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ON T H E S T R U C T U R E OF SETS OF LATTICE POINTS IN 
THE P L A N E W I T H A SMALL DOUBLING P R O P E R T Y 

by 

Yonutz V. Stanchescu 

Abstract — We describe the structure of sets of lattice points in the plane, having a 
small doubling property. Let K be a finite subset of Z2 such that 

|K + K| < 3.5|K| - 7 . 

If K lies on three parallel lines, then the convex hull of K is contained in three 
compatible arithmetic progressions with the same common difference, having together 
no more than 

|K| + 3 
4 

|K+K| - 10 
3 

|K| +5 

terms. I his upper bound is best possible. 

Notation 

We write [m,n] = {x £ Z\ m < x < n}. For any nonempty finite set K C R, 
K = {ui < U2 < - - - < Uk} we denote by k = \K\ the cardinality of K and by £(K) 
the length of K, that is the difference between its maximal and minimal elements. 
If K C Z and k > 2, by d(K) we denote the greatest common divisor of Ui — u±, 
1 < i < k. If Jfe = 1, we put d{K) = 0. Let h(K) = t{K) -\K\ + l denote the number 
of holes in K that is h(K) = | [ui,Uk] \ K\. 

Let A and B be two subsets of an abelian group (G,+). As usual, their sum is 
defined by A + B = {x E G | x = a + b, a G A, b e B} and we put 2A = A + A. 
The convex hull of a set § C R2 is denoted by conv(S). Vectors will be written in the 
form u = (ui,u2), where u\ and u2 are the coordinates with respect to the canonical 
basis ei = (1,0), e 2 = (0,1). 

1991 Mathematics Subject Classification. — 05D05, 11B75, 11P99. 
Key words and phrases. — Two-dimensional lattice points, small doubling property. 
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218 Y. STANCHESCU 

1. Introduction 
In additive number theory we usually ask what may be said about M + M, for a 

given set M. As a counterbalance to this direct approach, consider now the inverse 
problem: we study the properties of M, when some characteristic of M + M is given, 
for example, the cardinality of the sum set M + M. It was noticed by Freiman [Fl] 
that the assumption that \2M\ is small compared to |M|, implies strong restrictions on 
the structure of the set M. If \2M\ = 2\M\ - 1 and M Ç Z, then M is an arithmetic 
progression. If we choose bigger values for |2M|, the problem ceases to be trivial. 
The fundamental theorem of G.A. Freiman [F2] gives the structure of finite sets of 
integers with small doubling property: \2M\ < co|M|, where CQ is any given positive 
number. This theorem was proved using geometric methods of number theory and a 
modification of the method of trigonometric sums. Y. Bilu recently studied in [B] a 
case when CQ is a slowly growing function of |M|. The generalization to the case of 
different summands M + iV, with a new proof, is to be found in the paper of I.Z. Ruzsa 
[R] 

However, in the case of small values of the constant Co, elementary methods yield 
sharper results. Let K C Z 2 be a finite set of lattice points. Two cases have been 
studied by G. A. Freiman [Fl], pp.11, 28. 
Theorem A. — J/IK + KI < 3IKI - 3 , then 
(1) K lies on a straight line. 
(2) K is contained in an arithmetic progression of no more than v = IK+KI-IKI + l 
terms. 
Theorem B. — J/IK + KI < ±p|K| - 5 , |K| > 11 and K is not contained in a line, 
then 
(1 ) K lies on two parallel straight lines. 
(2) K is contained in two arithmetic progressions with the same common difference 
having together no more than v = |K + K| -2 |K| + 3 terms. 

The generalization of Theorems A(l) and B(l), to s lines, s > 3, was obtained in 
[S2]: 

Theorem C. — J/|K + K| < 4 - 2 
s- |K| - (2s + 1) and IKI > 16«(« + 1)(2« + 1), 

then there exist s parallel lines which cover the set K. 
A result which generalizes Theorems A(2) and B(2) was obtained in [S3]. 
Theorems A(l), B(l) and C cannot be sharpened by increasing the upper bound 

for |2K|. (see Example A in [S2].) Assertion (2) of Theorems A and B gives the 
precise structure theorem for 5 = 1 and s = 2. In [S 2] we obtained a sharpening 
of Theorem B(2) by giving the best possible value of the upper bound for |2K|, 
under the additional assumption that K lies on s = 2 parallel lines. We proved that 
Theorem B(2) is true, even we replace |2K| < ^ |K | - 5 by |2K| < 4|K| - 6. More 
precisely: 
Theorem S. — Let K C Z 2 be a finite set, which lies on the lines x<i = 0 and X2 = 1. 
Let the set of abscissae for x>2 = 0 and xi ~ 1, respectively be equal to A and B. 
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LATTICE POINTS IN THE PLANE 219 

(l)If£(A)+£(B)<2\K\ - 5 , then (d(A),d(B)) = 1 and 

|2K| > (3|K| - 3) + h(A) + h(B) = (2IKI - l ) + * ( A ) + £ ( ß ) . 

^ ; / / € ( A ) + € ( B ) > 2 | K | - 4 and (d(A),d(B)) = 1, tòen |2K| > 4|K| - 6. 

It is not difficult to give examples to show that Theorems A(2), B(2) and Theorem S 
cannot be sharpened by reducing the quantity v or by increasing the upper bound for 
I2KI. (see Examples Bl and B2 of Section 3, [S2]) 

The present paper is devoted to the generalization of Theorem A(2) and S to the 
case of s = 3 parallel lines. Instead of condition |2K| < 3k — 3, of Theorem A and 
condition |2K| < ^-k — 5 of Theorem B, we study now a set K of integer points on a 
plane, with the following small doubling property 

|2K| < 3.5|K| - 7. 

Take a lattice C generated by K We wish to obtain an estimate for the number of 
points of C that lie in conv(K); we are interested in an upper bound of |£flconv(K)|. 
Some estimate of this number was obtained in [S2, Theorem C]. In this paper we shall 
give the best possible estimate for \C fl conv(K)|. The result implies an affirmative 
answer to a question of G.A. Freiman [F3] and generalizes previous results of [Fl] 
and [S2]. 

2. Main Result 

An arithmetic progression in Z 2 is a set of the form 

P = P(a, A) = {a, a + A, a + 2A, . . . , a + (p - 1)A}, 

where a, A G Z 2 and p = \P\ > 1. The vector A is called the common difference of 
the progression and a is the initial term . We say that Pi = Pi (a ,̂ A^), i = 1,2,3 are 
compatible arithmetic progressions, if Ai = A2 = A3 = A and a\ +03 = 2a2(mod A). 

Now we are ready to formulate our main result. 

Theorem 1. — Let L C Z 2 be a finite set of lattice points with small doubling property: 

IL + LI <3.5|3L| - 7 . (2.1) 

(1) If |L| > 1344, then the set L lies on no more than three parallel lines. 
(2) If h is not contained in any two parallel lines, then conv(L) fl Z 2 is included in 
three compatible arithmetic progressions having together no more than 

v = ILI + 
3 
4 

IL + LI - 10 
3 

LI + 5 = 
3 
4 

|L + L| - 2|L| + 5 (2.2) 

terms. 

Assertion (1) of Theorem 1 is a partial case of Theorem C, for s = 3. We shall 
reformulate our main result and prove that the new formulation implies assertion (2) 
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220 Y. STANCHESCU 

of Theorem 1. We need some definitions. Let K C Z 2 be a finite set of lattice points 
that lies on three parallel lines: 

K = Ki LHK2 UK3, 
Kx ç (x2 = 0), K2 Ç (x2 = 1), K3 C (x2 = h), h>2. (2.3) 

Let the set of abscissae of Ki be respectively equal to Ki and denote di = d(Ki). 
Put 

K* = conv(IK) n Z 2 , k = \K\, k* = |K* | (2.4) 

and 
d(K) = gcd(di,d 2,d 3). (2.5) 

Such a finite set of Z 2 is called a reduced set of lattice points, iî h = 2 and d(K) = 1. 
We would like to note at this point that this definition may be formulated in an 

obvious way, for sets that lie on s > 2 parallel lines. In this paper, however, a reduced 
set of lattice points will always be a set that lies on three parallel lines. 

Theorem 2. — Let K Ç Z 2 be a reduced set of lattice points. If |2K| < 3.5|K| — 77 

then 

Jfe* := |conv(3K) fi Z 2 | < |K| + 
3 
4 

I2KI -
10 
3 

|K| + 5 = 
3 
4 

I2KI — 2IKI + 5 

Proof of case (2) of Theorem 17 assuming Theorem 2. — Since L lies on three paral­
lel lines, there is an affine isomorphism of the plane which maps L onto a set K such 
that 

(i) K lies on (x2 — 0), (x2 = 1), (#3 = /1), h > 2, 
(ii) mi = m2 = 0, where we put mz- = m.m(Ki), for i = 1, 2, 3. 
Since the function |2L| is an affine invariant of the set L, we see that 

|2K| = |2L| < 3.5|L| - 7 = 3.5|K| - 7. (2.6) 

Denote d = d(K). Remark that, thanks to the small doubling property (2.6) one has 

h = 2 and mi + rns = 2m2 (mod d). (2.7) 

Indeed, if h > 2, then (Ki + Ka ) n 2K2 = 0 and thus 

|2K| > \2Kt\ + \Ki + K2\ + \Ki + K3\ + \2K2\ + \K2 + K3\ + \2KZ\ 

> {2ki - 1) + (kt + k2 - 1) + (fci + *s - 1) 

+ (2k2 - 1) + (fca + k3 - 1) + (2ks - 1) 

= 4k - 6 > 3.5fc - 7. (2.8) 

In the same way, if mi + rrts ^ 2m2(modd), then for x G Ki^^y" € K2, z £ K% we 
have y' + y" = 2m 2 ^ mi + m 3 = x + ^(modd). Thus, (Ki + K3) D 2K2 = 0 is valid 
and (2.8) follows again. 

Consequently, K and L are contained each in three equidistant compatible arith­
metic progressions. 

Equation (2.7) and (ii) ensure that m% = 2m2 — mi = 0(modd). This yields 
w = 0(modd) for every w G Ki U K2 U K^. We can now easily check that the 
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LATTICE POINTS IN THE PLANE 221 

linear isomorphism (x,y) —> (x/d,y), maps K onto a reduced set IK' of lattice points. 
Assertion (2) of Theorem 1 follows now easily, because of the inequality 

t; = |IK,*|< 3 
4 (|2K'*| -2k'* + 5) = 

3 
4 

(|2K| -2fc + 5) = 3 
4 

(I2LI -2ILI + 5), 

due to Theorem 2 applied to the set IK'*. 

As usual, the solution of an inverse problem allows us to obtain nontrivial lower 
bounds for |IK+IK|, thus solving at the same time a direct additive problem. By L* = 

L(3K*) = 3 

i-l 
£* we denote the length of IK*, where 1l =l1 =l (k1) , e%=e3 = £(K3) 

and z2 max(conv(K) n (x2 = 1)) - min(conv(IK) fi {x2 = 1)) > h = i(K2). The 
assertion of Theorem 1 and 2 may be reworded as follows: 

Theorem 3. — Let K C Z 2 be a finite set of lattice points which lies on three parallel 
lines x2 = 0, x2 = 1, x2 = 2. 
( i ; i / L * < § ( | K | - 4 ) , then d(K) = 1 and |2K| > (2|K| - 1 ) + |L*. 
(2)IfL*>l(\K\-4) and d(K) = 1 ? then |2K| > 3.5|K| - 7. 

We conjecture that inequality |2K| < 3.5^ — 7 of Theorem 2 may be actually 
replaced by |2K| < 4k - 7. 

Conjecture. — Let K Ç Z 2 be a reduced set of lattice points that lies on three parallel 
lines. If |2K| < 4|K| - 7, then 

k* := |conv(K) H Z 2 | < |K| + 
3 
4 |2K| -

10 
3 IKI + 5 = 

3 
4 |2K| - 2|K| + 5 

We construct an example IK C Z 2 such that 
(i) IK satisfies the small doubling property |2K| < 3.5k - 7 or |2IK| < 4k - 7. 
(ii) The number of lattice points in conv(IK) is exactly k* = |(|2IK| — 2k + 5). 
This means that the upper bound (2.2) is best possible. Thus, Theorems 1 and 2 

cannot be sharpened by reducing the quantity v — k*. 

Example. — Choose a > b two natural numbers and define IK C Z 2 by : 

Kx = {0,l ,2, . . . ,2a + 6}U{2a + 26}, üf2 = {0,l,2,. . . ,o}U{a + ö}, K3 = {0}. (2.9) 

Then h = 2a + 6 + 2, k2 = a + 2, h = 1, k = 3a+ 6 4-5, fc* = L * + 3 = L + 3 = 
3a 4- 36 + 3,4k - 7 = 12a + 46 + 13. Note that 2K2 = Ki + K3 and therefore 

I2KJ = 12^x1 + \KX + K2\ + \KX + K3\ + \K2 + K3\ + 12^31 
= (4a + 36 + 2) + (3a + 26 + 2) + (2a + 6 + 2) + (a + 2) + 1 

= 10a+ 66 + 9 = (2fc-l) + 
4 
3 

L* = (2k - 1) + 
4 

3 
(k* - 3 ) . 

This proves (ii), that is k* = |(|2IK| — 2k + 5). Moreover, assertion (i) is also true 
because, if a > 6-2 , then |2K| < 4|K|-7 and if a > 56-3, then |2K| <3.5|K|-7. • 
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222 Y. STANCHESCU 

We shall need a generalization of Theorem A(2) to the case of distinct summands. 
The first result in this direction, due to G.A. Preiman ([F4]), was sharpened recently 
by Lev & Smeliansky [L-S] and Stanchescu [SI]. 

Let A = {0 = a% < a2 < • • • < a&}, B — {0 = b\ < b2 < • • • < &/} be two sets of 
integers. Define e = e(A,B) e {0,1} by e = 1, if 1(A) = 1{B), and e = 0, if 1(A) ^ 
1(B). 

Theorem D 
(1) If max(l(A),e(B)) < \A\ + \B\ - 2 - e, then \A + B\ > (\A\ + \B\ - 1) + 
m&x(h(A),h(B)). 

(2) If 1(A) > \A\ + \B\ - 1 - e, £(A) > £(B) and d(A) = 1, then \A + B\ > \A\ 4-
2\B\ - 2 - e. If 1(A) > \A\ + \B\ - 2, i(A) > £(B) and d(AUB) = 1, then \A + B\> 
|i4| + | B | - 3 + min(|A|,|B|). 
(S)Ifd — d(A) > 1 and B intersects exactly s residue classes modulo d, then \ A+B\ > 
\B\ + s(\A\ -I). If d(A UB) = 1, then \A + B\ > \B\ 4- 2(\A\ - 1). • 

The proof of D(l) is to be found in [Si] and of D(2) in [L-S]. We shall use this 
theorem for A = Ki and B = Kj, 1 < i, j , < 3. In this case we put sij = e(Ki, Kj). 

Denote by ki = |Ki| = | K i | , ^ = min(Äi), Mi = max(Äf), £i = £(Ki), di = 
d(Ki), hi — h(Ki), for every 1 < z < 3. Denote by H = hi +h2 + /i 3 , the number of 
interior holes of K and by H* = \K*\ — \K\ = k* — k, the total number of holes of 
iL By L = L(K) = £i + £2 + £3 = H + - 3, we denote the Zen#£/i of K For every 
pair 1 < i < j < 3, we let Kij = IQ U Kj and d̂ - = (di,dj) the greatest common 
divisor of di and cL. 

In the remaining sections the set K C Z 2 denotes a reduced set of lattice points 
(on three parallel lines). We note at this point two inequalities, which will be used in 
the paper: 

|2K| = \2KX\ + \Ki + K2\ + max(|2ÜT2|, \KX + K3\) + \K2 + ÜT3| + № 1 
> (2ki - 1) + (Ari + *2 - 1) + max(2&2 - 1, fci + k3 - 1) 

+ (fc2 + * 3 - l ) + ( 2 f c 3 - l ) , 
which leads to 

|2K| > 3*i + 4fc2 + 3fc3 - 5, (2.10) 
I2KI > 4fci + 2fc2 + 4fc3 - 5. (2.11) 

3. Some Lemmas 
Lemma 3.1. — Suppose k2 = 1. Then \2K\ > 4IKI - 7. 

Proof — Since k2 = 1, inequality (2.11) yields |2K| > 4fci+2fc2+4fc3-5 = 4k-7. 

Lemma 3.2. — Suppose that Ki and K3 lie each in one residue class modulo d, d > 1. 
Then |2K| > 4|K| - 7. 
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LATTICE POINTS IN THE PLANE 223 

Proof. — Since IK is a reduced set, it follows that in K2 there are at least two elements 
in-congruent modulo d. We estimate \K\ 4- K2\ and \K2 + K3\ by Theorem D(3) and 
obtain 
|2K| > (2fci - 1 ) 4 - (k2 4- 2ki - 2) 4- (2k2 - 1) 4- (2*3 + *2 - 2) + (2*3 - 1) > 4* - 7. 

Lemma 33. — Suppose ki = max(*i, k2, k3), d\ = d(K\) > 1. I%en|2K| >4 |K | -7 . 

Proof — If k2 = 1, we use Lemma 3.1. If k3 = 1, then Ki and K3 lie each in only 
one residue class modulo d\ and we apply Lemma 3.2. Therefore, we assume 

min(*i, * 2 , k3) > 2. (3.1) 

We distinguish three cases: 
(a) Suppose that (d\,d2) = (di,d3) = 1. Theorem D(3) gives 

|2K| > |2üfi| + \KX + K2\ + + # 3 | + 1 ^ 2 + K3\ + |2K 3| 

> (2*i - 1) + (*& + 2fci - 2) + (2*i + * 3 - 2) + (*2 + *3 - 1) + (2*3 - 1) 

= 6*1 + 2* 2 + 4*3 - 7 = 4* - 6 4- 2(*i - * 2) - 1 > 4* - 7. 

(b) Suppose d = (di,d2) > 1. It follows that (d,d3) = 1, because IK is reduced. 
Theorem D(3) yields 

|2K| > (2*! - 1) + (*i + * 2 - 1) + (2*i + * 3 - 2) + (2*2 + * 3 - 2) + (2*3 - 1) 

= 4 * - 7 + ( * i - * 2 ) > 4 * - 7 . 

(c) Suppose ((¿1,̂ 3) > 1. We apply Lemma 3.2. 

Lemma 3.4. — Suppose *2 = max(*i, *2, *3 ) and d2 = d(K2) > 1. Then |2K| > 
4IKI - 7. 

Proof 
(a) Suppose 1 = * 3 = * x . Then we apply Lemma 3.2. 
(b) Suppose 1 = *3 < *i < *2- It is clear that (di,d2) = 1, because IK is reduced. 
Theorem D(3) implies 

|2K| > (2*! - 1) + (2*2 + *i - 2) + (2*2 - 1) + * 2 + 1 = 3*1 + 5*2 - 3 > 4* - 7. 

We may suppose now that *i > *3 > 2. 
(c) Suppose (d2,di) = (d2,d3) = 1. Using Theorem D(3) we get 

|2K| > (2*i - 1) + (2*2 + *i - 2) + (2*2 - 1) + (2*2 + * 3 - 2) + (2*3 - 1) 

> (4* - 6) + (*2 - *i) + (*2 - * 3) - 1 > 4* - 7. (3.2) 

(d) Suppose d = (d2jd\) > 1 (the case (¿¿2,̂ 3) > 1 is similar). It is clear that 
(d,d3) = 1 and therefore \K2 + K3\ > 2k2 + * 3 - 2. Moreover |(Ki + K3)\23K2| > kx. 
Indeed, K\ and 2K2 each lie in only one residue class modulo d and in K3 there are 
at least two elements, say x <y, non-congruent modulo d. Thus, (x-hKi)D2K2 = 0 
or (y + Ki) D 2K2 = 0, which yields |2K2 U (Ki 4- K3)| > 2*2 - 1 -h *i. In conclusion, 

I2KI > (2*i - 1) + (*i + * 2 - 1) + (2*2 - 1 + *i) 4- (2*2 + * 3 - 2) + (2*3 - 1) 

= 4*! + 5*2 + 3*3 - 6 > 4* - 6. 
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224 Y. STANCHESCU 

Lemma 3.5. — Suppose that K2 and K3 lie each in only one residue class modulo d, 
with d>l. Then I2KI > 3.5IKI - 7. 

Proof. — If k2 = 1, we use Lemma 3.1. Suppose k2 > 2. K\ intersects at least two 
residue classes modulo d, because IK is a reduced set. Thanks to Theorem D(3), we 
get 

|2K| > (2ifci - 1) + (*i + 2*2 - 2) + (*i + 2*3 - 2) f (*2 + * 3 - 1) + (2*3 - 1) 
- (4*1+3*2 + 5*3-7). (3.3) 

Take the arithmetic mean between inequalities (3.3) and (2.10). We get 
|2K| > 3.5*i + 3.5*2 + 4*3 - 6 > 3.5* - 7. 

Next we discuss what happens if d2 > 1. By the previous Lemma it is enough to 
study the case * 3 > 2, *i > 2, d23 = d2\ = 1. 

Lemma 3.6. — Suppose thatd(K2) > 1, (d 2,di) = №,^3) = 1. Then\2E\ >4 |K | -7 . 

Proof — In view of Theorem D(3), we get 
|2K| > |2#i | + \KX + K2\ + \Kx + K3\ + \K2 + K3\ + \2K3\> ( 2 * i - l ) + 

+ (*i + 2*2 - 2) + (*i + * 3 - 1) + (*3 + 2*2 - 2) + (2*3 - 1) = 4* - 7. 

Lemma 3.7. — If d2 = 1,d1 > l,d3 > 1, then |2K| > 4|K| - 7. 

Proof. — We apply Theorem D(3) and we get 
|2K| > |2Ki| + | K i + K 2 | + |2ii:2| + | ^ 2 + i f 3 | + |2ir3| 

> (2*i - 1) + (*2 + 2*i - 2) + (2*2 - 1) + (*2 + 2*3 - 2) + (2*3 - 1) > 4* - 7. 

Conclusion. — Lemmas 3.1-3.7 and inequality |2IK| < 3.5|K| — 7 ensure that k2 > 
2, d2 — d(K2) = 1. Indeed, if d2 > 1, then Lemma 3.6 yields (d2,d3) > 1 or 
(d2,di) > 1 and this leads to a contradiction, in view of Lemma 3.5. We obtained 
that d2 = 1. By Lemma 3.7, d\ and d3 cannot be simultaneously greater than one. 
Suppose that d2 = d3 = 1, d\ > 1. Lemma 3.3 shows that *i / max(*i,*2,*3). 
Similarly, one has k3 ^ max(*i, * 2 , ¿3), if d2 = d\ — 1, d3 > 1. In consequence, one 
of the following situations holds 

(a) di = d2— d3 = 1, * 2 > 2, (3.4) 

(¡3) d2 = d3 = 1, di > 1, fci / max(*i,* 2,*3), *2 > 2, (3.5) 

(7) ¿2 = di = 1, d 3 > 1, h ^ max(k1,k2,k3), k2 > 2. (3.6) 

We end Section 3, by proving a lemma which will be used several times in the sequel. 

ASTÉRISQUE 258 



LATTICE POINTS IN THE PLANE 225 

Lemma 3.8. — Suppose max(Ai, h2j h3) < min(*i, * 2 , ks) — 2. / / 

|2K| < 4|K| - 7, (3.7) 

then 
(a) |2K| > (2|K| - 1) + 24 + 24 and |2K| >(2|K| - 1 ) + ¿ 1 + 2 * 2 + 4 * , 

(b) |2K| > ( f |K| - 5) + IH = |(|K| + L), 

fC;|2K( > ( 2 | K | - l ) + fL*. 

Proof. — It is clear that 4 < 2ki - 3, max(4, 4) < *« + *j - 3, for every 1 < i, j < 3. 
Applying Theorem D(l) we obtain \Ki + Kj\ > ki + % - 1 + max(/i;, Aj). First, we 
estimate |2JK| by using 2KX, Kx + K2i Kx + üf3, K2 + üf3, 2ÜT3* We can write 

|2K| > (2*i - 1 + hi) + (*i + * 2 - 1 + max(Ai, A2)) + (fei + * 3 - 1 + max(/ii, A3)) 

+ (*2 + * 3 - 1 + max(A2, A3)) + (2*3 - 1 + A3) 
= 4*i + 2*2 + 4* 3 - 5 + hi + A3 (3.8) 

+ max(/ii, /i2) + max(/i2, A3) + max(A3, Ai) 

> 
4*i + 2*2 + 4 * 3 - 5 + H + 2max(Ai, A2, A3), if h2 ^ max(Ai, A2, A3). 

4*i + 2*2 + 4*3 - 5 + 2H - min(Ai, A2, A3), if A2 = max(Ai, h2j h3). 

> 4*i + 2*2 + 4*3 - 5 + 
5 
3 

H. 

Thus, |2K| > (2|K| -1 ) + 24 + 2 4 . Moreover, inequality (b) is also true, if * > 3* 2 . 
Second, using 2K2 instead of Ki + K3 we get 

|2K| > (2*i - 1 + hi) + (*i + * 2 - 1 +max(Ai,A2)) + (2*2 - 1 + h2) 
+ (*2 + *3 - 1 + max(A2, h 3)) + (2*3 - 1 + A3) 

= 3*i + 4*2 + 3*3 — 5 + hi + h2 + h3 + max(Ai, A2) + max(A2, A3) 

> 3*i + 4 * 2 +3*3 - 5 + H + 2 max(Ai, A2, A3), if /12 = max(Ai, h2l h3). 
3*i +4*2 + 3 * 3 - 5 + 2fT - min(Ai, A2, A3), if h2 ^ max(Ai, A2, A3). 

> 3*i + 4*2 + 3*3 - 5 + 
5 
3 

H. 

Thus, |2K| > (2|K| - l ) + 4 + 2 4 + 4 . Moreover, inequality (b) is also true, if * < 3* 2 . 
We prove now inequality (c). 

First Case. — Suppose [m2jM2] D |(mi +m 3 ) , | (Mi + M 3 ) 
It is clear that L* = L = 4 + 4 + 4 and in this case inequality (c) follows from 

(a), in view of 24 > 4 + 4 - We could have used (b). Indeed, 

|2K| > 10 
3 

|K | -5 ) + 
5 
3 

H>> 10 
3 

IKI - 5) + 
4 
3 

H = (2IKI - 1) + 
4 
3 

L = (2IKI - 1) + 
4 
3 

L*. 
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Second Case. — Suppose [m 2 ,M2] Ç | (mi + m 3 ) , | ( M i + M 3 ) . 

It is clear that 

£ * = 4 4-
1 
2 

( 4 + 4 ) + 4 = 
3 
2 

( 4 + 4 ) , 
4 
3 L* = 24 + 24. 

Inequality (c) follows from (a). Actually, (3.8) shows that a sharper inequality is true: 

|2K| > 4*i 4- 2*2 4- 4*3 - 5 4- 2ht 4- 2h3 4- max(h1,h2, h3) 

= (2k - 1) 4- 24 4- 24 4- max(/ii, ft2, ft3) 

> (2* - 1) 4- 24 4- 24 = (2* - 1) 4-
4 
3 

L 

Third Case. — Suppose m2 < | (mi 4- ra3) < M2 < | (Mi 4- M 3). Put 

S = mi 4- ra3 

2 
- ra2. 

Define 
if 2" = K2 n m2 

mi 4- m 3 

2 
, * 2 — I if2 I* (3.9) 

We improve inequality (3.8) by taking into account 

|2K2\(Ki +Ka)| > \2Kf\ > {2k2 - 1). 

One has k2 > 5 — h2 and therefore (3.8) shows that 

|2K| > |2K13\ + \K2+K1\ + \K2 + K3\) + |2KB\(KI +K8)| 

> (Iki + 2k2 + 4k3 - 5 + hx + h3 + max(/ii, h3) + 2h2 ) + (2K - 1) 

> 4ki + 2k2 + 4k3 - 6 + 
3 
2 

{hi +h3) + 25. (3.10) 

If ¥ > 1k+ h3 
2 

+ 1, then inequality (c) is proved, because (3.10) ensures 

I2KI > (4*i 4- 2* 2 + 4*3 - 5) 4- 2hx 4- 2h3 + 
4 
3 L 

= (2k - 1) + 24 + 2l3 + 
4 
3 

Ô 

= (2k - 1) + 4 
3 

¿1 + 
1 
2 

(ix +e3) + s + e3 

= (2k - 1) + 4 
3 

Now we may suppose that ¥ < 
h1 + h3 

2 
4-1. First of all, note that 

28-1 < * 2 - l < 4 . (3.11) 

Indeed, in view of (3.10) one has 

|2K| > (4fci + 2k2 + 4k3 - 6) + 3 
2 
3 

Ô - 1) + 26 = (4fci + 2&2 + 4fc3 - 9) + 40 (3.12) 

and if 26 > * 2 4-1 we would obtain I2KI > 4* - 7, in contradiction with (3.7). 
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We estimate now |2K.2\(Ki + K3 )|. It is clear that 7B2 + (if2 H [m2,mi + ra3 — 7712)) 
is included in 2]K2\(Ki + K3) . The length of [m2,mi -f ra3 — ra2) is exactly 25 and in 
view of inequality (3.11) we obtain \K2 n [m 2,mi -f ra3 — m2)| > 25 — /i 2 . Therefore 

|2JK2\(IK1 +Кз)| > 2ö-h2. (3.13) 
As in (3.10), we improve inequality (3.8) by taking into account 2K2\(Ki + K 3 ) . One 
has 

|2K| > |2JK13| + | i f 2 + i f i | + | i f 2 + i f 3 | + |2]K2\(IK1 +Ke)| 
> (4*i + 2*2 + 4* 3 » 5 -f 2/11 + 2h3 + Л2) + (25 - h2) 

> (2k - 1) + 24 + 24 + 4 
3 5 = ( 2 * - l ) + 

4 
3 

In the remaining part of the proof, we shall distinguish three main cases according 
to * 2 = min(*i,*2,*3), *2 = max(*i,*2,*3), *3 < *2 < *i-

4. First Case : * 2 == min(*i, k2y *3) 

Theorem 4.1. — Suppose * 2 < * 3 < *i- / / |K -h K| < 3.5|K| - 7, then k2>2 and 
(%) d\ = d2 = d 3 = 1 and max(/ii, /i25 ̂ 3) < k2 — 2. 
(ii) |2K| > f |K| - 5 ) + | Я = |(|K| +L) . 

^1*; |2K| > (2|K| - 1 ) + |L*. 
Proof. — In view of *2 < * 3 < *i, it is enough to prove only (i), because assertions 
(ii) and (hi) are direct consequences of Lemma 3.8 and inequality max(/ii, h2l h3) < 
*2 —2. Using *i = max(*i, * 2 , * 3 ) , equations (3.4), (3.5), (3.6) and the small doubling 
hypothesis we deduce that k2 > 2, d\ = 1, d2 = l ,d 3 > 1. 

1. We show that d3 = 1. 
Suppose that d3 > 1. By Theorem D(3) we have |2K| > (2*i - 1) + (*i + * 2 - 1) + 

(*i + 2*3 - 2) + (*2 + 2*3 - 2) + (2*з - 1) = 4* - б + 2(*з - k2) - 1 > 4* - 7. 
2. We Л̂ош Йа^ max(/ii, /i2, /г3) < k2 — 2. 
Suppose that max(h2l hi) > k2 — 1, for i = 1 or i = 3. Using Theorem D, one has 

I if2 + ifi| > min (ki + 2*2 - 3, ki + * 2 - 1 + max(/ii, /i 2)) > (h + * 2 - 1) + (*2 - 2). In 
consequence, we improve (2.11) to |2K| > 4*i+3*2+4*3—7. Take the arithmetic mean 
between (2.10) and the previous inequality. We obtain |2K| > 3.5* — 6 > 3.5* — 7, 
which contradicts (4.1). • 

5. Second Case : k2 = max(*i, *2, * 3) 

Theorem 5.1. — Suppose * 3 < *i < k2 and \2K\ < 3.5|K| — 7. Then, * 3 > 2 and 
(a) max(/ii, h2i h3) < k3 — 2. 
(Ь)\2Щ > (f |K| - 5) + ftf = |(|K| + L) 
(с)\2Щ > (2 ]K | - 1 ) + |L*. 
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Proof. — Inequalities (b) and (c) follow from Lemma 3.8 and assertion (a). Therefore, 
we need to prove only max(/ii, A2, A3) < k3 — 2. Lemma 3.4 implies that d2 = 1. 

1. We show that d\ ~ 1. 
Suppose d\ > 2 and prove that |2K| > 3.5* — 7, which contradicts our small 

doubling hypothesis. If k3 = 1, then K\ and K3 lie each in only one residue class 
modulo di and we use Lemma 3.2. If k3 > 2 and d3 > 2, we apply Lemma 3.7. We 
may assume now that k3 > 2, d2 = d3 = 1 and estimate |k1+ K2| by Theorem D(3): 

|2K| > \2Kil + {KÌ + K2\ + \2K2\ + \K2 + K3\ + \2K3\ 

> (2*i - 1) + (*2 + 2*x - 2) + (2*2 - 1) + (*2 + *s - 1) + (2*3 - 1) 

> 4*! + 4*2 + 3*3 - 6 = (4* - 6) - * 3 > 
11 
3 

* - 6 > 3.5* - 7. 

2. We show that max(Ai, A2, A3) < *3 — 2. 
Suppose that max(Ai, A2, A3) > k3 — 1. We use this inequality in order to improve 

(2.10) by * 3 — 2 and thus obtain 

|2K| > 3*i + 4*2 + 4*3 - 7 = (4* - 7) - *i > 3.5* - 7 + 
*3 
2 

> 3.5* - 7, (5.1) 

in contradiction with the small doubling hypothesis. 
If * 3 = 1 holds, then clearly (5.1) is true. Suppose k3 > 2. 
(i) If A2 > * 3 - 1, then \K2 + K3\ > (*2 + * 3 - 1) + (*s - 2), by using Theorem 

D(2). 
(ii) If Ai > * 3 - 1 , then \2Kxi > (2*i - 1) + min(Ai, *i - 2) > (2*i - 1) + (*3 - 2), 

thanks to Theorem D. 
(iii) If A3 > * 3 - 1, d3 > 1, then \K2 + K3\ > (*2 + * 3 - 1) + (*3 - 1), by Theorem 

D(3). Finally, if A3 > * 3 - 1, d3 = 1, then \2K3\ > (2*3 - 1) + (*3 - 2), due to 
Theorem D(2). The proof of Theorem 5.1 is now complete. 

6. Third Case : *3 < *2 < *1 

Theorem 6.1. Suppose * 3 < * 2 < *i and |2K| < 3.5|K| - 7. TAen? 

I2KI > (2IKI - 1) + 
4 
3 L*. 

This theorem is a consequence of lemmas 6.1, 6.2 and 6.3. 

Lemma 6.1. — Suppose * 3 < * 2 < *i, max(Ai,A2) > * 2 - l . Then I2KI > 3.5|K|-7. 

Proof. — Using Lemma 3.3, we deduce that d\ = 1. We estimate |iv"i + K2\ by 
Theorem D(l),(2). One has 

\Ki + K 2 | > min (*i + * 2 - 1 + max(Ai,A2),*i + 2* 2 - 3J > (*i + * 2 - 1) + (*2 - 3). 

Inequality (2.11) becomes |2K| > 4*i + 3*2 + 4*3 — 7. Taking the arithmetic mean 
between this inequality and (2.10) we get |2K| > 3.5* - 6 > 3.5* - 7. • 

Lemma 6.2. — Suppose k3 < k2 < *i, max(Ai, A2) < k2 — 2 and t2 > l\ or t3 > £2. 
If \2K\ < 3.5|K| - 7, then max(A l5 A2, A3) < * 3 - 2 and |2K| > (2* - 1) + 4/3 L* 
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Proof. — We shall show that |2K| > 4*i + 3* 2 + 3* 3 - 5 + H, which yields |2K| > 
3.5* - 7 4- H + 2 - | * 3 . This proves max(huh2, h3) < H < \k3 - 2 and Lemma 6.2 
follows thanks to Lemma 3.8. 

(i) Assume first that l2 > 4- We get \I<i + K2\ > (2*x - 1) and thus 
|2(K2 U K8)| < |2K| - ( № 1 + |i^i + i^l) 

< |2K| - (2*i - 1) - (2*i - 1) 
= |2K| - (4*i - 2) 
< 4*2 + 4*3 - 7, 

in view of the small doubling property of K Since d2 = 1, Theorem S yields 
|2(K2 U Ks)| > 3*2 + 3*3 - 3 + /i 2 + /¿3, 

and thus 

|2K| > (2*i - 1 + h{) + (*i + * 2 - 1 + max(/ii,/i2)) + ( 3 * 2 + 3 * 3 - 3 + /i2+/i 3) 

> (3*i + 4*2 + 3*3 - 5) + hx -f 2h2 + /i 3 

= (3* — 4) + 27 + €2 

> (4*i + 3*2 + 3*3 - 5) + H. 

(ii) Assume 4 > 4- We get |ür2 + K3\ > 2*2 - 1 and thus 

|2(Ki UKg)| < |2K| - (|K1 + K2|+|K2 +K1|) 
< I2KI - (*i + * 2 - 1) - (2*2 - 1) 

< |2K| - (4*2 - 2) 

< 4*i + 4*3 - 7, 

by the small doubling property of K Since d\ = 1, Theorem S gives |2(Ki U K3)| > 
3*i + 3*3 — 3 + hi + h3 and thus 

\2E\ > \2(Ki U 388)| +1^1+^21 +1^2 + ^31 > 

> (3*i + 3*3 - 3 + hi + ä 3) + (*i + * 2 - 1 + max(Äi, h2)) + (2*2 - 1) 

> (4*i + 3*2 + 3*3 - 5) + H. 

Lemma 6.3. Suppose *3 < *2 < *i, max(/ii,/i2) < * 2 - 2 and £3 <£2 < ii. If 
|2K| < 3.5|K| - 7, tten |2K| > (2* - 1) + f i * 

Proof. — (I) We begin the proof by obtaining an upper bound for l3, see (6.6), and 
by showing in (6.7), (6.8) that we may estimate |2(K2 U K8)| and |2(Ki U "KQ)\ by 
using Theorem S(l). In the same time, we shall obtain (6.12) below, an inequality 
which will be used several times in the proof. 

The hypothesis max(/ii, h2) < k2 — 2 ensures that 

4 < *i + * 2 - 3 < 2*i - 3, di = 1, (6.1) 
4 < 2*2 - 3 < *i + * 2 - 3, d2 = 1. (6.2) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



230 Y. STANCHESCU 

Note that i3 < 4, for 1 = 1 and % = 2 give 

Itf. + tfsl > | m 3 + / r . | + |M 3 + Kin(Mi-l3,Mi] 

>ki+l3-hi = (ki 4- * 3 - 1) 4- /13 - (6.3) 

Applying (6.3) and Theorem D(l) for \2Kx\, |i*Ti + K2\, inequalities (6.1), (6.2) yield 

|2K| > \2Ki\^\K1+K2\^\K1+K3\ + \K2+K3\ + \2K3\ 

> (2*! - 1 4 hx) + (*i 4- k2 - 1 + max(/ii, A2)) 4- ((*i + * 3 - 1) 

4- max(0, h3 - hx)) 4- ((k2 4- * 3 - 1) + max(0, h3 - h2)) 4- (2*3 - 1), 

and thus 

|2K| > (4*i + 2*2 + 4*3 - 5) + 2/i3, (6.4) 

|2K| > (4*i + 2*2 + 4*3 - 5) 4- max(Ai, h2) + h3. (6.5) 

We claim that 

h3<k2- 2, 4 < k2 + k3 - 3. (6.6) 

On the contrary, suppose that h3 > k2 — 1. Inequality (6.4) gives |21K| > 4* — 7 > 
3.5* — 7, a contradiction. By a similar argument, the small doubling property and 
inequality (6.5) lead to 

h2 + h3 < * 2 + * 3 - 3, hx + h3 < *i + * 3 - 3, (6.7) 

which shows that 

|2(K 2UIK3)| > 3fc2 + 3/c3-3 + /i2 + /i3, |2(Ki UKg)| > 3 ^ + 3 ^ 3 - 3 + Jn + hs, (6.8) 

in view of di = d2 = 1 and Theorem S(l). We are now able to deduce 

|2K| > |2ifi| + \Kt + K2\ + |2(K2 U Ka)| 

> (2*i - 1 + /11) + (*i + * 2 - 1 + max(/ii, h2)) + (3* 2 + 3* 3 - 3 + h2 + h3) 
= (3*i + 4*2 + 3*3 - 5) + hi + max(/ii, /i2) + h2 + h3. (6.9) 

If max(/ii, /12, h3) < *3 — 2, Lemma 6.3 follows from Lemma 3.8. Therefore, we have 
to examine only the case 

max(/ii, h2l h3) > k3 — 1. (6.10) 

(II) We prove (6.12), inequality which will be repeatedly used. 
In order to obtain (6.12), we need one more lower bound for |2IK| (see (6.11) below). 

We use (6.10) and consider two cases : 
(a) On the one hand, if max(/¿2,h3) > k3 — 1, then \K2 + K3\ > k2 4- 2* 3 — 2. 

Indeed, if t2 > k2 4- k3 — 2, then £23 = 0 thanks to (6.6); using Theorem D(l),(2) 
we get \K2 + K3\ > min(*2 4- 2*3 - 2, * 2 4 * 3 - 1 4- max(/i2, h3)) > k2 4- 2* 3 - 2. If 
£2 < * 2 4- * 3 - 3, then \K2 4 K3\ > k2 4- * 3 - 1 4- max(/i2, /13) > *2 + 2* 3 - 2, by 
Theorem D(l). Therefore, in each of these two cases, k2 4- 2fc3 — 2 is a lower bound 
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for I if2 4- Ks\. We may estimate |if2 4- Ki\ by Theorem D(l), because of (6.1) and 
(6.2). Finally, in view of (6.8) one has 

I2KI > |2(Ki UKs)! + |ür2 -hüfil + 1/̂ 2 + ̂ 31 
> (3*i 4- 3*3 - 3 4- ht 4- h3) 4- (*i 4- * 2 - 1 4- max(/ii, h2)) 4- (*2 4- 2* 3 - 2) 
> (4*i 4- 2*2 4- 4*3 - 6) + hi + max(/ii, /i2) 4- /i 3 4- * 3 . 

(b) On the other hand, if max(h2lh3) <K3 — 2 and hi > k3 — 1, then we estimate 
|2ifi|, |ifi 4-if2|, |if2 4-if3|, |2if3| by Theorem D(l) and |ifi +KZ\ by Theorem D(2). 
for ei3 = 0. We get 

|2K| > \2Ki\ + \Ki+K2\ + \Ki+K3\ + \K2+K3\ + \2K3\ 
> (2*i - 1 4- hi) 4- (*i 4- * 2 - 1 4- max(/ii, /i2)) 4- (*i 4- 2* 3 - 2) 4-

+ (*2 4- * 3 - 1 4- max(/i2, /13)) + (2*3 - 1 4- h3) > 
> (4*i 4- 2*2 4- 4*3 - 6) 4- hi 4- max(/ii,/i2) 4- max(/i2,/i3) 4- /13 4- *3-

Thus, in both cases (a) and (b), we obtain 

|2K| > (4*i 4- 2*2 4- 4*3 - 6) 4- hx 4- max(/ii, h2) 4- /13 4- * 3 . (6.11) 

Taking the arithmetic mean between (6.9) and (6.11) we obtain 

I2KI > (3.5* - 7) 4-
1 
2 2hi 4- 2 max(/ii, h2) 4- /i 2 4- 2/i3 4- * 3 4- 3 - * 2 

Applying the small doubling property, we deduce immediately that 
2hi 4-2max(/ii,/i2) 4- h2 + 2h3 4- * 3 + 4 < * 2 . (6.12) 

As in Lemma 3.8, we shall distinguish at this point three situations, depending on 
the relative position of [m 2 ,M 2] and rmi+ma M1+M3 ] L 2 ' 2 -I* 
First Case. ra2 < mi+™3 < M1+M3 

2 < M 2 . 

m 3 m 3 

m 2 
m 2 

m1 
m 1 

We already proved in (6.9) that |2K| > (2k - 1) + 4 + 24 + 4 , and this implies 
|2K| > (2k - 1) + |L*, in view of 

4 + 24 + 4 -
4 
3 L* = (4 + 24 + 4 ) - 4 

3 ( 4 + 4 + 4 ) = 
2 
3 4 -

4 + 4 
2 

> 0. 
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Second Case. m 2 < mt+ma < M 2 < Ml±M^. 

m3 m3 

M 2 
b' b 

b 
m2 

m\ a' a a" m1 

As usual, put S = m1 +m3 - m2 > O 
(i) We split K into two subsets, IK' and IK" and get a lower estimate of |2K| by 

adding |2K'| and |2K7'L 
Let us take a line I which intersects (x2 = 0) at (0,a), (x 2 = 1) at (1,6), (x2 = 2) 

at (2, M 3 ) . In the sequel we shall prove that we may choose I such that 

mi < ö < Mi and 
1 
2 (mi + rn 3) + l2 

2 
< 6 < M2. (6.13) 

Take 6' < b" two consecutive elements of K2 such that V <b <b". Take a' < o" two 
consecutive elements of K\ such that a' < a < a". Define 

K[ = Ki n [mi,a'], K 2 = i f 2 n [ m 2 , 6 " ] , #3 = K3, (6.14) 
üfi' = ü:in[o' ,Mi], ÜT2' = i f 2 n[ö" ,M 2 ] , KU = {Ms} (6.15) 

It will be shown in step (v) bellow, that we may choose a and b such that 

£[ < 2k[ - 3, max^i, t2) <k[+k2-3, t2 +t3 < 2k'2 + 2k3 - 5, (6.16) 
e'( < 2k'l - 3, max(^',4') < k'l + k2' - 3. (6.17) 

Now Lemma 6.3 follows easily. Indeed, we estimate |2K| by adding |2K ;| and |2K"| 
and paying attention to the points counted twice: 

2K£ n + K^) and 2a', a ' + 6", 6" + M 3 , 2M 3. 
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Thus, if we denote by x = \2E^ n(Ki' + l2/)|, then 

|2K| > |2K'| + \2K'\ 4 + |2K£ H (Ki' 4- IS/) 

> \2K[\ 4- \K[ + K'2\ + |2(iq U K£)l 
+ |2K{'| 4- |Kf + ^ | + |Kf + K%\ + |K"3 + K'i\ 4- | 2 ^ | - (4 4- a) 

> (4 + 4 ) + (4 + 4 ) + (2*2 + 2 ^ - 1 4- 4 + 4 ) 

+ (i'i + 4 ) + (4' + 4') + 4 + 4 + 1 — 4 — x 

= 2(4 + 4 + 4 ) - 1 + 4 + 2i'2 + 4 

+ 2(4' + 4 4- 4 ) - 1 4- 2t![ — 4 — x 

— 2(*j -J- k-^ 4" * 2 4" *2 + ^3 + ^3 ) - 2 + 4 + 2£'2 + 4 + 24' -4-x 
= 2k +£[ + 2£'2 + £'3 + 2£'{ - x. (6.18) 

In the last equality we used 4 4" 4 ' — *i 4* 1, for 1 < i < 3. It is clear that 

x = \2% H (Ki' + K£')| < 1 + I[26,26"]| = 2 4- 2(6" - 6). (6.19) 

In view of the collinearity of a and 6 we have (a — mi) + £3 = 2b — (mi + m3) and 
thus 

4 + 24 + £'3 + 2£'{ = 4 + 2 (b" - 6) + (6 - mi + m3 

2 
+ 

mi 4- m3 

2 
- m 2) 

+ 4 + 2i'[ 

= £[ + 2(6" - 6) + 2 6 - mi + m3 

2 
+ 2 mi + m 3 

2 — m 2 

+ 4 + 24 

= l[ + 2(6" - 6) + ((a - mi) + ¿3 + 26 + £'3 + 2i'l 

= 4 + 2(6" - 6) + £\ + (a - a') + ¿3 + 26 + i3 + 2£'[ 

= 2(4 + 4') + (4 + 4 ) + 20 + 2(6" - 6) + (a - a') 

= 24 + 24 + 2<S + 2(6" - 6) + (a - a'). (6.20) 

Thus, using (6.19), (6.20) in (6.18), we conclude that 

I2KI > 2k - 2 + 2£i + 2£3 + 26 + (a - a') > (2k - 1) + 2h + 2t3 + 
4 
3 

Ô. 

(ii) We put inequalities (6.16), (6.17) in a slightly different form: 

h[ <k[-2, h\ <k'2-2, h'2 < k[ — 2, h2 H~ ^3 k2 ^3 — 3 — k2 4" *3 — 3, 

h'l < k'l - 2, h'l < k'2' - 2, h'2' < k'( - 2. 
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Consequently, it is enough to choose a and b such that (6.13) and the following four 
inequalities are true: 

K"1 > max(hllh2) 4 2, k'ò > hi 4- 2, (6.21) 

K'1 > max(/ii, h2) + 2, * 2 > max(/ii 4 2, /i 2 + /¿3 - * 3 4- 3). (6.22) 

(iii) PFe define now the line I. 
To define l, we need only to choose b as 

6 — min M 2 - ( / i i + / i 2 + 2), 
Mi 4 M 3 

2 
max(/ii, /i2) 4- /ii 4- 1 

2 
(6.23) 

Using the collinearity condition a is defined by 

(a — mi) 4 £3 = 2b — (mi 4- m3). (6.24) 

We shall show in step (v) that this choice ensures (6.13), (6.21) and (6.22). But first, 
we need some more estimates. 

(iv) We estimate 6 and compare hi,h2,h3 to k\. 
(a) We prove that 

26 4 2hi +2max(/ii,/i 2) + 2h3 + k3 4-3 < k2 + h2. (6.25) 

Improve (6.11) by taking into account |2K 2\(Ki +Ks) | > 2(8-h2)-l. We get 

|2K| > (4*i 4- 2* 2 + 4*3 - 7) + hi 4- max(fti, h2) + h3 + k3 + 26 - 2h2 (6.26) 

We take the arithmetic mean between (6.26) and (6.9) and obtain 

I2KI > (3.5* - 7) -
1 
2 

(* 2 4 h2) 4 
1 
2 

2hi 4 2max(/ii,/i 2) + 2h3 + *3 + 26 + 2 J. 

In view of the small doubling property, we deduce that (6.25) holds. 
(b) We prove that 

3hi 4-4max(/ii,/i 2) + 2h2 4- 3h3 4- k3 4- 8 < *i. (6.27) 

Remark that in the Second Case, one has l1 + l3 
2 

> £2-6. This gives 26 > 2£2-(£i+£3). 
Thanks to (6.25), the last inequality implies 

2£2-(£i+£3) 4- 2ht 4- 2max(/ii,/i 2) + 2h3 4 * 3 + 3 < * 2 4- /i 2 , 

(2*2 - *i - * 3 ) 4- (2h2 -hi- h3) 4- 2/n 4- 2max(/ii,/i 2) 4 2/13 4- * 3 4- 3 < * 2 4- h2, 

*2 4- /12 4- /11 4- 2max(/ii,/i 2) 4- /13 4-4 < * x . (6.28) 

Combining inequalities (6.12) and (6.28), we obtain the desired result (6.27). 

(v) We prove (6.13), (6.21) and (6.22). 
We begin with (6.13). In view of the collinearity condition (6.24), we shall prove 

now mesm 
2 

4 2 < b < M2, which ensures that mi < a < Mi. Since b is defined by 
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(6.23), we have actually to check the two inequalities stated below. 

(1) M 2 - (/ii + ft2 + 2) mi 4 m 3 

2 
+ 

4 
2 

= ( M 2 -
mi + m 3 

2 
) - (hi 4- /i 2 4- 2 4 4 

2 

= (¿2 - <S) - (AI + h2 4-
*3 
2 4 

h3 

2 
4 1.5) 

= (fe 4- h2) - (5 4- /ii + /i 2 4 
¿3 
2 4 

/13 
2 

4- 2.5) > 0, 

in view of (6.25); 

(2) 
Mi + M 3 

2 
max(/ii,/i2) 4 / i i 4 l 

2 
mi 4 m 3 

2 4 
4 
2 

= 
1 
2 

(Mi 4 M 3) - (mi 4- m 3 ) - (max(huh2) 4- /ii 4- 1) - 4 

= 
1 
2 

4 + 4 - (max(/ii,/i2) 4- /ii 4 1) - 4 

= 
1 
2 

(&i — m ax (/ii, h2) — 2) > 0, 

by hypothesis ki > k2 and inequality (6.12). 
We estimate k^k^k^k'^. First of all, we verify (6.21) : 

k" = \Ki fi [a', Mill > Mi - a' 4-1 - hi > Mi - a 4-1 - hi = 

= 2 
Mi 4 M 3 

2 
- 6 4-1 - hi > 2 

max(/ii, h2) 4 /ii 4-1 
2 

4- 1 - hi = 

= max(/ii, /i2) + 2. 

K"1 = n [ò",M2]| = \K2 n (6, Af2]I >M2-[b]-h2>M2-b-h2> 
> M 2 - (M 2 - hi - h2 - 2) - h2 = hi 4- 2. 

Further, using (6.24) one has 

k[ = |üfi fi [mi,a']| = |Ki fi [mi,a)I > [a] — mi 4-1 — hi > a — mi — hi = 

= 2 b- mi 4- m 3 

2 
— £3 — hi > max(/ii, /i2) 4- 2, 
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in view of the following two inequalities 

(1) 2 M 2 - hi - h2 - 2 - mi + m3 

2 
-e3~hi - ( max(/ii,/i2) + 2 

= 2 M a ­
ral + ra3 

2 
- (3/ii 4- 2Ä2 + 4 + max(hi,Ä2) + 6) 

= 2(£2 -ô)- (3hi + 2h2 + £3 + max(/n, /i2) + 6) 
= 2* 2 - (2(5 + 3/ii + 4 + max(/ii, h2) + 8) 
= 2*2 - (25 + 3/ii + h3 + * 3 + max(/ii,/i2) + 7) 

> 2*2 - (26 + 2Äi + 2max(/ii, /i2) + /¿3 + *3 + 7) 

= f(*2 + /i2) - (2(5 + 2/ii +2max(/ii,/i 2) +2/13 + * 3 +3) + *2 + A3 - h2 - 4 

> *2 + A3 - J*2 - 4 > 0, because of (6.25) and (6.12), 

(2) 2 
Mi + M 3 

2 

max(/ii, h2) + /11 + 1 
2 

rai + m 3 

2 
-£3-hi 

max(/ii, /12) + 2 

= (Mi - mi + M 3 - m 3 ) - (2max(/ii,/i2) + 2/ii + 4 + 3) 
= (£1 + 4 ) - (2 max(/n, /12) + 2hi + 4 + 3) 
= *i - (hi + 2max(/ii,/i 2) + 4) > 0, 

due to (6.12) and *i > *2-
It only remains to estimate * 2 . Note that 

* 2 - |ÜT2 n [m 2,6"]| > b" - m2 + 1 - h2 

>b - m2 + I - h2 > max(hi + 2, /i 2 + h3 - k3 + 3), 

because we may write the following four inequalities 

(i) (M 2 -h1-h2-2)-m2 + l-h2 - (fci + 2 

= (Af2 - m 2 - (2ÄI + 2/i2 + 3) 
= l 2 - (2hx + 2/i2 + 3) 

= k2 - (2/n + /12 + 4) 
> 0, because of (6.12), 
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(2) (M 2 -hi-h2-2)-m2

Jrl- h2 - (h2 4 h3 - k3 4- 3) 

= (M 2 - ra2) 4- k3 - (h 4- 3/i2 + h3 4 4) 
= 4 + ^3 - №i + Sh2 4- /i 3 4- 4) 
= (fc2 4- k3) - (hx 4- 2/i2 4- h3 4- 5) 
> 0, due to (6.12), 

(3) 
Mi 4-M 3 

2 
max(/ii, h2) 4- rii 4- 1 

2 
— m 2 4-1 - h2 - {hi 4- 2) 

= 
Mi 4 M 3 

2 — m2 

1 
2 

(max(/ii,/i2) 4- Shi 4- 2/i2 4- 3) 

= ( ¿4 I1+I3 
2 

1 
2 (max(hi, ft2) 4- 3/ii 4- 2h2 4- 3) 

= 
1 
2 

(h 4- fc3 + /13) - (max(/ii, h2) 4- 2/ii 4- 2ft2 + 5) + <5 

> 0 , thanks to (6.12), 

(4) 
Mi 4- M 3 

2 
m ax (/ii, ^2 ) 4 m 4-1 

2 
— m2 + 1 — h2 - (h2 4- h3 - k3 4- 3) 

= ¿3 + 
Mi 4- M 3 

2 
— m 2 

max(/ii, ft2) 4- hi + 4/i2 4- 2/i3 4- 5 
2 

= fc3 + (* + 
4 + 4 

2 
max(/ii, /i2) 4- hi 4- 4/i2 4- 2/i3 4- 5 

2 

= k3 + 5 4 
1 
2 

(fci 4- fc3) - (max(/ii,/i2) 4- 4/i2 4- ft3 4- 7) 

> 0 , because of (6.27). 

The proof of case 2 is now complete. 
Third Case. m1 + m3 

2 < m 2 < M 2 < M1+M3 
2 

m2 m3 

m3 "2 
m2 u 

U 
V 

3 
M2 

ml sl s S2 Y t y2 m1 

We split 3K into three sets K', K", K'''. Choose s < £ between mi and Mi and u < v 
between m 2 and M 2 such that the points (0, s), (1, w), (2, m 3 ) and (0, £), (1, v), (2, M 3) 
are collinear. 
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Take si,s2,ti,t2 in Ki such that si < s < s2, h < t < t2 and there is no point of 
K\ in the intervals (si, s), (s, s 2 ), (ti,t),(t,t2). 

Take ui,u2,vi,v2 in K2 such that ux < u < u2, vi < v < v2 and there is no point 
of K2 in the intervals (ui,it), (u,u2), (vi,v),(v,v2). Define 

K'1=K1n[m1,82], K'i=Kx [s2,ti], K[" = K1n[t1,M1], (6.29) 
K'2 = K2n[m2,Ul], K2' = K2 [uuv2], K'2" = K2n[v2,M2], (6.30) 
K'z = {m3}, K'i = K3, K'i' = {M3}. (6.31) 

It will be shown that we may choose the points s,t,u,v such that 
4 < 2k[ - 3, max(4,f 2) ^ *i ~\~ k<2 3 5 (6.32) 

4 < 2k[ - 3, max^'/,^') ^ *i "T" *2 ^5 •̂2 H- 3̂ ^ 2*2 "I- 2*3 5, (6.33) 
4 - 3,< 2fci" - 3, MAX(<L",^") < k'l' + A;2" - 3. (6.34) 

We can easily deduce Lemma 6.3 from (6.32-34). Denote x = |23^' n (Ki + K 3 ) | + 
12K£' n (Ki" + Kg")|. It is clear that 

| 2K | > |2Ki I + |Ki + K£ I + |Ki + K£ I + |K£ + K£ I + |2Kg | 
+ |2K;'| + |K;' + K''2| + \2(e% U K^)i 

+ |2Ki"| + |Ki" + K^" | + |Ki" + K3"| + |K''2 + K3"| + |2K3"| -S-x. (6.35) 
Indeed, the above inequality is true, because the points 2s2,2t\, u\ + s2, v2 +1\, u\ + 
m3,M3+ v2,2m3,2M3,212/ n (Ki + Kg), 2K,' D (Ki" U Kg") are counted twice. By 
Theorem D we get 

|2K| > {£[ + k[) + (£[ + k'2) + k[ + k'2 + 1 
+(l''1 + k'{) + (£'2' + k'l) + (2k'2' + 2k3' - 1+ l''2 + I'D 
+ W + fei") + (£'/' + fc2") + k'C + k'2" + l-(8 + x) 

= (2fci + 2k!2 + 1 + 2£i) + (2fci' + 2k'2' + 2k3' - 1 +1'[ + 2t!{ + 4') 
+ (2fci" + 2fc2" + 1 + 24") - (8 + x) 

= 2(k[ + k'l + k'l') + 2{k'2 + k'2' + k'2") + 2k3' - 7 
+ (24 - £'l) + 2£'2' + £'i-x 

= 2k + 1 + 24 + 24 + [24' - (4' + 4)] - x. (6.36) 
We have used here k'3' = k3, £3' = 4 and k[ + k'l + k'l' = kt + 2, for i = 1,2. Note 
that the collinearity condition gives 2(v — u) = (t — s) + 4 and thus we have 

2t'i -(£ ' / + 4) = 2[(v - 11) + (u - Ui) + (v2 - v)] 
-[(t-s)-(t-tl)-(s2-s)+t3] 

= 2(u - ui) + 2(v2 -v) + (t- h) + (s2 - s). (6.37) 
It is clear that 

|(Ki + Kg) n 2 1 ^ 1 < l + | [2«i ,2«] | = 2 + 2 ( « - « 1 ) , 
|2S^' n (Ki" + if3")| < 1 + \[2v, 2v2]\ = 2 + 2(v2 - v). 
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Therefore, x < 4 4- 2(u — ui) 4- 2(v2 — v); applying this inequality and (6.37) in (6.36), 
we obtain the desired lower bound: 

|2K| > 2k - 3 4- 24 4- 24 4 (t - h) 4- (s2 - a) > (2k - 1) 4- 24 4- 24- (6.38) 

The last step in the proof is to choose it, s, v, t such that (6.32-6.34) are valid. 
First of all, we rewrite these inequalities in the form 

h[ < k[ - 2, h[ < kf

2 - 2, h'2 < k[ - 2, 

4 < k'l - 2, 4 < k'2' - 2, /i2

; < k'l - 2, 

fc2 + K < *2 4- 4 - 3 = 4 4 fc3 - 3, 
4" < Jfe™ - 2, ftf < fc2

;/ - 2, /io" < fcf - 2. 

Consequently, it will be enough to find s, £, t; such that 

4 > /ii 4- 2, fc2" > ^1 + 2 , 4 > max(/ii 4- 2, /i 2 4- /i 3 - k3 4- 3), (6.39) 

k{ > max(/ii,/i2) 4- 2, fc" > max(/ii,/i2) 4- 2, fc"' > max(/ii,/i2) 4- 2. (6.40) 

Define v between m2 and M2 by 

^ = m2 4- (/ii 4- /i 2 4- 2), v = M2- (/ii 4-/i2 4-2). (6.41) 

Take 5, £ between mi and Mi so that (0,s), (1, ix), (2, m 3) and (0, £), (1, t?), (2, M 3) are 
collinear. We obtain 

v - u = 4 - 2(/ii 4- h2 4- 2) and £ - s = 2(v - u) - 4 . (6.42) 

In order to prove (6.39-40), it will suffice to estimate k'2, &2,K'1 k[, k'{, k'{'. We 
begin by establishing (6.39). 

k2 = \K2 H [m 2,tii]| = IAT2 H [m 2,ti)| > (« - m 2 ) - /i 2 = hi 4- 2. 

4" = |if2 n [ V 2 , M 2 ] | = \K2 n M 2 ] | > ( M 2 - v ) - h2 = hi 4- 2. 

k'2' = \K2 H [wi, v2]\ = 2 + (v - u) - /i 2 = 2 4- (4 - 2(Äi + /i 2 4- 2) ) - h2 

= k2- 2hi - 2h2 - 3 > max(/ii 4- 2, /i 2 4- /i 3 - k3 4- 3). 

Indeed, 3/ii 4- 2h2 4- 5 < k2 and 2/iX+3/i 2 + /i 3 + 6 < ^2 4- ̂ 3 follow from (6.12). Remark 
that v—u = £2—2(/ii4-/i2+2) > £ 3, because it is equivalent to 2/ii4-/i2+fc3-f/i34-4 < k2l 

which follows again from (6.12). Therefore, we may choose s < t between mi and 
Mi such that the points (2,m 3), (1,u), (0,s) and (2,M 3), (l,v), (0,£) are collinear. 
Define si < s < s2 and ti < t < t2 such that s i , s 2 and t1 , t 2 are consecutive points 
in Kt, 

We check inequalities (6.40). Note that s — mi > 2(u — m2) and Mi —t > 2(M2—v). 
Using (6.42) we have 

k[ = \Ki fi [mi,s 2]| > s2 — mi 4-1 — hi > (s — mi ) 4-1 — hi 
> 2(u - m2) 4-1 - hi = 2(hi 4- h2 4- 2) 4-1 - hi = hi 4- 2h2 4- 5 
> max(/ii, h2) 4- 2, 
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fcj" = \K1n[tuM1]\>(M1-t1+l) - /11 > (Mi - t) + 1 - /11 

> 2(M 2 - v) + 1 - /ii = 2(/ii + h2 + 2) + 1 - Zu = /ii + 2/i2 + 5 
> max(/ii, /i2) + 2, 

fcj" = \K1n[tuM1]\>(M1-t1+l) > M - M - /11 > (̂  - 5) - 1 - /11 

= ( 2(v - ti) - €3 - 1 - ht = 2 (£2 - 2/ii - 2/12 - 4) - 4 - 1 - /H 

= 2(*2 - 2/11 - /i 2 - 5) - * 3 - ^3 - ht = 2*2 - (5/ii + 2/12 + /13 + * 3 + 10) 

> max(/ii,/12) + 2, because of (6.12). 
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