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UNIFORMIZING GROMOV HYPERBOLIC SPACES 

Mario Bonk, Juha Heinonen, Pekka Koskela 

Abstract. — The unit disk in the complex plane has two conformally related lives: one 
as an incomplete space with the metric inherited from R 2 , the other as a complete 
Riemannian 2-manifold of constant negative curvature. Consequently, problems in 
conformal analysis can often be formulated in two equivalent ways depending on which 
metric one chooses to use. The purpose of this volume is to show that a similar choice 
is available in much more generality. We shall replace the incomplete disk by a uniform 
metric space (defined as a generalization of a uniform domain in R n ) and the space 
of constant negative curvature by a general Gromov hyperbolic space. We then prove 
that there is a one-to-one correspondence between quasiisometry classes of (proper, 
geodesic, and roughly starlike) Gromov hyperbolic spaces and the quasisimilarity 
classes of bounded locally compact uniform spaces. We study Euclidean domains 
that are Gromov hyperbolic with respect to the quasihyperbolic metric and the Martin 
boundaries of such domains. A characterization of planar Gromov hyperbolic domains 
is given. We also study quasiconformal homeomorphisms of Gromov hyperbolic spaces 
of bounded geometry; under mild conditions on the spaces we prove that such maps 
are rough quasiisometries. We employ a version of the classical Gehring-Hayman 
theorem, and methods from analysis on metric spaces such as modulus estimates on 
Loewner spaces. 
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Résumé (Uniformisation des espaces hyperboliques de Gromov) 
On peut considérer le disque unité dans le plan complexe de deux façons différentes : 

comme un espace incomplet si on le munit de la métrique euclidienne de M2, et comme 
un espace complet s'il est équipé d'une métrique de courbure négative constante. Par 
conséquent, on peut souvent formuler des problèmes d'analyse conforme de deux ma
nières différentes, suivant la métrique que l'on choisit d'utiliser. L'objet de ce volume 
est de montrer qu'un choix semblable est possible de manière beaucoup plus générale. 
On remplace le disque incomplet par un espace uniforme (défini comme une généra
lisation d'un domaine uniforme dans R n ) et l'espace de courbure négative constante 
par un espace hyperbolique au sens de Gromov. On montre ensuite qu'il y a une 
correspondance univoque entre les classes de quasi-isométrie des espaces hyperbo
liques (qui sont de plus propres, géodésiques et grossièrement étoiles) et les classes de 
quasi-similitudes des espaces uniformes qui sont bornés et localement compacts. Nous 
étudions les domaines euclidiens munis de la métrique quasi-hyperbolique qui sont hy
perboliques au sens de Gromov, et les frontières de Martin de ces domaines. On donne 
une caractérisation de domaines hyperboliques dans le plan. Nous étudions aussi les 
homéomorphismes quasi-conformes entre des espaces hyperboliques qui satisfont à une 
condition de géométrie bornée ; sous des hypothèses modérées, on démontre que les 
applications comme ci-dessus sont des quasi-isométries au sens large. Nous utilisons 
une version du théorème classique de Gehring-Hayman, et des méthodes d'analyse sur 
les espaces métriques comme des estimations de module dans les espaces de Loewner. 
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C H A P T E R 1 

INTRODUCTION 

The unit disk in the complex plane has two conformally related lives: one as 
an incomplete space with the metric inherited from R 2 , the other as a complete 
Riemannian 2-manifold of constant negative curvature. Consequently, problems in 
conformal analysis often can be formulated in two equivalent ways, depending on 
which metric one chooses to use. The purpose of this paper is to show that a similar 
choice is available in much more generality. We shall replace the incomplete disk by 
a uniform metric space (to be defined below as a generalization of a uniform domain 
in R n ) and the space of constant negative curvature by a general Gromov hyperbolic 
metric space. We then have the following theorem: 

Theorem 1.1. — There is a one-to-one (conformal) correspondence between the qua-
siisometry classes of proper geodesic roughly starlike Gromov hyperbolic spaces and 
the quasisimilarity classes of bounded locally compact uniform spaces. 

The terminology of this introduction will be explained in the course of the paper. 
The proof of Theorem 1.1 is given in Chapter 4. It relies heavily on the ideas around 
the Gehring-Hayman theorem, which is discussed in Chapter 5. (We believe that 
our study of the Gehring-Hayman theorem in Chapter 5 has independent merit.) In 
subsequent chapters, we shall give several applications, old and new, of Theorem 1.1. 
Besides the Gehring-Hayman theorem, the paper contains other related studies of 
independent interest, as will be discussed later in this introduction. 

A metric space is called proper if its closed balls are compact; it is called geodesic if 
every pair of points in it can be joined by a geodesic, that is, by a curve whose length 
equals the distance between the points. A geodesic metric space is Gromov hyperbolic 
if every geodesic triangle in it is 8- thin for some fixed 5 ^ 0. We also use the term 
8-hyperbolic in this case. See [Gr2], [GhHa, pages 16, 41, and 60], and Chapter 3 
below for precise definitions. 



2 CHAPTER 1. INTRODUCTION 

Gromov hyperbolic spaces form a large and much studied class of metric spaces. 
They include all complete simply-connected Riemannian manifolds whose sectional 
curvature is everywhere less than a negative constant. On the other hand, an arbitrary 
complete manifold of constant negative curvature need not be Gromov hyperbolic; 
certain planar Riemann surfaces serve as easy examples to this effect. (Compare 
Theorems 1.12 and 1.13 below.) 

The starting point for this paper was our desire to understand what Euclidean 
domains are Gromov hyperbolic when equipped with the quasihyperbolic metric. The 
quasihyperbolic metric kn in a domain ft of R n is obtained by using the continuous 
density 

(1.2) dist foôiî)-1. 

Thus, 

(1.3) kn(a,b) inf 
7 

\dx\ 
dist(x, dft) ' 

where the infimum is over all rectifiable curves 7 joining the points a and b in ft. The 
resulting metric space (ft,kn) is complete, proper, and geodesic [GePa], [GO]. 

For the record, in this paper a domain in M n means an open connected set with 
nonempty complement in M n . We always assume n ^ 2. 

If ft is a plane domain whose complement in M2 has at least two points, then ft 
admits a metric of constant negative curvature. This hyperbolic metric is obtained 
by a conformal change by using a density pn(z) which in many cases, although not 
always, is comparable to the density (1.2), that is, 

(1.4) pn(z) ~ dist(z, dft) 1 . 

In fact, (1.4) holds precisely when the boundary dft is uniformly perfect. See [BePo]. 
Recall that a domain ft in Rn is said to be uniform, or A-uniform, where A ^ 1, if 

every pair of points a,b e ft can be joined by an arc 7 so that 

(1.5) length7 < A\a - b\ 

and, for each x G 7, 

(1.6) min{length7(a, x), length j(x,b)} < Adist(x, dft), 

where 7(2, w) denotes the subarc of 7 between z and w. 
Uniform domains were introduced independently by Martio and Sarvas [MS] and 

Jones [J], and they have become the "nice domains" of analysis appearing in surpris
ingly many contexts [Ge]. In this paper, we are trying to explain uniformity through 
negative curvature. 

Let (fi, d) be a locally compact, rectifiably connected noncomplete metric space. 
The second assumption means that every pair of points in ft can be joined by a 
rectifiable curve, where curve means a continuous map 7: / —* ft from an interval 
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CHAPTER 1. INTRODUCTION 3 

/ C M to ft. The length ¿(7) of a curve 7 is defined in an obvious way, and the line 
integral 

7 
pds 

is well defined over every locally rectifiable curve 7, and for every nonnegative Borel 
function p. Here the parameter interval / is allowed to be open or half-open, and a 
curve is said to be locally rectifiable if all its closed subcurves have finite length. (See 
the Appendix for a more detailed discussion.) 

Given a real number A ^ 1, a curve 7: [0,1] —> ft is called an A-uniform curve if 

(1.7) * ( 7 ) < 4 d ( 7 ( 0 ) , 7 ( l ) ) 

and 

(1.8] min{^(7|[0,t]),€( 7 |[t,l])} ^ Adist(7(t),<9ft) 

for all t e [0,1]. Here the boundary <9ft is by definition the set 

aft = ft - ft, 

where ft denotes the completion ft; by assumption the boundary 9ft is nonempty. 
The definition for a uniform curve extends, in an obvious way, to a situation where 
the parameter interval is open or half open. If 7 is an embedding of the parameter 
interval, it is also called a uniform arc. 

Definition 1.9. — A locally compact, rectifiably connected noncomplete metric space 
is called A-uniform if every pair of points in it can be joined by an A-uniform curve. 

We also use the term uniform space, uniform curve, etc. if the parameter A need 
not be emphasized. 

If ft is a domain in R n with the Euclidean metric, then the definition given in 1.9 
agrees with the one given above for uniform domains; if instead we choose the metric 

(1.10) £n(a,b) = inf length 7, 

where 7 is a curve joining a and b in ft, and length means Euclidean length, then we 
call ft an inner A-uniform domain. 

Clearly, every uniform domain is inner uniform. If ft is the open unit disk in the 
plane minus the line segment [0,1], then ft is inner uniform but not uniform. 

Inner uniform domains in the plane were studied by Balogh and Volberg [BV1], 
[BV2] in connection with complex iteration. They called these domains uniformly 
John. (Inner uniform domains form a strict subclass of John domains.) For a thorough 
discussion of inner uniformity and related concepts, see a recent paper by Vaisala [V3]. 

We shall use the term Gromov hyperbolic domain for those domains in R n , or in R , 
that are Gromov hyperbolic in the quasihyperbolic metric. Throughout this paper, 
the metric notions for domains i nR = R n U { 0 0 } , n > 2, are understood in terms 
of the spherical metric (see Chapter 7). It turns out that (inner) uniform domains 
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4 CHAPTER 1. INTRODUCTION 

are Gromov hyperbolic, and that uniform domains can be characterized in terms of 
Gromov hyperbolicity: 

Theorem 1.11. — Inner uniform domains in R n are Gromov hyperbolic. Moreover, a 
bounded domain in R n is uniform if and only if it is both Gromov hyperbolic and its 
Euclidean boundary is naturally quasisymmetrically equivalent to the Gromov bound
ary. 

In the second assertion of Theorem 1.11, the assumption that the domain be 
bounded is simply for convenience. For unbounded domains one could either define 
the length in (1.10) by using the spherical metric in R n , or replace the quasisymmetric 
equivalence by quasimöbius equivalence [VI]. (Note that the Gromov boundary of a 
proper and geodesic space is always a compact.) The first assertion and the necessity 
part of the second assertion in Theorem 1.11 are proved in Chapter 3; the sufficiency 
part is proved in Chapter 7, where we consider, more generally, domains in R . 

We do not know if there is a result similar to the second assertion in Theorem 1.11 
for inner uniform domains. 

Quasiconformal mappings between Euclidean domains are rough quasiisometries 
in the quasihyperbolic metrics [GO]. Thus each quasiconformal image of a Gromov 
hyperbolic domain is again Gromov hyperbolic [GhHa]. In particular, there are 
Gromov hyperbolic domains that are not inner uniform, e.g. some simply connected 
proper subdomains of the plane. 

Theorem 1.1 asserts that every (proper, geodesic, roughly starlike) Gromov hy
perbolic space arises as a conformal image of a (bounded) uniform space. This uni-
formizing procedure turns the unbounded Gromov hyperbolic space into a bounded 
space with nice internal geometry. We hope that this point of view will be useful in 
understanding the large scale geometry of Gromov hyperbolic spaces, in particular, 
the structure of the boundary of a given Gromov hyperbolic space. The idea of a 
conformal change of metric in this context is of course not new. In recent times, 
the idea has been exploited by Floyd [Fl], Gromov [Gr2], [Gr3], Gromov and Pansu 
[GrPa], and others. 

If one starts with a Gromov hyperbolic domain in R n , it is reasonable to ask if our 
uniformizing procedure produces a uniform domain in R n , perhaps up to an additional 
quasiconformal change in the metric. (Note that there are no other conformal maps 
in R n for n ^ 3 than the Möbius transformations.) This is an interesting question, 
which we have not been able to answer, except in dimension n — 2: 

Theorem 1.12. — Gromov hyperbolic domains on the 2-sphere are precisely the con
formal images of inner uniform slit domains. 

Recall that a subdomain of the Riemann sphere is called a slit domain if it con
tains oo and the components of its complement are either points or compact line 
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CHAPTER 1. INTRODUCTION 5 

segments parallel to a given direction. It would be interesting to know if there is a 
characterization of Gromov hyperbolic domains in M n, n ^ 3, akin to Theorem 1.12. 

We conjecture that Theorem 1.12 can be improved as follows: Gromov hyperbolic 
domains on the 2-sphere are precisely the conformal images of uniform circle domains. 

Recall that a domain on the Riemann sphere is called a circle domain if its boundary 
components are all round circles or points. Koebe's Kreisnormierungsproblem predicts 
that every domain in the extended plane is conformally equivalent to a circle domain. 
Thus, the above conjecture is just a special case of Koebe's conjecture, but in the 
stronger form where the circle domain is asked to be uniform. 

Koebe's Kreisnormierungsproblem was solved for "collared" uniform domains by 
Herron [Her], and for arbitrary uniform domains by Herron and Koskela [HerK]. 
He and Schramm [HS1] established the conjecture for domains with countably many 
boundary components. For yet further results, see [HS2], [Sc]. It follows from Propo
sition 7.12 below that the above conjecture is true if Koebe's problem has an affir
mative answer. In particular, in view of the He-Schramm theorem, the conjecture is 
true for domains with countably many boundary components. 

We can verify our conjecture in one more special case, and in a slightly stronger 
form: 

Theorem 1.13. — A domain in Rn with totally disconnected complement is Gromov 
hyperbolic if and only if it is uniform. 

MacManus [M] proved recently that the complement of a compact totally discon
nected set K on the 2-sphere is uniform if and only if K lies on a quasicircle and is 
uniformly disconnected. This result together with Theorem 1.13 gives a simple ge
ometric criterion for Gromov hyperbolicity of domains on the 2-sphere with totally 
disconnected complement. We do not know if there is a simple geometric character
ization of Gromov hyperbolic domains in general. (See however a conjecture at the 
end of Chapter 7.) 

Theorems 1.1, 1.11, 1.12, and 1.13 will be studied and reformulated more quanti
tatively in the ensuing sections. 

Our proof for Theorem 1.12 in Chapter 6 is surprisingly indirect, using among other 
things the theory of modulus and Loewner spaces as developed recently in [HeiK], 
plus techniques from harmonic analysis. We do not know of an elementary proof for 
Theorem 1.12. 

We note that Vaisala (partially in joint work with Alestalo) has extensively studied 
uniform domains in infinite-dimensional Banach spaces. See [V4] and the references 
there. Although the quasihyperbolic metric and Gromov hyperbolicity make sense in 
these spaces, our methods largely will not work due to the lack of local compactness. 
It would be interesting to know if there is a general relationship between uniformity 
and Gromov hyperbolicity that would cover infinite-dimensional situations as well. 
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6 CHAPTER 1. INTRODUCTION 

In Chapter 6, en route to Theorem 1.12, we obtain results of independent interest. 
For example, we prove that uniform sub domains of an Ahlfors Q-regular Q-Loewner 
space are themselves Q-Loewner. (We refer to Chapter 6 for the terminology.) As a 
special case of this theorem we obtain that uniform domains in so-called Carnot groups 
are Q-Loewner spaces, where Q is the homogeneous dimension of the group. Such 
results have previously been proved only by relatively complicated Sobolev extension 
arguments. (In this connection, note that it is a nontrivial issue to prove that there 
exist uniform domains at all in Carnot groups; see [CG], [VG]. For Sobolev extension 
results, see [GN], [N].) Even in R n , we do not know of a previous proof for the fact 
that uniform domains are Loewner spaces that would not use the Jones extension 
theorem; see [J], [GM]. In any case, we obtain that inner uniform domains in R n 

are n-Loewner in the inner metric of the domain; this result cannot be proved by 
extension methods. 

Finally, we give applications of our studies first to potential theory on Euclidean 
domains and then to local-to-global phenomena for quasiconformal maps. 

Theorem 1.14. — If ft is a Gromov hyperbolic domain in R n and if the complement 
R n \ Q satisfies a capacity density condition, then the Gromov and Martin boundaries 
of Q, are homeomorphic. 

The definition for the Martin boundary of a domain ft is recalled below in Chapter 
8, where Theorem 1.14 is proved (under slightly weaker hypotheses). For the capacity 
density condition, see (8.12). 

Theorem 1.14, when coupled with the results on uniform spaces and hyperbolicity 
(Theorem 1.11 in particular), appears to give stronger conclusions than what can be 
found in the literature. Jerison and Kenig proved in [JK] that the Martin boundary of 
an NT A-domain is homeomorphic to the Euclidean boundary of the domain. Now an 
TVTA-domain is a bounded uniform domain whose complement satisfies the capacity 
density condition, whence the Jerison-Kenig result follows from Theorems 1.11 and 
1.14. What is new here is that the Martin boundary can be identified with the 
Euclidean inner boundary in case of an inner uniform domain (with complement 
satisfying a capacity density condition). 

It follows, too, that a quasiconformal mapping of a plane Gromov domain (with 
complement satisfying a capacity density condition) onto another plane domain in
duces a homeomorphism between the respective Martin boundaries. This need not 
be true in general (see [ST], [Seg]). A version of this latter observation is valid in 
higher dimensions as well, only the capacity density condition on the complement is 
not a quasiconformal invariant (it is for n = 2, see [Po, p. 302]). 

Theorem 1.14 for hyperbolic graphs was proved by Ancona [A3] and we follow 
his ideas. It is through Theorem 1.11 that we obtain new results. It is possible 
that at least some of the consequences, e.g. those for John disks [NV], were known 
to the experts. In lack of a precise reference, we include a rather detailed proof of 
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CHAPTER 1. INTRODUCTION 7 

Theorem 1.14, to the extent it deviates from the arguments given by Ancona in [A2], 
[A3]. Finally, we point out that Theorem 1.14 contains as a special case a result of 
Arai [Ar] about the Martin boundary of strictly pseudoconvex domains in C n (see 
Chapter 8). 

Next we state an application to quasiconformal mapping theory. 

Theorem 1.15. — Let f': X —> Y be a quasiconformal homeomorphism between two 
n-dimensional Hadamard manifolds, n ^ 2, that have Ricci bounded geometry. If X 
and Y are both Gromov hyperbolic, then f': X —> Y is a rough quasiisometry and 
hence extends to a quasisymmetric homeomorphism 3QX —• OQY. 

We shall prove Theorem 1.15 in Chapter 9 below, where also the terminology 
is explained. Theorem 1.15 contains as a special case a result of Pansu [Pa, Corol
lary 4] which asserts a similar conclusion for quasiconformal diffeomorphisms between 
two Hadamard manifolds of pinched negative sectional curvature. On the other hand, 
Pansu derives his result as a corollary to a theorem of Gromov that uses an isoperimet-
ric inequality argument; the relationship between Gromov's result and Theorem 1.15 
is less clear. 

In Chapter 9, we formulate and prove a yet more general result from which Theo
rem 1.15 follows. In particular, X and Y need not be manifolds there. 

To finish this introduction, we define some classes of maps that will be important 
to our study. A homeomorphism / : (X,d) —> (Xf,df) between two metric spaces is a 
quasiisometry, or an L-quasiisometry, if L ^ 1 and if 

(i.i6) L 
d(x,y) < d'(f(x),f(y)) < L d(x,y) 

for all x,y G X. Thus our quasiisometries are the same as bi-Lipschitz homeomor-
phisms, and we warn the reader that many texts, e.g. [GhHa], use different termi
nology. 

We call an arbitrary, not necessarily continuous, map / : (X,d) —> (X',d') a rough 
quasiisometry, or an (L, M)-rough quasiisometry, if L ^ 1, M ^ 0, if 

(1.17) 
1 
L 

d(x, y)-M^ d\f{x), f(y)) < L d(x, y) + M 

for all x, y G X, and if every point in X' lies within distance M from f(X). 
A homeomorphism / : (M,d) —• (M',d') between two metric spaces is quasisym

metric, or rj-quasisymmetric, if rj: [0, oo) —> [0,oc) is a homeomorphism such that 

(1.18) d?(f(x),f(y)) 
df(f(x)J(z)) 

d(x,y) 
d(x, z) 

for all triples of distinct points x,y,z in M. For example, a homeomorphism of the 
standard n-sphere, n ^ 2, to itself is quasisymmetric if and only if it is quasiconfor
mal. Observe that the inverse of an ry-quasisymmetric map is Ty'-quasisymmetric with 
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8 CHAPTER 1. INTRODUCTION 

r]'{t) = l / r / _ 1 ( l / t ) . See [TV] for the basic theory of quasisymmetric maps between 
metric spaces. 

A homeomorphism / : (ft,d) —» {ft' ,d') between two noncomplete metric spaces is 
a quasisimilarity, with data (77, L, A), where L > 1 and 0 < A ̂  1, if 

(1.19) / is 77-quasisymmetric 

and if for each x G ft there is cx > 0 such that 
(1.20) ~L d(z,y)^dff(z),f(y))^Lcxd(z,y) 

whenever z,y G B{x,\ cfo(x)). 
Here dn(x) is the distance from x to the boundary of ft (c/. next chapter), and 

B(x, Xdfi(x)) is the open metric ball centered at x with radius \dn(x). Thus / 
is a quasisimilarity if it is both quasisymmetric and the restriction f\B(x, A(fo(x)) is 
uniformly a quasiisometry up to scaling. Again, this terminology is not standard; some 
authors have called a homeomorphism / between Euclidean domains quasisimilar if 
only the second condition (1.20) is satisfied. 

A homeomorphism / : (M,d) —*• (M',df) between two metric spaces is quasicon
formal, or H-quasiconformal, H ^ 1, if 

(1.2i; H(x) := lim sup 
r—>0 

sup{df(f(x)J(y)):d(x,y)^r} 
mî{d'(f(x)J(y)):d(x,y)^r} 

for all x G M. Quasisymmetric maps are always quasiconformal and the (local) 
converse is often (but not always) true. For example, on domains in E n , n ^ 2, or 
more generally on Riemannian manifolds of dimension at least two, quasiconformal 
maps are locally quasisymmetric. See [HeiK] for a theory of quasiconformal maps 
between metric spaces. 
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and for many constructive comments, and Chris Connell for raising a question that 
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C H A P T E R 2 

THE QUASIHYPERBOLIC METRIC 
AND UNIFORM SPACES 

Assume that (ft, d) is a locally compact, rectifiably connected noncomplete metric 
space, and denote by ft its metric completion. Then the boundary 9ft = ft — ft is 
nonempty, and we define the quasihyperbolic metric kn in ft by introducing the length 
element 

\dz\ 
dn(z) 

dçi(z) dist(z, oft) for z G ft. 

Thus, kn(x,y) is defined to be the infimum over the quantities 

\dz\ 
dn(z) 

where 7 runs over all rectifiable curves in ft joining the points x and y. The inequality 

(2.1) \dn(z) - dn(w)\ < d(z,w), z, w G ft, 

implies that the density d$i is a continuous function on ft, and because ft is locally 
compact, dn is positive. It follows easily that k^ is a metric. 

There is a third natural metric in ft, denoted by £Q(X, y) and defined as the infimum 
of the lengths (in the original d-metric) of all curves joining the points x and y in ft 
(see the Appendix). 

When the metric space ft is understood as fixed, the abbreviations 

(2.2) kn(x,y) k(x,y), dQ(x) = d(x), £n(x,y) = £(x,y) 

are commonly used. 
Next, we record the following two elementary inequalities, valid for all x, y G ft: 

(2.3) d(x) 
l0Sd(y) 

3k(x0y) 

(2.4) log 1 + 
d(x,y) 

d(x) A d{y) 
log 1 e(x,y) 

d(x) A d(y) 
<k{x,y), 

where a Ab — min{a, b}. 



10 CHAPTER 2. THE QUASIHYPERBOLIC METRIC AND UNIFORM SPACES 

If several metrics are simultaneously in use when length, diameter, ... are under 
consideration, the notation £ e, diam e, ... will be used, where e denotes the metric in 
which length, diameter, ... are measured. 

Recall that a metric space is a length space if the distance between every pair of 
points in it is the infimum of the lengths of all curves joining the points. It is not 
hard to see that a complete locally compact length space is proper and geodesic [Grl, 
p. 9]. 

If (ft,d) is an arbitrary rectifiably connected metric space, any continuous density 
p: ft —>• (0,oo) determines a metric space (ft, dp), where the new metric dp is given 
by 

(2.5) dp(x,y) = inf 
7 

ods; 

the infimum is taken over all rectifiable curves 7 joining the points x and y. It is 
easy to see that indeed dp is a metric, and we call the space (ft,dp) a conformal 
deformation of (ft, d) by the conformal factor p. 

For completeness, a proof for the following lemma is provided in the appendix. 

Lemma 2.6. — Suppose that the identity map (ft,d) —> (ft,£) is a homeomorphism. 
Then for each rectifiable curve 7: i" —> (ft,d) the length £p(^) 0/7 in the metric space 
(ft, dp) is given by the line integral 

(2.7) M 7 ) 
1 

pds. 

Proposition 2.8. — / / the identity map (ft,d) —> (ft,£) is a homeomorphism, then it 
is a homeomorphism (ft, d) —» (ft, k) and (ft, k) is complete; in particular, (ft, k) is 
proper and geodesic. 

Proof. — It is easy to see that the identity map (ft,d) —> (ft, k) is a homeomorphism 
(compare Lemma A.4). Therefore, by Lemma 2.6 and by the remarks preceding it, it 
suffices to show that (ft,k) is complete. 

To this end, let (xn) be a fc-Cauchy sequence in ft. Then it follows from (2.3) that 

(2.9) 0 < m = inf d(xn) 
n 

^ sup d(xn) = M < 00. 

n 
In particular, by (2.4) 

d(xn,x7n) ^ d(xn)(exp{k(xn,Xm)} - 1) 

< M(exp{k(xn,Xm)} - 1) 

so that (xn) is a rf-Cauchy sequence as well. It follows from (2.9) and from the 
continuity of x 1—> d(x) that the limit y G ft of this d-Cauchy sequence has to lie in 
ft. Because id: (ft,d) (ft,k) is continuous, (xn) has a limit in (ft,k), as was to be 
proved. The proposition follows. • 
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CHAPTER 2. THE QUASIHYPERBOLIC METRIC AND UNIFORM SPACES 11 

Assume now that ft is an ^4-uniform space as defined in the introduction. Then we 
have 

d < £ ̂  Ad 

so that id: (ft,d) —• (ft,-e) is an ^4-quasiisometry; in particular, Proposition 2.8 im
plies that (ft, k) is complete, proper, and geodesic. The geodesic arcs in (ft, k) will 
henceforth be called quasihyperbolic geodesies. 

We shall next show that in a uniform space the quasihyperbolic geodesies are 
uniform curves. 

Theorem 2.10. — A quasihyperbolic geodesic in an A-uniform space is a B-uniform 
curve with B depending only on A. 

The proof of Theorem 2.10 is essentially the same given by Gehring and Osgood 
[GO] for Euclidean domains, only the generality of the situation necessitates some 
changes. We have decided to write down rather explicit constants in our estimates 
whenever this causes no extra trouble. For this purpose, we record the following two 
elementary inequalities: 

(2.11) log 1 
1 -x 

^ 2Alog(l + 2x), A > 1, 0 ̂  x 
A 

A + l 

(2.12) log(l + Ax) ^ Alog(l + x), A^l, x^O. 

Lemma 2.13. — Let (ft,d) be a locally compact, rectifiably connected noncomplete 
metric space. / / 7 : [0,1] —> ft is a curve that satisfies, for all t G [0,1], 

(2.14) Ul\[0,t})A£dh\[t,l])^Adh(t)) 

with end points x = 7(0) and y = 7(1), then 

(2.15) 4 (7 ) < 2 A log 1 + 4 (7) 
d(x) 

1 4 M7) 
d(y) 

^ 4,4 log 1 + 
d{x)Ad{y), 

If SI is an A-uniform space, then 

(2.16) k(x,y) < 2A2log 14 d(x,y) 
d(x) 

1 + d(x,y) 
d(y) 

< AA2 log 14 d(x,y) 
d(x)Ad(y), 

for all x, y e ft. 

Proof. — Denote L = 4 ( 7 ) and let z be the point on 7 which cuts 7 into two 
subcurves of equal length. By symmetry, it suffices to show that 

4(7i) ^ 2Alog L 
diari 
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12 CHAPTER 2. THE QUASIHYPERBOLIC METRIC AND UNIFORM SPACES 

where 71 is the piece of 7 from z to x. (This of course needs to be understood through 
a parameterization; 7 need not be an arc.) If 

L< 2A 

A+1 
d(x) 

then, cf. (2.7), 

4 (7 i ) 
71 

\du\ 
dht) 

L/2 

0 

ds 

d(x) — s 

log d(x) 
d(x)-L/2/ 

log 1 
1 L-

1 2d(a;) 
2,4 log 1 L 

d(x) 
where (2.11) was used in the last step. If in turn 

L > 
2A a(sx) 

then we use (2.14) and find that 

4 (71) 

Ad(x) A + l ds 

d(x) — s 
A 

L/2 

Ad(x) 

ds 
s 

log 
1 

1 A_ 
+ .4 log (A+1)L 

2Ad(a:) 

log(l + A) + A log 
L 

dfx) 

4̂ log 2 + A log 14 L 

2 A log 1 + dix) 

where (2.12) was used. 

Inequality (2.16) follows from (2.15) when applied to an A-uniform curve 7, for 

then £d(j) ^ Ad(x,y). The proof of Lemma 2.13 is complete. • 

Proof of Theorem 2.10. — Let 7 be a quasihyperbolic geodesic in an A-uniform space 
Q with end points y\ and y2. Put D = m a x x € 7 d(x). For i = 1, 2 let Ni be the unique 
nonnegative integer such that 

D 

2 ^ + 1 

<d(Vl) D 

A 
For k = 0 , . . . , iVi, let x\ be the first point on 7 with 

d(xl

k) 
D_ 

¥ 
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CHAPTER 2. THE QUASIHYPERBOLIC METRIC AND UNIFORM SPACES 13 

when traveling from y\ towards y2. Then define similarly x\ for k = 0 , . . . , N2 with 
travel direction from y2 to y\. Use points x\ and x\ together with the end points y\ 
and y2 to divide 7 into (iVi + N2 + 3) nonoverlapping (modulo end points) subcurves 
7J,, v G [—ATi — 1, 7V2 + 1]. (A curve containing an end point of 7 , as well as 
the middle subcurve between x\ and XQ, may be degenerate.) All subcurves 7^ are 
quasihyperbolic geodesies between their respective end points, and 

(2.17) 

d(z) D 

9M -1 
if z e 7„, 

d(z) 
2M 

if 2: is an end point of 7„. 

It thus follows from Lemma 2.13, formula (2.16), that 

(2.18) 
2M -1 

D 
Udv) < 4(7*) < AA2 log 1 + 

2l"l 

D 
ld(yv) 

An elementary computation, using formula (2.18) and the inequality log(l + x) < \fx 
for x ^ 0 implies 

2lH 
1 7 

g d ( 7 l / ) < 64A4 

and thus 

4 ( 7 . ) < 32A 4. 

By formulas (2.3) and (2.17) we hence obtain that 

d(z) 
D_ 

2ÌH 
exp{-32A 4 } for z G 7 „ . 

Therefore, for z = 7(£) G 7 l / , 

4*(T|[<M]) A * D ( 7 | [ * , 1]) 

2>[v] 

64A4D2~J 

^ 128^ 4 L>2- | 1 / | 

^Bi(A)d(*) , 

where B1(A)= 128A4 exp{32A 4}. This completes the proof for the second require
ment (1.8) placed on uniform curves. 

It remains to show that 7 also satisfies (1.7), that is 

(2.19) id(l) < B(A)d(yi,y2). 

The argument uses estimates (2.4) and (2.16). First choose points y'x and y'2 from 7 
such that 

ld(y'v) ld(y'2) 1 
2 

¿(2/1,2/2), 

where 7 ' is the subcurve from yi to yL i = 1,2, and that 

d' = d(i/i) Ad tó ) > 
¿(2/1,2/2)  

2Bi : 
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14 CHAPTER 2. THE QUASIHYPERBOLIC METRIC AND UNIFORM SPACES 

where B\ = B\ (A) is the constant from the first part of the proof. Observe that 

d(2/i»2/2> ^ 2d{yi,y2). 

Estimates (2.4) and (2.16) now imply 

log 1 + 
£d{l) - d{y1,y2) 

df < M2/i,2/2) 

< 4A 2 log 
2d(y1,y2) 

d' 

< 4 A 2 l o g ( l + 4Bi) , 

from which one infers that 

Ul)^d{yuy2) + d!B2(A). 

If dl ^ (4^42 + 1)^(2/1,2/2), the assertion follows from this last estimate. Thus assume 
otherwise. Then it follows from (2.1) that 

(4i42 + l)d(2/i,2,2) ^d' ^d{yi)Ad(y2) + 
1 
9. 

d(2/i,2/2) 

and hence that 

4A 2d(2/i,y 2) ^d(yi)Ad{y2). 

Estimates (2.4) and (2.16) now give 

log 14 
ld(y) 

d(y1)Ad(y2) 
$ 4A 2 log 1 + 

¿(2/1,2/2) 

d(yi) Ad(y2) 
< 1 . 

Consequently, by (2.4) and (2.16), 

4(7) 
d(yi) A d(y2) 

^ 31og 14-
ld(y) 

d(y1)Ad(y2)j 

^ 3fc(2/i,y2) 

< 12.42 log 1 4 ¿(2/1,2/2) 

d{y1)Ad(y2)j 

^ 12A2 rf(2/i,2/2) 
¿(2/1) Ad(y2)' 

Thus the desired bound (2.19) for ¿¿(7) can always be found, and the proof for 
Theorem 2.10 is complete. One can compute an estimate B < exp{1000^46}. • 

To finish the chapter, we prove the following proposition. 

Proposition 2.20. — The completion of a uniform space is proper. In particular, if 
(ft, d) is a bounded uniform space, then (ft, d) is compact. 

Proof. — We show that every bounded sequence (xn) in a uniform space (ft, d) con
tains a Cauchy subsequence. To this end, it suffices to show that for each e > 0 there 
exists a subsequence (xnk) of (xn) such that d(xnk,xne) ^ e for all k,£. 
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CHAPTER 2. THE QUASIHYPERBOLIC METRIC AND UNIFORM SPACES 15 

Thus, fix e > 0 and fix a base point w G ft; we may assume that d(xn,w) > e/2 
for all n. Assuming that (ft, d) is A-uniform, choose for each n an A-uniform curve 
7 n from w to xn. There exists a point yn G 7 n such that d(yn) > £/(4A) and 
d(xn, yn) < e/4. In particular, (y n ) is a bounded sequence as well, and it follows from 
formula (2.16) that 

k{w,yn) ^ 4A 2log 1 + 
d(w,yn) 

d(w) A d(yn) 
<A 

where is independent of n. Since (ft, fc) is proper, (yn) contains a convergent 
subsequence (ynk)\ and since (ft,d) and (ft,k) are homeomorphic, the sequence (ynk) 
is also convergent in (ft, d) (see Proposition 2.8). By passing to a further subsequence 
if necessary, and by picking the corresponding points xnk we find a desired subsequence 
{xnje). The proof of Proposition 2.20 is complete. • 
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C H A P T E R 3 

UNIFORM SPACES A R E NEGATIVELY CURVED 
IN THE QUASIHYPERBOLIC METRIC 

This chapter deals with the issue indicated in its title. We prove a general result 
(Theorem 3.6) which in particular implies the "only i f part of Theorem 1.11. 

First we recall some basic facts about Gromov hyperbolic spaces and set up no
tation. For the proofs, see [GhHa]. Denote by [x,y] any geodesic curve joining two 
points x and y in a metric space; that is, [x, y] is a curve (an arc in fact) whose length 
is precisely the distance between x and y. 

A geodesic metric space X is called 5-hyperbolic, 6 > 0, if for all triples of geodesies 
[x, y], [y, z], [z, x] in X every point in [x,y] is within distance S from [y,z] U [z,x]. 
The property is often expressed by saying that geodesic triangles in X are 5-thin. In 
general, we say that a space is Gromov hyperbolic if it is J-hyperbolic for some 6. All 
Gromov hyperbolic spaces in this paper are assumed unbounded. 

From now on, we generically use the distance notation \x — y\ in any Gromov 
hyperbolic space, unless there is a specific need to do otherwise. 

The Gromov boundary 8QX of a proper geodesic Gromov hyperbolic space X is 
defined to be the set of equivalence classes of geodesic rays. A geodesic ray in X is 
an isometric image in X of the interval [0, oo), and two rays are equivalent if their 
Hausdorff distance in X is finite. We say that a geodesic ray 7 ends at a G OQX if 7 
represents the point a. The Gromov boundary SQX is always nonempty. 

Alternatively, the Gromov boundary can be defined as the set of equivalence classes 
of sequences (xn) C X which tend to infinity in the sense that 

lim (xn\xm)w = 00 , 
n,ra—>-oo 

where 

(3.1) {x\y)w 
1 
2 

[\x - w\ + \y - w\ - \x - y\} 

is the Gromov product between points x, y G X with respect to a base point w G X. 
Two sequences (xn), (y„) in X , tending; to infinity, are equivalent if 

lim (xn\yn)w = 00. 
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There is, for each x G X and a G OQX, a geodesic ray [x, a] issuing from x and ending 
at a. Similarly, for every pair of distinct points a, b G dcX there is a geodesic line 
[a, b] from a to b which is an isometric image of (—00,00) ending at a and b in the 
obvious sense. 

The Gromov product extends to points a, b G OQX and the geometric content of 
(3.1) is the following: if X is proper, geodesic and ^-hyperbolic, then 

(3.2) \(a\b)w -dist(w, [a, 6])I < 85 

for any pair of points a, b € X U 8QX and any geodesic [a, b] between the points. 
The Gromov boundary does not, in general, possess a preferred metric, but there 

is a canonically defined quasisymmetric gauge on doX. (Recall the definition of 
quasisymmetry from (1.18).) 

A quasisymmetric gauge on a set is a maximal collection of metrics on the set so 
that any two metrics in the collection are quasisymmetrically related by the identity 
map. Two gauges are equivalent if there is a bijection between the two underlying 
sets that is quasisymmetric with respect to some (hence each) pair of metrics from 
the gauges. 

On the boundary 3QX of a (proper, geodesic) ^-hyperbolic space X there is a 
canonically defined quasisymmetric gauge generated by the distance functions 

(3.3) p w , e (a ,6) •• exp{-e(a\b)w}, a, b G dcX, 

where e > 0 and w G X is a base point. Although, in general, expression (3.3) does 
not define a metric, there is e(S) > 0 such that for 0 < e < e(S) one finds a metric 
dw,£ on dcX satisfying 

(3.4) 
1 
9 pWie(a,b) ^ dWi£(a,b) ^ pw,£(a,b) 

for a, b G dcX. All these changes in the distance functions including a base point 
change are quasisymmetric, so the gauge is well defined, depending only on X. We 
shall call this quasisymmetric gauge the canonical (quasisymmetric) gauge on 8QX. 
The Gromov boundary equipped with any metric from the canonical gauge is compact. 

By combining (3.2), (3.3) and (3.4), we obtain 

(3.5) 
1 

W) 
exp{—£dist(iu, [a, b])} ^ dwJa,b) ^ C(<5) exp{— £dist(w, [a, b})} 

whenever 0 < s < e(ö) and a, b G daX. 
A metric tree is 5-hyperbolic with 5 = 0; it can have arbitrarily long finite branches 

that are irrelevant to the construction of the (Gromov) boundary. We define a proper, 
geodesic Gromov hyperbolic space X to be K- roughly starlike, K > 0, with respect 
to a base point w G X, if for every point x G X there exists some geodesic ray 
emanating from w whose distance to x is at most K. We call the space if-roughly 
starlike if it is if-roughly starlike with respect to some base point. Note that if a 
proper, geodesic 5-hyperbolic space is if-roughly star like with respect to w G X, then 
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CHAPTER 3. UNIFORM SPACES ARE NEGATIVELY CURVED 19 

it is if'-roughly starlike with respect to any w' G X, where K' = K'(\w — w'\, £, K). 
Roughly starlike spaces are called visual in [BoSc]. All Cartan-Hadamard manifolds 
are roughly starlike. Gromov hyperbolic domains also have this property, as we shall 
see in Lemma 7.8. 

In the following theorem, as everywhere in this paper, we let (ft, d) denote a locally 
compact, rectifiably connected noncomplete metric space as in Chapter 2. 

Theorem 3.6. — If (ft, d) is a uniform space, then (ft, k) is a proper and geodesic 
Gromov hyperbolic space; moreover, if ft is bounded, then (ft, k) is roughly starlike 
and the quasisymmetric gauge determined by d on 9ft is naturally equivalent to the 
canonical gauge on <9aft. The statement is quantitative in that the constants of the 
conclusion only depend on the uniformity constant of ft. 

The gauge equivalence in Theorem 3.6 is induced by a natural bijection between 
the two boundaries, and is explained below in Proposition 3.12. 

Thus, Theorem 3.6 implies the "only i f part of Theorem 1.11. 
Because the Gromov boundary 3QX is always compact and because quasisym

metric maps map bounded spaces to bounded spaces, the assumption ft be bounded 
in the second assertion of Theorem 3.6 is necessary. If ft is not bounded, the one 
point compactification d* ft of 9ft is still homeomorphic to daft, and an appropri
ate quasimobius equivalence [VI] can be established. However, we shall not discuss 
quasimobius maps in this paper. 

We now prove the first assertion in Theorem 3.6. Thus assume ft is ^4-uniform. By 
Proposition 2.8 (cf. the remark after its proof), (ft, A:) is proper and geodesic. Next, 
let x, y, z G ft and let [x, y], [y, z], [x, z] be quasihyperbolic geodesies. We have to show 
that, for each given point u G [x,d, 

k(u, [x,z]U[y,z])^6(A). 

We assume, without loss of generality, that £([x, u]) ̂  £([u, ?/]), and use Theorem 2.10 
which asserts that quasihyperbolic geodesies are ^-uniform curves, B = B(A) ^ 1, 
to obtain 

(3.7) d{u)> ^e([x,u]). 

and 
_1_ в Щх,и}) 

d{u)> x,y])^d(x,y)^e([x,z])+t([z,y]). 
If 

e([x,z})< 1_ 

в 
[x,u]), 

then we can find a point v G [z, y] such that 

i(\z,v\) 2B *([a;,u])^([i;,i,]); 
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20 CHAPTER 3. UNIFORM SPACES ARE NEGATIVELY CURVED 

moreover, 

(3.8) 

d(u, v) < t([x,«]) + t([x, z\) + £([v, z]) 
1 1 

1+B + 2B. 
e([x,u}) 

(25 + 3) 
2B 

e([x,u]), 

while, by the uniformity of geodesic arcs (Theorem 2.10), 

(3.9) d(v) > 1 
B 

t{[z,v\) 1 
252 

l([x,µ]) 

If, on the other hand, 

£([x,z)) 1/bL5[X?*]) 

then we can find a point v G [x, z] such that 

£([x,v}) 1 
2B 

i(\x,u])<ei\v,z}): 

moreover, 

(3.10) d(u,v) ^ £([x,u])+e([x,v]) 
< (2g + l)  

25 *([a:,u]), 

while 

(3.11) d(v)> 1 
B t([x,v}) = 

1 
2B~î i([x,u])-

By combining formulas (3.7)-(3.10) and estimate (2.16), we arrive at 

k(u, [x,z\ U [y,z]) ^ k(u,v) 

< 4A2 log d(u,v) 
+ d(u) A d(v) 

^ 5(A), 

where 

5(A) = 4A2 log(l + B(2B + 3)). 

This proves the first assertion in Theorem 3.6. A computation shows that one can 
choose 6(A) = 10000A8. 

Before we take up the second assertion in Theorem 3.6, we establish some results 
on (quasihyperbolic) geodesic rays and lines. 

Proposition 3.12. — Suppose that (ft,d) is an A-uniform space and let 7: [0,̂ (7)) —> 

Q be a (quasihyperbolic) geodesic ray parameterized by arc length with respect to d. 

(a) If £d(l) = °°> then ̂ (7(5)) > s/B for s G [0,oo), where B = B(A) > 1 is 
the constant in Theorem 2.10, and d(ry(s),x) —> 00 as s —> 00 for each x G ft. In 
particular, 7 eventually leaves every bounded subset of ft. Moreover, if a is another 
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geodesic ray, a has finite quasihyperbolic Hausdorff distance to 7 if and only if £d(&) = 
00. 

(b) If £d{l) < 00, then there is a unique point a G 9ft such that d(j(s),a) —> 0 as 
s —* £d{l) and 7 is a B-uniform arc (with one end point in 9ft / Moreover, if a is 
another geodesic ray, then a has finite quasihyperbolic Hausdorff distance to 7 if and 
only if £d(&) < °o and OL{S) —» a as s —> ld{ot). 

(c) The map from the Gromov boundary 9cft to the set 9*ft = 9ft U { 0 0 } that 
assigns to each geodesic ray its end point in 9ft (case (b)) or 00 (case (a)) is injective. 
If there are no rays as in case (a), which happens if and only if (ft, d) is bounded, we 
set 9*ft - 9ft. 

(d) The mapping 9^ft —* 9*ft is a bisection, and for every pair of distinct points 
a, b G 9*ft — { 0 0 } every geodesic line [a, b] is a B-uniform curve, where B — B(A) ^ 1 
is the constant in Theorem 2.10. 

Proof. — Part (a) follows readily from Theorem 2.10: for the sufficiency part of the 
last assertion, use formula (2.16) to obtain 

fc(7(s),a(s)) < 4A 2log 
2g + d( 7(0),a(0)) >V 

s/B ) 

< 4A 2 log(l 4- 3B) 

for s ^ ¿(7(0), a(0)); necessity follows from (2.3). 
Part (b) is likewise easy to derive from Theorem 2.10 and formulas (2.3) and (2.16). 
Part (c) follows from (a) and (b), except the necessity part of the last assertion. 

For this, assume that (ft, d) is unbounded. Then we can choose a base point w and a 
sequence (xn) C ft such that d(w,xn) —» 00 as n —> 00. Let 7 n be a quasihyperbolic 
geodesic from w to xn. Because (ft, k) is proper, standard arguments using the Arzela-
Ascoli theorem show that the sequence (7 n) subconverges uniformly on compacta to 
a geodesic ray 7: [0, 00) —» (ft, k) that leaves every bounded set in (ft, d). Thus (c) is 
proved. 

It remains to prove part (d). Fix a point a G 9*ft. If a = 00, so that (ft,d) is 
unbounded, the existence of an unbounded ray was already discussed above. Thus 
assume a G 9ft. Pick a sequence (xn) C ft with xn —> a as n —> 00, and choose 
quasihyperbolic geodesies 7 n from a base point w to xn. Then d(xn) —> 0, so that 
k(w1xn) —> 00 by the basic estimate (2.3). Hence we find, by using the Arzela-Ascoli 
theorem and the properness of (ft, A;), that a subsequence of (7 n), still denoted the 
same, converges uniformly on compacta to a geodesic ray 7: [0,00) —» (ft, fc). It 
remains to show that dist(7, a) = 0. 

To this end, fix e > 0 (small compared to d(a, w)), and choose for each large enough 
n a point yn G 7n such that d(yn,xn) — e\ then the uniformity of 7 n together with 
standard estimates (2.16) imply that k(w,yn) ^ C, where C is independent of n. 
By the properness of (ft,fc), a subsequence (ynk) converges to a point y G 7 with 
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k(w,y) ^ C. By Proposition 2.8, (ynk) converges in (ft,d) as well, so it follows that 
d(a,y) ^ e. 

Finally, if a, b G d*ft — {oo}, then there is a geodesic line [a, b] by the general 
discussion in the beginning of this chapter. This line is clearly a ^-uniform curve by 
Theorem 2.10. 

This completes the proof of Proposition 3.12. 

We now return to the proof of Theorem 3.6 and prove that (ft, k) is roughly starlike 
if ft is bounded. Choose w G ft such that 

(3.13) d(w) = maxd(x) 

(The existence of such a point follows from Proposition 2.20.) Fix x G ft and let 
x' G 9ft be a closest boundary point to x, so that d(x) = d(x,x'). By Proposition 
3.12, a geodesic ray [w,xf] is a ^-uniform arc with B = B(A) ^ 1 if (ft, d) is A-
uniform. Because d(x) ^ d(w) ^ £d([w,x']), we can select a point y G [w, x'\ such 
that ed([y,x']) = \d{x). Thus 

d(x, y) < d(x, x') + d(x', y) ^ \d(x). 

Because also 
d(y)< l_ 

2B 
d(x), 

estimate (2.16) implies 
k(x,y) < 4^ 2 log(l + 35) 

as desired. A computation shows that (ft, fc) is roughly if-starlike with K(A) ^ 
5000A8. 

Before we prove the last assertion of Theorem 3.6, a lemma is required. 

Lemma 3.14. — Let (ft, d) be a bounded A-uniform space, let w G ft be a point as 
in (3.13), and let 7 = [a,w] be a quasihyperbolic ray from w to a point a G ft, 
parameterized by arc length with respect to d such that 7(0) = a. Let b G ft be a point 
distinct from a, and define 

y = 
7(d(a,6)) if d(a.b) ^ }>d{a,w) 

w if d(a, b) > |d(a,u>). 

Then, for each quasihyperbolic geodesic [a, b], we have that 
(a) k(y, [a, b]) < C\, and 
(b) k(w, [a, b}) - C2 < fc(y, w) ^ k{w, [a, b]) + C 2 , 

where the constants C\,Co > 0 depend only on A. 

Proof. — Assume first that d(a, b) > ^d(a,w), so that y = w. Let x G [a, b] be the 
point such that the subarc of [a, b] between a and x has length |d(a, w); because 
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\d(a,w) < \d(a,b) < \£d([a,b]) and [a, b] is a B(A)-uniform arc, we have that 

d(x) ^ —d(a,w). 

On the other hand, 

d(w, x) ^ d(w, a) + d(a, x) 5 
^ -d(w,a). 

Since dfx) ^ d(w), we get from (2.16) 

k(w, [a, oj) ^ k(w, x) £ 4A2 loe ' d(w,x) 
d(x) ^ 4A2 log(l + 5B). 

So (a) and (b) follow in this case. 
Next assume that d(a, b) ^ |d(a, iu). Let x G [a, 6] be the point that divides [a, 6] 

into two subarcs of equal length. Since also 7 is a 5(A)-uniform arc, we have that 

d{x)Ad(y) > —d(a,6). 

Because 

d(x,y) < d(x,a) + d(a,y) 

< — d(a,6) + d(a,6), 

we thus obtain from (2.16) that 

<4,42log(l + 5(5 + 2)). 

This implies (a) and the first inequality of (b). To prove the second inequality of (b), 
let u G [a, b] be a point with k(w, u) = k(w, [a, b]). If 

(3.15) £d([a,u])A£d{[u,b}) > \d(a,b), 

then the ^-uniformity of [a, 6] implies 

d(u) ^ _1_ 
2 5 

d(a, b) 

and we obtain as above that k(u,y) < C(A). Hence we may assume that (3.15) does 
not hold. In this case, we first estimate 

£d([u,w}) Ï d(w, u) ^ d(w, a) — d(a, b) — d(6, u) A d(a, u) 

> \ d(a,b). 

Let u' G [u, w] be the point so that £d{[u, u']) = \ d(a, 6); because [u, w] is a 5-uniform 
arc, we have 

d(u') > ±d(a,b). 
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Because also 

d(u\ y) < d(u', u) + ed([a, 61) + d(a, 6) 

g 
< - B d(a, b) 

by the definition of y and by the ^-uniformity of [a, 6], formula (2.16) implies 

k(u\ y) < 4A 2 log(l + 9 £ 2 ) = C(A). 

Since ?/ G [w, wl, we thus obtain 

k(w, [a, b}) • k(w,u) ^ k(w,u) 

^ &(w,2/) - k(u',y) 

>k{w,y)-C(A). 

This completes the proof of Lemma 3.14. 

Remark 3.16. — The proof of Lemma 3.14 shows that for a general base point w G 
ft the constants C\ and C2 in (a) and (b) depend besides on A also on the ratio 
diamft/d(u>). 

We shall now prove the last assertion of Theorem 3.6. Assume that (ft, d) is a 
bounded ^-uniform space. By Proposition 3.12, we have a bijection 

cp: deft —> 9ft 

that assigns to each geodesic ray [w, a] its end point a G 9ft; here w G ft is a point that 
satisfies (3.13). Note that diamft ^ 2Ad(w). Fix a metric dWj£ from the canonical 
quasisymmetric gauge of ÔQX satisfying (3.5). It suffices to show that the inverse of 
(f is an ^-quasisymmetric map (9ft, d) —> (9cft, dWi£) with rj = rj(A). 

To this end, let a, 6, c G 9ft be three distinct points. Fix a geodesic ray a], and 
let and 2/c in [w, a] be the points defined in Lemma 3.14, corresponding to b and c 
respectively. By the 5-uniformity of [it;, a], 

d(yb) > 
1_ 

B 
(d(w) A d(a, 6)) 

and 

d(yc) > 
1 

B 
(d(w) A d(a, c)) 

Assume first that 

(3.17) 
d(a, 6) 

dfa, c 
t ^ 1. 

Then 

d{yb,yc) ^ d(yb,a) + d(a,yc) 

^ 2d(a, 6) + 2d(a, c) 

^ 4d(a,ò). 
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It follows from (2.16), (2.12), and the above inequalities that 

HVb,yc) < 4A2 log 1-f 
ABdla, b) 

d(w) A d(a, c) j 

^ 32A 3 51og( l -K) , 

where in the last inequality we also used the fact that d(a,c) < 2Ad(w). 
Now we use estimate (3.5) and Lemma 3.14: 

dw,£(a,fr) 
dw,£(a,c) 

< C(A) exp {-e (k(w, [a, b]) k(w, [a,c]))} 

< C(A) exp {-e(k(yb, w) - k(yci w))} 

^ C(A)exp{ek(yb,yc)} 

^ C(A) e x p { s 3 2 ^ 3 5 log(l + t)} 

This proves the quasisymmetry condition if (3.17) holds. 
Next assume that 

d(a, b) 

d(a, c) 
= t<\. 

The definition for the points yb and yc then implies that we first hit yb and then yc 

when traveling from a to w along [a,w]; it may happen of course that yb = yc = w. 
Therefore, 

(3.18) k(w, 2/6) - k(w, yc) = k(yc, yb). 

We also have 

d(yb) < d(a,yb) ^ 2d(a,6), 

and so 

k(yc, yb) log <%c) 
d(2/b) 

log 
d(w) A d(a, c) 

25d(a, 6) 

: log d(w) A d(a, c) 
d(a, 6) 

log 25 . 

Because d(a, c) ^ 2Ad(w), we obtain 

k(yc, yb) log J log 2 ,4 - log 25 . 

Finally, use again estimate (3.5) and Lemma 3.14, which together with (3.18) imply 

dwAa,b) 
dwJa,c) 

^ C(A) exp {-e (k(yb, w) k(yc, w) 

C(A) exp{-ek(yc,yb)} 

^ C(A)t£ 

This completes the proof of Theorem 3.6. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



26 CHAPTER 3. UNIFORM SPACES ARE NEGATIVELY CURVED 

The above proof shows that the function r\ that controls the quasisymmetry of the 
map (<9ft, d) —» (<9G^, dw £) can be chosen to be of the form 

(3.19) n(t) • C(A)f if 0 < t < 1, 

C(A)tD^£ if 1 < t < 00. 

Recall that e < e(A) so that dWj£ is a metric. The particular choice of w satisfying 
(3.13) guarantees that ry depends only on the uniformity constant A. A change in the 
base point would not change the quasiisometry gauge determined by dw,£. Alterna
tively, for an arbitrary base point w the constant C(A) in (3.19) will also depend on 
the ratio diamft/d(it;). Note, however, that D(A) depends only on A in all cases. 
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C H A P T E R 4 

UNIFORMIZATION 

This chapter is devoted to the discussion and proof of Theorem 1.1. 
Suppose X is a rectifiably connected metric space. We use the notation \x — y\ 

for the distance of points in X. We fix a base point w, and consider the family of 
conformal deformations of X by the densities 

(4.1) p£(x) = exp{—e\x — w\}, e > 0. 

We denote the resulting metric spaces by X£ = (X,d£). Thus d£ is a metric on X 
defined by 

d£(a, b) = inf 
7 

Or ds. 

where the infimum is taken over all rectifiable curves in (X, \x — y\) joining the points 
a and b (see the Appendix). 

Recall from Lemma 2.6 that for any rectifiable curve 7 in X we have 

(4.2) 4 ( 7 ) = Pe ds, 

(with the obvious notation ££) provided the identity map (X, \x — y\) —• (X,£) is a 
homeomorphism. If X is geodesic, X£ is always bounded, for given x G X and a 
geodesic segment [w , x] we have that 

(4.3) d£(w, x) 
'[w,x 

pe ds ^ 
r»CX> 

e~£tdt= -, 
e 

and hence 
diam£ X£ 2 

s 
The triangle inequality implies that 

(4.4) exp{-e\x - y\) Pe(x) 

Ре{У) 
^exp{e\x-y\} 

for x, y G X and e > 0. This is a Harnack type inequality: the density p is roughly 
constant on balls of fixed radius. If X is geodesic, it follows from (4.4) that the 
identity map X£ —> X is a local quasiisometry; in particular, then, X£ is rectifiably 
connected. 
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We shall show in this chapter that there is associated with each proper, geodesic 
and roughly starlike ^-hyperbolic space X a whole family of bounded uniform spaces 
X£ for 0 < e ^ £o(5); the members in this family are quasisimilar to each other. This 
uniformization is obtained by a conformal deformation, where the density p£ decays 
exponentially towards the Gromov boundary as in (4.1). Let us denote the association 
X —• X£ by V for 0 < e ^ £o(S), where V stands for dampening. 

Similarly, we can quasihyperbolize each bounded uniform space ft by considering 
the quasihyperbolic metric k in it; the resulting space (ft, k) is a proper, geodesic 
and roughly starlike Gromov hyperbolic space (Theorem 3.6). Let us denote the 
association ft —* (ft, k) by Q. 

The one-to-one correspondence between the two types of isomorphism classes of 
metric spaces, stated in Theorem 1.1, is given by the above associations V and Q. 
We shall show that the composition QoV takes a given ^-hyperbolic space back to 
its quasiisometry class, and that the composition V o Q preserves the quasisimilarity 
type of a given bounded ^-uniform space ft for 0 < e ^ s(A). 

Note that, strictly speaking, the association V depends both on e and the chosen 
base point w. We have chosen to suppress this dependence from the notation. The 
dependence on the base point is rather innocent: a change there results in a quasi-
isometric change in the metric. On the other hand, two deformed spaces X£ and X£> 
are always quasisimilar; see Proposition 4.15. 

We begin our study by showing that the deformations X£ are uniform spaces. Here 
X need not be roughly starlike. Long "finite arms" in X will simply disappear in the 
uniformization. 

Proposition 4.5. — The conformal deformations X£ — (X,d£) of a proper, geodesic 
5-hyperbolic space X are bounded A(S)-uniform spaces for 0 < e ^ EQ(8). 

Proof. — By the discussion in the beginning of this chapter, X£ is bounded, rectifiably 
connected and locally compact. It is also noncomplete, because any sequence (xn) 
tending to infinity in X along a geodesic ray is a d£-Cauchy sequence, cf. (4.3). 
(Recall our standing assumption that all Gromov hyperbolic spaces are unbounded.) 
We denote 

d£X = dX£ = X£ - X£ 

A simple estimate using the Harnack inequality (4.4) implies, for \y — x\ > l/s, that 

d£(y,x) ^ l pe (x ) . 

In particular, we find that 

(4.6) d£{x) = ds(x,deX) 
1 

ее 
Pe{x) 

for x e x. 
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By Theorem 5.1 in the next chapter, there exists so = €o(5) > 0 such that the 
Gehring-Hayman theorem is true for X£ if 0 < e < SQ. That is, for each pair of points 
x, y G X and for each curve 7 in X with end points x and y, it holds that 

(4.7) ££([x,y}) < 204(7), 

where [x, 2/] is a geodesic segment in the J-hyperbolic space X. We shall show that 
for this choice of eo, the space X£ is A-uniform for A = max{20, exp{8feo + 1}} and 
for each 0 < e ^ £o- (Note in particular that A is independent of e.) Indeed, we shall 
show that a geodesic segment [x, y] joining two points x, y G X is an A-uniform curve. 

The first condition for uniformity (1.7) is immediate from (4.7). To prove condition 
(1.8), pick z G [x,y]. Consider a geodesic triangle 

A = [w, x] U [x, y] U [w, y] 

There is a tripod map / : A —> T, where T is a tripod consisting of three line segments 
satisfying the following two properties: / is an isometry on each of the sides of A 
and f(u) = f(v) implies \u — v\ < 45. See [GhHa, p. 41] or [Bo, Proposition 3.1]. 
Let xi G [x, y] denote the unique point whose image under / is the origin of T. By 
symmetry, we may assume that z G [x,xi]. 

By using the tripod map, one computes 

(4.8) \w — u\ > \w — z\ + \z — u\ — So 

for u G [x,z]. Thus 

ee([x,z]) 
j[x,z] 

pAu) \du\ 

[x,z] 
exp{—e\w — u\} \du\ 

^ e8S£exp{-e\w- z\\ 
[x,z] 

exp{—e\z — u\\ \du\ 

^ e8SepAz) 
»00 

'0 
e~£t dt 

e8ôe 

e 
pE(z) 

^ exp{8fc+ l}de(z), 

where (4.6) was used in the last step. This completes the proof of Proposition 4.5. 

Remarks 4.9 
(a) The restriction 0 < e ^ SQ{8) in Proposition 4.5 is needed only so that the first 

condition (1.7) of uniformity is guaranteed (by the Gehring-Hayman theorem). The 
second uniformity condition (1.8) is true in X£ for each e > 0 with A = exp{8fe + 1}. 

(b) The proof of Proposition 4.5 shows that geodesic segments, or more generally 
infinite geodesic rays or lines in X , are uniform curves in the deformed space Xe. 

We next establish a useful lemma: 
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Lemma 4.10. — Let X be a proper, geodesic 6-hyperbolic space, and let X£ = (X,de) 
be its uniformization for 0 < e ^ eo(6) as in Proposition 4-5. Then there is a constant 
C = C{8) ^ 1 such that 

(4.11) 1_ 

C 
d£(x,y) 

exp{-e(x\y)w} 
€ 

(lAe\x-y\) 

^ C d£(x,y) 

whenever x, y G X. 

Proof. — Fix x,y G X and 0 < e ^ eo(ô). Let [x,y] be a geodesic between x and y, 
and let x\ G [x, y] be the unique point that corresponds to the origin of the tripod 
under a tripod map of the geodesic triangle [w, x] U [w, y] U [x, y]. (Compare the proof 
of Proposition 4.5.) It then follows that | \x± — w\ — (x\y)w\ ̂  AS. In view of this, it 
suffices to show that 

(4.12) de(x, y) 
Pefa) 

e 
(1 A six - v\) 

with constants depending only on 5. If £ |x-?/ | ^ 1, then (4.12) is clear by the Harnack 
inequality (4.4). Thus we may assume that e\x — y\ > 1. 

Bv invoking; the tripod mao again, cf. formula (4.8), we have that 

exp{—e\w — u\} < e86£p£(x1)exp{-e\x1 - u\} 

for u G [x,y]. Therefore 

d£(x,y) < e^pJx!) exp{—dxi — u\\ \du\ 

2e8Ô£p£(Xl) 
0 

e~£t dt 

^ 2e8Ô£ РеЫ) 
£ 

On the other hand, 

exp{—e\w — u\} ^ pe{xi) exp{—e\x\ — u\} 

for u G \x.y\. So the Gehring-Hayman theorem 5.1 gives 

dJx.y) ^ 204 'fay]) 

1_ 
'l -e-^) 

e~£t 

'o 
e~£t dt 

~ 20 e £ pejxx)pejxx) 

> l_ pejxx) 
" 20 e 

'l - e - ^ ) 

This proves Lemma 4.10. 
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Proposition 4.13. — Let X be a proper, geodesic 5-hyperbolic space, and let X£ be its 
uniformization for 0 < e ^ £o(<5) as in Proposition 1^.5. Then there is a natural 
quasisymmetric identification BQX —• d£X. 

Proof. — It follows from (4.11) that each sequence in X that tends to infinity (as 
defined in the beginning of Chapter 3) converges in X£ to a point in d£X. Moreover, 
two sequences tending to infinity are equivalent if and only if they determine the 
same limit point in deX. We thus obtain an injective map OQX —> d£X. By using 
(4.11) again, we easily see that this map is surjective as well, leading to a natural 
identification of the two boundaries. Finally, it follows from (4.11), (3.3), and (3.4) 
that this identification is quasisymmetric. (Indeed, the map (dcX, dw,£) —> d£X is a 
quasiisometry, where dw e is as in (3.4).) The proposition follows. • 

Remarks 4.14 
(a) The identification map 3QX —• d£X in Proposition 4.13 can also be described 

as follows. For every equivalence class of geodesic rays there is a unique point a £ d£X 
such that 7(£) —> a in X£ when t —• oo for each geodesic ray 7: [0,00) —> X in the 
equivalence class. (Compare 3.12 (d).) 

(b) By Proposition 2.20 we know that XS is compact for 0 < e ^ £o(S). Thus 
the spaces X£ can be considered as compactifications of X obtained by adding the 
boundary d£X; these compactifications are all homeomorphic. A neighborhood basis 
for a point a G 8QX in this compactification is provided by the sets 

Na,\ — {x E X U dGX : (x\a)w ^ A} 

for A ^ 0. 

The next proposition shows that the quasisimilarity class of X£ is determined by the 
quasiisometry class of X. It follows, in particular, that X£ and X£> are quasisimilar 
if X is (^-hyperbolic and 0 < e,e' ^ £o(S). 

Proposition 4.15. — V maps mutually quasiisometric proper geodesic roughly starlike 
Gromov hyperbolic spaces to mutually quasisimilar spaces. 

We begin with a lemma which shows that inequality (4.6) is essentially sharp under 
the starlikeness assumption. 

Lemma 4.16. — Let X be proper and geodesic 5-hyperbolic space that is K-roughly 
starlike with respect to w. Then the density pe(x) = exp{—e\w — x\} satisfies 

(4.17) 
1 

se 
o£(x) < d£(x) $ 

(2eeK - 1) 

£ 

for each e > 0 and x G X. 
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Proof. — The left inequality in (4.17) was already proved in (4.6). To prove the right 
inequality, fix x G X. Let [w,a] be an infinite ray from the base point w to a point 
a G dcX so that 

\x-y\^K 

for some y G [it;, a]. 
We then deduce from the Harnack inequality (4.4) that 

d£(x)^de(x,y)+de(y,a) 

/p£(z)\dz\+/ Pe{z)\dz\ 

; Pe (x) 
0 

set dt + éK fOO 

3 
e~£t dt 

= Pe(x) (2eeK - 1) 
e 

as desired. This proves Lemma 4.16. 

Considering long finite branches in a tree, one sees that estimate (4.17) is of the 
correct order. When 0 < e ^ £Q(6) as in Proposition 4.5, formula (4.17) becomes 

(4.18) 1 
e 

Pe(x)  
£ 

; de(x) A Pe 0*0 
S 

where the constant A> 1 depends onlv on K and 5. 

Proof of Proposition 4-15. — Suppose that / : X —> X' is a quasiisometry between 
two proper, geodesic and roughly starlike Gromov hyperbolic spaces. Assuming that 
X is ^-hyperbolic and X' is (^-hyperbolic, we consider the spaces X£ and X'e, for 
0 < £ < €o(S) and 0 < £r ̂  eo{5'). We are free to choose the respective base points 
w G X and w' G X' such that f(w) = w', because a change in the base point only 
causes a quasiisometric change in the metric. We shall show that / : X£ —> X'e, is a 
quasisimilarity. 

To this end, we first infer from (4.11), (3.1), and (4.18) that 

(4.19) 1 A e\x — y\ ^ C £ d£(x,y) 
pe(x) 

c de(x,y) 
d£(x) 

where C ^ 1 depends only on the data associated with X. Now fix z G I , 0 < A < 1, 
and x, y G B£(z,Xde(z)). Then 

d£(x,y) 2A 
1 - A 

de(x), 

which together with (4.19) implies that 

(4.20) e\x - y\ ^ CA, 
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and hence that 

(4.21) eV - и1 С U, 
6 

if x,y G B£(z,\d£(z)) and if A is sufficiently small. Here, and throughout the rest of 
the proof, C ^ 1 is a constant that depends only on e, e', and the data associated 
with X and / . We also use the notation f(a) = a' for a £ X. 

Thus, if we pick A small, but depending only on the data, we conclude, by (4.11), 
(4.20), (3.1), (4.4), and (4.18), that 

(4.22) 1 
C 

de(x,y)<d£(z)e\x-y\^Cd£(x,y) 

if x, y G B£(z, Xd£(z)). On the other hand, if we choose A yet smaller, now depending 
in addition on e'/e, we similarly have, by (4.21), that 

(4.23) 
1 
C 

deiix'dXtdfWey-y'\x,y,z ^Cde,(x',y'). 

Inequalities (4.22) and (4.23) show that the second requirement (1.20) for quasisimi
larity holds. 

To show that / is quasisymmetric, we shall prove that for each triple of distinct 
points x,y,z G X the following statement holds: 

(4.24) de(x,y) 
d£(x,z) 

^ 1 implies 
de>(x',y') 
de,(x',z') 

Indeed, because X£ and X£> are quasiconvex metric spaces, the required 77-quasisym-
metry of / follows from (4.24) by [V4, Theorem 6.6]. 

We shall consider cases corresponding to possible locations of the three points. 
Condition d£{x,y) ^ d£(x,z) implies, by way of (4.11), that 

(4.25) exp{e(x\z)w-e(x\y)w\ 
1 A e\x — y\ 

1 A e\x — z\ 
If e\x — z\ is small, depending only on the data, we have as in (4.22) that 

de(x,y] 
d£(x) 

^ d£(x,z) 
d£(x) 

^ C e\x — z\ ; 

thus we are in the situation where (1.20) holds and (4.24) is clear. It follows that we 
only need to consider the case where 

(4.26) Ce\x-z\ ^ 1. 

Assume first that s\x — y\ < 1. It follows that 

(4.27) C ^ e'\x' - z'\ and e'\x' - y'\ ^ C. 
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We obtain from (4.11), (4.27), and (3.1) that 

de>{x',Z>) 

de'(x',y') 
^ C 

exp{-e'(x'\y')w>} 

exp{-ef(x'\z')w'} 

1 As'\xf -y'\ 

lAe'\x' - z'\ 

^ Cexp{£-(\zf - w'\- \x' - z'\ - \y' - w'\ + \xf - y'\)} 

< Cesxp{e'\x' -y'\} < C 

as desired. 
If e\x -y\^l, then (4.25) and (4.26) show that (x\z)w < (x\y)w + C. 
We now have 

C^e'\x'-*'\ and (x'\z')w> ^(x'\y')w>+C. 

(For the second inequality, see [BoSc, Section 5].) Therefore, 

de'(x',y') 

d£'(x , z') 

1 Ae'\x' -y'\ 

1 Ae'\x' -z'\ 

so that (4.24) holds in this case too. 
The proof of Proposition 4.15 is complete. 

We next study what happens to an A-uniform space ft under the associations 

ft—>(ft,k)—>ft£ 
Q V 

Here we denote by ft£ the conformal deformation of the space (ft, k) by the density 
p£{x) = exp{—ek(w, # )} , where 0 < e ^ £o(A) and w G ft is a base point satisfying 
(3.13). 

Proposition 4.28. — T/ie identity map ft —> f2£, 0 < e ^ £o(A), ¿5 quasisimilar with 
constant depending only on A. 

Proof. — We first prove that there is A — A (A) G (0,1) such that 

(4.29) k(y, z 
1 

if y, z G 5e(x, Ad(x)), where £o > 0 is a constant such that the conclusion of Propo
sition 4.5 holds for 0 < e ^ eo. We can take so = £o{A) by Theorem 3.6. Indeed, 
(4.29) follows upon observing that y, z G Ad(x)) implies both d(y, z) ^ 2Ad(x) 
and d(y) A d(z) ^ (1 — A)d(x), whence 

Hy, z) < 4A2 log 
2A N 

1 + 

by (2.16). Fix A = X(A) G (0,1) such that (4.29) holds. 
It follows from (4.11) (compare the proof of (4.22)) that 

(4.30) 1 
C 

p£(x)k(y,z) ^ d£{y,z) < C p£(x)k(y,z) 
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iîy,z€ B(x, Xd(x)), where C = C{A) > 1. 
On the other hand, if y, z € B(x, Xd(x)), then 

k(y, z) ^ AA2 log 
' . d(y,z) -

, + ( 1 - A ) d ( x ) y 

±A2d{y,z)  

(1 - A)d(i) 

by (2.16), while 

k(y, z) ^ log d(y, z) 
+ (1 + A)d(s) 

log(l + a) d(y, z) 

a (1 + A)d(x) 

by (2.4) because 
d(y,z) 

(1 + A)d(a;) 

2A 

(1 + A) 
= : a = a(A). 

The inequality 

(4.31) alog(l + *) ^ tlog(l-ha) 

for 0 ^ t ^ a was used here. 
By combining these last estimates with (4.30), we obtain that the second require

ment of quasisimilarity (1.20) is satisfied. 
It remains to show that the identity map ft —• ft£ is quasisymmetric. Fix three dis

tinct points x,y,z G ft. As in the proof of Proposition 4.15, we use [V4, Theorem 6.6] 
and conclude that it suffices to show that there is C = C(A) ^ 1 such that 

(4.32) 
d(x,y) 

d(x, z) 
< 1 implies 

d£(x,y) 

d£(x,z) 
ça 

In view of Lemma 4.10, the second inequality in (4.32) is equivalent to 

(4.33) exv\-e(x\y)w} (1 A ek(x, y)) 
exp{—e(x\z)w} (1 A sh(x, z)) 

< n 

Let yy and yz denote the point y G [x,w] corresponding to the points y and z, 
respectively, as in Lemma 3.14. (Excuse the bad notation.) It then follows from 
Lemma 3.14 (b), (3.2) and (4.33) that we need to bound the expression 

(4.34) 
exp{-ek(yy,w)} (1 A ek(x, y)) 

exp{-ek(yz, w)} (1 A ek(x, z)) 

Because we are assuming that d(x,y) < d(x,z), by definition we encounter yy before 
yz when traveling from x to w along \x,w]. Thus (4.34) becomes 

(4.35: exp{-ek(yy,yz)} 
(lAek(x,y)) 

(1 A ekix, zY 

1 A ek(x, y) 

1 A ek(x, z) ' 
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From (2.4) we have 

d(x,y) ^ d(x,z) < d(x)(exp{k(x,z)} — l ) . 

Hence there exists a constant Co = Co (A) > 0 such that k(x,z) ^ Co implies z,y £ 
B(x,\d(x)); this is as in (4.30) and the desired bound (4.33) clearly follows. On the 
other hand, if k(x,z) > Co, then 

1 A ek(x,y) 

1 A ek(x,z) 
< C 

and (4.33) again follows by way of (4.35). 
The proof of Proposition 4.28 is complete. 

To complete the proof of Theorem 1.1, we still have to show that under the associ
ation Q, quasisimilar uniform spaces land in the same quasiisometry class, and that 
after the two deformations 

(X,\x-y\)—+(X£,d£)-+(X£,k£) 
V Q 

we land in the same quasiisometry class. Here X is a proper, geodesic and roughly 
starlike J-hyperbolic space, and 0 < e < e(5) as in Proposition 4.5. These two facts 
are established in Propositions 4.36 and 4.37. 

Proposition 4.36. — A quasisimilarity between two uniform spaces is a quasiisometry 
in the quasihyperbolic metrics, quantitatively. 

Proof. — Let / : (fi, d) —> (ÇV', df) be a quasisimilar map with data (77, L, À). Because 
the corresponding spaces (Q, k) and (ffc', k') are geodesic, and because of symmetry, it 
suffices to show that / : (ÇI, k) —• (CI', k') is locally Lipschitz with constant depending 
only on the data. Fix x, y £ ft such that 

d(x,y) < X(d(x) Ad(y)). 

Then one easily computes from the quasisimilarity conditions (1.19) and (1.20) that 

d'(f(x)J(y)) < C 
d'(f(z)) 

d(z) 
d(x,y) 

for z = x or z = y, where C > \ depends only on the data. Thus 

k'(f(x)J(y))^4A2\og H 
Cd(x, y) 

d(x) A d(y) 

< 4,42Cloff \ d(x,y) " 
. ^d(x)Ad(y), 

^AA2C k(x,y) 

by (2.16), (2.12) and (2.4). This proves Proposition 4.36. 
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Proposition 4.37. — If X is K-roughly starlike, proper and geodesic S-hyperbolic space, 
then for 0 < e ^ eo(S) the identity map 

(X,e\x-y\)—>(Xe,ke) 

is a quasiisometry. Indeed, for all x,y G X, 

ce\x-y\ ^ k£(x,y) < ee\x-yl 

where c G (0,1) depends only on K and 5. 

Proof — Let x, y G X. Then 

k£(x,y) 
\d£z\ 

7 d£{z) 

r\x~y\ 

f 
0 

dLM) 

deh(t)] 

>\x-y\ 

0 

Ps{l{t)) 
de{l{t)) 

^ ee\x - y\ 

by (4.18), where 

Le(t) 
rt 

peH(s))ds 

and 7 is a geodesic segment [x, y] parameterized by arc length. Thus the identity map 
X —» (X£, k£) is ee-Lipschitz. Note that this estimate holds for all e > 0. 

In the other direction, by (2.4), by the Gehring-Hayman theorem (4.7), and by 
(4.18), 

k£(x,y) ^ log 1 i d£(x,y) 
dJx) Ade(y) 

(4,38) Z log 1 + ie([x,y]) 
20(d£(x)Ad£(y)) 

> lot 1 + 
eU[x,y\) 

C(K,6)(p£(x)Ap£(y)) 

Assume first that e\x — y\ < 2 log2. Then, by the Harnack inequality (4.4), 

Pe{x) 
Pe(z) 

4 

for all z G \x.y]. Hence 

4(fx,j/l) > 
Pe(x) 

4 \x-yl 

and we obtain from (4.38) and (4.31) that 

ke(x,y) > log(l + a e\x - y\) 

^bs\x- 2/1, 

for some constants a, b G (0,1) depending only on K and J . 
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We are thus left with the case e\x — y\ > 2 log 2. Let [x,y] be a geodesic segment 
and let x\ G [x,y]. By the Harnack inequality (4.4), 

le([x,y]) > Pe(xi) 
Ax —x\ 

0 
e~£tdt + 

'\y-X!\ 

0 
e~£t dt 

(4.39) Pe(xi) 
E 

2 — g-ek-^il _ e-e\y-x\\ 

. PejXl) 
* 2e ' 

We use this estimate for the point x\ G [x,y] that corresponds to the origin under the 
tripod map 

/: [w,x]\J[x,y]\j[w,y]^T. 

(See the proof of Proposition 4.5.) In particular, with this choice of xi , 

\w — x\ V \w — y\ ^ \w — x\\ -f \x\ — x\ V \x\ — y\ — AS 

^ \w-xi\Ar- \x-y\-46. 

This implies 

pe(x)Ap£(y) = exp{—£(\w — x\ V \w — y\)} 

(4.40) ^ eA6eexp{—e\w — x\\ ~\\x-y\\ 

= e 4 % £ ( x i ) e x p { - - | x - i / | } . 

Now use (4.40) together with (4.38), (4.39), and (2.12) to obtain 

k£(x,y) ^ log 1 + û 
Pe(xi) 

(p£(x) Ap£(y)) 

^ log (l + bexp{-\x-y\} 

^ 6log (l + exp{-\x - y\} 

ь - vi-
where a, b G (0,1) only depend on K and <*). This completes the proof of Proposition 
4.37. • 

The proof of Theorem 1.1 is now complete. 
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C H A P T E R 5 

THE GEHRING-HAYMAN THEOREM 
FOR GROMOV HYPERBOLIC SPACES 

The Gehring-Hayman theorem in complex analysis states that the hyperbolic geo
desic in a simply connected (hyperbolic) plane domain minimizes the Euclidean length 
among all the curves in the domain with the same end points, up to a universal mul
tiplicative constant [GeHa]. This theorem has recently been generalized to quasihy
perbolic geodesies in domains in En that are quasiconformally equivalent to uniform 
domains [HNj, [HRJ. A yet different generalization of the Gehring-Hayman theo
rem was established, and crucially applied, in the theory developed in [BKR]. In 
this chapter, we establish a similar theorem for general (^-hyperbolic, geodesic metric 
spaces, and for their conformal deformations. Essentially the same theorem appeared 
without proof in [Gr2, p. 191]. A complete proof of a similar result was given in 
[CDP, Prop. 1.6, p. 129], but there it was implicitly assumed that the space with the 
conformally deformed metric is geodesic. Since this assumption will not be true in 
general in the setting of the previous chapter, we shall provide a detailed proof of the 
general assertion. 

Theorem 5.1 was used already in the Chapter 4. The present chapter can be read 
independently of the rest of this paper. 

Theorem 5.1. — Let X be a geodesic, S-hyperbolic metric space, and let p: X —» 
(0, oo) be a continuous function that satisfies 

(5.2) 1 
C 

exp{-e\x - y\} 
p(x) 

Р\У) 
^ Cexp{e\x - y\) 

for all x,y G X and for some fixed C ^ 1 and e > 0. There exist e$ — £o(5, C) > 0 
and M = M(C) ^ 1 such that, if e ^ en in (5.2), then 

(5.3) tp([x,y]) < M £ P ( 7 ) 

for each geodesic segment [x,y] in X and for each curve 7 joining x and y in X. 
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In (5.3), £p denotes the length in the deformed metric dp; see (2.7). The proof will 
show that one can take M = 20C2. 

The proof of Theorem 5.1 is accomplished through a series of lemmas. We assume 
that X is a 5-hyperbolic, geodesic space with distance \x — y\, and that p satisfies 
(5.2); in particular, the constants e and C are assumed fixed. The length of a curve 
7 in X is denoted by ¿(7). 

Lemma 5.4. — Let 7 be a curve in X with end points x , y satisfying 

(5.5) \x - y\ ^ L = 1 
12eC2 

and 

(5.6) ¿(7) > 3C2\x - y\ 

Then 
to(\x,y]) < toh) 

for each geodesic [x,y]. 

Proof. — For a geodesic [x,y], we compute 

U\x,y}) 
'[x,y] 

pds < Cpix) 
k—3/1 

/0 
e£t dt 

Cp(x) 1 
e 

ee\x-y\ _ ^ 

^Cpix) 3 
2 

\x-y\ 

In the last step, we used (5.5) and the fact that ex — 1 ^ § x if 0 ^ x ^ 1/4. On the 
other hand, by (5.6), 

toh) 
p(x) 

С 

*3C2\x-y\ 
e~£t dt 

p(x)l 
С E 

\ _ e-^C2\x-y\" 

>Cp(x)\x-y\. 

In the last step (5.5) was used again together with the fact that 1 — e x ^ | x if 
0 ^ x ^ 1 / 4 . This proves the lemma. • 

Lemma 5.7. — Let 7: [a, b] —> X be a curve in X with finite length. Then there is a 
curve 7: [a, b] —• X with the same end points as 7 with £p{l) ^ ̂ (7)? and with 

(5.8) £h(s,t))^3C2h(s)-y(t)\ + l 

whenever a < s < t ^ b are such that \j(s) — 7(t)| < l/(12eC2) 
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Proof. — Let T be the family of all curves in X with the same end points as 7 and 
with p-length not exceeding -¿^(7); because 7 G I\ 

S = inf £ (a) < oc. 

Pick 7 G T such that ^(7) ^ S + 1/2. We claim that 7 has the desired properties. We 
assume that 7 is parameterized by the interval [a, 6], and so it suffices to show that 
(5.8) holds. To this end, suppose there exists an interval C [a, b] such that 

l7(s)-7(*)l 
1 

l2eC2 
but 

e(1(s,t))>3C2\1(s)-J(t)\ + i. 

Lemma 5.4 then implies 

fp([7W,7W])^p(7(M)) 

for a geodesic [7(5),7(£)]. By replacing 7(5,£) with a geodesic [7(5),7^)], we obtain 
a new curve 7' G T with 

S ^ % ' ) = ¿(7) - % ( M ) ) + |7(s) - 7(*)l 

S+1:2 3 C 2 | 7 ( S ) - 7 W | - l + l 7 ( s ) -7WI 

S+1:2 

a contradiction. The lemma follows. 

Lemma 5.9. — Let A, ¡1, and L be positive numbers, and let 7 : [a, 6] —• X 6e a recti
fiable curve satisfying 

(5.10) *(7(M))<A|7(*) -7(*) I + M 

whenever [s,t] C [a, 6] and |7(s) — 7(t)| < L. £et u = 7(a) and v = 7(6) be the end 
points 0 /7. If for some geodesic segment g = [x,y] in X it holds that 

(5.11) dist(7, g) = dist(u, g) = dist(i;, #) ^ := 1 + 4<$ + 4(5A, 

£/ien either 

(5.12) I M - d > L 

nr 

(5.13) lu - v\ < (1 + 8<SA)(2 4-16(5 + 8(5A) + 85u. 

Proof. — Let un.vo G \x,y] be points such that 

\u0 -u\ = \v0 - V \ = dist(7, b , 2/1). 

By (5.11), we can find points u\ G [U,UQ] and G [v,i>o] such that 

|^ — v>i \ — \v — vi \ = R. 
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Consider a geodesic [µ1, v1]; we claim that 

(5.14) dist(7, \u-\, v-i]) > r := R - 25 = 1 + 25 + 4(5A. 

Indeed, assume for some points z G 7 and 21 G [i/i, vi] we have that \z — zi\<r. By (5-
hyperbolicity, when applied to the geodesic rectangle [uo, ui]\J[ui, vi]\J[vo, vi]U[uo, v0], 
there is a point ZQ G [w0, t/i] U [t>o, vi] U [i/o, such that \z\ — ZQ\ ^ 25. If z0 G [u0l vo], 
then 

< \z0 - z\ < |z0 - zi\ + Izi - 2?I < r + 25 = R 

which is a contradiction; if zo G [w0, ui] U [vo, Vi], we assume without loss of generality 
that ZQ G h/c^il, and deduce 

\u - u0\ = dist(7, [x,y]) < dist(z, [x,y]) 

^ \z - 211 + \zi - zQ\ + |z0 - Ifcol 

< r + 25 + | ^ i — UQ\ = R-\- \m - i/o I = I u - wo I, 

another contradiction. Thus (5.14) holds. 
Next, we split [a, b] into n ^ 1 intervals [to, ¿1 ] , . . . , [tn-i,tn], where a = to < ¿1 < 

• • • < tn = 6 are such that 

*(7(**,*fc+i)) = 1 + 85A, for fc = 0 , . . . , n - 2 , 

*(7(*n-i,*»)) < 1 + 85A. 

Denote x/c = 7(£fc) and choose yk G [^1,^1] such that \xk — yu\ = dist(x£, [t/i, i>i]). 
Note that 

\xk ~ xk+1\ ^ 1 + S6X < 2r - 45. 

The projection lemma [Bo, Lemma 3.2] thus implies that 

\Vk ~ 2/fc+i| ^ 8(5 

for k = 0 , . . . , n — 1. We also note that 

\xo - Vol = distfiz, ki ,vi l ) < \u - uA = i?, 

and similarly |xn — yn\ ^ R. 
Now assume that (5.12) does not hold, that is, \u — v\ ^ L; then, by assumption 

(5.10), we have 

ih) < \\u-v\ + n. 

and so the number n of intervals [£fc,£fc+i] satisfies 

TI : eh) 
l + SÔ) 

+ i 
A|u — f| + /i 

1 + 8(5A 
4- 1. 
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It follows from all the above that 

\u-v\ = \XQ - xn\ ^ \XQ - 2/01 H 
n-1 

k=0 
\Vk - 2/fc+i| + \yn ~ xn\ 

^2R + nSS 

^2R + 85 
86X 

1 + 8£A 
u — v\ 

SSLL 
1 + 8JA 

whence 
\u — v\ : (l + 85\)(2R + 86) + 86u 

which is (5.13). The lemma follows 

Lemma 5.15. — Let f: [a, b] —* [0, oo) be a continuous function satisfying the follow
ing three properties: 

(5.16) f(a) = f(b) = 0; 

(5-17) f(s)- /(*)l < I* - *L for s,te[a,b]; 

(5.18) there is c > 0 such that (s, t) € Mc implies t - s < c or t — s > 2c, where 

Mc = { ( s , t) € [a, b] x [a,b] : s ^ t and c < / ( s ) = /(£) ^ f(x) for each s ^ x < f } . them 

(5.19) max f(x) 
xGia.bi 

3 
2C-

Proo/. — Consider 7VC = {(s,t) G Mc : t - s > c}. We claim that 7VC is empty. It 
is easy to see that both Mc and Nc are compact. If Nc ^ 0 , then we can choose 
(ix, G ATC so that 

(5.20) v — u — min{£ — s : (s, i) G 7VC}. 

By assumption (5.18) and by definition of iVc, we have that v — u > 2c. If there was a 
point w G (u,v) with f(w) — f(u) — f(v), then w —u^covv —w^c, contradicting 
(5.20). Therefore fix) > flu) = flv) ^ c for u < x < v. Let 

m = min {f(x) : x e u+ \ c, v — 5 c ]} , 

and let г¿/ G (w, w + ^c] be the largest number where / assumes the value m; similarly, 
let vf G [v — \c,v) be the smallest number where / assumes the value m. Obviously 
(u',v') G Mc, and because v' — u' ^ (v — ^c) — (u + | c ) = v — ^ — C > C , we have in 
fact that {u\v') G 7VC. But v' - v! < v - u, contradicting (5.20). Thus Nc = 0 . 

Now let x G [a, 6] be arbitrary; we may assume that f(x) > c. Let u G (a, x] be the 
largest number where / assumes the value c; similarly, let v G [x, 6) be the smallest 
such number. Then (u,v) G Mc, and by what was proved above, we have v — u < c. 
Thus either x — u < \c or v — x < \c. In any case, (5.17) implies f(x) < | c , and the 
lemma follows. • 
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Lemma 5.21. — Let A ^ 1 and /x > 0 be positive numbers, and let 7: [a, 6] —• X be 0 
rectifiable curve satisfying 

(5.22) *(7(M)) 0 | 7 ( s ) -7(*)I+M 

whenever [s,t] C [a, 6] and |7(s) — 7(£)| ^ w/&ere 

(5.23) L = 2A(1 + 85A)(2 + 165 4- 85A) 4- 165/xA + 2/x + 1. 

T/ierz 7 belongs to the L-neighborhood of each geodesic [7(a), 7(6)] 

Proo/. — We may assume that [a, 6] = [0,̂ (7)] and that 7 is parameterized by arc 
length. Let g = [7(a), 7(6)] be a geodesic with the same end points as 7, and define 

f(r) = dist(7(r), g), 0 ^ r ^ ¿(7) 

Then / satisfies conditions (5.16) and (5.17) in Lemma 5.15. We claim it also satisfies 
(5.18) with c = L/2. To see this, let (s,t) G Mc. Then, for each r G [s,t], 

dist(7(r), g) >dist(7(s), g) = dist(7(t), g)2 
L 
2 

*R, 

where R is given in (5.11). Thus Lemma 5.9 implies that either (5.12) or (5.13) holds, 
where u = 7(5) and v — j(t). If (5.12) holds, then 

2c = L < his) - 7mi ^ £h(s, t)) = t - s ; 

if (5.13) holds, then 

Ms) - 7ft)| ^ (1 4- 85A)(2 4 165 + 85A) 4- S5a < L, 

which implies by way of (5.22) that 

t - s = t(n(s, t)) ^ A(l 4- 85A)(2 4 165 + 85A) 4- 85/xA + /x 

• \ i L - D < f = , 

The assumptions of Lemma 5.15 are thus satisfied, and by (5.19), f(r) ^ | L < L for 
0 ^ r ^ £M. This proves Lemma 5.21. • 

Proof of Theorem 5.1. — Choose A = 3C2 and p = 1 in Lemma 5.21, where C > 1 
is as in (5.2), and let L = L(5, C) be the constant given in (5.23). Define 

(5.24) so = SQ(6, C) = 
1 

14LC2' 
We claim that if 0 < e < e0 in (5.2), there exist M = M(C) such that (5.3) holds 
for a given geodesic g = [x, y] and for a given curve 7: [a, b] —> X with 7(a) = x and 
7(6) = y. By Lemma 5.7, and by the choice of so, we may assume that 7 satisfies 
the assumptions of Lemma 5.21 with A = 3C2 and ¡1 — 1. Therefore, 7 lies in the 
//-neighborhood Ni,{g) of the geodesic g. This implies (cf. [Bo, Corollary 2.7]) that 
g lies in the 2L-neighborhood of 7, 

(5.25) 9 C N2L{l)-
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We consider two cases; in the first case, assume that the end points x and y satisfy 

(5.26) \x-y\^7L. 

Since g is a geodesic, there is a subcurve 7' of 7, starting from x, such that ¿(7') = 
£(q) = \x — y\. It follows that 

M 7 ) > W) ±p(x)e-'°7Lt(g) 

while 
Ug) < Cp(x)ee°7Ll(g) 

so that (5.3) holds with M = C2e2e°7L < 3C2, by (5.24). 
Finally, assume that (5.26) does not hold. Then we can choose points x\ = x, 

X 2 , . . . , x n + i = y, n ^ 2, successively on # such that \xk ~ Xk+i\ = 7L for fc = 
l , . . . , n — 1, and |xn — 2/| < 7L. Let = [#fc,#fc+i] C p. By (5.25), 7 meets the 
balls B(xk,2L) for all fc, and 7 cannot stay inside B(xk,3L) because n ^ 2 and the 
balls B(xk, 3L) are pairwise disjoint for A: = 1 , . . . , n. It follows that for fc = 1 , . . . , n 
there is a subcurve 7^ of 7 inside jB(xfc,3L) \ B(xk,2L) connecting B(xk,2L) to 
X \ B(xk, 3L). The curves 7^ are disjoint, and 

lp(y) 
n 

k=l 
«p(7fc)-

On the other hand, 
lp(yk) 1 

C 
o(xfc)e-£o3L L 

and 
lp(yk) Cp(xk)e£o7L 7L 

for A; = 1 , . . . , n. By summing these two inequalities over k , we obtain 
lp(g) ^ 7C2eWsoL£p(-y) < 20^(7) 

by (5.24). This completes the proof of Theorem 5.1. 
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C H A P T E R 6 

UNIFORM LOCALLY LOEWNER SPACES 
A R E LOEWNER 

This chapter can be read independently of the rest of the paper, although some 
results and terminology from Chapter 2 are used. 

The concept of a Loewner space was introduced in [HeiK]. Let M be a rectifiably 
connected metric space, and let p be a Borel measure on M. Then M is called a 
Q-Loewner space, Q > 1, if the function 

(6.1) ip(t) = i n f { m o d g ( £ , F ; M ) : A(E,F) < t} 

is positive for each t > 0, where E and F designate nondegenerate disjoint continua 
in M with 

(6.2) A(E,F) 
dist IE, F) 

diam E A diam F 
their relative distance. Here and in the following (E, F; U) denotes the family of all 
curves joining the sets E,F <zU C M. The Q-modulus of a family F of curves in M 
is the number 

(6.3) modo r = inf pQdu, 

where the infimum is taken over all Borel functions p: M —> [0, 00] such that 

7 
pds ^ 1 

for each 7 G T. 
The Loewner condition quantifies the idea that a space has lots of rectifiable curves. 

It is, in essence, a conformally invariant condition, and plays an important role in the 
study of quasiconformal mappings in general spaces. Besides the Euclidean space M9, 
quite a few examples of Loewner spaces are known, including those with Q not an 
integer. See [HeiK], [BoPa], [La] and the references there. 

In this chapter, we shall prove the following result: 
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Theorem 6.4. — A uniform and locally Q-Loewner space is a Q-Loewner space, quan
titatively. 

We believe that Theorem 6.4 is interesting in its own right, in exhibiting new 
examples of Loewner spaces. Applications to our main theme are given in the next 
chapter. 

We next define what we mean by a locally Loewner space. Let (ft, d) be a locally 
compact, rectifiably connected noncomplete metric space as in Chapter 2, and let p 
be a Borel measure on ft. The metric measure space ft is called a locally Q-Loewner 
space, or locally Q-Loewner, Q > 1, if there exist numbers K ^ 1, £o £ (0,ft-1], 
and a decreasing function iß: (0,oc) —* (0,oo) with the following property: if x G 
ft, 0 < e < so, and E, F c B(x,ed(x)) are two disjoint nondegenerate continua with 
A(E, F) ^ t, then 

(6.5) moàQ(E,F;B(x,end(x))^w(t). 

Recall that d(x) = dn(x) = dist(x,dft). 
Thus, a locally Loewner space comes with data v — (Q, n, SQ, Theorem 6.4 

asserts that if ft is an A-uniform space that is also locally Q-Loewner, then ft is in 
fact Q-Loewner with the Loewner function ip, defined in (6.1), depending only on A 
and the data v. 

Remarks 6.6 
(a) A ball in Rn is an n-Loewner space with <p — (pn. Thus Theorem 6.4 implies that 

every uniform domain in Mn is a Loewner space with Loewner function depending only 
on n and on the constant associated with uniformity. This result was first proved by 
Gehring and Martio [GM]. Their proof was based on the Sobolev extension theorem 
of Jones [J], which is not available in our setting. 

(b) Let ft be a domain in W1 and let m be a metric in ft such that \x — y\ ^ 
m{x,y) ^ £n(x,y) for x,y G ft, where £Q is defined in (1.10). If (ft,m) is uniform, it 
follows from Theorem 6.4 that it is an n-Loewner space. In particular, inner uniform 
domains are n-Loewner spaces. Note that this result cannot be proved by using 
Jones's extension theorem, and is new as far as we can tell. (For earlier results in this 
direction, see [V2], [Hei].) For a generalization, see Theorem 6.47 below. 

(c) In (a) and (b), we can replace ft by a domain in Rn equipped with the spherical 
metric and measure (see Chapter 7). Then similar remarks hold. 

A metric (Borel) measure space (M,p) is called (Ahlfors) Q-regular, Q > 0, if the 
measure a satisfies 

(6.7) 
1 

C 
RQ < u(BR) < CRQ 

for each metric ball BR of radius 0 < R ^ diamM and for some constant C ^ 1 
independent of the ball. It was proved in [HeiK, Section 4] that a quasiconformal 

ASTÉRISQUE 270 



CHAPTER 6. UNIFORM LOCALLY LOEWNER SPACES ARE LOEWNER 49 

homeomorphism between Q-regular Q-Loewner spaces is quasisymmetric, provided 
it maps bounded sets to bounded sets. Here quasiconformality is denned by the 
infinitesimal condition (1.21). (For the issue of quantitativity of this assertion, see 
[HeiK, 4.25].) In view of 6.6 (b) and (c) above, this leads to some (possibly) new 
observations about quasiconformal maps between (inner) uniform domains. 

We shall show later in this chapter, after the proof of Theorem 6.4, that uniform 
domains in locally compact Q-regular Q-Loewner spaces are Q-Loewner. This does 
not follow directly from Theorem 6.4; the localization issue is slightly complicated. 

We now begin the proof of Theorem 6.4. First we record the following estimate: 

(6.8) 1 
SA2 

d(x)k(x,y) ^ d(x,y) ^£d(1)^2d(x)k(x1y), 

whenever (Q,d) is an A-uniform space, k is the quasihyperbolic metric in 17, and 
7 = [x, y] is a quasihyperbolic geodesic joining two points x, y in Q, with k(x, y) < 1/4. 
(See Chapter 2.) The first inequality follows from (2.3) and (2.16). The second 
inequality is trivial, and the last follows from the estimate 

log 1 
d{x) 

d{x) t 

•*d(7) 

'o 

ds 

d(x) + s ^ 4 ( 7 ) = k(x>y) 

together with the assumption k(x,y) ^ 1/4. 

Lemma 6.9. — Let (Q,d) be an A-uniform space, and let 7 = [x,y] be a quasihyper
bolic geodesic in Q joining two points x and y. If k(x,y) ^ e\, where 0 < e\ < 1/8, 
then there exist points ZQ = x, z\,... ,ZN = y on 7 such that 

(6.10) £1 ̂  k{zv-X , zv) ^ 2ÊI, v = 1,..., iV, 

and that 

(6.11) 
N 

v=0 

d(z„Y ^C{A,a,eMlY 

for each a > 0. 

Proof. — Since k{x,y) ^ £1, it is clear that we can choose points ZQ, Z\, ..., ZN as in 
(6.10), by simply choosing them successively when we traverse 7 from x to y, such 
that k{zu-\,zu) — s\ except possibly for v — N. 

Next, let L = id{l) and let w e 7 be the unique point with L/2 = £d([x,w]) = 
£d([w,y]), where [x,w] and [w,y] denote the subgeodesics of 7 = [x,y] from x to w 
and w to y, respectively. We claim that 

(6.12) d(w) 
SA2 

SA2 
L. 

Indeed, we may assume both that d(w) > L and that k(x,w) > £i/2, the latter by 
svmmetrv; thus 

d(x,w) L 
2 

d(w) 

2 
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which implies 

dix) ^ diw) — dix, w) d(w) 
2 

and therefore, by (2.16). 

£l 
2 

^ k(x, w) ^ 4A2 log 1 + 
L/2 

d(w)/2 

:4л2 
L 

i(w) 

This is (6.12). 
Now relabel the points z0, z\,..., zjq so that yo,..., are the points that we pass 

if we travel from w to y along 7, in this order, and y'0,..., y'N2 are the points that we 
pass if we travel from w to x along 7, in this order. Thus x — y'N2,y = VNX, and it 
may happen that y0 = y'Q = w. We have that /c(w, y0) < 2ei ^ 1/4, and so 

(6.13) d(y0) < exp{k(w,y0)}d(w) 
16A2 

ei 

by (2 .3) a n d ( 6 . 1 2 ) . 

B y T h e o r e m 2.10, 7 is a B - u n i f o r m a rc for s o m e В = B(A). T h i s impl ies t h a t 

d(yn) 1_ 
B 

t>d (7(2/n,2/)) 

_1_ 
B 

A/i-l 

u—n 
Zd (7(2/1/, 2/1/+1)) 

for all n = 0 , . . . , N1 — 1. Because s\ ^ & ( ^ , ^ + 1 ) ^ 2e\ ^ 1/4, estimate (6.8) gives 

d{yv+i) 
SA2 
si td (7(2/1/, : 

whence 

d(2/n) ^ 8,42£ 

n+l 

i/=n+l 
¿(2/1/) 

for all n = 0 , . . . , N\ — 1. A simple lemma on geometric series together with (6.13) 
thus implies 

d(2/i/+i) < K 
K 

K + l d(yo) 
KWA2 

£1 
K 

K + l 
L 

for v — 0 , . . . , N1 — 1, where K = 8A2B/ei. A similar reasoning applies to the 
points yf0,... ,y^v2, and we conclude that (6.11) holds. The proof of Lemma 6.9 is 
complete. • 

Proof of Theorem 6.4- — Let (£2, d, ¡1) be a locally Q-Loewner space with data v — 
(<2, ft, £0,^); we also assume that Q is ^-uniform. Fix two disjoint nondegenerate 
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continua E, F C 17, and let p: 17 —> [0, oo] be a Borel function such that 

7 
ods > 1 

for every rectifiable curve 7 joining F and F in 17. We have to show that there is a 
positive lower bound 

(6.14) 
In 

pQ dfi^C0> 0, 

where Cn depends only on the data v and A, and on the number 

(6.15) t = A ( F , F ) dist (F, F) 
diam E A diam F 

It is not hard to see that we mav assume that t ^ 1 and that 

diam E < diam F < 2 diam F . 

(See the reasoning in [HeiK, proof of Theorem 3.6, p. 19].) Moreover, if there are 
points a e F , b e F such that k(a, b) < eo/12, then by estimate (6.8) we have 

diam E V diam F ^ 2 dist(£\ F ) 

< 2d(o,6) < 4d(a)fc(a,6) 

< f d(a). 

It follows that F and F both lie in B(a,£od(a)), and we have by the local Loewner 
property that 

oQdu : 
B(a,K£od(a)) 

oQda ^ é(t) > 0 

as required. Therefore, we may assume that 

(6.16) k(a.b) I 
£0 
12 

whenever a e E, b £ F. 
Next, denote D = dist(F, F ) , and for A > 0 define 

(6.17) A d(E ) 

B(a,Keod(a)) 
oQ da ^ Л 

dia) 

D 

Lemma 6.18. — There is An = Xo(v.A.t) > 0 such that the set 

(6.19) #A0 
a€A\Q 

B(a<2Bd(a)) 

contains either E or F, where B = B(A) is the constant in Theorem 2.10. 

Suppose that the lemma has been proved, and suppose that E c H\0. Because E 
is compact, it belongs to a finite number of balls from the collection that comprises 
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H\0, and by standard covering arguments [Fe, 2.8] we find points a i , . . . ,ap G A\0 
such that the balls B(a,i, 2Bd(a,i)), i = 1, . . . ,p, are pairwise disjoint, and that 

E 
p 

u=1 
B(ai,10Bd(ai)). 

We have 2B ^ 1 > K£0, SO that 

1 diam E A diam F 

dis t (£ ,F) 

diamE 

1 
5 

p 

i=l 
didLmB(di, lOBd(ai)) 

20B 
D 

p 

i=i 

d(ai) 
20B 

Ao 

p 

i=l B{ai,2Bd{ai)) 
pQ dp 

20B 

~Äo~ fi 
pQd/jJ. 

This gives the desired inequality (6.14). 
It therefore remains to prove Lemma 6.18. To this end, fix A > 0 and assume that 

neither E nor F belongs to the set 

aeAx 
B(a, 2Bd(a)). 

We have to produce a positive lower bound for A, depending only on t. A, and v. By 
assumption there are points x G E and y G F such that x,y 0 H\. Let 7 = [x,y] be 
a quasihyperbolic geodesic joining x and y in £2. By Theorem 2.10, 7 is a B-uniform 
curve; in particular, 

d(x, z) A d(z, y) ^ Bd(z] 

for each z G 7, which implies that 7 does not meet AA. Therefore, by the definition 
of A\ in (6.17), 

(6.20) 
J B(z,Keod(z)) 

o j ^d(z) 
pQdp< 

for each z G 7. 
Next, let L = ^(7). Then d(x,y) ^ L ^ Bd(x,y). On the other hand, 

£> = dist(.E,F) < d(x,y) < dis t (£ ,F) + d i a m £ + diamF < 4D 

by the assumptions made in the beginning of the proof. It follows that 

(6.21) D < L = 4,(7) ^ <±BD. 

Now let e\ = EQ/12. Then k(x,y) ^ £1 by (6.16). According to Lemma 6.9, there 
exist points zo = x, z\,..., ZN = y on 7 such that 

(6.22) £0 

12 
^k(zv-i,zv) 

£0 

6 ' 
v = l,...,N, 
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a n d t h a t 

(6 .23) 

TV 

v=0 
Ф„)1/<3 < CiL1'®, 

where C\ = C i ( A , Q , £ 0 ) - E s t i m a t e s (6.8) a n d (6 .22) now give 

(6 .24) 
E0 

96A2 
d{zv) 

d(zv,zv+i) 

d(zv,Zv-i) 
£o 
3 

d ^ ) , i/ G 
0 N -I 
l , . . . , iV 

T h e second inequal i ty in (6 .24) impl ies 

(6 .25) 
1 

2 
2(z„) ^ d{zy-i) < 2d(z^), i/ = l , . . . ,W. 

N e x t , we choose for z/ = 1 , . . . , N—1 a s u b a r c 7^ of 7 t ha t jo ins 2:̂  inside B 
( epd(zu) \ 

1000 A2 J 
t o the b o u n d a r y of t ha t bal l ; then 

(6 .26) 
£od(2„) 
1000.42 

diam 7^ 
£od(z„) 
500A2 

v = l , . . . , i V - 1. 

T h e s u b a r c s 7^ can be found b e c a u s e of (6 .24 ) . 

We choose subcon t inua 70 of E a n d 7/v of F such t ha t x G 70, y £ 7/v, a n d 

(6 .27) 
D/2* 

eodfci/) 
1000 A2 

d i a m 7^ ^ 2 
2Ï 

e o d ( ^ ) 

1 0 0 0 A 2 , 
i/ = 0, iV. 

T h e subcon t inua 70,7/v can b e found by the choice of t a n d by [ H Y , 2 .16] . B y (6 .21 ) , 

( 6 .23 ) , a n d (6 .27 ) , 

(6 .28) C2 d{zv) ^ d i a m 7^ 
£ 0 

500.A2 
d{zy) i/ = 0 ,JV, 

where c2 = c 2 ( / l , Q , £ 0 , t ) > 0. It follows from (6 .24 ) , (6 .25) , (6 .26) a n d (6 .28) t ha t 

(6 .29) 
£0 

250 A2 
d(ziy) : dist(7l,,7zy+i) : dist(7l,,7zy+i) £0 

3 
d(z„) 

a n d t ha t 

(6 .30) d i a m 7^ A d i a m 7 ^ + 1 ^ C 3 d(zl/) 

for z/ = 0 , . . . , N — 1, where C 3 = C 3 O A , Q, £ 0 , 0 > 0. Moreover , 

(6 .31) lu U 7„+i C £0d(^)), i/ = 0 , . . . , i V - l . 

B y us ing (6 .29 ) , (6 .30 ) , ( 6 .31 ) , a n d the local Loewner p roper ty of O, we deduce tha t 

modç(7^,7^+1 '^{zviKSod^v)) > c4 > 0 

for v — 0 , . . . , N — 1, where c4 — c 4 ( ^ 4 , Q , t p , S Q , Ì ) . Therefore , if 

pds ^ 
Ad(^) 

c4L> 

i/Q 

for all p a t h s a joining 7^ a n d 7 ^ + 1 in BiZy.Keodizy)), it would follow from (6.20) 

t ha t 

c4 
c4£> 

,Ad(2„) ' B(zu,K£od(zu)) 
pQdu < CA 
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which is absurd. We thus find, for each v = 0, . . . ,7V — 1, a curve au joining 7^ and 
7^+1 in B(zv, K6od(zu)) C 17 with 

(6.32) 
µv 

pds ^ 
'\d(zv) 

c4D 

1/Q 

Next we analyze the relative of position of the curves av. By (6.25) and (6.29), 

diama^-i A diam av _ £ o _ 
500 A2 

d(zv), i/ = l , . . . , i V - l . 

We can therefore select subcurves a'v of cxv-\ and a" of av such that both ot!v and a" 
have one end point on 7^, and that 

1000 A2 
d[zv) 5 diam a(, A diam o/J 

(6.33) ^ diam a£ V diam a" 
500 A2 

d(zv) 

for z/ = 1 , . . . , N — 1. Because 

(6.34) dist K X ) diam 7^ _ £ o _ 
500A2 

d(zl/) 

by (6.26), we have that 

(6.35) a/̂  U a " C F ( ^ , £ o d ( ^ ) ) , i/ = l , . . . , J V - l . 

As before, by using (6.33), (6.34), and (6.35), and the local Loewner property of 17, 
we deduce that 

(6.36) modo. (a£, a"; £(2:*,, ^0^(2*,))) ^(2) = c5 > 0 

for 1/ = 1 , . . . , AT — 1. Moreover, as before, we find a curve (3V joining a'v and a" in 
B(zu, KSod(zv)) C 17 with 

(6.37) pds 
' \d(zv) 
~c~^D~ 

i/Q 
i / = l , . . . , W - l . 

Note in particular that /3^ joins av-\ and a^, for v — 1 , . . . , N — 1. It follows that 
the set 

ojo U ßi U a i U • • - U /?iv_i U ajv-i 

is connected and joins E to F in 17. We choose a curve a from this union such that 
G joins F to F ; then 

/<7 
pas 

N-l 

v=0 
pds 

N-l 

v-1 
pds 

N-l 

i/=0 

' \d(zv) 
c4 D 

i/Q N-l 

u=l 

Xd(zjy) l/Q 

< ce 
A 

D 

N 

v=0 
$ C7\1/Q $ C7\1/Q 
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by (6.32), (6.37), (6.23), and (6.21), where c7 = c7(A, Q,e0, *l>,t). On the other hand, 
since p is an admissible test function for the curve family (E, F; ft), we have 

1 < / pds ^ c7X1/Q. 

Remark 6.38. — The argument in the proof of Theorem 6.4 can be used to prove a 
modulus estimate where the sets E and F are allowed to lie in ft, i.e., they may 
contain part of the boundary of ft. To be specific, similarly as above let (E, F; ft) 
denote the family of all curves that connect E and F and lie in ft with the possible 
exception of their endpoints. Then, if £2 is a uniform and locally Q-Loewner space, 
there is a positive lower bound for modg(F, F; ft) only depending on t > 0 whenever 
E,F Cft are continua with A(E, F) ^ t. To see this, the following modifications for 
the proof of Theorem 6.4 are necessary. First note that there is a version of Lemma 
6.9 where the geodesic [x,y] is allowed to be a geodesic ray or an infinite geodesic. 
In this case the points zv will be defined for all v G N, or all i^GZ, respectively. In 
the considerations of the proof of Theorem 6.4 it may happen that the points x and 
y lie in dft. To deal with this situation one has to appeal to the modified version of 
Lemma 6.9. We leave the details to the reader. 

We shall next examine when the local Loewner property is stable under conformal 
deformations. 

Let (ft, d) be a locally compact, rectifiably connected metric space, and let p be a 
Borel measure on ft. Given a Borel function p: ft —• (0, oo), denote by 

the p-length of a rectifiable curve 7, and by dp(x,y) the corresponding distance func
tion, 

where the infimum is taken over all rectifiable curves 7 in ft joining x and y. We 
assume in this chapter that p is continuous, and that the identity map (ft,d) —> 
(£2, dp) is a homeomorphism; the latter happens if, for example, (ft, d) is quasiconvex. 
Moreover, in this case, a curve 7 in ft has finite length ̂ (7) in the metric d if and 
only if it has finite length Xp(j) in the metric dp. (See Appendix for these facts.) 

Recall that a metric space is called A-quasiconvex, A^ 1, if every pair of points in 
the space can be joined by a curve whose length is no more than A times the distance 
between the points. 

Next, fix Q > 1. Let pp be a Borel measure in ft defined by dpp = pQdp. Then the 
Q-modulus of a family of curves in ft is the same in the two metric measure spaces 

This gives the required lower bound for A, and Lemma 6.18 follows. 
Theorem 6.4 is thereby completely proved. 

Ар(7) = j pds 

dP(x,y) = inf Ap(7), 
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(ft,d,p) and (ft,dp,pp). This conformai invariance of modulus follows directly from 
the definition (6.3). 

Theorem 6.39. — Let (f2,d, p) be a locally compact, noncomplete and A-quasiconvex 
locally Q-Loewner space. Assume that p: ft —> (0, oo) is a continuous function such 
that (ft,dp) is incomplete and such that the following two conditions hold for some 
C > 1; 

(6.40) 
_1_ 
C 

p(x) 

p{y) 
c 

whenever x, y G B(z, d{z)/2) and z G ft, and 

(6.41) l_ 

C 
p(x)d(x) dp(x) Cp(x)d(x) 

for each x Eft. Then (ft,dp,pp) is a locally Q-Loewner space, quantitatively. 

Proof — First we prove that 

(6.42) 1_ 

C 
p(z)d(x,y) dP{x,y) ACp(z)d(x,y) 

whenever x,y G B(z,d(z)/(SA)) and z G ft. To see the first inequality, let 7 be a 
rectifiable curve joining x and y in ft. If 7 C B(z, d(z)/2), then 

Ap(7) 
1 
C 

p(x)d(x) 1_ 
c 

p(z)d(x,y); 

if 7 leaves B(z, d(z)/2), then it has a subcurve 70 in B(z, d(z)/2) with length ^(70) ^ 
\d{z) > d(x,y). Thus the first inequality in (6.42) follows. To prove the second 
inequality, choose a curve 7 that joins x and y such that £d(l) ^ Ad(x,y) ^ \ d(z); 
thus 7 C B(z,d(z)/2) and hence 

dP{x,y) dp(x,y) ; cp(z)Ui) 

ACp(z)d(x, y) 

as required. 
Next, it is easy to see that 

(6.43) dp(x,y) 
1 

2C 
p(x)d(x) 

whenever d(x,y) ^ dix)/2. It follows that 

(6.44) Bp(x,edp(x)) B(x,eC2d(x)) 

whenever x G ft and 0 < e ^ 1/(2C2), where Bp denotes a ball in the metric dp. 
Indeed, if y G Bp(x,edp(x)) Pi B(x,d(x)/2), then 

1_ 

C 
p(x)d(x,y) dP{x,y) sdp(x) 

e Cp(x)d{x), 
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by (6 .43) a n d (6 .4 1 ) , while if y G BJx,edJx)) \ B(x,d(x)/2), then 

1 

2 C 
p(x)d(x) ^ dp(x,y) : £d p(x) : e Cp(x)d{x) 

_1_ 

2C 
p(x)d(x) 

by (6 .43 ) , which is imposs ib l e . 

S imi la r ly one shows tha t 

(6 .45) B(x,ed(x)) C Bp(x,eAC2dp{x)) 

whenever x G ft a n d 0 < £ ^ 1 / ( 8 A ) . 

B y a s s u m p t i o n , (fl , d, /x) is a local ly Q-Loewner space with data (K, £ O , ^ ) , say. We 

c la im tha t ( f 2 , d p , / x p ) is a locally Q-Loewner space with data (Kf,e'Q,il)'), where 

4 
LC4 

8K^LC 4 

K' k(AC2t) V(t) i;(AC2t). 

(Note tha t e'0K' ^ 1.) T o prove this c la im, let E a n d F b e two disjoint cont inua in 

Bp(z,£dp(z)), where z G O a n d 0 < e < e'0. L e t 

t dist p ( F , F ) 

diam p E A diam p F 

T h e n 

(6 .46) Bp(z,£dp(z)) CB(z,£C2d{z)) B(z,£KC2d(z)) 

CBp{z,£KAC4dp(z)) 

by (6 .44) a n d (6 .45 ) . In par t i cu la r , E a n d F lie in B(z,d(z)/(8A)). It follows from 

(6 .42) t ha t 

dist(F, F) 
diam E A diam F 

C 

p(z) 

dist p ( F , F ) 

diam F A diam F 

AC2 dist p ( F , F ) 

diam p E A diam p F 
LC4LC4 

Therefore , by (6 .46) a n d by the local Loewner p rope r ty of ( Q , d , / i ) , we have 

m o d g ( F , F ; £ p ( z , ̂ A C 4 d p ( ^ ) ) ) m o d g ( F , F ; F ( z , £ K C 2 d(z))) MACH). 

T h e conformai invar iance of m o d u l u s was a l so used here. T h i s comple tes the proof of 

T h e o r e m 6.39. • 

We call an open subse t ft of a local ly c o m p a c t met r ic s p a c e ( M , d) a uniform 

subdomain of M if (f2,d) is a uniform s p a c e in the sense of Definition 1.9. We a l so 

say tha t ft is a uniform domain in M . 

T h e remainder of this chapter is devo ted to a p roof of the following resul t , a n d to 

a d i scuss ion of s o m e of i ts corol lar ies . 
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Theorem 6.47. — An open connected subset of a locally compact Q-regular Q-Loewner 

space is locally Q-Loewner. In particular, uniform subdomains of such spaces are Q-

Loewner. The statement is quantitative in the usual sense. 

T h e second asse r t ion of T h e o r e m 6.47 follows from the first in view of T h e o r e m 6.4. 

(Reca l l t he definition for Q-regular i ty from (6.7).) 

T h e p roof of T h e o r e m 6.47 requires two p ropos i t ions (with independent mer i t ) . 

Proposition 6.48. — Let ( X , d, p) be a Q-regular Q-Loewner space. Then there exist 

functions tp: (0,oo) —• (0,oo) and K: ( 0 , 0 0 ) —> [1, 0 0 ) with the following property: if 

E and F are two disjoint nondegenerate continua in a ball B(x,r) in X, then 

modQ(E,F;B(x,K(t)r)) ^ ip(t) 

whenever 

A(E,F) 
distf£7, F) 

d i a m E A d i a m F 
t. 

The statement is quantitative in the usual sense. 

Proof. — B y a s s u m p t i o n , there ex i s t s a dec reas ing function ip: ( 0 , 0 0 ) —» ( 0 , 0 0 ) such 

tha t 

m o d g T ^ (p(t), 

where T = (E, F\ X) is the family of curves t h a t jo in E a n d F in X. F i x a cons tan t 

K > 2, a n d let Ti b e the subfami ly of T cons is t ing of curves t h a t lie in B(x, KT), a n d 

let r 2 = r \ T i . T h e n 

modn r modQ T i + modQ T2 

m o d Q T i + C t l o g / O 1 - ^ 

where the second inequal i ty follows from [ H e i K , 3.14]. ( T h e Q-regular i ty of X is 

u s e d here.) We can choose K = K ( Q , ip, t) so l a rge tha t 

m o d o T i 
1 
2 

<p(t). 

T h i s p roves the p ropos i t ion . 

Our a i m is t o show t h a t the function n in P r o p o s i t i o n 6.48 can b e chosen t o 

b e cons tan t , i.e., independent of the p a r a m e t e r t. T h e following is a h a n d y sufficient 

cr i ter ion for the local Loewner p roper ty ; for a g loba l version of this resul t , see R e m a r k s 

6.67 (a ) below. 

Proposition 6.49. — Let (O, d, p) be a locally compact noncomplete and A-quasiconvex 

metric measure space, and let Q > 1. Assume that there exist numbers K ^ 1, SQ G 

(0, ft-1], and C > 0 with the following property: if E and F are disjoint nondegenerate 

continua in a ball B(x,sd(x)) in 0 < e ^ £o> and if 

A(E,F) 
disti E, F) 

diam E A diam F 
16, 
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then 

modQ(E,F-,B(x,eK,d(x))) ^ £. 

Then (ft, d, p) is a locally Q-Loewner space, quantitatively. 

Proof. — Define 

(6.50) £ O = 2 + J + 6 K A £ O , n' = l + 2A + 6K. 

(Note that E'QK' < 1.) Let E and F be two disjoint nondegenerate continua in 
B(a,ed(a)), where a G ft and 0 < e ^ ef0. Fix a Borel function p: B(a,eKfd(a)) —> 
[0, oo] such that 

/ p ds ^ 1 

for each curve 7 joining F and F in B(a,en'd(a)). We shall show that 

(6.51) / pQdp^d>0, 

J B(a,£K,'d(a)) 
where C i depends only on the data associated with ft, and on a number t ^ A(F, F) 
that is fixed from now on. 

To this end, fix x G E and y G F such that 

(6.52) d(x,y) = dist(F,F) ^ 2ed(a), 

and then choose a curve a joining x and y in ft such that 

(6.53) £(<r) < Ad(x,y). 

We claim that 

(6.54) B{z, snd(z)) C £(a , SKfd(a)) 

for each 2: G a whenever s ^ e. Indeed, if z G cr, then 

d(a, 2) < d(a, x) + d(x, 2:) 
^ ed(a) + ^4d(x,?/) ^ (1 + 2A)ed(a) 

< i d(a) 

by (6.52), (6.53), and the choice of ef0 in (6.50); thus 

1 3 
(6.55) - d(a) < d(z) < - d(a), z G a. 

Hence, if tt; G B(z,snd(z)), we have 

d(a, iu) ^ d(a, 2) -f d(z, u>) 
3 

< (1 + 24)ed(a) + 5K- d(a) 

^ f 1 + 2A + y ^ ed(a) < «'ed(a), 
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from which (6.54) follows. Now set 

. f diamF diamF 1 

s = m i n r ' ~ ^ r ' ~ ^ i -

Then we can find subcontinua F ' C F and F' c F such that x e E' and y e F', and 
that 

(6.56) diamF' > ^ d(a), Ef c B (x, ^ d(a)) , 

diamF' ^ ^ d(a), F ' c B (y, ^ d(a)) . 

(This choice is possible by [HY, 2.16 ].) 
We can now consider two cases depending on whether d(x, y) ^ | d(a) or not. 
Assume first that d(x,y) < | d(a). Then 

(6.57) F ' U F ' c B (x, | | d(a)^ C J3(z, sd(x)) 

and 

(6.58) A ( F ' , F ' ) ^ 8 

by our assumption and (6.55). Because p is an admissible test function for the curve 
family (F , F ; B(a, EK1'd(a))), it is also admissible for (F ' , F ' ; B(x,£nd(x))) by (6.54). 
It thus follows from (6.57), (6.58), (6.54), and from the assumed local Loewner prop
erty of O, that the integral in (6.51) is bounded below by a number (i depending only 
on the data associated with ft. 

It remains to examine the case where d(x,y) > | d(a). By traveling along a from 
x to y, we can pick points ZQ — x, z\,..., ZN = y on a in successive order such that 

s s 
(6.59) - d(o) ^ d(* ) < 1 d(a) 
for 1/ = 0 , 1 , . . . , TV - 1. By (6.53) and (6.52), 

sN 
— d{a) ^ £{a) < Ad(x,y) ^ 2eAd{a). 
8 

This together with the definition of s implies 

(6.60) 1 ^ N ^ max{16i4, 8AA(E,F)} 

^ 16i4max{l,t}. 

We claim that the inequality 

(661) L . ^ y ^ ^ w ^ 

cannot be true for all v = 0 , 1 , . . . , N. This claim and (6.60) imply (6.51), because 

B(z,snd(z)) C B(a,en'd(a)) 

for z G a by (6.54). 
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T o comple t e the p roof of the propos i t ion , it therefore suffices to prove the a b o v e 

c la im. A s s u m e on the con t ra ry t ha t (6 .61) holds for each v = 0 , 1 , . . . , A T . For v = 

1 , . . . , N—1 we can choose subcu rves o v of a such t ha t z v E ov, t ha t d i a m av ^ ^ d(a) 

a n d t h a t av C B (zu, ~ d(a)) \ moreover , let cr0 = E' a n d O~N — F'. T h e n 

(6 .62) s 
16 

d(a) ^ dist(<j^,cr^ +i) 5 
4 

d(a) 

by (6 .56) a n d (6 .59 ) , a n d hence a l so 

A(ov ,<7v + i ) < 16 

for v = 0 , . . . , TV — 1; moreover 

(6 .63) GV U OV+\ C F 
10s 
~32~ 

d(a) С Bizv , sdizy)) 

for = 0, . . . , 7 V — 1, where the second inclusion follows from (6 .55 ) . Therefore , 

b e c a u s e 0 < s < e < so , the a s s u m p t i o n gives 

(6 .64) m o d n (z„, Ksd{zy))) 

* 
(z„, Ksd{zy))) * 0 

In view of this a n d our con t rapos i t ive a s s u m p t i o n , the densi ty 

(2N-l)p 

cannot b e admis s ib l e for the curve family ( o v , o v + i ; B ( z v , Ksd(zv))) for each v = 

0 , . . . , TV — 1; t ha t is , for each such v we can find a rectifiable curve a v jo in ing GV a n d 

o v + i in B{zv, Ksdfa)) such t h a t 

(6 .65) 
/ a . 

pds 
1 

2 7 V - 1' 

N o t e t ha t diama ^ ^ ^ d(a) by (6 .62 ) . T h i s m e a n s t ha t we can find subcu rves a!v of 

OLV-\ a n d a " of a v , v = 1 , . . . , TV — 1, t ha t b o t h have an end point on av such tha t 

s 

32 
d ( a ) ^ d i a m olv A d i a m a " 

^ d i a m V d i a m a " 
s 

16 
d(a). 

B e c a u s e c # ( 2 „ , ^ d ( a ) ) , we thus have 

a' Ua" C B 
45 
32 

i(a) C B{zv, sd(zv))\ 

moreover 

A ( a ,

l / , 0 ^ 4 . 

It follows from the a s s u m p t i o n t ha t 

modo (aî,, a" ; 5 (z„, Ksd(zv))) ^ C 
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for each z/ = l , . . . , 7 V — 1 , a n d a s a b o v e we conc lude t ha t there ex is t curves f3v jo in ing 

a'u a n d a'l, hence OLV-\ a n d a v , in the bal l B(zlf, nsd{zy)) such t ha t 

(6 .66) 
i/=0 

pds 
1 

2 7 V - 1 

for v = 1 , . . . , TV — 1. B y cons t ruc t ion , in the union 

a 0 U f t U a i U f t U - - - U (3N-i U aN-X 

there is a curve 7 t ha t jo ins F a n d F inside 

N 

i/=0 

B г», snd(zu)) B(a, SK,d(a)); 

for the inclusion, see (6 .54 ) . T h e line in tegral of p over 7 sa t isf ies , by (6 .65) a n d 

(6 .66 ) , 

Y7 
27V 

TV 

2 7 V - 1 

N - 1 

2 7 V - 1 1, 
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which con t rad ic t s the a s s u m p t i o n of admiss ib i l i ty of the dens i ty p. 

T h e p roof of P r o p o s i t i o n 6.49 is comple te . • 

Remarks 6.67 
(a ) T h e p roof of P ropos i t i on 6.49 a b o v e gives another (quan t i t a t ive ) conclus ion 

which we nex t descr ibe , a n d which is crucial t o the p roof of T h e o r e m 6.47. 

L e t M b e a quas iconvex met r ic m e a s u r e s p a c e with the following p roper ty : if E a n d 

F a re disjoint nondegene ra t e con t inua in a bal l B(x,r) in M such t h a t A ( F , F ) ^ 

16, then m o d g ( F , F ; B(x, Kr)) ^ C f ° r s o m e cons t an t s Q > 1, K ^ 1, a n d C > 0> 

independent of F , F , x , a n d r. T h e n there is a cons tan t K' ^ 1 a n d a function 

cp: ( 0 , o o ) —•» ( 0 , o o ) such t h a t 

m o d Q ( F , F ; £ ( x , K / r ) ) ^ <p(t) 

whenever F a n d F a re disjoint nondegene ra t e cont inua in B{x,r) wi th A ( F , F ) ^ t 

a n d t > 0. In par t i cu la r , M is a Q-Loewner s p a c e . N o t e t h a t M need not b e local ly 

c o m p a c t here. 

(b) T h e hypo thes i s t ha t (f i , d, / i) b e quas iconvex in P r o p o s i t i o n 6.49 c a n b e r ep l aced 

by the a s s u m p t i o n t ha t ft is a d o m a i n in a local ly c o m p a c t quas i convex s p a c e with 

n o n e m p t y complement . T h e p roof works the s a m e . 

It w a s shown in [ H e i K , Sec t ion 3] t h a t Q-regular Q-Loewner s p a c e s a re quas i -

convex, quant i ta t ive ly . T h u s the r e m a r k s m a d e in 6.67 (a ) a b o v e yield the following 

corol lary: 

Corollary 6.68. — In Proposition 6.48, the function K can be chosen to be constant. 

Proof of Theorem 6.47. — L e t ( M , d ) b e a local ly c o m p a c t Q-regula r Q-Loewner 

s p a c e , a n d let ft b e a d o m a i n in M. We m a y na tu ra l ly a s s u m e t h a t ft ^ M. A 

Loewner s p a c e is by definition (pa thwise) connected , so t h a t (ft,d) is noncomple te . 
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As usual, we let d(x) denote the distance from a point x in ft to the boundary of ft 
obtained by completing the space (Note that this completion boundary of ft 
could be different from the boundary of ft as a subspace of M.) Let K be the constant 
in Corollary 6.68, and let so = ft-1. Then, if F and F are disjoint nondegenerate 
continua in a ball B(x, ed(x)) for x G ft and 0 < e ̂  eo, we have by Proposition 6.48 
and Corollary 6.68 that 

modg (F, F; £(#, Ked(x)) > 

for some function -0* (0, oo) —» (0,oo), whenever A(F, F) ^ £. It follows that (£2,d) 
is a local Q-Loewner space, and the proof of Theorem 6.47 is complete. • 





C H A P T E R 7 

GROMOV HYPERBOLIC SPHERICAL DOMAINS 

In this chapter, we study Gromov hyperbolicity (in the quasihyperbolic metric) of 
domains ft in R n = R n U {oo}, n ^ 2. In particular, we shall prove Theorems 1.12, 
1.13, and the sufficiency part of Theorem 1.11. 

The spherical metric a on R n is determined by the length element 
IJ I 2\dz\ 
\ a Z \ ° - l + | Z |2 > 

where \dz\ is the Euclidean length element and \z\ is the Euclidean norm of a point 
z 6 R n. All metric notions in this chapter refer to the spherical metric a, unless 
otherwise stated. Note that diamR = 7r. 

A domain is an open and connected subset of R . We assume that each domain 
ft C 3Rn has nonempty boundary, so that the quasihyperbolic metric k = kn can be 
defined as in Chapter 2. If R \f2 contains a neighborhood of the point at infinity (that 
is, if ft is a bounded domain in R n), then, in the ensuing discussion, the Euclidean 
metric could be used instead of the spherical metric; this only requires notational 
changes. 

We call a domain ft in R (5-)hyperbolic, or Gromov hyperbolic, if (ft,k) is (5-)-
hyperbolic as defined in Chapter 3. 

We begin our study of Gromov hyperbolic domains by dividing points in an arbi
trary domain into two classes as follows. For 0 < A ^ l / 2 , a point x in a domain ft 
is called a X-annulus point if there is a point x G dft, 

a(x,x) = d(x) = dist(x,<9f£), 
such that dft does not meet the annulus 

(7.1) A(x, A) = | j/ 6 R n : Xd(x) < a(x,y) < ̂  j . 

If x is not a A-annulus point, it is called a X-arc point The following lemma explains 
the terminology. 
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Lemma 7.2. — If x eft is a X-arc point, then it lies on an A(X)-uniform arc 7 in ft 
joining two boundary points. Moreover, the arc 7 satisfies 

(7.3) C(7) < A{\) d{x) 

and 

(7.4) 4 ( 7 M K # ( A ) M ^ ) 

for each pair of points z,w G 7. Here A(X) and B(X) are positive constants that 
depend only on X. 

Condition (7.4) means that the arc 7 is a quasigeodesic in the metric space (ft, k). 
It is an important (and characteristic [Bo]) property of Gromov hyperbolic spaces 
that quasigeodesics are never far from honest geodesies [GhHa, Théorème 11, p. 87]. 
Thus we have the following corollary to Lemma 7.2. 

Corollary 7.5. — Suppose that ft is 6-hyperbolic and that x G ft is a X-arc point. 
Then there are C = C(ô, X) > 0 and a geodesic line [a, b] joining two boundary points 
a, b G deft such that 

(7.6) k(x,[a,b]) ^ C. 

Proof of Lemma 7.2. — Let x G ft be a A-arc point and let x G dft be a point such 
that d — d(x) — a(x,x). Upon performing a spherical isometry, we may assume that 
x = 0. By assumption, there is a point y G dft such that 

d 
Xd<a(0,y)=r < -. 

In particular, x ^ 00. Choose a (Euclidean) ray Ly from 0 to 00 that passes through 
y; this ray is unique unless y = 00. Let a be a shortest arc on the sphere 

Sd = {z£Rn :a(0,z) = d} 

from x to Ly n Sd = {^0}; note that a may be degenerate, which happens if xo = x. 
We have that 

dist(a,y) = \r-d\ < Q - l ) d-

Now slide a closed ball of radius 

n1:2 = l-{i-\)d 

first along the arc a from x to #o and then along the line segment [xo,y] so that the 
center of the ball always stays on the arc (3 = a U [x0, y]. There is a first point x\ on 
(3 such that the closed ball B(x\,r\) meets dft at a point yi. Then a(xi,yi) = r\ and 

Ad < (7(0,2/!) < ^ . 

Note that x\ ^ x and that in general y\ ^ y. 
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We claim that 

7 = [0,x]a U/3(x,xi) U [xi,yi]a 

is the desired arc, where (3(x,xi) denotes the subarc of /3 between x and #i, and 
where [0,x]a and [#i,2/i]<r denote the (unique) spherical geodesies between 0,x and 

x1,y1,respectively. 
A simple computation shows that the (spherical) length of 7 satisfies 

e*(-y)^d + ird+ Q - l ^ d = ( * + ) ^ ) d > 

so that the first condition (1.7) of uniformity holds with A = iZE±IZ*l • this inequality 
also proves (7.3). To verify the second condition (1.8), observe that for points in 
[0,x]a or in [xi,2/i]cr we can choose A = 1 in (1.8), while for z G f3(x,xi) we have 

d ( z ) > l { i - x ) d z \ { i - x ) J ^ m U ' y ) . d e { a i M ) 

Thus for (1.8) we can choose A = 4(TT + 1/A). 
It remains to verify (7.4). It is easy to see from the construction that 7 satisfies a 

chord arc condition in the spherical metric: 

(7.7) £a(7(z,w)) ^C(\)a(z,w) 

for each pair of points z,w G 7, where C(A) ^ 1 depends only on A. The desired 
estimate (7.4) now follows from (2.15), (7.7), (2.12), and (2.4). One can choose 
B(X) = 4A(A)C(A). The proof of the lemma is complete. • • 

Lemma 7.8. — If ft is 5-hyperbolic, then it is K(5)-roughly starlike with respect to a 
base point w G ft that satisfies (3.13) (with d = a). 

Proof. — Let x G ft. If x is a |-arc point, then it lies within a bounded distance from 
a geodesic line by Corollary 7.5, and hence within a distance K(S) from a geodesic 
ray emanating from w. Thus we may assume that a; is a ^-annulus point. Let x G dft 
be a point such that a(x,x) — d(x) and that there are no boundary points y G dft 
satisfying 

(7.9) ^ d(x) < a{x, y) < 2d(x). 

It is not hard to see that there is a quasihyperbolic line [w,x] emanating from w and 
ending at x; indeed, the line [x,x] is a quasihyperbolic ray, and there must be an 
equivalent ray [w,x] starting at w (see Chapter 3). Then, because d(w) > d(x), there 
is a point z G [w,x] such that cr(x, z) = d(x), and we easily compute using (7.9) that 
fc(x, z) ^ 47r. This proves the lemma. • 

We do not know an example of a domain that is not roughly star like. 
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A domain in M is locally compact, rectifiably connected and noncomplete in 
any metric m that satisfies 

(7.10) o ^ m < £a , 

where £a(z, w) is the infimum of the (spherical) lengths of all curves in Cl joining the 
points z and w. The quasihyperbolic metric k = kn in (Cl, m) is independent of the 
chosen metric m satisfying (7.10), and so is the length of any curve in Cl. In Chapter 
3, we showed that if (Cl, m) is a uniform space, then (Cl, k) is a proper, geodesic, 
and roughly starlike Gromov hyperbolic space, and the boundary dmCl of (Cl,m) is 
(naturally) quasisymmetrically (gauge) equivalent to the Gromov boundary of OGCI 
of (Cl, k) (Theorem 3.6). (We need to observe here that if (Cl, m) is a uniform space, 
then it is bounded. Without the uniformity assumption, this clearly need not be the 
case for a metric m as in (7.10).) 

If Cl is a Gromov hyperbolic domain and if m is a metric in Cl satisfying (7.10), 
we say that the Gromov boundary OQCI is naturally homeomorphic to dmCl if all 
equivalent quasihyperbolic rays in (Cl, k) end at a unique point in <9mf£, and if this 
correspondence is a homeomorphism. Similarly, we say that the canonical gauge on 
dcCl is naturally equivalent to the quasisymmetric gauge determined by dmCl if the 
above correspondence is a quasisymmetric homeomorphism. The proof of Theorem 3.6 
shows that the quasisymmetric gauge equivalence of OQCI and <9mf2 is natural, if (Cl, m) 
is uniform. 

Next we shall prove a converse assertion, which in particular establishes the suffi
ciency part of Theorem 1.11. (Recall that for bounded domains in W1, we can replace 
the spherical metric by the Euclidean metric throughout this chapter.) 

Theorem 7.11. — Let Cl be a 6-hyperbolic domain in Rn. / / the canonical gauge on 
OQCI is naturally equivalent to the quasisymmetric gauge determined by a on daCl, 
then (Cl,or) is a uniform space. 

The statement in Theorem 7.11 is quantitative in the following sense: if dw,£ is 

a metric in the canonical gauge of OQCI as in (3.4) and if the natural map between 

(dcCl,dW}£) and (daCl,a) is 77-quasisymmetric, then (Cl,a) is A-uniform with A = 

A(6,V). ' 

We do not know whether Theorem 7.11 is true when a is replaced with £a (or 
more generally with a metric m as in (7.10)). The answer for m — £a would be yes if 
Proposition 7.13 below is true for £G. 

Here, and throughout this chapter, w G Cl is a fixed base point satisfying (3.13); 
recall that the distance from a point x G Cl to the boundary of Cl is independent of a 
metric m satisfying (7.10). We also fix a metric d£ = dw,£ once and for all. 

The proof of Theorem 7.11 consists of a reduction to the following proposition 
which is interesting in its own right. 
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Proposition 7.12. — Let ft be a 5-hyperbolic domain in R , and let m be either a or 
£a. If (ft,m) is linearly locally connected with constant c, then (ft,m) is a uniform 
space with constant A depending only on 5 and c. Moreover, if (ft, a) only satisfies 
the second requirement of linear local connectivity, (LLC2) below, then (ft,£a) is a 
uniform space. 

A metric space (M, d) is said to be linearly locally connected (with constant c ̂  1) 
if the following two conditions are satisfied: 

(LLC\): every pair of points a, b in a ball B(x, r) in M can be joined by a continuum 
in B(x, cr). 

(LLC2)' every pair of points a, b in M \ B(x,r) can be joined by a continuum in 
M \B(x,r/c). 

Here B(x,r) and B(x,r) denote open and closed balls, respectively. 

Proposition 7.12 can be viewed as an extension of the following well known princi
ple in the theory of quasiconformal mapping: a linearly locally connected domain in 
W1 that is quasiconformally equivalent to a uniform domain is itself uniform. This 
principle was first recorded by Gehring and Martio [GM]. The metric used in [GM] 
is the Euclidean metric; for generalizations to inner metrics, see [V2], [Hei]. Our 
proof of Proposition 7.12 follows the reasoning of these papers. However, to make the 
arguments work, we need both the uniformization theory as developed in Chapter 4 
and the fact, proved below by using the results of Chapter 6, that the uniformized 
hyperbolic domains are Loewner spaces. 

Note that the necessity part of Theorem 1.13 in the introduction directly follows 
from Proposition 7.12, for domains with totally disconnected complement are linearly 
locally connected (in the spherical metric). Similarly, circle domains on the Riemann 
sphere are linearly locally connected in the spherical metric, and hence the conjecture 
that we made in the introduction is valid within the class of domains that are con-
formally equivalent to circle domains. (By Koebe's Kreisnormierung prediction, this 
class contains all domains.) 

Proposition 7.13. — Under the assumptions of Theorem 7.11, (ft, a) is linearly locally 
connected. 

The statement in 7.13 is quantitative in the same sense as Theorem 7.11 is. We 
conclude that to prove Theorem 7.11, it suffices to prove Propositions 7.12 and 7.13. 

We do not know whether Proposition 7.13 is true for £G in place of a. (Compare 
the remark after Theorem 7.11.) 

To prove propositions 7.12 and 7.13, we first state the following proposition, inter
esting in its own right. 
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Proposition 7.14. — If ft is a 5-hyperbolic domain in M , then its uniformization 
(Q, d£,p£) is a uniform n-Loewner space for 0 < e < so(S), with the Loewner function 
if depending only on 5 and n. 

Here (fi,de) for 0 < e ^ so(S) means a conformai deformation of (ft, fe) as in 
Proposition 4.5. The measure p£ is defined by 

(7.15) /ie(S) : f PÁx)n  

JE d(x)n 
dan(x), 

where p£(x) = exp{—ek(w,x)} as in (4.1) and an is the spherical n-measure on R . 
Recall the definition for a Loewner space from Chapter 6. 

Proof of Proposition 7.14- — The metric measure space (fl,£a,o-n) is a locally com
pact, noncomplete and quasiconvex locally n-Loewner space. This is obvious when 
one remembers that Euclidean balls are n-Loewner with function ip = (pn. The 
uniform space (£2,de) is obtained from (fl,£a) by using the conformai deformation 
p: ft —» (0,oo), 

p(x) = 
Pe(x) 

dix) 

We understand here that 0 < e ^ eo(S) is fixed, where eo(S) is as in Proposition 4.5. 
We now apply Theorem 6.39, with d = ia and p — an. First, by the triangle inequality 
and (4.4) it is easy to see that condition (6.40) is satisfied by our density p. Second, by 
Lemma 7.8 we have that (£2, k) is roughly starlike, so that p£(x) = p(x)d(x) satisfies 

(7.16) —pe{x) ^ de{x) ^ <^-pe{x) 

by Lemma 4.16; this gives condition (6.41). Theorem 6.39 thus implies that (fi, d£,p£) 
is a locally n-Loewner space. Note that the constants in this assertion only depend 
on 5 and not on e, because of the scaling in (7.16). 

Finally, because (Sl,de) is also a uniform space (by Proposition 4.5), it is an n-
Loewner space by the main result (Theorem 6.4) of Chapter 6. This proves Proposi
tion 7.14. • 

Proof of Proposition 7.13. — We first prove that (ft, a) satisfies condition (LLC\). 
Let a and b be two points in a ball Ba(x,r) in Q. Suppose that a and b cannot be 
joined in ft within a spherical ball Ba(x,cr) for some c ^ 4. Let 7 be an arc in ft 
joining a and 6; then 7 necessarily leaves the ball Bff(x, cr). Let a± and b\ be the first 
and the last point, respectively, on 7 such that G(CL\,X) = r = o~(b\,x) when traveling 
from a to b along 7. Define points 02 and 62 on 7 in a similar fashion by requiring 
that a(ci2,x) = yjcr — (7(62, x). 

Next, choose two arcs, 71 on dBa(x,r) and 72 on dBa(x, >/cr), that connect a\ to 
b\ and 0,2 to 62, respectively. The arcs 71 and 72 must meet dft. Hence there exists 
a first point âi G 71 fi dft and a last point b\ G 71 fl dft when traveling from a\ to b\ 
along 71. Define points â2 G 72 H dft and 62 G 72 H dft in a similar fashion. It may 

ASTÉRISQUE 270 



CHAPTER 7. GROMOV HYPERBOLIC SPHERICAL DOMAINS 71 

happen that a\ — b\ or that H2 = t>2, but in any case {a i , 61} n {«2,62} = 0 . Now let 
a be the curve which is the union of the half open subarc of 71 in ft connecting a\ 
and ai, the subarc 7(01,02) of 7, and the half open subarc of 72 in ft connecting 0,2 
and 0Z2. Similarly, define a curve f5 that joins b\ to 62 in ft. 

Note that a and (3 lie in the closed ball B(T(x,y/c r). By assumption, the open 
curves a and (5 cannot be joined in ft within Ba(x,cr), and standard modulus esti
mates thus imply 

modn(a, /?; ft) < C(n) (log y/c) n . 

By the conformal invariance of modulus, we have that 

(7.17) modn(a,/?;fie) ^ C(n) ( l o g ^ ) 1 " " 

as well, where ft£ = (ft, d£,p£) is as in Proposition 7.14. We shall now show, by using 
the fact that ft£ is a Loewner space (Proposition 7.14), that the left hand side of 
(7.17) has a lower bound depending only on the data in the assumptions. 

By the 77-quasisymmetry of the (natural) boundary map, we have that 

(7.18) 
d£(ai,a2) 

d£(ai,a2) 

V(ai,bi)N 

,<r(ai,a2), 

2 
>v/c- 1. 

n=2 

Similarly, we obtain 

(7.19) 
de{aiM) 

d£(biM) 
< ^7(2). 

We have 
diste(a,/3) ^ de(a\M) 

while, by (7.18) and (7.19), 

min{diam£ a, diam£/?} ̂  min{d£(ai, 02), de(b\, 62)} 

1 de(ai,fei). 

It follows t ha t 
d i s t £ ( a , /3) 

m i n { d i a m £ a , d i a m e /3} 
n=2 

which contradicts (7.17) for c too large in view of the Loewner property of ft£. This 

proves that (ft, a) has property ( L L C i ) , quantitatively. 

The proof of property (LLC2) runs along similar lines. Assuming that a, b G 

ft \ Ba(x,r) are points that cannot be joined by a curve in ft \ Ba(x:r/c), where 

c > 4, we can find open curves a , / ? in ft \ Ba(x,r/y/c) such that a has end points 

a i G dBa(x1 r) fl dft, a 2 G <9£ a (x, r /^/c) H dft, /3 has end points 61 G dBa(x, r) D dfi, 

62 G dBa(x, r/y/c)ndft, and that there is no curve joining a and /? in ft \ Ba(x, r/c). 

By using a modulus estimate and conformal invariance as in (7.17) together with the 

quasisymmetry of the natural boundary map as in (7.18) and (7.19), we easily obtain 

an upper bound for c, depending only on the data. 

This completes the proof of Proposition 7.13. • 
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Proof of Proposition 7.12. — Let Q, be a (^-hyperbolic domain in Rn, and fix e = 
So(ô) > 0 as in Proposition 4.5. First assume that m = £a or m = a, and that (îî, m) 
is linearly locally connected. By Proposition 7.14, fl£ = (Q,d£,p£) is a uniform n-
Loewner space; recall that the measure p£ has density dp£(x) — p(x)ndan(x), where 
p(x) = p£(x)/d(x) for x G ft, and an is the spherical n-measure. The density p has 
the following two properties: 

(7.20) 1 
A 

p(x) 

p(y) 
[A, 

if x,y G B (z,d(z)/2) for z G O , and 

(7.21) jp£(x) ^ d£(x) ^ Ap£(x) 

for x G O ; the latter follows from Lemma 4.16 and Lemma 7.8. Here and throughout 
the proof, we let A > 1 denote any positive constant that depends only on the data, 
which consists of 5 and the constant c ^ 1 in the assumed linear local connectedness 
of (fi,ra). 

Because quasihyperbolic geodesies in (fi, k) are uniform curves in Oe, we have that 

(7.22) 4 ( M ] ) <Ade(o,6) 

and 

(7.23) ee([a,x])Ae£([x,b]) ^ Ad£(x) 

whenever [a, b] is such a geodesic and x G [a, b\. 

We claim that every quasihyperbolic geodesic [a, 6] in (Q, k) satisfies 

(7.24) diamm [a, x] A diamm [x, 6] ^ yk/(x) 

for x G [a, 6]. To prove the claim, assume that x G [a, 6] is such that neither [a, x] nor 
[x,b] belong to £m(x,Bd(x)) for some B > c. There exist a\ G [a,x] and b\ G [x,6], 
both outside the ball £?m(x, Bd(x)); because (Q, m) is linearly locally connected with 
constant c, there exists a curve 7 joining a\ to 61 in £2 \ jBm(x, Bd(x)/c). Then 

(7.25) diam£ ]Bm (x,d(x)/4) > -jde(x) 

and 

(7.26) 

diam£7 > de(ai,&i) > -^-4([ai,&i]) 

> ^p(a;)C ([01,61] n Bm (x, d{x)/2)) 

> \p(?)d{x) > ~ d£(x). 

by (7.20)-(7.22). Moreover, 

(7.27) dist£ (Bm(x,d(x)/4),j) ^ee([aux])Aee([bi,x]) ^ Ad£(x) 
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by (7.23). It therefore follows from the Loewner property of fl£, that 

(7.28) modn T > ^ > 0, 

where T is the family of all curves in 17 joining Bm (x, d(x)/4) and 7. By the conformal 
invariance, we can assume that the modulus in (7.28) is measured either in the space 
(J7,de,/xe), or in (17,ra,crn). In any case, because 7 lies outside Bm (x, Bd(x)/c), we 
have that (c/. [HeiK, 3.14]) 

- < modn T < A flog — J 

which gives an upper bound for B, thereby proving (7.24). 
It follows from (7.24) and Lemma 7.33 below that the quasihyperbolic geodesic 

[a, b] in fact satisfies the following stronger property: 

(7.29) t<r([a,x]) A C ( M D ^ Ad(x) 

for all x € [a, 6]. It therefore remains to show that 

(7.30) t*([a,b]) ^ Am(a,b) 

if [a, b] is a quasihyperbolic geodesic in (fi, fc). To this end, it suffices to prove the 
following: 

(7.31) l<r([a>A) ^ A diamff7 
for each curve 7 joining a and b in 17. Indeed, if m = lG, then (7.31) clearly implies 
(7.30); if m = cr, then the assumed linear local connectivity condition implies that 
there is a curve 7 joining a to b in ft such that diamCT 7 < 2ccr(a, 6), which by way of 
(7.31) similarly implies (7.30). 

We now prove (7.31). Fix a quasihyperbolic geodesic [a, b] and choose a point 
x0 e [a, b] such that ^([a,x0]) = 4([x0,6]). By (7.29), 

(7.32) C ( M D <Ad(x0). 

If both a and b belong to the ball Bm (x0, d(x0)/20), one easily estimates that the 
geodesic [a, b] stays inside i?m (xo, d(xo)/2) and that C([a, 6]) ^ Ao~(a, b). Thus, by 
symmetry, assume that a 0 Bm (xo, d(xo)/20). Let 7 be a curve joining a to 6 in 17. 
If 7 meets the ball 5m (xo, d(xo)/40), then 

i. d(xo) 1 n /r _,x diam^7 > ^ - M[a,&]), 

by (7.32) as desired. Thus we may assume that 7 lies outside Bm (xo, d(xo)/40). By 
computing as in (7.25), (7.26), and (7.27), and observing the Loewner property of 17£, 
we obtain that the n-modulus of the curve family T, consisting of curves joining 7 
and Bm (xo, d(xo)/80) has a lower bound depending only on the data, 

modn r ^ ^ > 0. 
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On the other hand, either d(xo) ^ 100 diamcr7 or 

modn r ^ A 200d(x0)' 
log 

diamuT , 

1-n 

as shown by simple geometric considerations. This and (7.32) imply that (7.31) holds 
in all cases, and the proof of the first assertion in Proposition 7.12 is complete. 

Next, if (ft, a) only satisfies the second requirement of linear local connectivity, 
(LLC2), then as above we conclude that (7.29) holds for all hyperbolic geodesies [a, b] 
in ft. Again, (7.31) is true, and we obtain (7.30) for m = £a. This proves that (ft,£a) 
is a uniform space, and the proof of Proposition 7.12 is complete. • 

In consequence, Theorem 7.11 is completely established. In the proof of Proposition 
7.12 above we needed the following lemma. 

Lemma 7.33. — Let ft be a domain in Rn and let 7 = [a, b] be a quasihyperbolic 
geodesic in ft. If there is a constant A > 1 such that 

a(a, x) A <J(X, b) ^ Ad(x) 

for each # 6 7 , then there is a constant B = B(A) ^ 1 such that 

£a([a,x]) A ^ ( M D < Bd(x) 

for each x G 7. 

Results like Lemma 7.33 appear in the literature in the case of the Euclidean 
metric for domains ft in Rn; see e.g. [MS, p. 385-386] or [NV, p. 7-9]. Only trivial 
modifications are needed to transfer these proofs to the spherical case, and we leave 
them to the tenacious reader. 

Proof of Theorem 1.12. — We have already proven that inner uniform domains, and 
hence their conformal images are hyperbolic. (See Chapters 3 and 4). 

To prove the other direction, assume that ft is a hyperbolic domain on the two-
sphere. Because hyperbolicity is preserved under conformal maps, without loss of 
generality, we can assume that ft is a slit domain; that is, 00 G ft and the comple-
mentary components of ft consists of line segments in R2 C R , all parallel to a fixed 
axis, and points in R2. (See e.g. [Ts, Theorem IX.22, p.400].) It is easy to see that 
such a domain satisfies condition (LLC2) with respect to the spherical metric. The 
claim therefore follows from Proposition 7.12. Theorem 1.12 follows. • 

Remark 7.34. — In a recent paper [BuSt], Buckley and Stanoyevitch have shown that 
a bounded product domain in Rm x Rn is quasiconformally equivalent to an inner 
uniform domain in Rm+n only if it is itself inner uniform. (Here by a bounded product 
domain in Rm x Rn we mean a domain ft that is of the form ft = ft\ x ^2 for some 
bounded domains ft\ C Rm and for ft2 C Rn, where m, n > 1.) This result also follows 
from Proposition 7.12, because (this is not hard to see) bounded product domains 
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always satisfy condition ( L L C 2 ) , and because quasiconformal images of hyperbolic 
domains are hyperbolic. 

It would be interesting to characterize Gromov hyperbolic domains in by geo
metric properties that are more easily verifiable than the original definition in terms 
of thin geodesic triangles. It can be shown that the following properties are necessary 
for the Gromov hyperbolicity: 

(i) Gehring-Hayman property: There exists a constant C > 1 such that for every 
geodesic [x,y] in (ft, k) and for every curve 7 in ft with end points x and y we 
have that 

£a([x,y})^C£a(^). 

(ii) Separation property: There exists a constant C ^ 1 such that whenever [x, y] is 
a geodesic in (ft, k), z G [x, y], and 7 is a curve in ft connecting [x, z) and (z, y], 
then 

Bia(z,Cd(z)) n>yjL0. 
The Gehring-Hayman property of a Gromov hyperbolic domain can be established by 
using the ideas in [HR], taking Proposition 7.14 into account. See also [BKR]. The 
separation property was implicitly established in the proof of Proposition 7.12. 

We conjecture that above properties (i) and (ii) are also sufficient for the Gromov 
hyperbolicity of (ft,k). 
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C H A P T E R 8 

THE MARTIN BOUNDARY 
OF A GROMOV HYPERBOLIC DOMAIN 

In this chapter, we prove Theorem 1.14 following the ideas of Ancona [A2], [A3]; 
indeed, we prove the more general result Theorem 8.15. Throughout, we conform with 
the notation of Chapter 3. In particular, we let X denote a geodesic ^-hyperbolic space 
with metric written as \x — y\. 

We begin with a discussion of some geometric facts that will be useful later on in 
connection with the Martin boundary of a Gromov hyperbolic domain. 

Lemma 8.1. — Let I = (0,a) be an open interval, 0 < a < oo, and let 7: / —• X be 
an isometric embedding. For t e I define 

Ut = { x G X : dist (x,7([£,a))J < dist (x,7((0,t])}, 

and denote its closure in X by Uf Then, for all t G I, 
(a) 7((O,*))nZ7 t = 0 , 
(b) 7((£,a))_C Uu and 
(c) 7 ( 0 e dUt C dUt. 

The proof of Lemma 8.1 is left to the reader. 

Lemma 8.2. — Let 7: / —> X and Ut, t G I, be as in Lemma 8.1. For 0 < t < s < a 
set x = 7 ( 0 , y = 7(5), and z = j((s + t)/2). Then 

(a) Ut D Us; 

moreover, for each u G X \Ut and v G Us, 
(b) if \x - y\ > 86, then \u - v\ ^ \u - x\ + \v - y\ - 66 and dist(z, [u, v]) ̂  26 for 

each geodesic [u,v\, 
(c) if \x -y\> 86, then \u — v\ ^ \\x - y\ - 36 > 0, and 
(d) \u — z\ A \v - z\ ^ \ \x — 2/|. 
In particular, Ut D Us if \x — y\ > 86 by (c). 
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Proof. — The proof of (a) is clear. To prove (b), pick t' G [0,t] and sf G [s, a] such 
that 

dist(/u,7) = |u —7(£/)|, dist(v,7) = \v-^f(s,)\. 
Denote x' = j(tf), y' = 7(V)> and let [x, y] c [xf, y'] be geodesic subarcs of 7. By the 
(5-hyperbolicity of X, we find a point z' G [xl', u] U [u, v] U [v, y') such that \z' — z\ ^ 25. 
We claim that z' G [u,v]. If this is not the case, we assume without loss of generality 
that z' G \u,x'\. Then 

\z' - x'\ > \x' - z\ - 26 ^ \x - z\ - 26 

= I \x - y\ - 26 > 26 

by assumption, and hence 

\u — x'\ = dist(г¿,7) ^ \u — z\ ^ \u — z'\ + 25 

= \u- x'\ - \z' - x'\ + 25 < \u - x'\, 

which is a contradiction. Thus z' G [u,v], and it follows that dist(z, [u, v]) < 25. 
The 5-thinness of the triangle [x',z] U [z,u] U [u,x'\ implies that there is a point 
x" G [u, xf] U[z,u] such that \x" — x\ < 5. We then have that 

\x - u\ < \x" - u\ + 5 ^ \u - x'\ V \u - z\ + 5 

= \u — z\ + 5. 

Similarly, \y — v\ ^ |t> — z| + <5, and therefore 

\u-v\ = \u- z'\ + \z' - v\ 

^ \u — z\ — \z — z'\ + \v — z\ — \z — zf\ 

> \x — u\ + \y — v\ — 65. 

Thus (b) follows. 
Next, (b) gives 

\x-y\^\x-u\ + \u-v\ + \v- y\ 

< \u — v\ + \u — v\ + 66, 

and thus (c) follows. 
To prove (d), we compute 

\x — z\ ^ \x' — z\ ^ \z — u\ + \u — x'\ ^ 2 \z — u\, 

which implies \z - u\ ^ \ \x — y\, and similarly \z — v\ ^ \ \x — y\. Thus (d) follows, 
and Lemma 8.2 is thereby established. • 

Assume now that X is proper. Then the conformal deformations X£ = (X, d£), 0 < 
s ^ eo(6), are bounded uniform spaces by the uniformization theory in Chapter 4. In 
particular, the completion X£ of (X, d£) is compact by Proposition 2.20. The compact 
spaces X£ are all homeomorphic to each other by Remark 4.14 (b), for 0 < e < £0(6), 
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and the Gromov boundary 8QX is homeomorphic to dX£ by Proposition 4.13. We 
can compactify X by adding 8QX to it; then X U 3QX is homeomorphic to Xe. In 
the following, we consider the topological structure of this space. The notation is as 
in Lemma 8.1. 

Lemma 8.3. — Let 7: [0,00] —> X be a geodesic ray in a proper and geodesic 5-
hyperbolic space, and let w = 7(0) be the fixed base point in X. The sets 

yt — Ut U {b G 3QX : b can be represented by a sequence in Ut}, t > 0, 

form a neighborhood base of the point in 3QX that is represented by the ray 7. 

Proof. — This lemma likely appears somewhere in the literature. Rather than search
ing for the references, we shall sketch a proof. (For the tacitly used facts about Gro
mov hyperbolic geometry, see [GhHa, Ch. 8].) Let c\, C 2 , . . . denote positive universal 
constants; the notation A = B ± CiS means \A — B\ < ci5. 

If x,y G X and u G [w,y] is a point such that \u - x\ = dist(x, [w,y]), then the 
Gromov product satisfies (use the tripod map [GhHa, p. 41]) 

(8.4) (x\y)w = \u-w\± CiS. 

Thus, if x G X and x' G 7 is a point such that \x — x'\ = dist(x,7), (8.4) implies that 

(xh(s))w = \x' -w\±aS 

for all sufficiently large s. Hence 

(8.5) (x\a)w = \x' — w\± C28, 

where a G 3QX is the boundary point determined by 7. This shows that if x G Ut, 
then (x\a)w > t — C2S. If now y G Vt n doX, it can be represented by a sequence (yn) 
in Ut, so that 

(y\a)w ̂  liminf(2/n|a)ty - c3S 

> t — C4S. 

If follows that 

(8.6) (x\a)w ^t-c56 

if x G Vt. Because the sets {x G XUdcX : (x\a)w > M } , M > 0, form a neighborhood 
basis of a, we conclude that every neighborhood of a contains a set Vt for t sufficiently 
large. 

It remains to show that every set Vt , t > 0, is a neighborhood of a. If x G X and 
(x\a)w > t + C2S, then (8.5) shows that \xf — w\ > t for every point x' G 7 such that 
\x' - x\ — dist(x,7); in particular, we have that 

dist (x,7([t,oo))) < dist (x,7((0,£])), 
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which implies x G UT. If x G OQX and (xn) is a sequence representing x, then 

liminf(xn|a)w ^ (x\a)w — c§5; 

in particular, if (x\a)w > t + (CQ + 02)6, we can pass to a subsequence and assume, 
initially, that (xn\a)w > t + C2S, which implies that x G Vt. In conclusion, there is a 
constant C7 > 0 such that x G l U dcX and (x\a)w > t + C7S imply x G Vt. Thus Vt 
is a neighborhood of a, and the lemma follows. • 

The following definition is due to Ancona [A2, p. 514], [A3, p. 5]. 

Definition 8.7. — Given a positive increasing function $ : [0,00) —> (0,00) with <fr(t) —> 
00 as t —> 00, a <&-chain in a metric space (M, d) is a decreasing sequence T\ D • • • D 
Tm of open sets in M together with a sequence of points x i , . . . , xm in M such that 
a?i G <9I\ for each i = 1 , . . . , m and that 

(a) 0 < $(0) = c0 ^ d(xi, Xi+i) ^ 1/co for i = 1 , . . . , m - 1, 
(b) dist(x, Ti+i) ^ 3>(d(x, Xi)) for all x G <9I\ and i = 1 , . . . , m — 1. 

Here I \ is the closure of I \ in M. 

We also call a sequence of points x i , . . . , xm in M a chain if they are associated 
with sets T i , . . . ,Tm as above. 

In a ^-hyperbolic space X we set 

(8.8) * í ( t ) = {c0 = min{<5,2^} , 0^t<76, 

t - 65, 75 ^ t. 

We assume here, as we may, that S > 0. 
The next lemma appears in [A3, Theorem 6.9] for graphs. For completeness we 

include a similar proof. 

Lemma 8.9. — Let [x,y] be a geodesic segment in a S-hyperbolic space X, S > 0, such 
that |x — y\ > 44J. Choose points x = xo ,x i , . . . ,xm+i = y successively from [x,y] 
when traveling from x to y such that \xi — Xi+\ \ = 228 for i = 0 , . . . , m — 1, and that 
\xm — xm+i\ ^ 225. Then the points x i , . . . ,xm form a <&s-chain in X, where <&s is 
given in (8.8). 

Proof. — First note that m ^ 2 because we assume |x — y\ > 445. Let 0 = to < t\ < 
— - <trn < tm+i = |x — y\ be the preimages of the points x o , . . . , £m+i under a fixed 
isometry 7: [0, |x — y\] —> [x, y). Define open sets Ut for 0 < t < \x — y\ as in Lemma 
8.1, and let Ti = Uti for i = 1 , . . . , m. Then xi G dTi for i — 1, . . . , m by Lemma 8.1 
(c). Since \xi — Xi+i| = 225 for 1 < i ^ m — 1, we have 

c 0 = m i n { 5 , { d ( x i ) < |x» - d(xik0 ^ — 

ASTÉRISQUE 270 



CHAPTER 8. THE MARTIN BOUNDARY OF A GROMOV HYPERBOLIC DOMAIN 81 

for i = 1 , . . . , m — 1, verifying condition (a) in Definition 8.7. Note also that Ti D 
r2 D - - • D Tm by Lemma 8.2 (a). Next, if u G dTi and v G IVj-i, we have by Lemma 
8.2 (b) and (c) that 

\u — v\ ^ max \u - Xi\ 66, 1 
2 

d(xik0xi+1) + E 36 

^ max{|ii — X{ \ — 6(5,86} 

^ $6(\U-Xi\). 

Hence dist(it,T^+i) ^ $s(\u — x^l), verifying condition (b) in Definition 8.7. The 
lemma follows. • 

Proposition 8.10. — Let X be a proper and geodesic 6-hyperbolic space, 6 > 0. Each 
point £ G dcX admits a neighborhood basis {V/, V2,...} in X U 3QX such that for 
the sets Uk = Vk(lX the following two assertions hold: 

(a) the sets Uk form a decreasing sequence of nonempty open subsets of X with 

U'k+1 C U'k and <1?=1 U'k = 0 ; 

(b) for each integer k ^ 1 there exists a point pu G \ U2k+i suc^ ^hat 

\u - v\ A \u -pk\ A \v -pk\ > 755 

whenever u G dU'2k and v G dU^k+i • 
Moreover, there exists a <&s-chain xi,..., xm, m ^ 3, such that 

\u - xi\ V \v - xm\ V \pk - Xi\ ^ 246 

for some i = 2 , . . . , m — 1, where <&$ is given in (8.8). 

Proof. — Fix a base point w G X. For £ G 3QX, let 7: [0,00) —• X be a geodesic 
ray that represents £ with 7(0) = w. For £ > 0 define Ut as in Lemma 8.1, and define 
Vt as in Lemma 8.3. For k ^ 1 set 

d(xik0xi+1) + E d(xik0xi+1) + E 

xfc = 7(300 -2H) , 2 / f c = 7 ( 3 0 0 ( 2 f c + l ) ¿ ) , 

pfc = 7 (300(2*+ 1/2)<J). 

Lemmas 8.2 and 8.3 give that (Vk) is a neighborhood basis of ( and that (a) is true. 

Note that Xk G dU2k, yk G dU2k+l, pk G f/^ \ #2fc+i> andtnat 

kfc -Pifel = \Vk ~Pk\ 
1 

2 
|xfc -yk\ = 1505. 

Next, if г¿ G df/^ and v G dt^fc+i' we obtain from Lemma 8.2 (c) and (d) that 

\u — v\ 1 

2 
kit -yfcl - 3 * = 147* 

and that 

|u -pk\ A |v -pfc| 
1 
4 

d(xik0xi+1) + E 

and hence the first part of (b) follows. 
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Finally, let # 1 , . . . ,a?m be the ^-chain on [u,v] constructed in Lemma 8.9, where 
[u, v) is a geodesic from u to v. Then \u — x\\ = \xi — #¿+11 = 225 for i = 1 , . . . , m — 1, 
and \v — xm\ ^ 226. Notice that dist(p/c, [u,v]) ^ 25 by Lemma 8.2 (b). It therefore 
follows that \pk — Xi\ ^ 24(5 for some i = 1 , . . . , m. But we must have i ^ 1, m, for 
otherwise 

7 5 5 < |u-pfc |A|v-pfc |<46<S 

which is impossible. (Recall that we assume (5 > 0.) This proves Proposition 8.10. • 

We shall next apply Proposition 8.10 similarly to Ancona [A2, Theorems 7 and 8, 
p. 517-518]. 

Let 17 be a domain in Rn. Recall that d(x) denotes the distance from a point 
x G 17 to the boundary 917 (which we always assume nonempty). We consider three 
conditions that 17 may or may not satisfy. 

(i) Strong barrier, there exists e > 0 and a C2-smooth positive superharmonic 
function s in 17 such that 

(8.11) As(x) +ed(x)~2 s(x) < 0 

for x G 17, where A is the Laplacian. 
(ii) Capacity density condition: there is a constant c > 0 such that 

(8.12) cap (Rn \ 17) n B ( i , r ) 
crn"2, n ^ 3, 

cr, n = 2, 

for each x G 917 and r > 0, where cap denotes the Newtonian capacity if n ^ 3, 
and the logarithmic capacity if n = 2. 

(iii) Corkscrew condition: there exists a constant c > 0 such that for each x G 917 
and r > 0 there is a point y G B(x,r) with 

(8.13) 5(2/, cr) Pi 17 = 0 . 

Then we have the following (quantitative) implications 

(m) (ii) (i)-

In dimension n = 2, conditions (ii) and (i) are equivalent but not so for n ^ 3. See 
[Al], [A2], [Le], [Po]. 

The domain 17 can be turned into a complete Riemannian manifold (17, #) that 
is moreover quasiisometric (in the sense of (1.16)) to (17, k$i) in a standard way by 
mollifying the distance function d(x) appropriately; this gives a C°°-function d(x) in 
17 such that d{x) « d{x) and the Riemannian metric g is obtained by using the length 
element ds2 = d(x)~2\dx\2. (See [A2, p.521], [St, p. 171].) 

Now let A be the Euclidean Laplacian. Condition (8.11) is equivalent to condition 

(8.14) As(x) +sd(x)~2 s(x) ^ 0, 
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upon a change in e\ in the language of Ancona, (8.14) means that the operator d{x)2 A 
is weakly coercive on the Riemannian manifold (17,#); see [A2, p. 521]. 

We want to determine the Martin boundary &M 17 of 17 with respect to the Laplacian 
A. Let us recall the definition of DM 17. Fix a base point w G 17; then call a sequence 
C = (xk) in 17 admissible if it has no limit points in 17 and if there is a function in 
17 such that 

G{x,xk) 

G(w,xk) 
Hc(x), k —> oo, 

locally uniformly on 17, where G(x, y) denotes the Green function in 17 (we assume G 
exists). Two admissible sequences £i and £2 are defined to be equivalent if HQX = H^2, 
and the Martin boundary 8M 17 is the set of equivalence classes of admissible sequences. 
The set 17M = 17 U $M 17 is a compact topological space when equipped with the 
Martin topology, and is a compactification of 17. In this topology, H^n(x) —• H((x) 
if Cn —> C and x G 17 (See [Hel, Ch. 12] for the description of the Martin topology.) 

Theorem 8.15. — Let 17 be a Gromov hyperbolic domain in Rn. //17 admits a strong 
barrier (8.11), then the Martin boundary <9M!7 and the Gromov boundary 9^17 are 
homeomorphic. More precisely, the identity map extends to a homeomorphism 

17 U dGQ —> 17 U <9M17. 

Proof. — Because the operator d(x)2 A is weakly coercive as explained above, The
orem 8 in [A2, p. 518] applies. Because the Riemannian manifold (17, #) is quasi-
isometric to the space (17, k), we only need to check that Ancona's conditions [A2, 
(G.A.)] are satisfied on (17, g). This is essentially Proposition 8.10 when applied to the 
Gromov hyperbolic space (17, g). Note that Gromov hyperbolicity is preserved under 
quasiisometries, and that (17, #) is proper and geodesic as a complete Riemannian 
manifold. It is also clear that Ancona's requirement of bounded geometry is satisfied 
by the space (17, g). 

There is one minor point that we have to address here, and this concerns the proof 
of Theorem 7 in [A2, p. 517]. (Ancona derives his Theorem 8 from Theorem 7.) 
Namely, our ^-chain, given in Proposition 8.10, does not necessarily pass through 
the points u,v,pk\ this was required in [A2, Theorem 7]. However, we can get the 
crucial estimate [A2, (6.4)], 

(8.16) G{u, v) ^ c G(pk,u)G(pk,v) 

for u G dL^fc, v G #E 2̂fc+i> ^ aPPlymS Proposition 8.10 (b); indeed, by [A2, Theo
rem 5, p. 515] we have that 

(8.17) G(xuxm) < cG(xi,Xi)G(xuxm), 

and because the points u,v,pk are uniformly separated by 8.10 (b), (8.16) follows 
from (8.17) by a repeated use of Harnack's inequality. The proof of Theorem 7 now 
continues as in [A2]. This completes the proof of Theorem 8.15. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



84 CHAPTER 8. THE MARTIN BOUNDARY OF A GROMOV HYPERBOLIC DOMAIN 

Remarks 8.18 
(a) Obviously, either of the stronger assumptions (ii) or (iii) can be used in place 

of (i) in Theorem 8.15. We stated Theorem 1.14 by using (ii). Jerison and Kenig 
proved in [JK] that the Martin boundary &M^ of a uniform domain Q identifies with 
its Euclidean boundary dft if, in addition, (iii) is satisfied. 

(b) We could have considered more general elliptic operators and their associ
ated potential theories in Theorem 8.15, c/. [A2]. A particularly interesting case 
is the Laplace-Beltrami operator corresponding to the Bergman metric on a strictly 
pseudoconvex domain Q C Cn with sufficiently smooth boundary. By an explicit 
construction of ^-chains, Arai [Ar] proved that the Martin boundary 8M^ can be 
identified with the Euclidean boundary dQ. A recent result of Balogh and the first 
author [BB1], [BB2] shows that a strictly pseudoconvex domain Q is Gromov hy
perbolic in the Bergman metric; moreover, the Gromov boundary dc^L coincides with 
the Euclidean boundary as a set. On the other hand, it is easy to see that an analog 
of Theorem 8.15 holds in this setting. Hence we have the identification of the three 
boundaries: dfl = 8MQ — QG^-
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QUASICONFORMAL MAPS 
B E T W E E N GROMOV HYPERBOLIC SPACES 

OF BOUNDED GEOMETRY 

Recall definition (1.21) for quasiconformal maps between metric spaces. It is a 
well-known fact that every quasiconformal self-homeomorphism / : Bn —• Bn of the 
open unit ball Bn in Wn, n ^ 2, extends to a quasiconformal homeomorphism of the 
boundary sphere. However, this is not an easy result to prove starting from definition 
(1.21). First proofs are due to Callender, Gehring, and Vaisala around 1960. One 
can prove, in fact, that / : Bn —• Bn is a rough quasiisometry (definition (1.17)) in 
the hyperbolic metric on Bn. Thus the homeomorphic, and in fact quasisymmetric, 
extension to <9Bn is provided by a general theorem of Efremovich and Tihomirova 
[ET]. 

In this chapter, we shall demonstrate that the above phenomena remain valid under 
quite general circumstances. In particular, we shall prove Theorem 1.15. Given the 
results in Chapter 6 of this paper, and the theory developed in [HeiK], our arguments 
follow the standard lines. 

First we introduce metric spaces of bounded geometry; the concept may have some 
independent interest. 

Let X = (X, d, //) be a pathwise connected, proper metric (Borel) measure space, 
and let Q ^ 1. We say that X is of Q-bounded geometry, or a Q-BG space, if the 
following two conditions are satisfied: 

(BGi): there exist R0 > 0 and CQ ^ 1 such that 

(9.1) -^RQ < p(BR) < C0RQ 

for all open balls BR in X of radius 0 < R < R0; 

(BG2): there exist C\ ^ 1 and r ^ 1 such that 

(9.2) 
1_ 

IÄBR, BR 
\u — UBR\dfji ^ C\R 

1 
li{BrR) BTR 

oQdn 
1/Q 
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for all open balls BR in X of radius 0 < R < RQ/T, for all bounded measurable 
functions u in BTR, and for all Borel functions p: BTR —» [0, oo] that satisfy 

(9.3; u(nf(a)) - u(f(b))\ : 
/7 

ods 

whenever 7: [a, 6] —> BTR is a rectifiable curve. In (9.2), we denote by BTR the open 
ball with the same center as BR and radius TR and by UBR the mean value of u over 
BR. 

Thus, X is of Q-bounded geometry if it is uniformly locally Ahlfors Q-regular (9.1) 
and supports uniformly locally a Poincaré inequality (9.2). Poincaré inequalities based 
on Borel functions satisfying (9.3), or upper gradients, were introduced in [HeiK]. 
Indeed, by localizing the arguments in [HeiK, Section 5], one obtains the following 
characterization of metric spaces of bounded geometry: 

Proposition 9.4. — A metric measure space (X, d, p) as above is of Q-bounded geom

etry, Q > 1, if and only if the following two conditions are satisfied: 

(BG[): there exist R'0 > 0 and CQ ^ 1 such that 

(9.5) p{BR) ^ C'0RQ 

for all open balls BR in X of radius 0 < R < R'0; 

(BG>2). there exists K ̂  1 and a decreasing function (j>: (0, oo) —• (0, oo) such that 

(9.6) modQ(£,F;£Kß) ^ 0 ( £ ) , 

whenever E and F are two disjoint nondegenerate continua in a ball BR, 0 < R < 
RQ/K, with dis t(F,F) ^ £(diam£ A diamF). 

The statement is quantitative in the usual sense. 

Thus, X is of Q-bounded geometry if the measure p satisfies a uniform local volume 
growth condition (9.5) and if X is a locally Q-Loewner space in the sense of (BGF2)-
(Recall the definition for Q-modulus modg from (6.3). Also compare {BG'2) and the 
definition for a locally Loewner space in Chapter 6.) 

Examples 9.7 
(a) If Xn is a complete, connected Riemannian n-manifold with positive injectivity 

radius injX and with a lower bound for the Ricci curvature, Rie ^ — (n — l)fc2, 
k ^ 0, then X is of n-bounded geometry as defined above. Indeed, we can choose 
i?o = | i n j X . The second inequality in (9.1) follows from the classical comparison 
theorems, while the first one is due to Croke [C]. The local Poincaré inequality follows 
from work of Buser [Bu] (cf. [SC]). In the literature (cf. [Ho]), such a manifold X is 
often termed a manifold of (Ricci) bounded geometry. 

(b) The examples in [BoPa] and in [La] show that there are Q-BG metric spaces for 
each real number Q > 1. For more examples, see [HeiK], [Sem], and the references 
given there. 
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Now we are ready to state our main result of this chapter. 

Theorem 9.8. — Let X and Y be geodesic metric spaces of Q-bounded geometry, 
Q > 1. Assume in addition that Y is a roughly starlike Gromov hyperbolic space 
whose Gromov boundary 8QY is a nondegenerate continuum. Then every quasicon
formal homeomorphism f: X —> F is a rough Lipschitz map, quantitatively. 

In particular, if X is also a roughly starlike Gromov hyperbolic space whose Gromov 
boundary 8QX is a nondegenerate continuum, then every quasiconformal homeomor
phism f': X —• Y is a rough quasiisometry, and hence extends to a quasisymmetric 
homeomorphism between the Gromov boundaries. 

A rough Lipschitz map between metric spaces is a map that satisfies the second 
inequality in (1.17). For the terms related to Gromov hyperbolicity, see Chapter 3. 

A Hadamard manifold X is a complete simply connected Riemannian manifold 
of nonpositive sectional curvature. If X is Gromov hyperbolic, then 8QX is home
omorphic to a (n — 1)-dimensional sphere, where n = dimX, and hence connected 
when n ^ 2. A Hadamard manifold X is 0-roughly starlike with respect to each 
basepoint w G X . In view of this and the discussion in 9.7 (a), Theorem 1.15 follows 
from Theorem 9.8. One should observe that by the arguments in [HeiK, Section 4] 
the inverse of a quasiconformal mapping is quasiconformal under the assumptions of 
Theorem 9.8. 

Proof of Theorem 9.8. — Let / : X —> Y be as in the hypotheses. We need to show 
that there exists L ^ 1 and M ^ 0, depending only on the data associated with / , 
X . and Y. surh that, 

(9.9) \f{x)-f{y)\^L\x-y\ + M 

for each pair of points x,y G X. (We use the generic distance notation \a — b\ here.) 
Thus, fix x, y G X. 

Assume first that y G B(x, \Ro) for some 0 < A < 1, where Ro is a constant R'0 
such that (BG[) and (BG'2) are satisfied in X. Denote by R\ a similar constant for 
Y. Suppose that 

(9.10) \f(x)-f{y)\>Ri, 

and let a be a geodesic joining x and y in X. We claim that 

(9.11) modQ r > C > 0, 

where C is independent of x, y, and a, and where T is the family of all curves 7 in 
Y joining f(a) to 8QY\ that is, 7 meets f(a) and is not contained in any compact 
set in Y. To this end, we invoke both the uniformization theory of Chapter 4 and 
the local to global Loewner theory of Chapter 6. Fix e > 0 so that the uniformized 
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space Y£ = (Y, d£) is a bounded uniform space, as in Theorem 4.5. It follows from the 
definition of the metric d£ and from (4.4) that 

d£(f(x)J(y)) >Pe(f(x)) 
Jo 

e-£tdt^Cp£(f(x)). 

From now on, C denotes any positive constant that depends only on the data associ
ated with / , X , and Y. 

Thus, because Y is roughly starlike, Lemma 4.16 implies that 

d£(f(x)J(y))>Cde(f(x)). 

It follows that 

dist£ ( / ( a ) , dY£) ^ C(diam£ f(a) A diam, dY£), 

whence the general boundary version of Theorem 6.4 (see Remark 6.38) gives the 
claim in (9.11), provided (Y£,d£, v£) is a locally Q-Loewner space. (Here dv£ — pf dv, 
where v is the underlying measure in Y.) But this latter property of Y£ is easy 
to verify by using condition {BG'2) and the fact, easily derived from (4.18) and the 
definition of dP, that 

B{z,AiÄi)CB£(z,X2d£(z))Ci/=0i/=0 

where z G Y, the numbers 0 < Ai, A2 < 1 depend only on the data, B£ is a ball in Y£, 
and B is a ball in Y. Note that both the conformal invariance of the modulus and 
the rough starlikeness of Y are used here. Thus (9.11) follows. 

On the other hand, the volume growth condition (9.5) implies by [HeiK, Lemma 
3.14] that 

(9.12) m o d Q r 1 r ^ C ( l o g ( l / A ) ) 1 Q. 

We claim that this in turn implies a definite positive lower bound for A. Indeed, under 
the assumptions of Q-bounded geometry, the arguments in [HeiK, Section 4] imply 
that / is locally uniformly quasisymmetric in the sense that every point in X has a 
neighborhood where / is 77-quasisymmetric as defined in (1.18) with 77 depending only 
on the data. Then we can invoke the work of Tyson [Ty] which implies that 

(9.13) ^modg T' ^ modg fV < Cmodg V 

for all curve families V in X. The combination of (9.13), (9.12), and (9.11) gives that 

A ^ C > 0. 

What we have proved at this point is that there exists a constant A G (0,1), 
depending only on the data, such that \x—y\ ^ XRo for x, y G X implies \ f(x)—f(y)\ <R1 

Next, assume \x — y\ > XRo- Pick a geodesic 7 from x to y, and let x = 

XQ, # I , . . . , £JV+I = y be points on 7 so that 

\xi - Zi+il = A#o, i = 0 , . . . , N - 1 
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and 
\xN - xN+i\ < XR0. 

In particular, XR0N ^ \x — y\ ^ XRo(N + 1). Hence we have, by what was proved 
above, that 

\№-f(y)\ 
N 

i=0 
\f(Xi) - f{xi+1)\ 

^Äi(JV + l) 
Ri_ 
\RQ x-y\ + R1. 

We conclude that / is a rough Lipschitz map. This finishes the proof of Theorem 9.8. 

Remarks 9.14 
(a) The condition on rough starlikeness is necessary for the conclusion of Theo

rem 9.8. Indeed, by conformally changing the metric in a sequence of small disjoint 
disks one can pull out towers from the hyperbolic plane so that each tower has finite 
length but the lengths have no fixed bound. The matters can easily be arranged 
so that the resulting space Y is proper, geodesic and Gromov hyperbolic, but the 
identity map H2 —> Y (which is conformal) is not a rough Lipschitz map. 

(b) The conclusion of Theorem 9.8 remains valid if we only assume that / is a 
quasiconformal homeomorphism of X onto an open subset of Y. (We thank Bruce 
Kleiner for pointing this fact out to us.) The proof is essentially the same, because 
the key fact (9.11) continues to hold; now Y is the family of curves joining f(a) to 
the boundary of f(X) in the extended sense. 
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APPENDIX: LENGTHS AND METRICS 

In this appendix, we gather some basic facts about curves and line integration in 
metric spaces. We prove a result (Proposition A.7) which in particular implies Lemma 
2.6. Undoubtedly, Proposition A.7 can be found somewhere in the literature, but in 
lack of a precise reference, we provide a proof. 

Let (M, d) be a metric space, and let 7 be a compact curve in M, that is, 7 : [a, b] —> 
M is a continuous map of a compact interval into M. The length ¿̂¿(7) of 7 with 
respect to the metric d is defined as 

(A.l) f-din) = sup 
n-l 

k=0 
d(7(*fc),7(*ife+i))5 

where the supremum is taken over all partitions a = to < t\ < • • - < tn = b of the 
interval [a, 6]. If ^(7) < 00, then 7 is said to be rectifiable. For a rectifiable curve 7 
we can define the arc length s: [a, b] —> [0, 00) along 7 by 

s(t)=£d(j\[a,t}). 

The function s is a function of bounded variation on [a, 6]. 
Next, let p: M —* [0,00] be a Borel function. For each rectifiable curve 7: [a, b] —> 

M we can define its p-length by 

(A.2) A„(7) 
7 

pds = 
a 

p(7(t))ds(t). 

If M is rectifiably connected (that is, if every pair of points in M can be joined by a 
rectifiable curve), then p determines a distance function 

(A.3) dp{x,y) = inf Ap(7), 

where the infimum is taken over all rectifiable curves 7 joining x and y in M. In 
general, the distance function dp need not be a metric; it is a metric if p is positive 
and continuous. If p = 1, then Ap(7) = ^(7) is the length of 7 with respect to the 
metric d; in this case, we denote the corresponding metric in (A.3) by id-
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Assume from now on that (M, d) is rectifiably connected and that p: M —> (0, oo) 
is continuous. For any two metrics d\ and d2 on M we write d\ ~ d2 if they induce the 
same topology on M, i.e. if the identity map (M, di) —> (M, d2) is a homeomorphism. 

The following lemma is easy to prove; we omit the proof. 

Lemma AA. — We always have dp ~ id- In particular, d ~ £d if and only if d ~ dp. 

Note that the identity map (M,£d) —• (M,d) is always 1-Lipschitz and hence 
continuous, but it need not be a homeomorphism. In the following, we make the ad
ditional assumption that d ~ which then implies that d ~ id ~ dp by Lemma A.4. 

Next, denote by ip{^) = idp(l) the length of a curve 7 with respect to the metric 
dp. That is, ̂ (7) is given by the expression in (A.l) if we replace the metric d by the 
metric dp. 

The following two lemmas are easy to establish; we leave the proofs to the reader. 

Lemma A.5. — For a curve 7 we have that id{l) < 00 if and only if ip{^) < 00 . That 
is, 7 is rectifiable with respect to d if and only if it is rectifiable with respect to dp. 

Lemma A.6. — If 7 is rectifiable, then ip{^) ^ Ap(7). 

In view of Lemma A.5, the rectifiability of a curve is independent of the chosen 
metric dp. We shall henceforth speak of rectifiable curves without specifying the 
metric. Recall that we have the standing assumption that d ~ id and that p is 
positive and continuous. 

We can now prove the following result: 

Proposition A.7. — Let (M, d) be a rectifiably connected metric space such that d ~ id, 
and let p: (M, d) —> (0,oo) be continuous. Then 

4.(7) = Ap(7) 

for each rectifiable curve 7: [a, b] —• (M, d). 

Proof. — Let 7: [a, b] —> (M,d) be rectifiable. By Lemma A.6, it suffices to show 
that Ap(7) ^ iP(l)- (Note that ip{^) is finite by Lemma A.5). Since d ~ dp by 
Lemma A.4, the curve 7 is compact in both (X, d) and (Xb dp). Thus, for each e > 0 
there is 6 > 0 such that 

(A.8) x G 7, y E X and d(x,y) A dp(x,y) < S imply \p(x) - p(y)\ < e. 

Now fix e > 0, and let 0 < S < 1 be as in (A.8). Choose a partition a = to < h < 
... < tn — b such that 

(A.9) d(xk^(t))Adp(xk^(t))<6/2 

for tk-i ^ t ^ tk and A: = l,...,n, where = 7(£fc). Next, for each k choose 
t°k = tk~i <tl<'"<tk

k=tk such that, with x\ = j(tl

k), and 7* = 7|[tfc_i,tfc], we 
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have 

(A.10) ld(yk) 
Vk-l 

i=0 

d(xik0xi+1) + E 

Then 

(A.ll) 
Ik 

pds ^ (p(xk) + e)£d(jk) 

^ (p(xk) + e) 
y-& 

\ i=0 

d(xik0xi+1) + E 

by (A.8), (A.9) and (A.10). If, on the other hand, a is an arbitrary curve joining x\ 
and a^+1, and a' = a Pi Bd{x\, d(x\, x1^1)), one computes 

pds ^ ld(yk 

> ( P ( 4 ) - ^ ( 4 , 4 + i ) 
> ( p ( a : f c ) - 2 e ) c ; ( 4 , 4 + 1 ) 

which implies that 

(A.12) p(xk)d(xi,xl+1) > (P(4)-^(4,4+i) ±2ed(xlxi+1). 

Next combine (A.ll) and (A.12) to obtain 

7fc 
pds < ̂ p(7/c) + 3^d(7/c) 

Me £2 
+ —, 

n n 

M = maxp(z). 

The claim follows from this by summing over all subcurves 7̂ , and by letting e —> 0. 
The proof of Proposition A.7 is complete. • 

Remarks A. 13 
(a) The assumption d ~ £d in Proposition A.7 is satisfied, for example, if (X, d) is 

locally quasiconvex. 
(b) If the hypotheses of Proposition A.7 are satisfied, then (M, dp) is a length space-, 

that is, dp(x, y) can always be given as the infimum of the lengths of the curves joining 
x and y. 
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