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L A R G E D E V I A T I O N S F O R T H R E E D I M E N S I O N A L 

S U P E R C R I T I C A L P E R C O L A T I O N 

Raphaël CERF 

Abstract. We consider Bernoulli bond percolation on the three dimensional cu­
bic lattice in the supercritical regime. We prove a large deviation principle for 
the rescaled configuration, from which a picture of the Wulff crystal of the model 
emerges. 

Resume (Grandes déviations pour la percolation supercritique en dimen­
sion trois). Nous considérons la percolation Bernoulli sur les arêtes du réseau 
cubique de dimension trois dans le régime supercritique. Nous prouvons un principe 
de grande déviation pour la configuration renormalisée, duquel émerge une image 
du cristal de Wulff du modèle. 

© Astérisque 267, SMF 2000 
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C H A P T E R 1 

INTRODUCTION 

The ground-breaking monograph of Dobrushin, Kotecky and Shlosman [31] has 
initiated in the past years an intense research activity around the study of phase 
separation for the two dimensional Ising model (see [21,46,47,48,49,58,59,66,67,68]). 
The so-called Wulff construction in this context is now fairly well understood. The 
next challenge is to analyze phase separation and coexistence in higher dimensions. 
The aim of this work is to propose a way to do that for the three dimensional 
Bernoulli percolation model. 

We consider Bernoulli bond percolation on the three dimensional lattice Z3. Edges 
between nearest neighbours are independently open with probability p and closed 
with probability 1 — p. It is known that this model has a phase transition at a 
value pc strictly between 0 and 1: for p < pc the open clusters are finite and for 
p > pc there exists a unique infinite open cluster Coo (see [42]). We focus here on the 
supercritical regime where p> pc. Aside from the infinite cluster, the configuration 
contains finite clusters of arbitrary large sizes. We wish to understand the geometry 
of these large clusters. The presence at a particular location of a large finite cluster 
is an event of low probability: for Bernoulli percolation in dimension o?, for p > pc, 
there exist two positive constants c\, C2 such that 

Vn G N exp(-c1n^-1)/rf) < P{n < cardC(O) < oo) < exp(-c2n^-1)/d) , 

where C(0) is the open cluster containing the origin. This is a result from Kesten 
and Zhang [50] (It was proved under the assumption that p is strictly larger than 
the limit of the slab critical points. Grimmett and Marstrand proved that this limit 
coincides with pc, see [43] or the second edition of [42]). An historic account of 
the successive refinements of this type of bounds is given in [3]. This estimate is 
based on the fact that the occurrence of a large finite cluster is due to a surface 
effect. Indeed at the frontier of a large open cluster C, there is a set deC of closed 
edges, called the edge boundary of C, whose macroscopic components look like a 
large surface separating the sites of the cluster from the outside world. 

Alexander, Chayes and Chayes have obtained much more precise results in the 
two dimensional case [3] (which were further refined by Alexander [2]). Let us sum 
up the main points of their work. In dimension two, a component of the edge 
boundary is a closed curve of the plane. The most likely curves to realize the event 
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2 CHAPTER 1. INTRODUCTION 

{n < cardC(O) < 00} are close to a very specific deterministic curve, namely the 
boundary of the so-called Wulff crystal of the model. More precisely, it is possible 
to define an angle dependent surface tension o(y) for the model, which characterizes 
the exponential decay of the probability of having a long flat interface of closed edges 
orthogonal to the direction v. Consider next the variational problem of minimizing 
the cr-surface energy of a closed curve 7 (that is the linear integral of a{y) along 7, 
where v is the normal to 7) under the constraint that the curve 7 encloses an area at 
least one. The unique solution of this problem is the boundary of a suitable dilation 
of the Wulff crystal of a 

Wa = { # 6 M2 : x - v < a{v) for all unit vectors v } . 

Besides, the probability that the cluster (7(0) has inside the macroscopic components 
of deC(0) a density larger than the typical density 0(p) of the infinite cluster is of 
order exp(—const card (7(0)), because this event requires a volume effect. Hence, 
up to surface order large deviation events, the area enclosed by the macroscopic 
components of deC(0) and 0_1card(7(O) are comparable. Finally, 

lim - ^ l n P ( n < card(7(0) < 00) = -{0areadWa)~1/2 / a(yw (x)) dx . 
n->oo y/n JdW(T 

Furthermore the solutions of the previous variational problem are stable with respect 
to the Hausdorff distance between curves, that is, up to translations, any minimizing 
sequence converges towards the boundary of a suitable dilated Wulff crystal. As a 
consequence, conditionally on the event {n < card (7(0) < 00}, with probability 
tending rapidly to 1 as n goes to 00 (say faster than any inverse power of n), the 
Hausdorff distance between the rescaled curve n-1/2(outer component of deC(0)) 
and the boundary of the dilated Wulff crystal {6 area^Wo-)-1/2Wo- is less than 
any fixed positive real number. Alexander, Chayes and Chayes prove also a sin­
gle droplet Theorem, which is close in spirit to the Wulff construction Theorem of 
Dobrushin, Kotecky and Shlosman [31] for the two dimensional Ising model: for 
A < (diam>V(7)~2area9H;<7, for any positive 77, conditionally on the event 

{ cardCoo H [-L/2,L/2]2 < (1 - \)0L2 } , 

(CQO is the infinite cluster), with probability tending rapidly to one as L goes 
to 00, there is inside [—L/2,L/2]2 a finite open cluster of cardinality approxima-
tively OXL2 whose edge boundary is at a Hausdorff distance less than rjL from 
X1/2L ( a r e a d W ^ ) - 1 / 2 ^ . 

Our original motivation was to prove similar results in the three dimensional case. 
As noted in [3,31], a new formulation of the results themselves is required in higher 
dimension: indeed the Hausdorff distance between the boundaries is not adequate 
any more, because very thin and long filaments create insignificant surface energy 
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CHAPTER 1. INTRODUCTION 3 

while increasing dramatically the Hausdorff distance. However the main obstacle 
so far seems to have been the extension of the skeleton coarse graining technique 
[49] which relies on the possibility of approximating in a suitable way a polygonal 
line on the lattice by a coarser one and on a combinatorial bound for the number of 
polygonal lines. The structure of two dimensional surfaces is so rich compared to the 
one of curves that it seems hard to find a similar combinatorial argument in higher 
dimension (see the introduction of [49]). Therefore a new strategy is needed. A 
natural way is to leave the discrete setting and to try to work from the start into the 
continuum. The combinatorial argument should then be replaced by a compactness 
property. Thus we must embed our objects into a continuous topological space in 
which the level sets of the surface energy are compact. If the volume happened to be 
continuous, we would have in addition existence of solutions for our variational prob­
lems, a highly desirable feature. This picture has already a taste of large deviations 
theory: the surface energy should be a good rate function. Subsequently, why not 
seek for a large deviation principle (in this yet undefined ideal space) governed by 
the surface energy? The results concerning the Wulff crystal would then be natural 
consequences of the large deviation principle; the law of the random objects under a 
volume constraint would concentrate exponentially fast around the ones minimizing 
the surface energy with respect to this volume constraint. Indeed, whenever a large 
deviation principle holds, the random objects solve automatically the variational 
problems associated with the rate function. Thus it is very reasonable to think that 
the probabilistic results on the Wulff crystal (at least those dealing with rough es­
timates) might be included in a general large deviations setting. Large deviations 
theory itself does not provide the required probabilistic tools, yet it suggests efficient 
abstract guidelines to attack the problem. 

Although there exists a substantial literature devoted to the study of stochastic 
geometry, we found no existing result on large deviations for general random sets. 
Thus we started by proving the simplest such result, namely the analog of the Cramer 
Theorem for random sets [17]. We then tested the feasibility of some aspects of 
the large deviations approach to the Wulff crystal in the case of two dimensional 
Bernoulli percolation [18]. There we prove large deviation principles for the finite 
cluster shape in the Hausdorff and L1 metric, but with the help of the skeleton 
coarse graining technique, instead of working from the start in the continuum. 

To achieve this appealing programme, we should first find the ideal continuous 
space to work in. It is clear that this space must contain the smooth surfaces T and 
that the surface energy X(T) of a smooth surface T has to be 

К Г ) = . 
Jr 

where VY{X) is the normal vector to Y at x, T{V) is the surface tension of the model 
in the direction v and V? is the two dimensional Hausdorff measure in M 3. The 
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4 CHAPTER 1. INTRODUCTION 

question of extending surface energy functionals like the above one to more general 
non smooth surfaces and to define nice topologies on surfaces has been a long sought 
quest. The literature on the subject is very rich and it is still an active area of re­
search (see [4,14,20] and the references therein). It is of course linked to problems 
about the existence and the regularity of minimal surfaces, like the Plateau problem 
(find the surface of least area among those bounded by a given curve). As far as 
we understand, the most satisfactory setting for having nice compactness properties 
is the theory of currents and the tools of Geometric Measure Theory (see the mon­
umental book of Federer [35]). Besides, a general proof of the Wulff isoperimetric 
Theorem has been achieved by Taylor [69,70,71] in this framework. This Theorem 
(originally due to Wulff [75], followed by Dinghas [30]) states that, up to Lebesgue 
negligible sets, the Wulff crystal 

WT = { x e R3 : x - w < T(W) for all unit vectors w } 

is the only solution to the variational problem 

minimize X(E) T(VE(X)) dH2(x) with vol E > volWr . 
JdE 

Notice here that Dobrushin, Kotecky and Shlosman [31] already mentioned the set­
ting of Geometric Measure Theory for generalizing their Theorem in higher dimen­
sion. Fortunately enough, the objects involved in Taylor's proof of the Wulff isoperi­
metric Theorem are a restricted class of currents which can be identified with the 
Caccioppoli sets, also called the sets of locally finite perimeter. This is a differ­
ent geometric theory which was historically initiated by Caccioppoli [15,16] and 
subsequently developed by De Giorgi [24,25,26,27]. The goal of Caccioppoli was 
to build a general theory of integration for differential forms and to extend the 
classical Gauss-Green Theorem to sets whose boundary is not C1. Independently, 
De *Giorgi was seeking to generalize some isoperimetric problems, starting with the 
Gauss-Green Theorem. .This theory lead among other things to the solution of the 
general Plateau problem in arbitrary dimension (see the book of Giusti [41] and the 
references therein). It is much more accessible to analysts than the general the­
ory of currents. For instance the Wulff isoperimetric Theorem has been reworked 
and slightly generalized in this context by Fonseca and Miiller [36,37,39]. Thus we 
choose to work within the theory of the Caccioppoli sets. This framework is the 
most natural one to analyze geometric interfaces between stable coexisting phases. 
As a matter of fact, the phenomenological theory of phase transitions is developed 
within this setting (see for instance [38] for a recent paper and some entries in the 
corresponding literature). 

The fundamental idea of employing this geometric setting to analyze models of 
statistical mechanics has appeared for the first time in the context of the Ising model 
with Kac potentials, where Alberti, Bellettini, Cassandro, Presutti [5,7] used the BV 
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CHAPTER 1. INTRODUCTION 5 

setting (the equivalent functional formulation of the sets of finite perimeter) to study 
surface order large deviations. The subsequent work of Benois, Bodineau, Butta, 
Presutti [9] contains the idea of transforming the configuration on the mesoscopic 
level in order to get estimates on the probability of the local presence of an interface 
(see the explanation after the central lemma in chapter 8). Finally, Benois, Bodineau 
and Presutti [10] provided a relevant exponential tightness argument, which shows 
that the random law of the system concentrates very fast near functions of bounded 
variations. Although we were not inspired by these works, the historical credit for 
introducing the appropriate geometric setting for studying microscopic statistical 
models should be given to these works on the Ising model with Kac potentials: the 
global philosophy of their approach is indeed quite robust and is similar to ours in 
several essential respects. However, these works lose the microscopic structure of 
the model: when the range of interactions is finite, the estimates are not precise and 
the correct surface tension factor is recovered only in the mean-field limit where the 
range of interactions tends to infinity and everything becomes isotropic. 

After extensive discussions with Dmitry Ioffe, we believe that two obstacles hin­
dered the completion of the full program in the Kac model (that is, deriving the 
macroscopic effects induced by a truly microscopic model). The first one is that the 
afore-mentioned works did not have an operational approach to define the surface 
tension on fixed finite interaction scales. The second one is that in Ising type models, 
it is necessary to control the dependence between events in distant regions (or equiv­
alent^ the influence of boundary conditions). By working in Bernoulli percolation, 
the second obstacle is immediately lifted. And we succeeded here in dealing with 
the first obstacle. Namely, we are able to implement the coarse-graining results of 
Pisztora [60] in order to recover the exact direction-dependent surface tension fac­
tor in the probabilistic estimates for the local presence of an interface. It should be 
stressed that the true hard part of the probabilistic work is contained in the results 
of Pisztora. 

Recently, the second obstacle has been overcome and the case of the nearest-
neighbour Ising model has been successfully handled in two parallel works [13,19]. 
While [13] is limited to sufficiently low temperatures, the domain of temperatures 
covered by [19] is conjectured to be the whole segment of phase coexistence. 

We would like also to mention some possible future directions of research. In 
the specific percolation model, one would like to analyze the geometry of the Wulff 
crystal and to understand whether it has facets or not throughout the supercritical 
regime (see [56] for the corresponding question in the Ising model). The topological 
stability of the Wulff crystal is also linked with the delicate questions of the sharp 
large deviations and the random fluctuations of the interfaces. Besides the Wulff 
crystal, there are numerous issues of the phenomenological theory of phase coexis­
tence which one should try to analyze from a microscopic point of view (see the book 
of Visintin [72] and the references therein). Moreover it is possible to refine our large 
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6 CHAPTER 1. INTRODUCTION 

deviation principles, depending on the amount of information required. Caccioppoli 
partitions correspond to a very convenient level of precision to get the single droplet 
Theorem. Another very interesting topic is of course the dynamics. It is naturally 
expected that several reasonable choices of microscopic dynamics induce the macro­
scopic dynamics associated to the so-called motion by mean curvature. In his last 
years, De Giorgi became interested in the problem of the geometric evolution of Cac­
cioppoli sets and he introduced the concept of minimal barriers. Another available 
tool is the method of the auxiliary function and the use of viscosity solutions (see 
[8] and the references therein). 

We next describe more precisely the setting and our results. The chosen con­
tinuous space is the space of the Borel subsets of E3 endowed with the L1 or L\oc 
topology. We first extract from the Bernoulli percolation model a direction depen­
dent surface tension r. For a unit vector v, let A be a unit square orthogonal to u, 
let cyl^l be the cylinder A + Ez/, then r(v) is equal to the limit, as n goes to oo, of 
the quantity 

^ /inside ncyl A there exists a finite set of closed edges E which cuts \ 
2 In P I ncyl A in at least two unbounded components and the edges of E at J 

\distance less than 5 from <9ncyl A are at distance less than 5 from n A J 

This function r satisfies an important functional inequality, namely the weak triangle 
inequality: for any triangle {ABC) in E3, if VA, VB, are the exterior normal unit 
vectors to the sides [BC], [AC], [AB] in the plane containing (ABC), then 

\BC\2r(uA) < \AC\2T{UB) + \AB\2T(VC) . 

By a result of Aizenman, Chayes, Chayes, Frohlich and Russo [1], r is positive in 
the supercritical regime p > pc. Furthermore it is continuous, invariant under the 
isometries which leave Z3 invariant. The Wulff crystal WT associated to r is convex, 
closed, bounded and contains the origin 0 in its interior. The surface energy of a 
Borel subset A of E3 is then defined as 

1(A) = sup divf(x)dx: f€CÙ(R\WT)}f(x)dx: f€C 

where CQ (E3, Wr) is the set of the C1 vector functions denned on E3 with values in 
WT having compact support and div is the usual divergence operator. The surface 
energy X(A) is infinite unless A is a set of finite perimeter in the sense of Caccioppoli 
and De Giorgi. It is very natural that we end up with a quantity like the above 
one. Indeed Bernoulli percolation is a model for the microscopic flow of particles 
in a random medium and the surface energy X(A) is a quantitative measure of the 
induced macroscopic flow from A to its complement. 

We shall first prove a large deviation principle for the rescaled cluster C(0) con­
taining the origin. For r positive, we denote by V(C(0), r) the set of the points of E3 
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CHAPTER 1. INTRODUCTION 7 

whose distance to C(0) is strictly less than r. If f(n) is a function from N to N such 
that n/f(n)2 goes to oo as n goes to oo and f(n) > AS Inn for all n, where K is a 
sufficiently large constant, then, conditionally on the event {cardC(O) < o o } , the 
sequence of random Borel sets (n-1 V(C(0), /(n)))neN satisfies a weak large devia­
tion principle in (^(IR3),!,1) with speed n2 and rate function X. Unfortunately, the 
functional X is not a good rate function when considered on (5(R3), L1) (because E3 
is not bounded) and we are not able to prove the full large deviation principle. How­
ever we propose an enhanced large deviation upper bound which is enough for our 
applications. Alternatively, we may work with the L\QC topology; the functional X is 
a good rate function on the space (#(R3), Lloc) and we get a large deviation princi­
ple with this weaker topology. Under the additional hypothesis that f(n)/\nn goes 
to oo as n goes to oo, we prove that up to large deviations of order n2, cardC(O) 
and 0 vol V(C(0) , / (n) ) are of the same order (6 is the density of the infinite clus­
ter). These results provide a description of the asymptotic shapes of the large finite 
clusters. Together with the Wulff isoperimetric Theorem, they imply that, for the 
three dimensional Bernoulli bond percolation model on the cubic lattice, for p > pc, 

lim -2 lnP(n3 < cardC(O) < oo) = - J^A] ,2/3 . 
n->oo n2 V ~ J (0VOlWr)2/3 

If f(n) is a function from N to N such that both n//(n)2 and f(n) / In n go to oo as n 
goes to oo, the law of n_1V(C(0), f(n)) conditioned on the event { n3 < cardC(O) < 
oo } concentrates exponentially fast around a shape which is a suitable dilation of 
the Wulff crystal of r. 

The key ingredients of the proof are the results of Pisztora [60] specialized to the 
case of percolation, which describe precisely the typical structure of the configuration 
on the intermediate mesoscopic scale f(n). These results seem to have been designed 
intentionally to perform the type of coarse graining we need. Our philosophy is to 
do the coarse graining around the clusters rather than around the interfaces. The 
central lemma for the large deviation upper bound gives a uniform probabilistic 
estimate for the local presence of a collection of open clusters which create a small flat 
interface in the L1 topology. The estimate is uniform with respect to the localization, 
the size and the direction of the interface. Hence the central lemma provides a 
link between the discrete microscopic structure of the model and the continuous 
macroscopic effects. 

Our final aim is to prove a single droplet Theorem similar to [3]. Let f(n) be a 
function from N to N such that n/ /(n)2 goes to oo as n goes to oo and f{n) > nlnn 
for all n, where K is a sufficiently large constant. We consider the collection of 
random sets 

n-1V(CJ(n)) = 

| n-1 V(C, / ( n ) ) , C open cluster of diameter strictly larger than f(n) j 
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8 CHAPTER 1. INTRODUCTION 

which lives in the space BC(E3) of the countable collections of non negligible Borel 
subsets of E 3 . Starting with the topology L\oc on the space of the Borel subsets 
of E3, we build a metric D\oc on BC(E3). We prove that the sequence of ran­
dom collections of Borel sets (n_1 V(C, f(n)))ne^ satisfies a large deviation principle 
in (BC(]R3), Dioc) with speed n2 and rate function X defined by 

1(A) = 
1f(x)dx:f€CÙ 

2 4 

if the sets of the collection A form a partition of E3 , and X(A) = oo otherwise. The 
collections of sets which form a partition of E3 and whose elements are Caccioppoli 
sets have been introduced by Congedo and Tamanini [22,23,53] under the name of 
Caccioppoli partitions to deal with image segmentation problems. It is rather natural 
to encounter questions common to percolation and image segmentation. Indeed our 
rate function X on the space of the collections of sets is a particular case of the 
famous Mumford-Shah functional [57]. 

Although the previous large deviation principle in the metric D\oc is enough to get 
a version of the single droplet Theorem inside a bounded set, in order to get a result 
which is closer in spirit to the single droplet Theorem of [3], that is involving the 
infinite cluster Coo, we need to work with a stronger metric D. Roughly speaking, 
two collections of sets are at D distance less than S if there exists a correspondence 
between the sets of the collections having volume larger than S such that two cor­
responding sets are at L1 distance less than S. Let U be a bounded Borel subset 
of E3. We consider the random collection of open clusters C(nU, f(n)) which is 

| C finite open cluster of diameter strictly larger than f(n) intersecting nlJ j 

and we define the random Borel collection VC(nU, f(n)) to be 

VC(nU,f(n)) = 

V(CJ(n)),CeC(nUJ(n))\ U [ E 3 \ 

cec(nu,f(n)) 
V ( C , / ( n ) ) j 

We prove that the sequence of random collections of Borel sets n~xVC{nU, f(n)) 
satisfies a weak large deviation principle in (BC(E3),,D) with speed n2 and rate 
function X. Finally we obtain an enhanced large deviation upper bound similar in 
spirit to the enhanced upper bound for one cluster. 

We state finally our single droplet Theorem. Let A be a cubic box in E3 such 
that vol A = 1 and let A be small enough so that some translate of the dilated Wulff 
crystal (A/vol>Vr)1/3>Vr is included in A. Then 

lim 
1_ 

ri2 
j lnP(cardC7oonnA< (1 - A)0n3) = -(A/volWr)2/3 X(WT). 
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CHAPTER 1. INTRODUCTION 9 

Let f(n) be a function from N to N such that both n/ /(n)2 and / ( n ) / l n n go 
to oo as n goes to oo. Conditionally on the above event, with probability going 
exponentially fast to 1 as n goes to oo, there exists one finite open cluster Co and 
x in R3 such that x + (A/vol WV)1/3>Vr is included in A, n~1V(Cf0, f{n)) is close to 
x + (A/vol WT)1/3WT, A \n"1 V(Coo, / (n ) ) is close to A \ (a + (A/vol W r ) 1 / 3 ^ ) and 
the total volume of the /(n)-neighbourhoods of the other clusters having diameter 
strictly larger than f(n) and intersecting nA is small. 

The proof of the large deviation upper bound follows the same line as for the 
case of one cluster and it relies on the same central lemma. Here again compactness 
plays a crucial role; we rely on a compactness result for Caccioppoli partitions proved 
by Congedo and Tamanini [23]. The proof of the lower bound involves a delicate 
approximation of Caccioppoli partitions through polyhedral partitions, based on a 
result of Quentin de Gromard [61,62]. 

The large deviation principles are stated in chapter 2, together with their applica­
tion to the Wulff crystal. Chapter 3 is an informal sketch of the proofs for the single 
cluster case. The notation and the model are introduced in chapter 4. In chapter 5 
we build the surface tension r and we study its main properties. In chapter 6 we sum 
up the important facts about the theory of Caccioppoli sets and the Wulff Isoperi-
metric Theorem and we build the surface energy X associated to the surface tension 
of our model. In chapter 7 we state the results of Pisztora (specialized to three di­
mensional Bernoulli percolation) as well as some general coarse-graining Lemmata. 
The central Lemma which is essential for proving the large deviation upper bound 
is the object of chapter 8. Chapter 9 is the proof of the large deviation principle for 
a single cluster. In chapter 10 we define a metric on the space of the collections of 
sets. We build then the surface energy for Caccioppoli partitions in chapter 11 and 
we state a Wulff Theorem for Caccioppoli partitions. Chapter 12 is the proof of the 
large deviation principles for the whole configuration. We include in the appendix 
the basic large deviations terminology which we use to state our results. 

Acknowledgements. I thank Geoffrey Grimmett for suggesting me the problem 
and for his helpful advice. 
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C H A P T E R 2 

THE LARGE DEVIATION PRINCIPLES 

This chapter contains the statements of the main results, that is, the large de­
viation principles and their application to the Wulff crystal. We consider first the 
case of one single cluster and then the case of the whole configuration. The proofs 
of the large deviation principles are deferred in the remaining chapters. The results 
concerning the Wulff crystal are mere consequences of the large deviation principles 
and the Wulff isoperimetric Theorem, hence we proved them here. 

2.1. The finite cluster shape 

We start by describing the topological setting of our first large deviation princi­
ple. We denote by B(R3) the Borel subsets of E3 and by C3 the three dimensional 
Lebesgue measure. When dealing with topological questions on the space #(E3), 
we identify Borel sets whose symmetric difference is Lebesgue negligible, so that the 
map (A1,A2) £ B(R3) C3(AXAA2) is a metric on #(E3), which we call the L1 
metric. 

We consider the Bernoulli bond percolation model on Z3 with parameter p, where 
p is a fixed value in the supercritical regime pc < p < 1 (see chapter 4 for more 
precisions). In chapter 5, we extract from this model a direction dependent surface 
tension r, which is a map from the unit sphere 52 of E3 to E+. This function r is 
positive (because p > pc), continuous, invariant under the isometries which leave Z3 
invariant, and satisfies the weak triangle inequality. We denote by >VT the Wulff set 
associated to the surface tension r, called also the crystal of r, 

WR = {x G l 3 : x 'W < r(w) for all w in S2 } . 

Since T is continuous and bounded away from 0, its crystal WT is convex, closed, 
bounded and contains the origin 0 in its interior [37, Proposition 3.5]. The surface 
energy 1(A) of a Borel set A is defined as 

1(A) = sup 
IA 

divf(x)d£3(x) : f e Câ(K3, W T ) } 

where CQ (E3, W R ) is the set of the C 1 vector functions defined on E3 with values in 
>Vr having compact support and div is the usual divergence operator, defined for a 
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12 CHAPTER 2. THE LARGE DEVIATION PRINCIPLES 

C1 vector function / with scalar components ( / i , /2 , /3) as 

div/ = M + M + M 
<9#i 9^2 

As a consequence of the classical Gauss-Green Theorem, for a set A having a smooth 
boundary dA, the surface energy X(A) is the surface integral of r on the boundary 
of A, that is 

1(A) = [ r(vA(x))dU2(x) 

where VA(X) is the exterior normal vector to OA at x and 7-L2 is the two dimensional 
Hausdorff measure in R3. 

We denote by P the Bernoulli product measure on the set of edges between nearest 
neighbour sites of Z3 corresponding to the parameter p. Let C(0) be the open cluster 
containing the origin. We set for Z in N 

Voo(C(0),0 = {xeR3 :3yeC(0) \x-y\aoKl} 

where | |oo is the standard supremum norm. We denote by P the measure P 
conditioned on the event that C(0) is finite i.e. 

P(.) = P(./cardC(0) < oo) . 

Let 1 be the map from B(R3) to R+ U {oo} defined by 

f X(A) if C3(A) < oo 
VAeB(R3) 1(A) = \ K > 

I oo if C (A) = oo 

Theorem 2.1. (The finite cluster shape, topology L1) 
There exists a constant K — K(p) depending on p such that if f(n) is a function 
from N to N such that n/f(n)2 goes to oo as n goes to oo and f(n) > AS Inn for all n, 
then, under P, the sequence of random Borel sets (n~1Voo(C(0), f(n)))n<E?$ satisfies 
a weak large deviation principle in (^(R3),!/1) with speed n2 and rate function 1: 
for any open subset O of (^(R3),!/1), 

— inf {1(A) : A e O} < liminf —olnP(n-1Voo(C,(0),/(n)) G O ) , 
n—>-oo 77, 

and, for any compact subset K of (^(R3),!^1), 

limsup -2 lnP(n-1Voo(C(0) , / (n) ) e K) < - inf {1(A) : A G K } . 
n—>oo ^ 

Remark. Although the random sets Voo(C(0), f(n)), n G N, are connected, the 
definition of the rate function involves no connectedness condition, because we work 
up to Lebesgue negligible sets. 
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2.1. THE FINITE CLUSTER SHAPE 13 

This first large deviation principle is weak because the upper bound holds only for 
compact sets. The usual way to go from a weak large deviation principle to a full 
large deviation principle (where the upper bound holds for any closed set) is to prove 
an exponential tightness result. We couldn't do that and we don't know whether the 
full large deviation principle holds. However we are able to get an enhanced upper 
bound. 

Theorem 2.2. (Enhanced upper bound for the finite cluster shape, topology L1) 
Let f(n) be a function satisfying the same hypothesis as in Theorem 2.1. For any 
closed subset T of (B(R3)1L1), 

limsup —2lnP(n-1Voo(C(0),/(n)) G T) < - sup inf {1(A) : A G VLi(T,8) } 
n->oo n 5>0 

where VLi(F,8) = {E G B(R3) : 3 A G T £3(AAE) < 8} is the L1 6-neighbourhood 

ofT. 

Was the rate function X a good rate function, the upper bound of Theorem 2.2 would 
imply the full large deviation principle. Unfortunately, the level sets of X are not 
compact and there do exist closed subsets T of (^(M3),!/1) such that 

sup inf {2(A) : A G VLi{T,S) } < inf {1(A) : A G F) . 
5>0 

We illustrate this is the simpler situation where r is independent of the direction 
and X becomes the classical perimeter V, which for a smooth set is the 7i2 measure 
of the boundary. Consider the family T consisting of the sets A(n), n > 1, defined 

by 

A(n) = 5 ( (0 ,0 ,n + l ) , l ) U { (x1,x2,x3) G R3 : x\ + xj < l/n2, \x3\ <n}. 

The set T is closed with respect to the topology L1. For each n, the perimeter of 
A(n) is H2(dA(n)) =4n + 2TT(2 + 1/n2). Thus inf { V(A) : A G T } = Sir. Yet for 
any S positive, for n strictly larger than 2^/8, the ball # ( (0 ,0 , n + 1), l ) belongs to 
VLi (T, 8) whence inf { V(A) : A G VLi (T, 8) } < 4TT and 

sup inf {V(A):AeVLi(J:,8)} < 4TT < 8TT = inf { V(A) : A G T } . 

The reason of this defect is that the topology L1 on B(R3) is too strong and lacks 
compactness. It might therefore be more convenient to work with a weaker topol­
ogy, namely the topology L\oc, which is defined next. For K a compact subset of 
E3, we denote by C?K the map from B(R3) to R+ which to a Borel set E asso­
ciates the Lebesgue measure of E Pi K, i.e, C3K(E) = C3(E D K). We say that a 
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14 CHAPTER 2. THE LARGE DEVIATION PRINCIPLES 

sequence (En)ne^ of Borel sets converges in L\oc towards a Borel set E if for any 
compact set K 

lim £3K(EnAE) = 0. 

This notion of convergence corresponds to the topology on #(R3) generated by the 
following system of neighbourhoods: a fundamental system of neighbourhoods of a 
Borel set E is 

V(E,K,e) = {F eB(R3) : C3K(EAF) <e}, K compact, e>0. 

We may construct a metric d\oc on B(R3) corresponding to the topology L\oc by using 
an increasing sequence of compact sets filling the whole space M3. Let us consider 
for instance the balls (B(OJ)J G N) and define ip(A) = j~5C3(B(0J) n A) 
for a Borel set A. The set function tp is a finite measure on #(R3) which has the 
same null sets as the Lebesgue measure £? . We define next a metric d\oc by: 

\fAuA2 € B(R3) dloc(AuA2) = ip(AiAA2). 

The topology generated by d\oc on #(M3) is the topology L\oc. 

Theorem 2.3. (The finite cluster shape, topology L\oc) 

Let f(n) be a function satisfying the same hypothesis as in Theorem 2.1. Under P, 
the sequence of random Borel sets (n-1Voo(C(0), /(n)))nGN satisfies a large deviation 
principle in (S(R3),Lj-oc) with speed n2 and rate function X: for any Borel set E 
included in B(R3), 

- i n f {X(A) : A e intS} < liminf - , In Pfn"1 Voo(C(0), f(n)) G £ ) 

< limsup —2lnF(n-1Voo(C(0),/(n)) G 5) < - i n f {1(A) : A G c l o £ } 
n—>-oo ^ 

(where int£ and clo £ are £/ie interior and the closure of E in #(R3) with respect to 

the topology L\oc). 

If the full large deviation principle would hold in the topology L1, an application 
of the contraction principle with the identity map from (^(IR3),!/1) to (B(R3),Lloc) 
would yield immediately the large deviation principle in the topology L\QC. Yet the 
enhanced upper bound of Theorem 2.2 is enough to get the large deviation upper 
bound in the L\oc topology. More precisely, we have the following implications: 

L1 lower bound => L\oc lower bound , 

L1 enhanced upper bound L\oc upper bound L1 weak upper bound. 

We will prove the large deviation lower bound for the topology L1. For the clarity of 
the exposition, we will prove first the large deviation upper bound for the topology 
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2.1. THE FINITE CLUSTER SHAPE 15 

L\oc (at this stage the proof of Theorems 2.1,2.3 will be completed) and we will 
finish with the proof of the enhanced upper bound of Theorem 2.2. The proof of 
the enhanced upper bound is more involved because the analysis is not confined 
to a bounded set: the cluster C(0) might have a very large diameter, due to the 
presence of thin and long filaments having a small surface energy. Let us check the 
first implication of the second line, the other ones being more classical. Let £ be a 
closed subset of (B(R3), L\oc). We must show that 

- sup inf {1(A) :Ae VLi (£,<$)} < -\id{l(A):AeS). 
(5>0 

If the left-hand side is equal to — oo, the inequality is certainly true. Otherwise, let 
(An)ne^ be a sequence of Borel sets such that —l(An) converges to the left-hand 
quantity as n goes to oo and An belongs to V^i (£, l/n) for all n in N. In particular, 
we have 

lim inf { dloc(An, E) : E <E £ } = 0 . 
n—>-oo 

Since the level sets of 1 on (B(M?),Iqoc) are compact, the sequence (An)ne^ admits 
a subsequence converging towards a Borel set A' in L\oc. Necessarily, A' belongs to 
the L\oc closure of £, which is £ itself. Because 1 is lower semicontinuous, we obtain 

inf {1(A) : A e £ } < l(A') < lim l(An) = sup inf {1(A) : A e VLi(£,S) } . 

The next result links the cardinality of (7(0) to the volume of Voo(C(0), f(n)). 

Proposition 2.4. Let 9 — P(cardC(0) = oo) be the density of the infinite clus­
ter. Let f(n) be a function from N to N such that both n/f(n)2 and f(n)/\nn go 
to oo as n goes to oo. Under P, the two sequences of positive random variables 
(n-3cardC(0))nGN and (en~3C3(Voo(C(0), f(n)))) n£N are exponentially contiguous, 
i.e., for any positive S, 

l imsupi2lnP( |cardC(0)-6>£3(Voo(C(0), / (n))) | > Sn3) = - o o . 

Remark. The hypothesis on the function f(n) is stronger than for the large devi­
ation principles. Indeed it is required here that f(n)/\nn converges to oo as n goes 
to oo. 

We show now how a picture of the Wulff crystal for three dimensional Bernoulli 
percolation emerges with the help of the large deviation principle and Proposi­
tion 2.4. 
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16 CHAPTER 2. THE LARGE DEVIATION PRINCIPLES 

Theorem 2.5. (Asymptotics of the finite cluster shape) 

In the three dimensional Bernoulli bond percolation model on the cubic lattice, for 

P > Pc, 

lim 
n—ïoc 

l_ 

n2 
\nP(n6 < cardC(O) < oo) 

(i/o -

(6£3(WT))2/3' 

If f(n) is a function from N to N such that both n/f(n)2 and f(n)/\nn go to oo 
as n goes to oo, the law of n-1Voo(C(0), f(n)) conditioned on the event {n3 < 
card C(0) < oo } concentrates exponentially fast around a shape which is a suitable 
dilation of the Wulff crystal of r. More precisely, for any positive S, if Pn is the 
conditional probability given by Pn(') = P(-\n3 < cardC(O) < oo), then 

lim sup 
1 

lnP„ inf 
x€R3 

1(E) : E € mtS} = inf {1(E) : CZ(E) > 1/0}¨+¨£¨£ > à < 0. 

Proof. Proposition 2.4 shows that, under P, at the level of the large deviations of 
order n2, the event { n3 < cardC(O) } is equivalent to the event 

{ ^ ( n ^ V o o ^ O ) , / ( « ) ) ) > 1/9} 

Let S be the set {E € B(R3) : C3(E) > 1/0}. Notice that £ is closed for the 
topology L1. The interior of £ is the set {E : C3(E) > 1/8}. The variational 
results related to the Wulff crystal (see chapter 6) yield 

inf {1(E) : E € mtS} = inf {1(E) : CZ(E) > 1/0} = 
(i/o -

(0£3(WT))2/3' 

and for any positive S, 

inf {1(E) :EeVLi(£,<5)| > inf {1(E) : C3(E) > 1/0 — 6} 

(i/o -sy 

, £3(WT) 

2/3 
X(Wr) . 

Letting S go to zero, we see that 

sup inf Î{E) : E G VLI (£ , (S) \ 

¨MM£%£% 
£ 
{6C3(WT))2/3 

inf {1(E) : E e i n t £ } . 

The weak large deviation principle of Theorem 2.1 and the enhanced upper bound 
of Theorem 2.2 yield that the limit l im^oo n~2 In P(n3 < card(7(0) < oo) exists 
and is equal to the above quantity. 

We turn now to the proof of the second claim of the Theorem. By the Wulff 
isoperimetric Theorem (see chapter 6), the Borel sets E minimizing the surface 
energy 1(E) under the volume constraint C3 (E) > 1/0 are translates of a suitable 
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2.1. THE FINITE CLUSTER SHAPE 17 

dilation of the Wulff crystal; more precisely, the solutions of this variational problem 
are the elements of 

s* = {x + (ec3(wT))~1/3yVr : x e R3 } . 

We write 

lim sup 
n—»-00 

1 In Pn inf Z3((x + (0£3(WT))-^3Wr) A n ^ V o o ^ O ) , / ( n ) ) ) > (5 

lim sup 
n-*oo 

1 
n2 

nPin-'VooiC^Jin^eSXVL^S^S)) + (^3(Wr))-2/3X(Wr) 

Applying the enhanced upper bound of Theorem 2.2, for 7 such that 0 < 7 < 6/4, 

lim sup 
n—>oo 

_1_ 
n2 

lnP(n-1VOo(C(0),/(n)) € 5 \ V L i ( 5 * , J ) ) < 

- inf {1(E) :EeVLi(S\ VLi (<S*, S), 7) 

Yet the set VLi (S \ VLi(<S*,S),^) is included in 

; E G B(R3) : £3(E) > 1/0 — 7, WA G <S* £3(EAA) > Ä - 7 

Let X = ((1/0 — 7)/£3(Wr)) . If E belongs to the preceding set, then for any ; 

in R , 

£3(X-1EA(x + WT)) = X~3£3(EA(Xx + XWT)) 

> X-3£3(EA(Xx + (0£3(Wr))-1/3WT)) -- X-3£3((OC3(WT))-1/3WTAXWr) 

> A-3( (5 -27) . 

Therefore the preceding set is further included inside the set 

{ E G B(R3), £3(X~XE) > £3(WT), VX G R3 £3(X~1EA(X + WT)) > X~3(5-21) } . 

We apply now the stability result associated to the Wulff isoperimetric Theorem (see 
chapter 6): there exists a non-decreasing function s : M+ \ {0} \-¥ R4" \ {0} such that 
the infimum of 1 on the above set is larger than A2X(Wr) + X2s(X~~3(8 — 27)). It 
follows that 

inf {1(E) : E e VLi(8 \ VLi(S\S)i7) } > X2l(Wr) + X2s(X-3(S - 27)) . 

For 7 < J/4, since s is non-decreasing, s(X 3(S - 2j)) > s(60£3(yVT)/2), whence, 

coming back to the initial inequality, 

limsup -AnPj inf £3((x + (0£3(WT))-1/3WT) A n^V^C^), f(n))) > s) < 

-X21(WT) - X2s(S0£3(WT)/2) + (0£3(WT))-2/3l(WT). 

We conclude by letting 7 go to 0: the quantity on the right-hand side converges to 

-(0£3(WT))-2/3s(S0£3(WT)/2) which is negative. • 
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18 CHAPTER 2. THE LARGE DEVIATION PRINCIPLES 

2.2. The continuum limit 

We describe now the topological setting of our second type of large deviation 
principles. We denote by BC(E3) the set of all finite or countable collections of 
non negligible Borel subsets of E3. An arrangement of an element A of BC(.E3) is 
a sequence (A(i),i G N) of sets in A U { 0 } such that each set of the collection A 
appears exactly once in the sequence (A(i),i G N) and the empty set 0 appears 
countably many times in the sequence. The metric D on BC(E3) is the following 
one: 

\fAuA2 e BC(E3) D(AUA2) = 

inf { sup C3 (Ax(i)AA2(i)) : (Aj(i),i G N) arrangement of Aj, j = 1,2) . 

The surface energy 2(A) of a collection of Borel sets A is defined as 

1(A) = 1 5 3 x w 
AeA 

if the sets of the collection form a Borel partition of E3, and 2(A) = oo otherwise. 
We consider the random collection C of the open clusters of the percolation config­
uration, 

C = {C : C open cluster of the configuration } . 

Remark. The collection C is a partition of Z3 into connected sets. 
For U a Borel subset of E3 and I in N, we define C(U,l) as the collection of the finite 

clusters of C intersecting U and having diameter strictly larger than /, that is, 

C(U, I) = { C G C, / < diamooC < o o , C n [ / ^ 0 } , 

and we define the random Borel collection VQOC(U,1) to be 

VooC(tf,0 = {Voo(C ,0 :CeC(U,0}U{E3\ ( J Voo(C, / )} . 
C€C(U,l) 

Theorem 2.6. (Continuum limit around a bounded set, metric D) 
There exists a constant K = n(p) depending on p such that if f(n) is a function 
from N to N such that n/f(n)2 goes to oo as n goes to oo and f(n) > /slnn for 
all n, then, for U a bounded Borel subset of E3, the sequence of random Borel 
collections of sets (n~1V00C(nU, f(n)))ne^ satisfies a weak large deviation princi­
ple in (BC(R3),D) with speed n2 and rate function 2: for any open subset O of 
(BC(R*),D), 

-inf {1(A) :AeO} < lim inf -AnPU^V^nU, f(n)) € O) , 
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2.2. THE CONTINUUM LIMIT 19 

and, for any compact subset K of (BC(R3),D), 

lim sup —2lnP(n-1V00C(nC7,/(n)) G K) < -mf{I(A) : A G K} . 
n—>oo Tl 

As previously, a way to get a full large deviation principle is to weaken the topol­
ogy. We define next the metric D\oc on BC(IR3). This metric is discussed in chap­
ter 10. For K a compact set and for A\, A2 in BC(M3) we define 

DK(AUA2) = 

inf { sup £3K (Ax (i) A A2(i)) : (Aj(i),i G N) arrangement of Aj, j = 1,2} . 

We construct a metric D\oc on BC(M3) by using an increasing sequence of compact 
sets filling M3, for instance the closed balls (B(0,j),j G N), and setting 

VAUA2 e BC(R3) Dloc(A!,A2) = Y<rbDB{QJ)(AuA2). 
J > I 

A sequence (-4n)neN of Borel collections of subsets of E3 converges with respect 
to D\oc towards a Borel collection A if and only if for any compact set K 

lim DK(An,A) = 0. 
n—*oo 

This notion of convergence corresponds to the topology on BC(R3) generated by the 
following system of neighbourhoods: a fundamental system of neighbourhoods of a 
Borel collection A is 

V(A,K,e) = {A' eBC(R3) : DK(A',A) < e} , K compact, e>0. 

For A in BC(E3) and I in N, we define the collection Voo(AJ) of the /-neighbour­
hoods of the elements of A having diameter strictly larger than /, i.e., 

VoopU) = { VooOU) : Ae A, diamoo^ > / } . 

Theorem 2.7. (Continuum limit on M3, metric D\oc) 
There exists a constant K — n(p) depending on p such that if f(n) is a function 
from N toN such that n/f(n)2 goes to oo as n goes to oo and f(n) > nlnn for all n, 
then the sequence of random Borel collections of sets (n~1V00(C^ f(n)))ne?q satisfies 
a large deviation principle in (BC(R3), D\oc) with speed n2 and rate function 1: 
for any Borel subset E of BC(R3), 

- i n f {1(A) : A G intE} < liminf —• In P(n_1 Voo(C, f(n)) G E) 
n—>oo n v ' 

< limsup —2lnP(n"1V00(C,/(n)) G E) < - i n f {1(A) : A G c loE} 
n—f oo 71 
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20 CHAPTER 2. THE LARGE DEVIATION PRINCIPLES 

(where intE and cloE are the interior and the closure o /E in BC(R3) with respect 
to the metric D\oc). 

Remark. We stress that the large deviation principles of Theorems 2.6 and 2.7 

involve different random objects, namely VooC(nU, f(n)) and Voo(C, f(n)). 

We show next that the sequence of the collections (n~1V00(C, f(ri)))nen concentrates 

exponentially fast near Borel partitions. 

Proposition 2.8. (Concentration near Borel partitions) 
There exists a constant K = K(P) depending on p such that if f(n) is a function 
from N to N such that n/f(n)2 goes to oo as n goes to oo and / ( n ) > ft Inn for 
all n, then the sequence of random Borel collections of sets (n"1 Voo(C, f(n)))n^ 
concentrates near Borel partitions in the following sense: for any compact set K 
and for any positive S, 

lim sup —2 In P [ C3nK ( ( J Ax H >Sn3) = - o o , 

n-*°° U V AlfAa€Voo(C,/(n)) / 
A^A2 

lim sup —2 In P (c3 (nK \ M A) > SrA = - o o . 
™ U V V Aev^cjin)) J 

Under the same conditions, for any bounded Borel set U of E3 and any positive 6, 

lim sup 2 In P f C3 ( [ J A1nA2)>Sn3) = -oo . 

(i/o -(i/o -A^A2 

As a consequence of the previous results, we can deduce some information on the in­
tersection of the infinite cluster Coo with a box nA from the large deviation principle 
on C(nA, / ( n ) ) . 

Corollary 2.9. There exists a constant K = K,(p) depending on p such that if / ( n ) 
is a function from N to N such that n/ / (n)2 goes to oo as n goes to oo and f(n) > 
KInn for all n, then for any cubic box A, for any positive 8, 

l imsup-2lnP(£3A(v00(C00,/(n))A(E3 \ ( J Voo(C,/ (n)))) > Sn3) = - o o . 
™ n CGC(nA,/(n)) ' 

Proof. We compute 

^3nA(Vo0(C00,/(n))A(lR3 \ | J Voo(C, / (n))) ) 
CeC{nAJ(n)) 

<£Ia( U n A2) + £ 3 ( n A \ | J Voo(C,/(n))) + n2/(n)«2(c?A). 
Ai,A2GVoo(C,/(n)) C£C 

A^A2 
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The result follows from Proposition 2.8. • 

The next result links the cardinalities of the clusters intersecting a fixed cubic box 
and the volumes of their /(n)-neighbourhoods. 

Proposition 2.10. Let f(n) be a function from N to N such that both n/f(n)2 
and / ( n ) / l n n go to oo as n goes to oo. For any cubic box A, any positive 8, 

l i m s u p - A n P ( sup |n-3card(Ann-1C)-6>£3(Ann-1V0o(C,/(n))) | > s) = - o o . 
n->oo nz ^cec ' 

Although the previous results are enough to get a version of the single droplet 
Theorem inside a bounded set, in order to get a result which is closer in spirit to 
the single droplet Theorem of [3] (i.e., which involves the infinite cluster Coo), we 
need the following enhanced large deviations upper bound, whose proof is more 
delicate than the previous upper bounds. Indeed, the analysis is not confined to a 
bounded set and we have to track all the open clusters intersecting a fixed bounded 
set; these clusters might have a large diameter, because of the presence of thin and 
long filaments having a small surface energy. 

Theorem 2.11. (Enhanced upper bound around a bounded set, metric D) 
There exists a constant K = K(P) depending on p such that if f(n) is a function 
from N to N such that n/f(n)2 goes to oo as n goes to oo and f(n) > n\nn for all n, 
then, for U a bounded Borel subset o/E3, the sequence of random Borel collections of 
sets (n_1VooC(n[7,/(n)))n€N satisfies the following large deviations enhanced upper 
bound: for any closed subset ¥ of (BC(R3 ),£>), 

lim sup —AnP{n-lVooC{nU,f(n)) e ¥) < - sup inf {1(A) : A € VD(¥,S) } 
Tl—YOG <5>0 

where Vr>(F,5) = {8 G £C(E3) : 3A G F D(A,E) < 8} is the 8-neighbourhood ofW 
in (BC(R3),D). 

We end with a formulation of the single droplet Theorem. We recall that denotes 
the unique infinite open cluster of the configuration. 

Theorem 2.12. (Single droplet Theorem) 
Let A be a cubic box in E3 such that £3(A) = 1. Let X in ]0,1[ be such that some 
translate of the dilated Wulff crystal (A/£3(Wr))1/3>Vr is included in the interior 
of A. Then 

lim —.lnPfcardCooHnA^ (1 - X)0n3) = -(A/£3(>Vr))2/3 X(WT). 

Let A(A) = {x G A : x + (A/£3(Wr))1/3Wr C c l o A } . Let f(n) be a function 
from N to N such that both n/f(n)2 and f(n)/\nn go to oo as n goes to oo. For 8 
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22 CHAPTER 2. THE LARGE DEVIATION PRINCIPLES 

positive, let 8n(A, A, S) be the event: there exist x in A(A) and one open cluster Co 
such that 

C? ((n^VooCCoo, f(n)) n A) A (A \ (x + (\/C3(WT))1/3WT))) < Ô, 

C3(n-1Voo(C0,f{n))A(x + (\/C3(WT))1'3WT)) < Ô, 

C3 

CeC(nAJ(n))\{C0} 

n^VooiCJin))) <6. 

Then there exist two positive constants b, c depending on p, A, 6 such that 

P(£n(A, A, S) I card Coo H nA < (1 - A)0n3) > 1 — bexp(-cn). 

Remark. We consider the case where £3(A) = 1 only to simplify the statement. 
Otherwise we should replace A and 1 — A by A£3(A) and (1 — A)£3(A) respectively 
in the above statement. 

Proof. Let us define 

E(A) = | ^ G B C ( M 3 V i G i ( i / o -eithe £3{A) < o o o r £3(Ar\A) < 1 - A 

Notice that E(A) is closed in BC(E3) for the metric D. For x in R3, we set 

(i/o -(i/o - x + (A/£3(Wr))1/3Wr, R3 \ (x + (A/£3(Wr))1/3Wr) 

Let Ô be positive. On one hand, by Corollary 2.9, Proposition 2.10 and the lower 
bound of Theorem 2.6, 

- inf {1(A) : A € int E(A + Ô) } 

'. lim inf 
n—too 

1^ 
n2 

InPin^VooCinAJin)) e E(A + S)) 

< lim inf 
n—too 

1^ 

n"2 
lnP(£3(n-1Voo(C00,/(n))nA) < 1 - A - 6/2) 

< lim inf 
n-+oo 

1_ 

n2 
In P (card Coo n nA < (1 - A)0n3) 

On the other hand, by Corollary 2.9, Proposition 2.10 and the enhanced upper bound 
of Theorem 2.11, 

lim sup 
n—too 

1 

n2 
In P(card Coo n nA < (1 - X)9n3) 

< limsup -^nP^in^VooiCooJin^nA) < 1-X + Ô/2) 

< limsupn->0 —2lnP(n-1V00C(nA,/(n)) G E(A - S)) 

n—too 
< - inf {1(A) : A e VD(E(X - S), Ô) } . 
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2.2. THE CONTINUUM LIMIT 23 

We examine first the large deviation lower bound. Let x be such that the translated 
and dilated Wulff crystal x + ( A / £ 3 ( > V R ) ) 1 / 3 W R is included in the interior of A . We 
claim that Ay^T (x, A + 28) belongs to the interior of E(A + 8) for 8 sufficiently small. 
Indeed, let 6 positive be such that x + ( (A + 2£)/£3(>Vr))1/3>VT is still included 
in int A . Let A be an element of BC(E3) such that D(AwT (x, \ + 2S),A) < 8. Let A 
be a set of A. Three cases can occur. 
• £3(A) < 8, then C3(A) < oo. 
• £3(AA(x + ((A + 28)/C3(Wr))1/3yVT)) < 8, then £3{A) < oo. 

• £3(AA(R3 \ (x + ((A + 28)/£3(WT))^3Wr))) < 8, then 

£3(AnA) < £3(A\(x + ((X + 28)/£3(WT))1/3WT))+8 < l-X-28 + 8 = l-X-8. 

Thus { A e BC(R3) : D(AWT (X, A + 28), A) < 8 } is included in E(A + 8). Therefore 
AyvT (#> A + 28) belongs to the interior of E(A + 8) and 

inf {1(A): A eintE(X+8)} < ((X + 28)I£3(WT))2/31(WT). 

We examine now the large deviation upper bound. Let 8 be positive and let A belong 
to V D ( E ( A — 8), 8). Suppose that 1(A) is finite. Then A contains exactly one set 
AOQ such that ^(A^) = oo (see chapter 11). By the definition of Vd, there exists 
an element A' in E(A — 8) such that D(A, A') < 8. Hence there exists a set A' in A' 
such that £3(AooAA') < 8; necessarily £3(A') = oo so that £3(A' n A ) < 1 - A + 8 
and A - 28 < £3(R3 \ A^) < oo. The Wulff isoperimetric Theorem (see chapter 6) 
implies 

1(A) > 1(R3 \AOQ) > ((X-28)/£3(WT))^3l(Wr). 

Letting 8 go to 0, we see that the large deviation upper and lower bounds coincide. 
We turn now to the proof of the second claim of the Theorem. We are going to 

prove that the law of the random collection of sets n-1 VooC(nA, f(n)) conditioned on 
the event { card Coo H nA < (1 — A)0n3 } concentrates exponentially fast in the met­
ric D on BC(M3) around an element AwT(x,X) for some x in A ( A ) . More precisely, 
let £'n(A, A, 8) be the intersection of the events: 

• n̂A ( U ^ n ^ 2 ) < SnS ' £S ( n A \ U A ) < Sn3 ' 
Ai,A2eVoo(C,/(n)) i4eVoo(C,/(n)) 

A^A2 

• £ 3 ( | J A1nA2Sj<8n3. 
AllA2eV00C(nA,f(n)) 

A^A2 

• ^A(Voo(Coo,/(n))A(lR3 \ | J Voo(C,/ (n)))) <8n3. 
cec{nhj{n)) 

• there exists x in A (A) such that 

^(^wT(^,A) ,n-1V00C(nA, / (n)) ) < 8. 
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24 CHAPTER 2. THE LARGE DEVIATION PRINCIPLES 

Elementary computations show that, for any positive 5, the event £'n(A,X,S) is 
included in the event £n(A, A, 45). Hence we need only to estimate the conditional 
probability of £'n(A,X,5). The estimates for the first two points in the definition 
of the event £'n(A,X,6) are obtained in Proposition 2.8. Corollary 2.9 gives the 
estimate for the third point. Hence we need only to estimate the probability of the 
fourth point. By the Wulff isoperimetric Theorem for Caccioppoli partitions (see 
chapter 11), the Borel collections A minimizing the surface energy T(A) in E(A) are 
exactly the elements of 

S* = {Awr(x,\) : x G A(A) } . 

Using the previous result and Proposition 2.10, we have, for any J, 5' positive, 

limsup —0Inp( inf D(AwT(x,X),n~1V00C(nA,f(n))) > S 
n-+oc nz VxeA(A) V / 

card Coo n nA < (1 - A)0n3) < 

limsup -2lnP(n-1VocC(nA,/ (n)) e E(X-6')\VD(<S*,S)) + (A/£3(Wr))2/3X(>Vr). 

n—^oo fl 

Applying the enhanced upper bound of Theorem 2.11, for any positive 7, 

limsup -2lnP(n-1V00^(nA,/ (n)) G E(A - 5') \ VD(S*,S)) < 

n-»oo Tl 

- inf {1(A) : A e VD(E(X - 5') \ VD(S\6),7) } . 

Yet the set VD(E(X - Sf) \ VD (<S*, 6), 7) is included in 

{ A e E(A - 6' - 7) : V.4' G 5* D(A,A') > 6 - 7 } . 

We apply now the stability result associated to the Wulff Theorem for Caccioppoli 
partitions (see the end of chapter 11): for 5', 7 small enough, there exists a positive 77 
such that the infimum of X on the above set is larger than (A/£3(H7r))2//3X(Wr) + 77. 
The desired conclusion then follows from the initial inequality. • 
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C H A P T E R 3 

SKETCH OF THE PROOFS 

This chapter is devoted to a sketch of the proofs of the large deviation principles. 
To ease the reading, we stay here at an informal level. The details, the precise proofs 
and the bibliographic references are to be found in the subsequent chapters. The 
order of the presentation is here more natural than logical, hence it does not match 
exactly the organization of the main text. 

3.1. Surface tension 

The first main problem is to extract a surface tension from the percolation model. 
We proceed as follows. Given a unit vector v, let A be a unit square in E 3 with 
normal vector v and let cyl A be the cylinder with basis A. The surface tension r(v) 
in the direction of v is defined as 

/in ncyl A there exists a finite set of closed edges E such that\ 
• E cuts ncyl A in at least two unbounded components 
• the edges of E at distance less than 5 from the boundary 

\ of ncyl A are at distance less than 5 from nA / 

A subadditive argument yields the existence of this limit: given a large square, we 
tile it into smaller squares and, supposing that the corresponding event for each 
small square occurs, we glue together the associated set of closed edges in order to 
obtain a set of edges realizing the above event for the large square. We then apply 
the FKG inequality to get an almost subadditive inequality. The condition on the 
localization of the set of closed edges near the boundary of the cylinder ncyl A is 
crucial to perform the glueing without deteriorating the probabilistic estimates. It 
is furthermore possible to localize the set of closed edges E: we obtain the same 
limiting value T(V) if we impose that the edges of E are at distance less than 4>{n) 
from the plane containing nA, where (j>(n) is any function going to oo with n. 

The function r is positive, continuous, invariant under the isometries which 
leave Z 3 invariant, and it satisfies the weak triangle inequality: for any triangle 
(ABC) in E 3 , if VA, VB, VC are the exterior normal unit vectors to the sides [BC], 
[AC], [AB] in the plane containing (ABC), then 

\BC\2r(uA) < \AC\2T(ISB) + \AB\2r(uc) -

r(v) = 

lim -—AnP 
n—>oo n 
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Figure 1: a triangle 

We denote by WT the Wulff set associated to the surface tension r, called also the 
crystal of r, defined by 

WT = { x G l 3 : x • w < r(w) for any unit vector w } . 

Because of the properties of r, the crystal WT is convex, closed, bounded and contains 
the origin 0 in its interior. 

In the next step, we obtain probabilistic estimates for the presence of a separating 
set of closed edges but without constraint on the localization of its boundary. We 
give first a lower bound: for O a planar set in M3 with normal vector nor O and (j)(n) 
a function going to oo with n, 

/there exists a set of closed edges in ncyl O \ 
lim inf — InP I at distance less than 0(n) from nO cutting ) > — W2(0) r(nor O). 

\ncylO in at least 2 unbounded components/ 

Secondly we have an upper bound: there exists a positive constant c such that, for 
any positive p, n with rj < p, any unit vector w, any disc D in E3 with radius p and 
normal vector w, 

/there exists a set of closed edges in ncyl D \ 
lim sup —2 In P I at distance less than nrj from nD cutting I 
n_^°° \ncylD in at least 2 unbounded components/ 

< -r(w)7Tp2(l - c^t)Ip) . 

3.2. Surface energy 

To the direction dependent surface tension r, we associate a surface energy X. 
The surface energy 1(A) of a Borel set A of E3 is defined as 

1(A) = sup { J divf(x)dC3(x) : / e C o ^ E 3 , ^ ) } 
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3.3. PROOF OF THE LOWER BOUND FOR A SINGLE CLUSTER 27 

where CQ (E3, Wr) is the set of the C1 vector functions defined on E3 with values in 
Wr having compact support and div is the usual divergence operator. The surface 
energy X(A) is finite if and only if A is a set of finite perimeter in the sense of 
Caccioppoli and De Giorgi and in this case it coincides with the surface integral of 
r along the reduced boundary of the set A, that is, 

1(A) = [ T(vA(x))dU2(x). 
Jd*A 

The reduced boundary d*A of a set of finite perimeter A is the set of the points of 
the boundary of A where A admits an exterior normal vector VA(X) in a measure 
theoretic sense. In case A is a smooth set, the reduced boundary d*A coincides with 
the topological boundary dA and VA(X) is the usual exterior normal vector to A 
at x. 

3.3. Proof of the lower bound for a single cluster 

Let O be an open subset of (Z3(E3), L1). We have to prove that for any A in O, 

lim inf — \nP(n~1VOO(C(0), f(n)) G O) > -1(A). 
n->oo nz 

Because O is open, there exists a positive 6 such that { E G B(R3) : C3(EAA) < S } 
is included in O. Hence it is enough to prove that 

liminf —olnPf£3(n-1Voo(C(0),/(n))AA) < s) > -1(A). 

We need only to consider the case where A has finite volume and surface energy 
(otherwise X(A) = oo). We prove in chapter 6 that a set of finite perimeter can 
be approximated in the sense of both volume and surface energy by a sequence 
of polyhedral sets. This result, proved in the case of isotropic surface energy (r 
constant) by De Giorgi, links our definition of the surface energy with the original 
definition of the perimeter proposed by Caccioppoli, as the infimum of the limits of 
the surface energies of polyhedral approximations. In case A has finite volume, we 
can also impose that the approximating polyhedral sets are bounded and connected. 
Therefore we need only to consider the situation where the set A is polyhedral, 
its interior is connected and contains the origin. Let Fi, . . . , Fr be the faces of the 
boundary of A (they are planar polygonal sets), let </>(n) be a function such that <j>(n) 
and n/(f>(n) go to oo with n, let 0,U be open connected sets such that U contains 
the origin and U C O C A. Whenever A\U has small volume and n is sufficiently 
large, the event { C? (n_1Voo(C(0), f(n))AA) < 6 } contains the intersection of the 
events 

J there exists a set of closed edges inside ncylF^ at distance less than 
\<t>(n) from nFi cutting ncyli^ in at least 2 unbounded components } , 1 < t < r, 
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28 CHAPTER 3. SKETCH OF THE PROOFS 

J the edges at distance less than <f)(ri) from the plane spanned by nFi 

\and at distance less than 5 from the boundary of ncyl F{ are closed 

J for the configuration restricted to nO, the set nil is included in 
\the / ( n ) neighbourhood of the open cluster containing the origin 

Indeed, the occurrence of the last event of the above list implies that nU is included in 
Voo(C(0), / ( n ) ) , while the occurrence of the other events precludes the existence of an 
open path starting in nO and exiting from Voo(n^4, (f>(ri)), so that Voo(nA, /(n)-h^(n)) 
contains Voo(C(0), f(n)). Since (j)(n)/n goes to 0 and the set O is at positive distance 
from the boundary of A, for n large, the last event of the list is independent from 
the other ones; moreover its probability goes to 1 as n goes to oo because we are 
in the supercritical regime where, for n large, the open connected domain nO is 
likely to be invaded by a huge cluster of density 0 (this is a consequence of Pisztora 
results). The other events deal with the presence of sets of closed edges, hence 
they are decreasing. The number of edges involved in the second type of events 
is of order n0(n), hence the corresponding probabilities are ruled out at the level 
of surface order large deviations. We apply the FKG inequality together with our 
surface tension lower estimate to get 

liminf -2 lnPf£3(n-1Voo(C(0) , / (n ) )AA) < s) > - Y ^2(F,)r(nor 
l<i<r 

= -1(A). 

3.4. Proof of the weak upper bound for a single cluster 

A summary of the basic large deviations techniques and terminology employed 
here is given in the appendix. We first prove that the sequence of random sets 
(™_1Voo(C(0), /(n)))nGN is X-tight, namely that there exists a positive constant c 
such that 

limsup —2lnP(inf {£3(n-1Voo(C(0) , / (n ) )AA) : A G B(R3), 1(A) < A } > s) 

< -cA. 

For that purpose, we build a random set fifaC(O) having the following properties: 

• the sequences of sets (n-1 Voo(C(0), f(n)))neN and (n""1fifaC,(0))nGN are exponen­
tially contiguous for the topology L1, that is, for any positive 5, 

limsup—2lnP(£3(n-1Voo(C(0),/(n))An-1fifaC(0)) > s) = - o o . 

• the law of n_1fifaC(0) concentrates exponentially fast near the sets having finite 

volume and perimeter, that is, there exists a positive constant c such that, 

V M > 0 limsup A2InP(V(n-1G£a,C(0)) > M) < -cM . 

J , 1 < * < r, 
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C3((AnB(xi,n) AB- (xi,ri,vA(xi))) £%%£+£££ 

1(A) 

iei 

nr2T(i>A(xi)) < e. 
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The set fifaC(O) is obtained through a deterministic smoothing procedure applied 
to the open cluster C(0). We first fatten slightly C(0) (as was done in [50]) and then 
we fill the microscopic holes to get fifaC(O). 

We next need a local estimate, like the following one: 

VAeB(R3), X ( A ) < o o , V £ > 0 36(A,e)>0 

limsup —2lnP(£3(n-1VOo(C(0),/(n))AA) <6(A,ej) < -1(A) (1 - e). 

Indeed, although the rate function 1 is not good, the Z-tightness together with 
the local estimate yield the weak large deviations upper bound. To get the local 
estimate for a set A having finite volume and perimeter is much more delicate than 
to get the X-tightness. Indeed we should then recover the surface energy 1(A) 
in the probabilistic estimate. At the boundary of the open cluster C(0), there is 
a set of microscopic clusters (of diameter smaller than / (n ) ) which in the limit 
n —» oo has a positive density 1 — 0 with respect to the Lebesgue measure. These 
small clusters do not create any surface energy, because the surface tension deals 
with mesoscopic connected sets of closed edges. We must only track these latter 
sets at the boundary of C(0) to obtain our estimate. Starting from C(0) and the 
random configuration around it, we define a random set agluC(O) by agglutinating 
the clusters of diameter smaller than f(n) at a distance less than 3/(n) from C(0) 
and putting a unit cube at each vertex belonging to one of these clusters. A key 
point is that the connected components of closed edges at the boundary of aglu C(0) 
have a mesoscopic size and do create a surface energy. Furthermore the sequences of 
sets (n_1VCX)(C'(0),/(n)))nGN and (n-1agluC(0))nGN are exponentially contiguous 
for the topology L1, so that we need only to prove that 

\/AeB(R3), P(A) <oo, £3(A)<oo, > 0 3 6(A,e)>0 

limsup —2lnP(£3(n-1agluC(0)AA) <6(A,ej) < -1(A) + e. 
n—too 71 \ / 

At this stage, we use an approximation result which is the counterpart of the poly­
hedral approximation used in the proof of the lower bound. Let A be a set having 
finite perimeter. For x in M3, r positive and v a unit vector, we denote by JE?_ (X, r, v) 
the half-ball which is the intersection of the Euclidean ball B(x,r) and the half-
space {y : (y — x) • v < 0}. Let 5',e be positive. There exists a finite collection of 
disjoint balls B(xi,r{), i G / , such that: for any i in / , X{ belongs to the reduced 
boundary d*A of A, Vi belongs to ]0,1[ and 
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Here VA(X) is the measure theoretic exterior normal to A at x. This approximation 
result relies on the description of the reduced boundary and on the Vitali covering 
Theorem. Now the event { £3(n_1agluC(0)A^4) < S } is included in the intersection 

iei 
£3((agluC(0) fi B(nxi,nri))AB-(nxunri,i/A(xi))) < 5n3+8'r3n3 

For i in J, let C(i) be the collection of the open clusters of the configuration restricted 
to aglu C(0) nB(nxi, nri). Because of the definition of aglu C(0), the clusters of C(i) 
are open clusters of the configuration restricted to B(nxi,nri). For n large enough 
and S sufficiently small, the above intersection of events is further included in 

iei 

[ ^3 ( (UcGC( i ) ^oo (C , l / 2 ) )A5_(n^ ,n r , , ^ ( ^ ) ) ) < 3JV?n3' 

For x in R3, w a unit vector, n in N and r, So positive, we define sep (n, x, r, w, So) to 
be the event: there exists a collection C of open clusters in the configuration restricted 
to the ball B(nx,nr) such that C3 {({JCeC Voo(C, l/2))AB-(nx,nr,w)) < Sor3n3 . 
The balls B(xi,ri) being disjoint, the events sep (n, Xi, r̂ , VA(XI), 3£') are indepen­
dent, thus 

P ^(n-^gluC^AA) <<s ) < ( 1 - 0 ) " 

iei 

P(sep (n,Xi,ri,pA(xi),Zà')) . 

The central Lemma gives an upper bound on P(sep (n, x, r, w, 35')), which is uniform 
with respect to x,w,r, as follows: given a positive e, we may find #o positive such 
that for any x in M3, any unit vector w and r in ]0,1[, 

lim sup 
n—>-oo n2 

lnP(sep (n,x,r, w, So)) < —r(w)7Tr2(l — s). 

Let us now build everything in order. We start with a positive e. Let So positive be 
associated to s by the central Lemma. We choose a positive 5' smaller than ^o/3, we 
apply the approximation result to find the family of balls B(xi,ri), i G / , associated 
to 5' and £, then we choose S smaller than the minimum min{ S'r3 : i £ 1} and we 
end up with 

lnP( ^ ( n ^ a g l u C ^ A A ) <S < - l n ( l - 0 ) + 
iei 

lnP(sep (n,Xi,ri,uA(xi),So)) . 

Dividing by n2 and taking the supremum limit, we have then 

limsup 
n—too 

i_ 
n2 

InP ^ ( n ^ a g l u C ^ A A ) <S < - T(lSA(Xi))7rr2(l-£)+µ£ 

3(n-1< -l(A)(l-e)+e. 
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3.5. The central Lemma 

Let us recall the result of the central Lemma. For x in R3, a unit vector w 
and r, Ô positive, we define sep (n, x, r, w, S) to be the event: there exists a collec­
tion C of open clusters in the configuration restricted to the ball B(nx, nr) such that 
£3((Ucec ^oo(C, l/2))AB-(nx,nr, w)) < 6r3n3 . The central Lemma states that 

The main difficulty is to relate the event sep (n, x, r, w, S) to an event involved in 
the definition of the surface tension. Indeed the former event is at first sight quite 
different from the latter. Yet suppose that the event sep (n, x, r, w, S) occurs and let 
C be a collection of open clusters in B(nx, nr) realizing it. Then at the boundary of 
the union of all the clusters of C, there exists a large set of closed edges which almost 
cuts the ball B(nx, nr) along the plane { y : (y — nx) • v = 0 } . Indeed all the open 
paths joining B-(nx,nr,w) and B+(nx,nr,w) inside B(nx,nr) must either meet 
C \ B- (nx, nr, w) or C fl B+ (nx, nr, w) (such a path is either entirely in C or entirely 
in the complement of C) and these paths are therefore located in a set of volume less 
than Sr3n3. Our strategy is to perform some surgery to destroy all "large" paths to 
get a configuration realizing a typical event related to the definition of the surface 
tension. The price we pay while doing the surgery has to be negligible compared to 
the surface effect we wish to capture. 

The surgery. Let p be strictly smaller than r, but close to r, let rj be positive 
and small and let D be the disc centered at x with radius p and normal vector w. 
To a configuration realizing the event sep (n, x, r, w, S) we associate two random 
collections of paths P_ and P+ as follows. Let P_ be the collection of all the 
open paths disjoint from C connecting the planes { y : (y — nx) • w = 0 } and 
{ V : (y — nx)-w = —rjn } in the configuration restricted to the intersection of cyl (nD) 
and { y : —rjn < (y — nx) • w < rjn}. Let P+ be the collection of all the open paths 
inside C connecting the planes { y : (y — nx) • w = 0 } and { y : (y — nx) • w = +nn } 
in the configuration restricted to cyl (nD) fl { y : —nn < (y — nx) • w < rjn}. The 
paths of P_ U P+ belong to ( U c e c Voo(C, l/2))AB-(nx,nr,w), hence for n large 
enough the cardinality of the vertices visited by these paths is smaller than 2Sr3n3. 
Moreover each path in P_ UP+ has a diameter at least rjn. Let / be an intermediate 
mesoscopic scale, that is / is large compared to In n and small compared to y/ri. We 
consider the partition of Z3 in cubic boxes of side length /. By the result of Pisztora, 
inside such a box, with probability of order 1 — exp(—const / ) , there exists a unique 
crossing open cluster, this cluster has cardinality larger than 0/3/2 and all other 
open clusters of the box have a diameter less than 1/3. We mark as good boxes the 
boxes where these events occur. Whenever a path of P_ U P+ visits a good box, 
it has to include the crossing cluster of the good box (more precisely, whenever it 

lim sup 
zGM3,rE]0,l[, 

limsup (n27rr2r(w)) 1 In P (sep (n, x, r, w, S)) < — 1. 

w unit vector 
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visits a vertex of the good box at distance 1/3 from the boundary of the box). The 
number of good boxes visited by the paths of P_ U P+ has to be less than 

cardinality of the set of vertices visited by P_ U P+ ^ 2Sr3ns _ 4 3 3 3 
minimum cardinality of a crossing cluster in a good box ~~ Ol3¡2 0 

For //Inn large enough, Pisztora's estimate yields 

P(there are more than i bad boxes inside B(nx,nr)) < const exp(—const li). 

We need also to take into account the boxes which intersect the boundary of cyl (nD). 
The number of such boxes is (deterministically) bounded by lOOnn2//2. Let a be a 
large constant. With probability of order 1 — exp(—const an2), the number of boxes 
(close to the boundary of cyl (nD), or bad, or good) visited by the paths of P_ UP+ 
is less than 

lOOnn2//2 + an2/l + (4/0)Sr3n3r3 . 

We partition the boxes according to the position of their centers with respect to the 
slabs 

{ y G IZ3 : (y - nx) • w G [li, l(i + 1)[ } , i G Z . 

Since cyl (nD) n { y : —nrj < (y — nx) • w < 0 } contains more than rjn/(2l) such 
slabs, certainly there exists a negative index /_ larger than —nn/l such that the 
number of boxes visited by P_ whose center belongs to the 7_-th slab is less than 

number of boxes 
number of slabs 

( ] o o ^ + ^ + ^ , ) / ( f . 
3(n-1Voo(C 

2 
µ£ 

SSr3n2 

POn 

Similarly, there exists a positive index 7+ smaller than rjn/l such that the number 
of boxes visited by P+ whose center belongs to the 7_|_-th slab is less than the above 
quantity. The total number of possibilities for i_ , i+ and the boxes inside the slabs 
is less than 

(number of slabs)2 x (number of choices for the boxes in one slab)2 < 

nn 

V I 
200T + 2-

an 
V 

Sr3n2 

Tip 

2 
exp 400 n t an 

4 
%Sr3n2 

> OrjP 
ln(27rr2n2/-2)> 

Given a fixed choice of /+ and the boxes inside the corresponding slabs, we 
transform the configuration CJ into a new configuration 4>(a;) by closing all the edges 
belonging to the boundary of the boxes. The number of such edges is less than 

6/2 x number of boxes < 6/2 400,? t an 
- 4 — A 

V 

Jr3n2> 
3(n-1Voo 
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Hence the extra factor in the probability estimate caused by this surgery is bounded 

by 

exp - 2400nZ + 24-
anl2 

V 
+ 96 

ör3n2 

On 
In 

1-p 

2 

In the new configuration $(o;) restricted to 

cyl (nD) H { y : —nrj < (y — nx) -w<nr]}, 

there exists no more paths connecting the planes { y : (y — nx) • w = —nn} and 
{y : (y — nx) ' w — +r]n }• Indeed any such path of the configuration OJ has to visit 
one of the boxes of one of the slabs /_ or J+: if the path is disjoint from all the 
clusters of the collection C, then it meets one of the boxes of the 7_-th slab, if the 
path is included in a cluster of the collection C, then it meets one of the boxes of the 
7+-th slab. Therefore there is in 4>(UJ) a separating set of closed edges in ncy\D at 
distance less than nn from nD cutting ncylD in at least 2 unbounded components. 
Combining the previous considerations, we get 

P (sep (n,#,r, w, S)) < exp(-const an2) + 

3(n-1V 
oo(C0 

' n an Sr3n2 N 
2 0 0 - + 2 — + 8 — T 

l 77 0m1 t 

2 
X 

exp I 
£µ+££ 
£µ+µ 

À an 
+ 4 

n 

6r3n2 
%¨%%£ ln(27rr2n2r2) 

' ani2 ôr3n2 x 
2400n/ + 24 + 96—;— 

k T] &T) I 

3(n-1V 
oo(C 

xP 
'there exists a set of closed edges in ncyl D 
at distance less than nn from nD cutting 
j icylD in at least 2 unbounded components 

We work now in the regime where / / In n and y/n/l go to oo and we apply our surface 
tension upper bound estimate: 

limsup (n27rr2r(w))~1 InP(sep (n,#,r, w, S)) < 
n—>oo 

. f a p2 /—I—\ $r 1 
— mm < const -r-, — (1 — const yrj/p) — const — >. 

I rz rz rj ) 

We choose now n = y/Sr/3, p = r\/l — S and we let a go to oo in the preceding 
inequality: 

limsup (n27rr2r(w))~1 lnP(sep (n,x,r, w,S)) < — 1 + S + const J1/4 . 
n—too 

This inequality is uniform with respect to x in R3, r in ]0,1[, S in ]O,0/2[, w a unit 
vector. 
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3.6. The enhanced upper bound 

We define the surface energy X(A, O) of a Borel set A of E3 in an open set 0 as 

I(A,0) = sup { ^divf{x)dC3(x) : f G C%(0,Wr) } 

where CQ(0, Wr) is the set of the C1 vector functions defined on E3 with values in 
Wr having compact support included in O and div is the usual divergence operator. 

Let T be a closed subset of (B(R3),L1). Let a, S be positive with S < 1 < a. We 
write 

P(n~1Voo(C(0), f(n)) G .T7) < 

P(P(fifaC(0)) >an2) + P(£3(Voo(C(0),/(n))AfifaC(0)) > Jn3) + P ( £ ) , 

where £ is the event 

{ n - ^ o o ^ O ) , / ( n ) ) G .F, P(fifaC(0)) < an2, 

^3(Voo(C(0),/(n))AfifaC(0)) < Jn3 } . 

The only new estimate we need is for P(S). Whenever E occurs, the set n-1fifaC(0) 
is a bounded set belonging to V^i (J7, S) having perimeter less than a. By the isoperi­
metric inequality, its volume is less than CiSOa3/2, where ciso is the isoperimetric 
constant of E3. Therefore there exist at most 8ciSOa3/2/S balls B centered on Z3 
of radius one such that C3(B fl n~1fifaC(0)) > S. The bound on the perime­
ter of n_1fifaC(0) and the isoperimetric inequality relative to the balls imply that 
most of the volume of n_1fifaC(0) is concentrated in these balls: indeed the re­
maining volume of n_1fifaC(0) outside of these balls is less than SaS1^3^^3, where 
blso is the isoperimetric constant for the balls of E3. Moreover the balls intersect­
ing n_1fifaC(0) are at distance less than an from the origin, hence the number of 
possible integer centers is bounded by a polynomial function of n. By merging some 
balls if necessary (that is replacing some balls which are close together by a larger 
ball), we obtain a finite collection of balls B(yi,ri), 1 < i < m, such that: the 
centers belong to Z3 fl P(0,an2 + 1), the radii ri are positive integers smaller than 
exp((8ciSOa3/2/(S) ln3), the balls B(yi,ri + 1), 1 < i < m, are pairwise disjoint and 

^(n- i f i faCtO) \ B(yun) \ - " \ B(ym,rm)) < SaS^bH3 . 

We next look at the configuration inside each ball B(nyi,n(ri + 1)). The pre­
ceding large deviations results show that for a fixed ball B(y,r) centered at y 

in Z3 with radius r the law of n_1 (Voo(C(0),/(n)) fl B(ny,nr) — ny) satisfies a 
LDP in (B(B(0, r)), L1) with rate function X. Because of the invariance of the 
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model under integer translations, the corresponding large deviation upper bound 
is in fact uniform over y in Z3. The m balls B(yi,ri + 1), 1 < i < m, being 
disjoint, we get also a uniform large deviation upper bound for what happens si­
multaneously inside these balls, in the following form: for any closed subset J7™ of 
/3(5(0, n + 1)) x . . . x 5 (5 (0 , rm + 1)) , 

limsup -2In sup P((n-1VOo(C(0),/(n)) 0 B(yi ,r i + 1) - yu ..., 

n ^ V o o ^ O ) , ^ ) ) nB(ym,rm + 1) - ym) eFm) < 

- inf T (F1, int 5 (0 , n + 1)) + • • • + X(Fm, int 5(0 , rm + 1)) : (Fx, . . . , Fm) efm} 

where the supremum ahead of P is taken over the points T / I , . . . , ym in Z3 such that 
the balls 5 (7/1, r± 4 -1 ) , . . . , B(ym,rrn + 1 ) are pair wise disjoint. Since in our case the 
number of possibilities for the balls 5(7/^,7^), 1 < i < m, is bounded by a polynomial 
function of n, we can decompose £ according to the possible collections of balls and 
use this large deviation estimate to get 

limsup —InP(£) < - i n f { x ( F i , i n t 5 ( 0 , r i + l )) + ---+X(Fm,int5(0,rm + l ) ) } 
n—>-oo 71 v ) 

where the infimum is taken over m, 7*1,. . . , rm in a bounded set of integers (depending 
on a, 8) and over ( F i , . . . , Fm) in the closure of the set 

{ (E H n + 1) - yu • • • >E H B(ym,rm + 1) - ym) :E € f , 

Vi, • • •, Vm in Z3 such that the balls 5(2/1, ri + 1 ) , . . . , B(yrn,rrn + 1) are disjoint, 

£3 (£7 \ 5(2/i, n ) \ • • • \ B(ym, rm)) < 6 + SaS1'3^ } . 

Let 77 = 6 + SacS1/3^3. Whenever ( F i , . . . , Fm) belongs to the closure of the above 
set, we are able to reconstruct from F i , . . . , Fm a set F in V^i (J7, 4T/) such that 

2(F) < X(F1, int 5 (0 , n + 1)) + • • • + X(Fm, int 5 (0 , rm + 1)) + 2iy||r|U . 

The set F is obtained as follows: by definition, there exist E in T and 7 / 1 , . . . , ym in 
Z3 such that the balls 5(T/15 n + 1 ) , . . . , B(ym, rm + 1) are disjoint and 

£3(F \ 5(7/ i , r i ) \ • • • \ B(ym,rm)) < T), 

C3 ((EHB(yi, n +1)) A(T/! + F I ) ) + • • • + C3 ((EnB(ym,rm + l))A(ym + Fm)) < T). 

This implies that 

£3(F1n5(0, r1 + l ) \ 5 ( 0 , r 1 ) ) + + £3(Fmn5(0 , rm + l ) \ 5 ( 0 , r m ) ) < 27/ 
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and therefore there exists t in ]0,1[ such that 

H 2 ( F i n 0 f l ( O , n + t ) ) + ••• + n2(FmndB(0,rm+t)) < 2n. 

The set F defined by 

F = (yi + ( F i n 5 ( 0 , n + * ) ) ) U U (ym + (FmnB(0,rm + t))) 

answers the problem. The difficulty here is to choose t as above, to avoid that too 
much surface energy is created on the sphere dB(0,ri + i) while cutting Fi at the 
radius Ti + t; this is the reason why we work with the balls B(yi,ri + 1) instead of 
B(yi,ri). 
We have now 

limsup - 2 In P(£) < - i n f { X ( F ) : F G VLi(^,4r7)}+2r7||r | |00. 
n—too 71 

Coming back to the initial inequality, 

limsup —2lnP(n-1Voo(C(0),/(n)) G f ) < 
n—too 71 

- m i n (const a, inf {1(F) : F G VLi(T,4rj) } - 27/HrHoo) . 
Sending first S to 0 (so that rj goes to 0) and then a to oo, we get the enhanced 
upper bound. 

3.7. The case of the whole configuration 

We first define a metric D which is adequate for working with collections of sets. 
Roughly speaking, two collections of sets are at distance less than S if there exists 
a correspondence between the sets of the collections having volume larger than 5 
such that two corresponding sets are at L1 distance less than S. Starting with the 
surface tension r, we build a surface energy functional on the set of the Caccioppoli 
partitions. We prove that it is a rate function on the space of the collections of sets. 
Furthermore, its level sets are compact for the weaker metric Aoc , which is the local 
version of the metric D. The proofs of the LDP for the whole configuration rely 
on the same probabilistic tools than for one single cluster. The additional problems 
are related to topological and geometric issues. Among those, the approximation 
of a Caccioppoli partition by a polyhedral partition is quite delicate. Indeed this 
question cannot be solved easily with the help of the corresponding approximation 
result for one single Caccioppoli set, because there is the additional global constraint 
that the approximating collection has to be a partition. Thus we make appeal to a 
stronger approximation result due to Quentin de Gromard. Apart from that point, 
the main lines of the proofs are quite similar in spirit to the case of one single cluster 
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and we use extensively the constructions and the results proved in the first part. 
Let us sum up briefly the proof of the LDP upper bound. Starting with the random 
collection C of all the open clusters of the configuration, we build the three random 
collections 

Voo(C,/(n)) = {Voo(C, / (n ) ) , C G C , d i a m o o C > / ( n ) } , 

fifaC = { fifaC, C e C } , agluC = { aglu(7, C G C } . 

We prove that these three collections are exponentially contiguous. We work with 
the collection n_1fifaC to prove that the law of n-1Voo(£, f(n)) concentrates expo­
nentially fast around the collections which are Caccioppoli partitions of R3 having 
a finite surface energy. We work with the collection n_1agluC to estimate the prob­
ability of being close to a given Caccioppoli partition of finite perimeter. We finally 
prove an enhanced large deviations upper bound for the collection of the open clus­
ters intersecting a fixed bounded Borel set of R3. The spirit of the proof is analogous 
to the enhanced upper bound for one cluster, yet it is more involved because we deal 
with collections of sets. 
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THE MODEL 

We start with the notation and the basic definitions. The cardinality of a finite 
set A is denoted by card A. The symmetric difference between two sets A±,A2 is 
denoted by AiAA2. For A a collection of sets, we denote the union of the sets of A 
by cup A, i.e., 

3(n-1Voo(C0,f{n)µ++ 

and by overlap.4 the union of the intersections of all pairs of distinct sets of A, i.e., 

overlap A = cup { A1 n A2 : Ai, A2 G A, Ax ^ A2 } . 

If / is a function with values in E, we denote by | |/ | |oo the supremum of the values 
of l/l-

Constants. A lot of constants appear in the statements of the results and the 
proofs. We write in parenthesis the particular parameters on which the constants 
depend. We do not keep a precise track of the constants: hence b, c stand for generic 
constants and their values differ from place to place. 

Topology. Let E be a subset of E3. We denote its interior by int E, its closure 
by cloF, its boundary by dE. Whenever A is a subset of E3 of linear dimension 2, 
that is A spans an hyperplane of E3, we denote this hyperplane by hyp A and we 
use the induced two dimensional topology of hyp A to define dA, int A, clo A. The 
collection of all the Borel subsets of a set E of E3 is denoted by B(E). 

Metric. The standard norms of a vector x = (xi,x2,x3) in R3 are 

Mi = M l + M l + M l , |x|2 = 3(n-1Voo(C0, |ar|oo =max(|xi | , |x2| , |z3|) 

Of course 12;|oo < 12;12 < A/3|^|OO for any x in E3. The usual scalar product between 
two vectors x = (xi,x2,x3) and y = (2/1,2/2,2/3) of R3 is x • y = xiyi + x2y2 + x3y3. 
Until the end of the paragraph, the character * stands either for 2 or for 00. We 
denote by d* the metric associated to the norm | |*, i.e., d*(x,y) = \x — y\* for any 
x, y in R3. The d* distance between two subsets E\ and E2 of R3 is 

d*(JBi, J52) = inf{ \xi - ar2|* : xi G Ei, x2 G E2 ] 
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The d» r-neighbourhood of a subset E of R3 is the set 

V.(E,r) = {xGR3 :d.(x,E) < r } . 

The rf« diameter of a subset E of R3 is 

diam».E = sup{ \x — y|» : x, y € E } . 

We will generally work with the Euclidean distance tfe on the continuous space E3 
and with the distance dx on the discrete lattice Z3. By default, when we speak 
of the diameter of a set E, without further precision, it means the doo diameter 
diamooi?. 

Geometry. Let a; be a point of R3 and let r be positive. The closed ball of center x 
and Euclidean radius r is denoted by B(x,r). The sphere of center x and radius r 
is dB(x,r). The unit sphere of K3 is denoted by S2. The projective sphere PS2 is 
obtained by identifying opposite points on S'2. Let w belong to S2. By hyp (a;, w) 
we denote the hyperplane containing x and orthogonal to w, i.e., 

hyp(i,u;) = {y € R3 : {y -x) • w = 0 } . 

For n, r-2 in R U {-co, +00}, we define 

slab (x, w, ri, T2) = { y € R3 : r\ < (y — x) • w < Ti }. 

Let v belong to S2. We set 

B- (x, r, u) = B(x, r) D slab (x, v, — r, 0), 
B+ (x, r, v) = B(x, r) n slab (x, v, 0, +r ) . 

7' 

B-(x,r,v) 

Figure 2: half-ball 
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Let it, v, w be an orthonormal basis of K3. By square (x, it, v, r) we denote the closed 
square centered at x of sides parallel to u and v and of side length r. By disc (x, r, w) 
we denote the closed disc centered at x of radius r and normal vector w. 

r 
A W 

disc (x, r, w) square (x, u, v, r) 

v 

.r 

¨£ ¨£ 

Figure 3: disc and square 

By A.{x,r) we denote the cubic box of center x = (11,2:2,2:3) and side length 1 

defined by 

A(x,r) = {y = 3(n-1Voo(C0,f{n -r /2 < Vi - xt < r/2 } . 

Notice that A(x,r) has diameter r and is neither open nor closed. However, if 
^00(2:,^) > r then A(x,r) and A(y,r) are disjoint. Let A be a subset of K3 of 
linear dimension 2, that is A spans an hyperplane of E3, which we denote by hyp A. 
By nor A we denote one of the two unit vectors orthogonal to hyp A, or equivalently 
the element of PS2 orthogonal to hyp A. The cylinder of basis A is the set 

cyl A = {x + tnoiA : t € K, x G A}. 

We set also 

cyl (̂ 4, r) = {x + t nor A : \t\ < r, x € A } = cyl A D slab (2;, nor A, -r, r). 

Measure. We denote by C3 the three dimensional Lebesgue measure. A Borel set is 
said to be negligible if its Lebesgue measure is zero. When dealing with topological 
questions on the space 0(R3), we consider the equivalence classes of the Borel sets 
modulo negligible sets. We denote by tid the standard d-dimensional Hausdorff 
measure, for d = 1,2,3. We recall that for any subset A of R3, denoting by a(d) the 
volume of the unit ball of Rd, 

•Hd(A) = sup inf ( a(d) 2~d V(diam2£i)<': sup diam2^ < S, A C M Et \ . 
6>o I £ 7 <€/ £J J 

Let £ be a Borel subset of R3. A collection of sets U is called a Vitali class for E if 
for each x in E and 5 positive there exists a set U in U containing x such that 0 < 
diamat/ < 8. We will use extensively the following result [34, Theorem 1.10]. 
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The Vitali covering Theorem for H2. Let E be an H2-measurable subset o/E3 
and let U be a Vitali class of closed sets for E. Then we may select a (finite or 
countable) disjoint sequence (£/i)iei from U such that either ]TiG/(diam2C^)2 = oo 
or 7i2(E \ (JieI Ui) = 0. If%2(E) < oo then, given e > 0, we may also require that 
n2(E) < TT2-2 £.G/(diam2^)2 + e. 

We will only use closed balls to perform our coverings. For Vitali classes which 
contain only balls, a similar Vitali covering result holds but for an arbitrary Radon 
measure (see for instance [77]). 

We now describe the percolation model. 

The lattice. We consider the cubic site lattice Z3. We turn Z3 into a graph by 
adding edges between all pairs of nearest neighbour sites; if x, y are two points of Z3 
such that |x — y\ i = 1, we denote by (x, y) the edge joining x and y. The edge (x, y) 
can be represented as the unit segment [x, y] joining the sites x, y in E3. We denote 
by E3 the set of all edges of Z3. Two subgraphs of (Z3,E3) are called disjoint if 
they have no vertices in common. A path in (Z3,E3) is an alternating sequence 

eo, xi, e i , . . . , en_i, xn,... of distinct vertices x% and edges e*, where e« is the 
edge between xi and xi+i (we adopt here the definition of [42], which is slightly 
different from the one used in [3]). If the path terminates at some vertex xn it is 
said to connect XQ to xn and to have length n. Two paths are disjoint if they have 
no edges in common. Let D be a subset of E3. An edge (x, y) of E3 is said to be 
included in D if both points x,y belong to D. We denote by Z3(£>) the set D fl Z3 
and by E3(D) the set of the edges of E3 included in D. For E a subset of E3, a 
formula like E C E3 (D) will be abbreviated into E C D. 

We will need another graph structure L3 on Z3. We say that x, y are L3 adjacent if 
\x — y\oo = 1 and we denote by L3 the corresponding set of edges. 

Discrete topology. Let A be a subset of Z3. We define 
• its edge boundary: deA — {(x,y) e E3 : x # A, y € A} , 
• its inner vertex boundary: dlwA = { x G A : 3 y € Z3 \ A, (x, y) E E 3 } , 
• its outer vertex boundary: dowA = { x G Z3 \ A : 3 y e A, (x, y) G E3 } . 
These definitions are extended to the subsets of E3 by setting, for any E included 
in E3, d*E — d*(Z3 n E), where * stands for e, iv or ov. The set A is said to 
be connected if the graph (A,E3(A)) is connected. The set A is said to be L3 
connected if the graph having for vertex set A and for edge set the edges of L3 
whose both endpoints belong to A is connected. A residual component of A is a 
connected component of the graph (Z3 \ A, E3 (Z3 \ A)). If R is a residual component 
of a connected set A, then its inner and outer vertex boundaries dovR, dlvR are L3 
connected (see [45, 64]). 

The configuration space. The nearest neighbour Bernoulli bond percolation mo­
del on the cubic lattice at density p is defined by independently choosing each edge 
of E3 to be open with probability p or closed with probability 1 — p. We denote 
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by P the corresponding product probability measure on the configuration space Q 
consisting of all functions from E3 to {0 ,1} (where 1 stands for open and 0 for 
closed). The restriction OJ\D of a configuration u of Q to a subset D of E3 is the 
function from E3 (D) to { 0 , 1 } defined by v\D(e) = uj(e) for all e in E3 (D). 

Connection and separation. Two subsets S\,S2 of E3 are connected in the con­
figuration UJ if there is a path of open edges in OJ connecting a site of Z3(Si) to a site 
of Z3(52). The open clusters in UJ are the connected components of the graph having 
vertex set Z3 and the open edges of UJ only. We write C(x) for the open cluster con­
taining the vertex x. Let D,A\,A2 be three subsets of E3. A set of edges E of E3 is 
said to separate A\ and A2 in D if there is no path in the graph (Z3(.D), E3 (D) \ E) 
from Z3(^ i ) to Z3(^42). A set of edges E of E3 is said to separate oo in D if the 
graph (Z3(JD),E3 (D) \ E) has at least two unbounded connected components. 

The supercritical regime. It is known that the Bernoulli bond percolation model 
has a phase transition at a value pc strictly between 0 and 1: for p < pc the open 
clusters are finite and for p > pc there exists a unique infinite open cluster 
[42]. We work with a fixed value p > pc. The density of the infinite cluster is 
0 = P(cardC(0) = oo). We denote by P the probability measure P conditioned on 
the event that C(0) is finite, that is, P(-) = P(-/cardC(0) < oo). 

The Harris—FKG inequality. There is a natural order on ft defined by the rela­
tion: OJI < UJ2 if and only if all open edges in u>i are open in UJ2- An event is said to 
be increasing (respectively decreasing) if its characteristic function is non decreasing 
(respectively non increasing) with respect to this partial order. Suppose the events 
A, B are both increasing or both decreasing. The Harris-FKG inequality [42] says 
that P(A DB)> P(A)P(B). 
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C H A P T E R 5 

SURFACE TENSION 

In this chapter, we build the surface tension associated to the Bernoulli bond per­
colation model on Z3. We study its properties and we finally prove some probabilistic 
estimates for the presence of a flat separating set of closed edges. 

5.1. Existence 

We will have to work with enlargements of continuous subsets of M3 so that 
they have a significative trace on the discrete lattice Z3. We fix a real number £ 
larger than 5 and we enlarge a subset A of R3 by considering its ^-neighbourhood 
V2(A,£). A minimal requirement to choose £ is that, whenever A is an arcwise 
connected subset of R3, the graph (Z3(V2(^4, 0 ) , E3 (V2(^4, C))) is also connected. 
Some of the constants appearing in the statements and the proofs depend on £. 
However the large deviation principles and the direction dependent surface tension 
are independent of the particular choice of £ larger than 5. 

We build now the surface tension in an arbitrary direction. 

Definition 5.1. Let A be a closed planar set and let s be positive or infinite. We 
denote by W(dA, s, £) the event that there exists a finite set of closed edges separat­
ing oo in cyl A, included in V2(hyp^4, s) and whose intersection with V2 (cyl dA, £) is 
included in V2(hyp^4, £), i.e., 

W(dA,s,C) = € ^ : C E3, card£ < oo, Ve <E E u(e) = 0, 

E C V2 (hyp A, s), E n V2 (cyl dA,Q C V2 (hyp A, £), E separates oo in cyl A } . 

Remark. The event W(dA, s,() is decreasing. Whenever this event occurs, it oc­
curs inside cyl A fl V2(hypA, s). Indeed, if E is a collection of edges realizing the 
event W(dA, 5, C), then so does EnE3 (cyl A n V2(hyp A, s)). 

Remark. We will only study the event W(dA, s, C) for A a rectangle. 

Remark. Recall the convention that E C V2(hyp A, s) means E C E3 (V2(hyp A, s)) 

and£nV2(cyl<9A,C) C V2(hyp A,() means EnE3(V2(cyldA,Q) C E3(V2(hyp A,£)). 
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Proposition 5.2. Let Abe a planar rectangle such that H2(A) is positive. Let </>(ri) 
be a function from N to R+ U { o o } such that lim™-^ 4>(n) = oo. The limit 

lim 
n—TOO 

-U2(nAYx \nP(W(dnA,(!)(n),Q)+µ£¨¨ 

exists and depends only on nor A. We denote it by r(norA) and call it the surface 
tension in the direction nor A. 

Remark. This statement tells nothing about the value r(nor A), which might be 0 
or oo. 

Proof. This result is proved with the help of the same subadditivity argument used 
in [1, Proposition 2.4]. The only additional problem is that we work with curves 
whose position with respect to the discrete lattice Z3 is arbitrary. Let w be a unit 
vector of E3 and let A, A' be two planar rectangles such that nor A = nor A' = w, 
7i2(A) and H2(A') are both positive. Let 0(n), </>'(n) be two functions from N 
to R+ U { o o } such that limn_>00 </>(n) = oo, limn^ao <t>'(ri) = oo. Let £, £' be two real 
numbers larger than 5. Let n,m be two integers such that ndiam2A > mdiam2A' 
and 

min(n diam2^4, m diani2^4', 4>{n) — 2) > max(£, £')̈P̈P. 

Because we deal with rectangles, certainly there exists a collection of sets (T(z), i G / ) 
such that: each set T(i) is a translate of mA' and d2(T(i), hyp nA \ nA) > ( + (' + 4; 
the sets (T(i),i G / ) have pairwise disjoint interiors and are included in nA; their 
union cup { T(i) : i G / } contains the set 

D(m, n) = { x G nA : d2(x,ndA) >¨PP mdiam2^4' + C + C + 4 } . 

Since A is a rectangle, so is D(m,n) and 

H2(nA) - H^ndA)^™™^¨P¨P¨P' + C + C' + 4) < nP2(D(m,n)) 

< (cardI)n2(mA') <¨¨P H2(nA). 

For each i in / , let £(z) be a vector in E3 such that |£(i)|oo < 1 (hence \t(i)\2 < y/S) 
and t(i) + T(i) is the image of mA1 by an integer translation (a translation that 
leaves Z3 globally invariant). We denote by T'(i) the set t(i) + T(i). Let £0 be the 
set of edges included in 

(cy\(nA\D(m,n))nV2(hypnAX))¨P¨P u ( J (v2(cyiar , (z) ,C ,+2)nV2(hypnA,C '+3)) . 

The Lebesgue measure of the d2 1-neighbourhood of this set is less than 

U1(ndA)(mdMm2A' + C + C + 6 ) (2C + 2) + 4TT(2C + 2) 

+ card / ( ^ ( m d ^ ^ C ' + 8)2 + 8TT(C' + 4)3) . 
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<nA' 

D{m,n) 

µ+¨£¨++ 

mdiam A' 

C + C, + 4 
nA 

Figure 4: the plane hyp (nx,w) 

Hence there exists a constant c(C A') depending only on C, A' such that 

cardio < c(Ç,C,AA')(nm + n2/m + l). 

Suppose that all the events 

w(dT'(i)^{n) - 2 , c ' ) > *e J, 

occur, and let E(i), i € J, be finite sets of closed edges realizing these events. Thus 

for i in / , 

E(i) C V2(hypr,( i) ,0(n)-2)ncyl T'( i) , £«nV2(cyldT' (z ) ,C) C V2(hyPr'(z),C) 

and separates oo inside cyl T'(i). Suppose in addition that all the edges in E0 are 
closed. Let E = E0L\ \JieI E(i). We claim that the set of edges E realizes the event 
W(dnA, </>(n), C). Firstly E is included in V2(hypn,4, (j){n)). Secondly, for each i in / , 
the d2 distance between cyl T'(i) and cyl dnA is larger than C + C + 4 - so that 
neither nor V2(cyl<9T'(i), C'+2) intersect V2(cyl<9n,4, C), and £0nV2(cyl<9n,4, C) 
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is included in V2(hypnA, Q. Thirdly, let a belong to nA and let x o , . . . , Xh be a path 
in (Z3(cyl n^4),E3(cyl nA)) joining two sites xo,Xh such that (xo — a) • w < —(f>(n) 
and (xh — a) • w > (j)(ri). Suppose that this path does not meet E. Since this path 
crosses hyp nA and 

V2(n^ \cup{ in tT ( i ) : i G J } , 5 ) DcylnA C 

(V2 ( cy l (nA\D(m,n ) ) , 5 )ncy lnA)u ( JV2(cy i a r ( i ) , 5 ) C E 
iei 

then the crossing of hyp nA cannot occur in V2(nA\cup {int T(i) : i G / }, 2)flcylnyl; 
necessarily there exists i in I such that the path enters in cyl int T(i) at a site y 
such that (y — a) • w < 0 and exits it at a site z such that (z — a) • w > 0. Hence 
there exist indices k\, k2 in { 0 , . . . , h} and i in I such that 
• Vfc G fc2} £fc G cyl intT(i) , 
• either k\ = 0 or x ^ - i ^ cyl intT(i) , 
• either k2 = h or Xk2+i & cyl intT(i) , 
• — a) - w < 0 and (xk2 — a) - w > 0. 
Since E3(V2(cyl dT'(i), C + 2) flV2 (hyp raA,C' + 3)) is included in £0, then no vertex 
of the subpath xkl,.. .,xk2 belongs to V2(cyl dT'(i),£ + 1) H V2(hypnA,C' + 2). 
Suppose that k\ / 0. Then 

^ i - i £ cyl intT(i), a:*! G Cyl intT(i), ^(^fei-l,^!; = 1 

whence xkl G V2(cyl3T(i), 2) C V2(cyl dT'(i),C' + 1). Thus 

a?ifei € V2(cyiar(z),2)nslab (a,w,-oo,-C' - 2 ) . 

If ki = 0, then = xo belongs to slab (a, w, — oo, — (f>(n)). In both cases, a 
belongs to the set D-(i) defined by 

D-(i) = slab(a,w,-oo,-</>(n)) U (V2(cyl9T(i), 3) fl slab (a, w, —oo, —C' - 2)) . 

Similarly, ££2 belongs to the set D+(i) defined by 

D+(i) = slab(a,w,+</>(n),+oo) U (V2(cyldT(i),3) D slab (a, w, +£ ' + 2 ,+co)) . 

Let us define 

Z2 = min{ I : ki < I < k2, x\ G -D+(i) } - 1, 

\\ — max{ I : k± < I < l2, xi € D-(i) } + 1. 

Let / belong { / i , . . . , l2 } . By construction, x\ belongs to cyl int T(i)\(D-(i)UD+(i 
Two cases can occur. 

ASTÉRISQUE 267 



5.1. EXISTENCE 49 

• if d2(xhhypnA) < (' + 2 then d2(xhcy\dT'{i)) > (' + 1. Yet xt is in the set 
V2(cylT/(i),v/3) whence xx belongs also to cylT'(z) and d2(xhRs \ cy\T'(i)) > 1. 
• if d2(xu hyp nA) > C + 2 then d2(#z,M3 \ cylT(i)) > 3 and it follows that 
d2(xhR3 \ cylT'(/)) > 3 - V3 > 1. 
Taking into account that d2(xi1-i,xi1) = 1, d2(xi2,#/2+i) = 1, we see that the 
subpath x^-i,..., xi2+\ is included in intcylT"(z). Moreover xix-i belongs to 
D-(i) fl cylT'(i) , which is by definition included in 

slab (a + t(i),w,-oo,-(f)(n) + 2) U (V2(cyldT'(i), C') n slab (a + t(i),w, - o o , -C')) • 

If xix-i is in V2(cyl<9T'(z), C')nslab (a + t(i),w, — oo, -CO , since no edge of the latter 
set belongs to E(i), then there exists a path 71 included in V2(cyl dT'(i), £')ncyl T'(z) 
connecting a^-i to a site 2/1 such that 71 fli£(i) = 0 and (yi—a—t(i))-w < —0(n)+2. 
In case x ^ - i is in slab (a+t(i), w, —00, — </>(n) + 2), we set 71 = 0 . We make a similar 
reasoning with #/2+i and the set D+(i) to get a path 72 in V2(cyl dT'(i), C')C\cy\ T'(i) 
connecting xi2+\ to a site y2 such that 72fl^(i) = 0 and (y2—a — t(i))-w > (f)(n) — 2. 
In the end the path obtained by concatenating 71, xix-i,..., #z2+i, 72 is a path in 
cyl T'(z) which does not meet E(i) and which connects slab (a+t(i), w, —00, —</>(n) + 
2) and slab (a+t(i),w, +(f)(n) — 2, +00). Since .E(i) is included in V2(hypT'(2), </>(n) — 
2), this stands in contradiction with the fact that E(i) separates 00 in cyl T'(i). Thus 
there exists no path in (Z3(cyl nA),E3(cyl nA) \ E) joining slab (a,w, —00, —cj)(n)) 
and slab (a, w, <j>(n), +00). We conclude that the set E separates 00 in cyl nA and 

{ all the edges of E0 are closed } 0 p | W(dT'{i), </>(n) - 2, £') C W(dnA, 0(n) , C). 

Since all these events are decreasing, by the FKG inequality, 

P{W(dnA,4>{n),Q) > {l-p)™dE°XlP{W{dT'(i),<t>{n)-2,0) • 
iei 

Since the model is invariant under the integer translations, for any i in / , 

P(W(dT'(i), 4>{n) - 2, C')) = P(W(dmA', <t>{n) - 2, C')) • 

Because <j)(n) goes to oo as n goes to oo, 

lim P{W{dmA',<f>(n) -2 ,C')) = P(W(0n»i4', oo, C')) 
n—>-oo 

whence, for n sufficiently large, 

P(W(dmA',<l>(n) -2,?)) > (l/2)P(W(dmA',oo,C)). 
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For such integers n, combining the preceding equations and passing to the logarithm, 

]nP(W(dnA,<l>(n),Ç)) > 

(card/) InP(W(dmA', </>'(m),C')) + (card£70) ln(l - p) - (card/) In2. 

Using the previous inequalities on card / and cardi£0, we obtain 

V2(nA)'1 In P(W(dnA, (j)(n),Q) > n2(mA')'1 In P(W(dmA', fi(m),Ç')) + 

c(C, C, A, A')/H2(A)~1 (m/n + 1/m + 1/n2) ln(l - p) - U2(mA!yx In 2 . 

Sending successively n to oo and then m to oo yields 

lim inf U2{nA)-x In P(W(dnA, 0 ( n ) , 0 ) 

n—>oo 
> limsupTi2 (mA')-1^P(W(dmA,,(/),(m),C)) 

m—^oo 
which implies the result of the Proposition, since the inequality is valid for all rect­
angles A, A' such that nor A = nor A' = w, U2(A) > 0, U2(A!) > 0, for all func­
tions 0(n), <t)'(n) going to oo as n goes to oo and for all Ç, (J larger than 5. • 

5.2. Properties 

The surface tension r inherits automatically some symmetry properties from the 
model. For instance, if / is a linear isometry of E3 such that / (0 ) = 0 and / (Z3) = Z3 
then T O / = r. Besides, the surface tension r satisfies another important inequality 
called the weak triangle inequality. For details and results concerning this kind of 
inequalities, see [32,55,56]. 

Proposition 5.3. (Weak triangle inequality) 
Let (ABC) be a non-degenerate triangle in M3 and let VA, VB, VC be the exterior 
normal unit vectors to the sides [BC], [AC], [AB], Then 

3(n-1Voo(C0 
< n1(AC)T(uB)+n1(AB)T(vc)^ 

Proof. We consider first the case where BA • BC > 0 and CA • CB > 0. Let z/bea 
unit vector orthogonal to the triangle (ABC) and let e, h be positive with e < 1 < h. 
We set A' = A + hv, B' = B + hv, C = C + hv. Let E0 be the set of the edges 
included in 

(cyl (3(n-1Voo(C0,f{n))A(xV2(dnBCC,B,,4sn)nhypnBCCfBt)nV2(hjpnBCC,B,,C)) 

U V2(nABC,2Q U V2(nA'B'C',2Q 

\JV2(n[AA'],2Q U V2(n[BB'],2Q U V2(n[CC%2Q . 

ASTÉRISQUE 267 



5.2. PROPERTIES 51 
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Figure 5 

There exists a constant c(C) depending on C only such that 

cardio < c(C)(n2n2(ABC)-hen2(n1(BC) + h)+nh). 

Let R£ be a rectangle in hypBCC'B' such that BCC'B' C RE C V2(BCC'B', As) 
and d2(dR£, BCC'B') > 2e. For n large enough, so that en > £, if the events 

W(ndABB'A',en, C), W(ndACC'A', en, (), { all the edges of £0 are closed } 

occur simultaneously, then the event W(dnR£, 00, Q occurs as well; the argument 
here is similar to the one used in Proposition 5.2: thanks to the hypothesis BA • 
BC >0,CACB> 0, the set V2(nABB'A' U nACC A! ,en) is included in the set 
V2(cyl nBCC'B',eri) and does not intersect V2(cy\dnR£, £), so that the separating 
sets will be correctly localized to match the definition of the event W(ndR£, 00, £). 
By the FKG inequality, this inclusion implies 

(1 -p)cardEoP(W(ndABB'A'yen, ())P(W{ndACCA',en, Q) < P(W(ndR£, 0 0 , 0 ) . 

Using the estimation of card£Jo and Proposition 5.2, we get 

n2(R£)r(iyA) < U2(ABB'A')T(VC) +U2(ACC'A')T(VB) 

- c ( C ) CH (ABC) + CH (BC) + h)e) ln(l -p). 

Letting first h go to 00 and then £ go to 0 yields the weak triangle inequality for the 
triangle (ABC). 

Let now A, B, C be three points such that BABC< 0, CA • CB > 0. Let D be the 
orthogonal projection of B on [AC]. Then BC BD > 0, DB-DA = 0, BA-BD > 0. 
We apply the weak triangle inequality to the triangles (BCD) and (BDA): 

H^BCMVA)ÜUIU< ^(BD^VBD) +U1(DC)T(VB) , 

W}(BD)T(VBD)UI< U1(AB)T(VC)^U1(AD)T(VB), 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



52 CHAPTER 5. SURFACE TENSION 
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Figure 6: a triangle with BA • BC < 0 

where VBD is a unit vector orthogonal to [BD]. Combining the two inequalities, we 
get the weak triangle inequality for the triangle (ABC). The case BA • BC > 0, 
CA • CB < 0 is similar. • 

The weak triangle inequality implies a lot of nice properties for the surface tension. 

Corollary 5.4. The homogeneous extension TQ of T to R3 defined by 

Vw e R3 r0(w) = 
\W\2T(W/\v0\2) ifw^O 

0 ifw = 0 

is a convex function. 

The convexity of To is in fact equivalent to the weak triangle inequality. 

Corollary 5.5. The surface tension r is bounded and continuous. 

Proof. Let w be a unit vector and let A be a unit square orthogonal to w. Let 
E(n) be the set of the edges included in cylnA PI V2(hypnyl, 5). Then card£^(n) < 
72(n + 2)2 and 

P(W(dnA, 00,5)) > P(the edges of E(n) are closed) > (1 — p\cardE(n) 

Passing to the limit, we get r(w) < —721n(l — p). Since To is homogeneous, convex 
(Corollary 5.4) and bounded on S2, it is finite everywhere. By a standard result 
of convex analysis [63, Corollary 10.1.1], it follows that To is continuous, as well 
as T. • 

The next Corollary is a consequence of [32, Theorem 3.1]: the weak triangle 
inequality automatically implies the weak simplex inequality. 

Corollary 5.6. (Weak simplex inequality) 
Let (ABCD) be a non-degenerate pyramid in R3. Let VA, VB, VC, VD be the external 
unit normal vectors to the faces (BCD), (ACD), (ABD), (ABC). Then 

U2(BCD)T(VA) IJKK < U2IOIO(ABC)T(VD) + n2(ACD)r(uKKK) + U2(ABD)T(VC) . 
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Corollary 5.7. For any fixed value of p in the supercritical regime p > pc, the 
surface tension r : S2 \-> E+ is bounded away from 0. 

Proof. Aizenman, Chayes, Chayes, Fröhlich and Russo have proved that t (1,0,0) 
is positive in the supercritical regime p > pc (see [1, Theorem 1.1]). Suppose that 
r(y) = 0 for some v in S2. Let / i , / 2 be two linear isometries of E3 such that 
/ i (0) = /2(0) = 0, A ( Z 3 ) = /2(Z3) = Z3 and (/1(1/),/2(i/),i/) is an orthonormal 
basis of E3. Then r(/i(z/)) = r(/2(^)) = 0. Applying the weak simplex inequality 
to a pyramid having for basis a triangle orthogonal to (1,0,0) and whose three other 
faces are orthogonal to fi(v), /2(^)5 we obtain that r ( l , 0,0) = 0, a contradiction. 
Thus the surface tension r does not vanish on S2. By Corollary 5.5, r is continuous 
on S2. Therefore r is bounded away from 0 on S2. • 

The previous properties of r can equivalently be described through its Wulff 
crystal 

Wr = {x eR3 : x -w < T(W) for all w in S2 } . 

Corollary 5.8. The Wulff crystal WT associated to r is bounded, closed, convex 
and contains 0 in its interior. If f is a linear isometry ofR3 such that / (0 ) = 0 and 
/ (Z3) = Z3 then / ( W r ) = WT. The surface tension r is the support function of its 
Wulff crystal, i.e., 

V v e S2 r(i/) = sup {x • v : x G Wr } . 

These properties are equivalent to the symmetry properties of r and Corollar­
ies 5.4,5.5,5.7. The function r is the support function of WT because TQ is convex 
and coincides with its bipolar, see for instance [63, Corollary 13.2.1], [37, Proposi­
tion 3.5] or [32, Theorem 2.1, Corollary 3.6]. 

5.3. Separating sets 

With the help of the surface tension, we estimate next the probability of the 
occurrence of a separating set of closed edges near an hyperplane. 

Definition 5.9. Let A be a planar set in E3 and let r be positive. We denote by 
S(A,r) the event that there exists a set of closed edges in cyl A D V2 (hyp A, r) which 
separates 00 in cyl^l, that is, 

S(A,r) = {ÜJ eft :3EcW3(cylAnV2(hyp A,r)), 

Ve e E uj(e) = 0, E separates 00 in cyl A } . 
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Lemma 5.10. There exists a positive constant c(p,() depending on p and C only 
such that, for any x in R3, for any orthonormal basis u,v,w of R3 and for any 
positive r, S, 

limsup —2InP(S(nsquare (x,u,v,S),nr)) < —r(w)S2 + c(p,()r5. 

Proof. Let e be positive smaller than both 5 and r and let n be an integer such 
that ne > 2Q. Let Eo be the set of the edges included in 

{v2 (cyl nctequare (x,u,v,d),Q P\V2 (hyp (nx, w),nr)^ U 

^cyl (nsquare (x, u, v, 6 + e) \ nsquare (x, u, v, 5)) Pi V2(hyp (nx, w), Q^j . 

Suppose that the event S(nsquare (x, u, v, S), nr) occurs, and let Es be a set of 
closed edges realizing it. Suppose also that all the edges of EQ are closed. De­
fine E = E0 U Es. We claim that the set of closed edges E realizes the event 
W(dnsquare (x, u, v, S + e), nr). Firstly, E C V2(hyp (nx, w), nr). Secondly, 

E N V2(cy\dnsquaie(x,u,v,5 + e), C ) C 

#o H V2(cy\dnsqua,re(x,u,v,6 + e),() C V2(hyp (nx, w), Q . 

Thirdly, let a in hyp (nx, w) and let XQ, ..., x\ be a path in cyl nsquare (x, u, v,8 + e) 
joining two sites xo,xi such that (xo — a) -w < —nr and (xi — a) • w > nr. Suppose 
that this path does not meet E. Let 

i2 = min{ i : (x{ — a) • w > nr } — 1, i\ = max{ i < i2 : (x{ — a) • w < —nr } + 1. 

Then the vertices of the subpath 

l(h,i2) =x i l , . . . , x<2 

belong to V2(hyp (nx,w),nr). Yet the edges of Eo separate the sets 

cyl (nsquare (x, u, v, S + e) \ nsquare (x, u, v, 6)), cyl nsquare (x, u, v, 6) 

inside V2(hyp (nx, w),nr). Two cases are possible. 
• The subpath 7(21,22) is included in cyl (nsquare (x, v, J + e) \nsquare (x, u, v,6)). 
However E0 separates { y : (y — a) • w < — ( } and { y : (y — a) • w > C } in this set. 
Thus this case cannot occur. 
• The subpath j(ii,i2) is included in cyl nsquare(x,u, v,S). Because no edge of 
7(2*1, i2) belongs to Eo, the edges (x^,a^+i) and (xi2-±, xi2) are not in i?o- However 
they are in V2(hyp (nx,w),nr), whence 

d2({xi1,Xi2},R3 \ cyl nsquare (x,u,v,S)) > ( — 1, 
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and both xix-\ and ^2+i also belong to cyl nsquare(x,u, v,8). Thus the path 

3(n-1Voo(C0,f{n))A(x + (\/C3(WT 3(n-1Voo(C0,f{n))A(x + 

joins slab (nx, w, —00, —nr) and slab (nx, w, +nr, +00) inside cyl nsquare (x, u, v, 8) 
without meeting Es. This contradicts the fact that the set of edges Es separates 00 
in cyl nsquare (x, u, v, 8) (recall that Es C V2(hyp (nx, w), nr)). Thus there exists 
no path in the graph 

(Z3(cyl nsquare (x, u,v,8 + e)), E3 (cyl nsquare (x, u,v,S + e)) \ E) 

joining slab (a, w, — 00, —nr) and slab (a, w, nr, +00). We conclude that the set E 
separates 00 in cyl nsquare (x, u, v, 8 + e) and 

{ c j i V e G J ^ o <^(e) = 0 } fl S (nsquare (x,u,v,8),nr) C 

W(<9nsquare (x, u,v,S + e),nr). 

Since all these events are decreasing, by the FKG inequality, 

P(S(nsqunre(x,u,v,5),nr)) (1 - p)cardEo < P(W(<9nsquare (x, u, v, S + e), nr)). 

There exists a constant c(C) such that card Eo < c(()n25(r + e), whence, passing to 
the logarithm, 

InP(5(nsquare (x,u, v, S),nr)) < InP(W(dnsqua,re (x,u,v,S + e),nr)) 

-c(()n2S(r + e) ln(l -p). 

Letting n go to 00, applying Proposition 5.2, and sending e to 0, we obtain the 
desired inequality. • 

Remark. If Ai,... ,Ai are / disjoint subsets of a planar set A of E3, then, for any 
positive r, the sets cyl (Ai, r),..., cyl (Ai, r) are pairwise disjoint, hence the events 
S(A\,r),..., S(Ai,r) are independent so that 

P(S(A,r)) < P(S(AUr)) x • • • x P(S(At,r)). 

Lemma 5.11. Let O be a planar open set in E3 and let (/>(n) be a function from N 
to E+ U {00} such that limn^oo 4>(n) = 00. We have 

lim inf —9 In P(S(nO,4>(n))) > -U2 (O)r(nor O). 
n—>oo n 

Proof. Let x belong to O and let (u,v) be an orthonormal basis of hypO. Let 8 
be positive and set 

M(6) = { (i, j) e Z2 : square^ + S(iu + jv), u, v, 8) n O / 0 } . 
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We see that the set 

Î J square (x + S(iu + jv), u, v, S) 
(ij)eM(S) 

contains the set O. Let E be the set of the edges included in the union 

(J V2 (cyl dnsquare (x + S(iu + jv), u, ^ ^ ) , ( + 2)nV2 (hyp nO, C + 2) • 
(ij)eM(d) 

There exists a constant c(£) such that cardl? < c(()n5 card M (S). If all the events 

W(dnsquare(x + S(iu + jv),u,v,S),(j>{n)), (i,j) £ f̂(< )̂7 

occur and all the edges of E are closed, then S(nO, <t>(n)) occurs as well, provided n 
is large enough so that (j)(n) > ( + 2 (the proof of this assertion is similar to the one 
done in the course of the proof of Proposition 5.2). By the FKG inequality, 

P(S(nO,<f>(n))) > (l-p)c*rdP¨PPE Yi P(W(dnsquare(x+d{iu+jv),u,v,8),(t>{n))) 
(iJ)eM(S) 

whence, by Proposition 5.2, 

lim inf -AnP(S{nO,(f)(n))) > - r (norO) S2 card M(S). 
n—>oo n 

However, we have 7i2{0) = inf<5>0 S2 card M(S) = l i m ^ o S2card M(S). Sending £ 
to zero in the previous inequality, we obtain the claim of the Lemma. • 

Lemma 5.12. There exists a positive constant c(£,p) depending on £ and p only 
such that, for any planar open set O in R3, for any positive r, 

limsup —2\nP(S(nO,nr)) < 
n—too ri 

-H2(0)T(norO)IUIJHH+Öc(C,p) inf (rOOS-^iO) +n2({x £ O : d2(x,dO) < 2 (5») . 

Proof. Let x belong to O and let (u,v) be an orthonormal basis of hypO. Let S, e 

be positive with e < S and set 

N(S) = { (i,j) e Z2 : square (x + 8{iu + jv), u, v, S) C O } . 

Since 
S(nO,nr) C P | 5(nsquare(x + S(iu + jv),u,v,6 — s),nr) 

(i,j)eN(s) 
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and since the sets square(x + S(iu + jv),u,v,S — e), (i,j) G N(S), are pairwise 
disjoint, then, using the independence of the associated events, 

P(S(nO,nr)) < J J P(5(nsquare (# + S(iu + jv),u,v, S — e),nr)). 
(ij)eN(S) 

Lemma 5.10 then implies 

lim sup —2 In P(S(nO, nr)) < -r(nor O) (6-e)2cardN(5) + c(p, () r(6-e) card N(S). 

We let e go to 0 in this inequality. The fact that r is bounded on S2 (the bound 
depending only on p), together with the inequalities 

H2({x G O : d2{x,dO) >2S}) < 52 card N(S) < U2{0) 

yield the desired result. • 

Corollary 5.13. For O a planar open set in E3 such that H2(dO) = 0, 

lim inf lim inf —AnP(S(nO,nr)) = lim sup limsup —AnP(S(nO,nr)) 
r-+0 n->oo nZ r->o n-+oc 

- - ri2(0)r(nor O ) . 

Corollary 5.14. There exists a positive constant c((,p) such that, for any x in E3, 
any positive p,n with n < p, any w in S2, 

limsup —2lnP(5(ndisc (x,p, w), nrj)) < —r(w)TTp2(\ — c((^1p)^/^n~Jp). 
n—too Tl 

Proof. We apply Lemma 5.12 with O = disc (x, p,w), r = n and we choose S = y/pfj. 
We use also the fact that r is bounded away from 0 (Corollary 5.7). • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 





C H A P T E R 6 

THE SURFACE ENERGY OF A CACCIOPPOLI SET 

In this chapter we first recall some facts concerning the class of the Caccioppoli 
sets, introduced by Caccioppoli and subsequently studied by De Giorgi. Next, we 
define the surface energy associated to the surface tension of the model. We prove 
then two important approximation results. 

6.1. Caccioppoli sets 

For a complete account of the theory of Caccioppoli sets, see the references 
[24,25,26,27,33,35,41,52,77]. The perimeter of a Borel set E of E3 in an open set O 

is defined as 

V{E,0) = sup { J^div g(x)dC3(x) : g e C%°(0,5(0,1))} 

where Cg°(0,5(0,1)) is the set of the C°° vector functions from E3 to 5(0 ,1) having 
a compact support included in O and div is the usual divergence operator. We define 
also V(E) = V(E, R3). The set E is said to have finite perimeter in an open set O 
if V(E, O) is finite. The set E is said to be of locally finite perimeter or to be a 
Caccioppoli set if V(E,0) is finite for every bounded open set O of E3. The set E 
is of finite perimeter if V(E) = V(E,R3) is finite. A set E has finite perimeter in 
an open set O if and only if its characteristic function \E is a function of bounded 
variation in O. The distributional derivative VXE of XE is then a vector Radon 
measure and V(E,0) = \\VXE\\(0), where ||VXJ5?|| is the total variation measure 
of Vx#- The perimeter V is lower semicontinuous on the space (i3(E3), Lj"oc): if 
(EN)N£N is a sequence of sets in B(R3) converging towards a set E in L\OC, then 
V{E, O) < liminfn^oo V(EN, O) for any open set O. 

Compactness property. For every bounded domain U and every A > 0, the 
collection of sets { E G B(U) : V(E) < A } is compact for the topology L1. 

This result is crucial for our purposes. Indeed, this compactness property replaces in 
dimension three the combinatorial bound associated to skeletons in dimension two. 
Let us quote the original formulation of [27], Teorema 2.4, or [25], Teorema I. 
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Theorem 6.1. Dati un insieme limitato L C tf, un numero positivo p, ed una 
successione {Eh} di insiemi verificante le condizioni 

EhcL, V(Eh)<p, h = l ,2 , . . 

esistono un insieme E C E3 ed una successione {E^} subordinata alla successione 
{Eh}, tali che risulti: 

lim mis(E — Ehi ) -
2—»00 

- mis(Ehi -E)=0. 

The compactness property is also an immediate consequence of the compactness The­
orem stated in [52], chapter 2, p.70. Modern presentations are formulated through 
functions of bounded variations: if O is an open bounded domain with sufficiently 
regular boundary (say C1), then a set of functions in Lx(0) uniformly bounded in 
BV-norm is relatively compact in L1(0) (see any of the following references: [33], 
Section 5.2.3, [41], Theorem 1.19, [77], Corollary 5.3.4). To deduce the compactness 
result on sets of finite perimeter, we choose an open bounded domain O with regular 
boundary containing U in its interior. We embed B(U) in Lx(0) by associating to 
a Borel set E of B(U) its characteristic function \E and we simply remark that the 
set { XE ' E G B(U) } is a closed subset of L1(0). 

Let E be a Caccioppoli set. Its reduced boundary d*E consists of the points x such 
that 
• \\VxE\\(B(x,r)) > 0 for any r > 0, 
• if vr(x) = —VxE(B{x,r))/\\\7xE\\(B(x,r)) then, as r goes to 0, vr(x) converges 
towards a limit vE(x) such that |^(a?)|2 = 1. 
For a point x belonging to d*E, the vector VE(X) is called the generalized exterior 
normal to E at x. A unit vector v is called the measure theoretic exterior normal 
to E at x if 

lim r-3£3(£_(£,r , v) 
r—>0 

E) = 0, Kmr-3£3(B+(x,r,i/)nE) = 0 
r—r0 

At each point x of the reduced boundary d*E of E, the generalized exterior nor­
mal VE(X) is also the measure theoretic exterior normal to E at x and moreover 

V e > 0 lim (nr^-Wid+Eniy e B(x,r) :\(y-x).vE(x)\ <e\y-x\2}) = 1, 

for V? almost all x in <9*E, lim 
r->-0 

{*r2)-1'H2(B(x,r)C.d*E) = 1. 

The map x G d*E H-» UE(X) G S2 is | | V X . E | | measurable. For any Borel set A of E3, 

\\\7XE\\(A)=H2(And*E),OLKLO VXE(A) = 

And*E 
-vE{x)dU2[x). 
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Let / : d*E 4 M be a ||Vx£?|| measurable bounded function. By the Besicovitch 
differentiation Theorem [6,11] applied to the measure | |Vx#| | , for 1-L2 almost all x 
in d*E, 

lim ±-J f(y)dH2(y) = f(x). 
r_»0 7rrzJB{x^r)nd*E 

Remark. The version of the differentiation Theorem for a general measure is due 
to Younovitch [76] and Besicovitch [11, 12]. The classical textbooks on measure 
theory usually propose very general versions of this Theorem (see for instance [44, 
Section 10.3, Theorem 1] or [35, Theorem 2.9.8]). Here we need only the version 
dealing with radon measures and Euclidean balls in E3 [77, Theorem 1.3.8]. Assouad 
and Quentin de Gromard [6] propose a proof of this result which is considerably 
simpler than the original proof of Besicovitch or its modern versions. 

The reduced boundary d*E is countably 2-rectifiable, that is d*E C N U UieN ^ 
where H2(N) = 0 and each Mi is a 2-dimensional embedded C1 submanifold of E 3 . 

Remark. Since the reduced boundary is 2-rectifiable, some of the previous density 
and differentiation results follow from more general results of the theory of rectifiable 
sets. For instance, [35, Theorem 3.2.19] implies that d*E has 2 dimensional density 1 
at 7i2 almost all its points. Whenever E is a set of finite perimeter, the balls B(x, r), 
x G d*E, r > 0, are a %2 Vitali relation in the sense of Federer [35, 2.8.16] and we 
can apply the results of [35, chapter 2.9] to the space d*E endowed with the induced 
Euclidean metric; for instance the above statement on the differentiation of integrals 
is implied by [35, Theorem 2.9.8], or even by the fact that a | | V X . e | | measurable map 
is approximatively continuous | |Vx# | | almost everywhere [35, Corollary 2.9.13]. 

Next, we state a useful result (see [41, remark 2.14]). If E is a Caccioppoli set, then 
for any x in E3 and for Ti1 almost all positive radius r, 

P(EnB(x,r)) = V(E,intB(x,r)) + H2(EndB(x,r)). 

We recall finally the isoperimetric inequality and the Gauss-Green Theorem. There 
exist two constants &iSo,Ciso depending only upon the dimension such that, for any 
Caccioppoli set E, any ball J5(x,r), 

i n ( £ 3 ( £ n # ( x , r ) ) , £ 3 ( ( E 3 \E)nB(x,r))) < biso V(E,intB(x,r))3/2 , 

m i n ( £ 3 ( £ ) , £ 3 ( E 3 \ £ ) ) < cisoV(E)3/2 . 

For any function / in C Q ( E 3 , E 3 ) , any Caccioppoli set E, 

/ div f(x) dC3(x) = / /(x) • vB{x) dU2{x). 

mm 
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6.2. The surface energy 

The results of this section and the following one are valid for any function r 
from S2 to E+ satisfying the following hypothesis. 

Hypothesis on r. The homogeneous extension TQ of r to R3 defined by 

G E3 r0(a?) = 
\X\2T(X/\X\2) iîx^O 

0 if x = 0 

is convex. The minimum TM-IN = inf{r(j/) : v G S2} of r on S2 is positive. 

Remark. The above hypothesis implies in particular that r is continuous. Indeed, 
the function ro is convex and finite everywhere. 

Remark. By Corollaries 5.4,5.5, 5.7, the surface tension r extracted from the three 
dimensional Bernoulli percolation model satisfies the above hypothesis. 

The Wulff crystal of r is the set 

WT = {x eRs : x "w < r(w) for all w in S2 } . 

Since r is continuous and bounded away from 0 then its crystal Wr is convex, closed, 
bounded and contains the origin 0 in its interior [37, Proposition 3.5]. Moreover r 
is the support function of >Vr, that is, 

Vi/ G S2 r(i/) = sup {x • v : x G Wr } . 

This last property stems from the fact that ro coincides with its bipolar (this is not 
true in general, if ro is not convex). For more details and the proofs of the above 
facts, see [37]. 

Definition 6.2. The surface energy X(A,0) of a Borel set A of R3 in an open 
set O is defined as 

I(A,0) = sup 
J A 

divf(x)dC3(x) : f G Cl{0,WT) 

where CQ(0,WT) is the set of the C1 vector functions defined on E3 with values in 
Wr having compact support included in O and div is the usual divergence operator. 
We define also 1(A) = I(A, E3). 

For a fixed function / in Cl(p,WT), the map 

Ae(B(R3),Lloc)¨PM%M^ 
A 

divf(x) dC3(x) 

is continuous. Thus X( - ,0 ) , being the supremum of all these maps, is lower semi-
continuous. 
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Lemma 6.3. Setting rm\n = inf {r(i/) : v G S2}, we have for any open set O 

VAeB(R3) rminV(A,0) < Z(A,0) < ||r||ooP(A, O). 

Proof. The hypothesis on r implies that the crystal Wr is bounded and contains 
the origin 0 in its interior. More precisely, 5(0, rmin) C Wr C 5(0, ||T||OO) • Indeed, 
let x belong to 5(0, Tm\n). Then for any v in 52, x-v < rmin < r(i/), hence x belongs 
to Wr- Let x belong to Wr. Then \x\2 = sup{ x • v : v G S2} < ||r||oo and # belongs 
to 5(0, | |T| |oo). Considering the definitions of V(A,0) and X(A,0), the desired 
inequalities follow easily. • 

Corollary 6.4. The functional! is a good rate function on the space (B(R3), L\oc), 
i.e., for any A in R+, the level set {E G B(R3) : T(E) < A} is compact for the 
topology L\oc. 

Proof. Let A be positive and let {En)n^ be a sequence of Borel subsets of B(M3) 
such that X(En) < A for any n in N. By Lemma 6.3, together with the identity on 
the perimeter recalled previously, for any n in N, and Ti1 almost all positive r, 

V(EnnB(0,r)) = V(En9mtB(0,r)) + U2[En n OB(0, r)) < ( ^ ^ ( A + 47rr2). 

Let (rm)mGN be an increasing sequence of positive real numbers going to oo and 
such that 

V n , m e N V(EnnB(0,rm)) < I M ^ A + A<xr2m). 

By the compactness property (Theorem 6.1), for each m, there exists a Borel subset 
Am of jB(0,rm) and a subsequence of (En)ne^ converging to Am. By a standard 
diagonal argument, we may extract a subsequence (#0(n))neN such that: 

Vra G N n—>oo v ' ' E^^AAm) = 0. 

In particular, 
Vra G N C3B(o,rm) (Am+1AAm) = 0 . 

Let A = \JmeNAm. The previous identities imply that the subsequence (i^(n))n6N 
converges towards A for the topology L\oc. Since X is lower semicontinuous, the 
set A satisfies in addition X(A) < A. • 

We show now that the surface energy is the surface integral of r on the reduced 
boundary. 

Proposition 6.5. The surface energy X(A, O) of a Borel set A of R3 of finite 
perimeter in an open set O is equal to 

X{A,0) = / T(vA(x))dH2(x). 
Jd*Ano 
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Proof. Let A be a Borel subset of E3 of finite perimeter in O, i.e., V(A, O) is finite 

and is equal to l~i2(d*A fl O). By the Gauss-Green Theorem, for any function / in 

Co1 (O.K3), 

/ div f(x) dC3(x) = [ f(x) • uA(x) dU2{x). 
J A Jd*A 

Taking the supremum over all functions / in CQ{0,WT) yields 

X ( ^ , 0 ) = s u p { / f(x).3(n-1Voo())A(vA(x)dH2(x):feCl(0,WT)}. 
1 Jd*A J 

Thus, 

Z(A,0) < f sup yvA(x)dH2(x) = f r(uA(x))dri2(x). 
Jd*AnO j/GWr Jd*AHO 

Conversely, let e belong to ]0, l/2[. For 7i2 almost all x in d*A 0 O, 

lim (Trr2)"1^2^^^) Hd*A) = 1. 
i—>-0 

Let d**A be the points of d*A fl O where the above property holds. For any x in 
d**A, there exists a positive ri(x,e) such that B(x,ri(x,s)) C O and 

V r < n ( x , e ) \H2(B(x,r) nd*A) -7rr2\ < enr2 . 

By Egoroff Theorem [65, Chapter 3, Exercise 16], there exists a compact set C 
included in d**A such that U2(d*APiO\C) < e and VXA{B{X,T))/\\VxA\\(B{x,r)) 
converges uniformly on C towards VA(X) as r goes to 0; then the restriction of vA to 
C is continuous. Since r is also continuous, then for any x in C, there exists r2(x,s) 
positive such that 

Vy e C D B(x,r2(x,e)) \vA(y) - vA(x)\2 <e, \r(vA(y)) - r(isA(x))\2 <e. 

The family of balls B(x,r), x G O, r < min(ri(x,£),r2(#,£)), is a Vitali relation for 
O. By the Vitali covering Theorem for %2 [34, Theorem 1.10, or chapter 4], we may 
select a finite or countable collection of disjoint balls B(xi,ri), i e i , such that: for 
any i in / , Xi belongs to O, r% < min(ri(x,e),r2(x,e)) and 

either U2(C \ [j B(xurS) = 0 or $^r< = 00 " 

Because for each i in / , ri is smaller than r\{x,e), 

( l - £ ) ^ 7 r r 2 < H2(9*i f lO) = V{A,0) < oo 
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and therefore the first case occurs, so that we may select a finite subset J of I such 
that 

U2 C\ 
xi,r 

B{xi,ri) < e. 

Since r is the support function of Wr, then for each i in J there exists a vector yi 
in WT such that yi • vA{xi) = T(uA(xi)). The balls B(xi,ri), i G J, being closed and 
disjoint, certainly there exists a function / in CQ(0,WT) such that 

Vi e J sixeB{xi,ri)xi,r f(xi) = yi. 

For such a function / , 

'd*A 
f(x)'VA(x)dH2(x)-xi,r 

d*AnO 
r{uA{x))dn2{x) 

< 2\\T\\oo%2{d*Ar\0\C) + 
'C 

(f(x).vA(x)-T(vA(x)))dH2(x)xi,r 

Ì 2||r||oo 'n2(d*AnO\C)+H2(cxi,r 

ieJ 

B(xi,ri)y 

ieJ JB(xi,n)nC 
(yi • vA{x) - r(uA(x))) d7i2(x) 

For i in J and x in B(xi,ri) fi C, because < min(ri(xi,£),r2(xi,e)), 

|yrMaO-r(i/A(a;))| < \yi\vA{x)-vA{xi))\ + \T{vA(xi))-T(vA{x))\ < (HrHoo+1) e. 

Integrating these inequalities, 

xi,r 
f(x)-vA(x)dH2(x)-

ld*AnO 
T(isA(x))dH2(x)\ 

< ^IMIoo + e (IMloo + l)^2(dM n O), 

whence 

I (A,0) > 
Jd*AnO 

T{PA(X)) dU2(x) - 4e||r||oo - e (||r||oo + Ì)V(A, O). 

Letting s go to zero, we obtain the converse inequality and the claim of the Propo­
sition. • 

We next state an approximation result used for proving the large deviation upper 
bound. 
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Lemma 6.6. Let Abe a Caccioppoli set having finite perimeter in an open subset O 
ofR3 . For any positive e,S, there exists a finite collection of disjoint balls B(xi,ri), 
i G I, such that: for any i in I, Xi belongs to d*A, ri belongs to ]0,1[, B(xi,ri) is 
included in O, 

£3((AnB(xi,ri))AB-(xi,ri,vA(xi))) < Sr3 , 

Z ( A , 0 ) - £ i r r i t e ) ) 
iei 

< e. 

Remark. It is logically equivalent to state the result with S = e. However, in the 
course of the proof of the large deviation upper bound, we will first fix e positive, 
and then apply the above result with a positive 6 smaller than some So depending 
on e. 

Proof. Let e,S be positive, with e < 1/2. Because a generalized normal vector is 
also a measure theoretic normal, for any x in d*A, there exists a positive ri(x,6) 
such that, for any r < ri(x,6), 

£3((AnB(x,r))AB_(x,r,vA{x))) < Sr3 . 

The map x G d*A \-> VA{X) G S2 is measurable with respect to the measure 7i2\d*A-
Using the results stated in the section on Caccioppoli sets (at the beginning of 
chapter 6), for li2 almost all x in d*A, 

lim (7rr2)-1'H2(5(a:,r) n d*A) = 1, 
r—>0 

lim —2 j B(x,r)?a*ar(yA{y)) dU2{y) = T(VA(X)) . 

Let d**A be the set of the points of d*A where the two preceding identities hold 
simultaneously. Clearly 7-L2(d*A \ d**A) = 0. For any x in d**A, there exists a 
positive r2(x,e) such that, for any r < r2 (#,£), 

\H2(B(x,r)nd*A)-7rr2\ < enr2, 

\-*[ ' 
,7RR JB(x,r)nd*. 

T{vA{y))dU2{y)-T{vA(x)) < e. 

The family of balls B(x,r), x G d**ADO, r < min (ri(x,(J),r2(a:,e), l , d2 (x ,90) ) , is 
a Vitali relation for d**A fl O. By the Vitali covering Theorem for U2 [34, The­
orem 1.10, or chapter 4], we may select a finite or countable collection of dis­
joint balls B(xi,ri), i £ l , such that: for any i in / , xi belongs to d**A fl O, 
r< < min (ri(xi,S),r2(xi,e),l,d2(xi,dO)) and 

either H2((d**AnO)\\jB(xi,ri)y) = 0 or J^r? = oo . 
iei iei 
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X(AO)~ V7rr2r( i /A(^)) | < I (a** ANO=Uiejr(uA(x))dn2(x) 

+ E l / r ( ^ ( x ) ) ^ 2 ( a ; ) - 7 r r 2 r ( ^ ( ^ ) ) | -
iGJ 1 Jd**AnB(xi,ri) 1 

The first integral of the right-hand member is less than e/H2{d**Ar\0)\\r\\oo. For i 
in J, 

I / r(uA(x))dn2(x)-7Tr2r(iyA(xi))\ < eirr2 < 2eU2{B{xun) n <9*M) 
' Jd**Ar\B(xi,n) ' 

whence by summing over i in J, 

V l / r ( ^ ( x ) ) ^ 2 ( x ) - 7 r r 2 r ( ^ A ( ^ ) ) | < 2eH2(d**AnO). 
1 ^•MnB(aii,r.) 1 

Putting these inequalities together, 

| j ( A , 0 ) - 5 ^ 7 r r ? r ( ^ ( « i ) ) | < e^(i4,0 ) ( | | r | |oo+2) . 

Since (||r||oo + 2)7^(^4,0) does not depend on e, we have the required estimate. • 

The next Lemma bounds the surface energy of a Caccioppoli set intersected with 
a ball. 

Lemma 6.7. Let A be a Caccioppoli set. For x in M3, for Ti1 almost all positive 
radius r, 

l(AnB(x,r)) < I(A,mtB(x,r)) + ||T||OO«2(J4 fl dB(x, r ) ) . 

By hypothesis, V(A,0) = V,2{d*A n O) is finite. For each i in / , ri is smaller than 
(xi, e), whence 

( l - e ) ^ 7 r r 2 < n2(d**APiO) < oo 

and therefore the first case occurs, so that we may select a finite subset J of / such 
that 

n2((d**AnO)\ ( jB(x i , ro ) < ^ 2 ( ^ n o ) . 

We claim that the collection of balls B(xi,r{),i G J, enjoys the desired properties. 
Indeed, there is only the last condition to be checked: 
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Proof. Since d*(A n B(x,r)) Hint B(x,r) = d*A n int B(x, r) and vAnB(<x^(y) = 
vA(y) for y in int B(x,r), using Proposition 6.5, 

l(AnB(x,r)) = f T(vAnB{x,r)(y))drl2(y) 
Jd*(AnB(x,r)) 

< l(A,mtB(x,r)) + \\r\\00ri2{d\Ar\B(x,r))ndB(x,r)) . 

Next, for V} almost all positive r (see the beginning of chapter 6 or [41, remark 2.14]), 

U2 {d\A fl B(x, r)) fl dB(x, r)) = P(A H B(x, r)) - V(A, int B(x, r)) 
= ^ 2 ( ^ n S , B ( x , r ) ) . 

Combining these inequalities, the result follows. • 

In the remaining of the section we state an important approximation result which 
is the key for the proof of the large deviation lower bound. 

Proposition 6.8. Every bounded Caccioppoli set A can be approximated by a 
sequence (An)ne^ of bounded C°° sets such that 

lim C3(AnAA) = 0, lim l(An) = 1(A). 
n—>-oo n—too 

Proof. This result is a slight generalization of the corresponding result for the 
perimeters [41, Theorem 1.24]. Because the proof is quite long, we only sketch the 
essential points: it consists in adapting some minor details of [41, Theorem 1.24]. 
One needs a slight extension of the coarea formula [73]: for any function / of bounded 
variation, 

r+oo 
dt. ад = I/-too 

l({xeR3 :f(x)<t}), 
-OO 

(For the definition of 1(f), replace \A by / in the definition of 1). The first step con­
sists in approximating the characteristic function \A by a regular function through 
a smoothing procedure (convolution with a mollifier) to obtain a sequence of C°° 
functions (/n)neN with values in [0,1] such that 

lim / \fn(x) -XA(x)\dC3(x) = 0 , lim l(fn) = 1(A). 
n—too J n—too 

The lower semicontinuity of 1 and the coarea formula imply that for H1 almost all t 
in ]0,1[ 

lim inf l({x e R3 : fn(x) < t}) = 1(A). 

By the Sard Lemma, for Ti1 almost alH in ]0,1[, the boundary of the set { x G M3 : 
fn(x) < t} is regular. Thus we may choose a value of t in ]0,1[ such that the sets 
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{x G R3 : fn{%) < t}, n G N, are all C°° and the infimum limit of the sequence 
(X({x G R3 : fn(x) < *}))n€N is T(A). The sequence ({x G R3 : fn(x) < t})neN 
then contains a subsequence having the desired properties. • 

A nice consequence of Proposition 6.8 is that X can alternatively be defined by 

1(A) = inf ( lim inf f r(uAn(x))dn2(x)) 

I n->oo JdAn ) 
where the infimum is taken over all the sequences of C°° sets (An)n€N converging 
towards A in L\oc. Thus X is the largest lower semicontinuous functional extending 
the surface integral A \-> JdA r(uA(x)) dH2{x) from the C°° sets to the Borel sets. 

To prove the large deviation lower bound, we will need another kind of approxi­
mation result, namely we will need to approximate the sets of finite perimeter with 
polyhedral sets. A Borel subset of R3 is polyhedral if its boundary is included in 
the union of a finite number of hyperplanes of R3. 

Proposition 6.9. Let A be a set of finite perimeter in R3 . There exists a sequence 
(An)ne?$ of polyhedral sets o/R3 converging to A for the topology L1 such thatX(An) 
converges to X(A) as n goes to oo. 

Remark. We might assume in addition that the approximating sets (An)nGN are 
open, connected and that they contain the origin: by adding threads having arbi­
trary small surface and volume, it is possible to connect together a finite number 
of polyhedral connected sets and to include a neighbourhood of the origin. In case 
£3(A) is finite, we might also assume that the sets (̂ 4n)nGN are bounded. 

Remark. This result yields a definition of the surface energy analogous to the 
original definition of the perimeter proposed by Caccioppoli [15,16], as the infimum 
of the limits of the perimeters of polyhedral approximations. 

Remark. For the particular case r = 1, this result has been originally proved by 
De Giorgi [24]. Below we propose a different proof, with a special emphasis on the 
way to approximate a set limited by an hypersurface with a polyhedral set. 

Proof. Let A be a set of finite perimeter. By the isoperimetric inequality, either 
C3(A) or £3(R3 \ A) is finite. If a sequence (An)n^ converges towards A in L1 
then the sequence (R3 \ An)ne^ converges towards R3 \ A in L1. Moreover we have 
X(A) = X(R3 \ A). Hence we need only to consider the case where C3{A) is finite. 
For r positive, we set Ar = An5(0, r). Because C3(A) is finite, the set Ar converges 
towards A for the topology L1 as r goes to oo. By Lemma 6.7, for V} almost all r, 

T(Ar) < f r(vAr(x))dH2(x) + H r H o o W ^ A n f l S ^ r ) ) . 

Jd*Anint J3(0,r) 

Let e be positive. Since C3(A) is finite, then { r > 0 : U2{A fl aB(0,r)) > e} 
has finite H1 measure (less than C3(A)/e). Certainly there exist arbitrarily large 
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values of r such that the above inequality holds and %2{A fl dB(Q,r)) < e, whence 
Z(Ar) < X(A)-\-e\\r\\00. For r large enough, we have also £3(AAAr) < e. Therefore 
we need only to prove the approximation result for bounded sets of finite perimeter. 
By Proposition 6.8, it is then enough to consider the case of bounded C°° sets of 
finite perimeter. 

The end of the proof uses a technical Lemma, that we state and prove now. 

Lemma 6.10. Let F be an hypersurface (that is a C1 submanifold of R3 of codi-
mension 1) and let K be a compact subset ofF. There exists a positive M — M(F, K) 
such that: 

Ve>0 3 r >(y)(z-x)\0 \/x,yeK(y)(z-x)\\x-yd2(?/,tan(y)(z-x)\(y)(z-x)\(r,:r)) < Me\x-y\2. 

(tan(F,x) is the tangent plane ofF at x). 

Proof. By a standard compactness argument, it is enough to prove the following 
local property: 

VxeF(y)(z-x3M(X)>0(y)(z-x)\\/S>0(y)(z-x)\3r(x,e)>0 My, z G T n B(x, r(x, e)) 

d2(2/,tan(r,2;)) < M{x)e\y-z\2. 

Indeed, if this property holds, we cover K by the open balls intB(x, r(x,e)/2), 
x G K, we extract a finite subcovering int B(xi,r(xi,e)/2), 1 < i < k, and we set 

M = max{M(xi) : 1 < i < k} , r = min{ r(xi,e)/2 : 1 < i < k } . 

Let now y, z belong to K with \y — z\2 < r. Let i be such that y belongs to 
B(xi,r(xi,e)/2). Since r < r(xi,e)/2, then both y, z belong to the ball B(xi,r{xi, e)) 
and it follows that d2(y, tan(r, z)) < M(xi) e \y — z\2 < Me \y — z\2. 

The proof of the local property relies on a classical lemma of differential calculus 
[51, I, 4, Corollary 2], which we state next. 

Lemma. Let E, F be two Banach spaces, let U be an open subset of E, x, z in U 
such that [x,z] C U and let f : U H> F be a C1 map. Then for any y in [x,z], 

\f(z)-f(x)-df(y)(z-x)\(y)(z-x)\ < \z - x\ sup { \df(0 df(y)\ :C€ [ s , * ] } . 

Proof of Lemma 6.10 continued. We turn now to the proof of the above local 
property. Since F is an hypersurface, for any x in F there exists a neighbourhood V 
of x in M3, a diffeomorphism / : V M3 of class C1 and a two dimensional vector 
space Z of R3 such that Z fl f{V) = f(F n V) (see for instance [35, 3.1.19]). Let A 
be a compact neighbourhood of x included in V. Since / is a diffeomorphism, the 
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maps y G A df(y) G End(R3), u G f(A) i-> d/-1(u) G End(R3) are continuous. 
Therefore they are bounded: 

3M>0(y)(z-x)\VyeA(y)(z-x)\\\df{y)\\<M, (y)(z-x)\(y)(z-x)\(y)(z-x)\(y)(z-

(here | |d/(#)| | = sup{ \df(x)(y)\2 : \y\2 < 1 } is the standard operator norm in 
End(E3)). Since /(^4) is compact, the differential map c?/_1 is uniformly continuous 
on f(A): 

Ve>03S>(y)(z-x)\Vu,v€f(A)(y)(z-x)\ y ) ( z - x ) \ \ u v \ 2 < ô y)(z-x)\\W-Hu)-4f-Hv)\\ <e 

Let s be positive and let S be associated to e as above. Let p be positive and small 
enough so that p < 5/2 and B(f(x),p) C f(A) (since / is a C1 diffeomorphism, f(A) 
is a neighbourhood of / ( # ) ) . Let r be such that 0 < r < p/M and B(x,r) C A. We 
claim that M associated to x and r associated to e, x answer the problem. Let y, z 
belong t o T n B(x,r). Since [y,z] C B(x,r) C A, and ||d/(C)|| < M on A, then 

|/(2/) - f(x)\2 < M\y - x\2 < Mr < p , \f(z)-f(x)\2 < p , 

\№-f{z)\2<6, \f(y) - f(z)\2 < M\y-z\2. 

We apply next the quoted Lemma to the map / 1 and the interval [f(z), f(y)] 
(which is included in B(f(x),p) C f(A)) and the point f(z): 

\y-Z-df-1(f(z))(f(y)-f(z))(y)(z-x)\\2 < 

()(f(z)\2(y)(z-x)\sup {lid/"1 (C) - ^ ( / C O N h C e [ / ( * ) , / ( ! / ) ] } . 

The right-hand member is less than M\y — z\2e. Since z + df 1(f(z))(f(y) — f(z)) 
belongs to tan(r, z), we are done. • 

Proof of Proposition 6.9 continued. Let now A be a bounded C°° set of finite 
perimeter. In particular its boundary OA is an hypersurface. Since r is continuous 
and OA is an hypersurface, for any x in dA, 

lim 
r-K) 

irr2)-1V2{B{x,r)(y)(z-x)\^dA) = 1, 

lim 
r—>-o 

Trr2)-1(y)(z-x)\ 
'B(x,r)ndA 

T(vA{y))dH\y)(y)(z-x)\= T{VA{X)) 

Since 1-L2(dA) is finite, for any x in <9A, for almost all positive r, 

-ft2(&4n<9£(z,r)) = 0 . 

Let M be associated to OA as in Lemma 6.10 (notice that dA is compact). We might 
assume that M > 1. Let e belong to ]0, l/2[. Let r(cM,s) be associated to &4, e as 
in Lemma 6.10. For x in cL4, there exists a positive r(x,e) such that, for r < r(x,e), 

\n2(B(x,r) HdA) -Trr21 < £7rr2, 

(Trr2)"1 
B(#,r)ndA 

r(^(y) ) (W2(y) - r(i/A(a:)) < e. 
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The family of balls 

B(x,r), x edA,r < min(r(x,e),r(dA,e),e), U2(dA fl dB(x, r)) = 0, 

is a Vitali relation for the set OA. By the standard Vitali covering Theorem [34, The­
orem 1.10, or chapter 4], we may select a finite or countable collection of disjoint balls 
B(xi,r{), i e i , such that: for any i in i", X{ e dA, 0 < < min(r(xi,e),r(dA,e),e), 
n2(dAndB(xi,n)) = 0, and 

either H2 (dA \ ( J B(xt, r<)) = 0 or ]TV2 = oo . 
iei iei 

Because for each i in / , r« is smaller than r(xi,e), 

( l - ^ ) ^ T r r 2 < ri2(dA) < oo 
iei 

and therefore the first case occurs, so that we may select a finite subset IQ of / such 
that 

H2(dA \ ( J B{xunj) < sri2(OA). 
ieio 

By the very definition of the Hausdorff measure 7i2, there exists a collection of balls 
B(yj, Sj), j e J, such that: for any j in J, yj e dA, 0 < Sj < e, 

$ > a * < e(H2(dA) + l), 
jeJ 

8A\ [J mtB(xi,ri) C ( J mtB(yj,Sj). 
ieio jeJ 

By compactness of dA, we might assume in addition that J is finite. For each i in I0, 
let Pi be a convex open polygon inside the plane tan(<!M, Xi) — hyp (xi, VA(XI)) such 
that 

disc (xi,ri,uA(xi)) C Pi C £ (£¿ , ^ (1 + , 

I W 1 ^ ) - 2IRN\ < 2EIRN , \ri2(Pi) - 7rr2\ < eirr2 . 

We set a = Me (1 + e) and Fi — cyl (doPi, ari) for i in I0. For each j in J, let 
be a polyhedral set such that B(yj,Sj) C Qj C B(yj,2sj) and H2(dQj) < Sns2. 

Let T be the set 

T = A U ( J F< U ( J Qj;. 

We claim that T answers the problem. First A C T C V2(A, 2(M + 1) e). Secondly 

T\A C U ^ U U ^ 
ieio jeJ 
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whence 
C3(T\A) < ^27rr | ( l+£)ar i + ^(4/3)7r(2Sj)3. 

i€lo jGJ 

Yet £.eJo Trr2 < 2n2(dA) and J2jej < 6 (H2(dA) + 1) whence 

£3(T\A) < 9MU2 (dA) e + lie (U2(dA) +I). 

We show next that T is polyhedral. Indeed, for i in Io, r« is smaller than r(dA,e), 
so that 

Mx e dAn B(xi,ri) d2(x,hyip (XÌ,VA(XÌ))) < Me\x - Xi\2 

whence dAn B(xiìri) C cyl{Pi,Meri) C intF*. Moreover, letting 0 = Vl — o2, 
the disc 

G« = disc(^ - awA(XÌ), fri, VA(XÌ)) 

is included in the interior of A. Indeed, GÌ is included in B(xi,ri)C\dFi and therefore 
d does not intersect dA. It is included in int A because VA(%Ì) is the exterior normal 
to A at X{. Since in addition the sets Fi, i E I0, Qj, j e J cover dA, 

OT C (J 3F< \ G< U (J(y)(z-x)\. 
¿6/0 

Thus <9T is included in a finite union of hyperplanes and T is polyhedral. Finally 

l(dT) < 

ieio 

l(dFi \ GÌ) + 
(y)(z-

I{dQj) 

ieio 
Kr2{l+e)T{vA{xi)) + IMIoo 

(y)(z 

Trr2 (4(1 + e)a! + 1+6- /?2)4 
jeJ 

8ns2 

: (l + e)l(A)+AeV2(dA) + \\r\\00 2H2 (dA) (9Me + e + 4M V ) + 8s(^2 (&4) +1 ) 

Since M depends on A only, the set T approximates A as required. 

6.3. The Wulff Theorem 

We consider the following problem: 

(P) minimize 1(E) among all Borei sets E with £3(E) = £3(WT). 

In the case where r is constant, the problem (P) reduces to the classical isoperimetric 
problem. In the case of anisotropic functions r, the first attempts to solve (P) are 
due to Wulff, at the turn of the century [75]. Later Dinghas [30] proved that, among 
convex polyhedra, the Wulff crystal Wr is the solution to (P). Taylor obtained 
general existence and uniqueness results for (P) in the framework of the Geometric 
Measure Theory [69,70,71]. Recently, Fonseca and Miiller reworked and slightly 
enhanced these results using the theory of the Caccioppoli sets [36,37,39]. All the 
above proofs rely on the Brunn-Minkowski Theorem. We restate next some results 
from [36,37,39]. 
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Theorem 6.11. For any set E of finite perimeter in E3 such that C3(E) = 
C3(WT), 

1(E) = [ r(uE(x))dn2(x) > 1(WT) = [ r(vWT(x))om2(x). 
Jd*E Jd*WT 

Theorem 6.12. Let E be a solution of the problem (P). Then E = WT + c up to 
a negligible set, where c = £3(Wr)_1 JExdC3(x). 

Proposition 6.13. / / (En)ne?$ is a minimizing sequence of the variational prob­
lem (P), then there exist translations (En — an)n^ such that C3((En — an)AWV) 
converges to 0 as n goes to oo. 

Theorems 6.11, 6.12, Proposition 6.13 are specializations to E3 of [37, Theo­
rem 4.2], [39, Theorem 3.3], [37, Proposition 5.1]. 

Corollary 6.14. (Stability of the Wulff crystal) 
For any positive S, there exists a positive n such that 

inf \l(E) : E e B(R3), C3(WT) < C3(E) < oo, inf C3(EA(x + WT)) > S } 

>l(WT)+n. 

Proof. If the result was false, there would exist a positive S and a sequence (En)ne^ 
such that lin^^oo !(En) = 1(WT) and for all n in N 

C3(WT) < C3(En) < oo , VxeR3 C3(EnA(x + WT)) > S . 

For n in N, let An = (£3(WT)j'C3(En))xl3. On one hand, Xn is smaller than 1; 
on the other hand, by Theorem 6.11, X2ll(En) = l(XnEn) > 1(WT), so that 
lim inf n-+oo Xn > 1. Therefore limn_).00 An = 1. It follows that (XnEn)ne?q is a 
minimizing sequence of the problem (P). Yet, for x in R3, using the hypothesis 
on En and the convexity of Wr, 

C3((XnEn)A(x + WT)) > X3nC3(EnA(x + WT)) - C?((XnWT)AWT) 

> X3nS-C3(WT\(XnWr)). 

Taking the infimum over x in E3 and passing to the limit, we get 

lim inf inf C3((XnEn)A(x + Wr)) > S. 

This stands in contradiction with Proposition 6.13. • 



C H A P T E R 7 

COARSE GRAINING 

In this chapter, we restate some results of Pisztora [60] which are the fundamental 
ingredients of our proofs. Next, we give general results for building coarse graining 
estimates on the rescaled lattice. 

7.1. The results of Pisztora 

Let A be a cubic box of diameter n in M3, with sides parallel to the axis. We 
consider the configuration O;|A restricted to the box A. A cluster of U;|A is called 
crossing for A if it intersects the 6 faces of dlvA. Let g be an increasing function 
from N to R+ such that g(n) < n for all n. Let also S be a positive real number. 
We consider the configuration restricted to A and the following events: 
• U(A) = {there exists a unique open crossing cluster in A, denoted by C*(A) } , 
• R(A, g(n)) — U(A) n { every open path included in A of diameter larger than g(n) 
is included in C*(A) } , 
• 0(A,g(n)) = R(A,g(n)) fl {the crossing cluster C*(A) intersects every box of 
diameter g(n) contained in A } , 

• V{A,S) = U(A) fl {(6 - S) card A < card C* (A) < (6 + 5) card A } . 

Theorem 7.1. Let p > pc be fixed. For any x in Zs, 

limsup - lnP(*7(A(x,n))c) < 0. 
n—too Tl 

There exists a constant K = K,(p) such that if g(n) > « l n n for all n then for any x 
in Z3, 

limsup - i - lnP(0(A(o; ,n) ,5f (n) )c ) < 0. 
n—too 9\n) 

Remark. Since we have the inclusion 0(A(x,n),g(n)) C R(A(x,n),g(n)), Theo­
rem 7.1 yields a similar bound for the probability of the event R(A(x, n),g(n)). 

Lemma 7.2. Let p belong to [0,1]. For any positive 5, any x in Z3, 

lim sup — lnP( V c a r d C > (<9 + <5)cardA(z,n)) < 0 

n—too n £, 
where the summation is over all the open clusters C intersecting d\YA(x,ri). 
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Lemma 7.3. Let p > pc be fixed. For any positive S, any x in Z3, 

limsup - lnP(F(A(x,n) , (5)c) < 0. 
n—too 

Remark. Theorem 7.1 is a specialization of [60, Theorem 3.1] to the case of three 
dimensional Bernoulli bond percolation, whereas Lemmata 7.2 and 7.3 correspond 
to [60, Lemmata 5.1 and 5.2]. In this case we have 0f = 0W (percolation probabil­
ities with free and wired boundary conditions, see the notation of [60]); moreover 
Grimmett and Marstrand have proved that the critical value p\ (limit of percolation 
slab thresholds) coincides with pc (see [43] or the second edition of [42]). 

We have slightly altered the notation of [60], by adding the box A in U(A), 
R(A,g(ri)), (9(A,#(n)), V(A,S). The reason is that we will consider these events in 
different boxes of the lattice. Since our model is invariant under integer translations, 
the probabilities of the events C7(x+A), R(x+A, g(n)), 0(x+A,g(n)) and V(x+A,5) 
are the same for all x in Z3. Notice that all the clusters in the definitions of these 
events are clusters of the configuration restricted to the box x + A. Hence the 
occurrence of these events depends only on the edges of x + A and two such events 
are independent when their associated boxes have no edges in common. We finally 
restate Theorem 7.1 and Lemma 7.3 in a form more convenient for our purposes. 

Corollary 7.4. Let p > pc be fixed. There exist two positive constants b = b{p), 
c = c(p) depending on p such that 

Vn G N VxeZ3 P(U(A(x,n))c) < frexp —cn. 

Let g be an increasing function from N to E+ such that nlnn < g(n) < n for all n 
in N, where K, = /c(p) is the constant given by Theorem 7.1. There exist two positive 
constants b = b(p), c = c(p) depending on p only such that 

VnGN(y)(z-x)\MxeZ3 

P(R(A(x,n),g(n))c)(y)(z-x)\< P(y)(z-x)\0(A{x,n),g(n))c) < frexp —cg(n). 

Remark. Under the hypothesis on g(n), 0(A(x,n),g(n))c C 0(A(x,n), /slnn)c, 
hence the constants &, c are independent of the function g. 

Corollary 7.5. Let p > pc be fixed. Let S be positive. There exist two positive 
constants b = b(p,5), c = c(p,S) depending on p and S such that 

Vn G N V x G Z 3 

P V(A(x,n),S)cU(y)(z-x)\( 
c 

cardC (0 + S) cardA(z,n))c < 6exp — cn 

where the summation is over all the open clusters C intersecting d-lvA(x,n). 
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7.2. The rescaled lattice 

Let h be a positive integer. We define the rescaled lattice of Z3 by a factor h 
to be the sublattice hZ3. The objects associated to the rescaled lattice hZ3, like 
points and random variables, will bear a h in superscript or subscript. The rescaled 
lattice KL3 is identified with Z3 via the map: x G Z3 hx G hZ3. This way it 
inherits the graph structures L3 and E3 defined on Z3. We denote by hh3 and hE3 
the image graph structures on hZ3. 

Definition 7.6. (Fat operator) 

Let A be a subset of Z3. To A we associate a fattened set fat (A, h) on hZ3 defined 

by 
fat (A, ft) =(y)(z-x)\xh ehZ3:A(y)(z-x)\(xh,h)nA^0}. 

Notice that the boxes A(xh, h), xh G hZ3, form a partition of Z3. Whenever A is a 
connected subset of the graph (Z3,E3), then fat (A, h) is a connected subset of the 
graph (hZ3, hE3). It is also clear that card A < h3 card fat (A, h). 

We suppose next that a random variable Xh(xh) with values in {0 ,1} is associated 
to each vertex xh of hZ3 and that the variable Xh(xh) is the indicator function of 
an unlikely event around xh in the percolation configuration. More precisely, these 
random variables will satisfy an hypothesis of the following form. 

Hypothesis H(e,a). Let £ be a small positive real number and let a be a non-
negative integer. The family of variables (Xh(xh), xh G hZ3) satisfies the hypothe­
sis H(e,a) if 
• VxhehZ3 P(Xh(xh) = 1) <e 
• Xh(xh) depends only on the configuration restricted to A(xh,ah) 

The second property implies in particular that Xh(yh) and Xh(zh) are independent 
whenever \yh — zh\oo > ah. 

Lemma 7.7. Under the hypothesis H(e,a), for any subset Ah of hZ3, 

P(Mxh G Ah Xh{xh) = 1) < exp(a-3cardA/lln^). 

Proof. We define an equivalence relation = on hZ3: 

(x^x%,x%) = (y!t,yZ,y$) <=> ah divides Vi - x{, 1 < i < 3. 

Since the trace of the equivalence classes on Ah, i.e., the sets 

{ yh G Ah : yh = xh } , xh G A(0, ah) n hZ3, 

form a partition of Ah and card A(0, ah)ilhZ3 = a3, certainly there exists XQ in hZ3 
such that card { xh G Ah : xh = XQ } > a~3card^4/l. Therefore 

P(Vxh eAh Xh(xh) = l) < P(\fxh e{yh eAh :yh = x^} Xh(xh) = l) 

< exp(a~3cardA/llne) 

since the variables Xh(xh), xh G Ah, x^ zzz XQ , are independent. • 
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Corollary 7.8. Under the hypothesis H(s,a), for any subset A of Z3 and any 
positive s, 

P(caid{xh e AnhZ3 : Xh(xh) = 1 } > s) < J^exp ^ In card AnhZ3 + ia~3 lne) . 
i>s 

Proof. We decompose the event under consideration according to the set of points 
xh such that Xh(xh) = 1: 

P(card { xh e A H hZ3 : Xh(xh) = 1 } > s) < ^ ^ ^ ^ P ( V x / l G Ah Xh(xh) = l ) 
i>s Ah 

where the second summation extends over the sets Ah included in A fl hZ3 of cardi­
nality z; the number of such sets is less than (ca rdan hZ3)1. The conclusion follows 
from the bound given in Lemma 7.7. • 

For a subset A of Z3 and a vertex xh in A n hZ3, we denote by C^(xh, A, Xh) 
the hi? component of xh in the graph having for vertex set 

{ yh e hZ3 : A ( / , ah) C A, Xh(yh) = 1 } 

(in case Xh(xh) = 0, C^(xh, A,Xh) is the empty set). 

Lemma 7.9. There exists a positive constant b such that, under the hypothe­
sis H(e, a)? for any subset A ofZ3 such that card 4̂ fl hZ3 > 2, for any positive real 
numbers /3 and s, 

P(caid{xh e hZ3 : card C£(xh,A,Xh) >&}>s) < 

^ 2 e x p ^2^_1lncard>ln/ iZ3-hi ln6-h2a"3ln^ . 
i>s 

Proof. We decompose the event under consideration: 

P (card {a;* € hZ3 : cardC£(xh, A,Xh) >/3}>s) < 

E E E E ^ ^ 4 u - u 4 xh(xh) = i). 
s<i<card AnhZ3 l<j<i//3 ¿1, 

The penultimate summation extends over the integers ¿ 1 , . . . , ij larger or equal than 
/3 and such that i\ H \-ij = i (this set is void unless j < i/3~x); the last summation 
extends over the pairwise disjoint sets A±,..., A^ such that, for any k in { 1 , . . . 
A% is an hL3 connected subset of An hZ3 of cardinality i^. By Lemma 7.7, the 
probability appearing in the summation is less than exp(ia-3 lne). There exists 
a positive constant b such that the number of L3 connected sets of Z3 containing 
a fixed point and having cardinality i is less than bl [50, Lemma 5.3]. For fixed 
values of j , H , . . . the number of choices for the sets Ah,...,Aj is less than 
^(card 4̂ D hZ3)j. For a fixed value of z, the number of terms involved in the last 
three summations is less than 2 exp(2z/3-1 In card A fl hZ3 + i In b). • 
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C H A P T E R 8 

THE CENTRAL L E M M A 

This chapter is devoted to the central lemma, which is essential for the proof of 
the large deviation upper bound. This lemma gives a probabilistic estimate for the 
local presence of a collection of open clusters creating a small flat interface in the L1 
topology; moreover the estimate is uniform with respect to the localization, the size 
and the direction of the interface. This lemma is, in a sense, the heart of this work. 
Besides its technical formulation, this lemma provides a link between the discrete 
microscopic structure of the model and the continuous macroscopic effects. Starting 
with a situation where a flat piece of interface is observed on the macroscopic level, 
we analyze the most likely scenarios occurring on the microscopic level which induce 
the macroscopic interface and we relate them to the definition of the surface tension. 

Notation. Let x belong to E3, w to S2, n to N and let r, S be positive real numbers. 
Let sep (n,x,r,w,5) be the event: there exists a collection C of open clusters in the 
configuration restricted to the ball B(nx,nr) such that 

£3(Voo(cupC,l/2)AB-(nx,nr,w)) < Sr3ns. 

Lemma 8.1. (Central lemma) 

For any positive e, there exists So positive such that: for any x in E3, w in S2 and 
r in ]0,1[, 

limsup —2InP(sep (n,x,r,w,So)) < —7rr2r(w)(l—e). 
n—»00 n 

Equivalently, 

lim sup limsup (n27rr2T(w))-1 lnP(sep(n,#,r,w,5)) < —1. 
s->° xeR*,wes2,re]o,i[ n->oo 

Remark. The limit S -> 0 in the second statement exists because the quantity 
P(sep (n, x, r, w, 5)) is a non-decreasing function of S. 

Remark. The uniformity with respect to x in E3, w in S2 and r in ]0,1[ is essential. 

Remark. In the different context of the Ising model with Kac potentials, a proce­
dure has been developed to get a probabilistic estimate for the local presence of an 
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interface, whose spirit is similar to the technique of our proof (see the paragraph 
"minimal section" in [9]). In this context, a coarse-graining procedure specific to 
the Kac model is employed. The coarse-grained configuration is described by at­
tributing a label —1,0, +1 to each mesoscopic box. The labels —1, +1 correspond to 
boxes which have relaxed to the minus and plus phases, the label 0 to a box in an 
undeterminate status. Benois, Bodineau, Butt a, Presutti localize the interface be­
tween the minus and the plus phase and cover it with a collection of parallelepipeds 
(as we do with balls). Inside a parallelepiped, they map the configuration of labels 
on a configuration where there is no sequence of cubes of the same phase which 
crosses the parallelepiped, by modifying the labels in two strips, where the number 
of bad cubes is minimal (the bad cubes are the cubes having label 0 or cubes of the 
wrong phase). Hence the spirit of the proof of our central lemma is present there. 
An essential difference is, in our view, that the afore-mentioned work stays at the 
mesoscopic level of the boxes and does not go in depth to handle the microscopic 
structure of the model, so that the estimates are not precise when the range of in­
teractions is finite. Probably the main reason is that no operational approach to 
define the surface tension on fixed finite interaction scales was available in [9]. The 
percolation approach for the definition of the surface tension turns out to be much 
more natural and it is crucial in order to recover a precise estimate with the help of 
Pisztora coarse-graining results, as we do here. 

Proof. Let x belong to E3, w to S2, r to ]0,1[, S to ]O,0/2[. Since the event 
sep (n, x, r, w, S) depends only on the edges inside the ball B(nx,nr), we need only 
to work with the configuration restricted to B(nx,nr) in the whole proof. Sup­
pose that the event sep (n, x, r, w, S) occurs and let C be a collection of open clus­
ters of the configuration restricted to B(nx,nr) realizing it. Let p, n be such that 
0 < n < p < r, 0 < 2rj < yjr2 — p2 and r2n < 1 (p will be chosen later to be 
close to r). The set cyl (ndisc (x, p, w), nn) is included in the ball B(nx,nr). Let n 
be large enough so that 4nn > £. Let C be an open cluster of the configuration 
restricted to cyl (ndisc (x, p, w), nn) joining the sets V2(hyp(n# — nnw,w),() and 
V2(hyp(nx + nnw,w),Q. Recall that £ is a fixed constant larger than 5, used to 
define the surface tension (see chapter 5). We distinguish two cases: 
• If C fl cupC = 0 then there exists an open cluster C* in the configuration re­
stricted to cyl (ndisc (x, p, w)) O slab (nx, w, —nn, 0) connecting V2(hyp (nx, w), Q 
and V2(hyp(n# — nn,w),() such that C* C C and therefore C* is included in 
Z3(B- (nx, nr, w)) \ cup C. 
• If C H cup C / 0 then there exists an open cluster C* in the configuration re­
stricted to cyl (ndisc (x, p, w)) fl slab (nx, w, 1, +nn) connecting V2(hyp (nx,w),Q 
and V2(hyp(nx + nnw,w),Q such that (7* C C and therefore C* is included in 
cupC \ Z3(f?_ (nx, nr, w)). 
Let F be the union of all these clusters C* (notice that several clusters C* might 
correspond to the same cluster C). Since F is included in Z3(B-(nx,nr, w))AcupC 
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B(nx, nr) 

cyl (ndisc (x, p, w),nrj) 

hyp (nx + rjnw, w) w 
nr 

np nx nn 

h#p Ùnxy* rmwyw) 

(y)(z-x)\(y)(z-x 

Figure 7 

then 

card F < C? (Voo(Z3(£_ (nx, nr, w))Acup C, 1/2)) 

= C3 (Voo (Z3 fl £ _ (nx, nr, w), 1/2) A Voo (cup C, 1/2)) 

< C3 (B- (nx, nr, w)AVoo (cup C, 1/2)) 

+ £3 (£_(nx, nr, w;)AVoo (Z3 fl B_(nx, nr, w),1/2)) 

< 6r3n3 + 3>/37rr2n2 + 37rrn + 5>/37r/4 < 2£r3n3 

the second inequality holds because we deal with subsets of Z3 and the last inequality 
is valid for n sufficiently large. We suppose in addition that n is large enough so that 
rjn/2 < (nn — 2£)/\/3 and £ < ft Inn < y/n < rjn/14, where ft is a large constant 
(several conditions will be imposed on ft during the computations). Let I be an 
integer, with ft Inn < I < ^/n. The upper bound on / guarantees among other things 
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that each open cluster contained in F has a doo diameter larger than /. Let Di be 
the set defined by 

Di = {xl e ZZ3 : A(xl,3l) C slab (nx,w,-nn,nn) \ slab (nx, w, 0,1), 

A(xl,3l) H cyl (ndisc (x,p,w)) / 0 } . 

Since p2 + n2 < r2 and r2n < 1, for n large enough, 

(np + 4x/n)2 + (nn + 4Vn)2 < r2n2 , (np + 2y/n)2(nn + 2Vn) < n3 . 

As a consequence, for any xl in Di, the box A(xz,3/) is still included in B(nx,nr); 
moreover 

card A < r3£3(Voo(A,//2)) 

< Z~3£3(cyl (disc (nor, np-h 2/, w),nn + 2/)) < 27rn3/-3 . 

We set T(F) = A n fat (F, I). For xl in /Z3, let X/(xO be the indicator function of 
R(A(xl,Sl),l-l)cUV(A(xl,l),0/2)c. With the help of the variables Xx (xl), xl e /Z3, 
we partition T(F) in the three sets 

T_i(F) = {xl e T(F) : A(xl,Sl) is not included in cyl (ndisc (x, p, w)) } , 

T0(F) = { ^ 6 T ( F ) \ T _ 1 ( F ) : X , ( x z ) = 0 } , 

Ti(F) = {aJ/GT(F)\T_1(F):Xl(x,) = l } . 

We estimate next the cardinality of these sets. Firstly, 

T-i(F) C slab (nx, w, —nn, nn) Pi Voo(dcyl (ndisc (x,p, w)), 21) 

hence we obtain the deterministic bound 

cardT_i(F) < 307rpnn2//2 < lOOr/n2//2 . 

Secondly, let xl belong to T0(F). Since F intersects A(xl,1) and the diameter of 
any open cluster contained in F is larger than /, then the box A(xl ,?>l) contains an 
open path of diameter larger than / — 1 included in F. The occurrence of the event 
R(A(xl, 3/), / — 1) implies that this open path is contained in C*(A(xl, 31)), which in 
turn implies that the latter cluster is contained in F. Similarly, the crossing cluster 
C*(A(xl,1)) associated to the event U(A(xl,l)) has diameter / — 1 and it is thus 
contained in C*(A(xl, 31)). Since the event V(A(xl, I), 9/2) occurs as well, then 

cardFHA(^,0 > cardC*(A(xz,/)) > 0Z3/2. 
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Summing this inequality over To(F) yields 

cardF > Yl cardFH A(xl,l) > (0/2)Z3cardTo(F). 

xl<ET0(F) 

Since in addition cardF < 2<5r3n3, then 

c a r d T 0 ( F ) < 4 ^ ( ^ ) 3 . 
Thirdly, we have 

cardTi(F) < card { xl G Dt : Xt(xl) = 1 } . 

Since / > /clnn > /clnZ, for K larger than the constant appearing in Theorem 7.1, 
by Corollaries 7.4, 7.5, there exist two positive constants b, c such that 

Vxl eDi P(Xi{xl) = 1) < fcexp(-cZ). 

Applying Corollary 7.8 with A = D/, a = 3, e = 6exp(—cZ), we get 

P(card Ti (F) > i) < ] T exp (j In card Dt + j(ln 6 - cZ)/27). 
j>i 

Since cardD/ < 27rn3Z-3 and Z > ttlnn, for K, sufficiently large, there exist two 
positive constants b' ,c' such that, for any i in N, 

P(cardTi(F) > i) < fc'exp(-c'Zi). 

Let a be a positive real number. Using the previous estimates for the cardinality of 
T_i(F) , T0(F) and TX(F), we write 

P(sep (n, x, r, w, S)) < b' exp(—c'an2) + 

P(sep(n,x,r ,w,J) , cardT(F) < 100nn2/Z2 4- an2/Z + 4 Sr3n3/(0l3)) . 

For i in Z , we set 

# ( i ) = { 2/ G ZZ3 : - nx) • w G [Zi, l(i + 1)[ } . 

For convenience, we omit the superscript Z for the elements of the sets H(i), although 
they belong to the rescaled lattice ZZ3. The sets H(i), i G Z , are pairwise disjoint. 
Hence for any subset / of Z , the sum Yliei cardT(F) D H(i) is less than cardT(F) 
and there exists i in J such that cardT(F) PI H(i) < cardT(F)/card/. Applying 
the preceding remark to the sets ] — rjn/l + 3, —3[flZ and ]3,nn/Z - 3[DZ, whose 
cardinalities are larger than 7]n/l — 7>nn/(21), we find that there exist two random 
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Figure 8 

indices /_ and 7+ in Z such that —rjn/l + 3 < J_ < —3 < 3 < /+ < туп/1 — 3 and 
both T(F) П Я ( / _ ) , T(F) П # ( i+ ) have a cardinality less than 2/(nn)"1 card T(F) . 
We decompose now the event sep (n, r, J) according to the possible values of 
the indices J+ and the sets T(F) П Я ( / _ ) , T(F) П Я( /+) : 

P(sep(n,x,r,w,<5), cardT(F) < Шпп2/I2 + an2/I + 46r3n3/(6l3)) < 

^ p ( s e p ( n , x , r , w , ( 5 ) , J_ = г_, J+ = г+, 

cardT(F) П Я ( / _ ) = j _ , cardT(F) П # ( / + ) = j + , 

T(F) П Я ( / _ ) = {(y)(z-x)\...,y_(j_) Ь r(F) П Я( /+) = { y+(l ) , . . . ,y+(j+) } ) 

where the summation extends over the set: 
П CLTl 5T3TI2 

-nn/l + 3<i- < - 3 < 3 < г + < 7 ? т г / / - 3 , 0 < i _ , j + < 200y + 2 — + 8 - ^ - , 

y_( i ) , . . . , y_ ( i_ ) е Я ( г _ ) n Dt,(y)(z-x)\(y)(z-x)\(y)(z-xGff(t+) n A . 

Since Voo(DiJ/2) С B(nx,nr), for any г in Z , 

cardff(i)nA(y)(z-x)\< r3C3{V00(H(i)PiDhl/2)) 

< Г3£3 (cyl (disc (nx,nr,w),lV3/2)) < 2тт (nr//)2 . 
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Therefore the number of terms in the summation is less than 

"nn 
I 

2 
200 

n 

1 
2 

an 

V 
-8 

Sr3n2 

Vnlz 
f 1 

\2 

x exp 400 n 
7 

4 
an 

(y)(z-
16 

Sr3n2 ' 

OnP 
ln(27rr2n2r2 

Let £ be the event appearing in the summation, that is, 

sep (n, x, r, w, Ö), I- — i--, 1+ — i+, 

cardT(F) H # ( / _ ) = i_, cardT(F) n H(I+) = j + , 

T(F) fl H(I-) = { y _ ( l ) , . . . ,y-(j-) } , T(F)nH(I+) = 2/+(1))"->2/+Ü+)} 

We next bound the probability of the event £. By the definition of F, the event £ 
is included in the event: any open cluster C of the configuration restricted to 
cyl (ndisc (x, p, w),nrj) joining V2(hyp (nx — rjnw, w), C ) and V2(hyp (nx + nnw, w), C ) 
satisfies 

either C fl cup { A(y, I) : y G H(i-)} C cup{A(y-(j),l) :l<j<j-} 

or Cncup{A(2/ , / ) :y G H(i+)} C cup { A(y+(j), 0 : 1 < J < U } , 

depending on whether C fl cupC = 0 or C fl cupC ^ 0 . Let 4̂ be the set of edges 
defined by 

A = 
i<J<J- deA(y-U)J) U Ji<j<U 

deA(y+(j)J). 
I-

To a configuration a; in £, we associate a configuration $(A,u>) defined by: 

Ve G E3(B(nx,nr)) *(A,u>)(e) = 
0 if e G A 

uj(e) iî e g A 

What we have done is to close by force all the edges in A. Doing so we have destroyed 
all the connections between V2(hyp (nx — rjnw, w), £) and V2(hyp (nx + nnw, w),Q 
for the configuration $(A,u) restricted to cyl (ndisc (x, p, w), nn). Indeed any such 
connection which was present in w had to go through an edge of A. More pre­
cisely any open cluster C of the configuration UJ restricted to cyl (ndisc (x, p, w),nn) 
joining V2(hyp(n# — rjnw,w),C) and V2(hyp(n# + nnw,w),() is cut in the new 
configuration $(A,UJ) in several disjoint clusters (at least three), none of which 
intersects both sets cup { A(y, I) : y G H(i-) } and cup { A(y, I) : y G H(i+) } . How­
ever the vertices of either of these two sets separate V2(hyp(nx — rjnw,w),Q and 
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V2(hyp(n# + rjnw,w),Q in cyl (ndisc (x, p,w),nrj), that is, either for i = z_ or for 
2 = z+, there exists no path in the graph 

Z3 n cyl (ndisc (x, p, w),nr)) \ cup { A(y, I) : y G H(i) } , E3 (cyl (ndisc (x, p, w),nn)) 

joining V2 (hyp (nx - nnw, w), C) and V2 (hyp (nx + nnw, it;), Q. Therefore the config­
uration $(A,UJ) realizes the event S (ndisc (x, p, w), nn). The number of edges in A 
is less than 6(j- + j+)l2- Thus 

(y)(z-x)\ P(u) < P($(A,u>)) exp •60 '_+j+) /2 ln( l -p) 

Summing over u in 8, 

P(8) < exp - 6 0 _ + j + ) / 2 l n ( l - r ì 

ca 

(y)(z-x)\ 

Moreover 

(y)(z-x)\ 

(y)(z-x)\ 

(y)(z-x)\ 

P(w) card(*_1(A ,w)n£) 

and for any u> in $ ( A , £ ) , the cardinality of $ OJ) fl £ is less than exp(6(j_ + 
.;'+)Z2ln2); thus 

P(£) < exp - 6 ( j _ + j + ) J 2 l n ( ( l - p ) / 2 |P(*(A,£)). 

Since 3>(A,£) is included in 5(ndisc (x, p, w), nn), using the upper bound on the 
values on j - , j+, we arrive at 

P(8) < exp - 6 400 
n 
7 

*$ an 

*= 
+ 16 

Sr3n2 

Onl2 
r In 

1-p" 

2 
P(5(ndisc (a:, p, w),nrf)). 

Coming back to the big summation, 

P(sep (n, x, r, w, 6)) < b' exp(—c'an2) + 200 
nn2 

I2 
4 2 

an2 

p^p 
+ 8 

6r3n3 

Ol3 
+ 

nn 
I 

2 
X 

exp 400 
n 
7 

+ 4 
, ór3n2 

ln(27rr2n2r2) -
card(*_1 
(A,w)n 

* 

P(5(ndisc (x, p, w),nn)). 

Letting n and / go to 00 in the regime where KInn < / and n/l2 goes to 00 and using 
Corollary 5.14, we get 

lim sup (n27rr2r(w))~1 lnP(sep (n,x,r, w,6)) < 
n—>oo 

— min 
c'a 

7rr2r(w) • • 3 d - « ( C , P ) -
card(* 
_1(A,w)n 

96<Sr 
TTT(W)GT) 

card(* 
_1(A,w)n 
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We choose now 77 = Vdr /3, p = ry/1 — S and we let a go to 00 in the preceding 
inequality. Because r is bounded away from 0 (Corollary 5.7), there exists a constant 
c'(C,p) depending on £ and p only such that 

limsup (n27rr2r(w))~1 lnP(sep (n,x,r, w,5)) < — 1 + S + c'((,p)S1^4 . 
n—»00 

This inequality holds for all values of x in M3, r in ]0,1[, S in ]O,0/2[ and w in 
and the right-hand side converges to —1 as S goes to 0, uniformly with respect 
to x,w,r. • 
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C H A P T E R 9 

PROOF OF THE LDP FOR A SINGLE CLUSTER 

In this chapter, we prove the large deviation principle for a single cluster. After 
some elementary geometrical lemmata, we introduce two smoothing operators, fifa 
and aglu. We then prove the large deviation upper bound for the topology L\oc, 
the large deviation lower bound for the topology L1, the enhanced large deviation 
upper bound and Proposition 2.4. 

9.1. Geometrical Lemmata 

We start with several geometrical lemmata about connected subsets of the lattice. 

Lemma 9.1. Let A be a finite 1? connected set of Z3. For any integer I larger 

than 130, 

£3(Voo(.4,0) < 13012 max (card A, I). 

Proof. If diamoo^ < /, then £3(Voo(^, 0) < 2^3- Suppose that / < d ian^A < oo. 
Let { x\,..., xr } be a collection of vertices of A of maximal cardinality such that 

ViJ <E { l , . . . , r } , i ^ j , A(xi,l) n A(xjJ) = 0. 

The maximality of the collection implies that A C A(xi, 21) U- • -UA(:rr, 21). Because 
r is necessarily larger or equal than 2 and A is L3 connected, for each i i n { l , . . . , r } , 

ca rdan A(xi,l) > d00(xi,dwA(xi,l)) > 1/2-1 

so that card A > r(l/2 — 1). Since Voo(^M) is included in r boxes of diameter 4/, 
we obtain C3(Voo(A,l)) < r(4/)3 < (4/)3(//2 - l)"1card^, which gives the desired 
inequality for / larger than 130. • 

Lemma 9.2. For any subset R ofZ3, caidd*vR < caxddeR < 6ca,rdd*vR, where 
* stands either for o or for i. 

Lemma 9.3. IfR is a L3 or E3 connected subset ofZ3 then caidR > dianioo.R+1, 
provided R is not empty. 
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Lemma 9.4. Let R be all or E3 connected subset of Z3 having finite cardinality. 
Then 4diam00i^ + 2 < card<9ov#-

Proof. For i in Z , set H(i) = { (i,x2,x%) : x2,x3 G M}. Then 

card dovR = card(*_1(A, card dovR fl H(i). 

Let u = min{ i : H(i) C\R ^ 0} and i2 — max{ i : H(i) C\R^ 0}. We may suppose 

that ¿2 — H = diam^jR. For each i in { n , . . . , i2 } , card<9ov# H i f (z) > 4; moreover 

dovR C\ H(ii — 1) and dovR D H(i2 + 1) are not empty. Therefore 4diam00jR + 2 < 

card^ov^R. • 

Lemma 9.5. Le£ A\,A2 be two disjoint subsets ofZ3. We suppose that at least 
one set among A\,A2 has finite cardinality. For any positive r, the sets Voo{Ai,r) 
and Voo (A2, r) are distinct. 

Proof. We need only to consider the case where both A\ and A2 have finite cardi­
nality. Let x\ (respectively x2) be the smallest point of Ai (respectively A2) with 
respect to the lexicographic order on Z3. Necessarily x\ and x2 are distinct. Then 
x\ — (r, r, r) (respectively x2 — (r, r, r)) is the smallest point of the closure of Voo (^ i , r) 
(respectively Voo(A2,r)). Therefore the sets Vco(Ai,r) and Voo(^2,0 have distinct 
closures, hence they are distinct. • 

The next result is used several times in the proofs, sometimes without explicit 
reference. 

Lemma 9.6. Let x belong to Z3, let l±,l2 be two positive integers, with l\ < l2. 
Let A be a connected subset o/(Z3,E3) such that An A(x,h) ^ 0, A\A(x,l2) ^ 0. 
Then AnA(x, l2) contains a connected subset o/doo diameter larger than [(l2—Zi)/2J. 

Proof. Clearly the set A contains a path joining d-lvA(x,li) to dlvA(x,l2) inside 

A(x,Z2). • 

We build next an operator which regularizes a connected set of the lattice, by 
performing successively a fattening and a filling step. We define first the fill operator. 

Definition 9.7. (Fill operator) 
For an E3 connected set A of Z3 and a positive real number s, we define 

fill (A, s) = AU {R residual component of A : card$ei2 < s, cardie < oo } . 

Notice that the definition is valid also for infinite sets A. The set fill (A, s) is ob­
tained by filling all the finite residual components of A whose edge boundary has 
cardinality less than s. By construction, if R is a residual component of fill (.A, s), 
then card<9e-R > s, whence by Lemma 9.2, card<9iv# > s/6. Since for any residual 
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component R of A, dlYR is L3 connected and dlYR = Rn dovA, we conclude that 
any L3 component of the outer vertex boundary of fill (A, s) either meets the inner 
vertex boundary of an infinite residual component of A or has cardinality strictly 
larger than s/6. In the situation where A has diameter larger than s/6, then any L3 
component of the outer vertex boundary of fill (A, s) has cardinality strictly larger 
than 5/6. 

Lemma 9.8. Let A be a connected subset of Z3 (finite or infinite) and let h be a 

positive real number larger than 2. Then fill (A, h) is included in Voo ( A h/2). 

Proof. Let R be a finite residual component of A such that card ed < h. By 
Lemmata 9.2,9.4, dianioo-R < (h — 2)/4< h/2 — 1. Since doo(A, R) = 1> we conclude 
that R C Voo(A,h/2). • 

9.2. The fifa operation* 

Throughout this section, we consider positive integers k, I satisfying A: > 6, / > 
130, Sk < I. Let A be a connected subset of Z3 of diameter strictly larger than I. 
To A we associate a regularized set fifa (A,k,l) by performing successively filling 
and fattening operations on the rescaled lattice kZ3 and then coming back to Z3 
(see definition 7.6 for the fat operator). More precisely, if dianiooA < /, we set 
fifa (A, k, I) = 0; if dianioo A > /, we set 

fifa (A, k, I) = cup{A(xk,k) : xk G ifefill (AT1 fat (A, k), l/k) } . 

Lemma 9.9. For any connected subset A ofZ3, fifa (A, k, I) is included in Voo (A, I). 

Proof. We need only to consider the case where dianioô 4 > /. By Lemma 9.8, since 
A:_1fat (A, k) is connected and l/k > 2, then 

Gil (k'1 fat (A, k), l/k) C Voc(A:~:Lfat (A, k),l/2k). 

Coming back to the lattice Z3, we deduce that 

fifa (A, M ) C cup { A(xh, k) : xk e kZ3 fl Voo(fat (A, k),l/2) } C Voo (A,/) . • 

Lemma 9.10. Let A be a connected subset of Z3 such that dianioo .̂ > /. For any 
compact set K ofR3, any integer h larger than I, 

£^(Voo(A,/i)\fifa(A,fc,0\Voo(^,i + ft + l)) < 140/i3/-1P(fifa(A,A:,/),inti^). 

Proof. Let x in K be such that 

0 < doo(x,fifa(i4,fc,/)) <h, doo(x,R3 \K)>l + h + l . 

1"FIFA=Federation Internationale de Football Association. France won the 1998 World Cup. 
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(l/2)fat(C(0),2) 

(7(0) 

fat(C(0),2) 

fill((l/2)fat(C(0),2),5) 

fifa(C(0),2,10) 

Figure 9: fifa (C(0), k,/) 
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Because <9fifa (A, k, Z) C clo Vc»(dovfiia (A, A:, Z), 1) (recall that fifa (A, k, Z) is an union 
of boxes A(xk, k) centered on kZ3), there exists a point y in dovt\fa, (A, k, Z) such that 
doo(x, y) < ft + 1. Necessarily doo(2/, IR3 \ K) > d^x, R3 \ K) - doo(#, y) > Z. Thus 
y belongs to the set 

L = {z G Z 3 :doo(z,R3 \K) >/}. 

Since in addition Voo(A,h) C Voo(fifa (A, k, Z), ft), the preceding discussion shows 
that 

Voo(A, ft) \ fifa (A, k, I) \ Voo(M3 \ K, I + ft + 1) c Voo(<9ovfifa (A, fc, Z) n L, ft + 1) . 

By construction each L3 component of doyt\\\ (&-1fat (A, A:), l/k) has cardinality 
strictly larger than I/6k (see the discussion after Definition 9.7), hence each L3 
component of dovfifa (A, fc, Z) has cardinality larger than Ik/6 (each vertex of the 
former set corresponds to at least k2 vertices of the latter set). Let 

M = {x <E Z 3 : doo(x,R3 \K)>1}. 

Let F i , . . . , Fr be the L3 components of the set dovnfa (A, k,l)nM which intersect L. 
Let i belong to { 1 , . . . , r } . If Fi does not intersect t\vM, then Fi is an L3 component 
of dovfifa (A, k, I) and card Fi > lk/6 > I (by hypothesis k > 6). If Fi intersects dlvM, 
since doo(dK,divM) < 2, then dian^i^ > Z — 2 whence diamooF^ > Z — 1 and 
cardFi > I by Lemma 9.3. Thus all the components Fi , . . . ,Fr have cardinality 
larger than Z. By Lemma 9.1, using the bounds 130 < Z < ft, 

^3(Voo(aoVnfa(A,^Z)nL,f t+l)) < ] T ^ ( V ^ F ^ f t + l ) ) 
l<i<r 

< ] T 130(ft+l)3Z_1cardFi 
l<i<r 

< 130 (ft + l)3Z_1card (<9ovnfa (A, fc, Z) fl M) 

< 140ft3Z-1P(fifa(A,A:,Z),intii:). 

The last inequality holds because 130(ft + l)3 < 140ft3 (recall that ft > Z > 130) 
and each vertex of <9ovfifa (A, Z) n M contributes to at least one unit square on 
dfifa (A, fc, Z) H int K. • 

Corollary 9.11. Let A be a finite connected subset of Z3 such that diamooA > Z 
and let ft be an integer larger than Z. Then 

£3(Voo(A,ft)Afifa(A,A;,Z)) < 140ft3Z-1P(fifa(A,A:,Z)). 

Proof. We choose a compact set K large enough to have eZoo (A, R3 \ K) > Z + 2ft + 1 
and we apply Lemmata 9.9,9.10. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



94 CHAPTER 9. PROOF OF THE LDP FOR A SINGLE CLUSTER 

A(xk,5k) 

A(xh,3k) 

A(xk,k) 

Figure 10: Xk{xk) = 1 

Proposition 9.12. For k large enough, there exist two positive constants b(k), 
c(k) such that: for any I in N, any s in IR+, satisfying 5k < I, kins < I, 

P(P(f i fa(C (0) ,M)) > s) < b(k)exp(-c(k)s). 

Proof. To each vertex xk of kZ3 we associate a random variable Xk(xk) with values 
in { 0 , 1 } as follows: if in the configuration restricted to A{xk,5k) there exists an 
open path from A(xk,3k) to d'lvA(xk ,5k) which is not connected by an open path 
in A(xk,5k) to A(xk,k), then Xk{xk) = 1; otherwise Xk(xk) = 0. Clearly the value 
of Xk(xk) depends only on the configuration restricted to A(xk,5k). Because our 
model is translation invariant, the probability P(Xk(xk) = 1) is the same for all 
xk in kZ3. By [50, Proposition 1], throughout the supercritical regime p > pc, this 
probability goes to 0 as goes to oo. Corollary 7.4 yields the stronger estimate 
P(Xk(xk) = 1) < bexp—ck where b,c are two positive constants depending on p 
only. Let us pause to state an intermediate lemma. 

Lemma 9.13. Let C be an open cluster of diameter larger than 5k. Let xk belong 

to the outer vertex boundary ofidX{C,k) on (kZ3,k¥?). Then Xk(xk) = 1. 

Remark. This fact was observed and exploited by Kesten and Zhang [50]. 

Proof. In this situation, the cluster C does not intersect the box A(xk,k) but it 
intersects A(xk,3k), Since diamooC > 5A:, the cluster C contains an open path from 
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A(xk,3k) to dlvA(xk ,5k); because C D A(xk, k) = 0, this path is not connected in 
A (a;*, 5k) to A(xk,k). It follows that Xk(xk) = 1. • 

Proof of Proposition 9.12 continued. We write 

P(P(fifa(C(0) ,M)) > s, cardC(O) < oo) < 
P(s < dianiooC^) < oo) + P(P(fifa(C(0) ,M)) > s > diauiooC^)) 

and we handle separately each term of the right-hand side. We consider first the 
event { s < diamooC(0) < oo } . Let i be an integer larger than 5k and suppose that 
C(0) has a diameter equal to i. Let F be the inner vertex boundary of the unbounded 
residual component of fat(C(0),fc) on (&Z3, kE3). Then F is kh3 connected, it 
surrounds the origin and cardP > i/k. Since F is included in <9ovfat (C(0), k), then 
Xk(xk) = 1 for any xk in F by Lemma 9.13. Thus 

P(diamooC(0) =i) < ^ J2PWxk € F Xk{xk) = 1) , 
j>i/k F 

where the second summation extends over all the subsets F of &Z3 of cardinality j 
which are kl? connected and surround the origin. The number of such sets is less 
than jW for some constant b, whence, using the bound of Lemma 7.7 with a = 5, 
e = e(fc) = P(Xfc(0) = l ) , 

POhamooC^O) = i) < ] T exp (in j + j In6 + j5~3 \ne(k)) . 
j>i/k 

Because s(k) goes to 0 as goes to oo, for k large enough, there exist two positive 
constants b(k),c(k) such that for any positive s, 

P(s < diamooCCO) < oo) < b{k) exp(-c(/c)s). 

Let us pause again to state a little Lemma. 

Lemma 9.14. For any connected set A of Z3, we have the inequalities 

V(Mdi(A,k,l)) = fc2cardc\fill (AT1fat (A,k),l/k) 

< 6Ar2card<9ovnll (Arxfat (A, k),l/k) , 

diamoo^ovfiH (^_1fat (A, k),l/k) < A:-1diam00A + 4. 

Proof. These inequalities are direct consequences of the definition of the fifa op­
eration together with the following facts. The boundary of fifa (A,k,l) is the union 
of squares of side length k, each of which is uniquely associated to an edge of 
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9efill (k xfat (A, k),l/k). Next, diarrioofat (A, k) < diarriooA + 2k which implies that 
diarrioofill (Arafat (A, k),l/k) < fc-Miam^A + 2. • 

Proof of Proposition 9.12 continued. We study now the event 

{7>(fifa(C(0),*,0) > s > dianiooCCO) } 

Let F — fcdovfill (fc-1fat (C(0), k),l/k). By construction the kh3 components of F 
on kZ3 (which are the inner vertex boundaries of the residual components of the set 
A:fill(fc_1fat (C(0),fc),Z/fc) on (A;Z3, ArE3)) have a cardinality larger than Z/6A; (see 
the discussion after Definition 9.7). Since the set F is included in <9ovfat (C(0), k), 
then Xk(xk) = 1 for any xk in F by Lemma 9.13, whenever diamooC(O) > I > 5k. 
By Lemma 9.14, 

P ( f i f a ( C ( 0 ) , M ) ) < 6fc2cardF, diam^F < diamooC^O) + 4A; 

and the boxes A(xk,5k), xk G F, are included in A(0,2s + lAk). Therefore the event 
{7>(nfa(C(0),M)) > s > diamooC(O) } is included in 

{ c a r d j x * G kZ3 : cardCf (a:*,A(0,2s + 14fc),Xk) > I/6k} > sk~2/6} . 

We use the bound given by Lemma 7.9 with 

A = A(0,2s + 14fc), a = 5, f3 = l/6k, e(k) = P(Xk(0) = 1 ) . 

Since card A(0,2s + 14A;) n kZ3 < (2s/k + 16)3, we get 

P(7>(fifa(C(0),M)) >s> dianiooC7(0)) < 

E 
i>sk~2/6 

2 exp (s^ikr1 ln(2«/fc + 16) + i In b + i5~3 In e(k)j . 

We are interested in the regime where kins < I. In this regime, kl~x ln(2s/k + 16) 
is bounded by a constant independent of k,l,s. Because e(k) goes to 0 as k goes 
to oo, the above inequality implies that for A: large enough there exist two positive 
constants b(k),c(k) such that for any positive Z,s with 5A: < Z, kins < Z, 

P ( P ( f i f a ( C ( 0 ) , M ) ) > s > diam^C^O)) < card(b(k)exp(-c(k)s). 

Hence we have obtained two estimates of the desired form. • 

We build now our second smoothing operation. 
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9.3. The aglu operation 

Let I be a positive integer larger than 100. For each open cluster C of the 
configuration, we agglutinate the open clusters of diameter less than I at distance 
less than 3/ from C into a new set aglu (C, I). More precisely, the set aglu (C,Z) 
associated to C is 

Voo(C, 1/2) U cup { Voo(C", 1/2) : C open cluster, dian^C" < I, d^C, C) < 3/ } . 

Thus aglu (C, I) is the 1/2-neighbourhood of the union of C and all the open clusters 
of diameter less than / whose doo distance to C is less than 3/. Notice that contrary 
to fifa (C, k, I) which is built through a deterministic procedure starting from the 
cluster C, the construction of the set aglu (C, I) involves the random configuration 
in the neighbourhood Voo{C,4l + 2) of C. 

Lemma 9.15. For any open cluster C, any compact set K, 

^ (Voo(C , / )Aag lu (C , / ) ) < 

800/3 + 33/3card { xl € fat (C, I) fl Voo(K, 21) : R(A(xl, 61), I) does not occur} 

+8960Z27?(fifa (C, k, / ) , int K) + C3K {Voo(dK, 5/ + 1) n Voo(C,4/)) . 

Proof. If diamooC < / then £3(Voc(C, /)) < (3/)3 and £3(aglu (C, /)) < (9/ + l)3 so 

that 

>C3(Voo(C,0Aaglu(C,0) < 800/3. 

Let us consider now an open cluster C such that d i an^C > /. For each vertex xl 
of 11? we denote by X\[xl) the indicator function of the event R(A(xl, 61), I). Suppose 
that for somex' in ZZ3 we have A(xl, l)f)C ^ 0 and £3(A(x / ,4 / - l ) \ ag lu(C, / ) ) > 0. 
Since 

A ( ^ , 4 / - l ) = c u p { A ( x , l ) :xK(cup{K(cup{Z3nA(xl,4l-l)}, 

then there exists x in Z3 fl A(xl, 41 — 1) such that C3(A(x, 1) \ aglu (C, I)) > 0 and 
necessarily C{x) fl C = 0 and diam00C(x) > / (recall that C(x) is the open cluster 
containing x for the configuration on the whole lattice Z3). Therefore the box 
A(xl,6l) contains two distinct open clusters of diameter larger than / and the event 
R(A(xl,61),I) does not occur, so that X\{xl) = 1. This discussion yields 

C3(cup { A(xl,41 - 1) : xl G fat (C,I), Xt(xl) =0}\ aglu (C,/)) = 0. 

Since we have simultaneously Voo(C, I) C cup { A(xl, SI) : xl £ fat (C, I) } , then 

£K (Voo (C, /) \ aglu (C ,0) < C3K(cup{K(cup{A(xl,3l):xl etet(C,l),Xl(xl) = l}) 

< 33/3card { xl e fat (C, I) fl Voo(#, 21) : Xt(xl) = 1}. 
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0 

a g l u ( C ( 0 ) , l ) 

0 

Figure 11: ag lu (C(0 ) ,Z ) 
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Conversely, the set aglu (C, I) is included in clo Voo(C, 4Z), whence by Lemmata 9.9 
and 9.10, 

£ ^ ( a g l u ( C , 0 \ V o o ( C , 0 ) < £^(Voo(C,40\fifa(C7,fc,0) 

< 8960/2P(fifa (C, k, 0,int K) + C3K(Voo(dK, 51 + 1) n V^C,4/)). 

Putting together the last two inequalities, we get the required estimation. • 

Proposit ion 9.16. There exist three positive constants K, b, c such that: for any 
positive integer I and any positive real number s, satisfying AT Ins < I, 2500/3 < s, 

P(£3(Voo(C(0),/)Aaglu(C(0),/)) >s) < bexp{-csl~2). 

Proof. Let k be an integer large enough for the result of Proposition 9.12 to hold. 
By hypothesis 2500/3 < s, so that 800/3 < s/3. Applying the bound given in 
Lemma 9.15 with a compact set K containing Voo(C(0), 10/) in its interior and re­
marking that diamooC(O) < P(fifa (C(0), k, I)) whenever fifa (C(0), k, I) is a bounded 
non-empty set, we write 

P(>C3(VOo(C,(0),0Aaglu(C(0),/)) > s) < P(8960/2P(fifa (C(0), k, I)) > s/3) + 

p(card{#z e fat(C(0),/) : R(A(xl,6/),/) does not occur} > sr33"4, 

/2diamooC,(0) < . 

For K large enough, the inequalities 2500/3 < s, K In s < I imply that 5k < /, k In 5 < / 
and Proposition 9.12 yields 

P(/2P(fifa (C(0), k, /)) > s/26880) < b(k) exp(-c(k)sr2/26880). 

We apply Corollaries 7.4,7.8 to the indicator functions of the events R(A(xl, 61), I) 
and the box A(0,2s/-2 + 21) (which contains fat(C(0),Z) whenever diamooC(O) < 
sl~2) and we bound the second term by 

P(card{x* e A(0,2s/~2 + 2/)n/Z3 : R(A(xl,61),I) does not occur} > s/"33"4) 

< exP (3i ln(2*r3 + 4) + i6"3(ln b - cl)) . 
i>s/~33-4 

In the regime where K\US < I, 2500/3 < s and K is sufficiently large, we get again 
an upper bound of the form b' exp(—c'sl~2), with b',c' two positive constants. • 
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9.4. Proof of the upper bound 

We prove here the upper bound of the LDP of Theorem 2.3, that is the LDP 
for the finite cluster shape in the topology L\oc. This upper bound implies also the 
upper bound of Theorem 2.1, that is the weak LDP in the topology L1. 

From now onwards, the integer k is fixed and large enough, so that the result of 
Proposition 9.12 holds, and we replace the integer / used in the previous constructions 
by f(n), where f(n) is a function from N to N such that 

lim n/fin)2 = oo , Vn E N / ( n ) > / c l n n , 

where K = K(P) is a constant larger than those appearing in Theorem 7.1 and 
Proposition 9.16. We omit the variables k,I in the sequel, writing for instance fifaC 
instead of fifa (C, / ) . As a consequence of the estimates given in Corollary 9.11 
and Propositions 9.12, 9.16, under the probability P, the sequences of random sets 
n-1Voo(C(0), / ( n ) ) , n_1fifaC(0), n-1agluC(0) are exponentially contiguous for the 
topology L1 (whence also for the weaker topology Lloc), that is, for any positive S, 

limsup—2lnP(£3(n-1Voo(C'(0),/(n))An-1fifaC(0)) > s) 

limsup—2lnJp(r3(n-1VOo(C(0),/(n))An-1agluC(0)) > 6 

n—>oo Tl V 

At the level of the large deviations of order n2, we might work with either of these 
three objects. The proof of the large deviations upper bound follows a standard 
scheme. We first show that the law of the random set n-1Voo(C(0),f(n)) con­
centrates exponentially fast near the level sets of 1. Indeed, for any positive À, ô, 
using Lemma 6.3, the fact that P(£3(fifaC(0)) < oo) = 1, and the estimate of 
Proposition 9.12, we have 

P ( inf { ^ ( n ^ f i f a C ^ A A ) :AeB(J8L3),l(A) < X } > ^ 

< P ^ n ^ f i f a C t O ) ) > A) < P(P(fifaC(0)) > n2A/||r||oo) < fcexp ( - cn2A/||r||oo) 

where 6, c are two positive constants depending on k. Using the exponential con­
tiguity between n_1Voo(C,(0),/(n)) and n-1fifaC(0), we obtain that there exists a 
positive constant c' — c/HrHoo such that, for any positive A, 6, 

limsup - 2 l n P ( i n f {£3 (n -1Voo(C(0 ) , / (n ) )A^) : A G B(R3), 1(A) < X } > s) 

< -c 'A . 

Therefore the sequence of random sets (n-1 Voo(<?(()),/(n)))n€N is Z-tight on the 
space (^(M3),!/1). Because 1 is not a good rate function on the space (#(M3),L1), 

= —oo , 

= —oo . 
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the above estimate is not enough to get the full large deviation principle with respect 
to the L1 topology. Yet it implies the weaker estimate: for any compact set K, for 
any positive S, A, 

lim sup 
n—*oo 

-AnP inf {^(n^VootCtO), f(n))AA) :AeB(R3),X(A) < A j > S 

< -c'A. 

Since the level sets of X are compact with respect to the topology L\oc, we need only 
to prove a local estimate to complete the proof of the large deviation upper bound 
of Theorem 2.3, like 

V^G#(M3),X(A)<oo, 

lim sup lim sup 
K(cup{K(cup{K(cup{ 

n2 InP [£K(n_1^oo(C(0), f(n))AÄ) <S K(cup{K(cup{ 

Let A be an element of B(R3) such that 1(A) is finite (equivalently, V(A) + C3(A) is 
finite). Let e be positive. Let So be associated to e as in Lemma 8.1. Let B(xi,ri), 
i E / , be a finite collection of disjoint balls as given in Lemma 6.6, associated to 
A, e and #o/3. Let K be a compact set containing the balls B(xi,ri), i G / , in its 
interior. Let S be a positive real number strictly smaller than min{£or3/3 : i G / } . 
Suppose the event { £3ir(n_1agluC(0)AA) < 6} occurs. Suppose also that n is 
large enough to have 47ry/3r2n2 + 7r\/3 < Sor3n3/3 for any i in 7". Let i belong to / 
and let C(i) be the collection of the open clusters of the configuration restricted to 
agluC(O) D B(nxi,nri). Because of the definition of agluC(O), the clusters of C(i) 
are open clusters of the configuration restricted to B(nxi,nri). Moreover 

C3 Voo (cup C(i),l/2)AB- (nxi, uri, i/A (xi ) ) 

K(cup{ Voo (cup C(i), 1/2)A (aglu C(0)C\B (nxi, nri) ) 

+ £3 (agluC(O) H B(nxi,nri))AB-(nXi,nri,i>A(xi)) 

< £3i B(nxi,nri + Vs/2) \ B(nxi,nri - VS/2 

+ £3nKUgluC(0)AnA) + C3 (nA fi B(nxi,nri))AB-(nxi, nri, VA(XÌ)) 

< 47Tv/3r2n2 + TTVS + Sn3 + S0r3n3/3 < S0r3n3 . 

Therefore the collection C(i) realizes the event sep (n, r*, VA(XI), SO) for i in I and 
the event { £^(n_1aglu C(0)AA) < S } is included in f]i€J sep (n, X%,Vi, 1>A 
Since the balls B(xi,ri), i G / , are disjoint, these events are independent under P, 
hence 

P I ^(n_1agluC(0)AA) < J < a-er1 

i&I 

P(sep (n, XÌ, rit vA(xi), S0)) 
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and by the choice of So (see Lemma 8.1) and of the balls B(xi,ri) (see Lemma 6.6), 

limsup -2lnP (£ | : (n-1agluC(0)AA) < s) < - Vr(i/A(a:<))7rr?(l - e) 

n-»oo Tl V / —' 
< - X ( ^ l ) ( l - £ ) + £ 

Letting X grow to R3, S and then e go to zero in this inequality, we get the upper 
bound we were seeking for. • 

9.5. Proof of the lower bound 

We prove here the lower bound of the LDP of Theorem 2.1, that is the LDP for 
the finite cluster shape in the topology L1. This lower bound implies also the lower 
bound of Theorem 2.3, that is for the LDP in the topology L\oc. We first state two 
preparatory Lemmata. 

Definition 9.17. Let U and O be two open connected subsets of R3 satisfying 
d2(U,R3 \ O) > 0 (necessarily U is included in O). Let / be an integer. We de­
fine full (O, U, n, I) to be the following event: for the configuration restricted to nO, 
there exists an open cluster C such that nU is included in Voo(C,l) and no other 
open cluster of diameter larger than / intersects Voo(nU,l). 

Lemma 9.18. Let U, O be open connected subsets o/R3 such that d2(U, R3 \0) > 0 
and U is bounded. If f(n) is a function from N to N such that 

lim n/ f(n) = oo , Vn G N f(n) > Aclnn 
n—voo 

where K, = K,(p) is the constant given by Theorem 7.1, then 

lim P(ful l (0 , t / ,n , / (n)) ) = 1. 

Proof. Let S be such that 0 < 3S < doo(*7,R3 \ O). The family of sets int A(x,S), 
x G Voo{U,ô), is an open covering of cloVoo([/,£). By compactness of cloVoo(^^)5 
we may extract a finite family int A(xi, S), Xi G Voo(£A S),i € I, covering clo Voo(U, S). 
Since U is connected, so is the set cup {int A(x{, S) : i G / } , as well as the set 
cup { A(xi, 6) :i € I}. A (5-chain connecting two points y, z is a sequence x\,..., xr 
of points such that x\ — y, xr = z and doo(xi,xi+i) < S for all / in { 1 , . . . , r — 1}. 
Because Voo(U, S) is connected, the set { x\ : i G / } is J-connected, i.e., for any j , k 
in / , there exists a 5-chain in { Xi : i G / } connecting x j and xk. Let us consider 
the boxes A(xi, 2S), i G / . We have the following strict inclusions: 

Voc(U,S) C cup{A(xi,2S):ieI} C O. 
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Each box centered in Voo(U,8) of diameter 8 is contained in one of these boxes: in­
deed, if x belongs to Voo(U, 8), there exists i in I such that doo(x,Xi) < 8/2, whence 
cloA(x,8) C int A (xi, 28). 
Let n be large so that Sn > 4 / (n)+4. Suppose that all the events 0(nA(xi, 28), f(n)), 
i £ I, occur simultaneously. We denote by C*(nA(xi,28)) the open cluster in 
n A (xi, 28) associated to the event 0(nA(xi, 28), f(n)). Let i,j be two elements 
of / such that doo(xi,Xj) < 8. The intersection of the boxes A(xi,28) and A(XJ,28) 
contains some box of diameter 8, say A(y,8) (for instance y = (xi + Xj)/2). By 
definition of the event 0(nA(x{, 28), f(n)) and because 8n/2 > f(n), the cluster 
C*(nA(xi, 28)) intersects nA(y,8/2), as well as nA(xi,28) \ nA(y,8). It follows that 
inside nA(y, 8), there exists an open path 7 of diameter larger than n8/4 — 1, which 
is included in C*(nA(xi, 28)) since n8/4— 1 > f(n). But 7 is included in nA(xj, 28), 
and the occurrence of 0(nA(xj,28), f(n)) forces the inclusion 7 C C*(nA(xj,28)). 
Hence the clusters C*(nA(xi, 28)) and C*(nA(xj,28)) are not disjoint. Because the 
set { X{ : i € / } is ^-connected, the preceding remark implies the existence of a clus­
ter C* in the configuration restricted to cup { nA(xi, 28) : i e 1} containing all the 
clusters C*(nA(xi,2S)), i G I. For i in / , the occurrence of 0(nA(xi, 28), f(n)) im­
plies that nA(x{,8) is included in Voo(C*(nA(xi, 28)), f(n)): otherwise there would 
exist x in nA(xi,8) such that dOQ(x, C*(n A (xi, 28))) > f(n) and C*(nA(xi,2S)) 
would not intersect the box A(x,f(n)), which is a box of diameter f(n) included 
in nA(xi,28). Let C** be the open cluster of the configuration restricted to nO 
containing C*. Then 

Let now C be an open cluster of the configuration restricted to nO having a diameter 
larger than f(n) and distinct from C**. Suppose that C intersects Voo(nU, f(n)). 
Let x be a vertex of C such that d00(x,nll) < f(n). The box A(x,8n) con­
tains an open path of diameter larger than f(n) included in C (since n8/2 — 1 > 
f(n)). Since d00(x/n,U) < f(n)/n < 8/2, there exists an index i in I such that 
A(x/n,8) C A(xi,28). Then the box nA(xi,28) contains an open path of diameter 
larger than f(n) not intersecting C*(nA(xi, 28)), but this contradicts the occurrence 
of 0(nA(xi,28), f(n)). Therefore, apart C**, no open cluster of diameter larger 
than f(n) of the configuration restricted to nO intersects Voo(nU, f(n)). In conclu­
sion, 

nU C cup{nA(xi,8):ieIK(cup{C Voo(C*,/(n)) C Voo(C**,/(n)). 

f | 0 ( n A ( ^ , 2 J ) , / ( n ) ) C full ( 0 , ^ n , / ( n ) ) . 

tei 

Since f(n) > At Inn for all n and since / is finite, then by Theorem 7.1 

limsup —-^\n(supP(0(nA(xi,2ô)K(cup{f(n))c)) < 0. 
п-юо f{n) V Ш > 
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Remark that the center of the box nA(xi, 26) is not necessarily in Z3; however it is 
obvious that the results of Theorem 7.1 are still valid. This bound together with the 
previous inclusion implies that 

limsupK(cup{K(cup{In P(Ml (0,U,n,f(n))c) < 0. 

Therefore the probability of the event full (0,U,n, f(n)) tends to 1 as n goes to oo. • 

Let F be a planar polygonal set and let I be a positive integer. We define 
wall (nF, /) to be the event 

S(nF, I) fl | all the edges in V2(cyl ndF, Q fl V2(hypnF, /) are closed } . 

Lemma 9.19. If <j>(n) is a function from N to R+ such that both 4>(n) and n/</>(n) 
go to oo when n goes to oo, then 

liminf —AnP(wal\(nF,(f>(n))) > -H2(F)r(nor F). 
n—>-oo nz V / 

Proof. The number of edges in the set V2 (cyl ndF, £) n V2 (hyp nF, </>(ri)) is less than 
c(C)^1 (dF)ncj)(n) for some positive constant c((). By the FKG inequality, 

P(wall(nP,0(n))) > P(5(nP,(/>(n))exp(c(C)^1(9P)n(/)(n)ln(l-p)) . 

This inequality, Lemma 5.11 and the hypothesis on </>(n) imply the desired result. • 

We turn now to the proof of the lower bound of the LDP of Theorem 2.1. In view 
of the approximation result stated in Proposition 6.9 and the remark thereafter, to 
prove the large deviation lower bound, we need only to show that for any polyhedral 
open connected bounded set A containing the origin, for any positive 5, 

liminf —olnPf£3(n-1Voo(Cf(0),/(n))AA) < s) > -1(A). 

Let now A be such a set. Its boundary dA is the union of a finite number of polygonal 
planar sets i*\,..., Fr (necessarily r > 4). Let S be positive and let U and O be 
open connected subsets of E3 such that 

0 e U, [ / C O C A , d2(U, R3 \ O) > 0, da(0, R3 \ A) > 0, £3(UAA) < 8/2 . 

Let (f)(n) be a function from N to R+ such that both <f>(n) and n/</>(n) go to oo when n 
goes to oo. Let n be large enough so that </>(n) > ( and f(n) < nd2(0,0 \ U). Let 8 
be the event: the edges of the three canonical axis contained in P(0, f(n)) are open. 
Suppose all the events 

£, full (0 ,17,n, / (n)) , wall(nFi,^(n)), . . . , wall (nPr, 0(n)) 
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occur simultaneously. We denote by C the open cluster of the whole configura­
tion containing the cluster realizing the event full (O, U, n,/(n)). We have then 
nil C Voo(C, f(n)). Moreover the occurrence of the events wall (nFi, <j>(n)), 1 < 
i < r, implies that the cluster C is included in V2(nA, <j>(n)), whence Voo(C, f(n)) C 
Voo(nA, f (n) + (j)(n)). Since £ occurs, then diamooC(0) > f(n), but B(0, f(n)) C nU 
and since full (O, U,n, f(n)) occurs, then C is included in C(0). Let rj be such that 
£3(Voo{A,n) \ A) < 5/2. For n large enough, so that f(n) + 4>(n) < rjn, 

^3(Voo(C(0), /(n))AnA) < £3(V00(nA,nrj)\nA) + C3(nA\nU) < Sn3 . 

Therefore 

P (£3(n-1Voo(C(0) , / (n))AA) < s) 

= (1 -^ ) -1p(£3(n -1VOo(C(0) , / (n ) )AA) < cardC(O) < oo) 

> ( l - ^ ) - 1 p ( £ ' n f u l l ( 0 , C / , n , / ( n ) ) n p | wall(nFu0(n))) . 
l<i<r 

The event wall (nFi, </>(ri)) depends on the edges inside 

V2 (cyl nFi, C) H V2 (hyp nF*, 0(n)) 

whereas the event £nfull (O, U, n, f(n)) depends on the edges inside nO. For n large 
enough so that 0(n)+C < nd2(0, E3 \A), the sets nO and V2(nFin- • -nnFr, </>(ri)+C) 
are disjoint and the events 

8 H full (0,17, n, / ( n ) ) , wall (nFu </>(n)) fl • • • fl wall (nFr, </>{n)) 

are independent, whence 

P (£3(n-1Voo(C(0) , / (n))AA) < s) > 

(1 - 6)-1P(S H full ( 0 ,*7 ,n , / (n ) ) )p ( p | wall (nFi, 0(n))) . 
l<i<r 

By Lemma 9.18, limn_^00P(full (O, U, n, f(n))) = 1. Moreover P(S) > exp((6/(n) + 
3)lnp). Applying the FKG inequality (notice that the events wall (nFi, (f>(n)) are 
decreasing) and Lemma 9.19, 

liminf -AnP( p | wall (nFu </>(n)j) > - H2(Fi)r(nor F{). 
l<i<r l<i<r 

The three previous inequalities together imply that 

liminf —olnPf£3(n-1Voo(C(0),/(n))AA) < s) > -1(A). 
n—too nz \ / 

Thus we are done. • 
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9.6. Proof of the enhanced upper bound 

We first state two preparatory Lemmata: a result of discrete geometry and a 
uniform large deviation upper bound. 

Lemma 9.20. Let X be a finite subset of Z3. There exists a subset E of X x 
{ 1 , . . . , 3cardX} such that card E < cardX and 
• V(a,r)£E B(a,r)dX^0, 
• cup { B(x, 1) : x G X } C cup { P(a, r) : (a, r) G E } , 
• V (a, r), (b, s) G E (a, r) ^ (6, s) P(a, r + 1) n £(&, s + 1) = 0 . 

Proof. We use an algorithm to build the set E starting from X. The algorithm 
works with a sequence of subsets of X x { 1,..., 3cardX } which might violate only the 
last condition and it stops when this condition is fulfilled. We initialize the algorithm 
with the set 2£(1) = {(a,l) : a € X } . Clearly the only condition which might be 
violated by E(l) is the last one. Suppose E(h) has been built for some h > 1. 
If E(h) answers the problem, the algorithm stops. Otherwise the last condition is 
violated: there exists (a, r) and (6, s) in E(h) such that B(a, r + 1) fl B(b, s + 1) ^ 0 . 
We define then 

E(h + 1) = {(a , r -h2S + 2 ) } U £ ; ( / i ) \ { ( a , r ) , ( 6 , 5 ) } . 

Obviously cardE(h+l) < cardE(h) — l and E(h+1) satisfies the first two conditions 
when E(h) does. Moreover 

max{ r : (a, r) G E(h + 1) } < 3 max{ r : (a, r) G E{h) } + 2 . 

Necessarily the algorithm stops at some step h less than cardX. The final set E(h) 
answers the problem. • 

We introduce some notation necessary to state the next Lemma. Let m be an 
integer and let U\,..., Um be m open connected bounded subsets of E3. We consider 
the product space B(Ui) x • • • x B(Um) endowed with the product L1 topology and 
the metric C?^ defined by 

\/(Eu...,Em),(Fu...,Frn) eBtm) x xB(Um) 

£3rn((E1,...,Em),(Fu...,Frn)) = L3 (E1Df1) +". + C3{EmAFm). 

Let Xm be the map from B{U{) x • • • x B(Um) to E+ U {oo} defined by: 

V(Eu...,Em)eB(U1)x-.-xB(Um), 

Xm(E1,...,Em) = I(EuU1) + .'-+l(Em,Um). 

For any open set O, the map E G B(0) »->• X(E, O) is lower semicontinuous, therefore 
Xm is also lower semicontinuous. Since in addition the sets U\,..., Um are bounded, 
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the compactness result Theorem 6.1 implies that the level sets of Xm are compact, 
hence Xm is a good rate function on the space (B(U\) x • • • x B(Um), L1). 
Let T(Ui,..., Um) be the set of the ra-uples of integer translations sending the sets 
U\,..., Um onto pairwise disjoint sets, that is, 

T(Uu...,Um) = 

{ (xi,..., xm) G (Z3)m : xi + Ui,..., Xm + Um are pairwise disjoint } . 

To Ui,..., Um and ( x i , . . . , xm) in T(E/i , . . . , Um) we associate the map 0^ ; ; ; ; ; ^ 
from #(R3) to B(tfi) x . . . x B(£/"m) defined by 

VE' G £(R3) K(cup{K(cup{^$^$ 
K(cup{K(cup{^$ 

(En(Ui +a?i) -a?i,...,J57n (£/m + rcm) - « m ) . 

Lemma 9.21. For any c/osea1 subset J7171 of B(U\) x • • • x B(Um) , 

lim sup 
n2 

In sup 
*$^$ n(Ui +a?i) -a?in(Ui +a?i) -an(Ui +?i 

(Xi,... )GT(C/1,... ,C/m)} 

< - i n f {Xm(F! , . . . ,Fm) : (Pl5.. . ,Fm) G ^m } 

Proof. We prove the large deviations upper bound in a standard fashion, by proving 
the Xm-tightness together with a local estimate. Moreover the estimates are uniform 
with respect to (a?i,..., xm) in T(U±,..., Um)-
• Xm-tightness. Let A, S be positive. Denoting by (Xm)_1([0, A]) the level set of Xm 
associated to A, for any (xi,... ,xm) in T(Ui,..., Um), we have, using Lemma 6.3 
and the fact that P(£3(fifaC(0)) < oo) = 1, 

P inf C3 tjXJx^Um 
*-"m VrX\,...,Xm 

1 
n 

îfaC(O)), ( # ! , . . . , £m)) 

(E1,. . .JEm)e(x™r1n(Ui + a ? i ) - a ? i ( [ o , \ ] ) } > s 

< p xm( '<lfJi,...,um 
'n 

fifaC(O)) > A 

n(Ui +a?i) -a?in(Ui +a?i) -a?i + - - - + X ^ f i f a C ( 0 ) , x m + Um) > AÌ 

< P ^ n ^ f i f a C ^ O ) ) > A) < P ^ f i f a C ^ ^ ^ A / H r l l o o ) 

Moreover we have 

Pi C3 (ÓUU...,UM 

\Krxi,...,xrn 

1 

n 
M C ( 0 ) , / ( n ) ) ) , < f c ; ; £ r (-fifeC(O))) >^$ù 6 

<P( 

l<i<m 

41+№(-fifaC(0)A-Voo(C(0),/(n))) > 6] 
n n / 

< p ^= ^^ 
ù Voo(C(0),/(n))A-fifaC(0)) > ^ 

n ) 
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These bounds are independent of (x\,..., xm) in T(U\,..., Um). Using the exponen­
tial contiguity between n-1Voo(C(0), /(n)) and n_1fifaC(0) and Proposition 9.12, 
we deduce from the preceding bounds that there exists a positive constant d = 
c(^)/llrlloo (where c(k) is the constant appearing in Proposition 9.12) such that for 
any positive A, S, 

lim sup 
n—)-oo n2 

In sup 
Xl,...,Xrr. 

PI inf f C3 (éUl>~"Um 1 
n 

Voo(C(0),f(n))),(E1,...,Emn(Ui +a?i 

(E1, . . . ,Em)G(Xm)-1([0,A]) $= < - c 'A 

where the supremum is taken over (x\,...,xm) in T(U\,..., t7m). 
• LocaZ estimate. Let (Ei,...,Em) be an element in x ••• x B(Um) such 
that Xrn(E\,..., i£m) < oo. We have to show that 

lim lim sup 
0^0 n—>oo 

1 

n2 
In sup P 

xi,...,xm 

¿3 (6UU...,Um 1, 
n 

; o o ( C ( o ) , / ( n ) ) ) , . . , £ ; m ) ) < <J 

< —Xm(Ei,..., Sm) 

where the supremum is taken over (x\,...,#m) in T(U\,..., C/m). Let £ be positive. 
Let So be associated to e as in Lemma 8.1. For each I in { 1 , . . . , m } , by Lemma 6.6 
applied to the set E\ and the open set U\, there exists a finite collection of disjoint 
balls B(x\,rli), i e 1(1), such that: for any i in 1(1), x\ belongs to d*Ei fl Ui, r\ 
belongs to ]0,1[, B(x\,rli) is included in U\ and 

£ 3 ( № n B ( I i , f i ) ) A B . ( I i , r i , I / B , ( I i ) ) ) < <5o(rl)3/3, 

n(Ui +a?i) -a?i 
iei(i) 

n(Ui +a?i) -a?in(Ui +a?i 

Let J be a positive real number strictly smaller than 

min S0(r\)3/6 : 1 < I < m, i e 1(1) 

Let £(S) be the event 

S{5) = ¿1 « W . ï f r ("_1aglu C(0)) , ( £? ! , . . . , Sra)) < 2J 

For (a;i,... ,arm) in T(UX,..., C/TO), we write 

P\ £3 (éult...,um 1 
Voo <?(0), f(n))), (E1,...,Em)) $* 

< P £3 (jJJx^Um 1, 
n 

^ o o ( C ( 0 ) , / ( n ) ) ) , f c ^ 
1 
1 agluC(O))) > S f- P(£(<5)) 

< P C3 
1, 
n n(Ui +a?i) -a?i 

1 
n 

agluC(O)) ><5 n(Ui +a?i) 
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Since n-1Voo(C(0), f(n)) and n-1agruC(0) are exponentially contiguous, we need 
only to estimate P(8(S)). Suppose that 8(S) occurs. Suppose also that n is large 
enough to have 

V/ G l , . . . , m } V t G / ( 0 47T / 3 ( ^ ) 2 n 2 + 7 T V / 3 < ^ o ( ^ ) 3 n 3 / 3 . 

Let I belong to { l , . . . , m } , let i belong to / ( / ) and let C(l,i) be the collection of 
the open clusters of the configuration restricted to agluC(O) fl B(nxi + nx\,nr1^). 
Because of the definition of agruC(O), the clusters of C(l,i) are open clusters of the 
configuration restricted to B(nxi + nxli,nrlj). Moreover 

L3 
Voo(cupC(M), l/2)Aß_(nar; + n^,nr^, î /£i(^)) 

<L3 Voo(cupC(/,i),l/2)A(agluC(0) f\B(nxi + nx\,nrli)) 
J 

+ c3 (agluC(0) fl B(nxi + nx\, nr^))AB_(nxt + nx\,nr\, vEl (a:-)) 

< C?(B(nx\,nr\ + V3/2) \ B(nx\,nr\ - V3/2)) 

+ £3((nUi fl (agluC(O) - nxi))AnEi) 

+ C3 [nEt D Binxlnrl^AB-inxlnrlvE^x'i)) 

: 4irVB(r\)2n2 +irV3 + 26n3 + o0(r\)3n3ß < <50(^)3n3 . 

Therefore the collection C(l,i) realizes the event sep (n,xi + x\,r\, VE1 5Q) and 

6(6) 
l<l<miel(l) 

sep (n,xi + x^r^VE^Xi), S0). 

Since the balls B(x\,r\), i G 1(1), are disjoint for any / in { l , . . . , m } and since 
(a?i,..., Xm) belongs to T(U\,..., Um), then the balls B(nxi + nx\,nr\), i G / ( / ) , 
1 < / < m, are still disjoint and the events sep(n,x/ + x\, r\, VEX (X\), S0), i G 1(1), 
1 < I < m, are independent, whence 

P(S(6)) < 

l<l<m iel(l) 

P(sep (n,xi + x\,rli,vEl(xli), So)) . 

Since the model is invariant under integer translations, then for / in { 1 , . . . , ra} and 
i in 1(1) 

P(sep (n, xi + x\, r\, vEl (x\), S0)) P(sep (n, x\, r\, vEl (x\),S0)) 

and 
P(£(6)) < 

l<l<miel(l) 
P(sep (n,x\,rli,vEl(xlj),So)) . 
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This last bound is independent of (x\,..., xm) in T{U\,..., Um). By the choice of So 
(see Lemma 8.1) and of the balls B(xli,r[) (see Lemma 6.6) 

limsup —2 In sup \P(£(S)) : ( x i , . . . , x m ) G T(Uu...,Um) } 

< - E E r(^,(a;<))7r(rf)2(l-e) 
l</<mi€/(0 

< -n(Ui +a?i) - ( l ( E i , U l ) ( l - e ) - e ) 
l<l<m 

= -Trnn(Ui {Eu...,Em)(l-e)+Tns. 

Letting S and then e go to zero, we get the upper bound we were seeking for. • 

We turn now to the proof of the enhanced upper bound of Theorem 2.2. Let T 
be a closed subset of (B(R3), L1). Let a, S be positive with 5 < I < a. We write 

^ ( n ^ V o o ^ O ) , / ^ ) ) ^ ^ ) < 

P(P(fifaC(0)) > an2) + P(£3(Voo(C(0),/(n))AfifaC(0)) > Sn3) + P(£), 

where £ is the event 

{ n ^ V o o ^ O ) , / ( n ) ) G .F, 7>(fifaC(0)) < an2, 

^3(Voo(C(0),/(n))AfifaC(0)) < Sn3 } . 

Firstly by Proposition 9.12 

limsup —2lnP(P(fifaC(0)) > an2) < -c{k)a. 
n—too Tl 

Secondly, since n-1Voo(C'(0),/(n)) and n_1fifaC(0) are exponentially contiguous, 

limsup A2lnP(r3(Voo(C(0) , / (n))AfifaC(0)) > Sn3) = - o o . 

n—>-oo n \ / 
Thirdly, we examine the last term P{£) of the inequality. Suppose that cardC(O) 
is finite and that /P(fifaC(0)) < an2. By the isoperimetric inequality, we have 
C3 (fifa (7(0)) < cisoa3/2n3. Let X be the random subset of Z3 denned by 

X = {x G Z3 : £3(B(nx,n) nfifaC(O)) > Sn3 } . 

Since diamfifaC(O) < P(fifaC(0)) < an2, then X is included in P(0,2an2). Since 
a point of R3 belongs to at most eight balls among the balls B(x, 1), x G Z3, then 

(5n3cardX < ^ £ 3 ( P ( n x , n ) n f i f a C ( 0 ) ) < 8£3(fifaC(0)) < 8cisoa3/2n3 
xex 



9.6. PROOF OF THE ENHANCED UPPER BOUND 111 

and therefore cardX < 8ciSOa3/2/6. For x in Z3\X, by the isoperimetric inequality 
relative to the ball B(nx, ra), taking into account that £3(fifaC(0)nZ?(ra#, ra)) < Sn3, 

£3(fifaC(0)n£(raz,ra)) < S1/3n&2/jV(fifaC(0),intB(nx,ra)) . 

Summing this inequality over x in Z3\X, 

C3 (fifa C(0) \ cup { B(nx, n):xeX}) < 

x€Z3\X 

£3(P(raa:,ra)nfifaC(0)) 

< *1/3n^8 

n(Ui +a 

P(fifaC(0),int£(raa:,ra)) 

< 8J1/3ra&2/jV(fifaC(0)) < n(Ui +a?i) -a?i 

We set M = 8cisoa3/2/6 and ra = (5 + SaS1/3^^. Whenever 5 occurs, we have 
therefore 

X C £(0,2ara2), cardX < M , 

£3(Voo(C(0),/(n)) \ cup{£( raz ,n ) : x 6 l } ) < rara3. 

Let £ ( X ) be a subset of X x { 1 , . . . , 3cardX} associated to X as in Lemma 9.20. We 
decompose the event 8 according to the possible values of the set E(X): 

P{£) = 

l<m<M ri,...,rm yi,...,ym 
P(8, E(X) = { (2/1, n ) , . . . , (ym,rm) } ) 

where the second summation extends over the integers n , . . . , rm in { 1,..., 3M } 
and the third summation extends over the points yi,...,2/m in Z3 fl #(0,2ara2). 
The number of possible choices for yi,...,ym is less than £3(£?(0,2ara2-}-2))m, 
which is a polynomial function in ra. The number of possible choices for the first 
two sums is less than 3M(M+1). We estimate now the term inside the sums. Let 
{ (2/1, r i ) , . . . , (ym, rm) } be a value for the random set E(X) compatible with 8 (that 
is a value which occurs with positive probability). By the construction of E(X), the 
balls B(yi,ri + 1), 1 < / < ra, are pairwise disjoint so that (yi,... ,2/m) belongs to 
T(B(0,7*1 + 1 ) , . . . , B(0, rm + 1)); moreover the balls B(yi,ri), 1 < i < ra, cover the 
balls B(x, 1), x £ X , whence 

r3(n-1Voo(C(0),/(ra))\P(2/1,r1) V " \ 5 ( î / m , r m ) ) < 

Let J ^ ( r i , . . . ,rm) be the subset of B(B(0,ri + 1)) x • • • x B(B(0,rm + 1)) defined 

by 

^ ( n , . . . , r m ) = ^0:.^1)'"*,FÎ(0,RM+1)(^) - E e r , 

( Ä i , . . . , z m ) € r ( B ( 0 , n + l ) , . . ,S(0,rm + l ) ) , C3(E\ 
l<i<m 

B(zi,n)) <r]} 
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We write then 

P (£ , E(X) = { n ) , . . . , (ym,rm) }) 

^$^$ù n-'VooiC^Jin)) G T, C?(n^V^O),/^)) 'n(Ui +a?i) -a?i 
l<i<m 

n(Ui +a?i) -a?i 

< p n ^ V o o C ^ O ) , / ^ ) ) € {EeT, C*{E\B(yl,r1)\...\B(yrn,rrn)) < ra} 

< F juB(0,ri+l),...,B(0,rm + l) 
2̂/1,--iVm 

n-^iCio), f(n))) e J-™(n,...,rm)/ 

But J^iri,..., rm) depends on ( r i , . . . , rm) and ra only and not on (2/1,..., ym) in 
T(f?(0, ri 4 - l ) , . . . ,B(0 , rm + l ) ) . Coming back to the innermost summation, 

n(Ui +a?i) -a?i 
P{£,E(X) = {(y1,r1),...,(ym,rm)}) < £3(P(0,2ara2+2 )r 

x sup 
yi,...,2/m 

£1 
^B(0,n + 1) B(0,rm + 1) n"1 ̂ (£(0) , f (n)) ) € ^ ( n , . . . , r S 

where the supremum is taken over (2/1,..., ym) in T(B(0, 7*1 + 1 ) , . . . , P(0, rm 4-1)). 
This inequality and the upper bound of Lemma 9.21 yield 

lim sup 
14 
145 *= 

Vi ,---,ym 

P{8, E(X) = { ( y i , r i ) , . . . , ( j / m , r m ) } ) < 

- i n f {T™(F1,...,Frn) : (F i , . . . ,Fm) G c l o ^ ( n , . . . , rm) } . 

Since the number of terms involved in the first two sums is bounded by 3M(M+1) 
which is independent of ra, we conclude that 

lim sup 
n—±oo 

1 

ra2 
lnP(£) < - i n f X m ( F 1 , . . . , F m ) : l < m < M , 

n(Ui +a?i) -a?i ; i , . . . , 3 M ( F 1 , . . . , F m ) G c l o ^ m ( n , . . . , r m ) 

It remains to evaluate this infimum. Let m belong to { 1 , . . . , M } , let r i , . . . , rm be­
long to { 1,... ,3M } and let (Fu ... ,Fm) belong to cloJF™(n,... ,rm). By the very 
definition of c l o ^ r i ( r i , . . . , rm), there exist a set E in J7 and a m-uple ( z i , . . . , zm) 
in T(£(0 , n + 1 ) , . . . , 5 (0 , rm + 1)) such that 

£3 (£ 

1 <i<m 

Bfari)) < ra, 

1 <i<m 

^ ( ( B n B ^ r i + l J J A ^ + i i i ) ) < r). 

Therefore 

1 <i<m 

C3(Fin5(0,ri + l ) \ B ( 0 , r i ) ) < 277. 
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By Lemma 6.7, for i in { 1 , . . . , m } , for V} almost all t in ]0,1[, 

I № n 5 ( 0 , r i + t)) < X(Fi,int£(0,ri + *)) + l l r l l o o ^ 2 ^ ndB(0,ri + t)). 

Let T be the subset of ]0,1[ where all the above inequalities hold simultaneously. 
Certainly H1 (T) = 1 and by integrating in polar coordinates 

^ ( J i n B ^ r i + l J X ^ C r O ) = / « 2 ( ^ n a J 5 ( 0 , r i + * ) ) * , 
l<i<m jTl<i<m 

so that there exists £ in T such that 

5 ] H2{FindB(0,ri + t)) < 2n. 
l<i<m 

Let F be the set 
F = U (^ + № n 5 ( 0 , r i + t ) ) ) . 

l<i<m 
Then 

£3(EAF) < 

£3((EUF)\ \J B(Zi,ri)) + ^((EnBiz^n + l^Aizi + Fi)) < An 
1 <i<m 1 <i<m 

and because of the choice of t 

I{F) = ^ n B ( 0 , r i + t)) 
1 <i<m 

< £ Z(Fi,intB(0,r< + *)) + I M U n2(FindB(p,n + t)) 
l<i<m 1 <i<m 

< Jm(F1,.. . ,Fm)+27?| |r | |0O. 

It follows that 

inf { 2 ( F ) :Fe VLi(T,4r))} < Xm(Fu ... ,Fm) + 2»J||T||OO • 

Passing to the infimum over (Fx,..., Fm), ( n , . . . , rm) and m, 

limsup — In P(£) < - i n f { 1 ( F ) : F € VLi (^ , 4??) } + 2r?||r||0o • 
n—>-oo ^ 

Coming back to the initial inequality, 

l imsup-2lnP(n-1VOo(C' (0) , / (n) )e^) < 
n-+oo ^ 

- m i n (c(fc)a, inf {1(F) : F G VLi(T,4n) } - 21/HrHoo) . 
Recalling that n — S + Sa^1/3^3, sending first J to 0 and then a to oo, we get the 
enhanced upper bound we were seeking for. • 
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9.7. Proof of Proposition 2.4 

We end this chapter with the proof of Proposition 2.4. 

Lemma 9.22. Let n belong to ]O,0[ and let k,l belong to N with k > 6, I > 130, 
Sk < I. For xl in IZ3, let X^x1) be the indicator function of the complement of the 
event 

V(A(xl ,l),n) n ( j ^ c a r d O (0 + n) cardA(xl,/)) n R(A(xl, 51),I) 
c 

where the summation is over all the open clusters C of the configuration restricted 
to A(xl,l) intersecting dlwA{xl, I). For any open cluster C of diameter larger than I, 
any compact set K, the difference |cardC fl K — 6C3K(Voo(C, l))\ is bounded by 

r)C? (Voo(C, 21) HK)+ Z3card { xl G IZ3 n K n Voo(C, 21) : X?(xl) = 1 } 

+1120/2P(fifa (C, fc, 0 , int K) + 2£3 (V^dK, 3/ + 1) fl Voo(C, 2/)) . 

Proof. We start by rewriting the difference 

|cardCn/ir-fl£^(Voo(C,Z))| < 
^ ( V o o ( C , 0 A c u p { A ( ^ , / ) :xl G fat (fifa (C, k, I), I) }) 

+ |cardC H K - 9C3K(cup { A{x\l) : xl G fat (fifa(C, k,I),I) }) \ 

< 0C3K (Voo(C, 2/) \ fifa (C, A;, /)) + ] T |card (C n K fl A(a;z, /)) - 0C3K(A{x\ l))\ 
X1 

where we have used Lemma 9.9 to get the first term and the summation extends over 
xl in fat (fifa (C, k, I), I) flfat (K, I). We decompose further this summation according 
to xl and to the value of Xj1 as follows: 

£ • • • E ••• + E ••• + E -
xl:A(xl,l)ndK^0 xl:A(xl,l)C'mt K, X?(xl)=0 xl :A(xl ,l)C'mt K, X? (xl)=l 

Remarking that 

fat (fifa (C, fc, 0 , 0 ^ fat (K,l) C Voo(C, 3//2) n clo Voo(A",//2), 

we obtain 

xl:A(xl,l)ndK=^$$$£2 
< £ 3 ( V o o № 2 / ) n V o o ( C , 2 0 ) . 

Next, whenever X^x1) = 0 for some ^ in fat (fifa (C, fc, / ) , / ) , then doo(xl, C) < 31/2 
and C intersects A(xl, 3/); in particular there exists an open path in C C\A(xl,5l) of 
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diameter larger than I; denoting by C*(A(xl, I)) the open crossing cluster in A(xl,l) 
realizing the event V(A(xl ,1)), we have 

C*{A(x\l)) C CnA(xl,l) c[jC 
c 

where the union is over all the open clusters C of the configuration restricted to 
A(xl,1) intersecting dlvA(xl,l). By definition of the event associated to X^x1), this 
implies |card (C D A(xl,l)) - 6l3\ < nl3 and 

^2 ••• < v£3(Voo(C,2l)nK). 
xl:A(xl,l)C'mt K, X?(xl)=0 

For the third sum, 

] T • • • < /3card { xl G IZ3 H K H Voo(C, 21) : X?(xl) = 1 } . 
:̂A0z*,/)Cint K, X?(xl)=l 

By Lemma 9.10, 

^ (Voo(C7 , 20 \ f i f a (C , fe , 0 ) < 
1120/2P(fifa (C, k, I), int nr) + £^(Voo(<9#, 3/ + 1) n Voo(C, 2/)) . 

Putting these estimates together yields the desired inequality. • 

P r o o f o f Proposit ion 2.4. Let 6, a be positive. We write 

P(|cardC(0) - ^ 3 ( V o o ( C ( 0 ) , / ( n ) ) ) | > Sn3) < P(£3(VTO(C(0),2/(n))) > an3) 

+ p( |cardC(0) -^£3(Voo(C(0) , / (n ) ) ) | > Sn3, £3(Voo(C(0), 2/(n))) < an3) . 

We consider each term of the right-hand side separately. First 

P(£3(Voc(C(0),2/(n))) > an3) < 

P(£3(Voo(C(0),2/(n))AfifaC(0)) > an3/2) + P(£3(fifaC(0)) > an3/2). 

Under P, the cluster (7(0) is bounded, whence by the isoperimetric inequality 

P(£3(fifaC(0)) > an3/2) < P(P(fifaC(0)) > (a/(2ci80))2/3rc2). 

Applying Corollary 9.11 and Proposition 9.12, 

limsup -2lnP(£3(Voo(C(0) ,2/(n))) > an3) < -(a/2ciso)2/3c(fc). 
n—too n 
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Secondly, let 77 be such that 0 < rja < 5/3. We apply the inequality of Lemma 9.22 
with K = clo A(0,4an3) and we suppose that n is large enough to have 27/(n)3 < 8n3 
(so that |cardC(0) - 0£3(Voo(C(O), / ( n ) ) ) | > Sn3 implies that diamC(O) > f(n)) 
and 6/(n) < an3 (so that £3(Voo(C(0), 2/(n))) < an3 implies that c/oo (<?(()), dif) > 
6/(n)) . We get 

p( |cardC(0) - ^ 3 ( V o o ( C ( 0 ) , / ( n ) ) ) | > <5n3, £3(Voo(C7(0),2/(n))) < an3) < 

p(/(n)3card { x e clo A(0,4an3) fl / (n)Z3 : Xi(x) = 1 } > £n3/3) 

+ P(ll20/(n)27>(fifaCf(0)) > Sn3/S) . 

By Proposition 9.12, the second term of the right-hand side is less than 

b(k) exp(-c(k)(6/3360)n3f(n)~2). 

By Corollaries 7.4, 7.5, 7.8, the first term of the right-hand side is less than 

Y exP (3iln(4an3//(n) + 2) + i5-3(lnb(rj) - c(n)f(n))) . 
<>(*/3)(n//(n))3 

Because / ( n ) / l n n goes to 00 as n goes to 00, for n large enough, the sum is less 
than b'{n) exp(—c'(n)(5/3)n3f(n)~2) for some positive constants b'(77), c'(n). The 
last two estimates imply that, for any <5, a positive, 

lim -2 lnPf | c a rdC(0) -^3(Voo(C(0) , / (n ) ) ) | > Sn3,£3(Voo(C(0),2/(n))) < an3) 
n->oo nz \ ' 

— —CO 

whence, coming back to the initial inequality, 

limsup -2 lnP( | c a rdC(0 ) -^£3 (Voo(C(0 ) , / ( n ) ) ) | > Sn3) < -{a/2ciso)2^3c{k) . 

Letting a go to 00, we obtain the statement of the exponential contiguity. • 
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COLLECTIONS OF SETS 

We denote by BC(R3) the set of all finite or countable collections of non empty 
Borei subsets of R3. We recall the basic set operations on collections of sets: for A 
a collection of sets, we denote the union of the sets of A by cup A, i.e., 

cup A = 
AeA 

A, 

and by overlap^ the union of the intersections of all pairs of distinct sets of A, i.e., 

overlap^ = < cup { Ax fl A2 : Ax, A2 G A, Ai / A2 } 

When dealing with Borel collections, we identify the Borel sets whose symmetric 
difference is negligible, hence the elements of a Borel collection are pairwise distinct 
up to negligible sets. A Borel collection might be empty but it does not contain 
negligible sets. A Borel collection A of subsets of R3 is a Borel partition of R3 if and 
only if R3 \ cup A and overlap A are negligible. We define a perimeter functional V 
on BC(R3): for any A in BC(R3), any open set O, 

V(A,0) = 
AeA 

V(A,0). 

We define also V(A) = P(A, R3). A Caccioppoli partition of R3 is a Borel partition A 
of R3 such that V(A, O) is finite for any bounded open set O. We denote by CP(R3) 
the set of all Caccioppoli partitions of R3. 

Remark. The denomination "Caccioppoli partition" was introduced in [22,23] in 
relation with problems in image segmentation and the Mumford-Shah functional. 

Definition 10.1. An arrangement (A(i),i G N) of an element A of BC(R3) is a 
sequence of sets in A U { 0 } such that each set of A appears exactly once in the 
sequence (A(i),i G N) and the empty set 0 appears countably many times in the 
sequence (A(i),i G N). 

Remark. If A is finite then A(i) = 0 for i sufficiently large. 
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Lemma 10.2. Let A belong to BC(R3) and let (A(i), i G N), (A'(i), i G N) be two 
arrangements of A. There exists a permutation (frofN such that A'(i) = A(</>(i)) for 
all i in N. 

Proof. The sets {i G N : A(i) ^ 0 } and {i G N : A'(i) ^ 0 } are in one to one 
correspondence with A, while the sets { i G N : A(i) = 0 } and { i € N : A'(i) = 0 } 
are both countably infinite. • 

We define first a metric D on BC(R3): for A±,A2 in BC(E3), 

D(AUA2) = 

inf { sup £3 (A!(i)AA2(i)) : (Aj(i),i € N) arrangement of j = 1,2) . 

We define next a family of pseudo-metrics on BC(E3). For K a compact set 
and for Ax, A2 in BC(E3) we set 

DK(AUA2) = 

inf { sup£3^(Ai(i)AA2(i)) : (AAi),i G N) arrangement of Aj, j = 1,2> 
L ieN ) 

Corollary 10.3. Let A1} A2 belong to BC(R3) and let ( ^ i ( i ) , i G N) be an arran­
gement of A\. For any compact set K, 

DK(AI,A2) = inf { sup £3K (Ax (i) A A2(i)) : (A2(i), i G N) arrangement of A2 \ • 
^ ieN > 

Proof. By the definition of DK, for any positive e, there exist arrangements (A[ (i), 
ieN), (A'2(i), i G N) of Ai and A2 such that 

sup£^(Ai (0AAi ( t ) ) < DK(Ai,A2)+e. 
ieN 

By Lemma 10.2, there exists a permutation <j> of N such that ^ ( z ) = Ai(</>(i)) for all 
z in N. Let (A2(i), i G N) be the arrangement of A2 defined by A2(i) = A2(0-1(i)) 
for i in N. Then 

sup£3K(Ax(i)AA2(j)) = sup£^(A;( i )AA2(i) ) < DK(AuA2)+e. 
ieN ieN 

Taking the infimum of the left-hand side with respect to all arrangements (A2(i), i G 

N) of A2 and letting e go to 0 yields the result. • 

We construct a metric D\oc on BC(E3) by using an increasing sequence of compact 
sets filling E3, for instance the closed balls (B(0,j),j G N), and setting 

VAi,A2 e BC(E3) Dloc(AuA2) = Y^Db(ojMuA2) . 
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A sequence (An)nEN of Borel collections of subsets of R3 converges with respect 
to D\oc towards a Borel collection A if and only if for any compact set K 

lim DK(An,A) = 0. 
n—>-oo 

This notion of convergence corresponds to the topology on BC(M3) generated by the 
following system of neighbourhoods: a fundamental system of neighbourhoods of a 
Borel collection A of subsets of IR3 is 

V(A,K,e) = {A' GBC(13) :DK(A',A) <e}, K compact, e>0. 

The sets V(A,K,e) are open; indeed, for any compact set K, by Corollary 10.3, 

V Ai, A2, A3 G BC(R3) DK(Ai,A3)<DK(AUA2) + DK(A2, A3) . 

Another way to build a metric on BC(R3) is to use the measure denning the 
topology L\oc on B(R3). We recall that i/){A) = £\>:l J~5£3(A H B(0,j)) for a 
Borel set A. We set for any A\,A2 in BC(M3) 

Df/,(Ai,A2) = 

inf { sup ip(Ai(i) A A2(i)) : (Aj(i),i e N) arrangement of Aj, j = 1,2J . 

That and D\oc define the same topology on BC(M3) is a consequence of the 
following inequalities, valid for any Ai,A2 in BC(E3) and any j in N, 

Dioc(AuA2) < D^(AUA2) < 2DB(0,J)(Ai,A2)+47r/(3i). 

Lemma 10.4. Let A belong to BC(M?) and let (A(i),i € N) be an arrangement 
of A. A sequence (An)neN in BC(R3) converges to A for the metric D\oc if and only 
if there exist arrangements (An(z),i G N)nGN of (An)neN such that for any compact 
setK 

lim supC3K(An(i)AA(i)) = 0. 
n-»oo ieN 

Remark. The interesting point is that the arrangements chosen for the sequence 
(AJnEN are independent of the compact sets K. 

Proof. In case arrangements exist such that the above limit occurs, then clearly 
the sequence (An)neN converges to A for the metric D\oc. Conversely, suppose that 
the sequence (An)neN converges to A for the metric Aoc- Let for n in N 

(j)(n) = m a x { m G N : DB{0^(An,A) < l/m } . 
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By the definition of the metric D\oc, for any m in N, the quantity DB(o,m){An, A) 
goes to 0 as n goes to oo, so that limn^.oo 4>(ri) — oo. By Corollary 10.3, for each n 
in N, there exists an arrangement (An(i),i G M) of An such that 

sup£l(0Mn))(An(i)AA(i)) < DB(oMn))(An,A) + l/(t>(n). 
ieN 

We claim that these arrangements answer the problem. Let indeed K be any compact 
set. For n sufficiently large, the ball B(0,(j)(n)) contains K whence 

sup C3K{An(i) A A(i)) < DB(0Mn))(An,A) + l/(l>(n) < 2/</>(n). 
ieN 

Therefore the left-hand quantity converges to 0 as n goes to oo. • 

Lemma 10.5. Let f be a lower semicontinuous map from (B(R3), D\oc) to R+ U 
{ o o } , that is, if (An)ne\*q is a sequence of sets in B(R3) converging towards some set 
A in B(R3) for the topology L\oc, then liminfn_+oo f(An) > f(A). The functional on 
(J5C(E3), Aoc) defined by 

V Ae BC(R3) f(A) = 5 ^ / ( A ) 
AeA 

is lower semicontinuous: if (An)neN is a sequence in BC(R?) converging to A in 
BC(R3) for the metric D\oc, then liminfn_^oo f(An) > f(A). 

Remark. In particular, for any open set O, the perimeter functional V(-, O) is lower 
semicontinuous on (BC(R3), Aoc)-

Proof. Since / is lower semicontinuous, for each set A in B(R3) and s positive, 
there exist a compact set K(A,e) and a positive n(A,e) such that: 

V A' e B(R3) C3K(A^ (AAAf) < n(A, e) f(A') > min(/(A) - e, 1/s). 

Let (An)neN be a sequence in BC(M3) converging to A for the metric Aoc- Let e 
be positive. Let A ( l ) , . . . , A(r) be distinct sets in A such that 

¿ / ( ¿ ( 0 ) > min (f(A)-e,l/e). 
i=l 

Let 

K = cup{K{A{i),e/r) : 1 < i < r } , 

n = min (min {n{A(i),e/r) : 1 < i < r },min { -C3K(A(i)) : 1 < i < r }) . 

There exists an integer N such that DK(An,A) < n for n > N. Fix some n larger 
than N. There exist r distinct sets An(i), 1 < i < r, in the collection An such that 

max £3K(An(i)AA(i)) < n. 
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The definition of K,rj yields also that f(An(i)) > mm(f(A(i)) — e/r,r/e) for i in 
{ 1 , . . . , r } . Therefore, for any n larger than iV, 

f(An) > 
r 

i=l 
f{An(i)) > mm(f(A)-e,l/e)-e. 

Letting successively n go to co and e go to 0 ends the proof. 

Definition 10.6. To a Borel collection A of BC(E3) we associate the partition 
part A of E3 defined by 

part .4 = A\overlap.A : A e A} U {overlap.4} U {R3 \ c u p . 4 } 

Lemma 10.7. For any Borel collection A of BC(R3), any compact set K, we have 

DK (part A, A) < max C?K (overlap ̂ 4) , C? ( K \ c u p ^ ) 

Proof. Let (A(i),i e N) be an arrangement of A. For i in N, we set A'{i) = 
A(i) \ overlap A Let i\,i2 be two indices such that A(ii) = A(i2) = 0 . We set 
A'(ii) — R3 \ cup^l. In case overlap A is not already an element of A, we set 
A'(i2) = overlap^, otherwise we set A'(i2) = 0 . Then {A'(i))ieN is an arrangement 
of part A. Moreover 

V i G N C?K (A(i)AA'(i)) < max C?K (overlap A C3(K\ cup A) 

This implies the claim of the Lemma. • 

The next Theorem is a slightly simplified version of the compactness result of 
Congedo and Tamanini [23, Theorem 1.6], which deals with a stronger topology and 
includes the possibility of associating weights to the sets of the collections. 

Theorem 10.8. For any X in R+, the A level set {A e CP(R3) : V(A) < A } 
of the perimeter functional restricted to the Caccioppoli partitions is compact with 
respect to the metric D\oc. 

Remark. Notice that the set CP(M3) of the Caccioppoli partitions of E3 is not a 
closed subset of (BC(E3), -Dioc)- Indeed, a bounded set having infinite perimeter 
can be approximated by a sequence of Caccioppoli sets. Even the set of the Borel 
partitions of E3 is not a closed subset of BC(E3), because there might be a loss of 
mass when passing to the limit without any control on the perimeter. Using the lower 
semicontinuity of the volume and Lemma 10.5, we already know that if (̂ 4n)n€N 
converges towards A, then lim i n f J ^ A e A - n n ( U i +a?i) -a?ifl O) > Y^AeA^3(A fl O) for 
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any open set O. However the inequality might be strict in general. For instance, the 
sequence (An)neN defined by 

Vn G N Лп = | A ( ( t / n , j 7 n , f e / n ) , l / n ) : (¿,¿,fc) e Z 3 } 

converges towards the empty collection, yet C3(An) = oo for each n. 

Proof. For the reader convenience and for the sake of completeness, we reproduce 
here the proof of [23, Theorem 1.6] within our context and with our weaker topology. 
We recall that ip(A) = J2j>i j_5£3(A n B(0, j)) for a Borel set A. Let A belong 
to R+ and let (An)neN be a sequence in CP(R3) such that V(An) < A for all n in N. 
For t positive, there is a finite number of sets A in An such that ip{A) + V(A) > t. 
Therefore there exists an arrangement (An(i),i G N) of An such that, for any n o n -
negative integer i, 

^(An(2i)) + V{An{2i)) > *P(An(2i + 2)) + V(An(2i + 2) ) , An(2i + 1) = 0 . 

By Lemma 6.3 and Corollary 6.4, the space {E e B(R3) : V(E) < A } is compact 
with respect to the topology L11oc. By a standard diagonal argument, we can extract 

from the sequence of arrangements (An(i),i G N)n€N a subsequence (not relabeled) 
such that: for each i in N, there exists a Borel set A(2i) in B(R3) such that An(2i) 
converges to A(2i) for the topology L\oc (equivalently \jj(An(2i)AA(2i)) converges 
to 0 as n goes to oo). For i odd we set A(i) — 0 . For any i\ ^ i2 and n in N, any 
compact set K, 

Letting first ft go to oo and then K grow to R3, we obtain that A(ii) fl A{i2) is 
negligible for any ii / i2. Let A be the collection of the non negligible sets of the 
sequence (A(i), i G N), that is, A = {A(i) : i G N} \ { 0 } . Then {A(i),i G N) is an 
arrangement of A. Moreover overlap A is negligible. Next, we have 

We set a = ip(R3) + A. Let B be a ball in R3. There exists a positive constant c 

depending on B such that 

C3K(A(H) n A{i2)) < C^iA^AAnih)) + C\ :3K(An(i2)AA(i2)). 

1 

2 

V n , i G N </>(R3) + A > iV(An(2i))+iil>(An(2i)). 

VA G B(B) iß(A) >c£3 (A) . 

Let io be such that 
a/(ci0) < C? (B)/2. 

For all n in N and i > io, we have 

c? {An(2i)nB) < - ip{An(2i) n B) < a 
ci < C\B) 
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so that, by the isoperimetric inequality relative to the ball B, 

C3(An(2i)nB) < bisoV(An(2i),B)3/2 < biso(a/i)3/2. 

This inequality yields that for any n in N and i larger than io 

DB(An,A) < maxf max £3B(An(k)AA(k)), 2biso(a/i)3/2) . 
\0<k<2i / 

Letting first n and then i go to oo in this inequality, we get lim^oo DB(An, A) = 0. 
Since the ball B is arbitrary, then the sequence (*4n)neN converges towards A in 
(BC(E3), D\oc). By summing the above isoperimetric inequality, for any i larger 
than ¿0, 

V n e N C3(B) = 5 3 C3B(A) < 5 3 C3B{An(k)) + 2blsoa?/2i-1/2. 
AeAn 0<k<2i 

By letting successively n and i go to infinity, we get C3(B) < J^AeA^-BiA). Since 
the ball B is arbitrary and overlap A is negligible, then R3 \cup A is negligible. Thus 
A is a Borel partition of E3. By Lemma 10.5, the perimeter of A is less than A. • 
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THE SURFACE ENERGY OF A CACCIOPPOLI PARTITION 

In this chapter, we define the surface energy of a collection of Borel sets. We 
prove two approximation results. The approximation through polyhedral partitions 
is quite delicate. 

11.1. Definition of the surface energy 

Let A be a Caccioppoli partition of E 3 . The reduced boundary d*A of A is the 
set 

<9*A = cup{<9*Ai n<9*A2 : AUA2 G A, Ax ^ A2 } . 

By [23, Lemma 1.4], for any Borel set E, 

2U2{d*Af\E) = ] T ft2(d*An£). 

For a point x of <9*A, the pair (Ai, A2) of elements of A satisfying Ai ^ A2, x G 
<9*Ai Dd*A2, is unique up to the order (both sets A\ and A2 have density 1/2 at x); 
also, the generalized normal vectors of A\ and A2 at x satisfy vAl (x) + uA2 (X) = 0. 
In particular, the sets d*Ai D <9*A2, Ai, A2 G A, Ai ^ A2, are pairwise disjoint. On 
the space A x A x 52, we define an equivalence relation ~ by 

( A i , A 2 , i / ) ~ ( A i , A i , i / ) 

(Ai,A2,i/) = (Ai,A2,z/') or (Al5A2,*/) = (A2, Ai , - V ) . 

Hence in the quotient space A x A x 5 2 / ~ , (Ai, A2, v) and (A2, Ai , —i/) are identified. 
We can then define uniquely a map 

x G <9*A ' y (A1(x),A2(x)1i>(x)) e Ax Ax S2/~ 

such that, for any x in d*A, 

Ax(x) / A2(a?), x G 9*Ai(x) na*A2(x), z/(x) = uAl{x)(x) = -VA2(X)(X) • 

We set v(A,x) to be the projection of v(x) on the projective sphere PS2. The 
surface energy of a Caccioppoli partition A in an open set O is then defined to be 

X(A,0) = [ r{v{A,x))d%2{x). 
Jd*AnO 
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Notice that the symmetry of the surface tension r allows to define it on the projective 
sphere PS2, so that T(V(A,x)) makes sense. We extend X to BC(R3) by setting 
X(A, O) = oo for all A in BC(R3) \ CP(R3). We define also 1(A) = X(A, R3). 

Remark. If A is a Caccioppoli partition, then T(A, O) is equal to \ J2AEAX(A, O). 

Lemma 11.1. For any collection A in i?C(R3), any open set O, 

rminV(A,0) < 2X(A,0) < I M I o o n ^ O ) . 

Proof. This result is a consequence of the previous remark and of Lemma 6.3. • 

We say that a Caccioppoli partition A has finite surface energy, or finite perimeter, 
if X(A) is finite (or equivalently V(A) is finite). 

Lemma 11.2. Let A be a Caccioppoli partition. Let f : d*A •->• R be a W?\Q*A 
measurable bounded function. For 7i2 almost all x in d*A, 

lim ±n(Ui +a?i) -a?if(y)dU2(y) = f(x). 

Proof. Since A is a Caccioppoli partition, then for any bounded open set O, 
H2(d*A fl O) is finite, whence for U2 almost all x in d*A [34, Corollary 2.5], 

limsup (7rr2)-1n2(B(x,r) nd*A) < 1. 

By [23, Lemma 1.4 and formula (1.5)], for any A in A, 

n2 (d*A) = n2 (d*A n d*E) • 
EeA\{A} 

It follows that for 7i2 almost all x in d*A, 

liminf (7rr2)-1n2(B(x,r)nd*A) > liminf (?rr2)-1n2(B(x,r) n d*A) = 1, 
r—>0 i—>0 

lim (nr2)-1n2(B(x,r)n(d*AAd*A)) = 0. 

Since A is countable, then for 7i2 almost all x in d*A, 
lim (7rr2)-1H2(B(a;, r) n d*A) = 1, 
r—>-0 

lim (vrr2)-1^2 (B(x, r) n (0*AAd*A1 (ar))) = 0. 
r—>-0 

Using the results on Caccioppoli sets (see chapter 6), for H2 almost all x in d*A, 

lim —Jn(Ui +a?i) -a?if(y)dU2(y) = f(x). 
By decomposing B(x,r) D d*A as 

(B(x,r)f\d*A1(xj) U (fi(a:,r) D (d*A \ d+A^x))) \ (B(x,r) n (a?) \ d*A)) 

and integrating / separately over each of these sets, with the help of the previous 
density results, we obtain the claim of the Lemma. • 
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Lemma 11.3. Let A be a Caccioppoli partition ofR3 having finite perimeter. Then 
A contains exactly one set AQO such thatC3(A00) = oo. Moreover C3(R3 \Aoo) < oo. 

Proof. For any A in A, we have V(A) > V(A) and by the isoperimetric inequality, 

V A G A min(£3(A),£3(M3 \A)) < ciso 7>(A)3/2 . 

Suppose that C? (A) is finite for all A in A. Then 

MA e A C3(A) < cisoV(A)1/2V(A) 

and by summing C3(A) < CiSOV(A)3/2, contradicting the fact that A is a partition 
of R3. Hence there exists a set Aoo in A such that £3(Aoo) = oo. Yet C3(R3 \Aoo) < 
Qso V{A)3I2 and the other sets of A are included in R3 \ A^. • 

Proposition 11.4. The map A G BC(R3) \-+ 1(A) G R+ U {oo} is lower semi-
continuous and its level sets {A £ BC(R3) : T(A) < X}, AG M+, are compact with 
respect to the metric D\oc. 

Proof. Let (An)neN be a sequence in BC(R3) converging towards an element A 
of BC(M3) for the metric D\oc and such that lim infy^oo T(An) is finite. Up to the 
extraction of a subsequence, we may assume that limn^.oc T(An) exists and that 
the sequence (l(An))neN is bounded. In particular, the collections An, n G N, 
belong to CP(E3) and by Lemma 11.1, their perimeters are uniformly bounded. 
Theorem 10.8 implies that the limit A also belongs to CP(E3). Thus T(A) = 
\^AeAT(A). Since X is lower semicontinuous on (B(R3),Lloc), Lemma 10.5 im­
plies that T(A) < limn^oo X(An). Therefore the surface energy X is lower semicon­
tinuous on (BC(IR3), D\oc). A further application of Theorem 10.8, together with 
Lemma 11.1, shows that the level sets of X are compact. • 

11.2. Approximation of the surface energy 

By definition of the surface energy, for any open set O, 

VAGCP(M3) X ( A , 0 ) = / r(u(A,x))dri2(x). 

Jd*AnO 

We first approximate the integral by an elementary sum. The next Lemma is the 
analog for Caccioppoli partitions of Lemma 6.6. It is needed to prove the large 
deviation upper bound of Theorem 2.7. 

Lemma 11.5. Let O be an open subset of R3. Let A be a Caccioppoli partition 
o/R3 having finite perimeter in O. For any positive e,5, there exists a finite collec­
tion of disjoint balls B(xi,ri), i e i , such that: for any i in I, X{ belongs to d*Af)0, 
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ri belongs to ]0,1[, B(xi,ri) is included in O, 

r 3 ( ( ^ 1 ( ^ ) n 5 ( x i , n ) ) A , B _ ( ^ , r , , i / ( ^ ) ) ) < Sr3, 

£ 3 ( ( A 2 ( ^ ) n , B ( ^ , n ) ) A J B + ( x i , r i , K ^ ) ) ) < Sri, 

\T{A,0)-
iei 

7Tr2r(u(A, Xi)) < e. 

(For the definition of the maps x G d*AC\0 »->• (A1(x), A2(x), v(x)) e Ax Ax 5 2 / ~ 
and x G d*A Pi O \-> u(A,x) G PS2, see the beginning of the chapter.) 

Remark. We could take e = S in the statement of the Lemma. However, it is more 
convenient for later use to work with two distinct variables here. 

Proof of Lemma 11.5. Let e,S be positive with e < 1/2, S < 1. Because a 
generalized normal vector is also a measure theoretic normal, for any x in d*A n O, 
there exists a positive r\{x,S) such that, for any r < r\{x,S), 

£3UAiix) D B(x,r))AB-(x,r,v(x))) < Sr3 , 

£3((A2(x)nB(x,r))AB+(x,r,is(x))) < Sr3 . 

For A in A, the map x G d*A \-t VA(X) G S2 is measurable with respect to the 
measure H2\d*A, therefore the map x G d*A fl O >-» v(A,x) G PS2 is measurable 
with respect to 7i2\d*AnO' By Lemma 11.2, for 7i2 almost all x in d*AC\ O, 

lim 
r->0 

(yrr2) 1H2(B(x,r)nd*A) = 1, 

lim 
r-*0 

1 

^p n(Ui +a?i) -a 
r(KAl/))rfH2(y) = T(V{A,X)). 

Let <9*"l4 be the set of the points of d*ACi O where the two preceding identities hold 
simultaneously. Clearly 7i2(d*A fl O \ d**A) = 0. For any x in d**A, there exists a 
positive r2(x,e) such that, for any r < r2 (#,£), 

|W2(£(x,r)n<9Vl)-7rr2| < enr2, 

7Tr2, B(x,r)navi 
r ( ^ , y ) ) d W 2 ( y ) - r ( i / M ^ ) ) < e. 

The family of balls B(x,r), x G r < min (ri(a:, (5),r2(x,e), 1,d2(:r,<90)), is 
a Vitali relation for d**A. By the standard Vitali covering Theorem [34, The­
orem 1.10, or chapter 4], we may select a finite or countable collection of dis­
joint balls B(xi,ri), i G / , such that: for any i in J, Xi belongs to d**A, ri < 
min (ri(xi,S),r2(xi,e), l,d2{xi,dO)) and 

either H2( d**A\ 

tei 

I B(xi,ri)) = 0 or 

iei 

r2 = oo. 
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Because for each i in / , ri is smaller than r2{xi,e), 

( l - £ ) ] T 7 r r 2 < H2(d**A) = V(A,0)/2 < oo 

and therefore the first case occurs, so that we may select a finite subset J of I such 
that 

n2(d**A\\jB(xi,nj) <eU2{d**A). 
ieJ 

We claim that the collection of balls J5(xj,r«), i G J, enjoys the desired properties. 
Indeed, 

I / r{v{A,x))dU2(x) - V 7 r r 2 r ( i / ( A , ^ ) ) | < / T(v(A,x))dH2(x) 
lJd*AnO ieJ 1 Jd»A\\JiejB(xi,n) 

+ 5 3 I f T(v(A,x))dH2(x) -irr?T(v(A,Xi)) . 
i£j 1 Jd**AT\B(xi,ri) 

The first integral of the right-hand member is less than e7i2(d**A)\\r\\00. For any i 
in J, 

I /" a**ANB(xi,ri) r(i/(A,a;))dW2(a;) - 7rr?r(i/(A,x<))| < 2eU2{B{xun) 0 <9*M), 

whence by summing over i in J, 

V I / r ( i / ( A a : ) ) ^ 2 ( x ) - 7 r r 2 r ( i / ( A , x O ) | < 2eH2(d**A). 
f^Ud**AnB(xi,n) 1 

By Lemma 11.1, U2(d**A) = V{A,0)/2 < X(A,0)/rmin. Putting these inequali­
ties together, 

\l{AO) - Y,^2r(u{A,Xi))\ < e X ( A , 0 ) ( 2 + ||r||oo)/rmin. 
ieJ 

Since (2 + | |T | |oo)/Tmin is a fixed constant, we have the required estimate. • 

We state next an approximation result which is a specialization of a result of 
Quentin de Gromard [61, Theoreme A] to the three dimensional case. The detailed 
proof should appear soon in [62]. An hypersurface is a C1 submanifold of E3 of 
codimension 1. 

Theorem 11.6. (Strong approximation of sets of finite perimeter) 
Let O be an open set in E3. Let E be a set of finite perimeter in O and let e be 
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positive. There exists a set L of finite perimeter in O such that O fl dL is included 
in a finite union of hypersurfaces and 

H2((d*EAd*L) D O ) < e n ( U i +a?i) -a?iC3((EAL) n O ) < e , 

LcV2(E,e) ,n(Ui i 0 \ L c V 2 ( 0 \ E , e ) . 

A careful inspection of the proof yields the more precise following statement (with 
O = E3). Let E be & set of finite perimeter in E3 and let e be positive. There exists 
a set L of finite perimeter, a C1 function / : E3 i-> E, a compact set G, an open 
set V and an open bounded set B such that, setting F = { x G E3 : f(x) > 0 } , the 
set V fl dF is the hypersurface {x e V : f(x) = 0} and 

G C B C V C { x G E3 : df(x) ^ 0 } , G C d*E fl dF , 

L(1B = FOB , VHd*F = VndF, 

VxeC isE(x)=vF(x) = -\df(x)\-1df(x), 

C3(V)<e, £3(EAL)<e, 

n2(dFPi(V\C)) <e, rl2(d*E\C) <e, H2(d*EAdL) <e, 

L C V 2 ( ^ £ ) , E3 \ LC V2(E3 \ E,e). 

The slight improvement here compared to [61] is the estimate l~L2(d*EAdL) < e, 
instead of 1-L2(d*EAd*L) < e. Let us show that the set L introduced in the proof of 
[61,62] satisfies this stronger inequality. 

Proof. During this check, we use the objects and notation of the proof of [61,62] 
(except for the reduced boundary, which is still denoted by d*E). First, since LC\B = 
FOB, where B is open, and dFnB = d*F 0 B, then d*LnB = dLn B. Secondly, 
L n A = GC\A and <9LnA = dGC\A, implying d*LnA = dLn A. It remains to study 
n2((dL\d*L)nr). Since L is closed, then <9*L C L and H2(d*Lnr) = U2(d*Lr\LnT). 
Rather 

ri2(dL n r ) = U2{dL n r fl (F U G)) < U2(r n F fl G n dL) +n2(Tn (FAG) 0 dL). 

Yet F D G c dF U dG U (int F n int G). Moreover U2 (TCidG)=01 U2 ( r fl 9F) = 0, 
int F H int G fl T fl dL = 0. Thus W2(r n F n G D 9L) = 0. Following the final steps 
of the proof, we get ^ 2 ( r fl (FAG)) < (1 + 6K(S)V(E)/u2 + 4y/3K(3))e. • 

Definition 11.7. A collection of Borel subsets of E3 is said to be polyhedral if 
all the sets of the collection are polyhedral. It is said to be finite if its cardinality is 
finite. A partition is said to be bounded if all its sets except one are bounded. 

The proof of the large deviation lower bound relies on the following approximation 

result. 
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Theorem 11.8. Let A be a Caccioppoli partition of E3 such that 2(A) is finite. 
There exists a sequence (An)neN of bounded finite polyhedral partitions of R3 con­
verging to A with respect to the metric D\oc such thatl(An) converges to 1(A) as n 
goes to co. 

Remark. A finite polyhedral partition having finite perimeter is bounded. 

Remark. It seems that this approximation problem cannot be solved easily with 
the help of the corresponding approximation result for one Caccioppoli set (Propo­
sition 6.9). The main obstacle is that it is not possible in general to approximate a 
Caccioppoli set by polyhedral or C°° sets from the outside or from the inside: see 
[41, Remark 1.27] and [40]. If we start with a Caccioppoli partition and we approx­
imate separately each set of the partition by a polyhedral set with Proposition 6.9, 
then we get a collection of sets whose union might have plenty of holes and we are 
not able to control the surface energy of these holes. This is the reason why we use 
the strong approximation result of Theorem 11.6. 

Proof. Let A be a Caccioppoli partition of E3 such that 1(A) is finite. By Lemma 
11.3, the collection A contains exactly one set Aoo such that £3(Aoo) = co. This set 
satisfies in addition C3(R3 \ A^) < co. It follows that 

£3(A) = C3(R3\A00) < oo . 
AeAMA^} 

Therefore, for each positive £, there exists at most a finite number of sets A in A 
such that C3(A) > t. Thus there exists an arrangement (A(i),i € N) of A such that 

V i e N C3(A(2i)) > C3(A(2i + 2) ) , A(2i + 1) = 0 . 

For n in N, let An be the collection of sets 

{ A(i) :0<i<n} U { c u p { A(i) :i>n}} \ { 0 } . 

Each An is a Caccioppoli partition of R3 having finite cardinality. Moreover 

D(An,A) < ^ T r 3 ^ ) ) , X(A„) < 1(A). 
i>n 

The sequence (*4n)neN is a sequence of finite Caccioppoli partitions of E3 converging 
towards A and such that (T(An))neN converges towards 1(A). It is therefore enough 
to prove the claim of the Theorem for A a finite Caccioppoli partition. 
For r positive, let Ar be the bounded Caccioppoli partition defined by 

Ar = {ADB(0,r) : Ae A, A^A^} U { A^ U (E3 \ B(0, r)) } . 
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Clearly Ar converges to A for the metric D\oc as r goes to co. By Lemma 6.7, for 
Ti1 almost all positive r, 

X((R3 \ A o o ) n S ( 0 , r ) ) < X(R3 \A00) + ||r||00^2((E3 \Aoo)ndB(0,r)) 

and for any A in A \ {Aoo}, for Ti1 almost all r, 

I ( A n B ( 0 , r ) ) < 1(A) + \\r\\oon2(AndB(0,r)). 

Moreover X((R3 \ A ^ n ^ O , r)) = X(AooU(R3 \B(0, r))). Summing all the previous 
inequalities, we obtain that, for Ti1 almost all r, 

X(Ar) < 1(A) + ||r||007^2((E3 \ Aoo) n dB(0,r)) . 

Let £ be positive. Since £3(R3 \ A^) is finite, then the set { r > 0 : H2((R3 \ 
Aoo) n 5-8(0, r)) > e } has finite H1 measure (less than £3(R3 \ A^/e). Certainly 
there exist arbitrarily large values of r such that the above inequality holds and 
H2((R3 \ Aoo) C)dB(0,r)) < e, whence l(Ar) < 1(A) +e||r||oo. For r large enough, 
we have also D\oc(Ar,A) < e. Therefore we need only to prove the approximation 
result for bounded Caccioppoli partitions. 

Let us consider now a finite bounded Caccioppoli partition A such that 1(A) is 
finite. We write A = { A$, A\,..., Ah } where A\,..., A^ are bounded and the 
sets Ao,...,Ah have finite perimeter. Let e belong to ]0, l/2[. We apply the 
approximation result of Quentin de Gromard to each set AQ , . . . , Ah. For each i 
in { 0 , . . . , h}, there exists a set Li of finite perimeter, a C1 function fi : R3 \-> R, 
a compact set d, an open set Vi and an open bounded set Bi such that, setting 
Fi = { x € R3 : fi(x) > 0 } , the set Vi fl dF{ is the hypersurface { x G Vt : fi(x) = 0 } 
and 

Ci C Bi C Vi C {x e R3 : dfi(x) ± 0 } , C i C ^ H dFi, 

L< n B< = F< n B<, Vi fl <9*Fi = Vi H , 

Vx G Ci ^ ( a : ) = VFi(x) = -\dfi(x)\~xdfi(x), 

£3(Fi) < e , £3(AiALi) < e , 

W2(5Fi n (Vi \ d)) < e, H2(d*Ai \d)<e, U2(d*AiAdLi) < e, 

U C V2(Ai,e), R3 \ L i c V2(R3 \ A i , £ ) . 

Since A is a Caccioppoli partition, then the sets d*Ai fl d*Aj, 0 < i < j < h, are 
pairwise disjoint, and so are the sets Ci fl Cj , 0 < i < j < h. It is possible to choose 
the open sets Vi, 0 < i < h, in such a way that the sets Vi fl Vj, 0 < i < j < h, are 
also disjoint. At the beginning of the proof of Theorem 11.6, the compact sets Ci, 
0 < i < h, are chosen by applying Egoroff Theorem; using the exterior regularity 
of the measures H2\d*Ai, they are then approximated from outside by the sets Vi, 
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0 < i < h. We perform simultaneously this step for all the sets and we impose that 
each set V* is close enough to d. If we set 

$ = ( l /3 )min{d2(Ci nCj,Ck CiCi) : 0 < i,j,k,l <h,i<j,k<l, (ij) / ( M ) } , 

then if; is positive (the sets d fl Cj, 0 < i < j < h, are disjoint and compact) and it 
is enough to require that V{ is included in V2(C*, for each i in { 0 , . . . , h } . 
For any i in { 0 , . . . , h}, 

n2(dLi\Ci) < H2(dLi\d*Ai)+H2(d*Ai\Ci) < 2e. 

Therefore, if we set H = cup { dL{ \ B{ : 0 < i < h } , then H2(H) < 2{h + l)e. 

Setting C = cup { d fl Cj• : 0 < i < j < h } , 

n2(dLi\C) < H2(dLi\Ci) + H2 (Ci\cup{Cj : 0 < j < h,j ^ i}) 

<2e+n2(Ci\n(Ui+a?in(Uia?i)a?i-a?icup{d*Aj 

+ n2(cup {d*Aj \Cj:0<j< hj ? i }) 

< (h + 2)e. 

Setting G = cup { dL* : 0 < i < h } , we get U2(G \ C) < {h + l)(/i + 2)e. Moreover 
M3 \ 40, . . . , Ah are bounded, and so are dLo,..., dL/j. It follows that G is 
compact. For each i in { 0 , . . . , h}, we apply Lemma 6.10 to the set dFi fl clo B\ and 
the hypersurface dFi fl V% (since 1?« is bounded, then dFi fl c l o ^ is compact): 

3Mi>0 V(5>0 3 ^ > 0 Vx,y e dFiDcloBi 

\x-y\2 <rji d2(2/,tan(9Finyi,ar)) < MiS\x - y\2 • 

For a point x belonging to C^, the tangent plane of dFi n Vi at x is precisely 
hyp (#, J/(v4, a:)). Let M be the maximum max{ 1, M o , . . . , Mh } and let 8 in ]0, l/2[ 
be such that 28M < e. For i in { 0 , . . . , h}, let rji be a positive real number associated 
to 8 as in the above formula and let rj = min { rjo,..., rjh } . Let also 

p = (1/6) min { d2(Ci, IR3 \ £ . ) : 0 < z < h } 

Since each set Ci is a compact subset of the open set Bi, then p is positive. For each 
A in .4, the map x G d*A z/^(rc) G 52 is measurable with respect to the measure 
%2\d*A, therefore the map x G d*A ^ v(A,x) G PS2 is measurable with respect 
to 1-L2\d*A- By Lemma 11.2, for V2 almost all x in d*A, 

lim n(Ui ^ ( B f o r J n d V l ) = 1, 

lim 
r->0 

1 
7Cr2J B(x,r)f)d*A 

T(v(A,y))dH2(y) T(V(A, X)). 
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Let d**A be the set of the points of d*A where the two preceding identities hold 
simultaneously. Clearly H2(d*A \ d**A) = 0. For any x in d**A, there exists a 
positive r(x,e) such that, for any r <r(x,e), 

\ri2(B(x,r)nd*A)-7rr2\ < enr2, 

I ¿ 7 r(v{A,y))dn2{y)-r(v(A,x))\n(Ui +a?i) - a < e . 
l7rr JB(x,r)nd*A 1 

The family of balls B(x,r), x G d**A, r < min(r(x, e), e, n, p), is a Vitali relation for 
C. By the standard Vitali covering Theorem [34, Theorem 1.10, or chapter 4], we 
may select a finite or countable collection of disjoint balls B(xi,ri), i e i , such that: 
for any i in / , Xi belongs to C, < min{r{xi,e),£,r},p) and 

either U2(c\ \<JB(xi ,r i)}n(Ui +a?i) -a?i = 0 or J^r? = oo . 
iei iei 

Because for each i in / , n is smaller than r(xi,e), 

7r(l-e)^2r2 < H2(0*A) < oo 
iei 

and therefore the first case occurs, so that we may select a finite subset Io of I such 
that 

H2(C\ |J B(xurij) < e. 

ieio 

We have a finite number of disjoint closed balls B(xi,ri), i e Io- By increasing 
slightly all the radii r*, we can keep the balls disjoint, each r$ strictly smaller than 
min(r(xi,e),e,rj, p) for i in Io, and get the stronger inequality 

?{2(C\ |J intB(xi,ri)} < s. 
ieio 

We deduce from the preceding inequalities that 

%2({G\ (J mtB{xun))\JH) < n2(G\C)+e + n2(H) 
ieio 

< (h + + 2)e + e + 2(fc + l ) e . 

By the very definition of the Hausdorff measure %2, there exists a collection of balls 
B(Vj,sj)i 3 £ J, such that: for any j in J, yj e (G \ \JieIo int B(xi,ri)) U iJ, 
0 < Sj < e, 

^ns2 < (ft + l)(ft + 2)e + e + 2(ft + l)e + e = (/i + 2)(h + 3)e, 

[G\\J int B(xi,ri) J UJff C | J i n t B ^ , ^ ) . 
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Since the set appearing on the left-hand side of the above inclusion is compact, we 
might assume in addition that J is finite. For each i in IQ, let Pi be a convex open 
polygon inside the plane hyp (xi, v(A, Xi)) such that 

disc(xi,ri,i>(A,Xi)) C Pi C disc (#¿,7^(1 + S),i/(A,Xi)), 

\H\dPi) - 27rr<| < 25irn , \H2(Pi) - ixr2\ < 8nr2 . 

We set a = M8(l + 8) (thus a < 1). For i in J0, let -D* be the cylinder cyl (P$, ar»). 
The sets cup { A : i E Io> ^ € fl (7/ } , 0 < fc < / < /i, are pairwise disjoint. 
Indeed, let i be an index in Jo such that Xi is in fl C\\ because < p, 

Di C B(xi,3p) C Bkf)Bi C VkDVi 

and the sets fl Vi, 0 < A: < / < h, are disjoint. 

For each j in J, let Qj be an open polyhedral set such that 

B(yjlSj) C Qj C B(yj,2sj), H2(ag,) < 8TTS2 . 

We set for I in { 0 , . . . , h} 

Ti = LtU 

(J cup { Di : i € I0, Xi e Ck H Ct } \ [j cup { D{ : i e J0, X; G D Cz } \{J Qj 
0<k<l l<k<h j£J 

and Th+1 = R3 \ cup { Ti : 0 < / < h } . 
We claim that the collection T = {To , . . . ,Th+i } almost answers the problem. First 
cup T — R3. Secondly for each I in { 0 , . . . , h } , 

TiAAi c (AiALi) U |J Di U |J Qj 
ieio jeJ 

whence 
r3(TzAAz) < e + 5 3 27rr2(l + 8)an + 53(4/3)TT(2Sj)3 . 

Yet each r{ is smaller than e, J2iei0 ^ 2^2(d**4), EjgJ71"^ < + 2)(^ + 3)e, 
whence 

C3(TiAAt) < e + fe«2(0U) + 11(A + 2)(/i + 3)e. 

Moreover 7V|_i is included in cup {Qj : j € J} U cup {Ai\Li:0<l<h} whence 

C3(Th+l) < 5 3 r 3 ( ^ A L z ) + 53(4/3)7r(2Si)3 < (h + l)e + ll(ft + 2)(A + 3)e. 
0</</i jGJ 
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It follows that 

D{A,T) < (h + 2)e + 6eH2(d*A) + ll(h + 2)(h + 3)e 

and the collection T approximates the collection A with respect to the metric D. We 
show next that T is polyhedral. Indeed, for any k < I in { 0 , . . . ,h}, any i in Jo such 
that Xi belongs to Ck n C\, ri is smaller than p and n, so that B(xi,ri) C Bk fl Bi, 

dLk n B(a?i, r<) = dFk n £(rc<, r<), dL{ n £ (x i , r<) = dFx n J5(x<, r<), 

Vx G U &F,) PI B{xun) d2(x,hyp y (A,xt))) < MS\x - Xi\2 , 

whence 

(dLkUdLi)C\B(xi,ri) C cyl (disc r», i/(.4xi)), Mfrj) C int A . 

Next, for m distinct from k, I, since B(xi,ri) C fl J?/ and BkC\BiC\ Bm — 0 , then 
<9Lm fl B(xi,ri) C &Lm \BmcH. Thus 

G PI B(xi,ri) C ((dLk U <9L/) fl B(xi,ri)) U i f C i n t A U i J . 

The sets Qj , j € J, cover (G \ \JiGj0 int B(xi,ri)) U H, hence the sets int Di, i € Jo, 
Qj, j G J, cover G. The definition of the sets Tm, 0 < m < h + 1, implies that 

( J « r m c ( G \ ( U int A U ( J Q j ) ) u ( J dDiu\JdQj = U flAuy a g j 

o<m<h+i ^ iei0 jeJ ' ieio jeJ ieio jeJ 

and the collection T is polyhedral. We next refine the above inclusion in order to 
estimate the surface energy of T. Let us again consider k < I in {0,... ,h} and % 
in 70 such that Xi belongs to Ck n C\. Let ¡3 = V l — a2. We set 

d = disc (a:* + ariVLk(xi),f3ri,v(A,Xi)) = disc (x* - arii/Ll(xi), f3ri,u(A,Xi)) . 

We claim that Gi is included in the interior of L/ and in the interior of E3 \ Lk. 
Indeed, Gi is included in B(xi, ri)ndDi and therefore Gi does not intersect dLkUdLi. 
Since VLk(xi) = VAk(xi) = —VLt(xi) is the exterior normal vector to Lk at Xi and 
the interior normal vector to L\ at x^ then Gi is included in int n int (E3 \ Lk). 
The sets 

cup { Di : i e Io, Xi G Ck> nCi> } , 0 < k' < V < h 

being closed and disjoint, looking at the definition of Tk and TJ, we see that for a 
sufficiently small neighbourhood Wi of G« 

WiCiTi = W i f l L , \ ( J Q j , Win r * = WinLfc = 0 . 
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It follows that 
8Ti n d C ( J dQj , dTkf)Gi = 0. 

jeJ 

Therefore 

d*rc( U arm\\jGt)u( ( J a r T O n | J c U C ^ A G ^ u l J ^ . 
^0<ra</i z€/o ' ^0<m</i ie/0 ' ieio jeJ 

Finally 

x ( d T ) < 5 3 x ( a A \ ^ ) + 5 3 x ( a o , ) 

< 5 3 7rr2(l + *)r( i /(A + IN loo ( 5 3 7TT2 (4(1 + S)a + 1 + 6 - + 5 3 87TS2) 
i€l0 *̂ ô 

< (1 + S)X(A) + 4eW2(flU) + ||r||oo(2?l2(d*A)(UMS + + 8(ft + 2)(ft + 3)e) 

< J(.4) + e(l(A) + X ( ^ ) (4 + WUrllooJ/rmin + S l M U ^ + 2)(ft + 3)) , 

where we have used the condition 26 < 2Mb < e in the last step. The only remaining 
problem is that the collection T does not necessarily satisfy C3 (overlap T) = 0. This 
issue is solved through the next Lemma. 

Lemma 11.9. Let T be a finite collection of bounded polyhedral subsets of E3. 
There exists a finite collection U of bounded polyhedral subsets of E3 such that 

cup U = cup T, X{U) < X(T) , C? (overlapU) = 0, 
D(U, T) < (card T - 1) card TC3(overlap T ) . 

Proof of Theorem 11.8 continued. We apply Lemma 11.9 to the collection T. 
Because of the choice of Th+i, we have cupT = E3. Moreover 

£3(overlapT) < 5 3 £ 3 ( r * n r 0 
0<k<l<h 

< 5 3 £3(TkAAk) + C3(TiAAi) < h(h + l)D(T,A). 
0<k<l<h 

Therefore the resulting collection U is a bounded finite polyhedral Caccioppoli par­
tition satisfying 

D{U, A) < e((h + 2) + 6X(A)/rmin + ll(ft + 2)(ft -f 3)) ( l + ft(ft + l)2(ft + 2)) , 

X(U) < X ( ^ ) + e ( x ( ^ ) + X ( ^ ) ( 4 + 1 4 ^ ^ n ( U i +a?i) -a?in(Ui +a?i) -a?in(Ui +a?i) 
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Since T{A) is finite and h is fixed, we have the required approximation. • 

P r o o f o f Lemma 11.9. We use an algorithm to build the collection U starting 
from T. Since we work up to Lebesgue negligible sets, we might assume that each 
polyhedral set has positive density at each of its points. In particular, for any 
element T of T, we have then U2(dT \ d*T) = 0. We initialize the algorithm with 
the collection T° = T. We describe next the /i-step of the algorithm. Suppose that 
we have built the collection Th for some h in N. If C?(overlap Th) = 0, the algorithm 
stops. Otherwise, let Ti, T2 be two sets of the collection Th such that £3(T1nT2) > 0. 
Let T[ = 7i \ T2 and V2 = T2\T1. Since C3{TX n T2) < C3(overlap Th), then 
£3(T[ATi) < C3(overlapTh) and C3(T^AT2) < C3(overlapTh). Moreover 

n(Ui +a?i) -a 

vTl(x) if x e dTZ\ \cloT2 

-i/Ta (x) if re € d*T2 D int Ti 

uTl (x) if x e d*T2 H a*Ti and i/Tl (a;) + i/Ta (a;) = 0 

This result is quite direct here because we deal with polyhedral sets. The remaining 
set where ^TI\T2(x) might be non-zero is included in (<9Xi \ <9Ti) U (8T2 \ d*T2), 
which has zero H2 measure. See [74] for a more general result. Using the symmetry 
and the positivity of r, 

I{T[) < f T{VTI (X)) dH\x) + f T{VT2 (x)) dn2(x) + [ T{VTI (X)) dH2(x), 
•/d*Ti\cioT2 Va*r2nintTi â*Tina*r2 

Z(n) < [ T(vn(x))dn2(x)+ I r{vTl{x))dU2{x)+ [ T{vT2{x))dH2{x). 
ia*r2\cioTi â*TinintT2 Jd^na*^ 

Summing the two inequalities yields X{T[) -\-X{^r'2) — 1(T\) +Z(T2). Two cases can 
occur. 
• If T(T[) < X(Ti), then we set Th+l = { T[ } U Th \ { T± } . 
• If I(TjJ) < 2(T2), then we set Th+1 - { V2 } U Th \ { T2 } . 
The collection Th+1 satisfies 

X(T/l_l_1) < X(Th), cup Th+1 = cup Th, overlap Th+1 C overlap Th, 

D(Th+\T) < D{Th+l,Th) + D(Th\T) < £3(overlapT/l) + JD(r/ l , r) . 

Necessarily the algorithm stops at some step h less than (card T— 1) card T. Let U be 
the final collection obtained at the end of the algorithm. Then U is a finite collection 
of bounded polyhedral subsets of E3 satisfying cup U = cup T, 1{U) < ^ ( T ) and 

D(U, T) < (cardT - 1) cardTC3(overlapT). • 
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11.3. The Wulff Theorem for Caccioppoli partitions 

Let A be a cubic box in E3 such that £3(A) = 1. Let A in ]0,1[ be such that some 
translate of the set (A/£3(>Vr))1/3yV7r is included in the interior of A. Let us define 

E(A) = {Ae BC(E3) : V A G A either C3(A) < oo or C3 (A n A) < 1 - A } . 

Notice that E(A) is closed in BC(E3) for the metric D. We consider the following 
problem: 

(P) minimize 1(A) among all Borel collections A in E(A) . 

Theorem 11.10. The solutions to the problem (F) are the collections 

AWT(X,\) = { x + (A/£3(Wr))1/3Wr,E3\(x + (A/£3(Wr))1/3>Vr)}, x G A(A), 

where A(A) = { x G A : x + (\/£3(WT))l/3WT C clo A } . 

Proof. We first compute the value of the infimum of the problem (P). Let A be an 
element of E(A) such that T{A) is finite. In particular, A is a Caccioppoli partition 
of E3 containing exactly one set Aoo such that C3(Aoo) = oo (by Lemma 11.3). 
Since A belongs to E(A), then C3(Aoo n A) < 1 - A and £3(E3 \ Aoo) > A. By the 
Wulff Isoperimetric Theorem 6.11, 

1(A) > I(R3 \Aoo)n(Ui +a?i) -a?i>$(\/C3(WT))2'3l(WT). 

Therefore the infimum of the problem (P) is larger than the above value. This value is 
realized by the elements AyvT (%, A), x G A(A). Therefore these elements are solutions 
to the problem (P). It remains to prove that they are the only solutions. Let A be a 
solution to the problem (P). Then T(A) is equal to (\/C3 (WT))2/31(WT) and A is a 
Caccioppoli partition of E3 containing exactly one set A^ such that C3(Aoo) = oo. 
Since A belongs to E(A), then £3(^oo D A) < 1 - A and £3(E3 \ Ax>) > A. However 

(X/C3(WT))2/3l(Wr) > 1(A) > liAoo) = I(R3 \AQO). 

By the uniqueness statement of the Wulff Isoperimetric Theorem 6.12, up to a 
negligible set, the set E3 \ is a translate of the suitable dilation of the Wulff 
crystal, that is, there exists x in E3 such that 

£ 3 ( ( E 3 \ A o c ) A ( x + (A/£3(>VT))1/3>Vr)) = 0. 

Thus C?(E3 \ Aoo) = A. Since C? (A n (E3 \ A^)) > A, then E3 \ A^ \ A is negligible 
and x belongs to A (A). Let A be a set in A distinct from A^ (by definition of a 
collection, C3(A) / 0). Necessarily A is included in E3 \ A^ and 

1(A) > X(Aoo)+ fn(Ui +a?i)-(vA(x))dU2(x)^T(A00)+rm-inV(A,mtR3\A00). 
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Thus V(A, intM3 \ AQO) = 0. By the isoperimetric inequality relative to the balls, 
for each ball B included in R3 \ Aoo, either A \ B or B \ A is negligible. Since 
R3 \ AOQ = x + (A/£3(Wr))1/3>Vr is convex and A is not negligible, necessarily 
£3(AA(R3 \ Aoo)) — 0. In conclusion, up to negligible sets, the collection A consists 
of two sets, the translated and dilated Wulff crystal x + (A/£3(Wr))1/3>Vr and its 
complement, that is, A = AyvT(x, A) where x belongs to A(A). • 

Proposi t ion 11.11. If (An)neN is a minimizing sequence of the variational prob­
lem (P), then there exists a sequence (xn)n£N in A(A) such that D(An, Ay\>T (xn, A)) 
converges to 0 as n goes to oo. 

Proof. Let (An)neN be a minimizing sequence of the variational problem (P). We 
might suppose that the sequence (T(An))neN is bounded. Then each collection An 
is a Caccioppoli partition of R3 and contains exactly one set An,oo having infinite 
volume (by Lemma 11.3). The sequence (Anj0o)neN is such that 
• V n e N £3(An An,oo) < 1 - A. 
• l i m s u p ^ X ^ o o ) < (X/C3(WT))2/31(WT). 
Therefore the sequence 

((C3(WT)/£3(R3 \^ ,oo))1/3(K3 Un,oo))neN 

is a minimizing sequence for the problem (P) denned at the end of chapter 6. By 
Proposition 6.13, there exists a sequence (ar„)„£N such that 

£3((R3 \An>00)A(*„ + (A/£3(Wr))1/3WT)) = 

C3(Ant00A(R3 \ (xn + (\/C3{WT))^3WT))) 

converges to 0 as n goes to oo. Necessarily the distance between xn and A (A) goes 
to 0 and C3(R3 \ A \ 

An,oo) goes to 0 as well. Let An^\ be a set of maximal volume 
in An \ {An,oo}, and let An,2 be the union of all the remaining sets of An, that is, 

An,2 = cup (An \ {AN?OG, An,i}) • 

Since An is a partition, then C3(An,i \ A), i = 1,2, go to 0. 
We claim first that lim i n f £ 3 ( A n , i ) is positive. By absurd, suppose that it is 
not the case. Then we can extract a subsequence (not relabeled) such that 

lim sup C?(A D A) = 0. 
n^oc AeAA{AnQo} 

By Theorem 10.8, we can reextract a subsequence converging with respect to the 
metric D\oc towards a Caccioppoli partition A having a finite surface energy. Let Aoo 
be the unique element of A having infinite volume. Then we have simultaneously 
C3(Aoo fl A) < 1 — A (because Aoo is the limit of a subsequence of (Anj00)nGN) and 
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for any A in A \ {-AQO}, C3(A fl A) = 0, which is impossible. 

We claim next that C3(An^) converges to 0. By absurd, suppose that it is not the 
case. Then we can extract a subsequence (not relabeled) such that 

liminf £3(An,2 fl A) > 0 . 

Let us consider the sequences (An,i fl A)neN, (An,2 H A)nEM- These are subsequences 
of Borel subsets of the bounded set A, moreover their perimeters are uniformly 

bounded: 

P(An,i n A ) < V(An4, int A) + V(A) < V(An) + V(A), ¿ = 1 , 2 . 

By Theorem 6.1 , we can reextract converging subsequences (not relabeled): there 
exist two Borel subsets Ei, E2 of A such that 

lim C? ((An,i fl A) AEA = 0 , i = 1,2 . 
n—too 

Let E be the collection { Ei, E2, M3 \ (Ei U ^ ) } - Then E is a Caccioppoli partition 
having finite perimeter and 

lim C3(An^AEi) = 0 , ¿ = 1 , 2 , 

lim £3(Ani0OA(M3 \ (Ei U E2))) = 0 
n—too ' 

whence C3 (A fl R3 \ (Ei U E2)) < 1 - A. By the lower semicontinuity of X, we have 

I(E)^ lim inf 7: (^(^-n,oo 
) + Z ( A „ i ) + J(An,2)) < liminf J( An) • 

n—>-oo z n—>-oo 
Therefore £ is a solution to the problem ( F ) . However neither Ei nor F2 is negligible, 
which contradicts Theorem 11.10. In conclusion, we have linin-̂ oo £3(An,2) = 0 and 

lim £3(An,1A(xn + (A/£3(>Vr))1/3>Vr)) = 0 

so that l im^ooD (An, AwT{xn, A)) = 0 . • 

Corollary 11.12. For am/ positive 5, there exist positive s,r] such that 

inf { 1 ( A ) : A e E (A-e ) , inf D(A, AwT(*,A)) > <J ) > (A/£3(Wr))2/3X(>Vr)+7?. 

Proof. If the result was false, there would exist a positive S and a sequence (An)nEN 
such that for all n in N 

Z(An) < (X/C3(Wr))2/3X(WT) + 1 /n , An € E(A - 1 / n ) , 

Vz € Л(Л) DÍAnAw.faX)) >S. 
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The last term converges towards S as n goes to oo. Hence for n large enough, 

> X3nS - D(XnAWT(x,X),AwT(x. A)). 

\/x e A'(A) D(XnAn,AwT(x, A)) > J/3. 

This stands in contradiction with Proposition 11.11. • 
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For n in N, let An = (A — l/n)-3A3. For any positive p, the sequence (XnAn)ne^ 
is a minimizing sequence of the problem (P) associated to A and the enlarged box 
A' = (1 + p)A (the collection XnAn is the collection { XnAn : An G An })• We choose 
p small enough so that 

V X G A ' ( A ) 32/eA(A) D(AwT(x,\),AwT(y,\)) < 6/3. 

Yet, for x in A (A), using the hypothesis on An, 

D(XnAn,AwAx,X)) > D(XnAn, XnAwT(a:, A)) — D(XnAwT(x, A), Ay^T (x, A)) 



C H A P T E R 12 

PROOF OF THE LDP FOR THE W H O L E CONFIGURATION 

In this chapter, we prove the large deviation results for the whole configuration. 
After some preparatory results, we prove the large deviation upper bound and the 
large deviation lower bound, and we end with the proof of Proposition 2.10. 

12.1. Preparatory results 

Throughout the chapter, we will use extensively the notation and the construc­
tions of chapter 9. We consider positive integers k, I with k > 6, / > 130 and 3k < L 
We define for A a collection of connected subsets of Z3 

fifa(.4,M) = {f i fa(A,M) 'AeA}. 

Proposition 12.1. For k large enough, there exist positive constants a(k), b(k), 
c(k), such that for any compact set K of diameter larger than 2 , any s in R+, any 
I in N satisfying lndianiooif < l/k, 3k < I, a(k)\nl < I, we have 

P(P(f i fa(C ,M ) , in t i f ) >s) < b(k)exp(-c(k)s). 

Proof. Suppose that { P(fifa (C, k, / ) , int K) > s} occurs. Then there exist open 
disjoint clusters C\,..., Cr such that 

V i e { l , . . . , r } afifa(Ci,A:,/) flint K ^ 0 , 

V(tifa.(Ci,k,l),mtK)>s. 
l<i<r 

Let A be the smallest cubic box containing Voo(K, k). For any connected set A of Z3, 
we have the inequality (see Lemma 9 .14) 

7>(fifa(A ,M),intK) < 6fc2card ((fcc^vfiU (fc_1fat (A, fc),//&)) D A) . 

Therefore, if we set Fi = At ^ovfill (&-1fat (d, k),l/k) for i in { 1 , . . . , r } , then 

^2 card ^ n A > sk~2/6. 
l<i<r 
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For each i, the set Fi is included in clo V00(C^, 3k/2). Hence if a point x belongs to Fi, 
then d intersects the box A(x,4k). The number of distinct clusters intersecting a 
box A(x,4k) is certainly less than (4k)3, whence 

card (Fi U • • • U Fr) fl A > (4k)~3 ] T cardFfPlA > sk~5/384. 
l<i<r 

By construction, the kh3 components of Fi U- • -UFr on kZ3 have a cardinality larger 
than I/6k, because this is already true for each set F i , . . . ,Fr (see the discussion 
after Definition 9.7). Thus the kh3 components of (Fx U • • • U Fr) D Voo (A, k + l/6) 
which intersect A have also a cardinality larger than I/6k. Indeed, let R be such a 
component. If R intersects Voo(A,fc + Z/6) \ Voo (A, 1/6), then its diameter is larger 
than 1/6, and by Lemma 9.3, cardi? > I/6k; if R does not intersect Voo (A, k + / /6) \ 
Voo (A, 1/6), then it is a kh3 component of F1U - • -UFr on kZ3, whence cardie > I/6k. 
We use now the variables Xk defined at the beginning of the proof of Proposition 9.12. 
By Lemma 9.13, Xk(xk) = 1 for any xk in (Fi U • • • U Fr) n Voo(A, k + 1/6). By 
Corollary 7.4, the probability of the event {Xk(xk) = 1 } is less than bexp(-ck) 
for any xh in kZ3, where b,c are two positive constants. Moreover for any xk 
in Voo (A, k + / /6 ) , the box A(xk, 5k) is included in Voo(A,4fc + 1/6). Therefore the 
event { ̂ (fifa (C, k, I), int K) > s } is included in 

j c a r d j x * G kZ3 : cardC£(x*,Voo(A,4fc•+ //6),Xk) > l/6k} > sk~5/384^. 

We use now the bound given by Lemma 7.9 with 

A = Voo(A,4fc + Z/6), a = 5, ¡3 = I/6k, £ = bexp(-ck) 

to get 

P(V(nfa(C,k,l),'mtK) > s) 

< P(c^vd{xk e kZ3 :c&rdCl(xk,Voo(A,4k + l/6),Xk) >l/6k} >sk~5/3S^ 

< ] T 2exp ^(12A://)lncard(Voo(A,4fc + / /6)nA:Z3)+iln6+i5-3(ln6-cfc)) . 
i>sk-5/384 

For any compact set K of diameter larger than 2 and any integer k larger than 6, 

cardVoo(A,4fc + Z/6)n kZ3 < k-3C3{Voo(A,5k + 1/6)) 

< A:-3(diamoo^ + 12fc-h//3)3 

< 64/3(diamooK)3 < /5(diamooX)3. 

We are interested in the regime where fclndiamoo^ < I- Combining the preceding 
inequalities, 

P(V(nfa(C,k,l),mtK) >s) < ] T ^exp(36i+60ik\nl/l+i\nb+i5-3(lnb-ck)y 

i>sk~5/384 
The preceding inequality yields the desired bound for k and I/In I sufficiently large. • 
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Lemma 12.2. Let U be a bounded Borel set in M3. For k large enough, there exist 
two positive constants b(k), c(k) such that: for any I in N, any s in M+, satisfying 
5k < I, kins < I, 

P(3C e C,CnVoo(U,l) ^0,s< diarriooC < oo) 

< (diamooU +1)3 b(k)exp(-c(k)s). 

Proof. Using the translation invariance of the model, we have 

p(3C e C, CD Voo(J7,Z) ^ 0 , 5 < diamooC < oo) 

< ] T P(s < diamooC^) < oo) < (dianioo^ + I)3 P(dianiooC(0) > s) . 
x£Voo(U,l)nZ3 

By the hypothesis, we are in position to apply Proposition 9.12, which yields the 
desired upper bound. • 

Notation. In the following statements, for yl in ZZ3, we denote by Yi(yl) the indi­
cator function of the event 0(A(yl, 6Z), l)c. 

Lemma 12.3. Let C\, C2 be two distinct open clusters of diameter strictly larger 
than I. Ify1 belongs to fat (Voo(Ci,Z) fl Voo(C2,Z),Z) then Yt(yl) = l. 

Proof. If yl belongs to fat (Voo (Ci, I) fl Voo (C2,1), I), then both C\ and C2 intersect 
the box A(yl,3l). It follows that the box A(yl,6l) contains two distinct clusters of 
diameter larger than Z and the event R(A(yl, 61), I) does not occur. • 

Lemma 12.4. For any compact set K, 

DK(Voo(C,l),nfa{C,k,l)) < l3c&rd{yl efat(K,l):Yi(yl) = l} 
+U0l2V(fifa (C, k, I), int K) + £^(Voo(dif, 2Z + 1)). 

Proof. Let (C(i),i € N) be an arrangement of the collection C. Let i belong to N. 
We define C'{i) = Voo(C(i),l) if dianiooC(i) > I and Voo(C(j),l) ^ Voo(C(t),0 
for all j in {0 , ...,i — 1} and we set C'(i) = 0 otherwise. We set also C"(i) = 
fifa (C(t), *, 0 if fifa (C(j), k, I) # fifa (C(t), *, Z) for all j in { 0 , . . . , i-1} and C"(i) = 
0 otherwise. The sequences [C'{i),i € N) and (C"(i),i € N) are arrangements of the 
collections Voo(C, Z) and fifa (C, k, I) respectively. We next compute C3K(C (i)AC" {%)) 
for i in N. We distinguish four cases: 
• doo(C(0, > I or C'(i) = C"(i) = 0 . In this case C3K(C'(i)AC"(i)) vanishes. 
In the remaining cases, we suppose that doo(C(i),K) < I and that diam00C'(i) > I. 
• C'(i) ^ 0 , C"{i) ^ 0 . By Lemmata 9.9,9.10 

C3K(C'(i)AC"(i)) < UOl2V(M<x(C(i),k,l),intK) 

+£3K(Voo(dK,2l + 1) n Voo(<?»,/)) • 
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• C'(i) = 0. Then there exists j < i such that Voo(C(j),l) = Voo(C(i),Z). But the 
clusters C(z), C(j) are disjoint, by Lemma 9.5 this case cannot happen. 
• C"{i) = 0. Then fifa (CO), M ) = fifa (C(z), k, Z) for some j < i. By Lemma 9.9, 
fifa (C(i), k, Z) is included in Voo(C(f),/). Applying Lemma 12.3, 

£^(fifa (C(«), M ) ) < /3card (fat (K> 0 n fat (fifa (C(»), *, 0 n fifa (CO), 5̂ 0 ,0 ) 

< /3card (fat (K, 0 Pi fat (Voo(C(z), Z) D Voo(CO), / ) , Z)) 

< /3card { yl e fat (K, I) : Yt(yl) = 1 } . 

We conclude finally that for any i in N, the quantity C3K(C'(i)AC"(i)) is smaller 
than 

Z3card{?/Z e fat(K,Z) : « ( 1 / ) = 1 }+140/2P(fifa (C, fc,Z), intK)+C3K(Voo{dK, 2/+1)) 

This gives the inequality stated in the Lemma. • 

Proposi t ion 12.5. For any compact set K, 

£?r (overlapfifa (C,fc,Z)) - (overlapVoo(C,/)) 

< Z3card { yl e fat (K, Z) : Yt{yl) = 1 } , 

C3K (fifa (C, fc, 0) > - /3card { G fat (If, /) : Yt(yl) = 1 } 

-140/2P(fifa (C, *, 0, int A") - £ ^ (Voo(<9X, 2/ + 1 ) ) . 

Proof. Lemmata 9.9,12.3 imply that 

overlapfifa(C,M) C overlap Voo(C,Z) C cup { A(yl ,1) : yl e ZZ3, Yt(yl) = 1 } , 

which yields the first inequality stated in the Proposition. 

Next, by Lemma 9.9, for any connected subset A of Z3 such that diamooA > /, 
fifa (A, k, Z) is included in Voo(A, Z), whence 

cup fifa (C,k,l) C cupVoo(£,0-

For yl in ZZ3, if A(yl,l) is not included in cup Voo(£, 0, then either there is no unique 
crossing cluster in A(yl,6l) or the crossing cluster C*(A(y/,6Z)) does not intersect 
A(yl,l), so that 0(A(yl,6l),l) does not happen and Yt(yl) = 1. Hence 

C3K (cup Voo(C, 0) > C3{K) - Z3card { yl G fat (K, Z) : Yi(yl) = 1 } . 

Moreover, by Lemma 9.10, 

C?K (cup Voo (C, 0 \ cup fifa (C, fc, / ) ) 

< £ ^ ( V o o № 2/ + 1)) + ¿3^ (cup Voo(C, Z) \ cup fifa (C, fc, Z) \ V o o № 2Z + 1)) 

< ^ ( V o o ( ^ , 2 / + l ) ) + Yl ^ (Voo(C, 0 \ fifa (C , f c ,0 \ V o o № 2 Z + 1)) 
CGC, diamooOZ 

< 140Z2P(fifa(C,*?,/)»inti0 + 4 ( V o o № 2 / + l ) ) . 
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These inequalities yield the desired lower bound for C3K (fifa (C, k, /)). • 

Of course, for a collection C of open clusters, we define 

aglu(C,0 = {aglu(C7,0 :CeC}. 

Lemma 12.6. For any compact set K, 

^(Voo(C,0,aglu(C,0) < 33l3c&rd{yl eVooiK^l) :Yi(yl) = 1} 

+8960Z2P(fifa(C, fe,0,intK) + C?K{Voo(dK, 51 + 1)) . 

Proof. Let (C(i),i G N) be an arrangement of the collection C. Let i belong to N. 
We define C'(i) = Voo(C(0,0 if diamooC'(0 > I and Voo(C(j)J) ^ Voo(C(0,0 
for all j in { 0 , — 1 } and we set C'(i) = 0 otherwise. We set also C"(i) = 
aglu (C(0,0 if aSlu (C(j)J) ± aglu (C(t'), 0 for aU j in { 0 , . . . , t - 1 } and C"(i) = 0 
otherwise. The sequences (C'(i),i € N) and (C"(i),i G N) are arrangements of the 
collections Voo(C,0 and aglu(C,Z) respectively. We next compute £3K(C(i)AC"(i)) 
for i in N. We distinguish four cases: 

• doo(C(i),K) > 51 or C'(i) = C"(i) = 0 . In this case C3K(C'(i)AC"(i)) vanishes. 
In the remaining cases, we suppose that doo(C(i), K) < 51 and that dian^C^') > /. 
• C'(i) 7̂  0 , C"(i) / 0 . We simply use the bound given by Lemma 9.15 (remark 
that since diamooC(0 > /, we do not need to take into account the first term 800Z3). 

• C'(i) = 0 . Then there exists j < i such that Voo(C(j),l) = Voo(C(0,0- But the 
clusters C(i), C(j) are disjoint, by Lemma 9.5 this case cannot happen. 
• C"{i) = 0 . Then there exists j in { 0, — , « " — 1 } such that aglu (C(j), I) = 
aglu (C(i), I). However the region aglu (C(i), /) contains exactly one open cluster 
of diameter strictly larger than /, which is precisely C(i). And so does the region 
aglu (C(j), I). Hence C(i) = C(j), which is impossible and this case does not occur. 
We conclude finally that for any i in N, the quantity C3K{C{i)AC"{i)) is less than 
the right-hand member of the inequality stated in the Lemma. • 

12.2. Proof of the upper bound 

From now onwards, the integer k is fixed and large (so that Proposition 12.1 
holds) and we replace the integer / in the previous constructions by a function f(n) 

from N to N such that 

lim n/f(n)2 = oo , V n G N f(n)>K\nn, 

where K = n{p) is a large constant (larger than the one given by Theorem 7.1, larger 
than 3k and large enough for the next Lemma to hold). We omit the variables k,l 

in the sequel, writing for instance fifaC, X(x), Y(x) instead of fifa (C, k, /), Xk(xk), 

Yi(xl). 
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Lemma 12.7. For K large enough, for any positive r, 8, 

lim sup —2 In p ( / (n )3 ( l -heard {x G A(0, rn2) n f(n)Z3 : Y(x) = l } ) 

+/(n)2P(fifaC,intA(0,rn)) >Jn3) = - o o . 

Proof. First n/f(n)2 tends to oo as n goes to oo, hence f(n)3 is smaller than 8n3/3 
for n large enough. Secondly, provided K is large enough, Corollaries 7.4, 7.8 together 
yield the existence of two positive constants 6, c such that for any n in N, 

p(/(n)3card{x G A(0,rn2) H/(n)Z3 : 1 » = 1} > 8n3/3) 

< fcexp ( - (c£/3)n2(n//(n)2)) . 

Thirdly, by Proposition 12.1, for some positive constants b(k),c(k), 

P(/(n)2^(fifaC,intA(0,rn)) >6n3/3) < b(k)exp(-c(k)(8/3)n2(n/f(n)2)). 

These three facts imply the claim of the Corollary. • 

Using Lemmata 10.7,12.4,12.6,12.7 and Proposition 12.5, we see that the random 
collections of sets 

n_1Voo(C, f(n)), n_1fifaC, n_1agluC, n""1part fifaC 

are exponentially contiguous with respect to the metric Moo that is, for any compact 
set K and any positive 8, 

lim sup A2lnP(JD^(n-1V00(C,/(n)), n"1****^ > s) = -00, 
n—Voo n \ ' 

where **** stands for either among fifa, aglu, part fifa. At the level of the large 
deviations of order n2, we might work with either of these four objects. We prove 
the large deviations upper bound in a standard fashion, by proving X-tightness 
together with a local estimate. 
• X-tightness. Let A, 8 be positive and let K be a compact set. We write, for any 
positive a, 

p(inf { ^ ( n ^ V o o ^ / M M ) :^GBC(E3), X(A) < A} >(j) 

< p(DA:(n-1Voo(C,/(n)),n-1fifaC) ><5/3) 

+ p(DK(n-1fifaC,n-1partfifaC) > J /3) 

+ P(3C G C, C n V o o № / ( n ) ) ^ 0, an2 < diamooC < 00) 

+ P 
inf j ^(n^partf i faC,^) : .4 G BC(E3), 1(A) < A | > J/3, any open 

^ finite cluster C intersecting Voo(nK, /(n)) has diameter less than an2 
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We consider successively each term of the right-hand side. We have already con­
trolled the first term with Lemmata 12.4,12.7. For the second term, we have, using 
Lemma 10.7, 

p(DA:(n-1fifaC,n-1partfifaC) > ¿ /3 ) 

< P^max (c3K (overlap n_1fifaC) ,C3(K \ cup n'1 fifa C)) > ¿ /3 ) . 

Proposition 12.5 and Lemma 12.7 imply then that 

limsup—2lnP(JDK(n~1fifaC,n~1partfifaC) > S/s) = - o o . 

For the third term, we apply Lemma 12.2 to get 

p(3C G C, CnVoo(nK,f(n)) ^ 0 , an2 < diana^C < oo) < 

(ndiamooK + /(n))3 6exp(—can2) 

where 6, c are two positive constants depending on k. We finally consider the last 
term. Let £ be the collection 

£ = p a r t | f i f a C : C G C , c a r d C < o o , C n V o o ( n K , / ( n ) ) / 0 } . 

Certainly, we have DK (n^S, n~1 part fifaC) = 0. Thus, if 

inf { ^ ( n ^ p a r t f i f a C M ) : A G BC(E3), 1(A) < A } > 6/3 

then 1(8) > n2A. Suppose next that any open finite cluster C intersecting the set 
Voo(nK, f(n)) has diameter less than an2. Then, using Lemma 11.1, we have 

2(£) < ||r||00P(fifaC,intV0o(nA',2/(n) + an2)) . 

For n sufficiently large, we have 

In (ndiamooK + 2/(n) + an2) < f(n)/k, 3k < / ( n ) , a(k) ln / (n) < f(n) 

(a(k) is the constant appearing in the hypothesis of Proposition 12.1). For such large 
values of n, combining the previous observations and applying Proposition 12.1, we 
see that 

pf'mi{ D* (™-1part fifaC, A) : A G BC(M3), 1(A) < A j > 6/3, any open \ 

\ finite cluster C intersecting Voo(nK, f(n)) has diameter less than an2 J 

< p(p(fifaC ,intVoo(nK,2/(n)+an2)) > n ^ / H r l ^ ) < 6exp (-cn2A/||r | |00) 
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where 6, c are two positive constants depending on k. Putting together the previous 
estimates, sending successively n and a to oo, we obtain that there exists a positive 
constant d = c/||r||oo such that, for any positive A, J, any compact set K, 

lim sup 
n—voo 

1_ 
n2 

InP inf JMn_1V°o (C» / (» )M) :«4<E BC(E3), 1(A) < A > d 

< - c ' A . 

• Local estimate. We complete the proof of the large deviations upper bound with 
the help of the following local estimate: 

V i E B C ( l 3 ) , I ( i ) < o o , 

limn(Ui +a?i) -a?i lim sup 
n—voo 

1_ 
n2 

InP n(Ui +a?i) -a?in(Ui +a?i) -a?i < -HA) • 

Let finally A be a Caccioppoli partition of finite perimeter. Let e be positive. Let So 
be associated to e as in Lemma 8.1. Let B(xi,ri), i G / , be a finite collection 
of disjoint balls as given in Lemma 11.5, associated to A, e and So/3. Let K be a 
compact set containing in its interior all the balls B(xi,r{), i G / . Let S be a positive 
real number strictly smaller than min {Sor3/3, C3K{A\{xi)) : i G / } . Suppose the 
event { DK (n_1agluC, A) < S} occurs. Suppose also that n is large enough to have 
47ry/3r2n2 + ny/3 < Sor3n3/3 for any i in / . Let i belong to / . There exists a set 
Cn(xi) belonging to agluC such that 

ClK(nAi{xi)ACn(xi)) < Sn3 

Let C(i) be the collection of the open clusters of the configuration restricted to the 
set Cn(xi) fl B(nxi,nri). Because of the definition of agluC, the clusters of C(i) are 
open clusters of the configuration restricted to B(nxi,nri). Moreover 

=* Voo (cup C(i), 1 /2) A # _ (nxi ,nvi,v (xi ) ) 

n(Ui 
Voo(cupC(0,1/2)A(Cn(xi) fl B{nxunn)) 

+ £3 {Cn(xi) fl B(nxi,nri))AB-(nxi,nri,iy(xi)) 

< C?(B(nxi,nn + >/3/2) \ B(nxunvi - y/3/2)) 

+ £n*(Cn(a*)An;4i(a?0) + £nK\ (nAi(xi) fl B(nxi,nri))AB-(nxi,nri,iy(xi)) 

< 4nV3r2n2 + TTV3 + Sn3 + J0r3n3/3 < S0r3n3 . 

Therefore the collection C(i) realizes the event sep (n,Xi,ri, v(xi), So) for i in / and 
the event { DK (n_1agluC, A) < S } is included in f]ieI sep (n, Xi, ri, v(xi), So). By 
independence (recall that the balls B(xi,ri). i G / , are disjoint), 

P ' ^ ( n ^ a - g l u C M ) < S ) < n ( U i + a ? i ) - a ? i 

$^$^ 

P(sep (n,Xi,ri, v(xi),6o)) 
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and by the choice of ¿0 (see Lemma 8.1) and of the balls B(xi,ri) (see Lemma 11.5), 

limsup —2lnP(JDx(n"1agluC,A) < s) < - Vr(u(xi))7rr2(l - e) 

i€l 
< - l (A)n(Ui (l-e)+e. 

Letting first K grow to E3, 6 go to 0 and then e go to zero in this inequality, we get 
the upper bound we were seeking for. • 

12.3. Proof of the lower bound 

In view of the approximation result stated in Theorem 11.8, to prove the large 
deviation lower bound we need only to show that for any finite bounded polyhedral 
Caccioppoli partition A, any compact set K and any positive 8, 

liminf -2lnPf i3i f (n-1Voo(C, / (n)) ,A) <S) > -1(A). 

We might even assume that the sets of A are open and connected. Let A = 
{ A\,..., Ar } be a bounded finite polyhedral Caccioppoli partition whose elements 
are open and connected. We suppose that A\ is the only unbounded set of the par­
tition. The reduced boundary d*A of A is the union of a finite number of polygonal 
planar sets . . . ,FS. Let K be a compact set containing d*A in its interior. In 
particular A2,. •., Ar are included in int K and A\ n int K is connected. Let 6 be 
positive and let U±,..., Ur and Oi,..., Or be open connected subsets of int K such 
that for any i in { 1 , . . . , r } , 

U i C O i C A i ^ p ô p d2(Ui,K\Oi)>0p^$d2(Oi,K\Ai) >0,^p^^C3K(UiAAi) <S/r. 

Let (fi(n) be a function from N to M+ such that both (f>(n) and n/(f)(n)2 go to 00 
when n goes to 00. Let n be large enough so that </>(ri) > (. For i in { 1 , . . . 
the event wall (nFi, (j)(n)) depends on the edges inside V2(nFi,4>(n)) whereas for i 
in { 1 , . . . , r } , the event full Ui, n, f(n)) depends on the edges inside nO{. Since 
the distance between the sets F\ U • • • U Fs and 0\ U • • • U Or is strictly positive and 
(j)(n)/n goes to 0 as n goes to 00, for n large enough, we have 

(f)(n)/n < mm{d00(Oi,K\Ai) : 1 < i < r } 

and the events 

full (Oi, Uu n, / ( n ) ) , . . . , full (Or, Ur, n, / ( n ) ) , 

wall (nFi, <f)(n)) n • • • fl wall (nFs, 0(n)) 

are independent. Suppose all these events occur simultaneously. For i in { 1 , . . . , r } , 
we denote by Ci the open cluster of the whole configuration containing the cluster 
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realizing the event full (0*, n, / ( n ) ) . We have then nL^ C Voo(Ci5 f(n))- More­
over the occurrence of the events wall (nFj, </>(n)), 1 < i < s, precludes that an open 
path connects two distinct sets Of, so that the clusters d, 1 < i < r, are distinct 
and satisfy C{ C Voo(A{, <t>(n))-> whence 

Vt £ { 1 , . . . , r } Voo(Ci, / (n ) ) C Voo(nA,, / ( n ) + 0(n) ) . 

Let n be such that C?K(Voo5 v) \ ^ ) < J/2 for i in { 1 , . . . , r } . Suppose that n is 
large enough so that / ( n ) + 0(n) < nn and / (n ) < nmin { d^Ui, -K" \ O*) : 1 < i < 
r } - 1. Then 

V t € { l , . . . , r n ( U i +a?i) -a (n-1V00(Ci , / (n) )A^) < $^ùC3K(V00(AU7])\Ui) < 8. 

Let i belong to { l , . . . , r } . We claim that there is no open cluster (of the whole 
configuration) disjoint from d of diameter strictly larger than / ( n ) and intersecting 
Voo(nUi, / ( n ) ) . Indeed, if C is such a cluster, then in the configuration restricted to 
nOi there exists an open cluster included in C of diameter strictly larger than / (n ) 
and intersecting Voo(nUi, / ( n ) ) , which contradicts the fact that full (Oi, Ui,n, / (n ) ) 
occurs. Thus, if C is an open cluster of diameter strictly larger than / (n ) and 
distinct from C i , . . . , Cr, then 

n"1 Voo(C, / (n ) ) n K C K \ cup { Ui : 1 < t < r } 

whence 
^ (n-1 Voo(C7,/(«)))<n(Ui +a?i) 

l<i<r 

n(Ui +a?i) -a?i 

We get finally that DK^^V$^$Ù^$Ù^C,/(n)), A) < 8. Therefore 

P lMn~1Voo(C, / (n)M) <<* 

> p 
Ki<r 

full (Oi,Ui,n,f(n))n 

i<i<s 

wall (nFi,0(n)) 

> 

l<z<r 

P(fuU(0<,t/i,n,/(n))) x P 

l<i<s 

wall (nFi,</>(n)) 

By Lemma 9.18, the first product goes to 1 as n goes to oo. Applying the FKG 

inequality (notice that the events wall (ni**, </>(n)) are decreasing) and Lemma 9.19, 

we obtain 

lim inf 
n—>oo n2 

InP 

l<i<s 

wall (nFi,(j)(ri)) > -

l<i<s 
H2(Fi)T(noTFi). 

The two previous inequalities together imply that 

lim inf 
n—voo 

1_ 

ri1 
InP M n ~ l v « > ( C , / ( n ) M ) < 8 > -1(A) 

Thus we are done. • 
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12.4. P roo f o f Proposit ion 2.8 

We prove the first part of the Proposition. Let A be a cubic box containing K. 
The first inequality of Proposition 12.5 yields 

C?nK (overlap (C,/(n))) < /(n)3card { x e fat (nA, / (n) ) : Y(x) = 1 } . 

Since cup Voo (C, f(n)) contains cup fifaC, applying the second result of Proposi­
tion 12.5, we have 

£ 3 ( n K \ c u p V o o ( C , / W ) ) < £3(nA\cupVoo(^,/(n))) < £3 (nA\ cup fifa C) 

< /(n)3card { x e fat (nA, / (n ) ) : Y(x) = 1 } 

+140/(n)2^(fifaC,intnA) + £3(Voo(naA,2/(n) + 1)) . 

The conclusion follows from Lemma 12.7. 
We now prove the second part of the Proposition. We write, for any positive a, 

P(£3(overlapVooC(nc/,/(n))) > on3) < 

p(3C e C, CnVco(nU,f(n)) ^ 0 , an2 < diamooC < oo) 

+P/C3(overlap VooC(nU, f(n))) > on3 and any open finite clus-

\ ter intersecting Voo (nU, f(n)) nas diameter less than an2 

By Lemma 12.2, the first term is bounded by (ndiamooU+f(n))3b(k) exp(—c(k)an2). 
Let us examine the second term. Suppose that every open cluster intersecting 
Voo(nC7,/(n)) has diameter less than an2. Then 

overlap VooC(nU,f(n)) C Voo(nU, an2 + 2 / (n ) ) . 

We apply the first result of Proposition 12.5 with K = clo A(0, 2an2). For n large 
enough, the compact set K certainly contains Voo{nU,an2 + 2/(n)) and 

£3 (overlap Voo^(nt/,/(n))) < C3K (overlap Voo(C, / (n ) ) ) 

< /(n)3card { x e A(0,2an2 + / (n ) ) fl / (n)Z3 : Y(x) = 1 } . 

By Lemma 12.7 we conclude that, for any positive a, the limsup 

lim su * InP (^3(overlaP^°o£(n^fi71))) > ^n3 and any open finite clus-
1^SC^P n2 \ ter intersecting Voo{nU, f(n)) has diameter less than an2 

is equal to — oo. The previous estimates yield that, for any positive a, 

limsup—2InP(£3(overlapVoo^(nC/,/(n))) > Jn3) < -ca n-+oc Tl2 

where c is a positive constant depending on k. The desired claim follows by letting 
a go to oo. • 
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12.5. Proof of Proposition 2.10 

Let A be a cubic box and let S be positive. Let n be such that 4n£3(A) < S. 
We apply the inequality of Lemma 9.22 to nA and an arbitrary open cluster C of 
diameter larger than / ( n ) : 

| c a r d C n n A - ^ A ( V o o ( C , / ( n ) ) ) | < 

n£3(nA) + /(n)3card { x G / (n)Z3 H nA : X^(x) = 1 } 

+1120/(n)2P(fifa(C5^/(n)),intnA) + 2C3(Voo (dnA, 3/(n) + 1 ) ) . 

Notice that the upper bound does not depend on the cluster C. We suppose that n 
is large enough so that 2£3 (Voo(dnA, 3/(n) + 1)) < Sn3/4. Then 

P(sup |cardCnnA-6>>C3A(Voo(C,/(n)))| > Sn3) < 

P(/(n)3card { x G / (n)Z3 fl nA : X*(x) = 1 } > Sn3/4) 

+ P(ll20/(n)27>(fifa(C,A:,/(n)),intnA) > Sn3/4) . 

By Proposition 12.1, for n large enough, the second term of the right-hand side is 
less than 

b(k) exp ( - c(A:)(J/4480)n3/(n)-2) . 

By Corollaries 7.4,7.5,7.8, the first term of the right-hand side is less than 

exp (tin (8n3(£3(A) + 1)) + i5-3(ln6(n) - c (n ) / (n ) ) ) . 
i>(<5/4)(n//(n))3 

Because / ( n ) / l n n goes to oo as n goes to oo, for n large enough, the sum is less 
than b'(n) exp ( — c'(n)(S/4)n3 f (n)~2) for some positive constants b'(n), c'(n). • 

12.6. Proof of the enhanced upper bound 

We introduce some notation necessary to state the next results. Let B be a 
closed ball in M3. We define BC(J5) as the subset of BC(M3) consisting of the Borel 
collections A such that: 

VAeA either C3(A\B) =0 or £3(R3 \ A \ B) = 0. 

That is, up to negligible sets, the elements of a Borel collection A in BC(B) are 
either included in B or contain R3 \ B. 

Lemma 12.8. The set BC(B) is a closed subset of (BC(R3),Dioc). 

Remark. The set BC(B) is a fortiori closed for the stronger metric D. 
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Proof. Let («4n)neN be a sequence in BC(B) converging towards an element A 
of BC(E3) with respect to the metric D\oc. Let A belong to A. By Lemma 10.4, there 
exists a sequence (An)nGM such that An belongs to An for each n in N and for each 
compact set K, limn-^oo C3K(AAAn) = 0. Up to the extraction of a subsequence, we 
have 
• either C3(An \ B) — 0 for all n in N, whence C3K(A \ B) = 0 for each compact 
set K; 
• or C3(E3 \ An\B) = 0 for all n in N, whence £3K(R3 \ A\B) — 0 for each compact 
set K. 
Letting K grow to Z3, we see that either C3(A \ B) = 0 or £3(E3 \ A \ B) = 0. 
Therefore A belongs to BC(B). • 

Let m be an integer and let B\,..., Bm be m closed balls in E3. We consider the 
product space BC(Bi) x • • • x BC(Bm) endowed with the metric Dm defined by 

V (Au • • •, Am), (A[,..., A'J e BC(M) x - - - x BC(£m) 

Dm((A1,...,Am)AA'1,..-,A'rn)) = max D(AilA!i). 
l<i<m 

Let Xm be the map from BC(#i ) x • • • x BC(£m) to E+ U {oo} defined by: 

V (Au • • •, Am) e BCiBi) x . . . X BC(Bm) 

lm(AU...,Am) = X(Ai, int BX ) + • . . + T(Am, int Bm) . 

Notice that X(Ai,... ,Am) is infinite whenever one of the Borel collections among 
Ai,..., Am is not a Caccioppoli partition of E3. 

Proposition 12.9. The map Xm is a good rate function on the space BC(Bi) x 
• • • x BC(Bm) endowed with the metric Dm-

Proof. It is enough to consider the case of one ball B (i.e., m — 1) and to prove 
that for any positive A, the level set 

{ A e BC(B) : X(A, int B) < A } 

is compact with respect to the metric D. Let (*4n)n£N be a sequence in BC(J5) such 
that X(Am'mt B) < A for all n in N. Then for each n in N, 

AAn) < X(AnMtB) + \\r\\oon2{dB) 

and, by Lemma 11.1, the sequence of perimeters (V(An))n^ is bounded. Theo­
rem 10.8 implies that, up to the extraction of a subsequence, the sequence (*4n)neN 
converges towards an element A of CP(E3) with respect to the metric D\oc. By 
Lemma 12.8, the collection A belongs to BC(B). Moreover we have 

T(.4, int £ ) = I 

AeA 

Z(A, int B). 
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Since the map A G B(R3) \-> X(A,intB) is lower semicontinuous on (B(R3),L\oc) 
(see just after Definition 6.2), Lemma 10.5 implies that 

T(A, int B) < lim inf T{An, int B). 
n—too 

It remains to show that the sequence {An)nen converges towards A with respect to 
the metric D. Let e be positive and let K be a compact set containing B and such 
that C3(K\B) > 2e. There exists no such that for n > no, we have DxiAn, A) < e. 
Let n be larger than no and let (A(i), i G N), (An(i), i G N) be arrangements of A 
and An such that supiGNC3K(A(i) AAn(i)) < e. Let i belong to N. Since we deal 
with elements of BC(#) , four cases can occur: 
• C3(A(i)\B) =£3(R3\An(i)\B) = 0 . Then C3K{A(i)AAn(i)) > C3(K\B) > 2e, 
which is impossible. 
• C3(R3\A{i)\B) = £3(An(i)\B) = 0. Then£3K(A(i)AAn(i)) > C3(K\B) > 2s, 
which is impossible. 
• C3{A(i) \B)= C3(An(i) \ B) = 0. Then £3(A(i)AAn(i)) < e. 
• C3(R3 \ A(i) \B)= C3(R3 \ An(i) \B)=0. Then £3(A(i)AAn(i)) < e. 
Thus we obtain that supi€N C3(A(i)AAn(i)) < e whenever n is larger than no, which 
implies that D(An,A) < e. Therefore the sequence (̂ 4n)n€N converges towards A 
with respect to the metric D. • 

Let T(Bi,..., Bm) be the set of the m-uples of integer translations sending 
Bi,..., Bm onto pairwise disjoint balls, that is, 

T(Bi,..., Bm) = 

{ O n , . . . , x m ) G (Z3)m : xx +Bu...,xm + Bm are pairwise disjoint } . 

If A is a collection of Borel sets of R3 and B a ball in R3, we define A fl B to be the 
collection of BC(J5) given by 

ADB = 

{ (A H B) U (E3 \ B) : A G A, C3(A) = oo } U { A n B : A G A, C? (A) < oo } \ { 0 } . 

In this definition, as usual, we consider equivalence classes of sets modulo negligible 
sets. Notice that if A is a Caccioppoli partition of E3 having finite perimeter, so 
is Ad B. To Bi,...,Bm and (xi,...,xm) in T(B1,...,Bm) we associate the map 
<t>%l;:::£™ from BC(M3) to BC(#i) x • • • x BC(5m) defined by 

V ^ I G B C ( E 3 ) <t>xl;:::;x™(A) = (An(B1 + x1)-x1,...,An(Brn + xm)-xm). 
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Lemma 12.10. For any Ax, A2 in BC(R3), 

Dm n(Ui +a?i) -a?in(Ui +a?i) -a?i < 

£3(overlap Ax) + D(Ai,A2) + £3(overlap *42) • 

Proof. For j = 1,2, let (Aj(i),i £ N) be an arrangement of Aj. For each h in 
{ 1 , . . . , ra} and for j = 1,2, we set for i in N 

n(Ui +a?i) Aj( i )n(Bh+xh)-xhn(Ui 
(E3 \ (Bh + xh)) U (Aj(i) П {Bh + xh)) - xh 

iìC3{Aj(i)) < oo 

if C3(Aj(i)) = co 

and then 

n(Ui +a?i) -a?i 0 if there exists k < i such that Aj^(k) = Aj^(i) 

Aj,h(ï) otherwise 

For j = 1,2, the sequence (A'-h(i))i^ is an arrangement of Aj fl (Bh + #/0 — 
Let h belong to { 1 , . . . , ra} and let us evaluate £3(A[ h(i)AA'2 h(i)) for i in N. First, 
we have, for any i in N, 

C3(Älih(i)AÄ2ih(i)) < £3(overlap Ax) + £3(Ax,h(i)AA2ih(i)) + £3(overlap A ) . 

We next evaluate £3(Axìh(Ì)AA2ìh(i))- We distinguish four cases. 
• £3(Ax(i)) = oo and £3(A2(i)) < oo. Then £3(Ax(i)AA2(i)) = oo. 
• C3{Ax{i)) < oo and £3{A2{i)) = oo. Then £3{Ax(i) AA2{i)) = oo. 

• £3(Ai(î)) = £3CA2(0) = oo- Then 

£3(Alffc(t)AA2>Ä(t)) = £3Xh+Bh(Ax(i)AA2Ü)) < £3{Ax{ï)AA2{ï) 

• £3(Ai(i)) < oo and £3(A2{i)) < oo. Then 

£3{Ax,h(i)AA2ih(i)) = £3Xh+Bh(Ax(i)AA2(i)) < £3(Ax(i)AA2(i)). 

Therefore, for any h in { 1 , . . . , ra}, we have 

sup £ 3 « A ( z ) A ^ f t ( i ) ) < £? (overlap Ax ) f sup £3 (Ax (i)AA2 (i))+£3 (overlap A2) 

Taking the infimum over all possible arrangements, we get 

max 
l<h<m 

D(A1n(Bh+xh)-xhìA2n(Bh + xh)-xh) < D(AUA2) 

which is the claim of the Lemma. 
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Let U be a bounded subset of R3. We recall that 

C(nU, f(n)) = { C G C, f(n) < dianiooC < oo, C HnU ^ 0 } 

and we define the following random sets and Borel collections: 

VooC(nt/)0 = { Voo(C, f(n)) : C G C(nU, f(n)) } , 

V o o C W o o = R3 \cupVooC(n*7)o, 

VooC(nU) = VooC(nU)Q U {VooC(n£/)oo}, 

fifaC(nJ7)0 = {fifaC : C G C(nt/,/(n)) } , 

fifaC(nl/)oo = ^3 \ cup fifaC(nU)0, 

fifaC(n£7) = fifa£(n£/)o U { fifaC(n£/)oo } , 

agluC(n*7)o = { agluC : C G C(nC7, / (n)) } , 

agluC(nt/)oo = M3 \ cup agluC(nU)0 , 

aglu C(nt7) = agluC(nl7)o U { agluC(nL0oo } • 

The notation V00C(nLr) corresponds to VooC(nU, f(n)) in the statements of Theorems 
2.6 and 2.7. We drop / (n ) to simplify the notation. 

Proposition 12.11. Let U be a bounded Borel subset of M3. The sequences of 
random Borel collections 

n^VooCinU), n_1fifa C(nC7), n_1 aglu C(nC7) 

are exponentially contiguous with respect to the metric D, that is, for any positive 8, 

limsup A2lnP(D(n-1VooC(nC/), n~16{alC(nU)) > s) = - o o , 
n—>-oo n \ ' 

l imsup—lnP(£>(n-1VooC(n^), n^ag lu^nt^) ) > * ) = - o o . 

Proof. We write, for any positive a, and for **** being either fifa or aglu, 

p(D(VooC(nf/),****C(nC/)) >£n3) < 

P(3C G C(nU,f(n)) an2 < d i a n ^ C < oo) + 

P(V(fifaC(n£/)) > an2, each set of fifaC(ntf)0 is included in Voo(nt7, an2 + / ( n ) ) ) 

+p(L)(VooC(nC/),****C(n^)) > (5n3, 7>(fifaC(n£/)) < an2) . 
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By Lemma 12.2, the first term is bounded by (ndianiooC/+f(n))3b(k) exp(—c(k)an2). 
The second term is bounded by P(V(p.£a,C(nU), Voo{nU, an2 + / (n ) ) ) > an2) which, 
in turn, by Proposition 12.1, is bounded by b(k) exp(—c(k)an2). We now examine 
the third term. We suppose that the event {/P(fifaC(nf/)) < an2 } occurs and we 
distinguish the case of fifa and aglu to bound the third term. 
• Case of fifa. Proceeding as in Lemma 12.4, we have 

^(Voo^(nt/),fifaC(nt/)) < max( / (n)3card{y <E A(0, 2an2) D f(n)Z3 : Y(y) = 1} 

+280anVW2,>C3(Voo(:(nt/)ooAfifaC(nC7)oo)) . 

The first term in the max is controlled by Lemma 12.7. For the second term, 

^(VooCWooAf i faC^oo) = ^ ( c u p V o o C ^ o A c u p f i f a C ^ o ) 

< E >C3 (Voo ( C , / ( n ) ) \ fifa C) 
cec(nu,f(n)) 

< ] T 140/(n)2P(fifaC) < 140em2/(n)2. 
cec(nu,f(n)) 

• Case of aglu. Proceeding as in Lemma 12.6, we have 

^(Voo^(riC/),agluC(nt/)) < 

max (27/(n)3card { y <E A(0,2an2) fl / (n)Z3 : Y(y) = 1 } 

+17920an2/(n)2,£3(VooC(nt/)ooAagluC(nt/)oo)) • 

The first term in the max is controlled by Lemma 12.7. For the second term, using 
the same argument as in Lemma 9.15, we get 

>C3(Voo^(nC/)00AagluC(nC/)00) = C3 (cup Voo^(^)0Acup aglu C(nU)0) 
< 33/(n)3card { y G A(0,2an2) : Y(y) = 1 } + 17920an2/(n)2 . 

In both cases, we conclude by sending successively n and a to oo. • 

Lemma 12.12. Let U be a bounded Borel subset of R3. For any positive 6, we 
have 

lim sup ^ 2 In P(c3 (overlapfifaC(nU)) > Sn3) = - o o , 

limsup —2Inp(c3(overlapagluC(nU)) > Sn3) = - o o . 
n—too n \ / 

Proof. For any open cluster C, fifaC is included in V00(Cf, f(n)) and agluC is 
included in Voo(C, 5/(n)) . This implies that 

overlap fifa C(nU) C overlap VooC{nU). 
Therefore, Proposition 2.8 yields the result concerning №a,C(nU). The result on 
agluC(nt/) follows from a slight variation of the argument. • 
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Lemma 12.13. For any closed subset F71 of BC(Bx) x • • • x BC(Bm), 

lim sup 
n—voo 

1_ 
n2 In sup 

(xi,...,am)eT(£; ,.-.,BÀ 
n(Ui +a? n-1V00C(n[/))€Fm 

Ç - inf { H A : (Au...,Am) e r ] 

Proof. We prove the large deviations upper bound in a standard fashion, by proving 
the ITO-tightness together with a local estimate. Moreover the estimates are uniform 
with respect to (xi,...,xm) in T(B\,Bm). 
• lm-tightness. Let \,8 be positive. For any (xi,... ,xm) in T(Bi,...,Bm), we 
have 

P inf A n ( < V : : : / * r {n-l^C(nU)),(Au Am)) : 

(Ai,...,Am) e BC(Bi) x • • • x BC(BTO), Im(Ai,...,Am) < A ^ù 
$ù 

<p(lmU%n(Ui+a?i™(n-lMaC(nU)))>\) 

< P[l(n~1Q.la.C(nU),x1 +intBi) + • • +X(n-1MaC(nU),xm + intBm) > A 

< P(l(n-lm&C(nU)) > A) < P(V(ûîaC(nU)) > n2A/||THoo). 

In the last step, we have used Lemma 11.1. Next, letting A' = A/||r||oo, 

P(V(ûîa.C(nU)) > n2A') < 1 3C e C(nU, f(n)) X'n2 < diamooC < oo 1 + 

p(v{nî&C{nU)) > A'n2,each set of fifaC(nt/)0 is included in V^nU, A'n2+/(n))). 

By Lemma 12.2, the first term is less than (ndiamoo*/ + f(n))3b(k) exp(-c(k)X'n2) 
The second term is bounded by 

P V(M?iC(nU),Voo{nU,an2 + / (n) ) ) > X'n2 

which, in turn, by Proposition 12.1, is bounded by b(k) exp(-c(k)X'n2). Moreover 
we have, using Lemma 12.10, 

P n(Ui +a?i) -a?i -VooC(n[f 
" 71 

, ^1 Bm 
1 5 Vxi,...,Xm 

I f 
n 

ifaC(n*7))) ><5 < 

^ùmù £3 (overlap I VooC(nC/)) $^ù 1. 
n 

n(Ui +a? -MaC(nU)) 
71 

+C3 (overlap -fifaC(nU)) > j ) . 
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These bounds are independent of (x\,..., xm) in T(B\,..., Bm). Using Proposi­
tions 2.8, 12.11 and Lemma 12.12, we deduce from the preceding bounds that there 
exists a positive constant c' = C(&)/ | |T | |OO such that for any positive X,S, 

lim sup 
n-*oo 

1_ 

n2 , In sup 1 (inf Dm : f c x B r ( ^ o o C ( n C 7 ) , (Ai,..., Am)) : 

(Au...,Am) e BC(Si) x . . . x BC(Bm), Xm(A1,...,Am) < A J > 6) < - c 'A 

where the supremum is taken over (x\,..., xm) in T(B\,..., Bm)-
• Local estimate. Let (A±,... ,Am) be an element of BC(Bi) x • • • x BC(Bm) such 
that Xrn(A\,..., Am) < 00. We have to show that 

lim lim sup 
¿-»0 n—»oo 77/ 

L SUp P 
Xl,...,Xm 

Dm(fà\::£r (^VooC(nEO),ML..- Mm)) < 

< X (^4-1,... , Am) 

where the supremum is taken over (x\,..., xm) in T(Bi,..., Bm)- Let e be positive. 
Let So be associated to e as in Lemma 8.1. For each I in { 1 , . . . , ra}, by Lemma 11.5 
applied to the Caccioppoli partition Ai and the ball B\, there exists a finite collection 
of disjoint balls B(x\, r[), i G / ( / ) , such that: for any i in 1(1), x\ belongs to d*AiC)Bi, 
r\ belongs to 10,1[, B(x\,r\) is included in Bt and 

С3{{А1А{Х1)^В{х\УЛ)^В-{х\У^n(Ui +a?i) -А,{х1Л)) < ö0 

£3((^,2(a:i)nB(x{,r{))AÄ+(^,r{,i/A(ar,j))) < *>(H)3/3, 

KAiAntBi) 

ieni) 

* ( r | ) M ^ t é ) ) < e. 

For the notation Aiti, Ai^, see the beginning of chapter 11. Let 5 be a positive real 
number strictly smaller than min{ ^o(r*)3/6 : 1 < I < ra, i G / ( / ) } . Let 8(5) be the 
event 

S{5) = n(Ui +a?i) -a?in(Ui +a?i) (Au...,Am)) < 26 j . 

For (x\,.. .,xm) in T(Bi,..., Bm), we write, using Lemma 12.10, 

pm 
$ 

n(Ui +a?i) -a?i 
(è 

ooC(nU)),(Ai,---,Am)) <S 

< p Dm 
n(Ui +a?i) -a?in(Ui +a?i) -a?in(Ui +a?i) -a?in(Ui +-a?^n(Ui 

< P(C3 (overlap-V^CinU)) $^ù$ A 
'00C(nUiuC(nU)) +n(Ui 

71 

£3 (overlap IagluC(nC/)) > ö) + P{£{6)). 
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Propositions 2.8, 12.11 and Lemma 12.12 give a sufficient control on the first term. 
Hence we need only to estimate P(8(8)). Suppose that 8(6) occurs. Suppose also 
that n is large enough to have 

V/ G { 1 , . . . , m} Vt G 1(1) 47rv/3(^)2n2 + TTVs < 50(r\)3n3/3 . 

Let I belong to { l , . . . , m } and let i belong to / ( / ) . There exists a set Cn(xli) 
belonging to agluC(nt/) such that 

£3 ( ( n i u ( ^ ) n nBi )A(Cn(^) n + n^/) -nxi)) < 26n3 . 

Let C(i,l) be the collection of the open clusters of the configuration restricted to the 
set Cn(x\)nB(nxi +nx\, nr[). Because of the definition of agluC(nf/), the clusters of 
C(l, i) are open clusters of the configuration restricted to B(nxi +nx\, nr\). Moreover 

C3(Voo(cupC(/,i), l/2)AB-(nxt + nxlnrl vAl(x[))) 

< C3 (Voo(cupC(M), l / 2 ) A ( C n ( ^ ) H B(nxt + nx^nr^)) 

+ C? ((Cn(x\) H B(nxi + nx\,ni\))AB-{nxi + nx\,nr\, vAl (*{))) 

< C?(B(nx\,nr\ + V3/2) \ B(nx\,nr\ - y/3/2)) 

+ £3(((nBi + nxt) H Cn(x\) - nxi)A(nAi9l(x\)nnBi)) 

+ C3 ((nAlfl(x[) n B(nx[,nr\))AJ3_(nx\,nr\, vAl(*{))) 

< 47rv/3(r^)2n2 + TTV^ + 26n3 + J0(r^)3n3/3 < <*0(^)3n3 . 

Therefore the collection C(l, i) realizes the event sep (n, x\ + x\,r\, vAl (x\), So) and 

8(6) c p | p | sep(n,xi +xliyi,i/Ai(x[),60). 
l<l<miel(l) 

Since the balls B(xli,r\), i G / ( / ) , are disjoint for any / in { l , . . . , m } and since 
(xi,... ,xm) belongs to T(2?i , . . . ,Bm), then the balls B(nxi + nx*,nr*), i G / ( / ) , 
1 < / < m, are still disjoint and the events sep(n,x; + x\,r\, vAl(x\),8Q), i G / ( / ) , 
1 < / < m, are independent, whence 

P(£(S)) < I I I I p(seP(n>*i + x i > r i > v * • 
l<l<mi£l(l) 

Since the model is invariant under integer translations, then for / in { 1 , . . . , m } and 
i in 1(1) 

P(sep(n,xi +xli,r[,vAt(xli),6o)) = P(sep(n,xli,rli,iyAl(x\),80)) 
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and 

P(£(S)) < n I I ^ ( s e p ( n , ^ , r l , ^ ( ^ ) , ( 5 o ) ) . 
l<l<mi£l(l) 

This last bound is independent of (x±,... ,xm) in T(B±,...,Bm)- By the choice 
of S0 (see Lemma 8.1) and of the balls B(xli,r\) (see Lemma 11.5) 

limsup —2 In sup ip(£(8)) : (xi,...,xm) G T(B1,...,Bm) } 

< - E E r(^,(^))7r(ri)2( l-£) 
l</<mi6/(0 

< - Y int B«) - -
l<Z<m 

= - r ( i i , . . . M m ) ( l - £ ) + m e . 

Letting S and then £ go to zero, we get the upper bound we were seeking for. • 

We turn now to the proof of the enhanced upper bound of Theorem 2.11. Let F 
be a closed subset of (BC(M3),D). Let a, S be positive with S < 1 < a. We write 

Pin^VooCinU) e F) < P(3C e C(nU,f(n)) an2 < d i an^C < oo) + 

p{v(T\i^C{nU)o) > an2, each set of fifaC(nC/)0 is included in Voo(nU,an2 + / ( n ) ) ) 

+ P(D(VooC(nU),ti£&C(nU)) > Sn3) + P{£), 

where £ is the event 

{n^VooCinU) € F, V(Gta,C(nU)0) < an2, JD(V00C(nt/),fifaC(n?7)) < Sn3 } . 

We examine successively each term of the right-hand side. By Lemma 12.2, the 
first term is bounded by (ndiamooC/ + f(n))3b(k) exp(—c(k)an2). The second term 
is bounded by 

p(v(Gfa.C(nU), Voo (nU, an2 + f(n))) > an2) , 

which, in turn, by Proposition 12.1, is bounded by b(k) exp(—c(k)an2). The third 
term is controlled by Proposition 12.11. We examine now the last term P(£) of the 
inequality. Suppose that the event 

{V(MaiC(nU)o) <an2} 

occurs. By the isoperimetric inequality, we have 

C3 (cup fifaC(nU)o) < c[soa3/2n3 . 
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Let X be the random subset of Z3 defined by 

X = {x e Z3 : C3(B(nx,n) H cupfifaC(n£7)0) > Sn3 } . 

Since 

V C G C(nUJ(n)) diamoofifaC < 7>(fifaC(nC/)o) < an2 , 

then X is included in £ (0 , ndiam U + San2). Since a point of M3 belongs to at most 
eight balls among the balls B(x,l), x £ Z3, then 

Jn3cardX < ] T £3(B(nx,n) n cup fifa C(nC/)0) 
x€X 

< SC3 (cup fifaC(nU)0) < Scisoa3/2n3 

and therefore cardX < 8ciSOa3/2/6. For x in Z3\X, by the isoperimetric inequality 
relative to the ball B(nx,n), taking into account that 

C3(B(nx,n) 0 cup fifa C(nU)0) < Sn3 , 

we have, for any A in fifaC(n£/)o, 

C3(AnB(nx,n)) < 61/3nb2J*V(A,intB(nx,n)) . 

Summing this inequality over A in fifaC(n£/)o and over x in Z3 \ X , 

£3 (cup fifaC(n*7)0 \ cup { B(nx, n) : x £ X }) 

< 

n(Ui +a? 

£3(B(nx,n) H cup fifa C(nU)0) 

xeZ3\X Aefifa,C(nU)o 

C3 (B(nx,n)f\A) 

; *vsN6*/3 

;r<EZ3\X 

P (fifa C(nU)0, int n)) 

< SS^nbU'V^CinU^) < SaS^b^n3. 

We set M = 8cisoa3/2/J and /? = S + SaS1/3^^. Whenever £ occurs, we have 
therefore 

X C £(0 , ndiam U + San2), cardX < M , 

£3 (cup fifaC(nU)0 \ cup { B(nx, n) : x e X } ) < SaS1/3by^n3 = (n - S)n3 . 

Let E(X) be a subset of X x { 1 , . . . , 3cardX} associated to X as in Lemma 9.20. We 
decompose the event £ according to the possible values of the set E(X): 

P{£) = 

l<m<M ri,...,rm î/i,...,î/m 

P{£, E(X) = {(i ,i,ri),... ,(i ,TO,rm)}) 
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where the second summation extends over the integers ri,...,rm in { 1,...,SM } 
and the third summation extends over yi,..., ym in Z3ni?(0, ndiam U + San2). The 
number of possible choices for y\,..., ym is less than C3(B(0, ndiam U + San2 + 2))m, 
which is a polynomial function in n. The number of possible choices for the first 
two sums is less than 3M(M+!). We estimate now the term inside the sums. Let 
{ (2/1, r i ) , . . . , (ym, rm) } be a value for the random set E(X) compatible with £ (that 
is a value which occurs with positive probability). By the construction of E(X), the 
balls B(yi,ri + 1), 1 < I < m, are pairwise disjoint so that (2/1,... ,ym) belongs to 
T(B(0, ri + 1) , . . . , B(0, rm + 1)); moreover the balls B(yi,ri), 1 < i < ra, cover the 
balls B(x, 1), x G X, whence 

£3(cupn-1fifaC(nt/)o\S(yi,n)\..-\S(|/m,rro)) < n-8. 

Since Din^VooCin^^n^MdiCinU)) < 6, then 

^(n-^upVooC^^oAn-^upfifaC^^o) = 

C3(n-1VooC(nU)00An-1tta.C(nU)0o) < S 

and it follows that 

£3{cupn-1V00C(nU)o\B(yur1)\'--\B(ym,rrn)) < n. 

Let IB̂* (ri, . . . , rm) be the subset of BC(£(0, n +1)) x • •. x BC(£(0, rm +1)) defined 
by 

lF^(ri,...,rm) = ^,0:^1)'"-'jB(0,rm+1)(^) : 

>A G F, (zi,...,zm) rZ3)m satisfying the conditions below 

The conditions imposed on A and (zi , . . . , zm) are: 
• 4̂ contains exactly one set 4̂oo such that £3(Aoo) = 00 , 
• R3 is the disjoint union of Aoo and cup {AeA: C3(A) < 00 }, 
• (zu...,zm) belongs to T(B(0, n + 1) , . . . , £(0, rm + 1)), 

• C3(cup { ^ G A : C3(A) < 00 } \ B(zun) \ • • • \ B(zm,rm)) < 17. 

We write then 

P(£, £ (X) = { (yi, rx),. . . , (ym, rm) }) 

< P ^~1V00C(nC/) G F, £3(cupn-1V00C(nt/)o\5(2/1,ri)\..-\JB(2/m,rm)) < 77̂  

n(Ui n~lVooC{nU) G {̂ 4 G F, C3 (cup { A G A : C3(A) < 00 } 

l<i<m 

B(yi,ri)) <T]} 

< P <<?:.?»t1),-'B(0,r,"+1)(»"1VooC(n^)) € E^(n,. . . ,rm)) 
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But F̂ 1 ( r i , . . . , rm) depends on ( r i , . . . , rm) and r? only and not on (yi,..., ym) in 
T(i?(0,ri + 1 ) , . . . , Z?(0,rm + 1)). Coming back to the innermost summation, 

Y P(£,E(X) = i(y1,r1),...,(ym,rm)}) < C3(£(0,ndiam£/+ 3an2 + 2))m 
Î/LV>Î/M 

x sup P(<,?;.,;it1),-,B(0,Pm+1) {n-'VocCinU)) € F™ (n , . . . , rm)) 

where the supremum is taken over (yi,...,?/m) in T(2?(0, ri + 1 ) , . . . , B(0, rm + 1)). 
This inequality and the upper bound of Lemma 12.13 yield 

l i m s u p — 2 l n V P (£ , E(X) = { ( y i , r i ) , . . . , ( î / m , r m ) } ) < 

- inf { Z m ( A , . . . A ) : ( A , . . . , Ai») G e l o i g n , . . . ,rm) } . 

Since the number of terms involved in the first two sums is bounded by 3M(M+X) 
which is independent of n, we conclude that 

limsup—2 In F (5) < - i n f ilm(Ai,...,Am) : 1 < m < M, 

r1,,Rme { i , . . . , 3 M } , ( A , . - - , A n ) e c i o i ^ ( n , . . . , r m ) } . 

It remains to evaluate this infimum. Let m belong to { 1 , . . . , M } , let r i , . . . , rm 
belong to { 1,..., 3M } and let ( A , • • •, A n ) belong to cloFJ^(n, . . . ,rm). We sup­
pose in addition that Zm(A? • • • ? A n ) is finite. By the very definition of the set 
cloFJJ7, (r*i,..., rm), there exist a Borel collection A in F and a m-uple (z\,..., zm) 
in T(B(0, ri + 1 ) , . . . , I?(0, rm +1) ) such that: .4 contains exactly one set A^ having 
infinite volume, M3 is the disjoint union of A^ and cup {AeA: C3(A) < oo } , and 

C3 (cup { A G A : C3(A) < oo } \ n ) \ • • • \ B(ym, rm)) < n , 

max D ( ( . 4 n ^(2fi,r< + l)) ,(*i + A ) ) < v/m. 
l<i<m 

Therefore each Caccioppoli partition Ai contains exactly one set A,oo having infinite 
volume and 

max CB(zi,ri+i){Aoo&(zi + Ai,oQ)) < rj/m 

whence 

Y C3{B(0,ri + l)\B(0,ri)\AiiOO) < n + £ 3 ( ( J (Bizi.n + l^Bizi.n^Aoo) 
l<i<m l<i<m 

< r) + Cz(cxxv{A£A:C3(A) < 0 0 } \ B ( i , i , n ) \ ••• \B( | ,ro,rm)) <2»?. 
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By Lemma 6.7, for i in { 1 , . . . , ra}, for H1 almost all t in ]0,1[, we have 

T(B(0,ri + t)\AiiOO) < l(R3\Ai,oo,mtB(0,ri + t)) + ^^(dB^,r< + *)\Aii00) 

and for all A in Ai \ {^¿,00}, 

I(AnB(0,n + t)) < I(A,mtB(0,n + t)) + | |T| |OO«2(A n ofl(0,ri + *)), 

and also, because we are dealing with Caccioppoli partitions of E3, 

AeAi\{Ait00} 
U2 (A n dB(0, n + t)) = Ti2 (0B(0, ri + t)\ Aii00) , 

Let T be the subset of ]0 ,1[ where all the above inequalities hold simultaneously. 
Certainly Ti1 (T) = 1 and by integrating in polar coordinates 

1 <i<m 
C3(B(0,ri + l)\B(p,ri)\Ai,oo) 

1 l<i<m 

U2(dB(0,n + t)\AitOO)dt, 

so that there exists t in T such that 

l<i<m AeAiMAi.oo) 
H2(AndB(0,n+t)) = 

l<i<m 
H2(dB(0,ri + t)\AimOO) < 2r>. 

Let (A(j),j G N) be an arrangement of A such that A(0) is the unique element 
of A having infinite volume. By Corollary 10.3, and the inequalities satisfied by 
A, A\,..., Am, there exist arrangements (Ai(j),j G N), 1 < i < ra, of Ai,..., Am 
such that 

max 
l<i<m 

3̂ 
"B(zi,n+1) 

A(0)A(zi + M0))) <ri/m, 

max sup£3 
l<i<m ?>i 

{A(j)nB(zi,n + l)). A(zi + Ai(j))) <7?/m. 

We set 

A'(0) = E3 

l<i<m 
B(zi,ri + t) 

l<i<m 
Zi + Ai(0) n B(0,n + t)) 

and for j > 1, 
n(Ui +a?i) 

l<i<m 

(zi + Ai(j)nB(0,ri + t)) 

Let A' be the Borel collection of the non-negligible sets of the sequence (A'(j))j€^. 
Then A' is Caccioppoli partition of E3, (^4'(J)),SN is an arrangement of A' and 

£ 3 ( A ( 0 ) A A ' ( 0 ) ) 

< CA [W \ A(0) 
l<i<m 

B(zi,n+t)) + 
l<i<m 

<C3B{zuri+t)(A(0)A(zi + M0))) 

< £3(E3 \A(0)< 
l<i<m 

B{zi,ri) 
Ki<m 

^B{^ri+i)(M0)^i + M0))) < 2»?. 
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For j > 1, we have 

C3(A(j)AA'(j)] 

< C3(A(j)' 
l<i<m 

B(zi,n + t)) + 

l<i<m 

n(Ui +a?i) -a?in(Ui +a?i) -a?i 

< C3(A(j)\ 
l<i<m 

B(ZÌ,U)) 

l<i<m 
Û({A{j)nB{zi,ri + l))A{zi + Mj))) < 2V. 

Using the previous inequalities, we obtain that 

D(A, A') < sup£3 
jeN 

(A(j)AA'(j)} < 2rj. 

Furthermore, because of the choice of t 

n(Ui +a?i) -a?i 1 
2 

j>0 

n(Ui +a?i) -a?i 

l<i<m 

T(AinB{<ò,ri+t)) 

< 
l<i<m 

XiAuintBiO^i+t)) + \\T\\OO D 
l<i<m AeAi\{Aiiaa} 

n2(AndB(o,n + t)) 

< lm(A1,...,Am) + 2T)\\r\\00. 

It follows that 

inf {I(.4) :Ae VD(F,2T))} < Xm(A1,...,Am)+2i1\\T\\n(Ui + 

Passing to the infimum over ( A i , Am), (ri,...,rTO) and m, 

lim sup 
ri iP(S) < • inf { X{A) : A 6 VD(F, 2tj) } + 2t,||r||oo . 

Coming back to the initial inequality, 

lim sup —2 In P^-1 Vicino) € F) < 
n—ïoo TI 

- min (c(fc)a, inf {1(A) : A G VD(F, 2n) } - 21^1100) 

Recalling that rj = 6 + SaS1^3^^, sending first S to 0 and then a to 00, we obtain 

lim sup 1 
ri 

l n P ^ V o o C ^ e F ) <n(Ui + - sup inf 
£>0 

[1(A) :Ae VD(F,e)} 

This is the enhanced upper bound we were seeking for. • 
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For the convenience of the reader, we include here some basic and classical ma­
terial of large deviations theory (see [28] for a detailed exposition). 

Let (F, O) be a topological space. A rate function on (F, O) is a lower semicon-
tinuous map from (F, O) to M+ U { o o } . A rate function J on (F, O) is good if its 
level sets { x G F : I(x) < A } , A > 0, are compact. We endow (F, O) with the Borel 
cr-field B(F) generated by the open sets O. Let (fi, T, P) be a probability space. 
Let (Xn)nGM be a sequence of random variables defined on fi with values in F. Let 
/ be a rate function on (F, O) and let <j> be a map from N to M+. The sequence 
of random variables (Xn)n€N satisfies the large deviation principle with speed </>(n) 
and rate function / if for any A in B(F) 

- i n f \l(x) : x G int A} < liminf —y-r- In P(Xn G A) 
K n—too <p\Tl) 

< limsup —— — lnP(Xn G A) < - inf { I(x) : x G clo A } , 

where int 4̂ is the interior of A and clo A is the closure of A with respect to the topol­
ogy O. The sequence of random variables (Xn)ne^ satisfies a weak large deviation 
principle if the upper bound holds only for compact sets. 

We suppose next that the topology O is associated to a metric don F. The large 
deviations lower bound is equivalent to the following statement: 

VxeF V6>0 liminf —!— ]nP(d(Xn,x) < S) > -I(x). 
n—>oo <p(n) 

We always use the above statement to prove large deviations lower bound. 

Definition. We say that the sequence of random variables (Xn)nefq is /-tight if 

V<J > 0 lim limsup — ^ InP(d(Xn, J^ttO, A])) > S) = - o o . 
A->oo n-^oo <p(n) 

Our proofs of the large deviations upper bound rely on the following formulation. 
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Lemma. Suppose that the rate function I is good. The sequence of random variables 
(Xn)nef$ satisfies the large deviations upper bound if and only if it is I-tight and it 
satisfies the local estimate 

VarGF, I(x) < oo, V £ > 0 35 = 5(x,e) > 0 

limsup —!— \nP(d(Xn,x) < 5) < -I(x)(l-e). 
n—>-oo 0(^7 

Remark. Notice that the above property is equivalent to 

\/x e F, I(x) < oo, limsup limsup — \ n P ( d ( X n , x ) < 5) < —I(x). 
<5_K) n->oo <p(n) 

Remark. In the situation where the rate function is not good (that is, it is only 
lower semicontinuous), we have the following result: If the sequence of random 
variables (Xn)ne^ is /-tight and satisfies the local estimate, then the weak large 
deviations upper bound holds. 

Proof. Let A be a closed subset of F. Let A, 5, n be positive with 5 < n. Let 
A5 = { x : d(x, A) <5}. We write 

P(Xn e A) < P(Xn e A, d (Xn, /^( [O, A])) < 5) + P(d(Xn,/-1([0, A])) > *) 

< P(d(Xn, A" nl-^lOtX])) <6) + P ( d ( X n , / - 1 ( [ 0 , A ] ) ) x J ) . 

Since A is closed and / is a good rate function, the set Av fl 7-1([0, A]) is compact. 
Let s be positive. To each x in A71 D 7_1([0,A]) we associate a positive 5(x,e) as 
given by the local estimate. The collection of sets 

{ y : d(s, y) < 5(x, e) } , x € Av C\ I-1 ([0, A]) 

is an open covering of A71 fl 7_1([0, A]), from which we can extract a finite subcover 
associated to a finite number of points Xi, 1 < i < r. The open set 

|J {y : d{xi,y) < 5(xi,e)} 
l<i<r 

contains a neighbourhood of A71 D 7_1([0, A]). Hence, for 5 sufficiently small, 

P(d(Xn, i4 ,?n / -1( [0 ,A]) )<*) < Y P{d(Xn,Xi)<6(xi,e)). 
l<i<r 

By the definition of the 5(xi,e), 1 < i < r, using the local estimate and the previous 
inequalities, we get 

limsup —^-T-lnP(d(Xn, An n/_1([0, A])) < 5) < - min I(xi)(l - e) 
n^oo <f>(n) l<i<r 

< - ( 1 - e) inf { I(x) :xeA"n I'1 ([0, A]) } . 
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Using the fact that the sequence is /-tight, with the help of the previous inequalities, 
we can choose A large enough to obtain 

limsup —*— lnP(XneA) < —(1 — e) inf {I(x) : x € A71} . 
n-+oo <t>(n) 

Since / is lower semicontinuous, the large deviations upper bound follows from this 
inequality by sending e and 77 to 0. • 

Two sequences of random variables (Xn)n€N and (Yn)neN are exponentially contigu­
ous if 

V5>0 limsup - — \nP(d(Xn,Yn) > S) = -00 . 
n-»oo q>(n) 

If (Xn)nGN and (Yn)nEN are exponentially contiguous and if (Xn)ne^ satisfies the 
large deviation principle with speed <fi(n) and rate function / then so does (Fn)neN-
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