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RINGS OF SEPARATED POWER SERIES AND
QUASI-AFFINOID GEOMETRY

Leonard Lipshitz, Zachary Robinson

Abstract. — The papers in this volume present a theory of rigid analytic geometry
over an ultrametric field K that generalizes the classical, affinoid, theory to the setting
of relative rigid analytic geometry over an “open” polydisc. The theory is based on
the commutative algebra of power series rings S, » that is developed in the first paper
in this volume, Rings of Separated Power Series. Quasi-affinoid algebras (quotients
Sm.n/I) share many properties with affinoid algebras (quotients T),/I of a ring of
strictly convergent power series.) Among the principal results are the Nullstellensatz
for quasi—affinoid algebras A and the Universal Property for a broad class of open
subdomains of Max A, the R—subdomains. The second paper, Model Completeness
and Subanalytic Sets, obtains a structure theory for images of analytic maps based on
any subcollection of § = US,, ,, that satisfies certain closure properties; for example
T = UT,,. The argument exploits the existential definability of the Weierstrass data
as well as a difference between affinoid and quasi—affinoid rigid analytic geometry;
namely, that a quasi—affinoid variety Max A in general may be covered by finitely
many disjoint quasi-affinoid subdomains, just as the valuation ring K° is the union
of its maximal ideal K°° and its multiplicative units. A crucial role is played by the
theory of generalized rings of fractions developed in the first paper. The third paper,
Quasi-Affinoid Varieties, defines the category of Sy, ,—analytic varieties X = Max A
and establishes the acyclicity of quasi—affinoid covers. The proofs employ results from
the first paper; in particular, the fact that the assignment U — Ox (U) is a presheaf
of A-algebras for R—subdomains U of X. The quantifier elimination of the second
paper is used to relate quasi—affinoid and affinoid covers, a key step in the proof of the
Acyclicity Theorem. The fourth paper, A Rigid Analytic Approximation Theorem,
gives a global Artin Approximation theorem between a “Henselization” H,, , of a
ring T\,4r, of strictly convergent power series and its “completion” S, . This links
the algebraic properties of affinoid and quasi—affinoid algebras.
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Résumé (Anneaux de €ries £parées et @gomeétrie quasi-affinode)

Les articles de ce volume présentent une théorie de la géométrie analytique rigide
sur un corps ultramétrique K qui généralise la théorie affinoide classique au cas de la
géométrie analytique rigide relative sur un polydisque « ouvert ». Cette théorie est
basée sur I’étude algébrique des anneaux de séries convergentes S, , développée dans
le premier article, Rings of Separated Power Series. Les algebres quasi-affinoides (les
quotients Sy, »/I) partagent de nombreuses propriétés avec les algebres affinoides (les
quotients T, /I d’un anneau de séries strictement convergentes). Parmi les résultats
principaux signalons le Nullstellensatz pour les algebres quasi-affinoides A ainsi que
la Propriété Universelle pour une large classe de sous-domaines ouverts de Max X,
les R-sous-domaines. Le second article, Model Completeness and Subanalytic Sets,
contient des résultats sur la structure des images de familles de fonctions analytiques
provenant par extension d’une famille quelconque de fonctions de S = US,, ,, satis-
faisant certaines propriétés de fermeture; par exemple T' = UT},, est une telle famille.
La preuve utilise le fait que les données de Weierstrass sont définissables ainsi que le
fait, témoignant de la différence entre géométrie affinoide et quasi-affinoide, qu’une
variété quasi-affinoide Max A peut généralement étre recouverte par un nombre fini de
sous-domaines quasi-affinoides disjoints, de la méme facon que I'anneau de valuation
K° est I'union de son idéal maximal K°° et de ses unités multiplicatives. La théorie
des anneaux généralisés de fractions développée dans le premier article joue un role
crucial. Dans le troisiéme article, Quasi-Affinoid Varieties, on définit la catégorie des
variétés Sy, n-analytiques X = Max A et on établit I'acyclicité des recouvrements
quasi-affinoides. Les démonstrations emploient des résultats du premier article, no-
tamment le fait que le foncteur U — Ox (U) est un préfaisceau d’ A-algebres pour des
R-sous-domaines U de X. On utilise également le résultat d’élimination des quantifi-
cateurs obtenu dans le second article pour établir un rapport entre les recouvrements
quasi-affinoides et les recouvrements affinoides, ce qui est une étape cruciale dans
la démonstration du théoreme d’acyclicité. Le quatrieme article, A Rigid Analytic
Approximation Theorem, donne un théoreme d’approximation globale d’Artin entre
un « hensélisé » H,, , d'un anneau Tp,4, de séries strictement convergentes et son
complété Sy, . Ce résultat permet de relier les propriétés algébriques des algebres
quasi-affinoides et affinoides.

ASTERISQUE 264



CONTENTS

Introduction. ... ... .. 1
Rings of Separated Power Series.............. .. .. . i, 3
1o Introduction. . . ..ot 3
2. Rings of Separated Power Series......... ..o 7
3. Restrictions to Polydiscs..........oo i 24
4. The Commutative Algebra of Sy, p..oooooooiiii 59
5. The Supremum Semi-Norm and Open Domains............................ 68
6. A Finiteness Theorem. ... ... ... e 100
References. . . ... 106
Model Completeness and Subanalytic Sets................................ 109
1. Introduction. . . ..ot 109
2. Existentially Defined Analytic Functions................ ..., 110
3. Existential Definability of Weierstrass Data............... ... ... ... .. 115
4. The Elimination Theorem......... ... ... . i, 120
5. Subanalytic Sets. ... ...t 125
References. . . ... 126
Quasi-Affinoid Varieties........... ... .. i 127
1o Introduction. . . ..o 127
2. G-Topologies and the Structure Presheaf........ .. ... .. ... .. .. ... ... 130
3. Coverings and Acyclicity. .......ovuiui i 139
References. . ... ..o 149
A Rigid Analytic Approximation Theorem, by Zachary Robinson......... 151
1o Introduction. . . ..o 151
2. The Rings of Henselian Power Series............ ..o, 152
3. Flatmess. ..o 156
4. Regularity. .. ..o 161
5. APPTrOXIMALION. . .ottt et 164
References. . . ... 168






INTRODUCTION

Let K be a field, complete with respect to the non-trivial ultrametric absolute
value |-| : K — R4. By K° denote the valuation ring, by K°° its maximal ideal, and
by K the residue field K°/K°°. Let K’ be an algebraically closed field containing K
and consider the polydisc

A = ((K)°)" x ((K')*°)"

In 1961, Tate introduced rings T3, of analytic functions on the closed polydiscs A, o.
These rings lift the affine algebraic geometry of the field K. In particular, the Eu-
clidean Division Theorem for K [€] lifts to a global Weierstrass Division Theorem for
T,n- The basic properties of T;,, that follow from Weierstrass Division include Noethe-
rianness, Noether Normalization, unique factorization, and a Nullstellensatz. These
results pave the way for the development of rigid (affinoid) analytic geometry.

The representation

A = th)l((K’)")m x (e(K")°),
where ¢ € (K')°°, yields a ring of analytic functions on A,, , by taking a corre-
sponding inverse limit of Tate rings. This gives the polydisc A, , the structure of
a rigid analytic variety. But its global functions are, in general, unbounded. Even if
one restricts attention to those functions with finite supremum norm, the geometric
behavior can be pathological.

In the first paper, Rings of Separated Power Series, we define rings S, ,, of bounded
analytic functions on A, ,, with a tractable algebraic and geometric behavior. Those
rings share many of the nice properties of the Tate rings 7T;,, though the proofs
are often rather more difficult. We show that the rings S, , are Noetherian rings
(often K-Banach algebras) of bounded analytic functions on A,, ,, that satisfy a
Nullstellensatz, are unique factorization domains, and are regular rings of dimension
m+n.



2 INTRODUCTION

We call quotients of the S, , quasi-affinoid algebras. Quasi-affinoid algrebras share
most of the properties of affinoid algebras. For example, the residue norms arising
from different presentations of a quasi-affinoid algebra are all equivalent; quasi-affinoid
morphisms are continuous; in characteristic zero (and often in characteristic p) the
residue norms and the supremum norm on a reduced quasi-affinoid algebra are equiv-
alent; and quasi-affinoid rational domains satisfy the appropriate universal mapping
property. These results pave the way for the development of a relative rigid analytic
geometry over open polydiscs.

We give three applications of the general theory. In the second paper, Model
Completeness and Subanalytic Sets, we present a quantifier elimination theorem which
lays the foundation for the theory of rigid subanalytic sets based on the Tate Rings.
The third paper, Quasi-Affinoid Varieties, applies the results of the first two papers to
treat the basic sheaf theory of quasi-affinoid varieties and to prove the quasi-affinoid
Acyclicity Theorem. In the fourth paper, A Rigid Analytic Approzimation Theorem, a
global Artin Approximation Theorem is presented for the pair of rings Hy, 5, — Sp.n,
where H,, , is the algebraic closure of Ty, 1p in Sy, . In this context the rings Sy,
play the role of a kind of completion of the Tate rings.

Achnowledgements. — Both authors thank MSRI and the ICMS, Edinburgh for sup-
port and hospitality, Jan Denef for his encouragement in this project, and Judy
Mitchell for her patience in typing numerous versions of this manuscript. The second
author also gratefully acknowledges the support of the CNR and the hospitality of
the University of Pisa. Diagrams were created by using diagram.sty by Paul Taylor
of Queen Mary and Westfield College, London.
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RINGS OF SEPARATED POWER SERIES

1. Introduction

Let K be a field, complete with respect to the non-trivial ultrametric absolute
value |- | : K — Ry. By K° denote the valuation ring, by K°° its maximal ideal, and
by K the residue field K °/K°°. Let K’ be an algebraically closed field containing K
and consider the polydisc

A = ((K)°)" x ((K')*°)"

In 1961, Tate [39] introduced rings T, of analytic functions on the closed polydiscs
Ap,0. These rings lift the affine algebraic geometry of the field K. In particular, the
Euclidean Division Theorem for K[¢] lifts to a global Weierstrass Division Theorem
for T;,. The basic properties of T}, that follow from Weierstrass Division include
Noetherianness, Noether Normalization, unique factorization, and a Nullstellensatz.
These results pave the way for the development of rigid analytic geometry (see [6]
and [10]).

Because in its metric topology K’ is totally disconnected and not locally compact,
to construct rigid analytic spaces one relies on a Grothendieck topology to provide a
suitable framework for sheaf theory. For example, the basic admissible open affinoids
of rigid analytic geometry are obtained by an analytic process analogous to localiza-
tion in algebraic geometry (see [6, Section 7.2.3]). The resulting domains, rational
domains, satisfy a certain universal property (see [6, Section 7.2.2]) and therefore give
a local theory of rigid analytic spaces. The local data are linked together with a no-
tion of admissible open cover and Tate’s Acyclicity Theorem. This makes it possible,
for example, to endow every algebraic variety over K with an analytic structure, that
of a rigid analytic variety.

The representation

Apn = Hm((K")7)™ x (e(K')°)",

|
’ —
€



4 RINGS OF SEPARATED POWER SERIES

where ¢ € (K')°°, yields a ring of analytic functions on A,,, by taking a corre-
sponding inverse limit of Tate rings. This gives the polydisc A, , the structure of
a rigid analytic variety. But its global functions are, in general, unbounded. Even if
one restricts attention to those functions with finite supremum norm, the geometric
behavior can be pathological. For example, let {a;}ien C (K')°° be a sequence such
that lim; o |a;| = 1. Put

flp) = aip".

Then f converges and has infinitely many zeros on Ay ;. This follows by restricting
to the closed subdiscs € - A; ¢ and applying Weierstrass Preparation.

The rings Sy, n, defined below, represent Noetherian rings (often, K-Banach alge-
bras) of bounded analytic functions on A,, ,, with a tractable algebraic and geometric
behavior. We address the issue of the corresponding sheaf theory in [22].

These rings have been used in various contexts. In [16], where the S, , were
first defined, they were used to obtain a uniform bound on the number of isolated
points in fibers of affinoid maps. This result was strengthened in [2] to give a uniform
bound on the piece numbers of such fibers. In [11], rings Sy, were used to lift
the rings K [p] in order to obtain analytic information about local rings of algebraic
varieties over K. In [17] (and later in [21]), the S,,, were used to provide the
basis for a theory of rigid subanalytic sets; i.e., images of K-analytic maps. This
theory of rigid subanalytic sets was developed considerably further in [21], [19], [18],
[20]. The manuscript [21] (unpublished) contains a quantifier simplification theorem
suitable for the development of a theory of subanalytic sets based on the Tate rings.
That manuscript was produced in 1995, well before the completion of this paper,
and hence it was written to be self contained. As a result the proofs were rather
ad hoc. In the paper [23] we give a smoother and more general treatment of that
quantifier simplification theorem, based on some of the machinery developed in this
paper, specifically the Weierstrass Division and Preparation Theorems (Theorem 2.3.8
and Corollary 2.3.9) and the concept of “generalized ring of fractions” developed in
Section 5.

(The theory of the images of semianalytic sets under proper K-analytic maps
was developed by Schoutens in [32]-[36]. Recently in [12], [37] and [13] Gardener
and Schoutens have given a quantifier elimination in the language of Denef and van
den Dries [9] over the Tate rings T}, using the results of Raynaud—-Mehlmann [27],
Berkovich [3], and Hironaka, [15]. The proof of their elimination theorem also depends
on the model completeness result of [21], see [23, Section 4].)

The theory of the rings S, was not developed systematically in papers [16],
[17], [18], [19], [20] and [21]. Instead, partial results were proved as needed. The
accumulation of these partial results convinced us that a systematic theory of the rings
Sm,n would be possible and would provide a natural basis for rigid analytic geometry
on the polydiscs A, ,,. The theory developed in this paper has been applied in [23]
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1. INTRODUCTION 5

to prove a quantifier elimination theorem which provides the basis for the theory of
rigid subanalytic sets based on the Tate rings, and in [22] which treats the basic sheaf
theory of quasi-affinoid varieties and proves the quasi-affinoid acyclicity theorem. The
theory has also been applied in [31] to yield a global Artin Approximation Theorem
for the pair of rings Hy, ,, — Sp n, where H,, ,, is the algebraic closure of T},,4, in
Sm.n. Here the Sy, ,, play the role of a kind of completion of Tate rings.

The goals of this paper are (i) to develop the commutative algebra of the power
series rings Sy, , (Section 4) and (ii) to develop the ingredients of sheaf theory for
Sm.,n-analytic varieties; in particular to show that rational domains in this setting
(which we term quasi-affinoid) satisfy the same universal property as affinoid rational
domains. This provides a foundation for a relative rigid analytic geometry over open
polydiscs.

In the next few paragraphs we outline the contents of this paper.

In Section 2, we define the rings Sy, ,, of separated power series, prove that they
are Noetherian and prove two Weierstrass Preparation Theorems as in [16], [17]
and [2], one relative to the variables ranging over closed discs, the other relative
to the variables ranging over open discs. These Weierstrass Preparation Theorems
were crucial in the applications mentioned above. But, because there are two types
of variables, a suitably large collection of Weierstrass automorphisms does not exist.
Thus these Weierstrass Preparation Theorems do not yield Noether Normalization for
quotient rings of the S, ,, (see Example 2.3.5), making the basic theory considerably
more difficult to establish than in the affinoid case.

We are interested in studying properties of quotient rings Sy, ,/I. In affinoid
geometry, the key technique is Noether Normalization. The difficulties stemming
from the failure of Noether Normalization for Sy, , are overcome in Section 3 by a
careful analysis of the behavior of restriction maps from A,, ,, to closed subpolydiscs
and to certain disjoint unions of open subpolydiscs.

Section 4 contains the Nullstellensatz and results on flatness, excellence, and unique
factorization. The Nullstellensatz yields a supremum seminorm on the maximal ideal
space of a quasi-affinoid algebra (i.e., a quotient ring of Sy, »).

In Section 5, we relate the behavior of the supremum seminorm to the residue norm
derived from the Gauss norm on S, , patching together uniform data that hold on
affinoid algebras induced by restriction maps. The results are used to show that
K-algebra homomorphisms of quasi-affinoid algebras are continuous, that all residue
norms on a quasi-affinoid algebra are equivalent (i.e., the topology of a quasi-affinoid
algebra is independent of presentation), and that quasi-affinoid rational domains sat-
isfy an appropriate Universal Mapping Property. We prove when Char K = 0, and
in many cases also when Char K = p, that on a reduced quasi-affinoid algebra the
supremum norm and the residue norms are equivalent.

SOCIETE MATHEMATIQUE DE FRANCE 2000



6 RINGS OF SEPARATED POWER SERIES

Section 6 contains some finiteness theorems, in particular it contains a weak ana-
logue of Zariski’s Main Theorem for quasi-finite maps, which is applied to show that
quasi-affinoid subdomains are finite unions of R-subdomains.

We employ three different sorts of argument in this paper. The first sort of ar-
gument, “slicing”, combines a generalization of the notion of discrete valuation ring
(DVR) and a generalization of the notion of orthonormal basis. Each “level” of a for-
mal power series ring over a DVR projects to a formal power series ring over a field,
whose algebraic properties can often be lifted. Similar arguments were employed in
[14] and in [4]. The second sort of argument exploits the relation between residue
order and restrictions to closed polydiscs. A special case of this type of argument was
used in [5]. To treat the case of a discretely valued ground field we must understand
how generating systems of modules behave under ground field extension. Here we use
the notion of stable fields (see [6]). The third sort of argument uses techniques of
commutative algebra to extract information from completions at maximal ideals.

Following is a telegraphic summary of the principal results of this paper.

Theorem2.1.3. — Iff( is algebraic over E then
Sman(E,K) = K®EE<£>HP]]
Corollary 2.2.4. — S, ,, is Noetherian.

Theorem 2.3.2 and Corollary 2.3.3. — Weierstrass Division and Preparation Theo-
rems for Sp p.

Theorem 2.3.8and Corollary 2.3.9. — Weierstrass Division and Preparation Theo-
rems for A(&)[p]s-

Theorem 3.1.3. — Submodules of (Sm.n)* are v-strict. In particular, ideals of Sm.n
are strictly closed.

Theorem 3.2.3. — Strictness of a generating system is preserved under restriction to
suitably large rational polydiscs.

Corollary 3.3.2. — For a submodule M C (Sy..n)", and ¢ large enough
2 (1e(M) - Thnn(e)) = M.

Theorems 3.4.3,3.4.6. — The restriction of a quasi-affinoid algebra to a suitably cho-
sen finite union of open polydiscs is an isometry in residue norms.

Theorem4.1.1. — The Nullstellensatz for Sy, .

Corollary 4.2.2. — S, ,, is a regular ring of dimension m + n.
Proposition 4.2.3. — If Char K =0, Sy, ,, is excellent.

Proposition 4.2.5. — S, is often excellent when Char K = p # 0.

ASTERISQUE 264



2. RINGS OF SEPARATED POWER SERIES 7

Theorem4.2.7. — Sy, » is a UFD.

Theorem 5.1.5. — For a quasi-affinoid algebra, the ring of power-bounded elements is
integral over the ring of elements of residue norm < 1.

Corollary 5.1.8. — Characterization of power-boundedness, topological nilpotence and
quasi-nilpotence in terms of the supremum seminorm.

Theorem 5.2.3, Corollary 5.2.4. — Quasi-affinoid morphisms are continuous. In par-
ticular all residue norms on a quasi-affinoid algebra are equivalent.

Theorem 5.2.6. — Homomorphism FExtension Lemma.

Proposition 5.3.2. — Generalized rings of fractions are well-defined.

Theorem 5.3.5. — Quasi-rational domains satisfy the appropriate universal mapping
property.

Proposition 5.4.3. — Tensor products exist in the category of quasi-affinoid algebras.

Theorems5.5.3,5.5.4. — In characteristic zero, and often in characteristic p, the
residue norm and the supremum norm of a reduced quasi-affinoid algebra are equiva-
lent.

Theorem 6.1.2. — A quasi-affinoid map that is finite-to-one is piecewise finite.
Theorem 6.2.2. — A quasi-affinoid subdomain is a finite union of R-subdomains.

Corollary 6.2.3. — Quasi-affinoid subdomains are open.

2. Rings of Separated Power Series

In this section, we define the rings Sy, n = Sm.n(E, K) of separated power series,
prove that these rings are Noetherian (Corollary 2.2.4) and that they satisfy Weier-
strass Preparation and Division theorems (Corollary 2.3.3 and Theorem 2.3.2), but
not (Example 2.3.5) Noether Normalization.

2.1. Definitions. — Let K be a field, complete with respect to a non-trivial ul-
trametric absolute value | - |: K — R4, let K° denote the valuation ring of K, let
K°° denote its maximal ideal and let ~: K° — K := K° /K°° denote the canonical
residue epimorphism. Throughout this paper, we will be concerned with power series
whose coefficients lie in certain subrings B of K° called quasi-Noetherian rings.

Let B be a valued subring of K° such that each x € B with |z| =1 is a unit of B
(such rings are called B-rings.) It follows from the ultrametric inequality that B is
a local ring. The ring B is called quasi-Noetherian iff for each ideal a of B there is
a zero-sequence {x;};eny C a (called a quasi-finite generating system) such that each

SOCIETE MATHEMATIQUE DE FRANCE 2000



8 RINGS OF SEPARATED POWER SERIES

a € a can be written in the form a = > b;z; for some elements b; € B. However, not
i>0
all such sums need belong to a. (See [6, Section 1.8] and [14].)

We will make use of the following properties of quasi-Noetherian rings without
further reference. Clearly, any subring B C K° which is a DVR is quasi-Noetherian,
since it is Noetherian. Let B C K° be quasi-Noetherian. For any zero sequence
{a;}ien C K°, the local ring

A= Blag, ay, .. ~]{aeB[ao,a1,...]:|a\:1}

is quasi-Noetherian ([6, Proposition 1.8.2.4]). The completion of B is itself quasi-
Noetherian ([6, Proposition 1.8.2.2]). The value semigroup |B\ {0}| C Ry \ {0} is
discrete ([6, Corollary 1.8.1.3]). Therefore, there is a sequence {b;};en C B\ {0} with
|B\ {0} = {|bi|}ien and 1 = |bg| > |b1| > - --. The sequence of ideals

By :={beB: b <|b]}, i €N

is called the natural filtration of B. Note that B; is the unique maximal ideal of
B. By B denote the residue field B/B; of B. For i € N, put Ei = Bi/BH_l; then
B= EO C K. Since By - B; C B;4+1, the B-modules Ei can be viewed in a canonical
way as B-vector spaces. Each B vector space B; is finite-dimensional; in fact, this
property characterizes the class of quasi-Noetherian rings ([6, Theorem 1.8.1.2]). For
1 € N we may identify the B-vector space Ez with the B-vector subspace (bi_lBi)N
of K via the map

7t (a4 Bip1) — (b;la)N.

When i > 0, this identification of B; with a B-vector subspace of K is not canonical;
it will, however, be used frequently.

Let R be aring and let {ay}rer be an inverse system of ideals of R. When we endow
R with the topology induced by taking {a)}xcr to be a system of neighborhoods of 0,
R is said to be a ring with a linear topology. In this subsection, we will assume that
R is complete and Hausdorff in this linear topology. For example, let R be a subring
of K°; then the topology induced on R by the absolute value |- | is a Hausdorff linear
topology.

Let & = (&1,...,&mn) be variables. A formal power series ) a,&" with coefficients
in R is called strictly convergent iff {a,}u enm is a zero-sequence in R. By R(¢),
we denote the collection of all strictly convergent power series; it is a subring of the
formal power series ring R[¢]. The ring R(&) is complete and Hausdorff in the uniform
topology; i.e., in the linear topology given by the system of ideals {ay - R{{)}rer. In
case R = K°, by K(£), we denote the K-algebra K @ R(£) of strictly convergent
power series over K.

Let p = (p1, ..., pn) be variables. Then

ASTERISQUE 264



2. RINGS OF SEPARATED POWER SERIES 9

when we endow R[p]] with the product topology; i.e., the topology induced by the
inverse system of ideals

@Wﬂéfumﬁhﬁ

In case R carries the discrete topology, R(§) = R[] and

R[E[pl = RIIE) »

where R[[p]] carries the (p)-adic topology. If R C K° then the absolute value |-| on
R induces a linear topology, and |-| extends to an R-module norm on R(£)[[p] called
the Gauss norm, given by

==sup |fuul-
v

Z fuufﬂpy
Nz

These definitions will be used in Subsection 2.3 where we discuss Weierstrass Division
Theorems.

Definition 2.1.1. —Fix a complete, quasi-Noetherian subring £ C K° and, if Char K =
p > 0, assume in addition that £ is a DVR. Let £ = (&1,...,&,) and p = (p1,...,pn)
be variables. We define a K-subalgebra S, ,(E,K) of K¢, p], called a ring of
separated power series.

Let B be the family of quasi-Noetherian subrings of K° which consists of all local
rings of the form

~

(E[CL07 at, .. ']{aGE[aO,al,...]:|a|:1}) »

where  denotes completion in | - |, and where {a;}ien C K° is a zero-sequence. Then
put

Smn = Smn(E,K) = K @ (hgl B(¢) [[p]]> ;

BeB
50, = lim B[],
BeB
ano,n =K. S:)n,nv
gm,n = lim E[f] [o]-
BeB

For f =3 au&"p” € Sy, n we define the Gauss norm of f by

[fIl == sup|ag,,|-
sV

Note that Sy, ,, contains the Tate ring Tmn(K) = K(, p) and S, o coincides with
T In case K = Q,, the field of p-adic numbers, we have Sy, , = Q, ®z, Z,(£) [p],
where Z, denotes the ring of p-adic integers. When K is algebraically closed and E

SOCIETE MATHEMATIQUE DE FRANCE 2000



10 RINGS OF SEPARATED POWER SERIES

is a DVR with E € K° and E = K, the rings S,, ,(E, K) are the rings defined in
[17]. Following the usage in [17], when FE is understood, we may write

K(&) [Pl := Smn(E, K).

(The subscript s stands for “separated”.) In the case that E = K the rings So.n and
their quotient rings are the formal completions considered in [11, Section 2.3.2,], and
used to derive properties of the formal localizations. The description of these rings
given in Definition 2.1.1 is due to Bartenwerfer [2].

The family B, described in Definition 2.1.1, satisfies the following properties, which
we use without further reference.

(a) B forms a direct system under inclusion,
(b) lim B = K°,
[
Be®B
(c) for each B € B and b € B there is some B’ € B with (b"!BNK°) C B/,

and

(d) for any B € 9B and any zero-sequence {a;};en C K°,
(B[aOa ai, .. ']{aEB[ao,m,...}:\a\:l}) €.
If EC E' and K C K’ then
Smn(E,K) C Smﬁn(E/,K').

If K is a finite algebraic extension of K then Sy, ,(E,K') = K' @k Sp.n(E, K).
Remark 2.1.2. — The following are easy consequences of the properties of B-rings (cf.
[2] and [17]).

(1) I f=>au.,&"p” € Spm,n then

I£1l= supla,| = max|aul.
i.e., the supremum is attained.
(ii) We have the following characterizations of the subring Sy, ,,, the ideal Sg°, . and

m,n’ m,n’

the residue ring §mn

Son = Af€Smn|IfIl <1},
Sovn = Af€Sman:|Ifll <1} and
Smn = Soun/Se

Asin [6, Corollary 1.5.3.2], the Gauss norm ||- || is an absolute value on Sy, ,, extending
that on K.

The canonical residue epimorphism ~: K° — K extends to the residue epimor-
phism ~: Sy, . — Smon t 2 au&tp” — Y auétp”. Let I be an ideal of S, ,,, and

m,n

put [°:= S5 , NI. Since ~: S7, ,, — Spm n is surjective, the image of I° under ~ is

an ideal of gm_,n, which we denote by I.
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2. RINGS OF SEPARATED POWER SERIES 11

In general the S,, n(E K) are not complete in I - |- However, for many choices of
E C K they are. When K is algebraic over E we will show that

Sm,n(E7 K) = K®EE<§>[[p]]a

where ®g denotes the complete tensor product of normed E-modules (see [6, Section
2.1.7]). This situation is clarified in the next theorem. Observe that the natural map

0 K@pBEE)[p] — K& Y i@ fi— Y aif;

is injective. Indeed, it is easy to see that the field of fractions Q(F) of E is a flat
E-algebra. Hence, K[, p], being a Q(FE)-vector space, is also a flat F-algebra. It
now follows from [25, Theorem 7.6], that Ker o = (0). The image of o is contained
in Sy, n(E, K). Moreover, since ¢ is contractive, it extends to a map

7: K@pE{E)[p] — K[&, 0l

It is not hard to see that the image of & is contained in Sy, »(F, K), when Sy, »(E, K)
is complete (see below).

Theorem2.1.3. — Let n > 0.

(1) Smn(E,K) is || - ||-complete if, and only if, K has finite transcendence degree
over E. In that case let E' C K° be a finitely generated extension of E such that K
s algebraic over E'. Then

Sm,n(EaK) = Sm,n(ElaK) = K@E/E'@}[[p]]’

where ®p/ denotes complete tensor product of normed E’'-modules (see [6, Section
2.1.7]).

(ii) There is a quasi-Noetherian ring E', E C E' C K°, such that Sy n(E', K) is
| - ||-complete (and contains Sy n(E, K)).

(iii) §m7n(E,K) is (p)-adically complete if, and only if, K is a finitely generated
field extension of E.

(iv) Sp,.n(E, K) is (p)-adically complete if, and only if, K is a finitely generated
field extension ofE and K is discretely valued. (In which case we may take E = K°.)

Proof

(i) Suppose that K has infinite transcendence degree over E. Let t; € K° i €N,
be such that the ¢; are algebraically independent over E. Let f; = S =1 1/71 € 50,1 C
Sm.n (n > 0). Choose a € K°° (i.e., |a] < 1). The series f= o2, a'f; is Cauchy in
I ]| but does not belong to Sy, n Indeed for any B € B, B is a finitely generated field
extension of E and for i > 1, B is a finite dimensional vector space over B. Hence
f & Blp1l. N N

For the converse, assume that K is of finite transcendence degree over E. Note
that if E/ € B then Sy, n(E,K) = Spn(E', K). Hence we may assume that K is
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12 RINGS OF SEPARATED POWER SERIES

algebraic over E. Let f; € Sy With [ fi]| — 0. There are a; € K° with |a;| = || fi|
and B® € B such that = f; € BY()[g], i.e., fi € a;BD(E)[p]. Let
B = B{’ 5 B 5

be the natural filtration of B®. Since K is algebraic over E, each field Eéi) = E(i),
and hence each B( )7 is a finite-dimensional E-vector space. Let BJ(-l)
over E by the residues modulo Bj(fal of biji, € Bj(i)7 k=1,.. .Ldim EJ@. Let {c;}tien
be a rearrangement of {a;bx : 4 € N,j € Nk =1,...,dim B](Z)} in non-increasing
size. (Recall that a; — 0.) Putting

be generated

B := (Elco,c1; - - - |{acElcoser,... Jilal=1}) € B
yields a; B C B for all i and Y, fi € B{¢)[p]. Hence Sy,.n(E, K) is complete.
As we observed above, there is a map 7 : K®pE(E)[p] — Smmn. If K is algebraic
over E then for every B € B, B and the B, are all finite-dimensional E vector spaces.
Hence for each B € B, there is a map

7 B(E)[p] — KQrE(€)[p],

which is a left inverse of &.

(ii) Repeated use of [6, Proposition 1.8.2.3 and Theorem 1.8.1.2], shows that there
is a quasi-Noetherian ring E', E C E' C K°, such that K is an algebraic extension
of E'. Hence Sy, (B, K) C Spmn(E', K) and by (i) Smon(E', K) is complete.

(iii) If K is a finitely generated field extension of E then replacing E by a suitable
finitely generated extension we may assume that E = K. But then

Sm,n = E[ ][[10]]7

which is (p)-adically complete.
If, on the other hand, there are ¢; € K such that EH ¢ E(ﬂ,...,ﬂ-) then f :=
Zﬁpﬁ &z gmm, since for every B € B, Bisa finitely generated field extension of E.
(iv) If K is not discretely valued there are a; € K° with |a;| < |ai+1] < 1 for
i=0,1,2,.... Then ), a;pt & Sm.,n. On the other hand, if Kisa finitely generated
extension of E and K is discretely valued, then K° € ‘B. |

Remark 2.1.4

(i) Suppose Char K = p # 0. In this case we require E to be a complete DVR.
By the Cohen Structure Theorem ([25, Theorem 29.4]), E has a coefficient field (i.e
an 1som0rphlc copy of EC E) which we also denote by E. Ifrisa prime of then
EcCE= E[ ] Thus Sy, n(E,K) = Sp, n(E K). Hence we could have required in
the equicharacteristic p case that E C K be a field, without loss of generality.

(ii) Let K be a perfect field of characteristic p, and let E C K° be a subfield.
Then there is a field E/, E C E' C K°, with E' perfect and K algebraic over E’.
Hence, using (i) above, for any DVR E C K° there is a field E/ C K° such that
Smn(E,K) C Spn(E,K), Spma(E',K) is complete in || - || and Sy n(E', K) is a
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2. RINGS OF SEPARATED POWER SERIES 13

finite Sy, (E’', K)P—module. (The monomials £ p” with 0 < p; < p, 0 < v; < p, form
a basis.)

By definition, Sy, , is the direct limit of complete rings (the B(£)[p]). Next we show
that while Sy, , may not be a complete K-algebra it is the direct limit of complete F-
algebras for some complete, nontrivially valued subfield F' of K. This decomposition
will be used in Subsection 5.2.

Let F be a complete subfield of K such that F° is a DVR and Fis finitely generated
as a field. (For example, in the mixed characteristic case let F' = Q,, the field of p-
adic numbers, and in the equicharacteristic case let F' be the fraction field of Q[¢t] or
F,[t], depending on the characteristic of K, where t € K°°.) Let B’ € B. There is a
B € B such that B’ U F° C B. Consider the F-algebra

F&poB(€)[p].

By the definition of the complete tensor product & this is an F-Banach algebra (i.e.,
is complete in || - ||). In general there is no B” € 9B such that (F&p-B{£)[p])° C
B"{£)[p].- However, the natural map

0 F@pe B[] — Smm: > i@ fir— > aifi

is an isometry because F° @po B(£)[p] = B{¢)[p]. The next proposition shows that
o extends to F&peB(£)[p].

Proposition 2.1.5. — With the above notation,
Fére B[] € Smn(E, K).

Indeed

Smn= lim FpBE)o]
FoeCBeB

Proof. — Tt is sufficient to show that if f € F&poB(€)[p] and ||f|| < 1 then there
is a B"” € B such that f € B"(€)[p]. Let f € F&poB(€)][p] with || f|| < 1. Then
there are f; € B(£)[p] and m; € N such that f = > 7 ™if;, where 7 is a prime
of F°, and |7~ f;]| — 0. Hence for each ¢ there is a nullsequence {a;;} en with
7™ f; € B'{(€)[p], where
B’ := (Blaij : j € N]{aeBla,,:jeN]:al=1})

and |a;;| < ||[7~™i f;]| for all ¢ and j. Since |7~ f;|| — 0, any rearrangement of the
double sequence {a;;}i jen as a sequence will be a null-sequence. Let {c¢;};cn be such
a rearrangement. Then if

~

B" = (B[COaCla' . ‘]{aGB[cO,cl,...]:|a|:1}) )
f € B"(E)[pl- O
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14 RINGS OF SEPARATED POWER SERIES

In general the F-Banach Algebras F& po B(€)[p] C Sm.n constructed above are not
Noetherian and the Weierstrass Preparation and Division Theorems need not hold in
them. An argument similar to the proof of Proposition 2.1.5 shows that we can write

Smon(E, K) = lim (K- B)[p])
BeB
as the direct limit of K-Banach Algebras. These K-Banach algebras likewise may fail
to satisfy the Weierstrass Preparation and Division Theorems of Subsection 2.3.

Remark 2.1.6

(1) The rings Sy, = Smn(E, K) can have quite different properties depending on
the choice of E. As we saw in Theorem 2.1.3, if E is large enough the Smn(E, K) will
be complete and the gmn may even be (p)-adically complete. On the other hand if
EcCKis small, the Sy, ,, will be far from complete and the §mn far from (p)-adically
complete. Nevertheless, for all choices of E, Sy, , is, by definition, the direct limit
of the || - ||-complete and (p)-adically complete rings B{(¢)[p], and this key property
allows the development of the theory.

(ii) There is a larger class of power series rings in which many of the results and
proofs of this paper remain valid. This larger class is defined as follows. Fix a family
B of complete, quasi-Noetherian subrings B C K° that satisfy the properties (a), (b),
(c) and (d) listed after Definition 2.1.1, and put

S = Smn(B, K) == K @Ko lim B(€)[p]-
BeB
Example 2.1.7 shows that this definition is more general.

(iii) If we wished to work over complete rings we could also have proceeded as
follows: Form the rings Sy, »(E, K) as in Definition 2.1.1, or the rings Sy, » (B, K)
defined above, and then take their completions Sﬂ:n = Smn(E, K)Aor Spmn (B, K)A.
In general the rings Sy, »(E, K) “would be different from the rings Smn(E', K) for
any E’. However all the results of the paper are true for these rings S,,: n. The
proofs that use “slicing” arguments may be modified as follows. Though an arbitrary
fe (SmA n)° need not belong to B(¢)[p] for any B € B, there is an increasing sequence
B c BMW c ... from B and ) € BW(¢)[p] such that ||f — D] — 0.

Example2.1.7. — We give an example of a 9B, as in Remark 2.1.6(ii), such that there
isno E with Sy, n(B,K) C Spmn(E, K). Consider F' = F,(t1, to,...)(z) with absolute
value derived from the (z)-adic valuation and let K be the completion of the algebraic
closure of F. Let {a;} be a sequence of positive rationals converging to zero, and define
inductively

Eo :=F,(t; + 2%,i € N)

o ) p~ ",
Eii= (El‘l[ti e N]{ae&fl[tf’": neN]: |a|:1}>
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2. RINGS OF SEPARATED POWER SERIES 15

Let B, be the family of all quasi-Noetherian rings of the form

(Eilao, a1, .. J{acEijao,ar,... lal=1})
where {a;};en is a null sequence from K°, and let
B = U;’B;.
We will show that for n > 0 there is no complete DVR E C K° such that
Srmn(B,K) C Spmn(E, K).
Suppose that Sy, » (B, K) C Spmn(E, K). Since K is algebraically closed, by Remark
2.1.4 we may assume that £ C K° is a field and that £ = K.
Note that F; has a countable dense subset {co, c1,...}. Hence
> ciph € Smn(B.K) C Spn(E, K).
Therefore for each ¢ € N there is a zero sequence {a1, az, ...} from K° such that
E; C (Ela1,az,.. ~]{aeE[al,az,...]:\a\:l})A =: E..

Since E = K we may assume that la;| < 1 for all j. Since tf_n € L, there are
en; € E with e,o € E such that

o0
tf =eno + Z €njd;.
j=1
Then
o0
ti=eby+ Zeﬁjazj )
j=1
Since |a;| < 1 for all j, we see that the sequence eﬁg converges to t;. Since E C K°
is a field the absolute value is trivial on E and hence t; € E. The quasi-Noetherian
ring E( contains both E and Ey. Thus it contains the elements 2%¢, ¢ € N. Since

|[z%| = p~ this contradicts the discreteness of the value semigroup of Ej). One can
construct a similar counterexample in characteristic zero.

Remark 2.1.8. — We will use the term affinoid to refer to objects defined over the Tate
rings and the term quasi-affinoid to refer to objects defined over rings of separated
power series. Hence, for example, an affinoid algebra is a quotient of a T,, and a
quasi-affinoid algebra is a quotient of an Sy, .

2.2. Noetherianness. — In this subsection, we lift the Noetherian property of the
residue rings §mn to the Sy, by lifting generators of ideals. This also yields the
property that ideals of Sy, ,, are strictly closed in || - ||, a property that will be further
analyzed in Subsection 3.1.

Lemma2.2.1. — Suppose A = lim Ay is a Noetherian ring which is the direct limit of
the rings Ax. Put A:=lim A\[[p] C A[}p]. The following are equivalent:
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16 RINGS OF SEPARATED POWER SERIES

(i) A is Noetherian.

(i) A[p] is a flat A-algebra.

(iii) A[p] is a faithfully flat A-algebra.

(iv) Each ideal of A is closed in the (p)-adic topology.

If each Ay is Noetherian and if for every X there is some p > A such that A is a flat
A, -algebra, then A[p]| is o flat A-algebra.

Proof. — Tt is no loss of generality to assume that each Ay C A. We first show (i) =
(ii) = (iil) = (iv) = (i).

(i) = (ii). Let I be the ideal of A generated by the variables p1,...,p,. Since
A[p] is Noetherian and since I - A[[p] is contained in the Jacobson radical of A[p]],
A[lp]) is I-adically ideal separated as an .A-module. Since for every ¢ € N

A1 = Allpll /(0
(ii) follows from (i) by the Local Flatness Criterion ([25, Theorem 22.3]).

(ii) = (iii). Let I be any ideal of A; then I - A[[p] is the unit ideal if, and only if,
for some fi,..., fe € T and ay,...,ap € A, the constant term of > a; f; is a unit. The
latter condition holds if, and only if, I generates the unit ideal of A. Therefore (iii)
follows from (ii) by [25, Theorem 7.2].

(iii) = (iv). Since A[p] is Noetherian and since (p) - A[[p] is contained in the
Jacobson radical, each ideal of A[[p] is closed in the (p)-adic topology by the Krull
Intersection Theorem ([25, Theorem 8.10 (i)]). Let I be any ideal of A; then the
(p)-adic closure of I in A is equal to I - A[[p] N A. Hence to prove (iv), we must
show that I = I- A[lp] N A. If A[[p] is faithfully flat over A, this follows from [25,
Theorem 7.5].

(iv) = (i). Let I be an ideal of A. Since A[p] is Noetherian, there are finitely
many elements f1,..., f¢ of I which generate the ideal I - A[[p]. Let J be the ideal
of A generated by fi,..., f¢. To prove (i), we show that J = I. If each ideal of A is
closed in the (p)-adic topology, then, as above,

I = AnlI-Afp]
= AnJ-Afp]
= J,
proving (i).
Now suppose that each Ay is Noetherian and that for every A there is some p > A
such that A is a flat A,-algebra. We show that A[p] is a flat A-algebra.
If Ais a flat A,-algebra then
Alpl = A®a, Aulp]

is a flat A, [p]-algebra. Since, in addition, A is Noetherian, by the Artin-Rees Lemma
([25, Theorem 8.6]), the A, [p]-module A[p] is (p)-adically ideal-separated. Since
A, [p] is Noetherian, by the Local Flatness Criterion ([25], Theorem 22.3), for every
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2. RINGS OF SEPARATED POWER SERIES 17

¢ e N, Alpl/(p)* is a flat A, [p]/(p) -algebra. Since Aflp]l/(p)" = Alp]/(p)* and
Aulloll/(p)* = Aulpl/(p)*, and since p1, ..., pn are contained in the Jacobson radical
of A[[p]], by another application of the local flatness criterion, A[[p] is a flat A, [p]-
algebra. To show that A[p] is a flat A-algebra, we use [25], Theorem 7.6. Suppose
fi,-.., fo € A; then for some g such that A[jp] is a flat A, [[p]l-algebra, f1,..., fo €
A, llpll. Suppose, furthermore, for some g1,...,g¢ € A[p] that > g¢;f; = 0. Since
Allp]) is a flat A, [[p]]-algebra, there are r € N, ¢;; € A, [[p]l and v; € Af[p], 1 <@ < ¢,
1 < j <r, such that

> figi; =0 for all j, and g; = > iy, for all i.
i J

Since A, [[p] C A, it follows immediately that A[Jp] is a flat A-algebra. O

The following is an immediate consequence of Lemma 2.2.1, taking the Ay to be
the B[], B € B.

Corollary 2.2.2. — The residue rings gmn are Noetherian; each ideal of gmn is closed
in the (p)-adic topology.

The next lemma allows us to lift generators of an ideal T of gmn to generators of
the ideal I of Sy, .

Lemma2.23. — Let I C Sy be an ideal and let gi,...,9, € I° be such that
{g1,...,Gr} generates I. Let [ € S5, and choose B € B such that f,q1,...,9r €
B(&)[p]]. Suppose that || f — h|| < ||f|| for some h € I. Then there are f1,...,fr €
B(&) [[p]] with

(2.2.1) Hf = > fug| < I£1
=1

and | = max |I£].

Proof. — Let B = By D By D --- be the natural filtration of B, and suppose

[ € Bp&) [Pl \ Bp+1(&) [] -
Find b, € B with B, = {b € B : |b| < |by|}, let m, : B, — B, C K be the B-module
residue epimorphism a — (b, 'a)™, and write
K=B,aV

for some B-vector space V. This implies that

(2.2.2) K [€][lo] = Bylé] el © VIE] o]

as B[¢][[p]-modules. (This useful decomposition can be found in [14].)
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18 RINGS OF SEPARATED POWER SERIES

Since || f — k|| < || f]| for some h € I, we have m,(f) € I. Since g1, ..., g generate
I, we have

m(f) = Zﬁ@ € ép[f][[ﬂ]]
i=1

for some fi1,...,fr € K[¢][p]. By (2.2.2), we may assume fl’; - fr € By[E[e)-
Thus there are fi,..., fr € By(&)[p] corresponding to f1,..., f, under the residue
map 7. Clearly, |[f — - fig;ll < /Il O

Since each B € B has discrete value semigroup and since B()[[p]] is complete in
I|l, Lemma 2.2.3 implies that the separated power series rings are Noetherian.

Corollary 2.2.4 (cf. [17, Proposition 2.6.2]). — The rings S, » are Noetherian. Indeed,
let I C Syn be an ideal and suppose the residues of gi,...,g9, € I° generate I in
Sm.n. Then for every f € I there are fi,..., fr € Spmn with

=Y figi,
i=1
and ||f]] = maxi<i<, ||fil]l. Moreover, if for some B € B, f,q1,...,9- € B{E)[p],
then f1,..., fr may also be taken to lie in B{(&)[p].

In fact, Lemma 2.2.3 yields the slightly stronger result, Corollary 2.2.6.

Definition 2.2.5 (cf. [6, Definition 1.1.5.1]). — Let (A,v) be a multiplicatively valued
ring. An ideal I of A is called strictly closed in v iff for every f € A there is some
g € I such that v(f — g) < v(f — h) for every h € I.

Corollary 2.2.6. — Ideals of Sy n are strictly closed in ||-||. Indeed, let I C Sy, n be an
ideal and suppose the residues of gi,...,gr € I° generate I in Sy, ,. Then for every
f € Smn there are f1,..., fr € Sy with

.
F=>" figi
i=1
for every h € I, and ||f]| > maxi<;<, || fil|. Moreover, if for some

B€%7 f,gl,’gr€B<§>[[p]]a
then f1,..., fr may be taken to lie in B(&)[p]].

<|If = Al

Taking n = 0 in the above, we obtain [6, Corollary 5.2.7.8].
In Subsection 3.1, we will be interested in some refinements of Corollary 2.2.6.

Definition 2.2.7. — Let I be an ideal of Sy, . For f € Sy, ., we define the residue
norm

£l = nf{|lf — Rl : h €I}
From Corollary 2.2.6, it follows that there is some h € I such that || f||, = || f — ||
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The direct sum (S, ,/I)* is a normed (S, ,,/I)-module via

. LR ,
et (Smn/ D) = R (fus s ) = muax il

We will be concerned with submodules M of (S, /)¢, which will be endowed with
the norm || - ||;. Residue modules play an important role.

Definition 2.2.8. — Let (M, | - |) be a normed K-module. By M° and M°° denote,
respectively, the K°-modules

Me:={feM:|f|<1} and
M= {f € M: |f] < 1},
We define the residue module M by
M := M°/M°°.
It is a K-module.

From Corollary 2.2.6, it follows that
(S /1)° = 8% o /I° and (S /)™ = Sy /1.

2.3. Weierstrass Division Theorems. — We recall in Theorem 2.3.2 the Weier-
strass Division Theorems for the rings Sy, (see [16] and [17]) in the form given in
[2, Section 1.2]. These will be used in Section 4 and extensively in Section 5. In
Theorem 2.3.8, we prove an extension of these division theorems to handle Weier-
strass divisors with coefficients in a quasi-affinoid algebra. The statement and proof
of Theorem 2.3.8 rely on results of Sections 4 and 5, but the theorem itself is only
used in Section 6 and in [23].

Definition 2.3.1 (cf. [17, Sections2.3and 2.4]). — An element f € §mn is regular in
Em of degree s iff for some ¢ € K, cf is congruent modulo (p) - gmn to a monic
polynomial in &, of degree s. An element f € §mn is regular in p, of degree s iff
f(&,0,...,0,pn) = p5-g(&, prn) for some unit g € IN([f] lpn]. An element f € S, ,,\ {0}
is regular of degree s in &, (respectively, p,) iff for some ¢ € K, (c¢f)™ € §m7n is
regular of degree s in §,,, (respectively, py,).

The formal power series ring B[¢][p], whence S, ,,, has the usual local Weierstrass
Division Theorem for elements regular in p, as in [41, Theorem VI.1.5]. As in [1,
Section 2.2] or in [17, Proposition 2.4.1], this lifts to the complete, linearly topolo-
gized ring B(¢)[p]. As explained in Subsection 2.1, B[¢][p] is equal to the strictly
convergent power series ring B[p](€). The Euclidean Division Theorem for B[¢] lifts
to a Weierstrass Division Theorem in B[p](¢) for elements regular in £, as in [6, The-
orem 5.2.1.2]. This may be lifted to B(£)[p] as in [17, Proposition 2.3.1], or as in

SOCIETE MATHEMATIQUE DE FRANCE 2000



20 RINGS OF SEPARATED POWER SERIES

[2, Section 1.2], using the Hensel’s Lemma of [8, Section 4]. This yields the following
theorem.

Theorem 2.3.2 (Weierstrass Division Theoremgf. [17, Propositions2.3.1 and 2.4.1])
Let f,g € Sg,,, with ||f]] = 1.
(i) If f is regular in &y of degree s, then there exist unique q¢ € Sy, , and r €
m—1.n|§m] of degree at most s — 1 such that g = qf +r. Ifg € I-S;, , for
some (closed) ideal I of Sy, 4 ,,, then q,r € ISy, ..

(ii) If f is reqular in p, of degree s, then there exist unique ¢ € Sp, ,, and r €
Sn—1lpn] of degree at most s —1 such that g = qf +r. Ifg € I-S}, ,, for some
(closed) ideal I of Sy, 1, then q,r € I-Sp, ..

Moreover, if f,g € B{&)[p] for some B € B, also, q,7 € B(§)[p]-

»n

Dividing &7, (or pf) by an element f € Sy, , regular in &, (or p,) of degree s, we
obtain the following corollary.

Corollary 2.3.3 (Weierstrass Preparation Theorem) — Let f € S, .. with ||f|| = 1.

m,n

(i) If f is regular in &,, of degree s, then there evist a unique unit u of Sy, ,, and
a unique monic polynomial P € S5, 1 ,[{m] of degree s such that f = - P; in
addition, P is regular in &, of degree s.

(ii) If f is reqular in py of degree s, then there exist a unique unit u of Sy, , and
a unique monic polynomial P € Sy, 1 [pn] of degree s such that f = - P; in
addition, P is regular in p, of degree s.

Moreover, if f € B(&)][p] for some B € B, also u, P € B(&)[p]-

Unlike the rings B[¢, p]] and B(&, p), there may be no automorphism of S,, ,, under
which a given element f with || f|| = 1 becomes regular (see Example 2.3.5).

Definition 2.3.4 (cf. [17, Section 3.12]). — An element f = 3 f.(p)&# € S, is pre-
regular in & of degree po iff f,, # 0 modulo (p) - gmn and f, = 0 modulo (p) - gmn
for all p lexicographically larger than pg. An element f = f,(&)p” € §mn is pre-
reqular in p of degree vy ift f,, € K \ {0} and for all lexicographically smaller indices
v, f, =0. An element f € S, \ {0} is preregular in & of degree uo (respectively, in
p of degree 1) iff for some ¢ € K, (cf)™ € Sy is preregular of the same degree.

If f is preregular in £ (respectively, p) then after an automorphism of the form

p = ps &m v &y & v &+ & (vespectively, & — &, pn = pa, pj = pjpid) f
becomes regular in &, (respectively, p,,) of some degree s. Such automorphisms are
called Weierstrass automorphisms.

Example2.3.5. — The element £ - p € S1 ;1 is not preregular. Indeed, there is no finite
monomorphism Sy, , — S1,1/(€p) for any m,n € N. Since the map

S1,0® 801 — S11/(p): (fr9)— f+g
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is surjective and dim S1 o = dim Sp1 = 1 (see Corollary 4.2.2), we must have

dim(Sl,l/(fp)) =1

Thus, if there were a finite monomorphism

©: Sman — Sl,l/(fﬁ%
either m =1 and n =0, or m = 0 and n = 1. We treat the case m = 1 and n = 0.
Let
a:S11/(€p) — So1 = S1,1/(§p,€)

be the canonical projection. Since « is surjective,
aop: 5170 — SO,l

is finite. Since dim Sp1 = 1, a0 ¢ must be injective. By [6, Proposition 3.8.1.7], we
can reduce modulo K°° to obtain a finite K-algebra homomorphism

(o)™ : K[| — So1-
But such a map cannot exist, since the transcendence degree of gg,l over K is infinite.

Remark 2.3.6. — For every nonzero f € Son, there is a Weierstrass automorphism of
So,» under which f becomes regular in p,, of some degree. Therefore, arguing as in
(6, Theorem 6.1.2.1], one proves the following version of Noether Normalization: Let
d be the Krull dimension of Sy /I; then there is a finite K-algebra monomorphism
¢ :S0,a— Son/I

In Definition 5.2.7, we will define the ring A(¢)[p]s C A[E, p] of separated power
series with coefficients in a quasi-affinoid algebra A. Using the results of Subsec-
tion 5.2, we state and prove here relative Weierstrass Division Theorems for such
rings. These theorems will be used only in Section 6 and in [23].

Definition 2.3.7. — Let A be a quasi-affinoid algebra. By the Extension Lemma,
Theorem 5.2.6, for each € Max A, there is a unique homomorphism

ert ALt En)P1s o pulls = Smn(E, Af2)

extending the map A — A/x and preserving the variables ¢ and p. An element
f € A(&)]p]s is regular in &, (respectively, p.,) of degree s iff for each x € Max A,
ex(f) € Sman(E,A/x) is regular in &, (respectively, p,) of degree s. Preregular
elements are defined similarly.

Theorem 2.3.8 (Weierstrass Division Theorem) — Let A be a quasi-affinoid algebra,

and let f,g € Aol
(i) If f is regular in &, of degree s, then there exist unique q € A{)[p]s and
r € A plslém] of degree at most s — 1 such that g = qf + r (where & =

(€15 €m1)-)
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(ii) If f is regular in p, of degree s, then there exist unique ¢ € A{&)[p]s and
r € AP ]slpn] of degree at most s — 1 such that g = qf + r (where p' =

(P15 -5 pn1)-)

Proof
(i) Ewistence. Write
F="aws"p” =" figh.
[y i>0

Since f is regular in &,, of degree s, £,(fs) is a unit of S,,_1.,(E, A/x) for each
x € Max A. It follows by the Nullstellensatz, Theorem 4.1.1, that f; is a unit of
A [p]s- Since e, (f1) - ex(f) is regular in &, of degree s for each z € Max A, we
may therefore take f, = 1. It follows that

EI(f’L) € Sz’bfl,n(EvA/x)a 1< S,
and
ex(fi) € (P)Sm—1n(E, Afx) + S50 (B, AlT), 0> s,
for every x € Max A. By Corollary 5.1.8, f; is power-bounded for ¢ < s and f; is

quasi-nilpotent for ¢ > s.
Write A = S,/ /I and consider the canonical projection

©: Smtm! ntn — A<§> [[,0]]5

F=>Y F¢g,

be a preimage of f, where each F; € S;,_14m/ .ntn’- By Lemma 3.1.6, there is an r
so that for i > s,

modulo I - Spyym/ nyns. Let

Fi =Y HijFey,
j=1
where ||Hi1H, ey HHW” S 1.
By the Extension Lemma, Theorem 5.2.6, there is a K-algebra homomorphism 1
such that

Sm+m’,n+n’ — Sm+m’+s,n+n’+r

commutes, and

P(&) =&, 1<i<m V(Emyi) = @(Emyi), 1<i<m’;
Y(Emtmiti) = fiz1, 1<i<s,
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and

Y(pi) =pi, 1<i<m V(pnti) = @(pnyi), 1<i<n;
w(pn+n’+i) = fs+ia 1 S ) S r.

Note that f is the image under 1 of

s—1 r
fr= Z Emtm+it1&h + &5 + Z 3 Z Hijpnin+;
=0

i>s j=1

and f* € Sppm/+s,nt+n/+r is regular in &, of degree s.

Let G € Sp+m/+s,n+n+r be a preimage of g under 1. By Theorem 2.3.2, there are
unique Q € Sppm/tsntn'+r a0d R € Sp_14m/ s ntn/+r&m] Of degree at most s — 1
with

G=Qf +R
Putting ¢ = ¥(Q) and r = 1»(R) satisfies the existence assertion of part (i).

Uniqueness. Let ¢ € A(&)[p]s and let r € AE')[p]s[ém] be of degree at most s — 1.
Suppose

0=qf +r;

we must show that ¢ =r = 0. Let

Q € Sm+m’+s,n+n/+r and Re€ Sm71+m/+s,n+n’+r[§m]

with deg R < s — 1 be preimages under 1 of g and r, respectively. Then
G:= Qf* +ReE Ker¢ =1- Sm+m/+s,n+n’+r~

The ideal I is closed by Corollary 2.2.6; hence by Theorem 2.3.2 (i), @, R € Ker v, as
desired.
(ii) The proof of this part is entirely analogous to the above. O

The corresponding Weierstrass Preparation Theorem follows in the usual way.

Coroallary 2.3.9 (Weierstrass Preparation Theorem) — Let A be a quasi-affinoid alge-
bra, and let f € A(§)[p]s-

(i) If f is regular in &, of degree s, then there exist unique unit u € A(&)[p]s and
monic polynomial P € A(E)[p][ém] of degree s such that f = uP. Furthermore
P is regular in &, of degree s.

(ii) If f is regular in p, of degree s, then there exist unique unit u € A(E)[p]s and
monic polynomial P € A(E)[p]spn] of degree s such that f € uP. Furthermore
P is regular in p, of degree s.
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3. Restrictions to Polydiscs

In this section, we study the restriction maps from A, , (see Introduction) to
“closed” (and to “open”) sub-polydiscs, and show how to transfer information from
their (quasi-)affinoid function algebras back to Sy, .

The closed subpolydiscs with which we are concerned in this section are Cartesian
products where the first m factors are closed unit discs and the next n factors are
closed discs of radius € € /| K \ {0}|. Such products are K-affinoid varieties, and we
denote their corresponding rings of K-affinoid functions by T, (g, K).

To transfer algebraic information from the affinoid algebras T, ,(€) to Sy, pn, We
analyze the metric behavior of the inclusions t¢ : Sy, < Thnn(€) as e — 1. We carry
out our computations by reducing to the case that ¢ € |K'\ {0}|. In the case that K is
discretely valued, this entails working with certain algebraic extensions K’ of K and
understanding the inclusion Sy, n(E, K) < Spn(E, K'). The reader interested only
in the case that K is algebraically closed may omit the complications arising from
field extensions.

We are interested in studying properties of quotient rings Sy, »/I. We study such
quotient rings by studying metric properties (e.g., pseudo-Cartesian and strict) of gen-
erating systems of submodules of (S, )¢, and how they transform under restriction
maps to rational sub-polydiscs.

In Subsection 3.1, we introduce metric properties of generating systems of sub-
modules of (Sy,.,)¢ and of (S,.,)¢. In particular we introduce a valuation, the total
value v, on Sy, , which lifts the (p)-adic valuation on gm,n and refines the Gauss
norm on Sy, ,. This allows us to formulate the “slicing” arguments whereby (p)-adic
properties of S, ,, are seen to lift to S,,,,. The valuations | - || and v induce norms
|- lar and vas on a quotient module (S, ,,)¢/M. We prove a number of estimates.

In Subsection 3.2, we study restrictions to closed subpolydiscs. The main result is
Theorem 3.2.3, which says that if € is suitably large, then a strict generating system
remains strict under restriction.

In Subsection 3.3, we transfer information from 7, ,,(¢) back to Sy, . The main
results are Theorem 3.3.1 and its corollaries, which show, roughly speaking, how to
replace powers of ¢ with powers of (p) for € near 1. More precisely, they establish a
key relation between vas and ||-|,_(ar).7,, .. () uniformly in € for e suitably large, which
is used extensively in the rest of this paper. This is how we overcome the difficulties
stemming from the failure of Noether normalization for Sy, .

In Subsection 3.4 we study restrictions from A, ,, to certain disjoint unions of open
subpolydiscs. When the centers of the polydiscs are K-rational, these maps have the
form ¢ : Spp — @§:oSo,n+m~ In the case of non-K-rational centers, the restriction
maps are only slightly more complicated. We show in Theorems 3.4.3 and 3.4.6 that
such restrictions are isometries in the residue norms derived from || - || and respectively
I and ¢(I), provided the finite collection of open polydiscs is chosen appropriately.
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Theorems 3.4.3 and 3.4.6 will be used in Subsection 5.5 to derive the fact that on
certain reduced quotients Sy, /I, the residue and supremum norms are equivalent
from the simpler case of reduced quotients So y4m /1.

3.1. Strict and Pseudo-Cartesian Modules. — We introduce metric properties
of generating systems of submodules of (S, )" and (gm,n)e and their quotients. We
introduce a valuation, the total value v, on S, ,, which lifts the (p)-adic valuation on
gm,n and refines the Gauss norm on S, ,. The lemmas of this subsection show how
certain metric properties of generating systems of modules lift from residue modules
and transform under maps and ground field extension.

Let (A,v) be a multiplicatively valued ring, and let (N, w) be a normed A-module;
ie.,

w(an) <v(a)w(n)

for all a € A, n € N. Let M be an A-submodule of N. A finite generating system
{91,.-.,9-} of M is called w-strict iff for all f € N there exist ay,...,a, € A such
that

w(f) > ggéxrv(ai)w(gi), and

(3.1.1) r
w (f— Zaigi> <w(f —h) for all h € M.
i=1

The generating system {g1,..., g} is called w-pseudo-Cartesian iff (3.1.1) is only
assumed to hold for all f € M; i.e., iff for all f € M there exist ay,...,a, € A such
that

w(f) > 112?%<Tv(ai)w(gi), and

T
f = Z a;4g;.
i=1

An A-module M C N is called w-strict (w-pseudo-Cartesian) iff it has a w-strict
(w-pseudo-Cartesian) generating system. Usually, N will be a quotient of the ¢-fold
norm-direct sum of Sy, .

Along with the Gauss norm, we will be interested primarily in two other valuations.
One, the residue order, is a rank-one additive valuation on gmm. The other, the total
value, is a rank-two multiplicative valuation on Sy, . These valuations are defined
below.

Assume n > 1, and define the map 6 : S,.,, — ZU {oo} as follows. Put 5(0) := oo,
and for f € S, \ {0}, put 3(f) := £, where f € (p)\ (p)*™'. It will not lead
to confusion if we also define the map 6 : Sy, — Z U {00} by 6(0) := oo, and for
f € 8Smn\{0},0(f) :=0((cf)™), where ¢ € K satisfies ||cf|| = 1. The map ¢ is called
the residue order. The residue order is an additive valuation on gmm.
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Consider (R; \ {0})? as an ordered group with coordinatewise multiplication and
lexicographic order. Define a map v : Sy, , — (Ry \ {0})? U {(0,0)} as follows. Put
v(0) := (0,0), and for f € Sy, \ {0}, put

o(f) = (11,279,

Then v is a multiplicative valuation on S, ., called the total value. Note that v
extends the absolute value on K in an obvious sense.

The total value yields information on elements f(£,p) € Sy as [p| — 1, in a
sense to be made precise in Subsections 3.2 and 3.3. Our aim in this subsection is
to establish an analogue of Corollary 2.2.6 for the total value. This analogue will be
established by lifting a similar result for the residue order from the residue ring gmm.

Let M C (Sm.n)" be a submodule. Put M° := (anm)e N M and let M be the
image of M° under the canonical residue epimorphism ~: (Sg%n)e — (gmn)e .

The next lemma establishes a basic lifting property of o-strict generating systems.
The lemma ensures that the lifting behaves well with respect to restrictions. More
precisely,

lai(€, e - p)Il = el las]

for any ¢ € K°\ {0} and any a; € Sy, that satisfies condition (i). Condition (ii)
stems from the definition of strictness. And condition (iii) says that we’ve done the
whole slice.

Lemma3.1.1. — Let M be a submodule of (Syn)". Let B € B and let {g1,...,g,} C
(BE[[p])E N M satisfy ||gi|| = 1 fori=1,...,r. Suppose {g1,-..,0-} is an o-strict
generating system of M. Let B = By D By D --- be the natural filtration of B and

suppose f € (Bp(EM[PI])*\ (Bp+1(E)[p]])¢. Then there are ai,. .., a, € By{&)[[p]] such
that

(i) fori=1,...,r if a; # 0 then a; € (p)°“) By (&)[[p]] \ Bps1(E)[[pl].

(ii) v(f) > maxi<i<rv(a;g;), and

(iil) if o(f —h) <o(f —D°i_; aigi) for some h € M, then || f — > '_; aigi|| < | f]l-
(When condition (1) holds, to verify (ii), it suffices to verify

(i)’ o(f) < mini<i<r 0(aigs),

since ai, ..., ar € Bp(&)[p].)

Proof. — Let 7, : B, — B, C K be the B-module residue epimorphism a — (b, a)™

and write K = B, @V for some B-vector space V. Then

(3.1.2) K[][lp)) = Byllllol) @ V€[]
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as B[¢][[p]]-modules, and (a + b) = min{o(a),5(b)} when a € B,[¢][[p]] and b €
VI€)[lpl]- Since {gh,...,gr} is O-strict, there are ¢, ..., € Spm.n so that
313)  Slm() < win 56g) ad o(m() - Yaw) 2o )
== i=1
for all h € M.

By (3.1.2), we may write ¢; = a; + b; where @; € B,[¢][[p] and b; € VIE][[o]],
1<i<r. Since g1,-..,39- € (B[E][[0]]), by (3.1.2)

5(ml) - 1) 2 5(m(f) - £ ) and
in ola.:a: > inolc:a: .
1rgnilgro(a191) = 1rgnilgro(0191)
Thus, (3.1.3) holds with @; in place of &. Now for any @ € B,[¢][[p]], if @ # 0 then
a € (p)°@B,[¢][[p]]. Hence there are ay,...,a, € By(€)[[p]] such that for 1 < i < r,
mp(a;) = @i, a; = 0 if @; = 0 and a; € (p)°@) B, (€)[[p] if @i # 0. It is clear that
ai, - ..,a, satisfy the lemma. O

We show in Theorem 3.1.3 that every submodule of (S,, )¢ is v-strict. In light
of Lemma 3.1.1, the next lemma reduces this to showing that every submodule of
(Sp.n)t is O-strict.

Lemma3.1.2. — Let M be a submodule of (Sm.n)¢ and suppose {g1,...,9.} C M°
satisfies g1, ...,9r # 0. Then {g1,...,9r} is a v-strict generating system of M if and
only if {g1,...,gr} is an O-strict generating system of M. Moreover

() if {g1,---,9+} is v-strict and f,g1,...,9- € (B()[p])* then there are
hi,...,h, € B{&)[p] such that

v <f_zhigi> <o(f—h)

i=1
for all h € M and

> s
v(f) > lrgiagrv(hzgzx

and
(i) if {G1,.-.. 9} is o-strict and f,G1,...,9. € (BIE][p])’ then there are
hi,...,h. € B[&][p] such that

for all heM and
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Proof
(=) Let f € (Spn)’\ {0} and lift f to an element f € (S2,,,)". Find ar,...,a, €
Sm.n such that v(f) > maxi<i<, v(a;g;) and

(3.1.4) v(f - Zaigi) <w(f—h)
=1
for every h € M. Since || f|| = 1, we must have that
o(f) < min {0(aig:) : l|lasgil| = 1}.
Thus 5(f) < mini<i<, 0(@:gi). If [|f — X1_  aigill < 1 then f = S, a@g: € M

and we are done. Otherwise, assume ||f — >._; a;g;]| = 1. Let h € M and lift h to
h € M°. Hence, by (3.1.4), ||f — k|| =1 and

o(7- ;w) ~o(1- ;g) > 3(f — h) =57 — ).

and we have proved that {g1,...,g,} is O-strict.

(<) Parts (i) and (ii), as well as (<«=) follow immediately from Lemma 3.1.1 using
the facts that ||Smnll = | K], |B\{0}] € Ry \ {0} is discrete and B(£)[[p]] is complete
in || - || for every B € B. O

Now the proof of Theorem 3.1.3 reduces to a computation involving the Artin-Rees

Lemma for the (p)-adic topology on (S, ,)*.

Theorem 3.1.3. — Each submodule of (Smm)e is v-strict. Each submodule of (gm_yn)e
18 0-strict.

Proof. — By Lemma 3.1.2, we need only prove the last assertion. Let M C (§m,n)€
be a submodule.

Clam(A). — If {g1,...,9r} is an O-pseudo-Cartesian generating system of M then
it is o-strict.

The ideal (p) is contained in the Jacobson radical of Sy, , = hi>n§[§][[p]] Hence
by the Krull Intersection Theorem ([25, Theorem 8.10]), the d-topology on (Sy, )"
is separated and M is a closed set.

Let f € (Sp.n)!. Since M is closed and since 5((Sp.n)¢) = NU {00} there is some
fo € M such that

o(f — fo) =o(f —h)
for all h € M. Putting h = 0 in the above we have 6(fo) > 0(f) by the ultrametric
inequality. There are a1,...,a, € gmm such that

o(fo) = min S(aig:) and fo=> aigi.
i=1

1<i<r
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Thus, we have that 6(f) <o(fy) = 121_12 0(a;g;) and

6(f - Zaigi) > 5(f — )

i=1
for all h € M. This proves the claim.

For i € N, put

M;:={feM:3(f) > i}

We have M = My D My D ---. By the Artin-Rees Lemma ([25, Theorem 8.5]) there
is some ¢ € N such that for all ¢ > ¢
(3.1.5) M; = (p)"°M..

Each quotient M;/M;1 is a finite module over §mn/(p) = Tm. Find r € N sufficiently
large so that each M;/M;y1 can be generated by r elements for 0 < i < ¢. By
m; © M; — M;/M; 1, denote the canonical projection. For each 1 < i < ¢, choose
gij € M; \ My, 1 < j < r, so that m;(gi1),...,7(gir) generate the T,,-module
Mi/Mi—i-l-

Claim (B). — {gi;} is an o-strict generating system of M.

By Claim A, it suffices to show that {g¢;;} is an o-pseudo-Cartesian generating
system.

Let f € M, and let B € B be such that {f}U{g;;} C (B[E][[P]])". Write K = B®V
for some B-vector space V. Then

(3.1.6) K[E)([o]] = BlE][lol] @ VIE][el]
as B[¢] [p]-modules, and 6(a+b) = min{o(a),5(b)} when a € BI€][p] and b € V[<][[]].
Put N := (B[¢][[p]])! N M; and for i € N, put

N = {h e N :5(h) > i} = (BE[[pl])’ 0 M.

It follows from (3.1.6) that m;(gi1), - . ., i (gir) generate the B[¢]-module N; /N, for
0 < i < c¢. Furthermore, by (3.1.5), {mi(p"gej)}1<j<r,|v|=i—c generates the Bl¢)-
module N;/N;;, for i > ¢. Since 6(gi;) = i and since B[€][[p]] is complete in &, the
claim follows. O

Lemma3.1.4. — Let M be a submodule of (Sm.n)" and suppose that {g1,...,9,} C
M® satisfy g1,--.,9r # 0. Then {g1,...,9-} is a ||||-strict generating system of M

if, and only if, {g1,...,gr} generate M. In particular, since Sy, is Noetherian, each
submodule of (Sm.n)* is |-||-strict.
Proof. — As in Lemmas 3.1.1 and 3.1.2. O

It follows from Theorem 3.1.3 and Lemma 3.1.4 that we may make the following
definitions.
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Definition 3.1.5 (cf. Definition 2.2.7) — Let M be a submodule of (S,,.,)¢. For f €
(Sm.n)" we define the residue norms

opm(f) = inf{v(f—h): h € M}, and
11l as inf{[|f —hl|: h € M}.
There is some h € M such that var(f) = v(f — h) and || f||,; = ||f — k||. Let M be a

submodule of (Sy,..)¢. For f € (Spm.n)" we define
on(f) :=sup{o(f —h): he M}.
There is some h € M such that o (f) = o(f — h).

It follows from Lemma 3.1.4 that || - ||as is a norm on (S,,.,)¢/M. If E is such
that Sy, = Sm.n(E, K) is complete in || - || (see Theorem 2.1.3) then (S, ,)¢/M is
complete in || - ||az-

The following lemma is an application of Theorem 3.1.3. It is used in Theo-
rem 2.3.8. In the statement of the lemma, the set A will usually consist of the
coefficients f; of a power series

F=Y"fi(&p)\ € B(& Mol (respectively, B(&)[p, A])-
i>0

The lemma allows us to write all the coefficients of F' as linear combinations of the

first few:
F=3 Y hifiN

i>0 j=1
in such a way that each power series

Fy o= Y hipX € B'E, Nl (respectively, B'(€)[o, A]),
i>0

for some B C B’ € B. Although B({)[p] is not in general Noetherian, we are still

able to do this. The estimate in the lemma is sufficient to guarantee convergence of
F} in the (B + (p))-adic (respectively, (B1 + (p, A))-adic) topology.

Lemma3.1.6. — Let B€ B and A C B{(§)[p]. Then there are
fi,..., fr€A fy,c,e€N, and BC B €8

with the following property. Let B = B) D By D --- be the natural filtration of B'.
For each f € A there are hy, ..., h, € B'(&)[p] such that

F=> hifs.
i=1

If, in addition,
f € Bi&pl + (p)* B (&) o]
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for some £ > {y, then we may choose hy, ..., h, such that

hi,... he € By(E[pl + (p)*“B'(€)[o]-

Proof. — Put I := A- Sy, pn, and let {g1,...,94} C Sm,n \{0} be a v-strict generating
system of I. Since Sy, is Noetherian, there are f1,..., fs € A and hy; € Sy, such
that

gi = Zhijfj» 1<i<d.
j=1
Without loss of generality, we may assume that all g;, h;; € Sy, ,, and
lgull = - = llgall = lel,
for some «w € K°\ {0}. Find B C B’ € B such that

1200 € B O]

Let B’ = By D Bj,... be the natural filtration of B’ and find ¢, so that
o€ By, \ By -

Put

€= max, 0(g:).

To find a suitable ¢ € N, consider the ideal

J = A-(B'/By,)[E]lp]-

The ring (B'/By,)[¢][p] is Noetherian, so the Artin-Rees Lemma, [25, Theorem 8.5],
yields a ¢ € N such that for all ¢ > ¢,

JN(p)! C(p)? -

Find fs41,..., fr € A so that the images of fi,..., f, in (B'/By )[¢][p] generate J.
Let f € A with

f € Bi&)ol + (p)** T B'(€)[pl-
There are Hy, ..., H, € B'(£)[p] such that

f- ZHifi =: f" € By, (&)[p]-
i1

By choice of ¢, if £ > ¢y, we may assume that

Hy,...,H, € (p)***- B'{€)[p]-
‘We have
I € By, (&)lol

and if £ > ¢y, we have moreover that

"€ B&)lel + (0)* By, (€) [e]-
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Let
! Béo —>§20 CK
be any residue epimorphism. Note, by choice of B’, that
{(ailgl)m,...,(aflgd } C B [€]1P]

is an o-strict generating system of I. Thus by Lemma 3.1.2, there are

Hi\ H,,... Hj € Eéo[f”[ﬂ]]
such that

d
mo (1) = Y Hh (a7 g)
If £ > ¢y, we have, moreover, that
ﬁilv ) ﬁ(/il € (P)%Eicgéo [€]1p]-
Lift H},,..., H}, to elements H},,..., H), € By (§)[p] such that for each i,
H), € (0" 70 By ()]

Put

d
T=f - ZHl{lgi € Béo+1<§>ﬂp]]»
i=1
and observe that if £ > /g

" € Bi&)lpl + (p)**~Biy 41 (E)1o-

Iterating this procedure ¢ — ¢y times, we obtain sequences

Hi; € (p)*“ 7B, ;)]0

such that
d -t
= =)0 Higi € Byl
=1 j=1
Finally, since {g1,...,g4} is a || - ||-strict generating system for I, by Lemma 3.1.2,

there are H{, ..., H]] € Bj({)[p] such that

f/// _ Z H'//gi~
hi == H; + Z +H))h

Put
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The next five lemmas give criteria under which a generating system of a module
is strict and under which strictness is preserved by contractive homomorphisms and
field extensions. For technical reasons, we work over a quotient ring Sy, ,/I. The
modules M we consider will carry the residue norm | - ||;. We will also consider
residue modules M (see Definition 2.2.8).

Lemma3.1.7. — Let M be a submodule of (Sm.n)?/N and suppose that gi,...,g, €
M?® satisfy g1,...,9- 0. Then:

(i) {g1,---,9r} is a| - ||n-strict generating system of M if, and only if, {g1,...,Gr}
generates M.
(ii) {g1,..-,9r} s a vn-strict generating system of M if, and only if, {g1,...,9r}
is an on-strict generating system of M.
Hence each submodule of (Sp.n)¢/N is || - | n-strict and vy-strict. Each submodule of
(Smon)t/N is O -strict.

Proof
(i) (=) Lift an element f € M \ {0} to an element f € M with || f||5y = 1. Since
{91,---,9+} is || - || n-strict, there are hq,..., h, € Sy, with
f=i_19ihi and

1=|flly= lfgggr\\gi\\NHhiH = gggxrllhi\\.

Hence f = Sy Gihi; ie., {g1,...,»} generates M.

(<) Put

M:={fe€(Smn)': f+NecM}.

Find Ay,...,As € N° and Gy, ...,G, € M such that {ﬁl,...,ﬁs} generates N and
9i=G;+N,1<i<r. By Lemma 3.1.4, we may assume that ||G;|| = ||lgillv =1,1 <
1 < r. It follows that {ﬁl, o Ay G, .,ér} generates /\7; hence by Lemma 3.1.4,
{A41,...,A5,G1,...,G,} is a || - ||-strict generating system of M.

Let f € M. By Lemma 3.1.4, there is a ' € M such that f = F + N and
IE| = |Iflln. We may write

F=Y Gihi+) Aihyi
i=1 i=1
for some hi,...,hpqs € Sy, with

IFl = fllv = max [[hi].

1<i<r+s

Hence
s
= Zlgihi and | flln = [nax gill~l[hill,
o

as desired.
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(i) (=) Lift an element f € M \ {0} to an element f € M with ||f|y = 1. Since
{g1,--.,9r} is vn-strict, there are hy,...,h, € S}, , such that

on(f) = max vx(g:) (k) and

UN (f Zgz 1) < uN f h)
for every h € M. Since vn(f) = (|| f|ln,27°% ) and || f||x = 1, we have

05 (f) < min{og(g:) +6(ha): [[hill = 1}-

Thus, aﬁ(f)é mini<;<, (05 (G:) + 0(h:)). If ||[f — X0_, gihilly < 1 then f =
S Gihi € M, and we are done. Otherwise, |[f — S1_, gihil = 1. Let h € M
and lift h to an element h € M° with ||h||xy = 1. By (3.1.7), ||f — hlly = 1 and

6N<f—Z§iEi>—oN<f Zgl ) §(f—h)=3x(f—h),

and we are done.
(<) Put

(3.1.7)

M= {f € (Smn)': f+NeM}.

Find Ay,...,As € N° and G4,...,G, € M such that {/~117...,/L} is an o-strict
generating system of N and gi =G; + N, 1 < i <r. By Theorem 3.1.3, we may
assume that v(G;) = vn(g;), 1 < ¢ < r. As in part (i), it suffices to show that
{41,...,4,,G1,...,G,} is a v-strict generating system of M. By Lemma 3.1.2, this
reduces to showmg that {Al, .. As, Gl, .. G } is an O-strict generating system of
M. Let F € (Sp.n)t and put f := F+N. Since {91, ..,9r} is an 0 g-strict generating
system of M there are hy,...,h, € gmm such that

S5(f) < min B (g) +8(h)) and

1<i<r
(f Zgl ) §(f—=h)
for every h € M. Since {Zl,...,ﬁs} is an o-strict generating system, there are

Bty hoys € Sy such that

1<i<s

o (f Zgl 1)-0( ZGh —ZAhm).

o (F— Zéﬁu) < min O(A hy4;) and
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LetHE/K/lV7 and puth::H—I—Jv. We have

0 (F — i éihi - i Eihr+i>
=1 =1

o (f - Zm)
=1

Ox(f—h)
5(F — H),

AVAAY,

as desired.

To prove the last assertions of the Lemma, observe that by part (i), each submodule
of (Sp.n)?/N is || - || n-strict because (Sp,..)¢/N is Noetherian (Corollary 2.2.2). The
fact that each submodule M of (§m7n)£ /N is 0 5-strict follows from the fact that we
may include in an o-strict generating system of the inverse image submodule M of
(Sm.n)! an O-strict generating system of N (use Theorem 3.1.3). Finally, to see that
each submodule of (S,,.,)¢/N is vn-strict, we apply part (ii). O

Lemma3.1.8. — Let M be a submodule of (Sm.n)"/N and let g1, ..., g, be generators
with |g1llv = -+ = |lgr|v = 1. Put

b = {(hl, .o .,hr) S (Sm,n)r : Zglhl = O} and
=1

U= {(h1,...,hy) € (Spon)" ngi = 0}.

Then {g1,...,g+} is a || - || n-strict generating system of M if, and only if, &=,

Proof ~
(=) Assume {g1,...,9-} is a | - || n-strict generating system of M. Let h =
(hi,...,hy) € U\ {0} and find h € (S, )" that lifts h. We have:
< max ||h.
1<i<r

T
> gih
i=1 N

Since {g1,...,9-} is || - || n-strict, there is an h' = (h),...,hl) € (Sm.n)" such that
T T T
Zgihi = Zgihé and max 1Rl = Zgihi
i=1 i=1 i=1 N

Put H := h — I/ € ®, and note that H = h. This proves d=10.
(<) By Lemma 3.1.4, there are Gi,...,G, € (Sy.n)? with ||Gi|| = 1 and g; =
Gi+N,1<i<r. Put

M:={f€(Smn)’: f+Nec M}

Let {A;,...,As} be a || - ||-strict generating system of N with [|[A]] = --- =
||[As|| = 1. Since M has a || - || n-strict generating system by Lemma 3.1.7, it suffices
to show that {g1,...,9-} is || - || n-pseudo-Cartesian. Indeed, since for any f € M

< max ||k = 1.
1<i<r
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there is an FF € M with f = F+ N and ||F| = ||f|l~, it suffices to show that
{G1,...,Gr,Ay,..., As} is a || - ||-pseudo-Cartesian generating system of M.
Let F € M and write

(3.1.8) F=> Gihi+> Ay
i=1 i=1
for some hi,...,hyys € Sy Since {A1,..., As}is ||-||-strict, we may always assume
that
1. < , vy |||
(3.1.9) e [l < max ([, .l

If ||F|| > maxi<i<y |[h:]|, then by (3.1.9) we are done. Therefore, assume that

1. <1
(3.1.10) 07 7] < max [l <1

Let {C4,...,C:} be a ||-||-strict generating system of ® with ||Cy]| = -+ = ||Cy]| = 1.
Find B € ‘B such that

hi,...,hyqs € B<§>[[p]],
G17...,GT7A1,...,AS c (B(f}[[p]])e7
Ci,...,Cre (BEo])"-

Using (3.1.9) and the fact that |B \ {0} is discrete, it suffices to find h} € B(¢)[p]
with

F = iGlh; + iAih/r+i and
=1 =1

(3.1.11) =
max ||h;|| < max ||h;]].
1<i<r 1<i<r

Let B = By D By D --- be the natural filtration of B, and suppose
(B, he) € (Bp(E) o))" \ (Bpr1 (§)[])"
By (3.1.9),
hi,...,hrts € Bp(§)p]-
Let
Tt By — By = (b;'B,)~ C K
be the pronectign. N
Write K = B, ® V for some B-vector space V. Then

(31.12) K[g]le] = Bylello) @ VI
as B[¢][p]-modules. By (3.1.8) and (3.1.10),
mp((ha,... b)) €W =&,
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Thus for some é1,...,¢ € K[¢][p],
t
mp((h, .o b)) =Y Cie;.
i=1

By (3.1.12), we may assume éi,...,¢ € B,[¢][p]. Find ey,... e, € B,(&)][p] with
Wp(ei) = gi, 1 S ) S t. Put

t
e .= Z Cie; € (I),
i=1
and
(hy,...,h.) = (h1,...,h) —e.
Note that (3.1.11) is satisfied because m,(e) = m,((h1, ..., hy)). O

Lemma3.1.9. — Let M be a submodule of(Smm)Z/N and suppose g1, ..., gy generate
M. Put

U= {(hl, .. .,hr) S (gmm)r : Zglhl = O},
i=1

and for each i € N, put
M; = {f eM SN(f) > Z} and

U, = {(hl,...,hr) € (Simn)" 0N (Zgihi> > e+z}
i=1
where
e = 1r;1%><TON(gi).
Then:

(i) If {g1,-..,9r} is an On-strict generating system of M, then

Vi ="+ @(p)iJreiaN(gj)gm,n

j=1
for all i.
Conversely:
(ii) By the Artin-Rees Lemma ([25, Theorem 8.5]) there is some ¢ € N such that
for alli>c,
M; = (p)"°M..
If
U, =0+ @(p)i+e—aN(gj)§mm
j=1
for1<i<c—e, then {q1,...,9r} is an On-strict generating system of M.
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Proof

(i) Assume {g1,...,9-} is an On-strict generating system of M. Clearly, ¥ +
EB;-’:l(p)He_BN(gf)Smm C U;. Let h = (h1,...,h,) € ¥;; we wish to find H € ¥ and
n' e @;Zl(p)”e_aN(gf)gmm such that
(3.1.13) h=H-+h.

Since h € ¥;, we have
T
on [ D gihi | Ze+i.
j=1
Since {g1,...,gr} is Oy-strict, there is an b’ = (b}, ..., h.) € (Spm.n)" such that

> gihy = gihy and
j=1 j=1

min (G (g5) +0(h))) = on Zlgjhj > e+
=

Thus b € (p)"+*~oN )G, .. Put H := h— I/ € U. We have

h=H+h e+ Pp)reonos, .
j=1
satisfying (3.1.13).
(ii) Since M is On-strict by Lemma 3.1.7, it suffices to show that {g1,...,9,} is
on-pseudo-Cartesian. Let

f= igihi € M.
=1

Case(A). — on(f) < c.

By assumption,

(hi,... hy) € Ugp(py—e = U + @(p)aN(f)—aN(gj)gmm;

j=1

ie.,
(hlv'”:hr) :H—Fh/
for some H € W and I € &j_(p)°¥(N0M@)S,, . Write b’ = (h},...,h}). Since
Hel,
_ N o~ 4 JUP -
= ;gzhi and @lgr(olv(gl) +0(h})) >on(f),

as desired.

Case(B). — on(f) > c.
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By choice of c,
f € Msy(p) = (0™ ™M, ;
i.e.,

[= Z P fus  fv € M.

lv|=on(f)—c

Now apply Case A to the f,.

39

O

Let K’ be a complete, valued field extension of K, write Sy, 5, := Spm.n(E, K) and
Sty = Syr s (B, K'), and suppose [ is an ideal of S, , and J is an ideal of S} , ...

Put
A:=8m,/I and B:=S], ./J,

and by || - |7 and || - ||; denote the respective residue norms on A and B, as in

Definition 3.1.5. Suppose
p:A—B
is a K-algebra homomorphism such that
e < 11l
for all f € A. Then ¢ induces a K°-algebra homomorphism
©° 1 A° — B,

where

A° =Sy . /I° and B°=(S,,,.)°/J°.

In addition, ¢ induces a K -algebra homomorphism

where

g = gm,n/f and E = §7/"n/,n’/j/‘

Lemma3.1.10. — With notation as above, let M be a submodule of A* and put N :=

©(M) - B C B*. Suppose @ is flat. Then:

(i) If{g1,.--,9r} is a || - ||1-strict generating system of M, then {©(g1),...,¢(gr)}

is a || - || s-strict generating system of N.
(ii) ¢ is flat.
(iii) ¢° is flat.
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Proof
(i) We may assume that ||g1]|; = --- = ||g-|lr = 1. Put

Py = {(hl,...,h,) €AY gihi :0},
i=1

bp = {(hl,...,hr) € B": Z@(gl)hl = 0},
i=1

Uy = {(hl,...,hr) € Air : Zglhl ZO},
=1

Up .= {(hl,...,hr) € ET = Z@(El)hl = 0} .
i=1

By Lemma 3.1.8, &4 = W4. Since & is flat, by [25, Theorem 7.6], U5 = B - 3(V 4).
We have:

Up =B~§5(\I’A) ZB-(,E((I)A) C ®p C Up;
ie., ®p = Up. Part (i) now follows from Lemma 3.1.8.

(ii) Let a be an ideal of A. By [25, Theorem 7.6], we must show that the canonical
map
(3.1.14) a®4B—>A®4B
is injective.

Let {g1,...,9r} be a||-||/-strict generating system of a with ||g1|| = --- = ||gr|| = 1.
Define ® 4, P, U4, Up as in part (i). To prove that (3.1.14) is injective, it suffices to
show that ®5 = B-p(®4). By Lemma 3.1.7, it is enough to show that ® p is generated
by @(®4). By part (i), and Lemma 3.1.8 ®5 = U. Since & is flat, U = B - 3(V 4).
Finally, by Lemma 3.1.8, ¥ 4 = ® 4. This proves part (ii).

(iii) Let g1, ..., g € A° and define ® 4 and @ as in part (i). By [25, Theorem 7.6],
we must show that

% = B 9°(0%).
This follows immediately from parts (i) and (ii) since there is a || - || -strict generating
system of the A°-module 9. O

It is often convenient to work over an extension field of K. The next lemma shows
that Sy, , and the total value v behave well with respect to ground field extension.

Lemma3.1.11. — Let K’ be a complete, valued field extension of K, let E' C (K')°
be a complete, quasi-Noetherian ring, and put

S =SB, K), Sty = S (B, K.

Assume S;n,n D Smon; €.9., take E' D E. Let M be a submodule of (Sm.n)t and put
M =M - S;Ln.
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(i) S’ s a faithfully flat gm,n—algebm.
,gr} C M is av-strict generating system of M, then {g1,...,9r}

m,n

(ii) Suppose {g1, - ..

is also a v-strict generating system of M', and for every f € (Sm.n)’, v (f) =

o (f). In particular || fllar = || flla-

(i) Smn(E', K') is a faithfully flat Sy, n(E, K)-algebra.
(iv) Smn(E',K")° is a faithfully flat Sy n(E, K)°-algebra.

Proof

(i) By Corollary 2.2.2, both S,,, ,, and §7’wn are Noetherian. Since (p) C rad §7’wn7
gﬁnn is (p)-adically ideal-separated. For each ¢ € N,

Sl (p)' = K€ p/(p)" — K'[€, 0]/ (p)" = St/ (p)"

is flat. Hence by the Local Flatness Criterion [25, Theorem 22.3], g;nn is a flat Sy, -
algebra. Let m be a maximal ideal of S,,, ,. By [25, Theorem 7.2], to prove that §;nn
is faithfully flat over §m7n, we must show that m - g;nn + gﬁnn Since (p) C m, this
follows from the faithful flatness of K'[¢] over K[¢].

(ii) We may assume that ||g;|| =1, 1 <i <r. Put

N = {(hl,
N/ = {(hl,

and for each i € N, put

N! =

3

where e := maxj;<;<,6(g;). By Lemma 3.1.2, {g1,...

(b, ...

Ni = {(h17

)

7hr) S (gm,n)r : igzhz = O} 5

Jhe) € (S), )" 2 Y Gihi =0
=1

ahr) € (gm,n)r 10 ( gzhz> >e +Z} ’
i=1

Jhy) € (Sh, )" :6( @hi) > e—|—z},

i=1

system of M. Hence by Lemma 3.1.9(i),

N; =

for all i € N. By part (i),
N/ =48

m,n

Hence,

N =

N+ @) 8,,,,
j=1

®z Njand N'=§  ®z N.

Sm

m,n

N+ )OS,
j=1
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for all ¢ € N. Finally, by applying Lemmas 3.1.9 and 3.1.2 again, we see that
{91,...,9-} is a v-strict generating system of M’. The last assertions of part (ii)
follow from Lemma 3.1.1 as in the proof of Lemma 3.1.2.

(iii) First we prove that S}, , is a flat Sy, ,-algebra. The faithful flatness will
follow from part (iv) by faithfully flat base change; i.e., Sy, ,, = (S},.,)° @5 S
Of course, the proof of part (iv) makes use only of the assertion that Sy, ,, is flat over
S

Let I be an ideal of S, ,,. By [25, Theorem 7.7], we must show that the canonical
map

(3.1.15) I &S m S;n,n — Sm,n &S m S;n,n
is injective.

Let g1,...,9r € Smn be a v-strict generating system of I with ||g1]| =--- = ||g-|| =
1. Put

t {(hl,-.-,h»e(Sm,nY:Zgihi:O}
i=1

N = {(hh...,hr) €(Sh)" 2> gihi :0}
=1

P = {(hl,,hr)E(gm,n)nglhlz()}
=1

P = {(hl,,hr)E(gin’n)rzglhlz()}
=1

To prove that (3.1.15) is injective, it suffices to show that N’ = S} . - N. By
Lemma 3.1.8, N = P, by part (ii) and Lemma 3.1.8, (N’)~ = P’, and by part
(i), P'=S,,,, - P. Hence

P=S, ,P=8 . N=(N).

After an application of Lemma 3.1.4, one sees that N’ = S; - N, as desired.
(iv) Let g1,...,9, € S}, ,, and define N, N' as in the proof of part (iii), above. We
must show that
(N')* = (S},n)" - N°.

This follows immediately from the existence of a v-strict generating system for IV, from
part (i) and from the fact that Sy, ,, is flat over Sy, . Since K°°, (p) C rad Sy, ,,

m,n

the faithfulness follows from that of

K[g] = ((K')° /K- (K')°)[e].
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2. Restrictions to Rational Polydiscs. — Let ¢ € 1/|K \ {0}| with 1 > & > 0.
Put

— " ] v -
Tonl6) = Tl ) o= { ot € Kleols | i Mlagu] =0}
By [6, Theorem 6.1.5.4], T\, n(€) is K-affinoid. Define a modified Gauss norm |||
on Ty, n(€) by
o], = maxet i
5 12314
(see [6, Proposition 6.1.5.2]). By [6, Proposition 6.1.5.5], ||| = [|*[|s,p 00 T ,n(). In
this subsection we make extensive use of || - ||sup on affinoid algebras. Quasi-affinoid
algebras also possess supremum seminorms, but we will not make use of them until
after we prove the quasi-affinoid Nullstellensatz, Theorem 4.1.1.
By (. denote the natural inclusion

te t Smn = Tinn(e),
which corresponds to the restriction to the rational polydisc Max Ty, (). In the case
that ¢ € |[K| with 1 > e > 0, fix ¢ € K with |¢| = . Then the K-affinoid map

Pe - Tm,n(a) — dm+4n

given by & — £ and p — c - p identifies T}, ,,(¢) with T4, and for f € T, n(€), we
have || fllsup = ll¢e(f)|l- By ¢. we denote the inclusion

/. . .
Lg 7= PeOle Sm,n — Lmin;

thus (L (f) = f(&,¢- p) for f € Sp,.n. Note that the morphisms ¢, and (. depend on
the choice of c.

We are interested in the uniform behavior of the inclusions ¢, as € — 1. In partic-
ular, we show in Theorem 3.2.3 that the image under ¢, of a strict generating system
remains strict for e sufficiently large.

For this purpose we define a map o : Sy, , — Ry as follows (assuming that n > 1).
Let f=>" f,(§)p” € Sm,n and put i :=0(f). If i = 0,00 put o(f) := 0. Otherwise,

put
P £ )1“ )
(f) = mex ( 171 '

Note that 0 < o(f) < 1. The number o(f) is called the spectral radius of f.
The following observations are useful in computations involving the spectral radius:

||L€( )Hsup > E () HfH
with equality when 1 > ¢ > o(f), and

o(f) =inf{lc| : c € (K)° and 5(f(&, ¢~ p)) = 0(f)},
where K’ D K is algebraically closed. Hence if f - g # 0,

o(f-g) =max{o(f),a(9)}-
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It is suggestive to compare the spectral radius with the spectral value of a monic
polynomial defined in [6, Section 1.5.4].
We define the spectral radius of a submodule M of (Sy,.»)% n > 1 by

U(M) = {91,..?25}6/\4 maX{O’(gl), s 7U(gr)}7

where M is the collection of all v-strict generating systems {g1,...,g,} of M.

Remark 3.2.1
(i) Let € € |K| with 1 > & > 0. We have the following commutative diagram
T (€)
le Pe
Sm.n - Tonin

LE

and (. is an isometric isomorphism. Since . is an isometry, this yields an identifi-
cation of Ty, ,(¢) with K[€, p] = Trnyn, where Ty, (¢) is the quotient of the subring
of power-bounded elements of T}, ,,(¢) modulo its ideal of topologically nilpotent ele-
ments (see [6, Section 6.3]).

(ii) Let e € /|K \ {0}] with 1 > ¢ > 0. Let K’ be a finite algebraic extension of
K and suppose {ci,...,cs} is a K-Cartesian basis of K’ (see [6, Definition 2.4.1.1]).
Then {c1,...,¢cs} is also a [|-[|,,-Cartesian basis for the T}, »(e)-module 17, (¢) :=
Tnn(e, K'). This is easily seen using the modified Gauss norm |-||_, as follows. Let

fe Tgkn(s); then f = ;cifi with each f; € T n(e) and || f]. = 1%1%)(5 leil || fill -
(ili) Using the notation of part (ii), observe that {c1/c1,...,cs/c1} is a K-Cartesian
basis of K'; hence we may assume that ¢; = 1. Let M be a submodule of (T}, ,.(¢))*
and put M’ := T}, , () - M. Let f € (Tn(e)); then ||flly; = flly (see Defini-
tion 3.1.5). This is proved as follows. By Lemma 3.1.4, there is a ¢ € M’ such that

S
lf =gl =Ifll5;,- We may write g = Zcigi with each g; € M. By part (ii),
i=1

If=gll. = max{llf —gll..lealllg2l, - les llgsll}
1f =l
[AYe

Since || fllpr < [1fllas we have (| £y = 11 £l

AVARLY,

Our immediate goal, Theorem 3.2.3, is to show that a strict generating system
remains strict upon restriction to a suitably large rational polydisc. Lemma 3.2.2 is

ASTERISQUE 264



3. RESTRICTIONS TO POLYDISCS 45

the inductive step of the slicing argument involved. It makes special use of condition
(i) of Lemma 3.1.1.

Lemma32.2. — Let M be a submodule of (Smn)t, let g1,...,g- € M with ||g1]| =
-+ = |lgr|| = 1, and suppose that {g1,...,Gr} is an O-strict generating system of
M. Suppose B € B satisfies {g1,-..,9+} C (BE)[[p]])* N M, and let B = By D
By D -+ be the natural filtration of B. Let e € \/|K \ {0}| be such that 1 > ¢ >
max{o(g1),...,0(gr)}. Suppose

Fe M ((Bp&)lpl)" \ (Bps1(E)[p1)°) -
Then there are aq, . ..,a, € {0} U (Bp()[[p]] \ Bp+1{&)[[p]]) such that
) el 2 s ee(@i92) (el |- oup = |1l 0n Ton(e)) and
() [1f = >imy aigill < I]I-
Proof. — Choose a1, ...,a, € {0}U(Bp(&)[[p]] \ Bp+1{€)[[p]]) as in Lemma 3.1.1. By
Lemma 3.1.1 (i), o(a;g;) < ¢, so
e (@igi)ll gup = 290 |a;g; || < €99 £]].
By Lemma 3.1.1 (ii)’, we get

lee (@i9) lup < 7@ NF N < DN < Mo (F)lgup »

which yields (i). Since f € M, (ii) follows from Lemma 3.1.1 (iii). O

Theorem3.2.3. — Let M be a submodule of (Sm.n)", n > 1, with v-strict generating
system {g1,...,9-} C M°. Let e € \/|K\ {0} with 1 > ¢ > maxi<i<,0(g;), and
assume either that K is a stable field (see [6, Definition 3.6.1.1]) or that ¢ € |K]|.
Then {tc(g1),- .-, te(gr)} s a ||-[|gp-strict generating system of the Ty, n(e)-module
te(M) - Trnn(€) € (Tynn(€)).

Proof. — Suppose first that e € |K|. Then by Remark 3.2.1 (i), we have the following
commutative diagram,

Ton,n(e)
le Pe
Sm,n 7 Tm+n
LE
where ¢, is an isometric isomorphism. We will therefore show that {.(g1),...,.(g-)}

is a ||-||-strict generating system of the T}, ,-module t2(M) - Trin C (Tmin).
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By Lemma 3.1.4 (applied to Tytn = Smin,0), it suffices to show for each f €
tL(M) - Thqn \ {0} that there are aq,...,a, € Tiyqyn such that

(3:2.1) 17 = max Jlaici(g:)] and

< [I71-

F=> ail(g)
=1

Write f = Zsz'E(gl) for some f1,...,fr € Tpmin. Find polynomials fi,...,f. €

i=1
K¢, p] such that each || f/ — fil] < ||f|l- Then

D fil(g) = > fila)
=1 =1

since ||¢L(g;)|| <1 for all i. Put f':=>""_, fliL(g;). It suffices to prove (3.2.1) for f’.
Since the f/ are polynomials, f' = ([(F) for some F € M. We wish to apply

<A1

Lemma 3.2.2. Since ||Sm | = | K|, we may assume ||F||, [|g1]l,--.,]lgr]| = 1. Hence
by Lemma 3.1.2, {g1,...,gr} is an o-strict generating system of M. Choose B € B
such that F,g1,...,g- € (B()[[p]]) N M. By iterated application of Lemma 3.2.2
(recall that e € |K|, hence T}y, ,,(¢) and T)y,4,, are isometrically isomorphic) we obtain

a sequence {a;; } C B(&)[[p]] such that a1p,...,aro =0 and for every s € N,
() [ lL(F = Y aijgi)|| > lltL(aiss19:)ll, and
1<i<r

05555

(ll) ”F — E QijG;
1<i<r 1<i<r
0<5<s 0<G<s+1

Since B(&)[[p]] is complete in ||-|| and | B\ {0}] € Ry \ {0} is discrete, by (ii),

.
F— E a;g; =0, where a;:= E Qij.
i=1 j>0

Hence || f" = >20_, tL(ai)l(gi)|| = 0 < || f||. It follows from (i) that || f/|| = ||cL(F)| >

1=1"¢
max; ; ||t-(ai;9:)|| and hence that
170 = o (i)l

This concludes the proof in case € € |K \ {0}].

It remains to treat the case that K is a stable field. Let K’ be a finite algebraic
extension of K with e € |K'[. Let S}, ,, := Spmn(E,K') and let M':= M - S} . By
Lemma 3.1.11, {g1,...,9,} is a v-strict generating system of M’. Therefore, by the
preceding case, {t=(g1), - - -, t(gr)} is a [|-[|,,-strict generating system of the T}, . (¢)-
module ¢ (M) - T}, . (€).
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Let {1 = c1,...,cs} be a K-Cartesian basis of K’, and let f € (Ti,.n(€))¢ C
(T}, (e)). By the previous case there are a1,...,a, € T}, ,(¢) such that

- Z aite(9i)
i=1

||f||sup 2 fg?SXT ”ail’ﬁ(gi)“sup :

= IFll.ary-z, , (o and

,n

sup

Fort:=1,...,r, write

S
a; = chaij with a;; € Tm,n(g)'
=1

Then as in Remark 3.2.1 (iii),

‘ f= aun(9)
i=1

||stup Z 1r£ia§XT ||ai1L€(gi)Hsup :
Thus {tc(g1),..,t=(gr)} i a ||-[|4,,-strict generating system of the Ty, »(e)-module
te(M) - Ty m(€). O
Let M be a submodule of (S,,,)¢. Lemma 3.2.5 uses Theorem 3.2.3 to relate the

structure of M to that of (te(M) - Th (€)™ for € large enough. Lemma 3.2.6 will be
used in Section 4 to prove that Sy, , is a UFD.

= £l car)- 1 () » a0

sup

Definition 3.24. — Let M be a submodule of (S,,,)¢, n > 1, and consider M C

(Sm.n)". Note that each f € (Sp,n)" can be written uniquely as f = 2psac fr(€)p”
where each f, € (K[€))E. Define A(M), the uniform residue module of M, to be
the K [¢, p]-submodule of (K [¢, p]) generated by the elements EM:B( n fu(&)p¥ for
fe M.

The name uniform residue module is justified by the following lemma.

Lemma3.25. — Let M be a submodule of (Smm)z, n > 1, and let K' be a com-
plete extension field of K. Suppose ¢ € |K'| with 1 > ¢ > o(M). Put N :=
e(M) - Tryn(e, K') C (Ton(e, K'))¢. Then N = K’ - A(M), where we have iden-
tified T, (e, K') with K'[¢, p].

Proof. — Let Sy, ,, = Smn(E, K') and let M' := S}, - M. Choose a v-strict gen-
erating system {gi,...,g,} of M with ¢ > maxi<;<, 0(¢;). By Lemma 3.1.11 (ii),
{g91,..,9r} is a v-strict generating system of M’. Hence by Theorem 3.2.3,

{La(gl)v R Ls(gr)}
is a [|||,,-strict generating system of ¢c (M) Ty n(e, K') = N. Put G; := %9, (g;)
where ¢ € K is chosen with |¢| = e. By Lemma 3.1.4, {G,...,G,} generates N. O
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Lemma3.26. — Let I C Sy, be an ideal. Suppose A(I) is principal; then I is
principal.

Proof. — For h € §m7n7 let h° denote the leading form in p of the power series
h. Note that (hg)° = h°g°. Choose hy,... hs € I such that {hS,...,h%} gen-
erates A(I). Suppose g € I~([§,p] generates A(I). Since each h$ is a multiple of
g, deg,g < minj<i<s(deg,hf) =: d. Since g is a linear combination of the hy,
o(g) > min; <i<s 0(h?) = d. Hence g is homogeneous in p of degree d, and g = G° for
some G € I. By Corollary 2.2.4, it suffices to show that G generates I.
Let J be the ideal of §mn generated by G. Clearly I > J; we will show that I = J.
Suppose there is some f € f\ J. By Theorem 3.1.3, we may assume that

(3.2:2) a(f — h) <5(f)
for all h € J. Since f° € A(I), there is some a € K[¢, p] such that f° = ag = (ag)° =
a°G° = (aG)°, contradicting (3.2.2). O
3.3. Contractions from Rational Polydiscs. — In this subsection, we transfer

information from T, ,(¢) back to Sy, . The main results are Theorem 3.3.1 and its
Corollaries, which show, roughly speaking, how to replace powers of € with powers of
(p) for € near 1. Of course, when K is discretely valued, € cannot, in general, belong
to |K|. Tt is therefore sometimes necessary to extend the ground field as we did in
Subsection 3.2.

For f € K(£,p) = Tpin, n > 1, let d(f) := oo if f = 0. Otherwise, write
F(€) = 2£,(€)p” and let d(f) be the largest £ € N such that for some v with |v| = £
we have ||f|| = || f,]|. We call d(f) the residue degree of f. Note that if || f|| = 1, d(f)
is the total degree of fas a polynomial in p.

Let (A,v) be a normed ring and let f = Xf,p", g = Xg.p” € A[p]]. Wesay g is a
magorant of f iff v(f,) <wv(g,) for all v.

Let ¢ € A with v(c) < 1, and suppose

Zp+zcv|al/

lv|<a v|>a

is a majorant of f and
S e 3
lv|<b [v|>b

is a majorant of g. Put e := max{a,b}. Then
Z P’ + Z c"1=¢p” is a majorant of f + g, and

lv|<e lv|>e
(ii) Z o’ + Z V1=t 5 s a majorant of fg.
lv|<a+b lv|>a+b

Note, for any f € S, with ||f]| = 1 and any ¢ € K°, that f(§,c- p) is majorized
by Zc‘”' p¥. This fact will be used in the proof of the next theorem, which, for

ASTERISQUE 264



3. RESTRICTIONS TO POLYDISCS 49

f € (Smn)" and M a submodule of (Sp,n)", relates var(f) and ||ee(f)]o. (r)Ton ()
when ¢ is sufficiently large. The proof shows, via the concept of majorization, that if
the “slicing” in (T, (¢))¢ is done carefully, then it pulls back to (S, .)*

Theorem 3.3.1. — Let M be a submodule of (Smn)", n > 1, let € € \/|K \ {0}] with
1>¢e>0(M). Then for every f € (Spmn)t,

om (f) < (IF1,27%),
where o € NU {oo} is the least element such that || f|| < |lte(f)lloccary T nte)- If
o = oo, then vy (f) = (0,0).
Proof. — Let K’ be the completion of the algebraic closure of K, and put S, ,, :

Sman(E,K'), T, ,(€) := Tryn(e, K') and M := S}, ,-M. By Lemma 3.1.11, o(M') <
o(M) and vpr (f) = vam(f). Certainly,

Hﬁs(f)HLE(M/).T;mn(E) < Hbs(f)||LE(M).T,WL(5) :

Therefore, we may assume K = K’, so that, in particular, ¢ € |K| and T),, »(¢) is
isometrically isomorphic to Ty,4n. Choose ¢ € K with |¢| = e. We may replace ¢ by
¢ as in Remark 3.2.1 (i).

Since D\ £ < [L(F), i IO = 1L (ary 7y there is nothing to show.
Therefore, we may assume that

(3.3.1) e COez () T < (O

We may further assume that || f|| = 1.
Let o € NU{oo} be the least element such that e* < ||tL(f)l|. (ar).7,,. - By (3-3.1),
a>0. Fix 8 €N, 8 < a We must show that

v (f) < (I£1,277).

Let {g1,...,9-} be a v-strict generating system of M with ||g1]] = -+ = |lg.]| = 1
and € > maxi<;<,0(g;). For 1 <i <r, put G; := c_a(gi)L;(gi), where ¢ € K with
lc| = ¢, and find B € B such that (L(f), G1,...,G, € (B(&,p))’. Let B= By D By D
.-+ be the natural filtration of B.

Claim (A). — Let F € (By(&, )"\ (Bpy1(€, p))¢ and suppose for some h € (M) -
Tt that ||[F — h|| < ||F||. Then there are polynomials h; € Bpl¢, p] such that

@WF-Z@@
=1
(i) max{d(G,) + deg,(h;) : h; # 0} = d(F).

<||F||, and

Let 7, : B, — B, C K’ denote a residue epimorphism (of B-modules), and write
K = B, ®V for some B-vector space V. Then

(3.3.2) Tonyn = K[€, 9] = BylS, pl @ VIE, 9]
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as B[¢, p] modules. Since ||F — b < ||F||,
Tp(F) € (L(M) - Trngn)™.

=

Since Ty, 5 (€) is isometrically isomorphic to Ty, 4y, by Theorem 3.2.3 and Lemma 3.1.4,
{G1,...,G,} generates (1L(M) - Trtn)™~. Thus there are h; € K[, p] such that

(3.3.3) mp(F) =Y hiGi.
i=1
By (3.3.2) we may assume that hi,....h. € B b€, p]. Furthermore, since each com-

ponent of each G, is either 0 or a sum of monomials of total p-degree equal to o(G )
we may assume that

max{5(G;) + d(hi) : h; # 0} = d(F).
Find hi,...,h, € Bp[¢, p] with
max{5(Gy) + deg, (i) : hy # 0} = d(F)
and mp(h;) = iNzi, 1 <i<r. Now by (3.3.3),

7Tp<F— ith1> =0
i=1

This proves the claim.
By (3.3.1) and Claim A, there are polynomials h;y € BIE, p] such that

max [l = (P

- Z hio G

max{o(G;) + degp( 10) i0 70} = d( ()

Moreover, since ¢Vl p” majorizes each component of (f),

<[i(HI and

) a(L(f)) 5(Gy) |, ~deg,(hio)
[hioll < & <e € :
In the next claim, we iterate this procedure.

Claim (B). — There is a finite sequence {h;;} C B[¢, p] such that

s T s—1 r
(i) for each s, ||tL(f) —ZZhijGi —ZZhijGi ,
§=0 i=1 §=0 i=1
s—1 r
(ii) for each s, Jnax. [lhis]| = . ZlhijGi ,
7=01

(iii) for each i, s, Z hi; is magjorized by c®(G) Z Wl and
7=0
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L(f) — Zihijei <P,

(iv)
§>0 i=1
Note that the sum in (iv) is a finite sum.

Assume h;j, 1 <i <r, 0<j <s, have been chosen so that conditions (i), (ii) and
(iii) are satisfied, as they are by hig, ..., hq.. Assume condition (iv) is not satisfied,
and find p € N so that

(3.3.4) L) = DD hiiGi € (Byl€, )"\ (Bpaa(é, )"

j=0 i=1
Since condition (iv) is not satisfied and since €7 > [|tL(f)lli; (a1). 17,5, We may apply
Claim A to F :=L(f) — 32j_¢ >oi=y hijGi. This yields polynomials his11 € By[€, p]
such that

s+1 r s r
(3.3.5) L) =D hugGal| < () =D hiyGi
§=0 i=0 j=0 i=1
and
(336) 1%1?5)(7”{6(62) + degp his—i—l : his—i—l 75 O} =d,

where d := d(L’E(f) — > im0 2im1 hijGZ).

By (3.3.5), condition (i) is satisfied for s + 1. Since h;sy1 € BplE, pl, by (3.3.4),
condition (ii) is also satisfied for s + 1. To prove (iii) for s + 1, it suffices to show,
for each 1 < i < r, that ||hsq1]] < gO(Gi)+deg, (hist1)  Tf hist1 = 0 we are done.
Otherwise, by (3.3.6),

degp(hisﬂ) S d— G(Gl)
By (iii), each component of i (f)=>"7_o >°i_; hijGi is majorized by Y-, ¢/“|p”. There-
L(f) = 35 i hijGi” < el

Since (ii) is satisfied for s + 1, the above yields

e (f) = Zzhi]’Gi

Jj=0j=1

fore,

N

| istal]

Ed

(G +H(d-5(G)
< 65(Gi)+degp(his+1),

proving that (iii) is satisfied for s + 1. The claim now follows from the fact that

|B\ {0} C Ry \ {0} is discrete.

For 1 <i<r, put
hi = C_E(Gi) Z h”

Jj=20
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Since h; is a polynomial (recall that the above sum is finite), there is some hf € Sy, n
so that h; = L(h}). By Claim B (iii), maxi<i<, ||h}]| < 1. Write

i (f) — ZzhijGi = ZC’V(@p”.

§>0i=1
Then
F=Y higi=> c M, (©)p".
=1 v
Note that

<1=|f].

Hf - Zh;‘kgi
i=1

< 1 we are done. Otherwise,

= 1, and we want

It Hf S fX b

5(f -3 h;‘gi) > §. Put y :=6<f -3 hjgl). Then

max |[¢77C, || = 1;
lvl=v

Le., € = max), |, |Cy]| <

L(f) = D050 2oiea hijGi” < gP. Therefore, v > 3.

Finally, in the case that a = oo, we must show that vas(f) = (0,0). By Theo-
rem 3.1.3, we may assume that v(f) = va(f) and hence || f|| = || f||,,- By the above,
we have

v(f) < (If11,277)
for all 8 € N. Hence f =0; i.e., va(f) = (0,0). O

Corollary 3.3.2. — Let M be a submodule of (Sp.n)t, n > 1, and let ¢ € \/|K \ {0}
with 1 > > a(M). Then M = 17 (tc(M) - Tpn n(€)).

Proof. — Let f € 1.7 (te(M) - Tpy n(€)). Since te(f) € te(M) - Tpn n(€), Theorem 3.3.1
with o = oo yields vas(f) = (0,0). Hence by Theorem 3.1.3, f € M. O

Corollary 3.33. — Let M be a submodule of (Smn)', n > 1 and let f € (Smn)’.
Then
1fllar = liril_ e (Foe(d) T (o)
E—
e€r/|K]|

Indeed, find h € M so that vy (f) = v(f — h), and let F := f — h. Then for every
e €VI|K|, if 1 >e>0a(M), we have

(3.3.7) 11z = IEN 2 llee (D lleaty T ey = 2 IF.

Moreover, when in addition € > o(F'), equality holds in the rightmost part of (3.3.7).
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Proof. — The only assertion that needs proof is

(3.3.8) e (F)lert) i) = N
Let o € NU {00} be the least element such that

e IEN < Nlee(EMNeear) T ne) = Nte(Flcan) T (e)-
If (3.3.8) does not hold, &« > 6(F) + 1. So by Theorem 3.3.1,
vnr(f) = o(F) = (|1F[|,27°5)) < (| F]l, 272071,
If F 0, this is a contradiction. The additional assertion in the case that ¢ > o(F)
follows from [ec(£),. )7y n(e) < e (F) | = €25 - | . O

Hsup
Corollary 3.3.4. — Let I be an ideal of Sy and M a submodule of (Spm.n/I)¢. Let
¢ (Smn)t — (Sma/I)* denote the canonical projection and put N := @~ 1(M).
Let ¢ € \/|[K\ {0} with 1 > & > o(N), and let f € (Spn/I)*. Then vy (f) <
(11l 7-(S,m.nye>27%) where o € NU {00} is the least element such that

N5y < Mee (N eer)- (@i () 00 (1) T (2
In particular, if « = oo then vy (f) = 0.

Proof. — By Lemma 3.1.4, there is some F € (Sm,n)e such that o(F) = f and
IE = 1| f[l7.(8,n.n)¢- Since

ee (M ee )T (€) 02 (1) T (2)) = e ()| (V) T (2)

and

onm(f) = vn (F),
the conclusion follows from Theorem 3.3.1. |
3.4. Restrictions to Open Polydiscs. — In previous subsections, we studied

properties of the restriction maps
le: Sm,n — Tm,n(E)

to the closed polydiscs Max Ty, »(¢). As in [6, Section 9.3], the collection

{Max Ty, n(e): € € /|K\ {0}]}

is an admissible open cover of U, Max T, ,(¢). In fact, as we will see in Subsection 4.1,
Ue Max T, n(€) = Max Sy, . Properties of the restriction maps ¢, gave us information
about residue norms vy .

In this subsection, we study properties of restrictions from Max .Sy, to finite
unions of disjoint open polydiscs. When the polydiscs have K-rational centers, these
restriction maps take the form ¢ : Sy, ,, — ®§:150,m+n. Such restrictions are not
related in any natural way to admissible covers of Max S, ,,. Nonetheless, as we show
in Theorems 3.4.3 and 3.4.6, such restrictions are isometries in the residue norms
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derived from || - || and, respectively, I and ¢(I), provided that the finite collection of
open polydiscs is chosen appropriately.

In Subsection 5.5, we prove that for certain reduced quotients S, /I, the norms
Il - llr and || - ||sup are equivalent. In that subsection we use Theorems 3.4.3 and 3.4.6
to reduce this to the much simpler case of reduced quotients So y4n /1.

We first treat the case of a restriction to a finite union of disjoint open polydiscs
with K-rational centers. The extension to the case of non-K-rational centers is ex-
plained in Definition 3.4.4, Lemma 3.4.5 and Theorem 3.4.6.

Definition 3.4.1. — Let ¢1,...,¢, € (K°)™ with |¢; —¢j| = 1,1 < i < j < r. For
j =1,...,r, consider the ideal I; of Sy, ntm given by
Ii = (& —¢j1 — Pty &m — Cim — Prntm) - Smontm-
Put I :=nNj_,I; and define
Dy n(€) :== Smntm/ L.
Let

We © Sm,n — Dﬂ’L,n(C)

be the K-algebra homomorphism induced by the natural inclusion Sy,.n = Sm, ntm.

For ¢y, ..., ¢, as above, consider the open polydiscs
Apn(c) = {(a,b) € (K')™*": |a—¢;] < 1 and |b| < 1},

where K’ D K is complete and algebraically closed. Put
Amn(e) = Amnlc)).
j=1

It is a consequence of the results in Subsection 5.3 that D,, ,(c) is the ring of K-quasi-
affinoid functions corresponding to the quasi-rational domain A, ,(c), and that w,
is an inclusion. This justifies regarding w. as a restriction to A, ,(c). However, we
make no use of the results of Subsection 5.3 here.

It is also a consequence of the results of Subsection 5.3 that D, ,(c) is isomorphic
to @%_150,n+m- The next lemma gives a proof of a sharper result.

It is easily checked that the assignments

pi = (Pis---»Pi), 1<i<n+m,
& > (Pnvi + Clis ooy Pri + Cri), 1<i<m,

induce a K-algebra homomorphism

Xe - Dm,n(c) — @So,n+m~
j=1
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Lemma3.4.2. — x. is an isometric isomorphism; in particular,
(AN = 11£1l1
for every f € Dy, n(c).
Proof. — Note, by the Weierstrass Division Theorem, Theorem 2.3.2, that
Smn+m/Lj = Sontm, 1<j<r

The fact that y. is an isomorphism is now a consequence of [25, Theorem 1.4], and
the fact that the ideals I, ..., I, are coprime in pairs.

Since the map D, n(¢) — Dpmn(c)/I; - Dmon(c) is a contraction, 1 < j < r, it
follows that x. is a contraction. Thus we may define a K -algebra homomorphism

r
)A(/c: Dm,n(c) — @So,m-m,
j=1

as in the paragraph preceding Lemma 3.1.10. To show that x. is an isometry, it
suffices to show that Y. is injective.
By Lemma 3.1.4,

Dm,n(c) = gm,n«km/-ff-
It is not hard to see that

Ij = (&1 — €1 — pntty -+ 5 &m = Cjm — Prtm) - Smuntm,

1 < j < r. (Indeed, there is a linear isometric change of variables under which the
image of each ideal I; is generated by &1, ...,&n.) Because |¢;—¢j| =1,1<i<j <7,
the ideals Iy, ..., I, are coprime in pairs. Hence by [25, Theorem 1.3],

N =115

j=1 =1
We have:

TZ ﬂ]j C TJZHTJC HIj C ﬂ]j
j=1 j=1 j=1 j=1 j=1

Thus [ = ﬁ;zlfj. By [25, Theorem 1.4], X. is an isomorphism. O

From now on, we will also denote by w. the map
K
We - Sm,n - Dm,n(c) Xe, @ SO,n—i—m-
j=1
Observe that

T

we(f(€,p) = @f(pn+1 + ¢ty Prtm F Cims P1y- - P)-
j=1

SOCIETE MATHEMATIQUE DE FRANCE 2000



56 RINGS OF SEPARATED POWER SERIES

Theorem3.4.3. — Let M be a submodule of (Sy,.n). Suppose there are ci,...,c. €
(K°)™ with |¢; —¢j| =1, 1 < i < j <, such that for every p € Ass((Sm.n)t /M),
there is an i, 1 < i <r, with

m; = (£ —¢,p) D P,
(e.g., suppose K is algebraically closed). Consider the Sy, ,-module homomorphism

14

("2 (Sm,n)e - @ SO,n—i—m
7j=1

induced by we. Put N := @(M) - (®}_1S0,n+m). Then:

(i) If {g1,--.,9s} is a || - ||-strict generating system of M, then {©(g1),...,¢(gs)}
is a || - ||-strict generating system of N.

(i) [Ifllar = llo(f)lln for every f € (Smn)"-
(iii) ¢ Y (N) = M.
In particular, under the above assumptions on K, given an ideal I of Sy, ,, there is

an isometric embedding ¢ : Sy n/I — A, where A is a finite extension of Soq and
d=dim Sy, /I

Proof

(i) This follows from Lemma 3.1.10 (i) once we show that @, is flat. Applying
[25, Theorem 7.1], to each of the r maximal ideals of @©%_150,n4m, we are reduced to
proving that each map

(gm,n)mj - gO,n—i—m: f(gap) = f(pn—H +Ej17 <oy Pntm +Ejmap17 . . ~apn)

is flat, 1 < j < r. The flatness of these maps is a consequence of the Local Flatness
Criterion ([25, Theorem 22.3]), because

S /M5 = Sonm/ (1 puam)” = Ko/ (p)"

and m; is mapped into rad(gg,mrm).
(ii) Let f € (Sm.n)¢ By Lemma 3.1.4, we may assume that

1= [1f1lar =1,
and we must prove that

Iy =1.

In other words, we may assume that f & M and we must prove that ?(f) ¢ N. By
part (i) and Lemma 3.1.4, it suffices to show that

P(f) & B(M) - D Sonim
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Put

A= §m$m B = @(Emm)mj, C:= @§07n+m.

Consider the sequence
P— P®sB— (P®aB)®pC.

We wish to show that the composition is injective. The injectivity of P ® 4 B —
(P®a B) ®p C is a consequence of [25, Theorem 7.5], because C is a faithfully flat
B-algebra (see proof of part (i)). It remains to show that the map

P—PPn,=PcaB
j=1
is injective.
Let z € P\ {0}. We must show for some j, 1 < j < r, that
Ann(z) :={a € gmm: ax =0} C m;.

By [25, Theorem 6.1], there is some associated prime ideal q € Ass(P) such that
Ann(z) C q. But we have assumed that ¢ C m; for some j, 1 < j < r. This completes
the proof of part (ii).

(iii) This is an immediate consequence of part (ii), above.

The last assertion is now a consequence of Remark 2.3.6 and the observation that
EB;ZISO,,Hm is a finite Sp ,+m-algebra. O

In what follows, we treat the case that the centers ¢ may be non-K-rational. Notice
that even in the rational case, because K is non-Archimedean, discs do not have
uniquely determined centers (indeed, every point of the disc is a center). Hence
the rational “centers” actually correspond to points of K™ x {0}". In the non-
K-rational case, they correspond to maximal ideals of gm,n. In other words, for
¢, ¢ € (K3,
Apn(c) and A, ,(c') coincide precisely when there is an element v of the Galois

group of Kz over K such that |c —v(c’)| < 1. This occurs if, and only if, mz = mg,

)™, the rings of K-quasi-affinoid functions on the open unit polydiscs

where mz is the maximal ideal of elements of §m,n vanishing at (¢,0). (The reader
may wish to refer to Subsections 4.1 and 5.3.) This motivates the following definition.

Definition 3.4.4. — Let c1,..., ¢, € (K3,)™ satisfy
mg #mg, 1<i<j<r, and [K(c):K]|= [K(2) : K].

For j =1,...,r, write ¢; = (¢j1,...,¢jm) and let fjo(&1,...,&) be the polynomial
monic and of least degree in & such that fje(cj1,...,¢je) = 0. We may choose
fjé S Ko[fla o a§€]~
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Consider the ideal I of Sy, n+m given by

Ij = (fjl(fl) — Pn+ls---s fjm(§17 cee 7£m) - pn+m) : Sm,n—O—m-
Put I :=nNj_,I; and define
Dm,n(C) = m,n+m/I~
Let
We * Sm,n B Dmm(c)

be the K-algebra homomorphism induced by the natural inclusion Sy, n <= Sp ntm-

As we remarked above, D,, ,,(c) is again the ring of K-quasi-affinoid functions on
Ay, n(c). When c is non-K-rational, the structure of Dy, »(c) is only slightly more
complicated.

For i # j, mg, # mg,. It follows from the Nullstellensatz for K[T'] that mz, +mz, =
(1). Since I; + I; 4 (p) D mg, +mg,, I; + I; contains a unit of the form

1+ f€(p)Smnt+m-
This implies that the ideals I; are coprime in pairs. By [25, Theorem 1.4], the induced
map

Xe * Dm,n(c) — @Sm,'rH»m/I]
j=1

is a K-algebra isomorphism.
Since Sy ntm/Ij = Dmn(c)/I;, the map x. is a contraction. To see that it is an
isometry, we show that the induced map

%c : Dm,n(c) — @gm,n+m/j;
j=1

is an isomorphism. This is a consequence of the above-noted fact that the ideals TJ
are coprime in pairs.

Each element f;;(&1,...,8&) — pnye is regular in & in the sense of Definition 2.3.1.
Therefore, by the Weierstrass Division Theorem 2.3.2, each Sy, n4m /I is a finite, free
So,n+m-module.

We have established the following generalization of Lemma 3.4.2.

Lemma3.4.5. — With the above notation, x. is an isometric isomorphism; in partic-
ular,

Ixe(DI = max [[fll, = [[f11

1<j<r
for every f € Dy, n(c). Furthermore, there is a finite, torsion-free monomorphism
SO,n+m - Dm,n(c)'

The generalization of Theorem 3.4.3 is
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Theorem 3.4.6. — Let M be a submodule of (Smm)z. Choose ci,...,c. € (K;lg)m
with mg, # mg,, 1 <i < j <r, such that for every p € Ass((gm,n)e/ﬂ) there is an 1,
1<i<r, with
mg O Pp,
where mz, is the mazimal ideal of elements of gmn that vanish at (¢;,0).
Consider the Sy, n-module homomorphism
¢

@ (Sm,n)e I @Sm,rﬂrm/]j
j=1

induced by Xcowe. Put N := (M) - (®_1Smn+m/L;). Then:

() If {g1,--.,gs} is a || - ||-strict generating system of M, then {©(g1),-..,¢(gs)}
is a || - || 1-strict generating system of N.

(i) [1fllar = lo(fllw for every f € (Smn)"-
(iii) =1 (N) = M.
In particular, for any quasi-affinoid algebra B = Sy, /I, there is an isometric em-
bedding ¢ : B — A, where A is o finite extension of Soq and d = dim B.
Proof. — The proof is nearly identical to that of Theorem 3.4.3. Note that each
gm,n+m/fj = SO,n—i—m(E; K(Cj))N
by the Cohen Structure Theorem [25, Theorem 28.3]. O

Remark 3.4.7. — By Corollary 5.1.10, the K-algebra homomorphisms ¢ of Theo-
rems 3.4.3 and 3.4.6 are isometries in || - ||sup-

4. The Commutative Algebra of S, ,

In this Section, we establish several key algebraic properties of the rings of sepa-
rated power series. The rings Sy, , satisfy a Nullstellensatz (Theorem 4.1.1), they are
regular rings of dimension m+n (Corollary 4.2.2), they are excellent when the charac-
teristic of K is zero (Proposition 4.2.3), and sometimes when the characteristic of K is
not zero (Example 4.2.4 and Proposition 4.2.5), and they are UFDs (Theorem 4.2.7).

4.1. The Nullstellensatz. — Let A be a K-algebra. We make the following def-
initions (see [6, Definition 3.8.1.2]). Let Max A denote the collection of all maximal
ideals of A, and put

Maxg A := {m € Max A : A/m is algebraic over K} .

For m € MaxgA and f € A, denote by f(m) the image of f under the canonical
residue epimorphism 7 : A — A/m. Since A/m is an algebraic field extension of K
and since K is complete in [|-|, there is a unique extension of |-| to an absolute value
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on A/m, which we also denote by |-|. Now define the function [l gup : A — Ry U{oo}
by
0 if Maxg A = @,
(K — sup |f(m)| if MaxgA # @, f(MaxgA) bounded,
sup meMaxx A
00 otherwise.

If f(MaxgA) is bounded for all f € A, then [|-[|,,
called the supremum seminorm ([6, Lemma 3.8.1.3]). We denote the nilradical of an
ideal I by (1) := {f : f™ € I for some n € N}.

is a K-algebra seminorm on A,

Theorem 4.1.1 (Nullstellensatz)

(i) Let I be any proper ideal of Sy n, then M(I) = {m € Maxg Sy, : m D I}.
(if) Max Sp,n = Maxg Smn-
(iii) Put
o . . < .
U= {m e Max K¢, p] - max |&(m)] <1, max |p;(m)| <1}
Then the map m +— m - Sy, is a bijective correspondence between U and
Max Sy, .-

Proof. — Since Sy0 = T, if n = 0 we are done by [6, Theorem 7.1.2.3, Proposi-
tion 7.1.1.1 and Lemma 7.1.1.2]. Assume n > 1.

(i) Let I C Spm,n be a proper ideal and let ¢ € /|K \ {0} with ¢ > o(I). By
Corollary 3.3.2, f¢ € I if, and only if, tc(f)* € we(I) - Tyun(e). Hence N(I) =
S N N(te(I) - Ty n(€)). Therefore (i) follows from the Nullstellensatz for T, (g)
([6, Theorem 7.1.2.3]).

(ii) This is an immediate consequence of (i).

(iii) In case K is algebraically closed this follows immediately from (ii). Otherwise,
it follows from (ii) by Faithfully Flat Base Change (Lemma 3.1.11(iii)). Alternatively,
(iii) follows immediately from (ii) and the Weierstrass Preparation and Division The-
orems as follows.

Let m € U. Since K¢, p]/m is algebraic over K, there are polynomials f;(§;) and
gi(pj) €m, 1 <i<m,1<j<n. By 6, Proposition 3.8.1.7], we may assume that
each f; is regular in & and each g; is regular in p; in the senses of Definition 2.3.1.
Applying the Weierstrass Division Theorems (Theorem 2.3.2) yields

K& pl/m = S /m - Sinn

hence m - S, , € Max Sy, .

Conversely, let m € Max S, ,,. By (ii), m € Maxg Sy, n. Since Sy, »,/m is algebraic
over K, we obtain polynomials f;(&), g;(p;) € m, 1 <i <m, 1< j <n. By the
Weierstrass Preparation Theorem (Corollary 2.3.3) we may assume that all f;(&;) and
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g;(pj) are monic polynomials, regular in the senses of Definition 2.3.1. Euclidean
Division in K¢, p] and Weierstrass Division in Sy, , yield

The fact that m N K[¢, p] € U follows from the facts that no f; nor g; is a unit. O

Since |||y, coincides with || - |- on Tiy n(e) ([6, Corollary 5.1.4.6]), it follows
immediately from Theorem 4.1.1 that ||-|,, coincides with [|-|| on Sp, . A K-algebra
A is called a Banach function algebra iff ||-[|,,
when S, ,, is complete in ||-|| (¢f. Theorem 2.1.3), it is a Banach function algebra. In
Subsection 5.5, we show that in many cases, reduced quotients of the S, , are also
Banach function algebras.

is a complete norm on A. Hence

Proposition 4.1.2. — Let A = Sy,/I and m € Max A. Consider the field K’ := A/m,
which is complete since it is a finite K-algebra. Then for each representative f =
S auwétp” € Smon of an element of A:

() fm):=f+m=>0au,f 7" €K', where € := & +m, p:=p+m.
(i) [fm)] <|[[fllz. Indeed

LF) < FN for 6=1,2,....

(it)) If f = (fi + 1) + (fo + 1) where fi, fo € Sy, 1Al < 1, If2ll <1 and
f2 € (p)Sy, s then | f(m)] < 1.

Proof. — (ii) and (iii) follow immediately from (i) and Theorem 4.1.1(iii). (i) is
immediate if K’ = K, since f(, p) — f(€,7) belongs to the maximal ideal

{g € Smn : g(Z,ﬁ) = O}a

which must contain the polynomial generators of m. Now note that there is a natural
inclusion Sy, o (E, K) < Spmn(E, K'). O

In the affinoid case, the supremum seminorm behaves well with respect to extension
of the ground field. This follows from the Noether Normalization Theorem for affinoid
algebras [6, Corollary 6.1.2.2], from [6, Proposition 6.2.2.4], from [6, Lemma 6.2.2.3],
and from the fact that ||f|sup cannot decrease after extension of the ground field
(ground field extensions of affinoid algebras are faithfully flat: see Lemma 3.1.11 (iii)).
The supremum seminorms on quotient rings of the S, ,, also behave well with respect
to ground field extensions, even though, unlike in the affinoid case, the supremum
need not be attained.

Proposition 4.1.3. — Let K’ be a complete, valued field extension of K, let E' C (K')°
be a complete, quasi-Noetherian ring (in characteristic p, let E' be a complete DVR)
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and put Sp,.n 1= Smn(E, K), S{mn = Span(E', K'). Assume S;n,n D Spmn. Let I be
an ideal of Sy, n and put I' :=1-S}, . Then for any f € Spmn/1,

sup{|f(z)| : © € Max S, n/1} = sup{|f(z)| : © € Max Sy, ,/I'}.

Indeed, for any f € Spmn/I and for any ¢ € R, if |f(z)| < ¢ for all x € Max Sy, /I
then also | f(x)| < ¢ for all x € Max S}, , /1"

Proof. — Assume |f(z)| < c for all x € Max Sy, /I and let zo € Max S}, ,,/I'. Let
e € /|K\{0}] be such that 1 > ¢ > max{o(I),o(I'),0(zo)}. By the Maximum
Modulus Principle [6, Proposition 6.2.1.4], we have: ||te(f)||sup < ¢, where the supre-
mum is taken over the affinoid variety Max(Ty, »(¢)/te(I) - Trnn(€)). By the above
observation, it follows that ||te(f)||sup < ¢, where this time, the supremum is taken
over Max Ty, ,,(¢)/I' - Ty, ,,(¢). Thus |f(zo)| < c. O

Remark 4.1.4. — The Maximum Modulus Principle holds for quotients of T, = S0
(see [6, Proposition 6.2.1.4]), but not, in general, for quotients of Sy, n, n > 0. Nev-

ertheless, for f € Sy, n/1,
[1fllsup € VI

This is a consequence of the quantifier elimination (¢f. [17, Corollary 7.3.3]), and
Proposition 4.1.3. It also follows from the results of this paper (see Corollary 5.1.11).
The following weak form of the Minimum Modulus Principle is an immediate con-
sequence of the Nullstellensatz (Theorem 4.1.1). Let A = S,, /I and let f € A. If
inf{|f(x)| : x € Max A} = 0 then there is an € Max A such that f(z) = 0.

Remark 4.1.5. — Here we give a second proof that Max Sy, , = Maxg Spm.n.

We begin by defining an additive valuation w on S, ,. Consider R x N" as an
ordered group with coordinatewise addition and lexicographic order. We define a
map w : Sy, — R X N U {oo} by putting w(0) := oo and, for f € S, \ {0},
w(f) = (a,1p), where a € R and vy € N” are determined as follows. Write f =
Dopw €’ =32, fu(§)p”. Then put o := miny,, orday, (where ord : K — R
is the additive valuation corresponding to the absolute value |-| : K — Ry) and let
vy € N™ be the element uniquely determined by the conditions

[ fvoll = II£]l; and

| full < [If]| for all v < vy lexicographically.

We call the multi-index v the total residue order of f, and we call the coefficient
fuo (&) the leading coefficient of f. It is not difficult to show that w is an additive
valuation on Sy, .

Proposition. — FEach ideal of Sy, n is strictly closed in w.

Proof. — This is proved analogously to Theorem 3.1.3 using the facts that

1B P] \ {0}l
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is discrete and that N™ with the lexicographic order is well-ordered. We leave the
details to the reader. (See also [17, Section 2.6].) O

Note that if T is an ideal of S, ,, and if co # w(f) > w(f — h) for each h € I, then
there is no element h of I with the same total residue order vy as f and such that

”hVoH = HfVoH > Hfl/o - hl’oH'
Theorem. — Max Sy,.n = Maxg Sm.n-

Proof. — If there is some f € m which is preregular (in the sense of Definition 2.3.4)
in £ (or p) then, after a change of variables among the £’s (or p’s), we may assume
that f is regular in &, (or in p,). If f is regular in &,, (the case that f is regular
in p,, is similar), then by Weierstrass Division, the map Sy,—1., — Spm,n/m is finite.
Thus m’ := m N Sy,_1,, is maximal, and we are done by induction on the number of
variables. We henceforth assume that m contains no element which is preregular in
any variables.

For each v € N, let m,, be the set in .Sy, ¢ of leading coefficients of those elements

of m with total residue order v. If pu; < vi,...,pn < vy, then m, C m,. Let
m, = (m, NSy, 0)/(my, NSy2y), if my, # @ and m, = (0) otherwise. Then m, is

an ideal of gm,o. Note that none of the ideals m, can be the unit ideal since then
there would be an element of m which is preregular in p. Since m # (0), at least one
m, # (0). Moreover, if A is any Noetherian ring and {I,},en- is a family of ideals
of A such that I, C I, whenever pq < v1,..., 1, < vy, then the family {I,},enn is
finite (induct on n).

We can therefore find some a(€) € Sy, 0 with |la|| = 1 such that @ € m, for each
m, # (0). Put
(4.1.1) c:=a+1.
Since ||a]| = 1 and a is not a unit of S, o, it follows that ||c|| = 1 and that ¢ is not
a unit. Furthermore, ¢ ¢ m since clearly ¢ is preregular in £&. Thus there is some

f € Sm,n such that ¢f —1 € m. By the above Proposition, we may assume that for
each h € m

(4.1.2) w(f) > w(f —h).
Write f = >" f,(&)p”, and let f,, be the leading coefficient of f. By (4.1.2), there is
no h € m,, of total residue order vy with ||h|| = || f|| and || fve — ol < Il froll-

Claim. — || f.,| > 1 and vy # 0.

If || f|]] <1 then c¢f — 1 is a unit, contradicting the fact that m is a proper ideal.
Hence ||f|| > 1. If vy = 0, then since c is not a unit, cf — 1 is preregular in £, which is
a contradiction. Hence ||f]| > 1 and vy # 0. If || f|| = 1 and || fo|| = 1, then the total
residue order of f is 0, a contradiction. If || f|| =1 and || fo|| < 1 then ¢f —1 €mis a
unit, also a contradiction. This proves the claim.
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Let || fy,|l = [b]. By the claim, $(cf — 1) has total residue order vy and leading
coefficient £ f,, € m,,. But by (4.1.1), cf,, € m,, implies (% fu)~ € my,, contradict-
ing (4.1.2). O

4.2. Completions. — One of the main applications of the Nullstellensatz is to give
us information about maximal-adic completions of the Sy, ,,. In this subsection, we
prove the following facts: S, , is a regular ring of dimension m + n, restriction maps
to closed subpolydiscs are flat, Sy, , is a UFD, S,, ,, is excellent in characteristic 0
and sometimes in characteristic p > 0, and, when Sy, ,, is a G-ring, radical ideals of
Sm,n stay radical when they are expanded under restriction maps to closed polydiscs.

Proposition 4.2.1. — Let e € \/|[K\ {0}, 1 > & > 0, let M € Max T, (¢), put m :=
K[¢ p)NM, and N := 171 (M) € Max Sy, n. Then te induces K -algebra isomorphisms
(1) S /N 2 T () I 2 K€, p] /m

for every £ € N.
Let I be an ideal of Sy . Suppose M € Max Ty, n(€) with M DO (1), and put
N :=-L(M). Then v. induces K -algebra isomorphisms

(if) (Smin/T) gy 2 (Tonn(€) /1(1) - T () g

where  denotes the mazimal-adic completion of a local ring.

Proof

(i) is immediate from the Weierstrass Preparation and Division Theorems, and
Theorem 4.1.1(ii).

(ii) By part (i), ¢ induces a K-algebra isomorphism

% (Smn)nt — (T (e))om.

Part (ii) now follows immediately from [25, Theorem 8.11]. O

Corollary 4.2.2. — For each m € Max Sy, n, (Sm.n)m s a reqular local ring of Krull
dimension m + n; moreover, Sy, n 15 a regular ring.

Proof. — By Hilbert’s Nullstellensatz, each Mt € Max K [¢, p] can be generated by
m + n elements and dim K [¢, p]m = m + n; in particular, K[§, p]m is a regular local
ring. By Theorem 4.1.1, there is some € € /|K \ {0}|, 1 > € > 0, such that

M = 1c(m) - Tpyn(€) € Max T, 1 (e).
Now by Proposition 4.2.1,
(Smn)m = (Tmn(e))m = (K[fap])K[g,p]mma

SO dim(Sm,n); = m + n. It follows that (S n)m is a regular local ring of Krull
dimension m + n. Moreover, by [25, Theorem 19.3], Sy, », is a regular ring. O
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Proposition 4.2.3. — Assume Char K = 0. Then Sy, is an excellent ring; in partic-
ular, it is a G-ring.

Proof. — In light of Theorem 4.1.1 and Corollary 4.2.2, this follows directly from [26,
Theorem 2.7]. O

The next example and proposition show that the situation in characteristic p is
more complicated.

Example4.2.4. — If Char K = p # 0, then S, , = Sy (K, E) may fail to be a
G-ring. Assume, for the moment, that we have found an element g € K[p] \ So,1
such that g? € Sp1 (cf [28, Section Al, Example 6]). Put m := (p) - Sp,1 and put
R := (So,1)mlg]; if So1 is a G-ring, so is R (see [25, Section 32, p. 260]). Since
R C K[p], it is reduced. Put 9 := mR, and let R denote the M-adic completion of
R. Since Sy is a UFD, X? — g¢? is irreducible in (Sp,1)m[X]; hence

R = (So,1)m[X]/(X? — g7) and R = K[X][p]/(X? — ) - K[X][p].

So X — g is a non-zero nilpotent element of E, which is the direct sum of finitely

many maximal-adic completions of R ([25, Theorem 8.15]). Thus, some maximal-

adic completion of R is not reduced. It follows from [25, Theorem 32.2 (i)], that R,

and hence Sy 1, cannot be a G-ring. An example of K, E and g can be constructed

as follows: let K :=TF,(t1,t2,...)((2)), E :=F,(t},t5,...) and g := Ztipi. In fact,
>0

a similar example can be constructed whenever [EY/P N K : E] = occ.

Proposition 4.2.5. — Assume Char K = p. Then:

(1) if Sm.n is a finite extension of (Spmn)P, then Sy, is excellent;
(i) of [K : KP] < o0 and if E C K° is a complete DVR which is a finite extension
of EP (e.g., take E =TF, C K°), then Sy, ,, is excellent;
(iii) if E C K° is a DVR and if K' is a complete, perfect, valued field extension
of K, then there is a field E' with E' C (K')° such that Spyn(E',K') is an
excellent and faithfully flat Sy n(E, K)-algebra.

Proof

(i) By [38, Théoreme 2.1], it suffices to show that S, , is universally catenary.
But this is an immediate consequence of [25, Theorem 31.6 and Corollary 4.2.2].

(ii) Put Spn i= Spn (B, K) = Spn(E?, K). Then, Sy = K ® kv Sy (EP, KP)
is finite over Sy, ,(E?, K?) and by the Weierstrass Division Theorem 2.3.2, Sy, is
finite over (Sy,»)P. Now apply part (i).

(iii) Lift K’ to (K')° by extending the lifting of E given by E (see Re-
mark 2.1.4 (iv)). By part (ii), Spmn(E’, K') is excellent, and by Lemma 3.1.11 (i), it
is faithfully flat over Sy, »(F, K). O
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A useful property of reduced G-rings is that they are analytically unramified in
the sense of [28]. The next proposition shows that reduced quotients of S, ,, are
analytically unramified in a different sense, when S, ,, is a G-ring. Example 4.2.4
shows what goes wrong if S, ,, is a not a G-ring.

Proposition 4.2.6. — Let I be an ideal of Smmn, n > 1, and let € € \/|K\{0}], 1 >
e>0. Ife > 0o(l) and Ty (e /L5 - Tinn(€) is reduced then Sm,n/I 1s reduced.
Suppose Sp.n is a G-ring (e.g., use Proposztwn 4.2.3 or Proposition 4.2.5 (i1)). If
S /1 is reduced then T, n(€)/te(I) - Ty (e) is reduced.

Proof. — Suppose Trnp(€)/te(I) - Tn(€) is reduced and suppose f7 € I for some
f € Smon; then te(f) € te(I) - Tym(e). Hence by Corollary 3.3.2, f € I. Therefore,
Sm,n/I is reduced.

Suppose Sm,n/I is reduced and that Sy, ,, is a G-ring; we must prove that

/La . mn )

is reduced. For this, it suffices to prove that ( / te(X) - Trm ))m is reduced
for every m € Max(T, /LE - Tin(€)). Indeed, let A be a ring such that Ay,
is reduced for every m E MaXA and suppose f7 = 0. Then f € Ker(A — Ayn) for
every m € Max A. Consider the ideal a := {a € A:af =0}. If a = (1), then f =0,
and we are done; otherwise, a C m for some m € Max A. Hence f ¢ Ker(A — An), a
contradiction. Furthermore, by the Krull Intersection Theorem ([25, Theorem 8.10]),
Ker(A — A) = ( ) for any Noetherian local ring A. Hence it suffices to prove that
( /LE “Trm ))m is reduced for every m € Max(7, /LE “Trn(€)).
Let m € Max /LE - Tin(€)), and put N = Sm,n nm € MaxSm,n/I.
Since S, /1 is reduced $0 i (Sm.n/I)m. Indeed, let A be a reduced ring and let
m € MaxA. If f7 € Ker(4A — Am) then for some a € A\ m, af” = 0; whence
(af)” = 0. But A is reduced, so af = 0; i.e., f € Ker(4A — An). Now any quotient
or localization of a G-ring is again a G-ring, so (Sm,n/I)m is a reduced G-ring. Thus

is regular; in partrcular it is falthfully flat. By [25, Theorem 32.2], (Sm.n / I o is
reduced. Then (Ty, p( / te(I ))m is reduced by Proposition 4. 2 1. Since thlb
holds for every m € Max(7T, / te(1)Trn n(€)), we have proved that Ty, () /te(1

T n(€) is reduced.

Theorem4.2.7. — Sy, is a UFD.

Proof. — A Noetherian integral domain is a UFD if, and only if, every height 1 prime
is principal ([25, Theorem 20.1]). Let P be a height 1 prime ideal of Sy, ,; we must
prove that P is principal. By Lemma 3.2.6, it suffices to prove that the uniform
residue ideal A(P) is principal. Let K’ be a finite algebraic extension of K such
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that K’ = K, let S/, ,, := Sp.n(E,K') and let P’ := P-S! . By Lemma 3.1.11,
P =P §;nn — P; hence A(P') = A(P). It suffices to prove that A(P’) is principal.

Fix a finite algebraic extension K’ of K such that for some ¢ € |K'|, 1 > ¢ > o(P),
and K’ = K.

Claim. — For every n’ € Max S/ ., P’ (S{ﬂn); is a principal ideal.

m,n’

Let n/ € Max S;nn and put n := n'N S, . Since S}, , is finite over Sy, ,, n €
Max S, . By Corollary 4.2.2, Sy, ,, is a regular ring. Hence by [25, Theorem 20.3],
(Sm.n)n isa UFD. If n D P then ht P-(Spn)n = 1, and if n 2 P then P-(Sy,.n)n = (1).
Thus, the ideals P - (Syn)n, P’ - (S}, ) and P’ - (S{ﬂn); are all principal. This
proves the claim.

Let Ty, ,(¢) = Tmn(e,K’). By the Claim and by Proposition 4.2.1, t.(P’) -
(Th.n(€))m s a principal ideal of (T), ,(¢))m for every m € Max T}, ,(¢). By [25,
Exercise 8.3], te(P’) - (T}, ,(€))m is a principal ideal, hence a free (T}, ,,(¢))m-module
for every m € MaxT), . (¢). By [25, Theorem 7.12], 1.(P) - T}, ,(¢) is a projective
ideal. But T7, () is isomorphic to Ty, n(K’), which by [6, Theorem 5.2.6.1], is a
UFD. Hence by [25, Theorem 20.7], t.(P) - T}, ,(¢) is principal. By Lemma 3.2.5,
this implies that A(P’) is principal, as desired. O

In the next lemma we collect together some facts on flatness.

Lemma4.28. — Lete € /|K\ {0} with1 > ¢ > 0. Let K’ be a complete, valued

field extension of K, let E' C (K')° be a complete, quasi-Noetherian ring, and put

Smm = Smn(E,K), Sy, = Smn(E', K'). Assume S, , D Smn; e.g., take E' O E.
(1) The inclusion te : Smp — Tm.n(e) is flat

The following inclusions are faithfully flat:

ii) Smn(E,K)° — Sma(E, K')°

iii) Spn(E,K) — Sma(E', K')

(W) m n( )N - Sm,n(Ela KI)N

(V) Ton(e) = Thy n(e)

(i) Consider the map ¢z : Spmn — Tmon(e). Let M be a maximal ideal of T}y, 1, (¢),
put m := (o1(M), A := (Spn)m and B := (Tp,.n(e))m. By [25, Theorem 7.1], it
suffices to show that the induced map . : A — B is flat. Let /T, B be the maximal-
adic completions, respectively, of the local rings A, B. By Proposition 4.2.1 (ii),
A =~ §7 and by [25, Theorem 8.14], A — A=~ Band B — B are faithfully flat.
Part (i) now follows by descent.

(i), (iii) and (iv) are Lemma 3.1.11 (iv), (iii) and (i), respectively.
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(v) For some s € N, ¢ € |K|. Let ¢ € K with |¢| = ¢®, and let I be the ideal of
Tint2n generated by pf — piync, 1 <i <n. By [6, Theorem 6.1.5.4],

Tnn(e) = Tingon/I and Tr/n,n(g) = Tomt2n/1 Thpion-

It therefore suffices to show that the inclusion Ty, — T, is faithfully flat. But this is
Lemma 3.1.11 (iii) with n = 0. O

Note that the inclusion Sy, ,, < Ty, n(€)° is not flat. Indeed, find ¢ € K and £ € N
such that |c| = &°. Let

M = {(f.9) € (Spn)%: cf +p'g =0}, and
N = {(f.9) € (Tmn(e)°)*: cf +p'g=0}.

If S5, = Tinn(e)® were flat, then N = 1. (M) - Ty n(€)°. But (p—§7 —1) e N\ te(M)-
Tinn(€)°.

5. The Supremum Semi-Norm and Open Domains

In this section, we investigate algebraic and topological relations between residue
norms and the supremum seminorm on a quasi-affinoid algebra (i.e., a quotient ring
Sm.n / I). The key topological concepts are power-boundedness and quasi-nilpotence
(see Definition 5.1.7). The first main result is Theorem 5.1.5, which asserts that
each h € Sy, /I with ||hllsup < 1 is integral over the subring of all a € Sy, /1
with ||al|; < 1. Moreover, if |h(z)| < 1 for all z € MaxS,, /I, then h is integral
over the set of all @ € Sy, /I with vr(a) < (1,1). It then follows (Corollary 5.1.8)
for f € Sy.n/I that f is power bounded if, and only if, || f|lsup < 1, and that f
is quasi-nilpotent if, and only if, |f(z)] < 1 for all z € MaxS,,,/I. These are
the quasi-affinoid analogues of well-known properties of affinoid algebras. In Subsec-
tion 5.2 we use the results of Subsection 5.1 to show that K-algebra homomorphisms
are continuous (Theorem 5.2.3). Hence all residue norms on a quasi-affinoid algebra
are equivalent (Corollary 5.2.4); i.e., the topology of a quasi-affinoid algebra is in-
dependent of presentation. We also prove an Extension Lemma (Theorem 5.2.6) for
quasi-affinoid maps. The results of Subsection 5.1 also lead, as in the affinoid case,
to a satisfactory theory of open quasi-affinoid subdomains. In particular, in Subsec-
tion 5.3 we define quasi-rational subdomains (Definition 5.3.3), and show, using the
Extension Lemma (Theorem 5.2.6), that they are quasi-affinoid subdomains. Sub-
section 5.4 contains the definition and elementary properties of the “tensor product”
in the quasi-affinoid category. In Subsection 5.5 we show when Char K = 0 and in
many cases when Char K = p, that if Sy, /I is reduced then the residue norm | - |1
and the supremum norm || - ||sup are equivalent. If in addition E is such that S,, , is
complete then Sy, /I is a Banach function algebra.
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5.1. Relations with the Supremum Seminorm. — The first step towards prov-
ing Theorem 5.1.5 is an analogue of that theorem for Ty, ,(€)/te(I)- Thn n(€) uniformly
in e, where ¢ is a sufficiently large element of /| K \ {0}].

Let A be a Noetherian ring and let I C A be an ideal. For r = 0,1,..., let I,
denote the intersection of all minimal prime divisors of I of height r (if there are none,
put I, := (1).) Clearly, M(I) = Ny>0l,, where 91(I) denotes the nilradical of I, and
each I, is a radical ideal. The ideals I, are the equidimensional components of the
ideal 1.

In Lemma 5.1.1 we show that the ideals ¢c (I,.)-Ty, n(€) generate the equidimensional
components of the ideal tz(I) - Tp, n(€), in the case that Sy, is a G-ring. This is
important in applying [6, Proposition 6.2.2.2], in a uniform way.

Lemmab5.1.1. — Let I be an ideal of Sy, n > 1, and lete € /|K \ {0}, 1 >¢ > 0.
Put J = 1c(I) - Ty n(e). Then Jp = N(te(ly) - Tmn(e)), ¥ > 0. Thus, if Spmpn is a
G-ring, then J, = t.(I;) - Ty n, 7 > 0.

Proof. — Since J, is a radical ideal, by the Nullstellensatz (Theorem 4.1.1), it suffices
to show, for each m € Max T}, ,, (), that m D J,. if, and only if, (=1 (m) D I,..

Let A be any Noetherian ring, let I C A be an ideal, and let m € Max A. By [25,
Theorem 6.2], m D P D I is a prime divisor of I if, and only if, P - Ay, is a prime
divisor of I - Ap,. Thus, m D I, if, and only if, I - Ay, has a minimal prime divisor of
height 7.

Clam. — Let I C A be an ideal, and let m € Max A. Then m D I, if, and only if,

~

I-(An) has a minimal prime divisor of height .

By the foregoing, we may assume that A is a local ring with maximal ideal m, and
we must show that I has a minimal prime divisor of height r if, and only if, I - A has
one. (As usual, A denotes the maximal-adic completion of Al)

Let p € Spec A and let B € Specg be a minimal prime divisor of p - //1\; we will
show that ht§3 = htp. Since A is flat over A ([25, Theorem 8.8]), this follows from
[25, Theorem 15.1 (ii)], if we can show that p = PN A. By the Going-Down Theorem
([25, Theorem 9.5]), there is some Q € Specg such that Q C P and QN A = p;
hence 8 O Q O p- A. Since P is a minimal prime divisor of p - A, Q = B. Therefore,
p =P N A, as desired.

Suppose p € Spec A is a minimal prime divisor of I of height r, and let P € Spec A
be a minimal prime divisor of p - A. Then htd = htp = r. We will show that P is a
minimal prime divisor of I - A. If BLoO>AADI- A for some 9 € Spec A, then

p=PNADONADI

Since p is a minimal prime divisor of I, p = QN A; ie., Q D p - A. Since P is a
minimal prime divisor of p - A, Q = . Thus ‘P is a minimal prime divisor of I - A.
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Suppose P € Specg is a minimal prime divisor of I - A of height r, and put
p:=P N A Then P is a minimal prime divisor of p - ﬁ, so htp = r. We will show
that p is a minimal prime divisor of I. If p D q D I for some q € Spec A, then by the
Going-Down Theorem (|25, Theorem 9.5)), there is some Q € Spec A with D 9
and ¢ = 9N A. Since P is a minimal prime divisor of I - A, 9 = P, so q = p.
Therefore, p is a minimal prime divisor of I, proving the claim.

Let m € Max T}, ,(¢) and put n := (7! (m). By the Claim, and by Proposition 4.2.1,

mDJ, = J (Twnle )); has a minimal prime divisor of height r
— I- (Sm,n)m has a minimal prime divisor of height r
— unDI,

as desired. The last assertion of the lemma follows from Proposition 4.2.6. O

Let A(I) be the uniform residue ideal of an equidimensional component I,.. The
next proposition allows us to lift a Noether normalization map Ty — Ty, /A(I,)
to affinoid algebras corresponding to the restriction of S, /I to closed polydiscs
Max T}, n(€), uniformly in e for € large enough.

Proposition 5.1.2 (cf. [4, Satz 3.1]). — Let ¢ : Tq — T, be a K-algebra homomor-
phism, let I be an ideal of Ty, and let ¥ : Ty — Tm/I be the composition of ¢
with the canonical pmjectwn Tm — Tm/I Now by [6, Section 6.3], ¢ induces a K-
algebra homomorphism ¢ : Td — T Let T : Td — Tm/I be the composition of @
with the canonical projection Tm — Tm / I. Suppose that T is a finite monomorphism
and that the Td-module Tm/f can be generated by r elements. Then v is a finite
monomorphism and the T -module Tm/I can be generated by r elements.

Proof. — Put J := Kery) C Ty; we will show that J = (0). Let f € J, ||f] < 1.
Since f € J, o(f) € I; hence @(f) = o(f)~ € I. This implies J C Ker7 = (0). Thus
by Lemma 3.1.4, J = (0); i.e., ¥ is a monomorphism.

Find G1,...,Gr,91,...,9s € T2, with g1,...,9s € I, such that the images of

m’

Gi,...,Gy in Tm/f generate the Ty-module Tm/IN, and {g1,...,9gs} generates the
ideal I. We will show that the images of G1,...,G, in T}, / I generate the Ty-module
T /1. Indeed, let f € Tpn; we will find Hy,...,H, € Ty and ha,...,hs € T}, such

that
f- Zs@ G—Zhjga

We may take ||f|| < 1. Let B € % with

fagp(gl)w-.)@(fd)aGla"'7G7‘agla"'7gs € B<§> C Tm
Let B =By D By D --- be the natural filtration of B.
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Claim. — Let F € Bp(§) \ Bpt+1(€) C Tr,. There are H1,...,H, € By(§) C Ty and
hi,...,hs € Bp(§) C Ty, such that

F— ZSO )Gl — ZhJQJGBp+1<§> Tom.

j=1

Let m, : B, — ép C K denote a residue epimorphism, and write K = Ep ®V for
some B-vector space V. Then

T = K[£1,...,6m] = By[¢] ® V[¢] and
Ta=Kl&,....&] = Byl @ V[¢]
as B[¢]-modules. Furthermore, since 3(&,), ..., 3(¢4) € B[],
(B, €]) € Byl¢] and
o(VI[ED) c VL]

Since the images of él, ... Gr in Tm / I generate the Td module Tm / I, and since
{d1,...,9s} generates the ideal I in Tm7 there are H17 . H € T, and hl, .. .,h S
T, such that

(5.1.3) Z‘P )G, Zhjgj_o

By (5.1.1) and (5.1.2), we may assume

(5.1.1)

(5.1.2)

ﬁ[h...,ﬁr € Ep[g] c Ty and
hi,... hs € By[€] C Tp.

Find Hy,...,H, € Bp(§) C Tg and h1,...,hs € Bp(&) C T, so that
mp(Hy) = Hy, ..., mp(H,) = H, and
Tp(h1) = ha,...,mp(hs) = hs.

By (5.1.3),

F =) ¢(Hj)G; =) hjg; € Bps1(€) C T

j=1

j=1
This proves the claim.

Now, |B\ {0}| c R4 \ {0} is discrete, and B(£) is complete. Thus since ¢ is
continuous ([6, Theorem 6.1.3.1]), iterated application of the Claim yields the desired
result. g

The following lemma is a key step towards proving Theorem 5.1.5.
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Lemmab5.1.3. — Assume Sy, is a G-ring (e.g., use Proposition 4.2.3 or Proposi-
tion 4.2.5 (ii)), and let I be an ideal of Sy, n. Then there is an e € N such that for
everye € |K| with1 > |e| > o(I) and for every f € Spmn/I, tL(f) € Trtn/tL(I)-Thtn
satisfies an equation of the form

t4att+ o 4a.=0
where the a; € Ty /tL(1) - T satisfy maxicice laill/(py.z,, = 1120 loup-

Proof. — Let A(I) be the uniform residue ideal of I as in Definition 3.2.4. By
Noether Normalization, there is a I?—algebra homomorphism ¢ : Td — Tm+n such
that 7: Ty — Tvm+n/A(I) is a finite monomorphism where 7 is the composition of ¢
with the canonical projection T,,Hn — ~m+n/A(I). Let Iy, I,..., be defined as in
Lemma 5.1.1. Since I C I, for r > 0, A(I) C A(I,) C Trpyn, 7 > 0. Thus by Noether
Normalization, for » > 0, there is a K -algebra homomorphism @, : fdr — fd such
that 7, : Tvdr — T,,Hn /A(I,) is a finite monomorphism, where 7, is the composition of
© o @, with the canonical projection T,,Hn — ~m+n/A(Ir). Suppose the fdr—module
Trmin/A(I) is generated by e, elements, 7 > 0, and find o € N such that N(I)> C I
(where 9t denotes the nilradical). Put

m-+n
e =« E Cr.
r=0

We will show that e is the exponent sought in the lemma. Fix e € |K|, 1 > ¢ > o(I).
By [6, Proposition 6.1.1.4], there are K-algebra homomorphisms ¢ : Ty — Tyin
and ¢, : Ty, — Ty, 0 < r < m + n, that correspond modulo K°°, respectively, to
@ : Ty — Tyin and @ : Ty, — Tyq. Put J := (L(I) - Topyn. Let @ : Ty — Topyn/J
and ¢, @ Tg. — Togn/ti(l) - Tan, 0 < 7 < m + n, be defined, respectively,
by composing ¢ with the canonical projection Ty,1pn — Tintn/J and by composing
o, with the canonical projection Thytn, — Tintn/te(Lr) Titn. Since T, 7o, . . ., Tmtn
are finite monomorphisms, by Proposition 5.1.2, each of v, g, ..., ¥4y is a finite
monomorphism, moreover the Ty -module Ty, 1/t (1)) - Tyngn is generated by e,
elements, 0 < r < m + n. By Lemma 5.1.1, J, = .(I;) - Tyyyn. Since each J,. is
a radical ideal and since htp = r for every prime divisor p of J,., each ¥, is a finite
torsion-free monomorphism.

Fix f € Spn/I with || fllsup < 1, and put F := L(f). For 0 < r < m + n, let
Q. € Ty [t] be the monic polynomial of least degree such that @, (F) vanishes in
Tonsn/Jr. Write

Qr =t" +ant" T+t a,.
Since v, is a finite, torsion-free monomorphism, by [6, Proposition 6.2.2.2],

1/ — ]
lrgnifgér l|arill ”FHsup'

Furthermore, by the Cayley-Hamilton Theorem [25, Theorem 2.1], £, = deg @, < e,.
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We may regard each @, as an element of Ty[t] via the K-algebra homomorphism
wr. Put

m-+n «a
Q:= ( II Qr> =t'+ait"” -t a
r=0

By [6, Corollary 3.2.1.6], max; <;<¢ [|a;||"/* = || F|lsup, £ < ¢, and by Proposition 4.2.6,
Q(F) vanishes in Ty, 4n/J. It follows that (. (f) satisfies the equation

t°+art o attt =0,
as desired. O

In Lemma 5.1.3, we assumed that ¢ € |K| and that Sy, is a G-ring in order to
make some computations. Under these assumptions we obtained monic polynomials
of degree e over T, ., () satisfied by h € Sy, n/I. The coeflicients of these polynomials,
in addition, satisfy certain estimates depending on ||hl/sup. In Lemma 5.1.4 we show
that the computations of Lemma 5.1.3 are not affected by ground field extensions;
i.e., they remain valid for € € \/|K \ {0}| and whether or not S,, ,, is a G-ring. This
allows us to transfer the data back to Sy, , by examining the module M of relations
among he, he™1, ... 1.

Lemma5.1.4. — Let I be an ideal of Sy, and let M be a submodule of (Sm,n/I)Z.
Let K' be a complete, valued extension field of K, let E' C (K')° be a complete,
quasi-Noetherian ring with E' O E (recall, if Char K = p > 0, we assume E' is also
a DVR), and put

Spm = Smn(E',K') D Sy,
I'=1I-8,, ., and
M’ = M - (S}, /I') (S}, /).
By ¢ denote the canonical projections
(Spm)’ — (/1) and
(Smn)® — (Sman/ D"
Put

N :=¢ (M), and
N :=p '(M)=N-8

m,n?’

and let € € |K'| with 1 > € > o(N'). Put

T7/n+n = Kl<§7 p>

By 7 denote projection of an ¢-tuple on the first coordinate. Suppose there is some

feM) (T ee(I') - Thoyn)
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with |l )y, <1 and w(f) =1. Then there is some F' € M with |[F|[; <1 and
w(F)=1.

Proof. — 1t suffices to show that 7(N) is the unit ideal; indeed, by Lemma 3.1.11,
it suffices to show that w(N') is the unit ideal. Let A(N’) be the uniform residue
module of N’ as in Definition 3.2.4. It suffices to show that w(A(N’)) is the unit
ideal. Denote also by ¢ the canonical projection

(Trln—i-n)e - (TT/n—O—n/Lz/-:(I/) ! Trln+n)£'
By Lemma 3.1.4 with n = 0, there is some

Fep (M) (Thyp/ ') Thyy))

with | F|| = | fll..cyr,,, <1 and 7(F) =1+ h for some h € [ (I") - T}, .. Since
(h,0,...,0) € Ker ¢, we may assume that 7(F') = 1. Since

e (M) (T /() - Thy)) = te(N') - Ty
by Lemma 3.2.5, F € A(N'). O

Theorem5.1.5. — Let I be an ideal of Syn. There is an e € N such that each
h € Spn/I with ||h]|sup < 1 satisfies a polynomial equation of the form

te+a1te_1+"'+ae:()7

where a1,...,ae € Sma/I and each ||a;||r < 1. Moreover, if |h(x)] < 1 for all
x € Max Sy, n/I then each vi(a;) < (1,1).

Proof. — Write Sy = Sman(E,K). Let K’ be the completion of the algebraic
closure of K. If Char K = 0, let E’ := E and if Char K = p > 0, we use Remark 2.1.4
to find E” O E as in Proposition 4.2.5 (iii). Hence S;, ,, := Sy »(E', K') is a G-ring
by Proposition 4.2.3 or Proposition 4.2.5 (iii). Let I’ := I-S;, ,,. By Proposition 4.1.3,
[Allsup < 1, where the supremum is computed in Max Sy, ,,/I".

Applying Lemma 5.1.3 to S;, ,,/I’ yields an integer e. Put

M = {(ao,...,ae) € (Spm.n/I)H :Zaih“i = O},

=0

M = {(ao,...,ae) € (S /)t Zaihe_i = O},
=0
My = {(ag,...,ae) € M : ag =0}, and

{
M} = {(ag,...,a.) € M": ap = 0}.
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Choose ¢ € |K'| with 1 > € > 0 and ¢ suitably large, as in Lemma 5.1.3, and put

L/ = {(b07 cey be) € (TT/n—O—n/L(/-:(I/) : T7/n+n)e+1 : Z bil//s(h67i) = 0} ’
=0

L6 = {(bo,...,be) EL/:bOZO}.

Since T, ,,, is isometrically isomorphic to T, n(e, K'), by Lemma 4.2.8 (i) and (ii),

we have:

M'= M- (S, ./,

Mg = Mo - (S, /1),

L' =i (M") - (T /ee(I') - Tho), and

Lo = tL(Mg) - (Ty /(1) - T )
Lemma 5.1.3 yields

biy..oybe € T ib(I') - Tl iy

such that

max (|10l ).z, )V = et (h)sup < 1, and

1<i<e metn
(1,b1,...,be) € L.
Lemma 5.1.4 implies that there are a1, ..., ae € Sy /I such that
laillr <1, 1<i<e, and
(1,a1,...,a.) € M.

This proves the first assertion.
Suppose now that |h(z)] < 1 for all x € Max Sy, /I; then the same inequality
holds for 2 € Max Sy, ,,/I' by Proposition 4.1.3. Hence [[¢(h)]|sup < 1. Since

t((1,a1,. .. ae)) — (1,b1,...,be) € Ly,
we get
[e2((0,a1, ..., ac))|zy < ||(07b1,...,be)HL/E(p).T;Hn < 1.

By Corollary 3.3.4, this yields

ony ((0,a1, ..., ae)) < (1,1).
Hence by Lemma 3.1.11(ii),

o, ((0,a1, ... ae)) < (1,1),
as desired. O

Remark 5.1.6. — Let I be an ideal of Sy, 5, and define the seminorm vsyp : Sy /I —
R+ X R+ by
Usup(h) = (”h”squ_a)a
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where

a:=inf{f eRy:Tey € /|K \ {0} Ve € /|K \ {0} with 1 > & > &,
el llsup < [lee(B)llsup}-
In fact a € \/|K \ {0}]. Indeed if ||h|sup # O, the function
& r— [lte () llsup/ I 7llsup

is a definable function of €, in the sense of [17] and [23]. By the analytic elimination
theorem of [23, Corollary 4.3] it follows immediately that o € /|K \ {0}| and that
e¥||hllsup = ||t (h)]lsup for € < 1 but sufficiently large.
There is an e € N such that each h € S, ,,/I satisfies a polynomial equation of the
form
t“+ait 4+ +a.=0

where ay,...,ac € Sp.n/T and max; <<, vr(a;)"/* < vgp(h).

Definition 5.1.7. — Let I be an ideal of Sy, . An element f € Sy, /1 is called power-
bounded iff the set {|f¢|; : £ € N} C R is bounded. By b(S,,/I) denote the set
of all power-bounded elements; it is a subring of Sy, ,/I. An element f € S, /I
is called topologically nilpotent iff {|f¢||; : ¢ € N} is a zero sequence. By (S, n/I)
denote the set of topologically nilpotent elements; it is an ideal of b(Sy, n/I). An
element f € Sy, /I is called quasi-nilpotent iff for some ¢ € N, f* € t+ (p)b. By
q(Sm.n/I) denote the set of quasi-nilpotent elements; it is an ideal of b(Sy, »/I).

Note that, even in the case n = 0, i.e., the affinoid case, the set {||f‘||;: ¢ € N}
appearing in Definition 5.1.7, while bounded, may not be bounded by 1. The element
p € Sop,1 is quasi-nilpotent, but not topologically nilpotent.

Corollary5.1.8. — Let I be an ideal of Sy and let f € Spn/Il. Then f is power-
bounded if, and only if, || fllsup < 1, f is topologically nilpotent if, and only if, || fllsup <
1, and f is quasi-nilpotent if, and only if, |f(x)| <1 for all x € Max Sy, /1. Hence,
in the notation of Theorem 5.1.5, each a;f¢~" € q(Smn/I).

Proof. — The ‘only if’ statements are immediate consequences of Proposition 4.1.2.
Suppose || f|lsup < 1. By Theorem 5.1.5

(5.1.4) fe=af 4+ +ae

for some ai,...,ac € Sy /I with each ||a;||; < 1. Then for every £ € N there are

bi,...,be € Spm.n/I with each ||b;]|r <1 such that
Pl b b

Thus {||f*||; : ¢ € N} is bounded by max{||f||; : 0 < i < e— 1}, and f is power-
bounded.
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Suppose in addition that |f(z)] < 1 for all # € Max S, ,/I. Then by Theo-
rem 5.1.5, in (5.1.4) we may take each vs(a;) < (1,1). By Theorem 3.1.3 each

a; € t(Smn/I)+(p)b(Sm.n/I). To conclude the proof note that since each || f||sup < 1,
each f € b(Sp, /). Hence each a; =" € q(Spm.n/I). O

Remark 5.1.9. — The result of Corollary 5.1.8 is much easier to prove if one makes
the strong additional assumption that || f||, < 1. In particular:

Lemma. — Let I be an ideal of Spn. There is an ¢ € N such that for all f € Spn
with || f| €1 and |f(z)| <1 for all z € Max Sy, /I, we have:

(i) for alle € |K| with 1 > e > o(I), H[’la(fé)HL;(I)~Tm+n <1, and
(i) vr(f%) < (1,1).

Proof

(i) Let A(I) C Tinyn be the uniform residue ideal of I. Let 9 := M(AI)) C Trnin
be the nilradical of A(I). Then there is some ¢ € N such that M ¢ A(I). By
~ o, — ~m+n denote the canonical residue epimorphism. It suffices to show that
L(f)” €N Fixe € |K| with 1 > e > o(I), and by F' denote the image of «L(f) in
Totn/to(I) - Trngn; then ||F||sup < 1. By [6, Proposition 6.2.3.2], F is topologically
nilpotent; i.e., im, oo [tz (f)"l.2 (1)1, = 0. Hence ¢(f)~ € M.

(ii) By Proposition 4.1.3 and Lemma 3.1.11(ii) we may assume that |K| is not
discrete. Let ¢ be as in part (i) and put F := f If 6(F) > 0 or ||F| < 1, we are
done. Therefore, assume that ||F|| = 1 and o(F) = 0. Let {g1,...,9-} C I be a
v-strict generating system with ||g1]] = -+ = ||g-|| = 1, and let € € |K| satisfy 1 > & >
max; <i<, o(g;). Since 5(F) = 0, it follows that ||/ (F)| = 1 and d(:.(F)) = 0. By the
choice of £, [|tL(F)l|..(1)-1,,4,, < 1. So by Claim A of the proof of Theorem 3.3.1, there
are polynomials hy, ..., h, € K°[¢] such that ||/ (F) —>_i_; hie7°W)i (g;)|| < 1, and
such that h; = 0 for all i with 6(g;) > 0. This implies that v(F —Y_;_, h;g;) < (1,1);
ie, vr(F) < (1,1). O

Corollary 5.1.10. — Let I be an ideal of Sy, and let f € Spn/I. Then
_ e/ . 21/
Il = I L737 = i 703"
In particular if ¢ : Spmn/I — Sm/n/I' is a K-algebra homomorphism which is an

isometry with respect to || - || and ||- |1/, then ¢ is an isometry with respect to || - ||sup-

Proof. — The last equality is given in [6, Section 1.3.2]. We prove the first equality.
Let m € Maxg Sm,n/I. By Proposition 4.1.2

P < P

SOCIETE MATHEMATIQUE DE FRANCE 2000



78 RINGS OF SEPARATED POWER SERIES

for £ € N. Hence | fllsup < infren |[f4]|}. Suppose that || f|lsup < infeen || f41"

Then for some N € N, a € K and all / € N
N¢
1N lsup < lod < [1FVENF™,

since \/|K| is dense in Ry. Put F := 2 fN. Then for all £ € N

1/¢
1F||sup < 1< 11",

This contradicts Corollary 5.1.8 since F is not topologically nilpotent though
| Flsup < 1. O

Corollary5.1.11. — Let f € Syn/I. Then ||f|lsup € V|K].

Proof. — If m = 0, the result follows from Noether normalization for quotients of
So.n (Remark 2.3.6) and [6, Proposition 3.8.1.7]. We reduce to this case.

By Theorem 3.4.6, there are m/,n’ € N, an ideal J of S, and a K-algebra
homomorphism

0 Smn/I — Sprn /T

such that (i) ¢ is an isometry with respect to || - |7 and || - |7, and (ii) Sy n//J is a
finite Sp 4-algebra for some d € N. By (i) and Corollary 5.1.10, ¢ is an isometry in
Il - llsup- Now (ii) permits us to reduce to the case above. O
5.2. Continuity and Extension of Homomorphisms. — In this subsection we

prove that K-algebra homomorphisms between quasi-affinoid algebras are continuous,
i.e., bounded (Theorem 5.2.3). It follows that all residue norms on a quasi-affinoid
algebra are equivalent (Corollary 5.2.4). We also prove an Extension Lemma (Theo-
rem 5.2.6) for quasi-affinoid maps.

Depending on the choice of E, Sy, », may not be complete in ||-|| (see Theorem 2.1.3).
Hence the results of this subsection do not follow from [6, Theorem 3.7.5.1]. Never-
theless Sy, ,, is the direct limit of rings B(£)[p] that are complete both in || - || and
(p)-adically. Furthermore (Corollary 2.2.6 and Theorem 2.3.2) the operations of fac-
toring Sy, by an ideal and Weierstrass Division respect the decomposition of Sy, »
as the direct limit of the B(¢)[p].

We first establish the continuity of K-algebra homomorphisms from quasi-affinoid
algebras to affinoid algebras.

Lemma5.2.1 — Let ¢ : Smn/I — Smo/J = A be a K-algebra homomorphism.
Then ¢ is continuous with respect to || - |1 and || - ||, and is uniquely determined by
its values on & +1 and p; +1,i=1,...,m;j7=1,...,n.

Proof of Continuity. — It is sufficient to consider the case I = (0). Since ¢ is a
K-algebra homomorphism it follows from [6, Propositions 6.2.3.1 and 6.2.3.2] that
the ¢(¢;) are power-bounded and the ¢(p;) are topologically nilpotent (i.e., the set
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ll(€:)*]|7 is bounded and for each j, ||¢(p;)*|l; — 0 as k — o). Therefore we may
put
M = max{|l(&"p")|ls : p € N, v € N"}.

Claim(A). — Let M’ € R, Be B. If

le(Hlls < M| £l
for all f € B{&)[p], then in fact

(Nl < M| f]
for all f € B(§)[p]

Choose o € N so that for |v| = a we have ||¢(p”)||l; < M/M’. Let f € B{£)[p]
and write

F=p&p) +fol&p)+ D> p"fil&p)

lvil=a
where the p, fo, fi € B{¢)[p] satisty

e pis a polynomial and ||p|| < || f]],

o lfoll < (37) Ifll, and
o |Ifill < |I£1 for all 4.

(In other words choose a polynomial p such that f —p € (B; + (p)*)B(£)[p] for some
i with |B;| C [0, M/M'].) Then

o(f) =ple(€),0(p)) + (fo) + > @(p)" o(f:)

lvil=a
and
! M !
el < wax{ Mlpll Aol 30215l
< M.

Claim A is proved.
By Proposition 2.1.5 there is a complete, discretely valued subfield F' C K such
that

FoCBeB

Once we prove that each map

Pl F& ro B ] ° F&poB(£)[p] — A

of F-Banach Algebras is bounded, it will follow from Claim A that ¢ : Sy, ,, — A is
also bounded. It remains to prove

Claim (B). — The restriction MF@FOB(&)[[/J]] : F®peB(€)[p] — A is bounded.
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Since it is affinoid, A is certainly also an F-Banach Algebra. By the Closed Graph
Theorem ([6, Section 2.8.1] or [7]) it is thus sufficient to prove that if the v, €
F&poB(€)[p] satisfy limv, = 0 and lim ¢(v,) = w € A, then w = 0. We follow the
proof of [6, Proposition 3.7.5.1]. Let b = m" for some maximal ideal m € Max A and
N € N. Let a = o 1(b) C Sy,n. Consider the commutative diagram

T G I6]

Smonja — A/b

where 7 and [ are the canonical projections, @ is the induced map and 1 is om. Note
that m and [ are contractions, and that ® is continuous since by Proposition 4.2.1,
Sm.n/a and A/b are finite dimensional K-algebras. Hence 1) is continuous and f(w) =
0. Since this is true for all m € Max A and all N € N, by the Krull Intersection
Theorem, w = 0. (Suppose w € m¥ for all m € Max A4, and let J be the ideal of all
x € A such that zw = 0. Fix m € Max A. By the Krull Intersection Theorem [25,
Theorem 8.10(i)], the image of w in the localization Ay, is zero. Thus, J ¢ m. Since
this holds for all m € Max A, J = (1); i.e., w = 0.) This proves Claim B and hence ¢
is continuous.

Proof of Uniqueness. — This follows directly from Claim A: suppose ¢ and v agree
on the &+ 1 and p; + 1. Put ® := ¢ —1. Now apply Claim A, with M =0,to ¢. O

Next we show that there are continuous K-algebra homomorphisms
Sm,n — m/,n’/-[/

sending the &; (respectively p;) to any specified power-bounded (respectively quasi-
nilpotent) elements of S,/ ./ /I’

Lemma5.22. — Let f; € Sy /I, i = 1,...,m, be power-bounded and let g; €
S /I, 5 =1,...,n, be quasi-nilpotent. There is a K-algebra homomorphism,

@ Sm,n I m/,n’/Ila

continuous in || - || and || - |11, such that (&) = fi and p(p;) = g; fori=1,...,m;
j=1,...,n.

Proof. — Since the f; are power-bounded, by Theorem 5.1.5, there are a;; €
S /I, 1 <i<m,1<j<e, with each ||a;;||;7 < 1 such that

fE+ainfi™ + - +ae=0, 1<i<m.
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Similarly, there are b;; € Sy /I, 1 <i<mn,1<j<e, with each vy (b;;) < (1,1)
such that
98 +bingi o+ bie =0, 1<i<n.

By Theorem 3.1.3, there are A;;, B;j € Sy n such that v(A;;) = vp(aij), v(Bij) =
U]/(bij), ajj = Aij + I, and bij = Bij + 1. Put

Pi(gm“H’) = gfn/-g-i + Azlg:;l_/il +---+ Ai@v 1= ]-7 cee, M,

Qi(pn4i) = Py + Bilpffii + -+ + Bie, 1=1,...,n.
Note that each P; is regular in &, 4; of degree e and each @Q; is regular in p,/ 4,
of degree e. Let ¥y : Spm.n = Sm/4m,n+n be the inclusion defined by & — &,
pi > poitj,i=1,...,m;j=1,...,n. By Welerstrass Division (Theorem 2.3.2) there
is a unique K-algebra homomorphism

Py Sm’+m,n’+n - Sm’,n’ [fmurl» cos & bms Pri gy - s pn’+7l]/(P7 Q)
with Kery; = (P,Q) - Sm4n,n/4n. Furthermore, by Weierstrass Division, ¢ is con-
tinuous and the range of ¢; is a Cartesian S, ,--module (see [6, Definition 5.2.7.3]).
Let
P : Sm’,n’ [fm’+1, o Emitms Prr gLy e Pn’+n]/(Pa Q) — m’,n’/Il
be the unique K-algebra homomorphism that sends Sy 3 f — f+ I, Egi — fi
and pprqj =g, i=1,...,m, j=1,...,n.
Since g is an isometry in || - ||, 11 is a contraction and

Sm’,n/ [Sm’+17 .. ‘7§m’+m7pn’+17 s 7p’ﬂ/+n]/(P7 Q)

is a Cartesian Sy’ ,»—module, 1) is continuous. Take ¢ := 1) 0 11 0 7. O

Theorem5.2.3. — Let ¢ : Sy n/I — S o /1" be a K-algebra homomorphism. Then
@ is continuous with respect to || - |1 and || - |-, and is uniquely determined by the
values (& + 1), o(p; +1),i=1,....m;j=1,...,n.

Proof. — Tt is sufficient to take I = (0). Let ¢’ : Sy, o — Sp n/ /I’ be the continuous
K-algebra homomorphism provided by Lemma 5.2.2 with ¢’ (&;) = ¢(&;) and ¢'(p;) =
o(pj),i=1,...,m; j=1,...,n. By Corollary 3.3.2, there is an ¢ € 1/|K \ {0}| such
that

St [T — Tt (€) /e (I') - T e (€)
is an inclusion. By Lemma 5.2.1, t. 0 p = 1. 0 ¢’. Since ¢ is an inclusion ¢ = ¢’, and
thus ¢ is continuous. |

In general a quasi-affinoid algebra has many representations as a quotient of an
Sm.n. The residue norms corresponding to different representations may be different.
However all these norms are equivalent, i.e., they induce the same topology.

Corollary5.2.4. — If Sy, /1 =~ Sy /1" as K-algebras then the two norms || - |1 and
Il - |l are equivalent; i.e., they induce the same topology.
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Remark 5.2.5. — Let ¢ € K°°. The (c)+(p)-adic topology on Sy, ,, induces a topology
on Sy, » and on any quotient. A K-algebra homomorphism
@ Sm,n — Sm/,n//ll

is also continuous with respect to such topologies. In other words, if f = 3" a,.,&"p” €
Sp.n»> then by the above arguments, ) - a,., ()" ¢(p)” converges to (f).

Theorem 5.2.6 (Extension Lemma,cf. Remark 5.2.8) — Let ¢ : Syn/I — Sy /T’
be a K-algebra homomorphism, let f1,..., f; € Smr /I be power-bounded and let
G152 GN € Sy /I be quasi-nilpotent. Then there is a unique K-algebra homo-
morphism

w . Sm+M,n+N/I : Sm+M,n+N — Sm’,n’/I/
such that Y(&myi) = fi, 1 < i < M, ¥(p;) = g;, 1 < j < N, and the following
diagram commutes:

() S}

Y

Sm—i—M,n—i—N/I : Sm+M,n+N

Proof. — By Lemma 5.2.2 there is a K—algebra homomorphism

V' S Mt N = St [T

such that
P& =p&G+I), i=1...,m,
Vipj) =¢lpj +1), j=1,...,n
V' (Emi) = fi, i=1,..., M,
V' (pm+i) = 95, j=1...,N.

By Theorem 5.2.3,

where
T Smn — Smon/I

is the canonical projection. Hence I C Kerv' and ¢’ gives rise to a K-algebra
homomorphism

w . Sm+M,n+N/I : Sm+M,n+N — Sm/,n’/-[/'
That 9|g,, /1 = © and that 9 is unique follow immediately from Theorem 5.2.3. O

For notational convenience we make the following definition:
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Definition 5.2.7. — Fix the pair (E,K) and let A be a quasi-affinoid algebra, say
A= Sy (E,K)/I. We define
A&ty - &mdlprs s pnls = S monran /T Sovrpmn4n
where we regard
St =Ky, nm )1, ]s
and
Smitmmitn = KMy ooy &1y ooy Em) [Ty oo s T Py -+ - P)s-
By the Extension Lemma, Theorem 5.2.6, A(&1,...,&m)[p1s-- -, pn)s is independent
of the presentation of A.
We will show that that
A€)]pls < AlE, o]

via the K-algebra homomorphism

p: Sm’+m,n/+n i A[[§7P]] : Z fuugﬂpy — Z(fw/ + I)gupv.
Indeed, it suffices to verify
Ker<p clI- Sm’+m,n’+n~

Let f = Y fué&tp” € Kery; without loss of generality | f|| = 1. Hence f €
B(n, &)[r, p] for some B € B. By Lemma 3.1.6, there are s € N, B C B’ € B
and hy, € B'(n,&)[r, p] such that

f = Z fuuhuu'
lel+v]<s
Since each f,, € I, it follows that f € I - Sy 4 n/4n, as desired.
Let ¢ : Spy s — Al p] be the composition of ¢ with the obvious inclusion
S/ = Sm/4m,n+n. Since Kert = I, it follows that

A — A&)[pls

is injective.

Remark 5.2.8. — Here we rephrase the Extension Lemma (Theorem 5.2.6) in terms
of the notation introduced in Definition 5.2.7.

Let ¢ : A — B be a K-algebra homomorphism of quasi-affinoid algebras A and B.
Suppose fi,..., fm € B are power-bounded and g¢1,...,9, € B are quasi-nilpotent.
Then there is a unique K-algebra homomorphism v : A(&)[p]s — B such that ¢(&;) =
fi and ¥(p;) = g;, 1 <i<m, 1 <j <mn, and the following diagram commutes:
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In particular, it follows that there are m,n € N and a surjection of A-algebras

A<§17"'7£m>|[p1a'~'7pn]]s - Ba

and hence for some ideal I,

B~ Alr,. . n)lors - pals/ 1.

5.3. Quasi-Rational Domains. — By analogy with [6, Section 6.1.4], we de-
fine generalized rings of fractions in the quasi-affinoid setting. This leads, in Defini-
tion 5.3.3, to the construction of quasi-rational domains and, by iterating, R-domains.
Example 5.3.7 shows that R-domains are more general than quasi-rational domains,
in contrast to the affinoid case. Nevertheless the Extension Lemma (Theorem 5.2.6)
shows that generalized rings of fractions are well-defined and that the association of a
generalized ring of fractions with a quasi-rational domain provides it with a canonical
ring of quasi-affinoid functions. Thus quasi-rational subdomains (and by iteration,
R-subdomains) are examples of quasi-affinoid subdomains (the formal generalization
to the quasi-affinoid category of the notion of affinoid subdomains). This provides a
foundation for a theory of quasi-affinoid varieties (see [22]). We end this subsection
proving in Proposition 5.3.8 that a quasi-affinoid algebra is affinoid if, and only if, it
satisfies the Maximum Modulus Principle.

Definition 5.3.1. — Let A be a quasi-affinoid algebra, say A = S;,,/I, and let
Sy far; 915+, 9n; b € A, Define the generalized ring of fractions A{f/h)[g/h]s

to be the quotient ring
A [, = Sworens

where J is the ideal of S, 4 nt N generated by the elements of I and the elements

where the F;, G, H € Sy satisty fi=F;+1,9;, =G +I1,h=H+1,1<i< M,
1 < j < N. By Theorem 5.2.6 any isomorphism S, ,,/I — Sy /I extends to an
iSOmOrphiSm Sm+M,n+N/I'Sm+M,n+N — Sm’+M,n’+N/I/'Sm'+M,n'+N sending fm_._i
t0 Emryi and pp4j to pp/oj. It follows that A(%)[[%]]s is well-defined.

ASTERISQUE 264



5. THE SUPREMUM SEMI-NORM AND OPEN DOMAINS 85

Let f,g,h be as in Definition 5.3.1. In general, Max A(%}[[%]] is neither open in
Max A nor does it satisfy the Universal Property of [6, Section 7.2.2] (see Defini-
tion 5.3.4 below). With the additional restriction that f, g, h generate the unit ideal
of A (see Definition 5.3.3, below) the following Universal Property is satisfied.

Proposition 5.3.2. — Let A be a quasi-affinoid algebra, let f1,..., far; g1,---,9n8; h €

, and pu A ::A<£> H%Hs

Suppose Y : A — B is a K-algebra homomorphism into a K-quasi-affinoid algebra B
such that

(i) ¥(h) is a unit,
(ii) ©(f:)/v(h) is power-bounded, 1 <i < M, and
(iii) ¥ (g;)/¢(h) is quasi-nilpotent, 1 < j < N.

Then there is a unique K -algebra homomorphism 1’ : A’ — B such that
A/

A B
(&

commutes. In particular, if {f,g,h} generates the unit ideal of A and if Max B C
Max A’ (as subsets of Max A) then by Corollary 5.1.8 and the Nullstellensatz, Theo-
rem 4.1.1, conditions (i), (ii) and (iii) are all satisfied.

Proof. — Immediate from Theorem 5.2.6. O

Definition 5.3.3. — Let A be a quasi-affinoid algebra and put X := Max A. A quasi-
rational subdomain of X is a subset U C X of the form

v=ve(a() [3].)

where f1,..., fm; 91,--.,9N; h € A generate the unit ideal. The class of R-sub-
domains of X is defined inductively as follows. Any quasi-rational subdomain of X
is an R-subdomain of X. If U C X is an R-subdomain of X and if V C U is a
quasi-rational subdomain of U, then V' C X is an R-subdomain of X.

Suppose U = Max(A(%)[[%]]s) is a quasi-rational subdomain of X = Max A. Then
U={zeX:|fi(x)

< [h(=)], lgj(@)| <[h(x)], 1<i<M, 1<j<N}.
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To see this, write A = S, /I and A(%)[[%]]S = SmtMntn/J, where J is generated
by the elements of I together with the elements of the form

where the F;, Gj, H € Sy satisfy f; = F; +1, g5 = Gj, h=H+1,1 <1<
M, 1 < j < N. The elements of U correspond naturally to the maximal ideals of
Sm+MntnN that contain J. Let z be such a maximal ideal. By the Nullstellensatz
(Theorem 4.1.1),

[Emri(2)] < 1 and |ppyj(z)| <1,

The description of U above then follows immediately from h(x)&,,+;(x) — fi(x) =0
and h(x)pn4;(x) — gj(z) = 0 and from the fact that h(z) # 0. The fact that h(z) # 0
for all x € U also guarantees that U is an open and closed subset of X when X is
endowed with the canonical (metric) topology (see [6, Section 7.2.1]).

As in the affinoid case, one easily proves (cf. [6, Proposition 7.2.3.7]) that the
intersection of quasi-rational domains is a quasi-rational domain. In contrast to the
affinoid case, the complement of a quasi-rational domain is a finite union of quasi-
rational domains. To see this, consider the quasi-rational domain

o= (4 () [2],)

where the f, g, h generate the unit ideal of A. Note that h is a unit of A(%)[[%]]S
Choose 1/c € K with

1
c

1
> || =
|

le] < |h(z)|, for all z € U.

; Le.,
sup

Then
U ={zeMaxA: [fi(z)| < [h(=)], |g;(@)] <[h(z)],
le] <Jh(z)], 1<i< M, 1<j< N}
Hence
Max A\U = {z¢e€MaxA: |h(z)] <|c}U
U{x € Max A: [h(z)| < |fi(@)], |e| < |fi(x)[} U
Ut € Max 43 [h(2)] < lgs @, Il < s (@]

J

By induction, a finite intersection of R-domains is an R-domain and the complement
of an R-domain is a finite union of R-domains.
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Definition 5.3.4. — Let A and B be K-quasi-affinoid algebras. A K-quasi-affinoid
map
(®,¢): (Max B, B) — (Max A, A)

is a map ® : Max B — Max A induced by a K-algebra homomorphism ¢ : A — B
via the Nullstellensatz, Theorem 4.1.1. Let U be a subset of Max A. Following
[6, Section 7.2.2], and suppressing mention of ¢, we say that a quasi-affinoid map
® : Max A’ — Max A represents all quasi-affinoid maps into U if ®(Max A’) C U and
if, for any quasi-affinoid map ¥ : Max B — Max A with W(Max B) C U, there exists
a unique quasi-affinoid map ¥’ : Max B — Max A’ such that ¥ = ® o ¥’; i.e., such
that

Max A’
. '4

v @

Max B » Max A
\VJ

commutes. A subset U C Max A is called a quasi-affinoid subdomain of Max A if

there exists a quasi-affinoid map ¢ : Max A’ — Max A representing all quasi-affinoid
maps into U.

Asin [6, Section 7.2.2], the above universal property has useful formal consequences
which are proved in Proposition 5.3.6. In addition it allows us to associate to every
quasi-affinoid subdomain U of Max A a canonical A-algebra of quasi-affinoid functions
O(U). Indeed if ® : Max A’ — Max A represents all quasi-affinoid maps into U, then
O(U) := A’. Reversing the arrows in Proposition 5.3.2 yields many examples of
quasi-affinoid subdomains.

Theorem5.3.5. — Let A be a quasi-affinoid algebra and let U C Max A be a quasi-
rational subdomain, U = MaxA(%}[[%]]s, where the f,g,h generate the unit ideal of

A. The inclusion
Max <A <£> [[%ﬂ S) — Max A

represents all quasi-affinoid maps into U. Thus every R-subdomain is a quasi-affinoid
subdomain.

To every R-subdomain U of Max A, we have thus associated the canonical A-
algebra of quasi-affinoid functions O(U) such that Max O(U) — Max A represents
all quasi-affinoid maps into U. In particular, if U C Max A is the quasi-rational
subdomain defined by

U ={zeMaxA:|[fi(z)] <[h(2)], |g;(x)] <|h(z)], 1 <i< M, 1<j<N},
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where {f, g, h} generates the unit ideal of A, then O(U) = A(%)[[%]]S is independent of
the above presentation. In other words, if U C Max A is a quasi-rational subdomain,
1,9,k € O(U) have no common zero and

@ < @I, g @) < [W (2)]

o -0 (£} 1]

By induction, the same holds for R-subdomains of Max A. This fact is a key step
in developing a natural theory of quasi-affinoid varieties, as will be seen in [22]. A
special case of this result was proved in [18, Theorem 3.6]. The proof of the main
result of [18] can be simplified considerably using Theorem 5.3.5.

for all x € U, then

Proposition 5.3.6 (cf. [6, Proposition 7.2.2.1]). — Let A be a quasi-affinoid algebra, let
U C Max A and suppose (®,¢) : Max A’, A") — (Max A, A) is a quasi-affinoid map
representing all quasi-affinoid maps into U. Then
(i) @ is injective and satisfies ®(Max A’') =U;
(ii) for x € Max A’ and n € N, the map ¢ : A — A’ induces an isomorphism
A/P(x) — A Jz™;
(iii) for x € Max A’, x = p(P(z)) - A’.

Proof. — Let y € U and consider the commutative diagram
A Ld Al
T a." !
n’... ’(/} / n !/
Aly Alfo(y") - A

where 7 and 7’ denote the canonical projections and ¢ is induced by ¢. Since ®
represents all affinoid maps into U, there exists a unique homomorphism o : A’ —
A/y™ making the upper triangle commute.

Thus both maps 7’ and v o o make

Afp(y™) - A’

v.

Yor

A A
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commute. Due to the universal property of ¢, they must be equal; i.e., the lower
triangle in the above diagram commutes.

Since 7’ is surjective, so is 9. Furthermore, o is surjective because 7 is. Since the
upper triangle commutes, Ker 7’ = ¢(y" - A’) C Kero. Hence 1) must be bijective.
Taking n = 1, we see that ¢(y) - A’ must be a maximal ideal of A’. Thus ®~1(y)
consists precisely of one element, ¢(y) - A’. This proves (i) and (iii). Moreover (ii)
must hold because 2™ = y™ - A’ where y = ®(x), and because ¢ is bijective. O

Example5.3.7. — In the affinoid case, a rational subdomain V' of a rational subdo-

main U of an affinoid variety X is itself a rational subdomain of X (see [6, Section

7.2.4]). This transitivity property is not in general true in the quasi-affinoid case.
First note that the quasi-rational subdomains U of the affinoid variety Max Sy, o

are all of the form
U = Max Sm,0<%> H%H s

where f1,..., fam, 91,--.,9N, h are polynomials. That is because h is a unit of

Sm,()(%)[[%]]s (recall that the ideal generated by f, g and h contains 1).

Let K = C,, the completion of the algebraic closure of the p-adic field Q,. Note
that K and K°/aK® are countably infinite for every a € K°°\ {0}. Let E C K° be
a DV R such that F = IZ', and put Sy, p = Sy n(E, K).

We will show that every quasi-rational subdomain of Max Sz o has a property (see
lemma below) that is not possessed by the set

U={(&p) € MaxS11: ¢~ f(p)| <&},

for a suitable choice of f € Sp1 and € € |K|\ {0}. The failure of the transitivity
property for quasi-rational subdomains follows, since U is a quasi-rational subdomain
of Max 51,1, which is a quasi-rational subdomain of Max.S3 o. By

m: Max Sp0 — Max Sy g

denote the map induced by the obvious inclusion S; g — Sa2,0.
Lemma. — Let U C Max S2 o be a quasi-rational subdomain such that w(U) contains
an annulus of the form
(5.3.1) {z € Max S1,0: 6 < |z| < 1}, 0<d<1.
Then there is a polynomial P € K[&1,&2] \ {0} such that

7(UN{z € Max Sa9: P(z) =0})
contains a set of form (5.3.1).

Proof. — The set U is definable in the language of valued fields with constants in K.
The statement that 7(U) contains a set of form (5.3.1) is true over any (algebraically
closed) valued field extending K because the theory of algebraically closed valued
fields is model complete [40].
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In particular, it is true over the algebraic closure F' of the field K (&), where the
valuation | - | on F' extends that on K C F and

1
1—-—< &) <1
n

for all n € N. Hence there is a b € F such that (£1,b) € U. Let P(&,&) € K[&1,&] C
F'[¢s] be any nonzero polynomial that vanishes at b.
If

7(UN{x € Max Sa, : P(x) =0})
does not contain a set of form (5.3.1), then by the Quantifier Elimination Theorem
for the theory of algebraically closed valued fields [40],
m(UN{z € Max Sz : P(z) =0}) C {zx € MaxS1 : |z] < ¢}

for some § € |K|, § < 1. But this is not true over F', contradicting the fact that, by
model completeness, K is an elementary submodel of F. O

The following construction completes the example. For every € € |K \ {0}], ¢ < 1,
there is an f € Sy 1 such that for every P € K[£1,&2] \ {0},

7 ({(§, p) € MaxS11: P(§,p) =0 and [£ - f(p)| < e})

contains no set of form (5.3.1).

Let P; be an enumeration of polynomials in K°[{1, &3] such that for every P €
K°[£1,&2] there are infinitely many ¢ € N with |P — P;|| < e. We inductively define
sequences {n;} C N, {p;} € K°° and {a;} C E such that n;, — oo and |p;| — 1.
Suppose ag, ..., 0p—1; oy - --Ne—1; PO, - - -, Pe—1 have been chosen and put

£—1
fe= E a;p™.
i=0

Choose ny > my—1 such that |p}*| < € for all ¢ < ¢. Choose p; € K°° such that
|pp*| > €. Suppose by,...,b, are all the roots of P;({2, p¢) = 0. Choose a; € E such
that

> €

4
> arf ~
=0

forj=1,...,7.
Put
f= Z a;p"t,
>0
and let P € K°[¢1,&] \ {0}. There are infinitely many ¢ € N such that ||P — B|| < ¢,
and

pi & ™({(§,p) € Max S1,1: P(§,p) =0 and |§ — f(p)| <e})
for each such 7.
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We include the next propositions for completeness. Proposition 5.3.8 gives con-
ditions under which a quasi-affinoid algebra is actually affinoid (i.e., is a quotient of
an Sy, o). Proposition 5.3.9 gives conditions under which a quasi-affinoid algebra is a
quotient of an Sp .

Proposition 5.3.8. — Let A = Sy,.n/I be a quasi-affinoid algebra. The following are
equivalent:

(i) A is an affinoid algebra,
(ii) A satisfies the Mazimum Modulus Principle
(iil) [|pillsup is attained for all 1 <i <mn,
(iv) |lpillsup < 1 for all 1 <i<mn.
Proof
(i)=-(ii), (ii)=(iii) and (iii)=-(iv) are immediate from [6, Proposition 6.2.1.4], and
the Nullstellensatz, Theorem 4.1.1. To see that (iv)=-(i) observe that if
lpillsup S < 1foralll<i<n

and € € \/|K \ {0}, say " =|¢|, ¢ € K°°, then by Theorem 5.3.5

A<&ww&>:A
C C

Pl Pr Pl Pn
A —, ... = = man/l){ —, ..., =
<c7 ’c> (S/)<c c>

_ sm,n<P_a...,p_n>/I.sm,n<p_1,...,P_n>.
C C C C

By the Weierstrass Division Theorem, Theorem 2.3.2, Sy, (0} /¢, . .., p},/c) is affinoid.
O

and

Proposition 5.3.9. — Assume that K is algebraically closed and let A = Sy, /1 be a
quasi-affinoid algebra. The following are equivalent:

(i) A~ So¢/J for some ¥, J.

(ii) For every f € A, each set
{z € Max A: [f(2)] = || fllsup}
{z € Max A: |f(z)] < [|fllsup}

18 Zariski-closed; hence is a union of Zariski-connected components of Max A.

(i) Let w: Spn — Smn/I = A be the canonical projection and let N be the number
of Zariski-connected components of Max A. Then there are c;j € K°, 1 <1 <m,
1< j <N, such that each

[[=&) ey

N
Jj=1
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is quasi-nilpotent. (In other words, as a subset of Max Sy, », Max A is con-

tained in a finite union of open wunit polydiscs, mamely, those with centers

(Cij7 Ce ,ij) X 0)
Proof

(i)=(ii). Let p be a minimal prime ideal of A. By Remark 2.3.6, there is a finite,
torsion-free monomorphism
¢ :S0qa— A/p.
Let f € A and let ¢(f) be the integral equation of minimal degree for f over Sy 4,
where
q= X? +b1XS_1 4+ 4 bs € So,d[X],

as in [6, Proposition 3.8.1.7]. Following the argument of [6, Proposition 3.8.1.7], for
every y € Max Sy 4,

—_— - o
IFyllswp = max [£(2)] = max |bi(y)['"",
r€Max A

and
1/i
| fllsup = fg%xs Hbi”sé;)v

where fy is the residue class of f in the quotient of A/p(y)- A by its nilradical. Since
each b; € Sp g, either

(5.3.2) [bs ()] < 11bs]lsup = b3l

for all y € Max Sy q, or

(5.3.3) 1bi(y)] = 11bilsup = 1104l

for all y € Max Sy 4. If (5.3.2) holds for every ¢ such that
11 = 1 £llsup.

then |f(z)] < || fllsup for all x € Max A/p. Otherwise, there is some g such that
1bio I/ = | fllsup  and  [biq ()] = IIbi |
for all y € Max Sp 4. In this case, |f(z)| = ||f|lsup for all x € Max A/p. This shows
that each set
{z € Max A/p: [f(2)] = || fllsup}
{z e MaxA/p: [f(x)] <[ fllsup}

is Zariski-closed. Taking the union over the finitely many minimal prime ideals of A,
(ii) follows.
(ii)=(iii). Let X1,..., Xy be the Zariski-connected components of Max A, choose
z; € X;,1 <7 <N, and put
Cij = fl(l‘J)

Part (iii) follows by applying part (ii) to each & — ¢;;.
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(iii)=(1). Put
N
9i = H(& — Cij);
j=1
then by the Extension Lemma, Theorem 5.2.6, there is a K-algebra homomorphism
¥ So.m+n — A such that

$(p) = 7(pr),  1<i<n, and
Y(pnti) =m(gi), 1<i<m.

It follows from the Weierstrass Division Theorem, Theorem 2.3.2, that v is finite.
Thus, after a homothety, part (i) follows. O

5.4. Tensor Products. — In this subsection we prove that tensor products exist in
the category of quasi-affinoid algebras with K-algebra homomorphisms. These results
will be needed in [22] when we discuss fiber products of quasi-affinoid varieties.

Lemma5.4.1
(i) If A is a quasi-affinoid algebra and ¢ : A — B is a finite K-algebra homomor-
phism, then B is quasi-affinoid.
(ii) If A and B are quasi-affinoid algebras then so is the ring-theoretic direct sum
A®B.

Proof

(i) We may take A = Sy, . Let b1,...,bs € B be such that B = Zle ©(Sm,n)bi.
For each i, let A;; € Sy, be such that b} + @(Ail)b;“_l + -+ p(Ain,) = 0.
Replacing b; by cb; for a suitable nonzero ¢ € K° we may assume that ||A;;|| < 1. Let
P; € Syte,n be defined by

Pi(mi) = n" + Aani~
where Sp,40n = K(&,n)[p]s- Then P; is regular in 7;. Let

Y A,y

7T Smttn — Smten/(Pry. .., Pr)
be the canonical projection, and consider the K-algebra homomorphism
¥ Sl -] — B Zfun = S fu)b"
By the Weierstrass Division Theorem (Theorem 2.3.2),
Smttn/ (P Pe) = Smnlm, - me] /(Pry - Pr).
The K-algebra homomorphism
St — Smten/(Pi, ..., Pe) — Smnlm,...,nel/(P1,...,P) — B
is surjective, as required.

(ii) It is sufficient to consider A = B = Sy, . The diagonal map Sy, — Smn ©
Sm.n is a finite K-algebra homomorphism, so the result follows from part (i). O
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Definition 5.4.2. — Let A, B;, B be quasi-affinoid algebras and let B;, Bs be A-
algebras via homomorphisms ¢; : A — B;, i = 1,2. By Remark 5.2.8, we can write

By = A<§17 cee 7§m1>[[p17 s 7p7l1]]8/]1 and
By = A<£m1+1’ s a§m1+m2>[[pn1+1, s apn1+n2]]5/12'
We define the separated tensor product of By and Bs over A by
By ®f4 By = A<§17 s 7§m1+m2>[[p17 s 7pn1+’ﬂ2]]8/(‘[1 + 12)

By the Extension Lemma (Theorem 5.2.6), B1 ®% Bs is independent of the presenta-
tions of By and By. The inclusions

A<§17 s 7§m1>[[p17 s 7pn1]]s - A<§17 s 7§m1+m2>[[p17 s 7pn1+n2]187

&Gr—&, pjr—pj 1=1,...,m1, j=1,...,ny
Allmit1y - Ematma) [Prat1y 5 Prytnalls —
A<§17~-~7fm1+mz>[[Pla~-~apn1+n2]]5a
Emiti —— Emait+is  Pritj = Py+j L=1,...,me, J=1,...,n9,

define canonical homomorphisms
o;: B; — By ®f4 Bs.

The next proposition shows that By ®% Bj satisfies the universal property in the
category of quasi-affinoid algebras that justifies calling it a tensor product.

Proposition 5.4.3. — Let p; : A — By, i = 1,2, be K-algebra homomorphisms of
quasi-affinoid algebras and let ¢; : B; — D be A-algebra homomorphisms of quasi-
affinoid algebras. Then there is a unique A-algebra homomorphism i : B1®% By — D
such that

By
o1 P1
e N s S — )
o] o
By

commutes, where the o; : B; — B1 ®% By are the homomorphisms given in Defini-
tion 5.4.2.
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Proof. — By the Extension Lemma (Theorem 5.2.6 or Remark 5.2.8) there is a unique
AL, €y tma ) [P1s - - -5 Pry4ns]] — D that extends i1 0 o1 = 12 0 2 such that

V(&) = ¥1(&), i=1,...,m,
V' (pj) = ¥1(py), j=1,...,n1,
V' (Emiti) = V2(Emiri)s  i=1,...,ma,
V' (pnits) = 2(pnivg)y  G=1,...,m2.
Since (I1 + I2) C Ker(¢'), the result follows. O
Remark 5.4.4

(i) If A, By, By are affinoid then it follows from the above Proposition and the
universal property of the complete tensor product ([6, Proposition 3.1.1.2]) that

By ®@% By = B1®4Bs.
(ii) In general, B;®% B2 # B1®4Bs. In the case that the Sm.n(F, K) are complete,

we have By ®% B2 D B1®4Bs. This follows from the universal property of ®4. In
all cases we have Sp1 ®% So1 € 50,1(@1{5071 since

D (p1p2)" € (Sou ® S0,1) \ (S0,1@x50,1)-

i
The following important examples of separated tensor products are computed di-
rectly from Definition 5.4.2.

Corollary 5.4.5. — We have
Smina @ Smang = Smi+mani+nss
and if A is a quasi-affinoid algebra,
A® Smn = AE) [Pl

The following two propositions are easy consequences of the definition and the
universal property of the separated tensor product (cf. [6, Propositions 6.1.1.10 and
6.1.1.11]).

Proposition 5.4.6. — Let A’, A, By, By be quasi-affinoid algebras and assume that the
B; are both A and A’-algebras via homomorphisms A’ — A and A — By, A — Bo.
Then the canonical homomorphism

By ®f4/ By — By ®f4 By
18 surjective.

Proposition 5.4.7. — Let A, B1, By be quasi-affinoid algebras and assume that By, Bs
are A-algebras via homomorphisms A — By, i = 1,2. Let b; C B;, i = 1,2 be ideals
and denote by (b1,b2) the ideal in By ®% B generated by the images of by and bs.
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Then the canonical map m : B1 @3 Ba — B /b1 ®% Ba /by is surjective and satisfies
Kerm = (bl, bQ) Hence (B1 ®154 BQ)/(bl, [32) ~ Bl/bl ®f4 Bg/bg.

It follows from Lemma 5.4.1 and Proposition 5.4.7 that base change preserves finite
(respectively surjective) morphisms.

Proposition 5.4.8. — Let A and B be quasi-affinoid algebras. Let ¢ : A — B be
a K-algebra homomorphism and let C be a quasi-affinoid A-algebra. If ¢ is finite
(respectively surjective) then the induced map C — B ®% C is finite (respectively
surjective).

Proof. — Suppose B is a finite A-module via ¢. It follows from the right-exactness
of the ordinary tensor product that B ® 4 C' is a finite C-module. By Lemma 5.4.1
B ®4 C is a quasi-affinoid algebra. It therefore follows from the universal property
for tensor products that B ®°% C'= B ®4 C. In particular, C — B ®% C is finite.

If ¢ is surjective, then we may write B = A/I, where I := Kere. Then by
Proposition 5.4.7,

By C=A/Te,C/0)= (A3 C)/(1,(0)),
which is a quotient of C'. Therefore C — B ®% C is surjective. O

A small extension of Definition 5.4.2 yields a ground field extension functor for
quasi-affinoid algebras.

Definition 54.9. — Let (E, K), (E’, K') be such that Sy, »,(E, K) C Sy, »(E', K') and
let A:= Sy n(E,K)/I. We say that the K'-affinoid algebra

A= S00(E" K" ®@%, (5.5) A= Sman( B K) /1 S (B, K)
results from A by ground field extension from (E, K) to (E', K').
Proposition 5.4.10. — The canonical homomorphism
A — Soo(E' K') ®%, y(p.x) A

is a faithfully flat norm-preserving monomorphism both in || - |1 and |- ||1.s,, (5", k")
and in || - ||sup-

Proof. — Immediate from Lemma 3.1.11 and Proposition 4.1.3. O
5.5. Banach Function Algebras. — Each representation of a quasi-affinoid alge-

bra A as a quotient Sy, /I yields the K-algebra norm || - ||, which by Lemma 3.1.4,
is complete if S, , is. We saw (Corollary 5.2.4) that even though A may not be
complete, all these norms are equivalent. By the Nullstellensatz, Theorem 4.1.1, if
A is reduced then || - ||sup is & norm on A. In this subsection we shall show when
Char K = 0 (Theorem 5.5.3) and often when Char K = p # 0 (Theorem 5.5.4) that
if A is reduced, || - ||sup is equivalent to the residue norms || - ||7. It follows that if in
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addition £ and K are such that A is complete in || - ||; then A is complete in || - ||sup,
i.e., it is a Banach function algebra.

The obstruction to following the argument of [6, Theorem 6.2.4.1], is, as usual, the
lack of a suitable Noether Normalization for quasi-affinoid algebras. Theorems 3.4.3
and 3.4.6 allow us to reduce the problem to considering quotient rings of So 5,1, for
which a Noether Normalization is available. The fact that the quotients of S y,4m so
obtained are reduced is guaranteed when the S,, , are excellent.

Lemma5.5.1. — Suppose K and E are such that the S, , are complete and the fields
of fractions of the Sy, (E,K) are weakly stable. Let A be a reduced quasi-affinoid
algebra. If there is a finite K -algebra homomorphism Sp /I — A then A is a Banach
function algebra.

Proof. — As in the proof of [6, Theorem 6.2.4.1], we use Noether Normalization for
quotients of Sy, (Remark 2.3.6) to reduce to the case that I = (0) and Sy, — A is
a finite, torsion-free monomorphism.

Note that Sy ., is integrally closed (for example, apply Theorem 4.2.7 or use Noether
Normalization as in [6, Theorem 5.2.6.1]). Since, in addition, we have assumed that
Q(So.n) is a weakly stable field ([6, Definition 3.5.2.1]), we may apply [6, Theo-
rem 3.8.3.7]. O

Proposition 5.5.2. — Under any of the conditions

(i) Char K =0,

(ii) Char K =p # 0 and Sy n(E, K) ~ @gl(gm,n(E,K))p as normed KP-algebras,
(i) Char K =p #0, [K : KP] < 00 and [E : EP] < oo,
the fields of fractions of the rings Sy, n(E,K) are weakly stable.

Proof. — When Char K = 0, this is [6, Proposition 3.5.1.4]. Note that condition (iii)
implies condition (ii) because K is complete (use [6, Proposition 2.3.3.4]). Thus it
remains only to verify case (ii), which follows from [6, Lemma 3.5.3.2]. O

Note that under any of the conditions of Proposition 5.5.2, the rings Sy, »(E, K)
are excellent (see Propositions 4.2.3 and 4.2.5).

In characteristic zero, we show in Theorem 5.5.3 that the supremum norm of a
reduced quasi-affinoid algebra A is equivalent to the residue norm arising from any
presentation of A as a quotient of a ring of separated power series. In some cases this
is an extension of Corollary 5.2.4, which establishes the equivalence of all the residue
norms (whether or not A is reduced and of characteristic zero). In characteristic p,
our results are less complete (see Theorem 5.5.4). The proofs of Theorems 5.5.3 and
5.5.4 rely on restriction to finite disjoint unions of open polydiscs, for which one has
a Noether Normalization. In the proof of Theorem 5.5.3, we reduce to the case of
polydiscs with rational centers. The proof of Theorem 5.5.4 does not depend on the
characteristic.
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Theorem 5.5.3. — Suppose that Char K = 0 and that A = Sy, »(E,K)/I is a reduced
quasi-affinoid algebra. Then || - ||r and || - ||lsup on A are equivalent. If in addition A
is complete in || - ||1, then A is a Banach function algebra.

Proof. — Let E’ D E be as in Theorem 2.1.3 (ii) so that the S, ,(E’, K) are com-
plete. By Propositions 4.2.3 and 4.2.6, A’ = Sy, n(E', K)/I - Sy n(E', K) is reduced,
since T, n(€) = Tm,n(e, K) does not depend on E or E’. By Proposition 4.1.3 and
Lemma 3.1.11 the map

Smn(E,K)/I — Sy n(E' K) /IS n(E', K)

is an inclusion which is an isometry in both the supremum and residue norms. Hence
it is sufficient to prove the equivalence of || - ||; and || - ||sup when E is such that the
Sm.n(E, K) are complete.

Let K’ be a finite extension of K such that there are c1,...,¢, € ((K')°)™ with
lei —¢j| =1,1<i<j<r,such that for every

p e ASS(Sm,n(Ea I?alg)N/f' Sm,n(Ea I?alg)N)
there is an 7, 1 <17 < r, with
mz, = (é- _Emp) op,

where K. alg is the completion of the algebraic closure of K.
Let Sy, , = Smna(E,K') and I' := I -5}, ,. Observe that S;, /I’ is reduced.
(Indeed, we may write K’ = K(«), so every f € S/,

d—1 ‘
F=Y_fiod,
Jj=0

for f; € Sman. Let 0o,...,04-1 be the distinct embeddings of K’ over K in an
algebraic closure of K and let «; := 0;(c), 0 <i < d— 1. Then

may be written in the form

»n

det(a]) = Mizj(a; — aj) #0.
It follows that the f; are linear combinations of the o;(f). Hence, if f € VI, so
is each f;. But the map Sy, , — Sy, , is faithfully flat (Lemma 4.2.8(iii)), so each
fi € VI = I. Tt follows that f € I’.) Now, by Proposition 4.1.3 and Lemma 3.1.11(ii),
the map Sy, /I — S}, ,/I' is an inclusion and an isometry in both the supremum
norm and the residue norm. Since Sy, /I is complete in || - |7, it therefore suffices to
prove the theorem for S}, ,,/I’. Note that all the Sy, ,/(E, K') are complete
By Theorem 3.4.3(ii), the map

1/) : S;n,n/‘[/ - (®;:156,n+m) /wC(I/) : (@;:156,n+m)

is an isometry in the residue norms. By Proposition 4.2.3 and [25, Theorem 32.2],

(@;:15(/)7n+m) /WC(I/) ! (@;:15(/),n+m)
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is reduced. Since v is a contraction with respect to || - ||sup, it suffices to prove the
theorem for this ring. That is Lemma 5.5.1. (|

Theorem 5.5.4. — Suppose that the rings Sman(E,K) are excellent (see Proposi-
tion 4.2.8 or 4.2.5) and that at least one of the following two conditions is satisfied:
(i) K is perfect
(ii) There is an E', E C E’, such that the fields of fractions of the So ,(E', K) are
weakly stable, and the Sy ,(E', K) are complete.

Let A = Sy n(E,K)/I be reduced. Then on A the norms || - |1 and || - ||sup are
equivalent. If in addition A is complete in || -||; then A is a Banach function algebra.

Proof. — We may assume (see Remark 2.1.4(i)) that E is a field. We now show that
(1) implies (ii). In the case that K is perfect there is an E’ D E such that S, ,(E’, K)
is complete (see Theorem 2.1.3(ii)). Since K is perfect, we may extend further so that
E' is perfect. Then, by Proposition 5.5.2 the fields of fractions of the Sy, (E’, K) are
also weakly stable.

Choose c1,..., ¢ € (Kg,)™ with mz, # mz;, 1 <4 < j <, such that for every

p € Ass(Spm,n/I) there is some ¢, 1 < i <r, with
mg, O Pp.

(The mg, are the maximal ideals of gmn corresponding to ¢; as in Definition 3.4.4.)
By Theorem 3.4.6(ii), the map

Y Spmn/I — Dy p(c)/we(I)

is an isometry in the residue norms ||-[|7 and [|-||,,, (7). Since Sy, (E, K) is excellent, by
(25, Theorem 32.2], Dy, n(c)/we(I) is reduced. Since 1 is a contraction with respect
to || - ||sup, it suffices to prove the theorem for that ring. Recall that Dy, ,(c) =
Smon+m(E, K)/J for some ideal J. Let

D;n,n(c) = Sm,n+m(E/7 K)/J - Sm,ner(E/»K)'

Then Dy, ,,(c)/we(I) - Dy, ,,(c) is reduced since the maximal-adic completions of all
its local rings coincide with those of the reduced, excellent ring D,, »(c)/w.(I). By
Proposition 4.1.3 and Lemma 3.1.11, the map

Dinn(€)/we(I) — Dy, (c)/we(I).Dy, (c)

is an inclusion which is an isometry in both the supremum and residue norms. Hence
it suffices to prove the equivalence of the residue norm and the supremum norm on
Dy, n(c)/we(I)- Dy, ,(c). By Lemma 3.4.5, this ring is a finite extension of a quotient
of a ring S 4(E’, K). Now apply Lemma 5.5.1. O
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6. A Finiteness Theorem

In Subsection 6.1 we prove a finiteness theorem, which is a weak analogue of
Zariski’s Main Theorem, for quasi-finite maps, and in Subsection 6.2 we apply this
finiteness theorem to show that every quasi-affinoid subdomain is a finite union of
R-subdomains.

6.1. A Finiteness Theorem. — In applications ([2], [16], [17], [18], [19], [20],
[21] and [23]), certain weaker forms of Noether Normalization have proved useful. We
collect two examples here. Recall that we showed in Subsection 5.3 that we associate
canonically with each R-domain U C Max A, the A-algebra of quasi-affinoid functions
o).

We call a quasi-affinoid map 7 : Max B — Max A finite if, and only if, B is a finite
A-module via the induced map 7* : A — B.

Proposition 6.1.1. — Let w# : MaxB — MaxA be a quasi-affinoid map. Suppose
Uy,...,U, is a cover of Max B by R-subdomains. If each 7|y, : U; — MaxA is
finite then 7 is finite.

Proof. — By Proposition 5.3.6(ii) and the Krull Intersection Theorem ([25, Theo-
rem 8.10]), the natural map

=0

is injective. Each O(U;) is a finite A-module; hence B, being a submodule of the
finite A-module TIO(U;), is a finite A-module as well. O

Let 7 : Max B — Max A be a quasi-affinoid map. If U C Max A is an R-domain
defined by inequalities among fi, ..., fo then 7=}(U) C Max B is an R-domain defined
by the corresponding inequalities among fiom,..., feom.

The affinoid analog of the following is false; see Example 6.1.3.

Theorem 6.1.2 (Finiteness Theorem) — Let 7w : Max B — Max A be a quasi-affinoid
map which is finite-to-one. There exists a finite cover of Max A by R-domains U;
such that each map

7T|7r*1(Ui): 7T_1(Ui) — U;
is finite. (Note: We do not assume that 7 is surjective.)

Proof. — Let ¢ : A — B be the K-algebra homomorphism corresponding to 7. Since
B is quasi-affinoid, there is a K-algebra epimorphism
Smun — B.

The images of &1, ...,&, (respectively, p1,...,pn) in B are power-bounded (respec-
tively, quasi-nilpotent). By Remark 5.2.8, this induces a unique K-algebra homomor-
phism ¢ such that the following diagram commutes
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A<fla-~-7fm>[[l)1,-~-,pn]]s

v
A - B
'
Since S,,, — B is surjective, so is 1.
Let
I :=Ker;
then

B= A&, &n)lprs -5 pnls /1,
and we may therefore assume that the original map ¢ is of the form

A Aol /1

The proof proceeds by induction on (m, n), ordered lexicographically. Assume m+n >
0. (If m+n =0, then B = K and the K-algebra homomorphism ¢, being surjective,
is finite.)

Let fi1,..., f¢ generate I, and write

fi :Zaiuusupu7 1 SZ Sga
where each a;,, € A. Since 7 is finite-to-one, {a;,, } generates the unit ideal of A.
Writing A as a quotient of a ring of separated power series and applying
Lemma 3.1.6 to pre-images of the f;, we obtain a finite index set J C N™ x N" such
that for each € Max A there is an ip, 1 < {9 < ¢, and an index (po, ) € J such
that

|aioﬁ«ol’0 ($)| 2 |a‘iul/(x)| for all i, v
(6.1.1) | @i povo ()] > |@igun ()] for all v < vy and all p
|aio#oVo (z)| > |ai0ﬁwo ()] for all 1 > po.

(Note, in particular, that (6.1.1) guarantees that {a;,, : 1 < ¢ < ¢,(p,v) € J}
generates the unit ideal of A.)

Fix 49, 1 < ig < ¥, and (po,0) € J. Let Ui uon, be the set of points z € Max A
such that

| @i povo ()] = |aipw ()] forall 1 <i</{and (u,v)eJ
|@igpovo ()] > |Gig ()] for all (u,v) € J with v < vy
| Qg oo ()] > [@ig o ()] for all (u,v) € J with pu > po.

As in Subsection 5.3, Ujyugu, Is & quasi-rational subdomain of Max A, which is
in fact equal to the set of points x € Max A where (6.1.1) holds. Furthermore, the
Uiy pove cover Max A.
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We may now replace A by O(Usyuow,) and B by
O(Uiouolfo)<£> [[p]]s/f ’ O(Uiouolfo)<£> [[P]]s~

—1
LY

Replacing f;, by a fio» we may assume that a;y,., = 1. Put

fiol/o = Z aio/,blloé-u;
o
then f; ., is preregular in £ (cf. Definition 2.3.7).
The two quasi-rational subdomains
Vi={yeMaxB: |fi,n,(y) =1} and W := {y € Max B : | fiy, (v)| < 1}

cover Max B, and each restriction 7|y and 7|y is finite-to-one. By Proposition
5.3.6(ii) and the Krull Intersection Theorem ([25, Theorem 8.10]), the natural map

B—OV)®0W)

is injective. Hence it suffices to treat the maps A — O(V) and A — O(W).
Case(A). — A— O(V).

Observe that
OV) =A&, . &mr1)p1, - pnls/J,

where J is the ideal generated by I and the element

F = &mi1fion, — 1.
Put

G:=p”" + Z iopu€m+16"p" = Ems1 fi, mod J;
v#ug
1

in particular, G € J. By (6.1.1), after a change of variables among the p’s, we can
assume that G is regular in p,, (in the sense of Definition 2.3.7). Similarly, after a
change of variables among the £’s, we can assume that F' is regular in &,,+1. Applying
Theorem 2.3.8, first to divide by G, then by F', shows that O(V) is a finite extension
of an A-algebra of the form

B = A& &nller, - paals /T

Since O(V) is a finite extension of the A-algebra B’, the map
Max B’ — Max A

is finite-to-one. Furthermore, (m,n — 1) < (m,n). We are done by induction.

Case(B). — A — O(W).
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Observe that
OW) = A&, &m)p1s - s prsals/

where J is generated by I and the element

F = fiqvy — pnt1-

By (6.1.1), after a change of variables among the {’s, F' is regular in &, (in the sense
of Definition 2.3.7). By Theorem 2.3.8, O(W) is a finite extension of an A-algebra of
the form

Bl = A<§17 e 7§m71>[[p17 e 7pn+l]]s/-[l~
Since O(W) is a finite extension of the A-algebra B’, the map

Max B’ — Max A

is finite-to-one. Furthermore, (m —1,n+ 1) < (m,n), completing Case B.

To complete the proof, we pass to a common refinement of the covers by R-domains
obtained in the above two cases, observing that the intersection of R-domains is an
R-domain, and that if 7 : Max B — Max A is finite, so is 7| -1y : 7~ *(U) — U for
any R-subdomain U of Max A. O

Example6.1.3. — The affinoid map induced by

: K({&) — K({En)/(En*+n+1)

is finite-to-one. But if Char K # 2, ¢ is not finite. Indeed, if it were, the polynomial
£n? +n+ 1, being prime, would have to divide a monic polynomial in K{(¢)[n]. Since
¢ is not a unit, ¢ cannot be finite.

Now, suppose there is a finite cover of Max K (£) by affinoid rational subdomains
U such that each induced map

O(U) — O(U)&x(e) K (&) /(€0 +1+ 1)

is finite. Then the affinoid map induced by ¢ is proper by [6, Proposition 9.6.2.5], and
[6, Proposition 9.6.2.3]. It then follows from [6, Corollary 9.6.3.6], that ¢ is finite, a
contradiction. This shows that the analogue of Theorem 6.1.2 does not hold in the
affinoid case. Indeed the covering obtained is not in general admissible in the sense
of [22].

6.2. An Application to Quasi-Affinoid Domains. — In this subsection we
apply Theorem 6.1.2 to prove that every quasi-affinoid subdomain is a finite union
of R-subdomains. As a corollary we deduce that every quasi-affinoid subdomain is
open.

Lemma6.2.1. — Let A and B be commutative rings and let ¢ : A — B be a finite
homomorphism.

SOCIETE MATHEMATIQUE DE FRANCE 2000



104 RINGS OF SEPARATED POWER SERIES

(i) Suppose that for every mazimal ideal MM of B, the induced map
An — B®a An

is surjective, where m := ANIM. Then ¢ is surjective and Spec B is a closed
subset of Spec A.
(ii) Suppose that for every mazimal ideal MM of B, the induced map

Ag — B®4 An
18 bijective, where m := ANIM. Then Spec B is an open subset of Spec A.

Proof
(i) For every m € Max A the map

An — By An

is surjective. This is true by assumption when m = A N9 for some M € Max B. It
only remains to treat the other elements of Max A. Let m € Max A be such an ideal.
By [25, Theorem 9.3], there is an a € Ker ¢ such that a ¢ m. Since a annihilates the
A-module B and the image of a in Ay, is nonzero, it follows that B ® 4 Am = (0).
Thus the map A, — B ® 4 A is surjective.

Now let b € B and consider the ideal

I'={acA:abc p(A)}.

We will show that I is the unit ideal. Suppose not. Then there is an m € Max A such
that I C m. But A, — B®4 An, is surjective so I Ay, is the unit ideal, a contradiction.
This proves that ¢ is surjective. By [25, Theorem 9.3], Spec B N Spec A = V (Ker ).
Hence Spec B is a closed subset of Spec A.

(ii) Since we are only concerned with prime ideals, it is no loss of generality to
assume that A and B are both reduced, i.e. have no nonzero nilpotent elements. It
suffices to show that B is a direct summand of A.

By part (i), ¢ is surjective, so B = A/I where I := Ker . Since B is reduced, I is
the intersection of some prime ideals of A. Let J be the intersection of the unit ideal
with all the minimal prime ideals of A that do not contain I. We will show that

A=A/Ta® Al

This is obvious if J = (1). So assume J # (1). By [25, Theorem 1.4], it suffices to
show that I + J is the unit ideal of A. Suppose not. Then there is an m € Max A
such that m D I +.J; in particular m O J. Since J is an intersection of minimal prime
ideals of A, at least one such prime must be contained in m. In other words, there is
a minimal prime ideal p of A contained in m that does not contain I. We show that
pAm P TAm. Let a € I\ p; if pAn D TAn, then a =>77 | % for some s € A\ m and
gi € p. Thus sa € p and s,a, ¢ p, a contradiction. So, pA, is a minimal prime ideal
of Ay, that does not contain I Ay,. But by assumption Ay = Ay /I An; ie. TAyn = (0).
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In particular, since Ay, is reduced, I - Ay, is the intersection of all the minimal prime
ideals of A, a contradiction. Thus I + J is the unit ideal of A. O

Recall that in Subsection 5.3 we showed that every R-subdomain is a quasi-affinoid
subdomain.

Theorem 6.2.2. — Let A be a quasi-affinoid algebra and let U C Max A be a quasi-
affinoid subdomain. Then U is a finite union of R-subdomains of Max A.

Proof. — Let B := O(U), and let 7 : Max B — Max A be the canonical inclusion.
By Theorem 6.1.2 there is a finite cover of Max A by R-subdomains U; such that each
map

ey 7 H(U) — Ui
is finite. Thus, without loss of generality, we assume that 7 : Max B — Max A is
finite.
We will apply Lemma 6.2.1 to show that U is a Zariski-open and -closed subset of
Max A. Let 9t € Max B, and put m := AN, We wish to show that Ay, — B4 An

is bijective. Since B ®4 Ay, is a finite Ay-module, this follows from Nakayama’s
Lemma [25, Theorem 2.3], once we know that B®4 (Am/mAn) = An/mAy. Indeed,

B®4 (An/mAn) = B@a A/m = B/mB = B/M = A/m = Ay /mAp,

by Proposition 5.3.6 (ii) and (iii).
By Lemma 6.2.1, U is a Zariski-open and -closed subset of Max A, thus there is
some f € A such that f|ly =0 and f|yaxa\v = 1. So

U={zeMaxA:|f(x)] <1/2}

is an R-subdomain of Max A. O

Note that the covering of U given by Theorem 6.2.2 is not necessarily a quasi-
affinoid covering in the sense of [22]; nonetheless Theorem 6.2.2 does show that quasi-
affinoid subdomains are well-behaved. In particular the following openness theorem
(cf. [6, Theorem 7.2.5.3]) is an immediate consequence.

Coroallary 6.2.3 (Openness Theorem)— Let A be a quasi-affinoid algebra. All quasi-
affinoid subdomains of A are open in the canonical topology on Max A derived from

the absolute value | - | : K — Ry.

Proof. — As we remarked in Subsection 5.3 all R-subdomains of Max A are open.
([l

SOCIETE MATHEMATIQUE DE FRANCE 2000



106 RINGS OF SEPARATED POWER SERIES
References
[1] W. BARTENWERFER. — Der allgemeine Kontinuitdtssatz fir k-meromorphe Funktionen
tm Dizylinder. Math. Ann., 191 (1971) 196-234.
[2] W. BARTENWERFER. — Die Beschranktheit der Stickzahl der Fasern K-analytischer
Abbildungen. J. reine angew. Math., 416 (1991) 49-70.
[3] V. BERKOVICH. — Spectral Theory and Analytic Geometry Over Non-Archimedean
Fields. Math. Surveys and Monographs, Vol. 33, A.M.S., Providence, 1990.
[4] S. BoscH. — Orthonormalbasen in der mnichtarchimedischen Funktionentheorie.
Manuscripta Math., 1 (1969) 35-57.
[5] S. BOSCH. — Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Raume.
Math. Ann., 229 (1977) 25-45.
[6] S. BoscH, U. GUNTZER AND R. REMMERT. — Non-Archimedean Analysis. Springer-
Verlag, 1984.
[7] N. BOURBAKI. — Eléments de Mathématiques, XV. Espaces Vectoriels Topologiques,
Chapter 1. Hermann, 1953.
[8] N. BOURBAKI. — Algébre Commutative III. Hermann, 1961.
[9] J. DENEF AND L. VAN DEN DRIES. — p-adic and real subanalytic sets. Ann. Math.,
128, (1988) 79-138.
[10] J. FRESNEL AND M. VAN DER PuT. — Géométrie Analytique Rigide et Applications.
Birkhauser, 1981.
[11] J. FRESNEL AND M. VAN DER PuUT. — Localisation formelle et Groupe de Picard. Ann.
Inst. Fourier (Grenoble), 33 (1983) 19-82.
[12] T. GARDENER. — Local flattening in rigid analytic geometry. Preprint.
[13] T. GARDENER AND H. SCHOUTENS. — Flattening and subanalytic sets in rigid analytic
geometry. Preprint.
[14] H. GRAUERT AND R. REMMERT. — Uber die Methode der diskret bewerteten Ringe in
der nicht-Archimedischen Analysis. Invent. Math., 2 (1966) 87-133.
Begriindung
[15] H. HIRONAKA. — Subanalytic Sets, in Number Theory, Algebraic Geometry and Com-
mutative Algebra in honor of Y. Akizuki, Kinokuniya, 1973, 453-493.
[16] L. LipsHITZ. — Isolated points on fibers of affinoid varieties. J. reine angew. Math.,
384 (1988) 208-220.
[17] L. LipsHITZ. — Rigid subanalytic sets. Amer. J. Math., 115 (1993) 77-108.
[18] L. LIPSHITZ AND Z. ROBINSON. — Rigid subanalytic subsets of the line and the plane.
Amer. J. Math., 118 (1996) 493-527.
[19] L. LipsHITZ AND Z. ROBINSON. — Rigid subanalytic subsets of curves and surfaces. To
appear in J. London Math. Soc.
[20] L. L1PSHITZ AND Z. ROBINSON. — One-dimensional fibers of rigid subanalytic sets. J.
Symbolic Logic, 63 (1998) 83-88.
[21] L. LipsHITZ AND Z. ROBINSON. — Rigid subanalytic sets II. Manuscript.
[22] L. L1PsHITZ AND Z. ROBINSON. — Quasi-affinoid varieties. This volume.
[23] L. LiPsHITZ AND Z. ROBINSON. — Model completeness and subanalytic sets. This vol-
ume.
[24] A. MACINTRYE. — On definable subsets of p-adic fields. J. Symbolic Logic, 41 (1976)
605-610.
[25] H. MATSUMURA. — Commutative Ring Theory. Cambridge University Press, 1989.

ASTERISQUE 264



[26]

27]

(28]
29]

[41]

REFERENCES 107

H. MATSUMURA. — Formal power series rings over polynomial rings I. In Number
Theory, Algebraic Geometry and Commutative Algebra. Kinokuniya, 1973, pp. 511-520.
In honor of Y. Akizuki.

F. MEHLMANN. — FEin Beweis fir einen Satz von Raynaud tber flache Homomorphis-
men affinoider Algebren. — Schr. Math. Inst. Univ. Munster, 2 (1981).

M. NAGATA. — Local Rings. Interscience Publishers, 1962.

Z. ROBINSON. — Smooth points of p-adic subanalytic sets. Manuscripta Math., 80 (1993)
45-71.

7. ROBINSON. — Flatness and smooth points of p-adic subanalytic sets. Ann. Pure Appl.
Logic, 88 (1997) 217-225.

Z. ROBINSON. — A rigid analytic approzimation theorem. This volume.

H. SCHOUTENS. — Rigid subanalytic sets. Comp. Math., 94 (1994) 269-295.

H. SCHOUTENS. — Rigid subanalytic sets in the plane. J. Algebra, 170 (1994) 266-276.
H. SCHOUTENS. — Uniformization of rigid subanalytic sets. Comp. Math., 94 (1994)
227-245.

H. SCHOUTENS. — Blowing up in rigid analytic geometry. Bull. Belg. Math. Soc., 2
(1995) 399-417.

H. SCHOUTENS. — Closure of rigid semianalytic sets. J. Algebra, 198 (1997) 120-134.

H. SCHOUTENS. — Rigid analytic flatificators. Preprint.

H. SEYDI. — Sur une note d’Ernst Kunz. C. R. Acad. Sci. Paris, Sér. A-B, 274 (1972)
AT14-AT16.

J. TATE. — Rigid analytic spaces. Invent. Math., 12, (1971) 257-289.

V. WEISPFENNING. — Quantifier Elimination and Decision Procedures for Valued
Fields. In Models and Sets, Aachen, 1983. Lecture Notes in Math., 1103 (1984) 419-472.
Springer-Verlag.

O. ZARISKI AND P. SAMUEL. — Commutative Algebra II. Springer-Verlag, 1975.

SOCIETE MATHEMATIQUE DE FRANCE 2000






MODEL COMPLETENESS AND SUBANALYTIC SETS

1. Introduction

The class of real subanalytic sets was defined by Gabrielov [2], where he proved
that the class is closed under complementation. Real subanalytic sets have attracted
extensive study; in particular, Hironaka [7] proved uniformization and rectilineariza-
tion theorems for real subanalytic sets. In [1], Denef and van den Dries introduced
the class of p-adic subanalytic sets and showed how to develop both the real and
p-adic theories from a suitable analytic quantifier elimination theorem. In [9] an
analogous quantifier elimination theorem was proved for K an algebraically closed
field, complete with respect to a non-Archimedean absolute value, using the functions
of S = Um.nSm.n. (See below.) That paper developed a theory of subanalytic sets
(termed rigid subanalytic sets). This theory was developed further in [10], [11] and
[12]. In [17]-[21], Schoutens developed a theory of subanalytic sets (which he termed
strongly subanalytic), over such fields. This theory used a class of functions somewhat
smaller than T' = UT,,,. (The T,, are the Tate rings of strictly convergent power series
over K.)

In this paper we prove a quantifier elimination theorem (Theorem 4.2) for alge-
braically closed extension fields of K in language L¢, the language of valued rings
augmented with function symbols for the members of £, where £ = £(H) is a class of
analytic (partial) functions obtained from H C S by closing up with respect to “dif-
ferentiation” and existential definition (see below for precise definitions). For suitable
choice of £ = £(T') this gives a quantifier elimination theorem (Corollary 4.4) in L¢ (7
(or a quantifier simplification theorem, Corollary 4.5, in Ly, the language of valued
rings augmented with function symbols for the members of T') suitable for developing
the theory of subanalytic sets based on T, which we term K-affinoid (Corollaries 5.4
and 5.5). These results have been used by Gardener and Schoutens in their proof,
[3], [4], and [22], of a quantifier elimination theorem in the language L2 (= Lp
enriched by “restricted division” (see below)). Section 2 contains precise definitions
of what we mean by “closed under differentiation and existential definitions”, in all
characteristics. Section 3 gives the Weierstrass Preparation and Division Theorems
for these classes of functions that we need for all the Elimination Theorems in Sec-
tion 4. Section 5 contains the application of the Elimination Theorems to the theory
of Subanalytic Sets.
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We recall some of the basic definitions. K is a field complete with respect to
a non-Archimedean absolute value |-| : K — R;. We do not assume that K is
algebraically closed. K° = {x € K : |z| < 1} is the valuation ring of K, and
K°° = {z € K : |z| < 1} is the maximal ideal of K°. T}, = T,,(K) is the (Tate)
ring of strictly convergent power series over K and Sy, = Smn(E, K) is a ring of
separated power series over K (see [13, Definition 2.1.1]). Recall that T,4pn C Simn
and that elements of Sy, , represent analytic functions (K°)™ x (K°°)" — K.

The language of multiplicatively valued rings is

L=(0,1,+,-]-1,0,1,7,<).
The symbols 0, 1, 4, - denote the obvious elements and operations on the field; 0, 1, ~
denote the obvious elements and multiplication on the value group U{0}; | - | denotes
the valuation and < the order relation on the value group U{0}. Section 0 of [1]
provides all the background about first order languages that we will need.

A structure F (for a language L) has elimination of quantifiers if every subset of
F™ defined by an L’-formula is in fact defined by a quantifier free L’-formula. We
say that F' has quantifier simplification (or is model complete) if every subset of F™
defined by an L’ formula is in fact defined by an existential L’-formula.

In [13] we defined certain open domains in K™ which we termed R-domains ([13,
Definition 5.3.3]) and showed that each R-domain U carries a canonical ring of func-
tions denoted O(U); R-domains generalize the Rational Domains of Affinoid geometry.

2. Existentially Defined Analytic Functions

As usual K is a complete non-Archimedean valued field. Let F' be a complete
field extending K and let Fjj, be its algebraic closure. In general Fjj, will not be
complete. However if F' C Fy, is a finitely generated extension of F, then F’ is
complete and hence the power series f € S,,, actually define analytic functions

(Fag)™ % (Fg)" — Fag. By the Nullstellensatz ([13, Theorem 4.1.1]) there is a map

T ¢ (Faig)™ — Max Tp (F).

Since T,,(K) C T,,,(F) we may therefore regard any R-domain U C MaxT;,(K) as a
subset of (F;,)™. In this section we set up the formalism for the quantifier elimination
theorem.

The (not necessarily algebraically closed) field K will be the field over which the
functions in our language are defined in the sense that these functions will all be
elements of generalized rings of fractions (see below) defined over K. Formulas in
the language define subsets of (F,;,)™. The Quantifier Elimination Theorem (Theo-
rem 4.2) is uniform in the sense that if ¢ is defined over K then there is a quantifier-free
formula *, also defined over K, such that for each complete F' with K C F, ¢ and
¢* define the same subset of (F},)"™.
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In [1] and [9] the quantifier elimination takes place in a language LD, which has
symbols for all functions built up from a suitable class of analytic functions and “re-
stricted division” D, where D(x,y) = x/y if |z| < |y| # 0 and D(x,y) = 0 otherwise.
In this paper the use of “restricted division” is replaced by that of generalized rings
of fractions (see definition below). This is necessary for us because Theorems 3.1
and 3.3 give definitions of the Weierstrass data in terms of functions, but do not in
general produce representations of the Weierstrass data by (definable) D-terms. (In
the special case that H = S, definability issues drop away and the treatment in this
paper is easily seen to be equivalent to the treatment of [9] using restricted division.
See Corollary 4.3).

Definition 2.1 (cf. [13, Definition 5.3.1]). — We define the generalized rings of fractions
over Ty, inductively as follows: T, is a generalized ring of fractions, and if A is gen-
eralized ring of fractions and f,g € A then both A(f/g) and A[f/g]s are generalized
rings of fractions.

Smn = Tmn[€m+1, - - - s Em+n]s is a generalized ring of fractions over Ty,

Definition 2.2. — Let ¢ : T, — A be a generalized ring of fractions and let & :
Max A — MaxT,, be the induced map. We define the domain of A, Dom A C
Max T, by saying that € Dom A iff there is a quasi-rational subdomain U (see [13,
Definition 5.3.3]) of Max T}, with « € U, such that

oI U)—-U
is bijective.
Remark 2.3
(i) The set Dom A does not depend on the representation of the generalized ring of
fractions A as a quasi-affinoid T,,-algebra. Suppose that ¢ : T}, - Aand ¢ : T,,, — B

are isomorphic quasi-affinoid T,,-algebras, i.e. there is a K-algebra isomorphism o
such that

A - B

@ P
Tm
commutes. By the Nullstellensatz [13, Theorem 4.1.1]
X := MaxT,,, N Max A = MaxT,, N Max B.

Let € X and suppose there is a quasi-rational subdomain x € U C X such that
®~1(U) — U is bijective, where ® : Max A — MaxT,, corresponds to ¢ (as in
Definition 2.2). Let ¥ correspond to 9. Since o is an isomorphism, V=1(U) — U
is bijective. Since the argument is symmetric in A and B, this shows that Dom A is
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independent of the presentation of A as a T,,-algebra. (Note however that Dom A is
not in general a quasi-affinoid subdomain in the sense of [13, Definition 5.3.4].)

(ii) Let ¢ : T, — A be a generalized ring of fractions. It follows from the Nullstel-
lensatz, ([13, Theorem 4.1.1]), that

Dom A(f/g) = {x € Dom A: |f(2)| < |g(x)| # 0}, and
Dom A[ /gl = {« € Dom A: |f(@)] < [g(s)]}-

(iii) Let ¢ : T,, — A be a generalized ring of fractions. By ground field extension
([13, Definition 5.4.9 and Proposition 5.4.10]) A C A" = Sy o(E, F) %, o(p, 1) A and
we may regard Dom A as a subset of (F;lg)m and each f € A as determining an
analytic function Dom A — Fjj.. In fact, given o € Dom A, there is a unique power
series f € K[¢] and a rational polydisc # € U C Dom A such that f(y — x) converges
on U and f(y) = f(y — ) forally € U.

(iv) As we noted in the discussion before Definition 2.1, in this paper we work
with generalized rings of fractions instead of with D-functions. Any element f of a
generalized ring of fractions A over T, defines a partial function on Dom A C Max T,.
We may regard f as a total function by assigning f(x) = 0 for x € Max T, \ Dom A.
It is a consequence of (ii) above that such functions are represented by D-terms in
the sense of [9, Section 3.2], and conversely.

We will see below that the Weierstrass data of a power series are existentially de-
finable from f and its partial derivatives. In characteristic p # 0, “partial derivatives”
must be interpreted as Hasse derivatives which we define next.

Definition 2.4. —Let f € R[¢1, ..., &n], R acommutative ring, and let ¢t = (t1,...,t,).
The Hasse Derivatives of f, denoted D, f € R[{], v = (v1,...,vm) € N, are defined
by the equation
FE+D =D (D).
veN™

(See [5] or [6, Section 3].)

Remark 2.5

(i) In characteristic zero the Hasse derivatives are constant multiples of the usual
partial derivatives. In fact

olvl
oyt ...oEm

Hence the partial derivatives of f and the Hasse derivatives of f are quantifier free
definable from each other (c¢f. Definition 2.7). The following facts are not hard to
prove. Proofs can be found in [5] or [6, Section 3].

(ii) In characteristic p # 0 the situation is more complicated. If

v=1(0,...,0,p",0...,0)

f=uwn!...v,'D,f.
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with p™ in the i*® position denote D, by DP. Then the whole family of Hasse deriva-
tives is generated by the D} under composition. In particular D;"D? = D7 D;" and
D, =D{*Ds?...Dom.

(iil) Suppose the characteristic is p # 0 and let f € R[&1,...,&n]. Fixi,1 <i < m,
and write

p—1
f = ij(sla'"7575717511']751’4»17'"76771)61'7'
j=

The power series f; are uniquely determined by this equation, so we may define

be..i(f) = fj.
If f converges on a rational polydisc 0 € U C (Fy,)™, so do the d¢, ;(f). We call the

0¢,,;(f) the p-components of f. By induction, we define the pttl-components of f to
be the &, ;(g), where g is a p’-~component of f. Thus,

pf-1

f: Z fej(flv'"7§i717§fz7§i+17'"7§m) 7
j=0

where the f;; are pl-components of f with respect to &;.

It is not hard to show that the D, are existentially definable from the d¢, ; and
conversely. Indeed the D, are linear combinations of compositions of the d¢, ; with
polynomial coeflicients, and conversely.

(iv) The following properties of the D, follow easily from the definition

(a)

Dy
(b) Dl,c: Oforce R, v#0
(©) Du(f+9)=Duf+Dug
(d) D,oD, (M:U)D/_L—O—V, where (“:V) =1L (’“;Z"’i)
(©) Du(f-9) =2 pr=v(Duf) (D g)-
(f) a chain rule (see [5]).

Definition 2.6. — Let ¢ : T),,, — A be a generalized ring of fractions and let f € A.
Using Remark 2.3 we define A(f) to be the collection of functions Dom A — Fy,
determined by the D, f, v € N™. In other words A(f) is the smallest collection of
functions Dom A — F,j, containing f and closed under the Hasse derivatives.

Definition 2.7. — Let H C Um,nSmn be any collection such that A(H) C H.
(In the most important application H = T = U,,T,,; another possibility is
H=A(f1,-..,fn).) Let

LH = L(O71a+a’{f}f€7'{7 | : ‘7OaTaTaZ)

be the first-order language of multiplicatively valued rings, augmented by symbols
for the functions of H. A subset X C (F;,)™ is said to be definable (respectively,
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114 MODEL COMPLETENESS AND SUBANALYTIC SETS

existentially definable, quantifier-free definable) in Ly iff there is an Ly-formula (re-
spectively, an existential Ly-formula, quantifier-free Ly-formula) (&1, ..., &) such
that

(a1,...,am) € X < ¢(a1,...,an) is true.

A partial function f : X — Fy, is said to be definable (respectively, existentially
definable, quantifier-free definable) in Ly iff its graph (and domain) are. The H-
subanalytic sets discussed in Section 5 are exactly the sets existentially definable
in Ly. A function f is quantifier free (respectively, existentially) definable from
functions g1, ..., ge if there is a quantifier-free (respectively, existential) formula ¢ in
the language L of multiplicatively valued rings, such that

Y= f(J?) ~ @(x7y’gl(x)7 s ,gg(l‘)).

We next define the class of functions £(H) all of whose “derivatives” are existen-
tially definable from H. The Quantifier Elimination Theorem (Theorem 4.2) applies
to the language L¢(y) where H = A(H). Since all functions of £(H) are existentially
definable in Ly a corresponding quantifier simplification theorem for the language
L4 follows.

Definition 2.8. — The collection £(H) consists of all functions f : X — Fjjz such
that f € A and X = Dom A for some generalized ring of fractions ¢ : T, — A, and
such that the members of A(f) are all existentially definable in L. We define the
language L¢ in analogy to Definition 2.7, i.e., L¢ is the language of multiplicatively
valued rings augmented by symbols for the functions of £(H).

The languages Ly (or Lg(y)) are three-sorted languages. The three sorts are F°,
F°° and |F°|. (See [9, Sections 3.1-3.7].)
We shall use the following in Section 3.

Remark 2.9
(i) Let Char K = p # 0, let f(y) be a convergent power series in y, let § € K
sufficiently near 0, and let £ € N. There is a polynomial f(y) such that

Fy) = fly) mod (y —7)""

and f is existentially definable from the p’-components of f with respect to y. To see
this write
p-1

¢ .
F=Y" fuW” )y
7=0
and let f = Z?[:_Ol Je; (WP Z)yj. By Remark 2.5(iii), f is existentially definable from

Af.
(ii) If f(z,y) € E(H) and f = fi(z)y® then each f; € E(H).
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3. Existential Definability of Weierstrass Data

Let A be a generalized ring of fractions over T' and let f,g € A(&)[p]s with f
regular of degree s in y (where y is either &,, or p,,). By the Weierstrass Division and
Preparation Theorems ( [13, Theorem 2.3.8 and Corollary 2.3.9]) we can write

f=uP and g=qf+r

where u, P, ¢ and r are as described in those theorems.

In this section we show that all the members of A(u) and A(P) are existentially
definable from A(f) and all the members of A(g) and A(r) are existentially defin-
able from A(f) and A(g). These results are needed for the Elimination Theorem
(Theorem 4.2).

Analogous questions in the real case are considered in [23]. For completeness, we
include proofs below not only in characteristic p but also in characteristic zero.

Theorem 3.1 (Weierstrass Preparation for€). — Let ¢ : T,, — A be a generalized ring
of fractions and let f € A(&)[p]s. Suppose f is regular of degree s in Epp (respectively,
in pn) in the sense of [13, Definition 2.3.7]. By [13, Corollary 2.3.9], there exist a
uniquely determined polynomial P € A(E")[p]s[ém] (respectively, P € A{&)[p']slpn])
monic and regular of degree s and a unit u € A{§)[p]s such that

f=u-P
(Here & = (&1,...,&m-1) and p' == (p1,...,pn—-1).) Each member of A(u) and
A(P) is existentially definable in La(py. Hence if f € E(H), then u, P € E(H).

Proof. — Let y denote the variable (either £y or px) in which f is regular and let x
denote the other variables. With this notation the above equation becomes

fla,y) = u(z,y)ly* + asma(@)y"" + -+ ao(w)].

We must show that each member of A(u) and A(a;) j =0,...,s — 1 is existentially
definable in La(y), i.e. from A(f).

For each © € Dom A(¢')[p]s (respectively Dom A(&)[p']s), let Ty (x),...,Ts(x) be
the s roots of the equation f(x,y) = 0 with |y| < 1 (respectively < 1). Then the
a;(x) are symmetric functions of the g;(z), say a;(x) = 0; (¥, (x), ..., Fs(x))-

We consider the cases Char K = 0 and Char K = p # 0 separately.

Case (A). — Characteristic K = 0.

By Remark 2.5(i) we may work with the usual partial derivatives instead of the
Hasse derivatives.

SOCIETE MATHEMATIQUE DE FRANCE 2000



116 MODEL COMPLETENESS AND SUBANALYTIC SETS

For each partition P : s = s1 + s+ - -+ Sy, wWith the s; > 1, let pp be the formula

(/\|%|Dl> (r=y2=""=Ys)ANYUs141 =" = Ysiss) \--.
S1 1 ¥
o f
A (Ysr4tsmortl =0 =Ys) A /\ a—yﬂ'(yl) =0A...
=0
sm—l
A /\ G y81+ tsmoa+1) = 0A /\(ys1+---+si F Ysi4ts; )
i#]

where O is < or < dependmg on whether y is a £y or py. Hence ¢p expresses the
fact that y; is a root of f = 0 of multiplicity s1, ys,+1 is a root of multiplicity ss, etc.
For each j =0,...,5 — 1, let ;(x,w;) be the formula
Hyl...ﬂys[\/gpp Nwj = Jj(yl,...,ys)].
P

Then ¢; is an existential definition of aj(x). We must further show that u and
the derivatives of the a;(x) are existentially definable. Notice that the 7;(z) may
not be differentiable even at points where the a;j(x) are analytic. Let P(z,y) =
y* +as_1(x)y* "'+ -+ ap(z). Then

(3.1) f(@,y) = ulz,y)P(z,y).
Next we show that u(z,y) is existentially definable. This is obvious from (3.1) except
perhaps when y = 7,;(z) for some ¢ (i.e. when P(z,y) = 0). Note that

: a—P, 82—P,..., o°p =sl#£0

Oy Oy* dy*

are all existentially definable. It is now easy to see that if ¥ is an s;-fold root of
f(z,y) =0 then u(z,y) is defined by

0% f 0% P

S @7 = ule. D G 7).
0%u . .
Iterating, we see that — 8 ¥n ~ 5 are all existentially definable from A(f).
Differentiating (3.1) Wlth respect to x1 we get
8f ou oP ou 8as 1 1 8@0
T pi = - p s— 9%
(9331 (9331 +u8x1 8x1 tu (9 X1 "oy Y ot 8x1
So, if gy, ..., 7, satisfy P(x,y) = 0, then
1N OF -
(32) WM T S ) = T,
Tl

da;
where we write a); for 8—] If the roots y;,...,y, of P = 0 are distinct then the
x

equations (3.2) uniquely determine the aj. (The coefficient matrix of the system of
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linear equations (3.2) is the Vandermonde matrix with determinant [[, ,(¥; — ;) #
0).

If 5, is a root of P = 0 of multiplicity s; we replace the s; identical equations in
(3.2) by the subsystem

1, Of orP , _
1 —_— . = —_— .
U (xayz)axl (xayz) 8.%'1 (xayl)7
0*f 9°P du oP
u (x7yi 8y8x1(x’yl) - 8y8x1($’yl)+u (xvyz)ay(xvyz (9231 T, 1)7
1, — 0% f _ 0% P _
1 —_— . = —_— .
u (xayi)aysi,]_axl(xayz) 8ysi*18x1(x’yl)+

to obtain a system of equations that we denote (3.2)". The coefficient matrix of the

resulting system of equations is nonsingular (see Remark 3.2 below) and hence the
da; U

new system of equations defines the 8—J Existential definitions of Er and the
xr X1

1
higher derivatives of the a; and u are obtained by iterating.
Case (B). — Characteristic K = p # 0.

We follow the same general outline as in Case A and indicate the necessary changes.
k

In characteristic zero we used the derivatives g—y{(y) to detect the multiplicity of a
root g of f = 0. In Characteristic p we use the device of Remark 2.9(i). If we choose
p’ > s then the multiplicity of 7 as a root of f = 0 is the same as the multiplicity of 7
as a root of f(y) = 0, and since f is a polynomial in y, the multiplicity of y as a zero
of f is existentially definable from the coefficients of f, which are by Remark 2.9(i)
existentially definable from the p* components of f. Hence P is existentially definable
from the p‘-components of f with respect to y and hence from the Hasse derivatives
D,f forv=(0,...,0,4),i=0,...,p" — 1.

Next we must show that w and all its Hasse derivatives with respect to y are
existentially definable. From the equation

f=uPp,

u is existentially definable, except when P = 0, i.e. except when y = 7, for some . If
7 is a zero of P of order a < s then u(y) is (existentially) defined using

7(1‘/) =u(y)P mod (y — y)aJrl

where f is the polynomial as in Remark 2.9(i) and p® > s. In fact, for any 3 € N we
can existentially define a polynomial 7 such that @ =« mod (y —%)? by considering
the congruence f = uP mod (y — 7)%*+°.
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Let D; denote Do, 0,). Then
Djf= > DjuD;P
jk=i
(see Remark 2.5(iv)(e)). Since P is a polynomial in y the D P are all quantifier free
definable. We proceed inductively

le_ (Pl 1
D, f = (Dyu)P +uD,P.

This defines (D, u) except when y = 7 is a zero of P. But for such 7 we consider a

congruence of the form

1p_— (Pl 1 7)8
D,f=(Dyu)P+uD,P mod (y—7)".

By Remark 2.9(i), for any 8 € N we can existentially define a polynomial congruent
to D; f mod (y — 7). We saw above that we can existentially define a polynomial
T(y) = u(y) mod (y — 7)®. Hence we can existentially define D}u modulo (y — 7)?
for any 3. From this, for 8 large enough, an existential definition of (D;u)@) follows.
Next we use
D:f = (Dju)P + (Dyu)(D, P) + u(D.P)

and the same argument to see that we can existentially define Dgu mod (y —7)? for
any . The same devices allow us to obtain existential definition of the other Hasse
derivative of u and P. We do an example that will convince the reader, and show that
D2 D)u and D} D,P are existentially definable. (Here D, = D(;p, . o). Observe
also that Dy D} = D; o 0.)-) We again start with the equation

f=uP.

.....

Thus
1 1 1

(3.3) D, f = (Dg,u)P+u(D, P).
Let the distinct zeros of P be gy, ...,7, and let 7, have multiplicity «;. Then D;IP7
which is a polynomial in y of degree < s — 1 is determined by the congruences

Dy, f=u(m;)(D;,P) mod (y—7)%, i=1,....d
D! w is determined by equation (3.3), except where y =7, for some i. But as above

_ . . . o\
D! uw mod (y—7;)” can be existentially defined by looking &Zt (3.3) mod (y—yi)pz for
large enough £ and using the fact that D} f mod (y—7;)” and v mod (y—7)? are
existentially definable from the DJ D} f and DJf. To obtain the “second derivative”
with respect to x1 we apply Dgl to the equation f = uP:
(3.4) D2 f = (D2 u)P + (D} u)(Dy, P)+ u(D2 P).

Looking at this equation modulo the (y — g;)* and using the facts that P = 0
mod (y—7;)* and that we have existentially defined polynomials congruent to (D} u)
and v modulo (y — 7,;)*, gives an existential definition of (the polynomial in y)
D2 P. Then D2 u is determined when y is different from all the 7; by (3.4) and D2 u
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mod (y — 7;)? (for any 3) is determined by looking at (3.4) modulo a high enough
power of y — 7%, and using the facts that we have existentially defined polynomials
congruent to D} ,u and v modulo any specified power of y —%,. Next apply D; to
(3.3):

(35) DD, f=(D,D} u)P+ (D} u)(D,P)+ (Dyu)(D,, P)+ u(D,D, P).

As above, first determine D;D}CIP by looking at this equation mod (y — 7;)** and
then determine DD} u for y #7;, i =1,...,d and DD} u mod (y — 7;)? for any
B. Finally apply D; to (3.4) to obtain

D, D2 f=(DyD} u)P + (D2 u)(D,P)+ (D, D} u)(Dy, P)
+ (D}, u)(D, D} P)+ (Dyu)(D7 P) +u(D,D2 P).

Exactly as above, first determine D;D%lP and then D;Dglu fory#vy;,i=1,...,d,
and finally D;Dglu mod (y — 7,)? for any 3. O

Remark 3.2. — Assume the characteristic of K is zero. Let sy +sa +---+ 8, = 8
and let the Y;; be variablesi =1,...,m; j=1,...,s;.

BATER G (TR
verl o ovet oL Y, 1

det : : . : S| = H (Yij — Yst)

(4,5)<(st)

s—1 s—2
Yos, Yosi oo Yo, 1

where < is the lexicographic ordering.

For each i and j, differentiate j — 1 times with respect to Y;;. Then set all the
Y;; = Y, (a new variable) for each ¢ = 1,...,m. The resulting determinant is a
nonzero constant times a product of powers of (Y; —Y;), ¢ # j. Call this function
V(Y1,...,Ym).

Then the determinant of the coefficient matrix of the system of equations (3.2)’
occurring in the proof of Theorem 3.1 is V (7, .. .,7,,) # 0 where 7, ...,7,, are the

distinct roots of f(x,y) =0, and ¥, is a root of multiplicity s;.

Theorem 3.3 (Weierstrass Division for€). — Let ¢ : T,,, — A be a generalized ring of
fractions and let f,g € A{&)[p]s. Suppose f is reqular of degree s in &py (respectively,
pN) in the sense of [13, Definition 2.3.7]. Then by [13, Theorem 2.3.8] there exist
unique elements

r € A(E)[pls[éar]
(respectively, r € A(E)[p']s[pn]) of degree s — 1 and q € A(€)[p]s such that

g=af +r.
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(Here & = (&1,...,&m—1) and p' := (p1,...,pNn—1).) Furthermore, each member of
A(q) and A(r) is existentially definable in La(fyun(g)- Hence if f,g € E(H) then
q,r € E(H).

Proof. — We follow the same notational convention as in the proof of Theorem 3.1
— i.e. we let y denote &y (respectively py) and let « denote the other variables. Let
r= Ef;ll ri(z)yt, and let 7, (), ...,7,(z) be the roots of f(x,y) = 0. Then

(3.6) 9(x.7:) = ()7

Jj=

[

Case (A). — Characteristic K = 0.

Again in this case we may consider the usual derivatives. If the 7, are all distinct
then (3.6) has coefficient matrix the Vandermonde matrix and (3.6) determines the
rj(z). If ; is a root of f = 0 of multiplicity s;, replace the corresponding s; identical
equations in (3.6) by the equations

¢ ¢
g—;(x,yi)zg—y?;(x,yi), £=0,...,5 — 1.
The resulting system again has nonsingular coefficient matrix (see Remark 3.2) and
hence determines the r;(z).

Existential definitions of the derivatives of the r; are obtained in a way similar to
that employed in the proof of Theorem 3.1 to obtain those for the derivative of the
a;. The same arguments also give existential definitions of ¢ and its derivatives from

A(f)UA(g).
Case (B). — Characteristic K = p # 0.

We proceed in a way entirely analogous to the characteristic p case of the proof of
Theorem 3.1. O

4. The Elimination Theorem

We prove an elimination theorem that both generalizes that of [9] and provides a
basis for the theory of affinoid subanalytic sets (i.e., the images of affinoid maps) as the
elimination theorem of [9] provided a basis for the theory of quasi-affinoid subanalytic
sets. We follow the strategy of [1], first using parameterized Weierstrass Preparation
(and Division) to reduce to the case that some variable occurs polynomially and
then using an algebraic elimination theorem. Where [1] used Macintyre’s elimination
theorem [16] we use the elimination theorem of [24].

To obtain parametrized Weierstrass division from the usual one, [1] used restricted
division by coefficients (with parameters). The fact that functions are not canonically
represented by terms in a first order language leads to difficulties in our situation,
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since we have extra definability conditions to satisfy. It turns out that the generalized
rings of fractions (see Definition 2.1) allow us to carry out the necessary divisions
while retaining definability properties in a natural way. Furthermore, [1] works over
discretely valued fields K, where multiplication by a uniformizing parameter for the
maximal ideal of K° can be used to witness strict inequalities. As in [9], we use
variables ranging over Fo to witness strict inequalities: our fields Fujg are never
discretely valued, being algebraically closed. As we remarked in [13, Example 2.3.5],
the class of Weierstrass automorphism for the resulting rings of analytic functions is
not large enough to transform every nonzero function to one that is regular. Thus
we employ Weierstrass Preparation and Division and the double induction of [9] to
reduce to an application of the algebraic elimination theorem for algebraically closed
valued fields of [24].

Let A be a quasi-affinoid algebra. Recall that we showed in [13, Section 5.2] that
A& pls € A[E, p], so we may write

f= Zf;wf'upy» f;w €A,

for any f € A(€)[o],.
Lemmad.l. — Let A be a generalized ring of fractions over T, and let

F=3" fuwp” € A©)lp..

Then there are: ¢ € N, A-algebras A, |u| + |v| < ¢, each a generalized ring of
fractions, and elements g, € A, (§)[pls such that

() fur(@)guw(x, &, p) = f(z,& p) for every x € Dom A,,,,
(ii) each g is preregular of degree (p,v) in the sense of [13, Definition 2.3.7], and

(iii) Dom A= Z(f) U U,/ <e A

where Z(f) := {x € Dom A : f(x,&,p) =0}. If f € &, then Z(f) is quantifier-free
definable in Lg and each g, € E.

Proof. — Writing A as a quotient of a ring of separated power series and applying
[13, Lemma 3.1.6] to a preimage of f, we obtain a ¢ € N and elements h,,, € A(§)[p]s
such that

f = Z f;wf”py(l + h#y) and
lul+lv|<e
|huw (y)| < 1 for all y € Max A(&)[p]s-

(Hence each 1+ hy,, is a unit of A(&)[p]s.)
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For each (uo,vo) € N™ x N™ with |uo| + |vo] < ¢, we define the generalized ring of
fractions A,,,,, from A in the obvious way so that the inequalities

|flJ«0V0(x)| > |fuu(x)| for all |,u| + |y| < c,
|fu0V0(x)| > |fuu(x)| for all v < 1Z0) and |,u| + |y| < c,
[ fovo () > | fruwe ()] for all u > po and |p| + |vo| < ¢

hold for all x € Dom A,,,,,. Indeed, A,,.,, so defined, has the property that x €
Dom A,,,., if, and only if, f,..,(z) # 0 and the above inequalities hold.
Now, for |u| + |v| < ¢, fuv/ fuove € Auory, SO We may put

Gowo = gl‘«oplfo(l + huolfo) =+ Z l
|l +lvl<e, THOT
(Uf’l’)?ﬁ(MO,VO)

Finally, suppose f € £. Since f,,(z) # 0 for x € Dom A,,,,, and f..(z) € € by
Remark 2.9(ii), condition (i) implies that g,,, € €. To see this inductively, apply D,/ to
(1), use the product formula of Remark 2.5(iv)(e) and solve for D,/g,,,. Furthermore,

Z(f) = {x € Dom A fu(x) = 0, |u] + V] < e},

" (L+ huw), ol + |vo| < c

which is a quantifier-free Lg-definition. O

Theorem 4.2 (Quantifier Elimination Theorem). — Let H C S with H = A(H), let
E :=&(H), and let ® be an Lg-formula. Then there is a quantifier-free Lg-formula
U such that for every complete field F extending K, Foo F® < ¥ ie, ® and ¥
define the same subset of (Fy,)™.

Proof. — Recall that Lg ) is a three-sorted language. We shall use the following
convention which will greatly simplify notation. The & will denote variables of the
first sort (that range over F°) and the p; will denote variables of the second sort (that
range over F°°); = will denote a string of variables of sorts one and two. Observe
that a quantified variable of the third sort (that ranges over |F°|) can always be
replaced by a quantified variable of the first sort — if v is a variable of the third sort
replace it by |£| where £ is a variable of the first sort. Hence we need only eliminate
quantified variables of sorts one and two. (Alternatively, a quantified variable of
the third sort can be eliminated by a direct application of the quantifier elimination
theorem of [24]). After routine manipulations we may assume that ® is of the form
Fépp(v,z,&, p), where ¢ is a conjunction of atomic formulas; i.e., formulas of the
form
ti(v)|f (2, & p) O t2(v)lg(x, &, p)l;

where O is either < or =; f, g € A(£)[p]sNE for some fixed generalized ring of fractions
over T'; v denotes a string of variables of the third sort and the t; are terms of the
third sort containing no variables of sorts one or two. (Observe that the negation of
such a formula is a disjunction of such formulas.)
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For such formulas ¢, we may define £(p) to be the number of functions in the
formula that actually depend on (€, p). Writing

52(617"'757”«) and p:(pla'”apn)a

we induct on the triples (m,n, ¢), ordered lexicographically.
Let f1,..., fr be the functions that occur in ¢ and depend on (&, p). Write

fi=>_ funl"p" =D fup” € APl NE,

where fi, € ANE and f;, € A(§) NE. Applying Lemma 4.1 to f = f; yields rings
A, and elements g, € A, (€)[p]s preregular of degree (u,v).
Consider the formulas

o= €Z(f)N¢ and @u =2 € DomA,, Aep.

By Lemma 4.1(iii), ® is equivalent to the disjunction

I&peo(&,p) vV \ FEppun (€, p).

Let ¢} result from ¢q by replacing f by 0 and let goiw result from ¢, by replacing

f by fuv - guw. Note that £(py) < £(p) and £(¢),) = £(p). By induction, we may

assume that @ is of the form 3¢py;,, . Tterating this procedure reduces us to the case

that @ is of the form 3&pp, where the functions occurring in ¢ are a;(z) - fi(z, &, p),

and each f;(z,&, p) is preregular of degree (u;,v;) with fi,,, =1,1 <4 <L
Consider the Lg-formulas

4
o =@ A /\ |fivi(,§)| =1 and ;== @ A|fu, (2,8 < 1.
=1

Clearly, @ is equivalent to the disjunction

Iépeo(&,p) v\ 3eppi(, ),

and we may consider the disjuncts separately.

Case(A). — @ =3Eppi(€,p).
We have that ® is equivalent to
3Eppnt10 N fivy — pnta| = 0.

Observe that f;,, — pnt1 is preregular of degree (u;,0). Hence, after a Weierstrass
automorphism involving only the {’s, we may assume that f;,, — pn41 is regular in
&m-. (Recall that Weierstrass automorphisms preserve membership in £.) After ap-
plying Weierstrass Preparation (Theorem 3.1) to f;,, — pnt1 and Weierstrass Division
(Theorem 3.3) with divisor f;,, — pn+1 to the other functions in ®, we may assume
that all the functions occurring in ® are polynomials in &,,. We may now apply the
algebraic elimination theorem of [24] to find a formula

V=38 ... &n1ppnt1¥
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equivalent to ®. Since (m — 1,n+ 1,£(¢))) < (m,n,(p)), we are done by induction.

Case(B). — ® = 3¢ppo(&; p)-

We have that ® is equivalent to

U= 3mi1pp A = 0.

L
(H fil/i> §m+1 -1

i=1

Observe that h = (Hf:1 fivi)&m+1 — 1 is preregular of degree (> pu;,1,0). Hence
after a Weierstrass automorphism involving only &;,...,&,+1 we may assume that
h is regular in &, 41. Let f! result from f; by multiplying by (Hj# fijv; )ém+1 and
replacing the coefficient (H§:1 fivi)ém1 (of p¥#) by 1. Then each f/ is preregular of
degree (0,v;). Let ¥’ result from v by replacing each f; by f/. Then ¥ is equivalent
to U’'. After a Weierstrass automorphism among the p’s we may assume that each
flin ¥’ is regular in p,. Applying Weierstrass Preparation (Theorem 3.1) to each
f! with respect to p, and to h with respect to &1, and then Weierstrass Division
(Theorem 3.3) with divisor h, we may assume that each function occurring in ¥’ is
a polynomial in both p, and &,,+1. We may now apply the algebraic elimination
theorem of [24] to find a formula

\I’N:3517"'757?17p1a"'apn—1¢

equivalent to ®. Since (m,n — 1,£(¢))) < (m,n,€(y)), we are done by induction. O

Taking H = S(E, K) = USy, »(E, K) we obtain the following strengthened version
of the elimination theorem of [9]. Observe that in this case every (partial) function
of £(S(E, K)) is represented by a D-term (i.e., a function in the language LL, of [9]),

and conversely, as in Remark 2.3(iv).

Corollary 4.3. — FJ, admits elimination of quantifiers in the language Ls(p k). The

elimination is uniform in F and depends only on S(E, K).

Taking H = T(K) = UT,,,(K) we obtain the following quantifier elimination theo-
rem.

Corollary 4.4 (Quantifier Elimination over £(T)). — FJ, admits elimination of quan-

tifiers in the language Lg(ry)- The elimination is uniform in F and depends only
on K.

Observing that every member of £(T') is existentially definable over T gives us the
following quantifier simplification (model completeness) theorem, which provides the
basis of the theory of affinoid subanalytic sets discussed in Section 5.

Corallary 4.5 (Quantifier Simplification over T')

(i) Fp, s model complete in the language L (i).
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(ii) Buvery subset of (F;),)™ definable by an Lr(x)-formula is definable by an exis-
tential Lp(g-formula.

5. Subanalytic Sets

In this section we explain how the basic properties of subanalytic sets based on
the functions in T' = UT,, (or on any set of functions H C S, with H = A(H)) follow
from Corollary 4.5.

Definition 5.1. — Let K be a complete, non-Archimedean valued field and let H C
S = UnnSman(E,K). Let F be a complete field extending K and let F,, be its
algebraic closure. A subset X C (F:lg)m is called globally H-semianalytic iff X is
defined by a quantifier-free Ly-formula. A subset X C (Fy3)™ is called H-subanalytic
iff it is the projection of a globally H-semianalytic set (or equivalently is defined by an
existential Ly-formula). When H = T'(K) we use the terms K-affinoid semianalytic
and K-affinoid subanalytic and when H = S(E, K) we use the terms (E, K)-quasi-

affinoid-semianalytic and (E, K)-quasi-affinoid-subanalytic.
The following is a restatement of Theorem 4.2 (the Elimination Theorem).

Theoremb5.2. — Let H C S(E,K) with H = A(H). The H-subanalytic sets are
exactly the Ly-definable sets. In particular, the class of H-subanalytic sets is closed
under complementation and (metric) closure.

The following can be proved by a small modification of the arguments of [9, Sec-
tion 5] in characteristic zero. The characteristic p # 0 case requires a larger modifi-
cation. Details are given in [14].

Corollary 5.3. — Ewvery H-subanalytic set is a finite disjoint union of Fag-analytic,
H-subanalytic submanifolds.

We restate the above results in the special case that H = T(K).

Corollary5.4. — The class of K-affinoid-subanalytic sets is closed under complemen-
tation and closure.

Corollary5.5. — FEach K -affinoid-subanalytic set is a finite disjoint union of K-
affinoid-subanalytic sets which are also Fhg-analytic submanifolds. If X is such a
set, this allows us to define the dimension of X, dim X, to be the maximum dimension
of an Fug-analytic submanifold that occurs in a smooth subanalytic stratification, or
equivalently, the mazimum dimension of an Fug-analytic submanifold of X.

Remark 5.6
(i) The theory of subanalytic sets developed in [9] (and there termed rigid) is the
special case of Theorem 5.2 with H = S.
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(ii) The Lojasiewicz inequalities proved in [9] for S-subanalytic sets also hold for
‘H-subanalytic sets. This is immediate since H C S.
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QUASI-AFFINOID VARIETIES

1. Introduction

In [6], we developed the commutative algebra of rings of separated power series
and the local theory of quasi-affinoid varieties. The goal of this paper is to define the
category of quasi-affinoid varieties and to treat the basic sheaf theory. The Quasi-
Affinoid Acyclicity Theorem, the main result of this paper, is proved in Theorem 3.2.4.
This paper uses the Nullstellensatz (Theorem 4.1.1) and results from Subsections 5.3
and 5.4 of [6], and the Quantifier Elimination Theorem of [7].

Let X := Max A, where A is a K-quasi-affinoid algebra. Other than the canonical
topology on X induced by the complete, nontrivial, ultrametric absolute value | - | :
K — R,, there are two G-topologies we consider in this paper, the “wobbly” G-
topology on X and the “rigid” G-topology on X. Both of these G-topologies are based
on the same collection of admissible open sets, namely the system of R-subdomains U
of X, defined in [6, Definition 5.3.3]. By [6, Theorem 5.3.5], an R-subdomain U has a
canonical A-algebra of quasi-affinoid functions. In this manner X is endowed with a
quasi-affinoid structure presheaf Ox, which to each R-subdomain U of X, assigns the
A-algebra Ox (U) of quasi-affinoid functions on U. The fact that Ox is a presheaf is
one of the principal results of [6]. (See [6, Theorem 5.3.5 ff].)

The wobbly and rigid G-topologies on X differ, however, in the systems of admis-
sible open coverings that they assign to X. In Subsection 2.2 we define the wobbly
sheaf Wx to be the sheafification of Ox with respect to the wobbly G-topology. We
show that wobbly coverings of X (finite coverings by R-domains) are Wx-acyclic, and
give a basic finiteness theorem for the wobbly sheaves based on [6, Theorem 6.1.2].
This finiteness theorem in various guises is a key feature that appears in many of
the applications of the theory, for example the results of [7]. When X carries the
wobbly G-topology, however, morphisms of affinoid varieties Y (carrying the usual
strong affinoid G-topology) into X are not continuous (unless Y is finite), and the
quasi-affinoid structure presheaf is not a sheaf.
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The rigid G-topology on X, defined in subsection 2.3 assigns to X the largest
collection of coverings, the quasi-affinoid coverings, such that morphisms of affinoid
varieties into X are continuous. We conclude this paper, in Section 3, by proving that
any quasi-affinoid covering of X is Ox-acyclic. In particular, Ox is a sheaf for the rigid
G-topology. Thus, the category of quasi-affinoid varieties (in the rigid G-topology) is
an “extension” of the category of affinoid varieties and enjoys many similar properties
from the point of view of analytic geometry and commutative algebra. It should be
remarked that if X is affinoid (and infinite) then there is an R-subdomain U of X such
that Oaffinoid({7) £ orasi-affinid 17y 55 O« (X )-algebras, because OLs-2ffinoid 77y g
always a Noetherian ring.

In Subsection 2.1 we define the system of admissible open sets on a quasi-affinoid
variety X, and we define the quasi-affinoid structure presheaf Ox. In Subsection 2.2
we define the system of wobbly admissible open coverings of X to be finite coverings
of X by R-domains and prove various properties of the sheafification Wx of the
presheaf Ox with respect to the wobbly G-topology. In Subsection 2.3 we define the
system of rigid admissible coverings of X. This is the G-topology we adopt for the
category of quasi-affinoid varieties. We also give a simple characterization of rigid
(“quasi-affinoid”) coverings in terms of “quasi-affinoid generating systems”.

In Subsection 3.1 we give an intrinsic characterization of quasi-affinoid coverings
in terms of refinements by “closed” R-subdomains and we also prove some lemmas
about refinements of quasi-affinoid coverings by certain closed R-subdomains that will
be used in the Quasi-affinoid Acyclicity Theorem. Subsection 3.2 is devoted to the
proof of this theorem.

The remainder of Section 1 is devoted to a summary, drawn from [2] of the def-
inition of Cech Cohomology with coefficients in a presheaf and to statements of the
basic comparison theorems.

1.1. Cech Cohomology with Coefficients in a Presheaf. — Let X be a set
and let ¥ be a collection of “open” subsets of X, closed under finite intersections.
A presheaf F on X is a map from ¥ to the class of abelian groups such that for all
UcV cW €%, there is a “restriction” homomorphism F(V) — F({U) : f — flu
such that F(U) — F(U) is the identity and

SN

F(W) F(U)

commutes.
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Let 2 = {U;}ier be a covering of X by elements U; € . For (i, ...,iq) € [91,
put

q
Ui...iy = [ | Ui,
=0

The Z-module of g-cochains on 2 with values in F is

ci,F) = [  FlUi.,) q>0,
(#05-vig)ETTH
CYA, F) := (0), qg<0.

The (io,...,iq)-component of a g-cochain f is denoted fi,..i, € F(Ui,..i,). We
define the coboundary homomorphisms d? : C4(, F) — CIL (A, F) by d? := 0 if
q < 0, and for ¢ > 0,

q+1

dU(fig..igis == Z(_l)jfio...’fj...iq+1 ;

j=0 Uig...igs1

where the notation 7; means omit ;. Note that d?t! o d? =0, so C*(2, F) is a chain
complex, called the Cech complex of cochains on U with values in F. We denote the
corresponding cohomology complex H® (2L, F), where

HYA, F) := Kerd?/Imd?™".
If X € ¥, we define the augmentation homomorphism
e F(X) — Co(m»}_) cf— (f|U,i0)z‘oeI,
with image contained in Kerd®. The covering 2l is F-acyclic iff the sequence
0— FX) - 0@, F) -2 ot F) 4

is exact; i.e., iff € induces an isomorphism of F(X) with C°(2(, F) and H(, F) = (0)
for ¢ # 0. A g-cochain f is an alternating cochain iff for all permutations 7 of
{0,...,q},
fiﬂ(o)---iw(q) = (Sgnﬂ-)fioniq'

The alternating g-cochains form a submodule CZ(2A, F) of C9(A,F). As d? maps
alternating cochains into alternating cochains, the modules C%(2(, F) constitute a
subcomplex C®(2A, F) of C*(A, F) called the Cech complex of alternating cochains on
A with values in F. The corresponding cohomology modules are denoted by

HIA, F):= HY(C3(A, F)).

There is no essential difference between the complexes Ct (A, F) and C*(2, F), since
both yield the same cohomology.

Proposition 1.1.1. — The injection ¢ : C*(A,F) — C2(A,F) induces bijections
HI() : HI(A, F) = HY A, F), for all q.
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Let 2 = {Ui}ier and B = {V;},cs be T-coverings of X. Then B is a refinement
of A iff for each j € J there is some ¢ € I such that V; C U;.

Proposition 1.1.2 ([2, Proposition 8.1.3.4]). — Let A and B be open coverings which are
refinements of each other. Assume X € €. Then the covering A is F-acyclic if, and
only if, B is F-acyclic.

For the next propositions, it is convenient to define some notation. Let % = {U; }ier
be a %-covering of X and let V' € T; then
Av = {VNUtier

is a T-covering of V' which is called the restriction of 2 to V. We define the presheaf
Flv on (V,Z|y) by restricting the domain of F to Xy .

Proposition 1.1.3 ([2, Theorem 8.1.4.2]). — Assume that all coverings 2| Vi..sq ond
B

are F-acyclic. Then,

H" (A, F)= H (B, F)

Uig...ip

for all r. In particular, if X € T, the covering A is F-acylic if, and only if, B is
F-acyclic.

Proposition 1.1.4 ([2, Corollary 8.1.4.3]). — Assume that B is a refinement of A and
that Blu,, ,, s F-acyclic for all indices io, ...,y € I and for all p. Then, if X € T,
the covering U is F-acyclic if, and only if, B is F-acyclic.

Proposition 1.1.5 ([2, Corollary 8.1.4.4]). — Assume that the covering %|U'i0.,.'ip is F-
acyclic for all indices io,...,1p, € I and for all p. Then, if X € E, the covering
A x B :={U;NV;},er of X is F-acyclic if, and only if, A is F-acyclic.

jeJ

We assume that the reader is familiar with the following concepts, which can be
found in [2, Chapter 9]: G-topology ([2, Definition 9.1.1.1]); sheaf and stalks (]2,
Definition 9.2.1.2 ff]); sheafification ([2, Definition 9.2.2.1]); and locally G-ringed space
([2, Section 9.3.1]).

2. G-Topologies and the Structure Presheaf

Recall that a G-topology on a set X is determined by a system ¥ of admissible
open sets, and for each admissible open U, a system CovU of admissible coverings
of U by admissible open sets (see [2, Definition 9.1.1.1]). Let A be a quasi-affinoid
algebra (i.e., A = Sp.n/1, see [6]) and put X := Max A. In this section, we will
consider two G-topologies on X, the wobbly G-topology and the rigid G-topology.
The admissible open sets in both of these topologies will be the same, namely the
collection of R-subdomains of X. The systems of admissible open coverings, however,
will be different.
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For each R-subdomain U C X, we have shown ([6, Subsection 5.3]) that there is a
uniquely determined A-algebra Ox (U) that satisfies the Universal Mapping Property
of [6, Definition 5.3.4] and such that MaxOx(U) = U. Note that Ox(X) = A. In
fact, the Universal Mapping Property for R-subdomains ([6, Theorem 5.3.5]) shows
that Ox, so defined, is presheaf. This is summarized in Subsection 2.1.

In Subsection 2.2, we show that Ox is not a sheaf with respect to the wobbly G-
topology on X, and we discuss a few properties of its sheafification Wx with respect
to the wobbly G-topology.

In Subsection 2.3, we define the class of quasi-affinoid coverings, and the rigid
G-topology of a quasi-affinoid variety X. In particular, it is with respect to this G-
topology that we show in Subsection 3.2 that Ox is indeed a sheaf. We also define the
category of quasi-affinoid varieties and prove that fiber products and disjoint unions
exist in this category (but the disjoint union of two quasi-affinoid subdomains is not
necessarily a quasi-affinoid subdomain).

2.1. Open Sets and the Structure Presheaf. — The notion of quasi-affinoid
subdomain of a quasi-affinoid variety X was defined in [6, Section 5.3] by means of
the following universal property.

Definition 2.1.1. — Let X = Max A be a quasi-affinoid variety and let U C X. Then
U is a quasi-affinoid subdomain of X iff there is a quasi-affinoid variety Y and a quasi-
affinoid map ¢ : Y — X with ¢(Y") C U such that ¢ represents all quasi-affinoid maps
into U in the sense of [6, Definition 5.3.4].

A certain class of quasi-affinoid subdomains plays a key role in the local theory,
that is the class of quasi-rational subdomains and, by iteration, R-subdomains (see
[6, Definition 5.3.3 and Theorem 5.3.5]). Recall that if f1,..., fr, g1,...,9s, h € A
generate the unit ideal of the quasi-affinoid algebra A, then

U:={zeMaxA:|fi(z)| <|h(z)| and |g;(z)] < |h(x)],1 <i<r1<j<s}

is a quasi-rational subdomain of X = Max A; indeed the quasi-affinoid map induced
by the natural K-algebra homomorphism

(2.1.1) A_’A<£> H%H

represents all quasi-affinoid maps into U (the latter ring is defined in [6, Defini-
tion 5.3.1]). When s = 0 (i.e., when there are no ¢’s), we will find it convenient to

denote U by
f
X(=).
(i
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Other special types of quasi-rational subdomains are those of the form
X(f)={reX:[fi(x)| <1, 1<i<r}
X(fg )= {re X |fi@)| <1, lg@)] 21, 1<i<r 1<j<sh

Unlike the affinoid case, a quasi-rational subdomain of a quasi-rational subdomain of
X, although it is by definition an R-subdomain of X, need not itself be a quasi-rational
subdomain of X (see [6, Example 5.3.7]). In order to keep track of the complexity of
R-subdomains, we define the notion of level.

Definition 2.1.2. — Let X = Max A be a quasi-affinoid variety. We define the class of
R-subdomains of X of level < ¢ inductively as follows. Any quasi-rational subdomain
of X is an R-subdomain of X of level < 1. If U is an R-subdomain of X of level < £,
then any quasi-rational subdomain V' of U is an R-subdomain of X of level <+ 1.

The class of R-subdomains of X is closed under finite intersections.

Definition 2.1.3. — Let X = Max A be quasi-affinoid. By ¥, denote the system of R-
subdomains of X; note that @, X € ¥ and that ¥ is closed under finite intersection.
The elements of ¥ are the admissible open sets. Using (2.1.1) and Definition 2.1.2,
we inductively assign to each U € T a generalized ring of fractions over A, which we
denote Ox (U). The map U — Ox (U) is called the quasi-affinoid structure presheaf
on (X,%).

By [6, Theorem 5.3.5], the natural K-algebra homomorphism A — Ox (U) repre-
sents all quasi-affinoid maps into U. This has the following consequence.

Theorem2.1.4. — Ox is a presheaf on (X,%).

When U C X is an affinoid R-subdomain of X (see [6, Proposition 5.3.8)), it
follows from [6, Theorem 5.3.5] that ©3finoid(7) = @%asi=affinoid(7y) Byt taking
X := Max K (&), for example, it can easily be seen that O3ffinoid - O}uaSFam“Oid as
presheaves. Indeed, put

Ui={zxeX:|z|<1}.
Then O‘)l(‘laSi_aﬂimid(U ) = K[¢1]s is a ring of separated power series, hence is Noethe-
rian. On the other hand,

Oa;(fﬁnoid(U) _ Ein K<§1> <£1 >

B
cey/IK*>\{0}]

is not Noetherian.

In [6, Theorem 6.2.2], we showed that a quasi-affinoid subdomain V of X is a
finite union of R-subdomains Uy, ..., U, of X. The covering {U;} of V so obtained is
admissible in the sense of Subsection 2.2, but it is not, in general, a“quasi-affinoid”
covering in the sense of Subsection 2.3.
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2.2. The Wobbly G-Topology. — Recall that the intersection of finitely many
R-domains is an R-domain [6, Section 5.3]. This allows us to make the following
definition.

Definition 2.2.1. — Let A be a quasi-affinoid algebra, X := Max A. The wobbly G-
topology on X is defined by taking the admissible open sets of X to be the system of
R-subdomains of X. For each admissible open U, we take the admissible coverings of
U to be the system of all finite coverings of U by admissible open sets.

This definition admits finite coverings of X = Max A by disjoint admissible open
sets, for example, when A = T7,

Up={zeX:|z)| <1}, Uy:={zeX:|¢x)=1}

is such a covering. Moreover, the complement of any R-subdomain of X is a finite
disjoint union of R-subdomains of X by an easy extension of [6, Section 5.3]. It
follows that any wobbly admissible cover of X has a wobbly admissible refinement by
finitely many pairwise disjoint R-subdomains.

Definition 2.2.2. — Let A be a quasi-affinoid algebra, X := Max A. Define Wx, the
wobbly sheaf on X, to be the sheafification (see [2, Section 9.2.2)], with respect to the
wobbly G-topology on X, of the presheaf Ox. For each admissible open U, we have

Wy (U) =l OUy) @ -+ & O(U),

where the direct limit runs over the directed system of all (wobbly) admissible open
coverings of {Uy,...,U,} C CovU.

By the preceding remark, observe that the characteristic function of any R-subdo-
main of X belongs to the ring Wx (X); hence Wx (X) # Ox(X) when X is infinite.
In particular this shows that Ox is not in general a sheaf with respect to the wobbly
G-topology.

Proposition 2.2.3. — Let X = Max A, where A is a quasi-affinoid algebra, and let A
be a wobbly admissible covering of X, i.e., a finite covering of X by R-subdomains.
Then A is Wx -acyclic.

Proof. — Since the intersection of two R-subdomains is an R-subdomain, and since
the complement of any R-subdomain is a finite disjoint union of R-subdomains, there
is an admissible refinement B = {V;};c; of A by finitely many pairwise disjoint R-
subdomains. By Proposition 1.1.4, it suffices to prove that disjoint wobbly coverings
are universally Wx-acyclic; i.e., for each R-subdomain X’ of X, a disjoint wobbly
covering of X’ is Wx-acyclic. To see this, observe that C?(B|x, Wx) = (0) for ¢ # 0
because the elements of B|x/ are pairwise disjoint, and the map

e Wx(X') — C°(Blx , Wx) : [ +— (flv;)jes
is a bijection, by definition of Wx. O
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Remark 2.2.4
(i) The stalks of the wobbly sheaf on X agree with those of the rigid structure
presheaf: for each x € X,

Wx e = Ox,e = limOx (U).
Usx
This follows from the representation in Definition 2.2.2 of Wx (U) as a direct limit.

(ii) There is a natural map of Max Wx (X)) onto the space Cont Ox (X)) of contin-
uous valuations (for the definition of Cont Ox (X) see [4]). This is because a point of
Cont Ox (X) is uniquely determined by the collection of quasi-rational subdomains
to which it belongs. The mapping is in general not injective.

(iii) Note that if U C V are two R-subdomains of X, then the canonical restric-
tion Wx (V) — Wx(U) is surjective; i.e., Wx is a flasque sheaf in the sense of [3,
Exercise I1.1.16].

(iv) We may reformulate [6, Theorem 6.1.2] in terms of the wobbly sheaf, as follows.

Theorem. — Let 7 : Y — X be a quasi-affinoid map with finite fibers. Then the
induced morphism of sheaves on X

Wx — m Wy

(where T Wy is the direct image sheaf) is finite.

This theorem is false upon replacing W by the rigid structure presheaf O (see [6,
Example 6.1.3]). This finiteness theorem in various guises is a key feature of the
proofs of the quantifier elimination theorems of [5] and [7].

(v) Let A be an affinoid algebra of positive Krull dimension. Then the identity
map

id: SpA — Max A

is not continuous if Sp A carries the strong affinoid G-topology of [2, Section 9.1.4]
and Max A carries the wobbly G-topology induced by regarding A as a quasi-affinoid
algebra (though the inverse image of an admissible open is admissible open).

2.3. Quasi-Affinoid Coverings and the Rigid G-Topology. — In this section,
we define the weakest G-topology on X = Max A, A quasi-affinoid, such that each
R-subdomain of X is admissible open and such that each quasi-affinoid morphism
¢ Y — X, with Y an affinoid variety carrying the strong affinoid G-topology
([2, Section 9.1.4]) is continuous. Let U be an R-subdomain of X. Since ¢~ (U)
is admissible open in Y, specifying such a topology is equivalent to specifying an
appropriate system of admissible open coverings of X. We call such coverings quasi-
affinoid coverings, and we prove a simple sufficient condition for a finite covering of
X by R-subdomains to be a quasi-affinoid covering.
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Definition 2.3.1. — Let X = Max A, where A is a quasi-affinoid algebra. A covering 2
of X is said to be a quasi-affinoid covering iff A is a finite covering by R-subdomains
Uy, ...,U, such that for every quasi-affinoid morphism ¢ : ¥ — X, where Y is an
affinoid variety, the covering {¢~!(Up), ..., 1(U,)} of Y has a finite refinement by
rational subdomains of Y.

In other words, {Uy, ..., Uy} is a quasi-affinoid covering of X iff forall p : Y — X
with Y affinoid, {¢=*(Up), ..., 1(U,)} is an admissible open covering of Y, where
Y is given the strong G-topology (in the sense of [2, Section 9.1.4]). Theorem 3.1.5
gives a more intrinsic characterization of the class of quasi-affinoid coverings.

Definition 2.3.2. — Let X = Max A, where A is quasi-affinoid. The rigid G-topology
on X is defined by taking the admissible open sets to be the system of R-subdomains
of X. For each admissible open set U, we take the admissible coverings of U to be
the system of all quasi-affinoid coverings of U.

In the rest of this section, we give a simple characterization of the rigid G-topology
on a quasi-affinoid X that will be useful in Subsection 3.1, where we give a more
intrinsic characterization of the rigid G-topology.

Definition 2.3.3. — Let X be quasi-affinoid. A system {X,};es of affinoid R-sub-
domains of X (i.e., R-subdomains of X that are, in fact, affinoid, see [6, Proposi-
tion 5.3.8]) is a system of definition for the rigid G-topology of X iff for any quasi-
affinoid map ¢ : Y — X, where Y is an affinoid variety, ¢(Y) C X; for some 1.

The different representations of a quasi-affinoid algebra A as a quotient of a ring of
separated power series give (possibly different) systems of definition, as we see below.

Definition 2.3.4. — Let A = S, /I be a representation of the quasi-affinoid algebra
A as a quotient of a ring of separated power series. Put X := Max A, and for each

e € /|K\ {0}, e <1, put
¢

V4
X, = Max(Sy, /1) <%1 o %”> = Max Ty, n(€)/te(I) - T (e),

where e € K° is chosen so that ¢’ = |e| for some £ € N. (See [6, Section 3.2].) This
is the intersection of X with a closed polydisc; it is an R-subdomain of X which
is, in fact, affinoid. Note that X. depends on the representation A = S, ,/I. (For
definitions of T}, »(e) and tc(I) see [6, Section 3.2].)

We now show that {X.}.<1 is a system of definition for X.

Lemma2.35 — Let X and {X:}e<1 be as above. Then {Xc}ec1 is a system of
definition.
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Proof. — This follows from the affinoid Maximum Modulus Principle ([2, Proposi-
tion 6.2.1.4]) and from the fact that the X, are R-subdomains of X, that are affinoid.

Let ¢* : A — C be a K-algebra homomorphism, where C' is an affinoid algebra.
Put Y := MaxC. By the Nullstellensatz, [6, Theorem 4.1.1], |¢*(p;)(y)| < 1 for all
y € Y, where p; is the image of p; in Sy, /I, 1 <4 < n. By the Maximum Modulus
Principle,

*(5 —
max [[§7(p:)llsup =& < 1.

Hence ¢(Y) C X.. O

The next proposition shows that any system of definition characterizes the quasi-
affinoid coverings, hence the rigid G-topology.

Proposition 2.3.6. — Let X be quasi-affinoid and let {X;}icr be a system of definition
for X. A covering A = {Uy,...,Up} of X by R-subdomains U; is a quasi-affinoid
covering if, and only if, for each i € I, the covering {X; NUy,..., X; NUp} of the
affinoid variety X; has a finite refinement by rational domains.

Proof

(=) This is immediate.

(<) Let ¢ : Z — X be a quasi-affinoid map, with Z affinoid. We must show that
{1 (Up),...,v»"1(U,)} has a finite refinement by rational domains. For some i € I,
¥(Z) C X;, and {X; NUy,...,X; NU,} has a finite refinement by rational domains,
which we pull back to Z via . O

Remark 2.3.7. — Let {Y;}icr be a system of definition for the rigid G-topology on
X. Then by Lemma 2.3.5, {Y;};c; must be a covering of X by affinoid subdomains
because each X, C Y; for some i and {X.}.<1 coverings X. Unless {Y;};cs is finite,
however, it is not an admissible (quasi-affinoid) covering of X. And if it is finite, then
X itself must be affinoid by [6, Proposition 5.3.8].

Using the rigid G-topology of the last subsection, we now define the category of
quasi-affinoid varieties. Let ¢ : X — Y be a quasi-affinoid morphism (see Def-
inition 2.3.8, below). It follows from the definition of R-subdomain that ¢~1(U)
is an R-subdomain of X for any R-subdomain U of Y. To check that ¢ is con-
tinuous, it remains to show that if {Uy,...,U,} is a quasi-affinoid covering of ¥
then {¢~1(Uy),...,o 1 (Up)} is a quasi-affinoid covering of X. Let Z be an affinoid
variety and let ¢ : Z — X be a quasi-affinoid map. The fact that the covering
{4~ (=Y (U;))} of Z has a finite refinement by rational domains then follows from
the facts that ¥~ 1(p=1(U;)) = (p o)1 (U;), and {U;} is a quasi-affinoid covering of
Y. Note, moreover, that the induced maps ¢} : Oy, ) — Ox . of stalks are local
homomorphisms for each = € X.
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Definition 2.3.8. — Let A be a quasi-affinoid algebra and let X := Max A. The quasi-
affinoid variety Sp A is the locally G-ringed space (X,Ox), where X carries the
rigid G-topology. (The Acyclicity Theorem, Theorem 3.2.4, guarantees that Ox is
a sheaf on X for its rigid G-topology.) A morphism (X,0x) — (Y,Oy) is a pair
(p, ¢*) such that ¢* : Oy (Y) — Ox(X) is a K-algebra homomorphism and ¢ is the
map from X = MaxOx(X) to Y = Max Oy (Y) induced by the Nullstellensatz ([6,
Theorem 4.1.1]).

Fiber products and direct sums exist in this category.

Proposition 2.3.9. — The category of quasi-affinoid varieties admits fiber products;
ie, if p1: X1 — Z and 9 1 Xo — Z are quasi-affinoid morphisms, then there is a
quasi-affinoid variety X1 Xz Xo and quasi-affinoid morphisms m; : X1 Xz Xo — X;
such that, given any quasi-affinoid variety Y and morphisms 1; and « as shown, there
s a unique morphism ( that makes

X1 Xz X2
A
R NG
X, i v (2R X,
\ Joz
¥1 P2
A

commute.

Proof. — This is just the dual diagram obtained from the diagram of [6, Proposi-
tion 5.4.3]. Thus,

X1 xz X3 = Sp(Ox, (X1) ®%,(z) Ox.(X2)),

and the morphisms 7; are dual to the corresponding K-algebra homomorphisms of
(6, Proposition 5.4.3]. O

Proposition 2.3.10. — The category of quasi-affinoid varieties admits disjoint unions;
i.e., if X1 and X5 are quasi-affinoid varieties, then there is a quasi-affinoid variety
X1 I X5 and morphisms o1 : X; — X1 I Xo such that for any quasi-affinoid variety
Y and morphisms ¢; : X; — Y, there exists a unique morphism « that makes

SOCIETE MATHEMATIQUE DE FRANCE 2000



138 QUASI-AFFINOID VARIETIES

X, I Xy

o e
X1 a Xo
NP2

commute.

Proof. — This is the dual of the diagram one obtains for direct sums of quasi-affinoid
algebras (see [6, Lemma 5.4.1]). Thus

X1 1T X3 = Sp(Ox, (X1) © Ox, (X2)).

For completeness, we include the following.

Corollary 2.311. — Let ¢ : X — Y be a quasi-affinoid morphism, and let U,V be
quasi-affinoid subdomains of Y. Then U NV is a quasi-affinoid subdomain of Y and
o YU) is a quasi-affinoid subdomain of X .

Proof. — Tt suffices to note that U NV = U xy V and ¢~ }(U) = U xy X. That
the Universal Mapping Property for quasi-affinoid domains (see [6, Section 5.3]) is
satisfied is a consequence of Proposition 2.3.9. |

Unlike the situation for affinoid subdomains (see [2, Proposition 7.2.2.9]), the dis-
joint union of two quasi-affinoid subdomains may fail to be a quasi-affinoid subdo-
main. For example, take X := Sp Sy, U := Sp S1,0[{]s, V = Sp S1,0(¢"1). Then the
diagram

»

vnv X

cannot be completed as required; i.e., the closed unit disc is the set-theoretic disjoint
union of the open unit disc and an annulus, but not as quasi-affinoid subdomains.
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3. Coverings and Acyclicity

In Subsection 3.2 we prove our main theorem, that quasi-affinoid coverings are
Ox-acyclic (which has the consequence that Ox is a sheaf for the rigid G-topology
on X). The proof follows the general outline given in [2, Chapter 8] for the affinoid
case. To make it work in our context requires the characterization of quasi-affinoid
covers given in Subsection 3.1. This relies on the quantifier elimination of [7].

3.1. Refinements by closed R-subdomains. — We define a special class of
quasi-affinoid subdomains, the closed R-subdomains, that facilitate our computa-
tions and are general enough for our purposes. In Theorems 3.1.4 and 3.1.5, we give
the more intrinsic characterization of the quasi-affinoid coverings as those that have
a finite refinement by closed R-subdomains.

Definition 3.1.1. — Let X = Sp A be a quasi-affinoid variety. The class of closed R-
subdomains of X of level < /£ is defined inductively as follows. If fi,..., fn,g € A
generate the unit ideal of A, then

X (i) = MaXA<£,...,f—n>
g g g

is a closed R-subdomain of X of level < 1. If U C X is a closed R-subdomain of level
</, and V is a closed R-subdomain of U of level < 1, then V is a closed R-subdomain
of X of level < ¢+ 1. (Unlike the affinoid case, there may exist closed R-subdomains
of X of level > 1; see [6, Example 5.3.7].)

Remark 3.1.2. — Note that a closed R-subdomain U of X is relatively affinoid in the
sense that X, NU is an affinoid rational subdomain of the affinoid variety X, (defined
in Definition 2.3.4). Thus by Lemma 2.3.5, any finite covering of X by closed R-
subdomains is a quasi-affinoid (admissible) covering of X.

Our next goal is to show that a quasi-affinoid covering has a refinement by finitely
many closed R-subdomains. The first step is to prove a shrinking lemma for R-
subdomains that contain an affinoid. We recall here the definition made in [6,
Section 5.3]. Write the quasi-affinoid algebra A = S,, ,,/I, and suppose f1,..., fr,
J1,---,9s, h € A generate the unit ideal. Put X := Max A. Then

U= {z € X :[fi()] < h(x)| and |g;(a)| < |h()], 1<i<r 1<j<s)

is an R-subdomain of X of level < 1, and
_ S Ir 91 Js _
OX(U)_A<%,’% |:|:za"'7%:|:|s_sm+r,n+s/']a

where
S

Ji=1+ Z(hfm—‘,—i — fi) + Z(hpnﬂ' = 95)-
i=1

Jj=1
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Let 6 € \/|K \ {0}], say 0° = |e| for some e € K°°. We can “shrink” the R-subdomain
U to a smaller closed R-subdomain U(J) by replacing the strict inequalities |g;(z)| <
|h(x)| with the more restrictive weak inequalities |g;(z)| < d0|h(z)|; i.e., |gf(x)| <
leht(x)|. We have

Py +1 P£+
Ox(U(8)) = (Smtrinss/ ) <_ L _> |

The point here is to emphasize that U(J) is, in fact, a closed R-subdomain with
U@)cU.

This construction can be carried out for an R-subdomain U of any level. Write

OX(U) = Sm+r,n+s/Ja
where J D I is given exactly as in [6, Definition 5.3.3]. Then

o, 1 oy
U((S) = MaX(Sm+r,n+s/J) <%a EERE nT+S>

is a closed R-subdomain with U(6) C U. Note that the closed R-subdomain U (4)
may depend on the presentation of U.

Lemma3.1.3. — (In the above notation.) Let U be an R-subdomain of
X = Max Sy /1.

Suppose ¢ 1 Y — X is a quasi-affinoid morphism with Y affinoid and o(Y) C U.
Then for some § € \/|K \ {0}, § <1, p(Y) C U(9).

Proof. — Write
OX(U) = Sm+r,n+S/J7

as above, let p; be the image of p; in Ox(U), 1 <j <n+s,and let ™ : Ox(U) —
Oy (Y) be the K-algebra homomorphism corresponding to ¢. Put

5= i 16 o

By the Nullstellensatz and the Maximum Modulus Principle, 6 € +/|K \ {0}| and
0 < 1. Then oY) C U(9). O

Theorem 3.1.5 characterizes quasi-affinoid coverings in terms of finite coverings by
closed R-subdomains. For the proof of the Acyclicity Theorem of Subsection 3.2,
however, we require some precise information about the complexity of the resulting
refinements by closed R-subdomains. This is contained in Theorem 3.1.4.

Theorem 3.1.4. — A covering A = {Uy, ..., Uy} of X by finitely many R-subdomains
of level <1 is a quasi-affinoid covering if, and only if, it has a refinement by finitely
many closed R-subdomains of X of level < 1.
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Proof

(<) Immediate by Remark 3.1.2 and Lemma 2.3.5.

(=) Assume each U; is of level < 1. Let X := SpA and let A = S,,, ,/I be a
representation of A as quotient of a ring of separated power series.

Let ¢ € /|K\{0}|, e < 1, and consider the covering {X. N U;}o<i<p of the
affinoid variety X.. By assumption, this covering has a refinement by finitely many
rational domains, hence by Lemma 3.1.3, for some § € /|K \ {0} with § < 1,
{X:NU;(0)}o<i<p is a covering of X.. We may therefore define the function d(g) by

0(e) :=1inf{d € /|K \{0}] : Xc NTu(0),..., X NUp(d) covers X }.
The function §(¢) is definable in the sense of [7, Definition 2.7]. Therefore, by the

Quantifier Elimination Theorem [7, Theorem 4.2], there are ¢, eg € +/|K \ {0},
gg < 1, and a € Q such that for 1 > ¢ > €,

0(e) = ce”.

Let e € K° satisfy |e| = €f. Since §(¢) < 1, we have two possibilities.
Case (A). — lim._,1d(e) < 1.

Choose ¢ € /|K \ {0}], 6 < 1, with lim._,; 6(¢) < §. Then {Up(d),...,Up(d)} is
the desired refinement of % by closed R-subdomains of level < 1.
Case (B). — lim.;0(g) = 1.

In this case, ¢ = 1 and a > 0. Write @ = a/b, a,b € N. Since each U; is of level
< 1, we may write

N oa /i firs \ [[ 901 Gis:
Oﬂm)_A<m’”“hi>Hm“”’m]L’

where A =S, /I, as above, and

Ji = (firs s Jirs Gits - - -5 Gisy» i)
is the unit ideal for 0 <i < p.
Let p, be the image of p; in Ox(X). Define

Xj={rve X :|p;(x)

| = max [7,(x)] and [7,(w)] > o},

Note that X is covered by X., and the X;. For x € X;, we have

(3.1.1) 8o (@))) = [p; ()| < | (x)|*/* < 1.
Put
fi firs 9-% g2b- e P Pn
U{j::MaXA FEEERE) 7‘7 azlzb,..., alséb7_€’_7'.'7_ .
ha hi ~ pih; P p5 Pi pj
By (3.1.1),

{Ul;}o<i<p U{Xe, NUitocicp

1<j<n
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is a refinement of 2 that covers X because {U;}o<i<p covers X;. Since X, is affinoid
and {U; }o<i<p is a quasi-affinoid covering, there are finitely many rational subdomains
Vj of X., such that {V] }o<;<q is a covering of X, that refines { X. NU; }o<i<p. By [2,
Theorem 7.2.4.2], each Vj is of level <1 (in fact defined by polynomial inequalities).
Moreover, each U{j is of level < 1. To see this, observe first that in the definition of
U}; we may assume that ¢ = a and hence that Uj; is defined by the inequalities

| fire| < |hil E=1,....7
93k ] < |p3h?| k=1,...,s,
lel < |05
lpk] < |p;] k=1,...,n.
These inequalities are equivalent to
10§ fxh?* ™ < |p§hi| k=1,
lef&| < 1p5n| k=1,...m,
lgir] < 1p5h® k=1,...,si,
leh?®| < |p§h|
|pkp?_1h?b| < \p?h?b| k=1,...,n.

This is immediate from the fact that J; is the unit ideal and the Nullstellensatz ([6,
Theorem 4.1.1]). The functions occurring in the second set of inequalities generate
the unit ideal and thus these inequalities define U; as a closed R-subdomain of X of
level < 1. Therefore

{Ul;Yo<i<p U{Vj}o<j<q
is the desired refinement of 2l. O

In fact, the generalization of Theorem 3.1.4 to level < ¢, ¢ > 1, is true, as can
be seen by a careful examination of the proof of Theorem 3.1.5, but since we do not
need this extra information, we do not keep track of it in the proof. Though we don’t
use it, we include the following theorem which gives a complete characterization of
quasi-affinoid coverings.

Theorem 3.1.5. — A covering is quasi-affinoid if, and only if, it has a refinement by
finitely many closed R-subdomains.

Proof

(<) Immediate, by Remark 3.1.2 and Lemma 2.3.5.

(=) Let X = Max S, ,,/I and suppose Uy, . .., U, is a quasi-affinoid covering of X.
Suppose Xo, ..., X, is a covering of X by closed R-subdomains. It suffices to show
that each quasi-affinoid covering {X; N U;}o<i<p of X, 0 < j < n, has a refinement
by finitely many closed R-subdomains.
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Fix e € K°°\ {0}, and consider the following covering of X by closed R-subdomains
Xo, e ,Xni

XO::X<&’...,p_n>,
(& e

Xj:=X<i,ﬁ> . 1<j<n.
Pi Pj/1<i<n

Since X is affinoid and {U; }o<i<p is a quasi-affinoid covering of X, {Xo N U; }o<i<p
has a refinement by finitely many rational domains.
Observe that

Ox(X;) = 5m+n,n/(f + (Emripi —€)+ D (Emtirg — i),
i#]
1 < j < n. Making the substitutions p; = &n+4ip;5, ¢ # J, we may write
OX(XJ) = Sm—O—n,l/Ij’
for the corresponding ideal ;. Thus, we have reduced the theorem to the case n = 1;
ie.,
X = Max Sy, 1 /1.

Let e € \/|K \ {0}, and consider the covering { X.NU; }o<i<p of the affinoid variety
X.. By assumption, this covering has a finite refinement by rational domains, hence
by Lemma 3.1.3, for some § € /|K \ {0}, 6 <1, {X.NU;(d)} is a covering of X..
We may therefore define the function é(¢) by

0(e) :=1inf{d € /|K \{0}] : Xc NTu(0),..., X NUp(d) covers X }.
The function §(e) is definable in the sense of [7, Definition 2.7]. Therefore, by the

Quantifier Elimination Theorem [7, Theorem 4.2], there are ¢, g9 € +/|K \ {0},
go < 1, and a € Q such that for € > &,

0(e) = ce”.
Since §(e) < 1, we have two possibilities.
Case (A). — lim._1d(e) < 1.

Choose 6 € /K \{0}], § < 1, with lim._,1 6(¢) < 6. Then {Up(d),...,Up(d)} is
the desired refinement of {U;}.

Case(B). — lim._.; d(c) = 1.

In this case ¢ = 1 and a > 0. Write o = a/b, a,b € N. Let p; be the image of p;
in Ox(X). When |5, (z)| > €9, we have
3(py(@)]) = 1Py ()| < |py ()| **" < 1.
Write
OX(Ui) = Sm—i—m,l—‘—si/‘]ia
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where J; is determined according to [6, Definition 5.3.3]. Put
Uj = Max Smri+1+4s;,145:/ 5,
where

Ji =T+ (prbmtritr = €0) + (01 &mtrit1+s — P1h)-
j=1

Put
Jz‘H = Smtrit1tsi,1 N Jz‘l-
By inspection,
Uz/ = Max Sm+7’i+1+5i71/‘]’iﬁ

is exactly the closed R-subdomain obtained from U; by replacing each strict inequality
|f] < |g| that occurred in its definition by the weak inequality |f| < |p1|*/?"|g|. Now,
{U/}o<i<p U{X:, NUi}o<i<p is a refinement of {U; }o<i<p. As above, we find a refine-
ment of the covering {X., N U, }o<i<p of the affinoid variety X, by rational domains
{V;}o<j<q. Finally {U}o<i<p U {V]}o<j<q is the desired refinement of {U;}o<i<p by
closed R-subdomains of X. O

Theorem 3.1.4, together with the following lemmas, provide the successively sim-
pler refinements of a quasi-affinoid covering that are required to prove the Acyclicity
Theorem of the next section.

Definition 3.1.6. — Let A be quasi-affinoid, X := Max A. A rational covering of X is

a C()Verlng ()f the f()rm
? ? 1<i<n

where f1,..., fn € A generate the unit ideal. Clearly, any rational covering is quasi-
affinoid.

Lemma3.1.7. — Any finite covering of X by closed R-domains of level < 1 has a
refinement which is a rational covering.

Proof. — Exactly as in [2, Lemma 8.2.2.2]. O

Definition 3.1.8. — Let A be quasi-affinoid, X := MaxA. Let f1,...,fn, € A. A
Laurent covering of X is a covering of the form

{X(flal7 vy fy?n)}(al,...,an)e{l,—l}"'

Any Laurent covering is quasi-affinoid.

Lemma3.1.9. — Let A be a rational covering of X. Then there is a Laurent covering
B of X such that for each V. € B, the covering |y is a rational covering of V.
generated by units f1,..., fn of O(V) such that there are Fy,...,F, € Ox(X) with

Proof. — As in [2, Lemma 8.2.2.3]. O
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Lemma3.1.10. — Let A be a rational covering of X generated by units of Ox(X).
Then there is a Laurent covering B which is a refinement of .

Proof. — As in [2, Lemma 8.2.2.4]. O

3.2. The Quasi-Affinoid Acyclicity Theorem. — The Quasi-affinoid Acyclicity
Theorem, Theorem 3.2.4, is the main result of this paper. It follows immediately that
the quasi-affinoid structure presheaf Ox is a sheaf for the rigid G-topology of the
quasi-affinoid variety X.

Lemma3.2.1(cf.[9]). — Let X = Max A be quasi-affinoid and let f € A. Then the
covering A :={X(f), X(fH} of X is Ox-acyclic.

Proof. — We follow [2, Section 8.2.3], which treats the affinoid case. Since there are
only two open sets in 2, the alternating Cech cohomology modules C9(2, Ox) = (0)
if ¢ # 0,1. Thus, by Proposition 1.1.1, it suffices to prove that the sequence

0 — Ox(X) -5 CO3, 0x) L CL@A,0x) — 0
is exact, where the augmentation homomorphism ¢ is defined by
e(9) = (9lx(s) 9lxs-1))-
Since A = Ox(X), the above sequence may be written
0 — A= Af) x AU 5 AU ST — 0,
where ¢ is induced by the canonical inclusions of A in A(f) and A(f~1), and

d(g0,91) = g1 — go-

Let n and ¢ be indeterminates. It is sufficient to establish the exactness of the following
commutative diagram.
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0 0
(€~ DAWQ) x (1— f)Aln) o (¢~ DAY —— 0
0 At A(Q) x Afn) A ATy 0

The map ¢ : A — A(¢) x A(n) is the canonical injection, \ is determined by

Az A(C) x A(n) — A(G, ¢ = (ho(€), ha(n) — ha (¢ = ho(C),
and ) is induced by .
The columns are exact because
A(f) = AQ/C— 1), AN =AW/~ fn),
A(f, f71) = A D /(C = 1)

To check the exactness of the first two rows, we require the direct sum decomposition

(3.2.1) AQ) @ CTHA(CTT) = AT = A/ (Cn - D).
This follows from the fact that for any complete quasi-Noetherian B-ring B C K°,
we have the direct sum decomposition of B(&1,...,&m)[p1s- - -, pn]-modules

B<§17'"7£m+2>|1p1a'~'7pn] :M®N7

( Z auyé‘”) }

v Hm42> Hm41

N := {Zp” ( Z a,wg") } .
v P42 <Mm+1

where

=

[
(]
bt
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This decomposition induces the corresponding decomposition on Sy,42,,, which, in
turn, induces the decomposition (3.2.1). From (3.2.1), we obtain

C=NAGCH == NAO @A - FCHAKCT.
This yields the surjectivity of A" and (3.2.1) yields the surjectivity of A. In particular,
the first row is exact. To check the exactness of the second row, note that

MDD oaid,d bin' | =) b =D il =0
i>0 i>0 i>0 i>0
if, and only if, a; = b; = 0 for i > 0 and ag = by (see the discussion following [6,
Definition 5.2.7]).

To see that € is injective, let g € A, g # 0. Then, since being 0 is a local property,
there is some maximal ideal m of A such that the image of g in the localization Ay
is not zero. Thus, by the Krull Intersection Theorem [8, Theorem 8.10], the image of
g in the completion Ay, is not zero. Since {X(f), X(f~1)} covers X, the conclusion
follows from [6, Proposition 5.3.6 (ii)]. Now, by some diagram-chasing, the third row
is exact. |

Corollary 3.2.2. — Let X = Max A be quasi-affinoid, then any Laurent covering (see
Definition 3.1.8) of X is Ox-acyclic.

Proof. — Use Lemma 3.2.1 and apply Proposition 1.1.5 inductively. O

In fact, the rest of the proof of the Ox-acyclicity of quasi-affinoid coverings holds
in greater generality.

Proposition 3.2.3. — Let F be a presheaf on the quasi-affinoid variety X . Assume that
Laurent coverings are universally F-acyclic on X; i.e., that for each R-subdomain
X' C X, all Laurent coverings of X' are F-acyclic. Then all quasi-affinoid coverings
of X are F-acyclic.

Proof. — The proposition is proved by induction on the complexity of the quasi-
affinoid covering, after successive simplifications.

Claim (A). — Rational coverings (see Definition 3.1.6) generated by invertible func-
tions are universally F-acyclic.

By Lemma 3.1.10, such a covering is refined by a Laurent covering. Apply Propo-
sition 1.1.4.

Claim (B). — Rational coverings are universally F-acyclic.

Let A be a rational covering. By Lemma 3.1.9, there is a Laurent covering 8 such
that for each V' € 9B, the covering 2|y is a rational covering of V' generated by units
of Ox(V), hence is F-acyclic by Claim A. For U € 2, B|y is a Laurent covering,
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hence by assumption is F-acyclic. Since B is F-acyclic by assumption, the claim
follows from Proposition 1.1.3.

Claim (C). — Cowverings by closed R-domains of level < 1 are universally F-acyclic.

Let A be such a covering. By Lemma 3.1.7, 2 has a rational refinement, 5. Now
Claim C follows from Claim B and Proposition 1.1.4.

Claim (D). — Quasi-affinoid coverings by R-domains of level < 1 are universally F-
acyclic.

Let 2 = {Uy,...,Up} be such a covering. By Theorem 3.1.4, 2 has a refinement
B by finitely many closed R-subdomains of level < 1. For each Uj,. ;,., and each
T, %|Ui0.,.'ir is a covering of U;,. ,, by finitely many closed R-subdomains, which, as
subdomains of Uj, .. 4, have level < 1. Therefore Claim D follows from Claim C and
Proposition 1.1.4.

We now conclude the proof of the theorem.

Let 2l = {Uy,...,U,} be a quasi-affinoid covering of X. We say that A is of type
<, j)iff Uy,...,U; are of level < ¢+ 1 and Ujyq,...,Up are of level < Z.

Order the types lexicographically. We prove the claim by induction on (¢, j). When
¢ =1, 7= -1, this is Claim D. Suppose the claim holds for quasi-affinoid coverings
of type < (¢, 7), and let

B ={Uo,....Uj, Uy, Upsz,.... Up}

be a quasi-affinoid covering of type < (¢, + 1). Now, since Uj’v+1 is of level < £+ 1,
there is an R-subdomain Uj4 of level < £ such that U J’ +1 CUjp1and U J’ 41 is of level
< 1in Uj4;. Consider the covering

A = {UO,...,UJ'+1,-~-7U;D}7

which is a quasi-affinoid covering of type < (¢, j), hence by the inductive hypothesis
is F-acyclic.

To apply Proposition 1.1.4, we consider the coverings 8
j+1,then Uy, ;. C Ui, and Bly,, .., is refined by the trivial covering {Uiy...i, y1NU;..
In this case, %|U¢O..% is F-acyclic by Proposition 1.1.2 since the trivial covering is
JF-acyclic. It remains to consider the covering

%|U]._*_1 = {Uj—i-l NUy,.. .,Uj+1 N Uj, Uj/v_._l, Uj+1 N Uj+2, ceey Uj+1 N Up}.

Uiy...i,- 1f some index is #

This is a covering of Uj41 of type < (¢, j), which is F-acyclic by the inductive hy-
pothesis. Now, since 2 is F-acyclic, 8 must also be F-acyclic by Proposition 1.1.2.
To finish the proof, note that any quasi-affinoid covering of type < (¢ 4+ 1,—1) is of
type < (¢, p) for some p. O

Theorem 3.2.4 (Quasi-Affinoid Acyclicity Theorem). — Let X be a quasi-affinoid va-
riety. Any quasi-affinoid covering of X is Ox-acyclic.
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Proof. — This is an immediate consequence of Corollary 3.2.2 and Proposition 3.2.3.
O

Corollary 3.25. — Let X be a quasi-affinoid variety. Then Ox is a sheaf with respect
to the rigid G-topology on X.
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A RIGID ANALYTIC APPROXIMATION THEOREM

Zachary Robinson

1. Introduction

The main result of this paper is Theorem 5.1, which gives a global Artin Approx-
imation Theorem between a “Henselization” H,, , of a ring T}, of strictly conver-
gent power series and its “completion” S,, ,,. These rings will be defined precisely in
Section 2

A normed ring (A,v) is a ring A together with a function v : A — Ry such that
v(a) =0 if, and only if, a = 0; v(1) = 1; v(ab) < v(a)v(b) and v(a + b) < v(a) + v(b).
For example, when K is a complete, non-Archimedean valued field, the ring

K{&,....&6m) = {Zaugﬂ lay] — 0 as |,u|=,u1—|—...um—>oo}

of strictly convergent power series endowed with the Gauss norm

HZauf”H ‘= max |a,|
o

(see [6] or Section 2, below) is a complete normed ring. Another example may be
obtained by endowing a Noetherian integral domain A with the I-adic norm induced
by a proper ideal I of A.

An extension A C A of normed rings is said to have the Approximation Property
iff the following condition is satisfied:

Let fy,...,fr € A[X1,...,X;] be polynomials. For any i1,...,%s € A such that
f(&@) = 0 and for any € > 0, there exist x1,...,xs € A such that f(z) = 0 and
maxi<;<s U(j?i — 1‘1) < E.

Let C[¢] be the ring of formal power series and C{¢} the ring of convergent power
series in several variables £, with complex coefficients. The prototype of the result
proved in this paper is the theorem of Artin [1] that the extension C{{} C C[[¢]] has
the Approximation Property with respect to the (£)-adic norm, which answered a
conjecture of Lang [9].
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In [4], Bosch showed that the extension K((¢)) C K(£) has the Approximation
Property with respect to the Gauss norm, where K((£)) denotes the ring of overcon-
vergent power series

K({(¢) = {Zaﬂf” € K[&1,...,&m] : for some g > 1, ‘ l‘im la, |l = 0},
n|—oo

and K (£) is the ring of strictly convergent power series defined above. (In fact, Bosch’s
result is much stronger.) From this result, he recovered the result of [5] that K((¢))
is algebraically closed in K(£), which generalized [15].

In this paper we prove another approximation property possessed by the rings of
strictly convergent power series. Namely, the extension H,, , C Sy, (for definitions,
see Section 2, below) has the Approximation Property with respect to the (p)-adic
norm (Theorem 5.1, below). From Theorem 5.1 it follows that H,, ,, defined as a
“Henselization” of the ring Tp4n = K{(&1,...,&m; p1,- -+, Pn), is in fact the algebraic
closure of Ty, 4rn in the ring Sp,, = K(§)[p]], of separated power series (see [11,
Definition 2.1.1]). Moreover, from Theorem 5.1 and the fact that the Sy, ,, are UFDs,
it follows that the H,, , are also UFDs.

The following is a summary of the contents of this paper.

In Section 2, we define the rings H,, ,, of Henselian power series. We also summarize
(from [11]) the definition and some of the properties of the rings Sy, of separated
power series.

In Section 3, we use a flatness property of the inclusion of a Tate ring T}, into a
ring Sy, n, together with work of Raynaud [13], to deduce a Nullstellensatz for H,, .

In Section 4, we show that H,, , is excellent and that the inclusion H,,, —
Sm,n is a regular map of Noetherian rings. We define auxiliary rings H,, (B, €) and
Sm.n (B, €) that in their (p)-adic topologies are, respectively, Henselian and complete.
The inclusion H,, (B, &) — Simn(B,€) is a regular map of Noetherian rings. These
auxiliary rings play a key role in the proof of the Approximation Theorem.

Section 5 contains the proof that the pair Hy, , C Spm,n has the (p)-adic Approx-
imation Property. The proof uses Artin smoothing (see [14]) and the fact that the
rings Hy, n(B,€) C S n(B, ) have the (p)-adic Approximation Property.

I am happy to thank Leonard Lipshitz, who posed the question of an Approxi-
mation Property of the sort proved in this paper, and Mark Spivakovsky for helpful
discussions.

2. The Rings of Henselian Power Series

Throughout this paper, K denotes a field of any characteristic, complete with
respect to the non-trivial ultrametric absolute value || : K — R,4. By K°, we denote
the valuation ring of K, by K°° its maximal ideal, and by K the residue field. For
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integers m,n € N, we fix variables £ = (&1,...,&n) and p = (p1,...,pn), thought
(usually) to range, respectively, over K° and K°°.

Let E be an ultrametric normed ring, let E[[£]] denote the formal power series ring
in m variables over E, and by F{(¢) denote the subring

E(€):=Sf= Y a"cE[¢: lim a,=0

— 00
LN ]

The ring K() is called the ring of strictly convergent power series over K, which we
often denote by T},. The rings T, are Noetherian ([6, Theorem 5.2.6.1]) and excellent
([3, Satz 3.3.3] and [8, Satz 3.3]). Moreover, they possess the following Nullstellensatz
([6, Proposition 7.1.1.3] and [6, Theorem 7.1.2.3]): For every 9t € Max T,,, the field
Ty /9M is a finite algebraic extension of the field K. Let |-| denote the unique extension
of the absolute value on the complete field K to one on a finite algebraic extension
of K, and by ~ denote the canonical map of a ring into a quotient ring. Then the
maximal ideals of T}, are in bijective correspondence with those maximal ideals m of
the polynomial ring K[¢] that satisfy }Ez{ <lin K[§]/m,1<i<m,viamem-Tp,.
Moreover, any prime ideal p € SpecT,, is an intersection of maximal ideals of Ty,.
There is a natural K-algebra norm on T,,, called the Gauss norm, given by

I Z a, || == max |a,|.

I—LGNm ueNﬂl
Put
T, = {feTn:|fll<1},
Ty = {feTn:fll <1},
T = T5)T3° =KI¢].

The rings T, are the rings of power series over K which converge on the “closed”
unit polydisc (K°)™.

The rings Sy, of separated power series (see [10], [11] and [2]) are rings of power
series which represent certain bounded analytic functions on the polydisc (K°)™ x
(K°°)™. When the ground field is a perfect field K of mixed characteristic, there is
a complete, discretely valued subring £ C K° whose residue field E = K. Then an
example of a ring of separated power series is given by

where & is the complete tensor product of normed E-modules (see [6, Section 2.1.7]).
Clearly Ty4+n C Sm,n. In this paper S, , plays the role of a kind of completion of
Tontn-
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In general the rings of separated power series are defined by

Sm,n = K ®ko S;)n,n - K[[f,p]] )
Spn = lm BE)[pll,
Be®B

where 9B is a certain directed system (under inclusion) of complete, quasi-Noetherian
rings B C K°. (For the definition and basic properties of quasi-Noetherian rings, see
(6, Section 1.8].) The elements B € B are obtained as follows. Let E be a complete,
quasi-Noetherian subring of K°, which we assume to be fixed throughout. When
Char K # 0, we take E to be a complete DVR. (If, for example, K is a perfect field
of mixed characteristic, we may take F to be the ring of Witt vectors over K .) Then
a subring B C K° belongs to B iff there is a zero sequence {a;}ien C K° such that
B is the completion in |-| of the local ring

Elai i € N]ye pra,ienyipi=1y -

It follows from the results of [6, Section 1.8], that each B € B is quasi-Noetherian; in
particular, the value semigroup |B \ {0} C R4 \ {0} is discrete. It is easy to see that
B forms a direct system under inclusion and that h_H)lBe ® B = K°. Furthermore,
for a fixed ¢ € K°\ {0} and for any B € B, there is some B’ € 9B such that
K°ne~!'.B C B’; indeed, this is an immediate consequence of the fact that the ideal
{b € B:|b <le|} C B is quasi-finitely generated. It follows that Ty, +n, C Spm.pn, and
Sm,0 = Tim.

By B denote the residue field of the local ring B. If E = K, then B = K for all
B € 9. In any case, {E} Bes forms a direct system under inclusion and lim B=

K. We will need certain residue modules obtained from an element B € B. Since
the value semigroup of B is discrete, there is a sequence {bp}pen C B\ {0} with
|B\ {0} = {|bp|}pen and 1 = |bg| > |b1]| > - --. The sequence of ideals

By:={a€B:|a| <|bl}, peN,

is called the natural filtration of B. For p € N, put Ep = p/BpH; then B = Eg CK.
By ~: K° — K denote the canonical residue epimorphism. Then for p € N, we may
identify the B-vector space Ep with the B-vector subspace (b,'By)~ of K via the
map (a + Byy1) — (b, 'a)~. This yields a residue map

Tp: By — B, CK:a— (b, a)~.
When p > 0, the above identification of Ep with a B-vector subspace of K is useful,

though not canonical.
There is a natural K-algebra norm on S, ., also called the Gauss norm, given by

IS autis?] o maxla.)
,U«GN'” KoV
veN”
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We have Sy, , = {f € Sm.n : [|fl| <1}, and, unless K is discretely valued, this ring
is not Noetherian. Put

Soon = Af €Smm:|fl <1}, and
gm,n = Sz’b,n/sfrf,n = hl}l’l E[f] [[p]] :
Be®B

Note that if E = K then S,,, = K[¢][[p]. In any case, by [11, Lemma 2.2.1], S,
is Noetherian, (p) - Sp.n C rad S, and K [€][[p], the (p)-adic completion of S,, ,, is
faithfully flat over gm,n. It follows by descent that §m,n is a flat fm,n—algebra.

We recall here some basic facts about the rings S, ,. The rings S, , are Noetherian
([11, Corollary 2.2.4]). Moreover, let M C (Sy,n)" be an Sy, ,-submodule, and put

M® = (S5,,)" O M, M® = (S2,)" N\ M, M :=M°/M* C (Spn)"

Lift a set g1,...,9gs of generators of M to elements g1,-..,9s of M°. Then for every
f € M, there are hy,...,hs € Sy, such that

f= ;higi and  max ||l = [I£];
in particular, g1, ..., gs generate the Sy, ,-module M*° ([11, Lemma 3.1.4]). Note that
the above holds also in 15, = S, 0.

The rings S, , satisfy the following Nullstellensatz ([11, Theorem 4.1.1]): For
every MM € Max Sy, n, the field Sp, /9 is a finite algebraic extension of K. The
maximal ideals of S,,, are in bijective correspondence with those maximal ideals
m of K[¢,p] that satisfy |Zz| <1, ﬁj| <1lin K[§pl/m, 1 <i<m, 1<j<n,
via m — m- Sy, ,,. Moreover, any prime ideal of S,, , is an intersection of maximal
ideals. It follows that 15,4 NI € Max T}, 4y, for any MM € Max Sy, . Finally, for
any M € Max Sy, , the natural inclusion 73,4y, — Sm,» induces an isomorphism

~

(Tm+n); - (Smw)g);7

where m := T, 1, NN and ~ denotes completion of a local ring in its maximal-adic
topology ([11, Proposition 4.2.1]). Since S, , is Noetherian, it follows from [12,
Theorem 8.8] by faithfully flat descent that Sy, ., is a flat T}, 4,-algebra.

Definition 2.1. — The ring A,, , (n > 1) is given by
Amn =K QKo A7, ,, C Smn, A, = (Tﬁm+n)1+(p) C S
We have A5, ,, = {f € A : ||f]| <1} Put
A = S € A 1 <0 A= 45,0/ A0 = (Ton)

Note that (p) - A7,,, C rad A7, . By [13, Chapitre XIJ, there is a Henselization

m,n

(Hp, > (p)) of the pair (A7, .. (p)), but unless K is discretely valued, Hy, , is not

,n
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Noetherian. Finally, the ring H,, ,, of Henselian power series is defined by

Hypn = K ©e H, ,

3. Flatness

In this section, we show that H,, , is a regular ring of dimension m + n and that
H,, ., satisfies a Nullstellantz similar to that for S, ,. The main result is Theorem 3.3:
the canonical A, ,-morphism H,, , — Sy, is faithfully flat.

The next lemma will allow us to effectively apply the results of [13].

Lemma3.1l. — The following natural inclusions are flat.
(1) T7C7)l+n

(i) A7

m,n

Sm n-

- S7on n*
(il) Amn — Smon-
Moreover, the maps in (ii) and (iii) are even faithfully flat.

Proof. — Suppose we knew that T ., — Sy, , were flat; then since (p) - S, ,, C
rad Sy, ., also Ay, — S5 would be flat by [12, Theorem 7.1]. The induced map

K(§) =A%/ (p) — Spn/(p) =

m.n» it follows that no maximal ideal of
hence A2 =~ < S°  is faithfully flat by

mn’ m,n m,n

is an isomorphism. Since (p) A? ,, C rad A?

Ay, can generate the unit ideal of Sy

[12, Theorem 7.2]. This proves (ii).
By faithfully flat base-change

Am,n =K R Ko Afm (K R Ko A ) ®A° anm = Sm,n

is faithfully flat. This proves (iii).
It remains to show that 777 ., — Sy, is flat.

Claim (A). — Let M C (T,,)" be a T,,-module, and put
M :=(Tp) " NnM, M°* :=(T>)" NM, M= M°/M®° C (Tm)r.

Suppose g1,...,gs € M generate the T,,-module M, and find g1,...,9s € M° that lift
the g;. Put

{(f17~-~7fs Zflgz— }7
{(f17~-~7fs Zflgi—O}

Then N' = N.
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Clearly, N C N'. Let f = (f1,...,fs) € N" and find h = (hy, ..., hs) € (T2)* that
lifts f Since H ZhigiH < 1, and since the g; generate ]\7, by [11, Lemma 3.1.4],

i=1

there is some k' = (h),...,h.) € (T'°°)® such that
1 s m
>_higi= ) higi.
i=1 i=1

Put f :=h— h'; then f € N° and f lifts f. This proves the claim.

Claim (B). — Let M C (Tyutn)" be a Tyyipn-module and put L := M-Sy, C (Spn)"-
Then L° = M°- 57, .

Find generators gi,...,gs of M and, using [11, Lemma 3.1.4], lift them to gener-
ators gi,...,gs of the Ty, -module M°. Let N and N’ = N be the corresponding
modules, as in Claim A. (It follows from [11, Lemma 3.1.4], that N° is a finitely
generated T2 . -module.) Suppose f1,..., fs € S, ,; by [11, Lemma 3.1.4], we must

m-+n m,n’

find elements hq, ..., hs of S;j%n such that

S s .
;figi = Zhigi and 121?%(5”}11“‘ < ||;flgl||

i=1

For this, we may assume that

(3.) s 15> I3 f > .

Let B € B (see Section 2 for the definition of ®8) be chosen so that fi,..., fs €
B&)pll, 91,---,9s € (B, p))", and (B(, p))° contains generators of the T3, -
module N° (hence by Claim A, (BIE, p])® contains generators of N'). Since the
value semigroup |B\ {0}| € R4 \ {0} is discrete, it suffices to show that there are

hi,..., hs € B(E)[p] with

(3.2) Zl figi = Zl hi;g; and 112%)2 1Rl < lrg%xs I fill -

Let B = By D By D --- be the natural filtration of B and find p € N so that
(fr,-- fs) € (Bp&) Io])” \ (Bp+1(&) [[o]])°-

By m, : B, — Ep C K denote the B-module residue epimorphism a — (b,'a)” and

write K = Ep @ V for some B-vector space V. By (3.1), > mp(fi)gi = 0. Since
K¢, p] < Sm.n is flat (see Section 2), by [12, Theorem 7.4(i)],

(Wp(fl)v .- ‘77Tp(fs)) EN'- gm,rp
Since

K[€)e] = B, [€][o] © VIl ]
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158 A RIGID ANALYTIC APPROXIMATION THEOREM

as BI€][[p]-modules, and since (B[¢, p])® contains generators of N', we must have

(rp(f1), - mplf)) € ((Ble.ol) O N') - Bylé) o] -
Thus by Claim A, there is some (f1,..., f2) € (Bp(&)[p]])® such that

> flgi=0 and f;—fl€By(&)[p], 1<i<s.
i=1
Putting h; := f; — f!, 1 <i < s, satisfies (3.2). This proves the claim.
Now let gl,...,greT and put

m+n

Mi={(f1,. - ) € (Tosn)" Zfzgz—o}

N::{(fla"‘afr Zfzgz_o}

By [12, Theorem 7.6], to show that )9, — So

m—+n m,n
Me - Sp, . But since Tynypn — Smy is flat (see Section 2,) this is an immediate

consequence of Claim B. O

is flat, we must show that N° =

By [13, Exemple XI.2.2], the pairs (B{(¢)[p]l, (p)) are Henselian. Since the pair
(Spm» (p)) is the direct limit of the Henselian pairs (B(£) [o] , (), B € B, it follows
[13, Proposition XI1.2.2] that (Sy,,,,(p)) is Henselian. By the Universal Mapping
Property of Henselizations ([13, Definition XI.2.4]), it follows that there is a canonical
Ay, n-algebra morphism Hp, . — S5, ,. We wish to show that this morphism is
faithfully flat. It then follows from [12, Theorem 7.5], that, in particular, we may
regard Hp, ,, as a subring of 57, ,

Lemma 3.2 (cf. [13, Proposition V11.3.3]). — Let (A, I) be a pair with I C rad A. Then
the following are equivalent:

(i) (A,I) is Henselian.

(ii) If (B, J) is a local-étale neighborhood of (A,I), then A — E is an isomorphism.

Proof

(ii)=-(i). Let (A’,I') be an étale neighborhood of (A,I). By [13, Proposi-
tion XI.2.1], we must show that there is an A-morphism A" — A. Put E := A}_,,
J = I'- E; then (E,J) is a local-étale neighborhood of (A4,I). Hence the map
¢ : A — FE is an isomorphism, and the composition

-1
A=A, =EX> A

is an A-morphism, as required.

(i)=(ii). Let (£, J) be a local-étale neighborhood of (A, I); then there is an étale
neighborhood (A’, I’) of (A,I) such that £ = A}, ;, J = I'- E. By [13, Proposi-
tion XI.2.1], there is an A-morphism ¢ : A" — A. Since ¢(I') =1 C rad A, ¢ extends
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to an A-morphism ¢ : F — A, and we must show that Kert¢ = (0). For this, it
suffices to show that the image of Ker in E, is (0) for every maximal ideal n of E.
Let n € Max E; then there is some m € Max A such that n = ¢~!(m). (Indeed,
since J C ¢~1(I), v induces an A-morphism
A/ I=AI'~E/J] — A/,
which must be an isomorphism; but J C rad E and I C rad A.) It therefore suffices
to show for each m € Max A that the map

A:n/ — Al‘l‘l

induced by ¢ is an isomorphism, where m’ := p~!(m).
We now apply the Jacobian Criterion ([13, Théoreme V.2.5]). Write

A/:A[Yl,...,YN]/Cl

for some finitely generated ideal a of A[Y'], and by b denote the inverse image of Ker ¢
in A[Y]. Then a C b. Let m € Max A, put m’ := ¢~ !(m) and let 9 be the inverse
image of m’ in A[Y]. We conclude the proof by showing that a- A[Y] = b- A[Y]yy,.

Since A’ is étale over A, there are fi,..., fy € a such that the images of f1,..., fn
in A[Y]y, generate a- A[Y ]y, and det (0f;/0Y;) ¢ M. Then since fi,..., fy € b and
since A[Y]/b = A is étale over A, the images of f1,..., fx in A[Y]y, also generate
b-AlY]gy;ie, a- A[Y]gy = b A[Y]gy. O

Theorem3.3. — The canonical A3, ,,-morphism Hp, . — Sp, . is faithfully flat; it

m,n

follows by faithfully flat base-change that Hy, ,, — Sy n 1S also faithfully flat.

Proof. — Tt suffices to prove that Sp, | is flat over Hy, .. Indeed, since (p) - Hp, ,, C
rad Hy,

m,n>’

and since the induced map

K°(§) = Hy, . /() — S0/ (p) = K°(8)

is an isomorphism, this is a consequence of [12, Theorem 7.2].

Now, Hp, ,, is a direct limit of local-étale neighborhoods (E,I) of (A7, ., (p)) by
[13, Théoreme XI.2.2]. Therefore, it suffices to show that the induced map £ — Sp,
is flat.

Since by Lemma 3.1 S7, ,, is a flat A7, , -algebra, the map
E— (S;;,n ®aq, E)i+(p)
induced by 1 ® id is flat. It therefore suffices to show that the map
w: (Spn®ae  E)iyp) — S

induced by > f; ® g; — > fig; is an isomorphism.
Now, since (Sg, .., (p)) is a Henselian pair, by Lemma 3.2, it suffices to show that

m,n?’

((Spn ®as . E)i4(p),J) is a local-étale neighborhood of (S, ,,,(p)), where J :=
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(p) - (Spun ®ac, . E)14(p)- For some étale neighborhood (E',I") of (A7, ., (p)), we
have
(B, D) = (Evypn I Eryp),
where I’ = (p) - E'. Since localization commutes with tensor product, it suffices to
show that
(Spn @23, E',(p) - (S50 ®ag, , E'))

is an étale neighborhood of (S5, ,,,(p)). But this is immediate from [13, Proposi-
tion 11.2]. O

From now on, we regard H,, ,, as a subring of S, . In particular, the Gauss norm
II]| is defined on Hiy, .-

Corollary34. — HY, . ={f € Hpn: ||f| <1}

Proof. — We must show that Hp, , = S5, |, N Hpy, . Clearly, Hy, , C S5, N Hp, p;
we prove D. Let f € Sy, , N Hp, »; then for some e € K°\ {0}, ef € Hy, ,,. But by
[12, Theorem 7.5], eHp, ,, = Hp, ,, NeSy, .. It follows that f € Hy, .. O

Since Sy, r, is a faithfully flat H,, ,,-algebra, any strictly increasing chain of ideals of
H,, » extends to a strictly increasing chain of ideals of S, ,,. Since Sy, r, is Noetherian,
we obtain the following.

Corollary 3.5. — H,, , is a Noetherian ring.

Theorem 3.3 on the faithful flatness of Hp, , — Sy7, ., allows us to pull back to

H,, , information from S, , on the structure of maximal ideals and completions
with respect to maximal-adic topologies.

Corollary 3.6 (Nullstellensatz for H,, ,,). —For every m € Max H,, ,,, the field Hm,n/m
is a finite algebraic extension of K. The mazimal ideals of H,, , are in bijective
correspondence with those mazimal ideals n of K[&, p] that satisfy

P <1, 1<i<m, 1<j<n

mn K[f,,o]/n via the map n — n- Hy, ,. Moreover, each prime ideal of Hy, , is an
intersection of mazximal ideals.

Proof. — Let n € Max K[, p] satisfy (3.3), and put m :=n- Hy, p, M :=n- S, .
Since Hp, 5, — Sm,n is faithfully flat, m = H,, , N 9; hence Hm,n/m — Sm,n/im is
injective. Since K C Hy, p and Sy, /9N is a finite algebraic extension of K, by [12,
Theorem 9.3], m € Max H,,, ,,. Moreover, H,, ,, /m is a finite algebraic extension of
K.

Let m € Max H,, , be arbitrary. Since H,, , — Sy, is faithfully flat, there is
some M € Max S, , with 9 D m- S, ,, and m = H,, , N M. By the Nullstellensatz
for Spp, M =n- S, , for some n € Max K[¢, p] satisfying (3.3). Since n C m, it
follows that m = n - H,, ,,, as desired.
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Now let p € Spec Hy, ,, and put

q:= ﬂ m, Q= ﬂ m;

meMax Hy, MeMax Sm\n
mDp MOp-Sim,n

we must show that p D q. Let f € q C q. By the Nullstellensatz for Sy, », f¢ € p-Sm.n
for some ¢ € N. Since H,, ,, — S is faithfully flat, f¢ € p, and since p is prime,

fEp. O
Corollary 3.7. — Let M € Max Sy, and consider the mazimal ideals put m := Hy, ,N

M, n:= Ay, DM and p := K[&, p] NIM. Then the inclusions K[E, p| — Apmn —
Hy, = S n induce isomorphisms

K& plr = (Amn)n = (Hmn)m = (Son)ons

where  denotes the mazimal-adic completion of a local ring. Moreover Hy, » is a
regular ring of Krull dimension m + n.

Proof. — 1t follows by descent, from Lemma 3.1 and Theorem 3.3, that each of
the inclusions A, ., — Hmn — Smn is faithfully flat. Let ¢ € N. Since by [11,
Theorem 4.1.1] M = pS,, », each of p’, nf, m® and M’ is generated by the monomials
of degree { in the generators of p, it follows that the natural maps

are injective. But by [11, Proposition 4.2.1], (Amn)e — (Sma)m = K[E ply s
surjective; thus also (Hmn);1 — (Smn)gm/\ = K[f,p]p/\ is surjective. By Hilbert’s
Nullstellensatz p can be generated by m + n elements, and dim K¢, p], = m +n. In
particular K[¢, p]pA is a regular local ring of dimension m + n. Since m = pH,, ,, and
(Hmn)mA: K¢, ,0]; it follows that (Hpm, n)m is a regular local ring of dimension m+n.
Moreover by [12, Theorem 19.3|, H,, ,, is a regular ring. O

4. Regularity

To obtain our Approximation Theorem, we will apply [14, Theorem 1.1]. For that,
we need to know that certain maps are regular maps of Noetherian rings.

Proposition 4.1. — H,, , is excellent; in particular it is a G-ring.

Proof. — By [12, Theorem 32.4], to show that H,, , is a G-ring, it suffices to show
that the map
(Hm,n)m - (Hm,n);
is regular for each m € Max H, ,,. Fix m € Max H,, ,, and q € Spec(Hp, n)m; We
must show that R R
H(q) := (Hm,n)m O (Hum.n)m k(q)
is geometrically regular over x(q), the field of fractions of (Hyn)m /4.
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Since Ay, » is a localization of the excellent ring T}, 4, it is a G-ring. In particular,
by Corollary 3.7,

f[(p) = (Hm,n); O (Am.n)n K(p) = (Am.,n)rr@(Am,n)“ K(p)

is geometrically regular over x(p), where n := A,, , N m and p : (Am nn N g €
Spec(Apm.n)n. Suppose we knew: (i) that PAI(q) were a localization of H( ), and (11)
that x(q) were separably algebraic over x(p). Then by (i), we would have (i') H(q)
is geometrically regular over k(p), and by (ii), we would have (ii’) Q w(a) /() = (0)

by [12, Theorem 25.3], (where Qm(q)/ﬁ(p) is the module of differentials of x(q) over
K(p))-

Let a be a maximal ideal of PAI(q); then by (i), ﬁ(q)a is geometrically regular over
#(p). By [12, Theorem 28.7], H(q)s must be a-smooth over x(p). Hence by (ii’) and
[12, Theorem 28.6], H(q)q is a-smooth over (q). By [12, Theorem 28.7], this implies
that H (q)q is geometrically regular over £(q). Since this holds for every maximal ideal
aof H (9), H (q) must be geometrically regular over x(q). The proposition follows.

It remains to prove (i) and (ii). By [13, Théoreme X1.2.2], (Hy, ,,, (p)) is a direct
limit of local-étale neighborhoods (E, I) of (A7, ., (p)); thus (Hy, n)m is a local-ind-

étale (A, n)n-algebra. By [13, Théoreme VIIL.4.3],
H(p) = (H ) OAmn)n F (p) = ((Hm,n)m/p : (Hm,n)m)p

is a finite product of separable algebraic extensions of x(p). It follows that x(q) is
the localization of H(p) at the maximal ideal q - H(p), and that x(q) is a separable
algebraic extension of x(p). This proves (ii). Note that

ﬁ(q) = (Hm,n)m ®(Hm7n)n, H(p)qH(p)v

which is a localization of

o~

ﬁ(p) = (Hm,n); D (Am.n)n “(p) = (Hm,n)m O (Hum.n)m H(P),

proving (i). O
Theorem4.2. — The inclusion Hy,n — Smon is a reqular map of Noetherian rings.

Proof. — Let 9 € Max S,, », and put m := H,, ,, N 9N; we remark that
(4.1) (Himn)m — (Smon)om

is regular. Indeed, since (Sp,n)m — (Smyn)gjn\ is faithfully flat, [12, Theorem 8.8], by
[12, Theorem 32.1], it suffices to show that (Hy n)m — (Smn)g); is regular. But by
Corollary 3.7 (Hmn); = (Smyn)gjn\, hence this follows from Proposition 4.1.

Let p € Spec Hy, . Since Sy, , is flat over H,, , (Theorem 3.3), to show that
Hyy i — Sm.n is regular, we must show that S(p) := Sy n ®m,, , £(p) is geometrically
regular over k(p). Let q € Spec S(p); it suffices to show that S(p), is geometrically
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regular over k(p). Put P := S, Nq and let M € Max Sy, be a maximal ideal
containing P. Put m := H,, , NPV and

Son(p) := (Smn)im O (Hum.n)m K(p - (Hm,n)m)~

Note that Son(p) = (S(p))om and that g = P - S(p). Since M D B, it follows that
S(p)q is a localization of Sgn(p), which, by the regularity of (4.1) is geometrically
regular over k(p - (Hpmn)m) = k(p). Therefore, S(p)q is geometrically regular over
k(p), as desired. O

Let B € 9B, let € € K°°\ {0} and let I(B,¢) be the ideal
I(B,e):={be B:|b <|e|} C B.

It follows from the definition of quasi-Noetherian rings (see Section 2 and [6, Sec-
tion 1.8]) that B/I(B,¢) is Noetherian. Put

Tonin(B) := B ), Amn(B) := Tmin(B)i4(p) and Sm.n(B) := B(§)[p]-
Note that
Tonin(B,€) = (B/I(B,¢)) ¢, o]
is Noetherian, and
Amn(B,e) = Tnin(B,€)14(p)>
being a localization of a Noetherian ring, is Noetherian as well. Moreover, (p) -

Apmn(B,e) C rad Ay n(B,€). Let (Hpn(B,¢€),(p)) be a Henselization of the pair

(Am.n(B;€), (p))-
The (p)-adic completion of A, ,(B,¢€) is

Sman(B,€) = (3/1(375)) (€1lel,

which must coincide with the (p)-adic completion of Hy, (B, ¢).

(Indeed, (A0 (B,e)/(p)%, (p)) being (p)-adically complete, is a Henselian pair by
[13, Exemple XI.2.2]. If (E,I) is a local-étale neighborhood of (A, n(B,¢),(p)),
then by [13, Proposition 11.2], (E/(p)*,I - E/(p)?) is a local-étale neighborhood of
(Am.n(B,e)/(p)’, (p)). By Lemma 3.2, E/(p)* is isomorphic to A, ,(B,)/(p)’. Since
H,, n(B,¢€) is a direct limit of local-étale neighborhoods of A,, ,,(B,¢)/(p), the (p)-
adic completions of H,, ,,(B,¢) and A, ,(B,€) coincide.)

Since the rings A, » (B, ¢) and H,, »(B, ) are both Noetherian, Sy, »(B, ¢) is faith-
fully flat over both A, »(B,¢) and Hy, »(B,€) by [12, Theorem 8.14]. Therefore, by
[12, Theorem 7.5], we may regard H,, ,(B,¢) as a subring of Sy, (B, ¢).

Proposition 4.3. — Fiz B € B and ¢ € K°° \ {0}. The inclusion Hp, ,(B,e) —
Sm.n(B,€) is a regular map of Noetherian rings.
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Proof. — Find &’ € K°°\{0} such that |¢'| = max{|b| : b € BNK°°}. For convenience
of notation, put
A=A, (B,¢), H :=H,, »,(B,¢), S =Smn( )
A=Ay (Be), H:=Hyua(By), S:=8
Note that
A= Bl&plis) and S=BElel,
where B is the residue field of the local ring B. Furthermore, by the Krull intersection

theorem [12, Theorem 8.10], ideals of A, H and S are closed in their radical-adic
topologies. It follows that

A=AJI(B,e')-A, H=H/I(B,¢)-H, S=S/I(B,)-8.
Let p € Spec H; we must show that S ® g k(p) is geometrically regular over x(p).

Each element of I(B,e’) - H is nilpotent; hence I(B,¢’) - H C p. Let p € Spec H
denote the image of p in H. Then
S®wk(p) =S @5 k(p),
and it suffices to show that S ® 5 7 K(p) is geometrlcally regular over /i(p)
We note the following facts. (i) The maps M — M - A + (p p): M — M- H + (p),
M — P - S+ (p) are leeCthIlS between the elements of MaxB[f] and the elements,

respectively, of Max A, Max H and Max S. (ii) Let M € Max S, M := HNIM € Max H
and A= ANM e MaXA then A — H — S induces isomorphisms

A;{ %'Hﬁ gSﬁ

(iii) The ring A, being a localization of the excellent ring B [, p] is excellent, and in
particular, a G-ring.

Arguing just as in the proof of Proposition 4.1, we show that His a G-ring. Then
we argue as in Theorem 4.2 to show that S ® 7 k(p) is geometrically regular over

~(p). O

5. Approximation

Theorem 5.1 (Approximation Theorem). — For a given system of polynomial equa-
tions with coefficients in Hp, n, any solution over Sy, can be approrimated by a
solution over Hy, », arbitrarily closely in the (p)-adic topology.

Proof. — Let Y = (Y1,...,Yn) be variables, let J be an ideal of H,, ,[Y], and
consider the finitely generated H,, n-algebra C' := H,, ,, [Y] / J. Suppose we have a
homomorphism @ : C' — Sy, »; then @(Y) is a solution over Sy, , of the system of
polynomial equations with coeflicients in H,, , given by generators of the ideal .J.
Fix ¢ € N. We wish to demonstrate the existence of a homomorphism ¢ : C' — H,, ,,
such that each ¢(Y;) — @(Y;i) € (p)¢ - Sm.n-
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Since Hy, pn — Sm,n is a regular map of Noetherian rings, by [14, Theorem 1.1],
we may assume that C' is smooth over H,, ,,. Let E be the symmetric algebra of the
C-module J/J2. By Elkik’s Lemma ([7, Lemme 3]), Spec E is smooth over Spec Hy, »,
of constant relative dimension N, there is a surjection

HypnlY1,.. .. Yonir] = FE
for some r € N, and there are elements g1, ...,gn+r, h € Hp n[Y] such that
(HnnlY)/I), = E,
where I := (g1,...,9N+r), and
(1)=h-Hpa|Y]+ 1

Since Spec E' is smooth of relative dimension N over Spec Hy, ,, QE /H is locally
free of rank N. It follows that ’

htem+1

for some d € N, where 91 is the ideal in H,, ,[Y] generated by all (N +7) x (N +7)
minors of the matrix

9g;
M) := <3Yj) cieNr
1<j<2N+r

We may extend  to E; in particular, g(p(Y)) = 0. Replacing Y by a~ 'Y for a
suitably small scalar o € K°\ {0} and normalizing by another scalar, we may assume
g15---39N+r, h e Hsm,n [Y]7 @(Y) € (S?n,n)2N+T7 and

N+r
(51) e€h- sz,n[y] + Z ngz’L,n[Y]
i=1
N+r
(5.2) eht e M+ Y~ g:iHy, ,[Y].
i=1

for a suitably small ¢ € K°°\ {0}, where ° is the ideal in Hy, , [Y] generated by all
(N +7) x (N + r) minors of the matrix M, above.
For each B € B, let (H,,n(B), (p)) be a Henselization of the pair (A, »(B), (p))-
Since AP, ,, = lim A,, »(B), we have a canonical isomorphism lim H,, ,(B) = H?, ,,.
) — ’ i : ;
Find B € ‘B such that

oY1), ..., 8(Yan4r) € Smn(B) == B(&) [[ol],

and such that g1,...,gn4r € Hy n(B)[Y]. Consider the commutative diagram
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Am,n(B7 €2d+2)

Hm,n(B7 52d+2) E—— Sm,n(B7 52d+2)7

where the two outer vertical arrows represent reduction modulo I(B,29+2) and the
other arrows represent the canonical morphisms. It follows from the Universal Map-
ping Property for Henselizations that all the vertical arrows must be surjective. Thus
by Proposition 4.3 and [14, Theorem 11.3], there are 11, ..., m2n+» € Hy, ,, such that
ni — oY) € (p)* - Sp, 0 1<i < 2N + 7, and [|gi(n)|| < 2472, 1 <i < N +r.

Replacing Y by n in (5.1), we find ¢', k' € Hy, ,, such that h(n)h' = (1 —%¥+1g).
It follows that there is some § € K°\ {0} with |§| > |¢| and some unit A" of Hp,
such that h(n) = 6h”. Replacing Y by 1 in (5.2), we find some g” € Hy, ,, such that
eTL((W)T — edtlg") € M°(n), where M°(n) is the ideal of Hy, , generated by all
(N +7) x (N +r) minors of the matrix M (n). Since A" is a unit of Hp, ,,, it follows
that

e come(n).

We follow the proof of Tougeron’s Lemma given in [7] to obtain yi, ..., yan+, € Hy, ,
such that y; —n; € (p)* - Hp, ,, 1<i<2N +r,and g1(n) =+ = gn4r(n) = 0.

Let pq, ..., us denote the monomials in p of degree £. Since the ideal generated by
the (N +7) x (N +7) minors of M (n) contains the e y;, there are (2N +7) x (N +7)
matrices Ny,..., Ng such that

M(n)N; = e pldn oy,

where Idy, is the (N + r) x (N + r) identity matrix. We will find elements u; =
(Wits- - uianyr) € ((p) - Hy, )N 17, 1 < i < s, such that

gin+> e ) =0,  1<j< N+
i=1

We have the Taylor expansion

_ s _
gin+> e piuy)
i=1 g1(n) s Ui, 1
~ o e () ¥
S =1
gn+r(1) Wi 2N+
gn+r(n+ Z e puy) ' ' '
L =1 J
+ Z€2d+2ﬂiujP¢j,
1,J
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where each F;; is a column vector whose components are polynomials in the u; of
order at least 2. We must solve

g1(n) s Ui,1
(5.3) 0= : + Z5d+1MiM(T]) : + Z €2d+2uiﬂjpz‘j-
gn+r(1) =t Ui 2N +r -
Since ||gi(n)|| < [e24*2| and gi(n) € (p)**™* - Hy, ,,, we have
g1(n) fin
: =S E ) E ) ||
gn+r(n) e fijN+r

where the f;;x € (p) - Hp, ,,. Thus (5.3) becomes

s fij1 s Ui, 1

0=> M) | Y_N; : + > e M (n) : +
i=1 j=1 i=1
fijN4r | Wi 2N+r

and it suffices to solve

Ui 1

)

s fij
j=1

Ui 2N+ fijN4r

(5.4) 0

Since 0 is a solution of this system modulo (p), and since its Jacobian at 0 is 1, the
system (5.4) represents an étale neighborhood of (Hy, ,,, (p)), hence has a true solution
(uij). Putting

S
(i) == () + > e juy,
j=1

we obtain a solution in Hy, ,, of the system g = 0 which agrees with @(Y") up to order
{in p. 0

Corollary5.2. — H,, is a UFD.

Proof. — Let f € Hy, ,, be irreducible. We must show that f - H,,  is a prime ideal.
Since Sy, is a faithfully flat H,, ,-algebra (Theorem 3.3), and since Sy, n is a UFD
([11, Theorem 4.2.7]), it suffices to show that f is an irreducible element of S, ».
That is a consequence of Theorem 5.1. O
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system of definition, 135

Tate ring, 9
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total residue order, 62
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