où K parcourt les extensions galoisiennes finies de F. Si X est une variété algébrique définie sur F, on écrira souvent X pour $X(\overline{F})$; cet ensemble est muni d'une action de Γ .

Soit $\mathfrak X$ un ensemble croisé de variétés et groupes algébriques définis sur F :

$$\mathfrak{X} = [B \to A \times X \to X].$$

On dispose alors pour toute F-algèbre ${\bf A}$ d'un ensemble croisé

$$\mathfrak{X}(\mathbf{A}) = [B(\mathbf{A}) \to A(\mathbf{A}) \times X(\mathbf{A}) \to X(\mathbf{A})].$$

On note, suivant l'usage, $\mathbf{H}^0(K/F, \mathfrak{X})$, les ensembles de cohomologie galoisienne pour les extensions finies :

$$\mathbf{H}^0(K/F, \mathfrak{X}) := \mathbf{H}^0(\mathrm{Gal}(K/F), \mathfrak{X}(K))$$

et $\mathbf{H}^0(F, \mathfrak{X})$, la limite inductive des ensembles de cohomologie galoisienne pour les extensions finies. C'est la cohomologie continue du groupe profini Γ à valeurs dans $\mathfrak{X}(\overline{F})$ muni de la topologie discrète :

$$\mathbf{H}^0(F,\mathfrak{X}) := \varinjlim \mathbf{H}^0(\mathrm{Gal}(K/F),\mathfrak{X}(K)) = \mathbf{H}^0(\Gamma,\mathfrak{X}(\overline{F}))$$
.

Il résulte de 1.2.3 que la cohomologie galoisienne des ensembles croisés algébriques est compatible à la restriction des scalaires. Un morphisme défini sur F d'ensembles croisés induisant un isomorphisme sur les ensembles et groupes d'homotopie est appelé quasi-isomorphisme algébrique. Deux ensembles croisés algébriquement quasi-isomorphes fournissent des ensembles de cohomologie galoisienne isomorphes.

Dans la suite les ensembles croisés algébriques que nous rencontrerons seront construits au moyen de groupes réductifs et on verra que les ensembles croisés dont les constituants sont connexes jouent un rôle privilégié. Toutefois une catégorie voisine peut être utile.

Définition 1.3.1. — On dira qu'un groupe réductif G est quasi-connexe s'il est le noyau d'un morphisme surjectif d'un groupe réductif connexe G_1 dans un tore T_0 . Un groupe réductif quasi-connexe commutatif est un groupe diagonalisable.

En d'autres termes le complexe $[G \to 1]$ est quasi-isomorphe au complexe

$$[G_1 \rightarrow T_0]$$
.

Un groupe diagonalisable est le noyau d'un morphisme surjectif de tores :

$$C = \ker[T_1 \to T_0]$$
.

Si on note X_i les groupes de sous-groupes à un paramètre des tores T_i , le petit complexe de \mathbb{Z} -modules libres de type fini $[X_1 \to X_0]$ a un conoyau qui est de torsion et on a

$$\mathbf{H}^{i}(F,C) = \mathbf{H}^{i-1}(F,C \to 1) = \mathbf{H}^{i-1}(\Gamma, X_{1} \otimes \overline{F}^{\times} \to X_{0} \otimes \overline{F}^{\times}).$$

Plus généralement, un complexe borné de groupes diagonalisable C_{\bullet} est quasi-isomorphe (cette fois sans décalage) à un complexe borné de tores T_{\bullet} qui est défini par un complexe borné X_{\bullet} de \mathbb{Z} -modules libres de type fini muni d'une action de Γ . Le complexe X_{\bullet} , comme le complexe de tores, n'est défini qu'à quasi-isomorphisme près par le complexe de groupes diagonalisables et seul l'objet correspondant dans la catégories dérivée est bien défini. On a

$$\mathbf{H}^{i}(F, C_{\bullet}) = \mathbf{H}^{i}(\Gamma, X_{\bullet} \otimes \overline{F}^{\times}).$$

Définition 1.3.2. — On dira qu'un ensemble croisé en groupes réductifs connexes G_{\bullet} est quasi-torique si

- (i) Il existe des sous-ensembles croisés T_{\bullet} dont les constituants T_i sont des tores maximaux des groupes réductifs G_i .
- (ii) Il existe un sous-ensemble croisé en groupes diagonalisables C_{\bullet} dans l'intersection de tous les sous-ensembles croisés dont les constituants sont des tores maximaux, et les inclusions

$$C_{\bullet} \to G_{\bullet}$$
 et $C_{\bullet} \to T_{\bullet}$

induisent des quasi-isomorphismes.

Si G_{\bullet} est quasi-torique et si T_{\bullet} est un sous-ensemble croisé dont les constituants sont des tores maximaux, alors l'inclusion $C_{\bullet} \to G_{\bullet}$ se factorise par T_{\bullet} et donc l'inclusion $T_{\bullet} \to G_{\bullet}$ induit un quasi-isomorphisme. On peut définir des groupes de cohomologie abéliens en tous degrés en posant

$$\mathbf{H}^{i}(F, G_{\bullet}) := \mathbf{H}^{i}(F, T_{\bullet}).$$

Cette définition de la cohomologie est indépendante du sous-ensemble croisé de tores maximaux quasi-isomorphe choisi. En effet, on dispose par hypothèse d'un sous-ensemble croisé C_{\bullet} de sous-groupes diagonalisables quasi-isomorphe. On dispose donc

d'isomorphismes canoniques

$$\mathbf{H}^i(F, C_{\bullet}) \to \mathbf{H}^i(F, T_{\bullet})$$
.

Lemme 1.3.3. — Un module croisé $G_{\bullet} = [G_1 \to G_0]$ super-stable dont les constituants sont des groupes réductifs connexes est quasi-torique.

 $D\acute{e}monstration$. — Notons f le morphisme de G_1 dans G_0 , et Z_i les centres de G_i . Le sous-module croisé

$$C_{\bullet} = [Z_1 \to Z_0]$$

est un complexe de groupes diagonalisables. Soit

$$T_{\bullet} = [T_1 \rightarrow T_0]$$

un sous-complexe de tores maximaux c'est-à-dire tel que $f(T_1) \subset T_0$; on observera que T_i contient C_i . Par hypothèse, le sous-module croisé C_{\bullet} est quasi-isomorphe à G_{\bullet} . En particulier, le noyau de f est central et est donc égal au noyau de $T_1 \to T_0$. Donc

$$\pi_1(C_{\bullet},1) = \pi_1(T_{\bullet},1).$$

Comme $\pi_0(C_{\bullet}) = \pi_0(G_{\bullet})$ on a

$$G_0 = f(G_1) \cdot Z_0$$
 et $f(Z_1) = Z_0 \cap f(G_1)$.

Donc $G_0 = f(G_1) \cdot T_0$. Par ailleurs $f^{-1}(T_0)$ est un tore qui contient T_1 , qui est un tore maximal, et lui est donc égal. On a donc

$$f(T_1) = T_0 \cap f(G_1)$$

d'où

$$\pi_0(G_\bullet) = \pi_0(T_\bullet) \,.$$

Pour terminer cette section nous allons évoquer une autre technique utile dans l'étude de la cohomologie des groupes réductifs : la notion de z-extension d'un groupe réductif connexe G. C'est la donnée d'une extension centrale

$$\tilde{Z}
ightarrow \tilde{G}
ightarrow G$$

dont le noyau \tilde{Z} est un F-tore induit et où \tilde{G} a un groupe dérivé simplement connexe. On sait [Ko1] que tout groupe réductif connexe possède des z-extensions. Le petit complexe $[\tilde{Z} \to \tilde{G}]$ est quasi-isomorphe à $[1 \to G]$ et, comme le noyau est un tore induit, il en est de même pour les points sur F.

1.4. Cohomologie adélique

Dans cette section F désigne un corps de nombres. On notera \mathbb{A}_F l'anneau des adèles de F et $\overline{\mathbb{A}_F}$ la limite inductive des \mathbb{A}_K :

$$\overline{\mathbb{A}_F} := \mathbb{A}_F \otimes \overline{F} = \lim_{K \to K} \mathbb{A}_F \otimes K = \lim_{K \to K} \mathbb{A}_K$$

où $K \subset \overline{F}$ par court l'ensemble des extensions algébriques finies de F. Soit v une place de F on note Γ_v le groupe de Galois de \overline{F}_v/F_v où \overline{F}_v est une clôture algébrique de F_v .

Soit X une variété algébrique définie sur un corps global F. On dispose des ensembles de cohomologie locaux :

$$\mathbf{H}^0(F_v,\mathfrak{X}) := \mathbf{H}^0(\Gamma_v,\mathfrak{X}(\overline{F}_v))$$
.

Il résulte du lemme de Shapiro 1.2.3 que si w est une place de K qui divise v

$$\mathbf{H}^0(K_w/F_v,\mathfrak{X}(K_w)) = \mathbf{H}^0(K/F,\mathfrak{X}(F_v \otimes K))$$

et

$$\mathbf{H}^0(\Gamma_v, \mathfrak{X}(\overline{F}_v)) = \mathbf{H}^0(\Gamma, \mathfrak{X}(F_v \otimes \overline{F}))$$
.

On note \mathcal{O}_v l'anneau des entiers de F_v . Pour presque toute place v on peut définir

$$\mathbf{H}^0(F_v^{nr}/F_v,\mathfrak{X}(\mathcal{O}_v^{nr}))$$

où \mathcal{O}_v^{nr} est l'anneau des entiers de la clôture non ramifiée F_v^{nr} . On note $\mathbf{H}^0(\mathcal{O}_v,\mathfrak{X})$ son image dans $\mathbf{H}^0(F_v,\mathfrak{X})$:

$$\mathbf{H}^0(\mathcal{O}_v,\mathfrak{X}) := \operatorname{Im}[\mathbf{H}^0(F_v^{nr}/F_v,\mathfrak{X}(\mathcal{O}_v^{nr})) \to \mathbf{H}^0(F_v,\mathfrak{X})]$$

L'ensemble de cohomologie adélique est, par définition, le produit restreint des ensembles de cohomologie locaux $\mathbf{H}^0(F_v, \mathfrak{X})$ relativement aux sous-ensembles $\mathbf{H}^0(\mathcal{O}_v, \mathfrak{X})$:

$$\mathbf{H}^0(\mathbb{A}_F,\mathfrak{X}) := \prod_v \mathbf{H}^0(\Gamma_v,\mathfrak{X}) \; .$$

Deux ensembles croisés algébriquement quasi-isomorphes fournissent des ensembles de cohomologie adélique isomorphes.

On dispose par ailleurs de l'ensemble de cohomologie galoisienne à valeurs dans $\mathfrak{X}(\overline{\mathbb{A}_F})$:

$$\mathbf{H}^0(\Gamma, \mathfrak{X}(\overline{\mathbb{A}_F})) = \varinjlim \ \mathbf{H}^0(\mathrm{Gal}(K/F), \mathfrak{X}(\mathbb{A}_K))$$
.

On prendra garde que l'application naturelle

$$\mathbf{H}^0(\Gamma, \mathfrak{X}(\overline{\mathbb{A}_F})) \to \mathbf{H}^0(\mathbb{A}_F, \mathfrak{X})$$

n'est pas nécessairement un isomorphisme, et d'ailleurs l'ensemble $\mathbf{H}^0(\Gamma, \mathfrak{X}(\overline{\mathbb{A}_F}))$ n'est pas toujours invariant par quasi-isomorphisme algébrique (voir la remarque qui suit 1.6.8). Toutefois, les deux notions de cohomologie adélique coïncident dans certains cas.

Soit \mathfrak{X} un ensemble croisé en groupes algébriques défini par un complexe de groupes,

$$[G_2 \rightarrow G_1 \rightarrow G_0]$$

où G_i est un groupe réductif connexe pour i=1 ou 2. On dira qu'une place v est non ramifiée pour \mathfrak{X} , si l'ensemble croisé est défini sur \mathcal{O}_v et si, pour i=1 ou 2, le groupe G_i est quasi-déployé et déployé sur une extension non ramifiée de F_v et $G_i(\mathcal{O}_v)$ est un sous-groupe compact maximal hyperspécial de $G_i(F_v)$.

Proposition 1.4.1. — Soit \mathfrak{X} un ensemble croisé en groupes algébriques défini par un complexe de groupes,

$$[T_2 \rightarrow G_1 \rightarrow G_0]$$

où G_1 est un groupe réductif connexe et T_2 un tore dont l'image est dans le centre de G_1 . On note f l'homomorphisme de G_1 dans G_0 . Pour toute place non ramifiée v

$$\mathbf{H}^0(\mathcal{O}_v, \mathfrak{X}) = f(G_1(\mathcal{O}_v)) \backslash G_0(\mathcal{O}_v)$$

et l'application :

$$\mathbf{H}^0(\Gamma, \mathfrak{X}(\overline{\mathbb{A}_F})) \to \mathbf{H}^0(\mathbb{A}_F, \mathfrak{X})$$

est un isomorphisme.

Démonstration. — La preuve ci-dessous est pour l'essentiel empruntée à Kottwitz et Shelstad ([KS, Lemma C.1.A] et [KS, Lemma C.1.B]). On observe que, par définition

$$\mathbf{H}^0(\Gamma,\mathfrak{X}(\overline{\mathbb{A}_F})) = \lim \mathbf{H}^0(K/F,\mathfrak{X}(\mathbb{A}_K))$$

et que, compte tenu de 1.2.3,

$$\mathbf{H}^0(K/F,\mathfrak{X}(\mathbb{A}_K))$$

est la limite inductive des produits

$$\prod_{v \in S} \mathbf{H}^0(K_w/F_v, \mathfrak{X}(K_w)) \prod_{v \notin S} \mathbf{H}^0(K_w/F_v, \mathfrak{X}(\mathcal{O}_w))$$

où S est un ensemble fini de places de F qui contient les places ramifiées. Soit v une place non ramifiée; compte tenu de la connexite des groupes G_1 et T_2 , le théorème de Lang montre que

$$\mathbf{H}^{1}(K_{w}/F_{v}, G_{1}(\mathcal{O}_{w})) = 1$$
 et $\mathbf{H}^{1}(K_{w}/F_{v}, T_{2}(\mathcal{O}_{w})) = 1$.

La trivialité du quotient d'Herbrand pour la cohomologie des groupes cycliques finis à valeurs dans des modules finis montre alors que

$$\widehat{\mathbf{H}}^i(K_w/F_v, T_2(\mathcal{O}_w)) = 1$$
 pour tout i

et donc en particulier

$$\mathbf{H}^{2}(K_{w}/F_{v}, T_{2}(\mathcal{O}_{w})) = 1$$
.

Donc

$$\mathbf{H}^1(K_w/F_v, T_2(\mathcal{O}_w) \to G_1(\mathcal{O}_w)) = 1$$

et

$$\mathbf{H}^0(K_w/F_v,\mathfrak{X}(\mathcal{O}_w)) = f(G_1(\mathcal{O}_v)) \backslash G_0(\mathcal{O}_v)$$
.

Si on note f l'homomorphisme de G_1 dans G_0 on a donc

$$\mathbf{H}^0(F_v^{nr}/F_v,\mathfrak{X}(\mathcal{O}_v^{nr})) = \lim_{\longrightarrow} \mathbf{H}^0(K_w/F_v,\mathfrak{X}(\mathcal{O}_w)) = f(G_1(\mathcal{O}_v)) \setminus G_0(\mathcal{O}_v).$$

Montrons maintenant que

$$\mathbf{H}^0(F_v^{nr}/F_v,\mathfrak{X}(\mathcal{O}_v^{nr})) \to \mathbf{H}^0(F_v,\mathfrak{X})$$

est injective. Notons \mathfrak{X}' le complexe $[1 \to G_1' \to G_0]$ où G_1' est le quotient de G_1 par G_1'' la composante neutre du noyau de f. Comme ci-dessus on voit que

$$\mathbf{H}^1(K_w/F_v, G_1''(\mathcal{O}_w)) = 1$$

et donc

$$G_1(\mathcal{O}_v) \to G_1'(\mathcal{O}_v)$$

est surjective. On dispose d'un morphisme $\mathfrak{X} \to \mathfrak{X}'$ et compte tenu de ce qui précède on voit que

$$\mathbf{H}^0(F_v^{nr}/F_v,\mathfrak{X}(\mathcal{O}_v^{nr})) \to \mathbf{H}^0(F_v^{nr}/F_v,\mathfrak{X}'(\mathcal{O}_v^{nr}))$$

est un isomorphisme. Il suffit donc de prouver l'injectivité lorsque $\mathfrak{X} = \mathfrak{X}'$ c'est-à-dire $T_2 = 1$ et f est de noyau fini ; dans ce cas, deux éléments de $G_0(\mathcal{O}_v)$ ont la même image dans $\mathbf{H}^0(F_v, \mathfrak{X})$ s'ils diffèrent par l'image d'un élement de $G_1(F_v)$; mais, si f est de noyau fini, $f^{-1}(G_0(\mathcal{O}_v))$ est un sous-groupe compact de $G_1(F_v)$ contenant $G_1(\mathcal{O}_v)$ qui est hyperspécial et donc est un sous-groupe compact maximal. On en déduit que $f^{-1}(G_0(\mathcal{O}_v)) = G_1(\mathcal{O}_v)$ et l'injectivité est claire. On en déduit que

$$\mathbf{H}^0(\mathcal{O}_v, \mathfrak{X}) = \mathbf{H}^0(K_w/F_v, \mathfrak{X}(\mathcal{O}_w)) = f(G_1(\mathcal{O}_v)) \backslash G_0(\mathcal{O}_v)$$
.

On peut donc permuter les limites inductives sur K et S et la seconde assertion en résulte. \Box

Corollaire 1.4.2. — Soit G un groupe quasi-connexe, noyau d'un homomorphisme surjectif $G_1 \to T_0$ d'un groupe réductif connexe dans un tore. Pour i = 0 ou 1 on a:

$$\mathbf{H}^{i}(\mathbb{A}_{F},G) = \mathbf{H}^{i-1}(\Gamma,G_{1}(\overline{\mathbb{A}_{F}}) \to T_{0}(\overline{\mathbb{A}_{F}})).$$

Soit C_{\bullet} un complexe borné de groupes diagonalisables associé à un complexe borné X_{\bullet} de \mathbb{Z} -modules libres de type fini. On pose pour tout i

$$\mathbf{H}^{i}(\mathbb{A}_{F}, C_{\bullet}) = \mathbf{H}^{i}(\Gamma, X_{\bullet} \otimes \overline{\mathbb{A}_{F}}^{\times})$$

et

$$\mathbf{H}^i(\mathbb{A}_F/F,C_\bullet):=\mathbf{H}^i(\Gamma,[X_\bullet\otimes\overline{F}^\times\to X_\bullet\otimes\overline{\mathbb{A}_F}^\times])\ .$$

Ceci est compatible avec la définition directe de la cohomologie adélique au moyen du produit restreint des groupes locaux comme il résulte de la proposition 1.4.1 et de la trivialité des $\mathbf{H}^i(F_v, T)$ pour $i \geq 3$ pour tout tore T aux places non archimédiennes [Mi1, theoreme 1.8].

Si G_{\bullet} est un ensemble croisé quasi-torique et si T_{\bullet} est un sous-ensemble croisé de tores maximaux, on peut définir des groupes de cohomologie abéliens en tous degrés en posant pour *=F ou $*=\mathbb{A}_F$ ou encore $*=\mathbb{A}_F/F$

$$\mathbf{H}^i(*,G_{\bullet}) := \mathbf{H}^i(*,T_{\bullet}).$$

Lemme 1.4.3. — Soit C_{\bullet} un complexe borné de groupes diagonalisables. On dispose d'une suite exacte longue

$$\cdots \to \mathbf{H}^i(F, C_\bullet) \to \mathbf{H}^i(\mathbb{A}_F, C_\bullet) \to \mathbf{H}^i(\mathbb{A}_F/F, C_\bullet) \to \mathbf{H}^{i+1}(F, C_\bullet) \to \cdots$$

De $m\hat{e}me$, si G_{\bullet} est un ensemble croisé quasi-torique, la suite

$$\cdots \to \mathbf{H}^i(F,G_\bullet) \to \mathbf{H}^i(\mathbb{A}_F,G_\bullet) \to \mathbf{H}^i(\mathbb{A}_F/F,G_\bullet) \to \mathbf{H}^{i+1}(F,G_\bullet) \to \cdots$$

est exacte.

Démonstration. — Il suffit d'invoquer, pour K assez grand, la suite exacte courte

$$1 \to X_{\bullet} \otimes K^{\times} \to X_{\bullet} \otimes \mathbb{A}_{K}^{\times} \to X_{\bullet} \otimes \mathbb{A}_{K}^{\times}/K^{\times} \to 1.$$

Remarque. — Si on utilise des complexes de Z-modules de type fini sans exiger qu'ils soient libres les résultats ci-dessus se généralisent à condition d'utiliser le produit tensoriel au sens des catégories dérivées (et qui se calcule au moyen du produit tensoriel ordinaire et de résolutions libres des dits complexes).

1.5. Un lemme sur les tores anisotropes

Désormais F est un corps local ou global de caractéristique zéro. Soit T un tore, on note X le module galoisien des sous-groupes à un paramètre de T. C'est un \mathbb{Z} -module libre et on a

$$T(\overline{F}) = X \otimes \overline{F}^{\times}$$
.

Le dual de Langlands \widehat{T} de T est, par définition, le groupe des quasi-caractères de X :

$$\widehat{T} = \operatorname{Hom}(X, \mathbb{C}^{\times})$$
.

Notons par un exposant D la dualité de Pontryagin. La dualité de Tate-Nakayama montre que, si K déploie T,

$$\widehat{\mathbf{H}}^i(K/F,T) \simeq \widehat{\mathbf{H}}^{i-2}(K/F,X) \simeq \widehat{\mathbf{H}}^{1-i}(K/F,\widehat{T})^D \ .$$

Lemme 1.5.1. — Si F est local et si T est un tore F-anisotrope, le groupe $\mathbf{H}^2(F,T)$ est trivial. Soit T_{\bullet} un complexe de tores F-anisotropes de longueur 1 en degrés (homologiques) 1 et 0:

$$T_{\bullet} = [T_1 \rightarrow T_0]$$
.

Si F est local non archimédien

$$\mathbf{H}^r(F, T_{\bullet}) = 1$$
 $si \ r \ge 2.$

Si F est global

$$\mathbf{H}^r(\mathbb{A}_F/F, T_{\bullet}) = 1$$
 $si \ r \ge 2$

et, si v est une place de F où les T_i sont anisotropes, l'application de co-localisation

$$\mathbf{H}^1(F_v, T_{\bullet}) \to \mathbf{H}^1(\mathbb{A}_F/F, T_{\bullet})$$

est surjective.

Démonstration. — Traitons d'abord le cas d'un tore F-anisotrope. On note X le module galoisien des sous-groupes à un paramètre de T et soit $X^* = \text{Hom}(X, \mathbb{Z})$ le groupe des caractères. Par Tate-Nakayama on sait que si * = F dans le cas local ou $* = \mathbb{A}_F/F$ dans le cas global

$$\mathbf{H}^{2}(*,T) = \underline{\lim} \, \widehat{\mathbf{H}}^{-1}(K/F,\widehat{T})^{D} .$$

Le tore T est F-anisotrope si $\mathbf{H}^0(F,X^*)$ est trivial. Ceci implique que

$$\underline{\lim} \widehat{\mathbf{H}}^{0}(K/F, X^{*})^{D} = \underline{\lim} \widehat{\mathbf{H}}^{-1}(K/F, \widehat{T})^{D} = \mathbf{H}^{2}(*, T)$$

est trivial. La trivialité des $\mathbf{H}^r(*,T)$ pour $r \geq 3$ est vraie pour tous les tores, sauf peut-être si $F = \mathbb{R}$ [Mi1, theoreme 1.8]. Soit maintenant F un corps global; on a

$$\mathbf{H}^1(\mathbb{A}_F/F,T) = \lim_{n \to \infty} \widehat{\mathbf{H}^0}(K/F,\widehat{T})^D$$
.

Le tore étant anisotrope le sous-espace vectoriel des points fixes sous Galois dans l'algèbre de Lie du tore dual est de dimension nulle et donc, si K déploie T, on a un isomorphisme

$$\mathbf{H}^0(K/F,\widehat{T}) \to \widehat{\mathbf{H}^0}(K/F,\widehat{T})$$

et de même en v si T est F_v -anisotrope. Il suffit alors de remarquer que pour \mathbf{H}^0 l'application de restriction en cohomologie

$$\mathbf{H}^0(F,\widehat{T}) \to \mathbf{H}^0(F_v,\widehat{T})$$

est injective. Le lemme est donc prouvé pour un tore anisotrope. Le cas d'un complexe de tores anisotropes en résulte par dévissage. \Box

1.6. Cohomologie abélianisée d'un groupe réductif

Nous allons, pour la commodité du lecteur, redonner la définition et les propriétés principales des groupes de cohomologie abélianisée pour un groupe réductif connexe en les généralisant au cas quasi-connexe. Les résultats sont pour l'essentiel dus à Kottwitz ([Ko4] [Ko5]) et à Borovoi ([Bo1] [Bo2]). Les textes [Bo1] et [Bo2] ont été refondus dans [Bo3] (voir aussi [Mi2]). Dans [Ko4] et [Ko5] Kottwitz utilise une double dualité; la comparaison entre ses résultats et nos formulations est donnée en (1.7.3).

Soit G un groupe réductif quasi-connexe défini sur F. On suppose que G est le noyau d'un homomorphisme surjectif

$$G_1 \to T_0$$
.

On note G_{der} le groupe dérivé de G_1 , G_{SC} le revêtement simplement connexe du groupe dérivé. On notera G_{ad} le groupe adjoint i.e. le groupe des automorphismes intérieurs. Soient Z le centre de G, Z_{der} le centre de G_{der} et Z_{sc} le centre de G_{SC} . On appelle co-centre le groupe diagonalisable :

$$D_G = G/G_{der} = Z/Z_{der}$$
.

On notera p_G le morphisme canonique

$$p_G:G_{SC}\to G$$
.

Ces deux groupes ont même groupe adjoint, ce qui permet de définir une action μ_G de G sur G_{SC} et ceci munit ce complexe de longueur 1 d'une structure de module croisé super-stable que nous noterons parfois G_{ab} :

$$G_{ab} = [G_{SC} \rightarrow G].$$

Dans deux cas particuliers importants le module croisé G_{ab} est quasi-isomorphe à un groupe diagonalisable à décalage près : si $G_{der} = G_{SC}$ le morphisme de G_{ab} dans le cocentre D_G est un quasi-isomorphisme. Si $G = G_{ad}$ alors $[Z_{sc} \to 1]$ est quasi-isomorphe à G_{ab} . En général, on dispose du quasi-isomorphisme canonique suivant :

$$[Z_{sc} \to Z] \to [G_{SC} \to G].$$

D'autres quasi-isomorphismes sont utiles pour étudier ce module croisé. Soit T un tore maximal de G, et T_{sc} son image réciproque dans G_{SC} (on prendra garde à ne pas confondre T_{sc} avec T_{SC} qui lui est trivial). Soit T_1 un tore maximal dans G_1 contenant T

Lemme 1.6.1. — Les morphismes d'ensembles croisés

$$[Z_{sc} \rightarrow Z \rightarrow 1] \rightarrow [T_{sc} \rightarrow T_1 \rightarrow T_0] \rightarrow [G_{SC} \rightarrow G_1 \rightarrow T_0]$$

sont des quasi-isomorphismes. L'ensemble croisé

$$[G_{SC} \rightarrow G_1 \rightarrow T_0]$$

est quasi-torique.

 $D\acute{e}monstration.$ — C'est une conséquence immédiate de 1.3.3 et 1.1.2.

Comme G_{ab} est super-stable on peut définir sa cohomologie en tous degrés; elle peut par exemple se calculer au moyen d'un des complexes de tores quasi-isomorphes ci-dessus :

$$\mathbf{H}^{i}(F, G_{ab}) = \mathbf{H}^{i-1}(F, T_{sc} \to T_1 \to T_0) .$$

Les groupes de « cohomologie abélianisée » de G sont, par définition, les groupes de cohomologie de G_{ab} :

$$\mathbf{H}^i_{ab}(F,G) := \mathbf{H}^i(F,G_{ab}) .$$

Lemme 1.6.2. — Si G' est une forme intérieure de G les groupes de cohomologie abélianisée $\mathbf{H}^{i}_{ab}(F,G)$ et $\mathbf{H}^{i}_{ab}(F,G')$ sont canoniquement isomorphes.

Démonstration. — Ceci résulte, par exemple, de ce que $[Z_{sc} \to Z]$ est quasi-isomorphe à G_{ab} mais est indépendant des torsions intérieures. On pourrait aussi invoquer le passage aux co-centres pour des z-extensions (voir aussi [Bo3, lemma 1.8]).

Nous allons montrer que le module croisé G_{ab} dépend fonctoriellement de G. Soit

$$f:I\to G$$

un morphisme de groupes réductifs quasi-connexes. On lui associe canoniquement un diagramme commutatif : z

$$\begin{array}{ccc} I_{SC} & \xrightarrow{\tilde{f}} & G_{SC} \\ \downarrow p_I & & \downarrow p_G \\ I & \xrightarrow{f} & G \end{array}$$

Lemme 1.6.3. — Le morphisme de complexes

$$[I_{SC} \to I] \to [G_{SC} \to G]$$

est un morphisme de modules croisés.

Démonstration. — On note μ_I (resp. μ_G) l'action naturelle de I (resp. G) sur le groupe simplement connexe associé. Soient $a \in I$ et $b \in I_{SC}$, on doit montrer que

$$\tilde{f}(\mu_I(a) * b) = \mu_G(f(a)) * \tilde{f}(b) .$$

Commençons par un cas particulier. Soit z dans le centre de I; alors $\mu_I(z) * b = b$. Soient J l'image de I dans G et \tilde{J} celle de I_{SC} dans G_{SC} . L'automorphisme $\mu_G(f(z))$ est intérieur dans G_{SC} et induit un automorphisme de l'image réciproque $p_G^{-1}(J)$ de J dans G_{SC} . Comme \tilde{J} est la composante connexe de 1 dans cette image réciproque, $\mu_G(f(z))$ préserve \tilde{J} et induit un automorphisme de \tilde{J} qui devient trivial via p_G ; il est lui-même nécessairement trivial et donc

$$\mu_G(f(z)) * \tilde{f}(b) = \tilde{f}(b)$$
.

Passons au cas général. Soit $a \in I$; il existe $\alpha \in I_{SC}$ tel que

$$\mu_I(a) * b = Ad(\alpha) * b$$

et donc

$$\tilde{f}(\mu_I(a) * b) = \tilde{f}(\mathrm{Ad}(\alpha)b) = \mathrm{Ad}(\tilde{f}(\alpha))\tilde{f}(b)$$

Par ailleurs $a = p_I(\alpha)z$ avec z dans le centre de I et donc

$$\mu_G(f(a)) * \tilde{f}(b) = \mu_G(p_G(\tilde{f}(\alpha)))\mu_G(f(z)) * \tilde{f}(b) = \operatorname{Ad}(\tilde{f}(\alpha)) * \tilde{f}(b) = \tilde{f}(\mu_I(a) * b).$$

Définition 1.6.4. — Nous dirons qu'un tore T est elliptique dans G si c'est un tore maximal dont l'image réciproque T_{sc} dans G_{SC} est anisotrope.

Lemme 1.6.5. — Soit F un corps local. Soit T_1 un tore elliptique, ou plus généralement un tore fondamental, dans G_1 . L'application

$$\mathbf{H}^0(F, T_1 \to T_0) \to \mathbf{H}^1_{ab}(F, G)$$

est surjective.

Démonstration. — Compte tenu du quasi-isomorphisme

$$[T_{sc} \rightarrow T_1 \rightarrow T_0] \rightarrow [G_{SC} \rightarrow G_1 \rightarrow T_0]$$

on dispose d'une suite exacte

$$\mathbf{H}^0(F, T_1 \to T_0) \to \mathbf{H}^1_{ab}(F, G) \to \mathbf{H}^2(F, T_{sc})$$
.

Supposons tout d'abord F non-archimédien et T elliptique, donc T_{sc} est anisotrope et on sait d'après 1.5.1 que $\mathbf{H}^2(F, T_{sc})$ est trivial. Si F est archimédien et T_1 fondamental alors T_{sc} est aussi fondamental, et le lemme 10.4 de [Ko5] établit l'annulation de $\mathbf{H}^2(F, T_{sc})$. Ce qui implique la surjectivité.

Le morphisme de modules croisés

$$[1 \to G] \to [G_{SC} \to G]$$

fournit pour i=0 et 1 des applications canoniques d'abélianisation :

$$ab_G^i: \mathbf{H}^i(F,G) \to \mathbf{H}^i_{ab}(F,G)$$

qui s'insèrent dans une suite exacte

$$\mathbf{H}^0(F,G_{SC}) \to \mathbf{H}^0(F,G) \to \mathbf{H}^0_{ab}(F,G) \to \mathbf{H}^1(F,G_{SC}) \to \mathbf{H}^1(F,G) \to \mathbf{H}^1_{ab}(F,G)$$
.

Cette suite exacte va permettre d'exploiter le résultat classique suivant.

Théorème 1.6.6 (Kneser). — Soit F un corps local non-archimédien et G_{SC} un groupe semi-simple connexe et simplement connexe; alors

$$\mathbf{H}^{1}(F, G_{SC}) = 1$$
.

Démonstration. — Ceci est dû à Kneser ([Kne1] [Kne2]).

Proposition 1.6.7. — Soit G un groupe réductif quasi-connexe. On dispose de morphismes fonctoriels d'abélianisation :

$$ab_G^i: \mathbf{H}^i(F,G) \to \mathbf{H}^i_{ab}(F,G)$$

pour $0 \le i \le 1$, dont le noyau est l'image de $\mathbf{H}^i(F, G_{SC})$. L'application

$$ab_G^0: G(F) \to \mathbf{H}_{ab}^0(F,G)$$

est surjective si F est local non archimédien. L'application

$$ab_G^1: \mathbf{H}^1(F,G) \to \mathbf{H}^1_{ab}(F,G)$$
,

toujours surjective si F est local ou global, est un isomorphisme si F est local non archimédien.

Démonstration. — La fonctorialité a été établie en 1.6.3. Pour les groupes réductifs connexes les autres assertions sont établies dans [Bo3] (proposition 5.1, théorèmes 5.4 et 5.7). Passons au cas général. Si F est local non archimédien, la surjectivité de l'application ab^0 résulte de la trivialité du $\mathbf{H}^1(F, G_{SC})$ (cf. 1.6.6). Ceci implique en outre l'injectivité de ab^1 dans ce cas. Soit F un corps local et supposons que T_1 est un tore fondamental dans G_1 . L'application de $\mathbf{H}^0(F, T_1 \to T_0)$ dans $\mathbf{H}^1_{ab}(F, G)$ qui est surjective d'après 1.6.5, se factorise par

$$\mathbf{H}^{1}(F,G) = \mathbf{H}^{0}(F,G_{1} \to T_{0}).$$

L'existence de tores fondamentaux implique la surjectivité de l'application d'abélianisation :

$$\mathbf{H}^1(F,G) \to \mathbf{H}^1_{ab}(F,G)$$
.

Si F est global on se ramène au cas connexe par dévissage, et dans ce cas, la preuve de la surjectivité de ab^1 est similaire au cas local mais plus délicate (cf. [Bo3, Theorem 5.7]).

Dans la suite de cette section F est un corps global. On dispose des groupes de cohomologie adélique abélianisée définis comme produits restreints.

Proposition 1.6.8. — Soit G un groupe quasi-connexe défini comme noyau d'un homomorphisme surjectif d'un groupe réductif connexe G_1 dans un tore T_0 . Soit T_1 un tore maximal de G_1 et T_{sc} son image réciproque dans G_{SC} . Si K est une extension assez grande, le morphisme

$$[T_{sc}(\mathbb{A}_K) \to T_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)] \to [G_{SC}(\mathbb{A}_K) \to G_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)]$$

 $\it est\ un\ quasi-isomorphisme,\ et\ pour\ i=0\ ou\ 1\ on\ a:$

$$\mathbf{H}_{ab}^{i}(\mathbb{A}_{F},G) = \mathbf{H}^{i-1}(\Gamma,G_{SC}(\overline{\mathbb{A}_{F}}) \to G_{1}(\overline{\mathbb{A}_{F}}) \to T_{0}(\overline{\mathbb{A}_{F}})).$$

 $D\acute{e}monstration$. — Soit \tilde{G}_1 une z-extension de G_1 de noyau un tore T_2 . Soit \tilde{T}_1 l'image réciproque de T_1 dans \tilde{G}_1 . Soit K une extension de F assez grande, de sorte que tous ces tores soient déployés sur K. On a des morphismes d'ensembles croisés

$$[T_2(\mathbb{A}_K) \times T_{sc}(\mathbb{A}_K) \to \tilde{T}_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)] \to [T_{sc}(\mathbb{A}_K) \to T_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)]$$

$$[G_{SC}(\mathbb{A}_K) \times T_2(\mathbb{A}_K) \to \tilde{G}_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)] \to [G_{SC}(\mathbb{A}_K) \to G_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)]$$
ainsi que

$$[T_2(\mathbb{A}_K) \times T_{sc}(\mathbb{A}_K) \to \tilde{T}_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)] \to [T_2(\mathbb{A}_K) \to \tilde{D}_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)]$$

où \tilde{D}_1 est le co-centre de \tilde{G}_1 et

$$[G_{SC}(\mathbb{A}_K) \times T_2(\mathbb{A}_K) \to \tilde{G}_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)] \to [T_2(\mathbb{A}_K) \to \tilde{D}_1(\mathbb{A}_K) \to T_0(\mathbb{A}_K)].$$

Les noyaux de ces morphismes de complexes

$$[T_2(\mathbb{A}_K) \to T_2(\mathbb{A}_K) \to 1], \qquad [T_{sc}(\mathbb{A}_K) \to T_{sc}(\mathbb{A}_K) \to 1]$$

et

et

$$[G_{SC}(\mathbb{A}_K) \to G_{SC}(\mathbb{A}_K) \to 1]$$

sont des complexes acycliques. Par ailleurs, si K est une extension de F assez grande, les morphismes de passage au quotient sont surjectifs sur chaque composant : ceci résulte de la trivialité de $\mathbf{H}^1(\mathbb{A}_K, T_*)$ si T_* est K-déployé et de $\mathbf{H}^1(\mathbb{A}_K, G_{SC})$ si toutes les places archimédiennes de K sont complexes comme il résulte de 1.6.6. Dans ces conditions ces morphismes d'ensembles croisés sont des quasi-isomorphismes. Les assertions en résultent immédiatement compte tenu de 1.4.1.

Remarque. — On observera que, par contre, il se peut que le morphisme de modules croisés

$$[Z_{sc}(\overline{\mathbb{A}_F}) \to Z(\overline{\mathbb{A}_F})] \to [G_{SC}(\overline{\mathbb{A}_F}) \to G(\overline{\mathbb{A}_F})]$$

ne soit pas un quasi-isomorphisme. Par exemple, si G = PGL(2) on a Z = 1 alors que $SL(2, \overline{\mathbb{A}_F}) \to PGL(2, \overline{\mathbb{A}_F})$ n'est pas surjective.

On note F_{∞} le produit des complétés archimédiens de F:

$$F_{\infty} = \prod_{v \mid \infty} F_v = F \underset{\mathbb{Q}}{\otimes} \mathbb{R}.$$

D'après 1.6.6 le diagramme commutatif

est à lignes exactes. Il fournit une flèche de $\mathbf{H}^1(F,G)$ dans le produit fibré de $\mathbf{H}^1_{ab}(F,G)$ et $\mathbf{H}^1(\mathbb{A}_F,G)$ au dessus de $\mathbf{H}^1_{ab}(\mathbb{A}_F,G)$. Pour exploiter ce diagramme nous utiliserons le principe de Hasse :

Théorème 1.6.9 (Kneser-Harder-Chernousov). — Soit F un corps global et G_{SC} un groupe semi-simple connexe et simplement connexe; alors l'application

$$\mathbf{H}^1(F, G_{SC}) \to \mathbf{H}^1(F_{\infty}, G_{SC})$$

est bijective.

Ce théorème est dû à Kneser [Kne3] et Harder [Har1] [Har2], sauf le cas des groupes de type E_8 qui est dû à Chernousov [Ch].

Théorème 1.6.10. — Soient F un corps global et G un F-groupe quasi-connexe. L'application naturelle

$$\mathbf{H}^1(F,G) \to \mathbf{H}^1_{ab}(F,G) \underset{\mathbf{H}^1_{ab}(\mathbb{A}_F,G)}{\times} \mathbf{H}^1(\mathbb{A}_F,G)$$

est surjective. Elle est bijective si G est connexe.

 $D\acute{e}monstration$. — Pour G connexe, et compte tenu de la bijectivité de ab^1 pour les corps non archimédiens, c'est le théorème 5.11 de [Bo3]. Redonnons la preuve dans notre cadre légèrement plus général. Compte tenu du diagramme commutatif ci-dessus, la surjectivité résulte de ce que, pour un corps global, ab^1 est surjective (1.6.7) et de ce que, d'après 1.6.9, l'application

$$\mathbf{H}^1(F, G_{SC}) \to \mathbf{H}^1(F_{\infty}, G_{SC})$$

est bijective. Si G est connexe, on invoque la densité de l'image de flèche

$$\mathbf{H}_{ab}^0(F,G) \to \mathbf{H}_{ab}^0(F_{\infty},G)$$

pour prouver l'injectivité. Cette densité s'obtient par dévissage, en remplaçant G_{ab} par un complexe de tores $[T_2 \to T_1]$ quasi-isomorphe où T_1 est un tore induit, au moyen de la densité de $\mathbf{H}^0(F, T_1)$ dans $\mathbf{H}^0(F_\infty, T_1)$ et de la surjectivité de $\mathbf{H}^1(F, T_2)$ sur $\mathbf{H}^1(F_\infty, T_2)$ (cf. [KS, Lemma C.5.A]).

On note $\ker^1(F,G)$ le noyau de la flèche

$$\mathbf{H}^1(F,G) \to \mathbf{H}^1(\mathbb{A}_F,G)$$

et on note $\ker_{ab}^{1}(F,G)$ son analogue abélianisé.

Corollaire 1.6.11. — Soit G' une forme intérieure d'un groupe quasi-connexe G. La flèche naturelle

$$\ker^1(F, G') \to \ker^1_{ab}(F, G)$$

est surjective; si G est connexe c'est un isomorphisme.

 $D\acute{e}monstration$. — On peut identifier $\ker^1_{ab}(F,G)$ à un sous-ensemble du produit fibré considéré ci-dessus et l'assertion est une conséquence immédiate de 1.6.10 compte tenu de l'invariance de la cohomologie abélianisée par changement de forme intérieure. Au langage près, pour un groupe connexe, ceci est dû à Kottwitz [Ko4, Remark 4.4]. \Box

D'après 1.6.1, l'ensemble croisé

$$[G_{SC} \rightarrow G_1 \rightarrow T_0]$$

est quasi-torique. On peut donc définir des groupes

$$\mathbf{H}_{ab}^{i}(\mathbb{A}_{F}/F,G)$$

et par composition des morphismes

$$\mathbf{H}^1(\mathbb{A}_F,G) \to \mathbf{H}^1_{ab}(\mathbb{A}_F,G) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F,G)$$

on obtient une flèche naturelle

$$\mathbf{H}^1(\mathbb{A}_F,G) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F,G)$$
.

Proposition 1.6.12. — La suite d'ensembles pointés

$$\ker^1(F,G) \to \mathbf{H}^1(F,G) \to \mathbf{H}^1(\mathbb{A}_F,G) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F,G)$$

est exacte.

 $D\acute{e}monstration$. — D'après 1.4.3 on dispose d'un diagramme commutatif à lignes exactes :

et on voit que le noyau de la flèche

$$\mathbf{H}^1(\mathbb{A}_F,G) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F,G)$$

est l'image du produit fibré

$$\mathbf{H}^1_{ab}(F,G) \underset{\mathbf{H}^1_{ab}(\mathbb{A}_F,G)}{\times} \mathbf{H}^1(\mathbb{A}_F,G).$$

On conclut en rappelant que d'après 1.6.10, l'ensemble $\mathbf{H}^1(F,G)$ s'envoie surjectivement sur ce produit fibré.

Nous allons établir une variante de cette proposition.

Proposition 1.6.13. — Soit G un groupe réductif connexe. Soit V un groupe et soit U un groupe abélien muni d'un morphisme d'image centrale dans $G \times V$. Si \mathbf{A} est une F-algèbre. on note $\mathfrak{G}(\mathbf{A})$ le module croisé

$$[U(\overline{F}) \to G(\mathbf{A}) \times V(\overline{F})]$$
.

 $Il\ existe\ un\ morphisme\ canonique$

$$\mathbf{H}^1(\Gamma, \mathfrak{G}(\overline{\mathbb{A}_F})) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F, G)$$

et la suite d'ensembles pointés

$$\ker^1(F,G) \to \mathbf{H}^1(\Gamma,\mathfrak{G}(\overline{F})) \to \mathbf{H}^1(\Gamma,\mathfrak{G}(\overline{\mathbb{A}_F})) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F,G)$$

 $est\ exacte.$

 $D\acute{e}monstration$. — On observe tout d'abord que $\mathbf{H}^1(\Gamma, \mathfrak{G}(\mathbf{A}))$ est le produit fibré

$$\mathbf{H}^1(\Gamma, U(\overline{F}) \to G(\mathbf{A})) \underset{\mathbf{H}^2(F,U)}{\times} \mathbf{H}^1(F,U \to V) \, .$$

Soit T un tore maximal dans G. D'après 1.6.8 le module croisé

$$U(\overline{F}) \times T_{sc}(\overline{\mathbb{A}_F}) \to T(\overline{\mathbb{A}_F})$$

est quasi-isomorphe au module croisé

$$U(\overline{F}) \times G_{SC}(\overline{\mathbb{A}_F}) \to G(\overline{\mathbb{A}_F})$$
.

On en déduit l'existence d'un diagramme commutatif exact :

$$\begin{array}{cccc} \mathbf{H}^{1}(F,G_{SC}) & \to & \mathbf{H}^{1}(\Gamma,\mathfrak{G}(\overline{F})) & \to & \mathbf{H}^{1}(\Gamma,G_{SC}(\overline{F})\to\mathfrak{G}(\overline{F})) \\ \downarrow & & \downarrow & \downarrow \\ \mathbf{H}^{1}(\mathbb{A}_{F},G_{SC}) & \to & \mathbf{H}^{1}(\Gamma,\mathfrak{G}(\overline{\mathbb{A}_{F}})) & \to & \mathbf{H}^{1}(\Gamma,G_{SC}(\overline{\mathbb{A}_{F}})\to\mathfrak{G}(\overline{\mathbb{A}_{F}})) \\ \downarrow & & \downarrow \\ & & \mathbf{H}^{1}_{ab}(\mathbb{A}_{F}/F,G) \end{array}$$

d'où un morphisme fonctoriel

$$\mathbf{H}^1(\Gamma, \mathfrak{G}(\overline{\mathbb{A}_F})) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F, G)$$
.

On définit \mathfrak{G}_{ad} en remplaçant G par son groupe adjoint. On observe que $\mathfrak{G}_{ad}(\mathbf{A})$ se décompose en un produit :

$$\mathfrak{G}_{ad}(\mathbf{A}) = G_{ad}(\mathbf{A}) \times [U(\overline{F}) \to V(\overline{F})].$$

Ceci permet par dévissage, compte tenu de la suite exacte

$$\mathbf{H}^1(\Gamma, Z(\mathbf{A})) \to \mathbf{H}^1(\Gamma, \mathfrak{G}(\mathbf{A})) \to \mathbf{H}^1(\Gamma, \mathfrak{G}_{ad}(\mathbf{A})) \to \mathbf{H}^2(\Gamma, Z(\mathbf{A}))$$

où Z est le centre de G, de prouver la surjectivité de

$$\mathbf{H}^1(\Gamma, \mathfrak{G}(\overline{F})) \to \mathbf{H}^1(\Gamma, G_{SC}(\overline{F}) \to \mathfrak{G}(\overline{F}))$$

et

$$\mathbf{H}^1(\Gamma, \mathfrak{G}(\overline{\mathbb{A}_F})) \to \mathbf{H}^1(\Gamma, G_{SC}(\overline{\mathbb{A}_F}) \to \mathfrak{G}(\overline{\mathbb{A}_F}))$$
.

On conclut en prouvant l'analogue de 1.6.10 et en en déduisant, comme dans 1.6.12, que le noyau de

$$\mathbf{H}^1(\Gamma, \mathfrak{G}(\overline{\mathbb{A}_F})) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F, G)$$

est l'image de $\mathbf{H}^1(\Gamma, \mathfrak{G}(\overline{F}))$. Enfin, pour prouver que $\ker^1(F, G)$ est le noyau de

$$\mathbf{H}^1(\Gamma, \mathfrak{G}(\overline{F})) \to \mathbf{H}^1(\Gamma, \mathfrak{G}(\overline{\mathbb{A}_F}))$$

on invoque le diagramme exact ci-dessous :

Nous laisserons au lecteur le soin de généraliser la proposition ci-dessus au cas quasi-connexe.

1.7. Retour sur quelques résultats de Kottwitz

L'abélianisation en cohomologie est la clef des constructions de divers objets introduits par Kottwitz.

Nous allons rappeler la définition d'un invariant construit par Kottwitz dans [Ko2]. Soit G un groupe réductif quasi-connexe. La demi-somme des racines de G_{SC} définit un caractère de son centre Z_{sc} , mais la somme des racines, qui est le poids dominant de la représentation adjointe, induit le caractère trivial sur Z_{sc} . La demi-somme des racines fournit donc un homomorphisme d'ordre 2 de Z_{sc} dans le groupe multiplicatif \mathbb{G}_m . Compte tenu du quasi-isomorphisme

$$[Z_{sc} \rightarrow 1] \rightarrow [G_{SC} \rightarrow G_{ad}]$$

on obtient un homomorphisme

$$\mathbf{H}^1_{ab}(*, G_{ad}) \to \mathbf{H}^2(*, \mathbb{G}_m)$$

dont l'image est formée d'éléments d'ordre 2. Posons *=F si F est local et $*=\mathbb{A}_F/F$ si F est global, on sait que $\mathbf{H}^2(*,\mathbb{G}_m)$ s'identifie à un sous-groupe du groupe des racines de l'unité dans \mathbb{C}^{\times} . L'application d'abélianisation composée avec l'homomorphisme ci-dessus fournit un morphisme

$$\mathbf{H}^1(*, G_{ad}) \to \{\pm 1\}$$
.

Définition 1.7.1. — Soient F un corps local, G^* un groupe quasi-déployé et quasi-connexe et G une forme intérieure. Nous appellerons signe de Kottwitz le signe

$$e(G) = \pm 1$$

associé à G par composition de la bijection entre l'ensemble des classes d'isomorphisme de formes intérieures de G^* et $\mathbf{H}^1(F, G^*_{ad})$ et du morphisme

$$\mathbf{H}^{1}(F, G_{ad}^{*}) \to \{\pm 1\}$$
.

Le signe est trivial si G est quasi-déployé et on a une loi de réciprocité :

Lemme 1.7.2. — Soit F un corps global. Le produit des signes de Kottwitz locaux est égal à 1 :

$$\prod_{v} e(G_v) = 1.$$

 $D\acute{e}monstration.$ — C'est une conséquence immédiate de la proposition 1.6.12. \Box

Dans la suite de cette section, G est un groupe réductif connexe. On notera par un exposant D la dualité de Pontryagin. Soit \widehat{G} le dual de Langlands (i.e. la composante neutre du groupe des points complexes du L-groupe) et soit $Z(\widehat{G})$ son centre. Considérons le groupe des composantes connexes du groupe des invariants sous Galois du centre du groupe dual :

$$\pi_0(Z(\widehat{G})^{\Gamma}) = \pi_0(\mathbf{H}^0(F, Z(\widehat{G})))$$
.

Suivant [Ko5] nous noterons A(G) son dual de Pontryagin

$$A(G) = \pi_0(Z(\widehat{G})^{\Gamma})^D$$
.

Proposition 1.7.3. — Soit G un groupe réductif connexe. Soit F un corps local; il existe une application canonique injective

$$\mathbf{H}^1_{ab}(F,G) \to A(G)$$

 $qui\ est\ bijective\ si\ F\ est\ non-archimédien.\ Soit\ F\ un\ corps\ global\ ;\ il\ existe\ une\ application\ canonique\ bijective$

$$\mathbf{H}_{ab}^1(\mathbb{A}_F/F,G) \to A(G)$$
.

De plus

$$\ker^{1}(F,G) = \ker^{1}_{ab}(F,G) = \ker^{1}(F,Z(\widehat{G}))^{D}.$$

 $D\acute{e}monstration.$ — On observe que $\widehat{G_{SC}}$ est le groupe adjoint de \widehat{G} et que donc le complexe

$$[Z(\widehat{G}) \to 1]$$

est quasi-isomorphe au module croisé

$$[\widehat{G} \to \widehat{G_{SC}}]$$

et donc pour les groupes de cohomologie modifiés de Tate

$$\widehat{\mathbf{H}}^{i+1}(K/F, Z(\widehat{G})) = \widehat{\mathbf{H}}^{i}(K/F, \widehat{G} \to \widehat{G_{SC}})$$
.

L'isomorphisme de Tate-Nakayama pour les complexes de tores (cf. [Ny]) montre que, si *=F lorsque F est local et $*=\mathbb{A}_F/F$ lorsque F est global, on a

$$\widehat{\mathbf{H}}^i(*,G_{SC}\to G)=\varinjlim\widehat{\mathbf{H}}^{-i}(K/F,\widehat{G}\to\widehat{G_{SC}})^D$$

et donc

$$\mathbf{H}^1_{ab}(*,G) = \underline{\lim} \ \widehat{\mathbf{H}^0}(K/F,Z(\widehat{G}))^D \ .$$

Si K est assez grand, $Gal(\overline{F}/K)$ agit trivialement et on a

$$\widehat{\mathbf{H}}^0(K/F, Z(\widehat{G})) = Z(\widehat{G})^{\Gamma}/N_{K/F}Z(\widehat{G}) \ .$$

La composante connexe de l'élément neutre $(Z(\widehat{G})^{\Gamma})^0$ de $Z(\widehat{G})^{\Gamma}$ est un sous-groupe de $N_{K/F}Z(\widehat{G})$:

$$(Z(\widehat{G})^{\Gamma})^0 \subset N_{K/F}Z(\widehat{G})$$
.

On dispose donc de morphismes surjectifs

$$\pi_0(Z(\widehat{G})^{\Gamma}) \to \widehat{\mathbf{H}}^0(K/F, Z(\widehat{G}))$$

ce qui fournit un morphisme injectif

$$\mathbf{H}^1_{ab}(*,G) \to A(G) = \pi_0(Z(\widehat{G})^{\Gamma})^D$$
.

Supposons qu'il existe deux extensions galoisiennes K_0/F et K/K_0 telles que le groupe $\operatorname{Gal}(\overline{F}/K_0)$ agisse trivialement sur $Z(\widehat{G})$ et que $\operatorname{Gal}(K/K_0)$ soit d'ordre un multiple du nombre de composantes connexes de $Z(\widehat{G})^{\Gamma}$. Alors

$$N_{K/F}Z(\widehat{G}) \subset N_{K/K_0}Z(\widehat{G})^{\Gamma} = (Z(\widehat{G})^{\Gamma})^0$$
.

Pour un tel corps on a donc un isomorphisme

$$\pi_0(Z(\widehat{G})^{\Gamma}) \to \widehat{\mathbf{H}}^0(K/F, Z(\widehat{G}))$$

La bijectivité à la limite résulte de ce que de tels corps K forment un ensemble cofinal si F est non-archimédien ou global. La dernière assertion résulte de 1.6.11.

Corollaire 1.7.4. — Soit G un groupe réductif connexe. Soit $\tau(G)$ le nombre de Tamagawa de G. On a:

$$\tau(G) = \frac{\# \mathbf{H}_{ab}^{1}(\mathbb{A}_{F}/F, G)}{\# \ker_{ab}^{1}(F, G)} .$$

 $D\acute{e}monstration.$ — Rappelons que d'après Kottwitz ([Ko4] et [Ko6]) le nombre de Tamagawa de G vaut

$$\tau(G) = \frac{\#\pi_0(Z(\widehat{G})^{\Gamma})}{\# \ker^1(F, Z(\widehat{G}))} .$$

L'assertion résulte alors de 1.7.3. On pourrait aussi établir ce résultat directement, i.e. sans bi-dualité, en utilisant la preuve de la conjecture de Weil par Kottwitz [Ko6] et une caractérisation axiomatique des nombres de Tamagawa relatifs comme dans [Ono] et [Ko4].

Lorsque F est local, en composant l'application d'abélianisation avec le morphisme 1.7.3 on obtient un morphisme de foncteurs

$$\mathbf{H}^1(F,G) \to A(G)$$

dont le noyau est l'image de $\mathbf{H}^1(F,G_{SC})$. Lorsque F est global, en composant le morphisme

$$\mathbf{H}^1(\Gamma, G(\overline{\mathbb{A}_F})) \to \mathbf{H}^1(\mathbb{A}_F, G)$$

l'application d'abélianisation et le morphisme 1.7.3 on obtient un morphisme de foncteurs

$$\mathbf{H}^1(\Gamma, G(\overline{\mathbb{A}_F})) \to A(G)$$
.

Comme G est supposé connexe on a

$$\mathbf{H}^1(\Gamma, G(\overline{\mathbb{A}_F})) = \mathbf{H}^1(\mathbb{A}_F, G)$$

d'après 1.4.1. Compte tenu de 1.6.12 on voit que le noyau est l'image de $\mathbf{H}^1(\Gamma, G(\overline{F}))$. On a la variante suivante : si Z est le centre de G, la proposition 1.6.13 fournit un morphisme

$$\mathbf{H}^1(\Gamma, Z(\overline{F}) \backslash G(\overline{\mathbb{A}_F})) \to A(G)$$

dont le noyau est l'image de $\mathbf{H}^1(\Gamma, Z(\overline{F})\backslash G(\overline{F}))$. Ces morphismes sont construits par Kottwitz dans [Ko5].

1.8. Abélianisation de complexes de groupes réductifs

Soient I et G deux groupes réductifs connexes et soient f et g deux morphismes de I dans G; le couple de morphismes (f,g) définit une action de I sur G.

Soit U un groupe abélien muni d'une flèche ζ dans le centre de I telle que $f \circ \zeta = g \circ \zeta$ envoient U dans le centre de G, définissant donc un ensemble croisé :

$$\mathfrak{G} = [U \to I \Rightarrow G] = [[U \to I] \Rightarrow G] \ .$$

On note μ_G (resp. μ_I) les actions naturelles de G (resp. I) sur G_{SC} (resp. I_{SC}). Notons $I \ltimes G_{SC}$ le produit semi-direct de I et G_{SC} où I agit sur G_{SC} via l'action naturelle de G composée avec f: c'est-à-dire que pour $c \in I$ et $g \in G_{SC}$, on a

$$(c,1)(1,y)(c,1)^{-1} = (1,\mu_G(f(c))*y).$$

On note \tilde{f} et \tilde{g} les morphisme de I_{SC} dans G_{SC} obtenus en relevant f et g. D'après 1.6.3 on dispose de deux morphismes de modules croisés entre

$$\mathfrak{M}_1 = [U \times I_{SC} \to I]$$
 et $\mathfrak{M}_0 = [G_{SC} \to G]$

ce qui permet de définir un ensemble croisé que nous noterons \mathfrak{G}_{ab} :

$$\mathfrak{G}_{ab} = [\mathfrak{M}_1 \Rightarrow \mathfrak{M}_0]$$
.

Soient S un tore maximal dans I et T un tore maximal dans G définis sur F. Bien que ce ne soit pas indispensable, nous supposerons pour simplifier que l'on peut choisir ces tores de sorte que

$$f(S) \subset T$$
 et $g(S) \subset T$.

Proposition 1.8.1. — On peut définir pour tout entier i des groupes de cohomologie abéliens

$$\mathbf{H}_{ab}^{i}(F,\mathfrak{G}) := \mathbf{H}^{i}(F,\mathfrak{G}_{ab})$$
.

Démonstration. — On note S_{sc} et T_{sc} les images réciproques des tores T et S dans les revêtements simplement connexes des groupes dérivés. Comme

$$f(S) \subset T$$
 et $g(S) \subset T$

on dispose d'un morphisme

$$s \mapsto h(s) = f(s) \cdot g(s^{-1})$$

de S dans T et d'un diagramme commutatif exact défini par h et \tilde{h}

$$\begin{array}{cccc} S_{sc} & \rightarrow & T_{sc} \\ & \downarrow & & \downarrow \\ U & \rightarrow & S & \rightarrow & T & . \end{array}$$

D'après 1.6.1 et 1.1.2 les inclusions induisent un quasi-isomorphisme

$$[[U \times S_{sc} \to S] \Rightarrow [T_{sc} \to T]] \to \mathfrak{G}_{ab}$$
.

Comme pour les ensembles croisés quasi-toriques, on vérifie que les groupes de cohomologie définis via ce quasi-isomorphisme sont indépendants des choix. \Box

Nous dirons que l'ensemble croisé en groupes \mathfrak{G}_{ab} est l'abélianisé de \mathfrak{G} . Le morphisme d'ensembles croisés

$$\mathfrak{G} o \mathfrak{G}_{ab}$$

induit un morphisme d'abélianisation en cohomologie :

$$\mathbf{H}^0(F,\mathfrak{G}) \to \mathbf{H}^0_{ab}(F,\mathfrak{G})$$
.

On observera que si U=1 l'ensemble croisé \mathfrak{G}_{ab} est quasi-torique.

La remarque qui suit 1.1.2 montre que si I est quasi-connexe mais non connexe, la construction analogue à celle de l'abélianisé ci-dessus ne fournit pas toujours un ensemble croisé à homotopie abélienne. Ce sera le cas avec une condition supplémentaire sur le morphisme.

Définition 1.8.2. — On appelle paire admissible la donnée d'un groupe réductif connexe G, d'un groupe réductif quasi-connexe I noyau d'un morphisme surjectif $I_1 \to S_0$ et d'un morphisme $I \to G$ qui se factorise par I_1 .

Le complexe $[I \to G]$ est quasi-isomorphe au complexe de groupes connexes

$$[I_1 \rightarrow G_1]$$

avec $G_1 = G \times S_0$. On dispose pour $[I_1 \to G_1]$ d'un abélianisé quasi-torique. La définition de

$$\mathbf{H}^i_{ab}(F, I \to G)$$

au moyen de complexes de tores quasi-isomorphes ci-dessus s'étend ainsi aux paires admissibles, et si F est un corps global on sait définir

$$\mathbf{H}_{ab}^{i}(*,I\rightarrow G)$$

pour $* = \mathbb{A}_F$ et \mathbb{A}_F/F . Nous laisserons au lecteur le soin de vérifier que cette définition est indépendante du choix du groupe connexe I_1 .

Soit I un sous-groupe quasi-connexe d'un groupe connexe G définissant une paire admissible. Nous écrirons

$$\mathbf{H}^0(F, I \backslash G)$$
 et $\mathbf{H}^i_{ab}(F, I \backslash G)$

pour

$$\mathbf{H}^0(F, I \to G)$$
 et $\mathbf{H}^i_{ab}(F, I \to G)$.

Posons

$$\mathfrak{D}(I,G;F) = \ker[\mathbf{H}^1(F,I) \to \mathbf{H}^1(F,G)]$$
.

On a une suite exacte d'ensembles pointés

$$1 \to I(F) \backslash G(F) \to \mathbf{H}^0(F, I \backslash G) \to \mathfrak{D}(I, G; F) \to 1$$
.

Les fibres de l'application $\mathbf{H}^0(F, I \setminus G) \to \mathfrak{D}(I, G; F)$ sont des ensembles $I'(F) \setminus G(F)$ où I' est une forme intérieure de I. Si F est un corps local l'ensemble $\mathfrak{D}(I,G;F)$ est fini. Un analogue de l'ensemble $\mathfrak{D}(I,G;F)$, est défini en utilisant les abélianisés :

$$\mathfrak{E}(I,G;F) = \ker[\mathbf{H}_{ab}^1(F,I) \to \mathbf{H}_{ab}^1(F,G)]$$
.

C'est un groupe abélien et l'application d'abélianisation induit une application

$$\mathfrak{D}(I,G;F) \to \mathfrak{E}(I,G;F)$$
.

Lemme 1.8.3. — Pour que l'application

$$\mathfrak{D}(I,G;F) \to \mathfrak{E}(I,G;F)$$

soit surjective il suffit que $\mathbf{H}^1(F, G_{SC}) = 1$. Elle est toujours bijective pour un corps local non archimédien.

Démonstration. — Si $\mathbf{H}^1(F, G_{SC}) = 1$ l'application

$$\mathbf{H}^1(F,G) \to \mathbf{H}^1_{ab}(F,G)$$

est bijective d'après 1.6.7. C'est en particulier le cas si F est local non archimédien. Les assertions en résultent.

Soit maintenant F un corps global. Nous noterons $\mathfrak{E}(I,G;\mathbb{A}_F/F)$ le groupe quotient de $\mathbf{H}_{ab}^0(\mathbb{A}_F/F, I\backslash G)$ par l'image de $\mathbf{H}_{ab}^0(\mathbb{A}_F, G)$:

$$\mathfrak{E}(I,G;\mathbb{A}_F/F) = \operatorname{coker} \left[\mathbf{H}_{ab}^0(\mathbb{A}_F,G) \to \mathbf{H}_{ab}^0(\mathbb{A}_F/F,I\backslash G) \right].$$

Proposition 1.8.4. — Le groupe $\mathfrak{E}(I,G;\mathbb{A}_F/F)$ s'insère dans deux suites exactes :

$$\ker_{ab}^{1}(F,I) \to \ker_{ab}^{1}(F,G) \to \mathfrak{E}(I,G;\mathbb{A}_{F}/F) \to \mathbf{H}_{ab}^{1}(\mathbb{A}_{F}/F,I) \to \mathbf{H}_{ab}^{1}(\mathbb{A}_{F}/F,G)$$
,

et

$$\mathfrak{E}(I,G;F) \to \mathfrak{E}(I,G;\mathbb{A}_F) \to \mathfrak{E}(I,G;\mathbb{A}_F/F) \to \ker^1_{ab}(F,I\backslash G)$$
.

C'est un groupe fini si I est connexe.

Démonstration. — On a un diagramme commutatif exact

Par passage au quotient des deux premières lignes par

et de la troisième ligne par l'image de la deuxième ligne de ce complexe, on obtient un nouveau diagramme commutatif exact

et les deux suites exactes s'en déduisent. La dernière assertion résulte de la finitude de $\ker^1(F,G)$ et de $\mathbf{H}^1_{ab}(\mathbb{A}_F/F,I)$ lorsque les groupes G et I sont connexes. \square

Si F est local le dual de Pontryagin du groupe localement compact $\mathbf{H}^0_{ab}(F,I\backslash G)$ sera noté $\mathfrak{K}(I,G;F)$. Le dual de Pontryagin du groupe $\mathfrak{E}(I,G;F)$ est un sous-groupe de $\mathfrak{K}(I,G;F)$ qui sera noté $\mathfrak{K}(I,G;F)_1$ et sera appelé groupe des caractères endoscopiques locaux relatifs à I.

Si F est global le dual de Pontryagin du groupe localement compact $\mathbf{H}^0_{ab}(\mathbb{A}_F/F, I \backslash G)$ sera noté $\mathfrak{K}(I,G;F)$. Le dual de Pontryagin du groupe $\mathfrak{E}(I,G;\mathbb{A}_F/F)$ sera noté $\mathfrak{K}(I,G;F)_1$ et sera appelé groupe des caractères endoscopiques globaux relatifs à I.

On dispose d'une application de localisation

$$\mathfrak{K}(I,G;F)_1 \to \prod_v \mathfrak{K}(I,G;F_v)_1$$

duale de l'application

$$\mathfrak{E}(I,G;\mathbb{A}_F) \to \mathfrak{E}(I,G;\mathbb{A}_F/F)$$
.

On prendra garde que cette application de localisation n'est pas toujours injective : son noyau $\mathfrak{K}(I,G;F)_0$ est le dual de Pontryagin du groupe $\ker^1_{ab}(F,I\backslash G)$.

Remarque. — Lorsque $\theta = 1$ notre groupe $\mathfrak{K}(I,G;F)_1$ coïncide avec le groupe $\mathfrak{K}(I/F)$ introduit par Kottwitz dans [Ko5]. On trouvera plus loin la comparaison avec les groupes de caractères utilisés par Kottwitz et Shelstad dans [KS].

Lemme 1.8.5. — Soit $\varepsilon \in \mathfrak{D}(I,G;\mathbb{A}_F)$ et soit $\tilde{\varepsilon}$ son image dans $\mathfrak{E}(I,G;\mathbb{A}_F)$. Si pour tout $\kappa \in \mathfrak{K}(I,G;F)_1$ on a $\langle \tilde{\varepsilon}, \kappa \rangle = 1$ alors $\tilde{\varepsilon}$ est l'image d'un $\varepsilon_1 \in \mathfrak{D}(I,G;F)$.

Démonstration. — La proposition 1.8.4 fournit la suite exacte

$$\mathfrak{E}(I,G;F) \to \mathfrak{E}(I,G;\mathbb{A}_F) \to \mathfrak{E}(I,G;\mathbb{A}_F/F)$$
.

Par hypothèse $\langle \tilde{\varepsilon}, \kappa \rangle = 1$ pour tout $\kappa \in \mathfrak{K}(I,G;F)_1$. Ceci montre que $\tilde{\varepsilon}$ est dans l'image de $\tilde{\varepsilon}_1 \in \mathfrak{E}(I,G;F)$. Le couple $(\varepsilon,\tilde{\varepsilon}_1)$ définit un élément dans le produit fibré de $\mathfrak{E}(I,G;F)$ et $\mathfrak{D}(I,G;\mathbb{A}_F)$ au dessus de $\mathfrak{E}(I,G;\mathbb{A}_F)$. Comme G est connexe on déduit de 1.6.10 que $\mathfrak{D}(I,G;F)$ se surjecte sur ce produit fibré et donc $\tilde{\varepsilon}$ provient d'un $\varepsilon_1 \in \mathfrak{D}(I,G;F)$.

Corollaire 1.8.6. — On a une suite exacte d'ensembles pointés

$$1 \to \ker(\ker^1(F, I) \to \ker^1(F, G)) \to \mathfrak{D}(I, G; F) \to \mathfrak{D}(I, G; \mathbb{A}_F) \to \mathfrak{E}(I, G; \mathbb{A}_F/F)$$
.

Remarque. — On peut montrer que si I est un tore les images de $\mathfrak{D}(I,G;\mathbb{A}_F)$ et $\mathfrak{E}(I,G;\mathbb{A}_F)$ dans $\mathfrak{E}(I,G;\mathbb{A}_F/F)$ sont égales. Ceci résulte de l'isomorphisme entre $\mathfrak{D}(I,G;F_v)$ et $\mathfrak{E}(I,G;F_v)$ pour les places finies et de ce que, au moins si I est un tore, l'application

$$\mathfrak{E}(I,G;F) \to \mathfrak{E}(I,G;F_{\infty})$$

est surjective (utiliser [KS, lemma C.5.A]). J'ignore s'il en est de même en général.

1.9. Sous-groupes elliptiques

Soit F un corps local ou global. Considérons trois F-groupes réductifs connexes I, G et H avec des injections $I \to H$ et $H \to G$. Si F est global et si v est une place de F, nous noterons G_v etc. les groupes obtenus par extension des scalaires de F à F_v .

Définition 1.9.1. — Nous dirons que I est H-elliptique si I contient un tore T elliptique dans H.

Lemme 1.9.2. — Si F est un corps local et si I est H-elliptique l'application

$$\mathbf{H}_{ab}^1(F,I) \to \mathbf{H}_{ab}^1(F,H)$$

 $est\ surjective.\ Si\ F\ est\ un\ corps\ global\ et\ si\ I\ est\ H\text{-}elliptique$

$$\mathbf{H}_{ab}^1(\mathbb{A}_F/F,I\backslash H)=1$$
.

Si de plus I_v est H_v -elliptique, l'application de co-localisation

$$\mathbf{H}_{ab}^0(F_v, I \backslash H) \to \mathbf{H}_{ab}^0(\mathbb{A}_F/F, I \backslash H)$$

est surjective.

Démonstration. — Soient R un tore maximal dans H et R_{sc} son image réciproque dans H_{SC} . Soient S un tore maximal dans I et S_{sc} son image réciproque dans I_{SC} . On peut supposer que S = R et comme I est H-elliptique, ces tores peuvent être choisis de sorte que S_{sc} et R_{sc} soient anisotropes. On dispose de quasi-isomorphismes

$$[S_{sc} \to S] \to I_{ab}$$

et

$$[R_{sc} \to R] \to H_{ab}$$
.

et d'un diagramme commutatif exact

Comme R = S, la surjectivité de l'homomorphisme

$$\mathbf{H}^1_{ab}(F,I) \to \mathbf{H}^1_{ab}(F,H)$$

résulte de ce que, d'après 1.5.1,

$$\mathbf{H}^{2}(F, S_{sc}) = \mathbf{H}^{2}(F, R_{sc}) = 1$$
.

Le bi-complexe:

$$\begin{array}{ccc}
S_{sc} & \to & R_{sc} \\
\downarrow & & \downarrow \\
S & \to & R
\end{array}$$

est quasi-isomorphe à l'ensemble croisé

$$[I_{ab} \rightarrow H_{ab}]$$
.

Mais comme S=R le bi-complexe est quasi-isomorphe au complexe de tores

$$[S_{sc} \rightarrow R_{sc}][+1]$$
,

et donc

$$\mathbf{H}_{ab}^{i}(*, I \backslash H) = \mathbf{H}^{i+1}(*, S_{sc} \to R_{sc}) .$$

On conclut en observant que d'après 1.5.1

$$\mathbf{H}^2(\mathbb{A}_F/F, S_{sc} \to R_{sc}) = 1$$

et que si I est H_v -elliptique, la flèche de co-localisation en v

$$\mathbf{H}^1(F_v, S_{sc} \to R_{sc}) \to \mathbf{H}^1(\mathbb{A}_F/F, S_{sc} \to R_{sc})$$

est surjective.

Corollaire 1.9.3. — Si I est H-elliptique, l'entier

$$d(I,G) = \# \operatorname{coker} \left[\mathbf{H}_{ab}^{1}(\mathbb{A}_{F}/F, I) \to \mathbf{H}_{ab}^{1}(\mathbb{A}_{F}/F, G) \right]$$

est ind'ependant de I :

$$d(I,G) = d(H,G)$$
.

П

Démonstration. — Comme

$$\mathbf{H}_{ab}^1(\mathbb{A}_F/F,I\backslash H)=1$$

l'application

$$\mathbf{H}_{ab}^1(\mathbb{A}_F/F,I) \to \mathbf{H}_{ab}^1(\mathbb{A}_F/F,H)$$

est surjective et on a donc

$$\operatorname{coker} \ [\mathbf{H}^1_{ab}(\mathbb{A}_F/F,I) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F,G)] = \ \operatorname{coker} \ [\mathbf{H}^1_{ab}(\mathbb{A}_F/F,H) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F,G)] \ .$$

Lemme 1.9.4. — Soit F un corps local ou global. Si I est H-elliptique la suite

$$\mathfrak{E}(I,H;*) \to \mathfrak{E}(I,G;*) \to \mathfrak{E}(H,G;*) \to 1$$

 $avec * = F \ si \ F \ est \ local \ ou * = \mathbb{A}_F/F \ si \ F \ est \ global, \ est \ exacte.$

Démonstration. — On dispose d'un triangle distingué

$$\cdots \to [I_{ab} \to H_{ab}] \to [I_{ab} \to G_{ab}] \to [H_{ab} \to G_{ab}] \to \cdots$$

qui fournit une suite exacte longue en cohomologie abélianisée :

$$\cdots \to \mathbf{H}^0_{ab}(*, I \backslash H) \to \mathbf{H}^0_{ab}(*, I \backslash G) \to \mathbf{H}^0_{ab}(*, H \backslash G) \to \cdots$$

d'où, par passage au quotient, une suite exacte

$$\mathfrak{E}(I, H; *) \to \mathfrak{E}(I, G; *) \to \mathfrak{E}(H, G; *)$$
.

Comme I est H-elliptique

$$\mathbf{H}_{ab}^1(\mathbb{A}_F/F, I \backslash H) = 1$$

si F est global d'après 1.9.2 et donc

$$\mathbf{H}_{ab}^0(\mathbb{A}_F/F, I\backslash G) \to \mathbf{H}_{ab}^0(\mathbb{A}_F/F, H\backslash G)$$

est surjective. La surjectivité de

$$\mathfrak{E}(I,G;\mathbb{A}_F/F) \to \mathfrak{E}(H,G;\mathbb{A}_F/F)$$

en résulte, par passage au quotient. Lorsque F est local, on dispose d'un diagramme commutatif exact

et on rappelle que, d'après 1.9.2, l'application

$$\mathbf{H}^1_{ab}(F,I) \to \mathbf{H}^1_{ab}(F,H)$$

est surjective. La surjectivité de

$$\mathfrak{E}(I,G;F) \to \mathfrak{E}(H,G;F)$$

en résulte.

Définition 1.9.5. — Soit F un corps global. On dira qu'un ensemble fini $\mathfrak V$ de places v de F est (G,I)-essentiel si l'application

$$\mathfrak{E}(I,G;F_{\mathfrak{V}}) \to \mathfrak{E}(I,G;\mathbb{A}_F/F)$$

est surjective. En particulier on aura $\ker^1_{ab}(F,I\backslash G)=1.$

On note $\mathfrak{K}(I,G;F)_0$ le dual de Pontryagin de $\ker^1_{ab}(F,I\backslash G)$. C'est le noyau de l'application de localisation pour les groupes de caractères endoscopiques :

$$1 \to \mathfrak{K}(I,G;F)_0 \to \mathfrak{K}(I,G;F)_1 \to \prod_v \mathfrak{K}(I,G;F_v)_1$$

Dire que $\mathfrak V$ est un ensemble de places (G,I)-essentiel, équivaut à dire que l'application de $\mathfrak V$ -localisation

$$\mathfrak{K}(I,G;F)_1 \to \mathfrak{K}(I,G;F_{\mathfrak{V}})_1$$

est injective et qu'en particulier $\mathfrak{K}(I,G;F)_0=1$.

Proposition 1.9.6. — Soit $\mathfrak V$ un ensemble fini, non vide, de places de F. Supposons que I_v est H_v -elliptique pour tout $v \in \mathfrak V$. Pour que $\mathfrak V$ soit (G,I)-essentiel, il faut et il suffit que

$$\mathfrak{E}(H,G;F_{\mathfrak{V}}) \to \mathfrak{E}(H,G;\mathbb{A}_F/F)$$

soit surjective, c'est-à-dire que $\mathfrak V$ soit (G,H)-essentiel. En particulier, lorsque G=H ou lorsque les groupes G et H sont semi-simples simplement connexes, $\mathfrak V$ est (G,I)-essentiel.

Démonstration. — Par hypothèse I_v est H_v -elliptique pour tout $v \in \mathfrak{V}$. On dispose alors d'un diagramme commutatif

dont les lignes sont exactes d'après 1.9.4 et comme \mathfrak{V} est non vide il résulte alors de 1.9.2 que la première flèche verticale est surjective. On en déduit que

$$\operatorname{coker} \left[\mathfrak{E}(I,G;F_{\mathfrak{V}}) \to \mathfrak{E}(I,G;\mathbb{A}_F/F) \right] = \operatorname{coker} \left[\mathfrak{E}(H,G;F_{\mathfrak{V}}) \to \mathfrak{E}(H,G;\mathbb{A}_F/F) \right].$$

La dernière assertion résulte de ce que tout ensemble fini non vide de places de F est trivialement (G, H)-essentiel, lorsque G = H ou lorsque les groupes G et H sont semi-simples simplement connexes puisque dans ce cas

$$\mathfrak{E}(H,G;\mathbb{A}_F/F)=1.$$

Supposons maintenant H_{der} simplement connexe. On va donner ci-dessous un critère sur le co-centre, assurant qu'un ensemble réduit à une place soit (G, H)-essentiel. C'est la condition utilisée par Clozel dans [Clo2] lemme 6.5.

П

Lemme 1.9.7. — Supposons que le groupes dérivé H_{der} est simplement connexe, que $\ker^1(F,G)=1$ et qu'enfin il existe une extension K de F qui déploie le co-centre D_H de H, et telle qu'en une place v, l'algèbre $K_v=F_v\otimes K$ soit un corps. Alors $\mathfrak{V}=\{v\}$ est (G,H)-essentiel.

 $D\acute{e}monstration$. — La trivialité de $\ker^1(F,G)$ et la simple connexité des groupes dérivés fournit un diagramme commutatif à verticales exactes :

$$\begin{array}{cccc}
1 & \to & 1 \\
\downarrow & & \downarrow \\
\mathfrak{E}(H,G;F_v) & \to & \mathfrak{E}(H,G;\mathbb{A}_F/F) \\
\downarrow & & \downarrow \\
\mathbf{H}^1(F_v,D_H) & \to & \mathbf{H}^1(\mathbb{A}_F/F,D_H) \\
\downarrow & & \downarrow \\
\mathbf{H}^1(F_v,D_G) & \to & \mathbf{H}^1(\mathbb{A}_F/F,D_G)
\end{array}$$

L'hypothèse sur l'existence du corps K montre que les deux dernières horizontales sont bijectives. On en déduit la bijectivité de la seconde.

CHAPITRE 2

CONJUGAISON STABLE, INTÉGRALES ORBITALES ET NORME

Cette partie est consacrée à l'étude de la conjugaison stable. Cette notion a été introduite par Langlands; son étude a été poursuivie par Kottwitz et Shelstad. Nous devons généraliser certains de leurs résultats. Pour cela il s'avère utile de reformuler jusqu'aux définitions en utilisant la cohomologie abélianisée.

2.1. Groupes et automorphismes

Soit G un groupe réductif connexe défini sur F muni d'un F-automorphisme semisimple θ . On notera G^{θ} le sous-groupe des invariants sous θ et on notera G_{θ} l'ensemble des classes de θ -conjugaison dans G.

Soit Θ un groupe fini d'automorphismes. Considérons le groupe algébrique réductif G^+ produit semi-direct de G et de Θ . Soient $\theta \in \Theta$, et L la composante connexe contenant $1 \times \theta$. Nous noterons ℓ l'ordre du groupe cyclique engendré par θ . Si f est une fonction sur G(F) on notera f_L la fonction sur L(F) définie par

$$f_L(x \times \theta) = f(x)$$
.

L'application $x\mapsto x\rtimes\theta$ fait passer de la θ -conjugaison sur G (qui est le point de vue adopté dans [Ko1] et [KS]) à la conjugaison sur L:

$$x' = y^{-1} x \theta(y)$$

équivaut à

$$x' \times \theta = y^{-1} (x \times \theta) y$$
.

On notera G^* , la forme intérieure quasi-déployée de G. On fixe un isomorphisme

$$G \to G^*$$
,

défini sur la clôture algébrique \overline{F} de F et pour simplifier les notations on identifiera, via cet isomorphisme, $G(\overline{F})$ avec $G^*(\overline{F})$; toutefois les actions de Galois sont différentes. Soit $\sigma \in \operatorname{Gal}(\overline{F}/F)$; on note σ^* (resp. σ) son action sur G^* (resp. G). Ces deux actions

diffèrent par l'action adjointe d'une 1-cochaı̂ne u dont le cobord z est à valeurs dans le centre de G^* :

$$\operatorname{Ad}(u_{\sigma}) \, \sigma^*(x) = \, \sigma(x)$$

avec

$$u_{\sigma}\sigma^*(u_{\tau})u_{\sigma\tau}^{-1}=z_{\sigma,\tau}$$
.

Il sera utile de remarquer que l'on peut supposer que u est l'image par l'homomorphisme naturel p_G d'une 1-cochaîne \tilde{u} à valeurs dans G_{SC} dont le cobord \tilde{z} est à valeurs dans Z_{sc} le centre du groupe G_{SC} . On prendra garde qu'en général $1 \times \theta$ ne commute pas avec l'action adjointe de u et il se peut que l'automorphisme θ ne commute pas avec σ^* . Ce sera toutefois le cas pour le changement de base.

2.2. Restriction des scalaires et algèbres cycliques

Soit G_0 un groupe et Θ un groupe cyclique d'ordre ℓ engendré par θ . On considère le produit, indexé par Θ , de ℓ copies de G_0 :

$$G = G_0 \times \cdots \times G_0 = (G_0)^{\Theta}$$
.

Le générateur θ de Θ , agit sur G par permutation cyclique des facteurs :

$$\theta(x_1,\ldots,x_\ell)=(x_2,\ldots,x_\ell,x_1)\ .$$

L'application diagonale

$$\Delta: x \longmapsto (x, \dots, x)$$

identifie G_0 avec le groupe G^{θ} des points fixes sous θ . On dispose aussi d'une application co-diagonale de G dans G_0 :

$$\nabla: (x_1,\ldots,x_\ell) \to x_1\cdots x_\ell$$

On dispose enfin de l'application norme

$$N^{\theta}: y \longmapsto y \, \theta(y) \cdots \theta^{\ell-1}(y) = (\nabla y, \nabla \theta(y), \dots, \nabla \theta^{\ell-1}(y))$$

de G dans lui-même.

Lemme 2.2.1. — Soit
$$y = (y_1, \ldots, y_\ell) \in G$$
 il existe $v = (v_1, \ldots, v_\ell)$ tel que

$$y = v^{-1} y' \theta(v)$$
 avec $y' = (1, \dots, 1, \nabla y)$.

De plus

$$N^{\theta}(y') = \Delta(\nabla(y))$$
 et $N^{\theta}(y) = v^{-1}\Delta(\nabla(y)) v$.

Démonstration. — Une solution est $v = (1, y_1, y_1 y_2, \dots, y_1 \cdots y_{\ell-1}).$

Lemme 2.2.2. — Le groupe des invariants est dans l'image de la norme. La norme est une injection de l'ensemble G_{θ} des classes de θ -conjugaison dans l'ensemble des classes de conjugaison dans $G: si \nabla x = \nabla y$ alors il existe v tel que $y = v^{-1}x \theta(v)$. En particulier

$$\mathbf{H}^1(\Theta, G) = 1$$
.

Si G_0 est un groupe abélien, l'application

$$G_{\theta} \to G^{\theta}$$
,

 $induite\ par\ la\ norme,\ est\ un\ isomorphisme.$

Démonstration. — Si $x \in G_0$ alors $y = (x, 1, ..., 1) \in G$ est tel que $N^{\theta}y = \Delta x$: le groupe des invariants est donc dans l'image de la norme. Pour un groupe abélien l'image de la norme est donc le groupe des invariants. Si $x = (x_1, ..., x_{\ell})$ et $y = (y_1, ..., y_{\ell})$ avec

$$\nabla x = x_1 \cdots x_\ell = y_1 \cdots y_\ell = \nabla y$$

alors 2.2.1, ou un calcul direct montre que

$$(v_1^{-1}, \dots, v_\ell^{-1})(x_1, \dots, x_\ell)(v_2, \dots, v_1) = (y_1, \dots, y_\ell)$$

si $v_1=1,\ v_2=x_1^{-1}y_1$ et $v_\ell=x_{\ell-1}^{-1}\cdots x_1^{-1}y_1\cdots y_{\ell-1}$ et on a donc $y=v^{-1}x\,\theta(v)$. Si G est abélien, l'application $G_\theta\to G$ est donc injective. On a déjà vu que dans ce cas son image était G^θ .

On suppose maintenant que G_0 est un groupe algébrique défini sur F. Soit E une F-algèbre cyclique de degré ℓ . Soit Θ le groupe de Galois de E/F; c'est un groupe cyclique. La donnée de E comme algèbre cyclique sur F équivaut à la donnée d'un homomorphisme

$$\operatorname{Gal}(\overline{F}/F) \to \Theta$$
.

Son image est un sous-groupe d'ordre ℓ_1 . L'algèbre E est un produit de ℓ_0 copies d'un corps F_1 extension cyclique de degré ℓ_1 de F avec $\ell = \ell_0 \ell_1$. La restriction des scalaires de E à F de G_0

$$G = \operatorname{Res}_{E/F} G_0$$

est le groupe produit, indexé par Θ , de ℓ copies de G_0 et on fait agir $\operatorname{Gal}(\overline{F}/F)$ sur G via son action sur G_0 et Θ , ce qui s'explicite comme suit : On choisit un générateur θ de Θ ; si $\tau \in \operatorname{Gal}(\overline{F}/F)$ a pour image θ^r alors

$$\tau(x_1,\ldots,x_\ell)=(\tau(x_{1+r}),\ldots,\tau(x_r)).$$

L'application

$$(x_1,\ldots,x_\ell)\mapsto(x_1,\ldots,x_{\ell_0})$$

induit un isomorphisme

$$G(F) \rightarrow G_0(E) = G_0(F_1) \times \cdots \times G_0(F_1)$$
.

Le générateur θ de Θ , qui agit sur G par permutation cyclique des facteurs, commute avec l'action de Galois et définit un F-automorphisme. Lorsque G_0 est abélien il résulte de 2.2.2 que la norme induit un isomorphisme

$$G_{\theta}(F) \to G^{\theta}(F)$$
.

Le changement de base correspond à la situation suivante : on se donne une algèbre cyclique E/F et G_0 un groupe réductif connexe, et on considère le groupe G obtenu par restriction des scalaires :

$$G = \operatorname{Res}_{E/F} G_0$$
.

On note G^+ le produit semi-direct de G par Θ :

$$G^+ = G \times \Theta$$

et L la composante connexe de $1 \times \theta$ dans G^+ .

2.3. La conjugaison stable

Soit G^+ un groupe réductif algébrique sur F, admettant G comme composante connexe de l'identité. Soit L une composante connexe de G^+ , définie sur F et possédant un point rationnel.

Soit $\delta \in L(F)$ un élément semi-simple; on note G^{δ} le centralisateur de δ dans G. On sait que c'est un groupe réductif. D'après Steinberg, il existe dans G un tore maximal T et un sous-groupe de Borel B contenant T, stables par δ -conjugaison. On dira que δ est régulier si la composante neutre $(G^{\delta})^0$ de G^{δ} est un tore. On dira que δ est fortement régulier si G^{δ} est abélien. Dans ce cas G^{δ} est égal au centralisateur T^{δ} de δ dans T.

Définition 2.3.1. — Soit $\delta \in L(F)$ un élément semi-simple. Soit T_{δ} le tore maximal du centre du centralisateur, dans G, de $(G^{\delta})^0$ la composante neutre du centralisateur de δ . On appellera centralisateur stable de δ , le sous-groupe I_{δ}^G de G^{δ} engendré par $(G^{\delta})^0$ et $(T_{\delta})^{\delta}$.

Un théorème de Steinberg affirme que, dans un groupe semi-simple et simplement connexe, le groupe des points fixes d'un automorphisme semi-simple est toujours connexe. Donc, si $G = G_{SC}$ on a $I_{\delta} = (G^{\delta})^0$. Dans le cas de l'endoscopie ordinaire, ou plus généralement du changement de base, on montrera en 2.3.3 que le centralisateur stable est connexe : $I_{\delta} = (G^{\delta})^0$. Mais, dans le cas général, même lorsque δ est fortement régulier auquel cas $I_{\delta} = G^{\delta} = (T_{\delta})^{\delta}$, le centralisateur stable n'est pas toujours connexe.

Lemme 2.3.2. — Le centralisateur stable I_{δ} est un sous-groupe quasi-connexe de G définissant une paire admissible.

 $D\acute{e}monstration$. — Soit \tilde{I}_{δ} le sous-groupe de G engendré par $(G^{\delta})^0$ et T_{δ} . Si on note S_{δ} le tore image de T_{δ} par l'application

$$x \mapsto x \, \delta \, x^{-1} \delta^{-1}$$
,

alors I_{δ} est le noyau de

$$\tilde{I}_{\delta} \to S_{\delta}$$
.

Lemme 2.3.3. — Dans le cas du changement de base, le centralisateur stable d'un élément semi-simple est connexe.

 $D\acute{e}monstration.$ — Soit $\delta=y \rtimes \theta \in L.$ On observe que d'après 2.2.1

$$y = (y_1, \ldots, y_\ell)$$

est θ -conjugué de

$$y' = (1, \dots, 1, \nabla(y)).$$

On en déduit que le centralisateur de δ c'est-à-dire le θ -centralisateur de y dans G, est isomorphe au centralisateur de $\nabla(y)$ dans G_0 . Il suffit d'étudier le cas y=y'. Comme $\nabla(y)$ est un élément semi-simple, son centralisateur dans G_0 contient un tore maximal S. Mais le centralisateur de S dans S est un tore S qui contient le centralisateur de S dans S est un tore S qui contient le centralisateur de S dans S est un tore S qui contient le centralisateur de S dans S est un tore S on en déduit que

$$(T_{\delta})^{\delta} \subset S \subset (G^{\delta})^{0}$$
.

Soient δ et $\delta' \in L(F)$ semi-simples et conjugués sur la clôture algébrique, c'est-àdire qu'il existe $x \in G(\overline{F})$ tel que

$$\delta' = x^{-1} \delta x$$
.

On a alors pour tout $\sigma \in \operatorname{Gal}(\overline{F}/F)$

$$x \sigma(x)^{-1} \in G^{\delta}$$
.

La conjugaison stable est définie en imposant que la cochaîne $a_{\sigma} = x\sigma(x)^{-1}$ prenne ses valeurs dans le centralisateur stable :

Définition 2.3.4. — Soit $\delta \in L(F)$ un élément semi-simple. Nous dirons que $\delta' \in L(F)$ est G-stablement conjugué à δ s'il existe $x \in G$ tel que

$$\delta' = x^{-1} \delta x$$

et si pour tout $\sigma \in \operatorname{Gal}(\overline{F}/F)$

$$a_{\sigma} = x \, \sigma(x)^{-1} \in I_{\delta}$$
.

On définit de même la G^+ -conjugaison stable, en utilisant des $x \in G^+(\overline{F})$ (mais sans modifier la notion de centralisateur stable).

Le couple (x, a) définit une classe dans $\mathbf{H}^0(F, I_{\delta} \setminus G)$ et donc une classe dans

$$\mathfrak{D}(I_{\delta}, G; F) = \ker[\mathbf{H}^{1}(F, I_{\delta}) \to \mathbf{H}^{1}(F, G)]$$
.

La donnée d'une classe dans $\mathbf{H}^0(F, I_\delta \backslash G)$ définit un unique δ' . L'ensemble des éléments de L(F) stablement conjugués à δ est l'image de la flèche

$$\mathbf{H}^0(F, I_\delta \backslash G) \to \mathbf{H}^0(F, L) = L(F)$$

induite par l'application

$$x \mapsto x^{-1} \delta x = \delta';$$

dont les fibres sont les ensembles

$$\ker[\mathbf{H}^1(F, I_{\delta'}) \to \mathbf{H}^1(F, G^{\delta'})]$$
.

En effet cette flèche se factorise via l'application injective

$$\mathbf{H}^0(F, G^\delta \backslash G) \to \mathbf{H}^0(F, L)$$
.

L'ensemble $\mathcal{C}(\delta)$ des classes de conjugaison ordinaire dans la classe de conjugaison stable de δ est paramétré par l'image de la flèche

$$\mathfrak{D}(I_{\delta},G;F) \to \ker[\mathbf{H}^{1}(F,G^{\delta}) \to \mathbf{H}^{1}(F,G)]$$
.

Lorsque $I_{\delta} = G^{\delta}$, un couple (δ, δ') d'éléments stablement conjugués provient d'une unique classe dans $\mathbf{H}^0(F, I_{\delta} \backslash G)$ dont l'image dans $\mathbf{H}^0_{ab}(F, I_{\delta} \backslash G)$ est parfois notée inv (δ, δ') .

2.4. Norme pour le changement de base

On se donne une algèbre cyclique E/F, un générateur θ de son groupe de Galois et G_0 un groupe réductif connexe. On considère le groupe G obtenu par restriction des scalaires :

$$G = \operatorname{Res}_{E/F} G_0$$
.

On notera H, plutôt que G_0^* , la forme intérieure quasi-déployée de G_0 . On fixe une cochaîne u à valeurs dans H qui définit G_0 comme forme intérieure de H et donc aussi G comme forme intérieure de G^* . On voit que θ définit un F-automorphisme de G^* et que

$$H = (G^*)^{\theta}$$
.

Le groupe H est un groupe endoscopique pour le couple (G, θ) (cf. [KS]). Ce sera le seul groupe endoscopique que nous considérerons. C'est par rapport à lui que nous définirons la norme.

Soit
$$\delta = y \times \theta \in L(F)$$
. Soient $\gamma \in G^*$ et $x \in G^*$ tels que

$$x \, \delta^{\ell} \, x^{-1} = \gamma \ .$$

Pour $\sigma \in \operatorname{Gal}(\overline{F}/F)$ posons

$$a_{\sigma} = x u_{\sigma} \sigma^*(x)^{-1}$$

et

$$s = x y \ \theta(x)^{-1} \ .$$

On a les équivalences suivantes :

$$\sigma^*(\gamma) = \gamma$$
 \iff $a_{\sigma}^{-1} \gamma a_{\sigma} = \gamma$

$$\theta(\gamma) = \gamma \iff s^{-1} \gamma s = \gamma$$

et donc, demander que $\gamma \in H(F)$ équivaut à demander que a_{σ} et s commutent avec γ .

Pour simplifier les notations nous noterons $J^* = I_{\gamma}^{G^*}$ et $I^* = I_{\gamma}^H$ les centralisateurs stables d'un γ semi-simple dans G^* et H respectivement, et I^* le sous-groupe des θ -invariants dans J^* .

Définition 2.4.1. — Soit $\gamma \in H(F)$ semi-simple. On dit que γ est une norme de $\delta \in L(F)$ si il existe $x \in G^*$ tel que

(1)
$$x \delta^{\ell} x^{-1} = \gamma \quad \text{et} \quad s = x y \theta(x)^{-1} \in J^*$$

avec, pour tout $\sigma \in \operatorname{Gal}(\overline{F}/F)$

$$a_{\sigma} = x u_{\sigma} \sigma^*(x)^{-1} \in J^*.$$

Compte tenu de (1), on voit que

$$a_{\sigma} \sigma^*(s) \theta(a_{\sigma})^{-1} = s.$$

On sait que u est un cocycle à valeur dans H dont le cobord est central; donc

(4)
$$\partial a = x(\partial u)x^{-1} = \partial u = z$$

où z est un 2-cocycle à valeurs dans Z^{θ} . Les relations (2), (3) et (4) reviennent à dire que le quintuple (x, s, a, u, z) définit un 0-cocycle à valeurs dans l'ensemble croisé

$$Z^{\theta} \to J^* \times H \Rightarrow J^* \times G^*$$

associé au diagramme :

$$\begin{array}{cccc} Z^{\theta} & \rightarrow & J^{*} & \Rightarrow & J^{*} \\ \downarrow & & \downarrow & \\ H & \rightarrow & G^{*} & \end{array}$$

où l'action de J^* sur lui-même est la θ -conjugaison. Si G_{der} est simplement connexe sa classe de cohomologie ne dépend que du couple (γ, δ) .

Il sera utile de reformuler les conditions qui définissent une norme. Soit Z_{γ} le centre de $G^{*\gamma}$; on remarque que $Z_{\gamma} \subset J^*$. Comme $\gamma \in Z_{\gamma}^{\theta}$ il existe $t \in Z_{\gamma}$ avec $N^{\theta}t = \gamma$ d'après 2.2.2. Soit $s = x \, y \, \theta(x)^{-1} \in J^*$ alors $N^{\theta}s = N^{\theta}t = \gamma$ et donc s et t sont θ -conjugués dans J^* ; quitte à modifier x par un élément de J^* nous pouvons supposer s = t, c'est-à-dire

$$t = x y \ \theta(x)^{-1} \in Z_{\gamma} \subset J^*$$
.

Comme $\sigma^*(\gamma) = \gamma$ et $\theta(\gamma) = \gamma$ il existe, d'après 2.2.2, une 1-cochaîne b à valeurs dans Z_{γ} telle que

$$\sigma^*(t) = b_{\sigma}^{-1} t \theta(b_{\sigma}).$$

On observe que

$$\sigma^*(t) = a_{\sigma}^{-1} t \theta(a_{\sigma}) = b_{\sigma}^{-1} t \theta(b_{\sigma}).$$

Comme par construction a est à valeurs dans J^* , et que t et b sont à valeurs dans le centre de J^* , on a

$$\theta(a_{\sigma} b_{\sigma}^{-1}) = a_{\sigma} b_{\sigma}^{-1} = b_{\sigma}^{-1} a_{\sigma}$$
.

Posons

$$c_{\sigma} = a_{\sigma} b_{\sigma}^{-1}$$
.

On a donc

$$c_{\sigma} \in J^*$$
 avec $c_{\sigma} = \theta(c_{\sigma})$ et $\partial c = \partial a \, \partial b^{-1}$,

ce qui montre que c est une cochaîne à valeurs dans I^* , le groupe des θ -invariants dans J^* . En résumé, dire que $\delta=y\rtimes\theta$ admet γ pour norme, revient à demander que :

$$\gamma = N^{\theta}t, \qquad t = x y \theta(x)^{-1} \qquad \text{et} \qquad \sigma^*(t) = b_{\sigma}^{-1} t \theta(b_{\sigma})$$

que t et la cochaîne b soient à valeurs dans Z_{γ} , et enfin que

$$a_{\sigma} = x u_{\sigma} \sigma^*(x)^{-1} = c_{\sigma} b_{\sigma} \quad \text{avec} \quad c_{\sigma} \in I^*.$$

C'est l'élément t qui est appelé 'norme abstraite' dans [KS].

Remarque. — On trouvera dans [KS] une définition de la norme pour tous les groupes endoscopiques, et ce dans le cadre général où θ est un automorphisme presque semi-simple quelconque, mais seuls les éléments fortement réguliers sont traités.

Théorème 2.4.2. — Tout $\delta \in L(F)$ semi-simple possède une norme dans H(F).

Démonstration (cf. [Ko1]). — La classe de G-conjugaison de δ^ℓ est F-rationnelle. Si $\delta=y\rtimes\theta$ on a

$$\delta^{\ell} = N^{\theta}(y)$$
.

Il résulte de 2.2.1 que $N^{\theta}(y)$ est conjugué de $\Delta(\nabla(y)) \in H(\overline{F})$ le groupe des θ -invariants dans $G^*(\overline{F})$. L'intersection de la classe de conjugaison de δ^{ℓ} avec le sous-groupe $H(\overline{F})$ est donc une classe de H-conjugaison rationnelle. Puisque H est quasi-déployé, une telle classe possède un point rationnel si H est à groupe dérivé simplement connexe [Ko1, Theorem 4.4]. Un élément rationnel γ dans cette intersection est une norme de δ . Pour un groupe général, l'existence de normes résulte de l'existence de normes pour une z-extension.

Lemme 2.4.3 ([Ko1, Proposition 5.7]). — La norme induit une injection de l'ensemble des classes de conjugaison stable d'éléments semi-simples dans L(F) dans l'ensemble des classes de conjugaison stable dans H(F)

Démonstration. — Soit $\delta \in L(F)$ semi-simple. L'existence d'une norme a été prouvée en 2.4.2. On vérifie facilement que si γ' est stablement conjugué de γ , et si γ est une norme de δ , alors γ' est aussi une norme de δ . Soient δ et δ' admettant γ pour norme et soient (x,a) et (x',a') les cochaînes correspondantes. Posons

$$x' = xm$$

alors

$$a'_{\sigma} = x (m \sigma(m)^{-1}) x^{-1} a_{\sigma}$$

et donc

$$m \, \sigma(m)^{-1} \in x^{-1} \, I^* \, x$$

et

$$m^{-1} \, \delta \, m = \delta'$$

ce qui veut dire que δ et δ' sont stablement conjugués puisque $I_{\delta} = x^{-1}I^*x$.

Lemme 2.4.4. — Soit $\delta \in L(F)$ semi-simple de norme $\gamma \in H(F)$. Le centralisateur G^{δ} et le centralisateur stable I_{δ} de δ dans G sont respectivement isomorphes à des formes intérieures de H^{γ} et de $I^* = I^H_{\gamma}$, la torsion étant donnée par une cochaîne à valeurs dans I^* . De plus, quitte à changer γ dans sa classe de conjugaison stable, on peut supposer I^* quasi-déployé.

Démonstration. — On observe que $G^{\delta} = x^{-1}H^{\gamma}x$. Pour $g \in G^{\delta}$ on pose

$$h = x g x^{-1} \in H^{\gamma};$$

on a alors

$$x \, \sigma(g) \, x^{-1} = a_{\sigma} \sigma^*(h) \, a_{\sigma}^{-1}$$

mais a = cb avec b à valeurs dans le centre Z_{γ} de $G^{*\gamma}$ donc

$$x \sigma(q) x^{-1} = c_{\sigma} \sigma^*(h) c_{\sigma}^{-1} = \sigma_c^*(h)$$

et donc G^{δ} est isomorphe à H^{γ} muni de l'action de Galois tordue par la cochaîne c (voir aussi [Ko1, Lemma 5.8]). Comme H est quasi-déployé, la dernière assertion du lemme résulte de [Ko1, Lemma 3.3].

Corollaire 2.4.5. — Les groupes quotients G^{δ}/I_{δ} et H^{γ}/I^* sont des F-groupes isomorphes.

Définition 2.4.6. — On dira que $\delta \in L(F)$ est F-elliptique si le centralisateur (stable) de sa norme est elliptique dans H.

Dire que δ est elliptique équivaut à demander que sa norme γ soit elliptique. Nous allons maintenant donner des critères permettant d'affirmer qu'un γ semi-simple est une norme.

2.5. Image de la norme, cas local

Soit J^* un F-sous-groupe réductif connexe θ -stable de G^* : $\theta(J^*) = J^*$ et contenant l'image du centre Z^{θ} de H. On considère l'ensemble croisé

$$[Z^{\theta} \to J^* \Rightarrow J^*]$$

οù

$$J^* \Rightarrow J^*$$

symbolise l'action de J^* sur lui-même par $\theta\text{-conjugaison}.$ Pour simplifier, son ensemble de 0-cohomologie

$$\mathbf{H}^0(F, Z^{\theta} \to J^* \Rightarrow J^*)$$

sera noté

$$\mathbf{H}^0(F; Z^{\theta}, \theta, J^*).$$

Rappelons que c'est l'ensemble des classes de triplets (t, a, z) où $t \in J^*$ et a est une 1-cochaîne à valeurs dans J^* et z un 2-cocycle à valeurs dans Z^{θ} satisfaisant les conditions :

(1)
$$\sigma^*(t) = a_{\sigma}^{-1} t \ \theta(a_{\sigma}) \ ,$$

 $_{
m et}$

$$\partial a = z .$$

La relation d'équivalence est définie par la θ -conjugaison sur t et des changements compatibles des cochaîne a et z. L'application $(t, a, z) \mapsto (a, z)$ induit une application

$$\mathbf{H}^0(F; Z^{\theta}, \theta, J^*) \to \mathbf{H}^1(F, Z^{\theta} \to J^*)$$

que nous composerons avec l'application

$$\mathbf{H}^1(F, Z^{\theta} \to J^*) \to \mathbf{H}^1(F, Z^{\theta} \to G^*)$$

induite par l'inclusion. Nous noterons $\mathfrak{A}(F; J, \theta, G)$ l'ensemble des $\tau \in \mathbf{H}^0(F; Z^{\theta}, \theta, J^*)$ dont l'image dans $\mathbf{H}^1(F, Z^{\theta} \to G^*)$ est l'image de $[(u, z)] \in \mathbf{H}^1(F, Z^{\theta} \to H)$ le cocycle qui définit G_0 comme forme intérieure de $G_0^* = H$.

Lemme 2.5.1. — Soit $\tau \in \mathfrak{A}(F; J, \theta, G)$ représenté par un triplet (t, a, z); la classe de θ -conjugaison de t sur la clôture algébrique contient un élément rationnel $y \in G(F)$.

Démonstration. — Le cocycle (a, z) a pour image (u, z) dans $\mathbf{H}^1(F, Z^{\theta} \to G^*)$, c'est-à-dire qu'il existe $x \in G$ tel que

$$a_{\sigma} = x \ u_{\sigma} \sigma^*(x)^{-1}$$

pour tout $\sigma \in \operatorname{Gal}(\overline{F}/F)$. Posons

$$y = x^{-1}t \theta(x)$$

La propriété (1) se récrit

$$y = \sigma(y)$$

П

et donc $y \in G(F)$ est θ -conjugué de t (sur la clôture algébrique).

Soit T un tore maximal θ -stable dans J^* et soit T_{sc} son image réciproque dans J_{SC}^* . Le complexe de groupes abéliens associé au diagramme commutatif

$$\begin{array}{cccc} & T_{sc} & \xrightarrow{\tilde{f}} & T_{sc} \\ \downarrow & \downarrow & \downarrow \\ Z^{\theta} & \rightarrow & T & \xrightarrow{f} & T \end{array}$$

avec pour flèche f l'application $t\mapsto t^{-1}\theta(t)$, est muni d'un morphisme dans l'ensemble croisé en groupes

$$[[Z^\theta \to J^*_{ab}] \Rightarrow [J^*_{ab}]]$$

qui induit un isomorphisme en cohomologie. On calcule ainsi le groupe abélien introduit en 1.8.1

$$\mathbf{H}_{ab}^0(F, Z^\theta \to J^* \Rightarrow J^*)$$

que, pour simplifier, nous noterons

$$\mathbf{H}_{ab}^0(F; Z^{\theta}, \theta, J^*)$$
.

On suppose que le groupes des points fixes sous θ dans J^* est un groupe réductif quasi-connexe I^* ; on dispose alors de

$$\mathbf{H}_{ab}^{i}(F, Z^{\theta} \to I^{*})$$

qui peut se calculer au moyen du complexe de groupes abéliens

$$[Z^{\theta} \times T^{\theta}_{sc} \to T^{\theta}]$$

quasi-isomorphe au module croisé

$$[Z^{\theta} \rightarrow I_{ab}^*] = [Z^{\theta} \times I_{SC}^* \rightarrow I^*].$$

On définit enfin

$$\mathbf{H}^0(F,(J_{ab}^*)_{\theta})$$

au moyen du complexe de tores

$$(J_{ab}^*)_{\theta} = [(T_{sc})_{\theta} \to T_{\theta}]$$
.

L'objet ainsi défini dans la catégorie dérivée des complexes bornés de groupes diagonalisables est indépendant du choix de T. Il y a une application naturelle

$$\mathbf{H}_{ab}^0(F,J^*) \to \mathbf{H}^0(F,(J_{ab}^*)_\theta)$$

notée

$$d \mapsto d_{\theta}$$
.

Supposons maintenant que T est un tore maximal θ -stable dans G^* . On notera η_{ab} l'application de $\mathbf{H}^0(F, T_\theta)$ dans $\mathbf{H}^0(F, (G_{ab}^*)_\theta)$ induite par le morphisme $T \to G^*$.

Proposition 2.5.2. — Soit F un corps local. Soit $t \in T$ et $d \in \mathbf{H}^0_{ab}(F, G^*)$. Supposons que

$$t_{\theta} \in T_{\theta}(F) = \mathbf{H}^{0}(F, T_{\theta})$$
 et $\eta_{ab}(t_{\theta}) = d_{\theta}$.

On suppose que $(T_{sc})^{\theta}$ est un tore F-anisotrope et que l'application

$$\mathbf{H}^1(F, G^*) \to \mathbf{H}^1_{ab}(F, G^*)$$

est injective. Alors il existe $y \in G(F)$ qui est θ -conjugué de t sur la clôture algébrique.

Démonstration. — Le triangle distingué

$$\cdots \to [Z^\theta \to I_{ab}^*][+1] \to [Z^\theta \to J_{ab}^* \ \Rightarrow \ J_{ab}^*] \to [(J_{ab}^*)_\theta] \to [Z^\theta \to I_{ab}^*][+2] \to \cdots$$

pour $J^* = T$ et $J^* = G^*$ et la flèche η_{ab} fournissent un diagramme commutatif à lignes exactes :

Le triangle distingué

$$\cdots \rightarrow [1 \rightarrow 1 \rightarrow G^*_{ab}] \rightarrow [Z^\theta \rightarrow G^*_{ab} \ \Rightarrow \ G^*_{ab}] \rightarrow [Z^\theta \rightarrow G^*_{ab}][+1] \rightarrow \cdots$$

nous fournit une suite exacte

(4)
$$\mathbf{H}_{ab}^{0}(F, G^{*}) \to \mathbf{H}_{ab}^{0}(F; Z^{\theta}, \theta, G^{*}) \to \mathbf{H}_{ab}^{1}(F, Z^{\theta} \to G^{*}).$$

Soit

$$d \in \mathbf{H}^0_{ab}(F, G^*)$$
.

Son image d_{θ} dans $\mathbf{H}^{0}(F, (G_{ab}^{*})_{\theta})$ est obtenue en composant les applications

$$d \mapsto \delta \mapsto d_{\theta}$$
;

ici $\delta \in \mathbf{H}^0_{ab}(F; Z^\theta, \theta, G^*)$ est l'image de d par la première des applications de la suite (4), et d_θ est l'image de δ par la flèche évidente du bas du diagramme commutatif ci-dessus. L'image de d_θ dans

$$\mathbf{H}^2_{ab}(F, Z^{\theta} \to H)$$

est donc triviale. Comme $(T_{sc})^{\theta}$ est F-anisotrope $\mathbf{H}^{2}(F, (T_{sc})^{\theta})$ est trivial, d'après 1.5.1; ceci implique que l'application

$$\mathbf{H}^2(F, Z^{\theta} \to T^{\theta}) \to \mathbf{H}^2_{ab}(F, Z^{\theta} \to H)$$

est injective. On en déduit qu'il existe τ dans $\mathbf{H}^0(F; Z^{\theta}, \theta, T)$ d'image t_{θ} et $\eta_{ab}(\tau)$ est congru à δ modulo l'image de $\mathbf{H}^1_{ab}(F, Z^{\theta} \to H)$ dans $\mathbf{H}^0_{ab}(F; Z^{\theta}, \theta, G^*)$. La trivialité de $\mathbf{H}^2(F, (T_{sc})^{\theta})$ implique aussi que l'application

$$\mathbf{H}^1(F, Z^{\theta} \to T^{\theta}) \to \mathbf{H}^1_{ab}(F, Z^{\theta} \to H)$$

est surjective. On peut donc choisir τ , dans l'image réciproque de t_{θ} , de sorte que de plus $\eta_{ab}(\tau)$ soit égal au produit de δ par l'image de (u, z). L'image de τ dans

$$\mathbf{H}^1_{ab}(F, Z^{\theta} \to G^*)$$

est alors produit de l'image de d, obtenue en composant les applications du complexe (4) ci-dessus et est donc triviale, par l'image de (u, z). Maintenant, par hypothèse

$$\mathbf{H}^1(F, G^*) \to \mathbf{H}^1_{ab}(F, G^*)$$

est injective; on en déduit, par dévissage, que l'application

$$\mathbf{H}^1(F, Z^{\theta} \to G^*) \to \mathbf{H}^1_{ab}(F, Z^{\theta} \to G^*)$$

est aussi injective, et donc $\tau \in \mathfrak{A}(F; T, \theta, G)$. On conclut en invoquant 2.5.1.

On dispose d'une application norme sur les abélianisés induite par la norme sur les tores.

Proposition 2.5.3. — Soit F un corps local et E/F une algèbre cyclique de degré ℓ . Un $\gamma \in H(F)$ elliptique est une norme si (et seulement si) son image dans $\mathbf{H}^0_{ab}(F,H)$ est une norme.

 $D\acute{e}monstration$. — Le cas E/F déployé est immédiat et on est ramené à traiter le cas où E/F est une extension de corps. Soit S un tore elliptique dans H contenant γ . On considère le tore $T \subset G^*$ obtenu par restriction des scalaires :

$$T = \operatorname{Res}_{E/F} S$$
.

On a $T^{\theta} \simeq S$. On remarque que l'application des co-invariants dans les invariants

$$T_{\theta} \to T^{\theta}$$

induite par la norme est un isomorphisme d'après 2.2.2. Donc il existe $t \in T$ tel que

$$\gamma = t\theta(t)\cdots\theta^{\ell-1}(t)$$

et $t_{\theta} \in T_{\theta}(F)$. Par hypothèse il existe $d \in \mathbf{H}_{ab}^{0}(F, G^{*})$ dont la norme est l'image de γ dans $\mathbf{H}_{ab}^{0}(F, H)$ ce qui équivaut à $d_{\theta} = \eta_{ab}(t_{\theta})$. L'application

$$\mathbf{H}^1(F, G^*) \to \mathbf{H}^1_{ab}(F, G^*)$$

est bijective si F est non archimédien. Il en est de même si $E = \mathbb{C}$ les groupes de cohomologie étant alors triviaux. Les hypothèses de la proposition 2.5.2 sont donc satisfaites. On en déduit qu'il existe $y \in G(F)$ tel que

$$y = x^{-1}t \theta(x)$$

et donc

$$\delta = y \rtimes \theta \in L(F)$$

vérifie

$$x \, \delta^{\ell} x^{-1} = \gamma$$
.

La cochaîne $a_{\sigma} = x u_{\sigma} \sigma^*(x)^{-1}$ est à valeurs dans T, qui est un sous-groupe connexe du centralisateur de γ et donc γ est une norme de δ .

2.6. Image de la norme, cas global

Soit F un corps global. Considérons $\gamma \in H(F)$ semi-simple et soit $\delta \in L(\mathbb{A}_F)$ admettant γ pour norme localement partout. Nous allons définir une obstruction permettant de tester si δ admet un conjugué stable rationnel. Une telle obstruction a d'abord été construite par Langlands [Lan2] lorsque $\theta = 1$ et γ est régulier. Cette construction a été reprise par Kottwitz dans [Ko4] et généralisée pour des γ généraux dans [Ko5]. Elle est donnée pour le cas tordu avec γ fortement régulier dans [KS]. Nous allons traiter le cas des éléments semi-simples quelconques dans le cas tordu (pour le changement de base).

Considérons $\gamma \in H(F)$ semi-simple. Soient I^* le centralisateur stable de γ dans H et J^* son centralisateur stable dans G^* . Rappelons que l'on a noté Z_{γ} le centre de $G^{*\gamma}$ et que $Z_{\gamma} \subset J^*$. D'après 2.2.2 il existe $t \in Z_{\gamma}(\overline{F})$, dans le centre de $J^*(\overline{F})$, avec

$$N^{\theta}t = \gamma$$

et on posera $\delta^* = t \times \theta$. Il existe une 1-cochaîne b à valeurs dans $Z_{\gamma}(\overline{F})$ telle que

(1)
$$\sigma^*(t) = b_{\sigma}^{-1} t \theta(b_{\sigma}) \quad \text{soit encore} \quad \sigma^*(\delta^*) = b_{\sigma}^{-1} \delta^* b_{\sigma}.$$

Son cobord $z_I^* = \partial b$ est à valeurs dans

$$Z_I^*(\overline{F}) := Z_{\gamma}(\overline{F}) \cap I^*(\overline{F})$$

qui est central dans $I^*(\overline{F})$.

Si γ est localement partout une norme de $\delta = y \rtimes \theta \in L(\mathbb{A}_F)$ il existe $x \in G^*(\overline{\mathbb{A}_F})$ tel que

$$x y \theta(x)^{-1} = t$$
 soit encore $x \delta x^{-1} = \delta^*$

et tel que la 1-cochaîne

$$a_{\sigma} = x u_{\sigma} \sigma^*(x)^{-1} = x \sigma(x)^{-1} u_{\sigma}$$

soit à valeurs dans $J^*(\overline{\mathbb{A}_F})$. Son cobord z, est égal à celui de u et est à valeurs dans $Z^{\theta}(\overline{F})$. On a

(2)
$$\sigma^*(t) = a_{\sigma}^{-1} t \theta(a_{\sigma})$$
 soit encore $\sigma^*(\delta^*) = a_{\sigma}^{-1} \delta^* a_{\sigma}$.

Compte tenu de (1) et (2), on voit que la 1-cochaîne

$$c_{\sigma} = b_{\sigma}^{-1} a_{\sigma}$$

est à valeurs dans $I^*(\overline{\mathbb{A}_F})$ et que son cobord vaut $z\,z_{I^*}^{-1}$. Rappelons que l'on peut supposer u et z image de cochaînes \tilde{u} et \tilde{z} à valeurs dans G_{sc}^* et son centre Z_{sc} respectivement. Pour simplifier les notations on pose $Z'=Z_I^*\times Z_{sc}$. L'ensemble

des cochaînes $(x, \tilde{u}, b \times c, z_I^* \times \tilde{z})$ définit un 0-cocycle galoisien pour l'ensemble croisé associé au diagramme

$$\begin{array}{cccc} Z'(\overline{F}) & \to & G^*_{SC}(\overline{F}) \\ \downarrow & & \downarrow \\ Z_{\gamma}(\overline{F}) \times I^*(\overline{\mathbb{A}_F}) & \to & G^*(\overline{\mathbb{A}_F}) \end{array}$$

que nous noterons $\mathfrak{Obs}(\overline{\mathbb{A}_F})$. On prendra garde qu'il ne s'agit pas ici d'un morphisme de modules croisés, mais simplement d'un bi-complexe qui donne naissance à un ensemble croisé car l'image de $Z'(\overline{F})$ est centrale. Soit \mathbf{A} une \overline{F} -algèbre; on note $\mathfrak{Obs}_{ab}(\mathbf{A})$ l'ensemble croisé associé au diagramme

$$Z'(\overline{F}) \times I_{SC}^*(\mathbf{A}) \rightarrow G_{SC}^*(\mathbf{A})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z_{\gamma}(\overline{F}) \times I^*(\mathbf{A}) \rightarrow G^*(\mathbf{A})$$

On dispose donc d'un morphisme

$$\mathbf{H}^0(\Gamma, \mathfrak{Obs}(\mathbf{A})) \to \mathbf{H}^0(\Gamma, \mathfrak{Obs}_{ab}(\mathbf{A}))$$

que nous appellerons morphisme d'abélianisation; en effet, comme on verra ci-dessous, l'ensemble de cohomologie $\mathbf{H}^0(\Gamma, \mathfrak{Obs}_{ab}(\mathbf{A}))$ peut être muni d'une structure de groupe abélien.

Lemme 2.6.1. — Il existe un morphisme

$$\mathrm{Obs}_{ab}:\ \mathbf{H}^0(\Gamma,\mathfrak{Obs}_{ab}(\overline{\mathbb{A}_F}))\to\mathbf{H}^0_{ab}(\mathbb{A}_F/F,I^*\backslash G^*)$$

qui rend exact la suite :

$$\mathbf{H}^0(\Gamma, \mathfrak{Obs}_{ab}(\overline{F})) \to \mathbf{H}^0(\Gamma, \mathfrak{Obs}_{ab}(\overline{\mathbb{A}_F})) \to \mathbf{H}^0_{ab}(\mathbb{A}_F/F, I^* \backslash G^*)$$
.

Démonstration. — Soit S un tore maximal dans I^* et T un tore maximal dans G^* contenant l'image de S; on note S_{sc} et T_{sc} leurs images réciproques dans les revêtements simplement connexes des groupes dérivés. On notera $\mathfrak{Dbs}'_{ab}(\mathbf{A})$ le complexe de groupes abéliens associé au diagramme commutatif

$$Z'(\overline{F}) \times S_{sc}(\mathbf{A}) \rightarrow T_{sc}(\mathbf{A})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z_{\gamma}(\overline{F}) \times S(\mathbf{A}) \rightarrow T(\mathbf{A})$$

On voit en invoquant 1.1.2, 1.6.1 et 1.6.8 que le morphisme

$$\mathfrak{O}\mathfrak{bs}'_{ab}(\mathbf{A}) o \mathfrak{O}\mathfrak{bs}_{ab}(\mathbf{A})$$

est un quasi-isomorphisme et induit donc un isomorphisme en cohomologie

$$\mathbf{H}^0(\Gamma, \mathfrak{Obs}'_{ab}(\mathbf{A})) = \mathbf{H}^0(\Gamma, \mathfrak{Obs}_{ab}(\mathbf{A}))$$

lorsque $\mathbf{A} = \overline{F}$ ou $\overline{\mathbb{A}_F}$. De plus

$$\mathbf{H}^0(\Gamma, \mathfrak{Obs}'_{ab}(\overline{F}) \backslash \mathfrak{Obs}'_{ab}(\overline{\mathbb{A}_F})) = \mathbf{H}^0_{ab}(\mathbb{A}_F/F, I^* \backslash G^*)$$

et donc on dispose d'une suite exacte

$$\mathbf{H}^0(\Gamma, \mathfrak{Obs}_{ab}(\overline{F})) \to \mathbf{H}^0(\Gamma, \mathfrak{Obs}_{ab}(\overline{\mathbb{A}_F})) \to \mathbf{H}^0_{ab}(\mathbb{A}_F/F, I^* \backslash G^*)$$
.

Par composition du morphisme d'abélianisation et de Obs_{ab} on obtient une application

Obs:
$$\mathbf{H}^0(\Gamma, \mathfrak{Obs}(\overline{\mathbb{A}_F})) \to \mathbf{H}^0_{ab}(\mathbb{A}_F/F, I^* \backslash G^*)$$
.

On notera \Im le foncteur à valeurs dans les complexes de groupes

$$\mathbf{A} \mapsto \mathfrak{I}(\mathbf{A}) = [Z'(\overline{F}) \to I^*(\mathbf{A}) \times Z_{\gamma}(\overline{F})]$$

où \mathbf{A} est une \overline{F} -algèbre.

Lemme 2.6.2. — L'application

$$\mathbf{H}^0(\Gamma, \mathfrak{Obs}(\overline{\mathbb{A}_F})) \to \mathbf{H}^1(\Gamma, \mathfrak{I}(\overline{\mathbb{A}_F}))$$

envoie le noyau de Obs dans l'image de $\mathbf{H}^1(\Gamma, \Im(\overline{F}))$.

Démonstration. — La proposition 1.6.13 fournit une suite exacte

$$\mathbf{H}^1(\Gamma, \Im(\overline{F})) \to \mathbf{H}^1(\Gamma, \Im(\overline{\mathbb{A}_F})) \to \mathbf{H}^1_{ab}(\mathbb{A}_F/F, I^*) \,.$$

Par ailleurs, on dispose d'un diagramme commutatif

$$\begin{array}{cccc} \mathbf{H}^0(\Gamma, \mathfrak{Obs}(\overline{\mathbb{A}_F})) & \to & \mathbf{H}^1(\Gamma, \mathfrak{I}(\overline{\mathbb{A}_F})) \\ \downarrow & & \downarrow \\ \mathbf{H}^0_{ab}(\mathbb{A}_F/F, I^* \backslash G^*) & \to & \mathbf{H}^1_{ab}(\mathbb{A}_F/F, I^*) \end{array}$$

et le lemme en résulte.

Considérons l'ensemble des quintuples $(x, u, b \times c, z')$ associés à $\delta \in L(\mathbb{A}_F)$ ayant partout localement pour norme $\gamma \in H(F)$. Chaque quintuple $(x, u, b \times c, z')$ définit une classe dans $\mathbf{H}^0(\Gamma, \mathfrak{Obs}(\overline{\mathbb{A}_F}))$. L'image dans $\mathbf{H}^0_{ab}(\mathbb{A}_F/F, I^* \backslash G^*)$ ne dépend que de γ et x. L'image de cet ensemble de classes sera notée $\mathrm{Obs}_{\gamma}(\delta)$. Son image dans $\mathfrak{E}(I^*, G^*; \mathbb{A}_F/F)$ sera notée $\mathrm{obs}_{\gamma}(\delta)$. On observera que si le centralisateur stable et le centralisateur coïncident, $\mathrm{Obs}_{\gamma}(\delta)$ contient un seul élément.

Théorème 2.6.3. — Soit $\gamma \in H(F)$ semi-simple et soit $\delta \in L(\mathbb{A}_F)$ qui admet γ localement partout comme norme. L'obstruction $obs_{\gamma}(\delta)$ contient la classe triviale si et seulement si il existe $\delta_1 \in L(F)$ qui est $G(\mathbb{A}_F)$ -conjugué à δ .

Démonstration. — Si δ est rationnel on peut choisir $x \in G(\overline{F})$ et on a $1 \in \mathrm{Obs}_{\gamma}(\delta)$. On rappelle que le groupe

$$\mathfrak{E}(I^*, G^*; \mathbb{A}_F/F)$$

est le quotient du groupe

$$\mathbf{H}_{ab}^0(\mathbb{A}_F/F, I^*\backslash G^*)$$

par l'image de $\mathbf{H}^0_{ab}(\mathbb{A}_F, G^*)$ et donc $\mathrm{obs}_{\gamma}(\delta)$ contient la classe triviale, s'il existe $\delta_1 \in L(F)$ qui est $G(\mathbb{A}_F)$ -conjugué à δ . Réciproquement, supposons $1 \in \mathrm{obs}_{\gamma}(\delta)$. Il existe donc un x tel que $\delta = x^{-1}\delta^* x$ qui détermine un quintuple de cochaînes représentant une classe dans $\mathbf{H}^0(\Gamma, \mathfrak{Obs}(\overline{\mathbb{A}_F}))$ d'image triviale dans dans $\mathfrak{E}(I^*, G^*; \mathbb{A}_F/F)$. Observons que si on modifie le choix de x par un élément y de $I^*(\overline{\mathbb{A}_F})$ à droite, et corrélativement la valeur de c:

$$x \mapsto xy$$
 et $c_{\sigma} \mapsto y c_{\sigma} \sigma^*(y)$,

mais sans modifier les valeurs de u, b et z (ce qui est possible puisque b centralise I^* et que z est central), on ne change pas la classe dans $\mathbf{H}^0(\Gamma, \mathfrak{Obs}(\overline{\mathbb{A}_F}))$. On voit alors que, compte tenu de 2.6.2, et quitte à modifier le choix de x, on peut supposer que la cochaîne c est à valeurs dans $I^*(\overline{F})$. Avec ce choix a donc

$$x \, u_\sigma \, \sigma^*(x)^{-1} = a_\sigma$$

avec

$$a_{\sigma} = b_{\sigma} c_{\sigma} \in G^*(\overline{F}).$$

On rappelle que u est l'image d'une cochaîne \tilde{u} à valeurs dans G^*_{SC} ; on en déduit que le couple (a, \tilde{z}) , où \tilde{z} est le bord de \tilde{u} , définit une classe dans $\ker^1_{ab}(F, G^*)$. En faisant varier x modulo $I^*(\overline{\mathbb{A}_F})$ et c comme ci-dessus mais, en supposant maintenant que de plus $y \in I^*(\overline{\mathbb{A}_F})$ est tel que

$$y c_{\sigma} \sigma^*(y)^{-1} \in I^*(\overline{F}),$$

on modifie la cochaı̂ne a comme suit

$$a_{\sigma} \mapsto d_{\sigma} a_{\sigma}$$
 avec $d_{\sigma} = y c_{\sigma} \sigma^*(y)^{-1} c_{\sigma}^{-1} = y \sigma_c^*(y)^{-1}$.

On peut ainsi translater la classe de (a, \tilde{z}) par l'image d'un élément quelconque de $\ker^1(F, I')$ où I' est la forme intérieure de I^* définie par c. On rappelle que d'après 1.6.11 $\ker^1(F, I')$ s'envoie surjectivement sur $\ker^1_{ab}(F, I^*)$; on en conclut qu'en modifiant le choix de x, la classe de (a, \tilde{z}) parcourt une orbite sous $\ker^1_{ab}(F, I^*)$ dans $\ker^1_{ab}(F, G^*)$. Mais, par hypothèse, l'image de (a, \tilde{z}) dans $\mathfrak{E}(I, G; \mathbb{A}_F/F)$ est triviale. La première suite exacte de 1.8.4 montre alors que cette classe dans $\ker^1_{ab}(F, G^*)$ provient de $\ker^1_{ab}(F, I^*)$. Les remarques ci-dessus montrent que l'on peut choisir x de sorte que la classe de (a, \tilde{z}) dans $\ker^1_{ab}(F, G^*)$ soit triviale. Comme le cocycle (u, z) est celui définissant G comme forme intérieure, les équations ci-dessus peuvent se récrire

$$x \sigma(x)^{-1} = e_{\sigma}$$

avec

$$e_{\sigma} = b_{\sigma} c_{\sigma} u_{\sigma}^{-1} \in G(\overline{F})$$
.

Compte tenu de 1.6.11, et puisque G^* est connexe, on voit que la classe de e dans $\ker^1(F,G)$ est triviale, puisque son image dans $\ker^1_{ab}(F,G^*)$ l'est. Ceci revient à dire qu'il existe $x' \in G(\overline{F})$ tel que

$$x' \sigma(x')^{-1} = e_{\sigma}$$

et nécessairement $x = x' x_1$ avec $x_1 \in G(\mathbb{A}_F)$. Posons

$$\delta_1 = x_1 \delta x_1^{-1}$$

c'est un élément de $L(\mathbb{A}_F)$; par ailleurs

$$\delta_1 = x'^{-1} \, \delta^* \, x'$$

on a donc aussi $\delta_1 \in L(\overline{F})$. Comme

$$L(\mathbb{A}_F) \cap L(\overline{F}) = L(F)$$

on en déduit que δ est $G(\mathbb{A}_F)$ -conjugué à $\delta_1 \in L(F)$.

Remarque. — La construction de l'obstruction se généralise en remplaçant G_0^* par une autre forme intérieure G_0' , à condition d'utiliser le cocycle (u',z') qui définit G_0 comme forme de G_0' en lieu et place de (u,z). La définition de la norme est, à cela près, identique. On observera que le fait que $G_0^* = H$ est quasi-déployé n'est pas utilisé dans la preuve du théorème ci-dessus. On obtient ainsi une obstruction à l'existence d'un $\delta_0 \in L(F)$ stablement conjugué à $\delta \in L(\mathbb{A}_F)$ admettant $\gamma' \in G_0'(F)$ comme norme localement partout. Cependant, on notera que si G_0' n'est pas quasi-déployé, on ne dispose pas de l'analogue du théorème d'existence 2.4.2, et il n'est pas clair que tout $\delta \in L(F)$ admette une norme $\gamma' \in G_0'(F)$; on doit tenir compte de l'obstruction pour la norme entre G_0' et H.

Pour conclure cette section, nous allons montrer que le groupe dans lequel l'obstruction définie ci-dessus prend ses valeurs, coïncide avec celui que Kottwitz et Shelstad utilisent dans [KS].

Soit $\delta \in L(\mathbb{A}_F)$ qui admet localement partout $\gamma \in H(F)$ semi-simple et fortement régulier comme norme. Soit T le centralisateur de γ dans G^* . Le centralisateur stable I^* de γ dans H n'est autre que T^{θ} . Il existe $t \in T$ tel que $N^{\theta}(t) = \gamma$, et t définit un point rationnel du groupe $U = T_{\theta}$ des θ -coinvariants de T. C'est l'image de t dans $U = T_{\theta}$ qui est appelée norme abstraite dans [KS]. Kottwitz et Shelstad posent

$$V = f(T)$$

avec

$$f: t \mapsto t \theta(t)^{-1}$$
.

On remarque que $I^* = \ker f$. Ils introduisent le complexe

$$[T_{sc} \rightarrow V]$$

avec pour flèche la composition de l'application naturelle $T_{sc} \to T$ avec f. L'obstruction construite par Kottwitz et Shelstad est à valeurs dans le groupe de cohomologie

$$\mathbf{H}^1_{KS}(\mathbb{A}_F/F, T_{sc} \to V)$$
.

Nous avons mis 'KS' en indice pour rappeler qu'ils considèrent $[T_{sc} \to V]$ comme un complexe en degrés cohomologiques 0 et 1. Avec nos conventions on placerait ce

complexe en degrés *homologiques* 1 et 0 et c'est le groupe de 0-cohomologie que nous considérerions. Le morphisme de complexes

$$[T_{sc} \oplus \ker f \to T] \to [T_{sc} \to V]$$

est un quasi-isomorphisme. Le complexe

$$[T_{sc} \oplus I^* \to T]$$

est quasi-isomorphe à l'abélianisé de $I^*\backslash G^*$. Comme $I^*=\ker f$, et compte tenu du décalage de degrés, dû à la différence des conventions, on dispose d'un isomorphisme

$$\mathbf{H}_{KS}^1(\mathbb{A}_F/F, T_{sc} \to V) \to \mathbf{H}_{ab}^0(\mathbb{A}_F/F, I^*\backslash G^*)$$
.

On en déduit que notre $\mathfrak{K}(I^*, G^*; F)$ n'est autre que le groupe $\mathfrak{K}(T, \theta, F)$ de [KS]. On dispose d'isomorphismes analogues dans le cas local. Ces isomorphismes fournissent la traduction entre nos constructions et celles de [KS].

2.7. Intégrales orbitales et intégrales κ -orbitales

Soit F un corps local et soit $\delta \in L(F)$ semi-simple. Nous noterons

$$e(\delta) = e(I_{\delta})$$

le signe de Kottwitz pour le centralisateur stable de δ (cf. 1.7.1). Pour simplifier les notations nous posons

$$I=I_{\delta}$$
.

Pour $x \in G$ on pose

$$\delta_x = x^{-1} \delta x .$$

La classe de conjugaison de δ sous G(F) est paramétrée par $G^{\delta}(F)\backslash G(F)$; toutefois il apparait plus commode de définir les intégrales orbitales en utilisant le centralisateur stable : on pose pour $\phi \in \mathcal{C}^{\infty}_{c}(L(F))$

$$\Phi_{G(F)}(\delta,\phi) = \int_{I(F)\backslash G(F)} \phi(x^{-1}\delta x) \ d\dot{x} = \int_{I(F)\backslash G(F)} \phi(\delta_x) \ d\dot{x}.$$

Nous pouvons tordre les intégrales orbitales par des caractères : si ω est un caractère du groupe localement compact $\mathbf{H}^0_{ab}(F,G)$ trivial sur $\mathbf{H}^0_{ab}(F,I)$ l'intégrale orbitale tordue par ω est définie par

$$\Phi_{G(F),\omega}(\delta,\phi) = \int_{I(F)\backslash G(F)} \omega(x)\phi(\delta_x) \ d\dot{x}.$$

On rappelle que si $x \in G$ définit une classe \dot{x} dans $\mathbf{H}^0(F, I \setminus G)$, c'est-à-dire si $x \sigma(x)^{-1} \in I$ pour tout σ , alors δ_x est un élément de L(F). En d'autres termes l'application

$$x \mapsto \delta_x$$

induit une flèche

$$\mathbf{H}^0(F, I \backslash G) \to L(F)$$
.

Le choix de formes différentielles de degré maximal, invariantes par translation sur les groupes G et I, permet de définir des mesures de Haar sur G(F) et I(F) ainsi que sur les formes intérieures I'(F), et on dispose alors d'une mesure sur $\mathbf{H}^0(F,I\backslash G)$. On a noté $\mathfrak{K}(I,G;F)$ le dual de Pontryagin de l'abélianisé $\mathbf{H}^0_{ab}(F,I\backslash G)$. Soit $\kappa\in\mathfrak{K}(I,G;F)$, on notera

$$\langle \kappa, \dot{x} \rangle$$

la valeur du caractère κ sur l'image de $\dot{x} \in \mathbf{H}^0(F, I \backslash G)$ dans $\mathbf{H}^0_{ab}(F, I \backslash G)$ via la flèche d'abélianisation. On définit alors une intégrale κ -orbitale en posant :

$$\Phi_{G(F)}^{\kappa}(\delta,\phi) = \int_{\mathbf{H}^{0}(F,I\backslash G)} \langle \kappa, \dot{x} \rangle \, e(\delta_{x}) \, \phi(\delta_{x}) \, d\dot{x} .$$

C'est une combinaison linéaire finie d'intégrales orbitales. Soit x définissant une classe $\dot{x} \in \mathbf{H}^0(F, I \backslash G)$, on notera [x] sa classe dans $\mathfrak{D}(I_\delta, G; F)$; en choisissant un ensemble de représentants des classes dans $\mathfrak{D}(I_\delta, G; F)$ on a

$$\Phi_{G(F)}^{\kappa}(\delta,\phi) = \sum_{[x] \in \mathfrak{D}(I_{\delta},G;F)} e(\delta_x) \langle \kappa, \dot{x} \rangle \Phi_{G(F),\omega(\kappa)}(\delta_x,\phi)$$

où $\omega(\kappa)$ est le caractère de $\mathbf{H}^0_{ab}(F,G)$ induit par κ . On appelle intégrale orbitale stable l'intégrale κ -orbitale pour $\kappa=1$:

$$\Phi^1_{G(F)}(\delta,\phi) = \int_{\mathbf{H}^0(F,I\backslash G)} e(\delta_x) \,\phi(\delta_x) \,d\dot{x}.$$

Soient F un corps global et δ un élément semi-simple dans L(F). On suppose désormais que le centralisateur stable I est connexe. On fixe un caractère ω de $\mathbf{H}^0_{ab}(\mathbb{A}_F/F,G)$. Ce caractère définit un caractère de $G(\mathbb{A}_F) = \mathbf{H}^0(\mathbb{A}_F,G)$ trivial sur $G(F) = \mathbf{H}^0(F,G)$. On définit une intégrale orbitale adélique en posant

$$\Phi_{G(\mathbb{A}_F),\omega}(\delta,\phi) = \int_{I(\mathbb{A}_F)\backslash G(\mathbb{A}_F)} \omega(x)\phi(\delta_x) \ d\dot{x}.$$

On a

$$\Phi_{G(\mathbb{A}_F),\omega}(\delta,\phi) = \prod_v \Phi_{G(F_v),\omega}(\delta,\phi_v).$$

Lemme 2.7.1. — Pour presque toute place v, si $\delta' \in L(\mathcal{O}_v)$ est stablement conjugué à δ , il existe $x \in G(\mathcal{O}_v)$ avec

$$\delta' = x^{-1} \delta x.$$

Démonstration. — C'est une généralisation immédiate de la proposition 7.1 de [Ko5].

Soit $\kappa \in \mathfrak{K}(I,G;F)$ le dual de Pontryagin de $\mathbf{H}^0_{ab}(\mathbb{A}_F/F,I\backslash G)$. On note $\{\kappa_v\}$ l'image de κ par l'application de localisation. Les intégrales κ -orbitales globales sont définies comme produit :

$$\Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta,\phi) = \prod_v \Phi_{G(F_v)}^{\kappa_v}(\delta,\phi_v) .$$

Le produit est convergent car il résulte de 2.7.1 que, pour presque toute place v,

$$\Phi_{G(F_v)}^{\kappa_v}(\delta,\phi_v) = \int_{I(\mathcal{O}_v)\backslash G(\mathcal{O}_v)} e(\delta_x) \langle \kappa_v, \dot{x} \rangle \ \phi_v(\delta_x) \, d\dot{x} = 1 \,.$$

Comme on a supposé que I est connexe, 1.4.1 montre que pour presque toute place v

$$\mathbf{H}^{0}(\mathcal{O}_{v}, I \backslash G) = (I \backslash G)(\mathcal{O}_{v}) = I(\mathcal{O}_{v}) \backslash G(\mathcal{O}_{v}).$$

Par définition de la cohomologie adélique comme produit restreint, et compte tenu de la loi de réciprocité pour le signe de Kottwitz 1.7.2, on a donc :

$$\Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta,\phi) = \int_{\mathbf{H}^0(\mathbb{A}_F,I\backslash G)} \langle \kappa,\dot{x}\rangle \ \phi(\delta_x) \, d\dot{x} \,.$$

Nous nous restreignons désormais au cadre du changement de base. Nous avons déjà défini des intégrales κ -orbitales pour des éléments semi-simples $\delta \in L(F)$. Nous allons maintenant étendre cette définition de façon à prendre en compte les $\delta \in L(\mathbb{A}_F)$ qui ont localement partout $\gamma \in H(F)$ comme norme.

Soit $\gamma \in H(F)$, on lui associe, dans les notations de la section précédente, $\delta^* \in L(\overline{F})$ et une cochaîne b_{σ} à valeurs dans $Z_{\gamma}(\overline{F})$. On notera

$$\mathfrak{A}(\mathbb{A}_F;\delta^*,L)$$

l'ensemble des classes modulo $I^*(\overline{\mathbb{A}_F})$ des $x \in G(\overline{\mathbb{A}_F})$ avec

$$x^{-1}\delta^* x \in L(\mathbb{A}_F)$$
 et $xu_{\sigma}\sigma^*(x)^{-1} = a_{\sigma}$

tel que $c_{\sigma} = b_{\sigma}^{-1} a_{\sigma}$ soit à valeurs dans $I^*(\overline{\mathbb{A}_F})$.

Soit $\dot{x} \in \mathfrak{A}(\mathbb{A}_F; \delta^*, L)$; on lui associe $\delta = x^{-1}\delta^* x \in L(\mathbb{A}_F)$. On note I_v les centralisateurs stables des $\delta_v \in L(F_v)$. Ce sont des formes intérieures de I^* le centralisateur stable de γ . L'application

$$y \mapsto xy$$

induit une bijection du produit

$$\prod_v \mathbf{H}^0(F_v, I_v \backslash G_v)$$

sur l'ensemble $\mathfrak{A}(\mathbb{A}_F; \delta^*, L)$. L'ensemble $\mathfrak{A}(\mathbb{A}_F; \delta^*, L)$ est ainsi muni d'une mesure. On dispose d'une flèche

$$\mathfrak{A}(\mathbb{A}_F; \delta^*, L) \to \mathbf{H}^0(\Gamma, \mathfrak{Obs}(\overline{\mathbb{A}_F}))$$

et par composition avec l'obstruction on obtient une flèche

$$\mathfrak{A}(\mathbb{A}_F; \delta^*, L) \to \mathbf{H}^0_{ab}(\mathbb{A}_F/F, I^* \backslash G^*)$$

ce qui définit un accouplement entre $\mathfrak{A}(\mathbb{A}_F; \delta^*, L)$ et $\mathfrak{K}(I^*, G^*; F)$:

$$(\kappa, \dot{x}) \mapsto \langle \kappa, \dot{x} \rangle$$
.

Lemme 2.7.2. — Soit $\kappa \in \mathfrak{K}(I^*, G^*; F)$. L'intégrale

$$\int_{\mathfrak{A}(\mathbb{A}_F;\delta^*,L)} \langle \kappa, \dot{x} \rangle \, e(x^{-1}I^* \, x) \, \phi(x^{-1}\delta^* \, x) \, d\dot{x}$$

où

$$e(x^{-1}I^*x) = \prod_{v} e(x_v^{-1}I^*x_v)$$

ne dépend que de γ .

Démonstration. — Un choix différent de δ^* et b conduit à un ensemble $\mathfrak{A}(\mathbb{A}_F; \delta^*, L)$ isomorphe, l'isomorphisme étant induit par une translation sur x par un $z \in Z_{\gamma}(\overline{F})$ et l'intégrale est invariante par ce changement de variable.

On définit une intégrale κ -orbitale globale en posant

$$\Phi_{G(\mathbb{A}_F)}(\gamma, \kappa; \phi) = \int_{\mathfrak{A}(\mathbb{A}_F; \delta^*, L)} \langle \kappa, \dot{x} \rangle \, e(x^{-1} I^* \, x) \, \phi(x^{-1} \delta^* \, x) \, d\dot{x} \,.$$

On observera que

$$\Phi_{G(\mathbb{A}_F)}(\gamma, \kappa; \phi) = 0$$

si γ n'est pas localement partout une norme d'un $\delta \in L(\mathbb{A}_F)$, car dans ce cas l'ensemble $\mathfrak{A}(\mathbb{A}_F; \delta^*, L)$ est vide. Lorsque $\mathfrak{A}(\mathbb{A}_F; \delta^*, L)$ est non vide, un tel δ existe et on peut, modulo le choix d'un $x \in \mathfrak{A}(\mathbb{A}_F; \delta^*, L)$ et compte tenu de 2.7.1, exprimer l'intégrale κ -orbitale globale comme un produit :

$$\Phi_{G(\mathbb{A}_F)}(\gamma, \kappa; \phi) = \prod_v \int_{\mathbf{H}^0(F_v, I_v \setminus G_v)} \langle \kappa_v, x_v y_v \rangle \, e(y_v^{-1} I_v y_v) \, \phi_v(y_v^{-1} \delta_v y_v) \, d\dot{y} \, .$$

Ceci peut encore s'écrire

$$\Phi_{G(\mathbb{A}_F)}(\gamma, \kappa; \phi) = \langle \kappa, \dot{x} \rangle \prod_v \Phi_{G(F_v)}^{\kappa_v}(\delta_v, \phi_v).$$

Pour $\delta \in L(F)$ on peut choisir $x \in G(\overline{F})$ et on a donc

$$\Phi_{G(\mathbb{A}_F)}(\gamma, \kappa; \phi) = \Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta, \phi).$$

Proposition 2.7.3. — On note $\mathfrak{R}(I^*, G^*; F)_1$ le dual de $\mathfrak{E}(I^*, G^*; \mathbb{A}_F/F)$. Si γ n'est pas la norme d'un δ rationnel, la somme sur $\mathfrak{R}(I^*, G^*; F)_1$ des intégrales κ -orbitales est nulle :

$$\sum_{\kappa_1 \in \mathfrak{K}(I^*,G^*;F)_1} \Phi_{G(\mathbb{A}_F)}(\gamma,\kappa\kappa_1;\phi) = 0 \,.$$

Démonstration. — D'après 2.6.3, si γ n'est pas la norme d'un δ rationnel, alors tout $x \in \mathfrak{A}(\mathbb{A}_F; \delta^*, L)$ a une image non triviale dans $\mathfrak{E}(I^*, G^*; \mathbb{A}_F/F)$ et donc

$$\sum_{\kappa \in \mathfrak{K}(I^*, G^*; F)_1} \langle \kappa_1, \dot{x} \rangle = 0.$$

CHAPITRE 3

TRANSFERT LOCAL

Dans ce chapitre F est un corps local de caractéristique zéro. Nous nous plaçons dans le cadre du changement de base : on considère une algèbre cyclique E/F de groupe de Galois Θ engendré par θ et un groupe G obtenu par restriction des scalaires de E à F à partir de G_0 et on pose $E = G \times \theta$. Dans une première section nous établissons un résultat de descente, puis nous étudions le transfert endoscopique entre G(F) et H(F).

3.1. Conjugaison au voisinage d'éléments semi-simples

Soit $\delta_0 \in L(F)$ un élément semi-simple. Pour simplifier les notations, dans ce qui suit nous désignerons par M la composante neutre du centralisateur de δ_0 dans G et M^+ ce centralisateur (i.e. $M = (G^{\delta_0})^0$ et $M^+ = G^{\delta_0}$).

Lemme 3.1.1. — Il existe une sous-variété analytique Y dans G(F), symétrique (i.e. $y \in Y \iff y^{-1} \in Y$) et un voisinage V de 1 dans M(F) tels que : (i) L'application

$$\begin{array}{ccc} Y \times \mathcal{V} & \longrightarrow & L(F) \\ (y,m) & \longmapsto & y^{-1} m \delta_0 y \end{array}$$

est un difféomorphisme de $Y \times \mathcal{V}$ sur un voisinage $\mathcal{W} = \mathcal{W}(Y, \mathcal{V})$ de δ_0 dans L(F). (ii) Soit $y \in Y$, alors $y^{-1}m\delta_0 y \in \mathcal{W}$ avec $m \in M(F)$ implique $m \in \mathcal{V}$. En particulier

$$M(F)\delta_0 \cap \mathcal{W} = \mathcal{V}\delta_0$$
.

Démonstration. — Choisissons un supplémentaire $\mathfrak n$ de

$$\mathfrak{m} = \text{Lie } M(F)$$

dans $\mathfrak{g} = \text{Lie } G(F)$:

$$\mathfrak{g}=\mathfrak{y}\oplus\mathfrak{m}$$
 .

Considérons la sous-variété analytique $Y = \operatorname{Exp} \mathcal{O}$ image par l'exponentielle d'un voisinage ouvert symétrique \mathcal{O} de 0 dans \mathfrak{n} . La différentielle de l'application

$$\begin{array}{ccc} Y \times M(F) & \longrightarrow & L(F) \\ (y,m) & \longmapsto & y^{-1} m \delta_0 y \end{array}$$

a pour jacobien au point (1,1)

$$D_M^L(\delta_0) = \det(1 - \operatorname{Ad}(\delta_0) \mid \mathfrak{g}/\mathfrak{m})$$

qui est non nul par définition de M(F). L'image est donc un voisinage et l'assertion (i) est vraie si \mathcal{O} assez petit. Fixons Y_1 et \mathcal{V}_1 assez petits de sorte que l'assertion (i) soit vraie. Si $Y \subset Y_1$ et $\mathcal{V} \subset \mathcal{V}_1$ sont choisis assez petits (relativement compacts) et si

$$\mathcal{W} = \mathcal{W}(Y, \mathcal{V})$$

est l'image de $Y \times \mathcal{V}$, on peut supposer que

$$M(F)\delta_0 \cap yWy^{-1} \subset V_1\delta_0$$

pour tout $y \in Y$, puisque M(F) est un sous-groupe fermé et que donc sa topologie est la topologie induite par celle de G(F). Donc $y^{-1}m\delta_0y \in \mathcal{W}$ avec $m \in M(F)$ implique $m \in \mathcal{V}_1$. On déduit de (i), l'unicité de l'écriture $x = y^{-1}m\delta_0y$, pour $x \in \mathcal{W}(Y_1, \mathcal{V}_1)$ avec $y \in Y_1$ et $m \in \mathcal{V}_1$. Donc $y^{-1}m\delta_0y \in \mathcal{W}$ avec $m \in \mathcal{V}_1$ et $y \in Y$ implique $m \in \mathcal{V}$. \square

Lemme 3.1.2. — Soient M un groupe réductif connexe et T un tore maximal definis sur F. Soit $\mathcal V$ un voisinage de 1 dans T(F). Il existe un voisinage $\mathcal U$ de 1 dans M(F) tel que si $t \in T(F)$ a un conjugué dans $\mathcal U$, alors $t \in \mathcal V$.

Démonstration. — On suppose que

$$m^{-1}t \ m \in \mathcal{U}$$

pour un $m \in M(F)$. Soit F_1 une extension finie de F qui déploie T et soit P = TN un sous-groupe parabolique minimal de M/F_1 , alors la décomposition d'Iwasawa permet d'écrire m = ank avec $a \in T(F_1)$, $n \in N(F_1)$ et k dans un sous-groupe compact K de $M(F_1)$, et donc

$$t \ n_1 \in \mathcal{U}^K$$

avec $n_1 \in N(F_1)$ et

$$\mathcal{U}^K = \coprod_{k \in K} k \mathcal{U} \ k^{-1} \ .$$

Comme K est compact, on voit que si \mathcal{U} est assez petit on a

$$tn_1 \in \mathcal{U}^K \cap T(F)N(F_1) \subset \mathcal{V} \cdot N(F_1)$$
.

Les classes de conjugaison de tores maximaux sont en nombre fini dans M(F) (puisque F est de caractéristique zéro); notons $\{T_i\}_{i\in I}$ un ensemble de représentants et soient \mathcal{V}_i des voisinages de 1 dans T_i .

Lemme 3.1.3. — Soit $W \subset L(F)$ un voisinage relativement compact de δ_0 . Si les voisinages V_i sont assez petits, il existe un compact $\Omega \subset G(F)$ tel que

$$x^{-1}t\delta_0x \in \mathcal{W}$$

et $t \in \mathcal{V}_i$ implique $x \in M(F)\Omega$.

 $D\acute{e}monstration$. — Il s'agit d'un résultat classique dans le cas des groupes connexes; dans le cadre des groupes non connexes (ou de la conjugaison tordue) c'est le lemme 2.1 de [Ar1].

Nous choisissons désormais des voisinages \mathcal{V}_i de sorte que la conclusion du lemme ci-dessus soit vraie.

Lemme 3.1.4. — Soit V un voisinage ouvert de 1 dans M(F) et soient m et m' dans V. Supposons que $\delta = m\delta_0$ et $\delta' = m'\delta_0$ sont semi-simples. Supposons V assez petit, et soit $x \in G(F)$ tel que

$$x^{-1}\delta x = \delta'$$
.

Alors $x \in M^+(F)$.

 $D\acute{e}monstration$. — Il résulte du lemme 3.1.2, qu'à conjugaison près sous M(F), on peut supposer

$$m = t \in \mathcal{V}_i \subset T_i$$

et

$$m' = t' \in \mathcal{V}_j \subset T_j$$

si \mathcal{V} est assez petit. On suppose que

$$t\delta_0 = x^{-1}t'\delta_0 x \in \mathcal{W}$$

pour un $x \in G(F)$. Il résulte du lemme de compacité 3.1.3 que $x \in M(F)\Omega$ où Ω est un compact indépendant de t et t'. Par ailleurs, supposons que de plus $x = my \in M^+(F)Y$, on voit alors que

$$yt\delta_0 y^{-1} = m^{-1}t'm\delta_0 = m''\delta_0$$
.

D'après 3.1.1 (ii), ceci impose $m'' \in \mathcal{V}$ et donc, d'après 3.1.1 (i), y = 1 et $t = m'' = m^{-1}t'm$, ce qu'on souhaitait démontrer. Supposons l'assertion en défaut, en particulier supposons $x \notin M^+(F)Y$. On pourrait alors trouver des suites $t_n \in \mathcal{V}_i$ et $t'_n \in \mathcal{V}_j$ avec

$$\lim t_n = \lim t'_n = 1$$

 et

$$t_n \delta_0 = x_n^{-1} t_n' \delta_0 x_n$$

avec $x_n = m_n z_n$ où $m_n \in M(F)$ et $z_n \in \Omega'$ un compact tel que

$$\Omega' \cap M^+(F) = \varnothing$$
.

Par compacité de Ω' , quitte à extraire des sous-suites, on en déduit l'existence d'un $z \in \Omega'$ et d'un $m_0 \in M(F)$ tels que

$$\delta_0 = z^{-1} m_0 \delta_0 z$$

et

$$m_0 = \lim m_n^{-1} t_n m_n .$$

Mais $\lim t_n = 1$ et donc m_0 est unipotent. L'unicité de la décomposition de Jordan implique $m_0 = 1$ et donc $z \in \Omega' \cap M^+(F)$ ce qui est absurde.

Corollaire 3.1.5. — Sous les mêmes hypothèse,

- (i) Si $\delta = \tau \delta_0$ on a $I_{\delta}^G = I_{\tau}^M$.
- (ii) Si δ et δ' sont conjugués sous G(F), alors m et m' sont conjugués sous $M^+(F)$. (iii) Si δ et δ' sont G-stablement conjugués, alors m et m' sont M^+ -stablement conjugués.

Démonstration. — Le lemme 3.1.4 montre que le centralisateur de δ dans G est le centralisateur de τ dans M^+ ; leurs composantes neutres sont donc égales, ce qui prouve (i). L'assertion (ii) résulte aussi immédiatement du même lemme. Pour établir (iii) on remarque que deux éléments $\delta = m\delta_0$ et $\delta' = m'\delta_0$ sont G-stablement conjugués s'ils le sont par un $x \in G(F_1)$ avec F_1 une extension finie de F. On déduit de (ii), que si m et m' sont assez voisins de 1 alors $x \in M^+(F_1)$ et donc m et m' sont $M^+(\overline{F})$ conjugués; on conclut en invoquant (i).

Corollaire 3.1.6. — Supposons $Y \subset \mathcal{U}$ où \mathcal{U} est un voisinage ouvert de 1 dans G(F). Si les voisinages \mathcal{U} et \mathcal{V} sont assez petits, alors tout

$$x^{-1}m\delta_0x \in \mathcal{W}(Y,\mathcal{V})$$

avec $x \in G(F)$ et $m \in \mathcal{V}$ semi-simple, est tel que $x \in M^+(F)\mathcal{U}$.

Démonstration. — Par hypothèse, et compte tenu de 3.1.1 on a

$$x^{-1}m\delta_0 x = y^{-1}m'\delta_0 y$$

avec $y \in Y$ et $m' \in \mathcal{V}$; maintenant 3.1.4 montre que nécessairement $xy^{-1} \in M^+(F)$.

Proposition 3.1.7. — Soient V un voisinage ouvert de 1 dans M(F) et W un voisinage de δ_0 .

(i) Soit $\phi \in \mathcal{C}_c^{\infty}(L(F))$ à support dans \mathcal{W} . Si les voisinages sont assez petits, il existe une fonction $\psi \in \mathcal{C}_c^{\infty}(M(F))$ à support dans \mathcal{V} telle que si l'orbite de δ rencontre \mathcal{W} et est semi-simple régulier, alors

$$\delta = x^{-1} \tau \delta_0 x$$

avec $\tau \in M(F)$ et $x \in G(F)$ et

$$\Phi_{G(F)}(\delta,\phi) = \Phi_{M^+(F)}(\tau,\psi) \ .$$

De plus,

$$\Phi^1_{G(F)}(\delta,\phi) = \Phi^1_{M^+(F)}(\tau,\psi)$$

 $si \tau \delta_0$ est stablement conjugué à δ .

(ii) Réciproquement, soit $\psi \in \mathcal{C}_c^{\infty}(M(F))$, à support dans un voisinage \mathcal{V} assez petit de 1, il existe une fonction $\phi \in \mathcal{C}_c^{\infty}(L(F))$ à support dans \mathcal{W} et vérifiant les identités ci-dessus.

Démonstration. — Soit μ la mesure sur la variété Y image réciproque de la mesure invariante sur $M(F)\backslash G(F)$. Supposons ϕ donné, et posons pour $\tau\in M(F)$:

$$\psi(\tau) = (I_Y \phi)(\tau) = \int_Y \phi(y^{-1} \tau \delta_0 y) d\mu(y).$$

D'après 3.1.1 (ii), c'est une fonction lisse sur M(F) à support dans \mathcal{V} . Étant donné δ semi-simple assez proche de δ_0 l'existence de $\tau \in \mathcal{V}$ tel que $\delta = x^{-1}\tau\delta_0 x$ résulte du lemme 3.1.1, on observe qu'alors $I_{\delta}^G = I_{\tau}^M$, et on a

$$\Phi_{G(F)}(\delta,\phi) = \int_{M^+(F)\backslash G(F)} d\dot{x} \int_{I_{\epsilon}^G(F)\backslash M^+(F)} \phi(x^{-1}m^{-1}\tau\delta_0 mx) d\dot{m}$$

avec $\tau \in \mathcal{V}$. Compte tenu de 3.1.6 ceci peut s'écrire

$$\Phi_{G(F)}(\delta,\phi) = \int_{Y} d\mu(y) \int_{I_{-}^{M}(F)\backslash M^{+}(F)} \phi(y^{-1}m^{-1}\tau m\delta_{0}y) d\dot{m}$$

et en intervertissant les intégrales on obtient

$$\Phi_{G(F)}(\delta,\phi) = \Phi_{M^+(F)}(\tau,I_Y\phi)$$
.

L'assertion sur les intégrales stables résulte alors du lemme 3.1.5 (iii). Ceci achève la preuve de (i). Réciproquement, étant donné ψ à support dans \mathcal{V} , on remarque que tout $\delta \in \mathcal{W}$ s'écrit de façon unique

$$\delta = y^{-1} \tau \delta_0 y$$

avec $y \in Y$ et $\tau \in \mathcal{V}$ et on pose

$$(J^{\beta}\psi)(\delta) = \beta(y)\psi(\tau)$$

avec $\beta \in \mathcal{C}_c^{\infty}(Y)$ et telle que

$$\int_{Y} \beta(y) d\mu(y) = 1 \ .$$

Pour conclure, on remarque que

$$I_Y J^{\beta} \psi = \psi \ .$$

3.2. Définition du transfert

On dit que les fonctions $\phi \in \mathcal{C}_c^{\infty}(L(F))$ et $f \in \mathcal{C}_c^{\infty}(H(F))$ sont associées si leurs intégrales orbitales semi-simples stables sont compatibles avec la norme c'est-à-dire si pour tout $\delta \in L(F)$ avec norme $\gamma \in H(F)$ semi-simple on a

$$\Phi^1_{H(F)}(\gamma, f) = \Phi^1_{G(F)}(\delta, \phi)$$

et si de plus

$$\Phi^1_{H(F)}(\gamma, f) = 0$$

pour tout γ semi-simple qui n'est pas une norme. Ceci peut encore s'écrire

$$\Phi^1_{H(F)}(\gamma, f) = \sum_{\delta} \Delta_1(\gamma, \delta) \, \Phi^1_{G(F)}(\delta, \phi)$$

où la somme porte sur les classes de conjugaison stable et où $\Delta_1(\gamma, \delta)$ vaut 1 si γ est une norme de δ et 0 sinon.

On sait [Clo2, proposition 7.2] qu'il suffit de vérifier cette égalité pour les éléments réguliers.

Définition 3.2.1. — Nous dirons que le transfert (stable) est possible entre L(F) et H(F) si pour toute $\phi \in \mathcal{C}_c^{\infty}(L(F))$ il existe $f \in \mathcal{C}_c^{\infty}(H(F))$ qui lui est associée. Nous dirons que le transfert réciproque est possible si pour toute $f \in \mathcal{C}_c^{\infty}(H(F))$ telle que

$$\Phi^1_{H(F)}(\gamma, f) = 0$$

pour tout γ semi-simple qui n'est pas une norme, alors il existe $\phi \in \mathcal{C}_c^{\infty}(L(F))$ qui lui est associée.

Lemme 3.2.2. — Soient ϕ et f associées.

$$\langle 1, \phi \rangle = \int_{L(F)} \phi(x') dx' = \int_{H(F)} f(x) dx = \langle 1, f \rangle.$$

Démonstration. — Soit \mathcal{T} un ensemble de représentants des classes de conjugaison stable de tores maximaux dans H(F). La formule de Weyl peut s'écrire

$$\langle 1, f \rangle = \int_{H(F)} f(x) \, dx = \sum_{T \in \mathcal{T}} w(T, F)^{-1} \int_{T(F)} \Phi_{H(F)}^{1}(t, f) \, |D_{T}^{H}(t)|_{F} \, dt$$

où w(T,F) est le nombre de conjugués stables dans T(F) d'un même élément fortement régulier γ : c'est l'ordre du sous-groupe W(T,F) des $w \in W(T)$, le groupe de Weyl absolu de T, qui commutent avec le groupe de Galois. Soit T' un ensemble de représentants des classes de conjugaison stable de 'tores maximaux' dans L(F). On appelle ainsi, suivant Arthur [Ar1], les centralisateurs dans L(F) des éléments semi-simples fortement réguliers $\delta \in L(F)$; ce sont des translatés de tores de G(F) stablement conjugués de tores maximaux de H(F). De façon similaire on a

$$\langle 1, \phi \rangle = \int_{L(F)} \phi(x') \, dx' = \sum_{T' \in \mathcal{T}'} w(T', F)^{-1} \int_{T'(F)} \Phi_{G(F)}^{1}(t', \phi) \, |D_{T'}^{L}(t')|_F \, dt' \, .$$

Considérons un couple d'éléments semi-simples fortement réguliers $\delta \in L(F)$ et $\gamma \in H(F)$, où γ est une norme de δ . Soit $T = I_{\gamma}^H$ et $T' = \delta I_{\delta}$. Alors $u = t\gamma$ est une norme de $u' = t' . \delta$ si $\varphi(t') = t^{\ell}$ où φ est l'isomorphisme $I_{\delta} \to I_{\gamma}^H$ et

$$d\mu'(u') = |D_{T'}^L(u')|_F du' = |D_{T'}^L(t'.\delta)|_F dt' = |D_{T}^H(t.\gamma)|_F dt = |D_{T}^H(u)|_F du = d\mu(u)$$

(cf. [AC, chap. 2, lemma 1.1, p. 80]). L'élévation à la puissance ℓ est un isomorphisme entre voisinages de 1 bien choisis dans T(F) et donc la norme induit, pour un voisinage U' de δ dans T'(F) et un voisinage U de γ dans T(F) bien choisis, un isomorphisme entre espaces mesurés $(U', \mu'|_{U'})$ et $(U, \mu|_{U})$. On conclut que

$$\langle 1, \phi \rangle = \langle 1, f \rangle$$

en invoquant 2.4.3.

Soit $\kappa \in \mathfrak{K}(H, G^*; F)$ et supposons qu'il existe un caractère $\tilde{\kappa}$ de G(F) tel que si $\tilde{\kappa}_L$ est la fonction sur L(F) définie par translation du caractère $\tilde{\kappa}$ alors

$$\tilde{\kappa}_L(\delta_x) = \tilde{\kappa}_L(\delta) \langle \kappa, \dot{x} \rangle$$
.

On pose

$$\Delta_{\tilde{\kappa}}(\gamma, \delta) = \tilde{\kappa}_L(\delta) \Delta_1(\gamma, \delta)$$

On observera que pour $\phi \in \mathcal{C}_c^{\infty}(L(F))$ la fonction

$$\delta \mapsto \Delta_{\tilde{\kappa}}(\gamma, \delta) \, \Phi_{G(F)}^{\kappa}(\delta, \phi)$$

est constante sur les classes de conjugaison stable.

On dira que le κ -transfert entre L(F) et H(F) est possible pour $\kappa \in \mathfrak{K}(H, G^*; F)$ si il existe un caractère $\tilde{\kappa}$ comme ci-dessus et si pour toute $\phi \in \mathcal{C}_c^{\infty}(L(F))$, il existe une fonction $f_{\tilde{\kappa}} \in \mathcal{C}_c^{\infty}(H(F))$ tels que

$$\Phi^1_{H(F)}(\gamma, f_{\tilde{\kappa}}) = \sum_{\delta} \Delta_{\tilde{\kappa}}(\gamma, \delta) \, \Phi^{\kappa}_{G(F)}(\delta, \phi) \, .$$

Le facteur $\Delta_{\tilde{\kappa}}$ est un facteur de transfert pour H et $\tilde{\kappa}$. Bien entendu, en général κ ne détermine pas le facteur de transfert de façon unique.

Proposition 3.2.3. — Supposons que G_{der} est simplement connexe. Si le transfert stable est possible entre L(F) et H(F), alors le κ -transfert est possible pour tout $\kappa \in \mathfrak{K}(H, G^*; F)$.

Démonstration. — L'application

$$x \mapsto x^{-1} \theta(x)$$

induit un homomorphisme

$$\mathbf{H}_{ab}^0(F, H \backslash G^*) \to \mathbf{H}_{ab}^0(F, G^*)$$
.

Le lecteur se convaincra que cet homomorphisme est injectif si G_{der} est simplement connexe. Considérons un caractère $\kappa \in \mathfrak{K}(H, G^*; F)$ obtenu par composition d'un caractère $\tilde{\kappa}$ de $\mathbf{H}^0_{ab}(F, G^*)$ avec l'homomorphisme

$$\mathbf{H}_{ab}^0(F, H \backslash G^*) \to \mathbf{H}_{ab}^0(F, G^*)$$
.

Pour tout $\kappa \in \mathfrak{K}(H, G^*; F)$ un tel $\tilde{\kappa}$ existe toujours si l'homomorphisme est injectif. Compte tenu de l'isomorphisme $\mathbf{H}^0_{ab}(F, G) = \mathbf{H}^0_{ab}(F, G^*)$ et du morphisme d'abélianisation on obtient un caractère de G(F) encore noté $\tilde{\kappa}$ et une fonction $\tilde{\kappa}_L$ sur L(F) telle que

$$\tilde{\kappa}_L(\delta_x) = \tilde{\kappa}_L(\delta) \langle \kappa, \dot{x} \rangle$$
.

Soit $\phi \in \mathcal{C}_c^{\infty}(L(F))$; on a aussi $\tilde{\kappa}_L \phi \in \mathcal{C}_c^{\infty}(L(F))$ et

$$\Phi_{G(F)}^1(\delta, \tilde{\kappa}_L \phi) = \tilde{\kappa}_L(\delta) \, \Phi_{G(F)}^{\kappa}(\delta, \phi) \, .$$

Supposons que le transfert stable est possible entre L(F) et H(F). Soit $f_{\tilde{\kappa}}$ une fonction sur H(F) associée à $\tilde{\kappa}_L \phi$ c'est-à-dire telle que

$$\Phi^1_{H(F)}(\gamma, f_{\tilde{\kappa}}) = \sum_{\delta} \Delta_1(\gamma, \delta) \, \Phi^1_{G(F)}(\delta, \tilde{\kappa}_L \phi)$$

on aura

$$\Phi^1_{H(F)}(\gamma, f_{\tilde{\kappa}}) = \sum_{\delta} \Delta_{\tilde{\kappa}}(\gamma, \delta) \, \Phi^{\kappa}_{G(F)}(\delta, \phi) \, .$$

3.3. Transfert aux places non-archimédiennes

La preuve de l'existence du transfert utilise le résultat difficile suivant dû à Waldspurger : soit F un corps non-archimédien, le transfert entre un groupe réductif connexe $G_0(F)$ et sa forme intérieure quasi-déployée H(F) est possible ; c'est le corollaire 1.7 de [Walds]. En combinant ceci et notre résultat de descente, on obtient le transfert (stable) pour le changement de base.

Théorème 3.3.1. — Soit F un corps non-archimédien. Le transfert entre L(F) et H(F) est possible.

Démonstration. — On remarque que, par décomposition de Jordan, pour tout $\delta_1 \in L(F)$ il existe un $\delta_0 \in L(F)$ semi-simple tel que $\delta_1 = u\delta_0$ avec u unipotent dans M(F) la composante neutre du centralisateur de δ_0 ; de plus modulo conjugaison sous M(F) on peut supposer u arbitrairement voisin de 1. Via l'usage d'une partition de l'unité, il résulte de cette remarque qu'il suffit d'établir la proposition pour les fonctions ϕ à support dans un petit voisinage \mathcal{W} de δ_0 . Soit $\delta \in L(F)$ semi-simple régulier. Le lemme 3.1.7 nous fournit une fonction ψ sur M(F) telle que pour tout $\delta \in L(F)$ semi-simple régulier on ait, ou bien

$$\Phi^1_{G(F)}(\delta,\phi) = 0$$

si la classe de L-conjugaison stable de δ ne rencontre pas $M(F)\delta_0$, ou bien

$$\Phi^1_{G(F)}(\delta, \phi) = \Phi^1_{M^+(F)}(\tau, \psi)$$

avec $\tau \in M(F)$ tel que $\tau \delta_0 = \delta'$ soit G-stablement conjugué à δ . Au voisinage de 1 l'élévation à la puissance ℓ est un isomorphisme de variété compatible à la conjugaison et, si les voisinages considérés sont assez petits, il existe donc une fonction ψ_1 sur M(F) telle que, si $\tau_1 = \tau^{\ell}$

$$\Phi^1_{M(F)}(\tau,\psi) = \Phi^1_{M(F)}(\tau_1,\psi_1)$$
.

On considère une forme intérieure quasi-déployée M^* de M. Le transfert entre M(F) et $M^*(F)$ – qui est possible grâce au théorème de Waldspurger [Walds] – nous permet d'exhiber une fonction ψ_2 sur $M^*(F)$, telle que

$$\Phi_{M(F)}^{1}(\tau_{1},\psi_{1}) = \Phi_{M^{*}(F)}^{1}(\tau_{2},\psi_{2}) .$$

si $\tau_2 \in M^*(F)$ est une norme de τ_1 (pour le transfert entre formes intérieures), et

$$\Phi^1_{M(F)}(\tau_2, \psi_2) = 0$$

si τ_2 ne provient pas de M(F). On observe que les centralisateurs M^+ et M^{*+} sont isomorphes sur la clôture algébrique et que la norme entre M et M^* est compatible avec la M^+ conjugaison stable : deux éléments sont M^+ -stablement conjugués dans M si et seulement si leurs normes (qui existent car M^* est quasi-déployé) sont M^{*+} -stablement conjuguées dans M^* . Ceci montre que

$$\Phi^1_{M^+(F)}(\tau_1,\psi_1) = \Phi^1_{M^{*+}(F)}(\tau_2,\psi_2) \ .$$

Soit $\gamma_0 \in H(F)$ stablement conjugué à δ_0^{ℓ} , autrement dit γ_0 est une norme pour δ_0 ; on remarque qu'alors $\tau_2\gamma_0$ est une norme pour $\tau\delta_0$. On choisit γ_0 de sorte que son centralisateur H_{γ_0} soit une forme intérieure quasi-déployée de M (c'est possible grace à 2.4.4) on a donc $H_{\gamma_0} \simeq M^*$. Quitte, si nécessaire, à écrire ψ_2 comme une somme de fonctions à supports plus petits, le lemme 3.1.7 nous fournit une fonction $f \in \mathcal{C}_c^{\infty}(H(F))$ telle que ou bien

$$\Phi^1_{H(F)}(\gamma, f) = 0$$

si la classe de H-conjugaison stable de γ ne rencontre pas $M^*(F)\gamma_0$, ou bien,

$$\Phi^1_{H(F)}(\gamma, f) = \Phi^1_{M^{*+}(F)}(\tau_2, \psi_2) ,$$

si $\tau_2\gamma_0$ et γ sont stablement conjugués. Nous avons ainsi construit une fonction f associée à ϕ .

Dans le cas particulier suivant, l'existence du transfert réciproque se déduit immédiatement du résultat de descente 3.1.7.

Proposition 3.3.2. — Supposons G_0 quasi-déployé i.e. $G_0 = H$. Étant donné $f \in \mathcal{C}_c^{\infty}(H(F))$ à support assez petit au voisinage de l'unité, il existe $\phi \in \mathcal{C}_c^{\infty}(L(F))$ associée.

Démonstration. — Au voisinage de $1 \in H(F)$ l'élévation à la puissance ℓ est un isomorphisme de variété compatible à la conjugaison et donc, dans un voisinage assez petit de 1, tous les éléments sont des normes. En particulier $\gamma_0 = 1$ est la norme de $\delta_0 = 1 \times \theta$ et le centralisateur de δ_0 dans G(F) est H(F). La proposition est alors conséquence de 3.1.7 (ii).

Remarque. — L'existence du transfert réciproque entre un groupe réductif connexe $G_0(F)$ et sa forme intérieure quasi-déployée H(F) est énoncée par J. Arthur dans [Ar3] à la fin de la section 3 (dans cet article J. Arthur raffine les résultats de Waldspurger [Walds]). C'est la généralisation à toutes les fonctions du résultat de surjectivité concernant les fonctions cuspidales [Ar3, Lemma 3.4]; elle se déduit, par exemple, des deux théorèmes principaux de l'article d'Arthur [Ar3, section 6]. On peut alors, en imitant la preuve de 3.3.1, généraliser 3.3.2 en prouvant l'existence du transfert réciproque entre L(F) et H(F): étant donné $f \in \mathcal{C}_c^{\infty}(H(F))$ telle que, si γ n'est pas une norme,

$$\Phi^1_{H(F)}(\gamma, f) = 0$$

il existe $\phi \in \mathcal{C}_c^{\infty}(L(F))$ associée.

L'existence du transfert fournit la proposition suivante. Pour toute représentation irréductible π^G de G(F) qui se prolonge en une représentation irréductible de $G^+(F)$ on choisit un prolongement π_0^L .

Proposition 3.3.3. — Supposons que l'on dispose d'une identité entre combinaisons linéaires finies de traces de représentations unitaires irréductibles de H(F) et $G^+(F)$:

$$\sum_{\pi^G} b(\pi^G, \pi^L_0) \text{ trace } \pi^L_0(\phi) = \sum_{\pi^H} a(\pi^H) \text{ trace } \pi^H(f)$$

pour toute paire (ϕ, f) de fonctions associées.

- (i) Supposons que $b(\pi^G, \pi_0^L) \neq 0$ pour un π^G . Alors il existe π^H tel que $a(\pi^H) \neq 0$.
- (ii) Réciproquement, si G_0 est quasi-déployé $(G_0 = H)$, si tous les $a(\pi^H)$ sont positifs ou nuls, et s'il existe une représentation irréductible de H(F) telle que $a(\pi^H) > 0$, il existe π^G tel que $b(\pi^G, \pi_0^L) \neq 0$.

Démonstration. — Pour toute ϕ il existe f associée d'après 3.3.1. L'indépendance linéaire des distributions définies par des coefficients de représentations irréductibles inéquivalentes de G(F), montre que le premier membre n'est pas identiquement nul, ce qui prouve (i). Passons à la réciproque. Considérons une fonction $f = g \star \check{g}$ de type positif; en particulier, on a pour toute représentation unitaire σ

trace
$$\sigma(f) > 0$$
.

Supposons g positive et de support assez petit au voisinage de 1 de sorte que $\pi(g)$ soit un opérateur proche de l'identité (pour la topologie forte) et donc en particulier

de norme de Hilbert-Schmidt non nulle; ceci implique

trace
$$\pi(f) = ||\pi(g)||_{HS}^2 > 0$$
.

Observons enfin que puisque G_0 est quasi-déployé, les normes d'éléments de L(F) forment un voisinage ouvert de l'identité dans $G_0(F) = H(F)$ (cf. [Lab3, lemme III.1.6]). Si le support de f est assez petit il est dans l'ensemble des normes et f est associée à une fonction ϕ sur L(F) d'après 3.3.2.

3.4. Transfert aux places décomposées

Soit E/F une algèbre cyclique décomposée :

$$E = F \oplus F \oplus \cdots \oplus F$$

et θ la permutation cyclique des facteurs. Un transfert explicite, entre $G_0(F)$ et L(F), est obtenu de la façon suivante : si

$$\phi = (f_1 \otimes f_2 \otimes \cdots \otimes f_\ell)_L$$

et

$$\delta = (\gamma_1, \gamma_2, \dots, \gamma_\ell) \rtimes \theta$$

alors

$$\Phi_{G(F)}(\delta,\phi) = \Phi_{G_0(F)}(\gamma,f)$$

avec

$$f = f_1 * f_2 * \cdots * f_\ell$$
 et $\gamma = \gamma_1 \gamma_2 \cdots \gamma_\ell$.

Les représentations irréductibles π^L de $G^+(F)$ telles que trace $\pi^L(\phi)$ soit non identiquement nul pour $\phi \in \mathcal{C}_c^{\infty}(L(F))$ sont les représentations dont la restriction à G(F) est irréductible et de la forme

$$\pi^L|_{G(F)} = \pi \otimes \cdots \otimes \pi$$

où π est une représentation irréductible de $G_0(F)$. Dans ce cas $\pi^L(\theta)$ est la matrice de permutation cyclique, à une racine ℓ -ième de l'unité près. Réciproquement, la représentation

$$\pi^G = \pi \otimes \cdots \otimes \pi$$
,

admet un prolongement canonique π_0^L à $G^+(F)$ en choisissant pour $\pi_0^L(\theta)$ la matrice de permutation.

Lemme 3.4.1. — Supposons que l'on dispose d'une identité entre combinaisons linéaires finies de traces de représentations irréductibles de $G_0(F)$ et $G^+(F)$:

$$\sum b(\pi^G,\pi_0^L) \text{ trace } \pi_0^L(\phi) = \sum a(\pi) \text{ trace } \pi(f)$$

pour toute paire (ϕ, f) de fonctions associées. Soit π une représentation irréductible de $G_0(F)$ et soit

$$\pi^G = \pi \otimes \cdots \otimes \pi$$
.

Alors

$$a(\pi) = b(\pi^G, \pi_0^L) .$$

Démonstration. — Soit

$$f = f_1 * f_2 * \cdots * f_\ell$$

et

$$\phi = (f_1 \otimes f_2 \otimes \cdots \otimes f_\ell)_L ;$$

elles sont associées et

trace
$$\pi_0^L(\phi) = \operatorname{trace} (\pi(f_1) \cdots \pi(f_\ell)) = \operatorname{trace} \pi(f)$$

si $\pi^G = \pi \otimes \cdots \otimes \pi$. Donc, pour toute fonction f factorisable en un produit de convolution de ℓ -facteurs, on a

$$\sum b(\pi^G,\pi_0^L)$$
trace $\pi(f)=\sum a(\pi)$ trace $\pi(f)$.

On conclut en remarquant que toute fonction lisse à support compact est une somme finie de fonctions factorisables (théorème de Dixmier-Malliavin) et en invoquant l'indépendance linéaire des caractères.

3.5. Transfert K-fini aux places archimédiennes

Pour les places archimédiennes, on dispose des résultats de Shelstad sur le transfert pour les fonctions de l'espace de Schwartz. On va montrer que les propriétés de support compact et de K-finitude peuvent aussi être préservées. Le procédé, emprunté à [CD1, Appendice] qui traite le cas de l'endoscopie ordinaire, sera rappelé brièvement. L'adaptation au cas tordu est immédiate pourvu que l'on dispose du theorème de Paley-Wiener scalaire tordu. C'est le cas pour le changement de base grâce à Delorme [Delo].

Il suffit de traiter le cas $F = \mathbb{R}$. Rappelons que nous disposons, grâce à Langlands, de la notion de L-paquet de représentations de groupes réductifs réels et des résultats de Shelstad [She1] [She2] et de Clozel [Clo1] et [CD1, Appendice] sur la fonctorialité entre formes intérieures et changement de base \mathbb{C}/\mathbb{R} . Soient $f \in \mathcal{C}_c^{\infty}(H(\mathbb{R}))$ et Π un L-paquet tempéré on pose

trace
$$\Pi(f) = \sum_{\pi \in \Pi} \text{trace } \pi(f)$$
.

Lemme 3.5.1. — Soit $f \in \mathcal{S}(H(\mathbb{R}))$, l'espace de Schwartz. Ses traces dans tout L-paquet tempéré Π sont nulles :

trace
$$\Pi(f) = 0$$

si et seulement si les intégrales orbitales stables de f sont nulles.

On dit qu'un L-paquet de représentations Π^L de représentations irréductibles de $G^+(\mathbb{R})$ dont la restriction à G(F) est irréductible et tempérée est un changement de base (ou le relèvement) d'un L-paquet Π de représentations tempérées de H(F) s'il existe une constante $c(\Pi^L)$ telle que

trace
$$\Pi^L(\phi) = c(\Pi^L)$$
 trace $\Pi(f)$

pour tout couple (ϕ, f) de fonctions associées.

Remarque. — Pour un groupe complexe, en particulier dans le cas du changement de base \mathbb{C}/\mathbb{R} , un L-paquet Π^L a un seul composant. Mais dans ce cas on prendra garde que la constante $c(\Pi^L)$ dépend du choix du prolongement de la représentation de $G(\mathbb{R}) = G_0(\mathbb{C})$ au produit semi-direct $G^+(\mathbb{R})$. Clozel dans [Clo1] fait un choix 'canonique', mais ce n'est pas le choix utilisé par Johnson [J].

Proposition 3.5.2. — Soit K^G un compact maximal de $G(\mathbb{R})$. Soit $\phi \in \mathcal{C}_c^{\infty}(L(\mathbb{R}))$ et K^G -finie, il existe $f \in \mathcal{C}_c^{\infty}(H(\mathbb{R}))$ associée et K^H -finie. De plus, le transfert est compatible aux multiplicateurs.

Démonstration. — D'après Shelstad [She2] il existe une fonction dans l'espace de Schwartz $f_1 \in \mathcal{S}(H(\mathbb{R}))$ associée à ϕ . Considérons un L-paquet Π^L de représentations irréductibles de $G^+(\mathbb{R})$, dont la restriction à $G(\mathbb{R})$ est irréductible et tempérée, et qui est le changement de base d'un L-paquet Π de représentations tempérées de $H(\mathbb{R})$. Compte tenu des identités de caractère, dues à Shelstad pour les formes intérieures [She1] et à Clozel pour le changement de base [Clo1], on a

trace
$$\Pi^L(\phi) = c(\Pi^L)$$
 trace $\Pi(f_1)$.

Maintenant, il existe une fonction K^H -finie $f \in \mathcal{C}_c^{\infty}(H(\mathbb{R}))$ dont la transformée de Fourier scalaire satisfait les conditions suivantes :

trace
$$\Pi^L(\phi) = c(\Pi^L)$$
 trace $\Pi(f)$

pour tout L-paquet Π de représentations tempérées dont un changement de base est Π^L . On peut, pour fixer les idées, exiger de plus que la transformée de Fourier scalaire de f soit constante sur les L-paquets tempérées :

trace
$$\pi_1(f) = \text{trace } \pi_2(f)$$

si π_1 et π_2 appartiennent au même L-paquet tempéré. Ceci résulte de la comparaison des théorèmes de Paley-Wiener scalaire pour $L(\mathbb{R})$ [Delo] et $H(\mathbb{R})$ [CD2]. Il suffit maintenant d'invoquer 3.5.1 pour conclure que f et f_1 ont les mêmes intégrales orbitales stables et que donc f et ϕ sont associées. Soient α et β des multiplicateurs, au sens d'Arthur, qui se correspondent par le changement de base :

$$\widehat{\alpha}(\nu_{\Pi^L}) = \widehat{\beta}(\nu_{\Pi})$$

pour tout L-paquet Π de représentations tempérées dont un changement de base est Π^L . Par définition des multiplicateurs on a

trace
$$\Pi^L(\phi_\alpha) = \widehat{\alpha}(\nu_{\Pi^L})$$
 trace $\Pi^L(\phi)$

et

trace
$$\Pi(f_{\beta}) = \widehat{\beta}(\nu_{\Pi})$$
 trace $\Pi(f)$.

On voit que ϕ_{α} admet pour transfert f_{β} .

Proposition 3.5.3. — Réciproquement, si $f \in \mathcal{C}_c^{\infty}(H(\mathbb{R}))$ est K^H -finie avec des intégrales orbitales stables nulles pour les γ semi-simples non-normes, il existe $\phi \in \mathcal{C}_c^{\infty}(L(\mathbb{R}))$ associée et K^H -finie. Le transfert réciproque K^H -fini est compatible aux multiplicateurs.

 $D\acute{e}monstration$. — La fonction f est K^H -finie avec des intégrales orbitales stables nulles pour les γ semi-simples réguliers non-normes. Si deux L-paquets Π_1 et Π_2 ont même changement de base Π^L , les identités de caractère montrent que la différence de leur caractère s'annule sur les normes. L'application

$$\Phi:\Pi^L\longmapsto c(\Pi^L)$$
 trace $\Pi(f)$

où Π^L est un changement de base du L-paquet Π , est donc bien définie. On en conclut, grâce aux théorèmes de Paley-Wiener scalaire pour $L(\mathbb{R})$ et $H(\mathbb{R})$ qu'il existe une fonction $\phi \in \mathcal{C}_c^{\infty}(L(\mathbb{R}))$ qui est K^G -finie et représente Φ , c'est-à-dire est telle que

trace
$$\Pi^L(\phi) = c(\Pi^L)$$
 trace $\Pi(f)$

si Π^L est le changement de base du L-paquet Π . Par ailleurs, d'après Shelstad il existe $f_1 \in \mathcal{S}(H(\mathbb{R}))$ associée à ϕ . Comme ci-dessus, d'après 3.5.1, f et f_1 ont mêmes intégrales orbitales stables puisque leurs traces dans les L-paquets tempérés sont égales et donc f et ϕ sont associées, de façon compatible aux multiplicateurs.

Proposition 3.5.4. — On suppose que $F = \mathbb{R}$ ou \mathbb{C} et soit E une F-algèbre cyclique. Supposons que l'on dispose d'une identité entre des séries absolument convergentes de traces de représentations unitaires irréductibles

$$\sum b(\pi^G, \pi^L_0) \text{ trace } \pi^L_0(\phi) = \sum a(\pi^H) \text{ trace } \pi^H(f)$$

pour toutes les paires de fonctions associées. Alors, pour tout couple de caractères infinitésimaux ν pour H et ν^G pour G associés par fonctorialité on a l'identité

$$\sum \delta^G(\nu^G,\pi^G)b(\pi^G,\pi_0^L) \text{ trace } \pi_0^L(\phi) = \sum \delta^H(\nu,\pi^H)a(\pi^H) \text{ trace } \pi^H(f)$$

où $\delta^H(\nu, \pi^H) = 1$ si ν est le caractère infinitésimal de π^H et zéro sinon. Les résultats de 3.3.3 s'appliquent (sous les mêmes hypothèses). Supposons maintenant G_0 quasi-déployé $(G_0 = H)$ et tous les $a(\pi^H) \geq 0$. Considérons une représentation π^H avec $a(\pi^H) \neq 0$ qui soit à cohomologie non triviale. Alors, il existe π^G à cohomologie non triviale avec $b(\pi^G, \pi_0^L) \neq 0$.

Démonstration. — Compte tenu de la convergence absolue de ces expressions et de la compatibilité du transfert K-fini aux multiplicateurs, un argument désormais classique (cf. par exemple [AC, Chap. 2, section 15]) permet de raffiner une telle identité en séparant les caractères infinitésimaux. Ceci fournit des identités entre traces de représentations dont les caractères infinitésimaux sont fixés et se correspondent par fonctorialité; en particulier les sommes sont finies. La preuve de l'analogue de 3.3.3 dans le cadre K-fini est immédiate. Montrons l'assertion sur les représentations à cohomologie. Pour les places qui se décomposent on invoque le lemme 3.4.1. Il reste à traiter le cas des places réelles qui deviennent complexes. On a $a(\pi^H) \ge 0$; si l'un des $a(\pi^H)$ est non nul, le second membre n'est pas identiquement nul puisque l'on peut supposer f de type positif. On remarque ensuite que les représentations à cohomologie non triviale ont pour caractère infinitésimal celui de la représentation triviale et que, au moins pour un groupe complexe, la réciproque est vraie pour les représentations unitaires (cf. 3.5.6 ci-dessous).

Remarque. — Des résultats plus précis de relèvement peuvent sans doute être obtenus grâce à [J], mais nous n'avons pas essayé de le faire.

La proposition 3.5.6 semble bien connue des spécialistes (voir par exemple [Sa, p. 253]) ainsi que cela m'a été indiqué par Laurent Clozel, mais faute de référence nous avons préféré en donner une preuve. Comme on le verra, c'est une conséquence facile d'un résultats d'Enright [E].

Soit G un groupe réductif sur \mathbb{C} . Nous utiliserons les notations d'Enright [E]. Soit \mathfrak{g}_0 l'algèbre de Lie de $G(\mathbb{C})$. On plonge \mathfrak{g}_0 dans sa complexifiée \mathfrak{g} par l'application

$$X \longmapsto (X, \overline{X})$$

où la conjugaison complexe $X\mapsto \overline{X}$ se fait relativement à une forme compacte $\mathfrak u$ de sorte que

$$\mathfrak{g}_0 = \mathfrak{u} \oplus J\mathfrak{u}$$
.

Soit \mathfrak{h}_0 une sous-algèbre de Cartan de \mathfrak{g}_0 adaptée à cette décomposition :

$$\mathfrak{h}_0 = \mathfrak{m}_0 \oplus \mathfrak{a}_0$$

où \mathfrak{m}_0 est une sous-algèbre de Cartan de \mathfrak{u} et $\mathfrak{a}_0 = J\mathfrak{m}_0$. On chosit un ordre sur les racines et on note δ la demi-somme des racines positives $\alpha \in \Delta_0^+$. La demi-somme des racines positives pour \mathfrak{h} (le complexifié de \mathfrak{h}_0) dans \mathfrak{g} est

$$\rho = (\delta, -\delta)$$
.

On note W_0 le groupe de Weyl de G et $W=W_0\times W_0$ est le groupe de Weyl du complexifié. Considérons $s\in W_0$ un élément d'ordre 2, et un sous-groupe parabolique standard de G

$$Q_s = M_s N_s$$

tels que : l'ensemble Δ_s des racines de \mathfrak{h}_0 dans $\mathfrak{m}_{s,0}$ est l'ensemble des racines $\alpha \in \Delta_0$ telles que

$$\langle (1+s)\delta, \alpha \rangle = 0$$
.

En particulier s est l'élément de plus grande longueur dans $W_s \subset W_0$ le groupe de Weyl de M_s . On note δ_s la demi-somme des racines positives dans M_s et on pose $\mu_s = \delta_s - \delta$. On suppose que $s \mu_s = \mu_s$ ce qui implique

$$2\mu_s = -(1+s)\delta .$$

L'exponentielle, de la forme linéaire (μ_s, μ_s) restreinte à \mathfrak{h}_0 , se prolonge en une représentation σ_s de dimension 1 de $M_s(\mathbb{C}) \simeq Q_s(\mathbb{C})/N_s(\mathbb{C})$. On note π_s la représentation de $G(\mathbb{C})$ unitairement induite par le caractère unitaire σ_s du sous-groupe parabolique $Q_s(\mathbb{C})$.

Lemme 3.5.5. — Les représentations π_s sont à cohomologie non triviale.

Démonstration. — Soit $\lambda \in \mathfrak{h}^*$ on note E_{λ} la représentation du complexifié de M_s de poids dominant λ . Soit M_S^1 le noyau de la flèche naturelle de $M_s(\mathbb{C})$ dans la composante neutre A_s du tore réel déployé maximal du centre de M_s . Pour prouver que π_s a des groupes de cohomologie non triviaux, il suffit, d'après [BW, Chapitre III, theorem 3.3], d'exhiber un $\tau = (\tau_1, \tau_2) \in W$ tel que

pour toute $\alpha \in \Delta_s^+$, et tel que

$$\sigma_s \otimes E_{\tau \rho - \rho}$$

soit la représentation triviale de M_s^1 . Soit $c \in W_0$ l'élément de plus grande longueur; on considère $\tau = (1, sc)$; cet élément vérifie la condition (\star) et on a

$$\tau \rho - \rho = (0, -2\mu_s) .$$

Donc pour tout $(\alpha, \beta) \in \Delta_s \times \Delta_s$

$$\langle \tau \rho - \rho, (\alpha, \beta) \rangle = 0$$

puisque $\langle \mu_s, \beta \rangle = 0$ par définition de Δ_s . Ceci montre que la représentation $E_{\tau\rho-\rho}$ est triviale sur le groupe dérivé et donc de dimension 1. Par ailleurs, sur $\mathfrak{m}_0 = \mathfrak{h}_0 \cap \mathfrak{u}$, la forme linéaire (μ_s, μ_s) induit la forme linéaire $2\mu_s$ et $\tau\rho - \rho$ induit la forme linéaire $-2\mu_s$; leur somme est nulle. On a donc prouvé que, si $\tau = (1, sc)$

$$\sigma_s \otimes E_{\tau \rho - \rho}$$

est la représentation triviale de M_s^1 .

Remarque. — Une variante consiste à remarquer que les représentations π_s sont des représentations de type $A_{\mathfrak{q}}$ au sens de Vogan-Zuckerman [VZ, theorem 2.5]; elle sont à cohomologie non triviale d'après [VZ, Theorem 3.3].

Proposition 3.5.6. — Soit $G(\mathbb{C})$ un groupe réductif complexe. Les représentations unitaires de $G(\mathbb{C})$, dont le caractère infinitésimal est celui de la représentation triviale, sont à cohomologie non triviale.

Démonstration. — Le caractère infinitésimal de la représentation unité de $G(\mathbb{C})$ est l'orbite sous W de la forme linéaire (δ, δ) . D'après [E, proposition 6.8], toute représentation unitaire π ayant même caractère infinitésimal que la représentation unité, est équivalente à une des représentations π_s construites ci-dessus ; elles sont à cohomologie non triviale d'après le lemme 3.5.5.

3.6. Transfert et représentations des séries principales

Soit F un corps local non-archimédien. Soit P_0 un sous-groupe parabolique minimal dans G et M_0 un sous-groupe de Levi et X^* le réseau de ses caractères F-rationnels. Soient P un sous-groupe parabolique standard, M le sous-groupe de Levi contenant le sous-groupe de Levi minimal M_0 . Soit χ un caractère de M(F) à valeurs dans le groupe multiplicatif d'un corps valué k (soit k = F soit $k = \mathbb{C}$); on définit $\mu(\chi) \in X^* \otimes \mathbb{R}$ comme le morphisme de $M_0(F)$ à valeurs dans le groupe additif des réels

$$t \longmapsto \log |\chi(t)|_k$$
.

Nous dirons que $\mu(\chi)$ est positif si $\langle \mu(\chi), \alpha \rangle \geq 0$ pour toute racine positive α . Nous dirons que $\mu(\chi)$ est strictement P-positif si $\mu(\chi)$ est positif et si $\langle \mu(\chi), \alpha \rangle = 0$ si et seulement si α est une racine de M_0 dans M. Soit σ une représentation unitaire irréductible de M(F). On prolonge $\sigma \otimes \chi$ en une représentation de P(F) triviale sur le radical unipotent, et on note $I_{P,\sigma,\chi}$ l'induite (pour l'induction unitaire) :

$$I_{P,\sigma,\chi} = \operatorname{ind} {}_{P(F)}^{G(F)} \sigma \otimes \chi.$$

Lorsque $\mu(\chi)$ est strictement P-positif on peut définir le quotient de Langlands $J_{P,\sigma,\chi}$ ([BW] Chap. XI).

Les représentations sphériques, relativement à un sous-groupe compact maximal K^G , sont, par définition, les représentations admissibles irréductibles admettant un vecteur non nul fixe sous ce sous-groupe.

Lemme 3.6.1. — Les représentations sphériques, relativement à un sous-groupe compact maximal spécial K^G , sont des sous-quotients de représentations de la série principale non-ramifiée.

Démonstration. — En fait, plus généralement, Casselman a montré que les représentations admettant des vecteurs non nuls invariants sous un sous-groupe d'Iwahori sont des sous-quotients de représentations de la série principale non-ramifiée [Cas2, Proposition 2.6].

Un sous-groupe compact spécial est dit 'très spécial' si les constantes $q_{\alpha/2}$ qui lui sont attachées (voir, par exemple, [Cas2]) vérifient $q_{\alpha/2} \geq 1$. Il existe toujours des sous-groupes compacts très spéciaux. Les sous-groupes compacts hyperspéciaux, lorsqu'ils existent, sont très spéciaux.

Proposition 3.6.2. — Soit Σ un L-paquet de représentations unitaires irréductibles de M(F) obtenues en décomposant une induite par un caractère unitaire non ramifié η de $M_0(F)$. Soit K^G un sous-groupe compact très spécial dans G(F). Si χ est un caractère non ramifié de M(F) avec $\mu(\chi)$ strictement P-positif, l'ensemble des quotients de Langlands $J_{P,\sigma,\chi}$ avec $\sigma \in \Sigma$ contient le sous-quotient K^G -sphérique.

Démonstration. — La proposition est une généralisation de la proposition 6 de [Lab1] qui traite le cas où K^G est hyperspécial et Σ est un singleton. L'ensemble des quotients de Langlands $J_{P,\sigma,\chi}$ avec $\sigma \in \Sigma$ est un L-paquet qui s'obtient en décomposant l'image d'un certain opérateur d'entrelacement T_w pour la série principale définie par $\eta_X|_{M_0(F)}$. Le sous-quotient sphérique est dans l'image de cet opérateur si T_w est non nul sur le vecteur K^G -invariant de l'espace de la série principale. On observe que les constantes $q_{\alpha/2}$ interviennent dans les formules de Macdonald permettant de calculer cet opérateur d'entrelacement sur le vecteur sphérique (cf. [BW, Chap XI] ou [Cas2, p. 397]). L'hypothèse $q_{\alpha/2} \geq 1$ implique que la valeur de la fonction $c_w(\chi)$ qui permet d'exprimer cet opérateur, est non nulle pour les caractères χ tels que $\mu(\chi)$ est strictement P-positif.

Supposons maintenant que le groupe $G_0(F)$ est quasi-déployé $(G_0 = H)$, mais pas nécessairement non-ramifié. Soit P_0 un sous-groupe de Borel et soit T un tore maximal dans P_0 . Soit $t \in T(F)$ fortement positif (relativement à P_0) c'est-à-dire tel que P_0 soit le sous-groupe parabolique associé à t à la Deligne-Casselman [Cas1]. On suppose que t est la norme d'un $\delta \in T(E) \times \theta \subset L(F)$.

Soient W et \tilde{W} des ouverts compacts non vides de H(F) et G(F) respectivement. Soient \tilde{U} le compact maximal de T(E) et U l'image par la norme de \tilde{U} dans T(F). C'est le sous-groupe des normes du compact maximal de T(F).

Proposition 3.6.3. — On note ϕ_{δ} la fonction caractéristique de l'ensemble des $x \in L(F)$ de la forme $x = k^{-1}\delta uk$ avec $k \in \tilde{W}$ et $u \in \tilde{U}$. On note f_t la fonction caractéristique de l'ensemble des $x = k^{-1}tuk$ avec $k \in W$ et $u \in U$.

- (i) A une constante près, les fonctions ϕ_{δ} et f_t sont associées.
- (ii) Soit π^H une représentation admissible irréductible de H(F) alors

trace
$$\pi^H(f_t) \neq 0$$

implique que π^H est un sous-quotient de la série principale induite par un caractère χ du sous-groupe parabolique minimal P_0 , et $\chi|_{T(F)}$ est trivial sur U.

(iii) Soit π^L une représentation admissible irréductible de $G^+(F)$ alors

trace
$$\pi^L(\phi_{\delta}) \neq 0$$

implique que $\pi^L|_{G(F)}$ est un sous-quotient de la série principale non-ramifiée.

Démonstration. — L'assertion (i) est claire si $G_0 = T$; dans le cas général, elle se prouve comme la proposition 3 de [Lab3] par descente aux centralisateurs grâce à [Lab1, lemma 1]. L'assertion (ii) est une conséquence immédiatement du théorème de Casselman [Cas1] : il en résulte en effet que la trace de $\pi^H(f_t)$ est non nulle seulement si le module de Jacquet de π^H , pour le sous-groupe parabolique minimal P_0 , admet des vecteurs invariants sous U (cf. [Lab1, Proposition 5]). L'assertion (iii) est empruntée à [Lab3].

Le changement de base pour les tores, qui est simplement la composition des caractères avec la norme, fournit une notion de changement de base pour les séries principales compatible avec les identités de caractère. Dans le cas de l'induction d'un caractère unitaire, les diverses sous-représentations d'une même série principale forment un L-paquet. On en déduit une notion de changement de base pour les L-paquets de sous-quotients de Langlands des séries principales non-ramifiées. On prendra garde que cette notion n'est en général pas compatible avec des identités de caractère.

Proposition 3.6.4. — Soient K^H et K^G des sous-groupes compacts très spéciaux dans H(F) et G(F) respectivement. On suppose que G est non-ramifié (i.e. quasi-déployé et déployé sur une extension non ramifiée) et que K^G est hyperspécial. Supposons que l'on dispose d'une identité entre sommes finies de traces de représentations irréductibles de H(F) et $G^+(F)$:

$$\sum b(\pi^G,\pi_0^L)$$
trace $\pi_0^L(\phi)=\sum a(\pi^H)$ trace $\pi^H(f)$

pour toute paire (ϕ, f) de fonctions associées. On suppose enfin que les coefficients $a(\pi^H)$ sont positifs. Soit π^H une représentation K^H -sphérique de H(F) telle que $a(\pi^H) \neq 0$.

- (i) Alors l'une des représentations π^G du L-paquet Π^G pour G(F) qui lui correspond par changement de base est telle que $b(\pi^G, \pi_0^L) \neq 0$.
- (ii) Supposons de plus les coefficients $b(\pi^G, \pi_0^L)$ invariants sous l'action du groupe adjoint. Alors la représentation K^G -sphérique π^G de G(F) qui lui correspond par changement de base est telle que $b(\pi^G, \pi_0^L) \neq 0$.

Démonstration. — On applique l'identité à une paire de fonctions associées (ϕ_{δ}, f_t) . Si

trace
$$\pi^H(f_t) \neq 0$$

il existe un caractère χ de T(F) trivial sur les normes du compact maximal de T(E) tel que

trace
$$\pi^H(f_t) = \sum_{w} c(\pi^H, \chi, w) \chi^w(t)$$

où w parcourt le groupe de Weyl de T(F) dans H(F) et les $c(\pi^H, \chi, w)$ sont des constantes positives. La positivité des $a(\pi^H)$ assure que les contribution des π^H , dont

le module de Jacquet fait intervenir un caractère de ce type, ne se compensent pas. Les

$$t \mapsto \operatorname{trace} \pi^H(f_t)$$

avec t norme de δ séparent les restrictions des caractères apparaissant dans les modules de Jacquet, au sous-groupe des t qui sont des normes. Comme π_0^H est sphérique, c'est un sous-quotient de Langlands de I_χ , une série principale non ramifiée, d'après 3.6.2. Par réciprocité de Frobenius (en reprenant la preuve de la proposition 8 de [Lab1]) on voit que le semi-simplifié du module de Jacquet de π^H pour P_0 contient, avec multiplicité non nulle, des caractères χ^w avec $\mu(\chi^w)$ négatif. Par séparation des caractères on obtient (i). Pour (ii) on observe de plus que, compte tenu de [Lab1, proposition 8], les fonctions élémentaires ϕ_δ suffisent pour séparer les orbites sous le groupe adjoint des sous-quotients K^G -sphériques des séries principales non ramifiées.

3.7. Transfert non-ramifié: le lemme fondamental

Soit \mathcal{O}_F l'anneau des entiers de F, un corps local non archimédien. On dit que le quadruple

$$(H, K^H, G, K^G)$$

est non ramifié si

- G_0 est un schéma en groupes quasi-déployé sur \mathcal{O}_F , en particulier $G_0=H$, et G_0 est déployé sur une extension non ramifiée de F
- $K^H = H(\mathcal{O}_F)$ est un sous-groupe compact maximal hyperspécial
- l'extension E/F est non ramifiée
- $K^G = G(\mathcal{O}_F) = H(\mathcal{O}_E)$.

Pour un tel quadruple on dispose des algèbres de Hecke sphériques : ce sont les algèbres de convolution \mathcal{H}^H (resp. \mathcal{H}^G) des fonctions sur H(F) bi-invariantes par K^H (resp. sur G(F) bi-invariantes par K^G) et de l'homomorphisme de changement de base

$$b_{E/F}:\mathcal{H}^G\to\mathcal{H}^H$$
.

Lemme 3.7.1. — Soit $h' = b_{E/F}(h)$ et soit $x \in H(F)$ tel que, pour un caractère χ du groupe $\mathbf{H}^0_{ab}(F,H)$, trivial sur les normes, on ait

$$\chi(x) \neq 1$$

alors h'(x) = 0.

 $D\acute{e}monstration$. — Le groupe H est non-ramifié; choisissons comme tore T^H le sous-groupe de Levi d'un sous-groupe de Borel. Le groupe H_{SC} est un produit de groupes quasi-simples et non ramifiés; le tore T^H_{sc} est un produit de tores obtenus par restriction des scalaires (pour des extensions non ramifiées) de tores déployés, ce qui

montre que $\mathbf{H}^1(F, T^H_{sc})$ est trivial et que donc $T^H(F)$ se surjecte sur $\mathbf{H}^0_{ab}(F, H)$. Notons encore χ le caractère de $T^H(F)$ induit par χ . L'extension E/F est non-ramifiée; or, d'après [Ko3], les normes pour une extension non ramifiée sont surjectives sur le compact maximal de $T^H(F)$. Le caractère χ est trivial sur les normes et donc non ramifié. Soit π^H_{λ} une représentation sphérique définie par un caractère non ramifié λ ; on note $\tilde{\lambda}$ le composé de λ avec la norme. On a

trace
$$\pi_{\lambda}^{H}(h'\chi) = \text{trace } \pi_{\lambda\chi}^{H}(h') = \text{trace } \pi_{\tilde{\lambda}}^{L}(h) = \text{trace } \pi_{\lambda}^{H}(h')$$

puisque $h' = b_{E/F}(h)$ et que $\pi_{\lambda\chi}^H$ et π_{λ}^H ont même changement de base $\pi_{\tilde{\lambda}}^L$. Les fonctions h' et $h'\chi$ ayant même transformée de Fourier sont donc égales. En particulier

$$h'(x)(1 - \chi(x)) = 0$$

ce qui impose h'(x) = 0 puisque $\chi(x) \neq 1$.

Proposition 3.7.2. — Soit $h \in \mathcal{H}^G$. Si γ semi-simple n'est pas une norme alors

$$\Phi^1_{H(F)}(\gamma, b_{E/F}h) = 0 .$$

Démonstration. — Compte tenu de la compatibilité aux termes constants pour les intégrales orbitales et des traces dans les représentations sphériques, il suffit d'établir le résultat d'annulation pour les éléments elliptiques dans H. L'assertion d'annulation résulte de 2.5.3 et 3.7.1.

Remarque. — L'argument local-global invoqué dans [Clo2] pour établir le résultat d'annulation est incorrect; il est également incorrect dans [Lab1] qui cite la preuve de [Clo2] à ce point; en effet, l'argument local-global suppose implicitement que γ est la composante locale d'un élément, rationnel sur un corps global, qui est une norme en toutes les places sauf une, ce qui est impossible.

Proposition 3.7.3. — Supposons que le quadruple (H, K^H, G, K^G) est non ramifié. La fonction caractéristique de K^H et celle de $K^G \times \theta$ sont associées. Plus généralement, soit $h \in \mathcal{H}^G$, alors h_L et $b_{E/F}h$ sont associées.

 $D\acute{e}monstration$. — La première assertion est due à Kottwitz [Ko3]. Pour tout $h \in \mathcal{H}^G$, les intégrales orbitales stables sont compatibles avec la norme : si γ est une norme de δ

$$\Phi^1_{G(F)}(\delta, h_L) = \Phi^1_{H(F)}(\gamma, b_{E/F}(h)) .$$

Ceci est prouvé dans [Clo2]; on en trouvera une preuve plus élémentaire dans [Lab1]. Le résultat d'annulation qui doit compléter cette assertion a été prouvé en 3.7.2.

3.8. Fonctions cuspidales et stabilisantes

Pour pouvoir utiliser une forme simple de la formule des traces nous ferons appel en certaines places à des fonctions cuspidales, une notion due à Arthur.

Définition 3.8.1. — On dit qu'une fonction $\phi \in C_c^{\infty}(L(F))$ est cuspidale si ses intégrales orbitales sont nulles pour les éléments semi-simples réguliers non elliptiques. On dira qu'elle est fortement cuspidale si ses intégrales orbitales sont nulles pour tous les éléments non elliptiques et si de plus

trace
$$\pi(\phi) = 0$$

pour toute π qui est un composant de l'induite d'une représentation unitaire pour un sous-groupe parabolique propre.

Des exemples de fonctions cuspidales sont fournis, lorsque G est semi-simple (ou réductif de centre anisotrope), par les coefficients de représentations super-cuspidales et plus généralement par les pseudo-coefficients de représentations des séries discrètes comme il résulte du principe de Selberg.

Nous aurons de plus besoin qu'en certaines places les intégrales orbitales des éléments semi-simples (multipliées par le signe de Kottwitz du centralisateur) soient constantes sur les classes de conjugaison stable. Nous introduisons pour cela la notion de fonction stabilisante.

Définition 3.8.2. — On dira qu'une fonction $\phi \in \mathcal{C}_c^{\infty}(L(F))$ est stabilisante si (i) ϕ est cuspidale,

(ii) les intégrales κ -orbitales $\Phi^{\kappa}_{G(F)}(\delta,\phi)$ sont nulles pour tout δ semi-simple et tout $\kappa \neq 1$.

Des exemples de telles fonctions sont obtenus lorsque G est semi-simple (ou réductif de centre anisotrope), par des moyennes de pseudo-coefficients de L-paquets de séries discrètes, en particulier au moyen de fontions d'Euler-Poincaré ou de Lefschetz dans le cas tordu, en des places où

$$\mathfrak{D}(I,G;F) \to \mathfrak{E}(I,G;F)$$

est bijectif. Un cas typique est celui des pseudo-coefficients de représentations de Steinberg aux places finies qui fait l'objet de la section suivante. Le cas des places archimédiennes est traité dans [CL].

3.9. Transfert et représentation de Steinberg

Supposons tout d'abord que le centre de G^+ est F-anisotrope ou, de façon équivalente, que le centre de H est F-anisotrope. Un pseudo-coefficient de représentation de Steinberg est, au signe près, une fonction d'Euler-Poincaré et de telles fonctions ont été construites dans [Ko6]. La construction de Kottwitz se généralise immédiatement

au cas tordu pour fournir des fonctions de Lefschetz (cf. [Clo4] et [BLS]). Un pseudo-coefficient de représentation de Steinberg tordu par θ est, au signe près, une fonction de Lefschetz pour θ . Lorsque le centre de H est F-anisotrope, nous désignerons les fonctions d'Euler-Poincaré ou de Lefschetz sous le vocable commun de fonctions de Kottwitz.

Si le groupe H possède un tore central déployé non trivial les fonctions d'Euler-Poincaré sont nulles. Les pseudo-coefficients de représentation de Steinberg sont, eux, non nuls mais ne sont plus à support compact. Nous devons construire un objet intermédiaire. Soit L' le quotient de L par Z le tore F-déployé maximal du centre de G^+ . On note X le réseau des co-caractères de Z et on pose $\mathfrak{a}_L = X \otimes \mathbb{R}$. On dispose d'une application naturelle

$$\nu: G^+(F) \to \mathfrak{a}_L$$

en identifiant les applications

$$x \longmapsto \log |\chi(x)|$$

où χ est un caractère de $G^+(F)$, à des formes linéaires sur \mathfrak{a}_L :

$$\langle \mu(\chi), \nu(x) \rangle = \log |\chi(x)|$$
.

On observera que l'image de L(F) dans \mathfrak{a}_L est discrète; c'est un réseau \mathfrak{A}_L . La projection $p: L(F) \to L'(F)$ est surjective puisque Z est déployé. On appellera fonction de Kottwitz sur L(F) une fonction de la forme

$$\phi(x) = \alpha_L(x)\phi'(p(x))$$

où ϕ' est une fonction de Kottwitz sur L'(F) et α_L la fonction caractéristique du noyau $L(F)^1$ de la projection ν restreinte à L(F).

Proposition 3.9.1. — Les fonctions de Kottwitz sont fortement cuspidales et stabilisantes.

Démonstration. — La preuve du theorème 2 de [Ko6] s'étend sans difficulté au cas tordu. Donc, si δ est elliptique, et si on utilise pour calculer les intégrales orbitales la valeur absolue de la mesure d'Euler-Poincaré sur $I_{\delta}(F)/Z(F)$, on voit que le produit des intégrales orbitales d'une fonction de Kottwitz ϕ par le signe de Kottwitz est égal à $\alpha_L(\delta)$:

$$e(\delta)\Phi(\delta,\phi) = \alpha_L(\delta)$$

et zéro si δ n'est pas elliptique. Mais, pour un corps local non-archimédien, l'application

$$\mathfrak{D}(I,G;F) \to \mathfrak{E}(I,G;F)$$

est bijective. Il en résulte que, sur un tel corps, une fonction cuspidale est stabilisante si et seulement si le produit de l'intégrale orbitale par le signe de Kottwitz est constant sur les classes de conjugaison stable des éléments semi-simples (pour des mesures de Haar cohérentes sur les centralisateurs). Les fonctions de Kottwitz sont donc stabilisantes. De plus, elles ont des traces nulles dans toutes les représentations unitaires

irréductibles sauf celles qui sont des sous-quotients de la série principale admettant la représentation triviale comme quotient de Langlands, à torsion près par des caractères non-ramifiés. De telles représentations ne sont jamais sous-représentations d'induites unitaires pour un sous-groupe parabolique non trivial; c'est dire que les fonctions de Kottwitz sont fortement cuspidales.

Comme le permet la proposition 3.9.1, nous utiliserons comme fonctions stabilisantes des fonctions de Kottwitz. Ce choix est naturel pour de nombreuses applications, mais des fonctions fabriquées à partir de pseudo-coefficients d'autres représentations peuvent être utilisées.

Pour la comparaison des formules de traces nous aurons de plus besoin de prouver la compatibilité entre transfert et représentations de Steinberg. Soit

$$\xi = \sum \chi$$

la somme des caractères de $\mathbf{H}^0_{ab}(F,H)$ triviaux sur les normes. Posons $f_{\xi}(x) = f(x)\xi(x)$. Si f est de Kottwitz, la fonction f_{ξ} sera appelée fonction de Kottwitz généralisée. Une telle fonction est encore stabilisante et fortement cuspidale.

Proposition 3.9.2. — Soient $\phi \in \mathcal{C}_c^{\infty}(L(F))$ et $f \in \mathcal{C}_c^{\infty}(H(F))$ des fonctions de Kottwitz. Il existe une constante h telle que les fonctions ϕ et h f_{ξ} soient associées.

 $D\acute{e}monstration$. — Soit δ elliptique de norme γ . Observons tout d'abord que

$$\alpha_L(\delta) = \alpha_H(\gamma)$$
.

On rappelle que

$$\mathfrak{D}(I_{\delta}, G; F) = \ker[\mathbf{H}^{1}(F, I_{\delta}) \to \mathbf{H}^{1}(F, G)]$$
.

Comme F est non archimédien $\mathbf{H}^1(F,G)=\mathbf{H}^1_{ab}(F,G).$ On dispose d'un carré commutatif

$$\begin{array}{cccc} \mathbf{H}^1_{ab}(F,I_{\gamma}) & \to & \mathbf{H}^1_{ab}(F,H) \\ \downarrow & & \downarrow \\ \mathbf{H}^1_{ab}(F,I_{\delta}) & \to & \mathbf{H}^1_{ab}(F,G) \; . \end{array}$$

La première flèche verticale est un isomorphisme car I_{γ} est une forme intérieure de I_{δ} . La flèche horizontale

$$\mathbf{H}^1_{ab}(F, I_{\gamma}) \to \mathbf{H}^1_{ab}(F, H)$$

est surjective si γ est elliptique d'après 1.6.5. On pose

$$h^1 = \# \ker(\mathbf{H}^1_{ab}(F, H) \to \mathbf{H}^1_{ab}(F, G))$$
.

On a montré que

$$\#\mathfrak{D}(I_{\delta},G;F)=h^{1}\cdot\#\mathfrak{D}(I_{\gamma},H;F)$$
.

On en déduit que, si δ est de norme γ , on a, par définition des intégrales orbitales stables,

$$\Phi^1(\delta, \phi) = h \Phi^1(\gamma, f_{\varepsilon})$$

avec $h = h^1/h^0$ où h^0 est le nombre de caractères de $\mathbf{H}^0_{ab}(F,H)$ triviaux sur les normes. Il reste à établir que $\Phi^1(\gamma, f_{\xi})$ est nulle si γ n'est pas une norme. Si γ , semi-simple, n'est pas une norme, alors que son image dans $\mathbf{H}^0_{ab}(F,H)$ en est une, γ n'est pas elliptique d'après 2.5.3, et l'intégrale orbitale stable est donc nulle. Enfin, si l'image de γ dans $\mathbf{H}^0_{ab}(F,H)$ n'est pas une norme on a $\xi(\gamma)=0$ et l'intégrale orbitale stable $\Phi^1(\gamma,f_{\xi})$ est nulle car f_{ξ} est identiquement nulle sur la classe de conjugaison stable.

Le lemme 4.8 de [Clo4] est un cas particulier de la proposition ci-dessus.

 $\it Remarque$. — Supposons que le groupe dérivé est simplement connexe et que le centre de $\it H$ est $\it F$ -anisotrope. Dans ce cas

$$\mathbf{H}_{ab}^{i}(F,H) = \mathbf{H}^{i}(F,D_{H}) .$$

Par dualité de Pontryagin on voit que

$$h^0 = \#\widehat{\mathbf{H}}^0(E/F, D_H(E)) .$$

La suite spectrale de Hochschild-Serre fournit une suite exacte en bas degrés

$$0 \to \mathbf{H}^1(E/F, D_H(E)) \to \mathbf{H}^1(F, D_H) \to \mathbf{H}^0(E/F, \mathbf{H}^1(E, D_H))$$

et donc

$$h^1 = \#\mathbf{H}^1(E/F, D_H(E))$$
.

Le nombre h est donc le quotient de Herbrand pour la cohomologie, modifiée de Tate, de E/F à valeurs dans $D_H(E)$.

CHAPITRE 4

STABILISATION DE LA FORMULE DES TRACES ET APPLICATIONS

Dans cette partie F est un corps de nombres, G un F-groupe réductif connexe et θ un F-automorphisme semi-simple d'ordre fini.

4.1. Partie elliptique de la formule des traces

Soit G^+ le F-groupe réductif produit semi-direct de G et du groupe engendré par θ . On note L la composante connexe de $1 \times \theta$. On note X^* le réseau des caractères F-rationnels de G et on pose $\mathfrak{a}_G = \operatorname{Hom}(X^*,\mathbb{R})$. On dispose d'une section naturelle de \mathfrak{a}_G dans le centre de $G(F_\infty)$ nous noterons $A_{G,\infty}$ son image. On note \mathfrak{a}_L l'espace vectoriel des invariants sous θ dans \mathfrak{a}_G . Comme θ induit un automorphisme semi-simple le sous-espace $(1-\theta)\mathfrak{a}_G$ est un supplémentaire de \mathfrak{a}_L .

Soit $f \in \mathcal{C}_c^{\infty}(G(\mathbb{A}_F))$, on lui associe la fonction translatée $\phi \in \mathcal{C}_c^{\infty}(L(\mathbb{A}_F))$ en posant

$$\phi(x \rtimes \theta) = f_L(x \rtimes \theta) = f(x)$$
.

On définit $\phi^0 \in \mathcal{C}_c^{\infty}(A_{L,\infty} \setminus L(\mathbb{A}_F))$ et $\phi^1 \in \mathcal{C}_c^{\infty}(A_{G,\infty} \setminus L(\mathbb{A}_F))$ en posant

$$\phi^0(x) = \int_{A_{L,\infty}} \phi(\zeta x) \ d\zeta$$
 et $\phi^1(x) = \int_{A_{G,\infty}} \phi(z x) \ dz$.

On note $J_Z(\theta)$ la valeur absolue du jacobien du changement de variable

$$z \mapsto z^{-1}\theta(z)$$

de $A_{G,\infty}/A_{L,\infty}$ dans lui-même :

$$J_Z(\theta) = |\det(1 - \theta | \mathfrak{a}_G/\mathfrak{a}_L)|$$

et donc

$$\phi^{1}(x) = J_{Z}(\theta) \int_{A_{G,\infty}/A_{L,\infty}} \phi^{0}(z^{-1}xz) d\dot{z}.$$

On note R la représentation régulière droite de $G(\mathbb{A}_F)$ dans

$$L^2(A_{G,\infty}G(F)\backslash G(\mathbb{A}_F))$$
.

Soit ω un caractère de $G(\mathbb{A}_F)$ trivial sur G(F) et θ un F-automorphisme semi-simple de G. L'opérateur

$$A(\theta,\omega): \varphi \mapsto (\varphi \otimes \omega) \circ \theta^{-1}$$
 pour $\varphi \in L^2(A_{G,\infty}G(F) \setminus G(\mathbb{A}_F))$

est un opérateur unitaire. On notera K le noyau de l'opérateur $R(f)A(\theta,\omega)$: il est donné par la formule suivante

$$K(x,y) = \sum_{\gamma \in G(F)} \omega(y) \, f^1(x^{-1}\gamma \, \theta(y)) = \sum_{\delta \in L(F)} \omega(y) \, \phi^1(x^{-1}\delta \, y) \ .$$

On note $L(F)_e$ l'ensemble des éléments elliptiques dans L(F) et K_e la contribution au noyau de ces éléments :

$$K_e(x,y) = \sum_{\delta \in L(F)_e} \omega(y) \,\phi^1(x^{-1}\delta y) \ .$$

On note T_e^L la distribution définie par l'intégrale sur la diagonale du noyau K_e :

$$T_e^L(\phi) = \int_{G(F)A_{G,\infty}\backslash G(\mathbb{A}_F)} \omega(x) K_e(x,x) d\dot{x} .$$

La distribution T_e^L est la contribution des éléments elliptiques à la formule des traces. Posons

$$a^{L}(\delta) = \iota(\delta)^{-1} \operatorname{vol} \left(I_{\delta}(F) A_{L,\infty} \backslash I_{\delta}(\mathbb{A}_{F}) \right)$$

où I_{δ} est la composante neutre du centralisateur G^{δ} de δ dans G, le nombre $\iota(\delta)$ est l'indice de $I_{\delta}(F)$ dans $G^{\delta}(F)$. Si $I_{\delta}(\mathbb{A}_F)$ est dans le noyau de ω on pose

$$\Phi_{G(\mathbb{A}_F),\omega}(\delta,\phi^0) = \int_{I_{\delta}(\mathbb{A}_F)\backslash G(\mathbb{A}_F)} \omega(x) \ \phi^0(x^{-1}\delta x) \, d\dot{x} \, .$$

L'intégrale définissant T_e^L est absolument convergente et on a

$$T_e^L(\phi) = J_Z(\theta) \sum a^L(\delta) \Phi_{G(\mathbb{A}_F),\omega}(\delta,\phi^0)$$

où la somme porte sur les classes de conjugaison d'éléments elliptiques $\delta \in L(F)$ tels que $I_{\delta}(\mathbb{A}_F)$ soit dans le noyau de ω .

4.2. Pré-stabilisation géométrique

La pré-stabilisation géométrique est la réécriture des termes géométriques de la formule des traces comme combinaison linéaire d'intégrales κ -orbitales. C'est la pre-mière étape de la stabilisation de la formule des traces. Divers cas particuliers sont déjà traités dans la littérature : pour les termes elliptiques réguliers de la formule des traces ordinaire (non tordue) la pré-stabilisation est due à Langlands [Lan2] et a été étendue à tous les éléments elliptiques par Kottwitz dans [Ko5]; pour les éléments fortement réguliers de la formule des traces tordue cela est dû à Kottwitz et Shelstad [KS]. Nous traiterons ici le cas de tous les éléments elliptiques de la formule des traces tordue lorsque les centralisateurs stables sont connexes. Nous nous contenterons de

décrire les manipulations formelles et nous renvoyons aux paragraphes 7 et 8 de [Ko5] pour la preuve des résultats de finitude qui justifient ces manipulations.

Soit $\delta \in L(F)$ elliptique et soit I son centralisateur stable supposé connexe. On munit les groupes G, I etc, de mesures de Tamagawa. Le nombre

$$a^{L}(\delta) = \iota(\delta)^{-1} \text{ vol } (I(F)A_{L,\infty} \setminus I(\mathbb{A}_F))$$

peut encore s'écrire

$$a^L(\delta) = \frac{\tau(I)}{\iota(\delta) \, c(I,L)}$$

où $\tau(I)$ est le nombre de Tamagawa de I et c(I,L) le rapport des mesures de Haar sur $A_{I,\infty}$, héritée de la mesure de Tamagawa sur I, et sur $A_{L,\infty}$:

$$da_I = c(I, L) da_L$$
.

On fixe un caractère ω de $\mathbf{H}^0_{ab}(\mathbb{A}_F/F, G)$. La restriction de $\kappa \in \mathfrak{K}(I, G; F)$ à l'image de $\mathbf{H}^0_{ab}(\mathbb{A}_F/F, G)$ est un caractère de $\mathbf{H}^0_{ab}(\mathbb{A}_F/F, G)$ qui sera noté $\omega(\kappa)$. Posons

$$d(I,G) = \# \operatorname{coker} \left[\mathbf{H}_{ab}^1(\mathbb{A}_F/F,I) \to \mathbf{H}_{ab}^1(\mathbb{A}_F/F,G) \right].$$

Proposition 4.2.1. — Soit $\delta \in L(F)$. Alors

$$\sum_{[x]\in\mathfrak{D}(I,G;F)} \Phi_{G(\mathbb{A}_F),\omega}(\delta_x,\phi) = \frac{\tau(G)}{\tau(I)} \sum_{d(I,G)} \sum_{\omega(\kappa)=\omega} \Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta,\phi) \ .$$

Démonstration. — Le centralisateur stable étant connexe, le groupe $\mathfrak{E}(I,G;\mathbb{A}_F/F)$ et son dual de Pontryagin $\mathfrak{K}(I,G;F)_1$ sont finis. L'inversion de Fourier sur le groupe fini $\mathfrak{E}(I,G;\mathbb{A}_F/F)$ montre que, compte tenu de 1.8.5 et 1.8.6, on a

$$\frac{1}{\#\mathfrak{E}(I,G;\mathbb{A}_F/F)}\sum_{\omega(\kappa)=\omega}\Phi^{\kappa}_{G(\mathbb{A}_F)}(\delta,\phi)=\sum_{[x]\in\mathfrak{D}(I,G;\mathbb{A}_F)}\chi(x)e(\delta_x)\Phi_{G(\mathbb{A}_F),\omega}(\delta_x,\phi)$$

où χ est la fonction caractéristique de l'image de $\mathfrak{D}(I,G;F)$ dans $\mathfrak{D}(I,G;\mathbb{A}_F)$. On observe que, puisque I et G sont connexes

$$\ker^1(F, I) = \ker^1_{ab}(F, I)$$
 et $\ker^1(F, G) = \ker^1_{ab}(F, G)$

d'après 1.6.11. Les fibres de l'application

$$\mathfrak{D}(I,G;F) \to \mathfrak{D}(I,G;\mathbb{A}_F)$$

ont un cardinal constant

$$b(\delta) = \# \ker(\ker^1(F, I) \to \ker^1(F, G)) = \# \ker(\ker^1_{ab}(F, I) \to \ker^1_{ab}(F, G)) ,$$

on en déduit que

$$\sum_{[x]\in\mathfrak{D}(I,G;F)}\Phi_{G(\mathbb{A}_F),\omega}(\delta_x,\phi)=\frac{b(\delta)}{\#\mathfrak{E}(I,G;\mathbb{A}_F/F)}\sum_{\omega(\kappa)=\omega}\Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta,\phi)$$

en utilisant que $e(\delta) = 1$ pour un élément rationnel d'après 1.7.2. L'exactitude de la première suite 1.8.4 montre alors que, compte tenu de 1.7.4,

$$\frac{b(\delta)}{\#\mathfrak{E}(I,G;\mathbb{A}_F/F)} = \frac{\tau(G)}{\tau(I)\ d(I,G)}\ .$$

П

Lemme 4.2.2. — Les nombres $\tau(I)$ et c(I,L) sont constants lorsque δ parcourt une classe de conjugaison stable.

Démonstration. — Le groupe I varie parmi les formes intérieures d'un même groupe. On invoque [Ko6] pour la constance du nombre de Tamagawa par torsion intérieure. La mesure sur $A_{I,\infty}$, qui est central, est également indépendante de la torsion.

On note $\mathcal{C}(\delta)$ l'ensemble des classes de G(F)-conjugaison d'éléments δ' stablement conjugués à δ . On note $T^L_{\delta}(\phi)$ la somme des termes de l'expression géométrique de la formule des traces indexés par des éléments stablement conjugués à δ :

$$T_{\delta}^{L}(\phi) = J_{Z}(\theta) \sum_{\delta' \in \mathcal{C}(\delta)} a^{L}(\delta') \Phi_{G(\mathbb{A}_{F}),\omega}(\delta',\phi^{0}) .$$

Posons

$$j(\delta) = \# \ker(\mathbf{H}^1(F,I) \to \mathbf{H}^1(F,G^\delta)) \qquad \text{et} \qquad \tilde{\iota}(\delta) = \#(\mathbf{H}^0(F,I \backslash G^\delta)) \ .$$

On a

$$\tilde{\iota}(\delta) = \iota(\delta) j(\delta)$$
.

Introduisons enfin

$$a(G,\delta) = \frac{\tau(G) \ J_Z(\theta)}{\tilde{\iota}(\delta) \ d(I,G) \ c(I,L)} \ .$$

Proposition 4.2.3. — La partie elliptique de la formule des traces se récrit

$$T_e^L(\phi) = \sum_{\delta} a(G,\delta) \sum_{\{\kappa \in \mathfrak{K}(I,G;F) \, | \, \omega(\kappa) = \omega\}} \Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta,\phi^0)$$

la somme en δ portant sur un ensemble de représentants des classes de conjugaison stable d'éléments elliptiques rationnels dans L(F).

 $D\acute{e}monstration$. — En remarquant que $\tilde{\iota}(\delta)$ ne dépend que de la classe de conjugaison stable, on a

$$T_{\delta}^{L}(\phi) = \frac{J_{Z}(\theta) \tau(I)}{\tilde{\iota}(\delta) c(I, L)} \sum_{\delta' \in \mathcal{C}(\delta)} j(\delta') \Phi_{G(\mathbb{A}_F), \omega}(\delta', \phi^0)$$

soit encore,

$$T_{\delta}^{L}(\phi) = \frac{J_{Z}(\theta) \tau(I)}{\tilde{\iota}(\delta) c(I, L)} \sum_{[x] \in \mathfrak{D}(I, G; F)} \Phi_{G(\mathbb{A}_{F}), \omega}(\delta_{x}, \phi^{0})$$

et donc, compte tenu de 4.2.1:

$$T_{\delta}^{L}(\phi) = \frac{\tau(G) \ J_{Z}(\theta)}{\tilde{\iota}(\delta) \ d(I,G) \ c(I,L)} \sum_{\omega(\kappa) = \omega} \Phi_{G(\mathbb{A}_{F})}^{\kappa}(\delta,\phi^{0}) \ .$$

On a ainsi montré que la contribution de la classe de conjugaison stable de δ à la formule des traces est, au coefficient $a(G,\delta)$ près, la somme des intégrales κ -orbitales de δ :

$$T_{\delta}^{L}(\phi) = a(G, \delta) \sum_{\omega(\kappa) = \omega} \Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta, \phi^0) .$$

La proposition s'ensuit.

Corollaire 4.2.4. — Supposons que $\omega = 1$ et que

$$\Phi_G^{\kappa}(\delta,\phi^0) = 0$$

pour tout $\kappa \neq 1$. Alors

$$T_e^L(\phi) = \sum_{\delta} a(G, \delta) \ \Phi^1_{G(\mathbb{A}_F)}(\delta, \phi^0)$$

la somme portant sur les classes de conjugaison stable dans L(F).

C'est par exemple le cas lorsque G = L, pour les groupes unitaires considérés par Kottwitz dans [Ko7]. En effet pour de tels groupes on a $\mathfrak{K}(I,G;F)_1 = 1$ pour tout I centralisateur stable d'un δ elliptique dans G(F). Dans une situation plus générale on peut utiliser des fonctions stabilisantes pour obtenir cette pseudo-stabilisation.

4.3. Stabilisation conditionnelle pour le changement de base

Nous supposons dans cette section que nous sommes dans la situation du changement de base.

Définition 4.3.1. — On appelle partie elliptique de la formule des traces stable pour H la distribution

$$ST_e^H(f) = \sum_{\gamma} a(H, \gamma) \ \Phi^1_{H(\mathbb{A}_F)}(\gamma, f^0)$$

la somme portant sur les classes de conjugaison stable d'éléments elliptiques dans H(F).

Indiquons, de manière un peu vague, ce que l'on espère en général pour la stabilisation. On conjecture l'existence de constantes $a(G, \theta, H_{\kappa})$ et de fonctions $f_{\tilde{\kappa}}$ sur des groupes endoscopiques H_{κ} (et dépendant de donnés supplémentaires) de sorte que

$$\Phi_{G(\mathbb{A}_F)}(\gamma,\kappa;\phi) = \Phi^1_{H_{\kappa}(\mathbb{A}_F)}(\gamma,f_{\tilde{\kappa}})$$

et

$$T_e^L(\phi) = \sum a(G, \theta, H_\kappa) \ ST_*^{H_\kappa}(f_{\tilde{\kappa}})$$

où $ST_*^{H_\kappa}$ est une variante de $ST_e^{H_\kappa}$ définie en omettant certaines classes de conjugaison singulières (voir [Ko5] pour le cas $\theta=1$); nous ne préciserons pas non plus l'ensemble de sommation.

Nous avons établi l'existence des fonctions $f = f_1$. Sous des conditions impliquant que les intégrales κ -orbitales s'annulent si $\kappa \neq 1$ nous allons exprimer la partie elliptique de la formule des traces tordue pour (G, θ) au moyen de la partie elliptique de la formule des traces stable pour $H = H_1$.

Proposition 4.3.2. — Si γ est une norme de δ le nombre

$$a(G, \theta, H) = \frac{a(G, \delta)}{a(H, \gamma)} \ell^{-\dim \mathfrak{a}_L} c(H, L)$$

est indépendant de δ et γ :

$$a(G,\theta,H) = \ell^{-\dim \mathfrak{a}_L} \, \frac{\tau(G) \, J_Z(\theta)}{\tau(H) \, d(H,G^*)} = \, \ell^{-\dim \mathfrak{a}_L} \, \frac{J_Z(\theta)}{\# \mathfrak{E}(H,G^*;\mathbb{A}_F/F)} \, .$$

Si le groupe dérivé de G_0 est simplement connexe ce nombre ne dépend que des cocentres :

$$a(G, \theta, H) = a(D_G, \theta, D_H)$$
.

 $Si G_0$ est semi-simple simplement connexe

$$a(G, \theta, H) = 1$$
.

Démonstration. — On rappelle que

$$a(G, \delta) = \frac{\tau(G) \ J_Z(\theta)}{\tilde{\iota}(\delta) \ d(I, G) \ c(I, L)}$$

et on a

$$a(H,\gamma) = \frac{\tau(H)}{\tilde{\iota}(\gamma) d(I^*, H) c(I^*, H)}$$

D'après 1.9.3 on sait que $d(I,G) = d(H,G^*)$ et donc $d(I^*,H) = 1$. D'après 2.4.5, on voit que $\tilde{\iota}(\delta) = \tilde{\iota}(\gamma)$. Il suffit maintenant d'observer que c(I,L) est indépendant des torsions intérieures et que

$$c(I, L) = c(I, H) c(H, L)$$

pour obtenir la formule annoncée. L'expression de $a(G, \theta, H)$ ne fait intervenir que les abélianisés, les deux dernières assertions en résultent.

Proposition 4.3.3. — La partie elliptique de la formule des traces se récrit

$$T_e^L(\phi) = \ell^{\dim \mathfrak{a}_L} \frac{a(G, \theta, H)}{c(H, L)} \sum_{\gamma} a(H, \gamma) \sum_{\{\kappa \in \mathfrak{K}(I^*, G^*; F) \mid \omega(\kappa) = \omega\}} \Phi_{G(\mathbb{A}_F)}(\gamma, \kappa; \phi^0)$$

la somme en γ portant sur un ensemble de représentants des classes de conjugaison stable d'éléments elliptiques rationnels dans H(F) et où I^* est le centralisateur stable de γ dans H.

Démonstration. — D'après 4.2.3

$$T_e^L(\phi) = \sum_{\delta} a(G, \delta) \sum_{\{\kappa \in \mathfrak{K}(I, G; F) \mid \omega(\kappa) = \omega\}} \Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta, \phi^0).$$

On observera tout d'abord que si γ n'est pas la norme d'un $\delta \in L(F)$ la somme

$$\sum_{\{\kappa \in \mathfrak{K}(I^*,G^*;F) \mid \omega(\kappa)=\omega\}} \Phi_{G(\mathbb{A}_F)}(\gamma,\kappa;\phi)$$

est nulle d'après 2.7.3. Par contre, si γ est la norme d'un $\delta \in L(F)$ on a

$$\Phi_{G(\mathbb{A}_F)}^{\kappa}(\delta,\phi) = \Phi_{G(\mathbb{A}_F)}(\gamma,\kappa;\phi)$$

La preuve est maintenant conséquence immédiate de l'injectivité de la norme entre classes de conjugaison stable établie en 2.4.3 et de 4.3.2.

Théorème 4.3.4. — Supposons que $\omega = 1$. Soient f et ϕ deux fonctions lisses et à support compact sur $H(\mathbb{A}_F)$ et $L(\mathbb{A}_F)$ respectivement, produit de fonctions f_v et ϕ_v associées à toutes les places et ϕ_v stabilisantes pour $v \in \mathfrak{V}$, un ensemble de places (G^*, H) -essentiel. On a

$$T_e^L(\phi) = a(G, \theta, H) S T_e^H(f)$$
.

Démonstration. — On rappelle que, pour que l'application de \mathfrak{V} -localisation pour les caractères endoscopiques soit injective, il suffit, d'après 1.9.6, que cet ensemble de places soit (G^*, H) -essentiel. On a supposé que ϕ est stabilisante au dessus de \mathfrak{V} , donc

$$\Phi_{G(\mathbb{A}_F)}(\gamma, \kappa; \phi^0) = 0$$

si $\kappa_{\mathfrak{V}} \neq 1$ et pour cela il suffit que $\kappa \neq 1$ puisque \mathfrak{V} est un ensemble (G^*, H) -essentiel. La proposition 4.3.3 montre alors que

$$T_e^L(\phi) = \ell^{\dim \mathfrak{a}_L} \frac{a(G, \theta, H)}{c(H, L)} \sum_{\gamma} a(H, \gamma) \, \Phi_{G(\mathbb{A}_F)}(\gamma, 1; \phi^0) \,.$$

Si ϕ et f sont associées on a

$$\Phi_{G(\mathbb{A}_F)}(\gamma, 1; \phi) = \Phi^1_{H(\mathbb{A}_F)}(\gamma, f).$$

Soit $z \in A_{L,\infty}$; comme $z\delta$ a pour norme $z^{\ell}\gamma$ on voit que

$$\Phi_{G(\mathbb{A}_F)}(\gamma, 1; \phi^0) = \ell^{-\dim \mathfrak{a}_L} c(H, L) \Phi^1_{H(\mathbb{A}_F)}(\gamma, f^0)$$

et on obtient

$$T_e^L(\phi) = a(G, \theta, H) \sum_{\gamma} a(H, \gamma) \, \Phi^1_{H(\mathbb{A}_F)}(\gamma, f^0) \,.$$

On peut, au moins pour les groupes dont le groupe dérivé est simplement connexe, prendre en compte l'endoscopie liée à l'abélianisé de G en imposant des conditions sur l'ensemble $\mathfrak V$ un peu moins restrictives que celle utilisée ci-dessus, mais on utilisera alors tous les transferts endoscopiques pour le couple (G, H) provenant de caractères de G, suivant la construction donnée en 3.2.3. En effet, si $G_{der} = G_{SC}$ l'application

$$x \mapsto x^{-1}\theta(x)$$

induit un homomorphisme injectif

$$\mathbf{H}_{ab}^{0}(\mathbb{A}_{F}/F, H\backslash G^{*}) \to \mathbf{H}_{ab}^{0}(\mathbb{A}_{F}/F, G^{*})$$

et pour tout $\kappa \in \mathfrak{K}(H, G^*; F)$ on peut choisir un caractère $\tilde{\kappa}$ de $\mathbf{H}^0_{ab}(\mathbb{A}_F/F, G^*)$ qui le prolonge. Ceci permet de définir suivant 3.2.3 des fonctions $f_{\tilde{\kappa}}$ vérifiant

$$\Phi_{G(\mathbb{A}_F)}(\gamma, \kappa; \phi) = \Phi^1_{H(\mathbb{A}_F)}(\gamma, f_{\tilde{\kappa}}).$$

Proposition 4.3.5. — Supposons $\omega = 1$ et $G_{der} = G_{SC}$. Soit \mathfrak{V} un ensemble de places v de F, tel que pour tout $\gamma \in H(F)$ qui est \mathfrak{V} -elliptique, l'image de l'application

$$\mathfrak{E}(I^*, G^*; F_{\mathfrak{V}}) \to \mathfrak{E}(I^*, G^*; \mathbb{A}_F/F)$$

où I^* est le centralisateur stable de γ dans H, contienne l'image de $\mathfrak{E}(I^*, H; \mathbb{A}_F/F)$. Si ϕ est stabilisante au dessus de \mathfrak{V} on a

$$T_e^L(\phi) = \sum_{\kappa \in \mathfrak{K}(H,G^*;F)_1} a(G,\theta,H) \ ST_e^H(f_{\tilde{\kappa}}) \,.$$

Démonstration. — Comme pour le théorème précédent on invoque 4.3.3 et l'annulation des intégrales orbitales pour les κ non triviaux sur l'image de $\mathfrak{E}(I^*, H; \mathbb{A}_F/F)$. On conclut en invoquant 1.9.4.

4.4. Décomposition spectrale et forme simple de la formule des traces

Nous reprenons la discussion du cas général avec G, θ et ω arbitraires. On note R_d la restriction de R au spectre discret de $G(\mathbb{A}_F)$ dans

$$L^2(A_{G,\infty}G(F)\backslash G(\mathbb{A}_F))$$
.

On note $\Pi(G(\mathbb{A}_F))$ (resp. $\Pi_d(G(\mathbb{A}_F))$) l'ensemble des classes d'équivalence de représentations admissibles irréductibles de $G(\mathbb{A}_F)$ (resp. dans le spectre discret). On note $m(\pi^G)$ la multiplicité de la représentation $\pi^G \in \Pi(G(\mathbb{A}_F))$ dans le spectre discret. On a, pour $f \in \mathcal{C}_c^{\infty}(G(\mathbb{A}_F))$,

trace
$$(R_d(f)) = \sum_{\pi^L \in \Pi_d(G(\mathbb{A}_F))} m(\pi^G)$$
 trace $(\pi^G(f))$.

La sommation sur les $t\geq 0$ qui apparait dans les expressions d'Arthur [Ar2] est inutile : c'est un fait désormais connu que le spectre discret est traçable [Mü]. On notera m_{cusp} la multiplicité dans le spectre cuspidal.

On dira qu'une représentation π^G est θ - ω -stable si

$$\pi^G \circ \theta \sim \pi^G \otimes \omega$$
.

L'opérateur

$$A(\theta, \omega, R) : \varphi \mapsto (\varphi \otimes \omega) \circ \theta^{-1}$$
 pour $\varphi \in L^2(A_{G,\infty}G(F) \backslash G(\mathbb{A}_F))$

est un opérateur unitaire qui envoie le composant isotypique de la représentation π^G sur le composant isotypique de la représentation $(\pi^G \circ \theta) \otimes \omega^{-1}$. Si ces représentations sont équivalentes, elles définissent un même composant isotypique dans le spectre discret. On obtient, par restriction à ce sous-espace, un opérateur $A(\theta, \omega, \pi^G)$. Soit $f \in \mathcal{C}_c^{\infty}(G(\mathbb{A}_F))$, la trace de l'opérateur $R_d(f)A(\theta, \omega, R)$ se décompose suivant les composants isotypiques des représentations θ - ω -stables du spectre discret :

$$\operatorname{trace}\ (R_d(f)A(\theta,\omega,R)) = \sum_{\pi^G \in \Pi_d(G(\mathbb{A}_F)) \mid \pi^G \circ \theta \simeq \pi^G \otimes \omega} \operatorname{trace}\ (\pi^G(f)A(\theta,\omega,\pi^G))\ .$$

L'étude de l'opérateur $A(\theta, \omega, \pi^G)$ dans le cas particulier où $\theta=1$ et ω quelconque est traité en détail lorsque G=GL(2) dans [LL]. Mais pour des groupes autres que GL(n), l'endoscopie pour ω quelconque, est encore mal connue : nous ne disposons pas du transfert. Au surplus, la formule des traces elle-même n'est pas connue, les travaux d'Arthur ne couvrent pas ce cas. Nous nous limiterons désormais au cas $\omega=1$.

Proposition 4.4.1. — Supposons le théorème de Paley-Wiener scalaire valable pour le couple (G, θ) . Considérons une fonction $\phi \in \mathcal{C}_c^{\infty}(L(\mathbb{A}_F))$ cuspidale en une place, fortement cuspidale en une autre, alors, si $\omega = 1$

$$T_e^L(\phi) = \operatorname{trace} (R_d(\phi)).$$

Démonstration. — Grâce au résultat de Paley-Wiener scalaire, il nous est loisible d'utiliser la forme invariante de la formule des traces [Ar2]. Soit $\phi = \otimes \phi_v$ telle qu'en une place v la fonction ϕ_v soit fortement cuspidale; alors [Ar2, Corollary 7.3 p. 539] montre que la partie spectrale de la formule des traces invariante se réduit à la contribution du spectre discret :

$$I^{L}(\phi) = \operatorname{trace} (R_{d}(\phi))$$
.

Si de plus $\phi = \otimes \phi_v$ avec ϕ_v cuspidale en deux places distinctes, l'une des deux étant fortement cuspidale, l'expression géométrique de la formule des traces invariante se réduit à la contribution des éléments elliptiques d'après le Théorème 7.1 de [Ar2] :

$$I^L(\phi) = T_e^L(\phi)$$
.

On a noté G^+ le F-groupe réductif produit semi-direct de G et du groupe engendré par θ supposé d'ordre fini. On notera $G(\mathbb{A}_F)^+$ le groupe engendré par $G(\mathbb{A}_F)$ et $G^+(F)$

dans le produit des $G^+(F_v)$:

$$G(\mathbb{A}_F)^+ = G(\mathbb{A}_F)G^+(F)$$
.

On note $\Pi(L(\mathbb{A}_F))$ l'ensemble des représentations admissibles irréductibles de $G(\mathbb{A}_F)^+$ qui restent irréductibles par restriction à $G(\mathbb{A}_F)$. On note $m(\pi^L)$ la multiplicité de la représentation $\pi^L \in \Pi(L(\mathbb{A}_F))$ dans le spectre discret. On a donc pour $\phi \in \mathcal{C}^{\circ}_{c}(L(\mathbb{A}_F))$:

trace
$$(R_d(\phi)) = \sum_{\pi^L \in \Pi(L(\mathbb{A}_F))} m(\pi^L)$$
 trace $(\pi^L(\phi))$.

Soit $\pi^L \in \Pi(L(\mathbb{A}_F))$; on obtient, par restriction à $G(\mathbb{A}_F)$, une représentation π^G de $G(\mathbb{A}_F)$ telle que $\pi^G \circ \theta$ soit équivalente à π^G . Réciproquement, les représentations telles que $\pi^G \circ \theta$ soit équivalente à π^G admettent un prolongement à $G(\mathbb{A}_F)^+$, mais ce prolongement n'est pas unique; les divers prolongements dépendent du choix de l'opérateur d'entrelacement qui définit cette équivalence, et ces choix diffèrent par une racine ℓ -ième de l'unité. Soit π^G une représentation du spectre discret qui se prolonge à $G(\mathbb{A}_F)^+$ et soit π^L_0 un des prolongements de π^G . Les divers prolongements sont obtenus en multipliant $\pi^L_0(\theta)$ par une puissance $r(\pi^L, \pi^L_0)$ d'une racine ℓ -ième de l'unité ζ :

$$\pi^L(\theta) = \zeta^{r(\pi^L, \pi_0^L)} \pi_0^L(\theta) .$$

Soit X une indéterminée, et posons

$$C(\pi^G, \pi_0^L, X) = \sum m(\pi^L) \ X^{r(\pi^L, \pi_0^L)}$$

la somme portant sur les prolongements de π^G intervenant dans le spectre discret. On a donc

$$m(\pi^G) = \sum m(\pi^L) = C(\pi^G, \pi_0^L, 1)$$
.

Le nombre complexe

$$m(\pi^G,\pi_0^L) = C(\pi^G,\pi_0^L,\zeta) \ , \label{eq:mass}$$

est une 'multiplicité relative'. Soit $A(\theta, \pi^G)$ l'opérateur défini par l'action de θ dans le composant isotypique de π^G dans le spectre discret. L'opérateur $A(\theta, \pi^G)$ est la somme, sur les π^L ayant des restrictions à $G(\mathbb{A}_F)$ équivalentes à π^G , des opérateurs $\pi^L(\theta)$; on a donc :

$$A(\theta,\pi^G) = \sum m(\pi^L) \ \pi^L(\theta) = m(\pi^G,\pi_0^L) \ \pi_0^L(\theta) \ . \label{eq:Adef}$$

On a donc

trace
$$(\pi^G(f)\,A(\theta,\pi^G))=m(\pi^G,\pi_0^L)$$
trace $(\pi^G(f)\,\pi_0^L(\theta))$

soit encore

trace
$$(\pi^G(f)\,A(\theta,\pi^G))=m(\pi^G,\pi_0^L)$$
 trace $(\pi_0^L(\phi))$.

On peut récrire la trace dans le spectre discret :

trace
$$(R_d(\phi)) = \sum_{\pi^G \in \Pi(G(\mathbb{A}_F))} m(\pi^G, \pi_0^L) \text{ trace } (\pi_0^L(\phi))$$
.

Proposition 4.4.2. — Dans le cas du changement de base (avec $\omega = 1$) et d'une fonction $\phi \in \mathcal{C}_c^{\infty}(L(\mathbb{A}_F))$ cuspidale en une place et fortement cuspidale en une autre, on a

$$T_e^L(\phi) = \sum_{\pi^G \in \Pi(G(\mathbb{A}_F))} m(\pi^G, \pi_0^L) \operatorname{trace} (\pi_0^L(\phi)).$$

Démonstration. — Grâce au résultat de Delorme [Delo] le théorème de Paley-Wiener scalaire est valable pour le changement de base. C'est alors une conséquence immédiate de 4.4.1.

On dira que la contribution de π^G à la formule des traces pour L est non triviale si $m(\pi^G, \pi_0^L) \neq 0 \ .$

Nous allons donner des critères pour qu'il en soit ainsi.

Lemme 4.4.3. — La contribution de π^G à la formule des traces pour L est non triviale si la multiplicité $m(\pi^G)$ vaut 1. C'est également le cas si cette multiplicité n'est pas divisible par c_ℓ la valeur en 1 du polynôme cyclotomique pour ℓ . Il suffit pour cela que $m(\pi^G)$ soit premier à ℓ si $c_\ell \neq 1$.

Démonstration. — Le polynôme à coefficients entiers $C(\pi^G, \pi_0^L, X)$ s'annule pour $X = \zeta$ si et seulement si il est divisible par le polynôme cyclotomique $C_{\ell}(X)$ et en particulier cette divisibilité implique que

$$m(\pi^G) = \sum m(\pi^L) = C(\pi^G, \pi_0^L, 1)$$

est divisible par $c_{\ell} = C_{\ell}(1)$. On obtient ainsi une condition suffisante de non annulation. Comme c_{ℓ} divise ℓ il suffit, si $c_{\ell} \neq 1$, que $m(\pi^G)$ soit premier à ℓ , pour que $m(\pi^G, \pi_0^L)$ soit non nul.

Remarque. — Il se peut que $c_{\ell} = 1$; c'est le cas pour $\ell = 6$. Par contre si ℓ est premier on a $c_{\ell} = \ell$.

4.5. Identité spectrale pour le changement de base

Nous nous plaçons dans le cadre du changement de base.

Proposition 4.5.1. — Soit $\mathfrak V$ un ensemble fini de places de F. On suppose que $\mathfrak V$ est de cardinal ≥ 2 et contient un sous-ensemble $\mathfrak V_1$ qui est (G^*,H) -essentiel. Soient deux fonctions f et ϕ lisses et à support compact sur $H(\mathbb A_F)$ et $L(\mathbb A_F)$ respectivement, produit de fonctions f_v et ϕ_v associées à toutes les places telles que ϕ_v et ϕ_v sont stabilisantes pour tout $v \in \mathfrak V_1$

- ϕ_v et f_v sont cuspidales pour tout $v \in \mathfrak{V}$
- ϕ_v et f_v sont fortement cuspidales pour un $v \in \mathfrak{V}$.

Sous ces conditions

$$\sum_{\pi^G \in \Pi(G(\mathbb{A}_F))} m(\pi^G, \pi_0^L) \text{ trace } (\pi_0^L(\phi)) = a(G, \theta, H) \sum_{\pi^H \in \Pi(H(\mathbb{A}_F))} m(\pi^H) \text{ trace } (\pi^H(f)).$$

 $D\acute{e}monstration$. — C'est une conséquence immédiate du théorème 4.3.4 et de la proposition 4.4.2.

Nous laisserons au lecteur le soin de formuler des généralisations de ce résultat au moyen de 4.3.5.

Soit S un ensemble fini de places contenant les places archimédiennes, les places ramifiées et les places $v \in \mathfrak{V}$. Soit ψ^S un caractère de l'algèbre de Hecke sphérique en dehors de S. On note $\Pi(H,\psi^S)$ l'ensemble des représentations admissibles irréductibles $\pi^H \in \Pi(H(\mathbb{A}_F))$ dont la composante π_v^H pour v en dehors de S est la représentation attachée au caractère ψ_v : pour toute fonction h dans l'algèbre de Hecke $\mathcal{H}(F_v)$ des fonctions sur $H(F_v)$ bi-invariantes par $K_v^H = H(\mathcal{O}_v)$ on a

trace
$$\pi_v^H(h) = \psi_v(h)$$
.

Le changement de base sur les caractères de Hecke s'obtient par simple composition avec l'homomorphisme de changement de base; on posera $\psi_{E_v} := \psi_v \circ b_{E_v/F_v}$.

Proposition 4.5.2. — Soient deux fonctions f_S et ϕ_S lisses et à support compact sur $H(F_S)$ et $L(F_S)$ respectivement, produit de fonctions associées à toutes les places de S, et satisfaisant les conditions (4.5.1) ci-dessus en des places $v \in S$. Soit Ψ^S un caractère de Hecke en dehors de S pour G. Sous ces hypothèses on a l'identité suivante

$$\sum_{\pi^G \in \Pi(G, \Psi^S))} m(\pi^G, \pi^L_0) \text{ trace } (\pi^L_{0,S}(\phi_S)) =$$

$$a(G, \theta, H) \sum_{\{\psi^S \mid \psi_E^S = \Psi^S\}} \sum_{\pi^H \in \Pi(H, \psi^S)} m(\pi^H) \operatorname{trace} \left(\pi_S^H(f_S)\right).$$

On peut raffiner cette identité en imposant les caractères infinitésimaux pour les représentations π_v^H et π_v^L de $H(F_v)$ et $G(F_v)$ aux places v archimédiennes de façon compatible au changement de base.

Démonstration. — On sait que, sous les hypothèses (4.5.1) on a

$$\sum_{\pi^G \in \Pi(G(\mathbb{A}_F))} m(\pi^G, \pi_0^L) \text{ trace } (\pi_0^L(\phi)) = a(G, \theta, H) \sum m(\pi^H) \text{ trace } (\pi^H(f)) \text{ .}$$

La convergence absolue de ces expressions permet la séparation des caractères infinitésimaux aux places archimédiennes au moyen de multiplicateurs (3.5.4). Aux places $v \notin S$ on utilise des paires de fonctions h_L et $b_{E_v/F_v}(h)$ avec $h \in \mathcal{H}(E_v)$. On peut alors, en variant ces paires de fonctions séparer les caractères de Hecke Ψ^S . \square

Lemme 4.5.3. — Soit π et π' deux représentations automorphes du spectre discret appartenant pour $v \notin S$ au même caractère de Hecke ψ^S . On suppose qu'en une place finie w la représentation π_w est de Steinberg et que π'_w est à cohomologie non triviale (à torsion près par des caractères unitaires). Alors π'_w est de Steinberg (à torsion près par des caractères unitaires).

Démonstration. — Pour un groupe quasi-simple les représentations à cohomologie non triviale sont soit la représentation triviale soit la représentation de Steinberg. Considérons les représentations obtenues par restriction de π_w à l'image du revêtement simplement connexe du groupe dérivé. Les représentations automorphes d'un facteur quasi-simple qui localement en w sont triviales, sont globalement, par approximation forte, triviales. Ceci se lit sur le caractère de Hecke ψ^S ; il en est donc de même pour π' .

Proposition 4.5.4. — Soit π une représentation automorphe du spectre discret. On suppose qu'en une place finie w la représentation π_w est de Steinberg (à torsion près par des caractères unitaires). Alors π est cuspidale.

Démonstration. — D'après Langlands, le spectre discret non cuspidal est obtenu par résidu de séries d'Eisenstein. Ce sont des représentations qui en chaque place sont non tempérées, or la représentation de Steinberg est tempérée.

4.6. Changement de base automorphe

L'identité de changement de base 4.3.4 et sa contrepartie spectrale 4.5.2 ainsi que ses généralisations reposant sur 4.3.5, se prêtent à l'étude de diverses situations (voir par exemple [CL]). Nous n'aborderons ici que le cas particulier suivant :

Hypothèse. — On fixe un ensemble \mathfrak{V} fini, de places non archimédiennes de F, qui contient au moins deux places et on suppose que \mathfrak{V} est (G^*, H) -essentiel.

Rappelons que d'après 1.9.6 cette hypothèse est toujours vérifiée si $\theta = 1$ ou si G_0 est semi-simple et simplement connexe. On se limitera de plus aux représentations qui sont de Steinberg, à torsion près par des caractères, en ces places.

On dit qu'une représentation $\pi^L \in \Pi(L(\mathbb{A}_F))$ est un changement de base (ou un relèvement) faible de $\pi^H \in \Pi(H(\mathbb{A}_F))$ si pour pour presque toute place v non ramifiée on a

trace
$$\pi_v^L(h) = \text{trace } \pi_v^H(b_{E_v/F_v}(h))$$
.

Nous allons d'abord donner un théorème de transfert de G vers le groupe endoscopique H.

Théorème 4.6.1. — Soit $\pi^G \in \Pi(G(\mathbb{A}_F))$ une représentation automorphe du spectre discret, telle que pour $v \in \mathfrak{V}$ la représentation π_v^G est de Steinberg. Supposons que π^G contribue non trivialement à la formule des traces pour L, c'est-à-dire que :

$$m(\pi^G, \pi_0^L) \neq 0$$
.

Alors, il existe une représentation $\pi^H \in \Pi(H(\mathbb{A}_F))$ automorphe du spectre discret telle que :

- (a) π^{L} est un relèvement (ou changement de base) faible de π^{H} ;
- (b) π_v^H est à cohomologie non triviale pour $v \in \mathfrak{V}$, à torsion près par des caractères triviaux sur l'image des normes
- (c) en chaque place v le caractère de π_v^H ne s'annule pas identiquement sur les normes des éléments de $L(F_v)$.

 $D\acute{e}monstration$. — Pour S assez grand, soit Ψ^S le caractère de Hecke défini par π^L en dehors de S. Il suffit de prouver que le premier membre de l'identité 4.5.2 n'est pas identiquement nul. Par séparation des caractères infinitésimaux aux places archimédiennes au moyen de multiplicateurs (3.5.4), on dispose, si on se limite à des fonctions bi-invariantes sous des sous-groupes ouverts compacts fixes, d'une égalité entre sommes finies de représentations. Aux places $v \in \mathfrak{V}$ on choisit comme fonctions sur $G(F_n)$ des fonctions de Kottwitz et des fonctions de Kottwitz généralisées sur $H(F_v)$, associées. Seules les représentations de Steinberg ou triviales à torsion près par des caractères, de $G(F_v)$ et $H(F_v)$, peuvent contribuer en ces places, et on a supposé π_v^L de Steinberg. D'après 4.5.3 seules peuvent contribuer en cette place les représentations de Steinberg à torsion près par des caractères χ . La contribution en ces places, des autres représentations est donc égale à la contribution de π_v^G ou nulle. Aux places dans $S-\mathfrak{V}$ les fonctions ϕ_v sont arbitraires parmi les fonctions lisses K_{∞} finies et à support compact sur $L(F_v)$ et bi-invariantes sous les sous-groupes ouverts compacts choisis. On achève en invoquant 3.3.3 (i).

Donnons maintenant un théorème de relèvement.

Théorème 4.6.2. — Supposons G_0 quasi-déployé (i.e. $G_0 = H$). Soit π^H une représentation automorphe cuspidale de $H(\mathbb{A}_F)$ telle qu'aux places $v \in \mathfrak{V}$ la représentation π_v^H est de Steinberg. Alors, il existe une représentation $\pi^G \in \Pi(G)$ automorphe cuspidale qui soit un relèvement (ou changement de base) faible de π^H . De plus on peut supposer que

- (α) Aux places archimédiennes, le caractères infinitésimal de π_v^G correspond par changement de base à celui de π_v^H .
- (β) Soit v une place où $H(F_v)$ est quasi-déployé muni d'un sous-groupe compact K_v^H très spécial, π_v^H est K_v^H -sphérique, $G(F_v)$ est non-ramifié et muni d'un sous-groupe compact K_v^G hyperspécial. Alors π_v^G est la représentation K_v^G -sphérique qui correspond à π_v^H par changement de base.

- (γ) En toute place v où π_v^H est une représentation à cohomologie non triviale la représentation π_v^G est à cohomologie non triviale.
- (δ) En toute place complètement décomposée dans E on a $\pi_v^G = \pi_v^H \otimes \cdots \otimes \pi_v^H$.

Démonstration. — Nous commencerons par montrer l'existence de π^G dans le cas particulier où G_0 est quasi-simple et simplement connexe. Pour S assez grand, soit ψ^S le caractère de Hecke défini par π^H en dehors de S et soit $\Psi^S = \psi_E^S$. Compte tenu de la proposition 4.5.2 ci-dessus, il suffit, pour établir l'existence de π^G , de prouver que le second membre de l'identité 4.5.2 n'est pas identiquement nul. Comme ci-dessus dans la preuve de 4.6.1 on utilise pour $v \in \mathfrak{V}$ des fonctions de Kottwitz (généralisées pour H). Compte tenu de 3.2.2 et de 4.3.2 on a

$$\langle 1, f \rangle = \langle 1, \phi \rangle$$

et

$$a(G, \theta, H) = 1$$
.

L'identité 4.5.2 peut donc se raffiner en une identité pour l'orthogonal de la représentation triviale pour G et pour H. On peut donc supposer que Ψ^S n'est pas le caractère de Hecke de la représentation triviale ce qui est a fortiori le cas pour tout ψ_1^S avec Ψ^S pour changement de base. Donc les π^H qui peuvent contribuer sont, d'après 4.5.3 et 4.5.4, cuspidales et de Steinberg pour $v \in \mathfrak{V}$. Ceci permet de mettre la contribution de ces places en facteur. Pour les places dans $S-\mathfrak{V}$ on invoque 3.3.3 (ii). On a ainsi établi l'existence d'un relèvement faible π^G lorsque G_0 est quasi-simple et simplement connexe. Passons au cas général; nous allons tout d'abord établir que l'identité 4.5.2 peut se raffiner en une identité sur les spectre cuspidaux; pour cela on remarque que la restriction de π^H à l'image du revêtement simplement connexe de son groupe dérivé est une somme de produits tensoriels de représentations irréductibles, sur chaque facteur quasi-simple, qui ne sont pas la représentation triviale. Par changement de base le caractère de Hecke Ψ^S obtenu n'est pas non plus, sur chaque facteur quasi-simple, celui de la représentation triviale, compte tenu du cas particulier déjà établi. Soit π_1^H une représentation qui pour $v \in \mathfrak{V}$ a une trace non nulle sur une fonction de Kottwitz généralisée, et qui correspond à un caractère de Hecke ψ_1^S ayant même changement de base Ψ^S que le caractère de Hecke ψ^S de π^H . Une telle représentation π_1^H est donc nécessairement de Steinberg, à torsion près par un caractère unitaire, pour $v\in\mathfrak{V}$ d'après 4.5.3 et est donc cuspidale d'après 4.5.4. Nous pouvons maintenant supposer les représentations cuspidales, et on procède comme dans le cas particulier déjà traité pour établir l'existence du relèvement faible π^G . Établissons les autres assertions. On a déjà utilisé la possibilité de séparer les caractères infinitésimaux aux places archimédiennes; le reste de l'assertion (α) résulte de 3.5.4. L'assertion (β) résulte de 3.6.4. L'assertion (γ) résulte, pour les places finies, de la possibilité d'utiliser les fonctions de Kottwitz (3.9.2) et de 3.5.4 pour les places archimédiennes. L'assertion (δ) résulte de 3.4.1. **Remarque**. — En combinant les deux théorèmes précédents on obtient un théorème de relèvement de G_0 à G^* en faisant tout d'abord un transfert à $H = G_0^*$ puis un relèvement de H à G^* .

4.7. Existence de cohomologie cuspidale

Le théorème 4.6.2 va nous permettre de généraliser le théorème 11.3 de [BLS] comme annoncé dans [BLS, 11.4]. Nous reprenons les définitions et pour l'essentiel les notations de cet article. Soit G un groupe semi-simple connexe, simplement connexe, déployé. Soit F un corps totalement réel et soit

$$F = F_0 \subset F_1 \subset \cdots \subset F_n = E$$

une tour d'extension de corps avec F_{p+1}/F_p cyclique. On appelle cohomologie cuspidale, au dessus de S, pour G sur E, l'espace vectoriel gradué

$$\mathbf{H}_{cusp}^*(G_E, S) = \mathbf{H}_d^*(G(E_S); \mathbf{L}_{cusp}^2(G(E) \backslash G(\mathbb{A}_E))^{\infty})$$

où \mathbf{H}_d^* est la cohomologie différentiable.

Théorème 4.7.1. — Soit S un ensemble fini de places de E contenant toutes les places archimédiennes. La cohomologie cuspidale au dessus de S pour G sur E est non triviale.

Démonstration. — Pour tout ensemble fini S_1 de places de F, contenant les places archimédiennes, la non trivialité de la cohomologie cuspidale pour G sur F est connue grâce au corollaire 10.7 de [BLS]. On suppose que S_1 contient au moins deux places finies de sorte que les représentations cuspidales pour G_F à cohomologie au dessus de S_1 sont nécessairement de Steinberg en deux places. On suppose de plus que toute place $w \in S$ divise une place $v \in S_1$. On passe de F à E par une succession de changements de base cycliques, et il suffit d'invoquer 4.6.2.

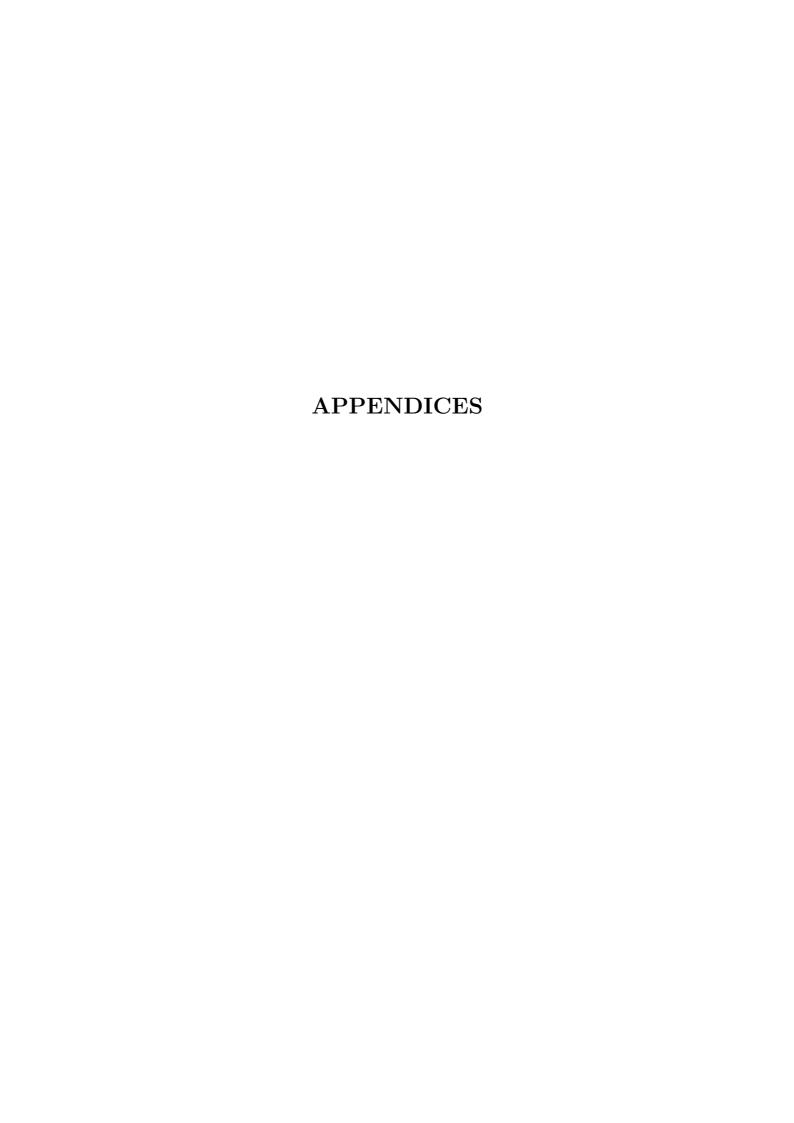
BIBLIOGRAPHIE

- [Ar1] J. Arthur, The local behaviour of weighted orbital integrals, Duke Math. J. **56** (1988), p. 223-293.
- [Ar2] J. Arthur, *The invariant trace formula II*, J. Am. Math. Soc. **1** (1988), p. 501-554.
- [Ar3] J. Arthur, On Local Character Relations, Selecta Mathematica, New Series 2 (1996), p. 501-579.
- [AC] J. ARTHUR, L. CLOZEL, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies **120** Princeton Univ. Press (1989).
- [BLS] A. BOREL, J.-P. LABESSE, J. SCHWERMER, On the cuspidal cohomology of S-arithmetic subgroups of reductive groups over number fields, Compositio Math. 102 (1996), p. 1-40.
- [BW] A. BOREL, N. WALLACH, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Math. Studies **94** Princeton Univ. Press (1980).
- [Bo1] M. V. Borovoi, The Algebraic Fundamental Group and Abelian Galois Cohomology of Reductive Algebraic Groups, Max-Planck-Institut f\u00fcr Mathematik Bonn. Preprint 89-90 (1989).
- [Bo2] M. V. Borovoi, Non-abelian hypercohomology of a group with coefficients in a crossed module and Galois cohomology, Max-Planck-Institut für Mathematik Bonn. Preprint (March 1992).
- [Bo3] M. V. Borovoi, Abelian Galois cohomology of Reductive groups, Mem. Amer. Math. Soc. 132 (1998), No. 626.
- [Br1] L. Breen, Théorie de Schreier Supérieure, Ann. Sci. E.N.S., 4^e série **25** (1992), p. 465-514.
- [Br2] L. Breen, Ensembles croisés et algèbre simpliciale, ce volume (1999), p. 135-161.

- [Cas1] W. Casselman, Characters and Jacquet Modules, Math. Annalen 230 (1977), p. 101-105.
- [Cas2] W. Casselman, The unramified principal series of p-adic groups I. The spherical function, Compositio Math. 40 (1980), p. 387-406.
- [Ch] V.I. Chernousov, The Hasse principle for groups of type E₈, Soviet Math. Doklady **39** (1989), No. 3 p. 592-596.
- [Clo1] L. CLOZEL, Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sci. E.N.S. 4^e série **15** (1982), p. 45-115.
- [Clo2] L. Clozel, The fundamental lemma for stable base change, Duke Math. J. 61 (1990), p. 255-302.
- [Clo3] L. Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n), Publ. Math. IHES **73** (1991), p. 97-145.
- [Clo4] L. CLOZEL, On the cohomology of Kottwitz's arithmetic varieties, Duke Math. J. **72** (1993), p. 757-795.
- [CD1] L. CLOZEL, P. DELORME, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs I, Invent. Math. 77 (1984), p. 427-453.
- [CD2] L. CLOZEL, P. DELORME, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs II, Ann. Sci. E.N.S. 4^e série 23 (1990), p. 193-228.
- [CL] L. CLOZEL, J.-P. LABESSE, Changement de base pour les représentations cohomologiques de certains groupes unitaires, ce volume (1999), p. 119-133.
- [Co] D. CONDUCHÉ, Modules croisés généralisés de longueur 2, J. Pure and Appl. Algebra 34 (1984), p. 155-178.
- [D] P. DELIGNE, Variétés de Shimura: Interprétation modulaire et techniques de construction de modèles canoniques, in Automorphic forms, representations and L-funtions, Proc. of Symposia in Pure Math. 33 Amer. Math. Soc. (1979) Part 2, p. 247-290.
- [Delo] P. Delorme, Théorème de Paley-Wiener invariant tordu pour le changement de base \mathbb{C}/\mathbb{R} , Compositio. Math. 80 (1991), p. 197-228.
- [DKV] P. Deligne, D. Kazdan, M.-F. Vigneras, Représentations des algèbres centrales simples p-adiques, in Représentations des groupes réductifs sur un corps local, Hermann (1984), p. 33-117.
- [E] T. Enright, Relative Lie algebra cohomology and unitary representations of complex Lie groups, Duke Math. J. 46 (1979), p. 513-525.
- [Har1] G. HARDER, Über die Galoiskohomologie halbeinfacher Matrizengruppen I, Math. Zeit. **90** (1965), p. 404-428.

- [Har2] G. HARDER, Über die Galoiskohomologie halbeinfacher Matrizengruppen II, Math. Zeit. **92** (1966), p. 396-415.
- [J] J.F. JOHNSON, Stable base change \mathbb{C}/\mathbb{R} of certain derived functor modules, Math. Annalen **287** (1990), p. 467-493.
- [JL] H. JACQUET, R.P. LANGLANDS, Automorphic forms on GL(2), Lecture Notes in Math. **114** Springer Verlag (1970).
- [Kne1] M. Kneser, Galoiskohomologie halbeinfacher algebraischer Gruppen über padischen Körpern I, Math. Zeit. 88 (1965), p. 40-47.
- [Kne2] M. Kneser, Galoiskohomologie halbeinfacher algebraischer Gruppen über padischen Körpern II, Math. Zeit. 89 (1965), p. 250-272.
- [Kne3] M. KNESER, Hasse Principle for H¹ of Simply Connected Groups, in Algebraic Groups and Discontinuous Subgroups, Proc. Sympos in Pure math. 9 Amer. Math. Soc. (1966), p. 159-163.
- [Ko1] R. KOTTWITZ, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), p. 785-806.
- [Ko2] R. KOTTWITZ, Sign changes in harmonic analysis on reductive groups, Trans. Amer. Math. Soc. **278** (1983), p. 289-297.
- [Ko3] R. KOTTWITZ, Base change for units of Hecke algebras, Compositio Math. **60** (1986), p. 237-250.
- [Ko4] R. KOTTWITZ, Stable Trace Formula: Cuspidal Tempered Terms, Duke Math. J. 51 (1984), p. 611-650.
- [Ko5] R. KOTTWITZ, Stable Trace Formula: Elliptic Singular Terms, Math. Ann. **275** (1986), p. 365-399.
- [Ko6] R. KOTTWITZ, *Tamagawa numbers*, Annals of Math. **127** (1988), p. 629-646.
- [Ko7] R. KOTTWITZ, On the λ -adic representations associated to some simple Shimura varieties, Invent. Math. **108** (1992), p. 653-665.
- [KS] R. KOTTWITZ, D. SHELSTAD, Foundations of Twisted Endoscopy, Astérisque **255** Société Mathématique de France (1999).
- [Lab1] J.-P. Labesse, Le lemme fondamental pour le changement de base stable, Duke Math. J. 61 (1990), p. 519-530.
- [Lab2] J.-P. LABESSE, Pseudo-coefficients très cuspidaux et K-théorie, Math. Ann. 291 (1991), p. 607-616.
- [Lab3] J.-P. Labesse, *Noninvariant base change identities*, Mémoires de la SMF **61** (1995).

- [LL] J.-P. LABESSE, R.P. LANGLANDS, *L-indistinguishability for SL*₂, Can. J. Math. **31** (1979), p. 726-785.
- [Lan1] R.P. LANGLANDS, Base Change for GL(2), Annals of Math. Studies **96** Princeton Univ. Press (1980).
- [Lan2] R.P. LANGLANDS, Les débuts d'une formule des traces stable, Publ. Math. Univ. Paris VII 13 (1983).
- [Mi1] J.S. MILNE, Arithmetic Duality Theorems, Perspective in Math. 1 Academic Press (1986).
- [Mi2] J.S. MILNE, Points on a Shimura Variety, in The Zeta function of Picard Modular Surfaces, Les publications CRM, Montréal (1992), p. 151-253.
- [Mü] W. MÜLLER, The trace class conjecture in the theory of automorphic forms, Annals of Math. **130** (1989), p. 473-529.
- [Ny] L. NYSSEN, Hypercohomologie des complexes de tores et paramétrisation de Langlands, J. of Algebra 172 (1995), p. 354-378.
- [Ono] T. Ono, On Tamagawa Numbers, in Algebraic Groups and Discontinuous Subgroups, Proc. Sympos in Pure math. 9 Amer. Math. Soc. (1966), p. 122-132.
- [Rog] J. ROGAWSKI, Automorphic Representations of Unitary Groups in Three Variables, Annals of Math. Studies 123 Princeton Univ. Press (1990).
- [Sa] S. Salamanca Riba, On the unitary dual of some classical Lie groups, Compositio Math. **68** (1988), p. 251-303.
- [She1] D. Shelstad, Characters and inner forms of a quasi-split group over \mathbb{R} , Compositio Math. **39** (1979), p. 11-45.
- [She2] D. Shelstad, Base change and a matching theorem for real groups, Non Commutative Harmonic Analysis and Lie Groups, Springer Lect. Notes 880 (1981), p. 425-482.
- [She3] D. Shelstad, *L-Indistinguishability for Real Groups*, Math. Annalen **259** (1982), p. 385-430.
- [Spr] T.A. Springer, Non Abelian H² in Galois Cohomology, in Algebraic Groups and Discontinuous Subgroups, Proc. Sympos in Pure math. 9 Amer. Math. Soc. (1966), p. 164-182.
- [VZ] D. VOGAN, G. ZUCKERMAN, Unitary representations with non zero cohomology, Compositio Math. 53 (1984), p. 51-90.
- [Walds] J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math. **105** (1997), p. 153-236.



APPENDICE A

CHANGEMENT DE BASE POUR LES REPRÉSENTATIONS COHOMOLOGIQUES DE CERTAINS GROUPES UNITAIRES

L. Clozel et J.-P. Labesse

Présentation

Le but de cette note est de démontrer un théorème utilisé, mais non prouvé, dans [Clo4] ⁽¹⁾. Nous serons aussi amenés à préciser et à prouver des énoncés dont la preuve est incomplète dans [Clo3]. On prendra garde que les notations utilisées ici ne sont pas nécessairement celles de l'article principal de ce volume. La bibliographie utilise les mêmes conventions que celle de l'article principal.

Nous allons prouver, pour certains groupes unitaires, un théorème qui affirme l'existence de relèvement par changement de base de représentations à cohomologie. Contrairement au cas traité dans l'article principal de ce volume [Lab4], le théorème de relèvement s'applique ici à des groupes non quasi-déployés. Mais les arguments sont similaires et utilisent diverses techniques développées dans l'article principal : stabilisation de tous les termes elliptiques de la formule des traces et transfert des intégrales orbitales de fonctions à support compact arbitraire. La preuve de l'existence du changement de base suppose un résultat de non nullité aux places archimédiennes; cette non annulation est prouvée ici en observant que les représentations qui nous intéressent interviennent dans la cohomologie de certaines variétés de Shimura en des degrés de même parité; ceci se déduit de résultats dus à Kottwitz [Ko7].

A.1. Fonctions de Lefschetz et d'Euler-Poincaré archimédiennes

Soit I un groupe réductif connexe défini sur \mathbb{R} . On dispose sur $I(\mathbb{R})$ de fonctions d'Euler-Poincaré (cf. [CD2] ou [Lab2]). Soit

 $\mathfrak{i} = \operatorname{Lie} I(\mathbb{R})$

⁽¹⁾cf. l'abusive footnote (7), p.778 de [Clo4]

son algèbre de Lie et soit $K_{I,\infty}$ un sous groupe compact maximal; une fonction d'Euler-Poincaré est une fonction f_{ep}^I lisse et à support compact telle que

$$\operatorname{tr} \pi(f_{ep}^{I}) = \operatorname{ep}(\mathfrak{i}, K_{I,\infty}; \pi) := \sum (-1)^{i} \dim \mathbf{H}^{i}(\mathfrak{i}, K_{I,\infty}; \pi)$$

pour toute représentation admissible π de $I(\mathbb{R})$. La fonction f_{ep}^I dépend, entre autre, du choix d'une mesure de Haar di; mais la mesure produit de cette mesure de Haar par la valeur en 1 de cette fonction est une mesure invariante indépendante des choix : c'est la mesure d'Euler-Poincaré de $I(\mathbb{R})$:

$$di_{ep} = f_{ep}^I(1) di$$
.

Cette mesure est nulle si $I(\mathbb{R})$ n'admet pas de séries discrètes.

Supposons que $I(\mathbb{R})$ admette des séries discrètes. On dispose alors sur $I(\mathbb{R})$ d'une mesure de Haar canonique : celle pour laquelle la dimension formelle $d(\pi)$ vaut 1 pour les représentations des séries discrètes dont le caractère infinitésimal est celui de la représentation triviale. Nous ferons ce choix désormais. Avec un tel choix

$$f_{ep}^{I}(1) = e(I(\mathbb{R})) d(I(\mathbb{R}))$$

οù

$$e(I(\mathbb{R})) = (-1)^{q(I)}$$

est le signe de Kottwitz et

$$d(I(\mathbb{R})) = \#\mathfrak{D}(T, I; \mathbb{R}) = \#\ker[\mathbf{H}^1(\mathbb{R}, T) \to \mathbf{H}^1(\mathbb{R}, I)]$$

où T est un tore maximal \mathbb{R} -anisotrope. Nous disposons d'une autre expression pour ce nombre : c'est le nombre de représentations dans un L-paquet de séries discrètes. Si on note $W_{\mathbb{C}}(T,I)$ le groupe de Weyl 'complexe' et $W_{\mathbb{R}}(T,I)$ le groupe de Weyl réel, on a

$$d(I(\mathbb{R})) = \frac{\#W_{\mathbb{C}}(T, I)}{\#W_{\mathbb{R}}(T, I)}.$$

Soit G un groupe réductif connexe défini sur \mathbb{R} et soit θ un automorphisme d'ordre fini. D'après [Lab2] (voir aussi [Clo3, section 3.2]), il existe des fonctions de Lefschetz $\phi_{en}^{G,\theta}$ pour θ sur $G(\mathbb{R})$. Si

$$\mathfrak{g} = \operatorname{Lie} G(\mathbb{R})$$

et si K_{∞} est un sous-groupe compact maximal θ -stable, une telle fonction vérifie, pour toute représentation θ -stable admissible Π de $G(\mathbb{R})$, munie d'un opérateur d'entrelacement I_{θ} :

$$\operatorname{trace}(\Pi(\phi_{ep}^{G,\theta})I_{\theta}) = \operatorname{ep}(\theta;\mathfrak{g},K_{\infty};\Pi) := \sum (-1)^{i} \operatorname{trace} \left(\theta \,|\, \mathbf{H}^{i}(\mathfrak{g},K_{\infty};\Pi)\right).$$

Soit T un tore de G tel que $T(\mathbb{R})$ soit un tore maximal (au sens des groupes de Lie compacts) dans K_{∞} . On pose

$$d(G(\mathbb{R})) = \#\mathfrak{D}(T, G; \mathbb{R}) = \# \ker[\mathbf{H}^1(\mathbb{R}, T) \to \mathbf{H}^1(\mathbb{R}, G)].$$

Nous supposerons que les θ -centralisateurs stables sont connexes.

Théorème A.1.1. — Soit $\phi_{ep}^{G,\theta}$ une fonction de Lefschetz sur $G(\mathbb{R})$. Si δ est θ -semi-simple, de θ -centralisateur stable I, on a

$$\Phi_{\theta,G(\mathbb{R})}(\delta,\phi_{ep}^{G,\theta})=f_{ep}^{I}(1)$$
.

En particulier

$$\Phi_{\theta,G(\mathbb{R})}(\delta,\phi_{ep}^{G,\theta})=0$$

si $I(\mathbb{R})$ n'admet pas de séries discrètes. Les intégrales orbitales stables, des éléments dont le θ -centralisateur stable admet des séries discrètes, ne dépendent que de G:

$$\Phi^1_{\theta,G(\mathbb{R})}(\delta,\phi^{G,\theta}_{ep}) = d(G(\mathbb{R})).$$

Si de plus

$$\mathbf{H}^1(\mathbb{R}, G_{SC}) = 1,$$

la fonction $\phi_{ep}^{G,\theta}$ est stabilisante (cf. [Lab4, 3.8.2]).

Démonstration. — Les fonctions de Lefschetz peuvent être définies au moyen de régularisées, via des multiplicateurs d'Arthur, d'une mesure μ portée par un sous-groupe compact maximal K_{∞} supposé θ -stable [Lab2]. La valeur des intégrales orbitales est indépendante du choix du multiplicateur. On observe tout d'abord que les fonctions de Lefschetz sont cuspidales : une orbite par θ -conjugaison d'élément θ -semi-simple, dont le θ -centralisateur stable n'admet pas de séries discrètes, est un fermé qui ne rencontre pas K_{∞} . Dans le cas d'éléments dont le θ -centralisateur stable est un tore \mathbb{R} -anisotrope, l'intersection entre l'orbite par θ -conjugaison et le compact maximal est non triviale, mais les fronts d'onde des deux distributions sont transverses et on peut calculer l'intégrale orbitale tordue de la mesure. La mesure μ est le produit de la mesure de Haar normalisée sur K_{∞} par la trace de la représentation virtuelle de K_{∞} , tordue par θ , définie par la somme alternée des puissances extérieures du supplémentaire $\mathfrak p$ de l'algèbre de Lie $\mathfrak k$ de K_{∞} dans $\mathfrak g$ (proposition 12 de [Lab2]). Il résulte de la proposition 1 de [Lab2] que cette trace peut se calculer au moyen d'un déterminant de Weyl :

$$d\mu(k) = \sum (-1)^i \text{ trace } \left(k \rtimes \theta \,|\, \wedge^i \, \mathfrak{p} \right) \, dk = \det(1 - k \rtimes \theta \,|\, \mathfrak{g}/\mathfrak{k}) \, dk \,.$$

On observe que le changement de variable

$$(x,k)\mapsto x^{-1}\,k\,\theta(x)\,,$$

admet comme jacobien ce déterminant et que les conjugués tordus sous le groupe qui appartiennent à K_{∞} sont des conjugués tordus sous K_{∞} . Il en résulte que les intégrales orbitales tordues des éléments dont le θ -centralisateur stable est un tore \mathbb{R} -anisotrope, valent 1, les tores compacts étant munis de la mesure de Haar normalisée :

$$\Phi_{\theta,G(\mathbb{R})}(\delta,\phi_{ep}^{G,\theta}) = \int_{T\backslash G(\mathbb{R})} d\dot{\mu}(x^{-1}\,\delta\,\theta(x)) = \int_{T\backslash K_{\infty}} d\dot{k} = \text{vol } (T\backslash K_{\infty}) = 1.$$

On dispose bien entendu de résultats analogues dans le cas non tordu pour les fonctions d'Euler-Poincaré sur un groupe $I(\mathbb{R})$. Dans le cas général, où δ est θ -semi-simple, de centralisateur tordu stable I, on veut montrer que

$$\Phi_{\theta,G(\mathbb{R})}(\delta,\phi_{ep}^{G,\theta})=f_{ep}^{I}(1)$$
.

Par descente au centralisateur, il suffit d'observer qu'au voisinage de δ sur $G(\mathbb{R})$ et au voisinage de 1 sur $I(\mathbb{R})$ une fonction de Lefschetz sur $G(\mathbb{R})$ et une fonction d'Euler-Poincaré sur $I(\mathbb{R})$ ont les mêmes intégrales orbitales pour les éléments θ -semi-simples réguliers; en effet on vient de voir que

$$\Phi_{\theta,G(\mathbb{R})}(\delta t, \phi_{ep}^{G,\theta}) = \Phi_{I(\mathbb{R})}(t, f_{ep}^{I})$$

pour $t \in I(\mathbb{R})$ semi-simple régulier voisin de 1. On a ainsi prouvé la première assertion. Par définition, si I est le θ -centralisateur stable de $\delta \in G(\mathbb{R})$ et I_x celui de δ_x on a

$$\Phi_{\theta,G(\mathbb{R})}^{\kappa}(\delta,\phi_{ep}^{G,\theta}) = \sum_{[x]\in\mathfrak{D}(I,G\,;\,\mathbb{R})} \langle \kappa,\dot{x}\rangle\,e(I_x(\mathbb{R}))\,\Phi_{\theta,G(\mathbb{R})}(\delta_x,\phi_{ep}^{G,\theta})$$

et donc, si le θ -centralisateur stable de δ admet des séries discrètes

$$\Phi_{\theta,G(\mathbb{R})}^{\kappa}(\delta,\phi_{ep}^{G,\theta}) = \sum_{[x] \in \mathfrak{D}(I,G\,;\,\mathbb{R})} \langle \kappa,\dot{x} \rangle d(I_x(\mathbb{R}))\,.$$

Par définition, $d(I_x(\mathbb{R}))$ est le nombre d'éléments dans

$$\mathfrak{D}(T_x, I_x; \mathbb{R}) = \ker[\mathbf{H}^1(\mathbb{R}, T_x) \to \mathbf{H}^1(\mathbb{R}, I_x)]$$

où T_x est un tore maximal \mathbb{R} -anisotrope dans I_x . On dispose de bijections naturelles

$$\mathbf{H}^1(\mathbb{R},I) \to \mathbf{H}^1(\mathbb{R},I_x)$$

mais on prendra garde que ces bijections ne respectent pas les points base. De fait, si on note φ l'application de $\mathbf{H}^1(\mathbb{R}, T)$ dans $\mathbf{H}^1(\mathbb{R}, I)$, on a naturellement une bijection

$$\varphi^{-1}([x]) \to \mathfrak{D}(T_x, I_x; \mathbb{R})$$

où $\varphi^{-1}([x])$ est l'image réciproque, dans $\mathbf{H}^1(\mathbb{R},T)$, de $[x]\in\mathbf{H}^1(\mathbb{R},I)$. Ceci montre que

$$\Phi_{\theta,G(\mathbb{R})}^{\kappa}(\delta,\phi_{ep}^{G,\theta}) = \sum_{[x]\in\mathfrak{D}(I,G\,;\,\mathbb{R})} \langle \kappa,\dot{x}\rangle d(I_x(\mathbb{R})) = \sum_{\tau\in\mathfrak{D}(T,G\,;\,\mathbb{R})} \langle \kappa,\varphi(\tau)\rangle\,.$$

On en déduit que, si le θ -centralisateur stable de δ admet des séries discrètes, on a

$$\Phi^1_{\theta,G(\mathbb{R})}(\delta,\phi^{G,\theta}_{ep}) = d(G(\mathbb{R})).$$

Nous devons maintenant montrer que $\phi_{ep}^{G,\theta}$ est stabilisante si $\mathbf{H}^1(\mathbb{R},G_{SC})=1$. Mais, sous cette hypothèse,

$$\mathbf{H}^1(\mathbb{R},G) = \mathbf{H}^1_{ab}(\mathbb{R},G)$$

est un groupe abélien et, pour un tore maximal T

$$\mathfrak{D}(T,G;\mathbb{R})=\mathfrak{E}(T,G;\mathbb{R}).$$

On observe que, d'après [Lab4, 1.6.5], si T est elliptique dans I

$$\mathbf{H}^1(\mathbb{R},T) \to \mathbf{H}^1_{ab}(\mathbb{R},I)$$

est surjectif; donc l'homomorphisme

$$\mathfrak{E}(T,G;\mathbb{R}) \to \mathfrak{E}(I,G;\mathbb{R})$$

est surjectif. On en conclut que

$$\Phi_{\theta,G(\mathbb{R})}^{\kappa}(\delta,\phi_{ep}^{G,\theta}) = \sum_{\tau \in \mathfrak{E}(T,G\,;\,\mathbb{R})} \langle \kappa,\varphi(\tau) \rangle = 0$$

si δ est θ -semi-simple et si κ est un caractère non trivial de $\mathfrak{E}(I,G;\mathbb{R})$.

Le lecteur observera que ce théorème est l'analogue, pour les corps archimédiens, du théorème 2 de [Ko6].

Supposons maintenant que G est obtenu par extension puis restriction des scalaires pour \mathbb{C}/\mathbb{R} , à partir d'un groupe réductif connexe G_0 , et que θ est l'automorphisme induit par l'élément non trivial du groupe de Galois. On dira que deux fonctions ϕ et f sur $G(\mathbb{R})$ et $G_0(\mathbb{R})$ sont associées si elles sont associées à une même fonction f^H sur $H(\mathbb{R})$ où H est la forme intérieure quasi-déployée de G_0 .

Corollaire A.1.2. — Soit $f_{ep}^{G_0}$ une fonction d'Euler-Poincaré sur $G_0(\mathbb{R})$. La fonction $\phi_{ep}^{G,\theta}$ est associée à $c f_{ep}^{G_0}$, où c est une constante positive, et $\phi_{ep}^{G,\theta}$ est stabilisante (cf. [Lab4, 3.8.2]).

Démonstration. — Il résulte immédiatement de A.1.1 que les fonctions sont associées. Il reste à observer que comme G est obtenu par restriction des scalaires à partir d'un groupe complexe $\mathbf{H}^1(\mathbb{R}, G_{SC}) = 1$ et donc $\phi_{ep}^{G,\theta}$ est stabilisante.

Remarque. — Cette dernière assertion résulte, dans le cas particulier où G_0 est un groupe unitaire, d'un calcul élémentaire : on se ramène au cas ou la norme de δ est l'élement neutre et dans ce cas I est un groupe unitaire à n-variables ; sa 1-cohomologie classifie les formes hermitiennes non dégénérées et les classes d'isomorphismes de ces formes sont indexées par leur signature (n-p,p) avec $0 \le p \le n$, donc

$$d(I_p(\mathbb{R})) = \binom{n}{p}.$$

On suppose que $(n-p_I, p_I)$ est la signature de la forme hermitienne définissant I. Si κ est non trivial on a

$$\langle \kappa, \dot{x} \rangle = (-1)^{p-p_I}$$

et on conclut en invoquant l'identité du binôme.

A.2. Sur certains groupes unitaires

Soient F un corps totalement réel de degré d, F_c une extension CM de F et D une algèbre à division de dimension n^2 sur F_c munie d'une involution de seconde espèce notée *. On désignera par v, w des places de F, F_c respectivement.

On associe à D un groupe unitaire U sur F, et trois groupes G_0 et G_1 et G sur \mathbb{Q} . Nous ne donnons que les points rationnels :

$$G_0(\mathbb{Q}) = U(F) = \{ x \in D^{\times} \mid xx^* = 1 \}$$

(de sorte que G_0 est obtenu par restriction des scalaires à partir de U/F)

$$G_1(\mathbb{Q}) = \{ x \in D^{\times} \mid xx^* = \lambda \in \mathbb{Q}^{\times} \}$$

et

$$G(\mathbb{Q}) = D^{\times}$$
.

On remarquera que

$$G_0(\mathbb{R}) = U(F \otimes_{\mathbb{Q}} \mathbb{R}) = \prod_{v \mid \infty} U(F_v)$$

οù

$$U(F_v) \cong U(p_v, q_v)$$
.

Si $GU(p_v, q_v)$ est le groupe de similitudes unitaires associé à $U(p_v, q_v)$, alors $G_1(\mathbb{R})$ est le sous-groupe de

$$\prod_{v} GU(p_v, q_v)$$

défini par l'égalité des rapports de similitude. Notons encore $K_{0,\infty}$ un sous-groupe compact maximal de $G_0(\mathbb{R}) \subset G_1(\mathbb{R})$. (C'est un compact maximal dans $G_1(\mathbb{R})$, sauf si n est pair et $p_v = q_v = n/2$ pour tout v, auquel cas $G_1(\mathbb{R})$ a deux composantes connexes).

Soit

$$\theta: q \mapsto (q^*)^{-1}$$

la conjugaison galoisienne de $D^{\times} = U(F_c)$ par rapport à U(F). Soit $\delta \in G(\mathbb{Q}) = D^{\times}$ on note I le θ -centralisateur de δ :

$$I = \{ g \in D^{\times} : g \, \delta \, {}^{\theta}g^{-1} = \delta \} \,.$$

Soit D_{γ} le centralisateur dans D de $\gamma = \delta^{\theta} \delta$. C'est une algèbre à division de centre un corps E_c et D_{γ} est munie d'une involution de seconde espèce :

$$*': x \mapsto \delta x^* \delta^{-1}$$
.

Soit E le corps des points fixes de *' dans E_c ; alors I est le groupe unitaire sur E défini par D_{γ} et cette involution.

On notera H la forme quasi-déployée de G_0 . On a introduit en [Lab4, 1.9.5] la notion d'ensemble (G, H)-essentiel. On note \mathbb{A} l'anneau des adèles de \mathbb{Q} .

Lemme A.2.1. — L'ensemble $\{\infty\}$ est un ensemble de places (G, H)-essentiel.

 $D\acute{e}monstration.$ — On considère les groupes $\mathfrak E$ introduits au chapitre I. Nous devons vérifier que l'application

$$\mathfrak{E}(H, G^*; \mathbb{R}) \to \mathfrak{E}(H, G^*; \mathbb{A}/\mathbb{Q})$$

est surjective. On remarque tout d'abord que

$$\mathbf{H}_{ab}^{1}(\mathbb{R}, G^{*}) = \{1\}, \quad \mathbf{H}_{ab}^{1}(\mathbb{A}/\mathbb{Q}, G^{*}) = \{1\} \quad \text{et} \quad \ker^{1}(\mathbb{Q}, G^{*}) = 1$$

ce qui résulte par exemple de ce que G est obtenu par restriction des scalaires d'une forme intérieure D^{\times} de GL(n). Donc

$$\mathfrak{E}(H, G^*; \mathbb{R}) = \mathbf{H}^1_{ab}(\mathbb{R}, H)$$
 et $\mathfrak{E}(H, G^*; \mathbb{A}/\mathbb{Q}) \cong H^1_{ab}(\mathbb{A}/\mathbb{Q}, H)$.

Par ailleurs, on sait que si le groupe dérivé est simplement connexe, la cohomologie abélianisée n'est autre que la cohomologie du co-centre. Pour un groupe unitaire la cohomologie abélianisée est donc celle du tore U(1) des éléments de norme 1 dans l'extension quadratique attachée à ce groupe unitaire. Dans l'extension quadratique F_c/F attachée à notre groupe unitaire, le corps F_c est une extension quadratique totalement imaginaire du corps totalement réel F. Il en résulte que

$$\mathfrak{E}(H,G^*;\mathbb{R})=H^1_{ab}(\mathbb{R},H)=\mathbf{H}^1(F\otimes\mathbb{R},U(1))\cong\prod_{v\mid\infty}\mathbb{Z}/2\mathbb{Z}$$

et

$$\mathfrak{E}(H, G^*; \mathbb{A}/\mathbb{Q}) = H^1_{ab}(\mathbb{A}/\mathbb{Q}, H) = \mathbf{H}^1(\mathbb{A}_F/F, U(1)) \cong \mathbb{Z}/2\mathbb{Z}.$$

La surjectivité de

$$\mathbf{H}^1(F \otimes \mathbb{R}, U(1)) \to \mathbf{H}^1(\mathbb{A}_F/F, U(1))$$

équivaut à la surjectivité de (*). On a ainsi prouvé que $\{\infty\}$ est un ensemble de places (G,H)-essentiel. \Box

Rappelons un résultat de Kottwitz [Ko7]

Lemme A.2.2. — Soit $\gamma \in G_0(\mathbb{Q})$, et soit I son centralisateur. Alors

$$\mathfrak{E}(I, G_0; \mathbb{A}/\mathbb{Q}) = 1$$
.

Démonstration. — On observe que G_0 et I sont obtenus par restriction des scalaires à partir de groupes unitaires sur des corps F et E, les remarques ci-dessus montrent que

$$\mathbf{H}^1_{ab}(\mathbb{A}/\mathbb{Q},I) \to \mathbf{H}^1_{ab}(\mathbb{A}/\mathbb{Q},G_0)$$

est un isomorphisme et, comme les tores U(1) vérifient le principe de Hasse pour \mathbf{H}^1 , il résulte de [Lab4, 1.8.4] que

$$\mathfrak{E}(I, G_0; \mathbb{A}/\mathbb{Q}) = 1$$
.

On a un résultat analogue sur un corps local F_v :

Lemme A.2.3. — Supposons que U_v est obtenu à partir d'une algèbre à division D_v . Soit $\gamma_v \in U(F_v)$, et soit I_v son centralisateur. Alors

$$\mathfrak{E}(I_v, U_v; F_v) = 1$$
.

 $D\acute{e}monstration$. — Comme U_v est obtenu à partir d'une algèbre à division, le centralisateur I_v est un groupe unitaire. Les remarques ci-dessus montrent que la flèche

$$\mathbf{H}_{ab}^1(F_v,I_v) \to \mathbf{H}_{ab}^1(F_v,U_v)$$

est un isomorphisme; son novau est donc trivial.

Corollaire A.2.4. — Soit $\gamma^* \in H(\mathbb{Q})$ qui est localement partout une norme de $\gamma \in G_0(\mathbb{A}_{\mathbb{Q}})$ et supposons qu'en une place finie v de F le groupe U_v soit obtenu à partir d'une algèbre à division. Si on note I^* le centralisateur stable de γ^* on a

$$\mathfrak{E}(I^*, H; \mathbb{A}/\mathbb{Q}) = 1$$
.

Démonstration. — Le groupe H est obtenu par restriction des scalaires à partir d'un groupe untaire U^* , notons I_0^* le centralisateur de γ^* vu comme élément de U^* . Comme I_v est elliptique dans U_v

$$\mathfrak{E}(I_v, U_v; F_v) \to \mathfrak{E}(I_0^*, U^*; \mathbb{A}_F/F)$$

est surjective d'après [Lab4, 1.9.6]. Comme

$$\mathfrak{E}(I_0^*, U^*; \mathbb{A}_F/F) = \mathfrak{E}(I^*, H; \mathbb{A}/\mathbb{Q})$$

l'assertion est alors une conséquence immédiate de A.2.3.

A.3. Comparaison des formules de traces

On dit qu'une fonction f lisse et à support compact sur $G_0(\mathbb{A})$ et ϕ lisse et à support compact sur $G(\mathbb{A})$ sont associées s'il existe une fonction f^H lisse et à support compact sur $H(\mathbb{A})$ associée à f et ϕ . (On laissera au lecteur le soin de formuler une définition directe ne faisant pas usage de f^H).

Soit r la représentation régulière droite de $G_0(\mathbb{A}) = U(\mathbb{A}_F)$ dans l'espace des formes automorphes sur

$$G_0(\mathbb{Q})\backslash G_0(\mathbb{A}) = U(F)\backslash U(\mathbb{A}_F)$$

et soit R la représentation analogue de $G(\mathbb{A})$. On dispose d'un opérateur d'entrelacement naturel I_{θ} sur l'espace de R. Soit par ailleurs ϕ^{∞} et f^{∞} des fonctions sur les groupes sur les adèles finis $G(\mathbb{A}_f)$ et $G_0(\mathbb{A}_f)$, lisses et à support compact.

Théorème A.3.1. On suppose que $f = f_{ep}^{G_0} \otimes f^{\infty}$ et $\phi = \phi_{ep}^{G,\theta} \otimes \phi^{\infty}$ sont associées et que $\phi_{ep}^{G,\theta}$ est une fonction de Lefschetz pour θ sur $G(\mathbb{R})$. On suppose de plus que l'une des deux conditions ci-dessous est satisfaite :

(a) en une place finie v de F la fonction f_v est une fonction d'Euler-Poincaré sur $U(F_v)$

(b) en une place v de F le groupe U_v est obtenu à partir d'une algèbre à division. Sous ces conditions on a une identité de formules des traces :

$$\operatorname{tr}(R(\phi)I_{\theta}) = \operatorname{tr}(r(f)).$$

Démonstration. — Comme D^{\times} est une algèbre à division les formules des traces pour G_0 et G ne comportent que des termes elliptiques. On remarque ensuite que $\phi_{ep}^{G,\theta}$ est stabilisante (A.1.2) et on a établi en A.2.1 que $\{\infty\}$ est (G^*, H) -essentiel. Soit f^H une fonction sur $H(\mathbb{A})$ associée à f et ϕ . Le théorème [Lab4, 4.3.4] montre que si on note ST_e^H la partie elliptique de la formule des traces stable pour H on a

$$\operatorname{tr}(R(\phi)I_{\theta}) = a(G, \theta, H) ST_e^H(f^H).$$

De même, dans le cas (a), on sait qu'en une place finie une fonction d'Euler-Poincaré est stabilisante et tout ensemble non vide de places est (H, H)-essentiel on peut donc invoquer [Lab4, 4.3.4]. Dans le cas (b) seuls les caractères endocopiques triviaux contribuent d'après A.2.4 et on invoque [Lab4, 4.3.3]. Dans ces deux cas on a donc

$$\operatorname{tr}(r(f)) = a(G_0, 1, H) ST_e^H(f^H).$$

Comme il est observé dans [Lab4, 4.3.2], les constantes $a(G, \theta, H)$ ne dépendent que des co-centres si les groupes dérivés sont simplement connexes. Il suffit donc de traiter le cas $D^{\times} = GL(1)$ et on voit alors facilement que

$$a(G, \theta, H) = a(G_0, 1, H) = 1$$
.

On obtient donc

$$\operatorname{tr}(R(\phi)I_{\theta}) = \operatorname{tr}(r(f)).$$

Remarque. — Le théorème ci-dessus donne une preuve d'une variante du lemme 4.6 de [Clo3]. Nous ne faisons plus l'hypothèse que les fonctions sont a support régulier en une place. Par ailleurs on observera que la constante 1/2 qui figure dans [Clo3, Lemme 4.6] est incorrecte; l'erreur vient de ce que le jacobien $J_Z(\theta)$ en numérateur de $a(G, \theta, H)$ a été omis : ce facteur, qui dans notre cas vaut 2, compense exactement le nombre de Tamagawa de H en dénominateur. Dans la preuve du lemme 4.6 de [Clo3] Clozel procéde directement sans utiliser la partie elliptique de la formule des traces stable pour H et sans utiliser d'hypothèse en une place auxilliaire v; toutefois sa preuve est incomplète car il a omis de tenir compte de ce que l'on ne dispose pas pour G_0 de l'analogue du théorème de Kottwitz sur l'existence des normes. Il n'est pas clair que l'enoncé plus général soit correct.

A.4. Un théorème de Kottwitz

Un système de coefficients pour G_0 est une représentation complexe, irréductible, de dimension finie, de

$$G_0(\mathbb{C}) = U(F \otimes \mathbb{C})$$
.

Soit $\mathfrak{g}_0 = \operatorname{Lie} G_0(\mathbb{R})$, et $K_{0,\infty} \subset G_0(\mathbb{R})$ un compact maximal. On déduit de ξ un système de coefficients ξ_c pour G [Clo4, section 2.4].

Soit $\pi = \otimes_v \pi_v$ une représentation automorphe de $G_0(\mathbb{A}) = U(\mathbb{A}_F)$. On dit que π a de la cohomologie à coefficients dans ξ si

$$\mathbf{H}^{\bullet}(\mathfrak{g}_0, K_{0,\infty}; \pi_{\infty} \otimes \xi) \neq 0.$$

Des notions analogues s'appliquent à une représentation Π de $G(\mathbb{A})$ et à un système de coefficients ξ_c .

Pour simplifier les notations, nous supposons dorénavant que les systèmes de coefficients sont triviaux.

Commençons par rappeler un théorème de Kottwitz. Soit τ une représentation automorphe de $G_1(\mathbb{A})$ et supposons τ cohomologique (pour le système de coefficients trivial).

Soit $\mathfrak{g}_1 = \operatorname{Lie} G_1(\mathbb{R})$. Le calcul de $\mathbf{H}^{\bullet}(\mathfrak{g}_1, K_{0,\infty}; \tau_{\infty})$ se ramène facilement au calcul de la cohomologie des groupes unitaires, et l'on déduit des résultats de Vogan-Zuckerman [VZ] l'assertion suivante :

Lemme A.4.1. — Soit τ_{∞} une représentation unitaire irréductible de $G_1(\mathbb{R})$ à cohomologie. Les degrés i tels que

$$\mathbf{H}^{i}(\mathfrak{g}_{1},K_{0,\infty};\tau_{\infty})\neq0$$

ont la même parité.

On associe donc à τ_{∞} un élément de $\mathbb{Z}/2\mathbb{Z}$, sa parité.

Théorème A.4.2 (Kottwitz). — Soit S en ensemble fini de places de \mathbb{Q} (contenant ∞) et τ_0^S une représentation irréductible de

$$G_1(\mathbb{A}^S) = \prod_{p \notin S}' G_1(\mathbb{Q}_p).$$

Il existe alors $\varepsilon(\tau_0^S) \in \mathbb{Z}/2\mathbb{Z}$ tel que, si τ est une représentation automorphe cohomologique de $G_1(\mathbb{A})$ telle que $\tau^S \cong \tau_0^S$, la parité de τ_∞ est égale à $\varepsilon(\tau_0^S)$.

Ceci résulte de [Ko7, Theorem 1].

Proposition A.4.3. — L'analogue du Théorème A.4.2 est vrai pour G_0 .

Démonstration. — Soit A la composante déployée du centre de G_1 (sur \mathbb{Q}), de sorte que $A \cong \mathbb{G}_m/\mathbb{Q}$ et que $A \cap G_0 \cong \mu_2$ (cf. [Clo3, section 5.23]). Soient π une représentation automorphe irréductible de $G_0(\mathbb{A})$ et $\eta: \mu_2(\mathbb{A}) \to \{\pm 1\}$ la restriction de son caractère central à $(A \cap G_0)(\mathbb{A})$. Si χ est un caractère de

$$A(\mathbb{A})/A(\mathbb{Q}) \cong \mathbb{A}^{\times}/\mathbb{Q}^{\times}$$

trivial sur \mathbb{R}^{\times} et coïncidant avec η sur $\mu_2(\mathbb{A})$, il existe (loc. cit.) une représentation automorphe irréductible τ de $G_1(\mathbb{A})$, de caractère central χ sur $A(\mathbb{Q})$, dont la restriction à $G_0(\mathbb{A})$ est discrète et contient π . En particulier π_{∞} est contenue dans $\tau_{\infty}|_{G_0(\mathbb{R})}$. Si π est cohomologique, il en résulte que τ est cohomologique, la cohomologie apparaissant dans les mêmes degrés.

Soit alors S un ensemble fini de places et soient π_1 , π_2 deux représentations cohomologiques de $G_0(\mathbb{A})$ coïncidant en dehors de S. Étendons-les en des représentations τ_1 , τ_2 de $G_1(\mathbb{A})$. Soit p un nombre premier tel que toutes les données sont non ramifiées, et décomposé dans le corps F_c . Notons v_i les places de F divisant p, $\{w_i, w_i'\}$ les places correspondantes de F_c . Alors, avec $d = [F : \mathbb{Q}]$:

$$G_1(\mathbb{Q}_p) = \{(g_i, g_i', z) : g_i^t g_i' = z\}$$

où $g_i, g_i' \in \mathrm{GL}(n, \mathbb{Q}_p)$ et $z \in \mathbb{Q}_p^{\times}$, le sous-groupe G_0 étant donné par

$$G_0(\mathbb{Q}_p) = \{(g_i, g'_i, z) : z = 1\} \cong GL(n, \mathbb{Q}_p)^d.$$

On a donc dualement, sur \mathbb{Q}_p :

$$\widehat{G}_1 = \mathrm{GL}(n,\mathbb{C})^d \times \mathbb{C}^{\times}$$
 et $\widehat{G}_0 = \mathrm{GL}(n,\mathbb{C})^d$.

Les représentations π_1 , π_2 sont non ramifiées en p et définissent des matrices diagonales $t_1, t_2 \in GL(n, \mathbb{C})^d$; de même τ_1 , τ_2 définissent des couples

$$T_i = (t_i, z_i)$$
 pour $j = 1, 2$

avec $z_j \in \mathbb{C}^{\times}$ et t_j la matrice de Hecke de π_j . Noter que le caractère central χ_j est essentiellement donné par $(z_j^2)^{(2)}$.

La démonstration du Théorème A.4.2 [Ko7, section 5] montre que la parité de $\tau_{j,\infty}$ est déterminée de la façon suivante. Soit ρ la représentation de \widehat{G}_1 associée à une donnée définissant une variété de Shimura pour G_1 ([Ko7, section 1]). Alors

$$N = \sum_{v \mid \infty} p_v q_v$$

est la dimension complexe des variétés de Shimura pour G_1 , et

$$p^{N/2} \cdot \rho(T_j)$$
,

⁽²⁾ La normalisation de la correspondance de Langlands est ici la normalisation unitaire.

est une matrice dont les valeurs propres sont des nombres de Weil (pour p) de valeurs absolues complexes $p^{i/2}$ où i est congru à $\varepsilon(\tau_{j,f})$ (mod 2); les degrés de la cohomologie de $\tau_{j,\infty}$ sont les poids i associés aux valeurs propres.

Le caractère χ_j étant un caractère d'Artin, on voit que z_j est une racine de l'unité. Il en résulte que les poids ne dépendent que de t_j .

A.5. Le théorème principal

Soit π une représentation cohomologique de $U(\mathbb{A}_F)$. Ecrivons

$$\pi = \pi_{\infty} \otimes \pi_{S} \otimes \pi^{\infty,s}$$

où S est un ensemble fini de places finies contenant toutes les places de ramification (pour toutes les données, y compris π). Fixons un sous-groupe compact ouvert K_S de $U(\mathbb{A}_{F,S})$ tel que $\pi_S^{K_S} \neq 0$. Soit f_S la fonction caractéristique de K_S ; $f^{\infty,S}$ sera une fonction dans l'algèbre de Hecke (non ramifiée en toutes les places).

Soit enfin $f = f_{ep}^{G_0} \otimes f_S \otimes f^{\infty,S}$, où $f_{ep}^{G_0}$ est une fonction d'Euler-Poincaré. Ecrivons

$$\operatorname{tr} r(f) = \sum_{\rho} \operatorname{tr} \rho(f)$$

où ρ décrit les représentations automorphes (avec multiplicité) de $U(\mathbb{A}_F)$. Si f est du type que nous avons défini ($f^{\infty,S}$ étant variable, mais dans l'algèbre de Hecke), cette somme est finie. Notons

$$\mathfrak{H}^S = \underset{v \notin \{S \cup \infty\}}{\otimes} \mathfrak{H}_v$$

l'algèbre de Hecke, et soit \mathfrak{H}_c^S l'algèbre de Hecke (en dehors de S) pour le groupe G. Le changement de base local aux places non ramifiées est bien défini. On dira que Π est un changement de base faible de π si localement presque partout Π_v est le changement de base de π_v . On dispose de l'homomorphisme de changement de base

$$b:\mathfrak{H}_{c}^{S}\to\mathfrak{H}^{S}$$
.

Nous aurons besoin de l'amplification suivante de la proposition A.4.3 :

Lemme A.5.1. — Soient S un ensemble fini de places de F contenant les places de ramification de U, et π , π' deux représentations automorphes cohomologiques de $U(\mathbb{A}_F)$ non ramifiées en dehors de S. Soient $\chi, \chi' : \mathfrak{H}^S \to \mathbb{C}$ les caractères associées. Si $\chi \circ b = \chi' \circ b$, la parité de π_{∞} est égale à celle de π'_{∞} .

Démonstration. — Cela résulte immédiatement de la démonstration de la proposition A.4.3: si la place p est décomposée,

$$G_0(\mathbb{Q}_p) = U(F \otimes \mathbb{Q}_p) \cong \mathrm{GL}(n, \mathbb{Q}_p)^d$$

 $_{
m et}$

$$G(\mathbb{Q}_p) = U(F_c \otimes \mathbb{Q}_p) \cong GL(n, \mathbb{Q}_p)^{2d}$$
,

l'application b étant donnée, pour toute place v|p (de sorte que v est divisée par deux places w, w') par $(\phi_w, \phi_{w'}) \mapsto \phi_w * \phi_{w'}$. L'hypothèse sur les caractères implique alors que $\pi_p \cong \pi'_p$, ce qui implique l'identité des parités de π_∞ et π'_∞ .

Le résultat principal de cette note est le théorème suivant.

Théorème A.5.2. — Soit π une représentation automorphe de $G_0(\mathbb{A}) = U(\mathbb{A}_F)$, et supposons que π a de la cohomologie à coefficients dans un système ξ . On suppose de plus qu'une des deux conditions ci-dessous est satisfaite :

- (a) en une place finie v de F la représentation π_v est de Steinberg.
- (b) en une place v de F le groupe U_v est obtenu à partir d'une algèbre à division. Alors il existe une représentation automorphe Π de

$$G(\mathbb{A}) = (D \otimes \mathbb{A})^{\times}$$

telle que

- (i) Π est un changement de base faible de π .
- (ii) Π a de la cohomologie à coefficients dans ξ_c .

Remarque. — L'hypothèse (b) est faite explicitement dans [Clo3, section 3.1] et reprise dans [Clo4, section 3].

 $D\acute{e}monstration$. — Nous ne traiterons que le cas des coefficients constants. Décomposons alors la somme donnant $\operatorname{tr} r(f)$ de la façon suivante. Si ρ est non ramifiée dans S, soit χ_{ρ} le caractère de \mathfrak{H}^S associé et $\chi_{\rho}^c = \chi_{\rho} \circ b$. Alors

$$\operatorname{tr} r(f) = \sum_{\{\rho \mid \chi_c^c = \chi_c^c\}} \operatorname{tr} \rho_{\infty,s}(f_{ep}^{G_0} \otimes f_s) \chi_{\rho}(f^s) + \sum_{\{\rho \mid \chi_c^c \neq \chi_c^c\}} \operatorname{tr} \rho_{\infty,s}(f_{ep}^{G_0} \otimes f_s) \chi_{\rho}(f^s).$$

Si le compact K_S est assez petit il existe une fonction ϕ_S sur $G(\mathbb{A}_S)$ associée à f_S la fonction caractéristique de K_S . En effet, en observant que le centralisateur tordu de 1 dans D^{\times} n'est autre que U, on voit (comme en [Lab4, 3.3.2]) que l'existence d'une telle fonction est garantie par [Lab4, 3.1.7] pourvu que K_S soit assez petit (l'existence de f_S^H est obtenue par [Lab4, 3.3.1]). Par ailleurs, $\phi^{\infty,S}$ sera une fonction arbitraire dans \mathfrak{H}_c^S et nous posons $f^{\infty,S} = b(\phi^{\infty,S})$. La trace s'écrit alors :

$$\operatorname{tr} r(f) = \chi_{\pi}^{c}(\phi^{\infty,S}) \sum_{\{\rho \mid \chi_{\rho}^{c} = \chi_{\pi}^{c}\}} \operatorname{ep}(\pi_{\infty}) \operatorname{dim} \rho_{S}^{K_{S}} + \sum_{\{\rho \mid \chi_{\rho}^{c} \neq \chi_{\pi}^{c}\}} c_{\rho} \chi_{\rho}^{c}(\phi^{\infty,S}),$$

les caractères de \mathfrak{H}_c^S figurant dans la seconde somme étant différents de χ_π^c . L'observation essentielle est que le coefficient de χ_π^c

$$\sum_{\{\rho \mid \chi_o^c = \chi_\pi^c\}} \operatorname{ep}(\pi_\infty) \dim \rho_S^{K_S}$$

est non nul d'après le Lemme A.5.1. Par ailleurs, les fonctions $\phi^{\infty,S}$ et $b(\phi^{\infty,S})$ étant associées d'après le Lemme fondamental ([Clo 2, Lab 1] complété en [Lab4, 3.7.2]),

cette trace est égale d'après le Théorème A.3.1 à

$$\sum_{\Pi} \operatorname{tr}(\Pi_{\infty}(\phi_{ep}^{G,\theta})\Pi_{S}(\phi_{S})I_{\theta}) \chi_{\Pi}(\phi^{\infty,S})$$

où Π décrit les représentations automorphes de $G(\mathbb{A})$; cette somme est du reste finie, le niveau de ϕ_S étant fixé et Π_∞ étant alors astreinte à avoir de la cohomologie non triviale (cf. avant A.3.1) ce qui détermine son caractère infinitésimal. L'égalité des traces implique alors que le caractère χ^c_π doit apparaître dans la trace tordue, ce qui implique le Théorème A.5.2.

Noter que le résultat est plus précis : on obtient l'existence d'un relèvement Π de π tel que

$$ep(\theta; \mathfrak{g}, K_{\infty}; \Pi_{\infty}) \neq 0$$
.

Sous l'hypothèse (R) de [Clo4, p.762], les représentations automorphes de $G(\mathbb{A})$ vérifient le théorème de multiplicité 1 fort et Π est alors unique – comme sous-espace de l'espace des formes automorphes sur $G(\mathbb{Q})\backslash G(\mathbb{A})$.

BIBLIOGRAPHIE

- [Clo2] L. CLOZEL, The fundamental lemma for stable base change, Duke Math. J. 61 (1990), p. 255-302.
- [Clo3] L. CLOZEL, Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n), Publ. Math. IHES 73 (1991), p. 97-145.
- [Clo4] L. CLOZEL, On the cohomology of Kottwitz's arithmetic varieties, Duke Math. J. 72 (1993), p. 757-795.
- [CD1] L. CLOZEL, P. DELORME, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs I, Invent. Math. 77 (1984), p. 427-453.
- [CD2] L. CLOZEL, P. DELORME, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs II, Ann. Sci. E.N.S. 4^e série 23 (1990), p. 193-228.
- [Ko6] R. KOTTWITZ, *Tamagawa numbers*, Annals of Math. **127** (1988), p. 629-646.
- [Ko7] R. Kottwitz, On the λ -adic representations associated to some simple Shimura varieties, Invent. Math. 108 (1992), p. 653-665.
- [Lab1] J.-P. Labesse, Le lemme fondamental pour le changement de base stable, Duke Math. J. **61** (1990), p. 519-530.
- [Lab2] J.-P. LABESSE, Pseudo-coefficients très cuspidaux et K-théorie, Math. Ann. 291 (1991), p. 607-616.
- [Lab4] J.-P. Labesse, Cohomologie, stabilisation et changement de base, ce volume (1999), p. 1-116.
- [VZ] D. VOGAN G. ZUCKERMAN, Unitary representations with non zero cohomology, Compositio Math. 53 (1984), p. 51-90.

APPENDICE B

ENSEMBLES CROISÉS ET ALGÈBRE SIMPLICIALE

L. Breen

Introduction

Dans l'article principal [28] de ce volume, Jean-Pierre Labesse introduit des ensembles de cohomologie non-abélienne à valeurs dans des coefficients quelque peu compliqués, qu'il appelle des ensembles croisés. Nous indiquons ici quelle est la relation entre cette cohomologie et divers autres ensembles de cohomologie abélienne et non-abélienne. L'intérêt de cette démarche est qu'elle insère des calculs cohomologiques parfois compliqués dans un contexte topologique qui permet d'en étendre le champ d'application. Si ce contexte topologique, fourni par l'algèbre simpliciale, peut de prime abord sembler assez lourd, il se révèle en définitive très adapté à l'étude de questions de nature cohomologique.

Le modèle sur lequel est calqué la discussion qui suit est fourni par le théorème de Dold-Kan (on dit aussi Dold-Puppe, [23] I théorème 1.3.1). Celui-ci établit une équivalence entre la catégorie des complexes de groupes abéliens et celle des groupes abéliens simpliciaux. Il suit que l'(hyper)-cohomologie d'un espace, ou d'un schéma, X à valeurs dans un complexe de groupes abéliens C peut être calculée comme limite de groupes des classes d'homotopie d'applications du nerf d'un (hyper)-recouvrement de X, à valeurs dans le groupe abélien simplicial associé. Il existe des versions non abéliennes de ce théorème, notamment celle de P. Carrasco et A.M. Cegarra [17] où est démontrée une équivalence entre la catégorie des groupes simpliciaux et celle des complexes de groupes munies de structures additionnelles. Il en résulte une définition de la cohomologie à valeurs dans les complexes de groupes en question qui coincide,

dans le cas de la cohomologie à valeurs dans un module croisé, avec la définition classique. On se placera ici dans un contexte où l'on dispose d'encore moins de structure, puisqu'il s'agit de définir un théorème de Dold-Kan ensembliste, qui fait correspondre des ensembles simpliciaux à certains complexes d'ensembles pointés. Le cas traité ici est celui des complexes de longueur 2, c'est-à-dire les ensembles croisés de [28].

Plutôt que de partir d'un ensemble croisé quelconque

$$[B \longrightarrow A \times X \longrightarrow X]$$

on considérera principalement le cas où le fibré en groupes B est trivial sur X, c'est-à-dire de la forme $D \times X$, pour un groupe donné D. Nous dirons qu'un ensemble croisé de ce type, noté

$$[D \xrightarrow{X} A \Longrightarrow X]$$

est un ensemble croisé à fibres constantes (e.c.f.c.). Le passage à la situation générale ne présente pas de difficulté autre que notationelle. Dans la première partie, nous expliquons plus en détail ce que sont les ensembles croisés et les e.c.f.c. (avec une notation légèrement différente de celle de [28]), puis nous construisons les ensemble simpliciaux associés, enfin nous passons en revue les différentes situations dans lesquelles cette construction était déja connue.

La seconde section est consacrée à la traduction des constructions simpliciales mentionnées dans un langage catégorique (ou plutôt 2-catégorique). Ceci rend beaucoup plus claire la signification de formules cohomologiques dont le niveau de complication croît en proportion de la taille des complexes considérés. Les conventions choisies ici ne sont pas tout à fait les mêmes que dans [11], où sont examinées des structures catégoriques analogues, mais il nous a paru important de nous plier aux conventions de [28] afin faciliter le passage de notre point de vue à celui qui y est développé. Dans la troisième partie, on donne la définition des ensembles de cohomologie considérés, dans la situation très générale d'objets d'un topos, en étendant ce qui avait été fait dans [9] pour la cohomologie à valeurs dans un module croisé. Le cadre dans lequel on se place est celui de la catégorie dérivée des objets simpliciaux d'un topos, tel qu'il a été développé par L. Illusie dans [23], et indépendamment, dans le contexte de catégories de faisceaux sur un espace topologique, par K. Brown [13]. Nous passons rapidement au cas particulier du topos des faisceaux étales sur un schéma Spec(k)associé à un corps k. On sait que la cohomologie correspondante n'est autre que la cohomologie galoisienne de k, et on se trouve donc alors dans le contexte considéré dans [28]. La traduction entre les 0ième ensembles de cohomologie de [28] et ceux étudiés ici est le principal résultat de ce texte.

La dernière partie de ce travail est consacrée à différentes généralisations actuelles (ou futures) de la notion d'ensemble croisé et de ses analogues catégoriques. Divers ensembles et groupes de cohomologie plus ou moins abélienne, à valeurs dans les

structures en question, y sont également décrits. Il s'agit là d'un sujet que nous avons déja abordé à diverses reprises, notamment dans [9], [10] et [11], mais il nous a paru utile d'en rassembler ici pour la commodité du lecteur divers éléments, car ceci nous permet de replacer les notions abordées au §B.3 dans un contexte plus large.

Je remercie Jean-Pierre Labesse, et le referee, pour leurs commentaires concernant une version préliminaire de ce texte.

B.1. Ensembles croisés et ensembles simpliciaux

Commençons par rappeler quelle est la définition d'un ensemble croisé, mais avec des notations légèrement différentes de celles de [28] I.1.1.

Définition B.1.1. — On appelle ensemble croisé la donnée d'un ensemble X, d'un groupe A et d'un ensemble B, munis de trois flèches

$$B \xrightarrow{\rho} A \times X \qquad A \times X \xrightarrow{\lambda} X \qquad A \times B \xrightarrow{\mu} B$$

telles que

- i) $A \times X \longrightarrow X$ définit une action $(a, x) \mapsto ax$ de A sur X. On note A_x le stabilisteur de x dans A.
- ii) Les fibres de l'application composée

$$B \xrightarrow{\rho} A \times X \longrightarrow X$$

sont des groupes B_x .

iii) La flèche ρ induit dans chaque fibre au dessus de $x \in X$ un homomorphisme

$$\rho_x: B_x \longrightarrow A_x \subset A$$

iv) $A \times B \xrightarrow{\mu} B$ définit une action

$$(a,b) \longmapsto {}^{a}b$$

de A sur B compatible à la structure de groupe sur chaque $B_x: \mu(a)$ définit un isomorphisme de B_x sur B_{ax} . En particulier, la restriction de μ à A_x détermine, pour tout $x \in X$, un homomorphisme

$$\mu_x: A_x \longrightarrow \operatorname{Aut}(B_x)$$

satisfaisant aux compatibilités suivantes :

- v) pour tout b et β dans B_x , $\rho_x(\beta)b = \beta b\beta^{-1}$.
- $vi) \rho_{\alpha x}({}^{\alpha}b) = \alpha \rho_{x}(b)\alpha^{-1}.$

On désigne par

$$[B \xrightarrow{\rho} A \times X \xrightarrow{\lambda} X]$$

l'ensemble croisé en question.

Une variante plus restrictive de la notion d'ensemble croisé est obtenue en convenant que les groupes B_x et les actions $\mu_x: A_x \longrightarrow \operatorname{Aut}(B_x)$ de loc. cit. I.1 ne dépendent pas de l'élément $x \in X$. Si l'on pose $D = B_x$ pour tout $x \in X$, l'ensemble croisé (1.1) prend alors la forme

$$D \times X \xrightarrow{(\rho_x, 1)} A \times X \longrightarrow X$$
.

Dans ce cas on le notera alors plutôt

$$[D \xrightarrow{X} A \Rightarrow X]$$

et l'on dira, comme dans [28], que le diagramme (1.2) est un ensemble croisé à fibres constantes (e.c.f.c.). Ici la double flèche de droite rappelle que A agit sur X, tandis que la notation adoptée pour la flèche de gauche signifie qu'elle désigne une famille de flèches de D vers A indexées par les éléments de l'ensemble X. Un élément de D sera généralement noté b, ou β , en conformité avec [28], où c'est l'ensemble $B = D \times X$, et non le facteur D, qui est mis en avant.

Nous allons maintenant associer à un e.c.f.c. (1.2) un ensemble simplicial tronqué en degré 3, noté $\mathcal{X}_{\leq 3}$, dont les composantes sont définies de la manière suivante :

(1.3)
$$\mathcal{X}_{k} = \begin{cases} X & k = 0 \\ X \times A & k = 1 \\ X \times D \times A^{2} & k = 2 \\ X \times D^{3} \times A^{3} & k = 3 \end{cases}$$

Ainsi, $\mathcal{X}_{\leq 3}$ est de la forme suivante⁽¹⁾

$$(1.4) X \times D^3 \times A^3 \Longrightarrow X \times D \times A^2 \Longrightarrow X \times A \Longrightarrow X$$

⁽¹⁾Les opérateurs de dégénérescence seront toujours omis dans la représentation des objets simpliciaux.

Les opérateurs face et dégénérescence issus de la composante \mathcal{X}_k de degré k de \mathcal{X} sont définis par les formules suivantes :

$$\begin{cases} k = 0: & s_0(x) = (x, 1) \\ k = 1: & d_i(x, a) = \begin{cases} a^{-1}x & i = 0 \\ x & i = 1 \end{cases} \\ s_i(x, a) = \begin{cases} (x, 1, 1, a) & i = 0 \\ (x, 1, a, 1) & i = 1 \end{cases} \end{cases}$$

$$(1.5)$$

$$\begin{cases} k = 2: & d_i(x, b, a_0, a_1) = \begin{cases} (a_0^{-1}x, a_1) & i = 0 \\ (x, \rho_x(b)^{-1}a_0 a_1) & i = 1 \\ (x, a_0) & i = 2 \end{cases} \\ s_i(x, b, a_0, a_1) = \begin{cases} (x, 1, b, b, 1, a_0, a_1) & i = 0 \\ (x, 1, b, 1, a_0, 1, a_1) & i = 1 \\ (x, b, 1, 1, a_0, a_1, 1) & i = 2. \end{cases}$$

Enfin, les opérateurs face issus de la composante de degré 3 de \mathcal{X} sont définis par les formules suivantes :

$$d_{i}(x, b_{0}, b_{2}, b_{3}, a_{0}, a_{1}, a_{2}) = \begin{cases} (a_{0}^{-1}x, b_{3}, a_{1}, a_{2}) & i = 0 \\ (x, b_{2}, \rho_{x}(b_{0})^{-1}a_{0} a_{1}, a_{2}) & i = 1 \\ (x, (a_{0}b_{3})^{-1}b_{0} b_{2}, a_{0}, \rho_{a_{0}^{-1}x}(b_{3})^{-1}a_{1}a_{2}) & i = 2 \\ (x, b_{0}, a_{0}, a_{1}) & i = 3 \end{cases}$$

Ces opérateurs face et dégénérescence satisfont aux identités simpliciales ([29] définition 1.1) comme on le vérifie en faisant appel aux axiomes (i)-(vi) de la définition B.1.1. La construction dite du cosquelette ([1] §1) associe à l'ensemble simplicial tronqué $\mathcal{X}_{\leq 3}$ un ensemble simplicial $\mathcal{X} := cosq_3 \ (\mathcal{X}_{\leq 3})$ qui satisfait à la condition de Kan ([29] définition 1.3). Dans ce cas, une formule simple ([23] I (2.1.1.1)) détermine les groupes d'homotopie $\pi_i(\mathcal{X}, x)$ relatifs à un point base $x \in X$. On vérifie que ceux-ci coincident, pour $i \leq 2$, avec les groupes d'homotopie du complexe croisé correspondant ([28] I.1). Ils sont nuls pour i > 2 puisque \mathcal{X} est identifié à son cosquelette $cosq_3 \ (\mathcal{X}_{\leq 3})$, ce qui démontre la proposition suivante :

Proposition B.1.2. — La construction précédente associe fonctoriellement à un e.c.f.c. (1.2) un ensemble simplicial \mathcal{X} , dont les groupes d'homotopie $\pi_i(\mathcal{X}, x)$ coincident pour $i \leq 2$ avec les groupes d'homotopie correspondant de l'ensemble croisé, et sont nuls pour $i \geq 3$.

Variantes

- i) La situation la plus élémentaire est celle où A=D=1. Dans ce cas, \mathcal{X} est l'objet simplicial constant, dont la composante en chaque degré est l'ensemble X, les opérateurs d_i et s_i étant les applications identité.
- ii) Si l'on suppose simplement que D=1, alors \mathcal{X} est le nerf de la catégorie (en fait du groupoïde) [X,A], définie par l'action à droite du groupe A sur l'ensemble X déduite de l'action à gauche donnée. L'ensemble des objets de cette catégorie est l'ensemble X lui-même, une flèche

$$(1.7) x \stackrel{(x,a)}{\longrightarrow} a^{-1}x$$

de source x et de but $a^{-1}x$ étant déterminée par un élément $(x,a) \in X \times A$. La composée

(1.8)
$$x \xrightarrow{(x,a)} a^{-1}x \xrightarrow{(a^{-1}x,a')} a'^{-1}a^{-1}x$$

de deux telles flèches composables est notée (x, aa') tandis que (x, 1) désigne le morphisme identité de l'objet x. Pour alléger la notation, une flèche (x, a) (1.7) sera simplement représentée par

$$x \xrightarrow{a} a^{-1}x$$
.

Le nerf du groupoïde [X, A] est l'ensemble simplicial \mathcal{X} dont la composante de degré 0 est X, tandis que celles de degré i sont définies pour tout $i \geq 1$, par la formule

$$\mathcal{X}_i = X \times A^i$$
.

Un groupoïde \mathcal{C} est de ce type dès que l'on suppose que l'ensemble $\mathcal{C}_x = \operatorname{Fl}_{\mathcal{C}}(x, -)$ de ses flèches de source $x \in \operatorname{ob} \mathcal{C}$ est indépendant du choix de l'objet x en question. Dans ce cas, la composition des flèches définit sur l'ensemble $A = \mathcal{C}_x$ une structure de groupe, et \mathcal{C} s'identifie à [X,A]. Lorsque l'ensemble X est réduit à un point, et que le groupe D est également trivial, la catégorie [*,A] a pour nerf l'espace classifiant du groupe A, généralement noté BA.

iii) Supposons que l'ensemble X est réduit à un point, c'est-à-dire que l'on considère un ensemble croisé

$$[D \xrightarrow{\rho} A \Longrightarrow \{*\}]$$

déterminé par un module croisé $\rho:D\longrightarrow A$, placé en degrés 1 et 2. Une première manière d'associer un objet simplicial à ce module croisé ρ est de considérer ce dernier comme étant au contraire concentré en degrés 0 et 1. Il en résulte alors, par oubli de structure, une action à gauche via ρ du groupe D sur l'ensemble sous-jacent à A. L'action à droite induite détermine un ensemble simplicial⁽²⁾ [A,D]. La structure oubliée

 $^{{}^{(2)}{\}rm On}$ identifie désormais une catégorie à son nerf.

de module croisé détermine sur cet ensemble une structure de groupe simplicial, notée \mathcal{G} .

Cette construction préliminaire étant effectuée, l'ensemble simplicial associé au complexe croisé (1.9) peut être défini comme l'espace classifiant \mathcal{BG} du groupe simplicial \mathcal{G} . Le foncteur « classifiant » B correspond en effet, au niveau des ensembles simpliciaux, à l'opération souhaitée au niveau des complexes, qui translate d'un cran vers la gauche le complexe $D \longrightarrow A$ de longueur 1. Il s'applique terme à terme à chacune des composantes \mathcal{G}_k de \mathcal{G} et produit donc un ensemble bisimplicial. L'ensemble simplicial diagonal associé $\Delta \mathcal{BG}$ ([8] appendix B), est une variante de l'ensemble simplicial tronqué

$$(1.10) D^3 \times A^3 \Longrightarrow D \times A^2 \Longrightarrow A \Longrightarrow \{*\}$$

déduit de (1.3) en supposant que l'ensemble X est réduit à un point. Pour une autre variante de cette construction, voir [9] 3.11.

iv) Si l'on suppose dans la situation précédente que le terme A du module croisé considéré est trivial, alors le groupe D est automatiquement commutatif, et cette construction associe un groupe abélien simplicial au complexe constitué par le groupe D placé en degré 2. Celui-ci est un groupe abélien simplicial d'Eilenberg-Mac Lane K(D,2). Il peut s'obtenir directement par la construction de Dold-Kan ([23] I 1.3), qui associe un groupe abélien simplicial à n'importe quel complexe de groupes abéliens.

$$D \xrightarrow{\rho} A \xrightarrow{\sigma} G$$

un module croisé généralisé de longueur 2 au sens de [18]. Celui-ci consiste en la donnée d'un complexe de groupes de longueur 2 pour lequel les flèches ρ et σ sont équivariantes relativement à des actions données de G sur D et A (G agissant sur lui-même par conjugaison). On se donne également une application

$$\begin{array}{cccc} A \times A & \longrightarrow & D \\ (a_0, a_1) & \longmapsto & \{a_0, a_1\} \end{array}$$

satisfaisant à des conditions appropriées [18] (2.10). Une construction de type Dold-Kan dans un cadre non abélien fait correspondre à ce module croisé généralisé de longueur 2 un groupe simplicial \mathcal{K} . Le module croisé généralisé de longueur 2 détermine par oubli de structure un e.c.f.c

$$[D \xrightarrow{G} A \Longrightarrow G]$$

dans lequel l'application (1.11) n'intervient plus, la structure de groupe de G ne servant qu'à définir l'action par translation de A sur G. Ceci est un ensemble croisé en groupes au sens de [28] I.1, pour lequel l'action de A sur G est définie via l'homomorphisme de A vers G par translation à gauche. L'ensemble simplicial (1.3) associé à

cet ensemble croisé n'est autre que l'ensemble simplicial sous-jacent au groupe simplicial \mathcal{K} . La correspondance de type Dold-Kan non abélienne entre les modules croisés généralisés de longueur 2 et les groupes simpliciaux \mathcal{K} pour lesquels les groupes d'homotopie $\pi_k(\mathcal{K})$ sont nuls lorsque $k \geq 3$ a été étendue dans [17] en une correspondance entre les groupes simpliciaux et des complexes de groupes de longueur quelconque, munis de structures supplémentaires analogues aux applications (1.11).

vi) Indiquons brièvement la manière dont cette construction d'un ensemble simplicial à partir d'un e.c.f.c. se prolonge au cas général d'un ensemble croisé (1.1). Les deux premières composantes de l'ensemble simplicial correspondant \mathcal{X} (1.3) sont inchangées, tandis que la composante \mathcal{X}_2 est maintenant définie par

$$\mathcal{X}_2 = B \times A^2$$

Enfin, la composante \mathcal{X}_3 est constituée de sextuplets $(b_0,b_2,b_3,a_0,a_1,a_2)$ où b_0 et b_2 vivent dans la fibre B_x de la projection $B \longrightarrow X \times A \longrightarrow X$ au dessus de $x \in X$, tandis que b_3 est un élément de $B_{a_0^{-1}x}$. Les formules définissant les opérateurs face et dégénérescence sont essentiellement inchangées, pourvu que l'on considère qu'une expression (x,b,a_0,a_1) (1.5) $(resp.\ (x,b_0,b_2,b_3,a_0,a_1,a_2)$ (1.6)) désigne un terme (b,a_0,a_1) avec $b\in B_x$ (resp. un sextuplet du type mentionné plus haut). A titre d'exemple l'opérateur face d_2 (1.6) devient

$$d_2(b_0,b_2,b_3,a_0,a_1,a_2) = (\ (^{a_0}b_3)^{-1}b_0\ b_2,\ a_0,\ \rho_{a_0^{-1}x}(b_3)^{-1}a_1a_2)\ \ .$$

La proposition B.1.2 reste valable dans cette situation. Cependant, nous n'expliciterons pas dans ce qui suit les groupes variables B_x dans lesquels vivent les élément b_i considérés, c'est-à-dire que nous considérerons principalement le cas des e.c.f.c.

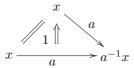
B.2. Ensembles croisés et 2-catégories

Les formules algébriques définissant l'ensemble simplicial associé à l'e.c.f.c. (1.2) sont peu lisibles, et le seraient encore moins si l'on s'intéressait à des complexes de longueur supérieure. Il est donc préférable d'associer à un tel ensemble croisé un objet de nature catégorique, qui peut donc être représenté par des objets et des flèches, et dont le nerf sera l'objet simplicial \mathcal{X} en question. C'est ce qui a été fait plus haut lorsque l'on a associé à l'ensemble croisé $[1 \xrightarrow{X} A \Rightarrow X]$ la catégorie [X, A] dont les flèches sont décrites comme en (1.7), munies de la loi de composition (1.8). La structure catégorique correspondant à un e.c.f.c. (1.2) est celle d'une 2-catégorie \mathcal{C} dont le nerf (au sens de [31] §2) est l'ensemble simplicial \mathcal{X} (1.3). La 2-catégorie \mathcal{C} considérée ici est constituée d'un ensemble d'objets X, de 1-flèches entre les objets définies comme en (1.7), et composées de la même manière. Enfin, tout quadruplet

⁽³⁾ On renvoie à [27] pour la définition et les propriétés élémentaires des 2-catégories.

 (x, b, a_0, a_1) , élément de la composante $\mathcal{X}_2 = X \times D \times A^2$ de degré 2 de \mathcal{X} (1.3) détermine, comme il résulte des formules (1.5), une 2-flèche⁽⁴⁾

On dira qu'un tel quadruplet est trivial lorsque b=1. Si l'on convient que toute 2-flèche de $\mathcal C$ est inversible (en rajoutant formellement des inverses aux 2-flèches précédentes) et que l'on néglige les 2-flèches dégénérées de type (x,1,1,a), correspondant aux 2-flèches triviales



on trouve qu'une 2-flèche

$$(2.2) x \underbrace{\qquad \qquad \qquad \qquad }_{a'} a^{-1}x$$

entre deux paires de 1-flèches (x,a), (x,a') de mêmes objets source et but est décrite par un quadruplet de type (x,b,1,a'), sa source (x,a) étant déterminée par l'équation

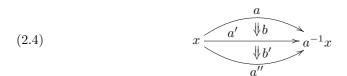
$$\rho_x(b)a = a'.$$

Par l'axiome (iii) de la définition B.1.1, les deux flèches (x, a) et (x, a') ont bien le même but. On dira simplement dans ce cas que la 2-flèche (2.2) est décrite par le triplet (x, b, a').

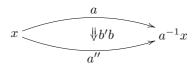
De fait, les 2-catégories obtenues ici sont d'un type particulier, dans la mesure où toutes les 1- et 2-flèches sont inversibles. En ce qui concerne les 2-flèches, c'est le cas par construction. Quant à l'invertibilité des 1-flèches, elle est assurée par la paire de quadruplets triviaux $(x, 1, a, a^{-1})$ et $(a^{-1}x, 1, a^{-1}, a)$, qui font respectivement de la flèche $(a^{-1}x, a^{-1})$ un inverse à droite et à gauche de (x, a), à une 2-flèche triviale près. Les 2-catégories possédant de telles propriétés d'invertibilité pour les 1- et 2-flèches sont appelées des 2-groupoïdes. Si on néglige les 2-flèches décrites par les quadruplets triviaux, alors les 1-flèches deviennent strictement inversibles (et non plus simplement à une 2-flèche près). On est dans ce cas en présence d'un 2-groupoïde au sens le plus usuel (voir par exemple [31]).

 $^{^{(4)}}$ Dans le cas plus général d'un ensemble croisé (1.1), le groupe D_x dans lequel vit l'élément b est déterminé par l'objet source x du diagramme (2.1).

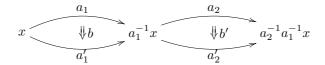
Les axiomes [27] auxquels sont astreintes les 2-catégories sont bien satisfaits par la 2-catégorie \mathcal{C} ainsi construite. En particulier, les compositions dites « verticales » et « horizontale » de 2-flèches sont aisément décrites. La composée « verticale » de la paire de flèches verticalement composables (x,b',a'') et (x,b,a')



est la 2-flèche



déterminée par le triplet (x, b' b, a''). De même, la composée « horizontale » de la paire de flèches horizontalement composables



est la flèche

(2.5)
$$x = \underbrace{ \begin{cases} a_1 a_2 \\ \psi(a'_1 b')b \end{cases}}_{a'_1 a'_2} (a_1 a_2)^{-1} x$$

décrite par $(x, a'_1b'b, a'_1a'_2)$. L'axiome (vi) de la définition B.1.1 est utilisé pour démontrer que la formule

$$\rho_x(a_1'b'b)a_1a_2 = a_1'a_2'$$

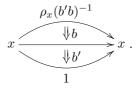
est satisfaite, comme l'exige l'équation (2.3).

Remarques

i) Les 2-groupoïdes obtenus ici sont d'un type quelque peu particulier, dans la mesure où l'ensemble des 2-flèches (x,b,a') de but une 1-flèche donnée (x,a') est en bijection avec l'ensemble sous-jacent au groupe D, et ne dépend donc pas de la 1-flèche en question. La composition verticale de 2-flèches de but la 1-flèche identité détermine sur cet ensemble une structure de groupe, en associant à la paire de 2-flèches de but 1_x

(2.6)
$$x \xrightarrow{\rho_x(b)^{-1}} x \qquad x \xrightarrow{\rho_x(b')^{-1}} x$$

la 2-flèche suivante, obtenue par composition verticale des triplets (x, b', 1) et $(x, b, \rho_x(b')^{-1})$:



Puisque cette 2-flèche est de la forme (x,b'*b,1), elle détermine bien une loi de composition * sur D qui ne dépend essentiellement pas du choix de l'objet x et qui coincide avec la loi de groupe de D lorsque celle-ci a été antérieurement donnée. Les ensembles croisés de [28] correspondent à une situation un peu plus générale, dans laquelle l'ensemble B_x de 2-flèches (2.6) de but 1_x dépend de l'objet x considéré, tandis que l'ensemble des 1-flèches de source x en est indépendant.

ii) Dans la situation examinée ici, l'action μ du groupe A sur le groupe D peut également être interprétée en termes catégoriques. Soit b un élément du groupe D, auquel correspond une 2-flèche (2.6) de but l'application identité 1_x . Pour tout $a \in A$, la 2-flèche

$$(2.7) a^{-1}x \xrightarrow{a} x \xrightarrow{\rho_x(b)^{-1}} x \xrightarrow{a^{-1}} a^{-1}x$$

obtenue en composant la première 2-flèche (2.6) à gauche et à droite avec des 2-flèches identité, a pour but l'application identité $1_{a^{-1}x}$. Elle est donc définie par un triplet $(a^{-1}x, ab, 1)$, pour un élément ab de D. Le diagramme (2.7) montre que la source de cette 2-flèche est bien $(a^{-1}x, a\rho_x(b)^{-1})$, comme le requiert l'axiome (vi) de la proposition B.1.1. De la même manière, l'axiome (v) affirme que la 2-flèche composée

(2.8)
$$x \xrightarrow{\rho_x(\beta)} x \xrightarrow{\rho_x(b)^{-1}} x \xrightarrow{\rho_x(\beta)^{-1}} x$$

coincide avec la 2-flèche de type (2.7)

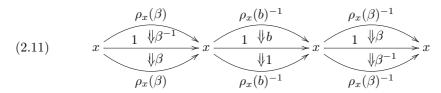
(2.9)
$$x \xrightarrow{\rho_x(\beta)} x \xrightarrow{\rho_x(b)^{-1}} x \xrightarrow{\rho_x(\beta)^{-1}} x$$

Ceci se démontre de manière catégorique en composant verticalement le diagramme (2.8) avec la 2-flèche

(2.10)
$$x \xrightarrow{\psi\beta} x \xrightarrow{\psi1} x \xrightarrow{\psi\beta^{-1}} x$$

$$\rho_x(\beta) \qquad 1 \qquad \rho_x(\beta)^{-1}$$

(cette dernière est d'ailleurs triviale puisque la composition horizontale annule la paire de 2-cellules opposées β, β^{-1}). On obtient alors un diagramme



En effectuant les compositions verticales⁽⁵⁾, on retrouve bien la 2-flèche composée (2.9).

B.3. Cohomologie galoisienne des ensembles croisés

Soient T un topos et D(T) la catégorie dérivée des objets simpliciaux de T ([23] I, ch. 1, déf. 2.3.5). Dans le cas du topos ponctuel (Ens) cette catégorie dérivée est simplement la catégorie homotopique, obtenue à partir de la catégorie des ensembles simpliciaux, en inversant formellement les équivalences d'homotopie faibles, c'est-à-dire les morphismes qui induisent des isomorphismes au niveau des groupes d'homotopie. Dans le cas des objets simpliciaux d'un topos quelconque T, la définition est la même, à ceci près qu'elle prend en compte la définition des faisceaux d'homotopie d'un faisceau simplicial, plus subtile dans le cas général que dans le cas ensembliste.

Une manière très générale de définir la cohomologie à valeurs dans un objet simplicial $\mathcal X$ de T est de poser

(3.1)
$$H^0(e, \mathcal{X}) = Hom_{D(T)}(e, \mathcal{X})$$

où l'on a identifié à droite \mathcal{X} avec l'objet qu'il détermine dans D(T), et où e est l'objet final de T, vu comme objet simplicial constant. On définit les groupes de cohomologie en tout degré i négatif en posant

(3.2)
$$H^{-i}(e, \mathcal{X}) = H^0(e, \Omega^i \mathcal{X})$$

⁽⁵⁾ Dans un diagramme tel que (2.11) d'une 2-catégorie, l'axiome dit de l'interchange permet d'effectuer les compositions horizontales de 2-flèches avant ou après les compositions verticales, sans que le résultat final en soit affecté.

où Ω est le foncteur « espaces de lacets ». Cette définition, qui couvre tous les cas envisageables, se ramène notamment dans les situations mentionnées au §1 à diverses définitions de la cohomologie abélienne ou non abélienne. Lorsque l'objet simplicial \mathcal{X} provient, par le procédé décrit au §1, d'un e.c.f.c.

$$[D \xrightarrow{X} A \Rightarrow X]$$

(1.2) de T, on posera, pour tout $i \geq 0$,

$$(3.3) \hspace{1cm} H^{-i}(e, \hspace{1mm} D \xrightarrow{\chi} A \Rightarrow X) = H^{-i}(e, \mathcal{X}) \hspace{1mm} .$$

De même, cette expression sera notée

$$(3.4) H^{-i}(e, B \longrightarrow A \times X \Rightarrow X)$$

lorsque l'on part d'un ensemble croisé quelconque (1.1). Il n'est pas en général possible de définir des ensembles de cohomologie de degré positifs à valeurs dans un tel ensemble croisé.

Le terme de droite de (3.1) s'exprime concrètement comme la limite inductive, lorsque e' parcourt les hyper-recouvrements de e

(3.5)
$$H^0(\mathcal{X}) = \text{colim } [e', \mathcal{X}]$$

des classes d'homotopie d'applications du nerf de e' à valeurs dans l'objet simplicial \mathcal{X} . Le cas qui nous intéresse dorénavant est celui où $T = \operatorname{Spec}(k)_{\acute{e}t}$ est le topos des faisceaux pour la topologie étale au-dessus du schéma $\operatorname{Spec}(k)$ associé à un corps k de clôture séparable k_s . On sait ([30] II théorème 1.9) qu'il existe une équivalence

(3.6)
$$\operatorname{Fais}_k \simeq (\Gamma - \operatorname{ens})$$

entre la catégorie des faisceaux sur le petit site étale de $\operatorname{Spec}(k)$ et la catégorie (Γ -ens) des ensembles munis de la topologie discrete, et sur lesquels le groupe de Galois profini $\Gamma = \operatorname{Gal}(k_s/k)$ agit à gauche de manière continue. Cette équivalence fait correspondre à un faisceau F le Γ -ensemble $F(k_s)$ de ses sections sur $\operatorname{Spec}(k_s)$. Par le biais de cette correspondance, un e.c.f.c. (1.2) de T s'identifie à un e.c.f.c.

$$[D(k_s) \xrightarrow{X(k_s)} A(k_s) \Longrightarrow X(k_s)]$$

de $(\Gamma - \text{ens})$, c'est-à-dire un ensemble croisé du type étudié dans [28].

Comme il est bien connu, l'équivalence de catégories (3.6) implique que la cohomologie d'un objet F de la catégorie Fais_k s'identifie à la cohomologie galoisienne du Γ -objet associé $F(k_s)$. Pour le démontrer, on commence par observer qu'il est inutile, dans le contexte présent, d'avoir recours aux hyper-recouvrements. Le nerf du

recouvrement $\mathcal U$ à un seul élément $^{(6)}$

$$(3.7) Spec(k_s) \longrightarrow Spec(k)$$

de l'objet final $e = \operatorname{Spec}(k)$ de T s'identifie à l'objet simplicial $E\Gamma$ de $(\Gamma - \operatorname{ens})$

$$\Gamma^4 \Longrightarrow \Gamma^3 \Longrightarrow \Gamma^2 \Longrightarrow \Gamma$$

muni de l'action diagonale à gauche par translation de Γ . Les opérateurs face sont définis par la règle

$$d_i(\gamma_0,\ldots,\gamma_r)=(\gamma_0,\ldots,\widehat{\gamma_i},\ldots,\gamma_r)$$

tandis que l'opérateur de dégénérescence $s_i(\gamma_0, \ldots, \gamma_r)$ répète la variable γ_i . La formule (3.5) affirme que pour tout objet simplicial \mathcal{X} de Fais_k, l'ensemble $H^0_{et}(\operatorname{Spec}(k), \mathcal{X})$ est en bijection avec l'ensemble des classes d'homotopies d'applications simpliciales continues Γ -équivariantes

$$(3.8) E\Gamma \longrightarrow \mathcal{X}(k_s)$$

Le cas usuel est celui où l'ensemble simplicial de départ X est le groupe abélien simplicial d'Eilenberg-Mac Lane K(A,n) associé à un groupe abélien A de Fais_k. On retrouve alors l'assertion bien connue [30] III §2 suivant laquelle la cohomologie étale de Spec(k) à valeurs dans le faisceau abélien A s'identifie à celle du complexe de cochaines équivariantes continues $\operatorname{Hom}_{\Gamma}(E\Gamma, A(k_s))$. Puisqu'une telle cochaine $f(\gamma_0, \ldots, \gamma_r)$ est déterminée par l'application associée \tilde{f} définie par la formule

(3.9)
$$\tilde{f}(\gamma_1, \dots, \gamma_r) = f(1, \gamma_1, \gamma_1, \gamma_2, \dots, \gamma_1, \dots, \gamma_r),$$

ce complexe s'identifie au complexe des cochaines inhomogènes continues de Γ à valeurs dans le Γ -module $A(k_s)$ ([30] III example 2.6, [32] VII §3). On obtient ainsi l'identification souhaitée

$$H^0_{\acute{e}t}(\operatorname{Spec}(k), K(A, n)) = H^n_{\acute{e}t}(\operatorname{Spec}(k), A) = H^n(\Gamma, A(k_s)).$$

Le cas qui nous intéresse ici est celui où \mathcal{X} est l'ensemble simplicial de Fais_k associé à un e.c.f.c. L'ensemble $H^0_{\acute{e}t}(\operatorname{Spec}(k),\mathcal{X})$ s'identifie alors à l'ensemble des classes d'homotopie d'applications (3.8) Γ -équivariantes. La proposition suivante, énoncée pour les e.c.f.c., demeure valable pour les ensembles croisés quelconques.

Proposition B.3.1. — Soit

$$[D \xrightarrow{X} A \Rightarrow X]$$

un e.c.f.c. (1.2) de la catégorie Fais_k des faisceaux sur un corps k pour la topologie étale. Alors il existe une bijection

$$H^0_{\acute{e}t}(\operatorname{Spec}(k), D \xrightarrow{X} A \Rightarrow X) \longrightarrow \mathbf{H}^0(\Gamma; D(k_s) \xrightarrow{X(k_s)} A(k_s) \Longrightarrow X(k_s))$$

 $^{^{(6)}}$ En fait, il convient plutôt de raisonner sur les recouvrements $\operatorname{Spec}(K) \longrightarrow \operatorname{Spec}(k)$, où K/k est une extension de corps finie, et de passer à la limite.

le second terme désignant l'ensemble des classes de cohomologie (au sens de [28]) du $X(k_s)$ -ensemble

$$[D(k_s) \xrightarrow{X(k_s)} A(k_s) \Longrightarrow X(k_s)].$$

 $D\acute{e}monstration$. — Pour définir cette application au niveau des 0-cocycles il convient de partir, compte tenu de la discussion précédente, d'une application simpliciale Γ -équivariante

$$(3.10) f: E\Gamma \longrightarrow \mathcal{X}(k_s)$$

à valeurs dans l'ensemble simplicial associé en (1.3) à l'ensemble croisé

$$[D(k_s) \xrightarrow{X(k_s)} A(k_s) \Longrightarrow X(k_s)].$$

La compatibilité de f aux opérateurs face implique que sa composante de degré 2 est de la forme

$$f_2(1, \sigma, \sigma\tau) = (x, b_{\sigma,\tau}, a_{\sigma}, \sigma(a_{\tau}))$$

où $(x, a_{\sigma}, b_{\sigma, \tau})$ est un 0-cocycle, au sens de [28], à valeurs dans l'e.c.f.c.

$$[D(k_s) \xrightarrow{X(k_s)} A(k_s) \Longrightarrow X(k_s)]$$

La compatibilité aux opérateurs de dégenérescence implique par ailleurs que les termes a_{σ} , $b_{\sigma,\tau}$ qui le constituent sont normalisés, c'est-à-dire que a_{σ} (resp. $b_{\sigma,\tau}$) est trivial dès que σ où τ l'est.

Supposons donnée une homotopie simpliciale $g \simeq f$ entre une paire d'applications simpliciales (3.10) définies respectivement par les 0-cocycles $(x', a'_{\sigma}, b'_{\sigma,\tau})$ et $(x, a_{\sigma}, b_{\sigma,\tau})$. Celle-ci est constituée pour tout q d'une famille d'applications équivariantes $h_i: (E\Gamma)_q \longrightarrow (\mathcal{X}(k_s))_{q+1} \quad (0 \leq i \leq q)$ satisfaisant à des identités appropriées [29] déf. 5.1. On définit un élément $\alpha \in A$ par l'équation

(3.11)
$$h_0(1) = (x, \alpha^{-1}) .$$

Les identités en question impliquent que les applications h_0 , $h_1: (E\Gamma)_1 \longrightarrow (\mathcal{X}(k_s))_2$ sont de la forme

$$h_0(1,\sigma) = (x, \beta_{\sigma}, \alpha^{-1}, a'_{\sigma})$$

$$h_1(1,\sigma) = (x, \beta'_{\sigma}, a_{\sigma}, \sigma(\alpha)^{-1})$$

L'élément $\alpha \in A$ et la 1-cochaine \tilde{b}_{σ} à valeurs dans D, où l'on a posé

$$\tilde{\beta}_{\sigma} = \beta_{\sigma} \left(\beta_{\sigma}' \right)^{-1} ,$$

expriment le fait que les 0-cocycles $(x, a_{\sigma}, b_{\sigma,\tau})$ et $(x', a'_{\sigma}, b'_{\sigma,\tau})$ sont cohomologues, une fois démontrée la relation

$$b'_{\sigma,\tau} = {}^{\alpha}(\tilde{\beta}_{\sigma}{}^{a_{\sigma}}\sigma(\tilde{\beta}_{\tau})\,b_{\sigma,\tau}\,\tilde{\beta}_{\sigma\tau}^{-1})$$

[28] 1.2 entre $b_{\sigma,\tau}$ et $b'_{\sigma,\tau}$. Nous en omettrons la vérification, qui s'effectue en considérant les applications h_0 , h_1 , $h_2: (E\Gamma)_2 \longrightarrow (\mathcal{X}(k_s))_3$ et en explicitant les identités simpliciales qui leur correspondent.

Inversément, soit $(x, a_{\sigma}, b_{\sigma,\tau})$ un 0-cocycle normalisé. Par la propriété qui définit le cosquelette, une application simpliciale Γ -équivariante associée $f: E\Gamma \longrightarrow \mathcal{X}(k_s)$ est entièrement déterminée par la donnée de ses composantes de degré ≤ 3 . On sait que la composante f_r de degré r de l'application f est caractérisée par ses valeurs sur les éléments $(1, \gamma_1, \ldots, \gamma_r) \in (E\Gamma)_r$. On pose

$$\begin{array}{rcl} f_0(1) & = & x \\ f_1(1,\,\sigma) & = & (x,\,a_\sigma) \\ f_2(1,\,\sigma,\,\sigma\tau) & = & (x,\,b_{\sigma,\tau},\,a_\sigma,\,\sigma(a_\tau)) \\ f_3(1,\,\sigma,\,\sigma\tau,\,\sigma\tau\nu) & = & (x,\,b_{\sigma,\tau},\,b_{\sigma\tau,\nu},\,\sigma(b_{\tau,\nu}),\,a_\sigma,\,\sigma(a_\tau),\,\sigma\tau(a_\nu)) \end{array}$$

et l'on vérifie que l'application ainsi définie est compatible aux opérateurs face et dégénérescence. Ceci nécessite notamment, vu la définition donnée plus haut de l'opérateur $d_1: \mathcal{X}_3 \longrightarrow \mathcal{X}_2$, que la condition de cocycle

$$(3.12) a_{\sigma}\sigma(b_{\tau,\nu}) b_{\sigma,\tau\nu} = b_{\sigma,\tau} b_{\sigma\tau,\nu}$$

de [28] 1.2 soit satisfaite.

Il reste à montrer qu'une paire d'applications simpliciales f et g déterminées par une paires de cocycles normalisés $(x, a_{\sigma}, b_{\sigma,\tau})$ et $(x', a'_{\sigma}, b'_{\sigma,\tau})$ cohomologues sont homotopes, par une homotopie simpliciale equivariante. On suppose que les cocycles en question diffèrent par un cobord (α, β_{σ}) au sens de [28]. On définit alors l'opérateur sur la composante de degré 0 par la formule (3.11), et les opérateurs h_0 et h_1 sur celle de degré 1 par

(3.13)
$$h_i(1, \sigma) = \begin{cases} (x, \beta_{\sigma}, \alpha^{-1}, a'_{\sigma}) & i = 0 \\ (x, 1, a_{\sigma}, \sigma(\alpha)^{-1}) & i = 1 \end{cases}.$$

Enfin, sur la composante de degré 2, on pose

$$h_{i}(1, \sigma, \tau) = \begin{cases} (x, \beta_{\sigma}, \beta_{\sigma}^{-1}(\alpha^{-1}b'_{\sigma,\tau})\beta_{\sigma\tau}, b'_{\sigma,\tau}, \alpha^{-1}, a'_{\sigma}, \sigma(a'_{\tau})) & i = 0 \\ (x, 1, {}^{a_{\sigma}}\sigma(\beta_{\tau})b_{\sigma,\tau}, \sigma(\beta_{\tau}), a_{\sigma}, \sigma(\alpha)^{-1}, \sigma(a'_{\tau})) & i = 1 \\ (x, \beta_{\sigma,\tau}, 1, 1, a_{\sigma}, \sigma(a_{\tau}), \sigma\tau(\alpha)^{-1}) & i = 2 \end{cases}$$

et l'on vérifie que ces formules satisfont aux identitées simpliciales requises [29] déf. 5.1.

En termes plus imagés, les applications f_1 et f_2 peuvent être respectivement représentées par les 1-simplexes

$$x \xrightarrow{a_{\sigma}} \sigma(x)$$

et les 2-simplexes

(3.14)
$$\begin{array}{c}
\sigma(x) \\
a_{\sigma} \\
b_{\sigma,\tau} \\
\end{array}$$

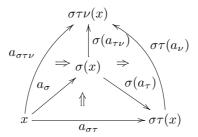
$$\begin{array}{c}
\sigma(a_{\tau}) \\
\end{array}$$

$$x \xrightarrow{q} \sigma(x)$$

déduits de (2.1), qui matérialisent respectivement les conditions

$$a_{\sigma}^{-1}x = \sigma(x)$$
 $\rho_x(b_{\sigma,\tau}) = a_{\sigma} \sigma(a_{\tau}) a_{\sigma\tau}^{-1}$

de [28]. Enfin la condition de cocycle (3.12) exprime la compatibilité entre elles des quatres faces de type (3.14) du tétraèdre



correspondant respectivement aux éléments $b_{\sigma,\tau}$, $\sigma(b_{\tau,\nu})$, $b_{\sigma,\tau\nu}$ et (pour la face antérieure) $b_{\sigma\tau,\nu}$ du groupe D.

B.4. Complexes de longueur n et n-catégories

Pour étendre ce qui a été dit jusqu'ici à des situations plus générales, il convient de passer du contexte des 2-catégories à celui des n-catégories pour un entier n quelconque. La notion de n-catégorie n'est pas encore stabilisée, mais plusieurs définitions ont récemment été proposées $[\mathbf{3}]$, $[\mathbf{5}]$, $[\mathbf{34}]$, dont on espère qu'elles fourniront des théories équivalentes⁽⁷⁾. On dispose de définitions explicites pour n=2 $[\mathbf{27}]$ et n=3 $[\mathbf{24}]$. Les diagrammes 4-catégoriques de T. Trimble sont également cités, bien qu'ils ne soient pas publiés.

Même si la définition des n-catégories n'est pas encore entièrement connue, cette notion fournit un cadre conceptuel utile à la compréhension des complexes de groupes de longueur n. On peut s'en convaincre en considérant tout d'abord le cas élémentaire des

⁽⁷⁾ Pour une discussion informelle de ces questions, voir [4].

complexes de longueur 0. Lorsque l'on passe de la notion d'ensemble (= 0-catégorie) à celle de catégorie, puis à celle de 2-catégorie, on voit progressivement se dégager le concept de groupe puis de groupe abélien. Il est en effet bien connu qu'une catégorie à un seul objet équivaut à la donnée du monoide M de ses flèches. La donnée d'une telle catégorie dont toutes les flèches sont inversibles, c'est-à-dire d'un groupoïde à un seul objet, correspond donc⁽⁸⁾ à celle d'un groupe G. De la même façon, un 2-groupoïde qui ne possède qu'un seul objet *, et une seule 1-flèche 1*, est entièrement décrit par le groupe B de ses 2-flèches $b:1_*\longrightarrow 1_*$, pour la composition verticale (2.4). La loi de l'interchange (voir la note de bas de page 5) impose alors à la loi de groupe de B d'être abélienne. On peut être tenté d'examiner de la même manière pour tout nla structure révélée par un n-groupoïde ne possédant qu'un seul objet et une seule i-flèche pour chaque entier i < n. Dans ce cas, l'ensemble B des n-flèches est en fait à nouveau simplement muni d'une structure de groupe abélien et on n'obtient donc rien de nouveau. En termes topologiques, les constructions évoquées font successivement correspondre à un ensemble X l'ensemble simplicial constant qu'il définit, puis à un groupe G son espace classifiant BG, enfin à un groupe abélien B la famille des espaces d'Eilenberg-Mac Lane K(B, n) pour tout entier n > 1, caractérisés comme les espaces dont l'unique groupe d'homotopie non trivial est le groupe abélien B en degré n.

On peut également décrire ces différentes structures en termes de complexes de groupes. A l'ensemble simplicial constant X correspond simplement l'ensemble X luimême, placé en degré zéro, tandis qu'à l'espace classifiant BG du groupe G correspond le complexe $G \longrightarrow 1$ constitué de G placé en degré (homologique) 1, qui sera noté G[1]. Le théorème de Dold-Kan montre que K(B,n) correspond pour n>2 au complexe de groupes abéliens B[n], constitué de B placé en degré n. Puisque X (resp. BG) ne sont que des ensembles simpliciaux, dépourvus de toute structure de groupe, il n'est pas possible de leur associer un objet classifiant «BX» (resp. «BBG = K(G,2)»). Il n'est donc pas licite de translater l'ensemble X vers la gauche, ni d'associer à un groupe G un complexe G[n] concentré en degré n>1, à moins que la loi de groupe de G ne soit abélienne.

La discussion précédente concernait les complexes concentrés en un seul degré. Le cadre des catégories permet de l'étendre au cas des complexes de longueur 1, en considérant les catégories munies de lois de groupe. Le cas le moins structuré est celui d'une catégorie \mathcal{C} dépourvue de toute loi de groupe. Son nerf $N\mathcal{C}$ est un ensemble simplicial qui satisfait à la condition d'être isomorphe à son 1-cosquelette [1], ce qui exprime en gros le fait qu'on ne dispose ici d'aucune n-flèche dès lors que n > 1. Lorsque \mathcal{C} est un groupoïde, son nerf satisfait en outre à la condition d'extension de Kan [29], ce qui nous assure (par une discussion analogue à celle de la proposition B.1.2, mais dans un cadre plus élémentaire) que ses groupes d'homotopie $\pi_n(N\mathcal{C})$ sont

⁽⁸⁾ C'est d'ailleurs là l'origine de cette terminologie [14].

non nuls dès que n > 1 (voir [23] VI, remarque 2.6.2). On est alors en présence, sinon d'un « complexe d'ensembles » de longueur 1, du moins du graphe

$$(4.15) X_1 \Longrightarrow X_0$$

d'une relation d'équivalence sur l'ensemble X_0 . Un exemple simple en a été donné par la catégorie [X,A] (1.8) déterminée par l'action d'un groupe A sur un ensemble X, qui peut être notée

$$(4.16) A \Longrightarrow X$$

afin de lui donner l'aspect d'un complexe de longueur 1.

La prochaine étape consiste à examiner ce qu'est une 2-catégorie (9) à un seul objet. On est alors, pourvu qu'on impose en outre à la 2-catégorie \mathcal{C} en question d'être un 2-groupoïde, en présence d'un groupoïde monoidal à objets inversibles (10) \mathcal{G} , dont les objets (resp. les morphismes) sont les 1-flèches (resp. les 2-flèches) de \mathcal{C} . La loi de groupe

$$\mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{G}$$

qui définit cette structure monoidale est déterminée par la composition des 1- et 2flèches dans \mathcal{C} . Lorsque la loi de groupe de \mathcal{G} est strictement associative, l'ensemble des objets de \mathcal{G} est un groupe A, et celui des flèches issues de l'élément neutre de Aen est un autre, noté D. Le complexe de groupes

$$D \longrightarrow A$$

défini par l'application but est muni d'une structure de module croisé, c'est-à-dire d'une action de A sur D satisfaisant à des conditions appropriées [11] (1.2.3). Le nerf de la 2-catégorie C est alors l'ensemble simplicial (1.10) ou l'une de ses variantes, et le complexe de groupes associé $D \longrightarrow A \longrightarrow 1$ n'est autre que (1.9).

Si l'on veut translater ce dernier complexe vers la gauche, il convient de munir le module croisé qui le définit de structures supplémentaires. Du point de vue catégorique, on doit maintenant considérer une tricatégorie (ou plutôt un trigroupoïde) \mathcal{D} à un seul objet, et à une seule 1-flèche. Ceci correspond à la donnée d'une catégorie monoidale à objets inversibles \mathcal{G} , constituée des 2- et 3-flèches de \mathcal{D} , mais munie d'une structure de commutativité faible pour sa loi de groupe, appelée le tressage, et dont la définition est due à A. Joyal et R. Street [25]. En termes de modules croisés, ce tressage correspond à une application (1.11) satisfaisant à certaines conditions ([18]

 $^{^{(9)}}$ ou plutôt une bicatégorie, c'est-à-dire que l'on n'impose pas à la loi de composition des 1-flèches d'être strictement associative, mais simplement associative à une 2-flèche près de manière cohérente. $^{(10)}$ on dit également : une gr-catégorie.

corollaire 2.9). On dit alors que le module croisé est tressé. A de tels modules tressés correspondent donc les complexes de groupes

$$D \longrightarrow A \longrightarrow 1 \longrightarrow 1$$

concentrés en degré 2 et 3, dont la connaissance détermine celle du nerf de \mathcal{D} . Si l'on souhaite encore translater ce complexe d'un cran vers la gauche, on doit renforcer la commutativité de la loi de groupe de la catégorie \mathcal{G} qui le définit. On est alors en présence d'une catégorie monoidale symétrique, appelée également parfois une catégorie de Picard lorsque les objets sont comme ici inversibles⁽¹¹⁾. Le module croisé correspondant est alors dit stable [18]. Ces structures, qui permettent donc de définir un complexe translaté

$$D \longrightarrow A \longrightarrow 1 \longrightarrow 1 \longrightarrow 1$$

concentré en degré 3 et 4, sont discutées plus en détail dans [11] 1.2, 1.8. Un examen des invariants qui les classifient (voir loc. cit. 8.3) met en évidence le fait que la condition monoidale symétrique est optimale, et qu'elle permet, sans qu'il soit nécessaire de la renforcer encore, de définir des complexes $D \longrightarrow A$ de longueur 1 concentrés en n'importe quel paire de degrés successifs. Un exemple en est donné par le complexe stable $G^{sc} \longrightarrow G$ associé à un groupe algébrique réductif. La cohomologie à valeurs dans ce complexe est la cohomologie abélianisée du groupe G, due à Borovoi ([7], [11] ex. 1.9). Ce complexe est en fait un exemple de module croisé super-stable au sens de [28]. Une notion encore plus générale que celle de module croisé stable est celle de module croisé strict [18]. Ce sont les complexes concentrés en une paire de degrés succesifs qui sont quasi-isomorphes à des complexes de groupes abéliens. La catégorie de Picard qui correspond à un tel complexe est également dite stricte. La cohomologie à valeurs dans un module croisé stable est une theorie cohomologique extraordinaire, au sens des topologues, tandis que celle à valeurs dans un module croisé strict est l'hypercohomologie usuelle à valeurs dans le complexe de groupes abéliens qui correspond au module en question.

Alors qu'une seule condition de commutativité pouvait être imposée, dans le présent contexte, à un groupe abstrait, la discussion précédente a mis en évidence le fait que le passage d'une catégorie monoidale à une catégorie « stable », correspondant à un complexe de longueur 1 pouvant être indéfiniment décalé vers la gauche, s'effectuait en deux étapes. Le nombre de conditions indépendantes à imposer à une n-catégorie $\mathcal C$ pour qu'elle devienne stable est n+1, chacune des conditions en question permettant de la décaler d'un cran vers la gauche, c'est-à-dire de passer du nerf de la n-catégorie $\mathcal C$ à son classifiant $B\mathcal C$. Nous achevons cet examen des complexes de groupes en passant en revue les résultats connus dans le cas n=2. Les ensembles simpliciaux (satisfaisant à la condition d'extension de Kan) dont seul les trois premiers groupes d'homotopie

 $^{^{(11)}}$ mais on prendra garde que cette terminologie ne coincide pas tout à fait avec celle de Deligne, qui dans [22] appelle catégorie de Picard ce que nous désignons par gr-catégorie.

sont non nuls correspondent aux 2-groupoïdes. Ils constituent le sujet principal de ce texte, la notion d'ensemble croisé étant comme on l'a vu plus haut un modèle un peu particulier du nerf d'un 2-groupoïde. Si l'on veut pouvoir décaler cet objet d'un cran vers la gauche, il convient de le munir d'une loi de groupe. Or, la notion de n-catégorie monoidale est en fait bien connue pour tout n, puisque les axiomes successifs par lesquels on détermine les conditions de cohérence supérieures pour l'associativité ont été mis en évidence depuis longtemps par J. Stasheff [33] sous le nom de structures A_{∞} . Le complexe de groupes de longueur 2 correspondant à un 2-groupoïde monoidal à objets inversibles pour lequel la loi de groupe est strictement associative a été introduit en [18] définition 2.2 sous le vocable de 2-module croisé. Si l'on veut translater d'un cran vers la gauche la 2-catégorie correspondante, il convient de lui rajouter la structure qui la ferait correspondre à une quadricatégorie à un seul objet et une seule 1-flèche. La structure supplémentaire en question a été introduite par Kapranov et Voevodsky [26] sous le nom de 2-catégorie tressée⁽¹²⁾. Les deux conditions de commutativité encore plus restrictives pouvant successivement être imposées à de telles 2-catégories tressées sont discutées dans [11] p. 149-150 sous les noms respectifs de 2catégories fortement tressées et de 2-catégories de Picard. La terminologie adoptée par J. Baez [2] (« 2-catégories monoidales faiblement et fortement involutives ») est sans doute préférable, mais d'autres encore ont été proposées [20], [19] (voir également [12]). Les conditions de commutativité supplémentaires de type strict, qui imposeraient à un complexe de groupes de longueur n d'être quasi-isomorphe à un complexe de groupes abéliens sont décrites pour n=2 en termes catégoriques dans [11] déf. 8.5.

Il reste à exprimer en ces termes la notion de cohomologie à valeurs dans une des structures considérées. La définition (3.1) du H^0 couvre toutes les situations, pourvu que l'on convienne de définir comme en (3.4) la cohomologie à valeurs dans un ensemble croisé, ou un quelconque complexe de groupes, comme étant la cohomologie à valeurs dans l'objet simplicial qui le définit. Cette définition, en termes d'objets de la catégorie dérivée, permet d'éviter d'avoir à effectuer, comme en [28] prop. 1.2.2, la vérification de l'indépendance relativement aux quasi-isomorphismes. On définit les groupes de cohomologie en degrés positifs à valeurs dans une m-catégorie $\mathcal C$ par la formule

$$H^n(e,\mathcal{C}) = H^0(e,B^n\mathcal{C})$$

pourvu que l'ensemble classifiant n-fois itéré $B^n\mathcal{C}$ de \mathcal{C} existe. Ce dernier n'est pas en général défini pour un entier n quelconque (à moins que \mathcal{C} ne soit stable), mais seulement pour des valeurs de n dépendant du niveau de commutativité de la loi de groupe de \mathcal{C} . La translation à droite correspond à l'opération inverse, qui associe à un ensemble simplicial \mathcal{X} l'espace des lacets $\Omega \mathcal{X}$, ce qui permet de définir comme

⁽¹²⁾ Il manque un axiome chez ces auteurs, qui est rétabli dans [2] (voir également [11] p. 148).

en (3.2) des groupes de cohomologie en degrés négatifs. Puisque l'espace $\Omega \mathcal{X}$ est muni d'une structure de groupe à homotopie près, définie par la composition des lacets, l'ensemble de cohomologie correspondant $H^0(e,\Omega \mathcal{X})$ est muni d'une structure de groupe. Pour i>1, la loi de composition en question sur les espaces de lacets itérés $\Omega^i \mathcal{X}$ est commutative à homotopie près. Les groupes $H^{-i}(e,\mathcal{X})=H^0(e,\Omega^i \mathcal{X})$ correspondants sont donc tous abéliens.

Supposons que la m-catégorie \mathcal{C} soit translatable à gauche de n crans au plus. Dans ce cas, l'objet simplicial $\mathcal{X}=B^n\mathcal{C}$ est un ensemble simplicial sans aucune structure de groupe, et $H^n(e,\mathcal{C})$ est simplement un ensemble (pointé). Par ailleurs $H^{n-1}(e,\mathcal{C})=H^0(e,\Omega\mathcal{X})$ est alors un groupe, tandis que les $H^{n-i}(e,\mathcal{C})$ pour i>1 sont associés aux espaces $\Omega^i\mathcal{X}$, et sont donc des groupes abéliens. Ainsi, dans le cas d'un complexe concentré en un seul degré, on retrouve le fait que l'ensemble $H^0(e,X)$ est défini pour tout ensemble X, puis que l'ensemble $H^1(e,G)$ est défini pour tout groupe G, tandis que $H^0(e,G)$ est un groupe, enfin que pour G abélien, la cohomologie à valeurs dans G est définie en tous degrés positifs, et est toujours un groupe abélien.

De la même manière, l'ensemble de cohomologie $H^0(X)$ à valeurs dans un graphe X (4.15), et notamment à valeurs dans un A-ensemble (4.16), est un ensemble. À un module croisé $D\longrightarrow A$ correspondent un ensemble pointé $H^1(e,D\longrightarrow A)$, un groupe $H^0(e,D\longrightarrow A)$, et un groupe abélien $H^{-1}(e,D\longrightarrow A)$, les groupes de cohomologie de degrés inférieurs étant par ailleurs tous nuls. Lorsque le module croisé en question est tressé, toute la situation est décalée. L'ensemble pointé $H^2(e,D\longrightarrow A)$ est défini, $H^1(e,D\longrightarrow A)$ est muni d'une structure de groupe, et les groupes $H^i(e,D\longrightarrow A)$ sont abéliens dès que $i\le 0$. Enfin, si le module croisé en question est stable, les groupes abéliens $H^n(e,D\longrightarrow A)$ sont définis pour tout n (voir [11], [16]⁽¹³⁾ [15], et également, dans le contexte plus restrictif des catégorie de Picard strictement commutatives, [21], [35]).

Illustrons une dernière fois ce phénomène sur les complexes de longueur 2. À un ensemble croisé $[B \longrightarrow A \times X \longrightarrow X]$ (1.1) correspond l'ensemble $H^0(e, B \longrightarrow A \times X \longrightarrow X)$ défini dans [28]1.2 dans le cas galoisien, et étudié au paragraphe B.3 cidessus dans le cadre un peu plus restrictif des e.c.f.c. Lorsque l'e.c.f.c. $[D \xrightarrow{X} A \Rightarrow X]$ considéré provient d'un 2-module croisé $D \longrightarrow A \longrightarrow G$, alors

$$H^i(e, D \longrightarrow A \longrightarrow G)$$

est défini comme ensemble pour i=1, comme groupe pour i=0, enfin comme groupe abélien pour i négatif. Lorsque la 2-catégorie C correspondant au 2-module croisé en

 $^{^{(13)}}$ Ces auteurs désignent par H^n ce que nous tenons à appeler ici, pour des raisons de cohérence interne, la cohomologie en degré n-1.

question est tressée, les

$$H^i(e, \mathcal{C})$$

sont définis, pour $i \leq 2$. Ce sont des groupes dès que $i \leq 1$, et des groupes abéliens pour $i \leq 0$. Dans une situation faiblement involutive, la cohomologie est définie en degrés $i \leq 3$. Le terme de degré le plus élevé est un ensemble pointé, le suivant est un groupe, et tous les autres sont des groupes abéliens. Enfin, la situation fortement involutive est stable : la cohomologie est alors definie en tout degré, et elle est munie en tout degré d'une structure de groupe abélien.

Ajouté sur épreuves. — Pour un examen approfondi de la notion de catégorie tressée, et de ses généralisations, on renvoie à l'article récent de C. Berger, Double loop spaces, braided monoidal categories and algebraic 3-type of space, in Higher homotopy structures in topology and mathematical physics, J. McCleary éd., Contemporary Math. 227 (1999).

BIBLIOGRAPHIE

- [1] M. Artin, B. Mazur, Etale homotopy, Lecture notes in math. 100, Springer-Verlag (1969).
- [2] J. Baez, M. Neuchl, *Higher dimensional algebra I: Braided monoidal 2-categories*, Advances in Math. **121**, 196-244 (1996).
- [3] J. Baez, J. Dolan, Higher dimensional algebra III: n-categories and the algebra of opetopes, Advances in Math. 135, 145-206 (1998).
- [4] J. Baez, An introduction to n-categories, paru dans 7th Conference on Category theory and Computer science, (E. Moggi et G. Rosolini eds.) Springer-Verlag (1997).
- [5] M. Batanin, Monoidal globular categories as a natural environment for the theory of n-categories, Advances in Math. 136, 39-103 (1998).
- [6] M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72, 217-239 (1993).
- [7] M. Borovoi, Abelian Galois cohomology of reductive groups, Memoirs of the A.M.S. **626** (1998).
- [8] A. K. Bousfield, E.M. Friedlander, Homotopy theory of Γ -spaces, spectra and bisimplicial sets, Lecture notes in math. **658**, Springer-Verlag, 80-150 (1978).
- [9] L. Breen, Bitorseurs et cohomologie non abélienne dans The Grothendieck Festschrift I (P. Cartier et. al, eds.), Progress in math. 86, Birkhaüser (1990).
- [10] L. Breen, *Théorie de Schreier supérieure*, Ann. scient. Ec. Norm. Sup. **25**, 465-514 (1992).
- [11] L. Breen, Classification of 2-gerbes and 2-stacks, Astérisque 225, Société mathématique de France (1994).

- [12] L. Breen, Braided n-categories and Σ-structures, in Workshop on higher category theory and physics (Evanston 1997), E. Getzler et M. Kapranov eds., Contemporary Math. 230 (1998).
- [13] K.S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. AMS 186, 419-458 (1973).
- [14] R. Brown, From groups to groupoids: a brief survey, Bull. London Math. Soc. 19, 113-134 (1987).
- [15] M. Bullejos, P. Carrasco, A.M. Cegarra, Cohomology with coefficients on Symmetric Cat-groups. An extension of Eilenberg-Mac Lane's classification theorem, Math. Proc. Cambridge Phil. Soc. 114, 163-189 (1993).
- [16] M. Bullejos, A.M. Cegarra, A 3-dimensional non-abelian cohomology of groups with applications to homotopy classification of continuous maps, Canad. J. Math 43, 265-296 (1991).
- [17] P. Carrasco, A.M. Cegarra, Group-theoretic algebraic models for homotopy types,
 J. Pure Applied Algebra 75, 195-235 (1991).
- [18] D. Conduché, *Modules croisés généralisés de longueur 2*, J. Pure Applied Algebra **34**, 155-178 (1984).
- [19] S. Crans, Generalized centers of braided and sylleptic monoidal 2-categories Maquarie mathematics report 97/217 (1997).
- [20] B. Day, R. Street, Monoidal bicategories and Hopf algebroids Advances in Math. 129, 99-157 (1997).
- [21] P. Deligne, La formule de dualité globale exposé XVIII de Théorie des Topos et Cohomologie Etale des Schémas vol 3(SGA 4) Lecture notes in math. 305, Springer Verlag (1973).
- [22] P. Deligne, Le symbole modéré Publ. Math. IHES **73**, 147-181 (1991).
- [23] L. Illusie, Complexe cotangent et déformation I, II, Lecture notes in math. 239, 283, Springer-Verlag (1971-1972).
- [24] R. Gordon, A.J. Power, R. Street, Coherence for tricategories, Memoirs of the A.M.S. 558 (1995).
- [25] A. Joyal, R. Street, Braided tensor categories, Advances in Math. 102, 20-78 (1993).
- [26] M. Kapranov, V. Voevodsky, 2-categories and Zamolodchikov equations, Proc. Symp. Pure Math. 56 (2), 177-259 (1994).
- [27] J.-M. Kelley, R.H. Street, *Review of the elements of 2-categories*, Lecture Notes in Mathematics **420**, Springer-Verlag, 75-103 (1974).

- [28] J.-P. Labesse, Cohomologie, stabilisation et changement de base, ce volume (1999), p. 1-116.
- [29] J. P. May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies 11, 1957.
- [30] J.S. Milne, *Etale cohomology*, Princeton Mathematical Series **33**, Princeton University Press (1980).
- [31] I. Moerdijk, J.-A. Svensson, Algebraic classification of equivariant homotopy 2-types I, J. Pure Applied Algebra 89, 187-216 (1993).
- [32] J.-P. Serre, *Corps locaux*, Actualités scientifiques et industrielles **1296**, Hermann (1962).
- [33] J. Stasheff, *Homotopy associativity of H-spaces I*, Trans. Amer. Math. Soc. **108**, 275-292 (1963).
- [34] Z. Tamsamani, Sur les notions de ∞-catégorie et ∞-groupoïde non stricts via des ensembles multisimpliciaux, preprint alg-geom/9512006.
- [35] K. Ulbrich, Group cohomology for Picard categories J. Algebra 91, 464-498 (1984).