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L E M P E R T M A P P I N G S 
A N D H O L O M O R P H I C M O T I O N S IN C n 

by 

Kari Astala, Zoltan Balogh & Hans Martin Reimann 

Abstract. — The purpose of this note is twofold: to discuss the concept of holomorphic 
motions and phenomena of Mane-Sad-Sullivan type in several complex variables and 
secondly, to compare the different notions of Beltrami differentials in CR-geometry 
which have appeared in [4] and [7]. 

1. Introduction 

Holomorphic motions in the complex plane C are isotopies of subsets A C C for 
which the dependence on the "time" parameter is holomorphic. This simple notion has 
been important in explaining a number of different questions in complex analysis, in 
particular the rigidity phenomena in complex dynamics and the role of quasiconformal 
mappings in holomorphic deformations. 

It was Mane, Sad and Sullivan [9] who first realized that for time-holomorphic iso
topies one can forget all smoothness requirements in space variables and thus produce 
almost automatic rigidity results in various contexts. Given a subset A C C , it is 
simply enough to define a holomorphic motion of A as a mapping / : A x A —> C , 
where A = {A € C : |A| < 1 } , such that 

(i) for any fixed a G A, the map A —> / ( A , a) is holomorphic in A 
(ii) for any fixed A E A , the map a -> / ( A , a ) = f\(a) is an injection and 

(iii) the mapping fo is the identity on A. 

Then / is automatically continuous in A x C and the restrictions f\(.) are qua-
sisymmetric mappings [9]; in case A = C they are quasiconformal with the precise 
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2 K. ASTALA, Z. BALOGH &: H.M. REIMANN 

bound on the dilatation 

( i ) K(fx) < 1 + |A| 
1 - | A | -

The picture was then completed by Slodkowski [12] who proved the so called Gener
alized A-lemma, that a holomorphic motion of any set A c C extends to a motion of 
the whole C. 

In this setting it is natural to look for similar phenomena in several complex vari
ables, when the sets moving are of higher dimension. However, one quickly sees that 
the simple minded generalization does not work: Let, for example, S(x) — x/\x\ for 
x € R \ { 0 } , S(0) = 0 and define 

fx(z,w) = (* + XS(Re{w}),w). 

Then f\ is holomorphic in A and injective but not even continuous in C 2 . 

Our first goal in this note is to introduce the proper notion or point of view to 
holomorphic motions in several complex variables and then show the existence of the 
first nontrivial examples, results of Mane-Sad-Sullivan type. We expect that similar 
phenomena occur, in fact, in much larger setups. 

Remark. — The generalizations to the case where the parameter space is higher di
mensional were studied by Adrien Douady in his work [3]. 

If there are to be holomorphic motions in C n , the one-dimensional theory suggests 
that they are connected to a notion of quasiconformality. Therefore recall that in 
several complex variables the appropriate concepts are the quasiconformal mappings 
on CR-structures [4], or mappings on boundaries of pseudoconvex domains which 
firstly are contact transforms, i.e. preserve the horizontal (complex) lines of the 
tangent spaces 

HvdD = TvdD n JTvdD 
where J is the complex structure as a mapping of T p C 2 , and secondly, are there 
quasiconformal with respect to the corresponding Levi Form, i.e. 

(2) K(p) 
sup{L(F*X,F*X) : X G HpdD, L(X,X) = 1} 
inî{L{F*X,F*X) : X G HpdD, L(X,X) = 1} 

< K 

for all p G dD. 
The same direction is, actually, suggested also by the approach of Slodkowski [12]. 

He viewed holomorphic motions (or their graphs) as disjoint analytic disks in C 2 . 
Namely given such a motion / : A x A —> C each point a e A defines a holomorphic 
disk Da C C 2 , a holomorphic image of A, by 

(3) Da = { (A , / (A ,a ) ) : AG A } 

and these disks are clearly pointwise disjoint. Conversely, given a family of analytic 
disks of the form (3) with Da fl = 0 when a ^ 6, they define a holomorpic 
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motion \I>(A,/(0, a)) = /(A, a). (The extension of a given motion was then obtained 
by studying certain totally real tori whose polynomial hulls were shown to consists of 
disjoint families of suitable analytic disks.) 

Interpreting the Mane-Sad-Sullivan result in the language (3) of disjoint analytic 
disks, for a motion of the whole complex plane the disks Day a G C, fill in the domain 
A x C. And when we move along the disks with A, in the transverse direction i.e. on 
the complex lines of the corresponding tangent spaces of <9A(|A|) x C the mappings 
(0,a) i—y (A,/(A, a)) are now quasiconformal by the original A-lemma. 

This picture makes it very suggestive that similar phenomena should occur in other 
situations in C 2 or C n as well. That is, for suitable families of analytic disks one 
should expect that moving holomorphically along these disks yields automatic qua-
siconformality in transverse horizontal directions, quasiconformality in the Koranyi-
Reimann sense, with the bound (1) on the dilatation. The philosophy of holomorphic 
motions in C n would then be not that there is one strict definition of these motions 
but rather that there are several natural situations that share the common features 
described here. 

To show that there do exist nontrivial holomorphic motions in the above sense in 
C 2 (the choice n = 2 is made for simplicity) we make use of the theory developed by 
Lempert [5]-[8] and consider bounded strictly R-convex smooth subdomains D C C 2 

and their generalizations the strictly linearly convex domains. The latter class consists 
of smooth bounded domains with the property that for each boundary point p € dD 
the horizontal space HpdD does not intersect D\{p) and that HpdD has precisely 
first order contact with dD at p. That is, there exists c > 0 such that 

dist(<?, HpdD) > c • dist(p,#) 2, qE D. 

In particular, strictly convex domains are strictly linearly convex which in turn are 
strictly pseudoconvex. 

As shown by Lempert in strictly linearly convex domains extremal Kobayashi disks 
are especially well behaved. For this recall that in any bounded domain containing 
the origin the Kobayashi indicatrix / of D is defined by 

/ = { / ' (0 ) : / : A D is holomorphic and / ( 0 ) = 0 } . 

If v G dly a holomorphic mapping / = fv : A -> D such that / (0 ) = 0 and 
/ ' ( 0 ) = v is then called an extremal map corresponding to the vector v. In strictly 
linearly convex domains extremal disks are uniquely determined by t>, a fact no longer 
true for general pseudoconvex domains. This enables us to simply define 

* : A x(A,t;) b C 2 , *(A,t;) 
/ . (A) 

A 
and we can describe a full counterpart of the Mahe-Sad-Sullivan result, a holomorphic 
motion of dl. 
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4 K. ASTALA, Z. BALOGH & H.M. REIMANN 

Theorem 1. — Let D be a strictly linearly convex domain containing the origin and 
^ : A x dl -> C 2 be defined by ^(X.v) = A _ 1 / i ; (A) . Tften ^ satisfies the following 
properties: 

(1) * (0 , -) = Id | 0 7 ; 
(2) : A -> C 2 ¿5 holomorphic; 

(3) *(A, •) : <97 -> A\ is a contact mapping where A\ — \£(A,<97) is the boundary 

of a strictly pseudoconvex domain. In particular, \£ is continuous in A x dl; 
(4) \£(A, •) : dl —>• A\ is K{\)-quasiconformal with K{X < 1 + |A 

1 - A ' A € A. 

We should mention that statement (4) is the new result proven here; statements 
(1), (2) and (3), due to Lempert, are being included for the sake of completeness. 
To obtain the optimal dilatation bound we turn to our second goal, to compare 
the different notions of Beltrami differentials in contact geometry and CR-manifolds, 
introduced respectively, by Koranyi and Reimann [4] and Lempert [7]. This with 
required preliminary material will be presented in the next section. 

2. Inner actions and Beltrami differentials 

It will be convenient start with a version of the Riemann mapping theorem in C n 

due to Lempert ([5], [6]), and use the formalism introduced by Semmes [11]. These 
Riemann mappings preserve the complex structure to some extent but are flexible 
enough to yield general existence results. In more precise terms, Lempert considered 
mappings p : B D from the unit ball in C n onto domains D C C n containing the 
origin which satisfy the following three requirements: 

(1) /0 : i5\{O}—>>Z)\{0}isa smooth diffeomorphism and p : B —> D is bilipshitz; 
(2) p restricted to any complex line through the origin is holomorphic; 
(3) p restricted to the boundary of any ball Br centered at the origin and of radius 

0 < r < 1 is contact, i.e. 

p*HdBr = HdDr (Dr = pBr). 

For the last condition recall that when a domain is strictly pseudoconvex the hor
izontal tangent bundle HOD = TdD n JTdD, where J is the complex structure, 
defines a contact structure on the boundary. 

In what follows a mapping with the above properties (l)-(3) will be called a Lem
pert mapping. The basic existence result is then: 

Theorem A (Lempert). — Let D be a strictly linearly convex domain. Then there 
exists a Lempert mapping p : B —> D. 

A very nice exposition of the properties of the Lempert mappings was given by 
Semmes in [11]. The statement and proof of Theorem A, for example, may be found 
in [11] in the case of strictly convex domains and it is based essentially on the results 
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LEMPERT MAPPINGS AND HOLOMORPHIC MOTIONS IN Cn 5 

in [5]. The proof of Theorem A in the case of strictly linearly convex domains follows 
exactly as in the strictly convex case (Theorem 5.2 in [11]) using the results in [6]. 

It is important for our purposes to estimate the Beltrami differential of the Lempert 
mapping p : B D in the sense [4], as a quasiconformal mapping on the level surfaces 
p : dBr —> dDr. Therefore, let first r = 1 and use the notation 

dD — M 

for the boundary of the stricly linearly convex domain D C C 2 . Then on the unit 
sphere 

s3 Z,W \z\2- + \w\2 

= 1} 

we consider the (1,0)-vectorfield Z = z 
a 

dw — w 
d 
dz 

It is easy to check that Z is a 

section of #1,053 where 

C ® HS3 = Hl9°S3 0 H0*1 S3 

is the complexified horizontal bundle of the sphere and Hp>° is the space of (1,0)-
vectors, i.e. vectors of the form Y — iJY, Y G HPM. Since p is a contact mapping 
we can write 

(4) p*Z — Y + vY where Y G rrl.O 
np(z,w) 

M. 

We have used here the fact that H } xM is complex one-dimensional and therefore 
Y in (4) is uniquely determined. 

In fact, in an invariant formulation one should think of v in (4) not as a number 
but rather a complex-antilinear map v : H^°M —• H^°M at each point p G M so 
that p*Z = Y + v(Y). Once we have chosen a basis in Hpj0S3 (or Z in (4)) v becomes 
a complex number. 

To study the variation of v on M let us fix a point (z, w) G S3. Then £(2, w) G S3 

for Q E S1 and (4) gives us a function v : S1 —• C, v — u(Q = vp(Q), p = p(z,w). 
Moreover using property 3 of Lempert mappings we can do this consideration for any 
C G A \ 0 and we obtain a function u on A \ 0 . 

The following simple statement (see also [4]) will be useful later in our note: 

Lemma 2. — Let us consider the Lempert mapping p : B -> D of a strictly linearly 
convex domain D and the Beltrami differential v as constructed above. Then we have 
the inequality: \v\ < 1. 

Proof. — Let us denote by uo(z,w) = |^ | 2 + |it;|2 — 1 the defining function of B and 
u\{p) = uo(p~1(p))1 p G D. Then u\ is a defining function of D that is smooth on 
Z ) \ { 0 } (see [11], lemma 2.9). Moreover if we consider the (l,l)-forms fio. = \ddu§ 
and fii = \ddu\ by Lemma 2.6 in [11] we have 

(5) = |^|2 + |it;|2 
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6 K. ASTALA, Z. BALOGH & H.M. REIMANN 

We insert in the forms ffco and tti vectors from the complexified horizontal spaces 
C 0 HS3 and, respectively, C 0 HM. Relation (5) gives 

(6) n0(Z, Z) = n x <y + PY,Y + uY). 

Sincefîi(y,y) = f î i ( y , y ) = 0 we have 

(7) 0 < f i o ( Z , Z ) = (l-\u\2)U1(Y,Y). 

By strict pseudoconvexity of D we have &i(Y, Y) > 0 and hence < 1. 

Furthermore, note that like in the classical case of planar quasiconformal map
pings there is a relationship between the norm of the Beltrami coefficient and the 
quasiconformal dilatation of (2), given by 

(8) K(p) := sup Kip) 
fîi(y,y) 

. l + IMloo 
1-IMIoo' 

see [4]. 

In his work [7] on embeddability of CR-structures Lempert studied inner actions 
on the boundary M of the strictly linearly convex domain D and defined for them 
another, apparently quite different Beltrami differential. Our next goal is to find a 
relationship between these two notions. 

We begin by basic notation. Let {gt},t G R , be a smooth R-action on M . It 
is called transverse if its infinitesimal generator {dgt/dt}t=o is everywhere transverse 
to the contact plane field HM and a contact action {gt} in case the tangent maps 
gt* preserve the contact distribution HM for all t. A consistent orientation of M 
is obtained by declaring the frame Xy JX, [ JX, X] to be positive for a nonvanishing 
local section of HM. Then a transverse contact action is called positive if for one (or 
any) local section X of HM the frame X , JX and {dgt/dt}t=o is positively oriented. 

Let us now consider a positive contact action {<7^},C € S1 of the unit circle. In 
general this action does not respect the complex structure J and one can measure 
this fact as follows. Let p G M and X G C (g> HPM be such that X and X are linearly 
independent. Since the complex dimension of C <g> HPM is 2 this means that X and 
X span C <g) ifpM, so that there are complex numbers (not unique of course) a, b not 
both zero such that 

(9) aX + bX G H^M. 

Clearly \a\ ^ |6| for otherwise the (0,1)-vector in (9) and its conjugate would be 
dependent. We shall assume that X is chosen so that \a\ > \b\ holds. In this case we 
say that X is a (1, 0)-like vector. 

If we fix p G M and X then the images g^X and g$*X span C 0 H9c(p)M as g^* 
preserves the contact bundle HM. Therefore there are again complex numbers a(£), 
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b(Q not both zero, such that 

(10) S3 —> 53, h^(z,w) — £(z,w) £(z,w £(z,w£(z,w 

Although a(C) and 6(C) are not unique their quotient p(Q = b(Q/a(Q G C U {00} 
is uniquely determined and depends smoothly on £. Since |/i(C)| / 1 as before and 
^(1) = b/a it follows that \p(Q\ < 1 for all ( G S 1 . 

In this setting, Lempert calls p the Beltrami differential associated to the trajectory 
of p. In fact /1 depends on p itself and X but this dependence is just up to Moebius 
transformations of the unit disc ([7], proposition 3.1). 

A positive contact action is now called inner if its Lempert-Beltrami differential 
p, for each trajectory, extends to a smooth function on the closed unit disc A in such 
a way that this extension is holomorphic in A. 

The existence of the inner actions on boundaries of strictly linearly convex domains 
was proved by Lempert in [7]. We present here a different approach (in Theorem 
3) that gives us the possibility to draw some precise consequences in the proof of 
Theorem 1. In fact, we are going to consider the action : M —> M given by 
g^(p) = p (C (p _ 1 (p ) ) ) for p G M, £ G 5 1 . In other words, g^ : M —• M is the 
conjugate of the standard action : S3 —> 5 3 , h^(z,w) — £(z,w) from the sphere 
S3 to M by the Lempert mapping p. 

It is in this setup that we can observe a connection between the two Beltrami 
differentials p and v. The observation is based on the fact that since the definition 
of p depends on the choice of p G M and a vector X G C <g) HPM one must do this 
selection carefully. After fixing (z,w) G S3 and p = p(z,w) G M (and hence also the 
function vp{Q ) a consistent way is to take X — p*Z(z^ = Y + uY. We are allowed 
to do that since < 1 by Lemma 2 and therefore X and X are independent. With 
these particular choices we then consider the Beltrami differential p of as given by 
(9) and (10). 

Theorem 3. — Let D C C 2 be a strictly linearly convex domain with boundary M 
and let p : B —> D be the Lempert mapping whose Beltrami coefficient, as a contact 
quasiconformal transformation, is v. Then the action g^ : M —>• M given by g^(q) = 
p(C(p~1(q))) is an inner action. If the Lempert-Beltrami differential p of this action 
g^ is defined as above we have then the relation 

a i ) H0 = 
£( 
z, 
w 

k 2 
M C ) for C e A' { 0 } . 

Proof — We begin by proving the second statement for £ G S1. If we denote by 
/i£ : S3 —>• S3 the standard action h^(z,w) = C • {z,w) then it is easy to see that 

(12) £(z,w Ç 
c 

z, Ce Â. 
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8 K. ASTALA, Z. BALOGH & H.M. REIMANN 

Fix a point (z, w) G S3 and p = p(z, w). For the value ( = 1 we have that X = Y + i/Y 
and X = Y + i^y are linearly independent and there are numbers a, b G C such that 
aX + bX G flj}'1 M or (01/ + b)Y + (a + ftp)? G H^M. Therefore av + 6 = 0 and thus 

= —bja— —¿¿(1). Furthermore <7£*J\T(p) and g^X{p) are again independent and 
there are numbers a(C),6(C) £ C such that 

(13) «(C)pc.*(p) + 6(C)p<.a:(p) e£(z,wh 

i.e. MO = 6(C)/o(C). 
On the other hand using (12) 

gç*X(p) = (p. o hc* o Ptt 1)X(p) = (p. o h^)Z{z,w) = p . 6(C 
)p<. 

:Z(Ç(Z,W))(Z, 

Ç 
C' 

XYp(C(*,u;))) 
c 

(y + p(C)y). 

Consequently (13) becomes 

(14) 6(C 
p<. c 

K O + 6 0 
+ 6 
( 0 Y + a (0 

Ç 
C 

+ 6(0 
ç 

HO 
6(C)p<.ÇÇ+ 6(0+ 6(0 
C 

which gives 

(15) « ( 0 f ( 0 + 6(0 
ç 

= 0, 

and therefore (11) follows for the points £ on the unit circle S1. 

For the remaining part, the action : M —¥ M was given by 

(16) gc = pohço p X , £ G S 1 . 

It is clear that is a contact action because p is a contact mapping by property 3 
and h{ is a contact action on 53. Furthermore g^ is transverse since p\sz : S3 -± M is 
a diffeomorphism and is transverse on S3. For the the first statement it therefore 
suffices to show that p(Q extends holomorphically to A. This follows along the same 
lines as in [7] but we present the argument for the convenience of the reader. 

Let us recall that //(£) is given by 

(17) g^X + KQgc.X G flJ;jp)M, C e S1 

where X = Y + vYeC<g> HpM. NOW X = Yx + iY2 for some YUY2 G HPM where 
Yi and I2 are independent over R. 

Applying the projection map 7T1'0 : C (8) Hgc^M - » H^°,,M to (17) we obtain 

(18) g^X + KQgc.X G flJ;jp)M, C e S1g^X + KQgc.X G flJ;jp)M, C e S1C e S1$* 

and thus (18) determines //(C) for £ G 51. To obtain a holomorphic extension we ex
tend (18) to C e A. Namely, we denote by f (£) = v r1 '0^*^) and 77(C) = T T 1 ' 0 ^ * ^ ) 
and we see as in [7] that £ and 77 are holomorphic sections of the pullback bundle 
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g*£[i&M. Our purpose is to show that (18) has then a solution for p{Q for C G A 
and the function p : A —> C is holomorphic. 

We can rewrite (18) in the form 

(19) C(C) = i 
i - M C ) 
i + M O 

n(0, Ce A. 

If we denote a = i l-a 
1+n we obtain £(C) = «I C M C ) , C e A \ { 0 } . Because f and are 

holomorphic sections of g^H1,0M and the fibers of Hli0M have complex dimension 1 
we conclude that (19) has a holomorphic solution a : A \ { 0 } —> C. The point C = 0 
is troublesome as £ and 77 vanish there. 

On the other hand p(Q i-cx{<) 
»+A(C) and thus we obtain that p is a holomorphic 

function on A \ { 0 } if we show that a(Q ^ —i for C € A \ { 0 } . To see this let us 
assume a(Co) = — i for some Co € A \ { 0 } . This gives 

(20) T 1 , 0 JC .^ (P ) = f 1 , 0ffCo.(*l +*^2) = 0. 

But then we use again (12) and write g^{X{p)) = p*((C/C)Z(C(z,w))). By defini
tion p : Br —¥ Dr is a contact mapping for any 0 < r < 1. Therefore 

(21) gc.(X(p)) = Y(p(C(z,w))) + P(0Y(p(az,w)))] 

with Y(p(C(z,w))) gc.(X(p)) M|^|. Consequently (20) and (21) would imply 

9C»*X{P) = 0 

which is impossible, g^0 being a diffeomorphism. 
If we show that \p\ < 1 on A \ { 0 } we can remove the isolated singularity £ = 0 

and conclude that p is holomorphic on A. It is enough to show that |/i(C)| 7̂  1 f ° r 

C G A \ { 0 } . Assuming |/x(Co)| = 1 for some Co G A \ { 0 } we get a(Co) E R and f(Co), 
77(Co) are dependent over R. But this is again impossible since Y\,Yi G HPM are 
independent and g^0 is a diffeomorphism. 

Finally, we note that the above arguments give now (11) for general C since p 
satisfies (16) (and therefore (17)) in A \ { 0 } . We can therefore use (21) and the same 
consideration as for ( G 5 1 to obtain 

"(0 
ç 
c 

M C ) 
ç 
c 

= 0, C e A U O } 

which proves (11). 

Corollary 4. — Consider Y = 7r1,0p*Z as a vector field on M and define the actioi 

9c (p) — P(CP~1(P)) a s above. Then 

(22) gc.Y = Y' + n(£)Y> 

where rj is holomorphic in A. 
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10 K. ASTALA, Z. BALOGH & H.M. REIMANN 

Proof. — Determining the Lempert-Beltrami coefficient p, of the trajectory of p by 
the vector Xp = Yp + P(1)YP as above, we have from the argument in (17), (18) that 

n^MQgeX + g<*x] = o 

for all points £ G A. Since by assumption (22) 

^ [ M O s c . * + = (MC) +gc.(X(p))gc.(X(p))gc.(X(p))+ »7(0 + *(I))n'c(P)> 

we must therefore have that 

»7 (0 = -
u(C) + u(l) 
L + P(l)/i(C) ' 

As gç is an inner action, it follows that 77(C) is holomorphic. 

3. Holomorphic motions and Kobayashi indicatrix 

The proof of Theorem 1 can now be obtained quickly from the results of the 
previous section. Indeed, the Lempert mapping gives a natural homeomorphism R 
from the unit ball B to the Kobayashi indicatrix / of the domain D, 

R(w) = d_ 
dC 

p(Cw)K=0gc.(X(. 

The mapping R is C-homogenous of degree 1 on complex lines through the origin and 
as shown in [5], [11] it is a contact transformation on dB. Therefore our holomorphic 
motion of the boundary dl of the indicatrix, 

*(A,t;) - fv{\) 
A ' 

(A,v) G A x dl, 

admits a natural factorization 

* ( A , V ) = 
1 
X9 1\ 0 cr(v), 

where we have used the abréviation 

<t = p\dB °R 1\dl-

Let Y = 7r1,0p#Z be the vector field as above in Corollary 4. Since a : dl —> dD 
is a smooth contact transformation we find a vector field W, W(x) G H^°dl for all 
x G dl, such that 

(t+W = Y + kY 

on dl. 
With these tools we can now estimate the quasiconformal dilatation of the holo

morphic motions \£(A, •). Namely by (8) one has to bound their Beltrami differentials 
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and for this we have from Corollary 4 that 

( 2 3 ) VJX,-)W = 
1 

A 
1 

[gx)*(Y + RY) 

( 2 4 ) gc.(X Q (Y + fj(X)Y' + kY' + rj(X)KY') 

gc.(X(p)) A 

A 

77(A) + K 

l + n(X)K 
Y", 

where Y" = A _ 1 (14- t7(A)k ; )F ' . Consequently, the absolute values satisfy lf(\I>* (A, • ) ) = 

(1 + | 5 ( A ) | ) / ( 1 - 1 5 ( A ) ! ) " 1 , where 

( 2 5 ) (5(A) = 
77(A) + ^ 

1 + w(A)/C" 

Since by Corollary 4, 77 is holomorphic in the unit disk with |I77I|OO < 1> the same 
holds true for 6 as well. On the other hand, as \ £ * ( 0 , - ) is the identity mapping, 
5 ( 0 ) = 0. By Schwartz lemma we then get |<$(A)| < |A| which completes the proof of 
Theorem 1. 

Remark. — We would like to mention at the end that the results of Theorems 1 
and 3 are true in more general situations than for strictly linearly convex domains. 
Whenever we have a Lempert mapping with the properties stated at the beginning 
the proofs carry over. In particular, the new work [2] finds the Lempert mappings for 
the larger class named circular-like domains; these are characterized by the fact that 
their Lempert invariants are bounded by 1. 
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MARKOV EXTENSIONS AND DECAY OF CORRELATIONS 

FOR CERTAIN HENON MAPS 

by 

Michael Benedicks & Lai-Sang Young 

Abstract. — Hénon maps for which the analysis in [BC2] applies are considered. Sets 
with good hyperbolic properties and nice return structures are constructed and their 
return time functions are shown to have exponentially decaying tails. This sets the 
stage for applying the results in [Y]. Statistical properties such as exponential decay 
of correlations and central limit theorem are proved. 

0. Introduction and statements of results 

Let Ta b : R2 R2 be defined by 

Ta?6(>, y) = (1 - ax2 + y, bx). 

In [BC2], Carleson and the first named author developed a machinery for analyzing 
the dynamics of Ta^ for a positive measure set of parameters (a, b) with a < 2 and 
b small. For lack of a better word let us call these the "good" parameters. The 
machinery of [BC2] is used in [BY] to prove that for every "good" pair (a, 6), T = Ta,b 
admits a Sinai-Ruelle-Bowen measure v. The significance of v is that it describes the 
asymptotic orbit distribution for a positive Lebesgue measure set of points in the 
phase space, including most of the points in the vicinity of the attractor. The aim 
of the present paper is to show that (T, u) has a natural "Markov extension" with 
an exponentially decaying "tail", and to obtain via this extension some results on 
stochastic processes of the form {<p o Tn}ri=o,i,2,...? where : E2 h> 1 is a Holder 
continuous random variable on the probability space (M2, v). 

1991 Mathematics Subject Classification. — 37A25, 37C05, 37C70, 37D25, 37D50, 37E20. 
Key words and phrases. — Henon map, Markov extension, Decay of correlation, Central Limit Theo
rem. 
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1 4 M. BENEDICKS & L.-S. YOUNG 

Consider in general a map f : M O preserving a probability measure v. By 

a Markov extension of (f,v) we refer to a dynamical system F : ( A , ? ) O and a 

projection map ix : A i-> M ; .F is assumed to have a Markov partition (with possibly 

infinitely many states), F and TT satisfy 7ro.F = /o7r, and 7r*i/ = We do not require 

that TV be 1-1 or onto. 

Let ( / , v) be as in the last paragraph, and let X be a class of functions on M. We 

say that ( / , v) has exponential decay of correlations for functions in X if there is a 

number r < 1 such that for every pair (p,i/j E X , there is a constant C = C((p,ip) 

such that 

o f < to f < to f <pdv <pdv < Crn V n > 0. 

Also, we say that ( / , v) has a central limit theorem for cp with / <£>dz/ = 0 if the 

stochastic process 9?, cp o / , <̂> o / 2 , . . . satisfies the central limit theorem, i e . if 

1 
Vn 

n—1 

i=0 
<p°r 

dist  ^ K(0 , ( j ) 

for some a > 0. For a > 0 this means that V£ E M, 

v 
1 

Vn 

n - l 

0 
V o f < t 

1 

o f < t 

t 

' —00 
<pdv<o f < t 

as n ^ 00. 

For / = Taj>, (a, b) "good" parameters, we have the following results: 

Theorem 1 ( [BY]) . — / admits an SRB measure v. (See Section 1.7 for the precise 

definition.) 

Theorem 2 ( [BY]) . — v is the unique SRB measure for fn for every n > 1. This 

implies in particular that (/n,^) is ergodic V n > 1. 

By the general theory of SRB measures, the ergodicity of ( / n , ^ ) for all n > 1 is 

equivalent to ( / , u) having the mixing property, or that it is measure-theoretically 

isomorphic to a Bernoulli shift, see [L]. 

For 7 > 0, let 3<7 be the space of Holder continuous functions on IR2 with Holder 

exponent 7 . 

Theorem 3. — (/5^) has exponential decay of correlations for functions in !K7. The 

rate of decay, r, may depend on 7 . 

Theorem 4. — ( / , v) has a central limit theorem for all cp E CK7 with f (pdu = 0; the 

standard deviation a > 0 iff ip 0 f — ip for some ip E L2(u). 

Theorems 1 and 2 are proved in [BY] , while theorems 3 and 4 are new and are 

proved in this paper. But since an SRB measure is constructed in the process of 

proving Theorem 3, this paper also contains an independent proof of Theorem 1. 
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Questions of ergodicity or uniqueness of SRB measures, however, are of a different 

nature. We will assume Theorem 2 for purposes of the present paper. 

As mentioned earlier on, our proof of theorems 3 and 4 are carried out using a 

Markov extension with certain special properties. The second named author has 

since extended this scheme of proof to a wider setting. We will refer to [Y] for certain 

facts not specific to the Henon maps, but will otherwise keep the discussion here as 

self-contained as possible. 

The following is a comprehensive summary of what is in this paper, section by 

section. 

In Section 1 we recall from [BC2] and [BY] some pertinent facts about / . 

The aim of Section 2 is to clean up the notion of distance to the "critical set" 

previously used in [BC2] and [BY] . We prove that the various distances used before 

are equivalent. 

Section 3 is devoted to organizing the dynamics of / in a coherent fashion. We 

focus on a naturally defined Cantor set A with a product structure defined by local 

stable and unstable curves and with A intersecting each local unstable curve in a 

positive Lebesgue measure set. The dynamics on A is analogous to that of Smale's 

horseshoe, except that there are infinitely many branches with variable return times. 

A precise description of A is given in Propostion A in Section 3.1. 

In Section 4 we study the return time function R : A —> Z + , i.e. z £ A returns to 

A after R(z) iterates in the representation above. (Note that R(z) is not necessarily 

the first return time.) We prove that the measure of {R > n} decays exponentially 

fast as n —> oo. This estimate is stated in Lemma 5 in Section 4.1; it plays a crucial 

role in the subsequent analysis. 

In Section 5 we consider the quotient space A obtained by collapsing A along 

W ^ - c u r v e s . We prove, modifying standard arguments for Axiom A systems where 

necessary, that A has a well defined metric structure and that the Jacobians of the 

induced quotient maps have a "H61der"-type property. This step paves the way for the 

introduction of a Perron-Frobenius operator. The results are stated in Proposition B 

in Section 5.1. 

Let fR:AO denote the return map to A. In Section 6 we construct a tower map 

F : A O over fR:AO with height R (see Section 6.1). F is clearly an extension 

of / . A Perron-Frobenius operator is introduced for F : A (3, the object obtained 

by collapsing W ^ - c u r v e s in A . At this point we appeal to a theorem in [Y] on 

the spectral properties of certain abstractly defined Perron-Frobenius operators. We 

explain briefly how a gap in the spectrum of this operator implies exponential decay 

of correlation for / , referring again to [Y] for the formal manipulations, and finish 

with a proof of the Central Limit Theorem. 
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1. Dynamics of certain Hénon maps 

The purpose of this section is to review some of the basic ideas in [BC2] and [BY], 
and to set some notations at the same time. We would like to make the main ideas 
of this paper accessible to readers without a thorough knowledge of [BC2] and [BY], 
but will refer to these papers for technical information as needed. The summary in 
Section 1 of [BY] may be helpful. 

1.1. General description of attractors. — In this paper we are interested in 
the parameter range a < 2 and near 2, b > 0 and small. The facts in Section 1.1 are 
elementary and hold for / = Ta¿ for an open set of parameters (a, b). 

There is a fixed point located at approximately ( | , it is hyperbolic and its 
unstable manifold, which we will call W', lies in a bounded region of IR2. Let ft be the 
closure of W. Then ft is an attractor in the sense that there is an open neighborhood 
U of ft with the property that \/ z G £/, fnz —>• ft as n oo. 

Away from the y-axis, / has some hyperbolic properties. For example, let S ^> b 
and let s(v) denote the slope of a vector v. Then 

(i) on {\x\ > S}, Df preserves the cones < S}; 
(ii) 3M0 E Z+andco > 0 such that if z, f z,..., fM~xz e {\x\ > 6} and M > M0, 

then 

\Df^v\ > eCoM\v\ \/v with \s(y)\ < S. 

It is easy to show, however, that ft is not an Axiom A attractor. 

In contrast to Section 1.1, the statements in Section 1.2-1.6 hold only for a positive 
measure set of parameters. For the rest of this paper we fix a pair of "good" parameters 
(a, b) and write / = Ta¿. 

1.2. The critical set. — A subset G C W, called the critical set, is designated to 
play the role of critical points for 1-dimensional maps. Points in 6 have ^-coordinates 
« 0; they lie on C2(b) segments of W (a curve is called C2(b) if it is the graph of 
a function y = (f(x) with |<¿?'|, |<¿/'| < 106); and they have "homoclinic" behaviour in 
the sense that if r denotes a unit tangent vector to W, then for z G 6, |Z>/|r | < 
(5&V V j > 0. 

Other important properties of z G 6 are that V n > 1: 

(i) \Df2(l) I > e ^ " 1 ) for some C w log 2; 
(ii) "dist"(/n^, e) > e~an for some small a > 0. (The precise meaning of "dist" 

will be given shortly.) 
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The idea in [BC2], roughly speaking, is that when an orbit of ZQ G G comes near 

6, there is a near-interchange of stable and unstable directions (hence a setback in 

hyperbolicity); but then the orbit of z0 follows that of some z G G for some time, 

regaining some hyperbolicity on account of ( i) . To arrange for (i) , it is necessary to 

keep the orbits of G from switching stable and unstable directions too drastically too 

soon; hence (ii). 

We now give the precise meaning of "dist"(-, G). Consider z G G and let n i > 0 be 

the first time its orbit returns to (—5,5) x EL It is arranged that there is z\ G G of 

an earlier generation (see below) with respect to which fni z is in tangential position, 

i.e. z lies in a C2(b) segment of W extending > 4 \fniz — z\\ to each side of 2i , and 

the vertical distance between fniz and this segment is < \fniz — z\\4; see e.g. [BY] , 
Subsection 1.4.1. Here "dist"(/ni, G) means | / n i * - 2 i | . 

We say that fni z is "bound" to z± G G for the next pi iterates, where pi is the 

smallest j s.t. \fni+jz — fjz±\ > e-/3j for some fixed ¡3 > a. At time n\ + pi, we 

say that the orbit of z is "free", and it remains free until the first n<i > n\ + p\ when 

it returns again to (—5, S) x EL The binding procedure above is then repeated, with 

bound period P2 etc. 

It is convenient to modify slightly the above definitions of pi so that the bound 

periods become "nested", i.e. if a bound period is initiated in the middle of another 

one, it also expires before the first one does. (See Section 6.2 of [BC2].) 

We return to the notion of "generations" to which we referred a few paragraphs 

back. There is a unique ZQ G G lying in the roughly horizontal segment of W containing 

our fixed point. The part of W between f2zo and fzo is denoted by W\ and called 

the leaf of generation 1. Leaves of higher generations are defined inductively by 

Wn = fn~1Wi — W n _ i , and a critical point is of generation n if it is in Wn. 

1.3. Dynamics on W. — In Proposition 1 of [BY] , it is shown that the orbit 

of every z G W can be controlled using those of G. More precisely, consider z in a 

local unstable manifold of our fixed point, and let n\ > 0 be the first time its orbit 

goes into (—5, S) x M. It is shown that there is a "suitable" z± G G to which we will 

regard fniz as bound for some period of time. "Suitable" here means that (1) fniz 

is in generalized tangential position wrt z\ (generalized tangential positions are slight 

generalizations of tangential positions; see Section 1.6 of [BY]); and (2) the angle 

between r(fniz), the tangent vector to W at fniz and a certain vector field about 2i 

is "correct"; this will be explained in Section 1.5. After a bound period as defined in 

Section 1.2, the orbit of z then becomes free until it gets into (—5, S) x E again, finds 

another suitable point Z2 G C to bind with, and the story repeats itself. 

Not only do suitable binding points always exist ([BC2], Section 7.2), it is shown 

in [BY] , Lemma 7, that one could systematically assign to each maximal free segment 

7 intesecting (—<S, 8) x R a critical point 2(7) that is suitable for binding for all z G 7. 

The picture is as follows: 
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(i) If 7 contains a critical point z, then ¡3(7) = z; this is always the case if neither 

end point of 7 lies in (—5, 5) x E. 

(ii) If only one end point of 7 lies in (—5, 5) x E, say the left end point 7 _ , and 

7 does not contain a critical point, then ^ (7 ) is taken to be the binding point 

of 7_ (note that 7_ is also in bound state); 0(7) always lies to the left of 7 _ , 

away from 7. 

(hi) If both end points 7 ± of 7 are in (—5,5) x E and 7 does not contain a critical 

point then the binding point of at least one of 7 ± lies on the opposite side of 

7 ± as 7 and can be taken to be 2(7) . 

We state some estimates for \Df^r\, z G W, that are consequences of the behaviour 

of the critical set and the binding process above. Unless otherwise referenced, these 

estimates are proved in Corollary 1 of [BY]: 

(I) Free period estimates. 

(i) Every free segment 7 has slope < 2b/5, and 7 D (—6,5) x E is a C2(b) 

curve (Lemmas 1 and 2, [BY]). 

(ii) There is M0 G Z + and c0 > 0 s.t. if z is free and z,fz,..., fM~1z g 

(S,S) x E for M > M0, then \Df™r\ > ec°M. 

(II) Bound period estimates. 

The following hold for some c « log 2: if z G (—6,6) x E is free and is bound 

at this time to z G G with bound period p, then 

(i) if e~v~x <\z-z\< e~v, then \v <p< 5z/; 

(ii) \Dflr\ >\z-z\ e°i for 0 < j < p; 

(hi) \Dfgr\ > ecp/s. 

(Ill) Orbits ending in free states. 

There exists ci > | log 2 s.t. if z G W Pi (—5, 5) x E is in a free state, then 

\Df-*r\ < e~Clj V j > 0 

(Lemma 3, [BY]). 

1.4. Bookkeeping, derivative and distortion estimates. — Let 7 be the fol

lowing partition of the interval (—5,6): first we write (—5,5) as the disjoint union 

U { ^ : W\ > some ^0} where Iv = ( e ~ ( " + 1 \ e_I/) for z/ > 0 and = -Iv for */ < 0; 

then each Iv is further subdivided into v2 intervals {Ivj} of equal length. 

For xo G E, we let [̂̂ 0] denote a copy of CP with 0 "moved" to #0. Similarly, if 7 is 

a roughly horizontal curve in E2 and z0 G 7, we let denote the obvious partition 

on 7 . Once 7 and zo are specified, we will use I^j to denote the corresponding 

subsegment of 7. Also, if J G we let nJ denote the segment n times the length 

of J centered at J. 

The following derivative estimate is very similar to the derivative estimates in the 

proof of Lemma 7.2 in [BC2]. 
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Derivative estimate. — Suppose that the point z belongs to a free segment of W and 

satisfies dist( /J£, C) > 8e~ocj V j < n for some integer n. Then there is a constant 

C2 > 0 such that 

(1.1) \Df?r\ > 8ec*n. 

Since the proof follows step by step the proof of Lemma 7.2 in [BC2], it is omitted. 

The only difference is that in the present situation the allowed approach rate to the 

critical set is much slower than that in Lemma 7.2 of [BC2]: d i s t ( /n£ ,C) > 6e~ocn 

V n > 0, versus d is t ( /n£, 6) > e~36n V n > 0. This leads to the the expansion estimate 

of (1.1). 

The following is proved in Proposition 2 of [BY]: 

Distortion estimate. — Let 7 C (—6,6) x E be a segment of W. We assume that the 

entire segment has the same itinerary up to time N in the sense that 

(i) all z E 7 are bound or free simultaneously at any one moment in time; 

(ii) if 0 — ¿0 < t\ < ' • * < tq are the consecutive free return times before N, then 

V k < q the entire segment ftkj has a common binding point z ^ E C and 

ftkj C 5Jk for some Jk E V^wy 

Then 3C± independent of 7 or N s.t. V21,^2 G 7 , 

o f < t^ 

o f < t^ 
< C i -

1.5. Fields of contracted directions. — First we state a general perturbation 

lemma for matrices. Given A\, A2,..., we write An := An - • • A\. The following is a 

slight paraphrasing of Lemma 5.5 and Corollary 5.7 in [BC2]. All the matrices below 

are assumed to have |det| = b. 

Matrix perturbation lemma. — Given k b, 3A with b <C A < m i n ( l , K ) s.t. if 

A i , . . . , An, A[,..., A'n e GL(2, M) and v e E2 satisfy 

| A ^ | > ^ ^ and \\Ai - A'iW < \* V * < n , 

then we have, for all i < n: 

(i) A lv > 1 ; 

(ii) < ( A l v , X l v ) ^ ^ < A*/4. 

If A E G(2 , E) is s.t. \Av\ /\v\ ^ const, let e(A) denote one of the two unit vectors 

most contracted by A. We will write en(z) := e (Df™) wherever it makes sense. From 

the perturbation lemma above, it follows that if |Z)/|0t>| > K/7, 0 < J < n, for some k 

and some v, then there is a ball Bn of radius (A/5)n about ZQ on which en is defined 

and has the property that \Dfnen\ < 2(B/K)N. 
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Assuming that k is fixed and en is defined in a neighborhood of zo as above, the 
following hold (Section 5, [BC2]): 

(i) ei is defined everywhere and has slope = 2ax + 0 ( 6 ) ; 
(ii) \en - em\ < 0(6m) for m < n; 

(iii) for (#1,2/1), («2,2/2) G some Bn with I2/1 — 2/21 < W ~ «21, 

|en(«i ,2/i) - en(ar2,2/2)1 = (2a + 0 (6 ) ) |«i - x2 | • 

The perturbation lemma above applies in particular to critical points; see Sec
tion 1.2. Indeed, every ZQ G C is constructed as the limit of a sequence {zn} where zn 
is the unique point in the C2(b) segment of W containing zo with r(zn) — en(zn). Go
ing back to the notion of "suitability" of binding points at the beginning of Section 1.3, 
a formulation of requirement (2) could be that 

3\zi-fniz\<<(r<(r(fn*z),eei ( f n i z ) ) < ( f n i z ) ) < 5 \ I 1 - f n ^ z \ 

where £1 « — e • log \fniz — z\\ is small enough that is defined on a neighborhood 
of Z\ containing fniz. 

1.6. M o r e on the geometry of the critical set. — The following facts about 
the relative locations of critical points are used in sections 2 and 3 of this paper. 

Fact 1 (Lemma 5, [BY]). — Let z G 6 be contained in a C2{b) curve 7 C W. Assume 
that 7 extends to > 2d on each side ofz, and let £ G 7 be s.t. \z — £| = d. Then there 
are no critical points z with \z — Q\ < d2. 

Fact 2 (Existence of critical points, [BC2] Section 6.2, [BY] Subsection 1.3.1) 
There is a number ft « /? « 1, s.t. the following holds: if z = (x,y) lies in a 

C2(b) segment 7 C W of generation n with 7 extending > 2pn to each side of zy and 
there is a critical point z = (x,y) G C s.t. 

(i) X = X, 

(ii) z is of generation < n, 
(iii) \z-z(fniz))<\< bn^A0, 

^ ^ ^ ^ ~ 1 /2 then there is a unique critical point z = («, y) G 7 with \x — x\ < \y — y\ / . 

One way to get a sense of the relative location of a point to the critical set is to do 
the "capture" procedure introduced in [BC2], sections 6.4 and 7.2. This procedure 
guarantees that near every free z G W there are many long C2 (b) segments of W some 
of which will contain critical points. The picture is as follows (for a precise statement 
see [BY] Subsection 2.2.2): 

If z G W is free, then there is a family of C2(b) subsegments of W labeled 
{7i}i=i,2,...,i(^)? where i(z) is the last integer i with 3Z+1 < gen(z) , s.t. 

(i) m < generation of 7$ < 3m, m = 3% 
(ii) ji is centered at « z, and has length « 10pm, 

(iii) dist(*,7i) < (Cb)™. 
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(iv) if is the point on 7* with the same ^-coordinate as z then \r(z) — r(z^)\ < 
(C6)m/6. 

There are, in fact, two such families, one above and one below z. 
One may assume that 71 contains a critical point. If this critical point is sufficiently 

near the middle of 71, then by Fact 2, 72 would also contain a critical point. This 
may continue all the way down the stack, or there may exist an i s.t. zi G C n 72 is 
so far to one side that no critical point lies in 7^+1. If this happens z is in tangential 
position with respect to zi. 

1.7. SRB measures. — In this article (and also in [BY]), an /-invariant Borel 
probability measure v is called an SRB measure if / has a positive Lyapunov expo
nent z/-a.e. and the conditional measures of v on unstable manifolds are absolutely 
continuous with respect to the Riemannian measures on these leaves. The following 
are proved in [BY]: 

(i) / admits an SRB measure z/; 
(ii) v is unique (i.e. f admits no other SRB measure); hence (/, v) is ergodic; 

(iii) (ii) is in fact true for fn for all n > 1. 
It follows from general nonuniform hyperbolic theory that (iii) is equivalent to (/, v) 
having the mixing property, the iT-property, and in fact to its being isomorphic to a 
Bernoulli shift (see e.g. [L]). 

2. Preliminaries: cleaning up the notion of dist(-,C) in [BC2] and [BY2] 

In this section as in the rest of the paper, it is assumed that / = Ta?& where (a, b) 
are "good parameters" as discussed in Section 1. 

Two notions of the distance to the critical set for a point z on & free segment of 
W have been used in [BC2] and [BY]. The first is a pointwise definition, in which 
we think of dist(z, G) as \z — z(z)\, where J is a certain critical point captured by z. 
We will call this distance dC8iP(z,G). The second notion is more globally defined. It 
is shown in [BY] that one could systematically assign a critical point 2(7) to every 
maximal free segment 7. Let us define dy(z, G) to be \z(j) — z\, where 7 is the maximal 
free segment containing 7. Precise definitions of rfCaP(-, G) and d7(-, C) are given below. 
The main purpose of this section is to prove 

Lemma 1. — For each point belonging to a free segment of Wy we have 

^ ) = l + 0(max(M^,), 

where d = min(<icap(z, C), d1(z, C)). 

We state also a related fact which is, in some ways, more basic: 
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Lemma 1'. — Suppose that z is a point that is in tangential position to two different 
critical points z\ and z2. Let d\ — \z — z\\> d2 = \z — z2\ and d = min(di, d2). Then 

^ = l + 0(max(6,d2)). 
d2 

We now begin to justify these claims. The following technical sublemma along 
with Lemma 5 in [BY] (see Fact 1 Section 1.6) will be used repeatedly to rule out 
the presence of critical points in certain regions. Part (b) has independent interest; 
it plays an important role, for instance, in the proof of Lemma 1. 

Sublemma 1. — Let 70 and 7 be two free C2(b) segments of W. Suppose that 70 
contains a critical point zo, and that there exist two points Co G 7o and C G 7 with the 
same x-coordinate. Let do — |Co — z§\. 

(a) If\C~ Co| < d$ and | r (C)— t(Co)| < d§> then for all z G 7 with \z — z0\ — d > do, 
there can be no critical point at a distance < d2 from z. 

(b) The assumptions in part (a) are satisfied if C is (say) the left end point of 7, 
it is in a bound state, and its binding point zo lies to the left of 7. 

In the situation of part (b), Sublemma 1 allows us to essentially regard 7 as a 
continuation of 70 (which may not be very long compared to 7) . 

Proof — The proof of (a) is a slight modification of that of Lemma 5 in [BY] and 
will be omitted. 

To prove (b) let us first briefly review the binding procedure. For a detailed account 
see [BC2], sections 6 and 7 and [BY], subsections 1.6.2 and 2.2.2. Let n be the 
generation of 7, and assume that attached to the left endpoint Q of 7 is a bound 
segment B. Recall that there is a hierarchy of bindings associated with B. We let z0 
be the critical point with the property that at this time, i.e. at time n, B is bound 
to Zm = fmzo and zm is free. Let z* denote the new binding point acquired by ?m 
at this time. Then z* is located on a segment of generation mi < m. The capture 
procedure resulting in z* calls for zm_mi to be in a favorable position (in particular 
out of all fold periods); ;?m_mi then draws in a segment 7' of W\ and lies on /mi7; . 

We claim that / _ m i C is outside of all fold periods. First, it cannot be in a fold 
period initiated in the time interval [n — m,n], since bindings and the corresponding 
fold periods initiated in this time interval are the same as those of 2q. Suppose then 
f~MIC is in a fold period initiated before time n — m. The corresponding bound 
period in this case would have to last > (Clog( l /6))m iterates beyond time n — mi, 
contradicting our assumption that C is free. 

Having established that f~RNIC lies in a segment of W sufficiently parallell to 
Wi, the estimates in (a) follow immediately from capture arguments and the Matrix 
Perturbation Lemma in Section 1.5. • 
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Definition of dca,p(z,G). — Let {7i}z=i,...,& be a stack of leaves captured by z. We 
let i* be the largest integer i such that 7̂  contains a critical point. 

Case 1: < k. — Let z(z) be the critical point on 7^ . 

Case 2: z* = k. — We will show in this case that there is a critical point on 7, the 
maximal free segment containing 7. This critical point is unique (this follows e.g. 
from Lemma 5 in [BY]); it will be our z(z). The existence of z(z) follows readily 
from Fact 2, Section 1.6, once we verify that 7 extends > 2p9 on both sides of z and 
z*, g being the generation of z and the critical point on 7^ . We leave this as an 
exercise. 

Definition of d7(z,&). — Let 7 be a maximal free segment. In Lemma 7 of [BY], 
we established a rule for assigning a critical point z(y) to each 7. See Section 1.3 
for what is proved. Given that the binding points of all critical orbits are selected 
and fixed, the only situation for which there might be some ambiguity in the choice 
of z(j) is when both end points of 7 are in (—6,6) x M, i.e. case (iii) in Section 1.3. 
Figure 1 shows all possible configurations of the locations of the binding points z+ 
(resp. z-) relative to 7+ (resp. 7_) . 

5(7") i(7+) 

(a) 

¿(7 ) 5(7+) 

(b) 

z(l ) 5(7+) 

(c) 

FIGURE 1 

In [BY] we ruled out (a); (b) will be eliminated in Sublemma 2 below. What is 
left is (c) (and its mirror image). If (c) occurs , 2(7) = z _ . 

Proof of Lemma 1. — Let where 7 is a maximal free segment of W. The idea of 
our proof is as follows. Look at the contractive fields centered at z(j) and z(z). We will 
show that for a suitable choice of m, z lies in the domains of the em-fields induced by 
both points. Since the angle between erTl(z) and r(z) is supposed to reflect the distance 
between z and the respective critical points, we must have \z(j) — z\ « \z(z) — z\. 

We consider the case where 2(7) $ 7. (The proof is slightly simpler when 7 contains 
a critical point.) Let dy = \z — z\, dc = \z(z) — z\. First we observe the weaker estimate 
d2 < dc < c?y2; to see that dc > d2, use Sublemma 1 (both (a) and (b)); to see that 
dy > d2,, use Lemma 5 in [BY]. Let m7 and mc be defined by 

'A 
,5 

2mc 
<dc< 

'A' 
5 

2mc —1 

.5, 

2m, 
< d7 < 

A 
5 

2m7-l 
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and let m = min(ra~, rar). Then the above relation between cL and dr implies that 

1 
2 

< 
m 

ra7 
m 

<12 
< 1. 

Thus z lies well inside the balls B^x/5)^(z(z)) and B(X/5)™{z(l)), the domains of em 
around these points. 

Let z be the point on 7, the C2(&)-segment containing 2(2), having the same in
coordinate as z. Since |r(?(^)) — ern(z(z))\ — 0(6m) and 7 is C2(6), it follows that 

(2.1) \r(z) - em(z)\ = (2a + 0(fe))rfc. 

We would like to duplicate the estimate in the last paragraph with z playing the 
role of z and 2(7) instead of z(z), except that z does not lie on 70, the C2(b) segment 
containing 2^7), and in any case we do not know how long 70 is. To get around this, 
note that 

< ( T ( z ( 7 ) ) , T ( * ) ) < < ( r ( ? ( 7 ) ) , r ( C o ) ) + < ( T ( C ò ) , r ( C ) ) +<<(r<(r(t(C),t(Z)), 

where £ is the end point of 7 closer to 2(7) and Co is the point on 70 with the same 
«r-coordinate as £. Part (b) of Sublemma 1 then gives 

(2.2) \r(z) - em(z)\ = (2a + max (0(6), 0 (|C - ?(7) |2))) • dy. 

Finally, since 7 is obtained by capturing we have \r(z) — r(z)\ <C c^, say. Also, 
|em(?) — em(z)\ < lOd* (apply Property (iii) of Section 1.5 twice). These together 
with (2.1) and (2.2) give the desired result. • 

We omit the proof of Lemma 1 ', which is very similar to that of Lemma 1. 

Remark 1. — This proof shows that the intuitive definition of the distance to the 
critical set for a point z G W really ought to be the angle between r(z) and em(^), 
where em is the contractive field of a "suitable" order. 

In order to make the definition of dy(z, 6) unambiguous it remains to prove 

Sublemma 2. — The configuration in Figure 1(b) does not occur. 

Proof of Sublemma 2. — The proof is based on the same ideas as that of Lemma 1. 
Fix an arbitrary z G 7. Then Sublemma 1 applied to z± tells us that 

\z - z+\2 <\z- z-\ <<(r\z- z+\1/2. 

Let d = max(|^ — \z — z-\) and m an integer defined by (A/5)2m « d as in the 
proof of Lemma 1. Then z lies well inside the balls B^\/^m(z—) and J3(a/5)™(2-), 
the domains of em around these points, and we obtain a contradiction since the field 
arround z- says em(z) must have positive slope and the one around 2+ says that the 
slope is negative. 
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3. Construction of a "horseshoe" with positive measure 

3.1. Goal of this section. — "Horseshoes" are well known to be building blocks 
of uniformly hyperbolic systems. We will show in this section that / can be viewed 
as the discrete time version of a special flow built over a "horseshoe". In order to have 
positive SRB measure, the "horseshoe" here must necessarily have infinitely many 
branches with unbounded return times. This picture will be made precise in the 
statement of Propostion A. 

We begin with some formal definitions. 

Definition 1 
(a) Let Tu and Vs be two families of C1 curves in M2 such that 

(i) the curves in Tu, respectively Ts, are pairwise disjoint; 
(ii) every 7W G Tu meets every 7s G Vs in exactly one point; and 

(iii) there is a minimum angle between ju and 7s at the point of intersection. 
Then the set 

A: = { 7 " n 7s : 7U € Tn,7s G Ts} 

is called the lattice denned by I " and 1 *. 
(b) Let A and A' be lattices. We say that A' is a u-sublattice of A if A' and A have 

a common defining family Vs and the defining family Tu of A contains that of 
A'; s-sublattices are defined similarly. 

(c) Given a lattice A, Q c M2 is called the rectangle spanned by A if A C Q and 
dQ is made up of two curves from Tu and two from Vs. 

In Propostion A we will assert the existence of two lattices A+ and A- with es
sentially identical properties. For notational simplicity let us agree to the following 
convention: statements about "A" will apply to both A+ and A- . For example, "let 
Tu and rs be the defining families of A" means there are four families of curves; the 
families (rw)+ and (Ts)+ define A+ while {Tu)~ and (Ts)~ define A~. 

Proposition A. — There are two lattices A+ and A- in M2 with the following prop
erties. Let Tu and Vs be the defining families of A; for z € A, let 7w(z) denote the 
7W-curve in Tu containing z. Then: 

(1) (Topological structure) A is the disjoint union of s-sublattices A$, i = 1, 2 , . . . , 
where for each i, 3Ri G Z+ s.t. fRiAi is a u-sublattice of A+ or A- . 

(2) (Hyperbolic estimates) 
(i) Every 7W G Tu is a C2(b) curve; and 3X± > 1 s.t. 

Df*r I > Af* 

Vz G 7U fl Qi, r being a unit tangent vector to 7W at z and Qi being the 
rectangle spanned by A^. 
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(ii) \f z G A and VC G 7s (2) we /mve 

<(r<(r < cv Vi > 1. 

( 3 ) Leb(A H 7U) > 0 V T U G P . 

( 4 ) (Return time estimates) Let R: A -> Z + 6e defined by R(z) = Ri for z G A¿. 
Tften 3 Co > 0 and #o < 1 0ft every 7n, 

Leb G 7W :<(r<(r> n} < Co0% Vn > 1. 

The rest of this section is devoted to proofs of Assertions ( 1 ) and ( 2 ) in Propos-
tion A; Assertions ( 3 ) and ( 4 ) are proved in Section 4 . There are slight (and totally 
harmless) inaccuracies in the above formulation of Propostion A. They are noted in 
Remarks 2 and 4 in Section 3.4. 

3.2. Some preliminary constructions. — First we assume / is a 1-dimensional 
map and construct for / a Cantor set that would play the role of A in Propostion A. 
Then we carry this construction over to W±, the top leaf of W (see Section 1.2). We 
will address certain technical problems in 2-d that are not present in 1-d, and conclude 
that the two Cantor sets we have constructed have identical geometric estimates. 

Temporarily then, we think of / as a map of [—1,1] given by f(x) = 1 — ax2 for 
some a < 2 , and let Qo be one of the two outermost intervals in the partition T defined 
in Section 1.4. We define inductively ílo ^ íli Z> ÍÍ2 D . . . as follows. Let u be a con
nected component of íín-i- First we delete from uj the interval f~n (—áe-c*n, Se~an); 
and if the /n-image of a component of what is left of uo does not contain some 
then we delete that also. What remains goes into fin. Our desired Cantor set is 

^00 — fin ^n-
We assume the following is true: if Mi is the minimum time it takes for x G (—5, S) 

to return to (—¿, £), then eaMl > 10. We assume also the corresponding fact for our 
2-d map. This is easily arranged since a is fixed before we choose a or S. 

Returning to 2-d, we let fío be the corresponding segment in W\ and try to con
struct Qn using the same rules and same notations as in 1-d. Let u be a connected 
component of fln-i. We assume for the moment the following geometric fact: 

(*) if part of fnoj is bound and part is free, then the bound part lies at one or both 
ends of fnu. 

If all of fncv is in the bound state, or if fnu> n {—8,6) x E = 0 , do nothing; i.e. put 
u C Q,n. If not, let 7 be the free part of fnu>, and let 7 be the maximal free segment 
containing 7. We will use as binding point ^(7), where z(-) is as defined in Section 2 . 
Deletions are then made with respect to this binding point, and f ioo = H £ in as before. 

To justify (*), consider the function t defined on fnuj where t(z) is the time to 
expiration of all bound periods at z (counting only the ones initiated before this step). 
We take as our induction hypotheses not only (*) but that t\fnu has the following 
profile: it is either decreasing (by which we mean non-increasing) or it decreases from 
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one end to its minimum and increases from there to the other end. It is easy to check 
that this type of profile is maintained on each component of Qn even if new bindings 
are imposed. 

We note also that the bound part at each end of fNU> (if it exists) is small relative 
to where Iv$ is the element of the partition determined by ^(7) that meets it. 
We know from 1-d or [BC2] that this is true wrt the partition determined by some 
binding point and Lemma 1 assures us that all binding points are essentially the same. 
This reasoning also gives us that no bound part is ever deleted. 

3.3. Stable curves. — The purpose of this subsection is to construct Ts, which will 
consist of a family of local stable manifolds through QQ C W\. We noted in Section 1.4 
that 3c2 > 0 s.t. \Df?r\ > 5eC2n Vz G iln. From Section 1.5 then it follows that en, 
the field of most contracted directions of Dfn, is defined in a neighborhood of every 
z G f)n. To construct Vs, however, we need to know that the domain of en is larger 
than this. 

As noted in Section 1.5, e\ is defined everywhere. We integrate e±, and let Qo = 
[jzeQ0 7 1 ( 2 ) where 7 1 ( 2 ) is the integral curve segment of length 106 centered at z, and 
Cto is the (Cfr)-neighborhood of Qo in W\. We will not need this for some time, but 
the 71-curve in Qo have slopes « ±2aS depending on whether we are working with 
QQ or QQ . 

Suppose that at step n, corresponding to every connected component u> of iln-i 
we have a strip foliated by integral curves of en. More precisely, Q^ — Uze% ln{z) 
where jn(z) is the integral curve segment of length 106 centered at z and u3 is the 
(C6)n-neighborhood of u in W\. We think of 7n as temporary stable manifolds of 
order n. 

Let u/ C u be a component of iln. We want to show that Q^1 is well defined and 
is contained in Qw. For z G a/, let Un(z) be the (C6)n-neighborhood of 7n(^) in M2. 
First we claim that en+i is defined on all of Un(z). Since |Z>/|r | > KJ, V j < n + 1, 
it suffices, by Section 1.5, to check that d(fjQ,fjz) < \j, V j < n + 1, VC e Un(z). 
Let be the point in jn(z) nearest to £. Then 

d(fjC fjz) < d(fjC fJC) + d ( / ' 'C ' , fjz) 

< (Cb)n • 5j + C\P < Xj. 

Next we claim that jn+i(z) is well defined and lies inside Un(z). We see this in two 
steps: first we use the Lipschitzness of en (Property (iii), Section 1.5) and a Gronwall 
type inequality to see that en\Un(z) can be mapped diffeomorphically onto d/dy on M2 
via a diffeomorphism 3>N with | |D4>N|| < e510&; then use |en+i — en\ < (Cb)n and the 
"straightened out" coordinates of en to conclude that the HausdorfT distance between 
jn+i(z) and 7n(^) is < 106 • (Cb)n < | (C6)n. Finally, observe that these arguments 
are easily extended to 7n+i-curves through points in ((76)n+1-neighborhoods of a/, 
proving Qu> C Qu;. 
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Taking limits of these "temporary stable manifolds", we obtain genuine stable man
ifolds for points in ttoo. 

Lemma 2 

(1) \f z G ftoo, there is a C1 curve joo(z) of length 106 and centered at z s.t. 

V C e 7 o o ( ^ 
d(fjÇJjz)<CV V J > 1 ; 

(2) V* ,* ' G floo, z^ z' => loo(z) H 7oo(^) = 0; 
(3) if fnloo{z) n7oo (^ )+ 0 , *Äen /n7oo(^) C ioo{z'). 

Proof of (1). — Let zn be the right end point of u>n-i, the component of Qn-i con
taining z. Since P|n un = {2:} (reason: |JD/nr| > 5eC2n on ujn~\ and fnu>n-i has 
length < 2), it follows from the estimates above that as n 00, 7n(zn) converges 
uniformly to a curve which we will call 7^(z) . Because the en's have a uniform Lip-
schitz constant (Section 1.5, property (hi)), 7n(^n) in fact converges in the C1 sense 
to 700(^0 • Thus the contractive estimates for fi | 7n(^n) carry over to /J | 700(2)- • 

Before proving (2) and (3) we need to do some preparatory work. Consider a C2(6) 
curve 7 lying in Q0 and joining dsQo, the two boundary components of Q0 that are 
not part of W. For each connected component oj of fln-i, we let 7^ denote 7 n 
Note that every point in 7^ is connected to some point in uj by an integral curve 7n, 
and also that if uj' C ttn is contained in oj, then 7^/ C 7^. For 0 G 7 we will use 
r{fiz) to denote the unit tangent vector to fiy at f^z. 

Sublemma 3. — Let 7 be as above. Then if uj C ftn-i is s.t. part of fnuj is free and 
intersects {—8,8) x M, £/ien £/ie binding point z for fnuj selected earlier is also suitable 
for /n7cj' where uj' = u;nf2n (see Section 1.3 and Section 1.5 for the meaning of "suit
able"). It follows from this that for all uj G fln~i, /J | 7^, j < n, has the bound/free 
estimates expressed in Section 1.3 and the distortion estimate in Section 1.4-

Proof of Sublemma 3. — We fix ( E 7a; and investigate the suitability of ? as a bind
ing point for (fnC,Df£T(Q). Let z G £ be s.t. C £ 7n(z). Then d(fnz,fnQ < Cbn. 
This cannot jeopardize the generalized tangential position part of the requirement 
since Cbn is totally insignificant compared to d(fnz,z), which is > e_cm. As to the 
angle part of the requirement, write 

i(DfÏT(z\DfZr{QQ)-) ; :<(Df?T(z)<(,DfMQ)-Q)-<(Df?T(<(Df?T(z),DfMQ)-$ù 

The first term is < 20b Cbn because both r(z) and r (C) have slopes < 106, \\Df?\\ > 1, 
and both r(^) and r(C) make angles « 2a5 with en(z). The second term is < Cbn/A 
by the matrix perturbation lemma in Section 1.5. The difference between r(fnz) and 
r ( / n C ) , therefore, are insignificant relative to (2a ± 1) • d(fnz, 2), the size of the angle 
they are supposed to make with the relevant contracting field about z. 
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The estimates in Section 1.3 depend on the pair (C ,T), C € being "controlled". 
(For the precise definition see 1.4.2 and 1.5.1 of [BY].) The distortion estimate in 
Section 1.4 holds for C2(b) segments all of whose points and tangent vectors are 
controlled. • 

Proof of Lemma 2 (continued). — We prove (3); the proof of (2) is similar. We will 
try to derive a contradiction assuming / n7oo (z) 9- 7oo (z1). Let N be a sufficiently large 
number to be specified. Let 77 and 77' be points in fn^oo{z) and 700(2') respectively 
s.t. 

(i) 77 and rjf are joined by a horizontal line segment 7 C Qo and 
(ii) 77 G dQu where uj is the component of fi;v-i containing z'. Since 77 and rj' lie 

in some 7^, Sublemma 3 tells us that if fNUJ is free (our 1st requirement on 
AO,then 

fNn fNv' > ECN 77-r7'| I > ECN 1 

' 2 
Cb)N. 

On the other hand, if q € /n7oo(z) l~l 700(2')) then 

f V fNv' < l / V Q ) -f Q + fN9 Q)-Q)-

< 
CbN+nQ)-
( 6 / 5 ) " Q ) -

+ CbN = ( 5 N + 1 CbN. 

These two estimates of fNv fNv' are clearly incompatible for N ^> n. 

3.4. Definition of A and return times. — We now specify the two families Yu 
and Vs that define A. 

Definition ofTs. — We let Vs = {700(2): z G Qooj where 7oo(0 is as in Lemma 2. 
Definition ofFu. — We let Tu = {7 C W: 7 is a C2(b) segment connecting the two 
components of dsQo}-> and let Tu — {7 : 7 is the pointwise limit of a sequence in Tu}. 

Remark 2. — (1) We have not proved that the curves in Fu are pairwise disjoint. 
However, since every 7 G Tu is the monotone limit of curves in Tu, there are at most 
count ably many pairs that intersect. It is easy to see that they play no role. 

(2) Without further analysis, we also cannot conclude that 7 G Tu is better than 
C 1 _ H L ( 6 ) , since they are uniform limits of C2(b) curves. This also is inconsequential. 

Having completed the definition of A, we now proceed to define the s-sublattices 
that make up A and their return times R. Let us remind ourselves again that in 
actuality we are interested in the set A+ U A - , where A^1 correspond to the lattices 
we have constructed near fi^ x [ — 6 , 6 ] , and J1Q being the two outermost intervals 
in the partition V introduced in Section 1.4. When we speak about return times, we 
are referring to return times from the set A+ U A " to itself, i.e. a point in A+ may 
return to A+ or A - . To keep the notations simple we will continue to write just UA". 
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We stipulate ahead of time that V2; E A, R(z) = R{z') Vz' G 7s(z), so R need 
only be defined on Anf io - We will construct partitions on subsets of Qo and use 1-
dimensional language. For example, fnx = y for x, y G Anfio means that fnx G 7s (y). 
Similarly, for subsegments LO,LO' C Qo, fnw = u>' means that fnLon A, when slid along 
7s-curves to Qo, gives exactly LO' n A. (We caution that ufNL0 — LO'" does not imply 
fn(u; fl A) = a/ n A!) For a; C Qn-i, CP \ fnu refers to CPp] where 2 is the binding 
point for fnuo selected earlier. 

We will construct below sets Qn C Qn and partitions CPn on Qn so that fio >̂ ^1 3 
3 . . . and £ G On-i — Qn iff -R(^) = n. As usual, we think of points belonging 

to the same element of CPn as having indistinguishable trajectories up to time n. We 
augment CP defined in Section 1.4 to CP = {LO G original CP} U {[—1, —5), (5,1]}, and 
let CP be the partition on Qo — Qoo dividing this set into connected components. The 
symbol "V" refers to the join of two partitions, i.e. A V *B = {A n B: A G A, B G £ } . 

An interval LO C ffcn is said to make a regular return to f£o at time n if 

(i) all of fnco is free; 

(ii) D 3fî0. 

Rules for defining lìn, CPn and i?: 

(0) ft0 = fto, ?o - №0}. 
Consider LO G CPn_i. 

(1) If a; does not make a regular return to fio at time n, put a; fl Qn into f£n, and 

let 
^ | ( ^ n n n ) = Crn3>) ( (co D Hn) 

with the usual adjoining of end intervals (this is always done with or without 
our saying so explicitly). 

(2) If LO makes a regular return at time n, we put LO' = (LO — f nQoo) H Qn in _. 1 1 
Qn, and let CPn u = ( /~ny V f~n<P) LO'. For Z E LO s.t. / n z G fico, we define 

#(2) = n. 
(3) We require that R > no for some no to be specified in Section 6.1. To comply 

with this, if LO G CPn_i makes a regular return at time n with n < no, then we 
treat LO accordine: to Rule (1) and not Rule (2). 

(4) For z G fin ^n, set i?(^) = oc. 

Remark 3. — We digress to make the following adjustments in our definitions of CPn; 
they will simplify the proofs in Section 4. Let us say that a C2(b) segment 7 C (—5, S) 
is of "full length" ifBuJ s.t. jnl^^ 0 and £(7) « Recall that in Section 3.2 
we made sure that when something is deleted from fNL0, to G Qn-i, no "short" segment 
is left behind. We wish to do the same for fNL0 for every LO G CPn_i. For definiteness 
suppose that LO G CPn_i was created at step k < n — 1, and that not all of LO will 
remain in Qn. We distinguish between the cases where fKL0 « some I^j and where 
fku is a gap of A. 
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If fkuj is a gap of A, then dist(/n(<9a;), e) > de~a(n-V > 105e" a n , so the end 
points of fnuj straddle the forbidden interval (—5e~ a n , Se~an) by wide margins and 
no problem will arise. 

Suppose fk UJ ^ some Ij/j • Since deletions occur only at free returns, we have 
£(fnuj) » 8e~ocn. The only problematic scenario is when a tiny part of fnuj sticks 
out, say, to the left of (—8e~° i n

y Se~ocn). If this awkward bit remains in f ) n , then there 
must be something in ffcn_i that is mapped by fn to the left of it. The reasoning of 
the last paragraph rules out the possibility that the left end point of fnuj is a limit 
of infinitely many small segments coming from the gaps of A. Thus 3UJ' G 7n-i 
that shares this relevant end point with UJ. Hence 3UJ" G *Pk with this property and 
fkuj" « some I„'j>. We now retroactively move the boundary between UJ and UJ" SO 
that the awkward bit in question belongs to the image of UJ1 or UJ" . It is easy to see 
that no boundary is moved more than once, for a gap beween the adjacent elements 
appear immediately thereafter. 

It is now clear what the sublattices in Propostion A (1) are: each A* is an s-
sublattice corresponding to a subset of fto H A of the form /~ n f ioo Pi A Do;, UJ G y n - i 
making a regular return at time n. Note that if A^ is one of the s-sublattices, and 
7 = Qi n 7 W , 7 W G P , Qi = the rectangle spanned by A$, then fnj G P . To see 
this, first assume 7 C W. Then fnj is C2(b) because it is free; hence it is in Tu. 
This property clearly passes on to curves in Yu, proving fnA{ C A. Note also that 
the hyperbolic estimates in Propostion A are simply Estimate III in Section 1.3 and 
Lemma 2 (1). 

To complete our objective of proving Assertions (1) and (2) in Propostion A then, 
it remains only to show that fRiAi is a n-sublattice. This requires proving that the 
Cantor set fRiAi somehow matches completely with A in the horizontal direction. We 
claim that this is a consequence of our construction but defer the proof to Section 3.5. 

Remark 4. — We have not proved that R{z) < 00 for every z G A. Indeed, the 
assertion in Propostion A (1) that A = |J A* is inaccurate and should be ammendec 
to read "for every 7™ G Yu, Leb((A — (J A*) Pi ju) = 0". That R < 00 a.e. on A n 7^ 
will follow from the Main Lemma in Section 4. 

3.5. Matching of Cantor sets. — To complete the proof of Propostion A (1), we 
need to show that whenever Rule (2) in the previous subsection is applied, 

fn(uj nn^) D ^ oc 

We formulate this as 

Lemma 3. — Let UJ G ftn-i be s.t. fnuj crosses QQ completely. Then \l z G A, 
3 zr G UJ H A s.t. fnz' G 7 s (z) . 
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Let us first explain the central idea of the proof assuming that / is a 1-dimensional 
map. Given z G ffcoo, there is (by hypothesis) z' G LO with fnz' = z; what is at 
issue is whether z' G fioo* First, G í í n because u; C í í n - i and / n £ ; G fío- It 
suffices therefore to show that | / J + n £ ' | > 2<5e~( J ' + n) a Vj > 0. This is true because 
\f*+nz'\ = | / ' * | > ¿e~ a-?, which is > 10Se-Q^+r^ since e a n > 10. 

For the 2-dimensional situation at hand, what complicates matters is that different 
layers of W require different binding points, and that the binding point at step n 4- j 
for fn+jz' may not be vertically aligned with the binding point at step j for fjz. Our 
aim in this subsection is to dispel with these technicalities so that the 1-d argument 
prevails. 

Lemma 3'. — Let to be a connected component of Ctn-i, and suppose that fnQu 
crosses Qo completely in the horizontal direction. Then V j > 1, if LOJ is a component 
offlj, then there is a component LOU+J of Qn+j s.t. Q(JJj D fnQuj C fnQun+j' 

z' 
z -

Q)-+3 (J 

fnJ+33 (J 
+3 (J 

FIGURE 2 

In this subsection we will regard Q^ as foliated by temporary stable curves through 
LO, ignoring the slight discrepancies between the temporary curves of various gener
ations or their slightly different domains of definition. Those matters were dealt 
with in Section 3.3. We remark that if Lemma 3' holds, then it will follow that 
(IL,. Q»i) n fnQ* C L l n + J fnQun+j for all j > 1. Taking the limit as j -> oc, we 
will obtain (\JzGQoo 7s(z)) H fnQcv C Uzen^ fnls(z), which gives Lemma 3. 

Proof of Lemma 3'. — Let n and LO be fixed, and assume the conclusion of Lemma 3' 
for all components of ftj-i. We pick one uij—i, and let un-\-j-\ be as in the lemma, 
see Figure 2. We will examine what is deleted from / j Q C t , i _ 1 at step j versus what is 
deleted from fn+3QU;n+j_1 at step n + j . 

Let z G fn+jLOn+j-i fl fiQiVj_1 be such that z is deleted at step n + j , and let 
z1 G 7 | (z) H fjLOj-i. We will show that z' is deleted at step j . The notations and 
results of Section 2 will be used heavily in the next few lines. First if d1(z

l, G) < <5e - a j , 
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we are done. Suppose not. Then since \z — z'\ < (Cb)j, 

\z - z{z')\ > \z' - z(z')\-\z- z'\ > 9_ 
10 

5e~aj, 

and z is in tangential position wrt z(z'). But we also have 

\z-z{z)+3(J\+3J<5e-^+j^^+j^ < _2_ 
ÏÔ 

+3 (J+3 (J 

and this is incompatible with our estimate on \z — z(z')\. 

4. Return time estimates 

The goal of this section is to prove Assertions (3) and (4) in Propostion A. 

4.1. Statement of lemmas and ideas of proofs. — Let fto C W± be as in 
Section 3, and recall that there are sets ft0 = ft0 ^ fti ^ ft 2 3 • • • and partitions 7n 

on ftn so that for all z G ftoo? z G ftn iff R(z) > n, and points in the same element 
of T n are viewed as having the same itinerary up to time n. (See Section 3.2 and 
Section 3.4.) Let | • | denote the Lebesgue measure on 7 n-curves. 

Lemma 4. — l^ool > 0. 

Proof. — This is a 1-d argument using estimates in [BC1]. In the construction of 
{ f t n } , let UJ C ftk be a component that is formed at step fc, and suppose that some 
part of it will be deleted at step n. Since fk UJ Z) some Ivji we are guaranteed that 
\fnuj\ > S3Pe~3aPk > S3(3e-3oi(3n. But the subsegment of fnuj to be deleted has length 
< 46e~an. Taking distorsion into consideration when pulling back to Qo, we have 
that 

\iin-i — ftn I 
|ftn-l| 

< c s(l-30)+3 (J+3 (J-a(l-3ß)n 

and the statement of the lemma follows since 
oo 

n=Mi 
1 _ Cl$(l-3ß)e-cx(l-3ß)n'+3 (J > o , 

where M± is the minimum time for a point in (—5,6) to return to (—5,5); see Sec
tion 3.2. 

Lemma 5 (Main Lemma). 3C0 > 0 and 0O < 1 s.t. 

ftn < CQ9O Vn > 1. 

Remark 5. — We have stated lemmas 4 and 5 for ftn on Wi, but the corresponding 
statements are true for every j u G Tu with uniform estimates (independent of ju). 
The proofs are in fact identical through the use of Lemma 2. A related fact that will 
not be needed till later is in fact the absolute continuity of { 7 s } as a "foliation"; see 
Sublemma 10 in Section 5. It says in particular that 3C > 0 s.t. for all 7, 7' G Tu, 
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if * : 7 H A »-> 7' is denned by = 7(2?) fl 7', then < C\A\ for every Borel 
subset A of A n 7. 

We postpone the proof of Lemma 5 for later, but use instead the remainder of 
this subsection to discuss the main ideas behind this tail estimate for R. Consider a 
segment a; C Oj^. 

(1) It is easy to see that once fnuj becomes sufficiently long, then it will make a 
regular return to ft0 within a finite number of iterates. Our situation is as follows: 
as we iterate / , UJ grows in length — except when it comes near 6, at which time 
it may lose a piece in the middle and it may get subdivided into i ^ ' s for distortion 
control; these components are then iterated individually. An unfortunate component 
of UJ may get cut faster than it has the chance to grow, but our contention is that 
because of the estimates in Section 1.3 the general tendency is for a component to 
grow long. 

(2) When a regular return occurs, small pieces corresponding to the gaps of A are 
created, and these small pieces are handled individually as they move on. We must 
therefore carry out the large deviation estimate in (1) simultaneously for the entire 
collection of gaps; such an estimate will involve the distribution of gap sizes. 

(3) As has already been suggested in (2), it is not quite the end of the story when 
a component of UJ grows long, for at regular returns only a (fixed) percentage of the 
long segment gets absorbed into the Cantor set A. To estimate distribution of return 
times we must estimate the frequencies with which the components containing typical 
points makes regular returns. 

These ideas are made rigorous in Sections 4.2, 4.3 and 4.4. We remark also that 
(1) is essentially dealt with in [BC2] in the slightly different context of parameter 
exclusions, and that we learned some of the estimates for (2) and (3) from [C]. 

4.2. Growth of components of a segment to a fixed size: a large deviation 
estimate. — In this and the next subsections we will be studying the time evolution 

of a curve 7 which is contained in f^ftj for some j > 0. It is convenient to think of 

points as being in 7 at time 0, so let us introduce the following notations: fl^ = {z E 

7 : f-'z G ftj+fc}, similarly for ft(

k

j\ and 7(

k

j)(z) = { /767 : f~jV G $j+k(f~~jz)}. 

We will also use the following language. For z E 7, we say that z makes an essential 

free return (= e.f.r.) to (—6,6) x R at time k if z € fij^i and fk7>^l1(z) is free and 

contains some IVj. We say z makes a regular return to fto at time k if z E fijjf2i and 

fky(^l1(z) makes a regular return. We define the stopping time 

E(z) = the smallest k E Z + s.t. 

either z £ fl^ or z makes a regular return at time k 
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and let 
In - {z e 7 : E(z) > n}. 

Sublemma 4 (cf. Section 2, [BC2]). — There exist D[ > 0 and 0[ < 1 for which the 
following holds. Let 7 = f^co for some LO G WJ, and let n G Z + . We assume that 7 is 
free and is « some with \r\ < n/6. Then 

L7N| < ^ W M -

Proof. — We will prove that 

(*) |7n| <Z>ie-* n + ra" r l |7| 

for some D[ independent of 7 or n. This implies the Sublemma immediately: for 
\r\ < n/6y D[e-iN+T6^ < ^ e - * n + ^ t = Z^e"**, so it suffices to take 6[ =e~1/60. 

Consider z G 7 with E(z) > n , and suppose that z makes exactly s e.f.r.'s in the 
first n iterates, at times 0 = to < t\ < • • • < ts < n. It follows from Remark 2 in 
Section 3.4 that fufyj)(z) « some Iriii for each i. A slightly extended version of our 
estimates in Section 1.3 gives for all i < s: 

U+i - t i < 4 \ r i \ N =R}. and f t i + 1 - u I r i i i N = R } . ^+j^^+j^^+j^ 

This second inequality can be used to estimate the fraction 

(p (r u . . . , r s )N =R} . N =R}. 
N =R}. > G 7: &(z) ( r i , . . . , r a ) } | 

where ^(z) denotes the relocations of the e.f.r.'s of z. Letting C± be the distortion 
constant in Section 1.4 and writing ro = r, we have 

(f(ru ... ,rÄ) ci 
s 

i=l 
exp - | r < | + 3 ) 9 1 ^ - 1 1 } 

< Ci exp = 
7 
8 

^+j 

i=l 
\ri\ + 3ß\r\ 

Next we make, for fixed s and i?, the purely combinatorial estimate on the number 
of all possible s-tuples (7*1,. . . , r s ) , r$ G Z , with X^—1 l r * l = This is clearly 
< 2 s ( ^ ^ F " 1 ) . For us, since the time between consecutive e.f.r.'s is > A = log(l /5) , 
the number of feasible ( r i , . . . , r$) as locations of e.f.r.'s is in fact < 2R/A • (jR+^/^~1) > 
which by Sterling's formula is < 2R/A(1 + a(5))R with a(5) - » 0 as 5 0. 

Let 

4n 

N =R}.R}. 
2 G 7n: 2 makes exactly 5 e.f.r.'s up to time n and N =R}. 

N =R}. 
N =R}. 

We may then estimate | 7 n | by 

L7N| 
all relevant s,R 

AU 
^syR 

00 

R=(n/4)-\r 

R/A 

s—1 with 
ri , . . . ,r s; 

N =R}.N =R}. •V?(ri,...,r a) • |7|. 
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The lower limit of summation for R comes from the fact that |r| + 4i? must be > n, 
otherwise the (s H- e.f.r. or a regular return, whichever happens first, would have 
taken place by time n. We do not need to concern ourselves with s = 0 because 7 
must make an e.f.r. by time n/2 (because e-™/6ecm/2 ^ Note that this is an 
overestimate also in the sense that some of the ( r i , . . . , reconfigurations are forbidden 
due to the Iri£^s being too close to C. 

Plugging our earlier estimates into this last inequality, we obtain 

Ы <c 
00 

R=(n/4)-\r\ 

2*/*(i + a(S))R • tff/де-«к+з/з|г| . ы> 

which is less than the right side of (*) provided S is sufficiently small. 

We now re-state Sublemma 4 in anticipation of how it will be used. 

Corollary to Sublemma 4. — There exist D\ > 0 and 9\ < 1 for which the following 
holds. Let 7 be contained in a free (C2(b)) segment ofW. We assume that either 

(i) 7 = f^uj for some UJ E TJ, 7 need not be of "full length"; or 
(ii) 7 = [Ji f^oji where for each i, UJI E 7j and f^uj% ~ some Iri£{. 

Then 
E(z) > nE(z) Vn > 1. 

Proof. — First we prove (ii). For fixed n, we have by Sublemma 4 that 

{z E 7 -e~n/6,e~n/6> : E(z) > n < D'Xnh\ E(z) > n 

and also that 
7 n -e~n/6,e~n/6 < 2e~n/6. 

To prove (i), fix n and observe as above that we may assume I7I > e ™/6, and that 
7 makes an e.f.r. at time jo < n/2. Suppose that this is not a regular return, and 
let 7' = p ° 7 . Then \-yn\ < \fjojn\ < \{z E 7' : E(z) > n / 2 } | , and this last quantity 
is estimated as in the proof of (ii). • 

4.3. Growth of "gaps" to a fixed size. — First we prove a sublemma about the 
distribution of дар sizes. 

Sublemma 5. — There exist C > 0 and a > 0 s.t. for all ju E Tu, if 9 = 
{components of 7" — A } , then 

7€S: h\<i 
\7\<Cr. 

Proof. — In view of Sublemma 3, it suffices to consider 7™ = Q0-
Observe first that all the gaps of ftoo created at step n have length 

> СГ145е-(ХПЕ-С1П. 
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(If fnuj partially crosses (—5e~ a n , 5e~an), then the part deleted is attached to an 
earlier gap, making it even bigger.) Given £, let Nn be s.t. £ « e ~ ^ + C l ) i V o . Then 

-ye y 
\<Y\<1 

17 l < 
n>N0 cj=comp. 

of ttn-! 

C i 4 e - ^ - 3 / 3 ^ n | o ; | 

(cf. Lemma 4). Thus 

| 7 |<* 

| 7 | < C e " a i V o ( 1 - 3 / 3 ) < C T 7 , 

some a > 0. 

Sublemma 6. — Le£ A c = fio — A, and /or 2 G A c , define E(z) as in Section 4-2 
with 7 = the component of Ac containing z. Let = {z G A c : i£(z) > n } . Tften 
• Z>2 > 0 and <92 < 1 

\K\ < D2E% Vn > 1. 

Proof. — Let 9 be the set of all components of A c . For each n G Z"1-, let Sn = v^7 £ 
S: < D^O™} where D\ and #i are as in the Corollary to Sublemma 4, and let 
c" = c _ c' # 

By Sublemma 5, 

E(z) > n 

\UJ\ < CiDxO^Y = £>2^
N. 

For a; G Sn^ w e know from the Corollary to Sublemma 4 that ujn := {z e UJ : E(z) > n} 
has length \ojn\ < D\9?, and from Sublemma 5 that if 

Nk = #{UJ: D±E
K < M < D1EÌ~1}, 

then 

E(z) > n 
C(Dxd\-XY 

^ Nk < D"0 

E(z) > nE(z) > n 

Thus 

^ Nk < D"0ln. 

^ Nk < D"0ln. 

k<n 

^ Nk < D"0ln. 

4.4. Frequencies of regular returns and Proof of Lemma 5. — We define a 
sequence of stopping times To < T\ < • • • on subsets of ft as follows. Let TQ = 0, 
and assuming that Tfc_i(^) is defined, let Tk(z) be the smallest j > Tk-i s.t. 7j-i(z) 
makes a regular return to ft0 at time j . Let 0& = {z G fto : Tk(z) is defined}. It 
follows from the Corollary to Sublemma 4 that Qk D ^00 a.e. for each k. Observe 
that @k is the disjoint union of a countable number of segments {UJ} with the property 
that each UJ is an element of some J^-i, Tk\uj = j , and a certain proportion of UJ is 
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absorbed back into A at time j. This is to say, 3s0 > 0 such that for all LO C Bk as 
above, 

\u;n{R = Tk}\ 

M 
^ Nk < 

This implies inductively that for every fe, 

\{ze Gk :R(z) >Tk}\ < (l-e0)
h. 

Let 8\ > 0 be a small number to be determined. Then for all n, 

n n c { z e n n : T[£in](z) >n}u{ze e [ £ i n ] : R(z) > T[£in](z)}. 

The measure of the second set on the right has already been estimated. It remains 
therefore to prove 

Sublemma 7. — 3 Ds > 0, #3 < 1, and 8\ > 0 such that 

\ { z e n n : T [ £ i n ] ( z ) > n } ^ N k < D " 0 l n . \ < D 3 0 2 Vn > 1. 

Proof — Let 1 < ni < n 2 < • • • < n£ < n be fixed for the time being. For k < n, we 
define Ak = Ak (n±,..., n^) to be 

Ak = fz € Qk' the regular return times of z up to time k are 

exactly those n^s with ni < fc}, 

and we estimate \An\ following these steps: 

(i) | A n i _ i | < £>i#™1_1 by Sublemma 4 applied to 7 = Q0-
(ii) Note that Ani _i is a union of elements of 9 n i _ i , and that Ani _i could be seen 

as 

4̂ni = {cj — U' U LO" : LO G 3>ni _i I ^4 n i _ i , LO^ Nk < D"0ln. making a regular return at time n i} , 

where LO' = LO D / ~ n i A c and LO" = (LO - / " n i f i 0 ) H flni. 

(iii) Using Sublemma 4 to deal with LO' and Sublemma 6 to deal with LO" we obtain 

An2—i 
Ani—i 

< ^ Nk < D"0ln. 

| « o | 

for some D 3 and #3 independent of the n^'s. 

(iv) Proceeding inductively, we obtain 

= An 

Ane—l 

An£—i I 

l^n«- i - l | 

< D"0ln. 

D"0ln. 
Ani—1 

< ^ Nk 

I f i o l ^ . 
^ Nk  
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We may now choose e\ > 0 small enough that 

^ Nk < D"0ln. #3 = ^3 < 

and conclude that 

{z G fìn : T [ e i n ] > n] 
[em] 

¿=0 (ni,...,n£): 
<ni <• '-<ne <n 

A n ( n i , . . . ,n*)| 

^ Nk < 

¿=0 u . 
(6'')n 

<DsffS 

provided ei is sufficiently small. 

5. Reduction to expanding maps 

5.1. Purpose of this section. — From Assertion (1) in Propostion A, we know 
that fR: A (3 sends 7 s-fibers to 7 s-fibers, so that topologically a quotient map is well 
defined. More precisely, let A = A/ « where « is the equivalence relation defined by 
z « z' iff z1 G 7 5 (^ ) . Then A O makes sense, and with A$ having the obvious 
meaning, fR maps each one of the Cantor sets A$ homeomorphically onto A. 

The aim of this section is to study the differential properties of fR: A O in the sense 
of the Jacobian of fR with respect to a certain reference measure. Let T: ( X i , m i ) —>• 
№ , ^ 2 ) be a measureable bijection between two measure spaces. We say that T is 
nonsingularii T maps sets of mi-measure 0 to sets of ra2-measure 0. For a nonsingular 
transformation T, we define the Jacobian of T with respect to mi and ra2, written 
Jmlym2(T) or simply JT, to be the Radon-Nikodym derivative d(ni2 o T)/dm\. 

Proposition B. — There is a measureable family of reference measures { r a 7 , 7 G Tu} 
with the following properties: 

(1) Each vrtry is supported on 7(1 A; it is a finite measure equivalent to the restriction 
of 1-dimensional Lebesgue measure on 7 to 7 n A. 

(2) ra7 is invariant under sliding along 7 s , i.e. if 9: 7 D A —>• 7' n A is defined by 
{9(z)} = 7 ' D 7 5 0 z ) , then for E C 7 n A, mY(9E) = m 7 (£ T ) . 

(3) For z G 7 PI Ai, let JfR(z) denote the Jacobian of fR | (7 fl A*) a£ # 
respect to our reference measures on the respective ju-curves (we know that 
fR I (7 H A,-) nonsinoular on account of fl)). Then 

JfR(z) = J / ' V ) 

/or a// z ' G 7 s (z). 
(4) 3A > 1 s.t. JfR(z) > A* a.e. 
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(5) Restricted to each 7 Pi A¿, (log JfR) O (fR) 1 is "Holder" in the sense to be 
made precise in Section 5.4Y with uniform estimates independent of 7 ori. 

Property (2) above tells us that {m7} defines a reference measure fh on our quotient 
space Á. Property (3) says that fR: Á O is nonsingular w.r.t. m; we will call its 
Jacobian JfR. Properties (4) and (5) allow us to view fR: (A, ra) O as a piecewise 
uniformly expanding map whose derivative has a certain "Holder" property. We use 
" " for "Holder" because it is not the usual Holder condition; the relevant condition 
here is dynamically defined and will be explained in Section 5.4. 

Our proof of Proposition B is essentially an adaption of some ideas used in the 
construction of Gibbs states. See e.g. [B] for an exposition. 

5.2. The reference measures. — In this subsection we define { r a 7 , 7 € Tu} and 
prove Properties (1) and (2) in Proposition B. For simplicity of notation we will write 
ra instead of ra7 when there is no ambiguity about 7. The Jacobian w.r.t. ra will be 
denoted J ( ) , while the one w.r.t. 1-dimensional Lebesgue measure on 7M-curves will 
be denoted (•)', i.e. f'(z) = \Dfzr{z)\ for z G <yu. 

We pick and fix an arbitrary 7w-curve in the definition of A and call it 7. For 
z G A, let z denote the point in 7 n 7^(2:), and let <p(z) — log f'{z). We define for 
n = 1 ,2 , . . . 

un(z) 
n-1 

i=0 
^ Nk < D"0ln.^ Nk < 

Sublemma 8. — 3 C > 0 and b' with & < 6' « 1 s.t. Vn > k > 0 , 

n 

i=k 

^ Nk < D"0ln.^ Nk <^ Nk < D D"0ln. 

Proof. — First we write 

V>(f'z) - <p(fz) = log 
^ Nk < 
D"0ln. < J 

/'(/**)- f'(f*z)\ 
^ Nk < D"0ln. 

Then letting r¿ = r(flz) and r¿ =. r(flz), we have 

\f'(fz) - f'(fz)\ < \Df,izTi - Dffisn\ + \Df,itTi - Dff^nl . 

The first term above is clearly < C'b* since d(fiz,fiz) < Cbl (Lemma 2 (1)). The 
second term is < 5|r^ — Tf|, which we estimate by 

<(Ti,r<) < <(DfÍT0,D^ Nk < D"0ln.fÍT0) + <(Dfir0,Dfi%) 

(5.1) ^ Nk < D"0ln.ùù$ 

the first because of the Matrix Pertubation Lemma in Section 1.5 and the second 
because P>f\ is hyperbolic and To and TQ are bounded away from their most contracted 
direction. 
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To complete the proof, observe that f'{fjz) > 6/5 V j , and that f'(fjz) > S for 
the first few j ' s . The desired conclusion follows easily with, say, b' > 61/8. • 

It follows from Sublemma 8 that u = limn un exists for all z G A. We know in 
fact that \u\ can be made arbitrarily small for b small. On each 7, let m be the 
measure whose density w.r.t. Lebesgue measure on 7 is XAn-y * X() being the 
characteristic function. Property (1) of Proposition B is immediate. Next follows a 
lemma, which gives a Lipschitz estimate for the tangential derivative at free return 
times: (fn)' z. This estimate is used in several places: in the proofs of the Holder 
regularity of the Jacobians (Section 5.4), and the in variance of the reference measures 
ra7 (Assertion (2) of Proposition B). 

For z i , Z2 G 7, let [zi,z2] denote the segment of 7 between z\ and z2. 

Sublemma 9. — EIC2 depending on 8 s.t. the following holds for each 7W and every 
n > 0. Let UJ C 7U be a segment in Qn, and suppose that 

(i) for each i G n, f%uj C 37^ for some^)[zuz2 

and 
(ii) fnuj is free. 

Then V z\, z2 € UJ we have 

(1) log C2ean^)[zuz 

C2ean^)[zuz 
< C2ean\fn[^)[zuz2zuz2]\; 

(2) log 
C2ean^)[zu 

(fN)'Z2 )̂[zuz2 
<C2\fn[zuz2]\ ^)[zuz2iffn0JDn0. 

Proof. — We follow the proof of Proposition 2 in [BY] p. 562-564, but make an 
improvement in the estimates. As in this proof we obtain 

T dH log (fn)'zi 
(fn)'z>> -

< C 
C2 

k=o 

ftk[zi,Z2]\^)[ 
e-vk 

where {tk}k=o are the ^ree return times, tq = n, and ftkuj ê J„fe. We then define 

m(v) = maxjtfc : »k = 

and using the fact that I f*fc+i Z\,Z2\ > 2 ^)[zuz2 we have 

T <C 

^)[zuz2 

fm^)[zuz2[^)[ 
^)[zuz2 

where S is the set of i/ '̂s not counted with multiplicity. Since f%uj lies > Se al from 
the critical set for each i, and the m(z/)'s are distinct for different z/s, we obtain 

^)[z 

^)[zuz2^)[z 

uz2 
^)[zu 

Q 

U=0 

2-k \fn[zuz2]v^)[ 
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proving (1). To prove (2) we have as in the proof of Proposition 2 in [BY] 

T <C 
^)[zuz2 

\fm^d6* 1py>[z1,z2]\ 
^)[zuz2 

<C'\ 
V 

1 
^2 = Ci, 

where C± is the usual distortion constant (see Section 1.4). Now for each v apply this 
to points in fm^uj for the time interval [m(v),ri\ to obtain 

|/m(l%i,*2]| 
\f™(»)u>\ ^)[zuz2 

\fn[zi,z2]\ 
l/n"l ' 

and conclude that 

T < C 
^)[zuz2 

I fM(^UJ 

^)[zuz2 
\fm{l,)[zud6* 1 

\f™(»)u>\ 

^)[zuz2 
^)[zuz2 

^)[zuz2 
^)[zuz2 Ci 

fn[zi,d6* 1py>z2 
^)[zuz2 

cl 
|H0| 

\fn[zuz2]\. 

Let 7 and 7' be arbitrary curves in Tn, and let 9 : 7 fl A —> 7' be defined by 
9(z) G 7s(z)D7/ . Property (2) of Proposition B follows from the following sublemma: 

Sublemma 10. — Temporarily let py and py> denote the Lebesgue measures on 7 and 
7' respectively. Then 9~1py is absolutely continuous wrt ply written 9~x p^ -<x plf 
and 

d6* 1py> 
dp^y 

(Z) = eu(z)-u(0z) for p~ a.e. z G 7 H A. 

Absolutely continuity arguments are well known in dynamical systems (see e.g. 
[PS]), but since our setting is a little nonstandard let us include a proof. Observe 
that the ra-measures are designed precisely so that 9 takes ra-measures to ra-measures. 

Proof. — Let LO C cD be subsegments of 7 with the property that LO makes a regular 
return to fio at time fc, LO is free at time k > fc, and all points in LO have the same 
itinerary up to time k in the usual sense. We require that 0 <C k <C k and that 
\fkLo\ » (Cb)k/4. (The second condition requires that k not be too much larger than 
k; it is not a serious imposition.) Let LO' C UJ' be the corresponding subsegments of 
7'. In what follows "a « 6" means that a/b is very near 1 and tends to 1 as all the 

tend to 00. 
Let z be an arbitrary point in LO fl A, and let z' = 9z. We claim that 

d6* 1py> \fku/\ 
(P)'z' 

d6* 1py> 

d6* 1py> 
d6* 1py> 

d6* 1py> 

d6* 1py> 

d6* 1py> 
s |u;| • e«(2)-«(2'). 
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For the first use the fact that ( / * ) ' is roughly identical at all points in a/. This 
is true by Sublemma 9 provided that k — k is sufficiently large. The same argument 
is used for UJ in the second Additionally we need the fact that \fkuj'\ « |/feu;|, 
which is true because the two curves are so short they can be regarded as straight 
lines, and their lengths are (Cb)k/4 while their slopes are < (Cb)k/4 apart (by the 
Matrix Perturbation Lemma in Section 1.5) In the third we use Sublemma 8 and 
the fact that k is large. 

Let A = {z G A : z makes infinitely returns to A } . We leave it as an excercise for 
the reader to verify that there is a cover U of A by pairwise disjoint sets of the type 
UJ above with M arbitrarily large. To prove 0~x -<-< /x7, let A be a closed subset 
of 7 Pi A. Choosing a subcover {wi} of U s.t. ^(\JuJi) < /JL^(A) 4- £, we have that 
^>(0A) < c2maxW^/ i7 ' (wi ) < e2max|ti|(^(^) To prove the statement on 

Radon-Nikodym derivatives, consider a Lebesgue density point z of 7 fl A and choose 
to containing z with \UJ fl A| « \UJ' Pi A| « \UJ'\. • 

5.3. The Jacobians. — For a.e. z G A fl 7, 7 G ru, we have 

d6* 1py>d6* 1py>d6* 1 
eu{fRz) 

eu{z) 

Proof of Property (3) in Proposition B. — We will verify that J(fR)(z) depends only 
on z and not on z: 

log J(fR)z--
R-l 

i=0 
d6* 1py> 

00 

¿=0 
d6* f (fRz) d6* 1 

> SRz 
I ) ) ) 

i=0 
^(fiz)-<p(fiz))d6* 

R-l 

d6* 1py> 

<P (fz) 
OO 

i=0 
V(f*(fRZ))-d6*1py>v(f(fRz))). 

Proof of Property (4) in Proposition B. — As observed earlier on, \u\ can be made 
arbitrarily small; it is in fact of order b. Our Jacobian J(fR)z is therefore a small 
Pertubation of (fR)',z, which is > eClR for some ci > | l o g 2 (see Section 1.3). • 

5.4. Regularity of the Jacobian. — Having established that m and J(fR) make 
sense on A, we now introduce a dynamically defined notion of "Holderness" satisfied 
bv J f W o f f Ä ) - 1 . 

For z±YZ2 G A, define their separation time syz\,z<2) to be the smallest n s.t. fnziy 
fNZ2 do not lie in three contiguous 7^'s. Here we have taken the liberty to confuse 
z G A with the representative on some 7 G Tw, and to include [—1,-5) and (5,1] 
when we speak about Iu^s. 
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Definition 2. — A function tp: A —» 1R is said to be Holder with respect to the sepa
ration time s(-, •) if 3 C > 0 and /? < 1 s.t. for m-a.e. z\,z2 G A, \ipzi — tpz2\ < 
C/38(Zl>z*\ 

The following lemma gives the precise statement of Property (5) in Proposition B. 

Lemma 6. — 3C2 > 0 and /3 < 1 s.t. for every i and V' z\,z2 G A ^ 

JUR){*i) 
J(fR)(z2) 

- 1 < C2(3s^Rzi^Rz2K 

This can be rephrased as follows. For each i let ( / : A —> A$ 6e inverse of 
fR | A*. T/ien z —> J{fR) o (f11)^1^) is Holder w.r.t. s(-, •) above with uniform C2 
and ft independent of i. 

Remark 6. — Some explanations are probably in order here. 

(1) Why would the regularity of the Jacobian involve separation times? If we were 
working with a 1-d map / : [—1,1] O , then x h->> logf'(x) is Holder in the usual sense 
— provided that near the critical point 0, we compare two points only if they are much 
closer to each other than to 0, e.g. if they lie in 3 contiguous J^-'s. In particular, 
two points on opposite sides of 0 cannot be compared. In the present situation A is 
obtained by collapsing W ^ - c u r v e s , so that points in A represent not points in E2 but 
futures of orbits, and J(fR)(z) has incorporated into it information on the entire orbit 
of the point z G A. Now two points z\,z2 G 7W could be arbitrarily near each other, 
and be mapped at some future time to opposite sides of the critical set. The sooner 
this takes place, the less one could expect J{fR){z\) and J(fR)(z2) to be comparable. 
Hence separation time enters. 

(2) Why C/3s(fRziifRz2) ? Built into this formulation is the assumption that the map 
/ is expanding on average. Consider for simplicity a C2 uniformly expanding map 
g with g' « A > 1. Fix 8 > 0 small enough that d(gxygy) « \d(x,y) whenever 
d(gx,gy) < 8. Consider x,y and n s.t. d(glx,gly) < 8 Vi < n. The following 
estimate is standard: 

\log(gn)'x-log(gnyy\ < 
n-l 

i=0 

l o g ^ ( ^ x ) - log g'igty) 

<C 
n-l 

0 

d6* 1py>d6* 1py>d6* 1py>d6* 1py 

Now if s{x',y') is the first time d(gsx',gsy') > 5, then d(gnx,gny) « CX~S^ x^ y\ 
so that 

CX~S^ x^ y\CX~Sd6* 1py>CX~S^ x^ y\CX~S^ x^ y\CX~S^ x^ y\ 

Here (3 plays the role of A 1, and separation may occur long before two orbits move 
> 8 apart. 
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We now proceed with the proof of Lemma 6. 

Sublemma 11. — 3C£ > 0 and (3 < 1 s.t. Vz1,z2 G 7uflA; \u{z{) - u(z2)\ < 
C%(3*(Zl>Z2). 

Proof. — Let n — s(zi,z2), and pick k G [f, f ] s.t. fk[z1,z2] is free. We know that 
k exists because if /n^3[^i, z2] is in bound state, then it was > e~ta from the critical 
set when the last (total) bound period was initiated, which means that this bound 
period must expire before time \n + Aa\n < \n (see Section 1.2). Write 

u(zx) - u(z2) — 
oo 

i=0 

CX~S^ x^ y\CX~S^ x^ y\< C2eOLk\fk[z1, z2<z2]\]\ 

The part 
k-l 

< C2eOL 
{•} is estimated by 

k-l 

i=0 
< log 

< C2eOLk\fk 

< C2eOLk\f 
log 

< C2eOLk\fk[z1 

(fk)'z2\' 

The first term on the right is < C2eOLk\fk[z1, z2]\ by Sublemma 9 (1). Observing that 
separation can occur only when fn[z\,z2] is free and using the estimates for orbits 
ending in free states in Section 1.3, we have that l / * ^ , ^ ] ! < e~Cl(n~k>)\fn[zi,z2]\ 
for some c\ > | l o g 2 . Altogether this first term contributes < C2ea%~Cl% < C2/3n 
for some (3 < 1. The corresponding term for Si, i = 1, 2, is handled similarly. 

For ^2i>k{-} we have, by Sublemma 8, 

oo 
< C2e, z2]\ 

oo 
E < C2eOLk\fk[z1, z2]\< C2 

oo 

ù$ù^ 
( v » ( / ^ 2 ) - <p(f%)) 

< 2C'(b')k < 2C'bn/8. 

Proof of Lemma 6. — It suffices to work with one 7"-curve. We consider 21,2:2 G 
7" D Aj and let n = s(fRzi, fRz2). We noted in Section 5.3 that 

log J(fR)zi 
JUR)Z2 

lot 
(fR)'z, 

' UR)'Z2 ' 
- (u(fRZl) - u(fRz2)) - (u(Zl) - u(z2)) 

d^(I) + (II) + (III). 

Since z\ and z2 lie in a segment that makes a regular return to fto at time i?, we have 
by Sublemma 9 (2) that (I) < C2\fR[zi, z2]\. Using Section 1.3 again we see that 
\fR[zuz2]\ < < C2eOLk\fk[z1, z2]\e-c'n< C2eOLk\fk[z1, z2]\\fn[fRzufRz2]\ < e"cin. Also, (II) < C^(3n by Sublemma 11, 
and (III) < C'4(3s(Zl^ where s(zuz2) is obviously > n. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



46 M. BENEDICKS & L.-S. YOUNG 

6. Proofs of Theorems 

To study the rate of mixing of / it is not sufficient to consider fR : A O alone: the 
return time function R also plays an important role. In this section we construct a 
tower A = (J2=o ̂  ^he bottom level of which is A and construct a map F : A O in 
a way analogous to that of building a special flow over fR:AO under the function 
R. This allows us to consider the Perron-Probenius operator or transfer operator 
associated with F : A O, the quotient map of F : A O obtained by collapsing 
along local stable leaves. Spectral properties of this operator are summed up in 
Proposition C in Section 6.3. We refer the reader to [Y] for a proof of this Proposition, 
and derive from it the results of this paper. 

6.1. Construction of a tower. — Let 

A d= { ( * , £) : z G A, £ = 0,1, 2 , . . . , R(z) - 1} . 

We introduce F : A O defined by 

F(zJ) 0 M + 1) if £ + 1 < R(z) 

{fHz,0) Xe+l = R(z). 

It is clear that there is a projection IT : A —>• E2 s.t. 7r|Ao is the identity map on A 
and / o 7T = 7T o F. 

An equivalent but less formal way of looking at A is to view it as the disjoint union 
I J f c o A^ where Ae d= {z e A : R(z) > £} denotes the £th level of the tower. Next 
we subdivide each level into components A^ — [Ji A ^ in such a way that F has a 
Markov type property with respect to the partition { A ^ } . Again using 1-d language, 
a natural subdivision of A^ might be the restriction of the partition 7i constructed 
in Section 3.4; but this partition is too "big". We introduce instead a sequence of 
partitions yn on Ctn so that is coarser than lPn and each element of yn contains 
no more than finitely many elements of yn+i- This is easily done by following the 
algorithm in the construction of 9n, except that when fnu> is a regular return, no 
subdivisions are made on that part of UJ that gets mapped onto fio — f̂ oo- (Elements 
of yn are not necessarily intervals; they may have "holes" due to absorption into Sloo-) 
We say that z\,z*z G A^ are in the same component A ^ if they both lie in the same 
element of 3V 

We summarize the topological properties of F : A Q: 

(I) A is the disjoint union U f c o ^ where the £th level A^ is a copy of {z G A : 
R(z) > £}; each A^ is further subdivided into a finite number of "components" 
Atj each one of which is a copy of an s-subrectangle of A. 

(II) Under F, each A ^ is mapped onto the union of finitely many components of 
A _̂f_i and possibly a i^-subrectangle of A^1. Let AJ^ = A ^ n ir'_1Ao. We 
think of points in ( J AJ i as "returning to the bottom level" under i7", while 
other points "move upward" to the next level. 
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From the description above it is clear that the quotient map F : A O obtained by 
collapsing 7s-curves as in Section 5 is well defined. Let fh be the reference measure 
on A or Ao- Since each A^* is a copy of a subset of A0, fh is defined on A ^ via 
the natural identification. Let J(F) denote the Jacobian of F with respect to m; 
more precisely, if z G A ^ and Fz G A^+i^', then JF(z) is the Jacobian of the map 
F | (^Ai^ D F 1 (A^+i^/ )^ . Also, given the present setting it is natural to define the 
separation time of zi,z2 G A to be 

s{z\,z2) = the smallest n > 0 s.t. fnzi and fnz2 lie in different A ^ ' s . 

This definition of will permanently replace the one in Section 5.4. Observe 
that under the present definition, z\,z2 G AQ separate faster than under the old one. 
Hence the distortion estimate in Lemma 4 is all the more valid. Again we summarize: 

(III) There is a reference measure fh on A uniformly equivalent to the restriction 
of Lebesgue measure on ju fl A for every ju such that with respect to m, the 
Jacobian JF of F satisfies: 

(i) JF (« ) = 1 V ^ U % 
(ii) 3C2 > 0 and /3 < 1 s.t. Vzi,Z2 G F (Ajf), 

\JF(Zl) 
JF(z2) 

- 1 < C20s(Fzi>Fz2). 

Here A^" and AN are the two components of AQ. Let 

c3 
m (A0) 

min (m (AJ) ,ra (A0 )) 

We state for the record the following very important tail estimate on the height of 
the tower A (or equivalently the return times to A0). 

(IV) The height function R : A0 %>+ has the following properties: 
(i) R > N where N is chosen so that C2eC2C3j3N < 1/100; 

(ii) 3 C0 > 0 and Go < 1 s.t. 

fh{R > n} < Co0% Vn > 0. 

The lower bound for R in (i) is for purposes of guaranteeing a definite amount of 
contraction for the Perron-Frobenius operator between consecutive returns of an orbit 
to the base. The feasibility of such a bound was arranged in Section 3.4. Note the 
order in which the constants in (III) and (IV) are chosen: C2, C3 and /3, and hence 
N can be chosen to depend only on the derivatives of / and not on the construction 
of the tower; whereas Co and 0Q depend on / as well as on N. The tail estimate in 
(ii) is a slight reformulation of Propostion A (IV)(ii). 
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6.2. SRB measures: Proof of Theorem 1. — We construct in this subsection 
an SRB measure v for / with v(A) > 0. This gives an alternate proof of Theorem 1 
to that in [BY]. 

Let fR : A O be the mapping with fR\Ai = fRi\Ai for each i, and let ¿¿0 denote 
the restriction of 1-dimensional Lebesgue measure on Slo to A fl QQ. For ra = 1, 2 , . . . , 
let 

< C2 
1 
ra 

n-l 
(fR) < C2eO 

Then //n is supported on a countable number of 7w-curves on each one of which it 
has a density pn. Clearly, pn — 0 on ju — A. The distortion estimate in Sublemma 9 
tells us that 

Pn(x) 

Pn(y) 
< C i for a.e. x, y G A fl 7W. 

From this and from the absolute continuity of the curves in Fs and the boundedness 
of the Radon-Nikodym derivatives (see Sublemma 10), it follows that if pn | <yu := 
pn/P>n (7U)> then M_1 < pn < M a.e. on 7W n A for some M independent of ra and 

Letting ra —>• oo, a subsequence nnk converges weakly to fi^. We have immediately 
that ŷ oo is /^-invariant and that it is supported on A. 

Let {^2o} be the conditional measures of p^ on 7u-curves, and let be an s-
subrectangle of Q corresponding to an arbitrary subsegment UJ of some ju. Then for 
a.e. 7 G Tu, we have 

M-1 mm < C2eOLk\ < M 7 J ^ n 7 ) < M max Qo,n7ul, 

proving (again using the absolute continuity of Ts) that *s uniformly equivalent 
to the arclength measure s \ (7 n A). 

To extract from //oo an /-invariant measure, simply let 

v — 
00 

¿=0 
fl (Â oo R > i 

That v is a finite measure follows from Propostion A (4) (ii); we may therefore 
normalize and assume v (M2) = 1 . It is clear that v satisfies the definition of an 
SRB measure as defined in Section 1.7. 

By the same token, we could view /z^ as a measure on Ao, and construct as above 
an F-invariant measure v on A with — v. It is also clear from the discussion 
above that 1/, the measure on A that is the quotient of is uniformly equivalent to 
our reference measure ra. 

6.3. Definition and properties of the Perron-Frobenius operator associated 
with F : A O . — First we introduce the function space on which our operator acts. 
Fix e > 0 with the following two properties: 
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(i) e2£00 < 1 where <90 is as in Section 6.1 ( I V ) (ii); 

r)k\\Li^r)k\\Li^r)k\\Li^r)k\\Li^ 
Note that property (ii) is consistent with 

1 

mA0 
< C 

mAli = 1. 

We remark for future reference the relative sizes of f3 and e £: from Section 6.1 
( I V ) (i) we have that J3N times various constants is < 1 /100 , while (ii) above implies 
that eeN < 2. Thus f3 should be thought of as < e~£. 

Our function space X will consist of those Tp : A —>• C with ||<^|| < oo, where || • || 
is a weighted L°°+ Holder norm defined as follows: let Tpti — Tp | A ^ , and let | • \v 
denote the L^-norm (1 < p < oo) wrt the reference measure fh. We define 

e~£ 
loo 

e~£ 
oo 

e~£e~£ 

and 

e~£ 
Hh 

ess sup 
e~£e~£ 

\^pzx - (pz2 
e~£e~£e~£ 

e~£e~£ 

where e is as above. Finally let 

i ^ i i = i i^ i ioo + \\nh 

where 

M L = s ] i p | k / , i l L and i m i * = s u p | k / , i l L -

The Perron-Frobenius operator or transfer operator associated with the dynamical 
system F : A (3 is defined by 

0» ( ? ) ( * ) = 

w.Fw—z 

<p(w) 

JF(w) 

Our choice of (X, || * ||) was to ensure that IP has the following spectral properties: 

Proposition C 

(1) 7 \ X X is a bounded linear operator; its spectrum cr(IP) has the following 

properties: 
- vi?) C { | A | < 1} 
— 3r0 < 1 s.t. (T{7) fl { | A | > To} consists of a finite number of points the 

eigenspaces corresponding to which are all finite dimensional. 
(2) 1 G <t(!P), and p G X is an eigenfunction corresponding to the eigenvalue 1. 

Moreover, if the greatest common divisor (gcd) of {R(z) : z G A Q } = 1, then 1 
is the only element of a(IP) with |A| = 1 and its eigenspace is 1-dimensional. 

See [Y] for a proof of Proposition C. 
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6.4, Decay of correlations: Proof of Theorem 3. — Recall that we are con
cerned with a "good" Henon map / : M2 O which we know has an attractor E and a 
unique SRB measure v. We assume for the rest of this paper that (/n,^) is ergodic 
for all n > 1. The following conventions will be used: if (p is a function on M2 or on 
E, then the lift of <p to A will be called (p; and if (p : A —>> C is constant on 7s-curves 
then we will sometimes confuse it with the obvious function on A called Tp. 

For 7 > 0, let Diy = 3~C7(E) denote the class of Holder continuous functions on E 
with exponent 7, i.e. 

3K:T = {(p : E - » E I 3C = s.t. Vx,y <E E, \cpx - <py\ < C\x - yp}. 

We will use as shorthand for the correlation between <p and ip o fn with respect to v 
the notation Dn(<p. ib: v), i.e. 

e~£> o fn) cpdv U> o fn) cpdv - (pdv ipdv 

We outline below the steps needed to derive from Proposition C an exponentially 
small bound for Dn((pjtfj; v). Since the derivation is completely formal and (with the 
exception of one small geometric fact noted below) has nothing to do with the present 
setting, we will refer the reader to [Y] for details of the proofs. 

Here are the main steps of the argument: 

(1) Observe that Dn((p,*l)',v) = Dn> o fn) cpdv (p,ip;v , and that by considering a power 01 
/ if necessary, we may assume gcd {R(z) : z G A0} = 1. 

(2) In preparation for using the Perron-Frobenius operator, we maneuver Dn((p, -0; v) 
into an object describable purely in terms of functions on A. This is done in 
two steps: 

(i) Fix K G (0, | ) , and let k = KU. Let M be the partition of A into 
{Aij}, and let ipk : A —> R be the function constant on elements 77 of 
M2k '= V?=o1 F~lJA with ipk \ r/ := ip o Fk (some selected point in n). 
t r • r 1 1 i 

> o fn) cpdvM2k '= V?=o1 F~lJAM2k '= V?=o1 F~lJA:= d (i7^ (^fc^):= d 

(ii) Let (fk be defined as above, and let (fk := d (i7^ (^fc^)) /d*7-
Verify that 

Dn-k iy^k'iv) ^ Dn-k (VkitPk^) 

and observe that 

Dn-k ((fk^k;u) = ^ 0 > N (<pkp)dm- ipkpdm <pkpdm 

(3) Use Proposition C to prove that, for some T\ < 1, 

:= d (i7^ (^fc^ (pkpdm P < COnst -T!"-2*. 
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In Step (2) above, it is neccessary to translate the Holder property for cp,ip G IK7 
to a Holder type condition for <p and ip. The following geometric fact is used: 

Sublemma 12 — V z G A, diam (nFk (M2k(z))) < 2Cak. 

We leave the proof as an easy exercise. 

6.5. Proof of the Central Limit Theorem. — Theorem 4 (the CLT) is also 
proved in [Y] but we prefer to give another proof here. As in [Y] this proof is based 
on a theorem of Gordin [G] but we apply Gordin's theorem to test functions in the 
Banach space X and use an L2 approximation argument (which in fact uses the decay 
of correlation) to prove the theorem for Holder test functions on A. 

The version of Gordin's theorem we need may be stated as follows: 

Theorem 5 ([G]). — Let (ft, 3u) be a probability space, letT : ft C be a non-invertible 
measure-preserving transformation, and let <p G L2(v) be s.t. Ecp = 0. Suppose that 

(*) 
j>0 

\E((p7=0\T-f?)\2 < oc 

Then 

1 

7=0 

n-l v—> 

7=0 

> o T f n N(0, er) 

where 

a2 - lim 
71—>OC 

1 
n 

7=0 

^z=0 
LO O 1 

2 
du. 

Exponential decay of correlations alone is not sufficient to conclude that (*) holds. 
Suppose, however, that there is a reference measure m with respect to which T is 
non-singular, and suppose that dv — pdm for some p > c > 0. Then we have a 
well-defined Perron-Frobenius operator given by !P(<£>) = where ip is the density of 
T*(<pm), and a gap in the spectrum of 7 (with respect to a suitable function space) 
is sufficient to conclude that (*) converges exponentially. In fact, we have 

(**) \E(LP\T-iM)\2dv<7=07=0Moo \7j(<pp)\dm 

see [K] or [Y]. See also Ruelle's earlier work [R]. 
For (p G IKy let ip(z) = (p o 7R(z) be the lift of cp to A. For k G Z+, we use cp(ki to 

denote <p o Fk and define Tpk by 

7=07=0 1 

v(A) A 
up o Fk dv, 

where the A's are the elements of the partition M2& defined in Section 6.4. 
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As in Section 6.3, for functions on A we use | • \p to denote the Lp-norm, 1 < p < oo, 
with respect to the reference measure ra and || * || to denote the norm on the space 
X. Let || • \ \^c denote the usual 7-Holder norm for functions <p : R2 —> C, i.e. 

I M I * , = sup (f(x)\ r sup 
X^Y 

\(p(x) ~ (f(y)\ 
\x-yp 

The following estimates are used in several places. 

Sublemma 13. — There is a constant C = C(f) such that for all functions y? G X 
we have. 

W\i < c\\JP\\. 

This is an easy exercise (see [Y], Section 3.2). 

Sublemma 14. — For (p G fK1 

sy iV \pk -yoFk \<C{ f ) \ \ i p \ \ ^ \ kHp) <r (Hp) <r ( Vfc > 0, 

where A = A(/, 7) satisfies 0 < A < 1. 

This sublemma is a direct consequence of Sublemma 12. 

Let us introduce the notation 

Snffî = 
1 

7=0 

n-l 

3=0 
cpo FJ. 

We now fix G jKy with f IJj du = 0 and prove the CLT for this function. 
Observe first that there is a constant K0 = K0(I/j) such that for all e > 0, if 
N{e) := [K0 log(l /e)] , then 

sup 7=07=0 - t P o F N ^ \ H p ) < r ( < e. 

This follows immediately from Sublemma 14. 

Lemma 7. — There is a function r(e) with r(e) -+ 0 as e —± 0 such that for each 
e>0, if 

fTn=Hp)<r( nUoFN^) 

Un — Sn(^lV(^) 
then 

sup 
n>0 

Hp) <r( LHp) <r(e). 

For the proof of this lemma we need the following estimates: 

Sublemma 15. — There exist constants C > 0 and 0 < /?o, T < 1, /?o and r depending 
only on f and C = C(f-0), such that for all j,N G Z+ the following hold: 

(i) f ^N^N ° Fjdv\ •<\<Cfa*NTI; 

Hp) fi>Nib(N) oFidv Hp) <r(Hp) <r( 
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(iii) j&N^NoFJdv rjo Fk) o Fj~klpdu 

(iv) J>(iyv(a° <>F*dP < C(3-2NtJ. 

Since ipN can also be viewed as a function on A, that the left side of (i)-(iv) 

above is < CrJ for some C = C(f,ip,N) follows from the decay of correlations proof 
outlined in Section 6.4. The proof of this sublemma consists of re-doing the estimates 

there and making transparent the dependence on iV.. We carry this out for (i) and 
(ii) and leave the rest as exercises. 

Proof of Sublemma 15(i) and (ii). — For <p, rj G X we have 

<p\oo\\noFk rj o F3\pdu — ( (p du)( rj du) 

<p\ V <p\oo\\n if p dm P dm 

< \v\oc 
<p\oo p p dm p ; 

From the spectral information of the Perron-Frobenius operator and Sublemma 13 
wp ronrlnrlp t.Vmt. 

Dj(p,mu) < <p\oo\\noFk$ù 

< CMoo max {||p||, \p\ 
OO J 

max ilMI, IrjFj~klpdu 
^P OO 

Now replace both cp and ri by ibN and note thai 
rjo Fk) o Fj~klpdu 

It follows that 

(i) holds. 
As for the proof of (ii) let rj be the lift of a function rj G IK7, let (p G X and consider 

rjo Fk) o Fj~klpdu 
(rj o Fj)cpdu (rjo Fk) o Fj~klpdu 

< [rjoFk -fjk] oFj~klpdu rjk o F3 kp>du 

< rjo Fk) o Fj~klpdurjo Fk) o fjkVj k(pip) dm 

< C | v | o c l W I ^ a * + C | f 7 j o o | | v l W - * . r ) k 

We have here used Sublemma 14 to estimate \\rj o Fk — r)k\\Li^). 

Finally we choose k — [kj] for a suitable small k and substitute ipN for Tp and ip(N) 
for rj above. The conclusion of (ii) with suitable choices of /?o and r then follows from 

the estimates \\^ofN\\^ < K?\№\\^, Kx = Kx(fn), and \\$N\\ < C(^)(3~N. • 
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Proof of Lemma 7. — We have 

\\Tn-Un\\22 = - n *poFN -I/JN 2 
71 l 2 

n- l 

.7 = 1 

\n- 3) poF n-l poF ip 
ip o 

ip ip o 

We pick jo = jo(s)- The exact choice of jo will be made later. For 1 < j < io we 
estimate the covariances by Cauchy's inequality 

*poFN -I/JN *poFN -I/JN o Fjdv < *poFN -I/JN < j < io ip ip 

< e • e — e2. 

For j in the range jo < j < n — 1 we use the estimates of Sublemma 15. Combining 
these estimates we obtain 

\\Un-Tn\\22 <e2(l+Jo) + 
4C 

ßLN 

n-l 

3=30 + 1 

1 
n 

( n - j ) e - V i p o 

with T — e e. 
The last sum is estimated as 

1 
n 

n-l 

)e-°j <e-ejo 
( n - j ) e i p ip o-°j <e-ejo. 

Hence \\Un - Tn\\22 < (1 + j0)e2 + ( 4 C / / 3 ™ o g l / > - ^ < \ By choosing 

ip ip oip ip o 
1 

>0 
log 

5 ' 
log 

1 
€ 

we obtain the estimate 

\\Un-Tn\\l <r(e) =0 
ip iip ip og ë 

Proof of lheorem 4. — We will prove the Central Limit Iheorem tor ip E Jty. More 
specifically, we will show that Fn{i) —> N(0,cr) in distribution, where 

Fn(t) = v z : 
1 

)e 

n-l 

j=0 
ip ip oip ip 

a2 = 
00 

3=0 ' 
ip ip o f3 dv > 0. 

We will in the following assume a > 0. It is in fact true that a = 0 iff ip — <p — f 
for some function cp £ L2. (This fact was communicated to us by Bill Parry.) Hence 
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the CLT is true for a = 0 with the Normal Distribution Function interpreted 
as the unit step function. 

We shall first see how we can use Gordin's theorem to conclude that the CLT holds 
for test functions from the class X. 

Let Tp € X with f Tppdfh = 0. The spectral properties of the Perron-Frobenius 
operator 7 guaranties that 

\\?jQpp)\\ < Crj Ay> o. 

Then \73 (up p)\\ < Cr3 \/j > 0 and from (**) it follows that condition (*) in 
Gordin's theorem is valid. We conclude that 

(* * *) v z : 
1 

ip ip 

n-l 

3=0 
\TpoFj(z) < t TpoFj(z) <Tp 

Note that from the invariance of the measure v under F it follows immediately 
that 

<r2TpoFj(z) <= Var [ rn] = Var[Sn(tf<">)] = Var[5n(</>)] = <t2(i/>) 

We will also use the notation erf = CR(^)N) — Var[C/n]« 
From Lemma 7 we conclude that 

a2 F TpoFj(z) ip ip oip ip o as <s —> 0 

and hence we can assume that a£ > 0 by chosing e sufficiently small. 
By moving up to the tower A and using the invariance of v under F we can also 

write 

Fn(t) =v z : 
1 

ip ip 

n-l 

?=0 
V(7V) oFj{z) < t 

We wish to compare Fn(i) with the distribution function 

Gn(t) = v z : 
7^ 

n-l 

3=0 

é N o F 3 ( z ) < t T 

It follow from (* * *) with up replaced by ipN that Gn(t) —> N(0, a£) in distribution. 
Now pick n > 0. By Tjebyshev's inequality 

Fn(t) <Gn(t + rj) + Z{\TTn-Un\ >n} 

<Gn{t + ri) + — \\m^$ùTn-Un\\l 

<Gn(t + r))̂ m + 
1 

ip ip 
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Letting n —» oo we conclude that lim Fn(t) < $ae {x + r)) + ±r(s). 
n—>OC 'I 

. Here 

TpoFj(z) < Tpo 
\/2Ïr<r 

ù^$ 

— oo 
TpoFj(z) <ù$ 

By letting e —> 0 we have 
lim Fn(t) < $a(x + n). 

n—> co 
Now let rj —>> 0. It follows that lim, -+00Fn(t) < &a{x). The proof that 

+00Fn(t) < &a{x)+00Fn(t) < 

is completely analogous. 
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COMPLEX FOLIATIONS W I T H ALGEBRAIC LIMIT SETS 

by 

César C a m a c h o & B r u n o A z e v e d o Scârdua 

Dedicated to Adrien Douady on the occasion of his 6 0 ^ birthday. 

Abstract. — We regard the problem of classification for complex projective foliations 
with algebraic limit sets and prove the following: 

Let T be a holomorphic foliation by curves in the complex projective plane CP(2) 
having as limit set some singularities and an algebraic curve A C CP(2). / / the 
singularities sing A are generic then either T is given by a closed rational 1-form 
or it is a rational pull-back of a Riccati foliation 71 : p(x)dy — (a(x)y2 + b(x)y)dx = 0, 
where A corresponds to (y = 0) U (p(x) = 0), on C x C. 

The proof is based on the solvability of the generalized holonomy groups associated 
to a reduction process of the singularities sing f n A and the construction of an affine 
transverse structure for T outside an algebraic curve containing A. 

1. Introduction 

Let J7 be a holomorphic codimension one foliation on the complex projective 2-

space C P ( 2 ) . Given any leaf L of T the limit set of L is defined as l im(L) = f]^ L\KU 

where Kv C Ku+1 is an exhaustion of L by compact subsets Kv C L. The limit set 

of the foliation T is defined as lim.F = \JL l im(L) . We are interested in classifying 

those foliations whose limit set is a union of singularities of T and an algebraic curve 

A C C P ( 2 ) . There are two reasons for this, first because these foliations exhibit the 

simplest dynamic behavior we can imagine and also because they must support an 

important class of first integrals. The parallel with the actions of Kleinian groups 

on the Riemann sphere comes naturally to mind. These foliations will correspond 

to actions with a finite set of limit points (one or two) while the first integrals of 

these foliations will correspond to the automorphic functions of such Kleinian group 

1991 Mathematics Subject Classification. — 32L30, 58F18. 
Key words and phrases. — Holomorphic foliation, limit set, holonomy. 
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58 C. CAMACHO & B. AZEVEDO SCÀRDUA 

actions. Here we will show that this similarity is not only apparent. Indeed the 
Kleinian groups will appear naturally as the holonomy groups of the Riccati foliation 
that, it will be shown here, is the ultimate model for these foliations. 

The problem of classifying such foliations T was considered in [1] and [17]. In 
both cases it is proved that, under generic assumptions, there are a rational map 
F: CP(2) -> CP(2) and a linear foliation C : \xxdy - X2ydx = 0 on CP(2) such that 
F = F*(C). In particular, it follows that no saddle-nodes appear in the resolution 
of sing.Fn A, and in fact all the singularities as well as all the holonomy groups 
appearing in this resolution are abelian and linearizable. Using [9] we can construct 
examples where T is a Riccati foliation with algebraic limit set on CP(2) , containing 
the invariant line (y = 0): 

T : p(x)dy — (y2a(x) + yb(x))dx = 0 

where a(x), b(x),p(x) are polynomials, and (x,y) G C2 C CP(2) is an affine chart (see 
Example 1.3 below) and A n C2 = (p(x) = 0) U (y = 0). 

In the Riccati case, the holonomy groups are solvable and we have an additional 
compatibility condition as in [2]. However we may have saddle-nodes in the resolution 
of sing.?7 fl A. The aim of this paper is to solve the problem above in the case the 
foliation may have certain saddle-node singularities in its resolution along A. 

Let therefore T be a foliation on CP(2) and let A C CP(2) be an algebraic invariant 
curve (perhaps reducible). We will say that sing T D A has the pseudoconvexity 
property (psdc) if the invariant (by T) part T of the resolution divisor D of sing JFPIA 
is connected and its complement is a Stein manifold (alternatively, T is a very ample 
divisor on the ambient (algebraic) manifold of the resolution of sing T n A denoted 
by CP(2 ) ) , so that we can apply Levi's extension theorem [21] which allows us to 
extend analytically to all CP(2) , any analytic object defined on a neighborhood of 
r . This property is verified if T has no dicritical singularities over A [1]. There is 
another remarkable case where property (psdc) is verified, as we can find in [17]. A 
singularity qQ G sing T Pi D is a corner if qG = D^C) Dj, where Di ^ Dj are invariant 
components of D. 

Also, we say that a saddle-node singularity qQ G D is in good position relatively 
to D, if its strong separatrix is contained in some component of T. A saddle-node 
xk+1dy — y(l + Axk)dx + h. o. t. = 0 is analytically normalizable if we may choose local 
coordinates (x,y) as above for which we have h. o. t. = 0. In this case it will be called 
normally hyperbolic if we have A 0 Q. In this case we call (x = 0) the strong separatrix 
and (y = 0) the central manifold of the saddle-node. We recall that according to [12] 
a saddle-node singularity is analytically classified by the local holonomy of this strong 
separatrix. In particular, the saddle-node is analytically normalizable if, and only if, 
its strong separatrix holonomy is an analytically normalizable flat diffeomorphism. 

Finally, we introduce the following technical condition (see Example 1.4): 
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(Ci) The saddle-nodes in the resolution o / s i n g j F n A are analytically normalizable, 
and the ones in the corners are normally hyperbolic. 

Our main result is the following: 

Theorem 1.1. — Let J7 be a codimension one holomorphic foliation on CP(2) having 
as limit set some singularities and an algebraic curve A C CP(2). Assume that 
sing f f l A satisfies property (psdc) and condition C\. Then, either T is given by a 
closed rational 1-form or it is a rational pull-back of a Riccati foliation 1Z : p(x)dy — 
(a(x)y2 4- b(x)y)dx = 0, where A corresponds to (y = 0) U (p(x) = 0) , on C x C . 

The proof of this theorem relies on the study of the singular and virtual holonomy 
groups [2], [5], [19] and [1] respectively, of the irreducible components of the divisor 
given by the resolution of sing .FDA. The limit set of the leaves L of T induces discrete 
pseudo-orbits in each of these groups, so that they are solvable [14]. The solvability 
of these groups, allows (under our restrictions on s i n g . F n A) the construction of 
a "transversely formal" meromorphic 1-form 77, defined over the invariant part T of 
the resolution divisor of sing J7 n A. This 1-form is closed and satisfies the relation 
duj = rjAuj, where ZD is a meromorphic 1-form with isolated singularities which defines 
the foliation JF, obtained from the resolution of s ingjFn A. Moreover, 77 has (simple) 
poles over T which coincides with the limit set of T. Using a result of Hironaka-
Matsumara (see [5], [8]), we conclude that (since C P ( 2 ) \ r is a Stein manifold) the 
1-form rj is in fact rational on CP(2). This corresponds to the existence of a Liouvillian 
first integral for T on CP(2), and also to the existence of an affine transverse structure 
for T in C P ( 2 ) \ C , where C C CP{2) is an algebraic invariant curve containing A, 
where A is the strict transform of A, [18]. This affine transverse structure can be 

extended as a projective transverse structure to ( C P ( 2 ) \ C ) U A. In particular, all the 
singular holonomy groups associated to the components of T are solvable analytically 
normalizable. This implies by (a careful reading of the last part of) [2] that either T 
is given by a closed rational 1-form or by a rational pull-back of a Riccati foliation. 

Example 1.2. — Let J7 be a rational pull-back of a hyperbolic linear foliation C : 
xdy — Xydx = 0, A G C \ R , on CP(2). Clearly T has an algebraic limit set consisting 
of some singularities and an algebraic curve A as in Theorem 1.1. 

Example 1.3. — Let us take any finitely generated group of Moebius transformations 
G C SL(2, C ) . Assume that the limit set of G is a single point, which can be assumed 
to be the origin 0 G C. The limit point 0 is a fixed point of G. According to [9] we 
can find a Riccati foliation J7 : p(x)dy — (a(x)y2 4- b(x)y + c(x))dx = 0 on C x C, 
whose holonomy group of the line (y = 0) is conjugated to the group G. Moreover 
we can assume that the singularities of T over this horizontal line are reduced and 
non degenerate. The line (y = 0) is invariant by T so that c(x) = 0, and also it is 
contained in the limit set of T and satisfies condition C\ in the statement above. This 
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example can also be seen in CP(2) using a birational transformation. This will create 
a dicritical singularity. This example will satisfy the (psdc) property for a proper 
choice of A. 

Example 1.4. — This is a counterexample to a more general statement. Let T be 
given by u = dy — (a(x)y + b(x))dx = 0 over C2 C CP(2). If we consider the vector 
field X(x,y) = (l,a(x)y + b(x)), then X is complete and tangent to T over C2. 
Moreover the orbits of X are diffeomorphic to C. It is not difficult to see, using the 
flow of X , that the leaves of T accumulate the line at infinity = CP(2)\C2, so 
that lim.77 = L^. However, generically, the resolution of sing J7 n exhibits some 
non analytically normalizable saddle-node. Indeed, this resolution is quite simple and 
shows that there are saddle-nodes with non convergent central manifolds [5]. On the 
other hand, in general, T is not a rational pull-back of a Riccati foliation of the form 
stated in Theorem 1.1. 

Acknowledgements. — Part of this work was conceived during a post-doctorade stage 
of the second author, at the Université de Rennes I. He wants to thank the IRMAR 
and specially D. Cerveau for the kind hospitality and for valuable conversations. 

2. Formal normal forms and resolution of singularities 

Let T and A C lim T be as in Theorem 1.1. Let n : (CP(2), T, D) -^_(CP(2), T, A) 
be the resolution morphism of Seidenberg, for sing T Pi A [20]. Thus CP(2) is a com
pact complex surface which is obtained from CP(2) by a finite sequence of blowing-
up's, denoted TT. The proper morphism 7r induces therefore a foliation by curves 
F — 7r*jF on CP(2). The divisor D — 7r~1(A) of the resolution is a finite union 
D = Uj=o^?> °f Projective lines Dj = CP(1), j ^ 0, and of the strict transform of 
A, D0 = 7r-1(A\ sing T). The foliation T has singularities of the following two types 
(called irreducible singularities): 

(i) xdy — Xydx 4- h. o. t. = 0 (non degenerate) 
(ii) ypJrldx - [x(l + \yp) + h. o. t.]dy = 0 (saddle-node). 

We consider the foliation T — and denote by Y the invariant (by T) part of D, 
which consists of the invariant projective lines and of the strict transform of A. Let u 
be a rational 1-form which defines T on CP(2) and denote by UJ the strict transform 
of TT*UJ. Therefore the 1-form ¿¡5 has isolated singularities and we can assume that its 
polar set intersects the divisor D transversely and at regular points of T. Clearly we 
have l im(^) C T. 

Lemma2.1. — We have limp7) = T. In particular all the saddle-nodes in singTflT 
are in good position with respect to T. 
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Proof. — Recall that by hypothesis V is connected. Let us fix a saddle-node qQ G Dj, 
which is not a corner. Assume by contradiction that the strong separatrix S of qQ 
is not contained in Dj. We consider the local of S around qQ at a small transverse 
disk E = E>, with £ n S = q\ £ sing.?7. This holonomy map hQ : (£,<2i) -> (£,<7i) is 
a flat local diffeomorphism, that is, a local diffeomorphism tangent to the identity. 
Thus, the orbits of hQ accumulate the origin q1, so that the local leaves of T around 
qQ and crossing £ , must accumulate the strong separatrix 5, and therefore we obtain 
S C limJ7 (notice that S is transverse to Z>, so that it corresponds to a separatrix of 
T not contained in A), which contradicts the hypothesis that Xvo&T — A. Now, we 
fix a saddle-node on a corner qQ — Did Dj. First we prove that if lim T contains the 
central manifold of qQ, say Di then it contains the strong manifold, in this case Dj. 
In fact, by the hypothesis we may write T as 

2/(1 + \xk)dx - xk+1dy = 0, Di = (y = 0), Dj = (x = 0). 

Now, in a sector (x,y) G U x C near 0 G C2, where U = {x G C*; Re(xp) > 0} the 
leaves of T have a saddle-like behavior in the sense that there are sections £$ = (x = 1) 
and Ytj — (y = 1), such that any leaf L of ^\UxC, n°t contained in (y = 0), is at a 
positive distance from 0 G C2 and, if we denote ru = fi L, we have: if —» (0,1) 
then rj -> (1,0). 

Now we prove the converse: If limT contains the central manifold of qQ, Di, then 
it contains the strong manifold, Dj. In fact, using the normal form above we may 
conclude that the local holonomy of the central manifold around qQl is linearizable of 
the form h: (£¿,(1,0)) -> (EÌ5 (1, 0)), h(y) = exp(2?riA) • y. If A G M\Q, then it is a 
non rational rotation so that the accumulations of the leaves in the section do not 
correspond to algebraic limit sets. Thus À G C\IR, and therefore, either h or h~x is 
an attractor, so that any leaf which intersects £« accumulates the origin (0,1) G 

We also remark that lim T contains all the strong séparatrices of the saddle-nodes 
in T. In fact, from the analytic normal form above we have a multivalued first integral 
f(x,y) = (y/xx) exp(l/kxk). This first integral shows that the leaves accumulate on 
the strong manifold (x = 0). Also from the same arguments of [1], [17] we have 
(in the non degenerated corners) the passage of the limit set lim(L) from one to the 
other adjacent component of D: It is in fact, only necessary to use the fact that if 
qQ is a non degenerate corner say of the form, xdy — Xydx + h. o.t. = 0 such that 
A G 1R+\Q+, then by Poincaré Linearization Theorem this singularity is linearizable, 
and therefore it is not difficult to see that the local leaves around qQ are not proper. 
On the other hand, in the case A G M_, any leaf which accumulates qQ and which is 
not a separatrix, accumulates both séparatrices. Finally, we remark that since by the 
hypothesis the limit set of T is algebraic, it follows that all the strong manifolds in 
singJ^nr are contained in T, that is, the saddle-nodes are in good position relatively 
to T. • 
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Now we fix local transverse sections Sj, Sj fl Dj = pj £ sing.77, (Sj,pj) = (C, 0). 
Let us write for the holonomy group Ro^J7, Dj,Sj) of Dj C T (see [2]). The 
following definition is found in [1]: 

Definition 2.2. — The virtual holonomy group of T relative to the component Dj at 
the section Sj is defined as 

H o r ^ , ^ , ^ - ) = { / e DiS(Sj,pj) I Lz = Lf(z), Vz € (Sj,Pj)} 

Clearly this group contains the holonomy group of T relative to Dj at the section 
Sj, denoted by Hol(J^, Dj, Sj) (see [2] for the definition of the holonomy group). Let 
us write GVj for the virtual holonomy group HoF (T', Dj ,Sj). 

We will write projective holonomy group to denote the holonomy group of any 
component Dj of D. 

We denote by Diff (C, 0) respectively Diff (C, 0) the group of germs of biholomor-
phisms respectively the group of formal biholomorphisms of (C, 0). We also denote 
by A^C, 0), respectively A^C, 0) the Lie algebra of the germs of singular holomorphic 
vector fields at 0 G C, respectively the Lie algebra of singular formal vector fields in 
one complex variable. 

According to Lemma 2.1 the limit set of any non algebraic leaf L induces discrete 
pseudo-orbits in each projective virtual holonomy group. These groups are solvable 
as a consequence of the following result due to L Nakai: 

Proposition 2.3 ([14]). — Let G C Diff(C, 0) be a subgroup which has some discrete 
pseudo-orbit. Then G is solvable. 

Corollary 2.4. — Let T be as in Theorem 1.1. Then each projective or virtual holon
omy group of sing T n A is solvable. 

We also have the following result concerning subgroups with discrete pseudo-orbits: 

Theorem 2.5 ([10]). — Let G C Diff(C, 0) be a nonabelian subgroup with discrete 
pseudo-orbits outside the origin. Then G is either formally conjugate to some group 

Gl := (z ^az,z^ z/(l + zv)x<v) 

where av has order 2; or it is analytically conjugate to some group 

G2V>T := (z ^az,z^ z/(l + zv)x'v\ z h-> z/{\ + rzvflv) 

where au has order 2 and r G C \ M; or finally it is analytically conjugate to some 
group 

Gl := (z ^az,z^ z/(l + zv)x/v) 

where av has order n G { 3 , 4 , 6 } . 
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We shall consider the subgroups 

= {ip G Diff(C,0) \<p(z)k 
h a^Z 

ßcp G C* , dip G C 
1 -h a^Z k ' 

where k G N*. According to [4] any solvable non abelian subgroup of Diff(C, 0) is 
formally conjugated to a subgroup of some Hfo, this conjugacy is analytic except for 
some special case. We also use the following result: 

Lemma 2.6 ([15]). — Let G C Diff(C, 0) be a subgroup. Then: 
(i) G is abelian if, and only if, there exists a formal vector field £ G A*(C, 0) such 

that g*€ = £,Vg€G. In the case G is not linearizable the vector field £ is unique. 
(ii) G is solvable non abelian ify and only if, there exists a formal vector field 

£ G X(C, 0) such that g * £ = cg • £, cg G C*, V # G G, where cg ^ 1 for some g G G. 
The vector field £ is unique up to multiplicative constants. 

As it is well-known [11], given a formal vector field £ = a(z)d/dz, with £(0) = 0, 
there exists a formal diffeomorphism 0 G Diff (C, 0), such that 

where k G N and A G C are formal invariants associated to £. It is clear that if 
(p G Diff(C, 0) satisfies <^*£o,fc(̂ ) = £o,k(z), then <y2(z) G Ek. On the other hand it is 
not difficult to see that if G C Diff (C, 0) is solvable and non abelian, then the vector 
field f given by Lemma 2.6 above must exhibit A = 0 [15]. Therefore we have the 
following definition: 

Definition 2.7. — Let G C Diff(C, 0) be a solvable subgroup. A formal normalizing 
coordinate w G (C, 0) for G is anyone for which the vector field £ of Lemma 2.6 above 
writes as £(w) = £\,k(w)-

Clearly, if G is solvable and non abelian, then the formal normalizing coordinate 
is unique up to composition with elements <p G Ek, where k is given by G as above. 

If G is abelian then given two normalizing coordinates u and w with u' (0) = w' (0), 
we have u = <p(w), where ip(z) = exp (¿0 for some t G C. 

The group G is called analytically normalizable if the associated vector field £ is 
convergent, otherwise we will say that G is non analytically normalizable. In other 
words, a solvable (perhaps abelian) subgroup G C Diff(C, 0) is analytically normaliz
able if it is analytically conjugated to its formal model. 

Proposition 2.8. — Let T, A be as in Theorem 1.1. Denote by D the resolution divisor 
of sing^7 n A. Let Dj be a component of D. Assume that the holonomy of the 
component Dj is solvable non abelian Gj C by a formal conjugation. Then, given a 
singularity qQ G singFC\Dj there exists a formal diffeomorphism $ G Diff(CP(2), qQ), 
such that $*(.7r) has one of the following normal forms where <&*(Dj) — (y = 0) : 

h a^Zh a^Zh a^Zh a^Z 
zk+i 

1 + Xzk 
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(a) u\ = xdy — Xydx, A E C\Q (qQ is formally linearizable non resonant); 
(b) ^n/m — rtxdy + mydx, n,m E N, (n,m) — 1 (i/D /ias a formal first integral); 

(c) c*;^ = fcrccfa/ + ^2/(1 + ^^^x£yk)dx (qQ is resonant non formally linearizable); 
(d) ĉ fc = yk+1dx — xdy (qQ is a saddle-node with strong manifold tangent to Dj); 
(e) cup,x = xp+1dy — 2/(1 + Xxp)dx (qQ is a saddle-node with strong manifold trans

verse to Dj). 

Moreover, we may assume that converges except for case (c), and that Gj is 
analytically normalizable except for cases (b) and (c). 

Proof. — First we assume that qQ is non degenerate, say 

UJ(U, v) — udv — Xvdu + h. o. t., A E C* 

for some local holomorphic coordinates (u,v) centered at qQ. If A ^ Q then it follows 
that ¿¡5 is formally linearizable at q0, that is, we have (a). Assume now that A = 
—n/m E Q - with n, m E N, (n,m) = 1. Then we consider the local holonomy tp(v) 
of Dj at qQ. According to the hypothesis on the holonomy group of Dj, there exists 
a formal change of coordinates E Diff (C, 0) such that 

^2/(1 + ^^^x£yk)dx ^2/( cw 
(1 + awk)1/k 

where the linear part is c = exp(2fc7r^~ln). On the other hand it is well-known that 
an homography which is not tangent to the identity is linearizable by another homog-
raphy. If kn/m £ N, then c ^ 1 and therefore the singularity is therefore formally 
linearizable as in (b). Assume that q0 is not formally linearizable and (therefore) that 
k/n = £/m for some £ E N. Then according to [11] there exists a formal conjugacy 
at q0 which takes ¿¡3 into the form (c). 

Assume now that qQ is a saddle-node singularity. If the strong manifold of qQ is 
tangent to Dj then c = 1 in the expression of ip o cp o jp~1(w) above and therefore this 
local holonomy is formally conjugated to the local holonomy of the strong manifold 
(v = 0) of the saddle-node vkJrldu — udv = 0. Therefore ¿¡5 must be of the form (d) 
above. If the strong manifold of q0 is transverse to Dj then its has a formal normal 
form as in (e) as a consequence of [12]. 

Now we remark that in case (a) Gj must be analytically normalizable because 
it contains an element with nonperiodic linear part. In case (d) Gj is analytically 
normalizable because it contains the holonomy of the strong manifold of a;/fe, which 
is assumed to be analytically normalizable. We remark that in case (e) Gj is again 
analytically normalizable because, as it follows from Lemma 2.1, q0 is a corner. Indeed, 
in this case Gj contains the holonomy of the central manifold of cup,x, which is a 
nonrational linearizable rotation, and therefore has nonperiodic linear part. Finally 
we remark that according to [13] a singularity qQ has a formal first integral if, and 
only if, qQ has a holomorphic first integral, so that we can assume that $ is convergent 
in case (a). This finishes the proof of the proposition. • 
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Remark 2.9. — According to [11], [12], [13] any reduced singularity admits a formal 
integrating factor. 

3. Virtual holonomy and Singular holonomy 

In this section we follow [5], [19] and [2]. Let us consider the following situation: 
T is a foliation on a compact complex surface M, D C M is a compact (codimension 
one) invariant divisor with normal crossings, D — {jjDj where the Dj are irreducible 
smooth components. As in §2 we fix local transverse sections Sj, Sj D Dj — pj ^ 
sing.77, (Sj,pj) = (C, 0), and write Gj for the holonomy group B.ol(Jr, Dj, Sj) of Dj 
(see [2]). Given any other transverse section £ j to T such that T>jDDj = qj, there is a 
conjugacy between Hol(:F, Dj, S?) and H o l ^ , Dj,Sj) induced by lifting to the leaves 
of T a simple path joining pj to qj, in the leaf Dj\ singjF. Thus, up to conjugacy, we 
can identify these groups and in particular H o l ^ , Dj, T,j) is solvable if, and only if, 
Gj is. 

Now we fix a corner qQ = D{ D Dj. We assume that all the virtual the holonomy 
groups Gvu are solvable (perhaps abelian) for v G In the non abelian case we 
denote by kv the ramification order of Gvv, so that Gv C Gvv C Mku by a formal 
conjugacy. 

The following lemma holds in general, i.e., also for non normally hyperbolic saddle-
nodes: 

Lemma 3.1. — Assume that the holonomy group Gj is analytically normalizable, and 
that if qQ is a saddle-node then its strong manifold is contained in Dj. Then T is 
analytically normalizable at the singular point qQ. 

Proof. — First we assume that Gj is non abelian, so that there exists a local holo-
morphic coordinate z G SJ5 z{qj) — 0, where Hj is a local transverse section with 
Ej n Dj = qj close to qQ, such that the local holonomy of T due to qQ and relative to 
Dj writes 

^2/(1 + Xz 

(l-hazk)1/k' 

Now, if A ^ 1 then we can linearize this local holonomy and therefore the singularity 
q0, which is not a saddle-node (recall that the holonomy of the strong manifold of a 
saddle-node is never linearizable). Assume now that we have \k = 1. In this case we 
have <p(z)k = z/(l + azk). If qG is not a saddle-node then as in the proof of Proposi
tion 2.8 it follows from [11] that qQ must be analytically conjugated to a singularity 
of the form tJk,£ as in Proposition 2.8, because the holonomies are analytically conju
gated. If qQ is a saddle-node then by the hypothesis the strong manifold is contained 
in Dj. Therefore, by [12], the analytic normalization of the holonomy of the strong 
manifold implies the analytic normalization of the singularity qQ. Now we consider 
the case Gj is abelian and analytically normalizable. According to the techniques of 
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construction of integrating factors (see Lemma 5.4 below or [16]), we can construct a 
closed meromorphic 1-form ttj in a neighborhood of qQ, and which satisfy LJ Attj = 0. 
This implies that qQ is analytically normalizable [3], [11], [13]. • 

According to Lemma 3.1 above, except for the non analytically normalizable cases 
on the holonomy groups, there exists a neighborhood U of q0 where T can be written 
in an analytic normal form. 

We shall describe the notion of singular holonomy introduced in [5] and used in 
[2], [19]: 

3.1. The case of a formal holomorphic first integral, — Let us assume that 
qQ is a non degenerate resonant corner say, T : nxdy + mydx + h.o.t . = 0 in a neigh
borhood of qQ : x = y — 0, where n/m E Q+. We will assume that T has a formal 
first integral at qQ and therefore [13], a local holomorphic first integral on a neigh
borhood of qQ. Thus this singularity is linearizable [13] and we can define the Dulac 
correspondence in a neighborhood of the singularity qQ. This correspondence is de
fined as follows: By the hypothesis qQ E Dj is a linearizable singularity corresponding 
to a local holomorphic first integral of JF, therefore we can choose local coordinates 
(x,y) E 17, a neighborhood of q0l centered at this point, such that Di D U = (x = 0), 
Dj n U = {y = 0), and such that T\v is given by nxdy + mydx — 0. We fix the local 
transverse sections as Sj = (x = 1) and S* = (y = 1), such that S^n i^ — q% ^ q0 and 
YljODj = qj ^ qa. Let us denote by Gj = Hol(JT, Dj, Sj-) and by Gi = Hoi (J7, Gi, S*). 
Also denote by hQ E Hol(^", Di, S«) the element corresponding to the corner q0. Then 
we have hQ(x) = exp(—2TT^\/—1) • x. The Dulac correspondence is therefore given 
by T>: (£i,(/i) — ( S j , ^ ) , ẐT>(a;0) = x™^n. We use this correspondence in order to 
associate to G^ a subgroup Gj * (T)*Gi) C Diff (S j , grj). Given an element h E G^ we 
look for elements /i^ E Diff (S^, q^), which are solutions of the adjunction equation 
hP o V = V o h. 

Case 1. — Gi is abelian: Take any element h E Gi. Since Gi is abelian we have 
h(x) = fixhix771) for some h E Ouh(0) = 1. We take ¿¿1 = /xm/n and /n = fcm/n be 
one of the n-roots of //m and h™ respectively. Then we define hP : (S^, qj) (S^, qj), 
by 

h1>{y) = ^yh1{yn) 

Clearly we have hP E GJ. 

Case JS. — G« C Ek,. is non abelian, analytically normalizable and nki/m = fc? E N: 
In this case we have an analytic embedding Gi C . Take an element 

h(x) = 
Ax 

f 1 -I- a:rfc* UA* 
h a^Zh a^ 
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We consider determinations of 

Vo 
Xm/riyô 2/(1 

-1 , nki/m 
1 + ay0 1 

m/nki 

By definition the maps hP are all these determinations. Clearly the maps hP belong 
to the virtual holonomy group GJ. 

Case 3. — Gi is solvable non abelian and not analytically normalizable: In this 
case it follows from [4] that the group of the commutators [Gi,Gi] is cyclic, say, 
[Gi,Gi] = (hi) for some hi G Gi and Gi is generated by some power or root of hQ 
and some power h\, I G Z . Notice that if n = m = 1 then we have T>(x) = x, and 
given any h € Gi, we may define hP G as hP(y) = h(y), in the coordinates above. 
Thus we may assume that n ^ m. We regard this case: First we consider the case 
the virtual holonomy group GJ is abelian. Then all its elements commute with the 
local holonomy gQ around qQ, associated to the separatrix contained in Dj. Therefore, 
using the same construction of Case 1 above we may consider the adjunction of GJ 
to the holonomy group Gi, as a subgroup of the virtual holonomy group G\. If GJ 
contains some element g of infinite order then we have two possibilities to consider: 

(a) g has non periodic linear part: In this case, g induces an element h in the 
adjunction holonomy and therefore in the virtual holonomy h G G\, which also has 
non periodic linear part. This implies that G\ (which is solvable by hypothesis), is 
analytically normalizable [4]. Therefore we may exclude this case. 

(b) Every element g in GJ has periodic linear part: In this case we may find some 
non trivial element g G GJ, which is tangent to the identity g(y) = y + + h. o. t., 
o ^ 0. Then, g induces an element h in the virtual holonomy G\, which has infinity 
order and some power tangent to the identity. Moreover, since GJ is analytically 
normalizable, it follows that g and h are analytically normalizable. This implies that 
the powers of h are analytically normalizable and therefore since the group of flat 
elements in G\ is cyclic, G\ is analytically normalizable. We exclude therefore this 
case, and conclude that all the elements in GJ have finite order. It follows that GJ 
is a group whose elements are rational rotations, and that each finitely generated 
subgroup is in fact a finite linearizable group. In particular Gj is a finite linearizable 
group. 

Now we consider the case GJ is solvable non abelian, and analytically normalizable. 
In this case, once again we may use the same procedure of Case 2 above in order to 
induce non trivial analytically normalizable flat elements in the virtual holonomy G\, 
and conclude that this is in fact analytically normalizable. Thus we exclude this case. 

Summarizing, we conclude that if Gi is exceptional (that is, solvable non abelian 
and not analytically normalizable) then Gj is either a group of rational rotations and 
therefore with finite finitely generated subgroups, or an exceptional group. In this last 
case, we use [4] to conclude that GJ is generated by some root of the local holonomy 
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gQ associated to qQ (we may have g0 — Id), and some flat element g\. Moreover each 
flat element in GJ is some power of g±. We may then use the ideas of [14] in order 
to conclude that some power of hi corresponds to some power of gi by means of the 
Dulac correspondence adjunction. In fact, we can give the ideas: It is possible to 
use the Dulac corresponce given by T*(x) = xm'n, in order to consider the sets of 
"pseudo-orbits" 

{g^ oVoh'fo V-1 o . . . o g^ o V o h{2 o V'1 o g^ o V o h^ (x)} C E*, 

where x G E*, It, lit are integral numbers, and is the correspondence Y,j —» E^, 
y i—y yn/™. These sets are contained in a same leaf of T for each fixed x, and as in 
[14], if the powers g{, and h* are never related by the congugation equation, then we 
will have accumulations for the leaves of T, outside the origin in On the other 
hand, in the case we are interested in, we have discrete intersections of the leaves with 
the transverse sections, outside the origin, so that we will conclude that some power 
h\, passes to the virtual holonomy GJ, as some power g\. 

3.2. The case of a non degenerate non resonant corner. — Let us assume 
that qQ is a non degenerate non resonant corner say, T : xdy — Xydx + h. o. t. = 0 in 
a neighborhood of qQ : x = y = 0, where A G C\Q. We only need to consider the 
following case (see Definition 4.2): Gi is abelian and Gj is solvable non abelian. 

In this case the singularity qQ is analytically linearizable. In fact, since the group 
Gj is solvable non abelian, and since the local holonomy <p associated to qQ has non 
periodic linear part it follows that the group Gj is analytically normalizable [4], and 
therefore there exists an analytic coordinate w G T,j,w(qj) = 0, such that 

( \ - aw 
Ww> ~ (i + ^ J i / f c i ' 

where an ^ 1, Vn G N*. Thus, we can change coordinates analytically in order to have 
(p(u) = au for some coordinate u = <j>(w), 4> G IH^.. This implies that the singularity 
qQ is analytically linearizable [13]. 

The adjunction holonomy group Gj * (T>*Gi) C Diff(Ej,qj) is defined as follows: 
There exists an analytic embedding Gj C H^.. We may also assume that we have 
Ef, Ej, Di Pi U, DJ fl C7, Gi, Gj, qi, qj given in terms of (x, y) as in 3.1 above. 

Since Gi is abelian and contains a non resonant linearizable diffeomorphism, Gi 
is linearizable. In fact, we can assume that the holonomy group H o l ^ , Di, E^) is 
linear in the local coordinate #|E.. Therefore any element h G Gi corresponds to an 
element h(x) = fjbh • x in Diff (E^, qi). In the present case the Dulac correspondence is 
given by T>(xQ) = x~x. We are looking for elements hP G Diff(Ej, qj), which satisfy 
hP o T> = T> o h. Therefore we choose hP as 

h a^Zh a^Zh ah a^ a^Z 
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where fihx runs over the solutions of z 1//A = Hh- Clearly the diffeomorphims hP 
belong to the virtual holonomy Gj. 

3.3. The case of a saddle-node corner. — Assume now that qQ is a saddle-node 
singularity which will be assumed to be analytically normalizable. Thus, there exists 
a system of local coordinates (x,y) G U centered at qQ such that, T\v is given by 
xk+1dy - y(l + Xxk)dx = 0. We assume that Di = (x = 0) and Dj = (y = 0). We 
also introduce the transverse sections Ej = (y = e1//fc) and Ej = (x = 1). The leaves 
of P\v are the level curves of the multiform first integral f(x, y) — yx~x exp (l/kxk). 
Therefore, the Dulac correspondence is defined by 

D: E» —> Ej, XQ I—> yQ = V(x0) = x~x exp (l/kxk). 

Now we show how the Dulac correspondence can still be used to define an adjunc
tion for the holonomy. This adjunction will be from the strong manifold to the central 
manifold, that is, from Gi to Gj above. Given an element h G Gi we look for elements 
hP G Diff(Ej, qj), which are solutions of the adjunction equation ti° o T> = V o h. 

Case 1. — Gi is solvable non abelian. In this case we have A = 0 and 

h0(x) = x 
{l + axky/k 

and therefore ki = k. We claim that G is analytically normalizable. In fact, since 
it is solvable it follows from [4] that it is analytically normalizable if, and only if, 
the (abelian) subgroup of flat elements in G is analytically normalizable. But this is 
clear because this group contains h0. This also implies that we can assume that x is 
a normalizing coordinate for Gi. The Dulac correspondence T) is given by T>(x0) = 
exp (l/kxk). Now we take any element h G Gi and write 

h{x) = 
JJLX 

(l-haxk)1/k'h 

Since h is of the form given above we have the adjunction equation as 

hP (exp l/kxk exp [a/kfik exp (l/kxk) h a^Z 

Thus we have linear solutions of the form hP(y) — exp (a/kfjbk) -y^1 k. However these 
are not uniform analytic functions. Assume that hk is tangent to 1, that is, fik = 1. 
In this case we can take solutions of the form g(y) — exp [a/k) • y. These are linear 
diffeomorphisms and we will denote any of them by hP as before. Notice that if qQ is 
a corner then by the normal hyperbolicity hypothesis Gi must be abelian. 

Case 2. — Gi is abelian. Let us consider once again the local holonomy hQ G Gi 
associated to the strong manifold of the saddle-node qQ. First notice that we have 

h0(x) = exp 
h a^Z 
1 + \xk 

d_ 
dx 
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Let us denote by £(x) = 
xk+1 d 

1 -}- Xxk dx 
Once again we claim that G is analytically 

normalizable, and it follows from the fact that hQ is analytically normalizable and 
that G is abelian. It also is clear that hQ is a normal form diffeomorphism in the 
sense of [11], and therefore if z G (E^,^) is a normalizing coordinate for Gi, then we 

must have hQ(z) = exp ù^^ 
zK^L d 

1 4- \zk dz. 
for some /i G C*. Thus it follows that 

h a^Z xk+1 d 

1 4- Axfe dx 
= zk+1d 

1 + Xzk dz ' 

On the other hand the local holonomy gQ G Diff(Ej5 qj) associated to the local sepa-
ratrix (y = 0); i.e, the holonomy of the central manifold of the saddle-node, is linear 
in given by 

9o(y) = exp 27TÀ - 1 » 
d 

dy 
= exp(27rÀ\/—1)?/. 

Thus it is natural to pass the elements h £ Gi, tangent to the identity, to Gj as linear 
maps in the coordinate 2/|s.. Let h G Gi with ft/(0) = 1. We have h = exp(^£) 
for some £^ G C. Now we remark that if we consider the multiform function f(x) = 
x~x exp (l/kxk) defined on the transversal E^ = (y = e1//k), it extends to a local 
multiform first integral for T. Therefore given any element 7 G 7Ti (-C^\ sing JF), if we 
denote by h7 G Gi, the corresponding holonomy diffeomorphism associated to this 
homotopy class, then we obtain f0(x) o hy = exp(27rc7\/—1) • /o(#0, for any fixed 
determination fQ(x) of f(x). Therefore we obtain 

x x exp (l/kxk) o exp ù$ 
xk+1d 

1 + Xxk dx. 
exp(27rcyy/^l) • x x exp (l/kxk). 

Take now an element h G Gi tangent to the identity say 

h(x) = exp th 
xk+1 d 

1 H- A#fc dx< 

Since we have f0(x) o h(x) = exp(27rc/lv/—1) * /o0*0 f°r some Ch G C, we consider 
h^iy) :— exp(27rc/l\/— l)y. It is now clear that /i25 G Diff (C, 0) satisfies the adjunction 
equation. Finally we observe that by our construction we have UP G GVj. 

Remark 3.2. — As it is well-known a resonant nonlinearizable corner qQ — DiC\ Dj, 
has a formal normal form, 

u = [n(l + (A - l)(xmyn)k)xdy + m( l + Xix^y^y dx] = 0, 

where A = n/m [11]. As we have seen in Proposition 2.8, when one of the virtual 
holonomy groups is nonabelian, then we have a formal normal form 

UJ = kxdy -h ly 1 + 
(l/kxk) ^ 

2TT 
xlvk dx = 0. 
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These formal normal forms admit integrating factors (that is, formal functions h such 
that ft = oj/h is closed), and give us closed meromorphic 1-forms Q which have 
non simple poles along (x • y = 0). Moreover, these closed 1-forms are unique up 
to multiplication by constants (this is a consequence of the fact that the singularity 
admits no meromorphic first integral, except the constants). Later on, we will see 
that this last remark shows that it is not necessary for our purposes, to define any 
adjunction associated to such a corner (see Case C in the proof of Proposition 5.6). 

Definition 3.3 ([5], [19]). — Under the hypothesis of 3.1, 3.2 or 3.3 above for q0,G\ 
and Gj, we define the group Gj * (V*Gi) as the subgroup of Diff(E$,(fc) generated 
by Gj and by the elements hb° where h 6 Gi. This group will be called the Dulac 
adjunction of Gi to Gj^\ 

Given a singularity qQ = Di n Dj as in cases 3.1, 3.2 or 3.3 above we assume 
that Gi is analytically normalizable, and choose analytic normalizing coordinates 
(x, y) G U for the singularity qQ (see Lemma 3.1 and Proposition 2.8), as in these 
cases, i.e., coordinates that give the foliation T\v in its local normal form. We choose 
Di fl U = (x = 0) and Dj nil = (y = 0). We may also choose x in such a way that 
the restriction x|E is an analytic normalizing coordinate for the holonomy group Gi 
(Lemma 3.1). However, it is not always true that y L also normalizes Gj. This is 
the subject of the following lemma. 

Lemma 3.4. — The adjunction holonomy group Gj * (T>*Gi) is a solvable group if, 
and only if, y | s normalizes Gj. 

Lemma 3.4 is proved in [2]̂ 2). It also follows, under our hypothesis of analytic 
normalization and normal hyperbolicity on the saddle-nodes, from an equivalent result 
of [16], which is stated in terms of the solvability and convergence of some formal Lie 
algebras of vector fields. 

In other words, Lemma 3.4 says that if qQ = DiDDj with Gi, Gj solvable as above, 
then we can normalize simultaneously Gi, Gj and the singularity qQ if, and only if, the 
adjunction holonomy group Gj * (T>*Gi) is a solvable group. This same lemma holds 
in the formal case, where Gi is not assumed to be analytically normalizable. We will 
use this lemma in order to "glue" certain integrating factors associated to adjacent 
components Di and Dj (see Proposition 5.2 and Proposition 5.6). 

In order to proceed to the definition of the singular holonomy groups of the com
ponents Dj we introduce an order in the resolution divisor (here we follow as in [2]). 
This order is defined as follows: Let Z be the (finite) family of connected components 

(^This adjunction process, defined preliminary for holonomy groups, must be iterated whenever it 
is possible. 
<2>We will give a more general version of this lemma in §5 Lemma 5.7. 
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Of 
D* = Z}\{saddle-nodes} U {nonlinearizable resonant singularities} 

Given two elements A, B G Z we will say that A > B if and only if there exist 
components Di, Dj of D such that Di n £>j = { # } is either a nonlinearizable resonant 
singularity, or a saddle-node, D* = Di — {q} C A, Dj = Dj — {q} c i?, and the 
strong manifold of q lies over Di. Clearly > defines a partial order on Z. Each totally 
ordered subfamily Z\ C Z has a maximal element. Take a supremum say A0 G Z. It 
is clear that given a component such that 

Dj\{saddle-nodes and resonant nonlinearizable singularities} 

belongs to A0 then no adjunction can be defined from any other component B of Z 
to A0. Thus we consider the singular holonomy of any fixed component Dj in A0 as 
the maximal subgroup Holsing (T, D3;, Sj) = G îng C Diff (Sj;, p3;) obtained by iterating 
the adjunction process at all the other corners of -Dj, Dj n k ^ j where is 
in A0. Now we consider the new family Z\ = Z — {A0}. Take a maximal element 
Ai G Z\ = Z — {A0} with respect to the (induced partial order) > , and consider 
the same iteration of the adjunction process for the corners in Ai adding to this the 
adjuncted singular holonomy of Dj. This defines the singular holonomy group of 
any component Dk G Ai. Thus we may exhaust Z and define the adjunction of the 
holonomy for all the components of D. 

Definition 3.5 ([5], [19]). — The subgroup 

Holsing(^,£>7-,<9?) : GfngCDifF(^,Pi) 

obtained by the algorithmic process above will be called the singular holonomy group 
associated to the component Dj of D. The singular holonomy group is defined up to 
conjugacies, depending on the choice of the transverse sections Sj. 

Using the fact that the singular holonomy is always contained in the virtual holon
omy, we conclude from Corollary 2.4 that: 

Corollary 3.6. — Let J7 be a foliation on CP(2) having as limit set some singularities 
and an algebraic curve A as in Theorem 1.1. Then each projective singular holonomy 
group of singan A is solvable with discrete pseudo-orbits outside the origin. 

4. Logarithmic derivatives of an integrable differential 1-form 

In what follows T is a foliation on a complex surface M defined by a meromorphic 
integrable 1-form to = 0 outside its polar divisor (o;)oo- We consider a bimeromorphic 
map 7r: M —> M (e.g. a resolution morphism as in §2) and denote by u; the pull-
back 1-form 7T*CJ. The 1-form UJ is meromorphic in M, but may have non-isolated 
singularities (in the case of the resolution morphism these singularities appear over 
the projective lines Dj introduced by 7r). On the other hand, for the cases we are 
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interested in, we may assume that ( (o;)oo and therefore) (u;)oo> nas non invariant 
codimension one irreducible components, and meets the divisor transversely at regular 
points of T. In this case, the singular set sing T is contained in the zero divisor (cD)o-

Definition 4.1 ([18]). — Let D C M be an invariant divisor (not necessarily irre
ducible). A meromorphic 1-form rj defined on M is called a logarithmic derivative of 
Zo adapted to D if 

(1) did — rj A ¿¡5, drj = 0, 
(2) the polar divisor (rf)^ of rj has order one along (any component of) D, and 

consists of the union of (co)oo U (£>)o and an invariant divisor of T', 
(3) the residue of rj along any noninvariant irreducible component L of (u)^ U (£D)o 

is equal to either —(the order of the poles of Zo along L), or (the order of (u5)o along 
L), respectively. We remark that, a priori, rj may have nonsimple poles on M. 

The existence of an adapted logarithmic derivative is related to some conditions in 
the resolution of sing^7 D A [2], [19] (see also Theorem 5.1 below). 

Definition 4.2 ([2]). — The foliation T has a Liouvillian resolution {relative to A) if 
the divisor D — \S™=$Dj °^ ̂ e resolution of sing T n A satisfies: 

(i) The singular holonomy group of every Di is solvable. 
(ii) If q = Di D Dj is a non degenerate corner such that Gi C and Gj C №kj 

are nonabelian, then q is a resonant singularity. Moreover, if q is linearizable (has a 
holomorphic first integral), then we can find local coordinates (x,y) € U centered at 
q such that Di D U = (x = 0), Dj n U = (y = 0) and : kjxdy 4- kiydx = 0. 

(iii) If q = Di n Dj is a saddle-node corner whose strong manifold is contained in 
£>i, then is solvable, and Gj is abelian analytically linearizable. 

The motivation for the definition above is given by [2], [18] and the following result: 

Proposition 4.3 ([2]). — Let J7 be a holomorphic foliation on CP(2) given by a ratio
nal 1-form u, and suppose that there exists an algebraic T-invariant curve A having 
only non dicritical singularities. Assume that each component of the resolution di
visor of sing T H A contains a linearizable non resonant singularity and that all the 
saddle-nodes in the resolution divisor are in good position relatively to this divisor. 
Then the following two assertions are equivalent: 

(i) The 1-form u> admits a rational logarithmic derivative rjf adapted to the invari
ant curve A c CP(2). 

(ii) T exhibits a Liouvillian resolution relative to K, and all the singular holonomy 
groups are analytically normalizable. 

Theorem 4.4. — Let T be a foliation on CP(2) having as limit set some singularities 
and an algebraic curve A. Assume that sing.FflA satisfies (C\) and that the invariant 
part of the resolution divisor is connected. Then T has a Liouvillian resolution relative 
to A. 
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Proof — According to Corollary 3.6, it remains to prove that 

(1) if q — Di C\Dj G sing T is a non degenerate singularity such that the holonomy 

groups of Di and of D3 are non abelian. Then q is resonant. Moreover, if q has a 

holomorphic first integral, then we can write it as kjxdy + kiydx — 0 for some local 

coordinates with Dj : {y = 0 } and Di : {x = 0 } . 

(2) If q — Di n Dj G sing T is a saddle-node whose strong manifold is tangent to 

Di, then the holonomy group of Dj is abelian analytically linearizable. 

Proof of (1). — In fact, if the holonomy group of Dj is not abelian then, since the 

virtual holonomy GVj exhibits discrete pseudo-orbits, it follows that GVj contains only 

elements with periodic linear part [10]. In particular the singularity q must be a 

resonant singularity. Assume now that q is linearizable say, as mxdy + nydx = 0 

with ra,n G N, (m,n) = 1, and (y = 0) C Dj and (x = 0) C Di as usual. We must 

prove that m/n = kj/ki. We consider first the case m — n = 1, and Gi is analytically 

normalizable. In this case as in item 3.1 of §3. we have that the Dulac correspondence 

is given bv 
D : 1 + axk*y/k* (l + m/**)1/fciV1 o...o^2oDo^2 + m/**)1/fcio 

We take any element h G Gi, write 

h(x) = 
Xx 

(1 + axk*y/k* 

and define 
V'1 o gkl o V V'1 o gkl o V 

ù 

( l + m/**)1/fci 

using the fact that m = n = 1 (see 3.1 §3). Applying now Theorem 2.5 for Gi and GJ 

we conclude that £^ < • The same way, we may conclude that kj < ki and therefore 

ki = kj. Now we treat the case m ^ n as in 3.1 §3. We repeat the main argument: 

Take elements gi G GVj and h\ G that are tangent to the identity of orders kj and 

ki respectively. Using the Dulac correspondence T>(x) = x™/71, we introduce the sets 

of "pseudo-orbits" 

^ o D o h[r o V1 o . . . o ^ 2 o D o ^ 2 o V'1 o gkl o V o h{x (x) V'1 o gkl o V 

where x G E*, t̂5 t̂ are integral numbers, and T>~Y is the inverse correspondence 

T,j —> Ei, i/ y71/™. These sets are contained in a same leaf of T for each fixed x, 

and as in Theorem 2.5 and in Nakai's Theorem [14], if the powers g[, and hk are never 

related by the conjugation equation, then we will have accumulation points for the 

leaves of T, outside the origin in E$. Thus we conclude that some power h{, passes 

to the virtual holonomy GJ, as some power gk. This implies that m/n = kj/ki. 

Proof of (2). — In fact, choose analytic coordinates (x,y) at q, such that T is given 

by xp+1dy — y(l + Xxp)dx = 0. By hypothesis the saddle-node is normally hyperbolic 

so that the holonomy group Gj contains some element with non periodic linear part. 
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According to [10] since G has some discrete pseudo-orbit this implies that Gj cannot 
be solvable non abelian. Thus it follows that the holonomy group Gj is abelian and, 
since it contains some analytically linearizable non rational rotation, Gj is analytically 
linearizable. • 

Remark 4.5. — Since G îng C GVj also has discrete orbits, it follows (with the same 

proof) that in (2) above we have Gsing abelian analytically linearizable. 

5. Formal logarithmic derivatives near the limit set 

In this section we prove a generalization of Theorem 4.4 above: 

Theorem 5.1. — Let J7 be a foliation on M a complex projective surface, and let A C 
M be an invariant irreducible analytic curve. Assume that sing A satisfies property 
(Ci) and that all the saddle-nodes in the resolution divisor are in good position. If 
T is given by a meromorphic 1-form UJ with isolated singularities, then the following 
assertions are equivalent: 

(i) The strict transform UJ of the 1-form u), admits a transversely formal logarithmic 
derivative rj over T, adapted to the invariant curve T. 

(ii) T has a Liouvillian resolution relative to A. 

We shall describe briefly the notion of transversely formal object. Suppose that 
r C M is an algebraic codimension one divisor. We denote by Zp the sheaf of ideals 
defining F C M, and by OM the sheaf of regular functions on M. For any m £ N we 
have (Xr)m+1 C (Xr)m C Om. 

The infinitesimal tubular neighborhood of order m of T in M is the locally ringed 
space 

V ' ( 2 r ) m / 

The formal completion of M along T is the locally ringed space T = (M, Of), whose 
structural sheaf is defined by the projective limit 

Of; = lim ——— 
r (Zr)m 

The ring of (transversely) formal rational functions on M along T, K(T), is defined 
as the ring of rational functions on the formal completion T of M along T. 

It is proved in [7] that: 
(i) K(F) = H°(T,K,f) where /Cp is the quotient field of the sheaf of total quotient 

rings of Of, 
(ii) there exists a natural inclusion of sheaves JCr —> /Cp, where /Cr is the sheaf of 

germs of meromorphic functions defined on neighborhoods of points in V. 
We refer to [5] for more details. 
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With the notions above we extend the notion of logarithmic derivative to the notion 
of transversely formal logarithmic derivative over a resolution divisor T. 

The first step in the proof of Theorem 5.1 is the following (see also [16] for similar 
constructions): 

Proposition 5.2. — Let T be a foliation in the complex surface M, and let A be an 
invariant compact curve such that sing^Tl A satisfies {C\) and all the saddle-nodes in 
the resolution divisor are in good position. Assume that T has a Liouvillian resolution 
relative to A. Let Dj C T be an irreducible component of the resolution divisor of 
s i n g ^ n A. Then there exists a closed transversely formal meromorphic 1-form rjj 
defined over Dj, such that rjj is a transversely formal logarithmic derivative of u, 
adapted to Dj. 

Proof — It follows from the definition of Liouvillian resolution that the groups G îng 
are solvable. We distinguish the non abelian case and the abelian case considered in 
the following two lemmas. Clearly they complete the proof of Proposition 5.2. • 

Lemma 5.3. — Under the hypothesis of Proposition 5.2, assume that G îng is non 
abelian and formally embedded in H*. . Let £j = ord((o3)o, Dj), then there exists a 
transversely formal closed logarithmic derivative rjj of UJ, adapted to Dj, such that 
Res^. rjj — kj + 1 + £j. 

Proof — In order to simplify the notation we write k = kj. We follow [16]: Given 
any regular point q G Dj and a local transverse section T,q with Eg D Dj = q, we 
can choose a formal coordinate y G Ylq centered at q, such that y defines the formal 
embedding Gj = Ho^J7, Dj, T,q) C H^.. Given such a coordinate we consider the 
formal vector field £q = yk+1d/dy. We have g * £q = cg • ̂ q, V# G Hol(JF, Dj, E9). 
Thus £q can be extended into a global section a of the quotient sheaf S/C*, where 
S is the sheaf of the transversely formal symmetries of T over Dj\sm^gT [16]. We 
define the 1-form rjj — d(uj{a))/uj{a), which is a well defined transversely formal 
closed 1-form over Dj\ singT. The 1-form rjj is a logarithmic derivative of ¿¡5 adapted 
to Dj \ sing T. 

An alternative way of constructing rjj is the following ([2], [5], [19]): For each 
point q G Dj\singJr as above, we extend the coordinate y into a transversely for
mal coordinate defined over a certain neighborhood of q in Dj \ sing !F. This local 
extension is a consequence of the local trivialization for T. Thus we obtain a col
lection {(xa,ya), Ua}aeA where the U& are open sets which cover a neighborhood of 
.D^singj^ in CP(2), and also (ya = 0) — Ua H Dj, uj\v = gadya for some trans
versely formal function ga over Ua n Dj. The coordinates Xq are analytic in Ua and 
the coordinates ya are transversely formal over Ua Pi Dj, obtained as the extensions 
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of the coordinates y above. Finally if Ua fl Up / <fi then we have 

g^F, °>Vßk 
1 + byßk 

for some a, b € C. Define the 1-form 

Vq = — + AUJ. AUJ. g^F, 

•Va 
g^F, 

g^F, 
It is not difficult to see that this is a well-defined closed transversely formal meromor
phic 1-form over Dj\sing^F, and satisfies the relation dw — rjj A U J . Moreover (rjj)oo 
is invariant and contains (ya = 0) as a simple pole of residue k 4- 1. 

The extension of the 1-form rjj to a singularity q G Dj is done as follows. According 
to Proposition 2.8 there exists a formal logarithmic derivative rjq defined at the singu
lar point q. If q is a saddle-node then by the hypothesis we can take rjq meromorphic 
in a neighborhood of q. This same holds in the case q admits a formal first integral 
or is a nonresonant nondegenerate singularity (Proposition 2.8). In general, in the 
nondegenerate case the formal integrating factors r\q can be extended in a transversely 
formal way along the séparatrices through g, as a consequence of the resommation 
properties of the integrating factors along the séparatrices through q [ 1 9 ] ^ . Thus, 
over a neighborhood of q in Dj, the difference rjj — rjq writes rjj — rjq = hq • to for 
some transversely formal function hq, defined over a punctured neighborhood of q in 
Dj, which is an integrating factor for to, that is d(hq • u) = 0. We will show that hq 
extends in a transversely formal way to a neighborhood of q in Dj (see Remark 2.9 
and the first part of the proof of Lemma 5.3 above). We consider the following cases: 

(a) q is formally linearizable non resonant, of the form u\ in Proposition 2.8. In 
this case we know that there exist formal coordinates (x,y) such that Dj = (y = 0 ) , 
Di = (x = 0) and uj(x,y) = g(xdy — Xydx), for some transversely formal function g 
over a neighborhood of q in Dj. We also have 

dg dx , dy 
Vq = — + a— + b— 

9 x y 
where a,b E C* satisfy 

(*) 1 + A = a + bX. 

(3)"We say that a 1-form UJ admits a formal integrating factor h defined at q; if we have 

** Vq = — + a— 
Vq = — + a— 

where h is a formal series at q. Equation (*) exhibits resommation properties for h along a certain 
separatrix S of u> — 0 at g, if h can be written h(x,y) = S J ^ o ^ -> where (x, y) G U is a local 
holomorphic coordinate centered at q, such that S N U — {y — 0 } , aj(x) is a holomorphic function 
converging in a small disk B)q C S centered at q, not depending on j G N. This occurs, by a Briot-
Bouquet type argument [11], [12], [16], [19], for any separatrix of a non-degenerate singularity, and 
for the strong separatrix of a saddle-node. 
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We have 

rjj -rjq = hg.LJ 

as transversely formal objects over (y = 0),(# ^ 0). The function hq(xyy) is a 

transversely formal function defined over (y — 0),(x ^ 0), and since the 1-form 
1 /dy dx \ 

u)(x,y) is closed it follows that we have d(hqxyg) A ( A — ) = 0. Now, since 
gxy V y x J 
A E C \ Q , it follows from [18] that hqxyg = ¡1 E C is constant (use Laurent series). 

Therefore, the formal expression hq(x,y) extends as a formal meromorphic extension 

to (x = 0). 

(b) q has a formal first integral. In this case, we can choose (x,y) as above such 

that u)(x,y) = g(nxdy + mydx) as in Proposition 2.8 (b ) . We have 

dq dx 7 dy 
rjq = — + a— + b— 

g x y 

where a, b E C* satisfy n — m = na — mb. The formal expression 

7/J x {dy mdx\ 
d(hqxyg)A + ) = 0 

V y n x / 

implies that (hqxyg)(x,y) — (f(xmyn) for some formal function <p(z) in one variable. 

Therefore, the formal expression for hq(x,y) extends as (f(xrnyn)/xyg to (x — 0). 

(c) q has a non linear formal normalization as in Proposition 2.8 ( c ) . In this case 

we may choose (x,y) such that u — g(kxdy + £y(l + y^^x£yk)dx). We choose 

r/q — (k 4- 1)ĝF,ĝF,h + 1)ĝF,ĝF,IĝF,ĝF, 
y x g 

Then we have 

d ( M * " V + 1 ) AĝF,ĝM*"V+F,ĝF,- ^ logo. ) = 0. 

On the other hand, since the singularity q has a non linear formal normalization, 

it follows that its local holonomy is not formally linearizable. This implies that 

hqgxi+1yk+1 = fx E C is a constant. Therefore hq(x,y) extends to (x = 0). 

(d) q is a saddle-node whose strong manifold is tangent to Dj. We may choose 

analytic coordinates (x,y) such that (y = 0) C Dj and UJ = g(yk+1dx — x(l + \yk)dy). 

We define 
dx , , , . cfa/ do 

% = — + (fc + l ) — + — . 
x y 9 

Then the difference rjj — rjq has simple poles over Dj\{q} : (x 7̂  0), (y — 0), therefore 

it follows that 77̂  = rjj in (# / 0): In fact, since a saddle-node admits no formal first 

integral, it follows that up to multiplicative constants the 1-form 

dx dy dy 
X yk+! y 

is the only closed formal 1-form which defines T at q, and it has non simple poles 

over (y = 0). Hence rjj extends as rjq to (x — 0). 
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(e) q is a saddle-node whose strong manifold is transverse to Dj. In particular Gj 

is abelian analytically linearizable (see Proposition 4.3). This implies that sing TC\Dj 

contains no saddle-nodes in good position with respect to Dj and that the nondegen

erate singularities are analytically linearizable. Using the techniques of [2], [19], [16] 

one constructs a meromorphic closed 1-form Qj in a neighborhood Vj of Dj minus 

the saddle-nodes in s ingT f l Dj. This 1-form satisfies Qj AUJ = 0, and Qj has simple 

poles, all of them contained in the divisor D. We have ¿¡5 = hj • Qj for some mero

morphic hj in Vj. Redefine now the 1-form rjj = dhj/hj. Clearly rjj is a candidate 

for a logarithmic derivative of UJ adapted to Dj. Notice that rjj has residue 1 over 

D J : In fact, the poles of Qj are simple, and UJ has isolated singularities. We must 

show that rjj extends meromorphically to the saddle-node singularities in Dj. Fix 

such a singularity q0 G Dj. We must have q0 = Di D Dj for some Di (the saddle-nodes 

are in good position). We will show the extension of rjj to qQ using the fact that 

the adjunction holonomy group Gj *T>*(Gi) is solvable. Choose analytic coordinates 

(x,y) G U centered at q, such that D\ n U = (x = 0) , and Dj = (y = 0 ) , and 

such that uj\JJ(x,y) = g • (xpJrldy — ydx) for some meromorphic function g and some 

p G N. As we know the holonomy group Gi of the component Di, must be solvable 

nonabelian Gi C Hp. Moreover we can assume that the analytic coordinate x\^ , 

where S/ = (y = e1//p), normalizes the group Hol(JT, D / , S/) = C?/. Take an element 

tangent to the identity h G C?/, say 

M*"V+ V+ 

(1 + axP)1/p' 

Then the corresponding element hP G *P*(Gj ) is given by hT>(y) = ea/p-y Let now 

z G (Hj,qj) be any analytic coordinate, where S j = (# = 1) and #j = S j fl Dj, which 

linearizes the holonomy group Gj = Hol(^", -Dj, S j ) . Then the fact that the singular 

holonomy group G^mg is solvable implies that either y = <p(z) for some diffeomorphism 

(p G Mk when G^ing C Mk by analytic conjugacy, ox y — p> - z for some // G C* when 

G^ing is abelian analytically linearizable. According to this we can assume that the 

analytic coordinate y L linearizes Gj. This implies that the 1-forms rjj and 

Vqo 
dy 

y 
r - ( p + l ) 

M 

*" 

V+ 

9 

coincide over the transverse section S j . This same argument shows that they coincide 

over an open neighborhood of qj in Dj. Therefore rjj extends as r)qo to the singularity 

Co- • 

Lemma 5.4. — Under the hypothesis of Proposition 5.2, assume thatGSjUë is abelian. 

There exists a transversely formal logarithmic derivative rjj defined over Dj, this 1-

form is obtained as follows: There exists a closed transversely formal 1-form ujj defined 

over Dj\sing^F, which defines T around Dj \ sing J7 in the sense that UJ J A UJ — 0. 
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The 1-form rjj is obtained by extending dhj/hj, where to = hj -ujj, to the singularities 
q G sing J7 D Dj. 

Proof. — In this case the group G îng may be non linearizable. Anyway, according 
to Lemma 2.6, there exists a formal singular holomorphic vector field in one complex 
variable £ G A*(C, 0) which is invariant by the natural action induced by G®mg, i.e., 
<7*£ = £5v/gE GSjing. Now, using the techniques of [16] we can extend the vector £ 
into a transversely formal symmetry a for T, through the holonomy, (here one may 
use the invariance above), that is, a global section of the sheaf S of transversely 
formal symmetries of T over Dj \ sing T. This section induces a transversely formal 
integrating factor hj = to {a) for ¿¡5 over Dj\s\YLgJr. We define the closed transversely 
formal 1-form rjj = dhj/hj over Dj. Since co/hj is closed we have duo = rjj A to. Clearly 
rjj is a logarithmic derivative of uo adapted to Dj and defined over Dj \ sing T. 

Now we show that this logarithmic derivative extends to the singularities in Dj. Fix 
a singularity q G sing FDDj. As in the proof of Lemma 5.3, there exists a transversely 
formal logarithmic derivative r)q defined over a neighborhood of q in Dj, and we have 
rjj —rjq = hq-uj for some transversely formal function hq which is an integrating factor 
for uo, defined over a punctured neighborhood of q in Dj. We consider the following 
cases: 

(a) q is formally linearizable non resonant, of the form oo\ in Proposition 2.8. In 
this case the same arguments of the proof of Lemma 5.3 above, apply to show that 
we have hxyg — cte and therefore we have a natural extension of rjj to q. 

(b) q has a formal first integral as Ukj in Proposition 2.8 (b). In this case, as above 
we can choose (x,y) above such that co(x,y) = g{nxdy + mydx), and 

dq dx 7 dy 
rja = — + a— + b— 

g x y 

where a, b G C* with n — m = na — mb. The formal expression hq(x,y) extends 
therefore as (^(x^y71)/xyg to (x = 0). 

(c) q has a non linear formal normalization as in Proposition 2.8 (c). As above we 
conclude that hq{x,y) extends to (x — 0). 

(d) q is a saddle-node with the strong manifold tangent to Dj. As above the 
difference rjj — r)q has simple poles over Dj\{q} : (x ^ 0), (y — 0), and therefore it 
follows that r)q — rjj in (x ^ 0). This implies that rjj extends as r)q to (x = 0). 

(e) q is a saddle-node whose strong manifold is transverse to Dj. In particular Gj 
is abelian analytically linearizable. This case is done as above, by using the fact that 
the adjunction holonomy groups associated to Dj are all abelian. This ends the proof 
of Lemma 5.4. • 

Remark 5.5. — The following proposition is one of the main tools in this work, and 
we refer to [19], [2] for a more general version and some details. This also may follow 
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from the results in [16], our hypothesis on the saddle-node singularities and the fact 
that the virtual holonomy groups are solvable (Corollary 2.4) and "contain" all the 
information concerning the foliation near the resolution divisor so that, in particular 
they must contain the "generalized holonomy" of [16]. 

Proposition 5.6. — Let T be a foliation on a complex surface M, and let A be an 
invariant compact curve such that the saddle-nodes in the resolution divisor of sing TC\ 
A are in good position. Assume that T has a Liouvillian resolution relative to A, and 
that sing.T'n A satisfies property C±. There exists a closed transversely formal 1-form 
rj defined over T, such that duj = rj AUJ. This form rj is a logarithmic derivative for UJ 
adapted to T. 

Proof — We give the proof of the most relevant points in the construction. Let Dj 
be any component of F which we will write as T — IJ^lo^- We consider a 1-form rjj 
over Dj given by Proposition 5.2 above. Fix a corner qQ = DiC\ Dj where Di and Dj 
are components of T. We will prove that 

DidDj ^ 0 => rji = rjj, (for suitable and fixed choices of the 1-form rjj), as formal 
expressions at qQ. In the case the 1-forms are meromorphic we also have the equality 
holding in a neighborhood of qQ. 

There are some cases to consider: 

Case A. — qQ is a saddle-node singularity. In this case we have analytic coordinates 
(x,y) centered at qQ such that UJ = g • (x(l + Xyk)dy — yk+1dx) and Di = (x = 0), 
Dj = (y = 0). We have rji — rjj = fij • UJ for some formal meromorphic function fij 
such that d(fij - UJ) = 0 in a neighborhood of qQ. This implies that fijgxykJrl = a € C. 
Therefore 

_ _ /. dy dx dy \J = g • (x(l + Xyk)J = g • (x(l + X 
yk)J = g • (x(l + Xyk)J = g • (x(l + Xyk)J = g • 

and hence since the poles of rji and rjj are simple we have a = 0 and therefore rji = rjj 
in a neighborhood of qQ. 

Now we assume that qQ is not a saddle-node. We have that qQ is a non degenerate 
singularity of the form xdy — Xydx -I- h.o.t. = 0 where (x,y) are local holomorphic 
coordinates centered at qQ and such that Di : (x — 0) and Dj : (y = 0). As above 
rji - rjj = fij • UJ, but now fij is a formal meromorphic function at qQ, which satisfies 
d(fij • ¿¡5) = 0. We introduce the following types of singularity: 

type (1) : qQ admits a holomorphic first integral, Gi is abelian or nonabelian 
analytically normalizable, Gi C , with nki/m G N as in Definition 4.2 and 
Theorem 4.4. 

type (2) : qQ is a non resonant analytically linearizable singularity and Gi is 
abelian. 

We will use the following lemma whose proof we have extracted from [19] for the 
reader's convenience: 
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Lemma 5.7'. — Let qQ = DiDDj be a corner of type (1) or (2) as above. Assume that 
the adjunction holonomy group Gj * (D*Gi) is solvable. Then we may construct ffj, 
ffi in such a way that we have ffj=ffi as formal expressions at qQ. Moreover, for the 
cases Gi, Gj are analytically normalizable, let (x,y) G U be analytic coordinates such 
that (x = 0) = Di n U, (y = 0) = Dj HU, T\v is in the normal form xdy — Xydx = 
0, X G (C\Q) U Q_, and such that x\^ is an analytic normalizing coordinate for 
Hol(J^, Di, T>i), Si = (x = 1). Then the adjunction Gj * (D*Gi) is solvable if, and 
only if, y|E (T,j = (x = 1)) is an analytic normalizing coordinate for Hol(T, Dj,T,j). 

Proof. — We denote by £j = ord((u;)0, Dj). First we assume that qQ is of type (2) 
We have Gi linearizable so that each h G Hol(J^, Di, S*) writes h(x) = p,h • x and 
induces an element h^Çy) = • y in Diff(SJ,qj) where = //~^A. In particular the 
local holonomy h0 around qQ induces h^{y) = (e~2nt/x) y = y. Thus we have two 
possibilities: 

Case 1. — Gi is cyclic generated by ho. In this case any element h G Gi writes 
h — h™h for some rrth G Z . Now, if Gj is also abelian then we may assume that ffj = ffi 
(are meromorphic and coincide) in a neighborhood of g0. If Gj is nonabelian say, 
Gj C H^. by an analytic embedding, then we have necessarily Resr^. ffj = kj; + 1 + £j 
(Lemma 5.3). This fixes Resr^ ffj as Resr^ ffj — l — kj\-\-£i as it follows from equation 
(*) in the proof of Lemma 5.3. On the other hand we may (since Gi is linearizable), 
choose ffi such that Resr^ ffi = 1 — kjX + £i and therefore Res/?., ff = fej+^ + l. Thus 
ffj — ffi is holomorphic in a neighborhod of q0 and since 

№ - * ) a ( ^ - a Ç ) = o 

and À ̂  Q, it follows that ffj = ffi around qQ. Alternatively, we may use the fact that 
Gi is generated by ho in order to extend ffj\^. to a neighborhod of Di and therefore 
obtain ffj = ffi around qQ for ffi — extension of above obtained. 

Case 2. — Gi is not cyclic. In this case there exists h G Gi such that hm ^ /IQ, 
V(n,m) 3 Z x Z - { ( 0 , 0 ) } . Thus # e-**in/\ and therefore /x";A # e27rin/m 
V(n,m) G Z x Z - { ( 0 , 0 ) } . 

This shows that ^ G G, * (V*Gi) C Diff(Si,^J) is of the form hP{y) = fi~~x • y 
and is not a rational rotation. Now, fixed a normalizing coordinate z G ( S j , ^ ) , 
z(qj) = 0, for Gj * (V*Gi) as a solvable group then (in the nonabelian case) we may 
write each element g G Gj * (V*Gi) as #(z) = az/ V l + bzkK In particular we may 
write hP{z) = a - z/ V l 4- where a = /x"̂ A is not a root of 1. This implies that hP 
is linearizable by some coordinate Z — T{z), where T is an homography. Therefore 
we may assume that hP(z) = IJL~~X • z. Since /2~~X is not a root of 1 it follows that 
z = a - y for some a G C*. Thus y|E also normalizes the group Gj * (T>*Gi) D Gj. 
In particular we obtain ffj — ffi around qQ. 
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- Now we consider the case qQ is of type (1) with Gi solvable nonabelian: 
We write T\.. : nxdv 4- mvdx = 0. Anv element h G Gi writes 

h(x) = 
ax 

V l + bxk* 

and induces an element hv G Gj * (D*Gi) of the form 

J = g • (x(l + 
Xyk) 

am/ny 

1 4- byKJ 
G Diff(£j, 

This implies that Gj * (D*Gi) is nonabelian and we can choose a normalizing co
ordinate 2; G S j , z(qj) = 0, such that / 1 ^ ( 2 ) = am/nz/ tyTTc***". Now, if we 
choose h E Gi such that b - c ^ 0 then necessarily we have 2*' = T(ykj) for 
some homography T ( Z ) G SL(2,C) and therefore y\^_ also normalizes the group 
Gj * (U*Gi) C Diff(Sj,#j). In particular 77} = ffi in a neighborhood of qQ. 

- Finally, we consider the case where qQ is of type (1) with Gi abelian: 
In this case again we write T\v : nxdy + mydx = 0, and now any element h G 

Gi, writes h(x) = /x#/ii(xm) and induces hP(y) = //m/ny • h™^n(yn) in the group 
Gj*(V*Gi). 

If Gi is not cyclic then there exists h such that hk / h%, V (k,t) G Z x Z \ { ( 0 , 0 ) } 
and therefore we may proceed as above and conclude that y\^ normalizes Gj * (D*Gi) 
(notice that Gi not cyclic Gi analytically normalizable Gj is analytically nor
malizable). Thus we one reduced to the case Gi is cyclic. Thus Gi is in fact finite 
(because it is abelian and contains a rational rotation, ho). We may consider two 
distinguished situations: 

• If Gi is generated by ho then since tig = Id it follows that Gj * (V*Gi) = Gj and 
we may extend rjj | s to a neighborhood of Di and therefore assume that rjj = ffi at 

• If Gi is not generated by ho then we have Gi = (h^£) for some £ G N and hl/£ G G* 
induces an element {h]/1)^ G Gj * (T>*Gi) that writes (^^^(y) = e2nl/£y which is 
not the identity. Since Gj * (T>*Gi) Z> Gj and is also solvable, we can construct ffj in 
such a way that (hQ^£)^ffj = ffj in S j , and this assures that (^0^)^ (% |E.) — {fjtj\^.) 
so that ?7j|E. can be extended to a neighborhood of Di and we may assume that 
ffj — ffi at q0. This ends the proof of the lemma. • 

Case B. — A ̂  Q. In this case, qQ is formally linearizable [3], moreover, according 
to Definition 4.2 (ii) and Theorem 4.4, at least one of the holonomy groups of Di and 
Dj is abelian, say G« is abelian formally linearizable. However it is not clear that 
qQ is analytically linearizable, so that it is not immediate that we can introduce the 
adjunction holonomy group Gj *X>*(G^). If both virtual holonomy groups are abelian 
then we can proceed as in the proof of Lemma 5.4 and construct the 1-forms rji and 
rjj from integrating factors, say fju = d\oghu, in a neighborhood of qQ, where u/hu 
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is closed, v =J = g J = g Clearly the quotient hi/hj is a first integral for ¿¡5 at qQ. Since 

the singularity is not formally linearizable it follows that hi = cte -hj and therefore 

we have rji = rjj. Thus we may assume that Gj is non-abelian. But since it contains 

a diffeomorphism with non-periodic linear part (the local holonomy around q0), it 

follows that Gj is analytically normalizable, and so it is the singularity qQ. This 

says that qQ is of type (2 ) . The glueing of the forms rji and rjj is therefore given by 

the fact that the adjunction holonomy group Gj * T>*(Gi) is solvable ([2], [19]) (see 

Lemma 5.7). 

Case C. — q0 is not linearizable and A = —n/m G Q_ in the usual notation. If 

bo th singular holonomy groups are abelian, then according to the proof of Lemma 5.4 

we construct the 1-forms rji and rjj from integrating factors, say rju — d\oghv, in a 

neighborhood of q0l where uj/hv is closed, v = Clearly the quotient hi/hj is a first 

integral for ¿¡5 at qQ. Since the singularity is not formally linearizable it follows that 

hi = cte -hj and therefore we have rji = rjj. Now we assume at least that only one of 

the holonomy groups say, Gj is nonabelian. In this case we have formal coordinates 

{x,y) at qQ such that 

UJ = g\ kxdy +£y 1 + 
J = g 

2TT 
•xlyk dx (Proposit ion 2.8) . 

Thus we have as usual rji — rij = hQ * UJ where 

d(hqgxt+1yk+1) Ad 
J = g 1 

J = g 

J = g 

2?r 
- log X = 0. 

On the other hand, since the singularity q0 has a non linear formal normalization, it 

follows that hqgxi~*~1yk+1 = JJL G C is a constant. Finally we have fi — 0 because both 

rji and rjj have simple poles over T. 

Case D. — q0 has a holomorphic first integral, A = —n/m as usual. If bo th virtual 

holonomy groups GJ and G\ are abelian, then we can consider the adjunction process 

from Di to Dj and conversely. Thus it will follow that the 1-forms rjj and rji may 

be constructed in compatible way, so that we have rji = rjj at qQ (indeed, qQ is of 

type ( 1 ) ) . Thus we may assume that some of the virtual holonomy groups say, GJ 

is non-abelian. If it is analytically normalizable then we have qQ of type (1) and we 

may apply Lemma 5.7. Let us however give a sole argument. Assume that G\ is also 

non-abelian. Then the 1-forms rji and rjj have residues given by Res ̂  rji — ^ -h fcj + 1 

and Res ̂  rjj = £j + kj + 1, in the usual notation. On the other hand we have that 

m/n = kj/ki (Theorem 4.4) . Using this and equation (*) in the proof of Lemma 5.3, it 

follows that Res ̂  rjj = Res ̂  rji and also Res ̂ . rjj = Res z^ rjj. Thus, the difference 

rjj — rji is a closed (formal) holomorphic 1-form at qQ, so that we may write it as 

rjj — rji — d<pij(xrnyn) for some (holomorphic) formal function <p(z). Now, as in 3.1 

of §3 we can consider the adjunction holonomy groups obtained from Gj and Gi. 

These groups are solvable and we have Gt * T>*(Gj) C G\ and Gj * £>*(G;) C G]. 
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The solvability of these groups allows us to extend the 1-form rji as a transversely 
formal 1-form over Dj \ sing JT, and therefore the integral (p(xmyn) also extends as a 
transversely formal first integral over Dj \ sing T. This implies, in the case <p(z) is 
non-constant, that the virtual holonomy group GJ is finite [13], [16], and we would 
have a contradiction. Thus we may assume that Gj is non-abelian, but G\ is abelian. 
In particular we may perform the adjunction from Di to Dj and obtain a solvable 
subgroup Gj * T>*(Gi) С GJ (see 3.1 §3). We write the difference rji — rjj = ftij, for 
some closed (formal) meromorphic 1-form at qQ. This l-form can be extended by 
holonomy to a transversely formal closed meromorphic 1-form over Dj \ sing T. This 
implies, in the Qij Ф 0, that the virtual holonomy GJ is abelian [16], [19], and we 
would have a contradiction. Thus ftij = 0 and therefore щ = rjj at qQ. Thus in any 
case either the glueing of rji and rjj is immediate, or it is given by the fact that the 
adjunction holonomy is well-defined and solvable as it follows from Lemma 5.7. 

Remark 5.8. — The solvability of the virtual holonomy groups is enough, under our 
hypothesis of normal hyperbolicity on the saddle-nodes, to conclude that we may 
choose all the 1-forms rjj in a simultaneously compatible way (see Remark 5.5). For 
instance we discuss the case the holonomy of Dj is finite, and there are Di, Dk with 
non abelian holonomies such that Di D Dj ^ 0 ^ Dk PI Dj. In this case the 1-
form rjj is not unique over a neighborhood of Dj\sing^F. However, if qi = Di Pi Dj 
and qk = Dk H Dj are not saddle-nodes then (they have finite local holonomies and 
therefore, by [13], these singularities admit local holomorphic first integrals so that) 
we may perform the adjunction from the holonomy of Dj to Dk and Di and conversely. 
Thus we consider the case where qi and qj are saddle-nodes. Since the holonomy of 
Dj is linearizable, it follows that these saddle-nodes are not in good position with 
respect to Dj, that is, their strong manifolds lie over Di and Dk respectively. But 
in this case we can perform the adjunction of the holonomy of Di to Dj and of 
the holonomy of Dk to Dj (see the construction of the singular holonomy which is 
below Lemma 3.4). Therefore, the fact that the singular holonomy G îng is abelian 
linearizable (cf. Remark 4.5), is enough to assure the compatibility of the forms rjj, rji 
and rjk [19]. The collection of 1-forms (rji)^0 defines therefore a transversely formal 
1-form rj over F, which is a logarithmic derivative of Zo, adapted to T. 

Proof of Theorem 5.1. — According to Proposition 5.6, it remains to prove (i)=>(ii) 
in Theorem 5.1. This is proved with a geometric interpretation of [16], or following 
the steps of an analogous result stated in [2], one may also find a proof in [19], using 
our hypothesis of normal hyperbolicity on the saddle-nodes. • 
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6. Rationality of formal logarithmic derivatives 

As in §2 we denote by F the invariant part of the divisor D, obtained in the 
resolution of sing T fl A. The following proposition is a consequence of [5] which is 
based on a theorem of Hironaka-Matsumara [8]: 

Proposition 6.1. — Let a be a transversely formal differential form defined over F in 

CP{2), where F C CP(2) is a normal crossing divisor, and CP{2) is is obtained from 

CP(2) by a finite sequence of blowing-ups. Assume that F C CP(2) satisfies property 

(psdc). Then a extends rationally to CP{2). 

Proposition 6.2. — Let T be a foliation on CP {2), having as limit set some singu
larities and an algebraic curve A. Assume that singjFn A satisfies property (C±) and 
{psdc). Then there exists a closed rational 1-form rj which is a rational logarithmic 
derivative for Zo, adapted to the invariant part of the resolution divisor of sing T D A. 
In particular all the projective singular holonomy groups of sing T H A are solvable 
analytically normalizable. 

Proof. — According to Theorem 4.4, T has a Liouvillian resolution relative to A. 
Using Propositions 5.6 and 6.1 we conclude that ¿¡3 admits a rational logarithmic 
derivative rj adapted to F. We apply Proposition 6.1 to conclude the rationality of rj. 
The last part of the statement is a consequence of [16] or, also, of an improvement of 
[2] found in [19]. • 

7. Proof of Theorem 1.1 

According to Proposition 6.2 we know that J7 (that is uo) admits a rational loga
rithmic derivative rj on CP(2), which is adapted to F. According to Proposition 6.2 
above, all the singular holonomy groups appearing in the resolution of sing T n A are 
analytically normalizable. Thus we may apply the last part of [2] which assures that 
either T is given by a closed rational 1-form or T is a rational pull-back of a Riccati 
foliation as in Theorem 1.1. • 

We can relax the hypothesis on the limit set of T if we assume that T has a 
transcendent leaf whose limit set is an algebraic curve A plus some singularities but, 
in order to prove that F = lim(L) for the corresponding transcendent leaf L of T, we 
have to make an additional hypothesis on sing T fl A. 

(C2) A contains all its local séparatrices, and all the saddle-nodes appearing in the 

resolution of sing J7 D A have their strong manifolds contained in the limit set limL. 

Using the same techniques as in the proof of Theorem 1.1 we can prove: 

Theorem 7.1. — Let J7 be a foliation on CP{2), having a transcendent leaf whose 
limit set is an algebraic curve A. Assume that sing.Fn A satisfies property {psdc), 
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conditions (Ci),(C2). Then, either T is given by a closed rational \-form or it is a 
rational pull-back of a Riccati foliation 1Z : p(x)dy — (a(x)y2 + b{x)y)dx = 0, where A 
corresponds to (y = 0) U (p(x) = 0), on C x C. 

A few words should be said, concerning the relations between our result and groups 
of linear rational transformations. Let G be a finitely generate Fuchsian group, i.e, 
a properly discontinuous group of diffeomorphisms of C, carrying a certain circle 
C(G), (the principal circle), into itself. It is known that the limit set of G lies on 
C(G). Moreover it is well-known that if lim(G) has more than two points, either 
lim(G) = C(G), or lim(G) C C{G) is a nowhere dense perfect subset [6]. 

Let us assume that lim(£?) = C(G). Using [9] we can realize G as the "suspension 
holonomy" of the line (y = 0) C C x C, of a Riccati foliation 

71(G) : p(x)dy - (a(x)y2 + b(x)y + c(x))dx = 0 

on C x C. The foliation 71(G) satisfies \iva(7Z(G)) = M3(G), for a real 3-dimensional 
singular subvariety M3(G), which is singular along the invariant vertical fibers : 
x x C,p(x) = 0, and such that the intersection M3(G) fl Cx is a principal circle 
of a Fuchsian group conjugate to G, provided that the fiber is non invariant. 
Conversely, one can ask whether a foliation whose limit set is an invariant real singular 
hypersurface as M3(G) above, is in fact the pull-back of a Riccati foliation. This 
problem remains open. 
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UNE CARACTÉRISATION DES STADES 
À VIRAGES CIRCULAIRES 

par 

A l b e r t Fathi 

Résumé, — Nous donnons une minoration du volume d'un domaine compact convexe 
d'un espace euclidien dont le bord est de classe C1'1. Nous caractérisons le cas d'éga
lité. 

0. Introduction 

On munit W1 du produit scalaire usuel. On notera ||.| | la norme euclidienne usuelle 

sur IRn. La sphère unité dans W1 est notée S n _ 1 . 

Afin de simplifier, dans cette introduction, nous allons considérer un convexe K C 

W1 d'intérieur non vide et de bord C2. Pour x G dK, notons N(x) le vecteur unitaire 

normal à dK en x et pointant à l'extérieur de K. L'application iV : dK —> §n_1 est 

C 1 . Puisque les espaces tangents TxdK et XJV^)^™-1 sont tous les deux égaux au sous-

espace vectoriel N(x)± orthogonal à N(x), la dérivée DN(x) est donc une application 

linéaire de N(x)± dans lui-même, on sait qu'elle est symétrique et définie positive. Les 

valeurs propres de DN(x), notées K±(X),..., Kn-i(x), sont donc > 0 , on les appelle les 

courbures principales. On a ||Z}iV(:r)| | = m a x ( f t i ( # ) , . . . , Kn-\{x)), puisque DN(x) est 

symétrique. Les rayons de courbure principaux Ri(x),... ,Rn-i(x) sont les inverses 

^ i ( # ) - 1 , • • • 5 ^ n - i ( ^ ) - 1 - Soit Hi{x) la ième fonction symétrique de K\(X), . . . , Kn-i(x). 

On note par a la mesure d'aire induite par la métrique euclidienne sur dK. On définit 

T-i^K) = fdK H{(x) da(x). Le théorème de Gauss-Bonnet donne 7in-i(K) = sn - i 

l'aire de la sphère unité Sn_1 dans En . 

On pose : 

^suP = s u p { ^ ( # ) | x G dK, i = 1 , . . . , n — 1 } 

i?inf = inf{Ri{x) | x € dK, i — 1 , . . . , n — 1 } . 

Classification mathématique par sujets (1991). — 52A10, 52A20, 52A40, 53C99. 
Mots clefs. — Convexe, rayon de courbure, Blaschke, volume. 
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90 A. FATHI 

En particulier, on a ^sup — sup{ | |DiV(:r ) | | | x G dK}. 

Blaschke a montré qu'une boule de rayon i?inf roulait librement à l'intérieur de K, 

(cf. [Bl, pages 114-119] et [Le, Theorem 2.1, page 1055]). Si on définit l'application 

M : dK x [0, oo[ —> W1 par Af(x, t) — x — tN{x), le théorème de Blaschke montre que 

M est un plongement de dK x [0, Z?inf [ dans K. Il en résulte le théorème suivant : 

Théorème 0.1. — Si K G Mn est un compact convexe d'intérieur non vide et dont le 

bord est de classe C2, alors, on a : 

V(K) > RinfS(K) 
n-1 

i=l 
( - l ) ^ f 1 

G Rn 

i + l1 

où V{K) est le volume de K et S(K) est l'aire de son bord dK. 

De plus, cette inégalité est une égalité si et seulement si K est une boule euclidienne. 

Plus généralement, si K est un compact convexe d'intérieur non vide et dont le bord 

est C1, on dit que K est C1'1 si le plan tangent TxdK est lipschitzien comme fonction 

de x G dK. Il revient au même de dire que l'application normale N : dK —> Sn_1 

est lipshitzienne. Dans ce cas, les courbures sont définies presque partout. On peut 

voir que l'on peut faire rouler librement une boule de rayon R > 0 à l'intérieur d'un 

compact convexe K si et seulement si dK est C1,1 (cf. [Ho, Proposition 2.4.3, p . 97]). 

Il n'est donc pas étonnant que le théorème précédent s'étende au cas C1,1. Le cas 

d'égalité ayant lieu précisément quand K = {x G Mn | d{x, C) < R} avec C compact 

convexe de dimension < n — 1 et R > 0. 

Dans le cas où C = S est un segment de M2, un ensemble de la forme {x G M2 | 

d(x, S) < R} est ce que l'on appelle, pour des raisons visuelles évidentes, un stade à 

virages circulaires. Remarquons que le bord d'un tel stade est soit un cercle de rayon 

R si S est réduit à un point, soit la réunion de deux segments, de mêmes longueurs 

et parallèles à S et de deux demi-cercles de rayon i?, par conséquent si S n'est pas 

réduit à un point, un tel stade n'est jamais C2. 

S 

FIGURE 1. Un stade à virages circulaires. 

Le théorème suivant donne une caractérisation des stades circulaires : 
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Théorème 0.2. — Soit C une courbe convexe fermée plane de classe C1,1. Notons 

par l sa longueur, par A l'aire entourée et par Rinf la borne inférieure des rayons de 

courbure. On a : 

A > lRinf - 7rRfnf. 

De plus, cette inégalité est une égalité si et seulement si C borde un stade à virages 

circulaires. 

Remarque 0.3. — 1) Quand ce manuscrit était pratiquement terminé, Victor Bangert 

nous a communiqué les travaux d'Innami [Ini, In2]. Certains des résultats d'Innami 

sont très proches des nôtres. En fait, bien que l'inégalité qu'Innami établit dans [Ini, 
Corollary 2], pour les hypersurfaces convexes lisses, soit moins bonne que la nôtre, 

les méthodes utilisées dans son travail sont les mêmes que les nôtres (en particulier, 

[Ini, Lemma 5 ] n'est rien d'autre que le théorème de Blaschke) et donc un examen de 

sa démonstration donne l'inégalité du théorème 0.1 ci-dessus. Bien sûr, sa minoration 

du volume étant moins bonne, le cas d'égalité est plus facile à analyser. Par ailleurs 

ses méthodes ne s'appliquent pas au cas des convexes de bord de classe C1,1. 

2) Dans [Ini], Innami établit aussi une minoration de V(K) pour le cas où K est de 

bord lisse mais n'est pas nécessairement convexe. Il faut, alors, remplacer i?inf par le 

rayon r(K) de la plus grande boule euclidienne qui roule librement à l'intérieur de K. 

Un examen de sa démonstration, ou de la démonstration du théorème 1.1 ci-dessous, 

montre que l'on peut établir la même inégalité que dans le théorème 1.1, à condition 

de remplacer i?inf par r(i*T), dès que dK est C1'1 (on peut voir que cette dernière 

condition implique r(K) > 0) . Il serait intéressant d'analyser le cas d'égalité. 

3) Dans [Ga], on établit l'inégalité ni/A < K(S)2 ds, pour une courbe convexe C 

de classe C2 dans le plan. Cette inégalité est optimale quand C s'approche d'un cercle. 

Si C s'approche d'un stade à virages circulaires quelconque, on voit que K(S)2 ds 

tend vers 2TT/Rinf- L'inégalité de Gage devient donc dans ce cas limite A > Zi?inf/2, ce 

qui est moins bon que le théorème 1.2, dans le cas d'un stade qui n'est pas un disque. 

4) Il est bon de signaler ici que si C est un convexe dans Mn, les ensembles de la 

forme CR = {x G W1 \ d(x, C) = R} sont tous, pour R > 0, des convexes à bord 

C1'1. Ceci résulte du fait, bien connu, que x h-> d(x, C) est C1'1 sur W1 \ C. Pour une 

démonstration, on peut consulter par exemple [Ho, theorem 2.1.30, p . 62], où il est 

montré que cette fonction est différentiable ; de plus, son gradient sur W1 \ C est donné 

par x H> (x — pc(x))/\\x — pc(x)\\, où pc : Kn —> C est la projection sur le point le 

plus proche de C. Or pc est lipschitzienne. (On peut voir qu'une fonction distance à 

un fermé F dans une variété riemannienne M qui est différentiable en tous les points 

de M \ F est, en fait, C1'1 sur M \ F). 
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1. U n théorème de Blaschke 

Soit K c W1 un compact convexe. Les observations suivantes sont élémentaires 

et bien connues (cf. par exemple le paragraphe 3.1 sur la soustraction de Minkowski 

dans [Sel). Si r > 0, on pose : 

K' = {xeK I d(x,dK) > r}. 

L'ensemble K~ est un compact convexe. La convexité résulte du fait que x G K~ si 

et seulement si x + B(0,r) C K. On peut voir que la frontière de K~ dans W1 est 

dK~ — {x G K \ d(x, K) — r}. On a aussi K~ = Us>rK~, où K~ désigne l'intérieur 

du compact K~. En particulier, si on pose pmax — 

sup{r > 0 | 3x G K, d(x,dK) = r } , 

on a K~ = 0 pour r > Pmax, l'ensemble Kpm&x est un convexe compact non vide de 

dimension < n — 1 et, pour r < pmax, la frontière dK~ est homéomorphe à §n_1 et 

K~ 7̂  0 . (Le nombre pmax est le rayon de la plus grande boule euclidienne contenue 

dans K.) 

Soit K C W1 un compact convexe d'intérieur non vide et dont le bord est de classe 

C1,1. Pour x G dK, notons N(x) le vecteur unitaire normal à dK en x orienté vers 

l'extérieur de K. L'application N : dK —» §n -1 est lipschitzienne. Posons : 
= lim max 

[\\N(x)-N(x')\\ 

\\x — x'\\ 
I x,x' G dK, x ^ x1\ \\x — x'\\ < s 

et on définit iîinf = Aĉ ûp. 

Si dK est C2, alors cette définition coincide avec celle donnée plus haut, car les 

deux définitions donnent la constante Lipschitz de N : dK —» IRn, où dK est muni de 

la métrique intrinsèque. 

Si K a un bord de classe C1,1, on peut aussi définir l'application M : dK x [0, oo[ —ï 

W1 par Af(x, t) = x - tN(x). 

Nous donnons une démonstration du théorème de Blaschke valable dans le cas C1'1. 

Théorème 1.1 (Blaschke). — Soit K un compact convexe d'intérieur non vide et dont 

le bord est de classe C1,1. Pour tout x G dK et tout r G [0,i?inf], on a 

d(x -rN(x),dK) = r . 

Démonstration. — Pour r > 0, considérons l'application partielle 

Nr.dK —> Mn, x i—> N(x,r). 

On a pour tout r > 0 l'inclusion dK~ C J\fr(dK). En effet, si # G K est tel que 

d{x,dK) — r > 0, soit #0 G <9K tel que d(x,xo) = r, comme <9K est C1 et x0 réalise 

le minimum de d(y, x) pour y G dK, on a que xo — x est colinéaire à la normale N(xo), 

par conséquent x = x0 — rN(xo) = J\fr(xo), puisque \\x — XQ\\ = r et N(XQ) pointe à 

l'extérieur de K. 

Posons alors 

R0 = sup{r G [0,i?inf] I Va; € V s G [0 ,r], d(Ms{x),dK) = s}. 
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On a Af{dK x [0,jRo]) C K. En effet, comme d{Afs(x),dK) = s, pour s G [0, Ro], on 

a Afs{x) £ dK, pour 5 G ]0,i^o]- Or N(x) pointe vers l'extéreiur de K, donc on a 

Afs(x) G K pour s > 0 petit. 

Supposons RQ < Rinf. Fixons R tel que Ro < R < i?inf = fi^p. Montrons qu'il 

existe s > 0 tel que, pour tout r G [0, i î ] , l'application partielle Afr : —» Mn,x 

Af(x, r) soit injective sur tout ensemble de 9iiT de diamètre < e. En effet, puisque 

Rftsup < 1, il existe k > KSUP tel que Rk < 1. Par définition de ACsup, il existe s > 0 

tel que, pour tout G K, avec ||x — < e, on ait ||iV(#) — N(x')\\ < k\\x — x'\\. 

Par conséquent 

\\K{x) - Afr(x')\\ > \\x - x'\\ - r\\N{x) - N(x')\\ > (1 - kr)\\x - x'\\. 

L'injectivité résulte donc de 1 — kr > 1 — kR > 0. 

Toujours sous l'hypothèse Ro < i?inf, montrons que 1' on a Ro < Pmax et que 

l'application Afr est un homéomorphisme de dK sur dK~ pour tout r G [0,i?o]-

En effet, pour r G [0, i?o], l'application A/"r est localement injective, de plus, comme 

d{Afr{x),dK) = r, pour tout x G ôiiT, l'application Afr envoie dK, qui est homéo-

morphe à §n_1 dans dK~, la frontière, comme sous-ensemble de Mn, de l'ensemble 

convexe compact K~. Il résulte du théorème de Brouwer d'invariance du domaine que 

dK~ est homéomorphe à §n_1 (en particulier, on a r < /9MAX et donc Ro < Anax) et 

que Afr ' dK —> dK~ est un revêtement. Comme les dK~ sont deux à deux disjoints, 

on voit que Af induit un revêtement de dK x [0,i?o] (homéomorphe à §n_1 x [0,1]) 

sur \Jre[o,R0]dKr — K \ KR0 (lui aussi homéomorphe à Sn_1 x [0,1]). Or, sur 

dK = dK$ = Af~1{dK^), l'application Af est l'identité, donc le revêtement est de de

gré 1 et Af est un homéomorphisme de dK x [0, Ro] sur {x G K | 0 < d(x, dK) < Ro}-

Pour r G [0, R], l'application Afr est injective sur tout ensemble de diamètre < e. 

Comme A/#0 est globalement injective, un raisonnement classique utilisant la com

pacité de dK montre qu'il existe R' G ]RQ,R] tel que Afr reste globalement injec

tive pour r G ] i ?o ,^ ; [ - En effet, sinon on trouve xn,yn G dK et rn > Ro tels que 

xn y£ yn,Afrn(xn) = Afrn (yn) et lim^^oo rn = R0, Par la compacité de dK, quitte à 

extraire des sous-suites, on peut supposer que limn^00 xn = x^ et limn^oo yn = y^. 

Par continuité, on obtient A/H0(^OO) = AfRQ(y(X)) et donc Xoo = y oc, par l'injectivité 

(globale) de ASR0. Pour n assez grand, on trouve donc d(xn,yn) < e et rn < R. Ce 

qui contredit l'injectivité de Afrn sur tout ensemble de diamètre < e, pour r G [0, i?] , 

puisque xn / yn et A/"rri (xn) = Afrn (yn)> 

Pour Ro < r < min(i2', pmax), on voit donc que Afr(dK) est homéomorphe à la 

sphère §n_1 et contient dK~ qui est homéomorphe à la même sphère. Le théorème 

de Brouwer d'invariance du domaine implique l'égalité Afr(dK) = dK~. On a donc 

d(Afr(x),dK) — r, pour tout x G dK et tout r G ]i?0,niin(i?',pmax)[, ce qui est 

contradictoire avec la définition de Ro. • 
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Le corollaire suivant est en fait équivalent au théorème de Blaschke (cf. [Th, Co

rollaires p . 584] pour une autre démonstration) : 

Corollaire 1.2. — Sous les hypothèses de 1.1, la restriction de M à dK x [0,i?inf[ est 

injective et à valeurs dans K. 

On a K — M(dK x [0,i?inf[) U Kft.nf, la réunion étant disjointe. De plus 

K = {x G Rn | d(x,K^J < Rïn{}. 

Démonstration. — L'injectivité de J\f sur dK x [0, .Rinf[ est en fait déjà contenue 

dans la preuve de 1.1. Il n'est pas inintéressant de voir qu'elle résulte directement de 

l 'énoncé de 1.1, par un argument géométrique bien connu. 

G Rn 
*2 

G Rn 

*4 

FIGURE 2 

Supposons que x\ et x2 sont deux points distincts de dK tels qu'il existe r±, r2 G 

[0,iîinf[ vérifiant x\ — r\N(x\) — x2 — r2N(x2). Posons 

x3 = X! — r1N(x1) = x2 — r2N(x2). 

On trouve par le théorème de Blaschke d(x3,dK) = r± = r2. Posons par exemple 

x^—x\— R\ràN(x\) (cf. Figure 2) . Les points x±,x3,x2 ne sont pas colinéaires donc 

d(x±,x2) < d(x4,x$) -h d(x3,x2) 

= \\xi ~ RinîN(x1) - Ori - r1N(x1))\\ + ||rr2 - r2N(x2) - x2\\ 

= Rïnî - ri + r2 = iîinf • 

Par conséquent i?inf = d(x4,dK) < d(x±,x2) < itW, ce qui est absurde. 

Par la démonstration du théorème de Blaschke, l 'application Afr est un homéomor-

phisme de dK sur dK~ = {x G K \ d(x,dK) = r} pour r < itW- Le fait qu'alors 

K = J\f(dK x [0, iîinf [) U ^#inf ? la réunion étant disjointe, en résulte. 

Du théorème de Blaschke, il résulte que K G {x G W1 \ d(x, K^{) < i?inf}-

Montrons que cette inclusion est une égalité. En effet, si x £ K et y G ^Rinf est tel 

que d(x, y) — d(x, K^.^), le segment [x, y], joignant x & y, coupe dK en un point que 
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l 'on notera yç>. Par définition de KR , on a d(y,yo) > i?inf- Comme d(x,yo) > 0, car 

x dK, on obtient 

d(x,KRin{) = d(x,y) = d(x,y0) + d(y,yQ)> d(x,y0) -h i?inf > Rinf. 

Par conséquent {x G RN \ d(x,K~.nf) < i?inf} C K. • 

Nous aurons besoin de comprendre ce qui se passe dans le cas où KR^ est d'intérieur 

vide. Par exemple, si K C M2 est tel que KRinf soit d'intérieur vide, alors KRinf est un 

segment, éventuellement réduit à un point, et donc K = {x G Kn | d(x, KR ) < i?inf } 

est un stade à virages circulaires, qui n'est C2 que si c'est un disque. Ce dernier résultat 

est vrai en toute dimension. 

Complément 1.3. — Si K est C2, alors KR.^ est d'intérieur vide si et seulement si 

K est une boule euclidienne (et dans, ce cas KR.nf est réduit au centre de la boule). 

Posons pour simplifier C = KR^ et R — Rinf > 0. Il suffit de démontrer la 

proposition suivante : 

Proposition 1.4. — Soit C G W1 est un compact convexe de dimension < n — 1 

non réduit à un point et R > 0. Considérons un segment S joignant deux points 

ci,C2 G C tels que \\c\ — C2W = sup{ | | c — c'\\ \ c,cf G C}, alors il existe un plan affine 

P contenant S et tel que PD{x G W1 \ d(x,C) = R} soit le stade à virages circulaires 

{x G P I d(x, S) < R}. En particulier {x G RN | d(x, C) = R} n'est pas C2. 

Démonstration. — Appelons pc : Mn —> C, la projection de Mn sur le compact 

convexe C , le point pc(%) est donc l'unique point de C dont la distance à x est 

d(x,C). 

Quitte à translater C , on peut supposer c\ — 0. On posera c = c2. Comme C n'est 

pas réduit à un point c ^ O . On a : 

Pc (te) = 

( 0 , pour t < 0, 

, te, pour t G [0,1], 

l e , pour t > 1. 

Montrons, par exemple, le dernier cas. Si t > 1 et c' G C, on a 

d(0, c) H- d(c, te) = d(0, te) < d(0, c') + d(c',tc) < d(0, c) + d(c',tc), 

d'où d(c,tc) < d(cf,tc) pour tout c' G C, donc pc(tc) = c. 

Puisque C contient 0 et est de dimension < n — 1, on peut trouver un hyperplan 

vectoriel H contenant C. Soit v un vecteur unitaire orthogonal à H. On a : 

Vx G H, V a G M, Pc(% + &v) = Pc(%)* 

En effet, comme C C H, on a, pour tout c1 G C , l'égalité 

d(x + av,c') = (\\x-c'\\2 + a2)1'2. 
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Il suffit, alors, de minimiser sur c ' € C . 

Dans le plan vectoriel P engendré par le segment S = [0,c] et le vecteur v, on 

obtient alors : 

{x G Rn | d(x, C) < R}HP = {x G P | d(x, S) < R}, 

ce qui est le stade cherché. 

Comme le segment S contient les deux points distincts 0 et c, le stade trouvé n'est 

pas C2. Pour finir de montrer que {x G Rn \ d(x, C) = R} n'est pas C2, il reste alors 

à remarquer que le plan P est transverse à, {x E W1 \ d(x, C) = R}, car il contient le 

point 0 qui est à l'intérieur du convexe {x G Rn \ d(x, C) < R}, et par conséquent P 

ne peut être contenu dans aucun hyperplan de support de {x G W1 \ d(x, C) < R}. • 

Remarque 1.5. — On peut montrer que si K est un compact convexe d'intérieur non 

vide avec dK de classe C1,1, alors pour tout r > KR.ITI{, l 'application Af : dK x [0, r] —>• 

IRn n'est pas injective. 

Dans le cas où dK est suffisament lisse, c'est une conséquence du fait que l'on ne 

minimise plus les distances au-delà du premier point conjugué (ou focal). C'est aussi 

contenu dans la démonstration de Blaschke de son théorème. 

Dans le cas où dK n'est que C1'1, cela vient d'un phénomène de régularité de la 

distance : on peut voir que si Af : dK x [0, r[ —» Mn est injective, alors x \-ï d(x,dK) 

est C1'1 sur l'ouvert Af(dKx]0,r[) C W1. 

2. Une minoration du volume d'un corps convexe de bord C1'1 

Nous considérons toujours un compact convexe K C Mn d'intérieur non vide et de 

bord C1,1. L'application N : dK —» Sn_1 est lipschitzienne. Par le théorème de Rade-

macher (cf. [EG, theorem 2, p . 81]), elle est derivable pour a-presque tout x G dK, 

où a est la mesure d'aire sur dK, sous-variété C1 de W1 muni de sa métrique eu

clidienne usuelle. En tout point où N(x) est derivable, la dérivée DN(x) est encore 

une application linéaire, symétrique et semi-définie positive de N(x)-L dans lui-même 

(voir appendice). En un tel point, les valeurs propres, notées K\(x),..., Kn-\(x), 

de DN(x) sont donc > 0, on les appelle les courbures principales. On a encore 

| | I } iV(x) | | = max (Avi (x) , . . . , Kn-i(x)), puisque DN(x) est symétrique. En un point 

où la fonction TV est derivable, on définit de même Hi(x) comme la ieme fonction sy

métrique de K\(x),..., K,n-i(x). Les fonctions Hi,..., Hn-\ existent donc <r-presque 

partout. On définit Tii(K) = jQK Hi(x) da(x). On peut démontrer, dans ce cas aussi, 

le théorème de Gauss-Bonnet, c'est-à-dire que 7in-i(K) = sn_i l'aire de la sphère 

unité §n_1 dans Rn. 
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Théorème 2.1. — Si K G W1 est un compact convexe d'intérieur non vide et dont le 

bord est de classe C1,1, alors, on a : 

V{K) > RintS(K) 
n-l 

1=1 

G RnG Rn Hi(K) 

i + l ' 

où V(K) est le volume de K et S(K) est l'aire de son bord dK. 

De plus, cette inégalité est une égalité si et seulement si 

K = {x £ Rn I d{x,C) < R}, 

où C est un compact convexe de Mn de dimension n — 1. 

En particulier, si K est de bord C2, l'inégalité est une égalité si et seulement si K 

est une boule euclidienne. 

Démonstration. — On sait que M : dK x [0, Rinf [ -+ K est injectif. Comme Af(x, r) = 

x — rN(x)y il est clair que Af est lipschitzienne, donc la dérivée existe a x dr-presque 

partout et DAf(x1r) : N(x)1- x l - y l n est donnée par 

DJ\f(x,r)(u,t) — u — rDN(x)(u) + tN(x), a x dr-presque partout. 

Par conséquent, en a x dr-presque tout ( # , r ) , le jacobien Jacx?r(A/") vaut 

det(Id^(£c)^ -rDN(x)) = 

n-l 

G Rn 

1 — rKjix)) = 1 + 
n - l 

i=l 
(-V'r'Hiix). 

La formule du changement de variable, qui est valide car Af est lipschitzien injectif 

(cf. [EG, theorem 1, p . 96]), donne : 

V(M(dK x [0,Ainf[)) 
r 
aKx[o,ßinf 

1 + 
n - l 

i=l 

(-lYr'H^x) da(x)dr1 

= RinfS(K) + 
n-l 

i=l 
( - W J 

G Rn 

i + l 

Or par 1.2, l'ensemble K contient Af(dK x [0, i?inf[), d 'où l'inégalité : 

V{K) > RinfS(K) + 
n - l 

i=l 

( - i ) ^ ? n V 
1 ^Hi 
G Rn 

Toujours par 1.2, cette inégalité est une égalité si et seulement si V(KR. ) = 0. 

Comme KR. est un convexe, le cas d'égalité est donc équivalent à KR. de dimension 

< n — 1. Il suffit alors d'appliquer 1.3 pour conclure. • 

Dans le cas où n = 2, il n 'y a qu'une intégrale de courbure Hi(K) — T-Ln-i(K) 

qui vaut 2TT par le théorème de Gauss-Bonnet. On trouve, alors que l'aire de K est 

supérieure à Rmfl — nR2n{, où l est la longueur de dK. C'est le théorème 0.2. 
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3 . Complément 

On considère, un compact convexe d'intérieur non vide et de bord de classe C2. On 

peut se demander dans quel cas Af est un plongement sur dK x [0, i?inf]. Bien sûr, le 

convexe K ne peut pas être une boule euclidienne, car alors AfRinf est constante. On 

peut obtenir d'autres convexes de bord C°° avec AfRinf non-injective, en prenant, par 

exemple dans le plan, un convexe avec un arc de cercle non-dégénéré dans son bord. 

Le résultat suivant est donc optimal : 

Théorème 3.1. — Soit K C Mn un convexe compact d'intérieur non vide et dont le 

bord est (i.e. analytique réel). Si K n'est pas une boule euclidienne alors Af est 

un plongement sur dK x [0, i?inf]. 

En fait, en posant C — ^^inf et R = Rinf, ceci découle du théorème : 

Théorème 3.2. — Soit C C W1 un compact convexe non réduit à un point. Notons 

Pc : IRn —> C la projection, définie par d(x,C) = d(x,pc(x)). Si R > 0 est tel que 

dCR = {x G W1 | d(xyC) = R} soit ', alors pc est injective sur dCR. 

Démonstration. — Rappelons que pc{x) est aussi caractérisé par la propriété sui

vante : 

Le point pc(x) est le seul point c G C tel que V?/ G C , (x — c, y — c) < 0. 

Il en résulte que pour tout c G C , l'ensemble p^}{c) est un cône convexe de som

met c. Notons Fc, le sous-espace affine engendré par p^}{c). La convexité de p~^}(c) 

implique que l'intérieur de p^}(c) en tant que sous ensemble de Fc est non vide. 

Montrons que Fc intersecte l'intérieur C de C. On sait déjà par 1.4, que C n'est 

pas vide. Si Fc n'intersectait pas C , il serait contenu dans un hyperplan affine H 

de support de C. Notons H\ et H2 les deux composantes connexes de Mn \ H avec 

C C H\ U H. La caractérisation de pc donnée plus haut montre que la demi droite 

D2, issue de c, incluse dans H2 et perpendiculaire k H en c, serait contenue dans 

p^}{c). Ce qui est absurde, car p^x (c ) C Fc C H. 

Montrons que la dimension q de Fc est nécessairement 1. En effet, comme Fc 

intersecte l'intérieur du convexe CR = {x G 3R.n | d ( x , C ) } , il est transverse au bord 

9CR, par conséquent FcndCR est une hypersurface de Fc. Cette hypersurface est 

homéomorphe à car c'est le bord du compact convexe Fc n CR d'intérieur non 

vide dans l'espace affine Fc de dimension q. De plus Fc Ci dCR contient l'intersection 

Pçl{c) fl {x G Fc | \\x — c\\ = i ? } , or cette intersection est d'intérieur non vide dans 

la sphère {x G Fc \ \\x — c\\ = R} de dimension q — 1, car le cône p^}{c) est de 

sommet c et d'intérieur non vide comme sous-ensemble de Fc. La fonction analytique 

réelle x 1—> \\x — c||2 est donc nulle sur un ouvert non vide de Fc D dCR qui est une 

variété C^ homéomorphe à S9"1. S i g > 2 , on voit que Fc n dCR est connexe, donc 

x \\x — c||2 est constante sur Fc fl dCR. Comme Fc D dCR est une sous-variété 
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compacte de codimension 1 dans FC1 nous obtenons 

Fc H dCR = {xEFc\ \\x - c| | = R}. 

Nous en concluons que Fc D C — { c } , ce qui est impossible, car Fc il C ^ 0 . 

Par conséquent, le sous-espace affine Fc est une droite. Comme Fc fl C / 0 , le 

compact convexe C fl Fc est un segment d'intérieur non vide, donc nous ne pouvons 

pas avoir p^1(c ) = Fc ; ce qui force p^}{c) fl ÔCR à être réduit à un seul point. • 

Remarque 3.3. — 1) Dans la preuve précédente, nous avons rappelé le fait bien connu 

suivant : 

Si C C W1 est un compact convexe et pc : Kn —> C est la projection, alors p^}{c) 

est un cône de sommet c pour tout c £ C. De plus, quand C est d'intérieur non vide, 

on peut voir que PQ1(C) n'est pas un sous espace affine, car le sous espace affine Fc 

engendré par p^}{c) coupe l'intérieur de C. 

Il s'ensuit que quand C est d'intérieur non vide les préimages de pc restreint à un 

ensemble de la forme ÔCR = {x E W1 \ d(x, C) = R} sont toutes homéomorphes à 

des disques de dimension (dépendant du point) < n — 1 ; en particulier, ces préimages 

sont connexes. 

2) On voit donc que si K C W1 est un compact, convexe, d'intérieur non vide, de 

bord C1'1 et tel que -K"¿inf soit aussi d'intérieur non vide, alors, les préimages de MRÏTÎ{ 

sont des disques topologiques. Ce qui n'est pas très étonnant car MRÏTIÎ est la limite 

d'homéomorphismes et par conséquent les préimages devraient être de « s h a p e » , au 

sens de Borsuk, trivial. 

3) On aurait pu utiliser ce qui a été dit en 1), pour donner une démonstration 

légèrement différente du théorème de Blaschke. 

Le théorème 3.1 a un corollaire intéressant. 

Pour k > 2, introduisons l'espace Ck des hypersurfaces de classe C^ de IRn com

pactes et strictement convexes (c'est-à-dire ayant toutes leurs courbures principales 

> 0 en tout point). On munit Ck de la topologie Ck. Le sous-ensemble Ck est ouvert 

dans l'espace des hypersurfaces compactes Ck de Mn, muni de la topologie Cfe, c'est 

donc un espace de Baire. Si on enlève de Ck le sous-ensemble formé par les hyper

surfaces qui sont des boules euclidiennes, on trouve encore un ouvert de l'espace des 

hypersurfaces compactes C^ de En muni de la topologie C*. Cet ouvert est dense 

dans Ck- On en déduit que les hypersurfaces C^ de Ck qui ne sont pas des boules 

euclidiennes forment un ensemble dense dans Ck- Si S € Ck, on définit l'application 

Ns : S —» par Ns(x) est la normale unitaire à S en x orientée vers l'extérieur. 

On définit aussi l'application J\fs : S x l - } l n , par Afs(x,r) = x — rNs(x). Les 

applications Ns et J\fs sont Cfc_1. De plus, puisque k > 2, on peut définir Rfn{ comme 

dans l'introduction, il est clair que Rfnf dépend continûment de S dans la topologie 

c 2 . 
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Corollaire 3.4. — Si k > 2, pour un S générique (au sens de Baire) dans Ck, muni 

de la topologie Ch, l'application Afs : S x [0, Rfnf] —> Rn est injective. 

Démonstration. — Considérons Af^s • S —> W1. Il n'est pas difficile de voir que, pour 
înf 

e > 0 : 
lie = {S G Ck | les préimages de AfRs sont de diamètre < s} 

est un ouvert de car k > 2. Cet ouvert est dense, puisqu'il contient toutes les 

hypersurfaces C^ appartenant à Ck et qui ne sont pas des boules euclidiennes. Par 

conséquent, l'intersection n n > i ^ i / n est un G$ dense dans l'espace de Baire Or 

cette intersection est précisément l'ensemble des hypersurfaces S G Ck telles que 

Ms : S x [0, Rfnf] W1 soit injective. • 

4. Appendice : symétrie et positivité de DN 

Dans cet appendice, nous montrons que DN est symétrique et semi-définie positive. 

Ce fait est bien connu. Ainsi que nous allons le voir, l'argument généralement donné 

dans le cas où dK est C2 s'adapte aisément. 

Supposons que N soit dérivable en XQ G dK. Quitte à changer de système de 

coordonnées, on peut supposer que x0 = 0 et que N(x0) = N(0) est ( 0 , . . . , 0 ,1 ) , le 

dernier vecteur de la base canonique de W1. Par le théorème des fonctions implicites, 

au voisinage de 0, la sous-variété dK de classe C1 est le graphe d'une fonction (p de 

classe C1 définie sur un voisinage ouvert U de 0 dans IRn_1. Notons (x±,. . . , xn—i) les 

coordonnées canoniques d'un point x de Mn_1. Dans la carte 

/ : U — > Mn, x = ( x i , . . . ,a;n_i) •—> O i , . . . , xn_ i , <p(x i , . . . , x n _ i ) ) , 

on a N(x) = X(x)/\\X(x)\\, avec X(x) = (—d\<p(x),..., — < 9 n _ i 1 ) , où dj<p est 

la dérivée partielle de cp par rapport à Xj. En particulier, la dernière coordonnée de 

N{x) est Elle est dérivable en 0, puisque iV l'est. Il en résulte que X 

est dérivable en 0 et par conséquent <p a une dérivée seconde en 0. Cette dérivée 

seconde D2(p(0) est symétrique par le théorème de Schwarz. Montrons alors que la 

forme bilinéaire associée à DN(0) n'est rien d'autre que — D2(p(0). Sur U, le produit 

scalaire (dif(x),N(x)) est identiquement nul. Puisque / a aussi une dérivée seconde 

en 0, par dérivation, on obtient 

(di№,dsN(o)) = - < 0 ? < / ( O ) , J V ( O ) > = -dlMV-

Pour montrer que DN(0) est semi-définie positive, il suffit de voir que D2ip(0) est 
semi-définie négative. Puisque iV(0) est le dernier vecteur de la base canonique de 
IRn, l'hypersurface convexe dK est située dans le demi-espace formé par les points 
y G W1 tels que (y,7V(0)) < 0. Par conséquent, on a ip < 0 sur U, or <p(0) = 0. Il en 
résulte que tp a un maximum en 0 et donc D2(p(0) est semi-définie négative. 
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ASYMPTOTIC MEASURES 
FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 

OF A RECTANGLE 

by 

Michae l Jakobson & Sheldon Newhouse 

To Adrien Douady on the occasion of his sixtieth birthday 
Abstract. — We prove the existence of Sinai-Ruelle-Bowen measures for a class of 
C2 self-mappings of a rectangle with unbounded derivatives. The results can be 
regarded as a generalization of a well-known one dimensional Folklore Theorem on 
the existence of absolutely continuous invariant measures. In an earlier paper [8] 
analogous results were stated and the proofs were sketched for the case of invertible 
systems. Here we give complete proofs in the more general case of noninvertible 
systems, and, in particular, develop the theory of stable and unstable manifolds for 
maps with unbounded derivatives. 

1. Folklore Theorem and S R B Measures 

A well-known Folklore Theorem in one-dimensional dynamics can be formulated 
as follows. 

Folklore Theorem. — Let I = [0,1] be the unit interval, and suppose { i i , / 2 , •. • } is 
a countable collection of disjoint open subintervals of I such that {J{ Ii has the full 
Lebesgue measure in I. Suppose there are constants KQ > 1 and K\ > 0 and mappings 
fi'.Ii^I satisfying the following conditions. 

(1) fi extends to a C2 diffeomorphism from C l o s u r e ^ ) onto [0 ,1] , and 

inf \Dfi(z) \ > K0 for alii. 

(2) supzeI. - f e v T ^ r l ^ l < Kx for all i. 
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where denotes the length of Ii. Then, the mapping F(z) defined by F(z) = fi(z) 

for z G Ii, has a unique invariant ergodic probability measure fi equivalent to Lebesgue 

measure on I. 

For the proof of the Folklore theorem and the ergodic properties of ¡1 see for example 

[2] and [14]. 

In an earlier paper [8] we presented an analog of this theorem for piecewise C2 

diffeomorphisms with unbounded derivatives with proof sketched. We now wish to 

give a more general version of the results in [8]. We refer the reader to that paper for 

relevant remarks and references. 

Let Q be a Borel subset of the unit square Q in the plane R2 with positive Lebesgue 

measure, and let F : Q —>• Q be a Borel measurable map. An F-invariant Borel 

probabil i ty measure ¡1 on Q is called a Sinai — Ruelle — Bowen measure (or SRB-

measure) for F if JJL is ergodic and there is a set A C Q oi positive Lebesgue measure 

such that for x G A and any continuous real-valued function </> : Q —> R , we have 

1 n_1 C 
(1) lim - y^(f>(Fkx) = / </>dfjL. 

k=0 J 

The set of all points x for which (1) holds is called the basin of ¡1. 

Note that if JUL is an SRB measure, and mi is the normalized Lebesgue measure 

on its basin, then the bounded convergence theorem gives the weak convergence of 

the averages ^ X)fc=o F+mi of the iterates of m i to JJ,. Hence, SRB measures occur 

as limiting mass distributions of sets of positive Lebesgue measure. This fact makes 

them natural objects to study. 

We are interested in giving conditions under which certain two-dimensional maps 

F which piecewise coincide with hyperbolic diffeomorphisms fi have SRB measures. 

As in the one-dimensional situation there is an essential difference between a finite 

and an infinite number of fi. In the case of an infinite number of their derivatives 

grow with i and relations between first and second derivatives become crucial. 

2. Hyperbolicity and geometric conditions 

Consider a countable collection £ = {E1^E2-)..., } of full height closed curvilinear 

rectangles in Q. Assume that each Ei lies inside a domain of definition of a C2 

diffeomorphism fi which maps Ei onto its image Si C Q. We assume each Ei connects 

the top and the bot tom of Q. Thus each Ei is bounded from above and from below 

by two subintervals of the line segments 

{(x,y) : y = 1, 0 < x < 1} and {(x,y) :y = 0y0<x<l}. 

We assume that the left and right boundaries of Ei are graphs of smooth functions 

x^(y) with \dx^/dy\ < a where a is a real number satisfying 0 < a < 1. We further 

assume that the images fi(Ei) — Si are narrow strips connecting the left and right 
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sides of Q and that they are bounded on the left and right by the two subintervals of 

the line segments 

{(x,y) : x = 0, 0 < y < 1} and {(x,y) : x = 1, 0 < y < 1} 

and above and below by the graphs of smooth functions Yl{X), \dY^/dX\ < a. We 

will see later that the upper bounds on derivatives \dx^ jdy\ < a and |<iy W/dX\ < a 

follow from hyperbolicity conditions that we formulate below. 

We call the E^s posts, the strips, and we say the E[s are full height in Q while 

the S^s are full width in Q. 

For z e Q, let £z be the horizontal line through z. We define 

6z(Ei) = d i a m ( 4 n £7»), <̂ ,max = m a x ^ ( ^ ) , <5i)min = min6z(Ei). 
zeQ zEQ 

We assume the following geometric conditions 

G l . int Ei H int Ej = 0 for i ^ j . 
G2. mes(Q \ U« int Ei) — 0 where mes stands for Lebesgue measure, 
G3. — YLi ,̂raax log 5z,min < OO. 

We emphasize that the strips Si can intersect in an arbitrary fashion, differently 

from condition G3 in ([8]). 

In the standard coordinate system for a map F : (x,y) —» (Fi {x, y), F2(x, y)) we 

use DF(x,y) to denote the differential of F at some point (xyy) and FjXj Fjy, Fjxx, 

Fjxy, etc., for partial derivatives of Fj, j = 1,2 . 

Let J F ( Z ) = \Flx(z)F2y(z) — Fly{z)F2x(z)\ be the absolute value of the Jacobian 

determinant of F at z. 

Hyperbolicity conditions, — There exist constants 0 < a < 1 and K0 > 1 such that 

for each i the map 

F(z) = fi(z) for z e Ei 

satisfies 

HI . F2x(z) +a F2y(z)\+a2 Fly(z)\<a\Flx(z)\ 

H2. Flx(z)\ - a Fly(z) > K0. 

H3. \Fly{z)\ +<x\F2y{z)\ +a2\F2x(z)\ < a\Flx(z)\ 

H4. Flx(z)\- a F2x(z) > JF{z)K0. 

For a real number 0 < a < 1, we define the cones 

= { ( f i , t * ) : h | < a | t ; i | } 

Ka = {(vi,V2) : | v i | < a\v2\} 

and the corresponding cone fields K%(z), K^(z) in the tangent spaces at points z G R2. 

Unless otherwise stated, we use the max norm on R2, | ( ^ i , ^ 2 ) | = max( |v i | , \v2\). 

The following simple proposition relates conditions H1-H4 above with the usual 

definition of hyperbolicity in terms of cone conditions. It shows that conditions HI 
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and H2 imply that the K% cone is mapped into itself by DF and expanded by a factor 

no smaller than K Q while H3 and H4 imply that the K^ cone is mapped into itself by 

DF~X and expanded by a factor no smaller than K Q . 

Proposition 2.1. — Under conditions H1-H4 above, we have 

(2) DF{K%) Ç Kl 

(3) veK£ \DFv\ > K0\v\ 

(4) DF-\K'a) Ç Kl 

(5) veKZ \DF-Xv\ > K0\v\ 

Proof. — HI implies (2): 

Let v = (vi,v2) G K%. Then, \v\ = \v± \ since a < 1 and \v2\ < a\v±\. 

Write DF(vuv2) = (FlxV! + Flyv2,F2xv1 + F2yv2) = (ui,tz2). 

Then, using HI , we have 

\v>2\ = \F2xV1 + F22/v21 

< \F2xl\v! I + |F22 / | a | ^ | 

< | ^ i | ( |F2x | + |F2y|a) 

< | v i | ( a | F i x | - \Fly\a2) 

< a\FlxV! + F i„v2 | 

= a | u i I 

proving (2) . 
H2 implies (3) : 
Now, let v = (vi,v2) be a unit vector in K™, so that \v\ = Ĵ i | = 1 and \v2 \ < a. 

Using H2 and the fact that DF(v) G K%, we have 

\DF(v)\ = \Ul\ 

= \Flxvx + Flyv2\ 

> \Flx\-a\Fly\ 

> K0 

which is (3) . 

The proofs that H3 and H4 imply (4) and (5) are similar using the fact that 

DF-i = ±(F*y ~Fiy) 
Jz \—F2x Fix J 

This completes our proof of Proposition 2.1. • 

Remark. — In ([8]) different hyperolicity conditions were assumed which implied the 

invariance of cones and uniform expansion with respect to the sum norm \v\ — \v\ \ + 

Iv21 (see [3] and [7] for related hyperbolicity conditions). The methods here can be 

adapted to work under the assumptions of ([8]). 
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The map 

F(z) = fi(z) for z € intEi 

is defined almost everywhere on Q. Let Q0 = \JiintEi, and, define Qn,™ > 0, 

inductively by Qn = Q0 D F - 1 Q n _ i . Let Q = Hn>o be the set of points whose 

forward orbits always stay in \Ji int Ei. Then, Q has full Lebesgue measure in Q, and 

F maps Q into itself. 

The hyperbolicity conditions H1-H4 imply the estimates on the derivatives of the 

boundary curves of Ei and Si which we described earlier. They also imply that any 

intersection fiEi n Ej is full width in Ej. Further, Ey = ¿5* n f^Ej is a full height 

subpost of Ei and Sij = fjfiEij is a full width substrip in Q. 

Given a finite string i0 . . . i n _ i , indexed by non-negative integers, we define induc

tively 

Ei0,,.in_1 = Ei0 n / io Ei1i2mtmin_1. 

Then, each set Ei0...in_1 is a full height subpost of Eio. 

Analogously, for a string i-n+i . . . ¿0 indexed by non-positive integers, we define. 

Si_n+1...i0 = fi0(Si_n+1,.,i_1 n Ei0) 

and get that Si_n+1,.,i0 is a full width strip in Q. It is easy to see that Si_n+1..,i0 — 

(fi0 0 fi-i 0 * • * 0 / » _ „ + ! . . ¿ 0 ) and that Z"1 ..z0) is a full-width strip in 

Eio. 

For infinite strings, we have the following Proposition. 

Proposition 2.2. — Any C1 map F satisfying the above geometric conditions Gl-GS 

and hyperbolicity conditions H1-H4 has a "topological attractor" 

A = U f l 5 * - * - * . -
...i-n+i.2_izo A;>0 

The infinite intersections HfeLo Si-k...i0 define C1 curves 7 = y(x)7 \dyjdx\ < a which 

are the unstable manifolds for the points of the attractor. The infinite intersections 

H/feLo *̂o...*fe define C1 curves x{y), \dx/dy\ < a which are the stable manifolds for 

the points of the attractor. 

Proposition 2.2 is a well known fact in hyperbolic theory. For example it follows 

from Theorem 1 in [3]. See also [10]. 

Remark 2.3. — The distortion condition D l and distortion estimates below imply 

that if our maps fi are C2, then the unstable manifolds are actually C2. Similar 

conditions on the inverses of fi imply that the stable manifolds are C2. There are 

analogous conditions (see section 6) to guarantee that the invariant manifolds are Cr 

for r > 2. 
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Remark 2.4. — The union of the stable manifolds contains the above set Q which 

has full measure in Q. The trajectories of all points in Q converge to A. That is the 

reason to call A a topological attractor, although F is not typically a well-defined 

mapping on all of A. However the convergence of Birkhoff averages to the unique 

SRB measure is a much stronger property. Condition D l is natural in this context 

and may be necessary for the existence of the SRB measure. At present, we need to 

assume condition G3. This is used to prove absolute continuity of the stable foliation 

as in Section 10. It also implies that our SRB measure has finite entropy. We do not 

know if condition G3 is actually necessary for our results. 

3. Distortion conditions and the main theorem 

As we have a countable number of domains the derivatives of fi grow. We will need 

to formulate certain assumptions on the second derivatives. Unless otherwise stated, 

we will use the norm = m a x ( | v i | , |^2|) on vectors v = ( v i , ^ ) , and the associated 

distance function d((x,y), (#1,2/1)) = max( |x — x\ |, \y — y\ |). 

As above, for a point z € Q, let lz denote the horizontal line through z, and if 

E C Q, let SZ(E) denote the diameter of the horizontal section lz n E. We call SZ(E) 

the z — width of E. 

In given coordinate systems we write fi(x,y) — {fn{x,y),fi2(x,y)). We use 

fijx, fijy, fijxx, fijxy, etc. for partial derivatives of fij,j = 1,2. 

We define 

l ^ / i W | = . max J W * ) | . 
j=l,2,(k,l) = (x,x),(x,y),(y,y) 

Next we formulate distortion conditions. These will be used to control the fluc

tuation of the derivatives of iterates of F along vectors in as in Lemma 7.1 and 

Proposition 8.1 below. 

Suppose there is a constant Co > 0 such that the following distortion condition 

holds 

D l sup 
z£Ei,i>l 

D2fi(z)\ 

filx(z) 
5z(Ei) < C0. 

Theorem 3.1. — Let F be a piecewise smooth mapping as above satisfying the ge

ometric conditions G1-G3, the hyperbolicity conditions H1-H4, and the distortion 

condition Dl. 

Then, F has an SRB measure \i whose basin has full Lebesgue measure in Q. 

Moreover, the natural extension of the system (F, 11) is measure-theoretically isomor

phic to a Bernoulli shift, F has finite entropy with respect to the measure fi, and we 

have the formula 

(6) K{F) = lim 
j=l,2,(k,l 

1 
log DFn(z)ù^$\ 

ASTÉRISQUE 261 



ASYMPTOTIC MEASURES FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 109 

where the latter limit exists for Lebesgue almost all z and is independent of such z. 

Remark 3.2. — Formula (6) says that the entropy can actually be computed by taking 

the logarithmic growth rate of the norms of DFn(z) for almost all z. It is actually 

true that if v is any unit vector in the K% cone in the tangent space to such a z, then 

(7) 
hJF) = 

lim — log 
n—>oo fi 

DFn(z){v)\ 

This last expression can easily be implemented numerically. 

Remark 3.3. — If we assume that the interiors of the strips Si are disjoint, then (F, /i) 

itself is isomorphic to a Bernoulli shift, and the entropy formula 

hJF) = ' log\DuF\d/Lc 

holds where DuF(z) is the norm of the derivative of F in the unstable direction at z. 

Acknowledgement. — We wish to thank Francois Ledrappier and Dan Rudolph for 

useful conversations during the preparation of this paper. 

4. Some estimates of partial derivatives 

We will need to use the Mean Value Theorem for various partial derivatives of the 

mappings fi at points near the domain Ei. Since the Ei are not necessarily convex 

subsets of R2 , it will be useful to have our maps fi extended to neighborhoods Si of 

Ei which contain {Jz£Ei ECs(z)(z) where C is a fixed positive constant and BC5(Z){Z) 

denotes the ball about z of radius C5(z). Using the proof of the Whitney extension 

theorem in [1] it is possible to show that there is an extension fi of fi to such a 

neighborhood which satisfies the same properties H1-H4, D l , with possibly different 

constants. We will assume henceforth that our maps fi have such extensions. 

We collect here some estimates which follow from our assumptions. 

Let f(x,y) = (fi(x.y), f2(x,y)) be one of our maps fi on Ei. 

Lemma 4.1. — For z € Ei, we have the estimates 

(8) 
\hy(z)\ 
hy{z) 

^ù$^$ 

(9) 
/ 2 x 0 ) 

flx(z) 
ù^ù$ 

(10) 
hy{z) 

/ ! * ( * ) I 
< 

1 
$ù^ù + a2 

Proof. — We have 

Dfz -
fix fly 

fix fly 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



110 M. JAKOBSON Sz S. NEWHOUSE 

and 

Df^ ( Ç ) 1^ 
Jz 

fly -fly 
-fix fix . 

where Jz = fixf2y - fixfiv 
Using Dfz ( I ) e K% and Dfjl ( \ ) e immediately gives 

fix 
fix 

< a \hv\ 
fix 

< a. 

Now, we know that \Df^ ( Ç ) | > K Q in the max norm, so 
1 

Jz 
m a x ( | / l y | , \fix\) > 

Ko 
Hence, either |J*|lfo < \fiy\ or |J^|i^o < \fix\-
The first case gives 

I fix fly I fly fix )K0 < \fiy 
or 

fly 
\flx 

< 
Df^ 

Ko\flx\ 

fly fix 

\flx\ 

< a 
K0\fix\ 

+ a2 

< 
1 

Df^ 
Df^ 

Analogously, in the second case, 

\hxhy\ - \hyhx\)KQ < \ flx\ 

or 

1/2,1 
\flx\ 

< 
1 

Ko\fix\ 
+ a2 

< 
1 

K2 
+-a2 

Thus, in any case, we have 

1/2* 
fix 

< 
1 

Df^ 
Df^ ( Ç 

We have assumed that our maps fi have extensions to neighborhoods S% of Ei with 
the following properties. 

The map fi takes Ei onto a set Si C R2 such that 

(11) Bc6x(Ei)(z) C Ei for z e Ei 
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and 

(12) Si satisfies H1-H4, D l on Si 

Any C1 curve j(t) such that Y(t) E K% for all t will be called a K% curve. Similarly, 

a curve is a C1 curve 7(2) for which Y(t) E for all t. In this paper, all of 

our curves will actually be of class C2, and this will be assumed without further 

mention. 

Lemma 4.2. — Let Si have an extension to the neighborhood £i as above. Then, there 

is a constant C± > 0 independent of i such that iS z and w lie on a K% curve in Si, 

then 

\fiix(z)\ 

\fi\x(™)\ 
< exp I C\ w\ 

Sz(Ei) 

Proof. — Write / = Si-

Since \DSz ( o ) I = max( | / ia.(^) | , |/2x(^)|) > K0 and |/2x(^)| < a\S\x{z)\, we know 

that 

\Six(z)\ = \DSz(^j\>K0 > 1 

so, for w near z, both Six(z) and Six(w) have the same sign. We assume this sign is 

positive (replace / by — / otherwise). 

Since / extends to the neighborhood £i, and, for some constant C > 0, this last 

set contains the balls of radius CSz(Ei) > 0 about points z in Ei, the mean value 

theorem gives us that if \z — w\ < CSz(Ei), then there is a r on the line segment 

joining z and w such that 

I Slxxij) 
l o g / l a - W - log / ia . (w) | < 

J1XX\T) 

flx(T) 
z — w 4-

flxy(T) 

flx(r) \z — w\a 

or 

\flx(z)Df^\ 

\flx(w)\ 
< exp (1 + a)C0 \z — w\ 

Sr(Ei) 

using the distortion estimate D l . 

Let z = (#0,2/0)) le^ zr — (%nyr) be the point of intersection of the horizontal line 

£z with the right boundary curve of Ei, and let zi = (x£, yi) be the point of intersection 

of the horizontal line tz with the left boundary curve of Ei. Since w lies on a K% 

curve containing z, the line £° through z and r has equation y — y0 = f3{x — XQ) 

for some (3 with | /? | < a. Also, since the right boundary curve of Ei through zr 

is a — curve, it is contained between the lines £~ : x — xr = —a(y — yr) and 

: x — xr = o:(y — 2/r). Similar statements hold for the left boundary curve of Ei and 
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the lines lt : x — xi = —a(y — yt) and t[ : x — xi = a(y — yi). Using the intersections 

of the lines £°, £^r, £^, an elementary argument gives that 

1 < 1 < 6T(Ej) 1 1 
1 + a2 ~ 1 + \0\a ~ Sz(Ei) - 1 - \P\OL ~ 1 - a2 * 

This gives the desired estimate for z,w with \z — w\ < CSz(Ei). 

T o get the general estimate of the Lemma, we simply find a sequence zo = z, 

z\, • • -Zj = w with Zk E Ei, \zk — Zk+i\ < C5z(Ei), each Zk on the same curve, 

and j dependent only on a, C , and 6z(Ei). Using the estimate for each pair ¿¿,£¿+1 

then easily gives us the general estimate to complete the proof of the Lemma. • 

In some of our arguments below, it will simplify matters if we can take the constant 

K0 in (3) and (5) to be large. The next lemma shows that this can be arranged by 

replacing F by a fixed finite power Fl with t > 0. 

Lemma 4.3. — Suppose the maps fi satisfy (2), (3), (4), (5), and Dl on the neigh

borhoods 

( J BcSz(Ei)(z),Df^ ( Ç ) 
zEEi 

and let t > 0 be a positive integer. 

Then there are positive constants Co = Co(t), C2 = C<z{t) such that the maps 

fit-! 0 '' * 0 fi0 satisfy (2), (3), (4), and (5) with Ko replaced by K Q and Dl with Co 

replaced by Co(t) on the neighborhoods 

z€Eio...it_1 
BC*{t)6,(Ei0...it_1)(z)Df^Ç ) 

Proof. — The proof is by induction on the number of elements in the composit ion. 

We assume that it holds for compositions of length t and prove it for those of length 

t + 1. 

Let Bcu0...it) denote the set 

zeEiQ...it 
BC2{t+l)ôz{Ei0..At){z)-D (Ç ) 

From Lemma 4.2, we can choose a constant C<i{t 4- 1) E (0 ,C2(£)) ^ (0 ,1 ) so that 

if w E BC(i0...it), then fio(w) E Bc{il„At). 

It is clear that the maps fito--. o fio satisfy (2) , (3) , (4 ) , and (5) with K 0 replaced 

by K Q + 1 , so we only need to be concerned with the statement regarding D l . 

If E is a subset of Q, z E E, and f(x,y) =Df^ ( Ç ) y), fi(x, y)), we set 

ez(f,E) = max 
¿=1,2 

D2fi(z) 

AM) 
Df^ ( Ç ) 
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Let / = fit o . •. o g = /io, h = / o g, Ef = E^...^, Eg = £7»0, £ A = Eio.,mit, 

and, for 2? G write A / = 5gz(Ef), Ag = Sz(Eg), and A / i = 6z(Eh). Also, write 

©(/) - egz(f,Ef), S(g) = ®z{g,Eg), 0( /z) = 0 , ( / i , ^ ) . 

Let us first estimate the quotient 

gix(w) 
gix(w) 

for any w G £z H £¿0 • 

Note that and piar(^) have the same sign. We assume it is positive. The 

argument when it is negative is similar. 

Letting C\ be the constant in Lemma 4.2, if w,w G £z fi 5i0, we have 

(13) 
9ix(w) 

\9ix(w)\ 
< exp(2Ci) 

We can connect w to z in £z n ^ 0 by a chain of points w — WQ , w\,... Wk = z where 

\wi-wi+1\ < C2(l)6z(Eg), and k < 3 / C 2 ( l ) . 

Hence, putting £ = exp l&Cx/C^iX))^ we have 

(14) 
0i* M 

9ix(z) 
< 

0<i<k 

9ix(u>i) 

\9ix{wi+i) 
gix( 

Interchanging z,w in the above argument gives | p i x ( ^ ) | / | ^ i a : ( ^ ) | > C 1- From 

these two inequalities we get, for any W,T E £z n £i0, 

r 2 < 
9ix{r) 

9ix(z) 

\9ix(z)\ 

9ix(w) 

ù^$ 
9ix(r) 

9IX(VJ) 

< c 2 

By the Chain Rule for partial derivatives we have the following formulas for ¿ = 1,2 

(15) hitB — fiX9ix îiy9ixi hiy — fix9iy fiy9iy 

(16) ^ixx fixx9lx fixy Qlx 9lx f iyx 9\x 92.x J'iyy 9 2x fix9lxx ~^~fiy92xx 

( l ^ ) ^ixy fi x x 91 y 91 x fixy9ly9\x fiyx 9ly 9lx Jiyy9ly9lx fix9lxy fiy9"2.xy 

(18) hiyy = fixxgly + fixy9iy9\y + +fiyx9\y9<2y + fiyy92y + fix9iyy + fiy9iyy 

Let w G Bc(i0...it)- Except where otherwise mentioned, we compute the partial 

derivatives below at w. 

From (15) and Lemma 4.1, we get 

(19) hix \ > \hx9ix\Q ~ o?) 
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From (16), we have, for ¿ = 1,2, 

gix(w) 

gix(w) 
Ah < ( i - a 2 ) - x gix(w)gix(w) , Aft 

A / 
+ 28( / ) |Sa . («;) | 

Aft 

A / 

+ e ( / ) | f l a . ( « ; ) 
Aft 

A / 
+ 30(5) 

Aft 

A<?J 

Since the g-image of a horizontal line is a K% curve and the boundaries of Ef are 

K£ curves, we can use the mean value theorem and a simple geometric estimate to 

get a constant Cs(a) > 0 such that 

glx(r)\Ah < C3(a)Af 

for some point r in £z n Eh. 

Putting all these estimates together gives 

<C4(a)(0 

<C4(a)(0 
Aft < C 4 ( a ) ( 0 ( / ) C 2 + ©(<?)) 

Similar estimates can be given for the quantities 

<C4(a)(0 

<C4(a)(0 
Ah 

<C4(a)(0 

<C4(a)(0 
Ah 

Thus, we simply define Co(t 4-1) so that it is larger than 64(a)(Co(£)C2 + Co) and we 
have proved Lemma 4.3. • 

5. Families of Fiber contractions 

Fiber contraction maps were defined in [7] to provide a tool in the analysis of 

smoothness of stable and unstable manifolds. We collect here certain facts about 

parametrized families of fiber contraction maps and related concepts. 

Let ( X , d i ) , ( y , ¿2) be complete metric spaces and give X x Y the metric 

<C4(a)(0<C4(a)(0 = max (d1(x,x'),d2(y,y')). 

Let 7ri : X x Y —)• X, TT2 : X x Y —> Y be the natural projections. 

A pair of maps (F, / ) is called a fiber contraction on X x Y if the following properties 

hold. 

(1) / : X —> X and F : X x Y —> X x Y are continuous maps. 

(2) 7TlF = /7ri. 
(3) There is a constant 0 < K < 1 such that for x € X,y,y' € Y, we have 

d(F(x,y),F(x,y')) <Kd2(y,y'). 

We call / the base map and F the total map of the fiber contraction (F, / ) . 

Let / be a continuous self-map of the complete metric space X. We say the a point 

XQ G X is an attracting fixed point of / if for every x G X , the sequence of iterates 
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x, f(x), f2{x),... converges to ^ a s n - ) oo . Clearly if such an XQ exists, it must be 
the unique fixed point of / . 

Let A be a topological space and consider a family {fx}xeA of self-maps of the 
complete metric space X . We say that the family is continuous if the map (A ,# ) —> 
fx(x) from A x X to X is continuous. 

A family {fx} of self-maps of X is called a uniform family of contractions if 

(1) there is a constant 0 < K < 1 such that, for all \,x,xf, 

d(fxxj<C4(a)(0xx')Kd(x,x'). 

(2) the family {fx} is continuous. 

We say that a family {(Fx, fx)} of fiber contractions is a uniform family of fiber 
contractions if 

(1) the fiber Lipschitz constants are uniformly less than 1. That is, there is a 
constant 0 < K < 1 such that for any X,x,y,y' 

d(Fx(x,y)<C4,Fx{x,y'))< d2(y,y') 

(2) the families {Fx} and {fx} are continuous. 

The following Proposition is standard (see e.g. [6]) and its proof will be omitted. 

Proposition 5.7. — If {fx} is a uniform family of contractions of the complete metric 
space Xj and xx is the fixed point of fx, then the family {xx} depends continuously 
on \ . 

Proposition 5.2. — Suppose {(Fx, fx)} is a uniform family of fiber contractions whose 
base maps {fx} have attracting fixed points {xx} depending continuously on X. Then, 
each of the maps Fx has an attracting fixed point of the form (xx,yx) E X x Y and 
the family {(x\,y\)} depends continuously on X. 

Proof. — Letting xx be the fixed point of the base map / A , Hirsch and Pugh prove 
in [7] that Fx has an attracting fixed point of the form (xx,yx) where yx is the fixed 
point of the map F(xx,') on Y. Since xx depends continuously on À, the family 
{F(xx, ')} is family of uniform contractions on Y. Therefore, by Proposition 5.1, the 
fixed points {yx} depend continuously on A. • 

The following corollary is proved by induction using Propositions 5.1 and 5.2. 

Corollary 5.3. — Suppose X \ x X 2 x • • • x X N is a sequence of complete metric spaces 
and {Fx,i}<, 1 < i < N is a sequence of maps with the following properties. 

(1) {Fx,i} is a uniform family of contractions on X \ . 
(2) For 2 < i < N, {Fx,i,Fx,i-i} is a uniform family of fiber contractions on 

r i i< j< i X3' 
Then, each of the families {Fx,i} has an attracting family of fixed points {xx,i} 

which depends continuously on X. 
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6. Invariant Manifolds 

We consider the collection £ = {Ei,E2,... } of rectangles as above and the sequence 

( / 1 5 / 2 ? • • • ) of C2 diffeomorphisms with fi(Ei) = Si satisfying G 1 - G 3 , H1-H4, and 

D l . From Proposition 2.1, using the max norm on R2, we have, for each z, 

(20) Dfi(KZ) ÇK™ù$^$ 

(21) v G K™ => I D / ^ I > K o M 

(22) v G K™ => IDDfi(KZ) Ç K™/^I 

(23) 
Dfi(KZ) Ç K™Dfi(KZ) Ç K™Dfi(KZ) Ç 

For each finite sequence i-n+i . . . ¿0 • •• *n-i we have defined, in Section 2, the sets 

Ei0_.in_1, *S'i_ri+1 ...40. 
Given a non-positive itinerary i = ( . . . z_nz_n+i . . . ¿0), we consider the set W™ = 

Ei0 n Hn>o ^i-n-.-i-i • Clearly, TV" is a closed, connected full-width subset of E{0. Its 

image FW™ = fi0W™ is the set rin>o^-n-*o) a full-width connected subset of Q. 

The next result shows that FW™ is a C2 curve which depends continuously on i. 

For convenience, we let D°ip = ^ for a function ip. 

Theorem 6.1. — There is a constant K > 0 such that for each non-positive itinerary 

i = (. . . i _n . . . ¿0), the set FW™ is the graph of a C2 function : I —> I such that, 

for z G I, 

(24) Dgi(z)\ < a 

and 

(25) \D29i{z)\ <K. 

Further, given e > 0, there is a positive integer N > 0 such that ifi = (... i-n .. .io) 

and j = ( . . .j-n . • - jo) &re non-positive itineraries with i-t = j-e for 0 < I < N, 

then 

(26) D k 9 i ( z ) - D k 9 j ( z ) \ < e D f i ( 

for z G I and 0 < k < 2. 

Remark 6.2. — The proof of Theorem 6.1 uses graph transform techniques as in [7], 

[12]. However, since our maps have unbounded derivatives, and the off-diagonal terms 

of our derivatives are not small, certain modifications of the techniques in [7], [12] 

are necessary. 

It can be shown that if fi is Cr for r > 2, then the curves W™ are Cr and depend 

continuously on i in the Cr sense provided the fi satisfy the r-th order distortion 
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condition 

sup 
ze£i, i>i 

2<k<r 

\Dkfi(z)\ 

filx(z) k-1 
-5z(£i) <C0 

where Dkfi(z) is the supremum of the £-th order partial derivatives of fi at z for 

£<k. 

We proceed toward the proof of Theorem 6.1. 

Notice that if we replace F = {fi} by a positive power Ff,t > 0, and £ by the 

collection {i^o...2t_i}5 we may assume that KQ is as large as we wish in (21), (23). 

In the present section we will take K0 > 4. Of course this changes the distortion 

constant Co in D l to some C\ = C±(f,t) but this will not cause us difficulties. 

Let N be the set of positive integers, and let S = N z be the space of doubly 

infinite sequences i = (..Dfi(KZ) Ç K ™ . . . ) of elements of N with the product topology. 

Let a : S —» S be the usual left shift automorphism. 

For an element i G S, let i + = (iQi\ . . . ) be its non-negative part, and let 

i~ = (. ..i-iio) be its non-positive part. Set W?+ = C\n>Q^i0...in and WVL — 

Ei0 n Hn>0 Si-n-~i-i ' 
It follows from (20)- (23) that the sets Wf+, WVL intersect in a unique point and 

there is a continuous map 7r : X —> Q defined by 

{TT((. . .i-xioh ...))} = Wf+ n wv_ 

Moreover, for each i G X there is a splitting T ^ ^ R 2 = E™^ 0 i £ * ^ which depends 

continuously on i and is such that Dfio maps E™^ to E™^aij and E%^ to E^aiy The 

arguments for these facts are analogous to standard arguments in hyperbolic theory 

(e.g., to prove that C1 perturbations of the Smale horseshoe diffeomorphism have a 

hyperbolic non-wandering set) and will not be given here. 

Thus, the matrix of DF is diagonal with respect to the splitting Eu 0 Es on the 

image of n. 

For z = 7r(i) and v G T^R2, we write v = (vi,v2) G E% 0 Esz and define \v\ — 

\v\z — max( | ^ i | , |^21). This norm depends continuously on % G X. 

We will identify all tangent spaces with the space R2 itself by standard translations. 

It will be convenient to use the subundles Eu, Es to define affine local coordinates 

near points z, fiZ in which Dfiz becomes diagonal and in which Dfiw is nearly diag

onal for \w — z\ no larger than a fixed multiple of 8z(Ei). Here i = i0 with z = 7r(i). 

Toward this end, let Az be the affine automorphism of R2 such that 

(1) Az(z)=z. 

(2) DAza) = (a\) eE™. 

(3)DAZDfi(KZ)Ç™(={b{)eE'. 

Since Eu Ç K™ and Esz C we have \az \ < a, \bz \ < a. 
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Let / = fi — A^zfiAz be the local representative of fi using the AfiZJAz coordi

nates. Note that / is defined on the affine image A~x{Si) of Si. 

Then the matrix Dfz is diagonal. For w near z in Az(Si), let 

Dfw = 
fhx{w) hy{w) 

J2x(w) f2y(w)j 

and set 

£12 O ) = 

Dfi(KZ) 

flx(w) 
£21 (w) = 

f2x(w) 

\flx(w) 
£22(w) = 

\f2y(w) 

\flx(w)\ 

We wish to estimate Sij(w) for w near z in Si. It follows from the definitions that 

Sij(z) = 0J^ j . Also, (21) and (23) imply e22(z) < l/K$ < 1/16 since K0 > 4. 

Lemma 6.3. — There are constants C2 € ( 0 , 1 ) , C3 > 0 , 6 4 > 0? such that for z E 

Ei,w e A~x{Si), if \w - z\ < C28z{Ei), then 

(27) €ij(w) -Sij(z) < C3 
z — w 

Sz(Ei) 

and 

(28) C4 
1 

Dfi(KZ 
< \flx(w)\ Dfi(KZ 

1 

Sz(Ei) 

Proof. — To begin with, let us choose C2 € (0 ,1) so that if \w — z\ < C-z5z{Ei), then 

w € £i (~1 A^^i) and / satisfies D l for some (possibly different) constant Co- Since 

Aj.\ and Az are uniformly bounded, it is possible to choose Co and C2 independent 

of z € Ei and i > 1. 

We next show that there are constants C5 > 0, C% > 0 such that for z € Ei and 

\z-w\ < C5Sz(Ei), 

(29) Cë1 < 
\flx(w) 

\flx(w)\ 
< C6. 

Since 

Dfi(K 
1/ 
2 

Dfi(KZ) 
Ç K™ 
Dfi(KZ 

= DAj^DfAzWDAz 
T 

,0, 

= 
1 

Jfz 

1 -bfz 
-afz 1 

'fix fly 

Kflx fly, 

' 1 bz 

ASTÉRISQUE 261 



ASYMPTOTIC MEASURES FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 119 

where Jfz = 1 — afzbfz and the partial derivatives of / i , / 2 are evaluated at Az(w), 

we have 

Jfzfix(w) = fix + fiyaz — bfzfix — bfzf2yaz 

Jfzfiy(w) = fixbz + fiy - bfzf2xbz — bfzf2y 

Jfzfixiw) — —afzfix — cbfzfiyaz + f2x + f2yaz 

Jfzf2y(w) = -afzfixbz - dfzfiy + f2xbz + f2y 

Using the first equation above, the fact that | Jfz\ > 1 — a2, and the estimates (8), 

(9), (10) at Az(w) we get 

Dfi(KZ) <C\flx(Az{w))1 — bfza 
—df$\ 

for some constant C. But, from Lemma 4.2 we have | / ia ; (^(^) ) | is bounded above 

by const | / i x ( ^ ) | , so this gives the lower bound in (29). 
For the upper bound, we will obtain the two estimates 

(30) 
Dfi(KZ) Ç K™w 

Dfw 
\0y 

and 

(31) \Dfw 
1 

0 
C\flx(wù$^$)\ 

for some Constant C > 0. 

To prove (30), we note first note that the vector v = ( ̂  b{ ) ( J ) is in the cone K ™ . 
Since D/AZ preserves this cone, we have that D/AZ(V) is a Constant multiple of the 

vector ( ì ) for some a with |a| < a. 
Thus, 

Dfw 
1 
2 

1 — bfza 
—dfz + a 

is a constant multiple of the vector 

1 -bfz 

~afz 1 

T = 1 — bfza 

—dfz + a 

This gives 

\f2x(w)\ 

hx(w)\ 
< -

2a 

. — a2 
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and, hence, 

1 — bfza 
—dfz + a 
^m^$m$ 

= max ( | / i * 0 ) | , | /2x (w) | ) 

< max 1, 
2a 

1 - a2 
\hx(w)\ 

and (30) follows. 

Next we go to the proof of (31). 

bince the matrix i bfz 
a,fz 1 

and its inverse are uniformly bounded as are Jfz and 

its inverse, we have 

Dfw 
1 

0 
> C \hx(w)\ 

1 

az 

But, 

DfAz(w) 
1 

az 
^= A1 

A* 

where Ax = f\x + azfly. So, 

D/AZ(W) 
( 1 > fix -a2 fix 

> ( l - a 2 ) | / i J \ h x ( w ) \ 
\hx(w)\\hx(w)\\hx(w)\ 
\hx(w)\hx(w)\\\hx(w)\ 
> C\flx(w)\ 

This completes the proof of (29). 

Next, we give the proof of the estimate 

(32) £l2(w) - £ 1 2 0 0 I < C 3 
z — w 

Sz(Ei) 

The other estimates for (27) are similar. 

Since fiy(z) = 0, we need to estimate \fiy{w)/f\x(w)\. 

But, 

Jfzfiy(w) = fix{Azw)bz + fly(Az\hx(w)\w)zw)bz - bfzf2y(Azw), 

so, 

fiy(w)\ < C max \fijk(r)\\Az{w) - z\ 
i,jyk,T 

Now, we know that the quantities 5z(Ei)),\hx(w)\\fix(w)\/\w)\\fix(w)\ are bounded 

above and below, and, by Lemma (4.2), the same holds for \f\x{r)\ /\fix{w)\. This 

gives (32) and (27). 

ASTÉRISQUE 261 



ASYMPTOTIC MEASURES FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 121 

For (28), notice that f(£z n Ei) is a full-width K% curve in Q. In the max metric, 
it has unit length. By the Mean Value Theorem there is a r G £z n E{ such that 

Df(r) 
0 

Sz(Ei) = 1 

But, 

so, 

Df{r) ( M = тах(|/1ж(т)| , | /2а;(т)|) 

= | Л * ( г ) | 

\fix(r)\ = Sz(Ei)' 

Since, | /ix(^)[/|/ia;(^)| is bounded above and below, (28) follows. 
This completes the proof of Lemma 6.3. • 

For e > 0, let Be(z) = {w G R2 : \w—z\z < s } . Here \w—z\z refers to the max norm 
in the image of the affine coordinate map Az. The set B£(z) is then a parallelogram 

centered at z with sides parallel to E™,ESZ. Write B£(z) = B^(z) xBs£(z) where B£(z) 

is a line segment centered at z parallel to El1, and B§(z) is a line segment centered 

at z parallel to Esz. A full-width curve of slope less than 1 in B£(z) is the graph of a 

function 4> : B™(z) Bs£(z) in which <f> is Lipschitz with Lipschitz constant less than 

1. 

With z = 7r(i), let ZQ = z, Zj = n(aH) for j < 0. 

Our next goal, as is usual in invariant manifold theory, is to find a sequence of 

numbers Ej > 0 such that the neighborhoods Bj = B£j(zj) have the following prop

erties. 

B l If Zj G E^, then Bj C £tj. 

B2 fij (Bj) overflows Bj+i in the sense that if 7 is a full-width curve of slope less 

than 1 in Bj passing through Zj , then . (7) n Bj+± is a full-width curve of 

slope less than 1 in Bj+\ passing through Zj+\. 

Let Ej — C2&Zj(Eij) where C2 is the constant of Lemma 6.3. By Lemma 6.3, 

for \w — Zj\ < Ej, the matrix of Dfi5(w) is hyperbolic with off-diagonal terms small 

compared to This implies that the image /^.7 of a curve 7 as above will 

have slope less than 1 in B£j+1(zjjr\). Letting / = , and using a ~ b to mean 

a/b is bounded above and below, we have length(f^) ~ \ fix(^)\C2SZ^•\Eij) for some 

r G 7. In the proof of Lemma 6.3 we saw that SZj(Eij) ~ l/ |/ia;(Ti)| ~ l / | / i # ( r i ) | 

and | / ia;(r) | ~ | / i x ( ^ ) | ~ |/ia:(Ti)|- It follows that /¿¿7 contains a neighborhood of 

fixed size C7 about fij(zj) in /¿.7. 
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Let 

\hx(w 
Sj if Sj < C7 

C7 iïëj > C7. 

Then, the overflowing property above is satisfied. 

Now fix a non-positive itinerary i = ( . . . i_n . . . i0). We first show that W™ contains 

the graph of a C2 function gi : BQ BQ such that, for all w G BQ 

(33) \D9i(w)\ < 1 

and 

(34) \D2gi(w)\ <K2 

where K2 is independent of i. 

We also will show that the functions gi depend continuously on i. 

Once these things are done, the proof of Theorem 6.1 is completed as follows. 

Let j = ( . . .i-\ioj\j2 . . . ) be a doubly infinite itinerary which agrees with i for 

non-positive indices. Let ZQ = 7r(j). Then there is a k > 0 independent of i,j such 

that fr\ o • • • o fr\ (W?) C B^k. Note that here we use the original maps fi., not 

the affine representatives fi.. 

Thus W™ is the fi_1 o • • • o fik -image of a curve of bounded slope and bounded 

C2 size. Letting Fk = fi_1 o • • o fi_h we have that W™ is the graph of a function 

T(Fk,g) where Fh has bounded distortion and g has bounded CX,C2 sizes. Using 

the formulas (36), (37), and (38) which appear in the second derivative of the graph 

transform function then gives that Y(Fh,g) also has bounded C2 size. The same 

argument then works for T(Fk+1, g) and this gives (25). A similar argument gives the 

continuity statement in Theorem 6.1. 

To get estimate (24) first note that hyperbolicity conditions imply that any vector 

v in the tangent space to a point in W™ which is not in K™ has its backwards iterates 

eventually in and, hence, eventually expanded. Since the tangent vectors to W™ 

are eventually contracted in the past, they must be in K™. 

We now return to the affine representatives fij of the maps fi.. 

To obtain gi satisfying (33), (34), it is convenient to use graph transform techniques 

as in [7], [12]. 

In view of Lemmas 4.3 and 6.3, we may assume that 

(35) K0 > c, 6ij(w) < i , e22 (w) < i 

for w G Bj where c > 0 is arbitrary. In the present section, it suffices to take c > 4. 

In section 8 below, we will take c > 117. 

We define some function spaces. 

Recall that z0 = 7r(i), Zi = Tr{a%i) for i < 0. Let Si — e{7rali), Bf = B™.(zi), 

B? = B°£i{Zi). 
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Let Got be the space of Lipschitz functions g from Bf to Bf with Lipschitz constant 

less than or equal to 1. For such a g, let graph(g) — {(x,y) : y — g{x) for x G Bf}. 

For g1,g2 G Goi, set 

\hx(w)\=* sup 9ix - g2x 

Let Gu be the set of continuous functions H : Bf x R —> R such that for each 

x G S f , the map 

\hx(w)\\hx(w 

is linear of norm no larger than 1. 

Define the metric du on Gu by 

du(Hi, H2) = sup 
»GBJ*,|t;|<l 

|Hi(a?,i;) - H2(x,v) 

Let be the set of continuous functions J : 2?J* x R x R —» R such that for each 

x G B f , the map 

(v,w) —> J{x,v,w) 

is symmetric and bilinear of norm no larger than 7̂ 2 for some constant K 2 to be 

specified later. 

Set 

d2i(Ji, J2) = sup 
x€B?,\v\<l 

Ji (x, v, v) — J2 (x, v, v) 

The spaces (Goi,doi), (Gii,du), (G2i,d2i) are bounded complete metric spaces. 

Let Z ~ = {k < 0 } be the non-positive integers and consider the spaces 

Co = {</>: Z - Goi : <i>% G Goi V i } 

£i ={<(>: Z - Goi : <i>% G Goi Vi} 

Goi : <i>% G Goi Vi}Goi : <i>% G Goi Vi} 

with the metrics 

di(</>,ip) = 

k>0 

^dik(<f)k,ipk) 

where 0, -0 G A ? * = 0 ,1 , 2. 

The spaces are also bounded complete metric spaces. 

Let us recall the graph transform operator [7]. Let / = for some ij, and let 

g e GOJ. Write f(x,y) = (fi(x,y),f2(x,y)), and let ( l , p ) : £V -> fl« x B | be the 

graph map defined by (l,g)x — (x,gx). 

We define 

r ( / , » ) = / 2 ° ( l , 0 ) ° [ / 1 o ( l , 0 ) ] - 1 . 
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It follows from our hyperbolicity assumptions the F(f,g) is a well-defined mapping 

from goj to Goj+i for j < - 1 . 

Returning now to the spaces C\ of sequences of functions, let us use the notation 

9 = {9k)k<o, for elements of C Q , H — (Hk)k<o, for elements of C±, and J = (Jk)k<o, 

for elements of £ 2 . If 9 = (9k)k<o is a sequence of C 2 functions, we write Dg = 

(Dgk)k<0,D2g = (D2gk)k<0-

We will define continuous maps 

$ o : Co —> Co, 

$ i : Co x d —> Cly 

$2 : Co x d x C2 —> C2, 

51 : Co x C\ —> Co x Ci, 

52 : Co x d x £2 — ^ £0 x £ i x £2 

with the following properties. 

F B I . S i ( f f , i f ) = ( * o ( s ) , * i t e , H ) ) and S2(<?, if , J ) = (*0(ff), * i ( p , H ) , * 2 ( » , H , J ) ) 

for each if, J ) 6 £o x C\ x £2 . 

FB2. If (gk)k<o is a sequence of C2 maps with G QokJ^9k £ , D2gk^ Q2k for all 

fc, then S2(g,Dg,D2g)k = (T(fik_1, # * - i ) , DT(fik_1, gj,^), D2T(fik_1,gk-i)). 

FB3. 4>o is a contraction mapping; i e . , it is Lipschitz with Lipschitz constant less 

than 1. 

FB4. The map S i is a fiber contraction map over $0 in the sense of [7]. 
FB5. The map S2 is a fiber contraction map over Hi. 

Once these properties are established, we proceed as follows. 

Let zo — {xo-iVo) £ ^C*)? le^ 7T22/ ) = y, and let g = (gk)k<o be the sequence of 
constant maps 

po (#) = Vo 

gk-i(x) = 7T2(fi_1 o • • • o / ^ . J - 1 ^ ) . 

for x G B%_±. 

Using the fiber contraction theorem of [7] we have that the sequence S2 Dg, D2g), 

n > 1, converges to a fixed point (fij, i f , J ) of S2. Letting no : Co x C± x C2 ~* Co, 

7Ti : £o x £ i x £2 —>* £ i , 7r2 : £0 x C\ x £2 —>• C2 be the natural projections, the 

definitions give 

7TOS£(0)o = T{fi_x O . . . O , #_n) 

7TiSJte)0 = DTifi^ o . . . o £_n, #_n) 

7r2S£(<7)0 = Z ^ I X / j ^ o • • . o £_w, g_n) 

Since all three of these sequences converge, it follows that 

lim r ( / L x o • • • o fi_n, g_n) = gi 
n-»oo 
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is C2 with Dgi = lim7Ti^2(^)0 and D2gi = l i m ( # ) o - The function gi will be the 

C2 function whose graph is contained in (and hence equals) '. 

Let us now define the maps $i and establish their properties. 

Let f — fi. for some ij and let g be a C2 function such that g G Goj, Dg G 

Gij,D2geG2j> 
Write u(x) = l / i o f u r t ^ 

Then, differentiating T(f,g) = / 2 oGoi : <i>% G Goi Vi}o Q / i o (1,#)J we get 

DY{f,g) = f2x(ux,gux)Du(x) + f2y(ux, gux)Dg(ux)Du(x) 

= f2xDu(x) +i>% G Goi f2yDg(ux)Du(x) 

D2T{f,g) = f2xxDu(x)Du(x) + f2xyDu(i>% G Goix)Dg(Goi : <i>% G Goi Vi}ux)Du(x) + f2yxDu(x)Dg(ux)Du(x) 

+f2yyDg(ux)Dg{ux)Du{x)Goi:<i>%i>%GGoiVi}Du(x2xDzu(x) 

(36) +f2yD2g{ux)Du(x)Du(x) + f2yDg(u2u(x) 

We can compute formulas for D ^ , D2u in terms of / , # by differentiating the formula 

f^u = x twice and solving for DuyD2u. 

We get 

(37) £>u(x) = [/la> (ux,i>% G Goi guxGoi : <i>% G Goi Vi}) + fly (ux, gux)Dg(ux)] 1 

and 

(38) D2u{x) = -Du(x) [flmm(Du(x))2+i>% Goi2flxyDg(ux)Du(x)D 

+f1(Dg(ux))2Du(i>%GGoix)2+ fx(Du)2D2g(ux)] . 

For H G Gij, J G G231 let us write Hx for the map H{x, • ) , for the map J (# , •, • ) . 

Define 

Dx = Dx{u,H)x = [flx(ux,gux) + fly(ux, gux)Hux\ 1 

D2{u,H,J)x = -£>x [flxxD1D1^-2flxyHuxD1D1i>% G Goi 

+fiyyHuxHuxDiDx i>% G Goi+ flyD±Di Jux] 

Ri (/i>% G Goi» ̂ ) * = [ /2 . Goi <i>% G Goi Vi}0^0?) + /2y (ua;, # ^ ) ^ z ] £>i 

R2(f,9,H, J)x = fa„ i>% G Goii>% G Goii>% G Goii>% G Goii 

+ f2yyHuxHuxDiDi + f2xD2 + f^yJUxD\D\ + f2yHuxD2 

Finally, if flf = (gk)k<o e C0,H = (Hk)k<0 G £1 , J = (Jk)k<o € £2 , set 

$0(0)* = Goi : <i>% G Goi ) 

$1 ( # , # ) * = (<&o(fl)fe,i2i(/ifc_i, 0 / b - i , i ? * - i ) ) 

$2(g,Goi<i>%G=Goi: <i>% G Go i (*o ( f f e , RiUih-i9k-i^Hk^1),R2(fik_1i>% G . 
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and define H i , £ 2 as in F B I . 

Then, Si and <&i satisfy properties F B I and FB2 above. 

Let us verify the fiber contraction properties of S i , S2. 

Fiber contraction property of S i . — We first show that for fixed / , g with / = fi. and 

g : —> Bj a given Lipschitz map of Lipschitz constant no larger than 1, i ? i ( / , g, •) 

maps Qij into Gij+i and is a contraction. 

Since the graph of g is in Q, the C° size of T(f,g) is no larger than 1. This, and 

the overflowing property of / on Bj gives that T(f,g) is a map from to Bj^_x. 

Let L i p ( ^ ) be the Lipschitz constant of a map ip. 

As above, let u(x) = [f± o 

Then, 

Lip(u) < 
1 

| / i . | ( l - e i 2 ) 

Using T(f,g) — /2 o (1,0) o [/1 o ( l , p ) ] \ and the fact that Lip(#) < 1, we get 

Lip ( r ( / ,<7) ) < L i p ( / 2 o ( l , p ) ) L i p ( t i ) 

< ( | / a . | + |/ay|)Lip(ti; 

^21 , t22 
1 - S12 1 - S12 
^21 + ^22 

1 - £\2 
< 1 

by (35). Thus, r ( / , ( / ) € £ i , i + i . 
If H, H G Gii, we have 

| J2 i ( / , 0 , fO-J2 i ( / , f l , J / ) | < |(/a, +f2yHux)D1(u,H)-(f^ +f2vHux)D1 (u,H)\ 

i>% G Goii>% G Goii>% G=/5265 

+ ( | / a . | + l/a, I #u* I) !£>! (« ,# ) - #1i>% G Goi 

i>%GGoiGoi1 

+ ( | / a . | + | / 2 J | i ï U x | ) | i ? l ( « , ^ ) i > % G Goi -Ii>% G Goi 

To compute D\{u,if) — D\{u,H) , we use the formula 

l ^ - G ^ l ^ l G r ' l l G ^ l l G x - G a l 

which follows immediately from the formula 

|(j?2 1G?2G?i 1 — (J?2 ^GiG^ * I < (j?2 1 | ^ 2 — G?i I |(J?I * I 

Thus, 

D ^ ^ - D ^ H ^ < \Di(u, H)\\DI(U, i>% G Goi|/ly \\H — H 

£12 < 
| / A J ( l - ^ 1 2 ) 2 ' 

H - H 
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Putting the above inequalities together, and using the fact that \H| < 1, we get 

-ft'4eiPo(Vra0...a„+i_1)-ft'4eiPo(Vra0...a„+i_1) 
< ^22 

1 - el2 1 
H -H\ + 

^21^12 

( i - £ 1 2 ) 2 

£22^12 

( 1 - £ 1 2 ) 2 . 
o(Vra0...a„+i_1 

Now, the fact that R\ contracts the fibers follows from the estimates for Sij already 

given above. 

The fiber norm of R2(f,g,H,J) and fiber contractions of R2(f,g,H,J) are ob 

tained in the same way. We just write down the final estimates and leave the compu

tations to the reader. 

We have 

\R2(f,g,H,J)\ < 
4 D2f\ 

-ft'4eiPo(Vra0...a„+i_1) 

(£21 +£22 )4 ID2/1 
-ft'4eiPo(Vra0...a„+i 

(S21 + £22)£l2 

( l -£ i2)3 A -

^22 

(l-ei2)2\A„\ 
J 

< Ax + A2\J\ 

and 

R2(f,g,H,J)-ft'4eiPo(Vra0...a„+i_1)-R2(f,g,H,J)\ < 
(£21 4- £22)^12 

( i - £ 1 2 ) 3 | / l x 
j — j 

£22 

( l - e i 2 ) 2 | . A . | 
T | J - J | 

Let us summarize the conditions we need to get the required properties of Ri, R2. 

(39) 
£21 + £22 

1 - £12 
< 1 

(40) 
^22 

1 - 612 

S2i6±2 

( 1 - Ê 1 2 , 2 
^22^12 

( 1 - ^ 1 2 ) 2 
< 1 

(41) 
(£21 + £22)^12 

( 1 - £ 1 2 ) 3 | / J 

£22 

(l-e12r\flx 
-ft'4ei 

Since £12 < 1/4 and if0 > 4, inequalities (39), (40), and (41) hold. Also, \A2\ < 1. 

So, if we let K > 1/(1 — A2) and K2 = KAX, we have 

J\<K2^> \R2(fyg,H,J) < K2. 

Hence, this K2 is sufficient to define the space Q2j. 

Proof of continuous dependence of the unstable manifolds W± on the itineraries i 

We have already noted that it suffices to prove that the functions gi depend C2 

continuously on i. 

It is clear that the maps 

(f,9)^T(f,g), -ft'4eiPo(Vra0...a„+i_1)-ft'4eiPo(Vra0...a„+i_1) (f,g,H, J ) - > R2(f,g,H,J) 
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are continuous. Since the spaces QQJ, Q \ J , Q2j are bounded and the metrics on £0 , 

Ci, C>2 give the product topologies, it follows that the maps 3>o?Si,H2 are contin

uous. Also our previous estimates give that, using the non-positive itineraries i as 

parameters, the family (4>o)i is a uniform family of contractions. Similarly, the fam

ilies (3>i)i, ( $ 2 ) 2 are families of uniform fiber contractions. Thus, the continuous 

dependence of gi (and hence W™) follows from Propositions 5.1 and 5.2. • 

7. Fluctuation of Derivatives 

We need to estimate quotients of the form 

(42) 
i>% G Goii>% G Goi$^$ 

\D(fii 0 * *• 0 fin)w(vw)\ 

where z,w are in a K% curve 7 and vz,vw are the unit tangent vectors to 7 at 

respectively. 

The domains of the compositions o • • • o fin become narrow and possibly very 

non-convex. Since we wish to use the Mean Value Theorem in these domains, it will 

be convenient to choose certain star-shaped subdomains. This will be done in the 

next section. Here we present a useful Lemma. 

Recall that a set E is star-shaped relative to a point z G E if for any w G 25, the 

line segment joining z to w lies in E. 

For a point z G E let Sz (E) denote the diameter of the intersection of the horizontal 

line through z and E. 

Writing / for one of the compositions above, assume that Df maps the cone K^, 

into itself, expands it by at least K Q > 1, and that Df-1 maps the cone into itself 

and expands it by at least KQ as well. 

For a subset E of the domain of / and z G E, define 

i>% G Go 
sup 
weE 

\D2f(w)\ 
$^^$ù 

$!!ùù 

where 

D2f(w)\ = max{ | / . i f c (w) | : i = 1,2 (j,k) = (x,x), (x,y), (y,y)}. 

Lemma 7.1. — Let E be a subset of the domain of f which contains z and is star-

shaped relative to z. Let 7 be a C2 curve in E parametrized in the form 7 : x —> 

(x,g(x)) where g is a C2 function such that \Dg(x)\ < a and \D2g(x)\ < K% for all 

x. Suppose zyw G 7,10 G E, and vz,vw are the unit tangent vectors to 7 at z,w, 

respectively. Let 0 = Qz(f,E) and 5 = SZ(E). 

Then, there is a constant C = C(a,Ks) > 0 such that 

(43) 
\Dfz(Vz)^$$ 

Dfw(vw)ù$ù 
< exp C e x p ( C O ) 

z — w 

S 
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Proof. — We use the max norm |(^x, ^2) | = max(|t>i|, |^21)-
Let z = (x,g(x)),w = (y,g(y)),vz = (vlzyv2z),vw = (vlw,v2w). 

Then, \viz\ = \v±w\ — 1. Also, since Dfz(vz),Dfw(vw) are in the cone K%, we 

have 

\flm{z)vlz + fly(z)v2z Dfz{vz) 

and 

i>% G Goii>% G Goii>% G Goi Dfw{vw) 

So, 

\Dfw{vw) i>% G Goii>% G Goii>% G G 

\fla>(w)Vlw 1 -
fly(w)V2w 
\Dfz(vw) 

> | / l œ ( ^ ) | ( l - a 2 ) 

and 

(44) 
i>% G Goi 

Dfw(vw) 
1 4 

i>% G Goi £>/u>(̂ u>)l 
Dfw(vw) 

(45) < exp 
\DfJvr\Df\Dfz(vz(vw)) 

Dfw(vw) 

(46) < exp( 
i>% Gi>% G Goi 

(1 - a2) 

where 

(47) >ll(2!,iw) = 
\D f z ( v z ) -D f z \D f z ( vw)  

i>% G Goi 

and 

(48) i>% G Goi 
\Dfz(vw) - Dfw(vw) 

\Dfz(vw) 

We consider the two terms A\(z,w) and ^2(^5 separately. 

We have 

Dfz(vz)-D\Dfz(vw)fz(vw) $^$ 

max(\flx\Dfz(vw)viz + fiyv2z -flxVlw\Dfz(vw) — flyV2w flxVlz +\Dfz(vw) f2yV2z - f2xVlw — f2yV2w\ 

where the partial derivatives are all evaluated at z. 

From Lemma 4.1 an upper bound for this last quantity is 

flx(z) 1 + 2a + 
1 

^$ù + a2 vz - vw 
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and this gives 

Ai(z,w) < C{a) 
fix(z)\ 

fix(W)\ 
vz - vw 

Now, \vz — vw\ is bounded above by the product of the maximum curvature of 7 
and \z — w\. An upper bound for the curvature is the quantity K3. 

Let us use C = C(a,Ks) for possibly different values of C below. 

As in the proof of Lemma 4.2, we get 

\flx(z) 

\flx(w) 
< exp(CO) 

So, 

(49) Ax{z,w) < Cexp(CQ)\z-w\ < C exp (C0) 
z — w 

S 
Proceding similarly, the numerator of A2(z,w) is bounded above by 

max( 
¿=1,2V fix{z) ~ fix(w)\ fix( fiy(z) - fiy(w)\\v2w 

< 2 max 
fix(z)\fix(z)\ 

\fij(z) - fij(w) 

Now, 

\fix(z) ~ fix(l»)\ < \ fixx(r)\\z -w\ + \ fixy(r)\\z - W 

and 

Siy{z) - fiy(w)\ < IfiyxiT^Wz -w\ + IfiyyiT^Wz ~ W\ 

for suitable r, T\ , which implies that 

(50) A2(z,w) < C 0 exp (C0) 
\z — w 

u 
Using C © < e x p ( C 0 ) , (49), (50) and a different C , we see that the proof of Lemma 

7.1 is complete. • 

8. Distortion for compositions 

In view of Lemma 7.1, to estimate quotients of the form (42) , we will need to 

control the distortions of the compositions Qz(fi! 0 * * * 0 fin) on appropriate sets. 

Let i G S, and let z G W{oc(Tri) be a point in the local stable manifold of 7r(i). 

Write ij = ij(z) for the j-ih entry in the itinerary of zy and write Fn(z) — fin_t o 

* * * 0 fii 0 fi0(z) so that Fn(z) G Ein(z) for all n. 

For a curve 7, and z, w G 7, let vz,vw denote the unit tangent vectors to 7 at u>, 

respectively. 

As in section 2, let 

fix(z)\fix(z Ei0 n frHEh...in) 
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Proposition 8.1 (Bounded distortion of compositions). — There is a constant K4 > 0 

such that for any i G £ , any full width K% curve 7 in Ei0, and any n > 0. we have 

(51) 
D F ? ( v z ) \ f i x ( z ) \ 

fix(z)\fix(z)\ 
< K4 

for any z,w G EiQ„An 0 7 . 

To prove this proposition, it will be convenient to cover the images F^(7(1^...^) 

by small parallelograms in which the distortions 0 ( F ) become small, and to make 

use of affine coordinates as in section 6. 

Let Esz be the tangent space to W{oc(iti) at z, and let Ez be the tangent space to 7 

at z. Writing Zj for F^z, j > 0, we translate these subspaces along the forward orbit 

of z by defining 

EsZj = DFl(El), EuZj = DF^(E^), j > 0 

This gives us a splitting of T R 2 along the forward orbit of z and the angles between 

the subspaces EZj, EZj are uniformly bounded away from 0 by a constant that depends 

on a. 

Using these splittings, we can define affine coordinates along the forward orbit of 

z, giving local coordinate representatives of and small parallelograms Bj — 

Bj x Bj with sides parallel to the subspaces EZj, EZj satisfying conditions analogous 

to those in B l , B2 following Lemma 6.3. As we have already noted, in view of Lemmas 

4.3 and 6.3, we also can arrange for the conditions (35) to hold where c > 117. 

In these affine coordinates, the subspaces Ez., Ez. become horizontal and vertical, 

repectively. As in section 6 we use the max norm in these coordinates, so each small 

£-ball B£(zj) = B(zj,e) will be a square of side length 2e centered at Zj. 

If E is any subset of Bj, and z € E, let C(z,E) denote the connected component 

of E containing z. As in section 6, we may assume that 

Bj C ( J B{w,KSw{Ei.)) 

where K > 0 is a fixed constant. 

For the remainder of this section we identify fij with its local coordinate represen

tative fi.. 
Thus, we may assume, for w G Bj, 

(52) \fijix(w)\ >K0> 117 

(53) » , f f i , ) < C . 

(54) max(ei2(ty),e2i(w)) < £0, £22(w) < e0 
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(55) KSZ.(EIS) > d i a m ( ^ ) > d ^ . ( i ^ ) 

where C o , C i , £ o are positive constants, C± < Co, and SQ < 1/4. 

We also may assume that 7^ = C(zj,Fj^ n JBJ) is a K£0 curve in S^. 

Let £1 G ( 0 , m i n ( C i / 2 , 1 ) ) be small enough so that 

(56) exp(156eiCo) 
16 

15 
< 2 

Let Bjt£l = Bj n B(Zj, %6Zj(Ei.)). 

The definition of B^Ex implies that 

e z j ( f i j , E ) < e 1 C 0 f i x ( z 

for any subset E C BjiSl. 

We use dB to denote the boundary of a set B. 

Since fij maps Eij to a full-width rectangle in Q, there is a constant K > 0 such 

that 

M ^ ) > ^ | / ^ i , ( ^ ) r 1 

Therefore, since SZj(Bj,£l) = SiSz^E^)^ Lemma 4.2 provides a constant JK"5 > 0 

such that 

(57) di s t ( / i i { z^d f i , (7 i n Bi>ei)) > K5£i 

For Zj G , let 

fix(z 

fix( if 
1 

2 
fix(z)\fix(z)\ < 

fix 

2iiT0 

Bizj.K^x^Ko) if 
1 
2 ' 

fix(z)\fix( fix( 

2K0 

Thus, each Bj Ç Bj<£l. 

Since fij expands horizontal distances by at least K Q , we have that 

dist(fii(zj),dfii('YJnBj)) >fix(z)\ 
KB£i 

2 
so 

hi ( C { Z J , lù f)Bj))D C{fii »i, /*,-7i n Bj+1 ) 

The set Bj,n = Bij D F~lBij+1 n • • • D F"^1-^Bin_1 is a narrow curvilinear 

rectangle around Zj. 

Let 

aj,n = dist(2:J-,7j D dBjfn) 

Let be the curvilinear rectangle whose left and right boundary curves are 

pieces of the left and right boundaries of Bj,n and whose top and bo t tom boundary 

curves are horizontal line segments each of whose distance from Zj is aj<n. 

Lemma 8.2. — The curvilinear rectangle Ej<n is star-shaped relative to Zj. 
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Proof. — Let 61,62 denote the left and right boundary curves of EjiTl and let £±, £2 

denote the top and bot tom boundary curves (which are horizontal line segments). 

Let w G Ej,n, let £j,w denote the line segment joining Zj to w, and let dvertEjyTl 

denote the union 61 (J 62. 

Since Zj, w lie between the horizontal lines through ¿1,^2, any intersection of £jiW 

and the boundary of EjyTl, must be in dvertEj,n. Thus, to show that £jiW is contained 

in Ej,n it suffices to show that 

(58) (£JTW \ {ZJ,W}) fl dvertEj,n = 0 . 

Assuming (58) fails we will get a contradiction. 

By construction, 6i,62 are / ^ - c u r v e s . This and the assumption that eo < 1/4, 

imply that any line segment joining Zj to a point z in dvertEj^n must have slope no 

larger than 4 /3 . 

But since Zj and w lie in EjiU, if (58) fails there is a point z G dvertEjyn such 

that the line £jiW is parallel to the tangent vector to dvertEj,n at ~z. However, 61, 62 

are K§Q-curves, so their tangent vectors have slope no smaller than 4 which is our 

contradiction, proving Lemma 8.2. • 

Lemma 8.3. — Fix j > 0. Then, for each n > j , we have 

(59) QZJ(Fn-i,Ejtn) < 13eiC0. 

Proof — The proof is by induction on n — j . Clearly (59) holds for n — j = 1. 

Assuming it holds for n — j , we show it holds for n + 1 — j . 

Let z = Zj, f = F, g = Fn~j, Ef = #n,n+i = i ? ^ , £ ^ = E^,n, h = f o g, and 

£71 — EjfTl+i. 

Let A / = <5*n (£? , ) , = SZj(E9), Ah = SZj(Eh). 
We use © ( / ) = G9Z(f,Ef), Q(g) = &z(g,E9), S(h) = &z(h,Eh). 
Consider the quotient 

Pi. (w) 
fix(z)\ 
fix(z)\ 

where w G Eh-

Since the left and right boundary curves of Eh are Kl curves, and £0 < 1/4 we 

have that \w — z\ < 3Ah. 

Since both glx(z),glx(w) have absolute value greater than 1, they have the same 

sign. Replacing g by — g if necessary, we may assume these signs are positive. 

By the mean value theorem, 

log51(BM - log glm(z) < Or) 

9, AT) 
z — w\ 

9imy(r)\ 

»x . (r ) 
z — w 

< 60(5) 
Ah 
=$=* 
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SO, 

(60) exp - 6 0 ( 5 ) 
Aft 

Aft 
< 0 i . (w) 

0 i . (*) 
< exp 6 0 ( 5 ) 

Aft 

AgJ 

Further, setting £ = exp(120(</)Aft/A<?), we have, for any W , T G 

0 i . (w) 

0 i . ( r ) | 
= 

AftAft 

0 i . O ) | 

0 i . (¿0 

0 i » | 

< C (61) 

Similarly, if n , T2 G £ ^ , then 

(62) 
0i. (w)0i. (w) 

0i . ( r i ) 
< e x p ( 1 2 0 ( # ) ) < exp(156eiC0) < 2 

Also note that if £Q is the full width horizontal line segment through z in Eh, then 

g{io) is a full width K^0 curve in Ef, and there is a T e 4 for which |<7la,(r)|A/i = 

length (g(e0)) < | A / . 

This gives 

(63) 
Aft 

A / 

5 

4 | 0 i . ( r ) | 

Observe that it follows from the definition of Eg and (57) that, for some T\ G Eg, 

0 I . ( T Ì ) | A 0 > K6SL 

So, by (62), 

Ah 

A<7 

5 A / 

4 | 0 ! . ( r ) 

0 i . ( n ) I 
0i. (w)0i. (w) 

< 
5 A / 

2K5£l 

(64) < 3 
K0 

Let us estimate 

(65) ©(ft) = max J 
w€Eh 

D2h(w)\ 

KÀW) 
Ah 

Let 

V = 
1 

1 - £ 2 i ( 0 ) e i 2 ( / ) 

16 

15 

and 

C = exp(120(ff; 
Aft, 

A<7 
I < exp 156£!C0 

3 

Ko 

Recall that K Q and ei were chosen so that 

(66) K0 > 117 
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(67) r ? C < 2 

Recall the Chain Rule formulas (15) - (18) . 

B y (15), we have 

0i. (w)0i. (w) 

> 

0i. (w)0i. (w)0i. (w) 

A . 0 . . | ( l - e 2 i ( f f ) e i 2 ( / ) ) 

| /i-ffi-|»7 1-

Write s2(f) = max(ei2( / ) ,£22( / ) ) -
From (16) we get 

A.0..|(l-e2i( 
A.0..|(l-e2i( 

Aft e ( / ) | 5 l , M 
Aft, 

A / 
+ 2 0 ( / ) A . 

, Aft 

' A / 

+ e( /)eai( |7) |ffa.(u;) 
, Aft 

' A / 
0 ( 5 ) max(l ,£21 ( / ) ) ( ! + e2(f), 

Aft 

A 5 

Now, using (61), (63) , (64), (66),(67), we get 

h,„ (w) 
A.0..|(l 

Ah < ri 0 ( / ) 3 C ( l + 2e21 (g) + e21 (g)2) + 2&(g) 
Ah' 

A 5 J 

< 6r7C0(/) + 3 0 ( 5 ) 
3 

Ko 

< 1 2 0 ( / ) + 
1_ 

Ï3 
9 ( 5 ) 

Similarly, 

himy(w) 

A.0..|(l 
Aft A.0..|(l 3 0 ( / ) C ( £ i 2 ( 0 ) + e 2 2 ( 5 ) + - e 2 i ( f f ) e i 2 ( / 

+£12(5 )^21(5 ) + £22 (5 )^21(5 ) ) + 2 0 ( 0 ) 
Aft-

Â7-

< 3 0 ( / ) + 3 0 ( 5 ) 
3 

Ko 

< 3 0 ( / ) + 
1 

13 
A.0..|(l-

and 

^ „ ( w ) 
A.0..|(l-e2 

<lft < r? [30(/)C(£i2(<?)2 + 2e22{g)e12{g) + e22(g)2)] 

< 2 0 ( / ) + 3 0 ( 5 ) 
_3_ 

Ko 

< 2 0 ( / ) + 
13 

*=$$ 

In all cases we have 

0(ft) < 1 2 0 ( / ) + 
1 

13 
6 ( 5 ) < 13£iC0 
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proving Lemma 8.3. 

Proof of Proposition 8.1. — The curvilinear rectangles BjiU are determined by the 

orbit segment {ZJ = F^(z)}^=0. We write this as 

A.0..|(l-e2i(ff)ei2(/))A.0..| 

There are analogous sets 

Bw,j,n — BFjw n • • • H F (n 1 ^BFn-iw 

where BFiw is a suitable small parallelogram centered at F£w for any w G Eio..An (I7. 
Let 7, zy w, vz, vw be as in the hypotheses of the Proposition, and consider Fnz, 

Fnw € 7 n Siw. 

We can connect these points by a chain Fnz = Fn(wi), Fn(w2)1 . . . , Fn(wk) = 

Fn(w) with k < Ci(a,e) such that, for every I — 1 , . . . k — 1, and every 0 < j < n, 

A.0..|(l-e2i(ff)e G Bwe,j,n 

then, it follows from Lemmas 7.1 and 8.3 that, for some constant C 2 ( a , e ) , we have 

(68) 
A.0..|(l-e2i(ff) 

A.0..|(l-e2i(ff)ei2(/)) 
< C2(a,£i) 

in the special affine coordinates centered at we- Changing back to the standard 

coordinates on Q simply makes (68) hold with a different constant C2 = C2(a,£i). 

Then, 

DF?(vz)\ 

DF%{vw)\ 

k-l 

e=i 

\DF^(vWe)\ 

A.0..|(l-e2i(ff)ei2(/)) 
< c t 1 

proving Proposition 8.1. 

9. Sinai Local Measures 

For two points z\, Z2 in an unstable manifold and unit tangent vectors v±, v2 

to at 2i,#2, respectively, let DuF{zi) — \DFZi{vi)\ denote the Jacobian of F at 

Zi along W™. We know that is a full-width curve in Ei0. Also, the curve 

f i ^ ï is a full width K% curve in Q. 

Proposition 9.1. — Suppose i = ( . . . i-n ... i0) is an arbitrary infinite non-positive 

itinerary and let denote its unstable manifold. Write fi0W^ = graphs gi where 

gi : I —¥ I is the C2 function given in Theorem 6.1. Suppose x\,x2 G / and z\ — 

(x\,qiX\), zo — (xo, QiXo)- Then, the infinité product 

(69) £ O i , x 2 , t ) = 
oo 

s=l 

DuF{F~sz1A . 

DuF(F~sz2) 

converges and depends continuously on (# i , #2 , i ) . 
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Moreover, there is a constant Ka > 0 independent of (xi,x2,i) such that 

(70) A.0..|(l-e2i(ff)ei2(/))A.0..|(l-e2i(ff)ei2(/)) 

Proof — It clearly suffices to prove the upper bound in (70) since interchanging z\ 

and z2 would then give the lower bound. 

Let Z! = fio1zllz2 = fio1z2 so that zuz2 e W?. 

We use the local coordinates and rectangles Bj of the previous section. To avoid 

confusion, we will use Fs(z) = (fi_1 o • • • o fi_s)(z) and F ~ S — o • • • o fi_s)~1 

instead of identifying F, fij with F , f\. as in the preceding section. We use Bz for the 

affine neighborhood centered at z. 

In our local coordinates, with z 6 Ei0, n Bz becomes a K™Q curve. Also, there 

is a sequence z± = w\,..., Wk = z2 of points in such that 

(71) d(wj+1,Wj) < 
€lK5 

2 

and 

(72) k < 
2 

A.0..|(l-e2 
+ 1. 

Recall that F 1Wj = fi_\wj. 

Further, U.Alz}xWi N^F-^WJ) contains the intersection of W/4 with the ball of 

radius £iK5/2 about WJ. Since wj+1 is in this latter set, we have F^WJ+X e Bp_± . 

Analogously, we have F~swj+1 e Bp_Sw. for every s > 1. 

Now, there is a constant C6 > 0 such that 

oo 

*=$$$ 

DuF(F~sz1) 

DUF(F~sz2) 
< C6 

oo 

s=l 

D U F ( F ~ s z 1 ) o 

D U F ( F ~ s z 2 ) ^ 

CO 

^$ù 

k-1 

.7 = 1 ' 

D U F ( F - S w j ) = * $ = $ 

DUF{F-Swj+1)ù^$$ 

so, to prove Proposition 9.1 it suffices to show 

(73 
oo 

s=l 

DUF(F~swj) 

DUF{F~swj+1) 
< K7 

for some K? > 0 and any j . 

Since the angles between E™ and 2?| are bounded by a constant depending on a, 

the linear maps DF(F~S(WJ)) and DF(F~S(WJ)) are conjugate by a linear map whose 

images on unit vectors are bounded above and below by constants which depend only 

on a. A similar statement holds replacing Wj by Wj+i. Hence, there is a constant 

= C&ia) such that, for anv s > 1 and any 7, 

(74) wxq DUF(F-Swj) 

DuF(F~swj+1) 
< 

DuF(F-sWi) 

DuF{F~swj+1) 
=*$ DuF(F-sWj) 

' DuF(F-swj+i) 
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so, it suffices to find K? > 0 such that 

(75) 
OO 

s=l 

DuF(F-sWj) 

DuF(F~swj+1) 
< K7 

By Lemmas 7.1 and 8.3, there is a constant K\ > 0 such that 

(76) 
DFzN(vz)\ 

A.0..|(l-e2i(ff 
A.0..|(l-e 

for any N > 1, z € E Z , N and unit vectors vz,Vz tangent to Wu(z), Wu(z), respectively. 

Let N be large enough so that 

(77) r = 
A.0..|(l-e2i 

A.0..|(l-e2i( C 1. 

By definition, FN 1(Ep_sNw. N) is a full-width subrectangle of 
fN — 1 — sNw . ' So, 

the F image of a full-width horizontal line segment ̂ A.0..|(l-e2i(ff)ei2(/)) contains a curve 

of horizontal width at least £\K5. 

Thus, setting Wj = F~lWj and 5is = Sp_sN~XEp_aN~, N), we have 

(78) 
eiK5 

D»F»(TN) 
A.0..|( 

1 

^$ù 

for some TN € WU(F~sNWj) D EP_SN~. N. 

Then, 

F~sNwj+1 - F~SNWJ F~aN+Nwj+1 - F'sN+Nwj 
1 

\DUFN(T^)A.0..|(l-e2 

£iK5 

DUFN(TN) 

DUFN(TN) 

£xK5\DuFN{?^) 

jr-sN+N~.+i _ p-sN+N~. 

< Si, 
*=$ 

ù$ù 
A.0..|(l-e2i(ff)ei2(/))A.0..|(l-e2i(ff)ei2(/)) 

A.0..|(l-e2i(ff)ei2(/)) $^mm 

ù^$ùù 
Wj+l - Wj 

giving 

(79) 
\F-'Nwj+1 - F~sNWj 

A.0..|(l-e2i(ff 
< 

* 
ùù 

$^ùù 
1 

" 0 
WJ+1 ~ WJ 

< 
ù^$ 

eiK5 
s-l 
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Hence, 
oo 

s=l 

-ft'4eiPo(Vra0...a„+i_1) 

DuF{F~swj+1) 

oo 

= 

DUFN (F~sN~1Wj) 

DuFN{F-sN~1wj+1) 

oo 

s=l 

DuFN(F~sNwj) 

DuFN(F~sNwj^1] 

< exp 
oo 

5=1 

C7TS = K7 

using Lemma 7.1 and (79). 

Since the functions gi depend continuously on i in the C2 topology, the continuity 

statement in 9.1 follows from the fact that given e > 0, there is an N0 > 0 such that 

if N > N0, we have 

oo 
~i—r 

j=N0 

DuF(F~sz1) 

DUF{F-Sz2) 
- 1 < e 

which is immediate from the proof just given. 

This proves Proposition 9.1. 

For a C2 curve 7 in Q, let p7 denote the Riemannian measure on 7. 

From Proposition 9.1 we get the existence of the following limit 

(80) lim 
n—too 

n 

s=l 

• DuF(F~sz1) 

DuF{F~sz2) 
= f(2l,22) = &(2i,22) 

for any two points zi,z2 € . Letting 7 denote we can use p7 and the ratios 

£(21,22) obtained in the preceding limits to get special measures on the unstable 

manifolds. More precisely, following Sinai in [13], Lecture 16, we define 

^ 1 , 7 ( 4 ) = 
*=^$ 

£(2i,22)dp7(£2). 

It is easy to see that if z$ is another point in 7, then vZzn(A) = £(23, zi)uZlyJ(A), 
so the measures vZl ~ and 

i^zs ,7 are simply rescalings of each other. In particular, if 

i , 5 C 7 and vZliy(B) < 00, then uZin(A)/uZl^(B) is independent of z\. 

For zi G 7 fl Q, let Eit be the element of {Ei} containing Fz\, and let 71 = W^. 

The family of measures { ^ 1 , 7 } is invariant in the sense that if A, B C 7, F{A), 

F(B) C 71, and vZlty(B) < oo, then i/Zlty(A)/i/Zl^(B) = vFzi^1(FA)/vFziai{FB). 

We call the family of measures vZltJ Sinai local measures or just local measures. 

10. Absolute Continuity of the Stable Foliation 

We know that for each non-negative itinerary a — ( a o , « i , . . . ) there is a C1K^ 

curve Ws(a) = f |n>0 Ba0...oB.i of full height in Q. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



140 M. JAKOBSON & S. NEWHOUSE 

Note that two points in Q with different forward itineraries have disjoint stable 

manifolds since the interiors of the E[s are disjoint. Thus, the set {Ws(a) : 7ra G Q} 

is a foliation of its union. We call this the stable foliation. Let W = {Ws(a) : 7ra G Q} 

denote this foliation. We denote the union | J { ^ s ( a ) : 7ra ^ Q} by >V+. Note that 

W + is a Borel subset of Q of full two-dimensional Lebesgue measure in Q. For any 

two full width C2 K% curves 7,7/, let 7ryrj be the holonomy projection from 7 to 77 

along the foliation W . That is, for z G 7 Pi >V+, and VFs(a) the leaf of W which 

contains 7r7ry(̂ ) is the unique point of intersection of Ws(a) and rj. As above, for 

any C2 -curve 7, let p1 denote the Riemannian measure on 7. Recall that the 

foliation W is called absolutely continuous if 

(AC-1) each full-width C2 jftT^-curve 7 meets W + in a set of positive p7 measure 

and 

(AC-2) the image measure 7r7r?^p7 is equivalent to the measure pv. 

Proposition 10.1. — The foliation W is absolutely continuous 

Before we can prove Proposition 10.1, we need a couple of Lemmas. 

The next Lemma is well-known and elementary. Since the proof is short, we include 

it for completeness. 

Lemma 10.2. — Suppose that x\yX2, • •. and 2/1,2/2? • • are sequences of numbers in 

the open unit interval (0 ,1) such that 

(81) -^Xjlogyj < 00. 
i>i 

For e > 0 and non-negative integer n, let Dn = {i : yi < exp (—en)} . 

Then, 

(82) ] T ^2 Xi < °°* 
n>l i€Dn 

Proof. — For each n > 1, let 

En = {i : exp(—e(n + 1)) < y% < exp(—en)} 

Then, Dn — Uj>n Ej, where [J denotes disjoint union, so 

Y YXi = Y Y YXi-

n>i ieDn n>ij>nieEj 

Letting Cj — ̂ 2iGE. Xi, this last sum is just 

ci -h c2 + C3 + . . . 
+ c2 + c3 + . . . 

+ c3 + . . . 

A.0..|(l-e2i(ff)ei2(/))^$ù 
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Now, i G Ei implies that — log7^ > ej or — Xilogyi > ejxi which gives 

ieEj 
Xilogyi > ejx 

ieEj 

Xilogyi > 

Xilogyi 

Hence, 

e 

Xilogy 
,JC3 

j>i ieEj 

-Xilogyi < - Xi log yi < 00 

which implies that Y2j>i 3cj < 00 • 

In the next lemma, we will use the geometric condition G3. Each z G Q has a 

unique forward itinerary (ao(^) , 0 1 ( 2 ) , . . . ) with Fn(^ ) G int Ean^zy 

Lemma 10.3. — Le£ 7 6e a C2 K^-curve of full-width in Q such that p7(7 fl Q) > 0. 

£e£ e > 0. For p7-almost all points z G 7 Pi £ftere ¿5 a positive integer n(z) > 0 

s?4cft £fta£ if n> n(z), then 

ôFn(z)(Eari(z)) > e x p ( - e n ) . 

Proof — For ease of notation, if A is a subset of 7, let us write \A\ for py(A). 

Let Dn = {i > 1 : (5i,min < e " ^ n } . 
In view of lemma 10.2, the condition G3 implies that 

(83) 

n>i ieDn 
ẑ,max ^ OO. 

Let yn = G j HQ : ôFn{z)(Ean(z)) < e~en}. 

We will show * 

(84) 

n>l 

vn < 00. 

Once this is done, the Borel-Cantelli Lemma gives that pT-almost all points of 7 

lie in at most finitely many of the Vns which proves Lemma 10.3. 

Let An be the set of finite itineraries ( a o , . . . , a n - i ) which occur for points in Q. 

For a given finite sequence ao, a i , . . . , an- i G Anj let 

^ ( a o , . . •, an_i ) = {z € Vn : Flz G £ai for 0 < i < n } . 

Then, 

Ki(«0, • • • , ^n-l) 
i>0 

Xilogyi > ejxXilogyi > 

and this last union is disjoint. 

Also, Vn is the disjoint union of the Vn(ao,..., an_i) as these finite itineraries vary 

in An. 
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The bounded distortion of compositions (Proposition 8.1) gives us a constant K > 0 
such that for ( a 0 , . . . , an_ i i ) G A i + i , and ^ G 7 H ^ . . - « i , 

7 Pi Eao_anli 
Xilogyi > ejx < i f < w ) № ) 

Also, the definition of F n ( a 0 , . . . , an_i) gives us that 5an(»,min < e en; i e . , that 
an(z) G £>n. 

Thus, 

yn (a0 , . . . ,an_i) Ç 

Xilogyi > 
T H ^ Û O a „ . i i n Q 

This gives 

vn < 
(a0...aTl-1)eAn i£Dn 

7 f ^oo,...,aB_ii 

ao...an_i i£Dn 

7 f -Eao,...,an_it 

¡7 ^ ^ao—fln-i 
7 H £a0...a„_x 

ûo.-an-i itzDn 

Xilogyi > Tnsao. . .a„_1 

^z, max 

Xilogyi > 

Hence, (84) is a consequence of (83). 

Lemma 10.4. — For an?/ full-width curve 7 , 

P ^ ( 7 H Q ) = 1 

Proof. — The curve 7 cannot meet both the upper and lower boundaries of Q. For 

definiteness, we suppose that 7 does not meet the lower boundary of Q. The other 

case is similar. 

Then, there are constants a\ > 0, a2 > 0 and a C1 diffeomorphism <j> from Q onto 

a curvilinear subrectangle Q\ of Q such that 

(1) <j> maps the upper boundary of Q onto 7 and maps the lower boundary of Q 

onto itself. 

(2) D<KK%) C K» 

(3) Z t y - 1 ^ ) C Ksa2. 

Let 7 = </>-1(7) denote the upper boundary of Q. 

Since a subset A of 7 has full pT measure if and only if </>-1(A) has full measure, 

it suffices to prove that 

(85) Xilogyi > ejxXilogyi > ejx 
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Let Ei = ^(Ei), 

and 

*»,max = max. S z(Ei) 
z<EEi 

<$t,min = niin Sz(Ei) 
z(EEi 

The properties of 4> guarantee that 

(86) - Y2 *«,max log ?i,min < OC 
i 

Now, QiC\Q has full Lebesgue measure in Qu so, ^ _ 1 ( Q ) has full Lebesgue measure 

in Q. Thus, for almost all horizontal lines £ in Q, we have that £ fl <\)~X{Q) has full 

Riemannian measure. 

To complete the proof of Lemma 10.4, we will prove that pi{£ fl </>-1(Q)) varies 

continuously with £. 

This is a consequence of the following. 

For any e > 0, there is an N = N(e) > 0 such that for any horizontal full-width 

line segment £, 

p£(£D ( J Ei) <e 
i>N 

which is, in turn, a consequence of 

d iam(^n %) < e. 
i>N 

Since the vertical boundaries of the E[s are K^2 curves, there is a constant C(a2) > 

0 such that, for all i,m(Ei) > C(<̂ 2)(<$*,max)2- So, ^max —> 0 as i oo. 

By (86) and Lemma 10.2 with Xi = < ,̂max,2/i = <̂ ,min, given £ > 0, we can find 

no > 0 such that 

3ri,min<2 — oXilogyi > ejx^$ùù 

Now, take N such that i > N implies that <̂ ,min < 2_n°. 

This gives J2i>N diam(£ fl £7*) < ^ j . min<2--0 <*»,max < £ as required . • 

For future use let us observe that the argument in the last proof actually works for 

all curves uniformly to prove 

Lemma 10.5. — Given e > 0, there is an integer N(s) > 0 such that for every K% 

curve 7, we have 

p 7 ( 7 n ( | J Ei))<e. 

i>N 
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Proof of Proposition 10.1. — We use v <^ \i for v is absolutely continuous with re

spect to and v ~ p, for v <C p and p <C V. 

Let 7,77 be two C2 full-width K% curves. 

In what follows we restrict our measures to Q. Thus, when we write p1{A) we 

mean p<y(A n Q). 

We will show that 

(87) 7Tyn*P7 <^ Pi) 

Once this is done, interchanging 7 and 77, we have 1*^*9™ <^ P7. 

So, pv = ^^n-ki^n-y-kpn) <^ 7r7r?*p7 or ~ n-yn+Py as required for the proof of 

Proposition 10.1. 

We know that £>7(7 Pi Q) = 1. 

Let 5 C 7 Pi Q be such that py(B) > 0. 

Let G ( l , ! T o ) . 
By Lemma 10.3, for almost all z G 7, there is an n (z ) > 0 such that n > n{z) 

implies 

(88) 8FHz)(Ean(z))> K^n. 

From standard measure theory, we can take a compact set A C B such that 

psy(A) > 0 and there is an n(A) > 0 such that (88) holds for all n > n{A) and all 

z e A. 

We will show that there is a constant K > 0 such that 

(89) pn(7ryn(A)) > K-xp^A) 

This, in turn gives pr)(7ryT1(B)) > 0 to prove (87). 

Since K\ < K 0 , and d is t (Fn(z) , Fn(7r77?(z))) < const ' K Q U , we may assume that, 

for z G A and large n, 

(90) 1 
9 

diam(Fn(£7ttnr^...a„f2i D 7 ) ) 

diam(Fn(Eaoiz)...an(z) DTJ)) 
< 2 

For a unit vector v tangent to the curve 7 at r and a positive integer n, let us write 

DyFn(r) for £>F"(u) . 

Now, for z € A, there are points rn G 7, r G r? such that 

diam(7n£ao(2). . .a„(s)) |Z)7Fn(Tn)| = d iam(Fn(7 n Eao{z)...an{z))) 

and 

diam(77n£;ao(z)...ari(2))|JD7;Fn(rn)| = diam(Fn(rç n Eao{z)..Mri{z))). 

We claim (AC-3) there is a constant i f = K (A) > 0 such that for all z G A and 

n > 0 

(91) K-1 < 
\D^Fn(z)\ 

' D„F«(7ryt,(z))\ 
r<K. 
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Assuming (AC-3) for the moment, we see that there is a possibly different K > 0 
such that, for all n > 0, z G A, we have 

(92) K-1 < d i a m ( ^ n E ^ ) . . . ^ ) ; 
diam(?7n£7aoW...an(2)) 

< K. 

But, for large n, as z varies in A, the sets 7 D -E7ao(*)...a„(z) form a covering of 4̂ 
by small intervals and the sets rj D £?a0(^)...o„(«) form a covering of 7ryr](A) by small 
intervals. This gives (89) and concludes the proof of Proposition 10.1. • 

Proof of (AC-3). — Let zn = Fn(z),wn = Fn(7r77?(z)) for each n > 0. We use 
affine coordinates centered as zn as in our earlier sections. We use the splitting 
TZnIl2 = E™n 0 EsZn in which E%n contains DFn(vz) and E8Zn is tangent to Wfoc(zn) 
at Zfi. 

Let F denote the representative of F in these coordinates, and let Bn be the small 
parallelogram centered at zn as before. We may and do assume that K0 > 3. 

Write vZn,vWn for the unit vectors tangent to Fn{^) at zn and Fn{rj) at wn, re
spectively. 

Now, 

(93) 
D1Fn(z)Xilogy 

DvF"(7r7V(z))X 
< const 

n-1 

8=1 

DFZs(vZs) 

DFWs (vWs ) 

so, it suffices to show 

(94) № „ ( * > * » ) I 
DFWn (vwJ 

< exp(on) 

where 

(95) 
n>l 

an < const • log K 

to prove (AC-3) . 
Write Sn for 8Fn{z){Ean{z)). 
In our affine coordinates, vZn = ( J ) . 
Since dist(Fn(7r7„(z)), F n ( z ) ) is exponentially smaller than 5n for large n and 

\vwn — vzn\ 0 as n —>• oo, there is an no = ^o(^4) such that n > no implies 
G and vWn G iiT^0. (Here So < 1/4 as in section 6) . 

Below, we use various constants CS1 1 < s < 8, which are independent of n and 
2? G A and are defined in the first equation in which they appear. 

As in the proof of lemma 7.1, 

DFZn(vZn) 

DFWn (vWn] 
< exp(Ai,n + A2,n) 

where 

Ai,n < d Xilogyi > ejx 
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and 

^2,n < C2 
ZnXilogyi 

Xil 

Since 

Zn Wn 
^2,n < C2 < Ci 

,K0 

n 

it suffices to show 

(96) ^2,n < C2 < C4 
Ko 

n-l 

for all n to prove (94), (95), and (AC-3) . 
Writing DFWn_1(vWn_1) = (^n,7?n) and vWn = {un,u2n) we have 

Cn = Flx(wn-i)un_1 + Fly(wn-1)un_1 

Vn = F2x(wn^1)un_1 + F2y(ywn-1)u2n_1 

and 
U>n-1 — Zn-lU>n-1 — Zn-lU>n-1 — 

Thus, 

U>n-1 — Zn-lU>n-1 — ̂7n 
U>n-1 

This gives 

U>n-1 — Zn-l \rin\ 

l & l 

< 1 

1 - 4 , 

l ^ ^ n - l ) ! 

Flx(wn-l) 

^ ( ^ n - i ) ! 

^lx(^n-l) 
« n - l 

Using F2x(zn-i) = 0, we get 

^ ( W n - l ) 

^ ( ^ n - i ) ! 

FixiWn-x) 

FixiWn-x) U>n-1 — Zn-l 
F2xy(r) 

FixiWn-x) 
Wn-1 — Zn-i 

< cb 
Wn-1 —Zn-l 

On-1 

for suitable r . 
analogously, 

F2y{wn-i) 
Fix(wn-!) 

F2y(zn-i) 

Flx(wn-i)\ 
+ c 6 

Wn-1 — Zn-i 
U>n-1 
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which gives 

U>n-1 
+ C7 

1 
(1 - ei)K$ "n-l + C7 

Wn-\ —Zn-1 
Sn-1 

1 
( l - ^ o 2 1 "n-l + C7 + C7 

Ko. 

n-l 

Inductively, we assume 

"n-l < 2C8 K 

Ko 

n—2 

and get 

+ C7 Vn 2C* 

( l - ^ ) ^ o 

Ki^\ 
Ko J 

\ n—2 
+ c8 

'Ki 
Ko 

n-l 

Since ^ < 1 < Kx and e0 < 1/4, we get 2 / [ ( l - sl)Kl) < Kx/Ko and 

(l - sl)Kl) < K : 

Ko, 

n-l 

which proves (96). 

11. Construction of an S R B measure 

We wish to use a construction analogous to that of Sinai in [13] to construct our 
SRB measure. There are several difficulties which appear. 

(1) The family of unstable manifolds { W u ( z ) } does not form a measurable parti
tion of the attractor A in Q. 

(2) The underlying set A is not compact, so care has to exercised in the taking of 
limits of iterates of measures. 

We will see that these problems can be handled by lifting the required construction 
to the symbolic space E, getting a measure there, compact ifying, getting a limit 
measure which is supported on E, and projecting back into Q. 

We have defined a continuous map 7r from E into Q as follows. For a G E with 
a = ( . . . a_ia0ai . . . ) , 

Ma)} = 
n>0 

(l - sl)Kl) <(l - sl)Kl) <(l - s 

Let a be the left shift automorphism on E. For each a G S, we have local stable 
and unstable sets defined by 

Wlsoc(a) = {b:ai = bi,i>0} 

Wluoc(a) = {b:ai = bi,i<0} 
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We have the local stable and unstable sets in Q as well: 

^ l o c ( ^ ) - f l /a"ol5*-»-»o 

n>0 

W?oc(7ra) = f | Eao...an 
n>0 

Each WfoC(7ra) is a K% curve which has full width in Eao, and each Wfoc(7ra) is a 

K£ curve of full height in Q. 

Note that if a = ( . . . ai...), 6 = ( . . . 6 ^ . . . ) , 7ra, 7r6 G Q, and a\ ^ bi for some i > 0, 

then W£c(7ra) D W£c(7rfc) = 0 . 

Thus, the map 7r : W^c(a) D -K~XQ -> W ^ ^ ^ a ) fl Q is a one-to-one, continuous 

onto map for each a G 7r""1(Q). By standard results, it is a Borel isomorphism. 

Recall the functions £(21, £2) and the Sinai local measures uZl,y defined at the end 

of section 9. 

We now use them to define finite measures on the local unstable sets W^c(a) in S. 

Write W&c{a) = WYuoc(a) n n^Q. 

If >y = Wfoc(iv€i), then 7 H Q has full Riemannian measure in 7, and the Borel 

isomorphism n : W^c(a) —> M^QC(7ra) fl Q allows us to transfer the Riemannian 

measure p7 from 7 fl Q up to W ^ c ( a ) . We call this measure pa. It clearly only 

depends on the non-positive indices of a. 

For z,w G J4^c(a) , let 

£(z,w) — £ (iTZ, 7TW) 

where £(*,-) is the density of the Sinai local measure defined at the end of Section 9. 

Next, for z G Wfoc(a), we define a finite measure vz on W^c(a) by 

MA) = 
J A 

Ç(z,w)dpa(w) 

These measures have the following properties 

(1) For zuz2e Wxuoc{a), and A C W £ c ( a ) 

^ ( A ) = i{z1\z2)uZ2{A) 

(2) If A , B c W £ c ( a ) , * i G ^ c ( o ) , ^ ( B ) > 0 , a i i d ( 7 ( 4 t 7 ( B ) C ^ c H , t h e n 

vaZl (crB) > 0 and 

uaZl (aA) 

VazA^B) 

(l - sl)Kl) < 

(l - sl)Kl) < 

It follows from these facts that if vZl(B) > 0, for some z\, then vZ2(B) > 0 for 

any z2l and the normalized measure 1/3(A) = vZl(A n B)/i/Zl(B) is independent of 

the choice of zi G WioC(a)- Moreover, the normalized measures are cr-invariant in the 

following sense: if A and B are as in 2 above, then a+1/3(0-(A)) = ^o-(B)(cr(-^))- We 

will call the measures vz, local measures or Sinai measures. 
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For a point a E £ , with 

local measure. Thus, 

local unstable set W^c(a), let va, 
a,norm 

be its normalized 

^ a, norm (A) = 
HA) 

"«(W£C(«)) 

for every A C W£c(a). 

For each i > 1, let Vi = {a E £ : a0 = i } , and fix a local stable set Si C V -̂ Thus, 

Si — Wfoc(zi) where Zi is a particular point in Vi. Let be the partition of Vi 

into local unstable sets. The quotient set Vi/Mi is in one-to-one correspondence with 

Si, so the partition Mi is measurable with respect to any complete Borel probability 

measure on Vi. Let A4 = [Ji Mi. Since S is a countable disjoint union of the V(s, A4 

is a measurable partition of £ for any complete Borel probability measure. 

For convenience, we will say that a Borel partition A4 is measurable with respect 

to a Borel Probability measure if it is equal mod zero to a measurable Borel 

partition of the Borel completion of the measure //. This allows us to discuss systems 

of conditional measures, etc, with respect to arbitrary measurable Borel partitions of 

Borel probability measures. 

Now fix an element z0 £ 7r_1(Q), and let W^c(z0) be its local unstable set. Let UQ 
be the associated normalized Sinai measure. 

Theorem 11.1. — The sequence of averages 

converges weakly to a measure ~p on £ which is a-invariant, ergodic, and the con

ditional measures of ~p with respect to the partition AA coincide with the normalized 

Sinai measures on elements of Ai. 

The proof will require several steps. 

Let N be the set of positive integers, and let N = N ( J { o o } he its one-point 

compactification. We put a metric on N making it isometric to { 0 , 1 , 1 / 2 , 1 / 3 . . . } C R 
2 

with the standard metric. Let £ = N with the product topology and let a : E —> £ 

be the shift. The set £ is a dense a-invariant subset of £ . 

We take a subsequence {^nfc} of {vn} which converges to a measure JI on £ . 

Claim 1. — The measure ~p is supported on £. That is, 

^* 
^ n—1 

k=0(l^sl)Kl) < 

7i(S \ S ) = 0. 

Proof. A point a E £ \ £ has ai — oo for some i. Fixing z, let 

Ji = {a E £ : ai = o o } . 
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(98) pT ( | J E3) < ex 
KJ>N 

Let po = Pz0 be the lift to W\£c(zo) of the Riemannian measure on W^C(TTZQ) PI Q, 

and let £0 = M ^ i o c ( ^ o ) ) . _ 

By Proposition 9.1, for any E C W^c(z0), 

(99) K6-2^ < ME) < Kl Po(E) c — û  ^ — t) p to to 

Given a non-negative itinerary a = (ao«i . . . ) , let 

Vao...an = {be W£c(z0) : bi = aiy i = 0 , . . . , n } 

By Proposition 8.1, for any n > 1, if 7n = FN{W^C(TTZ0)), then 

(100) K4-1Pln (Ean) < n P f a o - a J , < KA p,n {Ean) 
pO\Vao...ari-1) 

Setting Ui = {a € E : a* > TV}, we see that (98) and (100) imply that, if n + i > 1, 

then 

(101) A)(Vra0...an+,_1 n a -nC /0 < ^ i P o l K o - a ^ - J 

Also, W^ocC^o) n a~n(Ui) is the disjoint union 

We will show that, given e > 0, there is an open neighborhood Ui of Ji \ E such that 

for all n > 1 — i, 

(97) < ( ^ o ) ( ^ ) < e 

This will imply that ~p(Ji \ E) = 0 . Since this holds for every i, Claim 1 follows. 

Let E\ > 0 be a small number to be chosen later. 

From Lemma 10.5, there is an N > 0, such that for every K% curve 7, 

ao---an+i-i 

Vao...an+i_x na~nUi 
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So, 

v-n{Ui)) v-n{Ui))v-n{Ui)) v-n{Ui)) 

v0\ ù^ùv-n{Ui))^$ z0 v-n{Ui)) 

v-n{Ui)) 
v-n{Ui))-ft'4eiPo(Vra0...a„+i_1) 

< 

ao...a,n+i — i 

ù$ 

to Po ( V V - . a ^ n a - ^ ) 

ao...an+i — l 

^ù^$ 

4 

P 0 ( K 0 . . . a n + i . i n ^ [ / i ) 

A)(Vrao...aTl+i_i) 
Pol ̂  y Oo...On+i-l , 

< 

-ft'4eiPo(Vra0...a 

^m$^$ 

4 
-ft'4eiPo(Vra0...a„+i_1) 

^ù$ùmù 
m$ 

to 
ù$$ùa 

-ft'4eiPo(Vra0...a„+i_1) 

Hence, if we set £i = s -ft'4eiPo(Vra0...a„ we get (97), and Claim 1 is proved. 

The measure Ji is clearly invariant under the shift a. 

We extend the partition M of £ to S by adding the element S \ S. We will also 

use the letter M to denote this extended partition. We let Vi denote the closure of 

Vi in S, and let Aii denote the restriction of At to VV 

Let 7f : E —> E / A 1 be the natural projection. Let /i = 7?^/! be the induced measure 

on E/.Vf. 

There is a system of conditional measures Uc on C £ Ai defined for ^-almost all 

C € M. 

Claim 2. — For Ji-almost all C, ~pc — vc-

Proof. — Let us use A for the closure of a subset A C E in E. 

Let <f> : E —> R be a continuous function supported in for some i. 

For each n > 0, the measure o~™vo is supported on countably many Cs in A4, and 

these C ' s are local unstable sets. 

The conditional measure (cr™vo)c is then just the restriction of cr™z/0 to C normal

ized. 

But, the invariance property of quotients of the Sinai measures gives, for 4 c C , 

-ft'4eiPo(Vra0...a„+i_1) 

-ft'4eiPo(Vra0. 

-ft'4eiPo(Vra 

v0{o-"C) 

= 
vc{A) 

-ft'4eiPo( 
= vc (A) 

Thus, 
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(*) the conditional measure (cr™vo)c is equal to the normalized Sinai measure vc 
when C is a local unstable set in an(W£c(zo)). 

and this implies 

(**) the conditional measure {vn)c equals vc on each local unstable set C in S 
such that vn(C) > 0. 

Let Si be the stable set of zi G Vi. Its closure Si is the local stable set of ^ in E. 
This is a compact subset of S and may be identified with Vi/Aii. 

Thus, we may think of the projection n as a map from Vi —>» Si. 
LetK>0 be such that \<f>(z)\ < K for all z G 17*. 
The function 

h(z\ = ffn-Hz) <f>(w)dl/^(z)M f°r ^ € 5i 
\ o for z E~Si 

< 5eK 

for z e S i \ S i 

is then bounded and measurable and its restriction to is continuous. Also, | / i ( ^ ) | < 
K for all z G 5*. 

Let /J* be the normalized restriction of / / t o VV 
We assert 

(102) / h(z)d(nicJii) = / <№ 
JSi JVi 

Since, \ S ) = 0, this tells us that the conditional measures of Ji with respect 
to M are the vc as required for Claim 2. 

To prove (102), we let e > 0 be arbitrary, and we show 

(103) f h(z)d(n^JIi) - f (f>dfli 
\JSi JVi 

Let vxnh be the normalized restriction of vnk to Vi. 
Since Vi is open and closed in S, we have uznk —• JP as k —> oo. 
Since 7f : —>• 5« is continuous, we get 7r*z/̂ fc —t tt+JT1. 
By (97), there is a compact subset Ai C Si such that, for large k > 0, 

(104) < ( F i \ r 1 ( A i ) ) < £ . 

Since /i restricted to Ai is continuous, we can use the Tietze extension theorem 

to find a continuous map h : Si —>• R such that |ft-(z)| < K for all z G 5« , and 

/i(^) = /j(^) for z G 

Then, 

/_ 7id(5r*i£fc) /_ hd(w*J?). 
JSi JSi 

By construction of /i, we then get, for large fc, 

/ hd(7r+vlnk) - hd{ir*iJ < 3eK. 
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By (** ) , 

Ai 
-ft'4eiPo(Vra0...a„+i_1) 

-ft'4eiP 
M O , 

The right side of this last equality differs from Vi ù^ù$$ù by no more than eK, and 

Ai 
hdiiT+n1) -

Si 

-ft'4eiPo(Vra < eK. 

Putting all these together gives (103) and completes the proof of Claim 2. 

Claim 3. — jji is ergodic. 

Proof. — This is a variant of the standard Hopf argument for geodesic flows in neg

atively curved Riemannian manifolds. 

Let <fi : S —> R be continuous. We show that fi-almost all forward time averages 

1 

n 

n-l 

k=0 

ó(akz) 

approach the same value. 

Let 

<f>for(z) lim 
n—>-oo 

B 

Î 

n-l 

k=0 

4>{*kz) 

and 

<t>bac(z) lim 
1 

n 

n-l 

-ft'4 

4>{a~kz) 

be the forward and backward limiting time averages of a point z. 

From the Ergodic Theorem and standard arguments, there is a set A± C X) of full 

7Z-measure such that z G A1 implies <f>f0r(z),4>c(z) exist and are equal. Also, since 

<f>is continuous, is constant on stable sets and (f>bac is constant on unstable sets. 

For each z G S, let 

W*(z) = ( J *-nWfoc(z) 
n>0 

be the global stable set of z. 

Now, /7-almost any local unstable set C is such that uc(Ai n C) = 1. Pick one 

such C and let S be the union of the global stable sets of points in A\ n C. By the 

topological transitivity of the shift, the absolute continuity of the stable foliation W 

in and the fact that the push forwards by n of the conditional measures of ~p with 

respect to Ai are equivalent to the Riemannian measures on the local F-unstable 

manifolds, we get that ^d(S) = 1, for every local unstable set C±. Hence, Jl(S) = 1. 

For any two points z\,zi G 5 , there are points w\,W2 G A\ D C such that z\ G 

Ws(w1),z2 G Ws(w2). 
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Then, (f>for(zi) = 0/or(wi) = 0 6 a c O i ) = (f>bac(w2) = 4>for{™2) = 4>for{Z2)- This 

proves Claim 3. • 

Claim 4. — limn_^oo vn — ~p. 

Proof. — Let JL1 be another subsequential limit of the sequence {isn}- Substituting 

Ji1 for JI in the preceding arguments gives that Jix is ergodic, shift invariant and 

Let Gjr be the set of Ji-generic points, and let G ^ be the set of Jl1 -generic points. 

Thus, for any continuous function 0 : S —>> R , 

1 n_1 /* 
(105) o E G ^ ^ - ^ (p(aka) / </>d/Z 

71 k=0 J 

and 

1 n-1 r 
(106) a G G ^ = > - ] P <t>{aka) - » j <t>dp1 

n k=o J 

Ergodicity implies that Ji(Gjr PI S ) = 1 = ~Pi(G-fi1 ( 1 S ) = 1. 

If we show that 

(107) GF fl D S # 0 

then, in view of (105) and (106), we get 

J (pdp = j 4>djl1 

for all continuous 0, and Claim 4 follows. 

For a given set A c S , let 

VFS(,4) = 

-ft'4ei 
WToc(a) 

We call stably saturated if j y s ( A ) = A It is easy to see that both Gjr and Gjz1 

are stably saturated. 

The arguments in the proof of Claim 3 show that if Jt{A) = 1 and A c S, then, 

for any local unstable set G , with Sinai measure z/c, we have ^ ( W ^ C ^ ) ) = 1. In 

particular, 

^ ( G ^ H S ) = uc(W8(G-p f l X))) = 1 

Replacing /7 by ¿¿1 in the arguments of Claim 3 gives t/c{Gji1 D S ) = 1, as well. 

Thus, vdGjj; f l G1j1 n S ) = 1 for any G and (107) holds. 

This completes the proof of Theorem 11.1. • 
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The construction of the SRB measure fi. — Let JJL — TT^JL. 

The measure JJL is clearly an F-invariant and ergodic measure on Q. 

There is a set A C Q of full // measure consisting of //-generic points; i.e., x G 

Ay(f> : Q —> R continuous implies that ^ JZk=o 4>{Fkx) —> f 4>dfi. 

Let S be the union of the local stable manifolds of points x G A. Clearly, each 

x G S is //-generic. We will show that m(S) = 1 (z.e. that 5 has full Lebesgue 

measure in Q) to prove that // is SRB. 

Now, 7r-1(S') has full //-measure in E. Hence, for some (in fact, //-almost any) 

local unstable set C C E, we have ^ ( t t - 1 ^ ) = 1- This gives n+vciS) = 1. But t t^c 

is equal to the normalized Sinai measure on the local unstable manifold containing 

Sri7r(C), and, hence, is equivalent to the Riemannian measure restricted to Sr\n(C). 

This implies that SC\7r(C) has full Riemannian measure in n(C). Then, the absolute 

continuity of W gives p7 (5 ) = 1 for every K% curve 7, so Fubini's theorem gives 

m ( 5 ) = 1. 

12. Further ergodic properties and an entropy formula 

In this section we will study properties of the natural extension of the ergodic sys

tem (F,Q,fjt). The first proposition identifies this natural extension with the system 

(<7 ,E,/J). 

Proposition 12.1. — The system (cr, S , / / ) is isomorphic to the natural extension of 

the system (F, 

Proof. — Since the map F on Q is not surjective, the meaning of this proposition is 

that there is a subset Q\ of Q of full //-measure such that F ( Q i ) = Qi? and the system 

(cr, E , / / ) is isomorphic (mod 0) to the natural extension of the system (F, Q i , / / ) -

Indeed, let Q\ be the set of points x £ Q, such that there is a sequence xo,x±,... 

in Q with xo = x and F(xn+i) = xn for all n > 0. It is easy to see that F maps Qi 

onto itself. To see that //(<2i) = 1, it suffices to show that //(7r_1Qi) = 1, and, since 

7r^~1Q has full JX measure and JI is cr-invariant, this follows from 

(108) n-^Qi) D f | ^ ( t t ^ Q ) 
n>0 

To prove (108), let a G f]n>0 an(7r~1Q), and let XQ — ir(a),xn = 7rcr_na. 

Since, a~na G /ir~1Q for all n > 0, we have that xn = 7ra~na G Q for each such n. 

On the other hand, Fxn+\ — Fna~n~1 a = 7raa~n~1a = 7ra~na = xn for all n > 0. 

This shows that x0 = 7ra 6 Q i , s o o 6 7r-1<2i which is (108). So, Qi is the required 

set. 

The underlying set Q of the natural extension of (F, Q i , / / ) may be identified with 

the set of sequences x = (#0, # 1 , . . . ) in which each xn G Qi and Fxn+\ — xn for all 

n > 0. 
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Let f = {ElyE2,... } be the original collection of full height rectangles of Q. For 

any sequence x € Q, the element xn is in the interior of a unique Ea_n. Similarly, 

the point Fn(x0) is in the interior of a unique Ean. This enables us to define a map 

</> : Q - » E by 

0(af) = a 

where, for each n > 0, xn G intJ5a_n and Fn^0 € inti£an. Now, the verification 

that the map <fi induces an isomorphism (mod 0) between the system (cr, S,/x) and 

the natural extension of (F, Qi,n) is straightforward, and we leave the details to the 

reader. • 

Let £ be the partition of S into the sets Vi\ i.e., the time 0 partition. Put rj — 

V^L-oo Then, the elements of 77 coincide with the local stable sets Wfoc(a). 

Moreover, we have that, mod zero, arj >- 77, Vn o~nV is the point partition, and 

/\no-nrj is the trivial partition { £ } . 

So, by definition, (<7,/J) is a K-system. 

Then we state 

Proposition 12.2. — The map (cr,/J) is Bernoulli. 

We thank Dan Rudolph and Francois Ledrappier for useful conversations in con

nection with the proof of this proposition. 

The following Weak Markov property was introduced in [11]. It was used to prove 

the Bernoulli property of Anosov flows ( see [4], [11]). 
Let /3 be any partition, 

-ft'4eiPo(V 

k<i<l 

-ft'4eiPo( 

Given a collection of sets P , let us use P+ for its union. 

Say that (3 is weak Markov ( W M ) if, for any e > 0, there is an integer N = iV(e), 

and collections P = P(e) of atoms of Pfi°,M = M(e) of atoms of / 3 ° ^ with the 

following properties. 

(1) 7I(P+) > 1 - e, and p ( A f + ) > 1 - e. 

(2) For any xff € / J^any x,y £ P with x[Jy C xff, and any subcollection 4̂ of 

M with 7I(^4+|^) > 0, one has 

(109) 
HA+\x) 

HA+\y) 
- 1 < e 

The proof of Proposition 2.2 in [11] shows that a finite weak Markov partition in 

a K-system is weakly Bernoulli in the sense of Friedman and Ornstein [5]. 
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We will prove that the partition Ç is weak Markov. Then, arguments as in the 

proof of Proposition 2.2 in [111 give us that each of the finite partitions 

Ck = { V i , v 2 , . . . , v * , 

$^ù$ 

k 

Vi} 

is also weakly Bernoulli. This implies that each factor map on E / U 1S Bernoulli. 

Then, Theorem 5 in [9] gives that (<r,7Z) is Bernoulli. 

Thus, to prove Proposition 12.2, it suffices to show that the partition £ of S is 

weak Markov. 

The corresponding Co° 18 the partition into local unstable sets Wfcc{a), and C-oo 

is the partition into local stable sets. 

Given e > 0, let n0(e) > be large enough so that ~P({J\i\>no(e) ^) < £/^-
For each i, let zi be a point in V * , and let Ai C W*oc(zi), Bi C W£c(zi) be compact 

subsets so that the sets 

-ft'4eiPo(Vra0.. 

zeAi 

-ft'4eiPo(Vra0...a„+i -ft'4eiPo( 

w€Bi 

Wfoc(w) 

satisfy 

â(Vi \ D?) < 
e 

2H+2' 
№ \ D i ) 

e 
2l*l+2 

Then, set P = P{e) = UN|<n0(.) M = M& = UW<n0(,) Dl 
We have that / l ( P + ) > l - e , / l ( M + ) > 1-e. Also, the set Z£ = U|<|<no(e) DinD? 

is compact. 

Let a, b G V^ , and let W ^ ^ a ) , WJQC(6) be their local unstable sets. Let 7ra>5 be the 

projection from Wfcc{a) to W^c(b) along the local stable sets in V{. As a approaches 

b in S, the maps 7ra,5 approach the identity 7Tb,b and the measures />a approach p&. 

Also, the densities £(a,fe) vary continuously with a, b in V£. On the compact set Z£ 

the convergence and continuity above are uniform. Further, each x G P is one of 

the sets W^c(a) and the conditional measure ~p(-\x) is just the Sinai measure v^. If 

a e x,b E y and x | J l7 C G Co^ then aj = bj for —N < j < 0. For iV large, 

the measures jl(-\x),Ji('\y) have densities whose quotient is closer to 1 than e. These 

statements imply the Weak Markov property above. This completes the proof of 

Proposition 12.2. 

Entropy formula. — It follows from our constructions that the measures of Vi satisfy 

(110) Cl Oi ,min < -p(Vi) < C20i, max 

for some positive constants c\, c2. 

Since the partition £ generates, we get 

/i7r(c) = inf 
n n 

1 
$^$ù$ : c V i ) < ^ ( 0 

From condition G3 and (110), the last term is finite. 
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For a E S, and n > 1, let V a 0 . = K 0 H c r " 1 ^ n • • • fl <r~n+1Van_x, and let 
Eao...an-i be the full height subpost of Q defined in section 2. 

Since a is ergodic with respect to /1, the Shannon-Breiman-Macmillan theorem 
gives a set 4̂ with ~p(A) = 1 such that a € A, implies 

( H I ) -^log|I(VrO0...aw_1) - » M " ) 

Using that the conditional measures of ~fi along local unstable sets have bounded 
densities relative to the measures pa, we see that there is a constant K > 0 such that, 
for a E S, 

(112) i f " 1 min diam(4n£7ao...an_1) < № 0 . . . a n _ J 

and 

(113) 7l(Vra0...an_i) < K max d i a m ( 4 n EaQ„man_x). 
«€Wj'oc(7ro) 

This and Proposition 8.1 imply that, if F n ( z ) = (F{l(z), Fgiz)), then there are a 
constant i ^ i ( a ) > 0 and points i /n, i(a) , un,2(a) E W ôcC71"0) sucn that 

(114) F ( K „ . . . « n _ J | F & ( u „ , i ( a ) ) | < /t-i(a) 

and 

(115) i f i ( a ) - 1 < № „ . . . a „ _ 1 ) | i T x ( « n , 2 ( a ) ) | 

By arguments like those in the proof of estimate (91), for Ji almost all a, there is 
a constant Ki(a) > 0 such that, for z,w E W^OC{TTO), n > 1, 

(116) ^ ( a ) " 1 < \^\Z)\ < K2(a) 
|Flx(W)| 

From (114), (115), (116) we get the existence of a constant K^{a) > , such that 

(117) Ksia)-1 < ,*(K,0...a„_1)|F1"x(7ra)| < K3(a). 

Thus there is a set A with Jl(A) — 1, so that if a E A, then 

(118) lim - log \F?X (tto) I = hw(a) 
n—>-oo ft 

Since a is isomorphic to the natural extension of F , we have hfl(F) — hjj;{o~). 
Letting A\ = 7r(A), then, for /j-almost all z in ^4i, we have 

(119) lim i log 1 ^ ( 2 ) 1 = ^ ( F ) 

Taking S to be the union of the stable manifolds of points in A\, we get that S 
has full Lebesgue measure in Q and (119) holds for all z E S. 

But, for z € Q, we have 

\F?x(z)\ = max ( { \F?x ( z%\F?x{z ) \ ) < | Z ) F n ( z ) | < (1 + a ) | F £ ( * ) | . 

So, we have proved formula (6) and completed the proof of Theorem 3.1. 
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As a final remark, if v = (vi,v2) is a unit vector in K%y then 

( i - « 2 ) l * ? . I -ft'4eiPo(Vra0...a„+i_1) 

= \DFn(z)v\ 

< 1 ^ 1 ( 1 + a 2 ) 

That is, for certain constants C\,C2, we have 

-ft'4eiPo(Vra0...a„+i_1) \DFn(z)(v) <C2\F?X\ 

which, together with (119), implies formula (7) . 
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TOTAL DISCONNECTEDNESS OF JULIA SETS 
AND ABSENCE OF INVARIANT LINEFIELDS 

FOR REAL POLYNOMIALS 

by 

Genadi Levin & Sebastian van Strien 

Abstract. — In this paper we shall consider real polynomials with one (possibly de
generate) non-escaping critical (folding) point. Necessary and sufficient conditions 
are given for the total disconnectedness of the Julia set of such polynomials. Also we 
prove that the Julia sets of such polynomials do not carry invariant linefields. In the 
real case, this generalises the results by Branner and Hubbard for cubic polynomials 
and by McMullen on absence of invariant linefields. 

1. Introduction 

In a paper by Branner and Hubbard [BH], cubic polynomials were considered, and 

the problem was solved when the Julia set of such a polynomial is totally disconnected 

(for the history of this problem see [BH], Ch. 5) . In the same paper, the question was 

raised whether this result could be extended to polynomials of higher degrees. The 

method and results of [BH] hold for polynomials P of higher degrees with all but one 

critical points escaping to infinity, under the condition that the unique non-escaping 

critical point c is simple: P'{c) = 0, P"(c) ^ 0, see [BH], Ch. 12. 

On the other hand, if the non-escaping critical point c is multiple, i.e., 

P"(c) = • • • = pC -^Cc) - 0, p W ( c ) / 0, 

for some £ > 2, the method of [BH] breaks down (see [Doul] for a discussion on 

this). The positive integer I is called the multiplicity, or local degree of the critical 

point c of the polynomial P. 

In this paper we shall prove 

Theorem 1.1. — Let P be a polynomial with real coefficients, such that one (maybe 

multiple) critical point c of P of even multiplicity £ has a bounded orbit, and all other 

critical points escape to infinity. Then 
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162 G. LEVIN & S. VAN STRIEN 

— the filled Julia set of P: 

K(P) = {z : {Pn(z)}™=0 is bounded} 

is totally disconnected if and only if the connected component of the real trace 
K(P) H R of the filled Julia set containing the critical point c, is equal to a 
point 

— the Julia set J(P) = dK(P) carries no measurable invariant linefields. 

Remark 1.1. — For the case that the multiplicity is odd, see [LS2]. 

Remark 1.2. — The map P: M —>• K does not have a wandering interval (on the real 
line) with bounded orbit [MS]. Hence, the condition: "the connected component of 
the real trace K(P) fl R of the filled Julia set which contains the critical point c, is 
equal to a point" is equivalent to one of the following conditions: 

— the component of the filled Julia set K(P) containing the non-escaping critical 
point, is non-periodic; 

— P does not have an attracting or neutral periodic orbit, and is not renormal-
izable on the real line {i.e., there is no interval / around c = 0, such that 
Pl(I) H Pj(I) = 0 for 0 < i < j < q - 1 and Pq{I) C I); 

— the intersections of the critical puzzle pieces with the real line shrink to the 
point c (see the next Section). 

Remark 1.3. — We allow escaping critical points to be non real. Of course, since P 
is real, the orbit of the unique non-escaping critical point is real. The theorem holds 
in particular for maps of the form f{z) = z£ + c\ when c\ is real. 

The second part of the Theorem extends the main result of McMullen in [McM]. 
As usual, we say that the Julia set J(P) of P carries a measurable invariant line field 
if there exists a measurable subset E of the Julia set of P and a measurable map which 
associates to Lebesgue almost every x 6 E a line l(x) through x which is F-invariant 
in the sense that l(P(x)) = DP(x) l(x). (So the absence of linefields is obvious if the 
Julia set has zero Lebesgue measure.) The absence of invariant linefields was proved 
by McMullen for all maps of the form P(z) = z£ + ci, I is even and c\ is real, which 
are infinitely renormalizable. If P is quadratic (i.e., I — 2) and only finitely often 
renormalizable then this holds because then the corresponding parameter c\ lies at 
the boundary of the Mandelbrot set, see [Y], [H]. (Actually, the result of Yoccoz 
is much stronger: local connectivity of the boundary of the Mandelbrot set at such 
points). 

The (non-)existence of the invariant linefields is strongly related to the Density of 
Hyperbolicity Conjecture, see [MSS]. It follows from the second part of the Theorem, 
because of Theorem E of [MSS], that for any polynomial P as in the Theorem, there 
exists another (maybe complex) polynomial Q of the same degree and with the same 
multiplicity I of the non-escaping critical point c = 0, which is as close to P as we 
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wish and such that Q is hyperbolic: every critical point of Q tends either to infinity, 

or to an attracting periodic orbit. (One can assume that P(z) — zl • p(z) + t, where 

p(z) = z™ + • • • + Pm is a monic polynomial of the degree m > 0, and Pm ^ 0. Then 

the polynomial Q as above is of the same form, and P and Q are considered as points 

of the space C m x C) . In fact, for £ — 2 a much stronger statement is true, since 

the density of hyperbolicity within real quadratic maps implies that one chooses Q as 

above real. 

The proof of the Theorem is postponed until Section 3, and is based on Proposi

tions 2.1- 2.4 of the next section. 

Propositions 2.1 and 2.3 give sufficient conditions for the total disconnectedness 

of Julia set and absence of invariant linefields. They could be applied to complex 

polynomials as well. Nevertheless, we can only show that this condition is satisfied in 

the case considered in the theorem: see Proposition 2.4 and Section 3. 

A similar problem exists for odd multiplicities. If P is a polynomial as in the 

Theorem, but with £ an odd number (say, cubic one) , then the Theorem is easy if 

there are no other critical points (i.e., P(z) — zl + c\, where c\ is real and £ is 

odd) , because then the map is monotone on the real line. On the other hand, if 

other (escaping) critical points exist, we can still apply Propositions 2.1, but the 

implementation of it (a statement like Proposition 2.4) uses different methods, see 

[Le] and [LS2]. 

Before giving the proofs, let us make a remark about the non-minimal case (i.e., 

when the postcritical set oo(c) contains c, but the system restricted to co(c) is not 

minimal). Such system is relatively simple when it is real (see Proposition 3.2 of 

[LSI] and Proposition 2.5 below, or see [Ly]). But this is definitely not the case for 

complex parameters: 

Remark 1.4. — In each of Douady's examples of an infinitely renormalizable quadratic 

map / with a non-locally connected Julia set, the postcritical set is non-minimal. 

Indeed, according [P-M] there exists an invariant Cantor set on which the map is 

injective. If this Cantor set does not intersect the postcritical set, then according to a 

well-known result of Mane [Ma] the map is expanding on this set. This is impossible 

since / is injective on this set, see [Dou2]. 

Acknowledgements. — The authors thank the referee for carefully reading the manu

script and particularly for pointing out that the case of odd multiplicity is non-trivial, 

see [Le] and [LS2]. 

2. Associated mappings and complex bounds 

Let G: U-^ 0 ST -> $1 be an £-polynomial-like mapping. As in [DH], [LM], [LSI] 

this means that all Ql are open topological discs with pairwise disjoint closures which 

are compactly contained in the topological disc fi, the map G: £7° —» fl is ^-to-one 
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holomorphic covering with a unique critical point c = 0 G ft0, and that each other 

map G: ST ft is a conformai isomorphism. Its filled Julia set is defined by 

K(G) = {z : Gn(z) G UJLon*, n = 0 , 1 , . . . } . 

The boundary dK(G) is called the Julia set J{G) of G. 

The puzzle (see [BH]) of the map G is said to be the set of connected components 

of all preimages G~k(ft), k = 0 , 1 , . . . . A piece of level k > 0 is a connected component 

of G~k(ft). A piece is critical if it contains the critical point c of G. We call another 

£-polynomial-like mapping G': u£L 0 f2;* —>• SI' associated to or induced by G if G ' 

restricted to each Qfl is some iterate G* 7 ^ of G. We also call G rea/ iff all topological 

discs are symmetric w.r.t. the real axis, and G(z) — G(z), for any z G U£l 0 f J \ In 

particular, this implies that the postcritical set of the unique critical point c = 0 G fio 

is real. 

Proposition 2.1. — Fix a reaZ l-polynomial-like mapping G . Assume there exists an 

infinite sequence G(j): Uiftz(j) —> ri(j) of real £-polynomial-like mappings associated 

to the mapping G with UJ(C) minimal such that the critical point c = 0 G ft°(j) ofG(j) 

does not escape the domain of G(j) under iterations ofG(j). Assume moreover that 

(1) each Qz(j) H i coincides with the intersection of some piece of G with the real 

line; 

(2) when Gl(c) G fi0(i) £ften G 2 ( c ) ¿5 an iterate of c under G(j) (we call this the 

first return condition for G on ) ; 

(3) the modulus of the annuli ft(j) \ fl°(j) is uniformly bounded away from zero by 
a constant m > 0 which does not depend on j ; 

(4) the diameter of tends to zero as j» —>» oo . 

Then the filled Julia set of G is totally disconnected. 

Remark 2.1. — Conditions (1) and (4) obviously imply the third condition of Re

mark 1.2: the traces of the critical pieces on the real line shrink to the point. 

Remark 2.2. — The proposition also holds for a complex (i.e., not real) map G, if one 

replaces (1) by the following condition: 

for each j , one can find another ^-polynomial-like mapping R(j) having as its 

range a critical piece P(j) of G, so that the two mappings G(j) and R(j) satisfy the 

conditions of Proposit ion 2.1 from [LSI]. 

Proof. — Let us first observe that the first return condition also holds for the first 

return map of G(j) to Q°(j). Indeed, consider the first return map of G(j) to Q>°(j) 

along the iterates of the critical point. This is again a real ^-polynomial-like mapping 

G(j): Ui nl(j) n°(j). Obviously, if Gl(c) G ü°(j) then <3*(c) is an iterate of 

c under G(j). In addition, the modulus of f i 0 ( j ) \ &°(j) is greater or equal to l/£ 

mod (ft(j) \ Q°(j)). So we may replace G(j) by the first return map to O,0(j) and 

therefore in the remainder of the proof we can and will assume that the first return 
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condition even holds on ft(j) (by renaming everything). Note, that this condition is 

crucial in the proof of Claim 1 below. 

Fix j and let P(J) be the open piece of G based on n E. Let P*(j) be a 

piece of G based on Qz(j) n K. Since G(j) is associated to G , each restriction of G(j) 

to Wij) H R is an iterate of G. This gives another real €-polynomial-like mapping 

G'{j): Ui Pi(j) —» -PC?), which is also associated with G and coincides with G{j) on 

the real line. 

Now we are going to use the following statement from [LSI] (called Proposition 

2.3 in that paper). 

Proposition 2.2. — Let 

G ì : fi? U ü\ U • - - U fij — • fti, G 2 : f*2 U ^ 2 U • • • U nr

2 n2 

be two real l-polynomial-like mappings, with the common critical point c € ft® C\ Q®' 

and assume that the following conditions hold: 

(1) G±(z) = G2(z) whenever z G Ur

i=0Q\ Pi ftj. 

(2) Denoting Ik = ClknR and Pk = fij, n R, one fta5 7 2 Q 7 b C / { . 

Under these conditions, the Julia sets of G± and G2 coincide. If additionally, the 

point c lies in the Julia set of G\ (and, hence of G<z), then there exists a component 

of a preimage Gin(tti), which contains c and is contained in 1^2-

Applying this proposition, we conclude that the Julia sets of G(j) and Gf(j) co

incide for every j . On the other hand, the Julia set is the intersection of the full 

preimages of the range. Hence, there exists a large integer iV such that the full 

preimage G'(j)~N(P(j)) is inside the domain of definition UiQz(j) of G(j). Note 

that Gf (j)~N(P(j)) consists of finitely many (open) pieces of G. In particular, since 

the critical point c does not escape under the map G(j), we obtain, that there is a 

critical piece of G inside the domain ft(j). As the diameters of tend to zero, the 

intersections of the critical pieces is the point. 

Let us consider the pieces of G'(j)~N(P(j)) inside the central domain Q°(j), i.e., 

P'U) = G'(j)-N(P(j))nsi°U). 

If z is in the Julia set but UJ(Z) does not hit some critical piece then {z} is a 

component of J(G) by [BH]. So choose a point z from the Julia set of G so that the 

forward orbit of z hits every critical piece. Then there exists a minimal K = K(j) 

such that GK(z) G P'ij)- In particular, the point GK\z) belongs to one of the pieces 

inside J l°( i ) . Let Bj be the branch of G~K which maps a neighbourhood of GK(z) 

to a neighbourhood of z. 

Claim 1. — The map Bj extends to a holomorphic map on 

Proof of the claim. — Assume the contrary. We then get for some minimal r < 

K that G~r(j)(ft(j)) (along the same orbit) meets the critical value c\ = G(c). 
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T h i s m e a n s tha t the b r a n c h G~r fo l lows the po in t s c r + i = Gr(c\) E f ) , c r = 

G r _ 1 ( c i ) , . . . , c 2 = / ( c i ) , c i . A m o n g these i terates o f c i , let us m a r k all t hose 
c j i 5 cj2 ^ • • • •> c j m ? w h e r e ji < J2 < • - • < jm, w h i c h hit the d o m a i n B e c a u s e o f the 

first return condition there exis t in tegers k(l) < k(2) < . . . such tha t Cj1 = Gk^(c), 

cH = G k ^ ~ k ^ \ c H ) = G * < 2 > ( c ) , . . . , c i m = G f e ( m ) ( c ) . It fo l lows , tha t 

£/-r _ q-(s-I) 0 Q-(k(m)-l) 

where G (s ^ is the branch corresponding to the restriction of G(j) on (so 

G(j)\Q°(j) = G8-1 o G). Hence, 

G-<r+1>(nü)) c G - f c W ü ) ( n W ) C fl°U) 

and 

GK-r~Hz) e G - c + 1 ) ( P ' ( i ) ) = ( G C O I q o o ) ) - 1 o G ( i ) - ^ ) + 1 ( F ' ( i ) ) c P ' ( i ) . 

This contradicts the minimality of K and proves the claim. 

Let Pj(z) = Bj(P'(j)). We want to show that the Euclidean diameters of Pj(z) 

tend to zero as j - » 00. For this, let us consider the domain M j C Q(j) bounded by 

the core curve of the annulus tt(j) \ fl°(j). Then 

ma,xyGdM> I 1 GK(z)-y 

minyGÖMj \GK(z)-y 
< c 

for all j = 1 , 2 , . . . where C only depends on the uniform bound for the moduli of 

ft(j)\Ct°(j) (see e.g. [McM]) . Define ^ = Bj(Mj). Since the modulus of the annulus 

fl(j) \ M j is half the modulus of \ fl°(j), by the Koebe Distortion Theorem, 

max^d^ , . z - y 

minyedEj \z-y 
<CU ¿ = 1 , 2 , . . . . 

If we assume by contradiction that diam (Pj(z)) >d>0 for j = 1 , 2 , . . . , then 

min 
yedEj 

z - V\ > d/2d = r > 0, 

i.e., the disc Dz(r) C Ej. Hence, GK(Dz(r)) C M j , for j - » 00 and K = K ( j ) 00. 

This contradicts the assumption that z is in the boundary of the filled Julia set of G. 

Thus, H j x ) Pj(z) — iz} and so {z} is a component of J(G). • 

We shall derive the absence of invariant linefields from the following statement, 

which is very similar to the previous one. 

Proposition 2.3. — Under the conditions of Proposition 2.1, the Julia set of G carries 

no invariant linefield. 

Remark 2.3. — In fact, the proof of this statement is a purely complex one, and, 

therefore, holds for every (complex) map G, such that UJ(C) is minimal and conditions 

(2)-(4) of Proposition 2.1 are satisfied. 
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Proof of Proposition 2.3. — We will follow the main idea of Theorem 1 0 . 3 in [ M c M ] 

(absence of invariant line field for infinitely renormalizable quadratic polynomial with 

complex apriori bounds) . Let us first outline the differences with the proof in [ M c M ] . 

First, our renormalizations are £-(i.e., generalised) polynomial-like maps; hence 

their Julia sets are not connected, and the number of the components in the domain 

of definition of these maps can increase. To overcome this, we consider the dynamics 

only on the central domains. The second problem is that the central domain £IQ(J) can 

become smaller and smaller compared to the range O ( j ) , so that the range of the limit 

dynamics can be the whole plane (after rescaling Q>o(j) to a definite size). To avoid 

this, we shall rescale flo(j) and by different factors. The third difference is that 

in our setting the critical value of the 'limit dynamics' can escape to the boundary 

of the range. For this, we extend the dynamics passing to the first return maps. 

Fourthly, in [McM] a contradiction against the existence of a measurable invariant 

linefield (defined on a set E) is obtained through a univalent map from the range of 

the renormalization to a neighbourhood of a point of density of the set E. In our 

setting we cannot argue like that, and instead we use two consecutive first return 

maps. So let us prove the proposition: 

1. Fix for a moment a mapping G = G(j), and consider the first return to its 

central domain. We obtain in this way another mapping G' — G'(j) (we drop the 

index j). Its central branch G'Q: Q'0 —> fto extends to an ^-covering G'0: ftf

0 —> ft (we 

keep the same notation for the extension), where ^ C HQ, and 

mod (fio \ Q'0) > mo = 
m 

where m > 0 is the number introduced in Proposition 2 . 1 . Also, as in the proof of 

the previous proposition, the condition 2 holds for the new map. Now, let us replace 

the initial sequence of mappings G(j) by the sequence of the first return maps G'(j) 

replacing the notations as well (so forget about the initial sequence). 

2 . Let us assume by contradiction that G admits an invariant line field, i.e., there 

is a G-invariant Beltrami differential JJL supported on J(G). Then we can fix a point 

x G J(G) of almost continuity of JJL. We may assume from the beginning that OJQ(X) 

contains c since the set of the points of J{G) without this property has Lebesgue 

measure zero (this follows from the well-known fact that for almost all point x one 

has that uo(x) C tu(c), see [Ly2], [ M c M ] , and from the minimality of CJ(C)). 

3 . Let us consider a mapping G(j) so that the point x is outside of the range 

f£(j). Then there is minimal k = k(j) > 0 so that y(j) = Gk(x) G fioO')- Due to the 

condition 2 of Proposition 2 . 1 , we can apply Claim 1 from the proof of the previous 

proposition: there exists a branch Fj of G~k univalent in the range Q(j) of the map 

G(j) and such that Fj(y(j)) = x. Let us consider a domain Mj (containing Qo(j) and 

contained in fi(j)) bounded by the core curve of the annulus ^t(j) \ ^ o ( j ) , so that 

mod \ Mj) = mod (Mj \ Ct0(j)) > m 0 / 2 . By the Koebe Distortion Theorem, 

the image Fj(Mj) is roughly a disc around x (it means that it contains a disc centred 
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at x of radius r and it is contained in a disc centred at x of radius R so that R/r 

is less than a constant depending of mo only) . Since x belongs to the Julia set, the 

domains Fj(Mj) shrink to the point x as j —> oc . 

4. Let us consider the first return map G'(j) of the mapping G{j) to its central 

domain flo(j) ( a s w e did in Step 1 with respect to the old G(j)). By Step 1, the 

central branch G'0(j): fJo(j) ^oO) extends to an ^-covering onto f2(j), and again 

any iterate of c by G entering the fioO') l s a n iterate of c under the first return map 

G'(j). Let m = m(j) > 0 be minimal so that z(j) = Grn(x) G %(j)- By Step 3, there 

exists a branch Fj of G _ m univalent in the domain fto(j) and such that Fj(z(j)) = 

Define a domain M j as the preimage of Mj under G'0(j). Then mod (^o(j) \ Mj) — 

mod (M'j \ Qf

0(j)) > m o / 2 1 Repeating the argument from Step 3, we get that the 

domains FJ(MJ) are roughly discs around x and shrink to this point. 

5. Finally, let us rescale the dynamical system G'0(j): Mj —» Mj by the maps 

Aj(z) — (z — z(j))/diam(Mj) and Bj(z) = (z — y(j))/diam(MJ) in the domain of 

the definition and in the range of G'0(j) respectively. Denote the new system by 

Qj : D'j —> Dj, where 

D'j = AjiM'j) and Dj = BJ(M;) 

are approximately Euclidean discs centred at zero with diameter 1 and 

gj = BJoG'0(J)oAJ1 

is an ^-covering with a unique critical point Cj = Aj{c) G Uj — Aj(Q'0(j)) and critical 
value gj(cj) G Vj = Bj(ft0(j)). 

The map gj takes the line field /jij — (F1- o Aj1)*^) in Dj onto the line field 

Uj — (Fj o in Dj (we use here that all maps Fj,Fj,G'0(j) are iterates of G 

or inverses of iterates). 

Now we are in a position to apply general theorems on sequences of invariant line 

fields and covering maps as in [ M c M ] . By Theorem 5.2 in [ M c M ] the sequences 

{D'j, 0) and (Dj,0) are pre-compact in the Caratheodory topology. Since their di

ameters are 1, we find two limit domains Dr and D respectively, which are roughly 

discs around 0. Since the critical value gj{cj) G V} , and mod (Dj \ Vj) > mo/21, 

by Theorem 5.6(3) [ M c M ] , there is a limit map g: D' —)• D, which is a branched 

degree ^-covering with a unique critical point q G D1. On the other hand, by our 

construction and Theorem 5.16 [ M c M ] , some subsequences of the line fields JJL'J and 

\ij converge in measure to univalent line fields /i* and JJL* on D' and D respectively, 

and g takes to //*. (A linefield is said to be univalent if it is a univalent pullback 

of the horizontal linefield). Since g has a critical point, this is a contradiction. • 

In order to use Propositions 2.1 and 2.3, we need to construct a sequence of £-

polynomial-like mappings as in the propositions. This is the content of the following 

statement, in which we assume that all critical points of a real polynomial are real. 
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Proposition 2.4 ([GS], [Lyl], [LSI, Theorem C]) . — Let f be a polynomial with the real 

coefficients and so that all critical points of f are real Moreover, assume that all 

critical points escape to infinity, except for the critical point c of an even multiplicity 

£. Assume that f is not renormalizable on the real axis and w(c) is minimal. Then 

there exists a sequence of topological discs ftn B c such that ftn n R is equal to the real 

trace of a puzzle piece, and such that diam(f2 n ) —> 0 so that the first return map to 

ftn along the points of the set UJ(C) nftn is an £-polynomial-like map Rn : Uifll

n —> ftn 

and so that the modulus of the annulus between the range Qn and the central domain 

is bounded away from zero by a constant which only depends on f. 

This result was proved in [Lyl] and [GS] for the real quadratic polynomials, and 

adapted in [LSl][Theorem C] and in [GS1] for real unimodal polynomials. For the 

polynomials as in the proposition still minor modifications of the proofs are needed, 

see the Remark after Theorem C in [LSI], and also the next Section. 

The following (in fact, well known) proposition settles the case when u(c) is not 

minimal. 

Proposition 2.5. — Assume that G is a real £-polynomial-like mapping, the map G re

stricted to the real line has no attracting or neutral periodic orbit, is non-renormaliza-

ble and that u(c) is not minimal. Then J(G) is totally disconnected and has zero 

Lebesgue measure. 

Proof — If UJ(C) is not minimal then it contains a point x whose forward orbit avoids 

some critical piece PM . Here we use that the traces of the critical pieces on the real 

line tend to zero in diameter, because the real map G has no wandering interval. (In 

general, it is possible that a point remains outside a neighbourhood of c and still visits 

every critical piece (if they do not shrink to zero in diameter)). In particular, this 

forward orbit lies in a hyperbolic set. Therefore the puzzle-pieces Pn(x) containing 

x shrink down in diameter to zero. The puzzle-pieces Pn(%) are mapped by some 

iterates of G onto a fixed critical piece P/y: there is a fixed critical piece PN and a 

sequence of critical pieces Pnk with nk -> oo so that each map fn^~N; Pnk —)• PN 

is ^-covering. Since there are no points of the postcritical set in a neighbourhood of 

the boundary of P/v> this proves the proposition. The statement that the Lebesgue 

measure is zero, follows from this as well. • 

3. Proof of the Theorem 

Let again £ > 2 be the multiplicity (i.e., the local degree) of the critical point c of 

the polynomial P , and assume £ is even. Let us first prove the total disconnectedness 

result. If £ = 2 (the critical point c is simple), then it is proved in [BH] (even for the 

complex P). Let £ > 2. If the critical point is not recurrent, then the proof is already 

given in [BH]. When the limit set uo(c) of the critical point c is not minimal, then 
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the proof is also easy (though we use the reality of the maps: see Proposition 2.5). So 

assume u>(c) is minimal. We may assume c = 0. As a first step, we construct an initial 

^-polynomial-like mapping as follows. Fix a level curve F of the Green function of the 

polynomial P , such that T is connected and not critical, i.e., all preimages P _ n ( r ) 

are smooth curves. By the condition of the theorem, one can pick up a full preimage 

j = P~k(T) such that 7 bounds finitely many topological discs Vb, V\,... such that 

P : VQ —> P (Vo) is ^-covering, and all other P : Vi —» P(V$) are one-to-one (this is still 

not a polynomial-like mapping because the images P(Vi) could be different). Denote 

VQ — ft (the only domain containing the critical point c — 0 of P ) . The desired 

€-polynomial-like mapping G: U*=0 ft1 —» f£ will be the /zrs£ return map of the points 

of the set u(c) n fl to fi. Since u?(c) is minimal, the definition makes sense. 

G obeys (by construction) the following first return property: 

if P n ( c ) <E n, then P n ( c ) is an iterate of G. 

Moreover, the map G is real since it is the first return of a real map. We are going 

to apply Proposition 2.4. By the Straightening Theorem for polynomial-like maps 

[DH], [LM], [LSI], G: U£L0 ^ ~> ^ c a n be quasi-conformally conjugated to a 

real polynomial / with all critical points real. (After all, we only need to move the 

escaping critical points.) To this end, let us consider the restriction C?|r of the map 

G: U ^ 0 ft1 —> ft to the real axis. Then G\R is unimodal on the central interval T 0 = 

fl° n R 3 c, and maps each other interval T\ — Ql fl M, i = 1 , . . . , io diffeomorphically 

onto T. Let us now add (finitely many) components to the domain of definition of 

G in such a way, that the new map G is again a real £-polynomial-like map, with 

an advantage that the graph of the new map on the real axis "looks like" a graph 

of a polynomial with all critical points being real, i.e., the monotone increasing and 

monotone decreasing branches alternate each other. Now we can use the Straightening 

Theorem to conjugate the polynomial-like map G with a polynomial / , so that all 

critical points of / are real. The existence of the sequence of maps induced by / 

follows now from Proposition 2.4. Moreover, the quasi-conformal conjugacy between 

/ and G transfers any polynomial-like structure induced by / to a one induced by 

G. On the other hand, since the induced maps we consider are the first returns along 

the postcritical set, and since the G-orbit of the critical point visits only the branches 

of the original map G, the maps induced by G are, in fact, the ones, induced by G. 

Thus the statement of the theorem follows from Proposition 2.1. 

To prove that no invariant linefields exist we consider two complementary cases: 
P is not renormalizable on the real line, or P is renormalizable. In the first case, we 
apply Propositions 2.3 and 2.4, if u(c) is minimal, and Proposition 2.5 otherwise. 
In the second case, some iterate of P restricted to an appropriate neighbourhood 
of the critical point c is quasi-conformally conjugate to a polynomial / of the form 
f(z) = z£ + c i , where c\ is real, and the critical point c = 0 of / does not escape 
to infinity under the iterates of / . Again, there are two possibilities. If / is finitely 
many times renormalizable, we consider the last renormalization and again apply 
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Propositions 2.3 and 2.4, if u;/(c) is minimal, or Proposition 3.2 of [LSI] (similar to 
Proposition 2.5) otherwise. On the other hand, if / is infinitely renormalizable, the 
result is proved already in [ M c M ] . • 
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DYNAMICS OF QUADRATIC POLYNOMIALS, III 
PARAPUZZLE AND SBR MEASURES 

by 

Mikhail Lyubich 

Dedicated to 60th birthday of A. Douady 
Abstract. — This is a continuation of notes on the dynamics of quadratic polynomi
als. In this part we transfer our previous geometric result [L3] to the parameter plane. 
To any parameter value c (outside the main cardioid and the little Mandelbrot sets 
attached to it) we associate a "principal nest of parapuzzle pieces". We then prove 
that the moduli of the annuli between two consecutive pieces grow at least linearly. 
This implies, using Martens &; Nowicki (cf. this volume) geometric criterion for exis
tence of an absolutely continuous invariant measure together with [L2], that Lebesgue 
almost every real quadratic polynomial is either hyperbolic, or has a finite absolutely 
continuous invariant measure, or is infinitely renormalizable. In the further papers 
[L5,L7] we show that the latter set has zero Lebesgue measure, which completes the 
measure-theoretic picture of the dynamics in the real quadratic family. 

You first plow in the dynamical plane 
and then harvest in the parameter plane. 

Adrien Douady 

1. Introduction 

This is a continuation of notes on dynamics of quadratic polynomials. In this part 
we transfer the geometric result of [L3] to the parameter plane. To any parameter 
value c G M in the Mandelbrot set (which lies outside of the main cardioid and 
satellite Mandelbrot sets attached to it) we associate a "principal nest of parapuzzle 
pieces" 

A ° ( c ) D A x ( c ) D 

corresponding to the generalized renormalization type of c. Then we prove: 

1991 Mathematics Subject Classification. — 58F23, 58F03. 
Key words and phrases. — Mandelbrot set, puzzle, invariant measure. 
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Theorem A. — The moduli of the parameter annuli mod(A / (c) \ A / + 1 ( c ) ) grow at 
least linearly. 

(See §4 for a more precise formulation.) 
This result was announced at the Colloquium in honor of Adrien Douady (July 

1995), and in the survey [L4], Theorem 4.8. The main motivation for this work was 
to prove the following: 

Theorem B (joint with Martens and Nowicki). — Lebesgue almost every real quadratic 
Pc : z i—>• z2 -he which is non-hyperbolic and at most finitely renormalizable has a finite 
absolutely continuous invariant measure. 

More specifically, Martens and Nowicki [MN] have given a geometric criterion for 
existence of a finite absolutely continuous invariant measure (acim) in terms of the 
"scaling factors". Together with the result of [L2] on the exponential decay of the 
scaling factors in the quasi-quadratic case this yields existence of the acim once "the 
principal nest is eventually free from the central cascades". Theorem A above implies 
that this condition is satisfied for almost all real quadratics which are non-hyperbolic 
and at most finitely renormalizable (see Theorem 5.1). Note that Theorem A also 
implies that this condition is satisfied on a set of positive measure, which yields a new 
proof of Jacobson's Theorem [J] (see also Benedicks & Carleson [BC]). 

A measure ¡1 will be called SBR (Sinai-Bowen-Ruelle) if 

(1.1) 
1 
n 

n—l 

k=0 
Sfkx -> n 

for a set of x of positive Lebesgue measure. It is known that if an SBR measure exists 
for a real quadratic map / = P c , c £ [—2,1/4], on its invariant interval 7C, then it is 
unique and (1.1) is satisfied for Lebesgue almost all x G Ic (see Introduction of [MN] 
for a more detailed discussion and references). Theorem B yields 

Corollary. — For almost all c £ [—2,1/4], the quadratic polynomial Pc has a unique 
SBR measure on its invariant interval Ic. 

Another consequence of our geometric results is concerned with the shapes of little 
Mandelbrot copies (see [L3], §2.5, for a discussion of little Mandelbrot copies). Let 
us say that a Mandelbrot set M' has a (K,s)-a bounded shape if the straightening 
X : M1 —> M admits a i^-quasi-conformal extension to an (e diam M')-neighborriood 
of M ' . We say that the little Mandelbrot sets of some family have bounded shape if a 
bound (K, e) can be selected uniform over the family. 

A Mandelbrot copy M' is called maximal if it is not contained in any other copy 
except M itself. It is called real if it is centered at the real line. 
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A little Mandelbrot copy encodes the combinatorial type of the corresponding 
renormalization. In [L3] we dealt with diverse numerical functions of the combina
torial type. For real copies a crucial information is encoded by the essential period 
pe(M') (see [L3, §8.1], [LY]). 

For a definition of Misiurewicz wakes see §3.3 of this paper. 

Theorem C. — For any Misiurewicz wake O, the maximal Mandelbrot copies con
tained in O have bounded shape. In particular, all maximal real Mandelbrot copies, 
except the doubling one, have a bounded shape. Moreover, a real copy M' has a 
{K^e)-bounded shape, where K —> 1 and e —> oo as pe{M') —> oo. 

In §6 we will refine this statement and will comment on its connection with the 
MLC problem and the renormalization theory. 

Let us now take a closer look at Theorem A. It nicely fits to the general philosophy 
of correspondence between the dynamical and parameter plane. This philosophy was 
introduced to holomorphic dynamics by Douady and Hubbard [DH1]. Since then, 
there have been many beautiful results in this spirit, see Tan Lei [TL], Rees [R], 
Shishikura [Sh], Branner-Hubbard [BH], Yoccoz (see [H]). 

In the last work, special tilings into "parapuzzle pieces" of the parameter plane 
are introduced. Its main geometric result is that the tiles around at most finitely 
renormalizable points shrink. It was done by transferring, in an ingenious way, the 
corresponding dynamical information into the parameter plane. 

In [L3] we studied the rate at which the dynamical tiles shrink. The main geomet
ric result of that paper is the linear growth of the moduli of the principal dynamical 
annuli. Let us note that the way we transfer this result to the parameter plane (The
orem A) is substantially different from that of Yoccoz. Our main conceptual tool is 
provided by holomorphic motions whose transversal quasi-conformality is responsi
ble for commensurability between the dynamical and parameter pictures (compare 
Shishikura [Sh]). To make it work we exploit existence of uniform quasi-conf or mal 
pseudo-conjugacy between the generalized renormalizations [L3]. 

The properties of holomorphic motions are discussed in §2. In §3 we describe the 
principal parameter tilings according to the generalized renormalization types of the 
maps. In §4 we prove Theorem A. In §5, we derive the consequence for the real 
quadratic family (Theorem B). In the last section, §6, we prove Theorem C on the 
shapes of Mandelbrot copies. 

Let us finally draw the reader's attention to the work of LeRoy Wenstrom [W] 
which studies in detail parapuzzle geometry near the Fibonacci parameter value. 

Remark. — We have recently proven that the set of infinitely renormalizable real 
parameter values has zero linear measure. Together with Theorem B this implies that 
almost every real quadratic has either an attracting cycle or an absolutely continuous 
invariant measure [L7]. 
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2. Background 

2.1. Notations and terminology 

Dr(p) = {z:\z-p\<r}; 

Br = Dr(0); 

ID) = ID)i ; 

Tr = {z:\z\=r}; 

A(r,i2) = { r < | z | < i ? } . 

The closed and semi-closed annuli are denoted accordingly: A[r, A(r, i?], A[r, i?). 
By a topological disc we will mean a simply connected domain D C C whose 

boundary is a Jordan curve. 
Let 7ri and 7T2 denote the coordinate projections C2 —> C. Given a set X c C 2 , we 

denote by X\ — 7rf its vertical cross-section through A (the "fiber" over A). Vice 
versa, given a family of sets X\ c C , A E D, we will use the notation: 

X = UXeDXx = {(X,z) EC2 : A G D , ^ X A } . 

Let us have a discs fibration ni : V —> D over a topological disc D c C (such that 
the sections U\ are topological discs, and the closure of U in D x C is homeomorphic 
to D x D over D). In this situation we call U an (open) topological bidisc over D. We 
say that this fibration admits an extension to the boundary dD if the closure U of U 
in C2 is homeomorphic over D to D x ID . The set U is called a (closed) bidisc. We 
keep the notation U for the fibration of open discs over the closed disc D (it will be 
clear from the context over which set the fibration is considered). 

If U\ 3 0, X E D, we denote by 0 the zero section of the fibration. 
Given a domain A C D, let U| A = U D 7rf1 A. This is a bidisc over A. 
If the fibration m admits an extension over the boundary dD, we define the frame 

SV as the topological torus U\^d£fdU\. A section 3> : D U is called proper if it is 
continuous up to the boundary and &(dD) C 5U. 

We assume that the reader is familiar with the theory of quasi-conformal maps 
(see e.g., [A]). We will use a common abbreviation K-qc for uif-quasi-conformar. 
Dilatation of a qc map h will be denoted as Dil(h). 

Notation an x bn means, as usual, that the ratio an/bn is positive and bounded 
away from 0 and oc. 

2.2. Holomorphic motions. — Given a domain D C C with a base point * and 
a set X* C C, a holomorphic motion h of X* over D is a family of injections h\ : 
X* —> C, A E D, such that h* = id and h\(z) is holomorphic in A for any z E X*. 
We denote X\ = h\X*. The restriction of h to a parameter domain A C D will be 
denoted as fe|A. 
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Let us summarize fundamental properties of holomorphic motions which are usually 
referred to as the \-lemma. It consists of two parts: extension of the motion and 
transversal quasi-conformality, which will be stated separately. The consecutively 
improving versions of the Extension Lemma appeared in [LI] and [MSS], [ST], [BR], 
[SI]. The final result, which will be actually exploited below, is due to Slodkowsky: 

Extension Lemma. — A holomorphic motion h\ : X* —> X\ of a set X* C C over a 
topological disc D admits an extension to a holomorphic motion H\ : C —> C of the 
whole complex plane over D. 

Quasi-Conformality Lemma ([MSS]). — Let h\ : U* —» U\ be a holomorphic motion 
of a domain U* C C over a hyperbolic domain D c C . Then the maps h\ are K(r)-
quasi-conf ormal, where r is the hyperbolic distance between * and A in D. 

Let us define the dilatation of the holomorphic motion as 

Dil(h) = sup Dil(/iA). 
\eD 

It can be equal to oo over the whole domain D but becomes finite (< K(r)) over the 
hyperbolic disk of radius r. 

A holomorphic motion h\ : U* —>• U\ over D can be viewed as a complex one-
dimensional foliation of the domain U = U\er>U\, whose leaves are graphs of the 
functions A i—>• h\(z), z E C/*. A transversal to the motion is a complex one dimen
sional submanifold of C2 which transversally intersects every leaf at one point (so 
that "transversal" will mean a global transversal). Given two transversals X and Y', 
we thus have a well-defined holonomy map H : X —y Y, H(p) = q iff p and q belong 
to the same leaf. 

A map H : X —> Y is called locally qc at p E X if it is qc in some neighborhood of 
p. In this case the local dilatation of H at p is defined as the limit of Dil(iif | U)s (p)), 
as e —> 0. 

Corollary 2.1 (Transverse qc structure). — Any holomorphic motion h over D is lo
cally transversally quasi-conformal. More precisely, for any two transversals X and 
Y, the holonomy map H : X —• Y is locally quasi-conf ormal. If H(p) — q then the lo
cal dilatation of H at p depends only on the hyperbolic distance between the m (p) and 
7Ti(q) in D. IfDil(h) < oo then the holonomy H is globally qc with Dil(iJ) < T>\\(h)2. 

Proof. — Let p — (A, a) , q — (//, /3). By the A-Lemma, the map G — h^o h^1 : U\ —> 
Ufj, is quasi-conformal, with dilatation depending only on the hyperbolic distance 
between A and fi in D and bounded by Dil(fo)2. Hence a little disc He{a) C U\ is 
mapped by G onto an ellipse Q£ C with bounded eccentricity about (3 (where the 
bound depends only on the hyperbolic distance between A and fi. 

But the holonomy 17A —> X is asymptotically conf ormal near p. To see this, let us 
select a holomorphic coordinates (0,z) near p in such a way that p = 0 and the leaf 
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via p becomes the parameter axis. Let z — ip(0) = e H parametrizes a nearby leaf 
of the foliation, while 0 = g(z) — bz + • • • parametrizes the transversal X. 

Let us do the rescaling z — e£, 9 — ev. In these new coordinates, the above leaf is 
parametrized by the function = e~1ip(€i/), \v\ < 22, where R is a fixed parameter. 
Then *'(*/) = i/)'(ev) and *"(*/) = ei/>"(ei/). Since the family of functions is 
normal, \p"(z/) = 0(e). Moreover, ip uniformly goes to 0 as -0(0) -> 0. Hence | * ' ( 0 ) | = 
l ^ ( 0 ) | < S0(e), where S0(e) -> 0 as e -> 0. Thus = (J0(e) + 0(e) < 6(e) -> 0 
as e -> 0 uniformly for all \u\ < R. It follows that *(*/) = 1 + 0(5(s)) = 1 + o( l ) as 
e 0. 

On the other hand, the manifold X is parametrized in the rescaled coordinates by 
a function v = bC 4- 0(1). Since the transverse intersection persists, X intersects the 
leaf at the point (̂ o,Co) = (&, + o(l)) (so that R should be selected bigger than 
b). In the old coordinates the intersection point is (0o>zo) = (beye)(l + o ( l ) ) . 

Thus the holonomy from U\ to X transforms the disc of radius \e\ to an ellipse 
with small eccentricity, which means that this holonomy is asymptotically conformal. 
As the holonomy from C7M to Y is also asymptotically conformal, the holonomy H : 
(X, p) - » (Y, q) is locally qc at p, and its local dilatation at p is the same as the local 
dilatation of G : (U\,p) (U^^q). Thus it depends only on the hyperbolic distance 
between A and ^ , and is bounded by Dil(ft)2. 

To conclude the proof, one should just remark that a map is globally qc if and 
only if it is locally qc with uniformly bounded local dilatations, and then the global 
dilatation is equal to the supremum of the local ones. • 

Remark. — The author thanks the referee for pointing out that the above Corollary 
also follows from [DH2, p. 327] (compare also [Sh, §3]). 

2.3. Winding number. — Given two curves ^ 1 , ^ 2 '• 9D —> C such that ^ i (A) ^ 
^2(A), A G <92?, the winding number of the former about the latter is defined as the 
increment of ^ arg(^i(A) — ^2 (A)) as A wraps once around 3D. 

Let us have a bidisc U over 2?. Given a proper section * : 2? —> U let us define 
its winding number as follows. Let us mark on the torus 5U the homology basis 
{[92?], [<9£/*]}. Then the winding number w{&) is the second coordinate of the curve 
* : 3D —> SV with respect to this basis. 

Argument Principle. — Let us have a bidisc U over 2? and a proper holomorphic sec
tion : 2? —> \J, (/) = 7T2 o Let & : 2? —> U be another continuous section holomor
phic in D, i\) — 7T2 o Then the number of solutions of the equation 4>{\) = ^(A) 
counted with multiplicity is equal to the winding number w(&). 

Proof. — Indeed, w($) is equal to the winding number of <f> around ip, which is equal, 
by the standard Argument Principle, to the number of roots of the equation 

<KA) = ip(X). • 
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3. Parapuzzle combinatorics 

3.1. Holomorphic families of generalized quadratic-like maps* — Let us 
consider a topological disc D C C with a base point * G D, and a family of topological 
bidiscs Vi C U C C2 over D (tubes), such that the V* are pairwise disjoint. We 
assume that VO,A 3 0. 

Let 

(3.1) g : UVi -> U 

be a fiber wise map, which admits a holomorphic extension to some neighborhoods of 
the Vi (warning: these extensions don't fit), and whose fiber restrictions 

g(X, •) = gx : UiV-,A ->UX, AG D, 

are generalized quadratic-like maps with the critical point at 0 G V\ = Voyx (see [L3], 
§3 .7 for the definition). We will assume that the discs U\ and V^x are bounded by 
piece wise smooth quasi-circles. 

Let us also assume that there is a holomorphic motion h over (D, *), 

( 3 . 2 ) hx : (U*,UidVi9.) -+ (Ux,UidVi,xh 

which respects the boundary dynamics: 

( 3 . 3 ) hx o g* (z) =gx°hx (z) for z G<ï><ï><ï>gx°h. 

A holomorphic family (g,h) of (generalized) quadratic-like maps over D is a map 
(3.1) together with a holomorphic motion ( 3 . 2 ) satisfying ( 3 . 3 ) . We will sometimes 
reduce the notation to g. In case when the domain of g consists of only one tube 
Vo, we refer to g as DH quadratic-like family (for "Douady and Hubbard", compare 
[DH2]). 

<ï> 

<ï> 

X 
<ï> X 

U 

D 

Figure 1. Generalized quadratic-like family. 
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Remark. — It would be more consistent to call just g a holomorphic family, while to 
call the pair (g,h), say, an equipped holomorphic family. However, in this paper we 
will assume that the families are equipped, unless otherwise is explicitly stated. 

Let us now consider the critical value function 0(A) = 0^(A) = <7A(0), ^ ( A ) = 
&gW — # ( ^ 0 ) = ( ^ 0 ( ^ ) ) - Let us say that g is a proper (or full) holomorphic 
family if the fibration 7Ti : U —>• D admits an extension to the boundary D, ¥j C U, 
and <I> : D —• U is a proper section. Note that the fibration 7Ti : V0 —>- D cannot be 
extended to D, as the domains V\,o pinch to figure eights as A —> dD. 

Given a proper holomorphic family g of generalized quadratic-like maps, let us 
define its winding number w(g) as the winding number of the critical value 0(A) 
about the critical point 0. By the Argument Principle, it is equal to the winding 
number of the critical value about any section D —> U. 

We will also face the situation when g does not map every tube Yi onto the whole 
tube U but still satisfies the following Markov property: gYi either contains Yj or 
disjoint from it (and all the rest properties listed above are still valid, see §3.3). Then 
we call g a holomorphic family of Markov maps. 

Let mod(g) = infXeD mod(Ux \ VO,A)-

3.2. Douady & Hubbard quadratic-like families. — Let us consider a proper 
holomorphic family / : V - » U of DH quadratic-like maps. The Mandelbrot set M(f) 
is defined as the set of A G D such that the Julia set J (fx) is connected. We will 
assume that * G M(f). 

Since the U\ and are bounded by quasi-circles, there is a qc straightening 
u* : cl(*7* \ V*) -> A[2,4] conjugating /* : <9T4 dU* to z \-> z2 on T 2 . The 
holomorphic motion h on the ucondensator" U \ Y spreads this straightening over the 
whole parameter region D. We obtain a family of quasi-conformal homeomorphisms 

(3.4) oux :c\(Ux^Vx) - > A[2,4] 

conjugating fx\9Vx to z z2 on T 2 . Pulling them back, we obtain for every fx 
the straightening ux : —̂  A ( ^ A , 4 ) well-defined up to the critical point level px = 
| ^A(0) | (SO that for A G M(f) it is well-defined on the whole complement of the Julia 
set). This determines external coordinates of points z G ttxi radius r and angle 9, 
defined as the polar coordinates of LOX(Z)* 

Note that if Dil(fe) < oo then the straightenings UJX are uniformly L-qc with L = 
Dil(ft) • Dil(<X;*). Note also that Dil(cj*) depends only on the qc dilatation of the 
quasi-circle dU*, <9V* and on mod(E7* \ V*). 

By the geometry of ( / , h) we will mean a triple of parameters: (mod( / ) )_1 , Dil(ft), 
and the best dilatation of a;*. If mod( / ) —> oo, while the Di\(h) and Dil(u;*) go to 1 
(over some directed set of quadratic-like families), then we say that the geometry of 
(/, h) vanishes. 
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By an adjustment of a DH quadratic-like family we will mean replacement the 
domains £/*, V* with some other domains J7* C C/*, K = f^U*, spreading them 
around by h (U\ — h\U*, V\ = h\V*), and the corresponding shrinking of the 
parameter domain: D = 3>-1U. It provides us with an adjusted family ( / : V —> U, h) 
over D. 

We will use the following standard adjustment. Select U* to be bounded by the 
hyperbolic geodesic V in the annulus [7* \ V*. Then V* is bounded by the hyperbolic 
geodesic T' in V* \ f~xV*. By the Koebe Theorem, the geometry of these geodesies 
(i.e., their qc dilatation) depends only on mod([7* \ V*). Thus after this adjustment, 
Dil(u5#) depends only on mod(L^xV*). Moreover, mod(C/*\Vi) > (3/4) mod(C7*\K). 
Thus the geometry of the adjusted family depends only on mod(£7* XJ^*) Dil(/i). 

Moreover, if we fix Dil(ft) and let mod(£7* \ V*) -> oo, then mo&(U\ \ V\)) —> oo, 
Dil(/i|D) —> 1 (by A-lemma), and Dil(w*) —> 1, so that the geometry of the adjusted 
family vanishes. 

In what follows we will not change notations when we adjust quadratic-like families. 

Let us now define a map £ : D \ M(f) —>• A(l , 4) in the following way: 

(3.5) £ (A) = u>x(fx0). 

Lemma 3.1. — Let (/, h) be a DH quadratic-like family with winding number 1. Then 
formula (3.5) determines a homeomorphism £ : D \ M(f) —> A( l ,4 ) . IfDil(h) < oo 
then £ is L-qc with L depending only on the geometry of (f,h). Moreover, L —> 1 as 
the geometry of ( / , h) vanishes. 

Proof. — Let us consider the critical value graph X = 3>(A) = { ( ^ > / A 0 ) , A G D}. 
By the Argument Principle, it intersects at a singe point each leaf of the holomorphic 
motion ftonUxV, so that the holonomy 7 : [/* \ V* —» X is a homeomorphism onto 
the image R\. Hence Ai = TTIRI C D is a topological annulus, and the map 

f-1 =K1O1OUJ-1 : A[2,4) -> Ai 

is a homeomorphism. 
Let I \ be the inner boundary of A\, and Di be the topological disc bounded by 

I V Since the critical value /A(0) , A 6 D 1 , does not land at the leaves of holomorphic 
motion h\Di, it can be lifted by / to a holomorphic motion hi of the annulus V} \ V*2 
over where = VA and V2 = f^1V\. Since the graph X intersects every leaf 
belonging to dV1 at a single point, the family ( / : V2 —>• V1, h) is proper over Di and 
has winding number 1. Let A2 = $~1(V1 \ V2). Then the same argument as above 
shows that the map £-1 : A[\/2, 2) —> is also a homeomorphism. 

Continuing in the same way, we will inductively construct a sequence of holomor
phic motions hn over nested discs Dn, and a nest of adjoint annuli An = Dn-i \ Dn 
which are homeomorphically mapped by £ onto the round annuli A[22 " , 22 " ) . 
Altogether this shows that £ is a homeomorphism. 
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Finally, assume h is K-qc. Since all further motions hn are holomorphic lifts 

of h over Dn by fn, they are K-qc over their domains of definition as well. By 

Corollary 2.1, they are transversally K-qc. Moreover, the straightening 

gx°h £/* \ J{U) — • A ( l , 4 ) 

is qc, while the projection 7Ti : X D is conformal. Since £ is the composition of 

the straightening, the holonomy and the projection, it is L-qc with L = K • Dil(<x;*). 
In particular, L - » 1 as K and Dil(u;*) go to 1. • 

Note that the motions hn over domains Dn constructed in the above proof preserve 

the external coordinates: uj\(h\z) = oo*(z), z G U* \ f~nV*. We will refer to this 

property by saying that h respects the external marking, or that h is marked. 

Example (see [DH1]). — Let us consider the Mandelbrot set M of the quadratic fam

ily Pc : z i-» z2 + c. Let i i : C \ M - > C \ P b e the Riemann mapping tangent 

to id at oo. Recall that parameter equipotentials and external rays are defined as 

the i?-preimages of the round circles and radial rays. Let ftr be the topological disc 

bounded by the equipotential R~x{re%e : 0 < 6 < 2TT} of radius r > 1. 

For every c G O4, let us consider the quadratic-like map Pc : Vc —> Uc where Vc 

and Uc are topological discs bounded by the dynamical equipotentials of radius 2 and 

4 correspondingly. Then the conformal map uc : Uc \ Vc —> A[2,4) conjugates Pc\dVc 

to z z2 on T 2 , so that it can serve as a straightening (3.4). With this choice of the 

straightening, the parameter map £ : D \ M —> A ( l , 4) constructed in Lemma 3.1 is 

just the restriction of the Riemann map JR. • 

With Lemma 3.1, we can extend the notion of parameter rays and equipotentials 

to quadratic-like families as the £-preimages of the polar coordinate curves in A ( l , 4 ) . 

If £(A) = ret0 then r and 0 are called the external radius and the external angle of 

the parameter value A. Note that 3D becomes the equipotential of radius 4. 

Before going further, let us state a general lemma about qc maps: 

Gluing Lemma. — Let us have a compact set Q C C and two its neighborhoods U and 

V. Let us consider two qc maps (j) : U —> C and ip : V \ Q —> C. Assume that these 

maps match on dQ, i.e., the map f : V —> C defined as cj> on Q and as xfr onV^Q 

is continuous. Then f is quasi-conformal and D i l ( / ) = max(Dil(</>|<2), D i l ( ^ ) ) . 

Proof. — See e.g., [DH2, Lemma 2, p. 303]. • 

Recall now that every quadratic-like map / : V —>• U is hybrid equivalent to a 

quadratic polynomial Pc : z \-> z2 + c (The Straightening Theorem [DH2]). It is 

constructed by gluing / to z Z2 on C \ Kfe (by means of the qc straightening 

u) : c\(U \ V) —> A[2,4] respecting the boundary dynamics), and pulling the standard 

conformal structure on C \ ID2 back to U \ K(f) by iterates of / . In the case of 

connected Julia set J ( / ) , the parameter value c = x(f) ls determined uniquely. 
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Given a quadratic-like family f\ : V\ —> U\ over D with winding number 1, let us 
consider a family of straightenings (3.4) and the corresponding family of quadratic 
polynomials Px(\) : z t-> z2 + xW-

Note that 

(3.6) £ = g x ° h R o X \ D \ M ( f ) , 

where £ is denned in (3.5), and R is the Riemann mapping on the complement of 
the Mandelbrot set. This formula follows from the definitions of £ and x and the 
description of R given in the above Example. 

Lemma 3.2. — Under the circumstances just described, the straightening 

gx°h (D,M(f\gx > ( « 4 , M ) 

is a K-qc homeomorphism of the disc D onto a neighborhood Q4 of the Mandelbrot 
set M bounded by the parameter equipotential of radius 4. The dilatation K depends 
only on the geometry of (/, Ai). 

After adjusting the family (f,h), Dil(x) will depend only on mod(£7* \ V*) and 
Dil(ft). Moreover, Dil(x) -> 1 and mod(£> \ M(f)) -> 00 as mod(C7* \ V*) -+ oc 
(with a fixed Dil(Ai)). 

Proof — By [DH2], x is a homeomorphism. By [L5, Lemma 5.4], x\M(f) admits a 
local qc extension XA to a neighborhood N\ of any point A G M ( / ) , with dilatation 
depending only on m o d ( / ) . Let us select neighborhoods W\ <E N\. Then let us select 
finitely many xi = X\i such that the corresponding neighborhoods Wi = W\t cover 
M(f). By the Gluing Lemma, 

Bi\(X\(D x M ( / ) ) U Wi) < max(Dil(x|£> x Af ( / ) ) , Dil(Xi)). 

Taking into account Lemma 3.1, we conclude that 

Dil(x) = maxDil(x|CD \ Af ( / ) ) U Wi) 
i 

depends only on the geometry of (f,h). 
Moreover, by [L5], the Dil(xi) —> 1 as mod( / ) —>• oc. By Lemma 3.1, after the 

adjustment of ( / , & ) ) , Dil(x|£> \ M ( / ) ) -> 1 as mod(/*) oc keeping K = Di\(h) 
fixed. Hence by the Gluing Lemma, Dil(x) -> 1 as mod(/*) —> oo. 

Finally, by transversal quasi-conformality of holomorphic motions, 

mod(£> \ M(f)) > K'1 mod(*7* \ V*) -+ oc. 

• 

We will mostly deal with equipotentials of radius 41/271, the preimages of the out
ermost equipotential of radius 4. Let us say that the equipotential of radius 41/271 has 
level n, so that the outermost equipotential has level 0, the equipotential of radius 2 
has level 1, etc. 
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3.3. Wakes and initial Markov families. — Lemma 3.2 shows that the landing 
properties of the parameter rays in a quadratic-like family coincide with the corre
sponding properties in the quadratic family. This allows us to extend the notions of 
the parabolic and Misiurewicz wakes from the quadratic to the quadratic-like case. 
Namely, the q/'p-parabolic wake Pq/P = Pq/P(f) is the parameter region in D bounded 
by the external rays landing at the g/p-bifurcation point bq/p on the main cardioid 
of M(f) and the appropriate arc of dD. Dynamically it is specified by the property 
that for A in this wake there are p rays landing at the a-fixed point a\ of J (fx), and 
they form a cycle with rotation number q/p. 

The maps 

(3.7) fl'Vx^ Ux 

restricted to appropriate domains form a (non-equipped) quadratic-like family over 
the wake (see [D], [L3], §2.5). (The domain V\ is a thickening of the puzzle piece 
Y^1-1-^ bounded by two pairs of rays landing at the a-fixed and co-fixed (i.e., the other 
preimage of a) points and two equipotential arcs. The domain Ux is a thickening 
of the puzzle piece Y^ bounded by two rays landing at the a-fixed point and an 
equipotential arc of level 1.) Note however that this family fails to be proper as the 
domains U\ don't admit continuous extension at the root. 

Proposition 3.3 (see [D]). — Let f be a DH quadratic-like family with winding number 
1. Then the winding number of the critical value A »—y /^(0) about 0 when A wraps 
once about the boundary of the parabolic wake dPQ/p is also equal to 1. 

By [DH2, D], the quadratic-like family (3.7) generates a homeomorphic copy 
Mq/p — Mq/p(f) of the Mandelbrot set attached to the bifurcation point bqjp. Its 
complement M \ Mqjp consists of a component containing the main cardioid and 
infinitely many decorations (using terminology of Dierk Schleicher [Sch]) D^lp, where 
a is a dyadic sequence of length |<r| = t — 1, t = 1, 2 , . . . , i = 1,. . . , p — 1. The 
decoration D^p touches Mq/p at a Misiurewicz point /x = p^/p for which 

/ f (0) € f?{0) =gx f?{0) =gxfc = 0 , . . . , t - l , while f?{0) =gx°hgx°h 

where a!^ is the a-co-fixed point. (Such Misiurewicz points are naturally labeled by 
the dyadic sequences). 

Every decoration D^pgx°h belongs to the Misiurewicz wake 0^pgx°h of level t bounded 
by two parameter rays landing at fi^pgx°h (there are p rays landing at this point). Let 
us truncate such a wake by the equipotential of level pt. We will obtain the initial 
puzzle pieces 0^pgx°h which sometimes will also be called "Misiurewicz wakes". They 
can be dynamically specified in terms of the initial puzzle (see [L3], §3.2). Namely, 
there are p — 1 puzzle pieces f?{0) =gx i = 1 , . . . ,p — 1, attached to the co-fixed point a'. 
Pulling them back by (t — l)-st iterate of the double covering fp : y(1+^) —Y^\ 
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we obtain 2l 1 puzzle pieces Z^J~^ labeled by the dyadic sequences. The wake 

Oaqfp is specified by the property that f*>0 G Z^+{t~1)p). 

The wake 0^lp containing a point A will also be denoted by 0(A). 
By tiling we mean a family of topological discs with disjoint interiors. Let us 

consider the initial tiling constructed in [L3], §3.2 (see Figure 2): 

(3.8) Y?' V2 U 

k>0 i 

f?{0) = 

k>0 j 

7(l+*p) 

where f?{0) =gx f?{0) =gx 

1 

1+D 

-1+2p 

Y(°) 

Y.(1) 

a 

f?{0) =g 

X 

v ° 

a' 

Q 2 

z<;> 

Figure 2. Initial tiling (p = 3, £ = 2). 

Lemma 3.4. — Tfte family of puzzle pieces y(1+kp) and Zj^kp\ k < t — 1, moves 
holomorphically in the region inside the parabolic wake Pq/P bounded by the parameter 
equipotential of level pt with all the Misiurewicz wakes of level < t — 1 removed. 

Let us recall that f?{0 means 
f?{0) 
=gx f?{0) =gx 

Lemma 3.5. — Let f be a DH quadratic-like family with winding number 1. Then 
the initial tiling (3.8) moves holomorphically within the Misiurewicz wake O = Op^lq. 

The critical value 4>o(A) = / \*0, of the double covering fpt : V® Z^l is a proper 

map <&0 : O ̂  2 ^ with winding number 1 (where t — \a\ + 1). 

Proof. — Indeed, all puzzle pieces of this initial tiling are the pullbacks of Z^. As A 

ranges over the wake O = O^f^ the corresponding iterates of 0 don't cross the bound

ary of Zj1^. It follows that the boundary of the initial tiling moves holomorphically. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



186 M. LYUBICH 

Moreover, the torus SZ^ is foliated by the curves with the same external co
ordinates, and one curve corresponding to the motion of the a-co-fixed point. By 
definition of the Misiurewicz wake, the critical value 3>o(A) intersects once every leaf 
of this foliation when A wraps once around dO. Hence 4>o ' O ->SZ^ is a proper map 
with winding number 1. • 

Let ho stand for the above holomorphic motion of the initial tiling. 
Recall for further reference that there are two puzzle pieces QI,A and Q2,x in 

Y 1̂"f_(*"~1)p) which are univalently mapped by fx onto Y^1+(t-1)p) (see Figure 2 ) . The 
pieces Xfx are the pull-backs of Vx = X® x under the fc-fold iterate of the Bernoulli 
map 

/r:Oi,AUQ2,A^yA(1+(<-1)p). 

Let SZ^D SZ^Xfx denote the domain in y^1"1" -̂1)̂  which is mapped under fxp onto 
ya+(t-i)p); in particular, no A = y(.i+(t-i)P) 

3.4. First generalized quadratic-like family. — Let us consider a proper DH 
quadratic-like family / = {fx} over D with winding number 1. Fix a Misiurewicz 
wake O of this family. The first generalized quadratic-like map g\^x ' UF/A ~~̂  V\ is 
defined as the first return map to Vx (see [L3], §3.5). The itinerary of the critical 
point via the elements Pi of the initial tiling (3.8) determines the parameter tiling 
T*1 of a Misiurewicz wake O by the corresponding puzzle pieces. Let A1 (A) stand for 
such parapuzzle piece containing A. 

More precisely, for any A G O, let us consider the first landing map Tx : ULjx —> Vx 
(see [L3], §11.3). The puzzle piece L-iX is specified by its itinerary i = (¿0,... ,i8-i) 
through non-central pieces Pi of the initial tiling until the first landing at f?{0) =gx : 

(3.9) Llx = {z:G?zePik, m = 0,...,s-l, f?{0) =gx G?z£V°}, 

where Gx stands for the Markov map (3.5) from [L3]. These tiles are organized in 
tubes with holomorphically moving boundary. Moreover, the first landing map 
induces a diffeomorphism T : —> V° fibered over id. 

Let ix stand for the itinerary of the critical value </>o(\) = /A*0 through the ini
tial tiling, so that ffO G L-ixX. Let L* = l*m and *0(A) = (A,<£0(A)). Then the 
parapuzzle pieces of the tiling V1 are defined as follows: 

Ax(*) - *o X = {A G O : / f 0 G L * , A } . 

Let V} denote the components of /~pt(L-|AX(*)) contained in V°, where V£ = V1 is 
the critical component (i.e., the one containing 0). The first return map 

gl=TofPt : UV) • V° = U1 

is the desired first generalized renormalization of / . 

ASTÉRISQUE 261 



PARAPUZZLE AND SBR MEASURES 187 

By means of the first landing map T, the holomorphic motion ho over O can be 
lifted to the tubes . By the A-lemma, this lift and the motion ho of the boundary 
of the initial tiling (3.8) admit a common extension Ho over O. 

Since the critical value 3>(A) lands at the tube L* as A ranges over A * ( * ) , H0 can 
be lifted to a holomorphic motion of the annulus V£ \ Vx over A X ( * ) . Let us extend 
this motion to V£ by the A-lemma. This provides us with a motion hi which equips 
the generalized quadratic-like family g±. 

Since the winding number of 4>o about Z ] over O is equal to 1 (by Lemma 3.5), 
the function • A X ( * ) —> L* is proper with winding number 1. Since the first 
landing map T is a fiberwise diffeomorphism of every tube Lq onto Vo, it induces a 
homeomorphism between the marked tori 5Lj —» SVo. Hence the function * i ( A ) = 
(A ,TA O 0 o ( A ) ) , A 1 (A) —> Vo, is also proper with winding number 1. Thus we have: 

Lemma 3.6. — Let f be a DH quadratic-like family with winding number 1. Then 
the first generalized renormalization (gx : UV] - » V° = U1, hi) is a proper family 
with winding number 1 over A X ( * ) . 

Together with the tubes (3.9) let us also consider bigger tubes Wj over O denned 
as follows. Let P^ ,A = Xfx be the first "X-pieces" in the itinerary {Pim}m=o- Then 

(3.10) W?,A = iz : Gxz € «m,x, rn = 0 , . . . , r - 1, Grxz G A * A } , 

where the domains fi£A are defined at the end of §3.3. Moreover, 

(3.11) G\ : WltX — • îî£A, SZ^ îî£A, îî£A, îî£A, (l+(t-l)v) 

and both maps are univalent isomorphisms. Thus Gs : Wj —> Y^1"1-^-1^ is a fiberwise 
conformal diffeomorphism fibered over id. 

Hence the holomorphic motion of Y ^ 1 + ^ - 1 ^ (see Lemma 3.4) can be lifted to 
holomorphic motions of the Wj. Let W* = , where is the itinerary of the 
critical value 0o(*) = f*0 through the initial tiling. Let us introduce the following 
parameter domains in O: 

(3.12) A X ( * ) = $-xW* = { A : 0o(A) G W^x} D A X ( * ) . 

This extension of A X ( * ) will be used for a priori bounds on the parameter geometry 
(see §4). 

3.5. Renormalization of holomorphic families. — Let us now consider a gener
alized quadratic-like family (g : UVi —> U, h) over (D, * ) . Let X stand for the labeling 
set of tubes V^. Remember that I 3 0 and Vo 3 0. Let Z# stand for the set of all 
finite sequences i = ( ¿ 0 , . . . , « t - i ) of non-zero symbols ik G T \ { 0 } . For any i G Z#, 
there is a tube Vj such that 

gkVj c Vifc, fc = 0, r - 1, Grxz 1 and fl*V? - U. 
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We call t — \i\ the rank of this tube. The map gl : Vj —> U is a holomorphic 
diffeomorphism which fibers over id, that is, g\Vi A = U\, A e D . 

Let us redefine the holomorphic motion h of U as follows: 

9\(Hi,\z) = M<?*^), z G ^7,* \ u\J\=t+iV3,*, WHERE t = |ii| 

By ( 3 . 3 ) , h\ is correctly defined on [7* minus a Cantor set. Extend it to the whole 
[/* by the A-lemma. 

Consider tubes C V- such that gll^ = V0, where £ = |i|. The first landing map 
T : ULq —> V0 is defined as T\Lj — gl. By construction, 

Tx(hxz) = hx(T*z) for z G U < 9 L ^ . 

Let 0(A) = PAO and <£(A) = (A, 0(A)). Let i* be the itinerary of the critical value 
<£(*) under iterates of g* through the domains V^*, until its first return to Vb,*. In 
other words, let # * ( 0 ) G = IL*. 

Let us now consider the following parameter region around *: 

D' = D'(*) = * - 1 L , E . 

For A G -D', the itinerary of the critical value under iterates of g\ until the first return 

back to VO,A is the same as for g* (that is, i*). Let us define new tubes V̂ - C V0 as 

the components of ( # | V o ) _ 1 0 M ^ ' ) ' Let 

( 3 . 1 3 ) g' : UV'j -> V0|£>' = U' 

be the first return map of the union of these tubes to Vo. 
For A G D', the critical value <£(A) does not intersect the boundaries of the the 

tubes Lj. Hence we can lift the holomorphic motion h on U \ L* to a holomorphic 
motion h! on U' \ Vo over D' and extend it by the A-lemma to the whole tube U'. 
Thus we obtain a generalized quadratic-like family (g1', h') over Df which will be called 
the generalized renormalization of the family (g,h) (with base point * ) . 

If g is a proper family then g' is clearly proper as well. Moreover, w(g') = 1 if 
w(g) = 1. Indeed, by the Argument Principle the curve &\D' intersects once every 
leave of <9L*. Hence it has winding number 1 about this tube. As the first landing 
map T : L* —> Vo is a fiber bundles diffeomorphism, it preserves the winding number. 
Thus the new critical value 4>' : D' —»• U', 4>' = T o 4>, has also winding number 1. 

Let us summarize the above discussion: 

Lemma 3.7. — Let g : UV; —>• U be a generalized quadratic-like family over (JO,*). 
Assume it is proper and has winding number 1. Then its generalized renormalization 
g' : UVj —> V over Df is also proper and has winding number 1. 

3.6. Central cascades. — In this section we will describe the renormalization 
of a generalized quadratic-like family through a central cascade, which will be then 
treated as a single step in the procedure of parameter subdivisions. Let us consider a 
holomorphic family (g : UV^ —•> U, h) of generalized quadratic-like maps over ( A , * ) . 
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'V(' will !lOW subdividl' ~ «('('ordiug to tlH' cOlnbillaturics of the central cascades of 

maps .'1> .. (see [L31. SS3.1. :~.6). To Ihis end Ipt us firs1 stmtify the parameter \,tlUl'S 

a.ccurding to t h(' lengt h of t heir ('('ulral cascade. This yiclds a IWSt of parapuzzlc 
pit'c('s 

For À E D(V ~ 1) " DIV). the map !l>.. has a ccntral cascade 

(:3.11) T .(0) - l',' T' - {.(l) T .(S) '.\ = '>..::J,.\ = ,'>.. ::J ... ::J v>.. 

of h'llgt h S. so t hat y\ 0 E \ ~;\' - 1) " \ ."~\). :'\ ot e t hat the puzzle pi('CE'S \ '; k) ar(' 
orgallized into the tulws V(k) uv!'r DIA:- 1) 

TIl\' int(·rsl·ction of thesl' puzzle piec('s. nD(c'\'). is the litt II' :\landplbrot s('t 11(g) 

('l'Il/prc'cl at the sU]H'rattractiug paranwtl'r value c = dg) sudl that y,(U) = O. LN us 
cali (' the ('ent.er of D. 

Let * E D(;\' - 1) " DI ,V). Let us cOIlsi([Pr tht' BI'rnoulli Illap 

(:3.15 ) 

asscwiated \Vith the c;tsl'adt' (;~.14) (sec IL31. S:3.6 and Figlln' :3). Her\' the tIl1)('s \~\:YJ 

ove1' DI.'\ -- 1) are t hl' pull- backs of the III lies 'Vil D ( S -- 1 ). i i:- (). hv the ('m'I'ring maps 

(;~.1(i) gk : CV(k) " V l /;-+ 1))ID(lV-I) --+ (U" VlID(V ·1) 1 .. = n. 1 .... N - 1. 

'\ 

N N-1 

2 

o 

Figure :). Solar SYSU'Ill: Bernoulli sc!teuH' assol'iatf'd to a celltral cascade. 
~U('II~:TI~: \l;\Titf:~\.l_-\Tlt~l'E nE FHAI\:('E ~(JÛO 
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In the same way as in §3.5, to any string j = ( j o , . . . ,jt-i) corresponds the tube 
over D^-V, 

Wj = {PE U\D(N-V : GNP E WJN , n = 0 , . . . , t - 1 } . 

Note that GL univalently maps each W j onto U | JD^"1) . Thus W j contains a tube L J 
which is univalently mapped by GL onto the central tube D^N. These maps altogether 
form the first landing map to D^N , 

(3.17) T : U L J V ( I V ) . 

Remark. — Note that 

(3.18) m o d ( ^ A X L-jX) = mod(i7A X V^N)) > mod(C7A X Vx), 

since Gx univalently maps the annulus Wj x \ Lj x onto U\ \ V\N^ • 

Let us now consider the itinerary j+ of the critical value 0 ( * ) = g*(0) through the 
tubes Wj until its first return to V^N\ so that * ( * ) 6 1 ^ = L*. Let W* = W j and 

(3.19) A ° ( * ) =• • D D(N) D •••, A ° ( * ) = W* . 

Thus the annuli JD(7V~1) \ D^N^ are tiled by the parapuzzle pieces A ° ( A ) according 
as the itinerary of the critical point through the Bernoulli scheme (3.15) until the 
first return to VXNK Altogether these tilings form the desired new subdivision of A . 
(Note however that the new tiles don't cover the whole domain A : the residual set 
consists of the Mandelbrot set M(g) and of the parameter values A G D^N~^ \ G D^N~D^N 
for which the critical orbit never returns back to VXN\) 

The affiliated quadratic-like family over A ° ( * ) is defined as the first return map to 
V^N) = U%. Its domain U V ? is obtained by pulling back the tubes L J from (3.17) by 
the double branched covering g : y(N) —>• Y^N~^ | A ° ( * ) , and the return map itself is 
just T og. 

The affiliated holomorphic motion is also constructed naturally. Let us first lift 
the holomorphic motion h from the condensator U \ V to the condensators ( V ^ \ 
V(AH_1))|Z)(iV~1) via the coverings (3.16). This provides us with a holomorphic motion 
of (U \ V ^ ^ U W , - ) over D ^ " 1 ) . Extend it through V * ^ by the A-lemma, lift it to 
the tubes ( W J , L J ) and then extended again by the A-lemma to the whole domain U 
over Z ) ^ - 1 . Let us denote it by H. 

Lifting this motion via the fiberwise analytic double covering over A ° ( * ) , 

g : ( V \ V , | J V ? ) — • ( V ^ " 1 ) X L * , ( J % ) , 

we obtain the desired motion of (U° \ V ° , U ^ o ^ T ) over D^ND^ND^ND^ND^ND^N By the A-lemma it 
extends through V q . 

g : (V \ V * , M V ? ) 

i^o^ 
g : (V \V*, MV?) 

i^o^ 

w e o b t a i n the des i red m o t i o n o f ( U ° \ V ° , U i ^ o ^ î ) ove r B y t n e A - l e m m a it 
e x t e n d s t h r o u g h V Q . 
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3.7. Principal parapuzzle nest. — Let us now summarize the above discussion. 
Given a quadratic-like family (/,/1) over D = A0, we consider the first tiling V1 of 
a Misiurewicz wake O as described in §3.4. Each tile A e V1 comes together with a 
generalized quadratic-like family ( ^ A ^ A ) over A. 

Now assume inductively that we have constructed the tiling T>1 of level I. Then the 
tiling of the next level, £>/+1 is obtained by partitioning each tile A G T>1 by means 
of the cascade renormalization as described in §3.6. 

Let AZ(A) stand for the tile of V1 containing A, while A* (A) C AZ(A) C AZ_1(A) 
stand for the other tile defined in (3.19). Each tile A = AZ(A) contains a central 
subtile IIZ(A) = *^1Vo corresponding to the central return of the critical point (here 
<£A(A) = (A,#A(A))). Note that 11*(A) may or may not contain A itself. 

Let us then consider the sequence of renormalized families (gi \, hi,\) over topo
logical discs A*(A). We call the nest of topological discs A0 D A1 (A) D A2(A) D • • • 
(supplied with the corresponding families) the principal parapuzzle nest of A. This 
nest is finite if and only if A is renormalizable. 

Let C/,A £ AZ(A) be the centers of the corresponding parapuzzle pieces. Let us call 
them the principal superattracting approximations to A. If A is not renormalizable, 
then —> A as I - » oo, since diam AZ(A) —>• 0 (see the next section). 

The mod(Az(A) \ AZ+1(A)) are called the principal parameter moduli of A € D. 
When we fix a base point *, we will usually skip label * in the above notations, so 

that Az = Az(*), gx = gt*, h{ = ht^ etc. 

4. Parapuzzle geometry 

The following is the main geometric result of this paper: 

Theorem A. — Let us consider a proper DH quadratic-like family ( / , h) with winding 
number 1 over D, and a Misiurewicz wake O C D. Then for any A 6 M(f) DO, 

mod(Az(A) x A/+1(A)) > Bl, and mod(Az(A) \ nz(A)) > Bl, 

where the constant B > 0 depends only on O and m o d ( / ) . 

The rest of this section will be devoted to the proof of this theorem. 

4.1. Initial parameter geometry. — In this section we will give a bound on 
the geometry of the first level parapuzzle. Fix a quadratic-like family (f,h) and its 
Misiurewicz wake O = 0^p, \a\ = t, as in §3.3. In what follows we will use the 
notations of §3.3 and §3.4. 

Lemma 4.1. — There is a marked holomorphic motion of any annulus fi^A \ 
over O with dilatation depending on the geometry of (f,h) and the choice of O only. 
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Proof. — Indeed, by Lemma 3.4, the configuration 

( y ° , U 0Y<1+*">, [ J \Jzf+kp)) 
k<t-l k<t-l j 

represents a holomorphic motion over the parabolic wake Pq/P (truncated by the 
appropriate equipotential) with removed Misiurewicz wakes of level < t — 1. Since O 
is compactly contained in this region, this holomorphic motion has a finite dilatation 
K — K(O) over O (depending only on O and the geometry of ( / , h)). 

Let us now lift this motion to the tubes Zj1+tp^ and Qi , Q2 by the map fp. Since 
this map is a fiberwise diffeomorphism over O, it preserves the dilatation of the motion 
(though the motion does not extend beyond O any more). Similarly we can lift the 
motion to all quadrilaterls between the equipotentials of level 1 + {t — l)p and 1 + tp 
left after removing Z-pieces of level < t — 1 (see Figure 2). This provides us with a 
marked motion h0 of the annulus y^1+(t~1)p) x yg OVer O with the same dilatation 
K. This handles the case k = 0. 

For k > 0, lift ho by the following fiberwise diffeomorphism over O: 

ft •• (n?.A.*k) ( i f + ( t - 1 ) p ) , V ? ) . 

Lemma 4.2. — All parapuzzle pieces of the first level are well inside the corresponding 
wake: mod(0 \ A1) > v > 0. Moreover, the holomorphic motion hi of the conden-
sator U1 \ V1 over A1 is K-qc. The constants v and K depend only on the geometry 
°f (fih) and the choice of O. 

Proof. — Let us consider the tubes L* C W * over O constructed in §3.4. By means 
of the fiberwise conformal diffeomorphism (3.11) 

= $-x(W* \U)cOA1 \ A1 = $-A1 \ A1 =x(W* \U)cO 

we can lift the motion constructed in Lemma 4.1 to the condensator W * \ L* . Since 
the dilatation of the motion under such a lift is preserved, it depends only on the 
geometry of ( / , h) and the choice of O. 

Let us now consider the parameter annulus 

A1 \ A1 = $-x(W* \ U ) c O 

(see (3.12)). By transverse quasi-conformality of holomorphic motions (Corollary 2.1), 

mod(Ax \ A1) > K'1 mod(W* \ L*), 

where L* \ W* is the *-fiber of the condensator W * \ L* . 
But Gl univalently maps W* \ L* onto yj1^-1^ x yo (see (3.10)-(3.11)). Since 

by [L3, §4.1], the modulus of the latter annulus depends only on the geometry of 
(/, h) and the choice of 0 , the first statement of the lemma follows. 
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Moreover, the motion hi on U1 \ V1 is a double covering of the motion Ho on 
Zj1^ \ L* over O (see §3.4). Since A1 is well inside O, the A-lemma implies that H0 
has a bounded dilatation over A1 (depending only on the geometry of ( / , h) and the 
choice of O). Hence the dilatation of h\ on U1 \ V1 over A1 is bounded as well. • 

4.2. Inductive estimate of the parameter geometry 

Lemma 4.3. — Let us consider a generalized quadratic-like family (g : UV^ —> U, h) 
over A. Assume that the dilatation of h on U \ Vo is bounded by K and 

mod(£/* \ Vb,*) > » > 0, A E D. 

Then the dilatation of the cascade renormalized motion h^ on U° \ VQ over D° (as 
described in §3.6) is bounded by = K^di^K). 

Proof. — We will use the notations of §3.6. We assume that /* has a central cascade 
(3.14) of length AT, so that * E D^N~^ \ D^N\ The holomorphic motion / i o n U \ ¥ 0 
can be lifted to a motion H on W* \ L* by a fiberwise conformal diffeomorphism T 
(an extension of the first landing map (3.17)). Hence this motion has dilatation K 
on the tube W* \ L* • By transverse quasi-conformality of holomorphic motions, 

(4.1) /i° = mod(A° \ A°) > K~x\i. 

Let us extend H by the A-lemma through L* to a motion on the whole tube W* 
over A°. Applying the A-lemma again, we conclude that this motion has dilatation 
K° = iiT0(/i<>) over A ° . But the motion h° on IF \ Vg is the lift of H on U \ L* over 
A° by the fiberwise conformal double covering g. Hence it has the same dilatation 
K°. • 

4.3. Inscribing rounds condensators. — In this section we will show that the 
parameter annuli have definite moduli. Given a holomorphic motion h\ and a holo
morphic family of afRne maps g\ : z \-± a\z + b\, we can consider an "affmely equiv
alent" motion g\ o h\. In this way the motion can be normalized such that any two 
points 2;,( E [/* don't move (that is, h\(z) = z and ^ A ( C ) = C f°r ^ € Let us 
start with a technical lemma: 

Lemma 4.4. — Let us consider a holomorphic motion h : ({7*,V*,0) —> (U\,V\,0) 
of a pair of nested topological discs over a domain D. Assume that the maps h\ : 
(dU*,dV*) —» (dU\,dV\) admit K-qc extensions H\ : ( C , £/*) —>> ( C , U\) (not nec
essarily holomorphic in A but with uniform dilatation K). Then there exists an 
M — M(K) such that if mod ({7* \ V*) > M then after appropriate normalization 
of the motion, there exists a round condensator D x A(g, 2q) embedded into U \ V. 

Proof. — Let z* be a point on dU* closest to 0. Normalize the motion in such a way 
that z* — 1, and this point does not move. With this normalization, V* C H\ (0) 
where e — e{m) -> 0 as m = mod(£/* \ V*) oo. 
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Since the space of normalized K-qc maps is compact, \H\(eeie\) < 5, where S = 
5{e,K) 0 as e -> 0, K being fixed, and \Hx(ei6)\ > r where r = r(K) > 0. It 
follows that the domain U \ V contains the round cylinder D x A(<5, r), and we are 

Corollary 4.5. — Under the circumstances of Lemma 4-4> let & : D -± U be a proper 
analytic map with winding number 1. Let D' — 3>_1V. 7/mod(£7* \ V*) > M — M(K) 
then mod(£> \ D') > log 2. 

Proof. — By Lemma 4.4, I K V D DxAwheveA = A(q,2q). LetQ = *_1(Z>x^4). By 
the Argument Principle, <f> = 7r2o<I> univalently maps Q onto A, so that mod(Z^\Z)/) > 
mod Q = mod A = log 2. • 

4.4. Puzzle geometry. — Let us now recall for reader's convenience two key re
sults of [L3], which will be used below. 

Theorem 4.6 (Moduli growth [L3], Theorem III). — Let f be a quadratic-like map 
whose straightening c — x(f) belongs to a Misiurewicz wake O. Let n(k) be the 
non-central levels of its principal nest V° D V1 D • • • . Then 

where B depends only on O and mod( / ) . 

Remark. — A related result on moduli growth for real parameter values was inde
pendently proven by Graczyk & Swiatek [GS]. Note in this respect that the proof 
of our parameter result (Theorem A) needs in a crucial way the above Theorem 4.6 
with complex parameter values (even if one is ultimately interested in the real case). 

Let us consider a quadratic-like family ( / , fe) and its parameter tilings. Let A G 
AZ(A). Let us consider the corresponding Z-fold generalized renormalizations of these 
two maps gi : UVi -+U and gi : UVi —> U. Then the holomorphic motion h transforms 
the domains of gi to the corresponding domains of gi respecting the boundary marking 
(coming from the external coordinate system, see §3.2). In this sense f\ and fx have 
"the same combinatorics up to level" I. 

Let us say that gi and gi K-qc pseudo-conjugate if there is a K-qc homeomorphism 

respecting the boundary marking. Thus it matches with the boundary holomorphic 
motion, and hence respects the boundary dynamics: h(giz) — gi(hz) for z G UdVi. 

Theorem 4.7 (Uniformly qc pseudo-conjugacies [L3, §11]). — Assume that A G Лг+1(А), 
where the tile A/+1(A) is defined by (3.19). Then the corresponding generalized renor
malizations g and g are K-qc pseudo-conjugate, with К depending only on the Misi
urewicz wake O(A) and geometry of (f,h). 

done. • 

mod(FnW+1 yn(fc)+2) > Bk 

h : (U, UVi) (U, UVi), 
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Remarks 

(1) Concerning the assumption A G A/+1(A), see [L3], Remarks on pp. 272 and 
277. 

(2) In [L3] (see §4) the initial choice of straightening of two maps / and / is made 
independently and its dilatation depends only on the m o d / and m o d / . In 
the above formulation, the choice should be consistent with the holomorphic 
motion ft, so that its dilatation depends on the geometry of (f,h). 

4.5. Uniform bound of dilatation 

Lemma 4.8. — Let * belong to a Misiurewicz wake O. For any principal parapuzzle 
piece A = Az+1(*), the corresponding holomorphic motion ft A O/UZ+1 \ VQ+1 over A 
has a uniformly bounded dilatation, depending only on the choice of the Misiurewicz 
wake O and the geometry of ( / , f t ) . 

Proof — Let K be a dilatation bound given by Theorem 4.7. Find a n M = M(K) by 
Corollary 4.5. By Theorem 4.6 and (3.18), there exists an l0 such that mod(Wl xl /*) > 
M for I > l0. 

For I < Zo, the desired dilatation bound is guaranteed by Lemmas 4.2 and 4.3. 
Fix an I > Zo- Consider the generalized quadratic-like family (g : UV* —> U, ft) over 

D = A*(*). In what follows we will use the notations of §3.6. Let * G D(N~V \ D^N\ 
By Theorem 4.7, for A G A/+1(*), there is a K-qc pseudo conjugacy 

1(*) x A/+1(*)) > log2D(N~V \1 m \ 

with K depending only on the choice of wake O and geometry of ( / , h). As we have 
mod{Wl \ L[) > M, Corollary 4.5 can be applied. We conclude that 

(4.2) mod(A/+1(*) x A/+1(*)) > log2 

for I sufficiently big (depending on O and geometry of (f,h)). 
In §3.6 we have constructed a holomorphic motion H of (U, WJ,ILJ) over g : (V \V*, 

By the A-lemma and (4.2), H is L-qc over A = A/+1(*), with an absolute L provided 
I is big enough. But the holomorphic motion / IA on U '+1 \ V ' + 1 is the lift of H on 
1 mod(Wï+ \ L7J > Blover A by means of the fiberwise analytic double covering 

D(N~V \ D^N> K-1 mod(Wï+ \ L7J > Blù^ 

Hence /&A on U/+1 \ V / + 1 is also L-qc. 

4.6. Proof of Theorem A. — We are now prepared to complete the proof: 

mod(Az \ Az+1) > K-1 mod(Wï+ \ L 7 J > Bl. 

The first estimate in the above row follows from Lemma 4.8 and Corollary 2.1. The 
last estimate is due to Theorem 4.6. 
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For the same reason, 

mod(A' \ Ul) x mod(Ui \ V^^) > Bl. • 

Remark. — The author thanks the referee for the following note. Instead of exploiting 
holomorphic motions in the above proof, one can use (for high levels /) a refined 
version of Lemma 4.4. Indeed, the proof of this lemma shows that one can inscribe 
into U \ ? a round condensator of modulus comparable with mod(£/* \ V*) (with a 
constant depending on the dilatation K only). This provides us with inscribed round 
condensators over principal parapuzzle pieces with linearly growing moduli, which 
yields linearly growing parameter moduli. 

Thus, formally speaking, holomorphic motions are needed only on the initial levels. 
However, their actual role is more significant as their transversal quasi-conformality 
is a true mechanism behind commensurability of the dynamical and parameter ge
ometries. 

5. Application to the measure problem 

In this section we will apply the previous results to the real quadratic family Pc : 
z z2 + c, c G R. Let Mil stand for the set of non-renormalizable real parameter 
values c G [—2, —3/4). Note that all periodic points of the Pc : z H-» Z2 + c, c G Mil, 
are repelling. Indeed, the interval [—3/4,1/4] where Pc has a non-repelling fixed point 
is excluded, while maps with non-repelling cycles of higher period are renormalizable. 

Let MC stand for the set of parameter values c G Mil such that the principal nest 
of Pc contains only finitely many non-trivial (i.e., of length > 1) central cascades. 

Theorem 5.1 

— The set Mil has positive measure; 
— The set MC has full Lebesgue measure in MlZ. 

Remarks 

(1) The former (positive measure) result is known (see [BC], [J]). The latter (full 
measure) is new. 

(2) The corresponding statements concerning at most finitely renormalizable pa
rameter values are derived from the above statements by considering quadratic
like families associated with little copies of the Mandelbrot set. 

(3) By the result of Martens & Nowicki [MN] together with [L2], Pc has an ab
solutely continuous invariant measure for any c G MC. Altogether these yield 
Theorem B stated in the Introduction. 

Proof of Theorem 5.1. — Let d stand for the real tip of the little Mandelbrot set 
attached to the main cardioid (i.e. P^(0) — a). As all parameter values c G [d, —3/4) 
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are renormalizable, we can restrict ourselves to the interval [—2,rf) D NlZ. This 
interval belongs to the Misiurewicz wake O attached to d. 

Given measurable sets 1 , 7 C l , with length(Y) > 0, let dens(X|Y") stand for the 
length(X n Y)/ length(F). 

We will now restrict all tilings T>1 constructed above to the real line, without change 
of notations. We will use the same notation, T>1, for the union of all pieces of T>1. For 
every A = A1 (A) € V1, let us consider the central piece l i e A corresponding to the 
central return of the critical point. By Theorem A, dens(II|A) < Cql for absolute 
C > 0 and q < 1. Let Tl be the union of these central pieces. Summing up over all 
A G D1, we conclude that 

(5.1) length(rz) < dens(r/|P/) < Cql 

(the whole interval is normalized so that its length is equal to 1). 
It follows that for I sufficiently big, 

dens ( \J rl+k\Vlj < dql < 1, 
fe>0 

which means that with positive probability central returns will never occur again. 
This proves the first statement. 

To prove the second one just notice that (5.1) together with the Borel-Cantelli 
Lemma yield that infinite number of central returns occurs with zero probability. • 

6. Shapes of the Mandelbrot copies 

In this section we will prove Theorem C stated in the Introduction. Let us fix a 
quadratic-like family ( / , f t) and a Misiurewicz wake O in it. 

Lemma 6.1. — All maximal Mandelbrot copies in O have a bounded shape depending 
only on the geometry of (f,h) and the choice of O. In particular, in the quadratic 
family the shape depends only on the wake O. 

Proof. — Take a maximal Mandelbrot copy M' C O centered at *. Let (/z : V1 —> 
Uz,ft/) be the DH quadratic-like family in the principal nest of * generating M'. By 
Lemma 4.8, the dilatation of ft/ on Uz \ V1 is bounded by a constant K depending 
only on the geometry of ( / , ft) and the choice of O. By a weak form of Theorem 4.6, 
mod( / / ) > e > 0, where e depends on the same data only. Hence by Lemma 3.2, M' 
has a bounded shape depending on the same data only. • 

Corollary 6.2. — All real maximal Mandelbrot copies in ( / , f t ) . except the doubling 
one, have a bounded shape depending only on the geometry of ( / , ft). In particular, all 
real maximal copies in the quadratic family, except the doubling one, have a bounded 
shape with an absolute bound. 
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Let us consider a family C of maximal Mandelbrot copies supplied with a combi
natorial parameter r = r (M/) , M' E £ , satisfying the following 

Big Modulus Property. — Let M' € £ be a Mandelbrot copy generated by a quadratic
like family over a domain A'. Then for c E A', mod(i?Pc) > fi{r) —> oo as r —> oo. 

For the family C = Co of maximal Mandelbrot copies contained in a wake 0 , 
several examples of such parameters are given in [L3] (see Theorems IV and I V ) : the 
height, the return time, etc. For the family C = £r of maximal real Mandelbrot sets, 
all these parameters can be unified in a single one called the essential period pe (see 
[L3, §8], [LY]). 

We say that the shapes of Mandelbrot copies M' approach the shape of M as 
r ( M ' ) —> oo if the M' have a (JRT, s)-bounded shape with K —> 1, e -> oo as r oo. 
Lemma 3.2 implies: 

Lemma 6.3. — Assume that we have a family C of maximal Mandelbrot copies and 
a combinatorial parameter r : C —> R satisfying the Big Modulus Property. Then the 
shapes of the Mandelbrot copies M' E C approach the shape of M as r ( M ' ) -> oo. In 
particular, the shapes of the M' E CR approach M as pe(M') —> oo. 

Putting together the above statements, we obtain Theorem C. 

Remark. — If the essential period pe{M') stays bounded but the period p(M') grows, 
we obtain Mandelbrot copies near a parabolic cusp. The shapes of such copies were 
analysed by Douady and Devaney [DD]. 

6.1. Relation to M L C . — Let us consider a family C of Mandelbrot copies. As
sume that any copy M' with combinatorial type ( M 0 , . . . , Mn), Mi E £ , has a bounded 
shape. Let us say that such an C is fine. 

Given a family C of Mandelbrot copies, let Ec stand for the set of infinitely renor
malizable parameter values with combinatorics (M0, M i , . . . ) , where Mn E C. 

Proposition 6.4. — Let C be a fine family of Mandelbrot copies. Then 

— The Mandelbrot set is locally connected at any point c E Ec; 
— The set Ec has zero Lebesgue measure. 

Proof 
• Take a string r = (M0, M i , . . . ) with Mi E C. It determines a nest M ° D M1 D 

• • • of little Mandelbrot copies shrinking to the combinatorial class CT of infinitely 
renormalizable maps with combinatorics r. To prove MLC at a point c E CT we need 
to show that c is a single point of Cr. 

Let cn stand for the center of Mn, and Hn 3 cn stand for the corresponding 
hyperbolic component. Let rn be the inner radius of ifn, i.e., the radius of maximal 
round disk centered at cn and inscribed into Hn. As the domains Hn are pairwise 
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disjoint, rn —> 0. Since the sets Mn have a bounded shape, rn x diamMn. Hence 
diamM71 —» 0, so that the combinatorial class CT = PlMn consists of a single point. 

• To prove the second statement, note that the hyperbolic components Hn do not 
belong to Ec as they are not infinitely renormalizable. Hence near any point c G Ec 
there are gaps of definite relative size in arbitrary small scales. By the Lebesgue 
density points theorem, mea,s(Ec) = 0 . • 

Examples of fine families 

(a) Family of maximal Mandelbrot copies M' with big height: x ( M ' ) > \ -
(b) Family of real maximal Mandelbrot copies with big period: p(M') > p (see 

[L7]). 

Remarks 

(1) We conjecture that the whole family of real maximal Mandelbrot copies is fine 
(so that all real Mandelbrot copies have bounded shape). We are not sure 
whether this is still valid for the full family of complex maximal Mandelbrot 
copies. This would imply MLC but it may happen that MLC is still true, 
though there exist very distorted Mandelbrot copies. 

(2) In [L6] we have constructed a fine family £ of Mandelbrot copies such that 
HD (Ec ) > 1. Thus the Hausdorff dimension of the set of infinitely renormal
izable parameter values is at least 1. (The dimension of the set of infinitely 
renormalizable real parameter values is at least 1/2.) 
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POSITIVE LYAPUNOV EXPONENTS 
FOR LORENZ-LIKE FAMILIES WITH CRITICALITIES 

by 

Stefano Luzza t to & Marce lo V i a n a 

Dedicated to Adrien Douady on the occasion of his 60 T H birthday 

Abstract, — We introduce a class of one-parameter families of real maps extending 
the classical geometric Lorenz models. These families combine singular dynamics 
(discontinuities with infinite derivative) with critical dynamics (critical points) and 
are based on the behaviour displayed by Lorenz flows over a fairly wide range of 
parameters. Our main result states that - nonuniform - expansion is the prevalent 
form of dynamics even after the formation of the criticalities. 

1. Introduction and statement of results 

Numerical analysis of the now famous system of differential equations 

( i ) 
x = —ax -h ay 
y = rx — y — xz 
z = —bz + xy 

for parameter values r « 28, a « 10, 6 « 8/3, led Lorenz [11] to identify sensitive 
dependence of orbits with respect to the corresponding initial points as a main source 
of unpredictability in deterministic dynamical systems. His observations were then 
interpreted by [1], [6], who described expanding ("strange") attractors in certain ge
ometric models for the behaviour of (1) . Conjecturedly, such an attractor exists also 
for Lorenz' original equations, although this has not yet been proved. 
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Further study of (1) revealed that relatively small variations of these parameter 
values may lead to quite different, albeit even more complex, dynamical features. 
Indeed, already as r is increased past r « 30 Poincaré return maps cease to be 
described by the cusp-type pictures corresponding to the geometric models, instead 
they exhibit "folded cusps", or "hooks"; moreover, these hooks persist in a large window 
of values of r (extending beyond r « 50), see [15] for a thorough discussion. Trying 
to understand this folding process and its effect on the behaviour of the flow was, in 
fact, a main motivation behind Hénon's model of strange attractor for maps in two 
dimensions, [7], [8]. In constructing this model he focused on the dynamics near the 
fold, in particular disregarding trajectories which pass close to equilibrium points. 

Here we aim at a more global understanding of the dynamics of Lorenz flows, ac
counting for the interaction between singular behaviour (corresponding to trajectories 
near equilibria) and critical behaviour (near folding regions). Indeed, we introduce a 
one-dimensional prototype for this problem, largely inspired by the observations in 
[15], which we call Lorenz-like families with criticalities. Apart from their present 
motivation, these families of maps are also of interest in their own right, as models 
of rich nonsmooth dynamics in dimension one. Moreover, in an ongoing work we are 
further pushing the present constructions and conclusions to the context of smooth 
flows in three-dimensional space, cf. comments below. 

Let us begin by explaining what we mean by Lorenz-like families with criticalities. 
We consider one-parameter families fcp„l of real mans of the form 

y?(—x) = (f(x) — a if x > 0 

—<y?(—x) + a if x < 0 

where <p : M + M.+ is smooth and satisfies: 

L I : (f(x) = ift(xx) for all x > 0, where 0 < A < 1/2 and is a smooth map 
defined on K with ^ ( 0 ) = 0 and ^ ' ( 0 ) # 0; 

L2 : there exists some c > 0 such that <p'(c) = 0; 
L3 : <p"{x) < 0 for all x > 0. 

As we already mentioned, this definition is motivated by a fair amount of numerical 
and analytical data concerning the behaviour of Lorenz flows. In particular, the 
condition A < 1/2 corresponds to the fact that, for the parameter region we are 
interested in, the expanding eigenvalue Xu of (1) at the origin is more than twice 
stronger than the weakest contracting eigenvalue Xs (that is \ u + 2A S > 0 ) . 

For small values of the parameter the maximal invariant set of cpa in the interval 
[—a, a] is a hyperbolic Cantor set. Under certain natural conditions, implied by L4 
and L5 below, the entire interval [—a, a] becomes forward invariant as a crosses some 
value ai > 0. This situation persists for a certain range of parameter values and 
corresponds to the class of maps usually associated to the "Lorenz attractor" (see [5], 
[6], [1]). The dynamics of such maps is relatively well understood: they admit an 
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FIGURE 1. Lorenz-like families with criticalities 

invariant measure which is absolutely continuous with respect to Lebesgue and has 

positive metric entropy; they are not structurally stable but are fully persistent in 

the sense that any small perturbation also admits an absolutely continuous invariant 

measure of positive entropy. 

We are mainly interested in studying the bifurcation which occurs as the parameter 

crosses the value a — c. With this in mind, we add two natural assumptions on <p 

which ensure that a Lorenz attractor persists for all a < c. 

Let denote the unique point in (0 , c ) such that ip'^x^) — \ / 2 ; sometimes we 

also write — x ^ . Then we suppose 

L4 : 0 < <Pa[pyft) < <A*( a) < x ^ f ° r a U a € (a2,c\. 

The last inequality implies that given any y with \y\ G [x^^a) there exists a unique 

x e [—a, a] such that (pa(x) = y. Note that x and y have opposite signs. Moreover, 

the first inequality implies that \x\ < x ^ . Our last assumption is 

L5 : \((PcY(x)\ > 2 for all x e [ - c , c ] \ { 0 } such that \(pc(x)\ G [x^c]. 

Observe that this is automatic if (pc(x) = x ^ (because \x\ is strictly smaller than 
XV2> by the previous remarks) and also if <£>c(#) is close to c (then x is close to zero 

and so \((flY(x)\ w | # | 2 A _ 1 « oo ) . 

It is straightforward to check that L1-L5 are satisfied by a nonempty open set of 

one-parameter families, where openness is meant with respect to the C2 topology in 

the space of real maps ifi. Moreover, we shall show that these hypotheses do imply 

that (fa is essentially uniformly expanding for all parameters up to c: 

Proposition 1.1. — Given any a € [ a i , c ] , 

(1) the interval [—a, a] is forward invariant and (p\[—a, a] is transitive 

(2) \{Va)'(x)\ > m i n { \ / 2 , baOzOIXv^) 7 1 - 1 for all x e [ -a , a] such that <pj

a{x) ^ 0 
for every j = 0 , 1 , . . . , n — 1. 

After the bifurcation a = c such uniform expansivity is clearly impossible, due to 

the presence of the critical point in the domain of the map. However, our main result 
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states that - nonuniform - expansivity persists, in a measure-theoretical sense, and is 

even the prevalent form of dynamics after the bifurcation. We denote Cj(a) == (fJ

a(c) 
for each j > 1. 

Theorem. — Let {tpa} be a Lorenz-like family satisfying conditions L1-L5. Then there 

are a > 0 and A+ C M such that | ( c i ( a ) ) | > e a j for all a G * 4 + and j > 1 and 

lim 
£-*0 

m{A+ H [c ,c + e]) 

e 
= 1 (m = Lebesgue measure on M). 

Moreover, there is o\ > 0 swcft £/ia£ if a £ A+ then for m-almost all x G [—a, a] we 

ftawe lim sup ^ | l og (<p2)'(x)\ > o\ as n —¥ oo . 

Measure theoretic persistence of positive Lyapunov exponents (outside the class of 

uniformly expanding maps) was first proved by Jakobson [9], for maps in the quadratic 

family fa(x) = 1 — ax2 close to parameter values a satisfying ([12]) 

(2) inf 
jeN 

inf 
jeN 

- c > 0 (c = critical point = 0) . 

There exist today many proofs of this theorem, e.g. [4], [2], as well as generalizations 

to families of smooth maps with finitely many critical points [16], and to families of 

maps in which a single discontinuity coincides with the critical point [14]. A number 

of differences should be pointed out in this setting, between smooth maps and our 

Lorenz-like maps. 

While all proofs of Jakobson's theorem in the smooth context rely in one way or 

the other on the nonrecurrence condition (2) , here we need no assumption on the 

orbits of the critical points for a = c. Instead, we simply take advantage of the strong 

expansivity estimates given by Proposition 1.1 for that parameter value. 

Various technical complications arise in the present situation from the existence of 

discontinuities and of regions where the derivative has arbitrarily large norm. Sev

eral estimates (including distortion bounds) , which in the smooth case rely on the 

boundedness and Lipschitz continuity of the derivative, now require nontrivial refor

mulations together with a detailed study of the recurrence near the discontinuity (and 

not only near the critical points). 

Lorenz-like families with criticalities undergo codimension-one bifurcations which 

mark a direct transition from uniformly expanding dynamics (for a < c ) , to nonuni-

formly expanding dynamics (for a G A+), a kind of bifurcation which does not seem 

to be known in the smooth one-dimensional context. The fact that the bifurcation 

parameter a = c is a Lebesgue density point for A+ is related to the strong form of 

expansivity exhibited by ipc. An interesting question is whether some characterization 

of the density points of A+ can be given in terms of special hyperbolicity features of 

the corresponding maps {e.g. uniformly hyperbolic structure on periodic orbits ? ) . 

We remark here that the symmetry inherent in our definition of Lorenz-like maps, 

though partly justified by the symmetry which exists in Lorenz' system of equations, 

ASTÉRISQUE 261 



LORENZ-LIKE FAMILIES WITH CRITICALITIES 205 

is not strictly necessary for the proof of the theorem. We carry out the proof in 
the symmetric case in order to simplify the exposition (in particular we shall often 
discuss some construction or result with explicit reference to only one of the critical 
points with the implicit understanding that the same statements apply to the other 
one as well, by symmetry) but all the arguments hold, up to minor modifications, in 
a nonsymmetric setting. 

Closing this section, we observe that the dynamics of the Lorenz flows in the 
parameter range we want to consider cannot be expected to fully reduce to that oi 
one-dimensional maps (as happens for the geometric models of the Lorenz attractor 
mentioned previously). Indeed, the very phenomenon of "folding" which we want 
to encompass in our description, is also an obstruction to the existence of invariant 
foliations transverse to the flow. Nevertheless, drawing on the results obtained in 
this article we are developing, in a forthcoming paper by the same authors [10], a 
natural extension of those geometric models to this wider range of parameters. Such 
Lorenz-like flows are amongst the simplest systems in which behaviour arising from 
the presence of equilibria interacts with dynamical features related to the presence 
of criticalities (homoclinic and heteroclinic tangencies). The understanding of the 
bifurcations taking place in this model is probably a necessary step towards a global 
description of the dynamics of flows, in the spirit of the program proposed a few years 
ago by Palis, see [13]. 

The proof of our main result is organized as follows. In Section 2 we identify a pair 
of conditions on the parameter a which ensure that a G A+. Sections 3 and 4 are then 
devoted to showing that the set of parameters for which such conditions are satisfied 
is large in the sense of the statement of the theorem. The whole global approach is 
inspired on [3]. 

Acknowledgements. — This work was started during the Conference on Real and 
Complex Dynamics held in Hiller0d, Denmark, in the Summer of 1993. It was con
cluded two years later in the pleasant surroundings of Orsay, during the Colloquium 
Adrien Douady. We are thankful to the organizers of both conferences for a fine 
ambiance. We are also grateful to Colin Sparrow for stimulating conversations, to 
Warwick Tucker for a thorough reading of a preliminary version and for pointing out 
several misprints and to Jacob Palis for his friendship and encouragement. 

2. Positive Lyapunov Exponents 

We begin by proving Proposition 1.1. In doing this we focus only on a E [a2,c]: 
the case a < a2 corresponds to the situation in [6], and it also follows from (simpler 
versions of) these same arguments. 
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2 .1 . Proof of Proposition 1.1. — The invariance of [—a, a] is an immediate con

sequence of lima-^o |</?a(#)| = |<£a(±a)| < < a (recall L4) , and the monotonicity 

of (fa on (—a,0) and (0 , a ) . 

Next, let x and 1 < j < n — 1 be as in part (2) . If |<#j(#)| < x ^ then we have 

l<£?o(<^o(a0)l — V^2- If 1 ^ ( ^ ) 1 > x\/2 then, by L4, there exists a unique z G [—c, c] 

such that <fc(z) = ^(^O ~ ^ ( ^ i - 1 (̂ O)- Moreover, z and </>£-1(#) have the same sign 

(opposite to that of <pJa(x)) and \z\ > | ^ _ 1 ( ^ ) | , because a < c. Using L5 we get 

\ t â ) \ à - \ * ) ) \ = \ v \ à - \ * ) ) v \ à { * ) ) v \ à - \ \ v \ à 

> b ' ( ^ ) ^ ( ^ a ( x ) ) | = | ( ^ ) ' ( 2 ) | > 2 . 

Part (2) follows directly from these remarks and it is easy to see that one even gets a 

somewhat better bound, with \ / 2 replaced by some slightly larger constant 9. 

To prove transitivity, we let t/o, Vb C [—a, a] be arbitrary open sets and show that 

(fa(Uo) D Vo / 0 for some n > 0. Suppose, without loss of generality, that 0 ^ Uo 

and Uo C (—^v^'^V^) (recall L4) . As long as 0 ^ ^ a ( ^ o ) , write = tpJa(Uo) and 

notice that > ^ | ? 7 o | . Thus we must have 0 G (faiU^-i) for some fci > 1. 

Let Ukl denote the largest connected component of <pa(JJki-i) \ { 0 } and observe 

that \Ukl\ > \\<Pa(Ukl-i)\ > l ^ l ^ o l . Suppose first that Ukl CUkl+j = V^(^fciUkl+j = V^(^fci where 

z~ < 0 < z+ are the preimages of zero under < â; observe that Ukl+j = V^(^fciUkl+j = V^(^fci< x as a 

consequence of the first inequality in L4. Then we proceed as before, with Uo replaced 

by Ukl. More precisely, we define Ukl+j = V^(^fci) until the first iterate k<z > k\ for 

which 0 G (fa(Uk2-i):> at that point we take Uk2 to be the largest component of 

<Pa(Uk2-i) and repeat the whole procedure again. As long as Uki C (z~,z+) we have 

ki+i > ki + 2, hence 

\Uki+1\ > 1 ^ ( ^ - 1 ) 1 / 2 > ek^~k<\Uki\/2 > 92\Uk,\/2 

grows exponentially with i. Thus, one eventually reaches some k = kj for which Uk 

contains either {z~, 0) or (0, z+). In the first case (fa(Uk) contains (0, a) D (0, z+) and 

then <fa(Uk) contains (—a, 0) , which ensures that either tpa(Uk) or <p\{Uk) intersect 

Vo. The second case is entirely analogous so the proof of the proposition is complete. 

Now we fix a number of constants to be used in the sequel of our argument. Recall 

that 0 < A < 1/2. We take a0 > 0 and a > 0 such that 0 < 2a < <J0 < log y/2 and 

also choose 

y > 1 and 5, i > 0 such that 1 < 7 + ô + L < 1/2A. 

We will be choosing 5 small with respect to A and t small with respect to 5. We 

remark for future reference that this implies 7 -I- 5 + £ < 1/A — 1. Then, we let 

0 < a < P be small, depending on the previous constants (the precise conditions are 

stated throughout the proof wherever they are required). 
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By conditions L1-L3 there exist /71,772 > 0 such that 

lim 
x->0 

\<p(x)\ 

\x\x = m and lim 
X—¥C 

\tp(x) -v>(c)\ 
\x — c\2 v\v-

For each i = 1,2, we fix constants 77̂  = rji — v and 77+ = 77* + *;, where v is some 

small positive number (once more, precise conditions are to be stated along the way). 

Then we have 

M l : for all x ^ 0 close enough to the origin, 

771 \x\x < <pa(x) + a < Vi\x\ if x > 0, 

-vt\x\x < <Pa(x) - a < -77, \x\x if x < 0, 

and i 7 f A N A - 1 < K ( a : ) | < f J i h A N A - 1 ; 

M 2 : for all x close enough to the critical point c 

71O (X - C)2 < \<Pa(x) - <Pa(c)\ < V2 (x ~ cf 

and 2t72 \X-C\< \(p'a(x)\ < 2rj^\x - c\ 

ana a similar iaci noias ior an x ciose enougn 10 — c. 

Now, for each small e > 0 we let A + , A + , A + c denote the e1- neighbourhoods of 
the origin and of the critical points c and — c, respectively. We define partitions of 
A% and A ± c by writing Ir = [s^e-r,s^e~r+1) and 

A ° = {0} U 1° 

|r|>l 

and A ± c 
: {±C} U 

|r|>l 

à-\ 

where I® = Ir and i"°r = — 7 r , for each r > 1, and the I^c = /J ± c are simply 
the translates of the 7°. We shall always assume that e > 0 is small enough so that 
A + and A:j: c are contained in the regions for which M l and M2 are valid. Moreover, 
we let r£ = [Slogs-1] (here [x] is the integer part of x) and we consider restricted 
neighbourhoods 

A 0 = {0} U 

|r|>re + l 

1° and v\à-\ { ± c } U 

\r\>rt+l 

J±C 

(of radius « eJ+°) of the origin and the critical points. We shall also need an even 
smaller neighbourhood (of radius « £2(t+<*)+^ Q f the origin. So let 

A < = { 0 } U 
|r|>r s+: 

7° rs = [(7 + 25 + 0 logl/e] . 

We shall prove below that the preimages of the critical neighbourhoods A+c are always 

contained in this smallest neighbourhood of the origin, i.e. ^"-"-(Azf:0) C A^ s . 
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2.2 . Breaking the hyperbolic structure. — The loss of expansivity occurring 

after the bifurcation a — c and caused by the critical points entering the domain of 

the map is, in some sense, local: for c < a < c + £, it occurs only in a neighbourhood 

of the critical points of size ey+s <C e. More precisely, any piece of orbit that does 

not intersect A ± c has an exponentially growing derivative. Proving this fact requires 

two preliminary lemmas. First we determine the position and size of the preimage of 

A ± c for a convenient range of parameter values. Then we estimate the accumulated 

derivative of points which pass close to the discontinuity or to the critical points. In 

all that follows we write p = 2_A. 

Lemma 2.1. — If e > 0 is sufficiently small then (s/vt)1^ ^ l^Pc+ei^10)] < te/Wi )1//A 
and 

1 

e 
< \ ^ â \ y ) \ < p 

\v7M±c)\ 
< e 

for every y G AiJ:c and a G [c + pe, c + e]. 

Proof. — By symmetry it suffices to consider the preimages of points in A^_. Using 

the second inequality in M l , 

-vt\Vc+e(c)\X < p â < C - ( c + e)<<pâ-Vl\f7+e(C)\X' 

which immediately gives the first claim. To prove the second one notice that, for any 

y and a as in the statement, y — a = (c — a) — (c — y) G [—e — e7, — pe + ey] and so, 

using M l in the same way as before, 

pe -
£7 > 

<pâ 

l/A 

î\<pâHv)\ 
e + £7 l/A 

?7i 

Combining with the first part of the present lemma, we get 

Vi pe-e^ 

vt e 
< 

c)el°_ 
vel°_ < I 

'rît e + e^ 

Jìi e 

l/A 

The left hand side is close to 1/2, and hence larger than 1/e, if e is small (and v has 

been fixed sufficiently small, recall the definition of rjf). Analogously, the right hand 

side is smaller than e if £ and v are small enough. The proof is complete. • 

Now we define rc — rc(e) > 1 by the condition c)el°_ c)el°_rc. Observe that 

(3) fracle 
e 

v\à 

à-\ 
v\à-\ s 

c)el 

l/A 

by the first part of the previous lemma. Moreover, the second part gives 

(4) ^ ( A ^ ) C I°_rc+1 U / « r c U 7 ° ^ , for every a G [c + pSjC + e]. 

Notice that we have from (3) e~rc < £l/A-7(r7-)l/A which yields 

rc > ( l / A - 7 ) log 1/e + l / A l o g r y f > (7 + 2(J + 0 1 o g l / 6 : 
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if e is small enough. This shows, as promised above, that <^a1(A^c) C A ° s . 

Lemma 2.2. — For every a G [c + ps, c + e] and x G I®, \r\ > 1, 

L) if(pa(x) <£ A ± c then \(v%)'(x)\ > cons t (^e- r )2A_1 > e2a°e^; 
(2) if(fa(x) G &%C, WITH (faix) Ge~rc < £l/A-7(r, 

then 

\<Pa(x)\ > const(e7e-r)A~1 > ea°e0M 

and 

\(<pl)'(x)\ > e ^ - ^ e - W > e2a°e-M. 

Proof. — We consider r, r > 1, the other cases being entirely analogous. For the sake 

of clearness let us split the proof of (1) into three different cases. 

Suppose first that r < rc — 2. Then, in view of (4) , \x — <p~1(±c)\ > | / r+ i | = 

(1 — l/e)erye~r. Thus, by the mean value theorem, 

\<Pa(x) ±c\ >\x- ipZx{±c)\ • m f { ^ ' ( z ) : z G [x^-^c)]} 
> (1 - l/e)e^e-rr)-\(e^e-r+1)x-1 

e~rc < £l/A-7(r7-)l/A 

with kx = (1 - l/e)77f AeA_1. It follows, using M l , M2, 

\(rf.Y(x)\ > \<pL(x)\\<p'(<Pa(x))\ e~r l / r ) î \ {e^e-r+1)x-12<q^xe-rX 
e~rc < £l/A-7(r7-)l/A> fc2e-r(i-2A)cr(i-2A) e~rc < £l/A-7(r7-

where k2 = 27?f AeA_177̂ ~fci and, for the last inequality, we suppose (3 < 1 — 2A and e 

sufficiently small. 

Clearly, exactly the same argument works for \r\ > rc — 2 where we have even 

greater expansion. 

Finally, suppose that (pa(x) G I~c C A + c . Clearly, 

\<Pa(x)\ > / 7 rA(^e - r+1 )A-1 > n r X e ^ e - ^ e ~ r c < £ l / A - 7 - ^ e ^ - V > ea°e0r 

if (3 and e are small. Moreover, by (4) , eye Tc 1 < \x\ < e^e rc+2, which gives 

\Ш(х)ù^$>Шх)\№ а(<р а(х))\e~rl/A-7(r7-)l\e~rc <l /A-7(r7-)l /A(e4e- r *+ 2 )^2r) 
> k5e^Xe(1-X^e~r e~rc < £l/A-7(r7-)l/A> fe5£7A+(l-A)(T-l/A)( - j ( l / A ) - l e - r 

> fc6e7-(1/A)+1e-r > e2aoe~r, 

where fc5 = 2rj1 \e2(x ^rf2 and kQ = k*>(r)1 )(1/A) 1 and we use the relation (3) in the 
fourth inequality. • 

Lemma 2.3. — For any a G [c + pe, c + s] and x G [—a, a], 

(1) if Wi(x)}^ n A ± c = 0 iften |(¥tf)'(aO| > min{e"° , Wa{x)\}e^n-^; 

(2) */, in addition, <p™(x) e A ^ c iften |(v?")'(ar)| > eCT°n. 
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being entirely analogous. If Xj-i G then \{<Pa)\xj-i)\ > e by part (1) of the 

previous lemma. Therefore, we may suppose Xj-i £ A + , that is | # ? - i | > e1Then, 

recall M l , M2 , c — (pc(xj-i) > r]^elfX and so \<p'(<Pc(Bj-i))\ > 2r/iV2£yX' Hence, 

using also (pa(xj-i) — (pc(xj-i) = a — c < s, we get 

e~rc < £l/A-7(r7-)l/A 

l(v>2)'(*i-i)l 

\<P (^afo - l ) ) 

l ^ ' O ^ c O j - l ) ) ! 

> 1 
e~rc < £l/A-7(r7-)l/Ae~rc < £l/A-7(r7-)l/A 

e~rc < £l/A-7(r7-)l/A 
1 - fcre1-^, 

where k*? = fc/(277^772"), with k a Lipschitz constant for cp' on {a: > — £o} (^o is 

some small constant, we take e < e0). Since 1 — A7 > 0, the left hand term is larger 

that e 2 a o / 2 if e is small enough and then the claim follows from L5. Moreover, the 

first statement in the lemma is a direct consequence of our claim (cf. the proof of 

lemma 2.1). 

In order to deduce the second part of the lemma we may suppose ^ e < 7 ° ? 

for otherwise there is nothing to prove. Observe also that if ^(x) G A ^ c then, by 

(3) , (4) , we have K t e ? " 1 ^ ) ) ! > k^e1'1^, with k8 = A e 2 ^ " 1 ) ^ " ) 1 /'A. 

Moreover, by hypothesis, x £ A ± c and so 1 ^ ( ^ ) 1 > r)^\e1+5. Altogether, writing 

kg = Vi^k8, 

\(<PÏ)'(x)\ > \^n(x)\e^(ri-2)\ f, ^ - i { x ) ) i > fc e -y+tf e f f 0 (n-2 ) e l - l /A 

e~rc < £l/A-7(r7-)l/Ae~rc < £l/A-7(r7-)l/Ae~rc < £l/A-7(r7-)l/A 

if e is small enough. 

2 .3 . Recovering expansion. — Now we deal with the expansion losses occurring 

when trajectories pass close to some of the critical points =hc. More precisely, we 

consider points x G A ± c . Assuming that the critical trajectories satisfy (exponential) 

expansivity and bounded recurrence conditions (during a convenient number of iter

ates, depending on | # ± c | ) , we show that the small value of (f'a(x) is fully compensated 

in the subsequent iterates, during which the trajectory of x remains close to that of 

the critical point (and so exhibits rapidly increasing derivative). 

For each j > 0 let Cj = c?(a) = </?£(=Lc) and denote d(cj) = m i n { | c j | , \CJ ± c\}. In 

what follows e > 0 is fixed and we suppose a G [c 4- pe, c + e]. 

Lemma 2.4. — There exists 9 = 9{(3 — a) > 0 such that the following estimates hold. 

Let x G for some \r\ > r£. Suppose that there is n > \r\/a such that 

(5) e~rc < £l/A-7(r7-)l/A and e~rc < £l/A-7(r7-)l/A for all 1 < j < n — 1. 

Then there exists an integer p = p(x) > 1 such that 
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(1) For all yi,zi E hpa(x), (pa(±c)] and for all 1 < k < p, 

1 

9 

\QBr2j_1e 

l ( ^ ) ' ( y i ) l 
< 0 

(2) v < (2\r\ + !<YloKl/e)/a < n - 1; 

(3) (a) xi -Ci\< 6ye-^ > £2/'T/<re(l-2/J/<.)r; 

(b) xi -Ci\< 6ye-^ > e - / » / ' e l p l - ( a n / 2 ) ; 
(c) | ( ^ + 1 ) ' ( ^ ) l > eao+0p > e0(-p+1). 

Proof. — We suppose x 6 I£ with r > 1, the remaining cases being treated in pre

cisely the same way. Define p = p(x) > 1 as the maximum integer such that 

(6) \xi -Ci\< 6ye-^ for all 1 < i < p 

where x\ — (fa(x). Recall that we fix ¡3 > a. Therefore, (6) and the first condition 

in (5) ensure that the intervals c*], 1 < i < p , do not contain the origin nor any 

of the critical points ± c . Therefore, (fa : [x\yci] —>• [#¿+1,(^+1] is a diffeomorphism 

for all 1 < i < p . In particular, given any 2/1,21 E [#i,Ci] we have y^Zi E for 

1 < i < p, where yi = tpa(y) and zt = <pa(z). By the chain rule, 

( v S ) ' ( * i ) 
{fka)'{yi) 

k 

ù$^$ù 

xi -Ci\< 6 

<Pa(Vi) 

k 

i=l 

1 + 
xi -Ci\< 6ye-^xi -Ci 

<Pa(Vi) 

and so part (1) will follow if we show that 

(7) 
k 

i=l I 

xi -Ci\< 6ye-^mpù 

<Pa\yi) 

is bounded by some constant depending only on /3 — a. By the mean value theorem 

there exists, for each 1 < i < k some & E [zi.yi] s.t. 

xi -Ci\< 6ye-^$^$^$$ 

xi -Ci\< 6ye-^ 

xi -Ci\< 6ye-^ 

xi -Ci\< 6ye-^ 
xi -Ci\< 6ye-^ xi -Ci 

<Pa(Vi) 

Thus it is sufficient to show that \<Pa(€i) / ip'a(yi)\ < consts_7eQ:1 to conclude that the 

terms of the sum (7) are decreasing exponentially and so the entire sum is bounded 

by a constant independent of k. We fix some small constant e' > 0 independent of s. 

The norm of (Pa(x) is bounded above and below outside (—e',e') by some constant 

C — s u p { | ^ ( x ) | : x £ ( — £ ' , £ ' ) } . For simplicity, and without loss of generality, we 

shall assume that this supremum is actually achieved at s'. Inside (—e',ef) we have 

by the form of the map <p that |<£a'(x)| < ?7+A(A — 1)|#|A~2. 

We distinguish two cases. If [xi,Ci] D (—e',e') = 0 then we have 

\<Pa(Vi)\ > 2 % \Vi -c\> 2^e\e-ai - e^) > 2 % ( 1 - ea~^e~ai 

and so 
ù$** 

^ o ( » i ) | 

<7 

" 2 % ( l - e « - 0 ) 
-e-Tea* 
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as desired. If [^^c^] D (—e',ef) / 0 we have the following estimates. To simplify the 

notation we shall suppose that [x^c*] C ( 0 , c ) . The other case ù^$^ùù$^$$^C (—c, 0) is 

dealt with similarly. Taking e' small and since \xi — c*| < e1 we can suppose that 

[xi,Ci] is contained in the neighbourhood of 0 for which conditions M l and M2 hold. 

We have 

\<Pa(Vi)\ > Wa(ci +e^e~^)\ > tirXia+efe-Py-1 

and 
xi -Ci\< 6ye-^xi -Ci\< 6ye-^xi -Ci\< 6ye-^xi -C6ye-^xi -Ci\< 6ye-^ù$^ùù$ 

This gives 

mp$ù 

ù^^$^ù 
< % + ( A - l ) 

///*89 
xi -Ci\< 6ye-^ 

ù^$^ù^^ù$ 

, A-l 

(d - £ 7 e - p ' ) - 1 < c o n s t ( ^ e - " 1 ) - 1 . 

This follows from the fact that \ci\ > s^e at and therefore 

<Pa(Vi)\ > Wa(ci +e^e~^)\ > tirXia+efe-Py-1ù^$^$$ const (^e-0*)-1 

and that (c* — £Te ^4)/ (c i 4- s^e < const. Indeed this last fact follows from 

observing that 

ci - e^e~ßi > €^e-ai - e^e~ßi > e 7 e " ^ ( l - e^~ß)i) > (1 - ea-ß)s^e~ai 

and similarly 

d + e^e~ßi < (1 + e a - ^ ) ^ e - t t i 

which together give 
xi -Ci\< 6ye-^ 

xi -Ci\< 6ye-^ 
1 - e<*~ß 

1 + ea"0 
= const . 

This proves (1) . 

Starting the proof of (2) , let q = m in{p , n — 1 } . As x £ we have \x — c\ > 

e1e~r and so \x\ — c\\ > r)^e2le~2r. Then, in view of the second condition in 

(5) and the distortion estimate we have just proved, the mean value theorem yields 

r]^e2^e-2r9-1e<J^-^ < \xq - cq\ < e^e~^. Thus 

q< 
2r 4- 7 l o g ( l / e ) + a - log 

a + ß 
< 2r 4 

3 

2 
7 l o g l / e 1° 

as long as e is sufficiently small. Since we also take an > r > [5 log I/e] » 1, we find 

that q < (2an 4- 3^ an/25)/a < n (if a is small), so that it must be q — p. In this 

way we have proved that p < (2r 4- §7 log l/e)/a < n, as claimed in part (2) of the 

lemma. 

Now, by the definition of p we havexi -Ci\< 6ye-^ — cp+i \ > £7e<Pa(Vi)\ > Wa(ci e^e~^. Thus ,us ing part 

(1) in conjunction with the mean value theorem, 

l(v>2)'(*i)l > 
1 \XP+i - Cp+il 

0 Ixi - c j 

5Te-/3(p+l) 

xi -Ci\< 6ye-^ù$^$ù 
> const e-^e2r-ßp. 
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Since |<£>tt(#)| > 2n2 eTe r, we find 

(8) \(<PP+1)'(X)\ > constER-ßP. 

Using part (2) we immediately get 

er-0P > er-§(2r+§7logl/s) > e ( l -M ) r_^ log l / e > ^ ^ l - M ) ^ 

This proves the first statement in part (3) since 

\{<PI+1)'{X) > Const £3/37/2CTe(l-2/3/<r)r > £2/37/«re(l-2/3/«r)r> 

Using part (2) again together with an > r > [(51ogl/s] 3> 1, we get 

ßp< 
2/3 
— 
(7 

§7log l/s 1/ 
454 lan 

1 
2an log l/£ 

4/3 
§7logl/ 

2/3. 
4/// oo 

1 
2« - a n -

2/3 

S 
logl/s 

as long as we take /3 < aSX/S (we also used 0 + 7 + I < 1/A). Replacing in (8), 
and supposing e sufficiently small, we get the second statement in part (3). Finally 
notice that |r| > [51ogl/e] and therefore p < 2/a(r + 7 log l / s ) < (1 + 7/<$)|H and 
lrl > + 7/<^)- therefore we have 

lOo^1)'*»! > conste7*-^ > conste(^7s-ß)p > eß{*+^ 

if /3 is small. This completes the proof of part (3) and of the lemma 

2.4. Proving positive Lyapunov exponents. — We can now state the main 
results of this section, asserting that, under two convenient assumptions on the pa
rameter a to be stated below, the critical trajectories exhibit exponential growth oi 
the derivative and, in fact, the same is true for most trajectories of ipa. 

As before, we write Cj = Cj(a) = <^(c), for j > 1. For the time being we fix some 
n > 1 and assume that 

CPl (n ) : d(cj) = min{|c, | , \có ± c\} > e7e"aj' for all 1 < j < n. 

and 

EG(n - 1) : | (<^y(c i ) | > for all 1 < j < n - 1. 

Then we define sequences of integers vi, Pi, by v\ = inf{is > 1 : cv G A ± c } and 
(i) pt = p{cUi), as given by lemma 2.4; 
(ii) vi+i = inf{i/ > Vi +pi : cv £ A±c}. 

(CPl(ro) ensures that cUi £ for some |r| < avi < an). We take s > 0 maximum 
such that vs < n. Then either vs < n < vs + ps or i/s < vs + ps <n. Now we define 
Pn = Pi H \~Ps-i in the first case and Pn = pi -\ \-ps-i +Ps in the second one. 
Then we further assume that 

CP2(n) : Pi < j/2 for all 1 < j < n. 

All iterates occurring during a binding period [vi 4- 1, Vi 4- pi] are called bound iterates. 
All others (including returns vi) are called free iterates. 
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Lemma 2.5. — Suppose that some parameter a € [c + ps,c H- e] satisfies CPl(n), 

CP2(n), and EG(n — 1). Then it also satisfies 

E G ( n ) : | ( ^ ) ' ( c i ) | > e"* for all 1 < j < n. 

Proof — We let piy be as above and define qo = z/i — 1 and ^ = — (i/j + 1 ) 

for 1 < i < s — 1. If n > z/s + ps we also write gs = n — (vs + ps). Then 

(9) l(^)'(ci) | = l(vl0)'(ci)| 

^$-1 

¿=1 
l ( ^ + 1 ) ' ( ^ ) | | ( ^ ) , ( ^ + w + i ) | ) | ( ¥ > r , " + 1 ) ' ( c , J | . 

The first factor on the right can be estimated as follows. Since (-Pa(cqo) = cVl G A ± c , 

relations (3) and (4) yield |<^a(c^o)l > const(£Te_rc)A_1 > const e^1/^-1. Hence, using 

also the first part of lemma 2.3, 

I(^°) ' (c i ) | = К ^ У Ы П W ( c 9 „ ) | > c o n s t e ^ o £ i - i / ^ 

(note that the last inequality in L4 implies | c i | < x ^ and so |^a(ci)l > > e*70 

for all a close to c). On the other hand, lemma 2.4(3) and lemma 2.3(2) give, for 

1 < i < s - 1, 

0^+1)'(^§7logl/s) > 
§7logl/s) > and e^o+/3p^7+e^o+/3p^7+5eCr 

For estimating the last factor in (9) , we distinguish two cases. If n > vs + p8 then 

we use lemmas 2.4(3) and 2.3(1) once more and get 

l(Va0_1)'(ci)||((pa)'(cgo)| > const e^vmù^m^ùel(Va0_1)'(ci)||((pa)' 

> c * o + » . min{6-° , |^a(c,a+Pa+1)|}e^^-^ 

> const e^o+/3p^7+5eCr0QS 

(the final bound remains valid when n = vs + ps, i.e. qs = 0 ) . Replacing in (9) , 

(10) l(<*£)'(ci) | > cons t61- (1 /A)+^e^?=o-o^+Z:=1(^o+/3P0) , 

Now, CP2(n) implies (recall that we take a0 > 2a 

i=0 

s 
(To + 0 

s 

i=l 

((To + 0pi) > a0(n - Pn) + (3Pn > a0 
n 

2 
> an 

and the lemma follows by replacing this in (10) and assuming e sufficiently small. 

Suppose now that vs < n < vs + ps. In this case we cannot take advantage of the 

estimates in lemma 2.4(3), as we did before. Instead, we use C P l ( n ) , E G ( n — 1), and 

the distortion estimate in lemma 2.4(1), to conclude that 

\{V>T"'+I)'{cvm)\ = \<p\cVt)\ • \{vTu')'{cv.+l)\ > c o n s t ^ e - ° - const e*("-"->. 

This gives 

( i i ) l(Va) ' (Cl) | > COnst£ 1 - ( 1 / A ) + ' 1 ' -
1-^1/X^e^'1-^1/X^e^'1-^1/X^e^'1-^1/X^e^' 
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Now, 

5-1 

¿=0 
ero Ci + 

s-1 

L 
(<70 + PPi) — OLVS + 0~(n — US) 

> O-Q(Us - PUa) - OLVs + a(n - vs) 
Oro 
2 vs — OLVS 4- <j{n — vs) > an 

as long as we take 2a < ao — 2a. Replacing in (11) (and assuming e small) we get 
the conclusion of the lemma also in this case. Our argument is complete. • 

Proposition 2.6. — Suppose that some parameter a G [c 4- ps, c-\- e] satisfies CPl(n) 
and CP2(n) for all n > 1. Then \(<Pa)r(ci)\ > e < J n for all n > 1. Moreover, there is 
<Ti > 0 such that for any x G [—a, a] satisfying <pJ

a(x) £ {0 , ±c} for all j > 0 we have 
lim sup l o g | ( ^ ) ' ( x ) | ><JI. 

Proof. — The first claim follows directly from the previous lemma, by induction on 
n. Observe that the step n = 1 is an immediate consequence of L4 which, as we 
already remarked, implies |ci | < x^ and so |<^ a(ci)| > A/2 > ea. 

For the second statement we distinguish two cases according as to whether the 
orbit of x accumulates one of the critical points or not. If it does not, the result 
follows immediately from the previous lemmas which guarantee that | ( ^ ) ' ( a : ) | > 
Ce^-7, W j > 0 which immediately implies the result taking a\ < /3. If the orbit of x 
does accumulate one of the critical points then we claim that for every N > 0 there 
exists an n > N such that |(^a)'(^)| > e^n. This claim clearly implies the desired 
statement. Let \i\ < ¡1^ < • • • < fik < N be all the returns of x to A ± c before 
time N and let pi,P2>--- be the lengths of the corresponding binding periods. If 
N > Hk + Pk then we have by the same arguments used in the proof of lemma 2.5 
that |(<£^)'(#)| ^ e ( 3 N which proves the claim in this case. If N e (pk-,Pk)^ just take 
n = jj,k + pk 4- 1 and repeat the argument above. This completes the proof of the 
claim and of the proposition. • 

Remark 2.1. — A refinement of the previous arguments permits to show a stronger 
statement: liminf ^ log |(<^a)'( x)l ^ °~2 for some a2 > 0 and almost every point x. 
First one notes that this holds whenever x satisfies 

d(cpj(x)) = minila (a?) I , \ipt(x) ± cA\ > e~aj 

for all j > 0, by using essentially the same argument as we did above for the critical 
orbits. Then, using the distortion bounds we have been deriving, one shows that for 
Lebesgue almost every point y there is some k > 0 such that x = (fh(y) is as above. 

Finally, we make the simple, yet useful observation. 

Lemma 2.7. — Suppose that some parameter a G [c 4- pe, c 4- e] satisfies CPl(n) and 
CP2(n) for some n > 1. Let 1 < jbti < ¡12 < n be free iterates for the orbit of c. Then 

l ( ^ ™ ) ' ( ^ x ( a ) ) | > m i E [|У«(см(о))|,е^} е/3(/Х2-^1-1) 
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In particular, if |^a( cAn( a))l > e^> then \ 1-^1/X^e^'1-^1/X^e^'1-^1/X^e^'1-^1/X^ 

Proof — The proof follows easily by arguments almost identical to those used in the 

proof of lemma 2.5. • 

3. Partitions and distortion estimates 

3 .1 . Preliminary distortion estimates. — In this section we set up the ma

chinery which will enable us, in the next section, to estimate the size of the set of 

parameters satisfying conditions CPl(ro) and CP2(n) for all n > 1. Most of this 

analysis deals with properties of the family of maps 

CJ : UJ0 — > [ - c - £ , c + e] , CJ(a) = <pj(c), 

where c^o = [c + p e , c + e] and j > 1. Our first result implies that the derivatives cfj(a) 

of such maps grow exponentially fast with j , as long as the phase-space derivatives 

{fiy(c1(a)) = (dxiPi)(ci(a)) do. 

Lemma 3.1. — There is r/ > 1 such that if |(<£a)'(ci ( a ))l > e < 7 J for 1 < 3< n> then 

1 
< 

K-+i(a)| 

l t ó ' ( c i ( a ) ) | 
^ù^$ù for all 1 < j < n 

Proof. — The arguments are fairly standard. Using the chain rule we can write 

c'j+1 = da<Pa(cj) + dx(pa(cj)da(Pa(cj-i) H h dxif{
 1 (c2)da(fa(ci) + dxy

3

a{cx)c'x 

and so 

(12) 
c'j+l 

(^a) ' (ci) 

j 

i=l 

1-^1/X^e^' 

1-^1/X $=*$ 

Note that c'x = 1 and \da<Pa{ci)\ — 1 for each i. Hence, our hypothesis implies that 

(12) is bounded from above (in norm) by r\ = e ~ a l -

The bound from below requires a more careful analysis. For the time being we 

restrict to a = c and note that the first two terms in (12) are both positive (L4 gives 

ci > 0 and so da^a(ci) > 0, ^ ( c i ) > °> a n d 9a(fa(ci) • (<£a)'(ci) > ° ) - W e distinguish 

three cases. 

If Wn(c2)\ > V2 and \<p'(c3)\ > V2 (i.e. \a\ < for * = 2 ,3) then 

M3Ì l ( ^ * + 1 ) # ( c i ) | > ( v ^ ) 2 * | ^ ( c i ) l and l ( ^ f e + 2 ) ' ( c i ) | > ( ^ ) 2 f c | ( ^ ) ' ( C l ) | , 

by Proposition 1.1. It follows that 

l<2fc+l<j 

1-^1/X^e^' 

( ^ + 1 ) ' ( C ! ) 
> 

1 
1-^1/ 

1 -
oo 

k=l 
2~K > 0 

and a similar estimate holds for the sum over even indices. Thus the quotient in (12) 

is bounded from below by c[(a) — 1, which proves the lemma in this case. 
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Suppose now that |<^^(c 2 ) | > V2 and |<^a(c3)l < \ / 2 . Clearly, we still have the first 

estimate in (13) and so the sum of all the terms in (12) corresponding to odd values of i 

is again nonnegative. In order to bound the sum of the even terms we use Proposition 

1.1 once more and get (recall that |v?'a(ci)| > y/2 by L4) |(<pf )'(ci)| > (y/2)2k for each 

fc. It follows that 

l<2A;<j 

da<Pa(c2k) 
da<Pa(c2k) > 0 -

oo 

k=2 

y/2)~2k > -
1 

2 ' 

Hence (12) is bounded trom below by 1/2. 
The case |<£>c(c2)| < \ /2 and |<£>c(c3)l > V2 is quite similar to the previous one. The 

second estimate in (13) is valid here and so the total contribution of the even terms 

in (12) is nonnegative. On the other hand, | (<Pa f e _ 1 ) ' (ci) | > ( \ / 2 ) 2 f e - 1 yields 

l<2k-l<j 

da<Pa(C2h-l) 

^lk-1)'{c1) 
> 0 -

oo 

k=2 

V 2 ) 1 " 2 * > -
1 

y/2 

and so (12) is bounded from below by 1 — 1/ / 2 > 1/4. 

Note also that we cannot have |y>a(c2)l < v 2 and |vL( c3)l < v 2 simultaneously, 

by L5 . This means that the lemma is proved for a = c. The general case now follows 

easily. Fix / > 1 large so that J$2i>l e _ < " < 1/10 and take e to be small enough so 

that 

c'j+1(a) 

da<Pa(c2k) 

da<Pa(c2k) 

( ^ c ) ' ( C l ( c ) ) 
< 

10 
for all j < I and all a € [c, c + s]. 

It follows, immediately, that c ^ + 1 ( a ) / ( < ^ ) ' ( c i ( a ) ) > (1 /4 ) - (1 /10) = (3 /20) for all 

j < I. Moreover, for j > I we have 

c',+i (a) 

( ^ ) ' ( d ( a ) ) 

C;+i (a) 
(^)'(ci(a)) 

3 

\i=l + l 

da<Pa(c2k) 

¥>î)'(ci) 

oo 

l+l 

¥>î)'(ci) 
10 

and so cJ + 1 (o ) / (^) ' (c i (o ) ) > (3 /20) - (1 /10) = (1 /20 ) . 

It follows from this lemma that as long as the space derivatives (<fJaY(ci(a)) are 

growing exponentially for all a belonging to some interval u of parameter values, the 

maps Cj : to —>• Cj(uj) are diffeomorphisms, since |c^(a) | > l/rj\(<£>£)'(ci(a))| ^ 0. In 

particular the same is true for the maps <fr : Ci(uj) —> Cj{u) defined by 

x Cj oc{

 x(x) 

for 0 < i < j, even though the space derivatives may not be growing exponentially 

between time i and time j. We have that 

(14) *'(ci(a)) 
\c'Aa)\ 

\c'(a)\ 
a G (v. 

Thanks to this fact we can still estimate the average expansion of the "intermediate" 

images of u. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



218 S. LUZZATTO & M. VIANA 

Lemma 3.2. — Suppose that we have |(<^£)'(ci(a))| > eai for all 1 < j < n and 

a £ UJ. Then, for all integers l<k<l<nwe have for some £ £ UJ 

¥>î)'(ci)T)2 

¥>î)'(c 
M 0 ) | < 

¥>î)'(ci) 

|Cfc(a>) <r)2\(<plfk)'(ck(0)¥>î)'(ci)\ 

Proof — Defining * : Ck(uj) —> Q(CJ) as above, we have by the Mean Value theorem 
|c/(a;)| = \$>f(ck(0)\\ck(u)\ for some £ £ UJ. Thus from Lemma 3.1 and the formula 
above for the derivative of 3> we have immediately the statement in the lemma. • 

3 .2 . Partitions. — We shall now use the family of maps {CJ}, together with Lemma 

3.1, to construct two nested families {i^NLNEN and { i £ N } N € N of subsets of UJ0 

••¥>î)'(ci)•ÇEnÇFnÇ En-i Ç . - . Ç w o 

and a monotone sequence {Vn}neN of families of subintervals of UJQ 

--^Vn>- Vn-i > >- {UJ0} (given UJ eVn 3UJ' £ Vn-i with UJ C UJ1) 

as follows. All the parameters belonging to Fn satisfy CPl(n): d(cj) > eie~OL^ for 
a l l 1 < 3 < n - Each Vn is a partition of Fn into intervals. Moreover, En is a union 
of elements UJ £ Vn such that CP2(n): Pj < j/2 for all 1 < j < n and a £ to holds. 
In view of Proposition 2.6, the parameters in = f]neNEn will satisfy EG for all 
times (we shall take A+ = U£Af, where the union is over all small values of e > 0). 

The construction of the objects described above is carried out inductively. As the 
first step of the induction we simply set E0 = Fo = UJO and VQ — {uJo}- Now suppose 
that Fn—ijEn—i, Pri—i have been defined and let us explain how parameters are 
excluded at the nth stage and the partition Vn and the sets Fn, En are constructed. 
For that we consider separately the cases n < r$/a and n > rs/ay see Remark 3.5 
below. In what follows we denote A + = A ^ U A ^ U A + c and A = A 0 U A c U A _ c . 
For r > 0 we let A r denote the eTe _ r-neighbourhood of the origin and of the critical 
points. Recall also that r£ = [Slog 1/e] and rs = [(7 + 2 ( 5 + 6 ) log 1/e]. 

Suppose first that n < rs/a. Given any UJ £ Vn-i with UJ C En-i, there are two 
possibilities: 

1 : If cn{to) does not intersect A[an] then, by definition, UJ is also an element of 

Vn and it is contained in Fn and in En. 

2 : If cn(uj) fl A [ a n ] ^ 0 then parameters have to be thrown out in order that 

CPl(n) hold. We write UJ'€ = c~1(A[an] C\cn(uj)) and we also let UJ" be the union 

of those connected components of UJ \ UJ'€ whose image under cn is completely 

contained in A [ a n ] _ i . Both these sets of parameters are excluded from the 

sequel of the argument: by definition 

En H UJ = Fn H UJ = UJ \ {u'e U UJ") 

and the elements of Vn contained in UJ are precisely the connected components 

of UJ \ (uj'e U UJ'I). We observe, for future reference, that any such component UJ 
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contains an interval of the form 1% with \r\ — [an] — 1. We call this interval 

the host interval of u at the return n. Moreover this immediately implies that 

= Uk Ç Uk-i Ç • • • C CJI C co 

Thus we have for each k < rs/a and CJ € Vk a nested sequence of intervals 

eu = Uk Ç Uk-i Ç • • • C C J I C co>o with c î 6 7^, i = 0 , . . . , k 

and a sequence of escape times 

= Uk Ç Uk-i Ç • • • C CJI C co>o 

defined by the fact that the situation described in case 2 occurs precisely at these 

times. The corresponding components ujVi € VVi are called escaping components. 

By definition we also call the original parameter interval U>Q = (c + s/p, c + e) an 

escaping component. Notice that case 1 and 2 describe the only situations which can 

occur before time rs/a. Since case 1 does not involve making any changes to existing 

parameter intervals (i.e. UJI — t^ - i if Q O - ^ - I ) satisfies the conditions described in 1) 

we have ujVi+1 C = Uk Ç Uk-i = ujVi+1-2 = • • • = u)Ui. As we shall see this is not true in 

general for iterates larger that rs/a. 

Now we treat the case n > rs/a. In order to define Vni Fn, En, we need a 

refinement of the partitions { / * } , * = 0, dbc, introduced in the previous section: for 

each \r\ > 1 we let { / * z : 1 < / < r2} be the partition of 7* into r2 intervals of equal 

length. We suppose that / is increasing in the same direction as r, i.e. as we get closer 

to the singularity or the critical points. As above we associate to every u € Vn~i 

with u C En—i a nested sequence of intervals UJ = con-i C • • • C o;0 and a sequence of 

escape times 

1 < u\ < - - • < vi < rs/a < Z//.J-1 < • • • < vs < n — 1. 

Each u>i, 0 < i < n — 1, is just the element of Vi that contains u. For j < I the Vj 
are exactly the escape times described above. However, for / < j < s — 1 we also have 

between two consecutive escape times a (possibly empty) sequence of return times 

= Uk Ç Uk-i Ç • • • C CJI C co>o = Uk Ç Uk-i Ç • • • 

and similarly for j — s we have 

Vs < /¿0,5 < < V>q{8),8 <n~l. 

Moreover to each such sequence of return times is associated a sequence of integers 

= Uk Ç Uk-i Ç • • • C CJI C co>o 

As part of the inductive step of our construction we also explain when and how 

I/«+l>/igW+l,« and Pq(s) + l,s 5 are introduced, assuming that such sequences are defined 

for all iterates up to n — 1. We consider four cases separately: 

3 : If q(s) > 0 and £^(s)+i,s < n < ßq(s),s+Pq(s),s . then uj e Vn and LO C En C Fn. 
Moreover, we leave the sequences unchanged. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



220 S. LUZZATTO & M. VIANA 

4 : If cn(oj) does not intersect A±c U A°a or if this intersection is completely 
contained in one of the extreme subintervals of A±c U A£ , i.e. 

c „ M n (A±c u < ) ç 4(r.+1),(P.+1). u/|(cr£+1))(re+1)2, 

then once more we let UJ G Pn and UJ C i£n C Fni and we keep the sequences 
unchanged. 

From now on we assume that neither 3 nor 4 hold. 

5 : If CU(UJ) intersects A±c U A°s but does not properly contain any subinterval 
ifi with \r\ > r£ or 7°z with \r\ > rs, we set UJ G Vn and UJ C Fn. Moreover, 
we let jJ>q(s)+i — n and Pq(s)+i — min{p(cn(«)) • « £ <̂ }5 recall Lemma 2.4, if 
cn(oj) n A°a = 0 , and = Uk Ç Uk-i Ç • = 0 otherwise. We say that n is an (inessential) 
return for u; G Pn and that = Uk Ç Uk-i Ç co>o is the length of the associated binding 
period. Note that cn(uj) is contained in the union of at most two JT*m. We 
shall prove in Lemma 3.4 that CPl(n) is automatically satisfied in this case. 
Then we take UJ C En if all a G UJ satisfy CP2(n) and En HUJ = 0 otherwise. 

6 : If cn(uj) intersects A±c U A ^ and contains some J^c with \r\ > r£ or I®s with 
\r\ > rs, we carry out the following construction. We start by excluding the 
parameters which do not satisfy CPl(n) . More precisely, we let 

= Uk Ç Uk-i (AUkÇcm I = Uk Ç Uk-

and UJ" be the union of the connected components of UJ \ uj'e whose image under 
cn contains no subinterval /*>m. By definition FnC)uj — UJ — uj\(ujfeUuj"). Then 
we partition UJ into subintervals UJ = (Ur,iUr,i) U ( U ^ ) where the first union 
runs over some subset of pairs (r,I) with r£ < \r\ < [an] or rs < \r\ < [an] 
(depending on whether n is a return to A±c or A0), the second one involves 
at most two u^, and 

a : cn(uJr,i) D I*i but contains no other interval I*m (thus it is contained 
in the union of I*t with the two 7*m adjacent to it). We call 7*z the 
host interval associated to ujr,i at time n. 

b : cn(uji) is disjoint from A±CUA^ but contains some 1^ with |r| = r£ or 
Zj?! with \r\ = rs. Again we call this interval the host interval associated 
to ¿¡5 and time n. 

The elements of Vn contained in UJ are precisely these ujTyi and UJI. For UJTJ we 
let liq(8)+i =nandpgW+1 = min{p(cn(a)): a Guv,/} if* = ±candpgW+i = 0 
if * = 0. In particular n is an essential return time for each uorj G Vn- For 
the intervals UJI described in 6b we let vs+i = n. In particular n is an escape 
time for UJ G Vn and these intervals are escaping components. Finally, En P» UJ 
consists of the union of the intervals described above which satisfy CP2(n). 

This completes the inductive definition of the sets En,Fn, the partitions Vn, and 
the sequences Vj, /JLJ , and pj. 
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Remark 3.1. — Host intervals can give some indication as to the type of situation we 

are dealing with. So, if u G V% has, at time i, an associated host interval of the form 

J°, \r\ = [an] — 1 then this implies that i = Vj is an escape time and that LJ is created 

at time i/j as a consequence of a situation like the one described in case 2. Similarly 

if the host interval is of the form Jj? l 5 \r\ = rs or J ^ , |r| = r£ then i = I/J is also an 

escape time as described in 6b. On the other hand if the host interval is of the form 

7 ° , with \r\ > rs + 1, 1 < I < r 2 or iff with \r\ > r£ + 1, 1 < I < r 2 then i = for 

some fc, j and fikj is either an inessential return as described in case 5 or an essential 

return as described in case 6a. 

A main difference between the latter two cases is that for essential returns we have 

upper and lower bounds for the length of c M f c i (u) in terms of the associated host 

interval. More precisely, recall case 6a, c/jtk^ (u) contains some I*t and is contained in 

the union of I*t and its two adjacent intervals of the form i £ m . Therefore we have 

e7e~r/r2 < | c^ f c . < 10eye~r/r2. In the case of inessential returns we have the 

same upper bound but no a priori lower bound. 

Remark 3.2. — We will sometimes talk about the sequence of escape times and re

turns associated to a single parameter value a or a subinterval a/ C cv G Vn which 

does not itself necessarily belong to any partition (although we will always consider 

subsets of intervals which do belong to some Vn). In these cases the sequences are 

just those associated to the the interval LJ G Vn to which a or u' belong. 

Remark 3.3. — We will frequently talk about returning situations or escape times at 

time n for some interval u>n_i G Vn-i (and not in Vn). In these cases we will just be 

referring to the fact that c n ( u ; n _ i ) intersects a neighbourhood of the origin or of the 

critical points in a way which is described in one of cases 2,5 or 6 above. Therefore, 

at time n some action may be required (parameter exclusions, subdivision of c^ n_i 
into smaller intervals) which yields the final classification of the surviving pieces of 

LJn-i into pieces (now belonging to Vn) for which n is either a return (essential or 

inessential) or an escape time. 

Remark 3.4. — Notice that the definition of the binding period p = P(UJ) given here 

does not completely coincide with the definition given in Lemma 2.4 for a fixed pa

rameter value a. However all the estimates obtained in that lemma continue to hold 

for the slightly shorter binding period defined here. 

To simplify the exposition we will often refer to a generic host interval of the form 

I*t. This will include the host intervals which occur in case 2 which, strictly speaking, 

are of the form I*. Moreover we shall often suppose that r > 0 since most of the 

times we are only interested in the norm of r and not its sign. 

Remark 3.5. — The condition n < rs/a means that A [ a n ] D A r s and so 

cn(u) n A ± c = 0 for all to G Vn. 
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Indeed, cn(a) G A ^ c would imply cn_ i (a ) G I® with \r\ « rc « ( ( 1 / A ) — 7) l o g s - 1 » 

(2(7 + 5) + t ) l o g £ - 1 « rs, recall (3) and (4), and so cn_ i (a ) G A ^ . This is a 

contradiction, as such a parameter a would have been excluded already at time n — 1. 

By construction (and the remark we have just made) all the elements of Vn obtained 

in that case contain some interval ij? with |r| = [an]. Combined with Lemma 2.3 this 

gives 

l ( ^ ) ' ( c i ) | > e " ° ' for all 1 < j < n and a G Fn. 

Finally, rs/a can be made arbitrarily large by fixing e and a sufficiently small. 

Remark 3.6. — We shall show below that for u G Vn the distortion 

sup{ | (^) ' (Cl (a) ) / (^) ' (c i (6) ) | : a,b e a,} 

is bounded above by some constant. It is crucial to the overall argument that this 

constant is independent of u as well as of n. The proof of this fact relies on the 

exponential growth of the intervals CJ(LJ) as well as on the fact that Cj{u) is small 

compared to its distance from the critical points and the discontinuity, where the 

distortion explodes. This is why no action is required in case 5 above whereas we 

need to cut LJ into smaller pieces in case 6. 

Throughout the rest of the paper we will use C (resp. C) to denote a generic small 

(resp. large) positive constant independent of e, u or the iterate under consideration. 

Lemma 3.3. — Letuj G Vn-\, uo c En-\ and suppose thatn is a return for LU G Vn-\. 

Let v < n — 1 be the last essential return or escape time of u before time n and let 

I*t be the host interval associated to v. Then we have the following estimates. 

(1) / / * — 0, i.e. if v is a return or escape time associated to A 0 , and 

(a) n = v -h i is a return to A±c: \cn(u>)\ > £1_K; 

(b) n > v + 1 is a return to A0 : 

k n M I > C(e^e-r)2X/r2 > enf-P/<re-(i-PMr. 

(c) n > v + 1 is a return to A ± c : 

= Uk Ç Uk-i Ç • • • C CJI C co>o = Uk Ç Uk-i Ç • • • C CJI C co>o = Uk Ç Uk-i Ç 

(2) If * = ±c, i.e. if v is a return or an escape time associated to A ± c , and 

re ^ r ^ (7 + <5 + ¿1 log 1 /£ then n is necessarily a return to A0 and 

e ^ r ^ (7 + <5 + ¿1 log 1 /£ te ^ r ^ (7 + <5 + ¿1 lo 

(3) If * = ±c and r > (7 + S + ¿) log 1/e and 

(a) n is a return to A u : 

M " ) | >e2^+ô+2^^e'20r^/r2 >e ^ r ^ (7 ¿1£y-P/<re-(i-PMr. 

(b) n is a return to A±c: 

k n M I > ^1~1/A+27+5+2/37/<7e-2/3r/o'/r2 > £ i - i / V " ^ < 7 e " ( 1 ' ^ ) r . 
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Proof. — The basic strategy of the proof is to estimate \(<p2~"y (ct,(a))\ f°r elements 

a G u>. Applying Lemma 3.2 and the Mean Value theorem we can then carry this 

expansion over to parameter space and get 

(15) |cn(u>)| > mî{\{ipTvy{cv{a))\ : a G W } | c M | / ^ 2 . 

Keeping in mind that the definition of host interval implies |ci/(a;)| > e^er/r2 we shall 

get the desired result in each case. 

Suppose first that v is a return to A0 and that n = v + 1 is a return to A±c. Then 

c„(a;) C <^~1(A=bc) for some a G CJ and Lemma 2.2 gives 

e ^ r ^ (7 + <5 + ¿1 log 1 /£ t| > Ce1/x/((l/ > e^e^1-

since r « (1/A - 7) log lie. Moreover |c„(u>)| > Ce1/x/((l/\ + 7) log 1/e)2 and so 

| c „ M | > C £ / ( ( l / A + 7 ) l o g l / e ) 2 >£1+ t 

for small i > 0. This proves ( l a ) . Now let i / b e a return to A0 and consider first the 

situation in which \r\ > rs + 1. We have that for all a G a;, by Lemmas 2.2 and 2.7 

we have 

\(fl)'(cAa))\ > ( e ^ ) 2 * - 1 and \{^~"-2)'(c„+2(a))| > C e ^ - ^ l 

For this last statement we have used the fact that cv G A0 implies | c „ + i | > and 

this in turn implies |c^_j_21 < (see condition L4) which in particular means that 

|(p*(c^_|_2)| > • Applying Lemma 3.2 we get |cn(a;)| > C(eye~r)2X/r)2r2 proving the 

first inequality in ( l b ) . The second inequality just follows by taking fi/a < 1 — 2A. 

If n is a return to A ± c then we have an additional factor of s1-1/A coming from the 

large derivative in cp~1(A±c) and we get ( l c ) . If r < rs we apply the same arguments 

to the subinterval uJ C u where c^(cU) = I*sl and get |cn(cJ)| > C(eye~r)2X/r)2r2 

respectively |cn(u>)| > Ce1~1^x(e'1e~r)2X/n2r2 which yields the desired result since 

\Cn(u)\ > \cn(uJ)\. 

Now suppose that v is a return to A ± c . If |r| = r€ then the binding period has 

zero length by definition and we simply have, defining uJ = c~1(/^^1) C oo , 

\cn(cj)\ > |cn(üJ)| > Ce^ô(eye-^)/r]2r2 > Ce2^+5)/rj2r2 > e-i/2syer°. 

If \r\ > r£ 4- 1 we have by by Lemmas 2.4 and 2.7 that, for all a G a;, 

( i 6 ) | ( v r " ) ' ( ^ ( a ) ) l > e ^ e ^ 1 - 2 ^ ) 1 - • i n f { ^ ( c , + p + 1 ( a ) ) , e ^ } ^ ( n - " - p - 1 ) 

(17; > ff7+<5+2/371ae(l-2ß/>)r 

if n is a return to A0 and \{<Pa~")'Ma))\ > £i-iM+7+<5+2/37/<xe(i-2/j/a)r if it is a 

return to A ± c . Notice that in both cases we have used \^p'{cv+p+\{a))\ > ey+s. Now 

applying Lemma 3.2 and equations (15)(16) we get 

(18) > e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^en 
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Now if r < (7 + S + ¿) log 1/e then we have from (18) 

> e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^e^1-2^)1- •ùinf{^(c,+p+1(a)),e^}ù^$%$$ 
n 

If r > (7 + 5 + 0 tog l / £ then we write e"2/3r^ = e-(i-/V^e(i-/V<x)r and e(i-/3/<x)r > 

£-(i_0/<r)(7+<5+O and therefore, using (18), 

k n ( ^ ) | > e2^+5+2^/°r-(^+(5+0+/3/^(7+5+0e-(l-/3/ > e^e^1-2^)1- •inf{^(c,+^)r > e^-p/ae-(l-/3/a)r^ 

This concludes the proof of the lemma. • 

We now formulate some easy consequences of these estimates. 

Lemma 3.4. — If n is an inessential return for some UJ E Vn-i with UJ C En-\, then 

CPl(n) holds for every a E UJ. 

Proof. — We claim that 

(19) > e^e^1-2^)1- •inf{^(c,+p+ 

This implies the statement in the lemma for the following reason. Suppose by contra

diction that some a E UJ did not satisfy C P l ( n ) , i.e. d(cn(a)) < e1e~OLTl and in par

ticular cn(uj) D A^n] / 0 , * = ± c , 0 . Then, either cn(uj) C Afan]_1 or cn(uj) D I^n]. 

The second alternative is not possible since it would contradict the fact that n is an 

inessential return. The first alternative cannot happen either since the claim implies 

l cn (^ ) | > 2eeye^an^~1 = |AjsQ;nj_1|. Thus we have reduced the proof of the lemma to 

that of (19). However this is an easy consequence of Lemma 3.3. Indeed recall that 

r < an and therefore if the last essential return v < n — 1 occurred in A0 we have 

\cn(uj)\ > Ce2X^e-2Xr/r2 » S s ^ e ' ^ . 

If v is return to A ± c and \r\ — rE then the result follows immediately from part (2) in 

Lemma 3.3 keeping in mind that returns to A±c can occur only for iterates n > a/rs. 

If |r| > r£ + 1 we distinguish two cases. Suppose first that |r| > (7 + 5 + log 1/e. 

Then 

\cn(uj)\ > £27+*+2/37/<Te-rel-2/V<rr/r2 > > e^e^1-2^)1- • i n f { ^ ( c , + p + 1 ( a ) ) , e ^ } ^ ( n ^ + 5 + 2 ( 3 ^ / a-(1-2(3 / a)(~f+5+i) e~r 

> el+2(3-Y/CT-I+2P{7+Ô+L)/ae-r > £-I /2^7E~R >^ g^7e~[ocn] ^ 

Now suppose that r < (7 + S + i)\ogl/e. Since v < n — 1 is a return to A ± c we 

also have n > rs/a — ([7 + 25 + t]/a) log l / ^ . Therefore it is sufficient to show that 

lcn(<^)| > 6eJe~Ts > £2(7+5)+^ This follows from part (2) of Lemma 3.3 which gives 

|cn(<^)| > e2l+5+2(3l/ae~2l3r/(T > £27+5+2/57/o"+2/3(74-5+0/^ ^ 6£2(t+5)+\ 

This concludes the proof of the lemma. 

Lemma3.5. — Suppose that UJ E Vn-\,uj C En—i is an escaping component created 

at some time v < n — 1. Then, if n is a return for UJ we have 

\cn(uj)\>s-L/2s^e->e^1-2^r*. 
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In particular n is a return to A0 for u and there is a component UJ C u for which n 
is an escape time. 

Proof. — The statement in the lemma follows immediately from Lemma 3.3. If v is 
a return to A±c the result is part (2). If v is a return to A0 then we have |cn(o;)| > 
C(e*e-r*)2X/r28 » e - * / V e - r - . • 

3.3. More distortion estimates. — For the following lemma we fix e1 independent 
of e. Let A£> and A2et denote respectively e' and 2e' neighbourhoods of the origin 
and of the critical points. We suppose that e' is chosen sufficiently small so that 
conditions Ml and M2 hold in A2e>. Let I C [—a, a] be an interval. For each x E I 
define d(x) = min{|x|,|a; ± c |} and d(I) = inf{d(x) : x e I}. Finally let D{I) = 
sup{|</?/J\x)IV'(y)\ : x,y E We call an interval admissible if / D A£> ^ 0 implies 
|/| < e>. 

Lemma 3.6. — For any constant C\ > 0 there exists a constant C2 > 0 such that if 
I is an admissible interval then 

\I\ < Cid(7) =4> D(I) < C2/d(I). 

Proof. — If InA£f = 0 then both (f'(x) and (f"(x) are bounded above and below by 
constants which depend only on the map and on e\ and the statement in the lemma 
follows immediately. So suppose that I fl Ae* ^ 0. Then, since I is an admissible 
interval we have | / | < e' and in particular I C A2e>. Therefore either I C A®^ or 
I C Aff,. If I C A%€, then, by condition Ml , 

\v"{x)\<Cd(I)x-2ù^ù 

and 

\<p'(x)\ > C(d(I) - I / D ^ 1 > C( ( l - CiMI))*-1 > Cdil)*-1. 

and so D(I) < C2/d(I) for some constant C2 > 0. If I C A ^ then 

\<p"(v)\ < C and \<p'(x)\ > Cd{I) 

which immediately gives D(I) < C2/d(I). 

Lemma 3.7. — There exists a constant A > 1 (independent of e or n) such that if 
u) E Vn-i with UJ C En-± and n is a return to A±c then 

(^l)'(Cl(â)) 
(^)'(ci(a)) 

< A for all a, a £ co and all 0 < k < n — 1. 

/ / n is a return to A0 we have the same result for any a, a belonging to a subinterval 
ZJGUJ with \cn(oJ)\ < m a x { ( ^ e - a n ) 2 A , e 2 ( ^ ) } . 
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Proof. — We shall prove the result for the case k = n — 1. It will be apparent from 

the proof that the result holds for all other values of k as well. Write ci — <Pa(c) and 

Ci = <p^(c). By the chain rule 

(^)'(d(â)) 

(^) ' (c i (a)) 

k 

i=l 
1 + 

> e^e^1-2^)1- • 

a)),e^}^(n 
< 

fc 

i=l 
1 + | i4i | , 

letting Ai = (<p^(ci) — <p'a(ci))/Vaici)i and thus the proof reduces to showing that 

]CiLi is bounded above by some constant independent of e, n, or UJ. By the 

Mean Value theorem we also have |<^(ci) — </?a(c*)l < l̂ i — ciW(Q f°r some £ E Ci(uj). 
Therefore we have 

(20) 1^.1 < \ci(u>)\ 'D(auj). 

Let 1 < < /bi2 < * * • < Us < Ms+i = n be the essential and inessential returns 

(cases 5 and 6a) of UJ in the time interval [1, n]. Notice that we do not include escape 

times in this list. Let p i , . . . ,ps be the corresponding binding periods as defined in 

the previous subsection (recall that pj = 0 if fij is a return close to A0) and r i , . . . , rs 

be the values associated to the corresponding time intervals. 

We start by considering the case in which the sequence of essential and inessential 

returns is empty, e.g. if n < rs/a. Then n is necessarily a return to A0 for otherwise 

n — 1 would have been such a return. We suppose without loss of generality that 

|cn(o;) | < (s'Ye~an)2X, for otherwise we could restrict ourselves to some subinterval UJ 
for which this condition is satisfied. Let e' be the constant fixed in Lemma 3.6 and 

suppose first that CI(UJ) n Ae/ = 0 . Then d(ci(uj)) > e1 and \<p'a(ci(uj))\ > Ce' for 

all a E UJ, and therefore by the standard arguments which we have used repeatedly 

above we get \CI(UJ)\ < C e - ^ ^ - ^ ^ e " ^ ) ^ < Cd(ci(uj)). Then by Lemma 3.6 we 

get |A i | < Ce-<T°(n-1). Now suppose that Ci(uj) n A ° , ^ 0 . A preliminary estimate 

for the length of CI{UJ) is given by 

(21) \ci(uj)\ < e-a^n-^\cn(uj)\ < e-<ro(n-i)(£ye-an^2\ ^ e, 

This shows that C{(UJ) is an admissible interval. Now we need to obtain a stronger 

estimate to show that it actually satisfies the hypothesis of Lemma 3.6. We distinguish 

two cases according as to whether d(ci(uj)) > (e/ye~an)2X or d(ci(uj)) < (s1 e~~~an)2X. 

In the first case we have from (21) that the hypothesis of the lemma are satisfied 

and \Ai\ < C\ci(uj)\/d(ci(uj)) < Ce~~a°(n~1^. In the second case we have that the 

maximum distance between Ci(uj) and the origin, for a E UJ is 

\d(uj)\ + d(ci(uj)) < 2(e^e-an)2X < e'. 

Therefore Ci(uj) is entirely contained in the region in which condition M l applies and 

it is easy to see by a simple variation of the argument in the proof of Lemma 2.2 that 

we have, for any a E UJ, 

> e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(nù 
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From this we obtain an improved estimate for the size of c«(u;), namely 

> e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^e^1 

Then, from this and Lemma 3.6, \Ai\ < \ci(<jj)\/d(a(u)) < Ce-070^-1) . Now suppose 

that Ci(uj) H Af,c ^ 0 . Since |y>'(c*(°))l ~ d(ci(uj) we have 

\Ci(ü>)\ < e ^ ^ ^ d f e M ) ) - 1 ! ^ ^ ) ! < C-^^-D(d(c.(a;)))-l(e7c-an)2A-

Moreover, in this case we necessarily have d(ci(cj)) > (s7e~an)2A for the following 

reason. Since to C S n - i and i < n — 1 we have that, by definition, all a G w 

satisfy condition C P 1 up to time n — 1 and, in particular, at time i — 1. Therefore 

d{ci-\{uj)) > sye~°c(l~1) > £7e_Q!n. Then because of the form of the map near the 

origin (condition M l ) this implies d(ci(co)) > («s7e_a^-1))A » (e7e~an)2A. Therefore 

Ci{u) is an admissible interval and we have 

\d(u>)\ < e-cro{n-i)(eye-(*n)-x(eye-an)2X 

which give |̂ 4.̂ | < \ci(cv)\/d(ci(uj)) < Ce*7^71 l\ Therefore we can sum over all iterates 

to get 

n-l 

i=0 

\Ai\ < a 

This proves the lemma if there are no essential or inessential returns for to before time 

n. 

Now we consider the cases in which there is a non empty sequence of returns. We 

start by estimating the values \A^5 \ for j = 1 , . . . , s. Since cili is contained in the 

union of three intervals of the form I*x we have \cIJLj (u)\ < Ceye~rj /r2 < Cd(cfJ/j (a;)) 

and therefore by Lemma 3.6, 

Dic^j (co)) < C/d(cßj(u)) < CsyerK 

Substituting in (20) we have 

\A^\<C/rl 

We now consider Ai where i is not a return iterate. Notice first of all that any 

return iJ,j+i to A±c is immediately precededby a return fij = —1 to A 0 . Therefore 

if i E (jjij, jjij+i) we necessarily have that is a return to A® . Therefore we only 

need to distinguish two cases according as to whether jij is a return to A0 or to A ± c . 

For the moment we also restrict our attention to values of j < s — 1. 

Suppose first that fij is a return to A0 . We distinguish two subcases: either 

| ^ ' ( c i ) | > e(S f°r all a E a; or there is some a E a; for which \tp'(ci(a))\ < e@. Then 

Lemma 3.2 and Lemma 2.3 give |(<^Mi+1~l)'(ci(a))| > e^^j+1~^ in the first subcase 

and \(^j+1~lY(ci(a))\ > £7+<5e^/Xj+1"~z_1) in the second subcase. Moreover applying 

Lemma 3.2 this gives 

IciMI < r72e-^+1-i)|c^.+1(u;)| < r f e - ^ + ^ h ^ + ^ / r 2 ^ 
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and 

\d(uj)\ < r ?2s -^e -^+1- i -1 ) | cA , i+1(o ; ) | < ^ - / ^ i + i - i - D £ ~ r + ô + c / R 2 ^ 

respectively, using the fact that \c^j+1^) \ < £lfe~rj+1 /r2+1 and that r^+i > rs since, 

as we mentioned above, /Xj+i is necessarily a return to A£s. Moreover we have that, in 

the first case, since i is not a return iterate, d(ci(uj)) > £2(T+<*)+^ jn the second case we 

know (from the fact that CI(UJ) is small and \cpf(ci(a))\ < e& for some a G UJ) that Ci(uj) 

is relatively far from A0 and relatively close to ± c and therefore since i is not a return 

iterate, d(ci(uj)) > £7+<5. In both cases we have that Ci(uj) is an admissible interval 

and applying Lemma 3.6 and substituting in (20) we get \At\ < Ce~^^j+1~t>}/r2+1 in 

each case. Moreover we can sum over all i G (Mj^Mi+i) to get 

> e^e^1-2 

>,e^}^(n 

* i \ < C / r ] + 1 . ^ ù $ 

Now suppose that jij is a return to A ± c . Then there follows a binding period 

{fij^jjij + pj] and a (possibly empty) free period (fij 4- Pj + 1 , F o r iterates 

i G (UJ +pj + l j / i j + i ) the situation is exactly as in the case considered above and we 

have \Ai\ < Ce-P^+i-^/r?+1 and E ? = ^ + i i + i 1 ^ 1 < C7/r?+1. So it just remains to 

consider bound iterates i G (/ i j , / i j H-Pj]. 

First of all recall that d(ctlj (UJ)) œ erye~rj and in particular, for all a G UJ, 

\Cl(a) - cH+1(a)\ < C(s~<e-r*^^$ù 

By the mean value theorem we have |c*(o;)| = \C^J+1(UJ)\ • |(<^_/ij'-1)'(C)I for some 

C £ Then using the bounded distortion estimate in Lemma 2.4(1) and the 

fact that |q(CC;)| < e7e^^j~1^ by the definition of binding period we get 

| ( ^ - ( « - D ) ' ( 0 | < 
£7e-/3(Mj-l) 

ù^$^ù$^ù 
< 

s7e~/3(Mi~l) 

(e^e~rj)2ù^$ 

Since |<£>'(x)| œ e^e Vj for all x G C^^UJ) we then have 

> e^e^1-2^)1- •inf{^(c,+p(a)),e^}^(n > em$^ù 

By Lemma 3.2 this gives 

\a(uj)\ < 
£7e- /3 (^ - l ) 

ù^$ù$ 
> e^e^1-2^)1- •inf{^(c,+p+1(e^}^(n 

Moreover d(ci(uj)) > £7e -« ( i -^ ) _ e-0(i-^) > Ce^e'01^-^ and therefore, substi

tuting in (20) we get \Ai\ < Ce^-PW-^/r? which also yields 

ùm$^$ù 

ù^$ù^$ 

> e^e^1-2^)1- •inf{^( 

Finally we consider the last piece of orbit (/JLs + ps,jis+i — 1]. This interval can 

be empty if the return JJLS+I occurs immediately after the end of the binding period, 
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i.e. if jJLs+i = H>s + Ps 4- 1, or if > e^e^1-2^)1- is a return to A±c. Indeed, in the latter case 

we also have > e^e^1-2^)1- = jjls 4- ps 4- 1 keeping in mind that fis is necessarily a return to 

A0 and that therefore ps = 0 by definition. So suppose that i E 4-£>s,jus+i — 1]. 

By the comments above this implies that !ù!ù^^!ù is a return to A 0 . Moreover we are 

assuming, by the hypotheses in the lemma, that c^a+1 C A^y+Sy Suppose first that 

\(f'{ci{a))\ < e& for some a E uj. Then, repeating the exact same arguments used 

above we have 

> e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n 

Moreover, from Lemma 3.6 we have D(ci(u)) < Ce mp^m^^m ùp^$ and so 

\M < \*{u>)\ • D(a(u>)) < Ce-M"-'-1). 

Now suppose that |<^/(ci)| > e13. We distinguish two further subcases according as 

to whether d(ci(u>)) > 52(7+5) or not. Suppose first that d(ci(u)) > e2^+6\ i.e. 

Ci(u) fl A ° ( 7 + ^ = 0 . Then we have :p^ù mo $$ < e~P(n-i)e2(nf+s) ancj appiying Lemma 

3.6, 

\Ai\ < \ci(u>)\ - D(a(cj)) < C e - ^ - ' l 

If d(ci(Lv)) < e2^+6^ then we still have \ci{tu)\ < e-P(n-i)£2{y+8) and? appiying Lemma 

3.6 

D(ci(u)) < C/d{a{u)) < C e - 2 ^ ^ - L . ^ p m ù $ m ù 

Notice however that since Ci(u) is small ( < £2(7+<5)) and d(ci(u)) < e^1+5\ Ci(u) is 

completely contained in a small neighbourhood of the origin, say Ci(u) C A0 where the 

derivative is very large. In particular we have from Lemma 2.2 that \(ip2)f (ci(a))\ > 

£(7+<*)(i-2A) for any a ^ ^ Therefore arguing as above we can obtain a much stronger 

bound on the size of c^(cj), more precisely, 

C iMI < e -^ (n- i+2)^+*) (1-2A) |A2(7+Ä) | < C e - ^ - ^ s ^ ^ - ^ s 2 ^ ^ . 

and therefore substituting in (20) we get 

> e^e^1-2^)1- •inf{^(c 

Finally, let R(q) be the set of indices j for which \rj\ = q and when R(q) is 

nonempty we denote by j ( q ) the largest of its elements. Notice that for all j E R{q) 

we have cMj. (u) < Ce~(3^^^~^^\cfjijiq) | and therefore we have 

n - l 

l 

\Ai\ 

^ù$ù 

1 

Ai\ + 
n - l 

!$^$ 
= 

\AA < C 

q:R(q)^0 
q~2 + C < A. 

This completes the proof of the lemma. 
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Lemma 3.8. — There exists a constant B > 1 (independent of e or n) such that if 

UJ G Vn-i with UJ C En-i and n is a return to A ± c then 

ù$$ùù 

Wk{a) 
< B for all a, a G UJ and all 0 < k < n — 1. 

// n is a return to A0 we have the same result for any a, a belonging to a subinterval 

UJ d UJ with \cn(uJ)\ < m a x { ( ^ e - a n ) 2 A , £ 2 ^ ) } . 

Proof — This is a direct consequence of Lemmas 3.1 and 3.7, just take B = Aq. 

4. Parameter exclusions 

We now wish to estimate the total measure of the parameters excluded during 

every step of the induction. We shall treat separately the exclusions due to each one 

of the two conditions on the parameter. We shall start by showing that for some 

positive constants Si, oc\ we have 

\En-x\Fn\ < e * e - a i n | S n _ i | < ^e"a in |Eb | 

i.e. the proportion of parameters excluded by CP1 at each iteration is exponentially 

small a s n ^ o o and as e —> 0. Recall that there are no binding periods and therefore 

no exclusions due to CP2 for iterates n < N = [rs/a] and that TV can be made 

arbitrarily large by taking e small. Thus we have En = Fn for all n < N and so 

(22) \En-! \En\ < e*e-ain | .Eb | V n < N 

and, inductively, 

\En\ > |£n_i | - e * e - a i n | £ b | > \E0\(1 -
n 

i=0 

s^e-"1*) V n < N. 

For general n we shall show below that \Fn\ En\ < e ain|i?o| and therefore we get 

from (22), |JSn_i \ En\ < 2e-°iin\E0\. This then gives, for n > N, 

\En\ > \EN\ - \E0\ 
n 

z=N+l 

2e~°ùli > \E0\ 1 -

TV 

i=0 

sSle-aii 
n 

$^^ù$ 

2e~aii 

and 

> e^e^1-2^)1- 1 -
N 

i=0 

> e^e^1-2^) 
OO 

i=N+l 

2e~aii >\E0\(1-C(e)) 

where C(e) 0 as s —> 0. 
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4 .1 . Exclusions due to C P 1 . — Recall that for each n we need to throw away 

parameters a for which cn(a) falls into the £7e~an-neighbourhood of the origin and of 

the critical points, which we denoted Aan. Moreover, if exclusion of these parameters 

leads to the formation of small connected components in parameter space (smallness 

being expressed in terms of their image under cn) then such components are also 

excluded. 

Given an interval UJ E Vn-i with UJ C En-\, the subset UJ C UJ of parameters which 

get thrown out at the nth iteration satisfies cn(uj) C A[an]_1. The aim of this section 

is to show that the ratio |u>|/|a>| is exponentially small for small e and large n. In 

principle this is achieved by estimating the ratio |cn(cD)|/|cn(u>)| and then invoking 

the bounded distortion estimates in Lemma 3.8 to show that this ratio is essentially 

preserved when pulled back by c~x. This works well for returns to A ± c as the bounded 

distortion estimates (cf Lemma 3.8) can then be applied to the entire interval UJ. For 

returns to A0 we face the problem that the bounded distortion estimates only apply 

to intervals UJ which satisfy |cn(cJ)| < m a x { ( e 7 e " a n ) 2 A , £ 2 ^ } . Nevertheless the 

next lemma show that this is sufficient for our purposes. 

Lemma 4.1. — There exist constants 5\ > 0 and ai > 0 (independent ofn ore) such 

that 

| ^ n - l | 
ù^$^ù$ 

> 1 - eôle~ain for any UJ G Vn-i with UJ C En-±. 

Proof. — Consider an element UJ € Pn_i ,u; C En-\. Let UJ C UJ be those parameters 

which get excluded at time n for failing to satisfy CP1. Clearly it is enough to 

estimate |<2/|a;| and we can suppose that n is a returning situation for UJ otherwise 

the statement would be trivially true. 

Suppose first that if n is not a return to A ± c then |cn(u;)| < (e7e_<*n)2A, in par

ticular the hypotheses of Lemma 3.8 are satisfied. Then we have 

| D | / M < B\^[an]^\/\cn{uj)\ < 2e2Be^e-an/\cn(üj)\. 

The estimates for cn(uj) have all been obtained in Lemma 3.3 and we just need to 
consider the various cases. If n is a return to A ± c we have either |cn(u;)| > e1+L from 
( l a ) or \cn(uj)\ > £i-i/*£y-0/cre-(i-0/*)r from (lc) and (3b^ Using the fact that 

r < an we clearly get the desired estimate in this case. If n is a return to A0 then 

( l b ) and (3a) give |cn(cj) | > ^y-^/^g-Ci-ZVo-)** which again yields the statement in 

the lemma since r < an. Finally case (2) gives |cn(o;) | > e~ll2e1 e~Ts. Notice that 

this case can only occur after a return to A ± c and such returns can only occur for 

large values of n, more precisely for n>rc/a^> rs/a. Therefore we have 

e1e-°in/e-L/2e^e-rs < £"/2e-^+rs < ei/2e-n{<*-a/n) < £i/2e-c*'n 

which proves the result in this case also. 
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Finally suppose that |cn(c«;)| > (eye~an)2X. Let & C u be such that |cn(cJ)| — 

(eye~ocn)2X, in particular, the hypotheses of Lemma 3.8 are satisfied by cJ and we 

have 

1 
2 < 

\w\ 
*/*/ |A[an]_i 

|CnM| 
< 2e/z 

m$m^ù 

{e^e-°Lri)2X 
< 2eB(eye-an)1-2X. 

This completes the proof of the lemma. 

4 . 2 . Exclusions due to C P 2 . — In this section we consider elements u C Fn,u € 

Vn which satisfy C P l ( n ) . We will set up a statistical argument to show that most of 

these elements (in measure theoretical terms) have spent a small proportion of their 

time in binding periods and therefore also satisfy CP2(n ) . 

Recall from Section 3.2 that a sequence of escape times 0 = vo < * * * < i = n is 

associated to each element u E Vn. Here we set i/o = 0 and v8+i — n for notational 

convenience and we call these escape times as well. Between any two escape times we 

have a (possibly empty) sequence of essential and inessential returns JJLQ < • • • < /j,q 

with fa = fiij and q = q(j). To each such return juti is associated a positive integer 

Pi > 0, the length of the associated binding period, and an integer Ti > 0 determined 

by the associated host interval. We let Pj = poj + • • • + pq,j, Rj = roj + • • • + rqj, 

P+ = Pi + • • • + Ps and R+ = Ri + ... Rs. In particular P+ = Pn, the total number of 

iterates before time n belonging to binding periods. From Lemma 2.4 we immediately 

get the following 

Lemma 4.2. — For u 6 Vn,ui C Fn we have 

Pn < 
2 ( P + + 3 / 2 1 o g l / £ ) 

a 
< . 2 ( l + 7 / ^ ) i ? + 

a 
In particular we can formulate an alternative condition 

C P 2 ' : R, < an!'4(1 + y/6) 

which immediately implies CP2: Pn < n/2. 

Lemma 4.3. — Let uVj E VVi and ù$$^$ $ 6 VVi be escaping components with uUj C 

Ui/j+x and suppose that there exists a non empty sequence /¿0 < • • • < fiq of essential 

returns between time ZA and time . Then 

ù^$^ù <ele->R\u>Vjù^^ù$^ù\. 

Proof. — Let uotli G be the subintervals of uo[Lj corresponding to the returns 

Hi, i = 0 , . . . ,q. We write 

(23 
1 + y/ 

1 + y/ 
== 

ù^^ 

ù^$ù^^ 
^$*= 
$=* 

ù$^ù 

k/XÇ-ll 

^$ 
1 ù$$ 

and begin by estimating |U;MO|/|U;Ì|. We have |C^0(CJÌ)| > e~L/2eye~rs, by Lemma 3.5. 

By the definition of the components UJ^ , notice that the first return after an escape 

time is always a return to A0 , we have |cMo(a>Mo)| < 10e7er° jr\ for some r0 > rs. We 
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distinguish two cases. Suppose first that c^,0(oJi) C A2(7+5). Then we can apply the 

bounded distortion estimates and we have 

(24) 1 ^ 0 I 
1 + y/ 

BWßo (^Vo)l , 

L ^ O ( ^ i ) L 
< 10Be~L/2ers~ro/rl. 

If c^0(uji) is not completely contained in A2(7+<5) then, using the fact that £7e r* « 

^2(7+5) we have 1 ^ ( 5 7 ^ ) 1 > e2(7+<5) - s^e-r* > e2(7+5)(l - eA> where ZJ C u>i is t h a t 

sub in terva l o f uv. whose image is completely contained in A2(7+<5). Then 

1 + y/ 

1 + y/ 
< ^Vol 

ù$^$ 
< B\Cßo ( ^ M O ) L 

1 + y/ 
< 

1 + y/1 + y/ 

1 + y/1 + y/1 + y/ 

< 10Bs-^2ô)e-ro/r2 « 1056-A/2ers-ro. 

We now turn to estimating the ratios \ujfJ/j\/\ujfJ,j_1 | for j = 1 , . . . , q. Each time we 

need to distinguish as above the cases in which cfJlj_1 (ojtij_1) is completely contained in 

A2(7+j) so that we can apply the bounded distortion estimates, and the cases in which 

this is not true. However, repeating the argument above we see that the estimates 

which we obtain in the former cases are always satisfied in the latter. Thus we shall 

consider in detail only the situation in which cfJtj_1(ujtJtj_1) C A2(7_|_#). Suppose that 

jjij-i is a return to A0. Then we have 

(25) 
ù$^ù 

17//* 
< 

105r?_1ere-p' 

y*2 £-2À7g—2Arj_i 
< 10JBr|_1e(1-2A>^e2A^-1-^ 

If /ZJ-iis a return to A ± c then we have 

(26) 
$*==* 

$=*$ 

10Br?_1e'*e-r* 
\QBr2j_1e~(1+6+2ßl/(T)e2ßri-l/(T-ri. 

< \QBr2j_1e~(1+6+2ßl/(T)e2ßri-l/(T-ri. 

Recall moreover that if JLLJ is a return to A±c we gain an extra factor of £1_1/A on the 

right hand side of (25) and (26). Finally we have l^+ i l / l^v j < 1-

Now let q denote the number of returns between JJLQ and n>q-\ (inclusive) which 

occur in A0 and g denote the number of those which occur in A±c. We do not include 

\xq in this count and therefore we have q = q + q -\- 1. Let R = 1 + y/ jh and -R = 

and R = YZ=o U = R + R + rq. Then we have from (23)(24)(25)(26) 

(27) 
ù^$ù$ 

$*$^^ < { l O B Y + 1 e l ^ e r ' e ^ - 2 X ^ e 2 X R e ( 1 / x - e r s £ ( 1 _ 2 A ) 7 ^ 1)я£-Ь+о+20у/<т)$е20п/<те-1г_ 

To simplify this expression we make the following three observations: 
n\ e2\R _ e(A+l/2)fie-(l/2-A)fl. 

(ii) ( 1 / A - l ) > 7 + 6 + 2/3-f/a and therefore 

e{l/\-l—f-6-2^/cr)qe2(3R/a Mc e2(5R/a ce2(5R/a e2(5R/a < e ( A + l / 2 ) f i . 
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(iii) IIQ is a return to A0 and therefore q > 1 and R> rs. 

From (27) and these observations we get 

ù^$^ù$ 

N 1 
lOjB)9+V/2ers£(1~2X)7e~^\Q\QBr2j_1e~(1+6+2ßl/(T)~(1+6+2ßl/(T)e 

Now using the fact that rs = [(7 + 28 -h £) log l / s and > re = [(7 4- 8) log 1/e] we 

see that 

(A-l/2)rs-(A+l/2)rg < (A-l/2)(7+2(5+0 + (A+l/2)(7+(5) 

<£A(27+3<5-ft)-(5+0/2 < £i/2 

Thus we have 

l^T+il 
ùù^^$ù 

< (10P )«+Ve(A+1/2 - i )* 

Finally, since g < R/r£ we have ( lOS)9 < ((KXB)1/Ve)R and so, taking e > 0 small we 

get 

N + i 1 

N 1 
< ele~lR. 

This concludes the proof. 

Now let rjq (R) denote the number of possible sequences r\,..., rq with ri > 8 log e 1 

and ri + (- rQ = i? and let T7(i?) = J2q>o Vq(R)-

Lemma 4.4. — For e > 0 sufficiently small we have that, for all R E N, 

r](R) < elRf2. 

Proof. — The result is purely combinatorial. We want to estimate, for each fixed g, 

nq{R) < R < 
R\ 

\QBr2j_1e~(1+ 

Using Stirling's approximation formula for factorials: 

V2^kkke~k <k\< V2nkkke~k{\ + l/4fc), 

we get 

Vq(R) < 
V2^RRRe-R(l 4- 1/4R) 

V2Wqqqe-^^/27r(R - q)(R - q)R-Qe-(R-<i) 

< 2 
RR 

\q(R- q)R-<* 
for small e > 0 (and therefore R large) 

< 2 
ù^ 
$ù 

q R 

<R-qj 

R-q 

< 2 
1 

I a/R 

, q/R 1 

1 - a/R 

i-q/R- ,R 

Now since q/R < 1/5log 1/e - » 0 we have that (l/(q/R))q/R and (1 / (1 - q/R))1^'11 

both tend to 1 as log£ - » 0. Thus we get nq(R) < e^lRl2^l2. Notice that the value of 
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q is bounded by q < R/(8\og 1/e) < R, for each i?, and so, summing over all possible 
values of q we get r)(R) < Y2q<R'nq(R) < eLR- D 

Now let UJUJ G Vv. be an escaping component and let rj(R) denote the total number 
of subintervals UJ C UJVJ which are escaping components of the form UJUJ+1 ? ^j+i = 
Vj+i(uj) which undergo a sequence of returns / / 0 , . . , / ^ between time Vj and time 

with Rj = R. Then we have 

Lemma 4.5. — For all R G N, 

rj{R) < e2lR. 

Proof. — Notice that the subintervals UJ can be indexed in a unique way by the 
sequence of host intervals corresponding to the returns / i o , . . . , \iq, i.e. by a sequence 
( * o , ^ o ^ o ) • • • (*qJq) where * = 0, ± c * and 1 < h < r\. It follows that for each 
r there exist at most 6r2 intervals with n = r and therefore the previous lemma 
immediately gives rj(R) < 6R2etR < e2iR. • 

For the final step of our argument we introduce the following notation. For UJ G Vn 
let UJVJ , j = 0 , . . . , s be the escaping components containing UJ as defined above. Then 
define for j = s + 1 , . . . , n, ujVj — UJ and call these escaping components as well. Thus 
we have a formally defined sequence of nested intervals 

UJ — ujn = • • • = uJys+1 C UJVS C • • • C UJVQ = UJ0 

associated to each UJ G Vn. For each such ujVj let (UJUJ) = UJUJ H Fn and let Qj denote 
the union of all the escaping components of the form ujVj. Notice that QQ = UJO and 
Q n — Pw 

Lemma 4.6. — For every n > 1, we have 

f F 
L n 

elR/4da < (1 + e ' ) n | w 0 | . 

Proof. — For a given u>Uj we have 

<u>„ • > 
elR/4da = |Ool + 

R>r, 
|fi(fi)|etÄ/4 < + ele-tR/A\u)i\ 

\QBr2j_1e~ 

R>rs 
e - t Ä / 4 ) K - | < ( l + e * ) K | . 

Clearly this implies 

'Qi 
eiR/Ada<(l+ei/2)\QBr2j_1eQi 

and, inductively, the statement in the lemma. 
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We are now in a position to estimate the proportion of parameters satisfying CP2' : 

R+ < crn/4(1 4- 7 / 5 ) . This condition is equivalent to elR/4 < e"m/iQ(i+^/5) < e£n 

where £ = ¿0-/16(1 + 7/8). Thus we have 

m{a e Fn : etR/4 > e^n}e^n < 
ù^$^ù 

eiR/4da < ( l+^/2)n|u;o | 

which gives 

m{En \ Fn} < (1 + sTe-tn\ouo\ < e~^2\uj0\ 

taking e small. 
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INVARIANT MEASURES 
FOR TYPICAL QUADRATIC MAPS 

by 

M a r c o Mar tens & T o m a s z Nowicki 

Abstract. — A sufficient geometrical condition for the existence of absolutely con
tinuous invariant probability measures for 5—unimodal maps will be discussed. The 
Lebesgue typical existence of Sinai-Bowen-Ruelle-measures in the quadratic family 
will be a consequence. 

1. Introduction 

A general belief, or hope, in the theory of dynamical systems is that typical dynam

ical systems have well-understood behavior. This belief has two forms, depending on 

the meaning of the word "typical". It could refer to the topological generic situation 

or to the Lebesgue typical situation in parameter space. In this work typical will 

refer to Lebesgue typical and the behavior of a Lebesgue typical quadratic map on 

the interval will be discussed. 

The quadratic family is formed by the maps qt : [—1,1] —̂  [—1,1] with t E [0,1] 
and 

qt(x) = -2txa + 2t- 1, 

with the critical exponent a = 2. The maps in this family can be classified as follows. 

The maps in 

V — {t G [0,1] I qt has a periodic attractor} 

have a unique periodic orbit whose basin of attraction is an open and dense set. 

Moreover this basin has full Lebesgue measure. In particular the invariant measure 

on the periodic attractor is the SBR-measure for the map. Recall that a measure ¡1 

on [—1,1] is called an S(inai)-B(owen)-R(uelle)-measure for qt if 

lim 
n—>oo 

1 

n 

n-1 

k=0 

58F03 ^ [—1 
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Key words and phrases. — Unimodal maps, SRB-measures. 
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240 M. MARTENS & T. NOWICKI 

for typical X G [—1,1]. 
The maps in 

1Z = {t G [0,1] | qt is infinitely renormalizable} 

have a unique invariant minimal Cantor set which attracts both generic and typical 
orbits. This Cantor set is uniquely ergodic and has zero Lebesgue measure, [BL2], 
[G], [ M l ] . The unique invariant measure on this Cantor set is the SBR-measure for 
the system. The maps in 

Z = [ 0 , 1 ] \ { P U R } 

have a periodic interval whose orbit is the limit set of generic orbits. The orbit of this 
periodic interval absorbs also the orbit of typical points. These maps are ergodic with 
respect to the Lebesgue measure, [BL1], [GJ], [K], [ M l ] . In the quadratic family, 
a = 2, the limit set of typical points is actually also the orbit of this periodic interval, 
[LI]. However, in families with a big enough there are maps in X whose typical limit 
set is not this periodic interval, [BKNS] . 

Before discussing the behavior of typical quadratic maps let us include the behavior 
of generic quadratic maps . 

Theorem 1.1 ([GS], [L3]). — Hyperbolicity is dense in the quadratic family, e.g. V — 
[0 ,1] . 

We will continue to specify the behavior of a typical map in X. The dynamics of 
maps in 

A4 = {t G X | qt has an absolutely continuous invariant probability measure} 

is well-understood. The measure is unique and its support is the orbit of the above 
periodic interval. Moreover it has positive Lyapunov exponent, [K], [Ld]. Starting in 
[NU], where it was shown that q\ G A1, more and more maps qt were shown to have 
such a measure ([B], [R], [Mi]). Finally it was shown in [Ja] that Ai has positive 
measure. 

Main Theorem 1.2 (joint with Lyubich). — A typical quadratic map has a unique SBR-
measure. More specifically 

(1) for t EV the support of the SBR-measure is the periodic attractor, 
(2) for t G 1Z the SBR-measure is supported on a Cantor set, 
(3) for t G Ai the SBR-measure is an absolutely continuous measure supported on 

the orbit of a periodic interval, 
(4) the set V U 7Z U M C [0,1] has full Lebesgue measure. 

The general belief that typical dyamical systems have well understood behavior 
has been precisely formulated in the Palis-Conjecture [P]. Now, by Theorem 1.2, this 
Conjecture has been proved for the quadratic family. 
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Johnson constructed unimodal maps in X (with arbitrary critical exponent) which 
do not have an absolutely continuous invariant measure, [Jo]. More careful combi
natorial Johnson-Examples were made without SBR-measure [HKj. The same work 
shows the existence of maps in X \ Ai which have an SBR-measure but this measure 
is not absolutely continuous. The complications which occur in X\ Ai are thoroughly 
studied in [Br]. 

In this work we will formulate a geometrical condition on maps in X sufficient for 
the existence of absolutely continuous invariant probability measures. The geometric 
condition is formulated in terms of a decreasing sequence of central intervals Un = 
(—un,un)y n > 1, which are defined for all unimodal maps with recurrent critical 
orbit. The domain Dn C Un of the first return map Rn : Dn -> Un, n > 1 is a 
countable collection of intervals. The central component of Dn is Un+i. The first 
return map Rn is said to have a central return when 

Rn(0) e l/n+i. 

The sufficient geometrical condition for the existence of absolutely continuous mea
sures is stated in terms of scaling factors 

^ [—1 ^ [—1 
^ [—1 

n > 1. 

These scaling factors describe the small scale geometrical properties of the system 
but they are also strongly related to distortion questions. The main consequence of 
the distortion Theory developed in [ M l ] are the a priori bounds on the distortion of 
each Rn. The renormalization Theory developed in [LI] and [LM] achieved much 
stronger results: if a quadratic unimodal map has only finitely many central returns 
then the scaling factors tend exponentially to zero. 

The scaling factors are related to small scale geometry, distortion but also expan
sion. The technical step in this work is to show that small scaling factors imply strong 
expansion along the critical orbit. In [NS] it was shown that enough expansion along 
the critical orbit causes the existence of an absolutely continuous invariant probability 
measure. In particular, if 

n>l 

(0) e l/n , - 1 / a < CO 

then qt has an absolutely continuous invariant probability measure. 

Main Theorem 1.3, — Let f be an S—unimodal map with critical exponent a > 1. If 
f has summable scaling factors, that is 

n>l 
^ n < OO 

then it has an absolutely continuous invariant probability measure. 
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Corollary 1.4. — If a quadratic map has only finitely many central returns then it has 
an absolutely continuous invariant probability measure. 

The (Johnson-)Examples in [Jo] have infinitely many (cascades of) central returns. 
The corollary states that the only quadratic unimodal maps in X which do not have 
an absolutely continuous invariant measure are Johnson-Examples. The families {qt} 
with a big enough have maps in X which do not have an absolutely continuous in
variant probability measure and which are also not Johnson-Examples, [BKNS] . 

In [L2], Lyubich studies the parameter space of the (holomorphic) quadratic family. 
A new proof showing that X has positive Lebesgue measure is given (compare with 
the Jacobson-Theorem [Ja]). Moreover it is shown that for almost every parameter 
in X the corresponding quadratic map has only finitely many central returns. This, 
together with Theorem 1.3, implies Theorem 1.2. 

Conjecture 1.5. — A typical map in the family {qt}, with critical exponent a > 1, has 
a unique SBR-measure. More specifically 

(1) for t G V the support of the SBR-measure is the periodic attractor, 
(2) for t E 1Z the SBR-measure is supported on a Cantor set, 
(3) for t € M the SBR-measure is an absolutely continuous measure supported on 

the orbit of a periodic interval, 
(4) the set V U 1Z U A4 C [0,1] has full Lebesgue measure. 

An appendix is added to collect the standard notions and Lemmas in interval 
dynamics. 

Acknowledgements. — This work has been done during the second authors visit to 
SUNY at Stony Brook. The second author would like to thank SUNY at Stony Brook 
for its kind hospitality. 

2. Central Intervals 

Throughout the following sections we will fix an 5—unimodal map / : [— 1,1] -> 
[—1,1] with critical exponent a > 1 and without periodic attractors. Furthermore 
assume that the critical orbit is recurrent. 

The set of nice points is 

Af={xe [ - 1 , 1 ] I V* > 0 f\x) t ( - M , \x\)} 

This set is closed and not empty. For example the fixed point of / in (0 ,1 ) is in N. 
For x G Af let Dx C Ux = (—\x\,\x\) be the set of points whose orbit returns to 

Ux. The first return map to Ux is denoted by 

R>x * I^x ^ Ux. 

The next Lemma is a straightforward consequence of the fact that the boundary 
of each Ux is formed by nice points. 
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Lemma 2.1 ([Ml]). — For every x E Af there exists a collection of pairwise disjoint 

intervals Ux with 

(1) I C UX for all I E Ux, 

(2) \Ji&imI = Dx, 
(3) if I EUX and 0 £ I then Rx : I —> UX is monotone and onto, 

(4) if I E Ux and 0 E I then Rx : I UX is 2 to 1 onto the image. Moreover 

Rx(dl) = {x} or{-x}. 

Define the function ip : Af —» Af by 

<tl>{x) = o ^ n ( 0 , l ) , 

where Vx G Ux is the central interval: 0 G Vx. Say Rx\vx = fQx and observe that 

{ / ( ^ ) ) , / 2 W x ) ) , . . . , fq*(iP(x)) =x}HUX = 0 

which follows from the fact that Rx : Dx UX is the first return map. In particular 

ip(x) G Af and we can consider the first return map to Vx. It will also satisfy Lemma 

2.1. 

Choose ui G Af and consider the sequence un = t/?(un_i) with n > 1. Use the 

simplified notation Un for WWti and denote the first return maps by 

Rn '• -D n ^ UJI 

instead of RUn : DUn —> UUN. All these first return maps have the properties stated 

in Lemma 2.1. Observe that \UN\ = 2un. 

Let an — un+i/un, n > 1. We call o~n the scaling factor of level n. We will assume 

that 

On —> 0. 

However, the main Proposition 3.1, can also be proved by using only an a priori 

bound on the scaling factors. The assumption an —> 0 will make the exposition less 

cumbersome. 

Lemma 2.2. — If I EUn and Rn\i — fl then there exists an interval J D / ( / ) such 

that 
ft-i : J _> Un_x 

is monotone onto. In particular all the maps fl 1 : / ( / ) —> UN, I G lAn have uniformly 

bounded distortion. Moreover these maps will be essentially linear when n -> oo. 

Proof. — Let I E Un with Rn\I = fl and let J D / ( / ) be the maximal interval on 

which /t_1 is monotone. The maximality implies the existence of i < t — 1 such that 

0 G dfl(J). Observe that / * ( / ( / ) ) fl UN = 0 , the first return happens after t — 1 > i 

steps. So un (or — un) G fl(J). We observed before that the orbit of f(un) never 

enters Un-u f'HJ) => # n - i . • 
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Lemma 2.3. — For e > 0 there exists no > 1 such that the hyperbolic length of any 

I G Un, is smalL 

hyp(7, Un) < e and also -
(0) e l/n 

\f(Un)\ 
7, U 

whenever n> uq. 

Proof. — Let J G Unj say Rn\I = fl\I. The previous Lemma states the existence of 

an interval J Z> / ( / ) such that ft~1 : ( J , / ( / ) ) —> (Un-i,Un) is monotone onto. For 

n large we see that Un is a very small middle interval in Un-i, it has a very small 

hyperbolic length. Because the map / has negative Schwarzian derivative we get that 

/ ( / ) C J has a very small hyperbolic length. Observe that f~1(J) C Un. Otherwise 

the orbit of un would pass through Un-\. This is impossible: we saw before that the 

orbit of ip(x) = un does not cross Ux — Un-\. The Lemma will be proved by pulling 

back the pair (J, / ( / ) ) one step more. 

3. Derivatives along Recurrent Orbits 

Let pn = min{l /<7n_i , l/an}. In this section we will prove 

Proposition 3.1. — There exist no > 1, 9 < 1 and C > 0 with the following property. 

If n > no, x G f/n+i and Rln(x) £ Un+\ for i < s then 

\ D f T ( f ( x ) ) \ > c - P n - e - ^ - l \ - P n -

where Rn(x) = fT(x). 

In [ V T ] a similar estimate in the case s = 1 was obtained for circle homeomor-

phisms with irrational rotation number of bounded type. The proof of Proposition 

3.1 will use the following Lemmas and notation. Fix x G Un+\ according to the 

Proposition, say Rn(x) = ftl{x) with i < s. 

Lemma 3.2. — For each i < s there exists an interval Si 3 f{x) such that 

7, Un Un+\)7, Un) 

is monotone and onto. 

Proof — Lemma 2.2 applied to Un+i G Un states the existence of S\. The proof 

will proceed by induction. Assume that Si 3 f(x) exists. Then : Si —>• Un 

monotone and onto. Moreover fti~1(f(x)) G /¿+1 G Un. Because fti~1(f(x)) £ Un+± 

we have that Ii+i 7̂  £7n+i and Rn • U+i —> Un is monotone and onto. Now let 

si+1 = / - < * - - 1 > ( / i + i ) n s i . • 

Observe that fti-1~1(Si) = Ii G Un 
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Lemma 3.3. — There exist n0 > 1 and K < oo with the following property. If the 
distortion of 

fu 1 : Si —> Un with n > no 

is bigger than K then 

h c = 3 
4 Ufi J 

3 
4 

'[ 

Proof — Lemma 2.2 states that : Si —> Un has a monotone extension up to 
Un-i, the map is essentially linear for big enough n. Hence i > 2. Consider the 
following decomposition 

/ t ' - 1 | 5 i = /t'-*'-1-1|/(Ji)o/|/io/*^-1|5i. 

The factor fti~1~1\Si has a monotone extension up to C/n. In particular, for big 
enough n, it is essentially linear. This is because the image U has a small hyperbolic 
length within Un (Lemma 2.3). The factor fti~ti~1~1\f(Ii) has a monotone extension 
up to Un-i (Lemma 2.2), it is also essentially linear. The distortion of / t i -1 |S^ can 
only be caused by the factor f\Ii and only if Ii is very close to 0. There is some no 
such that Ii C (— f • un, § • un)^ whenever n > n0. Here we used Lemma 2.3 which 
states that Ii has also very small hyperbolic length within Un- • 

Lemma 3.4. — For any 9 < 1 there exist no > 1 and C < oo such that 

\Si\ < < ? • < ^ C - P - 1 

whenever n > no and i > 2. 

Proof — Observe that / ( 0 ) G Si D S2 D • • • D Si and /(C/n+1) C Su i > 2. Let 
Lj C .Si be the connected component of Si — Sj with Lj C / (C/n+i ) , 2 < j < i. 
For n big enough we get from the proof of Lemma 3.2 and from Lemma 2.3 that the 
hyperbolic length of Sj within Sj-i is very small, 2 < j < i. It is easily seen that this 
implies 

\Si\ < c-e*-1 -\Li\ 

^C-P-1 -\f(Un+1)\ 
Un+\^C-P-1^C-P-1 

Lemma 3.5. — There exist no > 1 andC > 0 such that the following holds for n > no-
If\Rn(Un+1)\ = \f^(Un+1)\ > ±un then 

^C-P-1^C- > C • 
^C^C-

^C-^C-

If\Rn{Un+i)^C-P-1\ < iQun then 
^C-1 > c -

^C-^ 

q.Ot^C-P-1 
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Proof. — Consider the map : Si -» Un. From Lemma 2.2 we know that this 
map has a monotone extension up to Un-i. The map is essentially linear because 
un-i » un whenever n is big enough. The derivative j D / ^ " 1 ! is essentially constant 
and can be estimated by 

Rn(un 
> c 

\Rn(un+i)\ ^ 

l/(tfn+l)l 
c un 

Rn(un 

Here we used that \Rn(Un+i)\ > j^un- Now consider the other case: |i?n(C/n+i)| < 
jQUn- Let K D f(Un+i) be the interval which is mapped monotonically onto Un-i'. 
ft1'1 : K Un-i> Observe that /^(K) C C/n. This follows from the fact that the 
orbit of f{un) never hits Un-i, which was observed in section 2. Let K' C K be 
such that Z*1"1 : K' —> (— | • un-i, | • un-i) is monotone and onto. This map has 
uniform bounded distortion because it has a monotone extension up to Un-i- Let 
K" = f-1^') C Un. The derivative {Dff^l can be estimated by 

I D f ^ ' l ^ C n + i ) | < ̂ ^ n 
\FHK»)\ 
Rn(un c Un-l 

n 

Proof of Proposition 3.1. — Assume first that s = 1. This is an application of the 
previous Lemma 3.5. If \Rn{Un+i)\ > ioun then 

W 1 ( / (*) ) 
(/( (/( 

(/( (/( 
?/a_1 (/( 

(/( 

(/( (/( > C • pn, 

where we used that Rn(x) $ Un+i-
In the other case when | i?n(t /n+i) | < ^ ^ n , we have 

\Df^U(x)f^U-
f^U 

f^U 
f^U c Un-1 

Un 
n+i)| < ^^n 

where we used that in this case ftx 1{x) E Rn(Un+i) which is close to the boundary 
of Un. The case with s — 1 is finished. 

Now assume that s > 2. The proof will be split in two cases. Let n > n0 > 1 be 
big enough such that Lemma 3.3 and 3.4 can be applied. Let K < oo be the constant 
from Lemma 3.3 and 6 < 1 the constant from Lemma 3.4. 

Case I (fT{x) = Rsn{x) E ( - § • un, f • un)). — Let H c Ss be such that /T_1 = 
fts-i . n _^ ( _ ! . ! . Wn) is onto. This map has a monotone extension up to Un-
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Hence it has a uniformly bounded distortion, 

\DfT(f(x))\>C 
\fT-HH)\ 

n+i)| < ^^n Un+1 

> c 
Un 
\SS un+l 

> c 
Un 

f)s-l . 7/a 
U Un+1 

an+l 

DfT(f(x))\>DfT(f(x 

Case II (fT(x) = i?* 0 ) £ ( - f • un, { • « „ ) — If the distortion of f1 ~* : S s U n 

is bounded by K then we can give the same argument as in case I: 

\DfT(f(x))\ >C-
\Un\ 

\s.\ 
un+i 

> c 
Un 

DfT(f(x))\> 
))\>DfT(f( 

DfT(f(x))\>DfT(f( 

Now let us assume that this distortion is bigger than K. Apply Lemma 3.3, which 

states Is C (— | • un, § • un). Then 

l ^ / T ( / ( 0 ) ) | - l A f ' - W O ) ) ! • l i?/^-*—1 (/*—1 ( / (0 ) ) ) I 

^/T(/(0))| - lAf'-WO))! • li?/^-*—1 (• li?/^-*—1 (/*—1 (/(0)))I 

For 5 — 1 > 1 we get this estimate from case I: JR^_1(0) G J5 C (— § -iin, | "un). When 

5 — 1 = 1 it follows from the Proof of Proposition 3.1 for 5 = 1. 

The last factor can be estimated by using the fact that ^ - ^ - i - 1 : f(Is) —>• Un 

has a monotone extension up to Un-i, see Lemma 2.2. It is essentially linear and its 

derivative can be estimated 

l ^ / 7 ' - t - 1 - 1 l / ( z . ) l > C 
)) 

\f(Is)\ 
- > c-

\un\ 

£-\f(Un)\ 

where e > 0 is given by Lemma 2.3. By taking no > 1 big enough we can assume 

that e > 0 is arbitrarily small. 

Observe that | ^ / ( / T _ 1 ( / ( 0 ) ) ) l > C - < _ 1 - This is because | / T _ 1 ( / ( 0 ) ) | >\-un. 

We can finish the estimate for \DfT(f(0))\ by observing that 

| £ > / r - « ' - i ( / « - i ( / ( 0 ) ) ) | = ^ - ' - ^ ( / ' - ' ( / ( O ) ) ) ! • \Df(fT-Hf(0)))\ 

> c 
\Un\ 

e-\f{Un)\ 

))\>D 

> c 
e-\f{ 

e-\f{ 
• < _ 1 

n 
> c 

1 

e 

1 

6' 
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4. l e lemann JJecomposition of the Critical (Jrbit 

In this section we will prove Theorem 1.3. Let / be a unimodal map such that 

n>l 

• li?/ < oo. 

The existence of an absolutely continuous invariant probability measure follows from 

[NS1 in where it was shown that the Summability Condition on Derivatives 

k>i 
l\Dfk(f(0))\~1/a < o o 

is sufficient for the existence of absolutely continuous invariant probability measures. 

In the sequel we will prove that the summability of scaling factors implies the 

Summability Condition of derivatives. Choose n0 > 1 big enough such that Proposi

tion 3.1 can be applied and moreover 

a = 

ro>no 
5>0 

LIS/OC 
• li?/^-*—1 ( 

1 

1 -
n>no 

1 

• li?/^-*—1 ( < 1, 

where C and 0 are the constants from Proposition 3.1. 

Fix k > 1. The estimate for \Dfk(f(0))\ is based on the Telemann decomposition 

of the critical orbit up to time fc. Consider the orbit of / ( 0 ) up to time k — 1. Let 

ra > 0 be such that C/NO+M is the smallest central interval which is crossed by this 

piece of the orbit: 

n0 + m = m a x { j > 0 | 3 0 < i < k, fl(0) G Uó} 

and the last moment of crossing is denoted by 

km = m a x { l <j<k\ fj(0) G Uno+rn}. 

The moments km < km-i < • • . &i < &o are such that k\ is the last moment that the 

orbit hits t/no-fi- if {ki < j < k | / J (0 ) G Uno+i-i} = 0 then fc^-i = ki otherwise 

ki-i = maxjfci < j < I /^(O) G £ / ^ + ¿ - 1 } with 1 < i < ra. 

Let r(k) — k — ko and if fc^-i 7̂  ̂  then 

= #{ki <j< ki-! I / ' ( 0 ) G C/no+i_i}, 1 < i < ra, 

the number of returns trough {7no+i-i-

The chain-rule applied to Dfk(f(0)) gives 

Dfk(f(0)) = A T ( f c ) ( / * ° ( / ( 0 ) ) ) • Dfk-(f(0)) 

ra—1 

i=0 

D / ^ - * * + i ( / ^ + i ( / ( 0 ) ) ) . 

The first factor can be estimated by using 
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Proposition 4.1 ([G], [Ma]). — Given no > 1 there exist constants C > 0 and À > 1 

such that 

\Dfr(x)\ > C\r, 

whenever f*(x) é Unn with i < r. 

The other factors can be estimated by Proposition 3.1. The decomposition was set 

up to make Proposition 3.1 applicable to the factors: 

\Dfkum\-1/a < CAr(fc) 

¿<ra —1 

• li?/^-*—1 (• li?/^-*—1 ( 
-l/a 

< C 
1 

k(f( 

r(k) 

i<m—l 

fQl/CL\8i{k)-l 

• li?/^-*—1 ( 

Lemma 4.2. — Let Si,r and s^r' correspond to the Teleman decomposition of respec

tively k and k'. If k ^ k' then r ^ r' or Si ^ s't for some i > 0. 

Proof. — Assume that r = r' and si — s'{ for all i > 1. We have to show that 

k = k'. Observe that /fe™(0) = K£+m{0) but also /fc™(0) = Rsn™+m(0) = R%+m(0). 

So km = k^. Now repeat this argument to show that ki = k[ for 0 < i < m. In 

particular we get ko = kf0. So 

k' = k'0 + r' = k0 + r = k. 

Proof of the Summability Condition for Derivatives. — The number a < 1 

was defined in the beginning of this section. Let /? = l/a. 

k>0 
\Dfk(f(0))\ i - l /a 

r>0 k>0 
r(k)=r 

D / * ( / ( 0 ) ) | - l / a 

k( 

r>0 

C 
1 

k( fc>0 
r(k)=r 

0<i<m — l 
kiyéki + 1 

• li?/^-*—1k(f( ( 

0<i<m — l0<i<m — l 
kiyéki + 1 
kiyéki + 1 

Now observe that for each r there are no two products appearing in the second sum 

which are formed by the same factors, according to Lemma 4.2. If we expand an we see 

that the sum of all possible different products can be estimated by 1 + a -4- a2 + a3 4-

Hence 

k(f(0))\ 

\Dfk(f(0))\-
l/a 

r>0 

C 
1 

k(f(0) 
'[;] 

1 + a + a2 + a3 + ...) 

< 1 
1 - a • 

r>0 
C 

1 

A/8 

r 
\ 

<C 1 
1 - a 

1 

1 - 1/X0 
: oo . 
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5. Appendix 

In this appendix some basic notions of interval dynamics are collected. The details 
can be found in [MS]. 

The hyperbolic length of an interval / C T C [— 1,1] within T is defined to be 

h y p ( / , r ) ) = In 
ILL! J \RUI\ 

\L\ • \R\ 

where L,RcT are the connected components of T \ I and \J\ stands for the length 

of the interval J C [—1,1]. 

The Schwarzian derivative of a C3 map / : [— 1,1] [— 1,1] is 

Sf(x) = 
D3f(x) 

Df(x) 

3 

2 

D2f(x) 

Df(x) • 

where fix) stands for the ith derivative of / in x G f— 1,1]. 

Expansion-Lemma 5.1. — / / / : [—1,1] —̂  [—1,1] has Sf(x) < 0 for all x G [—1,1] 
and fn\T is monotone then 

h y p ( / n ( / ) , r ( T ) ) > h y p ( / , r ) , 

where I C T'. 

Koebe-Lemma 5.2. — For each r > 0 there exists 1 < K(r) < oo the following 

property. Let f n : T ^ fn(T) be monotone and Sf(x) < 0 for all x G [ - 1 , 1 ] . If 

I C T is an interval such that both component L, R C T \ I satisfy 

\fn(L) 

fn(T) 

\fn(R)\ 
\fn(T) 

'['][' 

then fn\I has bounded distortion 

Dfn(x)\ 

Dfn(v) 
< K(t), 

for all x^y G / . Moreover K{r) —> 1 when r —> oo. 

An S—unimodal map is a C3 endomorphism f : [—1,1] —>• [—1,1] such that 

(1) / ( ± 1 ) = - 1 , 

(2) Df(x) > 0 for x < 0, 

(3) Df(x) < 0 for x > 0, 

(4) Df(0) = 0 and up to a C change of coordinates / equals locally x -* {xy* 

with a > 1. The point x = 0 is called the critical point and a > 1 is called the 

critical exponent of f. 
(5) S/(a?) < 0, x Ï 0. 

The orbit of the critical point x = 0 is called the critical orbit. The critical orbit 

is said to be recurrent if it accumulates at the critical point. 
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Usage of constants. — Every uniform constant, that is a constant which is indepen
dent of the actual map, appearing in estimates will be denoted by C. Constants which 
play a specific role in the statement of Lemmas will usually have a specific name. 
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Q U A S I - H O M O G É N É I T É E T É Q U I R É D U C T I B I L I T É 

D E F E U I L L E T A G E S H O L O M O R P H E S 

E N D I M E N S I O N D E U X 

par 

Jean-François Mat te i 

Résumé. — Après avoir étudié la dépendance analytique des séparatrices d'une fa
mille « équisingulière » de germes de feuilletages holomorphes à l'origine de C 2 , nous 
définissons la quasihomogénéité comme une propriété de rigidité. Nous obtenons un 
théorème de type K. Saito pour les germes de feuilletages quasi-homogènes et un 
théorème de type Briançon-Skoda dans le cas général. 

Vocabulaire et notations 

On désignera par OM et par h}M respectivement les faisceaux des germes de fonc

tions holomorphes et de 1-formes différentielles holomorphes sur une variété holo

morphe M . Pour m G Z C M le germe de Z en m sera noté Z , ra. 

Le lieu singulier Sing (?7) d'une 1-forme n G A\I(M) est l'ensemble des points m 

de M où rj(m) G T^M est nulle. Lorsque Sing(?7),m est de codimension 1 on peut 

décomposer le germe rjm de rj en ce point, 

) := {m E ) := 
h G 0]W,m, 

) := {m E ) := { 

de manière que codim (Sing ̂ ^ ) ) > 2. Cette décomposition est unique, à unité mul

tiplicative près et rfm s'appellera le saturé local de n au point m. On notera 

Efa) : = {m E M \ Ti'm(m) = 0} 

que l'on appellera lieu singulier strict de rj. 

Lorsque la forme n vérifie la condition d'intégrabilité n A dn = 0, elle définit un 

feuilletage !FV, éventuellement singulier, de lieu singulier Sing(.7 r

7 7) : = Sing(r7). La 

collection des saturés locaux de n définit le feuilletage saturé ^ a t associé à ; son 

lieu singulier Sing ( ^ a t ) est égal à S (n). 

Classification mathématique par sujets (1991). — 32A10, 32A20, 32B10,34C20, 34C35, 58F23, 32G34, 
32S15, 32S30, 32S45, 32S65. 
Mots clefs. — Singularités, champs de vecteurs, feuilletage, equisingularité, courbes, quasi-homogé
néité, déformation, modules, formes normales. 
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Un sous-ensemble analytique Z de M est dit ensemble invariant (resp. strictement 
invariant) de rj si la restricion de 77 (resp. des saturés locaux de 77) à la partie régulière 
de Z est identiquement nulle. Lorsque 77 est integrable, un ensemble invariant de ^at 
est un ensemble strictement invariant de 77. 

Si au voisinage d'un point m d'une sous-variété lisse V de M le saturé local 77̂  de 
77 vérifie l'une des conditions suivantes : 

(1) m G £(77), 
(2) m <£ £(77), 77̂  \v& 0 et 77̂  \v (m) = 0, 

on dira que m est un point singulier strict du couple (77; V) . Pour une hypersurface 
H à croisements normaux £(77; H) désignera l'ensemble des points m € H qui sont 
points singuliers stricts d'au moins un des couples formés par 77 et une composante 
irréductible locale de f i en m. 

Fixons un point t d'une variété holomorphe P. Un sous-ensemble analytique W de 
M est dit étale au dessus de t via une submersion 7r : M —> P si la restriction de n 
à W est un difféomorphisme local en chaque point de 7r-1(¿) n W. Cette propriété est 
ouverte lorque TT \ W est propre. On notera Wt := 7r-1(¿) D W. 

Conventions, — Lorsque nous ne précisons pas, les objets considérés ici : variété, 
courbe, application, champ de vecteurs... sont supposés holomorphes. Nous dirons 
aussi « 1-forme » pour : « 1-forme différentielle holomorphe » . 

1. Introduction 

Classiquement la quasi-homogénéité d'un germe f(x,y) de fonction holomorphe — 
ici à l'origine de C2 — se définit par l'existence de coordonnées u(x1y),v(x,y) dans 
lesquelles / est un polynôme quasi-homogène : son nuage de Newton est contenu dans 
une droite : 

f = P(u,v)= Yl Ptjtfvi. 

cti+Pj=d 
Cette propriété se caractérise algébriquement [16] par l'appartenance de / à son 

idéal jacobien J(f) := (fx,fy)- On dispose aussi d'une caractérisation en terme de 
comparaison des modules de la fonction / à de ceux de la courbe / -1(0). On peut 
montrer que / est quasi-homogène si et seulement si toute déformation de / 

F e C W P , 0 , FO - / , F,(0,0) = 0, Ft(xyy) := F(x,y;t), 

qui est topologiquement triviale, satisfait l'équivalence : F est analytiquement triviale 
<i=> la famille de germes de courbes (F¡~1(0))t est analytiquement triviale; 

La trivialité topologique, resp. la trivialité analytique, de F signifie ici l'existence 
de germes d'homéomorphismes, resp. de biholomorphismes, $ de <C?+P,0 —> C?+p,0 
et L de C1+p,0 ^ > C1+p,0, qui commutent avec les projections sur Cp,0, valent 
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l'identité pour t = 0 et satisfont : L o (F;t) o 4> = ( / ;£) . Cette dernière relation 
signifie que $ conjugue les feuilletages de C2+p,0 définis par dF et par df o 7r, avec 
n(x,y;t) := (x ,y) . 

L'objet principal de cet article est d'étudier les notions de quasi-homogénéité pour 
un germe de feuilletage holomorphe J7^ à l'origine de C2 défini par un germe de 
1-forme 

u) := a{x, y)dx + b(x, y)dy, a, b G Oç? >0 Sing(u;) = { 0 } . 

D'après un résultat de C. Camacho et P. Sad [4] un tel feuilletage admet toujours 
une séparatrice, c'est à dire un germe à l'origine de courbe analytique irréductible 
invariante. Il peut en admettre une infinité, on dit alors que u est dicritique. Si ce 
n'est pas le cas, nous notons Sep(ic>) ou Sep(^7u;) le germe de l'union des séparatrices 
de u. 

Définition 1.1. — Nous disons qu'un germe de 1-forme holomorphe non-dicritique LU 
à l'origine de C2 est topologiquement quasi-homogène si toute déformation topologi-
quement triviale rj := A(x,y;t)dx -h B{x,y;t)dy de u satisfait l'équivalence : 

— rj est analytiquement triviale si et seulement si la déformation de germes de 
courbes à l'origine (Sep(rft))t est analytiquement triviale, 

où r¡t désigne le germe à l'origine de la restriction de n à C2 x t. 

Pour les feuilletages quasi-hyperboliques génériques (définis au chapitre 6) on dis
pose d'un critère différentiel de trivialité topologique [14] [15] : 

- Une déformation n d'une 1-forme quasi-hyperbolique générique est topologi
quement triviale si et seulement si il existe des germes Cj € 0<ç2+P y0 tels que 
la 1-forme Q := rj -h Cj(x, y; t)dtj est integrable (i.e. Q A dfl = 0) et définit 
un déploiement équisingulier de T^, cf. (6.1). 

L'espace (lisse de dimension finie) universel des déploiements équisinguliers construit 
dans [10] s'interprète donc comme l'espace des modules analytiques dans une classe 
topologique donnée. On est ainsi ammené à définir au chapitre 6 la notion de quasi-
homogénéité au sens des déploiements ou encore d-quasi-homogénéité d'une 1-forme 
UJ par la propriété suivante : « Tout déploiement équisingulier il de a; satisfait l'équi
valence : il est analytiquement trivial <=> la famille de germes de courbe (Sep(íí¿))¿ 
est analytiquement triviale». On peut alors affaiblir les hypothèses et considérer la 
classe plus large des 1-formes non-dicritiques dont la résolution ne comporte aucune 
singularité de type selle-nœud ; ces formes seront appellées semi-hyperboliques. On 
obtient : 

Théorème A. — Soit u> := a{x,y)dx + b(x,y)dy un germe de 1-forme holomorphe 

semi-hyperbolique à Vorigine de C2 et f(x,y) € Oç? 0 une équation réduite de Sep(ü^). 
Alors les assertions suivantes sont équivalentes : 

(1) u> est d-quasi-homogène, 
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(2) / appartient à l'idéal (a, 6) C Oç?^, 
(3) df est topologiquement quasi-homogène, 
(4) / appartient à l'idéal (f^fy) C O^.^, 
(5) il existe des coordonnées u,v à l'origine, des fonctions g, h G Oç? 0 avec u(0) — 

v(0) = 0, g(0) ^ 0 et des entiers a, (3, d G N tels que : f s'exprime comme 
un polynôme quasi-homogène f = Ylai+j3j=d Pi3u%v^ £ C[[w, v]] et guj = df + 
h {(3vdu — audv). 

Ce théorème appliqué aux 1-formes quasi-hyperboliques génériques donne directe
ment : 

Théorème B. — Soit UJ := a(x,y)dx + b(x,y)dy un germe de 1-forme holomorphe 
quasi-hyperbolique générique à l'origine de C2 et f(x,y) G Oç? 0 une équation réduite 
de Sep (a;). Alors les assertions (2) (3) (4) et (5) du théorème A sont équivalentes à 

(V) UJ est topologiquement quasi-homogène. 

Pour montrer le théorème A nous serons ammenés (6.7) à prouver le 

Théorème. — Soituj un germe de 1-forme semi-hyperbolique. Alors toute déformation 
topologiquement triviale (Xt)t de XQ := Sep (a;) est réalisée comme la famille de sé
paratrices d'un déploiement équisingulier. En particulier il existe une déformation 
topologiquement triviale 77 de UJ, à pseudo-groupe d'holonomie constant, telle que pour 
t assez petit Xt = Sep(77$). 

Lorsque UJ n'est pas quasi-homogène, nous mettons en évidence sur l'espace uni
versel des déploiements équisinguliers un « feuilletage singulier » , défini par un sous-
module involutif du module des germes de champs de vecteurs holomorphes, dont 
« l'espace des feuilles » s'identifie à l'espace des modules locaux du germe de courbe 
Sep(cj). 

Enfin au chapitre 7 nous comparons l'idéal (a, b) de Oc2,o engendré par les coeffi
cients de a;, à l'idéal définissant Sep (a;). On obtient le résultat suivant qui généralise 
— et redémontre — un théorème de J. Briançon [2], [3] : 

Théorème C. — Soit UJ := a(x,y)dx + b(x,y)dy un germe de 1-forme holomorphe 
semi-hyperbolique à l'origine de C2 et f — 0 une équation réduite de Sep(c^). Alors f2 
appartient à l'idéal (a, 6). 

2. Réduction des singularités et équiréduction 

Rappelons qu'un germe de 1-forme singulière UJ := a(x, y) dx + b(x, y) dy à l'origine 
de C2 est dit réduit s'il existe des coordonnées locales u,v, u(0) = v(0) = 0, dans 
lesquelles le saturé de UJ à l'origine s'écrit ujf0 — udv -h Xvdu + • • •, À ̂  Q<o- Lorsque 
le saturé de est régulier à l'origine nous dirons encore que UJ est réduit. Plus 
généralement, 77 désignant une 1-forme sur une surface M et Z G M une courbe à 
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croisements normaux, on dira que le couple (77, Z) est réduit en m € Z si le saturé rym 
de 77 en m est réduit et satisfait une des deux conditions suivantes : 

(1) 77^(m) = 0, 77 est réduit, et Z est strictement invariant, 
(2) 77 (̂771) ^ 0 et m £ £(77; Z ) . 

Nous notons C(T7, Z) l'ensemble des points de M où (77, Z) n'est pas réduit. 

Lorsque u> n'est pas réduit, on lui associe une succession d'applications d'éclatement 
E\ : M\ —> Mfr1 de la manière suivante : 

Lu Lu Lu - M ° = C2 et Ë\ est l'application d'éclatement de l'origine, 
- Eljj..., El, étant définis, désignons par E^j le composé E* o • • • o E^, par 

le diviseur exceptionnel E^^f1^) et notons LOI := £?a,ji*(a;). Alors est 
l'éclatement simultané des points de C (ui^D^). 

Un théorème classique de A. Seidenberg cf. [17] ou [11], assure que cette succession 
d'éclatements s'arrête à une certaine hauteur : 

C E^^f1^) 0 et C E^^f1^)E^^f1^ ¿0. 

Nous notons dans toute la suite : 

Eu, :— Eu^i = S (2;D%>) = S (2;D%>) 

(1) 
u :=Eu, :— Eu^i^ : = ^AT,Eu, ::= S (2;D%>) . 

Une déformation de LU := a(x,y)dx + b(x,y)dy de base Cp,0 est un germe de 
1-forme du type 

77 = .4(#, 2/; £) dx +Eu, :7/; £) dy, A,Be Oc2+P j0 
qui vérifie : 

A(rr, 2/; 0) = a(xy y), B(xy y; 0) = b(x, y), A(0, 0; t) = S(0,0; *) = 0. 

Ainsi 77 définit un « germe de famille analytique de germes de 1-formes » , en considé
rant les restrictions 77* de 77 à C2 x t, (0,£). Nous désignerons souvent la déformation 
77 par (rjt)te(CP0. 

Définition 2.1. — Une déformation 77 d'un germe non réduit 10 G A ^ 0 est dite équi-
réductible s'il existe une succession finie d'éclatements E^ : M* —>Eu, :— telle que 

(1) chaque E^ est un éclatement de centre une sous variété-lisse C*-1 C M^_1 de 
codimension 2, 

(2) notons encore EVii := E\ o . . . o E^, D^ := E ^ - 1 ^ ) , rji := Ev/(n) et TT^ : = 
7r o EVii où 7r est la projection 7c(x,y;t) := t. Alors les variétés S (r)i,Dv,i) et 
C (r}i, Drj^) sont lisses et étales via 7 ^ au dessus de Cp,0 et sont contenues 
dans D*, 

(3) pour i G C assez petit la succession d'éclatements obtenus par restriction de 
chaque E^ aux fibres de 7rv,i et TTV^-I est exactement la succession d'éclate
ments de la réduction de 77̂ . 
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Lorsque UJ est réduit on convient que l'équiréductibilité de 77 signifie que S(77) = 
0 x C ? , 0 et que pour tout t G O* assez petit, 77* est réduit. 

Remarquons que 77* : = xdy+(\+t)ydx-\ avec À G R<o n'est pas une déformation 
équiréductible, puisque 77* n'est pas réduite pour t G —À -h Q<o-

3. Formes se mi-hyperboliques 

Ce sont les formes qui dans [5] s'appelleraient «courbes généralisées non-dicriti-
ques». Conservons les notations des paragraphes précédents. 

Définition 3.1. — On dit qu'un germe à l'origine de C2 de 1-forme à singularité isolée 
UJ := a(x, y) dx 4- &(#, y) dy est semi-hyperbolique si est un sous ensemble invariant 
de Tu et si toutes les singularités de Tu sont du type : udv -h Xvdu H avec À ^ Q < o -

La première condition signifie que UJ n'est pas dicritique {cf. Introduction). Il est 
prouvé dans [5] que la seconde condition implique les trois propriétés suivantes, où 
/ G 0c2,o désigne une équation réduite de Sep(o;) : 

P l . La réduction de UJ est exactement la réduction de / , c'est à dire la réduction 
de df ; 

P2. Le nombre de Milnor de UJ à l'origine, HO(UJ) := dimc (Oc2 ,o/(a> ^)) est égal au 
nombre de Milnor de f à l'origine / io( / ) := dimc (0c2 ,o/(/x> fy))- ^ e P^us ce^te 
propriété est caractéristique : si UJ (non-dicritique) n'est pas semi-hyperbolique, 
alors fio(f) < Mo(< )̂ ; 

P3. Associons à chaque composante irréductible D de les poids suivants : 
(1) la multiplicité mUJ{D) de D suivant UJ, c'est à dire le plus grand entier 

k tel que u~kuj soit holomorphe, u G 0Mw,m désignant une équation 
réduite locale de D en un point m G D quelconque, 

(2) la multiplicité rrif(D) de Z?, comme composante de { / o EU = 0}, c'est 
à dire rrif(D) := rridf(D) 4- 1 ; 

Alors, pour toute composante irréductible D de D^, on a : mLJ{D) = m/(Z?) —1. 
Notons maintenant 

SFW := E^-1 (Sep(u,)) 

la courbe formée de et des transformées strictes de Sep(cc?). Considérons le faisceau 
XM„,SI ^es ^es germes de champs de vecteurs de Mw tangents à S^ en chacun de 
ses points réguliers et le sous-faisceau XM^ ^ des champs tangents au feuilletage Tu. 
Restreignons ces faisceaux à Dw 

(2) XK := i'1 ( X ^ J ) , XSL := i~X (XM„,S>J , 

où i : Du ^ Mu désigne l'application d'inclusion. Ce sont des faisceaux de modules 
cohérents sur 

XSL := i~X (XM„,S>J XSL := 
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Lemme 3.2 (clé). — Soit LO un germe de 1-forme semi-hyperbolique à Vorigine de C2. 
Alors le sous-faisceau d'idéaux de O engendré par l'image du morphisme 

LO- : Xs' XSL Z I—> eu • Z 

est égal au faisceau d'idéaux (/ o E&) engendré par la section globale f o E& de Ö ; En 
d'autres termes, on a la suite exacte : 

(3) 0 
XSL P, XSL 

XSL 
foEu •0, 

où p désigne le morphisme d'inclusion, et LU := E^{w). 

Démonstration. — En un point c de D^ fixons des coordonnées locales u,v dans 
lesquelles f o E^ — upvq avec q ^ 0. On est nécessairement dans l'une des deux 
éventualités suivantes : 

(a) p = 0. — Alors D^ et sont réguliers au point c et d'après la propriété P3 
ci-dessus on a 

u = y*-1 (A(u, v)vdu + B(u, v)dv) avec 5(0 ,0 ) ^ 0, 

XSLXSL XSL d 
du 

XSL d 
dv ' 

(b) p ï 0. Alors si Du est régulier, p — 1 car / est réduit. Toujours à l'aide de P3 
on obtient : 

Z) = up~1vq-1 (A(u, v)vdu + B(u, v)udv) avec A(0,0), 5 (0 ,0) ^ 0, 

O • Xs^ , O • Xs^ , d 
du 

O • Xs d 
dv 

Dans chaque cas on a bien : LO • Xs^ ,c O • Xs^ , O • 

La semi-hyperbolicité est une propriété ouverte par déformation équiréductibles. 
En effet : 

Proposition 3.3. — Soit (r)t)t une déformation équiréductible d'un germe LO de 1-forme 
semi-hyperbolique à l'origine de C2 . Alors pour tout t assez petit le germe rjt est aussi 
s emi-hyperbolique. 

Démonstration. — En raisonnant par récurrence sur /i^, on se ramène aisément au 
cas où LO est réduit. Par continuité des valeurs propres de la partie linéaire de r]t la 
proposition est alors triviale. • 

Les propriétés PI et P3 peuvent aussi s'exprimer conjointement en terme d'arbre 
dual. 

Définition 3.4. — On appelle arbre dual associé à LO le graphe pondéré et fléché A* (u;) 
construit de la manière suivante : 
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- à chaque composante irréductible de Dw on associe biunivoquement un sommet 
de A* (u;). Deux sommets de A* (UJ) sont joints par une arête ssi les composantes 
de 0^ correspondantes s'intersectent ; 

- on munit un sommet de A* (UJ) d'une flèche pour chaque point singulier de Tu 
qui n'est pas un point singulier de Pw ; 

- les sommets correspondant à une composante dicritique (i.e. non-invariante) 
de Tu portent une double flèche ; 

- chaque sommet est pondéré par l'auto-intersection de la composante de Du 
correspondante. 

On aurait pu aussi pondérer A* (UJ) par multiplicités : le sommet correspondant à 
une composante D est affecté du poids mu(D). Lorsque u est la différentielle d'une 
fonction à singularités isolées il est bien connu que ces deux pondérations sont équi
valentes : on passe biunivoquement de l'une à l'autre par une correspondance affine 
[8]. Grâce à la propriété P3 il en est de même lorsque UJ est semi-hyperbolique. Les 
propriétés PI et P3 des formes semi-hyperboliques se résument ainsi : 

P4. Les arbres duaux de UJ et de df munis de leurs deux pondérations : auto
intersections et multiplicités, sont égaux, / désignant toujours une équation 
réduite de Sep (a;). 

Lorsque UJ n'est plus semi-hyperbolique cette propriété n'est pas toujours vérifiée, 
cela dépend de la transversalité des variétés fortes des singularités de type selle-nœud 
de Tu aux branches du diviseur exceptionnel. Dans [12] [13] nous caractérisons et 
classifions formellement les 1-formes qui satisfont P4. Cependant le théorème 1 de [5] 
permet facilement de montrer la propriété suivante : 

P5. Lorsque u est semi-hyperbolique, les multiplicités rriu(D) ne dépendent que 
de l'arbre dual A* (UJ) pondéré par auto-intersections. De plus, dans l'ensemble 
A1 (A*) des germes de 1-formes ayant toutes le même arbre dual A* (pon
déré avec les auto-intersections), les formes semi-hyperboliques réalisent pour 
chaque sommet le minimum des pondérations par multiplicités. 

On en déduit le 

Théorème 3.5. — Une déformation rj d'un germe en 0 E C2 de 1-forme semi-hyper
bolique est équiréductible si et seulement si, pour t assez petit, on a les égalités des 
arbres duaux pondérés par auto-intersection : A* (rjt) = A* (UJ). 

Remarquons que dans l'hypothèse de ce théorème, on ne suppose pas l'égalité 
Sing(r7) = 0 x Cp,0 mais seulement l'inclusion Sing(77) C 0 x C , 0 . 

Démonstration. — Un sens de cette équivalence est trivial, montrons la suffisance de 
la condition d'égalité des arbres. 

Il est clair que chaque rjt est non-dicritique. On en déduit en particulier que l'équi-
réductibilité de rj est triviale lorsque UJ est réduite, car UJ ne peut bifurquer en un 
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selle-nœud. Dans ce cas Péquiréduction consiste à ne pas éclater. La démonstration 
se fait par induction de la manière suivante. Définissons d'abord par récurrence la 
notion de n-équiréductibilité : 

- Nous disons que 77 est O-équiréductible si u) est réduite et 77 est équiréductible : 
chaque rjt est réduit. 

- Nous disons que 77 est 1-équiréductible si r/ n'est pas O-équiréductible et si après 
l'éclatement E1 : M1 —> C2+P de C1 := 0 x CP l'ensemble suivant 

E1 := S(T71; D1) D D1 avec 771 : = E1*^), D1 := {E1)'1 (C1) 

est lisse et étalée au dessus de P. 
- Nous disons que 77 est n-équiréductible, 2 < n < h^, si 77 est 1-équiréductible et 

au voisinage de chaque branche de E1 le saturé de 771 est fc-équiréductible avec 
k<(n- 1). 

Il suffît de prouver, sous l'hypothèse du théorème, que : 

(1) 77 est 1-équiréductible, 
(2) si 77 est n-équiréductible, alors 77 est aussi (n + 1)-équiréductible, n < ; 

L'équiréduction se construira alors en éclatant successivement les lieux singuliers 
stricts contenus dans le diviseur exceptionnel le long desquels le transformé saturé 
de 77 n'est pas O-équiréductible. 

Montrons 1. Notons comme d'habitude 77^, D\, K\ les restrictions de 771, D1 et TT1 
à Ml := (7r1)_1(^), avec : TT : C2+p —> Cp désignant la projection linéaire et TT1 := 
7T o E1. La multiplicité v(i) de 77̂  à l'origine est égale à mm(Dl). La semicontinuité 
de u(t) et la propriété de minimalité de P5 appliquée à D\ entraînent que v(t) est 
constant. Ainsi la restriction de n1 à Ej est à fibres E*t finies. Le nombre d'éléments 
de E^ est constant égal au nombre de flèches et d'arêtes portées par le sommet de 
A* (77*) correspondant à D^. Il est constant puisque A* (r)t) = A* (a;). On en déduit 
que E1 est étale via n1. 

Montrons 2. La n-équiréductibilité de co permet de construire n applications d'écla
tements E1 : Mz —> M%~Y de la manière suivante : E1 est l'éclatement de C1 = 
O x O 5 ; Notons 

Ei := E1 o . . • o EL-\ TT1 : = TT O Eu D1 : = E^iC1), 

rf ~EC{ri), E* :=E(!7%D*)n2Â 

et définissons par induction E1 comme l'éclatement de centre l'union C1 C M*-1 des 
branches de E* où 77* n'est pas O-équiréductible. On sait de plus que chaque E2 est 
lisse et étale au dessus de Cp via 7r*. Montrons que 77™ est 1-équiréductible le long de 
chaque branche C™ T = de Cn C Mn. Pour cela paramétrisons chaque C™ 

(̂ Dans cette définition il n'est pas supposé que E(?71; D1) est contenu dans D1. 
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par une section cr(t) de 7rn. La multiplicité vr(t) au point cr(t) de la restriction 77™ 
de r]n à M" := (7rn)~1(t) se décompose en 

vr{t) = ur(t) + 

j 

O • Xs^ , [D?(r)) 

où D™j(r) désigne les composantes irréductibles de D™ := Dn n Mtn qui passent 
par le point cr(t) et vr(t) désigne la multiplicité du saturé local de r/f au point 
cr(t). Eclatons l'ensemble Cn+1 des branches de Sn où rjn n'est pas O-équiréductible, 
En+i . Mn+1 —• Mn. D'après le lemme suivant 

Lemme 3.6. — Les fonctions t \—> 2/r(t) sont constantes, r — 1 , . . . , k. 

l'ensemble Sn+1 : = S (r7n+1;£>n+1) avec 

/7n+1 := (En+1Y (rjn) Dn+1 (jçm+l) 1 ^Dn^ 

est fini au-dessus de Cp via 7rn+1 7rn o En+1. Pour conclure il suffit de voir qu'il 
est étale ou, ce qui revient au même, que le nombre sn(t) de points de sa fibre au 
dessus de t G Cp est indépendant de t. Mais sn(t) est la somme des nombres de flèches 
et d'arêtes portées par les sommets de A* (rjt) correspondant aux diviseurs créés par 
les éclatements des points cr(t), r = 1 , . . . , k. Ces sommets se détectent sur A* (rjt) à 
partir de la pondération par auto-intersection. D'où la conclusion. • 

Démonstration du lemme (3.6). — Supposons que ?i(0) < ••• < ¿^(0) et désignons 
par A£ (t) l'arbre dual (pondéré par auto-intersections) du saturé de rj™ au point cr(t). 
Fixons pour chaque t une bijection 

pt : { 1 , . . . , * } —> { ! , . . . , * } 

telle que A£ (t) = A*^ ̂  (0) C A* (LO) ; De telles applications existent puisque l'arbre 

dual de rjt est constant et que pour chaque t la suite [E\) i=1 correspond à la suite 

(E^) extraite de la réduction de rjt ; On sait que cette suite se détecte dans 

A* (rjt) à partir des auto-intersections. 
Les multiplicités mm(D^(r)) sont constantes puisque Sn est fini au-dessus de CP. 

D'autre part vr(t) est la multiplicité du diviseur créé par l'éclatement de cr(t) dans 
Mp. Appliquons pour t = 0 la propriété P5 de minimalité des multiplicités de A* (LO) 
puis la semicontinuité inférieure des ur(t). Il vient : 

(4) ^ . « ( o ) < Mt) < MO) r = l, . . . ,/b. 

En sommant ces inégalités on obtient Ylr ur(0) = Y2rur(t). La semi-continuité des 
vr(t) permet de conclure. • 
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4. Déformations équisingulières de germes de courbes planes 

Classiquement une déformation de base 0^,0 d'un germe de courbe analytique 
X0 C C2,0 est la donnée {X, TT) d'un germe d'hypersurface X C C2 x Cp,0 qui 
intersecte C2 x 0 suivant X0, contient 0 x Cp,0 et de la projection canonique 

TT : C2 x Cp,0 — • Cp. 

On associe ainsi à (X,7r) le «germe de famille analytique» de germes en (0,t) de 
courbe plane Xt := 7r-1(£) D X. Nous noterons souvent la déformation {X, n) par 
(Xt)te<CP 0, ou plus simplement par (Xt)t. Tout germe d'application holomorphe À de 
0 , 0 dans Cp,0 permet de construire la déformation (Xx(s))s obtenue par à partir 
de (Xt)t par le changement des paramètres À; elle est définie par l'hypersurface de 
C2+ç, 0 d'équation F(x, y; A(s)) = 0, où F(x, y; t) = 0 est une équation réduite de X. 

Deux déformations (X, TT) et (Y, TT) de X0 de même base Cp, 0 sont dites topologi-
quement équivalentes, resp. analytiquement équivalentes, s'il existe un germe d'homé-
omorphisme, resp. de biholomorphisme de C2+p,0 qui commute avec TT, vaut l'iden
tité sur C2 x 0 et transforme X en Y. Une déformation équivalente à la déformation 
constante (Xo x Cp, TT) est dite triviale. 

Lorsque la restriction à C2 x 0 d'une équation réduite de X est une équation 
réduite de Xo on dit que la déformation est plate. Cela signifie que Z 'ensemble critique 
Crit(X, 7r), constitué des points singuliers de X et des points critiques de la restriction 
de 7r à la partie lisse de X, est fini au-dessus de Cp, 0 via TT. 

On retrouve la notion classique d'équiréductibilité [18] [19] en posant : 

Définition 4.1. — Une déformation (X, n) d'un germe de courbe plane X0 est dite 
équiréductible si elle est plate et si, F(x,y;t) étant une équation réduite de X, la 

F) F f)F 

1-forme T)F := ¥£^dx + H^jdy définit une déformation équiréductible de df, avec 

f(x,y) := F(x,y,0). 

Les résultats classiques de Zariski et Lê Dung Trang - C. P. Ramanujam [18] [19] 
[9] affirment que les propriétés suivantes, relatives à une déformation (X, TT) de X0 de 
base Cp,0, sont équivalentes : 

(1) (X, 7r) est équiréductible, 
(2) (X, 7r) est topologiquement triviale, 
(3) Crit(X,7r) = O x C p , 
(4) ii(0it)(Xt) — Ho{X0) pour t assez petit, 

où ^(0^)(Xt) désigne le nombre de Milnor d'une équation réduite de Xt. Lorsque 
ces conditions sont satisfaites la déformation est dite équisingulière. L'existence d'un 
espace semi-universel pour ces déformations est bien connue. Nous allons en donner 
ici une construction géométrique qui nous sera utile par la suite. 
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Introduisons d'abord la notion de vitesse de déformation. Pour cela fixons une dé
formation équiréductible (X, 7r), X = F-1(0) , de X0 = / - 1 (0 ) de base Q%0. L'image 
réciproque X' de X par l'application d'équiréduction Ex := EVF : Mx —> C2+p,0 
peut être considérée comme une «déformation» de X'Q :— X' n 7rx_1(0), avec TTX := 
7r o Ex- En fait, puisque X' est à croisements normaux, son germe en chaque point de 
Dx0 :— Dx H 7RX~ ̂ ( O ) , Dx := EX-X{Q x C P ) , est une déformation analytiquement 
triviale du germe de XQ. On construit ainsi un recouvrement U := (Ui)i de Dx0 et, 
le long de chaque Ui, des germes d'applications de trivialisations : 

9i : (Mx,Ui) ^ (MXo x 0>,Ui x 0 ) , V^X^Ui) = X^xC?,UixO 

qui valent l'identité en restriction à Mx0 : = 7Tx_1(0). Il est facile de voir, en obtenant 
par exemple les par intégrations de champs de vecteurs, que l'on peut faire cette 
construction avec un recouvrement U adapté dans le sens suivant : ses ouverts sont de 
deux types 

- la trace sur Dx0 de « polydisques » de Mx0 

P(m;e) := {| um |< e, \ Vm \< s} , m G Sing(X^), 

où Um^Vm sont des coordonnées locales en m telles que u^Vm définit X'0, 
- les composantes connexes de Dx0 — U™ P(TN;e/2). 

L'intérêt d'un tel recouvrement est de ne pas avoir d'intersection d'ouverts trois à 
trois non-triviale. 

La 1-cocycle défini par la cochaine &ij := o tyj1 est à valeurs dans le faisceau de 
base Dx0 x 0 C Dx0 x CP, noté Au to (Mx0 ; XQ) , des germes aux points de Dx0 d'au-
tomorphismes analytiques de Mx0 x Cp valant l'identité au dessus de 0, commutent 
avec 7TX0XCP ©t laissent XQ X <CP invariant. Il rend compte de la non-trivialité globale 
de X' — et donc de X. Ainsi les «vitesses initiales de déformation» de X sont les 
cocycles 

r r\ T T~ ~l r r\ i I T 

eH1 {DXo;Xx.) 

où Xx' désigne, comme au paragraphe précédent, faisceau de base Dx0 des germes de 
champs de vecteurs sur MxQ qui sont tangents à XQ en chaque point régulier. D'après 
un théorème [1] d'Andreotti-Grauert, H1 (Dx0; Xx'Q) est un C-espace vectoriel de 
dimension finie car Dx0 est exceptionnel et XX'Q est un OMXQ -module cohérent. 

Théorème 4.2. — Il existe une déformation équisingulière (X^) de Xo de base 

Cr(x°),0 avec r(Xo) := dimc H1 (JDx0î Xx'Q), Qui est semi-universelle dans le sens 

suivant : toute déformation équisingulière (Xt)te0> 0 de Xo est analytiquement équi

valente à une déformation Çx^t^ obtenue à partir de (X^)u par un changement 

de paramètres À : Cp,0 :—> Cr(x°),0 dont la dérivée en 0 est unique. De plus on a 

dX' 
dtk [dtk t=0-
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une identification canonique 

x0 
TOCT(X0) Hi (Z0,*)t = (Yt)t 

et via cette identification la dérivée TQ\ de X à l'origine s'écrit 

(5) 
P 

(Z0,*) 
(Z0, 

ô 
dtk u=0 

P 

k=l 
(Z0,* 

dX 

dtk t=0 

Remarque 4.3. — Pour (Xt)t = (X^)u la formule (5) définit l'identification aXQ. 

Démonstration. — Elle se fait par les mêmes techniques que celles utilisées dans [10] 
pour la construction d'un déploiement universel de LO. Aussi nous n'en donnons que 
les grandes lignes. Notons r := r (Xo) . 

Etape 1. — Le recouvrement U étant adapté, on montre par une technique simple 
de recollements que tout cocycle à valeur dans Autcp (Mx0; IJ ) est le cocycle 
associé à une déformation équiréductible de X0 de base Cç,0. 

Etape 2. — Donnés des éléments [V^~\ , [ V ^ ] de H1 ( W ; ^ ) on montre qu'il 

existe une déformation équiréductible (X, 7rc?) de X0 telle que(Z0,*)t = (Yt)t(Z0,*)t = (Yt)t— \Yif[ > 

k = 1 . . . , q. Il suffît pour cela d'appliquer ce qui précède au composé des flots <t>ij,tk 

des champs 

Etape 3. — On construit ( X j )w grâce à l'étape précédente, en imposant aux cocycles 
BXU 
dûk 

u=0 
k — 1,.. . , r de former une base de H1 \U\ Xx> ) . 

Etape 4. — Donnée une déformation équiréductible (Yt)t de Xo de base quelconque 
Cp,0, on construit grâce à 1. une déformation équiréductible (Zuj)ut de base Cr x 
O»,0 telle que (Zu,0)u = et (Z0,*)t = (Yt)t. 

Etape 5. — On construit «l'application de Kodaira-Spencer» de (ZUjt)u t- Pour cela 
on considère un représentant Xo du germe Xo sur une boule B2 et un représentant 
Z_ de la déformation Z construite à l'étape précédente sur un polydisque B2 x B, les 
boules B2 C C2 et B c CT+P étant de rayons assez petits. Soit Ez : Mz_ —> B2 x B 
l'application d'équiréduction de Z_ \ notons Z ' := Ez^1 (Z). Considérons sur Mz_ le 
faisceau X%, des germes de champs de vecteurs de qui sont tangents à Z?_ et 
verticaux pour la projection n' := n o Ez, i.e. Tir' • Z = 0, où n : B2 x B (Z0,*)t = (Yt)t B 
désigne la projection canonique. D'après un théorème classique de Grauert le faisceau 
de base B2 x B 

(Z0,*)t = (Yt)t (Z0,*)t : W H—* H1 (Z0,*)t = (Yt)(Z0,*)t = (t 

est cohérent sur OB^XB- H est visiblement à support dans 0 x 2 ? . Ainsi 

(Z0,*)t = (Y ù$ : W i—> H1 (Z0,*)t = (Yt)t(Z0,*)t = 
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est un faisceau cohérent sur OB- D'après Andreotti-Grauert on a aussi 

(Z0,*)t = (Yt)t (Z0,* w H1 TT' 1(W)nDz;Xz> Dz_:=E£{OxB). 

Visiblement tout champ de vecteur V dans B se relève sur les ouverts Uj d'un recou
vrement de Mz_ en des sections champs Vj qui sont tangents à Z ' . L'application de 
Kodaira-Spencer de (ZUyt)ut est le morphisme de 0<&+-r ^-modules de types finis 

(6) 
dz 

d(u,t) 
(Z0,*)t = (Yt)t (Z0,*)t = (Yt)t ù^^$ 

(Z0,*)t = 
v _ [Vj _ Vi]. 

Son noyau M est constitué des champs V qui admettent un relevé V global. Ainsi, 
par intégration des flots de V et de V, la déformation (ZUit)ut est analytiquement 
triviale lorsque (uyt) varie sur une orbite de V. 

Etape 6. — On construit la factorisation À. Remarquons d'abord que (6) est sur-
jective. En effet considérons X^f comme un faisceau de modules sur l'anneau A := 
OB(B). Soit 9)1 C A l'idéal des fonctions qui s'annulent à l'origine. A l'aide d'un 
bon recouvrement de Dz_ sans intersection 3 à 3 non-triviales, on montre facilement 
l'égalité : 

(7) RH*'*) 
ù^$ l(B) A A/m ~ H1 Dz; X% ®A A/m - Z / 1 (DXo;Xx>). 

Ainsi, avec ces identifications oz := dz 
(Z0,*)t = (Y 

S>A A/Wl est l'application 

r 

k=l 

d 

duk (0,0) 
-h 

p 

k=l 

fik 
d 
dtk (0,0) 

r 

k=l 

^ù$ 
dz 

duk U=0,t=0 
4-

p 

k=l 
Pk 

OZ 
dtk u=0,t=0 

Cette application est visiblement surjective. Le lemme de Nakayama et l'exactitude à 

droite du produit tensoriel donnent le suri ectivite de dZ 
d{u,t) 

De manière plus précise, on a la suite exacte 

0 Af(0) r(o,o) Cr $^ù $^$ù 
H1 ù!$m(Z0,*)t = (Yt)t •>o, 

où Af(0) est le sous-espace de TbCr+p formé des valeurs^2) à l'origine des éléments de 
Jsf ; La restriction de az à T0Cr x 0 est un isomorphisme ; Ainsi A/"(0) est de dimension 
p et transverse à T0Cr x 0. 

Enfin on voit facilement que J\f est involutif, i.e. [Af,Àf] C Af. D'après un résultat de 
D. Cerveau [6] page 266, M contient un sous-module libre involutif T de rang p, tel que 
T(0) = A/"(0). Le feuilletage régulier TT définit par T est transverse à Cr x 0. Lorsque 
le paramètre (u,v) varie sur une feuille de TT la déformation (Zuj)ut est triviale. 
On obtient le changement de paramètres désiré en prenant le germe de l'application 
À : 0 x O7, (0,0) —>CT x 0, (0, 0) qui consiste à suivre les feuilles de TT- • 

(2)En général A/r(0) n'est pas égal à Af <S>oCT+p Q &c2+p ,o/(u-> 
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Remarque 4.4. — On voit facilement à partir de cette construction que la factorisa
tion À est nécessairement identiquement nulle lorsque (Xt)t est triviale. 

5. Familles de séparatrices 

Les déformations de courbes qui nous intéressent ici sont les familles de sépara
trices d'une déformation de 1-forme. A priori cette notion n'est pas bien définie et la 
dépendance analytique d'une famille de séparatrices demande à être précisée. 

Définition 5.1. — Soit 77 une déformation de base quelconque Cp,0 d'un germe de 1-
forme semi-hyperbolique UJ à l'origine de C2 et (X, TT) une déformation de base CP, 0 
de Xo := Sep(u;). Nous disons que (X, TT) est une famille de séparatrices de 77 si pour 
toute valeur t assez petite du paramètre le germe de 1-forme rjt en (0, t) € C2 x t 
est non-dicritique et admet Xt comme courbe invariante (non nécessairement irréduc
tible). 

L'existence de famille de séparatrices permettra d'obtenir de bons critères d'équi-
réductibilité. Cependant je ne sais pas répondre aux questions suivantes : 

(1) Est-ce qu'une déformation 77 d'une 1-forme semi-hyperbolique 770, de lieu sin
gulier Sing(77) = 0 x Q \ 0 admet nécessairement une famille de séparatrices 
(X, 7r) telle que Xt — S e p ^ ) ? 

(2) Même question en supposant de plus que chaque 77* est semi-hyperbolique. 

Une réponse affirmative impliquerait d'après ce qui suit que 77 est équiréductible. 
Un critère d'équiréductibilité dans ce cadre serait la constance du nombre de Milnor 
de 77t et cela étendrait à ces feuilletages les théorèmes de Zariski et Lê Dung Trang-
Ramanujam. Cela donnerait aussi, lorsque 77 est la différentielle d'une fonction F, une 
démonstration de l'implication « fi{Ft) constant mo(Ft) constant» qui n'utiliserait 
pas le critère topologique de Lê Dung Trang-Ramanujam. 

De la même manière que pour l'ouverture de la semi-hyperbolicité on montre : 

Proposition 5.2. — Toute déformation équiréductible 77 d'un germe de 1-forme semi-
hyperbolique UJ possède une famille de séparatrices (X, TT) qui est une déformation 
équiréductible de Sep(a?) et qui satistait : Xt = S e p ^ ) . 

Une « réciproque » à cette proposition est : 

Proposition 5.3. — Soit 77 une déformation de base quelconque Cp,0 d'un germe de 
1-forme semi-hyperbolique UJ qui possède une famille de séparatrices (X,TV). Les as
sertions suivantes sont alors équivalentes : 

(1) 77 est équiréductible, 
(2) Sing(77) = 0 x CP,0 

(3) Km) = 
(4) (X, TT) est équisingulière, 
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Démonstration. — L'implication (1) (2) et l'équivalence (2) (3) sont triviales. 
Comme Crit(X) est contenu dans Sing(77), l'implication (3) (4) résulte de la pro
priété P2 des formes semi-hyperboliques énoncée au §3 et du critère (4) d'équisingu-
larité donné au chapitre 4. 

Supposons (X, 7r) équisingulière. D'après P2 on a les inégalités : 

(8) M(o,t)(rçt) ̂  ^(o,t) (Sep(%)) > fi{0it)(Xt) = /i0 (Sep(u>)) = MoM-

Par semicontinuité JJLQ{UJ) > H(0^(r]t) et, dans (8), on a partout égalité. Ainsi chaque 
rjt est semi-hyperbolique et Xt = Sep(r}t). La propriété PI du chapitre 3 permet de 
conclure à l'équiréduction de 77. • 

Ces conditions équivalentes n'impliquent pas, bien sûr, la trivialité topologique de 
la déformation ; c'est déjà faux lorsque UJ est réduit. On a cependant : 

Corollaire 5.4. — Soit 77 une déformation topologiquement triviale d'un germe de 1-
forme UJ semi-hyperbolique à l'origine de C2. Alors 77 est équiréductible. 

Démonstration. — La difficulté vient du fait qu'on ne sait pas à priori que la collection 
des germes Sep (77*) est contenue dans une hypersurface de C2+î\ Il est clair que chaque 
nt est non-dicritique et S e p ^ ) est bien défini. Soit $ := ($t',t) un homéomorphisme 
trivialisant 77, défini sur voisinage assez petit de l'espace des paramètres P : = 0 x ( ? , 0 
pour que Sing(77) = P. Il est clair que /^ço^ivt) est constant. L'image de Sep(<x>) par 
<&t est une courbe analytique de C2 x 0 invariante par 77 .̂ Le même raisonnement avec 
«ï^1 prouve que $^(Sep(u;)) = Sep(77t). 

Montrons que chaque 77t est semi-hyperbolique. L'invariance topologique du nombre 
de Milnor d'un germe de courbe, la propriété P2, la semi-continuité inférieure de 
t 1—> l^(o,t)(rIt) et ce qui précède donnent les relations 

/x0(Sep(u;)) = /i(o,t)(Sep(rçt)) < M(o,t)(^t) = MoM-

La semi-hyperbolicité de UJ impliquant l'égalité de HO(UJ) et /xo(Sep(cj)), la ligne pré
cédente ne comporte que des égalités. On conclut de nouveau par P2. 

D'après la propriété P4 des 1-formes semi-hyperboliques on a l'égalité des arbres 
duaux pondérés A* (rjt) = A* ( S e p ^ ) ) . On sait d'autre part que l'arbre dual pondéré 
de réduction d'un germe de courbe plane est un invariant topologique de ce germe. 
En effet les paires de Puiseux sont des invariants topologique [20] et elles donnent, 
cf. [8] la réduction des singularités. On conclut par (3.5) • 

6. Notions de quasi-homogénéité 

Considérons d'abord la quasi-homogénéité au sens des déploiements équisinguliers. 
Nous conservons les notations des chapitres précédents. 

ASTÉRISQUE 261 



QUASI-HOMOGÉNÉITÉ ET ÉQUIRÉDUCTIBILITÉ 269 

Définition 6.1. — Soit UJ = a(x,y)dx + b(x,y)dy un germe à l'origine de C2 de 1-
forme semi-hyperbolique. Un déploiement équisingulier de UJ de base CP est un germe 
de 1-forme à l'origine de C2+p 

p 
ft := A(x,y\ t)dx -h B(x,y; t)dy + ^] Cj{x, V\ t)dtj 

j=i 
qui satisfait la condition d'intégrabilité Q A dil = 0 et tel que : 

(1) les germes à l'origine de C2+p des sous-ensembles 

{A — B — 0} et {A = B = Ci = • • • = Cp = 0} 

sont identiques et égaux à 0 x G \ 0 . 
(2) la déformation de UJ définie par 

n := A(#, y; £) dx + J3(#, y; i) dy 

est équiréductible ; Nous la notons (fît)t ; 
(3) le diviseur exceptionnel DQ de l'équiréduction de 77, que nous notons ici EQ : 

MQ — > C2+p, est une hypersurface invariante du feuilletage singulier saturé 
de codimension un Tçi défini par les saturés locaux de fi := EQ1(ÎÏ). De plus 
Sing(^h) = S i n g ( ^ ) et E(.Êh; A * ) = E(r7;£>Q). 

Un tel déploiement définit sur C2+p, 0 un feuilletage Tç\ de codimension 1 de lieu 
singulier 0 x CP, 0 et transverse en dehors de ce lieu singulier à la projection linéaire 
7T : C2 x i ? —y CP. Une équivalence de deux déploiements il1 et Q2 est une équivalence 
des déformations associées qui en plus transforme TQI en Tçp. On définit de même le 
transformé d'un déploiement par un changement de base A := ( A i , . . . , Xp) : O , 0 —> 
CP, 0 comme la 1-forme A*fî sur C?+q, 0 obtenue en posant tj = Xj (s) dans l'expression 
de ft. 

Un déploiement équisingulier iî possède d'après (3.3) et (5.2) un ensemble de sépa
ratrices : une hypersurface invariante Sep(íl) C C2+p,0 qui est une déformation équi-
singulière de Sep(u;) et telle que Sep(fî) H C2 x t = Sep(f^). 

Théorème 6.2 ([10]). — Tout germe UJ de 1-forme à Vorigine de C2 possède un déploie
ment équisingulier OF, de base C6^, 0, qui est universel dans le sens suivant : tout 
déploiement équisingulier ÍÍ de base quelconque CP, 0 est analytiquement équivalent à 
un déploiement du type \*QU, avec A : Cp —> . De plus Qu est unique à unité 
multiplicative près et 

C 
où c décrit l'ensemble Ui=0 hw de tous les points que l'on éclate (0 compris) lors 
de la réduction de UJ et vc désigne la multiplicité en c E C¿ du saturé du transformé 
UJ% de UJ, cf. ch. 2. De plus on a une identification canonique 

aQu : ToC6^ —> H\D^X?J, 

(Z0,*)t = (Yt)t 

C 

K - 1 ) K - 2 ) 

2 

où c décrit l'ensemble | |i=0 h de tous les points que l'on éclate (0 compris) lors 
de la réduction de UJ et vc désigne la multiplicité en c G C„ du saturé du transformé 
LO1 de w, cf. ch. 2. De plus on a une identification canonique 

(Z0,*)t = (Yt)t H^D^XfJ, 
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où X^ désigne le faisceau de base des germes (aux points de D^) de champs de 

vecteurs tangents au feuilletage et au diviseur . 

Avant de prouver le théorème A de l'introduction précisons la notion de quasi-
homogénéité au sens des déploiements. 

Définition 6.3. — Un germe de 1-forme à l'origine de C2 est dit d-quasihomogène si 
tout déploiement équisingulier de base quelconque Q satisfait l'équivalence : 

- fî est holomorphiquement trivial si et seulement si la déformation de courbes 
(Sep(fî^))^ est holomorphiquement triviale. 

Remarque 6.4. — Lorsque LO est exacte, LO = df\ tout déploiement de LO est donné 
par une l-forme exacte [11]. Dans ce cas la définition ci-dessus est équivalente à la 
définition classique de quasi-homogénéité de / . 

Démonstration du théorème A. — Notons 5 := S(LO) et r := T(LO). La déformation 

(9) Sep(nu);ncs)=Sep(î#)) (Z0,*) t Y 

de X0 := Sep (LO) se factorise dans la déformation équisingulière semi-universelle 
(Xu,7r<cr) de Xo. Donnons-nous un changement de base Au : Cô —> CT tel que 

(9) soit analytiquement conjuguée à Çx^u^^- Nous allons calculer la dérivée à l'ori

gine de Au. 

D'après le lemme (1.1.5) de [10] le feuilletage TQU est localement analytiquement 
trivial et l'on peut construire des germes de trivialisations 

*» : MQu, Ui —> x 0, C/i x 0 

qui sont définis au voisinage de chaque ouvert Ui d'un recouvrement adapté IÂ (cf. 
ch. 4) de Du C Mw Moi/. On dispose maintenant d'un cocycle 

(10) 
OTQU' 

dvk v=0 
$ 

(Z0,*)t = (Yt)t 

dvk 
v=0 

Gtf1 Du ; X-j:^ 

Il résulte de la construction de [10] que l'identification CTQU du théorème (6.2) s'ex
plicite par : 

(H] (Z0,*)t = (Yt 

k 
&k 

d 

dvk 
\v=0' k 

(Z0,*)t 
(Z0,*)t = 

[ovk v=0 

D'autre part chaque induit une trivialisation de S' :— Eçi~x(Sep(fî17)). Ainsi, 
Xs> désignant la restriction à D^ du faisceau des champs de vecteurs sur qui sont 
tangents à S1 en chaque point régulier, le cocycle 

' Ô S e p ( ^ ) " 
dvk 

v=0 
G H1 (DU;XS>) 
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est l'image de (10) par l'application 

p.H1 ( A , ; A > J H1 (Du;Xs>) 

induite par l'inclusion de faisceaux p : X^ —> Xs'. On déduit de (11) et (4.3) 
l'égalité suivante (modulo les identifications <TQU et <Jxu) 

(12) ïoA17 = p. 

Grâce au lemme clé (3.2) on va pouvoir calculer T0AU. On considère la suite exacte 

(13) 0 (Z0,*)t t)t p. Xs 
LU' 'JoEu) 0 

où / désigne encore une équation réduite de S := Sep(w). La suite longue de coho-
mologie associée se décompose en 

0 (Z0,*) Du, H° (D„;XS>) (Z0,*)t = (Yt)t(Z0,*)t = (Yt)t • TV • 0 

0 — > N —> H1 Du, ; X^ H1 (Dw ; Xs' H1 (DvitfoEv)) 0 

puisque le recouvrement U n'a pas d'intersection trois à trois non triviale. Le fais
ceau (f o Eu) est isomorphe à O car engendré par une section triviale. Ainsi^3) 
H1 (Du', (f o Eu)) est nul. On en déduit le 

Lemme 6.5. — Si LO est semi-hyperbolique, alors AU : (pH4*̂  , 0 —> , 0 est un 
germe de submersion. 

Les sections globales des faisceaux de (13) définissent des objets holomorphes sur 
une petite boule épointée centrée en 0 G C2 ; ils se prolongent à l'origine par le 
théorème classique d'Hartogs. Ainsi, N est le conoyau de l'application LO- : V i—> w-V 
qui, à tout élément du module Xs,o C X& ?o des germes en 0 de champs de vecteurs 
de C2,0 tangents à S, associe un élément de l'idéal (a,6) de 0<&,0 engendré par / . 
Comme tout élément de (a, b) peut s'écrire LO • V ce conoyau est égal au quotient 
(/)/(<*, &)n(/) 

En conclusion on obtient la suite exacte 

(14) 0 ( /) 
(a,6)n(/) 

ToC5 
T0AL 

T0CT • o 

D'après la remarque (4.4) la sous variété (At/)_1(0) est l'ensemble dans lequel se 
factorise nécessairement toute déformation triviale de Sep(t^). Par définition u> est d-
quasi-homogène si et seulement si (Au)~1(0) = { 0 } . Puisque AU est une submersion 
on obtient les équivalences des propriétés : 

(3'On peut facilement voir que H1 (Du; O) = 0 : Par un simple calcul de séries de Laurent pour un 
seul éclatement, puis par induction à l'aide de la suite exacte de Mayer-Vietoris. 
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(i) LO est d-quasi-homogène, 

(ii) iii) 
(а,6)П(/) 

= 0, 

(iii) 6(ш) = T(S) 

Nous sommes maintenant en mesure de montrer les équivalences du théorème. 

L'équivalence (1') O (2) correspond à (i) O (ii). En appliquant (i) O (ii) à df 
on obtient (3) <=> (4). Pour obtenir (1') ^ (3) on applique successivement le critère 
(i) <^ (iii) à u; et à df, puis on remarque que 5(LO) = S(df). En effet grâce à la 
propriété P3 des formes semi-hyperboliques, les multiplicités m^iD) et rridf(D) sont 
toutes égales ; il en est de même des vc qui s'en déduisent linéairement. Il reste à 
prouver (2) <=ï (5) 

Visiblement LO • g~x [au^fa + &vjfo} = f *> ce Qui donne (2) (5). 

Pour l'implication réciproque exprimons que / -1 (0 ) est séparatrice de LO en écrivant 

(15) LO A df = fHdx A dy,Eu, :— m H e O ^ ^ . 

Par hypothèse on dipose d'un champ Z qui satisfait LO Z = fCe champ est tangent 
à /_1(0) = Sep(u>) et donc df • Z peut s'écrire fR, R G 0c2,o- Le produit intérieur in
appliqué à chaque membre de (15) donne 

(16) df - RLO = Hiz(dx A dy). 

D'après ce qui est déjà prouvé df est ausi quasi-homogène et on dispose d'un champ Z' 
qui vérifie df • Z' = / . Ce champ est colinéaire k Z le long de la séparatrice commune 

/ "x (0 ) et r°n a : dx A dv(zi z') = /A'> ainsi Que u - Z' = fR\ avec A ' , R' G 0& ,o-
En appliquant à (16) on obtient 

(17) RR' = 1 - # A ' . 

Remarquons que iïi?' 7̂  0. En effet la multiplicité à l'origine v$(H) de H est 
minorée à l'aide de (15) par VQ(LO) — 1 et R est non nul dès que VQ(LO) > 1. D'autre 
part le cas V(LO) = l , i f (0 ) 7̂  0 ne peut se produire : sinon la fonction / qui est 
quasi-homogène et de même multiplicité que u;, s'écrirait dans de bonnes coordonnées 
v2 -h uq ; l'équation (15) se résout alors immédiatement, les relations entre f'u et f'v 
étant toutes triviales ; finalement on obtiendrait 

\zLO — Wdf + \vdu — -udv, 
H 2 q 

ce qui est exclu car LO n'est pas dicritique. 

Pour achever la démonstration prenons de nouveau des coordonnées u,v dans les
quelles / est un polynôme quasi-homogène. Les calculs précédents peuvent alors se 
refaire avec Z' :=Eu, :— Eu^i+fiv§^ où a et (3 sont les poids des coefficients de / . Puisque 
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r>( LU ' Z 
R . - - j -

est non nul on peut aussi poser Z :— -k/Z. L'équation (16) devient 

df — guu — h((3vdu — audv), 
iii) 6(u) = T(S) 

iii) 6(u) = T(S) 

Ceci qui achève la démonstration. 

Remarque 6.6. — Tout déploiement équisingulier est topologiquement trivial [10] et 
visiblement le pseudo-groupe d'holonomie du feuilletage régulier d'un voisinage époin-
té W — t de 0 E C2 est indépendant de t. On déduit alors immédiatement du lemme 
(6.5) le 

Corollaire 6.7. — Soit LU un germe de 1-forme s emi-hyperbolique. Alors toute défor
mation topologiquement triviale (X, n) de Sep(cj) est réalisée comme la séparatrice 
d'un déploiement équisingulier, i.e. il existe un déploiement équisingulier Q de LU tel 
que X = Sep(fi). En particulier la déformation (fît)t de LU est topologiquement trivia
le, à pseudogroupe d'holonomie constant et pour t assez petit Xt — Sep(fî)f. 

Démonstration du théorème B. — Rappelons la notion de quasi-hyperbolicité intro
duite dans [14] [15]. 

Définition 6.8. — Un germe LU de 1-forme différentielle à l'origine de C2 est dit quasi-
hyperbolique si Du est un sous-ensemble invariant de Tu et les singularités de Tu sont 
toutes du type udv + Xvdu + • • • avec À ^ M<o. Si de plus il existe une composante ir
réductible D de Du telle que le groupe d'holonomie de D — Sw DD n'est pas résoluble, 
nous dirons ici que LU est quasi-hyperbolique générique. 

Cette notion de généricité est plus faible que celle définie dans [14], [15] mais elle 
est suffisante pour ce qui suit. Dans [12] [13] nous montrons que dans l'ensemble des 
1-formes quasi-hyperboliques celles qui ne satisfont pas cette condition de généricité 
est contenu dans un ensemble pro-algébrique de codimension infinie. L'intérêt de cette 
notion est dans le 

Théorème 6.9 ([14], [15]). — Toute déformation n topologiquement triviale d'un germe 
LU de 1-forme quasi-hyperbolique générique est sous-jacent à un déploiement équisin
gulier, i.e. il existe un déploiement équisingulier Q de LU de même base que rj tel que 
{r,t)t = (nt)t. 

La condition de non-résolubilité d'holonomie de (6.8) implique que LU n'admet pas 
de facteur intégrant c'est à dire de fonction k E 0<ç? 0 telle que d(to/k) — 0; si
non l'holonomie de chaque composante de Du serait linéaire [7]. Cela impose^4) que 
deux déploiements de LU qui induisent la même déformation sont égaux, à coefficient 
multiplicatif près. On en déduit immédiatement le : 

(4)C'est un calcul facile, d'autant plus que pour le lemme qui suit il suffit de le faire dans le cas d'un 
déploiement analytiquement trivial. 
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Lemme 6.10. — Un germe de 1-forme quasi-hyperbolique générique est topologique
ment quasi-homogène (1-1) si et seulement si elle est d-quasi-homogène. 

Ceci achève la démonstration. • 

7. Une généralisation d'un théorème de J. Briançon 

Nous allons prouver le théorème C de l'introduction, qui généralise un résultat [2] 
de J. Briançon en dimension 2 étendu par la suite en dimension quelconque par cet 
auteur et H. Skoda [3] : 

- le carré de toute fonction / G Oc?,o appartient l'idéal jacobien de / . 

Fixons un germe en 0 G C2 de 1-forme semi-hyperbolique LU, une équation réduite 
/ de Sep(cc;) et conservons les notations (1), (2). Nous allons construire une section 
globale V du faisceau Xs> des champs de vecteurs tangents à S' := Eu,~1(Sep(u>)), 
qui vérifie 

(18) 2 . V = / 2 o £ w . 

On obtient le théorème C en prenant l'image directe de V sur C2,0, prolongée à 
l'origine par le théorème d'Hartogs. 

Dans Afw, au voisinage de chaque ouvert Wi d'un recouvrement W assez fin de D^ , 
il existe d'après le lemme (3.2) un champ de vecteurs Wi vérifiant LU • Vi = f o E&. Le 
cocycle Vij := Vi — Vj est à valeurs dans le faisceau X- des champs tangents à 
On va voir que 

(19) iii) 6(u) = T(S)[foELÛ-Vij]=0eH1(Daj]XfJ. 

Ainsi les champs / o E& • Vi se recollent en un champ global V vérifiant (18). 

Le théorème ci-dessous, qui peut s'interpréter comme une forme géométrique du 
théorème de Briançon, donne immédiatement (19). Considérons une succession finie 
E% : M1 —> M1-1, i — 1,. . . , h d'éclatements de centres finis et au dessus de l'origine 
de C2 = : M0. Notons 

E := E1 o . . . oEh, D1 := ^ _ 1 ( 0 ) , D := Dh, 

et désignons par X^ le faisceau des champs de vecteurs de Mh tangents au feuilletage 
saturé T défini par E*(LO). Fixons une équation réduite / de Sep(u;) et notons F := 
foË. 

Théorème 7.1. — Soit LU un germe à l'origine de C2 de 1-forme semi-hyperbolique. 
Alors le morphisme 

[F]- : H1 (D- A > ) —* H1 (£>• X?) , [Yij] [F • Y»] 

est identiquement nul. 
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Démonstration. — Raisonnons par récurrence sur ft. Nous avons calculé dans [10] 
une base de H1 (jl; X^ pour ft = 1 : on se donne en 0 G C2 un champ de vecteurs 
Z à singularité isolée qui annule UJ ; on recouvre l'éclaté M1 de l'origine de C2 par les 
deux cartes canoniques (Ui;xi := x,y\ := y/x) et (JJ<i\x<2, := x/y,y2 := y) ; le relevé 
de Z dans la première carte s'écrit x\~x Z\ ou v est la multiplicité à l'origine de Z et 
Z\ est un champ de vecteurs défini holomorphe et à singularités isolées sur U\ ; alors 
les champs 

Zap := x?yÇ • Z i , (a,/3) G / : = {a > 0 | a - v + 1 < /3 < 0} 

induisent une base de H1 (jD;X^J. De plus les champs de vecteurs suivants : 

a??yf-Zi , <*>0, /? > 0 ou /3 < a - i /+ 1 

sont dans .B1 ^ D ; A ^ . La multiplicité de / à l'origine est aussi égale à v car UJ 
est semi-hyperbolique. Ainsi (F) C (x\) et les champs F • Za#, (ÛJ,/3) G / sont des 

cobords ; et le théorème est montré pour ft = 1. 

Le pas de récurrence se fait en utilisant la décomposition [10] suivante : 

(20) 0 — • H1 (D1; Xfi) H1 ( 5 ; X^j H1 (D';X^) — • 0 

où D1 est l'union des composantes irréductibles de D autres que D1, Q est le morphisme 
de restriction et £ est induit par le plongement naturel de D1 dans D. Sur le premier 
terme de cette suite exacte le morphisme [F]- est nul; c'est le calcul ci-dessus. La 
nullité de [F]- sur le troisième terme de (20) résulte de l'hypothèse de récurrence 
appliquée à Tx au voisinage de chaque point du centre d'éclatement de E2. • 

Références 

[1] A . A N D R E O T T I E T H . G R A U E R T , Théorèmes de finitude pour la cohomologie des 
espaces complexes, Bulletin de la Société Mathématique de France, 9 0 , pages 193 à 
259, (1962). 

[2] J. B R I A N Ç O N , A propos d'une question de J. Mather, Preprint Université de Nice, 
1973. 

[3] J . B R I A N Ç O N E T H . S K O D A , Sur la clôture intégrale d'un idéal de germes de fonc
tions holomorphes n un point de Cn, Comptes Rendus de l'Académie des Sciences, 
Paris, série A 2 7 8 , pages 949 à 951, (1974). 

[4] C . C A M A C H O E T P. S A D , Invariant varieties through singularities of holomorphic 
vector fields, Annals of Mathematics, 115 , pages 579 à 595, (1982). 

[5] C . C A M A C H O , A . L I N S N E T O E T P. S A D , Topological invariants and equidesingu-
larization for holomorphic vector fields, Journal of Differential Geometry, 2 0 , pages 
143 à 174, (1984). 

[6] D . C E R V E A U , Distributions involutives singulières, Annales de l'Institut Fourier, 
2 9 , 3, pages 261 à 294, (1979). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



276 J.-F. MATTEI 

[7] D . CERVEAU ET J.-F. MATTEI, Formes intégrables holomorphes singulières, Asté
risque, 97, (1982). 

[8] D . EISENBUD ET W . NEUMANN, Three-dimensional link theory and invariants of 
plane curve singularities, Princeton University Press, Annals of mathematics Stu
dies, 110, (1985). 

[9] LÊ DUNG TRANG ET C P . RAMANUJAM, The invariance of Milnor's number im

plies the invariance of the topological type, American Journal of Mathematics, 98, 
1, pages 67 à 78, (1976). 

[10] J.-F. MATTEI, Modules de feuilletages holomorphes singuliers : 1 équisingularité, 
Inventiones Mathematicae, 103, pages 297 à 325, (1991). 

[11] J.-F. MATTEI ET R. Moussu, Holonomie et intégrales premières, Annales Scien
tifiques de l'Ecole Normale Supérieure, Série 4, t. 13, pages 469 à 523, (1980). 

[12] J-F. MATTEI ET E. SALEM, Classification formelle des feuilletages génériques de 
(C2, 0), preprint. 

[13] J-F. MATTEI ET E. SALEM, Classification formelle et analytique de feuilletages 
singuliers de (C2, O), C. R. Académie des Sciences, Paris, Série 1, t. 352, pages 
773 à 778, (1997). 

[14] J-F. MATTEI ET E. SALEM, Classification topologique et analytique des feuilletages 
génériques de (C2, O), en préparation. 

[15] J-F. MATTEI ET E. SALEM, Complete systems of topological and analytical inva
riants for a generic foliation of (C2, O), Mathematical Reasearch Letters, 4, pages 
131 à 141, (1997). 

[16] K. SAITO, Quasi-homogene isolierte Singularitäten von Hyperflächen, Inventiones 
Mathematicae, 14, pages 123 à 142, (1971). 

[17] A. SEIDENBERG, Reduction of singularities of the differentiate equation AdY = 
BdX, American Journal of Mathematics, 90, pages 248 à 269, (1968). 

[18] O . ZARISKI, Studies in equisingularity I : Equivalent singularities of algebraic 
curves, American Journal of Mathematics, 87, pages 507 à 536, (1965). 

[19] O . ZARISKI, Studies in equisingularity II : Equisingularity in codimension 1 (and 
characteristic zero), American Journal of Mathematics, 87, pages 972 à 1006, 
(1965). 

[20] O . ZARISKI, On the topology of algebroid singularities, American Journal of Mathe
matics, 54, pages 433 à 465, (1932). 

J . -F . MATTEI, Université Paul Sabatier, Laboratoire de Mathématiques Emile Picard, U M R - C N R S 
5580, 118 route de Narbonne, 31 062 Toulouse Cedex, France 
E-mail : m a t t e i @ p i c a r d . u p s - t l s e . f r 

ASTÉRISQUE 261 



Astérisque

JOHN MILNOR
Periodic orbits, externals rays and the Mandelbrot
set: an expository account

Astérisque, tome 261 (2000), p. 277-333
<http://www.numdam.org/item?id=AST_2000__261__277_0>

© Société mathématique de France, 2000, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_2000__261__277_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astér is que 
2 6 1 , 2000, p. 277-333 

PERIODIC ORBITS, EXTERNALS RAYS 
AND THE MANDELBROT SET: 

AN EXPOSITORY ACCOUNT 

by 

John Mi lnor 

Dedicated to Adrien Douady on the occasion of his sixtieth birthday 
Abstract. — A presentation of some fundamental results from the Douady-Hubbard 
theory of the Mandelbrot set, based on the idea of "orbit portrait": the pattern of 
external rays landing on a periodic orbit for a quadratic polynomial map. 

1. Introduction 

25/63N 
\ 22/63 11/63 

Si 

37/63 
44/63 50/63 

FIGURE 1. Julia set for z z2 l 
4 

e27Ti/3 " 1) showing the six rays 
landing on a period two parabolic orbit. The associated orbit portrait has 
characteristic arc X = (22/63, 25/63) and valence v = 3 rays per orbit 
Doint. 

A key point in Douady and Hubbard's study of the Mandelbrot set M is the 
theorem that every parabolic point c / 1/4 in M is the landing point for exactly 
two external rays with angles which are periodic under doubling. (See [DH2]. By 

1 9 9 1 Mathematics Subject Classification. — 30D05. 
Key words and phrases. — Mandelbrot set, periodic orbit. 

© Astérisque 261, SMF 2000 



278 J. MILNOR 

definition, a parameter point is parabolic if and only if the corresponding quadratic 
map has a periodic orbit with some root of unity as multiplier.) This note will try 
to provide a proof of this result and some of its consequences which relies as much as 
possible on elementary combinatorics, rather than on more difficult analysis. It was 
inspired by §2 of the recent thesis of Schleicher [Si], which contains very substantial 
simplifications of the Douady-Hubbard proofs with a much more compact argument, 
and is highly recommended. (See also [S2], [LS].) The proofs given here are rather 
different from those of Schleicher, and are based on a combinatorial study of the 
angles of external rays for the Julia set which land on periodic orbits. (Compare [A], 
[GM].) As in [DH1], the basic idea is to find properties of M by a careful study of 
the dynamics for parameter values outside of M. The results in this paper are mostly 
well known; there is a particularly strong overlap with [DH2]. The only claim to 
originality is in emphasis, and the organization of the proofs. (Similar methods can 
be used for higher degree polynomials with only one critical point. Compare [S3], 
[E], and see [PR] for a different approach. For a theory of polynomial maps which 
may have many critical points, see [K].) 

We will assume some familiarity with the classical Fatou-Julia theory, as described 
for example in [Be], [CG], [St], or [M2]. 

Standard Definitions. — (Compare Appendix A . ) Let K = K(fc) be the filled Julia 
set, that is the union of all bounded orbits, for the quadratic map 

/(*) = fc(z) = Z2+C. 

Here both the parameter c and the dynamic variable z range over the complex num
bers. The Mandelbrot set M can be defined as the compact subset of the parameter 
plane (or c-plane) consisting of all complex numbers c for which K(fc) is connected. 
We can also identify the complex number c with one particular point in the dynamic 
plane (or ^-plane), namely the critical value / c ( 0 ) = c for the map / c . The parameter 
c belongs to M if and only if the orbit fc : 0 C c2 4- c • is bounded, or 
in other words if and only if 0, c G K(fc). Associated with each of the compact sets 
K = K(fc) in the dynamic plane there is a potential function or Green's function 
GK : C [0, oo) which vanishes precisely on K, is harmonic off K, and is asymptotic 
to log \z\ near infinity. The family of external rays of K can be described as the or
thogonal trajectories of the level curves GK — constant. Each such ray which extends 
to infinity can be specified by its angle at infinity t G M / Z , and will be denoted by 

. Here c may be either in or outside of the Mandelbrot set. Similarly, we can 
consider the potential function GM and the external rays TZ^ associated with the 
Mandelbrot set. We will use the term dynamic ray (or briefly K-ray) for an external 
ray of the filled Julia set, and parameter ray (or briefly M-ray) for an external ray of 
the Mandelbrot set. (Compare [SI], [S2].) 
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22 
11/63 

2 5 
4 

3? 

1 « 

44 50 

FIGURE 2 . Schematic diagram illustrating the orbit portrait (1) . 

Definition. — Let O = { ^ i , . . . , zp} be a periodic orbit for / . Suppose that there 
is some rational angle t E Q / Z so that the dynamic ray izf^^ lands at a point of 
O. Then for each zi E 0 the collection A* consisting of all angles of dynamic rays 
which land at the point zi is a finite and non-vacuous subset of Q / Z . The collection 
{A\, . . . , ^4P} will be called the orbit portrait V = V(0). As an example, Figure 1 
shows a quadratic Julia set having a parabolic orbit with portrait 

V = { { 2 2 / 6 3 , 25/63, 3 7 / 6 3 } , { 1 1 / 6 3 , 44/63, 5 0 / 6 3 } } . (1) 

It is often convenient to represent such a portrait by a schematic diagram, as shown 
in Figure 2. (For details, and an abstract characterization of orbit portraits, see §2.) 

The number of elements in each Ai (or in other words the number of i^-rays which 
land on each orbit point) will be called the valence v. Let us assume that v > 2. 
Then the v rays landing at z cut the dynamic plane up into v open regions which 
will be called the sectors based at the orbit point z E O. The angular width of a 
sector S will mean the length of the open arc Is consisting of all angles t E 1R/Z with 
IZf C S. (We use the word 'arc' to emphasize that we will identify M/Z with the 
'circle at infinity' surrounding the plane of complex numbers.) Thus the sum of the 
angular widths of the v distinct sectors based at an orbit point z is always equal to 
+ 1 . The following result will be proved in 2.11. 

Theorem 1.1 (The Critical Value Sector S±). — Let O be an orbit of period p > 1 for 
f = fc. If there are v > 2 dynamic rays landing at each point of O, then there is one 
and only one sector S\ based at some point z\ E O which contains the critical value 
c = f(0), and whose closure contains no point other than z\ of the orbit O. This 
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critical value sector S\ can be characterized, among all of the pv sectors based at the 

various points of O, as the unique sector of smallest angular width. 

It should be emphasized that this description is correct whether the filled Julia set 

K is connected or not. 

Our main theorem can be stated as follows. Suppose that there exists some poly

nomial fc0 which admits an orbit O with portrait P , again having valence v > 2. Let 

0 < t- < t+ < 1 be the angles of the two dynamic rays TZ^± which bound the critical 

value sector .Si for fCo. 

Theorem 1.2 (The Wake Wp). — The two corresponding parameter rays TZ^± land at 

a single point r-p of the parameter plane. These rays, together with their landing point, 

cut the plane into two open subsets Wp and C \ Wp with the following property: A 

quadratic map fc has a repelling orbit with portrait V if and only if c G Wp, and has 

a parabolic orbit with portrait V if and only if c — Yp. 

22/63 
p^p 

25/63 

FIGURE 3. The boundary of the Mandelbrot set, showing the wake Wp 
and the root point rp = j e27™/3 — l associated with the orbit portrait of 
Figure 1, with characteristic arc Tp — (22/63, 25/63). 

In fact this will follow by combining the assertions 3.1, 4.4, 4.8, and 5.4 below. 

Definitions. — This open set W-p will be called the V-wake in parameter space (com

pare Atela [A]), and Tp will be called the root point of this wake. The intersection 

Mp = M n Wj> will be called the V-limb of the Mandelbrot set. The open arc 

Isx — ( £ - , £+) consisting of all angles of dynamic rays TZf which are contained in the 

interior of S\, or all angles of parameter rays TZ^4 which are contained in Wp, will be 

called the characteristic arc T = Tp for the orbit portrait V. (Compare 2.6.) 
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In general, the orbit portraits with valence v = 1 are of little interest to us. These 
portraits certainly exist. For example, for the base map fo(z) = z2 which lies outside 
of every wake, every orbit portrait has valence v = 1. As we follow a path in parameter 
space which crosses into the wake Wp through its root point, either one orbit with a 
portrait of valence one degenerates to form an orbit of lower period with portrait V, 
or else two different orbits with portraits of valence one fuse together to form an orbit 
with portrait V. (If we cross into Wp through a parameter ray TZp^, the picture is 
similar except that the landing point of the dynamic ray TZf± jumps discontinuously. 
If t+ and t- belong to the same cycle under angle doubling, then the landing points 
of both of these dynamics rays jump discontinuously.) 

However, there is one exceptional portrait of valence one: The zero portrait V = 
{ { 0 } } will play an important role. It is not difficult to check that the dynamic ray 
of angle 0 for fc lands at a well defined fixed point if and only if the parameter value 
c lies in the complement of the parameter ray TZQ1 = TZf1 = (1 /4 , o o ) . Furthermore, 
this fixed point necessarily has portrait { { 0 } } . Thus the wake, consisting of all c G C 
for which fc has a repelling fixed point with portrait { { 0 } } , is just the complementary 
region C \ [1/4, o o ) . The characteristic arc ^ { { o } } f°r this portrait, consisting of all 
angles t such that TZf C W{{o}}> ls the open interval (0 ,1 ) , and the root point r{{o}}> 
the unique parameter value c such that fc has a parabolic fixed point with portrait 
{ { 0 } } , is the landing point c = 1/4 for the zero parameter ray. 

4N 

3^ 

2 \3 V 4 4 y 3, 4 

4 

4 

4 

3 

4 
2 '3 '4 A 3 \4 

4 

1 
1 

FIGURE 4. Boundaries of the wakes of ray period four or less. 
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Definition. — It will be convenient to say that a portrait V is non-trivial if it either 
has valence v > 2 or is equal to this zero portrait. 

Remark. — An alternative characterization would be the following. An orbit portrait 
{ A i , . . . , Ap} is non-trivial if and only if it is maximal, in the sense that there is no 
orbit portrait {A[, ..., A'q} with A[ D A\. This statement follows easily from 1.5 and 

2.7 below. Still another characterization would be that V is non-trivial if and only if 
it is the portrait of some parabolic orbit. (See 5.4.) 

Corollary 1.3 (Orbit Forcing). — If V and Q are two distinct non-trivial orbit por
traits, then the boundaries dW-p and &WQ of the corresponding wakes are disjoint 
subsets of C. Hence the closures Wp and WQ are either disjoint or strictly nested. 
In particular, if Xp C XQ with V ^ Q, then it follows that Wp C WQ. 

Thus whenever Xp C XQ, the existence of a repelling or parabolic orbit with 
portrait V forces the existence of a repelling orbit with portrait Q. We will write 
briefly V Q. On the other hand, if Xp C\XQ = 0 then no fc can have both an orbit 
with portrait V and an orbit with portrait Q. 

See Figure 5 for a schematic description of orbit forcing relations for orbits with 
ray period 4 or less, corresponding to the collection of wakes illustrated in Figure 4. 
(Evidently this diagram, as well as analogous diagrams in which higher periods are 
included, has a tree structure, with no loops.) 

Proof of 1.3, assuming 1.2. — First note that Wp and WQ cannot have a boundary 
ray in common. For the landing point of such a common ray would have to have 
one parabolic orbit with portrait V and one parabolic orbit with portrait Q. But 
a quadratic map, having only one critical point, cannot have two distinct parabolic 
orbits. In fact this argument shows that dWp D 8WQ — 0 . Note that the parameter 
point c = 0 (corresponding to the map fo(z) = z2) does not belong to any wake W-p 
with V 7̂  { { 0 } } - Since rays cannot cross each other, it follows easily that either 

Wp C WQ, or WQ C Wp, O l Wp D WQ = 0 , 

as required. 

For further discussion and a more direct proof, see §7. 

To fill out the picture, we also need the following two statements. To any orbit 
portrait V = {Ai, . . . , Ap} we associate not only its orbit period p but also its ray 
period rp, that is the period of the angles t G Ai under doubling modulo one. In 
many cases, rp is a proper multiple of p. (Compare Figure 1.) Suppose in particular 
that c G M is a parabolic parameter value, that is suppose that fc has a periodic 
orbit where the multiplier is an r-th root of unity, r > 1. Then one can show that the 
ray period for the associated portrait is equal to the product rp. (See for example 
[GM].) This is also the period of the Fatou component containing the critical point. 
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FIGURE 5. Forcing tree for the non-trivial orbit portraits of ray period 
n < 4. Each disk in this figure contains a schematic diagram of the cor
responding orbit portrait, with the first n forward images of the critical 
value sector labeled. (Compare Figure 4; and compare the "disked-tree 
model" for the Mandelbrot set in Douady [D5] . ) 

This ray period rp is the most important parameter associated with a parabolic point 
c or with a wake Wj>. 

It follows from 1.2 that every non-trivial portrait which occurs at all must occur 
as the portrait of some uniquely determined parabolic orbit. The converse statement 
will be proved in 4.8: 

Theorem 1.4 (Parabolic Portraits are Non-Trivial). — If c is any parabolic point in M, 
then the portrait V = V(0) of its parabolic orbit is a non-trivial portrait. That is, 
if we exclude the special case c — 1/4, then at least two K-rays must land on each 
parabolic orbit point. 

It then follows immediately from 1.2 that the parabolic parameter point c must be 
equal to the root point v<p of an associated wake. It also follows from 1.2 that the 
angles of the M-rays which bound a wake W-p are always periodic under doubling. In 
§5 we use a simple counting argument to prove the converse statement. (This imitates 
Schleicher, who uses a similar counting argument in a different way.) 

Theorem 1.5 (Every Periodic Angle Occurs). — Ifty^OinR/Z is periodic under dou
bling, then IZt1 is one of the two boundary rays of some (necessarily unique) wake. 
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Further consequences of these ideas will be developed in §6 which shows that each 

wake contains a uniquely associated hyperbolic component, §8 which describes how 

each wake contains an associated small copy of the Mandelbrot set, and §9 which 

shows that each limb is connected even if its root point is removed. There are two 

appendices giving further supporting details. 
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2. Orbit Portraits 

This section will begin the proofs by describing the basic properties of orbit por

traits. We will need the following. Let f(z) = z2 + c with filled Julia set K. 

Lemma 2.1 (Mapping of Rays). — If a dynamic ray VJf lands at a point z E dK, 

then the image ray f{TZ^) — TZ£t lands at the image point f(z). Furthermore, if 

three or more rays TZf^, • • •, IZfk land at z ^ 0, then the cyclic order of the 

angles ti around the circle R / Z is the same as the cyclic order of the doubled angles 

2U (mod Z ) around R/Z. 

Proof. — Since each 1Z^\ is assumed to be a smooth ray, it cannot pass through any 

precritical point. Hence also cannot pass through a precritical point, and must 

be a smooth ray landing at f(z). Now suppose that we are given three or more rays 

with angles 0 < t\ < t2 < • • • < t& < 1, all landing at z. These rays, together 

with their landing point, cut the plane up into sectors S\, . . . , Sk, where each Si is 

bounded by 7Z£ and (with subscripts modulo k). The cyclic ordering of these 

various rays can be measured within an arbitrarily small neighborhood of the landing 

point z, since any transverse arc which crosses TZ£ in the positive direction must pass 

from Si-i to Si. Since / maps a neighborhood of z to a neighborhood of f(z) by an 

orientation preserving diffeomorphism, it follows that the image rays must have the 

same cyclic order. • 

Now let us impose the following. 

Standing Hypothesis 2.2.. — O — {z\, ..., zp} is a periodic orbit for a quadratic map 

fc(z) = z2 + c, with orbit points numbered so that f(zj) = Zj+±, taking subscripts 

modulo p. Furthermore there is at least one rational angle t € Q / Z so that the 

dynamic ray TZ^ associated with / lands at some point of this orbit O. 
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If c belongs to the Mandelbrot set M , or in other words if the filled Julia set K 
is connected, then this condition will be satisfied if and only if the orbit O is either 
repelling or parabolic. (Compare [Hu], [M3].) On the other hand, for c $ M , all 
periodic orbit are repelling, but the condition may fail to be satisfied either because 
the rotation number is irrational (compare [ G M , Figure 16]), or because the i^-rays 
which 'should' land on O bounce off precritical points en route ( [ G M , Figure 14]). 

As in §1, let Aj c E / Z be the set of all angles of K-rays which land on the point 
ZJ e O. 

Lemma 2.3 (Properties of Orbit Portraits). — / / this Standing Hypothesis 2.2 is satis
fied, then: 

(1) Each Aj is a finite subset ofQ/Z. 
(2) For each j modulo p, the doubling map t H-> 2t (mod Z ) carries Aj bijectively 

onto Aj+i preserving cyclic order around the circle, 
(3) All of the angles in A\ U • • • U Ap are periodic under doubling, with a common 

period rp, and 
(4) the sets A\, ..., Ap are pairwise unlinked; that is, for each i ^ j the sets Ai 

and Aj are contained in disjoint sub-intervals of R / Z . 

1/7 2/7 

3/7 

(3) (2) 

4/7 

5/7 6/7 

FIGURE 6. Julia set for z i-> z2 — 7/4, showing the six X-rays landing on 
a period three parabolic orbit. Each number (j) in parentheses is close to 
the orbit point Zj (and also to fOJ(0)). 

As in §1, the collection V = {A\, . . . , Ap} is called the orbit portrait for the orbit 
O. As examples, Figure 6 shows an orbit of period and ray period three, with portrait 

V = { { 3 / 7 , 4 / 7 } , { 6 / 7 , 1 / 7 } , { 5 / 7 , 2 / 7 } } , 

Figure 7 shows a period three orbit with ray period six, and with portrait 

V = { { 4 / 9 , 5 / 9 } , { 8 / 9 , 1 / 9 } , { 7 / 9 , 2 / 9 } } , 
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4 / 9 
2 / 9 1 / 9 

5 / 9 7 / 9 8 / 9 

FIGURE 7. Julia set for z i-> z2 — 1.77, showing the six X-rays landing on 
a period three orbit. In contrast to Figure 6, these six rays axe permuted 
cyclically by the map. 

12 

13 
• 6 

3 

(1) 

(3) 

"17 

(5) 
(4) 

(2) 

21 22 24 
26 

FIGURE 8. Julia set J(/c) for c = —1.2564 + .3803 2, showing the ten rays 
landing on a period 5 orbit. Here the angles are in units of 1/31. 

while Figure 8 shows an orbit of period and ray period five, with portrait 

V = 
11 12 
3 1 ' 31 

22 24 
3 1 ' 31 

13 17 
3 1 ' 31 

f 26 _3_ 
[ 3 1 ' 31 

21 6_ 
3 1 ' 31 

FIGURE 9. Schematic diagrams associated with the orbit portraits of Fig
ures 6, 7, 8. The angles are in units of 1/7, 1/9 and 1/31 respectively. 
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Proof of 2.3. — Since some Ai contains a rational number modulo Z , it follows from 

2.1 that some Aj contains an angle to which is periodic under doubling. Let the period 

be n > 1, so that 2nt0 = t0 (mod Z ) . Applying 2.1 n times, we see that the mapping 

r)(t) = 2nt (mod Z ) maps the set Aj C M/Z injectively into itself, preserving cyclic 

order and fixing to. In fact we will show that every element of Aj is fixed by 77. For 

otherwise, if t E Aj were not fixed, then choosing suitable representatives modulo Z 

we would have for example t0 = r](to) < t < n(t) < ¿0 + 1- Since rj preserves cyclic 

order, it would then follow inductively that 

t0 < t < r]{t) < rjo2(t) < r)o3(t) < < t0 + l . 

Hence the successive images of t would converge to a fixed point of 77. But this is 

impossible since every fixed point of 77 is repelling. Thus rj fixes every point of Aj. 

But the fixed points of 77 are precisely the rational numbers of the form i/(2n — 1), 

so it follows that Aj is a finite set of rational numbers. It follows easily that all of 

the Ak are pointwise fixed by 77. This proves (1) , (2) and (3) of 2.3; and (4) is clearly 

true since rays cannot cross each other. • 

It is often convenient to compactify the complex numbers by adding a circle of 

points e2nltoo at infinity, canonically parametrized by t E M / Z . Within the resulting 

closed topological disk © , we can form a diagram V illustrating the orbit portrait V 

by drawing all of the K-rays joining the circle at infinity to O. These various rays are 

disjoint, except that each z E O is a common endpoint for exactly v of these rays. 

Note that this diagram T> deforms continuously, preserving its topology, as we 

move the parameter point c, provided that the periodic orbit O remains repelling, 

and provided that the associated If-rays do not run into precritical points. (Compare 

[ G M , Appendix B].) 

In fact, given V, we can construct a diagram homeomorphic to T> as follows. Start 

with the unit circle, and mark all of the points e{t) = e2nlt corresponding to angles 

t in the union = Ai U • • • U Ap. Now for each Ai, let 2i be the center of gravity 

of the corresponding points e(£), and join each of these points to % by a straight line 

segment. It follows easily from Condition (4) that these line segments will not cross 

each other. (In practice, in drawing such diagrams, we will not usually use straight 

lines and centers of gravity, but rather use some topologically equivalent picture, 

fixing the boundary circle, which is easier to see. Compare Figures 2, 5, 9.) 

It will be convenient to temporarily introduce the term formal orbit portrait for a 

collection V — {Ai, ..., Ap} of subsets of M/Z which satisfies the four conditions of 

2.3, whether or not it is actually associated with some periodic orbit. In fact we will 

prove the following. 

Theorem 2.4 (Characterization of Orbit Portraits). — If V is any formal orbit por

trait, then there exists a quadratic polynomial f and an orbit O for f which realizes 

this portrait V. 
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This will follow from Lemma 2.9 below. To begin the proof, let us study the way in 

which the angle doubling map acts on a formal orbit portrait. As in §1, the number 

of angles in each Aj will be called the valence v for the formal portrait V. It is easy to 

see that any formal portrait of valence v = 1 can be realized by an appropriate orbit 

for the map f(z) — z2. Hence it suffices to study the case v > 2. For each Aj G V 

the v connected components of the complement M / Z \ Aj are connected open arcs 

with total length + 1 . These will be called the complementary arcs for Aj. 

Lemma 2.5 (The Critical Arcs). — For each Aj in the formal orbit portrait V, all but 

one of the complementary arcs is carried diffeomorphically by the angle doubling map 

onto a complementary arc for Aj+±. However, the remaining complementary arc 

for Aj has length greater than 1/2. Its image under the doubling map covers one 

particular complementary arc for Aj+i twice, and every other complementary arc for 

Aj+i just once. 

Definition. — This longest complementary arc will be called the critical arc for Aj. 

The arc which it covers twice under doubling will be called the critical value arc for 

Aj+i. (This language will be justified in 2.9 below.) 

Proof of 2.5. — If / C K / Z is a complementary arc for Aj of length less than 1/2, 

then clearly the doubling map carries / bijectively onto an arc 21 of twice the length, 

bounded by two points of Aj+i. This image arc cannot contain any other point of 

Aj+i, since the doubling map from Aj to Aj+1 preserves cyclic order. It follows easily 

that these image arcs cannot overlap. Since we cannot fit v arcs of total length + 2 

into the circle without overlap, and since there cannot be any complementary arc of 

length exactly 1/2, it follows that there must be exactly one "critical" complementary 

arc for Aj which has length greater than 1/2. Suppose that it has length (1 + £j)/2. 

Then the v — 1 non-critical arcs for Aj have total length (1 — Sj)/2, and their images 

under doubling form v — 1 complementary arcs for Aj+i with total length 1 — Ej. Since 

the doubling map is exactly two-to-one, it follows easily that it maps the critical arc 

for Aj onto the entire circle, doubly covering one "critical value arc" for Aj+i which 

has length Ej, and covering every other complementary arc for Aj+i just once. • 

Lemma 2.6 (The Characteristic Arc for V). — Among the complementary arcs for the 

various Aj G V, there exists a unique arc Xj> of shortest length. This shortest arc is 

a critical value arc for its Aj, and is contained in all of the other critical value arcs. 

Definition. — This shortest complementary arc Xj> will be called the characteristic 

arc for V. (Compare 2.11.) 

Proof of 2.6. — There certainly exists at least one complementary arc Xp of minimal 

length t among all of the complementary arcs for all of the Aj G V. This Xp must 

be a critical value arc, since otherwise it would have the form 2 J where J is some 

complementary arc of length £/2. Suppose then that X-p is the critical value arc for 
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-Aj+i, doubly covered by the critical arc Ic for Aj. Since Xp is minimal, it follows 

from 2.3(4) that this open arc Xp cannot contain any point of the union Ap = 

Ai U • • • U Ap. Hence its preimage under doubling also cannot contain any point of 

Ap. This preimage consists of two arcs / ' and / " = I' + 1/2, each of length £/2. Note 

that both of these arcs are contained in Ic. In fact the arc Ic of length (1 + £)/2 is 

covered by these two open arcs of length £/2 lying at either end, together with the 

closed arc Ic \ ( / ' U J") of length (1 - £)/2 in the middle. 

Now consider any Ak £ V with k ^ j . It follows from the unlinking property 

2.3(4) that the entire set Ak must be contained either in the arc (IR/Z) \ Ic of length 

(1 — £)/2, or in Ic and hence in the arc Ic \ (I'Ul") which also has length (1 — £)/2. In 

either case, it follows that the union of all non-critical arcs for Ak is contained in this 

same arc of length (1 — £)/2, and hence that the image of this union under doubling 

is contained in the arc 

2 ( ( R / Z ) \ Ic) = 2(IC \ ( / ' U I")) = ( R / Z ) \ Xv 

of length l—£. Therefore, the critical value arc for Ak+i contains the complementary 

arc Xp, as required. It follows that this minimal arc Xp is unique. For if there were 

an Xlp of the same length, then this argument would show that each of these two must 

contain the other, which is impossible. • 

Remark. — This characteristic arc never contains the angle zero. In fact let Ic be 

the critical arc whose image under doubling covers Ip twice. If 0 € Ip, then it is not 

hard to see that one endpoint of Ic must lie in Xp and the other endpoint must lie 

outside, in 1/2 + Xp. But this is impossible by 2.3(4) and the minimality of Ip. 

Recall that the union Ap = A± U • • • U Ap contains pv elements, each of which has 

period rp under doubling. Hence this union splits up into 

pv _ v 

rp r 

distinct cycles under doubling. If V is the portrait of a periodic orbit (9, then the 

ratio v/r can be described as the number of cycles of K-rays which land on the orbit 

O. As examples, we have v — r — 3 for Figure 1 and v = r — 2 for Figure 7 so that 

there is only one cycle under doubling, but v — 2 and r = 1 for Figures 6 and 8 so 

that there are two distinct cycles. In fact we next show that there are at most two 

cycles in all cases. 

Lemma 2.7 (Primitive versus Satellite). — Any formal orbit portrait of valence v > r 

must have v — 2 and r = 1. It follows that there are just two posibilities: 

Primitive Case. If r = 1, so that every ray which lands on the period p orbit is 

mapped to itself by fop, then at most two rays land on each orbit point. 

Satellite Case. If r > 1, then v = r so that exactly r rays land on each orbit point, 

and all of these rays belong to a single cyclic orbit under angle doubling. 
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This terminology will be justified in §6. (Compare Figure 12.) 

Proof of 2.7. — Suppose that v > r and v > 3. Let T-p be the characteristic arc. We 

suppose that Xp is the critical value arc in the complement of A\. Let / _ the com

plementary arc for A\ which is just to the left of i p and let / + be the complementary 

arc just to the right of Ij>. To fix our ideas, suppose that / _ has length l(I-) > ¿(1+). 

Since 7+ is not the critical value arc for Ai, we see, arguing as in 2.6, that it must be 

the image under iterated doubling of the critical value arc / ' for some Aj. That is, 

we have I+ = 2 m / ' for some m > 1. Hence i(I') < ¿ (1+) . 

The hypothesis that v > r implies that the two endpoints of Xp belong to different 

cycles under doubling. Thus the left endpoints of / ' and Xp belong to distinct cycles, 

hence V ^ Xp . Therefore, by 2.6, / ' strictly contains Xp . This arc V cannot strictly 

contain the neighboring arc J+, since it is shorter than 7+. Hence it must have an 

endpoint in I+ , and therefore, by 2.3(4), it must have both endpoints in i + . But this 

implies that V contains i _ , which is impossible since £(If) < € ( / + ) < € ( / - ) . Thus, if 

v > r it follows that v < 2, hence r = 1 and v = 2, as asserted. • 

Lemma 2.8 (Two Rays determine V). — Let V = {Ai, . . . , Ap} be a formal orbit por

trait of valence v > 2, and let X-p = (£_, t+) be its characteristic arc, as described 

above. Then a quadratic polynomial fc has an orbit with portrait V if and only if the 

two K-rays with angles t- and t+ for the filled Julia set of fc land at a common point. 

Proof. — If fc has an orbit with portrait V, this is true by definition. Conversely, if 
these rays land at a common point z\, then the orbit of z\ is certainly periodic. Let 
V be the portrait for this actual orbit. We will denote its period by p ' , its valence 
by v\ and so on. Note that the ray period rp is equal to r 'p ' , the common period of 
the angles t- and t+ under doubling. 

Primitive Case. — Suppose that r = 1 so that v/r = 2, and so that each of these 

angles t± has period exactly p under doubling. If p' < p hence r' > 1, then it would 

follow from 2.7 applied to the portrait V' that t- and £+ must belong to the same 

cycle under doubling, contradicting the hypothesis that v/r — 2. 

Satellite Case. — If r > 1 hence v = r, then £_ and t+ do belong to the same cycle 

under doubling, say 2kt- = t+ (mod Z ) . Clearly it follows that r' > 1 hence v' — r'. 

Furthermore, it follows easily that multiplication by 2k acts transitively on A±, and 

hence that all of the rays TZf with t £ A± land at the same point z\. In other words 

A\ C A[. This implies that r < rf hence p > p'. If p were strictly greater than p ' , 

then it would follow that Ai+P> is also contained in A[. But the two sets A± and 

Ai+pt are unlinked in M / Z . Hence there is no way that multiplication by 2P can act 

non-trivially on A\ U Ai+P> carrying each of these two sets into itself and preserving 

cyclic order on their union. This contradiction implies that A\ — A[ and p = p1and 

hence that V = V, as required. • 
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Now let c be some parameter value outside the Mandelbrot set. Then, following 
Douady and Hubbard, the point c, either in the dynamic plane or in the parameter 
plane, lies on a unique external ray, with the same well defined angle t(c) G M/Z in 
either case. (Compare Appendix A . ) 

Lemma 2.9 (Outside the Mandelbrot Set). — Let V = {Ai, ..., Ap} be a formal orbit 
portrait with characteristic arc Ij>, and let c be a parameter value outside of the 
Mandelbrot set. Then the map fc{z) = z2 + c admits a periodic orbit with portrait V 
if and only if the external angle t(c) belongs to this open arc T*p. 

Proof. — The two dynamic rays Tl^cy2 and Ttfi+t(c))/2 meet at the critical point 
0, and together cut the dynamic plane into two halves. Furthermore, every point of 
the Julia set dK = K is uniquely determined by its symbol sequence with respect 
to this partition. Correspondingly, the two diametrically opposite points t(c)/2 and 
(1 4- t(c))/2 on the circle R / Z cut the circle into two semicircles, and almost every 
point t G K / Z has a well defined symbol sequence with respect to this partition under 
the doubling map. Two rays IZf and H*f land at a common point of K if and only 
if the external angles t and u have the same symbol sequence. 

First suppose that the angle t(c) lies in the characteristic arc T<p. Then, with 
notation as in the proof of 2.6, the two points t(c)/2 and (1 + t(c))/2 lie in the two 
components / ' and I" of the preimage of Xp . For every Aj G all of the points of 
Aj lie in a single component of R/Z \ (I' U I"). Hence the rays Tlf with t G Aj land 
at a common point Zj G K. It follows from 2.8 that these points lie in an orbit with 
portrait V, as required. 

On the other hand, if t(c) lies outside of T-p, then it is easy to check that the two 
endpoints of T*p are separated by the points t(c)/2 and (1 + t{c))/2. Hence these two 
endpoints, both belonging to A\ G V, land at different points of K. Hence fc has no 
orbit with portrait V. 

Finally, in the limiting case where t(c) is precisely equal to one of the two endpoints 
t± of , since these angles are periodic under doubling, it follows that the ray 
passes through a precritical point, and hence does not have any well defined landing 
point in K. This completes the proof of 2.9. • 

Evidently the Realization Theorem 2.4 is an immediate corollary. Since we have 
proved 2.4, we can now forget about the distinction between "formal" orbit portraits 
and portraits which are actually realized. We can describe further properties of por
traits and their associated diagrams as follows. 

Definition 2.10. — Suppose that we start with any periodic orbit O with valence 
v > 2 and period p > 1, and fix some point Z{ G O. As in §1, the v rays landing at 
Zi cut the dynamic plane C up into v open subsets which we call the sectors based at 
Z{. Evidently there is a one-to-one correspondence between sectors based at zi and 
complementary arcs for the corresponding set of angles Ai C M / Z , characterized by 
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the property that TZ^ is contained in the open sector S if and only if t is contained 
in the corresponding complementary arc. By definition, the angular size a(S) > 0 of 
a sector is the length of the corresponding complementary arc, which we can think 
of as its "boundary at infinity". It follows that ]T)5 a(S) — 1, where the sum extends 
over the v sectors based at some fixed zi G O. 

Remark. — The angular size of a sector has nothing to do with the angle between 
the rays at their common landing point, which is often not even defined. 

Altogether there are pv rays landing at the various points of the orbit O. Together 
these rays cut the plane up into pv — p -f 1 connected components. The closures of 
these components will be called the pieces of the preliminary puzzle associated with 
the diagram T> or the associated portrait V. Note that every closed sector S can be 
expressed as a union of preliminary puzzle pieces, and that every preliminary puzzle 
piece is equal to the intersection of the closed sectors containing it. This construction 
will be modified and developed further in Sections 7 and 8. 

For every point zi of the orbit, note that just one of the v sectors based at zi 
contains the critical point 0. We will call this the critical sector at z%, while the 
others will be called the non-critical sectors at z%. Another noteworthy sector at zi 
(not necessarily distinct from the critical sector) is the critical value sector, which 
contains / ( 0 ) = c. 

Lemma 2.11 (Properties of Sectors). — The diagram T> C © associated with any orbit 
O of valence v > 2 has the following properties: 

(a) For each zi G O, the critical sector at zi has angular size strictly greater than 
1/2. It follows that the v — 1 non-critical sectors at zi have total angular size 
less than 1/2. 

(b) The map f carries a small neighborhood of z% diffeomorphically onto a small 
neighborhood of Zi+i = f(zi), carrying each sector based at zi locally onto a 
sector based at zi+\, and preserving the cyclic order of these sectors around 
their base point. The critical sector at zi always maps locally, near z\, onto the 
critical value sector based at Zi+i. 

(c) Globally, each non-critical sector S at zi is mapped homeomorphically by f 
onto a sector f(S) based at Zi+i, with angular size given by a(f(S)) = 2a(S). 
However, the critical sector at zi maps so as to cover the entire plane, covering 
the critical value sector at Zi+± twice with a ramification point at 0 \-> c, and 
covering every other sector just once. 

(d) Among all of the pv sectors based at the various points of O, there is a unique 
sector of smallest angular size, corresponding to the characteristic arc T-p. This 
smallest sector contains the critical value, and does not contain any other sec
tor. 
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(As usual, the index i is to be construed as an integer modulo p.) The proof, 

based on 2.6 and the fact that / is exactly two-to-one except at its critical point, is 

straightforward and will be left to the reader. Evidently Theorem 1.1 follows. • 

Now let us take a closer look at the dynamics of the diagram T> or of the associated 

portrait V. The iterated map fop fixes each point zi G O, permuting the various rays 

which land on zi but preserving their cyclic order. Equivalently, the p-fold iterate of 

the doubling map carries each finite set A{ C Q / Z onto itself by a bijection which 

preserves the cyclic order. For any fixed i mod p, we can number the angles in Ai as 

0 < < £(2) < < < 1. It then follows that 

2P№ = t(j+V (mod Z ) , 

taking superscripts modulo v, where k is some fixed residue class modulo v. 

Definition 2.12. — The ratio k/v (mod Z ) is called the combinatorial rotation number 
of our orbit portrait. It is easy to check that this rotation number does not depend 
on the choice of orbit point zi. Let d be the greatest common divisor of v and k. The 
we can express the rotation number as a fraction q/r in lowest terms, where k — qd 
and v = rd. (In the special case of rotation number zero, we take q = 0 and r = 1.) 

In all cases, note that the denominator r > 1 is equal to the period of the angles 
fU) £ Ai under the mapping t i->- 2pt (mod Z ) from Ai to itself. It follows easily that 
the period of t ^ under angle doubling is equal to the product rp. Thus this definition 
of r as the denominator of the rotation number is compatible with our earlier notation 
rp for the ray period. 

Notation Summary. — Since we have been accumulating quite a bit of notation, here 
is a brief summary: 

Orbit period p: the number of distinct element in our orbit O, 
Ray period rp: the period of each angle t 6 A± U • • • U Ap under doubling. 
Rotation number q/r: describes the action of multiplication by 2P on each set Ai. 
Valence v: number of angles in each Ai, for a total of pv angles altogether. 
Cycle number v/r: the number of disjoint cycles of size rp in the union A\ U- • - \JAV. 

According to 2.7, this cycle number is always equal to 1 for a satellite portrait, and 
is at most 2 in all cases. Thus, in the case v > 2 there are just two possibilities as 
follows: 

Primitive Case. — The rotation number is zero. There are v = 2 rays landing at 
each orbit point, for a total of 2p rays. These split up into two cycles of p rays each 
under doubling. 

Satellite Case. — The rotation number is q/r ^ 0. There are v — r rays landing at 
each orbit point, for a total of pv = rp rays altogether. These rp rays are permuted 
cyclically under angle doubling, so that the number of cycles is v/r = 1. 
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As examples, Figures 6, 8 illustrate primitive portraits with rotation number zero, 

while Figures 1, 7 show satellite portraits with rotation number 1/3 and 1/2. We will 

see in §6 that primitive portraits correspond to primitive hyperbolic components in 

the Mandelbrot set, that is, to those with a cusp point. 

3. Parameter Rays 

This section will prove the following preliminary version of Theorem 1.2. 

Let V be any orbit portrait of valence v > 2, and let Tp = (£_, t+) be its char

acteristic arc, where 0 < £ _ < £ + < 1. If the quadratic polynomial fc = z2 4- c has 

an orbit O with portrait V, recall that the two dynamic rays 7Zf_ and lZf+ for fc 

land at a common orbit point, and together bound a sector 5 i which has minimal 

angular size among all of the sectors based at points of the orbit O. This S\ can also 

be characterized as the smallest of these sectors which contains the critical value c. 

(Compare Lemmas 2.6, 2.9, 2.11.) 

Theorem 3.1 (Parameter Rays and the Wake). — The two parameter rays TZ^_ and 

TZf^ with these same angles land at a common parabolic point in the Mandelbrot 

set. Furthermore, these two rays, together with their common landing point, cut the 

parameter plane into two open subsets Wj> and C \ Wj> with the following property: 

The quadratic map fc has a repelling orbit with portrait V if and only if c G W-p. 

Proof — Let A7? = Ax U • • • U Ap be the set of all angles for the orbit portrait V, and 

let n = rp be the common period of these angles under doubling. The set Fn C M 

of possibly exceptional parameter values will consist of those c for which / ° n has a 

fixed point of multiplier + 1 . Since Fn C C is an algebraic variety and is not the 

entire complex plane, it is necessarily a finite set. As noted in [ G M ] , if c belongs to 

the Mandelbrot set but c $ Fn, then the various dynamic rays 7Z^^ with t G A-p 

all land on repelling periodic points, and the pattern of which of these rays land 

at a common point remains stable under perturbation of c throughout some open 

neighborhood within parameter space. 

Now suppose that c lies outside of the Mandelbrot set. Then c, considered as a 

point in parameter space, belongs to some uniquely defined parameter ray and 

considered as a point in the dynamic plane for / c , belongs to the dynamic ray Ttf^c) 

with this same angle. In this case, a dynamic ray TZ^ for fc has a well defined landing 

point in K — K(fc) if and only if the forward orbit {2£, 4£, 8£, . . . } under doubling 

does not contain this critical value angle t(c). Since the angles in A p are periodic, it 

follows that all of the dynamic rays IZf with t £ A-p have well defined landing points 

in K if and only if t(c) £ A-p. 

Let t E A-p and let c$ € M be any accumulation point for the parameter ray 

IZf1. Since every neighborhood of C Q contains parameter values c E TZf1 for which 
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the dynamic ray lZt does not land, it follows that c0 must belong to Fn. Thus 

every accumulation point for TZ^1 belongs to the finite set Fn. Since the set of all 

accumulation points of a ray is connected, this proves that TZ^1 must actually land at 

a single point of Fn. 

These parameter rays TZf4 with t G A-p, together with the points of Fn, cut the 

complex parameter plane up into finitely many open sets Ui, and the pattern of which 

of the corresponding dynamic rays 7Zf with t G A-p land at a common periodic point 

remains fixed as c varies through any U{. Since every U{ is unbounded, it follows from 

Lemma 2.9 that for c G Ui the map fc has an orbit with portrait V if and only if Ui is 

that open set which contains the points in C \ M with external angle t(c) in (£_, £+). 

It follows that the two rays 1Z^_ and must land at a common point of Fn, so as 

to separate the parameter plane. For otherwise, if they had different landing points, 

the connected set Ui containing points with external angles in (£_, £+) would also 

contain points with other external angles, which is impossible. 

Define the root point r-p G M to be this common landing point, and define the 

wake W-p to be that connected component of C \ (TZfl u u Tv) which does not 

contain 0. For c G W-p \ Fn, it follows from the discussion above that fc does have a 

repelling orbit with portrait V, while for c G C \ ( W p U Fn) it follows that fc does 

not have any repelling orbit with portrait V\ Thus, to complete the proof of 3.1, we 

need only consider those fc with c in the finite set Fn. 

First suppose that some point Co G Fn \ Wj> had a repelling orbit with portrait 

V. Then any nearby parameter value would have a nearby repelling orbit with the 

same landing pattern for rays with angles in Aj>. A priori it might seem possible that 

some extra ray, perhaps one landing on a parabolic orbit for fCQ, might land on this 

same repelling orbit after perturbation. (Compare [ G M , Fig. 12].) However, this is 

ruled out by 2.8. Hence all nearby parameter values must belong to W-p, which is 

impossible. 

Now consider parameter points c G W-p. I am indebted to Tan Lei for pointing out 

the following very elegant argument due to Peter Hai'ssinsky which replaces my own 

more complicated reasoning. As noted above, for every c G W-p the rays 7Z^_}^ and 

TZt^^ land at well defined periodic points of the Julia set J(fc)- Let z = z(m,t±,c) 

be the unique point on the ray TZ^J^^ which has potential G(z) = 1/ra. The functions 

c i-t z(m, t±,c) are evidently holomorphic; in fact z(m, t,c) = <j)c1 ( exp(2mt+l/m) 

<pc : C \ K C \ D can be defined locally as </>c(z) = lim 2\l f°k(z) 

(choosing appropriate branches of the iterated square root) and hence is holomorphic 

as a function of both variables. These maps c H-> z{m, t-,c) o r c i 4 z(ra, £+, c) form a 

normal family throughout W-p, since they miss the three points 0, c and oc . Choosing 

a convergent subsequence and passing to the limit as m —> 00, we see that the landing 

where the function 
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points also depend holomorphically on c. Since the landing points for TZf}Tc) and 

TZ^^ coincide for c G W-p \ Fn, it follows by continuity that they coincide for all 
c G Wp. It follows also that the multiplier A(c) of this common landing point depends 
holomorphically on the parameter c G Wp, with |A(c) | > 1 since the landing point 
must be repelling or parabolic. But the absolute value of a non-zero holomorphic 
function cannot have a local minimum unless it is constant, so all of these landing 
points must actually be repelling. Together with 2.8, this completes the proof of 
3.1. • 

We will deal with parabolic orbits with portrait V in the next two sections. 

4. Near Parabolic M a p s 

Let c be a parabolic point in parameter space. This section will study the dynamic 
behavior of the quadratic map fc for c in a neighborhood of c. (Compare [DH2, 
§14(CH)], [Sh2].) 

Let O be the parabolic orbit for with period p > 1 and with representative point 
z. Then the multiplier A = (f^PY(z) is a primitive r-th root of unity for some r > 1. 
Let V be the associated orbit portrait, with ray period rp > p. We will first prove 
the following. 

Theorem 4.1 (Deformation Preserving the Orbit Portrait). — There exists a smooth 
path in parameter space ending at the parabolic point c and consisting of parameter 
values c with the following property: The associated map fc has both a repelling orbit 
of period p and an attracting orbit of period rp. Furthermore, this repelling orbit has 
portrait V, and lies on the boundary of the immediate basin for the attracting orbit. 
As c tends to c, these two orbits both converge towards the original parabolic orbit O. 

or 

FIGURE 10. (Courtesy of S. Zakeri). The left sketch shows a parabolic 
fixed point with r = 3, the middle shows the modified version with an 
attracting orbit of period 3, and the right shows a modified version with 
an attracting fixed point. Here the arrows indicate the action of / °3 . 

(Compare Figure 10, middle.) The proof will depend on the following. 

ASTÉRISQUE 261 



PERIODIC ORBITS, EXTERNALS RAYS AND THE MANDELBROT SET 297 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 

Lemma 4.2 (Convenient Coordinates). — For any complex number X close to X there 

exists at least one parameter value c close to c and point z\ close to z so that z\ is a 

periodic point for the map fc with period p and with multiplier A. Furthermore there 

is a local holomorphic change of coordinate z = 4>\{w) with z\ = <f>\(0) so that the 

map F = F\ = (j)^1 o f°P o <frx takes the form 

F(w) = A w + R(X,w) 

for w near zero, and so that its r-th iterate takes the form 

For(w) = <f>^ o f°r? o cf>x = \rw (1 + wr + R'(\,w)), (2) 

where the remainder terms R and R' satisfy \R'\ < constant |w|r+1 uniformly for 

A in some neighborhood of A and for w in some neighborhood of zero. 

(In 4.5, we will sharpen this statement by showing that the phrase "at least one" 

in 4.2 can be replaced by "exactly one".) 

Proof of 4-2 in the Primitive Case. — First suppose that V is a primitive portrait, 

so that the multiplier (f~p) {z) is equal to + 1 for ? G O, with r = 1. In this case, £ i s 

a fixed point of multiplicity two for the iterate and splits into two nearby fixed 

points under perturbation. (It cannot have a higher multiplicity, since a fixed point 

of multiplicity fji > 2 would have /J, — 1 > 2 attracting Leau-Fatou petals, each with 

at least one critical point in its basin, which is impossible for a quadratic map.) As c 

traverses a small loop around c, these two fixed points a priori may be (and in practice 

always will be) interchanged. However, if we loop twice around c, then each of these 

fixed points must return to its original position. Thus, if we introduce a new parameter 

u by the equation c = c + tx2, then we can choose these fixed points as holomorphic 

functions, zL = zc(u) for L = 1,2, with ^i(O) = z2(0) = z. Evidently the u-plane is a 

two-fold branched cover of the c-parameter plane. Let XL(u) = (fcP) (zi(u)) be the 

multiplier for the orbit of zLJ and note that Ai(0) = A2(0) = 1. Since the holomorphic 

function u • y \i(u) cannot be constant, it takes on all values close to + 1 as w varies 

through a neighborhood of 0. 

Expanding the function f°p as a power series about its fixed point z\, we obtain 

f°p{zx{u) + h) - zx{u) = Xiiu) h + a(u) h2 + (higher terms in h) (3) 

for h and u close to zero, where c — c + u2. Here the coefficient a{u) is also a 

holomorphic function of u, with a(0) ^ 0 since the fixed point multiplicity is two. It 

follows that a(u) ^ 0 for u sufficiently small. Denoting the expression (3) by gu{h), 

and replacing the variable h = z — z\ by w — auh where au = a(u)/X\{u), we see 

easily that the function 

Fu{w) = OLu gu(w/ctu) 

has the required form (2) . • 
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Proof of 4-2 in the Satellite Case. — We now suppose that A is a primitive r-th root 

of unity, with r > 1. Then we can solve for the period p point z = z(c) as a 

holomorphic function of c for c in some neighborhood of c, with z(c) = z. Hence 

the multiplier A(c) = (fcPY(z(c)) will also be a holomorphic function of c, taking the 

value A E \ / l when c = c. Similarly A(c)r is a holomorphic function, taking the value 

A(c)r = 1 when c = c. This function A(c)r clearly cannot be constant, so it takes all 

values close to + 1 as c varies through a neighborhood of c. 

We will construct a sequence of holomorphic changes of variable which conjugate 

the map z H » fcP(z) m a neighborhood of z — z(c) to maps ft i-4 gc,k(h) in a neigh

borhood of ft = 0, where 1 < k < r, so that 

9c7k(h) = A(c)ft(l 4- ak(c)hk 4 (higher terms in ft.)) 

for some constant a&(c). Here c can be any point in some neighborhood of c. To 

begin the construction, let 

9ci(h) = f°P(z(c) + h) - z(c). 

This certainly has the required properties. Now inductively set 

gc,k+i{h) = 4>~x o gck o (j)(h) where <j>{h) = ft + 6ftfc+1 

for 1 < k < r. We claim that the constant b = b(c) can be uniquely chosen so that 

<7c,fc+i will have the required form. In fact a brief computation shows that 

#c,*+i(ft) = Aft(l 4- (a + b - \kb)hk 4- (higher terms). 

But \k ^ \ since A is close to A, which is a primitive r-th root of unity with 1 < k < r. 

Hence there is a unique choice of b so that a 4- b — Xkb = 0, as required. 

In particular, pushing this argument as far as possible, we can take k = r and 

replace f°p near z = z(c) by gc,r(h) = Aft(l 4- ahr 4- • • • ) near ft = 0. Hence we can 

replace f°rp near z(c) by 

g£r(h) = Xr ft(1 + a' hr 4- (higher terms)) , 

where computation shows that a' = ( l + Ar + A2r 4 - • • +A( r -1 ) r ) a . Here the coefficient 

a' of hr must be non-zero when A = A, and hence for A close to A. For otherwise, the 

Leau-Fatou flowers around the points of the parabolic orbit would give rise to more 

than one periodic cycle of attracting petals for fc. This is impossible, since each such 

cycle must contain a critical point, and a quadratic polynomial has only one critical 

point. Finally, after a scale change, replacing gc,r+1(h) by Fc(w) — ac g°^r+1{w/ac) 

for suitably chosen a?c, we obtain simply 

F°r{w) = A r w ( l 4- wr 4- (higher terms in w)), 

as required. • 

ASTÉRISQUE 261 



PERIODIC ORBITS, EXTERNALS RAYS AND THE MANDELBROT SET 299 

Proof of 4.1. — First note that we can choose a smooth path in parameter space so 

that the multiplier Ar of Lemma 4.2 is real and belongs to some interval (1, 1 4- 77). 

This follows easily from the fact that A is a non-constant holomorphic function of c 

in the case r > 1, or of u = y/c — c in the case r == 1. Note that the map For of 4.2 

satisfies 

\For(w)\ = Ar • \w\ • (1 + Re(wr) + (higher terms)) (4) 

and 

arg(For(tt;)) = arg(w) + Im(wr) + (higher terms) (5) 

whenever Ar is real and positive; and note also that For has a locally defined holo

morphic inverse of the form 

F~r{w) = w (1 - wr/X2r + (higher terms)) /Ar, 

which satisfies 

\F~r(w)\ = \w\ (1 - Re(wr)/X2r + (higher terms))/Ar (4 ' ) 

and 
a rg(F- r (uO) = arg(w) - Im(wr)/A2r + (higher terms). (5 ') 

FIGURE 11. A repelling petal V£ and attracting petal Vg for the map 
F(w) « w -h w2 (illustrating the primitive case, before perturbation). 

As a representative repelling petal for For let us choose a small wedge shaped 

region Ve described in polar coordinates by setting w = pe2nlt with 0 < p < e and 

\t\ < l / ( 8 r ) . (Compare Figure 11 for the case r = 1.) If Ar > 1 with Ar sufficiently 

close to 1, it follows easily from (4') and (5;) that V£ maps into itself under F~r, with 

all orbits converging towards the boundary fixed point at w = 0. If a dynamic ray 

for lands at then it must land through one of the r repelling petals, for example 

through the image of V£ in the ^-plane. For c sufficiently close to c, this image must 

still contain a full segment, from some point z to f°rp(z), of the perturbed ray, hence 

this perturbed ray must still land at the repelling point which corresponds to w — 0. 

Note that no new rays land at this point, after perturbation. There are only finitely 

many rays which have period p. But every dynamic ray of period p for with angle 
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not in the set A-p of angles for V must land on some disjoint repelling point, and this 

condition will be preserved under perturbation. Thus the perturbed orbit, for Ar > 1, 

still has portrait V. 

As an attracting petal for For we can choose the set VJ = enl/rV£ consisting of 

all w = pe2nit with 0 < p < e and ^ < t < ^ . If Ar > 1 with Ar close to 1, then 

using (4) and (5) we can check that For maps VJ into itself. However, the origin is 

a repelling point, so orbits cannot converge to it. In fact, if K is the compact set 

obtained from VJ by removing a very small neighborhood of the origin, then For maps 

K into its own interior. It follows easily that all orbits in VJ \ { 0 } converge to an 

interior fixed point. This must be a strictly attracting point, and must correspond to 

an attracting orbit of period rp for the map fc. • 

Corollary 4.3 (Parabolic Points as Root Points). — If fc has a parabolic orbit whose 

portrait V is non-trivial, then c must be equal to the root point r-p of the V-wake. 

Note. — The hypothesis that V is non-trivial is actually redundant. (See 4.8.) It will 

be shown in 5.4 that every parabolic point is the root point of only one wake, so that 

the root point of the 'P-wake always has portrait equal to V. 

Proof of 4-3. — Since fz has a parabolic orbit with portrait V, it certainly cannot 

have a repelling orbit with portrait V. Hence it cannot be inside the 7^-wake by 

3.1. On the other hand, by 4.1 it must belong to the boundary of the P-wake. By 

construction, the root point r-p is the only boundary point of W-p which belongs to 

the Mandelbrot set. • 

Here is a complementary statement to 4.1, in the case r > 1. 

Lemma 4.4 (A Deformation Breaking the Portrait). — Under the hypothesis of 4-1, 

there also exists a smooth path of parameter values c, converging to c, so that each 

fc has an attracting orbit of period p, and a repelling orbit of period rp which lies on 

the boundary of its immediate basin. Furthermore, the dynamic rays with angles in 

A-p — Ai U • • • U Ap all land on this repelling orbit. 

(Compare Figure 10, right.) For such values of c (still assuming that r > 1), it 

follows that there is no periodic orbit with portrait V. Together with 4.1, this gives 

an alternative proof that c is on the boundary of the V-wake. 

Proof. — The proof of 4.4 is completely analogous to the proof of 4.1, and will be 

left to the reader: One simply deforms so that Ar < 1, instead of Ar > 1. • 

The following assertion helps to make the statement of 4.2 more precise. 

Lemma 4.5 (Local Uniqueness). — Under the hypothesis of 4-2, there exist unique sin

gle valued functions c = c(A) and z = z(\), defined and holomorphic for A in a 

neighborhood of A. so that z(X) is a periodic point of period p and multiplier A for the 
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map fc{\), with c — c(A) and z = z(X). This function c(A) is univalent in the satellite 
case, but has a simple critical point at A in the primitive case. 

The implications of this lemma for the geometry of the Mandelbrot set will be 
described in 6.1 and 6.2. 

Proof of 4.5. — First consider the satellite case, with A / 1. Then clearly the period 
p orbit and its multiplier A(c) depend smoothly on c throughout some neighborhood 
of c. We will show that the derivative dX/dc is non-zero at c. For otherwise, we could 
write 

Ar(c) = 1 + a(c - c)k + (higher terms) 
with k > 2. Hence we could vary c from c in two or more different directions so 
that Ar > 1 and in two or more intermediate directions so that Ar < 1. The former 
points would be within the P-wake and the later points would be outside it; but 
this configuration is impossible by 3.1. Thus dX/dc ^ 0, and it follows by the Inverse 
Function Theorem that the inverse mapping A t—» c(A) is well defined and holomorphic 
throughout a neighborhood of A, as required. 

In the primitive case, the situation is different, but the proof is similar. In this 
case, setting c = c + u2, we must express the multiplier Ai for one of the two nearby 
period p points as a holomorphic function of and show that the derivative dX\/du 
is non-zero at u — 0. Otherwise, if the derivative dX\{u)/du were equal to zero for 
u — 0, then we could write 

Ai (u) = 1 + a uk 4- (higher terms) 

for some k > 2. It would follow that we could vary u from 0 in two or more different 
directions so that Ai > 1 and in two or more separating directions so that A2 > 1. 
All of these points would be within the 'P-wake, but the rays landing on the periodic 
point zi would have to jump discontinuously so as to land on z2 as we pass from 
Ai > 1 to A2 > 1, and such points of discontinuity must be outside the V-wake. 
Even allowing for the fact that the ^-plane is a two-fold covering of the c-plane, such 
a configuration is incompatible with 3.1. Therefore, Ai and u must determine each 
other holomorphically in a neighborhood of A 0. In particular, it follows that the 
parameter value c = c 4- u2 can be expressed as a holomorphic function of Ai, with a 
simple critical point at Ai = A. • 

To conclude this section, we will prove that the portrait of a parabolic periodic 
point is always non-trivial. We will use a somewhat simplified form of the Hubbard 
tree construction to show that every parabolic orbit with ray period rp > 2 must 
have portrait with valence v > 2. First some general remarks about locally connected 
subsets of the plane. 

Lemma 4.6 (A Canonical Retraction). — Let K C C be compact, connected, locally 
connected, and full, and let U be a connected component of the interior of K. Then 
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the closure U is homeomorphic to the closed unit disk, and there is a unique retraction 

Pu from C onto U which carries each external ray, and also each connected component 

of the complement K \ U, to a single point of the circle dU. There are at least two 

distinct external rays landing at a point ZQ E dU if and only if K\{ZQ} is disconnected, 

or if and only if there is some connected component X of K \U with pu(X) = { ^ o } -

Proof — (Compare [D5].) The statement that U is a disk follows easily from well 

known results of Caratheodory. Furthermore, according to Caratheodory, there is a 

unique retraction from C onto K which maps each external ray to its landing point. 

Composing this with the retraction K —> U which maps each component X of K \ U 

to the unique intersection point ZQ E X n E7, we obtain the required retraction pu. 

For any such X , note that there must be at least one maximal open interval of 

angles t such that the ray IZ^ lands in X. The endpoints of such a maximal interval 

are the angles for the required pair of rays landing on ZQ. Conversely, if there were 

two rays landing on ZQ but no component X attached in between, then there would 

be an entire open interval of angles t so that 7Zf lands at ZQ. But this is impossible 

by a classical theorem of F. and M. Riesz. (See for example [M2, A p p . A].) • 

In particular, let K = K(f) be the filled Julia set for a hyperbolic quadratic 

polynomial. (We are actually interested in the parabolic case, but will work first with 

the hyperbolic case, since that will suffice for our purposes, and since it is much easier 

to prove local connectivity in the hyperbolic case.) 

Lemma 4.7 (The Dynamic Root Point). — Suppose that f = fc has an attracting orbit 

of period n > 2. Let K be its filled Julia set, and let Uo and U\ C K be the Fatou 

components containing the critical point 0 and the critical value c respectively. Then 

the canonical retraction pux : C —> U\ carries the component Uo to the unique point 

rc E dU± which is fixed by fon. Hence at least two dynamic rays land at this point. 

(See for example Figures 1,6.) Following Schleicher, I will call rc the dynamic root 

point for the Fatou component U±. 

Proof — Let Uo —» U± ^ > U2 —> * • • —•> Un = Uo be the Fatou components con

taining the critical orbit. Then fon maps each circle dUj onto itself by an expanding 

map of degree two. Hence there is a canonical homeomorphism a,j : dUj —> M / Z which 

conjugates fon to the angle doubling map on the standard circle. For each z E C \ Uj , 

the image aj{puj(z)) will be called the internal angle of the point z with respect to 

Uj. The map / from dUj to dUj+± preserves the internal angles of boundary points 

for 0 < j < n, but doubles them for the case j = 0 of the critical component. 

Define the t-wake Lt(Uj) to be the set of all z E C \ Uj with aj{pu5 (z)) = t E M / Z . 

These wakes are pairwise disjoint sets with union equal to C \ Uj. In general / maps 

to £-wake of Uj homeomorphically onto the £-wake of Uj+\ for 0 < j < n, and onto 

the 2£-wake of Uj+i when j — 0. However, there is one exceptional value of t for each 
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Uj with 0 < j < n. Namely, if the wake Lt(Uj) contains the critical component Uo 
then it certainly cannot map homeomorphically, and its image may be much larger 
than Lt(Uj+i). 

Let Aj C K / Z be the finite set consisting of all angles t G R / Z such that the wake 
Lt{Uj) contains one of the components Uk (where necessarily j 7̂  fc). Then it follows 
that A\ C A2 C • • • C An and 2An = Ao. On the other hand, since K is full, the 
various Uj must be connected together in a tree-like arrangement (the Hubbard tree). 
There cannot be any cycles. Hence at least one of the Ai must consist of a single 
angle. It follows easily that A\ = { 0 } , and the conclusion follows. • 

Corollary 4.8 (Parabolic Orbit Portraits are Non-Trivial). — Ifc is any parabolic point 
of the Mandelbrot set other than c = 1/4, and if O is the parabolic orbit for fc, then 
at least two dynamic rays land on each point of O. 

(This is just a restatement of Theorem 1.4 of §1.) 

Proof — In the satellite case this is trivially true, while in the primitive case it follows 
from 4.7, using 4.1 to pass from the parabolic to the hyperbolic case. This completes 
the proof of Theorem 1.4. • 

5. The Period n Curve in (ParameterxDynamic) Space 

It is convenient to define a sequence of numbers v2 (n) inductively by the formula 

2fe = I > 2 ( n ) , or v2{k) = 5 > ( f c / « ) 2 n , 
n\k n\k 

to be summed over all divisors n > 1 of fc, where /i(fc/n) € { ± 1 , 0 } is the Mobius 
function. In fact we will be mainly interested in the quotients v2{n)l2 and v2(n)jn. 
The first few values are 

n 1 2 3 4 5 6 7 8 9 10 
i/2(n)/2 1 1 3 6 15 27 63 120 252 495 
jy2(n)/n 2 1 2 3 6 9 18 30 56 99 . 

Define the period n curve Pern C C2 to be the locus of zeros of the polynomial 
Qn(c,z) which is defined by the formula 

/ c 0 f c ( ^ ) - * = I l 3 ™ ( c > * ) ' or Qk(c,z) = ]J(f°k(z)-z)tl{k/n\ 
n\k n\k 

taking the product over all divisors n of fc. For example, 

Qi(c,z) = z2 + c - z, Q2(c,z) = ^ ^ = z2 + z + c+l. 
zz + c — z 

Note that each point (c, z) G Pern determines a periodic orbit 

Z = ZQ H-» Z\ I-* • • • H-> ZN = ZQ 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



3 0 4 J. MILNOR 

for the map fc. Let Xn = An(c, z) = df°n(z)/dz = 2nz\ • * - zn. For a generic choice 

of c, this orbit has period exactly n, and Xn is the multiplier. However, if z is a 

parabolic periodic point for fc with ray period n = rp > p , then (c, 0) belongs both 

to Pern with An = 1, and to Perp with Xp G y/l. (In fact, the two curves Pern and 

Perp intersect transversally at (c, z).) 

Remarks. — Compare [M4] for a somewhat analogous discussion for cubic polyno

mials. The fact that Qn is really a polynomial can be verified by expressing fck(z) — z 

as a product of irreducible polynomials, and checking that each of these irreducible 

factors has a well defined period n dividing k. The factors are all distinct since 

d(f°j(z) — z)/dz T¿ 0 at every zero of this polynomial when |c | is large. It is shown in 

[Bou], and also in [SI], [LS], that the algebraic curve Pern (or the polynomial Qn) 

is actually irreducible; however, we will not make any use of that fact. 

Lemma 5.1 (Properties of the Period n Curve). — This algebraic curve Pern c C2 is 

non-singular. The projection (c,z) \-t c is a proper map of degree v^iyi) from Pern to 

the parameter plane, while the projection (c, z) 1—> z is a proper map of degree 1/2(77.)/2 

to the dynamic plane. Finally, the function (c, z) y-+ An(c, z) is a proper map of degree 

nv2{n)/2 to the Xn-plane. 

Note that the cyclic group of order n, which we will denote by Zn, acts on Pern, a 

generator carrying (c, z) to (c, fc{z)). 

Lemma 5.2 (Properties of Pern / Z n ) . — The quotient Per™ / Z n is a smooth algebraic 

curve consisting of all pairs (c, O) where O is a periodic orbit for fc which is either 

non-parabolic of period n, or parabolic with attracting petals of period n. At any point 

where An ^ 1, the coordinate c can be used as local uniformizing parameter, while 

in a neighborhood of a point with Xn = 1, the multiplier Xn = An(c, z) serves as a 

local uniformizing parameter for this curve. The projection maps (c, O) i-> c and 

(c,0) 1—> An are proper, with degrees V2(n)/n and V2(n)/2 respectively. 

The proof that Pern and Pern / Z n are non-singular will be divided into three cases, 

as follows. 

Generic Case. — First consider a point (c, z) G Pern with An(c, z) ^ 1. Then, by 

the Implicit Function Theorem, we can solve the equation fcn(z) — z locally for z 

as a smooth function of c. It follows that both of the curves Pern and Pern / Z n are 

locally smooth, with c as local uniformizing parameter. 

Primitive Parabolic Case. — Now consider a point (c, z) € Pern with An(c, z) = 1, 

where z has period exactly n under fc. According to the proof of 4.5, if we set 

c = c+u2, then both z and Xn = An(c, z) can be expressed locally as smooth functions 

of u with dXn/du ^ 0. It follows that both Pern and Pern / Z n are locally smooth 

at this point, and that we can use either u or An as local uniformizing parameter. 
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(Similarly dz/du ^ 0, so we could use z as local uniformizing parameter for Pern. 
However dc/du is zero when u — 0, so c cannot be used as local parameter.) 

Satellite Parabolic Case. — Again suppose that An(c, z) = 1, but now assume that 
the period p of z is strictly less than the ray period n = rp. For c near c, let z = z(c) 
be the equation of the unique period p point near z. Using the change of variable 
w — a(z — z(c)) + (higher terms) of 4.2, the map / ° n corresponds to 

w For(w) = Xrw(l + wr + (higher terms)) , (6) 

where A = \{w) is the multiplier of this period p orbit. The equation for a fixed point 
is w = Xrw (1 + wr -b (higher terms)). Dividing by w (since we want the fixed point 
with w 7 ^ 0 or with z ^ z{c)), this becomes 

1 = Ar( l + wr 4- (higher terms)) or Ar = 1 — wr + (higher terms). 

Thus we can express A as a holomorphic function of w, with a critical point at w = 0. 
Therefore, by 4.5, we can also express c as a holomorphic function of w. Since w is 
defined as a holomorphic function of z and c with dw/dz 7^ 0, it follows that Pern is 
locally smooth with local uniformizing parameter z or w. 

Now note that there is a unique local change of coordinate w <fi{w) with <^'(0) = 1 
so that Ar = 1 — 4>(w)r. Since the expression cf)(w)r is invariant under the Zn action of 
Pern, it follows easily that this action can be described by the formula <f>(w) \<j>{w). 
It follows that </>(w)r = 1 — Ar is a local uniformizing parameter for the quotient curve 
Pern / Z n . Therefore, either A or c can also be taken as local uniformizing parameter. 
In particular, it follows that the multiplier An of the period n — rp orbit can be 
expressed as a smooth function of the multiplier A = Xp of the period p orbit. Note 
that 

dXn/d(Xr) = -r (7) 

at the parabolic point. (Compare [ C M , (4.3)].) This can be verified by direct compu
tation from (6) , or by using the holomorphic fixed point formula [M2] for the function 
f°n to show that the expression 

r 1 
1 - Xn + 1 - Xr 

depends smoothly on the parameter c throughout some neighborhood of the parabolic 
point. Therefore Xn can also be used as local uniformizing parameter for Pern / Z n . 

The degrees of the various projection maps can easily be computed algebraically, by 
counting solutions to the appropriate polynomial equations. Here is a more geometric 
argument, which also provides a quite explicit description of the ends of the curve 
Pern, and hence proves that these mappings are proper. Let us consider the limiting 
case as \c\ -> 00. Setting c = —v2 with \v\ > 2, let ± A be the open disk of radius 1 
centered at ±.v. It is not difficult to check that both A and — A map holomorphically 
onto a disk / ( A ) which contains A U (—A) . The (filled) Julia set K can then be 
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described explicitly as follows. Given an arbitrary sequence of signs £o> £i> • • • ? there 

is one an only one orbit z0 »->• z\ i-» • • • in K with ^ G €jA for every j > 0. This 

is proved using the Poincaré metric for the inverse maps / ( A ) - » ± A c / ( A ) . In 

particular, the number of solutions of period n is equal to the number of sign sequences 

of period n, which is easily seen to be i/2(n). Thus the degree of the projection to the c-

plane is V2{n). It follows also that the product z\ • • • zn — A/2n is given asymptotically 

by 

A/2n ~ ±zn ~ ±vn = ±(-c)n'2 as \v\ oc . 

Thus the degree of the projection to the A-plane is n times the degree of the projection 

to the z-plane, and is n / 2 times the degree of the projection to the c-plane. • 

Thus we have a diagram of smooth algebraic curves and proper holomorphic maps 

with degrees as indicated: 

n i/2 (n)/2 
Pern —> Pern / Z n • An-plane 

4- v<2(ri)/2 4- i/2(n)/n 

^-plane c-plane 

For a generic choice of c, it follows that the map fc has exactly V2{n)/n periodic 

orbits of period n, while for generic choice of An there are exactly i/2(n)/2 pairs 

(c, (9) consisting of a parameter value c and a period ri oròz£ of multiplier An for 

the map / c . The discussion shows that the correspondence (c, (9) i-* (c, An) yields 

a smooth immersion of Pern / Z n into C2. (Caution: Presumably some fc may have 

two different period n orbits with the same multiplier, so this immersion may have 

self-intersections. ) 

Corollary 5.3 (Counting Parabolic Points). — The number of parabolic points in the 

Mandelbrot set with ray period rp — n is equal to i/2(n)/2. 

Proof — This is the same as the number of points in the pre-image of + 1 under 

the projection (c, O) H-> An(c, O) from P e r n / Z n to the An-plane. According to 5.2, 

the degree of this projection is V2 {ri)/2, and + 1 is a regular value. The conclusion 

follows. • 

We are now ready to prove the main results, as stated in §1. 

Corollary 5.4. — There are exactly two parameter rays which angles which are periodic 

under doubling landing at each parabolic point c ^ 1/4. Hence distinct wakes have 

distinct root points; and for each non-trivial portrait V, the root point of the V-wake 

has a parabolic orbit with portrait V. 

(For angles which are not periodic, compare 9.4.) 
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Corollary 5.5. — Every parameter ray TZ^1 whose angle has period n > 2 under dou
bling forms one of the two boundary rays for one and only one wake W-p, where V is 
some portrait with ray period n. 

Proof of 5.4 and 5.5. — According to 5.3, the number of parabolic points c with ray 
period n > 2 is equal to i/2(n)/2, and according to Theorem 1.4 each such point is 
the landing point of at least two rays, which necessarily have ray period n. Thus 
altogether there are at least z/2 (n) distinct rays of period n. On the other hand, since 
the map t 1-4 2nt (mod Z ) has 2n — 1 fixed points, it follows inductively that the 
number of angles with period exactly n > 2 is precisely equal to */2(n). Thus there 
cannot be more than two rays landing at any such point c. It follows that c is the 
root point of at most one wake. For if c were the root point of two different wakes, 
then (even if they shared a boundary ray) it would be the landing point for at least 
three different parameter rays. Using 4.3, it now follows that each such c is the root 
point Y<p for exactly one wake W p , and furthermore that each frv has a parabolic 
orbit with portrait V. 

Here we have assumed that n > 2. However, for n = 1 there is clearly just one 
parameter ray TZQ1 = ( 1 /4 , 00) which is fixed under doubling, and its landing point 
c = 1/4 is the unique parabolic point with ray period n = 1. This completes the proof 
of 5.4 and 5.5. Clearly Theorems 1.2 and 1.5, as stated in §1, follow immediately. • 

To conclude this section, here is a more explicit description of the first few period 
n curves: 

Period 1. — The curve Peri = Peri / Z i = C can be identified with the Ai-plane. 
It is a 2-fold branched cover of the c-plane, ramified at the root point y*{{o}} = 1/4, 
and can be described by the equations z = A i / 2 , c = z — z2. Note that the unit 
disk I Ai | < 1 in the Ai-plane maps homeomorphically onto the region bounded by the 
cardioid in the c-plane. 

Period 2. — The quotient Per2 / Z 2 — C can be identified either with the A2-plane or 
with the c-plane, where A2 = 4 (1 4- c ) . The curve Per2 = C is a 2-fold branched cover 
with coordinate z, branched at the point A2 = 1 which corresponds to the period 2 
root point c = r-p = —3/4 with portrait V = { { 1 / 3 , 2 / 3 } } . It is described by the 
equation z2 4- z 4- (c 4- 1) = 0, with Z2-action z « 4 fc(z) — —z — 1-

Period 3. — (See [GF].) The quotient Per3 / Z 3 ^ C can be identified with a 2-fold 
branched cover of the c-plane, branched at the root point r-p = —7/4 of the real 
period 3 component, where V = { { 3 / 7 , 4 / 7 } , { 6 / 7 , 1 / 7 } , { 5 / 7 , 2 / 7 } } . If we choose a 
parameter u on this quotient by setting c = — (u2 -f- 7 ) /4 , then computation shows 
that the multiplier is given by the cubic expression A3 = u3 — u2 + 7u 4-1. The curve 
Per3 itself is conformally isomorphic to a thrice punctured Riemann sphere. It can be 
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described as a 3-fold cyclic branched cover of this i^-plane, branched with ramification 
index 3 at the two points u = (1 =b y/—27)/2 where A3 = 1. 

6. Hyperbolic Components 

By definition, a hyperbolic component H of period n in the Mandelbrot set is a 
connected component of the open set consisting of all parameter values c such that 
fc has a (necessarily unique) attracting orbit of period n. We will first study the 
geometry of a hyperbolic component near a parabolic boundary point. 

Lemma 6.1 (Geometry near a Satellite Boundary Point). — Let c be a parabolic point 
with orbit portrait V having ray period rp > p. Then c lies on the boundary of exactly 
two hyperbolic components. One of these has period rp and lies inside the V-wake, 
while the other has period p and lies outside the V-wake. Locally the boundaries of 
these components are smooth curves which meet tangentially at c. 

/167/819 

164/819 

period 4 
1/5 

4/15 

FIGURE 12. Detail of the Mandelbrot boundary, showing the rays landing 
at the root points of a primitive period 4 component and a satellite period 
12 component. 

Proof. — According to 4.1, c lies on the boundary of a hyperbolic component Hrp of 
period rp which lies inside the 7^-wake, while according to 4.4 it lies on the boundary 
of a component Hp of period p which lies outside the P-wake. Let Orp and Op be 
the associated periodic orbits, with multipliers \ rp and \ p . According to 4.5, the 
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multiplier Xp can be used as a local uniformizing parameter for the c-plane near c. 
Therefore the boundary dHp, with equation \XP\ — 1, is locally smooth. Similarly, it 
follows from equation (7) of §5, that we can take Xrp as local uniformizing parameter, 
so the locus |Arp| = 1 is also locally smooth. These two boundary curves are neces
sarily tangent to each other since the two hyperbolic components cannot overlap, or 
by direct computation from (7) . 

To see that there are no other components with c as boundary point, first note 
that all periodic orbits for the map fc-> other than its designated parabolic orbit, must 
be strictly repelling. For any orbit with multiplier |A| < 1 must either attract the 
critical orbit (in the attracting or parabolic case) or at least be in the u;-limit set of 
the critical orbit (in the Cremer case), or have Fatou component boundary in this 
cj-limit set (in the Siegel disk case). Since the unique critical orbit converges to the 
parabolic orbit, all other periodic orbits must be repelling. 

Now choose some large integer N. If we choose c sufficiently close to c, then all 
repelling periodic orbits of period < TV for will deform to repelling periodic orbits 
of the same period for fc. Thus any non-repelling orbit of period < N for fc must 
be one of the two orbits Op and Orp which arise from perturbation of the parabolic 
orbit. In other words, any hyperbolic component H' of period < N which intersects 
some small neighborhood of c must be either Hp or Hrp. In particular, any hyperbolic 
component which has c as boundary point must coincide with either Hp or Hrp. • 

By definition, the component Hrp is a satellite of Hp, attached at the parabolic 
point c. (It follows from (7) that \dXrp/dXp\ = r2 at c, so to a first approximation the 
component Hp is r2 times as big as its satellite Hrp. Compare [CM].) 

Lemma 6.2 (Geometry near a Primitive Boundary Point). — / / the portrait V of the 
parabolic point c has ray period rp — p, then c lies on the boundary of just one hyper
bolic component H, which has period p and lies inside the V-wake. The boundary of 
H near c is a smooth curve, except for a cusp at the point c itself 

Proof — As in the proof of 4.2, we set c = c 4- u2 and find a period p point z(u) 
with multiplier X(u) which depends smoothly on u, with dX/du ^ 0. Hence the locus 
|A(-u)| = 1 is a smooth curve in the i/-plane, while its image in the c-plane has a cusp 
at c = c. The rest of the argument is completely analogous to the proof of 6.1. • 

Lemma 6.3 (The Root Point of a Hyperbolic Component). — Every parabolic point of 
ray period n — rp is on the boundary of one and only one hyperbolic component of 
period n. Conversely, every hyperbolic component of period n has one and only one 
parabolic point of ray period n on its boundary. In this way, we obtain a canoni
cal one-to-one correspondence between parabolic points and hyperbolic components in 
parameter space. 
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Proof — The first statement follows immediately from 6.1 and 6.2. Conversely, if H 
is a hyperbolic component of period n, then we can map H holomorphically into the 
open unit disk D by sending each c G H to the multiplier of the unique attracting 
orbit for fc. In order to extend to the closure iJ, it is convenient to lift to the curve 
Pern / Z n , using the proper holomorphic map (c, O) c of §5. Evidently H lifts 
biholomorphically to an open set C Pern / Z n , which then maps holomorphically 
to the An-plane under the projection (c, O) \-± An(c, O). (Here is a connected 
component of the set of (c,0) such that O is an attracting period n orbit for fc.) 
Since the projection to the An-plane is open and proper, it follows easily that the 
closure H^ maps onto the closed disk D . In particular, there exists a point (c , O) of 
H* with An(c, O) = + 1 . Evidently this c is a parabolic boundary point of H with 
ray period dividing n, and it follows from 6.1 and 6.2 that it must have ray period 
precisely n. 

According to 4.7, for each c G H there is a unique repelling orbit of lowest period 
on the boundary of the immediate basin for the attracting orbit of fc. Furthermore, 
according to 4.1, the portrait V = VH for this orbit is the same as the portrait for the 
parabolic orbit of /g\ Since there is only one parabolic point with specified portrait 
by Theorem 1.2, this proves that there can only one such point c G dH. • 

Definition. — This distinguished parabolic point on the boundary dH of a hyperbolic 
component is called the root point of the hyperbolic component H. We know from 1.2 
and 1.4 that the parabolic points of ray period n can be indexed by the non-trivial 
orbit portraits of ray period n. Hence the hyperbolic components of period n can 
also be indexed by non-trivial portraits of ray period n. We will write H = H-p (or 
V = VH) if H is the hyperbolic component with root point r-p. We will say that H is 
a primitive component or a satellite component according as the associated portrait 
is primitive or satellite. 

Remark 6A.. — Of course there are many other parabolic points in dH. For each 
root of unity p, = e2nzq/s ^ 1 a similar argument shows that there is at least one point 
( C M , O m ) G dH^ with An(c^, O^) — fi. In fact the following theorem implies that 
is unique. This cM is the root point for a hyperbolic component H' of period sn > n, 
with associated orbit portrait V of period n and rotation number q/s. By definition, 
V is the (q/s)-satellite of V, and H1 is the {q/s)-satellite of H. 

We next prove the following basic result of Douady and Hubbard. Again let H be 
a hyperbolic component of period n and let H^ C Pern / Z n be the set of pairs (c, O) 
with c G i f , where O is the attracting orbit for fc. 

Theorem 6.5 (Uniformization of Hyperbolic Components). — The closure H is home-
omorphic to the closed unit disk D . In fact there is a canonical homeomorphism 

D ^ H* -+ H 
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which carries each point A ^ 1 in ID to the unique point c G H such that fc has a 
period n orbit of multiplier A. This homeomorphism extends holomorphically over a 
neighborhood ofH), with just one critical point 1 € ID) mapping to the root point c G H 
in the primitive case, and with no critical points in the satellite case. The closures 
of the various hyperbolic components are pairwise disjoint, except for the tangential 
contact between a component and its satellite as described in 6.1. 

Proof. — Recall that \ n : Pern / Z n —> C is a proper holomorphic map of degree 
i/2(n)/2. We will first show that there are no critical values of An within the closed 
unit disk E D . This will imply that the inverse image A ~ 1 ( D ) is the disjoint union of 
u2(n)/2 disjoint sets H , each of which maps diffeomorphically onto ID) . First note 
that there are no critical values of An on the boundary circle 9 ID. In the case of a 
root of unity every (c, O) with An(c, O) = p, must be parabolic, and it follows 
from 6.1 and 6.2 that the derivative of An at (c, O) is non-zero. Consider then a point 
(c, O) G dH^ such that An(c, O) is not a root of unity. According to 5.2, we can 
use c as local uniformizing parameter throughout a neighborhood of (c, O). If this 
were a critical point of An, then it would follow that we could find two different line 
segments emerging from c which map into I D , separated by two line segments which 
map outside of I D . In other words, one of the following two possibilities would have 
to occur. 

Case 1. — There are two different hyperbolic components with c as non-root bound
ary point. Each of these components must have a root point, and be contained in 
its associated wake. But these two components cannot be separated by any rational 
parameter ray, hence each one must be contained in the wake of the other, which is 
impossible. 

Case 2. — The single hyperbolic component H must approach c from two different 
directions, separated by two directions which lie outside of H. In other words. There 
must be a simple closed loop L C H which encloses points lying outside of H. Now 
the collection of iterates /°fc(0) must be uniformly bounded for c G 1/, and hence 
also for all c in the region bounded by L. Thus this entire region must lie within the 
interior of the Mandelbrot set, which is impossible since this region contains parabolic 
points. 

Thus both cases are impossible, and An must be locally injective near the boundary 
of H^. It follows easily that maps onto ID) by a proper map of some degree d > 1, 
and similarly that the boundary dH^ wraps around the boundary circle <9© exactly 
d times. Now a counting argument shows that this degree is + 1 . In fact the number 
of H or of period n is equal to z/2(n)/2 by 6.3 and 5.3. Since the degree of the 
map An on Pern / Z n is also v2{n)l2 by 5.2, it follows that each must map with 
degree d = 1. Therefore An maps each H biholomorphically onto I D . 
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Next consider the projection (c, O) H> C from the compact set TJ onto U. This 

is one-to-one, and hence a homeomorphism, by a theorem of Douady and Hubbard 

which asserts that a polynomial of degree d can have at most d— 1 non-repelling cycles. 

(Compare [ S h i ] . Alternatively, it follows from the classical Fatou-Julia theory that 

a polynomial with one critical point can have at most one attracting cycle. If two 

distinct points of dH^ mapped to a single point of dH, then, as in Case 2 above, a 

path between these points in H^ would map to a loop in H which could enclose no 

boundary points of H, leading to a contradiction.) 

According to 5.2, the parameter c can be used as local uniformizing parameter 

for Pern / Z n unless An = 1. Hence the only possible critical value for the projection 
£ j 

H —> H is the root point. In fact, by 6.1 and 6.2, the root point is actually a critical 

value if and only if i f is a primitive component. 

Finally suppose that two different hyperbolic components have a common boundary 

point. If this boundary point is parabolic, then one of these components must be a 

satellite of the other by 6.1 and 6.2. If the point were non-parabolic, then the argument 

of Case 1 above would yield a contradiction. This completes the proof of 6.5. • 

7. Orbit Forcing 

Recall that an orbit portrait is non-trivial if either it has valence v > 2, or it is 

the zero portrait { { 0 } } . The following statement follows easily from 1.3. However, it 

seems of interest to give a direct and more constructive proof; and the methods used 

will be useful in the next section. 

Lemma 7.1 (Orbit Forcing). — Let V and Q be distinct non-trivial orbit portraits. 

If their characteristic arcs satisfy I(V) C I(Q), then every fc with a (repelling or 

parabolic) orbit of portrait V must also have a repelling orbit of portrait Q. 

Compare Figure 5, and see 1.3 and for further discussion. The proof of 7.1 begins 

as follows. 

Puzzle Pieces. — Recall from 2.10 that the pv rays landing on a periodic orbit for 

f — fc separate the dynamic plane into pv — p+1 connected components, the closures 

of which are called the (unbounded) preliminary puzzle pieces associated with the 

given orbit portrait. (As in [K], we work with puzzle pieces which are closed but 

not compact . The associated bounded pieces can be obtained by intersecting each 

unbounded puzzle piece with the compact region enclosed by some fixed equipotential 

curve.) 

Most of these preliminary puzzle pieces n have the Markov property that / maps n 

homeomorphically onto some union of preliminary puzzle pieces. However, the puzzle 

piece containing the critical point is exceptional: Its image under / covers the critical 

value puzzle piece twice, and also covers some further puzzle pieces once. To obtain 
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a modified puzzle with more convenient properties, we will subdivide this exceptional 

piece into two connected sub-pieces. 

Let III be the preliminary puzzle piece containing the critical value. Then <9IIi 

consists of the two rays whose angles bound the characteristic arc for V, together 

with their common landing point, say z±. The pre-image n0 = / _ 1 ( I I i ) is bounded 

by two rays landing at the point zo = f~1{z1) n O, together with two rays landing 

at the symmetric point — ZQ. Note that IIo is a connected set containing the critical 

point, and that the map / from IIo onto IIi is exactly two-to-one, except at the critical 

point 0, which maps to c. 

The pv rays landing on O, together with these two additional rays landing on 

—zo, cut the complex plane up into pv — p + 2 closed subsets which we will call 

the pieces of the corrected puzzle associated with V. These will be numbered as 

IIo, IIi , • • •, npv_p_(_i, with IIo and IIi as above. The central piece IIo will be called 

the critical puzzle piece, and IIi will be called the critical value puzzle piece. This 

corrected puzzle satisfies the following. 

Modified Markov Property. — The puzzle piece n0 maps onto IIi by a 2-fold branched 

covering, while every other puzzle piece maps homeomorphically onto a finite union 

of puzzle pieces. 

We can represent the allowed transitions by a Markov matrix Ma, where 

$^ùmù 1 if Hi maps homeomorphically, with /(11^) D Hj 

0 if f(Hi) and Hj have no interior points in common, 

and where Moi = 2 since IIo double covers IIi . Since / is quadratic, note that 

the sum of entries in any column is equal to 2. Equivalently, this same data can be 

represented by a Markov graph, with one vertex for each puzzle piece, and with Mij 

arrows from the i-th vertex to the j-th. 

As an example, for the puzzle shown in Figure 13, we obtain the Markov graph of 

Figure 14, or the following Markov matrix 

[Mij] = 

"0 2 0 0 0 0" 

0 0 1 0 0 0 

0 0 0 1 0 0 

1 0 0 1 0 1 

1 0 0 0 1 1 

0 0 1 0 1 0 

(8) 

To illustrate the idea of the proof of 7.1, let us show that any / having an orbit with 

this portrait V must also have a repelling orbit with portrait Q = { { 1 / 7 , 2 / 7 , 4 / 7 } } . 

(Compare the top implication in Figure 5.) Inspecting the next to last row of the 

matrix (8) , we see that /(II4) = IIo U II4 U II5. Therefore, there is a branch g of 

/ - 1 which maps the interior of II4 holomorphically onto some proper subset of itself. 
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4/15 /3/15 

n2 
n0 

"4 

"S n3 

N2 

n4 
Zl 

ù$ no 

*2 
*$ 

*3 

N 5 

n3 

FIGURE 13. Julia set with a parabolic orbit of period four with character
istic arc I(V) = (3/15, 4/15), showing the six corrected puzzle pieces; and 
a corresponding schematic diagram. (For the corresponding preliminary 
puzzle, see the top of Figure 5.) 

1 2 

8 

7 6 

5 

FIGURE 14. Markov graph associated with the matrix (8), with one vertex 
for each puzzle piece. Since / is quadratic, there are two arrows pointing 
to each vertex. 

This mapping g must strictly decrease the Poincaré metric for the interior of II4. On 

the other hand, it is easy to check that the 1/7, 2 /7 and 4 / 7 rays are all contained 

in the interior of II4. Hence their landing points, call them w\, w2 and u>3, are also 

contained in U.4y necessarily in the interior, since the points of K n dU.4 have period 

four. Now 

g : wi H> W3 H> W2 *-> Wi, 

and all positive distances are strictly decreased. Thus if the distance from Wi to Wj 

were greater than zero, then applying g three times we would obtain a contradiction. 

This proves that W\ — w2 = ^3, as required. This fixed point must be repelling, since 

g clearly cannot be an isometry. 
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A similar argument proves the following statement. Suppose that f = fc has an 
orbit O with some given portrait V. By a Markov cycle for V we will mean an infinite 
sequence of non-critical puzzle pieces 11^, Iii2 . . . which is periodic, ij = ij+m with 
period m > 1, and which satisfies / ( 1 1 ^ ) D Hia+1, so that Mia ia+1 = 1, for every a 
modulo m . 

Lemma 7.2 (Realizing Markov Cycles). — Given such a Markov cycle, there is one 
and only one periodic orbit z\ •—> • • • t—>• zm for fc with period dividing m so that 
each za belongs to 1T^, and this orbit is necessarily repelling unless it coincides with 
the given orbit O (which may be parabolic). In particular, for any angle t which is 
periodic under doubling, if the dynamic ray with angle 2a t lies in Tlia for all integers 
a, then this ray must land at the point za. 

(Note that the period of t may well be some multiple of m, as in the example just 
discussed.) 

Proof. — There is a unique branch of f~x which carries the interior of ILia+1 holo
morphically onto a subset of . Let gia be the composition of these m maps, in the 
appropriate reversed order so as to carry the interior of 11^ into itself. 

A similar construction applies to the associated external angles. Let J{ C M/Z 
be the set of all angles of dynamic rays which are contained in 11^. Thus each Ji is 
a finite union of closed arcs, and together the Ji cover 3R/Z without overlap. Now 
there is a unique branch of the 2-valued map t \-+ t/2 which carries Jia+1 into Jia 
with derivative 1/2 everywhere. Taking an ra-fold composition, we map each Jia into 
itself with derivative 1 /2m. This composition may well permute the various connected 
components of Jia. However, some iterate must carry some component of Jia into 
itself, and hence have a unique fixed point t in that component. The landing point of 
the corresponding dynamic ray will be a periodic point Z& G . 

Case 1. — If this landing point belongs to the interior of , then it is fixed by some 
iterate of our map gia. This map gia cannot be an isometry, hence it must contract 
the Poincaré metric. Therefore every orbit under gia must converge towards za. Thus 
za is an attracting fixed point for <7^, and hence is a repelling periodic point for / . 

Case 2. — If the landing point belongs to the boundary of Uict then it must belong 
to O U {—ZQ}, and hence to the original orbit O since —ZQ is not periodic. Evidently 
this case will occur only when the angle t belongs to the union A\ U • • • U Ap of angles 
in the given portrait V. • 

Note. — It is essential for this argument that our given Markov cycle {n.ia } does not 
involve the critical puzzle piece n0. In fact, as an immediate corollary we get the 
following statement: 
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Corollary 7.3 (Non-Repelling Cycles). — Any non-repelling periodic orbit for f must 
intersect the critical puzzle piece IIo &s well as the critical value puzzle piece II i . 

Proof of 7.1. — If I(V) C I{Q), then it follows from Lemma 2.9 that there exists a 
map / having both an orbit with portrait V and an orbit with portrait Q. The latter 
orbit determines a Markov cycle in the puzzle associated with V. (The condition 
I{V) C I{Q) guarantees that this cycle avoids the critical puzzle piece.) Now for any 
map / with an orbit of portrait V, we can use this Markov cycle, together with 7.2, to 
construct the required periodic orbit and to guarantee that the rays associated with 
the portrait Q land on it, as required. • 

In fact an argument similar to the proof of 7.2 proves a much sharper statement. 
Let O be a repelling periodic orbit with non-trivial portrait V. 

Lemma 7.4 (Orbits Bounded Away From Zero). — Given an infinite sequence of non-
critical puzzle pieces { 1 1 ^ } for k > 0 with f(Hik) D Hik+1, there is one and only one 
point wo G K(f) so that the orbit wo ^ Wi H-J> • • • satisfies Wk G 11^ for every k > 0. 
It follows that the action of f on the compact set K-p consisting of all wo G K(f) such 
that the forward orbit {wk} never hits the interior of Ho is topologically conjugate to 
the one-sided subshift of finite type, associated to the matrix [Mij] with 0-th row and 
column deleted. In particular, the topology of K-p depends only on V, and not on the 
particular choice of f within the V-wake. 

Proof Outline. — First replace each puzzle piece 11̂  by a slightly thickened puzzle 
piece, as described in [M3]. (Compare §8, Figure 18.) The interior of this thickened 
piece is an open neighborhood Ni Z) Hi, with the property that f(Ni) D Nj whenever 
/ ( I I i ) D II j . It then follows that there is a branch of / - 1 which maps Nj into A^, 
carrying KnUj into KnUi, and reducing distances by at least some fixed ratio r < 1 
throughout the compact set K DUj. Further details are straightforward. • 

Presumably this statement remains true for a parabolic orbit, although the present 
proof does not work in the parabolic case. (Compare [Ha].) 

8. Renormalization 

One remarkable property of the Mandelbrot boundary is that it is densely filled 
with small copies of itself. (See Figures 11, 14 for a magnified picture of one such 
small copy.) This section will provide a rough outline, without proofs, of the Douady-
Hubbard theory of renormalization, or the inverse operation of tuning, which provides 
a dynamical explanation for these small copies. It is based on [D4] as well as [DH3], 
[D3]. (Compare [Dl ] , [ M l ] . For the Yoccoz interpretation of this construction, see 
[Hu], [M3] , [Mc], [Ly]. For a more general form of renormalization, see [Mc], [RS].) 
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P*l/2- p*3/8+ P* 1 /4+ 

>*3/8-

p* 1 /2+ 

5/8-

p* 1 /4-

p*l/8+ 

P*5/8+ 

P*3/4-

P* 1 /8-

P*0+ 
= 1/5 

P*3/4+ /p* 
7/8-

p*7/8+ P*1-
= 4/15 

FIGURE 15. Detail near the period 4 hyperbolic component Hp of Figure 
12, where V — 7^(1/5,4/15), showing the first eight of the parameter 
sectors which must be pruned away from M to leave the small Mandelbrot 
set consisting of P-renormalizable parameter values. 

To begin the construction, consider any orbit portrait 7^ of ray period n > 2 and 

valence v > 2. Let c be a parameter value in Wj> U so that / = fc has a periodic 

orbit (9 with portrait V, and let 5 = S(f) be the critical value sector for this orbit 

(so that S is the critical value puzzle piece). To a first approximation, we could try 

to say that / is "T^-renormalizable" if the orbit of c under fon is completely contained 

in S. In fact this is a necessary and sufficient condition whenever the map / o n - 1 | s 

is univalent. However, in examples such as that of Figures 1, 2 one needs a slightly 

sharper condition. 

Let I-p = (t-,t+) be the characteristic arc for this portrait, so that OS consists of 

the dynamic rays of angle t- and together with their common landing point z\, 

and let £ = t+ — t- be the length of this arc. 

Lemma 8.1 (A (Nearly) Quadratic-Like Map). — The dynamic rays of angle t[ = t- + 

£/2n and t'2 = t+ — £/2n land at a common point z' ^ z\ in S fl f~n(z\). Let S' C S 

be the region bounded by dS together with these two rays and their common landing 
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S ' 

s 

z l 

*2 
z4 

*3 

FIGURE 16. The n-fold pull-back of the critical sector S along the orbit 
Oy illustrated schematically for the orbit diagram of period n = 4 which 
has characteristic arc (1/5,4/15). Compare Figures 5 (top), 12, 16. 

point. Then the map fon carries S' onto S by a proper map of degree two, with critical 
value equal to the critical value / ( 0 ) = c. 

This region Sf can be described as the n-fold "pull-back" of S along the orbit O. 
(Compare Figure 16, which also shows the first three forward images of 5 ' . ) 

Proof of 8.1. — First suppose that c G W-p is outside the Mandelbrot set. Then, 
following Appendix A, we can bisect the complex plane by the two rays leading from 
infinity to the critical point. (Compare the proof of 2.9.) In order to check that the 
two rays of angle t[ and t'2 have a common landing point, we need only show that 
they have the same symbol sequence with respect to the resulting partition. In other 
words, we must show, for every k > 0, that the 2kt[ and 2kt2 rays lie on the same 
side of the bisecting critical ray pair. For k > n this is clear since 2nt[ = t+ and 
2nt2 EE t- modulo Z . 

Now consider the critical puzzle piece n0 of §7. Evidently n0 is a neighborhood, 
of angular radius € /4 , of the bisecting critical ray pair. For k < n — 1 the dynamic 
rays with angle 2kt- and 2kt+ both lie in the same component of C \ IIo- Since 2ktj 
differs from 2ktj by at most € /4 , it follows that the 2kt[ and 2kt2 rays have the same 
symbol. Finally, for k — n — 1, it is not difficult to check that the 2kt[ and 2kt2 rays 
both land at the same point — zo ^ ZQ. This proves that the t[ and t2 rays land at the 
same point, different from z\, when c ^ M . A straightforward continuity argument 
now proves the same statement for all c G Wj>. 
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Thus we obtain the required region S' C S. As in §2, it will be convenient to 

complete the complex plane by adjoining a circle of points at infinity. Note that the 

boundary of S' within this circled plane © consists of two arcs of length £/2n at 

infinity, together with two ray pairs and their common landing points. As we traverse 

this boundary once in the positive direction, the image under fon evidently traverses 

the boundary of S twice in the positive direction. Using the Argument Principle, it 

follows that the image of S' is contained in 5 , and covers every point of S twice, as 

required. Thus fori\s' must have exactly one critical point, which can only be c. • 

Thus we have an object somewhat like a quadratic-like map, as studied in [DH3]. 

Note however that S' is not compactly contained in S. 

Definition. — We will say that / is V-renormalizable if / ( 0 ) = c is contained in 

the closure S , and furthermore the entire forward orbit of c under the map fon is 

contained in S . If this condition is satisfied, and the orbit of c is also bounded so that 

c G M , then we will say that c belongs to the "small copy" V * M of the Mandelbrot 

set which is associated with V. (This terminology will be justified in 8.2. If the orbit 

is unbounded, then we may say that c belongs to a V-renormalizable external ray.) 

4/1 S '1/5 

1/5 

/4/15 

FIGURE 17. Julia set for the center point of the period 12 satellite com
ponent of Figure 12 (the point c of Figure 15), and a detail near the 
critical value c, showing the first eight of the sectors of the dynamic plane 
which must be pruned away to leave the small Julia set associated with 
'P-renormalization, with V as in Figures 12, 15. (Here the right hand figure 
has been magnified by a factor of 75.) This can be described as the Julia 
set of Figure 13 (left) tuned by a "Douady rabbit" Julia set. 

Closely associated is the "small filled Julia set" K' = K{fon\St) consisting of all 

z € S such that the entire forward orbit of z under fon is bounded and contained in 

S . (Compare Figure 17.) Thus the critical value / ( 0 ) = c belongs to K' if and only 
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if / is 'P-renormalizable, with c E M. As in the classical Fatou-Julia theory, c belongs 

to K1 if and only if K' is connected. 

V 
T 

FIGURE 18. The sector S and the thickened sector T. 

In order to tie this construction up with Douady and Hubbard's theory of polynom

ial-like mappings, we need to thicken the sector S, and then cut it down to a bounded 

set. (Compare [M3].) We exclude the exceptional special case where c is the root 

point r-p. Thus we will suppose that the periodic point z\ E dS is repelling. Choose a 

small disk D£ about z\ which is mapped univalently by f°n and is compactly contained 

in f°n(D£). Choose also a very small 77 > 0 , and consider the dynamic rays with angle 

t— — TJ and t+ + 77. Following these rays until they first meet D£, they delineate an 

open region T D S U De in C. (Compare Figure 18.) Now let T' be the connected 

component of fc~n(T) which contains Sf. It is not difficult to check that T C T , and 

that f°n carries X" onto T by a proper map of degree two. 

To obtain a bounded region, we let U be the intersection of T with the set {z £ 

C ; GK(z) < 1 } , where GK is the Green's function for K = K(fc). Similarly, let U' 

be the intersection T' with {z ; GK(z) < l / 2 n } . Then U' is compactly contained in 

E7, and f°n carries U' onto U by a proper map of degree two. In other words, fcn\U' 

is a quadratic-like map. 

Evidently the forward orbit of a point z E U' under / ° n is contained in U' if and 

only if z belongs to the small filled Julia set K'. In particular, for c E M , the map fc 

is P-renormalizable if and only if c G K', or if and only if K' is connected. 

If these conditions are satisfied, then according to [DH3] the map f°n restricted 

to a neighborhood of K' is "hybrid equivalent" to some uniquely defined quadratic 

map fC', with d E M. Briefly, we will write c = V * c ' , or say that c equals V tuned 

by d. Douady and Hubbard show also that this correspondence 

d v+V*d 

is a well defined continuous embedding of M \ { 1 / 4 } onto a proper subset of itself. 

As an example, as d varies over the hyperbolic component H{{o}} which is bounded 

by the cardioid, they show that V * d varies over the hyperbolic component Hp. 

It is convenient to supplement this construction, by defining the operation V, d 

V * d in two further special cases. If d is the root point 1/4 = ^ { { 0 } } ° f then we 
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define 

V * (1 /4 ) = rv 

to be the root point of the P-wake. Furthermore, if V = { { 0 } } is the zero orbit 

portrait, then we define { { 0 } } * to be the identity map, 

{ { 0 } } * c ' = c' 

for all d G M. With these definitions, we have the following basic result of Douady 

and Hubbard. 

Theorem 8.2 (Ttoning). — For each non-trivial orbit portrait V, the correspondence 

c H-> V * c defines a continuous embedding of the Mandelbrot set M into itself The 

image of this embedding is just the "small Mandelbrot setv V * M C M described 

earlier. Furthermore, there is a unique composition operation V, Q I-> V * Q between 

non-trivial orbit portraits so that the associative law is valid, 

(V *Q)*c = V*(Q*c) 

for all V, Q and c'. Under this * composition operation, the collection of all non-

trivial orbit portraits forms a free (associative but noncommutative) monoid, with the 

zero orbit portrait as identity element. 

The proof is beyond the scope of this note. 

We can better understand this construction by introducing a nested sequence of 

open sets 

S = S^ D S' = SW D S(2) D • • * 

in the dynamic plane for / , where g ^ 1 ) is defined inductively as nf~~n(S^) for 

k > 1. Thus S = is bounded by the dynamic rays of angle t- and £+, together 

with their common landing point z\. Similarly, is bounded by dS^ together 

with the rays of angle t- + £/2n and t+ — t/2n, together with their common landing 

point, which is an n-fold pre-image of zx. If c G so that is a 2-fold branched 

covering of S^1), then has two further boundary components, namely the rays of 

angle t- + £/22n and t- -h £/2n — £/22n and their common landing point, together 

with the rays of angle t+ — £/2n + £/22n and t+ — £/22n and their common landing 

point, for a total of 4 boundary components. Similarly, if c G S^2\ then has 8 

boundary components, as illustrated in Figure 17. 

The angles which are left, after we have cut away the angles in all of these (open) 

sectors, form a standard middle fraction Cantor set /C, which can be described as 

follows. Let <fi be the fraction 1 — 2/2n. Start with the closure [£_, £+] of the charac

teristic arc for V, with length £. First remove the open middle segment of length 4>£, 

leaving two arcs of length £/2n. Then, from each of these two remaining closed arcs, 

remove the middle segment of length (f>£/2n, leaving four segments of length £/22n, 

and continue inductively. The intersection of all of the sets obtained in this way is 

the required Cantor set /C C [£_, £+] of angles. These are precisely the angles of the 
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dynamic rays which land on the small Julia set dK' (at least if we assume that these 

Julia sets are locally connected). 

There is a completely analogous construction in parameter space, as illustrated in 

Figure 15. As noted earlier, parameter rays of angle t- and t+ land on a common 

point r p , and together form the boundary of the V-wake. Similarly, the parameter 

rays of angle t- -f £/2n and £+ — £/2n must land at a common point. These rays, 

together with their landing point, cut Wp into two halves. For c in the inner half, with 

boundary point rp , the critical value of fc lies in Sf — S^x\ while for c in the outer 

half, this is not true. Similarly, for each pair of dynamic rays with a common landing 

point in OK, forming part of the boundary of S^k\ there is a pair of parameter rays 

with the same angles which have a common landing point in dM and form part of the 

boundary of a corresponding region in parameter space. The basic property is 

that c G Wpk^ if and only if c belongs to the corresponding region in the dynamic 

plane for fc. 

Dynamically, the Cantor set /C C R / Z can be described as the set of angles in 

[*_, t- +£/2n] U [*+ -£/2n, t+] 

such that the entire forward orbit under multiplication by 2n is contained in this set. 

Evidently the resulting dynamical system is topologically isomorphic to the one-sided 

two-shift. Thus each element t G K can be coded by an infinite sequence (60, b\, • •) 

of bits, where each bk is zero or one according as 2nht belongs to the left or right 

subarc. We will write t = V* (&0&1&2 * * * )• Intuitively, we can identify this sequence of 

bits bi with the angle .bob\b2 * • * = b^/2k+1. However, some care is needed since the 

correspondence .bob\b2 * • • •->• V * (6061 • • • )has a jump discontinuity at every dyadic 

rational angle, i.e., at those angles corresponding to gaps in the Cantor set /C. Thus 

we must distinguish between the left hand limit V * OL— and the right hand limit 

V * a + when a is a dyadic rational. 

With this notation, the angles of the bounding rays for the various open sets S^k\ 

or for the corresponding sets in parameter space, are just these left and right 

hand limits V * a ± , where a varies over the dyadic rationals; and the composition 

operation between non-trivial orbit portraits can be described as follows: / / Q has 

characteristic arc (£_,£+), then V * Q has characteristic arc (V * V * £+)• For 

further details, see [D3]. 

9. Limbs and the Satellite Orbit 

Let V be a non-trivial orbit portrait with period p > 1 and ray period rp > p. 

(Thus V may be either a primitive or a satellite portrait.) Recall that the limb M-p 

consists of all points which belong both to the Mandelbrot set M and to the closure 

W-p of the V-wake. By definition, a limb MQ with Q ^ V is a satellite of M p if its 
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root point TQ belongs to the boundary of the associated hyperbolic component Hp. 

(See 6.4.) We will prove the following two statements. (Compare [Hu], [S0], [S3].) 

Theorem 9.1 (Limb Structure). — Every point in the limb Mp either belongs to the 

closure Hp of the associated hyperbolic component, or else belongs to some satellite 

limb MQ. 

(For a typical example, see Figure 12.) For any parameter value c in the wake Wp, 

let 0(c) = Op(c) be the repelling orbit for fc which has period p and portrait V. 

Clearly this orbit 0(c) varies holomorphically with the parameter value c. 

Corollary 9.2 (The Satellite Orbit). — To any c G Wp there is associated another orbit 

0*(c) = 01p(c), distinct from 0(c), which has period n — rp and which also varies 

holomorphically with the parameter value c. As c tends to the root point rp, the 

two orbits 0(c) and 0*(c) converge towards a common parabolic orbit of portrait V. 

{Compare 4.1.) This associated orbit 0*(c) is attracting if c belongs to the hyperbolic 

component Hp C W-p, indifferent for c G dHp, and is repelling for c G Wp \ Hp, 

with portrait equal to Q if c belongs to the satellite wake WQ . 

As an example, both statements apply to the zero portrait, with M { { 0 } } equal to 

the entire Mandelbrot set, with W { { o } } = C \ ( l / 4 , +00), and with # { { 0 } } bounded by 

the cardioid. In this case, for any c G W^{{o}}> the orbit O(c) consists of the beta fixed 

point (1 + \ / l — 4 c ) / 2 while (D*(c) consists of the alpha fixed point (1 — y/1 — 4 c ) / 2 , 

taking that branch of the square root function with \ /T = 1. 

Proof of 9.1. — For each c G Hp let 0*(c) be the unique attracting periodic orbit. 

By the discussion in §6, this orbit extends analytically as we vary c over some neigh

borhood of the closure Hp, provided that we stay within the wake Wp. Furthermore, 

this orbit becomes strictly repelling as we cross out of Hp. Therefore we can choose 

a neighborhood N of Hp which is small enough so that this analytically continued 

orbit (D*(c) will be strictly repelling for all c G N D Wp \ Hp. If c also belongs to 

the Mandelbrot set, so that c G i V D Mp \ Hp, it follows that at least one rational 

dynamic ray lands on the orbit 0*(c); hence there is an orbit portrait Q = Q(c) of 

period n associated with (9*(c). Choosing the neighborhood N even smaller if neces

sary, we will show that the rotation number of Q(c) is non-zero, and hence that this 

portrait Q(c) is non-trivial. In other words, we will prove that c belongs to a limb 

MQ which is associated to the orbit 0*(c). 

First consider a point c which belongs to the boundary dHp. Then 0*(c) is an 

indifferent periodic orbit, with multiplier on the unit circle. Consider some dynamic 

ray Hff which has period n, but does not participate in the portrait V, and hence 

does not land on the original orbit 0(c). Such a ray certainly cannot land on 0 * ( c ) , 

for that would imply that £>*(c) was a repelling or parabolic orbit of rotation number 

zero. However, for c in the boundary of Hp the orbit 0 * ( c ) is never repelling, and 
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is parabolic of rotation number zero only when c is the root point of Hp, so that 
(9*(c) = 0(c). Since we have assumed that the ray IZf does not land on (9(c) , 
it must land on some repelling or parabolic periodic point which is disjoint from 
0*(c). In fact it must land on a repelling orbit, since a quadratic map cannot have a 
parabolic orbit and also a disjoint indifferent orbit. (Compare §6.) Now as we perturb 
c throughout some neighborhood of c it follows that the corresponding ray still lands 
on a repelling periodic point disjoint from 0*(c). Since 0*(c) has period n, but no 
ray of period n can land on it, this proves that the rotation number of the associated 
portrait Q(c) is non-zero, as asserted. 

Let X be any connected component of Mp \ Hp. Since the Mandelbrot set is 
connected, X must have some limit point in dHp. Therefore, by the argument above, 
some point c G X must belong to a wake WQ associated with the orbit 0*(c). Since 
the portrait Q has period n, the root point VQ of its wake must lie on the boundary 
of some hyperbolic component H' which has period n and is contained in W-p. In 
fact, for suitable choice of c, we claim that H' can only be Hp> itself. There are 
finitely many other components of period n, but these others are all bounded away 
from Hp, while the point c G X can be chosen arbitrarily close to Hp. Thus we may 
assume that WQ is rooted at a point of dHp, and hence is a satellite wake. Since the 
connected set X cannot cross the boundary of WQ, it follows that X is completely 
contained within WQ, which completes the proof of 9.1. • 

Proof of 9.2. — As in the argument above, the orbit 0 * ( c ) is well defined for c in 
some neighborhood of Wp n Hp, and we can try to extend analytically throughout 
the simply connected region Wp. There is a potential obstruction if we ever reach 
a point in Wp where the multiplier An of this analytically extended orbit is equal 
to + 1 . However, this can never happen. In fact such a point would have to belong 
to the Mandelbrot set, and hence to some satellite limb MQ. But we can extend 
analytically throughout the associated wake WQ, taking 0*{c) to be the repelling 
orbit OQ{C) for every c G WQ. Thus there is no obstruction. It follows similarly that 
the analytically extended orbit must be repelling everywhere in Wp \ Hp. For if it 
became non-repelling at some point c, then again c would have to belong to some 
satellite limb MQ, but 0*(c) is repelling throughout the wake WQ. • 

Corollary 9.3 (Limb Connectedness). — Each limb Mp = MnWp is connected, even 
if we remove its root point rp. 

Proof — The entire Mandelbrot set is connected by [DH1]. It follows that each Mp 
is connected. For if some limb Mp could be expressed as the union of two disjoint non-
vacuous compact subsets, then only one of these two could contain the root point rp. 
The other would be a non-trivial open-and-closed subset of M, which is impossible. 
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Now consider the open subset Mp \ {rp } . This is a union of the connected set Hp \ 
{rp}, together with the various satellite limbs MQ, where each MQ has root point 
rQ belonging to Hp \ {rp}. Since each MQ is connected, the conclusion follows. • 

Remark 9.4.. — It follows easily that every satellite root point separates the Mandel
brot set into exactly two connected components, and hence that exactly two param
eter rays land at every such point. For a proof of the corresponding statement for a 
primitive root (other than 1/4) see [Ta] or [S3]. 

Appendix A 

Totally Disconnected Julia Sets and the Mandelbrot set 

This appendix will be a brief review of well known material. For any parameter 
value c, let K — K(fc) be the filled Julia set for the map fc(z) = z2 + c, and let 

G(z) = GK(z)=l^o J L ] o g | r » ( * ) | 

be the canonical potential function or Green's function, which vanishes only on K, 
and satisfies G(f(z)) — 2G(z). The level sets {z; G(z) = Go} are called equipotential 
curves for K, and the orthogonal trajectories which extend to infinity are called the 
dynamic rays TZf", where t G M/Z is the angle at infinity. 

Now suppose that K is totally disconnected (and hence coincides with the Julia 
set J = dK). Then the value G(0) = ( 7 (c ) /2 > 0 plays a special role. In fact there 
is a canonical conformal isomorphism tpc from the open set {z; G(z) > (7 (0)} to the 
region {w; log\w\ > ( 7 ( 0 ) } . The map z i-> f(z) on this region is conjugate under 
ifjc to the map w »—>• w2, and the equipotentials and dynamic rays in the z-plane 
correspond to concentric circles and straight half-lines through the origin respectively 
in the w-plane. In particular, if we choose a constant Go > (7(0), then the locus 
{z; G(z) — Go} is a simple closed curve, canonically parametrized by the angle of 
the corresponding dynamic ray. In particular, the critical value c G C \ K has a well 
defined external angle, which we denote by t(c) G R/Z. Thus if>c(c)/\ipc(c)\ = e2nit(c\ 
and c belongs to the dynamic ray 7Zt(c) — ^t(c) * 

However, for Go — (7(0) this locus {z; G(z) = (7(0)} is a figure eight curve. The 
open set {z\ G(z) < (7 (0)} splits as a disjoint union Uo U U±, where the Ub are the 
regions enclosed by the two lobes of this figure eight. (We can express this splitting in 
terms of dynamic rays as follows. The ray 7?^c) C C \ K has two preimage rays under 
fc, with angles t(c)/2 and (1 + t(c))/2 respectively. Each of these joins the critical 
point 0 to the circle at infinity, and together they cut C into two open subsets, say 
Vo D Uo and V\ D U\. If c does not belong to the positive real axis, then we can choose 
the labels for these open sets so that the zero ray is contained in Vo, and c G V±.) 
We then cut the filled Julia set K into two disjoint compact subsets Kf, — K fl U^. 
These constitute a Bernoulli partition. That is, for any one-sided-infinite sequence of 
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\t(c) 

t(c)/2 

.G=G<c) 

t(c) 

G=G(cT̂  

FIGURE 1 9 . Picture in the dynamic plane for a polynomial fc with c & M , 
and a corresponding picture in the parameter plane. 

bits 60, b±, • • • E { 0 , 1 } , there is one and only one point z E K with flk(z) G Khk for 

every k > 0. To prove this statement, let [/" be the region {z; G(z) < G(c)} and let 

4>b : U Ub be the branch of /_1 which maps 17 diffeomorphically onto Using 

the Poincaré metric for £7, we see that each <pb shrinks distances by a factor bounded 

away from one, and it follows easily that the diameter of the image 

<t>b0 ° 06i 0 • * * 0 <t>bn (U) 

shrinks to zero, so that this intersection shrinks to a single point z E K, as n —» 00. 
Thus each point of J = K can be uniquely characterized by an infinite sequence 

of symbols (60, 61, . . . ) with bj E { 0 , 1 } . In particular, K is homeomorphic to the 

infinite cartesian product { 0 , 1 } N , where the symbol N stands for the set { 0 , 1 , 2 , . . . } 

of natural numbers. We say that the dynamical system (K, fc\i<) is a one sided shift 

on two symbols. 

Similarly, given any angle t E M / Z , if none of the successive images 2k t (mod Z ) 
under doubling is precisely equal to t(c)/2 or (1 + t(c))/21 then t has an associated 

symbol sequence, called its t(c)-itinerary, and the ray TZf lands precisely at that 

point of K which has this symbol sequence. For the special case i = £(c), this symbol 

sequence characterizes the point c E K, and is called the kneading sequence for c 

or for t(c). (However, if t(c) is periodic, there is some ambiguity since the symbols 

bn-ii &2n-i5 • of the kneading sequence are not uniquely defined in the period n 

case.) 

If t is periodic under doubling, then the itinerary is periodic (if uniquely defined), 

and the ray lands at a periodic point of K. For further discussion, see [LS], as 

well as Appendix B. 

Here we have been thinking of c = f(0) as a point in the dynamic plane (the 

^-plane), but we can also think of c E C \ M as a point in the parameter plane (the 
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c-plane). In fact Douady and Hubbard construct a conformal isomorphism from the 
complement of M onto the complement of the closed unit disk by mapping c E C \ M 
to the point ipc(c) = exp(GK(c) + 2nit{c)) G C \ D . Thus they show that the value 
of the Green's function on c and the external angle t{c) of c are the same whether c 
is considered as a point o / C \ K(fc) or as a point o / C \ M. In particular, the point 
c E C \ M lies on the external ray ^ ^ c ) for the Mandelbrot set. 

Appendix B 

Computing Rotation Numbers 

This appendix will outline how to actually compute the rotation number g / r of a 
periodic point for a map fc with c $ M. Let r = t(c) 6 E / Z be the angle of the 
external ray which passes through c. We may identify this critical value angle with a 
number in the interval 0 < r < 1. The two preimages of r under the angle doubling 
map ra2 : K / Z —» 1R/Z separate the circle M/Z into the two open arcs 

/ ( 0 ) = Jr(0) = ( ^ , 0 and / (1 ) = JT(1) = ( l , ^±Tj . 

(We will write IT instead of I whenever we want to emphasize dependence on the 
critical value angle r . ) For any finite sequence b0, b±, . . . , bk of zeros and ones, let 
I (bo, &i, . . . , bk) be the closure of the open set 

/(&o, bu bk) = / ( 6 0 ) D m : 7 1 / ( 6 i ) n - - - n m ^ / e / ( 6 f e ) 

consisting of all t E M / Z with m^it) E /(&*) f°r 0 < i < k. (Caution: This is not the 
same as the intersection of the corresponding closures m^"t/(6i), which may contain 
additional isolated points.) An easy induction shows that /(feo? &i> • • • ? bk) is a finite 
union of closed arcs with total length l/2fe+1. If a = (6o, &i, . . . ) is any infinite 
sequence of zeros and ones, it follows that the intersection 

7(<7) = P | T ( 6 o , &i, . . . , & * ) 
k 

is a compact non-vacuous set of measure zero. For each angle t E ffi/Z there are two 
possibilities: 

Precritical Case. — If t satisfies m ^ t ) = r for some i > 0, then there will be two 
distinct infinite symbol sequences with t E I (bo, 6i, 62 • • • )• In this case, the associated 
dynamic ray TZf does not land, but rather bounces off some precritical point for the 
map fc. (Compare [GM].) 

Generic Case. — Otherwise there will be a unique infinite symbol sequence with 
t E /(60, b\, - • • ) . The corresponding ray TZf will land at the unique point of the 
Julia set for fc which has this same symbol sequence, as described in Appendix A. In 
particular, if t is periodic under doubling, then 7Z^ must land at a periodic point of 
the Julia set, possibly with smaller period. 
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Lemma BA (Symbol Sequences and Rotation Numbers). — For any symbol sequence 

a = (bo, 6 1 , . . . ) G { 0 , 1 } N which is periodic of period p, the map m^* on the compact 

set Ir(&) C M / Z has a well defined rotation number rot(&o, • • • •> &p-i ; T ) € IR/Z which 

is invariant under cyclic permutation of the bits bi. This number increases monoton-

ically with r, and winds bo + • • • + &p-i times around the circle as r increases from 0 

to 1. 

To see this, we introduce an auxiliary monotone degree one map which is defined 

on the entire circle and agrees with m02 on IT(a). (Compare [ G M ] . ) By definition, a 

monotone degree one circle map ip : IR/Z -> IR/Z is the reduction modulo Z of a map 

\I> : M. —)• IR which is monotone increasing and satisfies the identity &(u-\-l) = + 

Such a \I>, called a K/fc of is unique up to addition of an integer constant. The 

translation number of such a map \P is defined to be the real number 

Trans(tf) = lim (*ok(u) - u) Ik. 

This always exists, and is independent of u. The rotation number r o t ( ^ ) of the 

associated circle map is now defined to be the image of this real number Trans(\£) 

under the projection E -> R / Z . This is well defined, since Trans(^ + 1 ) = Trans(^) + 

1. One important property is the identity 

Trans(*i o * 2 ) = Trans(*2 0 * 1 ) , (9) 

where * i and ^ 2 are the lifts of two different monotone degree one circle maps. If ^ 1 

is a homeomorphism, this is just invariance under a suitable change of coordinates, 

and the general case follows by continuity. 

Given any 6 G { 0 , 1 } , and given a critical value angle r, define an auxiliary mono

tone map &b,r by the formula 

$ùùl^^$$ min(2ti, r ) if 6 = 0, 

max(2?x, r ) if 6 = 1 , 

for u between ( r — l ) / 2 and ( r 4- l ) / 2 , extending by the identity &(u + 1) = <&(u) 4-

for u outside this interval. (See Figure 20.) Note that 1(b) is just the set of poinl 

on the circle where the associated circle map 4>b,T is not locally constant, and the 

<f>b,r(u) = %u (mod Z ) whenever u G 1(b). 

For any symbol sequence a which is periodic of period p, we set $ o - , r equal to th 

p-fold composition 4>&p_ljT o • • • o 3 > 6 0 ? r - (Note that IT(&) is just the set of all poinl 

t G IR/Z such that the orbit of t under the associated circle map </>ajT coincides wit 

the orbit of t under .) This composition is also monotone, with <J>(t + l ) = $(£) + ' 

and therefore has a well defined translation number, which we denote by 

Trans(60? * • * ybp-i] r) = Trans(^0-jT) G IR. 

It follows from property (9) that this translation number is invariant under cycl: 

permutation of the bits &o> &p-i. Since each $&)T(iz) increases monotonicall 
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2 

1+T 

1 

T 

x/2 (l+T)/2 T/2 (l+T)/2 

FIGURE 2 0 . Graphs of $o,r and <l>i,T (with r = 0.6) . 

with r , with 3>&,o(0) = 0 and $£>?i(0) = 6, it follows easily that Trans($a?r) depends 

monotonically on r, increasing from 0 to b0 4- • • • + fep-i as r increases from 0 to 1. 

In other words its image in R / Z wraps &o + * * * + &p-i times around the circle as r 

varies from 0 to 1. By definition, the rotation number rot(6o, - • • •> &p-i ; T ) of on 

the compact set IT(&) is equal to the image of the real number Trans(^CT,T) in the 

circle R / Z . • 

If a map / c has critical value angle t(c) = r, then it is not hard to see that 

rot(&o> • • 9 bp-i ; r ) coincides with the rotation number as defined in 2.12 for the 

orbit with periodic symbol sequence 6 o v » &p-i = (fro, • • • ? &p-i> • • •, frp-i, • • • ) , so 

long as at least one rational ray lands on this orbit. (Compare [ G M , Appendix C].) 

We will use the notation S(q/r) for the orbit portrait with orbit period p = 1 and 

rotation number q/ry associated with the #/r-satellite of the main cardioid. (Compare 

[G].) If V is an arbitrary orbit portrait, then V*S(q/r) can be described as its (q/r)-

satellite portrait (See 6.4, 8.2.) 

To any orbit portrait V with period p > 1 and ray period n = rp > p we can 

associate a symbol sequence a = a(V) of period p as follows. Choose any c £ M in 

the wake W-p, and number the points of the /c-orbit with portrait V as ZQ I-> Z\ , 

where ZQ is on the boundary of the critical puzzle piece and z\ is on the boundary 

of the critical value puzzle piece. Now let cr(P) be the symbol sequence for zo, as 

described in Appendix A. This is independent of the choice of c E W-p \ Mp. 

There is an associated satellite symbol sequence a* = cr*(P) of period n = rp, 

constructed as follows. (Compare 9.2.) By definition, the fc-th bit of cr* is identical to 

the fc-th bit of a for k ^ 0 (mod n ) , but is reversed, so that 0 1, when k = 0 (mod n ) . 
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R o t 

2 

1-

1/7 6/7 
T 

FIGURE 21. The translation number as a function of the critical value 
exterior angle r for the period 3 point with symbol sequence 110 = 
(1 ,1 ,0 ,1 ,1 ,0 , . . . ) . 

Lemma B.2 (Satellite Symbol Sequences). — For every satellite V *S(q'/rl) ofV, the 

symbol sequence a(V * S(q'/r1)) coincides with the satellite sequence a*(V). The 

translation number Trans(cr(7:>), r ) is constant for r in the characteristic arc Tp, 

while Trans(<j*(7:>),r) increases by + 1 as r increases through T-p, taking the value 

q'/r' (mod Z ) on the characteristic arc of V * S(qf /r'). 

Intuitively, if we tune a map in Hp by a map in Hs{q>/r') then we must replace 

the Fatou component containing the critical point for the first map by a small copy of 

the filled Julia set for a (q1 /r')-rabbit. Here the period p point ZQ for V corresponds 

to the /3-fixed point of this small rabbit, while the period n point ZQ for V * S(q'/r') 

corresponds to the a fixed point for this rabbit. Perturbing out of the connectedness 

locus M , these two points will be separated by the ray pair terminating at the critical 

point. Further details will be omitted. • 

For example, starting with < r ( { { 0 } } ) = 0, where the overline indicates infinite 

repetition, we find that 

a(S(q/r))=a*({{0}})=J=1m$ù, 

while 

(7* (S ( l / 2 ) ) = 01, a*(S(q/3)) = O i l , a*(S(q/4)) = 0111, . . . . 

We can use this discussion to provide a different insight on the counting argument of 

§5. Since Trans(cr*(7:>); r ) increases by -1-1 on the characteristic arc X p , we see that the 

total number of portraits (or the total number of characteristic arcs) with ray period 

rp = n is equal to the sum of bo -\- ' * * -{- bn—i taken over all cyclic equivalence classes 

of symbol sequences of period exactly n. But the number of such symbol sequences, 

up to cyclic permutation, is 2/2(n)/n, and the average value of b0 H— • + &n-i is equal 

ASTÉRISQUE 261 



PERIODIC ORBITS, EXTERNALS RAYS AND THE MANDELBROT SET 331 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 

to n/2, since each symbol sequence with sum different from n / 2 has an opposite with 

zero and one interchanged. Therefore, this sum is equal to z/2(ro)/2, as in §5. 

Examples. — (Compare Figure 4 ) . Here is a list for all cyclic equivalence classes of 

symbol sequences of period at most four: 

Trans(0; r ) is identically zero. 

Trans(l; r ) increases from 0 to 1 for 0 < r < 1, taking the value q/r in the charac

teristic arc for S (q/r). 

Trans( l ,0 ; r ) increases from 0 to 1 as r passes through (1 /3 , 2 / 3 ) , the characteristic 

arc for S(1/2). 

Trans( l ,0 ,0 ; r ) increases from 0 to 1 as r passes through the characteristic arc 

(3 /7 , 4 / 7 ) for the period 3 portrait with root point c = —1.75. 

Trans(l , 1,0; r ) increases by one in the arc (1 /7 , 2 /7) for <S(l/3), and by one more 

in the arc (5 /7 , 6 /7) for S(2/3). (Compare Figure 21.) 

Trans ( l ,0 ,0 ,0 ; r ) increases by one in the arc (7 /15 , 8 /15) , corresponding to the 

leftmost period 4 component on the real axis. 

Trans(l , 1, 0, 0; r ) increases by one in the arcs (1 /5 , 4 /15) and (11/15, 4 /5 ) associated 

with the period 4 components on the l/3rd and 2/3rd limbs. (Figure 12.) 

Trans(l , 1,1,0; r ) increases by one in the arcs (1 /15 , 2/15) and (13/15, 14/15) for 

S(l/4) and <S(3/4), and also in the arc (2 /5 , 3 /5) for the portrait <S(l/2) * <S(l/2) 

with root point —1.25. 
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A GLOBAL VIEW OF DYNAMICS AND A CONJECTURE 
ON THE DENSENESS OF FINITUDE OF ATTRACTORS 

by 

J a c o b Palis 

To Adrien Douady for his lasting contribution to mathematics (July 1995) 

Abstract. — A view on dissipative dynamics, i.e. flows, diffeomorphisms, and trans
formations in general of a compact boundaryless manifold or the interval is presented 
here, including several recent results, open problems and conjectures. It culminates 
with a conjecture on the denseness of systems having only finitely many attractors, 
the attractors being sensitive to initial conditions (chaotic) or just periodic sinks and 
the union of their basins of attraction having total probability. Moreover, the attrac
tors should be stochastically stable in their basins of attraction. This formulation, 
dating from early 1995, sets the scenario for the understanding of most nearby sys
tems in parametrized form. It can be considered as a probabilistic version of the once 
considered possible existence of an open and dense subset of systems with dynam
ically stable structures, a dream of the sixties that evaporated by the end of that 
decade. The collapse of such a previous conjecture excluded the case of one dimen
sional dynamics: it is true at least for real quadratic maps of the interval as shown 
independently by Swiatek, with the help of Graczyk [GS], and Lyubich [Lyl] a few 
years ago. Recently, Kozlovski [Ko] announced the same result for C3 unimodal map
pings, in a meeting at IMPA. Actually, for one-dimensional real or complex dynamics, 
our main conjecture goes even further: for most values of parameters, the correspond
ing dynamical system displays finitely many attractors which are periodic sinks or 
carry an absolutely continuous invariant probability measure. Remarkably, Lyubich 
[Ly2] has just proved this for the family of real quadratic maps of the interval, with 
the help of Martens and Nowicki [MN]. 

1. Introduction and Main Conjecture 

In the sixties two main theories in dynamics were developed, one of which was 
designed for conservative systems and called K A M for Kolmogorov-Arnold-Moser. A 
later important development in this area, in the eighties, was the Aubry-Mather theory 
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for periodic (and Cantori) motions, which has been more recently further improved 

by Mather. Other outstanding results have been obtained even more recently by 

Eliasson, Herman, Mane and others. 

The focus of this paper, however, will be the surprising unfolding of the other 

theory that has been constructed for general systems (nonconservative, dissipative) 

and called hyperbolic: it deals with systems with hyperbolic limit sets. This means 

for a diffeomorphism / on a manifold M , that the tangent bundle to M at L, the limit 

set of / , splits up into d/-invariant continuous subbundles T^M — Es 0 Eu such that 

df I Es, df~1 I Eu are contractions, with respect to some Riemmanian metric. As for 

most of the concepts in the sequel, a similar definition holds for a non-invertible map 

g, requiring dg \ Eu to be invertible. And for a flow Xt, t G ÏÏL, we add to the splitting 

a subbundle in the direction of the vector field that generates the flow 

TLM = Es ®EU ®E° 

and require for some Riemannian metric and some constants C , 0 < À < 1, that 

\\dXt I Es\l \\dX-t I Eu\\ < Cext, t G R 

See [PT], specially chapter seven, for details and many of the notions presented here. 

The concept of hyperbolicity was introduced by Smale, with important contribu

tions to its development as a theory being also given by some of his students at the 

time, as well as Anosov, Arnold, Sinai and others. Initially, it was created to help 

pursue the "lost dream" referred to in the abstract: to find an open and dense subset of 

dynamically (structurally) stable systems; i.e., systems that when slightly perturbed 

in the Cr-topology, r > 1, remain with the same dynamics, modulo homeomorphisms 

of the ambiente space that preserve orbit structures, in the case of flows, or are con

juga tes , in the case of transformations. It has actually transcended this objective, 

loosing through a series of counter-examples its projected character of much univer

sality, i.e. its validity for an open dense subset of systems. But it became the ground 

basis for a notable evolution that dynamics experienced in the last twenty five years or 

so. Still, based on previous results, specially by Anosov and by ourselves, Smale and 

I were able to formulate in 1967 what was called the Stability Conjecture, that would 

fundamentally tie together hyperbolicity and dynamical stability: a system is Cr-

stable if its limit set is hyperbolic and, moreover, stable and unstable manifolds meet 

trans versally at all points. For stability restricted to the limit set, the trans ver sality 

condition is substituted by the nonexistence of cycles among the transitive (dense 

orbit) , hyperbolic subsets of the limit set. 

The theory of hyperbolic systems, i.e. systems with hyperbolic limit sets, was 

quite developed especially for flows and diffeomorphisms, and it was perhaps even 

near completion (an exagération!), by the end of the sixties and beginning of the 

seventies. That included some partial classifications, and an increasing knowledge of 
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their ergodic properties, due to Sinai, Bowen, Ruelle, Anosov, Katok, Pesin, Franks, 
Williams, Shub, Manning, among several others. 

More or less at the same time, the proof of one side of the Stability Conjecture 
was completed through the work of Robbin, Robinson and de Melo. However, the 
outstanding part of this basic question from the 60's was proved to be true only in the 
middle 80's, in a remarkable work of Mane [M2] for diffeomorphisms, followed ten 
years later by an again remarkable paper of Hayashi [Ha] for flows: C1 dynamically 
stable systems must be hyperbolic. Before, by 1980, Mane had proved the two-
dimensional version of the result, but independent and simultaneous proofs were also 
provided by Liao and Sannami. Other partial contributions should be credited to 
Pliss, Doering, Hu and Wen. A high point in Hayashi's work is his connecting lemma 
creating homoclinic orbits by C1 small perturbations of a flow or diffeomorphism: an 
unstable manifold accumulating on some stable one can be C 1 perturbed to make it 
intersect one another (the creation of homoclinic or heteroclinic orbits). This fact has 
been at this very moment sparkling some advance of dynamics in the lines proposed 
here, as it will be pointed out later. 

While the ergodic theory of dynamical systems, as suggested by Kolmogorov and 
more concretely by Sinai, was being successfully developed, the hope of proposing 
some global structure for dynamics in general grew dimmer and dimmer in the sev
enties. This was due to new intricate dynamical phenomena that were presented or 
suggested all along the decade. First, Newhouse [N] extended considerably his previ
ous results, showing that infinitely many sinks occur for a residual subset of an open 
set of C2 surface diffeomorphisms near one exhibiting a homoclinic tangency. Perhaps 
equally or even more striking at the time, was the appearance of attractors having 
sensitivity with respect to initial conditions in their basin. 

Although there are several possible definitions of an attract or, here we will just 
require it to be invariant, transitive (dense orbit) and attracting all nearby future 
orbits or at least a Lebesgue positive measure set in the ambient manifold. If A is 
an attractor for / with basin B(A), we say that it is sensitive to initial conditions, or 
chaotic if there is e > 0 such that with total probability on B(A) x B(A), for each 
pair of points (x,y) there is an integer n > 0 so that fn(x) and fn(y) are more than 
e apart, where the distances are considered with respect to some Riemannian metric. 
The definition for flows is entirely similar. Chaotic attractors became also known as 
strange. The first one, beyond the hyperbolic attractors which are not just sinks, is 
due to Lorenz [L]. Proposed numerically by Lorenz in 1963, it's a rather striking 
fact that only in the middle seventies most of us became acquainted with Lorenz-like 
attractors through the examples of Guckenheimer and Williams, which we now call 
geometric ones. It is still an open and interesting question if the original Lorenz's 
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equations 

x 

V 

z 

- 1 0 x + lOy 

28x — y — xz 

-(8/3)z + xy 

in fact correspond to a flow displaying a strange attractor. 
Subsequently, again based on numerical experiments, Henon [He] asked about 

the possible existence of a strange attractor, but now in two dimensions, for certain 
quadratic diffeomorphisms of the plane 

for a « 1.4 and b « 0.3. Finally, by the end of the decade, Feigenbaum [F] and inde
pendently Coullet-Tresser [CT] suggested another kind of attractor, now for quadratic 
maps of the interval and related to a limiting map of a sequence of transformations 
exhibiting period-doubling bifurcations of periodic orbits. Almost immediately after 
that, Jacobson [J] exhibited strange attr actors in the same setting. All this, together 
with the unsuccessful atempts of the sixties, led to a common belief that perhaps no 
such a global scenario for dynamics was possible. 

However, a series of important results on strange attr actors for maps, concerning 
their persistence, i.e. their existence for a positive Lebesgue measure set in parameter 
space, and the fact that they carry physical or SRB (Sinai-Ruelle-Bowen) invari
ant measures, provided by Jacobson [J] for the interval, Benedicks-Carleson [BC], 
Mora-Viana [ M V ] , Benedicks-Young [BY1] , [BY2] and Diaz-Rocha-Viana [DRV] 
for Henon-like maps (small Cr perturbations of Henon maps, r > 1) , were about to 
take place in the next fifteeen years or so. Perhaps even more striking is the recent 
proof that they are stochastically stable, a recent remarkable result of Benedicks-
Viana [BV1] , [BV2] . In proving this fact, Benedicks and Viana first showed for 
Henon-like attractors, that there are "no holes" in the basin of attraction with re
spect to the SRB measure, a question I heard from Ruelle and Sinai more than a 
decade ago: a.e. in the attractor with respect to the SRB measure, there are stable 
manifolds and their union covers Lebesgue a.a. points in the basin of attraction (and, 
thus, the union of the stable manifolds is dense in the basin of attraction) [BV1] . The 
concepts of SRB measure and stochastic stability will be presented below. Almost 
simultaneously, after previous pioneering work of Arnold and Herman (see [Ar], [H]), 
the theory of one-dimensional dynamics experienced a great advance, due to Yoccoz , 
Sullivan, McMullen, Lyubich, Douady, Hubbard, Swiatek and an impressive number 
of other mathematicians (see [dMS] and [dM]). 

Such developments, as well as my own work with Takens and Yoccoz , [PT1], 
[PT2], [PY1] , and many inspiring conversations with colleagues, former and present 
students, among them de Melo, Pujals, Takens, Yoccoz and above all Viana, made 
me progressively acquire a new global view of dynamics, emphasizing a much more 

fa,b(X> V) = i 1 ~ + V-> b x ) 
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probabilistic approach to the question. I was then able to formulate, just prior to 

the meeting at the Université Paris-Sud, Orsay in honour of A. Douady, in 1995, the 

following conjecture: 

Global conjecture on the finitude of attractors and their metric stability 

(I) Denseness of finitude of attractors - there is a Cr (r > 1) dense set D of 

dynamics such that any element of D has finitely many attractors whose union 

of basins of attraction has total probability; 

(II) Existence of physical (SRB) measures - the attractors of the elements in D 

support a physical measure; 

(III) Metric stability of basins of attraction - for any element in D and any of its 

attractors, for almost all small Cr perturbations in generic k-parameter families 

of dynamics, k € N, there are finitely many attractors whose union of basins 

is nearly (Lebesgue) equal to the basin of the initial attractor; such perturbed 

attractors support a physical measure; 

(IV) Stochastic stability of attractors - the attractors of elements in D are stochasti

cally stable in their basins of attraction; 

(V) For generic families of one-dimensional dynamics, with total probability in pa

rameter space, the attractors are either periodic sinks or carry an absolutely 

continuous invariant measure. 

As mentioned in the abstract, Lyubich [Ly2] solved the last item of the conjecture 

for families of quadratic maps of the interval, setting the stage for its full solution for 

one-dimensional real dynamics. 

We close this section by briefly recalling the notions of physical or SRB measures 

and sthocastic stability. Let A be an attractor for a C r , r > 1, map and let B{A) be 

its basin of attraction. We call an invariant probability measure jn with support in A, 

a physical or SRB measure if 

lim 
Q(fl(x 

1 

n 

7 1 - 1 

i=0 
Q(fl(x)) = gdfi 

for every continuous function g and for a positive Lebesgue measure set of x in B(A). 

Notice that if the attractor is just a periodic sink, then we take the Dirac measure 

equally distributed at its orbit as SRB measure. To define stochastic stability, we 

first assume that ¡1 is an SRB measure as above, with the property holding for a.e. 

x G B(A) (like is the case of Lorenz and Henon-like attractors as commented above). 

Let now {fn} be independent, identically distributed random variables in the space 

of Cr maps, r > 1, and fn G B£(f) with (a convenient) probability distribution 

6€, where B£{f) denotes the ^-neighbourhood of f. For a point zo € B(A), let 
Z 3 — / j ° " , 0 / i ( z o ) , i > 1. We say that (f,A,/j,) is stochastically stable on the 

basin of attraction B(A) if for every neighbourhood V of JUL in the weak* topology, 
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the weak* limit of — is in V , for every small enough e > 0 and (ra x 0^)-
n j=0 

almost all ( # o > / i » / 2 5 • • • )• Here, SZj stands for the Dirac measure at Zj and m for 

Lebesgue measure. We observe that when we consider parametrized families of maps 

with finitely many parameters, the distribution 0£ is to be interpreted as random 

(Lebesgue) choice of parameters. And this is precisely the meaning we want to give 

to stochastic stability in the conjecture above. 

There is another, formally not equivalent, definition of stochastic stability: in

stead of different maps / 1 , . . . , fj above, one considers only the initial one / but lets 

the images of an initial point have small random fluctuations. That is, trajectories 

(xo,xi,X2,... ) of the perturbed system are obtained by letting each Xi+i be chosen 

at random in a small neighbourhood of f(x{). However, in all known stable cases, like 

the hyperbolic systems treated by Kifer and Young (see [K]), as well as the Hénon-like 

diffeomorphisms, dealt with by Benedicks-Viana, both definitions can be applied. 

In the case of flows, the definition is basically the same, the random fluctuations 

taking place at "infinitesimal" intervals of time dt. More formally, one considers a 

stochastic differential equation like (see [K]) 

dx = X0(x) dt + dY(x), 

where X0 is the initial (unperturbed) vector field and dY is a stochastic differential, 

for instance dY = edW where dW corresponds to the standard Brownian motion. 

Then, for e small, the weak* limit of ^ JQT S^t should be close to the SRB measure of 

the vector field Xo for almost all trajectories of the stochastic flow & associated to 

this equation. 

At this point, the following remark is in order concerning the definition of attrac-

tor. Essentially in all known cases, the basin of attraction is a neighborhood of the 

set. Still we don't know that such a property is common to a dense subset of all 

dynamics. For possible relevant situations where the basin contains a set of positive 

probability but not a full neighborhood of the attractor, random perturbations might 

cause orbits to escape from the basin of the attractor. In fact this is the case for the 

random perturbations of flows through Brownian motion, even when the basin is a 

neighborhood. A related possible situation corresponds to having more than one SRB 

measure with supports contained in a same (transitive) attractor, so that random or

bits cross several of the basins of these measures. In these cases, stochastic stability 

should mean that the weak* limit of ^ ] C j = o is close to the convex hull of those 

SRB measures if e is small (see above and [V2]). 

2. Other conjectures and some recent results 

In his famous essay on the stability of the solar system, written around 1890, 

Poincaré introduced the notion of homoclinic orbits: in the past and future they 
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converge to the same periodic orbit or are in the intersection of the stable and un

stable manifolds (sets) of such a periodic orbit. Subsequently, not only he expressed 

amazement with the inherent dynamical complexity, but stressed its importance: 

"Rien n'est plus propre à nous donner une idée de la complication du problème de 

trois corps et en général de tous les problèmes de dynamique..." 

Indeed, on one hand we have that a transversal homoclinic orbit for a diffeomor-

phism implies the presence of the dynamics of the horseshoe, as proved by Smale in the 

early sixties (see [PT]). On the other, a generic unfolding of a homoclinic tangency of 

a dissipative (determinant of the Jacobian smaller than one) surface diffeomorphism 

yields a rather striking number of rich, intricate dynamical phenomena: 

(a) residual subsets of intervals in the parameter line whose corresponding diffeo-

morphisms display infinitely many coexisting sinks 

(b) cascade of period-doubling bifurcations of periodic points (sinks) 

(c) positive Lebesgue measure sets in the parameter line whose corresponding dif

feomorphism display Hénon-like attractors. 

These facts were proved in the late seventies and the eighties by Newhouse, Yorke-

Alligood and Mora-Viana extending the fundamental work of Benedicks-Carleson (see 

[PT]). They are also valid in higher dimensions, when the dimension of the unstable 

manifold of the periodic point is one (codimension-one case) and the product of any 

two eigenvalues of the derivative of the map at this point has norm less than one 

(sectionally dissipative). See [PV] for the existence of infinitely many coexisting sinks 

in such a case. It is to be noticed that there are also plenty of values of the parameter 

such that the corresponding diffeomorphisms have infinitely many coexisting Hénon-

like attractors [C]. 

The results above show how Poincaré once and again had a great mathematical 

insight. In accordance with his view, I have proposed some time ago the following 

conjectures: 

Conjecture I. — Cr near any surface diffeomorphism exhibiting one of the above bifur

cating phenomena (a), (b), (c), there exists a diffeomorphism displaying a homoclinic 

tangency, r > 1. Thus, Cr near any of such bifurcating phenomena we may find all 

the others. The same in higher dimensions, the homoclinic tangency being now of 

codimension-one and sectionally dissipative. 

Conjecture II. — In any dimension, the diffeomorphisms exhibiting either a homo

clinic tangency or a (finite) cycle of hyperbolic periodic orbits with different stable 

dimensions (heterodimensional cycles) are Cr dense in the complement of the closure 

of the hyperbolic ones, r > 1. 

Notice that for surface diffeomorphisms, it is not possible to have an heterodi

mensional cycle. So, we have conjectured that diffeomorphisms exhibiting Hénon-like 
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attractors or repellers (or infinitely many sinks or sources) are dense in the comple
ment of the hyperbolic ones. The same question may be posed for non-invertible maps. 
Also for flows, but in this case one has to add, to homoclinic tangencies and heterodi-
mensional cycles, flows exhibiting singular attractors, like the Lorenz-like ones, and 
singular cycles, i.e. cycles involving periodic orbits and singularities, studied in [LP], 
This conjecture for flows will be mentioned again at the end of the paper, when dis
cussing new Lorenz-like attractors. In general, we have presented in [PT], page 134, 
a notion of a homoclinic bifurcating dynamical system and formulate a less explicit 
but similar conjecture in terms of a such a notion. 

Progress has been made on conjecture I, by Ures [U], who has showed that for 
all known cases of diffeomorphisms exhibiting Hénon-like attractors, they may be Cr 

approximated by one with homoclinic tangencies. Similarly for the limiting map of 
cascades of period-doubling bifurcations in many interesting cases [CE1, CE2] . On 
the other hand, Pujals and Sambarino seem to be making good progress in showing 
in any dimension, that a diffeomorphism with infinitely many sinks can be C1 ap
proximated by one displaying a homoclinic tangency, which is codimension one and 
sectionally dissipative. 

More concretely, Pujals and Sambarino [PS] have provided a positive solution to 
conjecture II for surface diffeomorphisms and r = 1. From the comments above, 
this implies that conjecture I would also be true in the same setting. Remarkably, 
they also obtain from their method a similar result for surface diffeomorphisms whose 
topological entropy changes under small C1 perturbations. 

Related to conjecture II, we wish to pose the following weaker version of it: 

Conjecture III. — The subset of dynamical systems that either have their limit set 
consisting of finitely many hyperbolic periodic orbits or else they have transversal 
homoclinic orbits, are Cr dense in the set of all dynamical systems, r > 1. 

Again, Pujals and Sambarino, made some progress towards a positive answer to 
this question in dimensions higher than two and r = 1. 

Somewhat related to our main conjecture, stated in the previous section, and ini
tially motivated by [TY] , we formulate yet another conjecture. 

Conjecture IV. — When unfolding a homoclinic tangency for a codimension-one sec
tionally dissipative diffeomorphism, the set of parameter values corresponding to dif
feomorphisms with infinitely many sinks or infinitely many Hénon-like attractors has 
(Lebesgue) measure zero. The same for generic k-parameter families of dynamical 
systems, k € N. 

In all the previous assertions concerning homoclinic tangencies for surface diffeo
morphisms, the corresponding periodic point may be part of a larger hyperbolic (basic) 
set. The problem is then translated to the understanding of the arithmetic difference 
of Cantor sets in the line, obtained from the intersections of the stable and unstable 
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foliations of the hyperbolic set with a line transverse to the leaves at the homoclinic 
tangency. Such Cantor sets are regular (bounded geometry) if the diffeomorphism 
is of class C2 [PT]. One can also consider a topology for such Cantor sets. Trying 
to go beyond the notion of thickness of Cantor sets used by Newhouse (see [PT]), I 
asked if for a residual subset of pairs C i , C2 of regular Cantor sets, either C± — C2 
has measure zero or else it contains an interval. The first case would correspond 
to HD(Ci x C2) < 1 and the second to HD(C\ x C 2 ) > 1, where HD stands for 
Hausdorff dimension. Recently, Moreira and Yoccoz [Mor], [ M o r Y l ] , [MorY2] have 
proved this fact, even more strongly, for an open and dense subset of pairs of Cantor 
sets, extending partial previous results in [PT1], [PT2] and [PY1] . The question for 
affine Cantor sets is still open: 

Conjecture V. — IfC\, C2 are affine Cantor sets and HD(C\ x C2) > 1, then C\ —C2 
contains an interval. In particular, the question can be posed for most or an open and 
dense subset of pairs of affine Cantor sets. 

I believe that the result of Moreira-Yoccoz is a major contribution to a more 
profound understanding of the unfolding of homoclinic bifurcations, which we con
sider to be central to dynamics. In the previous works, it has been shown that if 
HD(C\ x C2) < 1 then the set of parameter values corresponding to hyperbolicity 
has full (Lebesgue) density at the value corresponding to the homoclinic tangency 
[PT1], [PT2]. Conversely, this is not so if HD(CX x C2) > 1 as proved in [PY1] . 
The results of Moreira-Yoccoz enriches the picture: the set of parameter values cor
responding to hyperbolicity or generalized homoclinic tangencies (tangencies between 
stable and unstable leaves of the foliations) has full density at that same parameter 
value. In another development, it is shown in [PY2] that at the homoclinic bifurca
tion parameter value, attractors have Lebesgue density equal to zero. This is another 
indication that attractors perhaps are not so abundant, as Newhouse's result may at 
first glance suggest. 

Concerning attractors in particular carrying an SRB measure, a focusing point of 
the main conjecture in this article, there has been an explosion of new relevant results, 
adding to the important development on strange attractors mentioned before. This 
raises the hope of more progress in the questions posed here as well as in some partial 
classification of attractors with the properties mentioned in that conjecture. 

First of all, Alves [A] has shown the existence of SRB measures for Viana's at
tractors with multidimensional positive Lyapunov exponents [VI] . Together with 
Bonatti, they are announcing a series of results aiming at the following one: a posi
tive Lyapunov exponent on (Lebesgue) many points suffices for the existence of SRB 
measures [ A B V ] . 
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These results have to do with an important class of diffeomorphisms called partially 
hyperbolic. This means that there is a continuous invariant decomposition 

TM = E1 ®E2 

where E1 is uniformly expanding or uniformly contracting and it dominates E2 [PT, 
page 161]. Shub [S], Mane [ M l ] and Bonatti-Diaz [BD] have constructed partially 
hyperbolic but not hyperbolic diffeomorphisms which are robustly transitive: every 
C1 small perturbation is also transitive. Very recently, Diaz-Pujals-Ures [DPU] have 
shown that partial hyperbolicity is in fact a necessary condition for C1 robust tran-
sitiveness in three dimensions. Some time earlier, Pugh and Shub had shown that 
for volume preserving diffeomorphisms, partial hyperbolicity is a main ingredient for 
robust ergodicity; see [PSh] and references therein. 

Concerning flows, Rovella [R] has constructed a few years ago an important varia
tion of Lorenz geometric attractor, which is not robust but only persists for perturba
tions of the flow corresponding to a positive Lebesgue measure set of parameter values. 
The global spiralling attractors constructed in [PRV1], [PRV2], whose reduced one-
dimensional map exhibits infinitely many critical points, and the critical geometric 
Lorenz attractors in [LV1], [LV2] also display measure theoretical persistence. In this 
setting, de Melo and Martens [ d M M ] have built up families of Lorenz-like maps that 
are full in the sense that exhibit all combinatorial types. An oustanding question that 
remained open since the seventies is whether there exist robust transitive attractors 
for flows containing a singularity with more than one expanding eigenvalue. This has 
been positively answered very recently by Bonatti-Pumarino-Viana [BPV] . 

The theory of singular or Lorenz-like attractors, specially in dimension three, at
tained sharp progress in recent years through a series of papers by Morales, Pacifico 
and Pujals. They have constructed new relevant types of singular attractors in [MPa], 
[ M P u l ] , [MPu2] , [MPP1] , [MPP2] and [MPP3] . In some cases, these attractors 
are across the boundary of hyperbolic flows. They also proved the following partial 
characterization [MPP4]: robustly transitive singular sets, i.e. invariant sets contain
ing singularities, of three dimensional flows are necessarily attractors or repellers and 
they are singularly hyperbolic, i.e. there exists a continuous invariant decomposition 
TM = Es ® E c u such that Es is uniformly contracting, E c u is volume expanding 
and Es dominates E c u . Moreover, the derivatives of the flow at the singularities con
tained in the attractor have eigenvalues with the same relative distribution as in the 
geometric Lorenz attractors: the unstable (positive) eigenvalue has norm bigger than 
that of the weak stable (least negative) one. Here again, as well as in [DPU] above, 
Hayashi's connecting lemma is used. Such developments, I believe, should be very 
inspiring in tackling Conjecture II for flows, at least in three dimensions. 

Let me finish by briefly remarking that the scenario we have proposed for most dy
namical systems in finite dimension, may apply to some infinite dimensional systems 
whose solutions are often only defined for positive time (semiflow), like dissipative 
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evolution equations (Euler, Navier-Stokes). Putting the view presented here together 
with several conjectures/results in this setting, we would have the following conjec
ture: For most such systems in parametrized form (finitely many parameters) and 
most initial conditions, the solutions are global and converge to finitely many finite-
dimensional attractors with nice ergodic properties, as above. 

As a sign of much activity in the area, many of the references below are to appear. 
They are, however, available at the Internet, for instance at the authors web page at 
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RATIONAL MAPS WITH DISCONNECTED JULIA SET 

by 

Kevin Pilgrim & Tan Lei 

Abstract. — We show that if / is a hyperbolic rational map with disconnected Julia 
set then with the possible exception of finitely many periodic components of J 
and their countable collection of preimages, every connected component of J is a 
point or a Jordan curve. As a corollary, every component of 3 is locally connected. 
We also discuss when a Jordan curve Julia component is a quasicircle and give an 
explicit example of a hyperbolic rational map with a Jordan curve Julia component 
which is not a quasicircle. 

1. Introduction 

For a rational map / of the Riemann sphere C to itself with disconnected Julia 
set Jwe investigate the topological and geometric possibilities for a connected com
ponent of J'. If J is disconnected, then / maps components of J onto components 
of 3, and there are uncountably many such components (cf. [Mi] and [Be]). The 
postcritical set of / 

V:= ( J / °» (c ) 
n>0 

f'(c)=0 

plays a crucial role in our study. We say that / is hyperbolic \iVV\J = 0 , geometrically 
finite if V H J is finite, and nice if V Pi J is contained in finitely many connected 
components of J. 

Theorem 1.1. — Let f be a polynomial with disconnected filled Julia set /C. Assume 
that only finitely many connected components of IC intersect V. Then, with the pos
sible exception of finitely many periodic components and their countable collection of 
preimages, every connected component of IC is a point. 

1991 Mathematics Subject Classification. — Primary: 58F23; Secondary: 30D05. 
Key words and phrases. — Iteration of rational maps, Julia set, connected components, Jordan curve. 
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Using a variant of this theorem, we establish 

Theorem 1.2. — Let f be a hyperbolic rational map with disconnected Julia set J. 
Then, with the possible exception of finitely many periodic components and their count
able collection of preimages, every connected component of J is either a point or a 
Jordan curve. 

The same result for geometrically finite maps can be proved by similar methods as 
well. We will only sketch the necessary modifications at the end of the paper. 

We establish also weaker results for nice maps. The precise statements are given 
in Propositions [Case 2], [Case 3] , [Case 4] and Theorem 9.2. 

It is known that J can be a Cantor set ([Be], §1.8), or homeomorphic to the 
product of a Cantor set with a quasicircle, where each component is a 1^-quasicircle 
for some fixed K independent of the component ( [Mcl]) . In §8 we give an explicit 
example of a hyperbolic rational map which has a Jordan curve Julia component 
which is not a quasicircle. 

Results from plane topology imply that at most countably many Julia components 
contain an embedding of the letter UY". Our theorems make precise which ones they 
are. It is also interesting to see that at most countably many Julia components can 
be a segment, which a priori is not a restriction from plane topology alone. 

By a theorem of McMullen ( [Mcl ] , Corollary 3.5), there are at most countably 
many periodic components of J. Since periodic points of / are dense in J, if J 
is disconnected there must be exactly countably many periodic Julia components. 
Since the degree of / is finite there must be exactly countably many preperiodic Julia 
components. Hence there are uncountably many wandering Julia components. Our 
theorems show that under the stated assumptions, no wandering Julia component can 
be a segment or contain an embedding of the letter "Y", since they must either be 
points or Jordan curves. 

Combining the above theorem with a result of Tan-Yin ( [TY]) , which shows that 
every preperiodic Julia component for a hyperbolic rational map is locally connected, 
we answer in the affirmative a question of McMullen [Bi]: 

Corollary 1.3. — For a hyperbolic rational map, each Julia component is locally 
connected. 

This corollary completes another entry in the growing dictionary between the the
ories of rational maps and Kleinian groups. The analogs of a hyperbolic rational map 
/ and its Julia set J are a convex compact (or expanding) Kleinian group T and its 
limit set A. It is known that each component of A is locally connected; the proof 
depends on the fact that a "wandering" component of A, i.e. a component with trivial 
stabilizer, is necessarily a point. See [ A M ] and [Mc3] (Theorem 4.18). 

The main ideas in our proof are a canonical decomposition C = E U ZY, where 
E is a finite collection of Julia components such that f(E) C J5, and the fact that 
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a hyperbolic rational map / is uniformly expanding on a neighborhood of its Julia 
set with respect to the Poincaré metric on C — V. Our goal is to show that any 
Julia component which does not land in E is either a point or a Jordan curve. To 
this end, we further decompose the sphere into several canonical pieces and measure 
the itinerary of the orbit of a Julia component Jo under / with respect to these 
pieces. We use a combinatorial analysis combined with the lemma below to show 
that components with certain kinds of itineraries are points. A separate argument 
treats the case of Jordan curves. 

We say that K c C is a full continuum if K is compact, connected, and C — K 
is connected. The following Lemma was essentially known to Fatou (see [Br], Thm. 
6.2) 

Lemma 1.4 (Fatou). — Let f be a rational map, Q = U"=i Qibe the union of finitely 
many disjoint full continua, such that Q fi V = 0. Then any connected set J C J 
satisfying fn(J) C Q for infinitely many n is a point. 

Contents. — In §2 we give some motivating examples, define the above mentioned 
decomposition and state four basic lemmas for nice maps, and give a more precise 
statement (Theorem 1.2') of Theorem 1.2. We then reduce the proof of Theorem 1.2' 
to three cases, Cases 2, 3 and 4. Related results for nice maps are stated as well. In 
§3 we analyze the topology and dynamics of the decomposition and prove the four 
basic lemmas. §4 contains analytic preliminaries for use in §§5 and 6. In §§5, 6, and 
7 we prove the Propositions in Cases 2, 3, and 4, respectively; §7 contains also the 
proof of Theorem 1.1. §8 lists related results and discusses when a Jordan curve Julia 
component is a quasicircle. §9 contains sketches of proofs-a generalization our results 
to the geometrically finite case and some further results for nice maps. §10 is an 
appendix of technical topological results used in our proofs. 

Acknowledgments. — Recently G. Cui, Y . Jiang, and D. Sullivan [CJS] have also 
proven Theorem 1.2 for geometrically finite maps in a different context. Their methods 
are in some respects similar, but they do not make use of a canonical decomposition. 
The authors would like to thank Cui for providing a copy of their manuscript, A. 
Douady, D . Epstein, M. Lyubich, C. McMullen, B. Sevennec and M. Shishikura for 
many useful discussions, and MSRI for financial support. 

2. The decomposition and the reduction to three cases 

Let / be a rational map with Julia set J = J(f) and postcritical set V = V(f). 
For J' a continuum {i.e. a compact, connected set) in C , and P a compact set 

disjoint from J7, we say that J' separates P if either J' D P ^ 0, or J' fl P = 0 and 
there are at least two components of C — J' intersecting P. We say that J' separates 
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P irito exactly q parts if J' PI P = 0 and C — J ' lias exact ly </ components hitersecthig 
P. 

Let be a component of J/. We say that J' is critically separating if J ' séparâtes 
P. We say that two distinct components J' and J " of J are parallel. if they are bot h 
critically separating and the unique aririnlus component in C — (./' U J") (see Lemma 
3.1) does not intersect P. 

Définition (décomposition C = E U ZY, first step). Let be the union of Julia com
ponents J' such that ci t lier 

(1) J' DP / 0, or 
(2) J' DP = 0 and J ' séparâtes P into three or more parts, or 
(3) J' séparâtes P into exactly two parts and J' séparâtes no two Julia components 

which are parallel to ,/', i.e. ail Julia components J" parallel to J' are contained 
in the same component of C — ./'. 

\Ye think of J' as an extrenial Julia component. Set U — C — E. The set E may be 
empty. a. g. if J is a Cantor set. 

Examples. Let 

/o(.:) = : 2 + l ( ) - 9 c " : i (McMullen) and /,(.:) = - o ( : 2 - l ) o - + l ( r 1 1 : ~'\ 

The Julia set of f\ . in log(c )-coordinates. is shown in Figure 1. The Julia set of / 0 is 
homeomorphic to product of a Cantor set with a quasicircle (|Mcl|). 

For f\, the point at infinity and —1 forni the unique attracting cycle. There are 
five critieal points in the annulai* Fat ou component near the eentcr of the picture, 
which niaps to the Fat ou component eontaining zéro (at left) bv degree five. P is 
contained in the union of the dise fat ou component eontaining zéro (at left) and the 
immédiate basins of infinity (at far right) and —1 (the promineiit dise at right). The 
set E consists of a homeomorphic copy J f of tho Julia set of z2 — 1. at right. and its 
preimage J (at left) which is a threefold cover of J+ . ,/ f and J are parallel, J~ 
niaps to J f . and J f is fixed. 

FKU-RK 1. Julia set of - o (z2 - l ) o - + H ) - 1 1 ; - 3 
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Lemma 2.1. — If f is nice, the set E consists of at most finitely many Julia com

ponents, f{E) C E, f~xlA C IA, and every component of E is either periodic or 

preperiodic. 

This lemma will be proved in the next section. One can also show that E is closed 

and forward-invariant for any rational map / ; we omit the proof. 

Definition (decomposition of ZV, second step). — Define 

— A = |J {annular components of IA disjoint from V}; 

— T> = |J {disc components of IA disjoint from V}; 

— £ = |J {components of U not in A or V} 

= (J {non-disc non-annular components of ZY, 

or components of IA intersecting V}. 

— T>' == |J {disc components of U disjoint from V but intersect 

— £>" = (J {disc components of U disjoint from V U f_1E}. 

Note that U = AuT>U£ = AuVfUV"u£. 

Example. — Let f — fi- Then IA = C — E is decomposed into: 

— A = a single annulus, bounded by J~ and J + {A is not a closed annulus). 

— C = three disc components, each intersecting V. Two are disc components of 

IA containing the attractor at infinity and — 1 with boundaries contained in J + , 

and the other is the component of U containing zero with boundary contained 

in J~. 

— T> = T>" — the countable set of remaining components of £/, all discs with 

boundaries in E. 

— V = 0. 

The set f~XE consists of E plus two other components contained in A and parallel 

to components in E. 

Definition (decomposition of f~1A, third and final step). — We denote by 

— As, the union of components A' of f~xA such that A! c A and A! <—t A is not 
homotopic to a constant map, and 

— A°, the union of components A' of f~xA such that A' C A and A' ^ A is 

homotopic to a constant map. 

For fi, the set As consists of two essential subannuli of A, and the set A° is empty. 

Here is a more precise statement of Theorem 1.2. 

Theorem 1.2'. — Let f be a hyperbolic rational map and C = E UlA be the decompo

sition above. Let Jo be a Julia component. Set Jn = fnJo. Then exactly one of the 

following occurs: 

(1) Jn C E for n > no, in which case JQ is preperiodic, or 
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(2) Jn C As for n > n0, in which case J0 is a Jordan curve, or 

(3) there is a sequence —>• oo such that Jnje C U — As, in which case Jo is a 

point. 

If E = 0, £fte J^/za se£ J is totally disconnected. 

This decomposition is canonical and natural with respect to conjugation by Mobius 

transformations. While the first decomposition C = UUE is the same for any iterate 

of / , the further decomposition can change. 

The following lemmas will be proved in the next section: 

Lemma 2.2. — If f is nice, the sets C, A, V, As and A° all have finitely many 

components. 

Lemma 2.3. — Let f be a nice map. Then each component L of C contains a unique 

Fatou component W such that dW D dL and W HV = Lf)V. 

Lemma 2.4. — Let f be a nice map. Then every Julia component Jo is in one of 

the following four cases: let Jn = fn{Jo), 

Case 1. There is UQ such that Jn C E for U>UQ. 

Case 2. There is no such that Jn C A 5 for n > no-

Case 3 . Jn C A° U V for infinitely many n. 

Case 4. Jn C £ for infinitely many n. 

While these cases cover all possibilities, the last two are not mutually disjoint. 

This result tegether with Lemma 2.2 means that some finite part of the decom

position encodes a significant portion of the orbit of each Julia components. We are 

going to prove: 

Proposition (Case 2). — In Case 2, Jo is a Jordan curve if f is hyperbolic, or C — Jo 

has exactly two components if f is nice. 

Proposition (Case 3). — In Case 3, JQ is a point if f is hyperbolic, or C — Jo is 

connected if f is nice. 

Proposition (Case 4). — In Case 4J JO is a point if f is nice (in particular if f is 

hyperbolic). 

Our cases are also distinguished by our methods of proof. In Case 2, we extract 

a dynamical system consisting of a finite collection of annuli and covering maps and 

analyze this restricted system. Case 3 is similar to Case 2. Case 4 is more delicate. 

We actually prove a stronger result, Theorem 7.1, from which both Proposition [Case 

4] and Theorem 1.1 follow as corollaries. 

Theorem 1.2 and Theorem 1.2' are direct consequences of the above Propositions. 
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3. Topology and dynamics of the decomposition 

Throughout this section, / denotes a nice rational map. We first prove Lemmas 
2.1 and 2.2, and then analyze the topological and dynamical possibilities for the sets 
in our decomposition in order to prove Lemmas 2.3 and 2.4. We will frequently use 
the following result from plane topology (see [Ne] for a proof) : 

Lemma 3.1. — For a nonempty set J of disjoint continua J ' in S2, every component 
of S2 — J1 is a disc (simply connected). Given J' and J" two disjoint continua, the 
set S2 — (J ' U J") has a unique annulus component A(J*,J"), the component J" is 
contained in a component U' of S2 — J', and 

U1 = A( J ' , J") U J" U [J{V \V is a component of S2 - J" and V n J' = 0}. 

/ / J ° is a continuum disjoint from J' U J" but separating J' and J", then 

A(J', J") = A(J\ J° ) U A(J°, J") U J ° U 

( J { F | V is a component of S2 - J° and V n (J' U J") = 0}. 

Proof of Lemma 2.1. — Since / is nice, there exists a compact set B C C such that 

(1) B has finitely many connected components, 
(2) B D and each connected component of B intersects 
(3) B contains every Julia component intersecting V and no other Julia compo

nents. 

B may be taken to be the union of Julia components intersecting V together with 
the suitable preimages of the following: closed, forward-invariant neighborhoods of 
attracting and superattracting basins; closed, forward-in variant attracting parabolic 
petals, invariant closed sub-discs of Siegel discs containing points of and invariant 
sub-rings of Herman rings containing points of V. Then a Julia component J is 
critically separating if and only if it is either contained in B, or is disjoint from V and 
separates components of B. 

An easy induction argument shows that the number of Julia components J' which 
separate B into three or more pieces is finite and bounded by k — 2 if B has k 
components. Such Julia components are in E by definition. 

Now we deal with the Julia components in E that separate B into exactly two 
parts. By a method similar to the above, one can prove that if each continuum of the 
set is disjoint from B and separates B into exactly two parts, and no two continua are 
parallel (relative to B), then this set of continua is finite. Now assume J ° C E and 
J° separates V into two parts. We will see that among the Julia components parallel 
to J ° at most one of them is contained in E. Let J 1 , J2 be two distinct parallels of 
J°. Since J ° does not separates its parallels, J1 and J2 are contained in the same 
component of C — J ° . There are two possible cases: 
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(a) The component J1, say, separates J ° from J2. Then, according to Lemma 3.1, 

J1 is contained in A( J ° , J2) and J1 ^ A( J ° , J2) is homotopically non trivial. Since 

A ( J ° , J 2 ) D P = 0, the component J1 is also parallel to J2. So J1 separates V into 

exactly two parts, and separates parallels of J1. Thus J1 is not contained in E. 

(b) We have J1 C A ( J ° , J2) but J1 does not separate J° U J2 (therefore J2 C 

A ( J ° , J1) but J2 does not separate J° U J1) . This is impossible for the following 

reason: The annulus A(J°, J2) contains J1 and all but one (disc)-components of 

C — J1. Since J1 is critically separating, at least one of these components contains 

points of V. So A(J°, J2) n V ^ 0. This is a contradiction to the assumption that 

J ° and J2 are parallel. 

So E contains at most finitely many components that separate B into two or three 

parts, hence E has at most finitely many components. 

The following lemma implies that f(E) C E; since U = C — E, f~xU C U. 

Therefore each component of E is either periodic or preperiodic. If E is not empty, 

it consists of finitely many periodic cycles of Julia components, and some (finitely 

many) of their preimages. • 

Proof of Lemma 2.2. — If E = 0, we have £ — C and A — V = 0. There is nothing 

to prove. 

Assume now E ^ 0. Since f~xE has finitely many components, so is T>'. It 

remains to prove that A U £ has finitely many components. Using the notation in 

the proof of Lemma 2.1, the set V is contained in B, which consists of finitely many 

connected components and contains finitely many Julia components. Let U be a 

disc-component of £ intersecting V. Then either U contains a component of B, or 

U contains a preimage of a closed parabolic attracting petal containing points of V 

used in the construction of B. Since the number of components of B and the number 

of such petals is finite, the number of disc-components of £ intersecting V is finite. 

The other components of A U £ are precisely the non simply connected components of 

C — E. Since E consists of finitely many components, only finitely many components 

of C — E can be non simply connected. • 

Lemma 3.2. — If a Julia component J' is critically separating then f(Jf) is also 

critically separating. If f{J") of a Julia component J1' separates V into two parts and 

separates the parallels of f{J"), then either J" does not separate V or J" separates 

the parallels of J" and separates V into two parts. 

Proof — We prove that if f{J') is not critically separating then neither is J'. If 

J1 nV 7̂  0 then f(J')C\V 7̂  0. Hence we may assume that J' and f(J') are disjoint 

from V. Assume that V is contained in one (disc)-component of C — / ( J ' ) - There 

is a Jordan curve 7 separating f(J') and V. Let C be the disc-component of C — 7 

containing / ( J ' ) « Since C C\V = 0, every component of / - 1 ( C ) is again a disc, and 
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again disjoint from V since f~1V Z> V. One of them, say bounded by 7', contains J'. 
Thus J' does not separate V. 

Now we prove the second statement of the lemma. By assumption C — /(J") has 
exactly two components U1 and U2 intersecting V, and there are Julia components 
J1 C U1 and J2 C U2 parallel to / ( < / " ) • Then A(JX ,J2) n V = 0, since, according 
to Lemma 3.1, A(J1, J2) is the union of A(J\/(J")), ^ ( / ( J " ) , < J 2 ) , / ( J " ) and the 
components of C — f(J") distinct from U1 and C/2, and none of these sets intersects 
V. 

Now each component of f~1(A( J1, J2)) is again an annulus, and again disjoint 
from V. One of them, say A " , contains J", and the components of dA" are contained 
in two distinct Julia components J[ and J'2 which are separated by J". 

Since all but two components of C — J" are contained in A11, and A" DV = 0, the 
component J" separates V into at most two parts. If it does separate P , so do J[ 
and J'2. Hence J[ and J2 are parallel to J". • 

Lemma 3.3. — Suppose f : S2 —> S2 is a branched covering, U,V C S2 are finitely 
connected open subsets with f(U) — V and f\U : U —• V proper. Then f(dU) = <9F 
and / maps connected components of dU onto connected components of dV. 

Remark. — A subtlety is that the map / : dU —• dV need not be open in the subspace 
topology, in other words, a component of dU may be a proper subset of a component 
of f-^dV). 

Proof. — That f(dU) C dV follows by properness. Since / (17) = V , f{dU) C <9V\ 
and / ( { / ) is a closed subset containing V, we have f(dU) = Finally, let iif' be 
a boundary component of 17" and let K be the component of dV containing f(K'). 
Since / is a branched covering and V has finitely many boundary components, there 
are open annuli A' C [7, A C V such that Kr,K are boundary components of A ' , A 
respectively and / : A' —• A is a covering map. Then f\A' : A' ^ A satisfies the 
hypotheses of the first conclusion, so f(dA') = <9A It follows easily that f(K') = 
A \ • 

Lemma 3.4. — Given any integer n and any component V of f~nU, any Julia 
component is either contained in V or disjoint from V. The boundary dV has finitely 
many components, and each component is contained in a different Julia component 
which is disjoint from V. 

Proof. — fn(Y) is a component of U and the mapping fn : V —• fn(V) is proper 
and finite-to-one. Hence V has finitely many boundary components since fnV E U 
has finitely many boundary components. Since fn preserves the Julia components, a 
Julia component intersecting both V and dV would be mapped to a Julia component 
intersecting both fn(V) and dfn(V), which is impossible. • 
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Lemma3.5. — Any Julia component J° not in E separating EUV is disjoint from 

V and critically separating. 

Proof. — Since J° is not in E, if it separates E it must separate components of E. 

Assume that J1 and J2 are two Julia components in E, separated by J ° . Then there 

is a component U% of C — J° containing J2, i = 1, 2, and U1 C\U2 = 0. By Lemma 3.1 

the set U1 contains all but one component of C — J1. Since J1 is critically separating, 

U1 D V / 0. Similarly C/2 D P 7̂  0. Thus J° separates P . 

Assume now J1 is a Julia component in E and x G P such that J1 and x are 

separated by J ° . One can show similarly that J° is also critically separating. • 

Lemma 3.6. — Critically separating Julia components are contained in EuAEL\As. 

Proof — Here we denote by UV the set of z £ U for which f{z) G V. 

We show at first that those Julia components are contained in EuA. If J1 C\V 7̂  0 
then J' € E by definition. Thus we may assume that J' n V — 0 and that J ' is 

critically separating and is not in E. Then there are exactly two components U1 and 

U2 of C - J' meeting V, and each Ul contains parallels of J'. Set Pl — Ul C\ V. We 

will construct a component of A containing J'. 

For i = 1 and 2, let 

= { [ / I {/ is a component of the complement 

of some Julia component and U HV = P1}. 

Set W« = U uem U-
Here we apply the topological result Lemma A . l to conclude that Wx is an open 

disc which is also an element of Wl and is in fact the unique maximal element. Because 

each U1 contains parallels of J', we have dW1 n dW2 = 0 and W1 U W2 — C . Thus 

W1 n W2 is an annulus. To show that this annulus is a component of A, we just need 

to show diW1 H W2) G E smdW1 DW2 HE = 0. 

Denote by J1 the Julia component containing dW1i = 1,2. 

Assume by contradiction that J1, say, is not contained in E. Since W 1 , as a 

component of C — J1, meets only part of V, the Julia component J1 is critically 

separating. By definition of E, the only possibility for J1 not being in E is that there 

is another component W of C — J1 such that P2 = V — P1 is contained in W, and 

there is a Julia component J° C W parallel to J1. Thus C — J° has a component 

U containing J1 UW1. Furthermore U CiV = W1 HV = P1 (Lemma 3.1). In other 

words, U is also an element of W 1 . This contradicts the fact that W1 is the maximal 

element of W 1 . 

Thus d(Wx nW2) C E. Now any critically separating Julia component in W1 DW2 

would also separate J1 and J2, therefore separate V into two parts and be parallel 

to both J1 and J2. So W1 fl W2 contains no component of E. As a consequence, 

ASTÉRISQUE 261 



RATIONAL MAPS WITH DISCONNECTED JULIA SET 359 

W1 n W2 is an annulus component of C — E disjoint from V. By definition, W1 f l W2 

is a component of A. 

So J' C A. Thus every critically separating Julia component is contained in E U A. 

Now A is decomposed into AE U As U A° U A £ U AV. For any Julia component 

J' in .AC U AX*, we have / (J ' ) C CUT). Hence f(J') is not critically separating. By 

Lemma 3.2, the component J' is not critically separating either. Since the inclusion 

map of each component of A° into A is homotopic to a constant map, and A is 

disjoint from no continuum in A° can be critically separating. 

Thus all critically separating Julia components are contained in E U AE U As. • 

Lemma 3.7. — For U a component of C\JT>, there is a unique component UR of 

f~xti which we call a reduced component with the following properties: 

(1) UR C U, dU C dUR, and each component of dU is a component of dUR; 

(2) If U n f~xE = 0 then UR — U. Otherwise UR is the complement in U of the 

union of finitely many disjoint full continua, each of which is contained in U; 

(3) (U -UR)DV = 0; 

(4) IfU is a component of £ then f(UR) is also a component of C. In particular, 

f{8C) C 8C. 

(5) f(UR) is a component V ofU, f(dUR) = dV, and f maps connected compo

nents of dUR onto connected components of dV. 

(6) There are finitely many components U in T> such that U fl f~1(V U E) ^ 0. 

For any such U, f(UR) is a component of CU A. 

Proof 

(1) and (2) Note that f~xU = C - f~xE. If U n f~xE = 0, the set U is also 

a component of C — f~xE (since f~xE D E), and we set UR = U. Otherwise, let 

C*i , . . . , Ck denote the components of f~xE which are contained in U. Lemmas 3.5 
and 3.6 imply that no Ci separates components of dU. Hence for each i, there is a 

unique component Vi of C — Ci containing dU. Let Ki — C — V* and K — UiKi. 

Lemma 3.1 implies that either Ki fl Kj = 0 or Ki C Kj or Kj C K{. Each Ki is full 

since Vi is connected. Then UR := U — K has the first two properties in the lemma. 

(3) Now we show that no component of dUR separates (VnU)UdU. This is trivial 

for components of dUR which are also components of dU. For the other components 

of dUR, if this does not hold, there would be a Julia component J' in U separating 

VUE, and thus J' would be critically separating (Lemma 3.5). This is impossible by 

Lemma 3.6. Therefore URnV = U HV and (U - UR) n V = 0. 

(4) Assume now that U is a component of C. f(UR) is a component of U. By 

definition of £ , either U D V ^ 0 or U is neither a disc nor an annulus. In the first 

case 

f(UR) f l ^ D f{UR C\V) = f(U n ? ) / 0 , 
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so f(UR) is again a component of C. In the second case, either UR П f~xV Ф 0 
(in which case f(UR) П Р / 0 and hence f{UR) is in £ ) , or f : UR -± f(UR) is an 
unbranched covering. Since £/ is not a disc or annulus neither is UR. Any covering 
over a disc (resp. an annulus) is again a disc (resp. an annulus), so f(UR) is neither 
a disc nor an annulus and hence f(UR) is a component of С 

(5) This follows immediately from the properness of / : UR -> V and Lemma 3.3. 

(6) Suppose U П f~x(V U E) ф 0. If U D f~xE ф 0, then U is a component of 
T>'. Otherwise U contains a Fatou component intersecting V. By the No Wandering 
Domains theorem, the number of such Fatou components is finite, hence the number 
of components U of the latter type is finite. Combining with the fact that V has 
only finitely many components (Lemma 2.2), we get the finiteness. Now if f(UR) was 
an element of T>, then f(UR) would be an open disc disjoint from V and J5, hence 
U would be an open disc disjoint from f~1(V U E). Hence f(UR) is a component of 
AuC. • 

Lemma 3.8. — Let A be a component of A and S+ be a component of dA. Then 
there is a unique component A+ of f~xlA with the following properties: 

(1) A+ С A and 6+ С дА+; 
(2) Either A+ is a component of As or A+ is a component of AC, i.e. f{A+) is 

a component of A or C; 
(3) f(dA+) = df(A~*~) and f maps connected components of дА+ onto connected 

components of df{A+). Thus f maps boundary components of components of 
As onto boundary components of components of A or С 

The proof is similar to the one above. 

Lemma 3.9. — Assume E ф 0. For U a component oflA, the set f(U) is again a 
component oflA if and only ifU C\f~xE = 0. Either there is a minimal integer к > 0 
such that fkU П f~xE ф 0, or some iterate V of U is a periodic Fatou component. 
In the latter case, V is finitely connected, is itself a component oflA, and either 

(1) V C\V Ф 0, and V is a component of С which is either a simply-connected 
attracting or parabolic basin, or a Siegel disc or Herman ring intersecting V, 
or 

(2) V (IV = 0, and V is either a Siegel disc and a component of ТУ, or a Herman 
ring and a component of A. 

Proof. — If UDf^E ф 0 then f(U)(lE ф 0, and so f(U) can not be a component 
of IA = С — E. Otherwise U П f~~1E = 0 and so U is a component of f~xlA which 
maps properly under / onto a component of IA. 

Assume now that for every n > 0, fn(U) П f~xE — 0. Then fnU is a component 
of IA for every n > 0. By Montel's theorem the family {fn\u}n is then normal (since 
E is uncountable if it is nonempty), so U coincides with a Fatou component (since 
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dU C J). By the No Wandering Domains Theorem, some iterate V of U is a periodic 

Fatou component, and so V is a component of C. Since components of U are finitely 

connected, V is finitely connected. The Lemma then follows from the classification of 

periodic Fatou components and the fact that attracting or parabolic basins are either 

simply connected or infinitely connected ([Be], §7.5). • 

The following lemma is a more precise version of Lemma 2.3: 

Lemma 3.10. — Assume E / 0. Let LQ,L\, . . . ,Lm be the (finitely many) compo

nents of C. Then each Li contains a unique Fatou component Wi such that dWi D 

dLi. Moreover the components of dLi are precisely the components of dWi separating 

V. 

We say f*(Li) — Lj if f(LR) = Lj. In this case every Li is preperiodic under 

/* and f(Wi) = Wj. Furthermore, if {L0, ••• ,Lp-i} is aperiodic cycle of f*, then 

either 

(1) Lf = Li for all 0 < i < p — 1, in which case Wi = Li and either 

(a) Wi f l P / 0 for all i, in which case Wi is a simply connected attracting 

or parabolic basin, a Siegel disc or a Herman ring intersecting V, or 

(b) Wi H V — 0 for all i, in which case Wi is a Siegel disc or Herman ring 

disjoint from V; or 

(2) Lf ^ Li for some i, in which case Wi is an infinitely connected attracting or 

parabolic basin for each 0 < i < p — 1. 

Proof — By Lemma 2.2 the set C has only finitely many components. By Lemma 3.6 

no Julia component separates dLi (resp. dLf) or is critically separating. Corollary 

A.5 implies that there is a unique Fatou component Wi (resp. WR) such that Wi C Li 

and 8Wi D dLi (resp. WR C L? and dWtR D & L f ) . 

By Lemma 3.7, we have dLf Z> dLi, thus by uniqueness with respect to the 

property of containing dLi, we have WR = Wi. 

Note that every connected component of dWi is either contained in dLi or is 

contained in Li. Since no Julia component in Li is critically separating, and every 

component of dLi is critically separating, the components of dWi separating V are 

precisely those in dLi. 

If fXu) = Lj, by uniqueness of Wj, we have f(Wi) = f(W?) = Wj. 

By Lemma 3.7, for any i, f(LR) is again a component of C, thus coincides with 

some Lj. So f*(Li) is well defined for each i. Since there are only finitely many 

components in £ , each of them is eventually periodic under / * . 

Let { LQ ,..., Lp-1} be a periodic cycle of / * . Then { W o , . . . , Wp-1} forms a periodic 

cycle of Fatou components. 

If Lf — Li, 0 < i < p—1, then the conclusion (1) follows by Lemma 3.9. Otherwise, 

Lf has at least two boundary components, hence Wi has at least two boundary 

components. Wi cannot be a Siegel disc or Herman ring. For in these cases, dWiDV ^ 
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0 and so Li = Wi is itself a component of ZY, contradicting Lf ^ Li for some z. Hence 

Wi is either an attracting or parabolic basin with at least two boundary components, 

hence is infinitely connected. • 

For our example f — fi above, £ has a periodic cycle of period 2 formed by the 

Fatou components containing infinity and - 1 . 

Proof of Lemma 2.4. — Since f{E) C E, if Jno C E for some no, then Jn C E for 

all n > no- This is our case 1. 

Assume now Jn C U for all n. Assume furthermore that Jo is not in Case 2, that 

is, Jn n As = 0 for infinitely many n. We are going to show Jn C A° U V U £ for 

infinitely many n (so Jo is in Case 3 or 4 or bo th) . 

We show at first that Jn C A° U V U £ = A° U £>' U V" U £ for infinitely many n. 

Denote by AB the set of z G A for which / ( z ) G i5. We have Jn n AE = 0 for all n. 

If Jn C AV U A £ for some n, then Jn+i C 2> U £ . Since 

U = AE U As U A° U AV u AC U D u £ , 

we are done. 

We now show that if Jn C £>" for infinitely many n, then Jn C CUV' for infinitely 

many n. Assume Jni C for D a component of V". By definition, n f~xE = 0. 
By Lemma 3.7, either f(D) is a component of V U (this corresponds to the case 

D n f~xV = 0), or / ( ! } ) is a component of £ . As a consequence of Sullivan's non-

wandering domain theorem, there is an integer 0 < k < oo such that D, f(D), . . . , 

fk~1(D) are components of V" and fk(D) is a component of £>' U £ . Therefore 

Jn1+* C D ' U £ . • 

4. Analytic preliminaries 

We now restrict to the case when / is hyperbolic. The results generalize to geomet

rically finite maps; the Poincaré metric p is replaced by a more complicated metric 

for which the map is still expanding (cf [TY] and §9). 

Recall that / is hyperbolic if and only if J DV — 0. If \V\ = 2 then / is conjugate 

to zn and J is connected. Moreover, C — V is connected. Let p\dz\ denote the 

Poincaré Riemannian metric o n C - ? , dp(x,y) the corresponding distance, and lp{^) 

the length of a curve with respect to p. Then / : C — /_1( /P) - » C — V is expanding 

with respect to p. If B is the subset given in the proof of Lemma 2 . 1 , then since / is 

hyperbolic we have V C B C £ fi (C - J), and / : C - /_1( int (Z?)) -> C - int(J3) 

expands p uniformly by some definite factor À > 1 . The inverse of / is then uniformly 

contracting, in the following sense: if 7 : [0,1] C — int(i?) , then ^(7) < (1/Xn)lp(/y) 

for any lift 7 of 7 under fn. This observation will be the main tool in our proofs of 

Propositions [Case 2] and [Case 3]. 
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If U is a path-connected subset of C — V, we define the path metric d p a t h ^ x , y) 

on U with respect to p by 

d p a t h ^ x , ? / ) = inf{/P(7) | P : [0,1] -> U, 7(0) = x, 7(1) = v}-
7 

Lemma 4.1. — Let Jf be a periodic or preperiodic Julia component and U a com

ponent of C — J'. Then there is a C1 Jordan curve 7 : S1 —> U — B, a continuous 

surjective map h : S1 —> dU and a constant L depending on U, such that for each 

t G S1 j one can find a path rjt : [0,1] —> U with p-length at most L, such that 

!7t(]0,1]) c U, /7.(0) = h(t) and 77,(1) = y(t). 

Recall that we have a partition E U U of C , and A U X> is the union of disc and 

annulus components of U disjoint from V. Moreover d(A UV) C E, and E consists 

of finitely many preperiodic Julia components. 

Corollary 4.2. — Each component U of A,T>,A°, and AS has finite path-diameter 

relative to p, and each has locally connected boundary. 

Proof. — We first assume that J' is fixed and that the ideal boundary (cf. [Mcl]) 
of U is also fixed by / . In other words, there is a component U' of f~1U such 

that U' C U, but dU C dU' and f{dU) = dU. We have f(U') = U. Choose 

7 = 70 : S1 —> U such that the annulus A between dU and 7 ( 5 1 ) contains no points 

of f^B. Denote by A' the component of f~xA such that A! C U' and dU C dA!. 

We may adjust 7 so that A' C A, see [Mc l ] . 

Choose x1 € A' such that f(x') = 7(0) . The degree d — d e g ( / : A' A) is a 

positive integer. We define 71 (t) so that 71 (0) — xf and / ( 7 1 ( f ) ) = 7 ( d * t). Let 

i70 : [0,1] x S1 -> A be a C1 map such that ii"o(0, •) = 71 and H0(l, •) = 7. 

Since / : A ' —> A is a covering, one can lift Ho to get Hi : [0,1] x S1 —» ^4' such 

that i f i ( l , - ) = Ho(0, • ) . Define 72(0 = -ffi(0, • ) . One can then define i ? n - i and 7n 

by induction. 

To control the convergence, we proceed as follows. For each t0 6 S1, the /?-length 

of the curve {^0(^,^0)5 s G [0,1]} is finite, depending continuously on to G S1. So 

it has a finite maximum, say C. For t G 5 1 , dp{^n{t), 7n_i(£)) is smaller than or 

equal to the length of the curve {Hn(s,t), s G [0,1]} which is smaller than or equal 

to C" /An-1 . So {7n} forms a Cauchy sequence. 

Therefore 7n(£) converges uniformly to a limit map, /1, and the path distance 

between 7 ( f ) and 7n(£) is uniformly bounded by C'X/(X — 1 ) . 

To define 77* for each t G 51 , note that the set ft(£) U (Un>o U«?e[o,i] Hn(s,t)) is an 

embedded closed arc with finite length. Reparametrizing it we get 77(f). 

For periodic J' or periodic ideal boundary, we consider an iterate of / . For prepe

riodic cases, we pull back the curves given by the result for the periodic cases. • 
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5 . Proof of Proposition [Case 2] 

This is the case where a Julia component Jo satisfies Jn = /n( Jo) C As for n> TIQ. 

We may assume no = 0. 

Part I, f is hyperbolic. — We will show that J0 is a Jordan curve. 

Recall that As consists of components of / - 1 A parallel to some components of A. 

Denote by A i , A2,..., Ap the components of A s , and by Aij the set of points z 

such that z G A*, f(z) G Aj. 

If Aij 7̂  0, it is an essential subannulus of Ai, and / : Aij - » A / is a covering. For 

f : Ai —> f(Ai) is a covering, / ( A * ) is a component of A and A , is a subannulus of 

f(Ai) parallel to f(Ai). 

For each Aj, choose 7̂  : S1 —> A7 an injective homotopically non-trivial C1 curve. 

For each i such that Aij / 0, choose Xij G A ^ such that f(xij) = 7 ^ ( 0 ) . Then the 

homotopy classes of 7» and 7̂  determine uniquely generators for 7Ti(A^) and -k\(Aj). 

The degree = d e g ( / : Aij —> A^) is then a positive or negative integer. Define a lift 

7ij(t) of jj so that 7^(0) = ar^ and f(cdj(t)) = jj(dij • £). Let : [0,1] x S1 -•> A* 

be a C1 map such that Hij(0, •) = 7» and i ^ ( l , •) = 7^. 

Let a = (aocii • • ) be any infinite sequence such that for all n > 0 we have 1 < 

an < p and Aanan+1 ^ 0 and call such a sequence admissible. 

For n > 0, denote by Tn = Tn(a) the set of points z such that / ^ ( z ) G Aak for 

0 < < n. Then Tn+i is an essential subannulus of Tn for n > 0 and / n : Tn -> Attn is 

a covering. The curve 7ao determines a generator for ni(Tn) and we let dn = d e g ( / n : 

Tn -> Aari); it can be a positive or negative integer. 

Set J' — J'(a) — C\nTn. Since Tn forms a nested sequence of compact connected 

sets which are critically separating, J' is also compact connected and critically sepa

rating. We will show that either J' C <9T/v for some N, or J; is a Jordan curve, and 

a Julia component. The proof is split into several lemmas. 

Lemma 0. — For each n > 0. there is a (parametrized) C1 curve Cn(t), and for n > 1, 

a homotopy Gn : [0,1] x —y Jn—1 such that £n(S^) C Tn C Aao, 

G n ( M ) = Cn(t). Moreover / n ( C n ( 0 ) = lan (dn • t). 

Proof. — Set Co = 7a0- Assume we have constructed Cn-i and Gn-\. Since the 

map /n_1 : Tn-i -> Aan_1 is a covering, mapping Tn onto Aan_lian, one can lift the 

homotopy Han_uan to a map Gn : [0,1] x S 1 ^ Tn- i with Gn(0,£) = Cn-i(*)- Set 

£n(t) = Gn(l,t). These are the maps required by the lemma. Finally, by our choice 

of generators of fundamental groups, we have fn(Cn(t)) = 7ari(dn -1). • 

Next, by our choice of B (in particular B n J — 0) we have |J Ai C C — B and 

A^ C C — f~1(B) for all possible pairs ( i , j ) . By Corollary 4.2, there is a positive 

number M such that for i — 1 , . . . , p , the path diameter of Ai G A 5 with respect to p 
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is at most M. Moreover, on As C C — / 1(mk{B)), f expands p by a definite factor 
A > 1. 

Lemma 1. — The curves Cn(t) defined in Lemma 0 converge uniformly to a continuous 
map C : S1 —> Aao. 

Proof — For each possible pair (i, j ) , the p-length of the curve {Hij(s, to), s G [0,1]} 
is finite, depending continuously on to G S1. So it has a finite maximum. Let C be 
the maximum of the p-length of the curves among all possible couples and all 
to G S1; it is again finite. For t G S1, dp(Cn(t),Cn-i(t)) is less than or equal to the 
length of the curve {Gn(s,t), s G [0,1]} which is smaller than or equal to C jXn~x. 
So {Cn} forms a Cauchy sequence. • 

Choose a base point x± in each component of dAao. Denote by 5+ (resp. 6~) the 
component of dTn which either contains x+ (resp. x~) or which separates x+ (resp. 
x~) and Tn. Denote by Dh the Hausdorff distance on compact subsets of C — int(B) 
with respect to the metric dp. By definition 

Dh{F,G) — max ( maxmindp(x,y) , maxmindp(x,y) ) . 

Lemma 2. — For every e > 0, there exists an N independent of a such that for every 
n>N, DH(J',5+) <s, DH{J',$n) <z <™d DH(J',Tn) <e. 

Lemma 3. — DH(J'', CnOS1)) 0. 

Proof of Lemmas 2 and 3. — Fix y G <5+. We first show 

min dp(x,y) < M/\n. 
xEJ' 

Let yn = fn(y),n > 0, and for each n choose xn G / n ( J ' ) - Then for each n, there 
is a path nn : [0,1] -> Aan such that 7 ^ ( 0 ) = yn, nn(l) = x ^ ^ Q O , 1[) C_Aan, and 
lP(Vn) < M. For any n, / ^ ( / n ( J ' ) ) n Tn = J', since /n(f | fc T*) - f l* / n ? V Hence 
there is a lift rjn : [0,1] -> Tn of 77n under / n joining y to some point x'n G J'. Hence 
by expansion 

minc^Oz,?/) <Eu, :— Eu^i^mp< lp{rjn) < M/Xn. 

Hence 

max min dp(x, y) < M/Xn. 

A similar argument bounds maxxGj, minyeS+ dp{x, y) by the same quantity. The 
remainder of the two lemmas are proved similarly. • 

Lemmas 1 and 3 imply that C(^'1) — J'- As a consequence, J ' is locally connected. 

Lemma 4. — Either J' coincides with one boundary component o /T/v for some N, or 
J' C Tn for all n. In the second case, J' is a Jordan curve, and a Julia component. 
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Proof. — We first show J' C J. First, dJ' C J since dTn C J for all n and J is 
closed. Second, J ' = <9J'. For otherwise there is a nonempty component W of int(J ' ) . 
Then W (Z Tn for all n, and as a consequence fn(W) c A for all n. Thus { / n } is 
normal on I f . So coincides with a Fatou component. But for a hyperbolic map 
every Fatou component is eventually attracting, and meets eventually V, contradicting 
AnV = 0. 

There are thus two possibilities: either J' C 8TN for some iV, or J ' C Tn for all 
n. In the first case J' coincides with one boundary component of 7 \ for all k > N 
(Lemma 2) . In the second case, J' must be a Julia component. For otherwise, J' is 
a nonempty proper closed subset of some Julia component J"; if x G J" — J' then 
DH(X,J') > 0, and hence Lemma 2 implies that for some n, dTn either separates 
x and J ' or dTn contains x. But this implies that J" intersects dTn, hence J' is 
contained in a boundary component of Tn, violating our assumption. 

Moreover, Lemma 2 implies that C — J' has exactly two components Ui,U2, and 
dUi = dU2 = J'. The lemma below (pointed out to us by M. Lyubich) allows us to 
conclude that J' is a Jordan curve. • 

Consider now our Julia component Jo such that Jn C As for all n. It determines an 
admissible sequence a = (ao«i • • • ) by setting an = m if Jn C Am. Then Jo = J'{a), 
and it is a Jordan curve. 

Remark. — The proof actually shows much more; see §8. 

Part II, f is nice. — Let Jo be a Julia component such that Jn C As for all n. Define 
Tn to be the component of f~nU containing Jo (it is in fact the same Tn as in Part 
I) . Then each Tn is an open annulus, contained essentially in Tn_i . With the help of 
Sullivan's non-wandering domain theorem, one can show easily that Jo = f]n Tn. On 
the other hand, since Jo is disjoint from 9Tn C f~n(E) for all n, there is a sequence 
nk —» oo such that Tnfe C Trtk_1. Therefore C — J0 has exactly two components. 

Lemma 5.1. — Assume that K is a closed subset of C satisfying either conditions 
a) and b) or condition c): 

a) K is the common boundary of two disjoint open connected sets U\ and U^-
b) K is locally connected. 
c) C — K has exactly two components V\ and V2 and each point of K is accessible 

from both V\ and V2. 
Then K is a Jordan curve. There are counter examples if one of the above condi

tions is not satisfied. 

Proof. — Condition a) shows that U\ and U2 are simply connected and K is compact 
connected. By b) and Caratheodory's theorem, a Riemann map <f> : A —> U\ extends 
continuously to the boundary, and the extension is locally non constant. But the 
extension is also injective, for otherwise the image by <f> of a pair of distinct radial 
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segments of A would form a Jordan curve v and each component of C — v would 

intersect £/2. The contradicts the fact that v n U2 = 0 and U2 is connected. 

For a proof in condition c) case, see Newman ([Ne]), Theorem 16.1. • 

6. Proof of Proposition [Case 3] 

This is the case where a Julia component Jo satisfies Jn = fn(Jo) C A° U T)1 for 

infinitely many n. 

Part I. f is hyperbolic. — We will need the following variant of Lemma 1.4; the 

difference is that we do not assume Q{ is full. 

Lemma 6.1. — Let f be a hyperbolic rational map and Q = uf=1QZ be a finite family 

of disjoint path-connected subsets of C such that 

(1) Qi n V = 0 for each i, 

(2) the inclusion maps ii : Qi —> C — V are homotopic to constant maps, and 

(3) the path-diameter of each Qi with respect to dpath^. is finite. 

Then any connected set J satisfying fn(J) C Q for infinitely many n is a point. 

Proof. — We may assume Qi Pi B — 0, where B is a closed neighborhood of V 

constructed previously. Then since / is hyperbolic, / expands p uniformly by some 

factor A > 1 on C — /_1(int(J3)) . Let Jn = fn(J) and let Qn denote the component 

of Q containing Jn. Choose x0,yo £ Jo and let xn — fn(xo),yn — fn(yo)- Let M be 

an upper bound on the path-diameters of the Qi with respect to p. Then for each n, 

there is a path rjn : [0,1] —>• Qn, rjn(0) = xn\ nn(l) = yn for which lp(rjn) < M. Since 

Qn ^ c - P is homotopic to a constant map, for each n there is a lift r)n of r]n under 

fn joining XQ to 2/o- By expansion, 

dP(x0,yo) < lP(Vn) < lp(r)n)/Xn < M/\n 0. 

Hence xo = yo and J is a point. • 

Now assume that J0 is a Julia component for / , and Jn C A° U T>' for infinitely 

many n. By Lemma 2.2 the set A° UX>' has finitely many components, each of finite 

path diameter by Corollary 4.2. The above Lemma then applies and hence Jo is a 

point. 

Part II. f is nice. — For each component U of A° C A, take a simple closed curve 7 

which is a generator of the fundamental group of U. Then C — 7 has exactly one disc 

component V contained in A. The set U = U U V is an open disc contained in A (so 

is disjoint from V. Therefore the enlarged set A° U V consists of finitely many open 

discs disjoint from V. The rest of the proof is very similar to Part II in the proof of 

Proposition [Case 2]. We omit the details here. 
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7. Proof of Proposition [Case 4] and Theorem 1.1 

In this section we derive Theorem 1.1 and Proposition [Case 4] from 

Theorem 7.1. — Let f be a rational map (not necessarily hyperbolic or nice). Let 
W be the union of finitely many Fatou components Wo,..., Wm such that 

(1) / ( W ) C W; 
(2) each Wi eventually lands on an attracting or parabolic periodic basin under 

iteration of f, and Wi ( 1 P / 0 for all i; 
(3) for each Wi, only finitely many components K\^,..., Km^i of C — Wi intersect 

V. 

Then there is a finite union Q of disjoint full continua in C — V such that any Julia 
component Jo satisfying fn(Jo) C I J i ~~ U j = i -^ j , * ) for infinitely many n passes 
infinitely often through Q, and is a point. 

Proof of Theorem 1.1. — Let Wo be the basin of infinity of the polynomial / . It 
is a fixed attracting component, and infinitely connected. Since only finitely many 
components of IC — C — Wo intersect V, we may apply the above theorem to prove 
that every Julia component of / passing infinitely many times through Uo is a point, 
where 

Uo = Wo U {K | K is a /C-component disjoint from V}. 
On the other hand, every Julia component is the boundary of a /C-component. So 
every /C-component passing infinitely many times through Uo is a point. But in this 
particular case, we know also that the orbit of a /C-component either stays entirely in 
Uo or lands eventually on a /C-component intersecting V, which is preperiodic, since 
there are only finitely many of such /C-components and the union of them is forward 
invariant. • 

Proof of Proposition [Case 4]- — Let / be a nice map and Jo be a Julia component. 
Assume that Jn = / n ( J o ) C C for infinitely many n. For each component Li of C, 
Lemma 3.10 provides a unique Fatou component Wi such that Wi C Li and dLi C 
dWi. The union of these W^s satisfies the conditions of Theorem 7.1. Moreover, 
in the notation of the statement and the proof of the theorem, we have Li — Ui — 
^ ~ - U j = i Kjj. Therefore we can apply Theorem 7.1 to conclude that Jo is a point. • 

We now start the proof of Theorem 7.1. — We will use the following notation. Let 
5 be a closed subset of S2 and W be an open connected subset of 52 . Define 

U(W, S) = W U [J{K I K a component of S2 - W such that K n S = 0}. 

Then U(W, S) is an open set. 
For i — 0,... ,m, set Ui — U(Wi,V) = C — Uj=i Our aim is to find a compact 

set Q satisfying the properties in the theorem. We then apply Lemma 1.4 to obtain 
the result. 
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The proposition below is proved in the Appendix. 

Proposition 7.2. — Let W be a Fatou component of a rational map f. Suppose that 

V H (C — W) is contained in the union K\ U • • • U Kr of finitely many connected 

components of S2 — W. Let W be a connected component of f~1(W) and let U = 

U{W,V) andU' = U(W',f-1(V)). Then 

(1) U and Uf are connected open subsets with finitely many boundary components; 

(2) / : U' -> U is proper, surjective and a branched covering; 

(3) / : dU' —> dU is surjective, and given any connected component K[ of S2 — U', 

f maps dK[ surjectively onto dKj for some unique component Kj of S2 — U. 

Since each component Wi contains points of V, Ui D Uj = 0, i ^ j . For each i, 

set U[ = UiyVi,f-xV). Then U[ C Ui since f'x{V) D V. By Proposition 7.2, U[ has 

finitely many boundary components, hence Qi := Ui — U[ consists of finitely many 

full continua disjoint from f~1(V), hence disjoint from V. This will be one piece of 

our set Q. 

Proposition 7.2 also implies that / : U[ -* Uj is proper if f(Wi) = Wj. We 

analyze the dynamical system / : UiU! —> UiUi. Define = Uj if / ( £ / / ) = Uj 

(equivalently, if f(Wi) = Wj). 

Assume that a Julia component JQ satisfies that fn(Jo) C | J i Ui for infinitely many 

n. Then either fn(Jo) C | J * Qi ^or infinitely many n or fn(Jo) C | J i U[ for all n>n\. 

In the former case fn(Jo) C Q for infinitely many n too since Q is going to be defined 

as a set containing \J{Qi. In the latter case the orbit of Jo lands eventually into a 

periodic cycle of / * . We now analyze this second case. 

Let Uo,..., Up-i be a periodic cycle of / * . Set g = fp. Then J(g) = J{f) and 

Ui = U{Wi,V(f)) = U(Wi9V(g)). 

For any Julia component J0 such that J0 C UQ and fn(J0) C U[ for all n > 0, 

we have / ( J 0 ) C U[, /P_1(J0) C Up_x and fp(J0) C U^ and so on. Therefore 

9n(Jo) = fnp(Jo) CZU^GUo for all n. 

Set W = Wo and U = UQ = U(W,V). Then W is a fixed attracting or parabolic 

Fatou component of g. 

We are going to find a compact set Q'0 which is the union of finitely many disjoint 

full continua such that, if the p-orbit of a Julia component Jo passes infinitely many 

times through [/, then it passes infinitely many times through Q'0 as well. 

Denote by X the empty set in case W is an attracting basin, or the set of one 

single element which is the fixed parabolic point of Wy in case W is a parabolic basin. 

SetXn = \J0<j<n9-jX. 

One can find a disc V C W with Jordan curve boundary such that V C W U X 

and g(V) C VUX. We may choose V such that (dV - X) (IP = 0. For any n, let Vn 

be the unique component of g~n(V) containing Vo — V. Then Vn C V^+i U Xn for 

any n. There is an integer iV guaranteed by Lemma 7.3, such that every component 
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of C — VN contains at most one of the finitely many components of C — W which 
intersect V, and V n W C VN. 

The set C — VN is a disjoint union of finitely many full continua with 

J C in t (C - VN) U XN. 

Denote the components of C — VN by £ > i , . . . , D / , . . . , Dn such that, for j > / , DjDV = 
0; and for 1 < j < /, Dj contains a unique component Kj of C — W such that 

For 1 < j < Z, set Aj = int(Dj) — Kj. Then Aj is an open annulus with possibly 
finitely many pinched points at points in XN- Moreover Aj contains no critical value 
(by the choice of N). 

Now we look at the level N + 1. For U = U{W, V) and U' = U(W, g~lrP), the map 
g : U' —>> U is a branched covering (Proposition 7.2). Since VJvUflJ^i ^j^A}j>i Dj) = 
C7, we conclude that U' — <?_1(Uj=i A? ^ U?>z 1S connected, and coincides with 
g~XVN H So <?-1V/v has a unique component in U1, which is VN+I-

Denote the components of C — VN+I by D \ , . . . , D'i,..., D'u such that C D'j C 
25j for 1 < j < /, and ^ ( 1 ^ = 0 for j > 1. 

We set g*(Ki) — Kj if g(dKi) = dKj, which is well-defined by Proposition 7.2. 
Set A'j = int(DJ) - Kj, j = 1 , . . . , / . If #*(1^) = i ^ , then g(A'i) = Aj and 

# : A\ —>- is a covering map. 
Note that Aj — Aj = in t (S7) - int(£K). Moreover n (int(157) - Wj) is contained 

in L U / ^ V 
We claim then every Julia point x in Uj=o ^ must have some iterate in 

I 

3=0 

If not, there is no > 0 such that for all n > no, 

gn(x) e \ \{Aj I Kj is periodic for p*}. 

On the other hand, for K0y. ..,Kq-\ a periodic cycle of and for any y e A'0, 
there is a minimal integer s > 0 such that gs(y) £ (JjCo A'j, for Lemma 7.3 below 
implies that each Kj is the nested intersection of sets of the form nnBn, where Bn is 
a component of C — Vn, n > 0. 

Therefore if a Julia component J0 satisfies that gn(Jo) C [jlj=o u Us>z D's f°r 
infinitely many n, then gn(Jo) C Us>/ f°r infinitely many n. 

On the other hand, for our set U = U(W,V), we have 

j n u с 
3=0 

A'. U 

S>1 

D'SUXN+UXN+1. 
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Thus saying gn(Jo) C U for infinitely many n is the same as saying 

0 n ( J o ) c U ^ u | j B i 
j=0 s>l 

for infinitely many n. 
Return to our original map / now. The components of Qo = Uo — UQ are disjoint 

full continua contained in \Jlj=0 Aj U \JS>1 D's. Therefore Q'0 = Q0 U \Js>i D's IS again 
a union of finitely many disjoint full continua. 

For each periodic cycle of / * , choose one representative Ui in the cycle, and de
fine Q\ in the same way, for the other i in the cycle, define Q\ — Qi. We write 
{ 0 , 1 , . . . , m } = V U 7, where j G I' if Uj is /^-periodic and j € I otherwise. 

Set Q = U i e / ' Qi u Uz€/ This is again a union of finitely many disjoint full 
continua, disjoint from V. Now let Jo be a Julia component passing infinitely many 
times through \J{ Ui. Then either it passes infinitely many times through (J* Qi C Q, 
or there is some i E I ' , such that Jo passes infinitely many times through C Q. In 
both cases J0 must pass infinitely many times through Q. 

Finally we apply Lemma 1.4 to conclude that such Julia components are points. 
We mention here two particular cases. 
1. The component W is simply connected. In this case U = W and no Julia 

component passes through U. 
2. The set U(W,V) coincides with C , that is V d W. In this case / = 0 and each 

Julia component is a point. That is J is totally disconnected. • 

A variant of the following lemma can be found in [St], page 63 and 117. 

Lemma 7.3. — Let W be an fixed attracting or parabolic basin of a rational map 
f. Let V be either a disc neighborhood of the attracting fixed point with Jordan 
curve boundary or a Fatou petal in W of the parabolic fixed point. Then for Vn the 
component of f~n(V) containing V, we have W = (Jn^> and each component of 
CJ — Vn is closed disc with possibly finitely many pinching points. Furthermore, given 
any two components K\ and K2 of C — W, there is an integer N such that VN 
separates K\ and . 

8. Further results 

8 .1 . Diameter of Julia components. — Let / be a hyperbolic rational map. 

Corollary 8.1. — A Julia component JQ of J is not a point if and only if there is 
an integer N such that Jn — / n ( J o ) C As U f~xE for any n > N. 

If Jo is a point, we may regard iV as -hoc 
One can show that the set f~x{As U f~xE) — (As U f_1E) is contained in finitely 

many discs. Thus the same technique as in the above sections can prove also the 
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following results: to each integer iV, there is a positive number e(N), with e(N) 0 

as N —> oo, such that for Jo a Julia component, and N the minimal integer such that 

/ n ( J o ) C As U f~xE for n > N, the spherical diameter of J0 is at most e(N). 

8.2 . Symbolic dynamics of Julia components in As. — Let / be a hyperbolic 

rational map. The arguments given in §5 actually show much more. The space T 

of admissible sequences {aoa± ... } equipped with the product topology and the one

sided shift map a is a subshift of finite type. Let C1(C) denote the space of all closed 

subsets of C in the Hausdorff topology. The map / induces a map from this space 

to itself which we again denote by / . Given a G E, we have defined in §5 a nested 

sequence of annuli Tn(a) and a continuum J ' ( a ) = nnTn(a ) . The set J ' ( a ) may or 

may not be a Julia component. 

Theorem 8.2. — The map 

$ : a H+ J ' ( a ) ; T C1(C) 

defines a uniformly continuous infective map conjugating g to /|<J>(£). Moreover, 

(1) there is a (at most) countable subset Te and a finite subset Ee,o C T such that 

(a) a G £e,o if and only if J'(a) is a boundary component of Aao for some 

Aao G As', i.e. is a boundary component ofTo(a). 

(b) a G T>e if and only if J'(cx) is a boundary component of Tn(a) for some 

n. 

(c) a(Ee,0) C Ec,o. 
(d) Ee =Un>o<T-n(Se,0). 

(2) a ^ Te if and only if J'(a) is a Jordan curve Julia component satisfying 

fn(J'(a)) C As for all n > 0. 

(3) Let Je,o = 3>(£e?o). Then as a subset ofC, 

( J * ( a ) = {z I fn(z) G A.s U (U5eJe,0«5) V n > 0 } . 

The elements of the set of continua Je : = ${Te) may be thought of as "exposed" 

boundary components, in the sense that they are boundary components of Tn. 

Corollary 8.3. — The following are equivalent: 

(1) T is uncountable. 

(2) There is a wandering component of the Julia set which is a Jordan curve. 

(3) There are uncountably many wandering components of the Julia set which are 

Jordan curves. 

(4) There are infinitely many periodic Jordan curve Julia components. 

(5) There exists a component C of A, disjoint essential subannuli A,B C C, and 

integers m , n > 0 such that f™ : A —> Cfn : B —• C are covering maps. 

Proof. — For any subshift of finite type (T,a), the following are equivalent: 

ASTÉRISQUE 261 



RATIONAL MAPS WITH DISCONNECTED JULIA SET 373 

— the space of admissible sequences S is uncountable; 

— there is a wandering sequence; 

— there are uncountably many wandering sequences; 

— there are infinitely many periodic sequences; 

— there are two finite-length sequences a = ( a o , . . . , am), /3 = (&o5 • • • > bn) with 

c : = ao = am = bo = bn and 7̂  bi for some 0 < i < min ra, n. 

By the above Theorem and the preceding facts, the first three conditions are thus 

equivalent, and (1) implies (4) . The set E contains finitely many Julia components, 

and each periodic Jordan curve Julia component which is not in E must be contained 

in As. Each such component is J'(a) for some periodic a, by the above Theorem, 

hence S has infinitely many periodic sequences and so (4) implies (1) . We now show 

the equivalence of (4) and (5) . First, note that (5) is equivalent, by pulling back, to 

the same condition with C", a component of A, replaced by C , a component of As. 

The equivalence of (4) and (5) then follows immediately from the above Theorem and 

the preceding paragraph. • 

Proof of Theorem 8.2. — The continuity of $ follows immediately from Lemma 2 of 

§5. That $ is a semiconjugacy follows from the fact that / : Tn(a) —> Tn_i(cr(a)) is 

a covering map, hence / : Tn{a) -> Tn_i(cr(a)) is surjective, and so 

/ ( * ( a ) ) = / ( J ' ( a ) ) - f(nnTM) = nn T n _ ! ( a ( a ) ) = J ' ( a ( a ) ) - *(<r(a)) . 

To see that 3> is injective, first note that given a boundary component S of A G Ay no 

other component B G A has 8 as a boundary component. For S is locally connected 

(e.g. by Corollary 4.2) and hence S is homeomorphic to S1 if it is the common 

boundary of two disjoint open annuli, by Lemma 5.1. But if this occurs then S is a 

component of the Julia set separating its parallels, violating the construction of A. 

More generally, since / sends boundary components of Tn ( a ) to boundary components 

of Tn_i(cr(a)) , if 5 is the common boundary of Tn(a) and Tn(/3), then Tn(a) = Tn(/3), 

i.e. if a = {a0ai . . . } , / ? = {60^1 • • • } then ai = 0 < i < n. If J'(a) = J'(/3), then 

either J ' ( a ) = J'(/?) is a boundary component of Tn(a ) , some n, or J ' ( a ) C Tn(a) 

for all n. In the former case we have Tn(a) = Tn({3) for all n by the above observation 

while in the latter we must have Tn(a) = Tn(/3) for all n since if a ^ (3 then for some 

n, Tn(a) D Tn((3) = 0. Hence a = /3. 

( 1 ) Define £e,o as m l (a ) - We first prove that Je?o = 3>(^e,o) is forward-invariant 

under / . Let Jo G Je,o and let J\ — / ( J o ) - Then J0 is a boundary component of 

T0(a) for some a. The proof of Lemma 4 of §5 shows that then J0 is a boundary 

component of T&(a) for all k > 0, hence Jo is a boundary component of T\(a). Since 

/ : Ti(a) -+ T0(a(a)) is a covering, / ( J o ) — Ji is a boundary component of T0(o~(a)) 

and so Ji G Je,o- Now 1(a) holds by definition, 1(c) follows from the above result and 

the fact that 3> is a semiconjugacy. Define Se by 1(d) . 1(b) then follows immediately 

from the fact that $ is a semiconjugacy and the fact that fn : Tn(a) —> T0(crn(a)). 
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(2) Note that a <£ Se if and only if J ' ( a ) C Tn(a) for all n, by l b ) . The result then 

follows by Lemma 4 of §5. 

( 3 ) First, let J0 = J ' ( a ) . If a $ £ c , then J0 C Tn(a) for all n > 0, hence / n ( J0 ) C 

To(<rn(a)) C As for all n > 0. Otherwise, there is a minimal N > 0 such that for 

0 < i < iV, J0 c Ti(a) and for z = Ny Jo is a boundary component of Ti(a). Hence 

for 0 < i < AT, /*(J0) C T0(a*(a)) C As, and for i = TV, .P(Jo) is a boundary 

component of To(crl(a)) G Je,o- Since Je?o is forward-invariant under / the inclusion 

in this direction is proved. 

To prove the other direction, given z an element of the right-hand side we must 

produce a so that z G J'(a). Let zn = fn(z). If zn G Abn G As for all 0 < n < N 

we set an = bn. Hence we may assume zn G dAs for all n > 0. Choose a component 

Aao so that ZQ G JO, a boundary component of AO0 (there may be more than one 

such component, since the annuli in As may have closures which intersect). Then 

Jo € Je,o- Since Je,o is forward-invariant, Jn = / n ( J o ) is a boundary component 

of a unique component Aan of As. We now claim that a = (a^ai . . . ) chosen in 

this fashion is admissible, i.e. that Aaiai+1 ^ 0 for all i. For on the one hand, 

f(Aai) = A G A, hence J^+i = / ( J i ) is a boundary component of A. On the other 

hand, J^+i is a boundary component of Aai+1 <Z B € A. li A ^ B then we must have 

that Ji_|_i is the common boundary of A and B, which we have previously noted is 

impossible. Hence A — B and so Aaiai+1 ^ 0. Hence Jo = J'(a) contains z. • 

8.3 . Modul i restrictions and description of the shift. — Let / be a nice 

rational map. Let { C i , . . . , C&} be the set of annuli in A. Denote by rrij the modulus 

of Cj. Note that 0 < rrij < oo . For each j choose a Jordan curve 7 j C Cj which is 

a homotopically non trivial in Cj. Set T = { 7 1 , . . . , 7 ^ } . Let A( i , j) denote the set of 

components Cijt\ of f~1(Cj) homotopic to Ci and let dijy\ be the positive degree of 

/ : Ci,j,A —> Cj. 

Define two linear maps 

/ r , / r , # : R r ^ R r 

by 

/r(7,) = 
ù^$ù^$ù AGA(i,j) Eu, :— 

1 
17* 

and 

/r,#(7j) = 
ù$ù^ù$ AGA(i,i) 

1 7i« 

If A ( i , j ) = 0 we take the coefficient of 7$ to be zero. The map / r is the Thurston 

linear transformation defined by the multicurve Y. The Grôtzsch inequality implies 

that if fn = (rrij ) G R r is the vector of moduli rrij, then 

(fr(rn))j <rrij,l <j <k. 
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As a consequence, the leading eigenvalue of fr is smaller than 1 (consider the product 

vfrm with v a leading eigenvector of ( / r )*)-

The map / r , # is almost the transition matrix for the subshift (£ ,c r ) . The compo

nents of As are in one-to-one correspondence with the collection of elements 

{A | A G A(iJ)}. 

If A\, Afj, G As where A G A(iJ) ^ 0 and fi G A(fc, / ) ^ 0 then 

-4am = {z | jz G f(z) G AM} / 0 if and only if j = fc. 

An admissible sequence a G S i s thus given by an infinite sequence An where successive 

terms satisfy the above condition. Hence by removing any basis elements yj for which 

the jth row of / r , # consists only of zeros we obtain a new matrix. Iterating this 

removal process we obtain a matrix which gives exactly the subshift ( S , a). 

8.4. Quasicircles and non-quasicircles. — A Jordan curve J in the sphere is a 

K-quasicircle if it is the image of a round circle under a K-quasiconformal map, and 

it is said to have K'-bounded turning if the ratio 

disnn(L)/d(x,y) < K' 

for all x,y G J, where L is the component of J — {x,y} with smallest diameter. 

Here distance is measured with respect to the spherical metric d. J is said to be a 

quasicircle if it is a K-quasicircle for some K. It is known that J is a quasicircle if 

and only if it has bounded turning ([LV] II, §8). 

If a Jordan curve component J of J is preperiodic and / is hyperbolic, it is a qua

sicircle by the surgery argument of McMullen [Mc l ] . However, a wandering Jordan 

curve component J need not be a quasicircle. We first show 

Theorem 8.4. — Let f be a hyperbolic rational map. If the orbit of CM under a does 

not accumulate on Se,o then Q(a) is a quasicircle. 

(Here we use the same notation as in §8.2). The proof also shows the following 

corollary. However, we have no example where the hypotheses are satisfied. 

Corollary 8.5. — i f £€}o is empty (i.e. if every boundary component of a component 

of As maps to a boundary component of C which is not also a boundary component 

of any component of As), then there exists a K such that for every a G £ , 3>(a) is a 

Julia component which is a K — quasicircle. 

Proof — Let Jo = 3>(a). If a does not accumulate on Se,o then there is a positive 

integer A ô such that 

% - {TAr0(a*(a)), * > 0 } 

is a disjoint union of open annuli which is compactly contained in As', and which 

contains the entire forward orbit of JQ. Since the orbit of Jo does not accumulate on 
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a boundary component of As, it does not accumulate on boundary components of 

7Q . Hence there is an integer N± > N0 such that 

T; = {TNl(ai(a)), i>0} 

is a disjoint union of open annuli which is compactly contained in T0' and which 

contains the entire forward orbit of J0. Then fNl~~No(Ti) = T0'. 

Enlarge T¿ slightly to a disjoint union To of open annuli whose boundaries are 

real-analytic Jordan curves and which is compactly contained in As. Let 71 be the 

union of preimages of components of To under fN*-N<> containing components of 77-
Then 7i is compactly contained in 7o, and 

9 = fNl~No : Ti To 

is an expanding conformal dynamical system. 

On the other hand, we may build another model for this dynamical system of the 
form 

h:K0^> 1Z\ 

where TZi consist of round annuli and the map h on each component is z i-> zd, some 

d. We may also find smooth maps fa : TZi —>> T% such that fa ° h = g o fa on 1Z\ 

and fa — fa rel d1Zo- That is, the pair (fa, fa) gives a combinatorial equivalence 

between the two dynamical systems. By Theorem A . l of [Mc2], fa are isotopic rel 

dlZo to a quasiconformal conjugacy ip. Since the Julia set of h is the product of a 

Cantor set with a round circle, Jo is a component of the Julia set of g and hence J0 

is a quasicircle. 

If Se,0 is empty, then f~x(As) n As is compactly contained in As. We may then 

apply the argument above with T¿ — As and T{ — f~x(As) D As to prove the 

Corollary. • 

Example. — We illustrate this by our example f — f\. In this case As has two 

components Ao and A\. We choose Ao to be the outermost one, i.e. the one with 

a fixed boundary (the component J + ) . There are no components of J which are 

points, and indeed J — {z \ fn(z) 6 As V n } . Moreover, the boundary components 

of components of As are entire Julia components, and Ao fl A\ = 0. It follows that 

the connected components of J are precisely the sets of the form J ' ( a ) , a G S. Hence 

by Theorem 8.2, the dynamics on the space of connected components of J in the 

Hausdorff topology is conjugate to the one-sided shift on two symbols 0 and 1. Note 

that then £e,o — { ( 0 0 0 . . . ) } and hence that T,e = {(a0ai . . . ) | an = 0 V n > n o } . 

The dynamical system ( S , a) is conjugate via </> to (C,g), where C is the invariant 

Cantor set for the interval map g : [0 ,1 /3] U [2/3 ,1] —> [0,1] given by g(c) — 3c for 

0 < c < 1/3 and g(c) = 3(1 — c) for 2 /3 < c < 1. The conjugacy <j> is defined by 

fac) — (aoaia,2 . . . ) where an = 0 if gn(c) G [0 ,1 /3] and an = 1 otherwise. Note that 

the point 0 G C corresponds to ( 0 0 0 0 . . . ) and the point 1 G C to ( 1 0 0 0 . . . ) . Order 
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the components of J so that J > J ' if J' separates J and the point at infinity. Then 
the composition <I> o 0 is order-preserving with respect to the usual ordering on the 
interval and > . 

Say c G C is exposed if c is a boundary point of a component of the complement of 
C and is buried otherwise. Similarly, we say a Julia component is exposed if it meets 
the boundary of a Fatou component of / and is buried otherwise. Then c is exposed 
if and only if 0 (c ) G S€ if and only if * o 0 (c ) is exposed if and only if $ o 0 (c ) is a 
covering of J+ if and only if $ o 0(c) is not a Jordan curve. 

Finally, we note that Ee is dense in S. 
We now show 

Theorem 8.6. — 3> o 0 (c ) is a quasicircle if and only if c does not accumulate at 
0 under g, i.e. if and only if a = 0(c) does not contain arbitrarily long strings of 
consecutive zeros. 

Thus quasi-circle components form a dense subset in the space of Julia components. 
On the other hand, the non quasi-circle components form a residual set in Baire's 
category. 

Proof. — Let J0 = $ (CQ ) and Jn = /n ( J0 ) = $ (#n(c0) ) , n > 0. By Theorem 8.4 it 
suffices to show that if zero is a limit point of the orbit of c0 then J0 is not a quasicircle. 
On a compact neighborhood of As avoiding the point at infinity the spherical and 
planar metrics are equivalent, hence Jo is a quasicircle if and only if it has bounded 
turning with respect to the planar metric. For simplicity we conjugate the map by 
1 jz so that J4" is near zero and the Jn separate J+ from infinity. 

By Theorem 8.2, if gn{co) has zero as limit point, then there is a subsequence 
Jnh —>• J + in the Hausdorff topology. In J+ we may find a cut point p and small open 
discs W and W with W CW and such that W DP = 0, p G W , and W contains 
a connected component L of J+ — {p}. Since p is a cut point p is accessible from the 
component of C — J+ containing infinity (recall we conjugated our map by 1/z) via 
two distinct accesses r\x,r\y. Since Jnfc —> J+ in the Hausdorff topology and the Jnfc 
are critically separating, for k sufficiently large, there are points Xk G nx Pi Jnk n W 
and yk G r/y n Jnk n W such that xu,yh P &nd f°r which the component Lk of 
Jnfe — of smallest diameter is also contained in W and has diameter bounded 
below by D = diam(Z/). 

Since W H V — 0, there is a univalent branch /i^ of (/nfc)_1 on W sending 
to a subarc of J0. Let x0k = hk(xk), yok = hk{yk), and L0fc = hk{Lk). Then the 
Koebe distortion theorem implies that since is compactly contained in W , there 
is a constant C > 1 independent of k such that hk distorts ratios of planar distances 
between points of W by at most a factor of C. Hence for all k 

jdiamCLfc) < diam(Lofe) < ^ d i a m ^ ) 
|s* - 2/fc| ~ \xok -yok\ ~ \xk ~Vk\' 
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But diam(Z/fc) is bounded from below by D while \xk — Vk\ —> 0. Hence Jo has 
unbounded turning and so is not a quasicircle. • 

8.5 . Constructing other examples. — The map / i was initially found by using 
quasiconformal surgery to glue z2 — 1 with 1/z3 in the appropriate fashion. This 
construction and its generalizations are the subject of work in progress. For example, 
one may apply the same construction by replacing z2 — 1 with any polynomial p whose 
filled Julia set has interior, and glue it to 1/z3. 

Question. — If p is a quadratic polynomial with non-locally connected Julia set and 
a Siegel disc, can one obtain, by this gluing, a map with wandering Julia components 
which are critically separating but not Jordan curves? 

8.6. H o w to find the set E. — There are finitely many Fatou components 
Wo,..., Wm either intersecting V or separating V into at least three parts (Lemma 
2.2). For each Wi take the finitely many boundary components which are critically 
separating. Saturate them into Julia components. Call the union of them El. It is 
finite and forward invariant. Fill in the disc components of C — E' disjoint from V. 
We get a fattened E" of E'. We distinguish three types of components of C — E": type 
I, components containing exactly one Wi (these are also the components intersecting 
U ^ ) ; type IIJ annulus components disjoint from | J ^ 5 and tyPe HI? non-annulus 
components disjoint from | J ^ « In each of type III component, there are finitely 
many Julia components separating V into at least three parts. Adding them to Ef, 
we get E. Note that the set £ is precisely the union of components of type I (see also 
Lemma 3.10). 

Let I f be a fixed attracting basin for a rational map / . How do we know that 
only finitely many components of C — W intersect V? And if so how can we find 
VN in Lemma 7.3 and in the proof of Theorem 7.1? Here is a constructive answer. 
Take Vo a open disc with Jordan curve boundary in W such that f(Vo) C Vb. Let Vn 
be the component of / _n (Vb) containing Vo- Then only finitely many components of 
C — W intersect V if and only if there is a minimal integer N such that each boundary 
curve of V/v+i is either not critically separating, or is parallel to a boundary curve of 
VN- And for this VN, each component of C — VN contains at most one component of 
C — W intersecting V. 

9. Generalizations 

9 .1 . Geometrically finite maps. — Our techniques allow a generalization of The
orem 1.2 to the case of geometrically finite maps / . In [TY] (§1, Step 4 and Prop. 
1.3)) (cf. also [DH2]) a Riemannian metric is constructed for which / is uniformly 
expanding on a neighborhood of its Julia set. The arguments given above for Propo
sitions [Case 2] and [Case 3] then apply in this more general setting. Proposition 
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[Case 4] is proved for nice maps, therefore applies automatically to geometrically 
finite maps. 

We may also recover a variant of Theorem 8.2 for geometrically finite maps as well, 
though we may lose the injectivity of <I>-it may be possible to construct a map / 
with a periodic Jordan curve Julia component Jo which intersects V and which is the 
common boundary of two components of As. Then J0 may be J ' ( a ) for two distinct 
admissible sequences a. At worst, however, $ is two-to-one. We define Se,o and Se 
the same as for hyperbolic maps. 

Theorem 8.4 holds for geometrically finite maps as well, and we may recover a 
result of Cui et. al. ([CJS], Prop. 6.2): 

Proposition 9.1. — / / / is geometrically finite, then there are at most finitely many 
periodic Jordan curve Julia components Jo which are not quasicircles. 

Proof — Let Jn = / n ( J 0 ) . Then either Jn C As for all n, or Jn is a boundary 
component of a component of As for all n, since Jo is periodic. The latter set of such 
J0 is finite, while in the former case Jo = J ' ( a ) for some unique a G S. The sequence 
a cannot accumulate on Ee?o under a since otherwise Jo accumulates on a boundary 
component of As, by Theorem 8.2. Hence Jo is a quasicircle by Theorem 8.4. • 

9.2 . A further result for nice maps 

Theorem 9.2. — If f is nice and every component of As is also a component of A, 
then every Julia component Jo not eventually landing on a component of E is a point. 

Proof. — The hypotheses imply that every component of As is a Herman ring or a 
preimage of a Herman ring, therefore contains no Julia components. So Case 2 of 
Lemma 2.4 does not occur. 

By Proposition [Case 4] , if Jo is a Julia component such that Jn = fn(Jo) C C for 
infinitely many n, then Jo is a point. 

Assume now J0 is a Julia component that is not in Cases 1, 2 and 4 of Lemma 2.4. 
Replacing Jo by a forward iterate of it if necessary, we may assume that 

Jn D (E U As U C) = 0 for all n > 0. 

Furthermore, by Lemma 2.4, Jn C A° U T>' for infinitely many n. Therefore 

jn c Q = (A° - A°AS U A°AC) U (V - V'AS U V'C U VAC) 

for infinitely many n, where the notation ABC means 

{z\zeA, f(z)€B,f2(z)eC}. 
We claim that Q is contained in the disjoint union of finitely many full continua 

disjoint from V. We can then apply Lemma 1.4 to conclude that Jo is a point. 
Let A1 be a component of A°. Either it coincides with a component of A°AS, 

or A — f(A') is a component of A — As. Assume we are in the latter case. By 
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Lemma 3.8, for S± the boundary components of A, there are components F + , V~ of 
AC (which may coincide) such that 5+ C dV+ and S~ C dV~. Thus A - (V+ U V " ) 
is disjoint from cM. Hence A' — ^l'.AC is contained in A'. Since the inclusion map 
from A1 into C — V is homotopic to a constant map, A ' — A1 AC is contained in a full 
continuum disjoint from V. 

The case of a component of T>' is similar, using Lemma 3.7. • 

Appendix A 

Technical results about plane topology 

In this appendix we collect technical results used in the course of our proofs. 
The following lemma was used in the proof of Lemma 3.6. 

Lemma A.l. — Let P1 and P2 be two disjoint non empty closed sets of S2. Set 

W = {U | U is a complement component 

of some component of J', P1 <ZU and P2 C\U = 0}. 

Then W is either empty or totally ordered with respect to inclusion, and W — Ut/ew U 
as the unique maximal element, and dW is connected. 

Proof. — That W is totally ordered with respect to inclusion if it is nonempty follows 
from Lemma 3.1. Since each U G W7 is a disc and the C/'s are nested, we have that 
IT is a disc. Hence dW is connected. 

We now show that W is also an element of W . Let x G dW. For any integer n, 
there is a point x' in W such that the distance between x' and x is less than 1/n, and 
there is U G W such that x' G U. The segment [x, x'} intersects dU, which is a subset 
of J. We conclude then either x G dU or there are points of J arbitrarily close to x. 
In both cases x G J. 

Since dW is a connected subset of J, it is contained in some component S of J. 
Now W must be a component of C — 5. This is because SnU = 0 for any U G W , 

therefore S fl W = 0. 
Moreover W D P1 , but fl P2 — 0. So ^ is indeed the maximal element of 

W . • 

The remaining results are essentially ingredients in the proof of Theorem 7.1. The 
logical dependencies are: 

Lemma A.2 —• Corollary A.3 -> Corollary A.4 Corollary A.5 -> Lemma 3.10 —• 
Theorem 7.1. 

We will need the following fact from general topology. 
Let X be a compact Hausdorff space. Then every component Y of X coincides 

with the intersection of open and closed subsets of X containing Y. Moreover, for 
any open neighborhood U of Y, there is a closed and open subset V of X such that 
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Y C V C U. The component Y is always closed. In case Y is not open in X, there is 

a sequence of closed and open sets Vn such that Y ^ Vn ^ Vn-i, and f]n Vn = Y. 

If X is the Julia set of some map, and is disconnected, no component of X is open 

in X (see [Be]). 

In the next three results, let J U T be a decomposition of S2 with J closed and 

disconnected, let d denote spherical distance and dn the Hausdorff distance on closed 

sets with respect to d. 

The following Lemma is known as Zoretti's Theorem ( [Wh], p . 109). 

Lemma A.2. — Given J' and J" two distinct components of Jand e > 0. there is 

a Jordan curve 7 in T separating J1 and J" such that supx67 d(x, J') < e. 

The next two results are easy consequences of Lemma A.2 . 

Corollary A.3 

(1) Let U be a connected component of S2 — J' for some connected component of 

J'. Then there is a sequence of closed discs Dn bounded by Jordan curves yn 

such that 7n C U D J7, Dn C int(£>n_i), dU C int(£>n), and DH(dU,yn) -> 0 

(where DH denotes the Hausdorff distance of compact sets). 

(2) Given W a component of T and K a component of S2 — W, there is a sequence 

of closed disks Dn such that Dn C int(jDn_i), dDn C W and f]n Dn = K. 

Proof. — Let {iiTm}^)=0 be a sequence of closed discs such that X m _ i C int(i^m), 

UmKm = U, and dnidU^dKm) 0. Let J0 = J U K0,F0 = S2 - J0. Then J0 is 

closed and disconnected and Lemma A.2 implies that there is a Jordan curve 70 C 

Fo C F separating dU from 8KQ. Let D0 be the disc bounded by 70 and containing 

dU. Inductively define 7n as follows. There is an m(n) such that 7n_i C int(i^m(n)). 

Let J-n = J U Krn(n)7 Fn = S2 — Jn. Lemma A.2 implies that there is 7^ C Fn C F 

separating dU from K^n) and bounding a closed disc Dn containing dU. This shows 

the first part; the second is similar. • 

Corollary A.4. — The following conditions are equivalent: 

(1) there is a component W of T contained in U such that dW n dU ^ 0; 
(2) there is a component W of T contained in U such that dU is a component of 

dW; 
(3) there is an n, such that no component of separates dU and yn, where 7n is 

a sequence of Jordan curves as in Corollary A.3, Part 1. 

Proof. — That 2 1 is obvious; 2 3 follows directly from Part 2 of Corollary 

A.3 and the hypothesis that dU is a component of dW. To see 3 => 2, note that 

(U — Dn) must be connected, where the Dn are as in Part 1 above. Let X = dW. 

Then dU is contained in a nested intersection of sets which are open and closed in X , 

hence dU is a connected component of dW. Finally, that 1 2 follows easily from 
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the observation that if Co is the connected component of dW which intersects dU, 
then Co is contained in some component Jo of J, hence Co cannot separate points of 
U. • 

Corollary A.5. — Let E be a nonempty set of finitely many disjoint components of 
J and let U be a connected component of S2 — E. 

(1) If dU is connected, let Wo be a component of T contained in U, and assume 
no component of J separates Wo from dU. 

Then dU is a connected component of dWo, and Wo is the unique component 
of T contained in U whose boundary intersects dU. 

(2) If dU is not connected, assume no component of J separates components of 
E. 

Then there exists a component Wo of T contained in U such that every 
connected component of dU is a connected component of dWo, and Wo is the 
unique component of T contained in U whose boundary intersects each compo
nent of dU. 

Proof — Assume first that dU is connected. By Corollary A .3, Part 1, there is a 
sequence 7n —> dU of Jordan curves in T f l U\ we may take these curves to separate 
some point wo of Wo from dU. By hypothesis and Corollary A.4 , Part 3, there exists 
a component W of T contained in U such that dU is a connected component of dW. 
If W ^ Wo, then since Wo, W C U we must have that W and Wo are separated by a 
component J' of J which is contained in U. Then W U dU is a connected set which 
is separated from Wo by J', hence dU is separated from Wo by J;, a contradiction. 
The uniqueness assertion follows from the equivalence of the first two parts in the 
previous lemma, and the proof of the second case is similar. • 

Appendix B 

Proof of Proposition 7,2 

A subtlety to prove Proposition 7.2 is that the map / : dW1 —> dW need not be 
open in the subspace topology. We first establish 

Claim. — Let f be a rational map and let Wf, W be two Fatou components of f such 
that f(Wf) = W. Let K (resp. K') be a component of C — W (resp. C — W') such 
that f(dK')ndK / 0. Then 

(1) f(dK') - dK. 
(2) f(K') D K. 
(3) KHP = 0 if and only if K' H / _ 1 P = 0. In this case f(K') = K. 
(4) For any set S D P, K' D / _ 1 5 # 0 if and only if K n S # 0. 

ASTÉRISQUE 261 



RATIONAL MAPS WITH DISCONNECTED JULIA SET 383 

Proof of Proposition 7.2 

(1) By (1) above, if K' is a connected component of C — W, then f(dK') = dK 

where K is a connected component of C — W. By (1) and (4) , there are finitely many 

such K' for which K' n # 

(2) It suffices to show f(U') C U and f(dU') C a t / . Since U' is the union of W 

with components of C — PV' disjoint from / - 1 P , this follows from (1) and (3) . 

(3) Again this follows directly from the finiteness of the number of boundary com

ponents and (1) . • 

Proof of Claim 

(1) Denote by J the Julia component containing dK. 

Denote by V the component of C — J containing W and by V the component of 

C — / _ 1 J containing W. Then / : V —> V is proper and / maps each boundary 

component of V onto the boundary of V\ which is dK' (see Lemma 3.3). 

Clearly f(dKf) C dK. So dK' nV = 0. Since W C V and C dW, we 

have C dV. So <9A' is contained in a component S' of dV. But 5 ' is in the 

Julia set, and the Julia component of dK' is contained in K', so S' C K'. Since d X ' 

separates W from int(iiT'), no point of int(K') can be in V. Therefore 5" C dK'. 

Thus 5" = dK' and f(dK') = dK. 

(2) A rational map / maps connected components of preimages of a compact 

connected set surjectively onto its image (see [Be], Ch. 5) . Let L' be the connected 

component of the preimage of K intersecting dK'. Then f(L') = K and dK' C l / ' C 

K'. Hence f(K') D iT. 

(3) Assume at first that A T I P = 0. Since K is full the component V in point (2) 

is also full. A simple topological argument then shows K' — V. So f(K') = K and 

K'nf~1P= 0. 

Assume now that K' n f~xP = 0. If K n P 7̂  0 , since / ( A ' ) D A we would have 

A ' D f~xP ^ 0 which is impossible. So K n P = 0 , A ' = 1/ and f(K') = K. 

(4) Assume at first that X f l F = 0 . Since f(K') = K, we get 4 ) . Assume now 

K H P ^ 0 . Then KC\S y£ 0 and AT' fi 7̂  0 (for otherwise A ' n / _ 1 P = 0 and 

KHP = 0). • 
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HOLDER IMPLIES COLLET-ECKMANN 

by 

Feliks Przytycki 

Abstract. — We prove that for every polynomial / if its basin of attraction to oo 
is Holder and Julia set contains only one critical point c then / is Collet-Eckmann, 
namely there exists A > 1, C > 0 such that, for every n > 0, |(/ n)'(/(c))| > CA n. 
We introduce also topological Collet-Eckmann rational maps and repellers. 

0. Introduction 

J. Graczyk and S. Smirnov proved in [GS] that if a rational map is Collet-Eckmann 
(abbr. CE) , then every component of the complement of Julia set J is Holder. An
other proof was provided later in [PR1]. The question whether a converse fact holds 
remained unanswered. Moreover it has been proved in [PR2] (using an example from 
[CJY]) that if there are at least two critical points in J, then the converse may occur 
false, even for polynomials. Namely if the forward trajectory of a critical point c at 
some times approaches very closely another critical point, but all critical points in J 
are nonreccurrent, then the basin of infinity is John even, but | ( / n ) ' ( / ( c ) ) | does 
not grow exponentially fast. 

Here (in Sec.3) we prove that Holder implies CE for polynomials if there is 
only one critical point in J. In fact we prove this in a more general setting of rational 
functions. We prove this by using Graczyk and Smirnov's "reversed telescope" idea. 

In Section 4 we introduce for rational maps the property topological Collet-Eckmann 
(abbr. T C E ) . This property means roughly a possibility of going from many small 
scales around each point to large scale round discs with uniformly bounded criticality 
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Key words and phrases. — Collet-Eckmann holomorphic maps, repellers, Holder basin of attraction, 
non-uniformly hyperbolic, telescope, rational maps, iteration. 
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386 F. PRZYTYCKI 

under the action of the iterates of / . This property is topological (i.e. it is preserved 
under topological conjugacies) and we prove in Section 4 that it implies CE, provided 
there is only one critical point in J (or more than one, but none in the o;-limit set of 
the others). Since by [PR1] CE implies TCE we obtain a new elementary proof that 
CE is a topological property. The first proof was provided in [PR2]: For / being CE, 
and g topologically conjugate to it, it was proved that the conjugacy can be improved 
to a quasiconformal one on a neighbourhood of J ( / ) . This implied CE for g, by a 
method not much different from presented here (but simpler technically). 

In the unimodal maps of the interval case the fact CE is a topological property 
was proved in [NP] via the same TCE property called there finite criticality. The 
intermediate property used there was uniform hyperbolicity on periodic orbits (abbr. 
UHPer). Here this idea also appears implicitly, though we cannot prove UHPer implies 
CE (the fact proved for unimodal maps of interval with negative Schwarzian derivative 
by T. Nowicki and D. Sands in [NS].) 

Finally, in Section 5, we introduce and study holomorphic TCE invariant sets in 
particular repellers and prove that if a repeller is the boundary of an open connected 
domain in C, then it is TCE iff the domain is Holder. In consequence, for each domain 
with repelling boundary, to be Holder is a topological property. We prove also the 
analogous rigidity result for Holder immediate basins of attraction to attracting fixed 
points. 

1. Preliminaries on Holder basins 

Definition 1.1. — Let / : C —> C be a rational map of the Riemann sphere. We call 
an /-critical point c (i.e. such that f'(c) — 0) exposed if its forward /-trajectory does 
not meet other critical points. 

The map / is called Collet-Eckmann if its every exposed critical point c that belongs 
to the Julia set J = J ( / ) , or its forward orbit converges to J, satisfies the following 
Collet-Eckmann condition: 

There exists A > 1 such that for every n > 0 

(CE) l ( / n ) ' ( c i ) | > Const A n . 

Notation. — By Const we denote various positive constants which can change from 
one formula to another. We use the notation xn = fn(x). 

The definition of holomorphic Collet-Eckmann map was introduced in [P2] with 
(CE) assumed only for critical points in J. This allowed parabolic periodic points. 
Here we modify the definition, in accordance with [GS, Def 1.2]. 

One calls a simply-connected open hyperbolic domain A Holder if there exists a > 0 
such that any Riemann mapping from the unit disc D onto A is Holder continuous. 
This can be generalized to non-simply connected domains, see [Po] or [GS, Def 5.1]. 
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We shall not rewrite here this definition in absence of dynamics because we do not 
need this. However if A is an immediate basin of attraction to a sink, for a rational 
mapping / , / ( ^ 4 ) = A, Graczyk and Smirnov provided an equivalent definition [GS, 
Def.1.4, Sec.5 Prop.3] which will be of use for us. Denote Crit + := Ц / l i / J (Cr i t ) , 
where Crit= Crit(/) means the set of all critical points for / . 

Definition 1.2. — We call A Holder if there exists Лн0 > 1 such that for every z G 
A \ cl Crit + there exists C\ > 0 such that for every у G f~n({z}) П A 

We extend this definition to periodic A, fk(A) = A, by replacing / by fk above. 
This replacement allows in proofs to assume f{A) = A. 

We need also the following 

Notation (cf. [PUZ]). — Suppose f(A) = A. Let z1,..., zd be all the pre-images of z 
in A. Consider smooth curves 7̂  : [ 0 , 1 ] - » A \ cl Crit + , j = 1 , . . . , rf, joining z to zj 

respectively {i.e. 7" 7(0) = 2, 7 J f '(l) = z^). 
Let S d := { 1 , . . . , d}z+ denote the one-sided shift space and a the shift to the left, 

i.e. a((an)) = (a n+i). For every sequence a = ( a n ) ^ L 0 G S d we define jo(a) :— ja°. 
Suppose that for some n > 0, for every 0 < m < n, and all a £ S d , the curves 7 m ( a ) 
are already defined. Write zn{a) :— jn(a)(1). 

For each a G E d define the curve 7 n + i ( a ) as the lift (image) by / ~ ( n + 1 ) of 7 Q n + 1 

starting at zn(a). 
The graph T = T(z, 7 1 , . . . , ^d) with the vertices z and zn(a) and edges 7n(< )̂ is 

called a geometric coding tree with the root at z. For every a G E d the subgraph 
composed of 2, zn(a) and 7 n (o0 for all n > 0 is called a geometric branch and denoted 
by b(a). Denote by bn(a) for n > 0 the subgraph composed of Zj(a) and 7 J + i ( a ) for 
all j > n. 

The branch 6(0;) is called convergent to x G dA if zn(a) —> x. 
For an arbitrary basin of attraction A we define the coding map Zoo ' ?)(zoo) clU 

by Zoo(a) := limn__^00 z n ( a ) on the domain X> = T>(zoo) of all such a's for which b(a) 
is convergent. By Lemma 1.3 below, for A Holder, T> ~T,d and z^ is Holder. 

Finally let L 7" 1,..., Ud be open topological discs with closures in A \ cl Crit + , con
taining 7 1 , . . . , j d respectively. For each a and n > 0 denote by Un(a) the component 
of f~~n(Uan) containing 7 n ( a ) . 

In the subsequent Lemmas A is a Holder immediate basin of attraction to a periodic 
sink for a rational function / . 

Lemma 1.3. — There exists C2 > 0 such that for every a G T,d and every positive 
integer m 

(1.1) \(ГУ(У)\ > CiAj n 

( 1 . 2 ) diamC/m(a) < C2X kHo — m 
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and 

(1 -3 ) Um(a) c B(Zoo(a), C 2 A 5 « / ( 1 - A ^ ) ) . 

Proof. — This follows from ( 1 . 1 ) and uniformly bounded distortion for all the bran
ches of /~n, n > m on Uj involved. • 

Lemma 1.4. — For every x E OA there exists a G S d such that b(a) is convergent to 
x. 

Proof. — Notice that x = lim znk (ak) for a sequence ak E T,d and a sequence of inte
gers n&, see [PZ, the proof of ( 9 ) ] . Now any a a limit of a convergent subsequence of 
ak satisfies the assertion of the Lemma. The convergence of b(a) is even exponential. 
This follows from Lemma 1.3 • 

Lemma 1.5. — Let A be a Holder immediate basin of attraction to a sink for a rational 
map f. Then for every A : 1 < A < AHO there exist S > 0 and no > 0 such that for 
every n > no and every x 6 dA, if for every j = 0 , . . . , n — 1 

( 1 . 4 ) dist(xj5 Crit) > exp—<5n, 

then \(fnY(x)\ > Xn. 

Proof. — Consider a G Y>d such that 6(a) converges to XQ. Then for 

s = [C3+n<V (log AHO)] + l 

(the square brackets stand for the integer part), where 

(logC2/g(l-AHo)) 
3 log AHO 

for an arbitrary e : 0 < e < 1, one obtains by ( 1 . 3 ) 

zs(an{a)) C B(xn,C2Xuo/(1 ~ xnl) = B(xn, e exp -8n). 
Moreover for every 0 < j < n 

( 1 . 5 ) zs+j(an~3 (a)) E B(xn-J1eexp-Sn). 

For y := zs+n(a) we have 

l(/n)'(y)l = \(fn+s)'(y)\ • KD'CT(y))!"1 > c^+'L-* 

for L := sup | / ' | . 
Using the definition of s we see that for S small enough and n large, the latter 

expression is larger than Xn for an arbitrary A : 1 < A < AH05 SO 

(1.6) l(/n)'(y)l>Àn. 

For e small enough, in view of ( 1 . 4 ) and ( 1 . 5 ) , we can replace y by x in ( 1 . 5 ) , 
changing A by a factor arbitrarily close to 1. • 
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Definition 1.6. — Let X be an /-forward invariant set. We say that / on X satisfies 
the property exponential shrinking of components if there exist £ : 0 < £ < 1 and r > 0 
such that for every x E X and positive integer n the component of f~n(B(fn(x),r)) 
containing x has diameter bounded by £ n . 

Lemma 1.7. — The property A is Holder implies the property: exponential shrinking 
of components, for f on dA, with £ arbitrarily close to A¿*. 

In the proof we shall use the following fact, a variant of the telescope lemma [PI, 
Lemma 5 ] : 

Lemma 1.8. — Let X be a compact set in C and f : U —> C be a holomorphic map 
on a neighbourhood of X such that f{X) = X. Then (3C > 0)(V/x > 1)(3?7 > 0) 
such that for every x E X and positive integer n > 0, for every r > 0, the disc 
B := B(xn,r) and every compact connected set Y C B the following holds: 

Denote Wj := CompXnj (f~j(B)) for j = 0 , . . . , n. Let Yn be an arbitrary compo
nent of f~n(Y) in Wn. Assume finally that diam Wj < r) for every j = 0 , . . . , n — 1. 
Then 

diam Wn < ^ n diam Yn 

diamB ~~ diamF 
Proof of Lemma 1.8. — See [PI]. The idea of the proof is that if Wj is far from Crit 
then, denoting Yá = fn~j(Yn), 

diamWj+i ^ diamYj+i 
diam Wj diam Yj 

If Wj+i is close to a critical point of multiplicity v then, instead of « , the inequality < 
with a constant depending on v appears on the right hand side. These cases however 
happen rarely as long as diam Wj are small. • 

Proof of Lemma 1.7. — Fix^1) an arbitrary n > 0 and x E OA. By Lemma 1.4 we 
can find a E Yid such that b(a) —> x. By the continuity of / for every 0 < j < n we 
have 6(cr J(a)) —> Xj. Let m(r) be the largest integer such that 7 m ( r ) (c r n (<^)) intersects 
dB for B := B(xnjr). Denote by b' the curve in fcm(r)_i(^n(oi)) contained in B and 
joining dB to xn. Denote by Wj the component of f~i(B) containing xn-j. Denote 
finally by bj the component of f~j(b') contained in 6 m ( r )_ 1 + j (cr n ~" 7 (o; ) ) . By Lemma 
1.3 we have 

diamfc;. < Const A ^ m ( r ) + i ) . 

So, using Lemma 1.8 and due to diamfe' comparable with diamS, we obtain 

(1.7) diam Wj < fij Const A ^ m ( r ) + i ) . 

A different proof, for polynomials - using puzzles, was obtained jointly by the author and Jacques 
Carette. 
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for \i > 1 arbitrarily close to 1, as long as all diam Wi for all i < j are small. Observe 
however that if r —> 0 then m(r) —> oo (more precisely m(r) > ( log( l / r ) / logL) — 
Const). So if r is small enough that A H o

 v ' compensates Const, diamW^ are small 
and ( 1 . 7 ) holds by induction. • 

Lemma 1.9. — Let A be a Holder domain. Then for every ß : 0 < $ < log Xu0/logL 
there exists r(i?) > 0 such that for every x G dA and a < r(i9) such that for W =  
Compa.n f~

s(B(xn+s,r)) 

di&mW < a*. 

Proof. — Set s = [log(r/a)/logL]. Let a be small enough that s > 0 . We have chosen 
r and £ according to Definition 1.6 and Lemma 1.7. 

As L is a Lipschitz constant for / , we obtain for B' := Comp a. n f~s(B(xn+s,r)) 

B' D B(xn,a). 

By Lemma 1.7 diamComp^ f-n(B') < £ n+*, hence 

diamPT < f n + * < € 9 . 

_ log(r/a) 
By s > f v ' } - 1 we obtain 

logL 

d i a m ^ < ( ; ) " V f o r t f = « ^ . 
~ \Ls logL 

• 

2. A technical lemma 

Lemma 2.1. — For every v > 2 there exist E\ : 0 < S\ < 1 /2 st6c/i £fta£ £fte following 
holds: 

Write g(z) — gu(z) — zv + u for an arbitrary u with \u\ < 1. Consider any 
$ : g~1(W) —>• C univalent and such that in the spherical metric diam 3>(<7-1(ID))) < 
diam | C . ii/ere © is the unit disc in C, considered later with the euclidean metric. 
Write F 3 > - 1 with the domain 3>(p-1(ID))). Assume 

( 2 . 1 ) u G $(# - 1(ID))). 

Moreover assume 

( 2 . 2 ) M < £i «nd | ( # o F ) ( u ) | < £rx. 

Tften either 

( 2 . 3 ) c K & G T 1 ^ © ) ) C |E>, 

or there exists £2 : 0 < £2 < 1 SMC/J tftai 

( 2 . 4 ) *(j _ 1 (£2D))D£2D. 
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Proof. — Suppose there exist un \ 0 and univalent 3>n on g~^(B) satisfying (2.1) 
such that gUn(Fn(un)) —> 0 and both (2.3) and (2.4) fail. Then starting from some 
n the distortion of 3>N on Vn := g~^(^H)) is bounded by a constant Q. A reason for 
this, is for example the existence of a definite geometric annulus in g~^(1B)) \ Vn. 

The sequence of the domains Vn converges in Caratheodory's sense, [McM, 5.1], to 
V := ( l / 2 ) 1 / ^ p and, as all diameters of * n ( V n ) are uniformly bounded by | diam C, 
and one can choose from (3> n ,Ki) & subsequence convergent to certain (<I>, V ) . 

Now notice that by (2.2) $(0) = 0, in particular 0 E $(V). On the other hand 
by the failure of (2.3) we obtain c l * ( V ) <£ §©. Hence diam$(F) > 1/2. Hence 
sup v | * ' | > | 2 1 / I / . So imV |* ' | > Q-121^u~1\ A result is that for every r : 0 < r < 
(1 /2 ) 1 / " the set *(rD) contains the disc of radius Q~x2x^v-^r centered at 0. 

Thus if Q - i 2 1 / ( " - i ) r i / « ' > r, or after rewriting: 

(2.5) r < !q -" / (" -D, 

we obtain for g(z) = zv the inclusion cl 3>(<7-1(rlD))) D rUD. This implies the analogous 
inclusion for n large, what contradicts the assumption that (2.4) fails. • 

Remark2.2. — One could compute £i ,£2 explicitly, however we have chosen above 
a more lazy way. In particular 82 can be chosen independent of 3>, i.e. the statement 
of the Lemma could start with: (V i/)(3 £ 1 , ^ 2 ) • • • • 

3 . Holder implies CE 

An important role will be played by the following variant of a lemma proved in 
[DPU, Lemma 2.3 and (3.2)] 

Lemma 3.1. — Let X be a compact set in C and f : U —> C be a holomorphic map 
on U a neighbourhood of X such that f(X) — X. Fix c E Crit(/) Pi X. Assume that 
there is no periodic orbit in X attracting the point c. 

For every y E X write k(y) = max(0, — logdist(2/, c)). For y = c write k(y) = 00. 
Then there exists a constant Cf such that for each x E X and n > 1 

n 
(3.1) ^'k(xj)<nCf, 

j=0 

where denotes summation over all but at most one index j at which k(xj) is 
maximal, (00 is also possible). 

Proof. — To proceed as in [DPU] extend / to C in a differentiate way. The obser
vation used in [DPU] is that fn(U) C U for U small intersecting X is not possible. 
In case / is a rational map and X contained in Julia set, the family / J n on U for 
j = 1,2,... would be normal, what contradicts a property of Julia set. In general 
case we use also the additional property of fn on U if (3.1) fails: | ( / n ) ' | < 1/2. This 
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yields an attracting periodic orbit in X , what, together with the property U 3 c also 
following from the construction in [DPU], contradicts the assumptions. • 

Definition 3.2. — We call A regular for / if for every small r > 0, for every x G dA, 
every positive integer n and every component W of f~n(B(x,r)) if W n A ^ 0 then 
fn(W fl A) =B(x,r)HA. 

The notion of regular is introduced ad hoc because we do not know how to prove 
our main theorem below without assuming this. Of course if A is completely invariant, 
i.e. f~x(A) = A, then A is regular. 

The reader will see that in the proof instead of B = B(x, r) for all r it is sufficient to 
consider B boundedly distorted in many scales. To have such B satisfying Definition 
3.2 it is sufficient to assume that A is Holder and Jordan. The idea is that if B is 
large and B n A is connected, then for pullbacks Wj (components of f~i(B)) Wj Pi A 
are also connected. If a critical value is met in OA then only one component of 
f~1(Wj n A) fl Wj+i can intersect A. Otherwise their boundaries would be glued at 
a critical point, contradicting Jordan property. Bounded distortion and many scales 
are due to TCE property (see Sec.4). 

Theorem 3.3. — Let A be a Holder immediate basin of attraction to a periodic sink 
for a rational map f. Assume A to be regular. Let c G dA be a critical point whose 
closure of the forward orbit is disjoint from Crit \ { c } . Then c satisfies (CE), with A 
arbitrarily close to AHO-

Corollary 3.4. — Let f be a polynomial and A^ be Holder. Suppose there is only one 
critical point in «/(/). Then f is CE, with A arbitrarily close to AHO-

Proof of Theorem 3.3. — The proof uses the procedure of the "reversed telescope" 
invented by Graczyk and Smirnov [GS, Appendix] to prove that CE2 (plus the so-
called i?-expansion property) implies CE. CE2 means \(fn)'(y)\ > Const A N for every 
y G J and n such that n is the smallest positive integer for which fn(y) G Crit, A > 1. 
Here instead of CE2 we shall use the definition of Holder domain, the property (1.1). 

Step 1. The block preceding the telescope. — Fix an arbitrary, large, n. Let 0 < m < n 
be the last time dist(# m , Crit) < exp — n5s for an arbitrary constant e : 0 < e < 1 
and for S from Lemma 1.5. Here x = xo := c. (We use the symbol x for c to 
distinguish the trajectory cn of c from c it passes by.) A critical point d such that 
dist(.rm, c') < exp — n5e must be c, supposed that n is large enough that exp — n5e < 
dis t (0 + (c ) , Crit \ ( { c } ) ) , where 0 + ( c ) stands for the forward orbit of c (c included). 

(1) Iin-m-l>en then K / ^ ^ y ^ m + i ) ! > A 7 1 - 7 7 1 " 1 by Lemma 1.5. 
(2) If n — m — 1 < en then by Lemma 3.1 we have 

k(xj) < (n — m — 1)C/, 
ra<ji<n 
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the function k considered with respect to c. Hence 
| ( / n - m - i y ( a . r o + i ) | > e x p ( - ( n - m - l)C'f) 

for a constant Cf > 0. 
Notice that by k(xm) > k(xj) for every j : m < j < n, there is no need to exclude 

an exceptional j from the above sum, because the exceptional index in YLm<j<n m ight 
be only j — m. 

Suppose we know that there exists a constant A > 1 such that 

(3.2) | ( / m ) ' ( * i ) l > A™. 

Then in the case (1), (CE) for c is proved. In the case (2) we obtain 

| ( / n ) ' ( * i ) | > A m e x p ( - ( n - m - l)C'f) > Xn 

for 1 < A < A with A arbitrarily close to A for e appropriately small, in particular we 
also obtain (CE). 

Thus, we need to prove (3.2), provided 

(3.3) dist(x m , c) < exp — nSe < exp —mSe. 

We shall prove this with an arbitrary A : 1 < A < AHO and for m large enough. More 
precisely, we shall prove (3.2) with the lower bound Const Ag^ where Const depends 
only on <5, 6. 

Note that n large implies m large by the first inequality of (3.3) (c cannot too soon 
approach itself). 

Step 2. Telescope: the first tube. — Define first some constants. 
Let T = [2{8e'd)-1Cf} + 2 for from Lemma 1.9. Let C4 = ( | ^ i ) ~ T for ex from 

Lemma 2.1. 
Consider now B := B(xm+\, C4 d i s t (x m + i , c±). For every j = 0 , 1 , . . . define 

Wj := Comp a ! m + 1 _ i f~'(B). 

Fix j — jo the first time W^+i intersects Crit, at d say. This can happen only with 
d — c. Indeed, otherwise, using Lemma 1.9, we obtain 

d i s t (0 + (c ) , Crit \{c}) < d is t (c m , c ; ) < diam Ifj+i < C4 exp — mfei?, 

what for m large enough is not possible. 
We conclude with W$+\ 3 c. We have two cases: 

Case 1°. P(a) i\exB\ 
Case 2°. fi(a) e \exB. 

Consider the case 2°. (Then we call / J : Wj —> B the first tube of our telescope.) 
In appropriate charts, in particular for B identified to ED, we can decompose into 
g o F, the decomposition in the language of Lemma 2.1, where g corresponds to the 
z i-> zv + u part of / and F takes care of the rest, in particular it includes 
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We have also c\ G \s\B because \e\ > C^1. Finally diamW} < | d i a m C by 
Lemma 1.9. Thus we can apply Lemma 2.1. We multiplied c\ by 1/2 because here we 
consider the spherical metric whereas in Sec.2 we considered discs TED with respect to 
the euclidean metric on C. 

We obtain two possibilities: 
(1) The closure of Wj := C o m p a . m + i _ . f~3(r0B) is contained in r0B. 

T0 replaces here 1/2 resulting from the difference between the spherical met
ric on B and the euclidean on ED. 

(2) There exists e<i : 0 < £2 < 1 such that 

(3.4) Wj' := C o m p , m + i _ . f~J{£2B) D e2B 

(Here is an explanation of the existence of £±,£2 that yield this alternative, for a 
reader who does not wish to decipher Section 2: If (1) does not hold we shrink B to 
S2B so that diamWj' » d\am£2B and consider e± small enough that f3(ci) is close 
to x m + i , hence c\ is a "center" of the boundedly distorted Wj' . E\ small means also 
that ci is close to the center of S2B. This gives (3.4).) 

Notice now that (3.4) contradicts a;m +i_ J- G J(f). Thus, we can suppose that 

cl Wj C r0B. 

Step 3. The capture of expansion. — f3 : Wj —> TQB is polynomial-like, hence Wj 
contains an / J-fixed point p. In the case / is a polynomial (Corollary 3.4) A = A^ 
is completely invariant, hence p G dA of course. Hence if we had UHPer on OA we 
would obtain for a constant A > 1 

(3.5) \(fj)'(p)\ > 

(We shall come back to this discussion in Section 4. In particular UHPer on dA will 
be deduced from A Holder, with A = AHO-) 

In the general case we do not know whether p G <9A, unfortunately. So, instead, 
we use the assumption A is regular. Denote f3 by F. As Wj itersects OA at Xm+i-j, 
it intersects also A at, say, y1. Write F{y1) — y°. Since y° has an F-preimage in 
Wj H Ay by the regularity of A also y1 has an F-preimage y2 in Wj D A, next y2 has, 
etc. Hence \(Fiy(yl)\ > RXj^0 = ( - R 1 ^ ^ ^ ) * , where R is a constant dependent on 
diaml?. (If diami? is small then R is large. It arises from the ratio of derivatives of 
f~k at y° and z in Def.1.2., resulting from a distortion bound.) Hence for an arbitrary 
A < AHO one can take i large enough and find s : 0 < s < i such that 

(3.5') \Ujy(p)\ > A J for p = F'(yi). 

By construction the distortion of f3~x on Wj is bounded by a constant. Hence we 
have 

l ( / i - 1 ) ' ( p ) l / l ( / i _ 1 ) ' ( * m + l - i ) | < Const. 
We have also \f'{fj'1{p))\/\f'{xm)\ < Const C{±~X)/u for v the multiplicity of / at c. 
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(We use the assumption that c\ is peripheric in B with the factor C4, i.e. 

dist(ci, xm+i) > C^1 d iami? . 

Notice that earlier, in Step 2., we used the opposite inequality, that c\ is close to the 

center.) 

We conclude using (3.5) or (3.5') that 

(3.6) \(Pnxm+1_j)\ > A'Ho Const Civ-1)/V. 

Step 4- Longer first tube. — Consider now the case 1°. In this case instead of taking 

Wj for j = jo + 1, • •. we replace B by \s\B in the definition. Denote the resulting 

sets by Wj. We stop at j = j \ such that for the first time Wj+i 3 c. Either we have 

the case 2° now or again the case 1° in which we continue with preimages of e\B, 

etc. Notice that we finally arrive at the case 2° because if we stop at j = m we have 

^ra+l — i — c l 
The conclusion (3.6), in the case 2° , ending this procedure at some jt, holds if 

<Cf(m + l)(-tf logC4 

We have fortunately, by Lemma 1.9, (compare htep 2.) 

diam Wj < Cf exp —mSsi). 

Hence, by Lemma 3 .1 , 

t<Cf(m + l ) ( - t f logC4 + mfetf )"1 

that is less than T — 1 defined in Step 2. if m is large enough. T h e estimate {\ei)t+1 > 

C^1 follows now from the definition of C4. 

Step 5. The number of tubes. Conclusion. — Thus , we have (3.6) for j — jt. Denote 

this integer by k±. We consider now B := B(xrn+i-k1,C4dist(xrn+i-k1iCi)) and 

repeat the above construction. We obtain the inequality (3.6) for #m+i_fc2 instead 

of xrn^-i—k1 and for j' = k<2,. We continue until X ^ = i ^i — m* ^ e have constructed a 

reversed telescope [GS, Appendix] . Sett ing 7 : = Const cjf-1^" we conclude with 

(3.7) | ( /m)'(ci) | > 7 7 A £ 0 . 

Indeed, at each step 7A^Q ^> 1 for m large enough, because k\ is large; c cannot 

too soon approach itself. So, by (3.6), using bounded distortion for the appropriate 

branch of f~(ki~^ on the appropriate B' = C o m p f~1(^eiB), we obtain 

(3.8) ••• < dist(xrn-kl-k2,c) < dist(xm-kl,c) < exp - r a f e , 

resulting from the related inequalities concerning dist(xm_^1 ^ + 1 , ^ 1 ) . 

Formally, (3.8), the construction of the i-th tube and ki large, are proved alternately 

by induction over i. In particular m — k\ — • • • — ki > kj for i < I is also large. Here 

dist(xm_^1 ^, c) < exp —mSe < exp — (ra — k± — • * • — ki)8e replaces (3.3) 

B y Lemma 3.1 we obtain a bound for / : 

<Cf(m + l)(-tf logC4 
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Thus ( 3 . 7 ) yields ( 3 . 2 ) , with A arbitrarily close to A H 0 for m large enough. Therefore 
as noticed at the beginning we obtain (CE). • 

It is possible to prove Theorem 3.3 without refering to Lemmas 1.7, 1.9^2^. The 
method relies on the following fact (weaker than Lemma 1.9) 

Lemma 3.5. — For A Holder, there exists C > 0 such that for every Q > 1, 
r > 0, positive integer n and x G dA, for B a topological disc of diameter r bound-
edly distorted around fn(x), say containing B(xn,r/4), for W the component of 
f~n(B(xn:r)) containing x, if fn\w is univalent and the distortion of f~n on B = 
H(xn,r) is bounded by Q (namely sup | ( / _ n ) / | / i n f | ( / - n ) ' | <Q), then 

diam W < CQr^, for $ = log A H O / log L. 

Proof. — Consider a £ S d such that b(a) converges to x. W contains a round 
disc centered at x of diameter equal to Q~x • ^diamVF. By Lemma 1.3 A ^ * < 
Const Q~x diam W, in particular t = [(Const + log Q + log(— diam W))/log AHO] + 1, 
implies zt{a) G W. Hence zt_ n (<j n (a)) G B. So t — n > (log 1 / r ) / l o g L — Const. 

Now t > t — n implies 

[(Const + log Q 4- l o g ( - diam W))/log A H O ] + 1 > (log 1 / r ) / log L - Const, 

hence after exponentiating the both sides, diam W < Const Qr^. • 

Now, in Proof of Theorem 3 .3 , in Step 2 , one can define Wj with the use of the 
"shrinking neighbourhoods" procedure, see [P2, Sec.2]: 

For B := Z ? ( x m + i , C 4 dist(^m_j_i, c i ) ) , for every j = 0 , 1 , . . . write By := (3jB for 

(3j = r i i=i( l — for bi := exp — KI for an arbitrary K > 0 , close to 0 . 

Write B' = C o m p X m / _ 1 ( ^ ) and B'{j = C o m p X m f~1{B[j). Finally define W3 := 

C o m p a B m + 1 _ i / - W - 1 ) ( S [ J . ) 
For j < jo — 1 we have by construction f3~x univalent on f(Wj+±) with distortion 

bounded by exp(— ConstKJ) (using Koebe distortion theorem). Hence diamW} can 
be estimated due to Lemma 3.5 by Const r^ for arbitrarily close to log AHO/log L. 

We do the same trick in Step 4. in the definition of Wj. 

4 . T C E rational maps and the topological invariance of CE 

In this section we shall provide a new proof of the theorem proved first in [PR2], 
that CE is a topological condition provided the following holds: 

Condition (*). — For every exposed critical point c G J(f) it holds 

c l ( J / " ( < O n ( C r i t \ { c } ) = 0. 
n>0 

(2)We followed that way in the first distributed version of the paper. 
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In other words for no critical point in J(f) its a>limit set contains another critical 
point. This condition was already present in Theorem 3.3. (Recall that exposed means 
the forward trajectory of c does not meet other critical points.) 

Let us introduce some properties of a rational map / related to CE and to expo
nential shrinking of components, compare Def. 1.6. (We follow the numeration and 
terminology from [NP].) 

2° (exponential shrinking of components) There exist 0 < £2 < 1 and r<i > 0 such that 
for every x G J every n > 0 and W = Comp^ f~n(B(fn(x), r 2 ) ) one has diam W < • 

3° (exponential shrinking of components at critical points) The same as above, but 
only for W containing a critical point. 

4° (finite criticality or topological Collet-Eckmann, abbr. TCE) There exist M > 
0, P > 1 and r > 0 such that for every x G J there exists an increasing sequence of 
positive integers nj,j = 1, 2 , . . . such that Uj < Pj and for each j 

#{i : 0 < i < nj, Compfi(x) /-("¿"0B(f n * (x),r) n Crit / 0 } < M. 

5° (mean exponential shrinking of components) There exist P > 1,0 < £5 < 1 and 
rs > 0 such that for every x G J there exists an increasing sequence of positive 
integers nj = nj(x), j = 1,2,.. . such that Uj < Pj and for each j one has 

diamComp,<Cf(m + l)(-tf logC 4(s),r 5)) < 

Another interesting condition is uniform hyperbolicity on periodic orbits (abbr: 
UHPer): There exists Ap e r > 1 such that every periodic p G J(f) satisfies 

\(fkY(p)\ > A £ E R . 

where k is a period of p. 

Formally we do not restrict 3° to critical points in J, but this condition implies 
there are no critical points outside J attracted to J (which is equivalent to the absence 
of parabolic periodic orbits). 

Notice that 4° is a topological condition, i.e. if it is satisfied by / and there exists 
a homeomorphism h from a neighbourhood of J(f) to a neighbourhood of J(g) such 
that h(J(f)) — J(g) and hf = gh then 4° holds also for g. 

The implications CE=> 2° => 3° 4° have been proven in [PR1] (see also [NP]). 
4° 5° has also been proven in [PR1]. Here we shall prove 5° ^> 2° and next 
2° =>CE provided (*). Thus we shall prove: 

Theorem 4.1. — If f is topological Collet-Eckmann and satisfies (*) (a particular 
case is that there is only one critical point in J), then f is CE. 

In view of the above discussion we shall obtain 

Corollary 4.2. — (CE & (*)) is a topological property. 
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Remark that it is straightforward to prove 5° UHPer, see Lemma 4.7. belov 

Unfortunately we cannot prove UHPer=> CE, to mimic the interval case [NP], [NS 
Let us start the proofs with 5° 2° which is surprisingly easy. 

Lemma 4.3. — Mean exponential shrinking of components implies exponential shr 
nking of components. 

Proof — Fix an arbitrary x G J{f) and n > 0. Write Bj := B(xj^r^) for j •• 
0 , 1 , . . . , n. Set t0 := 0 and define the increasing sequence of integers 0 < t\ < £2, •. 
by induction as follows: Given ti take ti+i such that ti + (n — ti)/2P < ti+i < n an 
for 

Ki+! := CompXti f-^-^(Bti+1), 

(4.1) diamKi+1 < £li+1~U. 

This is possible by the definitions of the constants in 5°. 5° implies that the number of 
Uj — nj(xtiys not exceeding ra = Pk is at least k for every k = 1, 2 , . . . . So for every 
ra > 0 we obtain #{rtj : rij < ra} > [m/P] (the integer part of m/P). In particular 
for ra > 2P we obtain # { n j : rij < ra} > ra/2P, hence {n^ : m/2P < rij < ra} ^ 0. 
Finally apply this to ra = n — ti and choose as ¿¿+1 any rij from the latter nonempty 
set. 

x f-*^Btl) < & < g/2P 
<Cf(m . > log n> 

log6> 
(4.2) 

then by (4.1) 

(4.3) Ki+1 GBXti. 

Suppose i = I is the smallest integer such that either n — ti < 2P so we may not 
find ¿7+1 satisfying (4.1), or (4.2) does not hold. The latter: ¿7+1 — £7 < logr$/ log£5, 
together with ¿7+1 — £7 > (n — t\)/2P imply n — ti < 2Plogr$/ log£5. Denote the 
maximum of this constant and 2P by C. 

Due to (4.3) for every i — 1 , — 1 we have a "telescope" so we obtain 

Comp,t] /-<«'-«*>(£*,) C B I R 

Hence, applying also (4.1) for i = 0, 

( 4 . 4 ) d iamCompx(/-^(Bt j ) ) < diamCompx f-*^Btl) < & < g/2P 

provided n > 2P (otherwise / = 0, i.e. there is no ti). 

Finally, due to n — ti bounded by C, we can replace in (4.4) Btl by 

CompXt/ / - ( " - < ' > ( I ? ( W 2 ) ) 

for a constant small enough. We conclude with 

diamCompx /-"(5(^,7-2)) <Ql2P 
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which proves 2° with £ 2 = '• The case n < 2P is trivial, r 2 small enough does 

the job. • 

Lemma 4.4. — Assume 2°. Then there exist i? : 0 < i9 < 1 such that for every a > 0 

small enough, for every x G J(f) and every n > 0 

(4.5) d i a m C o m p x / - n ( J B ( / n ( x ) , a ) ) < a*. 

Proof — See Proof of Lemma 1.9. • 

Analogously to Lemma 1.5 we have the following 

Lemma 4.5. — Assume 2°. Then there exist A > 1, 8 > 0 and an integer no > 0 

such that for every n > no and x G J(f), if for every j = 0 , . . . , n — 1 

dist(#j, Crit) > exp —5n, 

then \(fn)'(x)\ > \ n . 

Remark 4.6. — This Lemma will be proved with A arbitrarily close to Notice 

that this, for dA rather than J ( / ) , together with Lemma 1.7, give a new proof of 

Lemma 1.5. 

Proof of Lemma — Consider arbitrary <S, s > 0. Let 

s := 
" log s 5n 

.log 6 - l o g 6 
+ 1. 

Then, by 2°, for all 0 < j < n 

(4.6) d i a m C o m p ^ , . f-*^ (B(xn+S,r2)) < < £ | < s e x p - 5 n . 

Now let B = B{xn, r 2 exp —SMn) for M = [ l o g I / / ( - l o g £ 2 ) ] + 1. Then for n large 
enough we obtain, using (4.6) for j = 0 and the definition of s, 

C o m p ^ / - * ( £ 0 r n + s , r 2 ) ) D 

Let W n = Comp^. f~n(B). Then there exists 2/ € Wn such that 

l(/n)'(y)l > 
diaml? 

diam Wn 

> (2 r 2 e x p - á M n ) ^ , 

where the second inequality follows from 2°. Now, as in Proof of Lemma 1.5, for e 

small, with the use of (4.6), we can switch from y to x, hence | ( / n ) ' ( # ) | > A n , for A 

arbitrarily close to if <S, e are appropriately small. • 

Lemma 4.7. — 2° implies UHPer on J ( / ) . Moreover A p e r = ^ j - 1 . 

Proof. — For each periodic point x G « / ( / ) , with fk(x) = x, we consider the backward 

trajectory x^ = fNk~i{x), N such that Nk — j > 0. By 2°, for j large enough, 

Wj are so small that shrinking of Wj is comparable to decreasing of derivatives of 

the respective branches of f~i (critical points are far away, so there is almost no 
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distortion). Moreover we obtain \(fNk)'(x)\ > Const£ 2 f ° r every positive N with 
the same Const, that implies | ( / f e ) ' ( # ) | > £2"*- Compare [NP, section 2]. • 

Proof of Theorem 4.1. — It is sufficient to prove that 2° and (*) imply (CE) for 
every exposed critical point in J. The proof is the same as the proof of Theorem 3.3. 
Having obtained a mapping corresponding to the polynomial-like fJ\w< TQB we 
find a periodic point p and we refer to UHPer, compare (3.5). (We do not have the 
harder case (3.5')). • 

5. T C E repellers 

Call a pair (X , / ) a holomorphic invariant set if X C C is compact and f : X —> C 
is defined on a neighbourhood of X and / ( X ) = X. (Recall that in Lemmas 1.8 and 
3.1 we considered already such pairs.) We say that holomorphic invariant sets (X, f) 
and (Y,g) are topologically conjugate if there exist neighbourhoods Ux,Uy of X , Y 
respectively, and a homeomorphism h : Ux —> Uy such that hf = gh. Recall that a 
property of holomorphic invariant sets is called topological if for every (X , / ) and (Y, g) 
topologically conjugate, if (X , / ) satisfies this property then (Y, g) satisfies this too. 
Sometimes we restrict the space of holomorphic invariant sets under consideration to 
those that satisfy certain property (not necessarily topological, for example to those 
/ ' s that extend to rational functions). 

For example it is easy to see (and is well-known) that the expanding property 
(namely \{fk)'\ > 1 for a positive integer fc), is topological. An argument is that 
expanding is equivalent to 4° with nj being the sequence of all positive integers and 
M = 0, that is of course a topological condition. 

Here we consider (X , / ) with properties weaker than expanding, namely with: 
2° — 5° with J replaced by X , W intersecting X and / not necessarily extendable to 
a rational function on the Riemann sphere. 

One can define also CE as (CE) for every exposed c G W for W intersecting X . 

We call a holomorphic invariant set (X , / ) a holomorphic repeller if there exists a 
neighbourhood V of X in the domain of / such that (Vx G V \ X ) ( 3 n > 0) such that 

$ v. 
We have the following 

Proposition 5.1. — For ( X , / ) holomorphic invariant sets, 5° 2° 3° 4°. 
Moreover, for (X , / ) holomorphic repellers, or holomorphic invariant sets such that 
f extends to a rational function and X C J(f), the properties 2°, 3°, 4° and 5° are 
equivalent. Then all of them are topological properties, CE implies each of 2° — 5° 
and conversely, provided (*) from Section 4> 

Proof of Proposition 5.1. — As mentioned in Sec.4 the proof of 3° 4° has been 
done in [PR1, Lemma 2.2] for / rational ( X = J has been considered there, but for 
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X strictly in J the proof is the same). For (X, / ) an arbitrary holomorphic invariant 
set we need to refer to [DPU] as it is stated here in Lemma 3.1. The assumptions 
are satisfied: if there existed a periodic point p E X whose periodic orbit attracts a 
critical point c G X, then for x = c the condition 2° would not hold. 

As mentioned in Sec.4 the implication 4° 5° for / rational has been proven in 
[PR1]. For {X, f) holomorphic repeller we refer to the following fact proved in [PR2, 
Appendix]: 

If X C then 4° implies that X is nowhere dense. 

Now repeating [PR1, (2.6)] one uses the repelling property to know that all the 
maps fn : W —> B, for every B(x,r),x G X , r small and every W a component 
of f~n(B) intersecting X, are proper. This is needed in the proof that if fn have 
uniformly bounded criticalities on W, then the respective preimages of \B have di
ameters shrinking to 0 as n —> oo. 

To prove the latter fact we find a little disc D in |J5 \ X , so that the components 
W of / n-preimages of D in W have diameters shrinking to 0. Such D exists due 
to X nowhere dense and W —» X. Finally we use a bounded distortion lemma in a 
bounded criticality setting (for example [PR1, Lemma 2.1]. 

5° 2° is automatic, see Lemma 4.3. The proof that CE implies 4° is the same 
as in [PR1] and the proof of the opposite implication is the same as in Section 4. • 

We call a holomorphic repeller satisfying any of the properties 2° — 5° a topological 
Collet-Eckmann repeller, abbr. TCE repeller. 

Proposition 5.2. — Let X — dA for a connected open domain A C C. Let f be 
a holomorphic map defined on a neighbourhood U of X such that f{UC\A)c_A, 
/ ( X ) = X Then A Holder implies ( X , / ) is TCE (i.e. it satisfies 4°). Coversely, if 
(X, / ) is TCE and additionally it is a repeller or f extends to a rational map on C, 
then A is Holder. 

Proof. — Assume that A is Holder. Definition 1.2 is still valid except that one consid
ers only z G A close to dA. Observe now that Holder implies 2°. The proof is similar 
to Proof of Lemma 1.7., except that in this situation one needs Markov geometric 
coding tree. Instead of one point z as in Sec.l, choose a finite family Z C A in a small 
Hausdorff distance from the whole X and join each z^ G / _ 1 ( Z ) by a curve 7 J to a 
point in Z, so that 7̂  is close to OA, in particular in the domain of 

Next 2° implies TCE by Proposition 5.1. 
In the opposite direction TCE implies 2° by Proposition 5.1. Next we prove that 

A is Holder: Consider a disc B := B(x,r) for x G X such that diam W < £n 

for W components of f~n(B) intersecting X (compare property 2°) and consider 
D = B(z, S) C AnB. Let W be a component of f~n(D) in W. Hence diam W < £n 

so by bounded distortion \{fnY{y)\ > C o n s t £ _ n for y G W,fn(y) — z. Compare 
[GS, Sec.5] and [PR1, Sec.3]. • 
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We obtain an immediate 

Corollary 5.3 (Rigidity of Holder domains). — Let A be a connected open domain 
A C C. Let f be a holomorphic map defined on a neighbourhood U of dA such 
that f(U H A) C A, f(dA) — dA. Suppose A is Holder. Let g be a holomorphic 
map on a neighbourhood of a compact set Y C C such that f on a neighbourhood 
of X — dA is conjugated by a homeorphism h to g and h(X) = Y. Assume that g 
extends to a rational function on C or assume that (X , / ) (hence (Y, g)) are repellers. 
Then the component of C \ Y intersecting h{A) is Holder. 

Let us underline that we allow above critical points in X to be in the a;-limit set 
of other critical points. Proposition 5.2 and Corollary 5.3 are much easier than the 
corresponding Theorem 3.3 and Corollary 4.2. 

Remark finally that in between holomorphic expanding repellers {i.e. holomorphic 
repellers with expanding property) and holomorphic TCE repellers there lies the class 
of holomorphic semihyperbolic repellers, that is satisfying the property 4° with Uj 
being the sequence of all positive integers. Semihyperbolicity is of course a topological 
condition. 

Notice that this semihyperbolicity is equivalent to 2° with all fn\w of uniformly 
bounded criticality. Notice also that for compact nowhere dense repellers semihyper
bolicity is equivalent to the assumption that critical points in X are nonrecurrent, see 
[CJY]. Parabolic points cannot happen for repellers. 

If X = dA for A a basin of a sink, I believe that / semihyperbolic is equivalent to 
A John. This has been proven in the case A — A^ for polynomial f in [CJY^. 
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RATIONAL PARAMETER RAYS 
OF THE MANDELBROT SET 

by 

Dierk Schleicher 

Abstract. — We give a new proof that all external rays of the Mandelbrot set at 
rational angles land, and of the relation between the external angle of such a ray 
and the dynamics at the landing point. Our proof is different from the original 
one, given by Douady and Hubbard and refined by P. Lavaurs, in several ways: it 
replaces analytic arguments by combinatorial ones; it does not use complex analytic 
dependence of the polynomials with respect to parameters and can thus be made 
to apply for non-complex analytic parameter spaces; this proof is also technically 
simpler. Finally, we derive several corollaries about hyperbolic components of the 
Mandelbrot set. 

Along the way, we introduce partitions of dynamical and parameter planes which 
are of independent interest, and we interpret the Mandelbrot set as a symbolic pa
rameter space of kneading sequences and internal addresses. 

1. Introduction 

Quadratic polynomials, when iterated, exhibit amazingly rich dynamics. Up to 
affine conjugation, these polynomials can be parametrized uniquely by a single com
plex variable. The Mandelbrot set serves to organize the space of (conjugacy classes 
of) quadratic polynomials. It can be understood as a "table of contents" to the dy
namical possibilities and has a most beautiful structure. Much of this structure has 
been discovered and explained in the groundbreaking work of Douady and Hubbard 
[DH1], and a deeper understanding of the fine structure of the Mandelbrot set is a 
very active area of research. The importance of the Mandelbrot set is due to the fact 
that it is the simplest non-trivial parameter space of analytic families of iterated holo-
morphic maps, and because of its universality as explained by Douady and Hubbard 
[DH2]: the typical local configuration in one-dimensional complex parameter spaces 
is the Mandelbrot set (see also [McM]). 

1991 Mathematics Subject Classification. — 30C20, 30D05, 30D40. 
Key words and phrases. — Mandelbrot set, kneading sequence, internal address, external ray, param
eter ray, hyperbolic component. 

© Astérisque 261, S MF 2000 



406 I), SC'IILEIC'IIEH 

l;nfortunately. llloSt of the beautiful results of Doua<iy and Hubbard 011 th(' struc-
ture of tl)(' .\[alldelbrut set are \\Titten only in prelilllilwr:v fonn in the prcprints 
[DRll, The purpose of t his article is to providt, concise proofs of several of t hpir 
t lworellls, Our proofs are qui t e different frolll t he original onl's in spveral respect s: 
\vhile DOllady and Hubbard Ilsed elaborate perturbation arguments for lllany hasic 
l'(~sults. W(' illtroduce partitions of dYllamical and parallleter planes, describe thcm hy 
sYlllholic d:vn<1111ics. and reduce lllany of the questions to a cOlnhiwdoriallevel. \Ve 

 
------... ;~ 

FIC;l'HE 1. The .\fanddhrot set and s(",eraJ uf its paramcter rars which 
are lllellt ioned ill the tex/,. Pict un' COIlrt f'S)' of Jack jliJnor. 

fed that our proofs an' techlIically significantly silllpler than t hos(' of Douady and 
Hubbard. All important diffcrell('(' for certain applicatiuns is that our proof does not 
use COlllpleX mlalytic depencl<C'lI("(, of t h(> lllaps wit h respect to the parameter and is 
therefore applicable in certaill wider circumstances: the illitialllloti\'atioll for this rp-

search ,,,as a project with :\"akalll' (s('e [NS] and the refcl'('llces tlierein) to IUH.i('J'stand 
the parameter spact' of <-1ntihololllorphic quadratic POlYIlOlllials. which depends ollly 

ASTÉRISQUE 261



RATIONAL P A R A M E T E R RAYS O F T H E M A N D E L B R O T SET 407 

real-analytically on the parameter. Of course, the "standard proof using Fatou co
ordinates and Ecalle cylinders, as developed by Douady and Hubbard and elaborated 
by Lavaurs [La2], is a most powerful tool giving interesting insights; it has had many 
important applications. Our goal is to present an alternative approach in order to 
enlarge the toolbox for applications in different situations. 

The fundamental result we want to describe in this article is the following theorem 
about landing properties of external rays of the Mandelbrot set, a theorem due to 
Douady and Hubbard; for background and terminology, see the next section. 

Theorem 1.1 (The Structure Theorem of M). — Parameter rays of the Mandelbrot set 
at rational angles have the following landing properties: 

(1) Every parameter ray at a periodic angle $ lands at a parabolic parameter such 
that, in its dynamic plane, the dynamic ray at angle i? lands at the parabolic 
orbit and is one of its two characteristic rays. 

(2) Every parabolic parameter c is the landing point of exactly two parameter rays 
at periodic angles. These angles are the characteristic angles of the parabolic 
orbit in the dynamic plane of c. 

(3) Every parameter ray at a preperiodic angle i? lands at a Misiurewicz point such 
that, in its dynamic plane, the dynamic ray at angle $ lands at the critical 
value. 

(4) Every Misiurewicz point c is the landing point of a finite non-zero number of 
parameter rays at preperiodic angles. These angles are exactly the external 
angles of the dynamic rays which land at the critical value in the dynamic 
plane of c. 

(The parameter c = 1/4 is the landing point of a single parameter ray, but this 
ray corresponds to external angles 0 and 1; we count this ray twice in order to avoid 
having to state exceptions.) 

The organization of this article is as follows: in Section 2, we describe necessary 
terminology from complex dynamics and give a few fundamental lemmas. Section 3 
contains a proof of the periodic part of the theorem, and along the way it shows 
how to interpret the Mandelbrot set as a parameter space of kneading sequences. 
The preperiodic part of the theorem is then proved in Section 4, using properties 
of kneading sequences. In the final Section 5, we derive fundamental properties of 
hyperbolic components of the Mandelbrot set. Most of the results and proofs in 
this paper work also for uMultibrot sets": these are the connectedness loci of the 
polynomials zd + c for d > 2. 

This article is an elaborated version of Chapter 2 of my Ph.D. thesis [Si] at Cornell 
University, written under the supervision of John Hubbard and submitted in the 
summer of 1994. It is part of a mathematical ping-pong with John Milnor: it builds 
at important places on the paper [GM]; recently Milnor has written a most beautiful 
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new paper [M2] investigating external rays of the Mandelbrot set from the point of 
view of "orbit portraits", i.e., landing patterns of periodic dynamic rays. I have not 
tried to hide how much both I and this paper have profited from many discussions 
with him, as will become apparent at many places. This paper, as well as Milnor's 
new one, uses certain global counting arguments to provide estimates, but in different 
directions. It is a current project [ES] to combine both approaches to provide a new, 
more conceptual proof without global counting. Proofs in a similar spirit of further 
fundamental properties of the Mandelbrot set can be found in [S2]. 

Acknowledgements. — It is a pleasure to thank many people who have contributed 
to this paper in a variety of ways. I am most grateful to John Hubbard for so much 
help and friendship over the years. To John Milnor, I am deeply indebted for the 
ping-pong mentioned above, as well as for many discussions and a lot of encourage
ment along the way. Tan Lei contributed very helpful corrections and suggestions 
most constructively. Many more people have shared their ideas and understanding 
with me and will recognize their contributions; they include Bodil Branner, Adrien 
Douady, Karsten Keller, Eike Lau, Jiaqi Luo, Misha Lyubich, Shizuo Nakane, Chris 
Penrose, Carsten Petersen, Johannes Riedl, Mitsu Shishikura and others. I am also 
grateful to the Institute for Mathematical Sciences in Stony Brook for its inspiring 
environment and support. Finally, special thanks go to Katrin Wehrheim for a most 
helpful suggestion. 

2. Complex Dynamics 

In this section, we briefly recall some results and notation from complex dynamics 
which will be needed in the sequel. For details, the notes [Ml] by Milnor are recom
mended and, of course, the work [DH1] by Douady and Hubbard which is the source 
of most of the results mentioned below. 

By affine conjugation, quadratic polynomials can be written uniquely in the normal 
form pc : z h-» z2 + c for some complex parameter c. For any such polynomial, the 
filled-in Julia set is defined as the set of points z with bounded orbits under iteration. 
The Julia set is the boundary of the filled-in Julia set. It is also the set of points 
which do not have a neighborhood in which the sequence of iterates is normal (in the 
sense of Montel). Julia set and filled-in Julia set are connected if and only if the only 
critical point 0 has bounded orbit; otherwise, these sets coincide and are a Cantor 
set. The Mandelbrot set M is the quadratic connected locus: the set of parameters 
c for which the Julia set is connected. Julia sets and filled-in Julia sets, as well as 
the Mandelbrot set, are compact subsets of the complex plane. The Mandelbrot set 
is known to be connected and full (i.e. its complement is connected). 

Douady and Hubbard have shown that Julia sets and the Mandelbrot set can 
profitably be studied using external rays: for a compact connected and full set K c C , 
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the Riemann mapping theorem supplies a unique conformal isomorphism &K from 
the exterior of K to the exterior of a unique disk DR = {z G C : \z\ < R} subject 
to the normalization condition limz_^oo $(z)/z — 1. The inverse of the Riemann map 
allows to transport polar coordinates to the exterior of K\ images of radial lines and 
centered circles are called external rays and equipotentials, respectively. For a point 
z G C — K with <&(z) = re27™19, the number $ is called the external angle and logr is 
called the potential of z. External angles live in S 1 ; we will always measure them in 
full turns, i.e., interpreting S 1 = E /Z . Sometimes, it will be convenient to count the 
two angles 0 and 1 differently and have external angles live in [0,1]. Potentials are 
parametrized by the open interval (logi?, oo ) . An external ray at angle $ is said to 
land at a point z if l im r ^ i o g j R ^J^(re2ni^) exists and equals z. For general compact 
connected full sets K, not all external rays need to land. By Caratheodory's theorem, 
local connectivity of K is equivalent to landing of all the rays, with the landing points 
depending continuously on the external angle. 

For all the sets we consider here, it turns out that the conformal radius R is 
necessarily equal to 1. In order to avoid confusion, we will replace the term "external 
ray" by dynamic ray or parameter ray according to whether it is an external ray of a 
filled-in Julia set or of the Mandelbrot set. 

For c G M, the filled-in Julia set Kc is connected. For brevity, we will denote 
the preferred Riemann map by y?c, rather than &KC- A classical theorem of Böttcher 
asserts that this map conjugates the dynamics outside of Kc to the squaring map 
outside the closed unit disk: (pc opc = (</?c)2. A dynamic ray is periodic or preperiodic 
whenever its external angle is periodic or preperiodic under the doubling map on S 1 . 
The periodic and preperiodic angles are exactly the rational numbers. More precisely, 
a rational angle is periodic iff, when written in lowest terms, the denominator is odd; 
if the denominator is even, then the angle is preperiodic. It is well known [Ml, Sec
tion 18] that dynamic rays of connected filled-in Julia sets always land whenever their 
external angles are rational. The landing points of periodic (resp. preperiodic) rays 
are periodic (resp. preperiodic) points on repelling or parabolic orbits. Conversely, 
every repelling or parabolic periodic or preperiodic point of a connected Julia set is 
the landing point of one or more rational dynamic rays; preperiods and periods of all 
the rays landing at the same point are equal. 

If a quadratic Julia set is a Cantor set, then there still is a Böttcher map (fc near 
infinity conjugating the dynamics to the squaring map. One can try to extend the 
domain of definition of the Böttcher map by pulling it back using the conjugation 
relation. However, there are problems about choosing the right branch of a square 
root needed in the conjugation relation. The absolute value of the Böttcher map 
is independent of the choices and allows to define potentials outside of the filled-in 
Julia set. The set of points at potentials exceeding the potential of the critical point 
is simply connected and the map <pc can be defined there uniquely. This domain 
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includes the critical value. In particular, the external angle of the critical value is 
defined uniquely. Douady and Hubbard have shown that the preferred Riemann map 

of the exterior of the Mandelbrot set is given by $M(C) = <pc(c). 
For disconnected Julia sets, the map (pc defines dynamic rays at sufficiently large 

potentials. If a dynamic ray at angle $ is defined for potentials greater than t > 0, 
then one can pull back by the dynamics and obtain the dynamic rays at angles $/2 
and (& + l ) / 2 down to potential ¿/2, except if the ray at angle $ contains the critical 
value. In the latter case, the two pull-back rays will bounce into the critical point and 
the pull-back is no longer possible uniquely. This phenomenon has been studied by 
Goldberg and Milnor in the appendix of [GM]. Conversely, a dynamic ray at angle 

can be extended down to the potential t > 0 provided its image ray at angle 2t? 
can be extended down to the potential 2t and does not contain the critical value, or 
if the ray at angle 4i? can be extended down to the potential 4t without containing 
the critical value or its image, etc.. The ray can be defined for all potentials in (0, oo) 
if the external angle of the critical value is different from 2krd for all k = 1,2,3, . . . 
This is the general situation, and in this case, the dynamic ray is known to land at a 
unique point of the Julia set, whether or not the angle is rational. 

We rephrase these facts in a form which we will have many opportunities to use: 
if a parameter c ^ M has external angle i?, then the dynamic ray at angle i? for the 
parameter c will contain the critical value. If the angle $ is periodic, then this ray 
cannot possibly land: the ray must bounce into an inverse image of the critical point 
at a finite positive potential. The main focus of Sections 3 and 4 will be to transfer 
the landing properties of dynamic rays at rational angles into landing properties of 
parameter rays at rational angles: as so often in complex dynamics, the general 
strategy is "to plow in the dynamical plane and then to harvest in parameter space", 
as Douady phrased it. 

When a periodic ray lands at a periodic point, the periods need not be equal: it 
is possible that the period of the ray is a proper multiple of the period of the point 
it is landing at. We will therefore distinguish ray periods and orbit periods. If only 
one ray lands at every periodic point on the orbit, then both periods are equal; in 
general, there is a relation between these periods and the number of rays landing 
at each point on the orbit; see Lemma 2.4. For our purposes, periodic orbits will 
be most interesting if at least two rays land at each of its points. Such periodic 
orbits have a distinguished point and two distinguished dynamic rays landing at this 
point; these play a prominent role in all the symbolic descriptions of the Mandelbrot 
set. Following the terminology of Milnor [M2], we will call the distinguished point 
and rays the characteristic periodic point of the orbit and the characteristic rays (see 
below), and the corresponding external angles will be the two characteristic angles 
of the orbit. In Thurston's fundamental preprint [T], the two characteristic rays and 
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their common landing point are the "minor leaf of a "lamination". We will not use 
or describe his notation here, but we note that it is very close in spirit to this article. 

For our purposes, it will be sufficient to define characteristic points and rays only 
for parabolic periodic orbits. 

Definition 2.1 (Characteristic Components, Points and Rays). — For a quadratic po
lynomial with a parabolic orbit, the unique Fatou component containing the critical 
value will be called the characteristic Fatou component, the only parabolic periodic 
point on its boundary will be the characteristic periodic point of the parabolic orbit. 
It is the landing point of at least two dynamic rays, and the two of them closest to 
the critical value on either side will be the characteristic rays. 

The fact that every parabolic periodic point is the landing point of at least two dy
namic rays will be shown after Lemma 3.6. Lemma 2.4 will describe the characteristic 
rays dynamically. 

With hesitation, we use the term "Misiurewicz point" for a parameter c for which 
the critical point or, equivalently, the critical value, is (strictly) preperiodic. This 
terminology has been introduced long ago, but it is only a very special case of what 
Misiurewicz was investigating. In real dynamics, the term is used in a wider meaning. 
We have not been successful in finding an adequate substitution term and invite the 
reader for suggestions. 

In this section, we provide two lemmas which are the engine of our proof: the first 
one is of analytical nature; it is a slight generalization of Lemma B.l in Goldberg and 
Milnor [GM], guaranteeing stability in the Julia set at repelling (pre)periodic points. 
The second lemma will make counting possible by estimating the number of parabolic 
parameters with given ray periods. 

Lemma 2.2 (Stability of Repelling Orbits). — Suppose that, for some parameter Co € 
C (not necessarily in the Mandelbrot set), there is a repelling periodic point ZQ at which 
some periodic dynamic ray at angle i? lands. Then, for parameters c sufficiently close 
to Co, the periodic point ZQ can be continued analytically as a function z(c) and the 
dynamic ray at angle t? in the dynamic plane of c lands at z{c). Moreover, the dynamic 
ray and its landing point form a closed set which is canonically homeomorphic to [0, oo] 
via potentials, and this parametrized ray depends continuously on the parameter. 

When z{c) is continued analytically along some curve in parameter space along 
which the orbit remains repelling, then z(c) can lose its dynamic ray at angle $ only on 
a parameter ray at some angle 2k/d for some integer k > 0, or else at any parabolic pa
rameter; in the latter case, the dynamic ray at angle i? must then land at the parabolic 
orbit. 

If ZQ is repelling and preperiodic, the analogous statement holds provided that nei
ther the point ZQ nor any point on its forward orbit is the critical point. 
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Proof. — We first assume that ZQ is a periodic point. By the implicit function the
orem, z0 can be continued analytically as a function z(c) in a neighborhood of Co; 
the multiplier A(c) will also depend analytically on c so that the cycle is repelling 
sufficiently close to CQ. Let V be such a neighborhood of Co and denote the period 
of zo by n. Then for every c G V there exists a local branch gc of the inverse map 
of p ° n fixing z(c). There is a neighborhood U of z0 such that gCo maps U into U, 
and possibly by shrinking V, we may assume that all gc have the same property for 
c G V. Under iteration of gc, any point in U then converges to z{c). Let t > 0 be 
a potential such that, for the parameter Co, the set C7 contains all the points of the 
dynamic i9-ray at potentials t and below, including the landing point. 

Now we distinguish two cases, according to whether or not Co G M. If CQ £ M, then 
the external angle of the parameter Co is well-defined and different from the finitely 
many angles 2k/d for k = 1, 2 , 3 , . . . because the dynamic ray at angle i? lands. If V 
is small enough so that all points in V are outside M and have their external angles 
different from all the 2*1?, then for every c G V, the dynamic ray at angle i? lands, 
and the point at potential t depends analytically on the parameter. It will therefore 
be contained in U for sufficiently small perturbations and thus converge to z(c) under 
iteration of gCy so the landing point of the ray is z(c). 

However, if CQ G M, then we may assume V small enough so that all its points 
have potentials less than t/2 (with respect to the potential function of the Mandelbrot 
set). In the corresponding dynamic planes, the critical values then have potentials less 
than ¿/2, so every dynamic ray exists and depends analytically on the parameter for 
potentials greater than t/2 (the construction of the Böttcher coordinates around oo 
is analytic in the parameter where they exist). By shrinking V, we may then assume 
that for all c G V, the segment between potentials t/2 and t in the dynamic ray at 
angle i? is contained in U. Iterating the map gc, it follows that the dynamic ray at 
angle i? lands at z(c). In both cases, rays and landing points depend continuously on 
the parameter, including the parametrization by potentials. 

Suppose that z(c) is continued analytically along some curve in parameter space 
along which the orbit remains repelling, and let c be the first point on which the 
dynamic ray at angle ß no longer lands at z(c). For the parameter c, the dynamic ray 
at angle $ then cannot land at any repelling periodic point because this point would 
keep the ray under perturbations. Therefore, the dynamic ray at angle i? must either 
land at a parabolic orbit, or it must fail to land entirely. The latter case happens if 
and only if the forward orbit of the dynamic i?-ray contains the critical value, so the 
parameter c is on a parameter ray as specified. 

The statement about preperiodic points follows by taking inverse images and is 
straightforward, except if ZQ or any point on its forward orbit are the critical point. 
However, if some preperiodic dynamic ray lands at the critical value, then a small 
perturbation may bring the critical value onto this dynamic ray, and the inverse rays 
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will bounce into the critical point (after that, both branches will land, and the landing 
points are two branches of an analytic function). • 

Lemma 2.3 (Counting Parabolic Orbits). — For every positive integer n, the number of 
parabolic parameters in C having a parabolic orbit of exact ray period n is at most half 
the number of periodic angles in [0,1] having exact period n under doubling modulo 1. 

Proof — We can calculate the exact number of periodic angles. If an angle $ G [0,1] 
satisfies 2nt? = t? modulo 1, then we can write i? = a/(2n — 1) for some integer 
a, and there are 2n such angles in [0,1]. Only a subset of these angles has exact 
period n: denoting the number of such angles by s'n, we have ^k\ns'k = 2n, which 
allows to determine the s'n recursively or via the Möbius inversion formula. We have 
s[ — 2, and all the s'n are easily seen to be even. In the sequel, we will work with the 
integers sn := s'n/2. The first few terms of the sequence (sn), starting with si, are 
1,1,3,6,15,27,63,. . . The specified number of periodic angles in [0,1] is then exactly 
2sn. 

We consider the curve 

{(c^)eC2 :p°cn(z)=z} 
consisting of points z which are periodic under pc with period dividing n. It factors 
as a product Ylk\n Qk(c-> z) according to exact periods. (The curves Qk have been 
shown to be irreducible by Bousch [Bo] and by Lau and Schleicher [LS], a fact we 
will not use.) For |c| > 2, the filled-in Julia set of pc is a Cantor set containing all 
the periodic points. For \c\ > 4, it is easy to verify that points z with \z\ > \c\lj/2 + 1 
escape to oo, and so do points with \z\ < |c|x/2 — 1. Periodic points therefore satisfy 
\z\ = I c l 1 / 2 ^ + o( l ) ) as c —• oo. The multiplier of a periodic orbit of exact period n 
is the product of the periodic points on the orbit multiplied by 2n, so it grows like 
|4c|n/2(l + o( l ) ) . 

For any parameter c, the number of points which are fixed under the n-th iterate 
is obviously equal to 2n, counting multiplicities. These points have exact periods 
dividing rz, so the number of periodic points of exact period n equals 2sn by the 
same recursion formula as above. These periodic points are grouped in orbits, so the 
number of orbits is 2sn/n (which implies that 2sn is divisible by n). For bounded 
parameters c, the periodic points and thus the multipliers are bounded; since there are 
2sn/n orbits, the multipliers of which are analytic and behave like |c|n/2 near infinity, 
and since every orbit contains n points, it follows that sufficiently large multipliers 
are assumed exactly {2sn/n)(n/2)n = nsn times on Qn (we do not have to count 
multiplicities here because multiple orbits always have multiplier H-l). Consider the 
multiplier map on Qn which assigns to every point (c, z) the multiplier (d/dz)p°n(z). 
It is a proper map and thus has a mapping degree, so (counting multiplicities) every 
multiplier in C is assumed equally often, including the value +1 . The number of points 
(c,z) having multiplier -hi therefore equals nsn, counting multiplicities. Projecting 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



414 D. SCHLEICHER 

onto the c-coordinate and ignoring multiplicities, a factor n is lost because points on 
the same orbit project onto the same parameter, and we obtain an upper bound of 
sn for the number of parameters. (In fact, it is not too hard to show at this point 
that sn provides an exact count [M2]. We will show this in Corollary 3.4 by a global 
counting argument.) 

Consider a parabolic orbit of exact period k and multiplier ^ — e27rtp/q with (p, q) = 
1. Then the exact ray period is qk = : n, and qk is also the smallest period such that, 
when interpreting the orbit as an orbit of this period, the multiplier becomes +1 . 
Therefore, the periodic points on this orbit are on Qnj and the number of parabolic 
parameters having exact ray period n therefore is at most sn. • 

A more detailed account of such counting arguments can be found in Section 5 of 
Milnor [M2]. 

The following standard lemma is folklore and at the base of every description of 
quadratic iteration theory. Our proof follows Milnor [M2]; compare also Thurston [T, 
Theorem IL5.3 case b) i) a)]. We do not assume that the Julia set has any particular 
property; it need not even be connected. 

Lemma 2.4 (Permutation of Rays). — / / more than two periodic rays land at a peri
odic point, or if the orbit period is different from the ray period, then the first return 
map of the point permutes the rays transitively. 

Proof. — Denote the orbit period by k and the ray period by n. Since a periodic 
orbit has periodic rays landing only if the orbit is repelling or parabolic, the first 
return map of any of its periodic points is a local homeomorphism and permutes the 
rays landing there in such a way that their periods are all equal, and the number of 
rays landing at each point of the orbit is a constant s, say. If s = 1, then orbit period 
and ray period are equal. If s = 2, then either ray and orbit periods are equal, or the 
first return map of any point has no choice but to transitively permute the two rays 
landing at this point. We may hence assume s > 3. Then the s rays landing at any 
one of these periodic points separate the dynamic plane into s sectors. Every sector 
is bounded by two dynamic rays, so it has associated a width: the external angles of 
the two rays cut S 1 into two open intervals, exactly one of which does not contain 
external angles of rays landing at the same point. The width of the sector will be the 
length of this interval (normalized so that the total length of S 1 is 1). 

Since the dynamics of the first return map is a local homeomorphism near the 
periodic point, every sector is periodic, and so is the sequence of the corresponding 
widths. More precisely, we will justify the following observations below: if a sector 
does not contain the critical point, then it maps homeomorphically onto its image 
sector (based at the image of its landing point), and the width of the sector doubles. 
However, if the sector does contain the critical point, then the sector maps in a 
two-to-one fashion onto the image sector, and it covers the remaining dynamic plane 
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once. In this case, the width of the sector will decrease under this mapping, and 
the image sector contains the critical value. To justify these statements, first note 
that the rays bounding any sector are mapped to the rays bounding the image sector. 
Looking at external angles within the sector, it follows that either the sector maps 
forward homeomorphically, or it covers the entire complex plane once and the image 
sector twice. The latter must happen for the sector containing the critical point. 
Since all the sectors at any periodic point combined exactly cover the complex plane 
twice when mapped forward, all the other sectors must map homeomorphically onto 
the image sectors. We also see that among all the sectors based at any point, the 
sector containing the critical point must have width greater than 1/2, and all the 
other sectors then have widths less than 1/2 (the critical point cannot be on a sector 
boundary: if it is on a periodic dynamic ray, then this ray cannot land, and if it 
is on a periodic point, then this point is superattracting). The width of any sector 
doubles under the map if it does not contain the critical point; since the sum of the 
widths of all the sectors based at any point is 1, the width of the critical sector must 
decrease. 

For each orbit of sectors, there must be at least one sector with minimal width. 
It must contain the critical value (or it would be the image of a sector with half 
the width), and it cannot contain the critical point (or its image sector would have 
smaller width). Therefore, all the shortest sectors of the various cycles of sectors must 
be bounded by pairs of rays separating the critical point from the critical value, and 
these sectors are all nested. Among them, there is one innermost sector Si based at 
some point z\ of the periodic orbit. This sector Si cannot contain another point from 
the orbit of z\\ if there was such a point z', there would have to be a sector based 
at z1 which was shorter than all the shortest sectors at points on the orbit of z\, and 
this is obviously absurd. 

If there is an orbit of sectors not involving Si, then any shortest sector on this 
orbit must contain the critical value and thus Si, but it cannot contain the crit
ical point. This sector must then contain all sectors at z\ except the one con
taining the critical point. The representative of this orbit of sectors at z\ must 
then be the unique sector containing the critical point. Any cycle of sectors has 
then only two choices for its representative at z\\ the sector containing the crit
ical point or the critical value. If there is more than one cycle, then it follows 
that there are just two cycles, and each of them has exactly one representative 
at each point of the periodic orbit, so s — 2 in contradiction to our assumption. 

• 

Remark. — This lemma is at the heart of the general definition of characteristic rays: 
the main part of the proof works when at least two rays land at each of the periodic 
points, and it shows that there is a unique sector of minimal width containing the 
critical value. The rays bounding this sector are called the characteristic rays. For 
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the special case of a parabolic orbit, this definition agrees with the one we have given 
above. 

3. Periodic Rays 

In this section, we will be concerned with parameter rays at periodic angles. The 
proof of the following weak form of the theorem is due to Goldberg, Milnor, Douady, 
and Hubbard; see [GM, Theorem C.7]. 

Proposition 3.1 (Periodic Parameter Rays Land). — Every parameter ray at a peri
odic angle t? lands at a parabolic parameter c$. In the dynamic plane of CQ, the 
dynamic ray at angle $ lands at the parabolic orbit. 

Proof. — Let c 0 be a point in the limit set of the parameter ray at angle $ and let 
n be the exact period of i9. In the dynamic plane of Co, the dynamic ray at angle 
$ must land at a repelling or parabolic periodic point z of ray period n; see [Ml, 
Theorem 18.1]. If z was repelling, Lemma 2.2 would imply that for parameters c 
sufficiently close to Co, the dynamic ray at angle t9 in the dynamic plane of c would 
land at a repelling periodic point z(c), so it could not bounce off any precritical point. 
However, when c is on the parameter ray at angle then the dynamic ray at angle 
i9 must bounce off some precritical point, even infinitely often. 

Therefore, CQ is parabolic, and within its dynamics, the dynamic ray at angle $ 
lands at the parabolic orbit. Since limit sets are connected but parabolic parameters 
of given ray period form a finite set by Lemma 2.3, the parameter ray at angle $ lands 
and the statements follow. • 

This proves half of the first assertion in Theorem 1.1. The remainder of the first 
and the second assertion will be shown in several steps. We want to show that at a 
parabolic parameter CQ , those two parameter rays land which have the same external 
angles as the two characteristic rays of the critical value Fatou component, and no 
other rational ray lands there. The first statement is usually shown using Ecalle 
cylinders. It turns out that it is much easier to show that some ray does not land 
at a given point, rather than to show where it does land. The idea in this paper 
will be to exclude all the wrong rays from landing at given parabolic parameters, 
using partitions in the dynamic and parameter planes. Using that the rays must land 
somewhere, a global counting argument will then prove the theorem. 

Let c be a parabolic parameter and let & c be the set of periodic angles t? such that 
the parameter ray at angle # lands at c. A priori, it might be empty; if it is not, 
then all the angles in 0 C have the same period by Proposition 3.1. We will prove the 
following two results later in this section. 
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Proposition 3.2 (Necessary Condition). — / / an angle $ is in @c, then the dynamic 
ray at angle $ lands at the characteristic point of the parabolic orbit in the dynamic 
plane of c. 

Proposition 3.3 (At Most Two Rays). — Suppose the set 0 C contains more than one 
angle. Let n be the common period of these angles and suppose that all parameter ray 
pairs of periods 2, 3, . . . , n — 1 land in pairs. Then 0 C consists of exactly those two 
angles which are the characteristic angles of the parabolic orbit in the dynamic plane 
of c. 

These two propositions allow to prove the half of the theorem dealing with periodic 
rays; we will deal with the preperiodic half in the next section. 

Proof of Theorem 1.1 (periodic case). — We will use induction on the period. For 
period n — 1, there are only two angles 0 and 1 which both describe the same 
parameter ray. This ray runs along the positive real axis and lands at the unique 
parabolic parameter c = 1/4 with ray period 1. 

For any period n > 2, the number of parabolic parameters of any given ray period 
is at most half the number of parameter rays at periodic angles of the same period by 
Lemma 2.3. Since every ray lands at such a parabolic parameter by Proposition 3.1, 
and at most two rays land at any such point by Proposition 3.3 (using the induc
tive hypothesis), it follows that exactly two rays land at every parabolic point, and 
Proposition 3.3 says which ones these are. It also follows that the number of parabolic 
parameters of any given period is largest possible as allowed by Lemma 2.3. • 

Corollary 3.4 (Counting Parabolic Orbits Exactly). — Let Sk be the number of param
eters having a parabolic orbit of exact ray period k. These numbers satisfy the recursive 
relation ^2k\nSk = 2n~1, which determines them uniquely. • 

It remains to prove the two propositions. In both of them, we have to exclude 
that certain rays land at given parabolic parameters. We do that using appropriate 
partitions: first in the dynamic plane, then in parameter space. We start by discussing 
the topology of parabolic quadratic Julia sets and define a variant of the Hubbard tree 
on them. Hubbard trees have been introduced by Douady and Hubbard in [DH1] for 
post critically finite polynomials. We will be interested in combinatorial statements 
about combinatorially described Julia sets, so these results could be derived in purely 
combinatorial terms. However, it will be more convenient to use topological properties 
of the Julia sets in the parabolic case, in particular that they are pathwise connected 
(which follows from local connectivity). This was originally proved by Douady and 
Hubbard [DH1]; proofs can also be found in Carleson and Gamelin [CG] and in Tan 
and Yin [TY]. 

In a quadratic polynomial with a parabolic orbit, let z be any point within the filled-
in Julia set and let U be a bounded Fatou component. We then define a projection of 
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^37/63 

FIGURE 2 . Illustration of the theorem in the periodic case. The poly
nomials at the landing points of the parameter rays at angles 3 / 1 5 and 
4 / 1 5 (left) and at angles 2 2 / 6 3 and 2 5 / 6 3 (right) are shown. In both pic
tures, the rays landing at the characteristic points are drawn. For the 
corresponding parameter rays, see Figure 1. 

z onto U as follows: If z G U, then the projection of z onto U is z itself. Otherwise, 
consider any path within the filled-in Julia set connecting z to an interior point of 
U (such a path exists because the filled-in Julia set is pathwise connected); then the 
projection of z onto U is the first point where this path intersects dU. There may be 
many such paths, but the projection is still well-defined: take any two paths from z 
to the interior of U and connect their endpoints within U. If the paths are different, 
they will bound some subset of C, which must be in K because K is full. If the paths 
reach dU in different points, then these paths enclose part of the boundary of U, but 
the boundary of any Fatou component is always in the boundary of the filled-in Julia 
set. This contradiction shows that the projection is well-defined. Every parabolic 
periodic point is on the boundary of at least one periodic Fatou component, so the 
projection in this case is just the identity. 

Lemma 3.5 (Projection Onto Periodic Fatou Components). — In a quadratic polyno
mial with a parabolic orbit, the projections of all the parabolic periodic points onto the 
Fatou component containing the critical value take images in the same point, which 
is the characteristic point of the parabolic periodic orbit. Projections of the parabolic 
periodic points onto any other bounded Fatou component take images in at most two 
boundary points, which are periodic or preperiodic points on the parabolic orbit. 
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Proof. — Let n be the period of the periodic Fatou components and number them 
Uo, E/i,.. •, Un-i, Un = Uo in the order of the dynamics, so that Uo = Un contains the 
critical point. Let ak be the number of different images that the projections of all the 
parabolic periodic points onto Uk have, for k = 0 , 1 , . . . , n (with a 0 = an). We first 
show that ak+i > ak for k = 1,2,. . . , n — 1. 

Let z be a parabolic periodic point and let TT(Z) be its projection onto Uk. We claim 
that P(TT{Z)) is the projection onto Uk+i of either p(z) or the parabolic point on the 
boundary of the Fatou component containing the critical value (i.e. the characteristic 
point on the parabolic orbit). Indeed, if the path between z and 7r(z) maps forward 
homeomorphically under p, then iv(p{z)) — p{ir{z)). If it does not, then the path must 
intersect the component containing the critical point, and ir(z) — TT(0). But then 
P(TT(Z)) is the projection of the characteristic point on the parabolic orbit. Therefore, 
for k G {0 ,1 ,2 , . . . , n — 1} , all the ak image points of the projections of parabolic 
periodic points onto Uk will be mapped under p to image points of the projection 
onto Uk+i- Since for k ^ 0, the polynomial p maps Uk homeomorphically onto t/fc+i, 
we get an > a n _i > • * • > > a±. Similarly, since p maps Uo in a two-to-one fashion 
onto f/i, we have a\ > ao/2. 

Now we connect the parabolic periodic points by a tree: first, there is a path 
between the critical point and the critical value, and all the other parabolic periodic 
points which are not on this path can be connected, one by one, to the subtree which 
has been constructed thus far. We can require that every path which we are adding 
intersects the boundary of any bounded Fatou component in the least number of 
points (at most two). After finitely many steps, all the parabolic periodic points are 
connected by a finite tree, and all the endpoints of this tree are parabolic periodic 
points. It is not hard to check that this tree intersects the boundary of any bounded 
Fatou component exactly in the image points of the projections of the parabolic 
periodic points. 

We now claim that there is a periodic Fatou component whose closure does not 
disconnect the tree. Indeed, any component which does disconnect the tree has at 
least one parabolic periodic point and thus at least one periodic Fatou component 
in each connected component of the complement. Pick one connected component, 
and within it pick a periodic Fatou component that is "closest" to the removed one 
(in the sense that the path between these two components does not contain further 
periodic Fatou components). Remove this component and continue; this process can 
be continued until we arrive at a component which does not disconnect the tree. Let 

be such a component. 
It follows that a£ < 2: all the parabolic periodic points which are not on the 

boundary of t/~ must project to the same boundary point, say 6, which may or may 
not be the parabolic periodic point on the boundary of U^. We will now show that it 
will be, so ar = 1. 
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Since b is the image of a projection onto of some parabolic periodic point which 
is not in it follows from the argument above that p(b) is the image of a projection 
onto C/^ + 1 of some parabolic periodic point which is not in U^±. But since b is the 
only boundary point of with this property, it follows that b is fixed under the first 
return map of this Fatou component. The point b must then be the unique parabolic 
periodic point on the boundary of £7-, and we have = 1. 

Since a\ < a,2 < an < 2ai, it follows in particular that a\ = 1 and all ak < 2, and 
all projections onto the Fatou component containing the critical value take values in 
the same point, which is the characteristic point of the parabolic orbit. The remaining 
claims follow. • 

Remark. — The tree just constructed is similar to the Hubbard tree introduced in 
[DHl] for postcritically finite polynomials. An important difference is that our tree 
does not connect the critical orbit. Moreover, Hubbard trees in [DHl] are specified 
uniquely, while our trees still involve the choice of how to traverse bounded Fatou 
components. We will suggest a preferred tree below. 

However, some properties are independent of the choice of the tree. Assume that 
two simple curves 71 and 72 within the filled-in Julia set connect the same two points 
z\ and Z2, such that a point w is on one of the curves but not on the other. Then w 
is on the closure of a bounded Fatou component because the region which is enclosed 
by the two curves must be in the filled-in Julia set. The tree intersects the boundary 
of any bounded Fatou component in at most two points which are projection images 
and thus well-defined. Therefore, the choice for the curves and thus for the tree is 
only in the interior of bounded Fatou components. 

For any point w in the Julia set (not in a bounded Fatou component), it follows 
that the number of branches of the tree (i.e. the number of components the point 
disconnects the tree into) is independent of the choice of the tree. Similarly, the 
number of branches is "almost" non-decreasing under the dynamics, so that p(w) has 
at least as many branches as w: all the different branches at w will yield different 
branches at p(w)y except if w is on the boundary of the Fatou component containing 
the critical point. At such boundary points, only the branch leading into the critical 
Fatou component can get lost. (However, it does happen that p(w) has extra branches 
in the tree.) It follows that the characteristic point on the parabolic orbit has at most 
one branch on any tree, and all the other parabolic periodic points can have up to 
two branches. 

A branch point of a tree is a point w which disconnects the tree into at least three 
complementary components. 

Lemma 3.6 (Branch Points of Tree). — Branch points of the tree between parabolic 
periodic points are periodic or preperiodic points on repelling orbits. 
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Proof. — Branch points are never on the parabolic orbit, as we have just seen. There
fore, the image of a branch point is always a branch point with at least as many 
branches. Since there are only finitely many branch points, every branch point is 
periodic or preperiodic and hence on a repelling orbit. • 

We can now proceed to select a preferred tree, which we will call a (parabolic) 
Hubbard tree. We only have to specify how it will traverse bounded Fatou components. 
In fact, since every bounded Fatou component will eventually map homeomorphically 
onto the critical Fatou component, we only have to specify how the tree has to traverse 
this component; for the remaining components, we can pull back. 

Let U be the critical Fatou component and let w be the parabolic periodic point 
on its boundary. First we want to connect the critical point in U to w by a simple 
curve which is forward invariant under the dynamics. We will use Fatou coordinates 
for the attracting petal of the dynamics [Ml, Section 7]. In these coordinates, the 
dynamics is simply addition of +1 , and our curve will just be a horizontal straight 
line connecting the critical orbit. This curve can be extended up to the critical point. 
The other point on the boundary of the critical Fatou component which we have to 
connect is —w, and we use the symmetric curve. With this choice, we have specified 
a preferred tree which is invariant under the dynamics, except that the image of the 
tree connects the characteristic periodic point on the parabolic orbit to the critical 
value. Removing this curve segment from the image tree, we obtain the same tree as 
before. 

It is well known that, if a repelling or parabolic periodic point disconnects the Julia 
set into several parts, then this point is the landing point of as many dynamic rays 
as it disconnects the Julia set into. It follows that any branch point of the Hubbard 
tree has dynamic rays landing between any two branches; any periodic point on the 
interior of the tree is the landing point of at least two dynamic rays separating the 
tree. It now follows that the characteristic point on the parabolic orbit, and thus every 
parabolic periodic point, is the landing point of at least two dynamic rays. The two 
characteristic rays of the parabolic orbit are the two rays landing at the characteristic 
point of the orbit and closest possible to the critical value on either side. A different 
description of the characteristic rays has been given in Lemma 2.4. 

Lemma 3.7 (Orbit Separation Lemma). — Any two parabolic periodic points of a qua
dratic polynomial can be separated by two (pre)periodic dynamic rays landing at a 
common repelling (pre)periodic point. 

Proof. — It suffices to prove the lemma when one of the two parabolic periodic points 
is the characteristic point of the orbit; this is also the only case we will need here. 
Let z be this characteristic point and let z' be a different parabolic periodic point. 
Consider the tree of the polynomial as constructed above. It contains a unique path 
connecting z and z'. We may assume that this path does not traverse a periodic 
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Fatou component except at its ends; if it does, we replace z' by the parabolic periodic 
point on that Fatou component. Similarly, we may assume that the path does not 
traverse another parabolic periodic point. If the path from z to zl contains a branch 
point of the tree, then by Lemma 3.6, this branch point is periodic or preperiodic and 
repelling, and it is therefore the landing point of rational dynamic rays separating the 
parabolic orbit as claimed. 

If the Hubbard tree does not have a branch point between z and z', then it takes 
a finite number k of iterations to map z' for the first time onto z. Denoting the path 
from z to z' by 7, then the fc-th iterate of 7 must traverse itself and possibly more in 
an orientation reversing way: denoting the fc-th image of z by z", then the image curve 
connects z and z"\ near z, it must start along the end of 7 because z is an endpoint of 
the Hubbard tree, and it cannot branch off because we had assumed no branch point 
of the tree to be on 7. There must be a unique point Zf in the interior of 7 which is 
fixed under the fc-th image of 7. This point is a repelling periodic point, and it is the 
landing point of two dynamic rays with the desired separation properties. • 

Now we can prove Proposition 3.2. 

Proof of Proposition 3.2. — In Proposition 3.1, we have shown that 0 C can contain 
only angles $ of dynamic rays landing at the parabolic cycle in the dynamic plane of c. 
By the Orbit Separation Lemma 3.7, all the rays not landing at the characteristic point 
of the parabolic orbit are separated from the critical value by a partition formed by 
two dynamic rays landing at a common repelling (pre)periodic point. This partition 
is stable in a neighborhood in parameter space by Lemma 2.2. But the parameter 
c being a limit point of the parameter ray at angle $ means that, for parameters 
arbitrarily close to c, the critical value is on the dynamic ray at angle t9. • 

The set 0 C of external angles of the parabolic parameter c can thus contain only 
such periodic angles which are external angles of the characteristic periodic point of 
the parabolic orbit in the dynamical plane of c. If there are more than two such 
angles, we want to exclude all those which are not characteristic. This is evidently 
impossible by a partition argument in the dynamic plane. In order to prove Propo
sition 3.3, we will use a partition of parameter space; for that, we have to look more 
closely at parameter space and incorporate some symbolic dynamics using kneading 
sequences. The partition of parameter space according to kneading sequences and, 
more geometrically, into internal addresses is of interest in its own right (see below) 
and has been investigated by Lau and Schleicher [LS]; related ideas can be found in 
Thurston [T], Penrose [Prl] and [Pr2] and in a series of papers by Bandt and Keller 
(see [Kel], [Ke2] and the references therein). This partition will also be helpful in 
the next section, establishing landing properties of preperiodic parameter rays. 

Definition 3.8 (Kneading Sequence). — To an angle v1 G S 1 , we associate its kneading 
sequence as follows: divide S 1 into two parts at $/2 and (1? 4- l ) / 2 (the two inverse 
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images of i? under angle doubling); the open part containing the angle 0 is labeled 
0, the other open part is labeled 1 and the boundary gets the label *. The kneading 
sequence of the angle i) is the sequence of labels corresponding to the angles 2$, 
4tf, 8tf, . . . 

# / 2 
1 

0 

0 

( t f + l ) / 2 * 

( 0 + 1 ) / 2 

0, 

m$^ù 

FIGURE 3. Left: the partition used in the definition of the kneading se
quence. Right: a corresponding partition of the dynamic plane by dynamic 
rays, shown here for the example of a Misiurewicz polynomial. 

It is easy to check that, for $ ^ 0, the first position always equals 1. If is 
periodic of period n, then its kneading sequence obviously has the same property 
and the symbol • appears exactly once within this period (at the last position). The 
symbol • occurs only for periodic angles. However, it may happen that an irrational 
angle has a periodic kneading sequence (see e.g. [LS]). As the angle $ varies, the 
entry of the kneading sequence at any position n changes exactly at those values of $ 
for which 2 n _ 1 $ is on the boundary of the partition, i.e. where the kneading sequence 
has the entry This happens if and only if the angle i? is periodic, and its exact 
period is n or divides n. 

Another useful property which will be needed in Section 4 is that the pointwise 
limits K_(t?) := l i m a / ^ K ^ ' ) and K+ (#) := lim^ N tf K(tf') exist for every If <& 
is periodic, then K± ($) is also periodic with the same period (but its exact period 
may be smaller). Both limiting kneading sequences coincide with K(i?) everywhere, 
except that all the ^-symbols are replaced by 0 in one of the two sequences and by 
1 in the other. The reason is simple: if is very close to then the orbits under 
doubling, as well as the partitions in the kneading sequences are close to each other, 
and any symbol 0 or 1 at any finite position will be unchanged provided is close 
enough to i9. However, if the period of i) is n so that 2n~lrd is on the boundary of the 
partition in the kneading sequence, then 2 n - 1 i ? / will barely miss the boundary in its 
own partition, and the • will turn into a 0 or 1. As long as the orbit of is close to 
the orbit of i?, all the symbols • will be replaced by the same symbol. 
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FIGURE 4. Left: the partition .Pn used in the proof of Proposition 3.3, 
for n = 4. The corresponding hyperbolic components are drawn in for 
clarity and do not form part of the partition. Right: a corresponding 
symbolic picture, showing how the partition yields a parameter space of 
initial segments of kneading sequences. The same pairs of rays are drawn 
in as on the left hand side, but the angles are unlabeled for lack of space. 

Proposition 3.1 asserts in particular that all the periodic parameter rays landing 
at the same parameter have equal period. All the rays of period at most n — 1 divide 
the plane into finitely many pieces. We denote this partition by Vn-i', it is illustrated 
in Figure 4. Parabolic parameters of ray period n and parameter rays of period n 
have no point in common with the boundary of this partition. 

Lemma 3.9 (Kneading Sequences in the Partition). — Fix any period n > 1 and sup
pose that all the parameter rays of periods at most n — 1 land in pairs. Then all 
parameter rays in any connected component of ^n-i have the property that the first 
n — 1 entries in their kneading sequences coincide and do not contain the symbol *. 
In particular, rays of period n with different kneading sequences do not land at the 
same parameter. 

Proof. — The first statement is trivial for two periodic rays which do not have rays 
of lower periods between them, i.e., for rays from the same "access to infinity" of 
the connected component in -Pn-i* the first n — 1 entries in the kneading sequences 
are stable for angles within every such access. The claim is interesting only for a 
connected component with several "accesses to infinity". 

The hypothesis of the theorem asserts that parameter rays of periods up to n — 1 
land in pairs. Therefore, whenever two rays at angles i?2 are in the same connected 
component of y n _ i , the parameter rays of any period k < n — 1 on either side (in 
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S 1 ) between these two angles must land in pairs. The number of such rays is thus 
even, and the fc-th entry in the kneading sequence changes an even number of times 
between 0 and 1. • 

Remark. — This lemma allows to interpret 7 n as a parameter space of initial seg
ments of kneading sequences. In Figure 4, the partition is indicated for n = 4, together 
with the initial four symbols of the kneading sequence. The entire parameter space 
may thus be described by kneading sequences, as noted above. To any parameter 
с E C, we may associate a kneading sequence as follows: it is a one-sided infinite 
sequence of symbols, and the fc-th entry is 1 if and only if the parameter is separated 
from the origin by an even number of parameter ray pairs of periods к or dividing 
fc; if the number of such ray pairs is odd, then the entry is 0, and if the parameter 
is exactly on such a ray pair, then the entry is *. Calculating the kneading sequence 
of any point is substantially simplified by the observation that, in order to know the 
entire kneading sequence at a parameter ray pair of some period n, it suffices to know 
the first n — 1 entries in the kneading sequence, so we only have to look at ray pairs of 
periods up to n — 1. This leads to the following algorithm: for any point с G C, find 
consecutively the parameter ray pairs of lowest periods between the previously used 
ray pair and the point c. The periods of these ray pairs will form a strictly increas
ing sequence of integers and allow to reconstruct the kneading sequence, encoding it 
very efficiently. If we extend this sequence by a single entry 1 in the beginning, we 
obtain the internal address of c. For details, see [LS]. In the context of real quadratic 
polynomials, this internal address is known as the sequence of cutting times in the 
Hofbauer tower. 

The figure shows that certain initial segments of kneading sequences appear sev
eral times. This can be described and explained precisely and gives rise to certain 
symmetries of the Mandelbrot set; see [LS]. 

Lemma ЗЛО (Different Kneading Sequences). — Let с be a parabolic parameter and 
let z\ be the characteristic periodic point on the parabolic orbit. Among the dynamic 
rays landing at z\> only the two characteristic rays can have angles with identical 
kneading sequences. 

Proof. — Let i?i, i?2 5 • • • > be the angles of the dynamic rays landing at z\. If their 
number s is 2, then both angles are characteristic, and there is nothing to show. We 
may hence assume s > 3. All the rays $i are periodic of period n, say. By Lemma 2.4, 
the orbit period of the parabolic orbit is exactly n/s =: k. Let zo and z'Q be the two 
(different) immediate inverse images of z\ such that ZQ is periodic. If any one of the 
rays R($i) is chosen, its two inverse images, together with any simple path in the 
critical Fatou component connecting ZQ and z'Q, form a partition of the complex plane 
into two parts. We label these parts again by 0 and 1 so that the dynamic ray at 
angle 0 is in part 0, and we label the boundary by Now the labels of the parts 
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containing the rays R(i)i), R(2$i), i2(4#*), . . . again reflect the kneading sequence of 
fli because the partitions are bounded at the same angles. 

Above, we have constructed a tree connecting the parabolic orbit. By Lemma 3.6, 
branch points of this tree are on repelling orbits, so ZQ and z'0 have at most two 
branches of the tree. One branch always goes into the critical Fatou component to 
the critical point. For zo or z'0, the other branch goes to the critical value which is 
always in the region labeled 1. The second branch at the other point (z'0 or ZQ) must 
leave in the symmetric direction, so it will always lead into the region labeled 0 (if 
the second branch at z'0 were to lead into a direction other than the symmetric one, 
then the common image point z± of ZQ and zf

0 could not be an endpoint of the tree, 
which it is by Lemma 3.6). It follows that the entire tree, except the part between z0 

and zf

0, is in a subset of the filled-in Julia set whose label does not depend on which 
of the angles $i have been used to define the partition and the kneading sequence. 
For positive integers Z, let zi be the Z-th forward image of ZQ. If Z is not divisible by k, 
it follows that the label of z\ is independent of $¿5 since z\ is the landing point of all 
the dynamic rays at angles 2l~1$i, it follows that the Z — 1-st entries of the kneading 
sequences of all the $i are the same. Therefore, we can restrict our attention to the 
rays at angles rd'1, $

f

2,... ,^'s landing at ZQ, where ^ is an immediate inverse image of 
$1. The first return dynamics among the angles is multiplication by 2k; for the rays, 
this must be a cyclic permutation with combinatorial rotation number r/s for some 
integer r (Lemma 2.4); compare Figure 5. 

Depending on which of the rays i9j is used for the kneading sequence, i.e. which 
of the rays defines the partition, a given ray ^ may have label 0 or label 1. In 
particular, the total number among these rays which are in region 0 may be different. 
But then the number of symbols 0 within any period of the kneading sequence will be 
different and the kneading sequences cannot coincide. Two angles among the i9i can 
thus have the same kneading sequence only if the corresponding partition has equally 
many rays in the region labeled 0. This leaves only various pairs of angles at symmetric 
positions around the critical value as candidates to have identical kneading sequences. 
But it is not hard to verify, looking at the cyclic permutation of the rays t? ,̂ that if two 
such angles define a partition in which at least one of the ^ is in region 0, then the two 
corresponding kneading sequences are different at some position which is a multiple 
of k. The only two angles with identical kneading sequences are therefore those for 
which all the ^ are in region 1 (or on its boundary), so the partition boundary is 
adjacent to the Fatou component containing the critical point. The angles $i are 
hence those for which the dynamic rays land at z\ adjacent to the critical value, so 
the corresponding rays are the characteristic rays of the parabolic orbit. They do in 
fact have identical kneading sequences. • 

Proof of Proposition 3.3. — For period n — 1, there is nothing to show. For periods 
n > 2, we may suppose that all parameter rays of periods up to n — 1 land in pairs. 
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FIGURE 5 . Illustration of the proof of Lemma 3.10. Left: coarse sketch of 
the entire Julia set; numbers in parentheses describe the parabolic orbit 
(in this case, of period 5) , and symbols 0 or 1 specify the corresponding 
entries in the kneading sequences of external angles of rays landing at the 
characteristic periodic point. Right: blow-up near the critical point (cen
ter, marked by *) with the periodic point zo, considered as a fixed point of 
the first return map. In this case, seven rays land at zo with combinatorial 
rotation number 3 / 7 . The rays are labeled by the corresponding kneading 
sequences. The symbols 0 and 1 indicate regions of the Julia set which are 
always on the same side of the partition, independently of which ray is 
chosen. 

We have a parabolic parameter c of ray period n and the set 0 C contains the angles 
of periodic parameter rays landing at c. All these angles have the same period n and, 
by Lemma 3.9, identical kneading sequences. Since the corresponding dynamic rays 
all land at the characteristic point of the parabolic periodic orbit by Proposition 3.2, 
Lemma 3.10 says that if © c contains more than a single element, it contains the two 
characteristic angles. • 

We have now finished the proof of the periodic part of the theorem, describing 
which periodic parameter rays land at common points. This prepares the ground for 
combinatorial descriptions such as Lavaurs' algorithm [Lai] or internal addresses. 

4. Preperiodic Rays 

In this section, we will turn to parameter rays at preperiodic angles and show at 
which Misiurewicz points they land. We will use again kneading sequences. Recall 
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that if the angle $ is periodic of period n, then its kneading sequence K(#) will be 
periodic of the same period; it will have the symbol * exactly at positions n, 2n, 3n, . . . 
Moreover, the pointwise limits K_ ($) := lim ̂ / and K+. (&) := lmx#/\^ K($') 
both exist; in one of them, all the symbols • are replaced by 1 and in the other by 
0 throughout. Both are still periodic; in fact, their period is n (or a divisor thereof). 
More precisely, if the parameter rays at periodic angles #i and t?2 both land at the 
same parameter value, then K±($ i ) = Kip (#2): it suffices to verify this statement for 
a single period within the kneading sequences, and this follows from Lemma 3.9. We 
can thus imagine every pair of periodic parameter rays being replaced by two pairs, 
infinitesimally close on either side to the given pair and having periodic kneading 
sequences without the symbol 

Kneading sequences of preperiodic rays are themselves preperiodic; the lengths of 
the preperiods of external angle and kneading sequence are equal (this is easy to 
verify; or see the proof of Lemma 4.1). However, the lengths of the periods do not 
have to be equal: the ray 9/56 = 0.001010 has kneading sequence 110111 = 1101. 
This fact is directly related to the number of parameter rays landing at the same 
Misiurewicz point; see below. 

15/56 11/56 9/56 1 /6 

FIGURE 6 . Illustration of the theorem in the preperiodic case. Shown are 
the Julia sets of the polynomials at the landing points of the parameter 
rays at angles 9 / 5 6 , 1 1 / 5 6 and 1 5 / 5 6 (left) and at angle 1 /6 (right). In 
both pictures, the dynamic rays landing at the critical values are drawn. 

Proof of Theorem 1.1 (preperiodic case). — Consider any preperiodic parameter ray 
at angle and let c be one of its limit points. First suppose that c is a parabolic 
parameter. We know that there are two parameter rays at periodic angles t?i, $ 2 which 

ASTÉRISQUE 261 



RATIONAL P A R A M E T E R RAYS OF T H E M A N D E L B R O T SET 429 

land at c. We can imagine two parameter ray pairs infinitesimally close to the ray 
pair ( i ? i , $ 2 ) on both sides, and these two parameter ray pairs have periodic kneading 
sequences without symbols *. Each of these two periodic kneading sequences must 
differ at some finite position from the preperiodic kneading sequence of 1?. But we had 
seen in the previous section that the regions of constant initial segments of kneading 
sequences are bounded by pairs of parameter rays at periodic angles (see Lemma 3 . 9 ) , 
so there is a pair of periodic parameter rays landing at the same point separating the 
parameter ray at angle $ from the two rays at angles t?i52 and from the parabolic 
point c. Therefore, c cannot be a limit point of the parameter ray at angle rd. This 
contradiction shows that no limit point of a preperiodic parameter ray is parabolic. 

Now we argue similarly as in the proof of Proposition 3 . 1 . For the parameter 
c, there is no parabolic orbit, so the dynamic ray at angle i9 lands at a repelling 
preperiodic point. We want to show that the landing point is the critical value. Since 
c is a limit point of the parameter ray at angle there are arbitrarily close parameters 
for which the critical value is on the dynamic ray at angle 

If, for the parameter c, the dynamic ray at angle $ does not land at the critical 
point or at a point on the backwards orbit of the critical point, then the dynamic ray 
at angle $ and its landing point depend continuously on the parameter by Lemma 2 . 2 , 
so the critical value must be the landing point of the dynamic ray at angle $ for the 
parameter c. If, however, the landing point of the dynamic i?-ray is on the backwards 
orbit of the critical value, then some finite forward image of this ray will depend 
continuously on the parameter, and pulling back may yield a dynamic ray bouncing 
once into the critical value or a point on its backward orbit, but after that the two 
continuations will land at well-defined points. The ray with both continuations and 
both landing points will still depend continuously on the parameter, so again the 
dynamic $-ray must land at the critical value for the parameter c. (However, this 
contradicts the assumption that the landing point is on the backwards orbit of the 
critical value because that would force the critical value to be periodic.) 

We see that, for any limit point c of the parameter ray at angle the number c is 
preperiodic under z i—>• z2 4- c with fixed period and preperiod, and c is a Misiurewicz 
point. Since any such point c satisfies a certain polynomial equation, there are only 
finitely many such points. The limit set of any ray is connected, so the parameter 
ray at angle $ lands, and the landing point is a Misiurewicz point with the required 
properties. This shows the third part of Theorem 1.1 . 

For the last part, we have already shown that a Misiurewicz point cannot be the 
landing point of a periodic parameter ray, or of a preperiodic ray with external angle 
different from the angles of the dynamic rays landing at the critical value. It remains 
to show that, given a Misiurewicz point Co such that the critical value is the landing 
point of the dynamic ray at angle t?, then the parameter ray at angle $ lands at Co. 
We will use ideas from Douady and Hubbard [DH1]. By Lemma 2 . 2 , there is a simply 
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connected neighborhood V of CQ in parameter space such that CQ can be continued 
analytically as a repelling preperiodic point, yielding an analytic function z(c) with 
z(co) = Co such that the dynamic ray at angle i? for the parameter c E V lands at 
z(c). The relation z{c) = c is certainly not satisfied identically on all of V, so the 
solutions are discrete and we may assume that CQ is the only one within V. 

Now we consider the winding number of the dynamic ray at angle 1? around the 
critical value, which is defined as follows: denoting the point on the dynamic $-ray at 
potential t > 0 by zt and decreasing t from +00 to 0, the winding number is the total 
change of arg(^ — c) (divided by 2ir so as to count in full turns). Provided that the 
critical value is not on the dynamic ray or at its landing point, the winding number 
is well-defined and finite and depends continuously on the parameter. When the pa
rameter c moves in a small circle around CQ and if the winding number is defined all 
the time, then it must change by an integer corresponding to the multiplicity of c as 
a root of z(c) — c. However, when the parameter returns back to where it started, the 
winding number must be restored to what it was before. This requires a discontinuity 
of the winding number, so there are parameters arbitrarily close to CQ for which the 
critical value is on the dynamic ray at angle 1?, and Co is a limit point of the parameter 
ray at angle Since this parameter ray lands, it lands at c 0 . This finishes the proof 
of Theorem 1.1. • 

Remark. — There is no partition in the dynamic plane showing that preperiodic pa
rameter rays can not land at parabolic parameters: there are countably many preperi
odic dynamic rays landing at the boundary of the characteristic Fatou component, for 
example at preperiodic points on the parabolic orbit, and they cannot be separated 
by a stable partition. 

For the final part of the theorem, we used that a repelling preperiodic point z(c) 
depends analytically on the parameter. As mentioned before, this proof started with 
a need to describe parameter spaces of antiholomorphic polynomials like the Tricorn 
and Multicorns, and there we do not have analytic dependence on parameters. Here 
is another way to prove that every Misiurewicz point is the landing point of all the 
parameter rays whose angles are the external angles of the critical value in the dynamic 
plane. We start with any Misiurewicz point c 0 and external angle $ of its critical 
value. Let c\ be the landing point of the parameter ray at angle i9. Then both 
parameters Co and c\ have the property that in the dynamic plane, the ray at angle 
& lands at the critical value. It suffices to prove that this property determines the 
parameter uniquely. This is exactly the content of the Spider Theorem, which is 
an iterative procedure to find postcritically finite polynomials with assigned external 
angles of the critical value. In Hubbard and Schleicher [HS], there is an easy proof 
for polynomials with a single critical point. While the existence part of that proof 
works only if the critical point is periodic, all we need here is the uniqueness part, 
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and that works in the preperiodic case just as well, both for holomorphic and for 
antiholomorphic polynomials. 

The last part could probably also be done in a more combinatorial but rather 
tedious way, using counting arguments like in the periodic case. This would, however, 
be quite delicate, as the number of Misiurewicz points and the number of parameter 
rays landing at them require more bookkeeping: the number of parameter rays landing 
at Misiurewicz points varies and can be any positive integer. The following lemma 
makes this more precise. 

Lemma 4.1 (Number of Rays at Misiurewicz Points). — Suppose that a preperiodic 
angle i? has preperiod I and period n. Then the kneading sequence K(i?) has the same 
preperiod I, and its period k divides n. Ifn/k > 1, then the total number of parameter 
rays at preperiodic angles landing at the same point as the ray at angle i? is n/k; if 
n/k = 1, then the number of parameter rays is 1 or 2. 

In the example above, we had seen that the angle 9/56 has period 3, while its 
kneading sequence has period 1. Therefore, the total number of rays landing at the 
corresponding Misiurewicz point is three: their external angles are 9/56,11/56 and 
15/56. If more than one ray lands at a given Misiurewicz point, it is not hard to 
determine all the angles knowing one of them, using ideas from the proof below. 

Proof — In the dynamic plane of the dynamic ray at angle $ lands at the critical 
value, so the two inverse image rays at angles i?/2 and (i? + l ) / 2 land at the critical 
point and separate the dynamic plane into two parts; this partition cuts the external 
angles of dynamic rays in the same way as in the partition defining the kneading 
sequence, see Definition 3.8 and Figure 3. We label the two parts by 0 and 1 in 
the analogous way, assigning the symbol • to the boundary. The partition boundary 
intersects the Julia set only at the critical point. 

The critical value jumps after exactly I steps onto a periodic orbit of ray period n. 
Denote the critical orbit by c 0 , c\, C 2 , . . . with Co = 0 and c\ — c, so that Q + I = c / + n + i , 
while c\ — —ci+n. The points c/ and Q + n are on different sides of the partition. The 
periodic part of the kneading sequence starts exactly where the periodic part of the 
external angles start, so the preperiods are equal. 

We know that n is the ray period of the orbit the critical value falls onto. The 
orbit period is exactly k: periodic rays which have their entire forward orbits on 
equal sides of the partition land at the same point, for the following reason: we can 
connect the landing points of two such rays by a curve which avoids all the preperiodic 
rays landing at the critical point, all the finitely many rays on their forward orbits, 
and their landing points (if we have to cross some of these ray pairs, they must also 
visit the same sides of the partition, and we can reduce the problem). Now inverse 
images of the rays are connected by inverse images of the curve, which avoids the 
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same rays. Continuing to take inverse images in this way, the periodic landing points 
must converge to each other, so they cannot be different. 

The number of dynamic rays on the orbit of t? landing at every point of the pe
riodic orbit is therefore n/k, and the critical value jumps onto this orbit as a local 
homeomorphism, so it is the landing point of equally many preperiodic rays. But 
these rays reappear in parameter space as the rays landing at the Misiurewicz point. 

It remains to show that there are no extra rays at the periodic orbit. By Lemma 2.4, 
more than two dynamic rays can land at the same periodic point only if these rays 
are on the same orbit, i.e., the dynamics permutes the rays transitively. The number 
of dynamic rays can therefore be greater than n/k only if n/k = 1, and in that case, 
there can be at most two rays. • 

Remark. — It does indeed happen that n/k = 1 while the number of rays is two. 
An example is given by the two parameter rays at angles 25/56 = 0/011100 and 
31/56 = 0.100 011; their common kneading sequence is 100 101, so n = k = 3, but 
these two rays land together at a point on the real axis. On the other hand, for the 
angle 1/2 = 0.01 = 0.10, the kneading sequence is 10, so n = k — 1; the parameter 
ray at angle 1/2 is the only ray landing at the leftmost antenna tip c — — 2 of the 
Mandelbrot set. These rays are indicated in Figure 1. 

For a related discussion of rays landing at common points, from the point of view 
of "Thurston obstructions", see [HS]. 

5. Hyperbolic Components 

Most, if not all, of the interior of the Mandelbrot set consists of what is known 
as hyperbolic components. A hyperbolic rational map is one where all the critical 
points are attracted by attracting or superattracting periodic orbits. The dynamic 
significance is that this is equivalent to the existence of an expanding metric in a 
neighborhood of the Julia set, which has many important consequences such as local 
connectivity of connected Julia sets (see Milnor [Ml]). For a polynomial, the criti
cal point at oc is always superattracting, and in the quadratic case, the polynomial 
is hyperbolic if the unique finite critical point either converges to oo or to a finite 
(super)attracting orbit. Hyperbolicity is obviously an open condition. A hyperbolic 
component of the Mandelbrot set is a connected component of the hyperbolic interior. 
The period of the attracting orbit is constant throughout the component and defines 
the period of the hyperbolic component. We will see in Corollary 5.4 that every bound
ary point of a hyperbolic component is a boundary point of the Mandelbrot set, so 
a hyperbolic component is also a connected component of the interior of M. There 
is no example known of a non-hyperbolic component; it is conjectured that there are 
none. A center of a hyperbolic component is a polynomial for which there is a super-
attracting orbit; a root of such a component of period n is a parabolic boundary point 
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where the parabolic orbit has ray period n. We will show in Corollary 5.4 that every 
hyperbolic component has a unique center and a unique root. It is easy to verify that 
the multiplier of the attracting orbit on a hyperbolic component is a proper map from 
the component to the open unit disk, so it has a finite mapping degree; we will see 
that this map is in fact a conformal isomorphism. The relation between centers and 
roots of hyperbolic components is important; the difficulty in establishing it lies in 
the discontinuity of Julia sets at parabolic parameters. Proposition 5.2 will help to 
overcome this difficulty. First we need to have a closer look at parabolic parameters. 

Lemma 5.1 (Roots of Hyperbolic Components). — Every parabolic parameter with ray 
period n is a root of at least one hyperbolic component of period n. If the orbit period 
k is smaller than n, then this parameter is also on the boundary of a hyperbolic com
ponent of period k, and the parabolic orbit breaks up under perturbation into exactly 
one orbit of period n and k each. If orbit and ray periods are equal, then the parabolic 
orbit is a merger of exactly two orbits of period n. In no case is such a parabolic 
parameter on the boundary of a hyperbolic component of different period. 

Proof. — First suppose that orbit period and ray period are equal. Then the first 
return map of any parabolic periodic point z leaves all the dynamic rays landing at 
z fixed, so its multiplier is +1 . In local coordinates, the map has the form £ i-» 
£ + H for some integer q > 1. The point z then has q attracting and repelling 
petals each, and every attracting petal must absorb a critical orbit. Since there is a 
unique critical point, we have q — 1. Under perturbation, the parabolic orbit then 
breaks up into exactly two orbits of exact period n, and no further orbit is involved. 
Denote the parabolic parameter by Co and let V be a simply connected neighborhood 
of Co not containing further parabolics of equal ray period. In V — { C Q } , all periodic 
points of exact period n can be continued analytically because their multipliers are 
different from +1. Among these periodic points, those which are repelling at Co can 
be continued analytically throughout all of V, while the two colliding orbits might be 
interchanged by a simple loop in V — {co} ( m fact, they will be: see Corollary 5.7). 
Their multipliers are therefore defined on a two-sheeted covering of V — {co} and are 
analytic, even when the point c 0 is put back in. By the open mapping principle, the 
parameter co is on the boundary of at least one hyperbolic component of period n. 
Since, for the parameter Co, all the orbits of periods not divisible by n are repelling, 
the parameter can be only on the boundary of hyperbolic components with periods 
divisible by n. If it was on the boundary of a hyperbolic component with period rn for 
some integer r > 1, then the rn-periodic orbit would have to be indifferent at Co; since 
there can be only one indifferent orbit, it would have to merge with the indifferent 
orbit of period n, and this orbit would get higher multiplicity than 2, a contradiction. 
This contradiction shows that Co is not on the boundary of any hyperbolic component 
of period other than n. 
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If the orbit period strictly divides the ray period, so that s := n/k > 2, then the 
first return map of the orbit must permute the rays transitively by Lemma 2.4. The 
least iterate which fixes the rays must also be the least iterate for which the multiplier 
is +1: the landing point of a periodic ray is either repelling or has multiplier -hi (this 
is the Snail Lemma, see [Ml]); conversely, whenever the multiplier is +1 , then all the 
finitely many rays must be fixed. It follows that the multiplier of the first return map 
of any of the parabolic periodic points is an exact 5-th root of unity. The periodic 
orbit can then be continued analytically in a neighborhood of the root. Since the 
multiplier map is analytic, the parabolic parameter is on the boundary of a hyperbolic 
component of period k. The 5-th iterate of the first return map has multiplier +1 and 
hence again the form £ \-+ £ -h C 9 + 1 + • * • in local coordinates, for an integer q > 1. 
The number of coalescing fixed points of this iterate is then exactly q + 1. 

Since there is only one critical orbit, the first return map of the parabolic orbit must 
permute the q attracting petals transitively and we have q — s. For the first, second, 
..., s — 1-st iterate of the first return map, the multiplier is different from +1 , so the 
respective iterate has a single fixed point. The 5-th iterate, however, corresponding 
to the sk — n-th iterate of the original polynomial, has a fixed point of multiplicity 
q + 1 = s H- 1: exactly one of these points has exact period fc; all the other points 
can have no lower periods than n, so they are on a single orbit of period n of which 
s points each are coalesced. There is no further orbit involved (or some iterate would 
have to have a parabolic fixed point of higher multiplicity with more attracting petals 
attached, as above). Since there is a single indifferent orbit of period n, its multiplier 
is well defined and analytic in a neighborhood of the parabolic parameter, which is 
hence on the boundary of a hyperbolic component of period n as well. • 

A root of a hyperbolic component is called primitive if its parabolic orbit has equal 
orbit and ray periods, so it is the merger of exactly two orbits of equal period. If orbit 
and ray periods are different, then the root is called non-primitive or a bifurcation 
point: at this parameter, an attracting orbit bifurcates into another attracting orbit 
of higher period (the terminology bi-iurcation comes from the dynamics on the real 
line, where the ratio of the periods is always two). We will see below that every 
hyperbolic component has a unique root. It will therefore make sense to call a hy
perbolic component primitive or non-primitive according to whether or not its root 
is primitive. 

Our next goal is to relate the dynamics at root points to the adjacent hyperbolic 
components. Perturbations of parabolics are a subtle issue because both the Julia set 
and the filled-in Julia set behave drastically discontinuously. We show that nonethe
less the landing points of all the dynamic rays at rational angles behave continuously 
wherever the rays land. However, we will explain below that the rays themselves do 
not depend continuously on the parameter. In a way, the following proposition is the 
parabolic analogue to Lemma 2.2, which dealt with repelling periodic points. This 
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proposition has first been shown by Lavaurs: it is the main result of Exposé XVII in 
[DH1]. Our proof is different; one of our main ingredients will be the Orbit Separation 
Lemma 3.7. 

Proposition 5.2 (Continuous Dependence of Landing Points). — For any rational an
gle the landing point of the dynamic ray at angle $ depends continuously on the 
parameter on the entire subset of parameter space for which the ray lands. 

The dynamic ray at angle t? for the polynomial pc fails to land if and only if 
it bounces into the critical point or into a point on the inverse orbit of the critical 
point, which happens if and only if the parameter c is outside the Mandelbrot set on a 
parameter ray at one of the finitely many angles {2$, 4$, 8 $ , . . . } . All these parameter 
rays land, and at the landing parameters, the dynamic ray at angle $ lands as well. 
These landing points are the interesting cases of the proposition. 

Proof. — It suffices to discuss the case of a periodic angle $: the statement for 
preperiodic angles follows by taking inverse images because the pull-back is continuous 
(if the landing point of a preperiodic ray visits a critical point along its preperiodic 
orbit, which happens at Misiurewicz points, then several preperiodic points may merge 
and split up with different rays, but this happens in a continuous way). 

If the landing point of the dynamic ray at angle is repelling, then the proposition 
reduces to Lemma 2.2. We may thus assume that the landing point is parabolic. 
Under perturbation, any parabolic periodic point splits up into several periodic points 
which may be attracting, repelling, or indifferent, and these periodic points depend 
continuously on the parameter. We need to show that the landing point of the ray 
after perturbation is one of the continuations of the parabolic periodic point it was 
landing at. 

Denote the parabolic parameter before perturbation by Co, let n be its ray period 
and let V C C be a simply connected open neighborhood which does not contain 
further parabolics of equal or lower ray periods, and which does not meet parameter 
rays of period n other than those landing at CQ. Then analytic continuation of repelling 
periodic points of periods up to n is possible in V — { c o } . 

First we discuss the case that the parabolic parameter Co is non-primitive with orbit 
period k and q := n/k > 2. Then c 0 is on the boundary of at least one hyperbolic 
component of period n and k each. The multipliers fin and Hk of the unique orbits 
of periods n and k which are indifferent at CQ are well-defined and analytic in a 
neighborhood of c 0 : for the period k orbit, this is clear because the periodic point 
z = z(c) can be continued analytically near c 0 and the multiplier depends analytically 
on c and z\ for the period n orbit, this is also true because the multiplier is well-defined 
and analytic near Co, except at CQ itself, and has a removable isolated singularity at 
Co. Critical points of the multiplier maps are thus isolated and the boundaries of both 
components are piecewise smooth analytic curves. 
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Within a hyperbolic component of period N near Co, let ZK(C) the periodic point of 
period k which merges into the parabolic orbit of Co at the characteristic point; it is 
on a repelling orbit and can be continued analytically within the component. Because 
of the piecewise analytic boundary, there is a curve within the hyperbolic component 
converging to Co. The point ZK{C) is the landing point of at least one periodic dynamic 
ray at some angle and it will keep this ray throughout the hyperbolic component by 
Lemma 2.2. In fact, it can lose the ray only at Co and only in favor of the parabolic 
orbit. Since ZK(C) merges into the parabolic orbit and all the parabolic periodic 
points are separated by stable partitions by the Orbit Separation Lemma 3.7, the 
point ZK(C) will keep the ray t?' even at the parabolic orbit. Therefore, i9f is one of the 
external angles of the characteristic point on the parabolic orbit. Since we are in the 
non-primitive case, all the rays are on the same orbit by Lemma 2.4, and ZK(C) is the 
landing point of all the dynamic rays of the characteristic point of the parabolic orbit. 
Under perturbation into the period N component, the landing points of all dynamic 
rays from the parabolic orbit will thus depend continuously on the parameter. The 
same argument works for perturbations into a hyperbolic component of period k: we 
consider a repelling periodic point zN{C) which merges into the characteristic point of 
the parabolic orbit. It must be the landing point of one of the dynamic rays from the 
characteristic point of the parabolic orbit as above, and all the other dynamic rays 
from the parabolic orbit must land at points on the orbit of zN(C). 

The two parameter rays landing at Co together with their landing point cut C into 
two connected components, and continuity of the landing points of the dynamic rays 
from the parabolic orbit is true for any connected component which contains a hy
perbolic component of period N or k by the arguments above. But the components of 
different periods must be in different connected components because analytic contin
uation of ZK(C) within V — { c 0 } from a period N component to a period K component 
must change the landing pattern of the dynamic rays, and the only place where this 
can happen is at a parameter ray landing at Co. This proves the proposition in the 
non-primitive case (and as a bonus result, we see that c 0 can be on the boundary of 
only one component of period N and k each). 

In the primitive case, the rays landing at the parabolic orbit are on two different 
ray orbits, and the characteristic point of the parabolic orbit is the landing point of 
exactly one ray from each orbit. The proof above shows continuity of the landing 
points of at least one of the two ray orbits. Instead, we will follow a suggestion of 
Tan Lei and use an Orbit Separation Property: IN THE DYNAMICS OF CQ, ANY REPELLING 

PERIODIC POINT OF PERIOD AT MOST N CAN BE SEPARATED FROM THE CHARACTERISTIC POINT OF THE 

PARABOLIC ORBIT BY A RAY PAIR LANDING AT A REPELLING PERIODIC OR PREPERIODIC POINT. This 

prevents the dynamic rays landing at the parabolic orbit from jumping onto other 
orbits, and the Orbit Separation Lemma 3.7 prevents them from jumping onto other 
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points on the parabolic orbit. This proves the proposition also in the primitive case. 
(This Orbit Separation Property does not hold in the non-primitive case.) 

In order to prove the Orbit Separation Property, we will use the tree constructed 
in Section 3. Let w be a repelling periodic point of period at most n, let z\ be 
the characteristic point of the parabolic orbit and let JJ\ be the characteristic Fatou 
component. The only periodic point of period at most n on U\ is the characteristic 
parabolic point, so w £ U\. Within the filled-in Julia set of c 0 , connect w to z\ by a 
simple curve 7; the point where the curve first meets U\ is the image of the projection 
7T(W) onto U±. Let 7 be the curve between w and 7r(w). 

The curve 7 is unique except on the closures of bounded Fatou components (com
pare the remark before Lemma 3.6). If it does not meet any bounded Fatou compo
nents (except for U± at its end), then it is unique and each of its points except w is 
the landing point of at least two dynamic rays. Then every iterate of the dynamics 
must map 7 homeomorphically which contradicts the expansion from angle doubling. 
Therefore, an interior point of 7 will be on the closure of some periodic or preperiodic 
bounded Fatou component. Let n' be the least number of iterations for an interior 
point of 7 to hit a periodic Fatou component. Then 7 maps forward homeomorphically 
for at least n' iterations, and the periodic Fatou component it meets on its interior 
is different from the one at its end. Therefore, the n'-th image of 7 connects two 
different periodic Fatou components. These two Fatou components can be separated 
by a periodic or preperiodic dynamic ray pair landing on a repelling orbit (in the 
primitive case, no two periodic Fatou components have a boundary point in common, 
so the periodic Fatou components inherit the separation property from the parabolic 
periodic points as shown in Lemma 3.7). But since 7 maps homeomorphically onto 
its n'-th image, the two endpoints of 7 are also separated by a ray pair on a repelling 
orbit. This proves the Orbit Separation Property and thus the proposition. • 

Remark. — Unlike their landing points, the dynamic rays themselves may depend 
discontinuously on the perturbation. The simplest possible example occurs near the 
parabolic parameter CQ = 1/4: for this parameter, the dynamic ray at angle 0 = 1 
lands at the parabolic fixed point z = 1/2, and the ray is the real line to the right 
of 1/2. The critical point 0 is in the interior of the filled-in Julia set. Perturbing the 
parameter to the right on the real axis, i.e., on the parameter ray at angle 0 = 1 , 
the dynamic ray will bounce into the critical point and thus fail to land. But for 
arbitrarily small perturbations near this parameter ray, the dynamic ray at angle 
0 = 1 will get very close to the critical point before it turns back and lands near 1/2. 
The closer the parameter is to c 0 = 1/4, the lower will the potential of the critical 
point be, and while the dynamic ray keeps reaching out near the critical point, it does 
so at lower and lower potentials, and in the limit the part of the ray at real parts less 
than 1/2 will be squeezed off. Points at any potential t > 0 will depend continuously 
on the parameter, and so does the landing point at potential t — 0; however, this 
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continuity is not uniform in t, and the dynamic ray as a whole can and does change 
discontinuously with respect to the Hausdorff metric. 

Continuous dependence of landing points of rays requires a single critical point (of 
possibly higher multiplicity). It is false already for cubic polynomials; an example 
can be found in the appendix of Goldberg and Milnor [GM]. 

We can now draw a couple of useful conclusions. 

Corollary 5.3 (Stability at Roots of Hyperbolic Components). — For any hyperbolic 
component, the landing pattern of periodic and preperiodic dynamic rays is the same 
for all polynomials from the component and at any of its roots. 

Proof — Again, it suffices to discuss periodic rays; the statement about preperiodic 
rays follows simply by taking inverse images because for the considered parameters, 
all the preperiodic dynamic rays land, and they never land at the critical value. 
Throughout the component, all the periodic rays land at repelling periodic points, so 
no orbit can lose a ray under perturbations, and consequently no orbit can gain a ray, 
either. Hence we only have to look at the roots of the component. Upon perturbation 
into the component, the proof of the previous proposition shows that all the rays from 
the parabolic orbit will land in the same way at a single repelling orbit, and all the 
repelling periodic points at the root parameter will keep their rays by Lemma 2.2. • 

Remark. — Perturbing a parabolic orbit with orbit period k and ray period n > k 
into the component of period k changes the landing pattern of rational rays: the 
parabolic orbit creates an attracting orbit of period fc, so a repelling orbit of period 
n remains, and all the dynamic rays from the parabolic orbit land at different points. 
Phrased differently, when moving from the component of period k into the one of 
period n, then n/k periodic rays each start landing at common periodic points; of 
course, this forces the obvious relations for the preperiodic rays. The landing pattern 
of all other periodic rays remains stable. 

This discussion not only describes the landing patterns of periodic rays within 
hyperbolic components, but on the entire parameter space except at parameter rays 
at periodic angles: since the landing points depend continuously on the parameter 
and periodic orbits are simple except at parabolics, the pattern can change only at 
parabolic parameters or at parameter rays where the dynamic rays fail to land. The 
relation between landing patterns of periodic rays and the structure of parameter 
space has been investigated and described by Milnor in [M2]. The landing pattern of 
preperiodic rays also changes at Misiurewicz points and at preperiodic parameter rays. 

Corollary 5.4 (The Multiplier Map). — The multiplier map on any hyperbolic compo
nent is a conformal isomorphism onto the open unit disk, and it extends as a home-
omorphism to the closures. In particular, every hyperbolic component has a unique 
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root and a unique center. The boundary of a hyperbolic component is contained in the 
boundary of the Mandelbrot set. 

Proof. — The multiplier map is a proper analytic map from the hyperbolic compo
nent to the open unit disk and extends continuously to the boundary. Any point on 
the boundary has a unique indifferent orbit. If the multiplier at such a boundary 
point is different from -hi, then orbit and multiplier extend analytically in a neigh
borhood of the boundary point. The multiplier is obviously not constant. This shows 
in particular that parabolic parameters are dense on the boundary of the component; 
since parabolics are landing points of parameter rays and thus in the boundary of 
M, the boundary of every hyperbolic component is contained in the boundary of the 
Mandelbrot set. 

The number of parabolic parameters with fixed orbit period and multiplier -hi is 
finite, so the boundary of any hyperbolic component consists of a finite number of 
analytic arcs (which might contain critical points) limiting on finitely many parabolic 
parameters with multipliers -hi. Since the multiplier map is proper onto ID, the com
ponent has at least one root. 

By Corollary 5.3, the landing pattern of periodic dynamic rays has to be the same 
at all the roots of a given hyperbolic component. It follows that at all the roots, 
the angles of the characteristic rays of the parabolic orbits have to coincide: in every 
case, the characteristic ray pair lands at the Fatou component containing the critical 
value and separates the critical value from the rest of the parabolic orbit. Among 
all ray pairs separating the critical point from the critical value, the characteristic 
ray pair must be the one closest to the critical value. Hence the landing pattern 
of periodic dynamic rays determines the characteristic angles. Since any root of 
a hyperbolic component must be the landing point of the parameter rays at the 
characteristic angles of the parabolic orbit, every hyperbolic component has a unique 
root. 

We can now determine the mapping degree d, say, of the multiplier map. The 
hyperbolic component is simply connected because the Mandelbrot set is full. Then 
the multiplier map \i has exactly d— 1 critical points, counting multiplicities. If d > 1, 
let v G B be a critical value of \i and connect v and +1 by a simple smooth curve 
7 C B avoiding further critical values. Then / i _ 1 ( 7 ) , together with the unique root 
of the component, contains a simple closed curve T enclosing an open subset of the 
hyperbolic component. This subset must map at least onto all of B—7, so T surrounds 
boundary points of the component and thus of M. But this contradicts the fact that 
the Mandelbrot set is full, so the multiplier map is a conformal isomorphism onto 
B and the component has a unique center. It extends continuously to the closure 
and is surjective onto <9B because it is surjective on the component. Near every non-
root of the component, the boundary of the component is an analytic arc (possibly 
with critical points) and the multiplier is not locally constant on the arc, so it is 
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locally injective. Global injectivity now follows from injectivity on the component. 
The multiplier map is thus invert ible, and continuity of the inverse is a generality. 

• 
Proposition 5.5 (No Shared Roots). — Every parabolic parameter is the root of a sin
gle hyperbolic component. 

Proof. — Since the period of a component equals the ray period of its root, we can 
restrict attention to any fixed period n. We have well defined maps from centers to 
hyperbolic components (which we have just seen is a bijection) and from hyperbolic 
components to their roots. This gives a surjective map from centers of period n to 
parabolic parameters of ray period n. Denote the number of centers of period n by 

A center of a hyperbolic component of period n is a point c such that the critical 
point 0 is periodic of exact period n under z z2 + c; therefore, c must satisfy 
a polynomial equation ( . . . ( (c 2 + e ) 2 + c ) . . . ) 2 + c = 0 of degree 2n~1. Since this 
polynomial is also solved by centers of components of periods k dividing n, we get 
the recursive relation Ylk\n sk — 2 n _ 1 . By Lemma 2.3, this is exactly the number 
of parabolic parameters of ray period k. Since a surjective map between finite sets 
of equal cardinality is a bijection, every parabolic parameter is the root of a single 
hyperbolic component. • 

Remark. — This proposition shows even without resorting to Corollary 5.4 that every 
hyperbolic component has a unique center, so that the only critical point of the 
multiplier map (if it had mapping degree greater than one) could be the center. This 
is indeed what happens for the "Multibrot sets": the connectedness loci for the maps 
z i-» zd + c with d > 2. 

Before continuing the study of hyperbolic components, we note an algebraic obser
vation following from the proof we have just given. 

Corollary 5.6 (Centers of Components as Algebraic Numbers) 
Every center of a hyperbolic component of degree n is an algebraic integer of degree 

at most sn. It is a simple root of its minimal polynomial. • 

A neat algebraic proof for this fact has been given by Gleason; see [DH1]. As 
far as I know, the algebraic structure of the minimal polynomials of the centers of 
hyperbolic components is not known: when factored according to exact periods, are 
they irreducible? What are their Galois groups? Manning (unpublished) has verified 
irreducibility for n < 10, and he has determined that the Galois groups for the first 
few periods are the full symmetric groups. Giarrusso (unpublished) has observed that 
this induces a Galois action between the Riemann maps of hyperbolic components of 
equal periods, provided that their centers are algebraically conjugate. 

Now we can describe the boundary hyperbolic components much more completely. 
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Corollary 5.7 (Boundary of Hyperbolic Components). — No non-parabolic parameter 
can be on the boundary of more than one hyperbolic component. Every parabolic 
parameter is either a primitive root of a hyperbolic component and on the boundary 
of no further component, or it is a upoint of bifurcation71: a non-primitive root of a 
hyperbolic component and on the boundary of a unique further hyperbolic component. 
In particular, if two hyperbolic components have a boundary point in common, then 
this point is the root of exactly one of them. The boundary of a hyperbolic component 
is a smooth analytic curve, except at the root of a primitive component. At a primitive 
root, the component has a cusp, and analytic continuation of periodic points along a 
small loop around this cusp interchanges the two orbits which merge at this cusp. 

Proof — If two hyperbolic components have a non-parabolic parameter in their com
mon boundary, then the landing patterns of periodic rays must be the same within 
both components. This must then also be true at their respective roots, which yields 
a contradiction: on the one hand, the roots must be different by Proposition 5.5; on 
the other hand, the parabolic orbits at the roots must have the same characteristic 
angles (compare the proof of Corollary 5.4), so they must be the landing points of 
the same parameter rays. It follows that the multiplier map of the indifferent orbit 
cannot have a critical point at c$: if it had a critical point there, then Co would con
nect locally two regions of hyperbolic parameters which cannot belong to different 
hyperbolic components; however, if they belonged to the same component, then the 
closure of the component would separate part of its boundary from the exterior of 
the Mandelbrot set, a contradiction. Therefore, the boundary of every hyperbolic 
component is a smooth analytic curve near every non-parabolic boundary point. 

Now let CQ be a parabolic parameter of ray period n and orbit period k. We know 
that it is the root of a unique hyperbolic component of period n. 

In the non-primitive case (when k strictly divides n), the point c 0 cannot be on the 
boundary of a hyperbolic component of period different from n and k by Lemma 5.1. 
It is on the boundary of a single hyperbolic component of period n (Proposition 5.5). 
In a small punctured neighborhood of CO avoiding further parabolics of ray period 
n, the multiplier map of the n-periodic orbit is analytic and cannot have a critical 
point at Co, for the same reason as above, so the component of period n occupies 
asymptotically (on small scales) a half plane near c$. The parameter Co is also on 
the boundary of a component of period k the multiplier of which is analytic near CQ. 
Since hyperbolic components cannot overlap, this component must asymptotically be 
contained in a half plane, so the multiplier map cannot have a critical point and must 
then be locally injective near CO. The boundaries of both components must then be 
smooth analytic curves near CQ. 

In the primitive case k — n, the parameter c 0 cannot be on the boundary of a 
hyperbolic component of period different from n by Lemma 5.1, and it cannot be on 
the boundary of two hyperbolic components of period n because otherwise it would 
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have to be their simultaneous root, contradicting Proposition 5.5. In a small simply 
connected neighborhood V of Co, analytic continuation of the two orbits colliding at 
Co is possible in V — {co} (compare the proof of Lemma 5.1), so their multipliers can 
be defined on a two-sheeted cover of V ramified at Co- If analytic continuation of these 
two orbits along a simple loop in V around Co did not interchange the two orbits, then 
both multipliers could be defined in V, and both would define different hyperbolic 
components intersecting V in disjoint regions, yielding the same contradiction as in 
the non-primitive case above. Therefore, small simple loops around Co do interchange 
the two orbits. In order to avoid the same contradiction again, the multiplier must 
be locally injective on the two-sheeted covering on V'. Projecting down onto V, the 
component must asymptotically occupy a full set of directions, so the component has 
a cusp. • 

Remark. — The basic motor for many of these proofs about hyperbolic components 
was uniqueness of parabolic parameters with given combinatorics, via landing proper
ties of parameter rays at periodic angles. A consequence was uniqueness of centers of 
hyperbolic components with given combinatorics. One can also turn this discussion 
around and start with centers of hyperbolic components: the fact that hyperbolic 
components must have different combinatorics, and that they have unique centers, 
is a consequence of Thurston's topological characterization of rational maps, in this 
case most easily used in the form of the Spider Theorem [HS]. 
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Lempert mappings and holomorphic motions in C n 

K A R I ASTALA, ZOLTAN BALOGH &; HANS MARTIN REIMANN 1 

Le but de cet article est double : discuter le concept de mouvements holo
morphes et des phénomènes de type Mané-Sad-Sullivan en plusieurs variables 
complexes ; comparer les différentes notions de formes de Beltrami en CR géo
métrie qui sont apparues dans [4] et [7] . 

Markov Extensions and Decay of Correlations for Certain Hénon Maps 
MICHAEL BENEDICKS & L A I - S A N G Y O U N G 1 3 

Dans cet article, on considère les applications de Hénon pour lesquelles 
l'analyse de [ B C 2 ] est valable. On construit des ensembles munis de bonnes 
propriétés hyperboliques et de bonnes structures de retour, et on montre que 
leurs fonctions de temps de retour ont des restes à décroissance exponentielle. 
Ceci permet d'appliquer les résultats de [ Y ] . Des propriétés statistiques telles 
que la décroissance exponentielle des corrélations et le théorème central limite 
sont établies. 

Complex foliations with algebraic limit sets 
CÉSAR CAMACHO & BRUNO A Z E V E D O SCÄRDUA 5 7 

Nous considérons le problème de la classification des feuilletages projectifs 
complexes ayant un ensemble limite algébrique. Nous démontrons le résultat 
suivant : 

Soit T un feuilletage holomorphe par des courbes dans le plan projectif com
plexe CP(2) dont Vensemble limite se compose d'une courbe algébrique A et de 
singularités. Si les singularités sing T fl A sont génériques alors ou bien T est 
donné par une 1-forme rationnelle fermée ou bien T est l'image réciproque par 
une application rationnelle d'un feuilletage de Riccati 7Z : p(x)dy — (a(x)y2 + 
b(x)y)dx = 0 (où A correspond à (y = 0) U (p(x) =0)) dans C x C. 

La preuve repose sur la résolubilité des groupes d'holonomie généralisée as
sociés à un processus de réduction des singularités de sing T n A et sur la 
construction d'une structure affine transverse à T en dehors de la courbe algé
brique invariante contenant A. 



xii RÉSUMÉS DES ARTICLES 

Une caractérisation des stades à virages circulaires 
ALBERT FATHI 8 9 

Nous donnons une minoration du volume d'un domaine compact convexe 
d'un espace euclidien dont le bord est de classe C 1 , 1 . Nous caractérisons le cas 
d'égalité. 

Asymptotic Measures for Hyperbolic Piecewise Smooth Mappings of a Rectangle 
MICHAEL JAKOBSON & SHELDON NEWHOUSE 103 

Nous montrons l'existence de mesures de Sinaï-Ruelle-Bowen pour une 
classe d'applications C2 par morceaux d'un rectangle dans lui-même dont les 
dérivées ne sont pas nécessairement bornées. Ces résultats peuvent être consi
dérés comme une généralisation d'un théorème bien connu en dimension 1 sur 
l'existence de mesures absolument continues invariantes. Dans un article précé
dent [8], des résultats semblables étaient énoncés et les preuves esquissées pour 
des systèmes inversibles. Nous donnons ici des preuves complètes dans le cas 
général de systèmes non inversibles ; nous développons en particulier la théorie 
des variétés stables et instables lorsque les dérivées des applications considérées 
ne sont pas bornées. 

Total disconnectedness of Julia sets and absence of invariant linefields for real 
polynomials 
GENADI LEVIN & SÉBASTIAN VAN STRIEN 161 

Dans cet article, nous considérons des polynômes à coefficients réels avec 
un point critique éventuellement dégénéré d'ordre pair et dont l'orbite reste 
bornée. Nous donnons des conditions nécessaires et suffisantes pour que leur 
ensemble de Julia soit totalement discontinu. Nous montrons aussi que ces 
ensembles de Julia ne portent pas de champs de droites invariants. Dans le 
cas réel, ceci généralise les résultats de B. Branner et J.H. Hubbard sur les 
polynômes cubiques et les résultats de C. McMullen sur l'absence de champs 
de droites invariants. 

Dynamics of quadratic polynomials, III Parapuzzle and SBR measures 
MIKHAÏL LYUBICH 173 

Cet article fait partie d'une série sur la dynamique des polynômes quadra
tiques. Nous transportons notre résultat géométrique précédent [L3] au plan 
des paramètres. À toute valeur c (en dehors de la cardioïde principale et des 
copies qui s'y rattachent) est associée «une suite principale de pièces gigognes 
du parapuzzle » . Nous montrons alors que les modules des anneaux entre deux 
pièces consécutives croissent au moins linéairement. D'après ( [ L 2 ] ) ) et le critère 
géométrique de Martens & Nowicki (cf. ce volume) ceci implique que presque 
tout polynôme quadratique réel (au sens de la mesure de Lebesgue) est hy
perbolique ou possède une mesure finie absolument continue invariante ou est 
infiniment renormalisable. Dans des articles ultérieurs [ L 5 , L 7 ] nous montrons 
que l'ensemble des paramètres réels infiniment renormalisables est de mesure 
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nulle, ce qui complète la description de la dynamique pour presque tout poly
nôme quadratique réel. 

Positive Lyapunov exponents for Lorenz-like families with criticalities 
STEFANO LUZZATTO & M A R C E L O V I A N A 201 

Nous introduisons une classe de familles d'applications réelles dépendant 
d'un paramètre qui étend les modèles géométriques classiques de Lorenz. Ces 
applications sont à la fois singulières (discontinuités avec dérivées infinies) et 
possèdent des points critiques ; elles sont basées sur le comportement du flot 
de Lorenz pour un ensemble de paramètres important. Notre résultat principal 
dit qu'une expansion non-uniforme est le type de dynamique que l'on retrouve 
le plus souvent même s'il y a formation de points critiques. 

Invariant Measures for Typical Quadratic Maps 
M A R C O MARTENS 8Z T O M A S Z NOWICKI 2 3 9 

Nous discutons une condition suffisante, de nature géométrique, pour l'exis
tence de mesures de probabilité invariantes et absolument continues pour des 
applications S—unimodales. Il en résulte qu'une application quadratique ty
pique, au sens de la mesure de Lebesgue, admet une mesure de SRB. 

Quasi-homogénéité et équiréductibilité de feuilletages holomorphes en dimension 
deux 
JEAN-FRANÇOIS M A T T E I 2 5 3 

Après avoir étudié la dépendance analytique des séparatrices d'une fa
mille « équisingulière » de germes de feuilletages holomorphes à l'origine de C 2 , 
nous définissons la quasihomogénéité comme une propriété de rigidité. Nous 
obtenons un théorème de type K. Saito pour les germes de feuilletages quasi-
homogènes et un théorème de type Briançon-Skoda dans le cas général. 

Periodic Orbits, Externals Rays and the Mandelbrot Set : An Expository Account 
JOHN MILNOR 2 7 7 

Nous expliquons quelques résultats fondamentaux de Douady-Hubbard sur 
l'ensemble de Mandelbrot en utilisant l'idée de «portrait orbital» c'est-à-dire 
le modèle des rayons externes qui aboutissent sur une orbite périodique d'une 
application polynomiale quadratique. 

A global view of dynamics and a conjecture on the denseness of finitude of attractors 
JACOB PALIS 3 3 5 

On présente, à travers des résultats récents, des problèmes ouverts et des 
conjectures, une perspective globale pour l'étude des systèmes dynamiques dis-
sipatifs (flots, difféomorphismes ou transformations d'une variété compacte sans 
bord ou de l'intervalle). Cette perspective est couronnée par une description 
conjecturale de la dynamique d'un ensemble dense de systèmes : pour ceux-ci, 
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il n'y a qu'un nombre fini d'attr acteur s, périodiques ou sensibles aux condi
tions initiales ; ces attracteurs sont stochastiquement stables et l'union de leurs 
bassins est de mesure totale. Cette conjecture, formulée pour la première fois 
au début de 1995 , fournit un schéma pour la compréhension des familles pa
ramétrées de systèmes dynamiques. On peut la considérer comme une version 
probabiliste d'un vieux rêve des années soixante, l'existence d'un ouvert dense 
de systèmes dynamiquement stables, rêve qui s'était évanoui à la fin de cette 
décade. Seul le cas de la dimension 1 a survécu : Swiatek avec l'aide de Grac-
zyk ([GS]) et Lyubich l'ont indépendamment établi pour la famille quadratique 
réelle ; plus récemment Kozlovski ([Ko]) a annoncé le même résultat pour la fa
mille des applications unimodales de classe C 3 . 

Pour les applications unidimensionnelles réelles ou complexes, notre conjec
ture est plus précise, prédisant pour la plupart des valeurs des paramètres un 
nombre fini d'attr acteur s, qui sont périodiques ou supportent une mesure de 
probabilité invariante absolument continue. Remarquablement, Lyubich ([Ly2]) 
vient avec l'aide de Martens et Nowicki {cf. ce volume) d'établir ce résultat pour 
la famille des polynômes quadratiques réels. 

Rational maps with disconnected Julia set 
KEVIN PILGRIM & TAN LEI 3 4 9 

Soit / une fraction rationnelle hyperbolique. On suppose que son ensemble 
de Julia J n'est pas connexe. Nous allons montrer que, à l'exception d'un 
nombre fini de composantes périodiques de J, et la collection dénombrable de 
leurs composantes préimages, toute composante de J est soit un point soit 
une courbe de Jordan. Par conséquent, toute composante de J est localement 
connexe. Nous discutons également quand une telle courbe de Jordan est aussi 
un quasi-cercle. Nous donnerons un exemple explicite d'une fraction rationnelle 
ayant une composante de Julia qui est une courbe de Jordan mais pas un quasi-
cercle. 

Holder implies Collet-Eckmann 
FELIKS P R Z Y T Y C K I 3 8 5 

Soit / un polynôme dont l'ensemble de Julia contient un seul point critique 
c. Nous montrons que si le bassin de l'infini est Hôlderien, la condition de 
Collet-Eckmann est vérifiée : il existe À > 1, C > 0 tel qu'on ait | ( / n ) ' ( / ( c ) ) | > 
CXn pour tout n > 0. Nous introduisons également les notions d'application 
rationnelle de type topologique Collet-Eckmann et de répulseur. 

Rational Parameter Rays of the Mandelbrot Set 
DIERK SCHLEICHER 4 0 5 

Nous présentons une nouvelle démonstration du fait que tous les rayons 
externes à arguments rationnels de l'ensemble de Mandelbrot aboutissent et 
nous relions l'argument externe d'un tel rayon à la dynamique du paramètre 
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où le rayon aboutit. Notre démonstration est différente de celle donnée à l'ori
gine par Douady et Hubbard et élaborée par P. Lavaurs : elle remplace des 
arguments analytiques par des arguments combinatoires ; elle n'utilise pas la 
dépendance analytique des polynômes par rapport au paramètre et peut donc 
être appliquée aux espaces de paramètres qui ne sont pas analytiques com
plexes ; la démonstration est aussi techniquement plus facile. Finalement, nous 
déduisons quelques corollaires sur les composantes hyperboliques de l'ensemble 
Mandelbrot. 

Chemin faisant, nous construisons des partitions du plan dynamique et de 
l'espace des paramètres, intéressantes en elles-mêmes, et nous interprétons l'en
semble de Mandelbrot comme un espace de paramètres symboliques contenant 
des kneading séquences et des adresses internes. 
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Lempert mappings and holomorphic motions in C n 

K A R I ASTALA, ZOLTAN BALOGH & HANS MARTIN REIMANN 1 

The purpose of this note is twofold : to discuss the concept of holomorphic 
motions and phenomena of Mane-Sad-Sullivan type in several complex variables 
and secondly, to compare the different notions of Beltrami differentials in C R -
geometry which have appeared in [4] and [7] . 

Markov Extensions and Decay of Correlations for Certain Henon Maps 
MICHAEL BENEDICKS & L A I - S A N G Y O U N G 13 

Henon maps for which the analysis in [ B C 2 ] applies are considered. Sets 
with good hyperbolic properties and nice return structures are constructed 
and their return time functions are shown to have exponentially decaying tails. 
This sets the stage for applying the results in [ Y ] , Statistical properties such 
as exponential decay of correlations and central limit theorem are proved. 

Complex foliations with algebraic limit sets 
CESAR C A M A C H O & BRUNO A Z E V E D O SCARDUA 57 

We regard the problem of classification for complex projective foliations 
with algebraic limit sets and prove the following : 

Let J7 be a holomorphic foliation by curves in the complex projective plane 
CP(2) having as limit set some singularities and an algebraic curve A C CP{2). 
If the singularities sing J7 n A are generic then either T is given by a closed 
rational 1-form or it is a rational pull-back of a Riccati foliation IZ : p(x)dy — 
(a(x)y2 + b{x)y)dx = 0, where A corresponds to (y = 0) U (p(x) = 0), on C x C. 

The proof is based on the solvability of the generalized holonomy groups asso
ciated to a reduction process of the singularities sing A and the construction 
of an afflne transverse structure for T outside an algebraic curve containing A. 

Une caracterisation des stades a virages circulaires 
ALBERT FATHI 8 9 

We give a lower bound for the volume of a compact convex domain in a 
Euclidean space with boundary of class C 1 ' 1 . We characterize the equality case. 
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Asymptotic Measures for Hyperbolic Piecewise Smooth Mappings of a Rectangle 
MICHAEL JAKOBSON & SHELDON NEWHOUSE 103 

We prove the existence of Sinai-Ruelle-Bowen measures for a class of C2 

self-mappings of a rectangle with unbounded derivatives. The results can be 
regarded as a generalization of a well-known one dimensional Folklore Theorem 
on the existence of absolutely continuous invariant measures. In an earlier paper 
[8] analogous results were stated and the proofs were sketched for the case 
of invertible systems. Here we give complete proofs in the more general case 
of noninvertible systems, and, in particular, develop the theory of stable and 
unstable manifolds for maps with unbounded derivatives. 

Total disconnectedness of Julia sets and absence of invariant linefields for real 
polynomials 
GENADI LEVIN & SEBASTIAN VAN STRIEN 161 

In this paper we shall consider real polynomials with one (possibly degene
rate) non-escaping critical (folding) point. Necessary and sufficient conditions 
are given for the total disconnectedness of the Julia set of such polynomials. 
Also we prove that the Julia sets of such polynomials do not carry invariant 
linefields. In the real case, this generalises the results by Branner and Hubbard 
for cubic polynomials and by McMullen on absence of invariant linefields. 

Dynamics of quadratic polynomials, III Parapuzzle and SBR measures 
MIKHAIL LYUBICH 173 

This is a continuation of notes on the dynamics of quadratic polynomials. 
In this part we transfer our previous geometric result [L3] to the parameter 
plane. To any parameter value c (outside the main cardioid and the little Man
delbrot sets attached to it) we associate a "principal nest of parapuzzle pieces". 
We then prove that the moduli of the annuli between two consecutive pieces 
grow at least linearly. This implies, using Martens & Nowicki (cf. this volume) 
geometric criterion for existence of an absolutely continuous invariant measure 
together with [L2], that Lebesgue almost every real quadratic polynomial is 
either hyperbolic, or has a finite absolutely continuous invariant measure, or is 
infinitely renormalizable. In the further papers [L5,L7] we show that the latter 
set has zero Lebesgue measure, which completes the measure-theoretic picture 
of the dynamics in the real quadratic family. 

Positive Lyapunov exponents for Lorenz-like families with criticalities 
STEFANO LUZZATTO &; M A R C E L O V I A N A 201 

We introduce a class of one-parameter families of real maps extending the 
classical geometric Lorenz models. These families combine singular dynamics 
(discontinuities with infinite derivative) with critical dynamics (critical points) 
and are based on the behaviour displayed by Lorenz flows over a fairly wide 
range of parameters. Our main result states that - nonuniform - expansion is 
the prevalent form of dynamics even after the formation of the criticalities. 
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Invariant Measures for Typical Quadratic Maps 
M A R C O MARTENS & T O M A S Z NOWICKI 2 3 9 

A sufficient geometrical condition for the existence of absolutely continuous 
invariant probability measures for S—unimodal maps will be discussed. The 
Lebesgue typical existence of Sinai-Bowen-Ruelle-measures in the quadratic 
family will be a consequence. 

Quasi-homogénéité et équiréductibilité de feuilletages holomorphes en dimension 
deux 
JEAN-FRANÇOIS M A T T E I 2 5 3 

We study the analytic dépendance of séparatrices for an equisingular family 
of germs of holomorphic foliation at the origin of C 2 . We define the quasi-
homogeneity by a rigidity property. We obtain a K. Saito type Theorem for 
quasi-homogeneous foliations and a of Briançon-Skoda type Theorem in the 
general case. 

Periodic Orbits, Externals Rays and the Mandelbrot Set : An Expository Account 
JOHN MILNOR 2 7 7 

A presentation of some fundamental results from the Douady-Hubbard 
theory of the Mandelbrot set, based on the idea of "orbit portrait" : the pattern 
of external rays landing on a periodic orbit for a quadratic polynomial map. 

A global view of dynamics and a conjecture on the denseness of finitude of attractors 
JACOB PALIS 3 3 5 

A view on dissipative dynamics, i.e. flows, diffeomorphisms, and transfor
mations in general of a compact boundaryless manifold or the interval is pre
sented here, including several recent results, open problems and conjectures. It 
culminates with a conjecture on the denseness of systems having only finitely 
many attractors, the attractors being sensitive to initial conditions (chaotic) 
or just periodic sinks and the union of their basins of attraction having total 
probability. Moreover, the attractors should be stochastically stable in their ba
sins of attraction. This formulation, dating from early 1995 , sets the scenario 
for the understanding of most nearby systems in parametrized form. It can be 
considered as a probabilistic version of the once considered possible existence 
of an open and dense subset of systems with dynamically stable structures, a 
dream of the sixties that evaporated by the end of that decade. The collapse of 
such a previous conjecture excluded the case of one dimensional dynamics : it is 
true at least for real quadratic maps of the interval as shown independently by 
Swiatek, with the help of Graczyk [GS], and Lyubich [Lyl] a few years ago. Re
cently, Kozlovski [Ko] announced the same result for C3 unimodal mappings, in 
a meeting at IMPA. Actually, for one-dimensional real or complex dynamics, 
our main conjecture goes even further : for most values of parameters, the 
corresponding dynamical system displays finitely many attractors which are 
periodic sinks or carry an absolutely continuous invariant probability measure. 
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Remarkably, Lyubich [Ly2] has just proved this for the family of real quadratic 
maps of the interval, with the help of Martens and Nowicki [MN]. 

Rational maps with disconnected Julia set 
KEVIN PILGRIM & TAN LEI 3 4 9 

We show that if / is a hyperbolic rational map with disconnected Julia 
set J, then with the possible exception of finitely many periodic components 
of J and their countable collection of preimages, every connected component 
of J is a point or a Jordan curve. As a corollary, every component of J is 
locally connected. We also discuss when a Jordan curve Julia component is a 
quasicircle and give an explicit example of a hyperbolic rational map with a 
Jordan curve Julia component which is not a quasicircle. 

Holder implies Collet-Eckmann 
FELIKS P R Z Y T Y C K I 3 8 5 

We prove that for every polynomial / if its basin of attraction to oo is 
Holder and Julia set contains only one critical point c then / is Collet-Eckmann, 
namely there exists A > 1, C > 0 such that, for every n > 0 , | ( / n ) ' ( / ( c ) ) | > 
CA n . We introduce also topological Collet-Eckmann rational maps and repellers. 

Rational Parameter Rays of the Mandelbrot Set 
DIERK SCHLEICHER 4 0 5 

We give a new proof that all external rays of the Mandelbrot set at rational 
angles land, and of the relation between the external angle of such a ray and 
the dynamics at the landing point. Our proof is different from the original one, 
given by Douady and Hubbard and refined by P. Lavaurs, in several ways : 
it replaces analytic arguments by combinatorial ones; it does not use complex 
analytic dependence of the polynomials with respect to parameters and can 
thus be made to apply for non-complex analytic parameter spaces ; this proof is 
also technically simpler. Finally, we derive several corollaries about hyperbolic 
components of the Mandelbrot set. 

Along the way, we introduce partitions of dynamical and parameter planes 
which are of independent interest, and we interpret the Mandelbrot set as a 
symbolic parameter space of kneading sequences and internal addresses. 
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PRÉFACE 

Le colloque «Géométrie complexe et Systèmes dynamiques» s'est tenu à Orsay 
du 3 au 8 juillet 1995. Organisé en l'honneur d'Adrien Douady, à l'occasion de son 
soixantième anniversaire, il a réuni environ 250 participants. 

Elève d'Henri Cartan, Adrien Douady a d'abord consacré ses recherches à la géo
métrie analytique : la structure analytique universelle sur l'ensemble des sous-espaces 
analytiques fermés d'un espace analytique compact, la déformation universelle d'un 
espace analytique, le principe «platitude et privilège» sont les points saillants de 
ce premier versant de son œuvre mathématique. Vient ensuite une période intermé
diaire où ses intérêts sont très divers : densité des formes de Strebel, dimension des 
attracteurs (avec J. Oesterlé), théorème de Manin-Drinfeld... 

À partir de 1980 s'ouvre l'époque de la dynamique holomorphe. L'étude de l'ité
ration des fractions rationnelles initiée par Pierre Fatou et Gaston Julia au début du 
siècle était tombée en désuétude jusqu'à la fin des années soixante. C'est alors que 
les expériences numériques, rendues possibles par la puissance des ordinateurs, vont 
provoquer un extraordinaire regain d'activité dans cette direction, qui jusqu'à aujour
d'hui ne s'est pas démenti. Sur le plan théorique, ce sont les résultats fondamentaux 
de D. Sullivan d'une part, de A. Douady et J. Hubbard d'autre part, qui vont ouvrir 
la voie. 

La théorie des applications à allure polynomiale fournit le cadre naturel qui as
sure la flexibilité nécessaire à l'étude de l'itération des polynômes. Les techniques 
de chirurgie holomorphe ont permis de belles avancées. La description combinatoire, 
par rayons externes et équipotentielles, des ensembles de Julia et de l'ensemble de 
Mandelbrot recèle une puissance impressionnante et une harmonie magique. 

Le présent volume ne prétend pas être un reflet fidèle du colloque d'Orsay. Cer
tains auteurs n'avaient pu être présents, d'autres ont écrit sur un sujet différent de 
leur exposé oral. Si la dynamique holomorphe est très présente, d'autres domaines 
extrêmement actifs à l'heure actuelle (dynamique non-uniformément hyperbolique, 
feuilletages...) y apparaissent, l'ensemble reflétant la richesse, l'unité et la diversité 
des recherches contemporaines sur les systèmes dynamiques. 


