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SUBSET SUMS OF SETS OF RESIDUES 

by 

Edith Lipkin 

Dedicated to Grisha Freiman, with respect and affection 

Abstract. — The number m is called the critical number of a finite abelian group G, 
if it is the minimal natural number with the property: 
for every subset A of G with | A\ > m, 0 ̂  A, the set of subset sums A* of A is equal 
to G. In this paper, we prove the conjecture of G. Diderrich about the value of the 
critical number of the group G, in the case G = Zq, for sufficiently large q. 

Let G be a finite Abelian group, A C G such that 0 0 A. Let A = { a i , a 2 , . . . , a|A|}, 
where \A\ = card A. 

Let 

A* := {x I x = aiei 4- a2^2 H h £ui«Uh £j € { 0 , 1 } , 1 < j < \A\, 
|A| 

3 = 1 

e j > 0} 

and 

X := {m G N | MA C G,\A\ > m => A* = G}. 

Since |G'| - 1 € X, then X ^ 0 if IGI > 2. The number 

c(G) = min 
mex 

m 

was introduced by George T. Diderrich in [1] and called the critical number of the 
group G. 

In this note we study the magnitude of c(G) in the case G = Zg, where l»q is a 
group of residue classes modulo q. We set c(q) := c(Zq). A survey of the problem was 
given by G.T. Diderrich and H.B. Mann in [2]. 

In the case when q is a prime number John Olson [3] proved that 

c(q)< 4 ^ - 3 + 1. 
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188 E. LIPKIN 

Recently J.A. Dias da Silva and Y.O. Hamidoune [4] have found the exact value 
of c(q) for which an estimate 

2g1/2 - 2 < c(q) < 2q^2 

is valid. 
If q = P1P2, Pi > P21 P11P2 ~ prime numbers, then 

Pi +P2 - 2 < c(G) < pi +P2 - 1 

as was proved by Diderrich [1]. 
It was proved in [2] that for q = 2£, £ > 1 

c(G) = £if£>borq = 8 

c(G) = £ + 1 in all other cases. 

Thus, to give thorough solution for G = Zqwe have to find c(q) when q is a product 
of no less than three prime odd numbers. 

G. Diderrich in [1] has formulated the following conjecture: 
Let G be an Abelian group of odd order \G\ = ph where p is the least prime divisor 

of |G| and h is a composite number. Then 

c(G) = p + h - 2. 

We prove here this conjecture for the case G = !*q for sufficiently large q. 

Theorem 1. — There exists a positive integer qo that if q > qo and q = ph, p > 2, 
where p is the least prime divisor of q and h is a composite number, we have 

c(q) =p + h-2. 

To prove Theorem 1 we need the following results. 

Lemma 1. — Let A - {aua2,... ,a\A\} C N,N = { 1 , 2 , . . . , £ } , 5 ( A ) = 
|A| 

i=l 
ai, 

A(g) = {x e A\x = 0(mod ,9)}, B(A) = 1 
2 

|A| 

i-1 
ai 

1/2 

. Suppose that for some e > 0 

and £ > £i(e) we have \A\ > L 2/3-K and 

(i) \A{g)\<\A\-l 3^2 
5 

for every g > 2. Then for every M for which 

\M -
1 

2 
S(A)\ < B(A) 

we have M C A*. 

Lemma 2. — Let e be a constant, 0 < s < 1/3. There exists £0 — £Q{E) such that for 
every £ > £Q and every set of integers A C [1, £], for which 

(2) \A\ > t 2 + E 
5 
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SUBSET SUMS OF SETS OF RESIDUES 189 

the set A* contains an arithmetic progression of I elements and difference d satisfying 
the condition 

(3) d< 
11 

|A| . 

We cited as Lemma 1 the Proposition 1.3 on page 298 of [5]. 

Proof of Lemma 2. — Let us first assume that A fulfills the condition (1) in Lemma 
1. Since we have 

B{A) > 
1 

2 

1̂ 1 

i=1 

i2 > 
1 

2 

\A\3 

3 
> 

1 

2\/3 
l1+3E 

and every M from the interval (\S(A) - B(A), §S(A) + B(A)) belong to A*, there 
exists an arithmetic progression in 4̂* of the length 2B{A) > I, if £ > £o = £\{e). 

Now we study the case when A does not satisfy (1). We can then find an integer 
gi > 2 such that B\ C A = AQ and B\ contains those elements of A$ which are 
divisible by g\ and for the set A\ = {x/g±\x € B± and x = 0(mod gi)} we have 

\A1\>\Ao\ - t 
2 . E 

. 
Suppose that this process was repeated s times and numbers #2> • • • ?0« were 

found and sets Ai, A2,..., As defined inductively, Bj being a subset of Aj-i contain­
ing those elements of Aj-i which are divisible by gj and 

Aj = {x/gj\x E Bj and x = 0(mod gj)} 

so that we have 
\Aj\ > \Aj-X\-L 

2 . e 
¿ = 1 ,2 , . . . , « . 

From 

1^1 > \As-i\-i 
2 4. E > \A\ - st 2 4. e 

and 

£s = 
4 - i 

Qs 
< 

£ 

2s 
it follows that 

(4) 1 .̂1 > 
1 

2 
|A| > 

1 

2 
l3 + 2 > I 

2 + E 

The condition (2) of Lemma 2 for As is verified, for some sufficiently large s the 
condition (3) is fulfilled and thus A* contains an interval 

1 

2 
3(AS) - B(AS), 

1 

2 
S(A,) + B(A.) 

We have, in view of (4), 

B{A.) > 
1 

2 

|A|s 

i=l 

i2 > 
1 

2 
K l 3 

3 

(5) > 
1 

4 ^ 
e 1+3E >l. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



190 E. LIPKIN 

We have shown that A* contains an arithmetic progression of length t and difference 
d = • • • c/s, and thus A* has the same property. 

We now prove (2). From 

ls = 
l 

d 
, t. > \A.\ > 

1 
2 

\A\ 

we have 
l 

d 
> 1 

2 
|A| 

or 

d< 
2£ 

\A\-
Lemma 2 is proved. 

Lemma 3 (M. Chaimovich [6]). — Let B = {bi} be a multiset, B C Zq. Suppose that 
for every s > 2, s dividing q, we have 

(6) \B\B(s)\ > s - l . 

There exists F C B for which 

\F\ < q-1, 

F* = Z, . 

Proof of Theorem 1. — Let q = p\p2 • • Pk, k > 4, p = pi < p2 < • • • < Pk- We have 

(7) pk <q=^p< q1/4 . 

Let A C Zg be such that 0 ^ A and 

(8) \A\> 
q 

P 
•f P - 2 ; 

we have to prove that A* = Zp. 
From (7) and (8) we get 

(9) \A\> 
Q 

P 
>q 3/4 

. 

Let us consider some divisor d of and denote by Ad a multiset A viewed as a 
multiset of residues mod d. Let us show that for every 5 dividing d the number of 
residues in Ad which are not divisible by 6 satisfies the condition of Lemma 3. 

The number of residues in Zç which are divisible by 8 is equal to q/8. Therefore 
the number of such residues in A (which are all different) is not larger than q/5 — 1, 
because 0 ^ A. 

From this reasoning and from (7) we get the estimate 

\Ad\A{8)\ > \A\ - q 
8 - 1 > 

(10) q 

P 
+ P - 2 -

q 

8 
+ 1 = 

Q 

P 
+ p -

q 

8 
+ 8 + ¿ - 1 . 

The function x + q/x is decreasing on the segment [1, Y/q\. 
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The least divisor of g is equal to p, and the maximal one to q/p. Therefore 

p < 8 < a 

P 
. 

If p < 8 < y/q, we have 

( 1 1 ) 
q 

P 
+ p > 

Q 

8 
+ 8. 

In the case y/q < 8 < | , let p = f. Then (5 = | , y/q < J < * and p < p < y/q and 
we have 

(12) 
q 

P 
-hp > 

q 
+ p = d-h <7 

(5 . 

Prom ( 1 1 ) and ( 1 2 ) it follows from ( 1 0 ) that we have 

( 1 3 ) \Ad\A(8)\ > 8 - l . 

Let us apply the Lemma 3 to Ad. Condition ( 1 3 ) is condition ( 6 ) of Lemma 3. 
Therefore there exists Fd C Ad such that \Fd\ < d — 1 and FJ = Z<*. 

Viewing as a set of residues mod g, let 

A' = 

d/q 
p< d <q1/3 

Fd . 

It is well known that the number of divisors d(q) = 0{qe) for every e > 0 so that 

\A'\ < < 1 + E 

for sufficiently large g. 
Take now A " = A \ A ' . Take the least positive integer from each class of residues of 

the set A" and denote this set by A". We have A" C [1, q — 1] . We set I — q and see 
that all conditions of Lemma 1 are valid for A". Thus, (A")* contains an arithmetic 
progression C with a length q and a difference A such that 

(14) A < 
2Q 

q 
3 4 = 2q 

1/4 

If (A,g) = 1 then {A")* = Zq. Suppose that D = (A,g) > 1. Then C (and 
therefore (A")* which contains £) contains the residues of ZG which are divisible by 
D. If Z D is a system of residues mod q representing a system of all residues mod 
D/q, then (A")* +ZD = Zq. But FD C A' and F^=ZD. Thus 

A* D (A")* + (A')* = • 

Theorem 1 is proved in the case K > 4 . 
Now we have to study the case when q is a product of three primes. Let q = P1P2P3? 

P — Pi < P2 < P3. Suppose that for some positive e we have p < p3+i. The proof 
may be completed in a similar way to what was done. 

In the general case we can use a stronger result than Lemma 2 . Namely, the 
formulation of Lemma 2 is valid if in ( 2 ) we replace the number 2 / 3 in the exponent 
by 1 /2 (see G. Freiman [7] and A. Sarkozy [8]). So, in the case of q being a product 
of three primes, we can use this stronger version and prove Theorem 1. 
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192 E. LIPKIN 

As we have seen, the version of Lemma 1 with the exponent 2/3 was sufficient 
in the majority of cases. It is preferable to use this version, for its proof is much 
simpler than the case 1/2. Secondly, in the case 2/3 estimates of error terms have 
been obtained explicitly by M. Chaimovich. It provides us with the possibility to get 
an explicit range of validity for Theorem 1. 

Lemma 4. — Define a function of £ in the following manner: 

(15) mo(0 = 
12 

,7T2 

1/3 
? ^ ( l o g ^ + l /6 ) 1/3 2 -

4j 

3 

1/3 

where 7 = 12 
ir* 

log £+1/6 
l 

1/3 

Then for £ > 155 a subset sum of each subset A C { 1 , 2 , . . . , £ } with 
\A\ = m > mo(£) contains an arithmetic progression of cardinality £. 

Simplifying (15) we can take 

m0(£) = 1.31 2/3 (log*+1/6) 1/3 

In the case of four or more primes in a representation of q we have to verify an 
inequality 

(16) £ 2/4 > 1.31 2/3 (log € + 1 / 6 ) 1/3 

which is fulfilled for 
£ > 3000. 

In some special cases we can give better estimates. For example, if p = 3 we have 
m > q/3 and instead of (16) we have 

£/3> 1.3£2/3(log£+l/6)1/3, 

€ > 6 4 ( l o g £ + l / 6 ) 

which is valid for 
£ > 500. 
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