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S T R U C T U R E T H E O R Y O F S E T A D D I T I O N 

by 

Gregory A. Freiman 

Abstract. — We review fundamental results in the so-called structure theory of set 
addition as well as their applications to other fields. 

1. 'Structure theory of set addition'^1) is a shorthand for a direction in the study of 
sets which extracts structures from sets for which some properties of their sums (or 
products in a non-abelian case) are known. 

Here is an indication of what is meant by "structure". The first stage is to build 
an equivalence relation on sets. Then, by taking well chosen representatives of an 
equivalence class we are able to reveal its properties and thereby describe its structure 
(see, for example, the Definition and Theorem in §6). 
2. This review is written in the following way. In §§3-8 we explain the main ideas. In 
§§9-12 we make some historical remarks. Then in §§13-19 we present several concrete 
problems in additive and combinatorial number theory, showing how new results may 
be obtained with the help of the described new approach. Further then in §§20-27 we 
try to show a diversity of fields where the ideas of "Structure Theory" may be applied. 
Finally in §§28-35 we discuss methods and problems. In the bibliography we include 
references to a wider spectrum of subjects which may be treated from the point of 
view of Structure Theory. 
3 . This approach to additive problems was originally given the name "Inverse prob­
lems of additive number theory". A series of nine papers under this heading was 
published in 1955-1964 (see [85], [86], [87], [88], [89], [90], [91], [92] and [98]). 
4. I quote from my lecture in the Fourth All-Union Mathematical Congress, Leningrad, 
3-12 July 1961 (see [84]): 

1991 Mathematics Subject Classification. — 11 02, 11Z05. 
Key words and phrases. — Structure theory of set addition, inverse problems of additive number 

theory, small doubling property, isomorphism of subsets. 
WThis paper is based on my review lecture given at the conference on Structure theory of set 

addition held at CIRM (Centre International des Rencontres Scientifiques), Luminy, Marseille, on 
10 June 1993. 
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2 G.A. FREIMAN 

"The term inverse problems of additive number theory appeared in 
1955 in two of my papers [85]^ and [86]. In [85] the following prob­
lem was studied. Let 

a i , a 2 , . . . , a r , . . . (1) 
be an unbounded, monotonically increasing sequence of positive num­
bers. To have an asymptotic formula 

logg(w) ~ Aua, where A > 0,0 < a < 1 

it is necessary and sufficient that 

n(u) ~ B(A,a)ua/1-a 

where n(u) is the number of terms of a sequence (1) not exceeding 
u, and q(u) is the number of solutions of the inequality 

a in i 4- a2n2 H < u. 

In [86] the case 

\ogq{u) = Aua + O(txf), where 0 < ai < a, 

was studied and an estimate of the error term in the asymptotic 
formula for n{u) was obtained. 

One can easily see that if q(u) is known then (1) is determined in 
a unique way (see [85]). In 'direct' problems we study q(u) when the 
sequence (1) is given; a particular case is the classical problem on the 
representation of positive integers as sums of an unlimited number 
of positive integers. 

Thus a direct problem in additive number theory is a problem in 
which, given summands and some conditions, we discover something 
about the set of sums. An inverse problem in additive number theory 
is a problem in which, using some knowledge of the set of sums, we 
learn something about the set of summands. 

Several cases of inverse problems were studied earlier; see [14] and 
[67]. 

Paul Erdos, in 1942, found an asymptotic formula for n(u) when 

\ogp{u) ~ ay/u 

where p(u) is the number of solutions of an equation 

aini + a2n2 H = u 

where {ai} is some sequence of positive integers (see [67]). 
In the same paper another inverse problem was studied; if q(u) ~ 

Cu2a , where q(u) is the number of solutions of an inequality 

ai + a,j < u, 

2̂̂ The reference numbers given accord with the bibliography of this paper and not the original 
text. 
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STRUCTURE THEORY OF SET ADDITION 3 

then 
n(u) ~ C\u . 

In 1960 V. Tashbaev [252] studied the problem of estimating the error 
term for this inverse problem. 

We will now explain how problems on the distribution of prime 
numbers are connected with inverse problems. If we define 

q(u) = [eu] 

then di = log pi , where pi denotes the ith prime number. Thus the 
problem of the distribution of prime numbers may be treated as an in­
verse problem of additive number theory of the type described above. 
The study of inverse problems for different q{u) close to [eu]1 and also 
of direct problems when n(u) is close to eu/u, may give some insight 
into the problem of the distribution of primes, in a way similar to 
that in which the behaviour of a function in the vicinity of a point 
may help to find its value at that point (see A.Beurling [14] and 
B.M.Bredichin [30], [31], [32] and [33]." 

The results of Diamond (see [57], [58], [59], [60] and [61]) should of course be 
mentioned. 

The treatment of prime distribution problems as inverse additive problems have 
not developed up to now. I still consider this approach very hopeful. 
5. We pass on now to the study of additive problems with a fixed number of sum-
mands. The majority of papers mentioned in §3 treat the addition of two equal sets. 
The study of this particular case is usually sufficient to develop ideas, methods and 
results as well as their use in applications. 

Let us start with K C Z with \K\ = k. Define 

2K = K -j- K = {x \ x — al -\- aj, ai,CLj e K}. 

We may ask the question what is the minimal cardinality of 2K1 Evidently, 

\2K\ >2k-l. (2) 

Suppose now that K is such that \2K\ is minimal i.e. \2K\ = 2k — \. What can be 
said about such a Kl It is clear that, 

\2K\ = 2k - 1, (3) 

only if K is an arithmetic progression. 
Suppose now that \K + K\ is not much greater than this minimal value. In that 

case we have the following result [87], describing the structure of K. 

Theorem 1. — Let K be a finite set, K Ç Z. / / 

\K + K\<2k-l + b, 0<b<k-3 

then K is contained in an arithmetic progression of length k + b. 
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4 G.A. FREIMAN 

Further, suppose that we know that 

\2K\ < Ck, (4) 
where C is any given positive number, we may ask what then is the structure of K? 
6. The theorem answering this question (we will quote it as a main theorem) was 
proved in a previously mentioned series of papers, expositions of it were given in [81] 
and [82], and an improved version of a proof was presented in [105]. We are citing 
here the result of Y. Bilu [16], where he studies a case when C in (4) is a slowly 
growing function of k. 

Definition. — Let A and B be groups, and let K C A and L C B. The map </>: K —>• L 
is called an Fs-homomorphism, if for any # i , • • • ,xs and y±, • - • ,ys in K we have 

xx-\ + xs = yi + • • • + y s • # £ i ) + • • • + 4>(x8) = <t>{yi) + • • • + <f>(ya). 
The Fs-homomorphism <f> is an Fs-isomorphism if it is invertible and the inverse (j> 1 
is also an Fs-homomorphism. 

Let P C Zn be given by 

P = { 0 , . . . , 6 i - l } x . . . x { 0 , . . . , 6 n - l } . 

We have |P |=&i. . . bn. In this paper we will call P an n-dimensional parallelepiped. 

Theorem 2. — Let K c Z and suppose that 

\K + K\ <ak (5) 

where 
k = \K\ >k0(a) № + il 

2(\a + 11 - a) 1, 

then there exists an n-dimensional parallelepiped, P, such that n < [a — 1] and \P\ < 
ck, where c depends only on a and s and there also exists a map (/>: P -> Z which is 
such that P —> <p(P) is an ¥s -isomorphism while K C <f>(P). 

Let us now return to §1. The equivalence relation that we talked about there, 
is now seen to be Fs-isomorphism. A representative of an equivalence class is an 
n-dimensional parallelepiped, P. We now understand that K, a subset of the one-
dimensional space E, has, in fact, a multidimensional structure, being a dense subset 
of an n-dimensional set P (i.e. <^_1(i;C) C P). Consider the numbers 

a = 0((O,... ,O)), ai 0((1,O,. . . ,O)) - a, an 0 ( ( O , Q , . . . , l ) ) - a . 

Then, 

4>(P) [a + aix\ + a2x2 H h anxni with 0 < xi < bi — 1 

Imre Rusza has called such a set </>(P) a generalized arithmetic progression of rank 
n. He gave a new and shorter proof, based on new ideas, of the main theorem together 
with an important generalization; in this the summands A and B may be different, 
although however the condition \A\ — \B\ is required (see [233]). His generalization 
to the case of subsets of abelian groups is to be found in [238]. 
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STRUCTURE THEORY OF SET ADDITION 5 

7. We can now describe an "algorithm" for solving an inverse additive problem, by 
the following steps. 

(i) Choose some (usually numerical) characteristic of the set under study. 
(ii) Find an extremal value of this characteristic within the framework of the prob­

lem that we are studying. 
(iii) Study the structure of the set when its characteristic is equal to its extremal 

value. 
(iv) Study the structure of a set when its characteristic is near to its extremal value. 
(v) (vi),. . . continue, taking larger and larger neighbourhoods for the characteristic. 

From estimates obtained by Yuri Bilu it follows that in (5) we can take, for cr, the 
following very slowly growing function of fc, 

a — clog log log log fc. 

It will be very important to study the cases 

<7 = (l0gfc)C (6) 

and 
a = ke, s > 0, (7) 

even if £ is a very small number. 
Here to simplify this extremely difficult problem a little, it is better to take \rK\ 

as a characteristic value, where r is a fixed, positive, but rather large, integer. So our 
condition is now 

|rüf I < k1+£ 

which is much stronger than (5); vK contains kr sums, but no more than k1+€ of 
them are different. 

8. I have here added a playful description of the comparative difficulty of the problems 
discussed, which should not be taken too literally. To prove (2) took one minute. 
Condition (3) was studied in three minutes. The proof of the theorem of §5 together 
with the description of K under the condition \2K\ = 3k — 3 took one month. Proof 
of the main theorem took five years. I will be very happy if we will see results for 
(6) in the next thirty years but I am not certain that for (7) we will have satisfactory 
results even in the next hundred years. 

9. L. Schnirelman [242] was one of the first who passed from studying fixed sets 
to studying general additive properties. Schnirelman introduced the notion of the 
density of a sequence. 

Definition. — Let A — (ai, a2,.. . , a n , . . . ) be an increasing sequence of positive inte­
gers and further let, 

A(x) = \{yeA\0<y<x}\, 

and 
d(A) = inf A(x)/x. 

XEN 
The number d{A) is called the Schnirelman density of the sequence A (see step (i) of 
§7). 
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6 G.A. FREIMAN 

10. Define 
A + B = {a-\-b\aeA1 b e B} 

and denote 
a = d(A), (3 = 7 = d(A + B) 

Schnirelman proved that 
7 > a + /? — a/3 

L. Schnirelman and E. Landau conjectured in 1932 and Mann [178] has proved in 
1942 that 

7 > a + /Î. (8) 

11. The famous a + /3 theorem of Mann cannot be improved. Take a sequence 

A ;o , i , . . . , r , z + l , / + 2 , . . . , l - -r, 2Z + l , 2 f + 2 , . . . , 2 l + r , . . . 

It is clear that if r < / then, 
a = = r/l 

However if 2r < I then 
7 = d(2A) = 2r/l = 2a. 

But for A = 5 we always have from (8) that 7 > 2a. So step 2 of §7 is now completed. 
Thus Mann has entirely solved the problem of increase of the density under sum­

mation of sequences. Its solution took ten years. Khinchine [151] writes in his book: 
"The problem has become 'fashionable'. Scientific societies proposed a prize 

for its solution. My friends from England wrote me in 1935 that half of English 
mathematicians tried to solve it, putting aside all other obligations" 
When Mann had solved the problem, the interest in these subjects disappeared. 

But what about proving the inequality 7 > 3a? Or, equivalently, what are the 
sequences A for which 7 < 3a? These questions were not asked. 

12. However, Schnirelman density is not a good characteristic. Take A = { 2 , 3 , 4 , . . . } . 
For this sequence we have A(l) — 0 and d(A) = 0. We feel, however, that the value 
1 would be more appropriate for a density. So we arrive at a notion of an asymptotic 
density: 

d(A) — liminf A(x)/x 
x—»00 

In 1953 Martin Kneser [153] proved an analog of the a + /3 theorem for asymptotic 
densities. He described the structure of A and B in the case when 

d(A) + d(B) <d{A + B) 

Recently Yuri Bilu analysed the case when 

di A + A)< ad{A), 

where a £ [2,5/2]. 
To prove his theorem Kneser had to consider, for some positive integer sets of 

residues A and B modulo g for which 

L4 + B| = L4| + | B | - 1 . 
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STRUCTURE THEORY OF SET ADDITION 7 

Cauchy [38] and Davenport [50] have proved that if A C Zp and B C Zp, where p 
is a prime, then 

|A + B | >min(p , |A| + B|-1 

This inequality is analogous to (8). 
Vosper [257] proved that ifA,BC Zp, \A\ + \B\ - 1 < p - 2 and min(|A|, \B\) > 2 

then from \A -f J?| = + — 1 it follows that A and B are arithmetic progressions 
in Zp with the same difference. 

Theorems of Kneser, Cauchy-Davenport and Vosper were amongst the first results 
giving solutions of inverse additive problems. 

13 . We may ask, are there any applications of the ideas and results described in 
§§4-8? For an answer to this question we turn now to the extremal combinatorial 
problems of Paul Erdos. 

We begin with the problem raised by Erdos and Freud [68]. Fix some positive 
integer, L Denote by A a set of x natural numbers, {a\,a2, ...,ax}, with 1 < a\ < 
a2 < • • • < ax < £. Take the set, A0 - { 3 , 6 , 9 , . . . , 3 £ 

3 For each subset B C A0 
the sum of elements in B, the subset sum. is divisible by 3 and thus not equal to any 
power of 2. In this case |̂ 401 £ 

3 However if we take \A\ £ 
3 

then for sufficiently large £ there exist B C A and 
s e N such that 

CLÌEB 
a* = 2s This was proved in [70J. E. Lipkin [167J proved that, for 

sufficiently large £, a set of maximal cardinality, none of whose subset sums is equal 
to a power of two, must be exactly the set AQ. 

The desired result was achieved with the help of analytical methods. However, 
there was a difficulty — how to apply them to prove a result which is valid for some 
integer, say, 

3 
+ 1, but is not valid for an integer which is one less. To cope with 

this, some conditions were tormulated, so that when satished an analytical treatment 
could be used. The case where these conditions were not fulfilled was treated as an 
inverse additive problem. The structure of such sets was thus determined and it then 
became possible to finish the proof. (For more details, see §28.) 

One might think that the problem of representing powers of two by subset sums 
is rather special, even artificial and therefore not that interesting. But, Paul Erdos 
knows how to ask questions. Ideas developed in order to solve the problem explained 
here, have turned out to be sufficient to solve a wide range of problems in Integer 
Programming, see §23 and [41]-[44]. 
14. In the framework of the problem of the previous section we may ask the following 
questions. 

1) Let \A\ > a 
3. 

What is the minimal cardinality \B\ of B C A, whose subset 
sum is equal to some power of 21 

2) What is the minimal number of summands required in the representation of a 
power of 2, if equal summands are allowed? 

These questions were asked and answered in a paper of M. Nathanson and A. 
Sarkozy [201]. The sufficient number of summands required was estimated to be at 
most 30360 and 3503, respectively. Using the Theorem of §5 it appeared to be possible 
to improve these estimates to 8 and 6, respectively (see [104]). We will here briefly 
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8 G.A. FREIMAN 

explain the main ideas. If we apply the Theorem of §5 to some set A C [l,f], then 
under doubling the number of elements is multiplied, roughly, by 3 and the length 
of the segment where the sum 2A is situated is multiplied by 2. So, the density is 
multiplied, roughly, by 3 

2 
After the doubling is repeated twice, the density of 4A will 

be > l 
3 

3 
2 

3 
2 

3 
4 

One more doubling (or more accurately summing 4A + 2A) will 
give a long interval, m SA (or even m 6A), containing then some power of 2. 

Noga Alon gave a simple example showing that 4 summands in the case of differ­
ent and 3 summands in a case of possibly repeating summands are not, in general, 
sufficient. Recently, Vsevolod Lev [160] found the exact number of summands, in a 
case of possibly repeating ones. He showed that four summands are sufficient. 

The following questions are of interest. 

1) For given \A\ and s, find, f(\A\,£,s), the minimum over all sets A C [1,£] of 
order of the maximal length arithmetic progression contained in sA. 

2) For given \A\ and L, find, / ( |A| ,€ , L), the maximum over all sets A C [1,1] of 
order \A\, of the minimum number of summands, s, such that sA contains an 
arithmetic progression of length L. 

15. Denote by sAA the set of integers which can be written as a sum of s pairwise 
distinct elements from A. The set A is called admissible if, and only if, s ^ t implies 
that sAA and tAA have no element in common. 

E.G. Straus [247] showed that the set {N - k + 1, N - k + 2 , . . . , N\ is admissible 

if, and only if, k < 2 N l 
4 

1. He proved that for any admissible set A C [1,N] 

we have \A\ < 4 3 + o(l N. The constant involved was slightly reduced by 
P. Erdös, J-L. Nicolas and A. Särközy (cf. [75]). In the paper of J-M. Deshouillers 
and G. Freiman [52] (see also [51]) Erdös' conjecture was proved, at least when N is 
sufficiently large. 

Theorem 3. — There exists an integer No such that for any integer N > N0 and any 
admissible subset A C [1,N] we have, 

\A\<2 N 
1 

4 
1. 

The proof was obtained with the help of methods of the type quoted in §5. 

16. Let A C [ l ,n] . If A fl (A + A) = 0 , the set A is called sum-free. P. Erdos and 
P.J. Cameron conjectured that for the number In of sum-free sets we have, 

T = 0(2n'2) (9) 

The typical example of sum-free set A C [1, n] is the set { 1 , 3 , 5 , . . . } of odd numbers. 
We can show that n+n 

2 
is the maximal cardinality of a sum-free set. 

In G. Freiman [101] and the paper of J-M. Deshouillers, G. Freiman, V. Sos and 
M. Temkin [54], the problem of structure of sum-free sets was raised and studied. It 
was solved in the case of large cardinality of A, namely, when \A\ > 0A£ — c, where 
c is some positive constant. An example of such a structure is one in which all the 
elements of A are congruent to 2 or 3 modulo 5. 
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STRUCTURE THEORY OF SET ADDITION 9 

The structure of A having been found, the estimate (9) for this class of A, now 
follows immediately. An open question is to describe the structure of A for smaller 
cardinalities. 
17. In the paper of G. Freiman, L. Low and J. Pitman [106], the following conjecture 
of Erdos and Heilbronn [73] is proved for sufficiently large primes. For A C Zp? where 
p is a prime, \A\ = k < »/50 and k > 60, we have 

\A + A\>2k-3. 

Also, the structure of A was described in the case when \A + A\ < 2.06k — 3. The 
conjecture of Erdos and Heilbronn was proved independently by J.A. Dias da Silva 
and Y.O. Hamidoune, see [246]. 
18. In the paper of A. Yudin [261], an example of large sets of integers, A, was 
constructed for which 

\A + A\ < \A-A\C 
where c = 0.756. The previous example [113] gave only c = 0.89. In [113] the 
estimate c > 0.75 was proved. The result of A. Yudin puts the important additive 
characteristic, 

lim inf log; \A + A 
l o g | A - ; 4 | 

a , 

in a very narrow interval, 0.75 < a < 0.756, and allows one to begin to study the 
structure of sets with values of c which are close to a. Possibly the example of Yudin 
is not far from an extremal structure (look at §7). 
19. In the paper of E. Lipkin [169], the Diderich conjecture [62] was studied. We now 
describe the conjecture. Let G be a finite Abelian group, A C G with 0 ^ A. Let A* 
denote the set of subset sums of the set A. G.T. Diderich called the minimal number 
n such that, if \A\ > n then A* = G, the critical number, c(G) of the group G. 

Let G be an Abelian group of odd order \G\ — ph where p is the least prime divisor 
of |G| and h is a composite integer. Diderich conjectured, and E. Lipkin proved for 
G = ILq when q is sufficiently large, that 

c(G) =p + h-2. 

20. In §§21-27 we will give a few examples of problems in different fields which may be 
looked at and treated as Structure Theory problems. These examples will be chosen 
from Additive Number Theory (§21), Combinatorial Number Theory (§22), Integer 
Programming (§23), Probability Theory (§24), Coding Theory (§25), Group Theory 
(§26) and Mathematical Statistics (§27). Our aim is not so much to enumerate these 
problems as to show how ideas and methods of Structure Theory may influence their 
solution and to show their interdependence. Not many examples are chosen and they 
do not cover the whole stock of related problems. 
21. Additive Number Theory. We now present a paper (see [109]) of G. Freiman, 
H. Halberstam and I.Z. Ruzsa. This paper confronts the problem of how to show that, 
starting from some set of integers A, the set rA contains an arithmetic progression of 
integers of length, L, and difference, d. 
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10 G.A. FREIMAN 

One obvious set of sufficient conditions is as follows. Firstly, that the set (r — 1)A 
contains an arithmetic progression of length £ and difference d. Further that in some 
arithmetic progression of integers of length L + 2£ and difference d, we have that ever} 
part of it which forms an arithmetic progression of length £ contains a number fron 
A. 

These conditions are very simple and satisfactory but, how may one find such ar 
arithmetic progression of length £, even if £ is much smaller than L? It is supplied b} 
results of the paper mentioned! The final result is given below. 

Theorem 4. — Let B be an infinite set of integers such that AB (N) B(N 

M 
(logiV) a for every integer N > N0, where a is some fixed number in the interval 
0 l 

3 
and NQ = N0(a). Suppose further that B has the following "local" property. 

Corresponding to each N > 12N0 there exists an inteqer M with No < 
M < l 

12 
N, such that every arithmetic progression modulo q in [l,iV] of length 

1 
2 4(M contains an element of BN := B D [l,iV]7 where 2 < q < M and 

A(M) e i Co (log M) 3a 

Then B is an asymptotic basis of order 4-

The first version of this paper was built on methods of [82] and [105], but later 
changed to methods of [233], proposed by I. Rusza in his proof of the main theorem. 
The results of [109] were improved by Bourgain [21]. 

22. Combinatorial Number Theory. See examples given in §§13-19. 

23. Integer Programming. Let us discuss problems connected with one linear 
equation, 

a\X\ + CL2X2 + • • • -f ClrnXm = b. (10) 

Suppose that the coefficients in (10) are positive integers, with a\ < a2 < • • • < am < 
£, and we wish to find a solution in the Boolean case with Xi £ {0,1}. Remember that 
we are dealing here with problems which we would not be encountering in Number 
Theory. We have to find an algorithm with the help of which a computer has to 
be able, in a reasonable time, to answer the question, whether or not there exists a 
solution and then, to find it. And a most important point must be borne in mind, 
namely that the algorithm has to achieve this task for any choice of coefficients in a 
given range. The number of unknowns in (10) is equal to m, and each unknown may 
take two values, so the number of possibilities to check, if we decided to do it, is 2m. 
Existing methods (branch and bound, partial enumeration, etc.) try to diminish this 
number but progress has been slow. If the coefficients a,j G [1,£] and £ = 1012, say, 
then m has to be not bigger than about 100 or 200 for the equation to be solved by 
today's computers. The dynamic programming approach gives times of 0(£m2). If, 
for example, m — 106 the time is of order 1024 verifications, too long to see results in 
our lifetime. 

A different approach to the problem was outlined in [96]. We began to study the 
structure of the set of values of a linear form, using Analytic Number Theory. This 
structure appeared to be rather simple, it is in essence, the union of several arithmetic 
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STRUCTURE THEORY OF SET ADDITION 11 

progressions with the same difference. To characterize an arithmetic progression we 
have to know its difference d, its first member and its length. 

The time required to answer a question of solubility of an equation is 0(m) and 
in our example it is of order 10 6 verifications, a matter of seconds. The main idea 
is explained in §28. For detailed exposition and literature see a review of Mark 
Chaimovich [42] and a paper [43]. 

24. Probability Theory. Estimates for concentration functions and local limit the­
orems — these are two domains where today there exist applications of the Structure 
Theory approach to Probability Theory. 

Let £ i , . . . , £ n be a sequence of independent identically distributed random variables 

taking values in Z. Further, let sn 

n 

3=1 
Çj. Define 

Qf(£) = Q(£) = supP(x < ê < x + £) 
X 

the concentration function of the random variable f, and let QSn{£) = Qn{£) be the 
concentration function of sn. 

The paper of J-M. Deshouillers, G. Freiman, A. Yudin [55], gives a new estimate 
for Qn(l). Previous results, see for example G. Kesten [150], give an estimate of the 
type 

Qn{l) c 
n 1 

2 
(11) 

where c is independent of n. In this estimate the exponent | cannot in general be 
replaced by a larger number. Indeed, let us fix some integer valued random variable 
with variance a2. Then bv the local limit theorem we have 

P{sn = N} 
1 

a- 2-irn 
exp 

> n - N)2 

2na2 
o(l) 

From here we see that the estimate (11) cannot, in general, be improved. If we 
want to improve (11) we have to impose additional conditions and this is what is done 
in [55]. 

Theorem 5. — Let a € log 4 
log3 

2 e > 0, A > 1 and a > 0 be given real numbers. 

Let n be a positive integer and let { X i , . . . , X n } be a set of independent identicall 
distributed integral random variables such that 

max max 
<?>2 s(modg) l=s(mod q) 

Р{Хл = l\ < 1 - e 

VL>A: Q(XX ; L) < 1 - aL~a . 
Then we have 

Q(Sn;l) <en-1l° 
where c depends at most on a,e,A,a and Q{X\ \ 1). 

We have here two conditions, one excludes the case when the support is a part of 
ome class modg, q > 2 and the second asks for the tail to be 'heavy'. Conditions of 
>oth types are necessary to get results of the form of the Theorem above. In the first 
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12 G.A. FREIMAN 

version of a paper [55] the condition of type 1 was formulated for a series of random 
variables as follows. For any q G Z, q > 2 

max 
r A;—r (mod q) 

Pk < 1 - 1 0 
Inn 

n 

Let us also stress that the result of Esseen, cited in [55], gives a condition from 
which the concentration may be estimated from below. All these results give us the 
possibility to begin to study the distribution of a given random variable £, if we know 
something about the value of Qn(l), for example if we know that 

Qn(l) 
l 

nv 

where In 4 
ln3 

< $ < 2. We can ask the same question for series. In this case we have to 

describe distributions where numbers a* and numbers pi may depend on n. 
25. Coding Theory. This section and §35 were written jointly with A. Yudin. The 
connection between coding theory and structure theory was shown by Zemor (see 
[262] and [263]) and Cohen & Zemor (see [265], [266], [46] and [47]). We will now 
try to explain that the main problems of coding theory are, in fact, inverse additive 
problems. 

Let A = {ai, • • , a&} be a word in an alphabet of 2 symbols, say, a« € {0,1}. Let 
An be the set of all words in this alphabet of length n, so that we have \An\ = 2n. The 
distance, g{x,y), between two words x = {#i, #2? • • • ?xn} and y = t/25 • • •,yn} is 
defined to be 

g(x,y) i I X{ 7̂  i = l , . . . , n } 

that is, the number of positions in which the symbols in the words x and y differ. It 
is not difficult to check that g{x,y) satisfies all the axioms for a distance function. 
The question is how to ensure the correction of possible errors during transmission of 
information? 

Consider some subset, [/, of the set of all words An. Such a subset is called a 
code. A portion of information has assigned to it some word from U which is then 
transmitted through the channel. If during the transmission only a small number of 
mistakes occurred then we are still not far from the code word which was transmitted 
and thus we can then restore it. Let us put this question in a more precise formulation. 
We let the word transmitted be x = { x i , . . . , x n } and the word received be x = 
{a?i, . . . , Xn}. If during the transmission of a word through a channel no more than t 
mistakes take place, it means that 

g(x,x) < t (12) 

and so it is necessary that x be closer to x than to any other word in the code. That 
is, for any y EU with y ^ x. we have to ensure that 

g(y,x) > t. (13) 

By the triangle inequality 

g(x,y) < g{x,x) + g{x,y), (14) 

ASTÉRISQUE 258 



STRUCTURE THEORY OF SET ADDITION 13 

and when 
g(x,y) > 2£, (15) 

we can obtain (13) from the inequality (12). 
If there exists y such that g{x,y) = 2£, then we can find x for which (12) and (13) 

become equalities and then g(x,y) = t. Thus, the condition (15) is necessary and 
sufficient for code correcting t mistakes. We have a set, Anj and a subset U, but to 
speak about inverse additive problem is still premature, since an algebraic operation 
is missing. So we will consider An as a vector space over the field Z2. In this field 
— 1 = 1 and for each n-dimensional vector x G An the equality —x = x holds. The 
distance g(x, y) is equal to the number of Is in the vector x — y = x -f y, i.e. to the 
distance of the element x + y from 0. The condition (15) may now be written as 

g(x + y,0)>2t. 

Thus, a code, correcting t mistakes, is a U C An such that G 2U we have g{z, 0) > 
2t. We have now come to a well known situation, namely, we have a group An, a 
subset U and a condition on 2!7. 

In §12 the first results about sums of sets in a group were mentioned. The doubling 
of sets in groups was studied in the works of Kemperman [146], [147], [148], Freiman 
[83], Olson [207], [208], [209], Brailovsky & Freiman [27], [29], Brailovsky [22-25] and 
Hamidoune [124-137]. If n is a minimal number such that for A C G we have nA = G, 
A is called a basis of G of order n. This theme is reviewed in [9] and [140]. 

What are the main aims which we are trying to achieve in coding? Atoms of 
information are transmitted by words of code. Thus, if the quality of a code is fixed, 
i.e. the number of mistakes to be corrected is fixed, then the code will be the better, 
the greater the cardinality of the code U. And conversely, if the number \U\ is given, 
how do we choose the best code? 

We shall reiterate the formulation of the two problems mentioned above. Let 
JJ Q An = Zo for some fixed n G N. Assume that for all z G 2U 

g(z,0)>d, (16) 

where d G N. 
Problem I. Let d be fixed. What is the maximum value of \U\ for which (16) is 

valid? 
Problem II. Let \U\ be fixed. What is the maximum value of d for which (16) is 

valid for some U of order \U\. 
We have formulated two inverse additive problems which are the major problems 

of coding theory but are, in essence, not yet solved satisfactorily. In a paper of Gerard 
Cohen and Gilles Zemor [47] other inverse additive problems are presented and their 
connection with coding theory is explained. 
26. Group Theory. Results in group theory are reflected in the reviews of M. Herzog 
[140] and Y. Berkovich [9] and the bibliography to this review. We try now to find an 
example where our approach gives some progress on a theme which was investigated 
earlier in group theory. 

For a set 
{ai,a2,a3} (17) 
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14 G.A. FREIMAN 

of elements of a group G, we build all the products, 

«1̂ 2035 &1&3025 U2&1&3? 02^301, 03^1^2, 030201 . (18) 

If at least one product in (18) is equal to another one, the set (17) is called rewritable. 
If every 3-element set in G is rewritable, then G is called a rewritable group, that 
is G G Q3, where by Q% we denote the class of rewritable groups. If every product 
in (18) is equal to some other product, then the set (17) is called totally rewritable. 
If every set (17) in G is totally rewritable, then G is said to be a totally rewritable 
group, written (G € P3). The definitions of classes of groups Pn and Qn are obvious. 
The problem is to describe all groups in the classes Pn and Qn. See Kaplansky [145], 
Blyth & Robinson [19], Freiman & Schein [117] and [118], Longobardy & Maj [170], 
[171] and [172]. 

The main tool to use in this study is a notion of 'permutational isomorphism', a 
realization of the equivalence relation we talked about in §1. This notion is somewhat 
different from the one introduced in §6, but it is suited very well to the study of this 
particular problem. 

A permutational isomorphism of A onto B (where A C S and B C R, while S 
and T are two sets with binary operations) is a pair of bijections cp: A B and 
ip: A^ —)• B^ such that for all pairwise distinct elements ai,a2,a3 G A we have 

ip(aia2a3) (p(a1)cp(a2)ip(a3) 

Here A^ is the set of all products of triples of distinct elements. 
To begin our approach we have only to pay attention to the fact that amongst 

the six products in (18) there are no more than five distinct ones, if the set (17) is 
rewritable. Thus, we take as a numerical characteristic, r, the maximal number of 
different products for all sets (17) in a group G. We thus obtain the classes of groups 
P (3 , r ) for 1 < r < 6 (see Freiman & Schein [117]). In [117] all classes of isomorphic 
triples, 19 classes in all, were obtained and then used to study the classes P (3 , r ) . 
Similarly one can define the classes of groups P(4 , r) of which there are 24. It turns 
out that P3 = P (3 , 2) (see [117]). In [118] the class P(3,3) was described. G. Freiman, 
D. Robinson and B. Schein [115] partially described the class P(3 ,4) . The next step 
is the study of P(3,5) = Q3. 
27. Mathematical statistics. Let F = {fi}?=0 be a set of continuous functions 
on [a,6], and let P* = {fifj}fj=0- In the paper of B. Granovsky and Eli Passow 
[120] conditions were determined for the set P* to consist of exactly 2n 4- 1 distinct 
functions. The additional requirement is that P* has to be a Chebyshev system on 
[a, 61. 

A set {^}iLo °f continuous functions on [a, b] is said to be a Chebyshev system 
on [a, b] if every nontrivial "polynomial" J27=o 9iui(x) nas at most n zeros on [a, 6]. 
The number n + 1 is called the degree of the Chebyshev system. In [120] necessary 
and sufficient conditions were given on the set {/ij^Lo so ^na^ ^ne se^ ififj}?j=o *s 
a Chebyshev system of minimal degree (2n + 1). These results have applications to 
the field of experimental design. See also I. Efrat [66], Kiefer & Wolfowitz [152] and 
E. Passow [213]. 
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It is clear how this problem can be formulated as a problem of small doubling of a 
set of real numbers. Given n + 1 functions pick some fixed argument x$. Consider the 
n + 1 numbers {fi(xo)}f=0. Leaving for further investigation the case when they are 
not all distinct, or some of them are not positive, we have the set D, of logarithms 
of these numbers, D = {log fi(xo)}f=0 subject to the condition \2D\ = 2n + 1. So D 
is a set with small doubling and it is very simple to show, not only for integers but 
also for real numbers, that D is an arithmetic progression. I. Efrat [66] has used the 
results of Theorem 1 and described all Chebyshev systems with |F* | < 3n. 
28. In this section we want to point out the unity of approach and similarity oi 
methods when different problems are treated from the point of view of Structure 
Theory. 

In Combinatorial additive problems we mainly study finite sets of integers. In 
many of such problems the theorems of §§5 and 6 about a structure of sets of integers 
with small doubling may be applied directly. In §§13-19 such results were given. 
These theorems may also be applied to sets in other algebraic systems, such as Zp. 
see [88], T1, see [197], Rk, see [82], page 94, and to functional spaces, see [66]. The 
sets in Z may be infinite, see [91] and [82]. The structure of sets with a small product 
in a nonabelian torsion-free group, see [26], is described with the help of methods 
developed to prove Mann's theorem. 

To solve inverse problems of additive number theory, analytical methods are used. 
They reveal some unity and similarity when applied to the study of different prob­
lems, see §30. Problems in number theory of the evaluation of measure and of the 
determination of the structure of sets with large trigonometric sum, see [260], [100]. 
[13], and in probability theory, of sets with large characteristic function, see [197] and 
[55], are often studied by similar methods. 

A tool of investigation which can be used in many situations, may be called "multi­
ple use of structural argument". To ensure the existence in Integer Programming, of a 
solution of an equation (10), see [96], we assume a condition on A(q) = {x € A \ q\x}, 
namely 

\A(q)\ <\A\ - \A\S (19) 

where 6 < 1 is independent q. In analytical number theory it is usual to place such a 
uniformity condition on the distribution of residues. When it does not hold, the case 
is not studied. However let us now consider the case when (19) is not valid. Then 
there exists q > 1 such that 

\A(q)\ > \A\ -\A\S 

This is a very strong condition to impose on the structure of A and so we can con­
tinue our analysis and describe the structure in full. In papers [56] and [197], where 
problems in probability were studied, a condition of the type (19) is present. This 
observation opens up the possibility to obtain new results, stronger than those in [56] 
and [197]. 

The very notion of a set with small doubling, when brought to group theory, 
resulted in the appearence of new problems. 
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The notion of isomorphism which was introduced in the course of proving the main 
theorem (§6) became a useful tool. In group theory, it provided the possibility of build­
ing an equivalence relation on finite sets, describing its equivalence classes and then 
studying the property of a group in connection with the existence or nonexistence of 
some classes in this group. In rewritable groups, see §26, a version of isomorphism was 
given suited to the purpose. In [53] a notion of isomorphism for random variables was 
introduced, which gave the possibility of describing the behavior of a one-dimensional 
random variable with the help of a multidimensional one. 

29. First results about the structure of sets with small doubling were obtained with 
the help of elementary methods. Afterwards, the analytic methods were introduced. 
In fact, there exists an exact dividing point. If |A" + iiT| < 3k — 3, then the elementary 
approach very quickly gave a full description of K. For larger values the elementary 
methods did not give results in spite of big efforts. 

Very little has been done to get elementary results in the multidimensional case. 
In [82] the case on the plane oi\K + K\ < ^k — 5 is studied and I. Stanchescu studied 
the case \K + K\ < (4 — e)k. I don't know the range of the doubling coefficient Cn 
in an inequality \K + K\ < Cnk, where K C Zn for which elementary results may be 
obtained. 

To obtain here a clear picture is very desirable and not very difficult. Then it can 
be used to make the results of the main theorem more precise. Results for doubling 
coefficients ^ and 4—e show that the structure of A after it becomes multidimensional 
may be described more accurately with the help of elementary methods. 

Many interesting problems arise from a study of K when two, or more, numerical 
characteristics are given. A long list of invariants is given in [82], page 41. 

30. In direct problems of additive number theory one is usually studying an integral 
which yields the number of representations of a number expressed as a sum of terms 
of a certain type. Further, a transform of this integral yields an asymptotic formula 
for the number of representations. Characteristic of the analytic method in Structure 
Theory is the fact that an integral with a known value serves as a starting point. 

Examples 

(i) (See Roth [224].) Sets A without arithmetic progressions of length three. We 
have 

x£A yeA z£A 

1 

0 

e 2nia(x-{-y—2z) da A 
l 

o 

S2S\ da. 

where 

S 

xeA 

^2wiax Si 

z£A 

c—Aixicxz 

(ii) A set K with small doubling (see Freiman [82]). Here 

x£K yeK z£2K 

1 

0 

e2nia(x+y-z) da 
1 

0 

S2S1da = \K\2J 
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where 
S 

xeK 

„2ттгах Si 
xE2K 

g—2wiax 

(iii) Sum-free sets. We have 

x£A y£A zEA 

1 

0 

e2irza{x+y-z) da 
1 

0 

S2Sda = 0 

where 
S 

x€A 

g2wiax Ac [1,Z], Z G N. 

The next step is to obtain a large trigonometric sum for a certain value (sometimes, 
for several values) of the argument. Consider an example from Freiman [82], page 48. 
Let if be a set of residues modulo a prime p. Then 

I 

xi,x2eK x3£2K a=0 

p-1 
e2Tvi^(xi+X2-x3) 

p-1 

a=0 

S2S1 = k2p, 

where 
S 

xEK 

e2IIiap Si 
x£2K 

-2ni^x 
e p 

Let T = \K + KI and assume that \S\ 3 
5 

k for every a ^ 0(p) then 

1/ k2T 
p-1 

a=l 

S\2\SA k2T 
3 

5 
k 

p-i 

o=0 

2 
p-1 

a=0 
Si 2 

1/2 

fc2T 
3k 
5 

kp-Tp, 

In the example just considered the conditions T 12 
5 

k and k 
35 were assumed, 

from which it follows that \I\ < kzp, a contradiction. We have therefore proved that 
there exists a' ^ O(modp) such that 

S(a') 
k-1 

J=0 
2iri&aj 

e p 3 

3 
5 

k 

The presence of a large trigonometric sum makes it possible to obtain data about the 
set A which can then be processed using elementary techniques. 

31. In the first papers on sets with small doubling information about only one large 
trigonometric sum was used. In the proof of the main theorem we have used several, 
but finite number of large sums. The next step was to begin to study a set of all 
'large' trigonometric sums. It was first done in 1973 in probability theory field, in the 
proof of local limit theorems (see D. Moskvin, G. Freiman & A. Yudin [197]). In this 
case we were dealing with the characteristic function of a lattice random variable, 

/ ( « ) 
kez 

Pke2"iak 
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18 G.A. FREIMAN 

studying the measure and structure of the sets E, where the characteristic function 
is large. 

The reasoning is, in short, as follows. We use the fact that, if for some a i and a2 
we have | / ( a i ) | > 1 — u and (/(0:2)! >l — u then \ f(ai + a2)\ > 1 — 4u. We take the 
set 

E a / (« ) ! > 1 
logn 

n 
neN 

and begin to double, obtaining sets 21?, 22E, 23£J, If the measure is growing 
steadily we will cover the set [0,1) very quickly, thus obtaining a contradiction. If 
at some stage we meet a set with small doubling, we will get a structure. For some 
q E N, the arguments | , with 0 < p < q, will be included in this structure which will 
lead to the conclusion that almost all the probability measure is concentrated in an 
arithmetical progression modulo g, which gives a contradiction. 

32. We are naturally led to a study of sets with a large measure of large trigonometric 
sums. 

Let & be a positive integer and u < k a positive real. For a set 

K — {ai < a2 < " • < au} aj € Z, 1 < j < k 

let 

Sk (a) 
k 

3=1 

g2iriaa,j 8k{ol) = \SK(ot)\ , 

Er,U a € [0,1 for which sk(&) > k — u} 

and 

Vk{u) - p(EK,u) 

when p, is the Lebesgue measure on [0,1]. 

Problem. — Find the set K which maximizes px(u) and find its maximal value. 

We denote by PM&^IK^u) the supremum of px(u) over all sets K of size K. The 
first results on this problem were obtained by Freiman (see [95], page 144) and Yudin 
(see [260], page 163). I sketched an approach for solving the problem in [100]. In [13] 
A. Besser carried out and extended this plan very widely. He showed that up to the 
second order 

/Wx(&,w) = 2/3 ~ 
2 6 

7T 
Q 
k 

u 
k 

1 2 
1 

5 

8 
u 
k 

and Kex may be described, in the main case, as the union of an arithmetic progression 
of length ko = k — —u, symmetric around zero, and, for any non-zero integer n, an 
arithmetic progression of length 

1 

2 
kn u 

(nn)2 
1 ( - D n 

2 

centered around ^. 
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We will try to explain from where the structure of Kex comes. If a is small the 
term e27rioeaj has a value close to 1 if a,j is small. That is why we take an arithmetic 
progression with difference 1 centered around 0. We have, for a > 0, 

sk(a) 
sin(7ro:fc) 
sin(7ra) 

-irak — 7r3a3fc3/6 
Na 

k 
7T2a2 

6 
fc3 

As a increases, Sk(a) decreases and reaches k — u for or determined by 

k 
n2a2 

6 
k3 = k - u 

that is, 

a2 
6 

TT2 
u 
k3 

and thus 

oa 
6 

7T 
1 
k k 

1 2 

Consider the trigonometric sum at this point ao- Our set is positioned on the 
segment [—|, | ] . If we add another number, | ~h 1, to the arithmetic progression, 
the term e2™*o(f+i) wm De added to the trigonometric sum. If we add [ ^ ] , then 
e2irta0[i/a0] wm \ye cioser to unity, it will lie in a smaller neighborhood of the x axis 
and will influence the increasing of 5(a) more critically. This consideration explains 
the appearance of segments near to the points 
33. An analysis of the remarkable results of A. Besser does not reveal an easy future. 
The set Kex is of a rather complex two-dimensional structure which becomes more 
complex as n increases and will, in all likelihood, become multi-dimensional. The 
structure of KEX has only been found for very small values of u, u < 32Q00 and an 
increase is only gained with some effort. Thus, further progress in the problem under 
consideration would be of great interest, but reaching it is very difficult. 

The sets Kex found by Besser have small density for small uJs. But in many open 
problems the situation is different. For example, in the problem of sum-free sets, the 
density of the set to be considered is close to 0.4. When attempting to strengthen the 
theorem on the structure of K, with small doubling, outside the bounds \2K\ = 3k —3, 
we should begin by considering sets whose densities are close to 0.5. So, we state the 
problem on measure of large trigonometric sums as follows. Let if be a set of integers 
in [0,1] with \K\ = k. Define 

EK^ = {ae[0,l), for which SK(C*) > m] 

and let / /^(m) = fi(K,m) denote the measure of EK,™- Also we set 

ßk(mJ) max u(K* m). 
KC[0,I] 

Then if I = k — 1, the problems is a trivial one. As I increases, it becomes more com­
plex. After the quantities /ifc(ra,Z) have been found, one should proceed to describe 
the structure of those i f ' s for which /i(if, m) does not differ greatly from (m, I). 
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34. In the problem on sum-free sets, the following integral was being considered, 

l 

o 
\S\2Sda = 01 

and it follows from this that 
l 

o 
\S\2ft(S) da = 0 . 

In a neighbourhood of zero the integrand is of order k3 and its contribution to the 
integral is of order k2. Since the integral over the whole interval equals zero, the 
measure of the set of a 's where |3?(S)| has order k and is negative, should be large. 

We come to the following general problem. Let K C Z with \K\ = k and set 

EK,-m = {ae [0,1) for which 8£(S) < -m 0 <m <k} 

Let u(K, —m) be the measure of EK -m and 

fik(-mj) max u 
KC[o,l] 

K,-m) 

The usual questions may be asked once again about the quantities /ifc(—m,I) and 
about the structure of the set K for which the measure fx(K, —ra) is close to the 
maximal value. At the next, deeper stage of study, one may investigate combining 
two or more numerical characteristics. The first step here should be the study of 
trigonometric sums when some conditions are imposed not only on \S\ but also on 
a rgS . 

35. Let G be an abelian group whose operation will be denoted by -f, and G be the 
group dual to G, that is the group of characters of G. Let A be a subset of G and 
define a map 

fx:A 

aEA 

X(a) for x € G 

that is, to the set A we correspond a function of a character x € G. 
As is shown in [82], from the fact that |2^4| < C\A\ in the case G — Z it follows 

that the set on which | / ( x ) l 18 rather large has a large measure. With the help of 
methods from harmonic analysis we can describe the structure of the set A. 

It is important to stress that to the set A with small doubling from G corresponds 
a set 

Aa X € G such that 

aEA 
X(a) a\A\ for a € E+ , 

which also has small doubling. Prom the fact that G = G we may, it seems, suppose 
that from B C G and \2B\ < C\B\ it will follow that B C G and \2B\ < C\B\. Note 
that the constants in different places of this section may differ. For a given additive 
problem it is possible to find the equivalent problem on the dual group and vice versa, 
and then to study the version which is preferable. 

The following observations are also important. Suppose that A\ C G and A2 C 
G are sets which are structurally 'near' to each other. A natural question to ask 
is whether A\ and A2 are also 'near' to each other and what kind of topology is 
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induced by the correspondence A \—> A. Again, from G — G it follows that these 
topologies induce one other. It would be very interesting to determine what kind 
of neighourhoods they define and to what extent these topologies are 'metrisable', 
because metric characteristics of these topologies will be of great interest during the 
study of problems of addition of sets. 

The analytic tool in the case G = Z was the equality 

l 

o 
S2S1 da - \A\2 : 

where 
S 

xeA 

^2itiax and Si 

x£2A 

g—2wiax 

In the case of a finite abelian group, A, we can write the parallel expression 

x ,aeA 
e2IIiax 

2 

aQ2A 
X(o) = \A\2 

Generalization to the nonabelian case should also be studied. 

36. I am greatly indebted to Dr. Ruth Lawrence and Mr. Harry Lawrence for their 
invaluable help in producing this manuscript. 
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