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ON SMALL SUBSET PRODUCT IN A GROUP 

by 

Yahya Ould Hamidoune 

Abstract. — We generalise some known addition theorems to non abelian groups and 
to the most general case of relations having a transitive group of automorphisms. 

The classical proofs of addition theorems use local transformations due to Daven­
port, Dyson and Kempermann. We present a completely different method based on 
the study of some blocks of imprimitivity with respect to the automorphism group 
of a relation. 

Several addition theorems including the finite a -f /^-Theorem of Mann and a 
formula proved by Davenport and Lewis will be generalised to relations having a 
transitive group of automorphisms. 

We study the critical pair theory in the case of finite groups. We generalise Vosper 
Theorem to finite not necessarily abelian groups. 

Chowla, Mann and Straus obtained in 1959 a lower bound for the size of the image 
of a diagonal form on a prime field. This result was generalised by Tietavaienen to 
finite fields with odd characteristics. We use our results on the critical pair theory to 
generalise this lower bound to an arbitrary division ring. 

Our results apply to the superconnectivity problems in networks. In particular we 
show that a loopless Cayley graph with optimal connectivity has only trivial minimum 
cuts when the degree and the order are coprime. 

1. Introduction 

Let p be a prime number, and let A and B be two subsets of Zp , such that \A\, 
\B\ > 2. The Cauchy-Davenport Theorem states that 

|A + 5 | > m m ( p , L 4 | + L B | - l ) , 

cf. [2,5]. Vosper Theorem states that 

\A + B\ > m i n ( p - l , | A | + |B | ) , 

unless A and B form arithmetic progressions, cf. [31,32]. Freiman obtained a structure 
theorem for all A C Zp such that \2A\ < 12\A\/5 - 3, cf. [26]. 

1991 Mathematics Subject Classification. — Primary: 20D60, Secondary: 20K01, 11B13, 11B75, 
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282 Y.O. HAMIDOUNE 

Let A and B be finite subsets of an abelian group G. We shall say that B a Cauchy 
subset if for every finite non-empty subset X, 

\X + B\ > m i n ( | G | , | X | + | £ | - l ) . 

Mann proved in [24] that B is a Gauchy subset if and only if for every finite subgroup 
if, \H+B\ > min(|G|;|jEf| + | B | - l ) . Kneser Theorem states that \A+B\ < \A\ + \B\-l 
only if there is a finite non-null subgroup H such that A + H + B = A + B. Some 
progress toward the determination of all pairs A, B such that |A + i?| < \A\ + — 1 
is obtained by Kempermann in [20]. In [14], we could classify all the pairs, {A,B} 
with \A + B\ = \A\ + |JB| - 1, if B is a Cauchy subset. 

Less results are know in the non-abelian case. The classical basic tools in this 
case are two nice results proved by Kempermann in [19]. No generalisation of Kneser 
Theorem is known in the non-abelian case. The natural one is false in general, cf. 
[28,33]. Diderrich obtained in [7] a generalisation of Kneser Theorem in the case where 
the elements of B commute. But this result is an easy corollary of Kneser Theorem 
as showed in [13]. Brailowski and Freiman obtained a Vosper Theorem in free torsion 
groups, cf. [1]. It was observed recently that some results involving the connectivity 
of Cayley graphs are strongly related to addition theorems. This connection will be 
explained below. 

A natural question consists of asking how addition Theorems generalise to a group 
acting on a set. The connectivity of Cayley graphs belongs to this kind of problems. 
The connectivity of a reflexive relation T = (V, E) is 

« ( r ) = min{|r(F)| - |F| : 1 < \T(F)\ < \V\}. 

Let B be a finite subset of a group G containing 1 and let T be the Cayley relation 
x~xy E B. In this case, K(T) is the best possible lower bound for | A B - 1 | — \A\, where 
AB ^ G. The Cauchy-Davenport Theorem may be expressed using this language as 
K(T) = \B\ — 1, for \G\ prime. Under this formulation, this result was rediscovered 
in [9]. The method used in [9] is based on the study of blocks of imprimitivity with 
respect to the group of automorphisms. The same method is used in [12] to prove a 
local generalisation of Mann Theorem for finite groups. Zemor used the same method 
in [33] to obtain a global one. More complicated blocks are studied in [14] to calculate 
the critical pairs in Mann Theorem in the abelian case. 

The connection between connectivity problems and addition theorems were ob­
served only recently. 

The results obtained in [14] are strongly based on the well known fact that an 
abelian Cayley relation is isomorphic to its reverse. We generalise some of the results 
to the non abelian case. The organisation of the paper is as follows. In section 2, 
we study the connectivity of relations. We give also lemmas allowing to translate 
connectivity bounds into addition theorems. We improve some results contained in 
[9,10,11,12,14]. In section 3, we generalise several basic additive inequalities. In 
particular, we give a generalisation of Mann Theorem to non-abelian groups and to 
relations with a transitive group of automorphisms. We generalise also a formula 
proved by Davenport and Lewis for finite fields to division rings and to arc-transitive 
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ON SMALL SUBSET PRODUCT IN A GROUP 283 

relations. We generalise also a result proved by Olson [27] to point transitive relations. 
This generalisation in the finite ease was proved in [10, Proposition 3.4]. In section 
4, we study the superatoms. They form the main tool for the critical pair problem in 
our approach. The main result of section 5 is the following result which characterizes 
the equality cases in Mann Theorem. We state it below. 

Let B be a subset of a finite group G such that 1 G B. Then the following conditions 
are equivalent. 

(i) For all Ac G such that 2 < \A\, 

\AB\ > m i n ( | G | - l , | A | + |B|). 

(ii) For every subgroup H of G and for every a G G such that \H U Ha\ > 2, 

min(\B(H U aH%\(H U Ha)B\) > min(|G| - 1, \H U Ha\ + \B\). 

The main result of section 6 is a critical pair theorem which generalises Vosper 
Theorem. We state it below. 

LetG be a finite group and letB be a Cauchy subset ofG such that (|G|, — 1) = 1. 
Let A C G such that 

\AB\ = \A\ + \B\ - 1 < \G\ - 1. 

Then one of the following conditions holds. 
(i) \A\ = 1 or A = G \ aB~x, for some a G G. 
(ii) There are a,b,r G G, fc,sGN such that 

A = {a, ar, a r 2 , . . . , ark~x} and B = (G\ (r)b) U {ò, rò , r2ò , . . . , r^b}. 

(iii) There are a, 6, r G G, k,s e~N such that 

A = {ab-\arb-\ar2b~\....ar^b"1} and B = (G\6(r))U{ò,rò,r26, . . . , rs"16}. 

One of the classical applications of the critical pair theory is the estimation of 
the range of a diagonal form. Using Vosper's Theorem, Chowla, Mann and Straus 
obtained in [4] an estimation of the range of a diagonal form over Zp. Tietavainen 
obtained in [30] the same bound in the case of finite fields with odd characteristics. 
We gave in [14] a proof for all finite fields based on the method of superatoms. We 
generalise this bound to all division rings in this paper as follows. 

Let R be a division ring and let P be a finite subset of R such that 0 G P and P\0 
is multiplicative subgroup. Let RQ be the additive subgroup generated by P. Suppose 
that \P\ > 4 and let a±, a,2,..., an be non-zero elements of R. Then 

\axP + a2P + • • • + anP\ > min(|iîo|, (2n - 1)(|P| - 1) + 1). 

In section 8, we apply our results to solve some problems raised in network Theory. 
We also explain the connections between Cayley graphs reliability and Additive group 
Theory. In particular we show that a loopless Cayley graph with optimal connectivity 
has only trivial minimum cuts when the degree and the order are coprime. 
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2. The connectivity of a relation 

In this section we study subsets with a small image with respect to a given relation. 
Restricted to Cayley relations defined on a group, this problem becomes the study of 
subsets with a small product. The results obtained in this section improve slightly 
our previous results obtained in [9,10,11,12,14]. 

The cardinality of a finite set V will be denoted by |V| . For an infinite set V, we 
write \V\ = oo. By a relation we mean an ordered pair T = (V,E), where V is a set 
and E is a subset of V x V. A permutation a of V is said to be an automorphism of T 
if E = {(a(x),a(y)) : (x,y) G E}. The group of automorphisms of T will be denoted 
by Aut( r ) . A relation will be called point transitive if its group of automorphisms acts 
transitively on V. Let A CV. The subrelation inducedon A is T[A] = (A1 ED(AxA)). 

We introduce some notations. Let T = (V, E) be a relation and let F be a subset 
of V. The image of F will be denoted by T(F). We recall that 

T(F) = {y G V : there is x G F such that (x,y) G E}. 

We write dr(F) = T(F) \ F and Sr(F) =V\(FU T(F)). The reference to T will 
be omitted when the meaning is clear from the context. In particular we shall write 
dp- (F) = d~(F) and Sr~ (F) = 6~(F). The degree of a point x G V is by definition 
dr(x) = | r (x ) | . A relation T is said to be locally finite if both T and T~ have only 
finite degrees. A relation r = (V, E) is said to be regular if T is locally finite and if 
all x,y G V, \T(x)\ = \T(y)\ and | r ~ ( x ) | = \T~(y)\. Let T be a regular relation. The 
degree of every point with respect to T will be called the degree of T and denoted by 
d(T). 

A relation T on a set V is said to be connected if T(A) <f. A for every finite proper 
subset A of V. A subset C of V is said to be connected if T[C] is connected. A block 
of F is a subset B of V such that for every automorphism / of F, either f(B) = B or 
f(B) n B = 0. 

The following remark is easy to show and well known. 

Remark2.a. — If T is regular and if V is finite then d(T) = d(T~). 

Let F be a reflexive relation on V. The connectivity of T is by definition: 

K(T) = min{|<9(F)| : 1 < |r(F)| < |V| or \F\ = 1} . 

The inequality 1 < | r ( F ) | < |V| is never satisfied if V x V = T. In the other cases, 

« ( r ) = m i n { | a ( F ) | : l < | r ( F ) | < | V | } . 

Remark 2.b. — The connectivity of a relation coincides with the connectivity of its 
reflexive closure. For this reason we restrict ourselves to reflexive relations. This 
choice simplifies the proofs and the notations. In some previous papers [9,10,11,12] 
we adopted the opposite choice, where a relation is assumed to be disjoint from its 
diagonal. These two choices are essentially equivalent. 

Lemma 2.1. — Let T be a locally finite reflexive relation. Then K(T) is the maximal 
k such that for every non-empty finite subset A, |r(^4)| > min(|V|, \A\ + k). 
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Proof. — The Lemma follows easily from the definitions. • 

One see easily that a locally finite reflexive relation Y on a set V is connected if 
and only if Ac(T) > 1. 

Let T be a locally finite reflexive relation on V and let F be a subset of V. We say 
that F is a fragment of Y if the following conditions are satisfied. 

(i) K ( D = \d(F)\ and r ( F ) # V . 
(ii) F is finite or V \ F is finite. 

A fragment with minimal cardinality will be called an atom. The cardinality of an 
atom of T will be denoted by /i(F). We see easily that an atom is always finite. We 
write p(Y) — min(d(x);x € V). Observe that p(Y) is the minimal degree. 

Lemma 2.2 ([9]). — Let Y be a locally finite reflexive relation on a set V and let A be 
an atom ofY. Then Y[A) is connected. Moreover K(Y) < p(Y) — 1 and equality holds 
if and only if /JL(T) — 1 orT = VxV. 

Proof — Lemma 2.2 follows easily from the definitions. • 

Lemma 2.3 ([9]). — Let T be a reflexive relation on a finite set V. Then K(Y) = 
K ( r - ) . 

Proof — The equality is obvious ifF = V xV. Suppose the contrary and let F be a 
fragment of Y. We have clearly d~(ô(F)) = d~(V\ T(F)) C d(F). By the definition 
we have 

« ( r - ) < | ö - ( i ( F ) ) | < | ö ( F ) | = «(r). 
The other inequality follows by duality. • 

We use the following result. 

Lemma 2.4 ([9]). — Let Y be a locally finite reflexive relation on a set V such that 
K(Y) = K(Y~). Let F and M be two fragments ofY. Then 

(i) d-(6{F)) = d(F) and 6~(6(F)) = F. 
(ii) S(F) is a fragment ofY~. 
(iii) F C M if and only if 6(F) D S(M). 

Proof — We have clearly 

d~(S(F)) = d~(V \ Y(F)) C d(F). 

If ö(F) is finite, then 

| 0 - ( i ( F ) ) | > « ( r - ) = « ( r ) = |0(F)|. 

Therefore d (6(F)) = d(F). Assume now that 6(F) is infinite. Hence F is finite. 
We shall prove that d(F) C 0 {6(F)). Suppose on the contrary that there exists 
x e d(F) \ d~(S(F)). It follows that T(F U {x}) c T(F). Therefore 

\d(F U { s } ) | < \d(F)\ - 1 = K(T) - 1. 
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It follows by the definition of K that \T(F U {x})\ = oo, a contradiction. The first 
equality in (i) is proved. It follows that 

6~(6(F)) = V \ (d-(ö(F)) U 0(F)) = V \ (d(F) U 0(F)) = F. 

Hence (i) holds. It follows that 

\d-(ô(F))\ = \d(F)\ = K(T)=K(T-). 

Since F fl T~(S(F)) = 0 , 6(F) is a fragment of r~. Thus (ii) is proved. 
Suppose that F C M. We have Ö(F) = V\ T(F) D V \ T(M) = S(M). 
Suppose that Ö(F) D S(M). We see as above that 6~(6(F)) C 6~(6(M)). Using 

(i) we obtain, F C M. • 

We shall use the following lemma. 

Lemma 2.5. — Let V be reflexive relation on a setV. Let M be a finite fragment and 
let F be a fragment ofT such that Mf)F ^ 0. Then \S(F) \ 6(M)\ <\M\ F\. 

Suppose that K(T) = K(T~) or that F is finite. Then one of the following conditions 
holds. 

(i) ô(F)nô(M) = 0. 
(ii) F D M is a fragment of T and T(M fl F ) = T(M) fl T(F). 

Proof — We have clearly 

T(M OF) C T(M) fi T(F) = Ml) 3(M) n (F U 0(F)). 

Therefore 
d(F fi M) C (d(M) \ 0(F)) U (M fl d(F)). (1) 

Clearly r ( M f l F ) ^ V. By the definition of the connectivity and since \d(M)\ = K(T), 
we have \d(M)\ < \d(M fl F)\. Using (1), we have 

\6(F) fl d(M)\ < \d(F) H M | . (2) 

It follows that 

\S(F) \ S(M)\ = \S(F) n M | + \6(F) n d(M)\ < \8(F) fl M\ + \M n = | M \ F| . 

This proves the first part of the lemma. 
We have clearly d(M U F ) C d(M) U 5 (F ) . Therefore 

Ô(F U M) C (Ô(F) \ M ) U (5(F) n ö(Af ) ) . (3) 

Assume now 6(F) fl (5(M) # 0 . It follows that T ( M UF) ^V. We shall show the 
following inequality. 

\d(F) n Af I < |(5(F) H Ö(M)| . (4) 
Consider first the case where F is finite. By the definition of the connectivity and 

since T(M U F ) # V and |<9(F)| = /c(r), we have \d(F)\ < \d(M U F ) | . Using (3), we 
obtain (4). Assume now that K(T) = K(T~) and that F is infinite. By the definitions 
6(F) is finite. By Lemma 2.4, 6(F) and 6(M) are fragments of T. By applying (2) to 
r~, with M replaced by 6(F) and F replaced by <5(M), we obtain 

\6-6(M)Dd-(6(F))\ < |0 - (*(M))n<S(F) | . 

(4) follows now usine: Lemma 2.4. 
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By (2) and (4) we have 

\M n d(F)\ = \d(M) n S(F)\. (5) 

Since T(F n M) ^ 0 and T(F DM)^V, we have \d(F n M ) | > AC(T). By (1) and 
(5) we have 

«(r) < \d(F H M ) | < \(d(F) \ 6(M)) U(KH d(M))\ < \d(M)\ = «(r). 

It follows that F H M is a fragment of T. It follows also that 

S(F n M ) = (9(F) \ (5(M)) U (F fl 0 ( M ) ) . 

Therefore 

T ( F n M ) = (F D M) U (9(F) \ S(M)) U (F H 0 ( M ) ) = T ( F ) fl F (M) . 

Remark2.C. — If A and B be two finite fragments such that \A\ = \B\ then \S(A)\ = 
|*(B)|. 

Clearly we have |(5(J3)| = \V\ - (\B\ + K(T)) = \S(A)\. • 

The fundamental property of atoms is the following. 

Proposition 2.6. — Let A and B be two distinct atoms of a locally finite reflexive 
relation T and let F be a fragment of T. Suppose that K(T) = ft(r~) or that F is 
finite. 

(i) Assume that \A\ < \S(F)\. Then either Ac F or AnF = 0 . 
(ii) Assume that \A\ < \S(A)\. Then A fl B = 0. 
(Hi) Assume that \A\ > \6(A)\ + 1. Then 5(A) fl 6(B) = 0. 

Proof — Assume that \A\ < \S(F)\ and suppose that A D F ^ 0. By Lemma 2.5, 
we have 

\S(F) \ S(A)\ < \A\F\ < \A\. 
Hence (5(F) fl ô(A) ^ 0 . By Lemma 2.5, A D F is a fragment of T. By the minimality 
of \A\7 we have A fl F = A. Therefore Ac F. This proves (i). 

Assume that \A\ < \S(A)\ and that A fl B ^ 0 . By Remark 2.c and (i), we have 
A fl B = 0 , a contradiction. Hence (ii) is proved. 

Assume that \A\ > \S(A)\ + 1 and that ô(A) fl ô(B) ^ 0 . Clearly |V| is finite. 
By Lemma 2.5, we have 

\A\B\ = \B\A\<\S(A)\6(B)\. 

Therefore A fl B ^ 0. By Lemma 2.5, A fi B is a fragment. Hence A = B, a 
contradiction. • 

Corollary 2.7. — Let F be a locally finite reflexive relation such that either V is infinite 
or /i(T) < / i ( r~ ) . Let A be an atom of T and let F be a finite fragment of T. Then 
either AcForAf)F = 0. 
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Proof. — The inequality n(T ) < \S(F)\ holds clearly if V is infinite and follows in 
the finite case by Lemmas 2.3 and 2.4. Therefore \A\ = /x(T) < JJL(T~) < \6(F)\. The 
result follows now using Proposition 2.6. • 

The above result was proved for finite symmetric relations by Mader [23, satz 1] 
and generalised to arbitrary finite relations in [9, proposition 1]. A basic property of 
atoms is the following. 

Corollary 2.8. — Let T = (V, E) be a locally finite reflexive relation and let A be an 
atom ofY. 

(i) Assume that \A\ < \S(A)\. Then A is a block. 
(ii) Assume that \A\ > \S(A)\ -f 1. Then S (A) is a block. 

Proof. — Let / be an automorphism of T. Clearly f(A) is an atom. We have also 

f(6(A)) = f(V \ T(A)) = V \ T(f(A)) = S(f(A)). 

The results follows now easily using Proposition 2.6. • 

Let A and B be subsets of a group G. We write 

AB — {xy : x e A and y G B}. 

Let a G G, the left translation ja : G —> G is defined by the equality ja(%) = ax. As 
usual the image of a subgroup i f by a left translation will be called a left coset of H. 

Let 5 be a subset of G. The relation x~xy G S is called a Cayley relation. It will 
be denoted by A(G, 5 ) . Let T - A(G, S) and let F C G. Clearly T(F) = FS. 

The following result is easy to show and well known. 

Lemma 2.9. — Let G be a group and let S be a finite subset of G. Then (A(G, S))~ = 
A(G,S~l). 

For every a £ G, ja G Aut(A((7, S)). In particular A(G, S) is point transitive. 

Cayley relations defined above form an important class of the relations with a 
transitive group of automorphisms. 

We use the following result which is implicit in [12]. 

Lemma 2.10. — Let G be a group containing a subset S and let B be a finite non­
empty block of A(G,S). Then B is a left coset of some subgroup ofG. 

Proof — Choose b G B~x and set H = bB. Let x G H. By Lemma 2.9, H is a block. 
Clearly 1 G if. Therefore x € H P\ jx(H)1 and hence H = xH. Therefore HH = H. 
Since H is finite, i f is a subgroup. • 

Theorem 2.11. — Let G be a group and let S be a finite subset of G such that 1 G S. 
Let A be an atom of A(G, S) containing an element a and let b G S(A). 

(i) If \A\ < \5(A)\ then a 1A is a subgroup. 
(ii) If \A\ > \S(A)\ + 1 then b~l6(A) is a subgroup. 

Proof. — The result follows from Corollary 2.8 and Lemma 2.10. • 
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Corollary 2.12 ([12, proposition 1]). — Let G be a group and let S be a finite subset 
of G such that 1 G S and let A be an atom of A(G, S) containing 1. Suppose that 
/x(A(G,S)) < / i (A(G ,5 -1 ) ) . Then A is a subgroup. Moreover for every finite frag­
ment F of A(G, S), FA = F. 

Proof — As shown in the proof of Corollary 2.7, we have \A\ = fi(F) < fi(F~~) < 
\d(F)\. By Theorem 2.11, A is a subgroup. Since 1 G A, we have F C FA. Let x G F. 
By Lemma 2.10, xA is an atom. By Corollary 2.7, xA C F. Hence FA C F. • 

We shall now describe a method allowing to apply connectivity bounds for con­
nected relations in the non connected case. This happens in Cayley relations when 
B generates a proper finite subgroup. In this case, one could decompose A as union 
of cosets modulo (B). We shall generalise this decomposition in the case of relations 
with a transitive group of automorphisms. Let us begin with an easy lemma 

Lemma 2.13. — Let F = (V, E) be a point transitive relation and let C be a block. Let 
f be an automorphism ofT. Then T[C] and F[f(C)] are isomorphic point transitive 
relations. 

Proof. — Clearly f/C : C —> f(C) defines an isomorphism from T[C] onto T[f(C)). 
Let x, y G C. Since F is point transitive, there is g G Aut(T) such that g(x) = g{y)> 

By the definition of a block g(C) = C. 
Now g/C : C —> C defines an automorphism of F[C]. • 

Let T = (V, E) be a reflexive relation. A subset C of V will be called a component 
of r if T[C] is connected and if C is maximal with respect to this property. It follows 
easily from Zorn Lemma that every connected subset is contained in a component. 
It is easy also to check that two distinct components are disjoint. In particular the 
connected components form a partition. In follows also that a component is a block. 
The following remark follows easily from the definitions. 

Remark2.d. — Let F = (V,E) be a reflexive relation and let {Ci,i G / } be a family 
of components of F and let A C \JieI Ci, be such that F(A) D (\JieI C{) — A. There 
is J C / such that A — U J G J Cj. 

Remark 2.e. — Let r = (V, E) be a reflexive relation. Then F has at most one infinite 
component. 

By Remark 2.d, the union of two infinite components is connected. Hence any two 
infinite components must coincide. 

We mention that the path connectedness, considered in section 8, leads to distinct 
notion of components in the infinite case. The following lemma contains all we need 
on components. 

Lemma 2.14. — Let F = (V, E) be a reflexive point transitive relation and let C and 
D be components ofF. Then the following conditions hold. 

(i) F[C] and F[D] are isomorphic point transitive relations. 
(ii) C = V or C is finite. 
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(iii) T(A fi C) = (T(A)) fi C and d(T[C]) = d(T). 

Proof. — The validity of (i) follows easily from Lemma 2.14. The validity of (ii) 
follows from (i) and Remark 2.e. 

Assume that (iii) does not hold. There are distinct connected components C\ and 
C2 such that T(Ci) fl C2 / 0 . Using the transitivity of Aut(F), we may construct 
a sequence of connected components {Ci;i > 1} such that, d ^ C^+i and T(Ci) fl 
d+i ^ 0 , for all i > 1. 

For all i, j > 1, we have 
Ci 7̂  Cj+i. (1) 

Assume the contrary and choose j minimal with respect to this property. By the 
definition Uo<fc<j Ci+k is non-connected. 

Hence there exists A C Uo<k<j Ci+k such that V(A) f) (Uo<fc<j Ci+k) = A and 
i / 0 . By Remark 2.d, there is J C [i,i + j] such that A — \JieJC{. By the 
construction of d, one should have J — [i,j]. In particular U i > i ^ *s connected, a 
contradiction. 

Let A be a finite non-empty subset of (Jt>i ^ By W> there exists clearly j such 
that AnCj y£ 0 and A fl Cj+1 = 0. In particular T(A) <jt (J*>i C*« Jt follows that 
Uj> i C» is connected, contradicting the maximality of C\. • 

Lemma 2.15. — Let F = (V, £7) be a locally finite reflexive point symmetric relation 
and let C be a component of F. 

Then for every non-empty finite subset A, either T(T(A)) = T(A) or |r(^4)| > 
\A\ + K(T[C\). 

Proof. — Assume first C infinite. By Lemma 2.14, V — C and the result holds 
trivially by Lemma 2.2. 

Therefore we may assume C finite. By Lemma 2.14, all the connected components 
generate isomorphic relations. In particular ft(r[C]) = «(r[£)]) . 

Suppose F( r (A)) ^ T(A). By Lemma 2.14.iii, there is a connected component 
D such that T(r(^4 fl D)) 7̂  T(A fl D). In particular we have using Lemma 2.14.iii, 
T(ADD) ^D. 

By Lemma 2.2, 
\T(A) fl D\ > \A H D\ + K(T[D]). 

By Lemma 2.14.iii, 

| r ( A ) | = \T(A H D)\ + \T(A \ D)\ > \A n D\ + K(T[C)) + \A\D\ = \A\ + K(T[C\). 

3. Some basic additive inequalities generalised to relations 

We begin by a generalisation of Mann Theorem to non-abelian groups and to 
relations with a transitive group of automorphisms. 

A reflexive locally finite relation T — (V, E) will be called a Cauchy relation if 

K(T) = o(T) - 1. 
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Lemma 3.1. — Let Y = (V, E) be a reflexive locally finite relation. Then Y is a Cauchy 
relation if and only if for every finite non-empty subset A ofV, 

\T{A)\ >mm{\V\,\A\+p{T)-l). 

If Y is finite and regular, then Y is a Cauchy relation if and only if Y is a Cauchy 
relation. 

Proof — The first part follows easily from Lemma 2.1 and Lemma 2.2. The second 
part follows from Remark 2.a and Lemma 2.3. • 

Lemma 3.2. — Let B be a finite subset of a group G such that 1 E B. Then B is a 
Cauchy subset if and only if for every finite non-empty subset A of G, 

\AB\ >min(|GUA| + | B | - l ) . 

Proof — Set T = A(G,B). For every subset F c G , Y(F) = FB. The result follows 
now easily by Lemma 3.1. • 

According to Lemma 3.2, the Cauchy-Davenport inequality is satisfied for every 
non-empty subset A of G if B is a Cauchy subset. The Cayley graphs of such subsets 
are used in network models and said to be optimally connected. 

Theorem 3.3. — Let Y = (V, E) be a reflexive locally finite point transitive relation 
and let v E V. Then Y is a Cauchy relation if and only if one of the following 
conditions holds. 

(i) V is infinite and for every finite block BofY containing v. 

\Y(B)\ > min(|F|, \B\ + d(Y) - 1). 

(ii) V is finite and for every block BofY containing v, 

min(|r(B)|, |r-(B) |) > min(|V|, \B\ + d(T) - 1). 

Proof. — By Lemma 3.1, the theorem is invariant by interchanging Y and Y~ in the 
finite case. We may assume without lost of generality V is infinite or fi(Y) < fi(Y~). 
The necessity follows by Lemma 3.1. Suppose that (ii) holds. We may assume that 
r ^ V x V, since otherwise the result is obvious. By the transitivity of Aut(T), there 
exists an atom A otY such that v E A. 

By Corollary 2.8, A is a block. 
It follows using the definition of an atom and (ii) that 

K(Y) = \Y(A)\-\A\>d(Y)-l. 

By Lemma 2.2, we have K(Y) — d(Y) — 1. Hence T is a Cauchy relation. • 

Corollary 3.4. — Let S be a finite subset of a group G such that 1 E 5 . Then S is a 
Cauchy subset if and only if one of the following conditions holds, 

(i) G is infinite and for every finite subgroup H of G, 

\HS\ >min ( |G | , | l f | + | S | - l ) . 

(ii) G is finite and for every subgroup H of G, 

min(|Síf I, \HS\) > min(|G|, |JT| + \S\ - 1). 
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Proof. — Set T = A(G, S). By Lemma 2.10 every finite block of V containing 1 is 
a subgroup. Observe that for every subgroup U, | r ~ ( f f ) | = \HS~l\ = \SH\. The 
result follows now using Theorem 3.3. • 

The second part of Corollary 3.4 follows from [33, Theorem 1.2]. Zemor studied 
the same problem where B is not assumed to contain 1. A example contained in [33] 
shows that for a finite group G, the condition 

min(|5iJ|, \HS\) > min(|G|, |JET| + | 5 | - 1) 

can not be replaced by the weaker one 

\HS\>mm(\Gl\H\ + \S\-l). 

Corollary 3.5 ([24,25]). — Let B be a finite non-empty subset of an abelian group G. 
Then the following conditions are equivalent. 

(i) For every finite non-empty subset A of G, 

\A + B\ >min(|G|, |A| + | B | - l ) . 

(ii) For every finite subgroup H ofG, 

\H + B\> min(|G|, \H\ + \B\ - 1). 

Proof. — Choose b £ B and set S = B — b. Using Lemma 3.2, one see easily that 
(ii) holds if and only if S is a Cauchy subset. The result follows now using Corollary 
3.4. • 

The following result generalises a result proved in [10] for finite relations. 

Theorem 3.6. — Let F be a locally finite connected reflexive point transitive relation 
such that d(T) > d(T~). Then K(T) > d(T)/2. 

Proof — According to Lemma 2.3 and Remark 2.a, the statement is invariant if 
we replace T by T~ if V is finite. Hence we may assume without lost of generality 
/x(r) < /x(r~), in the finite case. 

Let M be an atom of T. By Corollary 2.7, M is a block. It follows easily that 
T[M] is point transitive and that any other atom T generates a relation isomorphic 
to T[M]. Since M is finite, we have by Remark 2.a, d(T[M]) = d((T[M])-). Set 
t = d((F[M])). Set d+ = d(T) and d~ = d ( r ~ ) . Let X be the graph obtained from T 
by deleting all the arcs interior to the atoms. As for every block, the atoms partition 
V. It follows that d(X) — d+ — t and d{X~) = d~ — t. The number of edges of 
R originating in M is not greater than the number of edges terminating in d(M). 

Therefore xEM (d+ -t)< xEa(M) (d- - t). 

Therefore |M|(d+ -t) < K{T)(d- - t ) . Hence \M\{d+ -t) < n{T)(d+ -t). Observe 
that d+ — t / 0, since otherwise K(T) = 0, contradicting the assumption that T is 
connected. It follows that \M\ < K(T). 

Let x G M , we have 

d(r ) = | r (x ) | = \T(x) H M\ + |r(x) fl d(M)\. 
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It follows that 
d(r) < |Af| + #c(r) <2K (r ) . 

This proves the theorem. • 

Corollary 3.7. — Let T = (V,E) be a locally finite reflexive point transitive relation 
such that d(F) > d(r~). 

Then for every non-empty finite subset A, either T(Y(A)) — T(A) or |r(^4)| > 
\A\+d(T)/2. 

Proof — Let C be a component of T such that A fl C ^ 0 . By Lemma 2.14, 
d(Y) = d(T(C)). By Theorem 3.6, «(r[(7]) > d(T)/2. The result follows now from 
Lemma 2.15. • 

Corollary 3.8. — (Olson [27]) Let A and B be finite nonempty subsets of a group G 
such that l e B . Then \AB\ > min(|i4(B>|,\A\ + \B\/2). 

Proof. — Let T = A(G,B). Clearly d(T) = \B\ = IB'1] = d(T"). By Corollary 3.7, 
either ABB = AB or \AB > \A\ + \B\/2. 

The result is now obvious since the two conditions ABB = AB and A(B) = AB 
are equivalent (observe that A and B are finite). The second one implies the first by 
multiplication with B. Assume the first one holds. Hence AB^ — AB, for all j > 1. 
Since A, B are finite, this last condition implies easily that A(B) = AB. • 

As we have seen, Theorem 3.6 generalises Corollary 3.8 (Olson [27]) to point tran­
sitive relations. In the finite case, this generalisation was proved in [10, Proposition 
3.4] before the result of Olson. 

A relation T — (V, E) is said to be arc-transitive if for all x, y, v, w G V, such 
that (x,y) G E and (v,w) G E and x ^ y and v ^ w, there is / G Aut(T) such that 
v = f(x) and w = f(y). Observe that a connected arc-transitive relation is point 
transitive also. 

A basic example of arc transitive relation is the following one. 

Let R be a division ring and U be a finite multiplicative subgroup of R \ { 0 } . Set 
O = A(i?, U U { 0 } ) . The relation O is clearly point transitive. Let us prove that 
it is arc transitive. Consider two arcs (a, b) and (c, d) such that b ^ a and d ^ c. 
Therefore b — a,d — cEU. Consider the application f(x) = (d — c)(b — a)"1 (x — a) + c. 
Clearly f(a) = c and f(b) = d. It remains to show that / G Aut(fi). Now / is 
the composition of a translation and an application of the form g(x) = ux, where 
u G U. The translation is an automorphism by Lemma 2.9. It remains to show that 
g G Aut(O). This follows from the following obvious equivalence. 

x — y G U if and only if ux — uy G U. 
The following result is proved in [9] in the finite case. 

Theorem 3.9. — Let T — (V, E) be a locally finite connected reflexive arc-transitive 
relation. 

Then r is a Cauchy relation. In particular n{Y) = d(T) — 1. 
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Proof. — According to Lemma 2.3 and Remark 2.a, the statement is invariant if 
we replace Г by T~~ if V is finite. Hence we may assume without lost of generality 
/i(JT) < / i ( r~) , in the finite case. 

Let M be an atom of Г. We shall prove that \M\ = 1. Suppose the contrary. By 
Lemma 2.2, T[M] is connected. In particular, there are x,y £ M with x ф у and 
(x, у) G E. Since Г is connected, к(Т) > 1. In particular there is v G M and w G M , 
such that (v,w) G E. By the transitivity of the group of automorphisms on the arcs, 
there is / G Aut(r) such that f(x) = v and f(y) = w. It follows that f(M) ф M and 
f(M) DM ф 0 , contradicting Corollary 2.8. 

It follows that \M\ = 1. Hence к(Г) = d(r ) - 1, by Lemma 2.2. • 

Corollary 3.10. — Let G be a group containing a finite subset В such that 1 G B. 
Assume that k((B),B) is arc-transitive. 

Then for every finite subset AcG, \AB\ > min(|A(B)| , \A\ + \B\ - 1). 

Proof. — The proof is similar to the proof of Corollary 3.8. • 

Corollary 3.11. — Let R be a division ring and let P be a finite subset of R such that 
0 G P and P \ { 0 } is multiplicative subgroup. Then P is a Cauchy subset of the 
additive subgroup generated by P. 

Proof. — The result follows easily by Corollary 3.10. • 

Corollary 3.11 generalises an inequality proved by Davenport-Lewis in [6] in the 
case of finite fields. We shall improve this result in section 7. 

The notion of a base can be generalised easily to relations as follows. 
A subset Л of a group G is said to be a base with order h if h is the smallest integer 

such that G = Ah. 
Let Г = (V, E) be a point transitive reflexive relation. The diameter of Г is the 

smallest integer к such that Tk = VxV, where Tk is the composition of Г with itself 
к times. 

Clearly if 1 G A, then A is a base of order h if and only if A(G, A) has diameter h. 

Lemma 3.12. — Let X = (V, E) be a finite connected reflexive point transitive relation 
with diameter h. Then 

h < max(2,3 + M - 2d Г 
к(Г) 

). 

Proof — The result holds if h < 2. Assume the contrary. Choose v G V Let X be a 
nonempty subset of G. By the definition of n, we have 

|Г(Г)| > m i n ( m | X | + к(Г)). 
It follows that 

i r ^ " 2 ^ ) ! > min(|F|,d(T) + (h - З)к(Г)). 
Since h is the exact diameter of X, there is y G V such that T (y) f~l Th 2(v) = 0. 
Hence 

\V\ > \d-(y)\ + d{v) + (h - 3)«(Г) = 2d(r) + (Л - З)к(Г). 
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Theorem 3.13 ([11]). — Let T = (V, E) be a finite connected vertex transitive reflexive 

relation with diameter h. Then h < max 2. 2\V\ 
d(T) 

- 1 . 

Proof. — By Lemma 3.12, 

h < max(2,3 + 
\V\ - 2d(T) 

*( r ) 
). 

By Theorem 3.6, 

h < max(2,3 + 
2 ( | V | - 2 d ( r ) ) 

d(T 
). 

Therefore 

h < max(2, 
2IVI 

\d(T)\ 
- 1). 

There was an omission in the statement in [11]. We did add max(2 , . . . ) , to correct 
the statement. 

Theorem 3.13, applied to bases of finite groups, is proved independently by Rodseth 
[29]. This last result is used in [15] to generalise results of Cherly and Deshouillers 
[3], Jia and Nathanson [17] to arbitrary a-finite groups. 

4. The critical inequalities 

We introduce in this section some new objects. The properties of these objects will 
be used later to solve the critical pair problem. 

Let T be a relation on a set 7 . A fragment F of V is said to be a strict fragment 
if fi(T) + 1 < |F| and / i (T- ) + 1 < \S(F)\. 

The relation F is said to be degenerate if T has a finite strict fragment. Let G be 
a group containing a subset B such that 1 € B. We shall say that B is degenerate if 
A(G, B) is degenerate. 

Remark 4.a. — Let T be a relation on a finite set V and let F C V. The following 
conditions are equivalent. 

(i) F is a strict fragment of T. 
(ii) 0(F) is a strict fragment of r~. 

Proof. — Suppose that (i) holds. By Lemmas 2.3 and 2.4, 6(F) is a fragment of T~. 
We have also S~(S(F)) = F. Therefore (ii) holds. The other implication holds by 
duality using Lemmas 2.3 and 2.4. • 

Lemma 4.1 
(i) Let T be reflexive Cauchy relation on a setV. Then T is non-degenerate if and 

only if for all A CV such that 2 < |.4| < oo, 

| r ( A ) | > m i n ( | V | - l , | ¿ | + « ( r ) + l ) . 
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(ii) Let B be a finite Cauchy subset of a group G such that 1 G B. Then B is 
non-degenerate if and only if for all A C G such that 2 < \A\ < oo? 

\AB\ > m i n ( | G | - l , | A | + |B | ) . 

Proof — The result holds trivially if V is infinite. Observe that a fragment with 
cardinality ^ 1 is a strict fragment in this case. Assume the contrary. By Lemma 
3.1, r~ is also a Cauchy relation. 

Suppose that there is A C V such that 2 < \A\ and 

| r ( ^ ) | < m i n ( | V | - l , | ^ | + « ( r ) + l ) . 

By Lemma 2.1, we have |T(^4)| = \A\ + K(T). Hence A is a fragment. We have 
\5(A)\ = \V\ — \Y(A)\ > 2. It follows that Y is degenerate. Similarly one see easily 
that if r is degenerate then every strict fragment A verifies the inequality 

\T(A)\ < rmn(\V\ - 1,\A\ + K ( D + 1). 

Clearly (ii) is a particular case of (1). • 

Lemma 4.2. — Let T be a reflexive regular Cauchy relation on a finite set V and let 
F be a fragment ofT. The following conditions are equivalent. 

(i) F = V \ T"(x), for some x G V. 
(ii)\F\ = \V\-d(T). 
(iii) \S(F)\ = 1. 

Proof. — Suppose that F = V \ V (x), for some x G V. We have 

IFI = IVI - i r - ( x ) | = IVI - d ( r - ) = \V\ - d{T). 

Hence (ii) holds. Suppose now that (ii) holds. We have 

|*(F) | = | V \ r ( F ) | = | F | - | F | - « ( r ) = l. 

Hence (iii) holds. Suppose now that (iii) holds and take 5(F) = {y}. By Lemmas 2.3 
and 2.4, 

F = ö-ö{F) = V\T-{y). 

The minimal cardinality of a strict fragment of a degenerate relation T will be 
denoted by UJ(T). Clearly UJ(T) is finite. A strict fragment of T with cardinality o;(r) 
will be called a superatom of V. 

Lemma 4.3. — Let Y be a reflexive relation on a finite set V. Then T is degenerate 
if and only if it is Y~ is degenerate. 

Proof. — Using Remark 4.a, a fragment F is strict with respect to Y if and only if 
5(F) is strict with respect to Y~. Using Lemma 2.4, we see easily that Y is degenerate 
if and only if T~ is degenerate. • 

Let T be a degenerate Cauchy relation and let If be a superatom of Y. We shall 
say that Y is singular if |(S(if ) | < \K\ — 1. 

Notice that Y is singular if and only if 2cj(r) 4- K(Y) — 1 > \V\. In particular every 
singular relation is finite. 
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Proposition 4.4. — Let Y be a reflexive regular degenerate Cauchy relation. Assume 
that T is singular and let K and M be superatoms ofT. Then either ö(K) = ö(M) 
or S(K)nö(M) = 0. 

Proof. — Suppose on the contrary that ö(K) / 6(M) and S(K) fl 6{M) ^ 0. By 
Lemma 2.4 K ^ M , 8-(6{K)) = K and S-(S(M)) = M. Using Lemma 2.5 applied 
to r~, we have 

\K\M\ = \M\K\< \S(K) \ 8(M)\. 

Since \K\ > \S(K)\ we have K DM ^ 0. By Lemma 2.5, K f l M i s a fragment of V. 
Since K is a superatom of V we have \K fl Ml = 1. Clearly 

IJfl = |il4"| = 1 + jikT \ i^l < |5(ÜT)|, 

a contradiction. • 

Proposition 4.5. — Let Y be a reflexive degenerate Cauchy relation on a set V and 
let M be a superatom of V. Let F be a finite strict fragment of V such that M (¡t F, 
M OF ¿0 and \S(F)\ > \M\. Then 

(i) \Mr\F\ = 1 
(ii) T(M fl F) = T(M) H F (F). 

Proof. — By Lemma 2.5, \S(F) \ 6(M)\ < \M\. Therefore 6(F) fl 6(M) # 0 . 
By Lemma 2.5, (ii) is satisfied and M fl F is a fragment of Y. By the definition of 

a superatom and since M D F ^ M , we have \M fl F\ = 1. • 

The above proposition generalises a result proved in the case of finite symmetric 
relations by Jung. Our finite symmetric relations are equivalent to undirected graphs 
considered by Jung, cf. [18, sâtz 2 ] . The notion of a superatom coincides in this case 
with the notion of a 2-atom of Jung. 

Corollary 4.6. — Let T be a reflexive degenerate Cauchy relation. Assume that T is 
non-singular and let K and M be two distinct superatoms of Y such that KDM ^ 0 . 
Then \K n M\ = 1 and T(K n M) = T(K) fl T(M). 

Proof. — By the definition we have |<S(üO| > 1̂ 1 = By Proposition 4.5, we have 
\K n M\ = 1 and T(K n M) — V{K) n T(M). • 

Corollary 4.7. — Let V be a reflexive degenerate Cauchy relation such that UJ(T) < 
u(T~). Let M be a superatom of Y and let F be a finite strict fragment ofT. Then 
either M C F or \M fl F\ < 1. 

Proof — The inequality u;(r~) < |<5(F)| holds clearly if V is infinite and follows 
in the finite case by Remark 4.a. Therefore \M\ = u(T) < c j ( r " ) < \6(F)\. The 
corollary follows now by Proposition 4.5. • 

Proposition 4.8. — Let T be a reflexive point transitive relation on a set V such that 
both r and T" are non-singular degenerate Cauchy relations and d(T) = d(T~~). As­
sume that 

3 < min(a;(r),a;(r")). 

Then one of the following conditions holds. 
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(i) Any three distinct superatoms of Y have an empty intersection. 
(ii) Any three distinct superatoms of Y~ have an empty intersection. 

Proof. — The statement is invariant by interchanging Y and Y~. We may assume 
without lost of generality that UJ(Y) < cu(Y~). 

Suppose on the contrary that both (i) and (ii) are not satisfied. Choose two distinct 
superatoms A , B of Y and an element x such that x G AD B. 

Since AD B ^ 0. we have by Lemma 2.5 

\SA \ 6B\ <\B\A\< \B\ = u(Y). (1) 

As in the proof of Corollary 4.7, we have w(Y) < \6(A)\. Therefore we have using 
(1), 6(A) \ 8(B) ^ 0. Choose y G S(A) \ 6(B). 

Let K, L and M be distinct superatoms of Y~ such that y G KDLOM. Such super-
atoms exist by the transitivity of the group of automorphisms and by the hypothesis 
that (ii) is not satisfied. By Corollary 4.6, 

KDL = KHM = LDM = {y}. (2) 

Suppose that there are Fx and F2 G {K, L, M} such that Fi U F2 C 5(A) and 
F1^F2. By (2), 

| F i n F 2 | = l . (3) 

Let i G { 1 , 2 } . By Lemma 2.4, 5(B) is a fragment of Y . By Lemma 2.4, A — 
6~(6(A)) and A C 6~(F1) H 6~(F2). Hence x G 5~(FX) n 5~(F2). Now we have 
y G Fi\ 5(B) and x G B n S~(Fi) = 5"(5(B)) fl 5"(Fi) (using Lemma 2.4). By 
Lemma 2.5, applied to Y~ with M — Fi and F — 5(B), we have n 5(B) = 0 or 
Fif)6(B) is a fragment of T~. By the definition of a superatom we have |FiD5(B) | < 1. 
Therefore 

|(FiUF2)n<J(B)| < 2 . (4) 

By (4) we have 

|(Fi U F2) H (5(A) \ 5(B))\ > |FX U F2| - 2. (5) 

By (3) and (5), we have 

\S(A)\S(B)\ > |,Pi| + - 3 > w ( r" ) >ou(Y). 

This inequality contradicts (1). It follows that at most one superatom F G { K , L, M} 
is contained in 5(A). We may assume without loss of generality K (f. 5(A) and 
L <£ 6(A). By Lemma 2.4, A <£ 5~(K) and A <£ 6~(L). 

By Corollary 4.7, \A fl (6~(K) U 5~(L))\ < 2. Therefore 

A n (Y~(K) n Y~(L)) = A\ (6~(K) U <T(L)) # 0 . 

By (2) and Corollary 4.6, 

T - (y) = r - (K fl L) = T - (L) fl r - (L). 

Therefore Y (y)DA^ 0 , contradicting the assumption t/ G 6(A). This contradic­
tion proves the result. • 

Proposition 4.8 generalises a result proved in [14]. 
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5. The Vosper inequality 

We apply in this section the results obtained in section 4 to the case of a finite 
group. Let G be a group and let r G G. The subgroup of G generated by r will be 
denoted by (r). We recall the following elementary fact. 

Remark 5.a. — Let S be a finite subset of G and let r G G. The following conditions 
are equivalent. 

(i) S is a union of right (r)-cosets. 
(ii) (r)S = S. 
(iii) rS = S. 

In this section we study the inequality \AB\ > min(|G| — 1, \A\ + |H|), where A and 
B are subsets of a finite group G. 

Theorem 5.1. — Let B be a degenerate Cauchy subset of a finite group G such that 

1 G B. Set r = A(G, H). Let L be a superatom ofT and let M be a superatom ofT~ 

such that 1 G LDM. 

(i) If B is singular, then x~~lS(L) is a subgroup for every x G 6(L). 
(ii) If B and B~l are non-singular, then there are a subgroup H and a G G such 

that L = H U Ha or M — H \J Ha. 

Proof — Suppose first that T is singular. Choose y G S(K) and set M — y~x8(K). 
We have clearly 1 G M. Let x G M. We have clearly xM DM ^ 0. But 

xM = x(G \ y~~xK) = Ô{xy-XK). 

By Proposition 4.4, M — xM. Hence MM — M and therefore M is a subgroup. This 
proves (i). 

Assume now that T and F~ are non-singular. By Lemma 4.4, T~ is degenerate. 
The result holds clearly if w(r) = 2 or u;(r~) = 2. Assume ÜJ(T) > 3 and u(T~) > 3. 
By Lemma 3.1, B~l is a Cauchy subset. By Proposition 4.8, there exists \£ G {F, T~} 
such that any three distinct superatoms of \& are disjoint. 

Set K = L if T = ^ and K = M if T~ = By Lemma 2.8, for any x eG,xK is 
a superatom of ^ . This observation will be used without reference. 

Take H = {x | xK = K}. Clearly H is a subgroup contained in K. Let Q = K\H. 
If Q = 0, the result holds with a = 1. Assume Q ^ 0 and let a G Q. 

Let x G <2, we have 1 G K D a_1lif fl x-1ÜT. By Proposition 4.8, two of these 
superatoms coincide. Since a,x G Q, we have a_1K 7̂  i i and x~xK / ÜT. Therefore 
a_1i^ = a:_1ii. Hence x G Ha. Hence Q C Ha. Since > 3 and K = H U Q, we 
have |H| > 2. 

Let x £ H. We have Î ÜT n i f | > \H\ > 2. By Corollary 4.6, xK = X . Therefore 
HÜT = i i . Hence i i is a union of right cosets of H. Hence \Q\ > \H\ and therefore 
\Q\ = |H| . It follows that K = HUHa. • 

Corollary 5.2. — Leí B be a degenerate Cauchy subset of a finite group G such that 
1 G B. There are S G { H , H " 1 } , a subgroup H and a E G such that H U Ha ¿«9 a 
strict fragment of A(G, S). 
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Proof. — This result follows immediately from Theorem 5.1. • 

Theorem 5.3. — Let B be a subset of a finite group G such that 1 G B. Then the 
following conditions are equivalent. 

(i) For all AcG such that 2 < \A\, 

\AB\ > m i n ( | G | - l , | A | + |B|). 

(ii) For every subgroup H of G and for every a G G such that \H U Ha\ > 2, 

min(\B(H U off)I,\(H U Ha)B\) > min(|G| - 1, \H U Ha\ + \B\). 

Proof. — Suppose that (i) holds. It follows that for every non-empty i c G , 

\AB\ >min(|G|, |A| + | B | - l ) . 

By Lemma 3.2, B is a Cauchy subset. 
By Lemma 4.1, B is non-degenerate. By Lemma 4.3, B~x is non-degenerate. Hence 

for all A C G such that 2 < \A\, 

\AB~X\ > m i n ( | G | - 1,|A| + |£ | ) . 

Therefore (ii) holds. Suppose that (i) is not satisfied. Hence there exists A such that 
2 < \A\ and 

\AB\ < min(|G| - 2, \A\ + \B\ - 1). 

Case 1. B is a Cauchy subset. — By Lemma 4.1, B is degenerate. By Corollary 5.2, 
there are a G G and a subgroup H such that H U Ha is a fragment of A(G, S) or a 
fragment of A(G, S~x). In this case (ii) is not satisfied. 

5.0.1. Case 2. B is not a Cauchy subset. — By Corollary 3.5, there exists a subgroup 
H of G such that min(|BJT|, \HB\) < min(|G| - 1, \H\ + |B| - 2). 

Clearly \H\ > 2. Since \H\ divides |G|, \BH\ and \HB\, we have 

min(|Bff|, \HB\) < min(|G| - |ff|, \H| + |B| - 1). 

Therefore 
minüBHL \HB\) < min(|G| - 2, Ijffl + IBI - 1). 

It follows that (ii) is not satisfied (with a = 1). 

6. The critical pair theory 

Let G be a group and let r G G \ { 1 } . A subset B C G will be called a right 
progression with ratio r, if there are b G G and a number ib such that 1 < k < \(r)\ 
such that B = {6, r&, r26 , . . . , rfc_16}. 

A subset B C G will be called a n#/i£ coprogression with ratio r, if G \ B is a right 
progression with ratio r. 

A subset B C G will be called a Ze/£ progression with ratio r, if there are 6 G G and 
a number fc such that 1 < k < \(r)\ such that B = {&, 6r, 6r2 , . . . , frr^""1}. 

A subset ß C G is a ie/ï coprogression with ratio r, if G \ B is a left progression 
with ratio r. 
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We say that a subset B C G is a right semi-progression with ratio r, if there are 
b G G and a number such that 1 < < |(r) | satisfying the following properties. 

(1) B D {b.rb^b,...^-1^ 
(2) B \ {6, r6 , r26, . . . ,rk~lb\ is a union (possibly void) of right (r)-cosets. 

A right semi-progression with k — 1 will be called a right almost-periodic. 
A right semi-progression with B D G \ (r)b is a right coprogression. A subset B is 

said to be a left semi-progression if B~x is a right semi-progression. 
We introduce the following notion. Let r G G \ { 1 } and let Ac (r). We say that 

{r i , r i+1 , . . . , rj } is an r-string of A if {r*, r i+1 , . . . , rj } C A and {ri_1 ,rJ+1}flA = 0 . 

Lemma 6.1. — Let B be a finite subset of a group G and let r € G \ {1}. 
If \{l,r}B\ = \B\ + 1, then B is a right semi-progression with ratio r. 

Proof. — Take B — B\ U B2 U • • • U Bk, where B{ is the intersection of B with an 
(r)-right coset. We assume also Bi ^ 0 , for all 1 < i < k. 

We have 

| { l , r } B | = | { l , r } B i | + • • - + \{hr}Bk\ = | £ i | + - - - + \Bk\ + 1. 

It follows that there is j , 1 < j < k, such that 

(i) \{lir}Bj\ = \Bj\ + l. 
(ii) \{l,r}Bi\ = \Bi\,ÎOT a l H ^ i . 

By (ii), we have rBi — Bi, for all i ^ j . It follows using Remark 5.a that Bi is an 
(r)-right coset, for all i ^ j . 

It remains to show that Bj is a right progression with ratio r. Take x G G such 
that Bj C (r)x~x and let C = BjX. It would be enough to show that C is an r-string. 

We have clearly | { l , r } C | = \C\ + 1 and C C (r). We decompose C into (r)-strings. 
Clearly every string {r%r*+1, . . . ,rJ} of C determines uniquely an element rJ+1 of 
{ l , r}<7 \ C. Hence there is exactly one string. • 

Lemma 6.2. — Let G be a finite group and let B be a right semi-progression. If B is 
a Cauchy subset then one of the following conditions holds. 

(i) B is a right almost-periodic subset. 
(ii) B is a right coprogression. 

Proof. ~~~ We have \(r)B\ = \B\ ((r)b)\ + |(r) | . 
If (r)B — G, then clearly B is right coprogression. Assume (r)B ^ G. 
By the definition of K, we have 

| £ | - 1 = « < \d(r)\ = \B \ {{r)b)\ = \B\ - \B n 6<r>|. 

It follows that \B fl (b(r))\ = 1. Thus B is right almost-periodic. • 

Proposition 6.3. — Let G be a finite group and B be a Cauchy subset of G such that 
(\G\, \B\ — 1) = 1. Then B is degenerate if and only if B a right coprogression or a 
left coprogression. 
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Proof. — Set r = A(G,B). By Corollary 5.2, there are S G { I ? , ! ? - 1 } , a finite 
subgroup H and r G G such that K = H U i l r is a strict fragment A(G, S). We have 

IJ3| - 1 = \S\ - 1 = *(A(G, 5 ) ) = | ( F U JTo)5| - | i f U Jïa|. 

Hence |H| divides \B\ - 1. Therefore = 1 and r ^ 1. Hence K = { l , r } . 
By Lemma 6.1, 5 is a right semi-progression with ratio r. The subset S can not be 
almost-periodic since otherwise | (r) | would divide \S\ — 1. 

By Lemma 6.2, S is a right coprogression. Clearly B is a right coprogression if 
S = B. It follows easily that B is a left coprogression if S = J?-1. • 

We need the following lemma. 

Lemma 6.4. — Lei A be a finite subset of a group G and let r G G \ { 1 } . £e£ B be a 
finite right coprogression with ratio r such that \B\ > 2 and \AB\ = \A\ + \B\ — 1 < 
\G\ — 1. Then A is a left progression with ratio r. 

Proof. — Take B = G\ (r)b U {&, r&, r26, . . . , r*_16} and take a £ A. Let G = a"1 A 
and let JD = Bft"1. Clearly \CD\ = |G| + \D\ - 1 < |G| - 1. 

We shall prove first that C C (r). Assume there is x G C\(r). Since D D G \ ( r ) , we 
have ar_1(r> C jD. It follows that (r) C G D . Since 1 G G, we have G \ (r) CD C CD. 
Therefore CD = G, a contradiction. 

This shows that G C (r). The argument used in the last part of the proof of 
Lemma 6.1, shows that A is a left progression of (r). • 

Lemma 6.5. — Let A be a finite subset of a group G with cardinality m and let r G 
G \ { 1 } . Let B = (G \ b(r)) U {6, br, br2,..., 6rfc-1} be a finite left coprogression with 
ratio r such that \B\ > 2 and \AB\ = \A\ + |B | - 1 < |G| - 1. Then there are a G G 
such that A — a { l , r , . . . , rm-1}6_1. 

Proof. — Take a £ A and set C = or1 A. We shall see that 

b~xCb C (r) (1) 

Assume there is c G G such that b lcb $ (r). It follows that c lb £ b(r). Since 
B DG\ 6{r), we have c~lb{r) C £ . It follows that 6(r) C G £ . Since 1 G G, we have 
G \ 6(r) C B C GB. Therefore GJ3 = G. It follows that AB = G, a contradiction. 

Set now i?i = B \ b(r) and J52 = B fl ((r)) . Let us prove that 

CBi n CB2 = 0 . (2) 

We have clearly \CB%\ < \CB\ < |G|. Since CB\ is a union of left cosets we have 
\CBX\ < \G\ - \(r)\. On the other side JBi C CBX. Therefore CBX = 5 i . Now (2) 
follows easily from (1). 

It follows that 

|G| + \BX\ + |B2| - 1 = |CS| = \CBX\ + \CB2\ = |Si| + |GB2|. 

Therefore 

|CB2| = |C| + | B 2 | - 1 . (3) 
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Therefore \(b-1Cb)(b"1B2)\ = \b~lCb\ + fi^B^ - 1. Now b'xCb and b~xB2 are 
subsets of (r). By Lemma 6.4, b~xCb progression with ratio r. The result follows now 
easily. • 

We prove now the main result of this section. It implies a generalisation of Vosper 
Theorem to any Cauchy subset of a finite group, where we replace the condition " |G| 
is prime" in Vosper Theorem by the weaker one "( |G| , |B | — 1) = 1". 

Theorem 6.6. — Let G be a finite group and let B be a Cauchy subset of G such that 

( | G | , | B | - 1 ) = 1. 
Let A C G such that \AB\ = \A\ + \B\ - 1 < \G\ - 1. Then one of the following 

conditions holds. 

(i) \A\ = 1 or A = G \ aB"1, for some a G G. 

(ii) There are a, 6,r G G, k,s G.N such that 

A = {a, ar, ar2,..., ark'1} and B = (G\ (r)b) U {&, r6, r26,..., r'^b}. 

(iii) There are a, 6, r G G, k,s G N s?/c/i that 

A = {ab-\arb-\ar2b-\...ar^b'1} and B = (G\6(r))U{6, òr, òr2 , . . . ^ r * " 1 } . 

Proof. — Assume now that (i) does not hold. Then \A\ > 2. By Lemma 4.2, 
\S(A)\ > 2. It follows that A is a strict fragment and hence by Lemma 4.1, A(G,B) 
is degenerate. 

By Proposition 6.3, there exists r G G\ { 1 } such that B is a right coprogression or a 
left coprogression with ratio r. Consider first the case where B is a right coprogression. 
Choose b G G and 5 G N such that I? = G \ {&, r&, r26, . . . , rs_16} 

By Lemma 6.4, A is a left progression with ratio r. Choose a G G and G N 
such that A = {a , ar, a r2 , . . . , arfc_1}. Therefore (ii) holds. A similar argument using 
Lemma 6.5 shows that (iii) holds if B is a left coprogression. • 

Corollary 6.7 (Vosper Theorem). — Letp be a prime number, and let A and B be two 
non-empty subsets of Zp such that 

\A + B\ = \A\ + \ B \ - l < p - l . 

Then one of the following conditions holds. 

(i) |A| = 1 or \B\ = 1 
(ii) A = Zp \ (a — B), for some a G Zp. 
(iii) A and B are arithmetic progressions with the same difference 

Proof. — Vosper Theorem may be reduced without lost of generality to subsets B 
such that 0 G B and \B\ > 2. Using the Cauchy-Davenport Theorem, B is a Cauchy 
subset. 

The result is now an obvious consequence of Theorem 6.6. • 

Corollary 6.8 ([14]). — Let B be a Cauchy subset of an abelian group G. Then B is 
degenerate if and only if one of the following conditions holds, 

and (i) B is a progression or B is a coprogression. 
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(ii) There exists a finite subgroup H such that 

\H\ > 2 and \G\ > \H + B\ = \H\ + \B\ - 1. 

The proof of this result follows along the lines of Theorem 5.3. One should use 
the fact that an abelian Cayley relation is isomorphic to its inverse to show that the 
inverse relation is also degenerate. 

7. Diagonal forms over a division ring 

The estimation of the range of a diagonal form is one of the classical applications 
of the critical pair theory, cf. [4, 29, 14]. Let us show that our methods imply the 
validity the estimation given in [4, 29, 14] for finite fields in the case of an arbitrary 
division ring. 

Let us begin by a general lemma. 

Lemma 7.1. — Let G be a group and let B be a finite subset of G such that 1 G B. 
Assume that A({B),B) is a a nondegenerate Cauchy subset of G. 

Then for every finite subset A such that \A\ >2, 

\AB\>mm(\A(B)\-lAA\ + \B\). 

The proof is similar to the proof of Lemma 2.15. 

Lemma 7.2. — Let R be a division ring and let P be a finite subset of R such that 
0 G P and P \ { 0 } is multiplicative subgroup. If \R\ > \P\ > 4? then P is neither an 
arithmetic progression nor a coprogression. 

Proof. — This result is proved in [25] in the case of primes fields. The argument 
given there is not easy to generalise to our case. But we shall deduce this result using 
the fact that T = A ( ( F ) , F ) is arc-transitive. 

Consider the case of an arithmetic progression. The case of a coprogression works 
in the same way. Assume that P is an arithmetic progression. Set 

P = {a, a -h r, a + 2 r , . . . , a + (k - l ) r } . 

We may assume without loss of generality that r, 2r G P. Therefore one P = {&, b + 
1, b + 2 , . . . , b + (k - 1 )} , where b = ar~l. It follows that 

| r ( 0 ) n r ( l ) | = f c - l > | r ( 0 ) n r ( 2 ) | , 

contradicting the arc-transitivity of T. • 

Proposition 7.3. — Let R be a division ring and let P be a finite subset of R such 
that 0 G P and P \ { 0 } is multiplicative subgroup. Let Ro be the additive subgroup 
generated by P. Then P is a non-degenerate Cauchy subset of Ro. 

Proof — By Corollary 3.11, P is a Cauchy subset of Ro. Suppose that P is degener­
ate. By Lemma 7.2, P can not be a progression or a coprogression. By Corollary 6.8, 
there is a finite non-trivial subgroup H C Ro such that |i?o| > \H -f B\ = \H\ + \P\ — 1. 
Let p be the characteristic of R. Clearly p divides the order of \H\. It follows that p 
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divides |P| — 1. Since P \ { 0 } is a subgroup, it follows that u G P \ { 0 , 1 } such that 
up — 1. Hence (u — l)p = 0, a contradiction. • 

Theorem 7.4. — Let R be a division ring and let P be a finite subset of R such that 
0 £ P and P\{0} is multiplicative subgroup. Let Ro be the additive subgroup generated 
by P. 

Suppose that \P\ > 4 and let o i , a2 , . . . , an be non-zero elements of R. Then 

\axP + a2P + • • • + anP\ > minflifol, (2n - 1)( |P | - 1) + 1). 

Proof — The proof is by induction. The statement is obvious for n = 1. Suppose 
it true for n. We may assume clearly an+i = 1. By Lemma 7.2, Proposition 7.3 and 
the induction hypothesis, we have 

|6iP + b2P + •. - + bnP + P\ > min(|i?o| - 1,2n(\P\ - 1) + 2). 

Set U = P\{0}. Since 

( (o iP + a2P + • • • + anP + P ) \ {0})U = ( o i P + a2P + • • • + anP + P ) \ { 0 } . 

It follows that IC/I divides \atP + a2P + ••• + anP + PI - 1. It follows that 

|o iP + a2P + * • • + anP + P | > min(|iïo| - 1, (2n + 1)( |P| - 1) + 1). 

It follows easily from this equality that 

| o iP + a2P + . •. + anP + P\ > minflJlol, (2n -f 1)( |P| - 1) + 1). 

Theorem 7.4 was first proved in the case of Zp, by Chowla, Mann and Straus in 
[4]. Tietavainen proved in [29] the above Theorem 7.4 in the case of finite fields with 
odd characteristics. We gave in [14] a proof for all finite fields based on the method 
of superatoms. 

8. An application to networks 

In this section, we identify a relation and its graph. We assume the loops coloured 
with white and the other edges coloured black. 

A network will be modelled by a reflexive graph. The usual models are graphs 
without loops. Basically the two models are equivalent. The first one is more ap­
propriate in our approach. In particular all the results and notions contained in this 
paper apply immediately. The second model requires some easy transformations. The 
reader could consider the black part as the network model and the white part as in­
troduced for theoretical reasons. A point will be called a node or a vertex and an 
edge will be called a link (directed one). 

Let r = (V, E) be a reflexive graph. A sink of T is a proper finite subset of V 
such that T(A) = A. Clearly T is connected if and only if T has no sinks. We shall 
say that T is strongly connected if for all x,y € V, there is a directed path from x 
to y. It is easy to show that a finite graph is connected if and only if it is strongly 
connected. This is not the case for infinite graphs. The Cayley graph A ( Z , { 1 } ) is 
clearly connected and not strongly connected. 
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From now on, all the graphs considered will be assumed for simplicity finite. 
Let F = (V, E) be a finite reflexive regular graph. A set of vertices will be called 

a cutset if its deletion and its incident edges disconnects the graph. A cutset with 
smallest cardinality is called a minimum cutset It is easy to see that the cardinality 
of a minimum cutset is K(T). Let us mention that a fragment is just a sink in the 
subgraph obtained by the deletion of a minimum cutset. 

In a good network, the connectivity should be maximised. By Lemma 2.2, the 
maximal possible value of the connectivity is d(T) — 1. If In particular, if K(T) = 
d(T) — l, then after the failure of d(T) — 2 nodes, the remaining nodes remain connected. 
This property shows that T must be a Cauchy graph. The next property studied in 
network models is the superconnectdness. Let x G V, clearly T(x) \ {x} creates the 
sink { x } , it is thus a cutset with cardinality d(T) — 1. A similar remark holds for 
T~(x) \ {x}. A graph is said to be superconnected if it has no other cutsets with 
cardinality d(T) — 1. It follows easily from the lemmas proved in section 3 that a 
graph is vosperian if and only if all its fragments are trivial, where a trivial fragment 
is either {x} or V \ F~(x), for some x G V. 

Most of the models are Cayley graphs on cyclic groups, called usually loop net­
works. Several attempts were made to characterise superconnected loop networks, cf. 
[16] and the references mentioned there. A first solution to this problem, based on 
Kempermann critical pair theory, is contained in [16]. There is also a characterisa­
tion of vosperian abelian Cayley graphs in [16]. Easier characterisations, based on 
the properties of superatoms, are obtained later in [14]. 

Proposition 6.3 has the following implication. 

Corollary 8.1. — Let G be a finite group and let B be a Cauchy subset of G such that 
(\G\,\B\) — 1. Assume thatB is neither a left coprogression nor a right coprogression. 
Then A(G,B) is superconnected. • 

We conclude this section by explaining the characterisation of vosperian graphs in 
network reliability. This characterisation is contained in an unpublished manuscript 
of the present author. 

Consider a reflexive regular graph T. Set d(T) = d. The following property will be 
denoted by P&: 

\/A,BcV, \A\ = \B\ - k, 3 k disjoint paths from A into B. 

Clearly Pd can not hold, since every d paths starting from T(x) contains two 
intersecting paths. Clearly the path starting in x must use an other vertex of T(x). 
It is an easy consequence of Menger Lemma that T satisfies P<f_i if and only if T is 
a Cauchy graph. The Vosper property is in some sense the critical situation of this 
problem. In particular we have the following characterisation. 

r is vosperian if and only if for all A £ {F(x) : x G V}, B £ {T~(x) : x G V}, 
with \A\ — \B\ — d, there exist d disjoint paths from A into B. 
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