
Astérisque

AMNON BESSER
Sets of integers with large trigonometric sums

Astérisque, tome 258 (1999), p. 35-76
<http://www.numdam.org/item?id=AST_1999__258__35_0>

© Société mathématique de France, 1999, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1999__258__35_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astérisque 2 5 8 , 1999, p. 35-76 

SETS OF INTEGERS W I T H LARGE T R I G O N O M E T R I C 
SUMS 

by 

Amnon Besser 

Abstract. — We investigate the problem of optimizing, for a fixed integer k and real 
u and on all sets K = {a\ < a2 < ••• < o^} c z , the measure of the set of a e [0,1] 
where the absolute value of the trigonometric sum SK(<*) = i=1 e2Tiaoj is greater 
than k — u. When u is sufficiently small with respect to k we are able to construct 
a set Kex which is very close to optimal. This set is a union of a finite number of 
arithmetic progressions. We are able to show that any more optimal set, if one exists, 
has a similar structure to that of Kex. We also get tight upper and lower bounds on 
the maximal measure. 

1. Introduction 

Let k be a positive integer and u < k a positive real. For a set 

K = {ai < a2 < • • • < ak}, a,j e z , 1<3<к, 
let 

SK(<X) = 
k 

i=1 

2iriaaj sK(a) = \SK(<*)\, 

EK,U = {a E [0,1) SK(&) > k — U} 

and 
uK(u) = u(EK,u) 

where /x is the Lebesgue measure on [0,1] normalized so /¿([0,1]) = 1. 
This work deals with the following problem, first raised at the talk of Freiman and 

Yudin at the Number Theory Conference (Vladimir, 1968): 

Problem 1. — Find the set K which maximizes /J,K(U) and find the maximal value. 

1991 Mathematics Subject Classification. — Primary 11L03; Secondary 42A05. 
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36 A. BESSER 

We denote by /im a x(fe,ii) the supremum of fiK(u) on all sets K of size k. 
The first results on this problem were obtained by Freiman and Yudin: 

Theorem 1 (Freiman, [2, page 144]). — For u = 1, a\ = 0 and a& < 0.05A;3/2 the 
maximal measure is 

pmax 
(k,u) 

2V6 

7T 
k~^2 + 0{k~2) 

and it is attained by K if and only if K is an arithmetic progression. 

Theorem 2 (Yudin, [4]). For u = o(k) 

Pmax {k1 U) 
2y/6 

7T 

1 
k 

u 
.k 

1/2 
: i+o(D) 

as k —> oo. 

In [1] Freiman treated the problem assuming the ratio u/k is small enough. He 
sketched an approach for attacking the problem and conjectured it would prove that 
the best set is an arithmetic progression. 

The purpose of this work is to carry out and extend Freiman's approach (and also 
that of [4]). It will turn out that once u is sufficiently large it is no longer true that 
an arithmetic progression attains /xmax(&?^)- We are unable to find a set which does. 
Nevertheless, we do describe to some extent the "structure" of the maximal set. To 
make precise what this means, we will introduce and use the following terminology 

Definition 1.1. — Let k and u be as above. 

1. For any t/) G [0,1] we let Kw be the collection of all sets K c Z of size k that 
satisfy HK{U) > ip. 

2. A collection K of sets is said to be "good for ip", or to be a Gw collection, if it 
satisfies the following two properties: 

(a) We have K c % , 
(b) For any set K C Z of size k there exists a set Kf £~K such that /IK (U) < 

uK'(u) 
Our main results are of three types. We are able to describe the "structure" of sets 

in I&0 for a \j) which is very close to maximal. In addition we construct a certain sub-
collection of this which has property Gw .The subclass we describe is not a singleton 
but it does have a rather simple structure: it is essentially the union of arithmetic 
progressions, and we have a fairly accurate information about the location and length 
of all these sequences. Lastly, we get a good bound on /imax(&5^). 

The type of results we get is dictated by our method of proof, which could be 
describe as an iteration of four steps. 

1. We first guess a set K expected to have a large JJLK{U). We will take ip = fJ>K(u)* 
2. We get information about sets K\ that have an even higher / ^ ( t / ) . Typically 

this information consists of knowledge that most elements are contained inside 
arithmetic progressions of relatively short length. This is what we mean by 
describing the "structure" of Kw. 
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LARGE TRIGONOMETRIC SUMS 37 

3. Given a set K\ G KW, we give a procedure for obtaining out of K\ a set K2 
such that fjbK2(u) > №KX (U). The procedure usually involves compressing the 
elements contained in the short progressions described above to form short pro­
gressions, possibly with a single gap. Sets obtained in this way will form a 
subclass IK that has property G 4 by construction. 

4. We use the knowledge of Kw to get an improved bound on jUmax(fc,w). 
Our results apply under the assumptions fc/30000 > u > 1 and k > Const, with 

Const an unspecified constant. We note that this second assumption is only forced 
on us because we are using lemma 5.2 which is ineffective. If an effective bound is 
supplied for that lemma, it will be very easy to deduce an effective lower bound on k 
as well. 

We state a simplified version of the results here under the additional assumption 
u > fc2/3. With these assumptions, it follows (proposition 3.1) that for an arithmetic 
progression K of difference 1 and length k there exists some /3k,u(definition 3.2) such 
that 

ER,U = [~Pk,uj (3k,u] (mod 1). 

We will see in proposition 3.4 that 

Bk,u = V6 
7T 

1 
k 

u 
k 

1/2 

We describe a certain basic set Kex (a more precise description will be given in 
construction 6.1). Set mo = k — 5u/12 and /3 = /3 m 0 j W . To first order, / 3 m o , u « 
/3fc,U(l + 5u/8k). The set Kex is the union of an arithmetic progression of length 
mo, symmetric around 0, and for any non zero integer n an arithmetic progression of 
length 

1(  

2 rtln u 
(7m)2 

1 -
(_l)n 

2 
centered around n 

/3* All the arithmetic progressions here have difference 1. The 
structure of Kex and the particular values of the mn are chosen in such a way that 
the contributions of the shorter progressions to SKBX (<*) exactly compensates for the 
decline of the contribution of the large progression when |a| > (3/2. We show in 
proposition 6.12 that fiKex(u) ~ 2/3. The results are now as follows. 

1. 

A¿max(&5 и) 2Bmo,u 1+0 u 
Jê. 

2' 

2. A set K € KMKea; („) has the following structure (similar to that of KEX). 
(a) All but 

_5_ 
12 

u + O 
u2' 
k 

elements of K are contained in a short arithmetic progression of length 
1/4/3. To state the other results we will assume that this progression is 
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38 A. BESSER 

symmetric around 0 and its difference is 1. The general case is essentially 
the same by translation and dilation which change nothing, 

(b) Most other elements are contained in a union of short arithmetic progres­
sions with centres near n 

ß 
and n 

ß 
for n G N. each such short progression 

has length 2k at the most. The number of elements contained in progres­
sions near ± n 

ß 
is 

mn + O 
'u2 

k, 

(c) The number of elements not contained in any of the progressions above 
is 0((u/kW2u). 

3. The following subclass of ^Ке* («) (u) is of type Gukex (u) It consists of the sets 
where all the elements contained m the progression described in (a) above in 
fact form an arithmetic progression except that one gap may persist. 

All O terms can and will be made explicit although no claim for best bounds is made. 
Here is a brief summary of the contents of this paper. In section 3 we estimate 

H{EK,U) in the case where K is an arithmetic progression, and we prove the lower 
bound: 

u(EK,u) < 2VE 
7T 

1 
k 

u 
k 

1/2 

for such a progression. In section 4 we prove the upper bound 

u(EK,u) < d 
k 

u 
k 

1/2 

holds for an explicitly given d œ 4 and all sets K under some mild restrictions on k 
and u. In section 5 we consider a set 

K C Kw, ф = 2\/6 
7T 

1 
k 

u 
k 

1/2 

We show that this implies that EK,U is contained in a union of small intervals and that 
K has most of its elements contained in an arithmetic progression of short length. 
We then perform the first of our "compression arguments5' mentioned above and con­
struct a Gw subclass consisting of the sets where these elements form an arithmetic 
progression with at most one gap. The construction of Kex is described in section 6. 
In sections 7 to 9 we describe the structure of ^K K e x ( u) and also describe a GllKex (u) 
subclass. 

Some of the results of this paper appeared in [1]. We follow [1] very closely in 
sections 3 to 5. We note that the argument in [1, p. 368] may be completed to give 
the result that, the part of K not in an arithmetic progression is bounded in size by 
cu with c —> 1/(2 — 4/n) as u/k —> 0. This result is improved here to c « 5/12. 

It is a great pleasure to thank Prof. Freiman for the help and fruitful discussions 
during the preparation of this work. I would also like to thank the referee for making 
many valuable remarks. 
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LARGE TRIGONOMETRIC SUMS 39 

2 . Notation and terminology 

An arithmetic progression {a, a 4- q, a 4- 2q,..., a + (n — l)g} is said to have length 
n and difference q. We will often make the distinction between a set being contained 
in an arithmetic progression, which means it is a subset of the above, and set forming 
and arithmetic progression. We will also sometime talk about an interval of integers. 
This will mean a set of the form {x E Z : s < x < t}. This interval has length t — s. 
Notice that a subset of {a, a + q, a + 2g,.. . , a + (n — l)q} is contained in an arithmetic 
progression of length n but in an interval of length (n — l)q. 

In this paper, excluding the introduction, we will make a non-standard use of the 
notations O(l) and o(e). The notation 0 ( 1 ) will mean having absolute value < 1. In 
particular, we will write a = 6 + 0(l)c to mean \a — b\ < c. We will use o(e) to refer to 
a quantity which is very small and will be discarded in the computation by swallowing 
it in a larger quantity. A typical use of this will be for example 8(1 + o(e)) < 9. The 
reader will have to check for himself or herself that such an argument is justified, 
which should not be too hard. This notation is used because we have been asked to 
give explicit, while not best possible, upper bounds for everything. 

3. The case of arithmetic progressions 

As remarked in the introduction, we always assume that u > 1. In this section we 
want to determine SK{O),EK,U and uK(u) when K is an arithmetic progression. It 
will be occasionally convenient to write, when K is of length k and difference 1, Sk{ct) 
for SK(OC), Ek,u for EKyU and fik(u) for IXK{U). 

We first note that, for any set K and integers d and m, 

(i) SdK+m{ot) = sxida). 
Therefore 
(2) EdK+m,u = (d) 1(EK,U)-

Here, the map (d) : [ 0 , 1 ) -> [ 0 , 1 ) is defined by (d) (a) = fractional part of da. For 
F C [ 0 ,1 ) , (d)~1(F) denotes the inverse image of jP under (d). It is easy to deduce 
from this that 

VdK+RN(u) = IIK{U). 

These observations allow us to reduce to the case of difference 1. 

Proposition 3.1. — Let K be an arithmetic progression of length k and difference 1. 
Assume k >2u. 

1. We have 

s к (a) = 
sin(7raA:) 
sin(7RCFC) 

when a ^ O . 

2. The set Ek,u is a single interval modulo 1, i.e., 
EK,u = [-P,0l (mod 1) , 

For some /3 G HL 
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40 A. BESSER 

It will be worth while to give the number /3 appearing in the proposition a special 
notation. 

Definition 3.2. — Under the assumptions of proposition 3.1, define 0k,u > 0 by the 
equality 

EK,U = [—ßk,ui ßk,u] (mod 1), 

for K an arithmetic progression of length k and difference 1. Note that 

SK(ßk,u) = k-u. 

Corollary 3.3. — If K is an arithmetic progression of length k and difference d, then 

EK,U 
d-1 

q=0 
q 
d 

ßk,u 
d 

q 
d 

ßk,u 
d 

(mod 1). 

Proof — Prom proposition 3.1 and (2) it follows that 

EK,u (d) ([-ßk,u,ßk,u]) 
d-1 

q=0 d ßk,u 
d d ßk,u 

d 
(mod 1). 

Proof of proposition 3.1. — By (1) it is enough to consider any arithmetic progression 
of difference 1. In particular, one can take 

K = k-1 
2 

k-1 
2 

Note that this set might be composed of half integers but that makes no difference 
here. We get for a ^ 0, 

(3) SK(a) = 

k-1 2 

n__ fc-1 

e(l-k)nia 
e(l-k)nia 

k-1 

n=0 
e-wiak 

e{l-k)iriot ̂ 2iriak 

^2iriak 
(çTsiotk e-wiak)/2i 
e-wiak e-™a)/2i 

sin(7ro:fc) 
sin(7ra) 

Taking absolute values gives the first assertion. We now have 

EK,u = a e (0,1) : 
sin(7rafc) 
sin(7RA) 

> k — u U{0}. 

This set is symmetric around 1/2. It is thus sufficient to consider its intersection with 
the interval (0, | ) . On this set 5^ is in fact positive. Indeed, since by assumption 
2u < k, we find 

1k 
2 <k-u< sminak) 

sin{7ra> 

1 
sin(7ra) 

7l72 
Ta 

and therefore 

(4) Trak < 7T, 
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LARGE TRIGONOMETRIC SUMS 41 

which shows that sin(7RAJFE) > 0. We can also write 

SK(a) = 
fc-1 

2 

^_ fc-1 
2 

^2rr iocn 
fc-1 

2 

^_ fc-1 
2 

cos(27ran). 

By (4), each term in this sum, and therefore SK(&) = \SK(OL)\, is decreasing in a. 
Thus, Ek,u H [0, | ] is an interval. 

Proposition 3.4. — When k > Su we have 

ßk,u = 
Ve 

7T 

1 
ÌÌ 

'U 

Je. 

1/2 
1 + 

3u 
20k 

•0(1) 
U 
K 

2 

Corollary 3.5. — When k > Su we have 

Mmax (к, и) > цк (и) > 
2v/6 

7T 
U 

,k 

l 
2 1 

k 
Proof of proposition 3.4. — Set 3 — 7r,"4.u • Then 

u = k — sin(fc/3) 
sin(/3) 

We notice first that 

0 < 
sin 5) 
sin(/3) 

sin(fc/?) 
B 

sin(k3) 
sin(/3) 

/3 - sin(/?) 
3 

< k /33/6 
/3 

k332 

6 fc2 
Now expand 

(5) 

k- sm(kd) 
0 

B - 1 ^ ( k d - s i ^ k B ) ) 

= ß-1 
(kßf 

6 
(k8f 
120 

(kß)7 

7! 
fc3/?2 

6 
1 - 6(k3)2 

120 
6(fc/3)4 

7! 
It follows that 

k332 

6 
1 - (k3)2 

20 
(k3)A 

840 
> it > kz32 

6 
1 - (fc/?)2 

20 fc2 

Thus, 

6w 
A;3 

1 - (kß)2 

20 
№)* 
840 

-l 
</3 2 < 

6w 
k3 1 - (kß)2 

20 fc2 
-l 

We now plug here our first estimate kd < n from (4) to iterate estimates on (kd)2. 
First, since we assume k > 3u > 3, 

1 - (fc/?)2 

20 k2 1 
3' 
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42 A. BESSER 

SO 

(kß)2 < 18 
u 
k' 

Applying this and using 1/k2 < u/{3k) we now get 

6¡ < m 2 < 
6¡ i + 

2uN 

k 
Thus 

6u 

k3 
1 -

6u 

20k 

6 2 

840 
u 
k 

2" -1 
<ß2 

and 

6u 
k3 

1 -
6u 

20k 

12 

20 
u 
K 

2 U 

k 

2 -1 
>ß2 

The proposition follows easily from this. 

4 . An upper bound for /zmax(fc, u) 

We will prove the upper bound 

Mmax(&,w) < K 
u 
k 

1 
2 

for a constant d « 4.04 that will be defined later. Note that this is of the same type 
as the lower bound we got in corollary 3.5. We will need a few lemmas. 

Lemma 4.1. — For any u and k we have 

A¿max(&5 и) < 
k 

(k - u)2 

Proof. — Since SK {OL) > k — u on a set of measure /ij^tt), we have 

(k - u)2^K{u) ri 
o 

SK(p)2da. 

The right hand side can be explicitly computed. 

lo SK{ot)2da — f 
/0 

SK {OL) SK {OL) da 

f 
'0 

k 

n=l 
e2Tria(an) 

k 

\m=l 
e2Tria(an) da 

k 

n,m=l 
f e2Tria(an-am)^a 

k 

n=m=l f 
to 

Ida — k. 

This immediately implies the result. 
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LARGE TRIGONOMETRIC SUMS 43 

Lemma 4.2. — Let Pi,P2, • • • be real positive numbers such that k 
/¿=1 Pi = 1 Let 

ai, i = 1,..., k, be integers. Set (j){a) ^k 
i=1 p.e27riaai Then, 

\4>(<*I + A2)\ > \4>(OT1)\\4>(A2)\ • l - | ^ i ) l 2 l - | 0 ( a 2 ) | 2 . 

Proof. — We reproduce the proof given in [5, Lemma 1]. Let 

vo = {yfpï,---,\/Pk), 

Vi = /p^e2niaia\ Jp^e2™^) 
v2 = Me27Tia2ai, Jp^e2™^) 

be three unit vectors in Ck. Then \(j)(ai+a2)\ = cos#(t?i, v2) and |0(a$)| = cos0(t^? vo) 
for ¿ = 1,2, where 6(v, w) is the angle between the vectors v and w. Since 6(v\,v2) < 
Q{VI,VQ) +0(v2,vo) we have 

|^(ai + a 2 ) | > cos#(t>i,?;o) cos0(f 2,^o) Sin 0(t?i, Vo) Sin #(i>2, VQ) 

— COS6{VI,VQ) COS6(V2IV0) 

- V 1 - cos20(t/i,i>o) 1 - COS2 0(^ 2, ô) 

- \4>(ai)\\4>(A2)\ ^ l - | ^ i ) | 2 ^ 1 - I ^ 2 ) | 2 . 

Corollary 4.3. — For any set K and real numbers U\, u2 we have EK,Ui + EK,U2 Q 
EK,2(UI+U2)-

Proof. — When u\ = u2 this was obtained in [5]. In the general case, putting in 
lemma 4.2 pi = \ and multiplying by k2 we get 

ksK{oti + a 2 ) > sK{oLi)sK{a2) ' f c 2 - * j r ( " i ) 2 
fk2 - sK{ct2)

2. 

If we assume SK{oti) > k — u\ for i = 1,2, then we get 

ksK(c*i 4- a 2) > (k — ui)(k — u2) - k2 -(k-Ul)
2 fk2 — (k — u2)

2 

= k2 — k(u\ 4- uo) + tiiwo — 'ni (2fc — tti) w2(2fc - w 2). 

By dropping the term u\u2 and replacing 2k — Ui by k we see that 

ksx{oLi + a 2) > A:2 — kiux + ÎX2) — k(2^Jv^^/û~2~), 

Since 2y/û{^Jû2~ <ui+u2 we get 

ksx(cti + «2) > k2 — 2k(ui -f W2), 

which implies the result. 

Lemma 4.4. — If E C [0,1) is closed and u(E) 
35 then 

p(E + E (mod 1)) > 2/I(J5). 

Proof. — This is a result of Macbeath and Kneser (see [6] for reference). Also, this 
follows easily from the Theorem in [3, p. 46]. The referee informs me that this is also 
due to Raikov [7] with the relaxed condition p(E) < ~. 
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44 A. BESSER 

Proposition 4.5. — Put 

c = 
V2-1 

4 V 2 - 1 
« 0.09 d = 1 

Ml - с) 2 
« 4.04 . 

For k > 50 and 15ti < k we have 

£*max(&? и) < A: u 
k 

Ì 
2 

Proof. — More precise restrictions on k and u are in fact & > 35/(1 — c ) 2 and u < ck. 
Prom corollary 4.3 and lemma 4.4 it follows that 

uK(4su) > 2s uK (u) 

for every positive integer s for which № ( 4 s - 1 i x ) 35* On the other hand, by 
lemma 4.1 we have, for any s with 4s u < jfe, 

uK(4su) < k 
(k - 4su)2 * 

It follows that 

/Wx(â,h) < min 
k 

2s(k-4su)2 

where the minimum is taken over all the integers s such that 

(6) 4su < k and 
k 

(k - 4s~1u)2 

1_ 
35' 

To get a good upper bound we choose 

s = pog4(cfe/u)] + 1, 

where [ ] is the integral part and log4 is log in base 4. The conditions of the proposition 
guarantee that s is in the range (6). Also set t = \og4(ck/u) — (s — 1). Note that 
t G [0,1). We have 

4s = 4 . 4s""1 = 4l~l ck 

u 

Therefore we obtain the bound 

uK(4su) < 
. 1 
: k 

u 
k 

1 
2 1 

/4i-*c(l - 4 1 - t c ) 2 ' 

Consider now /¥z^(l-41-tc)2 

as a function of t. Its maximal value over |0,11 is 
easily found. It is obtained at t = 1 and equals 1/d. This finishes the proof. 

Remark 4.6. — Here is the reasoning behind the choice of s. We are trying to mini­
mize a function of the integer s. The replacement for a differential when computing a 
"critical value" in this situation is the difference of two successive values, but we may 
also consider the quotient of two such values, which is more natural here. Therefore, 
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LARGE TRIGONOMETRIC SUMS 45 

we look for an integer s for which the ratio of the expressions at s and s — 1 is closest 
to 1, i.e., 

2 
k - 4 (4s~1u) 

k - (4s-lu) 

2 

» 1. 

Solving this gives 

4 S _ 1 ck 

u 
Remembering that s G Z makes our choice clear. As mentioned above, we have 
arranged things so that this s will be in the range we are considering. 

5. Structure of K with large EK,U 

In this section we will describe the structure of sets in the class Kw, where ip 
is roughly the measure attained by an arithmetic progression. More precisely, set 
d1 = 2V6 

7T 
We let 

w = k u 
k. 

1 
2 

and consider from now on a set K G KW Towards the end of this section we will also 
describe a subclass satisfying property Gw. 

Our initial restrictions on k and u in this section are that the restrictions of propo­
sition 4.5 are satisfied for k and 43u. It is enough to require k > 50 and lOOOti < k. 
These assumptions will be strengthen later. Let d be defined as in proposition 4.5. 

Lemma 5.1. — For a constant c\ « 0.75 there exists i G {0,1,2} such that 

KERA'U + EKAiu) < (2 + C^VÌEK^U). 

Proof. — Assume by contradiction that for all 0 < i < 2 we have 

l*(EKAiu + EKMU) > (2 + A)fi(EKAiu). 
Applying corollary 4.3 repeatedly we get 

p(EKA*U) > (2 + c i ) 3 / i (£^ , u ) . 

substituting the lower bound we imposed on JJL{EK,U) and the upper bound of propo­
sition 4.5 on fJ>(Ej(A3U) we get the inequality 

23d> di(2 + c i ) 3 . 

We fix ci so that this last inequality fails, i.e., c\ = 2((d/di) 1 / / 3 — 1). The approxima­
tion to c\ is recovered from the estimate d/d\ « 2.59. 

For a positive integer q we set 

EqJ = 
q-1 

r=0 q 
6_ 
2 

r 
g 

S 
2 

(mod 1). 

The following lemma is proved in [5] on p.154-159. 
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46 A. BESSER 

Lemma 5.2. — Let F C [0,1) be a closed set such that //(F) < Const for some 
unspecified constant Const. Suppose that there exists 0 < c < 1 such that 

ß{F + F)<{2 + c)ß(F). 

Then there exist /3 € [0,1) and a positive integer q such that 

FQß + Eq,6, 

where ô (1+c) 
q MF). 

Lemma 5.3. — Suppose F Ç ß + EQj, where Ô 
(l+c) 
q 

//(F),0 < c < 1, Suppose in 

addition that fi(F) > 0, mat 0 E F and that —F = F (mod 1). Tnen F C Eqj and 

E„2S ÇF + F + F (mod 1). 

Proof — To see that F C Eqj note first that Eqj is stable under translation by 1/q. 
Therefore, we may assume that |B| < l/2q. We know that 0 E F C /? + Eq,$. This 
implies that \/3\ < S/2q. Finally, as F is stable under negation, 

F C (ß + F<^) H (-/? + F g ^) = Eq,6-W Ç EqiS. 

When /3 = 0 the second part of the lemma is proved at the same place the previous 
lemma was. 

From now, until the end of the paper, excluding section 6, we will be working under 
the following additional assumption 

Assumption 5.4. — Our u and k are such that 

4.04 
k 

Wu 
k 

l 
2 < Const, 

where Const is the unknown constant of lemma 5.2. 

Making this assumption allows one to use lemma 5.2 for our purposes. It is enough 
to require that k is big enough, of course. This assumption makes the results of this 
paper ineffective. It is our hope, however, that one can give an effective bound in 
lemma 5.2, and thereby for the entire paper. 

Proposition 5.5. — If K E Kij,, then there exist integers q and i € {0,1,2} and a 
positive real number 6 such that 

1. We have the inclusions 

EK^U Ç EQÌS and Ej^ìiQ.4%u D EQÌ28-

2. We have the inequality 

S>q -i2i di 
k 

u 
k. 

l 
2 
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Proof. — Let i € {0,1,2} be the smallest integer for which the assertion of Lemma 5.1 
holds. This lemma precisely says that Lemmas 5.2 and 5.3 can be applied in succession 
to F = EK4iu. The implication is that there exist some positive integer q and some 
positive real number S such that 

(7) E К ¿i и Q Eq,8 

and 

Eq,2S Ç EKi4iu 4- EKì4iu + EKÌ4ÌU. 

Corollary 4.3 implies that 

ER.IO^U 2 EKÌ4ÌU 4- EKÌ4Ìu + EK)4iu. 

This gives the first assertion. The inclusion (7) implies 

q6 = fi(EqjS) > p{EKAiu) : 2ip(EKiU) 2* 
d1 

k 

w 
k. 

1 
2 

This gives the second assertion. 

Proposition 5.6. — Let q be a positive integer. If 

EK,U D {0,q-\ 
q-1 

Q 
then there exists an integer r such that the set 

Kr = {aeK : a = r (mod q)} 

satisfies 

\Kr\ >k-2u. 

Proof. — We have 

q(k - u)2 

q-l 

r=0 
SK(r/q)\2 

q-l k 

r=0 m,n=l 

e2Trir(an—am)/q 

k q-l 

m,n=l r=0 
e2ivi(an—am)/q r 

am— an (q) 
q 

= Q 
q-l 

r=0 

Kr\
2 < (qmax \Kr\) 

q-i 

r=0 

\Kr\ kq max\Kr\. 

and therefore 

max \Kr\ > k 1 -
u 
k 

2 
>k-2u. 
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Let, for 0 > 0, 

be = e-
o 
o I cos(7ra)\da. 

Clearly, be > 0. It is also easy to see that be is increasing in 0 because its derivative 
with respect to 0 is 1 — | eos(7r#)| > 0. Finally, one checks that 2bi/2 — b\. 

Proposition 5.7. — Assume EK,U D [0,5] and set 

@i — &fc4-l — i &ii i = 1,..., k. 

Then, for every O<0< 1/2, 

\{i: \ii\6 > 0}\ 
u 
g 

Proof. — We have 

ô(k - u) C SK{oi)da < 
1 
2 

k 

n=l 

r 
0 

e27riaak+1-n ç2iriocan da 

1 
2 

k 

n=l 
r 
0 

e27riaak+1-n da 

o 

n=l 
/o 20S(7ra;£n)|(ia. 

We bound each term from above. If \£n\S < 0, we use the trivial estimate 

r 
0 

cos(7rain)\da < ö. 

Otherwise, we make the change of variables 

o cos(7ra£n)\da 
1 

ln 

\TN\S 

to 
cos(7ra)\da. 

When 0 < \£n\S < 1 we use the estimate 

1 
\IN\ 

|n|s 

o 
cos(7ra)|do; 

1 

\£n\ 

F 
o cos(7RA)|da + 

|n|s 

IB 
cos(7RA)|da 

1 
|ln| 

(9-be + \£n\S -0)=6-bé 
1 

|ln| 

< 6(1-be). 

When \£n\6 > 1 one finds similarly 

1 
|ln| 

|ln| 

/o 
cos(na)\dat < 6 — b\ 

\en\s 
|ln| 

< s 
l 
2 

b16 = 6(l-bi) 
V 2 

< 6(1-bo). 

Therefore, 

6(k-u) <6(k-be-\{i \li\6>6}\); 

which proves what we wanted. 
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Lemma5.8. — Suppose k > 30000^ and K G Then there exists a unit vector v 
such that for any a G EK,u we have Angle (S/<:(a), v) < TC/2. In addition there is a 
subset KQ of K with at least k — 2000t£ elements such that the following is satisfied: 
For any a € K0 and any a G EK,u one has Ang\e(v, e2NIAA) < TT/4. 

Proof. — By proposition 5.5 there exist i € {0,1 ,2}, a positive integer q and a real 
number Ô such that 

EK,U Ç EK^iu C EqJ EK^IO^U 5 Eq^s-

Consider a parameter 0 < 1/4 to be set later. According to proposition 5.7 all 
but 10 • 4lu/b20 elements of K are in an interval of length £ such that £5 < 26, or 
equivalently 2n£(5/2) < 2TT0. Further, all but 2 • 4%u elements of these are in the 
same congruence class modulo q. We may translate K by an integer to make this 
interval symmetric around 0 and the residue class be that of 0. Now denote by KQ the 
intersection of K with the interval and the residue class of 0, and let K — K — K0. 
We will show the lemma with v = 1. One easily sees that the condition of the lemma 
is now equivalent to ReSK(C*)/\SK(<*)\ > y/2/2. We will in fact show this for all a 
in the bigger set Eqj- Consider such an a and a G KQ. Suppose first that a is in the 
interval of Eq^ around 0. Since \a\ <£/2 we have 

|arg(e2 7 r i a a)| \2naa\ < 2TT(£/2)(S/2) < n0. 

Therefore, Ree2?rma > cos(#7r). NOW, since elements of KQ are divisible by it is 
easily seen that they behave the same on all intervals of Eqj. Thus, the same estimate 
is true for any a G Eq>s- Since KQ contains at least k — (lOft̂ 1 + 2)4%u elements, this 
implies that for a G Eq s we have 

ReSxo > cos(#7r) k- 106"/ + 2)4*tz) 

Therefore 
Re SK (a) 

\SK(a)\ 

KeSKo(a)-\SR(a)\ 
k 

cos(07r)(k - (106"/ + 2)4*ti) (106"/ + 2)4*11 

k 
Thus, the lemma will be true if we can find a 0 < 1/4 for which the right hand side 
is larger than y/2/2. Clearly the worst possible case is when i = 2, in which we need 
to solve 

cos(9iT)(k - (1606-/ + 32)ti) (1606-/ + 32)u 

k 

V2 

2 
This inequality is equivalent to 

k 
u 

(1606-/+32) 1 + COS(7T#)̂  COS(7T0) 
s/2 
2 

-l 

It remains to numerically find the minimum of the expression on the right over 9 G 
[0,1/4]. This is found to be about 29439, located around 0 = 0.19272. The result 
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follows with the bound on the number of elements outside Ko being 160&26,1-T-32 « 1860 
times u. 

Proposition 5.9. — Suppose k > 30000?/. Then, the following subclass of has 
property Gw. A set in the class can be written as a disjoint union 

M = M0 UK with \K\ < 2000^, 

where M0 is an arithmetic progression with at most one gap. 

Proof. — Suppose K e Ktp. We will show how to find a set M in the subclass 
described above such that HM{U) > fJ>K(u)- By the previous lemma we know that 
we have a decomposition K = KQ U K and that there is a unit vector v such that 
for all a G EK,U both the sum SK (ct) and any individual term e27rtaa, with a € K0l 
form an angle of < TT/4 with v. In the situation just described it is easily seen that 
by replacing a > b G Ko by c = a — qt, d = b -f qt, such that c > d and c, d $ Ko, we 
enlarge the value of SK(&) for a G Eqis- This is because the contribution of the pair 
(c,d) is larger than that of (a, b) and has the same direction which forms an acute 
angle with the rest of the sum. Therefore, such a change can only increase the value 
of fJ>K,u- All that remain to do then is to show that by repeated application of this 
we transform Ko into a set Mo which is an arithmetic progression of difference q with 
possibly one gap. To see this we may again assume that elements of KQ are divisible 
by q. Suppose that e = max(iiro)> / = min(iiTo) and consider the set 

Kcorrip — {x G qEi : / < x < e and x é KQ 

Let c = max(iifComp) and d — mm(Kcornp). Suppose that Kcornp ^ <fi and that c ̂  d. 
Since a = c + q G Ko and b = d — q G Ko, we may perform a transformation as above. 
It is clear that each step decreases the sum of the absolute values of all the differences 
between the elements of Ko. Therefore the process has to stop. The computation 
above shows that it stops only when Kcornp has at most one element. This means 
that the resulting set, has at most one gap. 

6. A close to maximal set 

In this section we describe a set Kex which we suspect to be very close to maximal. 
Just how close will become evident later on. We will begin with parameters mo and 
w and construct a set M{rriQ,w). This will roughly be our set Kex except that we 
can not guarantee in general that it will have exactly k elements. We will choose the 
parameters so that it has about k elements and then take out as many elements as 
we need to get it to be of the right size. 

We assume we are given an odd positive integer mo and a real number w which 
satisfy the assumption m0 > 30000ul Let M0 be the set {—(m0 —1)/2,.. . , (mo —1)/2} 
of size mo- Clearly |5m0| = SM0- We write (3 for (3m0^w. According to definition 3.2, 
/3 satisfies SMo(0) = mo — w and furthermore EM0(W) = [—/?,/?]• 
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Construction 6.1. — Given mo and w we construct the set M(mo,w) as follows: 

(8) M = M(m0,w) = M0 U M 
nCZ 

Afn, 

where each Mn is an arithmetic progression of difference 1 centered (as best possible) 
around ^. For n > 0, the length of the two progressions M±n is the same and is 
denoted by mn/2 To fully determine M (mo, w) one only needs to give the number m n . 
It will be defined to be the largest even integer smaller than a constant e n , whose 
description is given in definition 6.3 below, and which has the approximation, given 
in proposition 6.8, 

cn ~ 
2w 

(7m)2 
1 -

Mn 

2 
We note that c n < 2 for n » 0, hence mn = 0 for all but finitely many values of n. 
Also m n is always non-negative (see remark 6.9). 

To define the constants cn we need an auxiliary function / . 

Definition 6.2. — We define a function / = fm0,w on [0,1] as 

frn0,w (0 
Sm0 (ßr) -mo+w 
fmo,w(1-r) 

if r 6 1,1] 
2 if r G O,1 

2 
Note that f(r) is a continuous function such that 

/(0) = /(1) = Sm0(ß) - (m 0 - w) = 0 
by the definition of /3 = /3m 0 j U;- Also, by construction, / is symmetric around 1/2, 
which implies that in its real Fourier expansion all the sin functions do not appear. 
Finally, for all r € [0,1], f(r) > 0. It is enough to check this by symmetry for r > 1/2, 
in which case (3r € EM0(W) hence 5m o(/5r) > mo — w. 

Definition 6.3. — Define real numbers c n = cn(mo,w) for n > 0 in such a way that 
the real Fourier expansion of / is 

(9) f(r) = co 
OO 

n=1 
cn cos(27rnr). 

Define m n as the largest even number smaller than cn. 

We have the usual integral expansions of c n , 

(10) Co = f /(r) dr = 2 IIP f(r) dr 

and 

(u) c„ = - 4 C f (r) cos(27rnr) dr. 
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The Fourier expansion (9) clearly converges pointwise on [0,1] because / is contin­
uous and piece wise different iable. Substituting r = 0 we have 

(12) Co = 
oo 

n=l 
Cn 

Remark 6.4. — The heuristic reasoning behind construction 6.1 is as follows: We are 
looking for a set M of the form (8). The number /3 is defined so that EM,W ^ [—A fl] 
whatever M is, so best we can hope for is near equality. We would also like to make 
fh = J^n>omn (and therefore m = \M\) as large as possible. Since SM0 is real and 
large, it is easily seen that the best way to enlarge SM is to contribute to its real 
part. Thus we assume from the start that M is symmetric around 0. Then SM is real 
valued. Therefore, the condition for a to be in EM,W becomes SM(OL) > k — w, which 
is equivalent to 

(13) m - Sw(a) : SMo(
a) - mo + w 

Suppose it was possible to have ß G EM,W Then we get fh — Sj^(ß) = 0 and thus 
e2waßi — 1 for a G M. This implies that each a G M is of the form a = n/b for some 
n / 0 . Set 

en = \{a = n 
ß 

eM}\. 

We can therefore write 

fw(r) := m - Sw(ßr) : m -
oo 

n=l 
en cos(27RAR). 

The function fjj satisfies fj^ < f since this is true on [1/2,1] by (13) and since both 
sides are symmetric for replacing r by 1 — r. Conversely, for any symmetric fjj < f 
we can, replacing / by fjj in definition 6.3 and what follows, find constants en and 
create an M that will satisfy (13). But since we want the largest fh — eo it is clear we 
should take fjj = f. Then we make the necessary adjustments to get from the cn to 
a true candidate for M by taking m n to be the largest even number smaller than cn 

and M as a union of arithmetic progressions centered on ±n//3 and of length mn/2 
each, which is just the construction 6.1. 

We now derive estimates on the parameters of M and the size of EM,W 

Lemma 6.5. — Let n be an integer. Then, 

sup 
zee 

|n|<1/n 

sin(nz) 

sin(^) 
1_ 
EN 

1.2n. 

Proof. — We have 

sin(n£) 

sin(z) 

cinz g—inz 

eiz _ e-iz 
ei(l-n)z 

g2inz ^ 

e2iz _ I 
ei(l-n)z 

n-1 

k=0 
ç2ikz 
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If z — x — in, then, since \elz\ = e y , we get the upper bound 

sin(nz) 
sin(z) 

< e ~ { n ~~ l ) l 

n-l 

k=0 
e2ky = 

l-n<l<n-l 
2|n-l-/ 

e'y. 

It is enough to find the maximal value of the last expression for —1/n <y< 1/n. It 
is clear that the expression is symmetric in y. The derivative is given by 

KKn-l 
2\n-l-l 

l(ely -e~ly), 

which is clearly positive for positive y. Therefore, the maximal value is obtained at 
y = 1/n and equals 

e 
n-l n 

n-l 

k=0 
2k 

e n 
e 

n-l n e 2 - l 
ei-1 

Using the inequality ex — 1 > x we obtain 

I sminz) 
sin(^) 

<e n-l 
71 e2 - V 

n 
2 e™ 

e 2 - l 
2e 

n < e™ 1.2n. 

Let 

/ (r) = w 
oo 

i=i 
aár23 

be the expansion of / (r) on the interval [1/2,1]. In other words, it is the Taylor 
expansion of 5m o(/3r) — mo + w around 0. Note that the odd coefficients vanish 
because smo is an even function, and that since its value at 0 is mo the constant 
coefficient is indeed w. Let 

R2(r) := f(r) - w - axr2 

be the error term in the quadratic approximating of / ( r ) . 

Lemma 6.6. — Let c = 6(ti;/mo)(l + 2w/mo) and define 

h(r) ~ 2mo 
(cr 2 ) 2 

1 — cr 2 

Then, for r € [1/2,1] and any n > 1, 

dn 
dln R 2(r) 

dn 

drn 
h(r). 
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Proof. — We give an upper bound on the coefficients aj. Prom the explicit de­
scription of Sm0 given in part 1 of proposition 3.1, we see the the complex function 
sin(mo^)/sin(z) extends the real function smo(a/7r). Consider the Taylor expansion 

sin(mo^)/ sin(z) 
oo 

I=0 
bjzj. 

By lemma 6.5 we see that since mo > 3, smo(z/7r) = sin(mo^)/sin(z) is bounded by 
2mo when \z\ < I/mo. We use the Cauchy integral formula on a circle Cmo of radius 
1/mo around 0 to obtain the estimate 

N = 
l 

2m Cm0 

sin(mo^)/ sin(z) 
zj+i 

dz < 2 m o i + 1 . 

Prom the definition of / we see that for j > 0 we have aj = &2j(tt/?)2j • From the 
bound on /3 in proposition 3.4 we get for j > 0 

Kl < 2mo2j+1 6t*;(l + 2u/mo) 
mo 

l 
2 1 

mo 

2I 

= 2moc7. 

One easily checks that 

h(r) — 2mo 
oo 

3=2 
er2*. 

The bound is now clear. 

Corollary 6.7. — We have the following estimates for r G [1/2,1] and 6 G [0,1/2]. 

(6.7.1) Ä 2(r) < 75 w
2 

mo 
r\ 

(6.7.2) R'Jr) < 300 
w2 
m 0 

r. 

(6.7.3) |w + ai| < 75 w
2 

m0 

(6.7.4) |/ /(r) + 2wr| 450 
w2 

mo r. 

(6.7.5) /(1 -S)< 2ôw 1 + 225 
w 

m 0 

Proof. — To prove (6.7.1) we note that 

R2(r) < h(r) < 2m0 

c2 

1 -c 
-r4 2-6 2 w2 

m0 

r 4 l + o(e)) < 75 
u;2 

mo 
r 4. 
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Similarly, we get (6.7.2) because 

(14) 
h'(r) = 4ra 0c

2r 3 
2 - r 2 c 

(1 - c r 2 ) 2 
8mo 

c 2 

;i - c)2 
r 

<8-36 
w2 

m0 

r(l+o(c)) 300 
w2 

m0 

r. 

Since /(1) = 0 we find 

\w + oi| = 1/(1) - ti; - Oil2! = |J?2(1)I < M L ) , 

which is < 75w2/m0 by (6.7.1). This gives (6.7.3). We get (6.7.4) by 

|/'(r) + 2wr| = \Rf

2(r) + 2(w + ai)r| fc'(r)+2-75 
tu2 

ra0 

r < 450 
w2 

m0 

r 

where the last two inequalities follow from (6.7.3) and (6.7.2) respectively. Finally, 
(6.7.5) is derived from (6.7.4) by the mean value theorem: Since /(1) = 0 we can find 
1 - 6 < p < 1 such that |/(1 - 6)\ < S\f'(p)\. By (6.7.4) we find 

|/'(p)| <2*ip + 450 
w2 

TTlQ 
p<2u + 450 

w2 

m0 

= 2u 1 + 225 
w 

m0 

which finishes the proof. 

Proposition 6.8. — We have the following estimates on the coefficients cn. 

(6.8.1) co = 
5 

12 
w + 75 

w2 

mo 
0(1). 

(6.8.2) Cn — 
2w 

(7m)2 
1 -

: - i ) n 

2 

1500 

(7m)2 

w2 

mo 
Oil), 

Remark 6.9. — In particular, cn is positive for every n and hence we can indeed 
define mn as we did in construction 6.1. 

Lemma 6.10. — For any C°° real valued function g and any nonzero integer n we 
have 

r1 

1 
2 

cos(27rnr) g (r)dr 
1 

(27rn)2 
g'{\) - ( -1) V ì 

2y 

ri 

1 
2 

cos(27rnr)g" (r)dr 

Proof. — We use integration by parts twice to get 

Re R1 

1 
2 

e2ninrg(r)dr 

= Re 
1 

2itni 
g(l) - (~l)ng 

T 
2/ 1: e2ninrg'(r)dr 

= Re - 1 
(27rm)2 

g'(l) - (-1) V 
1 
2 

F e2ninrg"(r)dr 

Writing out the real part in terms of cos functions gives the result. 
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Proof of proposition 6.8. — Taking g(r) = 1 and g(r) = r2 respectively in lemma 6.10 
we get 

(15) 
1 
1/n cos(2nnr)dr = 0, 

(i6) r 1 

1 
2 

cos(2nnr)r2 dr — 
2 

(27rn)2 
1 - ( - l ) n 

2 
3 

(27rn)2 

Now we use g(r) = i?2(V) as defined in lemma 6.6. In the inequality of lemma 6.10 
we can replace R2 and its derivatives by the function h and its derivative, as follows 
from lemma 6.6. This gives 

с 
2 

cos(27rnr)i?9 (r)dr 
1 

(27rn)2 
ti (I) + ti 1 

2 С 
2 

h"(r)dr 

Evaluating the right hand side we find 

(17) с 
2 

cos(27rnr)i?2 (r)dr 
2h'(l) 
(27rn)2 

< 150 
w2 

m0 

1 
(TTU)2 

where the inequality follows from the estimate (14). By definition, 

/ (R) = R2(r) + w + axr2 = R2(r) -F w(l - r2) + (w 4- AI)R 2. 

Here, the main term is — r 2 ) . Therefore, The main terms in the estimates on cn 

and Co are 

Cn = -4w f1 

l 
2 

(1 — r2) cos(27rnr) dr — 2w 
(irn)2 

1 - ( - l ) n 

2 

Co « 2w r 
1 2 

(1 -r2)dr 5 
12 

it?. 

The error term for cn is now obtained by integrating i? 2 (r)+(w-hai )r 2 multiplied by 
eos(27rnr) and the appropriate constant, and the integral is estimated using (15),(16) 
and (17). For n > 0 we get 

Cn - 2w 
(irn)2 

1 - [-1)" 
2 

= 4 
1 
1/2 cos(27rnr) (#2(7*) + (w + ûi)r 2) dr 

< 4 150 
w2 

m 0 

1 
(irn)2 

75 
to2 

m 0 

3 

[nn)2 

= 150C 
tu2 

ra0 

1 
(7m)2 
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Similarly for CQ we find 

co -
5 

12 w = 2 f 
ì 
2 

(/(r) -w(l -r2))dr 

< 2 í R2(r)dr + 2 í (ai + w)r2dr 

< 2 í 75 
w2 

NIG 
r4dr + 2 

1 
3 

7 
8 

(ai + w) 

2 
5 

75 
w2 

m 0 

2 
3 

7 
8 

75 
w2 

m0 

75 
w 2 

ra0 

We now wish to modify the set M to make it our candidate set Kex. We need a few 
more computations. 

Lemma 6.11. — Let UJ be a real constant. Then we have 

oo 

n=l 
min 

eu 
n2 

2 < 4.2у^. 

Proof. — Recall that ^ 1/n2 = 7r2/6. We begin by considering small values of UJ. If 
UJ < 2, then the sum is clearly cj7r2/6 < yfuj~V2ir2/6. Similar computations show that 
when 2 < a; < 4 we get a bound of y/uJ7r2/3 and when 4 < < 9 we get a bound of 

3 7T2__ r 
6 4 Vo; < 4.2v^, 

which is the largest so far. Now suppose that 9 < UJ. Let x = y/u/2. One checks that 
2x2/(x — 1) < 3x + 2, It is easily seen that the largest n for which uj/n2 > 2 is [x]. 
Thus we have 

oo 

n=l 
min 

UJ 

n2 
2 < 2[x] + UJ 

oo 

n=[x]+l 
n 2 < 2[a:] + UJ 

»oo 

[A] 
eft 
i 2 

2[x] a; 
[x] 

< 2(x - 1) - a; 
x- 1 

2a: 4 
2z 2 

or- 1 
- 2 

< 5x 
5 

V2 
Jul < 4.2y/üj. 

Proposition 6.12. — Suppose k and u satisfy the condition 1 < u < &/30000. Then 
there exist mo, m £ Z, w £ R and a set Kex = Kex(h,u), such that the following are 
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satisfied. 

(6.12.1) k — mo -f m. 

(6.12.2) M0 Ç Kex Ç M(m0lw). 

(6.12.3) EKex,u [-ß,ß\ WÜh ß = ßm0,w 

(6.12.4) co(m(),i/;) > m > co(mo, w) — 5.2Jw. 

(6.12.5) u — w -H w 
k 

3 
w + 2 I 

w 
~k 

3/2 

Remark 6.13. — Note that co(mo,w) depends on w and mo but to first order is just 

T2W « T2U' 

Proof of proposition 6.12. — We start by choosing w such that (6.12.5) is satisfied. 
For a given mo set m = J2^=i mn and m = mo + fh = \M(mo,w)\. We take the 
smallest mo for which m > k. We now pull elements out of the sets Mn until we 
obtain our set Kex (the choice of which elements to take is arbitrary, hence Kex is 
not uniquely defined). By (12) and the construction of the m n in 6.1 we find the left 
inequality in (6.12.4). To get the inequality on the right we need to compute the sum 
of the differences between cn and mn and count how many elements we take out of 
the Mn in the final step. Recall that m n was taken to be the largest even integer 
smaller than cn. Therefore, 

CO — m 
oo 

n=l 

Cn - mn < 
oo 

n=l 
min(c n,2). 

Let u = (3u?/7R2)(l + o(e)). It follows from (6.8.2) that 

CO — m < 
oo 

n=l 
min 

w 
n 2 

2 

which by lemma 6.11 is 

< 4.2 
3 

TT2 
(1 + o(e))y/ü < 2Ay/û. 

The number of elements we may have to take out of M(mo, w) to get Kex is bounded 
from above by |M(mo, w)\ — |M(mo — 2,to)|. The difference in size between the two 
sets is caused by the fact that we have m n(mo, w) — m n(mo — 2, w) = 2 every time 
there is a multiple of 2 between cn(mo,t*;) and c n(mo — 2,w). With the constant UJ 
as before, this does not occur once n > y/u/2. Thus, 

m - k < 2 + 2v4V2 < 2 + 0.78y/ü < 2.78^/ü. 

This gives (6.12.4) as 2.4+2.78 < 5.2. It remains to show (6.12.3). From the definition 
of / we see that for r > 1/2, 

SM0(ß
r) - mo+w = f(r) = c0 -

oo 

n=l 
cn cos(27rnr) 

oo 

n=l 
c n ( l — cos(27rnr)), 
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where the last equality follows from (12). Since mn < cn we find 

SMQ (ßr) -m0 + w> 
oo 

n=l 
m n ( l — cos(27rnr)) : m — 

oo 

n=l 
m n cos(27rnr) 

and, rearranging terms 

(18) SMo(ßr) 
OO 

n=l 
mn cos(27rnr) > mo + m — w = m — w. 

Comparing the situation for r < | , we see that SM0 is larger while the rest is sym­
metric around I and therefore the last inequality holds for r G [0,1]. Each term 
m n cos(27rnr) is very close to 5MW (r(3) + SW-n (P/?)- We measure the difference in the 
following lemma. 

Lemma 6.14. — Let A = {s, s -h 1,..., t — 1, t} be an arithmetic progression of length 
I = t — s + 1. Suppose a G [0,1/1} and suppose x G E satisfies \x — x'\ < 1/2, with 
x' = (s + t)/2. Then, 

I Re(Ze 2 7 r i* a - SA(a)} < nla -
TT2 

6 
I3 a2. 

Proof. — Suppose first that x = xf. Then. 

\Re(le2™« - SA(a))\ \l-e-27TixaSA(a) 

It is easy to see that the expression inside the absolute value is real, positive and 
equal to 

I - si(a) = I - sin(7rZa) 
sin(7ra) 

sin(7r/a) 
Ta 

TV2 

6 
i 3 a 2 , 

where the last inequality follows from (5). To complete the proof all we have to do is 
to compute 

I Re(le27rixa -le2nix'a)\ |/(cos(27nra) — cos(27ra:,a))| 1\2TT(X — x')a\ < rrla. 

Applying the last lemma in our situation we see, using the fact that m n

3 m 3 , 
that 

oo 

71=1 
mn cos(27rnr) — 2 Re SMU (ßr) irrfiß 4-

7T2 

6 
rh3ß2 

7T 
W 
2 

s/6 
TX 

w 
mo 

1 
2 1 

m 0 

7T2 W3 6 
6 8 TT2 

w 
mo 

1 
m 0

2 
(l + o(€)) 

by (6.8.1) and proposition 3.4 

w 
k 

3 
w; + 2 w 

I 

3/2 
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Thus, our choice of w in (6.12.5) guarantees by (18) that 

Shiißr) >m — w — w ' 3 
w - 2 w 

~k 
3/2 

- m — u 

for all r E [0,1]. Therefore, EM,U 2 [—/?,/?]. To finish we just need to note that 
taking elements out of M does not change the situation as is easily seen. 

7. Structure of the maximal set 

In the final three sections we try to determine the structure of a set K in the class 
^iKex (u) ? i-e-? a set which is "better" than the example we produced in the last section. 

Our assumptions are as usual: 1 < u < fc/30000 and u and k satisfy assumption 5.4. 
Since fJ>KEX (u) is greater than the one for arithmetic progressions, we certainly know 
that our results from section 5 Apply here. Therefore, we can write K in the form 
K = KQ U K, where KQ is the set whose existence is guaranteed by lemma 5.8, 
\KQ\ = ko, \K\ = k, and ko~{-k = k. What we will try to do is determine the structure 
of K. Since, as we saw in proposition 5.9, There is, for any set in KuKex (x), a better 
one with the corresponding Ko forming an arithmetic progression with at most a 
single gap, it is no harm to assume that our sets are already of this type. We will 
assume in fact that Ko is an arithmetic progression (without a gap), that it has an 
odd number of elements and that its difference is 1. The modifications required to 
cover the general case will be explained in the end. Since by (2) we are always allowed 
to translate our set, we can assume 

KQ = 
ko-1 

2 
* ö - l 

2 
We also make the following shortcut: 

(19) k 
1 
2U 

The justification for this is as follows: we have already seen this estimate with | 
replaced by 2000 in proposition 5.9. Shortly (in (7.4.1)) we will see that k is to first 
order -^u, where the second order terms depend on the above mentioned constant. 
Iterating this we can assume in advance that the constant is say \ . 

Let ß' = ßka,u- Set 

(20) Kn = K n [(n 
1 
8 7?, («4 

1 
8 

B K = \Kn\ + \K-n\ 

We also write g = fk0,u- By definition 6.2, 

(21) k0-u^SKo(ß'r)-g(r). 
This function has a Fourier expansion similar to (9) and the coefficients cn(k0, u) will 
be denoted dn. Obviously 

(22) EK,U Ç [-ß',ß'}. 
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Definition 7.1. — A constant 8 > 0 (depending on K and u) is defined by the equation 

uK(u) = 2(l-8)ß'. 

In this section, 8 appears in the error terms for the estimates of the kn. To get 
absolute bounds we will bound 8 in section 9. 

The basis for the estimates is a bound for ReSj^. 

Proposition 7.2. — If a = ß'r G EK,U, then 

k~-ReSw(a) <g(r) 1 + 
2k 
k 

<g(r) 1 + 
u 
k 

Corollary 7.3. — For all r G [0,1], 

(23) k-ReSw(ß'r) < \g(r) it 
k U 

if ß'reEK,u 

otherwise. 

Proof. — When ft'r G EK,U this is clear from the proposition since g(r) < u. Other­
wise we just use the trivial upper bound 2fc, which is < u by (19). 

Proof of proposition 7.2. — Assume a G EK,U but drop a from the notation. Since 
SK0 is real valued we find 

( S i ^ + R e S ^ ) 2 mS2/k \SK\2 (k - u)2 (SKo+k-g{r))\ 

where the last equality follows from (21). Expanding this, cancelling Re S2W Im 5 ^ 
on the left with k2 on the right and cancelling out o2 

ÖK0 
one gets 

2 S * 0 R e S 7 r > # ( r ) 2 -2SKQk-2kg(r)-2SKog{r). 

Rearranging terms we find 

2SKq(k - Re % ) < g(r)(2k + 2Sko - g(r)) 
and hence 

fc-Re%< g(r) 1-f 
k-g(r)/2 

SK0 

<g(r) i + 
k 

SKQ 

because g > 0. Now we use (19) to get 

SK0 > ko — u = k — k — u > k 
3u 
2 2k' 

Substituting this in the previous inequality we get 

k-ReSw<g(r) 1 + 
2ks 

k 
Using (19) again we get the second inequality. 

Recall that the numbers dn are the Fourier coefficients of g and that their integral 
representations are given in (10) and (11), with / replaced by g. 
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Proposition 7.4. — We have the following inequalities. 

(7.4.1) k < do 
u2 

k 
6uVô. 

(7.4.2) 2k =F k„ < 2d0 =F dn 4 24uVô. 

Proof. — We multiply (23) by the positive functions l±cos(27rnr) and integrate from 
| to 1. By definition 7.1 the second case in (23) occurs on a set of measure at most 
5 of r's. On this small set we bound 1 ± cos(27rnr) by 2. We easily obtain 

(24) с 
2 

(k-ReSw(ß'r)) 1 ± cos(27rnr))dr 1 
2 

do l 
4 

dn u2 

2k 
\-20u. 

Similarly, multiplying by 1 and integrating, we get 

С 
2 

[k-ReSw(^r))dr 
1 
2 

do u2 

2k 
Su. 

We will derive (7.4.1), the derivation of (7.4.2) being similar and simpler. We 
expand the left hand side of (24). 

(25) 

с 
2 

(k - BeSx(ß'r))(l ± cos(2nnr))dr 

1k 
2 i: ReSw(ß'r)drT í Re Sx(ß'r) cos(27rnr)dr = 

2k 

aEk 
r 
1 
2 

cos(27r|a|/3/r)dr 

aEk 
с 

2 

cos(27r|a|/3V) cos(27rnr)dr. 

We will split the summands in the last sum as 

í cos(27r|a|/3V) cos(27rnr)dr 

1 
2 г 

1 
2 

cos^^nal^' + n)r)dr 
1 
2 í cos(27r(|a|Y9/ — n)r)dr. 

In case a € Kn U K~n we will further split 

1 
2 
г 
1 
2 

cos(27r(|a|/3/ — n)r)dr 
1 
4 

1 
2 il 

2 

cos(27r(|a|/?' — n)r)dr 
1 
2 

We wish to obtain a lower bound for the left hand side of (24). We take all non-
constant terms in the last 2 identities, replace them by the negatives of their absolute 
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values and plug into (25). This gives 

(26) 

2 
(k - ReSx(ß'r))(l ± cos(27rnr))dr 

1 
2 

k 
1 
4 &n 

1 
2 

a£KnUK-n 

r 
I 
2 

cos(27r(|a|^/ — n)r)dr 
1 
2 

aCK 
r 
i 
2 

cos(27r|a|/3V)dr 

1 
2 

a€K-(ü:nUA:-n) 
r 
I 
2 

cos(27r(|a|/?' + n)r)dr 

1 
' 2 

a€K-(ü:nUA:-n) 4 cos(27r(|a|/3/ — n)r)dr 

The last four terms are error terms. The last three have a common form, namely, 
they are sums of terms of the form J^2 cos(27r6r) dr, with b sufficiently large. In fact, 

b will be \a\ß' or \a\ß' + n for a G K in the second and third terms respectively, or 
\a\ß' — n for a G K — K±n in the fourth term. By (20) we have in all cases that 

|B|>1/8 

Lemma 7.5. — Suppose \b\ > | and that 8' < 1. T/ien 

4 cos(27r6r)dr 
12 

7T 
Sin(7r6(l-<S,))I 4 

Proof. — By using the trivial bound | cos(x) ;ion [ l - 5 ' , l ] U I [ l - ( 5 , , l ] we get 

r 1 

2 
cos{2irbr)dr 

1-8' 

1-8'  
~2~ 

cos(27rbr) dr 
3s 
2 

Now set b' = 6(1 - 5'). Then 

1-s 

i-<s' 
2 

cos(27r6r)dr 
1 

2tt6 
(Sin(27r6/) - sin(7T&')) 

1 
27TÖ 

(2sin(7r6/)cOs(7r6/) — Sin(7r6/)) 
2 + 1 

2tt(1/8) 
I Sin(7r6/) 

12 

7T 
Sin(7r6/) 
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Applying the lemma just proved to the second error term we get 

(27) 
a€K i : 

cos(27r|a|/3'r) dr 12 
TT 

aEK 
sin(7ra0,(l-<J,))| 3 

2 kS'. 

By the definition 7.1 of S and by proposition 7.2 we know that there exists some 
ô' < ô such that 

(28) k-ReSw(ß'(l-S')] <g(1-S') 1 k) 
The left hand side can be expanded as 

aEK 
(L - cos (27RA / 3 ' (L -* ' ) ) ) = 2 

aEK 
sm2(iraßf(l-S')) 

Using (6.7.5) to bound #(1 — ô) we get the estimate 

aeK 
sin 2(7raâ ,(l-5 /)) <S'u 1 + 225 u 

k0 

1 u 
k 

< on 1 + 300 
A 
K 

Lemma 7.6. — For any positive real numbers ...,xr we have 

r 

i=l 
Xi < r 

r 

i=l 
XI 

Proof. — This is just the Cauchy-Schwartz formula for the vectors ( 1 , . . . , 1) and 
(^1,^2, • • • ,Xr). 

Applying this lemma in our situation to the numbers | sin(7ra/?,(l — S'))\ for a G K 
we find 

aeK 
SIN(7TOI8 ,(l-* ,))l < kôu(l + SOOu/k) 

By (27), 

aeK i: zos(2iraß'r) dr 
12 
7T 

ku(l + 300u/k)S 3 
2 kS. 

Using (19) we see that the right hand side is smaller than 

12 

7T 
'1 
2 

uö(l + o(e)) 3 
4 uS < 2.9uôi 3 

4 uS. 

Clearlv the same bound holds for the 

i: cos{2ix{aß' ± n)r) dr 

and therefore the last three terms in (26) can be bounded by 5.8uVS + ( 3 / 2 ) ^ . 
We now handle the first error term. 
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Lemma 7.7. — If \b\ < | and 8' < 1/2, then 

с 
2 

cos(27r6r) dr 
1 
2 

1 
2 (l-cos^irbil-S'^+S'. 

Proof — We have 

i:2 cos(27r6r) dr 
1 
2 í [1 — cos(27r6r)) dr 

The estimate of the lemma is obtained by bounding the integrand by 1 — COS(2TT6(1 — 
8')) on [§, 1 - 8'] and by 1 on [1 - 6', 1]. 

Having the lemma, an argument similar to the one used to bound the last three error 
terms gives, using (28) and (6.7.5), 

aeKnUK-n 

i:2 cos(27r(|a|/3' — n)r) dr 
1 
2 

1 
2 

g(l - 8)(1 + o(c)) + kS < 8(u(l + o(e)) + k) 

Altogether, the four error terms are bounded by 5.8uv 5+5(^(2.5-fo(e))-j-fc). Because 
8 « 1 this bound is < 5.9uy/8. Now multiply (26) and (24) by 4 and compare them. 
One gets (7.4.2) up to noticing that we can neglect the 8u term by increasing a bit 
the constant on the uy/8 term. 

Corollary 7.8. — We have 

\kn-dn\ <2(d0-k) 
2u2 

k 
2Auy/8. 

Proof. — This is because (7.4.2) implies immediately 

Tkn ± dn < 2(d0 - k) -
2u2 

k 
• 24uV8. 

8. Small perturbations in and u 

In this section we prove bounds on /3 — f3' and cn — dn. Recall that 

ß =ß(mo,w), ß'=ß(ko,u), Cn = Cn {m0ìw), and dn - cn(k0lu). 

Therefore, the bounds will depend on mo, ko, w and u and all we need to do is to 
bound the perturbation of the functions /3 and cn in terms of the parameters. Since 
we are assuming that K € ^KEX (U) and since EK,U Q [—/?', /?'] by (22) where as 
EKex,u 2 [-P,P] by (6.12.3), we find /3' > /3. By the definition 7.1 of the parameter 
8 we have 

(29) S< ß'-ß 
ß' 
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Proposition 8.1. — Suppose we are given mo, ko, w and u that satisfy 

(8.1.1) |fc0 - m0\ < u, 

(8.1.2) U) < u < w + w 
k 

3 
w + 2 

w 
I . 

3/2 

Let ß = ß(mo,w), ß' = ß(ko,u) and assume that ß' > ß. Then, 

ß'-ß< 
1 
2 

u — w 
w 

3(m 0 - ko) 
2mo 

l± 2w 
m0/ 

1±250 u 
ko, ß' 

and 

ß'-ß> 
1 
2 

u — w 
w 

3(m 0 - k0) 
2m0 

1 ± 
2w 
m0 

1±250 u 
m0 

ß. 

Here, the sign depends on the sings of mo — ko. The correct signs are those for which 
the bound is weakest possible. 

Proof. — We will assume that mo > k0, the other case being similar. By the mean 
value theorem there exists some (3,f 6 [/3, /3'} such that 

4 0 ( / N 
Skoiß) - aUß') 

ß-ß> 
Therefore, 

ß'-ß--
sko(ß) - sko(ß') 

-s'ko(0") 

m0-w - smo(ß) + sko(ß) - (fco - u) 
sLiß") 

u-w + (m 0 - smo(ß)) - (k0 - sko(ß)) 
s'k0{ß") 

By using the first expression for Sk in (3) we find 

(m 0 - smo(ß)) - (ko - sko(ß)) 
(m0-l)/2 

yn=(l-mo)/2 

(*o-l)/2 

n=(l-fc0)/2 
(1 - cos(27rn/3)) 

< (mo — ko)(l — cos(7Tmoß)' , 1 
' 2 [m0 - ko)(7rm0ß)2. 

By proposition 3.4 we find 

{irrnoßf = 6 w 
,m 0 

1 + 
3w 

20m0 

0 ( 1 ) 
w 

v m 0 

2\ 2 

< 6 
w 

Km0 

1 + 
2w 
mo 

which implies 

(m 0 - smo(ß)) - (ko - sko(ß)) < (m 0 - k0) 
3w 
m0 

1 + 
2ws 

m0 
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Using (6.7.4) one gets 

-s'ko(B') ft 
J ko,u 

/3' 
B' 

2u 
B' 

1 - 225 u 
k0 

B' 

B 
2w 
B' 1-225 u 

k0 

B 
B' 

and therefore 
0' -0 

P' 
1 
2 

u — w 
w 

3(m 0 - k0) 
2m o 

1 2w 
ko 

1-225 w 
k0 

1 - P'-P 
P' 

To get the first inequality we iterate some trivial estimate on P — p'. Start with 
P — P' < B'/2. Then we can derive an inequality of the form 0-0 

0 
4u 
mo 

(see the 
derivation of (8.2.2) below). This in turn implies 

1-225 w 
k0 

1 P'-P 
0' 

-l 
1-225 

w 
ko 

4u 
mo 

-1 
< 1 + 250 

u 
ko 

This gives the first inequality. The second is similar. 

Corollary 8.2. — We have the following inequalities. 

(8.2.1) k >m 
w 
k2 Ck 1/2 

(8.2.2) P'-P 
P 

2u 
mo 

(8.2.3) ô< I w 3 2 
k 

w 
~k 

1/2 3|fc-m| 
2k 

1 + 30C u 
k 

Proof. — For the first inequality we only need to check the case k < m. In this case 
m 0 < k0. From proposition 8.1 and the assumption 0' > 0 we find 

0 < 
1 
2 

u — 

w 

3(k - fh) 
2mo 

1 - 2w 
m0 

Therefore, 

m — k < 
1 
2 

w — u 
w 

3 
2mo 

1 - o(e)) 
-1 

1 
3 

m0 

w — u 
w 

(l + o(c)) 

1 
3 rn0 

w 
k 

3 
;i + o(c)) 

2 
3 

m 0 

w 
w 
k 

3/2 
l + o(e)) by (8.1.2) 

< w3 

k2 

w 
k 

1/2 

Next, by proposition 8.1 and by (8.1.2) and (8.1.1) we get 

P'-P 
P 

< 1 
2 

w 
k 

3 
2m-1 w 

I 
3/2 3u 

2mo 
: i+o(c ) ) (l + o(c)) 

2w 
m 0 
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proving (8.2.2). The third inequality follows easily from the proposition and (29). 

Lemma 8.3. — We have the following inequalities. 

(8.3.1) dn cn 

u2 

moinn)2 

(8.3.2) \do — c 0 | 
u2 

3mo 

Proof. — We follow the proofs of lemma 6.6 and proposition 6.8. Let 

sin(fco^)/ sin(z) 
oo 

j=o 

bjZj 

be a Taylor expansion around 0, and let 

g(r) = u -
oo 

i=1 

ajr2j 

be the expansion for g converging on [1/2,1]. We have a'j = b2j(7r/3')2j. The identity 

sin(mo^) 

sin(z) 

sm(k0z) 

sin(z) 
2 sin 

m0 - k0 

2 z cos 
mo + ko 

2 z sin(z) 

easily implies, together with lemma 6.5, that on a circle Cmo of radius 1/rao we have 

sin(mo^) 

sin(£) 

sin(fco^) 

sin(z) 
< 2|mo — feo|. 

Therefore, using the Cauchy integral formula, we have 

\bj-b
,

j\<2moj\m0-kol 

Recall how the constant c was defined in lemma 6.6 and used in its proof. We find 

\dj -a/A I M ^ ) 2 i Ò' (7r/3')2il 

< \b2j - b2j {Kß)2j 1% K
2i\ß,2j -ß2j\ 

< 2cJ\mo — ko \ + 2raocJ 
3'2j - Q2* 

ß2j 

— 2e7 |m 0 — ko | + 2mo<̂  1 + ß'-ß 
ß 

2j 
- 1 

By (8.1.1) and (8.2.2) we get 

\aj -a'j\< leu + 2m0c
j (u + m 0 ( ( l + 2u/m0)

2j - 1)) 

< 2é (u + m 0 ( ( l + 2u/m0)
2j - 1)) 

When j — 2 we use the bound 

1 + 2 
u 

mo 

4 
-1 < 9 

u 

mQ 
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to get 

\a2 - 41 < 20c2'u < 20 - 6 2(1 + o(e)) 
u. 

mo 

2 
u < 800 

u 

mo 

2 
u. 

When j > 2 we use the bound 

1 + 2 u 

mo 

2j 
- 1 < 1 + 2 

u 

m0/ 

2j 
(l + o(6))2^'. 

This gives 

\AJ - 41 < 2 (c(l + o(e)) 2 ) J (ii + m 0 ) < 2 • 7j u 

mo 

j-1 

ti. 

Since /(1) = #(1) = 0 we see that 

|ai — a[\ <\w — u\ 
oo 

J=2 
1% - 4 1 

< 
ti; 
4 

3 
w + 800 

u 

mo 

. 2 
u + 2 • 7 3 

ti 

m 0 

2 
5 

+ lower order terms < 1500 u 
mo, 

2 
u. 

Then, imitating the proof of proposition 6.8, we find 

|Cn-dn| < 
8 

(27rn)2 

d_ 
dr 

oo 

i=0 
LAJ-A'AR2* \r=l 

< 
2 

[un)2 (2 • |oi - 41 + 4 * l°2 — 41 + 6 ' la3 - 41 + l-o-t.) 

< 2 
(irn)2 

u 

m0 

2 
u (2 .1500 + 4 . 800 + 6 • 2 • 7 3 + l.o.t.) 

< 21000 
1 

(7rn)2 

u 
mo 

2 
U < 

1 

(Tin)2 

u 
mo 

u. 

The second estimate is similar. 

9. The main theorems 

In the last two sections we gathered many conditional estimates. It is now easy to 
make these absolute. 

Lemma 9.1. — We have 

\k-fh\ < 2 
u2 

k 
6uVô + 5.2y/ñ. 
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Proof. — If k < m, then (8.2.1) implies that \k - m\ < w3/k2 + (w/k)1/2, which is 
certainly within the bound. Otherwise we have 

\k — m\ = k — m = (k — do) + (do — Co) + (cq — m), 

which, by (6.12.4),(7.4.1) and (8.3.2), is 

< u2 

k 
6uy/ô u2 

3mo 
(5.2Vu) 

< 2 
u2 

k 
6uV^+5.2Vu. 

Proposition 9.2. — We have the inequality 

Vô < io 'It' 
>k~. 

+v8 u 
.k 

1/4 
ft"1/4. 

Proof. — The last lemma, together with (8.2.3), gives the inequality 

s < w 
~k 

, 3 2 
k 

w 
.k. 

1/2 3 
2k 

2 u
2 

k 
+- 6uVô + 5.2y/ü (l + o(e)) 

< 4 w 
k. 

2 
+ 9 U 

K (1 + o(e))V* • 
8v^ 
2 

Here, notice that we were able to swallow the first two terms on the first line, the 
(w/k)3 term in the (u/k)2 term and the (2/k)(w/k)1/2 term by the y/u/k term. We 
treat the last inequality as a quadratic inequality in x = VS, which reads 

x2 < 4 u 
k 

. 2 
4-9 u 

K (1 + o(e))x 
8Vu 

k 
The variable x should lie between the roots of the corresponding equation, 

x 2 - 9 
u 
k (l + o(e))x- 4 w 

,k. 
2 8Vu 

k 
= 0. 

In particular, it is smaller than the bigger root. This gives 

s/ö < 
1 
2 

9u 
k 

;i + o(e)) (81 + 12) w 
k 

2 (l + o(e)) 
2Vu 

Jfc 

Using the fact that for any two positive reals a and b we have y/a + 6 < i/a -f \/&, we 
easily get the required bound. 

Corollary 9.3. We have ô < 200 w 
k 

2 16JU 
k 

Proof. — This just uses the inequality (a + 6) 2 <2 (a 2 + 6 2). 
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We now begin to state the main theorems. Recall our assumptions from the beginning 
of section 7: We have u > 1, k > 30000ti and k and u satisfy assumption 5.4. We have 
a set K G ̂ K e x (u) ? written as K = KQ U K. Recall also that K0 is contained inside 
an arithmetic progression. Let q be the difference of this sequence. By translation 
we can normalize things so that elements of Ko are divisible by q. Recall that we 
have a compression procedure for KQ to an arithmetic progression with at most one 
gap. Assume also that this progression is symmetric around 0 (as best possible). This 
fixes K up to shift. With these assumption we associated certain parameters kn to 
K, counting roughly the number of elements near ±n/f3(k0, u). When g#1 we count 
only those elements which are divisible by q. We have analogous parameters mn for 
our "test set" Kex. The theorem will show that these parameters are pretty close to 
each other. 

Theorem 9.4. — We have the following inequalities. 

(9.4.1) m 0 

u3 

k2 

1 
k 

h 
h 

1/2 
> ko > mo 62 k - 6y/u - 20 

u 
h 

1/4 
k-1/4u 

(9.4.2) \kn Tïin I < 250 
u2 

k 
1 1 ^ + 7 0 u 

~k. 

1/4 
k-^u + 4. 

(9.4.3) \{aeK: \a\0 > t or q^a}\ 
4u 

t 
{•tu 400 

u 
h 

2 3 2 ^ 
k 

for t > 0. 

Proof. — As discussed at the beginning of section 7, we may assume that Ko is an 
arithmetic progression with at most one gap. Continue first to assume that it is a 
progression, has difference 1 and is symmetric around 0. We now write out the results 
we have so far. 

The left inequality in (9.4.1) is just (8.2.1). The right inequality follows since 

\k-fh\ < 2 
u2 

k 
6 ^ ^ + 5 . 2 V u by lemma 9.1 

< 2 
u2 

k 
- 5.2\/w + 6ti 10 u 

k< 
V8 

u 
k 

1/4 
k-X'A by proposition 9.2 

< 62 
u2 

k 
6Vu + 20 

'U 
H 

1/4 k-1/4u. 

We next establish 

(30) do — k < 5.5\/w+ 
u2 

2k 
Indeed 

k > m 
u3 

k2 

u 
k 

M2 

> Co - 5.2\/w -
u3 

k2 

u 

k 

1/2 

><K 
u2 

3m 0 

- 5 . 2 ^ -
u3 

k2 

u 
k 

1/2 
>do 

u2 

2k 
-5.5Vu 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



72 A. BESSER 

by (6.12.4), (8.2.1) and (8.3.2). Here again, like in the proof of proposition 9.2, we 
are able to swallow the terms (u/k)1/2 and u3Ik2. It now follows that 

\kn - dn\ < 2(do - k) 
2u2 

k 
24uVô by corollary 7.8 

< 11VS 
u2 

k 

2u2 

k 
24uVô by (30) 

< l l V u -
3u2 

k 
•24u 10 u 

.k 
V8 u 

k 

1/4 K-1/4 by proposition 9.2 

< 243 
u2 

k 
l lv^ + 70 

'U 
H 

1/4 
k'^U. 

Prom (8.3.2) we get 

|dn-Cn| u2 

mon2 

u2 

9k 

By the definition of the mn in (6.1) (taking into account the possible modifications 
at the proof of (6.12)), we see that | c n — mn\ < 4. This gives (9.4.2). 

To get (9.4.3) we integrate the inequality of proposition 7.2 on the interval [1 — | , 1]. 
Recalling that there is a subset of size 6 on which the inequality fails to hold, and on 
which bound k — Re 5 ^ trivially by 2k < u, we get 

(31) 
r1 

tr 
(fe-Re%(/?r)) 

f1 

' i - I 
9{r) 1 + 

u 
k. 

dr + uö. 

The left hand side is 
-l 

i-1/2 
(k - Re S-j<(ßr)) dr 

aEK 

h 

1-1 
(1 — cos(2waßr)) dr. 

One finds that if b > t, then 

r1 

f 
1-7 

(1 — cos(27ròr)) dr 
1 
1 

1 

27TÒ 
sin 2TT6 1 -

1 
7 

— sin(27rò) 

1 2 1 
t 2ixb - 2t 

It follows that the left hand side of (31) is greater than 

1 
2V 

{aeK: \a\ß> t}\. 

Using (6.7.5) the right hand side of (31) is smaller than 

1 + 225 
kl 

k0 

u 
l 

' t 
4 

2r dr + uö < 
2u 

t2 f uS. 

Therefore, 

1 

2t 
{aeK: \a\ß > t}\ 

2u 

t2 

1 
2 

uö. 
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Thus, 

\{aEK: \a\0>t}\ 
4u 

t 
f 2uS, 

which gives the result after substituting the estimate for S given in corollary 9.3. 
To see that the everything continues to hold for the case q > 1, we consider the 

structure of the proof and see what modifications one must make. Most of the time 
we have been integrating certain identities on certain intervals. Whenever there is an 
integral on some interval / involved for the case q = 1, take the corresponding integral 
on the set <q>-1 (I) and make the obvious adaptations. It is easy to see that all terms 
in the integration which involve elements that are not congruent to 0 mod q vanish. 
There was one place, in deriving (28), where we used the value of the sum at a certain 
point. But there note that elements congruent to 0 mod q behave the same on all 
intervals and the claim made there about the existence of 8' is certainly true for at 
least one interval. With these remarks the proof goes through unchanged. 

Now comes a second "compression argument". It is based on the following lemma. 

Lemma 9.5. — Let x\, x2, yi, y2 and z be vectors in an Euclidean space with scalar 
product "." and norm | \, such that \x\\ = \x2\ = \yi\ = \y2\ = 1. Let x = x\ + x2, 
y = yi + 2/2- Put xi • x2 = cos#i, yX'y2— cos02, x - z — (cos0)|z|. / / 

COS#i — COS #2 > 4(1 — COS0), 

then 

\x + z\ > \y + z\. 

Proof 

XX — y - y = 2 + 2x\ - x2 — 2 — 2yi • y2 = 2(cos0\ — cos62) > 8(1 — cosé?). 

Since \x\ + \y\ < 4, 

\x\ - 12/| > 2(1 - cos9) > (1 - cos(9)|x|, 

and therefore b|cos# > \y\. Thus 

\z + x\2 -\z + y\2 > \x\2 - \y\2 + 2|2|(|ar| costì - \y\) > 0. 

Corollary 9.6. — Suppose K is as before, with KQ and arithmetic progression sym­
metric around 0. Suppose a, b 6 K, q\a and q\b, and a and b satisfy the inequalities 

/ Г 1 -2к>\а- b\/q > 2к. 

Then, if K1 is the set obtained from K by replacing a and b with two elements c and 
d on the sides of KQ, i.e., c « ko/2 and d = —c, we get jJbK'{u) > HK{U). 
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Proof. — Assume again that q = 1 for simplicity. Observe first that if a = /3&0,wr, 
with r 1 

V6 
then 

|SWo(a)\ — k & ko — ur2 — k œ k -
5 
6 

u — ur2 > k 
5 
6 u — u 

1 2 

/6 
= k — ÎX, 

because k = 
12 This implies that such an a belongs to both EK U and EK> U-

Now assume a > 10 Bko,u Set x\ e27riaa; 2ft = e27riaa 2ft = e27riaa; jfe = e2*iba 
and 2? = SK(OI) — (yi + ^2)? so that z + y, z + x are the values of SK (A) and Sjc(a) 
respectively. In our case the conditions of the lemma hold. To see this, notice that 
we have 

4nka < 2w(a - b)a < 2w(a - b)ß <2n - 4nkß <2TT - 4irka. 

It follows that cos(02) = cos(27r(a — b)a) < cos(47RFCAI). Therefore, 

eosöi — C0SÖ2 > cos(öi) — cos(47T&a) « cos(27rfca) — cos(47R&a) 

« (Airak)2 - (2-Kak)2 = 2>(2iiak)2 > 3 2TT 
1 

10 
0ko,uk 

2 
u 
2k 

On the other hand, since x is on the real line, 6 is almost the angle between SK and 
the real line so 

|sin0| = 
Im SK 

ReSK 

1/2u 

k- 3u 
2 

u 
k 

and therefore 1 - coso < sin20 < (u/k)2. Since the lemma applies we see that 
a € EK,U implies a € EK>,U, hence the result 

The following two theorems are immediate consequences. 

Theorem 9.7. — Suppose K € K^Kex(uy Then around each of ±n/(3, n ^ 0? there 
exists an interval of length 2kq such that the total number of elements of U^=1 (Kn U 

K-n) not in any of the intervals is < 63^ + 7 ^ + 20 (f ) 1 / 4 k~l/Au. 

Proof. — Indeed, corollary 9.6 implies that any two elements in any Kn that are of 
distance > 2kq apart can be "pushed" into K0> increasing ^K{U) and in particular 
keeping the set in Kukezt u\. But by (9.4.1) the number of elements one can move 

into KQ keeping K in KVKEX («) is < 63u • 7 ^ + 2 0 ( 1 ) 1 / 4 k-^u (again we have 
swallowed some terms) 

Theorem 9.8. — The following is a GfiKex^u) sub-collection of ̂ K e x (u)- It consists 
of all sets in which KQ is an arithmetic progression with at most one gap, and where 
each of the sets KN, for n / 0, is contained in an interval of length 2kq. 

Proof. — Immediate from corollary 9.6. 

We end with an improved bound on /imax-
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Theorem 9.9. — We have the following inequalities 

Umax(k,u) 2V6I 
TT k 

'U 
Je. 

1/2 
1 + 

3 5 
20 8 

u 
k 

300 
'U 

<k 
v2 8Vu 

k 

Umax(k,u) . 2V61 
7T A; 

u 
k 

1/2 
1 + 3 5̂  

20 8, 
u 
k 

f 400 k 
2 

f 30 u 
k 

5/4 
AT 1 ' 4 

Proof. — We clearly have 2/3m 0 i № < jumax(fc,u) < 2flk0,u, so the theorem is about 
estimating the terms on both sides. We show the second inequality only. By (22) and 
proposition 8.1, 

Mmax ,̂«) < 2ßk0,u < 2ßk,u 1 + 
3(fc - ko) 

2k 
1 + 

2u 
k 

1 + 250 u 
k0 

By proposition 3.4, 

ßk,u < 
V61 

7T k 
u 
k 

,1/2 
1 + 

3u 
20k 

u 
k 

,2\ 

By (7.4.1), 

k — ko = k < do H 
u2 

k 
6uVô. 

It follows from (6.8.1) that 

do < 5_ 
12 

u 75 
u2 

ko 
5 
12 u + 79 

u 
k 

Hence, using proposition 9.2 we find 

k — ko < 5 
12 

u + 80 u
2 

k 
+- 6u 10 u 

k + V8 u 
k 

1/4 
AT 1/ 4 

< 5 
12 

a + 140 w
2 

k + 17u u 
k 

,1/4 fc"1/4. 

It follows that 

1 + 
3u 
20Jfe 

w 
k. 

2 
1 + 

3 
2k 

(k - k0) 1 + 
2u 
k 

1 + 250 
uo 
fc0 

< 1 + 
3 5' 
20 8 

u 
k 

4-400 it 
it 

2 
+ 30 y 

k 
5/4 

k~Xl\ 

The upper bound is now clear 
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