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THE STRUCTURE OF MULTISETS 
WITH A SMALL NUMBER OF SUBSET SUMS 

by 

V s e v o l o d F . L e v 

Abstract. — We investigate multisets of natural numbers with relatively few subset 
sums. Namely, let A be a multiset such that the number of distinct subset sums of 
A is bounded by a fixed multiple of the cardinality of A (that is, | P ( A ) | <C \A\). We 
show that the set P(A) of subset sums is then a union of a small number of arithmetic 
progressions sharing a common difference. 

Similar problems were considered by G. Freiman (see [1]) and M. Chaimovich (see 
[2]). Unlike those papers, our conditions are stated in terms of the cardinality of the 
subset sums set P(A) only and not on the largest element of the original multiset A. 

The result obtained is nearly best possible. 

1. Notat ion and definitions 

By a multiset we mean a finite collection of natural numbers with repetitions al­

lowed: A = { a i , . . . , a&}, where a\ < • • • < a& are the elements of A. The number of 

appearances of an element will be called its multiplicity. 

As with "normal" sets, \A\ = k is called the cardinality o f A. The sum of all 

elements of the multiset is a (A) — ai -f • • • + a&, and its subset sums set is 

P(A) = {eidi H \-ekak: 0 < £ i , . . . , £ * < 1 } . 

Notice that 0 and a(A) are bo th included in P(A); generally, e belongs to P(A) if 

and only if a (A) — e does. 

Another useful notation: 

A = {at x fci,... ,a5 x ks}, 

meaning that a\ < - < as are distinct elements of A with multiplicities k \ , . . . , ks > 

1. In these terms, the cardinality of A is |^4| = k\ 4- h kSl the sum of its elements 

is a(A) — k\a\ + • • • + ksaSl and its subset sums set is 

P(A) = {Kiai H h Ksas - 0 < Ki < k \ , . . . , 0 < Ks < ks}. 

1 9 9 1 Mathematics Subject Classification. — 11P99, 11B75. 
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180 V.F. LEV 

2 . T h e main result 

T h e following theorem is our main result. 

Theorem 1. — Let A satisfy 

(1) \P(A)\ < C\A\ - 4 C * 3 , 

where C is a natural number, and suppose that the cardinality of A is sufficiently 
large: \A\ > SC3. Then P(A) is a union of at most C — 1 arithmetic progressions 
with the same common difference. 

Theorem 1 (the proof of which will be given in Section 5) is somewhat unusual in 
describing the structure of the subset sums set P(A) rather then the structure of the 
multiset A itself. A s the reader will notice, this reflects the essence o f the problem: 
one can change A substantially without affecting P(A), and thus it seems impossible 
to describe the structure of A under any reasonable condit ion on P(A). 

I conjecture that (1) can be replaced by the weaker restriction 

(2) \P(A)\ < C\A\ -(c-iy. 
T h e following examples show that inequality (2) cannot be further relaxed. 

Example 1. — Let A — { 1 x (k — C + 1) , 6 x (C — 1)}? where k — \A\ and b are 
sufficiently large. Then P{A) is the union of C progressions 

0 , l , . . . , f c - C + l , 

6,6 + 1 , . . . , b + ( J k - C + l ) , 

( C - l ) 6 , (C- 1)6 + 1 , . . . , ( C - 1 ) 6 + ( * - C + l ) , 

so that \P(A)\ = C(k - C + 2) = Ck - (C - l )2 + 1. However, P(A) cannot be 
represented as a union of at most C — 1 arithmetic progressions with a common 
difference. 

Example2. — Let A = { 1 x (C — 1 ) , b x (k — C + 1 ) } , where k = \A\ and b are 
sufficiently large. Then P(A) is the union of C progressions 

0 , 6 , . . . , ( f c - C + l)6, 

1,1 + 6 , . . . , ! + ( f c - C + 1 ) 6 , 

C - l , C - l + 6 , . . . , C - l + ( * - C + l)6, 

so that \P(A)\ = Ck — (C — l )2 + 1, and again P(A) cannot be represented as a union 
of at most C — 1 arithmetic progressions with a common difference. 

Note that in view of Lemma 2 below, the inequality |F(^4) | > \A\ + 1 is always 
true. Hence, the conditions of Theorem 1 are never satisfied for ( 7 = 1 , and from now 
on we assume C > 2. 
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3 . Smal l values of C 

For A satisfying (1) (or even (2) ) with small values of C (C = 2 , 3 ) the structure 
of P(A), as well as the structure o f A itself, can be completely described. 

W e begin with some basic properties of subset sums set. First, we estimate by how 
much |P(^4) | increases if one adds an element to A. 

Lemma 1. — Let A = {a\ x & i , . . . , a s x A+ — A U {a}, and suppose that A 
contains at least i — 1 different elements less then a (that is. a > a,_i unless i = 1 ) . 
Then 

\P(A+)\>\P(A)\ + i. 

Proof. — P(A~*~) contains all the elements o f P(A), as well as the i additional elements 

<j{A) +a,a(A) + a — o i , . . . , o-(A) - f a - ai-i. 

A s a direct corollary, we obtain a lower-bound estimate for |P(^4) | . 

Lemma 2. — The cardinality of the subset sums set P(A) of the multiset 

A = {a\ x ki,..., as x ks} 

satisfies 
P(A)\ > 1 + ki +2fc2 + " - + s&s. 

In particular, \P(A)\ > 1 + \ A\, 

Proof — The assertion is obviously true for \A\ = 1, and we use induction on \A\. 
Denote by A~ the multiset obtained by removing from A its largest element as. 
Applying Lemma 1, we obtain then 

\P(A)\ > \P(A-)\ + s> (1 + fci + 2k2 \P(A-)\ + s>\P(A-))) + s 

= l + ^i +2k2 + + sks. 

It follows from Lemma 2 that a multiset A with relatively small value of |P(^4) | 
has at least one element with large multiplicity. 

Lemma3. — Let A = {ai x Ah , . . . , a* x kA, and let ka = max k be the maximal 
lm+: 

multiplicity of an element of A. Then 

ko > 
k2 

2\P(A)\' 

Proof — For 1 < % < s we have: 

\P(A)\ > 1 + h + 2k2 + • • • + iki + + l)(ki+i + --- + ks) 

> (i + l)k - ( ^ + 2 ^ - 1 + --- + iki) 

> (i + l)k-
= 
l i(i + l)fc0. 
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The resulting estimate 

|P(i4)| > « + ! ) * -
1 

2 
i(i + l)k0 

also holds for i > s as in this case the expression in the right-hand side, considered 

as a function o f real i, has a negative derivative: 

k -
1 

2 
(2* + l)fc0 < & - sfcu < 0. 

Hence, 

ft0 > 
2 

i 
k -

P(A)\ 

P(A) 

for every i = 1 , 2 , . . . W e choose i under the condit ion 

2 
P(A)\ 

k 
- 1 < i < 2 1^)1P(A)\ 

k 
Then 

2 
i > 

k 

\P(A)\' 

P(A)\ 

i + l < 
k 

2 ' 

and so 

k0 > 
k 

\P(A)\ 

k 

2 
= 

er 
2\P(A)\' 

W e now construct multisets whose subset sums sets have a particularly simple 

structure. 

Example 3. — Let A = { a i , . . . , a k } be a multiset such that 

i) a 2 , . . . ,ak = 0 ( m o d ax); 

ii) a^+i < ai 4- * • • + ai for i = 1 , . . . , k — 1. 

ITfcen P(-A) ¿5 an arithmetic progression: P(A) — { 0 , a i , 2 a i , . . . , a ( A ) } . 

This easily follows by induction on k: if A" = { a i , . . . , a ^ - i } , then 

P ( A ) = P(A-)U(ak+P(A~)) 

= { 0 , o i , . . . , a ( A ) }U{ak,ak 4 - a i , . . . , a f c + a ( A ) } 

= { 0 , O i , . . . , C 7 ( A ) } , 

since a& < a ( A ) and a& + a ( A ) = o~(A). 

Proposition 1. — Ant/ multiset A, satisfying \P(A)\ < 2\A\ — 1 (that is satisfying (2) 

with C = 2) has the structure, described in Example 3. 

Proof. — Suppose, on the contrary, that there exists an index 2 < i < k for which 

either ai ^ 0 ( m o d a\) or ai > a\ -f- • • • + a z - i ; we assume, moreover, that i is the 

minimum index with this property. Then, writing Aj = { a i , . . . , a j } (j = 1 , . . . , k) 

and applying Lemma 2, we obtain 

P(A)\ = 2 |P(Ai_1) | > 2 t 
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(since P(Ai) = P ( , 4 i _ 1 ) U ( a i + P ( ^ _ 1 ) ) , and P(Ai-i) is disjoint with o< + P(i4<-i ) ) , 
therefore 

\P(A)\ = \P(Ak)\ > | P ( A f c - i ) | + 2 > . - > | »(Ai)\ + 2(k-i)>2k. 

T h e following example describes the construction o f multisets whose subset sums 

set consists of exactly two arithmetic progressions. 

Example 4. — Let A = { a i , . . . , a m } U {&i, 62} U { c i , . . . , cn}? where 

- am < 61 < a; 
- Am = { a i , . . . , a m } satisfies conditions (i) and (ii) of Example 3 with a\ =2; 

- bi,b2^0 ( m o d 2 ) ; 

- 6 1 + 6 2 < c r ( A m ) + 2 ; 
- Ci+i < a(Ci) - 26i + 3 (0 < i < n — 1 ) , where Ci = { a i , . . . , a m } U { 6 i , 6 2 } U 

{ c i , . . . ,c<}. 

TAen P ( A ) ¿5 a union of two progressions with the common difference 2: if cr(A) is 

even, then 

P ( A ) = { 0 , 2 , . . . , a ( A ) -21a(A)}U{b1b1 + 2 , . . . , < J ( A ) - 6 I } , 

and if a (A) is odd, then 

P ( A ) = { 0 , 2 , . . . , a ( A ) - 6 i } U { 6 l 5 6 i + 2 , . . . , a M ) } . 

In e#Aer case, | P ( A ) | = a (A) - h + 2 . 

T h e verification is left t o the interested reader. 

Proposition 2. — Any multiset A with co-prime elements satisfying \P(A)\ < 3\A\ — 4 

(that is satisfying (2) with C = 3) has either the structure described in Example 3, or 

the structure described in Example 4-

This proposi t ion will not be used in the sequel and is given just for completeness. 

Its p roof (which is rather long and tedious) is available from the author. 

4 . M o r e l e m m a s and properties of P{A) 

In this section, we prepare for the p roof of Theorem 1. T o this end, we first deter­

mine the value of | P ( A ) | for multisets A with only two different elements. Wi thou t 

loss of generality we can restrict ourselves to the case when these two elements are 

co-prime. 

Lemma4. — Let A = (ai x fci,ao x ko\, where (ai,ao) = 1. Then 

i) if ki < a<2 — I or k2 < a± — 1, then 

| P ( ^ ) | = (fci + l)(*2 + l ) ; 

ii) if ki > a2 — 1 and k2 > a% — 1, then 

\P(A)\ = aifci + a2k2 - ( a i - l ) ( o 2 - l ) + l. 
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Proof. — In Case i ) , the assertion follows from the fact that all values of the linear 

form 

a\x 4- a2y; 0 < x < ku 0 < y < k2 

are pairwise distinct: if, for instance, k\ < a2 — 1, and a\x 4- a2y = a\x' 4- a2yl', then 

x = x' ( m o d a2); therefore (in view of 0 < x,xf < k\ < a2) we have x = x', whence 

y = y'-
In Case ii) we use induction on k2. For k2 = a\ — 1 we apply the above proved: 

P(A)\ = (fci 4- l)(k2 4 -1 ) = ath 4- ai 

= a\k\ 4- a2&2 — « 2 ^ 2 + CLI 

— a\k\ 4- a2&2 — a\a2 4- ai 4- a2 

= aifci 4- a2fc2 — ( « i — 1 ) ( « 2 — 1) + 1. 

Suppose now that k2 > a± — 1. Write A = { a i x &i,a2 x (fc2 — 1 ) } , so that 

| P ( A - ) | = o i f c i + a 2 ( f c 2 - l ) - ( a i - l ) ( a 2 - l ) + l . 

W e have t o prove, therefore, that |P(^4) | = \P(A ) | 4- a2. Obviously, the difference 

\P(A)\- \P(A-)\ I counts the numbers o f the form 

(3) xai + k2a2; 0 < x < &i, 

which cannot be represented in the form 

xa\ 4- ya2\ 0 < x < k 1 0 < y < k2 - 1. 

W e show that this particular subset o f (3) is obtained when k\ — a2 4-1 < x < k\; that 

is, there exist exactly a2 such numbers. Indeed, if x < k\ — a<2 4- 1 then the number 

e = xa\ 4- k2a2 possesses the representation e — (x 4- a2)a\ 4- (&2 — a\)a2. O n the 

other hand, for x > k\ — a2 4-1 the equality x a i 4- fc2a2 = x ' a i 4- ya2 is impossible: 

otherwise x' = x ( m o d a2) , meaning that x' < x , and then xa± 4- fc2a2 > x'a\ 4- ?/a2, 

a contradict ion. • 

T h e following lemma shows that under certain condit ions, a multiset can be slightly 

modified in such a way that the number of its elements will increase while its subset 

sums set will not change. Once again, we start with multisets with exact ly two distinct 

elements. 

Lemma5. — Let A = {a\ x ki,a2 x k2\, where 

a\ < a2, k\ > a2 - 1, k2 > 2ai - 1. 

Then there exist k\, k'0 such that the multiset A' = {a\ x k\,a2 x k'2} satisfies 

P(A') = P{A), \A'\ > \A\. 

Proof. — W e set k[ = & i+a2 , k2 = k2—a\. Since &i+&2 = ^i4-fc2H-(a2—ai) > &i4-&2, 

we have only to prove that P{A') — P(A). 

1) Suppose that e — xa\ 4- ya2 £ P (^4) , where 0 < x < fci, 0 < y < k2, and show 

that e € P ( - A ' ) . Indeed, this is trivial if y < k2 — o i , and otherwise it follows from 

e = (x 4- a2)ai 4- (y - o i ) a 2 . 
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2) Suppose that e = xa\ + ya2 G P(A'), where 0 < x < k[1 0 < y < k'2, and 

show that e E P(A). Indeed, this is trivial if x < fci, and otherwise this follows from 

e = (x — a2)a\ + (y + a i ) a2 . 

W e now wish to bring the assumptions of Lemma 5 to a more convenient form, as 

well as to extend this lemma for the case of multisets with arbitrarily many distinct 

elements. 

Lemma 5'. — Let A — {a\ x ^ , . . . , a s x ^ } , and suppose that some two multiplicities 

ki.kj (1 < i < j < s) satisfy kikj > 2(\P(A)\ — k). Then there exists a multiset A1 

such that 

P(A') P(A)\ \A'\ > \A\. 

Proof — Write AQ = {ai x ki, a7- x kj} and A\ — A \ A0 (so that A = A0 U A\). W e 

denote d = (a^, aj) and set a[ = ci{/d, a'- = a j / d. Clearly, 

\P(A)\ > \P(A0)\ + | P ( A ! ) | - 1 > | P ( A ) ) | + |Ai | , 

l ^ o ) ! < ( 
1 
2 

kikj ~\~ fc) (A/ fc^ kj) — l 
2 

kikj + iti + % < (fcf 4- l)(fcj + 1) , 

whence, in view of Lemma 4, ki > a'j and kj > a^. Moreover, applying Lemma 4 once 

more (this time part (ii)) we obtain: 

\P(An)\ = kid + kja'j - f a ' + l 

^ kiOi ~\~ kj ~\~ kj (a' - 1) - (oj - l)(a' - 1) 

^ k%a^ ~\~ kj, 

which implies 

l 
2 kikj ~~\~ ki ~\~ kj ̂ > ki a^ ~\~ kj, 

fcj > 2a^ - 2. 

This allows us to apply Lemma 5 to AQ (more precisely, to the multiset {a[ x ki, a'- x 

fc,}) to find A'0 with P(AQ) = P(A0), \A'0\ > \A0\. Then the multiset A' = A'0 U 

will obviously satisfy the required conditions P(A') = F ( A ) , \AF\ > \A\. • 

5. Proof of the main theorem 

Two multisets A and A' will be called equivalent, if P(A) = P(Af). Wi thout loss 

)f generality we can assume that A is a multiset o f the maximum possible cardinality 

)f all equivalent multisets. W e write A in the form 

A = {a0 x fc0} U B, B = {bi x fci,...,òs x fcs}, 

where fc1?..., ks < fco, and & i , . . . , bs ^ OQ. 

B y a cftain we will mean a sequence E = {ei,...,et} o f the elements of P ( P ) , 

satisfying the two following conditions: 

i) 0 < ei+1 - e» < fc0a0; - e» < fc0a0;- e» < fc0a0; 

ii) ei = • * * = et ( m o d ao) . 
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The chain E will be referred t o as maximal if no more elements of P(B) can be added 
t o E without violating either (i) or ( i i) . 

Let S = P({ao x ko}) = { 0 , a o , . . . , &o&o}- It is obvious that: 

- if E is a chain, then the sum S H- E is an arithmetic progression with the 
difference ao; 

- if E\ and E2 are two distinct maximal chains, then the progressions S + E\ and 
S -f E2 are disjoint. 

Clearly, there is exactly one way to decompose P(B) into maximal chains, and we 
denote the number of these chains by N. W e assume N > C (since otherwise P(A) 
consists o f at most C — 1 progressions with the difference ao) and show that this 
assumption leads to a contradiction. 

Since obviously \P(A)\ - \P(B)\ > Nko, we obtain 

\P(B)\ < \P(A) - Nko < C(\A\ - ko) = C\B\ 

(in fact, one can easily prove that B satisfies ( 2 ) ) . Therefore, by L e m m a 3, 

m a x l < i < s 
ki > 

\B\2 
2\P(B)\ > 13 

2 C 
B y L e m m a 5' and in view of the maximali ty of A, 

ok B 
2C < 2(\P(A)\ -k) < 2 ( C - l ) f c , 

k0(k - ko) < AC{C - l ) J f c . 
T h e left-hand side o f the last inequality is a quadratic polynomial of ko with zeroes at 
0 and k, max imum at k/2, and attaining bo th at 4C2 and k — AC2 the same c o m m o n 
value 

4 C 2 ( f c - 4 C 2 ) 4C(C - l)k. 

Therefore, either k0 < ^C2 or k0 > k — AC2 holds true 
T h e first is actually impossible, since by Lemma 3, ko > hl 

2Ck > AC2. Hence 
kn > k — AC2, and it follows that 

\P{A)\>N{ko + 1) > C(k-AC2) = Ck-AC3, 

a contradiction with (1 ) . (Notice that this is the only place where we use (1) instead 
of the weaker (2) . ) This completes the p roof of Theorem 1. 
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