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S T R U C T U R E T H E O R Y O F S E T A D D I T I O N 

by 

Gregory A. Freiman 

Abstract. — We review fundamental results in the so-called structure theory of set 
addition as well as their applications to other fields. 

1. 'Structure theory of set addition'^1) is a shorthand for a direction in the study of 
sets which extracts structures from sets for which some properties of their sums (or 
products in a non-abelian case) are known. 

Here is an indication of what is meant by "structure". The first stage is to build 
an equivalence relation on sets. Then, by taking well chosen representatives of an 
equivalence class we are able to reveal its properties and thereby describe its structure 
(see, for example, the Definition and Theorem in §6). 
2. This review is written in the following way. In §§3-8 we explain the main ideas. In 
§§9-12 we make some historical remarks. Then in §§13-19 we present several concrete 
problems in additive and combinatorial number theory, showing how new results may 
be obtained with the help of the described new approach. Further then in §§20-27 we 
try to show a diversity of fields where the ideas of "Structure Theory" may be applied. 
Finally in §§28-35 we discuss methods and problems. In the bibliography we include 
references to a wider spectrum of subjects which may be treated from the point of 
view of Structure Theory. 
3 . This approach to additive problems was originally given the name "Inverse prob
lems of additive number theory". A series of nine papers under this heading was 
published in 1955-1964 (see [85], [86], [87], [88], [89], [90], [91], [92] and [98]). 
4. I quote from my lecture in the Fourth All-Union Mathematical Congress, Leningrad, 
3-12 July 1961 (see [84]): 

1991 Mathematics Subject Classification. — 11 02, 11Z05. 
Key words and phrases. — Structure theory of set addition, inverse problems of additive number 

theory, small doubling property, isomorphism of subsets. 
WThis paper is based on my review lecture given at the conference on Structure theory of set 

addition held at CIRM (Centre International des Rencontres Scientifiques), Luminy, Marseille, on 
10 June 1993. 
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2 G.A. FREIMAN 

"The term inverse problems of additive number theory appeared in 
1955 in two of my papers [85]^ and [86]. In [85] the following prob
lem was studied. Let 

a i , a 2 , . . . , a r , . . . (1) 
be an unbounded, monotonically increasing sequence of positive num
bers. To have an asymptotic formula 

logg(w) ~ Aua, where A > 0,0 < a < 1 

it is necessary and sufficient that 

n(u) ~ B(A,a)ua/1-a 

where n(u) is the number of terms of a sequence (1) not exceeding 
u, and q(u) is the number of solutions of the inequality 

a in i 4- a2n2 H < u. 

In [86] the case 

\ogq{u) = Aua + O(txf), where 0 < ai < a, 

was studied and an estimate of the error term in the asymptotic 
formula for n{u) was obtained. 

One can easily see that if q(u) is known then (1) is determined in 
a unique way (see [85]). In 'direct' problems we study q(u) when the 
sequence (1) is given; a particular case is the classical problem on the 
representation of positive integers as sums of an unlimited number 
of positive integers. 

Thus a direct problem in additive number theory is a problem in 
which, given summands and some conditions, we discover something 
about the set of sums. An inverse problem in additive number theory 
is a problem in which, using some knowledge of the set of sums, we 
learn something about the set of summands. 

Several cases of inverse problems were studied earlier; see [14] and 
[67]. 

Paul Erdos, in 1942, found an asymptotic formula for n(u) when 

\ogp{u) ~ ay/u 

where p(u) is the number of solutions of an equation 

aini + a2n2 H = u 

where {ai} is some sequence of positive integers (see [67]). 
In the same paper another inverse problem was studied; if q(u) ~ 

Cu2a , where q(u) is the number of solutions of an inequality 

ai + a,j < u, 

2̂̂ The reference numbers given accord with the bibliography of this paper and not the original 
text. 
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STRUCTURE THEORY OF SET ADDITION 3 

then 
n(u) ~ C\u . 

In 1960 V. Tashbaev [252] studied the problem of estimating the error 
term for this inverse problem. 

We will now explain how problems on the distribution of prime 
numbers are connected with inverse problems. If we define 

q(u) = [eu] 

then di = log pi , where pi denotes the ith prime number. Thus the 
problem of the distribution of prime numbers may be treated as an in
verse problem of additive number theory of the type described above. 
The study of inverse problems for different q{u) close to [eu]1 and also 
of direct problems when n(u) is close to eu/u, may give some insight 
into the problem of the distribution of primes, in a way similar to 
that in which the behaviour of a function in the vicinity of a point 
may help to find its value at that point (see A.Beurling [14] and 
B.M.Bredichin [30], [31], [32] and [33]." 

The results of Diamond (see [57], [58], [59], [60] and [61]) should of course be 
mentioned. 

The treatment of prime distribution problems as inverse additive problems have 
not developed up to now. I still consider this approach very hopeful. 
5. We pass on now to the study of additive problems with a fixed number of sum-
mands. The majority of papers mentioned in §3 treat the addition of two equal sets. 
The study of this particular case is usually sufficient to develop ideas, methods and 
results as well as their use in applications. 

Let us start with K C Z with \K\ = k. Define 

2K = K -j- K = {x \ x — al -\- aj, ai,CLj e K}. 

We may ask the question what is the minimal cardinality of 2K1 Evidently, 

\2K\ >2k-l. (2) 

Suppose now that K is such that \2K\ is minimal i.e. \2K\ = 2k — \. What can be 
said about such a Kl It is clear that, 

\2K\ = 2k - 1, (3) 

only if K is an arithmetic progression. 
Suppose now that \K + K\ is not much greater than this minimal value. In that 

case we have the following result [87], describing the structure of K. 

Theorem 1. — Let K be a finite set, K Ç Z. / / 

\K + K\<2k-l + b, 0<b<k-3 

then K is contained in an arithmetic progression of length k + b. 
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4 G.A. FREIMAN 

Further, suppose that we know that 

\2K\ < Ck, (4) 
where C is any given positive number, we may ask what then is the structure of K? 
6. The theorem answering this question (we will quote it as a main theorem) was 
proved in a previously mentioned series of papers, expositions of it were given in [81] 
and [82], and an improved version of a proof was presented in [105]. We are citing 
here the result of Y. Bilu [16], where he studies a case when C in (4) is a slowly 
growing function of k. 

Definition. — Let A and B be groups, and let K C A and L C B. The map </>: K —>• L 
is called an Fs-homomorphism, if for any # i , • • • ,xs and y±, • - • ,ys in K we have 

xx-\ + xs = yi + • • • + y s • # £ i ) + • • • + 4>(x8) = <t>{yi) + • • • + <f>(ya). 
The Fs-homomorphism <f> is an Fs-isomorphism if it is invertible and the inverse (j> 1 
is also an Fs-homomorphism. 

Let P C Zn be given by 

P = { 0 , . . . , 6 i - l } x . . . x { 0 , . . . , 6 n - l } . 

We have |P |=&i. . . bn. In this paper we will call P an n-dimensional parallelepiped. 

Theorem 2. — Let K c Z and suppose that 

\K + K\ <ak (5) 

where 
k = \K\ >k0(a) № + il 

2(\a + 11 - a) 1, 

then there exists an n-dimensional parallelepiped, P, such that n < [a — 1] and \P\ < 
ck, where c depends only on a and s and there also exists a map (/>: P -> Z which is 
such that P —> <p(P) is an ¥s -isomorphism while K C <f>(P). 

Let us now return to §1. The equivalence relation that we talked about there, 
is now seen to be Fs-isomorphism. A representative of an equivalence class is an 
n-dimensional parallelepiped, P. We now understand that K, a subset of the one-
dimensional space E, has, in fact, a multidimensional structure, being a dense subset 
of an n-dimensional set P (i.e. <^_1(i;C) C P). Consider the numbers 

a = 0((O,... ,O)), ai 0((1,O,. . . ,O)) - a, an 0 ( ( O , Q , . . . , l ) ) - a . 

Then, 

4>(P) [a + aix\ + a2x2 H h anxni with 0 < xi < bi — 1 

Imre Rusza has called such a set </>(P) a generalized arithmetic progression of rank 
n. He gave a new and shorter proof, based on new ideas, of the main theorem together 
with an important generalization; in this the summands A and B may be different, 
although however the condition \A\ — \B\ is required (see [233]). His generalization 
to the case of subsets of abelian groups is to be found in [238]. 
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STRUCTURE THEORY OF SET ADDITION 5 

7. We can now describe an "algorithm" for solving an inverse additive problem, by 
the following steps. 

(i) Choose some (usually numerical) characteristic of the set under study. 
(ii) Find an extremal value of this characteristic within the framework of the prob

lem that we are studying. 
(iii) Study the structure of the set when its characteristic is equal to its extremal 

value. 
(iv) Study the structure of a set when its characteristic is near to its extremal value. 
(v) (vi),. . . continue, taking larger and larger neighbourhoods for the characteristic. 

From estimates obtained by Yuri Bilu it follows that in (5) we can take, for cr, the 
following very slowly growing function of fc, 

a — clog log log log fc. 

It will be very important to study the cases 

<7 = (l0gfc)C (6) 

and 
a = ke, s > 0, (7) 

even if £ is a very small number. 
Here to simplify this extremely difficult problem a little, it is better to take \rK\ 

as a characteristic value, where r is a fixed, positive, but rather large, integer. So our 
condition is now 

|rüf I < k1+£ 

which is much stronger than (5); vK contains kr sums, but no more than k1+€ of 
them are different. 

8. I have here added a playful description of the comparative difficulty of the problems 
discussed, which should not be taken too literally. To prove (2) took one minute. 
Condition (3) was studied in three minutes. The proof of the theorem of §5 together 
with the description of K under the condition \2K\ = 3k — 3 took one month. Proof 
of the main theorem took five years. I will be very happy if we will see results for 
(6) in the next thirty years but I am not certain that for (7) we will have satisfactory 
results even in the next hundred years. 

9. L. Schnirelman [242] was one of the first who passed from studying fixed sets 
to studying general additive properties. Schnirelman introduced the notion of the 
density of a sequence. 

Definition. — Let A — (ai, a2,.. . , a n , . . . ) be an increasing sequence of positive inte
gers and further let, 

A(x) = \{yeA\0<y<x}\, 

and 
d(A) = inf A(x)/x. 

XEN 
The number d{A) is called the Schnirelman density of the sequence A (see step (i) of 
§7). 
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6 G.A. FREIMAN 

10. Define 
A + B = {a-\-b\aeA1 b e B} 

and denote 
a = d(A), (3 = 7 = d(A + B) 

Schnirelman proved that 
7 > a + /? — a/3 

L. Schnirelman and E. Landau conjectured in 1932 and Mann [178] has proved in 
1942 that 

7 > a + /Î. (8) 

11. The famous a + /3 theorem of Mann cannot be improved. Take a sequence 

A ;o , i , . . . , r , z + l , / + 2 , . . . , l - -r, 2Z + l , 2 f + 2 , . . . , 2 l + r , . . . 

It is clear that if r < / then, 
a = = r/l 

However if 2r < I then 
7 = d(2A) = 2r/l = 2a. 

But for A = 5 we always have from (8) that 7 > 2a. So step 2 of §7 is now completed. 
Thus Mann has entirely solved the problem of increase of the density under sum

mation of sequences. Its solution took ten years. Khinchine [151] writes in his book: 
"The problem has become 'fashionable'. Scientific societies proposed a prize 

for its solution. My friends from England wrote me in 1935 that half of English 
mathematicians tried to solve it, putting aside all other obligations" 
When Mann had solved the problem, the interest in these subjects disappeared. 

But what about proving the inequality 7 > 3a? Or, equivalently, what are the 
sequences A for which 7 < 3a? These questions were not asked. 

12. However, Schnirelman density is not a good characteristic. Take A = { 2 , 3 , 4 , . . . } . 
For this sequence we have A(l) — 0 and d(A) = 0. We feel, however, that the value 
1 would be more appropriate for a density. So we arrive at a notion of an asymptotic 
density: 

d(A) — liminf A(x)/x 
x—»00 

In 1953 Martin Kneser [153] proved an analog of the a + /3 theorem for asymptotic 
densities. He described the structure of A and B in the case when 

d(A) + d(B) <d{A + B) 

Recently Yuri Bilu analysed the case when 

di A + A)< ad{A), 

where a £ [2,5/2]. 
To prove his theorem Kneser had to consider, for some positive integer sets of 

residues A and B modulo g for which 

L4 + B| = L4| + | B | - 1 . 
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STRUCTURE THEORY OF SET ADDITION 7 

Cauchy [38] and Davenport [50] have proved that if A C Zp and B C Zp, where p 
is a prime, then 

|A + B | >min(p , |A| + B|-1 

This inequality is analogous to (8). 
Vosper [257] proved that ifA,BC Zp, \A\ + \B\ - 1 < p - 2 and min(|A|, \B\) > 2 

then from \A -f J?| = + — 1 it follows that A and B are arithmetic progressions 
in Zp with the same difference. 

Theorems of Kneser, Cauchy-Davenport and Vosper were amongst the first results 
giving solutions of inverse additive problems. 

13 . We may ask, are there any applications of the ideas and results described in 
§§4-8? For an answer to this question we turn now to the extremal combinatorial 
problems of Paul Erdos. 

We begin with the problem raised by Erdos and Freud [68]. Fix some positive 
integer, L Denote by A a set of x natural numbers, {a\,a2, ...,ax}, with 1 < a\ < 
a2 < • • • < ax < £. Take the set, A0 - { 3 , 6 , 9 , . . . , 3 £ 

3 For each subset B C A0 
the sum of elements in B, the subset sum. is divisible by 3 and thus not equal to any 
power of 2. In this case |̂ 401 £ 

3 However if we take \A\ £ 
3 

then for sufficiently large £ there exist B C A and 
s e N such that 

CLÌEB 
a* = 2s This was proved in [70J. E. Lipkin [167J proved that, for 

sufficiently large £, a set of maximal cardinality, none of whose subset sums is equal 
to a power of two, must be exactly the set AQ. 

The desired result was achieved with the help of analytical methods. However, 
there was a difficulty — how to apply them to prove a result which is valid for some 
integer, say, 

3 
+ 1, but is not valid for an integer which is one less. To cope with 

this, some conditions were tormulated, so that when satished an analytical treatment 
could be used. The case where these conditions were not fulfilled was treated as an 
inverse additive problem. The structure of such sets was thus determined and it then 
became possible to finish the proof. (For more details, see §28.) 

One might think that the problem of representing powers of two by subset sums 
is rather special, even artificial and therefore not that interesting. But, Paul Erdos 
knows how to ask questions. Ideas developed in order to solve the problem explained 
here, have turned out to be sufficient to solve a wide range of problems in Integer 
Programming, see §23 and [41]-[44]. 
14. In the framework of the problem of the previous section we may ask the following 
questions. 

1) Let \A\ > a 
3. 

What is the minimal cardinality \B\ of B C A, whose subset 
sum is equal to some power of 21 

2) What is the minimal number of summands required in the representation of a 
power of 2, if equal summands are allowed? 

These questions were asked and answered in a paper of M. Nathanson and A. 
Sarkozy [201]. The sufficient number of summands required was estimated to be at 
most 30360 and 3503, respectively. Using the Theorem of §5 it appeared to be possible 
to improve these estimates to 8 and 6, respectively (see [104]). We will here briefly 
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8 G.A. FREIMAN 

explain the main ideas. If we apply the Theorem of §5 to some set A C [l,f], then 
under doubling the number of elements is multiplied, roughly, by 3 and the length 
of the segment where the sum 2A is situated is multiplied by 2. So, the density is 
multiplied, roughly, by 3 

2 
After the doubling is repeated twice, the density of 4A will 

be > l 
3 

3 
2 

3 
2 

3 
4 

One more doubling (or more accurately summing 4A + 2A) will 
give a long interval, m SA (or even m 6A), containing then some power of 2. 

Noga Alon gave a simple example showing that 4 summands in the case of differ
ent and 3 summands in a case of possibly repeating summands are not, in general, 
sufficient. Recently, Vsevolod Lev [160] found the exact number of summands, in a 
case of possibly repeating ones. He showed that four summands are sufficient. 

The following questions are of interest. 

1) For given \A\ and s, find, f(\A\,£,s), the minimum over all sets A C [1,£] of 
order of the maximal length arithmetic progression contained in sA. 

2) For given \A\ and L, find, / ( |A| ,€ , L), the maximum over all sets A C [1,1] of 
order \A\, of the minimum number of summands, s, such that sA contains an 
arithmetic progression of length L. 

15. Denote by sAA the set of integers which can be written as a sum of s pairwise 
distinct elements from A. The set A is called admissible if, and only if, s ^ t implies 
that sAA and tAA have no element in common. 

E.G. Straus [247] showed that the set {N - k + 1, N - k + 2 , . . . , N\ is admissible 

if, and only if, k < 2 N l 
4 

1. He proved that for any admissible set A C [1,N] 

we have \A\ < 4 3 + o(l N. The constant involved was slightly reduced by 
P. Erdös, J-L. Nicolas and A. Särközy (cf. [75]). In the paper of J-M. Deshouillers 
and G. Freiman [52] (see also [51]) Erdös' conjecture was proved, at least when N is 
sufficiently large. 

Theorem 3. — There exists an integer No such that for any integer N > N0 and any 
admissible subset A C [1,N] we have, 

\A\<2 N 
1 

4 
1. 

The proof was obtained with the help of methods of the type quoted in §5. 

16. Let A C [ l ,n] . If A fl (A + A) = 0 , the set A is called sum-free. P. Erdos and 
P.J. Cameron conjectured that for the number In of sum-free sets we have, 

T = 0(2n'2) (9) 

The typical example of sum-free set A C [1, n] is the set { 1 , 3 , 5 , . . . } of odd numbers. 
We can show that n+n 

2 
is the maximal cardinality of a sum-free set. 

In G. Freiman [101] and the paper of J-M. Deshouillers, G. Freiman, V. Sos and 
M. Temkin [54], the problem of structure of sum-free sets was raised and studied. It 
was solved in the case of large cardinality of A, namely, when \A\ > 0A£ — c, where 
c is some positive constant. An example of such a structure is one in which all the 
elements of A are congruent to 2 or 3 modulo 5. 
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STRUCTURE THEORY OF SET ADDITION 9 

The structure of A having been found, the estimate (9) for this class of A, now 
follows immediately. An open question is to describe the structure of A for smaller 
cardinalities. 
17. In the paper of G. Freiman, L. Low and J. Pitman [106], the following conjecture 
of Erdos and Heilbronn [73] is proved for sufficiently large primes. For A C Zp? where 
p is a prime, \A\ = k < »/50 and k > 60, we have 

\A + A\>2k-3. 

Also, the structure of A was described in the case when \A + A\ < 2.06k — 3. The 
conjecture of Erdos and Heilbronn was proved independently by J.A. Dias da Silva 
and Y.O. Hamidoune, see [246]. 
18. In the paper of A. Yudin [261], an example of large sets of integers, A, was 
constructed for which 

\A + A\ < \A-A\C 
where c = 0.756. The previous example [113] gave only c = 0.89. In [113] the 
estimate c > 0.75 was proved. The result of A. Yudin puts the important additive 
characteristic, 

lim inf log; \A + A 
l o g | A - ; 4 | 

a , 

in a very narrow interval, 0.75 < a < 0.756, and allows one to begin to study the 
structure of sets with values of c which are close to a. Possibly the example of Yudin 
is not far from an extremal structure (look at §7). 
19. In the paper of E. Lipkin [169], the Diderich conjecture [62] was studied. We now 
describe the conjecture. Let G be a finite Abelian group, A C G with 0 ^ A. Let A* 
denote the set of subset sums of the set A. G.T. Diderich called the minimal number 
n such that, if \A\ > n then A* = G, the critical number, c(G) of the group G. 

Let G be an Abelian group of odd order \G\ — ph where p is the least prime divisor 
of |G| and h is a composite integer. Diderich conjectured, and E. Lipkin proved for 
G = ILq when q is sufficiently large, that 

c(G) =p + h-2. 

20. In §§21-27 we will give a few examples of problems in different fields which may be 
looked at and treated as Structure Theory problems. These examples will be chosen 
from Additive Number Theory (§21), Combinatorial Number Theory (§22), Integer 
Programming (§23), Probability Theory (§24), Coding Theory (§25), Group Theory 
(§26) and Mathematical Statistics (§27). Our aim is not so much to enumerate these 
problems as to show how ideas and methods of Structure Theory may influence their 
solution and to show their interdependence. Not many examples are chosen and they 
do not cover the whole stock of related problems. 
21. Additive Number Theory. We now present a paper (see [109]) of G. Freiman, 
H. Halberstam and I.Z. Ruzsa. This paper confronts the problem of how to show that, 
starting from some set of integers A, the set rA contains an arithmetic progression of 
integers of length, L, and difference, d. 
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10 G.A. FREIMAN 

One obvious set of sufficient conditions is as follows. Firstly, that the set (r — 1)A 
contains an arithmetic progression of length £ and difference d. Further that in some 
arithmetic progression of integers of length L + 2£ and difference d, we have that ever} 
part of it which forms an arithmetic progression of length £ contains a number fron 
A. 

These conditions are very simple and satisfactory but, how may one find such ar 
arithmetic progression of length £, even if £ is much smaller than L? It is supplied b} 
results of the paper mentioned! The final result is given below. 

Theorem 4. — Let B be an infinite set of integers such that AB (N) B(N 

M 
(logiV) a for every integer N > N0, where a is some fixed number in the interval 
0 l 

3 
and NQ = N0(a). Suppose further that B has the following "local" property. 

Corresponding to each N > 12N0 there exists an inteqer M with No < 
M < l 

12 
N, such that every arithmetic progression modulo q in [l,iV] of length 

1 
2 4(M contains an element of BN := B D [l,iV]7 where 2 < q < M and 

A(M) e i Co (log M) 3a 

Then B is an asymptotic basis of order 4-

The first version of this paper was built on methods of [82] and [105], but later 
changed to methods of [233], proposed by I. Rusza in his proof of the main theorem. 
The results of [109] were improved by Bourgain [21]. 

22. Combinatorial Number Theory. See examples given in §§13-19. 

23. Integer Programming. Let us discuss problems connected with one linear 
equation, 

a\X\ + CL2X2 + • • • -f ClrnXm = b. (10) 

Suppose that the coefficients in (10) are positive integers, with a\ < a2 < • • • < am < 
£, and we wish to find a solution in the Boolean case with Xi £ {0,1}. Remember that 
we are dealing here with problems which we would not be encountering in Number 
Theory. We have to find an algorithm with the help of which a computer has to 
be able, in a reasonable time, to answer the question, whether or not there exists a 
solution and then, to find it. And a most important point must be borne in mind, 
namely that the algorithm has to achieve this task for any choice of coefficients in a 
given range. The number of unknowns in (10) is equal to m, and each unknown may 
take two values, so the number of possibilities to check, if we decided to do it, is 2m. 
Existing methods (branch and bound, partial enumeration, etc.) try to diminish this 
number but progress has been slow. If the coefficients a,j G [1,£] and £ = 1012, say, 
then m has to be not bigger than about 100 or 200 for the equation to be solved by 
today's computers. The dynamic programming approach gives times of 0(£m2). If, 
for example, m — 106 the time is of order 1024 verifications, too long to see results in 
our lifetime. 

A different approach to the problem was outlined in [96]. We began to study the 
structure of the set of values of a linear form, using Analytic Number Theory. This 
structure appeared to be rather simple, it is in essence, the union of several arithmetic 
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STRUCTURE THEORY OF SET ADDITION 11 

progressions with the same difference. To characterize an arithmetic progression we 
have to know its difference d, its first member and its length. 

The time required to answer a question of solubility of an equation is 0(m) and 
in our example it is of order 10 6 verifications, a matter of seconds. The main idea 
is explained in §28. For detailed exposition and literature see a review of Mark 
Chaimovich [42] and a paper [43]. 

24. Probability Theory. Estimates for concentration functions and local limit the
orems — these are two domains where today there exist applications of the Structure 
Theory approach to Probability Theory. 

Let £ i , . . . , £ n be a sequence of independent identically distributed random variables 

taking values in Z. Further, let sn 

n 

3=1 
Çj. Define 

Qf(£) = Q(£) = supP(x < ê < x + £) 
X 

the concentration function of the random variable f, and let QSn{£) = Qn{£) be the 
concentration function of sn. 

The paper of J-M. Deshouillers, G. Freiman, A. Yudin [55], gives a new estimate 
for Qn(l). Previous results, see for example G. Kesten [150], give an estimate of the 
type 

Qn{l) c 
n 1 

2 
(11) 

where c is independent of n. In this estimate the exponent | cannot in general be 
replaced by a larger number. Indeed, let us fix some integer valued random variable 
with variance a2. Then bv the local limit theorem we have 

P{sn = N} 
1 

a- 2-irn 
exp 

> n - N)2 

2na2 
o(l) 

From here we see that the estimate (11) cannot, in general, be improved. If we 
want to improve (11) we have to impose additional conditions and this is what is done 
in [55]. 

Theorem 5. — Let a € log 4 
log3 

2 e > 0, A > 1 and a > 0 be given real numbers. 

Let n be a positive integer and let { X i , . . . , X n } be a set of independent identicall 
distributed integral random variables such that 

max max 
<?>2 s(modg) l=s(mod q) 

Р{Хл = l\ < 1 - e 

VL>A: Q(XX ; L) < 1 - aL~a . 
Then we have 

Q(Sn;l) <en-1l° 
where c depends at most on a,e,A,a and Q{X\ \ 1). 

We have here two conditions, one excludes the case when the support is a part of 
ome class modg, q > 2 and the second asks for the tail to be 'heavy'. Conditions of 
>oth types are necessary to get results of the form of the Theorem above. In the first 
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12 G.A. FREIMAN 

version of a paper [55] the condition of type 1 was formulated for a series of random 
variables as follows. For any q G Z, q > 2 

max 
r A;—r (mod q) 

Pk < 1 - 1 0 
Inn 

n 

Let us also stress that the result of Esseen, cited in [55], gives a condition from 
which the concentration may be estimated from below. All these results give us the 
possibility to begin to study the distribution of a given random variable £, if we know 
something about the value of Qn(l), for example if we know that 

Qn(l) 
l 

nv 

where In 4 
ln3 

< $ < 2. We can ask the same question for series. In this case we have to 

describe distributions where numbers a* and numbers pi may depend on n. 
25. Coding Theory. This section and §35 were written jointly with A. Yudin. The 
connection between coding theory and structure theory was shown by Zemor (see 
[262] and [263]) and Cohen & Zemor (see [265], [266], [46] and [47]). We will now 
try to explain that the main problems of coding theory are, in fact, inverse additive 
problems. 

Let A = {ai, • • , a&} be a word in an alphabet of 2 symbols, say, a« € {0,1}. Let 
An be the set of all words in this alphabet of length n, so that we have \An\ = 2n. The 
distance, g{x,y), between two words x = {#i, #2? • • • ?xn} and y = t/25 • • •,yn} is 
defined to be 

g(x,y) i I X{ 7̂  i = l , . . . , n } 

that is, the number of positions in which the symbols in the words x and y differ. It 
is not difficult to check that g{x,y) satisfies all the axioms for a distance function. 
The question is how to ensure the correction of possible errors during transmission of 
information? 

Consider some subset, [/, of the set of all words An. Such a subset is called a 
code. A portion of information has assigned to it some word from U which is then 
transmitted through the channel. If during the transmission only a small number of 
mistakes occurred then we are still not far from the code word which was transmitted 
and thus we can then restore it. Let us put this question in a more precise formulation. 
We let the word transmitted be x = { x i , . . . , x n } and the word received be x = 
{a?i, . . . , Xn}. If during the transmission of a word through a channel no more than t 
mistakes take place, it means that 

g(x,x) < t (12) 

and so it is necessary that x be closer to x than to any other word in the code. That 
is, for any y EU with y ^ x. we have to ensure that 

g(y,x) > t. (13) 

By the triangle inequality 

g(x,y) < g{x,x) + g{x,y), (14) 

ASTÉRISQUE 258 



STRUCTURE THEORY OF SET ADDITION 13 

and when 
g(x,y) > 2£, (15) 

we can obtain (13) from the inequality (12). 
If there exists y such that g{x,y) = 2£, then we can find x for which (12) and (13) 

become equalities and then g(x,y) = t. Thus, the condition (15) is necessary and 
sufficient for code correcting t mistakes. We have a set, Anj and a subset U, but to 
speak about inverse additive problem is still premature, since an algebraic operation 
is missing. So we will consider An as a vector space over the field Z2. In this field 
— 1 = 1 and for each n-dimensional vector x G An the equality —x = x holds. The 
distance g(x, y) is equal to the number of Is in the vector x — y = x -f y, i.e. to the 
distance of the element x + y from 0. The condition (15) may now be written as 

g(x + y,0)>2t. 

Thus, a code, correcting t mistakes, is a U C An such that G 2U we have g{z, 0) > 
2t. We have now come to a well known situation, namely, we have a group An, a 
subset U and a condition on 2!7. 

In §12 the first results about sums of sets in a group were mentioned. The doubling 
of sets in groups was studied in the works of Kemperman [146], [147], [148], Freiman 
[83], Olson [207], [208], [209], Brailovsky & Freiman [27], [29], Brailovsky [22-25] and 
Hamidoune [124-137]. If n is a minimal number such that for A C G we have nA = G, 
A is called a basis of G of order n. This theme is reviewed in [9] and [140]. 

What are the main aims which we are trying to achieve in coding? Atoms of 
information are transmitted by words of code. Thus, if the quality of a code is fixed, 
i.e. the number of mistakes to be corrected is fixed, then the code will be the better, 
the greater the cardinality of the code U. And conversely, if the number \U\ is given, 
how do we choose the best code? 

We shall reiterate the formulation of the two problems mentioned above. Let 
JJ Q An = Zo for some fixed n G N. Assume that for all z G 2U 

g(z,0)>d, (16) 

where d G N. 
Problem I. Let d be fixed. What is the maximum value of \U\ for which (16) is 

valid? 
Problem II. Let \U\ be fixed. What is the maximum value of d for which (16) is 

valid for some U of order \U\. 
We have formulated two inverse additive problems which are the major problems 

of coding theory but are, in essence, not yet solved satisfactorily. In a paper of Gerard 
Cohen and Gilles Zemor [47] other inverse additive problems are presented and their 
connection with coding theory is explained. 
26. Group Theory. Results in group theory are reflected in the reviews of M. Herzog 
[140] and Y. Berkovich [9] and the bibliography to this review. We try now to find an 
example where our approach gives some progress on a theme which was investigated 
earlier in group theory. 

For a set 
{ai,a2,a3} (17) 
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14 G.A. FREIMAN 

of elements of a group G, we build all the products, 

«1̂ 2035 &1&3025 U2&1&3? 02^301, 03^1^2, 030201 . (18) 

If at least one product in (18) is equal to another one, the set (17) is called rewritable. 
If every 3-element set in G is rewritable, then G is called a rewritable group, that 
is G G Q3, where by Q% we denote the class of rewritable groups. If every product 
in (18) is equal to some other product, then the set (17) is called totally rewritable. 
If every set (17) in G is totally rewritable, then G is said to be a totally rewritable 
group, written (G € P3). The definitions of classes of groups Pn and Qn are obvious. 
The problem is to describe all groups in the classes Pn and Qn. See Kaplansky [145], 
Blyth & Robinson [19], Freiman & Schein [117] and [118], Longobardy & Maj [170], 
[171] and [172]. 

The main tool to use in this study is a notion of 'permutational isomorphism', a 
realization of the equivalence relation we talked about in §1. This notion is somewhat 
different from the one introduced in §6, but it is suited very well to the study of this 
particular problem. 

A permutational isomorphism of A onto B (where A C S and B C R, while S 
and T are two sets with binary operations) is a pair of bijections cp: A B and 
ip: A^ —)• B^ such that for all pairwise distinct elements ai,a2,a3 G A we have 

ip(aia2a3) (p(a1)cp(a2)ip(a3) 

Here A^ is the set of all products of triples of distinct elements. 
To begin our approach we have only to pay attention to the fact that amongst 

the six products in (18) there are no more than five distinct ones, if the set (17) is 
rewritable. Thus, we take as a numerical characteristic, r, the maximal number of 
different products for all sets (17) in a group G. We thus obtain the classes of groups 
P (3 , r ) for 1 < r < 6 (see Freiman & Schein [117]). In [117] all classes of isomorphic 
triples, 19 classes in all, were obtained and then used to study the classes P (3 , r ) . 
Similarly one can define the classes of groups P(4 , r) of which there are 24. It turns 
out that P3 = P (3 , 2) (see [117]). In [118] the class P(3,3) was described. G. Freiman, 
D. Robinson and B. Schein [115] partially described the class P(3 ,4) . The next step 
is the study of P(3,5) = Q3. 
27. Mathematical statistics. Let F = {fi}?=0 be a set of continuous functions 
on [a,6], and let P* = {fifj}fj=0- In the paper of B. Granovsky and Eli Passow 
[120] conditions were determined for the set P* to consist of exactly 2n 4- 1 distinct 
functions. The additional requirement is that P* has to be a Chebyshev system on 
[a, 61. 

A set {^}iLo °f continuous functions on [a, b] is said to be a Chebyshev system 
on [a, b] if every nontrivial "polynomial" J27=o 9iui(x) nas at most n zeros on [a, 6]. 
The number n + 1 is called the degree of the Chebyshev system. In [120] necessary 
and sufficient conditions were given on the set {/ij^Lo so ^na^ ^ne se^ ififj}?j=o *s 
a Chebyshev system of minimal degree (2n + 1). These results have applications to 
the field of experimental design. See also I. Efrat [66], Kiefer & Wolfowitz [152] and 
E. Passow [213]. 
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It is clear how this problem can be formulated as a problem of small doubling of a 
set of real numbers. Given n + 1 functions pick some fixed argument x$. Consider the 
n + 1 numbers {fi(xo)}f=0. Leaving for further investigation the case when they are 
not all distinct, or some of them are not positive, we have the set D, of logarithms 
of these numbers, D = {log fi(xo)}f=0 subject to the condition \2D\ = 2n + 1. So D 
is a set with small doubling and it is very simple to show, not only for integers but 
also for real numbers, that D is an arithmetic progression. I. Efrat [66] has used the 
results of Theorem 1 and described all Chebyshev systems with |F* | < 3n. 
28. In this section we want to point out the unity of approach and similarity oi 
methods when different problems are treated from the point of view of Structure 
Theory. 

In Combinatorial additive problems we mainly study finite sets of integers. In 
many of such problems the theorems of §§5 and 6 about a structure of sets of integers 
with small doubling may be applied directly. In §§13-19 such results were given. 
These theorems may also be applied to sets in other algebraic systems, such as Zp. 
see [88], T1, see [197], Rk, see [82], page 94, and to functional spaces, see [66]. The 
sets in Z may be infinite, see [91] and [82]. The structure of sets with a small product 
in a nonabelian torsion-free group, see [26], is described with the help of methods 
developed to prove Mann's theorem. 

To solve inverse problems of additive number theory, analytical methods are used. 
They reveal some unity and similarity when applied to the study of different prob
lems, see §30. Problems in number theory of the evaluation of measure and of the 
determination of the structure of sets with large trigonometric sum, see [260], [100]. 
[13], and in probability theory, of sets with large characteristic function, see [197] and 
[55], are often studied by similar methods. 

A tool of investigation which can be used in many situations, may be called "multi
ple use of structural argument". To ensure the existence in Integer Programming, of a 
solution of an equation (10), see [96], we assume a condition on A(q) = {x € A \ q\x}, 
namely 

\A(q)\ <\A\ - \A\S (19) 

where 6 < 1 is independent q. In analytical number theory it is usual to place such a 
uniformity condition on the distribution of residues. When it does not hold, the case 
is not studied. However let us now consider the case when (19) is not valid. Then 
there exists q > 1 such that 

\A(q)\ > \A\ -\A\S 

This is a very strong condition to impose on the structure of A and so we can con
tinue our analysis and describe the structure in full. In papers [56] and [197], where 
problems in probability were studied, a condition of the type (19) is present. This 
observation opens up the possibility to obtain new results, stronger than those in [56] 
and [197]. 

The very notion of a set with small doubling, when brought to group theory, 
resulted in the appearence of new problems. 
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16 G.A. FREIMAN 

The notion of isomorphism which was introduced in the course of proving the main 
theorem (§6) became a useful tool. In group theory, it provided the possibility of build
ing an equivalence relation on finite sets, describing its equivalence classes and then 
studying the property of a group in connection with the existence or nonexistence of 
some classes in this group. In rewritable groups, see §26, a version of isomorphism was 
given suited to the purpose. In [53] a notion of isomorphism for random variables was 
introduced, which gave the possibility of describing the behavior of a one-dimensional 
random variable with the help of a multidimensional one. 

29. First results about the structure of sets with small doubling were obtained with 
the help of elementary methods. Afterwards, the analytic methods were introduced. 
In fact, there exists an exact dividing point. If |A" + iiT| < 3k — 3, then the elementary 
approach very quickly gave a full description of K. For larger values the elementary 
methods did not give results in spite of big efforts. 

Very little has been done to get elementary results in the multidimensional case. 
In [82] the case on the plane oi\K + K\ < ^k — 5 is studied and I. Stanchescu studied 
the case \K + K\ < (4 — e)k. I don't know the range of the doubling coefficient Cn 
in an inequality \K + K\ < Cnk, where K C Zn for which elementary results may be 
obtained. 

To obtain here a clear picture is very desirable and not very difficult. Then it can 
be used to make the results of the main theorem more precise. Results for doubling 
coefficients ^ and 4—e show that the structure of A after it becomes multidimensional 
may be described more accurately with the help of elementary methods. 

Many interesting problems arise from a study of K when two, or more, numerical 
characteristics are given. A long list of invariants is given in [82], page 41. 

30. In direct problems of additive number theory one is usually studying an integral 
which yields the number of representations of a number expressed as a sum of terms 
of a certain type. Further, a transform of this integral yields an asymptotic formula 
for the number of representations. Characteristic of the analytic method in Structure 
Theory is the fact that an integral with a known value serves as a starting point. 

Examples 

(i) (See Roth [224].) Sets A without arithmetic progressions of length three. We 
have 

x£A yeA z£A 

1 

0 

e 2nia(x-{-y—2z) da A 
l 

o 

S2S\ da. 

where 

S 

xeA 

^2wiax Si 

z£A 

c—Aixicxz 

(ii) A set K with small doubling (see Freiman [82]). Here 

x£K yeK z£2K 

1 

0 

e2nia(x+y-z) da 
1 

0 

S2S1da = \K\2J 
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where 
S 

xeK 

„2ттгах Si 
xE2K 

g—2wiax 

(iii) Sum-free sets. We have 

x£A y£A zEA 

1 

0 

e2irza{x+y-z) da 
1 

0 

S2Sda = 0 

where 
S 

x€A 

g2wiax Ac [1,Z], Z G N. 

The next step is to obtain a large trigonometric sum for a certain value (sometimes, 
for several values) of the argument. Consider an example from Freiman [82], page 48. 
Let if be a set of residues modulo a prime p. Then 

I 

xi,x2eK x3£2K a=0 

p-1 
e2Tvi^(xi+X2-x3) 

p-1 

a=0 

S2S1 = k2p, 

where 
S 

xEK 

e2IIiap Si 
x£2K 

-2ni^x 
e p 

Let T = \K + KI and assume that \S\ 3 
5 

k for every a ^ 0(p) then 

1/ k2T 
p-1 

a=l 

S\2\SA k2T 
3 

5 
k 

p-i 

o=0 

2 
p-1 

a=0 
Si 2 

1/2 

fc2T 
3k 
5 

kp-Tp, 

In the example just considered the conditions T 12 
5 

k and k 
35 were assumed, 

from which it follows that \I\ < kzp, a contradiction. We have therefore proved that 
there exists a' ^ O(modp) such that 

S(a') 
k-1 

J=0 
2iri&aj 

e p 3 

3 
5 

k 

The presence of a large trigonometric sum makes it possible to obtain data about the 
set A which can then be processed using elementary techniques. 

31. In the first papers on sets with small doubling information about only one large 
trigonometric sum was used. In the proof of the main theorem we have used several, 
but finite number of large sums. The next step was to begin to study a set of all 
'large' trigonometric sums. It was first done in 1973 in probability theory field, in the 
proof of local limit theorems (see D. Moskvin, G. Freiman & A. Yudin [197]). In this 
case we were dealing with the characteristic function of a lattice random variable, 

/ ( « ) 
kez 

Pke2"iak 
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18 G.A. FREIMAN 

studying the measure and structure of the sets E, where the characteristic function 
is large. 

The reasoning is, in short, as follows. We use the fact that, if for some a i and a2 
we have | / ( a i ) | > 1 — u and (/(0:2)! >l — u then \ f(ai + a2)\ > 1 — 4u. We take the 
set 

E a / (« ) ! > 1 
logn 

n 
neN 

and begin to double, obtaining sets 21?, 22E, 23£J, If the measure is growing 
steadily we will cover the set [0,1) very quickly, thus obtaining a contradiction. If 
at some stage we meet a set with small doubling, we will get a structure. For some 
q E N, the arguments | , with 0 < p < q, will be included in this structure which will 
lead to the conclusion that almost all the probability measure is concentrated in an 
arithmetical progression modulo g, which gives a contradiction. 

32. We are naturally led to a study of sets with a large measure of large trigonometric 
sums. 

Let & be a positive integer and u < k a positive real. For a set 

K — {ai < a2 < " • < au} aj € Z, 1 < j < k 

let 

Sk (a) 
k 

3=1 

g2iriaa,j 8k{ol) = \SK(ot)\ , 

Er,U a € [0,1 for which sk(&) > k — u} 

and 

Vk{u) - p(EK,u) 

when p, is the Lebesgue measure on [0,1]. 

Problem. — Find the set K which maximizes px(u) and find its maximal value. 

We denote by PM&^IK^u) the supremum of px(u) over all sets K of size K. The 
first results on this problem were obtained by Freiman (see [95], page 144) and Yudin 
(see [260], page 163). I sketched an approach for solving the problem in [100]. In [13] 
A. Besser carried out and extended this plan very widely. He showed that up to the 
second order 

/Wx(&,w) = 2/3 ~ 
2 6 

7T 
Q 
k 

u 
k 

1 2 
1 

5 

8 
u 
k 

and Kex may be described, in the main case, as the union of an arithmetic progression 
of length ko = k — —u, symmetric around zero, and, for any non-zero integer n, an 
arithmetic progression of length 

1 

2 
kn u 

(nn)2 
1 ( - D n 

2 

centered around ^. 
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We will try to explain from where the structure of Kex comes. If a is small the 
term e27rioeaj has a value close to 1 if a,j is small. That is why we take an arithmetic 
progression with difference 1 centered around 0. We have, for a > 0, 

sk(a) 
sin(7ro:fc) 
sin(7ra) 

-irak — 7r3a3fc3/6 
Na 

k 
7T2a2 

6 
fc3 

As a increases, Sk(a) decreases and reaches k — u for or determined by 

k 
n2a2 

6 
k3 = k - u 

that is, 

a2 
6 

TT2 
u 
k3 

and thus 

oa 
6 

7T 
1 
k k 

1 2 

Consider the trigonometric sum at this point ao- Our set is positioned on the 
segment [—|, | ] . If we add another number, | ~h 1, to the arithmetic progression, 
the term e2™*o(f+i) wm De added to the trigonometric sum. If we add [ ^ ] , then 
e2irta0[i/a0] wm \ye cioser to unity, it will lie in a smaller neighborhood of the x axis 
and will influence the increasing of 5(a) more critically. This consideration explains 
the appearance of segments near to the points 
33. An analysis of the remarkable results of A. Besser does not reveal an easy future. 
The set Kex is of a rather complex two-dimensional structure which becomes more 
complex as n increases and will, in all likelihood, become multi-dimensional. The 
structure of KEX has only been found for very small values of u, u < 32Q00 and an 
increase is only gained with some effort. Thus, further progress in the problem under 
consideration would be of great interest, but reaching it is very difficult. 

The sets Kex found by Besser have small density for small uJs. But in many open 
problems the situation is different. For example, in the problem of sum-free sets, the 
density of the set to be considered is close to 0.4. When attempting to strengthen the 
theorem on the structure of K, with small doubling, outside the bounds \2K\ = 3k —3, 
we should begin by considering sets whose densities are close to 0.5. So, we state the 
problem on measure of large trigonometric sums as follows. Let if be a set of integers 
in [0,1] with \K\ = k. Define 

EK^ = {ae[0,l), for which SK(C*) > m] 

and let / /^(m) = fi(K,m) denote the measure of EK,™- Also we set 

ßk(mJ) max u(K* m). 
KC[0,I] 

Then if I = k — 1, the problems is a trivial one. As I increases, it becomes more com
plex. After the quantities /ifc(ra,Z) have been found, one should proceed to describe 
the structure of those i f ' s for which /i(if, m) does not differ greatly from (m, I). 
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34. In the problem on sum-free sets, the following integral was being considered, 

l 

o 
\S\2Sda = 01 

and it follows from this that 
l 

o 
\S\2ft(S) da = 0 . 

In a neighbourhood of zero the integrand is of order k3 and its contribution to the 
integral is of order k2. Since the integral over the whole interval equals zero, the 
measure of the set of a 's where |3?(S)| has order k and is negative, should be large. 

We come to the following general problem. Let K C Z with \K\ = k and set 

EK,-m = {ae [0,1) for which 8£(S) < -m 0 <m <k} 

Let u(K, —m) be the measure of EK -m and 

fik(-mj) max u 
KC[o,l] 

K,-m) 

The usual questions may be asked once again about the quantities /ifc(—m,I) and 
about the structure of the set K for which the measure fx(K, —ra) is close to the 
maximal value. At the next, deeper stage of study, one may investigate combining 
two or more numerical characteristics. The first step here should be the study of 
trigonometric sums when some conditions are imposed not only on \S\ but also on 
a rgS . 

35. Let G be an abelian group whose operation will be denoted by -f, and G be the 
group dual to G, that is the group of characters of G. Let A be a subset of G and 
define a map 

fx:A 

aEA 

X(a) for x € G 

that is, to the set A we correspond a function of a character x € G. 
As is shown in [82], from the fact that |2^4| < C\A\ in the case G — Z it follows 

that the set on which | / ( x ) l 18 rather large has a large measure. With the help of 
methods from harmonic analysis we can describe the structure of the set A. 

It is important to stress that to the set A with small doubling from G corresponds 
a set 

Aa X € G such that 

aEA 
X(a) a\A\ for a € E+ , 

which also has small doubling. Prom the fact that G = G we may, it seems, suppose 
that from B C G and \2B\ < C\B\ it will follow that B C G and \2B\ < C\B\. Note 
that the constants in different places of this section may differ. For a given additive 
problem it is possible to find the equivalent problem on the dual group and vice versa, 
and then to study the version which is preferable. 

The following observations are also important. Suppose that A\ C G and A2 C 
G are sets which are structurally 'near' to each other. A natural question to ask 
is whether A\ and A2 are also 'near' to each other and what kind of topology is 
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induced by the correspondence A \—> A. Again, from G — G it follows that these 
topologies induce one other. It would be very interesting to determine what kind 
of neighourhoods they define and to what extent these topologies are 'metrisable', 
because metric characteristics of these topologies will be of great interest during the 
study of problems of addition of sets. 

The analytic tool in the case G = Z was the equality 

l 

o 
S2S1 da - \A\2 : 

where 
S 

xeA 

^2itiax and Si 

x£2A 

g—2wiax 

In the case of a finite abelian group, A, we can write the parallel expression 

x ,aeA 
e2IIiax 

2 

aQ2A 
X(o) = \A\2 

Generalization to the nonabelian case should also be studied. 

36. I am greatly indebted to Dr. Ruth Lawrence and Mr. Harry Lawrence for their 
invaluable help in producing this manuscript. 
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SETS OF INTEGERS W I T H LARGE T R I G O N O M E T R I C 
SUMS 

by 

Amnon Besser 

Abstract. — We investigate the problem of optimizing, for a fixed integer k and real 
u and on all sets K = {a\ < a2 < ••• < o^} c z , the measure of the set of a e [0,1] 
where the absolute value of the trigonometric sum SK(<*) = i=1 e2Tiaoj is greater 
than k — u. When u is sufficiently small with respect to k we are able to construct 
a set Kex which is very close to optimal. This set is a union of a finite number of 
arithmetic progressions. We are able to show that any more optimal set, if one exists, 
has a similar structure to that of Kex. We also get tight upper and lower bounds on 
the maximal measure. 

1. Introduction 

Let k be a positive integer and u < k a positive real. For a set 

K = {ai < a2 < • • • < ak}, a,j e z , 1<3<к, 
let 

SK(<X) = 
k 

i=1 

2iriaaj sK(a) = \SK(<*)\, 

EK,U = {a E [0,1) SK(&) > k — U} 

and 
uK(u) = u(EK,u) 

where /x is the Lebesgue measure on [0,1] normalized so /¿([0,1]) = 1. 
This work deals with the following problem, first raised at the talk of Freiman and 

Yudin at the Number Theory Conference (Vladimir, 1968): 

Problem 1. — Find the set K which maximizes /J,K(U) and find the maximal value. 

1991 Mathematics Subject Classification. — Primary 11L03; Secondary 42A05. 
Key words and phrases. — Trigonometric sums. 
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We denote by /im a x(fe,ii) the supremum of fiK(u) on all sets K of size k. 
The first results on this problem were obtained by Freiman and Yudin: 

Theorem 1 (Freiman, [2, page 144]). — For u = 1, a\ = 0 and a& < 0.05A;3/2 the 
maximal measure is 

pmax 
(k,u) 

2V6 

7T 
k~^2 + 0{k~2) 

and it is attained by K if and only if K is an arithmetic progression. 

Theorem 2 (Yudin, [4]). For u = o(k) 

Pmax {k1 U) 
2y/6 

7T 

1 
k 

u 
.k 

1/2 
: i+o(D) 

as k —> oo. 

In [1] Freiman treated the problem assuming the ratio u/k is small enough. He 
sketched an approach for attacking the problem and conjectured it would prove that 
the best set is an arithmetic progression. 

The purpose of this work is to carry out and extend Freiman's approach (and also 
that of [4]). It will turn out that once u is sufficiently large it is no longer true that 
an arithmetic progression attains /xmax(&?^)- We are unable to find a set which does. 
Nevertheless, we do describe to some extent the "structure" of the maximal set. To 
make precise what this means, we will introduce and use the following terminology 

Definition 1.1. — Let k and u be as above. 

1. For any t/) G [0,1] we let Kw be the collection of all sets K c Z of size k that 
satisfy HK{U) > ip. 

2. A collection K of sets is said to be "good for ip", or to be a Gw collection, if it 
satisfies the following two properties: 

(a) We have K c % , 
(b) For any set K C Z of size k there exists a set Kf £~K such that /IK (U) < 

uK'(u) 
Our main results are of three types. We are able to describe the "structure" of sets 

in I&0 for a \j) which is very close to maximal. In addition we construct a certain sub-
collection of this which has property Gw .The subclass we describe is not a singleton 
but it does have a rather simple structure: it is essentially the union of arithmetic 
progressions, and we have a fairly accurate information about the location and length 
of all these sequences. Lastly, we get a good bound on /imax(&5^). 

The type of results we get is dictated by our method of proof, which could be 
describe as an iteration of four steps. 

1. We first guess a set K expected to have a large JJLK{U). We will take ip = fJ>K(u)* 
2. We get information about sets K\ that have an even higher / ^ ( t / ) . Typically 

this information consists of knowledge that most elements are contained inside 
arithmetic progressions of relatively short length. This is what we mean by 
describing the "structure" of Kw. 
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3. Given a set K\ G KW, we give a procedure for obtaining out of K\ a set K2 
such that fjbK2(u) > №KX (U). The procedure usually involves compressing the 
elements contained in the short progressions described above to form short pro
gressions, possibly with a single gap. Sets obtained in this way will form a 
subclass IK that has property G 4 by construction. 

4. We use the knowledge of Kw to get an improved bound on jUmax(fc,w). 
Our results apply under the assumptions fc/30000 > u > 1 and k > Const, with 

Const an unspecified constant. We note that this second assumption is only forced 
on us because we are using lemma 5.2 which is ineffective. If an effective bound is 
supplied for that lemma, it will be very easy to deduce an effective lower bound on k 
as well. 

We state a simplified version of the results here under the additional assumption 
u > fc2/3. With these assumptions, it follows (proposition 3.1) that for an arithmetic 
progression K of difference 1 and length k there exists some /3k,u(definition 3.2) such 
that 

ER,U = [~Pk,uj (3k,u] (mod 1). 

We will see in proposition 3.4 that 

Bk,u = V6 
7T 

1 
k 

u 
k 

1/2 

We describe a certain basic set Kex (a more precise description will be given in 
construction 6.1). Set mo = k — 5u/12 and /3 = /3 m 0 j W . To first order, / 3 m o , u « 
/3fc,U(l + 5u/8k). The set Kex is the union of an arithmetic progression of length 
mo, symmetric around 0, and for any non zero integer n an arithmetic progression of 
length 

1(  

2 rtln u 
(7m)2 

1 -
(_l)n 

2 
centered around n 

/3* All the arithmetic progressions here have difference 1. The 
structure of Kex and the particular values of the mn are chosen in such a way that 
the contributions of the shorter progressions to SKBX (<*) exactly compensates for the 
decline of the contribution of the large progression when |a| > (3/2. We show in 
proposition 6.12 that fiKex(u) ~ 2/3. The results are now as follows. 

1. 

A¿max(&5 и) 2Bmo,u 1+0 u 
Jê. 

2' 

2. A set K € KMKea; („) has the following structure (similar to that of KEX). 
(a) All but 

_5_ 
12 

u + O 
u2' 
k 

elements of K are contained in a short arithmetic progression of length 
1/4/3. To state the other results we will assume that this progression is 
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symmetric around 0 and its difference is 1. The general case is essentially 
the same by translation and dilation which change nothing, 

(b) Most other elements are contained in a union of short arithmetic progres
sions with centres near n 

ß 
and n 

ß 
for n G N. each such short progression 

has length 2k at the most. The number of elements contained in progres
sions near ± n 

ß 
is 

mn + O 
'u2 

k, 

(c) The number of elements not contained in any of the progressions above 
is 0((u/kW2u). 

3. The following subclass of ^Ке* («) (u) is of type Gukex (u) It consists of the sets 
where all the elements contained m the progression described in (a) above in 
fact form an arithmetic progression except that one gap may persist. 

All O terms can and will be made explicit although no claim for best bounds is made. 
Here is a brief summary of the contents of this paper. In section 3 we estimate 

H{EK,U) in the case where K is an arithmetic progression, and we prove the lower 
bound: 

u(EK,u) < 2VE 
7T 

1 
k 

u 
k 

1/2 

for such a progression. In section 4 we prove the upper bound 

u(EK,u) < d 
k 

u 
k 

1/2 

holds for an explicitly given d œ 4 and all sets K under some mild restrictions on k 
and u. In section 5 we consider a set 

K C Kw, ф = 2\/6 
7T 

1 
k 

u 
k 

1/2 

We show that this implies that EK,U is contained in a union of small intervals and that 
K has most of its elements contained in an arithmetic progression of short length. 
We then perform the first of our "compression arguments5' mentioned above and con
struct a Gw subclass consisting of the sets where these elements form an arithmetic 
progression with at most one gap. The construction of Kex is described in section 6. 
In sections 7 to 9 we describe the structure of ^K K e x ( u) and also describe a GllKex (u) 
subclass. 

Some of the results of this paper appeared in [1]. We follow [1] very closely in 
sections 3 to 5. We note that the argument in [1, p. 368] may be completed to give 
the result that, the part of K not in an arithmetic progression is bounded in size by 
cu with c —> 1/(2 — 4/n) as u/k —> 0. This result is improved here to c « 5/12. 

It is a great pleasure to thank Prof. Freiman for the help and fruitful discussions 
during the preparation of this work. I would also like to thank the referee for making 
many valuable remarks. 
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2 . Notation and terminology 

An arithmetic progression {a, a 4- q, a 4- 2q,..., a + (n — l)g} is said to have length 
n and difference q. We will often make the distinction between a set being contained 
in an arithmetic progression, which means it is a subset of the above, and set forming 
and arithmetic progression. We will also sometime talk about an interval of integers. 
This will mean a set of the form {x E Z : s < x < t}. This interval has length t — s. 
Notice that a subset of {a, a + q, a + 2g,.. . , a + (n — l)q} is contained in an arithmetic 
progression of length n but in an interval of length (n — l)q. 

In this paper, excluding the introduction, we will make a non-standard use of the 
notations O(l) and o(e). The notation 0 ( 1 ) will mean having absolute value < 1. In 
particular, we will write a = 6 + 0(l)c to mean \a — b\ < c. We will use o(e) to refer to 
a quantity which is very small and will be discarded in the computation by swallowing 
it in a larger quantity. A typical use of this will be for example 8(1 + o(e)) < 9. The 
reader will have to check for himself or herself that such an argument is justified, 
which should not be too hard. This notation is used because we have been asked to 
give explicit, while not best possible, upper bounds for everything. 

3. The case of arithmetic progressions 

As remarked in the introduction, we always assume that u > 1. In this section we 
want to determine SK{O),EK,U and uK(u) when K is an arithmetic progression. It 
will be occasionally convenient to write, when K is of length k and difference 1, Sk{ct) 
for SK(OC), Ek,u for EKyU and fik(u) for IXK{U). 

We first note that, for any set K and integers d and m, 

(i) SdK+m{ot) = sxida). 
Therefore 
(2) EdK+m,u = (d) 1(EK,U)-

Here, the map (d) : [ 0 , 1 ) -> [ 0 , 1 ) is defined by (d) (a) = fractional part of da. For 
F C [ 0 ,1 ) , (d)~1(F) denotes the inverse image of jP under (d). It is easy to deduce 
from this that 

VdK+RN(u) = IIK{U). 

These observations allow us to reduce to the case of difference 1. 

Proposition 3.1. — Let K be an arithmetic progression of length k and difference 1. 
Assume k >2u. 

1. We have 

s к (a) = 
sin(7raA:) 
sin(7RCFC) 

when a ^ O . 

2. The set Ek,u is a single interval modulo 1, i.e., 
EK,u = [-P,0l (mod 1) , 

For some /3 G HL 
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It will be worth while to give the number /3 appearing in the proposition a special 
notation. 

Definition 3.2. — Under the assumptions of proposition 3.1, define 0k,u > 0 by the 
equality 

EK,U = [—ßk,ui ßk,u] (mod 1), 

for K an arithmetic progression of length k and difference 1. Note that 

SK(ßk,u) = k-u. 

Corollary 3.3. — If K is an arithmetic progression of length k and difference d, then 

EK,U 
d-1 

q=0 
q 
d 

ßk,u 
d 

q 
d 

ßk,u 
d 

(mod 1). 

Proof — Prom proposition 3.1 and (2) it follows that 

EK,u (d) ([-ßk,u,ßk,u]) 
d-1 

q=0 d ßk,u 
d d ßk,u 

d 
(mod 1). 

Proof of proposition 3.1. — By (1) it is enough to consider any arithmetic progression 
of difference 1. In particular, one can take 

K = k-1 
2 

k-1 
2 

Note that this set might be composed of half integers but that makes no difference 
here. We get for a ^ 0, 

(3) SK(a) = 

k-1 2 

n__ fc-1 

e(l-k)nia 
e(l-k)nia 

k-1 

n=0 
e-wiak 

e{l-k)iriot ̂ 2iriak 

^2iriak 
(çTsiotk e-wiak)/2i 
e-wiak e-™a)/2i 

sin(7ro:fc) 
sin(7ra) 

Taking absolute values gives the first assertion. We now have 

EK,u = a e (0,1) : 
sin(7rafc) 
sin(7RA) 

> k — u U{0}. 

This set is symmetric around 1/2. It is thus sufficient to consider its intersection with 
the interval (0, | ) . On this set 5^ is in fact positive. Indeed, since by assumption 
2u < k, we find 

1k 
2 <k-u< sminak) 

sin{7ra> 

1 
sin(7ra) 

7l72 
Ta 

and therefore 

(4) Trak < 7T, 
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which shows that sin(7RAJFE) > 0. We can also write 

SK(a) = 
fc-1 

2 

^_ fc-1 
2 

^2rr iocn 
fc-1 

2 

^_ fc-1 
2 

cos(27ran). 

By (4), each term in this sum, and therefore SK(&) = \SK(OL)\, is decreasing in a. 
Thus, Ek,u H [0, | ] is an interval. 

Proposition 3.4. — When k > Su we have 

ßk,u = 
Ve 

7T 

1 
ÌÌ 

'U 

Je. 

1/2 
1 + 

3u 
20k 

•0(1) 
U 
K 

2 

Corollary 3.5. — When k > Su we have 

Mmax (к, и) > цк (и) > 
2v/6 

7T 
U 

,k 

l 
2 1 

k 
Proof of proposition 3.4. — Set 3 — 7r,"4.u • Then 

u = k — sin(fc/3) 
sin(/3) 

We notice first that 

0 < 
sin 5) 
sin(/3) 

sin(fc/?) 
B 

sin(k3) 
sin(/3) 

/3 - sin(/?) 
3 

< k /33/6 
/3 

k332 

6 fc2 
Now expand 

(5) 

k- sm(kd) 
0 

B - 1 ^ ( k d - s i ^ k B ) ) 

= ß-1 
(kßf 

6 
(k8f 
120 

(kß)7 

7! 
fc3/?2 

6 
1 - 6(k3)2 

120 
6(fc/3)4 

7! 
It follows that 

k332 

6 
1 - (k3)2 

20 
(k3)A 

840 
> it > kz32 

6 
1 - (fc/?)2 

20 fc2 

Thus, 

6w 
A;3 

1 - (kß)2 

20 
№)* 
840 

-l 
</3 2 < 

6w 
k3 1 - (kß)2 

20 fc2 
-l 

We now plug here our first estimate kd < n from (4) to iterate estimates on (kd)2. 
First, since we assume k > 3u > 3, 

1 - (fc/?)2 

20 k2 1 
3' 
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SO 

(kß)2 < 18 
u 
k' 

Applying this and using 1/k2 < u/{3k) we now get 

6¡ < m 2 < 
6¡ i + 

2uN 

k 
Thus 

6u 

k3 
1 -

6u 

20k 

6 2 

840 
u 
k 

2" -1 
<ß2 

and 

6u 
k3 

1 -
6u 

20k 

12 

20 
u 
K 

2 U 

k 

2 -1 
>ß2 

The proposition follows easily from this. 

4 . An upper bound for /zmax(fc, u) 

We will prove the upper bound 

Mmax(&,w) < K 
u 
k 

1 
2 

for a constant d « 4.04 that will be defined later. Note that this is of the same type 
as the lower bound we got in corollary 3.5. We will need a few lemmas. 

Lemma 4.1. — For any u and k we have 

A¿max(&5 и) < 
k 

(k - u)2 

Proof. — Since SK {OL) > k — u on a set of measure /ij^tt), we have 

(k - u)2^K{u) ri 
o 

SK(p)2da. 

The right hand side can be explicitly computed. 

lo SK{ot)2da — f 
/0 

SK {OL) SK {OL) da 

f 
'0 

k 

n=l 
e2Tria(an) 

k 

\m=l 
e2Tria(an) da 

k 

n,m=l 
f e2Tria(an-am)^a 

k 

n=m=l f 
to 

Ida — k. 

This immediately implies the result. 
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Lemma 4.2. — Let Pi,P2, • • • be real positive numbers such that k 
/¿=1 Pi = 1 Let 

ai, i = 1,..., k, be integers. Set (j){a) ^k 
i=1 p.e27riaai Then, 

\4>(<*I + A2)\ > \4>(OT1)\\4>(A2)\ • l - | ^ i ) l 2 l - | 0 ( a 2 ) | 2 . 

Proof. — We reproduce the proof given in [5, Lemma 1]. Let 

vo = {yfpï,---,\/Pk), 

Vi = /p^e2niaia\ Jp^e2™^) 
v2 = Me27Tia2ai, Jp^e2™^) 

be three unit vectors in Ck. Then \(j)(ai+a2)\ = cos#(t?i, v2) and |0(a$)| = cos0(t^? vo) 
for ¿ = 1,2, where 6(v, w) is the angle between the vectors v and w. Since 6(v\,v2) < 
Q{VI,VQ) +0(v2,vo) we have 

|^(ai + a 2 ) | > cos#(t>i,?;o) cos0(f 2,^o) Sin 0(t?i, Vo) Sin #(i>2, VQ) 

— COS6{VI,VQ) COS6(V2IV0) 

- V 1 - cos20(t/i,i>o) 1 - COS2 0(^ 2, ô) 

- \4>(ai)\\4>(A2)\ ^ l - | ^ i ) | 2 ^ 1 - I ^ 2 ) | 2 . 

Corollary 4.3. — For any set K and real numbers U\, u2 we have EK,Ui + EK,U2 Q 
EK,2(UI+U2)-

Proof. — When u\ = u2 this was obtained in [5]. In the general case, putting in 
lemma 4.2 pi = \ and multiplying by k2 we get 

ksK{oti + a 2 ) > sK{oLi)sK{a2) ' f c 2 - * j r ( " i ) 2 
fk2 - sK{ct2)

2. 

If we assume SK{oti) > k — u\ for i = 1,2, then we get 

ksK(c*i 4- a 2) > (k — ui)(k — u2) - k2 -(k-Ul)
2 fk2 — (k — u2)

2 

= k2 — k(u\ 4- uo) + tiiwo — 'ni (2fc — tti) w2(2fc - w 2). 

By dropping the term u\u2 and replacing 2k — Ui by k we see that 

ksx{oLi + a 2) > A:2 — kiux + ÎX2) — k(2^Jv^^/û~2~), 

Since 2y/û{^Jû2~ <ui+u2 we get 

ksx(cti + «2) > k2 — 2k(ui -f W2), 

which implies the result. 

Lemma 4.4. — If E C [0,1) is closed and u(E) 
35 then 

p(E + E (mod 1)) > 2/I(J5). 

Proof. — This is a result of Macbeath and Kneser (see [6] for reference). Also, this 
follows easily from the Theorem in [3, p. 46]. The referee informs me that this is also 
due to Raikov [7] with the relaxed condition p(E) < ~. 
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Proposition 4.5. — Put 

c = 
V2-1 

4 V 2 - 1 
« 0.09 d = 1 

Ml - с) 2 
« 4.04 . 

For k > 50 and 15ti < k we have 

£*max(&? и) < A: u 
k 

Ì 
2 

Proof. — More precise restrictions on k and u are in fact & > 35/(1 — c ) 2 and u < ck. 
Prom corollary 4.3 and lemma 4.4 it follows that 

uK(4su) > 2s uK (u) 

for every positive integer s for which № ( 4 s - 1 i x ) 35* On the other hand, by 
lemma 4.1 we have, for any s with 4s u < jfe, 

uK(4su) < k 
(k - 4su)2 * 

It follows that 

/Wx(â,h) < min 
k 

2s(k-4su)2 

where the minimum is taken over all the integers s such that 

(6) 4su < k and 
k 

(k - 4s~1u)2 

1_ 
35' 

To get a good upper bound we choose 

s = pog4(cfe/u)] + 1, 

where [ ] is the integral part and log4 is log in base 4. The conditions of the proposition 
guarantee that s is in the range (6). Also set t = \og4(ck/u) — (s — 1). Note that 
t G [0,1). We have 

4s = 4 . 4s""1 = 4l~l ck 

u 

Therefore we obtain the bound 

uK(4su) < 
. 1 
: k 

u 
k 

1 
2 1 

/4i-*c(l - 4 1 - t c ) 2 ' 

Consider now /¥z^(l-41-tc)2 

as a function of t. Its maximal value over |0,11 is 
easily found. It is obtained at t = 1 and equals 1/d. This finishes the proof. 

Remark 4.6. — Here is the reasoning behind the choice of s. We are trying to mini
mize a function of the integer s. The replacement for a differential when computing a 
"critical value" in this situation is the difference of two successive values, but we may 
also consider the quotient of two such values, which is more natural here. Therefore, 
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we look for an integer s for which the ratio of the expressions at s and s — 1 is closest 
to 1, i.e., 

2 
k - 4 (4s~1u) 

k - (4s-lu) 

2 

» 1. 

Solving this gives 

4 S _ 1 ck 

u 
Remembering that s G Z makes our choice clear. As mentioned above, we have 
arranged things so that this s will be in the range we are considering. 

5. Structure of K with large EK,U 

In this section we will describe the structure of sets in the class Kw, where ip 
is roughly the measure attained by an arithmetic progression. More precisely, set 
d1 = 2V6 

7T 
We let 

w = k u 
k. 

1 
2 

and consider from now on a set K G KW Towards the end of this section we will also 
describe a subclass satisfying property Gw. 

Our initial restrictions on k and u in this section are that the restrictions of propo
sition 4.5 are satisfied for k and 43u. It is enough to require k > 50 and lOOOti < k. 
These assumptions will be strengthen later. Let d be defined as in proposition 4.5. 

Lemma 5.1. — For a constant c\ « 0.75 there exists i G {0,1,2} such that 

KERA'U + EKAiu) < (2 + C^VÌEK^U). 

Proof. — Assume by contradiction that for all 0 < i < 2 we have 

l*(EKAiu + EKMU) > (2 + A)fi(EKAiu). 
Applying corollary 4.3 repeatedly we get 

p(EKA*U) > (2 + c i ) 3 / i (£^ , u ) . 

substituting the lower bound we imposed on JJL{EK,U) and the upper bound of propo
sition 4.5 on fJ>(Ej(A3U) we get the inequality 

23d> di(2 + c i ) 3 . 

We fix ci so that this last inequality fails, i.e., c\ = 2((d/di) 1 / / 3 — 1). The approxima
tion to c\ is recovered from the estimate d/d\ « 2.59. 

For a positive integer q we set 

EqJ = 
q-1 

r=0 q 
6_ 
2 

r 
g 

S 
2 

(mod 1). 

The following lemma is proved in [5] on p.154-159. 
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Lemma 5.2. — Let F C [0,1) be a closed set such that //(F) < Const for some 
unspecified constant Const. Suppose that there exists 0 < c < 1 such that 

ß{F + F)<{2 + c)ß(F). 

Then there exist /3 € [0,1) and a positive integer q such that 

FQß + Eq,6, 

where ô (1+c) 
q MF). 

Lemma 5.3. — Suppose F Ç ß + EQj, where Ô 
(l+c) 
q 

//(F),0 < c < 1, Suppose in 

addition that fi(F) > 0, mat 0 E F and that —F = F (mod 1). Tnen F C Eqj and 

E„2S ÇF + F + F (mod 1). 

Proof — To see that F C Eqj note first that Eqj is stable under translation by 1/q. 
Therefore, we may assume that |B| < l/2q. We know that 0 E F C /? + Eq,$. This 
implies that \/3\ < S/2q. Finally, as F is stable under negation, 

F C (ß + F<^) H (-/? + F g ^) = Eq,6-W Ç EqiS. 

When /3 = 0 the second part of the lemma is proved at the same place the previous 
lemma was. 

From now, until the end of the paper, excluding section 6, we will be working under 
the following additional assumption 

Assumption 5.4. — Our u and k are such that 

4.04 
k 

Wu 
k 

l 
2 < Const, 

where Const is the unknown constant of lemma 5.2. 

Making this assumption allows one to use lemma 5.2 for our purposes. It is enough 
to require that k is big enough, of course. This assumption makes the results of this 
paper ineffective. It is our hope, however, that one can give an effective bound in 
lemma 5.2, and thereby for the entire paper. 

Proposition 5.5. — If K E Kij,, then there exist integers q and i € {0,1,2} and a 
positive real number 6 such that 

1. We have the inclusions 

EK^U Ç EQÌS and Ej^ìiQ.4%u D EQÌ28-

2. We have the inequality 

S>q -i2i di 
k 

u 
k. 

l 
2 
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Proof. — Let i € {0,1,2} be the smallest integer for which the assertion of Lemma 5.1 
holds. This lemma precisely says that Lemmas 5.2 and 5.3 can be applied in succession 
to F = EK4iu. The implication is that there exist some positive integer q and some 
positive real number S such that 

(7) E К ¿i и Q Eq,8 

and 

Eq,2S Ç EKi4iu 4- EKì4iu + EKÌ4ÌU. 

Corollary 4.3 implies that 

ER.IO^U 2 EKÌ4ÌU 4- EKÌ4Ìu + EK)4iu. 

This gives the first assertion. The inclusion (7) implies 

q6 = fi(EqjS) > p{EKAiu) : 2ip(EKiU) 2* 
d1 

k 

w 
k. 

1 
2 

This gives the second assertion. 

Proposition 5.6. — Let q be a positive integer. If 

EK,U D {0,q-\ 
q-1 

Q 
then there exists an integer r such that the set 

Kr = {aeK : a = r (mod q)} 

satisfies 

\Kr\ >k-2u. 

Proof. — We have 

q(k - u)2 

q-l 

r=0 
SK(r/q)\2 

q-l k 

r=0 m,n=l 

e2Trir(an—am)/q 

k q-l 

m,n=l r=0 
e2ivi(an—am)/q r 

am— an (q) 
q 

= Q 
q-l 

r=0 

Kr\
2 < (qmax \Kr\) 

q-i 

r=0 

\Kr\ kq max\Kr\. 

and therefore 

max \Kr\ > k 1 -
u 
k 

2 
>k-2u. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



48 A. BESSER 

Let, for 0 > 0, 

be = e-
o 
o I cos(7ra)\da. 

Clearly, be > 0. It is also easy to see that be is increasing in 0 because its derivative 
with respect to 0 is 1 — | eos(7r#)| > 0. Finally, one checks that 2bi/2 — b\. 

Proposition 5.7. — Assume EK,U D [0,5] and set 

@i — &fc4-l — i &ii i = 1,..., k. 

Then, for every O<0< 1/2, 

\{i: \ii\6 > 0}\ 
u 
g 

Proof. — We have 

ô(k - u) C SK{oi)da < 
1 
2 

k 

n=l 

r 
0 

e27riaak+1-n ç2iriocan da 

1 
2 

k 

n=l 
r 
0 

e27riaak+1-n da 

o 

n=l 
/o 20S(7ra;£n)|(ia. 

We bound each term from above. If \£n\S < 0, we use the trivial estimate 

r 
0 

cos(7rain)\da < ö. 

Otherwise, we make the change of variables 

o cos(7ra£n)\da 
1 

ln 

\TN\S 

to 
cos(7ra)\da. 

When 0 < \£n\S < 1 we use the estimate 

1 
\IN\ 

|n|s 

o 
cos(7ra)|do; 

1 

\£n\ 

F 
o cos(7RA)|da + 

|n|s 

IB 
cos(7RA)|da 

1 
|ln| 

(9-be + \£n\S -0)=6-bé 
1 

|ln| 

< 6(1-be). 

When \£n\6 > 1 one finds similarly 

1 
|ln| 

|ln| 

/o 
cos(na)\dat < 6 — b\ 

\en\s 
|ln| 

< s 
l 
2 

b16 = 6(l-bi) 
V 2 

< 6(1-bo). 

Therefore, 

6(k-u) <6(k-be-\{i \li\6>6}\); 

which proves what we wanted. 

ASTÉRISQUE 258 



LARGE TRIGONOMETRIC SUMS 49 

Lemma5.8. — Suppose k > 30000^ and K G Then there exists a unit vector v 
such that for any a G EK,u we have Angle (S/<:(a), v) < TC/2. In addition there is a 
subset KQ of K with at least k — 2000t£ elements such that the following is satisfied: 
For any a € K0 and any a G EK,u one has Ang\e(v, e2NIAA) < TT/4. 

Proof. — By proposition 5.5 there exist i € {0,1 ,2}, a positive integer q and a real 
number Ô such that 

EK,U Ç EK^iu C EqJ EK^IO^U 5 Eq^s-

Consider a parameter 0 < 1/4 to be set later. According to proposition 5.7 all 
but 10 • 4lu/b20 elements of K are in an interval of length £ such that £5 < 26, or 
equivalently 2n£(5/2) < 2TT0. Further, all but 2 • 4%u elements of these are in the 
same congruence class modulo q. We may translate K by an integer to make this 
interval symmetric around 0 and the residue class be that of 0. Now denote by KQ the 
intersection of K with the interval and the residue class of 0, and let K — K — K0. 
We will show the lemma with v = 1. One easily sees that the condition of the lemma 
is now equivalent to ReSK(C*)/\SK(<*)\ > y/2/2. We will in fact show this for all a 
in the bigger set Eqj- Consider such an a and a G KQ. Suppose first that a is in the 
interval of Eq^ around 0. Since \a\ <£/2 we have 

|arg(e2 7 r i a a)| \2naa\ < 2TT(£/2)(S/2) < n0. 

Therefore, Ree2?rma > cos(#7r). NOW, since elements of KQ are divisible by it is 
easily seen that they behave the same on all intervals of Eqj. Thus, the same estimate 
is true for any a G Eq>s- Since KQ contains at least k — (lOft̂ 1 + 2)4%u elements, this 
implies that for a G Eq s we have 

ReSxo > cos(#7r) k- 106"/ + 2)4*tz) 

Therefore 
Re SK (a) 

\SK(a)\ 

KeSKo(a)-\SR(a)\ 
k 

cos(07r)(k - (106"/ + 2)4*ti) (106"/ + 2)4*11 

k 
Thus, the lemma will be true if we can find a 0 < 1/4 for which the right hand side 
is larger than y/2/2. Clearly the worst possible case is when i = 2, in which we need 
to solve 

cos(9iT)(k - (1606-/ + 32)ti) (1606-/ + 32)u 

k 

V2 

2 
This inequality is equivalent to 

k 
u 

(1606-/+32) 1 + COS(7T#)̂  COS(7T0) 
s/2 
2 

-l 

It remains to numerically find the minimum of the expression on the right over 9 G 
[0,1/4]. This is found to be about 29439, located around 0 = 0.19272. The result 
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follows with the bound on the number of elements outside Ko being 160&26,1-T-32 « 1860 
times u. 

Proposition 5.9. — Suppose k > 30000?/. Then, the following subclass of has 
property Gw. A set in the class can be written as a disjoint union 

M = M0 UK with \K\ < 2000^, 

where M0 is an arithmetic progression with at most one gap. 

Proof. — Suppose K e Ktp. We will show how to find a set M in the subclass 
described above such that HM{U) > fJ>K(u)- By the previous lemma we know that 
we have a decomposition K = KQ U K and that there is a unit vector v such that 
for all a G EK,U both the sum SK (ct) and any individual term e27rtaa, with a € K0l 
form an angle of < TT/4 with v. In the situation just described it is easily seen that 
by replacing a > b G Ko by c = a — qt, d = b -f qt, such that c > d and c, d $ Ko, we 
enlarge the value of SK(&) for a G Eqis- This is because the contribution of the pair 
(c,d) is larger than that of (a, b) and has the same direction which forms an acute 
angle with the rest of the sum. Therefore, such a change can only increase the value 
of fJ>K,u- All that remain to do then is to show that by repeated application of this 
we transform Ko into a set Mo which is an arithmetic progression of difference q with 
possibly one gap. To see this we may again assume that elements of KQ are divisible 
by q. Suppose that e = max(iiro)> / = min(iiTo) and consider the set 

Kcorrip — {x G qEi : / < x < e and x é KQ 

Let c = max(iifComp) and d — mm(Kcornp). Suppose that Kcornp ^ <fi and that c ̂  d. 
Since a = c + q G Ko and b = d — q G Ko, we may perform a transformation as above. 
It is clear that each step decreases the sum of the absolute values of all the differences 
between the elements of Ko. Therefore the process has to stop. The computation 
above shows that it stops only when Kcornp has at most one element. This means 
that the resulting set, has at most one gap. 

6. A close to maximal set 

In this section we describe a set Kex which we suspect to be very close to maximal. 
Just how close will become evident later on. We will begin with parameters mo and 
w and construct a set M{rriQ,w). This will roughly be our set Kex except that we 
can not guarantee in general that it will have exactly k elements. We will choose the 
parameters so that it has about k elements and then take out as many elements as 
we need to get it to be of the right size. 

We assume we are given an odd positive integer mo and a real number w which 
satisfy the assumption m0 > 30000ul Let M0 be the set {—(m0 —1)/2,.. . , (mo —1)/2} 
of size mo- Clearly |5m0| = SM0- We write (3 for (3m0^w. According to definition 3.2, 
/3 satisfies SMo(0) = mo — w and furthermore EM0(W) = [—/?,/?]• 
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Construction 6.1. — Given mo and w we construct the set M(mo,w) as follows: 

(8) M = M(m0,w) = M0 U M 
nCZ 

Afn, 

where each Mn is an arithmetic progression of difference 1 centered (as best possible) 
around ^. For n > 0, the length of the two progressions M±n is the same and is 
denoted by mn/2 To fully determine M (mo, w) one only needs to give the number m n . 
It will be defined to be the largest even integer smaller than a constant e n , whose 
description is given in definition 6.3 below, and which has the approximation, given 
in proposition 6.8, 

cn ~ 
2w 

(7m)2 
1 -

Mn 

2 
We note that c n < 2 for n » 0, hence mn = 0 for all but finitely many values of n. 
Also m n is always non-negative (see remark 6.9). 

To define the constants cn we need an auxiliary function / . 

Definition 6.2. — We define a function / = fm0,w on [0,1] as 

frn0,w (0 
Sm0 (ßr) -mo+w 
fmo,w(1-r) 

if r 6 1,1] 
2 if r G O,1 

2 
Note that f(r) is a continuous function such that 

/(0) = /(1) = Sm0(ß) - (m 0 - w) = 0 
by the definition of /3 = /3m 0 j U;- Also, by construction, / is symmetric around 1/2, 
which implies that in its real Fourier expansion all the sin functions do not appear. 
Finally, for all r € [0,1], f(r) > 0. It is enough to check this by symmetry for r > 1/2, 
in which case (3r € EM0(W) hence 5m o(/5r) > mo — w. 

Definition 6.3. — Define real numbers c n = cn(mo,w) for n > 0 in such a way that 
the real Fourier expansion of / is 

(9) f(r) = co 
OO 

n=1 
cn cos(27rnr). 

Define m n as the largest even number smaller than cn. 

We have the usual integral expansions of c n , 

(10) Co = f /(r) dr = 2 IIP f(r) dr 

and 

(u) c„ = - 4 C f (r) cos(27rnr) dr. 
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The Fourier expansion (9) clearly converges pointwise on [0,1] because / is contin
uous and piece wise different iable. Substituting r = 0 we have 

(12) Co = 
oo 

n=l 
Cn 

Remark 6.4. — The heuristic reasoning behind construction 6.1 is as follows: We are 
looking for a set M of the form (8). The number /3 is defined so that EM,W ^ [—A fl] 
whatever M is, so best we can hope for is near equality. We would also like to make 
fh = J^n>omn (and therefore m = \M\) as large as possible. Since SM0 is real and 
large, it is easily seen that the best way to enlarge SM is to contribute to its real 
part. Thus we assume from the start that M is symmetric around 0. Then SM is real 
valued. Therefore, the condition for a to be in EM,W becomes SM(OL) > k — w, which 
is equivalent to 

(13) m - Sw(a) : SMo(
a) - mo + w 

Suppose it was possible to have ß G EM,W Then we get fh — Sj^(ß) = 0 and thus 
e2waßi — 1 for a G M. This implies that each a G M is of the form a = n/b for some 
n / 0 . Set 

en = \{a = n 
ß 

eM}\. 

We can therefore write 

fw(r) := m - Sw(ßr) : m -
oo 

n=l 
en cos(27RAR). 

The function fjj satisfies fj^ < f since this is true on [1/2,1] by (13) and since both 
sides are symmetric for replacing r by 1 — r. Conversely, for any symmetric fjj < f 
we can, replacing / by fjj in definition 6.3 and what follows, find constants en and 
create an M that will satisfy (13). But since we want the largest fh — eo it is clear we 
should take fjj = f. Then we make the necessary adjustments to get from the cn to 
a true candidate for M by taking m n to be the largest even number smaller than cn 

and M as a union of arithmetic progressions centered on ±n//3 and of length mn/2 
each, which is just the construction 6.1. 

We now derive estimates on the parameters of M and the size of EM,W 

Lemma 6.5. — Let n be an integer. Then, 

sup 
zee 

|n|<1/n 

sin(nz) 

sin(^) 
1_ 
EN 

1.2n. 

Proof. — We have 

sin(n£) 

sin(z) 

cinz g—inz 

eiz _ e-iz 
ei(l-n)z 

g2inz ^ 

e2iz _ I 
ei(l-n)z 

n-1 

k=0 
ç2ikz 
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If z — x — in, then, since \elz\ = e y , we get the upper bound 

sin(nz) 
sin(z) 

< e ~ { n ~~ l ) l 

n-l 

k=0 
e2ky = 

l-n<l<n-l 
2|n-l-/ 

e'y. 

It is enough to find the maximal value of the last expression for —1/n <y< 1/n. It 
is clear that the expression is symmetric in y. The derivative is given by 

KKn-l 
2\n-l-l 

l(ely -e~ly), 

which is clearly positive for positive y. Therefore, the maximal value is obtained at 
y = 1/n and equals 

e 
n-l n 

n-l 

k=0 
2k 

e n 
e 

n-l n e 2 - l 
ei-1 

Using the inequality ex — 1 > x we obtain 

I sminz) 
sin(^) 

<e n-l 
71 e2 - V 

n 
2 e™ 

e 2 - l 
2e 

n < e™ 1.2n. 

Let 

/ (r) = w 
oo 

i=i 
aár23 

be the expansion of / (r) on the interval [1/2,1]. In other words, it is the Taylor 
expansion of 5m o(/3r) — mo + w around 0. Note that the odd coefficients vanish 
because smo is an even function, and that since its value at 0 is mo the constant 
coefficient is indeed w. Let 

R2(r) := f(r) - w - axr2 

be the error term in the quadratic approximating of / ( r ) . 

Lemma 6.6. — Let c = 6(ti;/mo)(l + 2w/mo) and define 

h(r) ~ 2mo 
(cr 2 ) 2 

1 — cr 2 

Then, for r € [1/2,1] and any n > 1, 

dn 
dln R 2(r) 

dn 

drn 
h(r). 
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Proof. — We give an upper bound on the coefficients aj. Prom the explicit de
scription of Sm0 given in part 1 of proposition 3.1, we see the the complex function 
sin(mo^)/sin(z) extends the real function smo(a/7r). Consider the Taylor expansion 

sin(mo^)/ sin(z) 
oo 

I=0 
bjzj. 

By lemma 6.5 we see that since mo > 3, smo(z/7r) = sin(mo^)/sin(z) is bounded by 
2mo when \z\ < I/mo. We use the Cauchy integral formula on a circle Cmo of radius 
1/mo around 0 to obtain the estimate 

N = 
l 

2m Cm0 

sin(mo^)/ sin(z) 
zj+i 

dz < 2 m o i + 1 . 

Prom the definition of / we see that for j > 0 we have aj = &2j(tt/?)2j • From the 
bound on /3 in proposition 3.4 we get for j > 0 

Kl < 2mo2j+1 6t*;(l + 2u/mo) 
mo 

l 
2 1 

mo 

2I 

= 2moc7. 

One easily checks that 

h(r) — 2mo 
oo 

3=2 
er2*. 

The bound is now clear. 

Corollary 6.7. — We have the following estimates for r G [1/2,1] and 6 G [0,1/2]. 

(6.7.1) Ä 2(r) < 75 w
2 

mo 
r\ 

(6.7.2) R'Jr) < 300 
w2 
m 0 

r. 

(6.7.3) |w + ai| < 75 w
2 

m0 

(6.7.4) |/ /(r) + 2wr| 450 
w2 

mo r. 

(6.7.5) /(1 -S)< 2ôw 1 + 225 
w 

m 0 

Proof. — To prove (6.7.1) we note that 

R2(r) < h(r) < 2m0 

c2 

1 -c 
-r4 2-6 2 w2 

m0 

r 4 l + o(e)) < 75 
u;2 

mo 
r 4. 
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Similarly, we get (6.7.2) because 

(14) 
h'(r) = 4ra 0c

2r 3 
2 - r 2 c 

(1 - c r 2 ) 2 
8mo 

c 2 

;i - c)2 
r 

<8-36 
w2 

m0 

r(l+o(c)) 300 
w2 

m0 

r. 

Since /(1) = 0 we find 

\w + oi| = 1/(1) - ti; - Oil2! = |J?2(1)I < M L ) , 

which is < 75w2/m0 by (6.7.1). This gives (6.7.3). We get (6.7.4) by 

|/'(r) + 2wr| = \Rf

2(r) + 2(w + ai)r| fc'(r)+2-75 
tu2 

ra0 

r < 450 
w2 

m0 

r 

where the last two inequalities follow from (6.7.3) and (6.7.2) respectively. Finally, 
(6.7.5) is derived from (6.7.4) by the mean value theorem: Since /(1) = 0 we can find 
1 - 6 < p < 1 such that |/(1 - 6)\ < S\f'(p)\. By (6.7.4) we find 

|/'(p)| <2*ip + 450 
w2 

TTlQ 
p<2u + 450 

w2 

m0 

= 2u 1 + 225 
w 

m0 

which finishes the proof. 

Proposition 6.8. — We have the following estimates on the coefficients cn. 

(6.8.1) co = 
5 

12 
w + 75 

w2 

mo 
0(1). 

(6.8.2) Cn — 
2w 

(7m)2 
1 -

: - i ) n 

2 

1500 

(7m)2 

w2 

mo 
Oil), 

Remark 6.9. — In particular, cn is positive for every n and hence we can indeed 
define mn as we did in construction 6.1. 

Lemma 6.10. — For any C°° real valued function g and any nonzero integer n we 
have 

r1 

1 
2 

cos(27rnr) g (r)dr 
1 

(27rn)2 
g'{\) - ( -1) V ì 

2y 

ri 

1 
2 

cos(27rnr)g" (r)dr 

Proof. — We use integration by parts twice to get 

Re R1 

1 
2 

e2ninrg(r)dr 

= Re 
1 

2itni 
g(l) - (~l)ng 

T 
2/ 1: e2ninrg'(r)dr 

= Re - 1 
(27rm)2 

g'(l) - (-1) V 
1 
2 

F e2ninrg"(r)dr 

Writing out the real part in terms of cos functions gives the result. 
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Proof of proposition 6.8. — Taking g(r) = 1 and g(r) = r2 respectively in lemma 6.10 
we get 

(15) 
1 
1/n cos(2nnr)dr = 0, 

(i6) r 1 

1 
2 

cos(2nnr)r2 dr — 
2 

(27rn)2 
1 - ( - l ) n 

2 
3 

(27rn)2 

Now we use g(r) = i?2(V) as defined in lemma 6.6. In the inequality of lemma 6.10 
we can replace R2 and its derivatives by the function h and its derivative, as follows 
from lemma 6.6. This gives 

с 
2 

cos(27rnr)i?9 (r)dr 
1 

(27rn)2 
ti (I) + ti 1 

2 С 
2 

h"(r)dr 

Evaluating the right hand side we find 

(17) с 
2 

cos(27rnr)i?2 (r)dr 
2h'(l) 
(27rn)2 

< 150 
w2 

m0 

1 
(TTU)2 

where the inequality follows from the estimate (14). By definition, 

/ (R) = R2(r) + w + axr2 = R2(r) -F w(l - r2) + (w 4- AI)R 2. 

Here, the main term is — r 2 ) . Therefore, The main terms in the estimates on cn 

and Co are 

Cn = -4w f1 

l 
2 

(1 — r2) cos(27rnr) dr — 2w 
(irn)2 

1 - ( - l ) n 

2 

Co « 2w r 
1 2 

(1 -r2)dr 5 
12 

it?. 

The error term for cn is now obtained by integrating i? 2 (r)+(w-hai )r 2 multiplied by 
eos(27rnr) and the appropriate constant, and the integral is estimated using (15),(16) 
and (17). For n > 0 we get 

Cn - 2w 
(irn)2 

1 - [-1)" 
2 

= 4 
1 
1/2 cos(27rnr) (#2(7*) + (w + ûi)r 2) dr 

< 4 150 
w2 

m 0 

1 
(irn)2 

75 
to2 

m 0 

3 

[nn)2 

= 150C 
tu2 

ra0 

1 
(7m)2 
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Similarly for CQ we find 

co -
5 

12 w = 2 f 
ì 
2 

(/(r) -w(l -r2))dr 

< 2 í R2(r)dr + 2 í (ai + w)r2dr 

< 2 í 75 
w2 

NIG 
r4dr + 2 

1 
3 

7 
8 

(ai + w) 

2 
5 

75 
w2 

m 0 

2 
3 

7 
8 

75 
w2 

m0 

75 
w 2 

ra0 

We now wish to modify the set M to make it our candidate set Kex. We need a few 
more computations. 

Lemma 6.11. — Let UJ be a real constant. Then we have 

oo 

n=l 
min 

eu 
n2 

2 < 4.2у^. 

Proof. — Recall that ^ 1/n2 = 7r2/6. We begin by considering small values of UJ. If 
UJ < 2, then the sum is clearly cj7r2/6 < yfuj~V2ir2/6. Similar computations show that 
when 2 < a; < 4 we get a bound of y/uJ7r2/3 and when 4 < < 9 we get a bound of 

3 7T2__ r 
6 4 Vo; < 4.2v^, 

which is the largest so far. Now suppose that 9 < UJ. Let x = y/u/2. One checks that 
2x2/(x — 1) < 3x + 2, It is easily seen that the largest n for which uj/n2 > 2 is [x]. 
Thus we have 

oo 

n=l 
min 

UJ 

n2 
2 < 2[x] + UJ 

oo 

n=[x]+l 
n 2 < 2[a:] + UJ 

»oo 

[A] 
eft 
i 2 

2[x] a; 
[x] 

< 2(x - 1) - a; 
x- 1 

2a: 4 
2z 2 

or- 1 
- 2 

< 5x 
5 

V2 
Jul < 4.2y/üj. 

Proposition 6.12. — Suppose k and u satisfy the condition 1 < u < &/30000. Then 
there exist mo, m £ Z, w £ R and a set Kex = Kex(h,u), such that the following are 
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satisfied. 

(6.12.1) k — mo -f m. 

(6.12.2) M0 Ç Kex Ç M(m0lw). 

(6.12.3) EKex,u [-ß,ß\ WÜh ß = ßm0,w 

(6.12.4) co(m(),i/;) > m > co(mo, w) — 5.2Jw. 

(6.12.5) u — w -H w 
k 

3 
w + 2 I 

w 
~k 

3/2 

Remark 6.13. — Note that co(mo,w) depends on w and mo but to first order is just 

T2W « T2U' 

Proof of proposition 6.12. — We start by choosing w such that (6.12.5) is satisfied. 
For a given mo set m = J2^=i mn and m = mo + fh = \M(mo,w)\. We take the 
smallest mo for which m > k. We now pull elements out of the sets Mn until we 
obtain our set Kex (the choice of which elements to take is arbitrary, hence Kex is 
not uniquely defined). By (12) and the construction of the m n in 6.1 we find the left 
inequality in (6.12.4). To get the inequality on the right we need to compute the sum 
of the differences between cn and mn and count how many elements we take out of 
the Mn in the final step. Recall that m n was taken to be the largest even integer 
smaller than cn. Therefore, 

CO — m 
oo 

n=l 

Cn - mn < 
oo 

n=l 
min(c n,2). 

Let u = (3u?/7R2)(l + o(e)). It follows from (6.8.2) that 

CO — m < 
oo 

n=l 
min 

w 
n 2 

2 

which by lemma 6.11 is 

< 4.2 
3 

TT2 
(1 + o(e))y/ü < 2Ay/û. 

The number of elements we may have to take out of M(mo, w) to get Kex is bounded 
from above by |M(mo, w)\ — |M(mo — 2,to)|. The difference in size between the two 
sets is caused by the fact that we have m n(mo, w) — m n(mo — 2, w) = 2 every time 
there is a multiple of 2 between cn(mo,t*;) and c n(mo — 2,w). With the constant UJ 
as before, this does not occur once n > y/u/2. Thus, 

m - k < 2 + 2v4V2 < 2 + 0.78y/ü < 2.78^/ü. 

This gives (6.12.4) as 2.4+2.78 < 5.2. It remains to show (6.12.3). From the definition 
of / we see that for r > 1/2, 

SM0(ß
r) - mo+w = f(r) = c0 -

oo 

n=l 
cn cos(27rnr) 

oo 

n=l 
c n ( l — cos(27rnr)), 
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where the last equality follows from (12). Since mn < cn we find 

SMQ (ßr) -m0 + w> 
oo 

n=l 
m n ( l — cos(27rnr)) : m — 

oo 

n=l 
m n cos(27rnr) 

and, rearranging terms 

(18) SMo(ßr) 
OO 

n=l 
mn cos(27rnr) > mo + m — w = m — w. 

Comparing the situation for r < | , we see that SM0 is larger while the rest is sym
metric around I and therefore the last inequality holds for r G [0,1]. Each term 
m n cos(27rnr) is very close to 5MW (r(3) + SW-n (P/?)- We measure the difference in the 
following lemma. 

Lemma 6.14. — Let A = {s, s -h 1,..., t — 1, t} be an arithmetic progression of length 
I = t — s + 1. Suppose a G [0,1/1} and suppose x G E satisfies \x — x'\ < 1/2, with 
x' = (s + t)/2. Then, 

I Re(Ze 2 7 r i* a - SA(a)} < nla -
TT2 

6 
I3 a2. 

Proof. — Suppose first that x = xf. Then. 

\Re(le2™« - SA(a))\ \l-e-27TixaSA(a) 

It is easy to see that the expression inside the absolute value is real, positive and 
equal to 

I - si(a) = I - sin(7rZa) 
sin(7ra) 

sin(7r/a) 
Ta 

TV2 

6 
i 3 a 2 , 

where the last inequality follows from (5). To complete the proof all we have to do is 
to compute 

I Re(le27rixa -le2nix'a)\ |/(cos(27nra) — cos(27ra:,a))| 1\2TT(X — x')a\ < rrla. 

Applying the last lemma in our situation we see, using the fact that m n

3 m 3 , 
that 

oo 

71=1 
mn cos(27rnr) — 2 Re SMU (ßr) irrfiß 4-

7T2 

6 
rh3ß2 

7T 
W 
2 

s/6 
TX 

w 
mo 

1 
2 1 

m 0 

7T2 W3 6 
6 8 TT2 

w 
mo 

1 
m 0

2 
(l + o(€)) 

by (6.8.1) and proposition 3.4 

w 
k 

3 
w; + 2 w 

I 

3/2 
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Thus, our choice of w in (6.12.5) guarantees by (18) that 

Shiißr) >m — w — w ' 3 
w - 2 w 

~k 
3/2 

- m — u 

for all r E [0,1]. Therefore, EM,U 2 [—/?,/?]. To finish we just need to note that 
taking elements out of M does not change the situation as is easily seen. 

7. Structure of the maximal set 

In the final three sections we try to determine the structure of a set K in the class 
^iKex (u) ? i-e-? a set which is "better" than the example we produced in the last section. 

Our assumptions are as usual: 1 < u < fc/30000 and u and k satisfy assumption 5.4. 
Since fJ>KEX (u) is greater than the one for arithmetic progressions, we certainly know 
that our results from section 5 Apply here. Therefore, we can write K in the form 
K = KQ U K, where KQ is the set whose existence is guaranteed by lemma 5.8, 
\KQ\ = ko, \K\ = k, and ko~{-k = k. What we will try to do is determine the structure 
of K. Since, as we saw in proposition 5.9, There is, for any set in KuKex (x), a better 
one with the corresponding Ko forming an arithmetic progression with at most a 
single gap, it is no harm to assume that our sets are already of this type. We will 
assume in fact that Ko is an arithmetic progression (without a gap), that it has an 
odd number of elements and that its difference is 1. The modifications required to 
cover the general case will be explained in the end. Since by (2) we are always allowed 
to translate our set, we can assume 

KQ = 
ko-1 

2 
* ö - l 

2 
We also make the following shortcut: 

(19) k 
1 
2U 

The justification for this is as follows: we have already seen this estimate with | 
replaced by 2000 in proposition 5.9. Shortly (in (7.4.1)) we will see that k is to first 
order -^u, where the second order terms depend on the above mentioned constant. 
Iterating this we can assume in advance that the constant is say \ . 

Let ß' = ßka,u- Set 

(20) Kn = K n [(n 
1 
8 7?, («4 

1 
8 

B K = \Kn\ + \K-n\ 

We also write g = fk0,u- By definition 6.2, 

(21) k0-u^SKo(ß'r)-g(r). 
This function has a Fourier expansion similar to (9) and the coefficients cn(k0, u) will 
be denoted dn. Obviously 

(22) EK,U Ç [-ß',ß'}. 
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Definition 7.1. — A constant 8 > 0 (depending on K and u) is defined by the equation 

uK(u) = 2(l-8)ß'. 

In this section, 8 appears in the error terms for the estimates of the kn. To get 
absolute bounds we will bound 8 in section 9. 

The basis for the estimates is a bound for ReSj^. 

Proposition 7.2. — If a = ß'r G EK,U, then 

k~-ReSw(a) <g(r) 1 + 
2k 
k 

<g(r) 1 + 
u 
k 

Corollary 7.3. — For all r G [0,1], 

(23) k-ReSw(ß'r) < \g(r) it 
k U 

if ß'reEK,u 

otherwise. 

Proof. — When ft'r G EK,U this is clear from the proposition since g(r) < u. Other
wise we just use the trivial upper bound 2fc, which is < u by (19). 

Proof of proposition 7.2. — Assume a G EK,U but drop a from the notation. Since 
SK0 is real valued we find 

( S i ^ + R e S ^ ) 2 mS2/k \SK\2 (k - u)2 (SKo+k-g{r))\ 

where the last equality follows from (21). Expanding this, cancelling Re S2W Im 5 ^ 
on the left with k2 on the right and cancelling out o2 

ÖK0 
one gets 

2 S * 0 R e S 7 r > # ( r ) 2 -2SKQk-2kg(r)-2SKog{r). 

Rearranging terms we find 

2SKq(k - Re % ) < g(r)(2k + 2Sko - g(r)) 
and hence 

fc-Re%< g(r) 1-f 
k-g(r)/2 

SK0 

<g(r) i + 
k 

SKQ 

because g > 0. Now we use (19) to get 

SK0 > ko — u = k — k — u > k 
3u 
2 2k' 

Substituting this in the previous inequality we get 

k-ReSw<g(r) 1 + 
2ks 

k 
Using (19) again we get the second inequality. 

Recall that the numbers dn are the Fourier coefficients of g and that their integral 
representations are given in (10) and (11), with / replaced by g. 
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Proposition 7.4. — We have the following inequalities. 

(7.4.1) k < do 
u2 

k 
6uVô. 

(7.4.2) 2k =F k„ < 2d0 =F dn 4 24uVô. 

Proof. — We multiply (23) by the positive functions l±cos(27rnr) and integrate from 
| to 1. By definition 7.1 the second case in (23) occurs on a set of measure at most 
5 of r's. On this small set we bound 1 ± cos(27rnr) by 2. We easily obtain 

(24) с 
2 

(k-ReSw(ß'r)) 1 ± cos(27rnr))dr 1 
2 

do l 
4 

dn u2 

2k 
\-20u. 

Similarly, multiplying by 1 and integrating, we get 

С 
2 

[k-ReSw(^r))dr 
1 
2 

do u2 

2k 
Su. 

We will derive (7.4.1), the derivation of (7.4.2) being similar and simpler. We 
expand the left hand side of (24). 

(25) 

с 
2 

(k - BeSx(ß'r))(l ± cos(2nnr))dr 

1k 
2 i: ReSw(ß'r)drT í Re Sx(ß'r) cos(27rnr)dr = 

2k 

aEk 
r 
1 
2 

cos(27r|a|/3/r)dr 

aEk 
с 

2 

cos(27r|a|/3V) cos(27rnr)dr. 

We will split the summands in the last sum as 

í cos(27r|a|/3V) cos(27rnr)dr 

1 
2 г 

1 
2 

cos^^nal^' + n)r)dr 
1 
2 í cos(27r(|a|Y9/ — n)r)dr. 

In case a € Kn U K~n we will further split 

1 
2 
г 
1 
2 

cos(27r(|a|/3/ — n)r)dr 
1 
4 

1 
2 il 

2 

cos(27r(|a|/?' — n)r)dr 
1 
2 

We wish to obtain a lower bound for the left hand side of (24). We take all non-
constant terms in the last 2 identities, replace them by the negatives of their absolute 
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values and plug into (25). This gives 

(26) 

2 
(k - ReSx(ß'r))(l ± cos(27rnr))dr 

1 
2 

k 
1 
4 &n 

1 
2 

a£KnUK-n 

r 
I 
2 

cos(27r(|a|^/ — n)r)dr 
1 
2 

aCK 
r 
i 
2 

cos(27r|a|/3V)dr 

1 
2 

a€K-(ü:nUA:-n) 
r 
I 
2 

cos(27r(|a|/?' + n)r)dr 

1 
' 2 

a€K-(ü:nUA:-n) 4 cos(27r(|a|/3/ — n)r)dr 

The last four terms are error terms. The last three have a common form, namely, 
they are sums of terms of the form J^2 cos(27r6r) dr, with b sufficiently large. In fact, 

b will be \a\ß' or \a\ß' + n for a G K in the second and third terms respectively, or 
\a\ß' — n for a G K — K±n in the fourth term. By (20) we have in all cases that 

|B|>1/8 

Lemma 7.5. — Suppose \b\ > | and that 8' < 1. T/ien 

4 cos(27r6r)dr 
12 

7T 
Sin(7r6(l-<S,))I 4 

Proof. — By using the trivial bound | cos(x) ;ion [ l - 5 ' , l ] U I [ l - ( 5 , , l ] we get 

r 1 

2 
cos{2irbr)dr 

1-8' 

1-8'  
~2~ 

cos(27rbr) dr 
3s 
2 

Now set b' = 6(1 - 5'). Then 

1-s 

i-<s' 
2 

cos(27r6r)dr 
1 

2tt6 
(Sin(27r6/) - sin(7T&')) 

1 
27TÖ 

(2sin(7r6/)cOs(7r6/) — Sin(7r6/)) 
2 + 1 

2tt(1/8) 
I Sin(7r6/) 

12 

7T 
Sin(7r6/) 
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Applying the lemma just proved to the second error term we get 

(27) 
a€K i : 

cos(27r|a|/3'r) dr 12 
TT 

aEK 
sin(7ra0,(l-<J,))| 3 

2 kS'. 

By the definition 7.1 of S and by proposition 7.2 we know that there exists some 
ô' < ô such that 

(28) k-ReSw(ß'(l-S')] <g(1-S') 1 k) 
The left hand side can be expanded as 

aEK 
(L - cos (27RA / 3 ' (L -* ' ) ) ) = 2 

aEK 
sm2(iraßf(l-S')) 

Using (6.7.5) to bound #(1 — ô) we get the estimate 

aeK 
sin 2(7raâ ,(l-5 /)) <S'u 1 + 225 u 

k0 

1 u 
k 

< on 1 + 300 
A 
K 

Lemma 7.6. — For any positive real numbers ...,xr we have 

r 

i=l 
Xi < r 

r 

i=l 
XI 

Proof. — This is just the Cauchy-Schwartz formula for the vectors ( 1 , . . . , 1) and 
(^1,^2, • • • ,Xr). 

Applying this lemma in our situation to the numbers | sin(7ra/?,(l — S'))\ for a G K 
we find 

aeK 
SIN(7TOI8 ,(l-* ,))l < kôu(l + SOOu/k) 

By (27), 

aeK i: zos(2iraß'r) dr 
12 
7T 

ku(l + 300u/k)S 3 
2 kS. 

Using (19) we see that the right hand side is smaller than 

12 

7T 
'1 
2 

uö(l + o(e)) 3 
4 uS < 2.9uôi 3 

4 uS. 

Clearlv the same bound holds for the 

i: cos{2ix{aß' ± n)r) dr 

and therefore the last three terms in (26) can be bounded by 5.8uVS + ( 3 / 2 ) ^ . 
We now handle the first error term. 
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Lemma 7.7. — If \b\ < | and 8' < 1/2, then 

с 
2 

cos(27r6r) dr 
1 
2 

1 
2 (l-cos^irbil-S'^+S'. 

Proof — We have 

i:2 cos(27r6r) dr 
1 
2 í [1 — cos(27r6r)) dr 

The estimate of the lemma is obtained by bounding the integrand by 1 — COS(2TT6(1 — 
8')) on [§, 1 - 8'] and by 1 on [1 - 6', 1]. 

Having the lemma, an argument similar to the one used to bound the last three error 
terms gives, using (28) and (6.7.5), 

aeKnUK-n 

i:2 cos(27r(|a|/3' — n)r) dr 
1 
2 

1 
2 

g(l - 8)(1 + o(c)) + kS < 8(u(l + o(e)) + k) 

Altogether, the four error terms are bounded by 5.8uv 5+5(^(2.5-fo(e))-j-fc). Because 
8 « 1 this bound is < 5.9uy/8. Now multiply (26) and (24) by 4 and compare them. 
One gets (7.4.2) up to noticing that we can neglect the 8u term by increasing a bit 
the constant on the uy/8 term. 

Corollary 7.8. — We have 

\kn-dn\ <2(d0-k) 
2u2 

k 
2Auy/8. 

Proof. — This is because (7.4.2) implies immediately 

Tkn ± dn < 2(d0 - k) -
2u2 

k 
• 24uV8. 

8. Small perturbations in and u 

In this section we prove bounds on /3 — f3' and cn — dn. Recall that 

ß =ß(mo,w), ß'=ß(ko,u), Cn = Cn {m0ìw), and dn - cn(k0lu). 

Therefore, the bounds will depend on mo, ko, w and u and all we need to do is to 
bound the perturbation of the functions /3 and cn in terms of the parameters. Since 
we are assuming that K € ^KEX (U) and since EK,U Q [—/?', /?'] by (22) where as 
EKex,u 2 [-P,P] by (6.12.3), we find /3' > /3. By the definition 7.1 of the parameter 
8 we have 

(29) S< ß'-ß 
ß' 
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Proposition 8.1. — Suppose we are given mo, ko, w and u that satisfy 

(8.1.1) |fc0 - m0\ < u, 

(8.1.2) U) < u < w + w 
k 

3 
w + 2 

w 
I . 

3/2 

Let ß = ß(mo,w), ß' = ß(ko,u) and assume that ß' > ß. Then, 

ß'-ß< 
1 
2 

u — w 
w 

3(m 0 - ko) 
2mo 

l± 2w 
m0/ 

1±250 u 
ko, ß' 

and 

ß'-ß> 
1 
2 

u — w 
w 

3(m 0 - k0) 
2m0 

1 ± 
2w 
m0 

1±250 u 
m0 

ß. 

Here, the sign depends on the sings of mo — ko. The correct signs are those for which 
the bound is weakest possible. 

Proof. — We will assume that mo > k0, the other case being similar. By the mean 
value theorem there exists some (3,f 6 [/3, /3'} such that 

4 0 ( / N 
Skoiß) - aUß') 

ß-ß> 
Therefore, 

ß'-ß--
sko(ß) - sko(ß') 

-s'ko(0") 

m0-w - smo(ß) + sko(ß) - (fco - u) 
sLiß") 

u-w + (m 0 - smo(ß)) - (k0 - sko(ß)) 
s'k0{ß") 

By using the first expression for Sk in (3) we find 

(m 0 - smo(ß)) - (ko - sko(ß)) 
(m0-l)/2 

yn=(l-mo)/2 

(*o-l)/2 

n=(l-fc0)/2 
(1 - cos(27rn/3)) 

< (mo — ko)(l — cos(7Tmoß)' , 1 
' 2 [m0 - ko)(7rm0ß)2. 

By proposition 3.4 we find 

{irrnoßf = 6 w 
,m 0 

1 + 
3w 

20m0 

0 ( 1 ) 
w 

v m 0 

2\ 2 

< 6 
w 

Km0 

1 + 
2w 
mo 

which implies 

(m 0 - smo(ß)) - (ko - sko(ß)) < (m 0 - k0) 
3w 
m0 

1 + 
2ws 

m0 
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Using (6.7.4) one gets 

-s'ko(B') ft 
J ko,u 

/3' 
B' 

2u 
B' 

1 - 225 u 
k0 

B' 

B 
2w 
B' 1-225 u 

k0 

B 
B' 

and therefore 
0' -0 

P' 
1 
2 

u — w 
w 

3(m 0 - k0) 
2m o 

1 2w 
ko 

1-225 w 
k0 

1 - P'-P 
P' 

To get the first inequality we iterate some trivial estimate on P — p'. Start with 
P — P' < B'/2. Then we can derive an inequality of the form 0-0 

0 
4u 
mo 

(see the 
derivation of (8.2.2) below). This in turn implies 

1-225 w 
k0 

1 P'-P 
0' 

-l 
1-225 

w 
ko 

4u 
mo 

-1 
< 1 + 250 

u 
ko 

This gives the first inequality. The second is similar. 

Corollary 8.2. — We have the following inequalities. 

(8.2.1) k >m 
w 
k2 Ck 1/2 

(8.2.2) P'-P 
P 

2u 
mo 

(8.2.3) ô< I w 3 2 
k 

w 
~k 

1/2 3|fc-m| 
2k 

1 + 30C u 
k 

Proof. — For the first inequality we only need to check the case k < m. In this case 
m 0 < k0. From proposition 8.1 and the assumption 0' > 0 we find 

0 < 
1 
2 

u — 

w 

3(k - fh) 
2mo 

1 - 2w 
m0 

Therefore, 

m — k < 
1 
2 

w — u 
w 

3 
2mo 

1 - o(e)) 
-1 

1 
3 

m0 

w — u 
w 

(l + o(c)) 

1 
3 rn0 

w 
k 

3 
;i + o(c)) 

2 
3 

m 0 

w 
w 
k 

3/2 
l + o(e)) by (8.1.2) 

< w3 

k2 

w 
k 

1/2 

Next, by proposition 8.1 and by (8.1.2) and (8.1.1) we get 

P'-P 
P 

< 1 
2 

w 
k 

3 
2m-1 w 

I 
3/2 3u 

2mo 
: i+o(c ) ) (l + o(c)) 

2w 
m 0 
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proving (8.2.2). The third inequality follows easily from the proposition and (29). 

Lemma 8.3. — We have the following inequalities. 

(8.3.1) dn cn 

u2 

moinn)2 

(8.3.2) \do — c 0 | 
u2 

3mo 

Proof. — We follow the proofs of lemma 6.6 and proposition 6.8. Let 

sin(fco^)/ sin(z) 
oo 

j=o 

bjZj 

be a Taylor expansion around 0, and let 

g(r) = u -
oo 

i=1 

ajr2j 

be the expansion for g converging on [1/2,1]. We have a'j = b2j(7r/3')2j. The identity 

sin(mo^) 

sin(z) 

sm(k0z) 

sin(z) 
2 sin 

m0 - k0 

2 z cos 
mo + ko 

2 z sin(z) 

easily implies, together with lemma 6.5, that on a circle Cmo of radius 1/rao we have 

sin(mo^) 

sin(£) 

sin(fco^) 

sin(z) 
< 2|mo — feo|. 

Therefore, using the Cauchy integral formula, we have 

\bj-b
,

j\<2moj\m0-kol 

Recall how the constant c was defined in lemma 6.6 and used in its proof. We find 

\dj -a/A I M ^ ) 2 i Ò' (7r/3')2il 

< \b2j - b2j {Kß)2j 1% K
2i\ß,2j -ß2j\ 

< 2cJ\mo — ko \ + 2raocJ 
3'2j - Q2* 

ß2j 

— 2e7 |m 0 — ko | + 2mo<̂  1 + ß'-ß 
ß 

2j 
- 1 

By (8.1.1) and (8.2.2) we get 

\aj -a'j\< leu + 2m0c
j (u + m 0 ( ( l + 2u/m0)

2j - 1)) 

< 2é (u + m 0 ( ( l + 2u/m0)
2j - 1)) 

When j — 2 we use the bound 

1 + 2 
u 

mo 

4 
-1 < 9 

u 

mQ 
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to get 

\a2 - 41 < 20c2'u < 20 - 6 2(1 + o(e)) 
u. 

mo 

2 
u < 800 

u 

mo 

2 
u. 

When j > 2 we use the bound 

1 + 2 u 

mo 

2j 
- 1 < 1 + 2 

u 

m0/ 

2j 
(l + o(6))2^'. 

This gives 

\AJ - 41 < 2 (c(l + o(e)) 2 ) J (ii + m 0 ) < 2 • 7j u 

mo 

j-1 

ti. 

Since /(1) = #(1) = 0 we see that 

|ai — a[\ <\w — u\ 
oo 

J=2 
1% - 4 1 

< 
ti; 
4 

3 
w + 800 

u 

mo 

. 2 
u + 2 • 7 3 

ti 

m 0 

2 
5 

+ lower order terms < 1500 u 
mo, 

2 
u. 

Then, imitating the proof of proposition 6.8, we find 

|Cn-dn| < 
8 

(27rn)2 

d_ 
dr 

oo 

i=0 
LAJ-A'AR2* \r=l 

< 
2 

[un)2 (2 • |oi - 41 + 4 * l°2 — 41 + 6 ' la3 - 41 + l-o-t.) 

< 2 
(irn)2 

u 

m0 

2 
u (2 .1500 + 4 . 800 + 6 • 2 • 7 3 + l.o.t.) 

< 21000 
1 

(7rn)2 

u 
mo 

2 
U < 

1 

(Tin)2 

u 
mo 

u. 

The second estimate is similar. 

9. The main theorems 

In the last two sections we gathered many conditional estimates. It is now easy to 
make these absolute. 

Lemma 9.1. — We have 

\k-fh\ < 2 
u2 

k 
6uVô + 5.2y/ñ. 
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Proof. — If k < m, then (8.2.1) implies that \k - m\ < w3/k2 + (w/k)1/2, which is 
certainly within the bound. Otherwise we have 

\k — m\ = k — m = (k — do) + (do — Co) + (cq — m), 

which, by (6.12.4),(7.4.1) and (8.3.2), is 

< u2 

k 
6uy/ô u2 

3mo 
(5.2Vu) 

< 2 
u2 

k 
6uV^+5.2Vu. 

Proposition 9.2. — We have the inequality 

Vô < io 'It' 
>k~. 

+v8 u 
.k 

1/4 
ft"1/4. 

Proof. — The last lemma, together with (8.2.3), gives the inequality 

s < w 
~k 

, 3 2 
k 

w 
.k. 

1/2 3 
2k 

2 u
2 

k 
+- 6uVô + 5.2y/ü (l + o(e)) 

< 4 w 
k. 

2 
+ 9 U 

K (1 + o(e))V* • 
8v^ 
2 

Here, notice that we were able to swallow the first two terms on the first line, the 
(w/k)3 term in the (u/k)2 term and the (2/k)(w/k)1/2 term by the y/u/k term. We 
treat the last inequality as a quadratic inequality in x = VS, which reads 

x2 < 4 u 
k 

. 2 
4-9 u 

K (1 + o(e))x 
8Vu 

k 
The variable x should lie between the roots of the corresponding equation, 

x 2 - 9 
u 
k (l + o(e))x- 4 w 

,k. 
2 8Vu 

k 
= 0. 

In particular, it is smaller than the bigger root. This gives 

s/ö < 
1 
2 

9u 
k 

;i + o(e)) (81 + 12) w 
k 

2 (l + o(e)) 
2Vu 

Jfc 

Using the fact that for any two positive reals a and b we have y/a + 6 < i/a -f \/&, we 
easily get the required bound. 

Corollary 9.3. We have ô < 200 w 
k 

2 16JU 
k 

Proof. — This just uses the inequality (a + 6) 2 <2 (a 2 + 6 2). 
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We now begin to state the main theorems. Recall our assumptions from the beginning 
of section 7: We have u > 1, k > 30000ti and k and u satisfy assumption 5.4. We have 
a set K G ̂ K e x (u) ? written as K = KQ U K. Recall also that K0 is contained inside 
an arithmetic progression. Let q be the difference of this sequence. By translation 
we can normalize things so that elements of Ko are divisible by q. Recall that we 
have a compression procedure for KQ to an arithmetic progression with at most one 
gap. Assume also that this progression is symmetric around 0 (as best possible). This 
fixes K up to shift. With these assumption we associated certain parameters kn to 
K, counting roughly the number of elements near ±n/f3(k0, u). When g#1 we count 
only those elements which are divisible by q. We have analogous parameters mn for 
our "test set" Kex. The theorem will show that these parameters are pretty close to 
each other. 

Theorem 9.4. — We have the following inequalities. 

(9.4.1) m 0 

u3 

k2 

1 
k 

h 
h 

1/2 
> ko > mo 62 k - 6y/u - 20 

u 
h 

1/4 
k-1/4u 

(9.4.2) \kn Tïin I < 250 
u2 

k 
1 1 ^ + 7 0 u 

~k. 

1/4 
k-^u + 4. 

(9.4.3) \{aeK: \a\0 > t or q^a}\ 
4u 

t 
{•tu 400 

u 
h 

2 3 2 ^ 
k 

for t > 0. 

Proof. — As discussed at the beginning of section 7, we may assume that Ko is an 
arithmetic progression with at most one gap. Continue first to assume that it is a 
progression, has difference 1 and is symmetric around 0. We now write out the results 
we have so far. 

The left inequality in (9.4.1) is just (8.2.1). The right inequality follows since 

\k-fh\ < 2 
u2 

k 
6 ^ ^ + 5 . 2 V u by lemma 9.1 

< 2 
u2 

k 
- 5.2\/w + 6ti 10 u 

k< 
V8 

u 
k 

1/4 
k-X'A by proposition 9.2 

< 62 
u2 

k 
6Vu + 20 

'U 
H 

1/4 k-1/4u. 

We next establish 

(30) do — k < 5.5\/w+ 
u2 

2k 
Indeed 

k > m 
u3 

k2 

u 
k 

M2 

> Co - 5.2\/w -
u3 

k2 

u 

k 

1/2 

><K 
u2 

3m 0 

- 5 . 2 ^ -
u3 

k2 

u 
k 

1/2 
>do 

u2 

2k 
-5.5Vu 
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by (6.12.4), (8.2.1) and (8.3.2). Here again, like in the proof of proposition 9.2, we 
are able to swallow the terms (u/k)1/2 and u3Ik2. It now follows that 

\kn - dn\ < 2(do - k) 
2u2 

k 
24uVô by corollary 7.8 

< 11VS 
u2 

k 

2u2 

k 
24uVô by (30) 

< l l V u -
3u2 

k 
•24u 10 u 

.k 
V8 u 

k 

1/4 K-1/4 by proposition 9.2 

< 243 
u2 

k 
l lv^ + 70 

'U 
H 

1/4 
k'^U. 

Prom (8.3.2) we get 

|dn-Cn| u2 

mon2 

u2 

9k 

By the definition of the mn in (6.1) (taking into account the possible modifications 
at the proof of (6.12)), we see that | c n — mn\ < 4. This gives (9.4.2). 

To get (9.4.3) we integrate the inequality of proposition 7.2 on the interval [1 — | , 1]. 
Recalling that there is a subset of size 6 on which the inequality fails to hold, and on 
which bound k — Re 5 ^ trivially by 2k < u, we get 

(31) 
r1 

tr 
(fe-Re%(/?r)) 

f1 

' i - I 
9{r) 1 + 

u 
k. 

dr + uö. 

The left hand side is 
-l 

i-1/2 
(k - Re S-j<(ßr)) dr 

aEK 

h 

1-1 
(1 — cos(2waßr)) dr. 

One finds that if b > t, then 

r1 

f 
1-7 

(1 — cos(27ròr)) dr 
1 
1 

1 

27TÒ 
sin 2TT6 1 -

1 
7 

— sin(27rò) 

1 2 1 
t 2ixb - 2t 

It follows that the left hand side of (31) is greater than 

1 
2V 

{aeK: \a\ß> t}\. 

Using (6.7.5) the right hand side of (31) is smaller than 

1 + 225 
kl 

k0 

u 
l 

' t 
4 

2r dr + uö < 
2u 

t2 f uS. 

Therefore, 

1 

2t 
{aeK: \a\ß > t}\ 

2u 

t2 

1 
2 

uö. 
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Thus, 

\{aEK: \a\0>t}\ 
4u 

t 
f 2uS, 

which gives the result after substituting the estimate for S given in corollary 9.3. 
To see that the everything continues to hold for the case q > 1, we consider the 

structure of the proof and see what modifications one must make. Most of the time 
we have been integrating certain identities on certain intervals. Whenever there is an 
integral on some interval / involved for the case q = 1, take the corresponding integral 
on the set <q>-1 (I) and make the obvious adaptations. It is easy to see that all terms 
in the integration which involve elements that are not congruent to 0 mod q vanish. 
There was one place, in deriving (28), where we used the value of the sum at a certain 
point. But there note that elements congruent to 0 mod q behave the same on all 
intervals and the claim made there about the existence of 8' is certainly true for at 
least one interval. With these remarks the proof goes through unchanged. 

Now comes a second "compression argument". It is based on the following lemma. 

Lemma 9.5. — Let x\, x2, yi, y2 and z be vectors in an Euclidean space with scalar 
product "." and norm | \, such that \x\\ = \x2\ = \yi\ = \y2\ = 1. Let x = x\ + x2, 
y = yi + 2/2- Put xi • x2 = cos#i, yX'y2— cos02, x - z — (cos0)|z|. / / 

COS#i — COS #2 > 4(1 — COS0), 

then 

\x + z\ > \y + z\. 

Proof 

XX — y - y = 2 + 2x\ - x2 — 2 — 2yi • y2 = 2(cos0\ — cos62) > 8(1 — cosé?). 

Since \x\ + \y\ < 4, 

\x\ - 12/| > 2(1 - cos9) > (1 - cos(9)|x|, 

and therefore b|cos# > \y\. Thus 

\z + x\2 -\z + y\2 > \x\2 - \y\2 + 2|2|(|ar| costì - \y\) > 0. 

Corollary 9.6. — Suppose K is as before, with KQ and arithmetic progression sym
metric around 0. Suppose a, b 6 K, q\a and q\b, and a and b satisfy the inequalities 

/ Г 1 -2к>\а- b\/q > 2к. 

Then, if K1 is the set obtained from K by replacing a and b with two elements c and 
d on the sides of KQ, i.e., c « ko/2 and d = —c, we get jJbK'{u) > HK{U). 
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Proof. — Assume again that q = 1 for simplicity. Observe first that if a = /3&0,wr, 
with r 1 

V6 
then 

|SWo(a)\ — k & ko — ur2 — k œ k -
5 
6 

u — ur2 > k 
5 
6 u — u 

1 2 

/6 
= k — ÎX, 

because k = 
12 This implies that such an a belongs to both EK U and EK> U-

Now assume a > 10 Bko,u Set x\ e27riaa; 2ft = e27riaa 2ft = e27riaa; jfe = e2*iba 
and 2? = SK(OI) — (yi + ^2)? so that z + y, z + x are the values of SK (A) and Sjc(a) 
respectively. In our case the conditions of the lemma hold. To see this, notice that 
we have 

4nka < 2w(a - b)a < 2w(a - b)ß <2n - 4nkß <2TT - 4irka. 

It follows that cos(02) = cos(27r(a — b)a) < cos(47RFCAI). Therefore, 

eosöi — C0SÖ2 > cos(öi) — cos(47T&a) « cos(27rfca) — cos(47R&a) 

« (Airak)2 - (2-Kak)2 = 2>(2iiak)2 > 3 2TT 
1 

10 
0ko,uk 

2 
u 
2k 

On the other hand, since x is on the real line, 6 is almost the angle between SK and 
the real line so 

|sin0| = 
Im SK 

ReSK 

1/2u 

k- 3u 
2 

u 
k 

and therefore 1 - coso < sin20 < (u/k)2. Since the lemma applies we see that 
a € EK,U implies a € EK>,U, hence the result 

The following two theorems are immediate consequences. 

Theorem 9.7. — Suppose K € K^Kex(uy Then around each of ±n/(3, n ^ 0? there 
exists an interval of length 2kq such that the total number of elements of U^=1 (Kn U 

K-n) not in any of the intervals is < 63^ + 7 ^ + 20 (f ) 1 / 4 k~l/Au. 

Proof. — Indeed, corollary 9.6 implies that any two elements in any Kn that are of 
distance > 2kq apart can be "pushed" into K0> increasing ^K{U) and in particular 
keeping the set in Kukezt u\. But by (9.4.1) the number of elements one can move 

into KQ keeping K in KVKEX («) is < 63u • 7 ^ + 2 0 ( 1 ) 1 / 4 k-^u (again we have 
swallowed some terms) 

Theorem 9.8. — The following is a GfiKex^u) sub-collection of ̂ K e x (u)- It consists 
of all sets in which KQ is an arithmetic progression with at most one gap, and where 
each of the sets KN, for n / 0, is contained in an interval of length 2kq. 

Proof. — Immediate from corollary 9.6. 

We end with an improved bound on /imax-
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Theorem 9.9. — We have the following inequalities 

Umax(k,u) 2V6I 
TT k 

'U 
Je. 

1/2 
1 + 

3 5 
20 8 

u 
k 

300 
'U 

<k 
v2 8Vu 

k 

Umax(k,u) . 2V61 
7T A; 

u 
k 

1/2 
1 + 3 5̂  

20 8, 
u 
k 

f 400 k 
2 

f 30 u 
k 

5/4 
AT 1 ' 4 

Proof. — We clearly have 2/3m 0 i № < jumax(fc,u) < 2flk0,u, so the theorem is about 
estimating the terms on both sides. We show the second inequality only. By (22) and 
proposition 8.1, 

Mmax ,̂«) < 2ßk0,u < 2ßk,u 1 + 
3(fc - ko) 

2k 
1 + 

2u 
k 

1 + 250 u 
k0 

By proposition 3.4, 

ßk,u < 
V61 

7T k 
u 
k 

,1/2 
1 + 

3u 
20k 

u 
k 

,2\ 

By (7.4.1), 

k — ko = k < do H 
u2 

k 
6uVô. 

It follows from (6.8.1) that 

do < 5_ 
12 

u 75 
u2 

ko 
5 
12 u + 79 

u 
k 

Hence, using proposition 9.2 we find 

k — ko < 5 
12 

u + 80 u
2 

k 
+- 6u 10 u 

k + V8 u 
k 

1/4 
AT 1/ 4 

< 5 
12 

a + 140 w
2 

k + 17u u 
k 

,1/4 fc"1/4. 

It follows that 

1 + 
3u 
20Jfe 

w 
k. 

2 
1 + 

3 
2k 

(k - k0) 1 + 
2u 
k 

1 + 250 
uo 
fc0 

< 1 + 
3 5' 
20 8 

u 
k 

4-400 it 
it 

2 
+ 30 y 

k 
5/4 

k~Xl\ 

The upper bound is now clear 
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STRUCTURE OF SETS WITH SMALL SUMSET 

by 

Yuri Bilu 

Abstract. — Freiman proved that a finite set of integers K satisfying \K~\- K\ < <r\K\ 
is a subset of a "small" m-dimensional arithmetical progression, where m < [a — 
l j . We give a complete self-contained exposition of this result, together with some 
refinements, and explicitly compute the constants involved. 

1. Introduction 

This is an exposition of the fundamental theorem due to G. A. Freiman on the 
addition of finite sets. (It will be referred to as Main theorem). Let K be a finite 
set of integers (more generally, a finite subset of a torsion-free abelian group) of 
cardinality k. The Main Theorem states that if the sumset K -f- K is "small", then K 
possesses a rigid structure. An example of a statement of this type is the following 

Proposition 1.1 
(i) Any K satisfies \K + K\ > 2k — 1 and the equality \K 4- K\ — 2k — 1 implies 

that K is an arithmetical progression . 
(ii) Assume that \K + K\ — 2k — l-\-t, where 0 < t < k — 3. Then K is a subset of 

an arithmetical progression of length k + t. 
(iii) Assume that \K + K\ = 3fc — 3 and k > 7. Then either K is a subset of an 

arithmetical progression of length 2k — 1, or K is a union of two arithmetical 
progressions with the same difference. 

Here (i) is trivial, for (ii) and (iii) see [12, Theorems 1.9 and 1.11], where the result 
is obtained for subsets of integers. The case of subsets of an arbitrary torsion-free 
abelian group follows from [12, Lemma 1.14], which is Lemma 4.3 of the present 
paper. 

Let us deviate for a while from our main subject, and make a short (and very 
incomplete) historical account. Item (i) easily generalizes to distinct summands: if K 

1991 Mathematics Subject Classification. — 11B25, 11B05. 
Key words and phrases. — Addition of finite sets; generalized arithmetical progressions; inverse 

additive theorems. 
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and L are finite subsets of a torsion-free abelian group, then \K+L\ > \K\ + \L\ — 1, and 
the equality \K + L\ — \K\ + \L\ — 1 implies that K and L are arithmetical progressions 
with the same difference. Preiman [10] extended item (ii) to two distinct summands; 
see also [15, 23, 32, 35]. An important generalization to several (equal or distinct) 
summands was obtained by Lev [22]. Concerning item (iii) see also Hamidoune [17]. 

Item (i) extends to torsion-free non-abelian groups (Brailovski and Preiman [4]). It 
also has an analogue for cyclic groups of prime order (Cauchy [6], Davenport [7, 8], 
Vosper [36]). Hamidoune [16] gave short and conceptual proofs of the theorems 
of Brailovski-Freiman and Vosper. For general finite (abelian and/or non-abelian) 
groups see [20, 18, 37, 38]. However, we do not know non-commutative analogues 
of items (ii) and (iii), and we know only partial analogues of these items for cyclic 
groups of prime order [11, 12, 2]. 

The first part of item (i) has various continuous analogues, for instance for con
nected unimodular locally compact groups [19, 29]. Item (ii) has a partial analogue 
for real tori [1]. 

Many of the results mentioned above are proved in the books of Mann [24] and 
Nathanson [26], where the reader can also find further references. 

The Main Theorem, however, develops Proposition 1.1 in a completely different 
direction. Reformulate item (ii) as follows: 

Let a < 3 be a positive number. Assume that \K + K\ < ok and k > 3/(3 — a). Then 
K is a subset of an arithmetical progression of length (a — l)k + 1. 

The Main Theorem extends this to arbitrary cr, without the restriction a < 3. To 
formulate it, we need some definitions. Let A, B be abelian groups, K C A and 
L C B. The map <p : K —> L is Freiman's homomorphism of order s or, in the 
terminology of [28], Fs-homomorphism, if for any x\,..., xs, t / i , . . . , ys 6 K we have 

xi-\ ...+ xs = i/i H h y8 (p(xi) + * • • + (p(xs) = (p(yt) + • • • + (p(ys) 

In the other words, the map 

Y : 
s 

K + .-- + K 
x\ H h xs 

s 
L -\ h i / , 

y?(xi) H + <p(x8) 

is well-defined. The Fs-homomorphism (p is an Fs-isomorphism if it is invertible and 
the inverse cp~1 is also an Fs-homomorphism; in other words, when both the maps (p 
and ij) are invertible. (In particular, F\-isomorphism is a synonym to bijection.) 

It is easy to find an Fs-isomorphism not induced by a group-theoretic homomor
phism A -» B. A typical example is the map 

{ 0 , a , . . . , ( f c - l ) a } { 0 , . . . , * - ! } , 
xa x, 

where a generates an additive cyclic group of order p > (k — l)s. 
A generalized arithmetical progression (further progression) of rank m in an abelian 

group A is a set of the form 

P = P(x0;xi1... , # m ; 6 i , . . . ,6m) = {xo + PiXi H h f3mXm : Pi = 0 , . . . , 6; - 1}, 
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where xo,..., xm are elements of the group and 6 1 , . . . , 6m positive integers. We say 
that P is an Fs-progression if the map 

(1.1) 
{ 0 , . . . , & i - l } x - . - x { 0 , . . . , 6 m - l } -> P, 

(/?!,. . . ,/3m) h-> X o + A ^ l H \-ßmXm, 

is an Fs-isomorphism. In particular, each ^-progression is also an Fa»-progression 
for any sr < s, and P is an F±-progression if and only if \P\ = b\ - • • 6m. 

Now we are ready to formulate the Main Theorem^1). 

Theorem 1.2 (the Main Theorem). — Let a be a positive real number, s a positive 
integer, and K a subset of a torsion-free abelian group such that 

k := \K\ > k0(a) := 
k j k + ll 

2(La + l J - a ) 

and 
\K + K\ <ak. 

Then K is a subset of an Fs -progression P of rank m < [cr — 1\ and cardinality 

(1.2) \P\ <Cn((T,8)k. 

It must be pointed out that, unlike Proposition 1.1, this theorem has only very 
few known analogues for other types of groups, all of them being more or less direct 
consequences of the Main Theorem; see Chapter 3 of Freiman's book [12]. 

We also suggest the following more precise version of the Main Theorem, asserting 
that at most |_log2 a\ dimensions of the progression P can be "large"; the others are 
bounded by a constant, depending on <J. 

Theorem 1.3. — Assuming the hypothesis of Theorem 1.2, write the Fs-progression 
P as P(XQ;XI, . . . ,xm; 6 1 , . . . , 6m)? where 61 > • • • > &m- Then 

(1.3) bi < ci2(<J, s) (i > [log2 crj). 

(See Subsection 5.5, where Theorem 1.3 is derived from Theorem 1.2.) 
The quantitative estimates for the constants involve the function / r (n , e ) , defined 

in Subsection 5.3. We obtain the estimates 

ciifas) < (2c13(a)s) <r30<r c13(<r) Ci2(cr,s) < 2c11(a,s,)fr([log2aj + 1 , £ 0 ) , 

where 

cis(o~) = fr ([8<rlog(2a)l, 1 ) , e0 = [log2 a\ + 1 - log2 a, s' = min(^, 2). 

At present, only a very poor estimate is known (see Subsection 5.3): 

/ r ( n , e ) < (2-he"1) exp exp n 

Therefore we have only 

(1.4) en < (2s) exp exp exp(9cr log(2cr)) 

^^With a few exceptions, we write explicit constants as e^, where i is the number of the section 
where the constant is defined, and j is the number of the constant in Section i. 
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Freiman published two expositions [12, 13] of his proof. Recently a new proof 
of Freiman's theorem, simpler and more transparent than the original, was found by 
Ruzsa [30]. Ruzsa's argument implies the estimate en < (2s)exp(aC\ which is better 
than (1.4) (here c is an absolute constant). In the final section we briefly review the 
main points of Ruzsa's proof. A detailed self-contained exposition of Ruzsa's proof is 
given in [26, Chapter 8] 

Our exposition is based on the same principles as Freiman's original proof [12, 
13], though the technical details are different. The most substantial innovations 
are in Subsection 5.1, where we suggest a simpler proof of the Cube Lemma, and 
in Subsection 8.3, where we apply the Bombieri-Vaaler theorem instead of Freiman's 
sophisticated elementary argument. We believe that the original argument of Freiman 
is still of great interest, even after Ruzsa's work. 

We tried to make the exposition self-contained. Only three standard results from 
the Geometry of Numbers, namely, the theorems of Minkowski, Mahler and Bombieri-
Vaaler, are quoted without proofs (but with exact references). The other auxiliary 
facts are provided with complete proofs even if they are available in the literature. 

In Section 2 we introduce the notation used throughout the paper. In Sections 3 
and 4 we reduce the Main Theorem to certain more technical statements. At the end 
of Section 4 we give a plan of the remaining part of the article. 

Acknowledgments. Gregory Freiman drew my attention to his theorem. Daniel 
Berend and Henrietta Dickinson read the drafts of the paper at different stages of 
its preparation and made a number of valuable remarks. Peter Pleasants sent me his 
unpublished notes on Freiman's theorem and Mel Nathanson put at my disposal a 
preliminary version of his book [26]. It is a pleasure to thank all of them. 

My special gratitude is to Imre Ruzsa, who carefully studied the (pre)final version 
of this paper. I found his numerous comments and suggestions very useful. Many 
thanks for the hard job he has done. 

The main part of this job was done in Bordeaux and was supported by the Bourse 
Chateaubriand du gouvernement français. I am grateful to Prof. J.-M. Deshouillers, 
Mrs D. Cooke and Mrs F. Duquesnoy for having done their best to make my work in 
Bordeaux pleasant and successful. 

I must also acknowledge support of IMPA (Rio de Janeiro), Forschungsinstitut fur 
Mathematik (ETH Zurich) and Lise Meitner Fellowship (Austria), during the final 
stage of my work on this paper. 

2. Notation and conventions 

For J3, C C E n and a G R put 

B±C = {b±c : beB,ceC}9 aB = {ab: 6 G J3}, 

etc. 
A plane £ C l n is a set of the form v + £ ' , where v € W1 and C is a linear 

subspace of W1. By (x, y) we denote the standard inner product in E n . The Lebesgue 
measure in E n is referred to as volume and is denoted by Vol or Voln. The standard 
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inner product on En induces an inner product on each subspace, and hence it induces 
a d-dimensional Lebesgue measure on each d-dimensional plane £ . This measure is 
referred to as £-volume, and is denoted by Vol£, or Void, or simply Vol. 

Given a set S c l n , we denote by C(S) the plain spanned by S. We put dimS = 
d im£(S) , and call it linear dimension (or simply dimension) of S. The orthogonal 
complement to the set S is denoted by 5X: 

5X = {x e En : (x, y)=0 for all y G S}. 

Let £ be a subspace of En. A lattice in £ is a maximal discrete subgroup of £ . 
The £-volume of a fundamental domain of a lattice T is denoted by A(T) . 

A convex body in £ is a bounded convex subset of £ having inner points. A convex 
body is symmetric if it is symmetric with respect to the origin. Given a lattice T and 
a symmetric convex body B in £ , we say that B is T-thick if C(B D T) = £ ; in words, 
if the set B DT generate £ as a vector space. 

When £ = En and V = Zn, we shall simply say thick instead of Zn-thick. Thus, a 
symmetric convex body B C En is thick if dim jB fl Zn = n, where dim is the linear 
dimension defined above. 

Let B be a symmetric convex body. The norm associated with B is \\X\\B '= 
inf{A-1 : Ax G B}. Recall the following result of Mahler (see [5, Chapter VIII, 
Corollary of Theorem VII]). 

Lemma 2.1 (Mahler). — Let B be a symmetric convex body in En. Then there exists 
a basis e i , . . . , en of Zn such that 

\\ei\\B < Al5 
\\ei\\B < iXi/2 ( 2 < * < n ) , 

where A i , . . . , An are the successive minima of B with respect to the lattice Zn. 

(Such a basis will be called a Mahler basis of the body B.) 

We denote by \\x\\ the Euclidean norm of the vector x = {x\,..., xr) € En, and by 
IÎ Hoo its /oo-norm, i.e. 

INI = V(xix) = x2n + ... + x2n, Halloo — max 
l<i<n 

Ix,-1. 

Finally, given x £ E, we denote by [#J (respectively, \x]) the maximal integer not 
exceeding x (respectively, the minimal integer not exceeded by x). 

3. A geometric formulation of the Main Theorem 

In this section we reformulate the Main Theorem and prove that the new formula
tion implies the one from the Introduction. 

First of all, since K is a finite subset of of a torsion-free abelian group, we may 
assume that K C Z n for some natural n. 

Further, an Fs-progression may be defined as a set which is Fs-isomorphic to 
JE?nZm, where B = [0, &i) x • • • x [0, fem). However, it is more convenient to work with 
less particular convex bodies than rectangular parallelepipeds. Moreover, since we 
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apply the Geometry of Numbers, it will be preferable to deal with symmetric convex 
bodies. Therefore we shall assume that 0 E K, which does not effect the generality. 

Finally, let cp: Z m - > Z n be a (group-theoretic) homomorphism. Instead of the 
condition 

(*) ip induces an Fs-isomorphism on the set B f l Z m 
we prefer a slightly stronger condition 

(**) the restriction (p \SBnzm is one-to-one. 

(Actually, (*) and (**) are equivalent if B is the convex hull of its integer points.) 
According to the previous paragraphs, we formulate the following theorem. 

Theorem 3.1. — Let K be a finite subset of Z n of cardinality k > ko(a), containing 
the origin, and satisfying \K + K\ < ak. Then for any T > 2 there exist a positive 
integer m, a thick symmetric convex body B C Mm and a homomorphism ip: Zm—)-Zn 
with the following properties: 

(i) m< [a-l\; 
(ii) <p(B f l Z m ) D K; 

(iii) the restriction (p\TBnzm is one-to-one; 
(iv) VolB < c31(a,T)k, where c3i(a,T) = (c13T) „25<r „ 

Proof of Theorem 1.2 (assuming Theorem 3.1). — If m = 1, then cp(B fl Z ) is an 
arithmetical progression of length not exceeding 2csi(a1 T)k + 1, which is less than 
dik if T = 2. 

Now assume that rn > 2. Let e i , . . . ,em be a Mahler basis of the body B. Put 
Pi = lle^le and define a new norm on Em: 

N I , = max 
l<i<m 

Pi\Xi\, 

where x — X\e\ 4- h xmem. It is a general property of norms in finite dimensional 
spaces that 

(3.1) \\x\ \B < \\x\\p < ||x||B, 

where the implicit constants may a priori depend on B. We shall now prove the 
inequalities (3.1) with constants depending only on the dimension m. 

The inequality on the left is easy: 

(3.2) Ikllß < k i | | | e i | |ß H h |a:m|||em||ß < m||ar||p 

The inequality on the right is less trivial. Denote by A« the convex hull of the points 
iar/IMIß and ±p~1ej , where (j ^ i). Recall the second inequality of Minkowski [5, 
Chapter VIII, Theorem VI: 

2 m / m ! < A1.-.AmVolB < 2 m . 

Then 

VolB > Vol Ai = 2m\xi\pi 
ra!||#||B/>i pm 

> 
22m-1\xi\oi 

(m!)2||^||ßAi--.Am > 
2m-l 
(ml)2 

\Xi\Pi 
Mb 

VolB, 
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whence \xi\pi < c32(m)||x||£, where c32(m) = 21 m(m!)2. This proves that 

(3.3) \\X\\P < c32(m)\\x\\B. 

Now put R = {x e Rm : \\x\\p < c32}. Then inequalities (3.2) and (3.3) may 
be rewritten as B C R C rac32I?. Therefore 2 <^(#) 2 -K". Further, put 
T = smc32. Then the restriction <̂ |SjRnz™ is one-to-one, whence P = Pi Zm) is 
an Fs-progression. 

It remains to estimate the cardinality \P\. Since 5 is thick, we have Ai < • • • < 
Am < 1. Therefore for 1 < i < m we have pi < m/2 (recall that m > 2), whence 
C32prX > 1- Hence 

(3.4) \p\ = | ü n z m | = 
m 

i=l 

(2 [c32 p -1] + 1) < (3c32)m 
Pi-' Pm . 

Now let < • • • < pim be the rearrangement of p\,..., pm in increasing order. 
Then, by the definition of successive minima, 

pit > A i , . . . , pim > Am, 

whence 

Pi * * * Pm > Ai • • • Am > 
2m 

ml 

1 

VolB 
Combining this with (3.4), we obtain finally 

\P\ <m!(|c32)mVolß<c33fc 

with c33 = ml (|c32)m c3i(a, smc32) < Cn(cr, 5). Thus, the Main Theorem follows 
from Theorem 3.1. • 

4. Iteration step and partial covering 

Let jRT, <J and T be as in Theorem 3.1. We shall deal with triples (m,B,<£>), where 
m is a positive integer, B C Em is a thick symmetric convex body, and <p : Zm-»Zn 
is a group homomorphism. Everywhere in this paper the word "triple" will refer to a 
triple defined as above, unless the contrary is stated explicitly. We have to prove that 
there exists a triple (m, B, (p) satisfying the conditions (i)-(iv) of Theorem 3.1. We 
construct such a triple iteratively. Namely, we prove 

Proposition 4.1 (the base of iteration). — There exist triples (m, £,</?) satisfying the 
conditions (i)-(iii) of Theorem 3.1. 

(such triples will be called T-admissible) and 

Proposition 4.2 (the iteration step). — For any T-admissible triple (m, B, (p) there ex
ists another T-admissible triple (m', B',(pf) with 

(4.1) VolB' < e4i(<7,T) VolB(k/VolB) L/C42(0") 

Here C41 = (ci3iy *Cls and c42 = 20alog(2cr). 
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Proof of Theorem 3.1 (assuming Propositions 4-1 and 4-2). — Put 

V0 — inf{VolB : (m,B,ip) is T-admissible}. 

Then there exists a T-admissible triple with Vol I? < 2VQ. By Proposition 4.2 

c41(a,T) (k/VolB) l/c42(cr) > l / 2 , 

whence VolB < (2c4i)C42 k < c31k. • 

Proposition 4.1 is a consequence of the following important lemma of Freiman [12, 
Lemma 1.14]. 

Lemma 4.3 (Freiman). — Let K C E n and dim K = m. Then 

(4.2) \K + K\ > (ra + l)k - ra(ra + l ) / 2 . 

Proof. — Clearly, k > ra + 1 and (4.2) is true when m = 1 QT k — ra + 1. Now fix a 
pair (ra, k) and suppose that (4.2) holds for all pairs (ra', k') with ra' < m or m! — m, 

< fc. We have to prove (4.2) for the pair (m, k). 
Let a; be a vertex of the convex polytope spanned by the set K and set K' = K\x 

. There are two possibilities: dimi^; = m — 1 and dimK' = ra
in the first case 

\K + K\ = \K'+ K'\ + \K'+ x\ + l 

> m{k - 1) - ra(ra - l ) / 2 + k 

= (m + l)k - m(m + 1) 12. 

In the second case let II be the convex polytope spanned by K'. There is an 
(ra — 1)-dimensional face of II with the following property: if £ is the plain containing 
this face then x and II lie in distinct half-spaces with the common boundary C. Since 
dim K' fl C = m - 1, we have \K' Pi C\ > rn. Then 

\K + K\ > \K' + K'\ -h \K' n C + x\ + 1 

> (ra + l)(k - 1) - ra(ra -f l ) / 2 -f ra + 1 

= (ra + l)k - ra(ra -h l ) / 2 . 

Remark 4.4. — Ruzsa [31] obtained an analogue of this result for the sum of two 
distinct sets: ifdim{K+L) = m and \K\ > \L\ then \K+L\ > | i ^ |+ra |L | - ra ( ra+l ) /2 . 
The case L = —K was treated earlier in [14]. See also [34]. 

Proof of Proposition 4-L — Without loss of generality dim i f = n. Then, since k > 
ko(o~). Lemma 4.3 implies that n < [a — 1J. We conclude the proof, putting ra = n, 
letting B be any thick symmetric convex body, containing if, and letting <p be the 
identical map. • 

The proof of Proposition 4.2 is much more complicated. The main difficulties are 
concentrated in the following Lemma on Partial Covering. 
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Lemma 4.5 (Partial Covering). — Let (m, B, ip) be a 2-admissible triple. Then there 
exist a subset KQ C K and a triple (mo, Bo,(po) satisfying 

(4.3) \K0\ > k/c44(a), 

(4.4) Vol B0 < c45 (<r) Vol B (*/ Vol B) l/c42(o-) , 

and having the following properties. 
(if m0 < c4e(o-); 

(iif u>o(BonZ™)2Ko-Ko. 
Here C44 = 2 9<rlog(2o-) ^13, C45 = exp(33alog2(2a)), c46 = 9alog(2a). 

(Intuitively, the triple (rao, i?0, ^>o) *s "not very far" fr°m being admissible). 
Note that the statement of the Lemma on Partial Covering does not depend on 

the parameter T. The dependence on T appears only in Section 9, where we deduce 
Proposition 4.2 from Lemma 4.5. The deduction involves some computations, but is 
in fact more or less straightforward. However, the Lemma on Partial Covering itself 
is a non-trivial combination of several very non-trivial facts. The most important 
and difficult of the latter is Freiman's 2n-theorem, proved in Section 5. In Section 6 
we establish several auxiliary facts, to be used in the proof of the Lemma on Partial 
Covering. The complete proof of Lemma 4.5 is given in Sections 7-8. 

5. Freiman's 2n-theorem 

Lemma 4.3 yields that 1*5 + 51 > (n + 1 — s)\S\ for a sufficiently large n-dimensional 
set 5. However, for such "typical" n-dimensional sets as the set of integer points inside 
a large cube or ball, one has a stronger inequality 15 + 51 > 2n|5|. In the general case 
Preiman [12, Lemma 2.12] obtained the following result. 

Theorem 5.1 (Freiman). — Let 5 be a finite subset of Rn. Assume that \S + 5 | < 
(2n — s)\S\ for some e > 0. Then there exists an (n — 1)-dimensional plane C such 
that 15 fl C\ > S\S\, where the positive constant S depends only on n and e. 

We apply this remarkable theorem twice. First, in Subsection 5.5 we deduce The
orem 1.3 from Theorem 1.2. Second, the 2n-theorem plays the key role in the proof 
of the Lemma on Partial Covering, see Subsection 7.2. (In both cases, instead of 
Theorem 5.1, we apply a slightly more general Theorem 5.6.) 

The presented proof is divided into two steps. First we prove an auxiliary assertion, 
having some independent interest. We call it Cube Lemma. In the second step, which 
is much simpler, we deduce Theorem 5.1 from the Cube Lemma. 

Both steps go back to Freiman's original proof, though they are not specified there 
explicitly. Our proofs are simpler than Freiman's original, but based on the same 
ideas. 

For another (very long) proof of the 2n-theorem see [25] and [26, Chapter 8]. 
Fishburn [9] and Stanchescu [33] found new proofs for the case n = 2, which give (in 
this case) better quantitative estimates for 5. Unfortunately, neither Fishburn's nor 
Stanchescu's argument extends to n > 3. 
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5.1. The Cube Lemma. — First we introduce some concepts. An r-cube in Rn is 
the set 

C =C(6;a i , . . . ,Or) = {b(t) :=b + txax + ---£rar : t = ($i,...,*r) € [ -1 ; l]r}. 

Here 65ai , . . . ,o r G l n (we do not assume a\,...,ar linearly independent). The point 
b is the center of the r-cube C, and the set V(C) := {b(a) : a G {—1; l}r} is the set 
of vertices of C. 

Lemma 5.2 (the Cube Lemma). — Let S be a finite subset of Rn and assume that 

(5.1) \S + S\ < r | S | . 

Put Si = <5i(n,r) = (3r) 2™. Then there exists an n-cube C with V(C) C 5 such that 
\cns\ >* i |S | . 

It turns out to be more convenient to deal with sets symmetric with respect to a 
point b G Rn (that is, for any u G 5 there exist v G 5 such that u -f v = 26). 

Proposition 5.3. — Let 5 fee a finite subset of Rn satisfying (5.1). Then there is a 
subset Si C 5 of cardinality \Si \ > \S\/T, symmetric with respect to some bx G Rn. 

Proof — For any b G En put Sb = {u G 5 : 26 — ie G 5 } . By (5.1), there exist 
at most T\S\ non-empty sets 56. Since any u G 5 belongs to exactly | 5 | sets 5&, we 
have ^ |Sft| = |5|2. Therefore there exists a set Sb of cardinality at least | 5 |2 / r |5 | = 
\S\/r. • 

The Cube Lemma is an easy consequence of Proposition 5.3 and the following asser
tion. 

Proposition 5.4. — Let S be a finite subset of Rn, symmetric with respect to b G Rn. 
Let also C be a subspace of Rn of dimension n — r, where 1 < r < n. Then there 
exists an r-cube C with V(C) C 5 , with center in b and such that \(C + C)f)S\ > S2\S\, 
where ¿2 = ¿2(^5^") = (9r)_2r +1. 

Proof — We use induction in r. Assume first that r = 1. For x G Rn denote by p(x) 
the (Euclidean) distance from the point x G Rn to the plane b + C. Let bi £ S satisfy 

p(b1) = max 
xES 

p(x). 

Put ai = bi - b. Then for the 1-cube C = C(b; ax) we have \{C + £ ) f l 5 | = | 5 | = 

*2(1,T)|S|. 
Now assume that 2 < r < n. The argument splits into two cases, depending on 

how many points from 5 belong to the plane b H- C. 

Case 1: | ( 6 - h £ ) f l 5 | > \\S\. — Let a be any element of the set (b + C) fl 5. Then 
the r-cube C(6, a , . . . , a) is as desired, because 1/3 > (^(r, r). 
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Case 2: \(b 4- £) fl S| < §|S|. — There exists a subspace C of dimension n — 1 such 
that £ C £ ' and 

(b + £ ' ) fl 5 = (b + £) H S. 

At least one of the two open half-spaces with boundary b+C contains a subset S' C S 
of cardinality \S'\ > §|S|. The set Sf need not be symmetric. But since 

(5.2) \S' + S'\ <\S + S\< T\S\ < 3r|5'|, 

the set 5' contains a symmetric subset S i of cardinality |5i| > \S'\/3T > \S\/9T. As 
in (5.2), we obtain 

(5.3) ISi+Si l <9r2 |5! | . 

Let bi be the center of symmetry of the set Si . By our construction, a± := b± — b ^ £', 
in particular a\ £ £ . Therefore the subspace £ i , generated by £ and ai, is of 
dimension n — r + 1. By induction, there is an (r — l)-cube C\ with center b\ such 
that V(CX) C Si and 

(5.4) |(Ci + £i) H Si| > ô2(r - l,9r2)|Si| > (52(r,r)|S|. 

Write Ci = C(6i, a2, . . . , ar) and put C = C(b, o i , . . . , ar). Each vertex of the cube C 
is either a vertex of C\ or is symmetric to a vertex of Ci with respect to 6. Therefore 
V(C) C S. We shall prove that 

(5.5) \(C + £)nS\ > |(Ci + £ i ) D S i | . 

Together with (5.4) this will complete the proof. 

Let u belong to the set Si := (C\ + £ i ) fl Si. Then the point v = 2b\ — u also 

belongs to Si. We shall see that 

(*) at least one of the points u, v belongs to the set S : = ( C - f - £ ) n S . 

Assume (*) to be true and consider the map 

Si ^ S, 

u I—y 
u, if u G S, 
2b — v, if v = 2bi — u e S and u £ S. 

This map is one-to-one^, whence |S| > |Si|, as desired. Thus, it remains to prove 
the assertion (*). 

So, let u belong to Si and put v = 2b\ —u. Then u = u±-hta± +y and v = v\—ta\ —y, 
where u±,vi G Ci are such that u\ -f v\ = 26i, and y G £ . Recall (this is crucial) 
that, by our construction, the (r — l)-cube C\ and the set Si belong to the same open 
half-space with the boundary 6 + £; . In particular, the points tx, v, ui, v\ belong to 
this half-space. 

^Indeed, let u and v! be two distinct elements of S\. If both are in S or both are not in S then 
their images are obviously distinct. If one of them belongs to S but the other not, then the images 
lie in the distinct half-spaces with boundary b + Cf. 
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Since oi ^ there exists a linear functional f-.W1 -> K vanishing on £' and 
positive at ai. Then the open half-space mentioned above is defined by the inequality 
f(x) > f(b). Hence 

(5.6) / ( « ) = / ( « i ) + t/(ai) > f(b), 

(5-7) / ( « ) = / Ы - < / ( < * ! ) > /(6), 
(5.8) / Ы > /(6), 

(5.9) / Ы > /(6). 

Since ui + vi = 2b + 2ai, the latter two inequalities imply that 

/ (u i ) , / (v i )< / ( f t ) + 2/(ai). 

Then (5.6) and (5.7) yield that - 2 < t < 2. 
Obviously, С — {x - вах : x e Сь0 < 0 < 2 } . Therefore и e С + С it -2 < t < 0 

and v € С + £ if 0 < t < 2. The assertion (*) is proved, which completes the proof of 
Proposition 5.4. • 

Proof of Lemma 5.2. — The case r = n of Proposition 5.4 is exactly the assertion of 
the Cube Lemma for symmetric sets, 5i(n, r) being replaced by ¿2(^5 т). To establish 
the Cube Lemma for arbitrary sets, apply Proposition 5.4 to the symmetric set Si from 
Proposition 5.3. As in (5.2), we obtain | S i + S i | < r2|Si| . Since о2(п,т2)/т > £ i (n , r ) , 
Lemma 5.2 follows. • 

5.2. Proof of the 2n-theorem. — Now we are ready to prove Theorem 5.1. For a 
positive real number 5 put e(S, n) = 2n (An8 / , where v — Si/lOn and Si — 81 (n, 2n) 
is defined in Lemma 5.2. 

Let S be a finite subset of En with at most 6\S\ points on every hyperplane. We 
shall prove that |S -h S| > (2n — e)|S|, where e = e(S,n). Since this is trivial when 
S > $i/4n, we shall assume that 6 < Si/4n. 

Let C be the n-cube constructed in Lemma 5.2 (where we put r = 2n). Since 
|CnS| > <5i|S| > S\S\, we have dimC = n; in particular, the interior C° is non-empty. 
Moreover, since the boundary of C is contained in a union of 2n hyperplanes, we have 
for the set So := S D C° the estimate 

(5.10) |S0| > |S П C\ - 2n*|5| > (6г - 2nS)\S\ > (*i/2)|5|. 

The 2n hyperplanes defined by the faces of the cube C divide W1 \C° into p := 3n — 1 
disjoint convex sets. This divides the set S \ So into p subsets S i , . . . , Sp. We have 

(5.11) (Si + Si) fl (Sj + Sj) = 0 (0<i<j< p), 

because Si and Sj are subsets of disjoint convex sets, and by the same reason 

(5.12) (So + V) H (Si + Si) = 0 (1 < * < p), 

where V = V(C) is the set of the vertices of the cube C. (Recall that V C S by the 
definition of the cube C.) Further, 

(5.13) |5o + V| = |V||5o| = 2"|50|, 
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because all the sums x+v, where x E C° and v G V, are distinct. Also, since \Si\ < \S\ 
for % = 1 , . . . , p, we have by induction 

(5.14) \Si + Si\ > (2n - ei)\Sj\ (l<i< p), 

where Si = e(S/r)i,n) and rji = \Si\/\S\. Now 

\S + S\ > \So-hV\ + 
p 

i=1 

\Si + Si\ >2n|50| + 
V 

i=l 
(2n-^) l^ | = 2N -

p 

i=l 
eira \s\, 

and it remains to observe that 

V 

i-1 
SiTji = e 

p 

i=l 
ni 1-v < ep 

1 
P 

p 

i-i 
Vi 

i-Ï/ 
= ер 1 - \So\ 

\S\ 
l-u 

< ee H 1 -
Si 
2 

I 
2 < E. 

(It is a trivial exercise in calculus to show that the function ex'4(l — x/2)1'2 decreases 
on the interval [0,1].) Theorem 5.1 is proved. • 

Remark 5.5. — The argument of this section is a version of Freiman's original, with 
some modifications due to Ruzsa. Ruzsa also noticed that Rn \ C° can be divided into 
2n rather than 3n — 1 parts, but this does not affect much the final result. 

5.3. The function fr(n1e). — Put 

fr(n,e) = sup 
s 

mm C 
\s\ 

| S n £ | ' 

where S runs over the finite subsets of En satisfying (5.1) and C runs over the hy-
perplanes of E™. Then fr(n,e) < S'1, where S is from Theorem 5.1. A calculation 
shows that 

(5.15) fr{n,e) < (2 + e-1) exp exp n 

It would be nice to improve against this extremely weak estimate. Such an im
provement would have been possible if Proposition 5.3 were replaced by the following 
assertion: 

Given a finite set S d n , there exists a symmetric subset Si C S satisfying \Si\ > 
r~a\S\ and |Si + Si| <C T|SI|. Here a is an absolute constant, and the implied 
constant is also absolute. 

However, Don Coppersmith (private communication) and Imre Ruzsa (private com
munication) had independently disproved this assertion by similar probabilistic ar
guments. Moreover, the r2-term in (5.3) cannot be replaced even by r2~£, let alone 
O(r ) . Therefore the estimate (5.15) is probably best possible for the method. 

Note in conclusion that Freiman's original argument yields only exponential de
pendence of fr(n,s) in e~x (when n is fixed). Polynomial dependence in e~x was 
achieved due to a suggestion of Ruzsa concerning the argument of Subsection 5.2. 
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5.4. A generalized 2n-theorem. — Actually, we need the following simple gen
eralization of Theorem 5.1. 

Theorem 5.6. — Let 1 < r < n. Assume that S satisfies (5.1) with r < 2r — e. Put 
8 = ( /r(r , s ) ) - 1 . Then there exists a plane £ c l n of dimension d i m £ < r — 1 such 
that \SHC\ > S\S\. 

Proof — For any set T CRn denote by £o(T) the subspace of the same dimension, 
parallel to the plane C(T). We say that the subspace A C l n of dimension n — r is 
generic if 

d im (An£0(Si)) = max(0, dim £0(Si) - r) 

for any Si C (S — S). Clearly, generic subspaces exist. 
Let A be a generic subspace and let En = A 0 M. Denote by 7r: Rn -» M the 

projection along A. For any distinct u,v G S we have ir(u) ^ 7r(t;), because A is 
generic. Hence the finite set n(S) C M satisfies 

\n(S) + ir(S)\ = \TT(S + 5) | < \S + S\ < T\S\ = T\IT(S)\. 

Since dim M = r, we may use Theorem 5.1. Hence for some plane £' C M of 
dimension r - 1 we have \C fl TT(S)\ > Ô\TT(S)\ = Ô\S\. Put Si = ( £ ' + A) fl S and 

C = C(Si). Then \S n £| > > S\S\. Since both the subspaces A and £0(Si) are 
parallel to the plane C + A of dimension n — 1, we have 

dim (An CQ(SI)) > dim£0(Si) - r + 1. 

This is possible only when d im£ = dim£o(Si) < r — 1. 

5.5. Proof of Theorem 1.3 (assuming Theorem 1.2). — As the first applica
tion of the 2n-theorem, we show that Theorem 1.3 follows from Theorem 1.2. This is 
an immediate consequence of the following assertion. 

Proposition 5.7. — Let P = P(XQ; X I , . . . , xm; & i , . . . , bm) be an -progression with 
bi > - * • > bm and let K be a subset of P. Assume that \P\ < ak and 

(5.16) \K + K\ < (2r-e)k, 

where k = \K\. Then 

(5.17) bi < 2afr(r,s) (i >r). 

Proof. — Denote by (p the map (1.1). Since if is an ^-isomorphism, the set K' — 
^ _ 1 ( X ) also satisfies (5.16). Put 8 = ( / r ( r , e ) ) -1 . By Theorem 5.6, there exists a 
plane £ C Mm of dimension at most r — 1 such that \K' fl £ | > 8k. 

Let now ei = ( 1 , 0 , . . . , 0 ) , . . . , em = ( 0 , . . . , 0,1) be the standard basis of Zm. Since 
d im£ < r — 1, there is an index j < r such that the vector ej is not parallel to the 
plane £ . Then the sets 

(5.18) fiej + (K'nC) (0 < p, < bi - 1) 
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are pairwise disjoint. On the other hand, all the sets (5.18) are contained in the 
progression P1 = P (0 ;e i , . . . , em;6 i , . . . , 6 j_ i ,26 j ,6 j+ i ,6m) . Therefore 

2ak > 2\P\ = \Pf\ > 
bj-l 

^=0 

\fiej + (K'nC)\ > bjSk, 

whence bj < 2aS x. Since j < r and 61 > • * • > 6m, we obtain (5.17). 

6. Some lemmas 

In this section we prove some auxiliary facts, which, together with Theorem 5.6, 
will be used the proof of the Lemma on Partial Covering. 

Lemma 6.1. — Let 7 1 , . . . , 7* be real numbers, and for any (3 G R let k((3) = 
&(/?; 7 1 , j k ) be the number of indices j satisfying 0 < jj — /3 < 1/2 (mod1). 
Assume that 

k 

j=1 

e2uiyj > Sk 

Then k(ß) > (1 + S)k/2 for some ß G [0,1). 

Remark 6.2. — This result is due to Freiman [11]. A simpler proof was suggested by 
Postnikova [27] and reproduced in [12, Lemma 2.2]. We follow this argument with 
slight modifications. 

Proof. — Since k(/3) is periodic with period 1, it is sufficient to find ¡3 £ E with the 
required property. Also, &(/?; 7 1 , . . . , 7*) = k({3 + 7; 71 + 7 , . . . , 7* + 7) for any real 7. 
Therefore, replacing each 7* by 7̂  - I - 7, with a suitable 7 G M, we may assume that 

(6.1) 
k 

j=1 

e2niyj = 
k 

3 = 1 

e2 uiyj = 
k 

3 = 1 
cos 27T7j. 

For 0 < x < 1 let F(x) be the number of indices j such that 0 < jj < x (mod1). 
Then for 0 < p < 1/2 we have k(P) = F(/3 + 1/2) - F((3). 

Assume that k{f3) < (1 + 6)k/2 for all p G [0,1). Then k{p) > f (1 - S)k for all 
(3 G [0,1). Estimate now the last sum in (6.1): 

k 

3=1 
cos27T7j = 

.1 

0 
cos 2nxdF(x) = F(x) cos 2TTX\1 + 2w 

1 

0 
F(x) sin 2-ïïxdx 

(6.2) = k-\-2n 
ri 

0 
Fix) sin 2-nxdx. 
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For the last integral we have 

ri 

0 
Fix) sin 2wxdx = — 

/.1/2 

0 
(F(x + 1/2) - F(x)) sm27Txdx 

= -
rl/2 

'0 
fc(ar) sin 2'Kxdx 

< -
D 

2 
;i - <*)& 

.1/2 

r0 
sin 2'Kxdx 

= ~(27ryl(l-ô)k. 

Substituting this into (6.2), we obtain 
k 

j=1 

cos 27rjj < ök, a contradiction. • 

Lemma 6.3. — Let K be a finite set of k elements with Ki,..., Kr C K satisfying 

\Ki\>{l + 6)k/2 ( l < t < r ) , 

where 0 < 6 < 1/2. For a = ( t*i , . . . ,ar) € {0 , l } r put Sa = F L L I ^ f S ^ftere 
K\ = Ki and Kf = K\K{. Then there exists a G {0 , l } r such that 

(6.3) \Sa\ > (7/2)PA, 

where 7 = (1 + £)(1+*>/2(l - ä ) ^ ) / 2 . 

Remark 6.4. — Note that 7 > 1, and, moreover, 

7 = exp 
00 

i=1 

62i 

2i(2i - 1) 
> e S2/2 

This lemma is also due to Freiman [Fl, Lemma 2.11]. He used a probabilistic method, 
and his result was slightly weaker, with an additional factor c((5)r""1/2 in the right-
hand side of (6.3). The following elegant argument was suggested by Ruzsa (private 
communication). 

Proof — For a G {0 , l } r write \a\ = a± + • • * + otr. Notice that 

(6.4) \Sa\ — fc, |a| |5a| = |jRTi| H h \Kr\ > (1 + <5)*r/2, 

where here and below the summation extends to a G {0 , l } r . 
Let z be a positive real number, to be specified later. Using (6.4) and the weighted 

arithmetic and geometric mean inequality^, we obtain: 

* H | S a | > kz 
( i / * ) £ M | s « | > kz (l+8)r/2 

On the other hand, 2 H = (1 + z)r. whence 

max \Sa\>kh a+s)/2 /(1 + z) 
r 

. 

(3^That is, the inequality a\b\ + • • • + anbn > a\x • • • a„n, where an,...,on are positive real 
numbers and &i,... ,6n non-negative real numbers satisfying b\ + • • • + bn — 1. It is an immediate 
consequence of the Jensen inequality for the logarithm. 
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The optimal choice z = (1 + 6)/(l — 6) leads to max \Sa\ > k(*y/2)r. 

In the next two lemmas we state elementary geometric properties of convex bodies. 

Lemma 6.5. — Let B C Rn be a convex body. Suppose that its closure B contains 
an n-dimensional ball of radius p. Then for any measurable B\ C B 

(6.5) Vol^Bj) < 
n! 

d\pn~d 
Vol„(B), 

where d = d im(ßi) . 

Proof. — We use induction in n — d. When n — d = 0, the assertion is trivial. Now 
suppose that d < n — 1. Let ÇÏ be an n-dimensional ball of radius p, contained in B. 
Then there exists a point x € 0 such that the distance between x and C{Bi) is 5 > p. 
Put 

B2 = {xt + b(l - t) : 6€jBi ,*€[0;1]} . 

Then dim B^ = d + 1 and by induction 

Vo\d+1(B2) < 
n! 

(d+ l)!p"-d-J 
Vol„(£?). 

On the other hand, 

VoLj+i(B2) = 
S 

d+1 
Vold(Bi), 

which proves (6.5). 

Lemma 6.6. — Let u: C IR" be a non-zero vector, W = w1 and ~: W —>VV the 
orthogonal projection. Then for any symmetric convex body B we have 

(6.6) V0ln_l(7T(ß)) < 
n 
2 

IkllB 

Ikll 
Voln(B). 

Proof. — We shall prove the following more general statement. 

Let £ be a subspace of Rra and W = £x. Denote by -k: Kn-^W the orthogonal 
projection. Then for any symmetric convex body B we have 

(6.7) Volm(7rCB)) • Vol,(BDC) < 
n 

0 
Voln(5), 

where I = dim C, m — n — I — dim W. 

Let C be the one-dimensional subspace generated by the vector w. Then Voli (£nB) — 
2||iy||/||iy||JB. Therefore inequality (6.6) is the case I = 1 of inequality (6.7). 
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Proof of (6.7). — Let Sm-i be the unit sphere in W. For any x G Sm-i let L(x) be 
the (I + 1)-dimensional half-plane containing x and having C as the boundary. Put 

r(x) = sup{r > 0 : rx e 7r(B)}, 

B{x) = L(x) fi £ , 

ft(rc,r) = Volti*-1 (rx) DB). 

Then 

(6.8) Voim(7r(Je)) = 
l 

m Sm - 1 
rm(x)dx, 

(6.9) Voln(B) = 
r5m_i 

dx 
r(x) 

F0 

rm -1h(x,r)dr. 

Note that B(x) D (B (1 C) and B(x) fi ^ (arte)) ^ 0 . Hence 

(6.10) h(x,r) > 
r(x) — r 

r(x) 

l 
Vok(jCnB). 

Combining (6.8)-(6.10) with the well-known equality 

l 

'0 
tm-1(l-t)ldt = 

( m - l ) U ! 

(m + Z)! 5 

we obtain (6.7). The lemma is proved. 

Now let B be a symmetric convex body, X > 1 and C > 0. 

Definition 6.7. — TTie system of vectors a i , . . . , a r E l n is (B,X,C)-badly approx
imate if for any x G Zn and y — (yi,..., yr) G Zr satisfying 

(6.11) Nloo < -X", 0 < ||x/||oo < ^ , 

we have 

Hî/iai + • • • 4- s/rOr - s||b > C. 

Lemma 6.8. — Let Mi,..., Mr C En 6e measurable sets, and assume that 

Vol Mi > QnyXn+iCnVo\B. 

Then there exists a (B,X,C)-badly approximable system ai,... ,ar such that ai G 
Mi,..., ar G Mr. 

Proof. — Use induction in r. Let r > 1, and suppose that a i , . . . ,ar_i form a badly 
approximable system. Estimate the volume of the set 

M = {ar G l n : ai,...,ar_i, ar is not a badly approximable system}. 

By definition, ar G M if and only if there exists x,y satisfying (6.11) and 

(6.12) \\y\a\ H h yr-iar-i -h yrar - x||B < C. 
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Since a i , . . . ,a r_i is a badly approximable system, we have yr ^ 0. Therefore 

M = 
OO,Il Î/!!OO<X YR5ÉO 

M(x,y) 

where M(x,y) = {ar G Mn : (6.12) is true}. We have trivially 

VolM(x,y) = 
(2C)nVol5 

\Vr\ 
< (2C)nVolB. 

whence 

Vol M < 

11*11 oo, llvlloo<* 
VolM(x,y) 

< (2X + l ) ^ " 1 . 2X • (2C)n Vol 5 

< 6n3rXn+rCnVolB 

< VolMr. 

Therefore we can choose ar G M r \ M , which proves the lemma. 

For the next lemma we have to define the determinant of the linear map cp: £-»Kn, 
where £ is a subspace of En. We put detcp = 0 if dim </?(£) < d im£. If dim<^(£) = 
dim £, choose orthogonal bases in both £ and <£>(£) (with respect to the standard inner 
product in Rn ) , and let det (p be the determinant of the matrix of if with respect to 
these bases (clearly, det cp is independent of the choice of bases). 

Lemma 6.9. — Let W and £ be proper subspaces of W1, the subspace W being of 
dimension n — 1. Let w be a non-zero vector orthogonal to W and I a non-zero vector, 
orthogonal to £. Denote by n: Rn^W the orthogonal projection. Then 

(6.13) |det7r|,c| > l(«>,J)l 

IMHIJir 
(Here 7r \c is the restriction of n on C.) 

Proof. — Without loss of generality, ||/|| = ||tt;|| = 1. We may also assume that 
£ gt W, since otherwise n \c is the identity map, and (6.13) follows from the Cauchy-
Schwarz inequality. 

Let e i , . . . , ea-i be an orthonormal basis of the subspace £ n W . Complete it to 
orthonormal bases e i , . . . , e ^ - i , a n d e i , . . . , e^-i,e'd of the subspaces £ and 7r(£), 
respectively. The matrix of the linear map w \c in these bases is 

diag ( ± l - {ed,wY) 

(here the sign of the square root depends on the directions of the vectors and e'd). 
Therefore |det7r|£| = y/l - (ed,w)2. But (ed,w)2 + (l,w)2 < \\w\\2 = 1 by Bessel's 
inequality, whence |det7r \c | > |(ii;,Z)|, as wanted. • 

Our final lemma is a well-known result of Bombieri and Vaaler [3, Theorem 1]. 
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Lemma 6.10. — Let C be a proper subspace of W1 such that T = £ fi Zn is a lattice 
in £. Then there exists a non-zero vector l E £-L H Zn s&cft £/ia£ ||/||oo < A ( r ) . 

7. Proof of the Lemma on Partial Covering: constructing the triple 
(m0lBo,(p0) 

In this and the next section we prove the Lemma on Partial Covering. Thus, until 
the end of Section 9 we fix a 2-admissible triple (m,2?,<p). If VolJB < c45(cr)C42^fc, 
then (4.4) holds with B0 = B, and the assertion of Lemma 4.5 becomes trivial. 
Therefore we may assume that 

(7.1) VolJ5 > c45(cr) c42(o) k > exp(600a2)k. 

Fix a Mahler basis e i , . . . ,em of the body B (see Lemma 2.1). Since B is thick, we 
have 

(7.2) ||e<||B < max(l, i/2) (1 < i < m). 

We shall assume that this basis is orthonormal, redefining the inner product if neces
sary. 

Put K' — ip~l{K). Since our triple is 2-admissible, the restriction (p\k' • K'—tK 
is an F2-isomorphism. Therefore 

\K'\ = fc, \K' + K'\ = \K + K\ < ak. 

7.1. Freiman's map. — Let r be a positive integer, a i , . . . , o r E [0, l)m and 
6 1 , . . . , br E [0,1). Define Freiman's map 

<ï>:Zm -> Zm+r 
x = ( x i , . . . , x m ) I y ( x i , . . . , x m , |_(ai,x) ~ &iJ, — » l(ar,x) -br\). 

The map <l> is one-to-one, but it does not induce an ^-isomorphism Zm-»3>(Zm). 
However, if for any a = (e*i , . . . , ar) E {0; l } r we put 

Za = {x E Zm : a»/2 < (x,a*) - 6, < (a. + l) /2 (modi) for 1 < i < m} , 

(7.3) Sa = K ' n Z a , 

then we obtain the following statement. 

Proposition 7.1. — For any a E {0, l } r the map # : Za-+$(Za) is an F2-isomorphism. 
In particular, 

(7.4) №Sa)\ = \Sa\, |*(Sa) + *(Sa)| = |Sa + S« |. 

Proof. — Trivial. 

We put K" = $(K'). 

ASTÉRISQUE 258 



STRUCTURE OF SETS WITH SMALL SUMSET 97 

7.2. Distorting vectors. — Fix 8 > 0, to be specified later. We say that vector 
a G [0, l)m is 6-distorting (or shortly, distorting) if 

xeK' 

ç2Tti(a,x) >6k. 

This definition is motivated by Lemma 6.1. Applying this lemma in our situation, we 
obtain the following assertion. 

Proposition 7.2. — For any 8-distorting vector a G [0, l)m there exist b G [0,1) such 
that 

(7.5) |{x G K' : 0 < (a, x) - b < 1/2 (modl)}| > (1 + S)k/2. 

Return to the construction of Subsection 7.1. We did not yet impose any restrictions 
on ai and bi. Let now all the vectors a i , . . . , ar be ^-distorting, and for each ai let bi 
be the b from Proposition 7.2. 

Now Lemma 6.3 shows how "small" distortions in (7.5) (where we have (1 -f S)k/2 
instead of the expected k/2) can be combined to obtain "substantial" distortion for 
one of the sets Sa in (7.3). Applying it, we obtain the following: 

Proposition 7.3. — For any positive integer r there exists a G {0, l } r such that \Sa\ > 

(7/2)r&, where 7 = (1 + 8) <i+s)/2 [1-8) (l~S)/2 > eà I2. 

Now specify 

Ô = 1/2 v^, r = [2<T2 log(2cr)l = r&7log(2<T)"|. 

(Our choice of 8 will be motivated in Subsection 8.1.) Then \Sa\ > 21 rak, whence 

|5« + S « | < \K' + K'\ <ak< 2r~1|5a|, 

and by (7.4) 

|*(5tt) + *(5a) | < 2r-1\$(Sa)\ < (2r - l ) |*(5a) | . 

Now it is the time to apply the 2n-theorem. By Theorem 5.6, there exists a plane 
C C Em+r of dimension dim C < r — 1 such that 

\Cn*(Sa)\ > mSa)\/c71>k/c72 

with C71 = /r(r , 1) = C13 and C72 = 2r/r(r, 1) = 2rci%. In particular, putting^ 
= iT7 fl £ we obtain 

\KÖ\ > k/c72 > k/c44. 

Without loss of generality 

(7.6) C = C(Kg), 

otherwise we can replace £ by the plane C(KQ). 

(4>Recall that K" = $(K'). 
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7.3. Constructing the triple (mo,Bo, (p0). — Now we are ready to construct the 
triple (mo, Bo,(fio). It will sometimes be notationally convenient to write Em 0 W 
instead of Em+r (and Zm 0 Zr instead of Zm+r). In these cases, we shall write the 
elements of Em 0Er as x0?/ , where x = (xx , . . . ,xm) G Em and 2/ = (yu. ..,yr)eW. 

By the definition of the map <I>, the set K" is contained in the convex body 

{x 0 2/ G Em 0 Er : x G 5 , 0 < (x, a.) - 6; - yi < 1 (1 < i < r ) } . 

Therefore the set iiT" — liT" is contained in the symmetric convex body 

(7.7) 0 := { x ® y G Em 0 Er : x G 2J3, - 1 < (x, a.) - ^ < 1 (1 < i < r ) } . 

Proposition 7.4. — There exist a proper subspace Co o/Em+r with the following prop
erties. 

1. Let KQ be the subset of K" defined at the end of the previous subsection. Then 
the set Bo := Co f l ft contains KQ — KQ. 

2. Put To = £0nZm+r. Then BQDYQ generates CO as a vector space. In particular, 
To is a lattice in Co, and Bo is To-thick. 

3. Let x 0 y G Em 0 Er be a non-zero vector orthogonal to Co. Then y ^ 0. 

Proof. — For every x G B there exists y G Zr such that x 0 ?/ G Q. (Indeed, we can 
always find yi G Z satisfying —1 < (x,ai)—yi < 1.) Since jB is thick (by assumption), 
there exists an m-element subset M C BnZm of linear dimension m. For any x G M 
fix 2/ G Zr such that x 0 ^ G 0 . We obtain an m-element subset M ' c O n zm+r of 
linear dimension m. 

Let £1 be the subspace of Em+r parallel to the plane £ and of the same dimen
sion^5^. Then £0 := C\ + C(MF) is a proper subspace of Em+r, because dim£o < 
dim £ i + m < m - h r — 1. 

Proof of item 1. — Since the plane £ contains KQ, the subspace C\ contains KQ—KQ. 
Since ft contains K" — K", even the set C\ fl ft contains KQ — KQ. • 

Proof of item 2. — Since B0nTo contains both the sets KQ — KQ and M', and since 
KQ — KQ generates C\ by (7.6), the set BQ fl To generates £0. • 

Proof of item 3. — Let x 0 0 G Em 0 Er be orthogonal to £0. Then it is orthogonal 
to the set M', whence x G Em is orthogonal to M. Since M generates the whole 
space Em, we have x = 0. • 

Now the Lemma on Partial Covering becomes an easy consequence of the following 
assertion. 

Proposition 7.5. — We can choose the 6-distorting vectors a±,..., ar in our construc
tion to have 

(7.8) (VolB0)/A(r0) < c45(a) Vo\B0 (k/Vo\B0) l/2(2m+r) 

(Recall that S = l/2y/â and r = \8a log(2cr)].) 

(5) Recall that plane C was defined at the end of the previous subsection. 
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Proof of Lemma 4-5 (assuming Proposition 7.5). — Let n: Zm®Zr-»Zm be the pro
jection on the first summand. By the very definition of Freiman's map we have 
7r o # = idz™. Therefore n induces a one-to-one map K,f-*K''. Hence tp o 7r in
duces a one-to-one map K"^K. It follows that the set KQ := ip o 7T(K0') satisfies 

\Ko\ = l-Ko I > *A*4, which is (4-3)-
Let Co, Bo and TQ be defined from Proposition 7.4, and let ipo be the restriction of 

ipoir to To. If we change coordinates, identifying To with Zm° and Co with Em°, then 
we obtain a triple (rao, Bo, <̂ o)5 satisfying the requirements of Lemma 4.5. Indeed, 

mo = dim Co < m -f r — 1 < c^(cr), 

which is the condition (i)' of Lemma 4.5. Further, KQ — KQ C 50 FL T0, whence 
tpo(Bo H To) D Ko — K0y which is the condition (ii); of Lemma 4.5. Finally, the 
left-hand side of (7.8) is independent on the choice of coordinates. Since in the new 
coordinates we have A (To) = 1, we obtain 

Vol B0 < C45 (a) Vol Bo (hi Vol B0) l/2(2m+r) 

Since 2(2m + r) < C42, this proves (4.4). 

It remains to prove Proposition 7.5, which will be done in the next section. 

8. Proof of the Lemma on Partial Covering: estimating (Vol50) /A(r0) 

8.1. A badly approximable system of distorting vectors. — Let JB* be the 
convex body dual to B, that is 

B* = {x* e Em : (a?,x*) < 1 for any x £ B}. 

As proved in [5, Chapter IV, Theorem VI], 

(8.1) Vol#* < 4mF~1 = 4 M ( £ & R 1 , 

where we put V = VolB and E = V/k. 
We want oi, . . . ,ûr to bea (B*, X, C)-badly approximable system of ^-distorting 

vectors (see Definition 6.7), X and C to be specialized later. First we need to estimate 
the measure of <5-distorting vectors in the unit cube. We follow the argument of [12, 
Section 2.16]. 

Proposition 8.1. — Let 5 be a positive real numbed satisfying 5 < l/yfa. Then the 
set M(5) of 8— distorting vectors a G [0, l)m satisfies 

(8.2) VolM(ö) > 
1 - SJ3 

a 

1 

k 

(6)We forget for a while that we have already specified 6. 
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Proof. — We use the circle method. For a G [0, l)m put 

S(a) = 

xeK' 

2m{a,x) Si(a) = 

xeK'+K' 

g—2ni(aix) 

Then 

k2 = 
fo,iim x,y€K > 

e27Ti(a,x+y-z)da _ 
'[0,l)m 

S2(a)S1(a)da. 

We have trivially 

fM(S) 
S2(a)S1(a)da < k2 \K' + K'\ Vo\M{5) < ak3 VolAf(J), 

and by the Cauchy-Schwarz inequality 

r[0,l)m\M(5) 
52(a)5i(a)da < Ok 

'F0,l)m 
|5(a)||Si(a)|da 

< Ok 
M0,l)m 

|S(a)l2da 
' [ o a r 

|Si(a)|2da 

< SkVkVak — Sy/ak2. 

Hence k2 < ak3Vo\M(ô) + ^ /̂âA:2, which implies (8.2). 

The next proposition is a direct consequence of Proposition 8.1, Lemma 6.8 and 
inequality (8.1). 

Proposition 8.2. — Assume that 0 < ô < l/y/v and let AC, V > 0 satisfy the condition 

(ra + r)n + mv < 1. 

Also, assume that 

E > a • 24m * 3r 

1 - < V ? 

l 
l{m-\-r)K-\-my 

. 

Then for X = and C = T,1' there exists a (B*, X,C)-badly approximable system 
of S-distorting vectors a i , . . . , ar G [0, l)m. 

In particular, specifying K, = p, = l/2(2ra + r) , we obtain the following. 

Proposition 8.3. — Assume that S > e26(T log^. Then for Ô = 1 / 2 a n d X = C = 
^i/2(2m+r) £ftere exists a ( B * , X , C)-badly approximable system of 5-distorting vectors 
a i , . . . , a r G [0, l)m. 
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8.2. Estimating Vol Bo. — Since we are going to apply Lemma 6.5, we start with 
the following assertion. 

Proposition 8.4. — The convex body 0 defined in (7.7) contains an (m-f-r)-dimensional 
ball of radius (m + l ) " 1 . 

Proof. — Since the Mahler's basis of the body B is orthonormal (see the beginning 
of Section 7), we obtain 

(8.3) ||x||B < max(l,ra/2)| |x| | (x G Em). 

Define a linear map A: Em -> Er by Ax = ( ( x , a i ) , . . . , (x,ar)) . Since a i , . . . , a r G 
[0,l)m, we have llylxlloo < m||x||oo. Now fix x © y G Em © Er ( ^ Em+r). Then 

I k ® 2/||n = max (||x||2ß, \\Ax - y||oo) 

< max (§| |s | |B,m||x| |oo + \\y\\oo) 

< (m + l) | |arey| |oo 
< (m + l ) | | x © î / | | . 

Therefore 0 contains the (ra 4- r)-dimensional ball of radius (m + 1) 1 with center in 
the origin. • 

Now we are able to estimate Vol JE?0. 

Proposition 8.5. — We have 

(8.4) Vol So < C8iV, 

where csi = 2m+r(m + r)!(m + l)ro+r. 

Proof. — We have 

(8.5) VolO = 2m+rV. 

Combining this with Proposition 8.4 and Lemma 6.5, we obtain (8.4). 

8.3. Proof of Proposition 7.5. — Now we are in a position to complete the 
proof of Proposition 7.5. Let X and C be defined as in Proposition 8.3. By (7.1), 
the assumption of Proposition 8.3 is satisfied. Therefore we may assume that vec
tors a i , . . . , ar form a (5*, X, <7)-badly approximable system. We shall see that this 
yields (7.8). 

Put Aq = A(ro). The argument splits into two cases (recall that S = V/k). 

Case 1: A0 > l/2(2m+r) — Since c$i < C45, in this case the inequality (7.8) follows 
immediately from (8.4). (Note that in this case we did not need the fact that a\,..., ar 
form a badly approximable system.) 
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Case 2: Д0 < Т}/2{2ш+г\ — By Lemma 6.10 there exists a vector / = Л©д € Z m ® Z r 
orthogonal to the subspace £0 and satisfying 0 < \\1\\<х> < A0. By Proposition 7.4 (3), 
p = ( / i i , . . . ,цг) ф 0. Now, since < ||/|| < A0 < X and since o i , . . . ,ar form а 
(В*, X , C)-badly approximable system, we have ||/xiai H h /xrar 4- А||в* > С. This 
means that for some x G Em we have 

(8.6) |(/iiai H h/irûr + A,x) | > С||ж||в. 

Put w = x ® Aa: G lro 0 i f (where 4̂ is the linear map defined in the proof of 
Proposition 8.4). Clearly, \\W\\Q = | | | # | | B . Since the left-hand side of (8.6) is equal 
to |(u?,/)|, we have 

(8.7) |(tü,OI >C||x| |B = 2C |Hln 

Let W = w1- be the orthogonal complement to w and n : Rm+r W the orthogonal 
projection. We have the following three inequalities: 

(8.8) Vol m+r—1 Or(fi)) < c82 Ikllfi 
llwll 

V; 

(8.9) Vol mo (тг(Б0)) < c83Vol m-\-r—\ (тг(П)); 

(8.10) Vol mo [Bo) < \H\\\i\\ 
\(w,l)\ 

Vol mo MBo)). 

Here c82 = (m 4- r)2m+r and c83 = (m + r - l)!(m 4- i)m+r-i 
Indeed, (8.8) follows at once from (8.5) and Lemma 6.6. To prove (8.10) note that 

by Lemma 6.9 

Уо1то(Дэ) = Volmn(7r(Bn)) 
det7r|£o 

< INHI'll 
|(w , l)| 

Volmo(7T(^o))-

Finally, as we have seen in Proposition 8.4, the body O contains an (ra4-r)-dimensional 
ball of radius (m + l ) - 1 . The projection n maps it onto an (ra 4- r — l)-dimensional 
ball of the same radius. Now we obtain (8.9) applying Lemma 6.5. 

Combining the inequalities (8.7)-(8.10), we obtain Volmo(JE?o) < C84||/||FC_1 with 
C84 = 1^82^83- Since ||/|| < y/m 4- HI'lloo < Vm + rA0l we °btain finally 

Volmo(B0) <c85A0FS -l/2(2m+r) 

with c85 = y/m 4- rc$4 < C45, which proves (7.8). This completes the proof of Propo
sition 7.5 and the Lemma on Partial Covering. • 

9. Proof of Proposition 4.2 (the iteration step) 

In this section we prove Proposition 4.2. We fix a real number T > 2, and write "ad
missible" instead of "T-admissible" in the sequel. Given an admissible triple (ra, B, (p), 
we have to construct another admissible triple (m',B',(p') satisfying (4.1). Note 
that (4.1) holds (with another constant) for the triple (rao,l?o,<A)) constructed in 
Lemma 4.5. However, instead of conditions (i)—(iii) of Theorem 3.1, we have only (i) ' 
and (ii)/, which can be regarded as weaker analogues of (i) and (ii). Our strategy 

ASTÉRISQUE 258 



STRUCTURE OF SETS WITH SMALL SUMSET 103 

will be to "correct" the triple (mo, Bo, (p0) step-by-step, obtaining at the final step the 
desired (m' ,B' ,(p'). 

Thus, fix an admissible triple (ra, B, (p), and again put V — Vol B and £ = V/k. 

9.1. The condition (ii) 
Proposition9.1. — There exists a triple (mi,B\,(pi) satisfying 

(9.1) VolBi < C9I(<T)V£ -1/C42(<T) 

and the conditions 

( i )" rai < C92((T); 

(ii) ^ ( ^ H Z ™ 1 ) DK. 

Here CQI = 2ÜC44c45 and CQ2 — c46 + 0-044. 

Proof. — What follows is a combination of arguments due to Freiman [12, Sec
tion 2.24] and Ruzsa [30, Section 5]. Let (mo,Bo,<po) and KQ be constructed in 
Lemma 4.5. Let A = {a±,... ,as} be a maximal subset of K with the following 
property: 

(9.2) {AI +KO)N(AJ+KO) = 0 (* # j ) . 

Then 

(9.3) s = \A\ < GC44. 

(Indeed, (9.2) yields that \A 4- K0\ > s\Ko\, whence 

ak>\K + K\>\A + K0\ > s\K0\ > sk/c44, 

which proves (9.3).) By the maximal choice of the set A, for any b £ K there exist 
ai £ A such that (b + K0) D (ai + KQ) ^ 0 . In other words, 

(9.4) KcA + (K0-K0). 

Now put 3 = {x £ W : \\xl\oo < 1} , and define a homomorphism ifi: Zs—»Zn by 
ei >-> ai, where e\ = (1,0,... ,0),... ,es = ( 0 , . . . , 0 , 1 ) is the standard basis of Es. 
Further, put 

rai = ra0 4- s, Bi = B0 0 3, 

(where we identify Emi S Em° 0 Es and Zmi S Zm° 0 Zs) and define <px : Zmi->Zn 
by 

Y1 |zmo = y?o> V>1 |z* = ^-

Since (^o(^o) D KQ — K0 and ^ ( 3 ) D A, we have (ii). Estimates (1)" and (9.1) are 
obvious. • 

Remark 9.2. — We could replace the cube 3 by the "octahedron" 

3 ' = {x = (x1,...,xs) £ W : |xi | + --- + |a;,| < 1 } . 

This would imply a better value for the constant cgi. However, this would not have 
much influence on the final value of the constant en in the Main Theorem. 
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9.2. Condition (iii) 
Proposition 9.3. — There exists a triple (ra2, J92, </?2 ) satisfying 

(9.5) Vo\B2 < c 9 3 ( a , r ) F S -1/C42(^) 

and the conditions 

( i )" ra2 < c92; 
(ii) ^2(B2DZm2) D i f . 

(iii) the restriction cp2 |T£2nzM2 «5 one-to-one; 

Herecm = (2c92T)c^c91. 

Proof — We follow the argument of [12, Lemma 2.26] with some changes. Let 
(rai, f?i, ) be the triple constructed in Proposition 9.1. We say that the triple 
(m2lB2,(p2) is appropriate if it satisfies the conditions 

m2 < rai, (f2(B2 FL Z ™ 2 ) D K, VolB2 < (2raiT)mi~m2 V o l # i . 

Appropriate triples exist — for example, the triple (rai,i?i,y?i) is such. Fix an 
appropriate triple (ra2,B2l<p2) with the minimal value of ra2. To prove the proposition 
we have to show that this triple satisfies (iii). 

Assuming the contrary, we find a non-zero e G 2TI?2 D Zm2 such that (f2(e) = 0. 
We may assume that the greatest common divisor of the coordinates of vector e is 1. 
Then there exists a basis e i , . . . , em2 of Z7712 such that em2 = e. We assume this basis 
to be orthonormal, redefining the inner product. 

Let 7T: Em2->Em2~1 be the projection on the first ra2 - 1 coordinates. Put B'2 = 
7r(B2). Since e = em2 G Ker<£>2, there is a uniquely defined map cp2: Z m 2 - 1 ^ Z n such 
that 2̂ = 2̂ 0 7r- We have 

(p'2(B'2 f l Z™2"1) = ^(7r(B2) n 7r(Zm2)) D (p2 o 7r(J52 n Zms) = ^ ( B 2 n Zm2) D K. 

Also, since e G 2TB2l we have ||e||£2 < 2T, and by Lemma 6.6 

Volm2_i B2 < 2Tm2 Volm2 £2 < (2raiT) TII —(m2 —1) Volf l i . 

Thus, the triple (ra2 — 1, B2, cp2) is appropriate, which contradicts the minimal choice 
Of 777,2- • 

9.3. The condition (i). — Now it is easy to complete the proof of Proposition 4.2. 
Let (m2jB2l(p2) be the triple constructed in Proposition 9.3. Put K' = (^2~1(if). 
Since T > 2, it follows from (ii) and (iii) that the map (f2: K'-±K is F2-isomorphic. 
Therefore \K' + K'\ < cr\K'\, whence by Lemma 4.3 we have m! := dim K' < [a — l j . 
Put £ = C(K'). 

We may assume that the Mahler's basis of the body B2 is orthonormal. Then B2 
contains an ra2-dimensional ball of radius 2/ra2. Putting B' = CJ FL B2, we have by 
Lemma 6.5 

(9.6) Volw(S') < m2!(m2/2)m2 Volm2(B2) < c94(a,T)VI. -l/c42(o-) 

with c94(a,T) = c92(a)2c^c93(a,T) < c4i. 
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Finally, put r = £?nZm2 and tp' = (p2 \v . When we identify C! with Mm and V 
with Zm', the volume of B' should be multiplied by A(r) -1 . Since A(T) > 1, we will 
still have (9.6). 

Thus, the triple {m',B',ip') is admissible and satisfies (4.1). Proposition 4.2 is 
proved. • 

10. Final remarks 

10.1. Various formulations of Freiman's theorem. — Both Theorems 1.2 
and 1.3 are new, though not very much is added to Freiman's proof. Freiman's 
original formulation of his theorem is similar to our Theorem 3.1, but with \B n Zm| 
instead of Vol!?. Ruzsa's result is as follows. 

Theorem 10.1 (Ruzsa [30]). — Let K and L be finite subsets of a torsion-free abelian 
group. Suppose that \K\ = \L\ = k and \K + L\ < ok. Then K is a subset of a 
generalized arithmetical progression P of rank m < cioi(cr) and cardinality \P\ < 
cio2(o-)k. 

The main advantage of Ruzsa's theorem is that it deals with distinct sets. Ruzsa's 
proof implies an estimate 0102(0") < expexp(ac) with an absolute constant c, which is 
better than (1.4). However, Ruzsa does not prove that P is an Fs-progression (even 
for s — 1), nor does he obtain the inequality m < [o — l j , having only the weaker 
bound m < exp(crc). 

Both these difficulties can be overcome in the case K = ±L: one should combine 
Ruzsa's result with the arguments from Sections 9 and 3 of the present paper. (In 
the case L — —K Lemma 4.3 should be replaced by its analogue for K — K proved 
in [14].) This would give us a new proof of Theorem 1.2, the estimate (1.4) being 
replaced by cu(a) < (2s)exp(aC\ and an analogue of the Main Theorem with K — K 
instead of K + K. 

It is very likely that a similar approach (with some additional ideas) would lead to 
a complete analogue of Theorem 1.2 for the addition of two distinct sets of the same 
cardinality. 

Remark 10.2 (added in revision). — Nathanson [26, Section 9.6] posed the following 
proper conjecture: 

Let a < 1 and a be positive real numbers, let k be a positive integer, and let K and 
L be Gnite subsets of a torsion-free abelian group such that 

ak < \K\, \L\ < k and \K + L\ < ok. 

Then K is a subset of an Fi-progression P of rank c(a,o) and cardinality \P\ < 
c'{a, o)k. 
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It is easy to see that this conjecture is a consequence of Theorem 1.2. Indeed, it 
follows from [28, Lemma 3.3] (reproduced in [26] as Theorem 7.8) that 

\K + K\<\K + K-K\< 
ak 

|L| 

3 
\L\ < {a/af\K\. 

Applying Theorem 1.2, we prove the conjecture with c = [(a/a)3 — l j and d = 
cn((a/a)3,1). (A slightly more accurate argument gives (a/a)2 instead of (a/a)3.) 

10.2. Freiman's proof and Ruzsa's proof. — Put Ks = 
8 

K H h K. Ruzsa 
starts with proving that 

(10.1) \K + L\ < ak => \Ks! - Ks2\ < a s1 + s2k; 

(where s± and s2 are arbitrary positive integers) and then works with the set K only. 
He shows also that it is sufficient to consider the case K C Z . 

The first crucial step of his proof is the following nice theorem. 

Theorem 10.3 ([28]). — Let K be a finite set of integers, and s a positive integer. 
Then for any N > 2s\Ks — Ks\ there is a a subset Kf C K of cardinality \K'\ > k/s, 
which is Fs-isomorphic to a subset of the cyclic group of order N. 

Due to this result one may work in a "close environment55, which essentially simpli
fies the reasoning and allows one to avoid iterations. 

The second crucial step is the following result: 

Theorem 10.4 ([30]). — If A is a subset of a cyclic group of order N < a\A\, then 
the second difference set A2 — A2 contains a progression of rank at most C103 (a) and 
cardinality at least N/cio^a). 

A simple combination of these two theorems shows that there is a progression 
P C K2 — K2 of bounded rank, satisfying \P\ > k/cios(o). Now it is easy to complete 
the proof proceeding in the same manner as in Subsection 9.1 of this paper. 

Thus, in both Freiman's and Ruzsa's proofs one first takes care of an "substantial 
part55 of the set in question (or a relative set), and then covers by a progression the 
whole set. In Freiman's argument the main tools for finding a "partial covering55 are 
the 2n-theorem and the circle method. In Ruzsa's argument the same role belongs to 
Theorem 10.4, in the proof of the latter the circle method being crucial too. 

Evidently, there are deep interconnections between the two proofs. Revealing them 
will lead to a much better understanding of the problems connected with Freiman's 
theorem. 
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ON FINITE ADDITION THEOREMS 

by 

András Sárközy 

Abstract. — If a finite set A of integers included in { 1 , . . . , N} has more than N/k 
elements, one may expect that the set IA of sums of I elements of A, contains, when 
I is comparable to A;, a rather long arithmetic progression (which can be required to 
be homogeneous or not). After presenting the state of the art, we show that some 
of the results cannot be improved as far as it would be thought possible in view of 
the known results in the infinite case. The paper ends with lower and upper bounds 
for the order, as asymptotic bases, of the subsequences of the primes which have a 
positive relative density. 

1. Throughout this paper we use the following notations: Ci,C2 . . . denote positive 
absolute constants. If f(n) — 0{g{n)), then we write f(n) <C g(n). The cardinality 
of the finite set S is denoted by \S\. The set of the integers, non-negative integers, 
resp. positive integers is denoted by Z, 1% and N. ^4, B ... denote (finite or infinite) 
subsets of No, and the counting functions of their positive parts are denoted by A(n), 
B(n), . . . , so that, e.p., A(n) — \Af) { 1 , 2 , . . . n} | . The Schnirelmann density of the set 
A C No is denoted by cr(A), while the asymptotic density, asymptotic lower density, 
resp. asymptotic upper density of it is denoted by d(A), d(A) and d(A) (see [16] for 
the definition of these density concepts). A± + A2 + · - · + Ak denotes the set of the 
integers that can be represented in the form a\ + 0,2 H h a& with a\ G A\, 0,2 € A2, 
..., ak € Ak; in particular, we write 

A + A 2A S(A), 
kA A+(k-l)A for * = 3 , 4 , . . . , 

and 
OA { 0 } , 1A A. 

1991 Mathematics Subject Classification. — 11B13, 11B25, 11B05. 
Key words and phrases. — additive number theory, density, additive bases, structure theory of set 

addition. 

Research partially supported by Hungarian National Foundation for Scientific Research, Grant 
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If A C N then V{A) denotes the set of the distinct positive integers n that can be 
represented in the form n = ]Cae^4 £ a a w n e r e £a — 0 or 1 for all a and, if A is infinite, 
then all but finitely many of the e's are equal to 0. (This notation will be used only 
in Section 3, while later the letter V will be reserved for denoting sets of primes.) 
An arithmetic progression is said to be homogeneous if it consists of the consecutive 
multiples of a non-zero number, i.e., it is of the form kd, (& + ..., Id (where d ^ 0). 

2. The classical Schnirelmann-Mann-Kneser-Folkman theory of the set addition stud
ies sums of infinite sets (the density and, in case of Kneser's theorem, the structure of 
the sum set). However, in many applications we are dealing with finite sets; in such 
a case, we cannot use this classical set addition theory or, in the best case, we have 
difficulties in applying it. Thus recently I have worked out a theory of addition of fi
nite sets (partly jointly with Erdos, resp. Nathanson) which is more or less analogous 
to the case of infinite sets, and several conclusions and applications of this theory 
are close to the ones obtained by Freiman using a completely different approach. A 
considerable part of this work was inspired by a paper of Erdos and Freiman [5]. In 
this paper, first I will give a brief survey of my papers written on this subject. In the 
second half of the paper two further related problems will be studied. 

3. Nathanson and I [20] proved that if we take "many" integers up to iV, and we add 
the set obtained in this way sufficiently many times, then the sum set contains a long 
arithmetic progression: 

Theorem 1. — If N e N, k e N, A C { 1 , 2 , . . . , N} and 

(3.1) A 
N 
k 1, 

then there exists an integer d with 

(3.2) 1 d Jfe-1 

sueh that if h and z are any positive integers satisfying the inequality 

N 

h 
zd A 

then the sum set (2h)A contains an arithmetic progression with z terms and difference 
d. 

Choosing here h = 2k and z = [N/2kd\, we obtain 

Corollary 1. — If N € N, k £ N, A C { 1 , 2 , . . . , N} and A satisfies (3.1), then there 
exists an integer d satisfying (3.2) such that 4kA contains an arithmetic progression 
with difference d and length [N/2kd\ > [N/2(k - l)k]. 

The proof of Theorem 1 was based on Dyson's theorem [3] (which slightly gener
alizes Mann's theorem [19]). We used Theorem 1 to study a problem of Erdos and 
Freud on the solvability of the equation 

(3.3) ai + a2 + … ax = 2y &i 5 a>2 ? · ·. 5 o>x € A 
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in "large" subsets A of { 1 , 2 , . . . , N} (in sets A with |.4| > [N/3]). Indeed, we improved 
on a result of Erdos and Preiman [5]. Later Preiman [14] found another ingenious 
approach and he improved further on the result. 

Corollary 1 was sufficient to study equation (3.3), however, it is not sharp in 
the sense that it guarantees an arithmetic progression of length only ^> N/k2 in 
the sum set while one would expect a longer arithmetic progression and, indeed, 
later I needed a sharper result of this type. In fact, I proved [21] that having the 
same assumptions as in Corollary 1, one can guarantee a much longer homogeneous 
arithmetic progression in a sum set £A with £ k (in many applications, we need 
the existence of a homogeneous arithmetic progression in the sum set, and this fact 
causes certain difficulties): 

Theorem 2. — If N G N, k G N, A C { 1 , 2 , . . . , N} and (3.1) holds, then there are 
integers d,£,m such that (3.2) holds, moreover we have 

(3.4) 1 l : ii8fc 

and 

(3.5) (m + l)d, (m + 2)d, . . . , (m + N)d IA. 

It is easy to see that this theorem is the best possible apart from the constant 
factor 118 in (3.4). This result can be considered as the finite analog of Kneser's 
theorem [18] (see Lemma 2 below). The proof of Theorem 2 is complicated, it uses 
both Dyson's theorem and Kneser's theorem. 

One might like to sharpen this result by showing that all the elements of the 
arithmetic progression in (3.5) can be represented as the sum of possibly few distinct 
elements of A] see [20] and Alon [1] for results of this type. The case when the number 
of distinct summands is unlimited will be studied later (Theorem 4 below). 

Before the famous a + /3 conjecture was proved by Mann [19], Khintchin [17] had 
settled that most important special case of the conjecture when sum sets of the form 
kA are considered; indeed, he proved that 

(3.6) a(kA) min(l, ka(A)) 

In [23] I proved the following finite analog of this result: 

Theorem 3. — If N e N, k e N, A C { 1 , 2 , . . . , N} and \ A\ > 2, then there are m, d 
such that m G Z, d G N. 

(3.7) d 2 
N 
A 

and 

(3.8) [m + d, m + 2d,..., m + Nd kA mini 1, 
1 

800 
k 

A 
N 

N. 

The proof is similar to the proof of Theorem 2, although also further ideas are 
needed. Again, it is easy to see that this theorem is the best possible apart from 

the constants 2 in (3.7) and, mostly, 1 
800 

in (3.8) (we will return to this question in 
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section 4). Note that an easy consideration shows that here we have to give up the 
requirement that the arithmetic progression in (3.8) should be homogeneous. 

An infinite set A C N is said to be subcomplete if it contains an infinite arithmetic 
progression. Improving on a result of Erdôs [4], Folkman [11] proved the following 
remarkable theorem: if A C N is an infinite set such that there are e > 0 and N0 with 

A(N) Nl/2+e for N No, 

then V{A) is subcomplete. Improving on a result of Alon and Freiman [2], I proved 
[22] the following finite analogue of Folkman's theorem: 

Theorem 4. — If N G N, N > 2500, А С { 1 , 2 , . . . , N} and 

(3.9) A 200(iVlogiV) 1 / 2, 
then there are integers d,y,z such that 

1 d 10" N 
A 

(3.10) 

z 7 - l 1 0 - 4 A 2 

У 7 · 104iV2 A -2 

and 
yd, (y + l)d,. . . ,z<f ПЛ). 

Previously Alon and Freiman had proved a similar result with N2/3+£ on the right 
hand side of (3.9) and a slightly weaker inequality in place of (3.10). Moreover, inde
pendently and nearly simultaneously Freiman [13] proved a result essentially equiv
alent to Theorem 4 above. I derived Theorem 4 from Theorem 2; this part of the 
proof is easier, than the proof of Theorem 2. Freiman's proof is also complicated; 
he combines methods from the geometry of numbers and exponential sums in the 
manner of his book [12]. 

Again, Theorem 4 is the best possible apart from the constant factors and, perhaps, 
the factor (logiV) 1/ 2 on the right hand side of (3.9). Probably this logarithmic factor 
(or, at least, some of it) is unnecessary, although it is quite interesting and unexpected 
that exactly the same factor appears also in Freiman's result (obtained by a completely 
different method). 

Theorem 4 has many applications. Alon and Freiman [2] found the first applications 
of a result of this type. Several further applications are discussed in my paper [22]. 
Papers [6], [7], [8] and [10] contain further applications. 

Erdos and I [9] studied the following problem: what happens, if we replace as
sumption (3.9) by a slightly weaker one so that |X| drops below iV 1 / 2 ? It turns out 
that there is a sharp drop in the length of the maximal arithmetic progression that 
we can guarantee in V(A), however, still it must contain quite a long one. Indeed, let 
и = F(iV, t) denote the greatest integer и such that for every Л С { 1 , 2 , . . . , N} with 
\A\ = t, the set V(A) contains и consecutive multiples of a positive integer d: 

(x + l)d, (x + 2)d, . . . , (x + u)d V{A) 
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for some x and d, and let v = G(n, t) denote the greatest integer v such that for every 
A C {1,2, . . . , i V } with \A\ = £, the set P(*4) contains an arithmetic progression of 
length v: 

[y + (z + l)d,y + (z + 2)d,.. . ,y + (z + v)d V(A) 
for some ?/, z and d(> 0). Clearly, F(N, t) < G(N, t) for all N and t<N, and since 

7> 1,2, . . . ,* l , 2 , . . . , t ( t + l ) / 2 1,2,. ..,t2 

thus we have 
F(N,t) G(N,t) t2 

for all N and i < iV. On the other hand, by Theorem 4 for t > (TV log iV) 1 ' 2 we have 
F(7V,i) • 2 - 2 / z - 7.104Nz A -2 

z(l - 7 . 1 0 4 A ^ r 2 z A 2 t2 

lit (NlogN)1/2. 

Theorem 5. — If N > No and 18(log./V)2 <t<N, then we have 

[G(N,t) F(N,t) 1 
18 

t 
log iV 2 

Theorem 6 
(i)IfN NQ and c log N t 1 

3 
ΛΓΐ/з then we have 

F(iV,t) 16 t 
logiV 

log 
t 

logN 
(it) lfe>0 and t0(e) < t < (1 - ^ i V 1 / 2 , tften u/e /mue F(N,t) < (1 + 

Theorem 7 
(i)IfN N0 and exp(2(logA r) 1/ 2 t A r l / 4 , £ften we ftawe 

G(N,t) texp 4 max 
logiV 

logt 

(logt) 2 

logiV 

(ii) to t 
1 
2 

ATi/2 y;e /ia?;e G(N91) 2£ 3 / 2 . 

Paper [9] contains several further related results. 

4. As we mentioned above, Theorem 4 is nearly sharp in the sense that apart from 
the constant factors and the, perhaps, unnecessary factor (logiV) 1/ 2 on the right hand 
side of (3.9), the theorem is the best possible. 

On the other hand, it is easy to see that the other two main theorems Theorem 2 
and 3 are the best possible apart from the constants on the right hand side of (3.4) 
and (3.8) (and, less importantly, (3.7)). One might like to determine or, at least, to 
estimate these constants. This problem can be considered as the finite analog of the 
famous a + (3 problem (apart from the fact that here we restrict ourselves to sum sets 
*4i + A2 + · · * + Ak with Ai = A2 = · · · = Ak)- Since Theorems 2 and 3 are closely 
related, thus here I will study only the constant in Theorem 3. 
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If N G N, k G N, A C { 1 , 2 , . . . , N} and \A\ > 2, then let £(iV, ft, .4) denote the 
maximal number of elements of kA contained in an arithmetic progression of length 
N: 

E(N, k,A) max 
mEZ,dEN 

m + d, m + 2d, . . . , m + iVd fe4 

For k G N, A; > 2 let C(fc) denote the greatest number such that for all N G N, 
A C { 1 , 2 , . . . , N} and \A\ > 2 we have 

£(iV,fc,4) min l,C{k)k 
A 

N 
N 

and define C by C = inffc=2,3,... C(fc) so that C is the greatest number such that for 
all N G N, k G N, k > 2, A C { 1 , 2 , . . . , N} and |A| > 2 we have 

E(N,k,A) min l,CAr 
4̂ 

N 
N. 

Moreover, for k G N, k > 2 let Coo(&) denote the greatest number such that for all 
e > 0 there is an L = L(e) with the property that for all N G N, A C { 1 , 2 , . . . , N} 
and |*4| > L we have 

E(JV,fc,.4) min 1, Coo(fc)-£ k 
A 
N 

N, 

and define C00 by Coo = inffc=2,3,... <?«)(&)· 

By Theorem 3 we have 

(4.1) C00 C 1 
800' 

In the proof of Theorem 3, I did not force to give a possibly sharp lower bound for C 
and Coo. Correspondingly, by a careful analysis of the proof, the lower bound in (4.1) 
(mostly the one for Coo) could be improved considerably; however, to get above, say, 
n 
10 

with the lower bound, essential new ideas would be needed. 

Khintchin's theorem (3.6) may suggest that, perhaps, we have C = Coo — 1- This 
is not so; indeed, for |.4| = 2, k G N clearly we have k\A\ = k + 1 so that 

E(N,k,A) fc + 1. 

Thus for |.A| = 2, k G N, N > k 4-1 we have 

E N,k,A k + 1 min 1, 
fc + 1 

2fc 
k 

A 
N 

N 

which shows that C(k) 
fc + 1 

2fc 
C 1/2. One might think that this example is the 

"worst" one so that C — 1/2 and, perhaps, Coo = 1. I will show that this guess is also 
wrong; the next two sections will be devoted to giving possibly sharp upper bounds 
for C and Coo-
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5. First it will be proved: 

Theorem 8. — IfNeN, 
(5.1) N k + 2 

and k G N, then for A = {1,2 , N} we have 

(5.2) E(N, k,A) k + 2. 

For N > k + 2 this implies 

E(N, k, A) min u 
k + 2 

3k 
k A 

N 
N. 

It follows that 

Corollary 2. — For all k € N, k > 2 we have 

C(k) 
k + 2 

3k 
so that 

C 
1 
3' 

Proof of Theorem 8. — Clearly we have 

kA k{l,2,N} 
k 

i=0 
t{JV} + ( f c - t ) { l , 2 } 

k 

i=0 
iN + k~i,iN + +k - i . . . , tJv + 2 ( * - i ) ; 

k 

i=0 
Bi 

where 
Bi iN + k- i, iN + k - i + 1, . . . ,i/V + 2( fc - i ) 

Consider now an arithmetic progression Q(m, d, iV) = {m + d, ra-f- 2d, . . . ,m + iVd} 
with m G Z, d G N. Assume first that d > k + 1. Then for 0 < z < k, the difference 
between the greatest and smallest of i?* is 

[iN + 2(ifc - i) iN + k- i k — i k d, 

thus clearly, Q(ra,d, iV) may contain at most one element of each Bi. It follows that 

Q(m,d,N) kA Q(m,d,N) 
k 

i=0 
Bi\ 

k 

i=0 
Q(m,d,N) Bi 

k 

i=0 
1 k + 1 for d fc + 1 

Assume now that 

(5.3) el le. 
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Clearly, we have 

Q(m,d,N) Bi 

(5.4) 
n : n m mod d iN + k-i n iN + 2(k-i) 

k — i 
d 

1 for i 0,1 , . 

Assume that 0 < i < j < k and both Bi and Bj meet Q(m,d,N). Then the 
difference between the smallest element of Bj and the greatest element of Bi cannot 
exceed the difference between the greatest and smallest elements of Q(m,d, N): 

jN + k~j iN + 2(k - i N-l d 

whence, by (5.1), 

j — i d 
k — i 

N-l 
d 

k 
N-l 

d + 1 . 

Moreover, if j — i = d, then denote the greatest element of Q(m, d, N) fl Bi+d (where 
i + d = j) by u. Then v < u — d(N — 1) implies that v £ Q(m,d,N) since u £ 
Q(m,d, TV), u — v > d(N — 1), and the greatest difference between two elements of 
Q(m,d,iV) is d(N - 1). Thus we have 

Q(m,d,iV) Bi Q(m,d,N) Bi+d 

(5.5) n : n m mod d u-d(N- 1) n îiV + 2 ( fc - i ) 

У : η' m mod d (t + d)iV + k [i + d n' u 
To each n' counted in the second term we may assign the integer n — n' — d(N — 1) 
which satisfies n = m (mod d) and iN + k — i < n < u — d(N — 1). Thus the sum 
estimated in (5.5) is 

n : n m mod d u-d(N - 1) n iN + 2{k-i) 
n : n m mod d iN + k-i n u - d(N - 1) 

n : n m mod d iN -hk-i n iN + 2(Jfc - i) 1 

(the last term 1 stands for u — d(N — 1) counted in both terms of the previous sum) 
and thus we have 

Q(m,d,iV) Bi\ Q(m,d,N) Bi+d 
(5.6) k — i 

d 1 1 
k — i 

d 2. 

It follows from (5.4) and the discussion above that if ii < ¿2 < * * * < H denote the 
integers i with Q(m,d, N) D Bi / 0 , then either we have t < d and then 

t 

i=1 

Q(m,d,iV) Bij 

t 

j=1 

k ij 
d 

1 

t-i 

j=0 

k-j 

d 
1 

d-l 

3-0 

k-j 

m 
d 
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or we have t d + 1, ¿2 h + 1? «3 ii + 2, . . . , it id+i ii+d and then, using 
also (5.6), 

t 

i=i 

Q(ra,d,iV) ft, Q(m,d,iV) Bi1 Ö(m,d,JV) ft. 

t-l 

¿=2 

Ö(m,d,JV) Bij 

fc — li 
d 

2 
t-i 

i=2 

k ij 
d 

1 

t-i 

i=i 

к ij 
d 

1 1 
t-2 

i=o 

k-j 
d 1 1 

d-1 

j=0 

k-j 
d 

(d+1) 

In both cases we have 

Q(m,d,JV) kA 
t 

j=1 
ö(m,d,iV) ft, 

d-1 

i=o 

k-j 
d 

(d+1) 

Define the integers g, r by k = qd + r, 0 < r < d. Then, using (5.3), we have 

d-1 

j=0 

k - j 
d 

(d+1) 
r 

.7=0 

k-j 
d 

d-l 

j=r+l 

k-j 
d (d+1) 

(r + l)g + (d - 1 - r){q - 1) + (d + 1) gd + r + 2 ¿ + 2 

which proves that 

(5.7) E(N, k,A) k + 2. 

To see that also 

(5.8) E(N,k,A) k + 2 

holds, observe that by (5.1) we have 

k,k + l,...,2k, N + k-l ( * - ! ) + ! , ( * - ! ) + 2 , ...,(k-l) + N kA. 

(5.2) follows from (5.7) and (5.8), and this completes the proof of the theorem. 
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6. In this section it will be proved: 

Theorem 9— If N G N, i G N, k G N, 

(6.1) N 4ki, 

and we write A l , 2 , . . . , t , W - * + l,JV - i + 2 , . . . , iV then we have 

E(N,k,A) ki + 

For iV > 4ki this implies 

JE7(JV, k,A) ki + i min 1. fc + 1 
2fc Jfe-

4 
iV 

N 

so that 

Corollary 3. — For all k e N, k > 2 we have 

Coo(k) Jfc + 1 
2k 

whence 
Coo 1 

2 

Proof o/ Theorem 9. — Clearly we have 

kA k l , 2 , . . . , i , J V - t + l,iV — ι* + 2 , . . . , JV 
Jfc O, TV — г, k 1,2,. ..,t" Q,iV-f l , 2 , . . . , f 

N-г A/, ~\~ 1,. · ·, k% 
k 

j=0 
j(N - i) + fc, j(iV - i) + fc + 1, ... J(N - i) + ki 

k 

3=0 
Bj, 

where 
Bj j(N -i) + kJ(N - f ) + fc + l, ...J(N-i) + ki 

Consider now an arithmetic progression <2(m, d, N) = {m + d, m + 2d,. . . , m + iVd} 
with ra G Z, d G N. We have to distinguish two cases. Assume first that 

(6.2) d fc + 1. 

Then we have 

Q(m,d,N) kA Q(m,d,N) 
k 

j=0 
Bj 

(6.3) 
fc 

i=o 
Q(m,d,iV) Bj 
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Here clearly we have 

Q(m,d,N) Bj 

(6.4) n : n m IWKBMI j(N - i)k n j(N - i) + ki 
ki — k 

d 
-1 for j 0,1,…, k 

It follows from (6.2), (6.3) and (6.4) that 

(6.5) 

Q(m,d,iV) kA 
k 

3=0 

ki — k 
d 

1 

Jb + l ki — k 
d 

1 jfc + l 
ki — k 
k + 1 

1 

ki + 1 for d Jk + 1 

Assume now that 

(6.6) d k. 

Note that the assumption (6.2) was not used in the proof of (6.4) so that (6.4) holds 
also in this case. 

Assume that 0 < u < v < k and both Bu and Bv meet Q(m, d. N). Then the 
difference between the smallest element of Bv and the greatest element of Bu cannot 
exceed the difference between the greatest and smallest elements of Q(m,d,N) : 

v(N -i) + k u{N -i) + ki N-l d 

whence, by (6.1) and (6.6), 

v — u d 
(i - l)d (ki - k) 

N-i 
d 

2(ki - k) 
N/2 

d+1. 

Moreover, if v — u = d, then denote the greatest element of Q(m, d, N) D Bu+d (where 
u + d = v) by x. Then y < x — d(N — 1) implies that y Q(rn, d, N) since x G 
Q(m,d,N),x — y > d(N — 1), and the greatest difference between two elements of 
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Q(ra, d, N) is d(N - 1). Thus we have 

Q(m,d,N) Bu Q(m,d,iV) Bu+d 

n : n m mod d x-(N- l)d n u(N - i) + ki 

n : n m mod d (u + d){N-i) k n x 

u(N -i) + ki x - {N - l)d 

d 
1 

(6.7) 
X u + d N-i k 

d 
1 

u(N - i) + ki x + (N- l)d 
d 

x — u N-i d(N -i)-k 

d 
2 

i + 1 
ki — k 

d 
It follows from (6.4), (6.6) and the discussion above that if ji < j% < ··· < jt 

denote the integers j with 
Q(m,d,N) Bj 0 , 

then either we have t < d and then 
t 

1=1 
Q(m,d,N) Bjl 

t 

1=1 

ki — k 
d 

1 

d 
ki — k 

d 
1 ki — k + d ki, 

or we have t d+hJ2 : i i + 1, is i i + 2, . . . , it jd+l • i i + d and then, using 
also (6.7), 

t 

£=1 

Q(m,d,iV) Bjl Q(m,d,iV) Bj1 
Q(m,d,iV) Bjt 

t-l 

f=2 
Q(m,d,N) Bjl 

i + l 
ki — k 

d 
[t-2 

ki — k 

d 
1 

i + t-1- t - 1 
ki — k 

d 
i + d + ki — k ki + i. 

In both cases we have 

Q(m,d,N) kA 
t 

1=1 

Q(m,d,N) Bjl ki + i 

which completes the proof of the theorem. 
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7. One might like to make a guess on the values of the constants C and Coo- Sug
gested by the results above, I would risk two conjectures: 

(i) we have 
C Coo 

(this is, perhaps, not quite hopeless); 
(ii) we have 

Coo 
n 

2 
this seems to the closest finite analog of the a 4- ¡3 conjecture but probably it 
will not be easy to prove it. 

On the other hand, I have no idea whether Corollary 2 gives the best possible 
upper bound for C, i.e., we have C = 1/3; it is quite possible that (perhaps, using 
computers) one can find a set A whose study leads to an upper bound smaller than 
1/3. 

8. In the rest of this paper, I will study another extension of the classical Schnirel-
mann-Khintchin-Mann-Kneser theory of addition theorems. Namely, in this theory 
as well as in the finite case studied above, our basic problem is the following: we start 
out from a set A whose density in a certain sense is > S(> 0) and then our goal is to 
give a lower bound for the density of kA in terms of k and 6. (This lower bound is 
usually kS or, at least, ckS.) In particular, how large k is needed to be to ensure that 
the density of kA should be 1 ? (Khintchin's theorem (3.6) and my Theorem 3 above 
are typical results of this type). This problem can be generalized in the following way: 

Suppose we start out from a set B known to be a basis, like the set of the primes or 
fc-th powers. What happens if we take a subset A of B whose "density relative to £T 
is > 1/k (where k G N, k > 2), i.e., we take > 100/fc percent of the elements of B as 
A ? What additional condition is needed to ensure that A should form a basis, and 
if such a condition holds, then what upper bound can be given for the order of the 
basis A in terms of k and the order of the basis B? The difficulty is that usually one 
needs a coprimality condition concerning the set A. The most interesting problem of 
this type is when B consists of the primes, namely, then no coprimality condition is 
needed. Thus here we shall restrict ourselves to this special case. In other words, the 
problem is the following: 

Assume that k G N, k > 2 and V is an infinite set of primes with the property that 

(8.1) lim inf 
Pin) 

7T(n) 

1 

k 

Then by Schnirelman's method, it can be shown that {0} U V is an asymptotic basis 
of finite order. Let H = H(k) denote the smallest integer h such that for every set 
V of primes satisfying (8.1), {0} U V is an asymptotic basis of order < h (i.e., H is 
the smallest integer such that for every V satisfying (8.1), every large integer can be 
represented as the sum of at most H elements of V). The problem is to estimate H 
in terms of fc. It will be proved that 
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Theorem 10. — For all k GN we have 
(8.2) cifclog log(fc + 2) H(k) c2k\ 

Probably the lower bound gives the right order of magnitude of H(k); unfortu
nately, I have not been able to prove this. Moreover, we remark that a finite analog of 
Theorem 10 (a theorem covering finite sets V of primes) could be proved as well but 
it would be much more complicated; thus we restrict ourselves to the much simpler 
infinite case. 

Proof. — First we will prove the lower bound in (8.2). We will show that if c 3 is 
a small positive constant to be fixed later, then for every k G N there is a positive 
integer m such that 
(8.3) m c3k loglog(k + 2) 

and 
(8.4) <p(m) k. 
Indeed, denote the i-th prime by qt, and define t by 
(8.5) qiq2 .--qt c3fcloglog(fc + 2) çiÇ2...Çt+i. 
(If c3Moglog(fc + 2) < 2, then (8.3) and (8.4) hold with m = 2.) By the prime number 
theorem, it follows from (8.5) that 
(8.6) qt (l + o(l)) log k for k -f-00 
Define u by 

u 
c3fcloglog(fc + 2) 

qxq2 . . .qt-i 
and let 

8.7 m q1q2...qt-i(u-^l). 
Then (8.3) holds trivially. Moreover, for k —> -hoc clearly we have 
(8.8) m l + o(l))c3Moglog(fc + 2 

By Mertens' formula, it follows from (8.6), (8.7) and (8.8) that for k > kQ (where kQ 

may depend also on c 3 ) 

tp(m) m 
p\m 

1 
1 
P m 

t-i 

i=l 
1 

1 
Qi 

c 4 

m 
loggt-i 

2c 4 

m 
loglog(fc + 2) 

3C4 c3fcloglog(fc + 2) 
loglog(fc + 2) 

3C3C4& 

so that (8.4) holds if we choose c 3 = l / 3c 4 and k > kQ. Finally, if k < kQ, then 
(8.3) and (8.4) hold with m = 1 at the expense of replacing the constant c 3 computed 
above by another smaller constant (small enough in terms of kQ) and this proves the 
existence of a number m satisfying (8.3) and (8.4). 
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Now define V by 

V p : p prime, p 1 (mod m) 

Then by the prime number theorem for the arithmetic progressions of small moduli, 
it follows from (8.4) that for n -» +oo we have 

P(n) 1 + 0(1) 
ir(n) 
cp(m) 

l + o(l) 
7r(n) 

k 

which proves (8.1). Moreover, if v < m, then v({0}f)V) does not contain the positive 
multiples of m, thus if the order of the asymptotic basis {0} U V is h, then, by (8.3), 
we have 

h m c3fcloglog(& + 2) 

which proves the lower bound in (8.2). 
To prove the upper bound, we need two lemmas. 

Lemma 1. — There is an absolute constant C5 such that if V is a set of primes 
satisfying (8,1) and N is large enough depending on V, then we have 

(8.9) S{V,N) còNk~4 

where S(V,N) denotes the counting function of the set S(V) — T + V. 

Proof of Lemma 1. — Let R(n) denote the number of pairs (p, q) of primes with 

p + q n 

so that, by Brun's sieve (see, e.g., [15, p. 80]), for n G N, n > 1 we have 

(8.10) R(n) c 6 

p\n 
1 

1 
P 

n 
logn |2 

Moreover, denote the number of solutions of 

p + q = n, per, qeV 

by r(7>,n). 
By (8.1) and the prime number theorem, for sufficiently large N we have 

N 

71=1 

r{V,n) 
N 

n=l 
(p,q):p + q TV, p,q€P 

N 

71=1 
(p, q)-p,q N/2, p,qeV P([N/2][ 2 

1 + 0 ( 1 ) 
1 

k2 
n([N/2])f 

1 
5k2 

N2 

loeN 2 
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Thus by Cauchy's inequality we have 

(8.11) 

N 

n=l 
r2{V,n) 

N 

n=1 

r(V,n) 
2 

nine S(V) n<N - 1 

1 
25Ä;4 

N4 

logiV 4 
1 

S(V,N) 

On the other hand, by (8.10) we have 

AT 

n=l 

r2{V,n) 
N 

71=1 
R2(n) C7 

N2 

logiV 4 

N 

n=l p\n 

1 
1 

P 
2 

(8.12) 

c 8 

N2 

logiV 4 

iV 

n=l pin 

1 
2 

P 

C8 
AT2 

logiV 4 

iV 

n=l d|n,|/i(d)|=l 

2w(d) 

d 

c 8 

iV2 

logiV 4 
d iV,|M(rf)|=l 

2 (̂d) 

d 
iV 
d 

eg 
iV3 

logiV 4 
µ(d) 1 

2w(d) 

d2 

c 8 

AT3 

logiV ,4 
P 

1 
2 

p2 C9 
iV3 

logiV 4 ' 

(8.9) follows from (8.11) and (8.12), and this completes the proof of Lemma 1. 

Lemma 2. — If £ e N, and A is an infinite set of non-negative integers such that 
0 G A and 

d(£A) £d(A), 

then there is a set £ and a number g such that 

(8.14) SciA, 

(8.15) oeS, 

there is a number nQ such that 

(8.16) e G S, e' e mod g e' na 
imply e' G S 

(so that [n0, +oo) fi S is the union of the intersection of certain modulo g residue 
classes, including the 0 residue class, with [n0, +00)) and 

(8.17) d(S) id{A) 
l 

9 
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Proof of lemma 2. — This follows from Kneser's theorem [18] and, indeed, it is a 
special case of [16, p. 57, Theorem 19]. 

To complete the proof of the upper bound in (8.2), first we use Lemma 2 with 
t 2 

C5 
fc4 D (where c 5 is the constant in Lemma 1) and with S({0}UV) = 2({0}UV) 

in place of A. By Lemma 1 we have 

d(S({0}U7>)) lim inf 
ÌV-++00 

SOP, AT) 

N 
c5k

-4. 

Thus we have 

(8.18) £d({0}US(V)) 
2 

.c 5 

fc4 1 c*>k 4 

2 

so that (8.13) certainly holds thus, indeed, Lemma 2 can be applied. By (8.17) and 
(8.18), we have 

1 d{£) « ( S ( { 0 } U P ) ) 
l 

9 
2 

l 

9 
whence 

(8.19) 9 I. 

Now it will be proved that every large integer n can be represented in the form 

(8.20) Pi + P2 H \-pu 
TI With Pl,P2, ..-Pu € V u 31 - 2 . 

Indeed, let »' denote the smallest prime with 

(8.21) P' >9, p'£V, 

and assume that 

(8.22) n n0 + (g - l)p' 

where n0 is defined by (8.16). By (8.21) we have (pf,g) = 1, thus there is an integer 
i such that 

(8.23) n — ip' 0 mod g 

and 

(8.24) 0 i g-i 

By (8.22) and (8.24) we have 

(8.25) n — ip' n0 + {g- l)p' 9-1 p' n0. 

It follows from (8.14), (8.15), (8.16), (8.23) and (8.25) that 

n — ip' € £ IA es({o}uv) (2£)({0}UV) 

so that there are primes pi,P2, « · · ,Pv with 

(8.26) n — ip' Pi +P2 + '**+P V ? Pl,p2,...Pv € V 

and 

(8.27) v < 2L 
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(8.26) can be rewritten in the form 

Pi + P2 H h pv 4- ip n. 
This is a representation of the form (8.20) where, by (8.19), (8.24) and (8.27), the 
number of the terms on the left hand side is 

u v + i 2t + g-l M-2. 
Thus every integer n satisfying (8.22) has a representation in form (8.20). It follows 
that {0} U V is an asymptotic basis of order 

h U-2 3 2 
c5 

k4 D 2 ciofc4 

which proves the upper bound in (8.2). 
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ON FREIMAN'S THEOREMS C O N C E R N I N G THE S U M OF 
TWO FINITE SETS OF INTEGERS 

by 

John Steinig 

Abstract — Details are provided for a proof of Freiman's theorems [1] which bound 
\M -f N\ from below, where M and N are finite subsets of Z. 

1. Introduction 

If M and N are subsets of Z, their sum M + N is the set 

M + iV : x € Z x = ò + c, ò € M, c€iV 

If a set 2£ C Z is finite and non-empty, its cardinality will be denoted by \E\, and 
its largest and smallest element by max(-E) and min(£J), respectively. If A is some 
collection of integers, say a i , . . . ,a^, not all zero, their greatest common divisor will 
be denoted by (ai,...,a*.), or by gcd(A). 

Now let M and iV be finite sets of non-negative integers, such that 0 E Mf)N, say 

M bo, - - - , bm-i with 6 o - 0 and bi < bi+1 (all i) (1.1) 

and 
N Co, . . . ,c n _i with c 0 = 0 and Ci < Ci+i (all t). (1.2) 

It is easily seen that 
M + iV M iV 1 (1.3) 

(consider 6 0, · · · , &m-l, bm-l + Ci, . . . , 6m_i + Cn-i) . 
The following two theorems of Freiman's [1] give a better lower bound for |M + iV|, 

when additional conditions are imposed on M and N. 
Theorem X. Let M and N be unite sets of non-negative integers with 0 G M D N, 
as in (1.1) and (1.2). If 

Cn-l bm-l m 4- n — 3 (1.4) 
or 

Cn-l bm-l m + n - 2, (1.5) 

1991 Mathematics Subject Classification, — 11 B 13. 
Key words and phrases. — Inverse theorems, sumsets of integers. 
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then 
|M + iV bm-l + U . (1.6) 

If 
Cn-1 bm-l m + n - 3 , (1.7) 

then 
M + iV bm-1 maxfra, n) . (1.8) 

Theorem XI. Let M and N be finite sets of non-negative integers with 0 £ M D iV, 
as in (1.1) and (1.2). If 

max bm-1, Cn-1 m + n — 2 (1.9) 

and 
fei ?. · · ? fern-l ? c i , . . . , c n_i 1 (1.10) 

then 
M + iV m + n — 3 + min(ra, n) . (1.11) 

We remark here that if min(m,n) > 2, then any sets M and N which satisfy (1.4) 
or (1.5) also satisfy (1.10). In fact, either of these conditions implies that gcd(M) = 1 
or gcd(iV) = 1. For if gcd(M) > 1, then M contains neither 1, nor any pair of 
consecutive positive integers; that is, bv — bv-\ > 2 for v — 1 , . . . , m — 1. Hence, by 
summing up, 6 m _i > 2m — 2. Similarly, c n_i > 2n — 2 if gcd(iV) > 1. And these two 
lower bounds are incompatible if (1.4) or (1.5) holds. 

Interesting applications of these two theorems to the study of sum-free sets of 
positive integers are given in [2] and [3]. 

The proof of Theorem XI in [1] is presented very succinctly, but divides the argu
ment into many cases and is in fact quite long once the necessary details are provided. 
The aim of this paper is to give a detailed proof, separated into fewer cases than in 
[1]. As in [1], one proceeds by induction on m + n and distinguishes two situa
tions (called here, and there, Cases (I) and (II)), essentially according to the size of 
max(6 m _ 2 , c n _ 2 ) . 

Inequality (2.11) and Theorem 2.1 (below) are essential tools, here and in [1]. 
Case (I) requires fewer subcases here than in [1], and uses an argument which is 
applied again at the end of Case (II). Case (II) has been simplified by avoiding con
sideration of the sign of bp — cp (cf. [1], after (26)), and of m — p± — pi ([1], after 
(29)). 

For completeness, Theorem X is also proved, since it is used to prove Theorem 
XI. We follow [1] here, but the formulation of Theorem X given above differs from 
Freiman's in including (1.5) and (1.7), which in [1] are embodied in the proof of 
Theorem XL 

I am grateful to Felix Albrecht, who helped me by translating [1] into English. 
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2. Preliminaries 

We now introduce some more notation and three auxiliary results. 
Part of the proof of Theorem XI exploits a certain symmetry between M and N 

and the sets 
M* bm-l — bv m—1 v=0 (2.1) 

and 
N* Cn—1 n-1 

I/=0 
(2.2) 

which we also write as 

M* XQ i X\ ? · · · 5 with Xis bm—1 bm—l — v (2.3) 

and 
N* Vo, Vi, · · · ,yn-i with yv Cn-1 - Cn-1-v 

(2.4) 

xo 0} %m—l bm-l and x% xi+1 
for all i; y0 0, Vn-i Cn-1 and 

^ < yi+1 for all i). 
The hypotheses of Theorem XI are met by M* and iV* if they are by M and N. 

because 
i&m-l — bm-2i · · · 5 &m-l ~ &1 > &m-l 6l, . . . , 6 m - l (2.5) 

|M*| = \M\, \N*\ = \N\ and max(sm_i, 2/n-i) = max(6m_i, c„_i). And the theo
rem's conclusion holds for \M + N\ if it does for \M* + N*\, since the two are equal. 

For any r and s with 0 < r < m and 0 < s < n, let 

M'r bi £ M i r-i Ns a 6 TV : i s-1 (2.6) 

and 
M* 

r Xi e M* i r- 1 iV* 
s 

yi E N* i 5 - 1 
Theorem XI is proved by induction. Typically, one writes M = M'r U (M\M'r), 

then subtracts from each element of M\M'r its smallest element, 6 r, in order to obtain 
a set with the same cardinality, which contains 0. This set is, for 0 < r < m — 1, 

M" 0, br+i — brj. . . , bm-i — br bv — br 
m — 1 
v—r (2.7) 

and the corresponding set for N\N' is 

N" 
Tl — S 

0, Cs+1, . . . , Cn_i cs Cv - Cs 
n-1 
v=s 

(2.8) 

For any r and s with 0 < r < ra and 0 < s < n, we have 

M" m — r and n—s n — S (2.9) 

Many of the estimates involving these sets will be combined with the following 
elementary inequality: if E\ and E2 are subsets of the finite set E, then 

E E1 E/2 E1 E/2 (2.10) 
We shall use the following form of (2.10): if k < r < m — 1 and t < s < n — 1, then 

M + N M' + N' M^_k + NZ_e M'r + N's M\M'k N\N',) (2.11) 

To obtain (2.11), set .E = M + iV, E1 = M'r + N's and E2 = (M\M'k) + (N\Nfi 
in (2.10), and observe that 

A C * N" M x e z X bu + cv — (bk + ci) k u m - 1, e v n-1 
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so that if x runs through the elements of Mm_k + N„_£, then x + (bk + q ) runs 
through those of E2; consequently 

Mm-k Ν"n-l x e z X bu ~h Cv, jfc u m — 1 l v n - 1 (2.12) 
From (2.10) and (2.12) we get (2.11). 

The following property of the counting functions 
B(s) h e M 1 bi s C(s) CieN 1 Ci s (2.13) 

follows from Mann's inequality ([4], Chap. 1.4; [5]); we will apply it to choose the 
parameters in (2.11). 

Theorem 2.1. IfB(s) + C(s) > s for s = 1, . . . ,k, then {0 ,1 , . . . , k} C M + N. 
We will use the following proposition in establishing Case (II) of Theorem XI. Its 

proof is suggested by an argument of Freiman's ([1], p. 152). There is an arithmetical 
hypothesis, different from (1.10), but no condition on the size of max(M U N). The 
conclusion is stronger than (1.11). 

Proposition 2.2. IfM and N are finite subsets of Z, such that 0 e MnN, \M\ > 2, 
\N\ > 2 and gcd(iV) \ gcd(M), then 

M + N M 2 N 2 (2.14) 
Proof. — Set d := gcd(JV), and N0 := iV\{0}. Since 0 G M and d \ gcd(M), some, 
but not all elements of M are divisible by d. Let br and bs be the largest integers 
in M such that, respectively, br = 0 and bs ^ 0 (mod d). Then M, {br} + iV0 and 
(bs) -h iVo are pairwise disjoint subsets of M + iV (for instance, 6 = 6 r + c for some 
b £ M and c € iV"o would imply both 6 = 0 (mod d) and b > br + 1). This proves 
(2.14). 

Corollary 2.3. Let M and N be as in (1.1) and (1.2), and such that (1.10) holds. 
Assume also that min (m,n) > 3. Then (1.11) is true, if any one of the following 
conditions is satisfied: 

gcd(M) 1 (2.15) 
gcd M'm-1 1 (2.16) 

gcd 'M* m —1 1 (2.17) 
Proof. — Because of (1.10), gcd(M) \ gcd(iV) if gcd(M) > 1; and then \M + N\ > 
m + n - 2 + min(m,n), by (2.14). Thus (1.11) follows from (1.10) and (2.15). 

Now suppose that (2.16) is verified. We may assume that gcd(iV) = 1, for if not, 
(1.11) is true (exchange M and N in Proposition 2.2 and argue as above). Then, 
gcd(M^_ 1) \ gcd(iV) and by Proposition 2.2, 

M'm-1 + N 2 m — I n-2 m + n — 4 4- min m, n 
This implies (1.11), since 6 m _i + c n_i 0 Mm_± 4- N. 

Finally, (1.10) and (2.5) imply that (x i , . . . ? x m - i , 2/1?··· ,Vri-i) = 1· The preced
ing arguments then show that (2.17) implies (1.11) for M* and iV*, hence also for M 
and N. 
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3. Freiman's Theorems 

3.1. Proof of Theorem X. — Consider the sets 

A bo, · . · , bm-i, 6 m _i + C\ , . . . , bm-i + Cn-i 

and 
B g E Z 1 9 bm-u 9 £ M 

Since A C (M + N) and |A| + |£ | = bm^x + n, (1.6) is true if B = <f>. If B ^ <p, 
(1.6) is proved by constructing an injective mapping, say / , of B into (M -f N)\A, as 
follows. Let g € B. 

If g e N, then g £ M + N; g $ A, since i n B = ^. In this case, set f{g) = g. 
If g $ N, if c n_i < 6 m _i and c n_i < g < 6 m _i , then the n integers 

0 - c 0, # - c i , . . . , £ - c n_i (3.1) 

are in the interval [1, 6 m _i) . Since |B| = 6 m _i — (m — 1) < n — 1, some integer in 
(3.1) belongs to M, say g — cs — 6 r, whence p = 6 r + c s G M + iV. As before, g $ A. 
Here also, set /(#) = 

If g # N and # < c n _i , let i (0 < z < n — 2) be such that C{ < g < c^+i. The n — 1 
integers 

# + bm-i - cv v i + l , . . . , n - 2 g-Cv V 0,. . . , t (3.2) 

are distinct (#+&m-i —cn-2 > # = # — Co), and in [1, 6 m _i) . If 6 m - i — (m — 1) < n —2, 
as in (1.4), one of them must belong to M. If bm-i — (m — 1) = n — 1 and c n_i < 6 m _i 
as in (1.5), we may include g + 6 m _i — c n_i in (3.2) since g + 6 m _i — c n_i > # in this 
case, and reach the same conclusion. Hence g or g + bm-i is in M + N. Neither is 
in A; g $ A as before, and g -f 6 m - i 0 ^ since g + 6 m - i > &m-i and g $ N. We set 
/(#) = or /(#) = g + 6 m _i , so as to have f(g) G M + N. 

This / is injective. Indeed, f(g) = g or /(#) = # + bm-i for each g e B; and if 
g < g' < bm-i then g <g' < g + Bm-1 <9' + bm-1. 

This concludes the proof of (1.6). And (1.8) now follows on observing that if 
bm-i = Cn~i in (1.4), the roles of M and N may be exchanged. 

3.2. Proof of Theorem XI. — The proof proceeds by induction onm + n. Since 
(1.3) implies (1.11) if min(m, n) < 2, we may assume that min(ra,n) > 3. We shall 
show that (1.11) is true for M and N, if it is true for all finite sets A and B of 
non-negative integers which are such that 

A B m + n, (3.3) 

0 6 A B (3.4) 
gcd AUB 1 (3.5) 

and 
max AUB A B 2 (3.6) 

We consider separately the two cases 
(I) max bm-2j Cn-2 m + n — 4, (3.7) 
(II) max bm-2, Cn-2 m + n — 4. (3.8) 
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We first deal with 
Case (I). Clearly, (3.7) implies that M(IN ^ {0}. We proceed to make this remark 
more precise. 

Let B and C be the counting functions defined in (2.13). Because of (3.7), we have 
В m + n — 4 С т + п — 4 m + n — 4 (3.9) 

and 
В m + n — 5 •С m + n — 5 m + n — 5 . (3.10) 

It follows from Theorem 2.1 that (1.11) is true, if also 
B(s) + C(s) s for s 1, . . . ,m H- n — 6 (3.11) 

Indeed, Theorem 2.1 and (3.9) through (3.11) ensure that {0,1, . . . , m + n — 4} C 
M + N. And if bm-i > cn-i , then the n integers fem_i + cv (y = 0 , . . . ,n — 1) 
are in the set (M + iV)\{0,1,. . . , m + n — 4}, because of (1.9); if c n_i > 6m_i we can 
find m integers in this set. Hence, \M + N\ > (m + n — 3) + min(m,n) if (3.7) and 
(3.11) are true. 

It therefore suffices to consider the possibility that (3.11) fails to hold, say that 

B(s0) C(s0) So (3.12) 
for some s0, 1 < s0 < m + n — 6. Then, 

B{So + 1) C(s0 + 1) s 0 + l (3.13) 
It follows from (3.10), (3.12) and (3.13) that there is an integer г, with sQ + 2 < i < 
m _|_ n _ 5 such that 

B(s) + C(a) s for So s г - 1 (3.14) 
and В (г) 4- С (г) > г. 

Then, 
Bit -1) cu -1) г - 1 (3.15) 

and 
Б(г) + C(i) г 4-1, (3.16) 

whence г е М (IN. And г — 2 > 5 0 by definition, hence from (3.14), 
B(i - 2) CU - 2) i-2. (3.17) 

With (3.15), this implies that i ~ I e M U N. 
We now define q\ and 2̂ (1 < q1 < m — 2 and 1 < q2 < n — 2) by setting 

bqi г cq2 (3.18) 

then max(6g i_i,Cg2_i) = г — 1. 
Prom (3.16) and (3.18) we have 

i 0 1 + 0 2 - 1 (3.19) 
hence #i + q^ > 4, since i > 3. And from (3.18) and (3.19), 

hi Cqi qi + 02 - 1 . (3.20) 
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We may invoke the induction hypothesis to obtain the following estimates: 
if bqi-i = i — 1, then 

M" n , , 
m — q\-\-\. 

N" m + n- (qi + q2) 2 4- min m — qi + 1, n — q2 
(3.21) 

if Cq2-! i — 1, then 
M"M-Q1 

iyn-q2 + l m + n qi +Ç2 2 + min m — qi, n — g2 + 1 (3.22) 

and in both cases, 
Mm-q1+1 N"n-q2+1 m + n q1 + q2 min m-qun-q2 

(3.23) 

Indeed, (3.3) is verified each time because of (2.9) and since #i + #2 > 4. Condition 
(3.4) is met, since 0 G M£_rnN%_s by (2.7) and (2.8). Condition (3.5) is satisfied 
because by (3.18) we have 1 = bqi —6 g i-i G M ^ _ g i + 1 if 6 g i_i = ¿ -1 , and 1 G N'^_q2+1 

if C g 2 _ i = i — 1. To verify (3.6) we observe that by (2.7) and (1.9), 

max M" N" 
71 — S 

max bm—l bT) Cfi—i Cs 

m + n — 2 max br 5 Cs 

from which (3.6) follows in each case. 
We shall also need two consequences of Theorem X, namely 

Ki+l N'q2+1 qi +<?2 max q1, q2 
(3.24) 

and 
M'q1 + N'q2+1 2<?i + q2 - 1. (3.25) 

To obtain (3.24) we observe that because of (3.20) the sets M1

 + 1 and Nq2+1 satisfy 
(1.7) since 

К+г N'q2+1 3 qi + q2 - 1 ; 
(3.24) is (1.8) for these sets. 
For (3.25), we note that M'QI and Nq2+1 verify (1.5) since by (1.1) and (3.20), 

bqi-i cqi qi + q2 ~ 1 M'q1 N'q2+1 2 
By (1.6) then, 

M'q1 
N'q2+1 cq2 + qi 

and this is (3.25). 
We proceed to apply (3.21) through (3.25). The argument in Case (I) is now 

separated into two subcases, 
(la) bqi-i Cq2~l (3.26) 
(lb) bqi-i Cq2-l 

Case (la). In this case, 
M + N M'q1+1 N'q2+1 M''m-q1+1 N''n-q2+1" 3 (3.27) 

To prove (3.27) we use (2.11) with r = q1 + 1, 5 = q2 + 1, k = qi - 1, £ = q2 - 1. 
For simplicity of notation, set Mi = Mqi+1, Nt = Nq2+1, M2 = M\Mqi_t and 
N2 = iV\iV^2_1. We must show that |(MX + Nx) n (M 2 + JV2)| = 3 in order to get 
(3.27) from (2.11). Indeed, bqi-i + c g 2 _ i , bqi + c g 2 _ i , bqi-i + cq2 and 6 g i + c g 2 are in 
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(Mi + Nx) fl (M 2 4- JV2), and bqi + e g 2_i = 6 g i_i 4- c g 2 by (3.18) and (3.26). These are 
the only elements of (Mi 4- N±) fl (M 2 + iV2). For consider some x € Mi 4- iVi, say 
x = bu 4- c v , with ii < gi — 1 or v < g2 — 1; then x < 6 g i_i 4- c g 2 , hence x € M 2 4- iV2 

only if x = bqi-i 4- c g 2 _i. 
Return now to (3.27). On combining (3.27), (3.23) and (3.24) we have 

M + N m + n - 3 max(gi, g2) min m -qun- q2 

and this implies (1.11). This concludes the proof in Case (la). 

Case (lb). The argument when bqi-i cq2-i is typical. Then, we have 

M + iV M'q1+1 N'q2+1 
M"''m-q1 N''n-q2+1" 2 (3.28) 

and 
M + iV M'q1 

N'q2+1 M''m-q1" N''n-q2+1" (3.29) 

To verify (3.28), set r = q% + 1, s = g2 + 1, k = qi , £ = g2 — 1 in (2.11) and observe 
that if u < qi - 1 and v < g2, then bu + cv G M ^ l + 1 +iV^ 2 + 1 but 6 u + c v < 6 g i _ x + c g 2 < 
6 g i + c g 2_i = min {M\M'qi) + (iV\iVg2_i). Hence 6 9 1 + c g 2_i and 6 g i 4- c g 2 are the 
only elements of (M'QI+1 4 - N l

q 2 + 1 ) n ( ( M \ M g J 4 - ( J V \ ^ 2 - 1 ) ) . And (3.29) follows from 
(2.11) with r = gi, 5 = g2 + 1, k — gi, £ = g2 — 1, since 6 g i_i 4- cq2 < bqi + c g 2_i that 
is, max(M; + i V ; + 1 ) < min ( (M\M;) 4- (N\Nq2^)). 

From (3.28), (3.22) and (3.24), 

M + iV m + n — 4 max(gi, g2) min m — gi , n — g2 -h 1 

from which (1.11) follows if g2 > gi. 
If <?i > Q2 we use (3.29), (3.22) and (3.25) which together yield 

M + N m 4- n — 3 + gì min ra — gi , n — g2 4-1 
and (1.11) follows. 

This settles Case (lb) when 6 g i_i < c g 2 _i. If 6 g i_i > c g 2_i the argument goes 
through as above on replacing (3.22) by (3.21) and similarly interchanging the roles 
of M and N in (3.25), (3.28) and (3.29). 

This disposes of Case (I). 

Case (II). This case is determined by condition (3.8). We may also assume that 

max bm-i — b\, c n_i — C\ m 4- n — 4 (3.30) 

for otherwise, by Case (I), the conclusion of Theorem XI holds for M* and iV*, since 
bm-i -h = Xm-2 and c n_i - ci = yn-2-

Because of Corollary 2.3, it suffices to consider sets M and N such that 
gcd(M) gcd(iV) 1 (3.31) 

gcd((M*) m —1 1 (3.32) 

and 
gcd(M^_1) 1 (3.33) 

In Case (II), we may further assume that 

b1 Cl 1 (3.34) 
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and that 
bm-i — bm-2 Cn-i —Cn_2 1 (3.35) 

as we proceed to show. Consider (3.34) first. If &i ^ c\ then 0, &i, c\ are distinct 
elements of M + iV, not in M 0 + N0 (in the notation of Proposition 2.2). Hence if 
h ^ ci, 

M + iV M 0 + iV0 3 M* m—1 iV* n-1 3 (3.36) 
(6m_i + c n_i - x runs through (M*)^_ x + (-2V*)n-i> if x runs through M 0 + iV0). 

Inequality (3.36) also holds if b\ = c\ > 2. For if b\ — c\ > 2, let bu and cv be the 
smallest integers in M and iV, respectively, such that &i f 6U and &i { cv (they are 
well-defined, because of (3.31)). Then u > 2 and t> > 2, whence 

fro + Co &i + c 0 min(6w, c ) (3.37) 
And min(6w, c v) £ M 0 + N0. Indeed, say bu < cv, and suppose that bu — bk + ĉ  for 
some k > 1 and £ > 1. Then 6U > bk and c v > 6W > q, whence bk = ct = 0 (mod 6i). 
This is impossible since b% \ bu. Hence with (3.37), we have (3.36) again. 

Now the induction hypothesis applies to (M*)'rn_1 and (iV*)^_1 because of (3.30) 
and (3.32). With it, (3.36) yields (1.11). This justifies assumption (3.34). 

To justify (3.35), we use M* and iV*; note that (3.35) is equivalent to xi = yi = 1. 
By (2.5) and (3.31), gcd(M*) = gcd(iV*) = 1. By reasoning as for (3.34) we see that 

|Af* +iV* M'm-1 K-l 3 (3.38) 

except perhaps if xi = yi — 1. And because of (3.8) and (3.33), we may apply the 
induction hypothesis to Mm_x and iV4_x; (1.11) then follows from (3.38). 

Another restriction is possible in Case (II): we may assume that m = n. Indeed, 
suppose m < n. The induction hypothesis applies to M and N^_x: (3.5) is satisfied 
because of (3.31); so is (3.6) since by (1.9) and (3.35), 

max M u K_, max Pm—li Cn_i 1 m + n — 3 M K-l 2 
From the induction hypothesis we get 

M + Λ£_ι m n-1 3 min m, n — 1 m + n — 4 min (m, n) 
and (1.11) follows. If m > n we can reason in the same manner with Mm_x and N. 

Finally, since Theorem XI is symmetric in M and iV, and since we have made no 
assumptions distinguishing M from iV, we may assume that 6 m_i > c n _i. 

We again consider the function B(s) + C(s) — 5, where B and C are as in (2.13). 
It is ultimately negative, since M and N are finite. In fact, since now 6 m_i > c n_i 
and consequently 6 m_i > ra + n — 2, 

Bis) C(s) S for s bm-1 (3.39) 
On the other hand, because of (3.34), we have B(l) + C(l) > 1, and #(2) + C{2) > 2. 
Hence there is an integer j , with 2 < j < 6 m _i, such that B(s)-\-C(s) > s for 1 < s < j 
and B(j +1) + C(i +1) < j + I- Then B(j) + C(j) = j = 5 ( j +1) + C(j +1), whence 
? + 1 i M U N. And by Theorem 2.1, 

0,1,.…,j) M + iV (3.40) 
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If j > m 4- n — 4 then (1.11) is true, by the argument developed after (3.11). 
We may therefore assume that j < m 4- n — 5; then, j 4- 1 < 6 m _i by (1.9). With 
this assumption, let pi be such that & P l-i < j + 1 < bpi. By (3.34) and (3.35), 
2 < Pi < m — 2. Then, either c n_i < j ; 4- 1 < bPl or j 4- 1 < c n _i. 

If cn-i <j + KbPl then £ ( j + 1) 4- C(j 4- 1) = j yields 

j n 4- pi - 2 (3.41) 

The integers in (3.40), the b{ with pi < i < m — 1 and the 6m_i +Ck with 1 < < n — 1 
are distinct, and in M + iV. By (3.41) they are (j + l) + ( ra-pi) + ( n - l ) = ra + 2 n - 2 
in number; this implies (1.11). 

If j + 1 < c n_i, let p2 (2 < p2 < ^ — 2) be such that c P 2_i < j + 1 < c P 2 . Then 
(3.41) is replaced by 

j Pi + P2 - 2 . (3.42) 
We now distinguish three subcases, according to the sign of p\ — P2. Suppose first 

that pi = p2 = p, say. Then by arguing as for (3.27), we have 

M + N M'p+1 N'p+1 
M''m-p+1 N''n-p+1" a (3.43) 

where 

a 
4 if bp-i + cp bp + cp-i (3.44) 
3 else. (3.45) 

For the first member on the right side of (3.43), we have 

M'p+1 N'p+1 

3 p + l if bp-i + Cp bp + Cp_i (3.46) 
3p else (3.47) 

Indeed, 0,1,...,;? M'p+1 N'p+1 because of (3.40) and since 

bu ~h Cv min bp, cp j 
if u > p or v > p. And if bp + cp-i < bp-\ + cpi then the p + 2 integers fep + cv 

(^ = 0 , 1 , . . . ,p) and 6p_i + c p are distinct, in Mp+1 + iV p + 1 , and larger than j . This 
proves (3.46), since (j + 1) -fp+ 2 = 3p+ 1. (If bp + c p_i > 6p_i + c p , use the bv + c p 

with 0 < i/ < p, and 6P + c p_i.) To prove (3.47), use the same integers as for (3.46), 
except bp-i H- cp (or 6P 4- c p _i, as the case may be). 

For the second member on the right side of (3.43), we have 

M"''m-p+1 
N''n-p+1" 3 m — p 4-1 3 (3.48) 

by the induction hypothesis: condition (3.5) is verified since 6m_i — 6p_i and fem_2 — 
bp-i are consecutive integers, by (3.35); and (3.6) is met, since 

max bm-i — bp-i Cn-l Cp—1 
max bm—l-) Cn—1 max Òp_i, Cp_i 
m + n — 2 j m — p + 1 n - p + 1 2 

Now (3.43) through (3.48) imply (1.11). This settles the subcase in which p\ =P2-
Suppose now that p\ > P2 in (3.42). Because of (3.40) and since cP2 > j , 

M + iV (i + i) M CP25 P̂2 + l 5 · · · ? —1 (3.49) 
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whence with (2.12) 
M + N (i + i) M N" (3.50) 

The induction hypothesis applies to M and N„__p2, by (3.31) and (1.9), and since 
bm-i > Cn-i — cP2 and p2 > 2. With it and (3.42), (3.50) yields 

M + N Pi + P2 - 1 m + 2 (m — p 2 ) 3 3 m - 4 (Pi -P2) 

whence M + N 3 m - 3 . 
We must still treat the subcase in which 

Pi P2 (3.51) 
Arguing as for (3.50), we see that (3.40) and bPl > j imply that 

M + N (i + i) M" + N 
iy-Lm—pi • x Y 

(3.52) 

If max M" N M" N 2, that is, if 

max bm—l bp1 , Cn—\ 2m — pi — 2 (3.53) 

then by the induction hypothesis, 

\M" 
\±VJ-m— pi 

N 3(m - 1) - 2pi (3.54) 

With (3.54), (1.11) follows from (3.52), (3.42) and (3.51). 
In order to conclude the proof of Theorem XI, we must consider subcase (3.51) 

when, instead of (3.53), 

max bm—l bp1, Cn—\ 2m — pi — 3 (3.55) 

For this we use the sets M* and iV*, as defined in (2.3) and (2.4). In analogy to 
(2.13), let B* and C* denote the counting functions of the positive elements of M* 
and iV*, respectively. By (1.9) and (3.35) there is an integer j * with 2 < j * < 6m_i, 
such that B*(s) + C*(s) > s for 1 < s < j * and B*(j* + 1) + C*(j* + 1) < j * + 1. 
Then j * + 1 M* U N*, j * = J3*(j* + 1) + C*(j* + 1), and by Theorem 2.1, 

'0 ,1 , . . . , r M* +ÌV* (3.56) 

By a previous assumption, yn-i ·= c n_i < 6 m_i =: x m _ i . By the argument 
applied after (3.40), we may assume that j * + l < Xm-i- Then define pi (1 < p\ < m) 
by 

Xp'-l f + 1 xp1 
(3.57) 

If t/n-i < j * + 1 < xP*, we can prove (1.11) by reasoning as when c n_i < j + 1 < bPl 

(use (3.56), and replace (3.41) by j * = n+p\ — 2). Accordingly, let us assume that 

j * + 1 Cn-l (3.58) 

Because of (3.55), and since 6 m _i — bPl = x m _ P l _ i and c n_i = y m _ i , we have 
B*(2m-p1 - 3) + C*(2m - pi - 3) > (m - px - 1) -f (m - 1) > 2m - px - 3 . 

And 2m - px - 3 > c n_i > j * + 1 by (3.55) and (3.58). Thus, if (3.55) and (3.58) 
hold, then 

B*(s) C*(s) S for some s r + 1. 
Now 

B*(j* + 1) cru' + i) j* + 1 (3.59) 
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Hence (3.55) and (3.58) imply the existence of an integer g such that 

B*(s) •C*(s) S for f + i S 9-1 (3.60) 

and 
B* (g) C*(g) 9 

Then, 
B'(g-l) C*(g-1) ¿7-1, (3.61) 

B'ig) C*{g) 9 + 1 (3.62) 
and therefore g £ M* n N*. Furthermore, g > j* + 2 by definition, and g = j* + 2 is 
excluded by comparing (3.59) and (3.61). Thus g — 2 > j* + 1, and from (3.60), 

B*(g-2) C*(g-2) g-2 (3.63) 
with (3.61) this implies that g - 1 G M* U iV*. 

Now define ri and r2 by setting 

xr1 9 Vr2 
(3.64) 

then xri-i = 9 — 1 or y r 2 - i = # — 1· And from (3.62) and (3.64), 

9 ri + r 2 - 1+ (3.65) 

We now have a situation entirely similar to the one encountered in Case (I): com
pare (3.61) through (3.65) with (3.15) through (3.19). 

To complete the proof of (1.11) when (3.51) holds, it suffices to proceed as in Case 
(I). On replacing there M and N by M* and iV*, respectively, qi by ri (¿ = 1,2), each 
b by x and each c by i/, and remembering that |M* + N*\ = \M + N\, we dispose of 
this last subcase. 

This concludes the proof of Theorem XI. 
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ON A N A D D I T I V E PROBLEM OF ERDÖS A N D STRAUS, 2 

by 

Jean-Marc Deshouillers & Gregory A. Freiman 

Abstract. — We denote by sA A the set of integers which can be written as a sum of s 
pairwise distinct elements from A. The set A is called admissible if and only if s ^ t 
implies that sAA and tAA have no element in common. 

P. Erd6s conjectured that an admissible set included in [l,iV] has a maximal 
cardinality when A consists of consecutive integers located at the upper end of the 
interval [l,iV]. The object of this paper is to give a proof of ErdoV conjecture, for 
sufficiently large N. 

Let A be a set of positive integers having the property that each time an integer 
n can be written as a sum of distinct elements of A, the number of summands is well 
defined, in that the integer n cannot be written as a sum of distinct elements of A 
with a different number of summands. This notion has been introduced by P. Erdos 
in 1962 (cf. [2]) and called admissibility by E.G. Straus in 1966 (cf. [5]). In other 
words, if we denote by sAA the set of integers which can be written as a sum of s 
pairwise distinct elements from A then A is admissible if and only if s ^ t implies 
that sAA and tAA have no element in common. 

Erdos conjectured that an admissible subset A included in [1,N] has a cardinality 
which is maximal when A consists of consecutive integers located at the upper end of 
the interval [l,iV]. As it was computed by E.G. Straus, the set 

j v - * + i,iv-ifc + 2,...,iv; 

is admissible if and only if k : 2< N + 1 /4- 1. 
Straus himself proved that N is the right order of magnitude for the cardinality 

of a maximal admissible subset from [l,iV]. More precisely, he proved the inequality 
\A\ < (4/\/3 4- o(l))y/N. The constant involved has been slightly reduced by P. 
Erdos, J-L. Nicolas and A. Sarkozy (cf. [31) and we proved (cf. fll) the inequality 

1991 Mathematics Subject Classification. — 11 P99, 05 D05. 
Key words and phrases. — Admissible sets, arithmetic progressions. 
J.-M. D.: Cette recherche a bénéficié du soutien du CNRS (UMR 9936, Université Bordeaux 1) 

et de l'Université Victor Segalen Bordeaux 2. 
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A 2 + o(l) N The object of this paper is to give a proof of Erdos conjecture, 
at least when N is sufficiently large. 

Theorem 1. — There exists an integer NQ, effectively computable, such that for any 
integer N > NQ and any admissible subset A C [l,iV] we have 

Card A 2 JV + 1 /4 - 1. 
The proof is based on the description of the structure of large admissible sets we 

obtained previously, namely : 

Theorem 2 (J-M. Deshouillers, G.A. Freiman [1]). — Let A be an admissible set in
cluded in [1,N], such that Card A > 1.96\/N. If N is large enough, there exist 
C C A and an integer q having the following properties : 
(i) Card C < 10 5 iV 5 / 1 2 , 
(ii) for some t the set tAC contains at least 3iV 5/ 6 terms in an arithmetic progression 
modulo q, 
(Hi) A\C is included in an arithmetic progression modulo q containing at most JV7/1 2 

terms. 

Although we do not develop this point, it will be clear from the proof that our 
arguments may be used to describe the structure of maximal admissible subsets of 
[1, N], leading for example to the fact that when N has the shape n 2 or n 2 + n (and 
n sufficiently large), the Erdos - Straus example is the only maximal subset of [l,iV]. 

1. We first establish a lemma expressing the fact that if a set of integers V is part 
of a finite arithmetic progression with few missing elements, then the same is locally 
true for sAT>. 

Proposition!. — Let us consider integers r,s,t and a,q such that t > 2s — q, s > 
4r + 3 -f q and 0 < a < q. 
Let further V = {d\ < d2 < - · * < dt} be a set of t distinct integers congruent to a 
modulo q such that dt — d± = (t — 1 + r)q,and denote by m (resp. M) the smallest 
(resp. largest) element in sAV. Then, among 2r + 1 consecutive integers congruent 
to sa modulo q and laying in the interval [m, Ml, at least r + 1 belong to sAV. 

Proof — We treat the special case when a = 0, q = 1 and V is included in [1, t]. We 
notice that the general case reduces to this one by writing 
di — d\ + q(5i — 1) and considering the set {Si,...,St}. 

Let x be an integer in sAV fl [m, (m + M)/2]. We first show that the interval 
[x, x -f 3r] contains at least 2r H- 1 elements from sAV. Since x is in sAT>, we can find 
d(l) < · · · < d(s), elements in £>, the sum of which is x. 

Let us show that d(l) is less than t — s — Sr. On the one hand we have 

m + M r -h 1 … r H- 5 t+r-5+1 … t + r s 
2 

2t + 4r + 2] 

and on the other hand we have 

x d(l) 'd(l) + 1 … d(l) + s - 1 s 
2 

2d(l) + s - 1 
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The inequality x < (m + M)/2 implies that we have 

2d(l) + 5 - 1 t 4- 2r 4- 1, 

whence 
2d(l) 2 £ - s - 3r t - s - 4r - 2 

and we notice that t — s — 4r — 2 is positive, by the assumptions of Proposition 1. 
Since d(l) is less than t — s — 3r, the interval [d(l), t 4- r] contains at least s + 4r +1 

integers. We denote by %\ < * · · < i\ the indexes of those d's such that d(i^ 4- 1) — 
d(ik) > 2, with the convention that d(ii + l) = 31>t+r+l in the case when d(s) < t+r. 
The set 

z 

k=l 

d(ik) 1, d t* + 1 - 1 

contains at least 4r 4-1 integers. We now suppress from those intervals those which 
contain no element from X>, and we rewrite the remaining ones as 

d(ji) Ι , Φ ι + 1 ) I 5***5 d(h) 1, d(jh + 1) 1 

They contain at least 3r + 1 integers, among which at most r are not in V. 
Let us define u± to be the largest integer such that d(ji) + ui is in V and is less 

than d(ji + 1), and let us define U2, • • •, Uh in a similar way. We consider the integers 

x y d(ji) … d(jh) which defines y 

x + l y d(ji) 1 d(h) … d(h) 

… 

X + Ui y + d(jt) + u1 +d(j2) … -d{jh) 

… 

X + Ui … uh y + d{h) + w i d(j2) +^2 … d(jh) +uh. 
One readily deduces from this construction that the interval 

x, x min Sr. ui + · * · + Uh 

contains at most r elements which are not in sAV. 
What we have proven so far easily implies that any interval [z — r, z] with m < 

z < (M + m)/2 contains at least one element in sAV. Let us consider an interval 
[y, y + 2r] with m < y < (M 4- m)/2. By what we have just said, the interval [y — r, y] 
contains an element in sAV, let us call it x. As we have shown the interval [x, x 4- 3r] 
contains at most r integers not in s A P, so that [y,y 4- 2r] contains at most r integers 
not in 5AP, which is equivalent to say that it contains at least r 4- 1 elements from 
sAV. 

A similar argument taking into account decreasing sequences and starting with M 
shows that any interval [y — 2r,y] with {m + M)/2 < y < M contains at least r + 1 
elements from sAV. 
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2. We now prove the following result concerning the structure of a large admissible 
finite set. 

Theorem 3. — Let A = {ai < · · · < a A} be an admissible subset of [l,iV] with cardi
nality A = 2N1/2 + <9(iV 5/ 1 2), and let us define q to be the largest integer such that 
A is contained in an arithmetic progression modulo q. We have q = 0 ( iV 5 / 1 2 ) and 
there exists an integer u in [ i V 1 1 / 2 4 , 2 i V n / 2 4 ] such that 

a>A-u au+1 q '2JV1/2 0 ( i V n / 2 4 ) 

Proof. — The proof is based on the structure result we quoted in the introduction as 
Theorem 2. We keep its notation and first show that an integer q satisfying (ii) and 
(iii) is indeed the largest integer such that A is contained in an arithmetic progression 
modulo q. We let B denote A\C. 

A simple counting argument will show that A is included in the same arithmetic 
progression as B. Otherwise, let us consider an element a £ A which is not in the 
same arithmetic progression as B modulo q. The set sAA contains the disjoint sets 
s A S a n d a + ( s - l ) A £ . We thus have \sAA\ > \sAB\ + \(s- 1)AB\. It is well-known (cf. 
[4] for example) that \sAB\ > s(\B\ — s) for s < |B|, and since A C [1, N] is admissible 
we have 

N B -1 Card 
's 

sABU(a+(s - 1)A#' 
2 

S 
sAB 2 

S S 20 B s 1 
3 

B 3 O(N) 

which implies B 3 0(1) N so that we have A B C 3 o(l)) N 

a contradiction. 
We have so far proven that q divides g := gcd(a2 — a i , . . . , a A — CL\). Property (ii) 

implies that q is a multiple of g, so that we have q = g, as we wished to show. 
The second step in the proof consists in showing that for 0 < k < \B\ — q, any 

element in kAB is less than any element in (k + q)AB. Let us call J the 3iV 5/ 6 

consecutive terms of the arithmetic progression modulo q, the existence of which is 
asserted in (ii). Since B is included in an arithmetic progression modulo q with less 
that 3iV 5/ 6 terms, the sets kAB-j- J and {k + q)AB + J consists of consecutive terms of 
arithmetic progressions modulo g, and moreover, they are in the same class modulo 
q. Since A is admissible, the sets kAB 4- J (included in (fc + £)A*4) and (k + q)AB + J 
(included in + ^ + £)A-4) do not intersect. To prove that any element of kAB is 
less that any element of (fe + q)AB, it is now sufficient to notice that kAB contains an 
element (we can consider the smallest element of kAB), which is smaller than some 
element of (fe H- q)AB. 

We now prove that q = 0 ( i V 5 / 1 2 ) . The cardinality of A and Theorem 2 imply that 
\B\ = 2N1/2 + 0 ( i V 5 / 1 2 ) . We choose k so that 2fe + q is \B\ or \B\ - 1. (We notice 
that this is always possible since A contains at least JV1/2 integers from [l,iV] in an 
arithmetic progression modulo q, so that q < iV 1 / 2 ) . By the second step, the largest 
element in kAB is smaller than the largest element in (fe + q)AB. Let z be (fe + q)-th 
element from 23, in the increasing order. We have 

z N fe- 1 Q 
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and 

z + q … z + qk z z-q … z k + q-l)q 

by an easy computation, we get 

q + 2k 2 2N 2k2 

Sq 

but 2k + q B O(l) A <3(iV5/1 2) which implies 

2k2 2N(1 + 0(N-1/12) 

so that we have 
k N1/2 

0( iV 5 / 1 2 ) 

We now use again the same argument, being more precise. Let us write B = {b\ < 
… bk+q Vk+q+l … b2k+q bB We have 

bk+q+l … b2k+q b l . . . bk 
• bk+i • bk+q 

Let t be any integer in [1, k]. We have 

bk+i … bk+q b<2k+q — b\ … p2k+q-t+l bt … bk+q+1 bk 

We clearly have the inequalities 

bk+q+l — bk q + 1 q 
bk+q+2 — bk-1 + 3 q 
… 
b2k+q-t-l h+2 (7 + 1 2 k - t - 2 q 
b2k+q-t h+i b2k+q-t bt+1 

b2k+q-t+l bt b2k+q-t h+i 2q 

… 
b2k+q — h b2k+q-t bt+1 2tq. 

We thus obtain 

bk+i … bk+q t + 1 b2k+q-i h+i 

m k-t-2 
1=0 q + 1 + 21 q 

0 
<H=0 2h. 

Taking into account that bk+q 
N - kq, a dull computation leads to 

£ + 1 b2k+q-t bt+i Q N -k2 +2kt + 0 jyll/12 

when t 0(Nn/24) This in turn leads to 

b2k+q-t bt+1 m 2k 0 ( j V n / 2 4 ) 

when t 3 
2 
JVU/24 Oil) 

Let C the cardinality of C. Since A — BUC^ we have 

bt+1 H+C dA+t+C-2k-q+l 0>2k+q-C-t b2k+q~t 

we choose u = A + t + C-2k-q and recall that A-2k-q<C + l = 0 ( iV 5 / 1 2 ) , so 
that Theorem 3 is proven. 
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3. We now embark on the proof of Theorem 1 which will follow from Theorem 3 and 
Proposition 1. Let A be an admissible subset of [l,iV] with maximal cardinality. By 
[1], we know that A = 2y/N 4- <9(iV 5/ 1 2), so we can apply Theorem 3 : there exists 
integers u and r such that 

a>A-u au+1 q A-2u + r 

with u € jyll/24 2JV11/24" and r O ^11/24 
We let 

V A , a— и t A - 2u, a t-q 2 
and we shall apply Proposition 1 with s = a and s = a 4- q (one readily checks that 
the conditions of application of Proposition 1 are fulfilled). Let us further denote by 
m(s) (resp. M(s)) the smallest (resp. largest) element in sAV. 

As a first step, we show that a\ 4- «2 4- · * · + aq cannot be too small. We have 

M (a) m{a) aA-u-o+1 - au+o … aA-u - au+1 

q 2 + 4 + ·.. + 2 a-1 qa a-1 

qN + <D(qN23/24) 
If aq := a± + · · · + aq were less than M{a) — ma — (2r 4- l)g, the intersection of 
[ra(cr), M((j)] and [m(a) + a g , M(a) + a g ] would be an interval containing at least 
(2r + 1) integers in each class modulo q. By the property of aAV established in 
Proposition 1, property obviously shared by aq 4- aAV, the pigeon-hole principle 
would imply that aAV and aq 4- aAT> have an element in common, and this would 
contradict the admissibility of A. (We may notice that this implies that a\ itself is 
not too small, but we shall not use this fact). 

By using the same pigeon-hole argument, we see that the admissibility of A implies 

M(a) aA-u+1 … aA 
m(a 4- q) 4- ai … au 2 r - 1 q 

that is to say 

dA-u-a+l … 0>A-u -a A ai … au + au+1 … au+o+q 2r-l q 

whence we deduce 
a A - a>i aA-i - a2 … Q>A-u-a-\-l au+o 

au+o+1 … Q>u-\-<r-\-q 2r-l q 

We have aA-u-a+i au+o 
q A — u — cr + l — u — a Q A-2u-2a + l and, 

by the definition of cr, we can write 

A-2M-2a q + 0, 

where 6 = 0 if A — q is even and 8 = 1 if A — q is odd. We thus have 

urq - « ( ! + « + *) • «(3 + q + 9) … q(2(u + a) 1 + q + e 
au+o+1 … au+o+q 2r-l q. 
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Since u > 2 and r > 0, we have 

0 i£ + a u+o+q+9 au+o+1 … Q>u+(T+q — q 
N A - u - a - 1 7i … 

N A — u — a — q] q-q 
Nq Aq2 uq2 

aq2 <?2(g+D 
2 

q 

We now replace u + a by A-q-0 
2 

which leads to 

Q 
A-q-0 

2 

A + q + 0 

2 
Nq-q2 

A + q + 6 

2 
<?2 g - 1 

2 

If A — q is even, we get 

A2 - q2 

AN - 2Aq - 2q2 + 2q2 » 2g, 

whence 
A2 + 2Aq + q2 AN + 2g2 - 2q, 

or 
A + q 2 AN + 2g2 - 2g. 

if q = 1, this is (A + l ) 2 < 4 i V ; 
if # > 2, we have 

A-hi 2 A + q 2 A + q 2 4 + 1 2 
AN + 2o2 - 2a - A2 2Aq - q2 + A2 + 2A + 1 
AN + 2A(l - q) {q-1)2 

AN - (q — 1) 2 A - q + 1 4iV. 

If A — q is odd, we get 

A2-(l + q)2 AN - 2Aq - 2q2 - 2q + 2ç 2 - 2g. 

if q = 1, this is A2 4- 2A + 1 < AN + 1; 
if q > 2, we have 

A + l 2 ^ 2 

1 + 9 9 2q + q2 + 2 + 2 A 

4N 2A q-1 q2 - 2q + 2 

4N q-1 2A - q + 1 1 

47V+ 1. 

In all cases, we thus have A + l 2 4N + 1 which ends the proof of our main result. 
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O N T H E S T R U C T U R E O F S U M - F R E E S E T S , 2 

by 

Jean-Marc Deshouillers, Gregory A. Freiman, Vera Sös & Mikhail Temkin 

Abstract. — A finite set of positive integers is called sum-free if An (A +A) is empty, 
where A+A denotes the set of sums of pairs of non necessarily distinct elements from 
A. Improving upon a previous result by G.A. Freiman, a precise description of the 
structure of sum-free sets included in [1,M] with cardinality larger than 0AM — x 
for M > MQ(X) (where x is an arbitrary given number) is given. 

1. Introduction 

A finite set of positive integers A is called sum-free if AD (A + A) is empty, where 
A + A denotes the set of sums of pairs of elements from A. 

Such sum-free sets have been considered by Cameron and Erdos (cf. [1]), and the 
first result concerning their structure has been obtained by Freiman (cf. [3]). It is clear 
that for odd n, the sets {1, 3, 5 , . . . , n} and {^T^, .n+3..,n} are sum-free. Freiman 
showed that when A is included in [l,n] and its cardinality is at least 5n/12 + 2, 
then A is essentially a subset of the ones we just described. In an unpublished paper, 
Deshouillers, Freiman and Sos showed the following improvement. 

Theorem 1.1. — Let A be a sum-free set with minimal element m and maximal ele
ment M. Under the assumption that A = Card*4 > 0AM + 0.8, we have either 

(i) : all the elements of A are odd, 
(ii) : the minimal element of A is at least A, and we have 

Card ( .4n [ l ,M /2 ] ) < (M - 2A + 3)/4. 

1991 Mathematics Subject Classification. — 05 BIO, 11 B13. 
Key words and phrases. — Sum-free sets, additive number theory, combinatorial number theory, 

arithmetic progressions. 

J.-M. D.: Cette recherche a bénéficié du soutien du CNRS (UMR 9936, Université Bordeaux 1) 
et de l'Université Victor Segalen Bordeaux 2. 
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Examples have been produced to show that all the bounds in the theorem are 
sharp. We are not going to discuss the bound in (ii), but show what may happen if 
the condition on A is relaxed: let s be a positive integer, and consider 

Ai = {s,s + l , . . . , 2 s - 1 {4s - 1 , . . . , 5 5 - 2 

as well as 

A2 = {2 ,3 ,7 ,8 ,12,13 , . . . , 5fc - 3,5fc - 2 , . . . , 5s - 3,5s - 2 

it is easy to see that A% and A2 are sum-free, that their cardinality, 2s, is precisely 
equal to 0.4(5s — 2) + 0.8, and that they are very far from satisfying properties (i) or 
(ii) from Theorem 1.1. A further example, with A = 0AM 4- 0.4 is 

A3 = { l , 4 , 6 , 9 , . . . , 5 f c - 4 , 5 f c - 1 , . . . , 5 s - 4 , 5 s - 1} 

Our aim is to show that when A is not much less than 0.4M, then the structure of 
a sum-free set is described by Theorem 1.1, or close to one of the previous examples. 
More precisely, we have the following 

Theorem 1.2. — Let x be a positive real numbers; there exist real number MQ(X) 
and C(x) such that for every sum-free set A with largest element M > Mo(x) and 
cardinality A > 0AM — x, at least one of the following properties holds true 

(i) : all the elements of A are odd, 
(ii) : all the elements of A are congruent to 1 or 4 modulo 5, 
(iii) : all the elements of A are congruent to 2 or 3 modulo 5, 
(iv) : the smallest elements of A is at least equal to A and we have |*4fi[l, M/2] | < 

( M - 2 A + 3)/4 
(v) : A is included in M 

5 C(x) 2M 
5 

C(x) 4M 
5 

C(x)9M 

The constants C(x) and MQ(X) may be computed explicitly from our proof. How
ever, they are not good enough to lead us to the structure of A when A is about 
0.375M, where new structures appear. 

We may reduce the proof of Theorem 1.2 to the case when A contains at least one 
even element. Prom now on, we take this assumption for granted. The proof will be 
conducted according to the location of the smallest element m of A : section 4 and 5 
are devoted to show that m is around 1 or M / 5 , or that it is at least equal to A; the 
structure of A will be deduced from this location in section 6 and 7. Section 3 aims 
at filling the gap between the content of [3] and a proof of Theorem 1.1, as well as 
presenting in a simple frame some of the ideas that will be developed later on. In the 
next section, we present our notation as well as general results. 

2. Notat ion - General results 

Letters A, B, C , . . . with or without indices or other diacritical symbols denote finite 
sets of integers. Their cardinality is represented by \A\, |C | , . . . or A, £?, C , . . . with 
the same diacritical symbols. For a non empty set ¿3, we further let 

M(B) : be its maximal element, 
m(B) : be its minimal element, 
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1(B) : be its length, i.e. M(B) - m(B) + 1, 
d{B) : be the gcd of all the differences (b{ — bj) between pairs of elements of B, 
B+ : = B n [ l , + o o [ . 
The letter A is restricted to denote a non empty sum-free set of positive integers, 

and we let 
Ao = A n 2Z, Ai = A D (2Z + 1) 

A- = A n [1, M/2] , .4+ = .4 fi [M/2, Af], 

M (resp. m, resp. M 0 , . . . ) denote M(*4) (resp. m(A), resp. M(*4o) • * *). 
By x we denote a real number larger than — 1. All the constants Ci, C2, . . . depend 

on x at most, and their value may change from one section to the other. Further, 
when we say that a property holds for M sufficiently large, we understand that there 
exist MQ{X) depending on x at most, such that the considered property holds for M 
at least equal to MQ(X). 

We turn now our attention towards general results that will be used systematically, 
beginning with section 4. 

Definition 2.1. — A set A of positive integers is said to satisfy the general assumptions 
if it is a sum-free set that contains at least one even element and has cardinality 
A = 0AM - x. 

Proposition 2.1. — If A satisfies the general assumptions and M is large enough, we 
have the following properties 

(i) : A contains an odd number, 
(ii) : d(A) = I, 
(hi) : Af) (A — A) is empty, 
(iv) : M - m > 2A - 2 ==» |(*4 - A)+\ > \A - 2, 
(v) : M - m < 2A - 3 = > \{A - A)+\ > (Af - m + A - l ) / 2 , 
(vi) : for any integers u and v : \A fl [t£,u + v]\ < (v + m)/2, 
(vii) : for any integer u : \Af) \u, u + 2ml I < m 

Proof 

(i) If A contains only even numbers, then the set .4/2 = {a/2\a G A} is a sum-free 
set that is contained in [1, M/2] , and so its cardinality is at most M/4 + 1 as can be 
directly seen (cf. also [4]). But |*4/2| = Ml — 0.4M — x which is larger than M / 4 + 1 
when M is large enough. 
(ii) The number d(A) is defined in such a way that A is included in an arithmetic 
progression modulo d{A). Since A contains an even number (by our general assump
tion) as well as an odd number (by (i)), we have d(A) ^ 2. On the other hand, we 
cannot have d(A) > 3, otherwise A would have at most M / 3 + 1 elements, which 
would contradict our general assumptions. Thus, d(A) — 1. 
(hi) Let b G A fl (A — A), We can find a i ,a2,a3 in A such that b — a\ — a<z — as. 
This implies 0,2 = a>i -f « 3 , which is impossible. Thus A fl (A — A) is empty, and our 
argument shows even that last condition implies that A is sum-free, 
(iv) and (v) are straightforward application of the following result ([2] and [5]): 
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Lemma 2.1. — Let B and C be to finite sets of integers with m(B) = m(C) = 0, and 
letM(B,C) be max(M'(B),M'(C)). 
IfM(B,C) < \B\ + \C\ - 3, then we have \B + C| > M(B) + |C|. 
/ / M ( B , C ) > |B| + | C | - 2 andd(BuC) = 1, ften we have \B + C\ > M(B) + | C | - 3 + 
mm(|B|, |C|). 

(vi) The result is obvious when v < ra, so we way assume v > m. We let 5 = 
„4 fl [u, u + ?; — m] and C = A D [u -4- ra, u + t?]. Since *4 is sum-free and ra is in A, we 
have |B| + \C\ < v — m. Combined with the trivial upper bound |*4| < \B\ + ra and 
\A\ < \C\ 4- ra, this inequality leads us to (vi). 
(vii) We apply the same argument as above, leading to \B\ 4- \C\ < v — ra — ra, and 
further notice that *4n]w, u 4- 2m] is the union of B and C. 

The next results are fairly simple. 

Lemma 2.2. — Let B be a finite set of integers such that 2\B\ > 1(B). Then B — B 
contains [1,2|B| -1(B) - 1]. 

Proof — We consider a positive integer y which is not the difference of two elements 
of B. We way assume B C [1,/(B)1 and let 

Si = B n [ l , y ] 
B3 = B n [ l , / ( B ) - » ] 

,B2 = B n f o + M (B)] , 
, B 4 = B n P ( B ) - y + l,J(B)]. 

Since y is not difference of two elements of B, the sets B2 and S3 4- y are disjoint so 
that we have 

\B2\+ \B3\<l(B)-y 

This easily leads to 

2|B| = |Bi| + |B2| + |B3| + |B4| :y + l(B)-y + y = l(B) + y: 

whence the inequality y > 2\B\ — 1(B), 

Lemma 2.3. — Let B — {61 < 62 < • • • < 6B} and V = {d\ < • • • < dp} be to sets of 
integers such that we have 6j+i —bi< 1(D) for 1 < i < B — 1, and cardD > 1(D) — C. 
We have \B 4- V\ > (1(B) 4- 1(D) + 1)(1 - 3C/l(V)) 

Proof. — Let 1(D) = do ~ d\ 4-1. We show that for any integer u £ [bi 4- d\, &B 4- d\ [, 
the interval [u,u 4- l(V)] contains at most 2C integers which are not in B 4- V. We 
define the integer i such that bi 4- d\ < u < bi+\ 4- d\. Since bi+± — bi is less than 
1(D), the interval [u, u 4- 1(D)] is included in [bi 4- di, + do], which contains only 
elements in {^¿,£¿4-1} + ^? with at most 2C exception. Since [61 -h G?I,6B -1- do] can 
be covered with at most (6B 4- do + 61 4- d\ 4- l)/l(D) + 1 intervals of length Z(X>), we 
have 

|B + 2>| > 1(B) + ICD) + 1 - (ШВ) + ICD) + \)IICD) + 1)2C 
> (i(B) + i(v) + i)(i-ac/i(v)). 
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3. Contribution to the proof of Theorem 1.1 

Combined with the result of [3], the following proposition leads to a proof of The
orem 1.1. 

Proposition 3.1. — Let A be a sum-free set of positive elements containing at least 
one even and one odd numbers, such that 

0AM 4- 1 < A. 

Then m is either smaller than 0.2M 4-1 or at least equal to 0.25M 

Proof. — We assume on the contrary that we have 

0.2M 4- 1 < m < 0.25M 

This condition implies the chain of inequalities 

0<m<M-3m<(M- m)/2 2m < M - 2m < M - m < M. 

Let m — rj denote |*4n]M — m, M]\. Since the interval ]M — m, M] is shifted from 
]M — 2m, M—m] by m which belongs to A, the number of elements in ]M — 2m, M—m] 
is at most rj. 

The two intervals ]m, M — 3m], ]2m, M — 2m] being shifted by m, there are at most 
M — 4m 4- 1 elements from A in their union. 

The interval ]M - 3m, M~2m] contains (M - m) /2 - M 4- 3m integers, and so at 
most (M — m)/2 — M 4- 3m elements from A. 

Let now B = AD] M-m 2m[; then 

B + Bc(A + A)n]M m, 4m[C (A + A) C)[M - m, M). 

Since A is sum-free, there are at most i) elements of A 4- A in ]M — m, M], which 
implies that \B 4- B\ is at most rj and so \B\ is at most (rj 4- l ) / 2 . 

Putting all those upper bounds together, we obtain 

A < m - rj + т] 4- M - 4m + 1 + (M - m)/2 - M + 3m + (rj + l)/2 
< ( M - m + 3 + 7?)/2. 

Our last step is to obtain an upper bound for n. By Proposition 2.1, we have 

(A - AU I > (A - 1 4- M - m) 12 

and since A is sum-free, the intersection Af) (A — A)+ is empty. This implies that 
we have 

\A\ 4- \(A - A)+\ > (3A - 1 + M - m)/2; 

the total number of elements in [1, M] which are not in A U (A — A)+ is thus less than 

M - (3A - 1 4- M - m) /2 = (M 4- m 4-1 - 3A)/2, 

and this is also an upper bound for |(-4U (A - A)+)ri\M - m, M]\. Since ]M - m, M] 
contains no elements from (A — .4)+, we have 7? < (M + m + 1 — 3^4)/2, which implies 
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A < (M -m + 3)/2 + (M + m + l-3A)/4A 
< ( M - m + 3 ) / 2 + ( M + m + l - 1 . 2 M - 3 ) / 4 
< 0.45M - 0.25m + 1 
< 0.4M + 0.75 < A, 

a contradiction which proves the proposition. 

4. On the location of ra in fl, M/51 

Proposition 4.1. — Under our general assumptions, there exists C such that ra ^ 
[CjM/5 — C], when M is large enough. 

Proof. — We assume that ra G [C, M/5 — C], and that (7 has been chosen sufficiently 
large. We have 

M - ra > 4M /5 4- C > 2(2M/5 - a?) - 2 = 2A - 2, 
so that properties (hi) and (iv) from Proposition 2.1 imply 

\AU(A- A)+\ = \A\ + |(^l - A)+\ > 5A/2 -2 = M-C2 
Since ]M — m, M] fl (̂ 4 — ^l)+ is empty, we have 
(4.1) \}M - ra, M] fl A\ > m - C2, 

which in turn implies 
(4.2) [ l , m [ n ( . 4 - . 4 ) + | >m-C2. 

On the other hand, we have 
M > \AU{A- A+)\ \A\ + \{A -A)+\ 2M/5-x + (A-A)+\ 

so that we get 
(4.3) ra-C2 < | ( *4 - . 4 )+ | < 3M/5 + a:. 
which will be used later on. 

We define the integer k and the sequence a(1)< • • • < < a(k) M — 2m to be the 
set of elements a in A such that la — ra, af contains no element from A. We further 
let a(fc+1) = M - 2ra 4-1, and 

4 « = [ a « , a ^ + 1 H a 4 , 

and = M(A{i)) - ra(^tW) 4- 1, for i = 1 , . . . , k. We use (vi) (resp. (vii)) in 
Proposition 2.1 to get an upper bound for A^ (resp. ]M — 2ra, M] fl A), which leads 
us to 

(4.4) 2M/5 -x = A 
k 

2=1 
[l{i) + m ) / 2 + m. 

Let us consider the set £> = ] M — ra, M] fl ^4. We already noticed in (4.1) that its 
cardinality is at least m — Co, and Lemma 2.3 leads us to 

(4.5) V - A(i> 1 
4C2 
m 

(l(i)+ m - 1 fori = 1 , . . . , k. 
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We easily notice that the sets (V — A^) are pairwise disjoint, and disjoint from 
(A — A)+ fl [ l ,m[. Relation (4.3) in conjunction with (4.2) and (4.5) implies 

m — C2 
k 

i=1 

1 
4C2 
m 

f/W + m - 1) < 3M/5 4- x, 

and the use of (4.4) leads to 

m - C>2 1 
4C2 

m 
2 A - 2m k < 3M/5 + x. 

Since the aW are separated by intervals of length m, we have km < M, and we are 
led to a quadratic inequality 

m2 - m ( M / 5 - C4) 4- C5M > 0 

which cannot be fulfilled if m G [C, M / 5 — C], for C sufficiently large. 

5. On the location of m in [M/5,A] 

Proposition 5.1. — Under our general assumptions, there exists C such that m $ 
[M/5 + C, A[, when M is large enough. 

We first assume that m G]M/3,^4[; in this case, we have A C]M — 2m, M], and 
relation (vii) in Proposition (2.1) implies A = |.4n]M — 2m, M]\ < m, a contradiction. 

We now assume that m G [M/5 H- C, M/3], for some sufficiently large C. We then 
have M — m < 4M/5 — C < 24. — 3, so that relations (hi) and (v) in Proposition (2.1) 
imply 

\AU(A-A) (3M -m + A - l ) / 2 = M - (5m - M) /10 - Ci . 

In the same way as we obtained (4.1), we get 

(5.1) IÌM - m ,Ml (1 A\ > m - (5m - M)/10 - Ci. 

This relation will be used to get an upper bound for the cardinality ofB — An] (M — 
m) /2 ,M/2] ; we have B + B C]M - m , M ] , so that (4.1) implies \B + B\ < (5m -
M)/10 4- Ci, and so we get 

IBI < ( 5 m - M ) / 2 0 + C2. 

When we combine this inequality with an easy consequence of relation (vii) in Propo
sition 2.1, we get 

(5.2) U f i 
M - n 

2 

M 
2 

U 1 M - 2 M , MY < ( 2 5 m - M ) / 2 0 + C2. 

We consider finally two subcases, according as m is larger than M/4 or smaller. If 
m G]M/4, M/3], we have the chain of inequalities 

m < (M - m) /2 < M - 2m < M/2 < M - m < M. 

so that (4.2) and a trivial upper bound [m, (M — m)/2] leads to 

A < 
< 

(25m - M) /20 + Co 4- (M - m) 12 - m -h 1 
9M 
20 

m 
4 

C3 22 M 
60 c3, 
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which is less than 24M — x = A, when M is large enough. 
We are thus left to consider the case when ra G]M/5 4- C, M/4] , in which we have 

the chain of inequalities 

m < (M - m)/2 < M/2 < M — 2m < M. 

We easily see that the interval [m 4- ra, (M — m) /2 -h ra] covers the interval [M/2, M — 
2ra], so that the number of elements in A that lie in [ra, (M — ra)/2] U [M/2, M — 2ra] 
is at most the number of integers that lie in [ra, (M — ra)/2]. This means that we get 
as above 

A ¿* 9M m i ГУ 
S "2сГ ~ Т + ° з 
< (2М)/5 + С3 - С/4 

which is again a contradiction, when C is large enough. 

6. The structure of A when its minimal value is close to M / 5 

We prove in this section that if the minimal element ra of A is close to M / 5 , in 
the sense that there exists C such that M / 5 — C < ra < M / 5 4- C, and A satisfy our 
general assumptions, then we are in the case (v) of Theorem 1.2. 

Our first step is to show that there exist C\ and d such hat all elements from 
A, with at most C2 exception, lie in [M/5 - Ci , 2M/5 4- d] U [4M/5 - CU M]. The 
argument is very similar to that of the previous section, so we just present a sketch 
of it. We have the chain of inequalities 

ra < (M - ra)/2 < M/2 < M - 2m < M - m < M, 

and ra is about M / 5 , (M - ra)/2 is about 2M/5 , M - 2ra is about 3M/5 and M - ra 
is about 4 M / 5 . 

We may apply (iv) or (v) from Proposition 2.1, getting \(A — A)+\ > 3M/5 — C3. 
This implies that |^4fi]M - r a , M ] | > ra - C4 so that |.4fl]M - 2ra, M - ra]| < C4, as 
well as |^4fl](M — ra)/2,M/2]| < C5 by using respectively the translation by ra and 
the doubling argument. It remains to take care of ]M/2, M — 2ra]. Summing up what 
we have up to now, we know that at least M / 5 — C$ elements of A are located in 
[ra, M — 3ra]U]M/2, M — 2ra]. By translating by ra, we know that there are at most 
M/10 + C7 elements of A in ]4f - ra, M - 3ra]U]M/2, M - 2m], so that there remain 
at least M/10 + C8 elements of A in [ra, M/2 - ra]. This implies that A + A almost 
covers [2m, M — 2m], so that it almost covers ] M / 2 , M — 2m], whence there are at 
most CQ elements of A in ]M/2, M — 2ra], which ends the proof of the first step. 

In the second and last step, we show that there is no element of A in / =]2M/5 + 
2C2 + 2 - 2Ci, 4M/5 + C\ - 2C2 - 2[. Let indeed y be an element in this set. Since 
we have M / 5 — Ci+y<M — 2C2 + 2, and 2M/5 + d + y > 4M/5 - d + 2C2 + 2 
the two intervals [M/5 - d + y, 2M/5 + d + y] and [4M/5 — C\, M] have at least 
2C2 + 1 integers in common. Thanks to the first step and the pigeon-hole principle, 
we know that there exist a\ and a2 in A such that a\ 4- y — a*i, thus y cannot belong 
to A, and A is concentrated in [ra, 2M/5 4- C10] U [4M/5 — C10, M] as we wished to 
show. 
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7. Some properties of A when m is small 

We recall our notation, namely 

AQ = A n 2Z, Ai = A n (2Z + 1), 

,4- = ,4 n [1, M/21, A+ = A fl [M/2, Ml, 
m = m~ = min(^4), M = M+ = max(v4), mo = min(*4o) 

In his section we prove the following:. 

Proposition 7.1. — Let A satisfy our general assumptions, and be such that m < 
M/20. There exists C such that, when M is larae enouah. we have 

(7-1) \\A-\-M/5\<C, 

(7.2) mo < C. 

The proof will be led in three steps, where we prove that (7.1) holds, then that we 
have the following inequality 

(7.3) \M > M / 5 - C , 

and finally that (7.2) holds. 

7 .1 . The set A is balanced between small and large elements . — We first 
show that A " cannot be too large. Indeed, if |*4~| > M / 5 + 2, we may apply Theorem 
1.1, and, since m{A~) — m < M/20, the set A ~ consists only of odd elements, so 
that mo > M/2 . There are at most mo/4 elements from A in [l,mo[, since they are 
odd, m0 is in A , and at most (M —m0 + M/20)/2 elements from A in ]m0, M], so that 
2M/5-X < ra0/4 + ( M - r a 0 + M/20)/2 + l, which implies M/2 < m0 < 9M/20 + Ci, 
a contradiction. 

We now show that the two simultaneous relations |*4+| > M / 5 + C2 and d(A+) > 1 
lead to a contradiction. We first notice that A+ contains at least M / 5 elements, so 
that d(A+) > 1 is equivalent to d(A+) — 2, i.e. A+ consists only of odd integers, 
or of even integers. In either case, Lemma 2.2 implies that (A+ — A+) contains all 
the non-negative even integers at most equal to 4|*4+| — M/2 . So we have mo > 
1*4+1 - M/2 > 3M/10. 

Assume that we have |*4+| > M/5 + C2 and that A+ consists only of even numbers. 
We have already shown that all the elements in A D [ l ,M/4] are odd, so there are 
at most M / 8 of them. Thus, ^4n]M/4, M/2] has at least \A~\ - M / 8 elements. By 
doubling them, we obtain \ A ~ \—M/8 even numbers in ]M/2, M]\A. The total number 
of even number in ]M/2, M], which is about M/4 , must be at least \ A+ \ + \ A ~ \ - M/8 , 
leading to a contradiction with \ A \ = |^+| + \ A ~ \ = 2M/5 — x. 

We now assume that |^4+| > M / 5 + C2 and that A+ consists of odd numbers, so 
that M0 < M/2. Let u be the number of odd elements less that M0 which are in 
A . There are at most M0/2 - u odd elements in *4fl]M0,2M0], since (2a + 1) + M0 
is odd and cannot be in A when 2a + 1 is in A . In A , there are thus at most 
Mo/2 4- (M — 2Mo)/2 odd elements, and the number of even elements in A is at least 
2M/5 - x - (M - MQ)/2. The largest even element in A is at least m0 + 2(2M/5 -
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x — (M — M0)/2) = m0 + M0 - M / 5 - 2x, which implies m0 < M / 5 + 2x, which 
contradicts the inequality mo > 3M/10 we already obtained. 

It remains to show that when d(A+) = 1, the set A+ cannot be too large. We apply 
Lemma 2.1 with B = A+ - {m+} and C = {M+} - A+. By Proposition 2.1, we have 
m < C3, and this implies that M(B) is larger than 2|B| — C4. Either case of Lemma 
2.1 leads to |B + C| > 3 |*4+|-C5, so that we have | (*4+- .4+)+ | > 3 | .4+ | /2 -C6. But 
the set (A+ — A+)+ is included in [1, M/2] and disjoint from A~, so that we have 
3\A+\/2 + \A~\ < M/2 + C7, or M+ | /2 < M / 2 + C7 - M| = M / 2 + C7 - 2M/5 + a?, 
which implies |.4+| < M / 5 -h C8, or \A~\ > M / 5 - C9. 

We have so far proved that (7.1) holds. 

7.2. The set A contains many even numbers. — We assume in this subsection 
that (7.3) does not hold, so that we have |*4i| > |.4o|. 

Since mo in the least even element in Ay we have |v4fl[l,mo]| < mo/4, and because 
m < C2, we have \A fl [m0, M] | < (M - m0)/2 + C3. We thus have 

2M/5 - x = \A\ < mo/4 + (M - m0) 2 -f C3, whence m0 < 2M/5 + C4. 

We may apply he same reasoning to A~, since we now know that mo < M/2 ; using 
(7.1), we get m0 < M / 5 + C5. 

By repeating the argument used in previous section, as well as the previous one, 
we may show, that, up to a constant, \A fl [1, M/4] | is about M/10, so that mo < 
M/10 + CQ. We may reduce further the bound on m0 by the same type of idea, but 
this would lead us only to mo < sM for any positive e which is not as strong an 
inequality as the one we need. 

We wish to apply Lemma 2.1 with 

B = {(a0 - m0)/2, a0 G A0} and C {{M1-a1)/2,a1eA1}. 
We have IBI = U0 | , ICI = U i l and 

max(M(B),M(C)) ( M - M / 1 0 - C 6 ) / 2 U | - 3 = |B| + | C | - 3 . 

Since BuC contains more than M/6 elements and is included in [0,M/2[, we have 
d(B U C) = 1 or 2. We first show that when d(B U C) = 2 then A0 is large. 

When d(B U C) = 2, even eleriients of A are either all congruent to 0 modulo 4 or 
all congruent to 2 modulo 4, and in the same way, odd elements of A are either all 
congruent to 1 modulo 4, or all congruent to 3 modulo 4. 

If mo is congruent to 0 modulo 4, then the set {mo} + *4i and A± are disjoint, in the 
same class modulo 4 and included in [1, M + M/10+C6], so that 2|^li| < H M / 4 0 + C 6 , 
in contradiction to \A±\ > M / 5 — C\. 

If all the even elements are congruent to 2 modulo 4, we are going to use the 
fact that the sum of two elements in A\ is also congruent to 2 modulo 4. We first 
notice that the number of elements in A\ is at most M/4 , so that |*4o| is least 
2M/5 - x - M/4 = 3M/20 - x, which implies that M0 is at least equal to 3M/5 - x. 
The number of odd elements is alt most M0/8 4- (M — Mo)/4 + 1, which is less than 
7M/40 + C, contradicting our assumption that |^4i| > 8M/40 - C\. 
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We now know that d(B U C) = 1, and Lemma 2.1 leads to 

I Mo - {m0}) + ({/1} - Ai)\ > \Ai\ + 2\A0\ - 3. 

Since (Ao- Ai)+DAi = 0 , we get \Ai\ + |(-40 + .Ai)+| < M/2 , and in the same way 
Mil + I M i + A ) + | < M/2 . This leads t< 

M > 2Mi| + Mi + A ) | > 3Mi | + 2Mo| 3 > Mil + 4 M / 5 - 2 x - 3 

which implies that Mil < M/5 + 2x -h 3, whence (7.3) holds, 

7 .3 , The set A contains a small even number. — Since we have (7.3), we may 
apply to the set {ao/2,ao G Ao} the result we have obtained so far. One of the 
following cases holds 

(i) : A C 4 Z + 2, 
(ii) : m0 > 2M/5 + Ci, 
(hi) : Ao C [M/5 - Cu2M/5 + Ci] U [4M/5 - Cu M], 
(iv) : m0 < C, 

so that we just have to rule out the first three cases in order to complete the proof of 
Proposition 7.1. 

Case (i) cannot hold because the sets {2ai,ai G *4i} and *4o are disjoint, included 
in [1,M] D (4Z + 2), and the cardinality of their union is A which is larger than 
M/4 + 1. 

Cases (ii) and (iii) cannot hold, because the argument we used at the beginning of 
(7.2) implies that mo is less than M/10, up to a constant. 

8. End of the proof of Theorem 1.2 

Let A be a sum-free set satisfying our general assumptions. We know that m G 
[1,C] U [M/5 - C , M / 5 -h C] U M,M] . We have already shown that m e [M/5 -
C, M / 5 + C] leads to case (v) in Theorem 1.2. The argument given in [3] for the 
second case in Theorem 1.1 implies that m G [A, M] leads to case (iv). It remains 
to show that m < C leads to case (ii) or (iii). We shall make use of Proposition 7.1 
and retain in the sequel the notation C for constant implied in (7.1) and (7.2). We 
let Ci = 38C + 60. 

Our first task is to show that we can find a± and a2 in A fl [M/2 — Ci, M/2] such 
that a2 = ai + mo/2. We assume that it is not the case; by this assumption and the 
fact that mo is in *4, any interval of length 3mo/2 in [M/2 — Ci, M/2] contains at most 
m0/2 elements from A. We thus have \Af)[M/2 - Ci, M/2] | < ( d / 3 ) + (3m0/2); this 
implies that Mfl[l , M/2 —Ci]| > 2 ( M / 2 - C i ) / 5 - f 4 , and we now have a contradiction 
with Theorem 1.1 applied to Af) [1, M/2 — C\] and the fact that this set contains mo, 
a small even integer. So there exist a\ and a2 with the prescribed properties. 

Let us now define, for i = 1 and 2, 

UT; 
t-\-di when t<M/2 
t - ai when t > M/2 
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There exists C2 such that \\fi(B)n[l, Af ] | - |S | | < C2 for any B in [1,M], audi e {1,2}. 
Since we clearly have 

(i) : / x ( ^ ) n ^ = / a ( ^ ) n ^ = 0 , 
(ii) : we must have 
(iii) : fi(A)Unf2(A)>M/5-C3. 

We can find C4 so that the relations 

ai € [C*4, M/2 - C4] U [M/2 + C4,M- C4], 
/ i ( a i ) = / 2 ( 4 ) , 

imply \a'x — a'2\ = mo/2. Moreover, for any number £, at most one of t -h m0/2 and 
t — mo/2 belongs to A. All that imply that, with at most C5 exceptions, all elements 
in A can be organized in pairs with common difference m0/2. 

The largest such pair is larger than M — CQ, for a suitable CQ . Otherwise, there 
are no more than C5 elements in A fl [M — CQ,M], and so there are more than 
2M/5 - x - C5, i.e. more than 2(M - C6)/5 + 2 elements in ytfl [1, M - C6], which is 
in contradiction with Theorem 1.1 and the fact that A contains a small even element. 
Let us call (M — CV, M — C7 + mo/2) the largest pair of elements in A. 

To each pair (a, a -f mo/2), we associate a triple (M — C7 — a — m0/2, M — C7 — 
a, M — C7 — a + mo/2) of integers that do not belong to A. Since two pairs have 
no element in common and difference between first and second elements of different 
pairs is not equal to m, two such triples have no element in common neither. The 
set [1, M]\A contains 3M/5 elements, up to a constant, and there are, again up to a 
constant, M / 5 triples, so up a constant number of exceptions, [1, M]\A is a union of 
triples. 

Let us consider any arithmetic progression modulo mo/2. Up to a constant number 
of exceptions, the progression is covered by (M/5)/(mo/2) structures of five consec
utive points, the first two belonging to A, and the last three not belonging to A. We 
consider the set B of the first element in each pentuple. If 61 < b2 are two elements in 
B, then b2 — bi is the midpoint of a triple of elements that do not belong to A. Since 
there are M / 5 — Cg such triples, we have \(B — B)+\ = \B\ 4- C9, the reasoning as in 
[5] imply that B is located in an arithmetic progression of length at most \B\ + Cio-
Due to the cardinality of 0 , this progression is modulo 5mo/2. 

We consider the set S of the residues modulo 5mo/2 of the first and second elements 
of the pentuples associated to each arithmetic progression modulo mo/2. The set S 
consist of mo elements. Since A is sum-free and is equal, up to a constant number of 
terms, to the numbers in [1,M] which are above the elements of <S, the set S must 
be sum-free. We are thus left with the characterization of sum-free subsets of Z/5LZ 
which satisfy the following property: each subset {u, u + L,u -h 2L, u + 3L, u + 4L} 
contains exactly two elements, and those two elements are consecutive; by this we 
mean that those two elements are {u + iL, u + jL} where (i,j) is one of the pair 
(0,1),(1,2),(2,3),(3,4),(4,0), and we shall call the first of those two elements the one 
that corresponds to the first element in the associated pair (i, j). We call <Si the set 
of the first elements, and S2 the set of the second ones. We have |<Si| = | | = L. Let 
s and s' be elements in S\\ then s + L and s' + L are in S2, so that s + s', s + s; + 
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L, s + sf + 2L are not in S which is sum-free; this implies that s + sr — 2L is in <Si. 
This implies that \S± S1+ = |<Si|, and Kneser's theorem (cf. [4]) implies that Si is a 
coset associated to a subgroup T-L of Z/5LZ with cardinality L. This implies that S\, 
as well as <S2, is the image in Z/5LZ of an arithmetic progression modulo 5. 

We have thus proved that, up to a constant number of terms, A is the union of two 
arithmetic progressions modulo 5. Since A is sum-free it is easily seen that those two 
arithmetic progression are either 5Z + 1 and 5Z + 4, or 5Z + 2 and 5Z + 3, and that A 
is indeed included in the two arithmetic progressions, so that either (ii) or (iii) holds 
in Theorem 1.2. 

References 

[1] Cameron P.J. and Erdos P., On the Number of Sets of Integers With Various Properties, 
Proceeding of the first Conference of the CNTA, R.Molin ed., Alberta, April 17-27, 1988. 

[2] Preiman G. A., Inverse problems in additive number theory, VI. On addition of fi
nite sets, III. The method of trigonometric sums (Russian), Izvestiya Vuzov, Mathem., 
3(28), 1962, 151-157. 

[3] Preiman G.A., On the structure and the number of sum-free sets, Astérisque, 209, 1992, 
195-201. 

[4] Mann H. B., Addition Theorems, Wiley, New-York, 1965, xi+114 p. 
[5] Steinig J., On Freiman's theorems concerning the sum of finite sets of integers, this 

volume. 

J.-M. DESHOUILLERS, Mathématiques Stochastiques, Université Victor Segalen Bordeaux 2, 33076 
Bordeaux, France • E-mail : j-m.deshouillers@u-bordeaux2.fr 

G.A. FREIMAN, School of Mathematical Science, Raymond and Beverly Sackler, Faculty of Exact 
Sciences, Tel Aviv University, 69978 Tel Aviv, Israel • E-mail : grisha@math.tau.ac.il 

V. Sós, Math. Institute,, Hungarian Academy of Sciences,, Realtanoda u. 13-15,, Budapest, Hungary 
E-mail : sos@math-inst.hu 

M. TEMKIN, School of Mathematical Science, Raymond and Beverly Sackler, Faculty of Exact 
Sciences, Tel Aviv University, 69978 Tel Aviv, Israel 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



Astérisque

GREGORY A. FREIMAN

LEWIS LOW

JANE PITMAN
Sumsets with distinct summands and the Erdős-
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SUMSETS WITH D I S T I N C T S U M M A N D S AND T H E 
E R D Ô S - H E I L B R O N N C O N J E C T U R E ON S U M S O F 

R E S I D U E S 

by 

Gregory A . Preiman, Lewis Low & Jane Pitman 

Abstract — Let 5 be a set of integers or of residue classes modulo a prime p, with 
cardinality |5| = k, and let T be the set of all sums of two distinct elements of S. 
For the integer case, it is shown that if |T| is less than approximately 2.5A; then S 
is contained in an arithmetic progression with relatively small cardinality. For the 
residue class case a result of this type is derived provided that k > 60 and p > 50k. 
As an application, it is shown that \T\ > 2k — 3 under these conditions. Earlier results 
of Freiman play an essential role in the proofs. 

1. Introduction 

1.1. Let Z be the set of all integers and let Fp be the finite field of residue classes 
modulo p, where p is a prime number. If A is a subset of Z or Fp (written A C Z or 
A C Fp) we denote the cardinality of A by \A\. For a finite subset A of Z or Fp we 
shall consider 2A, the set of all sums of two elements of A, and also 2AA, the set of 
all sums of two distinct elements of A, that is, 

2A = fa + b : a, b G A}, 
2AA = {a + b : a,b e A, a ^ 6} 

1.2. Sums of elements from a set of integers. — First we consider the sumset 
2A for Ac Z. We write 

A — { a 0 , a i , . . . ,Ofe_i}, k=\A\.. 

where 
a0 < ai < • • • < ak-i . 

Since the k — 1 sums a* + a^+i and the sums + = 2a« are all distinct we have 

\2A\ >2k-l. (1) 

1991 Mathematics Subject Classification. — 11 B75, 11 B13. 
Key words and phrases. — sumset, set addition, sums of residues. 
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and it is easily seen that equality holds if and only if A is an arithmetic progression 
(that is, the differences a*+i — a{ are all equal). Freiman [6, page 11] has proved the 
following more precise result (which will be used in Section 2 below). 

Theorem A (Freiman). — Let D C Z. If \2D\ < 2\D\ - 1 + d , where d < \D\ - 3, 
then D C L, where L is an arithmetic progression such that 

\L\<\D\+d 

(so that D is obtained by deleting at most C\ terms from the arithmetic progression 
L). 

1.3. Sums of elements from a subset of Fp. — Next we look at 2A for A C Fp 
such that \A\ = k. By analogy with (1) we have the following special case of the 
well-known Cauchy-Davenport theorem: 

12.41 > min(p,2fc- 1). (2) 
More detailed results have been obtained by various authors and Freiman [6, p.46] 
has used the above theorem on 2D for D C Z to obtain the following result in the 
same vein for A C Fp. 

Theorem B (Freiman). — Let A C Fp such that 

\A\ = k< p/35. 

Suppose that \2A\ = 2k — 1 + b, b < OAk — 2. Then A C L7 where L is an arithmetic 
progression in Fp such that \L\ = k + 6. 

1.4. Sums with distinct summands and the Erdôs-Heilbronn conjecture 

For A C Z as in 1.2 above, the k — 1 sums ai + a^+i and the k — 2 sums ai + ai+2 
are all distinct and belong to 2AA. Thus 

\2AA\ >2k-3, (3) 

and it can be checked that for k > 5 equality holds if and only if A is an arithmetic 
progression. 

By analogy with the Cauchy-Davenport theorem (2), Erdos and Heilbronn conjec
tured in the 1960?s (see Erdos and Graham [5]) that for A C Fp such that \A\ = fcwe 
must have 

\2AA\ > m in (p ,2&-3 ) . (4) 
Although there is a short elementary proof of (2) (see, for example, Davenport [3]), the 
corresponding result for distinct summands seems to be more difficult. As discussed 
further below, the full conjecture (4) has been proved since 1993. The main published 
contribution prior to 1993 seems to be that of Mansfield [7], who proved the following 
theorem. 

Theorem (Mansfield). — Let A C Fp such that \A\ — k. Then the Erdôs-Heilbronn 
conjecture (A) is true if 

either k < 11 or 2k~l < p. 
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Our aim in this paper was to develop analogues for 2AA of Freiman's results on 
2D, both for D C Z and for A C Fp, which would be strong enough for the purposes 
of proving (4) for a wider range, as well as being of independent interest. 

1.5. Results obtained. — In Section 2 we use simple combinatorial arguments 
together with Freiman's theorem on 2D for D C Z to prove the following theorem. 

Theorem 1. — Let D be a set of k integers for which 

\2AD\ < 2Jfe-3 + C, 

where 

0 < C < 1 
2 

( * - 5 ) 

Then D is contained in an arithmetic progression L such that 

\L\ <k + 2C + 2. 

In Section 3 we use Theorem 1 and arguments based on trigonometric sums to 
prove the main result of the paper, which is as follows. 

Theorem 2. — Let A C Fp such that 

\A\ = k< P 
50 ' 

k > 60. 

Suppose that 
\2AA\ <2k-3 + C, 

where C < 0.06&. Then A C L, where L is an arithmetic progression in Fp such that 

\L\ <k + 2C + 2. 

As a corollary, we will show that for A C Fp such that |.4| = k the Erdos-Heilbronn 
coniecture (4) is true if 

k < P 
50 ' 

k > 60. (5) 

Pybus [10] told us that he had obtained a proof of a version of the Erdos-Heilbronn 
conjecture based on different ideas. More recent work by others, including proofs of 
the full conjecture, will be discussed in Section 4 at the end of the paper. 

1.6. Isomorphisms. — We note that the sumsets 2 A and 2AA can be considered 
for any set A with addition. If A and B are two sets, each with an addition, and 
4>: A ~» B is a bijection, we call </> an isomorphism if and only if 

<t>{a) + cf>(b) = (f)(c) + <j>(d) <^a + 6 = c + d. 

We call A and B as above isomorphic if such an isomorphism exists, in which case we 
have 

|2i4| = \2B\ and \2AA\ = \2AB\. 

We shall use the fact that affine transformations of Z or Fp are isomorphisms. 
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2. Sums of distinct elements from a set of integers 

2.1. In this section we consider a set of integers A such that \A\ = k and use notation 
as at the beginning of section 1.2, together with some further vocabulary as follows. 
We note that 2AA is isomorphic to the set 

I (a» + aj) : 1 < i < j < n} 

and it is helpful to think geometrically in terms of the points a* and the mid-points 
of pairs di, aj (i < j). We shall say that a; is representable if and only if a* coincides 
with one of the mid-points, that is 

2oi E 2AA. 

We shall call a sum ai 4- a,i+s with s > 1 an s-step sum, and we recall that the 
1-step and 2-step sums are all distinct. For s > 1, an s-step sum will be called new 
if and only if it is not equal to any j-step sum with 1 < j < s. All 1-step and 2-step 
sums are new, but for s > 3 an s-step sum is not necessarily new. We shall use the 
notations 

k1=k1(A) = total number of new s-step sums with s > 3 
k2 = k2(A) = number of a7'S which are representable. 

If an s-step sum ai+ai+s is not new, then for some j , k such that i < j < j+k < i+s 
we must have 

Q>i + Q>i+s — CLj H~ 
and hence 

0 < aj — ai = ai+s — aj+k . 
We therefore consider the associated difference set 

V{ai,ai+S) = (&г+1 "~ aiiai+2 — a>i+l, . . . , CLi+s — ai+s-i). 

Our proof of Theorem 1 will be based on the following lemma. 

Lemma. — For A C Z such that \A\ = k, k > 5? let ki,k2 be the number of new 
s-step sums with s > 3 and the number of representable elements of A as defined 
above. Then 

кг + к2 > к - 4. (6) 

Proof. — Consider a particular subscript i such that 0 < i < k — 5. If ai -f a^+3 is 
not new we must have 

V(ai,ai+z) = (x,y,x) 

for some x, y > 0, and so 
V(ai,ai+4) = (x,y,x,z) 

tor some z. itz = xoxz = x-\-y tnen ai+3 is a mia-point ana so is represent aoie, 
while if z 7̂  x and z ^ x + y then en + ai+4 is new. Thus at least one of the following 
three statements holds: 

(i) cii H- cii+z is new; (ii) ai + a«+4 is new; (hi) 0^+3 is representable. 
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This is true for i = 0 , 1 , . . . , k — 5 ; the new sums arising from (i) and (ii) for different 
Vs are distinct, and the representable elements arising from (iii) are also distinct. 
Hence at least one element counted in ki H- k2 arises in this way from each of the k — 4 
possible values of the subscript i and so (6) follows. 

We note that the above argument involves only 3-step and 4-step sums. By more 
detailed arguments using s-step sums with s > 5 it can be shown that in fact 

kx + k2 > k - 2 for k > 8. (7) 

2.2. Proof of Theorem 1. —- We now consider D C Z such that \D\ = k. Let 
k\ = k\{D), = k2(D) and suppose that D satisfies the hypotheses of Theorem 1, 
so that 

|2AD| < 2 f c - 3 + C (8) 

0<C < h(k-5). (9) 

Since 

(2D)\(2AD) = {2d I d e D, d is not representable}, (10) 

we have 

\2D\ = \2AD\ + k-k2 . (11) 

Using (8) and the above lemma we obtain 

12D I < 2 f c - 3 + C - f & - f e > = 3ife - 3 + C - k2 = 3 & - 3 + C + &1 - (h+k2) 

< 3k - 3 + C + fci - (Jfe - 4) = 2k + 1 + C + fci . 12 

The number of 1-step sums is equal to k — 1, the number of 2-step sums is equal to 
k — 2, and the number of new sums (different from these) is equal to k\. Thus, we 
have 

|2AD| = 2 f c - 3 + &i , 

and hence by (8), 
fci < C. 

Applying this inequality in (12), we get 

I2DI < 2IDI - 1 + 2C + 2. (13) 

It now follows from (9) and (13), by Theorem A in Section 1.2, that D C L1 where L 
is an arithmetic progression such that \L\ < \D\ + 2C + 2, as required. 

3. Sums of distinct summands from a subset of Fp 

3.1. The proof of our main result, Theorem 2, will depend on the use of trigonometric 
sums. We view the elements of Fp as residue classes modulo p, and note that for a £ Z 
and x G Fp, e2ntax/p is defined uniquely by 

g2wiax/p g27ri a XQ/P 

where XQ is any representative residue belonging to the residue class x. 
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For finite sets A C Fp we shall consider trigonometric sums of the form 

T = 

xeA 

g27ri ax/p (14) 

We note that for such sums it is easily checked that if k = \A\ then 

P-I 

a=l xEA 

g27ri ax/p 
2 

<pk-k¿ (15) 

3.2. We shall need the following lemma of Preiman [6]. 

Lemma. — Let A be a subset of Fp such that \A\ — k, and let a £ Z such that a ^ 0 
(mod p) and let T be the corresponding trigonometric sum defined by (14)- Suppose 
that \T\ > Cok, where 0 < Co < 1. Then, for some u and v in Fp such that v ^ 0, at 
least 

1 
2 

(Co + 1)* 

distinct elements of A belong to the arithmetic progression 

{u + sv : 0 < s < P-I 

'2 
Proof — See Preiman [6], Section 1 of Chapter II, Corollary to Lemma on pages 
46-47 and discussion on page 50. 

3.3. Proof of Theorem 2. — We now turn to the proof of Theorem 2. We there
fore consider A C Fp such that 

\A\ = k < p/50, (16) 

|2AA| < 2k - 3 + C, C < 0.06k, k > 60 (17) 
Consider the sum 

5 = 
p-i 

a=0 xi ,X2£A xi ,X2£A 

e2TTi(a/p)(xi+X2-x3) 

We divide the sum S into two parts, 

S = 
P-I 

a=0 xi,X2£A x3€2A 

p-1 

a=C X\,X2(zA x3e(2A)\(2*A) 

= Si — S2 , (18) 

say. Since each pair x\,X2 of elements of A yields exactly one x% in 2A such that 

x\ + X2 = xs, we have 
Si = k2p (19; 

(as in Freiman [6], p.48 (2.3.2)). 
Denote by B the set of all elements of A which are not representable. Then, in 

view of (10) we have 

S2 = 
n-1 

a=0 xi ,X2£A xi ,X2£A 

e2iri(a/p)(xi-\-x2-2aj) 
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For dj in B, the equation x\ + x2 — 2aj = 0 holds only if xi = x2 = a,j and therefore 

Sz = p\B\ (20) 

It follows from (18), (19) and (20) that 

S > p(k2 - k) (21) 

Then from (21) and the definition of S, we obtain 

p(k2 - k) 
p-I 

a=0 &1 ,X2EA x3£2AA 

e2iti{a/p){x\+X2—xz) 

p-1 

a=0 xEA 

2ivi{a/p)x 2 

x£2AA 

e2wi(a/p)x 

k2\2AA\ 
p-1 

a=l x£A 

e27ri(a/p)x |2 

x£2AA 

e2Tri(a/p)x 

: k2\2AA\ max 
â O (mod p) 

x£A 

e2Tti{a/p)x 
p-1 

a=l xeA 

e2ni(a/p)x 

x£2AA 

e2iri(a/p)x 

By using Cauchy's inequality and applying (15) to A and 2AA, we see that this 
expression is 

< k2\2AA\ max 
â O (mod p) 

xEA 

e2iri(a/p)x pk — k2 p\2AA\ - \2AA\2 . 

Dividing by pk2 and solving the inequality for 

U = max 
â O (mod p) 

x£A 

2wi(a/p)x 

we obtain 
U 

k 
> 

1 — ap — 7 
л/ÍAÍL - в)(1 - ав)) 

= / (a , £ , 7 ) , say, 

where 

a = 
\2AA\ 

k 
8^ 

k 

P 
7 = 

1 

k ' 

and so, by (16) and (17) 

0 < a < 2.06 - 37, 0<B< 
1 

50 
0 < 7 < 

1 

60 
< 

1 

50 

By consideration of partial derivatives in the relevant range it can be checked that 

/ ( a , ) 9 , 7 ) > / ( 2 . 0 6 - 3 7 , A 7 ) > / 2.01 , 1 
50 •5 

1 
60 

and hence 
U > 0.6859fc . (22) 
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By applying the lemma in Section 3.2 above to the sum 

T 
xEA 

e2iri(a/p)x 

and using (22), we see that there exist u,v in Fp with v ^ 0 and a subset Ai of A 
such that 

A1 C u + vs : 0 < s < \{p - 1) 
and |Ai| = mi, say, satisfies 

mi = \Ai\> 0.8429&. (23) 

We consider the set 
Bi c { o , i , . . . , ! ( p - i ) } c z 

defined by 
Bi 5 : 0 < s < \(p - 1) u + vs G Ai (24) 

By changing u and v if necessary we can assume that the first element of Bi is 0 and 
that the greatest common divisor of the differences between successive elements of Bi 
is 1. 

Since the mapping <f> given by (j){u + vs) = s gives an isomorphism of Ai onto Bi 
under addition mod p on Ai and addition in Z on Bi, it follows that Ai is isomorphic 
to Bi as a subset of Z , so that (using (3) on Bi) 

\Bi\ = \Ai\ =mi |2AAi| = | 2 A £ i | > 2 m i - 3 (25) 

Suppose now that 

\2AA! \ > 2|Ai| + Ci - 3 , d Л11 - 5 
2 

Then from (23) it follows that 

|2AA| > |2AAi| > 2 .5Ui | - 5.5 > 2.107& - 5.5 

and further, remembering that k > 60, we get 
\2AA\ > 2.06k - 3. 

contradicting (17). Thus we can assume that 

| 2 A A i | < 2 ^ 1 1 + ^ - 3 , 

and hence 
\2ABi \ < 2|£i | + Ci - 3 . 

Then from Theorem 1 we get that Bi is contained in an arithmetic progression L C Z 
such that 

\L\ < IB1I + 2 C 1 + 2 2\Bi \ - 3 < 2k-3. 

By our assumptions on Bi (following (24)) it follows that 

Bi C L C [ 0 , l , 2 , . . . , 2 f c - 4 } (26) 

All elements of Fp, and in particular those of A can be written in the form 

a = u + vs. 0<s<p-l, 
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for u, v as above. If A contained an element a with 

6k < s < p - 4k (27 

then in view of (24) and (26) and the fact that p > 10k the sets 2AAi and A% + a 
would be disjoint and so, by (25) we would have 

\2AA\ > |Ai + a | + |2AAi mi + |2A^i | > 3mi - 3 

and hence by (23) 
\2AA\ > 2№k - 3, 

a contradiction to (17). Hence (27) does not hold for elements of A and it is easily 
seen that all elements of A can be written in the form a = u + vs with 

-4k < s < 6k. 

As p > 20k, addition mod p on s in the above range [—4k, 6k] coincides with 
ordinary addition. Thus A is isomorphic to the set B C Z (with addition in Z) given 
by 

B s : u + vs £ A, — ^ (p — 1 < s < è (P - 1) -4k,6k 

so that by (17) 
\2AB -- \2AA\ <2k-Z + C, C < 0.06k. 

By Theorem 1 it follows that B is contained in an arithmetic progression L with 

\L'\ < A: + 2C + 2, 

where C < 0.06&, and so A is contained in the arithmetic progression 

L = {u + vs : s G L'} 

with \L\ = \Lf\. This completes the proof of Theorem 2, 

3.4. Application to Erdos Conjecture. — We now obtain the following corollary 
on the Erdos conjecture. 

Corollary to Theorem 2. — Let A C Fp such that 

\A\ = k P 
50 

k > 60. 

Then 

\2AA\ >2k-3. 

Proof. — If \2AA\ >2k-2 there is nothing to prove, so suppose that \2AA\ <2k-3. 
Then by Theorem 2 (with C = 0) we have A C L, where L is an arithmetic progression 
in Fp with \L\ < k 4- 2. Since p > 2k + 5 and \A\ = k, it follows that A is isomorphic 
to a set B of integers (under addition in Z) such that 

\B\ =k B Ç { l , 2 , . . . , t + 2 

Hence, using (3), we have 

|2AA| = \2AB\ >2k-3 
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4. Postscript on the Erdos-Heilbronn conjecture 

Rodseth [11], also using results of Freiman, has proved (4) for p > ck, for some 
positive constant c. More detailed arguments along the lines of the present paper 
and based on (7) can be used to obtain (4) for p > 8k, but some such restriction is 
essential to this approach. 

Recently, two independent proofs have been given of the full Erdos-Heilbronn con
jecture (4), without any restriction at all. For the first, see Dias da Silver and 
Hamidoune [4] and Nathanson [8]. The second, which uses only simple properties 
of polynomials over finite fields, is due to Alon, Nathanson and Ruzsa, [1],[2]. We are 
grateful to these authors for information about this work and to Professor Nathanson 
for the opportunity to see a preliminary version of his expository account of this topic 
in Nathanson [9]. 
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ON THE N U M B E R OF SUMS A N D DIFFERENCES 

by 

François Henneca r t , Gi l les R o b e r t & A l e x a n d e r Y u d i n 

Abstract — It is proved that inf ACI In \A+A\/ In \A—A\ is less than .7865, improving 
a previous result due to G. Freiman and W . Pigarev. 

1. Introduction 

Let ibe a set of integers. Write 

2A = A + A := \x 4- y I x, y G A} 
T>A = A — A := {x-y I x,y e A}, 

and 

a(A) = 
in\2A\ 
In \DA\ ' 

If ' I Al = n, then we have 

2 n - 1 < \2A\ < 
TI2 + 7 2 

2 

2 n - 1 < \UA\ < n2 - n + 1, 

where equality on the left side occurs for arithmetical progressions, and on the right 
side for "generic" sets, in which there is no nontrivial coincidence between sums and 
differences. Denote for any n > 1 

AcN inf 
AcNAA\=n 

ln |2A| 

In | D A | 

The lower bound an > 3 / 4 follows from the inequality (see Freiman and Pigarev [1] 
or Ruzsa [6]) 

(1) |DA |3 /4 < \2A\. 

1991 Mathematics Subject Classification. — 11P99, 11B75, 05B10. 
Key words and phrases. — Additive number theory, combinatorial number theory, difference sets, 

sumset s. 
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In fact, Ruzsa proved a sharper result, namely 

(2) \A\ • \DA\ < \2A\2. 

By squaring (2) and using \DA\ < \A\2, we obtain ( 1 ) . 
Conversely, Preiman and Pigarev have shown that 

(3) lim inf a„ 
n—>+oo 

< 0.89. 

Here we shall improve this result by showing 

Theorem. — The sequence (o;n)n>i converges to a ~ inf A CX(A) and we have 

3 / 4 < a < l n 2 / l n (1 + y/2) < .7865. 

Let us notice that inequality (2) implies that there is no set A such that a(A) = 
3 / 4 . Furthermore a set A such that a(A) < 3 / 4 + e, where e > 0, satisfies \DA\ > 
\2A\4^-2e, and then again from (2) we deduce \A\3/2 > \2A\ > |A|3/2"5e and \A\2 > 
\DA\ > \A\2~10e. 

This shows that if the value of a is 3 / 4 , then there exists a set A with arbitrary 
large cardinality, which is almost a generic set to insure that In | D A | is close to 2 In | A | , 
even when in the same t ime In \2A\ , which should be close to 1.5 In \A\, does not at all 
correspond to a generic set A. In [5], Ruzsa was interested by such sets, and proved 
that there exist c > 0 and arbitrary large sets A such that \T>A\ = | A | 2 ( l + o ( l ) ) and 
\2A\ < \A\2~C. 

2 . T h e convergence of an 

In this section, we study the convergence of an. 
In the table be low, we give the value o f an for small n: to compute them, we have 
looked for all the sequences s = (sk)kez and d = (dk)kez o f nonnegative integers such 
that 

(4) 
AcN 

[su = n2, 
AcN 

dk = n and 
AcN 

AcN 

AcN 
dl. 

For a finite set o f integers A with \A\ — n , these three condit ions are satisfied by the 
sequences (sk(A))kez and (dk(A))kez where Sk(A) (resp. dk(A)) is the number of 
representations o f k as a sum (resp. a difference) of two elements of A. For any pairs 
o f solutions s — (sk) and d = (dk) of ( 4 ) , we denote by Ns (resp. Nd) the number of 
integers k such that Sk ^ 0 (resp. dk # 0 ) . 

From the inclusion 

[a{A) : \A\=n] CEn = {lnNs/lnNd : (s,d) solution o f ( 4 ) } , 

we obtain an by exhibiting a set A o f cardinality n which achieves the minimum of 
the finite set En. 

For 1 < n < 7, the infimum of a(A) is reached for set A for which bo th \2A\ and 
\DA\ are maximal . It is no more the case when n = 8. 
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n 

an 

1 
1 

2 
_1 

3 
.920$ 

4 
.8977 

5 
.8891 

6 
.8866 

7 
.8859 

Observe that an seems to be decreasing. In fact we are only able to prove that an 
has a limit when n tends to infinity. 

T h e definition of a(A) still has a sense if A C Z m , and even if A is a subset o f a 
lattice A generated by a basis {uJj}i<j<m in Km. Now we map A into Z by 

XtLUi H h XmUm xi + qx2 H h ln|2i4|ln4| 

If q is sufficiently large, then this mapping conserves the number o f sums and differ
ences of our set. Thus we have 

otn = inf 
ln|2i4| 
In \DA\ 

: A C A lattice in Em for some m and \A\=n 

For any set A of integers, and any k > 1, we denote by Ak the cartesian product 

Ak = {(ai,...,ak) : aj e A}. 

This set satisfies 

\2Ak\ d 2A\k 

|DAfc| sd | D ^ | f c , 

whence 

(5) a(Ak) = a(A). 

We are now in position to prove that (a„) converges. 
Let g > 0. There exist an integer n and a set A with 1.41 = n such that 

(6) a < a(A) < a + e/2. 

Let q be an integer. W e can write nk < q < nk+1 for some integer k. W e define Bq 
as being any subset of Ak+1 o f cardinality g, and containing Ak x { a } for some a in 
A . This is possible because \Bq\ > \Ak\ = nk. Then we have 

Ak x { a ) - Ak x { a } C Bq - BQ 

and 
Ak x {a Ak x {a} C Bq - BQ 

whence by (5) 

a(Bq)-a(A) < 
a{A) 

k 
In view of (6) and using aq > a , we obtain that for any sufficiently large g, 

\aq — a\ < e. 

Thus aq converges to a. 
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3 . T h e upper b o u n d 

Prom the previous section, we deduce that a < a(A) for any set A. T o show the 

upper bound in the theorem, we shall construct a sequence of finite sets At o f integers 

such that lim^+oo a(Ai) = In2/ l n ( l -f \/2). 

Analyzing the proof in [1] o f the upper bound (3), we see that as a set with 

comparat ively small number of sums and large number of differences, an isomorphic 

(in the sense o f G . Freiman [2]) image o f vertices o f a simplex in E6 was taken. It 

corresponds to the result o f C .A . Rogers and G . G . Shephard [3], that for each convex 

set K o f Em we have 

(7) m e s ( D K ) < 
2m 

m 
m e s ( i l ) 

T h e equality in (7) is achieved only in the case when K is a simplex. Therefore, in 

order to get an estimate for a , it is natural to take a set o f points o f some lattice in 

a simplex. 

Let { e i , . . . , e m } be an orthonormal basis of Em and let A be the lattice it generates. 

Let A(m,L) be the subset o f A, consisting in points x = (xi,... , # m ) , such that 

V j , Xj > 0 and 
m 

mes( 

Xj < L , where L E Z + . 

IN addition, let bim(ra, .L) = card A ( m , L), i.e., b im(m, .L) is a number ot points o l 

the lattice A in a rectilinear closed simplex with an edge of length L. 

W e shall use two lemmas. 

Lemma 1. — We have 

Sim(ra, L) = m + L 
L 

This result is standard and its p roof is left t o the reader. 

Lemma 2. — We have 

| D A ( m , L ) | = 

min(ro,Z/) 

k=0 

m 

k 

L' 

= 
L + m — ks 

m — k 
= 

minfm, L) 

k=Q 

m 

k 

2 
L + m — k 

m = 

Proof. — For any set. o f integers P c { l , 2 . . . , r a } , we define the sets <S> (P, L) 

Xj > 0 for j E P, XXj > 0 : Xj > 0 for j E P , Xj = 0ifj <£P and 

<£P 

Xj < L } , 

and S<(P,L) 

{ ( x 1 , 5 • • • 5 Xfn) E Z™ : Xi <0 for i E P , x* = 0 if j g P and 
<£P 

Xj > —L } . 

If we denote by P the complementary set o f P in {1,2, . . . , m } , then we have the 

following decomposi t ion into disjoint sets 

D i ( m , I ) = 

PC{l , . . . ,m} 

S>(P,L)®S<(P,L). 
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Since card (S>(P,L)) = Sim(k,L - k) and c a r d ( 5 < ( P , L)) = Sim(fc, L) if c a r d P = k, 

and counting all different subsets o f { 1 , 2 , . . . , m } with cardinal k, we obtain the 

lemma. 

Proof of the Theorem. — Let us write Mm?£ = max ?i(m, L, jfc) where 
' k 

u(m.L, k) = 
m 

k 

2 
L + m — ki 

m 

W e obviously have 

(8) u(m.L, k) =u(m.L, k) = < (ra + l)Mm,L. 

Thus using Stirling's Formula, we obtain 

1 

2 m 
In |DA(2ra,ra) | ~ 21n( l + V 2 ) , 

and since 2A(m,L) = A{m,2L), 

1 

2 m 
ln|2A(2ra,ra)| - 2 In 2, 

when m tends to infinity. Thus 

a A(2m,m) = 
In 2 

in ( l + y/2) 
( l + o ( l ) ) , 

when m tends to infinity. This gives the upper bound in the Theorem. 

W e end by noticing that our set A — A (2m, m ) satisfies 

In 1241/In LAI - 4 In 2 / ( 3 In 3 - 2 In 2) = 1.4519. 

and 

l n | D A | / l n | A | ~ 4 1 n ( l + > / 2 ) / ( 3 1 n 3 - 2 1 n 2 ; = 1.8462..., 

when m tend to infinity. 
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THE STRUCTURE OF MULTISETS 
WITH A SMALL NUMBER OF SUBSET SUMS 

by 

V s e v o l o d F . L e v 

Abstract. — We investigate multisets of natural numbers with relatively few subset 
sums. Namely, let A be a multiset such that the number of distinct subset sums of 
A is bounded by a fixed multiple of the cardinality of A (that is, | P ( A ) | <C \A\). We 
show that the set P(A) of subset sums is then a union of a small number of arithmetic 
progressions sharing a common difference. 

Similar problems were considered by G. Freiman (see [1]) and M. Chaimovich (see 
[2]). Unlike those papers, our conditions are stated in terms of the cardinality of the 
subset sums set P(A) only and not on the largest element of the original multiset A. 

The result obtained is nearly best possible. 

1. Notat ion and definitions 

By a multiset we mean a finite collection of natural numbers with repetitions al

lowed: A = { a i , . . . , a&}, where a\ < • • • < a& are the elements of A. The number of 

appearances of an element will be called its multiplicity. 

As with "normal" sets, \A\ = k is called the cardinality o f A. The sum of all 

elements of the multiset is a (A) — ai -f • • • + a&, and its subset sums set is 

P(A) = {eidi H \-ekak: 0 < £ i , . . . , £ * < 1 } . 

Notice that 0 and a(A) are bo th included in P(A); generally, e belongs to P(A) if 

and only if a (A) — e does. 

Another useful notation: 

A = {at x fci,... ,a5 x ks}, 

meaning that a\ < - < as are distinct elements of A with multiplicities k \ , . . . , ks > 

1. In these terms, the cardinality of A is |^4| = k\ 4- h kSl the sum of its elements 

is a(A) — k\a\ + • • • + ksaSl and its subset sums set is 

P(A) = {Kiai H h Ksas - 0 < Ki < k \ , . . . , 0 < Ks < ks}. 

1 9 9 1 Mathematics Subject Classification. — 11P99, 11B75. 
Key words and phrases. — Subset sums, small doubling, multisets. 
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2 . T h e main result 

T h e following theorem is our main result. 

Theorem 1. — Let A satisfy 

(1) \P(A)\ < C\A\ - 4 C * 3 , 

where C is a natural number, and suppose that the cardinality of A is sufficiently 
large: \A\ > SC3. Then P(A) is a union of at most C — 1 arithmetic progressions 
with the same common difference. 

Theorem 1 (the proof of which will be given in Section 5) is somewhat unusual in 
describing the structure of the subset sums set P(A) rather then the structure of the 
multiset A itself. A s the reader will notice, this reflects the essence o f the problem: 
one can change A substantially without affecting P(A), and thus it seems impossible 
to describe the structure of A under any reasonable condit ion on P(A). 

I conjecture that (1) can be replaced by the weaker restriction 

(2) \P(A)\ < C\A\ -(c-iy. 
T h e following examples show that inequality (2) cannot be further relaxed. 

Example 1. — Let A — { 1 x (k — C + 1) , 6 x (C — 1)}? where k — \A\ and b are 
sufficiently large. Then P{A) is the union of C progressions 

0 , l , . . . , f c - C + l , 

6,6 + 1 , . . . , b + ( J k - C + l ) , 

( C - l ) 6 , (C- 1)6 + 1 , . . . , ( C - 1 ) 6 + ( * - C + l ) , 

so that \P(A)\ = C(k - C + 2) = Ck - (C - l )2 + 1. However, P(A) cannot be 
represented as a union of at most C — 1 arithmetic progressions with a common 
difference. 

Example2. — Let A = { 1 x (C — 1 ) , b x (k — C + 1 ) } , where k = \A\ and b are 
sufficiently large. Then P(A) is the union of C progressions 

0 , 6 , . . . , ( f c - C + l)6, 

1,1 + 6 , . . . , ! + ( f c - C + 1 ) 6 , 

C - l , C - l + 6 , . . . , C - l + ( * - C + l)6, 

so that \P(A)\ = Ck — (C — l )2 + 1, and again P(A) cannot be represented as a union 
of at most C — 1 arithmetic progressions with a common difference. 

Note that in view of Lemma 2 below, the inequality |F(^4) | > \A\ + 1 is always 
true. Hence, the conditions of Theorem 1 are never satisfied for ( 7 = 1 , and from now 
on we assume C > 2. 
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3 . Smal l values of C 

For A satisfying (1) (or even (2) ) with small values of C (C = 2 , 3 ) the structure 
of P(A), as well as the structure o f A itself, can be completely described. 

W e begin with some basic properties of subset sums set. First, we estimate by how 
much |P(^4) | increases if one adds an element to A. 

Lemma 1. — Let A = {a\ x & i , . . . , a s x A+ — A U {a}, and suppose that A 
contains at least i — 1 different elements less then a (that is. a > a,_i unless i = 1 ) . 
Then 

\P(A+)\>\P(A)\ + i. 

Proof. — P(A~*~) contains all the elements o f P(A), as well as the i additional elements 

<j{A) +a,a(A) + a — o i , . . . , o-(A) - f a - ai-i. 

A s a direct corollary, we obtain a lower-bound estimate for |P(^4) | . 

Lemma 2. — The cardinality of the subset sums set P(A) of the multiset 

A = {a\ x ki,..., as x ks} 

satisfies 
P(A)\ > 1 + ki +2fc2 + " - + s&s. 

In particular, \P(A)\ > 1 + \ A\, 

Proof — The assertion is obviously true for \A\ = 1, and we use induction on \A\. 
Denote by A~ the multiset obtained by removing from A its largest element as. 
Applying Lemma 1, we obtain then 

\P(A)\ > \P(A-)\ + s> (1 + fci + 2k2 \P(A-)\ + s>\P(A-))) + s 

= l + ^i +2k2 + + sks. 

It follows from Lemma 2 that a multiset A with relatively small value of |P(^4) | 
has at least one element with large multiplicity. 

Lemma3. — Let A = {ai x Ah , . . . , a* x kA, and let ka = max k be the maximal 
lm+: 

multiplicity of an element of A. Then 

ko > 
k2 

2\P(A)\' 

Proof — For 1 < % < s we have: 

\P(A)\ > 1 + h + 2k2 + • • • + iki + + l)(ki+i + --- + ks) 

> (i + l)k - ( ^ + 2 ^ - 1 + --- + iki) 

> (i + l)k-
= 
l i(i + l)fc0. 
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The resulting estimate 

|P(i4)| > « + ! ) * -
1 

2 
i(i + l)k0 

also holds for i > s as in this case the expression in the right-hand side, considered 

as a function o f real i, has a negative derivative: 

k -
1 

2 
(2* + l)fc0 < & - sfcu < 0. 

Hence, 

ft0 > 
2 

i 
k -

P(A)\ 

P(A) 

for every i = 1 , 2 , . . . W e choose i under the condit ion 

2 
P(A)\ 

k 
- 1 < i < 2 1^)1P(A)\ 

k 
Then 

2 
i > 

k 

\P(A)\' 

P(A)\ 

i + l < 
k 

2 ' 

and so 

k0 > 
k 

\P(A)\ 

k 

2 
= 

er 
2\P(A)\' 

W e now construct multisets whose subset sums sets have a particularly simple 

structure. 

Example 3. — Let A = { a i , . . . , a k } be a multiset such that 

i) a 2 , . . . ,ak = 0 ( m o d ax); 

ii) a^+i < ai 4- * • • + ai for i = 1 , . . . , k — 1. 

ITfcen P(-A) ¿5 an arithmetic progression: P(A) — { 0 , a i , 2 a i , . . . , a ( A ) } . 

This easily follows by induction on k: if A" = { a i , . . . , a ^ - i } , then 

P ( A ) = P(A-)U(ak+P(A~)) 

= { 0 , o i , . . . , a ( A ) }U{ak,ak 4 - a i , . . . , a f c + a ( A ) } 

= { 0 , O i , . . . , C 7 ( A ) } , 

since a& < a ( A ) and a& + a ( A ) = o~(A). 

Proposition 1. — Ant/ multiset A, satisfying \P(A)\ < 2\A\ — 1 (that is satisfying (2) 

with C = 2) has the structure, described in Example 3. 

Proof. — Suppose, on the contrary, that there exists an index 2 < i < k for which 

either ai ^ 0 ( m o d a\) or ai > a\ -f- • • • + a z - i ; we assume, moreover, that i is the 

minimum index with this property. Then, writing Aj = { a i , . . . , a j } (j = 1 , . . . , k) 

and applying Lemma 2, we obtain 

P(A)\ = 2 |P(Ai_1) | > 2 t 
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(since P(Ai) = P ( , 4 i _ 1 ) U ( a i + P ( ^ _ 1 ) ) , and P(Ai-i) is disjoint with o< + P(i4<-i ) ) , 
therefore 

\P(A)\ = \P(Ak)\ > | P ( A f c - i ) | + 2 > . - > | »(Ai)\ + 2(k-i)>2k. 

T h e following example describes the construction o f multisets whose subset sums 

set consists of exactly two arithmetic progressions. 

Example 4. — Let A = { a i , . . . , a m } U {&i, 62} U { c i , . . . , cn}? where 

- am < 61 < a; 
- Am = { a i , . . . , a m } satisfies conditions (i) and (ii) of Example 3 with a\ =2; 

- bi,b2^0 ( m o d 2 ) ; 

- 6 1 + 6 2 < c r ( A m ) + 2 ; 
- Ci+i < a(Ci) - 26i + 3 (0 < i < n — 1 ) , where Ci = { a i , . . . , a m } U { 6 i , 6 2 } U 

{ c i , . . . ,c<}. 

TAen P ( A ) ¿5 a union of two progressions with the common difference 2: if cr(A) is 

even, then 

P ( A ) = { 0 , 2 , . . . , a ( A ) -21a(A)}U{b1b1 + 2 , . . . , < J ( A ) - 6 I } , 

and if a (A) is odd, then 

P ( A ) = { 0 , 2 , . . . , a ( A ) - 6 i } U { 6 l 5 6 i + 2 , . . . , a M ) } . 

In e#Aer case, | P ( A ) | = a (A) - h + 2 . 

T h e verification is left t o the interested reader. 

Proposition 2. — Any multiset A with co-prime elements satisfying \P(A)\ < 3\A\ — 4 

(that is satisfying (2) with C = 3) has either the structure described in Example 3, or 

the structure described in Example 4-

This proposi t ion will not be used in the sequel and is given just for completeness. 

Its p roof (which is rather long and tedious) is available from the author. 

4 . M o r e l e m m a s and properties of P{A) 

In this section, we prepare for the p roof of Theorem 1. T o this end, we first deter

mine the value of | P ( A ) | for multisets A with only two different elements. Wi thou t 

loss of generality we can restrict ourselves to the case when these two elements are 

co-prime. 

Lemma4. — Let A = (ai x fci,ao x ko\, where (ai,ao) = 1. Then 

i) if ki < a<2 — I or k2 < a± — 1, then 

| P ( ^ ) | = (fci + l)(*2 + l ) ; 

ii) if ki > a2 — 1 and k2 > a% — 1, then 

\P(A)\ = aifci + a2k2 - ( a i - l ) ( o 2 - l ) + l. 
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Proof. — In Case i ) , the assertion follows from the fact that all values of the linear 

form 

a\x 4- a2y; 0 < x < ku 0 < y < k2 

are pairwise distinct: if, for instance, k\ < a2 — 1, and a\x 4- a2y = a\x' 4- a2yl', then 

x = x' ( m o d a2); therefore (in view of 0 < x,xf < k\ < a2) we have x = x', whence 

y = y'-
In Case ii) we use induction on k2. For k2 = a\ — 1 we apply the above proved: 

P(A)\ = (fci 4- l)(k2 4 -1 ) = ath 4- ai 

= a\k\ 4- a2&2 — « 2 ^ 2 + CLI 

— a\k\ 4- a2&2 — a\a2 4- ai 4- a2 

= aifci 4- a2fc2 — ( « i — 1 ) ( « 2 — 1) + 1. 

Suppose now that k2 > a± — 1. Write A = { a i x &i,a2 x (fc2 — 1 ) } , so that 

| P ( A - ) | = o i f c i + a 2 ( f c 2 - l ) - ( a i - l ) ( a 2 - l ) + l . 

W e have t o prove, therefore, that |P(^4) | = \P(A ) | 4- a2. Obviously, the difference 

\P(A)\- \P(A-)\ I counts the numbers o f the form 

(3) xai + k2a2; 0 < x < &i, 

which cannot be represented in the form 

xa\ 4- ya2\ 0 < x < k 1 0 < y < k2 - 1. 

W e show that this particular subset o f (3) is obtained when k\ — a2 4-1 < x < k\; that 

is, there exist exactly a2 such numbers. Indeed, if x < k\ — a<2 4- 1 then the number 

e = xa\ 4- k2a2 possesses the representation e — (x 4- a2)a\ 4- (&2 — a\)a2. O n the 

other hand, for x > k\ — a2 4-1 the equality x a i 4- fc2a2 = x ' a i 4- ya2 is impossible: 

otherwise x' = x ( m o d a2) , meaning that x' < x , and then xa± 4- fc2a2 > x'a\ 4- ?/a2, 

a contradict ion. • 

T h e following lemma shows that under certain condit ions, a multiset can be slightly 

modified in such a way that the number of its elements will increase while its subset 

sums set will not change. Once again, we start with multisets with exact ly two distinct 

elements. 

Lemma5. — Let A = {a\ x ki,a2 x k2\, where 

a\ < a2, k\ > a2 - 1, k2 > 2ai - 1. 

Then there exist k\, k'0 such that the multiset A' = {a\ x k\,a2 x k'2} satisfies 

P(A') = P{A), \A'\ > \A\. 

Proof. — W e set k[ = & i+a2 , k2 = k2—a\. Since &i+&2 = ^i4-fc2H-(a2—ai) > &i4-&2, 

we have only to prove that P{A') — P(A). 

1) Suppose that e — xa\ 4- ya2 £ P (^4) , where 0 < x < fci, 0 < y < k2, and show 

that e € P ( - A ' ) . Indeed, this is trivial if y < k2 — o i , and otherwise it follows from 

e = (x 4- a2)ai 4- (y - o i ) a 2 . 
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2) Suppose that e = xa\ + ya2 G P(A'), where 0 < x < k[1 0 < y < k'2, and 

show that e E P(A). Indeed, this is trivial if x < fci, and otherwise this follows from 

e = (x — a2)a\ + (y + a i ) a2 . 

W e now wish to bring the assumptions of Lemma 5 to a more convenient form, as 

well as to extend this lemma for the case of multisets with arbitrarily many distinct 

elements. 

Lemma 5'. — Let A — {a\ x ^ , . . . , a s x ^ } , and suppose that some two multiplicities 

ki.kj (1 < i < j < s) satisfy kikj > 2(\P(A)\ — k). Then there exists a multiset A1 

such that 

P(A') P(A)\ \A'\ > \A\. 

Proof — Write AQ = {ai x ki, a7- x kj} and A\ — A \ A0 (so that A = A0 U A\). W e 

denote d = (a^, aj) and set a[ = ci{/d, a'- = a j / d. Clearly, 

\P(A)\ > \P(A0)\ + | P ( A ! ) | - 1 > | P ( A ) ) | + |Ai | , 

l ^ o ) ! < ( 
1 
2 

kikj ~\~ fc) (A/ fc^ kj) — l 
2 

kikj + iti + % < (fcf 4- l)(fcj + 1) , 

whence, in view of Lemma 4, ki > a'j and kj > a^. Moreover, applying Lemma 4 once 

more (this time part (ii)) we obtain: 

\P(An)\ = kid + kja'j - f a ' + l 

^ kiOi ~\~ kj ~\~ kj (a' - 1) - (oj - l)(a' - 1) 

^ k%a^ ~\~ kj, 

which implies 

l 
2 kikj ~~\~ ki ~\~ kj ̂ > ki a^ ~\~ kj, 

fcj > 2a^ - 2. 

This allows us to apply Lemma 5 to AQ (more precisely, to the multiset {a[ x ki, a'- x 

fc,}) to find A'0 with P(AQ) = P(A0), \A'0\ > \A0\. Then the multiset A' = A'0 U 

will obviously satisfy the required conditions P(A') = F ( A ) , \AF\ > \A\. • 

5. Proof of the main theorem 

Two multisets A and A' will be called equivalent, if P(A) = P(Af). Wi thout loss 

)f generality we can assume that A is a multiset o f the maximum possible cardinality 

)f all equivalent multisets. W e write A in the form 

A = {a0 x fc0} U B, B = {bi x fci,...,òs x fcs}, 

where fc1?..., ks < fco, and & i , . . . , bs ^ OQ. 

B y a cftain we will mean a sequence E = {ei,...,et} o f the elements of P ( P ) , 

satisfying the two following conditions: 

i) 0 < ei+1 - e» < fc0a0; - e» < fc0a0;- e» < fc0a0; 

ii) ei = • * * = et ( m o d ao) . 
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The chain E will be referred t o as maximal if no more elements of P(B) can be added 
t o E without violating either (i) or ( i i) . 

Let S = P({ao x ko}) = { 0 , a o , . . . , &o&o}- It is obvious that: 

- if E is a chain, then the sum S H- E is an arithmetic progression with the 
difference ao; 

- if E\ and E2 are two distinct maximal chains, then the progressions S + E\ and 
S -f E2 are disjoint. 

Clearly, there is exactly one way to decompose P(B) into maximal chains, and we 
denote the number of these chains by N. W e assume N > C (since otherwise P(A) 
consists o f at most C — 1 progressions with the difference ao) and show that this 
assumption leads to a contradiction. 

Since obviously \P(A)\ - \P(B)\ > Nko, we obtain 

\P(B)\ < \P(A) - Nko < C(\A\ - ko) = C\B\ 

(in fact, one can easily prove that B satisfies ( 2 ) ) . Therefore, by L e m m a 3, 

m a x l < i < s 
ki > 

\B\2 
2\P(B)\ > 13 

2 C 
B y L e m m a 5' and in view of the maximali ty of A, 

ok B 
2C < 2(\P(A)\ -k) < 2 ( C - l ) f c , 

k0(k - ko) < AC{C - l ) J f c . 
T h e left-hand side o f the last inequality is a quadratic polynomial of ko with zeroes at 
0 and k, max imum at k/2, and attaining bo th at 4C2 and k — AC2 the same c o m m o n 
value 

4 C 2 ( f c - 4 C 2 ) 4C(C - l)k. 

Therefore, either k0 < ^C2 or k0 > k — AC2 holds true 
T h e first is actually impossible, since by Lemma 3, ko > hl 

2Ck > AC2. Hence 
kn > k — AC2, and it follows that 

\P{A)\>N{ko + 1) > C(k-AC2) = Ck-AC3, 

a contradiction with (1 ) . (Notice that this is the only place where we use (1) instead 
of the weaker (2) . ) This completes the p roof of Theorem 1. 
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SUBSET SUMS OF SETS OF RESIDUES 

by 

Edith Lipkin 

Dedicated to Grisha Freiman, with respect and affection 

Abstract. — The number m is called the critical number of a finite abelian group G, 
if it is the minimal natural number with the property: 
for every subset A of G with | A\ > m, 0 ̂  A, the set of subset sums A* of A is equal 
to G. In this paper, we prove the conjecture of G. Diderrich about the value of the 
critical number of the group G, in the case G = Zq, for sufficiently large q. 

Let G be a finite Abelian group, A C G such that 0 0 A. Let A = { a i , a 2 , . . . , a|A|}, 
where \A\ = card A. 

Let 

A* := {x I x = aiei 4- a2^2 H h £ui«Uh £j € { 0 , 1 } , 1 < j < \A\, 
|A| 

3 = 1 

e j > 0} 

and 

X := {m G N | MA C G,\A\ > m => A* = G}. 

Since |G'| - 1 € X, then X ^ 0 if IGI > 2. The number 

c(G) = min 
mex 

m 

was introduced by George T. Diderrich in [1] and called the critical number of the 
group G. 

In this note we study the magnitude of c(G) in the case G = Zg, where l»q is a 
group of residue classes modulo q. We set c(q) := c(Zq). A survey of the problem was 
given by G.T. Diderrich and H.B. Mann in [2]. 

In the case when q is a prime number John Olson [3] proved that 

c(q)< 4 ^ - 3 + 1. 
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Recently J.A. Dias da Silva and Y.O. Hamidoune [4] have found the exact value 
of c(q) for which an estimate 

2g1/2 - 2 < c(q) < 2q^2 

is valid. 
If q = P1P2, Pi > P21 P11P2 ~ prime numbers, then 

Pi +P2 - 2 < c(G) < pi +P2 - 1 

as was proved by Diderrich [1]. 
It was proved in [2] that for q = 2£, £ > 1 

c(G) = £if£>borq = 8 

c(G) = £ + 1 in all other cases. 

Thus, to give thorough solution for G = Zqwe have to find c(q) when q is a product 
of no less than three prime odd numbers. 

G. Diderrich in [1] has formulated the following conjecture: 
Let G be an Abelian group of odd order \G\ = ph where p is the least prime divisor 

of |G| and h is a composite number. Then 

c(G) = p + h - 2. 

We prove here this conjecture for the case G = !*q for sufficiently large q. 

Theorem 1. — There exists a positive integer qo that if q > qo and q = ph, p > 2, 
where p is the least prime divisor of q and h is a composite number, we have 

c(q) =p + h-2. 

To prove Theorem 1 we need the following results. 

Lemma 1. — Let A - {aua2,... ,a\A\} C N,N = { 1 , 2 , . . . , £ } , 5 ( A ) = 
|A| 

i=l 
ai, 

A(g) = {x e A\x = 0(mod ,9)}, B(A) = 1 
2 

|A| 

i-1 
ai 

1/2 

. Suppose that for some e > 0 

and £ > £i(e) we have \A\ > L 2/3-K and 

(i) \A{g)\<\A\-l 3^2 
5 

for every g > 2. Then for every M for which 

\M -
1 

2 
S(A)\ < B(A) 

we have M C A*. 

Lemma 2. — Let e be a constant, 0 < s < 1/3. There exists £0 — £Q{E) such that for 
every £ > £Q and every set of integers A C [1, £], for which 

(2) \A\ > t 2 + E 
5 
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the set A* contains an arithmetic progression of I elements and difference d satisfying 
the condition 

(3) d< 
11 

|A| . 

We cited as Lemma 1 the Proposition 1.3 on page 298 of [5]. 

Proof of Lemma 2. — Let us first assume that A fulfills the condition (1) in Lemma 
1. Since we have 

B{A) > 
1 

2 

1̂ 1 

i=1 

i2 > 
1 

2 

\A\3 

3 
> 

1 

2\/3 
l1+3E 

and every M from the interval (\S(A) - B(A), §S(A) + B(A)) belong to A*, there 
exists an arithmetic progression in 4̂* of the length 2B{A) > I, if £ > £o = £\{e). 

Now we study the case when A does not satisfy (1). We can then find an integer 
gi > 2 such that B\ C A = AQ and B\ contains those elements of A$ which are 
divisible by g\ and for the set A\ = {x/g±\x € B± and x = 0(mod gi)} we have 

\A1\>\Ao\ - t 
2 . E 

. 
Suppose that this process was repeated s times and numbers #2> • • • ?0« were 

found and sets Ai, A2,..., As defined inductively, Bj being a subset of Aj-i contain
ing those elements of Aj-i which are divisible by gj and 

Aj = {x/gj\x E Bj and x = 0(mod gj)} 

so that we have 
\Aj\ > \Aj-X\-L 

2 . e 
¿ = 1 ,2 , . . . , « . 

From 

1^1 > \As-i\-i 
2 4. E > \A\ - st 2 4. e 

and 

£s = 
4 - i 

Qs 
< 

£ 

2s 
it follows that 

(4) 1 .̂1 > 
1 

2 
|A| > 

1 

2 
l3 + 2 > I 

2 + E 

The condition (2) of Lemma 2 for As is verified, for some sufficiently large s the 
condition (3) is fulfilled and thus A* contains an interval 

1 

2 
3(AS) - B(AS), 

1 

2 
S(A,) + B(A.) 

We have, in view of (4), 

B{A.) > 
1 

2 

|A|s 

i=l 

i2 > 
1 

2 
K l 3 

3 

(5) > 
1 

4 ^ 
e 1+3E >l. 
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We have shown that A* contains an arithmetic progression of length t and difference 
d = • • • c/s, and thus A* has the same property. 

We now prove (2). From 

ls = 
l 

d 
, t. > \A.\ > 

1 
2 

\A\ 

we have 
l 

d 
> 1 

2 
|A| 

or 

d< 
2£ 

\A\-
Lemma 2 is proved. 

Lemma 3 (M. Chaimovich [6]). — Let B = {bi} be a multiset, B C Zq. Suppose that 
for every s > 2, s dividing q, we have 

(6) \B\B(s)\ > s - l . 

There exists F C B for which 

\F\ < q-1, 

F* = Z, . 

Proof of Theorem 1. — Let q = p\p2 • • Pk, k > 4, p = pi < p2 < • • • < Pk- We have 

(7) pk <q=^p< q1/4 . 

Let A C Zg be such that 0 ^ A and 

(8) \A\> 
q 

P 
•f P - 2 ; 

we have to prove that A* = Zp. 
From (7) and (8) we get 

(9) \A\> 
Q 

P 
>q 3/4 

. 

Let us consider some divisor d of and denote by Ad a multiset A viewed as a 
multiset of residues mod d. Let us show that for every 5 dividing d the number of 
residues in Ad which are not divisible by 6 satisfies the condition of Lemma 3. 

The number of residues in Zç which are divisible by 8 is equal to q/8. Therefore 
the number of such residues in A (which are all different) is not larger than q/5 — 1, 
because 0 ^ A. 

From this reasoning and from (7) we get the estimate 

\Ad\A{8)\ > \A\ - q 
8 - 1 > 

(10) q 

P 
+ P - 2 -

q 

8 
+ 1 = 

Q 

P 
+ p -

q 

8 
+ 8 + ¿ - 1 . 

The function x + q/x is decreasing on the segment [1, Y/q\. 
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The least divisor of g is equal to p, and the maximal one to q/p. Therefore 

p < 8 < a 

P 
. 

If p < 8 < y/q, we have 

( 1 1 ) 
q 

P 
+ p > 

Q 

8 
+ 8. 

In the case y/q < 8 < | , let p = f. Then (5 = | , y/q < J < * and p < p < y/q and 
we have 

(12) 
q 

P 
-hp > 

q 
+ p = d-h <7 

(5 . 

Prom ( 1 1 ) and ( 1 2 ) it follows from ( 1 0 ) that we have 

( 1 3 ) \Ad\A(8)\ > 8 - l . 

Let us apply the Lemma 3 to Ad. Condition ( 1 3 ) is condition ( 6 ) of Lemma 3. 
Therefore there exists Fd C Ad such that \Fd\ < d — 1 and FJ = Z<*. 

Viewing as a set of residues mod g, let 

A' = 

d/q 
p< d <q1/3 

Fd . 

It is well known that the number of divisors d(q) = 0{qe) for every e > 0 so that 

\A'\ < < 1 + E 

for sufficiently large g. 
Take now A " = A \ A ' . Take the least positive integer from each class of residues of 

the set A" and denote this set by A". We have A" C [1, q — 1] . We set I — q and see 
that all conditions of Lemma 1 are valid for A". Thus, (A")* contains an arithmetic 
progression C with a length q and a difference A such that 

(14) A < 
2Q 

q 
3 4 = 2q 

1/4 

If (A,g) = 1 then {A")* = Zq. Suppose that D = (A,g) > 1. Then C (and 
therefore (A")* which contains £) contains the residues of ZG which are divisible by 
D. If Z D is a system of residues mod q representing a system of all residues mod 
D/q, then (A")* +ZD = Zq. But FD C A' and F^=ZD. Thus 

A* D (A")* + (A')* = • 

Theorem 1 is proved in the case K > 4 . 
Now we have to study the case when q is a product of three primes. Let q = P1P2P3? 

P — Pi < P2 < P3. Suppose that for some positive e we have p < p3+i. The proof 
may be completed in a similar way to what was done. 

In the general case we can use a stronger result than Lemma 2 . Namely, the 
formulation of Lemma 2 is valid if in ( 2 ) we replace the number 2 / 3 in the exponent 
by 1 /2 (see G. Freiman [7] and A. Sarkozy [8]). So, in the case of q being a product 
of three primes, we can use this stronger version and prove Theorem 1. 
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As we have seen, the version of Lemma 1 with the exponent 2/3 was sufficient 
in the majority of cases. It is preferable to use this version, for its proof is much 
simpler than the case 1/2. Secondly, in the case 2/3 estimates of error terms have 
been obtained explicitly by M. Chaimovich. It provides us with the possibility to get 
an explicit range of validity for Theorem 1. 

Lemma 4. — Define a function of £ in the following manner: 

(15) mo(0 = 
12 

,7T2 

1/3 
? ^ ( l o g ^ + l /6 ) 1/3 2 -

4j 

3 

1/3 

where 7 = 12 
ir* 

log £+1/6 
l 

1/3 

Then for £ > 155 a subset sum of each subset A C { 1 , 2 , . . . , £ } with 
\A\ = m > mo(£) contains an arithmetic progression of cardinality £. 

Simplifying (15) we can take 

m0(£) = 1.31 2/3 (log*+1/6) 1/3 

In the case of four or more primes in a representation of q we have to verify an 
inequality 

(16) £ 2/4 > 1.31 2/3 (log € + 1 / 6 ) 1/3 

which is fulfilled for 
£ > 3000. 

In some special cases we can give better estimates. For example, if p = 3 we have 
m > q/3 and instead of (16) we have 

£/3> 1.3£2/3(log£+l/6)1/3, 

€ > 6 4 ( l o g £ + l / 6 ) 

which is valid for 
£ > 500. 
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INVERSE THEOREMS AND THE NUMBER 
OF SUMS AND PRODUCTS 

by 

Melvyn B. Nathanson &; Gerald Tenenbaum 

Abstract. — Let e > 0. Erd<5s and Szemeredi conjectured that if A is a set of k 
positive integers which large k, there must be at least k2~e integers that can be 
written as the sum or product of two elements of A. We shall prove this conjecture 
in the special case that the number of sums is very small. 

1. A conjecture of Erdos and Szemeredi 

Let A be a nonempty, finite set of positive integers, and let \A\ denote the cardi
nality of the set A. Let 

2A = {a 4- a' : a, a' E A} 

denote the 2-fold sumset of A, and let 

A2 = {aa' : a,af e A} 

denote the 2-fold product set of A. We let 

E2(A) = 2AU A2 

denote the set of all integers that can be written as the sum or product of two elements 
of A. If Ml = fc, then 

\2A\^ 
k+ 1 

2 

and 

\A2\< 
Jfc + 1" 

2 
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and so the number of sums and products of two elements of A is 

\E2(A)\ <k2 + k. 

Erdos and Szemeredi [3, p. 60] made the beautiful conjecture that a finite set of pos
itive integers cannot have simultaneously few sums and few products. More precisely, 
they conjectured that for every s > 0 there exists an integer k0(e) such that, if A is 
a finite set of positive integers and 

\A\=k> k0(e), 

then 

E2(A) > e k2-£, 

Very little is known about this question. Erdos and Szemeredi [4] have shown that 
there exists a real number <5 > 0 such that 

\E2(A)\ys>k1+s, 
and Nathanson f i l l proved that 

\ E 2 ( A ) \ ^ c k ^ \ k 1 + s , 

where c = 0.00028.. . . 
Erdos and Szemeredi [4] also remarked that, in the special case that \2A\ ^ cfc, 

"perhaps there are more than k2/(logk)€ elements in A2 ". This cannot be true for 
arbitrary finite sets of positive integers and arbitrarily small e > 0. For example, if 
A is the set of all integers from 1 to fc, then Tenenbaum [16, 17], improving a result 
of Erdos [21, proved that 

(i) 
k2 

(log kY° 
log 2 k l o g 3 k 

C \A2\ < 
k2 

(log k)e° log2k 

where log r denotes the r-fold iterated logarithm, and 

(2) £ n = 1 — 
1 + logo 2 

log 2 
^ 0.08607 

(cf. Hall and Tenenbaum [8, Theorem 23]). 
Using an inverse theorem of Preiman, we shall prove that if A is a set of k positive 

integers such that \2A\ ^ 3fc — 4, then 

\A2\ > (fc/logfc)2. 

We obtain a similar result for the sumset and product set of two possibly different 
sets of integers. Let A\ and A2 be nonempty, finite sets of positive integers, and let 

Ai + A2 = {ai + a2 : ai e Aua2 e A2} 

and 

A\A2 — {a\a2 : ai G Ai,a2 G A 2 \ . } 

Let |A1|=|A2| = K We prove that whenever \Ai +A2\ ^ 3fc - 4, then we have 
| A i i 4 2 | > (fc/logfc)2. 
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2. Product sets of arithmetic progressions 

A set Q of positive integers is an arithmetic progression of length £ and difference 
q if there exist positive integers r, q, and £ such that 

Q = fr + uq:0<u<e}. 

We shall always assume that 

£ ^ 2. 

For any sets A and B of positive integers, let QA,B{™) denote the number of 
representations of m in the form m = ab3 where a G A and b G B. Let Q A ( ^ ) = 
QA,A{™)' Let r (m) denote the number of positive divisors of m. Clearly, for every 
integer ra, 

QA,B(rn) ^ r (m) . 

If A1 C Q 1 and A2 Ç Q 2 , then S A1, A2 (m) < Q Q1, Q2 (m) 

Lemma 1 (Shiu). l e í 0 < a < 1/2 and ie£ 0 < 8 < 1/2 Let x and y be real 
numbers and let s and q be integers such that 

(3) 0 < s 4. q and (s,q) = 1, 

(4) q<y1~a, 

and 

(5) a r < y ^ x. 

Then 

w=s (mod q) 
w=s (mod q 

t(w) <<a /3 
(p(q)y log x 

q2 

Proof. This is a special case of Theorem 2 in Shiu [14] (see also Vinogradov and 
Linnik [18] and Barban and Vehov [1]). 

Lemma 2. — Let s, q, h, and £ be inteqers such that h ^ 0, £ ^ 2, 0 < s ^ q, and 
(8,q) = l Let Q be the arithmetic progression 

Q = {s + vq : h ^ v < h + £}. 

If(h + l)q<e*, then 

weQ 

r(w) < C £log£. 

Proof. We apply Lemma 1 with a = (3= 1/6, x = (h + l)q, and y = lq The integers 
s and o satisfy (3). Since q<(h + l)q<£\ we have 1/6 < ¿ 5 / 6 and so 

q = g i / ^ s / e <(lq)5/6 = y1-a 

This shows that (4) is satisfied. 
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To obtain (5), we consider two cases. If h < l, then, since 2 <C £ <C £q. we have 

rf* = ({h + l)qf ^ (2£qf <C {tqfP = (iq)1/3 <£q = y^x. 

If h > £, then, since hq < £b, we have 

aP = {{h + l)q}p <{lhqf < £6f3 = £ < £q = y < x. 

This shows that (5) holds. 
Applying Lemma 1, we obtain 

w£Q 

T(W) = 
w=s (mod q) 

hq<w^(h+l)q 

T(W) < 
^{q){£q)\og{{h + £)q) 

q2 

< eiog(i(h+l)q) <C£logr < £ l o g £ . 

This completes the proof. 

Lemma 3. — Let Q\ and Q2 be two arithmetic progressions of length £ >>2, and let 
m E QiQ2. Then 

(6) Q Q1, Q2 (m) <E le 

for every e > 0, and 

(7) 

m€QiQ2 
Q Q1, Q2 (m)2 < (llog l)2 

Proof. Let Qi = {ri + uqi : 0 ^ u < £} for i = 1,2. We may assume without loss of 
generality that (ri,qA = 1. We write n = Si + h{qi1 where 0 < Si ^ qi and hi ^ 0. 
Then 

Qi = {s* -h vqi : hi ^ v < hi + £}. 

If W1 E Q1 and w2 G Q2j then, for suitable v\ € [fti, /ii + £[, v2 € [/i2, /¿2 -h -[q, we have 

(8) hiqi <wi=si+ vxqi < (/ii + l) <<l(h1+ l)qi 
and 

9 /l2^2 < W2 = S2 + V2q2 ^ (/l2 + €)<?2 ^ ^(/¿2 + 1)<?2. 

We can assume that 

(/i2 + l ) ç 2 ^ ( f t i + i)gi. 

There are two cases. In the first case, 

( / H + I ) « i < t . 

By (8) and (9), we deduce that 

wi ^ Ufa + l)gi < T , and w2 ^ £(h2 + l )g 2 ^ £(hi + l)gi < £ 6 . 

If m € QiQ2, then m is of the form m = w\w2l and so m < £12 Since, by a classical 
estimate, r ( r a ) < £ me'12, it follows that 

q Q1 , q2 (m) < (m) < £ m £ / 1 2 < £ £
£ . 

This proves (6). 
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To prove (7), we use the submultiplicativity of the divisor function, that is, T(UV) ^ 

T(U)T(V) for all positive integers u, v. Then 

m € Q i Q 2 

q S 1, q2 (m)2 
E E S ! W2EQ2 

QQi,Q2 ( ^ 1 ^ 2 ) 

wteQi W2EQ2 

T(WIW2) 

WIEQI 

T(WI) 

W E q2 

T(W2)4z£2(log £)\ 

where the last upper bound follows from Lemma 2. 
Consider now the second case 

(h + lìgi ^ F. 

We shall prove that 

(10) £ Q i , Q 2 ( m ) ^ 3 

for all m ^ 1. Suppose that w\ = r\ + uq\ € Qi and w[ = r\ + u'qi € Qi are distinct 
divisors of m, and that t^i < w[. Then (r i ,#i) = 1 implies that (wi,qi) = (u4,<?i) = 
1, and so ((wi, w[), qi) = 1. Since (1w, w'1) divides 

w[ — W\ — (uf — u)q\, 

it follows that (wi, tUi) divides u' — u. and so 

1 ^ (wi,w[) ^ u' — u < £. 

Suppose that Qquq2 (m) ^ 4. Then m has at least four distinct representations in 
the form m = wiw2 with w% £ Qi and w2 E Q2l and so m has at least four different 
divisors in Qi, that is, at least four divisors of the form 

T\ + u q i = si + (/ii + w)<2i 

with 0 ^ u < £. At most one of these divisors is s± + /ii#i, and so m has at least 
three different divisors, which we shall denote by wi,w[, and w", such that 

mm{wiJw'11w
,i} ^ s i + (/ii + l)g x > (/ii + l h i ^ € 5 . 

Let [wi,t^j, w'i] denote the least common multiple of w\, w[, and w'{. Since each of 
these three numbers is a divisor of m, we have 

m ^ [wi,w[,w"] ^ 
w1w1'w1'' 

(w1,w'1)(w1,w'1)(w1,w'1)(w1,w'1) 

> 
(hi + l)gi 

£ 

3 (fu + i)gi 
l3 (hi +1)2qe1 

> l3 (hi + \)qi 
2 

^ £(/ii + l)gi • £(h2 + l )g 2 ^ u?i^2 = m, 

which is impossible. This proves (10), and inequalities (6) and (7) follow immediately. 
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Lemma 4. — Let Q be an arithmetic progression of length £ ̂  2, and let m E Q2. 
Then 

( H ) QQ(m) < s I
e 

for every e > 0, and 

(12) 
meQ2 

QQ(mf « (£log£)\ 

Proof. This follows immediately from Lemma 3 with Q1=Q2 = Q. 

Lemma 5. — Let Q\ and Q2 be arithmetic progressions of length £^2. Then 

|Q1 Q2|> 
£ 

log*. 

2 

Proof. Let Qquq2 (m) denote the number of representations of m in the form m = qiq2l 

where q± G Qi and q2 E Q2. By the Cauchy-Schwarz inequality and inequality (7) of 
Lemma 3, 

l2 = 
meQiQ2 

QQi&2\m) ^ IQ1Q2I 
1 /2 

m£QiQ2 

QQuQ2(m)2) 

1/2 

| Q i Q 2 | 1 / 2 * l o g £ . 

Therefore, 

IQ1Q2I » 
£ 

loge 

2 

This completes the proof. 

Lemma 6. — Let Q be an arithmetic progression of length £^2. Then 

\Q2\ » 
£ 

\og£> 

2 

Proof. This follows immediately from Lemma 5 with Q\ = Q2 = Q. 

3. Application of some inverse theorems 

We shall use the following two inverse theorems of Freiman. 

Lemma 7 (Freiman). — Let A be a nonempty set of k positive integers. If 

\2A\ <C 3k - 4, 

then A is a subset of an arithmetic progression of length £ <2k. 

Proof. See [5, 7, 10, 12]. 
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Lemma 8 (Freiman). — Let A\ and A2 be nonempty finite sets of positive integers, 
and let \AA = ki for ¿ = 1,2. / / 

\AX + A2\ ^ fci + &2 + min{&i,&2} - 4 , 

then A\ and A2 are subsets of arithmetic progressions Q\ and Q2, respectively, where 
Qi and Q2 have the same difference and the same length £ < k\ + k2. 

Proof See [6, 9, 12, 15]. 

Theorem 1. — Let A be a finite set of positive integers, and let \ A\ = k ^ 2. If 

\2A\ <C 3k - 4, 

then 

| A 2 | > 
k 

log k 

2 

Proof By Lemma 7, if \2A\ ^ 3k — 4, then there exists an arithmetic progression Q 
of length £ <2k such that ACQ. Since 

gA(m) ^ QQ(m), 

it follows from (12) that 

k2 

= 
meA2 

QA{m) ^ \A2\X'2 

m Z A2 

QA{m) 
2 V / 2 

m E a2 M 2 . 1 / 2 

m € Q 2 

q Q (m)2 
1/2 

<< | A 2 | 1 / 2 * l o g * <C U 2 | 1 / 2fclogJfe. 

Therefore, 

(13) \A2\ » 
K 

logfc 
2 

This completes the proof. 

Theorem 2. — Let A ̂  1. Let A\ and A2 be finite sets of positive integers such that 
\AA = h ^ 2 for i = 1,2 and 

(14) 
1 

A 
<< 

fc2 

k1 
^ A. 

If 

l-^i + M\<<k1+k2 + min{fci,fc2} - 4, 

then 

\AiA2\ > A 
k1 k2 

log(fcifc2) 
2 • 
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Proof. It follows from (14) that 

(fci + k2f < (1 + A) fcj = (1 + A) 2 Afci(fci /A) < (1 + XyXk^ 

and so 

k1 + k2 <<y (k1 k2)1/2 

By Lemma 8, if |AiH-A2| ^ &i4-&2+niin{&i5 fc2} —4, there exist arithmetic progressions 
<2i and Q 2 , each of length I < k\ + k2l such that Ai Ç Q\ and A 2 C Q 2 - Since 

0 A I , A 2 ( m ) ^ QQliQ2{m), 

it follows from (7) that 

k1 k2 = 
m^A\A2 

QA1,A2(m) 

<< ÌAM1'2 

meAi A2 

QAX,A2 (m)2 

1/2 

<< |A1 a2|1/2 

m 6 Q i Q 2 

qQ1, q2 (m)2 
1 /2 

<< |A1 A2|1/2 l log <<|A1 A2| 1/2 (fci + Aa) log(*i + As) 

Therefore, 

(15) l ^ l ^ l > A 
k\ k2 

log(fcifc2) 
2 * 

This completes the proof. 

Theorem 3. — Let A\ and A2 be finite sets of positive integers such that \AA = 
\A2\ = k^2. If 

\A1+A2\ ^ 3 f c - 4 , 

then 

\AiA2\ » 
k 

logfc 

2 

Proof. This follows immediately from Theorem 2 with k\ — k2 — k and A = 1. 

4. Open problems 

By Theorem 1, if \A\ = k and |2A| < 3k - 4, then |A 2 | » k2~£. This gives the first 
general case in which we know that the conjecture of Erdôs and Szemeredi is true. It 
would be nice to prove that if c ̂  3 and if A is a finite set of k positive integers such 
that 

(16) \2A\ ^ ck, 
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then 

\A2\ » c , e k2~s. 

By a general inverse theorem of Freiman [7, 12, 13], a finite set of integers whose 
sumset satisfies inequality (16) is a "large" subset of what is called an n-dimensional 
arithmetic progression. This is a set Q with the following structure: For n ^ 1, there 
exist positive integers r, q\,..., qnj £\,..., £n such that 

(17) Q = {r + uiqi + • • • + unqn : 0 ^ Ui < U for i — 1 , . . . , n} . 

The length of Q is defined as £{Q) = £\ • • -£n. Clearly, 

IQI < t(Q) 

for every n-dimensional arithmetic progression. Freiman's inverse theorem 
should be applicable to the Erdôs-Szemerédi conjecture for sets satisfying the ad
ditive condition (16). 

Let Q be an n-dimensional arithmetic progression of the form (17). If j is such 
that £j = max{£i : i = 1 , . . . , n} in (17), then 

Q D Qj = {r + Ujqj : 0 ^ uj < £j}. 

It follows from Lemma 6 that 

(18) \Q2\ > \Q)\ » 
lj 

log lj 

2 

The following example shows that this inequality is almost best possible. Fix n ^ 2. 
For £ ^ 2, consider the n-dimensional arithmetic progression Q with r = 1, qi = i 
and £i = £ for i = 1 , . . . , n. Then 

Û = {1 + J2" im : 0 ^ m < £} Ç l , l + | n ( n + ! ) ( £ - ! ) Ç [ l ,n^J . 

We apply the lower bound (18) with £ = max{£* : i = 1 , . . . , n} , and we apply the 
upper bound (1) with k = n2£. For sufficiently large £ we obtain 

£ 

Aog£ 

2 
<C \Q2\ <C 

k2 

(log A:)6» 
<< 

€ 2 

( log£) £ o 

where £q is defined by (2). Since £{Q) — £n, it is clearly not true that 

\Q2\ » „ , e e(Q)2~e. 

It would be interesting to obtain sufficient conditions for an n-dimensional arithmetic 
progression Q to satisfy 

\Q2\ » n , e \Q\2'e-

Let A be a set of k positive integers. For h ^ 3, let £^(A) denote the set of all 
numbers that can be written as the sum or product of h elements of A. Erdos and 
Szemeredi f4] also conjectured that 

\Eh(A)\ » , kh~e 

for all e > 0. Nothing is known about this. 
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S T R A T I F I E D S E T S 

by 

J e a n - L o u i s Nico las 

Abstract. — A set A of integers is said "stratified" if, for all t, 0 < t < Card A , the 
sum of any t distinct elements of A is smaller than the sum of any t + 1 distinct 
elements of A . That implies that all elements of A should be positive. It is proved 
that the number of stratified sets with maximal element equal to N is exactly the 
number p(N) of partitions of N. 

1. I n t r o d u c t i o n 

Let N = { 1 , 2 , 3 , . . . } denote the set of positive integers. After Erdos and St raus 
(see [3] and [7]), a set A C N is said admissible if for any pairs A\^A2 of subsets of 
A, one has 

aeAi 
a = 

aEAï 

a =H Ai 1=1 A2 I . 

Here I A I will denote t he number of elements of A. 

Straus has observed t h a t , if k = [2y/N + 1/4 - l j , t hen the set A = {N,N -
l , . . . , i V - - f c - f l } is admissible, On the other hand , he proved (cf. [7]) that if N = 

maxa € 4 a, and A is admissible, then | A \< (^-^ + o(l)^ y/N. T h e constant 4 / \ / 3 has 

been improved in [4], and in [1], J .M. Deshouillers and G.A. Freiman have replaced it 

by t he best possible constant 2. In [2], they prove that for N large enough, the above 

example of S t raus is t he greatest possible admissible set with maximal element N. 

Definition 1. — A set A C Z is stratified, if for 0 < t < t' the sum of any t distinct 
elements of A is strictly smaller than the sum of any t' distinct elements of A. 

1991 Mathematics Subject Classification. — 11P81, 11B75. 
Key words and phrases. — Partition, admissible, stratified, Durfee square. 
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Note that from the above definition all the elements of A should be positive (choose 
t = 0 and t' = 1), and so A is included in N. 

Clearly a stratified set is admissible. The above example of Straus is stratified, 
and in the table at the end of [4], it can be seen that most of large admissible sets 
are stratified. 

In this paper, stratified sets will be described in terms of partitions (Theorem 1). 
Further, we shall reformulate some of the conjectures about admissible sets given in 
[4] in terms of stratified sets. Finally, we shall show that the number of stratified 
sets with maximal element N is equal to the number of partitions of N (Theorem 
2) and a one to one correspondence associating such a stratified set to a partition of 
N is explicited. As a corollary, the lower bound given in [4] for the total number of 
admissible sets with maximal element N will be improved. 

It is possible to extend the notion of stratified set to subsets in arithmetic progres
sion and in this way to describe some other classes of admissible sets. For instance 
a subset of odd numbers A which satisfies that the sum of any t distinct elements 
is smaller than the sum of any £4-2 distinct elements will certainly be admissible, 
since the sum of t elements and the sum of (£4-1) elements are of different parity and 
therefore are unequal. I hope to return to this question in an other paper. 

At the end of this article, a table of the numbers p(N) of stratified sets and a(N) 
of admissible sets with largest element N is given. The table of a(N) given in [4] is 
erroneous. 

This work has started in September 1991, when G. Freiman was visiting me in 
Lyon. At that time he was trying to understand the structure of a large admissible 
set (it was before getting the result of [1]), and he wrote on the blackboard many 
equations like (11) or (12) below. So an important part of this paper is due to G. 
Freiman, and I thank him strongly. 

I thank also very much Marc Deleglise for calculating the values of a(iV), and for 
listing stratified sets which drove me to Theorem 2. I thank also Paul Erdos, Andras 
Sarkozy, Etienne Fouvry and Jean-Marc Deshouillers for fruitful discussions on this 
subject. 

Notation. — tAA will denote the set of the sums of t distinct elements of A. 

2. Description of a stratified set 
Firs t it will be proved: 

Proposition 1. — Let A = {a± < 0,2 < * * • < a>k = N} be a set of positive integers, 
and to = [(fc — 1) /2J . Then A is stratified if and only if 

(i) m a x £ 0

A * 4 < m i n ( t 0 + 1 ) A A 

Proof — From the definition, A is stratified if for alH, 1 < t < k — 1, 

(2) m a x t A i < min(£ + 1 ) A A 
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Let us first prove (2) for t < ÎQ. Prom (1), one has: 

ak + ak-i H h afc-to+i < «i -f a 2 H + a t o + i 

which implies 

(3) a f c + ak-i H h a f c _ t+ i < a i H h a t + i 4-
t o - t ' 

¿=1 

(&t+i+i "~ a f c - t + i - i ) • 

Bu t for 1 < i < £o - £5 we have t + l + i < fc — t + l — i since 2i < 2(£ 0 — t) < 

k — 1 — 2t < k — 2t; thus , t he last sum in (3) is non-positive and (3) yields (2). 

Let us now suppose t h a t t > to and set S = ^ t=i a * a n ( * t* = k — t — 1. We have 

k/2 - 1 < £ 0 < (k - l ) / 2 , so t h a t 

= k - t - l < k - t 0 - l < k - (k/2 - 1) - 1 = k/2 < t 0 + 1, 

and so, tf <to. From the above proof, one gets 

(4) max(£ ' ) A . 4 < min( f + 1 ) A A 

and from the definition of t', 

(5) m a x t M = S - min( t ' + 1) A ^4 

and 

(6) 
minft + 1 ) \ 4 = S - max(0 A A 

(4), (5) and (6) prove (2), and this completes the proof of Proposi t ion 1. 

Theorem J 
(a) Let k be even. There is a one to one correspondence between the stratified sets 

A C Z with m a x A = N and I A 1= k and the solutions of the inequality 

(7) xx + 2{x2 + xh-x) + 3(^3 + xk-2) + • • • + 
K 
2 

(xk/2 + xk/2+1) < N 
*2 

4 

k 

2 

where the x'.s are non neqative inteqers. 
(b) Let k be odd. There is a one to one correspondence between the stratified sets 

A dit with m a x .4 = N and \ A \— k and the solutions of the inequality: 

(8) X\ + 2(xo +Xk-l) H h 
fc-1 

2 
(X(k-l)/2 +^(fe+3)/2) 

+ 
fc + 1 

2 
%(k+l)/2 <N -

(k+1)2 
4 

Proof. — Let A = {a i ,a2 , . . . , a*.} C Z with 

(9) ax < a2 < < afc-i < ak = N. 

be a stratified set. Let us int roduce the new variables 

Xi = a^+i — a,{ — 1, 1 < i < k — 1. 
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From (9). one has 

(10) Xi > 0, 1 < i < k - 1. 

Conversely, (9) is clearly equivalent to a& = JV, and (10). Now we have to express (1) 
in terms of the x^s, and this explains the role played by the parity of k. 

Let us suppose k is even. From the definition of Xi, one has 

( I D xi -t~ 2x2 H \-txt = 
tit + 1) 

2 
— ai — o 2 — a>t +ta t+1 

2xk-i 4 3xk-2 H h (u 4-1) xk-u = JV 4 a f c 4 afc_i H h ûfc-u+i 

+ l)ak-u 

(w + l ) ( t i + 2) 

2 
+ 1. (12) 

One chooses £ = £ 0 + 1 = fc/2 in (11) and u = ¿0 = f — 1 in (12) and then (11) and 
(12) give 

maxt0

AA - min(£ 0 4 l)AA = ak 4- H h ak-to+i 

—ai — a2 — • • • — at 0 +i 

a?i 4- 2 ( x 2 4 Xk-i) H 

4 Jfe 
2 

(a?jb/o H-Xfc/o-i-i) 

- N + 
jfe2 

4 
4 

lb 
2 

- 1. 

T h e last t e r m —1 allows us t o t ransform the strict inequality (2) in inequali ty (7) 
with < sign. 

T h e proof of (8) when k is odd is similar. 

Corollary 1. — Let us denote the number of stratified sets with k elements, and max
imal element N by Sk (N). The generating functions are: 
for k even 

(13) 

oc 

iV=0 

Sk(N)xN =_ xk
2/4+k/2 

b/9 
1 

( l - ^ ) 2 

for k odd: 

(14) 
00 

N=0 
Sk(N)xN = 

x(k+1)284 

1 _ x(k+l)/2 

(fc-l)/2 

i=l 

1 

(1 - X1)2 ' 

Proof. — I t follows easily from t h e theorem, by the classical m e t h o d of generat ing 
series. For k even, t he generat ing series of t he number of solutions of 

(15) xi 4 2(x2 4- Xk-i) H \-
jfe 

2 
(xk/2 +X(k/2+l)) = n 
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is 

1 
1 - x 

k/2 

i=2 

1 

(1-xi)2 
and if in (15) " = n " is replaced by " < n ", the generat ing function must be 
multiplied by 1/(1 — x). At last, in (7), t he right hand side is N - k2/4 — k/2, which 
explains t he factor xk / 4 + f c / 2 in (13). 
For k odd, t he proof is similar. 

Corollary 2. — Let p(n) denote the classical partition function, i.e. the number of 
ways of writing n = n± + + * * • + n\ > ri2 • • • > > 1, and let us define 
P(n) = ^2™=0p(i)p(n — i). So, the generating function of P(n) is 

(i6) 
oo 

n=0 
P(n)xn = 

oo 

i=l 

1 

(I-xi)2 
The number of stratified sets A with largest element N and with a maximal number 
of elements is given by 

P(N - m2) if m2 <N < m(m + 1) 

and by 

P(N - m2 - m) if m(m + 1) < N < (m + l ) 2 . 

Proof — Let us suppose first t h a t m2 < N < m(m + 1). For k = 2m — 1, one has 

(17) N -
(fc + 1 ) 2 

4 
= N — m2 < m(m - h i ) — 1 — m2 = m — 1 = 

k - 1 
2 

But by (14), (16) and (17), the number of stratified sets, Sk(N), is equal to P(N—m2). 
For k = 2m, one has N - k2 

4 
k 
2 

= N - m(m + 1) < 0, and from (13) there is no 
stratified sets with k elements. 

The proof of the second case, m ( m + l ) < N < (m + l ) 2 is similar. 

Remark. — It follows from theorem 1 and the above proof, that the maximal number 
of elements of a stratified set A with maximal element N is | 2 v W + l / 4 - l J , t ha t 
is 2m - 1 if m2 < N < m ( m + 1) and 2m if m ( m + 1) < N < (m + l ) 2 . 

Table of P(N): 

iV = 0 1 2 3 4 5 6 7 8 9 10 11 
P(N) = 1 2 5 10 20 36 65 110 185 300 481 752 

This tab le has t o be compared with the column p(N) in the table of [4]. 
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3. A conjecture about admissible sets with maximal size 
Let m be an integer, N — m2 4- m — 2, k = 2m — 1, and let us consider t he set 

{N, N - 1 , . . . , N - m 4- 2, N - m , N - m - 1 , . . . , N - 2m + 1} . If t h e elements of 
th is set are denoted by a± < a 2 < * • • < a^, and if we set Xi = a*+i — ai — 1, we have 
Xi — 0 for all i bu t 

xm-1 = x (k-1) /2 =1 
So, (8) wri tes: 

m — 1 = 
k - 1 

2 
<N-

(k + l ) 2 

4 
— m2 -h m — 2 — m2 — m — 2 

which does not hold. Therefore the set is not stratified. It is easy to see that to = 
[(k - 1)/2J = m - 1, 

m a x t 0 A = mm(t0 + l ) A ^ l + 1 

bu t t h e second largest t e r m of toAA is smaller t h a n all elements of (t0 4- 1) A *4, and 
the set is admissible. 

A similar counter example admissible bu t not stratified does exist for N = m2 -f 
m — 1, k = 2m — 1, omi t t ing N — 2m ins tead of N — 2m + 1. 
These two counterexamples will be said quasistratified. 
Now, conjectures 1 t o 4 of [4] can be reformulated in t he following t e rms : 
Conjecture 1 of [4], t h a t t he maximal number of elements of an admissible set wi th 
greates t element N is |_2 v

/ A r + l / 4 - 1J, has been proved by J .M. Deshouillers and 
G.A. Freiman in [2], for N large enough. 
Conjecture 2 is replaced by: For N > 20, t he admissible sets of maximal size and 
largest element N are either stratified, or one of the sets m a d e of odd elements de
scribed in conjecture 3 of [4] (whenever N is of t he form m 2 — 1 or m 2 + m — 1), 
or a quasist ratified set described above (whenever N is of the form m2 4- m — 1 or 
m2 4 - m - 2). 
Conjecture 4 of [4] then becomes an easy consequence of our new conjecture 2. 
This new conjecture 2 fits the table of [4] for 20 < N < 50. This table has been 
extended up to N = 60, and the conjecture is verified for 20 < N < 60. 

4. How many stratified sets are there ? 
Theorem 2. — The set of stratified sets with largest element N and the set of partitions 
of N have same cardinal. Moreover an explicit one to one correspondence between 
these two sets is given. 

Proof. — Let m be an integer, and , as above, let us denote Sk(N) t he number of 
stratified sets wi th largest element N and wi th k elements. From (13) and (14) t he 
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generat ing function of S2m-i(N) + S2rn(N) is: 

oo 

N=0 

(S2rn-1(N) + S2m(N))xN 

= 
m 2 

1 - Xm 

m — 1 

i=l 

1 

(1 -X*)2 

+ xm2+m 
m 

i=l 

1 

(l-*i) 2 

= xm2 
m 

¿=1 

1 

(1-ci)2 

Now, the generat ing function of 5(iV), the to ta l number of stratified sets with 
largest elements N will be: 

oo 

N=0 

S(N)xN = 
oo 

m=l 

xm 

m 

i=l 

1 

( l - xiY 

But , by an identi ty due to Euler (cf. [5], p . 280): 

(18) 
OO 

m—1 

xm 

m 

i=l 

1 

(1 - a*) 2 
= 

oo 

i=l 

1 

1 -Xi = 
oo 

N=0 
P(N)xN , 

and so, S (A0 = p(N). 
To the par t i t ion n = n\ + n 2 4- h n^, with n ! > n 2 > • • • > n^, let us associate 

the so-called Ferrers d iagram, t h a t is the ar ray of dots made with n\ dots on the first 
line, n 2 dots on the second line, . . . , and so on nk dots on the kth line. For instance, 
to 10 = 4 + 3 + 1 + 1 + 1 corresponds the array: 

This graphical representat ion contains a square in the upper left corner, and the 
largest such square is called "Durfee square" in [5, p . 281]. 

In the combinatorial proof of Euler 's identi ty (18), it is observed in [5] t h a t 

xm2 
m 

i=l 

1 

(1 - X1)2 

is the generating function of the number of partitions such that the Durfee squares 
have an edge of length exactly m. To find the wanted one to one correspondence we 
just have to use the combinatorial proof of (18) in [5, p. 281]. 

From the above proof, one can see that 52m(iV) is equal to the number of partitions 
of N such that the Durfee square has an edge of length m, and moreover such that the 
corresponding array contains the rectangle of length m + 1 and height m. Similarly, 
5'2m-i(iV) is equal to the number of partitions of N such that the Durfee square has 
an edge of length m, but such that the array does not contain the above mentioned 
rectangle. 

Let us suppose first that the Ferrers diagram does not contain the rectangle (m + 
1) x m (that means that nm = m) and choose k = 2m — 1. The Ferrers diagram 
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consists of three parts: The Durfee square and two tails. Let us denote by U the 
upper right tail and by V the lower left tail, so that 

n = m 2 + |W| + |V|. 
Now, U can be interpreted as the Ferrers diagram (in column) of a partition of 
the parts of which are < m — 1. Let us denote by Xi the number of columns of U with 
height i ; then this partition writes 

(19) xi + 2x2 H h (m — l)Xm-l = \U\. 
Similarly V can be interpreted as the Ferrers diagram (in row) of a partition of |V|, 
the parts of which are < m. Let us denote by yi the number of rows of V with length 
i ; then this partition writes 

(20) 2/1 + 2y2 + • • • + my m = |V|. 

By introducing a new variable xk, let us transform the inequality (8) in the equality: 

(xi + Xk) + 2(x2 + xk-i) H h (m - 1) {xm-i +xrn+i)+mxrn — N -m2 = \U\ + |V|. 
The values of x i , . . . , x m _ i are given by (19), the values of xk = yi,Xk-i = 
y2j...,Xm = y m are given by (20), and the stratified set (ai, a2,..., a& = N) can 
be obtained by ak = N, and a?- = a7-4-i — 1 — x^. 

Example JV = 33 = 10 + 7 + 5 + 4 + 4 + 2 + 1 

m = 4, k = 7 
\U\ = 10,x3 = l,x2 = 2 , x i = 3 . 
IVI = 7,2/4 = 1,2/3 = 0,2/2 = l,2/i = 1. 
The stratified set corresponding to this partition is (19, 23, 26, 28, 30, 31, 33). 

Whenever the Ferrers diagram does contain the rectangle (m +1) x m (that means 
that n m _ i > m + 1) one chooses k = 2m, and before defining the tails U and V we 
have to take off the rectangle, so that 

n = m(m + l) + |W| + |V|. 

The parts of the partition represented by U are allowed to be equal to m, so that (19) 
becomes 

x\ + 2x2 H h mxm = \U , 
while (20) does not change. (7) becomes: 

(xi + x f c ) + 2 ( x 2 +xk-i) H hm(xm + x m + i ) = N - m(m + 1) = \U\ + V 

and the end of the calculation of the a\s is similar. 
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For instance t he stratified set associated to t he par t i t ion of 10 = 4 + 3 + 1-1-1 + 1, 
the ar ray of which is displayed above, is ( 6 , 8 , 9 , 1 0 ) . 

Corollary 3. — The number a(N) of admissible sets with largest element N is greater 
thanp(N), the number of partitions of N. 

Proof — It follows immediately from Theorem 2, since any stratified set is admissi
ble. 
From t h e result of Hardy and Ramanujan , it is known t h a t (cf. [6], formula 1.41): 

p(n) ~ 
1 

4 n \ / 3 
exp 71 

2n 

3 

So the above corollary improves the lower bound given in [4]: 

a(N) > 2 2 ^ - 2 - 1. 

For t he moment , I a m not able t o improve the upper bound of [4]: 

a(N) < exp(cVÏVlogiV), 

bu t I conjecture t h a t a(N) is not much greater t h a n p(N) and satisfies 

a(N) = exp (iry/W + o(l))VN 

and, may be (see the table) t h a t a(N) ~ p(N). 
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N p(N) a(N) a(N)/p(N) N P(N) a(N) a(N)/p(N) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

1 
2 
3 
5 
7 

11 
15 
22 
30 
42 
56 
77 

101 
135 
176 
231 
297 
385 
490 
627 
792 

1002 
1255 
1575 
1958 
2436 
3010 
3718 
4565 
5604 
6842 
8349 

10143 
12310 
14883 
17977 
21637 
26015 
31185 
37338 

1 
2 
3 
6 
9 

15 
23 
39 
54 
87 

121 
178 
249 
362 
484 
708 
928 

1265 
1685 
2306 
2886 
3918 
4987 
6418 
8265 

10601 
13104 
16947 
21069 
26088 
32804 
40935 
49360 
61712 
75338 
90456 

111771 
134685 
160353 
195993 

1.00 
1.00 
1.00 
1.20 
1.29 
1.36 
1.53 
1.77 
1.80 
2.07 
2.16 
2.31 
2.47 
2.68 
2.75 
3.06 
3.12 
3.29 
3.44 
3.68 
3.64 
3.91 
3.97 
4.07 
4.22 
4.35 
4.35 
4.56 
4.62 
4.66 
4.79 
4.90 
4.87 
5.01 
5.06 
5.03 
5.17 
5.18 
5.14 
5.25 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

44583 
53174 
63261 
75175 
89134 

105558 
124754 
147273 
173525 
204226 
239943 
281589 
329931 
386155 
451276 
526823 
614154 
715220 
831820 
966467 

1121505 
1300156 
1505499 
1741630 
2012558 
2323520 
2679689 
3087735 
3554345 
4087968 
4697205 
5392783 
6185689 
7089500 
8118264 
9289091 

10619863 
12132164 
13848650 
15796476 

235189 
273087 
335262 
394565 
465548 
551586 
659344 
750256 
912459 

1051209 
1230129 
1433643 
1705477 
1900438 
2308752 
2604726 
3041041 
3483815 
4132473 
4527898 
5491786 
6101289 
7090459 
8019859 
9504818 

10230396 
12413471 
13595124 
15791911 
17584116 
20860378 
22095088 
26904818 
29025643 
33687817 
37071664 
44046119 
45918783 
56109976 
59689468 

5.28 
5.14 
5.30 
5.25 
5.22 
5.23 
5.29 
5.09 
5.26 
5.15 
5.13 
5.09 
5.17 
4.92 
5.12 
4.94 
4.95 
4.87 
4.97 
4.69 
4.90 
4.69 
4.71 
4.60 
4.72 
4.40 
4.63 
4.40 
4.44 
4.30 
4.44 
4.10 
4.35 
4.09 
4.15 
3.99 
4.15 
3.78 
4.05 
3.78 
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ON T H E S T R U C T U R E OF SETS OF LATTICE POINTS IN 
THE P L A N E W I T H A SMALL DOUBLING P R O P E R T Y 

by 

Yonutz V. Stanchescu 

Abstract — We describe the structure of sets of lattice points in the plane, having a 
small doubling property. Let K be a finite subset of Z2 such that 

|K + K| < 3.5|K| - 7 . 

If K lies on three parallel lines, then the convex hull of K is contained in three 
compatible arithmetic progressions with the same common difference, having together 
no more than 

|K| + 3 
4 

|K+K| - 10 
3 

|K| +5 

terms. I his upper bound is best possible. 

Notation 

We write [m,n] = {x £ Z\ m < x < n}. For any nonempty finite set K C R, 
K = {ui < U2 < - - - < Uk} we denote by k = \K\ the cardinality of K and by £(K) 
the length of K, that is the difference between its maximal and minimal elements. 
If K C Z and k > 2, by d(K) we denote the greatest common divisor of Ui — u±, 
1 < i < k. If Jfe = 1, we put d{K) = 0. Let h(K) = t{K) -\K\ + l denote the number 
of holes in K that is h(K) = | [ui,Uk] \ K\. 

Let A and B be two subsets of an abelian group (G,+). As usual, their sum is 
defined by A + B = {x E G | x = a + b, a G A, b e B} and we put 2A = A + A. 
The convex hull of a set § C R2 is denoted by conv(S). Vectors will be written in the 
form u = (ui,u2), where u\ and u2 are the coordinates with respect to the canonical 
basis ei = (1,0), e 2 = (0,1). 

1991 Mathematics Subject Classification. — 05D05, 11B75, 11P99. 
Key words and phrases. — Two-dimensional lattice points, small doubling property. 
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1. Introduction 
In additive number theory we usually ask what may be said about M + M, for a 

given set M. As a counterbalance to this direct approach, consider now the inverse 
problem: we study the properties of M, when some characteristic of M + M is given, 
for example, the cardinality of the sum set M + M. It was noticed by Freiman [Fl] 
that the assumption that \2M\ is small compared to |M|, implies strong restrictions on 
the structure of the set M. If \2M\ = 2\M\ - 1 and M Ç Z, then M is an arithmetic 
progression. If we choose bigger values for |2M|, the problem ceases to be trivial. 
The fundamental theorem of G.A. Freiman [F2] gives the structure of finite sets of 
integers with small doubling property: \2M\ < co|M|, where CQ is any given positive 
number. This theorem was proved using geometric methods of number theory and a 
modification of the method of trigonometric sums. Y. Bilu recently studied in [B] a 
case when CQ is a slowly growing function of |M|. The generalization to the case of 
different summands M + iV, with a new proof, is to be found in the paper of I.Z. Ruzsa 
[R] 

However, in the case of small values of the constant Co, elementary methods yield 
sharper results. Let K C Z 2 be a finite set of lattice points. Two cases have been 
studied by G. A. Freiman [Fl], pp.11, 28. 
Theorem A. — J/IK + KI < 3IKI - 3 , then 
(1) K lies on a straight line. 
(2) K is contained in an arithmetic progression of no more than v = IK+KI-IKI + l 
terms. 
Theorem B. — J/IK + KI < ±p|K| - 5 , |K| > 11 and K is not contained in a line, 
then 
(1 ) K lies on two parallel straight lines. 
(2) K is contained in two arithmetic progressions with the same common difference 
having together no more than v = |K + K| -2 |K| + 3 terms. 

The generalization of Theorems A(l) and B(l), to s lines, s > 3, was obtained in 
[S2]: 

Theorem C. — J/|K + K| < 4 - 2 
s- |K| - (2s + 1) and IKI > 16«(« + 1)(2« + 1), 

then there exist s parallel lines which cover the set K. 
A result which generalizes Theorems A(2) and B(2) was obtained in [S3]. 
Theorems A(l), B(l) and C cannot be sharpened by increasing the upper bound 

for |2K|. (see Example A in [S2].) Assertion (2) of Theorems A and B gives the 
precise structure theorem for 5 = 1 and s = 2. In [S 2] we obtained a sharpening 
of Theorem B(2) by giving the best possible value of the upper bound for |2K|, 
under the additional assumption that K lies on s = 2 parallel lines. We proved that 
Theorem B(2) is true, even we replace |2K| < ^ |K | - 5 by |2K| < 4|K| - 6. More 
precisely: 
Theorem S. — Let K C Z 2 be a finite set, which lies on the lines x<i = 0 and X2 = 1. 
Let the set of abscissae for x>2 = 0 and xi ~ 1, respectively be equal to A and B. 
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(l)If£(A)+£(B)<2\K\ - 5 , then (d(A),d(B)) = 1 and 

|2K| > (3|K| - 3) + h(A) + h(B) = (2IKI - l ) + * ( A ) + £ ( ß ) . 

^ ; / / € ( A ) + € ( B ) > 2 | K | - 4 and (d(A),d(B)) = 1, tòen |2K| > 4|K| - 6. 

It is not difficult to give examples to show that Theorems A(2), B(2) and Theorem S 
cannot be sharpened by reducing the quantity v or by increasing the upper bound for 
I2KI. (see Examples Bl and B2 of Section 3, [S2]) 

The present paper is devoted to the generalization of Theorem A(2) and S to the 
case of s = 3 parallel lines. Instead of condition |2K| < 3k — 3, of Theorem A and 
condition |2K| < ^-k — 5 of Theorem B, we study now a set K of integer points on a 
plane, with the following small doubling property 

|2K| < 3.5|K| - 7. 

Take a lattice C generated by K We wish to obtain an estimate for the number of 
points of C that lie in conv(K); we are interested in an upper bound of |£flconv(K)|. 
Some estimate of this number was obtained in [S2, Theorem C]. In this paper we shall 
give the best possible estimate for \C fl conv(K)|. The result implies an affirmative 
answer to a question of G.A. Freiman [F3] and generalizes previous results of [Fl] 
and [S2]. 

2. Main Result 

An arithmetic progression in Z 2 is a set of the form 

P = P(a, A) = {a, a + A, a + 2A, . . . , a + (p - 1)A}, 

where a, A G Z 2 and p = \P\ > 1. The vector A is called the common difference of 
the progression and a is the initial term . We say that Pi = Pi (a ,̂ A^), i = 1,2,3 are 
compatible arithmetic progressions, if Ai = A2 = A3 = A and a\ +03 = 2a2(mod A). 

Now we are ready to formulate our main result. 

Theorem 1. — Let L C Z 2 be a finite set of lattice points with small doubling property: 

IL + LI <3.5|3L| - 7 . (2.1) 

(1) If |L| > 1344, then the set L lies on no more than three parallel lines. 
(2) If h is not contained in any two parallel lines, then conv(L) fl Z 2 is included in 
three compatible arithmetic progressions having together no more than 

v = ILI + 
3 
4 

IL + LI - 10 
3 

LI + 5 = 
3 
4 

|L + L| - 2|L| + 5 (2.2) 

terms. 

Assertion (1) of Theorem 1 is a partial case of Theorem C, for s = 3. We shall 
reformulate our main result and prove that the new formulation implies assertion (2) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



220 Y. STANCHESCU 

of Theorem 1. We need some definitions. Let K C Z 2 be a finite set of lattice points 
that lies on three parallel lines: 

K = Ki LHK2 UK3, 
Kx ç (x2 = 0), K2 Ç (x2 = 1), K3 C (x2 = h), h>2. (2.3) 

Let the set of abscissae of Ki be respectively equal to Ki and denote di = d(Ki). 
Put 

K* = conv(IK) n Z 2 , k = \K\, k* = |K* | (2.4) 

and 
d(K) = gcd(di,d 2,d 3). (2.5) 

Such a finite set of Z 2 is called a reduced set of lattice points, iî h = 2 and d(K) = 1. 
We would like to note at this point that this definition may be formulated in an 

obvious way, for sets that lie on s > 2 parallel lines. In this paper, however, a reduced 
set of lattice points will always be a set that lies on three parallel lines. 

Theorem 2. — Let K Ç Z 2 be a reduced set of lattice points. If |2K| < 3.5|K| — 77 

then 

Jfe* := |conv(3K) fi Z 2 | < |K| + 
3 
4 

I2KI -
10 
3 

|K| + 5 = 
3 
4 

I2KI — 2IKI + 5 

Proof of case (2) of Theorem 17 assuming Theorem 2. — Since L lies on three paral
lel lines, there is an affine isomorphism of the plane which maps L onto a set K such 
that 

(i) K lies on (x2 — 0), (x2 = 1), (#3 = /1), h > 2, 
(ii) mi = m2 = 0, where we put mz- = m.m(Ki), for i = 1, 2, 3. 
Since the function |2L| is an affine invariant of the set L, we see that 

|2K| = |2L| < 3.5|L| - 7 = 3.5|K| - 7. (2.6) 

Denote d = d(K). Remark that, thanks to the small doubling property (2.6) one has 

h = 2 and mi + rns = 2m2 (mod d). (2.7) 

Indeed, if h > 2, then (Ki + Ka ) n 2K2 = 0 and thus 

|2K| > \2Kt\ + \Ki + K2\ + \Ki + K3\ + \2K2\ + \K2 + K3\ + \2KZ\ 

> {2ki - 1) + (kt + k2 - 1) + (fci + *s - 1) 

+ (2k2 - 1) + (fca + k3 - 1) + (2ks - 1) 

= 4k - 6 > 3.5fc - 7. (2.8) 

In the same way, if mi + rrts ^ 2m2(modd), then for x G Ki^^y" € K2, z £ K% we 
have y' + y" = 2m 2 ^ mi + m 3 = x + ^(modd). Thus, (Ki + K3) D 2K2 = 0 is valid 
and (2.8) follows again. 

Consequently, K and L are contained each in three equidistant compatible arith
metic progressions. 

Equation (2.7) and (ii) ensure that m% = 2m2 — mi = 0(modd). This yields 
w = 0(modd) for every w G Ki U K2 U K^. We can now easily check that the 
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linear isomorphism (x,y) —> (x/d,y), maps K onto a reduced set IK' of lattice points. 
Assertion (2) of Theorem 1 follows now easily, because of the inequality 

t; = |IK,*|< 3 
4 (|2K'*| -2k'* + 5) = 

3 
4 

(|2K| -2fc + 5) = 3 
4 

(I2LI -2ILI + 5), 

due to Theorem 2 applied to the set IK'*. 

As usual, the solution of an inverse problem allows us to obtain nontrivial lower 
bounds for |IK+IK|, thus solving at the same time a direct additive problem. By L* = 

L(3K*) = 3 

i-l 
£* we denote the length of IK*, where 1l =l1 =l (k1) , e%=e3 = £(K3) 

and z2 max(conv(K) n (x2 = 1)) - min(conv(IK) fi {x2 = 1)) > h = i(K2). The 
assertion of Theorem 1 and 2 may be reworded as follows: 

Theorem 3. — Let K C Z 2 be a finite set of lattice points which lies on three parallel 
lines x2 = 0, x2 = 1, x2 = 2. 
( i ; i / L * < § ( | K | - 4 ) , then d(K) = 1 and |2K| > (2|K| - 1 ) + |L*. 
(2)IfL*>l(\K\-4) and d(K) = 1 ? then |2K| > 3.5|K| - 7. 

We conjecture that inequality |2K| < 3.5^ — 7 of Theorem 2 may be actually 
replaced by |2K| < 4k - 7. 

Conjecture. — Let K Ç Z 2 be a reduced set of lattice points that lies on three parallel 
lines. If |2K| < 4|K| - 7, then 

k* := |conv(K) H Z 2 | < |K| + 
3 
4 |2K| -

10 
3 IKI + 5 = 

3 
4 |2K| - 2|K| + 5 

We construct an example IK C Z 2 such that 
(i) IK satisfies the small doubling property |2K| < 3.5k - 7 or |2IK| < 4k - 7. 
(ii) The number of lattice points in conv(IK) is exactly k* = |(|2IK| — 2k + 5). 
This means that the upper bound (2.2) is best possible. Thus, Theorems 1 and 2 

cannot be sharpened by reducing the quantity v — k*. 

Example. — Choose a > b two natural numbers and define IK C Z 2 by : 

Kx = {0,l ,2, . . . ,2a + 6}U{2a + 26}, üf2 = {0,l,2,. . . ,o}U{a + ö}, K3 = {0}. (2.9) 

Then h = 2a + 6 + 2, k2 = a + 2, h = 1, k = 3a+ 6 4-5, fc* = L * + 3 = L + 3 = 
3a 4- 36 + 3,4k - 7 = 12a + 46 + 13. Note that 2K2 = Ki + K3 and therefore 

I2KJ = 12^x1 + \KX + K2\ + \KX + K3\ + \K2 + K3\ + 12^31 
= (4a + 36 + 2) + (3a + 26 + 2) + (2a + 6 + 2) + (a + 2) + 1 

= 10a+ 66 + 9 = (2fc-l) + 
4 
3 

L* = (2k - 1) + 
4 

3 
(k* - 3 ) . 

This proves (ii), that is k* = |(|2IK| — 2k + 5). Moreover, assertion (i) is also true 
because, if a > 6-2 , then |2K| < 4|K|-7 and if a > 56-3, then |2K| <3.5|K|-7. • 
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We shall need a generalization of Theorem A(2) to the case of distinct summands. 
The first result in this direction, due to G.A. Preiman ([F4]), was sharpened recently 
by Lev & Smeliansky [L-S] and Stanchescu [SI]. 

Let A = {0 = a% < a2 < • • • < a&}, B — {0 = b\ < b2 < • • • < &/} be two sets of 
integers. Define e = e(A,B) e {0,1} by e = 1, if 1(A) = 1{B), and e = 0, if 1(A) ^ 
1(B). 

Theorem D 
(1) If max(l(A),e(B)) < \A\ + \B\ - 2 - e, then \A + B\ > (\A\ + \B\ - 1) + 
m&x(h(A),h(B)). 

(2) If 1(A) > \A\ + \B\ - 1 - e, £(A) > £(B) and d(A) = 1, then \A + B\ > \A\ 4-
2\B\ - 2 - e. If 1(A) > \A\ + \B\ - 2, i(A) > £(B) and d(AUB) = 1, then \A + B\> 
|i4| + | B | - 3 + min(|A|,|B|). 
(S)Ifd — d(A) > 1 and B intersects exactly s residue classes modulo d, then \ A+B\ > 
\B\ + s(\A\ -I). If d(A UB) = 1, then \A + B\ > \B\ 4- 2(\A\ - 1). • 

The proof of D(l) is to be found in [Si] and of D(2) in [L-S]. We shall use this 
theorem for A = Ki and B = Kj, 1 < i, j , < 3. In this case we put sij = e(Ki, Kj). 

Denote by ki = |Ki| = | K i | , ^ = min(Äi), Mi = max(Äf), £i = £(Ki), di = 
d(Ki), hi — h(Ki), for every 1 < z < 3. Denote by H = hi +h2 + /i 3 , the number of 
interior holes of K and by H* = \K*\ — \K\ = k* — k, the total number of holes of 
iL By L = L(K) = £i + £2 + £3 = H + - 3, we denote the Zen#£/i of K For every 
pair 1 < i < j < 3, we let Kij = IQ U Kj and d̂ - = (di,dj) the greatest common 
divisor of di and cL. 

In the remaining sections the set K C Z 2 denotes a reduced set of lattice points 
(on three parallel lines). We note at this point two inequalities, which will be used in 
the paper: 

|2K| = \2KX\ + \Ki + K2\ + max(|2ÜT2|, \KX + K3\) + \K2 + ÜT3| + № 1 
> (2ki - 1) + (Ari + *2 - 1) + max(2&2 - 1, fci + k3 - 1) 

+ (fc2 + * 3 - l ) + ( 2 f c 3 - l ) , 
which leads to 

|2K| > 3*i + 4fc2 + 3fc3 - 5, (2.10) 
I2KI > 4fci + 2fc2 + 4fc3 - 5. (2.11) 

3. Some Lemmas 
Lemma 3.1. — Suppose k2 = 1. Then \2K\ > 4IKI - 7. 

Proof — Since k2 = 1, inequality (2.11) yields |2K| > 4fci+2fc2+4fc3-5 = 4k-7. 

Lemma 3.2. — Suppose that Ki and K3 lie each in one residue class modulo d, d > 1. 
Then |2K| > 4|K| - 7. 
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Proof. — Since IK is a reduced set, it follows that in K2 there are at least two elements 
in-congruent modulo d. We estimate \K\ 4- K2\ and \K2 + K3\ by Theorem D(3) and 
obtain 
|2K| > (2fci - 1 ) 4 - (k2 4- 2ki - 2) 4- (2k2 - 1) 4- (2*3 + *2 - 2) + (2*3 - 1) > 4* - 7. 

Lemma 33. — Suppose ki = max(*i, k2, k3), d\ = d(K\) > 1. I%en|2K| >4 |K | -7 . 

Proof — If k2 = 1, we use Lemma 3.1. If k3 = 1, then Ki and K3 lie each in only 
one residue class modulo d\ and we apply Lemma 3.2. Therefore, we assume 

min(*i, * 2 , k3) > 2. (3.1) 

We distinguish three cases: 
(a) Suppose that (d\,d2) = (di,d3) = 1. Theorem D(3) gives 

|2K| > |2üfi| + \KX + K2\ + + # 3 | + 1 ^ 2 + K3\ + |2K 3| 

> (2*i - 1) + (*& + 2fci - 2) + (2*i + * 3 - 2) + (*2 + *3 - 1) + (2*3 - 1) 

= 6*1 + 2* 2 + 4*3 - 7 = 4* - 6 4- 2(*i - * 2) - 1 > 4* - 7. 

(b) Suppose d = (di,d2) > 1. It follows that (d,d3) = 1, because IK is reduced. 
Theorem D(3) yields 

|2K| > (2*! - 1) + (*i + * 2 - 1) + (2*i + * 3 - 2) + (2*2 + * 3 - 2) + (2*3 - 1) 

= 4 * - 7 + ( * i - * 2 ) > 4 * - 7 . 

(c) Suppose ((¿1,̂ 3) > 1. We apply Lemma 3.2. 

Lemma 3.4. — Suppose *2 = max(*i, *2, *3 ) and d2 = d(K2) > 1. Then |2K| > 
4IKI - 7. 

Proof 
(a) Suppose 1 = * 3 = * x . Then we apply Lemma 3.2. 
(b) Suppose 1 = *3 < *i < *2- It is clear that (di,d2) = 1, because IK is reduced. 
Theorem D(3) implies 

|2K| > (2*! - 1) + (2*2 + *i - 2) + (2*2 - 1) + * 2 + 1 = 3*1 + 5*2 - 3 > 4* - 7. 

We may suppose now that *i > *3 > 2. 
(c) Suppose (d2,di) = (d2,d3) = 1. Using Theorem D(3) we get 

|2K| > (2*i - 1) + (2*2 + *i - 2) + (2*2 - 1) + (2*2 + * 3 - 2) + (2*3 - 1) 

> (4* - 6) + (*2 - *i) + (*2 - * 3) - 1 > 4* - 7. (3.2) 

(d) Suppose d = (d2jd\) > 1 (the case (¿¿2,̂ 3) > 1 is similar). It is clear that 
(d,d3) = 1 and therefore \K2 + K3\ > 2k2 + * 3 - 2. Moreover |(Ki + K3)\23K2| > kx. 
Indeed, K\ and 2K2 each lie in only one residue class modulo d and in K3 there are 
at least two elements, say x <y, non-congruent modulo d. Thus, (x-hKi)D2K2 = 0 
or (y + Ki) D 2K2 = 0, which yields |2K2 U (Ki 4- K3)| > 2*2 - 1 -h *i. In conclusion, 

I2KI > (2*i - 1) + (*i + * 2 - 1) + (2*2 - 1 + *i) 4- (2*2 + * 3 - 2) + (2*3 - 1) 

= 4*! + 5*2 + 3*3 - 6 > 4* - 6. 
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Lemma 3.5. — Suppose that K2 and K3 lie each in only one residue class modulo d, 
with d>l. Then I2KI > 3.5IKI - 7. 

Proof. — If k2 = 1, we use Lemma 3.1. Suppose k2 > 2. K\ intersects at least two 
residue classes modulo d, because IK is a reduced set. Thanks to Theorem D(3), we 
get 

|2K| > (2ifci - 1) + (*i + 2*2 - 2) + (*i + 2*3 - 2) f (*2 + * 3 - 1) + (2*3 - 1) 
- (4*1+3*2 + 5*3-7). (3.3) 

Take the arithmetic mean between inequalities (3.3) and (2.10). We get 
|2K| > 3.5*i + 3.5*2 + 4*3 - 6 > 3.5* - 7. 

Next we discuss what happens if d2 > 1. By the previous Lemma it is enough to 
study the case * 3 > 2, *i > 2, d23 = d2\ = 1. 

Lemma 3.6. — Suppose thatd(K2) > 1, (d 2,di) = №,^3) = 1. Then\2E\ >4 |K | -7 . 

Proof — In view of Theorem D(3), we get 
|2K| > |2#i | + \KX + K2\ + \Kx + K3\ + \K2 + K3\ + \2K3\> ( 2 * i - l ) + 

+ (*i + 2*2 - 2) + (*i + * 3 - 1) + (*3 + 2*2 - 2) + (2*3 - 1) = 4* - 7. 

Lemma 3.7. — If d2 = 1,d1 > l,d3 > 1, then |2K| > 4|K| - 7. 

Proof. — We apply Theorem D(3) and we get 
|2K| > |2Ki| + | K i + K 2 | + |2ii:2| + | ^ 2 + i f 3 | + |2ir3| 

> (2*i - 1) + (*2 + 2*i - 2) + (2*2 - 1) + (*2 + 2*3 - 2) + (2*3 - 1) > 4* - 7. 

Conclusion. — Lemmas 3.1-3.7 and inequality |2IK| < 3.5|K| — 7 ensure that k2 > 
2, d2 — d(K2) = 1. Indeed, if d2 > 1, then Lemma 3.6 yields (d2,d3) > 1 or 
(d2,di) > 1 and this leads to a contradiction, in view of Lemma 3.5. We obtained 
that d2 = 1. By Lemma 3.7, d\ and d3 cannot be simultaneously greater than one. 
Suppose that d2 = d3 = 1, d\ > 1. Lemma 3.3 shows that *i / max(*i,*2,*3). 
Similarly, one has k3 ^ max(*i, * 2 , ¿3), if d2 = d\ — 1, d3 > 1. In consequence, one 
of the following situations holds 

(a) di = d2— d3 = 1, * 2 > 2, (3.4) 

(¡3) d2 = d3 = 1, di > 1, fci / max(*i,* 2,*3), *2 > 2, (3.5) 

(7) ¿2 = di = 1, d 3 > 1, h ^ max(k1,k2,k3), k2 > 2. (3.6) 

We end Section 3, by proving a lemma which will be used several times in the sequel. 
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Lemma 3.8. — Suppose max(Ai, h2j h3) < min(*i, * 2 , ks) — 2. / / 

|2K| < 4|K| - 7, (3.7) 

then 
(a) |2K| > (2|K| - 1) + 24 + 24 and |2K| >(2|K| - 1 ) + ¿ 1 + 2 * 2 + 4 * , 

(b) |2K| > ( f |K| - 5) + IH = |(|K| + L), 

fC;|2K( > ( 2 | K | - l ) + fL*. 

Proof. — It is clear that 4 < 2ki - 3, max(4, 4) < *« + *j - 3, for every 1 < i, j < 3. 
Applying Theorem D(l) we obtain \Ki + Kj\ > ki + % - 1 + max(/i;, Aj). First, we 
estimate |2JK| by using 2KX, Kx + K2i Kx + üf3, K2 + üf3, 2ÜT3* We can write 

|2K| > (2*i - 1 + hi) + (*i + * 2 - 1 + max(Ai, A2)) + (fei + * 3 - 1 + max(/ii, A3)) 

+ (*2 + * 3 - 1 + max(A2, A3)) + (2*3 - 1 + A3) 
= 4*i + 2*2 + 4* 3 - 5 + hi + A3 (3.8) 

+ max(/ii, /i2) + max(/i2, A3) + max(A3, Ai) 

> 
4*i + 2*2 + 4 * 3 - 5 + H + 2max(Ai, A2, A3), if h2 ^ max(Ai, A2, A3). 

4*i + 2*2 + 4*3 - 5 + 2H - min(Ai, A2, A3), if A2 = max(Ai, h2j h3). 

> 4*i + 2*2 + 4*3 - 5 + 
5 
3 

H. 

Thus, |2K| > (2|K| -1 ) + 24 + 2 4 . Moreover, inequality (b) is also true, if * > 3* 2 . 
Second, using 2K2 instead of Ki + K3 we get 

|2K| > (2*i - 1 + hi) + (*i + * 2 - 1 +max(Ai,A2)) + (2*2 - 1 + h2) 
+ (*2 + *3 - 1 + max(A2, h 3)) + (2*3 - 1 + A3) 

= 3*i + 4*2 + 3*3 — 5 + hi + h2 + h3 + max(Ai, A2) + max(A2, A3) 

> 3*i + 4 * 2 +3*3 - 5 + H + 2 max(Ai, A2, A3), if /12 = max(Ai, h2l h3). 
3*i +4*2 + 3 * 3 - 5 + 2fT - min(Ai, A2, A3), if h2 ^ max(Ai, A2, A3). 

> 3*i + 4*2 + 3*3 - 5 + 
5 
3 

H. 

Thus, |2K| > (2|K| - l ) + 4 + 2 4 + 4 . Moreover, inequality (b) is also true, if * < 3* 2 . 
We prove now inequality (c). 

First Case. — Suppose [m2jM2] D |(mi +m 3 ) , | (Mi + M 3 ) 
It is clear that L* = L = 4 + 4 + 4 and in this case inequality (c) follows from 

(a), in view of 24 > 4 + 4 - We could have used (b). Indeed, 

|2K| > 10 
3 

|K | -5 ) + 
5 
3 

H>> 10 
3 

IKI - 5) + 
4 
3 

H = (2IKI - 1) + 
4 
3 

L = (2IKI - 1) + 
4 
3 

L*. 
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Second Case. — Suppose [m 2 ,M2] Ç | (mi + m 3 ) , | ( M i + M 3 ) . 

It is clear that 

£ * = 4 4-
1 
2 

( 4 + 4 ) + 4 = 
3 
2 

( 4 + 4 ) , 
4 
3 L* = 24 + 24. 

Inequality (c) follows from (a). Actually, (3.8) shows that a sharper inequality is true: 

|2K| > 4*i 4- 2*2 4- 4*3 - 5 4- 2ht 4- 2h3 4- max(h1,h2, h3) 

= (2k - 1) 4- 24 4- 24 4- max(/ii, ft2, ft3) 

> (2* - 1) 4- 24 4- 24 = (2* - 1) 4-
4 
3 

L 

Third Case. — Suppose m2 < | (mi 4- ra3) < M2 < | (Mi 4- M 3). Put 

S = mi 4- ra3 

2 
- ra2. 

Define 
if 2" = K2 n m2 

mi 4- m 3 

2 
, * 2 — I if2 I* (3.9) 

We improve inequality (3.8) by taking into account 

|2K2\(Ki +Ka)| > \2Kf\ > {2k2 - 1). 

One has k2 > 5 — h2 and therefore (3.8) shows that 

|2K| > |2K13\ + \K2+K1\ + \K2 + K3\) + |2KB\(KI +K8)| 

> (Iki + 2k2 + 4k3 - 5 + hx + h3 + max(/ii, h3) + 2h2 ) + (2K - 1) 

> 4ki + 2k2 + 4k3 - 6 + 
3 
2 

{hi +h3) + 25. (3.10) 

If ¥ > 1k+ h3 
2 

+ 1, then inequality (c) is proved, because (3.10) ensures 

I2KI > (4*i 4- 2* 2 + 4*3 - 5) 4- 2hx 4- 2h3 + 
4 
3 L 

= (2k - 1) + 24 + 2l3 + 
4 
3 

Ô 

= (2k - 1) + 4 
3 

¿1 + 
1 
2 

(ix +e3) + s + e3 

= (2k - 1) + 4 
3 

Now we may suppose that ¥ < 
h1 + h3 

2 
4-1. First of all, note that 

28-1 < * 2 - l < 4 . (3.11) 

Indeed, in view of (3.10) one has 

|2K| > (4fci + 2k2 + 4k3 - 6) + 3 
2 
3 

Ô - 1) + 26 = (4fci + 2&2 + 4fc3 - 9) + 40 (3.12) 

and if 26 > * 2 4-1 we would obtain I2KI > 4* - 7, in contradiction with (3.7). 
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We estimate now |2K.2\(Ki + K3 )|. It is clear that 7B2 + (if2 H [m2,mi + ra3 — 7712)) 
is included in 2]K2\(Ki + K3) . The length of [m2,mi -f ra3 — ra2) is exactly 25 and in 
view of inequality (3.11) we obtain \K2 n [m 2,mi -f ra3 — m2)| > 25 — /i 2 . Therefore 

|2JK2\(IK1 +Кз)| > 2ö-h2. (3.13) 
As in (3.10), we improve inequality (3.8) by taking into account 2K2\(Ki + K 3 ) . One 
has 

|2K| > |2JK13| + | i f 2 + i f i | + | i f 2 + i f 3 | + |2]K2\(IK1 +Ke)| 
> (4*i + 2*2 + 4* 3 » 5 -f 2/11 + 2h3 + Л2) + (25 - h2) 

> (2k - 1) + 24 + 24 + 4 
3 5 = ( 2 * - l ) + 

4 
3 

In the remaining part of the proof, we shall distinguish three main cases according 
to * 2 = min(*i,*2,*3), *2 = max(*i,*2,*3), *3 < *2 < *i-

4. First Case : * 2 == min(*i, k2y *3) 

Theorem 4.1. — Suppose * 2 < * 3 < *i- / / |K -h K| < 3.5|K| - 7, then k2>2 and 
(%) d\ = d2 = d 3 = 1 and max(/ii, /i25 ̂ 3) < k2 — 2. 
(ii) |2K| > f |K| - 5 ) + | Я = |(|K| +L) . 

^1*; |2K| > (2|K| - 1 ) + |L*. 
Proof. — In view of *2 < * 3 < *i, it is enough to prove only (i), because assertions 
(ii) and (hi) are direct consequences of Lemma 3.8 and inequality max(/ii, h2l h3) < 
*2 —2. Using *i = max(*i, * 2 , * 3 ) , equations (3.4), (3.5), (3.6) and the small doubling 
hypothesis we deduce that k2 > 2, d\ = 1, d2 = l ,d 3 > 1. 

1. We show that d3 = 1. 
Suppose that d3 > 1. By Theorem D(3) we have |2K| > (2*i - 1) + (*i + * 2 - 1) + 

(*i + 2*3 - 2) + (*2 + 2*3 - 2) + (2*з - 1) = 4* - б + 2(*з - k2) - 1 > 4* - 7. 
2. We Л̂ош Йа^ max(/ii, /i2, /г3) < k2 — 2. 
Suppose that max(h2l hi) > k2 — 1, for i = 1 or i = 3. Using Theorem D, one has 

I if2 + ifi| > min (ki + 2*2 - 3, ki + * 2 - 1 + max(/ii, /i 2)) > (h + * 2 - 1) + (*2 - 2). In 
consequence, we improve (2.11) to |2K| > 4*i+3*2+4*3—7. Take the arithmetic mean 
between (2.10) and the previous inequality. We obtain |2K| > 3.5* — 6 > 3.5* — 7, 
which contradicts (4.1). • 

5. Second Case : k2 = max(*i, *2, * 3) 

Theorem 5.1. — Suppose * 3 < *i < k2 and \2K\ < 3.5|K| — 7. Then, * 3 > 2 and 
(a) max(/ii, h2i h3) < k3 — 2. 
(Ь)\2Щ > (f |K| - 5) + ftf = |(|K| + L) 
(с)\2Щ > (2 ]K | - 1 ) + |L*. 
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Proof. — Inequalities (b) and (c) follow from Lemma 3.8 and assertion (a). Therefore, 
we need to prove only max(/ii, A2, A3) < k3 — 2. Lemma 3.4 implies that d2 = 1. 

1. We show that d\ ~ 1. 
Suppose d\ > 2 and prove that |2K| > 3.5* — 7, which contradicts our small 

doubling hypothesis. If k3 = 1, then K\ and K3 lie each in only one residue class 
modulo di and we use Lemma 3.2. If k3 > 2 and d3 > 2, we apply Lemma 3.7. We 
may assume now that k3 > 2, d2 = d3 = 1 and estimate |k1+ K2| by Theorem D(3): 

|2K| > \2Kil + {KÌ + K2\ + \2K2\ + \K2 + K3\ + \2K3\ 

> (2*i - 1) + (*2 + 2*x - 2) + (2*2 - 1) + (*2 + *s - 1) + (2*3 - 1) 

> 4*! + 4*2 + 3*3 - 6 = (4* - 6) - * 3 > 
11 
3 

* - 6 > 3.5* - 7. 

2. We show that max(Ai, A2, A3) < *3 — 2. 
Suppose that max(Ai, A2, A3) > k3 — 1. We use this inequality in order to improve 

(2.10) by * 3 — 2 and thus obtain 

|2K| > 3*i + 4*2 + 4*3 - 7 = (4* - 7) - *i > 3.5* - 7 + 
*3 
2 

> 3.5* - 7, (5.1) 

in contradiction with the small doubling hypothesis. 
If * 3 = 1 holds, then clearly (5.1) is true. Suppose k3 > 2. 
(i) If A2 > * 3 - 1, then \K2 + K3\ > (*2 + * 3 - 1) + (*s - 2), by using Theorem 

D(2). 
(ii) If Ai > * 3 - 1 , then \2Kxi > (2*i - 1) + min(Ai, *i - 2) > (2*i - 1) + (*3 - 2), 

thanks to Theorem D. 
(iii) If A3 > * 3 - 1, d3 > 1, then \K2 + K3\ > (*2 + * 3 - 1) + (*3 - 1), by Theorem 

D(3). Finally, if A3 > * 3 - 1, d3 = 1, then \2K3\ > (2*3 - 1) + (*3 - 2), due to 
Theorem D(2). The proof of Theorem 5.1 is now complete. 

6. Third Case : *3 < *2 < *1 

Theorem 6.1. Suppose * 3 < * 2 < *i and |2K| < 3.5|K| - 7. TAen? 

I2KI > (2IKI - 1) + 
4 
3 L*. 

This theorem is a consequence of lemmas 6.1, 6.2 and 6.3. 

Lemma 6.1. — Suppose * 3 < * 2 < *i, max(Ai,A2) > * 2 - l . Then I2KI > 3.5|K|-7. 

Proof. — Using Lemma 3.3, we deduce that d\ = 1. We estimate |iv"i + K2\ by 
Theorem D(l),(2). One has 

\Ki + K 2 | > min (*i + * 2 - 1 + max(Ai,A2),*i + 2* 2 - 3J > (*i + * 2 - 1) + (*2 - 3). 

Inequality (2.11) becomes |2K| > 4*i + 3*2 + 4*3 — 7. Taking the arithmetic mean 
between this inequality and (2.10) we get |2K| > 3.5* - 6 > 3.5* - 7. • 

Lemma 6.2. — Suppose k3 < k2 < *i, max(Ai, A2) < k2 — 2 and t2 > l\ or t3 > £2. 
If \2K\ < 3.5|K| - 7, then max(A l5 A2, A3) < * 3 - 2 and |2K| > (2* - 1) + 4/3 L* 
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Proof. — We shall show that |2K| > 4*i + 3* 2 + 3* 3 - 5 + H, which yields |2K| > 
3.5* - 7 4- H + 2 - | * 3 . This proves max(huh2, h3) < H < \k3 - 2 and Lemma 6.2 
follows thanks to Lemma 3.8. 

(i) Assume first that l2 > 4- We get \I<i + K2\ > (2*x - 1) and thus 
|2(K2 U K8)| < |2K| - ( № 1 + |i^i + i^l) 

< |2K| - (2*i - 1) - (2*i - 1) 
= |2K| - (4*i - 2) 
< 4*2 + 4*3 - 7, 

in view of the small doubling property of K Since d2 = 1, Theorem S yields 
|2(K2 U Ks)| > 3*2 + 3*3 - 3 + /i 2 + /¿3, 

and thus 

|2K| > (2*i - 1 + h{) + (*i + * 2 - 1 + max(/ii,/i2)) + ( 3 * 2 + 3 * 3 - 3 + /i2+/i 3) 

> (3*i + 4*2 + 3*3 - 5) + hx -f 2h2 + /i 3 

= (3* — 4) + 27 + €2 

> (4*i + 3*2 + 3*3 - 5) + H. 

(ii) Assume 4 > 4- We get |ür2 + K3\ > 2*2 - 1 and thus 

|2(Ki UKg)| < |2K| - (|K1 + K2|+|K2 +K1|) 
< I2KI - (*i + * 2 - 1) - (2*2 - 1) 

< |2K| - (4*2 - 2) 

< 4*i + 4*3 - 7, 

by the small doubling property of K Since d\ = 1, Theorem S gives |2(Ki U K3)| > 
3*i + 3*3 — 3 + hi + h3 and thus 

\2E\ > \2(Ki U 388)| +1^1+^21 +1^2 + ^31 > 

> (3*i + 3*3 - 3 + hi + ä 3) + (*i + * 2 - 1 + max(Äi, h2)) + (2*2 - 1) 

> (4*i + 3*2 + 3*3 - 5) + H. 

Lemma 6.3. Suppose *3 < *2 < *i, max(/ii,/i2) < * 2 - 2 and £3 <£2 < ii. If 
|2K| < 3.5|K| - 7, tten |2K| > (2* - 1) + f i * 

Proof. — (I) We begin the proof by obtaining an upper bound for l3, see (6.6), and 
by showing in (6.7), (6.8) that we may estimate |2(K2 U K8)| and |2(Ki U "KQ)\ by 
using Theorem S(l). In the same time, we shall obtain (6.12) below, an inequality 
which will be used several times in the proof. 

The hypothesis max(/ii, h2) < k2 — 2 ensures that 

4 < *i + * 2 - 3 < 2*i - 3, di = 1, (6.1) 
4 < 2*2 - 3 < *i + * 2 - 3, d2 = 1. (6.2) 
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Note that i3 < 4, for 1 = 1 and % = 2 give 

Itf. + tfsl > | m 3 + / r . | + |M 3 + Kin(Mi-l3,Mi] 

>ki+l3-hi = (ki 4- * 3 - 1) 4- /13 - (6.3) 

Applying (6.3) and Theorem D(l) for \2Kx\, |i*Ti + K2\, inequalities (6.1), (6.2) yield 

|2K| > \2Ki\^\K1+K2\^\K1+K3\ + \K2+K3\ + \2K3\ 

> (2*! - 1 4 hx) + (*i 4- k2 - 1 + max(/ii, A2)) 4- ((*i + * 3 - 1) 

4- max(0, h3 - hx)) 4- ((k2 4- * 3 - 1) + max(0, h3 - h2)) 4- (2*3 - 1), 

and thus 

|2K| > (4*i + 2*2 + 4*3 - 5) + 2/i3, (6.4) 

|2K| > (4*i + 2*2 + 4*3 - 5) 4- max(Ai, h2) + h3. (6.5) 

We claim that 

h3<k2- 2, 4 < k2 + k3 - 3. (6.6) 

On the contrary, suppose that h3 > k2 — 1. Inequality (6.4) gives |21K| > 4* — 7 > 
3.5* — 7, a contradiction. By a similar argument, the small doubling property and 
inequality (6.5) lead to 

h2 + h3 < * 2 + * 3 - 3, hx + h3 < *i + * 3 - 3, (6.7) 

which shows that 

|2(K 2UIK3)| > 3fc2 + 3/c3-3 + /i2 + /i3, |2(Ki UKg)| > 3 ^ + 3 ^ 3 - 3 + Jn + hs, (6.8) 

in view of di = d2 = 1 and Theorem S(l). We are now able to deduce 

|2K| > |2ifi| + \Kt + K2\ + |2(K2 U Ka)| 

> (2*i - 1 + /11) + (*i + * 2 - 1 + max(/ii, h2)) + (3* 2 + 3* 3 - 3 + h2 + h3) 
= (3*i + 4*2 + 3*3 - 5) + hi + max(/ii, /i2) + h2 + h3. (6.9) 

If max(/ii, /12, h3) < *3 — 2, Lemma 6.3 follows from Lemma 3.8. Therefore, we have 
to examine only the case 

max(/ii, h2l h3) > k3 — 1. (6.10) 

(II) We prove (6.12), inequality which will be repeatedly used. 
In order to obtain (6.12), we need one more lower bound for |2IK| (see (6.11) below). 

We use (6.10) and consider two cases : 
(a) On the one hand, if max(/¿2,h3) > k3 — 1, then \K2 + K3\ > k2 4- 2* 3 — 2. 

Indeed, if t2 > k2 4- k3 — 2, then £23 = 0 thanks to (6.6); using Theorem D(l),(2) 
we get \K2 + K3\ > min(*2 4- 2*3 - 2, * 2 4 * 3 - 1 4- max(/i2, h3)) > k2 4- 2* 3 - 2. If 
£2 < * 2 4- * 3 - 3, then \K2 4 K3\ > k2 4- * 3 - 1 4- max(/i2, /13) > *2 + 2* 3 - 2, by 
Theorem D(l). Therefore, in each of these two cases, k2 4- 2fc3 — 2 is a lower bound 
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for I if2 4- Ks\. We may estimate |if2 4- Ki\ by Theorem D(l), because of (6.1) and 
(6.2). Finally, in view of (6.8) one has 

I2KI > |2(Ki UKs)! + |ür2 -hüfil + 1/̂ 2 + ̂ 31 
> (3*i 4- 3*3 - 3 4- ht 4- h3) 4- (*i 4- * 2 - 1 4- max(/ii, h2)) 4- (*2 4- 2* 3 - 2) 
> (4*i 4- 2*2 4- 4*3 - 6) + hi + max(/ii, /i2) 4- /i 3 4- * 3 . 

(b) On the other hand, if max(h2lh3) <K3 — 2 and hi > k3 — 1, then we estimate 
|2ifi|, |ifi 4-if2|, |if2 4-if3|, |2if3| by Theorem D(l) and |ifi +KZ\ by Theorem D(2). 
for ei3 = 0. We get 

|2K| > \2Ki\ + \Ki+K2\ + \Ki+K3\ + \K2+K3\ + \2K3\ 
> (2*i - 1 4- hi) 4- (*i 4- * 2 - 1 4- max(/ii, /i2)) 4- (*i 4- 2* 3 - 2) 4-

+ (*2 4- * 3 - 1 4- max(/i2, /13)) + (2*3 - 1 4- h3) > 
> (4*i 4- 2*2 4- 4*3 - 6) 4- hi 4- max(/ii,/i2) 4- max(/i2,/i3) 4- /13 4- *3-

Thus, in both cases (a) and (b), we obtain 

|2K| > (4*i 4- 2*2 4- 4*3 - 6) 4- hx 4- max(/ii, h2) 4- /13 4- * 3 . (6.11) 

Taking the arithmetic mean between (6.9) and (6.11) we obtain 

I2KI > (3.5* - 7) 4-
1 
2 2hi 4- 2 max(/ii, h2) 4- /i 2 4- 2/i3 4- * 3 4- 3 - * 2 

Applying the small doubling property, we deduce immediately that 
2hi 4-2max(/ii,/i2) 4- h2 + 2h3 4- * 3 + 4 < * 2 . (6.12) 

As in Lemma 3.8, we shall distinguish at this point three situations, depending on 
the relative position of [m 2 ,M 2] and rmi+ma M1+M3 ] L 2 ' 2 -I* 
First Case. ra2 < mi+™3 < M1+M3 

2 < M 2 . 

m 3 m 3 

m 2 
m 2 

m1 
m 1 

We already proved in (6.9) that |2K| > (2k - 1) + 4 + 24 + 4 , and this implies 
|2K| > (2k - 1) + |L*, in view of 

4 + 24 + 4 -
4 
3 L* = (4 + 24 + 4 ) - 4 

3 ( 4 + 4 + 4 ) = 
2 
3 4 -

4 + 4 
2 

> 0. 
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Second Case. m 2 < mt+ma < M 2 < Ml±M^. 

m3 m3 

M 2 
b' b 

b 
m2 

m\ a' a a" m1 

As usual, put S = m1 +m3 - m2 > O 
(i) We split K into two subsets, IK' and IK" and get a lower estimate of |2K| by 

adding |2K'| and |2K7'L 
Let us take a line I which intersects (x2 = 0) at (0,a), (x 2 = 1) at (1,6), (x2 = 2) 

at (2, M 3 ) . In the sequel we shall prove that we may choose I such that 

mi < ö < Mi and 
1 
2 (mi + rn 3) + l2 

2 
< 6 < M2. (6.13) 

Take 6' < b" two consecutive elements of K2 such that V <b <b". Take a' < o" two 
consecutive elements of K\ such that a' < a < a". Define 

K[ = Ki n [mi,a'], K 2 = i f 2 n [ m 2 , 6 " ] , #3 = K3, (6.14) 
üfi' = ü:in[o' ,Mi], ÜT2' = i f 2 n[ö" ,M 2 ] , KU = {Ms} (6.15) 

It will be shown in step (v) bellow, that we may choose a and b such that 

£[ < 2k[ - 3, max^i, t2) <k[+k2-3, t2 +t3 < 2k'2 + 2k3 - 5, (6.16) 
e'( < 2k'l - 3, max(^',4') < k'l + k2' - 3. (6.17) 

Now Lemma 6.3 follows easily. Indeed, we estimate |2K| by adding |2K ;| and |2K"| 
and paying attention to the points counted twice: 

2K£ n + K^) and 2a', a ' + 6", 6" + M 3 , 2M 3. 
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Thus, if we denote by x = \2E^ n(Ki' + l2/)|, then 

|2K| > |2K'| + \2K'\ 4 + |2K£ H (Ki' 4- IS/) 

> \2K[\ 4- \K[ + K'2\ + |2(iq U K£)l 
+ |2K{'| 4- |Kf + ^ | + |Kf + K%\ + |K"3 + K'i\ 4- | 2 ^ | - (4 4- a) 

> (4 + 4 ) + (4 + 4 ) + (2*2 + 2 ^ - 1 4- 4 + 4 ) 

+ (i'i + 4 ) + (4' + 4') + 4 + 4 + 1 — 4 — x 

= 2(4 + 4 + 4 ) - 1 + 4 + 2i'2 + 4 

+ 2(4' + 4 4- 4 ) - 1 4- 2t![ — 4 — x 

— 2(*j -J- k-^ 4" * 2 4" *2 + ^3 + ^3 ) - 2 + 4 + 2£'2 + 4 + 24' -4-x 
= 2k +£[ + 2£'2 + £'3 + 2£'{ - x. (6.18) 

In the last equality we used 4 4" 4 ' — *i 4* 1, for 1 < i < 3. It is clear that 

x = \2% H (Ki' + K£')| < 1 + I[26,26"]| = 2 4- 2(6" - 6). (6.19) 

In view of the collinearity of a and 6 we have (a — mi) + £3 = 2b — (mi + m3) and 
thus 

4 + 24 + £'3 + 2£'{ = 4 + 2 (b" - 6) + (6 - mi + m3 

2 
+ 

mi 4- m3 

2 
- m 2) 

+ 4 + 2i'[ 

= £[ + 2(6" - 6) + 2 6 - mi + m3 

2 
+ 2 mi + m 3 

2 — m 2 

+ 4 + 24 

= l[ + 2(6" - 6) + ((a - mi) + ¿3 + 26 + £'3 + 2i'l 

= 4 + 2(6" - 6) + £\ + (a - a') + ¿3 + 26 + i3 + 2£'[ 

= 2(4 + 4') + (4 + 4 ) + 20 + 2(6" - 6) + (a - a') 

= 24 + 24 + 2<S + 2(6" - 6) + (a - a'). (6.20) 

Thus, using (6.19), (6.20) in (6.18), we conclude that 

I2KI > 2k - 2 + 2£i + 2£3 + 26 + (a - a') > (2k - 1) + 2h + 2t3 + 
4 
3 

Ô. 

(ii) We put inequalities (6.16), (6.17) in a slightly different form: 

h[ <k[-2, h\ <k'2-2, h'2 < k[ — 2, h2 H~ ^3 k2 ^3 — 3 — k2 4" *3 — 3, 

h'l < k'l - 2, h'l < k'2' - 2, h'2' < k'( - 2. 
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Consequently, it is enough to choose a and b such that (6.13) and the following four 
inequalities are true: 

K"1 > max(hllh2) 4 2, k'ò > hi 4- 2, (6.21) 

K'1 > max(/ii, h2) + 2, * 2 > max(/ii 4 2, /i 2 + /¿3 - * 3 4- 3). (6.22) 

(iii) PFe define now the line I. 
To define l, we need only to choose b as 

6 — min M 2 - ( / i i + / i 2 + 2), 
Mi 4 M 3 

2 
max(/ii, /i2) 4- /ii 4- 1 

2 
(6.23) 

Using the collinearity condition a is defined by 

(a — mi) 4 £3 = 2b — (mi 4- m3). (6.24) 

We shall show in step (v) that this choice ensures (6.13), (6.21) and (6.22). But first, 
we need some more estimates. 

(iv) We estimate 6 and compare hi,h2,h3 to k\. 
(a) We prove that 

26 4 2hi +2max(/ii,/i 2) + 2h3 + k3 4-3 < k2 + h2. (6.25) 

Improve (6.11) by taking into account |2K 2\(Ki +Ks) | > 2(8-h2)-l. We get 

|2K| > (4*i 4- 2* 2 + 4*3 - 7) + hi 4- max(fti, h2) + h3 + k3 + 26 - 2h2 (6.26) 

We take the arithmetic mean between (6.26) and (6.9) and obtain 

I2KI > (3.5* - 7) -
1 
2 

(* 2 4 h2) 4 
1 
2 

2hi 4 2max(/ii,/i 2) + 2h3 + *3 + 26 + 2 J. 

In view of the small doubling property, we deduce that (6.25) holds. 
(b) We prove that 

3hi 4-4max(/ii,/i 2) + 2h2 4- 3h3 4- k3 4- 8 < *i. (6.27) 

Remark that in the Second Case, one has l1 + l3 
2 

> £2-6. This gives 26 > 2£2-(£i+£3). 
Thanks to (6.25), the last inequality implies 

2£2-(£i+£3) 4- 2ht 4- 2max(/ii,/i 2) + 2h3 4 * 3 + 3 < * 2 4- /i 2 , 

(2*2 - *i - * 3 ) 4- (2h2 -hi- h3) 4- 2/n 4- 2max(/ii,/i 2) 4 2/13 4- * 3 4- 3 < * 2 4- h2, 

*2 4- /12 4- /11 4- 2max(/ii,/i 2) 4- /13 4-4 < * x . (6.28) 

Combining inequalities (6.12) and (6.28), we obtain the desired result (6.27). 

(v) We prove (6.13), (6.21) and (6.22). 
We begin with (6.13). In view of the collinearity condition (6.24), we shall prove 

now mesm 
2 

4 2 < b < M2, which ensures that mi < a < Mi. Since b is defined by 
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(6.23), we have actually to check the two inequalities stated below. 

(1) M 2 - (/ii + ft2 + 2) mi 4 m 3 

2 
+ 

4 
2 

= ( M 2 -
mi + m 3 

2 
) - (hi 4- /i 2 4- 2 4 4 

2 

= (¿2 - <S) - (AI + h2 4-
*3 
2 4 

h3 

2 
4 1.5) 

= (fe 4- h2) - (5 4- /ii + /i 2 4 
¿3 
2 4 

/13 
2 

4- 2.5) > 0, 

in view of (6.25); 

(2) 
Mi + M 3 

2 
max(/ii,/i2) 4 / i i 4 l 

2 
mi 4 m 3 

2 4 
4 
2 

= 
1 
2 

(Mi 4 M 3) - (mi 4- m 3 ) - (max(huh2) 4- /ii 4- 1) - 4 

= 
1 
2 

4 + 4 - (max(/ii,/i2) 4- /ii 4 1) - 4 

= 
1 
2 

(&i — m ax (/ii, h2) — 2) > 0, 

by hypothesis ki > k2 and inequality (6.12). 
We estimate k^k^k^k'^. First of all, we verify (6.21) : 

k" = \Ki fi [a', Mill > Mi - a' 4-1 - hi > Mi - a 4-1 - hi = 

= 2 
Mi 4 M 3 

2 
- 6 4-1 - hi > 2 

max(/ii, h2) 4 /ii 4-1 
2 

4- 1 - hi = 

= max(/ii, /i2) + 2. 

K"1 = n [ò",M2]| = \K2 n (6, Af2]I >M2-[b]-h2>M2-b-h2> 
> M 2 - (M 2 - hi - h2 - 2) - h2 = hi 4- 2. 

Further, using (6.24) one has 

k[ = |üfi fi [mi,a']| = |Ki fi [mi,a)I > [a] — mi 4-1 — hi > a — mi — hi = 

= 2 b- mi 4- m 3 

2 
— £3 — hi > max(/ii, /i2) 4- 2, 
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in view of the following two inequalities 

(1) 2 M 2 - hi - h2 - 2 - mi + m3 

2 
-e3~hi - ( max(/ii,/i2) + 2 

= 2 M a 
ral + ra3 

2 
- (3/ii 4- 2Ä2 + 4 + max(hi,Ä2) + 6) 

= 2(£2 -ô)- (3hi + 2h2 + £3 + max(/n, /i2) + 6) 
= 2* 2 - (2(5 + 3/ii + 4 + max(/ii, h2) + 8) 
= 2*2 - (25 + 3/ii + h3 + * 3 + max(/ii,/i2) + 7) 

> 2*2 - (26 + 2Äi + 2max(/ii, /i2) + /¿3 + *3 + 7) 

= f(*2 + /i2) - (2(5 + 2/ii +2max(/ii,/i 2) +2/13 + * 3 +3) + *2 + A3 - h2 - 4 

> *2 + A3 - J*2 - 4 > 0, because of (6.25) and (6.12), 

(2) 2 
Mi + M 3 

2 

max(/ii, h2) + /11 + 1 
2 

rai + m 3 

2 
-£3-hi 

max(/ii, /12) + 2 

= (Mi - mi + M 3 - m 3 ) - (2max(/ii,/i2) + 2/ii + 4 + 3) 
= (£1 + 4 ) - (2 max(/n, /12) + 2hi + 4 + 3) 
= *i - (hi + 2max(/ii,/i 2) + 4) > 0, 

due to (6.12) and *i > *2-
It only remains to estimate * 2 . Note that 

* 2 - |ÜT2 n [m 2,6"]| > b" - m2 + 1 - h2 

>b - m2 + I - h2 > max(hi + 2, /i 2 + h3 - k3 + 3), 

because we may write the following four inequalities 

(i) (M 2 -h1-h2-2)-m2 + l-h2 - (fci + 2 

= (Af2 - m 2 - (2ÄI + 2/i2 + 3) 
= l 2 - (2hx + 2/i2 + 3) 

= k2 - (2/n + /12 + 4) 
> 0, because of (6.12), 
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(2) (M 2 -hi-h2-2)-m2

Jrl- h2 - (h2 4 h3 - k3 4- 3) 

= (M 2 - ra2) 4- k3 - (h 4- 3/i2 + h3 4 4) 
= 4 + ^3 - №i + Sh2 4- /i 3 4- 4) 
= (fc2 4- k3) - (hx 4- 2/i2 4- h3 4- 5) 
> 0, due to (6.12), 

(3) 
Mi 4-M 3 

2 
max(/ii, h2) 4- rii 4- 1 

2 
— m 2 4-1 - h2 - {hi 4- 2) 

= 
Mi 4 M 3 

2 — m2 

1 
2 

(max(/ii,/i2) 4- Shi 4- 2/i2 4- 3) 

= ( ¿4 I1+I3 
2 

1 
2 (max(hi, ft2) 4- 3/ii 4- 2h2 4- 3) 

= 
1 
2 

(h 4- fc3 + /13) - (max(/ii, h2) 4- 2/ii 4- 2ft2 + 5) + <5 

> 0 , thanks to (6.12), 

(4) 
Mi 4- M 3 

2 
m ax (/ii, ^2 ) 4 m 4-1 

2 
— m2 + 1 — h2 - (h2 4- h3 - k3 4- 3) 

= ¿3 + 
Mi 4- M 3 

2 
— m 2 

max(/ii, ft2) 4- hi + 4/i2 4- 2/i3 4- 5 
2 

= fc3 + (* + 
4 + 4 

2 
max(/ii, /i2) 4- hi 4- 4/i2 4- 2/i3 4- 5 

2 

= k3 + 5 4 
1 
2 

(fci 4- fc3) - (max(/ii,/i2) 4- 4/i2 4- ft3 4- 7) 

> 0 , because of (6.27). 

The proof of case 2 is now complete. 
Third Case. m1 + m3 

2 < m 2 < M 2 < M1+M3 
2 

m2 m3 

m3 "2 
m2 u 

U 
V 

3 
M2 

ml sl s S2 Y t y2 m1 

We split 3K into three sets K', K", K'''. Choose s < £ between mi and Mi and u < v 
between m 2 and M 2 such that the points (0, s), (1, w), (2, m 3 ) and (0, £), (1, v), (2, M 3) 
are collinear. 
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Take si,s2,ti,t2 in Ki such that si < s < s2, h < t < t2 and there is no point of 
K\ in the intervals (si, s), (s, s 2 ), (ti,t),(t,t2). 

Take ui,u2,vi,v2 in K2 such that ux < u < u2, vi < v < v2 and there is no point 
of K2 in the intervals (ui,it), (u,u2), (vi,v),(v,v2). Define 

K'1=K1n[m1,82], K'i=Kx [s2,ti], K[" = K1n[t1,M1], (6.29) 
K'2 = K2n[m2,Ul], K2' = K2 [uuv2], K'2" = K2n[v2,M2], (6.30) 
K'z = {m3}, K'i = K3, K'i' = {M3}. (6.31) 

It will be shown that we may choose the points s,t,u,v such that 
4 < 2k[ - 3, max(4,f 2) ^ *i ~\~ k<2 3 5 (6.32) 

4 < 2k[ - 3, max^'/,^') ^ *i "T" *2 ^5 •̂2 H- 3̂ ^ 2*2 "I- 2*3 5, (6.33) 
4 - 3,< 2fci" - 3, MAX(<L",^") < k'l' + A;2" - 3. (6.34) 

We can easily deduce Lemma 6.3 from (6.32-34). Denote x = |23^' n (Ki + K 3 ) | + 
12K£' n (Ki" + Kg")|. It is clear that 

| 2K | > |2Ki I + |Ki + K£ I + |Ki + K£ I + |K£ + K£ I + |2Kg | 
+ |2K;'| + |K;' + K''2| + \2(e% U K^)i 

+ |2Ki"| + |Ki" + K^" | + |Ki" + K3"| + |K''2 + K3"| + |2K3"| -S-x. (6.35) 
Indeed, the above inequality is true, because the points 2s2,2t\, u\ + s2, v2 +1\, u\ + 
m3,M3+ v2,2m3,2M3,212/ n (Ki + Kg), 2K,' D (Ki" U Kg") are counted twice. By 
Theorem D we get 

|2K| > {£[ + k[) + (£[ + k'2) + k[ + k'2 + 1 
+(l''1 + k'{) + (£'2' + k'l) + (2k'2' + 2k3' - 1+ l''2 + I'D 
+ W + fei") + (£'/' + fc2") + k'C + k'2" + l-(8 + x) 

= (2fci + 2k!2 + 1 + 2£i) + (2fci' + 2k'2' + 2k3' - 1 +1'[ + 2t!{ + 4') 
+ (2fci" + 2fc2" + 1 + 24") - (8 + x) 

= 2(k[ + k'l + k'l') + 2{k'2 + k'2' + k'2") + 2k3' - 7 
+ (24 - £'l) + 2£'2' + £'i-x 

= 2k + 1 + 24 + 24 + [24' - (4' + 4)] - x. (6.36) 
We have used here k'3' = k3, £3' = 4 and k[ + k'l + k'l' = kt + 2, for i = 1,2. Note 
that the collinearity condition gives 2(v — u) = (t — s) + 4 and thus we have 

2t'i -(£ ' / + 4) = 2[(v - 11) + (u - Ui) + (v2 - v)] 
-[(t-s)-(t-tl)-(s2-s)+t3] 

= 2(u - ui) + 2(v2 -v) + (t- h) + (s2 - s). (6.37) 
It is clear that 

|(Ki + Kg) n 2 1 ^ 1 < l + | [2«i ,2«] | = 2 + 2 ( « - « 1 ) , 
|2S^' n (Ki" + if3")| < 1 + \[2v, 2v2]\ = 2 + 2(v2 - v). 
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Therefore, x < 4 4- 2(u — ui) 4- 2(v2 — v); applying this inequality and (6.37) in (6.36), 
we obtain the desired lower bound: 

|2K| > 2k - 3 4- 24 4- 24 4 (t - h) 4- (s2 - a) > (2k - 1) 4- 24 4- 24- (6.38) 

The last step in the proof is to choose it, s, v, t such that (6.32-6.34) are valid. 
First of all, we rewrite these inequalities in the form 

h[ < k[ - 2, h[ < kf

2 - 2, h'2 < k[ - 2, 

4 < k'l - 2, 4 < k'2' - 2, /i2

; < k'l - 2, 

fc2 + K < *2 4- 4 - 3 = 4 4 fc3 - 3, 
4" < Jfe™ - 2, ftf < fc2

;/ - 2, /io" < fcf - 2. 

Consequently, it will be enough to find s, £, t; such that 

4 > /ii 4- 2, fc2" > ^1 + 2 , 4 > max(/ii 4- 2, /i 2 4- /i 3 - k3 4- 3), (6.39) 

k{ > max(/ii,/i2) 4- 2, fc" > max(/ii,/i2) 4- 2, fc"' > max(/ii,/i2) 4- 2. (6.40) 

Define v between m2 and M2 by 

^ = m2 4- (/ii 4- /i 2 4- 2), v = M2- (/ii 4-/i2 4-2). (6.41) 

Take 5, £ between mi and Mi so that (0,s), (1, ix), (2, m 3) and (0, £), (1, t?), (2, M 3) are 
collinear. We obtain 

v - u = 4 - 2(/ii 4- h2 4- 2) and £ - s = 2(v - u) - 4 . (6.42) 

In order to prove (6.39-40), it will suffice to estimate k'2, &2,K'1 k[, k'{, k'{'. We 
begin by establishing (6.39). 

k2 = \K2 H [m 2,tii]| = IAT2 H [m 2,ti)| > (« - m 2 ) - /i 2 = hi 4- 2. 

4" = |if2 n [ V 2 , M 2 ] | = \K2 n M 2 ] | > ( M 2 - v ) - h2 = hi 4- 2. 

k'2' = \K2 H [wi, v2]\ = 2 + (v - u) - /i 2 = 2 4- (4 - 2(Äi + /i 2 4- 2) ) - h2 

= k2- 2hi - 2h2 - 3 > max(/ii 4- 2, /i 2 4- /i 3 - k3 4- 3). 

Indeed, 3/ii 4- 2h2 4- 5 < k2 and 2/iX+3/i 2 + /i 3 + 6 < ^2 4- ̂ 3 follow from (6.12). Remark 
that v—u = £2—2(/ii4-/i2+2) > £ 3, because it is equivalent to 2/ii4-/i2+fc3-f/i34-4 < k2l 

which follows again from (6.12). Therefore, we may choose s < t between mi and 
Mi such that the points (2,m 3), (1,u), (0,s) and (2,M 3), (l,v), (0,£) are collinear. 
Define si < s < s2 and ti < t < t2 such that s i , s 2 and t1 , t 2 are consecutive points 
in Kt, 

We check inequalities (6.40). Note that s — mi > 2(u — m2) and Mi —t > 2(M2—v). 
Using (6.42) we have 

k[ = \Ki fi [mi,s 2]| > s2 — mi 4-1 — hi > (s — mi ) 4-1 — hi 
> 2(u - m2) 4-1 - hi = 2(hi 4- h2 4- 2) 4-1 - hi = hi 4- 2h2 4- 5 
> max(/ii, h2) 4- 2, 
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fcj" = \K1n[tuM1]\>(M1-t1+l) - /11 > (Mi - t) + 1 - /11 

> 2(M 2 - v) + 1 - /ii = 2(/ii + h2 + 2) + 1 - Zu = /ii + 2/i2 + 5 
> max(/ii, /i2) + 2, 

fcj" = \K1n[tuM1]\>(M1-t1+l) > M - M - /11 > (̂  - 5) - 1 - /11 

= ( 2(v - ti) - €3 - 1 - ht = 2 (£2 - 2/ii - 2/12 - 4) - 4 - 1 - /H 

= 2(*2 - 2/11 - /i 2 - 5) - * 3 - ^3 - ht = 2*2 - (5/ii + 2/12 + /13 + * 3 + 10) 

> max(/ii,/12) + 2, because of (6.12). 
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N O N - S O L V A B L E G R O U P S W I T H A L A R G E F R A C T I O N 
O F I N V O L U T I O N S 

by 

Yakov Berkovich 

Abstract. — In this note we classify the non-solvable finite groups G such that the 
class number of G is at least |G|/16. Some consequences are derived as well. 

C.T.C. Wall classified all finite groups in which the fraction of involutions exceeds 
1/2 (see [1], Theorem 11.24). In this paper we classify all non-solvable finite groups 
in which the fraction of involutions is not less than 1/4. 

We recall some notation. 
Let k{G) be the class number of G. Let i(G) denote the number of all involutions 

of G, T{G) — 2^X(1) where x runs over tne set Irr(G). Now 

mc(G) = k(G)/\G\, / (G) = T(G)/ |G| , i0(G) = i(G)/\G\. 

It is well-known (see [1], chapter 11) that 

i(G) < T(G), i0(G) < / ( G ) , / ( G ) 2 < mc(G) 

(with equality if and only if G is abelian). 
In this note we prove the following three theorems. 

Theorem I . — Let G be a non-solvable group. 
If mc(G) > 1/16 then G = G'Z(G), where G' is the commutator subgroup of G, 

Z(G) is the centre ofG, G' € {PSL(2,5), 5£(2,5)}. 

Theorem 2. — Let G be a non-solvable group. 
If f(G) > 1/4 then G = G'Z{G) and G' E {PSL(2,5), SL(2,5)}. 

Theorem 3. — Let G be a non-solvable group. 
Then iQ(G) > 1/4 if and only if G = PSL(2,5) x E with exp E < 2. 

Lemma 1 contains some well-known results. 

Lemma 1 
(a) If G is simple and a non-linear x € Irr{G) is such that x(l) < 4, then %(1) = 3 

and G e {PSL(2,5), PSL(2,7)}; see [2]. 

1991 Mathematics Subject Classification. — Primary 20C15, 20D05, 20E34. 
Key words and phrases. — Non-solvable finite groups, class number. 
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(b) (Isaacs; see [1], Theorem 14.19). If G is non-solvable, then \cdG\ > 4; here 

cdG = {Xa)\x£lrr(G)} 
(c) (see, for example, [1], Chapter 11). If G is non-abelian then 

mc(G) < 5/8, f(G) < 3/4. 

Lemma2. — Let G = Gf > 1, d G {4,5,6}. If mc(G) > (l/d)2 then there exists a 
non-linear x £ Irr(G) such that x(l) < d. 

Proof — Suppose that G is a counterexample. Then by virtue of Lemma 1(b) one 
has 

|G| = X( l ) 2 > 1 + d2(k(G) - 3) + (d + l ) 2 + (d + 2) 

> 1 + d 2 ( # - 3) + 2d2 + 6d + 5 = IGI - d2 + 6d + 6 > \G\ 

since d G {4,5,6}, — a contradiction (here y runs over the set Irr(G)). 
Lemma 3 contains the complete classification of all groups G satisfying iQ(G) = 1/4. 

Lemma 3. — If iQ(G) = 1/4 then one and only one of the following assertions holds: 

(a) G = A4, the alternating group of degree 4. 
(b) G=-PSX(2,5) . 
(c) G is a Frobenius group with kernel of index 4. 
(d) G is a non-cyclic abelian group of order 12. 
(e) G contains a normal subgroup R of order 3 such that G/R = S3 x S3; if x is an 

involution in G then \CG{X)\ — 12 (here S3 is the symmetric group of degree 3). 

Proof — By the assumption \G\ is even. i(G) is therefore odd by the Sylow Theorem 
and \G\ = 4t(G), P e Syl 2(G) has order 4. 

(i) Suppose that G has no a normal 2-complement. Then P is abelian of type 
(2,2) and by the Frobenius normal p-complement Theorem G contains a minimal non-
nilpotent subgroup F = C(3 a ) • P (here C(m) is a cyclic group of order m and A • B is 
a semi-direct product of A and B with kernel B). Since all involutions are conjugate 
in F , all involutions are conjugate in G. Hence CQ{X) = P for x G P* = P — {1}, 
a = 1. If G is simple then by the Brauer-Suzuki-Wall Theorem (see [1], Theorem 
5.20) one has 

\G\ = (2 2 - 1)2 2 (2 2 + 1) = 60. 

Now we assume that G is not simple. Take i l , a non-trivial normal subgroup of G. 
If \G : H\ is odd, then 

i(G) = i(H), i0(H) = i(H)/\H\ = i(G)/\H\ = 

|G|t 0(G)/|JT| = \G : H\i0(G) = \G : H\/4. 

Therefore \G : H\ = 3 and iQ(H) = 3/4. Now f(H) > i0(H), hence H is abelian 
(Lemma 1(c)) and f(H) = 1. It is easy to see that H is an elementary abelian 
2-group, H = P. Now \P\ = 4 implies \G\ = 12, F = G = A4. 

Now suppose that H has even index. Since G is not 2-nilpotent ( = has no a normal 
2-complement) then \H\ is odd. In view of | C G ( # ) | = 4 for x G P# one obtains that 
F i J is a Frobenius group with kernel If, F is cyclic — a contradiction. 

(ii) G has a normal 2-complement ÜT. 
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First assume that P is cyclic. Then all involutions are conjugate in G, and for the 
involution x G P one has CG{x) = P. Then G is a Frobenius group with kernel K of 
index 4. 

Assume that P = (a) x (/?) is not cyclic. We have P = {1, a, /?, a/?}, and all 
elements from P # are not pairwise conjugate in G. Thus 

\G : C G ( a ) | + \G : CG(/?)| + |G : CG(a/3)| = »(G) = |G : P| . 

Note that Ca(a) = P • CKM, and similarly for /3 and a/3. Therefore 

(1) IcvHr 1 + \Ск№\-1 +iWaß^-1 = 1. 
Since I if I > 1 is odd then (1) implies 

(2) \CK(a)\ = \CK(0)\ = \CK(al3)\ = 3. 
By the Brauer Formula (see [1], Theorem 15.47) one has 

(3) \K\\CK(P)\2 = \CK(a)\\CK(/3)\\CK(a(3)\=S3. 

If CK(P) > 1 then (3) implies \K\ — 3 and G = P x K is an abelian non-cyclic group 
of order 12. 

Assume CR(P) — 1. Then |if| = 3 3 . Now (2) implies that K is not cyclic. By 
analogy, (2) implies that exp K = 3. From exp P = 2 follows that G is supersolvable. 
Therefore i?, a minimal normal subgroup of (?, has order 3. Applying the Brauer 
Formula to G/R, one obtains G/R = S% x S3, and we obtain group (e). 

Proof of Theorem 1. — Denote by S = S(G) the maximal normal solvable sub
group of G. 

(i) If G is non-abelian simple then G = PSL(2,5). 

Proof. — Take d — 4 in Lemma 2. Then there exists \ € Irr(C?) with %(1) = 3. Now 
Lemma 1(a) implies G G {PSL(2,5),PSL(2,7)}. Since 

mc(PSL(2,7)) = 1/28 < 1/16 

then G S PSL(2,5) (note that mc(PSL(2,5)) = 1/12). 

(ii) If G is semi-simple then G ^ PSL(2,5). 

Proof — Take in G a minimal normal subgroup D. Then D — Di x • • • x Ds 

where the D^s are isomorphic non-abelian simple groups. Since (see [1], Chapter 11) 
mc(Di) > mc(G) > 1/16, D ^ PSL(2,5) by (i) and so mc(£>i) = 1/12. Now 

mc(,D) = mc(Di)* - ( l / 1 2 ) s > 1/16 

implies that s = 1. Therefore D = PSL(2,5). Since G/CQ(D) is isomorphic to 
a subgroup of AutD S 55, mc(55) = 7/120 < 1/16, then G/CG(D) S PSL(2,5). 
Because D n CG(D) = I, G = D x CG(D). Now 

1/16 < mc(G) = mc(CG(D))mc(D) = (l/12)mc(CG(D)) 

implies that mc(CG(D)) > 3/4 > 5/8, CG(D) is abelian (Lemma 1(c)), CG(D) = 1 
(since G is semi-simple), and G = PSL(2,5). 

(iii) G / 5 ^ P S L ( 2 , 5 ) . 
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This follows from mc(G/5) > me(G) (P.Gallagher; see [1], Theorem 7.46) and (ii). 

(iv) If G = G' then G € PSL(2,5), SL(2,5)}. 

Proof. — By virtue of (iii) we may assume that S > 1. 
Suppose that (iv) is true for all proper epimorphic images of G. Take in 5 a 

minimal normal subgroup R of G, and put \R\ = pn. Then by the Gallagher Theorem 
and induction one has G/R € {PSL(2,5) , SL(2,5)}. 

(liv) G/R ^ PSL(2,5), i.e. R = S. 
If Z(G) > 1 then R = Z(G) is isomorphic to a subgroup of the Schur multiplier of 

G/R so \R\ = 2 and G = SL(2,5) (Schur). In the sequel we suppose that Z(G) = 1. 
Then CG(R) = R, so n > 1. If x E R* then \G : CG(x)\ > 5, since index of 

any proper subgroup of PSL(2,5) is at least 5. Let kG(M) denote the number of 
conjugacy classes of G ( = G-classes), containing elements from M. Then 

kG(R) < 1 + \R*\/5 = (pn + 4) /5. 

If x € G - R then Z(G) = 1, and the structure of G/R imply \G : CG(x)\ > I2p 
(indeed, x does not centralize R and \G/R : CG/R(XR)\ > 12). Hence 

kG(G - R) = k(G) - kG(R) = \G\mc(G) - kG(R) > 
60p n /16 - (pn + 4)/5 = (71pn - 16)/20. 

Now 

(1) \G-R\= 59pn > 12pkG(G - R) > 12p(71pn - 16)/20, 
(2) 5 x 5 9 p n _ 1 = 2 9 5 p n _ 1 > 213p n - 48 > 426p"" 1 - 48 131p n 1 < 48, 

a contradiction. 
(2iv) G / i î ^ S L ( 2 , 5 ) . 

Proof — Suppose that Ri ^ it! is a minimal normal subgroup of G. Then (by 
induction) 

RR, =RxRx=S, lÄil = 2, G/Rt s SL(2,5) 
and G' < G, since the multiplier of SL(2,5) is trivial, a contradiction. Therefore R is 
a unique minimal normal subgroup of G. Similarly, one obtains Z(G) = 1. 

Let p > 2. Then CG(R) = R. In this case Z(S) < i?, so Z(S) = 1 and S is a 
Frobenius group with kernel R of index 2. As in (liv) one has 

kG(S) = kG(S - R) + kG(R) < 1 + (pn + 4)/5 = (p n + 9) /5. 

TîxeG-S then IG : CG(x)\ > 12p and 

kG(G -S) = k(G) - kG(S) = |G|mc(G) - kG(S) > 
120p n /16 - (pn + 9)/5 = (73p n - 18)/10, 

IG - 51 = 118p n > 12pJfcG(G - S) > 6p(73p n - 18)/5, 
2 9 5 p n _ 1 > 219p n - 54 > 6 5 7 p n _ 1 - 54, 

5 4 > 3 6 2 p n " \ 
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a contradiction. 
Let p = 2. Since R is the only minimal normal subgroup of G and Z(G) = 1 then, 

ka(S) < 1 + ( 2 n + 1 - l ) / 5 = ( 2 n + 1 + 4) /5, 

KG(G- 5) > 120.2716 - ( 2 n + 1 + 4)/5 = (71.2n - 8)/10, 
5 9 . 2 n + 1 = |G - S\ > 24kG(G - S) > 24(71.2 n - 8)/10, 

295.2 n > 426.2 n - 48, 

48 > 131.2 n, 

a contradiction. 

(v) If D is the last term of the derived series of G then D G {PSL(2,5), SL(2,5)}. 

Proof. — Since D = D' and mc(D) > mc(G) > 1/16 the result follows from (iv). 

(vi) The subgroup D from (v) coincides with G'. 

Proof. — We have D G {PSL(2,5),SL(2,5)} by (v). Since Z(G) < D we may, by 
virtue of the Gallagher Theorem [1], Theorem 7.46, assume that Z(D) = 1. Then 
£>^PSL(2 ,5) . Since 

AutD S S 5 , mc(5 5 ) = 7/120 < 1/16 

then 
G/CG(D) ^PSL(2 ,5 ) , G = D x CG(G), 

and CG(D) is abelian (see (ii)). So D = G'. 

(vii) G = SG'. 
This follows from (iii) and (vi). 
(viii) \S'\ < 2. In particular, S is nilpotent and all its Sylow subgroups of odd 

orders are abelian. 

Proof. — In fact, S' < S D G' < Z{G'). 

(ix) G = S *G', a, central product. 

Proof. — Take an element x of order 5 in G'. Since G' D S < Z(G), then 

G/G' fi S = G'/G' nSxS/SnG' 
implies that (x, S) is nilpotent. Hence (5, x) = P x A where P E Syl2(5) and A is 
abelian. As x € A then x G CG(S). Since GF = (x € G'lx5 = 1) it follows that 

G = SG'" = S* G'. 

(x) S is abelian. 

Proo/. — We have G = (S x G')/Z where \Z\ < 2. For G' ^ PSL(2,5) our assertion 
is evident. Now let G' ^ SL(2,5). Then |Z | = 2, Z > 5 ' . Suppose that S is 
non-abelian. Then Z = S'. 

Take x G Irr(G). We consider x as a character of G' x 5 such that Z < kerx-
Then x = rt? where r G Irr(G'), 1? G Irr(5) and xz = x ( l ) l z = r ( l ) ^ ( l ) l z . Now 
rz — r(l)A, a?^ = $( l ) / i where A,/i G Irr(Z), Yu = 1^. Noting that |Z | = 2, one has 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



246 Y. BERKOVICH 

X = fi and TZ = r ( l )À,$£ = i?(l)À. Since S is non-abelian then edS = { l , m } where 
m2 = \S:Z(S)\. 

Suppose that A = lz- Irr(G') has exactly 5 characters containing Z in their kernels, 
so for r we have exactly 5 possibilities. Since Z < keri? then $ G Lin(S), and for 
$ we have exactly |Lin(5)| = \S\/2 possibilities. Hence for \ we have exactly 5|S|/2 
possibilities if A = lz-

Suppose that A ^ 1^. Then Z is not contained in kerr , so for r we have exactly 
\liv{G')\ — \lrr(G'/Z)\ = 9-5 = 4 possibilities. Since S' = Z is not contained in 
ker$, then $ is not linear, and for $ we have exactly (\S\ — \S/S'\)/m2 = \S\/2m2 

possibilities. For x we have, in this case, exactly 4 |5 | /2ra 2 = 2\S\/m2 possibilities. 
Finally, 

k(G) = 5|5 | /2 + 2 |S | /m 2 

and 
mc(G) = k(G)/\G\ = k(G)/60\S\ = 1/24+ l / 30m 2 . 

Since m > 1 then 
mc(G) < 1 /24+1/120 = 1/20 < 1/16, 

a contradiction. Therefore S is abelian, S = Z(G) and G = G'Z(G). In this case 
mc(G) G {1/12,3/40}. The theorem is proved. 

Let now / (G) > 1/4. Then mc(G) > / ( G ) 2 > 1/16, and Theorem 2 is a corollary 
of Theorem 1. It is easy to see that in this case / (G) = f(G') G {4/15,1/4}. 

Proof of Theorem 3. — In view of Lemma 3 we may assume that iQ(G) > 1/4. 
Since 

mc(G) > / ( G ) 2 > UGY > 1/16 

we may apply Theorem 1. By this theorem G = G Z(G) where 

G' € {PSL(2,5),SL(2,5)}. 

1£G'=G then G S PSL(2,5) since t 0(SL(2,5)) = 1/120 < 1/4. Now let G' < G. 
Suppose that exp(G/G') > 2. Let M/G' be the subgroup generated by all involu

tions of G/G'. Then i(M) = i(G), 

iJM) = i(M)/\M\ = \G : M\i(G)/\G\ = 

\G : M\ia(G) > \G : M| /4 > 1/2, 

and M is solvable by [1] Theorem 11.24 (since f(M) > iQ{M) > 1/2), a contradiction. 
Thus exp(G/G') = 2. 

If G' = PSL(2,5) then G = G' x Z(G). If exp Z > 2 and M = G' x n a (Z(G)) then 

«(G) = t (M) , * 0 ( M ) = |G : M|*o(G) > |G : M| /4 > 1/2, 

and M is solvable (see [1], Theorem 11.24) — a contradiction. Hence if G' = PSL(2,5) 
then G = PSL(2,5) x E with expJS < 2. 

Now suppose that G = G'Z{G), G' = SL(2,5) and Z(G) is a 2-subgroup. Set 
(z) = Z(G'). 
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If exp Z(G) = 2 then Z(G) = (z)xE,G = G' x E, and iQ(G) < 1/4. Assume that 
exp Z(G) = 4. Then 

G'f)Z(G) = (z) = 9(G) 

where Q(G) is the Frattini subgroup of G. 
Let s be an element of order 4 in Z{G). Then Z(G) = (s) x E and 

G = (G'(s)) x E,expE < 2. 

Let us calculate iJH) where 

H = G'(s), Z(H) = (s), o(a) = 4. 

Take P € Syl 2(G'). Then P = Q(B) contains exactly three distinct cyclic subgroups 
(a), (6), (c) of order 4, and a2 = b2 = c2 = s2 = z. Hence 

(as)2 = (bs)2 = (cs)2 = 1 

and it is easy to see that i0((P, s)) = 7. Now 

(P,a) G SyUH), \H : NH((P,S))\ = 5, 

(P,a)n(P,8)* = (8) 
for all a; G -ff — ^ ( ( P , a». Thus 

i 0 ( i î ) = |H:iVH((P , S ) )H 0 ( (P, S ) ) -
(IfT : iVH((P, s » | - l ) i o « » » = 5 x 7 - 4 = 31. 

Since 
G = H x E, \E\= 2a, expE < 2, 

then 

i(G) = i (H) |E|+|E| - 1 = 31.2a + 2Q - 1 = 32.2a - 1, 
io(G) = i(G)/\G\ = (32.2 a - l ) /240 .2 a < 2/15 < 1/4, 

a contradiction. Therefore G' p§ SL(2,5) and the theorem is proved. 

Question. — Find all non-solvable groups G with i0(G) = 2 n > 2. 

There exist four multiplication tables for two-element subsets of group elements 
(see [3]). These multiplication tables afford the following 2 x 2 squares: 

A 

B 
B 
A 

A 
B 

B 
C 

A 
C 

B 
A 

A 
C 

B 
D 

Here distinct letters denote distinct elements of a group. 
Let us calculate the number P ( l ) of the squares of the first type in a finite group G. 

If a pair {a, b} of elements of G affords a square of the first type, then a2 = b2, ab = ba. 
Then ( a _ 1 6 ) 2 = 1, so i = a _ 1 6 is the involution commuting with a and b. If i G Inv(G) 
(the set of all involutions of G), x G Ca{i), then the pair (x.xi) affords the square of 
the first type. Therefore i G Inv(G) affords exactly |CG(^)| squares of the first type. 
Let 

Inv(G) = J i f ( l ) U - U J Ï ( r ) , 
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where K(l),..., K(r) are distinct conjugacy classes of G. Then 

P(1) = 
ielnv(G) 

\CG(i)\ = 
r 

3 = 1 i€K(j) 

|C G (t) | = r|G|. 

Thus P(l) = r\G\, where r is the number of conjugacy classes of involutions in G. 
By analogy, we may prove that the number P ( l , 2) of commutative squares in the 

multiplicative table of G is equal to k(G)\G\. The number P(2) of squares of the 
second type in the multiplicative table of G is therefore equal to P(2) = P( l , 2 ) — 
P(l) = (k(G) — r)\G\. If p(n) is the fraction of squares of the n-th type in the 
multiplicative table of G then 

p ( l ) = r/\G\, p(2) = (k(G) - r)/\G\ = mc{G) - p ( l ) . 

It is easy to see that the number P ( l ) + P(3) of squares of the first and the third type 
in the multiplicative table of G is equal to |G|s where s is the number of real classes 
(a class K of G is said to be real if x G K x~x G K). Thus 

P(4) = 0 (mod |G|). 
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Q U E S T I O N S O N S E T S Q U A R I N G I N G R O U P S 

by 

Yakov Berkovich 

Abstract — Some questions on small subsets in groups are posed and discussed. 

Let M be a subset of a group G. Define 

M2 = {x I x = ab, a, b E M } , 

the square of M. M is a set with a large square if a, 6, c, d G M and ab = cd implies 
a = c, b — d. If M is a finite set note that | M2 \ = \ M \2. In the opposite case M is 
said to be a set with small square. 

It is natural to consider two group subsets M, N as equivalent if they have equal 
multiplication tables. To be more precise, we give the following 

Definition. — Let M C G, N C H where G, H are groups. A bijection (p from M onto 
N is said to be an S -isomorphism if for a, 6, c, d € M the equality ab = cd implies 
ip(a)(p(b) = ip(c)(p(d) , and conversely. 

The group isomorphism is an 5-isomorphism, but the converse assertion is not true. 
Moreover, if G is a group with non-trivial centre then there exists an 5-isomorphism 
from G onto G which is not a group isomorphism. The automorphism group AUT(M) 
of a group subset M is defined as usual. If M is a finite group set with great squaring 
then AUT(M) ^ Sn where n =1 M I. 

Question 1. — Find all group n-sets M with AUT(M) = {1}. 

Question 2. — Is there for any group H a group set M such that AUT(M) = H ? 

Question 3. — Find all group n-sets M such that AUT(M) = Sn. 

Question 4. — Find all group n-sets M such that AUT(M) = An (may be the set of 
all such M for n > 3 is empty). 
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The classification of all group n-sets is a very difficult problem. Let Set(n) be the 
number of all pairwise non-isomorphic group n-sets. Then Set(2) = 4, Set(3) = 54 
(G. Freiman); see[4,6]. 

Questions. — Find Set(4)-

Consider the easiest case n = 2. As we saw there are four distinct group 2-sets with 
the following squares (i.e., their multiplication tables): 

AB 

BA 

AB 

BC 

AB 

CA 

AB 

CD 

We note that the number Gr(n) of pairwise non-isomorphic groups of order n is not 
a monotone function. In the same time Set(n) is a monotone function. 

Let us continue to consider the case n — 2. Suppose that G is finite. Denote by 
PG(i) the number of 2-sets of type i in G. The following result is due to Freiman: 
If PG(4) = 0 then G is abelian or a dedekindian 2-group, and conversely [6]. Now 
PQ(1) = 0 if and only if G is of odd order, and PG(2) = 0 if and only if G is an 
elementary abelian 2-group. Lastly PG(3) = 0 if and only if a Sylow 2-subgroup 
S is normal in G and Ps(3) = 0 [4]. As A. Mann showed, a 2-group S has no 
squares of third type if and only if x2 = y2 o (xy-1)2 = 1 for x,y E S. Next 
PG(1) + PG(2) = | G | k(G) where k(G) is the class number of G(A.Mann); 
PG(1) + PG(3) = | G | r(G) where r(G) is the number of real G-classes (a class K is 
real if x e K x~x £ K); 
PG(1) = | G | ki(G) where ki(G) is the number of C?-classes containing involutions. 
Note that PG(1) + PG(3) = | {(x,y) G G x G | x2 = y2} |. 

In particular PG(*) = 0(mod | G |). 
Now we see that a fraction of commutative 2 x 2-squares in G is equal to 

mc(G) =\ G I k(G)/ | G \2= k(G)/ | G |, 

the measure of commutativity of G. Note that k(G) =|Irr(G)| , the number of ordinary 
irreducible characters of G. Therefore we may study mc(G) by means of representation 
theory. This function has a number of nice properties. For example, if H < G 
then mc(H) > mc(G); if H is normal in G then mc(G) < mc(H)mc(G/H)\ see [1], 
§§7.8,7.11,11.3. 

Question 6. — Is it true that the number of n-subsets of given type in G is divisible 
by | G | for small values n (for example, for n — 3) and large \ G \ ? 

A number of authors have classified all groups without 3 x 3-squares with 9 distinct 
elements; see [2]. 

Question 7. — Classify all groups without 4 x 4-squares with 16 distinct elements. 

P. Neumann showed that if all n-subsets of G have small squares, then G contains 
a finite normal subgroup H such that G/H is an extension of an abelian group by a 
finite group. Herzog, Longobardi and Maj classified all such groups; see [71. 
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B. Neumann showed that | G : Z(G) | is finite if and only if any infinite subset of 
G contains a pair of commuting elements. 

Question 8. — What we may say about a structure of G if any of its infinite subset 
contains a small square? 

If for some k > 1 there is a connection between | M2 | and k for all fc-subsets M 
of G then in some cases we may make strong assertions on G. We note the following 
characterization of abelian groups: 

Theorem (L. Brailovsky). — Let k > 2 be a positive integer such that (&2—3)(fc—2) < | 
G | /15 ifG is finite. If 

I M2 |< (k2 + 2 & - 3 ) / 2 

is true for any M C G with | M | = k then G is abelian. 

We note that if G is abelian then | M2 \< k(k + l ) /2 for all such M. 
It is interesting to consider a group generated by a set with small square or cube. 

Some results in this direction are contained in the following theorem 

Theorem (S. Brodsky) 

(a) If | {a, b}3 |< 7 then the subgroup (a, 6) is solvable. 
(b) If \ {a, b}4 |< 11 then the subgroup (a, b) is solvable. 
(c) The author completely described groups G = (a, b) for which 

{a ,6}3 |> 6 and I {a,6}4 |< 14. 

This theorem was proved by means of a computer fsee [5]. 
The set Q of n x n-squares is said to be minimal, corresponding to a n x n-square 

a. if it satisfies the following conditions: 

(a) q £ Q. 
(b) Let qi G Q — {q} and T be the set of all groups containing Q — {qi}. Then there 

exists a square qo $ Q — {qi} which is contained in all groups of the set T. 

Question 9. — Find all one element minimal sets of n x n-squares. 

Question 10. — For n = 3 find for any square q all minimal sets containing q. 

We consider in the remaining part of the lecture "large subsets". 

Theorem (G. Freiman). — Let M be a finite subset of a group G such that (M) — G. 
Suppose that \ M2 \< 1.5 | M \ . Then one of the following assertions is true; 

(a) M2 is a subgroup of G. 
(b) M2 = xH where H is a normal subgroup of G. 

Question 11. — Change in this theorem 1.5 to 2, i.e., consider the case when | M2 |< 
2 | M | - 1 . 
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L. Brailovsky and G. Freiman described for torsion free groups the case when 
I K2 |= 2 I K I —1. If K, M are finite subsets of a torsion free group then | KM \>\ 
K I + I M I —1 (Kemperman). L. Brailovsky and G. Freiman showed that if | 
KM |=| K I + I M I — 1 then K and M are geometric progressions with the same 
factor. 

Question 12. — Let M C G and for any c G G one has 
I (M U c)2 — M2 |< 1. (*) 

Describe the position of M in G. 

It is easy to show that if in Question 12 | M |> 1 then G = (M). Now if | M \= 2 
then G is solvable of derived length 2. But in the case | M |= 3 this question is very 
complicated. 

Many results on squares of large subsets are contained in the lecture of M. Herzog. 
Question 12 is, in some sense, a development of the idea of special elements, which 

was studied by Brailovsky, Freiman, and Herzog. An element a G G is said to be 
(ra, n)-special if for any b G G one has | {a, 6}m |< n. 

Let Sm,n(G) be the set of all (ra, n)-special elements of a group G. The same three 
authors proved that .$2,3(GO and $3,5(0) are characteristic subgroups of G. We may 
consider the sets 5m?n(G) as natural generalizations of the centre Z(G) of G(we note 
that Z(G) C S2,z{G)). However Brailovsky showed that, in general, Ss^(G) is not a 
subgroup of G (he found that among 2,328 groups of order 27 only two cases for which 
this subset is not a subgroup). 

A group G is said to be a P(ra, n)-group if for any subset { a i , . . . , am} of G one 
has 

I {aaj1)...a<r,rn) I o G Sm} |< n. 
G. Freiman and B. Schein showed that G is a P(3,2)-group if and only if | G' |< 
2. They also proved the analogous result for P(3,3)-groups. They obtained many 
important results on P(3,4)-groups. 

I hope that the approach inspired by Freiman's number theoretical investigations 
on finite subsets with small doubling will considerably increase the subjects of group 
theory and will lead to new interesting results. For further information and references, 
see Freiman's survey. 
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ON G R O U P S G E N E R A T E D BY A PAIR O F E L E M E N T S 
W I T H S M A L L T H I R D O R F O U R T H P O W E R 

by 

Sergei Brodsky 

Abstract. — The paper is devoted to an investigation of two-generated groups such 
that the m—th power of the generating pair contains less than 2m elements . It 
is proved, in particular, that if the cube of the generating pair contains less than 7 
elements or its fourth power contains less than 11 elements, then the group is solvable. 
Otherwise, it is not necessarily solvable- The proofs use computer calculations. 

1. Introduction 

Let G be a group. A finite subset M of G is called a set with small m—th power 
(m is some integer) if |Mm| < |M|m (here Mm = {ax... am|ai, . . . , am G M } and 
| . | denotes the cardinality of the set). The structure of the groups in which each 
p—element subset has a small m—th power (for some small p and m), as well as 
the structure of the set of all special elements was investigated in papers [1-5,7], 
among others. Notice that the notion of identification pattern, which is introduced 
in the present paper, is close to the notion "type of square" which was introduced in 
[3], but we will not discuss the relationship between these concepts. 

In this paper we are interested in the structure of groups generated by a two-
element set M = {a, b} with a small third and fourth power. The proofs are based on 
pure combinatorial considerations, and are ultimately reduced to enumerating a list 
of very concrete groups, unfortunately; the total number of cases which appear here 
is so large that we need to use a computer. All computer calculations were developed 
by the author on an IBM PC using self-made programs which were written in the 
frame-work of the mathematical package MATLAB-386 ^. These programs provide a 
simplification of finite group presentations using Tietze transformations, a calculation 
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of a commutator subgroups in the case of a finite index, and also recognition of 
groups of some types. The methods of programming are in some interest. Since their 
description would lead us too far from the topic of the present paper, the topic could 
be a subject of a separate publication. The results of the mentioned calculations are 
given in the Appendix. 

Acknowledgment — The author would like to thank Prof. Ya. Berkovich for the 
introduction into the subject of the investigations, as well as for useful discussions. 

Let us formulate a general combinatorial assertion which will be needed below. 
Let A be a finite set, 9 an equivalence relation on A, and R C A x A. We say that 
the equivalence relation 9 is generated by R, and write 6 = eq(R) if 9 is the least 
equivalence relation contaning R. The relation 9 will be called independent if 9 is the 
minimal generating relation for its closure eq(R). The following lemma can be easily 
proved using induction on \R\. 

Lemma 1. — Let 9 be an equivalence relation on the set A generated by a relation 
R C A x A, Then \A/0\ > \A\ — \R\. If, in addition, R is independent, then \A/9\ = 
\A\-\R\. 

2. Identification graphs and their properties 

Let G be a group generated by two elements a and b: G — gp(a, b). We fix a and b 
as signature constants and regard the group G as the quotient-group of the free group 
F — (a, b). The natural epimorphism # G ' F -» G defines an equivalence relation on 
the group F which will be denoted by the symbol 9Q~ We define H{G) as the normal 
closure of the element ab~x in G: H(G) = (a6_1)G, and set Ui = a%ba~%~x for each 
i G Z, so H = gp(ui\i G Z). For each element, or a subset P of iif(G), we let P^ 
denote the element (the subset) asPa~s; it is clear that P^ can be obtained from 
P by adding s to all indices of the ^-symbols. We also apply the same notation to 
elements and subsets of the Cartesian square HQ X HQ- (P, Q)^ — ( P ^ , Q ). Since 
|{a,6}m| = |{a,6}ma~m|, the condition |{a,6}m| = n < 2m (m > 2) is equivalent 
to the condition \Hm(G)\ = n where Hm(G) = {a, b}a~m. One can see that Hm(G) 
consists of values in G of all strictly increasing positive words in symbols UQ, ..., um-i: 

Hm{G) = {UH ...UIK 0 < ¿1 < • • • < ik < m - 1, 0 < k < m} C H(G). 

We denote by Um the set of all strictly increasing positive words in symbols uo,..., 
U m - i itself, so that ifm(F) = gp(C/m) and Hm(G) = g p ( $ G ( ^ m ) ) . 

For 5, T G Um we say that the pair (5, T) is an irreducible m-pair if exactly one 
of the words 5, T begins with UQ and exactly one of them ends with wm_i. If the 
irreducible m-pair e has the form (UQP3 Qum-x) we say that it is positive, otherwise e 
has the form (uoPum-iyQ) and in this case we say that e is negative. In both cases 
we define i(e) — P and t(e) = Q. The set of all positive irreducible m-pairs is denoted 
by J + and the set of all negative irreducible pairs is denoted as I~. 

For given R G C/m, let R be the word in symbols a and b which freely equals R; 
it is clear that R is a positive word of length m. We say that an irreducible m-pair 
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(5 , T) is degenerate if there exists some irreducible (m — l)-pair (P, Q) G 9Q such that 
one of the words P , Q is a sub word of one of the words S,T. The following lemma is 
obvious. 

Lemma 2. — Let $o = 9Q H (Um~i x Um-i) and let (5 , T) be a degenerate irreducible 

m-pair. Then (S , T) G 9 if and only if (5 , T ) G eq(<90 U 0^ U (90^m-i U u0e^). 

Let us now define the positive identification m-graph ]?+(G) of G as the oriented 
graph with the set of vertices H^l_2 and the set of edges E+(G) = ( $ G X #Gf ) ( I+N#a) , 
and the negative identification m-graph r ~ ( G ) of G as the graph with the same 
set of vertices and the set of edges E~(G) = ( # G X $G)(Im n OG)- The incidence 
relations in both these graphs are given by the following rule: if e G U E~ and 
e = ($G x $G)(€O)> where eo is some irreducible m-pair, then the initial vertex of e 
is #o(«(eo)) and the terminal vertex of e is $G(£(CO)) . 

The correctness of the last definition, as well as the validity of the following lemma, 
can be easily verified. 

Lemma 3. — Let G — gp(a, b) and m > 2. Then each vertex of the positive rn-
identification graph Fm(G), and each vertex of the negative m-identification graph 
Tm(G), has at most one incoming edge and at most one outgoing edge. 

For e G E+(G) U P ~ (G), we call e a degenerate edge if and only if the set (3>G X 
^ G ) " 1 ( ^ ) contains some degenerate irreducible pair. Lastly, let defm(G) denote the 
total number of nondegenerate edges in the set Em(G) U E~(G). 

Lemma 4. — Let G = gp(a, 6) and m > 2. Then 

defm(G) > -2™ - \Hm(G)\ + 4 |Pm_i (G) | . 

Proof. — Let d = 2m-1 - |Pm_i (G) | . Then, by Lemma 1, the trace 0O of the 
equivalence relation 9Q on the set t/m_i is generated by some relation RQ of car
dinality d. Since Tim x Um = (Um-i x (7m-i) U (L^Li x u£lx) U ( t /m-i^m-i x 
Um-iUm-i) U (^ot/m-i x ^o^m-i)? the trace # of the equivalence relation 9Q on 
the set Um can be represented as the union of their traces #o?0i>02?#3 on the sets 
Um-i, U^_1,Um-iUm-i,uoU^_1, respectively, and the relation (l£ UIQ) H0G - Each 
of the equivalence relations 9k (k = 1 ,2 ,3 ,4) is generated by a d-element relation 
(Po, RoUm-ij UORQ~\ respectively). The union P of last the four relations con
tains no more than 4d elements. By Lemma 2, the difference (IQ U IQ) fl 9Q \ eq(P) 
is contained in the set of all nondegenerate irreducible m-pairs from 9. Now let us 
define P i as the set which contains one # G X $ G pre-image of each nondegenerate 
edge from E+(G) U E~(G). Then 90 = eq(P U P i ) , and it only remains to apply 
Lemma 1. 

The inequality which was obtained in Lemma 4 provides us with good necessary 
conditions for a group to be generated by a pair with a small power. However, we need 
a more detailed version of this result which also includes some sufficient conditions. 
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Lemma 5. — Let G = gp(a, b) and i fm_i(G) > 2m_1 - 1 (m > 2) . Then 

defm(G) = - 2 m - |Hm(G)| + 4 | H m - ! ( G ) | . 

Proof. — Let Hm-i(G) — 2m_1. Preserving the notations which were introduced in 
the Proof of Lemma 4, we have here that R = 0 and R\ coinsides with E+(G) U 
Em(G). Lemma 3 asures us that the last relation is independent. By Lemma 1, the 
inequality of Lemma 4 becomes an exact equality. 

Let now Um__i (G) = 2rn~~1 — 1. In this case R consists of four pairs, and one can 
verify that it is independent. Repeating the previous argument, and bearing in mind 
that the definition of a nondegenerate edge provides the independence of the united 
relation Ri we again have an exact equality - instead of the inequality - in Lemma 4. 

The fact that the quotient group G/H(G) is cyclic reduces the investigation of the 
group G(T) to an investigation of the group H(G). The following lemma shows that 
in nontrivial situations this group is finitely generated. 

Lemma 6 — Let \Hm(G)\ < 2m. Then H(G) = gp(u0,..., tim_2). 

Proof. — If m = 1 then UQ = 1 and H = 1. Hence, we may assume that rn > 
2. Without loss of generality, we may also assume that \Hm-i(G)\ = 2m_1. By 
Lemma 4, def m (G) > 1, and thus there exists an irreducible m-pair (5 , T) such 
that G satisfies the equality S = T - implying that G also satisfies the equality 
S(i) — y»M for each i e Z . Therefore, for each i G Z, m G gp( t^_m+i , . . . ui-1 ) and 
ui G gp(w i + i j • • •ui+m-1 i ) - Now, using induction on i, one can prove that for each 

i e z , ^ G gpOo, • • •,Um-2)' 

It should be noted that in the case m = 2 Lemma 6 asserts that the group H is 
cyclic. (In fact, this assertion is obvious and well known). 

3 . Identification p a t t e r n s and their universal groups 

Let us consider a finite sequence T = {E^E^,..., Em1 Em) such that the set E^ 
of its positive k-edges and the set of E^ of its negative k-edges consist of positive 
and negative irreducible &-pairs, respectively (2 < k < m) . For each e G E^UE^ , we 
define the initial vertex of e as i(e) and the terminal vertex of e as t{e)\ so for each 
2 < k < rn we obtain two oriented graphs with the set of vertices Uk-2' the positive 
k-graph ofT which will be denoted by ( r ) £ , and the negative k-graph ofT which will 
be denoted by ( r ) ^ . We write e = ( ^ 1 , ^ 2 ) ^ (or e — ( ^ 1 ^ 2 ) ^ ) if e is a positive (or 
a negative) k-edge with the initial vertex w\ and the terminal vertex 1̂ 2 • If we need 
to describe any such sequence in a concrete situation, we do this by enumerating of 
its edges. Further, we consider the sequence of groups {Hk(T)\2 < k < m) which are 
defined in the set of generators {ui\i G Z } by the sets of relations [){7Zk(T)^\s G Z } , 
where nk(T) = {u0i(e) = t(e)up{l\\e G E£ U E~, 2 < p <k e{e) = 1 for e G E^ 
and e(e) — —1 for e G E~. For each of these groups, the natural epimorphism 
$r,k ' Uk -> Hk defines the equivalence relation on the group Uu which is denoted by 
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the symbol 0r,k- Let us denote the quotient-graphs (F)^/#r,fc-2 and (r) | /#r ,fe-2 by 
the symbols [T]"£ and [F]^ , respectively. 

As above, we say that an irreducible fc-pair (S, T) is degenerate (in respect to Y) 
if there exists some irreducible (k — l)-pair (P, Q) € 9r,k such that one of the words 
P , Q is a subword of one of the words 5 , T . 

Finally, we call the sequence F to be an identification pattern if, for each 3 < k < m, 
the set U Ej~ consists of nondegenerate pairs, and each of the graphs [ r ]£ , [r]^ 
has the property that each of its vertices has at most one incoming and at most one 
outgoing edge. 

For a given identification pattern T, we let the symbol G(Y) denote the class of 
all groups G = gp(a, b), such that for each 2 < k < ra, E%(G) D(&G x &G)(E£) 
and E^(G) D ( # G X 3>G)(E^). Let us now define the universal group G(T) of the 
identification pattern T as the infinite cyclic extension of the group H(Y) = Hm(T) 
with the naturally defined extending automorphism: G(T) = (a)XH(Y), auia~l = 
Ui+\. It is easy to see that for each identification pattern Y,G(Y) E Q(Y) and G(Y) 
consists of all quotient-groups of G(Y). The group H(Y) itself we call the universal 
kernel of T. 

Example 1. — Let Y — ((1,1)3", (^1112,^1^2)4"). Then the universal kernel of Y has 
the following presentation: H(Y) = (uo,Wi \ U0U1U0 — u\u§u\)\ and the inner auto
morphism, afforded by a, acts in the following way: auoa~1 = ui^auia'1 = uo> Using 
the Reidemeister-Schreier method (see, for instance, [8,9]), we see that the group H 
is the infinite cyclic extension of the free group K = (VQ, v±) with the extending au
tomorphism defined by the equalities uiVou^1 = vi, UiViu^1 = VQXVI (UO = voui). 
Direct calculations show that \H3(G(Y))\ = 7 and | P 4 ( G ( r ) ) | = 11. 

Example2. — Let F = ((1,1)^,(^1^2,^1^2)4") . Then 

H(Y) = {UQ,UI,U2 I U0U1U2 = U1U2U0 = U2U0U1}, 

auoa~x = i i1,at t ia-1 = U2 and au2d~1 = UQ. Using Tietze transformations (see, 
for instance, [8,9]), we have H(Y) = (^o,^1,^2 | ^0^2 = ^2^0,^1^2 = ^2^1), where 
^0 = ^0,^1 = VQ1VI,U2 = v±XV2. That is, P ( r ) is a direct product of the free 
group (vo,v\) of rank two and the infinite cyclic group (i^). In this case we have 
\H3(G(Y))\ = 8 and \H4(G(Y))\ = 14. 

In an informal way the above examples show that there exist arbitrarily large 
groups generated by a pair of elements with small third and fourth powers. In precise 
terms we have the following two theorems: 

Theorem 1. — For each countable (finite) group L , there exists a (finite) group G = 
gp(a,b) such that | { a , 6 } 3 | = 7, |{a ,b}4\ = 11, and the group L is the homomorphic 
image of a subgroup of G. 

Theorem 2, — For each countable (finite) group L, there exists a (finite) group G = 
gp(a, b) such that | { a , fe}3| = 8, | { a , b}4\ = 14, and the group L is the homomorphic 
image of a subgroup ofG. 
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Proof. — In order to prove the infinite versions of these theorems, it is enough to 
note that each of the groups G(F) in the above examples contains the free group 
of rank two, and also to realize that each countable group can be embedded into a 
two-generated group ([6]). 

The proofs of the finite versions can be obtained by the method of the proof of 
Theorem 1 in [10],which asserts that a semidirect product of a residually finite group 
and a finitely generated residually finite group is residually finite. 

Let us prove in details Theorem 1. Let Go = G ( r ) , i J = H(T), and K be the 
groups from Example 1. First we embed the group L into some two-generated finite 
group P (we can take, for instance, P = Sn for the relevant permutation group 
Sn). Consider the two-generator free group F of the variety generated by P and the 
relevant verbal subgroup M of K, so that F = K/M and \F\ < oo (see, for instance, 
[12]). The subgroup M is a normal divisor of the group H, the quotient-group H/M 
is the semidirect product of an infinite cyclic group, and the group F : H/M = 
(ui) XF. Since the group F is finite, the extending automorphism of this semidirect 
product has finite order, say Z, and hence we may consider the semidirect product 
Pi = {m | u[ = 1) A F which is a finite group. We then obtain the following chain of 
epimorphisms and embeddings: 

H-++Pi^F-+*P*->L. 

Repeating these considerations, with the usage of Pi instead of P , H instead of K 
and Go instead of i f , we can extend the above chain to the chain 

G0 -+* P2 ^ Pi -M> Pi ±-> F P L , 

where all groups besides G are finite. Now, using Theorem 1 from [10], we may assert 
that the group Go is residually finite. Therefore, it is possible to insert into the last 
chain the finite group G which satisfies the conditions of Theorem 1: 

G Q - ^ G - ^ P ^ ^ F X ^ P X ^ F - ^ P ^ L . 

The proof of the finite version of Theorem 2 is obtained by similar considerations. 

Theorems 1 and 2 show that if we want to obtain any definite information about 
the groups generated by a pair with a small third or fourth power, we need to impose 
stronger restrictions on the cardinalities of these powers than those used in the above 
theorems. Noting that in the case where \H2{G)\ < 4 the group H is cyclic, we have 
to investigate only the following situations: 

(a) | H 2 ( G ) | = 4 a n d | # 3 ( G ) | < 7 ; 
(b) | H 3 ( G ) | = 7 a n d | H 4 ( G ) | < l l ; 
(c) \H3(G)\ = 8 and \H4(G)\ < 14. 

Using lemmas 2,3 and 5, one can easily verify the following three lemmas. 

Lemma 7. — Let G = gp(a,6) and \H2(G)\ = 4. Then \H3(G)\ < 7 if and only if G 
is a quotient of the universal group G(T) for some identification pattern T with two 
3-edges (and no other edges). 
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Lemma 8. — LetG = gp(a, b) and \H3(G)\ = 7. Then \H4(G)\ < 11 if and only ifG 
is a quotient of the universal group G(T) for some identification pattern T with one 
3-edge and two 4-edges (and no other edges). 

Lemma 9. — Let G = gp(a, b) and \H3(G)\ = 8. Then |H4(G)| < 16 — k if and only 
if G is a quotient of the universal group G(T) for some identification pattern T with 
k 4-edges (and no other edges). 

The conditions of lemmas 7 - 9 provide the diagonality of the relations 0i,r?02,r, 
and therefore the graphs \T]f, [ r ] ^ , [ r ] ^ , [T]J coinside with the graphs ( r ) J , ( T ) ^ , 
( r ) ^ , ( r ) ^ respectively. We see now that the problem of describing groups which 
satisfy the conditions (a)-(c) above is reduced to enumerating the relevant graphs 
with the sets of vetices U (1) 1and U 2 (1) and calculating the relevant universal kernels. 
The major part of this enumeration can be eliminated by using the considerations 
below. 

For a word F G f/fe, we define the k-complementary word a&(P) as the word from 
Uk such that the set of all u—symbols which occur in a*.(P) is the complement in 
{?/o, • • • Uk-i} of the set of all w-symbols which occur in P. If P = UixUi2 ...Uin we 
define the k-opposite word Pk(P) = Uk-i-u • • • Uk-i^Uk-i-h • Extending these map
pings componentwise onto the Cartesian square fT* x [ / * , we obtain two sign preserving 
involutions on the set of all irreducible fc-pairs which we denote by the same symbols 
ak and Bk It follows from the definitions that these involutions commute, and hence 
they define an action of the Klein four-group K on the set of all irreducible fc-pairs. 
Furthermore, for g G K and any identification pattern Y = ( E 1 ^ , . . . , £J~£J~), 
we define g(T) = ((/(JSg"), ( ? ( £ ^ ~ ) , . . . , g ( E + ) , g ( E ~ ) ) and so we obtain the action of K, 
on the set of all identification patterns. We say that two identification patterns are 
K — equivalent if they belong to the same orbit of this action. 

Lemma 10. — If identification patterns F i and T2 are K,-equivalent, then 
J J ( r i ) s H(T2) and G?(ri) = G(T2). 

Proof. — In order to prove this lemma it is enough to note that the map a is the 
restriction of the automorphism of the free group F = (a,b) defined by the rule 
a H> 6,5 h> a, and the map (3 is the restriction of the composition of the automorphism 
of F defined by the rule a H> a""1,6 H-» b~l and the group inversion g H-> g~x. 

4. M a i n results 

Now we turn directly to the problem of calculating the universal kernel for a given 
identification pattern T. By Lemma 6, H(T) is finitely generated, but it is not nec
essarily finitely presented. Let us denote by the symbol H^(T) the group which is 
defined in the set of generators {ui\0 < i < n — 1} by the set of all relations from 
the union \J{TZm(T)^\s £ Z } which contain only the symbols uo,... , ^n_i ; we call 
this group the n-particular kernel of T. The group H(T) is the direct limit of the 
family of groups {H^(T)\n > 0 } ; if we have, for some n, ffW(r) ^ P tn+1]( r ) , and 
the group J?fnl(r) is hopfian, then we may conclude that H(T) = p W ( r ) . The lists 
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1 and 2 of the universal kernels in the Appendix are obtained using this argument: 
for each type of identification patterns which appears in lemmas 7-9, we enumerate 
up to /C-equivalence identification patterns of the given type, and calculate H^(T) 
and 1ft6] (r) (taking into account only the patterns for which the order of If tn!(r) is 
large enough). It is shown by the calculations that the first of above conditions holds 
for each identification pattern of those types. On the other hand, all of the groups 
in these lists are finite, except the first one in List 1 and the second one in List 2; 
yet these two groups are finite extensions of residaully finite groups and so they are 
residually finite themselves. Therefore, all groups in the lists 1 and 2 are hopfian, 
so these lists present the exact description of the needed universal kernels. List 3 
is obtained in the similar way using 1ft7] (r) and ift8l(r). For a few identificational 
patterns of this type it turns out that 1ft7] (r) ^ 1ft8] (F). In this case we also calculate 
1ft9] (r), and have lftg] (r) = lft9](r). Again, all of these groups are residually finite, 
and therefore they are hopfian. In order to prove this assertion, we can apply the 
same line of argument, or, in some cases, Malcev's theorem, which is mentioned in 
the proof of Theorem 1. 

Summarizing the information which is contained in the mentioned lists, and bearing 
in mind lemmas 7-9, we obtain the following theorems: 

Theorem 3. — Let G — gp(a,b), |{a,b}2\ = 4 and |{a, 6}3| < 7. Then the normal 
subgroup H = (ab~x)G of the group G, generated by the element ab~x, is isomorphic 
to one of the following groups: 

a) cyclic group of order 5; 
b) direct product of two cyclic groups of the same order p (2 < p < oo); 
c) dihedral group of order greater than 2; 
d) quaternion group. 

All these possibilities are realizable. 

Proof — By Lemma 7, the group G satisfies the conditions of the Theorem if and only 
if its subgroup H is a homomorphic image of some group in List 1 in the Appendix. 
Taking into account that groups number 3,7 and 9 are all isomorphic to the quaternion 
group, we see that all homomorphic images of the groups 1,3,4,6,7,8 and 9, which have 
at least four elements, is one of the groups described in items a),c),d). The groups 2 
and 5 are free abelian of rank two, and it is easy to verify that their free generators 
are conjugated by the element a. Thus images of these generators are conjugated in 
each quotient-group of the universal group G(T). Therefore, these quotient-groups 
satisfy the condition b) for H. A similar situation holds also for group 1 in List 1: it 
is the free product of two groups of order two which are conjugated by a. It follows 
that each normal subgroup P of this group is a-invariant (that is P is normal in the 
group G(T)) and hence for each dihedral group H there exists homomorphic image 
G of G(T) with H{G) ~ H. 

Since the condition of |H \ < 4 implies the cyclicity of H (Lemma 6) for all groups 
satisfying b),c),d) we have that |ff| = 4. Group 4 satisfies the condition a) which 
may be checked directly. 
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Corollary 1. — Let G = gp(a, b), | { a , 6}3| < 7. Then the group G is solvable of derived 
length not greater than three. 

Theorem4. — Let G — gp{a,b), | { a , 6}3 | = 7 and | { a , 6 } 4 | < 11. Then the normal 
subgroup H = {ab~x)G of the group G, generated by the element ab~x, is isomorphic 
to one of the following groups: 

a) cyclic group of order 7; 
b) direct product of two cyclic groups of the same order p (3 < p < oo); 
c) direct product of cyclic groups of orders 2 and 4 ; 
d) quaternion group; 
e) nonabelian semidirect product of cyclic group of even finite or 

infinite order with a cyclic group of order 3 ; 
f) nonabelian semidirect product of cyclic group of order 3 with a Klein 

four-group; 
g) group defined by presentation {x,y | x2 = y2, (xy)2 = 1) (extension of 

cyclic group of order 4 by group of order 2 ) ; 
h) special linear group S L ( 2 , 3 ) ; 

All these possibilities are realizable. 

Proof — At first let us remark that there exist identification patterns with one 3-
edge and two 4-edges such that H(T) is the cyclic group of order 7 (we may take 
as the example T = ((1*1 ,1)^,(1 ,1*1)^,(^1,1/2)4)) and so there exists a group G 
satisfying the conditions of the Theorem such that H satisfies the condition a). If 
H is not isomorphic to the cyclic group of order 7 then, by Lemma 8, it must by a 
homomorphic image of some group in List 2. Taking into account that the group 2 
has the presentation {v,w | w3 = l,v~1wv = it?-1), that the groups 12 and 19 are 
isomorphic to the quaternion group and that the group 5 is isomorphic to SL (2 ,3 ) 
(the last isomorphism can be defined by the rule x [~~Q __}],2/ H-> [~\ - ? ] ) , we see 
that each group in List 2 satisfies one of the conditions b)-h). In order to complete 
the proof, it remains to make the following observations: it is possible to apply to 
groups 2,14 and 18 considerations similar to those which were applied to the groups 
1,2 and 5 in the proof of Theorem 3; the unique quotient-group of S L ( 2 , 3 ) which has 
order greater than 7 satisfies condition f); and the unique quotient-group of the group 
1 which has order greater than 7, satisfies condition c). 

Corollary 2. — Let G = gp(a,b), | { a , 6 } 3 | = 7 and | { a , 6 } 4 | < 11. Then the group G 
is solvable of derived length not greater than four. 

Theorems. — Let G = gp(a,b), | { a , 6 } 3 | = 8 and | { a , 6 } 4 | < 14. Then either the 
normal subgroup H = (ab~1)G of the group G generated by the element ab~l is solvable 
of derived length not greater than three, or it is a central extension of a cyclic group 
of order not greater two by the alternating group A§. 

Proof — By Lemma 9, our group is a homomorphic image of some group in List 
3. All these groups except group 17 are solvable of derived length not greater than 
three. Group 17 is presented in this list in the following way: H — {x,y \ xyx = 
yxy,xyx~1yx — | /2), but in generators v — xy and w = xyx it has the presentation 
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(v,w I v3 = w2, (vw~1)bw2 = 1). The quotient-group of this group by the central 
cyclic subgroup generated by the element w2 is isomorphic (as was proved in ([11]) to 
the alternating group Moreover, let us define homomorphism (p : H —>• A$ by the 
rule v H-> (135) and w H-» (12) (34). A computation using the Reidemeister-Schreier 
method shows that (p is an epimorphism, and its kernel is isomorphic to a cyclic group 
of order two. 

Remark. — Using List 3, one can make a full classification of groups which satisfy 
the conditions of Theorem 5 as it has done in theorems 3 and 4, but it seems to be 
too extensive for our liking. 

Corollary 3. — Let G = gp(a,b), | { a , 6 } 3 | = 8 and | { a , 6}4| < 14. Then either the 
group G is solvable of derived length not greater than four, or it has an invariant 
series 1 < N <3 H < G such that N is a cyclic central subgroup of H, H/N = A§ and 
G/H is cyclic of order not greater two. 

Theorem 6. — Let G = gp(a,b), | { a , 6 } 3 | == 8 and | { a , 6 } 4 | < 13. Then the normal 
subgroup H = (ab~l)G of the group G generated by the element ab~x is solvable of 
derived length not greater than three. 

Proof. — If G satisfies the conditions of the Theorem, but H does not satisfy its 
conclusion, then, by Lemma 9 and properties of groups in lists 3,4, it must be a 
quotient-group of some identification pattern with four 3-edges such that all of them 
are contained in the union of /C-orbit of the identification pattern number 17 in List 
3. This union consists of edges (1,1)2*, (^1^1^2)4", (^1^25^2)4"? (1,1*2)4", (^1,1)4", 
(1x1^2,^1^2)4" and it is easy to see that it is impossible to construct any four-element 
identification pattern of these edges. 

Corollary 4. — Let G = gp(a,b), | { a , 6 } 3 | = 8 and \{a,b}4\ < 13. Then the group G 
is solvable of derived length not greater than four. 

Corollary 5. — Let G = gp(a,b) and | { a , 6}4| < 11. Then the group G is solvable of 
derived length not greater than four. 

5. Append ix 

Below are given results of mechanical computations of the universal kernels for the 
identification patterns which appear in the proofs of the theorems of the last section. 
These tables use the notation a b e l ( m i , . . . ,rrik) for the direct product of k cyclic 
groups of orders m i , . . . , m& (2 < m* < 00). 
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List 1 

Universal kernels of the identification patterns with two 3-edges, 
only for \H(T)\ > 4 . 

N 
r # ( r ) 

1 < ( l , l ) + , ( l , l ) 3 - > i ï = < x,y\x2,y2),H> = abel( l ) ; 

2 < ( l , l ) + , ( U l , U l ) + > H = abel (oo, oo) 

3 ( ( l , l ) J , ( t t i , W i ) j ) i f = {x,y 1 yxyx~x ,xyxy~x), 

H/H' = abel ( 2 , 2 ) , # ' = abel(2); 

4 < ( l , l ) J , ( l , « i ) + ) H = abel (5); 

5 <(1 .1 )3" , Wl)^> H — abel (oo, oo) 

6 { ( l , « l ) 3 " , ( l , î t l ) j ) H = abel(2,2); 

7 < ( l , t l l ) + , ( « 1 5 l ) + > H = (x, y 1 y2x~2,yxyx~1 ^xy-i-x), 

H/H' = abel ( 2 , 2 ) , i ì ' = abel(2); 

8 ( ( l , t l l ) ä " , ( « l , l ) J > H = abel (2 ,2 ) ; 

9 { (1 , ^1)3" , ( « l , l ) r > H = {x ,y 1 yxyx~1,y2x2, xy~xxy), 

H IH' = abel ( 2 , 2 ) , # ' = abel(2) 

List 2 
Universal kernels of the identification patterns with one 3-edge 

and two 4-edges, only for | H ( r ) | > 7. 

TV r H ( r ) 

1 ( ( l , l ) J , ( « 2 , « l ) | , H = (x,y 1 y2x~2,yxyx), 

( « i u 2 , l ) r ) H IH' = a b e l ( 2 , 4 ) ; # ' = abel(2); 

2 < ( l , l t f , ( u 2 , u l t t , i f = (x , j / 1y2x~2,yxyx~1y~1x~l), 

(ui?x2,uiw2)j) H IH' = -- abel(oo),i7 ' = abel(3); 

3 ( ( l , l ) ^ ( t i 2 , t t l ) J , F = (ar,y 1 y2x~2, yxyxy-1 x~\y2x2), 

(«1«2,«1«2)4 ) ff/ZT' = = abel(4) ; i f ' = abel(3); 

4 ( ( l , l ) ^ , ( u 2 , u i i t 2 ) | , H = (x, y 1 xyxy-xxy~x,y2,xz), 

(«11*2,1)4") H/H' = a b e l ( 3 ) ; # ' = abel(2,2); 
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List 2 

(continuation) 

N r H(T) 

5 ((M)3~, (^2,^1^2)^5 H = (x,y \ xyxy~2,yxyx~2), H/H' = abel(3); 

(^2,^1^2)^5 H' IH" = abe l (2 ,2 ) ; i î " = abel(2); 

6 ( (M)3~5(^2 , l )4~5 H = ( x,y 1 xyxy^xy'1^2^3), 

(111^2,1*1)4") H/H' = abel(3);fT' = abel(2,2); 

7 <(M)iT>(Miw2)"~\ H = abel(2,4); 

(1*1,1*2)4") 
8 ((1 ,1*1)^(1*1,1)7, H = abel(3,3); 

(^2,1)^) 

9 ( ( l , Î X l ) + , ( l i l , l ) ~ , i ï = abel(3,3); 

(Ulîi2,Ul)J) 

10 ( ( M i ) 3 ~ , K , i ) 4 ~ 5 H = abel(3,3); 

(1*1^2,^2)4 ) 
11 ( ( l , l* l )+ , (1X2,1)+, H = abel(3,3); 

(l*lli2,lil)4"> 

12 ( ( l , l i l ) 3 - , ( l , l ) + , H = (x, y 1 XyX-iy^yxy-^X,!-2!/), 

(1*11X2,^11*2)4") H/H' = a b e l ( 2 , 2 ) ; # ' = abel(2); 

13 ((1,1X1)3-, (1,1)4-, H = abel(3,3); 

(Wl, 1*2)4*) 
14 ((1,1X1)3-, ( 1 , 1 ) 7 , H = abel(oo, 00); 

(1*11X2,1X11*2)4") 

15 ((1,1X1)3-, (iXi,l*2)t, H = {x,y 1 y3,x3,xyxy), 

(1X11X2,1)4-) H/H' = abe l (3) ; i î ' = abel(2,2); 

16 ((iXi, 1)3", (1,1X11X2)4 , H = a b e l ( 3 , 3 ) ; 

(l*l,1*l)J) 

17 ((iXi, 1)3-, (1,1X11X2)4", H = (x,y 1 y3,x3,xy~1xy~1), 

(l*2,lXi)|) H/H' = abel(3); t f ' = abel(2,2); 

18 ((ixi,l)3",(ixi,i*i)t, i / = abel(oo, 00); 

(W2,1*2)4") 
19 ( ( ^ 1 , 1 ) ^ (^l^l)!"' H = {••r- V 1 xyxy~x,x~xyxy), 

(t*2,t*2)"T) H/H' = abe l (2 ,2) ;H ' = abel(2) 
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Lis t 3 
Universal kernels of the identification patterns with three 4-edges, 

only for \H(T)\ > 7. 

N r H(T) 

1 ( ( 1 , 1 ) ! , (1x1,1x1)!, H = abel (2 ,2 ,2) ; 

( M ) D 
2 ( ( l , l)! , ( l / l , lxl)! , H = abel(3,00); 

(1,1*11/2)4") 
3 ((l,l)+,(ixi,ixi)+, H = abel(9); 

( U ! , L ) r > 

4 ((1,1) + , (1X1,1*1)1, H = abel(2 ,2 ,2) ; 
(l*l,l*l)7) 

5 ((1,1)2", (l*l,l*l)2", H = abel(14); 
(lil,l*2)7) 

6 ((1 ,1) + , (iXi,1XI) + , H = abel(9); 

(1*2, 
7 ((1,1) + , (lXi,lXi)2", H = abel(14); 

(l*2,lXi)7) 
8 ((1 ,1) + , (lXi,lXi)!, H = abel(oo, oo, oo); 

((1,1) + , ( 
9 ( ( 1 , 1 ) ! , (lXi,lXi)!, H = abel (2 ,2 ,2) ; 

(U2, ^2)7) 
10 ( ( 1 , 1 ) ! , (1*1,1x1)!, H = abel(9); 

(1x11*2,1x1)7) 
11 ( ( 1 , 1 ) ! , (1*1,1*1)!, H = abel(9); 

(1*11*2,1*2)7) 
12 ( ( 1 , 1 ) ! , (1*1,1*1)!, H = abel(oo, oo, oo); 

(ixn*2,i*iix2)!) 
13 ( ( 1 , 1 ) ! , (1x1,1x1)!, H = a b e l ( 2 , 2 , 2 ) ; 

(1x11*2,1x11*2)7) 
14 ( ( 1 , 1 ) ! , (1*1,1x2)!, H = abel(oo); 

(1,1x11x2)7) 
15 ( ( 1 , 1 ) ! , (1x1,1*2)!, H = (x,y\ y3,x~1yxy), 

(l*2,l*l)!) H/H' = a b e ^ o o ) , ^ = abel(3); 
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List 3 
(continuation) 

N r H F) 

16 < ( l , l ) + ,(Ul)U2)+, 

( « 1 « 2 , « 1 « 2 ) | ) 
H = abel(oo); 

17 < ( l , l ) | , ( u i , « i « 2 ) + , H = (x,y 1 xyxy^x-ly-l^yx^yxy'2), 

(uiu2,u2)t) H/H' = 1; 
18 ( ( l , l )+ , («2 ,« l )+ , H = (x,y 1 yx-xyx~x ,x2yx~xy-2), 

(1,«11*2)4") F / H ' = abel(oo) ,#' = abel(2,2); 
19 ( (1 ,1) + , ( « 2 , « ! ) + , H = (x,y \ yxyx~1y~1x~1, y3x~1y~3x), 

(«1«2,«1«2) + ) H/H' = abel(oo), 
H' IH" = a b e l ( 2 , 2 ) , # " = abel(2); 

20 ( ( l , l ) + ,(«l«2,«l«2)+> H - (x,y,z 1 x2 ,y2, z2, zxyzyx, xyzxzy, 

(1 ,1 )1 ) yzxyxz), H IH' = abel(2,2,2), iT' = abel(2); 
21 ((l,l) + ,(«l«2,«l«2)+> = (x ,y 1 y2x~1y2x~1y~1x~1 ,x3y~3), 

( l ,ui«2)r> H/H = abel(3,00),H' = abel(oo,oo); 
22 ( ( l , l ) l , ( « l « 2 , « l « 2 ) l , 

(« i , i ) r> 

H = abel(9); 

23 ( ( 1 , 1 ) + , ( « 1 « 2 , « 1 « 2 ) + , H — (x,y,z \ zxzx'1 ,yzy~x z, xyxy~x, 
(«1,1*1)4 ) zxz~1x,yzyz~1, xyx~xy), 

H IH' = abel(2 ,2 ,2) , t f ' = abel(2); 
24 { ( l , l ) J , (« i«2 ,« l«2)+ , 

(« l , «2 ) r ) 

H = abel(14); 

25 ( ( l , « l ) + , ( « l , l ) + , 
( l . t t i )^) 

H = abel(2,2,2); 

26 ( ( l , « l ) + , («1,1) + , 

(«1 ,1)4-) 

H = abel(2,2,2); 

27 ( ( l , « l ) + , ( « l , l ) + , 
(«2,«i«2)D 

H = abel(2,2,2); 

28 ( ( i , « i ) + , ( « i , i ) + , 
(«2,«1«2)4") 

H = abel(2,2,2); 

29 ( ( ! ,«! )+ , («! , 1)^» 
(«1«2,«2) + ) 

H = abel(2,2,2); 
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List 3 
(continuation) 

N 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

r 

< ( i , « i ) r , ( « i , i ) r , 
( U i U 2 , « 2 ) 4 ) 

( ( l , l ¿ l ) l , ( l ¿ b l í 2 ) í " 5 

(1,1)4") 

((l,l¿l)l,(l¿blí2)í"5 

( « l , « l ) 4 > 

((l,ui)j, (ui,u2)ì, 

( " 2 , 1 ) | ) 

((l,ui)j, (ui,u2)ì, 

(U2,U2)A ) 

((l,ui)j, (ui,u2)ì, 

( « 2 , «11*2)4 ) 

((1, Ui)J, (Ui, « 2 ) 4 , 

( « 1 « 2 , 1 ) 4 ) 
((l,ui)t,(ui,u2)t, 

( t i l « 2 , « 1 ^ 2 ) 4 ) 

( ( l , t i l ) + , ( t i 2 , l ) + , 

(«1«2 , 1 )4 ) 

( ( l , M l ) 4 % ( W 2 , 1 Ì 1 M 2 ) | , 

(1,1)4") 

( ( l , W l ) | , (U2,U!U2)f, 

( i , « i ) r > 

( ( l , « l ) 4 > ( « 2 , « 1 « 2 ) 4 , 

( 1 , ^ ) 4 " ) 

( ( l , W i ) t , (u2,uiu2)f, 

( « 1 , 1 ) 4 " ) 

( ( l , « l ) 4 , ( « 2 , «11*2)4 , 

( « l , « l ) 4 ) 

((1,«!)^, ( « 2 , « l « 2 ) î , 

( « 1 , « 2 ) 4 ) 

H(T) 

if = abel(2,2,2); 

if = abel(9); 

if = abel(9); 

-H" = <x, y I yx 2yx,y 2xyx), 

if/if' =abel(3), 

H' IH" = abel(2,2),if" = abel(2); 
if = abel(9); 

if = abel(9); 

H = {x,y\yx 1yxyx 1,x2,y3). 

H/H = abel(3), if =abel(2,2); 

if = abel(9); 

H = {x,y I x3,yxyx,y3), 

H/H =abe l (3 ) ,# ' =abel(2,2); 

Ti" = abel(9); 

ff =abel(2,2,2); 

ff = abel(ll); 

ff = abel(2,2,2); 

if = abel(9); 

if = abel(17); 
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List 3 
(continuation) 

N 
r H(T) 

45 
((l,«l)|, («2,«l«2)|, 

H --= abel(3,3); 

(«2,1)4") 
46 ( ( l , « l ) | , ( « 2 , « l « 2 ) | , H = abel(13); 

(«2, «1)4") 
47 ( ( l , « l ) | , ( « 2 , U i « 2 ) | , H = abel(l l); 

(wi i t2 , l ) | ) 

48 ( ( l , « i ) | , («2,«1142)4", H = abel(2,2,2); 

(wiu2)w2)J) 

49 <(l,«l)4"»(«l«2,l)4", H = abel(ll); 

(l,tl2)4-> 
50 <(l,«l)4H,(ui«2,l)4h, H = abel(l l); 

(«i,«i«2)4~) 

51 ( ( l , « l ) | , (Ui«2,«2)4", H = abel(2,2,2); 

(l,Ui)4-> 

52 ( ( l ,Wl ) t , (ui«2,U2)4h, H = abel(2,2,2); 

(«1,1)4") 
53 ((l,Wl)4"» («l«2,«2)4h, H abel(2,2,2); 

(«2, «11*2)4 ) 
54 (Oi«l) .T, («1«2,«2)4", ri = abel(2,2,2); 

55 ((l,U2)t, (U!,UiU2)Ì, H = abel(2,2,2); 

(1,«2)4") 
56 ( ( 1 , « 2 ) | , ( « 1 , « 1 « 2 ) | , H = abel(ll); 

(«1,1)4") 
57 ( (1 ,«2) | , («1,«1«2)4H, H = abel(19); 

( « 1 , « 2 ) D 

58 ( ( 1 , « 2 ) | , ( « 1 , « 1 « 2 ) | , H = abel(2,2,2); 

( « 2 , 1 ) | ) 
59 ((1,«2)4",(«1,«1«2)4", H = abel(2,2,2); 

(«2,1)4") 
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List 3 
(continuation) 

N r H(T) 

60 {{l,u2)t ,{uuuiu2)i, 

(^2, t i l)1) 

H = abel(l l); 

61 ((l,ixiix2)2",(txi,ixi)J, H — {x,y\ x2,yxyxiy5), 

(1,1x11x2)4 ) H/H' = a b e l ( 2 ) , # ' = abel(5); 

62 ((l,nllx2)t,(wl,lxl);[", H = {x,y 1 y2,x2,xyxyxyxyxy), 

(lXi,lXi)~) H/H' = abel(2), J ï ' = abel(5); 

63 ( ( l , ix i ix2) t , (^ i ,wi ) t , H = (x,y 1 y2 ̂ yx'ìyx'1, x4yx~1y\ 

( ixi i i2 , l ) t ) H/H' = abel (2) ,U ' = abel(5); 

64 ( ( l , ix i ix2) | , ( ix i , ix2) | , 

(l , ixiix2)D 

ff =abel (2 ,2 ,2) ; 

65 ((1,1x11x2)4", (u>i,u2)i, 

(ixi,ix2)J) 

H = abel(2,2,2); 

66 ((1,1X11X2)J, (1x1,1x2)4", 

(1x2,1x1) J ) 

i J = a b e l ( 2 , 2 , 2 ) ; 

67 ((1,1x11x2)4", (1x1,1x2)^", 

(1x2,1x1)7) 

JT = abel(2,2,2); 

68 ((l,lxltx2)2",(lxl,lx2)2~, = {x^yjZ 1 zxzx~x ,yzyz~x ,x2y~2. 

(lXilX2,l)J) yxyx~x,yxy~xx, z2y~2,zxz~1x, yzy~lz), 

H/H' = abel(2,2,2), J ï ' = abel(2); 

69 ((1,1x11/2)4", (txi,ix2)|, 

(1x11x2,1)7} 

H = a b e l ( 2 , 2 , 2 ) ; 

70 ((1,1x11/2)4", (1x2,^1)^, 

(1,1x11x2)4 ) 

H = abel (2 ,2 ,2) ; 

71 ( ( l , ix i ix2) | , ( ix2, ix i )J , 

(1x1,1x2)7) 

H = abel (2 ,2 ,2) ; 

72 ((l , ixiix2)^, (1x2,1x1)^, 

(1x2,1x1)7) 

i f = a b e l ( 2 , 2 , 2 ) ; 

73 ((1,1x11x2)^,(1x2,1x1)^, H = (x,y,z 1 x2z2,z2y2,z~1yzy1 

(lXilX2,l)J) z~~lxzx, yx~~1yxJ x~xzxz, xzy~~1xzy~1), 

H/H' = abe l (2 ,2 ,2 ) ,H ' = abel(2); 
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List 3 
(continuation) 

N r H(T) 

74 ((l,î*l1*2)!,(l*2,1*l)!, H = abel (2 ,2 ,2) ; 

(lilW2,l)4~) 
75 ((1,1*11*2)4", (t*lt*2,l)4", H = (x,y,z 1 x2,z2,yzyz, yzxzyzxz, yxyx), 

(l,lilli2)4") H/H' = a b d ( 2 , 2 , 2 ) , # ' = abel(oo, 00); 
76 ((1,1X11X2)!, (1X11X2,1)!, H = (x,y 1 x21y2Jxyxyxyxyxy)J 

(lXi,l*i)7) H/H' = a b e l ( 2 ) , # ' = abel(5); 
77 <(i,i*ii*2)!, (1*11*2, î ) ! , H = abel (2 ,2 ,4) ; 

(1x1,1*2)7) 
78 ((1,1*11*2)!, (1*11*2,1)!, H = (x, y, z 1 x2,y2,xzxz,zyzy), 

(1x11x2,1)7) H/H' = abd (2 ,2 ,2 ) , f r ' = abel(oo,oo); 
79 ((1x1,1x1)!, (1x2,1x2)!, H = {x,y,z 1 zx~1zx,y~1xyxJ 

(1 ,1)7) z~xyzy, zy~~lzy, z~xxzx, xyx~ly), 
H/H' = a b e l ( 2 , 2 , 2 ) , # ' = abel(2); 

80 ((1x1,1*1)!, (1x2,1x2)!, H = abel(3,00); 
(i,ixiix2)7) 

81 ((1*1,1*1)!, (1*2,1*2)!, H = abel(9); 

( i * i , i )D 
82 ((1*1, i*i)! , (1*2,1*2)!, H = (x,y,z 1 x2 , 1/2 ,xzxz, zxyxz~xxyx, 

(1*1,1*1)7) yxzyxz'1 ,zxyz~xxy, z~xyzy), 
H/Hf = abe l (2 ,2 ,2 ) ,H ' = abel(2); 

83 ((1*1,1*1)!, (1*2,1*2)!, H = abel(14); 

(1*1,1*2)7) 
84 ((1*1,1*2)!, (1x2,1x1)!, H = {x,y\ yx~1yx,x2y-1x2yiy3), 

( i , i ) n H/H' = a b e l ( 4 ) , # ' = abel(3); 
85 ((1*1,1*2)!, (1*2,1*1)!, H = abel(2,2,oo); 

(i,i*iix2)7) 
86 ((1*1,1*2)!, (1*2,1*1)!, H = (x,y,z \ z21xz~1xz~1 ,xzxz,y2,xyxy~X)I 

(1*1,1*2)7) H/H* = a b e l ( 2 , 2 , 2 ) , f f ' = abel(oc, 00); 
87 ((1*1,1*2)!, (1*2,1*1)!, H = (x,y,z\ y21zyxz~1yx~1,xyzxyz, 

(1*11*2,1)7) z2yx~1yx~1 ,yzyx~2z, z~lx~xzx), 
H/H' = a b e l ( 2 , 2 , 4 ) , i T = abel(2); 
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List 3 
(continuation) 

N r H ( r ) 

88 ( (1 ,1 )7 , (1/1,1/1)4", H = abel (2 ,2 ,2) ; 

( M ) ! ) 
89 ((1,1)7,(1/1,1/1)4", i f = abel(9); 

(1,1*1)!) 
90 ( (1 ,1 )7 , (1 /1 ,1 /1 )7 , ) H = abel(2,7); 

(1,1/11/2)! 
91 ( (1 ,1)7 , (1 /1 ,1 /1)7 , # = abel(2 ,2 ,2) ; 

( l i l , l / l ) ! ) 
92 ( (1 ,1)7 , (1 /1 ,1 /1)7 , H = abel(3,00); 

(1*1,1*2)!) 
93 ( (1 ,1 )7 , (1 /1 ,1 /1)7 , H = abel(9); 

(1*2,1)!) 
94 ( (1 ,1 )7 , (1 /1 ,1 /1)7 , H = abel(2,2,2); 

(1*2,1*2)4") 
95 ( (1 ,1 )7 , (1 /1 ,1 /1)7 , i J = abel(oo, 00,00); 

(1*2,1*2)7) 
96 ( (1 ,1)7 , (1 /1 ,1 /1)7 , H = abel(9); 

(1/2,1/11/2)!) 
97 ( (1 ,1 )7 , (1 /1 ,1 /1)7 , H = abel(14); 

(1/11/2,1)!) 
98 ( (1 ,1 )7 , (1 /1 ,1 /1)7 , H = abel(9); 

(1/11/2,1*1)!) 
99 ( (1 ,1 )7 , (1 /1 ,1 /1)7 , H = abel(2 ,2 ,2) ; 

(1/11/2,1*11/2)!) 
100 ( (1 ,1 )7 , (1 /1 ,1 /1)7 , H = abel(oo, oo, oo); 

(1*11*2,1*11*2)7) 
101 ( (1 ,1 )7 , (iiii/2,1/11/2)7, H = (x,y,z 1 x2,y2,z2,zxyzyx, 

(M)4+) xyzxzy,yzxyxz,zxyzyx), 
H/H' = abe l (2 ,2 ,2 ) ,H ' = abel(2); 
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List 3 
(continuation) 

N r # T ) 

102 <(1,1)4",(U1«2,M1U2)4-» 

( M l ) + > 

# = abel(9); 

103 ((l , l)7 ,( ltiU2 ,«l«2)4"> 
(l,UiM2) + ) 

i î = abel(14); 

104 <(l , l)4",(Wl«2 ,«l«2)4 , [x ,y ,z 1 y~xzyz,y~xxyx, 

( « l , « l ) + ) xz~xxz 

H/H' = 

z-xyzy,yxyx-Y,zx'1zx), 

abel(2,2,2), jff ' = abel(2); 

105 < ( l , l ) 4 , ( « i « 2 , « l U 2 ) r » 
(ui,u2)t) 

H = abel(3,00); 

106 ((l,ui)ï, («1,1)4", 

( l , « l ) t > 

H = abel(2,2,2); 

107 ( ( l , " ! ) ^ , («1 ,1)4-, 

K , i ) t ) 

H = abel(2,2,2); 

108 ((1,1*1)4-, («1 ,1)4-, 

(«2,«1«2) + ) 

H = abel(2,2,2); 

109 (( l ,«i) ;T, («1,1)4", 

(«2, «1«2)4 ) 

H = abel(2,2,2); 

110 ((1,1*1)4-, («1 ,1)4-, 

(«1«2,«2) + ) 

H = abel(2,2,2); 

111 ( ( l , « i ) r , ( « i , l ) r , 
( « I « 2 , « 2 ) ; - ) 

H = a b e l ( 2 , 2 , 2 ) ; 

112 ( ( l , « l ) 4 , («2,«1«2)4-, 

(l,ui)ì) 

H = abel(2,2,2); 

113 (( l ,« l )4 - , («2,«l«2)4- , 

(l,«l«2)4h) 

H = abel(l l); 

114 ( ( l , « l ) 4 - , ( « 2 , « l « 2 ) r , 

( « i , l ) + > 

H — abel(2,2,2); 

115 ( ( l , « l )4 - , ( «2 ,« l«2 )4 - , 

( « 2 , 1 ) ^ ) 

H = abel(ll); 

116 ( ( l , « l )4_ , («2 , « l«2)r» 

(«1«2,1) + ) 

H = abel(19); 
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List 3 
(continuation) 

N r H(T) 

117 ((1,1x1)7, (ixiix2,ix2)7, H = abel(2,2,2); 
(l,tXi) + > 

118 ((1,1x1)7,(1x11x2,1x2)7, H = abel(2,2, 2); 
(1X1,1) + ) 

119 ((1,1x1)7,(1x11x2,1x2)7, H = abel(2 ,2 ,2) ; 
(1x2,1x11x2)4") 

120 ((1,1x1)7, (1^2,1x2)7, H = abel(2,2 ,2) ; 
(1x11x2,1x2)4 ) 

121 ((1,1x11x2)7, H = abel(9); 
(lil5 1)7, (1 ,1) + ) 

122 ((l,lXilX2)7,(lXi,l)7, H = abel(9); 
(lXi,lXi)|) 

123 ((l,lXilX2)7,(lXl,l)7, H = (x,y \ y~~2xyxy~1x,y2x2y~1x). 

(1X2,1X2)4") H/H' = abd(9),ff ' = abel(7); 
124 ((l,lXilX2)7,(lXi,l)7, H = (x, y 1 x33yxyxy~1x-1,y3), 

(lXilX2,ÎXi)7) H/H' = abe l (3 ) , # ' = abel(7); 
125 ((l,lXilX2)7,(lXi,l)7, H = abel(9); 

(ixiix2,ix2)7) 
126 ((1,1x11x2)7,(1x1,1)7, H = abel(9); 

(1x11x2,1x11x2)4") 
127 ((1,1x11x2)7,(1x1,1x1)7, H = (x,y 1 y2,yx~-1yx~l,xyxy,xb), 

(l,ixiix2)2") H/H1 = abel(2), = abel(5); 
128 ((1,1x11x2)7,(1x1,1x1)7, JEf = (x,2/ 1 xyxy,x2,y3x~1y~2x,xy~1xy~1), 

(1x1,1x1) J ) H/H1 = abel(2), jff' = abel(5); 
129 ((1,1x11x2)7,(1x1,1x1)7, i f = abel(oo); 

(1x1,1x2)4") 
130 ((1,1x11x2)7,(1x1,1x1)7, i f = abel(oo); 

(1x2,1x2)7) 
131 ((1,1x11x2)7,(1x1,1x1)7, H = {x,y\ x~lyxy,yh), 

(1x11x2,1)7) H IH' = abel(oo),ff ' = abel(5); 
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List 3 
(continuation) 

N r H(T) 

132 ((1,1*11*2)7,(1*1,1*2)7* JT = abel(2,2,2); 
( l , l*l l*2)!) 

133 ((1,1x11x2)7,(1*1,1*2)7, H = abel(2 ,2 ,2) ; 

(1*1,1*2)4*) 
134 ((1,1*11/2)7,(1*1,1*2)7, U = abel(2 ,2 ,2) ; 

(l*2,1*l)!) 
135 ((1,1*11X2)7,(1*1,1*2)7, H = (x,y,z \ z2x21zx~1zx,z~2y21 

(l*2,1*l)7) zyz~ly, z~xyxz-xyx-x, y~xzyz, y-^xyx'1), 
H/H' = a b e l ( 2 , 2 , 2 ) , i î / = abel(2) 

136 ((1,1*11X2)7,(1*1,1*2)7, H = abel(2,2,2); 
(l*ll*2, l ) ! ) 

137 ((1,1X11X2)7,(1*1,1*2)7, H = (x,y,z 1 y2x21y~1zyz,z2x2, 
(lXilX2,l)7) xy~~lxy, xyx~~ly, xzx~lz1 yz~xyz, xzxz"1}, 

H/H' = abe l (2 ,2 ,2 ) , i f ' = abel(2); 
138 ((1,1x11x2)7, (ixiix2? 1)7, H = (x,y,z \ x2,xyxy,zyz~1y,z2), 

(1,1x11x2)!) H/H' = a b e l ( 2 , 2 , 2 ) , i j ' = abel(oo,oo); 
139 ((1,1x11x2)7,(1x11x2,1)7, H = abel(2,2,oo); 

(1*1,1*2)4") 
140 ((1,1*11*2)7,(1x11*2,1)7, H = (x^y^z 1 z2,xy~~1xy~~1Jy2x~1zx~1z1 

(1*2,1*1)4") yzyzx"2, xz~lxyzy, x2y2), 
H/H' = abe l (2 ,2 ,4 ) ,H ' = abel(2); 

141 ((1x1,1)7,(1x2,1*1)7, H = a b e l ( l l ) ; 

(1,1*2)!) 
142 ((1*1, 1)4~, (^2, 1*l)7, H = abe l ( l l ) ; 

(lXi,lXil*2)!) 
143 ((lXi,l)7,(lX2,lXl)7, H = a b e l ( l l ) ; 

(1*11*2,1X2)7) 
144 ((lXi,l)7,(lXil*2,lXl)7, H = (x,y 1 x31y3,xyxy~1x~1y), 

(l*2,1*2)!) H/H' = abd(3) , f f ' = abel(7); 
145 ((lXi,l)7,(lXllX2,lX2)7, H = abel(9); 

( 1 , 1 ) ! ) 
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List 3 
(continuation) 

N r # ( r ) 

146 ((1/1,1)7,(1/11/2,1*2)7, H = abel (2 ,2 ,2) ; 

( l , t i i ) J > 
147 ((î*l,l)7,(l*llA2,tt2)7, H = abe l ( l l ) ; 

(l,tii)J> 
148 ((1*1,1)7,(1*11/2,1*2)7» H = abel(17); 

(ül,l)4+) 
149 ((1/1,1)7,(1/11x2,1x2)7, H = abel (2 ,2 ,2) ; 

(ül,l)4+) 
150 ((1/1,1)7,(1/11x2,1*2)7» H = abel(9); 

(1x1,1x1)4") 
151 ((1/1,1)7,(1/11/2,1/2)7, H = abel(3,3); 

{u2A)i) 
152 ((1/1,1)7,(1/11/2,1*2)7, H = abel(13); 

(1/11/2,1)4") 
153 ((1x1,1x1)7,(1/2,1x2)7, = (*, y,z 1 zxzx'1 ,xyxy~x ,yzyz~x, 

( i , i )4+) zyzy~x, xzxz~x,yxyx 1 ) , 
H/H' = abel(2,2,2),ff ' = a b e l ( 2 ) ; 

154 ((1/1,1x1)7,(1x2,1x2)7, H = abel(9); 
( i , ü i ) J ) 

155 ((1x1,1x1)7,(1x2,1x2)7, /? = abel(14); 

(l,ixiix2)t) 
156 ((1x1,1x1)7,(1x2,1x2)7, H = (x,y,z 1 a;2,z2,xy_1a;u_1, 

(1*1,1*1)4") V" 1z iyz, xy~1z~1x~1yz), 
H/H' = abel(2,2,2) ,H' = abel(2); 

157 ((1x1,1x1)7, (1/2,1x2)7, H = (x,y 1 xy-2xyx~2y,y-3x3), 

(1/1,1/2)4") H/H' = abel(3,00), H = abel(oo, oo); 
158 ((1x1,1x1)7,(1x2,1x2)7» H = (x y 1 x2y-1x-2y,y-2xyx~1yx), 

(1x11x2,1)7) H/H1 = abel(oo), 
H'/H ' = a b e l ( 2 , 6 ) , i T " = abel(2); 

159 ((1x1,1x1)7,(1x11x2,1)7, H = (x,y 1 x2,y2,xyxyxyxyxy), 

(l,ixiix2)t) H/H' = abel(2); i7 ' = abel(5); 
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List 3 
(continuation) 

N r H(T) 

160 (fal,l/l)7, fail*2,l)7, H = (x,y\ x2,y2,xyxyxyxyxy), 
(1/1,1*1)!) H/H' = abel (2) ;U' = abel(5); 

161 ((lil,lil)4", (l*ll*2, 1)7, H = (x,y 1 y2,x2yx~1yx~1y), 

fai, 1*2)4") H/H' =abel(oo) , f l r ' = abel(2,2); 
162 <fal,t*2)r»fa2,Wi)"f, H = abel(2,2,4); 

(1,1/11/2)!) 
163 (fal,l*2)7,(l*2,ttl)7>- H = (x,y,z\ x2,y2,zyzy,zxzx), 

fai,t*2)!) H/H' =abel(2,2,2),JFJ/ = abel(oo, 00); 
164 (fai,1*2)^7 fa2,t*l)7, H = (x,y,z 1 x2,y2,zxzx,zyzy), 

(l*2,l*l)!) H/H' = abel(2,2 ,2 ) ,H' = abel(oo, 00); 
165 (fal, l*2)7»fa2 , t*l)7, H = (x,y,z \ z2x2,y2z~2,xz~1xz,xyx~1y, 

(1*11*2,1)7) xy~lxy, yzy~~lz, yz~lyz, x~xzxz), 
H/H' = abel(2,2,2),fT' = abel(2); 

166 (fai , 1*2)7* fai^2,1)7> i l = abel (2 ,2 ,2) ; 

(1,1*11*2)!) 
167 (fal ,^2)7»fal^2,l)7? H = abel (2 ,2 ,2) ; 

fai,w2)!) 
168 (fal ,W2)7»falw2 , l)7» H = abel (2 ,2 ,2) ; 

fa2,t*l)!) 
169 (fal7W2)75falW2,l)7* H = abel(2,2,2); 

fai 1*2,1)!) 
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ON SMALL SUBSET PRODUCT IN A GROUP 

by 

Yahya Ould Hamidoune 

Abstract. — We generalise some known addition theorems to non abelian groups and 
to the most general case of relations having a transitive group of automorphisms. 

The classical proofs of addition theorems use local transformations due to Daven
port, Dyson and Kempermann. We present a completely different method based on 
the study of some blocks of imprimitivity with respect to the automorphism group 
of a relation. 

Several addition theorems including the finite a -f /^-Theorem of Mann and a 
formula proved by Davenport and Lewis will be generalised to relations having a 
transitive group of automorphisms. 

We study the critical pair theory in the case of finite groups. We generalise Vosper 
Theorem to finite not necessarily abelian groups. 

Chowla, Mann and Straus obtained in 1959 a lower bound for the size of the image 
of a diagonal form on a prime field. This result was generalised by Tietavaienen to 
finite fields with odd characteristics. We use our results on the critical pair theory to 
generalise this lower bound to an arbitrary division ring. 

Our results apply to the superconnectivity problems in networks. In particular we 
show that a loopless Cayley graph with optimal connectivity has only trivial minimum 
cuts when the degree and the order are coprime. 

1. Introduction 

Let p be a prime number, and let A and B be two subsets of Zp , such that \A\, 
\B\ > 2. The Cauchy-Davenport Theorem states that 

|A + 5 | > m m ( p , L 4 | + L B | - l ) , 

cf. [2,5]. Vosper Theorem states that 

\A + B\ > m i n ( p - l , | A | + |B | ) , 

unless A and B form arithmetic progressions, cf. [31,32]. Freiman obtained a structure 
theorem for all A C Zp such that \2A\ < 12\A\/5 - 3, cf. [26]. 

1991 Mathematics Subject Classification. — Primary: 20D60, Secondary: 20K01, 11B13, 11B75, 
05C25. 

Key words and phrases. — Addition theorems, blocks of imprimitivity, network reliability. 
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Let A and B be finite subsets of an abelian group G. We shall say that B a Cauchy 
subset if for every finite non-empty subset X, 

\X + B\ > m i n ( | G | , | X | + | £ | - l ) . 

Mann proved in [24] that B is a Gauchy subset if and only if for every finite subgroup 
if, \H+B\ > min(|G|;|jEf| + | B | - l ) . Kneser Theorem states that \A+B\ < \A\ + \B\-l 
only if there is a finite non-null subgroup H such that A + H + B = A + B. Some 
progress toward the determination of all pairs A, B such that |A + i?| < \A\ + — 1 
is obtained by Kempermann in [20]. In [14], we could classify all the pairs, {A,B} 
with \A + B\ = \A\ + |JB| - 1, if B is a Cauchy subset. 

Less results are know in the non-abelian case. The classical basic tools in this 
case are two nice results proved by Kempermann in [19]. No generalisation of Kneser 
Theorem is known in the non-abelian case. The natural one is false in general, cf. 
[28,33]. Diderrich obtained in [7] a generalisation of Kneser Theorem in the case where 
the elements of B commute. But this result is an easy corollary of Kneser Theorem 
as showed in [13]. Brailowski and Freiman obtained a Vosper Theorem in free torsion 
groups, cf. [1]. It was observed recently that some results involving the connectivity 
of Cayley graphs are strongly related to addition theorems. This connection will be 
explained below. 

A natural question consists of asking how addition Theorems generalise to a group 
acting on a set. The connectivity of Cayley graphs belongs to this kind of problems. 
The connectivity of a reflexive relation T = (V, E) is 

« ( r ) = min{|r(F)| - |F| : 1 < \T(F)\ < \V\}. 

Let B be a finite subset of a group G containing 1 and let T be the Cayley relation 
x~xy E B. In this case, K(T) is the best possible lower bound for | A B - 1 | — \A\, where 
AB ^ G. The Cauchy-Davenport Theorem may be expressed using this language as 
K(T) = \B\ — 1, for \G\ prime. Under this formulation, this result was rediscovered 
in [9]. The method used in [9] is based on the study of blocks of imprimitivity with 
respect to the group of automorphisms. The same method is used in [12] to prove a 
local generalisation of Mann Theorem for finite groups. Zemor used the same method 
in [33] to obtain a global one. More complicated blocks are studied in [14] to calculate 
the critical pairs in Mann Theorem in the abelian case. 

The connection between connectivity problems and addition theorems were ob
served only recently. 

The results obtained in [14] are strongly based on the well known fact that an 
abelian Cayley relation is isomorphic to its reverse. We generalise some of the results 
to the non abelian case. The organisation of the paper is as follows. In section 2, 
we study the connectivity of relations. We give also lemmas allowing to translate 
connectivity bounds into addition theorems. We improve some results contained in 
[9,10,11,12,14]. In section 3, we generalise several basic additive inequalities. In 
particular, we give a generalisation of Mann Theorem to non-abelian groups and to 
relations with a transitive group of automorphisms. We generalise also a formula 
proved by Davenport and Lewis for finite fields to division rings and to arc-transitive 
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relations. We generalise also a result proved by Olson [27] to point transitive relations. 
This generalisation in the finite ease was proved in [10, Proposition 3.4]. In section 
4, we study the superatoms. They form the main tool for the critical pair problem in 
our approach. The main result of section 5 is the following result which characterizes 
the equality cases in Mann Theorem. We state it below. 

Let B be a subset of a finite group G such that 1 G B. Then the following conditions 
are equivalent. 

(i) For all Ac G such that 2 < \A\, 

\AB\ > m i n ( | G | - l , | A | + |B|). 

(ii) For every subgroup H of G and for every a G G such that \H U Ha\ > 2, 

min(\B(H U aH%\(H U Ha)B\) > min(|G| - 1, \H U Ha\ + \B\). 

The main result of section 6 is a critical pair theorem which generalises Vosper 
Theorem. We state it below. 

LetG be a finite group and letB be a Cauchy subset ofG such that (|G|, — 1) = 1. 
Let A C G such that 

\AB\ = \A\ + \B\ - 1 < \G\ - 1. 

Then one of the following conditions holds. 
(i) \A\ = 1 or A = G \ aB~x, for some a G G. 
(ii) There are a,b,r G G, fc,sGN such that 

A = {a, ar, a r 2 , . . . , ark~x} and B = (G\ (r)b) U {ò, rò , r2ò , . . . , r^b}. 

(iii) There are a, 6, r G G, k,s e~N such that 

A = {ab-\arb-\ar2b~\....ar^b"1} and B = (G\6(r))U{ò,rò,r26, . . . , rs"16}. 

One of the classical applications of the critical pair theory is the estimation of 
the range of a diagonal form. Using Vosper's Theorem, Chowla, Mann and Straus 
obtained in [4] an estimation of the range of a diagonal form over Zp. Tietavainen 
obtained in [30] the same bound in the case of finite fields with odd characteristics. 
We gave in [14] a proof for all finite fields based on the method of superatoms. We 
generalise this bound to all division rings in this paper as follows. 

Let R be a division ring and let P be a finite subset of R such that 0 G P and P\0 
is multiplicative subgroup. Let RQ be the additive subgroup generated by P. Suppose 
that \P\ > 4 and let a±, a,2,..., an be non-zero elements of R. Then 

\axP + a2P + • • • + anP\ > min(|iîo|, (2n - 1)(|P| - 1) + 1). 

In section 8, we apply our results to solve some problems raised in network Theory. 
We also explain the connections between Cayley graphs reliability and Additive group 
Theory. In particular we show that a loopless Cayley graph with optimal connectivity 
has only trivial minimum cuts when the degree and the order are coprime. 
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2. The connectivity of a relation 

In this section we study subsets with a small image with respect to a given relation. 
Restricted to Cayley relations defined on a group, this problem becomes the study of 
subsets with a small product. The results obtained in this section improve slightly 
our previous results obtained in [9,10,11,12,14]. 

The cardinality of a finite set V will be denoted by |V| . For an infinite set V, we 
write \V\ = oo. By a relation we mean an ordered pair T = (V,E), where V is a set 
and E is a subset of V x V. A permutation a of V is said to be an automorphism of T 
if E = {(a(x),a(y)) : (x,y) G E}. The group of automorphisms of T will be denoted 
by Aut( r ) . A relation will be called point transitive if its group of automorphisms acts 
transitively on V. Let A CV. The subrelation inducedon A is T[A] = (A1 ED(AxA)). 

We introduce some notations. Let T = (V, E) be a relation and let F be a subset 
of V. The image of F will be denoted by T(F). We recall that 

T(F) = {y G V : there is x G F such that (x,y) G E}. 

We write dr(F) = T(F) \ F and Sr(F) =V\(FU T(F)). The reference to T will 
be omitted when the meaning is clear from the context. In particular we shall write 
dp- (F) = d~(F) and Sr~ (F) = 6~(F). The degree of a point x G V is by definition 
dr(x) = | r (x ) | . A relation T is said to be locally finite if both T and T~ have only 
finite degrees. A relation r = (V, E) is said to be regular if T is locally finite and if 
all x,y G V, \T(x)\ = \T(y)\ and | r ~ ( x ) | = \T~(y)\. Let T be a regular relation. The 
degree of every point with respect to T will be called the degree of T and denoted by 
d(T). 

A relation T on a set V is said to be connected if T(A) <f. A for every finite proper 
subset A of V. A subset C of V is said to be connected if T[C] is connected. A block 
of F is a subset B of V such that for every automorphism / of F, either f(B) = B or 
f(B) n B = 0. 

The following remark is easy to show and well known. 

Remark2.a. — If T is regular and if V is finite then d(T) = d(T~). 

Let F be a reflexive relation on V. The connectivity of T is by definition: 

K(T) = min{|<9(F)| : 1 < |r(F)| < |V| or \F\ = 1} . 

The inequality 1 < | r ( F ) | < |V| is never satisfied if V x V = T. In the other cases, 

« ( r ) = m i n { | a ( F ) | : l < | r ( F ) | < | V | } . 

Remark 2.b. — The connectivity of a relation coincides with the connectivity of its 
reflexive closure. For this reason we restrict ourselves to reflexive relations. This 
choice simplifies the proofs and the notations. In some previous papers [9,10,11,12] 
we adopted the opposite choice, where a relation is assumed to be disjoint from its 
diagonal. These two choices are essentially equivalent. 

Lemma 2.1. — Let T be a locally finite reflexive relation. Then K(T) is the maximal 
k such that for every non-empty finite subset A, |r(^4)| > min(|V|, \A\ + k). 
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Proof. — The Lemma follows easily from the definitions. • 

One see easily that a locally finite reflexive relation Y on a set V is connected if 
and only if Ac(T) > 1. 

Let T be a locally finite reflexive relation on V and let F be a subset of V. We say 
that F is a fragment of Y if the following conditions are satisfied. 

(i) K ( D = \d(F)\ and r ( F ) # V . 
(ii) F is finite or V \ F is finite. 

A fragment with minimal cardinality will be called an atom. The cardinality of an 
atom of T will be denoted by /i(F). We see easily that an atom is always finite. We 
write p(Y) — min(d(x);x € V). Observe that p(Y) is the minimal degree. 

Lemma 2.2 ([9]). — Let Y be a locally finite reflexive relation on a set V and let A be 
an atom ofY. Then Y[A) is connected. Moreover K(Y) < p(Y) — 1 and equality holds 
if and only if /JL(T) — 1 orT = VxV. 

Proof — Lemma 2.2 follows easily from the definitions. • 

Lemma 2.3 ([9]). — Let T be a reflexive relation on a finite set V. Then K(Y) = 
K ( r - ) . 

Proof — The equality is obvious ifF = V xV. Suppose the contrary and let F be a 
fragment of Y. We have clearly d~(ô(F)) = d~(V\ T(F)) C d(F). By the definition 
we have 

« ( r - ) < | ö - ( i ( F ) ) | < | ö ( F ) | = «(r). 
The other inequality follows by duality. • 

We use the following result. 

Lemma 2.4 ([9]). — Let Y be a locally finite reflexive relation on a set V such that 
K(Y) = K(Y~). Let F and M be two fragments ofY. Then 

(i) d-(6{F)) = d(F) and 6~(6(F)) = F. 
(ii) S(F) is a fragment ofY~. 
(iii) F C M if and only if 6(F) D S(M). 

Proof — We have clearly 

d~(S(F)) = d~(V \ Y(F)) C d(F). 

If ö(F) is finite, then 

| 0 - ( i ( F ) ) | > « ( r - ) = « ( r ) = |0(F)|. 

Therefore d (6(F)) = d(F). Assume now that 6(F) is infinite. Hence F is finite. 
We shall prove that d(F) C 0 {6(F)). Suppose on the contrary that there exists 
x e d(F) \ d~(S(F)). It follows that T(F U {x}) c T(F). Therefore 

\d(F U { s } ) | < \d(F)\ - 1 = K(T) - 1. 
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It follows by the definition of K that \T(F U {x})\ = oo, a contradiction. The first 
equality in (i) is proved. It follows that 

6~(6(F)) = V \ (d-(ö(F)) U 0(F)) = V \ (d(F) U 0(F)) = F. 

Hence (i) holds. It follows that 

\d-(ô(F))\ = \d(F)\ = K(T)=K(T-). 

Since F fl T~(S(F)) = 0 , 6(F) is a fragment of r~. Thus (ii) is proved. 
Suppose that F C M. We have Ö(F) = V\ T(F) D V \ T(M) = S(M). 
Suppose that Ö(F) D S(M). We see as above that 6~(6(F)) C 6~(6(M)). Using 

(i) we obtain, F C M. • 

We shall use the following lemma. 

Lemma 2.5. — Let V be reflexive relation on a setV. Let M be a finite fragment and 
let F be a fragment ofT such that Mf)F ^ 0. Then \S(F) \ 6(M)\ <\M\ F\. 

Suppose that K(T) = K(T~) or that F is finite. Then one of the following conditions 
holds. 

(i) ô(F)nô(M) = 0. 
(ii) F D M is a fragment of T and T(M fl F ) = T(M) fl T(F). 

Proof — We have clearly 

T(M OF) C T(M) fi T(F) = Ml) 3(M) n (F U 0(F)). 

Therefore 
d(F fi M) C (d(M) \ 0(F)) U (M fl d(F)). (1) 

Clearly r ( M f l F ) ^ V. By the definition of the connectivity and since \d(M)\ = K(T), 
we have \d(M)\ < \d(M fl F)\. Using (1), we have 

\6(F) fl d(M)\ < \d(F) H M | . (2) 

It follows that 

\S(F) \ S(M)\ = \S(F) n M | + \6(F) n d(M)\ < \8(F) fl M\ + \M n = | M \ F| . 

This proves the first part of the lemma. 
We have clearly d(M U F ) C d(M) U 5 (F ) . Therefore 

Ô(F U M) C (Ô(F) \ M ) U (5(F) n ö(Af ) ) . (3) 

Assume now 6(F) fl (5(M) # 0 . It follows that T ( M UF) ^V. We shall show the 
following inequality. 

\d(F) n Af I < |(5(F) H Ö(M)| . (4) 
Consider first the case where F is finite. By the definition of the connectivity and 

since T(M U F ) # V and |<9(F)| = /c(r), we have \d(F)\ < \d(M U F ) | . Using (3), we 
obtain (4). Assume now that K(T) = K(T~) and that F is infinite. By the definitions 
6(F) is finite. By Lemma 2.4, 6(F) and 6(M) are fragments of T. By applying (2) to 
r~, with M replaced by 6(F) and F replaced by <5(M), we obtain 

\6-6(M)Dd-(6(F))\ < |0 - (*(M))n<S(F) | . 

(4) follows now usine: Lemma 2.4. 
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By (2) and (4) we have 

\M n d(F)\ = \d(M) n S(F)\. (5) 

Since T(F n M) ^ 0 and T(F DM)^V, we have \d(F n M ) | > AC(T). By (1) and 
(5) we have 

«(r) < \d(F H M ) | < \(d(F) \ 6(M)) U(KH d(M))\ < \d(M)\ = «(r). 

It follows that F H M is a fragment of T. It follows also that 

S(F n M ) = (9(F) \ (5(M)) U (F fl 0 ( M ) ) . 

Therefore 

T ( F n M ) = (F D M) U (9(F) \ S(M)) U (F H 0 ( M ) ) = T ( F ) fl F (M) . 

Remark2.C. — If A and B be two finite fragments such that \A\ = \B\ then \S(A)\ = 
|*(B)|. 

Clearly we have |(5(J3)| = \V\ - (\B\ + K(T)) = \S(A)\. • 

The fundamental property of atoms is the following. 

Proposition 2.6. — Let A and B be two distinct atoms of a locally finite reflexive 
relation T and let F be a fragment of T. Suppose that K(T) = ft(r~) or that F is 
finite. 

(i) Assume that \A\ < \S(F)\. Then either Ac F or AnF = 0 . 
(ii) Assume that \A\ < \S(A)\. Then A fl B = 0. 
(Hi) Assume that \A\ > \6(A)\ + 1. Then 5(A) fl 6(B) = 0. 

Proof — Assume that \A\ < \S(F)\ and suppose that A D F ^ 0. By Lemma 2.5, 
we have 

\S(F) \ S(A)\ < \A\F\ < \A\. 
Hence (5(F) fl ô(A) ^ 0 . By Lemma 2.5, A D F is a fragment of T. By the minimality 
of \A\7 we have A fl F = A. Therefore Ac F. This proves (i). 

Assume that \A\ < \S(A)\ and that A fl B ^ 0 . By Remark 2.c and (i), we have 
A fl B = 0 , a contradiction. Hence (ii) is proved. 

Assume that \A\ > \S(A)\ + 1 and that ô(A) fl ô(B) ^ 0 . Clearly |V| is finite. 
By Lemma 2.5, we have 

\A\B\ = \B\A\<\S(A)\6(B)\. 

Therefore A fl B ^ 0. By Lemma 2.5, A fi B is a fragment. Hence A = B, a 
contradiction. • 

Corollary 2.7. — Let F be a locally finite reflexive relation such that either V is infinite 
or /i(T) < / i ( r~ ) . Let A be an atom of T and let F be a finite fragment of T. Then 
either AcForAf)F = 0. 
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Proof. — The inequality n(T ) < \S(F)\ holds clearly if V is infinite and follows in 
the finite case by Lemmas 2.3 and 2.4. Therefore \A\ = /x(T) < JJL(T~) < \6(F)\. The 
result follows now using Proposition 2.6. • 

The above result was proved for finite symmetric relations by Mader [23, satz 1] 
and generalised to arbitrary finite relations in [9, proposition 1]. A basic property of 
atoms is the following. 

Corollary 2.8. — Let T = (V, E) be a locally finite reflexive relation and let A be an 
atom ofY. 

(i) Assume that \A\ < \S(A)\. Then A is a block. 
(ii) Assume that \A\ > \S(A)\ -f 1. Then S (A) is a block. 

Proof. — Let / be an automorphism of T. Clearly f(A) is an atom. We have also 

f(6(A)) = f(V \ T(A)) = V \ T(f(A)) = S(f(A)). 

The results follows now easily using Proposition 2.6. • 

Let A and B be subsets of a group G. We write 

AB — {xy : x e A and y G B}. 

Let a G G, the left translation ja : G —> G is defined by the equality ja(%) = ax. As 
usual the image of a subgroup i f by a left translation will be called a left coset of H. 

Let 5 be a subset of G. The relation x~xy G S is called a Cayley relation. It will 
be denoted by A(G, 5 ) . Let T - A(G, S) and let F C G. Clearly T(F) = FS. 

The following result is easy to show and well known. 

Lemma 2.9. — Let G be a group and let S be a finite subset of G. Then (A(G, S))~ = 
A(G,S~l). 

For every a £ G, ja G Aut(A((7, S)). In particular A(G, S) is point transitive. 

Cayley relations defined above form an important class of the relations with a 
transitive group of automorphisms. 

We use the following result which is implicit in [12]. 

Lemma 2.10. — Let G be a group containing a subset S and let B be a finite non
empty block of A(G,S). Then B is a left coset of some subgroup ofG. 

Proof — Choose b G B~x and set H = bB. Let x G H. By Lemma 2.9, H is a block. 
Clearly 1 G if. Therefore x € H P\ jx(H)1 and hence H = xH. Therefore HH = H. 
Since H is finite, i f is a subgroup. • 

Theorem 2.11. — Let G be a group and let S be a finite subset of G such that 1 G S. 
Let A be an atom of A(G, S) containing an element a and let b G S(A). 

(i) If \A\ < \5(A)\ then a 1A is a subgroup. 
(ii) If \A\ > \S(A)\ + 1 then b~l6(A) is a subgroup. 

Proof. — The result follows from Corollary 2.8 and Lemma 2.10. • 
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Corollary 2.12 ([12, proposition 1]). — Let G be a group and let S be a finite subset 
of G such that 1 G S and let A be an atom of A(G, S) containing 1. Suppose that 
/x(A(G,S)) < / i (A(G ,5 -1 ) ) . Then A is a subgroup. Moreover for every finite frag
ment F of A(G, S), FA = F. 

Proof — As shown in the proof of Corollary 2.7, we have \A\ = fi(F) < fi(F~~) < 
\d(F)\. By Theorem 2.11, A is a subgroup. Since 1 G A, we have F C FA. Let x G F. 
By Lemma 2.10, xA is an atom. By Corollary 2.7, xA C F. Hence FA C F. • 

We shall now describe a method allowing to apply connectivity bounds for con
nected relations in the non connected case. This happens in Cayley relations when 
B generates a proper finite subgroup. In this case, one could decompose A as union 
of cosets modulo (B). We shall generalise this decomposition in the case of relations 
with a transitive group of automorphisms. Let us begin with an easy lemma 

Lemma 2.13. — Let F = (V, E) be a point transitive relation and let C be a block. Let 
f be an automorphism ofT. Then T[C] and F[f(C)] are isomorphic point transitive 
relations. 

Proof. — Clearly f/C : C —> f(C) defines an isomorphism from T[C] onto T[f(C)). 
Let x, y G C. Since F is point transitive, there is g G Aut(T) such that g(x) = g{y)> 

By the definition of a block g(C) = C. 
Now g/C : C —> C defines an automorphism of F[C]. • 

Let T = (V, E) be a reflexive relation. A subset C of V will be called a component 
of r if T[C] is connected and if C is maximal with respect to this property. It follows 
easily from Zorn Lemma that every connected subset is contained in a component. 
It is easy also to check that two distinct components are disjoint. In particular the 
connected components form a partition. In follows also that a component is a block. 
The following remark follows easily from the definitions. 

Remark2.d. — Let F = (V,E) be a reflexive relation and let {Ci,i G / } be a family 
of components of F and let A C \JieI Ci, be such that F(A) D (\JieI C{) — A. There 
is J C / such that A — U J G J Cj. 

Remark 2.e. — Let r = (V, E) be a reflexive relation. Then F has at most one infinite 
component. 

By Remark 2.d, the union of two infinite components is connected. Hence any two 
infinite components must coincide. 

We mention that the path connectedness, considered in section 8, leads to distinct 
notion of components in the infinite case. The following lemma contains all we need 
on components. 

Lemma 2.14. — Let F = (V, E) be a reflexive point transitive relation and let C and 
D be components ofF. Then the following conditions hold. 

(i) F[C] and F[D] are isomorphic point transitive relations. 
(ii) C = V or C is finite. 
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(iii) T(A fi C) = (T(A)) fi C and d(T[C]) = d(T). 

Proof. — The validity of (i) follows easily from Lemma 2.14. The validity of (ii) 
follows from (i) and Remark 2.e. 

Assume that (iii) does not hold. There are distinct connected components C\ and 
C2 such that T(Ci) fl C2 / 0 . Using the transitivity of Aut(F), we may construct 
a sequence of connected components {Ci;i > 1} such that, d ^ C^+i and T(Ci) fl 
d+i ^ 0 , for all i > 1. 

For all i, j > 1, we have 
Ci 7̂  Cj+i. (1) 

Assume the contrary and choose j minimal with respect to this property. By the 
definition Uo<fc<j Ci+k is non-connected. 

Hence there exists A C Uo<k<j Ci+k such that V(A) f) (Uo<fc<j Ci+k) = A and 
i / 0 . By Remark 2.d, there is J C [i,i + j] such that A — \JieJC{. By the 
construction of d, one should have J — [i,j]. In particular U i > i ^ *s connected, a 
contradiction. 

Let A be a finite non-empty subset of (Jt>i ^ By W> there exists clearly j such 
that AnCj y£ 0 and A fl Cj+1 = 0. In particular T(A) <jt (J*>i C*« Jt follows that 
Uj> i C» is connected, contradicting the maximality of C\. • 

Lemma 2.15. — Let F = (V, £7) be a locally finite reflexive point symmetric relation 
and let C be a component of F. 

Then for every non-empty finite subset A, either T(T(A)) = T(A) or |r(^4)| > 
\A\ + K(T[C\). 

Proof. — Assume first C infinite. By Lemma 2.14, V — C and the result holds 
trivially by Lemma 2.2. 

Therefore we may assume C finite. By Lemma 2.14, all the connected components 
generate isomorphic relations. In particular ft(r[C]) = «(r[£)]) . 

Suppose F( r (A)) ^ T(A). By Lemma 2.14.iii, there is a connected component 
D such that T(r(^4 fl D)) 7̂  T(A fl D). In particular we have using Lemma 2.14.iii, 
T(ADD) ^D. 

By Lemma 2.2, 
\T(A) fl D\ > \A H D\ + K(T[D]). 

By Lemma 2.14.iii, 

| r ( A ) | = \T(A H D)\ + \T(A \ D)\ > \A n D\ + K(T[C)) + \A\D\ = \A\ + K(T[C\). 

3. Some basic additive inequalities generalised to relations 

We begin by a generalisation of Mann Theorem to non-abelian groups and to 
relations with a transitive group of automorphisms. 

A reflexive locally finite relation T — (V, E) will be called a Cauchy relation if 

K(T) = o(T) - 1. 
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Lemma 3.1. — Let Y = (V, E) be a reflexive locally finite relation. Then Y is a Cauchy 
relation if and only if for every finite non-empty subset A ofV, 

\T{A)\ >mm{\V\,\A\+p{T)-l). 

If Y is finite and regular, then Y is a Cauchy relation if and only if Y is a Cauchy 
relation. 

Proof — The first part follows easily from Lemma 2.1 and Lemma 2.2. The second 
part follows from Remark 2.a and Lemma 2.3. • 

Lemma 3.2. — Let B be a finite subset of a group G such that 1 E B. Then B is a 
Cauchy subset if and only if for every finite non-empty subset A of G, 

\AB\ >min(|GUA| + | B | - l ) . 

Proof — Set T = A(G,B). For every subset F c G , Y(F) = FB. The result follows 
now easily by Lemma 3.1. • 

According to Lemma 3.2, the Cauchy-Davenport inequality is satisfied for every 
non-empty subset A of G if B is a Cauchy subset. The Cayley graphs of such subsets 
are used in network models and said to be optimally connected. 

Theorem 3.3. — Let Y = (V, E) be a reflexive locally finite point transitive relation 
and let v E V. Then Y is a Cauchy relation if and only if one of the following 
conditions holds. 

(i) V is infinite and for every finite block BofY containing v. 

\Y(B)\ > min(|F|, \B\ + d(Y) - 1). 

(ii) V is finite and for every block BofY containing v, 

min(|r(B)|, |r-(B) |) > min(|V|, \B\ + d(T) - 1). 

Proof. — By Lemma 3.1, the theorem is invariant by interchanging Y and Y~ in the 
finite case. We may assume without lost of generality V is infinite or fi(Y) < fi(Y~). 
The necessity follows by Lemma 3.1. Suppose that (ii) holds. We may assume that 
r ^ V x V, since otherwise the result is obvious. By the transitivity of Aut(T), there 
exists an atom A otY such that v E A. 

By Corollary 2.8, A is a block. 
It follows using the definition of an atom and (ii) that 

K(Y) = \Y(A)\-\A\>d(Y)-l. 

By Lemma 2.2, we have K(Y) — d(Y) — 1. Hence T is a Cauchy relation. • 

Corollary 3.4. — Let S be a finite subset of a group G such that 1 E 5 . Then S is a 
Cauchy subset if and only if one of the following conditions holds, 

(i) G is infinite and for every finite subgroup H of G, 

\HS\ >min ( |G | , | l f | + | S | - l ) . 

(ii) G is finite and for every subgroup H of G, 

min(|Síf I, \HS\) > min(|G|, |JT| + \S\ - 1). 
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Proof. — Set T = A(G, S). By Lemma 2.10 every finite block of V containing 1 is 
a subgroup. Observe that for every subgroup U, | r ~ ( f f ) | = \HS~l\ = \SH\. The 
result follows now using Theorem 3.3. • 

The second part of Corollary 3.4 follows from [33, Theorem 1.2]. Zemor studied 
the same problem where B is not assumed to contain 1. A example contained in [33] 
shows that for a finite group G, the condition 

min(|5iJ|, \HS\) > min(|G|, |JET| + | 5 | - 1) 

can not be replaced by the weaker one 

\HS\>mm(\Gl\H\ + \S\-l). 

Corollary 3.5 ([24,25]). — Let B be a finite non-empty subset of an abelian group G. 
Then the following conditions are equivalent. 

(i) For every finite non-empty subset A of G, 

\A + B\ >min(|G|, |A| + | B | - l ) . 

(ii) For every finite subgroup H ofG, 

\H + B\> min(|G|, \H\ + \B\ - 1). 

Proof. — Choose b £ B and set S = B — b. Using Lemma 3.2, one see easily that 
(ii) holds if and only if S is a Cauchy subset. The result follows now using Corollary 
3.4. • 

The following result generalises a result proved in [10] for finite relations. 

Theorem 3.6. — Let F be a locally finite connected reflexive point transitive relation 
such that d(T) > d(T~). Then K(T) > d(T)/2. 

Proof — According to Lemma 2.3 and Remark 2.a, the statement is invariant if 
we replace T by T~ if V is finite. Hence we may assume without lost of generality 
/x(r) < /x(r~), in the finite case. 

Let M be an atom of T. By Corollary 2.7, M is a block. It follows easily that 
T[M] is point transitive and that any other atom T generates a relation isomorphic 
to T[M]. Since M is finite, we have by Remark 2.a, d(T[M]) = d((T[M])-). Set 
t = d((F[M])). Set d+ = d(T) and d~ = d ( r ~ ) . Let X be the graph obtained from T 
by deleting all the arcs interior to the atoms. As for every block, the atoms partition 
V. It follows that d(X) — d+ — t and d{X~) = d~ — t. The number of edges of 
R originating in M is not greater than the number of edges terminating in d(M). 

Therefore xEM (d+ -t)< xEa(M) (d- - t). 

Therefore |M|(d+ -t) < K{T)(d- - t ) . Hence \M\{d+ -t) < n{T)(d+ -t). Observe 
that d+ — t / 0, since otherwise K(T) = 0, contradicting the assumption that T is 
connected. It follows that \M\ < K(T). 

Let x G M , we have 

d(r ) = | r (x ) | = \T(x) H M\ + |r(x) fl d(M)\. 
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It follows that 
d(r) < |Af| + #c(r) <2K (r ) . 

This proves the theorem. • 

Corollary 3.7. — Let T = (V,E) be a locally finite reflexive point transitive relation 
such that d(F) > d(r~). 

Then for every non-empty finite subset A, either T(Y(A)) — T(A) or |r(^4)| > 
\A\+d(T)/2. 

Proof — Let C be a component of T such that A fl C ^ 0 . By Lemma 2.14, 
d(Y) = d(T(C)). By Theorem 3.6, «(r[(7]) > d(T)/2. The result follows now from 
Lemma 2.15. • 

Corollary 3.8. — (Olson [27]) Let A and B be finite nonempty subsets of a group G 
such that l e B . Then \AB\ > min(|i4(B>|,\A\ + \B\/2). 

Proof. — Let T = A(G,B). Clearly d(T) = \B\ = IB'1] = d(T"). By Corollary 3.7, 
either ABB = AB or \AB > \A\ + \B\/2. 

The result is now obvious since the two conditions ABB = AB and A(B) = AB 
are equivalent (observe that A and B are finite). The second one implies the first by 
multiplication with B. Assume the first one holds. Hence AB^ — AB, for all j > 1. 
Since A, B are finite, this last condition implies easily that A(B) = AB. • 

As we have seen, Theorem 3.6 generalises Corollary 3.8 (Olson [27]) to point tran
sitive relations. In the finite case, this generalisation was proved in [10, Proposition 
3.4] before the result of Olson. 

A relation T — (V, E) is said to be arc-transitive if for all x, y, v, w G V, such 
that (x,y) G E and (v,w) G E and x ^ y and v ^ w, there is / G Aut(T) such that 
v = f(x) and w = f(y). Observe that a connected arc-transitive relation is point 
transitive also. 

A basic example of arc transitive relation is the following one. 

Let R be a division ring and U be a finite multiplicative subgroup of R \ { 0 } . Set 
O = A(i?, U U { 0 } ) . The relation O is clearly point transitive. Let us prove that 
it is arc transitive. Consider two arcs (a, b) and (c, d) such that b ^ a and d ^ c. 
Therefore b — a,d — cEU. Consider the application f(x) = (d — c)(b — a)"1 (x — a) + c. 
Clearly f(a) = c and f(b) = d. It remains to show that / G Aut(fi). Now / is 
the composition of a translation and an application of the form g(x) = ux, where 
u G U. The translation is an automorphism by Lemma 2.9. It remains to show that 
g G Aut(O). This follows from the following obvious equivalence. 

x — y G U if and only if ux — uy G U. 
The following result is proved in [9] in the finite case. 

Theorem 3.9. — Let T — (V, E) be a locally finite connected reflexive arc-transitive 
relation. 

Then r is a Cauchy relation. In particular n{Y) = d(T) — 1. 
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Proof. — According to Lemma 2.3 and Remark 2.a, the statement is invariant if 
we replace Г by T~~ if V is finite. Hence we may assume without lost of generality 
/i(JT) < / i ( r~) , in the finite case. 

Let M be an atom of Г. We shall prove that \M\ = 1. Suppose the contrary. By 
Lemma 2.2, T[M] is connected. In particular, there are x,y £ M with x ф у and 
(x, у) G E. Since Г is connected, к(Т) > 1. In particular there is v G M and w G M , 
such that (v,w) G E. By the transitivity of the group of automorphisms on the arcs, 
there is / G Aut(r) such that f(x) = v and f(y) = w. It follows that f(M) ф M and 
f(M) DM ф 0 , contradicting Corollary 2.8. 

It follows that \M\ = 1. Hence к(Г) = d(r ) - 1, by Lemma 2.2. • 

Corollary 3.10. — Let G be a group containing a finite subset В such that 1 G B. 
Assume that k((B),B) is arc-transitive. 

Then for every finite subset AcG, \AB\ > min(|A(B)| , \A\ + \B\ - 1). 

Proof. — The proof is similar to the proof of Corollary 3.8. • 

Corollary 3.11. — Let R be a division ring and let P be a finite subset of R such that 
0 G P and P \ { 0 } is multiplicative subgroup. Then P is a Cauchy subset of the 
additive subgroup generated by P. 

Proof. — The result follows easily by Corollary 3.10. • 

Corollary 3.11 generalises an inequality proved by Davenport-Lewis in [6] in the 
case of finite fields. We shall improve this result in section 7. 

The notion of a base can be generalised easily to relations as follows. 
A subset Л of a group G is said to be a base with order h if h is the smallest integer 

such that G = Ah. 
Let Г = (V, E) be a point transitive reflexive relation. The diameter of Г is the 

smallest integer к such that Tk = VxV, where Tk is the composition of Г with itself 
к times. 

Clearly if 1 G A, then A is a base of order h if and only if A(G, A) has diameter h. 

Lemma 3.12. — Let X = (V, E) be a finite connected reflexive point transitive relation 
with diameter h. Then 

h < max(2,3 + M - 2d Г 
к(Г) 

). 

Proof — The result holds if h < 2. Assume the contrary. Choose v G V Let X be a 
nonempty subset of G. By the definition of n, we have 

|Г(Г)| > m i n ( m | X | + к(Г)). 
It follows that 

i r ^ " 2 ^ ) ! > min(|F|,d(T) + (h - З)к(Г)). 
Since h is the exact diameter of X, there is y G V such that T (y) f~l Th 2(v) = 0. 
Hence 

\V\ > \d-(y)\ + d{v) + (h - 3)«(Г) = 2d(r) + (Л - З)к(Г). 
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Theorem 3.13 ([11]). — Let T = (V, E) be a finite connected vertex transitive reflexive 

relation with diameter h. Then h < max 2. 2\V\ 
d(T) 

- 1 . 

Proof. — By Lemma 3.12, 

h < max(2,3 + 
\V\ - 2d(T) 

*( r ) 
). 

By Theorem 3.6, 

h < max(2,3 + 
2 ( | V | - 2 d ( r ) ) 

d(T 
). 

Therefore 

h < max(2, 
2IVI 

\d(T)\ 
- 1). 

There was an omission in the statement in [11]. We did add max(2 , . . . ) , to correct 
the statement. 

Theorem 3.13, applied to bases of finite groups, is proved independently by Rodseth 
[29]. This last result is used in [15] to generalise results of Cherly and Deshouillers 
[3], Jia and Nathanson [17] to arbitrary a-finite groups. 

4. The critical inequalities 

We introduce in this section some new objects. The properties of these objects will 
be used later to solve the critical pair problem. 

Let T be a relation on a set 7 . A fragment F of V is said to be a strict fragment 
if fi(T) + 1 < |F| and / i (T- ) + 1 < \S(F)\. 

The relation F is said to be degenerate if T has a finite strict fragment. Let G be 
a group containing a subset B such that 1 € B. We shall say that B is degenerate if 
A(G, B) is degenerate. 

Remark 4.a. — Let T be a relation on a finite set V and let F C V. The following 
conditions are equivalent. 

(i) F is a strict fragment of T. 
(ii) 0(F) is a strict fragment of r~. 

Proof. — Suppose that (i) holds. By Lemmas 2.3 and 2.4, 6(F) is a fragment of T~. 
We have also S~(S(F)) = F. Therefore (ii) holds. The other implication holds by 
duality using Lemmas 2.3 and 2.4. • 

Lemma 4.1 
(i) Let T be reflexive Cauchy relation on a setV. Then T is non-degenerate if and 

only if for all A CV such that 2 < |.4| < oo, 

| r ( A ) | > m i n ( | V | - l , | ¿ | + « ( r ) + l ) . 
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(ii) Let B be a finite Cauchy subset of a group G such that 1 G B. Then B is 
non-degenerate if and only if for all A C G such that 2 < \A\ < oo? 

\AB\ > m i n ( | G | - l , | A | + |B | ) . 

Proof — The result holds trivially if V is infinite. Observe that a fragment with 
cardinality ^ 1 is a strict fragment in this case. Assume the contrary. By Lemma 
3.1, r~ is also a Cauchy relation. 

Suppose that there is A C V such that 2 < \A\ and 

| r ( ^ ) | < m i n ( | V | - l , | ^ | + « ( r ) + l ) . 

By Lemma 2.1, we have |T(^4)| = \A\ + K(T). Hence A is a fragment. We have 
\5(A)\ = \V\ — \Y(A)\ > 2. It follows that Y is degenerate. Similarly one see easily 
that if r is degenerate then every strict fragment A verifies the inequality 

\T(A)\ < rmn(\V\ - 1,\A\ + K ( D + 1). 

Clearly (ii) is a particular case of (1). • 

Lemma 4.2. — Let T be a reflexive regular Cauchy relation on a finite set V and let 
F be a fragment ofT. The following conditions are equivalent. 

(i) F = V \ T"(x), for some x G V. 
(ii)\F\ = \V\-d(T). 
(iii) \S(F)\ = 1. 

Proof. — Suppose that F = V \ V (x), for some x G V. We have 

IFI = IVI - i r - ( x ) | = IVI - d ( r - ) = \V\ - d{T). 

Hence (ii) holds. Suppose now that (ii) holds. We have 

|*(F) | = | V \ r ( F ) | = | F | - | F | - « ( r ) = l. 

Hence (iii) holds. Suppose now that (iii) holds and take 5(F) = {y}. By Lemmas 2.3 
and 2.4, 

F = ö-ö{F) = V\T-{y). 

The minimal cardinality of a strict fragment of a degenerate relation T will be 
denoted by UJ(T). Clearly UJ(T) is finite. A strict fragment of T with cardinality o;(r) 
will be called a superatom of V. 

Lemma 4.3. — Let Y be a reflexive relation on a finite set V. Then T is degenerate 
if and only if it is Y~ is degenerate. 

Proof. — Using Remark 4.a, a fragment F is strict with respect to Y if and only if 
5(F) is strict with respect to Y~. Using Lemma 2.4, we see easily that Y is degenerate 
if and only if T~ is degenerate. • 

Let T be a degenerate Cauchy relation and let If be a superatom of Y. We shall 
say that Y is singular if |(S(if ) | < \K\ — 1. 

Notice that Y is singular if and only if 2cj(r) 4- K(Y) — 1 > \V\. In particular every 
singular relation is finite. 
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Proposition 4.4. — Let Y be a reflexive regular degenerate Cauchy relation. Assume 
that T is singular and let K and M be superatoms ofT. Then either ö(K) = ö(M) 
or S(K)nö(M) = 0. 

Proof. — Suppose on the contrary that ö(K) / 6(M) and S(K) fl 6{M) ^ 0. By 
Lemma 2.4 K ^ M , 8-(6{K)) = K and S-(S(M)) = M. Using Lemma 2.5 applied 
to r~, we have 

\K\M\ = \M\K\< \S(K) \ 8(M)\. 

Since \K\ > \S(K)\ we have K DM ^ 0. By Lemma 2.5, K f l M i s a fragment of V. 
Since K is a superatom of V we have \K fl Ml = 1. Clearly 

IJfl = |il4"| = 1 + jikT \ i^l < |5(ÜT)|, 

a contradiction. • 

Proposition 4.5. — Let Y be a reflexive degenerate Cauchy relation on a set V and 
let M be a superatom of V. Let F be a finite strict fragment of V such that M (¡t F, 
M OF ¿0 and \S(F)\ > \M\. Then 

(i) \Mr\F\ = 1 
(ii) T(M fl F) = T(M) H F (F). 

Proof. — By Lemma 2.5, \S(F) \ 6(M)\ < \M\. Therefore 6(F) fl 6(M) # 0 . 
By Lemma 2.5, (ii) is satisfied and M fl F is a fragment of Y. By the definition of 

a superatom and since M D F ^ M , we have \M fl F\ = 1. • 

The above proposition generalises a result proved in the case of finite symmetric 
relations by Jung. Our finite symmetric relations are equivalent to undirected graphs 
considered by Jung, cf. [18, sâtz 2 ] . The notion of a superatom coincides in this case 
with the notion of a 2-atom of Jung. 

Corollary 4.6. — Let T be a reflexive degenerate Cauchy relation. Assume that T is 
non-singular and let K and M be two distinct superatoms of Y such that KDM ^ 0 . 
Then \K n M\ = 1 and T(K n M) = T(K) fl T(M). 

Proof. — By the definition we have |<S(üO| > 1̂ 1 = By Proposition 4.5, we have 
\K n M\ = 1 and T(K n M) — V{K) n T(M). • 

Corollary 4.7. — Let V be a reflexive degenerate Cauchy relation such that UJ(T) < 
u(T~). Let M be a superatom of Y and let F be a finite strict fragment ofT. Then 
either M C F or \M fl F\ < 1. 

Proof — The inequality u;(r~) < |<5(F)| holds clearly if V is infinite and follows 
in the finite case by Remark 4.a. Therefore \M\ = u(T) < c j ( r " ) < \6(F)\. The 
corollary follows now by Proposition 4.5. • 

Proposition 4.8. — Let T be a reflexive point transitive relation on a set V such that 
both r and T" are non-singular degenerate Cauchy relations and d(T) = d(T~~). As
sume that 

3 < min(a;(r),a;(r")). 

Then one of the following conditions holds. 
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(i) Any three distinct superatoms of Y have an empty intersection. 
(ii) Any three distinct superatoms of Y~ have an empty intersection. 

Proof. — The statement is invariant by interchanging Y and Y~. We may assume 
without lost of generality that UJ(Y) < cu(Y~). 

Suppose on the contrary that both (i) and (ii) are not satisfied. Choose two distinct 
superatoms A , B of Y and an element x such that x G AD B. 

Since AD B ^ 0. we have by Lemma 2.5 

\SA \ 6B\ <\B\A\< \B\ = u(Y). (1) 

As in the proof of Corollary 4.7, we have w(Y) < \6(A)\. Therefore we have using 
(1), 6(A) \ 8(B) ^ 0. Choose y G S(A) \ 6(B). 

Let K, L and M be distinct superatoms of Y~ such that y G KDLOM. Such super-
atoms exist by the transitivity of the group of automorphisms and by the hypothesis 
that (ii) is not satisfied. By Corollary 4.6, 

KDL = KHM = LDM = {y}. (2) 

Suppose that there are Fx and F2 G {K, L, M} such that Fi U F2 C 5(A) and 
F1^F2. By (2), 

| F i n F 2 | = l . (3) 

Let i G { 1 , 2 } . By Lemma 2.4, 5(B) is a fragment of Y . By Lemma 2.4, A — 
6~(6(A)) and A C 6~(F1) H 6~(F2). Hence x G 5~(FX) n 5~(F2). Now we have 
y G Fi\ 5(B) and x G B n S~(Fi) = 5"(5(B)) fl 5"(Fi) (using Lemma 2.4). By 
Lemma 2.5, applied to Y~ with M — Fi and F — 5(B), we have n 5(B) = 0 or 
Fif)6(B) is a fragment of T~. By the definition of a superatom we have |FiD5(B) | < 1. 
Therefore 

|(FiUF2)n<J(B)| < 2 . (4) 

By (4) we have 

|(Fi U F2) H (5(A) \ 5(B))\ > |FX U F2| - 2. (5) 

By (3) and (5), we have 

\S(A)\S(B)\ > |,Pi| + - 3 > w ( r" ) >ou(Y). 

This inequality contradicts (1). It follows that at most one superatom F G { K , L, M} 
is contained in 5(A). We may assume without loss of generality K (f. 5(A) and 
L <£ 6(A). By Lemma 2.4, A <£ 5~(K) and A <£ 6~(L). 

By Corollary 4.7, \A fl (6~(K) U 5~(L))\ < 2. Therefore 

A n (Y~(K) n Y~(L)) = A\ (6~(K) U <T(L)) # 0 . 

By (2) and Corollary 4.6, 

T - (y) = r - (K fl L) = T - (L) fl r - (L). 

Therefore Y (y)DA^ 0 , contradicting the assumption t/ G 6(A). This contradic
tion proves the result. • 

Proposition 4.8 generalises a result proved in [14]. 
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5. The Vosper inequality 

We apply in this section the results obtained in section 4 to the case of a finite 
group. Let G be a group and let r G G. The subgroup of G generated by r will be 
denoted by (r). We recall the following elementary fact. 

Remark 5.a. — Let S be a finite subset of G and let r G G. The following conditions 
are equivalent. 

(i) S is a union of right (r)-cosets. 
(ii) (r)S = S. 
(iii) rS = S. 

In this section we study the inequality \AB\ > min(|G| — 1, \A\ + |H|), where A and 
B are subsets of a finite group G. 

Theorem 5.1. — Let B be a degenerate Cauchy subset of a finite group G such that 

1 G B. Set r = A(G, H). Let L be a superatom ofT and let M be a superatom ofT~ 

such that 1 G LDM. 

(i) If B is singular, then x~~lS(L) is a subgroup for every x G 6(L). 
(ii) If B and B~l are non-singular, then there are a subgroup H and a G G such 

that L = H U Ha or M — H \J Ha. 

Proof — Suppose first that T is singular. Choose y G S(K) and set M — y~x8(K). 
We have clearly 1 G M. Let x G M. We have clearly xM DM ^ 0. But 

xM = x(G \ y~~xK) = Ô{xy-XK). 

By Proposition 4.4, M — xM. Hence MM — M and therefore M is a subgroup. This 
proves (i). 

Assume now that T and F~ are non-singular. By Lemma 4.4, T~ is degenerate. 
The result holds clearly if w(r) = 2 or u;(r~) = 2. Assume ÜJ(T) > 3 and u(T~) > 3. 
By Lemma 3.1, B~l is a Cauchy subset. By Proposition 4.8, there exists \£ G {F, T~} 
such that any three distinct superatoms of \& are disjoint. 

Set K = L if T = ^ and K = M if T~ = By Lemma 2.8, for any x eG,xK is 
a superatom of ^ . This observation will be used without reference. 

Take H = {x | xK = K}. Clearly H is a subgroup contained in K. Let Q = K\H. 
If Q = 0, the result holds with a = 1. Assume Q ^ 0 and let a G Q. 

Let x G <2, we have 1 G K D a_1lif fl x-1ÜT. By Proposition 4.8, two of these 
superatoms coincide. Since a,x G Q, we have a_1K 7̂  i i and x~xK / ÜT. Therefore 
a_1i^ = a:_1ii. Hence x G Ha. Hence Q C Ha. Since > 3 and K = H U Q, we 
have |H| > 2. 

Let x £ H. We have Î ÜT n i f | > \H\ > 2. By Corollary 4.6, xK = X . Therefore 
HÜT = i i . Hence i i is a union of right cosets of H. Hence \Q\ > \H\ and therefore 
\Q\ = |H| . It follows that K = HUHa. • 

Corollary 5.2. — Leí B be a degenerate Cauchy subset of a finite group G such that 
1 G B. There are S G { H , H " 1 } , a subgroup H and a E G such that H U Ha ¿«9 a 
strict fragment of A(G, S). 
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Proof. — This result follows immediately from Theorem 5.1. • 

Theorem 5.3. — Let B be a subset of a finite group G such that 1 G B. Then the 
following conditions are equivalent. 

(i) For all AcG such that 2 < \A\, 

\AB\ > m i n ( | G | - l , | A | + |B|). 

(ii) For every subgroup H of G and for every a G G such that \H U Ha\ > 2, 

min(\B(H U off)I,\(H U Ha)B\) > min(|G| - 1, \H U Ha\ + \B\). 

Proof. — Suppose that (i) holds. It follows that for every non-empty i c G , 

\AB\ >min(|G|, |A| + | B | - l ) . 

By Lemma 3.2, B is a Cauchy subset. 
By Lemma 4.1, B is non-degenerate. By Lemma 4.3, B~x is non-degenerate. Hence 

for all A C G such that 2 < \A\, 

\AB~X\ > m i n ( | G | - 1,|A| + |£ | ) . 

Therefore (ii) holds. Suppose that (i) is not satisfied. Hence there exists A such that 
2 < \A\ and 

\AB\ < min(|G| - 2, \A\ + \B\ - 1). 

Case 1. B is a Cauchy subset. — By Lemma 4.1, B is degenerate. By Corollary 5.2, 
there are a G G and a subgroup H such that H U Ha is a fragment of A(G, S) or a 
fragment of A(G, S~x). In this case (ii) is not satisfied. 

5.0.1. Case 2. B is not a Cauchy subset. — By Corollary 3.5, there exists a subgroup 
H of G such that min(|BJT|, \HB\) < min(|G| - 1, \H\ + |B| - 2). 

Clearly \H\ > 2. Since \H\ divides |G|, \BH\ and \HB\, we have 

min(|Bff|, \HB\) < min(|G| - |ff|, \H| + |B| - 1). 

Therefore 
minüBHL \HB\) < min(|G| - 2, Ijffl + IBI - 1). 

It follows that (ii) is not satisfied (with a = 1). 

6. The critical pair theory 

Let G be a group and let r G G \ { 1 } . A subset B C G will be called a right 
progression with ratio r, if there are b G G and a number ib such that 1 < k < \(r)\ 
such that B = {6, r&, r26 , . . . , rfc_16}. 

A subset B C G will be called a n#/i£ coprogression with ratio r, if G \ B is a right 
progression with ratio r. 

A subset B C G will be called a Ze/£ progression with ratio r, if there are 6 G G and 
a number fc such that 1 < k < \(r)\ such that B = {&, 6r, 6r2 , . . . , frr^""1}. 

A subset ß C G is a ie/ï coprogression with ratio r, if G \ B is a left progression 
with ratio r. 
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We say that a subset B C G is a right semi-progression with ratio r, if there are 
b G G and a number such that 1 < < |(r) | satisfying the following properties. 

(1) B D {b.rb^b,...^-1^ 
(2) B \ {6, r6 , r26, . . . ,rk~lb\ is a union (possibly void) of right (r)-cosets. 

A right semi-progression with k — 1 will be called a right almost-periodic. 
A right semi-progression with B D G \ (r)b is a right coprogression. A subset B is 

said to be a left semi-progression if B~x is a right semi-progression. 
We introduce the following notion. Let r G G \ { 1 } and let Ac (r). We say that 

{r i , r i+1 , . . . , rj } is an r-string of A if {r*, r i+1 , . . . , rj } C A and {ri_1 ,rJ+1}flA = 0 . 

Lemma 6.1. — Let B be a finite subset of a group G and let r € G \ {1}. 
If \{l,r}B\ = \B\ + 1, then B is a right semi-progression with ratio r. 

Proof. — Take B — B\ U B2 U • • • U Bk, where B{ is the intersection of B with an 
(r)-right coset. We assume also Bi ^ 0 , for all 1 < i < k. 

We have 

| { l , r } B | = | { l , r } B i | + • • - + \{hr}Bk\ = | £ i | + - - - + \Bk\ + 1. 

It follows that there is j , 1 < j < k, such that 

(i) \{lir}Bj\ = \Bj\ + l. 
(ii) \{l,r}Bi\ = \Bi\,ÎOT a l H ^ i . 

By (ii), we have rBi — Bi, for all i ^ j . It follows using Remark 5.a that Bi is an 
(r)-right coset, for all i ^ j . 

It remains to show that Bj is a right progression with ratio r. Take x G G such 
that Bj C (r)x~x and let C = BjX. It would be enough to show that C is an r-string. 

We have clearly | { l , r } C | = \C\ + 1 and C C (r). We decompose C into (r)-strings. 
Clearly every string {r%r*+1, . . . ,rJ} of C determines uniquely an element rJ+1 of 
{ l , r}<7 \ C. Hence there is exactly one string. • 

Lemma 6.2. — Let G be a finite group and let B be a right semi-progression. If B is 
a Cauchy subset then one of the following conditions holds. 

(i) B is a right almost-periodic subset. 
(ii) B is a right coprogression. 

Proof. ~~~ We have \(r)B\ = \B\ ((r)b)\ + |(r) | . 
If (r)B — G, then clearly B is right coprogression. Assume (r)B ^ G. 
By the definition of K, we have 

| £ | - 1 = « < \d(r)\ = \B \ {{r)b)\ = \B\ - \B n 6<r>|. 

It follows that \B fl (b(r))\ = 1. Thus B is right almost-periodic. • 

Proposition 6.3. — Let G be a finite group and B be a Cauchy subset of G such that 
(\G\, \B\ — 1) = 1. Then B is degenerate if and only if B a right coprogression or a 
left coprogression. 
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Proof. — Set r = A(G,B). By Corollary 5.2, there are S G { I ? , ! ? - 1 } , a finite 
subgroup H and r G G such that K = H U i l r is a strict fragment A(G, S). We have 

IJ3| - 1 = \S\ - 1 = *(A(G, 5 ) ) = | ( F U JTo)5| - | i f U Jïa|. 

Hence |H| divides \B\ - 1. Therefore = 1 and r ^ 1. Hence K = { l , r } . 
By Lemma 6.1, 5 is a right semi-progression with ratio r. The subset S can not be 
almost-periodic since otherwise | (r) | would divide \S\ — 1. 

By Lemma 6.2, S is a right coprogression. Clearly B is a right coprogression if 
S = B. It follows easily that B is a left coprogression if S = J?-1. • 

We need the following lemma. 

Lemma 6.4. — Lei A be a finite subset of a group G and let r G G \ { 1 } . £e£ B be a 
finite right coprogression with ratio r such that \B\ > 2 and \AB\ = \A\ + \B\ — 1 < 
\G\ — 1. Then A is a left progression with ratio r. 

Proof. — Take B = G\ (r)b U {&, r&, r26, . . . , r*_16} and take a £ A. Let G = a"1 A 
and let JD = Bft"1. Clearly \CD\ = |G| + \D\ - 1 < |G| - 1. 

We shall prove first that C C (r). Assume there is x G C\(r). Since D D G \ ( r ) , we 
have ar_1(r> C jD. It follows that (r) C G D . Since 1 G G, we have G \ (r) CD C CD. 
Therefore CD = G, a contradiction. 

This shows that G C (r). The argument used in the last part of the proof of 
Lemma 6.1, shows that A is a left progression of (r). • 

Lemma 6.5. — Let A be a finite subset of a group G with cardinality m and let r G 
G \ { 1 } . Let B = (G \ b(r)) U {6, br, br2,..., 6rfc-1} be a finite left coprogression with 
ratio r such that \B\ > 2 and \AB\ = \A\ + |B | - 1 < |G| - 1. Then there are a G G 
such that A — a { l , r , . . . , rm-1}6_1. 

Proof. — Take a £ A and set C = or1 A. We shall see that 

b~xCb C (r) (1) 

Assume there is c G G such that b lcb $ (r). It follows that c lb £ b(r). Since 
B DG\ 6{r), we have c~lb{r) C £ . It follows that 6(r) C G £ . Since 1 G G, we have 
G \ 6(r) C B C GB. Therefore GJ3 = G. It follows that AB = G, a contradiction. 

Set now i?i = B \ b(r) and J52 = B fl ((r)) . Let us prove that 

CBi n CB2 = 0 . (2) 

We have clearly \CB%\ < \CB\ < |G|. Since CB\ is a union of left cosets we have 
\CBX\ < \G\ - \(r)\. On the other side JBi C CBX. Therefore CBX = 5 i . Now (2) 
follows easily from (1). 

It follows that 

|G| + \BX\ + |B2| - 1 = |CS| = \CBX\ + \CB2\ = |Si| + |GB2|. 

Therefore 

|CB2| = |C| + | B 2 | - 1 . (3) 
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Therefore \(b-1Cb)(b"1B2)\ = \b~lCb\ + fi^B^ - 1. Now b'xCb and b~xB2 are 
subsets of (r). By Lemma 6.4, b~xCb progression with ratio r. The result follows now 
easily. • 

We prove now the main result of this section. It implies a generalisation of Vosper 
Theorem to any Cauchy subset of a finite group, where we replace the condition " |G| 
is prime" in Vosper Theorem by the weaker one "( |G| , |B | — 1) = 1". 

Theorem 6.6. — Let G be a finite group and let B be a Cauchy subset of G such that 

( | G | , | B | - 1 ) = 1. 
Let A C G such that \AB\ = \A\ + \B\ - 1 < \G\ - 1. Then one of the following 

conditions holds. 

(i) \A\ = 1 or A = G \ aB"1, for some a G G. 

(ii) There are a, 6,r G G, k,s G.N such that 

A = {a, ar, ar2,..., ark'1} and B = (G\ (r)b) U {&, r6, r26,..., r'^b}. 

(iii) There are a, 6, r G G, k,s G N s?/c/i that 

A = {ab-\arb-\ar2b-\...ar^b'1} and B = (G\6(r))U{6, òr, òr2 , . . . ^ r * " 1 } . 

Proof. — Assume now that (i) does not hold. Then \A\ > 2. By Lemma 4.2, 
\S(A)\ > 2. It follows that A is a strict fragment and hence by Lemma 4.1, A(G,B) 
is degenerate. 

By Proposition 6.3, there exists r G G\ { 1 } such that B is a right coprogression or a 
left coprogression with ratio r. Consider first the case where B is a right coprogression. 
Choose b G G and 5 G N such that I? = G \ {&, r&, r26, . . . , rs_16} 

By Lemma 6.4, A is a left progression with ratio r. Choose a G G and G N 
such that A = {a , ar, a r2 , . . . , arfc_1}. Therefore (ii) holds. A similar argument using 
Lemma 6.5 shows that (iii) holds if B is a left coprogression. • 

Corollary 6.7 (Vosper Theorem). — Letp be a prime number, and let A and B be two 
non-empty subsets of Zp such that 

\A + B\ = \A\ + \ B \ - l < p - l . 

Then one of the following conditions holds. 

(i) |A| = 1 or \B\ = 1 
(ii) A = Zp \ (a — B), for some a G Zp. 
(iii) A and B are arithmetic progressions with the same difference 

Proof. — Vosper Theorem may be reduced without lost of generality to subsets B 
such that 0 G B and \B\ > 2. Using the Cauchy-Davenport Theorem, B is a Cauchy 
subset. 

The result is now an obvious consequence of Theorem 6.6. • 

Corollary 6.8 ([14]). — Let B be a Cauchy subset of an abelian group G. Then B is 
degenerate if and only if one of the following conditions holds, 

and (i) B is a progression or B is a coprogression. 
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(ii) There exists a finite subgroup H such that 

\H\ > 2 and \G\ > \H + B\ = \H\ + \B\ - 1. 

The proof of this result follows along the lines of Theorem 5.3. One should use 
the fact that an abelian Cayley relation is isomorphic to its inverse to show that the 
inverse relation is also degenerate. 

7. Diagonal forms over a division ring 

The estimation of the range of a diagonal form is one of the classical applications 
of the critical pair theory, cf. [4, 29, 14]. Let us show that our methods imply the 
validity the estimation given in [4, 29, 14] for finite fields in the case of an arbitrary 
division ring. 

Let us begin by a general lemma. 

Lemma 7.1. — Let G be a group and let B be a finite subset of G such that 1 G B. 
Assume that A({B),B) is a a nondegenerate Cauchy subset of G. 

Then for every finite subset A such that \A\ >2, 

\AB\>mm(\A(B)\-lAA\ + \B\). 

The proof is similar to the proof of Lemma 2.15. 

Lemma 7.2. — Let R be a division ring and let P be a finite subset of R such that 
0 G P and P \ { 0 } is multiplicative subgroup. If \R\ > \P\ > 4? then P is neither an 
arithmetic progression nor a coprogression. 

Proof. — This result is proved in [25] in the case of primes fields. The argument 
given there is not easy to generalise to our case. But we shall deduce this result using 
the fact that T = A ( ( F ) , F ) is arc-transitive. 

Consider the case of an arithmetic progression. The case of a coprogression works 
in the same way. Assume that P is an arithmetic progression. Set 

P = {a, a -h r, a + 2 r , . . . , a + (k - l ) r } . 

We may assume without loss of generality that r, 2r G P. Therefore one P = {&, b + 
1, b + 2 , . . . , b + (k - 1 )} , where b = ar~l. It follows that 

| r ( 0 ) n r ( l ) | = f c - l > | r ( 0 ) n r ( 2 ) | , 

contradicting the arc-transitivity of T. • 

Proposition 7.3. — Let R be a division ring and let P be a finite subset of R such 
that 0 G P and P \ { 0 } is multiplicative subgroup. Let Ro be the additive subgroup 
generated by P. Then P is a non-degenerate Cauchy subset of Ro. 

Proof — By Corollary 3.11, P is a Cauchy subset of Ro. Suppose that P is degener
ate. By Lemma 7.2, P can not be a progression or a coprogression. By Corollary 6.8, 
there is a finite non-trivial subgroup H C Ro such that |i?o| > \H -f B\ = \H\ + \P\ — 1. 
Let p be the characteristic of R. Clearly p divides the order of \H\. It follows that p 
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divides |P| — 1. Since P \ { 0 } is a subgroup, it follows that u G P \ { 0 , 1 } such that 
up — 1. Hence (u — l)p = 0, a contradiction. • 

Theorem 7.4. — Let R be a division ring and let P be a finite subset of R such that 
0 £ P and P\{0} is multiplicative subgroup. Let Ro be the additive subgroup generated 
by P. 

Suppose that \P\ > 4 and let o i , a2 , . . . , an be non-zero elements of R. Then 

\axP + a2P + • • • + anP\ > minflifol, (2n - 1)( |P | - 1) + 1). 

Proof — The proof is by induction. The statement is obvious for n = 1. Suppose 
it true for n. We may assume clearly an+i = 1. By Lemma 7.2, Proposition 7.3 and 
the induction hypothesis, we have 

|6iP + b2P + •. - + bnP + P\ > min(|i?o| - 1,2n(\P\ - 1) + 2). 

Set U = P\{0}. Since 

( (o iP + a2P + • • • + anP + P ) \ {0})U = ( o i P + a2P + • • • + anP + P ) \ { 0 } . 

It follows that IC/I divides \atP + a2P + ••• + anP + PI - 1. It follows that 

|o iP + a2P + * • • + anP + P | > min(|iïo| - 1, (2n + 1)( |P| - 1) + 1). 

It follows easily from this equality that 

| o iP + a2P + . •. + anP + P\ > minflJlol, (2n -f 1)( |P| - 1) + 1). 

Theorem 7.4 was first proved in the case of Zp, by Chowla, Mann and Straus in 
[4]. Tietavainen proved in [29] the above Theorem 7.4 in the case of finite fields with 
odd characteristics. We gave in [14] a proof for all finite fields based on the method 
of superatoms. 

8. An application to networks 

In this section, we identify a relation and its graph. We assume the loops coloured 
with white and the other edges coloured black. 

A network will be modelled by a reflexive graph. The usual models are graphs 
without loops. Basically the two models are equivalent. The first one is more ap
propriate in our approach. In particular all the results and notions contained in this 
paper apply immediately. The second model requires some easy transformations. The 
reader could consider the black part as the network model and the white part as in
troduced for theoretical reasons. A point will be called a node or a vertex and an 
edge will be called a link (directed one). 

Let r = (V, E) be a reflexive graph. A sink of T is a proper finite subset of V 
such that T(A) = A. Clearly T is connected if and only if T has no sinks. We shall 
say that T is strongly connected if for all x,y € V, there is a directed path from x 
to y. It is easy to show that a finite graph is connected if and only if it is strongly 
connected. This is not the case for infinite graphs. The Cayley graph A ( Z , { 1 } ) is 
clearly connected and not strongly connected. 
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From now on, all the graphs considered will be assumed for simplicity finite. 
Let F = (V, E) be a finite reflexive regular graph. A set of vertices will be called 

a cutset if its deletion and its incident edges disconnects the graph. A cutset with 
smallest cardinality is called a minimum cutset It is easy to see that the cardinality 
of a minimum cutset is K(T). Let us mention that a fragment is just a sink in the 
subgraph obtained by the deletion of a minimum cutset. 

In a good network, the connectivity should be maximised. By Lemma 2.2, the 
maximal possible value of the connectivity is d(T) — 1. If In particular, if K(T) = 
d(T) — l, then after the failure of d(T) — 2 nodes, the remaining nodes remain connected. 
This property shows that T must be a Cauchy graph. The next property studied in 
network models is the superconnectdness. Let x G V, clearly T(x) \ {x} creates the 
sink { x } , it is thus a cutset with cardinality d(T) — 1. A similar remark holds for 
T~(x) \ {x}. A graph is said to be superconnected if it has no other cutsets with 
cardinality d(T) — 1. It follows easily from the lemmas proved in section 3 that a 
graph is vosperian if and only if all its fragments are trivial, where a trivial fragment 
is either {x} or V \ F~(x), for some x G V. 

Most of the models are Cayley graphs on cyclic groups, called usually loop net
works. Several attempts were made to characterise superconnected loop networks, cf. 
[16] and the references mentioned there. A first solution to this problem, based on 
Kempermann critical pair theory, is contained in [16]. There is also a characterisa
tion of vosperian abelian Cayley graphs in [16]. Easier characterisations, based on 
the properties of superatoms, are obtained later in [14]. 

Proposition 6.3 has the following implication. 

Corollary 8.1. — Let G be a finite group and let B be a Cauchy subset of G such that 
(\G\,\B\) — 1. Assume thatB is neither a left coprogression nor a right coprogression. 
Then A(G,B) is superconnected. • 

We conclude this section by explaining the characterisation of vosperian graphs in 
network reliability. This characterisation is contained in an unpublished manuscript 
of the present author. 

Consider a reflexive regular graph T. Set d(T) = d. The following property will be 
denoted by P&: 

\/A,BcV, \A\ = \B\ - k, 3 k disjoint paths from A into B. 

Clearly Pd can not hold, since every d paths starting from T(x) contains two 
intersecting paths. Clearly the path starting in x must use an other vertex of T(x). 
It is an easy consequence of Menger Lemma that T satisfies P<f_i if and only if T is 
a Cauchy graph. The Vosper property is in some sense the critical situation of this 
problem. In particular we have the following characterisation. 

r is vosperian if and only if for all A £ {F(x) : x G V}, B £ {T~(x) : x G V}, 
with \A\ — \B\ — d, there exist d disjoint paths from A into B. 
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NEW RESULTS ON SUBSET MULTIPLICATION IN GROUPS 

by 

Marcel Herzog 

Abstract. — This paper presents results and open problems related to the following 
topics: group with deficient multiplication sub-tables, product bases in finite groups. 

In this paper, I would like to discuss several topics which deal with subset multi
plication in groups. The topics are: 
(1) Deficient squares groups; 
(2) Squaring bounds in groups; 
(3) Deficient products in groups; 
(4) Product bases in finite groups. 
The paper will be concluded by a list of some related open problems. 

The letter G will always denote a group and the center of G will be denoted by 
Z(G). 

1. Deficient squares groups 

Let m be an integer and let M be an m-subset of G, i.e. M C G and \M\ = m. 
We say that M has the deficient square property if 

(1) \M2\:=\{xy\x,y€M}\<\M\2=m2. 

A group G has the deficient squares property for m (G £ DS(m) in short) if (1) holds 
for all m-subsets M of G. A group G has the deficient squares property (G E DS 
in short) if G € DS{m) for some integer m. If G is a finite group, then of course 
GeDS. 

The first mathematician to consider the DS(m) property was Gregory Freiman, 
who classified in [8] the D5(2)-groups and who collaborated with others in the clas
sification of the D5(3)-groups (see [2] and [19]). It was Peter Neumann who raised 
the problem of classifying the DS-groups. During his visit to Australia in 1989 Peter 
Neumann proved that D5-groups belong to the family of finite-by-abelian-by-finite 

1991 Mathematics Subject Classification. - 20F99, 20E34. 
Key words and phrases. — Deficient squares groups, squaring bounds in groups, deficient products 

in groups, product bases in finite groups. 
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groups [22]. In a recent paper, Patrizia Longobardi, Mereede Maj and myself com
pletely characterized the DS-groups. We proved 

Theorem 1.1 (cf. [9]). — A group G G DS if and only if either G is nearly-dihedral 
or \G^\ is finite. 

Here a group G is called nearly-dihedral if it contains an abelian normal sub
group H of finite index, such that each element of G acts on H by conjugation 
either as the identity automorphism or as the inverting automorphism. By G^ we 
mean (g2\g G G). Instead of requiring \G^\ to be finite, we could have required the 
finiteness of |{#2|# G G}\. Our proof relies on the above mentioned result of Peter 
Neumann, the proof of which was included in our paper by his permission. 

A group G is called central-by-finite or an FIZ-group if the center of G is of finite 
index in G. Clearly G G FIZ implies that G is a nearly-dihedral group and it 
follows by Theorem 1.1 that DS-groups are a generalization of FlZ-groups. In 1976, 
B.H.Neumann proved the following beautiful theorem: 

Theorem 1.2 (cf. [21]). — The group G G FIZ if and only if G does not contain an 
infinite independent subset. 

A subset M of G is called independent if xy = yx for x,y G M implies x — y. If 
G G FIZ, say \G : Z(G)\ = n, then clearly the size of an independent subset of G is 
bounded by n. The difficulty in Theorem 1.2 lies in proving the other direction of the 
theorem. 

Recently, Carlo Scoppola and myself characterized the D5-groups in the spirit of 
the B.H.Neumann's result. Call a subset M of G fully-independent if uv = yz for 
u,v,y, z G M implies u = y and v = z. We proved 

Theorem 1.3 (cf. [11]). — The group G G DS if and only if G does not contain an 
infinite fully-independent subset. 

Again, one direction of the theorem is trivial, since the existence of an infinite fully-
independent subset in G clearly implies that G £ DS. In our proof of the opposite 
direction, the following result of Babai-Sos [1,Proposition 8.1] was very useful: 

Theorem 1.4 (cf. [1]). — If U is an infinite subset of the group G, then U contains 
an infinite subset V such that: if u,v,y,z G V and > 3? then uv 7̂  yz. 

The only non-trivial relations allowed in V by Theorem 1.4 are xy = yx and 
x2 = y2. Thus, if G ^ DS, in order to construct an infinite fully-independent subset 
of G it suffices to construct an infinite subset U of G satisfying: xy / yx and x2 ^ y2 
for x,y G U, x ^ y. By Theorem 1.4 U contains an infinite fully-independent subset 
of G. 

2. Squaring bounds in groups 

Of course, we can require from G more than the Z)5-property, i.e. not only \M2\ < 
\M\2 for all m-subsets, but some stronger inequality. Such questions were considered 
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by Leonid Brailovsky in his Ph.D. thesis, written under the supervision of G. Freiman 
and myself. L. Brailovsky proved, among other results, the following 

Theorem 2.1 (cf. [6]). — The group G € FIZ if and only if there exists a positive 
integer k, such that 

\K2\<k2 -k 

for each k-subset K of G. 

I want to prove one direction of Theorem 2.1. The other direction is easy too, but 
a bit more technical. 

I'll prove: If k is an integer and G FIZ then \K2\ > k2 — k for some ^-subset K 
of G. 

By Theorem 1.2, there exists an infinite independent subset U of G and by The
orem 1.4, U contains an infinite subset V such that uv ^ yz for u,v,y,z E V with 
|{t£,v,y,z}\ > 3. Thus, if i f is a fc-subset of V, then the only non-trivial equalities 
among the elements of K2 are of the type x2 = y2, thus yielding 

\K2\ > k2 - (k-l) > k2 - k. 

The proof is complete. 
Suppose now that G is an abelian group. Then clearly 

(2) \K2\ < 
1 

2 
k(k + 1) for ^-subsets K of G. 

Does this property characterize the abelian groups? Generally speaking, the answer is 
NO. For k = 1, the inequality (2) always holds and for k — 2, the groups G = <2s x E 
satisfy (2), where Q$ is the quaternion group of order 8 and E denotes an elementary 
abelian 2-group, finite or infinite. Moreover, if G is finite and \k{k + 1) > |G|, then 
again (2) is trivially satisfied. But for the majority of cases, the answer is YES. More 
precisely, Leonid Brailovsky proved in his thesis 

Theorem 2.2 (cf. [4]). — If k > 2 is an integer and G is an infinite group, then (2) 
implies that G is abelian. In the finite case the same is true provided that k3 — k < 
1|G|. 

Theorem 2.2 also holds if the bound ~k(k + 1) in (2) is increased to \k(k + 1) + 
1 (k - 3), but then in the finite case we must require that (k2 — 3)(k — 1) < ^\G\ (see 

[5])-
In the infinite case much more can be proved. We define the integral valued function 

of an integral variable 

/ ( " ) = 
5n2 - 3n - 2 

6 

where \x~\ for a real x denotes the smallest integer m such that x < m. In his thesis, 
L.Brailovsky proved: 

Theorem 2.3 (cf. [6]). — Let k > 2 be an integer. Then: 

1 : If \K2\ < f(k) for all k-subsets K of an infinite group G, then G is abelian. 
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2 : There exists a non-abelian infinite group G such that \K2\ < f(k) 4- 1 for all 
k-subsets K of G. 

So f(n) is the best possible squaring bound for infinite abelian groups. Moreover, 

there is a gap between l 
2 

fc(fc + l ) and 5k2 - 3k - 2 
6 

1. Each infinite abelian group satisfies 

\K2\< 1 
2 

k(k + 1) for all fc-subsets, whereas for infinite non-abelian groups the bound 

for \K2\ on all fc-subsets is larger than 5fc2-3fc-2 
6 

3. Deficient products in gr0ups 

Let n be a positive integer. We say that G has the deficient products property for n 
(G G DP{n) in short) if for all couples of n-sets X and Y in G the following inequality 
holds: 

(3) \XYUYX\ < 2n2 . 

More generally, if k is an integer with k > 2, we say that G G DF(n , k) if all fc-tuples 
Xi, X2,. • . , Xk of n-sets in G satisfy 

(4) UP(XU ...,Xk) =def I U {XiXj\l <ij<k9i^ j}\ < (k2 - k)n2 . 

Thus DP(n) = D P ( n , 2 ) . Finally, we say that G G DP if G G DP(n,k) for some 
positive integers n, fc, k > 2. 

In a recent paper, Federico Menegazzo from Padova and myself proved the following 
results concerning groups satisfying the various conditions which were introduced 
above. 

Theorem 3.1 (cf. [10]). — Let G be an infinite group. Then G G DP{n) if and only 
if G is abelian. 

This theorem follows easily from the following characterization of infinite non-
abelian groups. First a definition: two subsets A and B of G are product-independent 
if whenever a, a' G A and 6, b' G B, then ab ^ b'a' and ab = a'b' or 6a = b'a! only if 
a — a' and b = b'. 

Theorem 3.2 (cf. [10]). — Let G be an infinite group. Then G is non-abelian if and 
only if it contains two infinite product-independent subsets. 

Theorem 3.1 generalizes Theorem B of [17]. We proved also the following charac
terization of FJZ-groups. 

Theorem 3.3 (cf. [10]). — Let G be an infinite group. Then G contains Ho mutually 
product-independent infinite subsets if and only if G £ FIZ. 

The characterization of infinite DP-groups is an easy consequence of Theorem 3.3. 

Theorem 3.4 (cf. [10]). — Let G be an infinite group. Then G G DP if and only if 
G G FIZ. 
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Consider now related but different conditions. Let (n) = (ni, ri2,...) be an infinite 
sequence of positive integers. We say that G G P*n^ (G G Pfy) if every infinite 
sequence X±7 X2,... of distinct subsets of G of sizes \X{\ = rii for all i contains a pair 
X, Y of distinct members satisfying XY = YX (\XYUYX\ < 2 |X | | r | ) . If m = n for 
all i write P* for P(*n). Theorem 1.2 states that G G Px* if and only if G G F / Z . In 
[20] F. Menegazzo proved that an infinite group G satisfies P* for n > 2 if and only 
if G is abelian. In [10] we proved: 

Theorem 3.5. — Let G be an infinite group. Then G G P*n^ with ni > 2 for all i if 
and only if G is abelian. 

It is easy to see that Theorem 3.3 implies: 

Theorem 3.6. — Let G be an infinite group. Then G G P**^ if and only if G G FIZ. 

4. Product bases in finite groups 

A subset A of a finite group G is called a basis (2-basis) of G if A2 =def {ab\a, b G 
A} = G. The problem of finding bases for G of size c\G\i for families of finite groups, 
where c denotes a fixed real number, was first posed by H. Rohrbach in 1937 in [23]. 
Such bases were found for certain families by Rohrbach himself [23], by Bertram 
and Herzog [3] and by Jia [12,13]. Recently, two graduate students in the Tel-Aviv 
University Gadi Kozma and Arie Lev proved that such bases exist for the family of 
all finite groups. They proved: 

Theorem 4.1 (cf. F151). — If G is a finite qroup then there exists A C G such that 
A2 = G and \A\ < 4 

V3 
G\i « 2.3094|G|*. 

The proof of Theorem 4.1 was based on the following strengthening of the Brauer-
Fowler theorem: 

Theorem 4.2 (cf. [18]). — If G is a finite group of a non-prime order then there exists 
a proper subgroup H of G with \H\ > \G\ * . 

Brauer and Fowler proved only that \H\ > \G\i for groups G of even order. How
ever, the proof of Theorem 4.2 uses the classification of the finite simple groups. We 
were recently informed that results similar to Theorems 4.1 and 4.2 appeared in the 
computer-science oriented papers [14] and [7]. 

Finally, if h is a positive integer, a subset A of a finite group is called an h-basis 
if Ah — G. Kozma and Lev proved the following theorem about /i-bases in finite 
solvable groups: 

Theorem 4.3 (cf. [16]). — Let G be a finite solvable group. Then G contains an h-
basis A such that \A\ < (2h - l ) | G | i . 

A similar theorem is probably true for all finite groups. 
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5. Some open problems 

I am going to list now some open problems, which are related to the results men
tioned in this lecture. 

1. Let G G DS(m). Prove that there exists an integer N = f(m) such that either 
\G^\ < N or G is nearly-dihedral with \G : H\ < N (see Theorem 1.1). 

2. Does there exist a purely graph-theoretical proof of Theorem 1.3? In other 
words, can one prove directly that the existence of fully-independent subsets of G of 
size m for all integers m implies the existence of an infinite fully-independent subset 
of G? 

3. Let n and m denote positive integers. A group G has the deficient n-powers 
property for m (G G DNP(m) in short) if \Mn\ < \M\n for all ra-subsets M of 
G. A group G G DNP if G G DNP(m) for some integer m. A subset M of G 
is n-fully-independent if x\X^ •. .xn = y\y<2 . . -yn for Xi,yj G M implies xi — yi for 
i = 1 ,2 , . . . , n. Is it true that: G G DNP if and only if G does not contain an infinite 
n-fully-independent subset? (see Theorem 1.3) 

4. Does there exist a constant c such that if k > 2 is an integer and G is a finite 
group satisfying condition (2), then G is abelian, provided that k2 < c\G\ ? (see 
Theorem 2.2) 

5. Does there exist a constant c such that if G is a finite group and \G\ ^ p,p2,M5 
where p and q are arbitrary distinct primes, then there exists a proper subgroup H 
of G satisfying \H\ > c\G\i ? (see Theorem 4.2) 

6. Prove: Let h be a positive integer. Then there exists a function f{x) such that if 
G is a finite group, then G has an /i-basis A satisfying \A\ < f{h)\G\^ ? (see Theorem 
4.3) 
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ON SMALL SUMSETS IN ABELIAN GROUPS 

by 

Vsevolod F. Lev 

Abstract, — In this paper we investigate the structure of those pairs of finite subsets 
of an abelian group whose sums have relatively few elements: \A 4- B\ < \A\ 4-
|£| . In 1960, J. H. B. Kemperman gave an exhaustive but rather sophisticated 
description of recursive nature. Using intermediate results of Kemperman, we obtain 
below a description of another type. Though not (generally speaking) sufficient, our 
description is intuitive and transparent and can be easily used in applications. 

1. Introduction 

By G we denote an abelian group. A finite non-empty subset S Ç G is said to be 
an arithmetic progression with difference d if S is of the form 

S = {a + id: i = 1, . . . , 151} (a, d G G). 

If, in addition, the order of the group element d satisfies ord d > \S\ + 2, then we say 
that S is a true arithmetic progression. 

Let A and B be finite subsets of G. We write 

A + B = {a + b: a e A, be B}, 

and consider the following condition: 

\A + B\< L4I + L B I - 1 . (*) 

The aim of this paper is to prove the following 

Main Theorem. — Let A and B satisfy (*), and suppose that max{|A|, \B\} > 1. 
Then there exist a finite subgroup H C G and two finite subsets S\, S2 C G such that 
A C Si + H, B C. S2 + H, and one of the following holds: 

i) \Si\ = \S2\ = 1, and\A + B\ > §|1T| + 1; 
ii) |5 i | = 1, |S2| > 1, and\A + B\> (|52| - 1)\H\ + 1; 

hi) |5i | > 1, |52| = 1, and\A + B\ > (\Si\ - 1)\H\ + 1; 

1991 Mathematics Subject Classification. - 11P99, 11B75. 
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318 V.F. LEV 

iv) min{|5i |5 |S2|} > 1, and \A + B\ > ( |Si | + |S2| - 2)\H\ + 1; moreover, Si and 
S2 are true arithmetic progressions with common difference d of order at least 
ordd>|Si | + |S2| + l . 

It can be easily verified that the conclusion of Main Theorem implies 

IA + B + H\ - \A + B\ < \H\ - 1 

in cases ii)—iv), and 

IA + B + H\ - \A + £| < 
1 

2 
| f f | - l 

in case i): just observe that 

\A + B + H\<\S!+S2+H\< |5i + S2| |if |. 

Thus, A -I- f? "almost" fills in a system of if-cosets, while both (A + H)/H and 
(B + i f ) / i f are in arithmetic progressions — unless some of them consists of just one 
element. 

The Main Theorem will be proved in Section 3. Now, we give two definitions. 
We say that the subgroup H C G, \H\ > 2 is a period of the finite subset G C G 

if C is a union of one or more iJ-cosets, that is if C + H = C. In this case C is called 
periodic and we write H — P{C). 

We say that the subgroup H C G, | H | > 2 i s a quasi-period of the finite subset 
C C G, if C is a union of one or more if-cosets and possibly a subset of yet another 
if-coset. In this case C is called quasi-periodic and we write H = Q(C). 

If H = P(C), we also say that i f is a trtie period of G, as opposed to H = Q(G) , 
when G is a quasi-period. Obviously, if H = P (G) or i f = <2(G) then | i f | < 00. 
Notice that according to the above definitions each periodic set is also quasi-periodic. 

2. Auxiliary results 

The following deep result due to Kemperman (see [1]) plays the central role in our 
proof. 

Theorem 1 (Kemperman). — Let A and B be finite subsets of G such that (*) holds 
and min{|A|, \B\} > 1. Then either A + B is an arithmetic progression or A + B is 
quasi-periodic. 

Corollary 1. — Under the assumptions of Theorem 1, one of the following holds: 

i) A + B is in true arithmetic progression; 
ii) A + B = c + H\ { 0 } where i f C G is a subgroup, and c G G — an element of 

G; 
hi) A 4- B is quasi-periodic. 

The next lemma also originates in [1]. 

Lemma 1 (Kemperman). — Suppose that (*) holds and that A + B is in true arith
metic progression of difference d. Then also A and B are in true arithmetic pro
gressions with the same difference d. Moreover, in (*) equality holds, and therefore 
ordd> + + 
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We need three more lemmas. 

Lemma 2. — Let A and B be finite non-empty subsets of G, and let H C G be a 
finite non-zero subgroup of G, satisfying 

(\A + H\-\A\) + (\B + H\-\B\)<\H\. 

Then H = P(A + B). 

Proof — We choose c = a-hb E A + B and h E H and we prove that c-h h £ A + B. 
We have: 

I (a + H) fi A\ + |(6 + H) n B\ < I (A + H)C\A\ + \{B + H)f\B\< \H\, 

hence 

\{a + H)f)A\ + \{b + H)r\B\ > \H\, 

\H fl (A - a)I + \h - H fl (B - b)\ > \H\, 

and therefore there exist h„, hh £ H such that 

ha = h~ hbl ha= a' - a, hb = bf - b (a' E A, b' £ B). 

But then c + h — a + b + ha + hb = a' + b' EA + B which was to be proved. • 

Lemma 3. — Let A,BCG satisfy (*). Suppose that A + B is quasi-periodic, and 
write H = Q(A + B). Denote by a the canonical homomorphism a: G —> G/H, and 
set A\ = a A, B\ — oB. Then 

i) | A i + £ i | < | A i | + | J 3 i | - l ; 
ii) \AX+BX\ < \A + B\; 

iii) \A + B\ - 1 > (|Ai + Bx\ - 1)\H\. 

Proof — i) Suppose first that H = P(A + B). Obviously, \A + B\ < \A + H\ + 
\B + H\ - 1. But the left-hand side, as well as \A + H | and \B + if | , divides 
by \H\, so we also have |A 4- B | < |A + H| + |J5 + # | - |ff |. Eventually, 
\A + H\ = |Ai||jff|, |B + £T| = |Bi||Jff| and |A + B | = |AX + B1||H|. 

Now consider the situation, when H is a quasi-period, but not a true period 
of A + B. Then by Lemma 2, 

|A + J3| + 1 < |A| + |J?| < |A + JT| + |B + fZ"| - |H|, 

hence (since the right-hand side divides by \H\) we also have \A + B -\- H\ < 
\A + H\ + \B + H\ - and the proof finishes as in the case H = P(A + B). 

ii) Follows from iii). 
iii) If H = P(A + B)1 then 

|A + B | - 1 = |Ai + £ i | | # | - 1 > (|Ai + B i | - 1) |H|. 

If i f is not a true period of A 4- 2?, then A + 5 contains |Ai 4- J3i| — 1 full 
if-cosets, and at least one element in yet another il-coset, therefore \A 4- B\ > 
( 1 ^ + 5 x 1 - 1 ) 1 ^ 1 + 1 . 
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Lemma 4. — Let A-hB = c + H\ { 0 } and suppose that min{|A|, \B\} > 2, where 
A,B C G are subsets, H C G a subgroup, and c G G an element of G. Then \H\ > 4. 

Proof — We have: \H\-1 = |A+J3| > \A\ > 2, hence \H\ > 3. Suppose \H\ = 3, and 
so \A\ = \B\ = \A+B\ = 2. LetA = a + { 0 , d i } , B = 6 + { 0 , d 2 } . Then A+B = a + 6 + 
{ 0 , d i , d2, di + d2}, hence d2 = di, d\+d2 = 0, and H = { 0 } U {a-h6 — c, a + 6 + d — c } , 
where d = di = d2, 2d = 0. Therefore d = (a -b b -f d — c) — (a -f 6 — c) G H, which 
contradicts to | i f | = 3, 2d = 0. • 

3. Proof of the Main Theorem 

Denote Go = G, A0 — A, B0 = B and consider the following conditions: 

1) \A\ = \B\ = 1; 
2) \A\ = 1, |J3| > 1; 
3) \A\ > 1, |B | = 1; 

4) A + B = c + H \ { 0 } , where H is a subgroup, and c e G — an element of G; 
5) A + B is in true arithmetic progression. 

If all these conditions fail, then by Corollary 1 the sum AQ + Bo is quasi-periodic, 
and we put Hi = Q(A0 4- Bo), Gi = Go/Hi, denote by o~i the canonical homomor-
phism o"i: Go —> Gi and set = <7iAo, 2?i = CT\BQ, SO that A i , Bi satisfy (*) by 
Lemma 3, i) . Now check, whether some of the conditions l ) -5 ) is met with Gi,Ai,Bi 
substituted for G, A, B. If not, we continue the process by defining 

H2 = Q(A1 + B1), G2 = Gi/H2, 

o~2 : Gi —• G2, A>2 — &2 Ai, I?2 = a2B\ 

and so on. At each step we obtain a pair of subsets Ai,Bi Ç Gi, satisfying (*) 
and also \A{ -h Bi\ < + #¿-1 | (by Lemma 3, ii)). Eventually we obtain a pair 
Ak,Bk Ç Gk (ft > 0), which meets at least one of the conditions l ) - 5 ) . We write 
a = ak • * • o\ \ G - » Gfc (or (7 = idG in the case ft = 0) so that Ak = o\A, 2?fc = oB, 
and we write H = a~xH if the first condition met is 4), or H = kercr otherwise. We 
distinguish 5 cases according to the first condition satisfied. 

1) Here ft > 0 and Ak-i + Bk-i = c 4- iïfc, where c G G^-i (since Hk is a quasi-
period of Ak-i +Bfc_i) , therefore Afc_i Ç a + Hk, Bk-i Ç 6 + (a, 6 G G*_i) , 
whence A Ç a '+ i ï , B Ç {a1, b' G G) . We choose now Si = {a7}, S2 = { 6 ' } 
and observe, that by Lemma 3, iii) 

L4 + B I - 1 > ( | A i + B i | - l ) | H i | > . . . > 

> (\Ah-1+Bk-1\-l)\Hk-1\..-\H1\ = 

= ( |Jïft |- l) | jfffc_i| . .- |fri |> 

> 
1 
2 

|fffc||Hfc_i|.-.|Hi| = 
1 

2 
i m . 

2) Also here we may assume ft > 0, since otherwise the result is trivial if we choose 
Si = A, S2 — B, H = { 0 } . Furthermore, as in 1) we have A C a + H . We choose 
Si = { a } , and for S2 we choose the system of arbitrary representatives of all 
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U-cosets, containing at least one element of B, so that A C S i + l f , B C S2 + H 
and |S2| = \Bk\. Then 

\A + B | - 1 > • • • > + Bk\- l)\Hk\• • • I = (|52| - l ) | f f | . 

3) This case is analogous to the previous one in view of the symmetry between A 
and B. 

4) In this case there exist a, b G G such that A C a + fl", B Cb + H and we choose 
Si = { a } , 52 = { 6 } . Then 

|A + B| - 1 > . . .> ( |A jk+Bib | - l ) | f r lk | - . . | f f i | = 

- ( | # | - 2 ) | # , | . . . | # i | > 
o 
2 

\H\\Hk\---\H1\ = 
1 
2 

|H| 

(since I i f I > 4 by Lemma 4). 
5) In this case, by Lemma 1, Ak and Bk are in true arithmetic progressions with 

common difference d of order ord d > \Ak\ + \Bk \ + 1, and \Ak + Bk\ = + 
|J9fc| — 1. It is easily seen that we can choose two true arithmetic progressions 
5i , 52 Ç G with a common difference d' in such a way, that Au = a Si, Bk = crS2 
and |Si| = I A* I, |S2| = |Bfc|, ord df > ord d. Then 

A C Si + if, B Ç S2 -f if, ord > |Si| + |52| + 1 

and 

|A + JB| - 1 > • • • > (jilfc + Bfc| - l)|fffc| • • • \Ht\ = (|Si| + |52| - 2 ) | # | . 

This completes the proof. 
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AN ANALOG OF FREIMAN'S THEOREM IN GROUPS 

by 

Imre Z. Ruzsa 

Abstract — It is proved that in a commutative group G, where the order of elements 
is bounded by an integer r, any set A having n elements and at most cm sums is 
contained in a subgroup of size Cn with C — /(r, a) depending on r and a but not 
on n. This is an analog of a theorem of G. Freiman which describes the structure of 
such sets in the group of integers. 

Let A be a set of integers, \A\ = n, and suppose that \A + A\ < en. A famous 
theorem of Freiman [1, 2] provides a certain structural description of these sets; in one 
of the possible formulations, it says that A can be covered by a generalized arithmetic 
progression 

{a + qxXi + q2X2 H h qaXd : 0 < Xi < h - 1 } , 

where d < c and U < Cn with C depending on c. 
One can ask for a description of sets with few sums in every Abelian group. In this 

paper we consider groups which are in a sense very far from N. 

Theorem. — Let r > 2 be an integer, and let G be a commutative group in which the 
order of every element is at most r. Let A C G be a finite set, \A\ = n. If there is 
another B C G such that \B\ = n and \A + B\ < an (in particular, if \A + A\ < an 
or \A — A\ < an), then A is contained in a subgroup H of G such that 

\H\ < f(r,a)n, 

where 

f(r,a) = o 2 T 
a4 

. 
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The proof goes along similar lines to my proof of Freiman's theorem [3, 4], but is 
considerably simpler. 

For a nonnegative integer k and a set A C G we introduce the notation 

kA = A + • • • + A , k summands, 

OA = { 0 } , 1A = A. 

Lemma. — If A,B C G, \B\ = n and \A + B\ < an, then for arbitrary nonnegative 
integers kA we have 

\kA - IA\ < ak+ln. 

See [3], Lemma 3.3. Observe the asymmetric role of A and B. No a priori bound 
is assumed for \A\; an alternative formulation (like in the Theorem) would be "if A is 
such that the union of n suitable translations has at most an elements, then A is so 
small that even the sets kA — IA are small". 

Proof of the Theorem. Let fei, 62 , . . . , bk be a maximal collection of elements such 
that bi G 2A — A and the sets bi — A are all disjoint. We have 

h - A C 2A - 2A, 

hence 

(bi - A) = kn< \2A - 2A\ < a4n 

(the last inequality follows from the Lemma). This implies k < a4 . 

Take an arbitrary x G 2A — A. Since the collection was maximal, there 
must be an i such that 

(x - A) fi (bi -A)4 0, 

that is, x — a\ = bi — CL2 with some a\«a,2 G A. which means 

x — bi + ai — a,2 G bi + (A — ^4). 

Hence 
2A - AC (bi + (A-A))=B + A - A, (1) 

where B = {61, . . . ,&*.} . 

Now we prove 
jA-Ac(j-l)B + A-A (j > 2) (2) 

by induction on j . By (1), this holds for j = 2. Now we have 

(j + 1)A - A = (2A - A) + (j - I)A 

C B + A — A + (j — I)A by (1) 

= B + O M L - A ) 

C £ + ( j - 1)B + A - A 

= jB + A — A , 

which provides the inductive step. 
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Let H and / be the subgroups generated by A and B, respectively. By (2) we have 

jA - A C / + (A - A) (3) 

for every j. We have also 

(jA -A) = H, (4) 

which easily follows from the fact that the order of elements of G is bounded. Relations 
(3) and (4) imply that 

Hcl + (A-A). 

Since I is generated by k elements of order < r each, we have 

\I\ < r k < r a4 

consequently 
\H\<\I\\A - A\<a 2 m r>4 n 

(the estimate for \A — A\ follows from the Lemma). QED 

Remarks. — Take a group of the form G = Z™, where Zr is a cyclic group of order 
r, and a set A c G of the form 

A = (ai + G') U • • • U (ak + G') 

with a subgroup G'. Here |A| = n = fe|G,|, and if all the sums a* + % lie in different 
cosets of G\ then 

\A + A\ = 
fc(fc + l ) 

2 
|G' | = an, a = fc + 1 

2 . 

The subgroup generated by A can have as many as r^lG'l elements, hence our function 

/ ( r , a ) = a 2 Ü a4 

cannot be replaced by anything smaller than 
rk _ r2a-l 

Conjecture. — The Theorem holds with / ( r , a) = rCa with a suitable constant C. 

The following conjecture of Katalin Marton would yield a more efficient covering 
in a slightly different form. 

Conjecture. — If \A\ — n, \A + A\ < an, then there is a subgroup H of G such that 
\H\ < n and A is contained in the union of ac cosets of H, where the constant c may 
depend on r but not on n or a. 

This also suggests that perhaps in Freiman's original problem a better result can 
be formulated in terms of covering by a small number of generalized arithmetical 
progressions than just one. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



326 I. RUZSA 

References 

[1] Freiman G. A., Foundations of a structural theory of set addition, Translation of Math. 
Monographs vol. 37, Amer. Math. Soc, Providence, R. I., USA, 1973. 

[2] Freiman G. A., What is the structure of K if K + K is small?, in: Lecture Notes in 
Mathematics 1240, Springer-Verlag, New York - Berlin, 1987, 109-134. 

[3] Ruzsa I. Z., Arithmetical progressions and the number of sums, Periodica Math. Hung., 
25, 1992, 104-111. 

[4] Ruzsa I. Z., Generalized arithmetical progressions and sumsets, Acta Math. Hungar., 65, 
1994, 379-388. 

I. RUZSA, Mathematical Institute, of the Hungarian Academy of Science, Budapest, Pf. 127, H-
1364 Hungary • E-mail : ruzsaCmath-inst.hu 

ASTÉRISQUE 258 



Astérisque

GILLES COHEN

GÉRARD ZÉMOR
Subset sums and coding theory

Astérisque, tome 258 (1999), p. 327-339
<http://www.numdam.org/item?id=AST_1999__258__327_0>

© Société mathématique de France, 1999, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1999__258__327_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astérisque 258 , 1999, p . 327-339 

SUBSET SUMS AND CODING THEORY 

by 

G é r a r d C o h e n & Gi l les Z é m o r 

Abstract — We study some additive problems in the group (Z/2l)r - Our PurPose 
is to show how those problems are closely related to coding theory. We present some 
relevant classical coding techniques and make use of them to obtain some original 
contributions. 

1. Introduction 

Let G denote the group Fr where F = { 0 , 1 } stands for the additive group with 
two elements. Let 5 be a generating set o f G. For any positive integer i, denote by 
5* the set o f sums of i distinct elements of S. Set S° = { 0 } and for any set I o f 
non-negative integers, let S1 = Ui^jS1. Let us denote by p(S) the smallest integer t 
such that any element o f G can be expressed as a sum of t or less elements of 5 , i.e. 
such that 

G = SW. 
Let us denote by d(S) the smallest integer i such that 0 can be expressed as a sum of 
i distinct elements o f 5 , i.e. let d(S) — 1 be the largest t such that 

0gS[1'*] . 

W e wish to focus on the following 1 additive' problems. 

Problem 1. — For given r and t, find the smallest s such that \S\ > s implies p(S) < t. 

Problem 2. — For given r and t, find the largest s such that \S\ < s implies p(S) > t. 

Problem 3. — For given r and d, find the smallest s such that \S\ > s implies d(S) < 
d. 
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328 GÉRARD COHEN & GILLES ZÉMOR 

Those three problems can be expressed as problems in coding theory. Indeed, 
problems 2 and 3 are classical coding problems o f which we shall give a short self-
contained presentation for the non specialist. P roblem 1, although less known to 
coding theorists, is also amenable to coding techniques, and we shall present original 
contributions to it and also to the following generalisation o f problem 3. 

Problem 4. — Given r and an arbitrary set of integers I, find the smallest s such that 
\S\ > s implies 0 G S1. 

2. Coding-theoret ic formulation of problems 1-4 

W h a t coding theorists call a (binary) linear code o f length n is simply a subspace 
of the vector space Fn. Let S be a generating set o f Fr with | 5 | = n. There is an 
important linear code C(S) associated to S whose coding-theoretic properties reflect 
the additive properties of 5 . T o obtain it let si,..., sn be any ordering o f its elements 
that we shall write as column vectors. Consider the r x n matrix H = [s\ . . . sn] and 
the associated function 

a : Fn G = Fr 
x = (# i ...xn) a(x) = H*x 

Define C(S) t o be the set o f vectors x of Fn such that <J(X) = 0. W h e n defining such a 
code C(S) associated to a set S we shall usually not specify which ordering si,...,sn 
we are choosing because the properties o f C(S) that interest us are independent of 
it. T o help distinguish between the two structures G = Fr and Fn, we shall use plain 
letters to denote elements o f G and bo ld letters to denote vectors of Fn: furthermore, 
since the vector space structure of Fn will be used rather more heavily than that of 
G, we shall systematically refer to elements of Fn as vectors. C(S) (or simply C when 
there is little ambiguity) is a subspace of Fn o f dimension k = n — r. Its elements 
are referred t o as codewords. H is called a parity-check matrix o f C , and for any 
vector x € Fn, cr(x) is called the syndrome of x . T w o vectors x = (x\ . . . xn) and 
y = (yi.. .yn) of Fn are said to be orthogonal if 

n 

1=1 

Xiyi = 0 

where computat ions are performed in F. If C is a linear code o f Fn o f dimension fc, 
then the set C x o f vectors or thogonal to C is a linear code of dimension n — k. Any 
matrix H whose rows are independent vectors orthogonal to C make up a parity-check 
matrix o f C. 

Remark. — Not every code C need be a code C(S) for some set S. This is because 
not every code has a parity-check matrix with distinct columns. 

Coding theorists regard Fn as a metric space, i.e. endowed with the Hamming 

distance d( •) : 
p n x pnpn x pnpn x pn [0,n] 

pn x pn pn x pn 
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SUBSET SUMS AND CODING THEORY 329 

where d (x ,y ) is defined as the number of coordinates where x and y differ. The 

minimum distance d(C) of a code C is the smallest distance between a pair o f distinct 

codewords , 

d(C) = m m 
x,y€C 

d (x ,y ) . 

Note that d(C) is also the minimum distance d(x, 0) between the 0 vector and any 

non-zero codeword x : this is because d(-, •) is invariant by translation and C is an 

additive subgroup. The integer d(x, 0) is called the weight of x and denoted by iu (x) . 

T h e classical parameters of a linear code C are usually denoted by [n, d\ and refer 

respectively to its length, dimension and minimum distance. 

Another classical parameter of a code C is its covering radius p(C): it is the 

maximum distance between a vector of Fn and the code C , i.e. 

p(C) = max 
xGF" 

d ( x , C ) 

where d(x, C) = minc€c d(x, c). 

Given a vector x = (x i . . .xn) of Fn, it is c o m m o n to define its support by 

supp(x) — {i^xi = 1 } . The syndrome of x can therefore be written as 

a(x) = 
i€supp(it) 

Si 

where the sum is computed in Fr. It is now clear that the minimum distance of C 

equals the minimum cardinality of a subset I of S such that X^eiSi ~ ®- ^n particular 

we have : 

Remark. — For any code C, there exists a set S not containing 0 such that C = C(S) 
if and only if d(C) > 3. 

Similarly, it is readily checked that the covering radius of C is the smallest number 

of additions necessary to generate every non-zero element of Fr with elements of 5 . 

Summarizing, 

Proposition 2.1. — The correspondence S -> C(S) is such that 

d(S) = d(C(S)) 

P(S) = P(C(S)). 

The above correspondence transforms problems o f an additive nature into packing 

and covering problems in a metric space. In particular, we see that problem 3 is 

equivalent to the fundamental problem of coding theory, namely determine the largest 

possible minimum distance o f a linear code of length n and dimension k. There are 

several classical bounds relating n, k and d. Let us mention two simple bounds that 

we shall make use of later on. 

Proposition 2.2 (Hamming bound). — Any [n, n — r, d] code satisfies 

L(d-1)/2J 

¿=0 

n 

i 
< 2r. 
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330 GÉRARD COHEN & GILLES ZÉMOR 

Proof. — Since any vector x G Fn o f weight < d — 1 satisfies a (x) ^ 0, then all 
vectors with weight at most [(d — 1)/2J must have distinct syndromes. 

Using classical estimates for binomial coefficients, the Hamming bound states, 
asymptotically, that any [n, n i? , nô] code satisfies 

(1) R < 1 - ft(<*/2) + o(l) 

where h(x) = —x log2 x — (1 — x) l og2( l — x) denotes the binary entropy function. 

Proposition 2.3 (Varshamov-Gilbert bound). — Let n andr be given. There exists an 
[n, n — r, d] code whenever 

w=1 

i=0 

n - r 
i 

<2r. 

Proof. — W e construct inductively a parity-check matrix of such a code . Suppose 
constructed a n r x i matrix Hi such that any d—1 columns are linearly independent. 
They are at most Ni distinct linear combinations of columns involving at most d — 2 

terms, with 

Ni = 
d-2 

x pn 

) 
) . 

If Ni < 2r — 1, then a nonzero element of G = Fr can be added to the set of columns 
of Hi to yield an r x (i + 1) matrix H i + i with the property that any d — 1 of its 
columns are linearly independent ; equivalently H^+i is the parity-check matrix of a 
code of minimal distance > d. 

Asymptotical ly, the Varshamov-Gilbert bound reads: there exist [n, n i? , nd] codes 
with 

(2) R > l - / i ( ( 5 ) + o ( l ) . 

There is no known better asymptot ic lower bound on R = k/n. Let us just mention 
the most powerful upper bound on R due to McEliece, Rodemich , Rumsey, and Welch 
(see e.g. [10]) for a p roo f ) : 

Proposition 2.4. — Any [n, ni2, nö] code satisfies 

(3) R < h 
1 
2 = 

[n, ni2, nö + o( l ) . 

Note that the Varshamov-Gilbert bound is not really constructive (the complexit; 
of constructing a parity-check matrix for such codes is exponential in the length n) 
There are no known constructions of codes achieving the Varshamov-Gilbert boun< 
for growing n and fixed i? , 0 < R < 1. There are, however, g o o d constructions c 
codes with fixed d and growing n. W e give a very short presentation of such codes 
to which we shall refer later on . 
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SUBSET SUMS AND CODING THEORY 331 

Cyclic and BCH codes. — The one-to-one mapping 

v = ( v o , v i , . . . , v n _ i ) v(X)=v0v(X) = v0 . • • + t;n_1Xn-1 

gives us an identification of the binary vector space Fn with the additive structure of 

the algebra A = F[X]^xn — l ) . If a subspace of A has the additional property of 

being an ideal of the ring A, it is called a cyclic code . Every ideal of A is principal and 

generated by a polynomial g(X) which divides Xn — 1. Take n o f the form n — 2m — 1 

so that g{X) can be considered to have all its roots in the finite field on 2m 

elements. Let a be a primitive element of F2™ and define the cyclic code Ce as the 

set of polynomials (modulo Xn — 1) whose roots contain a, a 3 , . . . , a2e_1 (since all 

these elements are roots of Xn — 1, this definition makes sense). It is a vector space 

over F of dimension at least n — em. Since these polynomials have their coefficients 

in F, the set o f their roots must be stable by the Frobenius homomorphism x »->• x2 , 

so that polynomials of Ce also have a2 , a 4 , . . . , a2e as roots. Note that Ce can also be 

described as those vectors v = (VQ, ..., vn-i) £ Fn that are orthogonal to the rows of 

the matrix 

Hi 

1 a a2 ..... X)=v0or 
1 a2 a4 .... 

a 2 ( 2 m - 2 ) 

1 a3 a6 
.... 

a 3 ( 2 " - 2 ) 

1 a2e a4e . 
. 

... 

1 a2* a4e 
...... 

2e(2™-2) 

. 

Now any 2e x 2e submatrix of H is a van der Monde matrix and hence full-rank. 

Therefore any vector of Fn that is orthogonal to all the rows of H must have weight 

not less than 2e + 1. T h e set Ce is called a B C H code: we have just proved that its 

parameters are 

[n = 2m -1, k > 2m — 1 — em, d > 2 e + 1]. 

Cycl ic and B C H codes have been extensively studied: see e.g. [10] and references 

therein. For fixed d = 2e 4- 1 and growing n they are, except for sporadic counter

examples, the best known constructions. Their dimension k > n — e log2 n meets the 

asymptotic Hamming bound k < n — e log2 n 4- 0(1). 

Problem 2 is also classical, and can be reworded as: 'determine the smallest possible 

covering radius of a linear code of length n and dimension k\ W e do not wish to 

dwell further on those two classical problems but rather refer to [10] for problem 3 

and general background on coding theory, and to [9] for problem 2. Problem 4 is a 

generalisation of problem 3 that we shall discuss in section 4. 

In the next section, we focus on problem 1 which is a truly additive problem 

in the sense that we are asking for those sets 5 , and their cardinalities, such that 

s^ i = susf2u-.-us* grows as slowly as possible. 

3 . Prob lem 1 

Denote by so(t) the smallest integer s such that, for any generating set S of G = Fr, 

p(S) < t whenever \S\ > s. In other words so(t) — 1 is the largest cardinality of a 
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generating set S of G such that p(S) > t. Problem 1 asks for the determination of 

so(t). Proposi t ion 2.1 tells us that this can be understood as asking for the largest 

possible covering radius o f a linear code C(S) o f given length. Because p(S) = p(S \ 

{ 0 } ) , and in view of the remark preceding proposit ion 2.1, we are really asking for the 

largest covering radius of a linear code of given length and minimum distance d > 3. 

3 . 1 . A lower b o u n d on so(t). — It is natural to consider the following sets. 

Definition 3.1. — Call a r-cylinder ofFr, a subset isomorphic to S = jBr,i(0) X Fr~~T, 
where BT,i(0) denotes the ball centered on 0 and of radius 1 in Fr . In other words, 
for some properly chosen basis of Fr, S is the subset of vectors of Fr whose first r 
coordinates make up a vector of weight at most one. If S is a r-cylinder ofFr, then 
p(S) = r and \S\ = ( r + l )2r~T. 

Since so(t) must be larger than the cardinality of a (t + l)-eylinder, we have: 

Proposition 3.1. — Let logo \G\ > t-h 1. Whenever log2 \G\ > t -h 1, 

sG(t) > 
¿ + 2 

2*+i 
\G\. 

3 . 2 . Upperbounding so(t). — It is possible to prove that the above lower bound 

is the best possible for some values of r by a coding argument. T h e idea is to say, 

broadly speaking, that a code can't have too large a covering radius, otherwise, with

out changing the minimum distance, one would use it to construct a code with an 

impossibly large dimension. 

Denote by k(n,d) the maximum dimension of a linear code of length n and mini

m u m distance at least d. W e have, ([9]) 

Proposition 3.2. — Let C be an [n,fc,d] linear code, and let p be its covering radius. 
We have: 

k 4- k(p, d) < k(n,d). 

Proof. — Let z be a vector such that d (z , C) = p and of weight p. Assume, without 

loss o f generality that its support is supp(z) = { 1 , 2 , . . . , p}. Let C' be a code of 

length p and dimension k(p,d). Let (C"|0) be the code of length n obtained from C' 

by appending 0 G Fn~p t o all words in C'. It is not difficult to check that the sum 

C + (C'\0) is a code with minimal distance at least d and dimension k + k(p, d). 

One has, besides: 

Lemma 3.1. fc(n, 3) = n - 1 - [log2 nj 

Proof. — T o prove this, one just needs to find the smallest r such that there exists 

an r x n matrix with distinct non-zero columns. 

Applying Proposi t ion 3.2 and Lemma 3.1 we obtain the following upper bound on 

sait). 

Pmnnxition 3.3. — 8G(t) < I |G|/2*~i-LOG2(t+1)J + 1 . 

Remarkably, the two bounds 3.1 and 3.3 coincide for t o f the form 2m — 2, so that 

we have: 
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Corollary. — For m>2, log2 \G\ > 2m — 1 , the following equality holds. 

sn(2m-2) = \G\/22 -m"1 + l. 

For the remaining values of t the upper and lower bounds of Proposit ions 3.1 and 
3.3 leave a gap. For t = 3, the first value for which some uncertainty remains, we 
can obtain an improvement over Proposit ion 3.3. W e make use of a theorem proved 
in [13] with a more traditional "additive" approach. It says that the subsets 5 of Fr 
such that | 5 4- 5 | is "small" tend to cluster around subgroups: the result is sharper 
than what can be said for general abelian groups. The precise statement is : 

Theorem 3.1. — Let S be a subset of G = F r . Let k be a nonnegative integer. One 
of the following holds. 

i. There is a subaroup H ^ iOj of G such that 

\S + H\-\S < \H\+k 

ii. For any subset T of G such that k < |T|2 - 2 and 2 < \G\-\S + T\ we have 

\S-hT\ > |S | + |T | + fc 

Applying Theorem 3.1 with k = 0 yields: 

Proposition 3.4. — sn(S)< IGI/3 + 1. 

Proof. — W e prove that if 5 generates G = F r and | 5 | > | G | / 3 then 5 4- 5 4- 5 = G. 
W e argue as follows. First check the result by hand for log2 | G | < 4. Then proceed 
by induction. If 5 satisfies the above, then: 

1. Either | 5 + S\ > 2 | 5 | , and then | 5 | + \S + S\ > \G\ so that the pigeon-hole 
principle implies S + S 4- S — G. 

2. Or \S 4- S\ < 2151, in which case Theorem 3.1 implies the existence of a non-
trivial subgroup H o f G such that \S + H\ — \S\ < \H\ — 1. Consider now 
the partition S = USi induced by the partition of G into cosets modulo H. 
Expressing S 4- S as a union of sums Si 4- Sj, we obtain by repeated application 
of the pigeon-hole principle that 5 4 - 5 = 5 4 - 5 + ^ . W e finish by applying the 
induction hypothesis in G/H t o the set o f those cosets modulo H that intersect 
5 , so as to obtain that 5 4 - 5 4 - 5 intersects all cosets modulo H of G. 

4 , Constrained distances 

In this section we consider problem 4, i.e. studying large sets 5 such that 0 ^ 5J 
for arbitrary I C [1, | 5 | ] . Let us restate the problem in coding terms. W e shall use 
the notation of [5]. For a code C , let 

D(C) = {w(c) I | c e C , c ^ o ) 

l(n,D) = m a x j d i m C I D(C) C D). 
Denote by D = [1, n] \ D the complement of D. 

If D C D(C)j C is sometimes called a D-clique. The classical coding case is 
D — [d ,n] , but the function l(n,D) can vary very much with the nature of the set 
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D. For instance jD-cliques with D — [0 ,d], in other words sets with maximal distance 
d, have been considered under the name of anticodes [6]. These anticodes have been 

used to construct g o o d codes , see ch. 17 §6 of [10]. More recently the problem of 

forbidding one distance, i.e. studying l{ny{d})1 has been considered. A variety of 

approaches to the problem have been put forward, among which additive techniques 

and more traditional coding approaches. B y way of illustration, let us mention the 

problem of determining l(At, {2t}). It was conjectured by Ito that l(At, {2t}) = 2t. A n 

elegant p roof was found by Alon in the case At = 2rn, using the following theorem of 

Olson. For an abelian group G , denote by s(G) the smallest positive integer such than 

any sequence g\ . . . gs of (not necessarily distinct) non-zero elements of G contains a 

subsequence summing to zero. Olson's Theorem [12] states. 

Theorem 4.1. — Consider the finite abelian p-group G — Z / p e i ^ x • • • x Z /pefeZ > then 

s(G) = 1 + d 
v(X (p* - 1 ) . 

Sketch of Alon's proof. — Let C be a linear c o d e of length At and dimension 2t+l. 

Consider the columns of a (2t — 1) x At parity-check matrix o f C and add to each o f 

them an extra coordinate consisting of the 1 element of the group Z /2m+1Z* Thus 

we are dealing with At elements of the group G = ( Z / 2 Z ) 2 t l x ^ / 2 m + 1 Z * 01son's 

Theorem implies s(G) = At — 1, hence the existence of a proper subset of those 

elements that sum to zero: because of the last coordinate this subset must consist o f 

exactly 2t elements and therefore correspond to a word of C o f weight 2t. 

Ito's conjecture was finally proved in [5] for all t. 

4 . 1 . General results. — Most of the results of this section carry over to non linear 

codes: we shall not concern ourselves with these generalisations, however, since they 

would take us too far from our additive motivation. 

Let us start by a general result o f Delsarte [4]. 

Theorem 4.2 

2l(n,D) < 
|E| 

i=0 

n 

i ; 

W e present a concise proof of this classical result which should give some flavour 

of the methods of coding theory. 

Proof of Theorem 4-2. — Let C be a code with parity-check matrix H . Let S be the 

set of the columns of H . Let us associate to C the Cayley graph C defined as having 

G = F r as vertex set, and edge set {(g>g + s) \ g e G,s G S}. Let A = (auv) be the 

adjacency matrix of C, i.e. the matrix whose rows and columns are indexed by G and 

such that 

1 if v 
1 if v = u-¥ s, s E S 
0 otherwise 

Notice that the quantity p(C) = p(S) is exactly the diameter A of C. 
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Let SpeiC) be the set o f eigenvalues of A . The following lemma is classical in graph 

theory. 

Lemma 4.1. — Suppose the graph C has diameter A. Then 

A + l < \Spe(C)\. 

Proof of lemma J^.l. — Recall that the entry in position (u,v) of the matrix A* 

equals the number of walks u = t¿o, u\..., Ui = v o f length i from vertex u t o vertex 

v. Consider the algebra C [ A ] of polynomials in A . On the one hand, it is standard 

linear algebra that d imC[A] = \Spe(C)\. On the other hand, whenever i < A , there 

is a walk of length i from some vertex u to some vertex v such that no walk of length 

< i exists between u and v. This means that (Al)uv ^ 0 while (Aj)uv = 0 for j < i. 

Therefore { I , A , . . . , A A } is a linearly independent set in C [ A ] . 

Now in our particular case, it is straightforward to check that for any character \ 

of ( ? , [x(v)]veG is an eigenvector of A associated to the eigenvalue 

Ax = 

ses 

1 if v 

Every character of the group G = Fr is of the form 

Xu : v 1 if v 1 if v 

for some u € G, where (u\v) denotes the scalar product in Fr . So we see that 

XXu — n — 2w(tu.H), so that the number of distinct eigenvalues of C is exactly the 

number of distinct weights in the subspace generated by the rows of H , i.e. the dual 

code C1- of C. Summarizing, we have: 

Theorem 43 (Delsarte). (AC) < \D(C^)\. 

Note now that, from the definition of p(S) = p(C), one has the inequality 

(4) 

P(C) 

i=0 

n 

i 
> 2r. 

Relation (4) together with Theorem 4.3 prove Theorem 4.2. 

Let us state the following result from [5]. 

Proposition 4.1. — For n > At, 

l{nA2t\) < n-2t 

l(n,{2t,2t+1}) < n - 2 t - \ . 

W e shall now derive a variation on the so-called "Elias-Bassalygo lemma" [1]. 

Denote by A(n, D) the maximal size of a (not necessarily linear) subset of Fn such 

that any two of its elements have distance in D. 

Denote by A ( n , D, w) the maximal size of a subset of Fn such that any two of its 

elements have weight w and distance in D. 
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Proposition 4.2 

A(n,D) < 
2n 

\w) 

A(n.D.w) 

Proof. — Let C be a code (simply a set o f vectors in the non-linear case) realizing 

A(n, D). Consider its 2n translates C + T , T E Fn. Each vector of Fn, and in particular 

those o f weight w, appear A(ny D) times in the union of the translates C + r . Thus 

one of the translates, in itself a D-cl ique because d(*, •) is invariant by translation, 

must contain at least ( " ) A(n, D)2~n vectors of weigh w. Hence 

n 
w 

A(n,D)2-n < A(n,D,w). 

4 . 2 . Forbidding one distance. — W e shall need the following result [7]. 

Proposition 4.3. — If T is a family of w-subsets of an n-set no two of which intersect 
in exactly e elements, then 

n,D) A(n,D)2-nA(n,D)2-n 

where cw is a constant depending only on w. 

Set w — d — 2e, then clearly any two members of a family achieving A ( n , 2e, 2e) 

do not intersect in e elements. Thus Proposi t ion 4.3 yields 

A(n, 2e, 2e) < c2ene 

and by Proposi t ion 4.2 we get, fixing e and letting n go to infinity, 

A(n,2e) = O 
2n 

df . 

dence, 

(5) l (n , 2e) < n — e l o g 2 n + 0 ( l ) . 

In other words, for fixed e, it is asymptotically just as costly to forbid the distance 

2e between codewords as to forbid all distances d, 1 < d < 2e, since B C H codes meet 

(5 ) . W e have: 

Proposition 4.4. — Z(n, 2e) = n - e l o g 2 n + 0 ( l ) . 

W e now consider the case when the forbidden distance d increases linearly with n. 

In other words, we fix A and study Z(n, An) by which we mean l(n,{[\n\}). Some 

caution is in order when dealing with the asymptotical behaviour of n_1Z(n, An) , since 

this function of n does not converge: indeed, the [n ,n — 1,2] even weight subcode of 

Fn shows that £(n, 2 e + 1) = n — 1, hence lim sup n - 1 / ( n , An) = 1. W e suspect that 

the sequence n~ll(n, An) actually has many accumulation points. W e shall now derive 

a result on l iminf n_1/ (n , An) . 

W e shall need the following from [8]: 
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Proposition 4.5. — Let q be a prime power. Let T be a set of w-subsets of the n-set 
{ 1 , 2 , . . . , n } . Suvvose that for any distinct F, F £ J7 we have 

i F n F ' l ^ w m o d q 

then 

\r\< 
n 

A(n,D) 

W e now obtain: 

Proposition 4.6 

lim inf 
n—>oo 

n Z(n, An) < l - / i ( A ) + / i (A/2) + o ( l ) . 

Proof — Suppose d equals twice the power of a prime d = 2q. Let w = 2q — 1. Any 

code of constant weight w and such that no two codewords are at distance d from 

each other yields a set T such that | F n F ; | ^ —1 m o d q for distinct F, F' G T. Hence 

A ( n , 2 a , 2 g - 1 ) < 
n 

A(n,D 
< 2»(^(V2)+o(l))_ 

Apply Proposit ion 4.2 to conclude the proof. 

Note that for A < 0.27, this improves on Proposit ion 4.1. 

4 . 3 . Forbidding multiples of a given distance. — More generally, if q is a prime 

power and An = 2ig, considering constant weight codes of weight w = (i + l)q — 1, 

one obtains 

Proposition 4.7 

n - 1 / ( n , { 2 g , 4 g , . . . , 2 i g } ) < 1-h 
t + 1 

2i 
A + h 

A 

,2i 
+ o ( l ) . 

Remark. — For growing i, the right hand side of this last inequality tends to 1 — 
h(\/2), so that it can be considered as a refinement of the Hamming bound (1) 

a 1 / ( n , f l , . . . , A n l ) < 1 - h(\/2) 

in the sense that one need not forbid every distance in [ 1 , . . . , An]. 

4 . 4 . A construction. — We have the lower bound: 

Proposition 4.8. — For A < 1/3, 

n 1l(n, \n] > 1 - (1 - X)h 
A 

1 - A 
+ 0 ( 1 ) . 
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Proof. — Consider the generating matrix 

ÏAn- Ï A n - l 
0 

u 

Go 

where G o is a generator matrix of an optimal code Co of length n — Xn + 1 and 

distance An + 1 . Obviously every combinat ion of rows of G has weight at most An — 1 

- if it does not use rows of G o - or at least An + 1 if it does. 

Take for Co a code lying on the Varshamov-Gilbert bound (2) to get the asymp

totical result. 

Large gaps remain between upper and lower bounds . 

Open problem. — It would be particularly interesting to known what is the most "per
sistent" distance in linear codes, in other words, what is the value of X that minimizes 
l iminf n~~ll(nj An) ? 

5 . Intersecting codes 

W e would like to conclude by another intriguing problem with an additive flavour. 

Let us say that a subset S — { s i , . . . , sn} of an abelian group G has the intersecting 

property if there do not exist two disjoint subsets I and J of [ l , n ] such that bo th 

iei 

ÏAn-ÏAn- and 

J€J 

ÏAn-ÏAn-

A n intersecting code C is a linear code with the property that any two non-zero 

codewords have intersecting supports. Equivalent ly, it is a code C such that the set 

of columns of any parity-check matrix of C has the intersecting property in G = Fr. 

Problem5. — Given r, what is the maximal size t(r) o / 5 c F r with the intersecting 
property ? 

This problem was first investigated by Miklos [11], and has since proved to lead 

to a variety of applications, see [2]. A lower bound on i(r) can be derived by random 

arguments [11,2] Asymptot ical ly it reads: 

L(r)> 
2r 

log23 
« 1.26r. 

T o obtain an upper bound, notice that an intersecting code must have d > k. Oth

erwise choose a minimum weight codeword c : among the 2k codewords there must 

be two, e' and c", that coincide on the d coordinates of the support of c. Therefore 

c and c' + c" have nonintersecting supports, a contradiction. This argument, namely 

S > R, together with the bound (3) gives 

i(r) < 1.40r. 
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NEW STRUCTURAL APPROACH TO INTEGER 
PROGRAMMING: A SURVEY 

by 

M a r k C h a i m o v i c h 

Abstract. — The survey discusses a new approach to Integer Programming which is 
based on the structural characterization of problems using methods of additive num
ber theory. This structural characterization allows one to design algorithms which 
are applicable in a narrower, yet still wide, domain of problems, and substantially im
prove the time boundary of existing algorithms. The new algorithms are polynomial 
for the class of problems in which they are applicable, and even linear ( O ( m ) ) for a 
wide class of the Subset-Sum and Value-Independent Knapsack problems. Previously 
known polynomial time algorithms for the same classes of problems are at least two 
orders of magnitude slower. 

1. Introduction 
This survey considers a recently developed approach to Integer Programming (IP) 

which is based on the application of analytical methods of Addit ive Number Theory. 
Elaborated by G. Freiman in the early 1980's, this new approach was developed by 
N. Alon, P. Buzytsky, M . Chaimovich, P. Erdos, G. Freiman, Z . Galil, E. Lipkin and 
O . Margalit (in alphabetical order) . 

In general, the number of Integer Programming models is vast and they have 
numerous applications; only a few of them - Subset-Sum (one and multi-dimensional), 
Value-Independent Knapsack and ^-Partition problems - were investigated using the 
new structural approach. Theorems from analytical number theory allow one to 
characterize the structure of the domain of solutions for a wide class of problems and 
to design efficient algorithms for these problems. These new algorithms substantially 
improve the time boundary of existing algorithms. They are polynomial for the class 
of problems in which they are applicable, and even linear ( O ( m ) ) for certain classes 
of the Subset-Sum and Value-Independent Knapsack problems. That is at least two 
orders of magnitude faster than previously known polynomial time algorithms for the 

1991 Mathematics Subject Classification. — Primary: 90C02 Alternate: 05A17, 11B25, 68Q25. 
Key words and phrases. — Analytical Number Theory, Integer Programming, Subset Sum Problem. 
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same classes of problems. This fact allows one to solve problems with a much larger 

number of variables. 

This article is organized into several parts. In section 2 the general idea for develop

ment of an analytical approach to Integer Programming is considered. Sections 3 and 

4 deal with the Subset-Sum Problem (SSP) . The first of them provides a detailed, 

structural analysis of the problem including an example of the analytical theorem 

while the second describes algorithms for solving SSP based on this structural analy

sis. Proofs o f the validity of the algorithms are not provided in this survey, however, 

they may be found in the references. Section 5 describes the application of the struc

tural approach to multi-dimensional Subset-Sum, Value-Independent Knapsack and 

^-Partition problems. (Only the main theorems and outlines of the algorithms are 

presented.) In the conclusion possible directions for future research are discussed. 

2. General idea of the application of the structural approach to I P 

In this section the main idea of the structural approach is described. W e begin 

with a simple example that illustrates the approach. Further, the concept of density 

is discussed, this explains how the structural characterization of the problem may be 

obtained. W e conclude the section with a short history of the research in the field of 

structural characterization. 

2 . 1 . A s imple illustration of the structural approach. — In order to un

derstand a structural approach to IP, consider the problem of feasibility of a single 

boolean equation. Given an integer ra, an integral vector ( a i , a 2 , - . . , am) and an 

integer iV, does equation 

(1) a\X\ + CL2X2 + 
+dmxni — iV 

have any solutions for x\ G { 0 , 1 } for all i? T o illustrate the approach, we use the 

following concrete equation 

(2) 7xi + 8x2 + 14x3 + lbx4 + 22#5 + 2Sx6 + 56x7 = 75, 

i.e. m = 7, ( a i , . . . , a?) = ( 7 , 8 , 1 4 , 1 5 , 2 2 , 2 8 , 5 6 ) and N = 75. 

Dynamic programming approach 

Denoting S0 = { 0 } and Sk = {b\b = J ] L £ { 0 , 1 } } for 1 < k < 7, we 
have Sk = Sfc-i + {O.ajt} = {b\b G Sk-i or b - a* e S j t - i } . Thus, having 57 - the set 
of all possible values of the linear form in the left-hand side of (2 ) , - it remains only 
to check if N = 75 € 57. In fact, 

Si = { 0 , 7 } , 

52 = { 0 , 7 , 8 , 1 5 } , 

S3 = { 0 , 7 , 8 , 1 4 , 1 5 , 2 1 , 2 2 , 2 9 } . 

... 
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and so on. Finally, 

S7 = { 0 , 7 , 8 , 1 4 , 1 5 , 2 1 , 2 2 , 2 3 , 2 8 , 2 9 , 3 0 , 3 5 , 3 6 , 3 7 , 4 2 , 4 3 , 4 4 , 4 5 , 4 9 , 5 0 , 

5 1 , 5 2 , 5 6 , 5 7 , 5 8 , 5 9 , 6 3 , 6 4 , 6 5 , 6 6 , 70 ,71 ,72 ,73 ,77 , 78, 7 9 , 8 0 , . . . } , 

i.e., 75 ^ $7 and equation (2) does not have a solution. 

Structural approach 

W e characterize the structure of 57 without explicitly enumerating it. Observe, 

that some of the coefficients of the equation are divisible by 7: a\ = a3 = a& = a? = 

0 ( m o d 7) . Then, for b € £7 we have b = 8x2 4- 15x4 + 22x5 = X2 + X4 + # 5 ( m o d 7 ) , 

i.e., 

(3) 6 EE 0 , 1 , 2 , 3 ( m o d 7 ) . 

However, 75 = 5 ( m o d 7 ) , so, the equation does not have a solution. 

Condit ion (3) determines a necessary condition for solvability equation (2 ) . In 

order to obtain a sufficient condition let us analyze the same equation with another 

right-hand side: 

7xi + 8x2 + L4#3 + 15x4 + 22x5 + 28x6 + 56x7 = 79. 

Clearly, 79 = 2 ( m o d 7 ) , so it can belong to S7 according to (3 ) . T o confirm that it 

really belongs to SV, consider a linear form 

L = 7xi + 14x3 4- 28xfi + 56x7 = 7(x i 4- 2x3 + 4x6 + 8x7). 

The linear form L' = x± 4 2x3 4 4x6 4- 8x7 can take all values from 0 to 15, thus, 

the linear form L can, correspondingly, take values of the form 7t, where 0 < t < 15. 

When we combine these values with the other coefficients ( 8 , 1 5 , 2 2 ) , we have 

(4) 

S7 = {b\b = 0 ( m o d 7 ) , 0 < 6 < 7 - 1 5 , or 

b= l (mod7) ,8 < b < 22 + 7 • 15, or 

b = 2 ( m o d 7 ) , 2 3 < 6 < 3 7 + 7 1 5 , or 

b = 3 ( m o d 7 ) , 4 5 < 6 < 4 5 + 7 - 1 5 ) . 

Here 8, 23, 45 are the smallest numbers with residues 1, 2, 3 modulo 7 that can 

be represented by the linear form in the left-hand side of the equation. Since 79 = 

2 (mod 7) and 79 = 23 -f 7 • 8, the answer is that the equation has at least one solution. 

Observe that the above consideration determines the structure of the set of pos

sible values of a linear form on the left-hand side of an equation as a collection of 

arithmetic progressions with a c o m m o n difference. This fact allows one to solve the 

problem immediately for each right-hand side. One can suppose that this example 

was especially selected to illustrate the approach and that would be true. However 

the situation obtained can be generalized: for a wide class of problems we can always 

determine the structure. 

T o obtain a general structural characterization of the IP problem (in the same way 

that (4) was obtained for a concrete equation), a specific analytical theorem must be 

proven. Of course, certain conditions have to be imposed on the coefficients in order 

to obtain such a characterization. These conditions follow directly from the analytical 
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theorem. Once we have the conditions, it is possible to go to the next step - to design 

algorithms to verify these conditions and to obtain the structure. 

Indeed, the structure obtained and the conditions of its existence provide an un

derstanding of why some problems are easy and others are very hard for various 

enumerative algorithms. T o confirm this statement consider the following prob

lem which was investigated by R . Jeroslow (1974) [19]: maximize x\ satisfying 

2x\ + 2x2 + 1- 2xn = n where n is o d d . Although this problem is by nature triv

ial, it requires almost complete enumeration using different enumerative techniques. 

(Branch and Bound, for example, is one of them.) The secret is the fact that the 

constraint has no solutions, however, we must verify all possibilities to confirm this 

fact. T h e structural approach allows one to obtain an answer for this problem in no 

time. 

2 . 2 . Concept of density and its use in structural characterization. — In 

order to apply analytical methods to solve an IP problem, it is necessary for the 

problem to have a high density. T o explain the notion o f "density" and its importance 

in the application of the analytical approach to IP, let us consider again the feasibility 

of equation (1 ) . 

Let £ = max a*. T h e linear function on the left in (1) has a domain of size 2m and 
l < i < m 

a range of size m£. Since the domain size represents the overall number of "solutions" 

for all possible values of the right-hand side, the ratio ^ represents the average 

number of "solutions" for a value from the range. W e say that this ratio characterizes 

the density of the problem. The density of other IP problems can be defined similarly. 

In the case of equation (1 ) , the density condition means that £ — o{2^)ox~j - > o o . 

Currently, algorithms are still not capable of handling this density. The only situation 
2 

that has been investigated is £ = 0{x™rn). The conjecture of G . Freiman is that the 

new approach can be refined to handle the case £ = 0(mc) for any positive constant 

c. 

T o highlight basic features of the approach, we present some non-strict considera

tions resulting from probability theory. In view of 
d 

o 

e27riabda = 0 for b e Z , 6 ^ 0, 

1 for 6 = 0, 

it is easy to verify that the number of solutions of (1) can be expressed by the integral 

(5) J(N) = 

«1 

0 

m 

3=1 

( l + e2"aa>> r2niaNda = 2m 
•l 

d 

m 

3=1 

<2 d I 
e2niotaj)e-2wiaNda. 

One may look at | 4- |e2?rmo> as the characteristic function of a random variable £j 

taking values 0 and a3- with probabilities equal to | . Then the value o f integral (5) is 

equal to the probability P(( = iV) , where £ = £ i H h Cm is a random variable with 

mathematical expectat ion M — | YljZzi aj and dispersion a2 — \ Yl^Li a'j- Assuming 

that the local limit theorem can be applied, the variable ( has asymptotically normal 
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distribution: we therefore have 

(6) J(N) ~ 
2m 

\/27T(J2 
f 

(M-N)z 
2a2 / 

which implies the existence of solutions for equation (1) for right-hand sides N in a 

wide interval of the mathematical expectation M . 

As a rule, a local limit theorem is not always available. In spite of this difficulty, the 

precise analysis of integral (5) (see [11], [20], [1], for example) confirms the validity 

o f the asymptotic formula (6) for sufficiently dense equations whose coefficients sat

isfy some distributive properties. These distributive properties require that not " too 

many" coefficients have one c o m m o n divisor. Non-compliance with this requirement 

provides a special structure for the range of the linear form on the left in (1 ) . 

Note that application of the analytical approach to a specific IP model requires 

one to prove the model 's own structural theorem. Alternatively, one can reduce the 

new problem to another problem for which the structural theorem is already proved. 

2 .3 . Historical background. — The possibility of using analytical methods for 

solving IP problems was shown for the first t ime by G. Preiman in 1980 [12] (see 

also P. Buzytsky and G . Freiman [3]). However, at that time, his concepts did not 

provide an explicit structural characterization of the problem. Only recently has 

determination of a precise structure for some IP problems become possible on the 

basis of methods proposed by G. Freiman and P. Erdos in [11]. 

The first works investigating structural characterization of IP using analytical 

methods were concentrated on the following Subset-Sum Problem (SSP) with dif

ferent summands: Given a set A of positive integers and a number AT, find (a) 

z = m a x { S £ = H2aeB \ SB < N,B C A} and (b) subset B c A such that SB = z. 

The authors proved the analytical theorems, showing that a set of subset-sums 

around the middle sum may be characterized as a collection of long arithmetic pro

gressions with a c o m m o n difference. P. Erdos and G. Freiman [11] assumed very 

dense inputs (m > | ) and a very small interval. E. Lipkin [20] improved the density 

( m > £4/5+e) and enlarged the interval size. N. Alon and G . Freiman [1] further 

improved the density ( m > £2^+£) but used a small interval (like in [11]). Later, G. 

Freiman [17] proved the same result for sets with density m > c(£ log^)1 /2 . All of these 

characterization theorems used analytic number theory and hold true for sufficiently 

large values of £. M . Chaimovich ([5] and [9]) shows the existence of an arithmetic 

progression in subset sums for sets with density m > g(£)£2/3 log1/3 £, £ > 155, where 

g(£) is some function depending on £, 1.9 < g{£) < 2.5. The proof is done with 

exact computat ion of all constants, which allows one to use the result in practical 

algorithms. 

A . Sarkozy [22] has independently obtained an arithmetic progression for sets 

with the same density as [17]; he used algebra and combinatorial methods. However, 

his proof is not constructive and therefore it may not be applicable to algorithmic 

design. Z . Galil and O . Margalit [18], using elementary number theoretic facts only 

(in contrast to A . Sarkozy's approach) , have explicitly constructed a long arithmetic 
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progression in subset-sums. They achieved density rn = 0{£}l2 l og£) (slightly weaker 

than [17] and [22]) and matched the interval size of [20]. 

T o complete the discussion of the results related to SSP with different summands, 

we mention that G. Freiman has shown in [17] that the density m — H(£1/2) is the 

lowest density for which the characterization of the structure of subset-sums is an 

arithmetic progression. For sets of different summands with m < t1/2 the structure is 

more complicated. G. Freiman conjectures that this structure is multi-dimensional in 

the sense that it is formed by a few, relatively short, arithmetic progressions, and that 

each of these arithmetic progressions can be viewed as a "dimension" of the structure. 

The first algorithms solving the SSP were derived by G. Freiman [13], [14] and 

M . Chaimovich [5]. They solve in linear time problem (a) which finds the maximal sum 

but not the subset. In comparison, dynamic programming solves the same problem in 

0(m2£) t ime which is two orders of magnitude slower. Solving problem (b) with this 

approach (see [10]) takes 0(£2 log£) t ime. T h e algorithm of Z . Galil and O . Margalit 

[18] solves bo th problems (a) and (b) - finding the maximal sum and the subset. It 

reaches 0(£\og£) t ime improving [10] by one order of magnitude. 

The SSP with repeated summands (relaxing the restriction that the summands 

must be distinct) was considered by M . Chaimovich in [4], [6]. T h e existence of a 

long arithmetic progression in a set o f subset-sums was proved for m > 6£ log £. This 

estimate is the best possible apart from a logarithmic factor and a constant. 

Investigation of the multi-dimensional SSP, where vectors take place of the inte

gers, was begun by G. Freiman [16]. He has shown that for two-dimensional prob

lems an integral lattice takes the place of an arithmetic progression in the structural 

characterization. M . Chaimovich [8] extended this result for an arbitrary number of 

dimensions. For multi-dimensional problems the time boundary of the new algorithm 

is more impressive than the one dimensional one: for n-dimensional SSP it reaches 

0(m2) t ime instead of <3(ran+2) in dynamic programming. 

Another problem investigated recently by using the structural approach was a k-

partition problem ( K P P ) : Given a set A of positive integers and k positive target 

numbers Ni < N2 < • • < Nk such that ^ ¿ = = 1 Ni = SA, find a partition of A into k 

subsets ( 2 ? i , . . . , Bk)j U j L i Bj — A, whose sums are closest to the target numbers in 

the sense that they minimize (or maximize) an appropriate object ive function z. 

This problem is especially hard to solve using traditional methods. It was solved by 

dynamic programming (see [21]) in 0(m2k) t ime. Applying the structural approach 

to it ( M . Chaimovich [7]) gives 0{m1+1^k~1^) t ime for sufficiently dense input sets. 

The gain is considerable for a fixed k as well as for k increasing with £ (its value is 

bounded by £ x ^ ) . 

3 . Analyt ica l m e t h o d for structural analysis of the Subse t -Sum Prob lem. 

In this section we provide a detailed explanation of the structural characterization 

of the set o f subset-sums. First we determine sufficient conditions of the existence of 

a long interval in a set o f subset-sums (Theorem 3.1). Next we elaborate the structure 
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of the set of subset-sums in the case where sufficient conditions are not fulfilled. Our 

consideration is based on the proofs from [1] and [9]. 

3 . 1 . Existence of a long interval in a set of subset-sums — sufficient 

conditions. — For a set X define 

nix - 1*1, £x = max{x E X } , Sx = 

xex 

x ox = 1 
3 xex 

X* = {z I 

X * = {z I 3Y ÇX,SY = z\, X(s,q) = {x E X I x = s ( m o d g ) } . 

Note: In the following theorem and further on Co, ci5 C 2 , . . . , always denote absolute 

positive constants. W e will also omit the subscript identifying the set if it is clear 

from the context which set is being discussed. 

Theorem 3.1. — Let A be a set of positive integers, such that 

(7) X* = {z I2/3 loK1 /31 > Cn 

Suppose that for all integers q the inequality 

(8) \A(f),q)\<m _ 031 log 1/3 T 

is true. Then all integers N for which 

(9) N - l 
2 SA X* = {z I 

belong to the set of subset-sums of A, i.e., l 
2 

SA — C2CFA, 
1 
2 SA + C2&A 

ç A*. 

General idea of the proof. — The fact that an integer N belongs to the set of subset-

sums is equivalent to the existence of a solution of a linear equation (1 ) . 

For 1 < j < m define ipj(a) = | (l + e2wiocaJ) and ip(a) = U™=1 (fj(a). As 

mentioned on page 344, the number of solutions to equation (1) can be expressed 

by the integral J(N) = 2™ 
R.1 

JO 

u>(a)e-Z7r*aiy da , thus, it is necessary to show that 

J(N) > 1 whenever N satisfies (9 ) . In order to do this we can prove the asymptotic 

formula 

(10) J(N) = (l + o(l)) 
om 

s/2na2 
e 

( M - N ) 2 

X* =I 1 

for the number of solutions of equation (1 ) . 

Let us analyze the nature of conditions of the theorem. A restriction (9) on number 

N ensures that the exponent in (10) is not too small. This restriction is necessary to 

obtain an asymptotic formula, but not to prove the existence of a solution and /or a 

structure, therefore, we will relax this restriction below. 

Condition (7) represents the density of a problem in the sense that the number of 

combinations of unknowns is large with respect to a range of possible values of the 

linear form. This condition can be strengthened to m > CI1/2 log1//2 £ (see [17] and 

[22]) , but then the proof becomes quite complicated. In any case we need a condition 

of density to ensure the existence of the structure. 
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Finally, condition (8) is a condit ion of distribution. Its validity is necessary to 

obtain an asymptotic formula, but it is not necessary to obtain a structural charac

terization. The influence of a distribution of summands on a structure will be studied 

in the next paragraph. 

Let us define F jv(a ) = (p(a)e~27riaN and L = 2£. Observing that F jv (a ) is a 

periodic function with a period equal to 1, one can write 

(11) J(N) = 2m 
161 

R 1_ 

L 

FN(a)da = 2m 
L 

±_ 

-+ 

X* = { 

1 
L 

> 2m 
s 

' " ¿ 1 

1 - T T I 

1_ 
L 

Note that for a sufficiently high density, the first integral on the right side of 

the equation in (11) provides the major part of the asymptotic formula for J(AT); 

the second integral forms the error term. The proof estimates these two integrals 

separately. It shows that 

JL 
L 

i_ 

L 

Fjsf(a)da = ( i + 0 ( i ) ) 
2m 

(i+0(i)) 
(i+0(i)) 

e 
(M-N)2 

sd 5 

and that 

((i)) 

L 

FN(a)da\ = o ( 
i 

aA 
)• 

In this survey we omit the detailed explanation of the integrals' evaluation. 

Enlarging the interval — According to Theorem 3.1, the interval [\SA — C2&A, \SA + 

C2&A] belongs to the set o f subset-sums. The length of the interval may be easily 

estimated t o be at least a A = H(£log1//2£) ^> t. However, this length is "small" 

relative to the range of subset sums which is SA > \m2 ^> £4^3 (for our density). 

Now we are going to show that this interval may be larger without considerably 

enlarging density. 

Take the set A with TUA = C^TTIQ where mo = cil1/2 log1/2 £ (the density required 

by the theorem) and cs > 2. Let 1 < a± < a2< • * • < am where ai € A and denote 

A' = {aj}m° j=1 Suppose also that A' satisfies a condition similar to condit ion (8) of 

Theorem 3.1 so that Theorem 3.1 can be applied to set A'. According to the theorem, 

interval I = \\SA' — C 2 & A ' , \SA' + C20"A']5 which is longer than £, belongs to the set 

of subset sums of A'. 

Return now to the original set A. Denote N{ = iV—Y^j-i am0+i f°r 1 ^ * ^ m—rriQ. 

Clearly, 0 < Ni — iVi+1 < £ and, whenever N G [\Sa> > SA — §SU'], for some ¿0 we will 

have Ni0 € J, which means that the entire interval [ § 5 A ' 5 S U — § £ U ' ] belongs to the 

set of subset sums of A. 

T o estimate the length of this long interval we recall that set A' consists o f mo 

smallest elements of A such that SA' ^ ~SA- Thus, the length of the interval in the 

set o f subset sums is at least (1 — ^ ) S U = O(SA)-

3 . 2 . Elaborating on the structure of the set of subset sums . — T o elaborate 

on the structure o f the set o f subset sums, we consider the case where condit ion (8) is 
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not satisfied for the set A. W e will show that in this situation we have an arithmetic 

progression (instead of an interval) belonging to the set of subset sums. 

The situation when an arithmetic progression is obtained is unusual situation. It 

is characterized by the fact that many elements of A are divisible by the same integer 

Q. 

T o refine the structure of the set o f subset sums we manipulate it with those 

elements o f A which are not divisible by this integer Qy i.e., have non zero residues 

modu lo Q. 

The results from [15] and [9] are used in the presentation of the section. 

Arithmetic progression. — If condition (8) is true for all g's, then an arithmetic 

progression with the difference Q — 1 beginning before s — \SA — O~A and having 

length more than h = 2aA ^ £ belongs to the set o f subset sums. 

Assuming that (8) fails for some integer g, we construct a sequence of sets 

Ao,..., Ap and a sequence of integers go? • • • ? Qp in the following way: 

Assign Ao = A,qo = 1, and assume that set Ai has already been found. Introduce 

also q[ = Yij=o Qj- The integer qi+i will be an integer such that 

12 \Ai\Ai(0,qi+1)\ < I 
2/3 
Ai l o g 1 / 3 ^ . 

If such an integer qi+i exists, construct Ai+i = ^ i ( Q , q « + i ) 
^i(Q, 

A(0,gj+i) 
^i(Q, 

if such an 

integer g^+i does not exist, set p = i and Q = q'. This Q is not large, it is less than 
3£ 
2m 

(see [15]). 

Consider the set Ap obtained at the end of the process. It may be shown that for 

the set Apj all the conditions of Theorem 3.1 are true. Therefore, apply Theorem 3.1 

to Av in order to arrive at 

l 
2 $AP - C20~AP, 

a 
3 

sAp + c2aAp] ç a ; . 

Recalling that A(OyQ) = {aQ | a € Ap}, we obtain a long segment of a progression 

with difference Q being contained in (^4(0, Q ) ) * . 

Refining the structure using residues. — In the previous paragraph it was shown that 

an arithmetic progression with a small difference (Q < j^) belongs to the set of subset 

sums. Furthermore, these subset sums (elements of the arithmetic progression) may 

be constructed using only the elements of A that have zero residue modulo Q (the 

difference of the arithmetic progression). The next step is to try to use the remaining 

elements o f A (with non-zero residues modulo Q) to refine the structure by "filling" 

the "holes" in the progression. To do this we need some properties of subset sums. In 

this survey we will only list these properties; the proofs may be found in [15], [9]. 

Properties of subset sums modulo integer q. — Consider ring Zq of residues m o d q. 

For d G Zfl, d I of, define Hd = { 0 , d, 2 d , . . . , (i - l ) d k and for r G Za define HAr) = 

r + Hd. 

(a) Let C be a set of elements of the ring Z 0 . If an element b G Z 0 is such that 

C = C + { 0 , 6 } , then the set C has the following structure: for each r G C , we have 

Hd(r) Ç C , where d = g c d ( M ) ; i-e., C = \Jr£CHd{r). 
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(b) Let set C C Zq have the following structure: C = \JreC Hd(r) for some d, d\q. 

Then for any b G Zg, the set C + { 0 , 6 } has the same structure. 

Refining the structure. — W e continue from the following point: an integer Q < 

3£A/2mA is found, such that a long arithmetic progression with the difference Q 

belongs t o ( A ( 0 , Q ) ) * . Let A \ A ( 0 , Q ) = { & i , . . . ,&«;}, and define a sequence of 

numbers do, •.., dw in the following way. 

Let Bi — { 6 i , . . . , bi} and C* be the set of the smallest non-negative residues modulo 

Q of J3? U { 0 } , i.e., C0 = { 0 } and d = d - i + { 0 , 6 i } ( m o d Q ) . Let d0 = Q. If the 

numbers d0,..., di-1 have already been determined, take d\ = d\-\ when \d\ > \d-i I 

and di — gcd(c?^-i5 h) when |Ci | = |C7»_11. In this way the numbers d\ and sets d 

possess property (a) , i.e., for any c G we have (c) G C*. At the end of the process 

we obtain the set C of all non-zero residues modulo Q which may be represented by 

subset sums A*. This set has the following structure: C = UcecHdw (c) where dw < Q. 

Combining the set C with the previously obtained arithmetic progression we conclude 

that the structure of the set of subset sums may be characterized as a collection of 

long arithmetic progressions with a common difference. 

Relaxing the condition of distribution. — Working with residues allows not only the 

refining of the structure as was shown above, it also provides the way to relax the 

condition (8) of distribution in Theorem 3.1. Indeed, looking on the structure of 

set C above, one can see that the result of the previous paragraph is a collection of 

arithmetic progressions with a difference dw < Q. It might be shown that dw ^ 1 

only if |A(0,dw)\ > m — dw. This means that condition (8) might be replaced by 

condit ion 

(13) \A(0,q)\ < m - q 

and we would still get a long interval belonging to ^4*. 

3 . 3 . Reducing density. — There are a few ways to achieve an arithmetic progres

sion in a set o f subset sums for lower density, namely, for m > c ( ^ l o g ^ ) 1 / 2 . 

Analytical approach 

G. Freiman in [17] proves that the asymptotic formula (10) is still valid for the 

lower density if the elements of A are "well distributed". "Bad distribution" in his 

consideration means one of the following: 

(1) there are too many small elements in A. 

(2) there are t o o many elements in A divisible by one number q. 

(3) there are t o o many elements in A belonging to a two-dimensional structure. 

All these situations, where the asymptotic formula is not valid, are investigated sep

arately and an arithmetic progression is constructed for each of them. T h e third case 

is of special interest because its analysis shows the possibility of future improvements. 

Let us outline main points of this thought. 

Build injection A^Z2. This map p transforms our one-dimensional problem into 

a two-dimensional one. (Recall that dense two-dimensional problems were solved in 

[16].) G . Freiman shows that, in the case that the asymptotic formula does not work, 

there is a rectangle H C Z2 which contains images of most elements of A such that 
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for this rectangle, the density condition of [16] holds. Thus, subset sums o f these 

elements represent all integer points of a lattice - a two-dimensional analogue of an 

arithmetic progression. Now, transforming back to one dimension, we get a collection 

of short arithmetic progressions, the union of which forms a long one. 

Finite addition approach 

A . Sarkozy arrives at an arithmetic progression for the same density ( m > 

c(£log€)1/2) using a different approach. He proves a sequence of theorems that leads 

to the existence of an arithmetic progression (we formulate his result using the nota

tion o f this survey). 

Theorem 3.2. — Let £ > 2500 and \ A\ = m > 200(£log£)1/2 . Then there are integers 

d,y,z that 

1 < d < HT 
f 

m 
z > 7"1 • MT4m2, 2 / < 7 - 1 0 4 

e 

n2 
z 

and 

{M : M = 0 )(modd).yd < M < zd\ Ç A* . 

A . Sarkozy ([22]) shows that this theorem is the best possible apart of the con

stants and a logarithmic factor in the density constraint. However, the proof of this 

theorem does not lead to an explicit way of calculating a difference d o f an arithmetic 

progression for a specific instance of a set A. 

Algorithmic approach 

Z. Galil and O . Margalit ([18]) obtain almost the same density ( m > c^ /Mog f ) 

while explicitly constructing a progression. W e will discuss this approach in the next 

section whilst explaining their algorithm. 

4 . A lgor i thms for the Subset -Sum P r o b l e m based on the structural 
characterization 

This section is dedicated to algorithms for solving SSP. The first algorithm using 

the structural approach is due to G. Freiman [14]. Using structural characterization 

from [1] (density m > £2/3+£} this algorithm solves SSP (finding the maximal sum 

but not the subset) in 0{~^- + m l o g 2 m ) . In [15] G. Freiman improved this algorithm 

obtaining a linear time algorithm for the same density of problems. This algorithm 

also works perfectly for lower density (up torn > c(£ log £)1^2)) but then it is not linear. 

Its t ime grows and becomes 0(m2 / log m) for the lowest density. This algorithm was 

improved by M . Chaimovich (see [5], [9]) using the same idea but more complicated 

technique for verifying the divisibility of the summands. 

Z . Galil and O . Margalit [18] use another technique. Their algorithm finds both 

the maximal sum SB and the subset B. Its t ime is 0(m) for the high density 

( m > c£3^\og£) and 0{£\og£) = 0(m2/logm) for the lower one ( m ~ ^ ^ l o g ^ ) . 

Moreover, this algorithm provides an elementary proof of the structural characteriza

tion theorem by explicit construction of the desired structure. 
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In this survey two algorithms are presented. T h e first of them ([15]) is based 

on the analytical theorem. W e discuss also the methods that were used in [5] and 

[9] in order to improve the algorithm. T h e second algorithm is created by Z . Galil 

and O . Margalit [18] . W e will only present descriptions of the algorithms and their 

estimated complexities (for detailed proofs the reader may refer to cited articles). 

4 . 1 . A l g o r i t h m for finding the m a x i m a l subset s u m SB • — T h e main idea 

of the first algorithm is to find the difference Q o f the arithmetic progression in the 

set o f subset sums. Based on the analytical theorem (as in Theorem 3.1) , finding this 

difference requires verification of a condit ion similar to condit ion (12) . Verification is 

done in the same way as was explained on page 349. In Algor i thm 1 condit ion (14) is 

used. It may be shown that only prime numbers q < 3£/2rn must be verified. Once 

Q is found, elements of A with non-zero residues modu lo this Q allow one to 'fulfill" 

the "holes" in the progression and to complete the construction of the structure. 

T h e algorithm does not require that all summands are different but that the amount 

of the different ones is large enough (see [5]) . In the algorithm below, the number 

of different elements in a multi-set X is denoted by rh~x- Recall also that N is the 

target number and z is the maximal subset sum that does not exceed N. 

Algorithm 1 

1. Finding Q. 

(a) Initialization, qo <— 1,AQ <— A,to <— [^=^-J,i 0. 

(b) Find the smallest prime number qi+i such that 2 < <&+i < U and 

(14) 1 ^ x ^ ( 0 , ^ + 1 ) 1 < u. 

If such a number <^+i exists, compute Ai+i 
^i(Q,^i(Q,^i(Q, 

9t+i 
5 U+l 

^(0,^+)1 
^(0,^+ 

and continue to next i(i +- i + 1) . 

(c) If such a number g,+i does not exist, set p <— i and compute Q •p 
^(0,^+1)1 

If O = 1. then go to step 3 . 

2. Finding C. Let G = {fci,..-,fyfe} = A\A(0,Q). 
(a) Initialization. do Q , G ) < - { 0 } , i ^ 0 . 

(b) Comput ing Ci+ i and d^+i. 

If bi+i is divisible by d^, then C^+i 4 - d and df+i f- di. 

Otherwise, compute C»+i explicitly 

(Ci+i = Ci + { 0 , 6 i + i } ( m o d Q ) = {s \ s e Ci or s - 6 i+ i (modQ) e Ci}). 

If \Ci+i \ — \Ci\ then di+i <f- gcd(d i , 6^+i); otherwise, set d^+i <- di. 

If |C»+i I = Q or i = k go to step 3; otherwise, continue t o next i (i <-+ 1 

3. If Q = 1 or ICI = O then z = I TV L otherwise eomoute r = N — N 
Q 

Q and 

z = N — r + m a x { f i E C|r^ < r}. 

T h e complexi ty of Algor i thm 1 is 0 ( ( = ) 2 + mlog m) which is 0(m log m ) for 

£ = 0(fn^2 l o g m ) . 
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T o improve the t ime boundary of Algori thm 1 to 0(M l o g m ) M . Chaimovich uses 

Condition 1 ^ X ^ ( 0 , ^ + 1 ) 1 < ( n f f < p < ( l W ) / ( 8 m ) , p is prime j £ l ) ' IM (See [5D and COndi-
t 5 / 3 

tion \ Ai\Ai(0, qi+i)\ < -%j3 (see [9]) instead of (14) . In both versions gain (comparing 

with Algori thm 1) is achieved owing to the fact that as soon as prime number q is 

verified, there is no need to return and to check it again. 

T o obtain linear complexity (for slightly higher density) the following modification 

may be used: 

Algorithm 1A 

1. Let A' be a multi-set consisting of the MA' — lo^m ^rst different elements of A. 

Find a number Q applying the process from step 1 of Algori thm 1 to set A'. 

2. Execute steps 2 and 3 of Algori thm 1. 

4 .2 . A lgor i thm for finding the opt imal subset ( Z . Galil and O . Margal i t ) 

Z. Galil and O . Margalit [18] solve the SSP by constructing a long arithmetic 

progression belonging to the set of subset sums. T o do this they partition the input 

set A into three parts: A = A\ U A2 U A3. First, they construct A\ - a small set 

satisfying (Ai)*(modd) — A * ( m o d d ) for every small enough integer d. Set A2 consists 

of a number of the smallest elements of A \ A\. These elements are used to construct 

the segment of the progression longer than L As contains the remaining elements of 

A. They are used to extend the progression. 

The algorithm is based on two main processes. The first of them reduces the 

problem to the case where A* (mod d) = [0, d) for every small enough integer d. This 

constitutes Step 1 of Algori thm 2. Logically this process is similar to the first step 

of Algori thm 1 and results in the number do such that the set A' = A(0,do)/do p OSSesses 

the above mentioned property. The technique used in this algorithm is different than 

the one used in Algori thm 1. It allows us to obtain the linear time boundary. The 

same method is employed again in Step 3 when we apply it to set A^m^^ - the set of 

^ smallest elements of A' - in order to construct the subset A[. 

The second process, used in Algori thm 2, provides a way to construct an arith

metic progression belonging to the set of subset sums. This constitutes Step 5 of 

Algori thm 2. This process is based on the following simple consideration: Given a set 

A of ¡1 distinct integers in an interval of length A < €, consider the sets Pi of pairs with 

difference i, i.e., Pi = { ( a , b) G A x A\a — b = i}. There are 0(/x2) pairs (a, b) and thus 

(by pigeon-hole argument) there are many pairs with the same difference. We first 

take many P^s that contain large enough number of pairs. Taking k — j pairs from 

Pp and j pairs from Pa gives a sequence of subsets Dj C A with Sdj = kp + j(a — p) 

- an arithmetic progression. (Observe that the pairs in each Pi are disjointed, but 

the pairs in different P^s may intersect. So, only some of the pairs from P^'s may 

be used in our construction, some pairs have to be "deleted" in order to restore the 

disjointness property.) 

The arithmetic progressions generated this way are still too short, but it is possible 

to generate many of them and then combine them in order to create a longer arithmetic 
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progression. Starting with the progression of minimal difference, (i -H l ) -s t progression 

is inductively combined with the previously obtained arithmetic progression of the first 

i progressions. A n element of a combined progression is the sum of an appropriate 

element from each of the two progressions. 

As the full description of the process is quite complicated we will omit it in this 

survey. Thus, we are ready to outline steps of the algorithm. 

Algorithm 2 

1. Let t = [*^r ^°&2 ^ 1 • ^(i) denotes the set of i smallest elements of A and q stands 

for a power of prime. W e find an integer do <t such that | A \ A ( 0 , do) \ < do and 

\A'\A'(0,d)\>d for each d<t where A' = A(01do)/do. 

(a) Compute Gx = {q : 1 < q < t, \A^t) \ A(2t)(0,Q)\ < * } bY verifying all 

prime powers from 1 to t. 

(b) Compute G2 = {q : q G G i , |A(6) \ A(6) (0,q)\ < t}, where b = St log2£ by 

verifying all elements of G\. 

(c) Compute G3 = {q : q e G 2 , \A\A(0, q)\ < t} by computing \A(i, l c m ( G 2 ) ) | 

for all i G [0, lcm(C?2)) and using elements of G2 as candidates for G 3 . 

(d) Compute G4 = {d:l <d<t,d = 0 ( m o d ( l c m ( G 3 ) ) ) , \A\A(0, d)\<d} using 

elements of G3 as candidates for G4. 

(e) Compute do = max(G4). 

2. Use dynamic programming modulo d0 to compute A*(modd0). In computing 

the set A*(moddo) keep a subset d C A \ A ( 0 , d o ) for each i G ^4* ( m o d do) 

such that Sd = i ( m o d d 0 ) and 5 ^ < &2o- Also compute the function fd0(i) = 

max{j\0 < j <i and j G A* ( m o d d o ) } . (The use of this function will be clarified 

in step 9.) 

3. Reduce the problem to another one by taking A' = A(0,do)/do instead of A. App ly 

sub-steps (a) - (d) of Step 1 of the algorithm to ^/(m/4) (the first smallest ?f 

elements of A') and construct A[ = A J m ^ U (UdeG'4Cfd) where G'4 is the set 

obtained in sub-step (d) of the second application of Step 1 and C'd are d elements 

from A'\A'{0,d) . 

4. Defining A = [ 6 4 ^ / 2 i 0 g 2 £ * | £ . i and ¡1 = \lUlf2 log2 £] choose A'2 C A ' \ A'1 

which contains a elements where each one is less than 4SA'/m and lies in a sub-

interval of length A. This is done by taking elements of A' \ A\ smaller than 
4SA,  

m ' 
splitting them into sub-intervals of length A and choosing the most dense 

sub-interval. 
5. Using the elements of A2 obtain the sequence of subsets { B ^ } ? ^ 1 such that their 

sums form an arithmetic progression with a small difference - SB'. = so + ign 

gr < t. (A detailed description of the process may be found in section 4 of [18].) 

6. Using dynamic programming, build a sequence {E'^L^1 o f subsets of A[ such 

that SE: = i ( m o d g r ) and SE: < ^9r-

7. Construct sets F! = E[ (modgr) + Bp where j = i> + {i-sEUmodgr))l /9r, for 

0 < i < tgr. (Note that SF> = s0 4- t'gr + i.) 

8. Compute all the prefix sums of the set A3 = A' \ (A[ U Af2). 

9. Given a target number N, the following sub-steps are executed 
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(a) Denoting r0 = / d 0 ( i V ( m o d d o ) ) (for definition of fdQ{i) see step 2 ) , c o m 

pute 6 b = dn \N/do \ + r 0 . 
(b) Compute N' = (SB — SCRO ] 'd0 - s0 - £'gr. 

(c) Using a binary search on the set o f prefix sums of A's find 

n = m a x { i S A'3(I) < N' 

(d) The desired subset is J5? = Cro * ^ 3 ( n doFjyt_s . 
A3(n) 

Observe that the first eight steps of the algorithm are preprocessing steps that may 

be performed only once in the case that SSP is solved many times for the same set A 

and different target numbers. 

A s mentioned before, Algor i thm 2 finds the maximal sum and the optimal subset 

in 0(m + ( ^ log^)2 + 5 ^ / 2 log2 £) time. (Note that the last term of the expression is 

required for finding the optimal subset only.) This gives 0(m) t ime for m > c£3/4 log£ 

and 0(£log£) t ime for rn ~ c£xl2 log£. 

5. Appl icat ion of an analytical structural approach to other IP mode l s 

5 . 1 . Value-Independent Knapsack. — T h e Value-Independent Knapsack Prob-

lem ( V I K P ) is IP problem of the form: maximize z — X ) i = i aix% subject to 2 [ = i aixi < 

iV, where 0 < Xi < n^, xi G Z , i = l , 2 , . . . , r , and all coefficients are integers (see [2]). 
One can reformulate the V I K P as the SSP with a multi-set A, containing element ai 

exactly rii times (for each i, 1 < i < r ) , and a target number N. 

In view of the fact that structural analysis of the SSP was done assuming that the 

elements are distinct ([15], [18]) or assuming that the number of distinct elements is 

sufficiently large ([5]), the V I K P requires its own structural analysis. This analysis 

was done in [4] and [6] proving the structural characterization of the V I K P for £ = 

^(logm) anc* ^ = O ( l o ^ m ) respectively. In this survey we formulate the structural 

characterization as it was done in [6] and give a short sketch of the algorithm presented 

there. 

Structural Characterization. — For convenience, we will view A as at a set of pairs 

of positive integers such that the elements of the pair are an integer and the number 

of its appearances in A respectively. Thus, we write A = {{a'^ni) | 1 < i < r } , where 

{a[,..., a'r} is the set o f distinct elements of A and ni is the numbers of appearances 

of a[ in A. Define also t = m a x { n i | 1 < i < r}. 

Using this notation, the existence of an arithmetic progression in the set of subset 

sums was proved in [6] for m > min{6^1og£ , 9(£t)2/3 log1/3(£*)} . 

Indeed, the estimation m > 6€log£ is the best possible apart from a logarithmic 

factor and a constant: Let A = {(£ + 1 — i,t) \ 1 < i < r} for some integers £,t,r. 

Clearly, m = \A\ = rt. A* consists of rt disjoint intervals (each of which is not longer 

than r2t/2 whenever — < £ — r, i.e., m2 4- m < £t. W e therefore do not have a long 

arithmetic progression for m x (£t)x/2 and for m x £ when t x f . 
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Sketch of the algorithm. — One can see two important parts in each of the algorithms 

(see Algor i thm 1) based on the new approach. T h e first part finds the difference Q 

of an arithmetic progression in A* , and the second explicitly constructs subset sums 

with non-zero residues m o d Q, i.e., A*(modQ). The same is true for V I K P . In this 

survey only the main considerations of the algorithm will be presented. Details can 

be found in [6] or in [9]. 

T h e step that finds the difference of the progression employs two ideas in order 

to reduce the number of operations of the algorithm. First, the elements o f A are 

grouped in order to present A as a list o f pairs ( a ; , n ) - an element and the number 

of its appearances in A. These pairs are sorted such that the most frequent elements 

appear first. 

Second, the difference Q of the progression is found using three different methods 

depending on the number r o f distinct summands in A. If this number is large enough, 

the method similar to Step 1 of Algor i thm 1 is used. Otherwise, Q is determined as 

the greatest c o m m o n divisor of the k most frequent elements of A (elements that 

appear more than ^ -h 1 times each) . 

Construct ion of the subset sums with non-zero residues modu lo Q is done using 

the same technique as in Algor i thm 1. 

Precise analysis of the steps o f the algorithm shows that it carries out the solution 

in 0(QrQ -h m) t ime, where r g is the number of different residues m o d Q o f A. In the 

worst scenario, the first term of the expression dominates and, taking into account 

that the number of different residues m o d Q is limited by the number o f different 

elements of A , we have a 0(£3 /2 log1/2 l + m ) t ime algorithm. 

However, the algorithm becomes linear if ( a ) r > c ( ^ l o g £ ) 1 / 2 o r r = O ( y ) ; (b ) k x r, 

where k is the number used for calculation of Q (this condit ion means that there are 

not many elements with very small number o f appearances implying Q = 0(€1//2)). 

Therefore, linear time is not achieved for the following special case: T h e number of 

different elements of A is neither large nor very small and all elements with a large 

number o f appearances belongs to one arithmetic progression with a sufficiently large 

difference. T h e number of these elements is extremely small in relation to the number 

of elements with a small number of appearances. 

5 . 2 . Mult i -d imens ional Subse t -Sum Prob lem. — This paragraph is concerned 

with the multi-dimensional Subset-Sum problem which is a particular case of the 

multi-dimensional Knapsack Problem. Recall its definition ([8]): Let A be a set o f 

n-dimensional non-zero integral vectors taken from the convex hull P , i.e., 

A = {ai — (au,..., a-niY} m 

fd 
Ç p n n D ) \ { 0 } ) . 

(The notat ion (•)* means the transpose o f a vector (•) , i.e., a^s are viewed as column-

vectors.) T h e problem is: for the given target vector b € N™, find the vector z £ A* 

satisfying z < b and having maximal length, where a partial order on n-dimensional 

vector space is defined in any appropriate way. 

T h e two-dimensional SSP was investigated by G. Freiman in [16]. It has been found 

that in this case a lattice becomes a basic element of the structure and takes the place 
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of an arithmetic progression - a basic element o f the structure in the one-dimensional 

case. Further, this result was extended to n dimensions by M . Chaimovich [8]. 

Two-dimensional SSP. — Let Tu = {v | v = kiTli 4- k2u2,kj G Z,iJj G U} denote 

the lattice generated by the set U = {u\,u2} C Z2 of linearly independent integral 

vectors. Hereafter the subscript is omit ted whenever it is clear from the context 

which lattice is being considered and let Vr denote the number of integer points in 

the fundamental parallelogram of V. 

T w o vectors v\,v2 are congruent modu lo T (written as v\ = t J 2 ( m o d r ) ) if vi — v2E 

r. T w o sets are congruent modu lo T (written At = ^ ( m o d r ) ) if for each vector 

V\ G A\ there is a vector v2 G A2 congruent to v\ and inversely for each vector 

v2 G A2 there is a vector v~i G At congruent to v2. In addition, A(T) = A D T, and 

b G *4(mod T) means that there is v G A congruent to b. 

For a given A define B) = \ YZi a% J = 1> 25 Bi* = \ TZi ana^ 
Using this notation the following theorem (Theorem 2 [16]) gives a structural 

characterization for a two-dimensional case. 

Theorem 5.1.— Let i C D f i Z 2 be a set of two-dimensional integral vectors where 

D is a convex set with \D H Z 2 | = £, \A\ > ci£2/3log1/d£? I > £Q. Suppose that for 

each line "a n containing zero 

(15) (-4 n o| < | | - 4 | . 

Then (i) there is the lattice To with Vr0 = O(j^) and the subset H C A such that 

\H\< Vr0 and A* = i f* (mod To) and (ii) for convex hull T defined by 

Sa-vv: (è S a - v v ) t 
B\ 

B12 
B\2 
B\ 

- 1 
1 
2 

SA-v) <C2 

vector b belongs to A* D T if and only i f b e J 7 F and b = i J* (mod r0). 

According to this theorem, the structural characterization of the set o f two-

dimensional subset sums is quite simple: a collection of all points from certain classes 

of residues modu lo lattice (including zero residue class) within a two-dimensional 

convex hull in the wide vicinity of the mid-point | 5 ^ . 

The proof of this result is too complicated to be presented in this survey. First 

of all, the case where all vectors are taken from the rectangle with edges parallel 

to axes is investigated and for this case the asymptot ic formula for the number of 

representations by the set o f two-dimensional subset sums is obtained. In this step 

the condit ion for validity of the asymptot ic formula is determined: not t o o many 

vectors may belong to a one integer lattice. 

Further, this result is extended replacing a rectangle by an arbitrary convex set V. 

This is done by applying to the set V a certain transformation which is invariant with 

regard to the integer lattice. In addition, the image o f V is contained in the rectangle 

and the number of integer points in this rectangle is o f the same order as in V. 

Finally, the case where the asymptot ic formula is not true or, in other words, where 

most of the vectors belong to some lattice Y is considered. This is done in the similar 

way as in the one-dimensional case. 
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Observe that condit ion (15) is crucial for obtaining two-dimensional structural 

characterization. If this condit ion is not satisfied, the problem is actually one-

dimensional because most of its vectors lie on one line. 

T h e last step of the p roof provides a simple algorithmic way to construct the 

structure and to find the solution to the problem. Precise analysis o f the algorithm 

(not presented here) shows that its t ime boundary is 0(m2 log m). For very dense 

problems (£ = O ( m ) ) , the t ime boundary o f the new algorithm is more impressive. It 

is 0(m log2 m ) - almost linear. 

n-dimensional SSP. — Analysis of the n-dimensional SSP is quite similar to the 

two-dimensional case. The difficulty in the generalization lies in the complexi ty of 

the geometry o f an arbitrary number of dimensions compared to the geometry o f 

two dimensions. However, the structural characterization o f the set o f n-dimensional 

subset sums, explicitly determined by the algorithm, seems to be quite simple: it 

consists of a collection of all points with certain classes of residues modu lo lattice 

within an n-dimensional convex body . 

T h e density condit ion for the n-dimensional case is m > (n£n_1 log^)1/™, n > 

2, and the t ime boundary o f the algorithm becomes 0(m2+1^n~1Hognm) or even 

0(m logn m) for very dense problems (£ = 0(m)). 

5 .3 . T h e k-Partition Prob lem. — A structural approach for solving the k-

partition problem ( K P P ) was studied in [7] (see page 346 for problem definition). 

Al though the proposed method works for a wide spectrum of object ive functions, the 
SB 

author chooses as an object ive function the function z =max Under this ob jec 

tive function the problem can also be viewed as a problem of scheduling independent 

tasks on uniform machines so as to minimize an end (make-span) t ime (see [21] for 

scheduling problem definition). 

T h e solution is based on the reduction of the fc-partition problem to a sequence of 

dense SSP and on the structural characterization o f SSP by a collection of arithmetic 

progressions. A s a result, the proposed algorithm solves the problem in 0(k£\og£) 
t ime which is considerably faster than previously known polynomial algorithms (dy

namic programming, [21]) that achieved 0(m2k~~1£) t ime only. 

In this survey general concepts of the reduction process and of the algorithm are 

presented. 
General concepts. — Let z* = m i n z be a value of the object ive function for the 

SB>. 

optimal partition (B[,..., B'k), i.e., z* =max -j^j-. If z* = 1 we say that K P P is 

exactly solvable. This is equivalent t o the existence of a partition ( £ ? i , . . . , B^) with 
SBi = Nj for all jf, 1 < j < k. 
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Suppose that a K P P (A, N±,..., Nk) has an exact solution. Consider the sequence 

of the following (k — 1) Subset-Sum problems: 

( A ^ S A - J V I ) , 
A-JVI), A-JVI),A-JV 

- i V 2 ) , . . . , 

k-2 
k-2 

¿ = 1 

BitNk-lt x k-2 
' ¿ = 1 

A-JVI),A-JVI), 

where Bi is some solution of the i-th SSP. Assuming that the first SSP is already solved 

and SBX = Ni, it is not necessarily true that the remaining SSPs are still exactly 

solvable. This is because elements which are necessary to find an exact solution for 

the second SSP could already have been used in B\ - the solution for the first problem. 

In other words, the solution B±, which was chosen from the set of all possible exact 

solutions o f SSP, can be "bad"; thus the rest of SSP will not be exactly solvable. 

T o overcome this difficulty, a certain subset C c i , for which SSP (G, Ni,Sc~-Ni) 

has an exact solution, is defined. This subset is created such that selection of any one 

of these solutions ensures the existence of exact solutions for all subsequent problems. 

In that way, K P P can be replaced by solving a sequence of SSPs. 

Some conditions must be imposed on multi-set A in order to ensure successful 

application of this method. Recall that an exact solution of SSP in a wide interval of 

target numbers N is ensured by condit ion (8 ) , i.e., we have "many" non-zero residues 

for each modulo q. T o solve K P P , it is natural to strengthen condit ion (8 ) , requiring 

as many non-zero residues for each m o d u l o q as we need for exact solvability of all 
A-JVI), SSP: the condit ion (8) becomes 

(16) \A\A(q)\ > (k - l)2 
At A 

A-JVI 
log2 2£A, 

where THA again stands for the number of different elements of A. 

Indeed, multi-set G, mentioned above, and from which subset B\ is chosen, includes 

the amount of non-zero residues needed to solve one problem only, leaving the rest to 

be used when solving subsequent problems. 

In fact, in addition to condit ion (16) the density relation 

(17) m > c±(k(k — 1 )£log£) 2/3 
5 

must be imposed on A in order to ensure the possibility o f the reduction. Condit ion 

(17) and the trivial inequality £ > m restrict the values of k for which the class of 

K P P , solved using the above method, is not empty. Namely, k < 
¿1/4 

e*'2log1/* I 
The situation where condit ion (16) fails for some integer g, can be viewed in a 

similar way to the way it was handled in the case of SSP. It can be shown that there 

exists an integer qo such that multi-set A' — A^°q^ satisfies conditions similar to 

conditions (17) and (16) , and that K P P (A (0 , go) , N[,..., N'k), where qo\Nt, has an 

exact solution. 

Introduce the set Qqo o f fc-tuples . . . , Sk) o f residues modu lo go which can be 

represented by A\A(0, qo): for each (si,..., s*) G Qqo there is a partition ( G i , . . . , G&) 

oiA\A(0,qo) such that Sj = SG , - (mod go) , 0<Sj<qo. 
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Combining the solution o f the above mentioned K P P ( A ( 0 , g o ) , A T { , . . . ,iV¿) and k-

tuples from Qqo, it may be concluded that the original K P P is exact ly solvable if and 

only if there is a fc-tuple ( n i , . . . , n & ) G Qqo such that rij = Nj(modqo),0 < n¿ < 

go, 1 < j < k. 
Thus, to determine if K P P is exact ly solvable, it is sufficient to find g0, and also 

to verify that the fc-tuple o f residues of target numbers modu lo qo can be represented 

by a partition o f A \ A(0, q0). 

Finally, it is necessary to describe how to find the solution o f a K P P , that is not 

exactly solvable. For each partition ( B i , . . . , Bk) o f A, we have S # = Nj + dj and 

z — m a x 
3 

Spj 
Nj 

— max 
d 

(i + ÉL 
Ni •)• T h e goal is to find a certain set o f deviations {dj*} 

which will minimize the object ive function z. 

For ( s i , . . . , su) G Qao define 

(is; z (si st. )=min m a x 
J 

21 
d'j 

dsd ) 

k 

sd 

d^O^dj+Nj EE Sj (modg0)51 < j < k, 

where the minimum of the function is taken over all possible sets {dj}. It is shown 

in [7] that an optimal set o f deviations {dj} is the set which minimizes this function 

z* = min {z(s1,...1sk) \{si,...,sk) G Qqo}. 

Once we have this set o f deviations, we obtain the K P P ( A , N\ + d j , . . . , Nk + d%) 

which has an exact solution. T o solve this problem, we construct a new problem 

(A',Ni,...,N'k) where A' = ^fijtfal and iVj = N^d^s°i and solve it by solving 

k — 1 subsequent SSPs. (Algor i thm 2 from page 354 may be used t o solve each SSP.) 

Let ( G i , . . . , G'k) be a solution o f this K P P . Then (Gt U q0G[, ...,GKU q0Gfk) is a 

solution o f the original K P P , since SOJUQOG^ = Sgj + qoNj = Nj + dj. 

The complexity of the algorithm. — T h e complexi ty o f the algorithm is evaluated 

(details can be found in [7]) as 

(19) 0(k3 
S 

m 
a K61 

u 
log€ + H l o g £ ) . 

Indeed, for q0 — 0(=) and £ = 0(k™3J*—) (see ( I T ) ) , the first term in (19) dominates 

the second one and the t ime is o(mk/2). However, in the case where qo < ( p r ) 1 ^ * * \ 

the dominant term in (19) is the second term and we obtain an almost linear t ime 

algorithm with 0(k£ log £) t ime. This t ime remains polynomial , even if k increases 

with £. Observe also that qo < ( p - ) 1 ^ ^ is always satisfied for a dense 3-partition 

problem (k = 3) and for problems with sufficiently high density, namely, for m > 
A\A(q)og2 2£ 

6. Conclus ion 

There are several other directions which deserve to be explored in order t o proceed 

with this new approach. 

ASTÉRISQUE 258 



N E W STRUCTURAL APPROACH T O INTEGER PROGRAMMING 361 

One o f them is t o study structural characterization o f subset sums for problems 
with lower density. G. Freiman conjectures that analytical techniques can be refined 
t o handle the case I = 0(mc) for any constant c. 

This characterization will allow us to derive new algorithms. Recall that the struc
tural approach, contrary to classical methods , works for problems with a large number 
o f variables. There is, therefore, a gap between an upper boundary o f classical algo
rithms and a lower boundary o f the existing algorithms based on the new approach. 
T h e purpose of an algorithmic design, from the operational point of view, is to overlap 
this gap . From the theoretical point of view, the future algorithms will allow us to 
verify the conjecture: is it true that certain IP problems that are JVF-hard have a 
less than exponential t ime solution for dense instances? 

T h e other direction o f the development is to analyze additional IP problems and 
to extend new methods to them. These efforts can proceed in two ways. One is to 
work directly on other specific problems and try to characterize their structure. T h e 
other is t o reduce a problem to the SSP (one or multi-dimensional) as was done for 
the ^-partition problem. In order to d o this we need density-preserving reductions 
that yield instances of the SSP that are sufficiently dense. 
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NEW ALGORITHM FOR DENSE SUBSET-SUM PROBLEM 

by 

Mark Chaimovich 

Abstract. — A new algorithm for the dense subset-sum problem is derived by using 
the structural characterization of the set of subset-sums obtained by analytical meth
ods of additive number theory. The algorithm works for a large number of summands 
(m) with values that are bounded from above. The boundary (€) moderately depends 
on m. The new algorithm has 0(ra7/4/log3/4 m) time boundary that is faster than 
the previously known algorithms the best of which yields 0(m2/ log2 m). 

1. Introduction 

Consider the following subset-sum problem (see [13]). Let A = { a i , . . . , am}, 
a{ € IV. For B ÇA, let SB = J2aieB a* and let A* = iSB I B C A}. The problem is 
to find the maximal subset-sum 5* G A* satisfying S* < M for a given target number 
M e IV. 

Although the problem is NP-hard (the partition problem is easily reduced to the 
SSP), its restriction can be solved in polynomial time. Denote £ — max{a^ | G A}. 
Introducing restriction £ < ma where a is some positive real number (or equivalently 
m > €1/Q;), one can easily solve problems from this restricted class in 0(m2£) time 
using dynamic programming. 

This work belongs to the school of thought that applies analytical methods of 
number theory to integer programming (see [8], [2]). It continues the application of a 
new approach, the main idea of which is as follows: analytical methods enable us to 
effectively characterize the set A* of subset-sums as a collection of arithmetic progres
sions with a common difference (see [7], [12], [1], [10]). Once this characterization 
is obtained, it is quite easy to find the largest element of A* that is not greater than 
the given M. 

Efficient algorithms have recently been derived using the new approach. In almost 
linear time (with respect to the number m of summands) they solve the following class 
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of SSP: the target number M is within a wide range of the mid-point of the interval 
[0, SA] and m > c£2/3 log1/3 £, £ > £Q when A is a set of distinct summands ([9], [4], 
[6], [11]) or m > 6£log€ when A is an arbitrary multi-set without any limitation on 
the number of distinct summands ([5]). Here and further on £Q, c, c i , C2,... denote 
some absolute positive constants. 

The latest analytical result ([10]) allows one to apply the algorithm from [9] to 
problems with density m > ci(^logf)1/2. The algorithm from [11] works for density 
m > C2I1/2 log I which is almost the same as in [10]. For m < £2/3, the time boundary 

for both algorithms is estimated as 0 ( ( e 
m 

\2> , i.e., O TT>2 
log2 m 

) for the lowest density 

(m ~ (£log£) 1/2 ). 
This work refines the structural characterization of the set of subset-sums which 

allows us to use more efficient conditions in the process of determining the struc
ture. These refinements are discussed in Section 2. They lead to the develop
ment of a new algorithm which is described in Section 3. It works in Oimlo&m + 

min{ l5/4 log 1/2 j 
m3/4 

, ( £ 
m 

)2}) time which improves [9] and [11] for m < £3/5 
log2/5 £ 

and yields 

0{m 7/4 / log 3/4 m) time for m ~ (£\og£) 1/2 
. 

2. Refinement of the structural characterization of the set A* of 
subset-sums 

The following Theorem 2.1 [10] determines the structure of the set A* of subset-
sums for rn > ci(€log£)1/2 as a long segment of an arithmetic progression. 

Theorem 2.1 (G. Freiman). — Let A = { a i , . . . , arn} be a set of m integers taken from 
the segment Assume that m > Ci(€log€)1//2 and £ > £Q. 
(i) There is an integer d, 1 < d < such that 

(1) \A(0,d)\ >m-d 

and 
{M : Af = 0(modd), \M - |5A(0,d)| < c2dm2} C A*(0,d) , 

where A(s,t) = {a : a = s(modt) ,a G A}, 
(ii) If for all prime numbers p, 2 < p < ~, 

(2) l^(0 ,p)| < rn -
3l 

m 

then the assertion (i) of the Theorem holds true with d = 1. 

Simple consideration shows that verification of condition (2) is crucial for the struc
tural characterization of a set ^4* of subset-sums. Algorithms from [9] and [11] use 
this condition directly ([9]) or indirectly ([11]). Our intention is to replace condition 
(2) by a condition (or a set of conditions), verification of which is easier in the sense 
that the number of required operations is smaller. To do this we introduce the notion 
of d-full set. We say that set A is d-full if A* contains all classes of residues modulo 
d1 i.e., in other words, A*(modd) = { 0 , 1 , . . . ,d— 1 } . 

Let us study some properties of d-full sets. 
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Define S r(mod d) = min{5 € A*,s = r(mod d ) } . 

Lemma 2.2. — Let A be a set of integers taken from the segment [!,£]. Suppose that 
A is d-full. Then for each r, 0 < r < d, 

(3) s r(mod d) < dt 

Proof — Assume that for some r condition (3) is not true, i.e., Sy(modd) > dt. This 
means that Sr(mod d) — «n + ai2 H h aik for some k > d. Consider the sequence of 
subset-sums Ts = % ) 1 < 5 < k. Obviously, at least two of these sums (assume 
Ts and Tq, s < q) belong to the same residue class modulo d (since k > d). Then 
Tq-Ts = O(modd) and subset-sum Tk - (Tq-Ts) = H \-ais +aiq+1 H \-aik = 
r(modd) and this subset-sum is smaller than 5r(modd)- This fact contradicts the 
minimality of 5r(mod d). • 

Lemma 2.3. — Suppose that the set A is d-full. Then there is a d-full subset of A 
with cardinality less than d. 

Proof. — Let us assume that contrary to the Lemma the smallest d-full subset of A 
has more than d—1 elements. Denote this subset by A' = { o i , . . . , a ^ } . In fact, d fai 
for all Vs. 

Let B be the multi-set of non-zero residues modulo d in A!, that is B is composed 
with \A'{i, d)\ times i for any 1 < i < d. Naturally one has B* = (A')*(modd). Then, 

as a multi-set, \B\ = d-l 
i=l 

\At(ijd)\ > dj by the assumption. 

Define a sequence of multi-sets BQ, 2?I, . . . , Bk as follows: Bo is an empty set and 
Bi = { & i , . . . , bi} for i > 0. Note that 0 G B* (since it is the sum of an empty subset), 
and that 

(4) B* = B*_x + {0 , bi} - B*_x U (£*_! + bi), 1 < i < k. 

Thus, obviously, \B*_± \ < \B*\. 
Taking into account that \BQ\ = 1 and that \B\ — k > d, for some i we have 

|BI -1| = \B*\ implying that residue bi (and element respectively) does not add 
new residue classes, i.e., (B \ bi)* = B*. Therefore, A' \ a* is d-full as well as A1. This 
fact contradicts the assumption that A' is the smallest d-full subset of A and proves 
the Lemma. • 

The next lemma refines the second assertion (ii) of Theorem 2.1. 

Lemma 2.4. — Let A be a set of integers taken from the segment [l,t]. Assume that 
\A\ = m > ci(^log£)1//2? t > to, and suppose that A is q-full for each q, 2 < q < ^ . 
Then the assertion (i) of Theorem 2.1 holds with d = 1. 

Proof. — Assume that d > 1 in Theorem 2.1. By the theorem, a long segment of 
an arithmetic progression belongs to A*(0,d). On the other hand, A is d-full (since 
d < 3£ 

m 
) and subset-sum S r(mod d) exists for each r, 1 < r < d. Combine a long 

segment of an arithmetic progression (with dinerence d) m interval 

i 
n 
2 

S A(0,d) - C2dra2, is A(0,d) + c2dm2] 
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(belonging to A*(0,d)) with subset-sums Si(modd), S2(modd), • • •, $d-i(modd) (these 
subset-sums are obtained without using elements of A(0,d)). Thus we obtain an 
interval 

[ | 5 A(0,d) - c^dm 4- max{5r (mod d) : 1 < r < d}, 2^ 4(0, d) + c2dm2], 

all integers of which belong to A*. In fact, if the length of this new interval is 
sufficiently large (0(m2) , for example), we will obtain the result of Theorem 2.1 
with d' — 1. Actually, since we are interested only in the case d > 1 and since 
max{5r(modd) :l<r <d} < dl = 0(dm2 / log rn), the length of the obtained interval 
is 

0 ( d r a 2 - m a x { S r(mod d) :l<r<d}) =0(dm2 -
dm2 

logm 
) = 0(dm2) 

which completes the proof. 

The latest property (Lemma 2.4) shows that in order to obtain a structural char
acterization of A*, it is sufficient to verify that set A is g-full for all g's, 2 < q < ^ . 
Clearly, the new condition is weaker than (2): A can be g-full even if \A(0, q)| > m—~. 
However, from an algorithmic point of view this new condition is difficult to verify. 
To correct this we have to use some lemmas which determine different sufficient con
ditions implying that set A is g-full. We will also show that it is sufficient to verify 
the prime numbers only. 

Lemma 2.5 ([3]). — If p is prime and 

(5) 
p-i 

i=i 
\A(i,p)\ >p~l 

then A is p-full. 

The proof of this lemma is presented here because of the difficulty in accessing of 
reference [3]. 

Proof. — Using the fact that all elements of A(i,p),i ^ 0, are relatively prime to 
p, introduce ring %p of residues mod p. In the following reasoning it is implied that 
all arithmetic operations, including the operations for computing subset-sums, are 
operations modulo p in 2ZV. 

Put, as in the proof of Lemma 2.3, B — {6i, 62? • • • ? for the multi-set of non-zero 
residues modulo p in A and define the sequence of multi-sets So, B±,..., Bk where 
Bo is an empty set and Bi — { 6 1 , . . . , b*} for i > 0. 

By the hypothesis, IJ5I = 0 -1 
i=1 \A(i,p)\ > P - 1. If for alH < p - 1, \BU\ < \Bt\9 

then \B*\ > \B*_X \ + 1 > \BQ \ + i = i + 1, i.e., > p, which concludes the proof, 
since we are dealing with residues modulo p. 

Otherwise, the fact that |,B|_1| = |B*| for some i < p — 1 implies that for any 
c G B*_±, c + bi also belongs to B*_X. Continuing this reasoning we obtain c + 
rbi G B*_X C B* for any r. Recalling that all operations are modulo p and that 
gcd(6i,p) = 1, one obtains that all residues modulo p are in I?*, i.e., A is p-full. • 
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Lemma 2.6 (Olson [14]). — If p is prime and 

(6) \{i:\A(i,p)\^ 0,1 <i<p}\>2p 1/2 

then A is p-full. 

Lemma 2 J (Theorem 7, Sârkozy [15]). — If p is prime and 

(7) 
p-1 

¿=1 
\A(i,p)\f >c5p logp 

P-I 

i=1 
\A(i,P)\2 

where C5 = 4 • 106, then A is p-full. 

Note that condition (7) implies P-I 
i=1 

\A(i,p)\ > (csplogp)1/2 in view of 

P-I 

¿=1 
\A(i,P)\ < 

P-I 

i=l 

\A{i,p)f. 

The next two lemmas show that it is sufficient to verify the prime numbers only. 

Lemma 2.8. — If for prime numbers p, 2 < p < Q1^2, 

(8) \A(0lP)\ < m - Q , 

and for prime numbers p, Q1/2 < p < Q, the set A is p-full, then the set A is t-full 
for all integers t, 2 < t < Q. 

Proof. — The proof employs induction for the total number of prime divisors of t. 

1. t is prime. Condition (8) ensures that Lemma 2.5 can be applied to all prime 
numbers t < Q1/2. For prime numbers t > Q1/2, the set A is t-full by definition. 

2. For n > 1, assume that the Lemma is true for each number whose total number 
of prime divisors is less than n. Now we are going to prove the Lemma for any 
integer t having n prime divisors. 

Let t = pi - - • pn where p\ < p2 < * • • < pn are the prime divisors of t. One has 
Pi < t1/2 < Q1/2 and, in view of (8), \B\ = \A\A(0,t)\ > \A\A(0,px)\ >Q>t. 

Denote s = t/p%. This integer s has n — 1 prime divisors. By the induction 
hypothesis, A is s-full. Thus, according to Lemma 2.3, there is A1 C A such that 
A' is s-full and \A'\ < s. Put, as in the proof of Lemma 2.5, B = {61,62,..., bk} 
for the multi-set of non-zero residues modulo t in A and define Bi — {61,. . . , bi}. 
Without losing generality, assume that the first residues in B corresponds to 
elements of A'. Thus, B*A,\ contains all classes of residue modulo s implying 
|-B*A/|| > s. Continue with the same reasoning as in Lemma 2.5. 

Again, if for all i,\A'\ < i < t - 1, \B*_X\ < |Bt?|, then \B*\ > \B*_X\ + 1 > 
IBj^jl + (i — I A ' | ) > i + 1, i.e., |B t̂__1| > t, which concludes the proof, since we 
are dealing with residues modulo t. 

Otherwise, the fact that |23*_i| = \B*\ for some i, \A'\ < i < t — 1 implies 
that for any c G B*_Xl c + bi G B*_x. Continuing this reasoning we obtain 
c 4- rbi G B*_x C B* for any r. Recalling that J5*A,| contains c i , . . . , cs -
different residues modulo s - we generate s disjoint sequences Cj + rbi. Since 
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each sequence has r = | elements modulo £, all sequences together cover the 
entire set of residues modulo £, i.e., A is £-full. 

This concludes the proof that the set A is t-full for alH < Q. • 

Now we can formulate a sufficient condition for a long interval to exist in the set 
A* of subset-sums: 

Corollary 2.9. — Let A be a set of integers taken from the segment [1,£]. Assume 
that \A\ = m > c i ^ log^)1 /2 , £ > £$, and suppose that for all primes p, 2 < p < 
(m)1//2> condition (2) holds and for all primes p, (f̂ )1//2 < p < at least one of the 
conditions (5), (6) or (7) is satisfied. Then A* contains a long interval: a segment 
of an arithmetic progression with difference 1 and length 0(m2). 

Proof. — The corollary follows from previously mentioned Lemmas 2.4, 2.5, 2.6, 2.7 
and 2.8. • 

3. Algorithm 

In the previous section we determined a sufficient condition, ensuring the existence 
of a long interval contained in A*. In the case where this condition is not satisfied, 
namely, if for somepi either condition (2) (if pi is small) or conditions (5), (6) and (7) 
(if pi is large) fail, the process similar to the process described in [9] may be applied. 
This process finds a number d such that an arithmetic progression with difference d 
belongs to the set of subset-sums. It is implemented in the first step of the algorithm. 
The second step of the algorithm finds all non-zero residues modulo this d in A* by 
using a modification of dynamic programming approach modulo d. 

Now we are ready to describe the algorithm. 

Notation. — np(i), 0 < i < p: the counter of summands belonging to residue class i 
modp (when all summands of A are verified np(i) = \A(i,p)\); 
rp = \{i | 1 < i < p,np(i) 7̂  0 } | : the counter of different non-zero residues modulo p; 

Rp = v-l 
<i=l 

np(i); Rp = Rp + np(0); Sp = p-1 
i=i n 2 

M (0; 
A(0,p) 

v 
= {a | ap E A (0, p) | }; 

prevpr(x): the prime number preceding x; 
nextpr(x): the prime number following x\ 

In this notation conditions (5), (6) and (7) will take form Rp > p - 1, rp > 2px/2 
and Rp > (c5plogp)5p, respectively. 

Algorithm 1. 

1. Finding d 
(a) Initialization: d <- 1, p <- 2, Q « - [mJ-
(b) Rp <- 0. 

For each a G A where a = 0(modd), compute s = | — L ^ J P an(l if s ^ 0 
then advance the counter Rp <— Rp -f 1; 
Continue this process until Rp > Q or all elements are processed. 

ASTÉRISQUE 258 



NEW ALGORITHM FOR DENSE SUBSET-SUM PROBLEM 369 

If Rv > Q then set p <- nextpr(p); 

otherwise set d i- dp, Q <- 3£ 
•d\A(0,d) 

and p <— 2. 

If p < Q1'2 return to 1(b); 
otherwise set p 4- prevpr (Q) and go to 1(c). 

(c) nJi) <- 0 (0 < i < p) , Rv <- Q, S„ 0, RL <- 0, rp <- 0. 
For each a G A for which a = 0(modd) compute s — n. 

d - [ a 
dp 

\p and 

advance the counters: 
np(s) « - np(s) + 1, R'p <- + 1; 
if 5 # 0 then (i?p « - J?p + 1, 5P « - 5P + 2np(s) - 1; 

if np(s) = 1 then rp <— rp + 1); 
Continue this process until one of the following inequalities is true: 

(9) rp > 2p 1/2 > Rp > P — lj -R 3 
p 

> (c5p log p)Sp, 

or all elements are processed. 
If all elements are processed (np(0) > |-A(0, d)| — p) then d «— dp. 

i f i ? ; > ( 16c5r„̂ log€ 
P 

)1/2 then p «— prevpr (min{p — 1, 4r„£ 
pR' } ) ; 

otherwise p <— prevpr (p — 1). 
If p > Q1/2 return to 1(c); otherwise go to 1(d). 

(d) Find nd{i), 1 < i < d, and for the set A. 
2. Finding C - the set of all non-zero residues modulo d in A*. 

Define the sequence of sets Co, C i , . . . , C^-i in the following way: Co = { 0 } 
and, for i > 0, Ci = Ci-i + { 0 , i , . . . ,nd(i)i}(modd) if ra<*(i) / 0 or C» = C»_i 
if nd(i) = 0. Clearly, Cd-i = C. 

Let v be a vector with d coordinates (numbered from 0 to d — 1) which 
represents Ci in the way that if j e Ci then v(j) = i and if j & Ci then 
v(j) = - 1 . 

(a) Initialization: v «— (0, — 1,. . . , — 1). 
(b) For all i, 1 < i < d, for which nd(i) ^ 0 do 

for all j , 1 < j < d, for which 0 < v(j) < i do 
^ ( j ) —̂ « and 
for 5 running from 1 to n<i(i) while v(j + si (mod d)) = — 1 

t>(j + si (mod d)) «— i. 
3. Finding S*. Define s = M(modd), 0 < s < d. 

Find 5* = M — s + so, where so = max{sj | Si € C, ŝ  < s}. 

To prove the validity of the algorithm we need to ensure that its step 1 finds a 
proper number d such that a set A^d^ satisfies all the conditions of Corollary 2.9. 
Indeed, sub-steps 1(b) and 1(c) use the conditions of the corollary. Therefore, the 
only thing that needs to be proved is the validity of the condition in sub-step 1(c) 

R'P> 16c5rpeiog£' 
p 

1/2 
which allows us to skip verification of some p's. 

Recall that R'p is the counter of elements of the set that have been checked for 
divisibility by p and that we stop the verification process for a particular prime number 
p once one of the conditions in (9) is satisfied. Therefore, the number of elements 
that have been checked for a particular p may be small (if many different non-zero 
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residues are found in the beginning of the process) but this value may also be quite 
large. However, the fact that many elements have been checked for some p' > Q1/2 

ensures that A is p-full for many p's, namely, for p > 4r p'l 
p' R'p' This is proved in the 

following lemma. 

Lemma 3.1. — Let B be a set of integers taken from the segment [!,£]. Assume that 
there is a prime p' < I1/2 which satisfies the inequality 

(10) I-BI > 
16c5r p' llogl 

p> 

1/2 

5 

where ry = \{i : \B(i,p')\ ^ 0,0 < i < p'}\ and c$ is the constant from Lemma 2.7. 

Then, for prime numbers p, 4rn,£ 
p' |B| < p < t1/2, p ^ p', the set B is p-full 

Proof. — We are going to show that condition (7) of Lemma 2.7 is satisfied for all p's 
from the required interval. Prom this point on, for convenience we will use r without 
a subscript to denote ry . 

Let . . . , br} be the set of all classes of residues modulo p' of the set B and let 
ti, 1 < i < r, be the number of occurrences of residues from class bi in the set B. 
Without losing generality, assume that U > to > • • • > tr. Among the ti elements 
which are in the class of bi modulo p ' , only f l 

PP> l < 2£ 
PP1 

elements can belong to the 

same class of residues modulo p, p ^ p . Therefore, these ti elements of B belong to 
at least 1 tipp 

21 
1 different classes of residues modulo p. 

To estimate from above the value of p-i 
i=l 

\B(i,p)\2 in the left-hand side in (7) we 

have taken the worst case scenario where the number ot difterent classes ot residues 
modulo p is the smallest possible. For a given \B\, this case occurs when each class 
of residues contains the maximum possible number of elements. Thus, the number of 
classes is at least | ti run 

2£ 
1 and each class can include the following number of elements 

of B: less than 2£r 
PP' elements in f trpp' 

2£ 
] classes, 2£(r-l) 

PP 
elements in [ tr-ipp 

2£ i - r tr pp' 
2£ 

1 

classes, . . . , and 2£ 
pp' 

elements in [ ti pp 
2£ i - r tipp 

2£ 
] classes. (Recall that |B | = r 

•i=l 
ti 

is being given.) Using these values we can estimate 

p - 1 

i=i 
\B(i,p)\2 < 

2£r 

Kpp' 

2 Upp1 

21 
+ 

2£(r-l) 

pp' 

2 tr-lPP 

2£ 
-

UPP 
2£ 

+ · · · + 
2£ 

PP' 

2 hpp' 
2£ -

t2pp 
2£ 

- |£(0,P)|2 

= 
2£ 

PP' 

2 Upp 

2£ 
(2r - 1) + tr~lPP 

2£ 
(2r - 3) 

+ · · · + 
hpp' 

2£ 
• 1 - | B ( 0 , p ) | 2 
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< 
2£ 

PP' 

2 UPP' 
2£ 

(2r - 1) + 
tr-iPP 

21 
(2r - 3) 

+ ••••+ 
t\PP 

2£ 
+ r2 -\B(oiP)\2 

< 
2£r 

.PP 

2 
. 

|B| 

r 
. 

pp' 

2€ 
+ 

2fr 

PP' 

2 
- |£(o ,p)f 

= 
2*r|fl| 
pp' 

1 + 
2ir 

\B\pp' 
-

pp'\B(0,p)\2 

2£r\B\ 

and, taking into account (10) and that \B\ > Art 
PP1 , we continue 

P-I 

¿=1 

\B(i,p)\2 < 
IBI3 

8c5plogi 
1 + 

1 

2 -
2|B(0,p)|2 

|B|2 

= 
KV-1 
•I=l l^(^P)l)3 
8c5p log £ 

. 
3 
2 

- 2 a 2 

( 1 - a ) 3 ' 

where a = \B(0tP)\ 
|B| 

. To prove now the validity of (7) for p it is sufficient to show that 

|-2a2 
(1-a)3 

< 8. It is easy to see that the function in the left-hand side of this inequality 

increases with a for a < 2 
3 

and, therefore, the inequality holds true for a < l 
2' 

Indeed, 

since the number of elements in one class of residues modulo p cannot exceed 2£r 
PP' and 

\B\> Air 
PP' , a = 

|B(0,p)L 
1*1 

< I that concludes the proof. 

The complexity. — Step 1 checks the divisibility of elements ai by different prime 
numbers p. Since < £, the number of prime divisors of ai cannot be more than log2 L 
Therefore, the overall number of occurrences where some p divides some element of 
A is 0(m log m). In order to estimate the number of occurrences where some p does 
not divide some element of A we need to investigate each part of Step 1 separately. 

In Step 1(b), in the worst case, we may find Q elements not divisible by p while 
verifying this number p. Since this part of Step 1 deals with prime numbers less 
than Q1/2, the number of operations in Step 1(b) where some p does not divide some 
element of A is 0(Q3/2) = 0 ( ( ^ ) 3 / 2 ) . (Recall that Q - £.) 

In step 1(c), again, no more than p elements not divisible by p may be found. Thus, 
the number of operations in Step 1(c) where some p does not divide some element 

of A is limited by 0(Q2) = Q((^)2). In fact, for m < /3/5 

log2/5 I 
this estimate can be 

improved. 
If the number of verified elements is sufficiently large {R > ( 16c5rp£\og£ 

P 
1/2 ) for 

some p, we are able to skip verification of some numbers according to Lemma 3.1 
(The above "skipping" condition supersedes condition R' > 4rp£ 

P2 for p > £ 2/5 which 

ensures that the next number to be verified is less than p.) 
Let us analyze this situation. The worst scenario (from a complexity point of view) 

occurs when we do not reach the "skipping" condition during verification. Thus, the 
number of operations in Step 1(c) where some p does not divide some element of A 
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is limited by 

L/2/6j 

P=rQ1/2l 

p + 
LQJ 

p=[£2/5J+1 

16c$rp£ log £ 

p 

1/2 
= O 

l2/5 

QL/2 
xdx + 

Q 

/£2/5 

(*log*) 1/2 

x1/4 
dx . 

Here we took into consideration the first condition in (9) which implies rp < 2px'2. 
By keeping after integration only the most significant term in each integral, we obtain 
complexity 

(H) 
0(£L/2g3/4LOGL/2£)=0 £b'A\ogl^£ 

m3/4 . 

This estimate is obtained assuming p > £2/5. Observe that p can be greater than 
£2/5 Qniy for m < £3/5 gince p < Q ~ l 

m 
Comparing (11) with the first estimate -

O(( £ 
m 

)2) - one can see that (11) improves it for m < ¿3/5 
LOG2/5r 

Combining the results for sub-steps 1(b) and 1(c), one can get the overall complex
ity of the process that verifies divisibility of elements of A: 

(12) O m log m + min 
£ 

m 

2 
, 

£5/4l 1/2 E 

m3/4 . 

This estimate also holds true for the overall complexity of the algorithm, since in the 
worst scenario both steps 1(d) and 2 have complexity 0{m). 

In conclusion, the only thing that remains is to analyze the above expression (12). 

The second term dominates for m < i 2/3 LOG 1/2 £. It is equal to 0 £5/4log1'2£ 
m3/4 

) for 

m < ¿3/5 
LOG2/5 £ and 0(( t 

m 
2 ) otherwise. This improves the algorithms from [9] and 

[11] for low density ( m < /3/5 
LOG2/5 £ 

. In the worst case (m ~ (£log£)lj/'2) time is 

0(m7/4/log3/4 m). 
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ON THE TWO-DIMENSIONAL SUBSET SUM PROBLEM 

by 

Alain Piagne 

Abstract. — We consider a system of two linear boolean equations. Using methods 
from analytic number theory, we obtain sufficient conditions ensuring the solvability 
of the system. This completes Freiman's work on the subject. 

1. Introduction 

In this paper, we are interested in considering the system of two linear equations 

(i) aixi + •.. + amxrn = 6, 

where on = (a^i, a^ ) and b = (61,62) are in Z 2 and the a '̂s, the unknowns, restricted 
to be either 0 or 1: that is, we are only interested in the boolean system induced by (1). 
Our intention is to give sufficient conditions for the set of coefficients A = {a\,..., a m } 
and b to ensure the solvability of (1). Probabilistic considerations show that, if the a^s 
are "well distributed" and if their number is large enough, we should have solutions 
for all b in the neighbourhood of YllLi ai/% and, more precisely, that the distribution 
of the number of solutions must be Gaussian: in fact, we are expecting a central limit 
theorem. So that here we investigate conditions ensuring a "good" distribution and 
then deduce the general case, that is, we describe the structure of A*, the set of all 
sums a\X\ + • • • + a-mXm with boolean unknowns. 

The corresponding one-dimensional problem has been much studied in the past 
recent years from this point of view (see for example [F80, AF88, EF90, F93] and 
[C91b] for a complete bibliography). It has been shown that A* is a collection of 
arithmetical progressions with the same difference. Each of these papers uses methods 
coming from analytic number theory, in the vein introduced in the 80's by Freiman 
(in the first quoted paper), essentially the principle of the circle method. 

1991 Mathematics Subject Classification. — 11P99, 11P55, 11H06. 
Key words and phrases. — additive number theory, structure theorem, subset sum, two-dimensional 

subset sum problem, geometry of numbers, integer points, Farey dissection, convex set. 
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Freiman began to generalize these results in two dimensions [F96] but some details 
remained obscure (computations on page 143 for example). A little later, Chaimovich 
[C91a] tried to generalize this in higher dimensions but some algorithmical problems 
arose in these cases (see, for example, our counterexample in section 2.3 to the exten
sion of Proposition 4 stated in [C91a]). Our goal here is to make clear the situation. 
We complete, correct and improve in some places Freiman's [F96]. In addition, the 
results given here are in an explicit form, because of the opportunity they offer to 
design algorithms. However the constants for which we prove the theorems are still 
far from being the best one could expect. 

For the sake of completeness, the present paper is self-contained except for very 
classical tools (as, for example, Farey dissection) for which we refer as usual to [HW]. 

In this paper we shall use the following notation: if u is in M2, we denote by u\ 
and ii2 its coordinates with respect to the canonical basis (ei, e 2) and by O the origin 
point. The e function is, as usual, defined by e(t) = exp(2wit). For a real t, will 
denote the distance between t and Z and [t] its integer part. The usual Euclidean 
scalar product is denoted simply with a point and the Lebesgue measure is denoted 
by ¡1. Finally, the volume of a fundamental parallelogram of any lattice T is denoted 
Vol T. 

When k,l > 1 (in order to deal with really two-dimensional problems), we denote 
Pkti the integer rectangle 

PM = ([-M)x[-I,I])nZ2 

and v its "volume", v = (2k + 1)(2Z 4-1), that is, the number of integer points of Pkj. 
In the sequel, A will denote a set of m = \A\ different integer points, A = { a i , . . . , a m } 
and J(b) the number of solutions of (1). We write M = Ei=1 ai/2 and 

V = V? Via 
Vi 2 Vi 

where we have put Vl2 = 
m 
'7=1 ÛJ,1ÛJ,2 and Vi m 

j=1 
aj,i for i = 1,2. 

We denote by qy the quadratic form naturally associated to this matrix qv{%) = 
m 
j=1 [CLJ.X)2 (x e Mr) and by qy-i that one associated to V that is qv-i(x) = 
l 

det V 
m 
j=1 

det2(%*, x). Finally, we define the constants 

Jfei = 25, k2 = 6, k4 = 189912, 

kb = lOOJki = 2500 fc6 = lOOfe - 600, 

k% = max(10fce, k§) 6000, kg 9 
20 

and ks = kj being any constant < 1/2. 
Our aim is to prove the following three Theorems: 

Theorem 1. Let A C Pilyt2 and v = (2/x + l)(2/ 2 + 1). Assume 

(2) |^4|>iki^ 2 / 3log 1 / 3v 

and that for each integer lattice T different from 1? we have 

(3) A\Af)T\ > k2v
2/3log1/3v, 
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then we have the following asymptotic equivalent (when v —> -hoo) 

(4) J(6) ~ 
2m+1 

TïVdet V 
e x p { - 2 g Y - I ( M - ò ) } , 

provided that qy-i (M — b) < ks log log v — 4. 

Notice first that the density hypothesis (2) implies 

v 
logv 

ks 

that implies 

(5) V > &4. 

The previous Theorem is slightly better than Freiman's Theorem 1 of [F96], the 
main difference being that the size of domain of validity of (4) is increased by a factor 
log log v tending to infinity with v. This result is the heart of this work, but this is 
not entirely satisfying because dealing only with rectangle cases. That is why it is 
generalized in the following form. 

Theorem 2. — Let C be a compact convex set in E 2 containing O, E be its integer 
points, and A be a subset of E. Assume 

\A\ > fc 5 | £ | 2 / 3 log 1 / 3 | £ | 

and that for each integer lattice T different from 1?, we have 

(6) \A\ Af)T\ k6\E\2/3Jog1'3 \E\, 

then we have the following asymptotic equivalent (when \E\ —> +00) 

J(6)~ 
2»n+i 

TïVdet V 
exp{-2gY-I(M-6)}, 

provided that qv-i (M — b) < k7 log log \E\ — 4. 

Once again, it is not completely satisfying because it deals only with "good" cases: 
those where the elements of A are "well distributed". The conclusion of this paper 
will be the following general result. 

Theorem 3. — Let C be a compact convex set in E 2 containing O, E be its integer 
points, and A be a subset of E. Assume \A\ > ^gl^l 2^ 3 log 1^ 3 | ^ | and that for each 
line D such that O E D, one has 

(7) \Af)D\< k9\A\. 

Then there exists a lattice An such that, if A' stands for A \ A D An, one has \A'\ < 
\A fi An I and 

A'* + (Aor\F) C A*. 

where F = {x e 1?,qw-i{M' -x) < k7 loglog(|A|/2) - 4 } and W(x) 
<a£A' (a.x)2, 

M' = <a€A' a/2. 
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This is a structural theorem because it describes how the set A* is made, at least 
locally. It is a powerful result in order to design algorithms, as it has already been 
done in the one-dimensional case (see for example [CFG89]). 

We notice that hypothesis (7) is in fact not very restrictive: it ensures that our set 
A is an essentially two-dimensional set. If that condition is not fulfilled, we have the 
possibility to treat our problem as a one-dimensional one, by forgetting some points 
and this is even much simpler. 

Acknowledgments. — Many thanks go to G.A. Freiman for his kind help during the 
preparation of this paper. I would like also to thank J.-M. Deshouillers for his advice. 

2. Preliminary lemmas 

We begin this section by quoting some inequalities (whose validity can easily be 
seen by using, for instance, some Taylor-Lagrange's inequalities). For any real *, if 
0 < 1*1 < 1/2, we have 

(8) |1 + e(t)\ < 2exp(-7r 2t 2/2), 

and if |*| < TT/2, 

(9) 0 < 1 - exp(*2/2) cos* < (2*/?r)4. 

Finally, for reals (ei)i<i<n between 0 and 1, we have, with a trivial induction argu
ment, 

(10) 
n 

i=l 
( ! - € , ) > ! -

n 

¿=1 
Ei 

Now we present several propositions that we shall need in the sequel. 

2.1. Arithmetical lemmas. — Here, we give two results concerning the number 
of solutions of a Diophantine inequality. 

Lemma 1. — Let a,6,e be real numbers and fc,n be integers such that 0 < \a\k < 1 
and e < (1 — fc|a|)/2. Then we have 

\{x e N,n < x < n + k : \\ax + 6|| < e}\ < 1 4- [2e/|a|]. 

Proof. — Without loss of generality we may assume a > 0 and write us = as + b. This 
is a strictly increasing sequence. Let s± be the smallest integer, with n < s\ < n + fc, 
such that ||Usi||< e (if si does not exist, then the cardinality studied is zero); we 
thus have \uSl — e| < e for some integer e. Let s2 be the largest integer satisfying 
1^*2 ~ e l ^ e- We claim that s2 < t < n + k implies \\ut\\ > e; indeed \ut — e\ > e is 
clear by definition of s2 and 

ut — uSl + (* — s\)a < uSl + t e < e + e + k < e + l - e . 

Since s2 — si = (uS2 — uSl )/a < 2e/a, we get, for the cardinality studied, the desired 
upper bound. 
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Now, we prove a result due to Freiman. We write here a complete proof, in view 
of the lack of details in Freiman's paper [F96]. 

Proposition!. — Let n, k, P be integers, 0 < P < k and a, 6 be two reals. Assume 
a = p/q -h z with (p, q) = 1, q < P, \ j2qk < \z\ < 1/qP. We have 

\{x € N,n < x < n + k : ||ax + 6|| < P _ 1 } | : mkP'1 4- 1). 

Proof. — By just changing the value of 6, the problem reduces to the case where 
n = 0. For P < 12, the result is clear, so we assume from now on P > 12 and without 
loss of generality z > 0. The solutions of \\ax 4- b\\ < P~l are clearly in bijection 
with those of the following problem, that we shall denote (P), consisting in finding 
(x, XQ, t) e { 0 , . . . , k} x { 0 , . . . , q - 1} x Z satisfying 

px = XQ mod q, 
x0 

Q 
z x + 6 — t <P-K 

One can easily bound from above the cardinality, J, of the set of solutions of (P) as 
follows 

J ^ \{xo I E(x,t) (x,xo,t) solution of (P)}| 

x max|{^ I BxJx.xn.t) solution of (P)}| x maxi {a; I (X.XQA) solution of (P)}|. 
Xq Xn,t 

Now, write \xo/q + zx 4- b — t\ < P 1 in the following form 

( h ) -qP-1 zxq — bq + tq < XQ < qP'1 — zxq — bq + tq. 

It implies, because x > 0, that XQ belongs to \-qP~1 - zxq -bq + tq, qP~x - bq + tq], 
But t is an integer, 0 < x < k and #o stays in {0, — 1}, so XQ belongs to 
\-qP~~1 - zkq - bq.qP-1 - bq] mod g, which has length 2gP + zkq, this yields 

| { x 0 | 3 ( x , t ) , (x,xo,t) solution of (P)}| < infCpgP"1 + zkq] + l,q) < mî([zkq] 4- 3,q). 

Now, the value of XQ being given, equation (11) can be rewritten 

-P"" 1 4- x0/q + zx + b <t < P™"1 +x0/q + zx + 6, 

and, as 0 < x < k, one has 

- P " 1 4 x0/q + b<t< P " 1 4 x0/q + zk 4- 6, 

thus t belongs to an interval of length 2P 1 4- zk, which implies 

max |{£|3x, ( x , xn, t) solution of 
Xq 

( P ) } | < [ 2 P - 1 + 2 A ; ] + 1. 

In the same vein, we can get 

(12) max 
X(\.t 

{x|(x,xo 5£) solution of (P)}|<[2/gFz] + l. 

Indeed, Xo and t being given, we have 

( - P " 1 - x0q - 6 + t)/z < x < ( P - 1 -x0q-b + t)/z, 
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so the ar's which are possible solutions are consecutive integers in an interval of length 
2/Pz. The condition px = xo mod q implies moreover that on a complete set of 
residues modulo q only one x can be solution. This proves (12). 

We have finally, and in any case, 

(13) J <m£([\z\kq] + 3,q)< {[2P-1 + \z\k] + l)([2/qP\z\] + 1). 

At this point, we have to distinguish two cases. 
If (1 + 2P~1)/2k < \z\ < 1/qP, equation (13) gives 

J < q(2P-1 + 1 + \z\k)(l + 2/\z\qP), 

but, in view of the hypothesis, this is < q(3\z\k)(3/\z\qP) = §kP~l. 
Now, if \z\ < (1 + 2P~1)/2k one has 2P~l + \z\k < 2P-1 + (1 + 2P- 1)/2 = 

1/2 + 3P- 1 < 1, because P > 12, thus (13) implies 

(14) J<([\z\kq] + 3)([2/qP\z\] + l). 

There are now three sub-cases according to the position of \z\kq. 
If \z\kq > 3/2, (14) leads to 

J < (3+\z\kq)(l + 2/qP\z\) 

< (3\z\q)(3/qP\z\)=9kP-1, 

because one has, in every case 1 < l/qP\z\. 
If now 1 < \z\kq < 3/2, equation (14) yields 

J < ([3/2] + 3)(l + 2/gP|z|) 
< 4(1 + 2kP~1) < 12UP-1 + 3, 

because kP 1 > 1. 
Finally, if 1/2 < \z\kq < 1, in virtue of (14), 

J < ([\z\kq]+3)(l + 2/qP\z\) 

< 3(1 + AkP'1) < \2kP~1 + 3. 

This concludes the proof of Proposition 1. 

2.2. A two-dimensional 46reverse-Cauchy-Schwarz" inequality. — This sec
tion is devoted to the proof of an inequality used in [F96] without explanation. Our 
aim is to find a good lower bound for the ratio 

(15) 
rn 

3 = 1 
{aj.af 

2 
m 

3=1 

(aj.a)4 

which is naturally > 1 and < rn (by the Cauchy-Schwarz inequality). We would like 
to "reverse" the Cauchy-Schwarz inequality, that is to find, for (15), a better lower 
bound than 1 (a power of m or logm for example). This is generally not possible, 
but here the a/s have special properties which allow to get the desired result. 
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Let us consider the one-dimensional corresponding problem. Since a4 can be fac-
torized, the problem becomes to minimize 

(i6) 
m 

3 = 1 

a2 

2 m 

3=1 

aij 

for distinct integers a/s satisfying 1 < a3- < I. It is easily seen that this ratio is 

m 
3=1 

a2j 
2 

l2 m 
3=1 

a2j 

m 
'3=1 «5 

P 

m 
'3=1 

j2 

P 
m3 

M2 

which is better than O(l) as soon as I2/3 = o(m). 
This can be guessed in another way: if one tries to choose the a^s such that (16) is 

near to 1, a natural idea (see below) is to take a3 — j for 1 < j < m — 1 and a m = I. 
This choice yields 

m 

3=1 

a) 

2 
m 

3=1 

aij m 6 + i 4 

m 5 + 1 4 1 

and this won't be 0(1) as soon as I4 = o(m 6), that is to say I213 = o(m). 
In dimension 2, the situation is not so clear but we will show that an analogous 

phenomenon happens. We begin by proving a preliminary lemma, which corresponds 
to a generalized one-dimensional case, for which we present two proofs: the first one 
will be direct while the second one corresponds to what we called the "natural idea" 
above. Although this second approach is much more intricate, we believe that the 
method could be efficient in some other contexts where the first one would not work. 

The notation 

{4 e i ) , . . . , a ( f»>} 

is for the multi-set (that is the set "with repetition") composed with e\ times ai, e2 

times a2, and so on. 

Lemma 2. Let r, s be integers > I, A C E { l ( r ) , . . . , s ^ ) } Assume that 

(17) |^.| > c|£7j2/3 log 1 / 3 |£7| 

for some constant c, then we have, for kio = 1/10, 

(18) 
aEA 

a2 

2 

> k10c
3 log \E\ 

aEA 
a4 

First proof of Lemma 2. — We use the fact that 

(19) F(A) 
aEA 

a2 

2 

.aEA 

a4 

a£A 

a2 s2. 
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Now, suppose first that \A\ > \/ÏÔr, then 

F(A) 
r ( l 2 + 2 2 + • • • + [\A\/rf) 

s2 

r 
3s2 

A 

r 

3 

which can be bounded from below by 

r 

3s 2 

\A\ 

r 
- 1 

, 3 1 
3 

1 -
1 

v/ÏÔ 

3 A\3 

r2s2 

\A\3 

1 0 r 2 s 2 

Since rs = \E\, we get the lower bound io logici. 
Suppose now \A\ < V î̂Ôr, then 

V10r \A\ >c(rs)2'3 l og 1 / 3 \E\, 

which furnishes 
r 
i2" 

c 3 

10\/ÏÔ 
logici. 

But (19) implies 

F(A) 
A 

s2 c 
r 
i 2 

2/3 
iog 1 / 3 |£ | 

and thus 

F(A) 
c3 logici 

10 

Now, we present the second method for obtaining a proof of Lemma 2 (in fact, the 
proof given here does not yield the same value for kio but we did not try to optimize 
it). It begins with some definitions and a lemma. 

Let E be a multi-set. If A is a sub-multi-set of E, a an element of A and b an 
element of E \ A, we denote by 

Aa(b) = (A\{a})U{b}, 

the set obtained by replacing a by 6 in A. 
Suppose E is a multi-set of reals and T a sub-family of the family of all sub-multi

sets of JEJ. If A is a sub-multi-set of E belonging to T and a an element of A, we say 
that A is a-minimal relatively to T if for any b in E \ A such that b < a, one has 

^a(&)0^C F 

In the same way, we define A to be a-maximal relatively to T if for any b in E \ A 
such that b > a, one has 

^a(&)0^C F 
and A is said to be a-extremal relatively to T if it is a-minimal or a-maximal relatively 
to T. Finally, we say that A is jF-extremal if for any a in A, A is a-extremal. This 
can be restated in the following way: A is .F-extremal if for any a £ A and 6, c G E\A 
such that b < a < c then at least one of the sets Aa(b),Aa(c) is not in T. For example, 
if E is finite and T = V(E), the .F-extrernal sub-multi-sets are those in which the 
elements are accumulated on the extremities, with no "hole". 
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Lemma 3. — Let t be any real, E be a finite multi-set of positive reals and T be any 
sub-family of the family of all sub-multi-sets of E. Assume the sub-multi-set B of E 
minimizes, on T, the function D defined, for any A £ J7, by the formula 

D(A) = 

,a€A 

a2 

2 
- t 

aeA 

a4 

then B is ? -extremal. 

Proof. — As E is finite, there is a minimum (on the sets belonging to T) for D: so B 
always exists. Assume that B is not "̂-extremal: it contains an element (3 such that 
there exists a, 7 not in B and such that 0 < a < /3 < 7 holds. Denoting simply B(a) 
and 5(7) the sets obtained by replacing (i in B, respectively by a and 7, it follows, 
by hypothesis, that B(a) and #(7) belong to T. As B is minimal for D on J7, one 
has 

D{B{a)) — D(B) > 0 and D(B(j)) - D{B) > 0. 

Denoting S the sum of squares of B \ {/?}, this can be rewritten, 

(20) (5 + a 2 ) 2 - (S + ß2)2 - t(a4 - ß4) > 0, 

(21) (5 + 7

2 ) 2 - (S + ß2)2 - t(7 4 - ßA) > 0. 

Introduce now the following notations: 

X = a 4, Y = ß4, Z = i 4 , 

and 
F(u) = (S + u1i2)2. 

We have 
F"(u) = -5 /2u 3 / 2 , 

which is strictly negative: therefore F is strictly concave. But equations (20) and 
(21) show 

F(Y) - F{X) 

Y-X 
< t < 

F(Z) - F(Y) 

Z-Y 
and that is not possible for a strictly concave function in view of X < Y < Z. 

Second proof of Lemma 2. — Let T be the set of all sub-multi-sets of E satisfying 
(17). Assume that (18) is proven for every ^-extremal set, then by Lemma 3, (18) is 
proven for every sub-multi-set of E belonging to T and we are done. Thus we only 
have to check that (18) holds for ^-extremal sets. That is what we do now, after 
having noticed that conditions (17) and \E\ > \A\ imply 

|A| > c 3 l o g | £ | . 

Thus it is enough to get a lower bound with &io|̂ 4| ХаеА О 4 in the right-hand side 
of equation (18). 

As above, we define the ratio 

F{A) = 
aeA 

a2 

2 

a£A 

a4. 
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We have to investigate the cases where A is of the following form 

A = {Vr\ , (a - l)(r>, a<*->, (s -b)(xb),(s- b + l)< r>,..., 

with a > 1, 0 < xaixb < r, 6 being possibly zero. We have (using elementary tools) 

F(A) = (r(l2 + • • • + (a - l) 2) + x aa
2 + xb(s - b)2 + r(s2 + • • • + (s - b + l) 2 )) 2 

(r(l4 + • • • + (a - l) 4) + xaa
4 + xb(s - b)4 + r(s4 + • • • + (s - b + l) 4)) 

(22) > 
(r(o - l) 3 /3 + xaa

2 + xb(s - b)2 + rfes2/3)2 

r(a - l ) 5 + xaa
4 + xb(s- b)4 + rbs4 

Furthermore, the cardinality \A\ verifies: 

(23) \A\ = ria + b - 1) + xa + xb. 

Consider now the following sub-cases. 

(1) If a = 1, equation (22) shows that 

(24) F(A)> 
(xa+xb(s -b)2 + rbs2/3)2 

xa + xb{s - 6) 4 +rbs4 

(la) If b = 0 then equation (24) produces 

F(A)> 
(XA + XBS

2)2 

Xq, XBS^ 

(lai) If xa > XfcS4, we get 

2F(A) > x a 

x2s4 

Xa, 
> xa 

xab 

Xd 
> SUp(xa,Xb) > 

|A| 

2 
because of (23). Thus F (A) > \A\/4. 

(Ia2) If xa < xbs
4, we get 

F(A) > 
x2

a + xjs4 

2x6 s
4 

xb/2 

x2

axls4 

xfs8 

Xq, 
s 2 ' 

the second lower bound following from the arithmetico-geometric inequality. 
If xb > \A\/2, one has F(A) > \A\/4. Otherwise, as in (lal), equation (23) implies 

\A\ = xa + xb < 2r. Using (17), we have 

2r > \A\ > c\E\2^ l og 1 / 3 \E\ > c(sr)2/s l og 1 / 3 \E\, 

from which we deduce 8r > c3s2 log \E\. Now, writing s 2 as ( s 2 s ) 2 / 3 , we get 

s 2 < 
Srs 

ĉ log J5 . 

2/3 

4 |£; |2/3 

c2 log 2 / 3 |£| 
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Finally, we have (as xa > \A\/2) 

F(A)> 
|A| 

2 

c 2log 2 / 3 \E\ 

4\E\V3 

c3 

8 
log|^|. 

(lb) Now, b > 1. Equation (24) gives 

F(A) > 
(ròs 2/3) 2 

Xa + r(b+ l)s 4 

(ròs 2/3) 2 

r(l + (6+l)s 4 ) 
6 

9(6 + 2) 
rb > 

rb 

27 

in the same manner as above. Once again, using (23), we deduce \A\ < r(b + 2) < 3rb. 
Finally, in this case we have FÍA) > L-ll/81. 
(2) If a > 2, we have 

(25) F(A)> 
(r(o - l) 3 /3 + xb(s - b)2 + rbs2/3)2 

ra5 + Xb(s — 6)4 + rbs4 

(2a) If b = 0, we get 

(26) F (A) > 
(r /3) 2 (a- l ) 6 +x2s4 

ra5 + XftS4 

(2al) If ra5 > XbS4 then equation (26) implies 

F(A)> 
(r /3 ) 2 (a - l ) 6 

2ra5 

(a - l)r 

18 
^a-1 

a 

5 (a - l)r 

576 

But (23) implies 3(a - l)r > \A\, so that finally F (A) > |A|/1728. 
(2a2) If ra5 < XbS4 then equation (26) yields 

F(A)> 
( r ( a - l ) 3 / 3 ) 2 + x ^ 4 

2xbs
4 

Applying once again the arithmetico-geometric inequality, we deduce F (A) > r(a — 
l ) 3 /3s 2 . As 3r(a — 1) > |A| using condition (17) we deduce the lower bound 

(3(o - l ) r ) 3 > |A| 3 > (c(r^) 2 / 3 log 1 / 3 |£J|)3 = c3(rs)2 log 

thus 
r (o - l ) 3 / S

2 >( C

3 l og |^ | ) / 27 

Finally, we have in this case F (A) > (c3 log |£7|)/81. 
(2b) If b > 1, we have 

(27) F(A) 
Ma- l) 3 /3 + r&s2/3)2 

ra5 + r(6 + l)s 4 

((a- l) 3 /3 + 6s2/3)2r 
a5 + (6 + l)s 4 

(2bl) If a > b, the cardinality equation (23) shows that \ A\ < r(2a +1) < 5(a — l)r. 

(2bll) If a5 > (b + l)s4, we have successively 

F (A) > 
ria - l ) 6 / 9 

2a5 

(a - l)r 

18 
a - 1 

a 

5 (a - l)r 

576 

|A| 

2880' 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



386 A. PLAGNE 

(2bl2) If a5 <(b + l)s4, we have 

F (A) > r 
( a - l ) 6 / 9 + 6 V / 9 

2(6 + l)s 4 

and after applying the arithmetico-geometric inequality 

F(A) > 
b 

9(6 + 1) 
r(a-l)3 

s2 

r(a - l ) 3 

18s2 

Now, proceeding as in (2a2), we get that (\A\ < r(2a-l) + 2r < r(2a+l) < 5r(a-l)) 

r (a- l ) 3 / s 2 > (c3log|£|)/125, 

and finally F(A) > (c3 log |£|)/2250. 
(2b2) If a < b, using (27), we get 

F(A) > rò 2s 4/(9{(è+l)s 4 + o 5}) 
> rb2/18(b+ 1) > rb/36. 

Once again (23) yields 3rb > \A\, whence F(A) > |vl|/108. 
This completes this proof of Lemma 2. 

Before going a step further, it is interesting to notice that hypothesis (3) implies 
trivially the following: 

(28) For each line D containing 0, \A\AnD\ М 2 / 3 log 1 / 3 t ; , 

since PflZ 2 can be completed in some integral lattice different from 1?. 
We are now able to deduce the following 

Proposition 2. — If A C Pu io satisfies \A\ > Jfcn;2/3log1 /3t; and hypothesis (3), then, 
for every a G M , we have (recall v = (2Ji+l)(2!2 + l); 

aEA 
(a.a)2 

2 
> k11 

.aeA 
(a.a)4 logv, 

where 
*ii = 1.12 HT 3. 

as a consequence of 

Proposition 3. — If A C Pilti2 satisfies \A\ > JM 2 / 3 log 1 / 3 t ; and hypothesis (28), 
then, for every a G M , we have 

aEA 
(a.a)2 

2 

> Am 
aeA 

(a.a)4 logv. 

Proof — Let us first notice some facts. The formula is homogeneous and continuous 
with respect to a and symmetrical (as Pilyi2 is). Thus it suffices to prove it for every 
a = (p, q) with p, q positive integers sufficiently large and gcd(p, q) = 1 (during this 
proof h and ¿2 are assumed to be fixed). Indeed the fractions q/p subject to these 
conditions are dense in E + . 
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In all this proof, we write N = pl\ + ql2 and assume, with no loss of generality, 
that 

(29) ql2 >ph, 

and 

(30) P > 2/ 2 + 1, 
(31) q > 2h + 1. 

Then 

S = {\aj.a\,aj € A} C {OW, 1<2> ,Ar ( 2 >}c{0< 2 \ l ( 2 \ . . . , iV- ( 2 >}; 

indeed x.a = t € Z is the equation of a line which can have at most one point in Pilti2 

because if 
px\ 4- qx2 = t, 
pyi + QV2 = t, 

then q\yi — x\. This implies X\ — y\ as a consequence of |rci|, \y\\ <l\ < q/2 and 
then x2 =2/2-

We now examine the value of \n.a\ when n € Piui2- Take first u,v E Z by Bezout 
Theorem such that pu + qv = 1. If n.a = t, then there exists an integer e such that 

n = t(u,v) + e(g, —p). 

So, n € A implies that |£w + eg| < h for some integer e, that is to say 

(32) u 
t-

h 

2l 
We now distinguish two cases. 

First case. — We assume that (2l2 + 1 ) 2 > 2Zi +1 or that q/p < 2v1/3/3. In the case 
where (2l2 + l ) 2 > 2lx + 1, we get 

(2h + 1) < (2h + l ) 2 / 3 (2^ 2 + I ) 2 / 3 - v2'3, 

and in the case where q/p < 2v 1 / / 3 /3, we get (using relation (29)) 

(2Ii + 1) < (2Zi + 1 ) 1 / 2 
3q 
2p 

(2i2 +1; 
1/2 

<v2/3. 

Here we have used 2Ji + 1 < 3/i < 3ql2/p 3£ 
2p 

(2/ 2 + 1). 
Let = [q/2] -f 1 and P = [g/2/i] < we approximate u/q by an element a//3 of 

the Farey dissection of order P: 
u a 

q ß 
+Z 

with 
(2k)-1 <q~l <ß\z\ <P~\ 

the lower bound being due to the fact that u/q ^ a//3 because ft < P < q and 
gcd(tx, q) = 1. We can apply Proposition 1 that yields 

-k<t<k 
u 

t-
q 

< P-1 CSiSkP-1 4-1)< 13(2/i + l ) , 
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if q is large enough. Almost similarly (we have to consider separately the cases t > 0 
and t < 0 but we get the upper bound 6(4kP~1 -f 1) and finally the same result), for 
any integer 0 < w < M = [N/k], we infer 

teZ,wk< \t\ <(w + l)k : 
u 

t-
q 

< F - i < 13(2/i + 1); 

thus, by putting bj = \dj.a\/k and 

AW = {j :w <bj <w -+- 1}, 

for w = 0 ,1 , . . . , M, one has \AW\ < 13(2Zi + 1). No^ 

m 

J=l 
[aj.af 

2 

m 

i=i 

(aj.a)4 

m 

j=1 
bj 

2 

m 

j=1 

aij 

M 

w=0 jEAo 

bj 
2 

jeA0 

bj 
M 

w=l jEA-w 

bj 

But, 
jeAo b) < thus 

M 

w=i jeAw 

bj> 
M 

w=l 
Aw > \A\/2 > \Ao\ > 

jeA0 

bj 

because | ^ o | < 13(2/x + 1) < 13t;2/3 < \A\/2 (this is due to the fact that 13 < 

(Jfci/2)log1/3?;for*;>&4) Therefore we obtain 

m 

7 = 1 

[aj.af 
2 

m 

j=1 

(aj,a)4 

M 

j=1 
\Aw\w

2 

2 

2 
M 

w=l 

w + I)4\AW\ 

M 

w=l 
Aw\w 

2 

2 5 

M 

j=1 
w4\AW\ 

F{C) 

2 5 

in the notations of the proof of Lemma 2 with C C E = { l < r ) , . . . ,s^r^} and r = 
13(2ii + 1) and s = M = [iV/fc]. We have (g large), using inequality (29), 

|£| = rs < 13(2/i + l)iV/fc < 52(2/i + l)l2 < 26v, 

\E\ > 13(2/i + l)(N/k - 1) > 13(2/i + l)(3/2/2 - 1) > 2v. 

Thus \E\ > 2k.\ that implies 

\C\ = \A\ - \M > 
A 

2 
K1 

2 
v2/3logi/sv 

k1 

2 
;|£|/26) 2/ 3log 1 / 3(|£|/26) 

k1 

4(26)2/3 
£ | 2 / 3 log 1 / 3 | £ | . 

Consequently, thanks to Lemma 2, we get the lower bound 

F(C) 

2 5 

kwkf 

1384448 
log 1 ^ 1 

kwkf 

1384448 
log v. 
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Second case. — We now consider degenerate cases, namely when 2l\ 4-1 > (2*2 + l ) 2 

and q/p > 2vx/3/3. This corresponds to cases where Pilti2 is "thin" and a "almost 
orthogonal" to Pilti2. It requires a particular treatment. 

We examine the case where 

(33) Q/P < 2/i 

and show that what has been done in the previous lines holds. We put e = h/q and 

k = [q(2l2 + l) 2/ 3/(2«i + 1) 1 / 3 ] > 1, 

for large enough q. By using the Bezout relation, we see that 

u 
t-

Q 
t —v 

P 
t 

pq' 
We obtain 

-k <t <k 
u 

t-
Q 

< e 0<t<2k: tv ku t 
p q pq 

<E 

< 
[2k/p] 

w=0 
wp < t < (w H- l)p tv ku t 

p q pq 
<E 

< 
[2k/p] 

w=0 
wp <t<(w + l)p \tv ku — w 

\\P Q 
<E 

where 
n = e + q x . 

But, as v is invertible modulo p, the number of solutions to tv 
p 

— C < T) in a residue 
class modulo p is < 2rjp + 1. Thus 

(34) -k <t<k u 
t-

Q 
<E < (2izp+l)(l + 2fc/p). 

For q large enough, one has 

k 
P 

g(2*2+i)2/s 

(2l1+l)1/3 
P 

q(2l2 + l ) 2 / 3 

p(2h + 1)1/3 

and this is 

> (2V1'3/3) (2l2 + l ) 2 / 3 

(2h + l)i/3 
2(2/2 + l)/3 > 2. 

Therefore for q large, k/p > 1. Concerning rjp, using the supplementary hypothesis 
(33), we have 

2r]p = 2 'li + l 
Q 

P> 
2hp 
P > 1 , 
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thus (34) leads to 

-k <t <k Q <E < 4r)p(3k/p) = Urjk 

< 12 
h + 1 

Q 

(2l2 + l ) 2 

2̂ 1 + 1 

1/3 
q < Sv2^3. 

As above, we get the same result in the general case: 

wk < \t\ < (w + l)k : 
tu 
q 

<E < 8t; 2 / 3, 

and, with the same notation as before, we have 

|JE7| < 8t; 2/ 3(l + N/k) < Sv2/3(1 + 2v^3) < 24v: 

therefore we can conclude as previously. 

Case a = (0,1). — To complete the result, we first establish it in the case where 
a = (0,1). In this case, we have 

m 

7=1 

(ûu.A)2 

2 

m 

j=1 

(a,a)4 

jEJ 

ai,2 

2 

i€J 

aj,2 

with J = {j : |a i | 2 | # 0} . If Ji = { |a i j 2 | , j € J} C E = ri(4li+2) 4 4 Z l + 2 ) } . 
hypothesis (28) applied to the line Eci implies (since v > \E\) 

\Ji\ > M 2 / 3 log1 / 31; > k2\E\2/3 log 1 / 3 \E\, 

which permits us to apply Lemma 2 with c = k2 and to conclude that the fraction is 

> k10k
3 log\E\ 

kwk3 

2 
log v 

because \E\ = (4/! + 2)l2 > 2v/3. 

Extension of the formula. — Now, we extend the formula by continuity in the neigh
bourhood of a = (0,1) to fill the gap, namely we have to show that for every 
0 < 0 < l/2Zi, the relation holds for the vector (0,1). But for any a^i, |aj,1O|< 1/2, 
thus if we denote by K the set of j ' s such that aj,2 — 0 and by J its complementary 
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(on which |a J ? 2 | /2 < |aj,1O + cljM < 3|aj,2|/2), we obtain 

F = 

m 

j=1 
(ajtl0 + ajt2)

2 

2 

m 

J=l 
[dj^O + ûj,2)4 

jeK 

n2 tì2 1 
4 

J'€J 

aj,2 

2 

jEK 

aj,1O4 '3' 
2, 

4 

JEJ 

4 
ûi ,2 

> 
SK.2Q4 q2 

ÖJ,2 
81(5k,4Ö4 + 5j, 4) 

£(0 4)/81, 

where Sj,2 = EiGJ°i,2 Sj,2 = EiGJ°i,2 Sj,2 = EiGJ°i,2 SJA = Ytjej ai,2 This 

is a monotonie function g of 0 . Thus 

8 1 F > i n f ( 5 ( 0 ) , f f ( ( l M ) 4 ) ) . 
We just estimated #(0) (cf. Case a = (0,1)), there remains to calculate <?((l/2/i)4), 

0 ( ( l / 2 / i ) 4 ) 
q/2 i Q/2 
°K2 Ĵ,2 

^ , 4 + Ĵ,4 

where Di<:,2 jEK (aifi/2/i)2 S'J,2 = Sj,2,S'K,4 jEK (a i f i /2/ i ) 4 

5j,4 - 5j,4 We 

have now to consider two different cases. 
If S'K,4 > S'j,4 (this implies \K\ > \ J\ and consequently \K\ > |A|/2), then writing 

5((l /2/i) 4 ) 
Q/2 

a Q/2 

o2 

2Ska 

we can apply the result of Lemma 2, since the cardinality of Kf, the set of j ' s in if 
such that aJ?i ^ 0 verifies 

|if I > \K\ - 1 > |il|/3 > 
k1 

3 
,2/3^1/3^ 

and 
{lo, 1 1 , j eK'} {1(3),.......,l1(2) (̂4̂ 2+2) /(4/ 2+2) = E. 

We have 2t;/3 < (4l2 + 2)/i |E| < v thus we obtain 

9 ( ( l / 2 / i ) 4 ) 
A;io(fci/3)3 

2 
log(2w/3) 

k10k31 

100 
log v. 

If S'KA < S'JA then 

0 ( ( l / 2 / i ) 4 ) 
Q/2 

DJ,2 
25S,4 

o2 
DJ,2 
25j,4 

But J| >fc 2 ?; 2 / 3 log 1 / 3 t ; because of hypothesis (28) applied to the line Rci. As above 
{|aj,2|,J E J} CE (1.(4*2+2) ;(4Z2+2) 

61 and 2v/3 < \E\ < v that allows to obtain 
the lower bound 

9 ( ( l / 2 / i ) 4 ) 
K10K2 

2 
log | £ | > 

K10K2 

4 
log^. 
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All this computation show that, in fact, we can take any 

kn < inf kf 
1384448 

^2 
324 

ho 

and ends the proof. 

2.3. Geometrical lemmas . — This section is devoted to the geometrical aspects 
of the problem. We complete Freiman's proof [F96] by studying every cases and 
improve some interesting intermediate results. 

Through all this section we refer to [C] for extra information. 
For C a compact convex body of E 2 , let us denote E its integer points, E = Cf lZ 2 . 

If A is a sub-lattice of Z 2 , we consider here E fl A, which we assume to be two-
dimensional, that is, not included in a line (this implies \E\ > 3) and introduce some 
vocabulary and notation. If A is a line maximizing the cardinality |A fl E fl A|, we 
write A H Z2 = Zei for some e\. Now, A fl E D A = {̂ 4o 4- kaei, 0 < k < n} for some 
point AQ, and a,n positive integers, because of the convexity of C. In the sequel, 
without loss of generality, we assume Ao = O and write A = ncxe\. Next we choose e 2 

completing e\ in a Z2-basis, this is always possible. Now take (3 the unique (in view 
of |a/31 = Vol A, the volume of a fundamental parallelogram of A) positive integer 
and 7 ; in Z such that 

A = aZei + Z(^e 2 + 7'ei). 

Define u = mf{t G Z,/3e2 + te% G E fl A} and e 2 = e 2 4- [u//3]ei. Then (ei,e 2 ) is, as 
well, a Z2-basis and 

A = aZei +Z(/3e 2 + 7 ^ 1 ) , 
for some 7 G Z. By definition of U one can easily see that if f3e2 +tei G E fl A then 
t > (3(u/f3 — [u/fi\) > 0 . This remark will be needed in the sequel. Points of A are of 
the shape (ka + lj)ei + I0e2 with fc, / G Z. We note 

d+ — max {l\(ka + lj)e± + lf3e2 G E fi A for some k} > 0, 

d~ = - min {l\(ka + lj)ei + i/3e2 G J5J fi A for some fc} > 0. 

Changing, if needed, e 2 in —e2, one can assume that 

d = max{d + ,d } = d + , 

and since E fi A is not one-dimensional, d > 1. Clearly 

(35) \E n A| < (d+ + d~ + l)(n + 1) < {2d + l)(n + 1). 

Finally, we note A s the line sei + Mei and define 

cs = \AsnE\, 
c's = |A, n J5n A|. 

First we have to prove some preparatory lemmas. 
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Lemma 4. — With the preceding conditions and notation, we have 

(i) A(n+i)/3 fi E fi A is empty, 

(ii) Ifn > 2: d < n + 3. 

(Hi) Ifn = 1; d < 3 . 

Proof — We first prove (i). Assume that A^^nEnA is not empty. We can find 

P = ( t o T ( n + l)7)ei + (n + l)/3e2, 

a point in that intersection. Performing the Euclidean division of k by n 4-1, we find 
an integer r between 0 and n such that k = (n + l)q 4- r for some integer q. Now, the 
convexity of C shows, on the one hand, that raei belongs to E, because it is located 
between O and nae\ and, on the other hand, that any integer point on the segment 
joining 

P = (n + l)(/?e2 4- (q® 4- 7)ei) + raei 

and raei is in E too; in particular, for each integer s belonging to { 0 , . . . , n 4- 1}, the 
point s(/3e2 4- (qct 4- 7)ei)) 4- raei belongs to E. But now, these points are on a same 
line and their cardinality is n + 2, which is impossible. 

Let us now turn to (ii). Assume n > 2 and that there exists a positive integer j 
such that A ( n + 4 + j ^ n E n A contains some point M. Convexity of C implies that the 
"full" triangle (AOM) is entirely in C. Let us denote L the length of the intersection 
of that triangle and A ( n + 1 ) ^ (which is a segment). Application of Thales's Theorem 
gives 

L 

na\ei\ 
3 + i 

n 4- 4 + j ' 
that is 

l + (3 + j)n 

ra 4- 4 + j 
a|ei|, 

an increasing expression with respect to n and j , which is therefore minimal when 
n = 2 and i = 0. It implies that L > a\ei\. But then A( n + 1 ) / 5 n I£ n A contains at 
least one point and is subsequently not empty, contrarily to (i). Because each point 
of A is on some line A s / j , one has d < n 4- 3. 

Now, let us see (iii): n is 1. If d = 1 or 2, there is nothing to prove. Assume we 
have d > 3 and choose M a point in A^ n E D A. Part (i) of the Lemma shows that 
A2/3 does not intersect En A, and then that the diameter of the intersection A2/# n C 
is less than a|ei|. Whence there exists a unique couple (5, T) of points of A verifying 
the properties 

1. Non-void segment A 2 /? fl C is included in the segment [5, T], 

2. T = S4-aei. 

These points are of the following shape 

S = (ka-h2j)e1 +2ße 2 , 

T = ((fc 4- l)a + 27)ei 4- 2ße2 =S + ae1. 

We now show that k is odd. In fact, if k were even, say = 21, the point 5' = | S = 
(Za + 7)ei 4-/?e2 would be in A. Moreover, ae\ and 5 ; form a basis of A. But the 'full" 
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triangle (OAM) is contained in C, which forces the point M to be in the open strip 
(if not so, S or T would be in C) between the lines (OS) and (AT). Its coordinates 
are then of the form: 

M = xS + yaeu 

with x > 1 and 0 < y < 1. The point M can not belong to A, its coordinates not 
being entire (in the basis (aei,5')). A contradiction. 

The integer k is consequently odd, say = 21 + 1. If T' = | T , as before, we get that 
T' and ae\ generate A. Writing 

M = xS + yaei, 

with x > 1 and 0 < 1/ < 1, we get M = 2xT' + (y — x)ae\. But, because M is in 
A, 2x and y — x are integers. The only possibility is y = 1/2 and x = 1/2 + u with 
w G Z. Looking at the coordinate on e2l we get d = 1 + 2?x. But now, the convexity 
of C forces the integer points belonging to the line joining the middle of the segment 
[O, A] to M to belong to E, in particular T". As M = T" + tt(2T' - aei) and since 
there is no line containing more than 2 points of E fi A, one has u < 1 i.e. d < 3. • 

Lemma 5. — Let i,j, k be integers and t a real, 0 < t < 1, such that k — ti + (1 — t)j. 
Then the following holds 

(i) if Ai nC.AjCìC^ 0 , then one has cu > tei + (1 — t)cj — 2, 

(a) ifA0ir\C,A0jr\C^2f, then one has c'0k > tc'0i + (1 - t)c'0j - 2, 

(in) cbK < 1 Cf3k - 1 
a 

Proof. — Because of convexity, A* D C,Aj fl C and A& n C are non-empty segments. 
If li,lj and Zfc denote their respective length, one has, once again by convexity, tU + 
(1 — t)lj < Ik, but one has U — \e\\ < Ci\e\\ < U + \e\\ (and the same for j and ^ ) , so 
we get 

t(a - l) + (l - t)(cj - l) < ck + 1, 

that is the first inequality. 
The second one is similar (that is just a question of scale). And the third one is 

the consequence of an easy counting argument. 

Lemma 6. — One has 

d< 
2 

\JOL 
l i ? ! 1 / 2 + 3-

4 

3a 

Proof. — We first notice that, because of \E\ > 3, the formula is easily verified in the 
following cases: a = 1 and d < 6, a = 2 or 3 and d < 4 and a > 4 and d < 3 and 
that except in those cases, which from now on we do not consider anylonger, one has 
a(d — 3) — 3 > 1. This remark is useful to make easier the forthcoming estimations. 
If d > 4, one can write 

\E\> 
(3d 

k=0 
Ck > C0 + 

Wd/2] 

k=l 
( c o / 2 - 2 ) , 
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because of (i) in Lemma 5. This way, we obtain the lower bound 

\E\ > co + (co/2 - 2)[ßd/2] > na + 1 + [ßd/2](na - 3)/2, 

with the inequality cq = |Ao fl E\ > na + 1; it implies, by virtue of Lemma 4, (ii), 
that 

\E\ > a(d - 3) + 1 + [ßd/2] 
a(d - 3) - 3 

2 

But the preliminary remark of this Lemma ensures that the last fraction is positive. 
Since /3 > 1, we get the lower bound for \E\: 

\E\ >a(d-3) + l + d-1 
2 

'a(d-3)-3' 
2 

which can be rewritten as follows: 

4\E\ >ad2-3d+7- 9a. 

It is easy to see that it implies 

d < 3 
2a 

4\E\ 
a 

f 9 - 7 9 
a 4a2 

< 3 
2a 

2vm 
\JOL 

' 9 - 7 9 
a 4a 2 

< 
3 

2a 
2x/\E\ 

y/a 
+ 3 

7 
6a 

^9/4 - 49/36 
a 

which implies the announced result. 

Lemma 7. — We have 

a+ -1 

i=-d-+i 
Ciß -4(d+-hd~) > -39. 

Proof. — Suppose first that d > 1 (and thus d+ > 1). For any positive integer i, 
we have, in view of Lemma 5, (i), 

CiB > 1 
i 

d+ c0 + 
i 

dA Cßd+ - 2. 
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The same inequality holds, symmetrically, for the c_^'s (changing d + in d ). By 
summing these inequalities, we get 

d+ -1 

i=-d~+l 
Ci(3 > c 0 + 

d+-l 

1=1 
1 -

i 

d+ 
Co -

i 

d+ 
?(3d+ - 2 

£¿"-1 

¿=1 
1 -

i' 

d-
CQ + 

i' 

d~ 
c-pd- - 2 

= c 0 -4 
f Co 4- c d + / 3 

2 
•2 (d + " 1) 

Co + cd - B 

2 
- 2 (<T - 1) 

> Co H 
co + 1 

2 
- 2 [d + + d" - 2) 

where we have used the fact that c^+^c^-^ > 1 because of the non-emptiness of 
AD+/3 n E and Ad-/3 n £J. Finally we get 

d+-i 

i~—d--\-i 
Ci(3 -4(d + +dr) > 3 c 0 - 1 1 

2 
( d + + c T ) . 

Now, we consider two cases. If Co > 11, this is greater than 3. Or else, in view of 
Co > na + 1 > n + 1, and Lemma 4, (ii), this is > 3 + (n — 10)(n + 3) if 2 < n < 9. 
This expression is minimal for n = 3 or 4 and is in these cases equal to —39. 

Assume now d~ = 0 (recall d = d + ) , the same inequalities as for the case d~ ^ 0 
show that our expression is 

> 
d-i 

i=l 
Ci(3 — 4d > co + 1 

2 
- 2 ( d - 1) - 4 d 

n- 10 

2 
( d - l ) - 4 , 

which is > - 4 if n > 10 and if n < 9, this is > (n + 2)(n - 10)/2 - 4 > -22. This 
completes the proof. 

We are now ready to prove the first proposition of this section. It will be useful 
for Theorem 3 and algorithmical aspects of our problem but we think that it is an 
interesting result in itself. 

Proposition 4. — Let C be a compact convex body in E 2 and E denote the set of its 
integer points. Assume E is not included in a line. Then, for each integer lattice A 
different from I?, one has either E fi A included in a line, or \E fl A| < 2/3 |E|+ 39. 

Preiman [F96] obtained a non-effective version of this result with a "reduction" 
factor 3/4 in place of our 2/3 which is the best possible, as one can see by considering 
the family depending on an integer parameter n: 

En = CnnZ2 = {(i, j),0 < i < n - 1,0 < j < 2} U {(n,0), (-1,0)} 
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(where Cn denotes the convex hull of En) and the lattice 

A = Zei + 2Ze2, 

because then \En\ = 3n + 2, |J£nn A| = 2n + 2 and consequently \Enn A| = ||£7 n| + f • 
The constant 39 appearing in Proposition 4 seems to be larger than the one one 

might expect. Once again, the reason is that our computations are rough. Indeed it 
seems that one could expect a constant very near from 1. This problem of minimizing 
that constant seems to be open. 

Note that the higher dimensional analogue to Proposition 4 is false, contrarily to 
what is announced in [C91a, Lemma 2], as can be seen by considering the following 
example. In E 3 consider the points a = (1,0,0), 6 = (0, — n,0),c = (0,n,0) and 
d = (—1,0,2) for an integer parameter n. Let C'n be the convex hull of these points 

E'n = l?nCn = (1,0,0), (0,0,1), (-1,0,2), (0,j,0), -n < j < n} 

and A = Zei + Ze2 + 2Ze3. One has E'n n A = E'n \ {(0,0,1)} and thus 

\E'n n Al 

m 
= 1 • 

1 
E'n 

that tends to 1 as n tends to infinity. At the same time, E'n fl A is 3-dimensional. This 
shows that no strictly less than 1 analogue to the constant 2/3 exists in dimension 3. 

Proof of Proposition 4- — If A is not Z 2 then a or (3 is different from 1, that is at 
least 2. 

First we consider the case where a > 2. We can write, using Lemma 5 (iii), 

|J5fl A| 
d+ 

k=-d~ 

C'ßk < 
d+ 

k=-d~ 

1 + 
Cßk - 1 

a 

= 1 -
V 
a 

(1 + <r + d+) 
a 

d+ 

k=-d-
Cßk 

< 
\E\ 

a 
+ (2d+l). (36) 

In view of Lemma 6, equation (36) can be rewritten, because of a > 2, 

|£7n Aj < 
\E\ 

2 
f 2 v/2Ì£| 1 / 2 11 

3 
+ 1 

< 
\E\ 

2 
+ 2 V

/2| JB| 1 / 2 
25 

3 
which is bounded by fl^l + 21, as one can easily check. 

Now we consider the case where a = 1. Then one has /3 > 2 and ĉ fc = cpk- We 
have the trivial lower bound 

(37) \E\ > 
ßd+ 

k=-ßd-
Ck 
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We put for 0 < i < d+ - 1, 

st = 
(i+l)ß-l 

k=iß 
Ck 

and, likewise, for 0 < i < d — 1, 

S-i = 
-(i+1)B+1 

k=-iß 
Ck', 

then equation (37) becomes 

(38) \E\+co>(S0+ + S+

+_1+cd+ß) (50- + -.- + 5-__ 1+c_ d- / 3) 

But, application of Lemma 5, after summation, yields 

st = Ciß 

(i+i)ß-i 

k=iß+l 
Ck 

/3 + 1 

2 Ciß + 
ß-1 

2 c{i+1)ß-2(ß-l), 

and, symmetraically, 

s - > 
/3 + 1 

2 
C-iß + 

/ 3 - 1 
2 

c - ( < + 1 ) 0 - 2 ( / ? - l ) , 

so equation (38) implies 

\E\+ c0 > 
/3 + 1 

2 

d+-i 

i=0 
Ciß 

/ 3 -1 
2 

a+ 

¿=1 
aß - 2(/3 - l)cT + cd+ß 

/3 + 1 

2 

dr-1 

j=0 
C-iß + 

/ 3 -1 

2 

do 

i=l 
c-iß -2(ß - l)dr + cd-ß 

=0 if d~=0 

which takes the following simplified form 

\E\ > 
ß + l 

2 

d+ 

k=-d~ 
Ckß + 

ß-1 

2 

<*+-i 

V/B=-d-+i 
efc/3 -4(eP + cT) 

But the first sum is \E D A| and the second > —39 in view of Lemma 7, so we have 

\E\ > 
ß + l 

2 
£J n A| - 3 9 

/ 3 -1 
2 

Thus, 

\E(1 A| < 
2 

/3 + 1 
|£| + 39 / 3 -1 

/3 + 1 

2 

/3 + 1 
\E\ + 39 < 

2 
3 

£ | + 39. 
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From now on, we are only interested in E itself (which corresponds to À = Z 2 or 
equivalently to a — /3 = 1) for which we need two more lemmas. We keep the same 
notation as above but, for avoiding confusion, we put an index E so that d, n have 
nothing to do with qIE and TIE-

Lemma 8. — Let k be an integer such that 1 < k < dE, then 

ke2 + tei e E implies — k 4- 1 <t < UÈ 4- k — 1. 

If —dE < k < — 1, then 

ke2 -\-tei € E implies k <t < 2n# — k 4- 1. 

Proof — Remember that, by construction, O, n#ei, e2 belong to E while —ei, e2—ei, 
e2 4- (tie + l ) e i do not belong to E. 

Let fc > 1. 
If fce2 4- tei G E then, &s O € E too, one would have, by convexity 

e2 

t_ 
k 

ei 
1 
k 

[ke2 4- tei) 
fc-1 
k 

O e C . 

Suppose t < —k < 0, then 

e 2 - e± 

_k 
t e2 

t_ 
k 

ei 14-
k 
t e 2 G # , 

which is not true. Thus t>—k + l. 
On the other hand, if ke2 +te\ G E, one would have also 

e2-\ 
't + (k- l)nE

y 

k 
ei 

1 
k 

[ke2 4- tei) 'fc-1 
k 

UE^I G C. 

Suppose t > UÈ + K, then 

e 2 4- (n# 4- l)ei = 

(nE + 1)K 

Kt + (k-l)nEj 

e2 4-
't + (k- l)nE 

k 
ei 

t — ue — k 
t+(k- l)nE 

e2 G E, 

which is not true. Thus t < ns + k — 1. 
Now, let k < - 1 . 
If ke2 4- tei G E, then, since e 2 G E, 

t 
1-k 

ei = 
1 

1-k 
(ke2 4- tei) 

-k 

1-k 
e2eC. 

Suppose t < k — 1, then 

-e i = 
fc-1 

t 

t 

1-k 
ei 

't + l-k 

t 
OeE, 

which is false. Thus t > k. 
Suppose ke2 4- £ei G E. It is known, by construction, that there is some point 

dEe2 4- xei G E and that, as previously seen, x > 1 — efe. But then 

dEt — xk 

dE — k 
ei = 

dE 
dE — k / 

(fce2 4- tei) 
-k 

dE — k t 

{dEe2 4- xei) G C. 
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Suppose t>2nE + 2 — k, since 

dEt — xk 

dE - k 
dE(2nE + 2 - k) - k(l - dE) 

dE — k 

2nEdE + 2dE — k 

dE - k 
>nE + l, 

the point (nE 4- l)ei is located on the segment joining O to dnt—xk 
dE — k 

e\ and is 

consequently in 2?, which is not true. Thus t < 2nE -f 1 — k. 

Lemma 9. — One has 
\E\ > nEdE/Z 

Proof. — As in the previous proofs, one has: 

\E\ = co + cdE 

dE-i 

i=l 
Ci > (co + cdE){dE + l) /2 - 2(dE - 1) 

> (nE + 2)(dE + l) /2 - 2{dE - 1). 

Then (\E\ - nEdE/3) > 0 follows from (nE - 6 ) ^ + 3nE + 18 > 0. For nE>6 this 
is trivially true and one checks that for nE < 6, using Lemma 4, 

(nE - 6)dE + 3nE + 18 > n | > 0. 

Now, we prove the second geometric lemma, which will be the key result for ob
taining Theorem 2. We have here to remember that AQ can be different from O. 

Proposition 5. — Let C be a compact convex body containing O, and E denote CflZ 2 . 
Then there exists a unimodular linear application <f> and two integers /, m such that 

4>(E) C Pi,mj 

with v = (21 + l)(2m + 1) < 345|J5|. 

Proof. — Using the construction described before with a = ¡3 — 1, we find a point 
A0 and two integer vectors e\, e 2 such that 

C C {A0 + {-dE,..., 2nE + dE + l)}ei + {-dEj...,dE}e2} 

C {A0 + { - ( n s + 3 ) , . . . , 3nE 4- 4)}ei + {-dE,..., d # } e 2 } 

in view of Lemma 8 and dE < UE + 3 (Lemma 4). 
Recall that (ej.,e2) is the canonical basis. Let (/> be the linear transformation 

sending the Z2-basis (e^)i=i,2 onto the Z2-basis (€i)i=i,2. We have det^ = ±1 ((j) is 
unimodular) and 

(j>(C) C U(A0) + {-(nE + 3 ) , . . . , (3nE + 4)}ci + { -d j? , . . . , d ^ } e 2 } . 

But 4>(0) = O E C implies the existence of some r, s such that 

O = (f>(A0) +rei -h se2, 

with — (nE + 3) < r < 3n^ + 4, |s| < d#. This fact shows that <f>(C) C P^e+TMe* 
whose volume is v = (8n£; + 15)(4dJe + 1) < HSn^d^. But, by Lemma 9, \E\ > 
nEdE/3 > v/345, which ends the proof. 
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3. Proof of Theorem 1 

We assume without loss of generality that 

2h + 1 > v1'2 > 2l2 + 1. 

Let us remember that v > k±. Define m — \A\ and write mo kxv2l3 log1/3v. 
The trivial orthogonality relations for e type functions easily yield 

J(b) = 2m 

[o,i]2 

(p(a)e(-b.a)da = 2 m 

f[-l/2,l/2]2 
(j)(a)e(—b.a)da, 

with 

(f>j(a) = 1 + e(a,j.a) 
2 

and (j) = YYjLi </>j- In fact? we investigate / = 1(b) = J(6)/2 m , by splitting the domain 
of integration into two parts, the major and minor arcs, corresponding respectively 
to the domains 

K0 = [-l/4/i,l/4/i] x [ - l /4 / 2 , l /4 / 2 ] 

and K\ — [—1/2,1/2]2 \ Ko* The corresponding integrals are denoted respectively /0 
and I\. 

3.1. The error term. — We have IAI < fKl 10(a) \da < / i( i^i)sup a € K l \<f>(a)\. 
Applying (8) we get 

|/i| < /i(üfi)exp 
TT2 

2 
inf 

a€Kt 

m 

j=1 
l ibili 2 

Our main aim in this section is to find a uniform lower bound on K\ for the sum 
Y^jLi l l a - a i l l 2 appearing in the exponential. For this, let us use a Farey dissection of 
order Q of [—1/2,1/2] \ [—l/4/i, l/4/i]: we write (modulo 1) each a± of this interval 
as vIq-V z with 

gcd(p, q) = 1,0 < q < Q and \z\ < 1/qQ. 

Here we choose Q = [ki2v/m], with 

*12 = 69. 

We notice that 

(39) 2/1 + I 
Q 

V1'2 

ki2v/m 
m 0 

kuv1/2 

k1 

ki2 
vi/» logi/3 V > 2 > 

because v > fc4. 
Now, we distinguish different cases. 
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3.1.1. \z\ > \j4ql\. — Using Proposition 1 with P = Q, k = 2l\ which is > Q, 
a — ai, b = —aih -+ a2n2 and n = —Zi, we get for each n2 subject to —Z2 <n2< Z2: 

\{-h <rn<h: \\a.n\\ < Q-1}] < H&hQ-1 + 1). 

Thus we get, after summation on n 2, 

\{n E PhM : ||a.n|| < Q " 1 } ! < miQ'1 + 1)(2Z2 + 1), 
and this is 

< 3 
' 8 / i+4 

Q 
2Zi + l 

2Q 
(2l2 + 1) = 13.5vQ-\ 

in view of (39). 

3.1.2. \z\ < l/4qh. — Write a2 = {h+6)/q where /i G Z,0 < 0 < land# = p'/q'+z' 
by using a Farey dissection of order 4/ 2 (therefore q' < Al2 and \z'\ < l/4q'l2). We 
have 

a.n — P - z n1+ 
h 

,q 
Pf 

qq' 
zr 

q 
n2 

q'(pni + hn2) Jtp'n2 

qq1 
f ZU\ 

zfn2 

q 
If Da,b denotes the set {aq, aq + 1,..., (a + l)q - 1} x { 6 ^ , bq' + 1,..., (6 + l)g' - 1}, 
define W the application 

w D 0 , 6 —> Z W Z 
(x, y) i—)• q'(px + %) + p'y. 

It is easy to check that # is bijective (injectivity is just a trivial consequence of 
gcd(p',<z') = l)-

Finally, equation ||a.n|| < Q 1 implies 

(40) *(n) 
qq' 

< Q'1 +|Z|n1 U'|n2 

2 
<Q-1 |Z|l1 l 

4 M ' ' 

in view of |^ni| < |Z|11 and |z'n2/<z| < l/4qq'. 
3.1.2.1. Case 1: Q'1 > \z\lu l/4qq'. We have 

Q~x + \z\h 
1 

4qq' 
< 3Q-1 

and since * biiective, 

\{n e Pluh : \\a.n\\ < Q'1}] < \{n € Piuh : | |*(n)M'|| < 3Q- 1 }! 
< (1 + QQ-lqq'){[2hlq} + l)([2l2/q'} + 1), 

because [21%/q] +1 is the maximal number of integers between —lx and l\ having same 
residue modulo q. 

Now, 1 + 6Q 1qq' < 10Q 1qq' by hypothesis of case 1. One has 

[2h/q] + 1 2h + 1 

q 
^ l 

3 , 
2 ' 

2ii + l 
9 
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in view of (39). And [2l2/q') + 1 < 3(2J2 4- l)/q' because qf < 4l2. Finally, 

\{n E Ph,h : \\a.n\\ < g" 1 }! < lOQ" V(3(2*i + l)/2g)(3(2Z2 + l)/q') < 45vQ-\ 

3.1.2.2. Case 2: Q-\\z\h < \l4qq1. In this case, a solution of I la.nlI < Q 1 

verifies W^irùlqq'W < l/qq', but this implies \£(n) = 0 mod qq\ that is 

q'(pni 4- hn2) + p'n2 = 0 mod qq'. 

This implies that q'\n2, so that, when q' ^ 1, n belongs to some lattice different 
from Z 2 (namely Zei + Zg'e2). 

If q' = 1, one has pni 4- (h 4- p ;) n2 = 0 mod g, which is the equation of a lattice 
different from Z 2 as soon as q ^ 1, but that is the case because if q = q' = 1, one has 
p = p' = 0 (and then h = 0), and |z| < l/4/i, 1^1 < l/4/ 2. Therefore |a,| < 1/4^ for 
i = 1,2, which shows that, in this case, a is not in K\. 

Consequently, we can bound the number of solutions in this case, using hypothesis 
(3): 

KnGPu^illa.nll^Q-1}!^ m - k2v
2/s l og 1 / 3 v. 

3.1.2.3. Case 3: \z\h>Q-\l/4qq'. If the integer vector n satisfies 

(41) ||a.n|| < Q-\ 

it satisfies a fortiori 

(42) ||*(n)/««'||<3|z|Ji 

and so the number of couples of residues (xo,^o) ? modulo q and qf respectively, solu
tions to (42), is less than 1 + Q\z\hqq'. 

Let us now give an upper bound for the number of solutions of (41) with rt\ 
restricted to be equal to some XQ modulo q and n2 fixed. The equation becomes 

pni 

q 
4- z(x0 4- qt) + a2n2 

<Q-1 

this is of the form 
\\n + zqt\\<Q-\ 

for which we can apply Lemma 1 with a = zq,b = n,e = Q 1 < fc12

1 < 1/6,k = 
[2li/q] + l. We have fe|o| < \z\q(l + 2h/q) = \z\q + 2h\z\ < Q'1 + l/2q < Q'1 + 1/2, 
by hypothesis of section 3.1.2 and thus (1 — fc|a|)/2 > e is verified. We get the upper 
bound 1 + [ 2 / ( 5 1 ^ 1 ^ ] . Consequently, if now, n\ and n2 are restricted to be constant 
modulo q and q' respectively, the number of solutions of (41) is 

< 1 + 
2/21 
q' 

1 + 
2 

Q\z\l, 

Finally, the total number of possible solutions to (41) is bounded above by 

( i + 6 | z i w : 1 + 
2/2 

q' 
1 + 

2 

Q\z\q 
< 45VQ-1, 

by using \z\hqq' > 1/4, \z\ < 1/qQ and q' < 4/2. 
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3.1.3. Conclusion. — In the cases of sections 3.1.1 and 3.1.2 cases 1 and 3, the total 
number of solution to (41) is bounded by 

AbvQ-1 45 

¿12 -1 
m. 

Consequently 

\{n € ^,||a.n|| > Q - 1 } | 
kl2 - 46 

fci2-l m. 

Thus we get 
M 

i=i 

\a.aj\\2 ¿12 - 46 

¿12 -1 
mQ~2 > 

¿12 - 46 

(¿12 ~ l)*f2 

ra3 

v2 

(k12-46)kf 

(¿12 - l)kf2 

logv > 0.75logt;. 

In the case of section 3.1.2, case 2, we have 

\{ne A,||a.n|| > ( 9 _ 1 } | ¿2t;2 / 3 logt;, 

thus 
m 

j=1 
\a.aj\f m 

K12v 

2 
M 2 / 3 l o g 1 / 3 t ; 

k\k2 

k2 
logv > 0.75 log v. 

Finally, 

\h I < M ( ^ i ) e x p 
TT2 

2 
inf 

aEK1 

m 

j=1 
lk«;ll 2 < KKi)/v3. 

3.2. The major part. — Here, we have to investigate Jo = Iko </>(<*)e(-b.a)da. 
Let us denote 

K = {a £ KQ : V(a) < 0.75logt;} 

and K' = KQ \ K. The contribution of K' can be evaluated as follows 

Ik 
4>(a)e(—b.a)da < 

1k> 

m 

j=1 

(j)j(a)\da < fi(K')exp -it2 

m 

j=1 

li«-aJ||
2/2 

< ß(K')exp (-n2V(a)/2) < ß{K')/v^'\ 

in view of the definition of V and because on Ko> |aiaj,i| < 1/4 so that ||a.aj|| = 
\a.a3\ < 1/2. 

Now, rewrite 6(a)e(—b.a) as follows 

(/>(a)e(-b.a) = e((M - b).a) 
m 

j=1 
cos(7raj.a), 

but for l^a^al < 7r/2, one can write, in view of (9), 

cos(iraj.a) = exp(—7r2(aj.a)2/2)(l — g(üj.a))J 

with 
0 < g(a3.a) < (27rai.a/7r)4 < 1. 
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Finally the major part is 

Jk 
(j>(a)e(—b.a)da • 

Ik 
exp 

TT2 

2 

m 

3=1 

LO,-.a)2 + 2ìtt(M - 6).a (1 - Ä(a))da, 

where R(a) = 1 n £ i ( l - 0 ( * i . a ) ) - One can write this integral AQ — A% — A2 by 

splitting it into three parts 

A0 = 
' e 2 

exp 
TT2 

2 
F(a) +2i?r(M - 6).a da, 

Ax 

R2\k 
exp 

TT2 

2 
V(a) 4- 2Z"7T(M - 6).a da, 

A 2 = 
k 

Ä(a) exp 
TT2 

2 
F (a) +2t7r(M - 6).a da. 

Let us write di = Mi — bi and investigate these three integrals. By the change of 
variables 

(43) X = 
7T 

k 
{V?cti + Vi2a2),2/ = TT 

/dëtV 

Vï 
«2, 

we get 

A0 = 
1 

7 r 2 V d ë t y R 
exp 

x2 

2 

2dia; 

Vi 
dx 

E 
exp */2 

2 
2 
2(d 2 F 1

2 -d 1 F 1 2 )y N 

ViVdetV 
d?/ 

1 

7 r 2 \ / d ë t T 
/2TT exp 

1 
2 2 

di 

Fi 

2̂  
V^̂ rexp 

1 
2 

2 
tfcV? - diVi2 

VtVdetV 

2\ 

2exp( -2ö V - i (M - 6)) 

TT v det V 

An upper bound for \Ai\ can be achieved by noticing that if a g K then V(a) > 
0.75 log v. Suppose a 4 1? 4- K0. We have 

F(a) = 
m 

i=l 

(a.a,) 2 

m 

j=1 
lla*ail|2-

Since the last sum is not changed by an integral translation of a, the problem is 
reduced to the study of this sum for a € K\. This has been done in the preceding 
section and thus we get the lower bound 0.75 log v. If now a G (Z 2 \ {(0,0)}) 4- K0, 
it can be written as a = h 4- e with h € Z 2 \ {(0,0)} and e € K0. Since |e*| < 1/4^, 
\e.aj\ < 1/2 and in view of hypothesis (3) at least k2v

2/3 log 1 / 3 v elements a,j of A 
verify h.cij ̂  0 (cf. hypothesis (28)) thus (a.a^)2 > 1/4 for these values and we obtain 

V(a) k2 

4 
v2/3 log 1 / 3 v > 0.75 log v. 
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This ends the proof of the lower bound of V(a) on the complementary of K. Now, 
the change of variables (43) and a polar change of variables produce 

l^ i I < 
1 

nWdetV 

•+OO 

'71-̂ 3 LOG v/4 
r exp(—r2/2)dr 

r2n 

lo 
dd, 

and finally 

IAil < 2/(7r\/dêWî;3'r / 8 ) . 

Now, we consider A2. We have, in view of inequality (10), 

\R(a)\ = II -
m 

j=1 
'l-g(aj.a))\ 

m 

j=1 
g(a,j.a) < 16 

m 

j=1 
(a, .a) 4 , 

the last inequality being due to (9). Here is the place where we need Proposition 2. 
We get 

\A2\ < 16 
K 

m 

j=1 
(a7-.a)4 exp 

TT2 

2 
V(a) da 

16 
ku logv Im2 

V(af exp 
TT2 

2 
V(a) da. 

In the same way as above we obtain finally 

\A2\ < 
256 

k\ 17T5 >/det F log v 

750 

logvvdetF 

3.3. Conclusion. — The dominant term is 

Ao = 
2 

TiVdet V 
exp(-2qv-i(M -b)). 

The error term is bounded from above by 

H{K1) 

v3 

H{K') 

v3tt2/% 

2 

iry/àëtVv**2/* 

750 

logvVdet y 

800 

logvv'det V 

using I det V\ < m2v2/4 < v4/4. It is readily seen that if qv-\(M — b) < k3 log logv-4 
then the main term A0 is > 1800/\/det V log2hs v. At the same time the error term is 

< 800 

/det V log v 
= o(A0), 

(with a constant 1) thanks to our choice for ¿3. This concludes the proof of Theorem 
1. 

ASTÉRISQUE 258 



ON THE TWO-DIMENSIONAL SUBSET SUM PROBLEM 407 

4. Proof of Theorems 2 and 3 

4.1. Theorem 2. — By Proposition 5, we can find a linear application <j> sending 
C onto Pfx,i2 for some h,l2 with v < 345\E\. We can assume that v > \E\ with no 
loss of generality. Consequently, 

\4>(A)\ = \A\>kb\E\2'*log1'* \E\ > k5 v 
,345 

v2/3 
log 1 / 3 

V 
345 

> k5 

100 
klV

2'3\ogl'3v. klV

2'3\ogl'3v. 

Since the linear transformation </> sends lattices onto lattices we have 

\ф(А) \ (ф(А) П D | = \A\(An ф~НТ))\ > ко\Е\2'3 log1'3 \E\, 
by hypothesis (6). As above this is 

> k6 
100 

v^log^v k2v2^3\og^3v. 

Applying Theorem 1 to the set </>(A), the asymptotic formula (4) is changed in (J1 

stands for the number of solutions to the boolean equation induced by <t>(A)) 

J(b) = J ' W ) ) 
2n+1 

тг Vdet W 
exp^ 2д„-г(ф(М)-ф(Ъ))}, 

for any b such that qw-i(<p(M) — (f>(b)) < ks log log v — 4, where W is the matrix 
obtained with the ^>(aj)'s instead of the a/s that is to say W = (frVcf)*. Thus det W = 
det2 (j) det V = det V, qw-i(<fi(M) — (f)(b)) — qv-i(M — b) and we can take kj — ks 
due to log log \E\ < log log v. 

Prom Theorem 2 we deduce the following result. 

Corollary 1. — Let C be a compact convex set in M2 containing O, A be an integer 
lattice and E = C FL A. Let A be a subset of E. Assume 

\A\> kb\E\2'3 log1'3 \E\ 

and that for each T sub-lattice of A different from 1?, we have 
(44) | л \ л п г | > fc6|£;|2/3iog1/3|£;|. 

Then we have the following asymptotic equivalent (when \E\ —> +00) 

(45) J(b) 
2m+1 Vol A 

TtVdet V 
e x p { - 2 g Y - I ( M - ò ) } , 

provided that qv-i (M — b)<kj log log \E\ — 4. 

Proof of the Corollary. — Take a basis of A and Ф a linear application sending this 
basis onto the canonical basis of Z 2 . If A' = 9(A), E' — 9(C) П Z 2 = 9(E) and since 
the sub-lattices of A are sent onto integer lattices, we can apply Theorem 2 to 9(C) 
and 9(A). With the same computation as above, we get the asymptotic equivalent 
(45), the factor Vol A being due to the formula of change of basis for quadratic forms 
and |det*| = Vol A. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



408 A. PLAGNE 

4.2. Theorem 3, — Either condition (6) is fulfilled by A and we are done by 
applying Theorem 2 (notice kg > ¿5) or there is an integral lattice Ti such that 

(46) lAnTil > \A\ k6\E\2'3 log1/3 

Write F 0 = Z 2 , ,4j = 4 n F, and Ei = E D F,. Since Ai is not contained in a line 
in view of hypothesis (7) ( 1 ^ 1 I > 1 k8 

\A\ and ¿9 < 1 — ke/ks) we have, by 

Proposition 4, |Ei| < ||£7| + 39 < 0.7|£ 0 | (the smallest possible value of |J57| allows 
to write this). Therefore we get 

(47) M M > A* |£! I 2 ' 3 log1/3 \Eh. I 

in view of equation (46) and (0.7)2/3&g < kg — k^. 
Now either A\ verifies condition (44) of Corollary 1 and we stop here the process, 

or there exists a lattice T2 C Ti violating (44). 
Let us show that, more generally, we can construct a decreasing finite sequence 

of lattices (Ti)i<i<P' assume we have already built Ti , . . . ,r« and A±,... ,Ai. If 
condition (44) is fulfilled for A\ C Ei then we stop the process else we find a lattice 

C Ti violating (44). Ri+1 

Lemma 10. — We have for each i 

l^i^fcsi^i^iog 1/ 3!^! and \Ei\ > \Ai\ > \A\/2. 

Proof. — For i = 1, equation (47), kg > 2&6 and (46) prove the result. Assume that 
the result is true for 1,2,..., i and that we have built r»+i, £̂ ¿+1 and Ai+\. One has 

IAi+,1 > \AA - fc6lS|2/3log1/3 \Ei\ > 

(ks - ke)\Ei\2/3 log1/3 \Ek\ > fcsl^+il2/3 log 1 / 3 \Ei+1\ 

in view of Proposition 4 (here we used the fact that |Ai+1| > (1 — k§/kg)\Ai\ > 
^(l — ke/kg)\A\ > kg\A\ which implies first that Ei+i is not included in a line (in view 
of (7)) and, second, that \Ei\ is large enough). Now 

l^i+il > \A\ - h 
i 

3=0 

^ | 2 / 3 log'/3 1 ^ 1 

> \A\-k6 

OO 

J=0 
(0.7j'|JE?|)2/3 l og 1 / 3 |JS7| 

> \A\ - 5Jfc6|£;|2/3 l og 1 / 3 \E\ > \A\/2 

due to the definition of ke and &g-

This Lemma shows that the process is well defined. As it is clearly finite (since 
(\Ei\)i<i<p is a strictly decreasing sequence and Ei is never included in a line in 
view of hypothesis (7) and Lemma 10) and at the end we have a lattice Ao = Tpi 

Ap = AnTp and Ep = Ef)Tp such that condition (44) and the cardinality condition 
are fulfilled. Thus we can apply the Corollary to Theorem 2 which gives the result. 
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ON SERIES OF DISCRETE RANDOM VARIABLES, 1: 
REAL TRINOMIAL DISTRIBUTIONS WITH FIXED 

PROBABILITIES 

by 

Jean-Marc Deshouillers, Gregory A. Freiman & William Moran 

Abstract. — This paper begins the study of the local limit behaviour of triangular 
arrays of independent random variables (Cn,k)i<k<n where the law of Cn,k depends on 
on n. We consider the case when Cn,i takes three integral values 0 < a\{n) < a,2(n) 
with respective probabilities po?Pi?P2 which do not depend on n. We show three 
types of limit behaviours for the sequence of r. v. r)n — £n,i H h Cn,n, according 
as a2(n)/gcd(ai(n), a2(n)) tends to infinity slower, quicker or at the same speed as 
Vn 

These notes are a first step in the description of the local behaviour of series of 
discrete random variables, that is to say sequences (771,... ,7?n,...) of random vari
ables such that Tjn is the sum of n independent discrete random variables (£n,k)i<k<n 
following a same law that may depend on n. We are restricting ourselves to the case 
when the £n,fc5s take three integer values ao — 0 < ai(n) < (22(n), where a± and a2 
are coprime, with fixed positive probabilities po,Pi and P2 respectively. 

When the values ai(n) and a2(n) do not depend on n, it follows from a result of 
Gnedenko that we have a local limit result, namely 

P{rin = N} 
1 

ay/2-Kn 
exp 

(n/1-N)2' 
2na2 

+ o(l) as n —»• 00, 

uniformly in iV, where /i and a2 are the expectation and the variance of the £n,fc's. 
Our aim is to give a complete description of the case when a\ and 02 depend on 

n, showing that there exist three different behaviors according as ¿12 (n) is bounded or 
tends to infinity slower than y/n, tends to infinity at the same speed as y/n, or tends 
to infinity quicker than y/n. In the first case, we get a local limit result similar to 

1991 Mathematics Subject Classification. — 60F05, 60E10, 11P55, 11Z05. 
Key words and phrases. — Sums of discrete random variables, local limit theorems, characteristic 

function, number theoretic methods, circle method. 

J.-M. D: Cette recherche a bénéficié du soutien du CNRS (UMR 9936, Université Bordeaux 1) et 
de l'Université Victor Segalen Bordeaux 2. 
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the one we just quoted. The second case leads to a result of a similar structure with 
a limiting law which is no more normal. The third case can be seen as isomorphic 
to a two-dimensional series with a fixed law; this notion, which may be of future 
importance, will be presented in the last section. This notion will also be useful to 
explain what happens when the coprimality condition of the a^'s is removed, without 
having to rewrite the statement of the Theorem in a heavier form where a\ and a2 
would be replaced by ai /gcd(ai ,a2) and a2/gcd(ai,a2), and {rjn = N} by {nn = 
i \ rgcd(ai ,a2)}. . . 

We now state our main result. 

Theorem. — Let po3pi1p2 be three positive numbers with sum 1, and do = 0 < (i\ (n) < 
a2(n) be three coprime integers. Let further 

¡i - ßn = pi ai (ra) 
a = an =piai(n) + p2a2(n) » / in . 

We consider n independent random variables (£n,k)i<k<n, each of which takes the 
values ao, a i (n) , a2(n) with probabilities Po?Pi?P2 respectively, and we denote by rjn 
the sum £n,i H h £n,n-

When a2(n) = o(yjn) as n tends to infinity, we have, uniformly with respect to the 
integer N 

P{rjn = N} 
1 

апл/2жп 
exp 

(n/in-N)2' 
2nal + o(l) as n —> oo. 

When 02(n) / \ /n tends to infinity with n, we have, uniformly with respect to 
the integer N 

P{Vn = N} n! 
fc0!fci!fc2! PÌ°PÌ1PÌ2 Ol 

1 
n 

as n —> oo, 

where the integral triple (ko, fci, Jfc2) is defined by 

—a2(n)/2 < ki — npi < a2(n)/2, k\ai(n) -h fc2a2(n) — N, k$ + ki + k2 = n. 

When a2(n)/v/n tends to a finite positive limit c when n tends to infinity, we 
have, uniformly with respect to c and to the integer N 

P{Vn = N} 
1 

27Tnx/poPlP2 
(o,Kl,«2 

exp(Q(k0,k1,k2)) + oj 
1 
n 

as n —> oo, 

where the sum is extended to integral triples satisfying &o + &i + &2 = ft, 
ai(n)fci + a2(n)A:2 = iV, and the quadratic form Q is defined by 

Q(k0,k1,k2) 
1 
2 

3 

¿=1 

1 

npi 
(ki - npi)2. 
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1. The case when a<i (n) = o(>/n) 

Due to the arithmetical nature of our problem (the ai's are integers), we shall use 
the Fourier kernel exp(27ri • x) and define by 

= $n(t) = po + Pi exp(27citai) -f P2 exp(2mta2) 

the characteristic function of £n u so that we have 

P{r]n = N} yn(t)exp(-27ritN)dt 

where the integral is performed over any interval of length 1. 
We shall divide the range of summation into a major arc, when t is close to 0, 

and a minor arc when t is far from 0. Let £ be a positive real number (that will be 
specified later to be l/(a2(n)n2/5)), and let 

0R= [-e,e] and m =]e; 1 — e]. 

1.1. Contribution of the minor arc. — The following lemma will be used to get 
an upper bound for \& on the minor arc, playing either with the term exp(2niait) or 
with exp(27ria2^). 

Lemma 1. Let C — 8 min POPI P0P2 
PQ+P2 We have 

|po + Pi exp(27rmi) -f-p2exp(27ri^2) < e x p ( - C m a x ( | K | | 2 , | K H 2 ) ) 

where \\u\\ denotes the distance from u to the nearest integer. 

Proof. — It is of course enough to prove the inequality 

|Po + Pi exp(27rmi) + p2 exp(27riw2)| < exp SpoPi 

Po H-Pi l*i II2 

We have 

|Po + Pi exp(27riui ) |2 Po + Pi + 2PoPi cos 2nui 

(Po + P i ) - 4p0pi sin wut 

(Po +Pi )2 - 16poPi ||îii||2 

(po+Pi )2 ( l 
8p0pi 

(Po +pi)2 lltiill2)2 

This implies 

|po + P i exp(27m*i) +p2(27rm2)| Po + pi + P2 
8poPi 

Po + P l 
libili2 

1 
8p0pi 

Po + P i 
IMI2 

exp 8poPi 
Po + p i 

IMI2 

which is the inequality we looked for. 
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We now present the dissection of the minor arc. For any integer r, we shall denote 
by r the integer in [0, a2/2] such that r is congruent either to r or to — r modulo a2. 
The reader will easily check that m is the disjoint union of the following intervals: 

mi(r) 
r 

a2 2a\ 
r 

Q>2 

rai 
1a\ 

for r = 1, 2, . . . , CL\ — 1, 

m2(0) E 
1 

«2 
1+a1 
2o| 

m2(a2 - 1) 
[ a 2 - l 

«2 
(a2 - l )a i 

2a\ 
l - e 

m2(r) 
r 

_a2 
fai 

2a2 
r 4-1 

a2 

(r + l)a2 
2a | 

for r = 1,2, . . . , a2 — 2 . 

The intervals of type m2 stay away from rationals with denominator a2, so that 
||a2£|| is rather large when t is in such an interval. More precisely, if we consider 
™2 (r) r 

a2 
2r±ll 
2o2 J 

in the case when 1 r Û2/2, we have t E m2 (r) 

||£a2|| = ||£a2 — r|| = (ta2 — r) , so that, by Lemma 1, we have 

m2 (r) 

\V(t)\ndt 

™2 (r) 

exp(—Cn(ta2 — r) )dt 

1 
2Vn 

oo 

rai /— 

exp(—Cu )du . 

In a similar way, the contribution of each of l 
2a2 

and 2a2-l  
• oo ,1 s[ is at most 

1 

a2wn 

oo 

ea2 yn 

exp(—Cu )du. 

The coprimality of a\ and a2 implies that rai is different from 0 for r = 1,2, . . . , ai — 1, 
and that any integer s in [1, a2/2] is equal to some fai for at most two values of r. If 
we denote by m2 the union of the m2(r) for r = 0 , 1 , . . . , a2 — 1, we get 

TTl2 

№(t)\ndt 
2 

a2y/n 

oo 

£CL2 \/n 

exp(—Cu2) du 
4 

a2%/n 

oo 

s=l 

oo 

2a2 

exp(—Cu2)du , 

so that the condition a2 = o(a/^) implies 

oo 

tn2 

\9(t)\ndt 
2 

a2Jn 

oo 

ea2\/n 

exp(—Cu2)du + o| 
1 

a2v/n (1) 
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We now turn our attention to the mi(r) 's, the union of which is denoted by mi. 
The length of mi (r) is raí 

щ 
and for t in mi (r) we have 

I M I I 
OiT 
Û2 

airai 
2a\ 

rai 
2a2' 

so that we get 

mi 

|¥(*)|ndt 
2 

2a\ 

OO 

S=l 
exp(—Cn\ 

s 
2a\ 

)2) 

2 
expl 

Cn, 
éa2J 

as soon as exp(—Cn/(4a2)) is less than 1/2, which is the case when n is large enough. 
We thus have 

OO 

m 2 

№(t)\ndt 
2 

a2Vn 

Vn 

a2 exp I 
Cn, 
4 < 

oi 
1 

a2Vn 

Combining the contributions of the different parts of the minor arc, we get the 
following 

Proposition 1. — We have, for any e > 0 
1-e 

E 
№(t)\ndt 

2 
a>2\/n 

OO 

ea,2 y/n 

exp(—Cu )du + oi 
2 

a2Vn 

1.2. Contribution of the major arc 
Proposition 2. — Let e = 0(1/(a2n1/3)). We have 

£ 

—e 

Vn(t) exp(-2mNt)dt 
1 

ay/2irn 
exp 

(/in - N)2 
2na2 

+0(a |ne4) + O 
1 

a2\/n 

OO 

a2Vn 

exp(-Cu)du), 

uniformly in Nj where n tends to infinity. 

This proposition is an easy consequence of the two following lemmata 

Lemma 2. — Let e = 0(1/(a2n1^3)). We have 

s 

—e 

Vn(t)exp(-2iriNt)dt 
e 

—e 

exp(-27rit(nß -N)- 2ir2na2t2)dt + 0(a |ne4) , 

uniformly in N, when n tends to infinity. 
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Proof. — On the interval [—£, -fe] we use the second order Taylor expansion of 
exp(27riait) and exp(27ria2t), noticing that a\t and a2t are bounded terms. We get 

Po + Pi exp(27riait) 4- p2 exp(27cia2t) 

1 + 2mt{aipi + a2p2) - 2n2(a\pl + alp2)t2 + 0(a | \ t \z) 

exp(2mut - 2n2a2t2 + 0(al\t\3)) 

The integrand in the LHS of the formula in Lemma 2 can thus be written as 

exp(27ri(n/i - N)t - 2ir2na2t2 + 0{na\\t\3)). 

which is also equal to 

exp(27ri(n/i - N)t - 27T2na2t2) + 0 (na | e3) , 

since na2e3 is bounded. The lemma follows by integrating over [—e,e]. 

Lemma 3. — We have 

\t\>e 

I exp(2nti(np, — N) — 2n2na2t2) dt 
2 

a2Jn 

oo 

€T02\/n 

exp(—Cu )du. 

Proof. — We first notice that a2 > a2_£0£2_ 
Z P0+P2 We have 

a2 Pia2 +p2a\ - (pioi + p2a2)2 

PiQiiaì - 2 
P2 

p 
aia2 P2Ç2 

PiQi 
al 

PiQi((ai 
Pi 
Qi 

a2)2 /P2^2 
PlQl 

Pi 
q2 

al 

al PiQ2qi -PiP2 

Qi 

al -lP2)P2 
Qi 

al P0P2 
Po + P2 

This inequality on a2 implies 2-k2o2 > Ca\. 
We thus obtain 

l*l>* 

I exp(2mt(np, — N) 2<K2na2t2\dt 

\t\>e 

exp(-27T2na2t2)dt 

2 

00 

€ 

exp(—Cnalt2)dt 

2 

a2Jn 

00 

£Ct2 Vn 

exp(—Cu2)du . 
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The proof of Proposition 2 follows from Lemma 2, Lemma 3, and the well-knowi 
relation 

"OO 

— OO 
exp(27Ttt(n/i — N) — 27T2na2t2)dt 

1 
oV2rn 

exp( 
(fin - N)2 y 

2na2 

1.3. Proof of the Theorem when a2(n) = o(y/n). — According to Proposition 
1 and Proposition 2, we merely have to notice that a and a2 have the same order of 
magnitude (we already showed that a2 > a2pp0°fp2 ? and the relation a2 < a2 is trivial), 
and to show that one can find a function e such that: 

(i) ea2\fn —» oo, 
(ii) a*ne*=o(^) 

(iii) a 2 n 1 / 3 e - 0 ( l ) . 

As we already mentioned it, the quantity e l 
a2(n)n2'5 

satisfies these three condi

tions. 

2. The case when a2 (n)/y/n tends to infinity. 

For non-negative integers ko, fai fa we define 

P(k0,fa,k2) 
(k0 + fa + k2)' 

kolh\k2\ 
«0 „JM «2 PO Pi P2 

and we extend this definition by letting the RHS be 0 when at least one of the fc's is 
negative. 

The second case of the theorem easily follows from the following lemma. 

Lemma 4. — Let a\(n) and a2(n) be positive coprime integers. For an integer N, we 
define 

£(N) = {(k0jfa,k2),k0 + fa +k2 n and faai(n) + k2a2(n) = N 

Let if be a function that tends to infinity with its argument. Uniformly in N, a\(n) 
and a2(n) we have 

lfcl -Pin|>v(n)\/w 

P(k0,fa,k2) - o 1 
n 

Proof — We consider the fundamental triple (&q, &|) *n ^ ( ^ 0 satisfying —a2/2 < 
k{ — pin < a2/2. We have 

£(N) = {(kZ - s(a2 - at),kt + sa2,k2 - sai), s € Z}. 

We remember for later use that the second components of two triples in £(N) differ 
by a multiple of a2, and that for any given fa, there exists in £(N) at most one triple 
the second element of which is fa. 

Let now fa be a given non-negative integers less than n. We define 

Po Po 
P0+P2 

P2 
P2 

Po + P2 
ko \(n-ki)po\, k2 (n - fa)p2\ 
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By a simple property of the binomial distribution B(n — ki,p0), we have 

(n - fci) 
k0lk2l Po °pT 0 

n — ki) 
k0\k2\ Po Pi i 0 

1 
y/n — ki, 

Prom this follows that for (ko,ki,k2) in £(N) we have 

n! 
fc0!fci!fc2! Pl°P?P? 

n! 
fci!(n- kx)\ rf1 

(n-hY. 
k0\k2\ p£°pt 

P0°PK22 
P0°PK22 

O 
fci!(n-fci)! Pi 

t « 2 
p t p t 

1 
y/n — k\ 

O 
ki\{n — k\) 1 Pi (Po +P2] k0 + k2 1 

\/n — ki 

O 
1 

\ /n — k\ 
nl 

hlin-ki)] 
Pklqrkl 

Using the properties of the terms k\ in the triple (ko,ki,k2) belonging to £{N), 
the series 

(k0,klyk2)££(N) \k1 -P1n\><f>(n)y/K 
P fei, Ar, fe. 

is - up to a constant factor - at most equal to its largest term, which is o(^) . 

3. The case when a2(n)/yfn tends to a posit ive l imit. 

We retain the definition of P(&o, ^2) and £(N) introduced in the previous sec
tion, and notice that Lemma 4 may still be applied in our present case, as well as 
in the description of £(N) in terms of the fundamental triple (k^ki^k^) satisfying 
—a2/2 < kl — npi < a2/2. We further write k = (k0lki,k2). Let (p(n) = n1/10; we 
have 

k€£(AT) 

P(k) 
k<E£(iV) 

exp(Q(k)) 
27rnv/p0PlP2 ! 

k££ (N) \ki—npi\<ip(n)^/n I k2 — np2 I < <p(n)sfn 

P(k) 
exp(Q(k)) 

27rnv/p0PlP2 

k€£(iV) Ifc-t —npi I >̂ >(n)v/n 

P(k) 
к€£(АГ) 

\ko-npn\<ip(n)y/ñ 

P(k) 

O 1 

n k6£(N) 
|fcx -nP1 |>y(n)Vn 

exp(Q(k) O 
1 
n kĜ (iV) 

|fcl —np1\<ip(n)y/n 
\k2 — np2\><p(n)y/n 

exp(Q(k)) 
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By Lemma 4, the second and the third terms in the RHS are o(l/n). The fourth 
term is easily dealt with since we have 

k€£(*0 \kl-npi \>ip{n)y/n 
exp(Q(k)) 

lfcl -npi\>v(n)yn 

exp J 1 
2npi (fcl ™ Tipi)2 

2 

*>(v(n)-l)(v^r/a2) 

exp 
1 

2pi 
(s - I)2 4" 

n 
o(l). 

Concerning the fifth term in the RHS, we first notice that the growth condition on a2 
implies that there are 0(cp(n)) elements k in £(N) such that \k± — npi\ < (p(n)y/n. 
We thus have 

\k1 -np1 \<ip(n)y/n 
\k2-np2\><p(n)y/n 

exp(Q(k)) O ip(n) exp 
1 

2np2 
(p2(n)n) o(l) . 

We now turn our attention toward the first and main term. We are going to prove 
that the conditions k G £(N), \k± — npi\ < <p(n)y/n, \k2 — np2\ < tp(n)y/n imply 

P(k) 
1 

27TnA/poPlP2 
exp(Q(k)) - o 

1 
n<p(n) 

which is sufficient to induce 

k€£(iV) 
P(k) 

k€£(iV) 

exp(Q(k)) 
27rn^/poPlP2 

- о 
1Ч 
n 

which is the last part of the Theorem. We notice that the conditions we have stated 
imply \ki — npi\ < 2(p(n)y/n for i = 0,1 and 2. 

We use Stirling's formula in the shape 

si \f2Txs 
г 
S e 

s 
6° with |es | 1 

125 
We have 

P(k) 1 
2ir 

n 
koki k2 

npo 
ko 

ko npx 
k1 

mm 
k2 

k2 exp(Oi 
1 
n 

1 
27mx/PoPlP2 

np0 
ko 

¿0+1/2 npx 
ki 

¿1+1/2 np2 
k2 

¿2+1/2 exp O 1 
n 

A second order expansion easily leads to 

log 
np. 

k 
¿+1/2 (fc + l /2) log( l 

np — k 
k 

np — k -
(np — k)2 

2np 
•O 

cp(n)s 
Vn 

since the sum (np\ — k\) + (np2 — k2) -f- (np3 — ¿3) is 0, we have 

p(k) 
1 

2тгп%/р0Р1Р2 
exp(Q(k)) 0 

,^(n)3 
«3/2 
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which is stronger that what we need as soon as <p(n) = o(n1/8). The Theorem is now 
completely proved. We can even notice that the error term in the last case can be 
further reduced. 

4. Isomorphism between series of discrete random variables 

In the case when a2(n)/y/n tends to infinity with n, the Theorem tells us that at 
most one term (the fundamental one, if any) is meaningful in the series 

P{Vn = N} 
ueS(N) 

P(k) . 

This situation is similar to a two-dimensional one: let (Cn,fc) be a family of in
dependent bivariate random variables taking the values (0,0), (0,1) and (1,0) with 
respective probabilities po,Pi and p2. Letting (pn = £n,i + - • • + Cn,n? we have 

PWn = (kuk2)} P(n - ki - k2,ki,k2). 

We thus would like to consider that the sequence of linear maps JR2 a—£ E defined 
by a(n).x = a\(n)x\ +a2(n)x2 induces an isomorphism between the series (£n,&) and 
(Cn,fc); this notion, for which we now suggest a precise definition, bears some similarity 
with the one that has been introduced by the second named author when dealing with 
additive problems (cf. [1]). Let us first recall this notion. 

Let A and B be two finite subsets of two monoids (25, +) and (F, + ) , respectively, 
and let s be a positive integer. We denote by sums the map from Es to E defined 
by s u m s ( n i , . . . , ns) = rii 4- • * • + nsy and, since there is no fear of confusion, we use 
the same symbol to denote the sum of s elements of F. We let sA denote the set 
sums(As). The sets A and B are said to be s-isomorphic if there exist a bijection 
<p : A -» B and a bijection ipW : sA —> sB such that 

Vx G s A : sums o (p0s o sums 1({x}) {¥><•>(*)} 
Vy G sB : sum, o (<^_1)®s o sumj1({y}; №>)-4v)} 

A straightforward way to extend this definition to the ^-isomorphism of probability 
measures P and Q, supported respectively by A and P , is to request that A and B 
are s-isomorphic and that the image of P by ip is Q and the image of P*s by is 

For practical purposes, this definition is however too strong, as we shall show after 
stating a convenient definition of a weaker concept. We may use to our benefit the 
fact that we measure sets, by allowing the loss of some points in sA and sB with a 
total measure not exceeding some given 8, and allowing also the preservation of the 
measure by (p^ to be approximate, up to some given e. This leads to the following 
definition. 

Definition. — Let P and Q be two probability measures with finite supports A and 
B in monoids (25,+) and (F, + ) , respectively. Let s be a positive integer and S and 
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e be two non-negative real numbers. The measures P and Q are said to be (s,6,e)-
isomorphic if there exists a bijection (p : A —> B, two subsets C sA, B^ C sB 
and a bijection <pW : A^ —> B^ such that: 

(i) P*S(A^) >l-ô, Q*s (£<*>) >l-ô, 
(ii) Vx € A<<s> : sum.oVj®»o8um71({x}) = {<p<~s>(x)}, Vi, € ß(s) : sumso(op-M®so 

Sum71({2/}) = {(VW)-1(2/)}, 
(iii) Vx e A(s) : \P**({x}) - Q*s(Ws>(x)})\ < e. 

We first notice that when (ii) is satisfied, (iii) is equivalent to 

(iii') Vy € B « : \Q*°({y}) - P*s({(^s))-Hy)})\ < e, 
which implies that when P and Q are (s.8, e)-isomorphic, so are Q and P. 

When A and B are exactly the support of P and Q, the (s, 0,0)-isomorphism is exactly 
the strong isomorphism we introduced at first. 

As an example, we consider the case where E — E, F = E2, A = {0, l ,n},£? = 
{(0,0), (0,1), (1,0)} with uniform measures, which we denote by P and Q, respec
tively. The map <p : A -¥ B defined by cp(0) = (0,0), ^(1) = (0,l),<p(n) = (1,0) 
naturally extends to sA with 2 < s < n and defines an (s,0,0)-isomorphism from A 
to B . For s = n, one difficulty comes from the fact that n has n -f 1 representations 
in nA (namely, 1 + 1-1 h i and the n permutations of n + 0-I h 0), which corre
spond to the unique representation of (0, n) in nB and the n representations of (1,0) 
in nB. Of course, from the beginning we knew that there is non (n, 0,0)-isomorphism 
between A and B since nA and nB do not have the same cardinality; but we were 
not far from succeeding. 

There are indeed ways to build satisfactory approximate isomorphisms between A 
and B. One way is to consider A^ = nA\{n} and B^ = n P \ { ( 0 , n ) , (1,0)}; in this 

way, we get a (n, (n + l)3_n,0)-isomorphism. 

Another way to proceed is to keep the n representations of (1,0) in n B , and take 
I?(n) = nB\{ (0 ,n )} ; this implies that we have to keep n in nA, with its (n + 1) 
representations; we thus take A^ — nA. We are losing one representation on the 
£-side (local side), but winning n of them on the (5-side (global side), and finally obtain 

a ^n,3_n,3_n^-isomorphism. 

In general, the problem will be to find a trade between the 6 and e-sides, which 
play in opposite directions. For example, when dealing with sequences of probability 
measures (Pn) and (Qn), a natural choice will be to obtain (n,<L,£n)-isomorphisms 

such that <L -> 0 and en = c maxsup (Pln({x\), Qtn(ix})) 
X 

we now turn our attention to our main result. 
First, this notion of isomorphism helps us to understand that the conditions a\ — 0 

and (ai,d2) coprime induce no real restriction, since two random variables £ and £, 
taking respectively the integral values 

(«0,01,02) and (0, 
ai - a0 

gcd(ai — ao, «2 — oo) 
Ü2 — ao 

gcd(a\ — ao,a2 — a0) 
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with the same weights (po5Pi5P2)5 have laws which are (/i, 0,0)-isomorphic for any 
h>l. 

Second, in the case when a^ip^jy/n tends to infinity with n, we can indeed show 
that £n,i is (n,Jn,£n)-isomorphic to the two dimensional integral valued random vari
able rj taking the fixed values (0,0), (1,0), (0,1) with respective probabilities po5Pi5P2, 
for some Sn = o(l) and en = o ( ^ ) . This requires some explanation. We let 

A = {(0,0), (1,0), (0,1)}, B = {0,oi(n),a2(n)} 
Pn be the law of £n,i, Q be the law of rj , 
ip : A -> B such that <p(0,0) = 0, <p(l,0) = ai, <p(0,1) = a2 
A(n) = {(*i,fe): -a2/2 < fci — pin < a2/2, кл + ко < п Y 
f(n) A(n) • n B such that <p(fci, fc2) k1a1+k2a2 

5(n) = <p<n>(A(n)) , 

and we check that we have an isomorphism, 
(i) The set A^ contains 

{{ki,k2)/ - a2/2 < ki - pin < a2/2, - a 2 / 2 < k2 - p2n < a2/2} ; 

since a2(n)/yfn tends to infinity, we have p*n(^4(n)) _» l when n tends to 
infinity. Now let AT be in B^n\ By the definition of B^n\ there exists a triple 
(&o, ki,k2) such that (&i, fc2) is in A^n\ k\ai + fc2a2 = iV and k&-\-ki + k2 = n. 
The measure Q*n({N}) is the sum over all the triples (&o,&i,&2) such that 
kidi -f fc2a2 = N and &o + &i + k2 = n of the expression J^T^JJ^P^P^P^2] but 
this last expression is P*n({(fci, fc2)}). We thus have 

Q*n(#(n)) NEB(n) Q*n N '(*i,*2)€A(»: p*n {(fci.fca); 
P*n(.Aw) 

(y; 
and so we have Q*n(P^n') —> 1 when n —> oo. 
Let (fei, k2) be in .A^. The only way to write (fci, k2) as the sum of n elements 
of A is to take k\-times (1,0), fc2-times (0,1) and (n — k\— fc2)-times (0,0). This 
leads to sumn o ip®s o sum"1 ({(&i, k2)}) — {k\a\ 4- k2a2}. 

(iii) 

Now let N be in B^K By the definition of P w , there exists (fc1? k2) in A^ 
such that N = kiai -h k2a2. But there exists at most one pair (ki,k2) with 
N = fciai + &2a2 and —a2/2 < fci — p in < a2/2 (since a i ,a2 are coprime). This 
implies that sumn o (<^-1)0s o sum"1 ({AT}) consists of a single pair (fei, k2). 
The result of the theorem states precisely that for N in B^n\ written as kiai + 
k2a2 with (ki,k2) € A^n\ we have 

Q*n({N}] P*n (k1,k2) o 1 
n 

We may further notice, which is not asked in the definition, that when N is 
not in B^ we have Q*n({iV}) = o(^) and when (ki,k2) is not in A^n\ we have 
P*n({(kuk2)}) = o ( i ) , so that nA\A^ as well as nJ3\P<n> is not only globally 
small (condition (i)) but also locally small. 
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ON BOUNDS FOR THE CONCENTRATION FUNCTION. 1 

by 

Jean-Marc Deshouillers, Gregory A. Freiman & Alexander A. Yudin 

Abstract. — We give an upper bound for the concentration function of a sum of 
independent identically distributed integral valued random variables in terms of a 
lower bound for their tail, under the necessary extra condition that the random 
variables are not essentially supported in a proper arithmetic progression. 

1. Introduction 

Let Xi,..., Xk,. · · be independent real random variables and Sn 

n 

k=l 
Xk It is 

well known that, in general, the distribution of Sn spreads out as n grows. When all 
the -XV s are square-integrable, the relation a2(Sn) n 

k=l 
<r2{Xk) is a way to express 

this fact. In the general case, Doeblin and Levy [2] were the first to measure this 
phenomenon in terms of concentration functions. The concentration function of a real 
random variable X is defined by 

Q(X;X) supP 
t 

t X t + x for A 0 

The results of Doeblin and Levy have been successively improved by Kolmogorov [6], 
Rogozin [12] and Kesten [5]. Let us quote a corollary to Kesten's result, for the case 
when the X&'s are identically distributed. 

Theorem (Kesten [5], Corollary 1, p. 134)). — There exists an absolute constant C such 
that for any set of independent identically distributed random variables X\,..., Xn 

1991 Mathematics Subject Classification. — 60 E15, 60 E10, 11 B05, 11 Z05. 
Key words and phrases. — Sums of discrete random variables; concentration function, DLKRK-

inequalities, characteristic function, additive number theory. 
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and any 0 • 2L we have 

(1.1) Q{Sn;L) C 
l 

A 

Q(Xi;L) 

n l-Q(Xi;\) 

Let us consider the case when the -XV s follow a Cauchy law C(l) , where the Cauchy 
law C(a) with parameter a > 0 has density a/(^{t2 + a 2 ) ) . One readily sees that for 
L — 1 and 0 < A < 2, the right hand side of (1.1) has order of magnitude ( A ^ n ) - 1 

and is never o(l /y / n). However, the random variable Sn follows the law C(n), and so 

Q(S»;l) 
2 
7T 

arctan 
1 

2n 

1 

717T 
l + o(l) 

The dispersion (in the standard sense) of 5 n is due to the dispersion of the X^'s 
themselves; but the dispersion of the -XVs is not reflected in a small concentration 
Q(Xi;X) for small A's, but indeed for large A's: the law of X\ has a large tail, as can 
be seen from the fact that X\ is not integrable. 

A connection between the moments of the Xk's and the concentration of their sums 
has been provided by Esséen [3], who proves that the integrability of \X\\r for some 
0 < r < 2 implies the lower bound 

Q(Sn;L) K(r)L L + ( n / x r )
1 / r i 

where ixr — inf E{\X\ — a\r) and K(r) is an explicitly given expression that only 
a 

depends on r. 
We aim at giving an upper bound for the concentration function of Sn in terms 

of the tail of the distribution of the Xfe's. There is however a difficulty that will be 
better seen on discrete random variables. Let us consider an integer q > 1 and two 
integral valued random variables X% and X[ such that 

P Xi = 0 P x[ = o; 1/2 

P X[=l P xx = e/q 0 when q divides £, 

0 otherwise . 

We clearly have Q(X\; 1) = Q(X[; 1) = 1/2 and the tail of the distribution of X[ is 
heavier than that of X\. However, if we consider two sets X\,..., Xn and X[,..., X'n 

of n independent identically distributed random variables, their sums Sn and S'n are 
such that Q(Sn; 1) = Q(S'n; 1); we have indeed P{Sn = N} = P{S'n = qN} and so 

Q(Sn;l) maxP 
N 

Sn = N max F 
M 

S'n = M Q(S'n;l) 

We give in this paper an upper bound for the concentration function of a sum of 
independent identically distributed integral valued random variables in terms of the 
measure of their tail, under the assumption that the support of the random variables 
is not essentially contained in a proper arithmetic progression. 

Theorem 1. Let log 4 
log3 a 2, E 0, A 1 and a 0 be given real numbers. 

Let n be a positive integer and X\,..., Xn a set of independent identically distributed 

ASTÉRISQUE 258 



ON BOUNDS FOR THE CONCENTRATION FUNCTION. 1 427 

integral valued random variables such that 

(1.2) maxg>2 maxs mod q >£=s(mod q) 
p Xx=i 1 - £ 

(1.3) ML A Q(Xi;L) 1 - aL~" 

Then we have 

(1.4) Q(Sn;l) cn-1/o 

where c depends on o,e,A and a at most. 

The main aim of this paper being to illustrate the use of inverse additive results to 
probability theory, we kept the statement and proof of our main result as simple as 
possible. We have thus restricted our attention to integral valued random variables, 
have not considered the general case when 0 < a < 2, and have not made explicit 
the dependence of c on the parameters £, A and a. Let us simply notice here that 
Theorem 1 is valid under the condition 1 < a < 2: this depends on the fact that, 
under iterated applications of Lemma 3, the constant Sk that arise may be improved 
to (4 — e) f c, an observation which is basically due to Lev. However, when a < 1, 
new phenomena enter the matter (generalized arithmetic progressions); we shall soon 
return to this topic. 

The statement of Theorem 1 becomes false if condition (1.2) is suppressed. Of 
course, if the constant c in (1.4) is allowed to depend on the law of Xi , then condition 
(1.2) is no longer necessary. 

The proof of this theorem may be summarized as follows. The concentration 
Q(Sn; 1) is majorized by the mean value of the modulus of the characteristic function 
of 5 n ; this latter is the n-th power of that of Xi , which we call cp, so that the prob
lem reduces to the study of the large values of <p. Here we use two ideas that have 
been introduced by Preiman, Moskvin and Yudin in [4] in the context of local limit 
theorems. The first one, which can be seen as a consequence of Bochner's theorem, 
is that (p(ti 4- t2) is large as soon as both (f(ti) and ^(¿2) are large. The second one 
comes from the structure theory of set addition: either the set E of the arguments 
of the large values of (p is small, or it has a structure. In the first case, ip cannot 
be too large, and so we get (1.4). It remains to exclude the second case; were it to 
occur, then, as we shall see, either E would contain the vertices of a regular polygon, 
which would violate (1.2), or it would contain a large interval around 0, which would 
contradict (1.3). 

Problems of estimating the measure of the set of large values of the characteristic 
function have also been studied by Arak and Zaitsev [1]. This gave them the possibil
ity to solve a famous problem of Kolmogorov on the estimation of the approximation 
of the n-th convolution of any probability distribution by that of an infinitely divisible 
law. 

As a warm up, and in order to introduce some tools and techniques, we devote the 
second paragraph to prove a special case of the Doeblin-Levy-Kolmogorov-Rogozin-
Kesten (DLKRK) inequality which stems from the same ideas and follows [10], [11]. 

The interested reader will find questions of a similar flavour in the classical mono
graphs by Petrov [9] and the more recent one by Ledoux and Talagrand [7]. 
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2. A DLKRK inequality for discrete random variables 

Theorem 2 (DLKRK). — Let X\,..., Xn be independent identically distributed inte
gral valued random variables, and let Sn be their sum and p = max P{ J i = N}. For 

every integer N, we have 

P Sn N 40 P 

n l-p 

Let us start by giving some notation that will be used in this paragraph and the 
next. We let 

P£ P Xi £ for any £ € Z 

<p(t) 
lEZ 

Pi exp(2irit£) for t E T = E/Z 

E(0) t e T <p(t) COS 6 for 0 e TT/2 

0* be such that coso* = min \(p(t)\ and 0 < 6* < TT/2 

The proof of Theorem 2 will be based on the following two results, for the first of 
which we give a sketch of a proof. 

Lemma 1 (cf. [4]). For 0i 0, 02 0 and 0i + 02 TV 
2 

we have 

E{01)+E{02) E{0x+02) 

Proof. — For j = 1,2, we consider tj in E(0j), and let = argt</?(tJ) and Xj = 
• <P(*3-i) 2g — iocj We use the Cauchy inequality to get an upper bound on 

|Ai<p(*i) A2</?(-£2) 2 

£ 
P£ Ai •pee2"utl A2 

fP£e 2iriU2' 
2 

Lemma 2 (Macbeath-Kneser Theorem, cf. [8], p. 13-14). — Let E\ and E2 be two non
empty closed sets inT. We have 

Ei 4- E2 min 1 Ex E2 

where A represents the Haar measure of A inT. 

Proof of Theorem 2. — We may of course assume that p is strictly less that 1 and so 
0* is strictly positive. Our first task is to show that 

(2.1) E(9) 12 
6p 

l-p 
for e e 0, 0 7 2 

and 

(2.2) E(0) P, cos2 9. for 0€]O, 7T 
2 
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By the definition of Ö*, we have 

cos2 6* 

T 

<P(t) 2 dt 
£ 

P 2 
I P 

l 
Pi P 

whence 

(2.3) 9* sine* 1 - cos 2 9* 1-p 

Now let e be in ]0,0*/2[, and let M = [9*/9]; we have M > 2. We may write 

P 

T 

p(t) 2 dt 

M 

m=l 'cos(mO) <p(t) ;cos((m—1)0 

p(t) 2 dt 

M/2 

m=l 

jB(mö) E m — 1 0 cos2 m# 

and by appealing to Lemma 2, we get 

P E(9) 
M/2 

m—1 

cos2 m6 

E{9) M/2 1 
2 

M 

6 
E(0) 

0* 
120 

E{9) 

This last inequality and (2.3) imply (2.1). Inequality (2.2) simply follows from 

P 
T 

<p{t) 2 dt E{9) cos2 e 

For every integer iV, we have 

P Sn N 

T 

(fn(t) exp -27riiV£ dt 

T 

<p(t) 
ndt 

By change of variable, and then integration by parts, we have 
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T 

vit) ndt 
TT 2 

0 

cos n 9d E{9) 

II 2 

0 

n cos n 1 6 sin 6 E(6) de 

We now use (2.1), getting 

e* 2 

o 

ncos n 1 Osino Eiß) de 

12p 
1-p 

TT 2 

o 

cos n ede 

12p TT/2 
1-p n 

On the remaining interval ö*/2,TT/2 we use (2.2), which leads, for n > 3, to 

TT/2 

0* '2 

n cos n 1 e sin 0 P 
COS2 0 

d0 n 
n - 2 p 

n/2 

0* '2 
n - 2 cos n " 3 0 sin ede 

np 
n-2 

cos n ~ 2 
0* 
2 

np 
n - 2 

cos— 2 1 - p 
2 

Prom the inequality a: cos n x 1 
N we get 

w/2 

0* 2 

n cosn-1 0sin 0 E(0) dO 

2np 
n-2 n - 2 i - p : 

12p 

n 1-p 
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We have completed the proof of Theorem 2 when n > 3. For n < 2, we simply 
have to notice that P Sn N P 40p 

n l-p 

3. Proof of Theorem 1 

The letter c (with or without indices) always represents a constant that depends 
on cr, e, A and a at most. The value may change from one occurrence to the next. 

The key ingredient which will play the rdle of Lemma 2 is the following result, 
which will be applied with k = 22/<r. 

Lemma 3 (Freiman - Moskvin - Yudin [4]). — Let 2 < k < 3; there exists a positive 
real number p, — p,(k) such that for any closed set F in T, symmetric with respect to 
the origin and satisfying: 

\F µ and 2F k F 

there exists a positive integer q such that 

q-l 

r=0 

r 
q 

F 

q 
r 

m 

F 

q 
3F 

We give two further results connecting the values of the characteristic function 
with the concentration of the associated distribution, the second one being of an 
arithmetical nature. 

Lemma 4. — Let a and L 1 be two positive real numbers. If im 1 - a for all t 
in E 

2L 
1 

2L 
then Q(Xi;L) l - 6 a . 

Proof. — Let us write Q = Q(L), and define XQ the supremum of 

x P Xi X 1-Q 2 

Since x P Xi < x is continuous from the right, we have P X\ < xo i-Q 2 
On the other hand, for x < XQ, we have 

P X1 x + L l-P x Xi x + L P Xi X i-Q 2 

and, since P{X\ > x + L} is continuous from the left, we have P{Xi > XQ + L} > 
( l - Ç ) / 2 . 

Let us define 

p-(t) 

k<xo 

Pk exp(2irikt) p+(t) 

£>x0+L 

pe exp(27ri£t) 

and <fo(t) 
x0<m<x0+L 

Pm exp(27rimt) 
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Let us denote by I the interval 1 
2L 

1 
2L 

By the Schwarz inequality, we get 

L 

I 

p-(t) <P+(t) dt 
2 

L 

I 

p-(t) <P+(t) 
2dt 

<p2-(0) ^ ( 0 ) -2L 

k<XQ £>x0+L 
PhPt 

I 

cos '2ir(k - £)t) dt 

<p2-(0) -v4(0) 
2 

7T 
p ( 0 ) ^ ( 0 ) 

¥>-(0) <p+(o) 2 2 
2 

7T 
¥>-(o)¥> (0) 

V-(0) p+(ç) 2 1 2 
2 

7T 

^_(0)<^+(0) 

>-(0) V+(0) 2 

<^-(0) + ^+(0) 2 1 1 
1 
7T 

< W 0 W 0 ) 

; ^ _ ( O ) + ^ + ( O ) 2 

2 

and so we get 

L 

I 

<p-(t) + <p+(t) dt ^ _ ( 0 ) + ^ + ( 0 ) 
2 

3 
^_(0)<^+(0) 

<^_(0)+^ + (0) 

This leads to 

1 - a L 

I 

<p(t) dt <Po(P) -<M0) V+(0) 
2 
3 

<^_(0)<P+(0) 
A>_(0) *>+(0) 

Since the minimum of #2/ 
x+y 

under the conditions i-Q 
2 

x, y l+Q 
2 

and 1 — Q 

a: + y 1 is l-O 
4 

we have 

I-a 1 
2 

3 
1 - Q 

4 

which implies 

i - Q 6a. 

Lemma 5. — Le£ q > 1 be an integer. We have 

1 

9 

g-l 

r=0 
p 

r 
q 

|2 max 
s fesfmod g) 

pl 

Proof. — We have 

p r 

e 
pi exp 2mt r 

Q 

q-1 

s=0 
exp 2ms 

r 
q 

Ps 
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where Ps 

£=s mod q 
Pt, so that 

1 

q 

q-1 

r=0 

p r 
q 

2 D 

E 

q-1 

r=0 

q-1 

5=0 

q-1 

t=0 
exp 2TH 

r(5 - t) 

q 
PsPt 

q-1 

s=0 

q-1 

t=0 

1 
q 

q-1 

r=0 
exp 2iri 

r(s - t) 

Q 
PsPt 

q-1 

s=0 
PsPs 

max 
s mod q 

Ps 

q-1 

s=0 
Ps 

but 
q-1 

s=0 
Ps 

q-1 

s=0 l=s(mod g) 
Pi 

i 
Pi = l 

and Lemma 5 is proved. 

We keep the notation that we introduced at the beginning of section 2, and further 
let 

(3.1) 0i min 0* 4 µ 1-p 
12p e2 

1-p 
\2pA 

so that (2.1) implies that \E(Q)\ < ¡1, for 0 < 6X. 
Let us assume that there exists OQ < 9i such that \2E(0o)\ < k\E(0o)\. According 

to Lemma 3, one of the following possibilities holds true: 

(3.2) 3q 2 o 
Q 

1 
q 

q-1 
m 

E(30o) 

(3.3) E(90) E(90) E(W0) 

Let us first assume that (3.2) is satisfied. We use Lemma 5, which leads to 

max 
s fzZs{ MOD q) 

Pi mELl 

and by condition (1.2) of Theorem 1, we obtain 

cos2 30o l - e 

whence 

00 e/3 

in contradiction with the inequalities 9Q 9i e 2. 
Hence, condition (3.3) is satisfied. Lemma 4 then leads us to 

Q X1; E(90) 1 1 - 6 1 - cos(30o) 
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and by condition (1.3) of Theorem 1, 

1 - 6 1 — cos 30Q l - o E(0O) c 

whence 

a E(0O) c 6 1 - cos(30o) 

or 

(3.4) E(ßo) c0 2 
0 

er 

Let us summarize what we have proved so far, remembering that Lemma 1 implies 
2E(0) C E(20). For 0 < 0i, we have 

either k E{0) E(20) or E{&) ce2?* 

Our next step is to prove that for 9 < 9i, we have 

(3.5) E(9) fcmax c 
E(01) 

0 2/a 
a 

pi" 

Indeed, by induction, we have for any £ > 0: 

E(01/2*) max c 
E{ßx) 

e IIa 
1 

? i / 2 ' : 2/cr 

either by using 

E 01 2e+i n 
k 

E 9J21 D 
22/°-

E(91 I2l) 

or directly 
E(61/2

e+1) c(9d2t+1)2'° 

when the previous inequality does not hold. Now, for 9 < 9\, we choose £ such that 
0 ! / 2 ' + 1 9 0i/2f and notice that E(0) E(91/2

t) so that we have 

E(9) max c 
E{91 ) 

9 2 
Fl 

c 
0i/2 ' 2/cr 

fcmax c. 
£(0i ) 

0 2/cr 
1 

0!/2^ + 1 2/cr 

whence (3.5) follows. 
As in section 2, we write 

P Sn N 

T 

p(t) ndt 

II 2 

0 

n cos n 1 0 sin 0 E{9) d9 
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and we majorize \E(0)\ by (3.5) on the set [O,0il, and by (2.2) on 0i 7T 
2 

We get, for 
n > 3 

P Sn = N k max c 
S(fli) 

0 2/a 
1 

01 

0 

neos"" 1 0 sin <9-02/ad0 

n 
n - 2 

c o s n - 2 ôi 

We now find upper bounds for the terms containing 6\, as well as for the integral. 
We have 01 TT/8 so that 0 2/a 

1 
TT/8 ,2/<T and 

E(01) 
1 

cos2 0\ 
n 

cos2 7r/8 

By (2.3), we have 0* l - p E so that 0i, defined in (3.1), depends at most on 
a (and so on cr), £, A, a, so that cos n 2 0i c/n 2 

We finally have, for 1 < £ < 2 

1̂ 

0 

ncos"'1 0 sin 0-Old0 2 

7T 8 

0 

о*_1СОВп θάθ 

2 
II 8 

o 

9l-x exp 02n 
2 

dB 

2n-l/2 
OO 

0 

0 n l-1 ma 
e2n 

2 
d 0 n 

en'*'2 

where c is an absolute constant. 
We have thus obtained 

P Sn = N cn-1/0 

where c depends at most on cr, e, A and a. 

We are thankful to Ruth Lawrence for her careful reading of the paper. 
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STRUCTURE THEORY OF SET ADDITION 

edi ted b y J e a n - M a r c Deshoui l lers , B e r n a r d Landreau , 

A l e x a n d e r A . Y u d i n 

Abstract. — For a long time, additive number theory, motivated by conjectures such 
as that of Goldbach or Waring, has been concerned by the study of additive properties 
of special sequences. In the 1930?s it was noticed that the consideration of the additive 
properties of general sequences turned out, not only to be a beautiful subject for its 
own sake, but was able to lead to improvements in the study of special sequences: 
thus, in the paper founding this philosophy, Schnirel'man introduced a density on 
sets of integers, gave a general lower bound for the density of the sum of two sets, 
and applied it to the special sequence of primes to show that every integer can be 
written as a sum of a uniformly bounded number of primes. Additive number theory 
evolved towards the definition of invariants for sets of (non-necessarily commutative) 
monoids and the study of the invariants for the "sum" of different sets in terms of the 
invariants of those sets. 

A new trend appeared in the 1950's, with authors like M. Kneser and G. A. Freiman, 
which is sometimes described as inverse additive theory: knowing that the relation 
between the invariants of a family of sets and the invariant of their sum is extremal 
(or close to), what can be said on the structure of the sets themselves ? 

In the recent years, there has been a renewed interest for this approach which turns 
out to have applications to different others fields. It seemed appropriate to gather 
in a single volume 24 contemporary original research papers and 3 survey articles 
dealing with the structure theory of set addition and its applications to elementary 
or combinatorial number theory, group theory, integer programming and probability 
theory. 

Résumé (Problèmes additifs inverses). — La théorie additive des nombres, motivée 
par des conjectures telles que celles de Goldbach ou Waring, s'est longtemps con
sacrée à l'étude des propriétés additives de suites particulières. Dans les années 1930, 
on a remarqué que la considération des propriétés additives de suites générales, non 
seulement constituait un magnifique sujet en lui-même, mais en outre permettait 
des améliorations dans l'étude de suites particulières : ainsi, dans l'article fonda
teur de cette problématique, Schnirel'man a introduit une notion de densité sur les 
suites d'entiers, donné une minoration de la densité de la somme de deux suites et 
l'a appliquée à l'ensemble des nombres premiers montrant que tout entier peut être 
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représenté comme une somme de nombres premiers, avec un nombre de termes unifor
mément borné. La théorie additive des nombres a évolué vers la définition d'invariants 
pour des parties de monoïdes (non nécessairement commutatifs) et l'étude des invari
ants de la somme d'ensembles en fonction des invariants liés à ces ensembles. 

Une nouvelle tendance est apparue dans les années 1950, avec les travaux de 
M. Kneser et G.A. Freiman, que l'on désigne parfois sous le vocable de théorie addi
tive inverse : sachant que le rapport entre les invariants d'une famille d'ensembles et 
l'invariant de leur somme est extrêmal (ou presque extrêmal), que peut-on dire de la 
structure des ensembles eux-mêmes ? 

Cet abord a connu récemment un regain d'intérêt qui se trouve porter ses fruits 
dans d'autres domaines. Il a semblé judicieux de regrouper en un unique volume 24 
articles de recherches originaux et 3 synthèses ayant trait à cette théorie de la structure 
des sommes d'ensembles et ses applications à la théorie des nombres élémentaire ou 
combinatoire, à la théorie des groupes, à la programmation entière et à la théorie des 
probabilités. 

ASTÉRISQUE 258 



Content s 

Résumés des articles xi 

Abstracts .xvii 

Introduction 

G . A . FREIMAN — Structure Theory of Set Addition 1 
References . 21 

Additive Number Theory 

A. BESSER — Sets of integers with large trigonometric sums 35 
1. Introduction • • * • 35 
2. Notation and terminology 39 
3. The case of arithmetic progressions 39 
4. An upper bound for fimayi(k,u) 42 
5. Structure of K with large EK,U • • • • 45 
6. A close to maximal set 50 
7. Structure of the maximal set 60 
8. Small perturbations in ko and u 65 
9. The main theorems 69 
References • 75 

Y. BiLU — Structure of sets with small sumset 77 
1. Introduction 77 
2. Notation and conventions 80 
3. A geometric formulation of the Main Theorem — 81 
4. Iteration step and partial covering — 83 
5. Freiman's 2n-theorem 85 
6. Some lemmas 91 
7. Proof of the Lemma on Partial Covering: constructing the triple (mo, B0j(po)  

96 



vi CONTENTS 

8. Proof of the Lemma on Partial Covering: estimating (Volf?o)/A(r0) . . . . 99 
9. Proof of Proposition 4.2 (the iteration step) 102 
10. Final remarks 105 
References 106 

A. S Â R K Ô Z Y — On finite addition theorems 109 
References 126 

J . STEINIG — On Freiman's Theorems concerning the sum of two finite sets of 
integers 129 

1. Introduction 129 
2. Preliminaries 131 
3. Freiman's Theorems 133 
References 140 

Combinatorial Number Theory 

J . -M. DESHOUILLERS & G.A. FREIMAN — On an additive problem of Erdos and 
Straus, 2 141 

References . 148 

J . - M . DESHOUILLERS, G .A. FREIMAN, V . Sôs & M . T E M K I N — On the structure 
of sum-free sets, 2 149 

1. Introduction 149 
2. Notation - General results • 150 
3. Contribution to the proof of Theorem 1.1 .153 
4. On the location of m in [1, M/5] 154 
5. On the location of m in [M/5, A] 155 
6. The structure of A when its minimal value is close to M / 5 156 
7. Some properties of A when m is small 157 
8. End of the proof of Theorem 1.2 159 
References • 161 

G . A . FREIMAN, L . L O W &; J. P I T M A N — Sumsets with distinct summands and 
the Erdos-Heilbronn conjecture on sums of residues 163 

1. Introduction • 163 
2. Sums of distinct elements from a set of integers . . . 166 
3. Sums of distinct summands from a subset of Fp 167 
4. Postscript on the Erdôs-Heilbronn conjecture 172 
References 172 

F . HENNECART, G . R O B E R T & A . Y U D I N — On the number of sums and 
differences 173 

1. Introduction • • • 173 
2. The convergence of an 174 

ASTÉRISQUE 258 



CONTENTS vii 

3. The upper bound 176 
References 177 

V.F . L E V — The structure of multisets with a small number of subset sums . . 179 
1. Notation and definitions 179 
2. The main result 180 
3. Small values of C 181 
4. More lemmas and properties of P(A) 183 
5. Proof of the main theorem 185 
References 186 

E. LIPKIN — Subset sums of sets of residues 187 
References 192 

M . B . NATHANSON h G . TENENBAUM — Inverse theorems and the number of 
sums and products 195 

1. A conjecture of Erdôs and Szemerédi 195 
2. Product sets of arithmetic progressions 197 
3. Application of some inverse theorems 200 
4. Open problems 202 
References 204 

J-L. NICOLAS — Stratified Sets . . 205 
1. Introduction 205 
2. Description of a stratified set 206 
3. A conjecture about admissible sets with maximal size 210 
4. How many stratified sets are there ? 210 
References 215 

Y . STANCHESCU — On the structure of sets of lattice points in the plane with a 
small doubling property 217 

Notation 217 
1. Introduction 218 
2. Main Result 219 
3. Some Lemmas 222 
4. First Case : fc2 = min(&i,k2lk3) 227 
5. Second Case : k2 = max(&i, &2, £ 3 ) • • • • • • • 227 
6. Third Case : k3 < k2 < h 228 
References • 240 

Algebra 

Y . BERKOVICH — Non-solvable groups with a large fraction of involutions . . . . 241 
References 248 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



viii CONTENTS 

Y . BERKOVICH — Questions on set squaring in groups 2 4 9 

References 2 5 2 

S. B R O D S K Y — On groups generated by a pair of elements with small third or 
fourth power 2 5 5 

1. Introduction 2 5 5 
2 . Identification graphs and their properties 2 5 6 
3. Identification patterns and their universal groups 2 5 8 
4 . Main results 2 6 1 
5. Appendix 2 6 4 
References 2 7 8 

Y . O . HAMIDOUNE — On small subset product in a group 2 8 1 

1. Introduction 2 8 1 
2 . The connectivity of a relation 2 8 4 
3 . Some basic additive inequalities generalised to relations 2 9 0 
4 . The critical inequalities 2 9 5 
5. The Vosper inequality 2 9 9 
6. The critical pair theory 3 0 0 
7. Diagonal forms over a division ring 3 0 4 
8. An application to networks 3 0 5 
References • 3 0 7 

M. H E R Z O G — New results on subset multiplication in groups 3 0 9 

1. Deficient squares groups 3 0 9 
2 . Squaring bounds in groups 3 1 0 
3. Deficient products in groups 3 1 2 
4 . Product bases in finite groups 3 1 3 
5. Some open problems 3 1 4 
References 3 1 4 

V.F . L E V — On small sumsets in abelian groups . . . 3 1 7 

1. Introduction 3 1 7 
2 . Auxiliary results 3 1 8 
3 . Proof of the Main Theorem . . . . . . . . 3 2 0 
References 3 2 1 

I . R U Z S A — An analog of Freiman's theorem in groups 3 2 3 

References 3 2 6 

Coding Theory 

G E R A R D COHEN & GILLES Z E M O R — Subset sums and coding theory 3 2 7 
1. Introduction 3 2 7 
2 . Coding-theoretic formulation of problems 1-4 3 2 8 

ASTÉRISQUE 258 



CONTENTS ix 

3. Problem 1 3 3 1 
4 . Constrained distances 3 3 3 
5. Intersecting codes 3 3 8 
References 3 3 9 

Integer Programming 

M . CHAIMOVICH — New Structural Approach to Integer Programming: a Survey  
3 4 1 

1. Introduction 3 4 1 
2 . General idea of the application of the structural approach to IP 3 4 2 
3. Analytical method for structural analysis of the Subset-Sum Problem 3 4 6 
4 . Algorithms for the Subset-Sum Problem based on the structural characterization  

3 5 1 
5. Application of an analytical structural approach to other IP models . . . . . . 3 5 5 
6. Conclusion 3 6 0 
References 3 6 1 

M . CHAIMOVICH — New Algorithm for Dense Subset-Sum Problem . . . . . . . . . . 3 6 3 

1. Introduction 3 6 3 
2 . Refinement of the structural characterization of the set A* of subset-sums 

3 6 4 
3. Algorithm 3 6 8 
References 3 7 2 

A . PLAGNE — On the Two-Dimensional Subset Sum Problem 3 7 5 
1. Introduction 3 7 5 
2 . Preliminary lemmas 3 7 8 
3. Proof of Theorem 1 4 0 1 
4 . Proof of Theorems 2 and 3 4 0 7 
References 4 0 9 

Probability 

J . - M . DESHOUILLERS, G . A . FREIMAN & W . M O R A N — On series of discrete 
random variables, 1: real trinomial distributions with fixed probabilities . 4 1 1 

1. The case when a2(n) = o{y/n) 4 1 3 
2. The case when a2(n)/yfn tends to infinity 4 1 7 
3. The case when a2(n)/y/n tends to a positive limit — 4 1 8 
4 . Isomorphism between series of discrete random variables 4 2 0 
References 4 2 3 

J . - M . DESHOUILLERS, G . A . FREIMAN & A . Y U D I N — On Bounds for the 
Concentration Function. 1 4 2 5 

1. Introduction . 4 2 5 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



X CONTENTS 

2. A DLKRK inequality for discrete random variables 428 
3. Proof of Theorem 1 431 
References 435 

ASTÉRISQUE 258 



RÉSUMÉS DES ARTICLES 

Structure Theory of Set Addition 
G R E G O R Y A . FREIMAN 1 

Nous présentons une synthèse des résultats fondamentaux de la théorie 
connue sous le nom de "structure theory of set addition" et de leurs applications 
à d'autres domaines. 

Sets of integers with large trigonometric sums 
A M N O N BESSER 3 5 

Nous cherchons à optimiser, pour un entier k et un réel u fixés, sur tous 
les ensembles K = {ai < < • • • < au} C Z , la mesure de l'ensemble des 
a G [ 0 , 1 ] tels que la valeur absolue de la somme trigonométrique SK{OL) = 
E j L i e27TIAAJ soit supérieure à k — u. Lorsque u est suffisamment petit par 
rapport à k, nous sommes en mesure de construire un ensemble Kex qui est 
presque optimal. Cet ensemble est une union finie de progressions arithmé
tiques. Nous montrons que tout ensemble plus performant, s'il existe, a une 
structure similaire à celle de Kex. On obtient également des bornes inférieures 
et supérieures précises pour la mesure maximale. 

Structure of sets with small sumset 
Y U R I BILU 7 7 

Freiman a démontré qu'un ensemble fini d'entiers K satisfaisant |ÜT +AT| < 
a\K\ est nécessairement un sous-ensemble d'une petite progression arithmé
tique généralisée de rang m avec m < [a — l j . Nous donnons une preuve 
complète de ce résultat accompagnée de quelques améliorations ainsi que du 
calcul explicite des constantes impliquées. 

On finite addition theorems 
A N D R Á S S Á R K Ó Z Y 1 0 9 

Si un ensemble fini A d'entiers inclus dans { 1 , . . . , iV} a plus de N/k élé
ments, on peut s'attendre à ce que l'ensemble IA des sommes de £ éléments de 



xii RÉSUMÉS DES ARTICLES 

A, contienne, quand t est comparable à k, une progression arithmétique (ho
mogène ou non) assez longue. Après la présentation de l'état des lieux, nous 
montrons que certains de ces résultats ne peuvent pas être améliorés autant que 
la considération du cas infini pourrait le laisser prévoir. L'article s'achève sur 
un résultat fournissant des majorations et minorations de l'ordre, en tant que 
base asymptotique, des sous-suites, de densité relative positive, des nombres 
premiers. 

On Freiman's Theorems concerning the sum of two finite sets of integers 
JOHN STEINIG 1 2 9 

En suivant les indications données par Freiman [1] , cet article fournit une 
preuve détaillée de ses deux théorèmes minorant \M + iV|, où M et N sont des 
sous-ensembles finis de Z . 

On an additive problem of Erdös and Straus, 2 
J E A N - M A R C DESHOUILLERS & G R E G O R Y A. FREIMAN 141 

On désigne par sAA l'ensemble des entiers qui peuvent s'écrire comme 
somme de s éléments distincts de A. L'ensemble A est dit admissible si et 
seulement si s ^ t implique que sAA et tAA n'ont aucun élément en commun. 

P. Erdôs a conjecturé qu'un ensemble admissible inclus dans [1 , N] a un car
dinal maximal lorsque A est constitué d'entiers consécutifs situés à l'extrémité 
supérieure de l'intervalle [l , iV]. L'objet de cet article est de donner une preuve 
de la conjecture d'Erdôs, pour N suffisamment grand. 

On the structure of sum-free sets, 2 
J E A N - M A R C DESHOUILLERS, G R E G O R Y A . FREIMAN, V E R A Sos & MIKHAIL 

TEMKIN 1 4 9 

On dit qu'un ensemble d'entiers positifs est additivement libre si l'ensemble 
A fi (A -h A) est vide, où A 4- A désigne l'ensemble des sommes de deux élé
ments de A non nécessairement distincts. Améliorant un résultat précédent de 
G.A. Freiman, on donne une description précise de la structure des ensembles 
additivement libres inclus dans [ 1 , M ] de cardinalité au moins 0 . 4 M — x pour 
M > MQ(X) ( où x est un entier arbitraire). 

Sumsets with distinct summands and the Erdas-Heilbronn conjecture on sums of 
residues 
G R E G O R Y A. FREIMAN, LEWIS L O W & JANE P ITMAN 163 

Soit S un ensemble d'entiers ou de classes de résidus modulo un nombre 
premier p, de cardinalité \S\ = k, et soit T l'ensemble de toutes les sommes 
de deux éléments distincts de S. Dans le cas des entiers, on démontre que, si 
\T\ est plus petit qu'un nombre proche de 2.5&, alors S est contenu dans une 
progression arithmétique de cardinal relativement petit. Dans le cas des résidus, 
un résultat du même genre est obtenu, pourvu que k > 6 0 et p > 50k. Comme 
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application, on prouve que \T\ > 2k — 3 sous ces conditions. Des résultats 
antérieurs de Freiman jouent un rôle essentiel dans les démonstrations. 

On the number of sums and differences 
FRANÇOIS HENNECART, GILLES R O B E R T & A L E X A N D E R Y U D I N 1 7 3 

Dans cet article, nous montrons que inf^cz In | , 4 + A | / l n —A\ est inférieur 
à 0 , 7 8 6 5 , améliorant en cela un résultat antérieur dû à G . Freiman et W. 
Pigarev. 

The structure of multisets with a small number of subset sums 
V S E V O L O D F . L E V 1 7 9 

Un recherche ici des ensembles dentiers naturels A = { a i , . . . , a * } (avec 
répétitions possibles) tels que l'ensemble des sommes P(A) = {e\a\ + • • • + 
Skdk' 0 < S\,... ,£k < 1 } est petit. Précisément, soit A un tel ensemble pour 
lequel le cardinal de P(A) est borné par un multiple fixe du cardinal de A (i.e. 
|F (A) | <C \A\), nous montrons que l'ensemble P(A) est alors la réunion d un 
petit nombre de progressions arithmétiques de même raison. 

Des problèmes similaires ont déjà été considérés par G. Freiman [1] et M. 
Chaimovich [2] . À la différence de ces articles, nos conditions s'expriment 
seulement à l'aide du cardinal de P(A) sans faire appel au plus grand élément 
de A. 

Subset sums of sets of residues 
EDITH LIPKIN 1 8 7 

On appelle nombre critique d'un groupe abélien G, le plus petit entier 
naturel m vérifiant la propriété suivante : 
pour toute partie A de G avec \A\ > m , 0 ^ A, l'ensemble A* des sommes 
partielles de A est égal à G. Dans cet article, on démontre la conjecture de 
G . Diderrich concernant la valeur du nombre critique du groupe G, lorsque 
G = Zg, pour q suffisamment grand. 

Inverse theorems and the number of sums and products 
MELVYN B . NATHANSON & G E R A L D TENENBAUM 1 9 5 

Soit e > 0 . Erdôs et Szemerédi ont conjecturé que, si A est un ensemble 
de k nombres entiers positifs avec k assez grand, le nombre des entiers qui sont 
représentables comme somme ou produit de deux éléments de A est au moins 
égal à k2~~€. Nous confirmons cette conjecture dans le cas particulier où le 
nombre des sommes est très petit. 

Stratified Sets 
JEAN-LOUIS NICOLAS 2 0 5 

On dit qu'un ensemble A de nombres entiers est "stratifié" si, pour tout £, 
0 < t < Gard A, la somme de t éléments distincts de A est toujours strictement 
inférieure à la somme de t + 1 éléments distincts de A. Cela implique que les 
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éléments de A sont positifs. On démontre que le nombre d'ensembles stratifiés 
de plus grand élément N est exactement égal au nombre p(N) de partitions de 
N. 

On the structure of sets of lattice points in the plane with a small doubling property 
Y O N U T Z V . STANCHESCU 2 1 7 

On décrit la structure des ensembles K de points d'un réseau plan tels que 
|K + Kl est petit comparé à IKI. Soit K un sous-ensemble fini de Z 2 tel que 

| K + K | < 3 . 5 | K | - 7 . 

Si K est porté par trois droites parallèles, alors l'enveloppe convexe de K est con
tenu dans trois progressions arithmétiques compatibles de même raison ayant 

en totalité au plus 

|K| + 
3 

4' 
( | K + K | -

1 0 

3 
IKI + 5 

termes. Cette majoration est optimale 

Non-solvable groups with a large fraction of involutions 
Y A K O V BERKOVICH 2 4 1 

Dans cet article, on classifie les groupes finis G non résolubles tels que 
le nombre de classes de G est au moins | G | / 1 6 . On en déduit certaines con
séquences. 

Questions on set squaring in groups 
Y A K O V BERKOVICH 2 4 9 

Quelques questions sur des petits sous-ensembles de groupes sont posées et 
discutées 

On groups generated by a pair of elements with small third or fourth power 
SERGEI B R O D S K Y 2 5 5 

Cet article se propose d'étudier les groupes bi-générés, tels que la puissance 
m-ème de la paire génératrice contienne moins de 2m éléments. Nous prouvons 
en particulier, que si le cube de la paire génératrice contient moins de 7 éléments 
ou si la puissance quatrième contient moins de 1 1 éléments, alors le groupe est 
résoluble. Sinon, il n'est pas nécessairement résoluble. Les démonstrations sont 
effectuées à l'aide de calculs par ordinateurs. 

On small subset product in a group 
Y A H Y A O U L D HAMIDOUNE 2 8 1 

Nous généralisons des théorèmes d'addition connus pour le cas des groupes 
non abéliens. 

Les preuves classiques des théorèmes d'addition utilisent des transformations 
locales dues à Davenport, Dvson et Kempermann. 
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Notre approche est basée sur l'étude de certains blocs d'imprimiti vite du 
groupe d'automorphismes d'une relation. 

New results on subset multiplication in groups 
M A R C E L H E R Z O G 3 0 9 

Cet article présente des résultats et des problèmes ouverts sur les sujets 
suivants : groupes avec sous-tables de multiplication déficientes, bases multi
plicatives des groupes finis. 

On small sumsets in abelian groups 
V S E V O L O D F . L E V 3 1 7 

On étudie dans cet article la structure des paires de parties finies A, B 
d'un groupe abélien pour lesquelles les sommes sont peu nombreuses : \A + 
B\ < \A\ + \B\. En 1960, J. H. B. Kemperman en a donné une description 
complète de nature recursive mais relativement compliquée. En utilisant des 
résultats intermédiaires de Kemperman, on obtient ici une description d'une 
autre nature. Bien qu'elle ne soit pas suffisante d'un point de vue général, notre 
description a l'avantage d'être claire et intuitive, et peut être utilisée pour des 
applications. 

An analog of Freiman's theorem in groups 
IMRE Z . R U Z S A 3 2 3 

On montre que pour un groupe abélien G, tel que l'ordre des éléments est 
majoré par un entier r, tout ensemble ayant n éléments et au plus an sommes 
est contenu dans un sous-groupe de taille Cn avec C = / ( r , a) dépendant de 
r et a mais non de n. C'est un résultat analogue au Théorème de G. Freiman 
qui décrit la sructure de tels ensembles dans le groupe des entiers. 

Subset sums and coding theory 
G E R A R D COHEN & GILLES Z E M O R 3 2 7 

Nous nous intéressons à quelques problèmes additifs dans le groupe ( Z / 2 Z ) r * 
Notre propos est de montrer comment ces problèmes sont étroitement liés à la 
théorie des codes correcteurs. Nous présentons des techniques classiques de 
codage que nous utilisons pour obtenir quelques contributions originales. 

New Structural Approach to Integer Programming: a Survey 
M A R K CHAIMOVICH 341 

Cet article de synthèse présente un nouvel abord de la programmation 
entière basée sur la caractérisation de configurations extrêmes en théorie ad
ditive des nombres. La structure de ces configurations extrêmes nous permet 
d'élaborer des algorithmes applicables à des familles suffisamment larges de 
problèmes; ces algorithmes améliorent notablement les bornes actuellement 
connues. Là où ils sont applicables, ces algorithmes sont polynômiaux voire 
linéaires; c'est en particulier le cas pour les problèmes de type sac à dos. Pour 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



xvi RÉSUMÉS DES ARTICLES 

cette classe de problèmes, l'amélioration sur les algorithmes antérieurs est d'au 
moins de deux ordres de grandeur. 

New Algorithm for Dense Subset-Sum Problem 
M A R K CHAIMOVICH 3 6 3 

On présente un nouvel algorithme pour le problème des sommes partielles 
(subset-sum problem) dans le cas dense. Il est basé sur une caractérisation 
de la famille des sommes partielles obtenue par des méthodes analytiques 
de la théorie additive des nombres. L'algorithme fonctionne pour un grand 
nombre de sommants (m) avec des valeurs qui sont majorées. La borne (£) 
dépend modérément de m. Le temps requis par ce nouvel algorithme est en 
0 ( m 7 / 4 / l o g 3 / 4 m), ce qui est plus rapide que les précédents algorithmes connus, 
le meilleur d'entre eux prenant un temps en <9(m 2 / log 2 m) . 

On the Two-Dimensional Subset Sum Problem 
A L A I N P L A G N E — 3 7 5 

Dans cet article, on considère un système de deux équations booléennes 
linéaires. Grâce à des méthodes de théorie analytique des nombres, on montre 
que, sous certaines conditions, le système admet toujours des solutions. Cela 
complète le travail de Freiman sur ce sujet. 

On series of discrete random variables, 1: real trinomial distributions with fixed 
probabilities 
J E A N - M A R C DESHOUILLERS, G R E G O R Y A . FREIMAN & W I L L I A M M O R A N . . 4 1 1 

Cet article démarre l'étude du comportement limite local d'un système 
triangulaire de variables aléatoires indépendantes (Cn,k)i<k<n, où la loi de £n,fc 
dépend de n. Nous considédrons le cas où £n,i prend trois valeurs entières 0 < 
o>i(ri) < a2(n) avec des probabilités respectives po,pi,P2 qui ne dépendent pas 
de n. Nous montrons qu'il y a trois types de comportement limite pour la suite 
des variables aléatoires rjn = Cn,i H hCn,n, selon que ei2(n)/pgcd(ai(n), 02(n)) 
tend vers l'infini plus lentement, plus vite ou à la même vitesse que y/n. 

On Bounds for the Concentration Function. 1 
J E A N - M A R C DESHOUILLERS, G R E G O R Y A . FREIMAN & A L E X A N D E R A . Y U D I N  

4 2 5 

Nous donnons une majoration de la fonction de concentration d'une somme 
de variables aléatoires entières indépendantes et équidistribuées, en fonction 
d'une minoration de leur queue de distribution, sous l'hypothèse supplémentaire 
nécessaire que le support de ces variables aléatoires n'est pas essentiellement 
contenu dans une progression arithmétique non triviale. 
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Structure Theory of Set Addition 
G R E G O R Y A . FREIMAN 1 

We review fundamental results in the so-called structure theory of set ad
dition as well as their applications to other fields. 

Sets of integers with large trigonometric sums 
A M N O N BESSER 3 5 

We investigate the problem of optimizing, for a fixed integer k and real u 
and on all sets K = {a\ < 02 < • * • < a^} C Z , the measure of the set of a £ 
[ 0 , 1 ] where the absolute value of the trigonometric sum SK(&) = ^2^=1 e2ntaaj 
is greater than k — u. When u is sufficiently small with respect to k we are able 
to construct a set Kex which is very close to optimal. This set is a union of a 
finite number of arithmetic progressions. We are able to show that any more 
optimal set, if one exists, has a similar structure to that of Kex. We also get 
tight upper and lower bounds on the maximal measure. 

Structure of sets with small sumset 
Y U R I BILU 7 7 

Freiman proved that a finite set of integers K satisfying liiT-h-ftTl < o~\K\ is a 
subset of a "small" m-dimensional arithmetical progression, where m < [a — l\. 
We give a complete self-contained exposition of this result, together with some 
refinements, and explicitly compute the constants involved. 

On finite addition theorems 
A N D R Á S S Á R K Ó Z Y 1 0 9 

If a finite set A of integers included in { 1 , . . . , N} has more than N/k 
elements, one may expect that the set IA of sums of I elements of A, contains, 
when I is comparable to a rather long arithmetic progression (which can be 
required to be homogeneous or not). After presenting the state of the art, we 
show that some of the results cannot be improved as far as it would be thought 
possible in view of the known results in the infinite case. The paper ends with 
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lower and upper bounds for the order, as asymptotic bases, of the subsequences 
of the primes which have a positive relative density. 

On Freiman's Theorems concerning the sum of two finite sets of integers 
JOHN STEINIG 1 2 9 

Details are provided for a proof of Freiman's theorems [1] which bound 
\M + N\ from below, where M and N are finite subsets of Z . 

On an additive problem of Erdos and Straus, 2 
J E A N - M A R C DESHOUILLERS & G R E G O R Y A. FREIMAN 141 

We denote by sAA the set of integers which can be written as a sum of s 
pairwise distinct elements from A. The set A is called admissible if and only if 
s 7^ t implies that sAA and tAA have no element in common. 

P. Erdos conjectured that an admissible set included in [1 , N] has a maximal 
cardinality when A consists of consecutive integers located at the upper end 
of the interval [l , iV]. The object of this paper is to give a proof of Erdos' 
conjecture, for sufficiently large N. 

On the structure of sum-free sets, 2 
J E A N - M A R C DESHOUILLERS, G R E G O R Y A . FREIMAN, V E R A Sôs & MIKHAIL 
T E M K I N 1 4 9 

A finite set of positive integers is called sum-free if A fl ( A + A ) is empty, 
where A + A denotes the set of sums of pairs of non necessarily distinct ele
ments from A. Improving upon a previous result by G . A . Freiman, a precise 
description of the structure of sum-free sets included in [1 , M] with cardinality 
larger than QAM — x for M > MQ(X) (where x is an arbitrary given number) 
is given. 

Sumsets with distinct summands and the Erdos-Heilbronn conjecture on sums of 
residues 
G R E G O R Y A. FREIMAN, LEWIS L O W & JANE PITMAN 163 

Let 5 be a set of integers or of residue classes modulo a prime p, with 
cardinality \S\ = fe, and let T be the set of all sums of two distinct elements 
of S. For the integer case, it is shown that if \T\ is less than approximately 
2.5k then S is contained in an arithmetic progression with relatively small 
cardinality. For the residue class case a result of this type is derived provided 
that k > 6 0 and p > 50k. As an application, it is shown that \T\ > 2k — 3 
under these conditions. Earlier results of Freiman play an essential role in the 
proofs. 

On the number of sums and differences 
FRANCJOIS HENNECART, GILLES R O B E R T & A L E X A N D E R Y U D I N 173 

It is proved that inf^cz In \A + A\/ In \A — A\ is less than . 7 8 6 5 , improving 
a previous result due to G . Freiman and W. Pigarev. 
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The structure of multisets with a small number of subset sums 
V S E V O L O D F . L E V 179 

We investigate multisets of natural numbers with relatively few subset 
sums. Namely, let A be a multiset such that the number of distinct subset 
sums of A is bounded by a fixed multiple of the cardinality of A (that is, 
|P (A) | <C \A\). We show that the set P(A) of subset sums is then a union of a 
small number of arithmetic progressions sharing a common difference. 

Similar problems were considered by G . Freiman (see [1 ] ) and M . Chaimovich 
(see [2] ) . Unlike those papers, our conditions are stated in terms of the cardi
nality of the subset sums set P(A) only and not on the largest element of the 
original multiset A. 

The result obtained is nearly best possible. 

Subset sums of sets of residues 
EDITH LIPKIN 1 8 7 

The number m is called the critical number of a finite abelian group G, if 
it is the minimal natural number with the property: 
for every subset A of G with \A\ > m, 0 ^ A, the set of subset sums A* of A is 
equal to G. In this paper, we prove the conjecture of G . Diderrich about the 
value of the critical number of the group G, in the case G = Zg, for sufficiently 
large a. 

Inverse theorems and the number of sums and products 
MELVYN B . NATHANSON & G E R A L D TENENBAUM 1 9 5 

Let e > 0 . Erdos and Szemeredi conjectured that if A is a set of k positive 
integers which large k, there must be at least k2~£ integers that can be written 
as the sum or product of two elements of A. We shall prove this conjecture in 
the special case that the number of sums is very small. 

Stratified Sets 
JEAN-LOUIS NICOLAS 2 0 5 

A set A of integers is said "stratified'5 if, for alH, 0 < t < Card . 4 , the sum 
of any t distinct elements of A is smaller than the sum of any t + 1 distinct 
elements of A. That implies that all elements of A should be positive. It is 
proved that the number of stratified sets with maximal element equal to N is 
exactly the number p(N) of partitions of N. 

On the structure of sets of lattice points in the plane with a small doubling property 
Y O N U T Z V . STANCHESCU 2 1 7 

We describe the structure of sets of lattice points in the plane, having a 
small doubling property. Let K be a finite subset of Z2 such that 

| K + K | < 3 . 5 | K | - 7 . 
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If IK lies on three parallel lines, then the convex hull of K is contained in three 
compatible arithmetic progressions with the same common difference, having 
together no more than 

X<< 4 
3 
4 

IK + K| -
10 

3 |K| + 5* 

terms. This upper bound is best possible. 

Non-solvable groups with a large fraction of involutions 
Y A K O V BERKOVICH 2 4 1 

In this note we classify the non-solvable finite groups G such that the class 
number of G is at least | G | / 1 6 . Some consequences are derived as well. 

Questions on set squaring in groups 
Y A K O V BERKOVICH 2 4 9 

Some questions on small subsets in groups are posed and discussed. 

On groups generated by a pair of elements with small third or fourth power 
SERGEI B R O D S K Y 2 5 5 

The paper is devoted to an investigation of two-generated groups such that 
the ra—th power of the generating pair contains less than 2M elements . It is 
proved, in particular, that if the cube of the generating pair contains less than 
7 elements or its fourth power contains less than 1 1 elements, then the group 
is solvable. Otherwise, it is not necessarily solvable. The proofs use computer 
calculations. 

On small subset product in a group 
Y A H Y A O U L D HAMIDOUNE 2 8 1 

We generalise some known addition theorems to non abelian groups and to 
the most general case of relations having a transitive group of automorphisms. 

The classical proofs of addition theorems use local transformations due 
to Davenport, Dyson and Kempermann. We present a completely different 
method based on the study of some blocks of imprimitivity with respect to the 
automorphism group of a relation. 

Several addition theorems including the finite a 4- /3-Theorem of Mann and a 
formula proved by Davenport and Lewis will be generalised to relations having 
a transitive group of automorphisms. 

We study the critical pair theory in the case of finite groups. We generalise 
Vosper Theorem to finite not necessarily abelian groups. 

Chowla, Mann and Straus obtained in 1 9 5 9 a lower bound for the size of 
the image of a diagonal form on a prime field. This result was generalised by 
Tietavaienen to finite fields with odd characteristics. We use our results on the 
critical pair theory to generalise this lower bound to an arbitrary division ring. 
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Our results apply to the superconnectivity problems in networks. In partic
ular we show that a loopless Cayley graph with optimal connectivity has only 
trivial minimum cuts when the degree and the order are coprime. 

New results on subset multiplication in groups 
M A R C E L H E R Z O G . — 3 0 9 

This paper presents results and open problems related to the following 
topics: group with deficient multiplication sub-tables, product bases in finite 
groups. 

On small sumsets in abelian groups 
V S E V O L O D F . L E V 3 1 7 

In this paper we investigate the structure of those pairs of finite subsets of 
an abelian group whose sums have relatively few elements: + < | A | + |JB|. 
In 1960, J. H. B. Kemperman gave an exhaustive but rather sophisticated 
description of recursive nature. Using intermediate results of Kemperman, we 
obtain below a description of another type. Though not (generally speaking) 
sufficient, our description is intuitive and transparent and can be easily used 
in applications. 

An analog of Freiman's theorem in groups 
IMRE Z . RUZSA 3 2 3 

It is proved that in a commutative group G, where the order of elements 
is bounded by an integer r, any set A having n elements and at most an sums 
is contained in a subgroup of size Cn with C = / ( r , a) depending on r and a 
but not on n. This is an analog of a theorem of G . Freiman which describes 
the structure of such sets in the group of integers. 

Subset sums and coding theory 
G E R A R D COHEN & GILLES Z E M O R 3 2 7 

We study some additive problems in the group (Z /2Z)r- ^ur purpose is 
to show how those problems are closely related to coding theory. We present 
some relevant classical coding techniques and make use of them to obtain some 
original contributions. 

New Structural Approach to Integer Programming: a Survey 
M A R K CHAIMOVICH 3 4 1 

The survey discusses a new approach to Integer Programming which is 
based on the structural characterization of problems using methods of ad
ditive number theory. This structural characterization allows one to design 
algorithms which are applicable in a narrower, yet still wide, domain of prob
lems, and substantially improve the time boundary of existing algorithms. The 
new algorithms are polynomial for the class of problems in which they are 
applicable, and even linear (0(m)) for a wide class of the Subset-Sum and 
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Value-Independent Knapsack problems. Previously known polynomial time al
gorithms for the same classes of problems are at least two orders of magnitude 

slower. 

New Algorithm for Dense Subset-Sum Problem 
M A R K CHAIMOVICH 3 6 3 

A new algorithm for the dense subset-sum problem is derived by using 
the structural characterization of the set of subset-sums obtained by analytical 
methods of additive number theory. The algorithm works for a large number 
of summands (ra) with values that are bounded from above. The boundary 
(£) moderately depends on ra. The new algorithm has 0(m7//4/ log37/4 ra) time 
boundary that is faster than the previously known algorithms the best of which 
yields 0 ( ra2 / log2 ra). 

On the Two-Dimensional Subset Sum Problem 
A L A I N P L A G N E 3 7 5 

We consider a system of two linear boolean equations. Using methods from 
analytic number theory, we obtain sufficient conditions ensuring the solvability 
of the system. This completes Freiman's work on the subject. 

On series of discrete random variables, 1: real trinomial distributions with fixed 
probabilities 
J E A N - M A R C DESHOUILLERS, G R E G O R Y A . FREIMAN & W I L L I A M M O R A N . . 4 1 1 

This paper begins the study of the local limit behaviour of triangular arrays 
of independent random variables (Cn,k)i<k<n where the law<<of<¨¨depends 
on on n. We consider the case when £n,i takes three integral values 0 < 
ai(n) < a2(n) with respective probabilities Po5Pi>P2 which do not depend on 
n. We show three types of limit behaviours for the sequence ofW<<r. v. r)n = 
Cn,i + • * • + Cn,n, according as a2(n)/gcd(ai(n),a2(n)) tends to infinity slower, 
quicker or at the same speed as y/n. 

On Bounds for the Concentration Function. 1 
J E A N - M A R C DESHOUILLERS, G R E G O R Y A . FREIMAN & A L E X A N D E R A . Y U D I N  

4 2 5 

We give an upper bound for the concentration function of a sum of inde
pendent identically distributed integral valued random variables in terms of a 
lower bound for their tail, under the necessary extra condition that the random 
variables are not essentially supported in a proper arithmetic progression. 
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