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O N T H E S T R U C T U R E O F S U M - F R E E S E T S , 2 

by 

Jean-Marc Deshouillers, Gregory A. Freiman, Vera Sös & Mikhail Temkin 

Abstract. — A finite set of positive integers is called sum-free if An (A +A) is empty, 
where A+A denotes the set of sums of pairs of non necessarily distinct elements from 
A. Improving upon a previous result by G.A. Freiman, a precise description of the 
structure of sum-free sets included in [1,M] with cardinality larger than 0AM — x 
for M > MQ(X) (where x is an arbitrary given number) is given. 

1. Introduction 

A finite set of positive integers A is called sum-free if AD (A + A) is empty, where 
A + A denotes the set of sums of pairs of elements from A. 

Such sum-free sets have been considered by Cameron and Erdos (cf. [1]), and the 
first result concerning their structure has been obtained by Freiman (cf. [3]). It is clear 
that for odd n, the sets {1, 3, 5 , . . . , n} and {^T^, .n+3..,n} are sum-free. Freiman 
showed that when A is included in [l,n] and its cardinality is at least 5n/12 + 2, 
then A is essentially a subset of the ones we just described. In an unpublished paper, 
Deshouillers, Freiman and Sos showed the following improvement. 

Theorem 1.1. — Let A be a sum-free set with minimal element m and maximal ele­
ment M. Under the assumption that A = Card*4 > 0AM + 0.8, we have either 

(i) : all the elements of A are odd, 
(ii) : the minimal element of A is at least A, and we have 

Card ( .4n [ l ,M /2 ] ) < (M - 2A + 3)/4. 
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150 J.-M. DESHOUILLERS, G.A. FREIMAN, V. SOS & M. TEMKIN 

Examples have been produced to show that all the bounds in the theorem are 
sharp. We are not going to discuss the bound in (ii), but show what may happen if 
the condition on A is relaxed: let s be a positive integer, and consider 

Ai = {s,s + l , . . . , 2 s - 1 {4s - 1 , . . . , 5 5 - 2 

as well as 

A2 = {2 ,3 ,7 ,8 ,12,13 , . . . , 5fc - 3,5fc - 2 , . . . , 5s - 3,5s - 2 

it is easy to see that A% and A2 are sum-free, that their cardinality, 2s, is precisely 
equal to 0.4(5s — 2) + 0.8, and that they are very far from satisfying properties (i) or 
(ii) from Theorem 1.1. A further example, with A = 0AM 4- 0.4 is 

A3 = { l , 4 , 6 , 9 , . . . , 5 f c - 4 , 5 f c - 1 , . . . , 5 s - 4 , 5 s - 1} 

Our aim is to show that when A is not much less than 0.4M, then the structure of 
a sum-free set is described by Theorem 1.1, or close to one of the previous examples. 
More precisely, we have the following 

Theorem 1.2. — Let x be a positive real numbers; there exist real number MQ(X) 
and C(x) such that for every sum-free set A with largest element M > Mo(x) and 
cardinality A > 0AM — x, at least one of the following properties holds true 

(i) : all the elements of A are odd, 
(ii) : all the elements of A are congruent to 1 or 4 modulo 5, 
(iii) : all the elements of A are congruent to 2 or 3 modulo 5, 
(iv) : the smallest elements of A is at least equal to A and we have |*4fi[l, M/2] | < 

( M - 2 A + 3)/4 
(v) : A is included in M 

5 C(x) 2M 
5 

C(x) 4M 
5 

C(x)9M 

The constants C(x) and MQ(X) may be computed explicitly from our proof. How­
ever, they are not good enough to lead us to the structure of A when A is about 
0.375M, where new structures appear. 

We may reduce the proof of Theorem 1.2 to the case when A contains at least one 
even element. Prom now on, we take this assumption for granted. The proof will be 
conducted according to the location of the smallest element m of A : section 4 and 5 
are devoted to show that m is around 1 or M / 5 , or that it is at least equal to A; the 
structure of A will be deduced from this location in section 6 and 7. Section 3 aims 
at filling the gap between the content of [3] and a proof of Theorem 1.1, as well as 
presenting in a simple frame some of the ideas that will be developed later on. In the 
next section, we present our notation as well as general results. 

2. Notat ion - General results 

Letters A, B, C , . . . with or without indices or other diacritical symbols denote finite 
sets of integers. Their cardinality is represented by \A\, |C | , . . . or A, £?, C , . . . with 
the same diacritical symbols. For a non empty set ¿3, we further let 

M(B) : be its maximal element, 
m(B) : be its minimal element, 
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1(B) : be its length, i.e. M(B) - m(B) + 1, 
d{B) : be the gcd of all the differences (b{ — bj) between pairs of elements of B, 
B+ : = B n [ l , + o o [ . 
The letter A is restricted to denote a non empty sum-free set of positive integers, 

and we let 
Ao = A n 2Z, Ai = A D (2Z + 1) 

A- = A n [1, M/2] , .4+ = .4 fi [M/2, Af], 

M (resp. m, resp. M 0 , . . . ) denote M(*4) (resp. m(A), resp. M(*4o) • * *). 
By x we denote a real number larger than — 1. All the constants Ci, C2, . . . depend 

on x at most, and their value may change from one section to the other. Further, 
when we say that a property holds for M sufficiently large, we understand that there 
exist MQ{X) depending on x at most, such that the considered property holds for M 
at least equal to MQ(X). 

We turn now our attention towards general results that will be used systematically, 
beginning with section 4. 

Definition 2.1. — A set A of positive integers is said to satisfy the general assumptions 
if it is a sum-free set that contains at least one even element and has cardinality 
A = 0AM - x. 

Proposition 2.1. — If A satisfies the general assumptions and M is large enough, we 
have the following properties 

(i) : A contains an odd number, 
(ii) : d(A) = I, 
(hi) : Af) (A — A) is empty, 
(iv) : M - m > 2A - 2 ==» |(*4 - A)+\ > \A - 2, 
(v) : M - m < 2A - 3 = > \{A - A)+\ > (Af - m + A - l ) / 2 , 
(vi) : for any integers u and v : \A fl [t£,u + v]\ < (v + m)/2, 
(vii) : for any integer u : \Af) \u, u + 2ml I < m 

Proof 

(i) If A contains only even numbers, then the set .4/2 = {a/2\a G A} is a sum-free 
set that is contained in [1, M/2] , and so its cardinality is at most M/4 + 1 as can be 
directly seen (cf. also [4]). But |*4/2| = Ml — 0.4M — x which is larger than M / 4 + 1 
when M is large enough. 
(ii) The number d(A) is defined in such a way that A is included in an arithmetic 
progression modulo d{A). Since A contains an even number (by our general assump­
tion) as well as an odd number (by (i)), we have d(A) ^ 2. On the other hand, we 
cannot have d(A) > 3, otherwise A would have at most M / 3 + 1 elements, which 
would contradict our general assumptions. Thus, d(A) — 1. 
(hi) Let b G A fl (A — A), We can find a i ,a2,a3 in A such that b — a\ — a<z — as. 
This implies 0,2 = a>i -f « 3 , which is impossible. Thus A fl (A — A) is empty, and our 
argument shows even that last condition implies that A is sum-free, 
(iv) and (v) are straightforward application of the following result ([2] and [5]): 
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Lemma 2.1. — Let B and C be to finite sets of integers with m(B) = m(C) = 0, and 
letM(B,C) be max(M'(B),M'(C)). 
IfM(B,C) < \B\ + \C\ - 3, then we have \B + C| > M(B) + |C|. 
/ / M ( B , C ) > |B| + | C | - 2 andd(BuC) = 1, ften we have \B + C\ > M(B) + | C | - 3 + 
mm(|B|, |C|). 

(vi) The result is obvious when v < ra, so we way assume v > m. We let 5 = 
„4 fl [u, u + ?; — m] and C = A D [u -4- ra, u + t?]. Since *4 is sum-free and ra is in A, we 
have |B| + \C\ < v — m. Combined with the trivial upper bound |*4| < \B\ + ra and 
\A\ < \C\ 4- ra, this inequality leads us to (vi). 
(vii) We apply the same argument as above, leading to \B\ 4- \C\ < v — ra — ra, and 
further notice that *4n]w, u 4- 2m] is the union of B and C. 

The next results are fairly simple. 

Lemma 2.2. — Let B be a finite set of integers such that 2\B\ > 1(B). Then B — B 
contains [1,2|B| -1(B) - 1]. 

Proof — We consider a positive integer y which is not the difference of two elements 
of B. We way assume B C [1,/(B)1 and let 

Si = B n [ l , y ] 
B3 = B n [ l , / ( B ) - » ] 

,B2 = B n f o + M (B)] , 
, B 4 = B n P ( B ) - y + l,J(B)]. 

Since y is not difference of two elements of B, the sets B2 and S3 4- y are disjoint so 
that we have 

\B2\+ \B3\<l(B)-y 

This easily leads to 

2|B| = |Bi| + |B2| + |B3| + |B4| :y + l(B)-y + y = l(B) + y: 

whence the inequality y > 2\B\ — 1(B), 

Lemma 2.3. — Let B — {61 < 62 < • • • < 6B} and V = {d\ < • • • < dp} be to sets of 
integers such that we have 6j+i —bi< 1(D) for 1 < i < B — 1, and cardD > 1(D) — C. 
We have \B 4- V\ > (1(B) 4- 1(D) + 1)(1 - 3C/l(V)) 

Proof. — Let 1(D) = do ~ d\ 4-1. We show that for any integer u £ [bi 4- d\, &B 4- d\ [, 
the interval [u,u 4- l(V)] contains at most 2C integers which are not in B 4- V. We 
define the integer i such that bi 4- d\ < u < bi+\ 4- d\. Since bi+± — bi is less than 
1(D), the interval [u, u 4- 1(D)] is included in [bi 4- di, + do], which contains only 
elements in {^¿,£¿4-1} + ^? with at most 2C exception. Since [61 -h G?I,6B -1- do] can 
be covered with at most (6B 4- do + 61 4- d\ 4- l)/l(D) + 1 intervals of length Z(X>), we 
have 

|B + 2>| > 1(B) + ICD) + 1 - (ШВ) + ICD) + \)IICD) + 1)2C 
> (i(B) + i(v) + i)(i-ac/i(v)). 
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3. Contribution to the proof of Theorem 1.1 

Combined with the result of [3], the following proposition leads to a proof of The­
orem 1.1. 

Proposition 3.1. — Let A be a sum-free set of positive elements containing at least 
one even and one odd numbers, such that 

0AM 4- 1 < A. 

Then m is either smaller than 0.2M 4-1 or at least equal to 0.25M 

Proof. — We assume on the contrary that we have 

0.2M 4- 1 < m < 0.25M 

This condition implies the chain of inequalities 

0<m<M-3m<(M- m)/2 2m < M - 2m < M - m < M. 

Let m — rj denote |*4n]M — m, M]\. Since the interval ]M — m, M] is shifted from 
]M — 2m, M—m] by m which belongs to A, the number of elements in ]M — 2m, M—m] 
is at most rj. 

The two intervals ]m, M — 3m], ]2m, M — 2m] being shifted by m, there are at most 
M — 4m 4- 1 elements from A in their union. 

The interval ]M - 3m, M~2m] contains (M - m) /2 - M 4- 3m integers, and so at 
most (M — m)/2 — M 4- 3m elements from A. 

Let now B = AD] M-m 2m[; then 

B + Bc(A + A)n]M m, 4m[C (A + A) C)[M - m, M). 

Since A is sum-free, there are at most i) elements of A 4- A in ]M — m, M], which 
implies that \B 4- B\ is at most rj and so \B\ is at most (rj 4- l ) / 2 . 

Putting all those upper bounds together, we obtain 

A < m - rj + т] 4- M - 4m + 1 + (M - m)/2 - M + 3m + (rj + l)/2 
< ( M - m + 3 + 7?)/2. 

Our last step is to obtain an upper bound for n. By Proposition 2.1, we have 

(A - AU I > (A - 1 4- M - m) 12 

and since A is sum-free, the intersection Af) (A — A)+ is empty. This implies that 
we have 

\A\ 4- \(A - A)+\ > (3A - 1 + M - m)/2; 

the total number of elements in [1, M] which are not in A U (A — A)+ is thus less than 

M - (3A - 1 4- M - m) /2 = (M 4- m 4-1 - 3A)/2, 

and this is also an upper bound for |(-4U (A - A)+)ri\M - m, M]\. Since ]M - m, M] 
contains no elements from (A — .4)+, we have 7? < (M + m + 1 — 3^4)/2, which implies 
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A < (M -m + 3)/2 + (M + m + l-3A)/4A 
< ( M - m + 3 ) / 2 + ( M + m + l - 1 . 2 M - 3 ) / 4 
< 0.45M - 0.25m + 1 
< 0.4M + 0.75 < A, 

a contradiction which proves the proposition. 

4. On the location of ra in fl, M/51 

Proposition 4.1. — Under our general assumptions, there exists C such that ra ^ 
[CjM/5 — C], when M is large enough. 

Proof. — We assume that ra G [C, M/5 — C], and that (7 has been chosen sufficiently 
large. We have 

M - ra > 4M /5 4- C > 2(2M/5 - a?) - 2 = 2A - 2, 
so that properties (hi) and (iv) from Proposition 2.1 imply 

\AU(A- A)+\ = \A\ + |(^l - A)+\ > 5A/2 -2 = M-C2 
Since ]M — m, M] fl (̂ 4 — ^l)+ is empty, we have 
(4.1) \}M - ra, M] fl A\ > m - C2, 

which in turn implies 
(4.2) [ l , m [ n ( . 4 - . 4 ) + | >m-C2. 

On the other hand, we have 
M > \AU{A- A+)\ \A\ + \{A -A)+\ 2M/5-x + (A-A)+\ 

so that we get 
(4.3) ra-C2 < | ( *4 - . 4 )+ | < 3M/5 + a:. 
which will be used later on. 

We define the integer k and the sequence a(1)< • • • < < a(k) M — 2m to be the 
set of elements a in A such that la — ra, af contains no element from A. We further 
let a(fc+1) = M - 2ra 4-1, and 

4 « = [ a « , a ^ + 1 H a 4 , 

and = M(A{i)) - ra(^tW) 4- 1, for i = 1 , . . . , k. We use (vi) (resp. (vii)) in 
Proposition 2.1 to get an upper bound for A^ (resp. ]M — 2ra, M] fl A), which leads 
us to 

(4.4) 2M/5 -x = A 
k 

2=1 
[l{i) + m ) / 2 + m. 

Let us consider the set £> = ] M — ra, M] fl ^4. We already noticed in (4.1) that its 
cardinality is at least m — Co, and Lemma 2.3 leads us to 

(4.5) V - A(i> 1 
4C2 
m 

(l(i)+ m - 1 fori = 1 , . . . , k. 
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We easily notice that the sets (V — A^) are pairwise disjoint, and disjoint from 
(A — A)+ fl [ l ,m[. Relation (4.3) in conjunction with (4.2) and (4.5) implies 

m — C2 
k 

i=1 

1 
4C2 
m 

f/W + m - 1) < 3M/5 4- x, 

and the use of (4.4) leads to 

m - C>2 1 
4C2 

m 
2 A - 2m k < 3M/5 + x. 

Since the aW are separated by intervals of length m, we have km < M, and we are 
led to a quadratic inequality 

m2 - m ( M / 5 - C4) 4- C5M > 0 

which cannot be fulfilled if m G [C, M / 5 — C], for C sufficiently large. 

5. On the location of m in [M/5,A] 

Proposition 5.1. — Under our general assumptions, there exists C such that m $ 
[M/5 + C, A[, when M is large enough. 

We first assume that m G]M/3,^4[; in this case, we have A C]M — 2m, M], and 
relation (vii) in Proposition (2.1) implies A = |.4n]M — 2m, M]\ < m, a contradiction. 

We now assume that m G [M/5 H- C, M/3], for some sufficiently large C. We then 
have M — m < 4M/5 — C < 24. — 3, so that relations (hi) and (v) in Proposition (2.1) 
imply 

\AU(A-A) (3M -m + A - l ) / 2 = M - (5m - M) /10 - Ci . 

In the same way as we obtained (4.1), we get 

(5.1) IÌM - m ,Ml (1 A\ > m - (5m - M)/10 - Ci. 

This relation will be used to get an upper bound for the cardinality ofB — An] (M — 
m) /2 ,M/2] ; we have B + B C]M - m , M ] , so that (4.1) implies \B + B\ < (5m -
M)/10 4- Ci, and so we get 

IBI < ( 5 m - M ) / 2 0 + C2. 

When we combine this inequality with an easy consequence of relation (vii) in Propo­
sition 2.1, we get 

(5.2) U f i 
M - n 

2 

M 
2 

U 1 M - 2 M , MY < ( 2 5 m - M ) / 2 0 + C2. 

We consider finally two subcases, according as m is larger than M/4 or smaller. If 
m G]M/4, M/3], we have the chain of inequalities 

m < (M - m) /2 < M - 2m < M/2 < M - m < M. 

so that (4.2) and a trivial upper bound [m, (M — m)/2] leads to 

A < 
< 

(25m - M) /20 + Co 4- (M - m) 12 - m -h 1 
9M 
20 

m 
4 

C3 22 M 
60 c3, 
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which is less than 24M — x = A, when M is large enough. 
We are thus left to consider the case when ra G]M/5 4- C, M/4] , in which we have 

the chain of inequalities 

m < (M - m)/2 < M/2 < M — 2m < M. 

We easily see that the interval [m 4- ra, (M — m) /2 -h ra] covers the interval [M/2, M — 
2ra], so that the number of elements in A that lie in [ra, (M — ra)/2] U [M/2, M — 2ra] 
is at most the number of integers that lie in [ra, (M — ra)/2]. This means that we get 
as above 

A ¿* 9M m i ГУ 
S "2сГ ~ Т + ° з 
< (2М)/5 + С3 - С/4 

which is again a contradiction, when C is large enough. 

6. The structure of A when its minimal value is close to M / 5 

We prove in this section that if the minimal element ra of A is close to M / 5 , in 
the sense that there exists C such that M / 5 — C < ra < M / 5 4- C, and A satisfy our 
general assumptions, then we are in the case (v) of Theorem 1.2. 

Our first step is to show that there exist C\ and d such hat all elements from 
A, with at most C2 exception, lie in [M/5 - Ci , 2M/5 4- d] U [4M/5 - CU M]. The 
argument is very similar to that of the previous section, so we just present a sketch 
of it. We have the chain of inequalities 

ra < (M - ra)/2 < M/2 < M - 2m < M - m < M, 

and ra is about M / 5 , (M - ra)/2 is about 2M/5 , M - 2ra is about 3M/5 and M - ra 
is about 4 M / 5 . 

We may apply (iv) or (v) from Proposition 2.1, getting \(A — A)+\ > 3M/5 — C3. 
This implies that |^4fi]M - r a , M ] | > ra - C4 so that |.4fl]M - 2ra, M - ra]| < C4, as 
well as |^4fl](M — ra)/2,M/2]| < C5 by using respectively the translation by ra and 
the doubling argument. It remains to take care of ]M/2, M — 2ra]. Summing up what 
we have up to now, we know that at least M / 5 — C$ elements of A are located in 
[ra, M — 3ra]U]M/2, M — 2ra]. By translating by ra, we know that there are at most 
M/10 + C7 elements of A in ]4f - ra, M - 3ra]U]M/2, M - 2m], so that there remain 
at least M/10 + C8 elements of A in [ra, M/2 - ra]. This implies that A + A almost 
covers [2m, M — 2m], so that it almost covers ] M / 2 , M — 2m], whence there are at 
most CQ elements of A in ]M/2, M — 2ra], which ends the proof of the first step. 

In the second and last step, we show that there is no element of A in / =]2M/5 + 
2C2 + 2 - 2Ci, 4M/5 + C\ - 2C2 - 2[. Let indeed y be an element in this set. Since 
we have M / 5 — Ci+y<M — 2C2 + 2, and 2M/5 + d + y > 4M/5 - d + 2C2 + 2 
the two intervals [M/5 - d + y, 2M/5 + d + y] and [4M/5 — C\, M] have at least 
2C2 + 1 integers in common. Thanks to the first step and the pigeon-hole principle, 
we know that there exist a\ and a2 in A such that a\ 4- y — a*i, thus y cannot belong 
to A, and A is concentrated in [ra, 2M/5 4- C10] U [4M/5 — C10, M] as we wished to 
show. 
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7. Some properties of A when m is small 

We recall our notation, namely 

AQ = A n 2Z, Ai = A n (2Z + 1), 

,4- = ,4 n [1, M/21, A+ = A fl [M/2, Ml, 
m = m~ = min(^4), M = M+ = max(v4), mo = min(*4o) 

In his section we prove the following:. 

Proposition 7.1. — Let A satisfy our general assumptions, and be such that m < 
M/20. There exists C such that, when M is larae enouah. we have 

(7-1) \\A-\-M/5\<C, 

(7.2) mo < C. 

The proof will be led in three steps, where we prove that (7.1) holds, then that we 
have the following inequality 

(7.3) \M > M / 5 - C , 

and finally that (7.2) holds. 

7 .1 . The set A is balanced between small and large elements . — We first 
show that A " cannot be too large. Indeed, if |*4~| > M / 5 + 2, we may apply Theorem 
1.1, and, since m{A~) — m < M/20, the set A ~ consists only of odd elements, so 
that mo > M/2 . There are at most mo/4 elements from A in [l,mo[, since they are 
odd, m0 is in A , and at most (M —m0 + M/20)/2 elements from A in ]m0, M], so that 
2M/5-X < ra0/4 + ( M - r a 0 + M/20)/2 + l, which implies M/2 < m0 < 9M/20 + Ci, 
a contradiction. 

We now show that the two simultaneous relations |*4+| > M / 5 + C2 and d(A+) > 1 
lead to a contradiction. We first notice that A+ contains at least M / 5 elements, so 
that d(A+) > 1 is equivalent to d(A+) — 2, i.e. A+ consists only of odd integers, 
or of even integers. In either case, Lemma 2.2 implies that (A+ — A+) contains all 
the non-negative even integers at most equal to 4|*4+| — M/2 . So we have mo > 
1*4+1 - M/2 > 3M/10. 

Assume that we have |*4+| > M/5 + C2 and that A+ consists only of even numbers. 
We have already shown that all the elements in A D [ l ,M/4] are odd, so there are 
at most M / 8 of them. Thus, ^4n]M/4, M/2] has at least \A~\ - M / 8 elements. By 
doubling them, we obtain \ A ~ \—M/8 even numbers in ]M/2, M]\A. The total number 
of even number in ]M/2, M], which is about M/4 , must be at least \ A+ \ + \ A ~ \ - M/8 , 
leading to a contradiction with \ A \ = |^+| + \ A ~ \ = 2M/5 — x. 

We now assume that |^4+| > M / 5 + C2 and that A+ consists of odd numbers, so 
that M0 < M/2. Let u be the number of odd elements less that M0 which are in 
A . There are at most M0/2 - u odd elements in *4fl]M0,2M0], since (2a + 1) + M0 
is odd and cannot be in A when 2a + 1 is in A . In A , there are thus at most 
Mo/2 4- (M — 2Mo)/2 odd elements, and the number of even elements in A is at least 
2M/5 - x - (M - MQ)/2. The largest even element in A is at least m0 + 2(2M/5 -
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x — (M — M0)/2) = m0 + M0 - M / 5 - 2x, which implies m0 < M / 5 + 2x, which 
contradicts the inequality mo > 3M/10 we already obtained. 

It remains to show that when d(A+) = 1, the set A+ cannot be too large. We apply 
Lemma 2.1 with B = A+ - {m+} and C = {M+} - A+. By Proposition 2.1, we have 
m < C3, and this implies that M(B) is larger than 2|B| — C4. Either case of Lemma 
2.1 leads to |B + C| > 3 |*4+|-C5, so that we have | (*4+- .4+)+ | > 3 | .4+ | /2 -C6. But 
the set (A+ — A+)+ is included in [1, M/2] and disjoint from A~, so that we have 
3\A+\/2 + \A~\ < M/2 + C7, or M+ | /2 < M / 2 + C7 - M| = M / 2 + C7 - 2M/5 + a?, 
which implies |.4+| < M / 5 -h C8, or \A~\ > M / 5 - C9. 

We have so far proved that (7.1) holds. 

7.2. The set A contains many even numbers. — We assume in this subsection 
that (7.3) does not hold, so that we have |*4i| > |.4o|. 

Since mo in the least even element in Ay we have |v4fl[l,mo]| < mo/4, and because 
m < C2, we have \A fl [m0, M] | < (M - m0)/2 + C3. We thus have 

2M/5 - x = \A\ < mo/4 + (M - m0) 2 -f C3, whence m0 < 2M/5 + C4. 

We may apply he same reasoning to A~, since we now know that mo < M/2 ; using 
(7.1), we get m0 < M / 5 + C5. 

By repeating the argument used in previous section, as well as the previous one, 
we may show, that, up to a constant, \A fl [1, M/4] | is about M/10, so that mo < 
M/10 + CQ. We may reduce further the bound on m0 by the same type of idea, but 
this would lead us only to mo < sM for any positive e which is not as strong an 
inequality as the one we need. 

We wish to apply Lemma 2.1 with 

B = {(a0 - m0)/2, a0 G A0} and C {{M1-a1)/2,a1eA1}. 
We have IBI = U0 | , ICI = U i l and 

max(M(B),M(C)) ( M - M / 1 0 - C 6 ) / 2 U | - 3 = |B| + | C | - 3 . 

Since BuC contains more than M/6 elements and is included in [0,M/2[, we have 
d(B U C) = 1 or 2. We first show that when d(B U C) = 2 then A0 is large. 

When d(B U C) = 2, even eleriients of A are either all congruent to 0 modulo 4 or 
all congruent to 2 modulo 4, and in the same way, odd elements of A are either all 
congruent to 1 modulo 4, or all congruent to 3 modulo 4. 

If mo is congruent to 0 modulo 4, then the set {mo} + *4i and A± are disjoint, in the 
same class modulo 4 and included in [1, M + M/10+C6], so that 2|^li| < H M / 4 0 + C 6 , 
in contradiction to \A±\ > M / 5 — C\. 

If all the even elements are congruent to 2 modulo 4, we are going to use the 
fact that the sum of two elements in A\ is also congruent to 2 modulo 4. We first 
notice that the number of elements in A\ is at most M/4 , so that |*4o| is least 
2M/5 - x - M/4 = 3M/20 - x, which implies that M0 is at least equal to 3M/5 - x. 
The number of odd elements is alt most M0/8 4- (M — Mo)/4 + 1, which is less than 
7M/40 + C, contradicting our assumption that |^4i| > 8M/40 - C\. 
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We now know that d(B U C) = 1, and Lemma 2.1 leads to 

I Mo - {m0}) + ({/1} - Ai)\ > \Ai\ + 2\A0\ - 3. 

Since (Ao- Ai)+DAi = 0 , we get \Ai\ + |(-40 + .Ai)+| < M/2 , and in the same way 
Mil + I M i + A ) + | < M/2 . This leads t< 

M > 2Mi| + Mi + A ) | > 3Mi | + 2Mo| 3 > Mil + 4 M / 5 - 2 x - 3 

which implies that Mil < M/5 + 2x -h 3, whence (7.3) holds, 

7 .3 , The set A contains a small even number. — Since we have (7.3), we may 
apply to the set {ao/2,ao G Ao} the result we have obtained so far. One of the 
following cases holds 

(i) : A C 4 Z + 2, 
(ii) : m0 > 2M/5 + Ci, 
(hi) : Ao C [M/5 - Cu2M/5 + Ci] U [4M/5 - Cu M], 
(iv) : m0 < C, 

so that we just have to rule out the first three cases in order to complete the proof of 
Proposition 7.1. 

Case (i) cannot hold because the sets {2ai,ai G *4i} and *4o are disjoint, included 
in [1,M] D (4Z + 2), and the cardinality of their union is A which is larger than 
M/4 + 1. 

Cases (ii) and (iii) cannot hold, because the argument we used at the beginning of 
(7.2) implies that mo is less than M/10, up to a constant. 

8. End of the proof of Theorem 1.2 

Let A be a sum-free set satisfying our general assumptions. We know that m G 
[1,C] U [M/5 - C , M / 5 -h C] U M,M] . We have already shown that m e [M/5 -
C, M / 5 + C] leads to case (v) in Theorem 1.2. The argument given in [3] for the 
second case in Theorem 1.1 implies that m G [A, M] leads to case (iv). It remains 
to show that m < C leads to case (ii) or (iii). We shall make use of Proposition 7.1 
and retain in the sequel the notation C for constant implied in (7.1) and (7.2). We 
let Ci = 38C + 60. 

Our first task is to show that we can find a± and a2 in A fl [M/2 — Ci, M/2] such 
that a2 = ai + mo/2. We assume that it is not the case; by this assumption and the 
fact that mo is in *4, any interval of length 3mo/2 in [M/2 — Ci, M/2] contains at most 
m0/2 elements from A. We thus have \Af)[M/2 - Ci, M/2] | < ( d / 3 ) + (3m0/2); this 
implies that Mfl[l , M/2 —Ci]| > 2 ( M / 2 - C i ) / 5 - f 4 , and we now have a contradiction 
with Theorem 1.1 applied to Af) [1, M/2 — C\] and the fact that this set contains mo, 
a small even integer. So there exist a\ and a2 with the prescribed properties. 

Let us now define, for i = 1 and 2, 

UT; 
t-\-di when t<M/2 
t - ai when t > M/2 
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There exists C2 such that \\fi(B)n[l, Af ] | - |S | | < C2 for any B in [1,M], audi e {1,2}. 
Since we clearly have 

(i) : / x ( ^ ) n ^ = / a ( ^ ) n ^ = 0 , 
(ii) : we must have 
(iii) : fi(A)Unf2(A)>M/5-C3. 

We can find C4 so that the relations 

ai € [C*4, M/2 - C4] U [M/2 + C4,M- C4], 
/ i ( a i ) = / 2 ( 4 ) , 

imply \a'x — a'2\ = mo/2. Moreover, for any number £, at most one of t -h m0/2 and 
t — mo/2 belongs to A. All that imply that, with at most C5 exceptions, all elements 
in A can be organized in pairs with common difference m0/2. 

The largest such pair is larger than M — CQ, for a suitable CQ . Otherwise, there 
are no more than C5 elements in A fl [M — CQ,M], and so there are more than 
2M/5 - x - C5, i.e. more than 2(M - C6)/5 + 2 elements in ytfl [1, M - C6], which is 
in contradiction with Theorem 1.1 and the fact that A contains a small even element. 
Let us call (M — CV, M — C7 + mo/2) the largest pair of elements in A. 

To each pair (a, a -f mo/2), we associate a triple (M — C7 — a — m0/2, M — C7 — 
a, M — C7 — a + mo/2) of integers that do not belong to A. Since two pairs have 
no element in common and difference between first and second elements of different 
pairs is not equal to m, two such triples have no element in common neither. The 
set [1, M]\A contains 3M/5 elements, up to a constant, and there are, again up to a 
constant, M / 5 triples, so up a constant number of exceptions, [1, M]\A is a union of 
triples. 

Let us consider any arithmetic progression modulo mo/2. Up to a constant number 
of exceptions, the progression is covered by (M/5)/(mo/2) structures of five consec­
utive points, the first two belonging to A, and the last three not belonging to A. We 
consider the set B of the first element in each pentuple. If 61 < b2 are two elements in 
B, then b2 — bi is the midpoint of a triple of elements that do not belong to A. Since 
there are M / 5 — Cg such triples, we have \(B — B)+\ = \B\ 4- C9, the reasoning as in 
[5] imply that B is located in an arithmetic progression of length at most \B\ + Cio-
Due to the cardinality of 0 , this progression is modulo 5mo/2. 

We consider the set S of the residues modulo 5mo/2 of the first and second elements 
of the pentuples associated to each arithmetic progression modulo mo/2. The set S 
consist of mo elements. Since A is sum-free and is equal, up to a constant number of 
terms, to the numbers in [1,M] which are above the elements of <S, the set S must 
be sum-free. We are thus left with the characterization of sum-free subsets of Z/5LZ 
which satisfy the following property: each subset {u, u + L,u -h 2L, u + 3L, u + 4L} 
contains exactly two elements, and those two elements are consecutive; by this we 
mean that those two elements are {u + iL, u + jL} where (i,j) is one of the pair 
(0,1),(1,2),(2,3),(3,4),(4,0), and we shall call the first of those two elements the one 
that corresponds to the first element in the associated pair (i, j). We call <Si the set 
of the first elements, and S2 the set of the second ones. We have |<Si| = | | = L. Let 
s and s' be elements in S\\ then s + L and s' + L are in S2, so that s + s', s + s; + 
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L, s + sf + 2L are not in S which is sum-free; this implies that s + sr — 2L is in <Si. 
This implies that \S± S1+ = |<Si|, and Kneser's theorem (cf. [4]) implies that Si is a 
coset associated to a subgroup T-L of Z/5LZ with cardinality L. This implies that S\, 
as well as <S2, is the image in Z/5LZ of an arithmetic progression modulo 5. 

We have thus proved that, up to a constant number of terms, A is the union of two 
arithmetic progressions modulo 5. Since A is sum-free it is easily seen that those two 
arithmetic progression are either 5Z + 1 and 5Z + 4, or 5Z + 2 and 5Z + 3, and that A 
is indeed included in the two arithmetic progressions, so that either (ii) or (iii) holds 
in Theorem 1.2. 
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