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LOCAL MONOMIALIZATION AND FACTORIZATION
OF MORPHISMS

Steven Dale Cutkosky

Abstract. — Suppose that R C S are regular local rings of a common dimension,
which are essentially of finite type over a field k£ of characteristic zero, such that
the quotient field K of S is finite over the quotient field of R. If V is a valuation
ring of K which dominates S, then we show that there are sequences of monoidal
transforms (blowups of regular primes) R — R; and S — S; along V such that
R, — S: is a monomial mapping. It follows that a generically finite morphism of
nonsingular varieties can be made to be a monomial mapping along a valuation, after
blowups of nonsingular subvarieties. We give applications to factorization of birational
morphisms and simultaneous resolution of singularities.

Résumé (Monomialisation et factorisation locales des morphismes)

Soient R C S deux anneaux locaux réguliers de méme dimension, essentiellement
de type fini sur un corps k de caractéristique zéro, et tels que le corps des fractions
K de S est fini sur celui de R. Si V est un anneau de valuation de K dominant S,
nous montrons qu’il existe des suites de transformés monoidaux (éclatements d’idéaux
premiers réguliers) R — R; et S — S; le long de V tels que Ry — S; est une
application monomiale. Il s’ensuit qu’'un morphisme génériquement fini de variétés
non singuliéres peut étre rendu monomial le long d’une valuation aprés éclatement
de sous-variétés non singuliéres. Nous donnons des applications & la factorisation des
morphismes birationnels et & la résolution simultanée des singularités.
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CHAPTER 1

INTRODUCTION

1.1. Statement of the main results

Suppose that we are given a system of equations

1 = iy, Y2, Yn)
(1) :
Zn = fan¥1,¥2,---,Yn)

which is nondegenerate, in the sense that the Jacobian determinate of the system is not
(identically) zero. This system is well understood in the special case that fi,..., fn
are monomials in the variables y,...,y,. For instance, by inverting the matrix A of
coefficients of the monomials, we can express yi,..., ¥y, as rational functions of d-th
roots of the variables x1,...,x,, where d is the determinant of A.

Our main result shows that all solutions of a system (1) can be expressed in the
following simple form. There are finitely many charts obtained from a composition of
monoidal tranforms in the variables z and y

2 = ®(T1,...,Fn), 1<i<n
Yi = \Pi(yIV"‘vyn)? ]-stn

such that the transform of the system (1) becomes a system of monomial equations

= — 7011 7701
wl = yl e yn n
7 — 270nl =a
Tn =Y1" o Un"

with det(a;;) # 0. A monoidal transform is a composition of

(1) a change of variable



2 CHAPTER 1. INTRODUCTION

(2) a transform

r1 = .’131(1)1,‘2(1)
z (1)  ifi>1.

T4

Our solution is constructive, as it consists of a series of algorithms.

This result can be interpreted geometrically as follows. Suppose that ¢ : X - Y
is a generically finite morphism of varieties. Then it is possible to construct a finite
number of charts X; and Y; such that X; — Y; are monomial mappings, the mappings
X; - X and Y; — Y are sequences of blowups of nonsingular subvarieties, and X; and
Y; form complete systems, in the sense that they can be patched to obtain schemes
which satisfy the existence part of the valuative criteria of properness.

Our main result is stated precisely in Theorem 1.1.

Theorem 1.1 (Monomialization). — Suppose that R C S are regular local rings, es-
sentially of finite type over a field k of characteristic zero, such that the quotient field
K of S is a finite extension of the quotient field J of R.

Let V be a valuation ring of K which dominates S. Then there exist sequences
of monoidal transforms R — R' and S — S' such that V dominates S’, S' domi-
nates R' and there are regular parameters (z1,...,2,) in R', (y1,...,yn) in S’, units
01,...,0n € S" and a matriz (a;;) of nonnegative integers such that det(a;;) # 0 and

z1 = Y yan gy
()

T, = y‘l”"l . .y%nn&n.

With the assumptions of Theorem 1.1, An example of Abhyankar (Theorem 12 [6])
shows that it is in general not possible to perform monoidal transforms along V' in R
and S to obtain R’ — S’ such that R’ — S’ is (a localization of) a finite map. As
such, Theorem 1.1 is the strongest possible local result for generically finite maps.

A more geometric statement of Theorem 1.1 is given in Theorem 1.2. A complete
variety over a field k is an integral finite type k-scheme which satisfies the existence
part of the valuative criterion for properness (cf. Chapter 8). Complete and sepa-
rated is equivalent to proper. A toroidal morphism is locally a monomial mapping in
uniformizing parameters on an appropriate etale extension.

Theorem 1.2. — Let k be a field of characteristic zero, ® : X — Y a generically finite
morphism of nonsingular proper k-varieties. Then there are birational morphisms of
nonsingular complete k-varieties a : X3 — X and f : Y1 = Y, and a toroidal
morphism ¥ : X; — Y7 such that the diagram

X, Ly
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1.1. STATEMENT OF THE MAIN RESULTS 3

commutes and a and 3 are locally products of blowups of nonsingular subvarieties.
That is, for every z € X, there exist affine neighborhoods Vi of z, V of z = a(z),
such that o : Vi = V is a finite product of monoidal transforms, and there ezist affine
neighborhoods W1 of ¥(z), W of y = a(¥(z)), such that B : Wy — W is a finite
product of monoidal transforms.

Here a monoidal transform of a nonsingular k-scheme S is the map 77 — S in-
duced by an open subset T of Proj(Z"), where Z is the ideal sheaf of a nonsingular
subvariety of S. We give a proof of Theorem 1.2 in chapter 8.

In the special case of dimension two, we can strengthen the conclusions of Theorem
1.2.

Theorem 1.3. — Let k be a field of characteristic zero, ® : S — T a generically
finite morphism of nonsingular proper k-surfaces. Then there are products of blowups
of points (quadratic transforms) a : S1 — S and f : Th — T, and a morphism
¥ : Sy — 11 such that the diagram

S, L1
{ 4
s 5T

commautes, and ¥ is a toroidal morphism.

In the case of complex surfaces, a proof of 1.3 follows from results of Akbulut and
King (Chapter 7 of [8]).

We also prove, as a corollary of Theorem 1.1, a local theorem on simultaneous
resolution of singularities, which is valid in all dimensions. This theorem is proven
in dimension 2 (and in all characteristics) by Abhyankar in Theorem 4.8 of his book
“Ramification theoretic methods in algebraic geometry” [3].

Theorem 1.4 (Theorem 1.1 [14]). — Let k be a field of characteristic zero, L/k an
algebraic function field, K a finite algebraic extension of L, v a valuation of K/k,
and (R, M) a regular local ring with quotient field K, essentially of finite type over k,
such that v dominates R. Then for some sequence of monodial transforms R — R*
along v, there exists a normal local ring S* with quotient field L, essentially of finite
type over k, such that R* is the localization of the integral closure T of S* in K at a
maximal ideal of T'.

Stronger results hold for birational morphisms, morphisms which are an isomor-
phism on an open set. A birational morphism of nonsingular projective surfaces can
be factored by a product of quadratic transforms. This was proved by Zariski, over an
algebraically closed field of arbitrary characteristic, as a corollary to a local theorem
on factorization (on page 589 of [37] and in section IL.1 of [38]). The most general

SOCIETE MATHEMATIQUE DE FRANCE 1999



4 CHAPTER 1. INTRODUCTION

form of this Theorem is due to Abhyankar, in Theorem 3 of his 1956 paper [2]. Ab-
hyankar proves that an inclusion R C S of regular local rings of dimension 2 with a
common quotient field can be factored by a finite sequence of quadratic transforms
(blowups of points).

In higher dimensions, the simplest birational morphisms are the monoidal trans-
forms. A monoidal transform is a blowup of a nonsingular subvariety. Sally [30] and
Shannon [33] have found examples of inclusions R C S of regular local rings of di-
mension 3 with a common quotient field which cannot be factored by a finite sequence
of monoidal transforms (blowups of points and nonsingular curves).

In [13], we prove the following Theorem, which gives a positive answer to a con-
jecture of Abhyankar (page 237 [5], [10]), over fields of characteristic 0. In view of
the counterexamples to a direct factorization, Theorem 1.5 is the best possible local
factorization result in dimension three.

Theorem 1.5 (Theorem A [13]). — Suppose that R C S are excellent regular local
rings such that dim(R) = dim(S) = 3, containing a field k of characteristic zero and
with a common quotient field K. Let V be a valuation ring of K which dominates S.
Then there exists a reqular local ring T, with quotient field K, such that T dominates
S, V dominates T, and the inclusions R — T and S — T can be factored by sequences
of monoidal transforms.

\%
T
R—S
It is natural to ask if the generalization of this three dimensional factorization
theorem is possible in all dimensions by constructing a factorization by a sequence of
blowups and blowdowns with nonsingular centers along a valuation. In this paper,

we prove the following theorem which gives a positive answer to this question in all
dimensions.

Theorem 1.6 (Factorization1). — Suppose that R C S are regular local rings, essen-
tially of finite type over a field k of characteristic zero, with a common quotient field
K with trdeg, K =n > 3. Let V be a valuation ring of K which dominates S. Then
there exist sequences of regular local rings contained in K

R1 Rn—2
N SN e N
R S1 Sn—3 Sn—2 =S

such that each local ring is dominated by V and each arrow is a sequence of monoidal
transforms. Furthermore, we have inclusions R C S; for all i.

ASTERISQUE 260



1.1. STATEMENT OF THE MAIN RESULTS 5

In the special case n = 3 of Theorem 1.6, we get the triangle of Theorem 1.5.

The proofs of the above theorems are essentially self contained in this paper. We
only assume some basic results on valuation theory (as can be found in [3] and [39])
and the basic resolution theorems of Hironaka [20]. The Hironaka results are essen-
tially only used in the case of a composite valuation, to establish the existence of a
nonsingular center of a composite valuation.

A long standing conjecture in algebraic geometry is that one can factor a birational
morphism X — Y between nonsingular projective varieties by a series of alternating
blowups and blowdowns with nonsingular centers (cf. [29]). We will refer to this as
the global factorization conjecture. In [29] an example is given of Hironaka, showing
that it is not possible in dimension > 3 to always factor birational morphisms of
nonsingular varieties by blowups with nonsingular centers.

Our Theorem 1.6 shows that there is no local obstruction to the global factorization
conjecture in any dimension. We prove a local form of this conjecture.

Theorem 1.7. — Suppose that X — Y is a birational morphism of nonsingular pro-
jective n-dimensional varieties, over a field of characteristic zero, and v is a valuation
of the function field of X. Then there is a sequence of projective birational morphisms
of nonsingular varieties

Xl Xn—l

VAR VIV e he
X Yl Yn—l Yn_2=Y

such that each morphism is a product of blowups of nonsingular subvarities in a Zariski
neighbourhood of the center of v.

Theorem 1.8. — Let k be a field of characteristic zero, ¢ : X — Y a birational
morphism of nonsingular proper k-varieties of dimension n. Then there is a sequence
of birational morphisms of nonsingular complete k-varieties o; : X;41 — Y; and
Bi: Xiv1 = Yin

X1 Xn—1

Ve N N Ve N
X Y Yo Yno=Y

such that each morphism is locally a product of blowups of nonsingular subvarieties.
That is, for every z € X;11, there exist affine neighborhoods W of z, U of © = a;(z),
V of y = Bi(2) such that o; : W — U and B; : W — V are finite products of monoidal
transforms.

Theorem 1.8 is proved in dimension 3 by the author in [13]. The proof of Theorem
1.8 is exactly the same, with the use of Theorem 1.6 from this paper, which is valid
in all dimensions. By Theorem 1.6, for each valuation of the function field K of X,
there exist local rings for which the conclusions of Theorem 1.6 hold. These local
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6 CHAPTER 1. INTRODUCTION

rings can be extended to affine varieties which are related by products of monoidal
transforms. By the quasi-compactness of the Zariski manifold (Theorem VI.17.40
[39]) all valuations of K are centered at finitely many of these affine constructions.
We can then patch these affine varieties along the open sets where they are isomorphic
to get complete k-varieties as desired. The proof is similar to that of Theorem 1.2
given in Chapter 8.

The Monomialization Theorem is a “resolution of singularities” type problem. Some
of the difficulties which arise in it are related to those which appear in the problems
of resolution of (char. 0) vector fields (cf. [9], [32]), and in resolution of singularities
in characteristic p > 0 (cf. [4], [11], [18], [25]). Resolution of vector fields is an
open problem (locally) in dimension > 4 and is open (globally) in dimension > 3.
Resolution of singularities in characteristic p > 0 is an open problem in dimension
> 4.

Some important papers which are directly concerned with the global factorization
problem are Hironaka [21], Danilov [15], Crauder [12] and Pinkham [29]. An im-
portant special case where the global factorization problem has been solved is toric
geometry (Danilov [16], Ewald [17], Wlodarczyk [34], Morelli [26], Abramovich, Mat-
suki, Rashid [7]).

A birational morphism of nonsingular toric varieties can be thought of as a union
of monomial mappings on affine spaces. In toric geometry, the global factorization
problem becomes more tractable than in the general case of arbitrary polynomial
mappings, since the problem can be translated into combinatorics.

Morelli’s main result [26] is that a birational morphism of proper nonsingular
toric varieties can be factored by one sequence of blowups (with nonsingular centers)
followed by one sequence of blowdowns (with nonsingular centers).

Our main result, Theorem 1.1 — Monomialization, allows us to reduce the factor-
ization problem (locally) to monomial mappings. If we then make use of Morelli’s
result, which says (locally) that a birational monomial mapping can be factored by
one sequence of blowups, followed by one sequence of blowdowns, we obtain an even
stronger local factorization theorem than Theorem 1.6.

Abhyankar has conjectured (page 237 [5], [10]) that in all dimensions it is possible
to factor a birational mapping along a valuation by a sequence of blowups followed
by a sequence of blowdowns with nonsingular centers. This is the most optimistic
possible local statement.

We prove the following Theorem, which proves Abhyankar’s conjecture in all di-
mensions (over fields of characteristic 0).

Theorem 1.9 (Factorization 2). — Suppose that R C S are regular local rings, essen-
tially of finite type over a field k of characteristic zero, with a common quotient field
K. Let V be a valuation ring of K which dominates S. Then there exists a regular
local ring T, with quotient field K, such that T dominates S, V dominates T, and the

ASTERISQUE 260



1.1. STATEMENT OF THE MAIN RESULTS 7

inclusions R — T and S — T can be factored by sequences of monoidal transforms.

|

;
SN
R—S

The solution to Abhyankar’s conjecture (as stated in [10]) is given in Theorem
1.10.

Theorem 1.10. — Suppose that K is a field of algebraic functions over a field k of
characteristic zero, with trdeg, K = n, R and S are regular local rings, essentially
of finite type over k, with quotient field K. Let V be a wvaluation ring of K which
dominates R and S. Then there exists a regular local ring T, essentially of finite type
over k, with quotient field K, dominated by V', containing R and S, such that R —» T
and S = T can be factored by products of monoidal transforms.

In dimension 3, Theorems 1.9 and 1.10 have been proven by the author in [13].
Theorem 1.1, which shows that it is possible to monomialize a generically finite mor-
phism along a valuation, is essential in this proof.

Hironaka and Abhyankar (section 6 of chapter 0 [20] and page 254 [5]) have conjec-
tured that a birational morphism of nonsingular projective varieties can be factored
by a series of blowups followed by a series of blowdowns with nonsingular centers.

Our Theorem 1.9 shows that there is no local obstruction to this global factorization
conjecture in any dimension.

We prove the following global analogue of Theorem 1.9.

Theorem 1.11. — Let k be a field of characteristic zero, ¢ : X — Y a birational
morphism of nonsingular proper k-varieties. Then there exists a nonsingular complete
k-variety Z and birational complete morphisms a : Z — X and B : Z — Y making
the diagram
A
X—Y
commute, such that a and (3 are locally products of monoidal transforms. That is, for

every z € Z, there exist affine neighborhoods W of z, U of x = a(z), V of y = B(2)
such that o : W — U and B : W — V are finite products of monoidal transforms.

Here a monoidal transform of a nonsingular k-scheme S is the map 7' — S in-
duced by an open subset T' of Proj(®Z™), where Z is the ideal sheaf of a nonsingular
subvariety of S.

SOCIETE MATHEMATIQUE DE FRANCE 1999



8 CHAPTER 1. INTRODUCTION

Theorem 1.11 is proved in dimension 3 by the author in [13]. The proof is exactly
the same, with the use of Theorem 1.9 from this paper, which is valid in all dimensions.
The method of proof is similar to Theorem 1.2, which is proved in Chapter 8.

The author would like to thank the referee for a careful reading of the manuscript
and for helpful comments.

1.2. Geometry and valuations

A valuation ring of a field of algebraic functions K will dominate some local ring
of a projective model V' of K. This leads to the “valuative criterion for properness”
(cf. Theorem I1.4.7 [19]).

The Zariski manifold M of K is a locally ringed space whose local rings are the
valuations rings of K, containing the ground field k (cf. chapter VI, section 17 [39],
[24], section 6 of chaper 0 [20]). M satisfies the universal property that for any
morphism of proper k-schemes ¥ : X — Y such that X and Y have function fields
(isomorphic to) K, there are projections m; : M — X and 73 : M — Y making a
commutative diagram

Y
X——Y
When K is a 1-dimensional function field, the only nontrivial valuation rings are
the local rings of the points on the nonsingular model of K. As such, a projective
nonsingular curve can be identified with its Zariski manifold (cf. 1.6 [19]). If K has
dimension > 1, K has many non-noetherian valuations, and M is far from being a
k-scheme.

The main result of Zariski in [36] is his Theorem U;, which states that for a
valuation B of a field of algebraic functions K over a ground field of characteristic 0,
there is a projective model V' of K on which the center of B is at a nonsingular point
of V.

Our Theorems 1.1, 1.6, 1.9 and 1.10 are direct analogues of Theorem U; for gener-
ically finite and birational morphisms of varieties.

Zariski obtained a solution to “the classical problem of local uniformization” from
his Theorem U;. In the language of schemes (cf. section 6 of chapter 0 [20]) Zariski’s
result shows that for any integral proper k-scheme X (where k is a field of charac-
teristic 0) there exists a complete nonsingular integral k-scheme Y and a birational
morphism Y — X. A complete variety over a field & is an integral finite type k-scheme
which satisfies the existence part of the valuative criterion for properness.

Our Theorems 1.2, 1.3, 1.8 and 1.11 are analogous to Zariski’s solution of “the
classical problem of local uniformization”.

ASTERISQUE 260



1.3. OVERVIEW OF THE PROOF 9

1.3. Overview of the proof

The main thrust of the paper is to acheive monomialization. Theorem 1.1 proves
monomialization for generically finite extensions. The corollaries, Theorems 1.2 through
1.11 are then easily obtained.

Theorem 1.1 is an immediate corollary of Theorem 5.3. Theorem 5.5 is a stronger
version, valid for birational extensions.

In fact, Theorems 5.3 and 5.5 prove more than monomialization. They produce
a matrix of exponents A = (a;;) which has a very special form, depending on the
rational rank of the rank 1 valuations composite with V.

Theorem 5.5 reduces the proof of Theorem 1.6 (Local factorization) to the special
case where dim R = dim .S = n and V has rank 1 and rational rank n. Factorization
in the special case n = 3 and V has rational rank n = 3 was solved by Christensen
in [10]. We generalize Christensen’s algorithm in Theorem 6.4 to prove factorization
when V has rational rank n. The proof of Theorem 6.4 uses only elementary methods
of linear algebra. Theorem 1.6 then follows from Theorem 5.5.

Now we will discuss the proof of Theorem 5.3. The most difficult part of Theorem
5.3 is the case where v has rank 1, which is proved in Theorem 5.1. Almost the
entirety of the paper (chapter 4) is devoted to the proof of Theorem 5.1.

Suppose that v has rank 1 and rational rank s. Then it is not difficult to construct
sequences of monoidal transforms R — R(1) and S — S(1) such that » dominates
S(1), S(1) dominates R(1), R(1) has regular parameters (z1(1),...,2,(1)), S(1) has
regular parameters (y1(1),...,yn(1)) such that

ml(l) = yl(l)cn(l) cee ys(l)cu(l)(;I

(L's(l) = yl(l)cal(l) .. ys(l)c”(l)(ss

where det(c;;(1)) # 0 and §; are units in S(1). This step is accomplished in the proof
of Theorem 5.1.

The inductive step in the proof is Theorem 4.11, which starts with monoidal trans-
form sequences (MTSs) R — R(0) and S — S(0) such that v dominates S(0), S(0)
dominates R(0), R(0) has regular parameters (z1(0),...,2,(0)), S(0) has regular
parameters (y1(0),...,y,(0)) such that

1 (0) =0 (0)611(0) A ys(0)01a(0)51

25(0) = y1(0)°2(0 ...y (0)e== g,
Ts+1(0) = ys41(0)

21(0) = (0)

SOCIETE MATHEMATIQUE DE FRANCE 1999



10 CHAPTER 1. INTRODUCTION

where det(c;;(0)) # 0 and ¢; are units in S(0), and construct MTSs R(0) — R(t),
S(0) — S(t) such that v dominates S(t), S(t) dominates R(t), R(t) has regular
parameters (21(t),...,2,(t)), S(t) has regular parameters (y1(¢), - - ., yn(t)) such that

xy (t) =1 (t)611(t) e ys(t)cu(t)(sl

(4) zs5(t) : Y1 (t)e1® .y (p)eaa (D),
Ts41(t) = ys41(t)

Zi41(t) = Yi+1(t)

where det(c;;(t)) # 0 and §; are units in S(2).

To prove Theorem 4.11, we make use of special sequences of monoidal transforms
which are derived from the Cremona tranformations constructed by Zariski in chapter
B of [36], using an algorithm of Perron. We will call such transformations Perron
transforms. Our proof makes use of these transforms in local rings of etale extensions,
giving the transforms the special form

x1(3) = 21 (i + 1)2 0+ g (G 4 1)“1'(i+1)c?i'f+l(i+l)

(5) zs(i) = z1(i + l)a.,l(i+1) cemg(i 4 l)ass(i+l)c?i,ls+1(i+1)
2, (1) = @1(i + 1) %120+ g (5 4 1) %410 (+1)

(zr(E+1)+ 1)c‘z?_:_4il.s+1(i+1)

m (Z) — yl(l + 1)b11(i+1) - ’ys(i + l)bl,(i+1)d?ii+l(i+l)

ys(i) =y (’L + l)bsl(i-f-l) . ~ys(i + 1)b,,(i+1)dfii+1(i+1)
i) = i+ 1D (g 1))
(wr i+ 1) + DD

where det(a;; (¢ + 1)) = £1 and det(b;; (¢ + 1)) = £1, ¢i41, dit1 are algebraic over k.

Zariski observes on page 343 of [35] that his Cremona transformations have “the
same effect as the classical Puiseux substitution « = z¥,y = x’l‘ (c1 + y1) used in the
determination of the branches of the curve ¢(z,y) = 0. The only difference—and
advantage—is that our transformation does not lead to elements x;,y; outside the
field k(z,y)”

Our transforms (5) do induce a field extension. They are the direct generalization
of the classical Puiseux substitution to higher dimensions. We must pay for the
advantage of the simple form of the equations by introducing many difficulties arising
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1.3. OVERVIEW OF THE PROOF 11

from the need to make finite etale extensions after each transform. We call a sequence
of such transforms a uniformizing transform sequence (UTS).

4.11 is proved by first constructing UTSs such that (4) holds, and then using this
partial solution to construct sequences of monoidal transforms such that (4) holds.
The UTSs are constructed in Theorems 4.7 and 4.11, and this is used to construct
MTSs such that (4) holds in Theorems 4.8, 4.9, 4.10 and 4.11.

Underlying the whole proof is Zariski’s algorithm for the reduction of the multiplic-
ity of a polynomial along a rank 1 valuation, via Perron transforms. This algorithm
is itself a a generalization of Newton’s algorithm to determine the branches of a curve
singularity.

We will now give an outline of the proof of Theorem 4.11 (the inductive step).
We will give a formal construction, so that we need only consider UTSs, where the
basic ideas are transparent. We will construct UTSs along v (here the U(z), T'(:) are
complete local rings)

U@ - U@1) - --- = U®)
(6) 1 1 1
TO) - T(1) - --- = T()

such that T'(i) has regular parameters (z1(3), ..., z,(7)), U(¢) has regular parameters
(y1(2), - . .,yn(?)) such that

21(7) = y1 (@)@ -y, (6)er @

) 2i) = () -y (i)
Ts41(t) = Yst1(9)

zi (i) = yi(9)
where det(c;;(¢)) #0 for 0 <3 <t.

We will presume that k is algebraically closed, and isomorphic to the residue fields
of R, S and V. We will also assume that various technical difficulties, such as the
rank of v increasing when v is extended to the complete local ring U (%), do not occur.

In Theorem 4.7 it is shown that
(8) Given f € U(0), there exists (6) such that f = y;(t)% - --ys(t)%~ where 7 is a

unit in U (¢).
(9) Given f € U(0) — k[[y1,---,y]], there exists (6) such that

F=Pyt), .. ,5u®) + ()" - ys ()% p41(2)
where P is a power series.

Theorem 4.11 then shows that it is possible to construct a UTS (6) such that
2141 (t) = yi+1(t), which allows us to conclude the truth of the inductive step.
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12 CHAPTER 1. INTRODUCTION

We will now give a more detailed analysis of these important steps. For simplicity,
we will assume that s = rat rank(v) = 1. This is the essential case.

Suppose that R has regular parameters (z1,...,T,), and 2 < ¢ < n. Zariski
constructed (in [35], and in a generalized form in [36]) a MTS R — R(1) where R(1)
has regular parameters (z1(1), z2(1),...,2zn(1)) by the following method. Since v has
rational rank 1, we can identify the value group of v with a subgroup of R.

T1 a11(1)

where a;1(1), a11(1) are relatively prime positive integers. We can then choose positive
integers a1 (1), ai;(1) such that a11(1)a;;(1) — a1:(1)aii (1) = 1. Then

V(x‘ll”(l)xi_a“(l)) >0

v(zyer Wiy = ¢
There exits then a uniquely determined, nonzero c¢; € k such that

V(:vl_a“(l)x?“(l) ~c1) > 0.

We can define z;(1) for 1 < j < n by

zp = 1 (1) M (2;(1) + ¢ )2 (D)
(10) z; = 21(1)%1 M (2;(1) 4 ¢1)2 D)
z; = x;(1)if j # 1 ors.

Set R(l) = R[wl(1)7xi(l)](m(l),‘..,wn(l))‘
Using such transformations, Zariski proves

Theorem 1.12 (Zariski [35], [36]). — Given f € R, there exists a MTS along v
R — R(1)— --- = R(t)

such that f = x1(t)%y where gamma is a unit in R(t).

In our analysis, we will consider the transformation (10) in formal coordinates.
R(1) has regular parameters (Z1(1),Z2(1),...,Zn(1)) defined by

T1(1) = 21 (1) (2i(1) + )2 M/an@)

T;(1) = (z;(1) + Cl)l/a“(l) — ci/a“(l)

T;(1) =x;(1) if j #1 or d.

In these coordinates, (10) becomes
T =7 (1)011(1)
i = 71 (1) D (7;(1) + ¢/ W)
T :fj(l) if j#1orzq.
We have inclusions

T'(1) = R(1) = T"(1) = T(1) = R(1)
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where

" _ . 1/a11(1
(1) = RQ) [(z’(l) )/t )](51(1),...,5,.(1))
is a localization of a finite etale extension of R(1). We can extend v to a valuation of
the quotient field of }?(1\) which dominates }T(T) . For simplicity, we will assume that
this extension still has rank 1.
We will construct sequences of UTSs

T'(1) = T"(1) - T(1) = T'(1)

!
TQ) - T"2) = T2) =T
!
1'(3)

where each downward arrow is of the form (10).
To prove the inductive step, we must construct UTSs (6) starting with R — S.

By induction, we may assume that R has regular parameters (zi,...,%,) and S has
regular parameters (yi,...,Yyn) such that

T =y

T2 = Y2

Ty =Y

where 4; is a unit in S. (Recall that we are assuming that s = 1.) By Hensel’s

lemma, 6i/ ' is a unit in S. We then can start our sequence of UTSs by setting

.....

(¥y,---,7p), such that

(=)

8
>
Il
—

8|
[V
Il
<

sl
Il
<

We will construct 2 types of UTSs

U (0) — U"(1)

T T
T"(0) - T"(1)
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14 CHAPTER 1. INTRODUCTION

A transformation of Type I is defined when 2 < 4 < I. The equations defining the
horizontal maps are then

7 =3 (1) ®
7 = 71 (1) D (@(1) + 1)
i =Z;(1)if j#1ori,

8|

Y= yl(l)b"(l)
U =7 (1P O (g,(1) + dp)
¥;=7;(1)if j#Lori.
an(l) _ v(@) _ v@) _ ba(l)
ain(l)  v(Z1) tov(g)  tobia(1)

(all(l),a,-l (1)) = 1 implies all(l) | tobll(l).
We thus have

7i(1) = gy (1)fern /e =5, (1)n
Ty(1) = y2(1)

Tl(l) = ﬂl(l).

A transformation of Type II is defined when [ < ¢. The equations defining the
horizontal maps are then

z; Ifj(l) for1<j<n
Y= gl(l)b“(l)
7 =0 (0" V@1) +dy)
In this case T"(0) = T"(1).
In this way, we can construct sequences of UTSs
S—=-U0)-UQ1Q)—>--- =2 U®)
(1) toot 1 t
R—->T0) - T1) = - = T()
such that T(k) has regular parameters (Z1(k),...,ZTn(k)) and U(k) has regular pa-
rameters (g;(k),...,7,(k)) related by
T1(k) = 71 (k)™
Ty (k) = Y (k)
(12) .

zi(k) = Tu(k)
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1.3. OVERVIEW OF THE PROOF 15

for 0 < k < t. The transformations T'(k) — T'(k + 1) and U(k) = U(k + 1) are
of type I or II, and we also allow changes of variables, replacing Z;(k) with Z;(k) —
P(z(k),...,Ti—1(k)) and replacing g, (k) with §;(k) —P(Z1(k), ..., Ti-1(k))if2 <3 <
1, for some power series P, and we may replace 7;(k) with 7,(k)—P (g, (k),...,¥;_1(k))
ifl <.

To prove the induction step, we must prove Theorems 1.13 and 1.14 below.

Theorem 1.13 (Theorem 4.7 with s = rat rankv = 1)

(13) Given f € U(0), there exists a sequence (11) such that f = v, (t)¢ with v a
unit in U(t). (If f € k[[91,...,7,]], the transformations of type I and II in
the sequence involve only the first T variables.)

(14) Suppose that f € k[[Fy,-- Tl —k[[F1,.---U1]]. Then there exists a sequence
(11) such that f = P(@;(t),-..,5(t)) + T2 ()T (8)-

Theorem 1.14 (Theorem 4.11). —  there exists a sequence (11) such that Ti11(t) =
Y11 (8)-

Outline of proof of (13) of Theorem 1.13. — The proof is by induction on 7.
Suppose that (13) is true for 7 — 1. We will assume that 7 < [, which is the essential
case. Recall that

to
1

8l
=
Il

<

&
N}
I

2

T =7
Let w be a primitive t§* root of unity. Set

to—1

g(zc_lv"'vET) - H f(wiy17g27'~'»y‘r)‘
=0

f|gin U(0). We will perform a UTS (11) to get g = Z;(t)?A where A is a unit in
T(t). Then f =7, (t)“1 A’ where A’ is a unit in U(t).

To transform g into the form g = Z; (t)¢A, where A is a unit, we will make use of an
algorithm of Zariski ([35], [36]) to reduce the multiplicity of g. Initially set g = T2 go
where T; does not divide go. Set

r = mult(go(0,...,0,Z,)).

0<r<oo. Ifr =0, gois a unit, and we are done. Suppose that 0 < r. We can write

[ d
go = E ai(T1y. ..\ Tre1)To = E Qo T + E agj:cff +7Z;Q
1=0 =1 7
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16 CHAPTER 1. INTRODUCTION

where the terms ao, T3¢ have minimum value p, Nv(Z.) > p, and the ag; ffj terms

are the finitely many remaining terms. We must have o; < r for all a;, and o; = 7
implies ¢; is a unit.

By induction, we can perform UTSs in the first 7 — 1 variables to reduce to the
case

Qa; = f’]‘ﬁuai (flv R 75‘1’-1)
—0; — —
ag, =T ug, (T1,...,Tr-1)

where uq,; and ug; are units in 7'(0). Now we make a UTS
Tp =T (1)

z, =71 (1) (F, (1) + c1).

d d
go =Y Tttty (7 (1) +e)* 4= fl(l)s(z Ua, (T7(1) + )™ + 519)-
=1 =1
Set
d
91 = e, (F (1) + )™ + 710,

i=1

r = multgl(O, .o ,0,5-,—(1)).

r1 < oo and r; < r since all a; < r. Set

d
(1) = 1(0,...,0,t —c1) = > uq,(0,...,0)%.

=1
If we do not have a reduction in r, so that r; = r,
C(Z (1) +c1) =ez (1)

for some nonzero e € k. Thus ((t) = e(t —c1)” has a nonzero t"~! term. We conclude
that ag = r, aq, is a unit, ag_1 =r —1 and

p= V(aadfi) = y(aad_lf:_l),

Thus
V(ZT:) = v(aay_ (T1y. .., Tro1)).
Since Z7 is a minimum value term of f,
V(&) < V(E) < v(f).

Now make a change of variables in T'(0), replacing T, with T, = T, — Aaqa,_, where
X € k is chosen to make v(Z,) < v(Z.). Repeat the above procedure with these new
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1.3. OVERVIEW OF THE PROOF 17

variables. We eventually get a reduction in r. In fact if we didn’t, we would have an
infinite bounded sequence in T'(0)

v(@,) <v(@;) < <v(f)

which is impossible (by Lemma 2.3).

Outline of proof of (14) of Theorem 1.13

oo
f = Zai(yl’ e 7ym—l)y:n'
i—0

Set,
Q = Z Ui(ylv s ’ym——l)g:n’
i>0
After possibly permuting the variables 7, ,...,7,,, we can assume that @ # O.

Q = 77*Qo. wherey; does not divide Qp. Set r = mult(Qo(0,...,0,7,,)). 1 <7 < co.
Suppose that r > 1. Write

d
QU = Zam(ylw-wqu)y%f +-
=1

where the 04, 7% are the minimum value terms. By construction, all a; > 0. By (13)
of 1.13, we can perform UTSs in the first m — 1 variables to get o; = uq, Y]’ where

Uq, are units. Then we can perform a UTSs in ¥; and ¥, to get

i

d
Qo = ?1(1)5(2 Oa; (U (1) +€1)* +7,(1)Q).

=1
Set,
d d
Q1= ;@) + )™ + T, () = D U,
i=1 i=1
Set r1 = mult @,(0,...,0,7,,(1)). 0 < 7 < oo and r; < r. Suppose that we do not
have a reduction in r, so that r; = . Then as in the proof of (13) of Theorem 1.13,
V() = v(0ay_;(T1s- -y Ym—1)). Now make a change of variables in U(0), replacing
Y, With
y:n =Ym — /\Uad-1(3717 cee 7ym——1)a
where A € k is chosen to make v(7,,) < v(7,,). We have
- - 9Qo of
V(Um) < v(¥ I)SV(—_—) SV(—_— .
@m " OYm Y
Repeat the above algorithm with g,, replaced with 3., in U(0). Since 0f/07,, =

df/87y,,, we get a reduction in r after finitely many iterations, by an argument similar
to that at the end of the proof of (13) of Theorem 1.13.
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18 CHAPTER 1. INTRODUCTION

We can then repeat this procedure to eventually get an expression

f = L(yl’ s ’ym—l) +y?0§
where mult Q(0, ...,0,7,,) = 1.
By induction, we can perform UTSs in the first m — 1 variables only to get

L= Ll(ylv s 7?[) + y?lal
where mult @, (0, ...,0,7,,_;) = 1. Then f is in the desired form.

Outline of proof of Theorem 1.14. — By (14) of Theorem 1.13 we may assume
that

T = 7

T2 =Yy

T =7

_ _ _ —dy—
Tit1 = Py, .-, 0) + 97 Vg
Let w be a primitive t§* root of unity. Set

to—1

9@, 1) = [ @1 — PT, s - T))-
=0

Y41 divides g in U(0). Set r = mult(g(0,...,0,Ti41)). 1 <7 < oo.
Suppose that r = 1. Then in T°(0),

g = unit(Zi+1 + ®(Z1,...,71))
= unit(P + 7' Jp41 + 9).
since ¥;,, divides g, we must have P = —®. We can then replace T;;; with
T+ @ = y(lilyl+lv

which can be factored to achieve the conclusions of Theorem 1.14.
Now suppose that » > 1. By (13) of Theorem 1.13, there exists a UTS in the first
[ variables so that P = 5™ P(7,,...,7;), where P is a unit, and

d
§ = =) =0y

g: aaixl()xl+1 +...
i=1

where the @4, 7}, are the minimum value terms and the @, (%1, ...,%;) are units.

Case 1. — Assume that v(P) > v(g$'). Then T;1; = 79'G where G = g™~ P +
Yi41- Since mult G(0,...,0,7,,,) = 1, we can factor this to get in the form of the
conclusions of Theorem 1.14.
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Case 2. — Suppose that v(P) < v(g#). Then Z;4, = 7P, where P, = P +

79 "M%, , is a unit. Perform a UTS T'(0) — T'(1) defined by

7 =7, (1)°n @
Tir = T (D)* 1 D (@1 (1) + ).
We will show that this map factors through U(0).
v(Tip1) _ a11(1) _ hv(@y)

v(Z1) an(l) — tov(y,) to’
Thus h; = t1a;41,1(1) and tp = ti1a11(1) for some positive integer ¢;.
71(1) =73
w5

T 1 =—321 P =P

T +a = e D1 = 5
so that

Tip1 = Pu(@y, - 0) + T4 -

Set g = Z1(1)¢g1. r1 = multg;(0,...,0,Z141(1)) < r. If r; = r, we can replace T4
with Z;41 — 0(Z1,...,T;) and repeat to eventually get r; < r.

We have 3;,(1) = 34, and G4, | g, so that Gy4(1) | g. Z1(1) = F;(1)" implies
ry > 0. Now we can repeat the above argument to eventually either reach » = 1 or

case 1.
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CHAPTER 2

PRELIMINARIES

2.1. Valuations

Lemma 2.1. — Suppose that R is a regular local ring, with quotient field K. Then
R = K N R in the quotient field of R.

Proof. — Suppose that f € KN R. Then there exist g,h € R such that f = g/h,
with (g,h) = 1in R. If f ¢ R, there exists an irreducible s € R such that s | h but
s does not divide g. Let s' € R be an irreducible such that (s') N R = (s). hf =g in
R. ¢ | h implies s’ | g in R. Hence s | g in R, a contradiction. O

Lemma 2.2. — Let R be a regular local ring with gquotient field K, mazimal ideal m.
Let v be a rank 1 valuation of K dominating R, with value group T', valuation ring O,,.
Let K be the completion of K with respect to a metric |-| associated to v. There exists
a valuation T of K extending v, with valuation ring Oy such that Oz/mz = O, /m,
and the value group of U is I' (cf. Theorems 1 and 2, Chapter 2 [31]).

Then there exists a prime p C R and an inclusion ﬁ/p — K which extends R — K.

Proof. — Let {an} be a cauchy sequence in the m-adic topology of R. Let v(m) =
p > 0. Then v(m"™) = Np implies {a,} is a fundamental sequence with respect to
| - |. Hence there is a natural map ¢ : R — K making

LK
e

o —

commute. Let P = kernel ¢. O
Lemma 2.3 extracts an argument from page 345 of [35].

Lemma 2.3. — Let R be a regular local Ting containing a field of characteristic zero
and v a rank 1 valuation of the quotient field of R which has nonnegative value on R.
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Suppose that z1,...,2n,... is an infinite sequence of elements of R such that
v(z1) <v(zg) < - - <v(zp) <---
is strictly increasing. Then v(z,) has infinity for a limit.

Proof. — Let m be the maximal ideal of R, K the quotient field of R. Let {Z;} be a
transcendence basis of R/m over k. Lift t; to t; € R. Let L be the field obtained by
adjoining the ¢; to k. Then L C R. Let L' be the algebraic closure of L in K. Then
L' C R since R is normal. Let L be an algebraic closure of L'. K = K ®/ L is a
field (cf. Corollary 2, Section 15, Chapter III [39]). Let ¥ be an extension of v to K.
7 has rank 1 since K is algebraic over K. Let R be the localization of R ®p/ L at
the center of 7. Then R is a regular local ring dominating R. We can extend 7 to a
valuation 7 dominating R = f[[wl, cee :vn]] , & powerseries ring.

Let p be a positive real number. Let o = min(7(z;)). Let n, be the smallest integer
such that n,o > p. Let g(z1,...,2n) € L[[z1,...,z,]] be such that v(g) < p. Write
g = ¢' + ¢" where ¢’ is a polynomial of degree < n,, and ¢g” is a powerseries with
terms of degree > n,. Every form in z,,...,z, of degree m has value > mo. Hence
v(g") > nyo > p. Since v(g) < p, v(g') = v(g). Thus if a powerseries has a value
< p, its value is the value of a polynomial of degree < n,. Hence, among the values

assumed by elements of R, there is only a finite number of values which are less than
or equal to a given fixed real number p. O

2.2. Birational Transforms

Suppose that R is a regular local ring, with maximal ideal m, and that x;1,...,z, €
R can be extended to a system of regular parameters (z1,...,z4) in R. Let I be the
ideal I = (z1,...,2Zn).

The blow up

7 : Proj(®n>0l™) — spec(R)
is called a monoidal transform of spec(R). Proj(®,>0l") is a regular scheme. let
p € n71(m) C Proj(®nzol™).
p € spec(R[z1/xi, ..., Tn/x;]) for some i. Then
R — (Rlz1/iy. .., Zn/2:])p
is called a monoidal transform of R. If n = d, so that I = m,
R - (Rlz1/xiy. .., xd/%:))p

is called a quadratic transform.
In this section we state results of Abhyankar and Hironaka in a form which we will
use. The conclusions of Theorems 2.5 through 2.7 and Theorem 2.9 have been proved
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2.2. BIRATIONAL TRANSFORMS 23

by Hironaka [20] in equicharacteristic zero, and have been proved by Abhyankar [1],
[4] in positive characteristic, for varieties of dimension < 3.

Definition 2.4. — Let R be a regular local ring. f € R is said to have simple normal
crossings (SNCs), and be a SNC divisor, if there exist regular parameters (21, ...,Z,)
in R such that f = unit - 27* - -- 2% for some non-negative integers ai,...,an.

Theorem 2.5. — Let R be an excellent regular local ring, containing a field of char-
acteristic zero. Let X be a nonsingular R-scheme, f : X — spec(R) a projective
morphism, h € R. Then there exists a sequence of monoidal transforms g: Y — X,
such that h has SNCs at every point of Y.

Proof. — Immediate from Main Theorem II(N) [20]. O

Theorem 2.6. — Suppose that R, S are excellent regular local rings containing a field
k of characteristic zero such that S dominates R. Let v be a valuation of the quotient
field K of S that dominates S, R — Ry a monoidal transform such that v dominates
Ry. Ry is a local ring on X = Proj(®,>op™) for some prime p C R. Let

U = {Q € spec(S) : pSq is invertible}

an open subset of spec(S). Then there exists a projective morphism f : Y — spec(S)
which is a product of monoidal transforms such that if Si is the local ring of Y
dominated by v, then S; dominates Ry, and (f)~1(U) — U is an isomorphism.

Proof. — Since S is a UFD, we can write pS = gI, where g € S, I C S has height > 2.
Then U = spec(S) — V(I). By Main Theorem II(N) [20], there exists a sequence of
monoidal transforms 7 : Y — spec(S) such that IOy is invertible, and 7~} (U) — U is
an isomorphism. Let S; be the local ring of the center of v on Y. We have pS; = hS;
for some h € p. Hence R[p/h] C Si, and since v dominates S1, R; is the localization
of R[p/h] which is dominated by S;. O

Theorem 2.7. — Suppose that R is an excellent local domain containing a field of
characteristic zero, with quotient field K. Let v be a valuation of K dominating R.
Suppose that f € K is such that v(f) > 0. Then there exists a MTS along v

R—-R = =R,
such that f € R,,.

Proof. — Write f = a/b with a,b € R. By Main Theorem II(N) [20] applied to the
ideal I = (a,b) in R, there exists a MTS along v, R — R, such that IR, = aR, is a
principal ideal. There exist constants c,d, u;,u2 in R, such that a = ca,b = da,a =
u1a + ugb. Then ujc + usd = 1, so that ¢cR,, + dR, = R,, and one of ¢ or d is a unit
in Ry,,. If cis a unit, then 0 < v(f) = v(c/d) = v(c) —v(d) implies v(d) = 0, and since
v dominates R,, d is a unit and f € R,,. O
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Theorem 2.8 (Abhyankar). — Let R, S be two dimenstonal regular local rings such
that R and S have the same quotient field, and S dominates R. Then there exists a
unique finite sequence

Ro—+Ri— - -— Rp

of quadratic transforms such that R,, = S.
Proof. — This is Theorem 3 of [Ab2]. O

Suppose that Y is an algebraic scheme, X, D are subschemes of Y. Suppose that
g:Y' =Y, f: X' > X are the monoidal transforms of Y and X with center D and
D N X respectively. Then there exists a unique isomorphism of X' to a subscheme
X" of Y’ such that g induces f (cf. chapter 0, section 2 [20]). X" is called the strict
transform of X be the monoidal transform g.

Theorem 2.9. — Let R be an excellent regular local ring, containing a field of charac-
teristic zero. Let W C spec(R) be an integral subscheme, V C spec(R) be the singular
locus of W. Then there exists a sequence of monoidal transforms f : X — spec(R)
such that the strict transform of W is nonsingular in X, and f is an isomorphism
over spec(R) — V.

Proof. — This is immediate from Theorem I, "™ [20]. O

Theorem 2.10. — Suppose that R C S are r dimensional local rings with a common
quotient field K, and respective maximal ideals m and n such that S dominates R,
S/mS is a finite R/m module, and R is normal and analytically irreducible. Then
R=S.

Proof. — This is the version of Zariski’s Main Theorem proved in Theorem 37.4
[28]. O
Theorem 2.11 (Theorem 1 [22]). — Suppose that R is an excellent regular local ring

with quotient field J, K is a finite extension field of J and S is a regular local ring
with quotient field K such that R C S and dim(R) = dim(S). Then S is essentially
of finite type over R.

Proof. — Let (y1,-..,yn) be a system of regular parameters in S and suppose that
K is generated by hq,...,h, over J. Let h; = f;/g; for 1 < i < r where f;,9; € S. Let
T be the normalization of R[y1,...,Yn, f1,---s frs91s---59r], g =m(S)NT, U = T,.
By Theorem 2.10 T, = U. O

Theorem 2.12. — Suppose that R is an excellent regular local ring, with mazimal ideal
m, S is a regular local ring with mazimal ideal n, such that R C S, dim(R) = dim(S)
and the quotient field of S is a finite extension of the quotient field of R. Then there
is an inclusion

RcS
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where R is the m-adic completion of R, S is the n-adic completion of S.

Proof. — By Theorem 2.11 S is essentially of finite type over R. Since S is universally
catenary, the dimension formula (Theorem 15.6 [26]) holds.

dim R + trdegp S = dim S + restrdegg S

Since R is analytically irreducible, R is a subspace of S by Theorem 10.13 [4] (“A
version of Zariski’s Subspace Theorem”). O

We will use the notation m(R) to denote the maximal ideal of a local ring R, k(R)
to denote the residue field R/m(R). R or R will denote the m(R)-adic completion of
R.

Let k be a field, 0 # f(21,...,2n) € k[[zl,‘..,zn]]. Let m = (z1,...,2n). Define
mult(f) =rif fem”, f g m" L.
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CHAPTER 3

UNIFORMIZING TRANSFORMS

Definition 3.1. — Suppose that R is a regular local ring. A monoidal transform
sequence (MTS) is a sequence of ring homomorphisms

R=Ry >Ry >Ry —---— R,

such that each map R; — R;4; is a finite product of monoidal transforms.

Definition 3.2. — Suppose that R is an excellent regular local ring containing a field
k of characteristic zero, with quotient field K. A uniformizing transform sequence
(UTS) is a sequence of ring homomorphisms
R — Tg — To
—£ — \‘ —
T, »T, - T
1

=

(15) Ty — Ty — Ty

{ pv
T, - T, = Tn
such that T = ﬁ, the completion of R with respect to its maximal ideal, and for all i,
T; is the completion with respect to its maximal ideal of a finite product of monoidal
transforms T, of T;_,. For all i, T; is a a regular local ring essentially of finite type
over T; with quotient field K, such that T; C T; C T; and K is a finite extension
of K, K;; is a finite extension of K; for all ¢ > 0.

To simplify notation, we will often denote the UTS (15) by (R, T..,T») or by

R—Toy—T)— - —Th.
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We will denote the UTS consisting of the maps

= = —
T, 1 =T,y > Tha

1 h
= — —
T, — T. — T,
by Tn_ 1 — Tn
A UTS (15) is called a rational uniformizing sequence (RUTS) if there exists an
associated MTS

R=Ry—> R — - — R,,

maps R; — T; such that ﬁi = T, for 1 < i < n, and all squares in the resulting
diagram

To—)Tl — - —)Tn
(16) ot 1
Ry - Ry - --- =& R,
commute.
Suppose that v is a valuation of K which dominates R and
(17) R—-Toy—T,— =T,
is a UTS.

Suppose that v is an extension of v to the quotient field of T such that g
dominates T. The existence of vg is shown in [23]. If vo dominates T, we can extend
vp to a valuation vy of the quotient field of T; which dominates T';.

Then if v; dominates T’z, in the same manner we can extend v; to a valuation
vo of the quotient field of Ty which dominates T5. If we can inductively construct
a sequence vy, ..., v, of extensions of v to the quotient fields of T; in this manner,
(17) is called a UTS along v. If there is no danger of confusion, we will denote the
extensions v; by v.

Suppose that (17) is a UTS along a rank 1 valuation v of K. Let I', be the value
group of v. Suppose that ¢ is such that 0 < i < n. Let O,; be the valuation ring of
v; and T, be the value group of v;. T', is a subgroup of I',,. Set

T={B€el,, | —a<B<aforsomeacl,}.

T is an isolated subgroup of T',,, since T, is a subgroup, so there is a prime a in O,,

(which could be 0) such that T is the isolated subgroup I, of a, (by Proposition 2.29

[8] or Theorem 15, chapter VI, section 10 [39]). Set
p=anT;={feT;|v(f)>aforallael,}.

We will say that v(f) = oo if f € p;.
For the rest of this chapter we will assume that R C S are excellent regular local
rings such that dim(R) = dim(S), containing a field k of characteristic zero, such that
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the quotient field K of S is a finite extension of the quotient field J of R. We will fix
a valuation v of K with valuation ring V' such that v dominates S.

Note that the restriction of v to J has the same rank and rational rank that v
does (Lemmas 1 and 2 of section 11, chapter VI [39]). Observe that S is essentially
of finite type over R (Theorem 2.11) and R — S is an inclusion (Theorem 2. 12)

Suppose that (R, Tn,Tn) and (S, Un, U,) are UTSs. We will say that (R, Tn,Tn)
and (S, U’,:,Un) are compatible UTSs (or a CUTS) if there are commutative diagrams
of inclusions

T 5T -7,
(18) tor 1
T, - T, - T;

K2 ?

for 0 < ¢ < n. In particular, the quotient field of U;’ is finite over the quotient field
of T; for all i, and U, is essentially of finite type over T; for all i.
We will say that UTSs along v (R,TZ,T_n) and (S, _U—Z,Un) are CUTS along v if
the extensions of v are compatible in (18).
If (R,TZ,TH) and (S,UZ,UH) are RUTSs and CUTSs, then we will say that
(R, TZ,TH) and (S, U’,:,Un) are compatible RUTSs (or a CRUTS).
Lemma 3.3. — Suppose that the CRUTS (R, T::,Tn) and (S, UZ,U,,) have respective
associated MTSs
R=Ry—+R;— =R,
and
S=8 =5 —= =5
Then there is a commutative diagram

R—-> R — - = R,
(19) 1 1 1
S—=+8 = =5,

Proof. — This follows from (18), (16) and Lemma 2.1, since then
R; CﬁiﬂJITiﬂva—iﬂK:giﬂK:Si
for all 4. O
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CHAPTER 4

RANK 1

4.1. Perron Transforms

Throughout this chapter we will assume that R C S are excellent regular local
rings such that dim(R) = dim(S), containing a field k& of characteristic zero, such
that the quotient field K of S is a finite extension of the quotient field J of R. We
will fix a valuation v of K with valuation ring V such that v dominates S. Suppose
that if my is the maximal ideal of V', and p* = my N S, then (S/p*)p- is a finitely
generated field extension of k. We will further assume that

(1) v has rank 1 and arbitrary rational rank s (< dim(S)).
(2) dimg(v) =0 and O, /m,, is algebraic over k.

Let n = dim(R) = dim(S). We will define 2 types of UTSs. Suppose that (R, —T", T)
is a UTS along v and T" has regular parameters (Z},...,Z,) such that

v(@) =11,...,0(T,) =76

are rationally independent. Let vy be an extension of v to the quotient field of T
which dominates T .
We first define a UTS T — T(1) of type I along v. The MTS T — T (1) is defined
as follows. T'(l) = T}, where h is a positive integer and T}, is constructed as follows.
Set 7;(0) = 7; for 1 <14 < s. For each positive integer h define s positive, rationally
independent real numbers 71 (h), ..., 7s(h) by the “Algorithm of Perron” (B.I of [36])

71(h—1) = 74(h)
T2(h— 1) = Tl(h) +a2(h - l)Ts(h)

Ts(h—1) = 15_1(h — 1) + as(h — 1)75(h)
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where
Ti(h —1)
(h—1)= |21~ ~/
a]( ) |:7'1 (]'L — 1)
the “greatest integer” in 7;(h)/71(h). There are then nonnegative integers A;(h) such
that

], 2<j<s

7 = Ai(R)1(h) + Ai(h + 1)7a(h) + - + Aj(h + s — 1)7(h)
for1<i<s.
Al(h) Al(h+$— 1)
det . = (-—l)h(s_l)
As(h) ... As(h+s—1)
(See formula (4’), page 385 [36].) These numbers have the important property that

im AR _ 7
h—o0 Al(h) T1
(See formula (5), page 385 [36].) Set Z;(0) = Z] for 1 < i < n. Define T} by the
sequence of MTSs along v
T =T0)»T1)—»--=Th) =T, =T (1)

Where T(Z +1) = T(Z)[:‘El G+1),...,7:(: + 1)](5:'1(i+1),...,:i’,.(i+1)) for0<i<h-1.

(20)

#1(0) = T,(i + 1)
To(i) = F1(3 + 1)Fs(i + 1)220)

To(i) = To1(i + 1)Te(i + 1)@
v(F;(i)) = 7j(i) for 1 < j < s. If we set Ti(1) = Z;(h), we then have regular
parameters (Z;(1),...,Zn(1)) in T (1) satisfying

= 51(1)«41('1) .. .fs(l)Al(h'Fs—l)

5 _ 2 (1)A(h) .. = (1)As(hts—1)
(21) ~/x fl(l) .’173(1)
Typr = Tsta1(1)

#, = Ta(l)

==

Then T'(1) = T [Z1(1), ..., Fs(1)](z,(1),....7. 1)) Let T(1) be the completion of T' (1)
at its maximal ideal. Set T"(l) = T'(1). Then for any extension v; of v to the
quotient field of 7(1) which dominates T(1), T — T/(1) is a UTS and (R, T (1), T(1))
is a UTS along v. Note that v(Z1(1)),...,v(Ts(1)) are rationally independent.

Now we define a UTS T — T(1) of type II,. along v (with the restriction that
s+1<r<n). The MTST — T (1) is constructed as follows. Set v(Z.) = 7. 7»
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must be rationally dependent on 71, ..., 7 since v has rational rank s. There are thus
integers A\, A1, ..., As; such that A >0, (A, A\1,...,As) =1 and

/\Tr = /\17‘1 +"’+/\3Ts~
First perform a MTS T — T(1) which is UTS along v where T(1) has regular

parameters (Z1(1),...,%,(1)) defined by &, = F;(1)41() ... 7, (1)A(h+s=1 for 1 <
i < 8. Then v(Z;(1)) = 7y(h) for 1 <i < s, v(Z,(1)) = 7. Set

Ai(h) = MA1(h+i—1)+ XAda(h+i—-1)+ -+ A;A5(h+¢—1)

for 1 <i <s. Then

AT = A (h)mi(h) + - + A (h) T (R).
Take h sufficiently large that all A\;(h) > 0. This is possible by (20), since \;7y +
oo+ XsTs > 0. We still have (A, A1 (h), ..., As(h)) = 1 since det(4;(h+j — 1)) = £1.
After reindexing the Z;(1), we may suppose that A;(h) is not divisable by . Let
A1(h) = Ap+ N, with 0 < X" < A. Now perform a MTS T'(1) — T'(2) along v where
T'(2) has regular parameters (Z1(2),...,Z,(2)) defined by

7:(1) = 7,.(2)
52(1) = %(2)

T,(1) = Z,(2)
zr(1) = 7:(2)z-(2)".

Set 7} = v(Z;(2)) for all ¢. 7{,..., 75,7 are positive and

Nrl=MNr +--+ A7
where A} = A, A} = —);(h) for 2 < i < s. We have thus acheived a reduction in A\. By
repeating this procedure, we get a MTS T > T'(«) along v where T(«) has regular
parameters (Z;(c),...,ZTn(a)) such that if 7; = v(Z;(a)), T1,...,Ts are rationally
independent and

Tr :XIFI +"'+Xs?s
for some integers ;. Now perform a MTS T(a) — T(a + 1) which is a UTS of type
I along v where T'(a + 1) has regular parameters (Z;(a +1),...,Z,(a+ 1)) such that
if 77 =v(@i(a+ 1)),

T :Xle +~~~+XS7'S*
for some positive integers Xi. Finally perform a MTS T(a + 1) — T (o + 2) where
T(a+2) =T(a+ 1)[N]q.

_ Zr(a+1)
Fi(a+ 1) Ty(a+ )N
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and q is the center of v on T(a + 1)[N,]. Set T'(1) = T(a + 2). Since v(N,) = 0,
N, has residue ¢ # 0 in k(T’(l)). Set N; = Z;(a) for 1 < i < s. Then there exists a
matrix (a;;) such that

T = Nou ... [NG1s+1
wl_Nl Nr °

2 = NG%si...NG%s.s+1
T, = N Noes

Tl o= Npotot o Nas+tadt

and det(a;;) = £1. T'(1) is a localization of T [Ny, ..., Ny, Ny).

Let T(1) be the completion of T’(l) at its maximal ideal. vy extends to a valuation
of the quotient field of T'(1) which dominates T'(1). Let v, be such an extension. T'(1)
has a regular system of parameters (z7(1),...,z} (1)) defined by

T = wi‘(l)all $:(1)a13(w:(1) +C)a1”+1
(22) :
Ty, = wi‘(l)asl . x;(l)ass ($:(1) + c)as,,_,,l

Fl o= z(1)8+1r . gx (1) %+t (g (1) + ¢)%ettiatl,

det(a;;) = 1 and vy (x3(1)),...,»1(x}3(1)) are rationally independent. Set

ail - Qis ayy Q1541
c=det | : Coldet | : #0

As1 " Qgs As41,1 " As41,s+1
since v(7}),...,v(Z,) are rationally independent. Define rational numbers vy,...,7s
by

-1
M ail - Qs —ai1,s+1
Vs As1 - Qgs —Qg 541

vi = m; /¢ for some m; € N. By Cramer’s rule,

ai1 o Q141 " 0
As1 - Ggs+1 Vs 0
As41,1 " Qeitl,s41 1 1/e

Y1@s+1,1 + 0+ VsQsy,s T Ast1,541 = 1/6'
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Let (b;;) = (a,-j)“l. Then

Ny = zi(1) = (@)™ - (@) (&)

Ny = a3(1) = @)% - (@)% (@)

Ny = 7(1) 4 e = (@)0rr o (@)Perne (F)renes
(z3(1),...,z5_y(1), N/, x5, 1(1),...,2;5,(1)) are regular parameters in T’(l) where

N. =TIV, = o(e))
and the product is over all conjugates o(c) of ¢ over k in an algebraic closure k of k.
R(T' (1) = K(T") (o).
* 1/e * 1/¢
- 1
We have (x,T(l) + 1) € T(1) where (f—’—cg—) + 1) is uniquely determined by
the condition that it has residue 1 in k(T'(1)). Set

T"(l) has regular parameters (Z1(1),...,Z,(1)) defined by

T'(1)=T(®1)

(z1(1),..,25 (1))

x:(1) (5%024—1)—% 1<i<s
(23) zi(1) =4 (=:) | \° -
(T'i'l) -1 1=7

z;(1) §<i, i#T
We have

o= 3 (1)31 T (1)%0s tret

T o= Ty (1) - Te(1)%0 toot

T, = Ty (1)%+01 - T (1) @40 (T, (1) + 1)ctettoot?

Note that
@)+ 1)°"7(1) 1<i<s
(24) z;(1) =< @ (1) +1)°=1] i=r
zi(1) s<i,i#r
Thus T — T(1) is a UTS and by our extension of v to the quotient field of T'(1),
(R, T"(1),T(1)) is a UTS along v. We will call T — T(1) a UTS of type IL,.
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Remark 4.1. — In our constructions of UTSs of types I and II,, T~ — T (1) is a
product of monoidal transforms

T":To—)Tl—)"'—)Tt_l‘—)TtITl(l)

where each T; — T,+1 is a m0n01dal transform centered at a height 2 prime a; and
aiT (1) (wl(l)d’ ws(l)d +) for some nonnegative integers d for all i.

Lemma 4.2. — Suppose that (R,T ,T) is a UTS along v, (x1,...,z,) are reqular
parameters in T", and v(z1),...,v(xs) are rationally independent.
(25) Suppose that M, = x‘li‘ -'-xgi,Mg = xf‘- ~wg3 eT' and v(My) < v(Ms).
Then there exists a UTS of type I along v, T — T(1), such that My | Mo in
T'(1).
(26) Suppose that M = x* --- 2% is such that the d; are integers and 0 < v(M).
Then there exists a UTS of type I along v T — T(1) such that M € _’fl(l).

Proof. — The proof of (25) is from Theorem 2 [36]. Consider the UTS with equations
(21). In T'(1),

M; = El(l)d;Al(h)+~~+d§A,(h) .. ,fs(l)d;m(h+s—1)+~~-+diA,(h+s—1)
fori=1,2. For h> 0
BAh+j-1D)+ - +d2A,(h+j—-1) >diAi(h+j— 1)+ - +diAs(h+j— 1)
for 1 < j < s by (20).

To prove (26) just write M = Ms/M; where M; are monomials in z1,...,zs. Since
v(Ms) > v(My), (26) follows from (25). O
Lemma 4.3. — Suppose that (R, T ,T) and (S,U",U) is a CUTS along v, T has

reqular parameters (ZT1,...,Tn) and U" has regular parameters (y,,...,7,), related
by

7, — 7711 75C
Ty =910 Yo

= ___ —=Cs1 =C
Ts = Y"1 Y0

such that ay, . ..,as € k(U), v(Z1),...,v(Ts) are rationally independent and det(c;;) #
0. Suppose that T — T(1) is a UTS of type I along v, such that T'(l) = T“(l) has
regular parameters (T1(1),...,Tx(1)) with

T, = fl(l)a“ .- 'Ts(].)a“
T, = T2 (1) - Ty (1)%.
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Then there exists a UTS of type I along v U — U(1) such that (R, T"(1),T(1))
and (S, U”(l),—U_(l)) is @ CUTS along v and U’(l) = U”(l) has regular parameters

U yl(l)b“ “'ys(l)bl’

(27) :
Fo = Ga (1)1 - Ge(1)P,
and
T1(1) = g, ()@ g, (1) Way (1)
(28) :

Ts(1) = gy (1) g (1) Way(1)

where a1 (1),...,0as(1) € k(U(1)), v(z1(1)),...,v(Ts(1)) are rationally independent
and det(c,-j(l)) # 0.

Proof. — Let (eij) = (ai;)~ Y, (dij) = (esj)(cjk), an integral matrix. Let a;(1) =
afit .- -agis for 1 <i <s. Then

zi(1) = 71" gt ea(1)
zs(1) = ?7(1131 e '?f""as(l)

By (26) of Lemma 4.2, we can construct a UTS (27) of type I U — U(1) such that
we have an inclusion T“(l) cU'(1) and (28) holds. Then an extension of v from
the quotient field of U which dominates U to a valuation of the quotient field of U (1)
which dominates U (1) restricts to an extension of v to the quotient field of 7'(1) which
dominates T(1) so that (R, T (1),7(1)) and (S,T (1),T(1)) is a CUTS along ». O

Lemma 4.4. — Suppose that (R,T”, T), (S, U”, U) is a CUTS along v, T" has reqular

parameters (T1,...,Tn) and U has regular parameters (gy,...,y,) such that
T =gt gty
N

(29) Tg = yl o 'ys Qg

f«‘H—l = ys+l

T =9

with a1, ...,as € k(U), v(Z1),...,v(Ts) rationally independent, det(c;;) # 0.
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Suppose that T — T (1) is a UTS of type II. along v, with s + 1 < r <l such that
T(1)" has regular parameters (Z1(1),...,Tn(1)) with

Ti= B (1)
(30) ’
Ty = Tl(l)a’"l .. 'fs(].)a"’ca”""l
Ep = Fp(1)%+01 o T (1)%e+00 (T (1) + 1)cPetts+1,
Then there exists a UTS of type I, (followed by a UTS of type I) U — U(1) along
v such that U"(l) has regular parameters (g, (1),...,7,(1)) satisfying
i = T (1) gy(1)redien

(31) b a7 bss b
1 1) s1 ., ’ys(l) 23 (f0s,s+1

71(
Ur = G (1)t o (1P (G, (1) + Ddberros,
T'1) cU'(1), and
Z1(1) = gy (1) g (1) Way (1)

(32) o(1) = gy (1)o@ -7, (1) Wa (1)
Tor1(1) = Foqa (1)

zi(1) = 7,(1)
where a1 (1),...,as(1) € k(U(1)), v(Z1(1)),...,v(Ts(1)) are rationally independent,
det(c;;(1)) # 0 and (R, T (1),T(1)), (S,U" (1),U(1)) is a CUTS along v.
Proof — Identify v with our extension of v to the quotient field of U which dominates
U. Set (gij) = (aij) ™,

= I ... g1 pI1.s+1
A =7 T eIt

As — T{al .. 'Tgssf”q.s,s+l

— 79s+1,1 | =Gs+1,89s+1,5+1
A =73 AR .

Then T (1) is a localization of T' [Ai,...,As, A;). v(4;) > 0for 1 < i < s and
v(A,) = 0. We have

—d —dyady s
A = yl11 ) ”ysl yrl' +1131

__dJ _dss_dss
Ag = Y1t Yyt Bs

s s
—dat1,1 =d d
AT = y16 ot 'yss+1”yr’+1”+lﬁr
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where 3; = af* ---adis for 1 <i<s, B =al*™ - a0t and
(33) (dir) = (ai;) ™" (eji) O .

0 1
Define B; by

=—h =his==h
Bl = ylll .o .ysl yrl,s+l

— =h Filsszihs,s
Bs_ylﬂl...ys y’r,+1

_ =hs+11 hat1,877Rs 41,8
B, =7, cooghettegheten

where the matrix (h;;) defines a UTS of type II, U — W along v where W is a
localization of U”[Bl,. ..,Bs,B,] with v(B;) >0for 1 <i < sand v(B,) =0. We
have

Al — Bifu .. B:l" Bil,a-}-lﬁl

A —_— Besl Bexs Bes,a+lﬂ
—_ €s+1,1 €s+4+1,s €s+41,s+1
AT‘ - B] M BS BT /87-

where (e;;) = (dij)(hij)™' is a matrix with integral coefficients. Since v(A,) =
v(By) = 0 and v(By),...,v(Bs) are rationally independent, we have es411 = -+ =
es+1,s = 0. Then det(e;;) # O implies es41,54+1 7 0. Since v(41),...,v(As) > 0, by
Lemma 4.2, we can perform a UTS of type I W — U(1) along v so that U (1) is a
localization of W’[C’l, ..., Cs] with v(C1),...,v(C;s) rationally independent, and

b” bII
B; = Clu .. Cts

Bs — Cfsl . C:aa
to get

A = C{ll - C.;“B%fl’aﬂﬂl

(34) :
As — C’ifsl e Céfs_,B{a,si-lﬁs

A, = Cifa+1,1 L Csf.s+1,..B{,+1,a+1IBr

with f;; > 0 for all 4,j and

(fij) = (es5) ((bé'].) (1)> .
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Set
(bij) = (hij) ™ <(b6j) (1)) )

(34) implies A;,...,A, € U (1). Thus U — U (1) is a MTS along v and T (1) c
T'(1). Further, we have fsx11 =" = fs41,5s=0.

Extend v from the quotient field of U to a valuation of the quotient field of U(1)
which dominates U(1). Let d be the residue of B, in k(W). U(1) has regular param-
eters (y7(1),...,y%(1)) such that

7y = yi(D)" - yp (1) (yr (1) + @)t

(35)

I

Ty = yi(P g (0P (1) + e
G = yi (D1t gy (1)Pere (gr(1) + d)berrosr,

* 1/d
T'(1)=T(1) [d, (yT(l) n 1) ]

We have a natural inclusion T(1) C U(1).
Let ¢ € k(T (1)) be the residue of A,. Then c is the residue of A, in the residue
field of our extension of v to the quotient field of U(1), since v dominates ﬁ"(l). Set

Set

A; 1<i<s
5@ =17 s<i i
Ar —c i=r1
Then (23(1),...,2%(1)) are regular parameters in 7'(1) such that
z¥(1) = yr()fr - yr () e (y2 (1) + d)Frer1 By

(36) :
2i(1) = yi Q) yr() e (y2(1) + d) oo By
.’E:(l) +c = y;‘(l)fa-i—l,l .. ‘y;f(l)fs+1,s (y,’f(l) + d)f’+1»~'+157,,

They are related to the regular parameters Z;(1) in 7(1) satisfying (30) by
w1y = { D@D+ Do 1<i<s
z;(1) = _
! @) +1)°—-1] i=r

where
ail - Qais ail - G1,541
det

ol
I
o
[}
o+

Ag1 *° Qss As1 " Qg41,5+1
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" 0
| =@

Vs N 0
1 1/c

We have regular parameters 7;(1) in U”(l) satisfying (31) with

‘(1) = 7@ 1)+ 1% 1<i<s
T @+ 07— i=r

where
b1y -+ bis b1 -+ b5t
d=det| : Dol det | "
bsl bss bsl bs+1,s+1
T1 0
: — (bi-)_l .
Ts ! 0
1 1/8
T1 0 0 Y1
A 2 -1 [((ei) 0) N IR I N
(fU) T, (a'l]) ( 0 1 O (ai]) 0 (_Zl Ve
1 1/d 1/d 1

Substitute this in (36) to get
T (1)@ (1) + D) = g () g, () G, (1) + DT alien gy

Ts(1)(@ (1) + DT = gy ()7 g, (1) 7, (1) + 1) dler g
(@ (1) + 1)° = (F,(1) + 1)°dl+rem1,.
v(Z,(1)) > 0 and v(7,.(1)) > 0 imply
(37) c=dlsrianig,
Our inclusion T(1) C U(1) induces
7o(1) = wg, (1) +w— 1
in U(1) for some &-th root of unity w. Since Z,(1) € m(T(1)) and 7,(1) € m(U(1)),
we must have w = 1. We thus get (32).
') =T Ol T W)@ @)an) €T 4T Olg)gaan =T (1)-
An extension of vy to the quotient field of U(1) which dominates U(1) then makes

—

(R, T"(1),T(1)), (S,U"(1),TU(1)) a CUTS along v. O
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Lemma4.5. — Suppose that (R, T ,T), (S,U,U) isa CUTS alongv, T has regular
parameters (Z1,...,T,) and U" has regular parameters (g, ...,Y,) such that

7, — 73¢11 77C
Tr =7yt aa

Es — yﬁsl .‘.'ggsaas
(38) Ts+1 = ys-{—l

T =7
_ _ -d —d,—
ZTiyr = Y1 Y5 Ui

where ay,...,as € k(U), v(T1),...,v(Ts) are rationally independent, det(c;;) # 0.
Suppose that T — T(1) is a UTS of type I+, along v, such that T (1) has regular
parameters (Z1(1),...,Tn(1)) with

1 = B (1) Ty (1)3e ettt
(39) ‘
Ty = 'fl(l)a"l .- -fs(l)a“ca""'“

Tl+l — fl(l)aﬁm .. .Ts(l)aa-fl,s (TH-l(l) + l)ca-!+l,.s+1.

Then there exists a UTS of type I 11, (followed by a UTS of type I) U — U(1) along
v such that U"(l) has regular parameters (y,(1),...,7,(1)) satisfying

T = )" g (1)redien
(40) - : = (1\b = (1)\bss b
Us = T2 (1)72 -Gy (1)0eedPeet
?71+1 — yl(l)bg+l,1 . .ys(l)bsﬂ,, (yH—l(l) + 1)dbs+l,s+l7
T'(1) cT"'(1), and

7 (1) = yl(l)m(l) "‘ys(l)cls(l)al(l)

Zo(1) = F (1) 0 -7, (1) Wy (1)
(41) Zair(1) = Topr (1)

zi(1) = 7,(1)
Zi1(1) = 754, (1)

where ay(1),...,a5(1) € k(U(1)), v(Z1(1)),...,v(Ts(1)) are rationally independent,
det(ci;(1)) # 0 and (R, T (1), T(1)), (S, U (1),U(1)) is @ CUTS along v.
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Proof. — Change r to [ + 1 in the proof of Lemma 4.4, and change (d;;) to

c1; - c15 0
(dix) = (as;) ™"

Cs1 '+ Csgsg 0

dy - dy 1

(|
Lemma 4.6. — Suppose that (R, T ,T) and (S,U ,U) is a CUTS along v, T has
regular parameters (Ty,...,Ty,) and T" has regular parameters (3, ...,Y,) such that

= — =C11 =c
T = yl .‘.yslsal

Es — "y-ial .. ,yﬁssas
Ts+1 = Yspa
T =7
Tip1 = yﬁ’“vl o gletLeg
where ay,. .., 0 € k(U), 6 €U is a unit, v(T1),...,U(Ts) are rationally independent

and det(C@'j)lsi,sz #0.
Suppose that T — T(1) is a UTS of type Il11 along v, so that T (1) has regular
parameters (Z1(1),...,Tn(1)) satisfying

-73_1 p— fl(l)a“ .. ,Es(l)alscal,a+1
Ty = T1(1)%1 - - Ty (1)%e cPorot
Tigr = Ty (D)%+nt - T (1) %40 (Tygr (1) + D)ctettotr,

Then there exists a UTS of type I along v U — U(1) such that U’(l) has regular
parameters (Y1(1),...,0n(1)) with

Y = g1(1)b S Pa(1)P1e

Yo = (1)’ - Gu(1)"
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and U (1) has regular parameters @ (1),...,7,(1)) such that §,(1) = &;5;(1) for
1 <i < s for some units g; € U”(l), T'(1) c U"(l),

z1(1) = g ()W g (1) Way (1)

To(1) = 7, (1)@ g (1) Dy (1)
Ts+1(1) = ys+l(1)

zi(1) = 7,(1)

where a1(1),...,as(1) € k(U()), v(@1(1)),...,v(Zs(1)) are rationally independent,
det(ci; (1)) # 0, and (R,T”(l),T(l)) and (S,U”(l),U(l)) is a CUTS along v.

Proof. — Identify v with our extension of v to the quotient field of U which dominates
U. Set (gij) = (ai) ™",

=91,s+1

= ...t
A =7 T3T)

— m9s1 || 9ssTs,s+1
As =T T T

— 795411 | =gs41,s7=9s+1,841
A T AR .

T’(l) is a localization ofT”[Al, vy Agy Ay v(A4;) >0for1 <i<sand v(Aj41) =
0.

—d —d1s
A =yt - ysttder

—d —d
AS — ylal .. ,ysasases

_ —dsy11 —d
Ay =3 gt b

where e; € k(U), (dir) = (ai;)~(c;x) and &; are units in U such that &; has residue
lin k(U) for 1 < i < s. v(Ai41) = 0 and v(7,),...,v(¥,) rationally independent
implies

ds+1,1 == ds+1,s =0.

ASTERISQUE 260



4.1. PERRON TRANSFORMS 45

Since v(A;) > 0 for 1 <14 < s, by Lemma 4.2 we can perform a UTS of type I along
v U — U(1) where U (1) has regular parameters (71(1),...,7,(1)) satisfying

7= R g

Yy = ’y\l(l)bsl(l) .. '?//\s(l)b"’(l)
to get
A = :,71(1)011(1) .. '@\3(1)013(1)(5161

Ay = G )W Gy (1) Wdge,
A1 = G141
where all ¢;;(1) > 0. Thus

T'[A1,.. ., A, A ) T 1) =T [ (1), - S Ts(D](F1(1),5n (1))

and since v dominates U’(l) and T’(l), U (1) dominates T’(l).
Now extend v from the quotient field of U to a valuation of the quotient field of
U(1) which dominates U(1). T (1) has regular parameters (z3(1),...,25(1)) with

T = ;I;I(]_)an .. .;p:(l)au ('T;+1(1) + C)a1,.s+1

Ty = 1;1‘(1)031 .. ~$:(1)ass ($7+1(1) + C)a,,a+1
Tipr = xp(1)2+0t gk (1)%+ e (2, (1) + )@+ttt

_” * 1 1/¢
T'(1) = [c, (""%() + 1) } :
(@3 (1), (1))

(Z1(1),...,ZTn(1)) are regular parameters in T”(]) which satisfy

x5, (1 e . )
7(1) = 1(1)(’“() 1) =@ g 1) 2 Wore (‘—cﬂ>

-7

T 1 e N 5 —Ys
7. = 230 (F20 1) T =g g s, (22)

. 1/ 1/e
Ti41(1) = (%L;(E + 1) -1= (&Tﬂ) -1
Set (ei;) = (ci5(1))7 !

5l+1 TY1€i1 = —Ys€is
e

C
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for 1 <i < s. Define
_ gigi(l) 1<i<s
7;(1) = ,\z : .
(1) s+1<i.

Then the conclusions of Lemma 4.6 hold with

—] P (51+1 1/e
U1)=U(@1)]c — yE1y---sEs

#1(1),---7, (1))

4.2. Monomialization in rank 1

Theorem 4.7. — Suppose that (R,T”,T) and (S, U”,T]—) is a CUTS along v such that
T" contains the subfield k(co) for some co € T' and U contains a subfield isomor-

phic to k(U”), T" has reqular parameters (Z1,...,%Z,) and U" has regular parameters
(W, ...,Wn) such that

where ¢1,...,¢s € k(U”), v(Z1),...,v(Zs) are rationally independent, det(c;;) # 0.
Suppose that one of the following three conditions hold.

(42) f € k(U)[[w1,...,Wm]] for some m such that s <m < n with v(f) < 0.

(43) f € k(D) [[El, e ,wm]] for some m such that s < m < n with v(f) = oo and
A > 0 is given.

(44) f e (k(U) ([, ..., Wm]] — k(O)[[@1,...,w])) NT" for some m such that | <
m < n.

Then there ezists a CUTS along v (R, T (¢),T(¢t)) and (S,U" (¢),T(t))

(45) ) 1
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such that T (i) has regular parameters (z1(i), . . ., Zn (1)), U (i) has regular parameters
(w1 (2),...,wWn(t)) satisfying
21(6) = ()™ D -, (1)1 D 1 (0)

%,(i) = (i)cu(i) .. .ms(i)c“(i)(ﬁs (4)

73+1(i) = Wst1 (7')

zi(i) = wi(7)
T”(i) contains a subfield k(co,...,c;) and ﬁ”(i) contains a subfield isomorphic to
kU®G)). ¢1(i),...,0s() € k(U®4)), v(Z1(3)),...,v(Zs(i)) are rationally independent,
det(ci;(¢)) #0 for 0 < i <t. In case (42) we have

f=w @)% W () uw(@L(t), ..., Tm(t))

where u € k(U (1)) [[w1(t), ..., Wm(t)]] is a unit power series.
In case (43) we have

f=w @) W) Z(@W1(2),. .., Tm(t))

where © € k(U®))[w1(t), ..., Wm()]], v(@1(t)% - - W,(t)%) > A.
In case (44) we have

f=P@@i(t),...,w(t) +w ()% - -ws(t)H
for some powerseries P € k(U (t))[[w1(t),...,wi(t)]],
H = u(Wp(t) + w1 (2)9 - - - W, (¢)9°X)

where u € k(U®))[W1(2),...,Wm(t)]] is a unit, & € k(U®))[@W1(t),...,Wm-1(t)]]
and v(Wm(t)) < v(wy(t)9" - - -ws(t)9°).
(45) will be such that T"(oz) has regular parameters

Z1(a), ..., Zn(@)) and (Z,(Q),. .., Z,(@)),
U”(a) has reqular parameters
@1 (), ..., Wp(a)) and (@y(a),. .. Wy(e))

where Z;(0) = z; and w;(0) = w; for 1 < i < n. (45) will consist of three types of

CUTS.

(M1) T(a) > T(a+1) and U(a) = U(a + 1) are of type L

(M2) T(a) > T(a+1) is of type II,, s +1 < r <1, and U(a) = U(a+1) is a
transformation of type II., followed by a transformation of type I.

(M3) T(a) =T(a+1) and U(a) = U(a+ 1) is of type I, 1+1<r<m).
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We will find polynomials P; o, so that the variables will be related by:

%I(O() _ Zi(a) = P o(Zi(@),...,Zi—1(a)) ifs+1<i<l
¢ B Zi(a) otherwise

~I

z;(a) ifs+1<i<l
Wi(e) = { Ti(a) — Poa(@i(@),..., Wi 1(a)) ifl+1<i<m

wi(a) otherwise

The coefficients of P; o will be in k(co, .. .,cqo) if i <1, and will be in k(U(a)) if i > 1.
For all o we will have

zi(a) = Wi (@)@ - W (@)1 (D) ¢y (a)

Z,(0) = W (@)™ @ .. T, (), (a)

(46) Zs+1(a) = Wep1 (@)

Zi(a) = w(a)
and

Zi(a) = Wy ()@ - Ty (a)7 (@) gy (a)
- 5(0) = B @@ (@) 6 )

Zor1(Q) = Wy (a)

~ ~1

W, (a)

Y
~
—
Q
~

I

where ¢y (a), ..., ds(a) € k([T (). T (a) contains a subfield k(co, . .., cq) and U ()
contains a subfield isomorphic to k(U(a)).

In a transformation T(a) — T(a+1) of type I, T (a+ 1) will have regular param-
eters (Zi(a+1),...,Zp(a+ 1))

Z1() = 71 (a + 1)) .z (o 4 1)ae(@+)
(48) :

%;(a) = Zi(a+ 1)“’1("+1) - Zs(a+ l)a“(a-i-l)
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and coy1 is defined to be 1. In a transformation T (o) — T(a+1) of type II, (s+1 <
r <1) T"(a+1) will have regular parameters (z;(a + 1), ... ,Zn(a + 1))

%'l(a) = Zi1(a + 1)olet) .7 (o + 1)a1,(a+1)c‘;1s1+1(a+1)

(49) E;(a) = Zy(a + 1)) L 7, (o 4 1)@ss(atD) depri(@t)
Z,(a) = Zi(a+ 1)o@tz (o 4 1)2erne(atl)
- (Zr(a+ 1) + 1)clepperi(eth)

In a transformation U(a) — U(a+1) of type I, U”(a+1) will have regular parameters
(Wi(a+1),...,Wnp(a + 1))
W) () = Wy (a + 1)@+ . qg, (o + 1)br=(a+1)
(50) :

Wy(a) = Wy (a + 1)b1@+D) .35, (o 4 1)bes(at1)
and doy1 is defined to be 1. In a transformation U(a) — U(a + 1) of type II,
(s+1<r<m) U"(a + 1) will have regular parameters (W1(a + 1),...,W,(a + 1))

%’1(@) = Wy (a+ 1)t 5 (o + 1)b1,(a+1)d21;:;1(a+1)

(51) %;(a) = Wi (a + 1)@t g (a4 1)bes(atD) o atl)
W, (a) = Wy (a+ 1)b+11@t) g5 (o 4 1)bet1.s(et1)
- (@p(a + 1) + Vdpeper (D

In a transformation of type (M2) co+1 is related to do+1 by (37) of the proof of Lemma

44
We will call @ UTS (CUTS) as in (45) a UTS (CUTS) in the first m variables.

Proof. — We will first show that it is possible to construct a UTS along v
(52) T—->TQA)—---—>T(t)
so that the conditions (54), (55) and (53) below hold.

(53) Suppose that s < m < I. Then there exists a UTS (52) in the first m variables
such that

pm(3) = {f € k(T (@) [Z1(3), ..., Zm ()] | v(f) = o0}
has the form
(P(m)) pm(t) =
GEra)®) = Qra)(Z1(t),- - Zr(1)=1)s - - > Zr(m) (t) = Qr(m) (Z1(8), - - -, Zr(im)-1))

for some 0 <m <m —sand s <r(l) <r(2) <--- <r(Mm) < m, where Q,;
are power series with coefficients in k(co,...,ct).
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(54)

(55)

CHAPTER 4. RANK 1

Suppose that h € k(T)[[Z1, - - . ,Zm]| for some m with s < m < nandv(h) < co.
Then there exists a UTS (52), in the first m variables such that P(m) holds in
T(t) and

h=7Z1(t)" - Z,0) % u(Z1(t),. .., Zm(t))
where u is a unit power series with coefficients in k(T'(t)). If h belongs to
k(co)[[Z1,---,Zm] then u has coefficients in k(co, . ..,ct).
Suppose that h € k(T) [[El, . ,Em]] for some m with s <m < n, and v(h) =
oo and A > 0 is given. Then there exists a UTS (52), in the first m variables
such that P(m) holds in T'(¢) and

h=Z1(t) - Z,() L B(EZ1(t), ..., Zm (D))

where v(Z) (t)% - - - Z5(t)%) > A, T is a power series with coefficients in k(T'(t)).
Ifhe k(co)[[fl, - ,Em]], then ¥ has coefficients in k(co, ..., ct).

(53) is trivial for m = s, since ps; = (0).

Proof of (54) for m = 8. — Set 7; = v(Z;) for 1 < ¢ < s. h has an expansion

h= S a0

i>1

where the a; € k(T) (or a; € k(co)) and the terms have increasing value. Set

3

Cc= m (bl(l) +b2(1); + +b3(1)g) .

We can perform a UTS of type I where T — T(1) is such that

7 e 7
m ayi(l) 211

for1 <i<s.
31{1(1') .. -Eg’(i) - 31(l)bl(i)au(1)+---+bs(i)au(1) .. .gs(l)bl(i)au(1)+~~'+bs(i)au(1).

Suppose that i is such that b1 (¢) + - -+ + bs(i) > c. Then for all 1 < j < s we have

bl(i)alj(l) + -+ bs(i)asj(l) = (11]'(1) (bl(l) + bz(i)

+ -+ bs(3)

az;(1) asj(l))
ay;(1) a15(1)
> “1_72(12 (bl(i) +b2(i)% + --~+b3(i):—i)

min(7;/71)
2

S 3&;11_) (bl(l) + b2(1)% oot bs(l):_j)

> (100 450G -+ 8

= bl(l)alj(l) + -+ bs(l)as]'(l).

2 (11](1)(b1(’t) +---+ bs(l))

+ o4 bs(1)
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By Lemma 4.2 we may choose the a;;(1) so that the inequality
bl(i)alj(l) + .-+ bs(i)asj(l) > bl(l)alj(l) +---+ bs(l)asj(l)

also holds for 1 < j < s for the finitely many ¢ such that b;(¢) + - - - + bs(¢) < ¢. Then
h has the desired form in T'(1).

We will now establish (54), (55) and (53) by proving the following inductive state-
ments.

A(m): (54), (55) and (53) for m < m imply (53) for m = .
B(m): (54), (55) for m < m and (53) for m = ™ imply (54) and (55) for m = m.

Proof of A() (s < ). — By assumption there exists a UTS T — T'(¢) satisfying
(53) for ™ — 1. After replacing T"(O) with —T"(t) and replacing co with a primitive
element of k(co,...,ct) over k, we may assume that

pm-1= (Zrq) = Qr)Z1, - Zr)=1)s - Zpimmi) — Qramiy B+ 0 Zpimiy—1))-

where Q..(;) are power series with coefficients in k(co). If pm—1k(T)[[Z1, - - ., Zm]] = pm
we are done. So suppose that there exists f € pm — Pm—1k(T)[[Z1,...,Zm]]. Let L
be a Galois closure of k(T) over k(cp), G be the Galois group of L over k(co). Set

f=1Ie® €k, Zm]-

o€G
f € pmNk(co)[[Z1,...,%m]| and v(f) = oo since f|f in k(T)[[Z1,...,Zm]]. Suppose
f € pmik(D)[[Z1, ..., Zm]].

Then f € pm_1L[[Z1, .., Zm]| which is a prime ideal, and a(f) € p,—,;_lL[[El, eet ,Em]]
for some o € G. But

o (pm_lL[[—Zl, - ,Eﬁ]]) = pm_lL[[El, .. ,Em]]
for all 0 € G. Thus

f € (pm=1L[[Z1,....Zm]|) NkT)[[Z1, .., Zm]] = pm-1kT)[[Z1, ..., Zm]]
a contradiction. Thus f € pm_1k(T)[[Z1,...,2Zm]]-

o0
f=> a1, ... Zm-1)7
=0

where the a; have coefficients in k(cy). By assumption v(a;) < oo for some 7. Set
r =mult(£(0,...,0,Zn)).

d
F=3azli+ > a7l + Y wzl + 720
i=1 j k
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where the first sum consists of the terms of minimal value p = V(aﬁ;fn_"), 1< <d,
av(Zm) > p, the second sum is a finite sum of terms of finite value V(dj?%) > p and
the third sum is a finite sum of terms akign’i of infinite value.

Set

R = k(co)[[Z1,- -, Zm-1]]/ (Pm—1 Nk(co) [[Z1 - - -, Zm-1]]) -

v induces a rank 1 valuation on the quotient field of R.
Given d in the value group I', C R of v, let

Ii={f € R|v(f) 2 d}.
By Lemma 2.3, there is a set of real numbers
(56) di<dy <---<d; <

with lim;_, d; = oo such that d; are the possible finite values of elements of R and
Mg, 14, = 0. Thus by Theorem 13, Section 5, Chapter VIII [39], there is a function
(i) such that I;, ¢ m(R)"® and (i) = oo as i = oo.

By assumption, we can construct a UTS in the first 72 — 1 variables along v so that
for all ¢, 7,k

a; =21 (tl)el(i) < Zs (tl)es(i)ai
a; = 71 (t) 1D .. 7, (t)F Da;

ar = Z1(t2)7® -2, (81)2 P 5y

in k(co,...,ct,) [[21 (t1),-- -, Zm-1(t1 )]] where @;, @; are units and

V(Zl (tl)gl(k) .. -Es(tl)g’(k)) > p.
Now perform a UTS of type Il and a UTS of type I along v to get
f=71(t2)" - Z5(t2) ™ fo

where f1 € k(co,- .. ,Ctz) [[31 (tz), ce ,Eﬁ(tg)]] . Set

C_ arsti(t2)er(d)+-tas,s+1(t2)es (1) +ast1,s+1(¢2) fi
Ai = ¢y,

for 1 <i<d. Then

d
fr =Y Nti(Fm(te) + D+ Z1(t2) - Za(t2)A,

i=1

for some series A € T(t2) by Lemma 4.2. Set r; = mult f1(0,...,0,Zm(t2)) < .
ri <fa<r.
The residue of @; in

T(t2)/(Z1(t2), - - -, Zm—1(t2), Zmy1(t2), . - ., Zn(t2)) = k(T (t2)) [Zm(t2)]]
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is a nonzero constant @; € k(T (tz)) for 1 <i < d. Set

d
() = £1(0,...,0,t = 1) = Y Aaith.
i=1

Suppose that r; = r. Then f; = r and
d
(57) (Emlte) +1) = D Ni(Zm(t2) + )7 = MgGaZm(t2)’*

=1
Thus ((t) = A\g@q(t —1)" has a nonzero t"~! term, so that f4_; =r—1and aq_1 # 0.
Therefore ag = @4 and v(Zwm) = v(aq—1). Define 7(0) by v(Zm) = v(aa—1) = dr(o) in
(56). Then ag_1 = h + ¢ with h € pm_1 Nk(co)[[Z1,---,Zm-1]] and

¢ € m(k(co) [Z1, - - -, Zm—1]])" (O,
Let o = @g € k(co) be the constant term of the power series aq € k(co) [Z1, - - -, Zm—-1]]-
Expanding out the LHS of (57), we have
Adraqg + Ag—1a4—1 = 0.
m_
¢ (ag_1—h)z?

m

(Fm(t2) +1)"Aa

hc‘tls+1.=+1(t2)(7"—1)
()\d—lad—l - 2 ) Zm(te) + )71

Z1(tg)ae+11(82) .. Z (ty)as 41,0

(Zm(t2) + DAa
hcgs+1,a+1(t2)(7"“1)
2

Ad-1G4—1 — Z1(t2)2e+11(t2) . 5 (Hg)2e+10(t2)
Zm(t2)Ad 4 Ad
— )‘d—lad—l /\d_lad_l
- ast1,s+1(t2)(r—1)
1 hegy et

- Ad—184—1%Z1 (t2)as+1,1(tz) . Es(t2)as+l,s(t2)
has residue —1/ra in O, /m,,. (Recall that v(h) = o). Thus v(Zm + =¢) > v(Zm).
Since 1/ra € k(co), ¢ € m(k(co)[[Z1,- - -, Zm-1]])""©) and there exists
A € m(k(co)['z‘l, cel ,37,1-_1])7(1-(0))
such that v(Zm — A1) > v(Zm). Set 2% = Zm — A,.
Repeat the above algorithm, with Z7 replaced by E(ml). If we do not achieve a
reduction r; < r, we can make an infinite sequence of change of variables
70 =z _ g4,

such that 4; € k(co)[Z1,. . ., Zm_1], (4;) = v(ZEV), v(Ai) = dr vy,
A; € m(k(co)[il, - ,Em_ll)v(r(i_l))
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and
TO) <7(1) < <7(3) < -+
Then
—(t) —(J) € m(k(co)[Z1, - . -, Zm—1])™n TG (r(G=1)}

Thus {z(’)} is a Cauchy sequence, and there exists a series

A(Z1,...,Zm-1) € k(CO)[[Ela e »Eﬁ—l]]
such that
= lim, o =Tm— A
and v(Z¥) = oco. Thus ZX € pm.
Set A(a) = v(7(a)). For all o there are series a;,a;,ar and exponents f;, f;, fx
such that we can write
=l @) + -+ ar @)+ S () + SanER) N+ (737)H
where the terms in the first sum satisfy
W(ai(Z)) = rv(ER)) = rd;(a),

ar is a unit, the terms in the second sum satisfy v(a; (_(a))ff) > rd;(a), and the terms
in the third sum satisfy v(ax) = oco. Set m = m(k(co)[[Z1,.-.,%Zm-1]]). Since for

terms in the first sum, v(a;) > d, () implies a; € pm—1 + mM®) | we have

f=a@.Z2) mod (MMIT + pm i T + (229)7+1)
where @, is a unit in T, so that
fe (E(WQ))T +m T + pr T = (_(oo)) +m*AOT 4 pon (T
Thus
£ €N (E) +m T 4 p  T) = G) + pra T

Since the @, are units, we have
(58) f=u@m—AQZ1,...,Zm-1))" +h

where u is a unit power series, h € pm_1T.

Suppose that we reach a reduction r;1 < r after a finite number of iterations.
We can repeat the whole algorithm with f replaced with f;, r replaced with 7y,
co with a primitive element of k(co,...,ct,) over k, T with T (t2). (Recall that
k(co,-..,ct,) C T"(tg)) We have v(f1) = oo, so that the algorithm cannot terminate
with r = 0, and we must produce ZX(t) such that

z2(t) = Zm(t) — AZ1(H), - .., Zm-1(2)),

with A € k(co,...,c)[[Z1(t), ..., Zm-1(t)]] and v(z2(t)) = oco. In particular, the
algorithm produces Zm(t) — Qm(Z1(t), . .., Zm—1(t)) of infinite value.
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By (53) for m = m — 1, we can now construct a further UTS in the first m — 1
variables along v, so that

pm—1(t) = (Zr1) () = Qr(1)(Z1(8), - - -, Zr(1)=1(1), - - -, 2,75y ()
— Q=) B (1), - 2, 7=y () -
Now suppose g € pm(t) and v(g) = co. Then there exists
go € k(D) [21(t), ..., Zm-1(t)]] and g1 €T
such that g = go + (Zm(t) — Qm)g1 and v(go) = o0. Thus go € pm—1(t), showing that
P = (Zra)(t) — Qry(Z1 (1), - - -, Zr1)-1)s - - - Zm — Qm(Z15 - - -, Zm—1))-

Proof of B(m) (s < m)
Case 1: v(h) < co. — There exists a UTS T — T(t) satisfying (53) for m = m. After
replacing T (0) with 7" (t) and replacing co with a primitive element of k(co, . . ., ¢;)
over k, we may assume that

pm = (Zr1) — Qr)(Z15- -1 Zr(1)=1)s - - s Zr(@) — Qr(m) (F1s - - -3 Zr(im)—1))-
where the Q,(;) are power series with coefficients in k(co). Let L be a Galois closure
of k(T) over k(cop) and G be the Galois group of L over k(cp). Set

g=[] c(h) € k(co) [[Z1,- .-, Zm]]-
oeG
g € k(co)[[Z1,---,Zm]]. Suppose v(g) = co. Then g € pmL[[Z1,...,%m] which is a
prime ideal, invariant under G. Thus
h € (WL[[EL oo ,Eﬁ]]) n k(T)[[El, .o ,Eﬁ]] = DPm

which implies v(h) = 00, a contradiction. Thus v(g) # oo. We will construct a UTS
so that
g=uzi ()" - Z, (1)
where u is a unit power series in k(co,...,c)[[Z1(¢), ..., Zm(t)]] and h belongs to
k(T)[[Z1(t),...,Zm(t)]]. Since k| g in k(T)[[Z1(t),...,Zm(t)]], we will then have h in
the desired form in T'(¢).
Set g = 7% ... 7% g, where %; does not divide go for 1 < i < s. Set

r = mult go(0,...,0,Zm).

0 < r < 0o. We will also have an induction on r. If r = 0 we are done, so suppose
that » > 0.

d
go =D 0i(Z1, . Fm-1)7e + D _0j(Z, - B )
i=1 j

+Zok(zl, o Bmo1)7e + 2
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where the coefficients of ¢;, 0;, o and ¥ are in k(co), ¥ is a power series in zy, . . ., Zm,
the first sum is over terms of minimum value p, a satisfies av(Zm) > p, and the
(finitely many) remaining terms of finite value are in the second sum, the (finitely
many) remaining terms of infinite value are in the third sum.

By (54), (55) for m < m there is a UTS T — T(a) in the first 77 — 1 variables
along v such that

o;i =Z1(a) D ... 7, (a) D7,
for all 7,
oj =71 (@)@ .. -Es(a)cs(j)ﬂj
for all j and
or =Z1(a)*® ...z, (a)* W,
for all k where ;,u;, Uy, € k(co, - - -, ca) [[Z1(), . .., Zm-1(a)]], W, ¥; are units and

vz (@) )2, () ) > .

Now perform a UTS of type Il T(a) = T(a + 1) along v to get

go =Z1(a+ 1) - - Zy(a + 1)% (Z AT (Frs(a + 1) + 1)%)
+ 3z (a+ D% - Ey(a+ )N (Fm(a + 1) + 1)
7

+ 3 (@ + 1 -y (a + 1) AT (Bl + 1) + 1)
k

+ (21 (a + l)as+1.1 o .zs(a + 1)a,+1,3)a\1,/.

where

A = Cal,,+1(a+l)cl(i)+-~~+a,,,+1(a+1)ca(i)+a,+1,,+1(a+1)a.'
i = Cat1 :

Then perform a UTS of type I T(a + 1) — T(a + 2) along v to get
go = Z1(a + 2)1 (@) Lz (g 4 2)de(aFD) g

where
d
g1 =S ANTGEm(@+2) + )% +51(a+2) - Z(a+2)T,
i=1
is a power series with coefficients in k(co,...,Ca+1), ¥1 a power series in
Zi(la+2),...,Zm(a+2). Set r1 =mult ¢1(0,...,0,Zm(a+2)). 11 < oo and r; < 7.
Suppose that r; = 7. Then as in (57) in the proof of A(77), Z5; is a minimal value
term in go, so that ag =7, ag—1 =r —1, 64—1 # 0, and v(o4-1) = v(Zm).
As in the proof of A(T), there exists A; € k(co)[Z1,.-.,Zm—1] such that we can
make a change of variable, replacing Zm with Zi— = Zm— A1 to get v(Zm— A1) > v(Zm).-
We have

v(Zm) < v(zm) < v(go)
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since ZZ- is a minimal value term in go. Now repeat this procedure. If we do not
achieve r; < r after a finite number of iterations, we get an infinite sequence

v(Zm) < v(Zm) < -0 < V(E(ﬁl)) < -
such that I/(E(mi)) < v(go) for all . By Lemma 2.3, this is impossible.
Thus after replacing Z7 with
Zor = Fm — Pmo(Z1, . . Fm1)
for some appropriate polynomial Pro € k(co)[Z1,...,Zm—1], we achieve a reduction

r1 <7 in T"(a + 2). By induction on r, we can construct a UTS T — T'(¢) along v
such that

g=z(®" - Z )= uE (@), .., Zm(t))
where T is a unit power series with coefficients in k(co, ..., ct).
By (53) for m = m we can perform a further UTS to get
pm(t) = Zr@)(t) — Qr1)y(Z1(t)s - ., Zr@)=1)s - - > Zr() (B) = Qr(m) (Z1 (D), - - - s Zr(im)—1))
while preserving
g=n®)" - ZO)*az(),. .., Zm(t)
where ¥ is a unit.

Case 2: v(h) = co. — By (53) for m = m, we can assume that

pm = Er)(t) = Qr)(Z1(t), -, Zr(1)=1)s - -+ » Zr(m) — Qr(m) (Z1y -+ -3 Zr()—1))-

where the Q,(;) are series with coefficients in k(co). Then

171
h= E 0i(Zr(i) — Qr(s))

=1
for some o; € k(T)[[Z1,...,Zm]]. Choose b so that bv(m(T)) > A. There are poly-
nomials P,;(Z1,. .-, zr(i)—l) in k(co)[Z1,--- ,E,.(i)_l] such that Q. — P € m(T_)b
and

v(Zri) — Priiy) > A
Make a change of variables replacing Z,(; with Z,; — Pp) for 1 <4 < m. Then
construct the UTS T' — T'(t,) which is a sequence of UTSs of type II, for s+1 < r <
m, followed by a MTS of type I to get
h=z1(t)" - Zs(t)™ T

with v(Z1(t1)% - - Z4(ts)%) > A. By (53) for m = m, we can perform a UTS along v
in the first 77 variables to get

pm(t) = (ET(I)(t) - Qr(l)(zl @),... ,Er(l)—l(t))v A ,Er(;ﬁ)(t)
— Qi) (Z1 (1), - .. Zr(my—1 (1))
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while preserving
h=z(t)" - Z:(t)" 2
with v(Z1(8)4 - - Z4(t)%) > A.

Proof when (42) or (43) holds
Case 1. — Suppose that s < m < [. After performing a CUTS in the first m
variables, we may assume that

Pm = (Zr(1) = Qr)(F1s- -1 Zr(1)=1)s - - - Zr(m) — @r(m) (Z1, - -+ » Zr(im)—1))-

where the coefficients of Q,;) are in k(co). f € k(U)[[w1,...,Wm]|
First suppose that v(f) < co. Let Ts = k(co) [[Z1, - - -, Zi]], Ui = k(U) [@1, - - ., W;]]
for s <i < m. Let d = det(c;;), (ds;) be the adjoint matrix of (¢;;). Then

— _ =dn/d =d1s/d
=7 ceZgt A

— —ds1/d =dss/d
zl [ .zs )‘8

5
I

Ws41 = Zs+1

Wm = Zm

where

Ai=grd/d.gdia/d for 1 < i< s
Given a CUTS (45), set o(i) to be the largest possible a such that after possibly
permuting the parameters Zs;41(2),...,%Zm(¢), v induces a rank 1 valuation on the
quotient field of k(T'(:)) [Z1(2), . . . ,Za(3)]]. (Since v(Z1(3)), . ..,v(Zs())) are rationally
independent, o () > s.)

If o(¢) drops during the course of the proof, we can start the corresponding algo-
rithm again with this smaller value of o(¢). Eventually o(¢) must stabilize, so we may
assume that o(7) is constant throughout the proof.

V(E‘f“ <..zdis) > 0 for 1 < i < s. By Lemma 4.6, there exists a CUTS of type
(M1) T = T(1), U — U(1) such that z7* - - - 7% € Ty (1) = k(T) [[Z1(1), - . ., Zm(1)]]
for all 5. Since p,, T (1) is a prime and we may assume that (1) = o(0), we have
mem(l) = pm(1). _

Let w be a primitive dth root of unity and L be a Galois closure of k(U )(w, A1, ..., As)
over k(co) with Galois group G. Set

W = L[[El(l)l/dv ce 728(1)1/(17 Es+1(1)7 e 7Zm(1)]] .
Given 41,...,i5s € N, Define a k-automorphism o3, ...;, : W-oWw by

Giyody (Zj(1)V4) = W97;(1)Y? for1<j <s.
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Our extension of v to the quotient field F' of U (1) extends to a valuation of the finite
field extension generated by L and F(z;(1)Y/4,...,Z,(1)'/?), which induces valuations
on the quotient fields of Tp,, U and W which are compatible with the inclusions
Tm CUpm CW. Tp(1) = W is finite, p,, W is prime implies

mem = {h € Wm | V(h) = OO}

Thus
pmﬁm = {h € ﬁm l V(h) = OO}

Set

g=[]oini.(f)rg= ] 7@ € k(o) [Z1 (1), ..., Zm()]] C Trm(1)

TEG

Suppose v(g) = 0. Then g € py T, (1) implies g € p,, W which implies 70;,...;, (f) €
pmW for some 7,04,...;, since p,, W is prime. But 70i,...;, pmW) = pmW implies
f € pmWNU,, = pmUnm so that v(f) = co. This is a contradiction. Thus v(g) < oo.

By (54) (and Lemmas 4.3 and 4.4) we can construct a CUTS (R, T (t),7T(t)) and
(S,U"(t),U(t)) in the first m variables to transform g into the form

(59) g=7()% - z,(t)%u

in T'(t) where wW(Z1(t), . .., Zm(t)) is a unit power series with coefficients in k(co, . . ., ct).
Then f | g in U(t) implies

f=wm®" W) u
where u is a unit in U(t). But f is a series in w;(t),...,Wmn(t) with coefficients in
k(U(t)). Thus
f=w ()" - W () u(@ (2), ..., Tm(t)),

where the coefficients of u are in k(U (t)).

Now suppose that v(f) = 00. prUnm is the set of elements of U, of infinite value.
Otherwise, as argued above, we can perform a UTS T — T(1) to get o(1) < a(0).
Thus it suffices by (53) to prove the theorem when f = Z,(;) — @,(;) is a generator of
Pm. This follows from (55).

Case 2. — Suppose that m > [. The proof is by induction on m — [, assuming that
it is true for smaller differences m — [.
First suppose that v(f) < oo. Set

f=wp" - wifo
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where W; does not divide fo for 1 <4 < s. Set r = mult fo(0,...,0,Wy). 0 <r < oo.
We will also have an induction on r. If r = 0 we are done, so suppose that » > 0.

fo=Y_0i@1,..., Wn1)0% + D (@1, .., Wyn—1)W0%
i i
+ ) ok(@y, .., W )Tk + T, ¥
k

where 0;,0;,0, are power series with coefficients in k(U), ¥ is a power series in
W1, .., Wm with coefficients in k(U), the first sum is over terms of minimum value p,
a satisfies av(Wy,) > p, the (finitely many) terms in the second sum have finite value
and the (finitely many) terms in the second sum have infinite value.
By induction there is a CUTS (R,T (), T(a)) and (S,U (@), U(a)) in the first

m — 1 variables such that

0; =W (Q)Cl(i) . Ws(a)c‘(i)ﬂi
for all 17,

0; = (a)® G) .. W ()% (j)ﬂj
for all j and

or = W1 (a)*® ... @, (o) P,
for all k where u;,u;,uy, € k(U())[[wi(a), ..., Wm—-1(a)]], W, T; are units for all 4,
and

(@1 (a)*® - We(a)*®) > p
for all k. Now perform a CUTS of type (M3) where U(a) — U(a + 1) is of type I,
to get

fo=W1(a+ 1) - Wy(a + 1) (Z AT (T (o + 1) +1)%)
+ 3 Wi (@) T+ 1) AT (T (@ + 1) + 1)
i
+3 @+ D) W+ 1) AT (T (o + 1) + 1)
k

+ (wl(a + 1)b4+1,1(0¢+1) .. .ms(a + 1)b3+1,s(0¢+1))a g

A = dc1(i)b1,,+1(a+1)+~-~+c,(z‘)b,,,+1(a+1)+b,+1,,+1(a+1)ai
i = Qgyq .

Now perform a CUTS of type (M1) T(a+1) = T(a+2), U(a+1) = U(a +2) to
get
fo =1 (a + 2)d1(a+2) .. -ﬁs(a + 2)d, (01+2)f1

where
d

fr =D ATi(@m(+2) + 1) + W1 (a +2) - We(a +2) ¥y,

i=1
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¥, a power series in @i (a + 2), ..., Wm(a + 2) with coefficients in k(U(a + 2)). Set
ry = mult f1(0,...,0,Wn(a+2)). 1 <ococandr <.

As in the proof of Case 1 of B(7), there is a polynomial Py, ¢ € k(U)[w1, - - . , Wm—1]
such that if we replace w,, with

~1

W,, = Wm — Pm,o0

we get a reduction r; < 7 in U(a + 2). By induction, we can construct a CUTS as
desired.
Suppose that v(f) = co. Given a CUTS (45) and ¢ such that s < i < n, set

a;(t) = {h € k(U®) [W1(1), ..., wi(®)] | v(h) = oo}

%)
f= Zai(wl, e ,_U_Jm_l)w:n.
=0

If v(0;) = oo for all 7, we can put f in the desired form by induction on m applied to
a finite set of generators of the ideal generated by the o;.

Suppose some v(ag;) < oo for some i. As in the proof of A(77), we can perform a
UTS in the first m variables to get

f=w(t) W (t) % fu

such that as in (58), there is a series A(w1(t1),...,Wm—1(t1)) with coefficients in
k(U(t1)) such that v(@Wm(t) — A) = co and

f1 = U(mm(tl) - Z)T + h

where u € k(U(t1))[[@1(t1),...,Wm(t1)]] is a unit power series, h € ap—_1(t1) and
r > 0. By induction on m, we are reduced to the case

f=Tm =A@, ..., Wm-1)-
We can then put f in the desired form using the argument of Case 2 of the proof of

B(m).

Proof when (44) holds. — Suppose that f is as in (44) of the statement of the
theorem.

oo
f= Z bi(wl, . ,wm_l)i—[)in.
=0

Set Q@ = Y oo, bwh,. After reindexing the w;, | + 1 < i < m, we may assume that
Q#0 Q= Ell(o) -"Eg’(O)QO where w; does not divide Qp for 1 < i < s. Set
r = mult Qo(0,...,0,W,,). 1 <r < oo. The proof will be by induction on r. Suppose
that » > 1.
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v(0f/0wym) < oo since 8f /OW,, € TU" and v restricts to a rank 1 valuation of the
quotient field of U . Thus there must be some i > 0 such that v(b;) < oo.

d
Qo= 0i(W1,..., Wm_1)TE + Y _0;(W1,..., Trm—1)TY
=1 7

+ Eak(wl, e W1 )T + W W
k

where the first sum is over terms of minimum value p, a satisfies av(w,,) > p, the
(finitely many) terms in the second sum have finite value and the (finitely many)
terms in the third sum have infinite value.

By (42) of the Theorem there is a CUTS (R, T
the first m — 1 variables such that

(@), T(a)) and (S,T (@), T(a)) in

0i = W1 (@)@ ... Ty ()% @7,
for all 7,

oj = w1 (a)ci (o) ... ws(a)c: (a)ﬁ]
for all j and

or = W1 ()@ ... T, (@)% @7,

for all k&
where @;, T;, U € k(U(a)) [W1(a),...,Wm-1(a)]], U;,T; are units and

V(@1 (@)@ . (@)% (@) > p.
Perform a UTS U(a) — U(a + 1) of type II,, to get
Qo = Wi (a + 13O+ g (e + 1)) (3 AT @m(a + 1) + 1))
+ 3w+ DA gy (o 4+ 1)\ (@ (@ + 1) + 1)

J
+ 3 Wi(a+ VIO gy (o + 1) CTD NG (T (@ + 1) + 1)
k

+ (wl(a + 1)berralatl) - We(a + l)b.-+1,.,(a+l))a o
A = d;iﬁ)bl,m(a+1)+~~~+ci(a)bs,s+1(a+1)+b,+1,s+1(a+1)ai‘
Now perform a CUTS of type (MI) T(a+1) = T(a+2), U(a+1) = U(a+2) to get

Qo = w1 (a + 2)c§(a+2) W+ 2)ci(a+2)
d
' (Z it (W (e +2) + 1)% + Wy (a+2) - Ws(a + 2)9)_

i=1
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Set
d

d
Q1= Ni(@m(a+2) +1)% +Wi(a+2) - Ws(a+2)Q— > N\l
=1 i=1

Set 71 = mult @1(0,...,0,TWn(a+2)). 0<r <occandr <r.

Suppose r; = r. Then as in (57) in the proof of A(M), aq = 7, or—1 # 0 and
v(or—1) = v(Wp).

As in the argument of the proof of A(7%), there is a polynomial

A1 € k)@, ..., Bp-1] CT"

such that we can make a change of variables, replacing w,, with w,, = W, — A1, to
get v(w,,) > v(W,). We have

0Qo )

v(@n) < V(@) < v (53

since !, ! is a minimum value term of 8Qo/0W,. Of /W, € U and

Of _gmo) gne© 9%

oW, oW,
implies v(8Qo/0Wnm) < co. Now repeat the above procedure. Since
9Qo _ 0Qo
ow,, Own,

we will achieve a reduction in r after a finite number of iterations by Lemma 2.3.
Thus after replacing w,, with

~1

Wy, =Wm — o
for some Py, 0 € k(U)[wW1,...,Wm—1], we achieve a reduction r; < 7 in U(a + 2).
Thus we can construct a CUTS (R, T”(ﬁ),T(ﬂ)) and (S, U’I(ﬁ),ﬁ(ﬁ)) such that

f=L@(B),. .., Wm-1(8) +@W1(B)* ..., Ws(8)* Q
where mult Q(0, ...,0,@,,(8)) = 1. Set
T =v@i(B) ..., ws(B)*).
Suppose that L is not in k(U(8)) [w1(B), ..., wi(B)]]. Set
A=kUB)[@(B), .- Tm-1(8)]]-

We can write L = f; + H, with

f1 € KTB)@L(B), .., Bm-1(8)] C T (B),
H € m(A)® where v(m(A)*) > 7. After permuting the variables

{Wi1(8), -, Wm-1(B)}
we may assume that 8f;/0wWm,—1(8) # 0. Thus
v(0f1/0Wm-1(8)) < oo since 8f1/Wm-1(8) €T (B).
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By induction on m, we can perform a CUTS in the first m — 1 variables to get

=L@ (),...,w(y) + W1 (1) - Ws(7)*Q,

so that
Q1 = U(Wm-1() + W1 (1) -+ W,s(7)7T)
where
7 € k(UM)[@ (), -, Wm-1(7)]] is a unit,
S e kUM [@ (), Tm-21]],
and

V(@m-1(7)) < v(@ (V)7 - Te(7)%°).
Now perform a CUTS consisting of CUTSs of type (M2), s+1<r <m — 1 (with

P.t=0fory+1<t<6—1)and a CUTS of type (M1) to get

H =w,(6)4® ...55,(8)% O w
with

v(@ (8)1 ) i (6)% (D) > 1.

Q= (O T () OT @n-1(6) + ¢)
for some ¢’ € k(U(8)) [w1(9), ..., Wm—2(5)]], and unit
7 € kTE)[@O), ... Tm-r(9)]-

After possibly interchanging W,,—1(6) and w,,(6) and performing a CUTS of type
(M1), we have f in the form

f=L@y(5),...,wi(d)) + w1 (6)* - Ws ()™ Q
where mult Q(0,...,0,@,(5)) = 1. Thus @ = u(wW,(6) + Q) where
u € k(UG) [@1(6), ..., Wm(8)]]
is a unit and Q € k(U (8)) [W1(8), ..., Wm—1(8)]]. After replacing Wy, (8) with W, (6)+
¥, where ¥ € k(TU(8))[@1(8), .., Wm-1(8)] C T (8), we can assume that
Qe @1(0),...,Wm-1(6)8
where B is arbitrarilly large.

If ¥(Q) < oo, we can choose B so large that v(Q) = v(W,(d)) < v(Q). Then by
the conclusions of (42) and (43) of the Theorem, we can perform a CUTS in the first
m — 1 variables to get

Q=T ()" - W()" T
with v(w1 ()9 - - - Ws(€)9*) > v(Wm(€)).

If v(Q) = oo, we must have v(2) = v(Wp,(§)) < co. Then by (42) of the Theorem,
we can perform a CUTS in the first m — 1 variables to get

Q=w1(e)% - - Ws(e)?* D
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with »(@, (€)% - - We(€)9°) = (Wi (€))- O

Theorem 4.8. — Suppose that T"(0) C Risa reqular local ring essentially of finite
type over R such that the quotient field of T"(0) is finite over J, U"(0) C Sisa regular
local ring essentially of finite type over S such that the quotient field of U"(0) is finite
over K, T"(0) C U"(0), T"(0) contains a subfield isomorphic to k(co) for some
co € k(T"(0)) and U"(0) contains a subfield isomorphic to k(U"(0)). Suppose that R

has regular parameters (z1,...,%y,), S has regular parameters (y1,...,yn), T"(0) has
regular parameters (Tq,...,T,) and U"(0) has regular parameters (yy,...,Y,) such
that

~C11 ~C1s

%1 =% Y 9

= =Cs1 =~Css

Ts =Y Y ¢s

where ¢1,...,bs € k(U"(0)), v(T1),...,v(Ts) are rationally independent, det(ci;) #
0. Suppose that there exists a regular local ring R C R such that (z1,...,2;) are
regular parameters in R and k(ﬁ) > k(co). For 1 < i < I, there exists vy; €
k(co)[[z1,---,@i]] NT"(0) such that v; =1 mod (z1,...,7;) and

viz; 1<i<l1
r; =

In particular k(co)[[#1,..., ]| = k(co)[ﬁl,...,%l]}. There exists v¢ € U"(0) such
that y; = vY7;, 7Y = 1 mod m(U"(0)) for 1 <i < n.
Suppose that one of the following three conditions holds.
(60) f € k(U"(0)[[T1,--->Tm]] for some m withl <m < n and v(f) < co.
(61) f e k(U”(O))[@l, - ,ﬁm]] for somem withl <m < n, v(f) =00, and A €N
18 given.
(62) feU"0) - kU"O)[[F1,---,7] -
Then there exists a positive integer Ny such that for N > Ny, we can construct a
CRUTS along v (R, T"(t),T(t)) and (S,U"(¢t),U(t)) with associated MTSs

S — S(¢)
T T
R — R(t)
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such that the following holds. T'(t) contains a subfield k(co,...,ct), U"(t) contains
a subfield isomorphic to k(U(t)),

R(t) has regular parameters (z1(t),...,zn(t)),
T"(t) has regular parameters (Z,(t), ..., Zn(t)),
S(t) has regular parameters (y1(1),...,yn(t)),
U"(t) has regular parameters (g, (t),. .. ,ﬁn(t))
such that

Zi(t) I<i<n
where v;(t) € k(co,...,ct)[[z1(t),...,zi(t)]] are units such that
7i(t) = 1 mod (z1(t), ..., zi(t)).

zi(t) = {’)’z(t)%,(t) 1<i<l

In particular,
k(co, ... c) [z1(t), ..., z(t)]] = k(co,...,ce) [F1(t), - ... T()]]-
For 1 < i < n there exists v/ (t) € U"(t) such that y;(t) = v (t)7;(t),
Y2 (t) =1 mod m(U" (t)).

Tu(t) = G ()0 - G (6) D (2)

(63) Ts(t) = Gr(@)® -G, ()% O g4 (2)
Ys

%s+l(t) =y +1(t)
Ti(t) = i(t)

B1(t), ..., 05(t) € K(U()), v(F1(t)),...,v(T,(t) are rationally independent, det(ci;(t))
# 0 and there exists a regular local ring R(t) C R(t) such that (z1(t),...,zi(t)) are
regular parameters in R(t) and k(R(t)) = k(co,...,ct). Furthermore, z;(t) = z; for
l+1<i<mn,y(t) =y form+1<i<n, sothat the CRUTS is in the first m
variables where m = n in case (62). Set ny; =m (k(U(t)) (7. @), .. ,f,(t)]])

In case (60) we have
(64) FETR@OD -G, u@i (), .. Ym(t) mod mU ()Y
where u is a unit power series. Further if f € k(U)[[7y,...,%],
F=00% 7,0 u@ (@), .., Fi(1) mod ).

In case (61) we have

(65) FET® Y )“ @), ., Fm(t) mod m(U ()Y

ASTERISQUE 260



4.2. MONOMIALIZATION IN RANK 1 67

with v(G, (£)% ---G,(t)%) > A. Further if f € k(U)[[7y,---,7,])
FE0®" Y% u@, (), ..., ¥i(t) modnf.
In case (62) we have
(66) F=PE®), - 5(@) + T ()" Yo ()" H mod m(U (1))
where P is a series with coefficients in k(U(t)) and
H = u@41(8) + 71 (8)7 -G, ()" %)
where v € U(t) is a unit, ¥ € k(U(t)) [[y] ®),... ,ﬂl(t)jpr?(t), . ,fn(t)]] and
V(e (1) S v(E ()% -, (1)),

Proof. — Set T = ﬁ, U = §, T = 7"(0), U = U"(0). Set z; = T, Wy = @-
for 1 < i < n. In case (62) set m = n. By Theorem 4.7 there is a CUTS along v
(R,T" (1), T(t)) and (S,T" (1), U(%))

T(0) - T(t)
) 1)
T(0) — T(t)

so that in the notation of Theorem 4.7 and its proof, for 0 < a < ¢, T"(a) has regular
parameters

(71(@), -, Zn(@)) and 31 (@), ., Zn(),
U "(a) has parameters

@1 (), . .., Wn(a)) and (@, (), ..., T, (a))
such that in case (60) we have

f=m®)™ W ()P u(@(2),. .., B (t))
where u is a unit power series. In case (61) we have

f=wm®)" - w ()P E@1(2), . .., W (t))
where v(w; (£)% - - W,(t)%) > A. In case (62) we have

f=P@@(t),...,m(t) + Wi (t)% - w,(t)% H.
for some powerseries P € k(U (t)) [w1(t), ..., wi(t)]],
H = u(@y(t) + w1 (t)9* - - -w,(t)9° %)

where u € U(t) is a unit, £ € k(U (1)) [[w1(?),...,Wn-1(t)]] and

v(@n(t)) < v(@1(8)% - -Ws(t)%).
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Step 1. — Fix N > 0. To begin with, we will construct commutative diagrams of
inclusions of regular local rings

U'la) = U"(a) —» Ula)
(67) T T T

T'(a) = T"(a) » T()
for 1 < o <t such that T'(a) = T'(a)”, U(a) = U'(a)” for all @, T"(a) has regular
parameters

(El (a)7 s vfn(a))v (%1 (a)? e 7%n(a))v (%ll(a)v s 7%:1(0))

U"(a) has regular parameters

@1(@), - Fn(@), @1(@), - ¥a (@), 1), -, Fn (@)
where Z;(0) = Z; and 7,(0) = i for 1 < ¢ < n. We will have isomorphisms
(68) ng : k(T(a)) = kz(T_(a)) and
ng : kU(a)) = k(U(a))

such that the diagrams

k(T (o)) = k(T(a+ 1))
(69) T t

k(T(a)) = k(T (a+1))
and

k(U(a)) = k(U(a+1))

t T
k(U(a)) = kE(U(a+ 1))
commute for 0 < a <t — 1. For all a we will have

Zi(a) = 71 ()@ - g (@) (¥ gy ()

Ts(a) = Fy(a)® @ - g, (a)* (@ ¢y(a)
(70) _ 7
Tsr1(a) = Yoq1(a)

zi(a) = 7y(a)
with ¢1(a),...,¢s(a) € k(U(a)) the coefficients of (46) of Theorem 4.7, (c;j(«)) the
exponents of (46) of Theorem 4.7.

We will construct (67) inductively. Suppose that (67) has been constructed out to
T'(a) = U(e) and regular parameters

@1(a),...,Tn(@)) n T"(a) and (F1(a),...,¥n(@)) in U"(a)

have been defined so that (68) and (70) hold.

If we identity k(T(a)) with k(T () and k(U(a)) with k(U(c)) we have isomor-
phisms T'(a) = k(T (a)) [[Z1(e), . .., Ta(a)]] and U(a) = k(U(a))[[71(a), ..., T (@)]].

ASTERISQUE 260



4.2. MONOMIALIZATION IN RANK 1 69

We can choose A, and Q; , arbitrarily subject to the following conditions, to define
regular parameters in T"(a) by

Zr(Q) + Ao (Z1(), ..., Zi(a)) if T(a—1) = T(a) is of type II,.
(71) Ti(a) = and i =r
T;(a) otherwise
with Aq € k(co, - - -, ca) [T1(@), ..., Ti(a)]] NT"(a) and mult(Aq) > N. We will take
Ao =0.
Recall that the P; , constructed in Theorem 4.7 are polynomials with coefficients
in k(cg,...,cqo) if i < 1. Define

Ti(a) = Pia(@1(e), ..., Ti1(a))
(72) T(a) = +Qia@i(@),..., (@), ifs+1<i<l
Zi(a) otherwise
with Q; o € k(co, . .., ca) [Z1(@), ..., ZT(a)[|NT" (o) and mult(Qi,q) > N. (If P o =0,
orif 1 < i < s we will have () = T;().) We then have
k(co, ... ca)[[Ti(a), ..., T(a)]] = k(co, -, ca) [[%1(01), —oz(a)]]
= k(co,- - -»ca) [To(a), ., Ty(@)]]
and
Zi(a) = Fi(a) = Ti(a) =
for I < i < n. Define
Zi(@) ifs+1<i<1
(13 5(@) = ] 7@+ Kalr(@), . Ta(0)), i Sla=1) > 5(@) is of type T,
andi=r>1[1+1

¥ (@) otherwise

with A, € U"(a) and mult(Ay) > N. We will take Ag = 0.
Recall that the P;, constructed in Theorem 4.7 are polynomials with coefficents
in k(U(a)) for I + 1 < i. Define

7(a) ifs+1<i<l

51‘(04) - Pz‘,a@l (a),... 7’§i—1(a))
+20@1(a), ., Up()  ifl+1<i<m

fi (a) otherwise

(74) Vi) =

with Q; o € U”(a) and mult(£; ) > N.
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These variables are such that for all «,
k(U (@) [71(), -, ()] = kU (@) [[F1(a), .-, G (@)]]
= k(U(@)[[1(@), -, i (@)]
and 7;(a) = 7;() = F;(a) = yi for m <i <.
If T@ — T(a + 1) is of type I, defined by (48) of Theorem 4.7,

T(a) = T(a + 1) will be the UTS of type I such that 7" (a + 1) has regular pa-
rameters (Z1(a + 1),...,Zn(a + 1)) defined by

’:311 (@) = Ty (a+ D)ot g (o 4 1)@1s(at)
(75) :
:.’Ev';(a) =Ti(a+ l)asl(a-l—l) - Te(a+ l)a,,(a.;.l).

Suppose that T(a) — T(a + 1) is of type II,, defined by (49) of Theorem 4.7. Set
(ei) = (aij(a+ 1)1,
Ml = %;(a)ell .o ’%;(a)ela%;(a)el,a+1

(76)

M, = Ty ()1 - - Ty (@) T ()4

My = Ty(a)tsrin - Ty(a) sty (o) o,
Let k; be the integral closure of k in T'(a). Set
A= (T"(a)[My,...,Ms, M) @, k(T(a+1))),
where
a=(My,... ,Ms,%'sﬂ(a), e ,%’r_l(a), M, — ca+1,%lr+1(a), e ,%In(a)).
Set ¢1 = T"(a)[Ma, ..., Mg, M,;] N a where the intersection is in A. Define
T'(a+1)=T"(a)[M1,...,Ms, M,]q,.

Define T(a + 1) = T'(a + 1)". Our inclusion T'(a + 1) C A induces an isomorphism
net k(T (o + 1)) = k(T(a + 1)). We can thus identify co1 with (7571) ™1 (ca1)-
T(o + 1) has regular parameters (Z1(a + 1),...,Z,(a + 1)) defined by

Mi 1 S ) S S
(77) Ti@+1) = My —capr i=r
%;(a) s<t, t#T
Set
~ 1/Cat1
T 1
(78) T"(a+1)=T"(a) |:Ca+11 (M + 1) ]
Ca+1 R _
(ZT1(a+1),...,Zn (a+1))
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1/Ca+t1

where (%—'C(%ll) + 1) has residue 1 in k(T'(a + 1)). T"(a + 1) has regular pa-
rameters (Z1(a + 1),...,Zp(a + 1)) defined by
~ = —7i(a+1)
fda+n(ﬂ§%9+1) 1<i<s
(79) Ti(a+1) = (%Aa_ﬂzﬂ)”fa“ 1 PR
Ca+1
Ti(a+1) s<i, i#r

Then T(a) & T(a+ 1) is a UTS of type II, with

%’1 (@) = Fy(a + l)au(a+1) N ACE® 1)a1_,(a+1)c';1_‘,_31+1(a+1)

(80) F.(0) = Ta(a + 1)%1 (@t 7, (o 4 1)ss(atD) eperr (@)
~1
Z,(a) = Ty (a + 1)%t11(et) 7 (o 4 1)s+1.0(atD)

C(@r(a + 1) + D)loperrety)

If U(a) — U(a+1) is of type I, defined by (50) of Theorem 4.7, U(a) — U(a+1) will
be the UTS of type I such that U"(a+1) has regular parameters (g, (a+1),...,7,(a+
1)) defined by

V1(@) = Ta(a + 1P OFD g (o + 1bletD)
(81) :
Ts(@) = T+ )P g (a4 1)berlet),

Suppose that U(a) — U(a + 1) is of type II,, defined by (51) of Theorem 4.7. Set
(fi) = (bij(a+1))71,
Ny = Gi(@)f - Gy (@) G (@

(82)

) ~I ~I ~I
Ns = gll (Ol)fg1 o 'ysgg)e“gr(a)jf‘s_"l
N, =7, (a)f.!+1,1 .. .—gs(a)fs+l,a'y—r(a)fs+l,s+l .
Let k2 be the integral closure of k in U(a). Set
(83) B = (U"(a)[N1,...,Ns, Ny| Qs k(U(a+1)))b
where

=~ =~ ~! ~!
b= (va O 7N8»ys+1(a)? s ’yr—l(a)vN’f - dot+layr+1(a)v s 7ys+1(a))’

Set go = U"(a)[ N1, ..., Ns, N.] N b where the intersection is in B. Define
(84) U'la+1) =U"(a)[N1,...,Ns, Ny]g,.

Define U(a+ 1) = U'(a + 1)". Our inclusion U'(a + 1) C B induces an isomorphism
ng“ :k(U(a+1)) = k(U(a+1)). We can thus identify do41 with (nit) =1 (dg41)-
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U(a + 1) has regular parameters (7,(a + 1),...,7, (a + 1)) defined by

N; 1<i<s
(85) Vi@ +1) =4 Ny —doyy i=r

ﬁ(a) s<i,1#T
Set

~ 1/do+1
(86) U"(a+1)=U") [dw, (% + 1) }
o @1 (@+1), ¥, (@ +1))
=~ 1/da+1

where (”;:‘;1) + 1) has residue 1 in k(U(a + 1)). U"(a + 1) has regular

parameters (g, (a + 1),...,7,(a + 1)) defined by

~ = —Ti(a+l)
yi(a+1)(%:”+1) 1<i<s

(87) Yila+1) = (i%rl + 1)Uda+1 -1 i=r
Jila+1) s§<t, 1#T

Then U(a) = U(a + 1) is a UTS of type II, with

Bi(e) = Falor+ PO g (o D@ (D

:I . y Y bS s
(88) E’zlj(a) = yl(Ol + l)b..l(a+1) ... ys(a + l)b,.g(a+1)da+,_1+1(a+1)
¥r(a) = Fi(a+ )brrror g (o 4 1)betis(ath)
(@ (a+ 1) + 1)ty

We will now prove that (67), (69) and (70) hold for a + 1. The essential case is
when T(a) = T(a + 1) is of type I, with s +1 < r < L.
By (34) of Lemma 4.4 in the construction of T(a) = T'(a+1) and U(a) — U(a+1),

Ml — Ni‘]u . nglsNgl,s-l-l ﬂl
(89) :
Ms — ngsl - ngssN;‘]s,s-Flﬂa
Mr = Nfg"s-ﬂﬁr
Bi = ¢1(a) -+ pg(a)® € k(U(a)) CU"(a) for 1 <i <s,

Br = dr ()" - gy(@)r .

(9) = (as(a+ ) (I 1) e+ 1)
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gs+1,1 = +++ = gs+1,s = 0 and g;; > 0 for all ¢,5. Thus T"(a)[M1,..., M, M,] C
U"(a)[N1,...,Ng, N;]. Our inclusion k(T(a + 1)) — k(U(a + 1)) induces an identi-

fication cqq1 = dof1 ' B,. Then by (37) of Lemma 4.4,

— — 9s+1,s+1
Mr — Ca+1 = Ngs+l’s+lﬂr — Ca+1 = (qus+1's+l - das-i—l : )ﬁT
9s+1,s+1

= H (N — w'day1)Br
=1

where w is a primitive gs41,s+1-th root of unity (in an algebraic closure of k(U (a+1))).
Thus N, — dg+1 divides M, —cq41 in U"(a)[N1, ..., N, N;] and we have an inclusion
A C B which induces T'(a + 1) C U'(e+ 1) and T(a+ 1) C U(a + 1). Thus (69)
holds for o + 1.

By the argument of Lemma 4.4 in the construction of T(a + 1) — U(a + 1) and
(77)-(79), (85)-(87), we have that T""(ac + 1) C U"(a + 1) and (70) holds for a + 1.

Step 2. — Suppose that T'(t) — U(t) is constructed as in Step 1, and f satisfies
(60), (61) or (62) in the statement of Theorem 4.8. We will show that f satisfies
the respective equation (64), (65) or (66) in U(t). It suffices to prove the following
statement.

Suppose that 0 < j < ¢ and 7j is defined by f(wy,...,W,) = fj('u_)l Gy, wWn(4))
in U(j). Then
(90) F@1s 3 ¥n) = TG00, -+ Fa () mod mUG))N.

The statement (90) will be proved by induction on j. By induction, suppose that

There are series P; ; with coefficients in k(U(j)) such that

P;j(Z1(3),...,Zi=1(j)) s+1<i<lI

Pij(@y (), w1 (5)) = {Pi,j(_wl(j)»...,wi—l(j)) l+1<1

We have
F@roe o 50) = F@1G), - Fa(d)) mod m(U (G + 1)V
=TG- T Tasr ) + Popa g @)y oo To )y
Un(@) + Prj@1(0), -, Tn1(4)) mod m(U(j + 1))V
=T @G + 1), Tn(G + 1)) mod m(U(j + 1)N

Set ng, = m (k(U(a))[[71(), ..., 7 (a)]]) for 1 < a < ¢t. Inthe caseof f(7,,...,7;) €
k(U)[[¥y,---,7,]], the above argument is valid with n replaced by I and m(U(j + 1))
replaced by nj1,, since U(0) — U(t) is then a UTS in the first [ variables.
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Step 3. — Now we will construct, with suitable choice of the series A, and ; 4, in
(71)-(74) of Step 1, and our fixed N, a CRUTS (R,T"(t),T(t)) and (S,U"(t),U(t))
with associated MTS (91)

S =580 - S1A) - --- = Sk
(91) Tt 1

R = R(0) » R(1) » --- = R(t)

such that R(a) has regular parameters

(z1(a),...,zn(@), (F1(a),..., Tn(a)), (@ (a),...,Z) (a)).

S(a) has regular parameters

W1(a), ... yn(a)), @1(a), -, ¥n(®)), H1(a), . .., Yn(a)).
(91) will consist of three types of MTSs.
(M1) R(a) - R(a+1) and S(a) = S(a+ 1) are of type L
(M2) R(a) = R(a+1)is of typeIl,, s+ 1 <r <, and S(a) = S(a+1) is a MTS
of type II,., followed by a MTS of type 1.
(M3) R(a) =R(a+1) and S(a) = S(a+1)isof type I, (I+1 <7 <m).
There exists for all o a regular local ring ﬁ(a) C R(a) such that }NZ(a) has regular
parameters (z1(a),...,zi(a)) and R(a) = k(co, ..., cq) [[z1(), ...,z (a)]].
The series A, in (71) is chosen so that

zi(a) = yi(2)Ti(a)
for 1 < i < I where vi(@) € k(co, ..., ca)[[x1(a),...zi(a)]] N T"(a) are units such

that v;(a) = 1 mod (z1(a),...,z;(a)). In fact, in conjunction with an appropriate
choice of Ay—1 in (93) below, we will have z,(a) = 7, (@)Z,(a) + 1o where

Ya € k(co, ..., ca)[[F1(), ..., T(a)]],

and mult(¢4) > N if R(a — 1) = R(«) is of type II,.
The series Q; o in (72) is chosen so that we can define regular parameters Z;(«a) in
R(a) by

(92)

~!

Fi(a) = Yi(@Tila) 1<i<l
l T (a) l<i

(If P,o =0,0rif 1 <7< s we will have Z;(a) = z;(a).) Define regular parameters
Z(a) in R(a) by

AaZr(a), if R(a) = R(a+1)is of type II, and i =7

Zi(a) otherwise

(93)  Fi(a) = {

We will have Ao € R(a) C k(co, . .. y¢a) [[z1(a), ..., x1(a)]], Aa =1 mod m(R(a)).
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These variables are such that for all ¢,
k(co,-.-,Ca) [[a:l (a),..., x,(a)]] = k(co,---,Ca) [[51 (a), ... ,%,(oz)]]
= k(co,- -, ca) [F1(@), ..., BH(e)]
= k(co, - --,ca) [[Z1(a), ..., T(a)]]
= k(co, s 700) [[%l(a)a ce 7%l(a)]]
! ~I
= k(co,---,Cq) [[%l(a), L z(a)]]
and
~ ~ — = =/
zi(a) = Ti(a) = Tj(e) = Ti(a) = Ti(a) =T;(a)
forl <i <n. _
k(co,.--,ca) C k(R(a)) and k(R(a)) = k(co, .. .,cq) for all q.
The series A, in (73) is chosen so that
yi(@) = ¥ (@)F;(a)
where 77 (a) € U"() is a unit such that vY(a) = 1 mod m(U"(a)) for 1 <i < m. In
fact, we will have y,(a) = v¥()y,(a) + 1o where 9, € S(a)”, and mult(ype) > N if
S(a—1) = S(a) is of type I, with I +1 < 7.
The series 2; o in (74) is chosen so that we can define regular parameters g;(a) in
S(a) by
~ =/
(94) ¥i(a) = 7 (2)7;(a).
which satisfy
yi(a) fl<i<sorm<i<n
i(a) = { Ti(a) ifs+1<i<l
(@), ifl+1<i<m.
We will have 7} (a) = v;(a) if s + 1 < i < [. Define regular parameters yj(a) in S(«)
by

7(a) ifs+1<i<lI
(95) ¥i(a@) = < A\ar(a) if S(a) = S(a +1) is of type II, with r > I+ 1,i =1r
yi(a) otherwise

We will have A\, € S(a), \q =1 mod m(S(a)).

These variables are such that for all o, y;(a) = gi(a) = y; for m <i < n.

Suppose that we have constructed the CRUTS out to (R,T"(a),T(a)) and
(S,U"(a),U(x)), the MTS out to

S — S(a)

T T,
R — R(a)
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we have constructed R(a) C R(a) and have defined regular parameters

(z1(®),...,zn(a)) in R(a),
@1(a), ..., ZFn(@)), (F1(a),...,Tn(a)) in T"(a),
(W1(a),...,yn(a)) in S(a),
#1(@),-.,Fn(a)) and Fy(@), ..., ¥u(@) in U"(a).
Case 1. — Suppose that both T(a) = T(a+1) and U(a) = U(a+ 1) are of type L
By assumption z;(a) = v;(a)T;(a) for 1 <i <.
—7i(Q)Pia(F1(e), ..., Tim1(@)) € k(co, ..., ca) [F1(), ..., Tu(a)] = R(a);

the completion of R(a) for s + 1 < i < I. Thus there exists A € R(a) C R(a),
— ~ ~ N —
Qo Em (k(co, cnca) [T (a), ... ,El(a)]]) such that A — Q; o = —vi(a)P; 4. Set
Qia = 7i(@) "1 q.

7(@)[Ti(@) = Pia + Dyl = 7:(@)Ti(@) = 7i(@) Pia + Qisa

= z;(a) + A € R(a).

Thus by suitable choice of the ; o, we have regular parameters Z;(a) in R(a) and
regular parameters 'aNE;(a) in T"(a) satisfying (92) and (93). We can also define €; o
for I +1 < i < m to get regular parameters g;(a) in S(a), and regular parameters
ﬁg(a) in U" (o) satisfying (94) and (95). Define R(a) = R(a+1) and S(a) = S(a+1)
by

ill(a) =zi1(a+ 1)a11(a+1) ezl + ]_)(ll.s(a+1)

F(@) = @1 (a+1)22 @D g (o  1)2es(a+D)
and

Ti(a) = yr(a+ 1)br(et) ooy (o 4 1)bre(atD)

7.(a) = y1(a + 1)@t Ly (g 4 1)bes(atD),

Then T(a+ 1) = R(a+1)" and U(a + 1) = S(a+ 1)". Set Zi(a + 1) = Ti(a + 1),
F(a+1) =7,(a+1) for all 4.
Set (ei;) = (as(a+ 1))~ set

’)’1(0)'3"1 .. .r\,/s(a)eia 1 <i<s
Yie) s<i<l

’Yi(a+1):{
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Yi(a+1) € k(co, - -, cat1) [xr(@+1),...,z(a+ ]| NT"(a+1) for 1 <i <L

Yila+ D)Ti(a+1) 1<i<I
zila+1)=4L
ZTi(a+1) I+1<i<n
Set, (f@]) = (b,-j(a+ 1))_1, set
Yia)fit...A¥(a)fie 1<i<s
sy < [H@8 @ 1<is
i (@) s<i<n

Then y;(a + 1) = 7Y (a + 1)F;(a + 1) for 1 <i < n. Set
R(a+1) = R(e)[z1(a+1),...,2:(a + D) (z1(at1),....000a+1)) -

T

Case 2. — Suppose that both T(a) = T(a + 1) and U(a) — U(a + 1) are of type
II, with s + 1 < r <. By suitable choice of the 2, , as in Case 1, we have regular
parameters Z;(a) in R(a) and regular parameters y;(«) in S(a) satisfying (92) and

(94). Set (ei;) = (aij(a +1))~*. Choose Ay € ﬁ(a) C R(a) in (93) so that

(96) Y1 (a)es-i»l,l .. ,,ys(a)es+1,s,yr(a)es+1,s+1 /\gs+1,;+1 = 1

mod (z1(a),...,z;(a)Nk(co,. .. o) [[xr(a),...,zi(a)]].

Set
Ay = By (@) - B (@) Fp(a)
(97) ) N ~
Ay = B0 - By (@) T (o)
A, = Zi-"l(a)ea+1,1 . ’l-";(a)es+1,.s‘%;‘(a)e.,+1,a+1
where (e;;) = (a;j(a +1))71.
Let k3 be the integral closure of k in R(«). We have
ks = k(R(a)) = k(T(a)) = k(T (o + 1)).

Set
C = (R(a)[A1,...,As, Ar] ®ks k(T (a + 1)),

where ¢ = (A1,..., A, T, 1 (a), ..., T _1(0), Ar —Cat1, Ty (@), ..., Z) (a)). Set gz =

R(a)[A1,...,As, Ar] N ¢ where the intersection is in C. Define
R(a+1) = R(a)[A1, ..., As, Ar]gs-

Our construction gives an isomorphism k(R(a + 1)) = k(T (a + 1)). Define regular

parameters (zj(a+1),...,z5(a+ 1)) in R(a +1)" by

A,; ].SZSS
(98) i+ 1) =< A —cop1 i=r7
() s<i, i#T
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(@) = oj(a+ 1)1 @) X (o + 1)@ (@) (g% (@ + 1) + oy )21 (@HD)

() = zj(a+ 1)@ g (o 4 1)% @D (g (o + 1) + coqq) 2o+ (@HD)

ii(a) = z}(a+ 1)a:+1,1(a+1) N NCE 1)“""1"’(0‘_"1)(:6:(04 +1) + ca+1)a,+1,,+1(a+1)
Set }NZ(a +1) = INZ(a)[Al, ..., As, Ar]qg where ¢ = R(a)[Al, A A Ne.
k(R(a+ 1)) = k(R(a@))(cat) = k(co, - - -, Cat1)

and
R(a+ 1= k(co, - -, Cat1) [[#7 (@ + 1),..., 2} (@ + D)]].
Set
B =79 (a)fll .. -gé(a)f“gﬂ(a)fmﬂ
(99)

B, = () - Ti(e)Fula e
B, = gi (a)fs+1.1 . y"q(a)fa+1,; i];(a)fsﬂ»’“

where (f;;) = (bij(a + 1))7!. Let k4 be the integral closure of k in S(a). We have
ks = k(S(@)) = k(U(aw)) = k(U(a +1)).

Set
D = (S(a)[Bs,- .., Bs, Br] @k, k(U(a +1))),

whered = (By,...,Bs,¥y1(a), ..., Ur_1(a), Br —day1,Pr 1 (), ..., ¥ (). Set g4 =
S(a)[Bi, ..., Bs, By] N d where the intersection is in D. Define

S(a+1) =85(a)[Bi,--.,Bs,Brlg,-

Our construction gives an isomorphism k(S(a + 1)) = k(U(a + 1)). Define regular
parameters (yi(a+1),...,yi(a+ 1)) in S(a + 1) by

B; 1<i<s
(100) yi@+1) ={ By —days i=r
gi(a) s<i, i1#T

71 (@) = yi(a+ 1)t yx g 4 1) (@D (y* (o 4 1) + dgyq ) P1e+r (@)

Fi() = yi(a+ 1P g4 1) (D (g (@ + 1) + dagy) o 0D
To(@) = yi(a+ 1)@t yr(aq 4 )PP (g (a4 1) + dggr)Porrert(OHD,

Set 0; = 71 ()¢ - - - yg(a)®s yp ()it A5 *t! for 1 <@ < s, and set

or=m (a)ea-l-l,l - ,Ys(a)es+1,a,yr(a)ea+1.s+1 AZS+1,.,+1 .
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By (92), (93), (76) and (97)

Al = 0'1M1
(101) :

Ay = oM,

A, = o, M,.

Thus R(a)[41,...,4s,4;] C T"(a)[Mi,...,Ms, M,]. We then have an inclusion
C — A which induces an inclusion R(a + 1) = T'(a + 1). By (98), (101), (77) and
(79),
zi(a+1) = 0y (Fr(a+ 1) + 1)%+7% @7, (o 4 1)
for 1 <i < s and
X+ 1) + car1 = 0r(Tr(a+ 1) + cat1)

= 0r (Cat1(Tr(a+ 1) + 1)%+1)

= 0, (Cat1Ca+t1UTr(a+ 1) + coy1)
where u € Q[Z,(a + 1)] is a polynomial with constant term 1.

¥ (a+1
:’——(—) =o,uZr(a+1) +
Ca+1Ca+1 Ca+1

By (96), T(a+1) = R(a+1) since k(R(a+1)) = k(T (a+1)), (z} (a+1),...,z}(a+1))
are regular parameters in 7'(a + 1), by our construction of .
Thus there exists

agr—1

Qe (—fl(Oz + ].), . 75[(@ + 1))Nk‘(CO, e ,Ca+1) [[Tl(a + 1), - ,Tl(a + 1)]]
such that
oruTr(a+1)+Q € Rla+1) C R(a+ 1).

Set
* 1 ;
rila+1) = z¥(a+1) i#r
oruZr(a+1)+Q i=r
0i(@r(a+ 1) + 1)%errviletl) 1 <<
vila+1) =< o,u i=r
vi(a) s<i<lLi#r

Set Ag+1 = o u"1Q. By definition

Tra+1)+Agy1 i=7
Ti(a + 1) i#Er

%i(oz—i-l) = {

Then (z1(a +1),...,2,(a + 1)) are regular parameters in R(a + 1) and
zi(a+1) = yi(a + D)Ti(a + 1)
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for 1 < i <. Since o; € T"(a) for all 4, co1 € T"(a+ 1), Ta+17vi(a + 1) are integers
and (%1 (a+1),...,Tn(a+1)) are regular parameters in 7" (a+1), v;(a+1) € T" (a+1)
for all i and (F1(a + 1),...,T,(a + 1)) are regular parameters in 7" (a + 1).

Set 0¥ = 4¥(a)fir - ¥ (a)fieq¥ ()it Ao+ for 1 < i < s and set

o = (@) -yt (@) (@) N,

By (94), (95), (82) and (99)

Bl = U%Nl
(102) :

B, = 0YN;,

B, = oYN,.

Thus S(a)[Bi, ..., Bs, Br] C U"(a)[Na, ..., Ns, N;]. We then have an inclusion D C
B which induces an inclusion S(a + 1) — U'(a + 1). By (100), (102), (85) and (87)

yi(a+1) =olgi(a+1)
= 0¥ (G, (a + 1) + 1)Fen1Ti @Dy (o 4 1)
for 1 <i<ssothat y*(a+1)=unit g;(a+1)in U(a+1) for 1 <i<s, and
yr(@+1) + dap1 = 0¥, (0 + 1) + da1)
= 0¥dopr (o +1) + 1Tt
= 0¥[dat1dat1uf (o + 1) + day1]

where u € Q[y,(a + 1)] is a polynomial with constant term 1. ¢¢¥ = 1 mod m(U («)).
Thus

O’g =1 mod (yl(a+ 1)7"'7yr—1(a+ 1)7yr+1(a+ 1)7ayn(a+ 1))

x 1 y—1
D _ g at1)+ 2
dot1daq1 day1

=uy,(a+1)
mod (7, (a+1),...,7,_1(a+1),7, 4, (a+1),...,7,(x+1)).
Thus U(a + 1) = S(a + 1) since (yf(a +1),...,y5(a + 1)) are regular parameters
in U(e+1) and k(S(a+ 1)) =2 k(U(a + 1)). By Lemma 3.3, T(a+1) - U(a+ 1)
induces a map R(a + 1) = S(a+1). Set

yila+1) i#r
wla+) = e
z(a+1) i=r
o (@ (a+1) + D)l 1 <i<s
YW(a+1) =4 v(a+1) i1=r
7 () s<i<m,iF#r
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By definition
~ Fila+1) i#r
yi(a + 1) = :z .
Tila+1) i=r
Then (y1(a+1),...,yn(a + 1)) are regular parameters in S(a + 1) and
yila+1) =1 (a+ Dyi(a+1)

for 1 <i<n, y(a+1) € U'(a+1) and (§;(a +1),...,7,(a + 1)) are regular
parameters in U" (a + 1).

Case 3. — Suppose that T(a) = T(a + 1) and U(a) = U(a + 1) is of type II, with
I+1 < r < m. By suitable choice of the (2; o, as in Case 1, we have regular parameters
7i(a) in S(a) satisfying (94). Set (fi;) = (bij(a+ 1))~*. Choose A, in (95) so that

fy{/(a)f.s-{»l,l .. 73(a)fs+1,5771((a)fs+1,5+1 )\(.:f:+1,5+1 =1 mod m(U(a))N
As in the argument of Case 2, we can define, by (99),
S(a+1) = S(a)[Bi,...,Bs, Brlq,

so that S(a + 1)” has regular parameters (y;(a+1),...,y%(a + 1)) defined by (100).
Set o = v} ()2 --~'yg(a)f""yﬁ’(a)f"v’“)\gi"’“ for 1 <i < s and set

or = ,yi/(a)fs«}—l,l . ,ysy(a)fs+1,s ,yg(a)f.s+1,s+1 Acf¥s+1,s+1'

Then equations (102) hold, and we have an inclusion S(a + 1) —» U'(a + 1) as in

the argument of Case 2.
By (100), (102), (85) and (87),

yi(a+1) =07 (a+1)
= 0i(@ (o +1) + DTG, (a + 1)
for 1 <i<sand
yr(a+1) + doyr = or (T ( + 1) + das1)
= 0¥dat1(F (e + 1) + 1)datt
= 0¥[dat1dat1uf, (o + 1) + day1]

where u € Q[7,(a + 1)] is a polynomial with constant term 1.

* 1 Yy _1
?_/T(a—+z =oduy,(a+1)+ Z
da+1da+l da+1
Recall that 0 = 1mod m({U(a))VN. Thus U(a + 1) = S(a + 1) since
(yf(a +1),...,yr(a + 1)) are regular parameters in U(a + 1) and k(S(a + 1)) =

E(U(a+1)).
Thus there exists

Qe @la+1),.. ., Tola+))VU(@+1) = @ (a+1),...,7,(a+ 1)V S(a+ 1)
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such that
oruf,(a+1)+ Q€ S(a+1).
Set
a+1 ]
oruy, (a+1)+Q i=r
oi(a+ 1)+ )Tenm 1<i<s
Y (@+1) = qomu i=r
7 () s<i<n,i#rT
Set Apt+1 = 0, 'u1Q. By definition
~ y;(a+1 tET
a1y = BT .
Urla+1)+ Aot =7

Then (y1(a +1),...,yn(a + 1)) are regular parameters in S(a + 1) and
vile+1) =9 (a+ 1y(a+1)

for 1 <i<n Y(a+1) € U'(a+1) for all s and (7, (a + 1),...,7,(a + 1)) are
regular parameters in U (a + 1).

Step 4. — It remains to show that the CRUTS (67), (91); (R,T"(t),T(t)) and
(S,U"(t),U(t)), constructed in step 3 is a CRUTS along v if N is sufficiently large.

We have an extension of v to the quotient field of U(t) which dominates U (t).
Define U(t) = U(t)/B(t) where B(t) is the prime ideal of elements of U(t) of infinite
value. Let G(t) be the quotient field of U(t). Let K be the completion of K with
respect to a metric associated to v (cf. Lemma 2.2), G(t) be the completion of G(t)
with respect to a metric associated to v. We have a natural inclusion of complete
fields K — G(t). Suppose that for some 0 < 3 < ¢

U@) -UQ1) —» --- = U

t t t
TO) - T@1) —» --- = TP

is a CRUTS along v. Then by Lemma 2.2, we have natural maps:
U@G) =834 - K for0<i<p.
Let O, be the valuation ring of the natural extension w of v to G(t), m,, be the
maximal ideal of @, and T',, be the value group of w. We have an inclusion k(U (t)) —
O [Ty
We will prove the following inductive statement on o with 0 < o < t. Given a
positive element A}, € Iy, such that

(103) AL > max{w(w(a)), ..., w(@n(a))},
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there exists a positive element N, such that if N > N,, and

U@ - U@1) - -+ - U(w)
(104) T T )
TO0) - T(1) - -+ - T(a)

is a CRUTS (67) as constructed in Step 3, then

(A1) U(a) = O, and there is a commutative diagram

k(U(a)) = Ow/mw
g S
k(U ()
(A2) w(y,(a)) >0for1 <i< n.
(A3) 7,(a) =w;(a) for 1 <i<s, w(@;(a) —F;(a)) >, fors+1<i<n.
Since 7,(0) = w;(0), for 1 < i < n, and U"(0) = U"(O), the statement is true for
m = 0.
Suppose the inductive statement is true for CRUTS of length «, and for any given
AL, € Ty, satisfying (103). We will prove it for sequences of length o + 1, and any
given A, such that

Apq1 > max{w(@y (e +1)),..., w(@n(a+1))}.
Choose X' = X, if U(a) = U(a+ 1) is of type I,
X > A Hbsqri(a+ Dw@i(a+ 1) + -+ + beyr,s(a + Dw(@s (a + 1))

if U(a) = U(a + 1) is of type II,. By induction, there exists N” such that N > N”

implies w(wW;(a) — F;(a)) > A’ for all 7, and we can further choose N so large that

Nw(m(U(a))) > X. Then v(7;(a)) = v(w;(a)) for all i and Nw(m(U(a))) > X'.
v(Ag) > N implies w(wi(a) — g;(a)) > N for s +1 < i < n. v(Qiq) > N implies

w(ﬁ)‘;(a) - ﬁ(a)) > X for s + 1 <4 < n. Thus there exists o; € O, with w(o;) > X

such that f;(a) = %g(a) +o;fors+1<¢<mnand 5;(04) = %;(a) for1 <i¢<s.
Suppose that U(a) = U(a + 1) is of type L.

8
i) = [[7;(a + 1)bstetD
Jj=1

and

8
Wi(a) = [[ wj(a+ )P+
j=1

for 1 <i<s. Thusg;(a+1) =Wjt1(a+1) for 1 < j < s and (Al), (A2) and (A3)
hold for o + 1.
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Suppose that U(e) — U(a + 1) is of type II,. Set b;; = b;j(a +1). Set (fi;) =
(bij(@+1))~t. U(a+ 1) has regular parameters (@1 (a+1)....,Wn(a+1)) such that

Wi(a+1) = Wy (@) -, (@)f11, (o) 1ont

(105) R T, - —
ws(a + 1) = w, (a)fsl .. -Es(a)f“mr(a)f““

We(a+1) +days = Wy (a)fs+11 - @, (a)ferret, (o) forronn
Recall equation (82).
N, = ﬁi(a)fu .. .ig(a)flsi:‘(a)fl's+l
(106) T — —
Ny =gy (@) gy (@) /g, (a)fn
N, U (a)fs+1,1 T (a)f=+1r’§r(a)f’+1v’+1
There is a natural map
U"(a)[Ny,...,Ns,N;] = K = G(t).
From (105) and (106) we have
~1 fi,s41
N ~
(107) i = (y’(a)> €0,

wi(e+1)  \@.(a)

for 1 <¢< s and
~ fat1,541
N, v
(108) - - (L@ €0,
w,(a + 1) + da+1 mr(a)
All of these ratios have residue 1 in Oy/my. Thus U”(a)[Ni,...,Ng, Ny] = Oy.
Then since k(U (a + 1)) C Oy, and we have an inclusion

kE(U(a)) = k(U(a)) = k(U(a+ 1)) = Oy /my.

There is a natural map
U"(@)[Ny,...,Ns,Ny] @k, k(U(a + 1)) = Oy
where k2 is the integral closure of E in U(a).
By (107) and (108), v(N;) = v(w;(a+1)) >0 for 1 <7 < s and
N, — w(@y(a + 1) + dat1)
where u € O, is a unit, u = 1 mod m,,. Thus the residue of N, in Oy /my, is dot1-

Thus w(N, — da+1) > 0 and we have a map U'(a +1) = O, by (83) and (84), which
induces a map U(a + 1) = O,, such that

k(T (a + 1)) = k(Ow)

toly, A
kU(a+1))
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commutes, verifying (A1) for o + 1.
The regular parameters (7, (a+1), . ..,7,(a+1)) in U(a+1) defined by (85) satisfy

(109) Ui(a+1) =4 Ny —doy i=r
f;(a) s<i, i#T

U(a + 1) has regular parameters (w1 (a + 1), ..., W, (a + 1)) defined by
N = —7i(a+1)
wi(a+1)(ﬁﬁﬂ+1) 1<i<s

do‘+l
110) T+ 1) = (Betn ) i=r
(Wi(a + 1) §<i, 1#T

The regular parameters (7, (a +1),...,7,(a + 1)) of U(a + 1) are defined by (87),
(. = —7i(a+1)
yi(a+1)(2§ﬁ—l”+1) 1<i<s

A Gt D=1 (B )" =
[Fila+1) s<i ifr

=~/ _ _ o b1,s41 1
Th(@) = 7y(a+ 1)buetD g (g 4 1)bis(etD) Prerilatl)

7, y y a bs,s +1
(112) g’s(a) T (a + 1)ba(etD) g (q 4 1)bes ‘H)daﬂﬂ(a )
yr(a) =h (a + 1)b3+1,1(a+1) o 'ys(a + 1)b3+1,s(a+1)
(T (a+1)+ l)d(l;-’:ll,s+1(a+1)
ﬁ; (o) = Wy (a + 1)b11(a+1) .. .@‘s(a + 1)b1’(a+1)d1;1:1+1(a+1)
(113) %;(OL) = Wy (o + 1)b21@+D) 5 (o + 1)b“(a+1)d(’;aj:1+1(a+1)

W (@) = Wy (o + 1)ber1a(@HD) 5 (o + 1)betne(etl)
(@ (o + 1) + 1)dosprerr(ety)
Comparing (112) and (113), we see that for 1 <4 < s J;(a + 1) = \;w;(a + 1) for
some do41-th roots of unity ;. By our construction of UTSs (at the beginning of

Chapter (3))
=~ 1/aa-f-l =~ 1/on+l
(___yr(a +1) + 1) and (____wr(a +1) + 1)
da+1 da+1

have residue 1 in Oy, /m,,. By (107), (109), (110) and (111) we see that
Yi(a+1)
wi(a + 1)
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has residue 1 in O, /m,, for 1 < ¢ < s. Thus we have 7;(a + 1) = w;(a + 1) for
1 < i < s, proving the first half of (A3) for a + 1.

@,(a)

Tr(a+1) —F.(a+1) =
7‘( ) y'r( ) di‘:;’r'-lml(a + 1)b,+1,1 .. ms(a + 1)b,+1,,

~1
Yr(a)
A T T (o 1)Pesnt g (a4 1)orsr

~1 ~t
wr(a) - yr(a)
di"_"'_’ll"‘“ml (a + ]_)bs+1,1 < We(a + 1)b.,+1,,

Thus
~1 ~1
w@,(a+1) -7y, (a+1)) = ww,.(a) —¥,(a))
- b3+1,1w(wl (a + 1)) — e — b8+1$3w(ws(a + 1))

>N = bsp11w(@r (@ + 1)) — -+ = bey1,sw(Ws (@ + 1))

> Aot
verifying the second half of (A3), and (A2) for a + 1. O
Theorem 4.9. — Suppose that T"(0) C Risa reqular local ring essentially of finite

type over R such that the quotient field of T"(0) is finite over J, U"(0) C S is a regular
local ring essentially of finite type over S such that the quotient field of U"(0) is finite
over K, T"(0) c U"(0), T"(0) contains a subfield isomorphic to k(co) for some
co € k(T"(0)) and U"(0) contains a subfield isomorphic to k(U"(0)). Suppose that R

has regular parameters (x1,...,,), S has regular parameters (yi,...,yn), T"(0) has
regular parameters (Ty,...,Tn) and U"(0) has regular parameters (gy,...,Y,) such
that

- __ =c —C
$1 — ylll P y815¢1
= _ =C a7C
zs — ylal .. .ysss s

Ts+1 = Ygt1

T =1

where ¢1,...,0s € K(U"(0)), v(T1),...,v(Ts) are rationally independent, det(c;;) #
0. Suppose that there exists a regular local ring R C R such that (z1,...,2;) are
regular parameters in R, k(R) = k(co) and

vE 1<i<l
xTr; =
Z; l<i<n
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with y; € k(co)[[z1,..., @] NT"(0) for 1 <i <1 and v; =1 mod (x1,...,1), there
exist 77 € U"(0) such that y; = v/7;, 7¢ = 1 mod m(U"(0)) for 1 <i < n. Further
suppose that

Tipr = PGy, 00) + 00 Te H+Q
where P is a power series with coefficients in k(U"(0)),
H=u( +77"75°5)
where w € U"(0)" is a unit,

E € k(U"(O)) [[yli v aylvyl+2v ‘e »yn]]a
v( 1) S V(@ ---72)  and
QemUO)Y  with Nv(m(U(0)) > v(@ - 5" Ti)-
Then there exists a CRUTS along v (R, T"(t'),T'(t')) and (S,U"(t"),U(t')) with as-
sociated MTS
S = S(t')

) 1)
R — R(t)

such that T"(t') contains a subfield isomorphic to k(co,...,cv), U"(t') contains a
subfield isomorphic to k(U(t')),

R(t') has regular parameters (z1(t'),...,z,(t")),
T"(t') has regular parameters (T1(t'),...Tn(t')),

S(t') has regular parameters (y1(t'),...,yn(t")),
U"(t') has regular parameters (G, (t'),...,7,(t'))

where

T (t) = G (), () g (1)

To(t') = Gy () ) G () O gy (¢')
Tor1(t) = Fopa (t')

T(t') = y(t)
T (t) =T (t') = PG ), ..., 5 {t) + 7, () - g, )= H
where P, H are power series with coefficients in k(U(t')), with

mult H(0,...,0,7,41(t),0,...,0) =1,
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$1(t),...,0s(t') € KU®)), v(@1(t')),...,v(T:(t")) are rationally independent,
det(c;;(t')) # 0. There exists a regular local ring R(t') C R(t') such that

(z1(t'), ..., (")) are regular parameters in R(t')

and k(R(¢')) = k(co, . . . ,Ctr ).

ai(t)) = {Zi(t')%z-(t') i
z;(t") l<i<n

with v;(t') € k(co,...,co)[[z1(t'), ...,z ()] N T"(¥') units for 1 < i < 1, such that

7i(t') =1 mod (z1(t'),...,x(t') and for 1 < i < n there ewists vY(t') € U"(t') such
that yi(t)) = 7 (¢')3;(t'), 7Y (') = 1 mod m(U" ().

Proof. — Perform the following sequence of CUTSs of type (M2) for 0 <r <l—s—1

i) (’I‘) =7 (,,. 4 1)0,11(7'+1) . -Ts(r + 1)a15(r+1)c‘:_1*_,.s1+1(r+1)

Es(r) =7 (7‘ + 1)&;1(74-1) .. ':’ES(T + 1)a“(r+l)c?ii+l(r+l)
Tatrs1(r) = To(r + 10t g (p 4 1)oer0 ()

C@orria(r 4 1) + D)
. —_ 7 —_ 1s (7 bl,s T
To(r) = Ty (r + 120D g (4 )bl ghr e (D)

_ _ r — os (T bs,s r41
To(r) = Ty (r + 1)P2 04D g (4 1ybeslrtD) ghesma (D)
Ystrp1(r) = Gy (r 4+ Dberra(HD g (4 1)berne (D)
_ bst1,s +1
ogrgr (r + 1) + 1)@t T,

the sequence of CUTSs of type (M3) forl —s<r<n-—s—1
i) = Ga(r+ PO g (e )P D
i - i r bs,s +1
T.(r) = 7,(r + 1)b51(r+1) T (r + l)b“( +1)dr+1+1(r )
Vorr1(r) = T (r + DberralrH) gy (p p 1)bebra(r4D)

_ bst1,s 1
’ (ys—i-r-l-l(r + 1) + ]')d'r—:—l1 +1(7'+ )7
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followed by a CUTS of type (M1), with ' =n—s+1

Ft —1) = T () (1))

Tt —1) =T (tl)a,;x(t') B -fs(t')a“(t’)
B = 1) = @) g, (¢) )

ys(t’ - 1) = yl(t,)bsl(t,) o 'ys(tl)b”(tl)’
so that
21 = P@ (), 7)) + T ()5 g, () Ou (@ (1) + DA+ 5)
+7, (t/)dl(t’)+1 . ys(t’)d’(t')”\l'
where
2 € k(U(tl)) [[.y_l (t,)v e 7yl(t’)7yl+2(t,)> e 7gn(t,)]] ’
P(—gl(tl)v s 7yl(t’)) = ?(ylv s 1?[)7 yl(tl) o 'ys(t,) ' (—ﬁ - ﬂ(ov cee ,0)), and
Q =7, () O g, (1) RO
with A = d;’isr‘l“(l_sﬂ) € k(U(t')), ¥ € U(t'). Then after replacing P with
P+ Xu(0,...,0)7, ()" ) - g, ()%,
we can put T;41(t') = x;41 in the desired form with
H =37y, ,(t" A+ (@-1(0,...,0)A+aZ +7,(t')---7,(t")7.

The proof that

U) — U#)
) t
T(0) = T(t')

is a CRUTS is a simplification of the argument of step 3 in the proof of Theorem 4.8.
We will give an outline of the proof.

We can define MTSs R — R(t') and S — S(t') such that R(r)”, S(r)” have
respective regular parameters (z3(r),...,25(r)) and (y5(r),...,ys(r)) for 0 <7 < n.
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For0<r<i-s-1

zi(r) = z}(r 4 1)enlr+) . -zt (r + 1)@ (r+D)

(@ (P H 1) 4 g )2 (74D

zi(r) = a3 (r + 1) 0T px(p 4 1)ana(rD)
(ZToprg1 (T + 1) + cpyg ) 2ot (rHD)
$;+r+1 (r) = z3(r + 1)as+1,1(r+1) ozt + 1)“’+1-5(’"+1)

’ ('Z:-FT-}-I (’f' + 1) + Cr+l)a’+1v’+1(r+1)

yi(r) = yi(r + )Pt ey 1)b1e(r+1)
W1 (T + 1) + dpyq) oot (rHD)

ys(r) = yi(r + 1)bar+1) . Y2 (r + 1)bee(74D)
: (y;+r+1 (r+ 1) + dr+1)ba»s+1(7‘+1)
y;+r+1(7‘) =yl (r+ 1)b3+1,1(r+1) coeyt(r + l)b,+1,,(r+1)
) (y:+r+l (r+1)+ dr+1)b’+1*’+1(7"+1),

Forl—s<r<m-—s-1

yi(r) = yi(r + )P0t x4 1)bie(r4D)
. (y;+T+1 (r + 1) + dr+1)b1,s+1(r+1)

Yr(r) = yi(r + )P0+ oy 1)banlrtD)
CWrprgr (T 1) + dpyq)boer (7D
Ysirpr(r) = yi(r + 1borialr+D) g 1ybesaa(rD)
“Wagrpa (P + 1) + dpyq)letretr(r1)

followed by a MTS of type (M1), with ¢/ =n — s+ 1

.’L‘;(t’ _ 1) — m;(tl)au(t’) .. -x;(t')al"(tl)

x;(tl _ 1) — mI(tl)agl(t’) L J,‘:(t,)a"’(tl)
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yf(t/ —_ 1) = yI(tl)bll(t') . y;(t,)bls(t/)
yEE — 1) = (")) ()0 (D),

For 1 <r <1l - s we have

Ai(r)Zi(r) 1<i<s
«77: (7') = AS+T(T)TS+1-(7‘) =+ @34_7 t=8+7r
zi(r—1) s<t, iF#Fs+r

where \;(r), 541 € k(co, - -, cr)[Z1(r), ..., Ti(r)]], the Ai(r) are units and
(I)s+r € (33‘1(7'), e ,Es+r_1(r),fs+r+1(r), e ,T[(’l“)).

For 1 <r <n — s we have

M (r)g(r) 1<i<s
Yi (1) = § Nsr (NTyr (1) + Yy, i=s+r
yi(r—1) s<t, 1 #Fs+r

where AY(r), @Y, € kUE)[T:1(r), - Tsrr1(1), Tsyrp1 (7)s - - -, G (P)]], the XY (r)
are units.

R(t') has regular parameters (z1(t'),...,2n(t')) where
) xF(t) 1<i<s, 1+1<i<n
ZT; =
' [T (t) + cice —o(cins)) s+1<i<l

where the product is over the distinct conjugates o(c;—s) of c;—s in an algebraic closure
%k of k over k. For 0 <r <[ —s— 1 define

R(r+1) = R(n)[a(r +1),...,25(r + 1), 7(r + 1)]g,,,
where
m(r+1) = [[@r1(r + 1) + cp1 — o(crta))
is the product over the distinct conjugates o(cy4+1) of cp41 over k,
grs1 =m(R(r + 1)) N R(P)[i(r +1),..., 250 + 1), 7(r + 1)].
Forl — s <r <n—s+ 1 define R(r + 1) = R(r). Define

R(#') = R(n — s)[ei(t)), .., 25 (¢)]a,

where
av =m(R@E')) N R(n — s)[zI(@t"),...,z5 ().
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S(t') has regular parameters (y1(t'),...,yn(t')) where
yi () 1<i<s
yi(t') = { zi(t') s+1<i<l
[I(y; (¢') + dims —0(di-s)) 1+1<i<n

where the product is over the distinct conjugates o(d;—s) of d;—s in an algebraic
closure k of k over k.

Now set
5(t') = z;(t') fors+1<i<li
Z;(¢') otherwise
~ Zi(t) fors+1<i<l
y:(t') = _z , .
7;(t')  otherwise.
We are then in the form of the conclusions of the Theorem. O

The proof of Theorem 4.9 also proves the following Theorem.

Theorem 4.10. — Let no; = m (k(U"(0))[[¥y,-..,7,]]) in the assumptions of Theo-
rem 4.9.

1) IfQ e né\{l in the assumptions of Theorem 4.9, then a sequence of MTSs of
type (M2) and a MTS of type (M1) (so that the CRUTS along v is in the first

l variables) are sufficient to transform x;y1 into the form of the conclusions of
Theorem 4.9.

(2) Suppose that
g=71" 7 u@,-. ) + 90
where u is a unit power series with coefficients in k(U"(0)) and 2 € n{)\,’l with
Nv(ngy) > v(g¥ ---g%). Then a sequence of MTSs of type (M2) and a MTS
of type (M1) (so that the CRUTS along v is in the first | variables) are sufficient
to transform g into the form
g =) g, (Y Oa@,(t), ..., 7))
where U is a unit power series.
(8) Suppose that
9=7" 7@, ) +Q
where u(ﬁ‘fl cgd)y > A and Q € "(1)\{1 with Nv(ng,;) > u(g‘fl -.-g%). Then a
sequence of MTSs of type (M2) and a MTS of type (M1) (so that the CRUTS
along v is in the first | variables) are sufficient to transform g into the form
9= g, () OTEG ), ... ()
where v(g, (t') 1) ... g, (') E)) > A.
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(4) Suppose that
9= T u@, -7 + 2
where u is a unit power series with coefficients in k(U"(0)) and Q € m(U"(0))N
with Nv(m(U"(0))) > v(g¥ ---g%). Then there exists A CRUTS along v as
in the conclusions of Theorem 4.9 such that

g =7 () g ()= Oug,(t),....5,("))

where W s a unit power series.

Theorem 4.11. — Suppose that T"(0) C R is a regular local ring essentially of finite
type over R such that the quotient field of T"(0) is finite over J, U"(0) C S is a regular
local ring essentially of finite type over S such that the quotient field of U"(0) is finite
over K, T"(0) C U"(0), T"(0) contains a subfield isomorphic to k(co) for some
co € k(T"(0)) and U"(0) contains a subfield isomorphic to k(U"(0)). Suppose that R

has regular parameters (x1,...,x,), S has regular parameters (yi,...,yn), T"(0) has
regular parameters (T1,...,Tn) and U"(0) has regular parameters (g,,...,7,) such
that

b3 — 77C11 —Cls
Ty =91 Y

= _— 77Cs 7€
Ty = Yo' Y bs

f-<>‘+1 = ys+1

=9
where ¢y1,...,¢s € k(U"(0)), v(T1),.-.,v(Ts) are rationally independent, det(c;;) #
0. Suppose that there exists a regular local ring R C R such that (x1,...,2;) are

regular parameters in R, k(ﬁ) = k(co) and

1T 1<i<1
Tr; = .
T; l<i<n

with v; € k(co)[[1,...,m]] NT"(0) for 1 <i <1 and y; =1 mod (z1,...,2;), there
ezist v¢ € U"(0) such that y; = v!7;, v =1 mod m(U"(0)) for 1 <i < n.
Then there exists a CRUTS along v (R,T"(t),T(t)) and (S,U"(t),U(t)) with as-

sociated MTSs

S — S(t)

T )

R — R(t)
such that T"(t) contains a subfield isomorphic to k(co,...,c;), U"(t) contains a sub-
field isomorphic to k(U(t)), R(t') has regular parameters (z1(t),...,xn(t)), S(t') has
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regular parameters (y1(t'), ..., yn(t")), T"(t) has regular parameters (T1(t),...ZTn(t)),
U"(t) has regular parameters (y,(t),...,y,(t)) where

Tu(t) = () O -G (6) D (2)

To(t) = 7y ()0 -G, (1)° D, (2)
%5+1(t) = §s+l(t)

%l+1(t) = §l+1(t)

such that ¢1(t), ..., ¢s(t) € kK({U(2)), v(Z1(t)),...,v(Zs(t)) are rationally independent,
det(cij(£)) # 0.

zi(t) =Ti(t) for 1 <i<n.
For 1 <i < n there exist v¢(t) € U"(t) such that y;(t) = v¥(t)7;(t),

v (t) =1 mod m(U"(t)).

Proof. — We will construct a CRUTS (R, T"(¢),T(t)) and (S,U"(t),U(t)) along v
with associated MTS
S = S0) - S@)
t )
R = R(0) —» R(t).

We will say that CN(3) holds (with 0 < 8 < ¢) if T"(8) contains a subfield isomorphic
to k(co, - - - ,cp), U"(B) contains a subfield isomorphic to k(U(3)), R(3) has regular pa-

rameters (z1(3), ..., z.(8)), T"(83) has regular parameters (Z;(8),...,Zn(8)), U"(8B)
has regular parameters (7, (8),...,7,(8)), such that

o JrBF(8) 1<i<i
7l = {%@-(ﬁ) I<i<n
with
71(/3) € k(Co, HE 7Cﬂ) [[.’171 (:8)7 s ?xl(ﬁ)]] nT”(ﬂ)?

7(B) =1 mod (z1(B),...,2;(8)) for 1 <i <!l and for 1 <i < n there exist ] (8) €
U"(B) such that y;(8) = v¥(8)7;(8), vY(8) = 1 mod m(U"(B)). We must further
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have

z1(8) = 1 (B P -G, (B) P (8)

To(8) = 1 (B) D -G, (B) D g,(8)
To41(8) = o1 (8)

%l(ﬁ) = ﬁl(ﬂ)

with ¢;(8) € k(S(B)), v(Z1(8)), ..., v(Ts(B)) are rationally independent, det(c;; (83)) #
0, and there exists a regular local ring R(3) C R(8) such that (z1(8),...,;(3)) are
regular parameters in é(ﬂ) and k(é(,@)) = k(co,-.-,c8).

By Theorem 2.12 and Theorems 4.8 (with f = z;41) and 4.9 we may assume that

Ti41 = Tpq1 = Py, -, ) + T3 -+ §2 2o
where X is a series with mult 3¢(0,...,0,%,,1,0,...,0) = 1. Suppose that v(P) = co

(this includes the case P = 0). Then by Theorems 4.8 and 4.10, we have a CRUTS
along v in the first [ variables such that

(114) Ti4+1 = 51 (t)dl ... is(t)dS(t)Et (51 (t)7 cee 7§n(t))

mult (0, . .. ,O,§l+1(t),0. ..,0) =1, and CN(¢) holds. We can thus make changes
of variables, replacing T;(t) with z;(t) (for 1 < i < n) and 7,(t) with Z;(¢) (for
s+ 1 <4 <) so that (114) holds and CN(¢) holds with v;(t) = 1 for 1 < <, and
yi(t) =zi(t) for s+ 1 <i < L.

Suppose that v(P) < co. Set d = det(c;;). Let (f;;) be the adjoint matrix of (c;;),
so that (fi;/d) is the inverse of (c;;). Let w be a primitive d*" root of unity in an
algebraic closure k of k. Set

d
g’: H (l'l—i—l _P(wilylv’"7wisysvgs+lv"'7§l))‘

i1,e0nyia=1

g kU ON[FT, - ¥5 Tsrrr- - Tl [T1s1]-
Let G be the Galois group of a Galois closure of k(U"(0)) over k(cp). Since ;41 is
analytically independent of 7¢,...,75%, 7, +1>---,Y; (by Theorem 2.12) we can define
9 = [I,cc 7(g") where 7 acts on the coefficients of g'.

ge k(co)[[g_/clia s 7yg7ys+17 cee 7?1]] [xH-l]'

Since 7¢ = T{“ --~T£i’¢1_f“ o-¢7%ie for 1 < i < s, by Lemma 4.2 we can perform a
MTS of type (M1) to get g € k(co) [Z1(1), ..., Ti(1)]][i41]. o is irreducible in U(1)
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(since mult(Xo(0,...,0,%,,,,0,...,0)) =1) and ¢ | g in U(1).

d
(115) 9= aZi(V)F + 3 aiZin (D5 + Y axZipa () + 201 (1)T
i=1 j k
where a;,a;,ax are series in Z1(1),...,Z;(1) with coefficients in k(cg), m > 0 and the

first sum consists of the terms of (finite) minimum value p.
p < oo since mult g(0,...,Z;4+1(1)) < o0.

Tv(Z141(1)) > p, the second sum consists of (finitely many) remaining terms of finite
value, the third sum consists of (finitely many) terms of infinite value. Let

r =mult g(0,...,0,T;+1(1)), 1<r < oo.

Suppose that 7 > 1. By Theorems 4.8 and 4.10, we can construct a CRUTS in the
first [ variables, with associated MTS

S(1) = S(a)
t t
R(1) = R()

such that CN(a) holds, to get

P =7, ()" .7, ()* DPF (a),.... 7 ()
where P is a unit, and
(116) ac =F1()% -+ Fy()%q (71 (), -, Tu(a)

for ¢ = i, j, k where @;,a@; are units and v(Z; (a)el1c - Tg(@)ek) > p for all 4,4, k. We
have an expression

Z141(a) = 2111 = P+ ()% - g ()* Y (7, (a), .-, Fn(a))-

where mult (0, . ..,0,7,,1(),0...,0) = 1. If »(P) > v(@, (a)4 (@) ... g, ()% (@),
then after possibly performing a CRUTS of type (M1), so that

i@ @ g (@)% | 7y (@)@ -7, (@)% @)
in U(a + 1), we can set
Sat1 = S + 7§ (@) (@=h@) 7 (5)9s(0)=ds() P

to get
zip1 =i (a+ DB g (o + )T, .

Now suppose that v(P) < v(7, ()% (® ... 7 (a)%(®)). After possibly performing
a CRUTS of type (M1), so that

G1(@) ) - G (@)% | Gy (@)D - G ()
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in U(a + 1), we have

Ti+1 (a + 1) = Ti+1
= ﬁl(a + 1)d1(0t+1) .. .iq(a + l)d’(a‘H)
P + G (a+ 1)@ G (a4 1@, Gy (a + 1), Tl + 1))

where
mult(Ze41(0, . ..,0,3,, (@ +1),0,...,0)) =1,

P+7,(a+1)1@t) .5 (o +1)@t)S, ) is a unit and CN(a + 1) holds.
Set (es5) = (cij(a+1))71, d = det(c;j(a + 1)). We can replace

7i(a+1) with §;(a + D)yi(a+ 1)% -y (@ + 1)% for 1 <i<s,
7i(a+1) with §;(a + 1)yi(a+1) fors+1<i<l and
U"(a+ 1) with U"(a + D[y (a+ D)V ye(a+ 1)V,

where
a=mU(a+1)N (U"(a +D)[y(a+ DY ys(a+ 1)1/d])

to get

zi(a+1) = fila+ DUt Fyfa + ) @g @ + 1)

zs(a+1) = gy (a+ 1)@ G (o + 1) (@D (o + 1)
Tspr(a+1) = §s+1 (a+1)

z(a+1) =g (a+1)
and have an expression in U(a + 1) 2 k(U(a + 1)) [7, (@ + 1),...,F,(a + 1]
i1 = Gy (@ + DOV G (a + B[P @ (@ + 1), Byl + 1)

+ Y (a+ D) g (@ + 1) @S, Gy (@ + 1), .., T (a + 1))

where mult £441(0,...,0,7,4;(a+1),0...,0) = 1, Py is a power series with con-
stant term 1 and 7 € k(U(a + 1)). We have Zjy1(a+ 1) = 241 and 7y (a + 1) =
Ti41- By Lemma 4.6 we can construct MTSs R(a + 1) — R(a + 2) of type II;4,
and S(a 4+ 1) = S(a + 2) of type I such that R(a + 2)" has regular parameters
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(zf(a+2),...,z5(a+2))
1 (Ol + 1) = .’IJI(Oé + 2)all(a+2) . x;(a + 2)ala(a+2)
(a1 (@4 2) + coya)trerr(@F2)

(117) zs(a+1) = zi(a+ 2)(151(014-2) cext(a+ z)a,s(a”)
(@ (@ + 2) + copa)eetiat?)
zip1(a+1) = z}(a + 2)%+11(et2) . -zt (o + 2)aet1s(@F2)
: (x;-H (a+2)+ ca+2)as+1,s+1(a+2)
S(a+ 2)” has regular parameters (7, (a +2),...,7,(a +2))

Ti(a+1) = Fy(a+2)"@F) g (a4 gt

ola+1) =7y (a+2)*1) .7 (a +2)b(oF2)

such that R(a+2) C S(a + 2).
Set
(118) ¥ =Pat1 + G (a+ )7 g (o + 1)@V,
so that
Ti41 = Py (a + )N @D 7 (g 4 1)ds (@) 1y

This shows that v € U"(a+1). Set (e;5) = (aij(@+2))~!. By construction there are
positive integers f;; such that

zi(a+2) = zi(a+ 1) - gy(a+ 1)z (o + 1)€1e+1

=7 (a + 2)f11 .. iyg(a + 2)f1s,y€1,s+1 T€1,54+1
i@+ 1)y 1)

(119) zy(a+2) = zi(a+ 1) - zy(a+ 1) zipq (a + 1)+
= yl (a + 2)fsl .. ys(a + 2)fs¢=f\/es,s+l7-€s,s+1
. d’l (a + l)e,l Ce ¢s(0£ + 1)6“
i (a4 2) + caye = zr(a+ 1)+ g (a+ 1) +tegy g (o + 1)Cs+1o+1
=7, (a + 2)fs+l,1 .. .ys(a + 2)fs+1,s/Yes+1,a+17-ea+l,.s+l
. ¢1 (a + 1)€a+1,1 e ¢s(a + 1)es+1,s

in S(a+2)". v(zi (@ +2) + cate) = 0 implies for1,0 =+ = fop1,s = 0. Set
@ = ¢r(a+ 1)e+1 g (o + 1)t peottott ¢ f(U(a + 1)).
Substituting (118), we have
ip1(a+2) + care = D(Pot1 + Jy (a + 1O G (0 4 1) @FD 5, et
= Q@ (a+2),....7,(a+2))
+ 7 (a+2)20) g (a4 2) DN (7 (a + 2), ..., 7, (@ +2))

ASTERISQUE 260



4.2. MONOMIALIZATION IN RANK 1 29

where Qo is a unit and mult Ap(0,...,0,7,,;(a + 2),0...,0) = 1. Define a; € Q by

-1
a1 fll e fls _61,3+1
Qg fo1 -+ fes —€s.041
and set
~ —%iy (a+2 1<1<s
il +2)= 7T ) ==
Fi(a +2) s<1
to get
(o +2) = i(a+2)1@t2) | F(a+ 2)crs @ty
(120) :

e (a+2) = Gila+2)e1©@+D) G (q + 2)cee @ty

@1 (a+2),...,Pn(a+2)) are regular parameters in S(a+2)", ¢¥1,...,¢s € k(S(a+2)).
There are unit power series ; and power series A; such that

’Yai = i(yl(a+2)a"'ayl(a+2))
+7,(a+2)7CF) g (a+2)* AT (a+ 2), .., Ta(a +2))
in S(a+2)" for 1 <4 < s, where mult(A;(0,...,0,7,,,(a+2),0,...,0)) =1,

Q:(0,...,0) = 1.

Tila+2) = Qi(T (a+2),...,7(a+2)Fi(a+2)
mod (F1(a + 2)1(+2) ... (a + 2)5 DG (a + 2))

for 1 <i < s. We will show that there exist unit power series (2; such that
’)’ai = Ql(@\l(a + 2), e ,g’]l(a + 2))
+(a+ 270 g (a4 2)7 TN G (a+2), . T+ 2))
mod i (@ + 2)51 (@2 g (a + 2)= @D (G (a + 2),..., Gi(a + 2)).

This follows from induction, since for any series A(7;(a + 2),...,7,(a + 2)), there
exist series A;,...;, such that mult(4;,, . ;) > 0 and

A@i(a+2),...,7(a+2) = A (@ +2),..., Gi(a +2)

+ Y Ay @(e+2),. ., Tla+2)T(a+2)" - Gila+ 2)"
i1+-414;>0

mod 71 (o + 2)51 @+ .G (a + 2)5 D (G (a + 2), ..., Gila + 2)).
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Thus

Y = U@(a+2),...,h5ila+2))
+71(a+ 251 G (o + 2)5 D (G (@ + 2), . .., Gula + 2))
mod 7 (a + 2)51 @+ .G (a + 2) D (G (a + 2),...,51(a + 2))
with
mult ®;(Yi4+1(ax +2),0,...,0) = 1.
R(a + 2) has regular parameters (z; (a + 2),...,z,(a + 2)) defined by
z (a+2) 1#1+1
[} (a+2) +cara —0(cat2)) i=1+41

where the product is over the distinct conjugates o(cat2) € k of cqy2 over k.
Set Z;(a+2) = z;(a+2), F,(a+2) =Fi(a+2)for 1 <i<n. Set U'(a+2) =
U'(a + 2)[y*,...,v*]q where
g=m{U(a+2)NU'(a+2)[°,...,v*].

Then CN(a + 2) holds. We have z;,,(a + 2) + caq2 = ¥®s+1+1 )\ for some A €
k(S(a+2)) by (119). est1,s+1 7 0 by Theorem 2.12.

(121) zi(a+2) = {

a1 (@ +2) = Pago @y (@ +2),..., 7 ( +2))
+ 71 (a+2)2 )G (a+2)= DT, LT (@ +2), ..., Fa (@ +2))
where mult(Ea42(0, . ..,0,7,,1(a +2),0...,0)) = 1.

ziv1(e+2) = [T (Pase@rla+2), ., Ti(a +2)) + (Cata — o(cas2)))

o

+ 5y (a+2)2 0D g (a4 2) ()

[ (Pasa@rl@+2), - Gi(a +2)) + (asa — o(cara))) Sare

o

+ 7 (@ +2)2@) T (a+ 2)“(““)9]

in S(a + 2= k(S(a +2)) [ﬁl (@+2),...,5,(a+2)]] and the product and sum are
over the distinct conjugates o (cat2) Of Catz in k over k. If co12 € k, we have

Z(CQ—H —0(cat2)) #0

o
since if this sum were 0, we would have cy42 invariant under the automorphism group
of a Galois closure of k(ce+2) over k which is impossible. We have an expression

(122) zig1(a+2) = Para(@i(@+2),..., 5 (a +2)
+ 7y (a+2)71@+2) g (0 +2)= @D, LT (@ +2), .., Uula +2))

ASTERISQUE 260



4.2. MONOMIALIZATION IN RANK 1 101

where P42, Tat2 are power series with coefficients in k(S(a + 2)) and
mult(Za12(0,...,0,7,41,0,...,0)) = 1.

If coye € k, 2141(a +2) = 2, (a + 2) and this expression is immediate. By (115)
and (116),
d . _
g= Zalifl (Ot + l)ei (a+1) . ‘Ts(a + 1)ef(a+1)fl+1 (a + 1)fi
=1
+3 T (a+ 1S T (@ + D)SEDF L (o + 1)
J
+ 3 a T (a+ DD T (o + 1T (o + 1)
k
+Zip1(a+1)T

with a},a},a}, € k(co, ..., cat1)[T1(a+1),..., % (e + 1)]]. Since
%l+l (a + 1) = Ti41 (a + 1) = Ti4+1

and CN(a + 1) holds, so that

k(co,. .. cay1)[[x1(a+1),...,zi(a+1)]] = k(co, - - ., Cat1) [T1(a+1),...,Ti(a+ 1),

we have an expansion

§= 3 Er(a+ D o D a4 1)
i=1
+ 26,-.7:1 (a+ 1)@ g (g +1)5@F Dy (a+1)%
J
+ 3 apzi(a+ 1) g (o 4 )R gy (0 4 1)k
+ wf+1(04 +1)'T

with @;,@;,ax € k(co, - .., Cat1) [T1(+1),...,zi(a +1)]], @, d; units for all 4, j and

v(zy(a+ 1)) g (o + D g (a+ 1)) > p
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for all k. In R(a + 2)", by (117)

d s
g= Z’di H o (o + Z)ala(a+2)e} (o4+1)+-+asqa(a+2)ef (at+1)+as11,a (a+2) fi

i=1 a=1

1 s .
(w?+1(a+2)+ca+2)a1,3+1(a+2)ei (a+1)+-Fa, . 41(a+2)ef (a+1)+as41,:+1(a+2) fi

s
+ Z'dj H oo+ 2)a1a(a+2)e,1»(a+1)+---+a,a(a+2)e§ (atl)+ast1,a(a+2)f;
j a=1
(xf1(a+2) + ca+2)a1,s+1(a+2)e}(a+1)+~~-+a,,,+1(a+2)e§(a+1)+as+1,s+1(a+2)f,-

8
+ Zak H z (o + 2)a1a(a+2)ei(a+1)+-~+am(a+2)e;"c(a+1)+as+1,u(a+2)fk
k a=1
($;+1 (a + 2) + ca+2)a1,,+1(a+2)e,lc(a+1)+~--+a,,;+1(a+2)ei(a+1)+as+1,s+1(Ot+2)fk

s T
+ [(H zo(a+ 2)a’+1‘“(a+2)> (#41(a+2) + Ca+2)a’+1"+1(a+2)] r

a=1

with @;,a;,ax € k(co,. .., Cat2) [[2] (@ +2),... 2}, (@ + 2)]], @;,a; units and

s
V(H x;(a + 2)a1a(a+2)e,1,(a+1)+"'+a.m(a+2)e"k(a+1)+as+l.a(a+2)fk) > p.
a=1

We have that
D (ara(a+2)ef (@ +1) + -+ + aga(o + 2)ef (0 + 1) + aoy1,a(a + 2) fi)v(h (a + 2))
a=1

are equal for 1 < i < d since the corresponding terms in g have equal value p. Set
a¢ = arc(@+2)ej(@+ 1) + -+ asc(a+2)ef(a+1) + asac(a+2) fi

for 1 < ¢ < s. Since v(z}(a + 2)),...,v(zi(a + 2)) are rationally independent, we
have

ac = arc(a+2)ef(a+1)+ -+ ag(a+2)ef(a+1)+ asyic(a+2)fi
for1<i<dand 1<{<s. Set
my, = aysp1(a+2)ej(@+ 1) + -+ ag 51 (@ +2)ef(a + 1) + agt1,s11(a + 2) fi
for 1 <i <d. Set
ann(a+2) - ars(a+2)

det : :
asi(a+2) - ass(a+2)
€= ann(a+2) - aysp1(a+2)
det : :
ast1,1(+2) -+ agt1,541(a+2)
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€ is a nonzero integer. By Cramer’s rule,
fi— fi =e(my —my,)

for 1 < ¢ < d. Assume that € > 0. We can perform a CRUTS of type (M1) with
associated MTSs R(a +2) — R(a+ 3) and S(a+2) — S(a+ 3) where R(a + 3) has
regular parameters (z1(a + 3),...,zn(a + 3)) and T"(a + 3) has regular parameters
(Z1(a + 3),...,En(a + 3)) such that

z1(a+2) =i (a+2) = z1(a+ 3)211(@H3) .. g (o 4 3)21s(@+3)
(123) :
Ts(a+2) = zt(a+2) = z1(a+ 3)%1(@F3) ... g (a + 3)2es(a+3)

and
zi(a+3) 1<s

Tila+3) = {x;((ai 2)) 3_< )
zi(a+2) = z;(a + 3) for s < i to get
g=T1(a+3)% - Ty(a+3)% (Fip1(a+3) + Cat2)™1 @+ T (a+3) - Ts(a + 3)G)
in k(co, ..., ca+3)[T1(a+3),...,Tiq1(a + 3)]], with

& =01 + G2(Tip1 (@ + 3) + Capa) 2TV 4 L Gy (T (a + 3) + cae) Fem /e,
In the case € < 0, we must consider an expression
g=T1(a+3)" -+ Ty(a+3)% (Tip1(a+3) + caya) ™4 @ +F1 (a+3) - - Ty(a +3)G")
with
' =& (Frra (@ +3) + cara) NI 44 G

Again assume that € > 0. The proof when £ < 0 is similar. Let
r’ = mult(®(0,...,0,T 41 (a + 3))).

p = v(ai) + fiv(ZTi+1(1)) < rv(Tu41(1)) implies fq < 7. Set n; = (fi — fi)/e. The
residue of @; in

T(a+3)/(@i(a+3),....,T(a+3),Tip2(a+3),...,Tu(a+ 3))
= k(T (a+3)) [Trr1(a + 3)]]
is a nonzero constant a; € k(co, ..., Cot+2) for 1 <i < d. Set
C(t) = a1 +at™ + - + @gt™,

r' = mult({(ZTi+1(a + 3) + cat2)). ™ < ng = (fa — f1)/e < r. Suppose that r' = r.
Then fi =0, fag = r, € = 1 and {(t) = @a(t — cat2)”. Thus there exist nonzero
(@i41(a+3) + caq2)” and (Ty41(a + 3) + coq2)" ! terms in @(0,...,0,Z;; (a + 3))
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and fg_1 = fg—1=r—1. Thus aq is a unit so that ag = @4 and v(ag_1Z;+1(1)"" 1) =
v(aqZi+1(1)") implies v(Zy41(1)) = v(ag-1).
d
(124) D " @i(@ir1 (o + 3) + cag2) F T/ =GgF 1 (a + 3)"
=1
Expanding out the LHS of (124), we have
T834Co+2 +g—1 =0

which implies
Ca+2 _ 1

ad_l Tad '
Let o = @y € k(co) be the constant term of the power series

aq € k(co) [[x1(1),...,z(1)]).

T14+1(1) _ agTi4+1 (1) _ aq(Zi+1(a + 3) + cqq2)™d
ai-1 d0a1Ti41 (1)1 Gaa—1(Tip1 (@ + 3) + cagz) a1
Aq(Tigr (0 + 3) + cqyp)Fe—F)/e
A4a4—1(Ti+1(a + 3) + caqo)fa-1=F1)/e
_ ag(Typ1(a+3) + caq2)
B Aqad—1
which has residue —1/ra in k(R(a+ 3)) C O, /m,. (Here O, is the valuation ring of
our extension of v to the quotient field of S(a+3)".) There exists Q € R(1) such that
Q@ is equivalent to —%ad_l modulo a sufficiently high power of the maximal ideal
of k(co)[[1(1),...,2(1)]] (recall that c; = 1) so that v(zi41(1) — Q) > v(m41(1))
(Recall that Z;41(1) = 2141 (1)).
Since agF;+1(1)" is a minimum value term of g, we have v(Z;1+1(1)) < v(g). Make
a change of variables in R(1) and T" (1), replacing z;4+1(1) and Z;4+1(1) with

T (D) =2k (1) = 22 (1) - Q
CN(1) holds for these new variables. Further, in S(1)”, we have
Fn M) = POG ), 5i(1) +7 ()40 7,005,

where mult(3o(0, ...,0,%,,,(1),0,...,0)) = 1. Then repeat the above procedure with
this change of variable and our previous g. If v(P1) > v(7, (a)4(® ... 7 ()% (@)
the above algorithm produces an expression

2 (1) =T, (@ + 1)HEH T (o + 1)b D50

where mult(E(al)(O, . ,O,§l+1 (e +1),0,...,0)) = 1. So suppose that
v(PM) < v (F ()@ -7, (a)% @),
If we do not get a reduction r; < r, we have

V(@1 (1) < v(E (1) < v(9).
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We can repeat this process. By Lemma 2.3, We eventually get a reduction r’' < r, or
v(g) = oo and we can construct (as in (58) in the proof of A(77) in Theorem 4.7)

¢ = lim Qi(F1(1),..., (1)) € k(co) [[F1 (1), .., T(D)]]
such that
(125) g=u@i+1(1) = ¢)" + h.
where h € aik(co) [Z1(1), ..., Ti41]] with
ar = {f € k(o) [[7:(1), ..., T(1)]] | v(f) > o0}

and u(Z1(1),...,T;+1) is a unit power series.
Suppose that 7' < r. In our construction, 7y, (a + 3) = 7, so that if

So = 25T [@1(a +3),...,Fu(a + 3)),
mult(S5+3(0,...,0,7,4, (e + 3),0,...,0)) = 1. Set
g1 = Tir1(a+3) +capa)™ @ +T1(a+3) - Ts(a + 3)G.
zy1 (o + 2) = nay, (o + 2) where 1 € k(ca+2)[7],, (a + 2)] is a unit which implies
Tip1(a + 3) = nZTi41(a + 3).
Thus
g1 € k(co, -, Caq3) [Tr(a+3),...,Tiy1(a+3)]
= k(co,---,Cats)[[t1(a+3),...,zi41(a + 3)]] C R(a+3)"
3o | g1 so that
1 <multg,(0,...,0,zi41(a+ 3)) = mult g1 (0,...,0,Z;1(a+3)) =r; <.
By (122), there is an expression in S(a + 3)”
Tip1(a+3) =z (a + 2)
= Pars(@i(a@+3),...,h(a+3))
+71(a+3)m0H) G (a+ )OS 5@ (@ +3),. - Tn(a +3))

where mult(X4+3(0,...,0,7,41(a + 3),0,...,0)) = 1. Now set Z;(a + 3) = zi(a + 3)
for 1 < ¢ < n. By (120), (121) and (123) CN(a + 3) holds (with v;(a + 3) = 1 for
1<i<).

By induction on r we can now repeat the procedure following (115), with R(1),
R(1), S(1) replaced with R(a+3), R(a+3), S(a+ 3) respectively, co with a primitive
element of k(co, ..., ca+3) Over k, g with g1, to eventually get ¢ such that CN(¢) holds
with %z(t) =z;(t) for 1 <i <n and

2 () =5 O G ()4 I (F(2), - Tn (D)
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where mult 3;(0, ... ,O,§I+1(t),0, ...,0) =1 or we have

zi41(t) = B@(0), - 5i(@) + 51 (OH D -G, ) O @, (1), -, T (1)

where mult Et(O,...,0,§,+1(t),0...,0) = 1, BP,Y; are series with coefficients in
k(S(t)) and

(126) g =u(@1(t),..., 2101 (t))x1 ()% - 25 (£)% [2041 (2) + (1 (2), ..., z(t))]°

for some a > 0 where u, ® are series with coefficients in k(co,...,ct), u is a unit and
3o | g- Suppose that (126) holds. Define

E(t)(il (t)v ce 7§n(t)) = Y.

mult (0, . . .,0,§,+1(t),0, ...,0) = 1. We have regular parameters (7 (t),...,Un(t))
in S(t)” defined by

o Ju) i# i+
y’(t)_{zo i=1+1

There is an expression
Tip1(t) = Pe@t), . 5u(®) + ()P O - gL OT, G (2), ..., Gn(t))

with mult £,(0,...,0,5i41(¢),0,...,0) = 1. Thus

Y1 (8) | Tigr (t) + (21 (2), .. -, mu(2))
in S(t)". Since P, + ® € k(S())[[H1(8),- .., U ()],

P+ @ =g, ()" -, ()"
with @ € k(S(t))[[7:(2),...,¥,(¢)] and
o | Q+ 3.

Set my =m (k(co, - .., ce) [x1(t), ..., z1(t)]]). Choose N so that

Nv(me) > v(@ (4O -, ()% D).

There exists ' € k(co,...,ct)[1(t),...,z(t)] such that & = & mod my";. Make
a change of variables, replacing x;41(¢) with x;41(¢t) + ®' to get

21 () =T (OO T, D@+ Z) + (@ - @)

By Theorem 4.10, we can perform a CRUTS along v in the first [ variables, with
associated MTSs R(t) — R(t'), S(t) = S(t') to get

Tia(t') = 2 () = 5, ()OO - G ()5,

where mult S¢ (0, ...,0,3,4,(t),0,...,0)) = 1 and such that CN(¢') holds.
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We thus have regular parameters (z1(t'),...,z,(t')) in R(¢') and (y1(¢'), ..., yn(t))
in S(t'), units 7 (¢'),...,7s(t") € S(t') such that

1 (t') =y (t')011(t') - ys(t')cls(t')Tl (t’)

.’Ifs(t’) =y (tl)c,l(t’) . 'ys(tl)c”(tl)Ts(t,)
Top1(t') = ysqa(t)

(') = w(t')
$l+1(tl) =y (t’)dl(t’) . ys(tl)d,(t )yl—l—l (tl)

Let ¢;(t') be the residue of 7;(t') in k(S(t')), Ts = 75(t')/#:(t'). Let (es;) = (cij ()L
Define

TE - Teey(t) l<i<s
7:(t") =  wailt) s<iiAl+1
?1—e11d1(t')—'--—end;(t') . ‘F;eudl(t’)—-n—eud.,(t’)yH_l(t:) i=1+1
We have
21 (t') = 7, () ) g, (¢) g, (t')
zo(t') = 7, () ) g () g (1)
Zop1(t') = Gyt (t)
z(t') = 7,(t')
zre1(t) = 7, ()" g, () Oy (¢)
in

U'(#) = SENTT - 7ol (¢), 70 () -
By Lemma 4.5, we can perform a MTS of type II,1; R(t') — R(t' + 1)

7)) = T (' + 1)a11(t’+1) T+ l)al,(t'+1)c:’1-|,_al-}~l(t'+1)
_fs(t,) =3 (tl + 1)a,1(t'+1) .. 'jg(t, + 1)a,,(t'+l)c?ls_:f~l(t'+1)
T (') = Ty (t + 10+ D g (¢ 4 1)@ere (D)

@ (' + 1) + D)ot (D
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and a MTS of type II;+1 (possibly followed by a transformation of type I) S(¢') —
St +1)

7 (t') =7 (tl + 1)b11(t’+1) . ‘—y-s(tl + 1)b1,(t’+1)di>,1_:1+1(t +1)

To(t') = Ta(t! + P g (¢ 4 1) DG (D)
Yir (') = To(' + )Pt @FD g (g g 1)besna(@'4D)
_ bat1,sp1(t' +1
C@gr (8 + 1) + )i D

such that R(t'+1) C S(#'+1), and Zy41 (t'+1) = 7,1 (¢'+1). By adding an appropriate
series () to ;41 (t' + 1), we will have regular parameters in R(#' + 1) — S(t' 4+ 1) as
desired. O
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CHAPTER 5

MONOMIALIZATION

Theorem 5.1. — Suppose that R C S are excellent regular local rings such that
dim(R) = dim(S), containing a field k of characteristic 0 such that the quotient field
K of S is a finite extension of the quotient field J of R. Suppose that v is a valuation
of K with valuation ring V such that V dominates S. Suppose that v has rank 1 and
rational rank s. Suppose that if my is the mazximal ideal of V, and p* = my NS,
then (S/p*)p~ is a finitely generated field extension of k. Then there exist sequences
of monodial transforms R — R' and S — S’ along v such that dim(R') = dim(S’),
S' dominates R', v dominates S’ and there are regular parameters (z1,...,z,) in R’,
(y1,---,yn) in S', units d1,...,0, € S' and a matriz (c;;) of nonnegative integers
such that det(c;;) # 0 and

= () - (yh)or 8,

Ty = (1) - (Ye)* s

U !
’z‘s+1 - y3+1

A |
zn_yn’

Proof. — By Theorem 2.7, applied to the lift to V' of a transcendence basis of V/m,
over R/m (which is finite by Theorem 1 [2] or Appendix 2 [39]), there exists a MTS
along v, R — Rj, such that dimpg,(¥) = 0. Let m; be the maximal ideal of R;.
trdegg/pm (R1/m1) = dimg(v) and dim(R;) = dim(R) — dimg(v) by the dimension
formula (Theorem 15.6 [26]). By Theorem 2.6, there exists a MTS S — S; along v
such that S; dominates R;. Let n; be the maximal ideal of S;. S is essentially of
finite type (a spot) over R by Theorem 2.11, since dim(R) = dim(S). Hence S; is a
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spot over R;. By the dimension formula,
dim(R;) = dim(S1) + trdegg, /m, (S1/m1) = dim(S1),

since trdegg, /m, (S1/n1) < dimg, () = 0. We may thus assume that dimg(v) = 0.

Let {#;} be a transcendence basis of R/m over k. Let ¢; be lifts of #; to R. Then
the field L obtained by adjoining all of the ¢; to k is contained in R, and v is trivial
on L — {0}. hence we can replace k by L. We may thus assume that assumptions (1)
and (2) of Chapter 4 hold.

There exist fi,...,fs € J such that v(f;),...,v(fs) are positive and rationally
independent. By Theorem 2.7, there exists a MTS R — R’ along v, such that
fi,---,fs € R'. By Theorem 2.5, there exists a MTS R’ — R" along v such that
fi++- fs is a SNC divisor in R"”. Then R" has regular parameters (z7,...,z}) such
that v(zY),...,v(z}) are rationally independent. By Theorem 2.6, there exists a MTS
S — S’ along v, such that R” C S’. We may thus assume that there exist regular
parameters (21, ...,%,) in R such that v(z1),...,v(xs) are rationally independent.

By Theorem 2.5, after replacing S with a MTS along v we may assume that x; - - - =,
has SNCs in S. Thus there are regular parameters (y1, . ..,¥y») in S and units ¥; such
that

T =yt YRt
for 1 < i < s. Thus v(y1),...,7(yn) Span a rational vector space of dimension s.
After possibly reindexing the y;, we may assume that v(y1),...,v(ys) are rationally
independent. By (60) of Theorem 4.8 with R = S, f = #;...xs and Theorem 4.10,
we can replace S with a MTS along v to get

— ,,Ci Ci
T; = ylzl .. ':’/s”'(ﬁi

for 1 < i < s, where ¢; are units and det(c;;) # 0.
Let ¢; be the residue of ¥; in S/n. For 1 < j < s set

s €eij

wj) Y

g = H (—
=1 ¢J

where (e;;) = (¢;5)~!, a matrix with rational coefficients. ¢; € Sfor1<j<s.

Set T"(0) = R, T; = @; for 1 < i < n. Set U"(0) = S[do, 1, .. .,&s5)q Where dy € §
is such that k(do) = k(S), ¢ = m(S) N S{do, &1, -.,&s]. U"(0) has regular parameters
_ {Ejyj 1<j<s

Y; = .
Yj s <.
To= T T
for 1 < i < s. Set R(0) = k[z1,...,2,]q, ¢ = m(R) Nk[xy,...,5], co = 1. Thus
the assumptions of Theorem 4.11 are satisfied with | = s and by the conclusions of

Theorem 4.11 applied n — s times consecutively, we can construct MTSs R — R’,
S — S’ such that V dominates S’, S’ dominates R' and R’ has regular parameters
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(z4,...,2), S’ has regular parameters (y;,...,y,) satisfying the conclusions of the
Theorem. O
Corollary 5.2. — Suppose that R C S are excellent regular local rings such that

dim(R) = dim(S), containing a field k of characteristic 0 and with a common gquo-
tient field K. Suppose that v is a valuation of K with valuation ring V such that V
dominates S. Suppose that v has rank 1 and rational rank s. Suppose that if my
is the mazimal ideal of V, and p* = my NS, then (S/p*)p~ is a finitely generated
field extension of k. Then there exist sequences of monodial transforms R — R' and
S — S’ along v such that dim(R') = dim(S’), S’ dominates R, v dominates S’ and

there are regular parameters (z{,...,z,) in R', (¥1,...,Yn) in S’ such that

! __ ~cC ~C1ls

T, = ylll . ..ysl
I _ e, ~Cas

Ts = Y1 tee "Ys

/ ~

ws—i—l = Ys+1

o~

Tpn = Yn

where det(c;;) = £1 and k(R') = k(S').

Proof. — We can construct MTSs along v R — R’', S — S’ such that the conclu-
sions of Theorem 5.1 hold. To finish the proof, we must show that det(c;;) = +1
and k(R') = k(S'). We will analyze (c;;) by constructing MTSs which may not be
dominated by v. Since interchanging the variables z} will only change the sign of
det(c;;j), we may assume that ¢ # 0.

Case 1. — Suppose that c;; < co1. Then we can perform a MTS S’ — S(1) where
S(1) has regular parameters (y1(1),...,yn(1)) such that

' {yl(l)yz(l)m‘--ys(l)m i=1
o lw i#1

Then for m > 0 the monoidal transform R’ — R(1) factors through S(1), where R(1)
has regular parameters (z;(1),...,2,(1)) defined by

o @(1) i 2
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Then

z1(1) = g1 (1) -
T2(1) = yr (1)t -
x3(1) = ya (1) ---

Case 2. — Suppose that ca; < c11. As in Case 1, we can perform MTSs to get

z1(1) = yar ()7
z2(1) = gy (1) -
z3(1) = yu (1) -

Case 3. — Suppose that c;;3 = c21 and ¢1; < c¢g; for some j. Perform a MTS
S' — S(1) where S(1) has regular parameters (y1(1),...,y,(1)) such that

, {yj(l)yz(l)m~~yj-1(1)myj+1(1)m~~ys(1)m i=j
o lw() i #j

Then for m > 0 the monoidal tranform R' — R(1) factors through S(1), where R(1)
has regular parameters (z1(1),...,2z,(1)) defined by

%

. {xl(lm(l) i=2

z;i(1) i#2
Then
.’El(l) = yl(l)cu .
z2(1) = yp(1)c22merztmlezi—ers) ...
:1/‘3(1) = y1(1)Ca1 Ce
Case 4. — In the remaining case c11 = c21 and c1; > cg; for all j. Then the

monoidal tranform R’ — R(1) factors through S’, where R(1) has regular paramaters
(z1(1),...,2,(1)) defined by

.’E/ _ :1:1(1)37:2(1) 1 =1
T (1) i#£1
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Then
z1(1) = ()
22(1) = (@) (W5 -+
x3(1) = (y1) -

By continuing to apply these four cases, we can construct R' — R(a) and S’ —
S(a) such that S(a) dominates R(c),

z1(a) = y1(a)(@ ...y @y,

(127) -Ts(a) =W (a)c“(a) e ys‘;”(a)(ﬁs
Tst1(a) = Ys41(a)

zn(a) = yn(a)
with ¢; units in S(a) and ca1 () = 0. By repeating the above procedure on successive
rows we can construct a MTS (127) with
co(a) = =ce(a) =0.

Then the algorithm can be applied to the matrix obtained by removing the first row
and column from (c;;) to construct (127) such that (c;;()) is a upper triangular
matrix.

Set ¢ = (y1(a)), p = R(a) N (y1(e)). Our assumption that (c;;) is upper triangular
implies

qS(a) N R(a) = z1(a)R(a);

so that p = (z1(a)) and dim R(a), = dimS(a),. By the dimension formula, 4 =
(S(@)/q)q is finite over (R(a)/p)p- S(a)e/pS(a)g = Aly1(a)]/(y1(e)*1) is then
finite over (R(a)/p)p, so that R(a)p = S(a)q and ¢11(a) = 1 by Theorem 2.10.

Now perform the MTS S(a) — S(a + 1) where S(a + 1) has regular parameters
(y1(a+1),...,ys(a + 1)) such that

yilc) = {yl(a + Dyo(a+ 1)™ys(a+1)™2 - y(a+1)™2 =1
yi(a+1) i>1
where m; is chosen so that
m1 + ci2(a) = rex(a)
for some r > 0 and m is sufficiently large that

ma + c15(a) > regj(a)
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for 3 < j <s. Then the MTS R(a) — R(« + 1) factors through S(a + 1), where
z1(a+ Dz2(a+1)" i=1
zi(a) = :
zi(a+1) i>1
and
zi(a+1) = yi(Lys(1)eseFV) ...
xg(a + 1) = yz(l)cn(a-’—l) cee
z3(a+ 1) = ys(1) D

Now perform a series of similar MTSs to get (127) with (¢;;(e)) an upper triangular

matrix with
1 57=1
cij(a) = { ’

0 j>1.
Set ¢ = (y1(a),y2()), p = R(a) N g = (z1(a), 22(a)).
S(a)q/pS(a)q = (S()/a)qly2(a)}/ (y2(a)**(¥)
is finite over (R(a)/p)p. By Theorem 2.10, R(a), = S(a)q and cz2(a) = 1. We can
repeat the above procedure to get (127) where (c;j(a)) is the identity matrix and
R(a) = S(a).
Thus det(c;;) = +£1. Furthermore,
k(R') = k(R(a)) = k(S(a)) = k(S").

Set (eij) = (cij)~1, a matrix with integral coefficients. Set

N {55“ S8ty 1<i<s

vi=19 , .

Yi s<1

then (91, ...,Jn) are regular parameters in S’ satisfying the conclusions of the Theo-
rem. O

Suppose that R C S are excellent regular local rings such that dim(R) = dim(S) =
n, containing a field k of characteristic 0, such that the quotient field K of S is a
finite extension of the quotient field J of R. Suppose that v is a valuation of K with
valuation ring V such that V dominates S and v has rank r. The primes of V are a
chain

O=poC---CpCV.

We will begin by reviewing basic facts on specialization and composition of valuations
(cf. sections 8,9,10 of [3] and chapter VI, section 10 of [39]). Suppose that I, is the
value group of v. The isolated subgroups of I', are a chain

0=TI,C---CTo=T,.
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Set
U; = {v(a) | a € p;}

Then the isolated subgroup I'; of p; is defined to be the complement of U; and —U;
inl,.

For ¢ < j v induces a valuation on the field (V/p;),, with valuation ring (V/p;)p,
and value group I';/T;. If j =441, I';/T'; has rank 1.

For all 4, V,, is a valuation ring of K dominating Ry,~gr. Thus

trdeg(r/p,R),,nr (V/Pi)p: < 0

by Theorem 1 [2] or Appendix 2 [39]. We can lift transcendence bases of (V/p;)p,
over (R/pi N R)p,nr for 1 < i < rtoty,...,tq € V. After possibly replacing the ¢;
with 1/t;, we have v(t;) > 0 for all ¢;. By Theorem 2.7, there exists a MTS R — R’
along v such that ¢; € R' for all i. Let p; = R' N p;. Then

trdeg(R//pé)p,. (V/p’i)Pi =0

for 1 < ¢ < r. By Theorem 2.6, there exists a MTS S — S’ along v such that S’
dominates R'. Replacing R by R’ and S by S’, we may thus assume that

trdeg(r/p.R),,nr (V/Pi)p: =0

for 1 <4 <r. Then
trdeg(r/p;AR)p,nr (S/Pi N S)pins =0

for all . By the dimension formula (cf. Theorem 15.6 [26])

dim R/p; "R =dim S/p;N S
for0<i<r.
Theorem 5.3. — Suppose that R C S are excellent regular local rings such that
dim(R) = dim(S) = n, containing a field k of characteristic O such that the quo-
tient field K of S is a finite extension of the quotient field J of R. Suppose that v is
a valuation of K with valuation ring V such that V dominates S and v has rank r.

Suppose that if my is the mazimal ideal of V', and p* = my NS, then (S/p*)pr is a
finitely generated field extension of k. Suppose that the segments of T'), are

0=IrC---cly=T,

with associated primes
O=poC---CprCV.
Suppose that T';_1/T'; has rational rank s; for 1 <i¢ <r and

trdeg(R/pinR)piﬂR (V/pi)m =0
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for 1 <i<r. Sett; =dim(R/p;i—1 N R)p,nr for 1 <i<r, sothatn =t +---+t,.
Then there exist MTSs R — R’ and S — S’ along v such that S’ dominates R', R’

has regular parameters (z1,...,2n), S' has regular parameters (ws, ..., wy) such that

!
piNR = (21, .., 2ty 4 tts)
1
piN S’ = (wl, fe ,wt1+...+ti)
for1 <i<r and
g11(1) 91s1 (1) F1,e94+1(1) hin(1
z1 = Wy <oyt tH—i ...wnln( )511
9s11(1) ge1a1 (1) hapeg41(1) hayn(1)
Rsy = Wy ! o 'wsil ! wtl—i—ll cwn” 6131
hay+1,6+1(1) Psy+1,(1)
Zoi4l = We 1 Wy 1 cwn” 015141
heye+1(1) heyn(1)
2ty — wtlwtljrll s Wn 1 61t1
— ,911(2) 9152 (2) ) P1ty4e0+1(2) Rin(2)
B+l = We g 0 Wy fgy Weggst1 s w091
_ 9321(2) 98252(2) h52.t1+12+1(2) h52n(2)
Ztitsy = Wyt Wepe,  Wedto T Wn bass
R 2) hogt+1,n(2)
_ 2+1,t1+t2+1 2+1,
Ztitea+l T Weiter+1Wy, Y41 T Wn 026+1
_ htz,t1+t2+1(2) htz'n(z)
Fti+tz = Wiitta Wy, g1 T Wn O2ts
_ ,911(7) 91s, (1)
it bl = WHE e 1 W T e s, O

214 tta1+8n

Zg14-ttpo1tsntl

2yttt

where

8i; are units in S' for 1 <i <r, and hj (i) are nonnegative integers.
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Proof. — The proof is by induction on r. r = 1 is immediate from Theorem 5.1.
Suppose that the Theorem is true for rank r — 1. Set p;(0) =p; N R, ¢;(0) =p; N S.
Then there exist MTSs R, _, (o) = T1 and Sy, _, (o) — U1 such that V,,_, dominates
U, U; dominates 77 and the conclusions of the Theorem hold for Ty C U;. By
Theorems 2.9 and 2.6 there exist MTSs along v R — R(1) and S — S(1) such that
V dominates S(1), S(1) dominates R(1) and if p;(1) = p; N R(1), ¢;(1) = p; N S(1),
R(1)p,_ 1) = T1, S(1)g,_,1) = Ui and R(1)/pi(1), S(1)/qi(1) are regular local rings
for1<i<r.

By assumption, R(1), _ 1) has regular parameters (Zi,...,Tt,+...+t,_,) and
S(1)q,_,1) has regular parameters (31, ..., ¢, +-+t._,) satisfying the conclusions of
the Theorem. Set A = t; + - - - +t,—1. R(1) has regular parameters (z1(1),...,z,(1))
such that pr_1(1) = (z1(1),...,2x(1)). Let w(1) : R(1) = R(1)/pr—1(1). There exist
@i € R(1)p,_,(1), 1 <4< A, 1< j < \such that

T; = 6111:1(1) + -+ 631})\(1)

and det(E;‘-) & pr—1(1)p,_,(1)- There exists u(1) € R(1) — pr—1(1) such that u(1)z; €
R(1) for 1 < ¢ < X and if we define Z;(1) = u(1)Z;

(1) = alxy; (1) + -+ + alza (D)

for 1 < ¢ < X where aj- € R(1) for all ¢,j and det(aj-) & pr—1(1). After reindexing the
7;(1), we may assume that al & p,_1(1). Let b} = w(1)(al).

V/pr—1 is a rank 1, rational rank s, valuation ring. The quotient field of V/p,_;
is algebraic over the quotient field of R(1)/p,—1(1) so that if L is the quotient field
of R(1)/pr—1(1), then L N V/p,_; is a rank 1, rational rank s, valuation ring. Let 7
denote the valuation induced by v on L.

By Theorems 5.1, 4.8 and 4.10 (with R =S = R(1)/p,—1(1)) there exists a MTS

R(1) = R(1)/pr-1(1) = R(2) = --- = R(m)

where each R(i) — ﬁ(z+ 1) is a monoidal transform and ﬁ(m) has regular parameters
Fxrg1(m), ..., ¥,(m)) such that T(gy,1(m)),...,7(FYxs,, (m)) are rationally indepen-
dent and b} =g, 1 (m)*+1 .-G, (m)*+T where T € ﬁ(m) is a unit. There exist
regular parameters (7, (1),...,7,(1)) in R(1) and a < n such that

S Tat2(1) Ya(1)
R(2) = R(1) [?7>\+1(1) Y y/\+1(1)]5(2)

where Q(2) is a maximal ideal. Let y;(1) be lifts of 7;(1) to R(1) for A +1 < i < n.
Then (21(1),...,2x(1),yr+1(1),...,yn(1)) are regular parameters in R(1). We have
a surjection

) ya+2(1) Ya(1) = Uata(l) Ta(1)
T R(D) [ym(l)"“’ y/\+1(1)] — R [ml(l)"”’mﬂ(l)] '
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Let Q2 = ®71(Q(2)). Set

_ Yxrt+2(1) Ya(1)
Ry = R(1) yx+1(1)””’yx+1(1)]cez '

R(1) — R is a monoidal transform along v and p,—1 N Ry = (z1(1),...,zx(1)),
(B2)p,_snrs = R(1)p, 1) and By/pr—1 N By = R(2).
We can inductively construct a MTS along v

(128) R(1) > Ry —» --- = Ry = R(2)

such that R(2),,_,(2) = R(1)p,_, 1), R(2)/pr-1(2) = R(m) with p,_1(2) = pr—1NR(2)
and R(2) has regular parameters (x1(2),...,%,(2)) such that

zi(l) 1<i<A
xz(2) =
yi(2) A+1<A<n
where y;(2) are lifts of 7;(m) to R(2). Thus
ai = Tx+1 (2)a>\+1 T At-s, (2)“*+‘"u + blﬂ'}l (2) + -+ b,\a;>\(2)

where u, by,...,bx € R(2) and u is a unit. Thus

A

F1(1) = 2a41 () - Tags, ()M uzs (2) + az1(2)? + D aizi(2)
=2

with a;,a € R(2). Now perform a MTS R(2) — R(3) along v
Trat1 (3)0A+1+1 ©Txts, (3)0/\+s,‘+1m1(3) i=1
zi(2) = { zap1(3)2r+1+2 gy o (3)200+erF25,(8) 2< i< A
zi(3) A+1<i<n
Thus z;(3) € R(2)p,_,(2) for 1 < i < n. Set p,_1(3) = pr—1 N R(3). Then
R(2)p.-1(2) = B(3)p._1(3)-
Z1(1) = 2a41(3)* - a g, (3)? e FH (21 (B)u + 2241(3) - - Tass, (3)0)
for some ¢ € p,—1(3). Set
N 1 ()u+xrr1(3) - Trts,.(3)c =1
z;(3) = .
z;(3) 2<i<n
Then (Z1(3),...,Z,(3)) are regular parameters in R(3) with
pr-13) = (21(3),...,Z2(3))-

Pr—1(3)R(3)p,_,(3) = (Z1,...,TA)R(3)p,_,(3) implies there exists E;- (3) € R(3)p,_,(3)
such that

= _ [@ERE) i=1
@ @)@mB) + - +a3)ENB3) 2<i< A

ASTERISQUE 260



CHAPTER 5. MONOMIALIZATION 119

and

az(3) --- a3(3)
det : & Pr—1(3)p,_1(3)-
a3(3) --- ax(3)

We can repeat the above argument to construct a MTS R(1) — R along v such that if

Pr_1 =pPr—1NR", R(1)p,_,1) = R, and there exists a regular system of parameters
r—1
(zf,...,2") in R" and uy,...,u) € RZ’J_l — (pr_1)pr_, such that ¥; = w;z} for

1 <7 < X By Theorem 2.6 and the above argument, there exists a MTS S(1) — S”
along v such that if ¢/ ; = p,_1NS", S(1)g,_,q) = S<,1,”_1’ S" dominates R" and
there are regular parameters (yy,...,yn) in S” and vy,...,v)\ € S'Izl',’_l —(g'-1)qr_,
such that y; = vy} for 1 <¢ < A. Thus we have

ef = i(y)o W - (g o Oyl )P s @ ()0
(129)
Ty = Payy

with oy, ..., ¥x € Spr —(@r_1)qy_,- ¥i = fi/gi with fi, g; € S"—q;_y, fi, gi relatively
prime in S”. There are nonnegative integers d¢ such that g;z!! = f;(y! )i (yg)di
for1<i<Asothat g; | fiin S” and ¢; € S" —¢)/_; for 1 <i < .

Let ' : R" — R"/p!!_yand 7" : 8" — S§"/q]_;. Let T/ = #'(z}) and 7 = =" (y}').
v induces a rank 1 rational rank s, valuation on K = (S"/q"_, ¢'_,- By Theorem
5.1, there exist MTSs

R'[p} y=R—-R(1)— - > Rm)=T
and
S"/gf_y=8—>81) > > Sm)=U
such that the valuation ring (V/p,_1) N K dominates U, U dominates T, T has

regular parameters (Zxy1,. - .,%n), U has regular parameters (g1, --,¥,) such that
U(Fry1))---»P(Urys,) are rationally independent, where 7 is the valuation induced by
v on the quotient field of U and
Ta+1r = ﬂiﬂr) . '??\f,f;(r)g)\ﬂ
= _ =9sp1(7) —Gansn(T)T
(130) Trts, = y,\+i U Ynts, Oxrts,

Tats,+1 = Yngo+10r+s,+1

Tn = ynén

where §; are units in U.
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Each R(i) — R(i+1) is a monoidal transform centered at a prime @;. By Theorems
4.8 and 4.10 and Lemma 4.2, there exist MTSs along v
T=R(m)— - — Rm')=T"
and
U=8m)—--— Sm')=U"
such that U’ dominates T, T’ has regular parameters (Zx+1,...,Tn), U' has regular
parameters (§y1,---,Yy,) such that (130) holds, and

— 77 _ _di _d .
a;U = (y)\ii-l T y)\-{-sr)
for some nonnegative integers d, ..., df;r for 1 <i <m, and
=i At+Sr—

(i) = TAT T
where %; are units, a;; are positive integers for 1 <14 < A.

For m <4 < m' —1 each R(i) — R(i + 1) is a monoidal transform centered
at a height 2 prime a; (cf. R(?ma.rk 4.1) such that q;U’ = @ﬁ_l .- -yii;sT) for some
nonnegative integers di,...,d; . Consider the MTSs along v

R"— R(1) = --- = R(m")
and
S" Sy - 8m)=S
constructed as in (128), so that for 1 < ¢ < m!, R(3)p,._,5) = ;,,_1, R(1)/pr-1(1) =
R(i), S()q,_, (i) = g S@/ar—1(d) = S(i) where p,_1(i) = pr—1 N R(i), gr—1 =
pr—1 N S(i) and S has regular parameters (71, ...,YJn) such that y; has residue g; in
U'for \+1<i<nandg;=y; for 1<i< A For0<i<m'—1, R(¢) > R(i +1)

is the blowup of a; C R(i) such that a;R(i) = @. Thus a;5/7,_; = @0, - Trs.)
where G,_; = pr_1 N S. Set ®; = g’j‘;il e @‘:i’sr. Then
@:8 = (@i + Gabi (D) + -+ GabR (D), -, Bi + Tabi(0) + - + TABR(D)
for some ¢, bf(z) €S, 1<i<m —1.
Perform a MTS along v
5 =35(0) > S(1) = ---5(m)

where S(j) has regular parameters (¥, (j),...,¥,(j)) defined by 7;(0) = g; for 1 <
it <n,

— s P17l +1) 1<i<A

v:(J)=9_",. .

v:(j+1) i<A<n

for 0 < j < m' —1. Then we have a;S(m’') = (&;) for 1 <i <m'/ —1. R(m') C S(m')
(by Theorem 2.6) and S(m')/q(m'),—1 2 U".
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Let 2; be lifts of T; to R(m') for A + 1 < ¢ < n. Define regular parameters
(z1(m'), ..., zp(m")) in R(m') by
I 1<i< A
z(m) =47 T
zi A+1<i<n
There exists a matrix of nonnegative integers (e;;) such that

21(m') = Jy(m)7n D gy (m) 1 DG, (m)s (O ()
. g)‘+1(m/)el,x+1 A yn(ml)eln d’l

ax(m') = Tx(m )G pr (M)A - g, (M) m 1y
Trg1(m') = y}\_‘_l(ml)‘)yu(r) “TUnys, (ml)gsrdr(r)éx+1
AT (M) + -+ ()

(131)

Tn(m') = Fp(m")on + [T (M) + - + fR7 (M)
where §; are lifts of 6; to S(m'), f/ € S(m'). For 1 <i < A,
Vi = Ujaqq (M) 2 4 ﬂ?ﬁéstsr + Ry (m') + - - - + By (m')
where u! are lifts of @; to S(m'), the u} and §; are units in S(m'). Choose
t> max{aij,gij(l)}.
Now perform a MTS S(m') — S(m' + 1) along v where S(m’ + 1) has regular
parameters (g; (m' +1),...,7,(m' + 1)) defined by
gum')y = LT D0 T (m + Dig(m! 1) 1< <A
‘ Fi(m+1) A+1<i<n
to get
Vi = wifpgg (M + 1)1 gy o (m 4 1)

for some units u; € S(m' +1),1<i <. S(m' +1)/g(m' +1),_; = U’ and there is
a matrix of nonnegative integers (b;;), units ux41,...,un € S(m + 1) such that
z1(m') = g, (m' + 1)911 (D). T, (M + l)yxal(l)yt,+1(m’ + 1)@
G+ 1Oy (! 1) (! + Dy

(132) zx(m') = Gy(m' + 1)1 (m' + )P40 g (m! + 1)PAnuy
Tap1(m') = Tai1 (m' + 1)911(T) Tage, (m' + 1)913,(T)u)\+1

En(m') = o ('Yt

Theorem 5.4 is immediate from Theorem 5.3.
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Theorem 5.4 (Monomialization). — Suppose that R C S are excellent regular local
rings such that dim(R) = dim(S), containing a field k of characteristic zero, such
that the quotient field K of S is a finite extension of the quotient field J of R.

Let V' be a valuation ring of K which dominates S. Suppose that if my is the
mazimal ideal of V, and p* = my N S, then (S/p*)p+ is a finitely generated field
extension of k. Then there exist sequences of monoidal transforms R — R' and
S — S' such that V dominates S’, S' dominates R' and there are reqular parameters
(1,...,2n) in R', (y1,...,Yyn) n S', units 61,...,0, € S’ and a matriz (a;;) of
nonnegative integers such that det(a;;) # 0 and

— a a
1 =yt eyt

an1

Tn = Y1"" Yy On

Theorem 1.1 now follows from Theorem 5.4, since we can perform monoidal trans-
forms along V' to reduce to dim(R) = dim(S) as in the proof of Theorem 1.10 (Chapter
7).

Theorem 5.5. — Suppose that R C S are excellent regular local rings such that
dim(R) = dim(S) = n, containing a field k of characteristic 0 and with a common
quotient field K. Suppose that v is a valuation of K with valuation ring V' such that
V dominates S and v has rank r. Suppose that if my is the maximal ideal of V, and
p* =my NS, then (S/p*)p+ is a finitely generated field extension of k. Suppose that
the segments of I, are

0=I,C---Clo=T,
with associated primes
0=pyC---Cp,CV.
Suppose that T';_1/T; has rational rank s; for 1 <i <r and
trdeg(R/piﬂR)pinn(V/pi)l)i = O

for1<i<r. Sett; =dim(R/pi—1 N R)p;nr for 1 <i <r, so thatn =t; + -+ t,.
Then there exist MTSs R — R' and S — S’ along v such that S' dominates R', R’
has regular parameters (z1,...,2,), S' has regular parameters (w1, ..., wy) such that

Pi n RI = (21, ey zt1+...+ti)

piNS" = (wi,..., We4-tt)
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for1<i<r and

zp =

Zs1+1

Ztq

2t +1 =

Zty1+se —

Zt1+s2+1

2ty +to

R4 ttao1+1

Rttt te_1+5r

21t A o1+t

2ty 4t

where

det

gnn(d) - g1s,(4)

1 a1 (1
g11(1) | ol 1(1)

1(1 9 1
wfal ( )_“wsilsl( )

= Wsy+1

= wtl

911(2) | 9155 (2)
Wi 1 Wi, +sq

9521(2) . Gsgso (2)
ti+1 t1+s2
= Wiy4sa+1
Wty +ts
g11(r) 913, (7)

Wy totto a1 Why oot bsy

gsr1(r) 9srsp(T)

= Wttt a1 Wbt tse
= Wyt tsa+1

Wiyt

= =1

gsil(i) ct Gsisi (7’)
and (R'/pi N R')p;arr = (S"/pi NS )pins for 1 <i <.

123

Proof. — The proof is a refinement of that of Theorem 5.3. The stronger Corollary
5.2 is used instead of Theorem 5.1. Formula (129) then becomes

(133)

2

2 = i () (gl )

YAy
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(131) becomes

zi(m') = 7y (m) W gy, (m) 9 Wy, ) (mh)err g, (m!)eim gy

zx(m') = Ga(m")Prqa (m)2241 g, ()2 ghy
(134)  @ap1(m') = Grpg (m)9 ) gy (m!)Ierer (6544
+RTG () + -+ FRTG()
Tn(m') = Gp(m)on + fIY: (M) + - - + fI7(M)
(132) becomes
z1(m') = g, (m' + 1)9u®) .. Yo, (M’ + 1)91,1(1)§A+1(m' + 1)brasr ...
Fn(m' + 1)y

(135) zA(m') = Fa(m' + 1)Fxya (m' + 1)1, (m/ + 1)Pmuy
axr1(m') = o (m' + 1) gy (m! + 190 Dy,
zp(m') = g,(m")uy,.
The MTS R(m') - R(m' + 1), where R(m’' + 1) has regular parameters
(zy(m' +1),...,z,(m' + 1))

defined by

zi(m') = zi(m' + D2rts,41(m' + )birterti g, (m! + )b 1<d <X
' z;(m' + 1) A+1<i<n

factors through S(m' + 1), and
xl(m/ + 1) e yl(m’ -+ 1)911(1) .. .ysx (m’ + 1)9131(1)

Dapa (! + 1P Gy (m] 1)

(136) za(m' +1) = Go(m' + DYy (m' + 1)+ g, (m! 4 1)Pr+eraly
Zap1(m' +1) = Popa (m' + 1) gy o (mf + 190 Dy g

Tn(m') = Yp(m')un

for some units u} € S(m' + 1). Since det(g;;(!)) = +1 for 1 <! < r, we can make a
change of variables in S(m' + 1), replacing 7;(m’ + 1) with a unit times g,;(m’ + 1) for
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all ¢ to get that the u; and uj in (136) are 1 for all ¢, j. Let

g11(r) - gs1(r)
(hij) = : : ;
95,1(T) *+ Gs,s,.(T)

an integral matrix.

Darr(m' +1) = oapa (m' + 1) 2ag, (' + 1)

Tae, (M +1) = Zxga (m + 1Py (' 4 1)Porr
v(y;(m'+1)) >0for A\+1<1i <A+ s, soby Lemmas 4.2 and 4.3 there exist MTSs
R(m' +1) —» R(m' +2) and S(m' + 1) — S(m' + 2) along v such that R(m' + 2) has
regular parameters (z1(m' + 2),...,2,(m' + 2)), S(m' + 2) has regular parameters
(T (m' +2),...,7,(m' + 2)) defined by

(2:(m' + 2) 1<i< A,
' R (m' + 2)0a(m'+2) ...
L Tags, (M 4 2)%2+e (M +2) N1 1 <i<A+3s,
(7:(m' +2) 1<i<A,
A+s.<i<n

7 (m! 4+ 1) = <

gi(m' +1) =< T (7 + 2P (42 .
\ “Yags, (M + 2)birtsr(Mt+2) A 41 <4< \+s,.

such that R(m' +2) C S(m’ + 2) and

Uari(m' +1) = zxp1(m' + 2)%1 -+ zypg, (M + 2)%0er
for 1 <i < s,, where e;; > 0 for all 7,5. Set

dij = e1jbiat1 + - + es,5bin+ts,

for 1 <i¢ <A, 1<j<s,. Then the MTS R(m' + 2) — R(m' + 3) where R(m' + 3)
has regular parameters (z1(m' +3),...,z,(m' + 3)) defined by
Trpr(m' +3)%1 - xyys (M + 3)%erz;(m' +3) 1<i<A
x;(m' + 3) A<i<n

zi(m' +2) = {

factors through S(m' + 2) and the conclusions of the Theorem hold for the variables
z;(m' + 3) and g;(m' + 2). a
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CHAPTER 6

FACTORIZATION 1

In this chapter we prove Theorem 1.6, which shows that it is possible to factor a
birational map along a valuation by alternating sequences of blowing ups and blowing
downs. Theorem 5.5 reduces this to a question of monomial morphisms and valuations
of maximal rational rank. This reduces the problem to a question in combinatorics.
Christensen, in [10], using elementary linear algebra, gives a proof, that in dimension
3, factorization holds along a rational rank 3 valuation. His algorithm produces a
factorization with one series of blowups and one series of blowdowns. We generalize
his methods to give a proof of factorization of monomial mappings in the special case
of valuations of maximal rational rank. Then Theorem 1.6 follows from Theorem 5.5.

Lemma 6.1. — Suppose that M = (a;5) is an n X n matriz such that the a;; > 0
for all i,j and det(a;;) = +£1. Suppose that R is a regular local ring with regular
parameters (z1,...,%,). Then there exists a regular local ring S in the quotient field

of R such that S has regular parameters (yi,...,Yyn) satisfying (137).

ml — y;lllyg'IZ e ygil"
(137) :
Tn = Y ys"t e ypen
Proof. — Set (b;j) = M. There exists monomials f; in z1,...,2, for 0 <i < n

such that b - gbin = f;/fo for 1 <i < n. In R[fi/fo,. .., fn/ fo] we have
_ fl @i fn Gin
m (B (8

for 1 < ¢ < nsothat the maximal ideal m = (z1,...,2Zn, f1/fo,-- ., fn/fo) is generated

by fi/fo,.., fn/fo. Set S = R[f1/fos- .., fn/fo]lm and y; = fi/fo for 1 < i < n.
Then S is a regular local ring and (137) holds. O

Suppose R — S is as in (137). An inverse monoidal transform (IMT) R — S(1) —
S consists of a regular local ring S(1) such that R € S(1) C S which has regular
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parameters (y1(1),...,yn(1)) such that y,(1) = y,ys for some r # s and y;(1) = y;
for i # r.

Lemma 6.2. — Suppose that (187) holds for R — S and the coefficients of the st®
column of M minus the rt* column of M are nonnegative (a;; — a;y > 0 for all i).
Then there exists an IMT R — S(1) — S such that

z1 = g (D)o y (1)o@

(138) :
Tnp = yl(l)aﬂl(l) e yn(l)ann(l),

M(1) = (a;j(1)) is M with the r*" column subtracted from the st® column. The

adjoint matrix A(1) of M(1) is obtained from the adjoint matriz A of M by adding
the sth row of A to the r** row of A.

Proof. — This follows from Lemma 6.1. O
Let A = (A;;) be the adjoint matrix of M in (137). Consider a monoidal transform
along v S — S', where S’ has regular parameters (yi,...,y,) defined by
Yol =T
Yi =
yi i FT

Of course, this means that v(y,) > v(ys). Then the matrix M’ = (aj;) where z; =
(y))%1 - - - (yl,)%n for 1 < i < n is obtained from M by adding the rt* column to the
st column. The adjoint matrix of M’, A’ = (4;;) is obtained from A by subtracting
the st* row from the 7" row.

Theorem 6.3. — Suppose that R C S are excellent regular local rings of dimension
n, containing a field k of chracteristic 0, with a common quotient field K. Suppose
that v is a valuation of K which dominates S, with valuation ring V. Suppose that

(1) V has rational rank n
(2) R has regular parameters (z1,...,zn), S has regular parameters (y1,...,Yn)
such that

_ ,,a11,,a12 a
T1 =Yy Yo Y

Tn = YY" Y
where det(a;;) = 1.
Then there exists a MTS along v
(139) S—>S1)—---— Sk)
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where S(i) has regular parameters (y1(?),...,yn(2)) for 0 < i < k with
z1 = y1(5)211 Dyy(3)@12() ...y (3)01n (D)

(140) :

T = y1(3)*1Dyy(§)an2() ..y, (§)0nn (D),

such that if M (k) = (a;;(k)) is the coefficient matriz of R — S(k), with adjoint matriz

A(k), then all but at most two of A11(k), A12(k), ..., Ain(k) are zero.

Proof. — Set M = (a;;j). Let A be the adjoint matrix of M. In a sequence such as
(139), define M (i) = (a,;x(¢)) and A(3) = (A;jx(¢)) to be the adjoint matrix of M ().
We will call a monoidal transform S(I) — S(I+1) along v allowable if it is centered
at P(l) = P;; = (y:(1),y;(1)) where A1;(1), A1;(I) are nonzero and have the same sign.
If T c {1,2,...,n} is a subset containing ¢ and j, and P(l) is allowable, then
max{|A1x(l +1)| : k € T} < max{|A:1x(])| : k € T}.
Suppose that there exists an infinite sequence of allowable monoidal transforms
(141) S—=-51)—=---=>50)—

where S(I) — S(l + 1) is centered at P(l). We will derive a contradiction. The

Theorem will then follow since at least three A;;(!) nonzero imply two of them must

have the same sign, which implies that there exists an allowable monoidal transform.
Set

U(l) ={i: Au(l) # 0}

a(l) = U@
T(l) = {i : ¢ occurs as an index in a P(k) for some k > I}
() = TO]

B(l) = max{|A;(1)| : i € T({)}
W) ={j €T :|A;)] = B0}
6(l) =W ()]
We have a(l+1) < a(l), B(I+1) < B(1), v(I+1) <~() and if B(I+1) = B(I) then
6(l + 1) < 6(1). Hence in the lexicographic ordering,
(a(l+1),8(+1),y(+1),6(l+1)) < (a(l),B),7(),5())
for all I.

It suffices to show that this invariant decreases after a finite number of steps, so
we may assume that

(a(D),B1),y(1),6()) = (e, 8,7,6)
in (141) for all I, and derive a contradiction. Set U = U(l), T =T(1), W = W(l).
If there is some [ such that P(l) = P,; with r,s € W and v(y, (1)) > v(ys(l)), then

Alr(l + 1) = Alr(l) - Als(l) =0,
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and a(! + 1) < a(l). This kind of monoidal transform can thus not occur in (141).

If some P(l) = P;, withi € T—W,r € W and v(y.(1)) > v(y; (1)), then Ay, (I+1) =
A1 (1) — A1;(1). Hence B(l +1) < B(l) or B(I + 1) = B(I) and (I + 1) < 6(I). Thus
such a monoidal transform cannot occur in (141).

Since y(I) cannot decrease, we must have infinitely many ! such that P(l) = P;
withr e W,i €T — W and P(l) = P;; with i,s € T — W for all other [.

We must thus have y;(I) = y; for j € W and for all [. Furthermore, v(y;(1)) < v(y;)
for all ¢ and I.

At each step where P(l) = P;, withr € W and i € T — W we have

vil) _ (D)

yil+1) = =

il ) yr(1) Yr

and v(y;(I1 + 1)) = v(yi(1)) — v(yr). After a finite number of steps we must have
v(yi(l)) < 0 for some i € T — W, a contradiction. O

When n = 3, Theorem 6.4 is proved by Christensen [Ch].

Theorem 6.4. — Suppose that R C S are excellent regular local rings of dimension
n > 3, containing a field k of chracteristic 0, with a common quotient field K. Suppose
that v is a valuation of K which dominates S, with valuation ring V. Suppose that

(1) V has rational rank n

(2) R has regular parameters (x1,...,%,), S has regular parameters (yi,...,Yn)
such that
wl = y?llyzalz ... yzln
Tn = yi"ys"?yn

where det(a;;) = 1.

Then there is a sequence of regular local rings contained in K

Rl Rn—2
/" N S N e N
R S1 Sn—3 Sp—o =S

such that each local ring is dominated by V and each arrow is a sequence of monoidal
transforms (blow ups of regular primes). Furthermore, we have inclusions R C S; for
all 3.

Proof. — The proof is by induction on n. For n = 2 there is a direct factorization
by a MTS. Suppose that n > 3 and the theorem is true for smaller values of n. We
will show that there is a MTS S — S’ along v and a sequence of IMTs R — S — §'
such that a column of the matrix M" of R — S consists of a single 1 and zeros in
the remaining entries. Without loss of generality, the first column of M" has this
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form. By Lemma 6.2, there is then a sequence of IMTs R — S,_3 — S” such that
the matrix M of R — S, _3 has the form

10 --- 0
_ 0 @z -+ Q2n
M =

OanZ"'ann

By induction on n, there will then exist a factorization of the desired form.
By Theorem 6.3, there exists a MTS S — S’ along v such that, after possibly
interchanging variables, A;; = 0 for j > 2 and

(142) ai1Ai + a2l =1

Case 1. — Suppose that A;; < 0 and A;5 > 0. (The case A;2 < 0 and A;; > 0 is
Similar.) Then 1 = —au(—All) + a12A12. Set m = [—All/Alg], n = [—Alz/Au].
Suppose that m > 0. Note that m = 0 implies n > 0.

1 ifi=1
ain A1 +apAiz + -+ ainlin = o
0 ifi#1
—A
Gi2 — ;1M > Gz — a1 ( v LS
12

1
= 'A;(ailAll + aigA12 + - + ainAin).

Hence ai2 —a;im > 1 and a2 — agm > 0 for 2 < i < n. Let M’ be the matrix
obtained from M by performing the column operation of subtracting m times the
first column from the second column. All of the coefficients of M’ are positive, so by
Lemma, 6.2 there is an IMT R — S’ — S such that M’ is the matrix of R — S’'. We
have All] = A]j lf] # 1 and Alll = A11 + mA12 so that A11 < Alll S 0. If Alll # 07
then

— A} —A;; —mA —A
1 11| _ 11 121 11 _ —
m_[A’12]_[ A, ]_[A12 m] 0
so that n' > 0.

Now suppose that n > 0.

A1z
a;1 — Q2N > Q31 — G2 A
—An
1
= ——All (ai1A11 + aipA12 + -+ + ainAin).

Thus we have a;; — a;en > 0 for 2 < i < n. Suppose that A;; # —1. Then
a11 — a12n > —1, and since this is an integer, a;; — a;a2n > 0. We can then construct
an IMT R — S’ — S such that the matrix M’ of R — S’ is obtained from M by
subtracting n times the second column from the first column. We have A}; = A,; if
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j # 2 and A}, = A1z + nAj so that A;p > Aj, > 0. If A}, # 0, then n’ = 0 and
m' > 0 so that we can repeat Case 1.
Suppose that A1j; = —1. 1 = —aj1 + a12 41> implies a;2 > 0.

ai1 — (A12 — Dase = —(an A1 + anpdiz + - + aindin) + ap

so that a;; — (A12 — 1)a,-2 =ajp >0if 7 > 1, a;; — (A12 — 1)(112 = —1+4a;2 > 0.
We can then construct an IMT R — S’ — S such that the matrix M’ of R — S’
is obtained from M by subtracting (A;2 — 1) times the second column from the first
column. Now construct the IMT R — S"” — S’ where the matrix M" of R — S”
is obtained from M’ by subtracting the first column from the second column. The
second column of M" consists of a 1 in the first row, and the remaining rows are 0.

After a finite number of iterations of Case 1 we either prove the induction step, or
reach the case A;5 = 0 or A;; =0.

Case 2. — Suppose that 437 =0 or A;2 =0 (and A;3 = --- = A3, = 0). Without
loss of generality we may assume that Aj3 = 0. 1 = a;;A;; implies a;; = 411 = 1.
for ¢ > 1 we have a;1 = a1 A11 + aigAlis + - - + aind1, = 0 so that the first column
of M consists of a 1 in the first row, and the remaining rows are 0.

Case 8. — Suppose that A;; > 0 and A;2 > 0. Then a;; = 417 = 1 and a;2 = 0,
or a;; = 0 and a;2 = A;2 = 1. Without loss of generality we have the first case. For
7> 0 we have 0 < a4 < a;1 411 +aigAis + - - ainA1n = 0 Hence the first column of
M consists of a 1 in the first row, and the remaining rows are 0.

This completes the induction step for the proof of the Theorem, since the case
A1; <0, A2 <0 is not possible. O

Proof of Theorem 1.6. — We can perform MTSs R —+ R’ and S — S’ so that the
conclusions of Theorem 5.5 hold. We can further replace R’ by a MTS R’ — R" such
that S’ dominates R', the conclusions of Theorem 5.5 hold, and if s; = 2 for some 1,
then

Ztrteottior 4l = Wy eottio 1 +1

Rty ttior+2 = Wittt 142

since factorization is possible if n = 2. Let A\;,..., s be the A; such that 1 < \; <7r
and sy; > 2. Set

T1 = Zt14-ttx;—1+1

Tsy, = zt1+"'+t)‘,»—1+8/\,~
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y1 = wt1+~~'+txi_1+1

Ysx, = wt1+"'+txi—1+5/\i'

Set Ry, = k[z1,... ’wsx,.](zl,m,zs,\i)’ Sx. = k[y1,--- ’ysx,-](yh---’yui)' Let K, be the
quotient field of Sy,. Then Ry, C Sy, and V5, = VN K, is a rank 1, rational rank
sy, valuation ring dominating Sy,. By Theorem 6.4, for all );, there exist MTSs of
regular local rings contained in Ky,

(EAi )1 (.R-/\i )3/\:' -2
o N S N ~
Ry, (Sah (Sxi)sr;—2 = S

such that each local ring is dominated by V', and Ry, C (Sy,); for all j.
We can perform the corresponding sequences of MTSs along v on R to construct
a sequence of MTSs

(RX1)1 (Rkl)sxl -2
/ N S S N
R (Sx (Sxn1)sx,—2 = Sai = R,

(Ba )1 (Bx,)ss, —2
a N S S N
R, (Saa (Sra)sr,—2=S8
($ar =2)+ (520 = 2)+ -+ (8r, —2) < n—2since sy, +---+ sx, < n. Thus the
conclusions of the Theorem hold.
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FACTORIZATION 2

In the special case of a monomial mapping, local factorization by one sequence of
blowups followed by one sequence of blowdowns follows from Morelli’s Theorem on
factorization of birational morphisms of toric varieties [27], [7]. Theorem 7.1 states
this result precisely.

Theorem 7.1. — Suppose that R, S are excellent reqular local rings of dimension n,
containing a field k of characteristic zero, with a common quotient field K, such that
S dominates R. Suppose that R has regular parameters (zy,...,2zy), S has regular
parameters (yi,...,Yn) and there exists a matriz (a;j) of natural numbers such that

det(a;;) = £1 and

T o= Yty
(143)

an1 |

Tn =Y yptt.

Let V' be a valuation ring of K which dominates S. Then there exists a regular local
ring T, with quotient field K, such that T dominates S, V dominates T, and the
inclusions R — T and S — T can be factored by sequences of monoidal transforms
(blowups of regular primes).

i
7N
R—S

Proof. — With the given assumptions

(144) Spec(k[y1, ..., yn]) = Spec(k[z1, ..., %))
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is a toric birational morphism of toric varieties. There exist projective toric varieties
X and Y and a birational projective toric morphism f : X — Y extending (144). By
the main result of [27], [7] (Strong factorization of birational toric morphisms) there

exists a factorization
Z

v N
X — Y

where Z is a projective toric variety, Z — X and Z — Y are composities of blowups
of orbit closures. Z — X and Z — Y induce MTSs alongv R —>T and S—-T. O

Proof of Theorem 1.9. — By Theorem 1.1, we can perform sequences of monoidal
transforms R — R; and S — S; so that V dominates Sy, S; dominates R, and R,
and S; have regular parameters satisfying (143). The proof of Theorem 1.9 now
follows from Theorem 7.1.

Proof of Theorem 1.10. — If K is a field containing a ground field &, and v is a
valuation of K, trivial on k, then the transcendence degree of O, /m, over k is called
the dimension of v (dim(v)). We have

rank(v) < rrank(v) < trdeg, K

(cf. the Corollary and note at the end of Chapter VI, Section 10 [39]).

Suppose that v is a valuation associated to V. By Theorem 2.7, applied to the
lift to V' of a transcendence basis of V/m,, there exists a MTS along v, R — Rj,
such that dimg, (v) = 0. By assumption, R; is a localization of k[f1, ..., fim] for some
fi,..., fm € K, such that v(f;) > 0 for all . By Theorem 2.7, there exists a MTS
S — S; along v such that fi,..., f, are in S;. Hence S; dominates R;.

dim(R;) = trdeg, (K) — trdeg;(R1/m1) = n — dim(v)

and dim(S1) = n — dim(v). Now the Theorem follows from Theorem 1.9.
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CHAPTER 8

THE ZARISKI MANIFOLD

Let k be a field, X be an integral proper k-scheme. Define M(X) to be the set of
pairs (Xq, f1) of proper birational morphisms f; : X; — X.
Theorem 8.1 (Zariski). — There exists a locally ringed space Z(X) with morphisms
MX',f):Z2(X)—= X'
for (X', f) € M(X) such that
1) If (X5, f;) € M(X) for i = 1,2 such that f;' o fo is a morphism, then
WXy, f1) = (fi' o f2) o h(Xa, f) and
(2) If Z'(X) with maps W' (X', f) : Z'(X) = X' for X' € M(X) has the prop-
erty (1), then there exists a unique morphism g : Z'(X) — Z(X) such that
(X', f) = (X', f) o g for all (X', f) € M(X).

Z(X) is called the Zariski manifold of X (cf. section 17 [39], [24], section 6 of
chapter 0 [20]). The formulation of Theorem 8.1 follows [20].

Z(X) can be constructed explicitly as follows (cf. [39], [24]). Let ¢ be the generic
point of X, K = Ox . Define Z(X) to be the set of valuation rings V' of K such that
Ox,p CV for some p € X. The basic open sets U of a topology on X can be defined
as follows. Suppose that f; : X; — X is a birational morphism of finite type. Let (3
be the generic point of X;. f{ induces an identification of Ox, ¢, with K. Set U to
be the set of valuation rings V' of Z(X) such that Ox, 4 C V for some ¢ € X;. Z(X)
has the structure of a locally ringed space, by defining

I'(U,0zx)) = NvevV
for open sets U of Z(X).
Given a proper birational morphism f : X’ — X, we can define h(X', f) : Z(X) —

X' by h(X', £)(V) = pif V dominates p. p exists by the valuative criteria for proper-
ness (cf. Theorem I1.4.7 [19]).

Theorem 8.2 (Zariski). — Z(X) is quasi-compact.
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This is proved in chapter VI, section 17, Theorem 40 [39].

Definition 8.3 (Hironaka, chapter 0, section 6 [20]). — Let f : X' — X be a finite
type morphism of integral k-schemes. f is complete (or X' is complete over X) if

(1) The morphism f is surjective.

(2) For every point z' € X', there exists a 4-tuple (U, 7’,7, Jj) consisting of an
open dense subset U of the underlying topological space of X' which contains
2/, an integral finite type k-scheme 71, a proper morphism f : X' - X and
a morphism j : X'|U — X' which induces an isomorphism of the same to the
restriction of X to an open dense subset of its underlying topological space
and such that foj = f|U and

(3) Every point ¢ € X admits an open neighbourhood V in the underlying topo-
logical space of X such that X |V is a finite type k-scheme, and if we identify in
a canonical way the Zariski spaces Z(X', F ' (V)) for all 4-tuples (U, X", F, )
of (2) and call it Z(X'|V'), then the underlying topological space of Z(X'|V)
is equal to the union of A(X [ (V)" G@W)NF (V) for all (U, X", T, 7).

Lemma 8.4. — A complete separated morphism f : X — Y of integral finite type
k-schemes with X nonsingular is proper.

Proof. — This is Corollary 9.5 [13]. O

Proof of Theorem 1.2. — Let Z(X) be the Zariski manifold of X with projection
wx : Z(X) — X. Suppose that V € Z(X). Let a be the center of V on X, 3 the
center of V on Y, R = Oyg, S = Ox,o. By Theorem 1.1, there exist sequences
of monoidal transforms R — R', S — S’ along V such that R', S’ have regular
parameters satisfying (2) of Theorem 1.1. There exist affine neighborhoods Uy of
a € X, Wy of 8 in Y such that &(Uy) C Wy, projective morphisms ay : Uy —
Uy and by : Wy — Wy which are products of monoidal transforms, and affine
neighborhoods Uj, of the center o' of V on Uy, W{, of the center 8’ of V on Wy
such that ® induces a morphism @y : Uy, — Wy, R' = Owy g, S' = Ouy, s
(z1,2,...,zy) are uniformizing parameters in Wy, (y1,¥2,.-.,Yn) are uniformizing
parameters in Uy, and 41, ...,8, are units on Uy,.

Uy, is an open subset of a proper k-scheme U’V with a birational morphism onto X.
Hence there exists a canonical map T Z(X) — ﬁlv. Let Zy = n_[;_,‘l, UY). Zy is
an open neighborhood of V in Z(X). The {Zy} indexed over V € Z(X) are an open
cover of Z(X). There exists a finite subcover, which can be indexed as {Z1,...,Z,},
since Z(X) is quasi-compact (Theorem 8.2). Let {U7,...,U,,} be the corresponding
Uy,
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Let A; be the largest open subset of U; such that a; : ai_l(A,') — A; is an isomor-
phism. For all 7, j, we have isomorphisms
a]._l oa;: ai_l(Ai N A]) — a;l(Ai n AJ)
Let X; be the scheme obtained by glueing the U} along the open sets a; *(A; N A;).
Let B; be the largest open subset of W; such that b; : b, 1(Bi) — B; is an isomor-
phism. For all 7, j, we have isomorphisms
b; o b; : b1 (B N B;) — by (BN By).

Let Y; be the scheme obtained by glueing the W] along the open sets b; ' (B; N B;).
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