Astérisque

Jean-Marc Deshouillers
 Gregory A. Freiman
 AleXander A. Yudin
 On bounds for the concentration function. 1

Astérisque, tome 258 (1999), p. 425-436
http://www.numdam.org/item?id=AST_1999__258__425_0

© Société mathématique de France, 1999, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON BOUNDS FOR THE CONCENTRATION FUNCTION. 1

by

Jean-Marc Deshouillers, Gregory A. Freiman \& Alexander A. Yudin

Abstract

We give an upper bound for the concentration function of a sum of independent identically distributed integral valued random variables in terms of a lower bound for their tail, under the necessary extra condition that the random variables are not essentially supported in a proper arithmetic progression.

1. Introduction

Let $X_{1}, \ldots, X_{k}, \ldots$ be independent real random variables and $S_{n}=\sum_{k=1}^{n} X_{k}$. It is well known that, in general, the distribution of S_{n} spreads out as n grows. When all the X_{k} 's are square-integrable, the relation $\sigma^{2}\left(S_{n}\right)=\sum_{k=1}^{n} \sigma^{2}\left(X_{k}\right)$ is a way to express this fact. In the general case, Doeblin and Lévy [2] were the first to measure this phenomenon in terms of concentration functions. The concentration function of a real random variable X is defined by

$$
Q(X ; \lambda)=\sup _{t} P\{t<X \leq t+\lambda\} \text { for } \lambda \geq 0
$$

The results of Doeblin and Lévy have been successively improved by Kolmogorov [6], Rogozin [12] and Kesten [5]. Let us quote a corollary to Kesten's result, for the case when the X_{k} 's are identically distributed.

Theorem (Kesten [5], Corollary 1, p. 134)). - There exists an absolute constant C such that for any set of independent identically distributed random variables X_{1}, \ldots, X_{n}

[^0]and any $0<\lambda \leq 2 L$ we have
\[

$$
\begin{equation*}
Q\left(S_{n} ; L\right) \leq C \frac{L}{\lambda} \frac{Q\left(X_{1} ; L\right)}{\sqrt{n\left(1-Q\left(X_{1} ; \lambda\right)\right)}} \tag{1.1}
\end{equation*}
$$

\]

Let us consider the case when the X_{k} 's follow a Cauchy law $\mathcal{C}(1)$, where the Cauchy law $\mathcal{C}(a)$ with parameter $a>0$ has density $a /\left(\pi\left(t^{2}+a^{2}\right)\right)$. One readily sees that for $L=1$ and $0<\lambda \leq 2$, the right hand side of (1.1) has order of magnitude $(\lambda \sqrt{n})^{-1}$ and is never $o(1 / \sqrt{n})$. However, the random variable S_{n} follows the law $\mathcal{C}(n)$, and so

$$
Q\left(S_{n} ; 1\right)=\frac{2}{\pi} \arctan \left(\frac{1}{2 n}\right)=\frac{1}{n \pi}(1+o(1))
$$

The dispersion (in the standard sense) of S_{n} is due to the dispersion of the X_{k} 's themselves; but the dispersion of the X_{k} 's is not reflected in a small concentration $Q\left(X_{1} ; \lambda\right)$ for small λ 's, but indeed for large λ 's: the law of X_{1} has a large tail, as can be seen from the fact that X_{1} is not integrable.

A connection between the moments of the X_{k} 's and the concentration of their sums has been provided by Esséen [3], who proves that the integrability of $\left|X_{1}\right|^{r}$ for some $0<r \leq 2$ implies the lower bound

$$
Q\left(S_{n} ; L\right) \geq K(r) L\left(L+\left(n \mu_{r}\right)^{1 / r}\right)^{-1}
$$

where $\mu_{r}=\inf _{a} E\left(\left|X_{1}-a\right|^{r}\right)$ and $K(r)$ is an explicitly given expression that only depends on r.

We aim at giving an upper bound for the concentration function of S_{n} in terms of the tail of the distribution of the X_{k} 's. There is however a difficulty that will be better seen on discrete random variables. Let us consider an integer $q>1$ and two integral valued random variables X_{1} and X_{1}^{\prime} such that

$$
\begin{aligned}
& P\left\{X_{1}=0\right\}=P\left\{X_{1}^{\prime}=0\right\}=1 / 2 \\
& P\left\{X_{1}^{\prime}=\ell\right\}= \begin{cases}P\left\{X_{1}=\ell / q\right\} \neq 0 & \text { when } q \text { divides } \ell \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We clearly have $Q\left(X_{1} ; 1\right)=Q\left(X_{1}^{\prime} ; 1\right)=1 / 2$ and the tail of the distribution of X_{1}^{\prime} is heavier than that of X_{1}. However, if we consider two sets X_{1}, \ldots, X_{n} and $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ of n independent identically distributed random variables, their sums S_{n} and S_{n}^{\prime} are such that $Q\left(S_{n} ; 1\right)=Q\left(S_{n}^{\prime} ; 1\right)$; we have indeed $P\left\{S_{n}=N\right\}=P\left\{S_{n}^{\prime}=q N\right\}$ and so

$$
Q\left(S_{n} ; 1\right)=\max _{N} P\left\{S_{n}=N\right\}=\max _{M} P\left\{S_{n}^{\prime}=M\right\}=Q\left(S_{n}^{\prime} ; 1\right)
$$

We give in this paper an upper bound for the concentration function of a sum of independent identically distributed integral valued random variables in terms of the measure of their tail, under the assumption that the support of the random variables is not essentially contained in a proper arithmetic progression.

Theorem 1. - Let $\frac{\log 4}{\log 3}<\sigma<2, \varepsilon>0, A \geq 1$ and $a>0$ be given real numbers. Let n be a positive integer and X_{1}, \ldots, X_{n} a set of independent identically distributed

integral valued random variables such that

$$
\begin{gather*}
\max _{q \geq 2} \max _{s \bmod q} \sum_{\ell \equiv s(\bmod q)} P\left\{X_{1}=\ell\right\} \leq 1-\varepsilon, \tag{1.2}\\
\forall L \geq A: Q\left(X_{1} ; L\right) \leq 1-a L^{-\sigma} \tag{1.3}
\end{gather*}
$$

Then we have

$$
\begin{equation*}
Q\left(S_{n} ; 1\right) \leq c n^{-1 / \sigma}, \tag{1.4}
\end{equation*}
$$

where c depends on σ, ε, A and a at most.
The main aim of this paper being to illustrate the use of inverse additive results to probability theory, we kept the statement and proof of our main result as simple as possible. We have thus restricted our attention to integral valued random variables, have not considered the general case when $0<\sigma<2$, and have not made explicit the dependence of c on the parameters ε, A and a. Let us simply notice here that Theorem 1 is valid under the condition $1<\sigma<2$: this depends on the fact that, under iterated applications of Lemma 3, the constant 3^{k} that arise may be improved to $(4-\epsilon)^{k}$, an observation which is basically due to Lev. However, when $\sigma<1$, new phenomena enter the matter (generalized arithmetic progressions); we shall soon return to this topic.

The statement of Theorem 1 becomes false if condition (1.2) is suppressed. Of course, if the constant c in (1.4) is allowed to depend on the law of X_{1}, then condition (1.2) is no longer necessary.

The proof of this theorem may be summarized as follows. The concentration $Q\left(S_{n} ; 1\right)$ is majorized by the mean value of the modulus of the characteristic function of S_{n}; this latter is the n-th power of that of X_{1}, which we call φ, so that the problem reduces to the study of the large values of φ. Here we use two ideas that have been introduced by Freiman, Moskvin and Yudin in [4] in the context of local limit theorems. The first one, which can be seen as a consequence of Bochner's theorem, is that $\varphi\left(t_{1}+t_{2}\right)$ is large as soon as both $\varphi\left(t_{1}\right)$ and $\varphi\left(t_{2}\right)$ are large. The second one comes from the structure theory of set addition: either the set E of the arguments of the large values of φ is small, or it has a structure. In the first case, φ cannot be too large, and so we get (1.4). It remains to exclude the second case; were it to occur, then, as we shall see, either E would contain the vertices of a regular polygon, which would violate (1.2), or it would contain a large interval around 0 , which would contradict (1.3).

Problems of estimating the measure of the set of large values of the characteristic function have also been studied by Arak and Zaitsev [1]. This gave them the possibility to solve a famous problem of Kolmogorov on the estimation of the approximation of the n-th convolution of any probability distribution by that of an infinitely divisible law.

As a warm up, and in order to introduce some tools and techniques, we devote the second paragraph to prove a special case of the Doeblin-Lévy-Kolmogorov-RogozinKesten (DLKRK) inequality which stems from the same ideas and follows [10], [11].

The interested reader will find questions of a similar flavour in the classical monographs by Petrov [9] and the more recent one by Ledoux and Talagrand [7].

2. A DLKRK inequality for discrete random variables

Theorem 2 (DLKRK). - Let X_{1}, \ldots, X_{n} be independent identically distributed integral valued random variables, and let S_{n} be their sum and $p=\max _{N} P\left\{X_{1}=N\right\}$. For every integer N, we have

$$
P\left\{S_{n}=N\right\} \leq 40 \frac{p}{\sqrt{n(1-p)}}
$$

Let us start by giving some notation that will be used in this paragraph and the next. We let

$$
\begin{aligned}
& p_{\ell}=P\left\{X_{1}=\ell\right\} \text { for any } \ell \in \mathbb{Z} \\
& \varphi(t)=\sum_{\ell \in \mathbb{Z}} p_{\ell} \exp (2 \pi i t \ell) \text { for } t \in \mathbb{T}=\mathbb{R} / \mathbb{Z} \\
& E(\theta)=\{t \in \mathbb{T}:|\varphi(t)| \geq \cos \theta\} \text { for } 0 \leq \theta \leq \pi / 2 \\
& \theta^{*} \text { be such that } \cos \theta^{*}=\min |\varphi(t)| \text { and } 0 \leq \theta^{*} \leq \pi / 2
\end{aligned}
$$

The proof of Theorem 2 will be based on the following two results, for the first of which we give a sketch of a proof.

Lemma 1 (cf. [4]). - For $\theta_{1} \geq 0, \theta_{2} \geq 0$ and $\theta_{1}+\theta_{2} \leq \frac{\pi}{2}$, we have

$$
E\left(\theta_{1}\right)+E\left(\theta_{2}\right) \subset E\left(\theta_{1}+\theta_{2}\right)
$$

Proof. - For $j=1,2$, we consider t_{j} in $E\left(\theta_{j}\right)$, and let $\alpha_{j}=\arg ^{t} \varphi\left(t_{j}\right)$ and $\lambda_{j}=$ $\sqrt{1-\left|\varphi\left(t_{3-j}\right)\right|^{2}} e^{-i \alpha_{j}}$. We use the Cauchy inequality to get an upper bound on

$$
\left|\lambda_{1} \varphi\left(t_{1}\right)+\lambda_{2} \varphi\left(-t_{2}\right)\right|^{2}=\left|\sum_{\ell} \sqrt{p_{\ell}}\left(\lambda_{1} \sqrt{p_{\ell}} e^{2 \pi i \ell t_{1}}+\lambda_{2} \sqrt{p_{\ell}} e^{-2 \pi i \ell t_{2}}\right)\right|^{2}
$$

Lemma 2 (Macbeath-Kneser Theorem, cf. [8], p. 13-14). - Let E_{1} and E_{2} be two nonempty closed sets in \mathbb{T}. We have

$$
\left|E_{1}+E_{2}\right| \geq \min \left(1,\left|E_{1}\right|+\left|E_{2}\right|\right)
$$

where $|A|$ represents the Haar measure of A in \mathbb{T}.

Proof of Theorem 2. - We may of course assume that p is strictly less that 1 and so θ^{*} is strictly positive. Our first task is to show that

$$
\begin{equation*}
\left.|E(\theta)| \leq 12 \frac{\theta p}{\sqrt{1-p}}, \text { for } \theta \in\right] 0, \theta^{*} / 2[\tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left.|E(\theta)| \leq p / \cos ^{2} \theta, \text { for } \theta \in\right] 0, \frac{\pi}{2}\right] \tag{2.2}
\end{equation*}
$$

By the definition of θ^{*}, we have

$$
\cos ^{2} \theta^{*} \leq \int_{\mathbb{T}}|\varphi(t)|^{2} d t=\sum_{\ell} p_{\ell}^{2} \leq p \sum_{\ell} p_{\ell}=p
$$

whence

$$
\begin{equation*}
\theta^{*}>\left|\sin \theta^{*}\right|=\sqrt{1-\cos ^{2} \theta^{*}} \geq \sqrt{1-p} \tag{2.3}
\end{equation*}
$$

Now let θ be in $] 0, \theta^{*} / 2\left[\right.$, and let $M=\left[\theta^{*} / \theta\right]$; we have $M \geq 2$. We may write

$$
\begin{aligned}
p & \geq \int_{\mathbb{T}}|\varphi(t)|^{2} d t \\
& \geq \sum_{m=1}^{M} \int_{\cos (m \theta) \leq|\varphi(t)|<\cos ((m-1) \theta)}|\varphi(t)|^{2} d t \\
& \geq \sum_{m=1}^{[M / 2]}|E(m \theta) \backslash E((m-1) \theta)| \cos ^{2} m \theta
\end{aligned}
$$

and by appealing to Lemma 2, we get

$$
\begin{aligned}
p & \geq|E(\theta)| \sum_{m=1}^{[M / 2]} \cos ^{2} m \theta \\
& \geq|E(\theta)| \cdot[M / 2] \cdot \frac{1}{2} \\
& \geq \frac{M}{6}|E(\theta)| \\
& \geq \frac{\theta^{*}}{12 \theta}|E(\theta)|
\end{aligned}
$$

This last inequality and (2.3) imply (2.1). Inequality (2.2) simply follows from

$$
p \geq \int_{\mathbb{T}}|\varphi(t)|^{2} d t \geq|E(\theta)| \cdot \cos ^{2} \theta
$$

For every integer N, we have

$$
\begin{aligned}
P\left\{S_{n}=N\right\} & =\int_{\mathbb{T}} \varphi^{n}(t) \exp (-2 \pi i N t) d t \\
& \leq \int_{\mathbb{T}}|\varphi(t)|^{n} d t
\end{aligned}
$$

By change of variable, and then integration by parts, we have

$$
\begin{aligned}
\int_{\mathbb{T}}|\varphi(t)|^{n} d t & =\int_{0}^{\frac{\pi}{2}} \cos ^{n} \theta d|E(\theta)| \\
& =\int_{0}^{\frac{\pi}{2}} n \cos ^{n-1} \theta \sin \theta \cdot|E(\theta)| d \theta
\end{aligned}
$$

We now use (2.1), getting

$$
\begin{aligned}
\int_{0}^{\theta^{*} / 2} n \cos ^{n-1} \theta \sin \theta|E(\theta)| d \theta & \\
& \leq \frac{12 p}{\sqrt{1-p}} \int_{0}^{\frac{\pi}{2}} \cos ^{n} \theta d \theta \\
& \leq \frac{12 p \sqrt{\pi / 2}}{\sqrt{(1-p)} \sqrt{n}}
\end{aligned}
$$

On the remaining interval $\left[\theta^{*} / 2, \pi / 2\right]$, we use (2.2), which leads, for $n \geq 3$, to

$$
\begin{aligned}
\int_{\theta^{*} / 2}^{\pi / 2} n \cos ^{n-1} \theta \sin \theta \frac{p}{\cos ^{2} \theta} d \theta & \leq \frac{n}{n-2} p \int_{\theta^{*} / 2}^{\pi / 2}(n-2) \cos ^{n-3} \theta \sin \theta d \theta \\
& =\frac{n p}{n-2} \cos ^{n-2}\left(\frac{\theta^{*}}{2}\right) \\
& \leq \frac{n p}{n-2} \cos ^{n-2}\left(\frac{\sqrt{(1-p)}}{2}\right)
\end{aligned}
$$

From the inequality $x \cos ^{n} x \leq \frac{1}{\sqrt{n}}$, we get

$$
\begin{aligned}
\int_{\theta^{*} / 2}^{\pi / 2} n \cos ^{n-1} \theta \sin \theta|E(\theta)| d \theta & \\
& \leq \frac{2 n p}{(n-2) \sqrt{(n-2)(1-p)}} \\
& \leq \frac{12 p}{\sqrt{n(1-p)}}
\end{aligned}
$$

We have completed the proof of Theorem 2 when $n \geq 3$. For $n \leq 2$, we simply have to notice that $P\left\{S_{n}=N\right\} \leq p \leq \frac{40 p}{\sqrt{n(1-p)}}$.

3. Proof of Theorem 1

The letter c (with or without indices) always represents a constant that depends on σ, ε, A and a at most. The value may change from one occurrence to the next.

The key ingredient which will play the rôle of Lemma 2 is the following result, which will be applied with $k=2^{2 / \sigma}$.

Lemma 3 (Freiman - Moskvin - Yudin [4]). - Let $2<k<3$; there exists a positive real number $\mu=\mu(k)$ such that for any closed set F in \mathbb{T}, symmetric with respect to the origin and satisfying:

$$
|F| \leq \mu \quad \text { and } \quad|2 F|<k|F|
$$

there exists a positive integer q such that

$$
\bigcup_{r=0}^{q-1}\left[\frac{r}{q}-\frac{|F|}{q}, \frac{r}{q}+\frac{|F|}{q}\right] \subset 3 F
$$

We give two further results connecting the values of the characteristic function with the concentration of the associated distribution, the second one being of an arithmetical nature.

Lemma 4. - Let α and L^{-1} be two positive real numbers. If $|\varphi(t)| \geq 1-\alpha$ for all t in $\left[-\frac{1}{2 L}, \frac{1}{2 L}\right]$, then $Q\left(X_{1} ; L\right) \geq 1-6 \alpha$.

Proof. - Let us write $Q=Q(L)$, and define x_{0} the supremum of

$$
\left\{x: P\left\{X_{1} \leq x\right\} \leq(1-Q) / 2\right\}
$$

Since $x \mapsto P\left\{X_{1} \leq x\right\}$ is continuous from the right, we have $P\left\{X_{1} \leq x_{0}\right\} \geq(1-Q) / 2$. On the other hand, for $x<x_{0}$, we have

$$
P\left\{X_{1} \geq x+L\right\} \geq 1-P\left\{x<X_{1} \leq x+L\right\}-P\left\{X_{1} \leq x\right\} \geq(1-Q) / 2
$$

and, since $P\left\{X_{1} \geq x+L\right\}$ is continuous from the left, we have $P\left\{X_{1} \geq x_{0}+L\right\} \geq$ $(1-Q) / 2$.

Let us define

$$
\varphi_{-}(t)=\sum_{k \leq x_{0}} p_{k} \exp (2 \pi i k t), \quad \varphi_{+}(t)=\sum_{\ell \geq x_{0}+L} p_{\ell} \exp (2 \pi i \ell t)
$$

and $\varphi_{0}(t)=\sum_{x_{0}<m<x_{0}+L} p_{m} \exp (2 \pi i m t)$.

Let us denote by I the interval $\left[-\frac{1}{2 L}, \frac{1}{2 L}\right]$. By the Schwarz inequality, we get

$$
\begin{aligned}
\left(L \int_{I} \mid \varphi_{-}(t)\right. & \left.+\varphi_{+}(t) \mid d t\right)^{2} \leq L \int_{I}\left|\varphi_{-}(t)+\varphi_{+}(t)\right|^{2} d t \\
& \leq \varphi_{-}^{2}(0)+\varphi_{+}^{2}(0)+2 L \sum_{k \leq x_{0}} \sum_{\ell \geq x_{0}+L} p_{k} p_{\ell}\left|\int_{I} \cos (2 \pi(k-\ell) t) d t\right| \\
& \leq \varphi_{-}^{2}(0)+\varphi_{+}^{2}(0)+\frac{2}{\pi} \varphi_{-}(0) \varphi_{+}(0) \\
& \leq\left(\left(\varphi_{-}(0)+\varphi_{+}(0)\right)^{2}-\left(2-\frac{2}{\pi}\right) \varphi_{-}(0) \varphi_{+}(0)\right) \\
& =\left(\varphi_{-}(0)+\varphi_{+}(0)\right)^{2}\left(1-\left(2-\frac{2}{\pi}\right) \frac{\varphi_{-}(0) \varphi_{+}(0)}{\left(\varphi_{-}(0)+\varphi_{+}(0)\right)^{2}}\right)^{2} \\
& \leq\left(\varphi_{-}(0)+\varphi_{+}(0)\right)^{2}\left(1-\left(1-\frac{1}{\pi}\right) \frac{\varphi_{-}(0) \varphi_{+}(0)}{\left(\varphi_{-}(0)+\varphi_{+}(0)\right)^{2}}\right)^{2}
\end{aligned}
$$

and so we get

$$
L \int_{I}\left|\varphi_{-}(t)+\varphi_{+}(t)\right| d t \leq \varphi_{-}(0)+\varphi_{+}(0)-\frac{2}{3} \frac{\varphi_{-}(0) \varphi_{+}(0)}{\varphi_{-}(0)+\varphi_{+}(0)} .
$$

This leads to

$$
1-\alpha \leq L \int_{I}|\varphi(t)| d t \leq \varphi_{0}(0)+\varphi_{-}(0)+\varphi_{+}(0)-\frac{2}{3} \frac{\varphi_{-}(0) \varphi_{+}(0)}{\varphi_{-}(0)+\varphi_{+}(0)}
$$

Since the minimum of $\frac{x y}{x+y}$ under the conditions $\frac{1-Q}{2} \leq x, y \leq \frac{1+Q}{2}$ and $1-Q \leq$ $x+y \leq 1$ is $\frac{1-Q}{4}$, we have

$$
1-\alpha \leq 1-\frac{2}{3}\left(\frac{1-Q}{4}\right)
$$

which implies

$$
1-Q \leq 6 \alpha
$$

Lemma 5. - Let $q \geq 1$ be an integer. We have

$$
\frac{1}{q} \sum_{r=0}^{q-1}\left|\varphi\left(\frac{r}{q}\right)\right|^{2} \leq \max _{s} \sum_{\ell \equiv s(\bmod q)} p_{\ell}
$$

Proof. - We have

$$
\varphi\left(\frac{r}{q}\right)=\sum_{\ell} p_{\ell} \exp \left(2 \pi i \ell \frac{r}{q}\right)=\sum_{s=0}^{q-1} \exp \left(2 \pi i s \frac{r}{q}\right) P_{s}
$$

where $P_{s}=\sum_{\ell \equiv s \bmod q} p_{\ell}$, so that

$$
\begin{aligned}
\frac{1}{q} \sum_{r=0}^{q-1}\left|\varphi\left(\frac{r}{q}\right)\right|^{2} & =\frac{1}{q} \sum_{r=0}^{q-1} \sum_{s=0}^{q-1} \sum_{t=0}^{q-1} \exp \left(2 \pi i \frac{r(s-t)}{q}\right) P_{s} P_{t} \\
& =\sum_{s=0}^{q-1} \sum_{t=0}^{q-1}\left\{\frac{1}{q} \sum_{r=0}^{q-1} \exp \left(2 \pi i \frac{r(s-t)}{q}\right)\right\} P_{s} P_{t} \\
& =\sum_{s=0}^{q-1} P_{s} P_{s} \\
& \leq\left(\max _{s \bmod q} P_{s}\right) \sum_{s=0}^{q-1} P_{s}
\end{aligned}
$$

but

$$
\sum_{s=0}^{q-1} P_{s}=\sum_{s=0}^{q-1} \sum_{\ell \equiv s(\bmod q)} p_{\ell}=\sum_{\ell} p_{\ell}=1
$$

and Lemma 5 is proved.
We keep the notation that we introduced at the beginning of section 2, and further let

$$
\begin{equation*}
\theta_{1}=\min \left(\theta^{*} / 4, \frac{\mu \sqrt{1-p}}{12 p}, \sqrt{\varepsilon} / 2, \frac{\sqrt{1-p}}{12 p A}\right) \tag{3.1}
\end{equation*}
$$

so that (2.1) implies that $|E(\theta)| \leq \mu$, for $\theta \leq \theta_{1}$.
Let us assume that there exists $\theta_{0} \leq \theta_{1}$ such that $\left|2 E\left(\theta_{0}\right)\right|<k\left|E\left(\theta_{0}\right)\right|$. According to Lemma 3, one of the following possibilities holds true:

$$
\begin{gather*}
\exists q \geq 2:\left\{\frac{0}{q}, \frac{1}{q}, \ldots, \frac{q-1}{q}\right\} \subset E\left(3 \theta_{0}\right) \tag{3.2}\\
{\left[-\left|E\left(\theta_{0}\right)\right|,\left|E\left(\theta_{0}\right)\right|\right] \subset E\left(3 \theta_{0}\right) .} \tag{3.3}
\end{gather*}
$$

Let us first assume that (3.2) is satisfied. We use Lemma 5, which leads to

$$
\max _{s} \sum_{\ell \equiv s(\bmod q)} p_{\ell} \geq \cos ^{2} 3 \theta_{0}
$$

and by condition (1.2) of Theorem 1, we obtain

$$
\cos ^{2} 3 \theta_{0} \leq 1-\varepsilon
$$

whence

$$
\theta_{0} \geq \sqrt{\varepsilon / 3}
$$

in contradiction with the inequalities $\theta_{0} \leq \theta_{1} \leq \sqrt{\varepsilon} / 2$.
Hence, condition (3.3) is satisfied. Lemma 4 then leads us to

$$
Q\left(X_{1} ;\left|E\left(\theta_{0}\right)\right|^{-1}\right) \geq 1-6\left(1-\cos \left(3 \theta_{0}\right)\right)
$$

and by condition (1.3) of Theorem 1,

$$
1-6\left(1-\cos 3 \theta_{0}\right) \leq 1-a\left|E\left(\theta_{0}\right)\right|^{\sigma}
$$

whence

$$
a\left|E\left(\theta_{0}\right)\right|^{\sigma} \leq 6\left(1-\cos \left(3 \theta_{0}\right)\right)
$$

or

$$
\begin{equation*}
\left|E\left(\theta_{0}\right)\right| \leq c \theta_{0}^{2 / \sigma} \tag{3.4}
\end{equation*}
$$

Let us summarize what we have proved so far, remembering that Lemma 1 implies $2 E(\theta) \subset E(2 \theta)$. For $\theta \leq \theta_{1}$, we have

$$
\text { either } \quad k|E(\theta)| \leq|E(2 \theta)| \quad \text { or } \quad|E(\theta)| \leq c \theta^{2 / \sigma}
$$

Our next step is to prove that for $\theta \leq \theta_{1}$, we have

$$
\begin{equation*}
|E(\theta)| \leq k \max \left(c, \frac{\left|E\left(\theta_{1}\right)\right|}{\theta_{1}^{2 / \sigma}}\right) \theta^{2 / \sigma} \tag{3.5}
\end{equation*}
$$

Indeed, by induction, we have for any $\ell \geq 0$:

$$
\left|E\left(\theta_{1} / 2^{\ell}\right)\right| \leq \max \left(c, \frac{\left|E\left(\theta_{1}\right)\right|}{\theta_{1}^{2 / \sigma}}\right)\left(\theta_{1} / 2^{\ell}\right)^{2 / \sigma}
$$

either by using

$$
\left|E\left(\theta_{1} / 2^{\ell+1}\right)\right| \leq \frac{1}{k}\left|E\left(\theta_{1} / 2^{\ell}\right)\right|=\frac{1}{2^{2 / \sigma}}\left|E\left(\theta_{1} / 2^{\ell}\right)\right|
$$

or directly

$$
\left|E\left(\theta_{1} / 2^{\ell+1}\right)\right| \leq c\left(\theta_{1} / 2^{\ell+1}\right)^{2 / \sigma}
$$

when the previous inequality does not hold. Now, for $\theta \leq \theta_{1}$, we choose ℓ such that $\theta_{1} / 2^{\ell+1}<\theta \leq \theta_{1} / 2^{\ell}$, and notice that $E(\theta) \subset E\left(\theta_{1} / 2^{\ell}\right)$, so that we have

$$
\begin{aligned}
|E(\theta)| & \leq \max \left(c, \frac{\left|E\left(\theta_{1}\right)\right|}{\theta_{1}^{2 / \sigma}}\right)\left(\theta_{1} / 2^{\ell}\right)^{2 / \sigma} \\
& \leq k \max \left(c, \frac{\left|E\left(\theta_{1}\right)\right|}{\theta_{1}^{2 / \sigma}}\right)\left(\theta_{1} / 2^{\ell+1}\right)^{2 / \sigma}
\end{aligned}
$$

whence (3.5) follows.
As in section 2, we write

$$
\begin{aligned}
P\left\{S_{n}=N\right\} & \leq \int_{\mathbb{T}}|\varphi(t)|^{n} d t \\
& \leq \int_{0}^{\frac{\pi}{2}} n \cos ^{n-1} \theta \sin \theta|E(\theta)| d \theta
\end{aligned}
$$

and we majorize $|E(\theta)|$ by (3.5) on the set $\left[0, \theta_{1}\right]$, and by (2.2) on $\left[\theta_{1}, \frac{\pi}{2}\right]$. We get, for $n \geq 3$

$$
\begin{aligned}
P\left\{S_{n}=N\right\} \leq & k \max \left(c, \frac{\left|E\left(\theta_{1}\right)\right|}{\theta_{1}^{2 / \sigma}}\right) \int_{0}^{\theta_{1}} n \cos ^{n-1} \theta \sin \theta \cdot \theta^{2 / \sigma} d \theta \\
& +\frac{n}{n-2} \cos ^{n-2} \theta_{1}
\end{aligned}
$$

We now find upper bounds for the terms containing θ_{1}, as well as for the integral. We have $\theta_{1} \leq \pi / 8$ so that $\theta_{1}^{2 / \sigma} \leq(\pi / 8)^{2 / \sigma}$, and

$$
\left|E\left(\theta_{1}\right)\right| \leq \frac{1}{\cos ^{2} \theta_{1}} \leq \frac{1}{\cos ^{2} \pi / 8}
$$

By (2.3), we have $\theta^{*} \geq \sqrt{1-p} \geq \sqrt{\varepsilon}$, so that θ_{1}, defined in (3.1), depends at most on $\mu($ and so on $\sigma), \varepsilon, A, a$, so that $\cos ^{n-2} \theta_{1} \leq c / n^{2}$.

We finally have, for $1 \leq \ell \leq 2$

$$
\begin{aligned}
\int_{0}^{\theta_{1}} n \cos ^{n-1} \theta \sin \theta \cdot \theta^{\ell} d \theta & \leq 2 \int_{0}^{\frac{\pi}{8}} \theta^{\ell-1} \cos ^{n} \theta d \theta \\
& \leq 2 \int_{0}^{\frac{\pi}{8}} \theta^{\ell-1} \exp \left(-\frac{\theta^{2} n}{2}\right) d \theta \\
& \leq 2 n^{-\ell / 2} \int_{0}^{\infty}(\theta \sqrt{n})^{\ell-1} \exp \left(-\frac{\theta^{2} n}{2}\right) d(\theta \sqrt{n}) \\
& \leq c n^{-\ell / 2}
\end{aligned}
$$

where c is an absolute constant.
We have thus obtained

$$
P\left\{S_{n}=N\right\} \leq c n^{-1 / \sigma}
$$

where c depends at most on σ, ε, A and a.
We are thankful to Ruth Lawrence for her careful reading of the paper.

References

[1] Arak T.V. and Zaitsev A.Yu., Uniform limit theorems for sums of independent random variables, Proceedings of the Steklov Institute of Mathematics, issue 1, 1988, 41-61.
[2] Doeblin W. and Lévy P., Sur les sommes de variables aléatoires indépendantes à dispersions bornées inférieurement, C.R. Acad. Sci. Paris 202, 1936, 2027-2029.
[3] Esséen C.G., On the Kolmorogov-Rogozin inequality for the concentration function, Z. Wahrscheinlichkeitstheorie und verw. Gebiete, 5, 1966, 210-216.
[4] Freiman G.A., Moskvin D.A. and A.A. Yudin A.A., Inverse problems of additive number theory and local limit theorems for lattice random variables, (in Russian), Number theoretic studies in the Markov spectrum and in the structure theory of set addition, Kalinin Gos. Univ., Moscow, 1973, 148-162.
[5] Kesten H., A sharper form of the Doeblin-Lévy-Kolmogorov-Rogozin inequality for concentration functions, Math. Scand. 25, 1969, 133-144.
[6] Kolmogorov A.N., Sur les propriétés des functions de concentration de M.P. Lévy, Ann. Inst. H. Poincaré 16, 1958-1960, 27-34.
[7] Ledoux M. and Talagrand M. Probability in Banach spaces. Isoperimetry and processes, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 23, Springer-Verlag, Berlin, 1991, xii +480 pp . ISBN: 3-540-52013-9.
[8] Mann H.B., The Addition Theorems of Groups Theory and Number Theory, Interscience, 18, J. Wiley, New York, 1965.
[9] Petrov V.V., Limit theorems for sums of independent random variables, (Russian), Probability Theory and Mathematical Statistics, "Nauka", Moscow, 1987, 318 pp.
[10] Postnikova L.P. and Yudin A.A., On the concentration function, Th. Probability Appl., 22, 1977, 302-305.
[11] Postnikova L.P. and Yudin A.A., An analytic method for estimates of the concentration function, Proc. Steklov Inst. Math., 1980, 153-161.
[12] Rogozin B.A., On the increase of dispersion of sums of independent random variables, Th. Probability Appl., 6, 1961, 97-99.

[^1]
[^0]: 1991 Mathematics Subject Classification. - 60 E15, 60 E10, 11 B05, 11 Z05.
 Key words and phrases. - Sums of discrete random variables; concentration function, DLKRKinequalities, characteristic function, additive number theory.
 J.-M. D: Cette recherche a benificié du soutien du CNRS (UMR 9936, Université Bordeaux 1) et de l'Université Victor Segalen Bordeaux 2.
 A. Y: This work was supported in part by RFFI GRANT N 93-01-00260.

[^1]: J.-M. Deshouillers, Mathématiques stochastiques, Université Bordeaux 2, BP 26, 33076 Bordeaux, France - E-mail : j-m.deshouillers@u-bordeaux2.fr
 G.A. Freiman, School of Mathematical Sciences, Department of Mathematics, Raymond and Beverly Sackler, Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv, Israel E-mail: grisha@math.tau.ac.il
 A. Yudin, Department of Mathematics, Vladimir Pedagogical University, 11, pr. Stroiteley, Vladimir, Russia • E-mail : aayudin@vgpu.elcom.ru

