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N O N - S O L V A B L E G R O U P S W I T H A L A R G E F R A C T I O N 
O F I N V O L U T I O N S 

by 

Yakov Berkovich 

Abstract. — In this note we classify the non-solvable finite groups G such that the 
class number of G is at least |G|/16. Some consequences are derived as well. 

C.T.C. Wall classified all finite groups in which the fraction of involutions exceeds 
1/2 (see [1], Theorem 11.24). In this paper we classify all non-solvable finite groups 
in which the fraction of involutions is not less than 1/4. 

We recall some notation. 
Let k{G) be the class number of G. Let i(G) denote the number of all involutions 

of G, T{G) — 2^X(1) where x runs over tne set Irr(G). Now 

mc(G) = k(G)/\G\, / (G) = T(G)/ |G| , i0(G) = i(G)/\G\. 

It is well-known (see [1], chapter 11) that 

i(G) < T(G), i0(G) < / ( G ) , / ( G ) 2 < mc(G) 

(with equality if and only if G is abelian). 
In this note we prove the following three theorems. 

Theorem I . — Let G be a non-solvable group. 
If mc(G) > 1/16 then G = G'Z(G), where G' is the commutator subgroup of G, 

Z(G) is the centre ofG, G' € {PSL(2,5), 5£(2,5)}. 

Theorem 2. — Let G be a non-solvable group. 
If f(G) > 1/4 then G = G'Z{G) and G' E {PSL(2,5), SL(2,5)}. 

Theorem 3. — Let G be a non-solvable group. 
Then iQ(G) > 1/4 if and only if G = PSL(2,5) x E with exp E < 2. 

Lemma 1 contains some well-known results. 

Lemma 1 
(a) If G is simple and a non-linear x € Irr{G) is such that x(l) < 4, then %(1) = 3 

and G e {PSL(2,5), PSL(2,7)}; see [2]. 
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(b) (Isaacs; see [1], Theorem 14.19). If G is non-solvable, then \cdG\ > 4; here 

cdG = {Xa)\x£lrr(G)} 
(c) (see, for example, [1], Chapter 11). If G is non-abelian then 

mc(G) < 5/8, f(G) < 3/4. 

Lemma2. — Let G = Gf > 1, d G {4,5,6}. If mc(G) > (l/d)2 then there exists a 
non-linear x £ Irr(G) such that x(l) < d. 

Proof — Suppose that G is a counterexample. Then by virtue of Lemma 1(b) one 
has 

|G| = X( l ) 2 > 1 + d2(k(G) - 3) + (d + l ) 2 + (d + 2) 

> 1 + d 2 ( # - 3) + 2d2 + 6d + 5 = IGI - d2 + 6d + 6 > \G\ 

since d G {4,5,6}, — a contradiction (here y runs over the set Irr(G)). 
Lemma 3 contains the complete classification of all groups G satisfying iQ(G) = 1/4. 

Lemma 3. — If iQ(G) = 1/4 then one and only one of the following assertions holds: 

(a) G = A4, the alternating group of degree 4. 
(b) G=-PSX(2,5) . 
(c) G is a Frobenius group with kernel of index 4. 
(d) G is a non-cyclic abelian group of order 12. 
(e) G contains a normal subgroup R of order 3 such that G/R = S3 x S3; if x is an 

involution in G then \CG{X)\ — 12 (here S3 is the symmetric group of degree 3). 

Proof — By the assumption \G\ is even. i(G) is therefore odd by the Sylow Theorem 
and \G\ = 4t(G), P e Syl 2(G) has order 4. 

(i) Suppose that G has no a normal 2-complement. Then P is abelian of type 
(2,2) and by the Frobenius normal p-complement Theorem G contains a minimal non-
nilpotent subgroup F = C(3 a ) • P (here C(m) is a cyclic group of order m and A • B is 
a semi-direct product of A and B with kernel B). Since all involutions are conjugate 
in F , all involutions are conjugate in G. Hence CQ{X) = P for x G P* = P — {1}, 
a = 1. If G is simple then by the Brauer-Suzuki-Wall Theorem (see [1], Theorem 
5.20) one has 

\G\ = (2 2 - 1)2 2 (2 2 + 1) = 60. 

Now we assume that G is not simple. Take i l , a non-trivial normal subgroup of G. 
If \G : H\ is odd, then 

i(G) = i(H), i0(H) = i(H)/\H\ = i(G)/\H\ = 

|G|t 0(G)/|JT| = \G : H\i0(G) = \G : H\/4. 

Therefore \G : H\ = 3 and iQ(H) = 3/4. Now f(H) > i0(H), hence H is abelian 
(Lemma 1(c)) and f(H) = 1. It is easy to see that H is an elementary abelian 
2-group, H = P. Now \P\ = 4 implies \G\ = 12, F = G = A4. 

Now suppose that H has even index. Since G is not 2-nilpotent ( = has no a normal 
2-complement) then \H\ is odd. In view of | C G ( # ) | = 4 for x G P# one obtains that 
F i J is a Frobenius group with kernel If, F is cyclic — a contradiction. 

(ii) G has a normal 2-complement ÜT. 
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First assume that P is cyclic. Then all involutions are conjugate in G, and for the 
involution x G P one has CG{x) = P. Then G is a Frobenius group with kernel K of 
index 4. 

Assume that P = (a) x (/?) is not cyclic. We have P = {1, a, /?, a/?}, and all 
elements from P # are not pairwise conjugate in G. Thus 

\G : C G ( a ) | + \G : CG(/?)| + |G : CG(a/3)| = »(G) = |G : P| . 

Note that Ca(a) = P • CKM, and similarly for /3 and a/3. Therefore 

(1) IcvHr 1 + \Ск№\-1 +iWaß^-1 = 1. 
Since I if I > 1 is odd then (1) implies 

(2) \CK(a)\ = \CK(0)\ = \CK(al3)\ = 3. 
By the Brauer Formula (see [1], Theorem 15.47) one has 

(3) \K\\CK(P)\2 = \CK(a)\\CK(/3)\\CK(a(3)\=S3. 

If CK(P) > 1 then (3) implies \K\ — 3 and G = P x K is an abelian non-cyclic group 
of order 12. 

Assume CR(P) — 1. Then |if| = 3 3 . Now (2) implies that K is not cyclic. By 
analogy, (2) implies that exp K = 3. From exp P = 2 follows that G is supersolvable. 
Therefore i?, a minimal normal subgroup of (?, has order 3. Applying the Brauer 
Formula to G/R, one obtains G/R = S% x S3, and we obtain group (e). 

Proof of Theorem 1. — Denote by S = S(G) the maximal normal solvable sub­
group of G. 

(i) If G is non-abelian simple then G = PSL(2,5). 

Proof. — Take d — 4 in Lemma 2. Then there exists \ € Irr(C?) with %(1) = 3. Now 
Lemma 1(a) implies G G {PSL(2,5),PSL(2,7)}. Since 

mc(PSL(2,7)) = 1/28 < 1/16 

then G S PSL(2,5) (note that mc(PSL(2,5)) = 1/12). 

(ii) If G is semi-simple then G ^ PSL(2,5). 

Proof — Take in G a minimal normal subgroup D. Then D — Di x • • • x Ds 

where the D^s are isomorphic non-abelian simple groups. Since (see [1], Chapter 11) 
mc(Di) > mc(G) > 1/16, D ^ PSL(2,5) by (i) and so mc(£>i) = 1/12. Now 

mc(,D) = mc(Di)* - ( l / 1 2 ) s > 1/16 

implies that s = 1. Therefore D = PSL(2,5). Since G/CQ(D) is isomorphic to 
a subgroup of AutD S 55, mc(55) = 7/120 < 1/16, then G/CG(D) S PSL(2,5). 
Because D n CG(D) = I, G = D x CG(D). Now 

1/16 < mc(G) = mc(CG(D))mc(D) = (l/12)mc(CG(D)) 

implies that mc(CG(D)) > 3/4 > 5/8, CG(D) is abelian (Lemma 1(c)), CG(D) = 1 
(since G is semi-simple), and G = PSL(2,5). 

(iii) G / 5 ^ P S L ( 2 , 5 ) . 
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This follows from mc(G/5) > me(G) (P.Gallagher; see [1], Theorem 7.46) and (ii). 

(iv) If G = G' then G € PSL(2,5), SL(2,5)}. 

Proof. — By virtue of (iii) we may assume that S > 1. 
Suppose that (iv) is true for all proper epimorphic images of G. Take in 5 a 

minimal normal subgroup R of G, and put \R\ = pn. Then by the Gallagher Theorem 
and induction one has G/R € {PSL(2,5) , SL(2,5)}. 

(liv) G/R ^ PSL(2,5), i.e. R = S. 
If Z(G) > 1 then R = Z(G) is isomorphic to a subgroup of the Schur multiplier of 

G/R so \R\ = 2 and G = SL(2,5) (Schur). In the sequel we suppose that Z(G) = 1. 
Then CG(R) = R, so n > 1. If x E R* then \G : CG(x)\ > 5, since index of 

any proper subgroup of PSL(2,5) is at least 5. Let kG(M) denote the number of 
conjugacy classes of G ( = G-classes), containing elements from M. Then 

kG(R) < 1 + \R*\/5 = (pn + 4) /5. 

If x € G - R then Z(G) = 1, and the structure of G/R imply \G : CG(x)\ > I2p 
(indeed, x does not centralize R and \G/R : CG/R(XR)\ > 12). Hence 

kG(G - R) = k(G) - kG(R) = \G\mc(G) - kG(R) > 
60p n /16 - (pn + 4)/5 = (71pn - 16)/20. 

Now 

(1) \G-R\= 59pn > 12pkG(G - R) > 12p(71pn - 16)/20, 
(2) 5 x 5 9 p n _ 1 = 2 9 5 p n _ 1 > 213p n - 48 > 426p"" 1 - 48 131p n 1 < 48, 

a contradiction. 
(2iv) G / i î ^ S L ( 2 , 5 ) . 

Proof — Suppose that Ri ^ it! is a minimal normal subgroup of G. Then (by 
induction) 

RR, =RxRx=S, lÄil = 2, G/Rt s SL(2,5) 
and G' < G, since the multiplier of SL(2,5) is trivial, a contradiction. Therefore R is 
a unique minimal normal subgroup of G. Similarly, one obtains Z(G) = 1. 

Let p > 2. Then CG(R) = R. In this case Z(S) < i?, so Z(S) = 1 and S is a 
Frobenius group with kernel R of index 2. As in (liv) one has 

kG(S) = kG(S - R) + kG(R) < 1 + (pn + 4)/5 = (p n + 9) /5. 

TîxeG-S then IG : CG(x)\ > 12p and 

kG(G -S) = k(G) - kG(S) = |G|mc(G) - kG(S) > 
120p n /16 - (pn + 9)/5 = (73p n - 18)/10, 

IG - 51 = 118p n > 12pJfcG(G - S) > 6p(73p n - 18)/5, 
2 9 5 p n _ 1 > 219p n - 54 > 6 5 7 p n _ 1 - 54, 

5 4 > 3 6 2 p n " \ 
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a contradiction. 
Let p = 2. Since R is the only minimal normal subgroup of G and Z(G) = 1 then, 

ka(S) < 1 + ( 2 n + 1 - l ) / 5 = ( 2 n + 1 + 4) /5, 

KG(G- 5) > 120.2716 - ( 2 n + 1 + 4)/5 = (71.2n - 8)/10, 
5 9 . 2 n + 1 = |G - S\ > 24kG(G - S) > 24(71.2 n - 8)/10, 

295.2 n > 426.2 n - 48, 

48 > 131.2 n, 

a contradiction. 

(v) If D is the last term of the derived series of G then D G {PSL(2,5), SL(2,5)}. 

Proof. — Since D = D' and mc(D) > mc(G) > 1/16 the result follows from (iv). 

(vi) The subgroup D from (v) coincides with G'. 

Proof. — We have D G {PSL(2,5),SL(2,5)} by (v). Since Z(G) < D we may, by 
virtue of the Gallagher Theorem [1], Theorem 7.46, assume that Z(D) = 1. Then 
£>^PSL(2 ,5) . Since 

AutD S S 5 , mc(5 5 ) = 7/120 < 1/16 

then 
G/CG(D) ^PSL(2 ,5 ) , G = D x CG(G), 

and CG(D) is abelian (see (ii)). So D = G'. 

(vii) G = SG'. 
This follows from (iii) and (vi). 
(viii) \S'\ < 2. In particular, S is nilpotent and all its Sylow subgroups of odd 

orders are abelian. 

Proof. — In fact, S' < S D G' < Z{G'). 

(ix) G = S *G', a, central product. 

Proof. — Take an element x of order 5 in G'. Since G' D S < Z(G), then 

G/G' fi S = G'/G' nSxS/SnG' 
implies that (x, S) is nilpotent. Hence (5, x) = P x A where P E Syl2(5) and A is 
abelian. As x € A then x G CG(S). Since GF = (x € G'lx5 = 1) it follows that 

G = SG'" = S* G'. 

(x) S is abelian. 

Proo/. — We have G = (S x G')/Z where \Z\ < 2. For G' ^ PSL(2,5) our assertion 
is evident. Now let G' ^ SL(2,5). Then |Z | = 2, Z > 5 ' . Suppose that S is 
non-abelian. Then Z = S'. 

Take x G Irr(G). We consider x as a character of G' x 5 such that Z < kerx-
Then x = rt? where r G Irr(G'), 1? G Irr(5) and xz = x ( l ) l z = r ( l ) ^ ( l ) l z . Now 
rz — r(l)A, a?^ = $( l ) / i where A,/i G Irr(Z), Yu = 1^. Noting that |Z | = 2, one has 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



246 Y. BERKOVICH 

X = fi and TZ = r ( l )À,$£ = i?(l)À. Since S is non-abelian then edS = { l , m } where 
m2 = \S:Z(S)\. 

Suppose that A = lz- Irr(G') has exactly 5 characters containing Z in their kernels, 
so for r we have exactly 5 possibilities. Since Z < keri? then $ G Lin(S), and for 
$ we have exactly |Lin(5)| = \S\/2 possibilities. Hence for \ we have exactly 5|S|/2 
possibilities if A = lz-

Suppose that A ^ 1^. Then Z is not contained in kerr , so for r we have exactly 
\liv{G')\ — \lrr(G'/Z)\ = 9-5 = 4 possibilities. Since S' = Z is not contained in 
ker$, then $ is not linear, and for $ we have exactly (\S\ — \S/S'\)/m2 = \S\/2m2 

possibilities. For x we have, in this case, exactly 4 |5 | /2ra 2 = 2\S\/m2 possibilities. 
Finally, 

k(G) = 5|5 | /2 + 2 |S | /m 2 

and 
mc(G) = k(G)/\G\ = k(G)/60\S\ = 1/24+ l / 30m 2 . 

Since m > 1 then 
mc(G) < 1 /24+1/120 = 1/20 < 1/16, 

a contradiction. Therefore S is abelian, S = Z(G) and G = G'Z(G). In this case 
mc(G) G {1/12,3/40}. The theorem is proved. 

Let now / (G) > 1/4. Then mc(G) > / ( G ) 2 > 1/16, and Theorem 2 is a corollary 
of Theorem 1. It is easy to see that in this case / (G) = f(G') G {4/15,1/4}. 

Proof of Theorem 3. — In view of Lemma 3 we may assume that iQ(G) > 1/4. 
Since 

mc(G) > / ( G ) 2 > UGY > 1/16 

we may apply Theorem 1. By this theorem G = G Z(G) where 

G' € {PSL(2,5),SL(2,5)}. 

1£G'=G then G S PSL(2,5) since t 0(SL(2,5)) = 1/120 < 1/4. Now let G' < G. 
Suppose that exp(G/G') > 2. Let M/G' be the subgroup generated by all involu­

tions of G/G'. Then i(M) = i(G), 

iJM) = i(M)/\M\ = \G : M\i(G)/\G\ = 

\G : M\ia(G) > \G : M| /4 > 1/2, 

and M is solvable by [1] Theorem 11.24 (since f(M) > iQ{M) > 1/2), a contradiction. 
Thus exp(G/G') = 2. 

If G' = PSL(2,5) then G = G' x Z(G). If exp Z > 2 and M = G' x n a (Z(G)) then 

«(G) = t (M) , * 0 ( M ) = |G : M|*o(G) > |G : M| /4 > 1/2, 

and M is solvable (see [1], Theorem 11.24) — a contradiction. Hence if G' = PSL(2,5) 
then G = PSL(2,5) x E with expJS < 2. 

Now suppose that G = G'Z{G), G' = SL(2,5) and Z(G) is a 2-subgroup. Set 
(z) = Z(G'). 
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If exp Z(G) = 2 then Z(G) = (z)xE,G = G' x E, and iQ(G) < 1/4. Assume that 
exp Z(G) = 4. Then 

G'f)Z(G) = (z) = 9(G) 

where Q(G) is the Frattini subgroup of G. 
Let s be an element of order 4 in Z{G). Then Z(G) = (s) x E and 

G = (G'(s)) x E,expE < 2. 

Let us calculate iJH) where 

H = G'(s), Z(H) = (s), o(a) = 4. 

Take P € Syl 2(G'). Then P = Q(B) contains exactly three distinct cyclic subgroups 
(a), (6), (c) of order 4, and a2 = b2 = c2 = s2 = z. Hence 

(as)2 = (bs)2 = (cs)2 = 1 

and it is easy to see that i0((P, s)) = 7. Now 

(P,a) G SyUH), \H : NH((P,S))\ = 5, 

(P,a)n(P,8)* = (8) 
for all a; G -ff — ^ ( ( P , a». Thus 

i 0 ( i î ) = |H:iVH((P , S ) )H 0 ( (P, S ) ) -
(IfT : iVH((P, s » | - l ) i o « » » = 5 x 7 - 4 = 31. 

Since 
G = H x E, \E\= 2a, expE < 2, 

then 

i(G) = i (H) |E|+|E| - 1 = 31.2a + 2Q - 1 = 32.2a - 1, 
io(G) = i(G)/\G\ = (32.2 a - l ) /240 .2 a < 2/15 < 1/4, 

a contradiction. Therefore G' p§ SL(2,5) and the theorem is proved. 

Question. — Find all non-solvable groups G with i0(G) = 2 n > 2. 

There exist four multiplication tables for two-element subsets of group elements 
(see [3]). These multiplication tables afford the following 2 x 2 squares: 

A 

B 
B 
A 

A 
B 

B 
C 

A 
C 

B 
A 

A 
C 

B 
D 

Here distinct letters denote distinct elements of a group. 
Let us calculate the number P ( l ) of the squares of the first type in a finite group G. 

If a pair {a, b} of elements of G affords a square of the first type, then a2 = b2, ab = ba. 
Then ( a _ 1 6 ) 2 = 1, so i = a _ 1 6 is the involution commuting with a and b. If i G Inv(G) 
(the set of all involutions of G), x G Ca{i), then the pair (x.xi) affords the square of 
the first type. Therefore i G Inv(G) affords exactly |CG(^)| squares of the first type. 
Let 

Inv(G) = J i f ( l ) U - U J Ï ( r ) , 
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where K(l),..., K(r) are distinct conjugacy classes of G. Then 

P(1) = 
ielnv(G) 

\CG(i)\ = 
r 

3 = 1 i€K(j) 

|C G (t) | = r|G|. 

Thus P(l) = r\G\, where r is the number of conjugacy classes of involutions in G. 
By analogy, we may prove that the number P ( l , 2) of commutative squares in the 

multiplicative table of G is equal to k(G)\G\. The number P(2) of squares of the 
second type in the multiplicative table of G is therefore equal to P(2) = P( l , 2 ) — 
P(l) = (k(G) — r)\G\. If p(n) is the fraction of squares of the n-th type in the 
multiplicative table of G then 

p ( l ) = r/\G\, p(2) = (k(G) - r)/\G\ = mc{G) - p ( l ) . 

It is easy to see that the number P ( l ) + P(3) of squares of the first and the third type 
in the multiplicative table of G is equal to |G|s where s is the number of real classes 
(a class K of G is said to be real if x G K x~x G K). Thus 

P(4) = 0 (mod |G|). 
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