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STRATIFIED SETS

by

Jean-Louis Nicolas

Abstract. — A set A of integers is said “stratified” if, for all ¢, 0 < t < Card A, the
sum of any t distinct elements of A is smaller than the sum of any ¢ + 1 distinct
elements of A. That implies that all elements of .4 should be positive. It is proved
that the number of stratified sets with maximal element equal to N is exactly the
number p(N) of partitions of N.

1. Introduction

Let N = {1,2,3,...} denote the set of positive integers. After Erdés and Straus
(see [3] and [7]), a set A C N is said admissible if for any pairs A4;, 4; of subsets of
A, one has

(Za: Za) = A |=| As | .

a€A,; a€A2

Here | A | will denote the number of elements of A.
Straus has observed that, if £ = |24/N +1/4 — 1], then the set 4 = {N,N —
1,...,N — k + 1} is admissible, On the other hand, he proved (cf. [7]) that if N =

maX,e 4 a, and A is admissible, then | A |< (2% + o(1) ) V/N. The constant 4/+/3 has
V3

been improved in [4], and in [1], J.M. Deshouillers and G.A. Freiman have replaced it
by the best possible constant 2. In [2], they prove that for N large enough, the above
example of Straus is the greatest possible admissible set with maximal element N.

Definition 1. — A set A C Z is stratified, if for 0 < t < t' the sum of any t distinct

elements of A is strictly smaller than the sum of any t' distinct elements of A.
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206 J-L. NICOLAS

Note that from the above definition all the elements of .4 should be positive (choose
t=0and ¢t =1), and so A is included in N.

Clearly a stratified set is admissible. The above example of Straus is stratified,
and in the table at the end of [4], it can be seen that most of large admissible sets
are stratified.

In this paper, stratified sets will be described in terms of partitions (Theorem 1).
Further, we shall reformulate some of the conjectures about admissible sets given in
[4] in terms of stratified sets. Finally, we shall show that the number of stratified
sets with maximal element N is equal to the number of partitions of N (Theorem
2) and a one to one correspondence associating such a stratified set to a partition of
N is explicited. As a corollary, the lower bound given in [4] for the total number of
admissible sets with maximal element N will be improved.

It is possible to extend the notion of stratified set to subsets in arithmetic progres-
sion and in this way to describe some other classes of admissible sets. For instance
a subset of odd numbers A which satisfies that the sum of any ¢ distinct elements
is smaller than the sum of any ¢ + 2 distinct elements will certainly be admissible,
since the sum of ¢ elements and the sum of (¢+ 1) elements are of different parity and
therefore are unequal. I hope to return to this question in an other paper.

At the end of this article, a table of the numbers p(IV) of stratified sets and a(V)
of admissible sets with largest element N is given. The table of a(N) given in [4] is
erroneous.

This work has started in September 1991, when G. Freiman was visiting me in
Lyon. At that time he was trying to understand the structure of a large admissible
set (it was before getting the result of [1]), and he wrote on the blackboard many
equations like (11) or (12) below. So an important part of this paper is due to G.
Freiman, and I thank him strongly.

I thank also very much Marc Deléglise for calculating the values of a(N), and for
listing stratified sets which drove me to Theorem 2. I thank also Paul Erdds, Andras
Sarkozy, Etienne Fouvry and Jean-Marc Deshouillers for fruitful discussions on this
subject.

Notation. — t" A will denote the set of the sums of ¢ distinct elements of A.

2. Description of a stratified set

First it will be proved:

Proposition1. — Let A = {a; < a2 < -+ < ar, = N} be a set of positive integers,
and to = |(k— 1)/2]. Then A is stratified if and only if

(1) max to" A < min(ty + 1) A.

Proof. — From the definition, A is stratified if for all ¢,1 <t <k —1,
(2) maxt" A < min(t + 1) A.
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Let us first prove (2) for ¢ < to. From (1), one has:

Qg + Q-1+ -+ Ak—to+1 < A1+ A2 + -+ Qo1
which implies
to—t
(3) ar+ak—1+-+ap—t41 <01+ -+ a1+ Z (Gt414i — Qk—ty1-3) -
=1
But for 1 <i<ty—t,wehavet+1+i< k—t+1—1since 2i <2(tp—t) <
k—1-—2t < k — 2t; thus, the last sum in (3) is non-positive and (3) yields (2).
Let us now suppose that ¢ > to and set S = ZLI a; and t' = k—t — 1. We have
k/2—-1<ty < (k—-1)/2, so that

t=k—t-1<k—-to—1<k—(k/2-1)—-1=k/2<ty+1,
and so, t' < tg. From the above proof, one gets

4) max(t')* A < min(t' + 1)" A,
and from the definition of ¢,

(5) maxt"A = S — min(t' + 1) A
and

(6) min(t + 1)* A = S — max(t')" A.

(4), (5) and (6) prove (2), and this completes the proof of Proposition 1.

Theorem 1
(a) Let k be even. There is a one to one correspondence between the stratified sets
A CZ withmax A= N and | A |=k and the solutions of the inequality
k kK2 K
(7)) x4+ 2(x2 +xk—1) + 3(x3 + T—2) + - - + §(wk/2 + Tp/241) <N — T 3
where the z}s are non negative integers.

(b) Let k be odd. There is a one to one correspondence between the stratified sets
A C Z withmax A= N and | A |=k and the solutions of the inequality:

1
(8) z1+2(x2+xp—1)+---+ 3 (:B(k_l)/g + T(kt3)/2)

k+1 k+1)2
+ 5 T(k+1)/2 SN—(—4—)—-

Proof. — Let A = {ay,a2,...,a;} C Z with
9) a1 <as <---<ag_1 <ap=N.
be a stratified set. Let us introduce the new variables

wizai+1—ai—1, 1Si§k-—-1.
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From (9), one has
(10) >0, 1<i<k-1.

Conversely, (9) is clearly equivalent to ar = N, and (10). Now we have to express (1)
in terms of the z)s, and this explains the role played by the parity of k.
Let us suppose k is even. From the definition of x;, one has

t(t+1
(11) w1+2:c2+-~+ta:t=—(—;-_—2-—a1—-a2—---—~at+tat+1
20,1 +3xp—o+ -+ (u+1)xp—y = N+ar+ar_1+ -+ ar—ns1
“*(U"'l)ak—u
1 2
(12) _(it_);u_“"_)._}_l.

One chooses t = to+1=k/2in (11) and u = to = £ — 1 in (12) and then (11) and
(12) give
maxty" A —min(to + DA = ar+ar_1+ -+ ap_tot1
—a1 — a2 — = Qo+l
= o1 +2(z2 +Tp—1)+ -

k
+5(@k2 + Thj211)
kK* Kk
—-N + Y + 5~ 1.
The last term —1 allows us to transform the strict inequality (2) in inequality (7)
with < sign.
The proof of (8) when k is odd is similar.

Corollary 1. — Let us denote the number of stratified sets with k elements, and maz-
imal element N by Si(IN). The generating functions are:
for k even
00 k/2 1
(13) > Se(N)ah = /R T s,
N=0 i=1 (1-2%)
for k odd:
o] (k+1)2/4 (k—1)/2 1
x
(14) >SNzt = ——mn I =
= 1 — z(k+1)/ = (1-2f)
Proof. — It follows easily from the theorem, by the classical method of generating

series. For k even, the generating series of the number of solutions of

k
(15) Ty + 2(x2 + Th—1) + -+ + —2-(mk/2 +T(kj241)) =N
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is

1 ﬁ 1
l—z 12 (1 —xt)2’
and if in (15) ” = n ” is replaced by ” < m 7, the generating function must be

multiplied by 1/(1 — z). At last, in (7), the right hand side is N — k?/4 — k/2, which
explains the factor z**/4+%/2 in (13).
For k odd, the proof is similar.

Corollary 2. — Let p(n) denote the classical partition function, i.e. the number of
ways of writingn = ny +ng + -+ + N,y > No--- > ng > 1, and let us define
P(n) = 3" o p(i)p(n —i). So, the generating function of P(n) is

o0 . o0 1
(16) nz:;)P(n)x = 1;[1 o

The number of stratified sets A with largest element N and with a mazimal number
of elements is given by

P(N —m?) if m> <N <m(m+1)

and by
P(N-m?-m)if m(m+1) <N < (m+1)>2%

Proof. — Let us suppose first that m? < N < m(m + 1). For k = 2m — 1, one has

2 -
(k—zl) :N—mQSm(m+1)—1—m2=m—1=%,

But by (14), (16) and (17), the number of stratified sets, Sk (N), is equal to P(N —m?).
For k = 2m, one has N — '2—2 — % =N-m(m+1) <0, and from (13) there is no
stratified sets with k elements.

The proof of the second case, m(m + 1) < N < (m + 1)? is similar.

17 N -

Remark. — 1t follows from theorem 1 and the above proof, that the maximal number
of elements of a stratified set .4 with maximal element N is |24/N + 1/4 — 1], that
is2m—1ifm? < N<m(m+1)and 2mif m(m+1) < N < (m + 1)2.

Table of P(N):

3 4 5 6 7 8 9 10 11

N = 01 2
= 1 2 5 10 20 36 65 110 185 300 481 752

P(N)

This table has to be compared with the column p(N) in the table of [4].
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3. A conjecture about admissible sets with maximal size

Let m be an integer, N = m? + m — 2,k = 2m — 1, and let us consider the set
{N,N-1,....N-m+2,N—-m,N —m—1,...,N —2m + 1}. If the elements of
this set are denoted by a; < as < --- < ag, and if we set x; = a;41 — a; — 1, we have
x; = 0 for all 7 but

Tm—1 = T(k-1)/2 = L.
So, (8) writes:

— 2
k=1 _ o (k+1)
2 = 4

2

=m?’4+m-2-m?>=m-2

which does not hold. Therefore the set is not stratified. It is easy to see that tg =

maxto" A = min(¢p + 1) A + 1

but the second largest term of oA is smaller than all elements of (¢g + 1) A, and
the set is admissible.

A similar counter example admissible but not stratified does exist for N = m?2 +
m — 1,k =2m — 1, omitting NV — 2m instead of N — 2m + 1.
These two counterexamples will be said quasistratified.
Now, conjectures 1 to 4 of [4] can be reformulated in the following terms:
Conjecture 1 of [4], that the maximal number of elements of an admissible set with
greatest element N is |2/N + 1/4 — 1], has been proved by J.M. Deshouillers and
G.A. Freiman in [2], for N large enough.
Conjecture 2 is replaced by: For N > 20, the admissible sets of maximal size and
largest element N are either stratified, or one of the sets made of odd elements de-
scribed in conjecture 3 of [4] (whenever N is of the form m? — 1 or m? + m — 1),
or a quasistratified set described above (whenever N is of the form m? + m — 1 or
m? +m — 2). :
Conjecture 4 of [4] then becomes an easy consequence of our new conjecture 2.
This new conjecture 2 fits the table of [4] for 20 < N < 50. This table has been
extended up to N = 60, and the conjecture is verified for 20 < N < 60.

4. How many stratified sets are there ?

Theorem 2. — The set of stratified sets with largest element N and the set of partitions
of N have same cardinal. Moreover an ezxplicit one to one correspondence between
these two sets is given.

Proof. — Let m be an integer, and, as above, let us denote Sk(/N) the number of
stratified sets with largest element N and with k elements. From (13) and (14) the
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generating function of Sa,,—1(N) + Som () is:

foe) 2 m—1 m
N _ z™ 1 m?+m 1
szo(sam_l(zv) TmN)ET = Z.I:Il A=z ° 1;[1 (1-2.)?

3

- 1
- 7 UETy

(2

I
LN

Now, the generating function of S(IV), the total number of stratified sets with
largest elements N will be:

i S(N)zN
N=0

But, by an identity due to Euler (cf. [5], p. 280):

m

2 1
Ly (L=

xm

m=1 1

o

o0 m o0 o0
18) > o [T =z = [ = = 2 o0,
m=1 =1 =1 N=0

and so, S(IV) = p(N).

To the partition n = ny +ny + - - - + ng, with ny > ny > -+ > ng, let us associate
the so-called Ferrers diagram, that is the array of dots made with n; dots on the first
line, ny dots on the second line, ..., and so on n; dots on the kt* line. For instance,
to 10 =443+ 1+ 1+ 1 corresponds the array:

This graphical representation contains a square in the upper left corner, and the
largest such square is called “Durfee square” in [5, p. 281].
In the combinatorial proof of Euler’s identity (18), it is observed in [5] that

2 1 1
‘ E(l—xiP

is the generating function of the number of partitions such that the Durfee squares
have an edge of length exactly m. To find the wanted one to one correspondence we
just have to use the combinatorial proof of (18) in [5, p. 281].

From the above proof, one can see that Sa,, (V) is equal to the number of partitions
of N such that the Durfee square has an edge of length m, and moreover such that the
corresponding array contains the rectangle of length m + 1 and height m. Similarly,
Som—1(INV) is equal to the number of partitions of N such that the Durfee square has
an edge of length m, but such that the array does not contain the above mentioned
rectangle.

Let us suppose first that the Ferrers diagram does not contain the rectangle (m +
1) x m (that means that n,, = m) and choose k = 2m — 1. The Ferrers diagram

SOCIETE MATHEMATIQUE DE FRANCE 1999
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consists of three parts: The Durfee square and two tails. Let us denote by U the
upper right tail and by V the lower left tail, so that

n=m?+ U] +|V|
Now, U can be interpreted as the Ferrers diagram (in column) of a partition of |U/|,
the parts of which are < m — 1. Let us denote by z; the number of columns of ¢/ with
height 7 ; then this partition writes
(19) 1+ 2z + -+ (m— Dy = |U|.

Similarly V can be interpreted as the Ferrers diagram (in row) of a partition of |V|,
the parts of which are < m. Let us denote by y; the number of rows of V with length
1 ; then this partition writes

(20) Y1 +2y2 + -+ mym = V).
By introducing a new variable zy, let us transform the inequality (8) in the equality:
(x1 +28) + 2@ +Tp1) + -+ (M= 1) (@me1 + Tmy1) +MT, = N —m? = |U| +|V].

The values of z;,...,Tm—1 are given by (19), the values of zx = y1,zp—1 =
Y2+, Tm = Ym are given by (20), and the stratified set (a1,a2,...,ar = N) can
be obtained by ar, = N, and a; = a;41 — 1 — ;.

Example N =33=10+7+5+4+4+4+2+1

m=4,k=17

‘L{I = 10,:173 =1,z9 = 2,$1 = 3.

IV‘ = 7)y4 = 1:y3 = 0,3!2 = 1ay1 =1

The stratified set corresponding to this partition is (19, 23, 26, 28, 30, 31, 33).
Whenever the Ferrers diagram does contain the rectangle (m + 1) x m (that means

that n,,—1 > m + 1) one chooses k = 2m, and before defining the tails ¢/ and V we

have to take off the rectangle, so that

n=m(m+1)+ U +|V].

The parts of the partition represented by U are allowed to be equal to m, so that (19)
becomes

xy + 2z9 + - - - + mxy, = U],
while (20) does not change. (7) becomes:
(1 + zk) + 2(x2 + Th—1) + -+ M(T + Trmg1) = N —m(m + 1) = [U]| +|V|

and the end of the calculation of the a}s is similar.
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For instance the stratified set associated to the partition of 10 =4+3+1+1+1,
the array of which is displayed above, is (6, 8,9, 10).

Corollary 3. — The number a(N) of admissible sets with largest element N is greater
than p(N), the number of partitions of N.

Proof. — 1t follows immediately from Theorem 2, since any stratified set is admissi-
ble.
From the result of Hardy and Ramanujan, it is known that (cf. [6], formula 1.41):

p(n) ~ 4n1\/§ exp (ﬂ'\/?) .

So the above corollary improves the lower bound given in [4]:
a(N) >22VN-2 _ 1,
For the moment, I am not able to improve the upper bound of [4]:
a(N) < exp(¢cV/Nlog N),
but I conjecture that a(N) is not much greater than p(N) and satisfies
a(N) = exp ((v/2/3 + o())VN) ,
and, may be (see the table) that a(N) ~ p(N).
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N | p(N) | a(N) |a(N)/p(N) | N | p(N) a(N) | a(N)/p(N)
1 1 1 1.00 || 41 44583 235189 5.28
2 2 2 1.00 || 42 53174 273087 5.14
3 3 3 1.00 || 43 63261 335262 5.30
4 5 6 1.20 || 44 75175 394565 5.25
5 7 9 1.29 || 45 89134 465548 5.22
6 11 15 1.36 || 46 105558 551586 5.23
7 15 23 1.53 || 47 124754 659344 5.29
8 22 39 1.77 || 48 147273 750256 5.09
9 30 54 1.80 || 49 173525 912459 5.26

10 42 87 2.07 || 50 204226 | 1051209 5.15

11 56 121 2.16 || 51 239943 | 1230129 5.13

12 77 178 2.31 || 52 281589 | 1433643 5.09

13 101 249 2.47 || 53 329931 | 1705477 5.17

14 135 362 2.68 || 54 386155 | 1900438 4.92

15 176 484 2.75 || 55 451276 | 2308752 5.12

16 231 708 3.06 || 56 526823 | 2604726 4.94

17 297 928 3.12 || 57 614154 | 3041041 4.95

18 385 1265 3.29 || 58 715220 | 3483815 4.87

19 490 1685 3.44 || 59 831820 | 4132473 4.97

20 627 2306 3.68 || 60 966467 | 4527898 4.69

21 792 2886 3.64 || 61 | 1121505 | 5491786 4.90

22| 1002 3918 3.91 || 62 | 1300156 | 6101289 4.69

23 | 1255 4987 3.97 || 63 | 1505499 | 7090459 4.71

24| 1575 6418 4.07 | 64 | 1741630 | 8019859 4.60

25| 1958 8265 4.22 | 65| 2012558 | 9504818 4.72

26 | 2436 | 10601 4.35 || 66 | 2323520 | 10230396 4.40

27| 3010 | 13104 4.35 || 67 | 2679689 | 12413471 4.63

28 | 3718 | 16947 4.56 || 68 | 3087735 | 13595124 4.40

29 | 4565 | 21069 4.62 || 69 | 3554345 | 15791911 4.44

30| 5604 | 26088 4.66 || 70 | 4087968 | 17584116 4.30

31| 6842 | 32804 4.79 || 71| 4697205 | 20860378 4.44

32| 8349 | 40935 4.90 || 72| 5392783 | 22095088 4.10

33 | 10143 | 49360 4.87 || 73 | 6185689 | 26904818 4.35

34| 12310 | 61712 5.01 | 74| 7089500 | 29025643 4.09

35| 14883 | 75338 5.06 || 75 | 8118264 | 33687817 4.15

36 | 17977 | 90456 5.03 || 76 | 9289091 | 37071664 3.99

37| 21637 | 111771 5.17 || 77 | 10619863 | 44046119 4.15

38 | 26015 | 134685 5.18 || 78 | 12132164 | 45918783 3.78

39 | 31185 | 160353 5.14 || 79 | 13848650 | 56109976 4.05

40 | 37338 | 195993 5.25 || 80 | 15796476 | 59689468 3.78
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