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IND-SHEAVES 

Masak i Kashiwara, Pierre Schapira 

Abstract. — Sheaf theory is not well suited to the study of various objects in Analysis 
which are not defined by local properties. The aim of this paper is to show that it 
is possible to overcome this difficulty by enlarging the category of sheaves to that of 
ind-sheaves, and by extending to ind-sheaves the machinery of sheaves. 

Let X be a locally compact topological space and let A; be a commutative ring. 
We define the category I(A;x) of ind-sheaves of fc-modules on X as the category of 
ind-objects of the category Modc(kx) of sheaves of fc-modules on X with compact 
support, and we construct "Grothendieck's six operations" in the derived categories 
of ind-sheaves, as well as new functors which naturally arise. 

A method for constructing ind-sheaves is the use of Grothendieck topologies asso
ciated with families T of open subsets satisfying suitable properties. Sheaves on the 
site XT naturally define ind-sheaves. 

When X is a real analytic manifold, we consider the subanalytic site XSA associated 
with the family of open subanalytic subsets, and construct various ind-sheaves by 
this way. We obtain in particular the ind-sheaf C^?'* of tempered C°°-functions, 
the ind-sheaf Cx,w of Whitney C°°-functions and the ind-sheaf Vblx of tempered 
distributions. On a complex manifold X , we concentrate on the study of the ind-
sheaf OLX of "tempered holomorphic functions" and prove an adjunction formula for 
integral transforms in this framework. 



iv 

Résumé (Ind-faisceaux). — La théorie des faisceaux n'est pas bien adaptée à l'étude 
de divers objets de l'Analyse qui ne sont pas définis par des propriétés locales. Le but 
de cet article est de montrer que l'on peut surmonter cette difficulté en élargissant 
la catégorie des faisceaux à celle des ind-faisceaux, et étendre à ceux-ci le formalisme 
des faisceaux. 

Soit X un espace localement compact et soit k un anneau commutatif. Nous défi
nissons la catégorie l(kx) des ind-faisceaux de fc-modules sur X comme la catégorie 
des ind-objets de la catégorie Mod c (A:x ) des faisceaux de A;-modules sur X à sup
port compact, et nous construisons les « six opérations de Grothendieck » dans la 
catégorie dérivée des ind-faisceaux, ainsi que de nouveaux foncteurs qui apparaissent 
naturellement. 

Une méthode pour construire des ind-faisceaux est l'utilisation de topologies de 
Grothendieck associées à des familles T d'ouverts de X satisfaisant certaines proprié
tés. Les faisceaux sur le site Xr définissent alors naturellement des ind-faisceaux. 

Quand X est une variété analytique, nous considérons le site sous-analytique Xsa 

associé à la famille des ouverts sous-analytiques et nous construisons ainsi divers 
ind-faisceaux. Nous obtenons en particulier le ind-faisceau C x

, f des fonctions C°° 
tempérées, le ind-faisceau C x

, w des fonctions C°° de type Whitney, et le ind-faisceau 
Vbl

x des distributions tempérées. 
Sur une variété complexe X , nous concentrons notre étude sur le ind-faisceau OL

X 

des « fonctions holomorphes tempérées » et prouvons une formule d'adjonction dans 
ce cadre. 
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INTRODUCTION 

Sheaf theory is not well suited to the study of various objects in Analysis which 
are not defined by local properties, such as for example holomorphic functions with 
tempered growth. The aim of this paper is to show that it is possible to overcome this 
difficulty by enlarging the category of sheaves to that of ind-sheaves, and by extending 
to ind-sheaves the machinery of sheaves. 

Recall that if C is an abelian category, the category Ind(C) of ind-objects of C has 
many remarkable properties: it contains C and admits small inductive limits, it is 
abelian and the natural functor C —• Ind(C) is exact and fully faithful. Moreover 
Ind(C) is, in a certain sense, "dual" to C. 

For a locally compact topological space X and a commutative ring k, we introduce 
the category l(kx) of ind-sheaves of fc-modules on X as the category of ind-objects 
of the category Modc(kx) of sheaves of fc-modules with compact support in X, This 
construction has some analogy with that of distributions: the space of distributions 
is bigger than that of functions, and is dual to the space of functions with compact 
support. This last condition implies the local nature of distributions, and similarly, 
we prove that ind-sheaves form a stack (a "sheaf of categories"). 

We construct "Grothendieck's six operations" in the derived categories of ind-
sheaves, as well as new functors which naturally arise. 

There is a method for constructing ind-sheaves using Grothendieck topologies. We 
consider on X a family T of open subsets satisfying suitable properties and associate 
to it a site. In particular, when X is a real analytic manifold and T is the family of 
subanalytic open subsets, we obtain the "subanalytic site X,a". We prove that the 
category of ind-objects of T-coherent sheaves is equivalent to the category of sheaves 
on the site X?. Therefore, such sheaves naturally define ind-sheaves. 

As already mentioned, ind-sheaves allow us to treat functions with growth con
ditions in the formalism of sheaves. On a complex manifold X , we can define the 
ind-sheaf of "tempered holomorphic functions" OLX, or the ind-sheaf of "Whitney 



2 INTRODUCTION 

holomorphic functions" Ox, and obtain for example the sheaves of distributions or 
of C°°-functions using Sato's construction of hyperfunctions, simply replacing Ox 
with Ox or Ox. We also prove an adjunction formula for integral transforms in this 
framework. 

The contents of these Notes is as follows. 
Chapters I and II are a short review, without proofs, of the theory of ind-objects 

with some applications to derived categories, and the theory of sheaves on Grothendieck 
topologies. Of course all these theories (invented by Grothendieck) are now classical. 
However, we shall also recall some technical statements extracted from [13] which are 
new. 

Chapter III is devoted to stacks on a locally compact space X. We introduce the 
notion of a proper stack, show that this notion is stronger than the usual one of 
a stack, although its axioms are quite easy to check, and prove that the indization 
of a proper stack is a proper stack. There are new functors: t from a stack to the 
associated ind-stack, and its left inverse a. Under reasonable conditions which will 
be satisfied by sheaves, a also admits a left adjoint (3. 

Ind-sheaves are introduced in Chapter IV, in which we first construct the internal 
operations: tensor product denoted by 0, and internal horn denoted by Ihom. We 
then construct the external operations: inverse image direct image /* and proper 
direct image /n. Finally, we study the various relations among all these functors. Note 
that the proper direct image of a sheaf is not the same in general whether we calculate 
it in sheaf theory or ind-sheaf theory. 

In Chapter V, we derive all the functors we have constructed, and give relations 
among the derived functors. Moreover, as in the classical case, the functor Rf\\ 
admits a right adjoint f \ and we study its main properties. One of the difficulties of 
this study is that the category of ind-sheaves does not have enough injective objects. 
In this chapter, we also introduce the notions of ind-sheaves of rings and modules. 
This will be necessary for applications. For example, the ind-sheaf Ox of "tempered 
holomorphic functions" cannot be defined in the derived category of ind-sheaves of 
Px-modules, and one has to replace T*x with the ind-sheaf of rings f3x(Px)> As we 
shall see, this does not cause much trouble. 

Chapter VI is devoted to the construction of ind-sheaves using Grothendieck topolo
gies. We consider a family T of open subsets of X satisfying suitable properties, and 
its subfamily TC of relatively compact open sets. We define the category Coh(7^) as 
the full subcategory of Mod(fcx) consisting of cokernels of morphisms F —> G with 
F and G finite sums of sheaves of the type kxu with U e TC and prove that this 
category is abelian. Then we define the site XT whose family of objects is T, a cov
ering of U e T being a locally finite covering in X. We study the category M o d ^ r ) 
of sheaves on this site and prove that it is equivalent to the category of ind-objects 
of Coh(7^). Hence, there is a natural fully faithful exact functor from Mod(/cr) to 
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INTRODUCTION 3 

I(&x)j &nd this is a useful tool for constructing ind-sheaves. The category I(fcx) of 
ind-sheaves on X is much bigger than the category Mod(&7-)- The first one does not 
have enough injectives, which make the theory rather difficult, unlike the second one. 
On the other hand the natural functor from Mod(&x) to I(kx) is exact, which fails 
when we replace I(fcx) with Mod(/cr)« 

We apply these results in Chapter VII and obtain the "subanalytic site" Xsa on 
a real analytic manifold X by taking the family of open subanalytic subsets as T. 
We construct various ind-sheaves on this site, and when X is a complex manifold this 
allows us to define in particular the ind-sheaves Ox and Ox of "tempered holomorphic 
functions" and "Whitney holomorphic functions", respectively. We prove formulas for 
direct images, inverse images and composition with a regular holonomic kernel for 
the ind-sheaf Ox (in the framework of P-modules), from which we deduce a general 
adjunction formula for integral transforms. 
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CHAPTER 1 

INDIZATION OF CATEGORIES: A REVIEW 

In all these Notes, a ring means an associative unitary ring, and the action of a ring 
on a module is unitary. For a commutative ring ft, a fc-algebra is a ring A endowed 
with a ring morphism k —> A whose image is contained in the center of A. 

In this chapter, we recall some particular results on indization and localization of 
categories that we shall need in the sequel. References are made to [16] for the theory 
of universes and ind-objects and to [10], [13] or [5] for an exposition on categories and 
homological algebra, in particular ind-objects, localization, and derived categories. 
Some complementary results to the classical ones may be found in [13]. 

1.1. Ind-objects 

Let U be a universe. A set is called ZY-small if it is isomorphic to a set belonging 
to U. Recall that a ZY-category C is a category such that for any I , 7 E C , the set 
Homc(X, Y) is ZY-small. If moreover the family of objects (a set in a bigger universe) 
of C is £Y-small, then one says that the category is ZY-small. One says that a category 
is essentially U-small if it is equivalent to a small category. 

In these notes, we fix a universe U and we shall not refer to U. We shall often abu
sively refer to a ZY-category as a category. A category without the ZY-small condition 
is called a big category. We shall often simply denote by Set the category of ZY-small 
sets. 

For a category C, we denote by Cop the opposite category of C, i.e. Ob(Cop) = Ob(C) 
and HomCop(X,y) = Homc(y ,X) . 

Definition 1.1.1. — Let C be a category. One sets 

CA : the big category of functors from Cop —» Set. 

One shall be aware that CA is not a ZY-category in general (unless C is essentially 
small). 
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One defines the functoi 
hA : C -> CA 

l H > H o m C ( - , I ) . 

Then for G G CA and X G C, 

(1.1.1) HomCA(/iA(X),G) ̂ G ( X ) 

In particular, 
RovvmCA{vvhAvv( nvX),hA{Yvvn)) - H o m c ( X , y ) , 

and hA is fully faithful. We shall identify C with a full subcategory of CA by hA. We 
denote by Cv the big category ((Cop)A)op. Then C is also embedded into Cv. 

The big category CA admits small inductive limits, but in general, even if C also 
admits small inductive limits, the functor hA does not commute with lim. In order to 
avoid confusion, we denote by "lim" the inductive limit in CA and by lim the inductive 
limit in C. If I is small and a: I —• C is a functor, we set "lim"a = lim(/iA o a) . In 
other words, "lim"a is the object of CA defined by: 

"lim" a : C 9 I H lim Horn c ( X , a ( i ) ) . 
i 

With this convention 

l imHomc(X,a(t)) = HomCA(hA{X), "lim"a). 

Recall that a category I is filtrant if it satisfies the conditions (i)-(iii) below. 
(i) I is non empty, 

(ii) for any i and j in / , there exists k e I and morphisms i —» k,j' ^ k, 
(hi) for any parallel morphisms f,g:i=$j, there exists a morphism h: j —> k such 

that h o / = h o g. 

Recall also that I is called cofinally small if there is a small subset S of Ob (I) such 
that any i E I admits an arrow i —* j with j G S. 

Definition 1.1.2. — Let C be a category. An ind-object in C is an object A G CA which 
is isomorphic to "lim"a for some functor a: I —> C with / filtrant and small. One 
denotes by Ind(C) the full subcategory of CA consisting of ind-objects, and calls it the 
indization of C. 

Note that Ind(C) is a ZY-category. 
For A G CA, we define the category CA and the functor a A'- CA —> C by: 

Ob(jjCA) jj= jfhf{ff(X, a);Xn ennCnn,nae A(X)}, 

RomCA ( (X, a), (y, b)) = { / : X - > Y; a = b o /}, 

Q;A : (X, a) i-> X . 

One proves easily that A G Ind(C) if and only if CA is filtrant and cofinally small, and 
A "lim"a^ in this case. 
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1.2. INDIZATION AND LOCALIZATION 7 

One extends a functor F: C —> C to a functor I F : Ind(C) —> Ind(C') as follows. 
For A G Ind(C) one defines IF (A) G Ind(C') by 

IFIA) = "Urn" 
"Urn" 

For В G Ind(C) and a morphism / : A —> В in Ind(C), / defines a functor CA —• Cß 
(А{Х)эаnnvvvvvvvv<<^ foaewvwB(X)kl. dHence we get a morphism 

LF(f) : "lim" F ( X ) -> "wcwcjjjjjjjjwIFlim", 
"Urn"xw "Urn" 

and one checks that IF is a functor. 
When A ~ "lim" a(i), B ~ "lim" /3(j), one has 

i 3 

Homind(C)(^'5) - Urn Hornc(a(i),/5(j)), 

and the map IF: Horn (A, B) -> Hom(JF(A), JF(B)) is given by 

Urn lim Homc(a(z),/?(;/)) -> lim lim Hornc,(F(a(i)), F(f3(j))). 

Proposition 1.1.3. — LetF:C-^ C. Then 

(i) the diagram below commutes 

c-
F c 

Ind(C) 
IF 

•Indie'), 

(ii) the functor IF: Ind(C) —> Ind(C') commutes with filtrant inductive limits, 
(iii) if F is faithful (resp. fully faithful), so is IF. 

1.2. Indization and localization 

Let C be a category and let S be a family of morphisms in C. 

Definition 1.2.1. — A localization of C by S is the data of a big category Cs and a 
functor Q: C —> Cs satisfying: 

(i) for every s G <S, Q(s) is an isomorphism, 
(ii) for any functor F: C —• C such that F(s) is an isomorphism for all s G <S, there 

exist a functor F5: —* C and an isomorphism F ~ Fs oQ, 

Q 

Cs 

C-
F , 

fs 
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(iii) if G\ and G2 are two functors from Cs to a big category C7, then the natural 
map Horn (Gi, G2) —* Horn (Gi o Q, G2 o Q) is bijective. 

Note that is unique up to equivalence and F$ in (ii) is unique up to unique iso
morphism. It is well-known that if S is "a multiplicative system", then the localization 
exists. Using Ind(C), the localization is constructed as follows. 

For any object X e C let us define the categories Slx, Sx and the functors a x , fix 
as follows. 

Ob(Srx) = {s : X -> X'\s E S} 

Hom5J ((s:X-> X'), (s' : X -* X")) = {ft : X7 -> X77; ft o s = s7} 

c*x : <SX C is a x ( X X') = X', 
s 

Ob(Sx) = {s:X' -^X;seS} 
Homsi ((s : X' -+ X ) , (s' : X" X ) ) = {ft : X" X7; 5 o ft = s7} 

ftr : (Slx)°P - C is /?X(X7 - X ) = X7. 

By the definition, <S is a multiplicative system if and only if the categories (Slx)op and 
Sx are filtrant and contain X ^ > X . 

In the sequel, we shall have to consider the inductive limit lim Horn (Y, a x ) with 
X , Y e C. We shall often denote it by 

lim Hom(y,X7). 
x^x', xbccses 

s 
One has: 

HornCs(X,F) - l i m H o m c ( X , a Y ) = lim Homc(X,F7) 
* Y-+Y',t€S 

t 
~ lim Hornc(/3x,«y) = lim Homc(X' ,Y7) 

* x'—>x,y—>Y',s,tes 
s t 

- l i m H o m c ( & , 7 ) = lim Homc(X7,F) . 
x'—>x,ses 

s One defines the functor 
a : C -+ Ind(C) C CA 

by setting 
a ( X ) = "lim" ax • 

If / : X —* Y is a morphism in C, one constructs a(f): a ( X ) —* a{Y) using the axioms 
of multiplicative systems, and one obtains a functor a: C —• Ind(C). 

Proposition 1.2.2 

(i) Tfte functor a factorizes through Cs, hence defines a functor as: Cs Ind(C). 
(ii) The functor as is fully faithful. 
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1.2. INDIZATION AND LOCALIZATION 9 

One shall be aware that the diagram 

C 
Q 

Cs 

as 
h1 

Ind(C) 

is not commutative in general. However, there is a natural morphism: 

(1.2.1) hA -» a = as o Q, X -> "UmMax. 

Localization of functors. — Let C be a category, <S a multiplicative system and 

F: C —» C a functor. In general, F does not send morphisms in S to isomorphisms 

in C, hence, does not factorizes through Cs- It is however possible in some cases to 

define a localization of F as follows. 

Definition 1.2.3 

(i) A right localization of F (if it exists) is a functor Fs : Cs —> C and a morphism 

of functors r: F Fs o Q such that, for any morphism G: Cs —> C, the map 

Horn (Fs, G) Horn (F, G o Q) is bijective. 

We say that F is right localizable if it admits a right localization. 

(ii) We say that F is universally right localizable, if for any functor K: C —» C", 

the functor K o F is right localizable and moreover (AT o F)s K o Fs. 

Proposition 1.2.4. — Let C be a category, X a full subcategory, S a multiplicative sys

tem in C, and T the family of morphisms in X which belong to S. Let F: C —> C be 

a functor. Assume that 

(i) T is a multiplicative system in X, 

(ii) for any X G C there exists s: X —> W with W £X and s G S, 

(hi) for any t G T, F(t) is an isomorphism. 

Then F is universally right localizable. 

Indeed, the restriction of F to X is localizable, and the natural functor Xr —> Cs is 
an equivalence. This is visualized by the diagram 

C 
Q 

>Cs 

X 
Q 

IT 

fs 
FS 

Fs 

FOL 

C 
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10 CHAPTER 1. INDIZATION OF CATEGORIES: A REVIEW 

Definition 1.2.5. — Let X G C. One says that F is right localizable at X if 

" h m " ( F o a x ) 

is representable in C. 

Recall that 

" l im"(Foax) = "lim" F(X'), (X -> X' G S). 
sfsfgg 

Proposition 1.2.6. — Let F: C —» C be a functor and S a multiplicative system in C. 

The two conditions below are equivalent: 

(i) F is right localizable at each X G C, 

(h) F is universally right localizable. 

1.3. Indization of abelian categories 

From now on, C is an abelian category. One denotes by CA,add the big category 

of additive functors from Cop to Mod (Z). This big category is clearly abelian. One 

denotes by CA>add'1 the full big subcategory consisting of left exact functors. The 

functor hA: C —• CA makes C a full abelian subcategory of CA,add and this functor is 

left exact, but not exact. 

As seen in §1.1, an ind-object in C is an object A G CA which is isomorphic to 

"lim"a for some functor a: I —> C with I filtrant and small. Hence, Ind(C) is a full 

additive subcategory of CA,add,t. Recall that it is a ZY-category. If C is small, then 

Ind(C) ~ CA'adfM. 
The category Ind(C) admits kernels and cokernels. Indeed, if / : A —• B is a 

morphism in Ind(C), one may construct a small filtrant category / , two functors 

a,/?: / —> C and a morphism (p: a —> ¡3 such that A ~ "lim"a, B c± "lim"/3 and 

/ = "lim'V. Then "lim" ker(p and "lim" coker</? will be a kernel and a cokernel of / , 

respectively. 

Theorem 1.3.1 (see [13]) 

(i) The category Ind(C) is abelian. 

(ii) The natural functor C —>• Ind(C) is fully faithful and exact and the natural func

tor Ind(C) —> CA,add is fully faithful and left exact. 

(hi) The category Ind(C) admits exact small filtrant inductive limits. 

(iv) Assume that for any family {X{}iej of objects of C indexed by a small set I, 

the product n*^* (which is well-defined in CA) belongs to Ind(C). Then the 

category Ind(C) admits small projective limits, and the functor lim is left exact. 

In particular, Ind(C) admits small direct sums, which are denoted by "0". 
As a consequence of the preceding results, one gets that if 0 —• A! —> A —> A!' —>• 0 

is an exact sequence in Ind(C), then one may construct a filtrant and small category 
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1.4. DERIVED CATEGORIES 11 

/ and an exact sequence of functors from / to C, 0 —> a' —> a —> a" —> 0 such that 
0 "lim''a7 -> "lim" a 'Tim" a" -> 0 is isomorphic to 0 -> 4 ' - » 4 -> 4 " 0. 

This immediately implies that if F : C —> C is an additive functor of abelian cat
egories and IF: Ind(C) —> Ind(C') is the associated functor, then IF is left (resp. 
right) exact as soon as F is left (resp. right) exact. 

Proposition 1.3.2. — A sequence of morphisms A —• B —• C in Ind(C) with g o / = 0 
/ 9 

is exact if and only if for any commutative diagram in Ind(C) with Y G C 

X 
h 

Y 
0 

A 
f 

B 
9 C 

the dotted arrows may be completed to a commutative diagram, with X EC and h an 
epimorphism. 

Proposition 1.3.3. — Let C be an abelian category. 

(i) C is stable by extension in Ind(C). 
(ii) Let Co C C be an abelian subcategory stable by extension in C. Then Ind(Co) is 

stable by extension in Ind(C). 

Let C be an abelian category and J a full additive subcategory. 

Definition 1.3.4. — We say that J is generating (resp. cogenerating) in C if for any 
X G C there exists an epimorphism Y-»X (resp. a monomorphism X>-*Y) with 
Y e j . 

1.4. Derived categories 

In this subsection, C, C, etc. are abelian categories. 
One denotes by C(C) the abelian category of complexes in C. By regarding mor

phisms in C(C) which are homotopic to 0 as the zero morphism, one obtains the 
triangulated category K(C), whose distinguished triangles are those isomorphic to 
X —» Y —> M(f) —>, where M(f) denotes the mapping cone of the morphism / in 

C(C). 
A morphism / : X —• Y in K(C) (or in C(C)) is called a quasi-isomorphism (a qis 

for short) if it induces an isomorphism Hj(f): Hj(X) —• Hj(Y) for all j G Z. 
The derived category D(C) is the localization of K(C) by the multiplicative system 

of quasi-isomorphisms. It is naturally a triangulated category. It is a big category in 
general. 

One denotes as usual by D*(C) (* = + , — or b) the full triangulated subcategory 
of D(C) consisting of complexes bounded from below, from above, or bounded. 
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Now consider a left exact functor F : C —» C. It defines a functor K(F): K(C) —> 

K(C). We shall often write F instead of K(F) for short. 

Definition 1.4.1. — Let J be a full additive subcategory of C. One says that J is 

F-injective if: 

(i) the category J is cogenerating in C, 

(ii) for any X £ K+(J) such that X is qis to 0, F(X) is qis to 0. 

By considering Cop, one obtains the notion of an F-projective subcategory, when 

F is right exact. 

Proposition 1.4.2. — Let J be an F-injective subcategory of C. Then F is right deriv

able, i.e. F: K+(C) —• D + ( C ) is universally right localizable with respect to the 

multiplicative system of quasi-isomorphisms. In particular F admits a right derived 

functor RF: £>+(C) -> D + ( C ) . Moreover we have Hk(RF(X)) = 0 for any X £ J 

and k 7̂  0. 

Recall that if X £ X+(C) , then 

RF(X) = "lim" F(X') 
x—>X' 

qis 
in Ind(D+(C/)). 

There is a useful tool to check that a subcategory is F-injective. 

Theorem 1.4.3 ([13]). — Let J be a full additive subcategory of C. Assume: 

(i) the category J is cogenerating in C, 

(ii) for any monomorphism Y'^X with Y' £ J there exists an exact sequence 

0 Y' -* Y -> Y" - » 0 with Y, Y" in J such that Y' -> Y factorizes through 

Y' -> X and such that the sequence 0 -+ F(Yf) -> F ( F ) -* F ( y " ) -> 0 is exact. 

Then the category J is F-injective. 

As a corollary, we recover a classical result: 

Corollary 1.4.4. — Let J be a full additive subcategory of C. Assume: 

(i) the category J is cogenerating in C, 

(ii) for any exact sequence 0 —> X' —> X —> X " —• 0 m C7 if X',X £ J, hhth 

X" £ J, 

(hi) for any exact sequence 0 —> X' —• X X " —> 0 m C ooo X ' , X 6 JT,hlhX',X 6 

sequence 0 F (X ; ) F(X) F(X") -> 0 is exact. 

Then the category J is F-injective. 

We shall also have to derive bifunctors. Consider three abelian categories C, C, C" 

and an additive bifunctor F : C x C —> C;/'. We shall assume that F is left exact with 

respect to each of its arguments. 
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Definition 1.4.5. — Let J and J' be full additive subcategories of C and. C respec

tively. One says that J x J' is F-injective if 

(i) J and J' are cogenerating, 

(ii) for any Y e J, J' is F(Y, • )-injective, 

(iii) for any Y' G J ' , J is F( •, Yf)-m]ective. 

Proposition 1.4.6. — Assume that there exist J and J' such that JxJf is F-infective. 

Then F is right derivable and defines RF : D+(C) x £>+(C) D+(C"). Moreover, 

for (X,XF) G K+{C) x K+(C) one has: 

RF(X,X') ~ "lim" F(Y, Y'). 

X >Y,X' >Y' 
qis qis 

1.5. Indization and derivation 

We shall study the derived category D(lnd(C)) of the category Ind(C) associated 

with an abelian category C. In such a study, the universe U plays an important role. 

In fact, even if C has enough injectives, the category Ind(C) does not have enough 

injectives in general (see [13]). Instead, we shall use the following notion of quasi-

injectives. Recall that unless otherwise specified, when we consider a category C, it is 

a ^-category. 

Let C be an abelian category, C C C a full abelian subcategory (hence, the natural 

functor C —* C is exact). One denotes by DQ,(C) the full subcategory of DB(C) 

consisting of objects with cohomology in C. If C is stable by extension in C, then 

DQ,(C) is triangulated. 

The next result is easily deduced from Propositions 1.3.3 and 1.3.2. 

Proposition 1.5.1. — Let C be an abelian category. The natural functor DB{C) —• 

D^(Ind(C)) is an equivalence of triangulated categories. 

Definition 1.5.2. — Let A G Ind(C). We say that A is quasi-injective if the functor 

Cop -* Mod(Z), 

X^A(X) (= HomInd(c)(X,A)) 

is exact. 

Assuming that C has enough injectives, one proves easily that A is quasi-injective if 

and only if there exist a small filtrant category I and a: I —• C such that A ~ "lim" a 

and a(i) is injective in C for all i E I. 

Definition 1.5.3. — Let C be an abelian category. A system of strict ^-generators in 

C is a family {Ga; a G A} of objects of C such that A is ZY-small and: 

(i) for all X G C and all a e A, the object Ga ^ ^ exists, 
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(ii) for all X G C, there exists a G A such that the morphism G«hhlhX',X 6 JT,hlhX',X 6 J ;h^ —> X is 

an epimorphism. 

A system of strict ^-generators is a system of ^-generators in the sense of Gro
thendieck ([7]). 

Theorem 1.5.4 ([13]). — LetC be an abelian category with a system of strict generators 

and let S C Ob(Ind(C)) be a small subset. 

(a) There exists an essentially small full abelian subcategory Co of C such that S C 

Ob(Ind(Co)) with the properties: 

(i) Co is stable under sub-object, quotient and extension in C, 

(ii) for any epimorphism X-»Y,f with Y" G Co and X G C, there exists a 

morphism Y' —> X with Y' G Co such that the composition Y' —• Y" is 

an epimorphism, 

(hi) Ind(Co) is stable by sub-object, quotient and extension in Ind(C), 

(iv) for any epimorphism X-»Y" with Y" G Ind(Co) and X G Ind(C), there 

exists a morphism Y' —> X with Y' G Ind(Co) such that the composition 

Y' —» Y" is an epimorphism, 

(v) Ind(Co) has enough injectives. 

(b) Assume moreover that C has enough injectives. Then we may choose Co having 

the above properties and such that the injective objects of Ind(Co) are quasi-

injective in Ind(C). 

Corollary 1.5.5. — Assume that C has enough injectives and a system of strict gener
ators. Then Ind(C) admits enough quasi-injectives. 

We denote by Tq the category of quasi-injective objects in Ind(C). 
As above, denote by F: C —* C a left exact functor, and by IF: Ind(C) —»Ind(C') 

the associated left exact functor. 

Theorem 1.5.6. — Assume that C has enough injectives and a system of strict gener

ators. 

(i) The category lq is I F-injective. 

(ii) The diagram below commutes : 

D+(C) 
RF 

•D+(C) 

£>+(Ind(C)) 
RIF 

D+{lnd(C')) 

(iii) The functor RkIF: Ind(C) —> Ind(C') commutes with "lim". In other words, if 

I is small and filtrant and a: I —• Ind(C), then 

RkIF(ul,bn,bim"a) ~ abbbbbbbb)im"(RkIFoa). 
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Corollary 1.5.7— We keep the notations and the hypotheses of Theorem 1.5.6. Let 
X G Db(C). Then there is a natural isomorphism 

lim Horn D+{C)(X, a) ~ HomD+(Ind(c))(X, "lim" a). 

Remark 1.5.8. — One can prove that if C denotes the category Mod(C) of vector 
spaces over the field C, then Ind(C) does not have enough injectives. 

Exercises to Chapter 1 

Exercise 1.1. — Let H e a field and let C = Mod(fc). Define (3: C -> Ind(C) by 
setting (3(V) = "lim" W, where W ranges over the family of finite-dimensional vector 

wcv 
subspaces of V. 
(i) Prove that k is projective in Ind(C). 
(ii) Prove that the natural morphism /3(V) —• V is a monomorphism. 
(iii) Prove that if V is infinite-dimensional, then /3(V) is not representable in Mod(fe). 
In particular, (5{V) —> V is not an isomorphism. 
(iv) Prove that HomInd(c)(/c, V/(3(V)) = 0 for all V € C. 
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CHAPTER 2 

GROTHENDIECK TOPOLOGIES: A REVIEW 

In this chapter we briefly recall without proofs some classical constructions. Ref
erences are made to [16]. 

2.1. Sites, presheaves and sheaves 

The Grothendieck topology was introduced by A. Grothendieck in order to have 
a cohomology theory on algebraic varieties. The idea underlying this construction is 
that the notion of sheaves on a topological space X essentially relies on the category 
Op(X) of open subsets of X and on the notion of open coverings, and nothing else. 
Hence to construct the category of sheaves, we may start with an arbitrary category 
and axiomatize the notion of a covering. 

However, we shall not treat the most general case, and for simplicity we shall only 
consider Z^-small categories admitting finite products and fiber products. If C is such 
a category and U G C, one denotes by CJJ the category of arrows V —> U. Clearly, Cu 
admits finite products and fiber products. 

Note that if C admits a terminal object X , then C admits finite products and fiber 
products if and only if C admits finite projective limits. Moreover the product is the 
fiber product over X. 

If V —• U is a morphism and 5 C Ob(Ct/), we denote by V Xu 5 the set 

{V xu W V; W G 5 } C Ob(<V). 

Definition 2.1.1. — If 5i, S2 C Ob(Cf/), one says that 5i is a refinement of 52 if any 
V —> U in Si factorizes as V —> V —• U with V —> U G S -̂ In such a situation one 
writes Si -< 52-

Definition 2.1.2. — A Grothendieck topology on C is the data associating to any U G C 
a family Cov(U) of subsets of Ob(Cu) satisfying the axioms: 
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GT1 {U 17} belongs to Cov(*7), 

GT2 if Si G Cov{U) is a refinement of S2 C Ob(Ct/), then S2 G Cov(£7), 

GT3 if S G Cov{U), then V xv S G Cov(V) for any V->U, 

GT4 if Si, S2 C Ob(Ctf), 5i G Cov(*7) and V xv S2 G Cov(V) for any V G Si, then 

S2 G Cov(J7). 

A subset S G Cov(C7) is called a covering of U. 

A site X is a category Cx which admits finite products and fiber products and endowed 

with a Grothendieck topology. 

In the case when Cx admits a terminal object, we denote it by the same letter X. 

Let X and Y be two sites. 

Definition 2.1.3 

(i) A functor /* : Cy —> Cx is said to be continuous if it commutes with fiber 

products and if for any V G CY and any S G Cov(V), /*(S) G Cov(/*(F)) . 

(ii) A morphism of sites / : X —> Y is a continuous functor /* : Cy —> Cx-

Examples 2.1.4 

(i) Let X be a topological space. The set Op(X) of open subsets of X ordered by 

inclusion defines a category, still denoted by Op(X) . Note that if U G Op(X) , 

then Op(X)t/ = Op(C7). We keep the same symbol X to denote the site obtained 

by endowing Op(X) with the following topology: a subset S C Op(Z7) is a 

covering of U if \JVeS V = U. 

(ii) If / : X —> Y is a continuous map of topological spaces, we shall denote by 

/* : Op(Y) -> Op(X) the functor V »-> / " ^ F ) and by / : X -> Y the associated 

functor of sites. Hence, identifying a topological space with a site, one identifies 

a continuous map with a functor of sites. 

(hi) Let X be a topological space. We can also endow Op(X) with the following 

topology: a subset S C Op(C/) is a covering of U if there exists a finite subset 

So C S such that \Jyes0 V = U- We denote by Xf the site so-obtained. 

(iv) Assume that X is a locally compact topological space. We denote by Xij the 

category Op(X) endowed with the following topology. A subset S C Op(Z7) is 

a covering of U in Xif if for any compact K of X , there exists a finite subset 

S0 C S such that K n (UVeSoV) = KnU. 

If U e Op(X) , we denote by Uxlf the category Op(U) endowed with the 

topology induced by X\f. a covering of V C U for the topology Uxlf is a 

covering ofV in X / / . There is a natural morphism of sites Uif —• £/xi/ which 

is not an isomorphism in general. 

In these Notes, we shall restrict ourselves to the study of sheaves of fc-modules. 

(Recall that k denotes a commutative ring.) 
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Definition 2.1.5. — Let X be a site. 

(i) A presheaf F of fc-modules on X is a functor C°x —• Mod(A;) and a morphism of 

presheaves is a morphism of such functors. 

(ii) One denotes by Psh(/cx) the abelian category of presheaves of fc-modules on X. 

(iii) If F is a presheaf of ^-modules on X and S C Cu, one sets 

F(S) = ker ( FT F(V) =4 f f F(V'b><:;xxuV"j). 

ves vyes 

(Recall that the kernel of the double arrow is the kernel of the difference of the 

two arrows. Here the two arrows are associated to F(Vf) —» F(V xuV") and 

F(V")^dsF{sfV'vdgxuhhV").) 

(iv) We say that a presheaf F of /c-modules on X is separated (resp. is a sheaf) if for 

any U eCx and any covering S G Cov(f7), the natural morphism F(U) —• F(S) 

is a monomorphism (resp. an isomorphism). 

(v) One denotes by Mod(kx) the full additive subcategory of Psh(kx) consisting of 

sheaves of fc-modules on X. We shall often write Homfcx instead of HomMod^x^. 

Notation 2.1.6. — Let F be a presheaf on Cx, let 17 G Cx, let V —> U £ Cu, and 

let s G F(U). One sometimes writes s\u to denote the image of s in F(V) by the 

morphism F(U) -> F(V). 

Let X be a site. In order to construct the sheaf associated with a presheaf, we need 

some preparation. For U E Cx, notice first that the relation Si •< S2 is a pre-order on 

Cov(U). Hence, Cov(i7) inherits a structure of a category: Horn cov(f/)(^i' $2)= {pt} 

or 0 according whether Si is a refinement of S2 or not, and Cov(l7)op is filtrant. Note 

that for Si, S2 G Cov(C/), {Vi xv V2; Vi eSi,i = 1,2} again belongs to Cov(U). 

Let F G Psh(Jfex), and let Si ^ S2. For Vi G Si, define first Uves2 F(v) W ) 
by choosing V2 G S2 such that Vi —> U factorizes through V2 —> U. The composition 
F(S2) —> riv"G52 F(V) ~* ^ ( ^ i ) does not depend on the choice of V2 G S2, and 
defines F(S2) F(Si) . Hence, F gives a functor Cov(J7)op -> Mod(fc). One defines 
the presheaf F+ by setting for all U G Cx'-

(2.1.1) F+(<7) lim FIS). 
secov(u) 

Theorem 2.1.7 

(i) The functor + : Psh(A:x) —> Psh(kx) is left exact. 

(ii) For any F G Psh(kx), F+ is a separated presheaf. 

(iii) For any separated presheaf F, F+ is a sheaf. 

(iv) The functor ++ : Psh(&x) —> Mod(&x) is a left adjoint to the embedding functor 

1: Mod(fcx) ->Psh(fcx). 
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In the sequel, we shall often omit to write the symbol ¿. Hence, (iv) may be 
written as 

( 2 . 1 . 2 ) Horn Psh(fcx)(F,G)^ HornMod(fcx)(F++,G), 

with F G Psh(kx) and G G Mod(&x). If F is a presheaf on X, the sheaf F++ is 
called the sheaf associated with F. 

Definition 2.1.8 

(i) Let M G Mod(fc). One denotes by Mx the sheaf associated with the presheaf 

U I—> M and calls Mx the constant sheaf with stalk M. 

(ii) For U e Cx, one defines kxu £ Mod(kx) as the sheaf associated with the 

presheaf V ~ keWom (v'u). 

Proposition 2.1.9. — Let F G Mod(fcx)- There is a natural isomorphism 

F(U)~Rohmkhkx(khkyyxu,yeeF). 

Theorem 2.1.10 

(i) The category Mod(kx) admits projective limits. More precisely, if {Fi}iei is a 

projective system of sheaves, its projective limit in Psh(A;x) is a sheaf and is a 

projective limit in Mod(&x)-

(ii) The category Mod(kx) admits inductive limits. More precisely, if {Fi}iej is an 

inductive system of sheaves, its inductive limit in Mod(&x) is the sheaf associ

ated with its inductive limit in Psh(fcx)-
(hi) The category Mod(£;x) is abelian. 

(iv) The functor i : Mod(kx) —> Psh(fcx) is fully faithful and left exact. The functor 

++ : Psh(fcx) -> Mod(fcx) is exact. 

(v) Filtrant inductive limits in Mod(A:x) are exact. 

(vi) The U-category Mod(A:x) admits enough injectives. 

Notation 2.1.11. — Let U G Cx and let F G Mod(fcx). One sets 

T(U;F) = F(U). 

Proposition 2.1.12. — A morphism if : F —> G in Mod(/cx) is an epimorphism if and 

only if for any U G Cx and any t G G(U), there exists a covering S G Cov(C7) such 

that for each V G S there exists sy G F(V) with ^p(sv) — t\v • 

2.2. Inverse and direct images 

Consider a morphism of sites / : X —• Y associated with /* : Cy —> Cx • One defines 

a functor 

T(U Psh(fcx) -+ Psh(fcy) 
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by setting for V G CY and F G Psh(fcx), (f*F)(V) = F ( /* (V) ) . This functor induces 

a functor that one denotes by the same symbol: 

/* :Mod(fcx)->Mod( /cy) . 

One defines a functor 

/ / : Psh(A;y) - Psh(A:x) 

by setting for G G Psh(A:y), If(G)(U) = Urn G(V). 
U-+f*(V) 

One defines 

f'1: Mod(fcy) Modgdd(kx) 

by setting f-1G = (If(G))++. 

Theorem 2.2.1 

(i) The functor f~l: Mod(fcy) -> Mod(fcx) is left adjoint to / . : Mod(/cx) 

Mod(fcy). in o£fter w o r ^ we have for F G Mod(fcx) and G G Mod(fcy): 

/*:Mod(fcx)->Mod(/cy)./*:Mod(fcx)->Mod(/cy).ss 

(ii) T/ie functor /* ¿5 /e/t exac^ and commutes with projective limits. 

(iii) TAe functor f~x is exact and commutes with inductive limits. 

Notation 2.2.2 

(i) We denote by {pt} the category with one object {pt} and one morphism, en

dowed with its natural topology for which Cov({pt}) consists of {id{pt}}. 

(ii) Let X be a site with a terminal object X. We denote by ax the morphism of 

sites X —> {p t} defined by a^ ({p t} ) = X. 

2.3. The functor i^}1 

Definition 2.3.1. — Let U G Cx and let V G Cu- A subset of Cy is called a covering 

of V in Cu if it is a covering in Cx • 

Clearly, the conditions of Definition 2.1.2 are satisfied and we get a site (with a 

terminal object U) that we denote by U. We define the functor 

iu: Cx —> Cu 

i\j{V) = U x V. 

Since i\j commutes with fiber products, it defines a functor of sites 

iu-.U^ X. 

Note that for F G Mod(fcx) and for a morphism W —> £/, we have 

(2.3.1) s fd ( iû1F) (W)~F(W) . 
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Notation 2.3.2 
(i) For F G Mod(fcx) and U eCx, one sets 

Tu(F) cc= csf iuJ^F eMod(kx) 

(ii) We sometimes write for short 

F\u := i^F 

If F G Mod(Av) with (7 V, we keep the same notation F\u-

Clearly, the functor Tu : Mod(fcx) —• Mod(&x) is left exact, there is a natural 
morphism F -> Tu(F), and T(X; •) o Tu(-) ~ r(/7; •). Moreover we have for F, G G 
Mod(/cx): 

Homfcx(F,rt,(G))-bb,fHom/*:Mod(fcx)-̂ №,G )̂. 

Consider the functor 

Je/: Cbffhbt/ —> Cx, 
V^V. 

This functor defines a functor of sites 

/*:Mod(fcx)->Mod(/cy). 

We get functors: 

ju 1 %u 1 
Mod(ku) ——* Mod(kx) r—> Mod(ku). 

ju* iu* 

Definition 2.3.3. — One sets iu\—ju 

Proposition 2.3.4 

(i) One has ju* — 
(ii) i^1 is exact and commutes with projective limits. 

(hi) %u\ \— ju~x is a left adjoint to iu-1- In other words, for F G Mod(ku) and 
G G Mod(fcx) one has 

Homkx(iwF,G) - H o m ^ F , ^ - ^ ) . 

(iv) %u\ is exact and commutes with inductive limits. 
(v) For F G Mod(ku), the sheaf iu\F is the sheaf associated with the presheaf 

Cx3V^®v^uF(V->U). 

Notation 2.3.5. — For F G Mod(fcx) and U G Cx, one sets 

Fu = iudu lF. 

ASTÉRISQUE 271 



2.4. INTERNAL НОМ AND TENSOR PRODUCT 23 

Note that the functor F •—» FJJ is exact and there is a natural morphism Fu —> F. 
Moreover, if F = kx, this definition agrees with Definition 2.1.8 (ii). 

Consider the hypothesis for U eCx'-

(2.3.2) For any V G Cx, Homc (V, U) has at most one element. 

Proposition2.3.6. — Assume (2.3.2). 

(i) One has i^}1 o ẑ y* ~ id and i^1 o %u\ ~ id. 
(ii) iu* and %u\ are fully faithful. 

(iii) The natural morphism Fu —> F is a monomorphism. 

Consider a morphism of sites / : X —• Y and assume that Cx and Cy have terminal 
objects X and Y and ft(Y)=X. Let V G Cy, U = f\V). The morphism / defines 
a morphism f\um. U —> V. Consider the commutative diagrams of sites 

X - ^ Y X ^ ^ Y 

iu W 3u jv 
f\u ± f\u i 

U > V U > V. 

We deduce 

(2.3.3) iu\°{f\u)-1 czf^oivu 

(2.3.4) ( M o i ^ i ^ o / , 

Using (2.3.3), we get the isomorphism 

(2.3.5) (ЛиУ^уу ~ kxu-

2.4. Internal horn and tensor product 

Definition 2.4.1. — Let X be a site and let F, G G Mod(&x). 

(i) We denote by 1iomkx(F,G) the presheaf on I , С/ и Homfc(F\u,G\u) and 
call it the "internal horn" of F and G. If there is no risk of confusion, we write 
Пот (F, G) instead of Homkx (F, G). 

(ii) We denote by F ®kx G the sheaf associated with the presheaf on X , U i-> 
F(/7) G(C/) and call it the tensor product of F and G. If there is no risk of 
confusion, we write F ^ G instead of F ®kx G. 

Proposition 2.4.2. — Let F,G,K G Mod(fcx). 

(i) The presheaf Нот (F, G) is a sheaf on X, 
(ii) for any U G Cx, i^Hom (F, G) ~ Horn (i^F, z j ^ G ) , 

(iii) Hom(kx,F) ~ F, 
(iv) kx®Fwww~F, 
(v) Horn(F®wvwG,K)~ Horn(F,Hom{G,K)). 
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Now consider a morphism of sites f : X —>Y. 

Proposition 2.4.3 

(a) Let F G Mod(kx) and let G G Mod(£;y). There is a natural isomorphism in 
Mod(/cy) 

(2.4.1) HomkY(ff/*:Mod(fxG ^ f*Homkx(/_1Fo)o. 

(b) Let G\,G2 G Mod(/cy). There is a natural isomorphism in Mod(A:x) 

(2.4.2) f'1{G1®G2) ^ r'G^f-'G^ 

As a corollary, we find that the functor commutes with tensor product. 

Proposition 2.4.4. — LetU G Cx, let F G Mod(ku) and let G G Mod(kx). 

(a) There is a natural isomorphism 

(2.4.3) x x x i U \ ( F ® i v 1 G ) ^ > i u l F ® G . 

(b) There is a natural isomorphism 

(2.4.4) xHoxbrn (iuiF, G) ~ iu+Hom (F, i^G). 

Proposition 2.4.5. — LetU G Cx and let F,G G Mod(&x). Then 

(i) Fu®Gu ~(F®G)u, 

(ii) Homfcx(FC7,G)^Hom^(F|^,G|C7), 

(hi) Fv ~F®kXu, 
(iv) ftomqddd<<<(/c^,F)~rV(F). 

Exercises to Chapter 2 

Exercise 2.1. — Let X be a site. 

(i) Prove that hypothesis (2.3.2) on U G Cx is equivalent to 

for any morphisms V —> U and W —> C7, one has V xj / W -—> V x W. 

Assume hypothesis (2.3.2) is satisfied for every U eCx-

(ii) Let U,V eCx and set W = UxV. Denote by : Cw —> Cu the natural morphism 

of sites, and similarly for Prove the isomorphism i^1 ° W\ — ° 

(hi) Let F G Mod(&x). Under the notations in (ii), prove the isomorphisms i^Fw —-> 

i ^ F y and (Fv)u ^ Fjy. 
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CHAPTER 3 

STACKS 

In this chapter, we work in a fixed universe U. Hence, otherwise stated, a category 
means a ^-category and all sets are ZY-small. We shall denote by X a topological 
space and by k a commutative ring. 

3.1. Definition of stacks 

References are made to [6] (see also [9]). 

Definition 3.1.1. — A prestack C on a topological space X is the data of: 

(i) for each open subset U of X, a category C(17), 
(ii) for each open inclusion V C U, a functor (sometimes called the restriction 

functor) pvu: C{U) -> C(V), 
(hi) for each open inclusions W C V C £/, an isomorphism of functors Xwvu' Pwv ° 

Pvu —> Pwu, 

these data satisfying: 

(i) Puu = idc(t/), 
(ii) for each open inclusions C/i C C/2 C % C [/4, the diagram below is commutative 

(in this diagram, we shall write pij instead of pUiUj and A f̂c instead of XuiUjUk)'-

P12 0 P23 0 P34 
A124 

Pl2 0 P24 

A123 

Pl3 0 P34 Al34 •>Pl4 

A124 

It follows from the axioms that Xyvu = id and Xvuu = id for V C U. 
A prestack of A:-additive (resp. A:-abelian) categories is a prestack such that for each 

[/, C(U) is /c-additive (resp. /c-abelian) and the functors pw are A:-linear. 
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Notation 3.1.2 

(i) For F,G e C(X) one denotes by Homc(F,G) the presheaf of sets on X: U 

Romc^jj^puxF,puxG) (U open). One sets Sndc(F) = Homc(F,F). 

(ii) For F G C(U) one often writes F\v instead of pvu(F) for short, and one calls it 

the restriction of F to V. Hence, for W C V C U, Xwvu defines an isomorphism 

Xwvu' {F\v)\w —> F\w-

(hi) If C is a prestack on X, one defines in an obvious way the prestack C\u on [/, 

its restriction to U. 

(iv) If {Ui\i G / } is a family of open subsets, one writes Uij = Ui D Uj,Uijk = 

Ui f l Uj f l [7fc, etc. 

Definition 3.1.3. — We say that a prestack C satisfies the axiom ST1, if for any open 

subset U of X and any F, G G C(£7), the presheaf Homc^u(F, G) is a sheaf on (7. 

If C is a prestack of additive categories satisfying ST1 and F G C{U), one defines 

the support of F, denoted by suppF, as the complementary set in U of the union 

of all open subsets V C U such that F\y = 0. This coincides with the support of 

idF G T(X\£ndc(F)). Note that if V = UiG/ ̂  and = 0 for all i , then F |y = 0. 

Definition 3.1.4. — We say that a prestack C satisfies the axiom ST2, if for any open 

subset C / c I , any open covering U = \JieI Ui, any family Fi G C(Ui), any family of 

isomorphisms 0^: Fi\ujir ^> Fj\Vji such that: 

(3.1.1) 0ij\uijk °Qjk\uijk = Qik\uijk, 

there exist F G C(U) and isomorphisms 0$:0ij\uijk °Qjk\uij F̂  such that 

(3.1.2) Oij o (Ojluij) = Oiluij-

More precisely, (3.1.1) means that the diagram below (in which we do not write 

explicitly the morphisms Xijk) commutes: 

Fk\ujk\uijk 
Oik 

Fj\ujk \ uiljk ->Fj\luijlk 

Fk\uiik Fj\Uij\luijk 

Fk\uik\uijk 

Oij 

Fi\Ua Wait 

Oik 

Fi\uik \uijk •> Fi\uijk 
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3.1. DEFINITION OF STACKS 27 

and the equation (3.1.2) means that the diagram below commutes 

F\uj\uiô >F\uti -F\Ui\Uij 

0j 

Fj\Uij -
0ij\fg 

Fillip 

hf 

Definition 3.1.5 

(i) A separated prestack is a prestack which satisfies the axiom ST1. 

(ii) A stack is a prestack which satisfies both the axioms ST1 and ST2. 

Note that if C is a stack and if F is defined as in ST2, then F is unique up to 

isomorphism. Indeed, if (Ff,6[) is another candidate, the isomorphisms ai : 6'~l o8i : 

F\ui —> Ff\ui will glue as an isomorphism a: F ff ff F' by ST1. 

Note also that for a stack of additive categories, C(0) is equivalent to 0, the category 

consisting of the zero object. 

Definition 3.1.6. — Let C and C be two prestacks on X. We shall denote by pvu, 

Xwvu (resp. p'vu, X!wvu) the associated functors and morphisms of functors on C 

(resp. C). A functor of prestacks <p: C —> C is the data of: 

(i) for each open subset t/, a functor <pu: C(U) —> C'(U), 

(ii) for each open inclusion V C (7, an isomorphism of functors Oyu • ¥>v ° Pvu 

Pvu0(Pu, 

such that for each open inclusions W C V C /7, the diagram below commutes: 

(fW ° Pwv ° Pvu 
Xwvu 

> ° Pwu 

Owv 

Pwv ° W ° Pvu 

Ovu 

Pwv ° Pvu ° <Pu 
Awvu 

@wu 

Pwu ° <Pu • 

A functor of stacks is a functor of the underlying prestacks. One defines naturally 

the notion of a functor of fc-additive or /c-abelian stacks. 

Definition 3.1.7. — Let C and C be two prestacks on X. We shall use the same 

notations pvu and p'vu as in the preceding Definition 3.1.6. Let cp: C —> C and 

<p': C —> C be two functors of prestacks. We denote by 6vu (resp. 0'vu) the associated 

morphism to ip (resp. ip'). A morphism f:(p—*(pfof functors of prestacks is the data 

which associate, to each open subset [/, a morphism fu*> <fu —> <Pu of functors from 
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C(U) to C'(U), such that for each open inclusion V C U and F G C(J7), the following 
diagram commutes: 

ipv(pvuF] 
fv(pvuF) 

(fv(pvuF) 

Ovu(F] 

Pvu&uF) 
Pvu(fuF) 

Pvu&uF) 

O'vu(F) 

Hence, one has the notion of equivalence of stacks. 

Examples 3.1.8 
(i) If C is a stack on X , then C\u is a stack on U. 

(ii) Let A be a sheaf of fc-algebras on X . Then U Mod(A\u) is a stack of fc-abelian 
categories on X. 

3.2. Proper stacks 

From now on, we assume that the topological space X is Hausdorff and locally 
compact. Recall that, for open subsets U and V of X , V CC U means that the 
closure V of V is compact and contained in U. In this section, C is a prestack of 
abelian categories on X. 

Notation 3.2.1. — For an open subset U of X, we denote by iu the open embedding 
U X. We often write i^1 instead of pux to denote the restriction functor C(X) —> 
C(U). Hence, for F G C(X), we have three notations: 

PuxF = F\u = z ^ F . 

Definition 3.2.2. — A proper stack C on X is a prestack C of abelian categories satis
fying the following axioms: 

(i) C is a separated prestack, 
(ii) for all open subsets V C U C X , the restriction functor pvu is exact, 

(hi) for all open subset U C X , C(L7) admits small filtrant inductive limits, and the 
functor lim is exact over such limits and commutes with pvu, 

(iv) for all open subset C / c I , C(U) admits small filtrant projective limits, and the 
functor lim commutes with pvu, 

(v) for all open subset U C X , the functor i^}1 admits a left adjoint, and denoting 
this functor by iuu it satisfies idC(u) hjX ° iu\-

We shall prove later that a proper stack is actually a stack. 
In the sequel let C be a proper stack. 
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Lemma 3.2.3. — For any small filtrant inductive system {Fi}i in C(X) and for any 

small filtrant projective system {G7}7 in C(X), we have 

Horn r(lim Fi, lim G7) ~ lim Horn c (Fi, G7). 

i 3 i,3 

Proof — This immediately follows from the fact that inductive and projective limits 

commute with the restriction functors. q.e.d. 

Lemma 3.2.4. — For open subsets V c V C U and F G C(U), there exists a canonical 

morphism 

iv\(,F\,ccv)^bbfffv\{F,,x\v,). 

Moreover, if V fl supp(F) C V, this morphism is an isomorphism. 

Proof. — For any G G C(X), we have a chain of morphisms 

Homc(x)(zv,,(F|v,) ,G) ~ Homc(v/)(F|v, ,G|y/) 

- ^ H o m c ( y ) ( F | v , G | y ) ^ H o m c ( x ) ( i y ! ( F | y ) , G ) 

Hence we have the desired morphism. 

Assume V n supp(F) c V. Then V fl supp(Womcj[/(F, G\v)) C V and hence 

T(V,;Homc^u(F,G\u)) —• r (V; Homc^u(F, G\u)) is an isomorphism. It means that 

/3 is an isomorphism. q.e.d. 

Lemma 3.2.5. — For any F G C{U), one has supp(iu\F) c suppF. 

Proof. — It is enough to show 

(3.2.1) (iu\F)\v — 0 for any open subset V such that suppF fl V = 0. 

Set W = U UV, F = imF and # - Homc(F,F). Then iJ|c/nv = 0. Define 

if G Endc^ (F |v j / ) = r(VT;i]r) by ip\u — 0 and <p\v = ^f\v- Let ^ De tne c°kernel 

of : F\w —• F |w, and let G = zv̂ iG G C(X). Then we have 

G|v ~ G\v - cokei((p\v) = 0, 

and similarly G\u — F. 

Hence it is enough to show that G is isomorphic to i\j\F. For any K G C(X), we 

have 

Homc(x)(G,K) ~ Homc(H,}(G,K|^) 

- r(W;Homclw(G,K\w)) ~ r ( t / ;Homck (G, t f | w)) 

- Homc(£/)(G|c/,/ir|i7) - H o m c ( c / ) ( F , ^ | [ / ) . 

Here the third isomorphism follows from Homc^w(G,K\w)cc\v — 0-0ij\uijk °Qjk\uijk sfggg q.e.d. 

Lemma3.2.6. — For F G C(U), we have iu\F ~ lim iy\(F\y). 
vccu 
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Proof — Let G G C(X) . Then 

Homc(x)( llS ^ ! ( F | y ) , G ) ^ lim Romc{x)(iV](F\v),G) 
vccu vccu 

~ lim H o m ^ F ^ z ^ G ) - lim T(F ; Womc|[/(F, z " ^ ) ) 

~ r ( * 7 ; Hom^F^G)) ~ Homc([/)(F, z ^ G ) ~ H o m ^ z ^ F , G). 
q.e.d. 

Lemma3.2.7. — Let F e C{X) with suppF c £/. T/ien iuii^F F. 

Proo/. — Apply Lemma 3.2.4 with V, U replaced by /7, X , X . q.e.d. 

Lemma 3.2.8. — Let G G C(X) . 7/ £/iere ¿5 a monomorphism G^iu\F with F G 

C(U), then we have 

iu\irjlG G. 

Proof. — Recall the isomorphism ijj\F ~ lim iy\{F\y). Define Gy G C(X) by the 
vccu 

Cartesian square 

Gy >G 

iv\(F\y) >iu\F. 

Since the functor lim is exact, we get the isomorphism lim Gy G. Hence, we 
vccu vccu 

£et the isomorohisms 

iu\ij}G ~ i\j\ij} lim Gy ~ lim i\j\ij}Gy. 
vccu vccu 

Indeed, z^ commutes with Inn by the axioms, and %u\ commutes with Irm since it 

has a right adjoint. On the other hand, the monomorphism Gy^iy\(F\y) implies 

that suppGy is contained in V C U. Applying Lemma 3.2.7, we get the isomorphism 

Z[/|Z^1Gy —> Gy, and then i\j\%7}G —> lim Gy G. q.e.d. 
vccu 

Lemma 3.2.9. — For F G C(X), the natural morphism iud^F F is a monomor

phism. 

Proof. — Define N by the exact sequence 0 —> TV —> iud^F —> F. Applying the 

exact functor z^1 and using the isomorphism i^iuii^1 — % \ we get i^N = 0. 

Since TV is a subobject of zc/!z^1F, we find TV = 0 by Lemma 3.2.8. q.e.d. 

Proposition 3.2.10. — The functor iu\ is exact. 
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Proof. — This functor is right exact since it admits a right adjoint. Consider a 
monomorphism G>-+F in C{U), and define N by the exact sequence 0 —> N —»%u\G —> 

Applying the exact functor i^1, we find i^N = 0. Since N^i\j\G, we have 
AT ~ iuii^N by Lemma 3.2.8. Hence N = 0. q.e.d. 

Proposition 3.2.11. — Let U and V be open subsets, and let F G C(U). Then 

iyyiy^iuiF ~ iunvvbb\(F\unv). 

Proof. — For U' CC U and V CC V, set 

0ddssddsij\uijk °Qjk\uijfbnsk = 

G = lim vbbGu'v -
U',V 

Then we have 

(3.2.2) iyyiyjjlll^iuiF ~ i\unv). 

Since supp Gc//y C U' P\V C U C\V, 

iunVs\iunvGu'V > Gu'V'. 

Taking the inductive limit with resoect to (UW). we obtain 

(3.2.3) iun<<v\sfsfffunvG —* 

On the other hand, (3.2.2) implies iu\vG ~ F\unv, and we get 

(3.2.4 iunvdd\iunvG — iunv\(F\unv)-

Then the assertion follows from (3.2.2), (3.2.3) and (3.2.4). q.e.d. 

Proposition 3.2.12. — Let V C U C X be open inclusions. Then ivliv\ is a left 
adjoint to pvu' 

Kom^M^iviGdd^F) ~dvcd BomC(V)(G,pvuF) for G G C(V) and F G C(U). 

Proof. — Applying the preceding proposition, we have 

iuii^ivi.G — ivmlmnu\(G\vnu) — iy\G. 

Hence we have 

Rom^(i^iviG,Fff) f ~ff H o r f n ^ ( i ^ i y i G . i ^ i u i F ) 

~~Romr(u\iTTiv\G,ijj\FG,ijcvvj\F) 

~ Romr(x^(iu\iTdddT c ivv 
~ Romr(x^(iu\iTT iv\G,ijj\F)~ Rddomr(x^nn(iu\iTT 

q.e.d. 

Proposition 3.2.13. — Let U C X. Then C\u is a proper stack. 
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Proof. — By the preceding proposition, pvu admits a left adjoint i^ivi- The axioms 
are now easily checked. q.e.d. 

Proposition 3.2.14. — Let F e C(U), G G C(X). Then 

Homc{ijjjjj\F,G) ~ iu^kjj7illomc^u(F,i^}1G). 

Proof. — Let V С X. Then 

T(V;Homc(iij\F,Gv)) ~ Homc(v)(iv1zC/!F,ivlG) ~ Homc(x)(iy!iy1i[/!F,6?) 

- Homc^^c /nv i i -F l c /nv ) , ^Homc(c /nV) (F | c /ny , ̂ TinvG) 

~ Г(£/ П V;Homclu(F,i~lG)) ~ Г ( У ; ^ . W o m c | l / ( F , i ^ G ) ) . 

Here the third isomorphism follows from Proposition 3.2.11. q.e.d. 

Definition 3.2.15. — For F G C(X) , we set Fv := iuii^F. 

The functor C(X) 9 G H r(£/; Homc(F, G)) is representable by Ft/. 

Let y e t / . The morphism T(U;Homc(F,G)) -> L(V; Worac(F, G)) defines a 

morphism 

Fv —• Ff/. 

Now, consider an open covering U = \JieI U{. The families of morphisms Fui3 —> 

F^ and Fu^ —> F ^ define the two morphisms a and /3: 

(3.2.5) Romgc^x>)(iu\gg<< m 

ß 
(BkelFUk-

Here we have used the convention in Notation 3.1.2 (iv). 

Lemma 3.2.16. — Let F G C(X). There is a natural isomorphism coker(a — 3) —> 

Fu. 

Proof — Set for short F0 := 0fc€/ FUk and F1 := 0^ . FVij. Let G G C(X) and set 

W := Homc(F, G). The two sequences 

0-*r(£/;Wjjjjjjjjjj<<<) 

qqf 

Romc^x>)(iu\e 

Romc^x 

T{Uij-H) and 

0 -> Homc(x)(F[/,G) -> Homc(x)(F0,G) -+ Homc(x)(Fi, G) 

are isomorphic. Since the first one is exact, the result follows. q.e.d. 

Theorem 3.2.17. — Let C be a proper stack. Then C is a stack. 

Proof. — Let U = \JieI Ui be an open covering of U C X. Let Fi G C(Ui) and 

let 6ji\ Fi\uij —> Fj\uiji and assume that these isomorphisms satisfy the condition 

(3.1.1). 
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3.2. PROPER STACKS 33 

Let us introduce the following notations: 

fiiUi^X, fi\=iui\, fr1=iûîi 

fij : Uij X, fiji = iuijp fij — %¿j-» 

9%j : Uij ̂  Ui, gijy = 1щ o iUiJV gTj1 = pUióUi-

and define 

Fid '=9~3lFi = Fi\Uij. 

Using Lemma 3.2.4, we have a morphism ji^g^ —> fi\ from which we deduce the 

morphism 

(3.2.6) &ij • fijIFij > fi\Fi. 

Denote by faj the composition of the morphisms 

fij\Fij — > fij^Fji > fj\Fj-
Oji otji 

Then: 

(3.2.7) ßij : fij \ Fij —• fj\Fj. 

We thus get two morphisms in C(U): 

®i,j£lfij\F%j -
ß 

®kfk\Fk. 

Set F := coker(a — ¡3) and define 0{: Fi —> / ~ F by the natural morphism fn.Fi —• 

®kfk\Fk —> F. It remains to show that is an isomorphism for any ¿0 £ / . 
We may assume from the beginning that U = Ui0. Set F° = Fj0, F? = F°|t/., 

F-j = F°\uiy The isomorphisms ^0i- ̂  —•* define isomorphisms 

e° = efceiofc : efc/fc!Ffc e * / * ^ 

O — Ç&ij@ioi • ÇBijfij\Fij >• 02j fijiF^j . 

Consider the diagram below where a0 and /?° are defined as in (3.2.5) for Fn, so that 

F ° ~ c o k e r ( a 0 - / ? 0 ) : 

®ij fij \Fij 
a-ß 

®kfk\Fk 

e1 

®ijfij\Fij 
a°-ß° 

©fe/fel^-

hg 
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This diagram commutes, thanks to the commutativity of the diagrams 

fij I Fij > fuft 

Qis 

f F° > fuft 

@i0i 

fij j Fij 
Oji 

@i0i 

f F° 

fj ! Fj 

@i0j 

f F° 

Hence, F is isomorphic to F . q.e.d. 

We shall extend classical constructions in sheaf theory to proper stacks. 

Let F G C(X). For an open subset U, we have already defined the object Fu G 

C(X). For a closed subset 5, we define the object Fs by the exact sequence 

(3.2.8) 0 FX\S - F Fs -> 0. 

For any locally closed subset Z , one can find an open subset U and a closed subset 

S such that Z = U fl S. We shall see below that (FJJ)S depends only on Z , and we 

shall denote this object by F^. 

Proposition 3.2.18. — Let F G C{X), and let Z be a locally closed subset of X. Then 

(i) the functor C(X) 9 G H Tz{X;?{omc(F, G)) is representable by Fz, 

(ii) one has Homc(Fz, G) ~ rzHomc(F, G), 

(hi) the functor F ^ Fz is exact and commutes with inductive limits, 

(iv) if Z\ and Z2 are two locally closed subsets, then {Fzl)z2 — Fzxnz2f 
(v) if Z' c Z is closed in Z, the sequence 0 —• Fz\z> —> Fz —> Fz> —» 0 is exact, 

(vi) ifU is open, then we have i^jl{Fz) — (iu1F)znu i-e- C{U) 3 F *-* Fznu £ C(U) 
is a functor of stacks, 

(vii) supp(F^) C Z H suppF. 

Froo/ 
(i) The formula Tz(X;Homc(F,G)) ~ Homc^x^(Fz,G) is true when Z is open. 

Applying the left exact functor Homc^x^( •, G) to the exact sequence (3.2.8), we find 

that this formula remains true when Z is closed. Now let Z = U Pi S. Applying 

Proposition 3.2.14, we get 

TZ(X; Homc(F, G)) ~ TS(X;iuJ^Hom^F, G)) 

~ TS(X; Homc(Fu, G)) ~ Homc,xMFu)s, G). 

(ii) The formula is true when Z is open. Since TLomc is left exact, this formula 

remains true when Z is closed. Assume Z = U fl S. Then the result follows from 

Tz — Ts o Tu-

(hi) Let us first show that F i—> Fz is exact. The functor F i—• Fu — i[/!i^1F is exact. 

Hence, we may assume that Z = S is closed. By the definition of Fs in (3.2.8), this 

functor is exact. 
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The functor Fh hh->hhhh hTzhh(X;Hohmc(F,G)) sends inductive limits to projective limits. 
Therefore, the functor F Fz commutes with inductive limits. 

(iv) For any G eC(X), one has 

Homc(x)(FZlnz2, G) ~ rZinZ2(X; Homc(F, G)) ~ TZl№ TZ2Homc(F, G)) 

~ rZl(X; Homc(FZ2, G)) ~ Homc(x)((FZ2))Zl, G)). 

(v) We may assume Z' = S fl Z , with 5 closed in X . Then the result follows from 
the exact sequence (3.2.8) applied to Fz and (iv). 

(vi) For any G G C(£/), one has 

Romc{u)(titt^ttrry\Fz),iiG) ~Tipip(U;Homiiiici(Fz,iu\G))yyu ~TZnu(U',Homc(F,iuiG)) 

ip^ T z n ^ ^ W o m ^ ^ i ^ ^ G ) ) ^Homc(C7)((i-1F)znC/,G). 

Hence we have i^jl{Fz) ^ (iûlF)znu-

(vii) For any G G C(X), we have suppHomc(F, G) C suppF, and hence 

supp Worn C(FZ, G) = suppTzHornC(F, G) C Z Pi suppF. 

Hence setting G = Fz, one has supp F = supp(£ndc(F)) c Z D suppF. q.e.d. 

Proposition 3.2.19. — LetFe C(X). Then 

lim Fu F lim F^. 
c/ccx K 

As usual U is open, and K ranges through the family of compact subsets of X. 

Proof. — Since C is a stack it is enough to show that they are isomorphisms on any 
relatively compact open subset of X. This is obvious because inductive limits and 
projective limits commute with the restriction functors. q.e.d. 

Definition 3.2.20. — Let U be an open subset of X and let G G C{U). One sets 

iu*G = lim ÎU\(GK), K compact. 
KCU 

Proposition 3.2.21. — The functor iu* is a right adjoint to the functor i ^ . 

Proof. — For F G C(X) and G G C(U), we have 

Homr/^x(F, lim %U\GK) — hm Romc( XAKKHKKF,iu\GK) 
KCU KCU 

~ lim T(X;kmHomc{llùùF,iuiGK)). 
KCU 

Since supp(7Yorac(F,%U\GK)) C K C U we have 

T(X; Homfjc(jjF,fimGll) ^ TFF(U; Hffjomc(hhF,imGK)) 

~Romc{u)(sffi~lFhkk,GKkkk)kk. 
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Hence we have 

ïïomc(x)(F, lim ÌU\GK) — hm H o m ^ ^ ^ G ^ ) 
KCU Kcu 

~ Homc(t7)(ic/1F, lim GK) - H o m ^ J i ^ / F , G). 
KCU 

q.e.d. 

Note that the morphisms G GK define the morphism 

iu\G —> ijj*G. 

If G has compact support in £/, this morphism is an isomorphism. 

Proposition 3.2.22. — Lei Z be a locally closed subset of X. The functor F ^ Fz 

admits a right adjoint. 

We shall denote this adjoint functor by Tz( • )• Hence, for F and G in C(X) , one 

has: 

H o m c w ( G Z , F ) ~ Homcw(G,rz(F)) . 

Proo/ 
(i) If Z is open, iu^ij1 ls a right adjoint to iudij1-

(ii) If Z = S is closed, set U = X \ 5 and define Ts(F) by the exact sequence 

0 —> T^(F) —• F —• IV(F) . Since Homc^x^(G, •) is left exact, the result follows in 

this case. 

(hi) Now assume that Z = SnU with S closed and U open. Set Yz = IV o T ^ . q.e.d. 

As an immediate consequence of the properties of the functor F i—> Fz, one gets: 

Corollary 3.2.23 

(i) T/ie functor Yz is left exact and commutes with projective limits, 

(ii) one has YZl o TZ2 ~ rZlnz2, 

(hi) if Z' is closed in Z, there is an exact sequence of functors 0 —> T^/ —> Tz —> 

(iv) Tz(F) represents the contravariant functor G —• r ^ ( X ; HomC(G, F ) ) . 

3.3. Indization of proper stacks 

We assume that X is a Hausdorff locally compact space with a countable base of 

open sets. Let C be a proper stack of abelian categories on X . We define the full 

abelian subcategory CC(X) of C(X) by 

Ob(Cc(X)) = {F e C(X); suppF is compact}. 

We denote for short 

IC(X)=Ind(Cc(X)) . 
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The reason why we consider the ind-objects of CC(X) is that the correspondence U i—> 
IC(U) is a stack as we shall see later, contrarily to the correspondence U »—• Ind(C(t/)) 
as we shall see now. 

Example 3.3.1. — Let X = R, and consider the stack Mod(A:x) of sheaves of k-
modules on X. Let F = kx, Gn = fe[n>+00[, G = "lim"Gn. Then G\u = 0 in 

n 
Ind(Mod(/c(/)) for any relatively compact open subset U of X. On the other hand, 

Homind(Mod(fcx))(^'G) - !|mHomfcx(fcx,Gn) - *• 

Lemma 3.3.2. — IC(X) admits small projective limits. 

Proof. — By the general result in Theorem 1.3.1, it is enough to show that for a 
small family {Fi G CC(I)}, its product (which is well-defined in the category CC(X)A 
of contravariant functors on CC(X)) belongs to IC(X). For G G CC(X) we have 

H o m c m ( G , F , ) ^ lim Homc(x)(G,TT (F^)) 

I 
~ HomIC(x)(G,"hm''[](F2C/)). 

u 
Here the first arrow is an isomorphism because H o m c ^ ( G , Fm) —> Homc^x^(G, Fi) 
is an isomorphism whenever supp(G) C U. Thus the product of the F^s is represented 
by "hm"rL№t/) . q.e.d. 

u 

We introduce the functor: 

(3.3.1) 
iX : C{X) -+ 1C(X) 

F K-> (CC(X) 3 G H Homc(x)(G,F)). 

This functor is well-defined by the lemma below. 

Lemma 3.3.3. — For F G C(X) one has the isomorphisms: 

LXF ~ "lim" Fu — lim FK , 
uccx KCX 

where U ranges through the family of relatively compact open subsets of X and K 
through that of compact subsets. 

Proof. — Let G G CC(X). Then: 

HomC/x)(G,F) ~ limJiomc(x)(Gkkk1Fu) — l i m H o m ^ ^ J G , F K ) . 
u K 

q.e.d. 

Proposition 3.3.4. — The functor ix 0/(3.3.1) is fully faithful, exact, and commutes 
with lim. 
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Proof. — Let F, G belong to C{X). One has the chain of isomorphisms: 

RomLC(X)(SFSFLXF,LXG) ~ lim Romlc{ X){FV ,LXG) 
uccx 

~ lim H o m c ^ ( F [ / , G) ~ Homc^^(F, G). 

uccx 
Hence, ix is fully faithful. It is exact since the functor F \-> Fu is exact as well as 
"lim". Finally let us prove that tx commutes with projective limits. Let {Fi}i be a 

u 
small projective system in C(X). Then we have for G G CC(X) 

Romlc(x)(G, tx(limFi)) ~ Romc(x)(G, limF^) ~ limRomc(X)(G, Fi) 

~ lim Horn IC(X)(G,ibbx(Fi)) ~ Hbb;omIC(x)(G, l im(^x^))-

q.e.d. 

Notation 3.3.5. — In the sequel, we shall identify C(X) with a full subcategory of 

IC(X) by LX and often write F instead of LXF. 

Definition 3.3.6. — Let U be an open subset of X. We introduce the functor 

pux:IC fuft(X)^IbbbC(U), 

also denoted by F i—> F|t/, by the formula: 

Homlc{u)(G,F\u) = nokkùmlc(x)(imG,F) for G G Cc(£/). 

This functor is well-defined by the following lemma. 

Lemma3.3.7. — Let F = "lim" Fif Fi G CC(X). Tften: 
i 

F\u ~ "lim" (Fivlc/) ^ lim "lim"(FiK|t/) V open, K compact. 

iyccu KCU i 

Proof. — Let G G CC(U). Then it/.G G CC(X) and one has 

HomIC(X)(zc/iG, F) ~ limHom^y)(ic/jG,Fi) ~ l i m H o m r ^ ( G , Fj\u). 
i i 

Furthermore we have 

MmffRomr(TT)(G, Fj\u) ~ lim lim Homc(m(G,Fjv|c/) 

i vccu 
and 

lim Rom r(TT)(G,Fi\u) ~ lim lim Horn C(C/)(G, F^ | t / ) 

i KCU i 
~ H o n w n ( G , lim "lim"FiK|c/). 

KCU i 

Lemma 3.3.8. — For F G Cpf ) , we have tu{F\u) — (t>xF)\u-

q.e.d. 
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Proof. — For any G G CC{U) we have 

HomIC(t/)(G,¿c/(F|t/)) ^ RomC(U)(G,F\u) ~ Homc(x)(¿c,,G, F) 

~ HomIC(x)(¿t/iG, LXF) ~ Нот1С(г7)(С, (¿xF) |[ /) . 

q.e.d. 

Lemma 3.3.9. — 77&e correspondence U i—>• IC(/7) ¿5 a prestack of abelian categories 

and LJJ : C(U) —• IC(C7) ¿5 a functor of prestacks. 

The proof is obvious. 

Proposition 3.3.10. — Tfte functor pux : —> IC(C/) ¿5 exac£ ana1 commutes with 

"lim" and lim. 

Proof. — The functor pux commutes with lim since the functor HomlC(X^(iu\G, •) 

does. The exactness is obvious, and the commutativity with "lim" follows from 

Lemma 3.3.7. q.e.d. 

Recall that if F and G belong to IC(X), the presheaf U i-> HomIc^(F | t / , G\u) is 

denoted by Homlc(F, G). 

Proposition 3.3.11. — Let F, G belong to IC(X). 

(i) The presheaf HornIC(F, G) is a sheaf. 

(ii) For F ~ "Urn" Fi and G ~ "lim" Gj with Fi, Gj G CC(X), one has 

Homir(F,G) ~ lim lim Horn r(FilGj). 

3 

Proof. — One has the chain of isomorphisms: 

HornIC(f/)(F|t/, Git/) ~HomIC(£n( "lim" FiV\v, "lim" GjW\u) 

i,VCCU j,wccu 
~ lim gj ( gj lim gj Homrrm (F*y |t/, G7vHt/)) 

i,VCCU j,WCCU 
~ lim qdf_^_ (lïmggj}îomc(u)(FiV\u,Gj\u)) 

i,VCCU j 
~ lim eeliemT(V;Homc(FilGj)). 

i,VCCU j 

On the other hand we have 

lim limr(F;Homc{FuGj)) ~ lim limr(F;Homc(Fi,Gj)yr) 

VCCU j V.V^CCU j 

~ lim limr(ggj/7;Womc(Fi,GjW). 
VCCU j 
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Finally we obtain 

Romlc{u)(F\u,G\u) ~ lim yiyt \\mT{V'Homc(FuGj)) 
i,VCCU j 

~ lim r(F ; l imWomc(Fi,Gj)) 
i,VCCU j 

~ \\mT(U',\\mHomc{Fi,Gj)) 
* j 

~ I W ; lim lim Homr (F ,G7)) . 
2 

q.e.d. 

Corollary 3.3.12. — Let {Fi} be a small filtrant inductive system in IC(X). 

(i) For any G G 1C(X), we have 

Homlc(" lim" Fi,G) ~ limhhh WornIC(F;, G). 
2 

(ii) For an?/ G G we /mve 

WomIC(G, "lim" F{) ~ lihhhmHomlc(G,Fi). 
i i 

Note that (ii) does not hold in general for G G IC(X) (see Exercise 3.5). 

Lemma 3.3.13. — The functor i^1 admits a left adjoint. In other words, denoting this 
adjoint by iuw, we have for F G IC(U) and G G IC(X): 

RomIC(x)(iuvF,G) ~ H o m I c m ( F , i ^ G ) . 

Moreover, if F = "lim" F{ with Fi G CC(U), then 
i 

iun " lim "hFi ~ "limh" imFi. 
I 

Proof. — We may assume that F = "lim" Fi with Fi G CC(U) and G = "lim" Gj 
i 3 

with Gj G CC(X). One defines iu\\F G IC(X) as in the statement. Then 

HomIcm(i[/nF, G) ^ limlimHomC/XN(i[/!Fi, Gj) ~ lim lim Horn C(m(i^, ijj Gj) 
i 3 vd 3 

~ lim lim Rohkm^kkJFi^ijj1 Gj)v) ^ Ekk.ohhmIC,u)(F,iu1G). 
i j,vccu 

q.e.d. 

One shall be aware that the natural morphism iuw^uF —> ixiu\F for F G C(U) is 
not an isomorphism in general. Here this morphism is defined by the morphisms 

imF~ " l i m ' W i V ) u^mnlhhiu\F)hhhw 
vccu wccx 
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(we have not written the functors ix for short). This is the reason why we employ 

the different notation iuu. Of course, if s u p p F is compact, then iu\\F ^> iu\F. 

Theorem 3.3.14. — The prestack IC is a proper stack. 

Proof. — By the preceding results, it remains to check properties (v) of Definition 

3.2.2 for the functor im. Let F = " l im" F{ G IC(U) with G CC(U). Since i~l 
i 

commutes with inductive limits, one has 

i7TliuuF ~ i7Tl " l i m " iwFi ~ " l i m " uMutFi ~ " l i m " F,. 
i i i 

q.e.d. 

Let Z be a locally closed subset of X and let F G I C ( X ) . Since IC is a proper 

stack, the objects Fz and Tz{F) are well-defined in IC(X). For F G C ( X ) , we have 

(3.3.2) LX(FZ) £ (ix(F))z in general, and tx(Tz(F)) ~ r z ( i x F ) , 

as we shall see later. Therefore we shall use another notation zF instead of Fz-

Definition 3.3.15. — For a locally closed subset Z and F G I C ( X ) , let zF be an object 

of IC(X) that represents the functor G i—• Tz{X; Homlc(F, G)). 

This functor is representable by Proposition 3.2.18, and the functor F i—> zF shares 

the properties in the same proposition. In particular we have 

Homlc(zF,G) ~ TzHomlc{F,G)), 

H o m I C ( x ) ( z F , G ) ~ r z ( X ; H o m l c ( F , G ) ) . 

Proposition 3.3.16. — Let Z be a locally closed subset and F G IC(X). 

(i) If F = " l i m " Fi with Fi G C(X) and if Z = U D S for a closed subset S and an 
i 

open subset U, then we have 

ZF ~ " l i m " (Fi)vnW V, W open. 
VCCU,WDS 

(ii) For G G C(X) and F G IC(X), we have the isomorphism 

Homlc(G1F)z ~Homlc(G,zF). 

(hi) The functor CC(X) T(X; Homlc(G, F)z) is representable by zF. 

Proof 

(i) Since F ~ " l i m " Fiw, we may assume from the beginning Fi G CC(X). Assume 
i,WCCX 

first Z = U. Then 

uF ~ iuv.i^F ^ iuu "lim^Fivlu) 

vccu 
- " l i m " im(FiV\u)~u\mnFiV. 

vccu VCCU 
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Hence we have the desired result. Now assume that Z = S is closed. For any 
G = "lim"Gj G IC(X) with Gj G CC(X), we have a chain of isomorphisms 

ft°mic(x)("1^" FiW>G) - 1™ l i a H o m c m ( F n y > G i ) 
i,WDS i,WDS j 

~ lim limrw(X;Homc(Fi,Gj)) ~ lim l imr(X; (Homc(Fi,Gj))w) 

i, WDS j i,WDS j 
~ lim r ^ l i m ^ o r a ^ F ^ G ^ ) ) ^ ) - lim i ( A ; (Homlc(Fi, G))w) 

i,WDS 3 i,WDS 
~ l imr 5 (X; HomÎC(Fi, G)) ~ r 5 ( X ; Homlc(F, G)). 

The general case follows from u(sF) ~ snuF. 

(ii) First assume that Z = C7 is open. Then the formula follows from the isomorphisms 

7iom,r(G,F)u — lim TLom,r(G,Fi)V' ~ lim H,omjr(G,Fiv)vf 

V'CCU,i V,V'<ZCU,i 

~ lim Homlc(G,FiV) ~Homlc(G, " l i m " F i V ) . 
vcc f / ,« V C C C / , i 

Here the first and last isomorphisms follow from Corollary 3.3.12 (ii). 
Next, assume that Z = 5 is closed. In this case, the formula follows from the 

isomorphisms 

Homlc(G,sF) ~ ffflim Homlc(G,Fiw) ~fffh f lifm f ffHom, c{ffG,F l W)Wr 
WDS,i W,W'DS,i 

~ lim 7 i o m I C ( G , F i W ^ K o m T r ( G , F ) s 

The general case follows, since unsF ~ s{i/F). 

(hi) follows from (ii) by applying the functor T(X; • ) . q.e.d. 

Lemma 3.3.17. — Let Z be a locally closed subset and F G C{X). Then we have 
LX{TZ(F))~YZ{LXF). 

Proof. — For any G G C C ( X ) , we have 

H o m I C W ( G ^ x ( r z F ) ) - H o m c ( x ) ( G , r z F ) - r z ( X ; W o m c ( G , F ) ) 

- r z ( X ; W o m I C ( G , t x F ) ) 2 . H o m I C ( x ) ( G , r z ( . x F ) ) . 

q.e.d. 

We shall introduce new functors between the categories C(X) and IC(X). 

Definition 3.3.18. — One defines the functor ax : IC(X) —> C ( X ) by 

a x ( a h m ' ' ^ ) = h m ^ . 
i 
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Hence, we have the chain of functors 

C(X) —-> 1C(X) > C(X) 
OCX 

and 

C(X) —-> 1C(X) > C(X) 

since for F G C(X), one has F ~ lim FTJ. 
UCCX 

Proposition 3.3.19. — The functor ix is a right adjoint to ax, that is> for F G C(X) 

and G G IC(X) one has the isomorphism: 

Homc(x)(axG,F) ~ HomIC(x)(G,LXF). 

Proof. — Let G - "lim" G3. then 
3 

ìiomc(x)(axG,F) ~ Homcm(l imGj,F) ~ l imHomcm(Gj,F) 
3 

~ lim Horn Tr / X\(Gj, LxF) ~ HomTr/Yx("lim" \(Gjsfsggg 

3 3 
q.e.d. 

Corollary 3.3.20. — For any open subset U, we have 

c*u ° i\jX — ivl ° ocx, 

or equivalently, a: 1C —> C is a functor of stacks. 

Proof. — If F — "lim" Fi with Fi G CC(X) then 

i 

aui^F ~ "lim" (FiV)|t; ) ~ lim (FiV)\u 
i,VCCU i,VCCU 

~ lim ((OLXF)V)\U - irMaxF). 
vccu 

q.e.d. 

Corollary 3.3.21. — For F G C(X) and G G IC(X), one has the isomorphism 

Homc(axG,F) ~ Homlc(G,ixF). 

It follows from Proposition 3.3.19 that there is a natural morphism of functors 

id —> ix ° otx • Recall that the natural morphism ax ° —> id is an isomorphism. 

Proposition 3.3.22. — The functor ax is exact and commutes with small lim and 

small lim. 
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Proof 

(i) Let 0 —» F' —» F —> F" —• 0 be an exact sequence in IC(X). There exists an 

inductive system of exact sequences 0 —• F[ —> Fi —> F/' —> 0, whose "lim" is the 

above exact sequence. Then the sequence 0 —» limF/ —> limF* —> limF/' —> 0 is 
2 Z Z 

exact. 

(ii) Since ax admits a right adjoint, it commutes with lim. 

(iii) Let us show that ax commutes with lim. Since this functor is exact, it is enough to 

show that it commutes with products. Let A be a small set and let Fa G IC(X), a G A. 

For each a G A, there exists a small filtrant category Ia such that Fa ~ "lim" Fai 

ieia 
with Fa i G C(X). Define the small set 

B:= {ip:A^\\la]ip(a)eIa}. 

Then fl f ulim"Fa,,) ~ "lim" fl t>x(Faji) ~ "lim" ( fttt FttaMatt))t t holds, and 
ieia ieia uccx^we Fa,<p(a)Fa,<p(a) 

we obtain the chain of isomorphisms 

ax 

ieia 

Fa 
uccx^weE 

lim 
cwvw 

Fa,<p(a) 
U aweA ^eia 

lim Fa,i ^ 

aeA 

ax(Fa). 

q.e.d. 

Corollary 3.3.23. — Assume that F G C(X) is injective. Then txF G IC(X) is injec-

tive. 

Proof. — By Proposition 3.3.22, the functor 

Gobbbbieiamljjc(x)jj;nn(G,ixF) Rccomhggjc(x)g(ax(G),F) 

is exact. q.e.d. 

In order to construct a left adjoint to the functor ax, we need a hypothesis. 

Definition 3.3.24 

(i) Let F G C(X). We say that F is light on U C X if, for any small filtrant 

inductive system i \-> Gi in C(X) , the natural morphism lim HornC(F, Gi)\u —> 
i 

Homc(F1\imGi)\u is an isomorphism. This condition is equivalent to saying 
i 

that Homlc(F, G)\u —> Homc(F, axG)\u is an isomorphism for any G G IC(X). 

(ii) We denote by C(X) the full additive subcategory of C(X) whose objects are the 

direct sums ®ieI(Fi)Ui with / small and Fi light on Ui, Ui open in X. 

(iii) If C(X) is generating in C(X) (i.e. for any F G C(X), there exists an epimor

phism G-»F with G G £ p 0 ) , we say that C(X) has enough light objects. 

Example 3.3.25. — If A is a sheaf of rings on X and C(X) = Mod(*4), the sheaf AJJ 

is light on U, and the category C(X) has enough light objects. 
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Theorem 3.3.26. — Assume that C(X) has enough light objects. Then the functor ax 

admits a left adjoint Px' 

Romlc(x)((3xF,G) ~Homc(x)(F,axG). 

Moreover, if F is light on U, then Px(Fu) — uF — "lim" Fy. 
vccu 

Proof — It is equivalent to saying that the object pxF G IC(X)V defined by 

( & F ) ( G ) = H o m c ( x ) ( F , a x G ) , G G IC(X) 

is representable. 

Now remark that if F\ —• F0 —» F —> 0 is an exact sequence and (3XF\, PxFo 

are representable, then PxF is representable by coker(#xFi —> PXFQ). Similarly, if 

{Fi} is a small family of objects of C(X) such that each f3xFi is representable, then 

Px((BiFi) is representable by "0" PxFi. Hence, it is enough to prove the result for 
i 

Fu when F is light on U. For any G G IC(X), one has 
~ T(U;Homlc(F,G)) ~ T(U;Homlc(F,G)) 

^ r(£7; Homc(F, axG)) ~ Hom I c f x ) (Fu ,a x G). 

Here the first isomorphism follows from by Definition 3.3.15 and the second isomor

phism from the fact that F is light on U. q.e.d. 

Until the end of this section, we assume that C(X) has enough light objects. The 

functor fix has the following properties. 

Proposition 3.3.27 

(i) /3X commutes with lim (i.e. fix o lim ~ "lim" o (3X), 

(ii) /3X is right exact, 

(hi) a x o fix — id, 
(iv) Px is fully faithful. 

Proof 

(i) and (ii) follows from the fact that Px has a right adjoint, 

(hi) For F and G in C(X), we have 

H.omcm(axPxF,G) ~ Romlc^x)(pxF, LXG) 

~ Romc{x)(F,aXixG) ~ Hom c ( x ) (F , G). 

(iv) For F and G in C(X), we have 

Hom c ( x )(F,G) ~Romc{x)g(F,axogpxG) ~g Rgogmlc(x)(pxF,pxG). 

q.e.d. 

Lemma 3.3.28. — For any open subset U, one has iv

lPx — Puiu1' ^at is, /?: C —> IC 
is a functor of stacks. 
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Proof. — By Corollary 3.3.20 we have i~} ~ i^axPx — OLui^Px- By adjunction 

we obtain f3\ji~~} —> i^Px-

Let us show that (3ui~}lF —• i^PxF is an isomorphism for any F G C(X). Since 

both sides are right exact and commute with inductive limits, it is enough to prove 

the result when F = Ly for L light on V. In this case the assertion follows from 

Proposition 3.2.18 (vi) . q.e.d. 

This lemma along with Corollary 3.3.20 implies the following result. 

Lemma 3.3.29. — For F £ C(X) and G G IC(X), we have 

Homlc(ßxF,G) ~ Homc{F,axG). 

Remark 3.3.30. — The morphism of functors ftx ° ®x —• id defines 

ßx — ßx ° OCX o i X ^ ix-

This morphism is not an isomorphism in general, even when X = {pt} and C = 

Mod( fcx ) . Indeed, if F is a /.-vector space, (3xF = " l i m " Fi, where Fi ranges through 
i 

the family of finite-dimensional subspaces of F. 

Exercises to Chapter 3 

Exercise 3.1. — Let X = \JieI Ui be an open covering and let d be a stack on Ui. 

Assume to be given equivalences of stacks <pij: Ci\ui:j —> Cj\ui:j and isomorphisms of 

functors Xijk: (fij o <pjk -^-> (pik from Ci\uijk to Ck\uijk . Assume that for any fc, /, 

the diagram below commutes: 

<Pij ° <Pjk ° Pkl 
Xjkl 

Pij ° <Pjk ° Pkl 

^ijk 

Wik ° fkl 
\ikl 

» Vil-

^ijl 

Prove that there exists a stack C on X and equivalence of stacks <pii C\ui —> Ci 

satisfying the natural conditions (i.e. (fij o <pj ~ (piy etc.) . 

Prove that C is unique up to equivalence. 

Exercise 3.2. — Give an example of F G C(X) such that (3xF —» ixF is not a 

monomorphism (resp. epimorphism). 

Exercise 3.3. — Let C be a proper stack on X, and let K' —• K —> be a complex 

in 1C(X). Prove that this complex is exact as soon as the sequence of sheaves 

Homlc(F,K') Homlc(F,K) -> Homlc(F,K") 

is exact for any F G C C ( X ) . 

(Hint: prove that Wora I C (F , im<p) —> Horn lc(F, ker ip) is an isomorphism.) 
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Exercise 3.4. — Let C denote a proper stack. By definition, End (idc) is the ring of 

endomorphisms of the functor idc • C —» C. Clearly, the presheaf U End(idc|t/) is 

a sheaf of commutative rings. One denotes this sheaf by £nd(idc). 

Let B be a sheaf of commutative rings on X . Let us say that C is a 5-stack if one 

is given a morphism of rings B —> £nd(idc). 

Let A be a sheaf of (not necessarily commutative) rings. One defines the stack 

Mod(^,C) by 

Ob(Mod(.A,c)(C0) = {(F,£F) ; F g C(U), 

£f • A\u —> SndciuiF) is a ring morphism}, 

HomMod(AC)([/)((F, fr), (G, fo)) = {fe Bomc(u)(F, G) ; fc(a) o / = / o &,(a) 

for a l l y C t / , a G ^ ( F ) } . 

(i) Prove that Mod(.A, C) is a proper stack of abelian categories, and if A is com

mutative, it is an ^4-stack. 

(ii) Prove that the natural functor of abelian categories Mod(*4,C)(X) —> C(X) is 

exact and faithful. 

(hi) Let A be a sheaf of rings on X. Show that the stack Mod(*4, Mod(Zx)) is 

equivalent to Mod(*4). 

Exercise 3.5. — Let F G IC(X). 

(i) Prove that the functor IC(X) 3 G ̂  Homlc(F, G) G Mod(Zx) commutes with 

filtrant inductive limits if and only if F G C(X). 

(ii) Prove that the functor IC(X) 9 G H Horn ic(F,G) G Mod(Z) commutes with 

filtrant inductive limits if and only if F G CC(X). 

Exercise 3.6. — Let C and C be two stacks on X. For an open subset U of X , 
denote by S(U) the category of functors of stacks on U from C\u to C|c/. Prove that 
U i—• <S(C7) is a stack on X . 
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CHAPTER 4 

IND-SHEAVES 

As in the preceding chapter, we work in a given universe U. Hence, otherwise 
specified, a category means a ZY-category and all sets are ZY-small. Moreover, all 
topological spaces are assumed to be Hausdorff, locally compact, and with a countable 
base of open sets. We denote by k a commutative ring. 

4.1. The stack of ind-sheaves 

In this chapter, A will be a sheaf of fc-algebras on a topological space X (with the 
image of kx contained in the center of A). 

We denote by Mod (A) the abelian category of .4-modules, and by Modc(*4) its 
full abelian subcategory consisting of sheaves with compact support. Recall that 
Mod(*4) and Modc(*4) have enough injectives and also have systems of strict genera
tors. Moreover, the injective objects of Modc(*A) are injective in Mod(*4). Also recall 
that U H-> Mod(A\u) is a proper stack. 

Notation 4.1.1. — We shall use the functors Horn A and ®A on Mod(*4). When A = 
kx we shall simply denote these functors by Horn and ®. Moreover, we write as 
usual Horn ̂  instead of HomMod^. 

Definition 4.1.2. — We call an object of Ind(Modc(*4)) an ind-sheaf of .4-modules 
on X. 

We set for short: 

1(A) :=Ind(Modc(^)) . 

Hence, denoting by C the proper stack U i—• Mod(.A|t/), 1(A) is nothing but the 
category IC(X), and we may apply the preceding results. In particular, 

U i—̂  l(A\u) is a proper stack. 

Let us denote by F(A) the full additive subcategory of Mod(*4) consisting of objects 
isomorphic to Ajji with I small and Ui open in X. Then F(A) is generating. 
Since A is light on X , T(A) is contained in C(X) (see Definition 3.3.24). Applying 
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the constructions in §3.3, we get the functors 

tx:Mod(A)^l(A), 

ax : 1(A) -> Mod(^) 

PA : Mod(^) 1(A). 

See Remark 4.1.4 for the reason why we write PA instead of fix as in Chapter 3. 

These functors satisfy the following properties: 

(i) tx is exact, fully faithful, and commutes with lim, 

(ii) a x is exact and commutes with lim and lim, 

(iii) PA is right exact, fully faithful and commutes with lim, 

(iv) ax is left adjoint to LX, 

(v) ax is right adjoint to PA, 

(vi) axotx ^ idMod(^) and axoPA^ idMod(.4)-

We have also defined the functor F \-> F\v from 1(A) to I(*4|t/), as well as the 

functor (F,G) h-> Homl{A)(F,G) from l(A)oip X 1(A) to Mod(/cx). Recall that if 

i i-> Fi is a small filtrant inductive system with Fi G Modc(.4) and F ~ "lim" Fi, 

then 

F\u~ " l i m " ^ ^ ) , 

i,VCCU 
and if j i—)- Gj is a small filtrant inductive system with Gj G Modc(v4), then 

HomUAJ" lim" Fi, "lim" Gj) ~ lim lim Horn AFU Gj). 

Note that we have 

PA(AU) ^ uA~ "lim" Ay. 

vece/ 
Notation 4.1.3 

(i) If *4 = &x, we shall often simply denote by Horn the functor Homl(^kxy 

(ii) We shall often identify a sheaf F G Mod(*A) and its image txF G I(*A), and we 

shall not write ¿x. 

(iii) When A = kx, we write /?x instead of Pkx. 

Remark 4.1.4. — Denote for a while by for one of the natural functors Mod(*4) —> 

Mod(fcx) or 1(A) —• I(fcx). Then, clearly, ax and ix commute with for. One shall 

be aware that for o PA Px ° /or. 

The functor /?x- — In Chapter 3, we have introduced the functor Px- This functor 

has no counterpart in classical sheaf theory, and we shall study here some of its 

properties. 

Proposition 4.1.5. — Let F and G be in Mod(*4). 

(i) There is a canonical morphism 

(4.1.1) HomA{G,A) ®AFKH-> hhlhhHom1{A){G,ßAF). 
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(ii) The canonical morphism HomA(G, A) ®A F —> Horn A(G, F) factors as 

(4.1.2) HomA(G,A) <8u F —> Homl{A)(G, (3AF) -» HomA(G,F), 

where the first arrow is given by (4.1.1) and the second arrow is induced by 
PAF - F. 

(iii) For F G F(A), the morphism (4.1.1) is an isomorphism. 

Proof 
(i) (ii) Let U be an open subset of X. For ip G Hom^([/ (G\u, A\u) and s G F(U) ~ 
KomAiu(A\u,F\u), we define ^ G RomI(^AM(G\u,PA(F)\U) by 

G\u ^ ^ f3AA\u ^ > PA(F)\U. 

(Here, we write (3A instead of (3A\V for short in view of Lemma 3.3.28.) 
Then<£>(g)s t-> ^defines RomAlu(G\u, A\u)®A(U)F(U) -» RomliAM(G\u,f3AF\u) 

(iii) Since both sides of (4.1.1) commute with direct sums with respect to F, we may 
assume that F = AJJ for some open subset U. In this case the assertion follows from 
Proposition 3.3.16. q.e.d. 

Lemma 4.1.6. — Let F e F(A), G G Mod(.A). 
(i) Let -0 G H o m j ^ ( G , f3AF). For each x G X, there exist an open neighborhood 

U of x, g: G\u —> An\u and f: An\u —• F\u such that ip\u factorizes as 

G\u - An\u ^ pA(An\u) > 0A(F\U). 
9 PAU) 

(ii) Assume that g: G —> An and f': An —> F satisfy /3A(f) ° 9 = 0 in 1(A). Then 
for any x G X, there exist an open neighborhood V of x and a commutative 
diagram 

Gv 

hk 
лк ъ Am 

9 
An 

а 

f 
Fv 

h 

such that bo (p = 0. 

Proof 
(i) follows from Proposition 4.1.5 (iii). 

(ii) Let Yli9i ® fi £ HornA(G,A)X ®A Fx, and assume this section vanishes. There 

exist ip- G Horn A(G,A)x, hk G Fx and aa.bjk G AX with 

9i = Hj¥jaji for a11 h 

J2k bjkhk = J2i ajifi for all j , 

J2j Vjbjk = 0 for all k. 

q.e.d. 
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Proposition 4.1.7. — Let F be an A-module. 

(i) (3AF —> F is an epimorphism if and only if F is locally of finite type. 

(ii) (3AF —> F is an isomorphism if and only if F is locally of finite presentation. 

Proof 

(i) (a) Assume that (3AF —> F is an epimorphism. Let us choose an epimorphism L = 

QieiAi/i^F. Let s* G F(Ui) be the image of l V i G TtynAui). Since (3AL f3AF 

and f3AF —> F are epimorphisms, (3AL ~ "0" ^ .A —> F is an epimorphism. Hence 

there locally exist a finite subset J of I and ^ CC ̂  such that SieJ^v* —> F is an 

epimorphism. Hence F = Yjiej^viSi' ^ o r a n ^ x e ^> set J(x) = {i G J; # G Ui}. 

Then = rizeJ(̂ ) ^*\(Ut€J\J(x) i s a n ° P e n neighborhood of x. Since V*nW = 0 

for any i G J \ J(x), we have F\w = X^eJOr)^!^)^-
(i) (b) Conversely, assume that F is locally of finite type. There locally exists 

an epimorphism g: A n - » F . This morphism factors through An (3A(A
n) • 

Pa(9) 
j3AF —» F. Hence £UF —> F is an epimorphism. 

(ii) (a) Assume that (3AF —• F is an isomorphism. By (i), F is locally of finite 

type. Hence there locally exists an exact sequence 0 —> iV —• A n —• F —>• 0. Consider 

the commutative exact diagram 

0 

0AAU 

N 

0AAU 

0AAU 

PAF 

F 

0 

0. 

It shows that (3AN —» iV is an epimorphism, and hence AT is locally of finite type. 
This implies that F is locally of finite presentation. 

(ii) (b) Conversely, assume that F is locally of finite presentation and let us show 
that (3AF —• F is an isomorphism. There locally exists an exact sequence Am —> 

An —> F —> 0. Then the assertion is obvious by the following diagram with exact 

rows 
(3gjAF (3AF 

(3AF 0 

Am 0AAU >F- 0. 

q.e.d. 

Corollary 4.1.8. — F G Mod(A) is light if and only if F is locally of finite presenta

tion. 

Proposition 4.1.9. — The following two conditions are equivalent: 

(i) the functor (5A: Mod(A) —» 1(A) is exact, 

(ii) the sheaf of rings A is left coherent. 
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Proof. — (i) => (ii). Consider an exact sequence 0 —» F —• Am —> .A. Applying 

the exact functor #4, we find the isomorphism (3AF F. Then Proposition 4 .1 .7 

implies that F is locally of finite type. 

In order to prove (ii) (i), we need a lemma. 

Lemma 4.1.10. — Assume that A is coherent and consider an exact sequence 0 —> 

F —> Li —• Lo m Mod(*4) Li and L0 m ,F(.A). Then the sequence (3AF > 
f 9 @Af 

3AL\ > 0ALC\ is exact. (3A9 

Proof. — By the result of Exercise 3.3, it is enough to show that for any G e Mod(V4), 

the sequence below is exact: 

(4.1.3) Homï{A){G,f3AF) -> Wotoi(>4)(G,/?aLi) ->• Hom1{A)(G,(3ALo)-

Let x € X. In a neighborhood of x, take u: G —• /3ALi such that the composition 

G —> PALI —> /3^io vanishes. Applying Lemma 4.1.6, there is a commutative diagram 

G 

xv 
kk b hl 

V xx w cv 
hl 

hl 

such that b o ip = 0 and u is the composition 

G —> «4™ ~ PAA™ — — • PALI-
V 0A(w) 

Set K = ker(6) and consider the diagram: 

0 

0 - F • 

>K 

G 

A1 

f 
A2 

9 
L0. 

>Am 
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Hence, we get the commutative diagram 

0AAU 

PAK 

K 

G 

•Ak 

>0AAk 

0AÎ 
PAU 

Therefore, the morphism u : G —> PAL\ factorizes through PAF. q.e.d. 

We can now complete the proof of Proposition 4.1.9. 
Consider an exact sequence 0 —> F' —> F —> F" —> 0 in Mod(A). We can find an 

exact commutative diagram as below such that the sheaves V-,Lj,V- (j = 0,1) are 
in F (A), and moreover such that the second and third rows split: 

0 -

0 

0 

0 

>F' 

>L'0-

ssssf 

N' 

0 0 

N -

ss 

sf 

• F 

0 0 

> F" 

T" 

sf 

N" 

0 

>0 

^0 

^0 

0 

Let us apply the right exact functor pA to the diagram. The second and third rows 
being split exact, they will remain exact. The columns remain exact by Lemma 4.1.10. 
Hence, the bottom row remains exact after applying pA. q.e.d. 
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4.2. Internal operations 

Definition 4.2.1. — We define the internal tensor product, denoted by 0^ , and the 

internal horn, denoted by Thorn A: 

<8>A :1(A°P) x 1(A) - l(kx) 

IhomA : l(A)op x 1(A) - • l(kx) 

by the formulas: 

("lim" Fi) ® . ("lim" Gj) = " l i m " ^ ® , G A 
2 

J/iora^("l_im" ^ , "lim" Gj) = lim "lim" Horn A(FU G j). 
i 3 i j 

Similarly we define ® and Ihom using (g)fcx and Homkx. Then those functors 0 
and Ihom induce 

<8>:I(A*) x 1(A) -> 1(A), 

® : I ( A ) xl(kx) ~>I(A), 

X/iom : I(A*)op x 1(A) -> 1(A), 

Ihom : I(Aop)op x I(kx) -> 1(A). 

Proposition 4.2.2 

(i) The functor ®A commutes with "lim" and ¿5 n#/i£ e#ac£. Moreover, A®AF ~ F. 

(ii) T/ze functor Thorn A is left exact. Moreover, Thorn A(A, F) ~ F. 

The proof is obvious. 

Proposition 4.2.3. — The diagram below commutes: 

Mod(Aop) x Mod(A) 

ix x ly 

I(Aop) x 1(A) 

a y x ay 

Mod(Aop) x Mod(A) 

dhd 
• Mod(fcx) 

qd Mod(f 

U 

\OLX 

Mod(fcx). 

Proof. — Let F G Mod(Aop) and G E Mod(A). Then: 

Or (F ®A G) = " lim " (F ® . G)y - " lim " (Fv ®A Gv) 

u u 
~ " lim " (Fu <g>. Gt/0 - ( " lim " F^ ) ® , ( " lim " Gw ) 

qqfgg u U' 
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Let F = "lim" F{ and G = "lim" Gj. Then 
i 3 

a*( ( "hm" Fi) ®A ("lim" Gj)) ~ a*("l im"(*i 0^ Gj)) 
i 3 i,3 

~ lim(Fi ®A Gj) ~ (lim F*) 0^ (lim G j ) . 
i,3 i 3 

q.e.d. 

Proposition 4.2.4. — The diagram below commutes: 

Mod(^)°P x Mod(.A) 
HomA 

> Mod(kx) 

Mod(kx 

I(A)°v x 1(A) 

HomI{A) 

ThomA 

Mod(kx) 

ax 

Mod(kx 

Mod 

Proof 

(i) Let F, G G Mod(*4). Then 

XhomA(LXF,LxG) ~ lim "lim" HomA(Fu,Gv) 
u v 

~ limHomA(Fu,G) ~ LX(HomA(F, G)). 
u 

(ii) Let F = "lim" F;, G = "lim" Gj. Since a x commutes with lim, we get the chain 
i n 

of isomorphisms 

ax(ThornA(F,G)) ~ ax(lim "lim" HornA(FuGj)) 
i 3 

~ lim lim Worn^(Fi, Gj) ~ Homl{A)(F,G). 
i 3 

q.e.d. 

Proposition 4.2.5. — Let K G I(fcx) a^d F, G G I ( ^ ) . Tften: 

HomI(^(K 0 F , G ) ~ HomI(fcx)(X,Thorn A(F,G)) 

~ Uom1{A)(F,Ihom(K,G)). 

In particular, the functors K 0 • ¿5 a Ze/£ adjoint of Thom (K, •). 

Proof. — One has the chain of isomorphisms: 

HomI(t4)("lim" Kk 0 "lim" F{, "lim" Gj) 
k i j 

~ H o r n l i m " ( ^ ® F<), "lim" Gj) 
wg dg 
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~ lim lim Horn gjgA(Kk ®Fi,Gj) 
i,k j 

~ lim lim Horn ky (Kk,Hhlom A(Fi, Gj)) 
i.k j 

~ limHomI(fcx)("lim'' Kk, "lihm" Horn A(FUGj)) 
i k j 

~ HomI(fcx)("lim" Kk,lím "lim" hlHomA{FuGj)) 
к i к 

~ Horn 1{kx) ("l im" Kk,Ihom^"lhnhlh" Fi, "lim" Gj)). 

The second isomorphism is proved similarly. q.e.d. 

Corollary 4.2.6. — For F , G G 1(A) £/aere is a canonical morphism 

F <g>ThddornA(F, G) G. 

Corollary 4.2.7. — For F, G G 1(A) and K € I(&x)? there is a canonical morphism 

ThornA(F, G)®K - » ddThornA(F, G <g> X ) . 

Proo/. — By the preceding corollary there is a morphism F ®IhomA(F, G) ® X —> 

G®K, and we obtain the desired morphism by adjunction (Proposition 4.2.5). q.e.d. 

Corollary 4.2.8. — Let K G 1(A) ana7 le£ i i—> G I(A.) 6e a small filtrant inductive 

system of ind-sheaves, and j t—> Gj G I (.A) a small projective system of ind-sheaves. 

Then we have the isomorvhisms 

(i) Thorn A (if, lim Gj ) ~ lim Thorn A (K, Gj ) , 

(ii) Ihom A ( " lim " FUK)~ lim T/iora ̂  (F., i f ) . 
i i 

(iii) / / K G Mod(A), tten one has IhomA(K, "lim" F») ~ "lim" IhomA(K,Fi), 
i i 

Proof 

(i) Let 5 G Modc(/cx). Then 

HornT^y^(5,Ihom A(if, limG?-)) ~ HomT^ (S <g>K, limG7) 

~ lim Hovvrn I(tA) (5 (g) if, Gj ) 

~ limHovnvmI(Jfex)(5,I/iomiA(Ä', G^)) 
j 

~ HornT^Y^ (5, lim X/iom 4 (if, G? )) . 
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(ii) Let S e Modc(kx). Then 

Hom1(kx){S,IhomA(«Km" FdgitK))~ Hom I ( < 4 )(5<g> "lim" Fi,K) 
i i 

~ Horn I ( < A ) ( nvn" lim " (5 ® F<), X ) ~ lim Horn I M ) (5 <g> Ft, i f ) 

~ lmHom I ( A ; x )(5,X^om^(Fidh,ii:)) ~ Hom I ( / c x ) (5 , l imThom A (F i : K)). 
i i 

(iii) Let S e Mod c ( fc x ) . Then 

Rom1{kx)(S,vlhomA(K, "lidhdm" F ) ) ~ Hosgsm^S®/^ "lim" F<) 
2 2 

~ lïmRovm1{A)(S ® K, Fi)dhdh ~ lim Horn T ( f e ; y ) (5, Ihom A (if, Fj ) ) 
i i 

~ H o m I ( f c x ) ( S , a^dhdmnXhomA(K,Fi)). 
i 

q.e.d. 

Corollary 4.2.9. — Let K G l(kx) and F, G e 1(A). Then: 

Thorn A(K 0 F, G) ~ T/iora (K,IhomA(F, G)) 

~ ThodrdhdnA(F,Thom (K, G)). 

Proof. — For 5 G Mod c(/cx) we have 

Hom I ( f c x (5, Thorn A(K ® F , G ) ) ~ H o m I ( ^ (£ 0 K 0 F, G) 

~ HordhdnT,, x (S sgs<8> IT, T/iom , (F, G)) 

~ Rodhdml{kx)(S,Thorn (K,IhomA(F,G))). 

This shows the first isomorphism. The proof of the second isomorphism is similar. 

q.e.d. 

Remark 4.2.10. — It follows from Corollary 4.2.8 that, for F G 1(A) and K G Mod(\A), 

the natural morphism Ihom A(F,K) —> Hom^^F^K) is an isomorphism. 

We shall now study the relations among the functors 0, Ihom and (3X. Here /?x 
is the functor Modffcv) —> If/cvV 

Proposition 4.2.11. — LetKe Mod(fc x ) and F, G G I(.A). Tften; 

Horn, (K, Horn A(F, dhdG)) ~sgsg H o r n . . (/frtf 0 F, G), 

Horn (K,HornA(F,G))dhdh~ HornA((3XK®F,G). 

Proof. — Consider the chain of isomorphisms: 

Kom k x (K,Hom A (F,G))dddh ~ Rossgsm1sfsg{kx)(K,ax(IhomdA(F,G))) 

~ H o m U f c x ) ( f o dhdtf.Ihoro^F.G)) 

~Hodhdgm I ( f c x )(/?x#®F,G). 
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The second formula follows. q.e.d. 

Proposition 4.2.12. — Let F and G be in Mod(fcx)- Then: 

ßxF®ßxG~ß(F®G)ßxF®ßxG~ßx(F®G). 

Proof. — Let K G I(fcx). Consider the chain of isomorphisms: 

HomKfex)(/?xF®/?xG,^ßxF®ßxG~ßx(F®G)ßxF®ßxfG~ßx(F®G)ßxF®ßxG~ßx(F®G 

~ Homfcx (F, Horn ( f e G , X ) ) d~ Homfex (F, Worn (G, a x # ) ) 

~ Homfcx (F <g> G, a r f ) - HomI(fex)(/3x(F <g> G), 

Here the third isomorphism follows from Lemma 3.3.29. q.e.d. 

Remark 4.2.13. — For F G I(-4), HomA(F, •) and IhomA(F, •) commute with fil

trant inductive limits if and only if F G Mod(A). Moreover H o m ^ ^ F , •) commutes 

with filtrant inductive limits if and only if F G Modc(A). See Exercise 3.5. 

Sheaves associated with locally closed subsets. — In this subsection, the base 

ring is the sheaf kx- Recall that if Z is a locally closed subset and F G I(fcx), we 

have constructed the ind-sheaf zF in Definition 3.3.15, by setting, for F = "lim" Fi, 
i 

Z = Ur\S,U open, S closed: 

zF = "lim" ww (Fiw)VnW. 
i,VCCU,WDS 

When there is no risk of confusion, we often write kz and zk instead of (kx)z and 

z(kx), respectively. 

If Z = {x} with x G X, we shall write xk and kx instead of {xyk and k{xy, 

respectively. 

Proposition 4.2.14 

(i) One has the isomorphisms 

zk~ßxkz, zF~F®zk for F G I(fcx)-

(ii) Let U be open and let F, G G I(&x)- Then 

HomI(M(Fit/, Git/) ~ HomI(fcx)(F 0 „fc, G). 

(iii) Le£ Zi and Z2 be two locally closed subsets. Then 

zxnz2k ~ Zlk®z2k. 

(iv) Assume that Z' is closed in Z. Then there is an exact sequence 

0 -+ z\z'k -> zk-+ z'k -> 0. 

(v) Le£ Z be a locally closed subset. Then for G G Mod(fcx) and F G I(fcx), one 

/ias 
Worn (G, F®zk)~ Horn (G, F)®kZ-
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Proof 
(ii) By Proposition 4.2.11, one has HomI(fcx)(F(g)[/fc,G) ~ Hornkx (ku, Horn (F, 6?)). 
(v) is a particular case of Proposition 3.3.16. 
The other results are obvious. q.e.d. 

Corollary 4.2.15 

(i) If U is open, the morphism jjk —> kjj is a monomorphism. 
(ii) If S is closed, the morphism sk ^ ks is an epimorphism. 

Proposition 4.2.16. — For any locally closed subset Z and F G I(kx), one has TZF ~ 
Ihom (zk, F). 

Proof — For any G G I(kx), one has 

HomI(fcx)(G,rzF) ~ r z ( X ; Hom(G,F)) ~ HomI(,x)(Gz, F) 

- Hom^fcx)(zfc®G,F) -HomI(fcx)(G?,Jhom(zfe,F)). 

q.e.d. 

Example 4.2.17. — Let X be a real manifold of dimension n ^ 1 and let x G X. 
Define N G I(fcx) by the exact sequence 

(4.2.1) 0 —• iV —• afe - » fcx —• 0. 

Since Horn (A:̂ , xfc) ~ lim Horn (A:x, A:^), where V ranges through a neighborhood sys
tem of x, we find Horn (kxixk) = 0, hence TV ^ 0. On the other hand, 

Hom(Jfec,JV) = 0 

for any open neighborhood U of x. 

Example 4.2.18. — By Exercise 1.1, we get a non-zero ind-sheaf F over X = {pt} 
such that 

(4.2.2) H.om1(kx>)(kxu,F) = 0 for all open set U C X. 

In fact, one can construct ind-sheaves with such a property on every non-empty space 
X (see Exercise 4.8). 

Quasi-injective ind-sheaves. — In this subsection, the base ring is the sheaf kx-
Recall that an ind-sheaf K G I(kx) is called quasi-injective if the functor G i—> 

H o m ^ ^ G , K ) is exact on Modc(fcx), or equivalently, if K ~ "lim" Ki with Ki G 
i 

Modc(kx) and Ki injective in Modc(/cx). 

Proposition 4.2.19. — Let K G I(kx) and consider the following properties: 

(i) K is quasi-injective, 
(ii) K ~ "lim" Ki with Ki G Mod(/cx) and Ki injective, 

i 
(hi) the functor H o m ^ ^ •, K) is exact on Mod(fcx), 
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(iv) the functor Horn ( •, if) is exact on Mod(kx), and the sheaf Horn (F, i f ) is soft 

for any F G Mod(kx), 
(v) the functor Xhom ( •, if) is exact on Mod(&x)-

Then (i) O (ii) <̂> (iii) & (iv) (v). 

Proof — (i) (ii) is obvious. 

(ii) (i). One has the isomorphism i f ~ "lim" Tz(Ki), where Z ranges over the 
Z,i 

family of compact subsets of X. Since Yz{Ki) is injective in Modc(&x), the result 

follows. 

(ii) (v) follows from the isomorphism Thorn (F, i f ) ~ "lim" Horn (F, if^), and the 
i 

fact that Horn ( • , if^) is exact on Mod(fcx). 

(ii)+(v) (iv). By applying the exact functor ax to T/iora ( •, i f ), the functor 

^omi(fcx)( ' ,J^) *s exact- Since Homkx(F1Ki) is a flabby sheaf, Homl(^kx^(F,K) ~ 

lim Worn (F, if^) is a soft sheaf. 

(iv) (iii) follows from HomI(fcx)( •, i f ) = Y(X; Horn ( •, i f ) ) . 

(iii) ==> (i) is obvious. q.e.d. 

Corollary 4.2.20. — Let 0 —> if ' —> i f —* if" —* 0 &e an e#ac£ sequence in l(kx)f and 

assume that if ' is quasi-injective. Then for any F G Mod(kx) the following sequences 

are exact: 

0 -> Ihom (F, if7) J/iora (F, i f ) J/iorn (F, i f " ) -> 0, 

0 Horn (F, i f0 -> Horn (F, i f ) -> Worn (F, i f " ) -> 0, 

0 - , HomI(,x)(F,if ') - , HomI(,x)(F,if) - , HomI(fcx)(F,if") - 0. 

Proof. — There exists a filtrant inductive system of exact sequences 0 —> i f ̂  —> i f i —> 

if" —> 0 in Mod(A:x) such that every ifz' is injective and its inductive limit gives 0 —• 

if ' i f i f" -> 0. Then 0 -> Hom{F,K[) Hom(F,Ki) -> Worn(F,iff) -> 0 

is exact. Hence we obtain the exactness of the first and second sequences. Since 

Worn (F, i f ' ) is soft by the preceding proposition, the last sequence is exact by applying 

T(X; •) to the second one. q.e.d. 

Proposition 4.2.21. — Assume that k is a field. Let i f G l(kx) be quasi-injective. Let 

F G Mod(kx). Then 3xF <g)if is quasi-injective. 

Proof. — (i) Let us first prove the result when F = kz for a locally closed set Z. By 

the result of Proposition 4.2.14 (v), we have for any G G Modc(kx)' 

HomI(fcx)(G, ßxkz ®K)~ T(X; kz 0 Horn (G, i f ) ) , 

and this functor is exact with respect to G. 
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(ii) Let F G Mod(kx). There exists an epimorphism @ i e I /cc/--»F. For a finite 
subset J of / , denote by Fj the image of ®ieJkVi. Then (5XF ~ "hm"(/}XFj) , 

j 
and it is enough to prove the result with F replaced by Fj. If | J| = 1, then F is 
isomorphic to kz for some locally closed subset Z , and the result follows by (i). Then 
the proof goes by induction on the cardinal of J. Indeed, if one has an exact sequence 
0 -> F' F -+ F" -+ 0 then 0 -+ /3XF' 0 i f -> /3XF 0 i f f3xF" 0 i f -+ 0 is 
exact, and if feF' 0 i f and (3XF" 0 i f are quasi-injective then (3XF 0 i f will be 
quasi-injective. q.e.d. 

Proposition 4.2.22. — Assume that k is a field. Let F, G G Mod(A:x) and let i f G 
I(fex)- F/̂ en there are natural isomorphisms 

Ihom (G, i f ) 0 j3xF ^ Ihom (G, K®(3XF), 

Пот (G, i f ) 0 F ^ Пот (G, i f 0 (3XF), 

Г(Х; F 0 Horn (G, v,v v,v v, ̂ > HomI(,x) (G, pxF). 

Note that the third formula gives an alternative definition of the ind-object (3XF 
when A = kx. 

Proof. — The first morphism is obtained by Corollary 4.2.7, the second one by ap
plying a to the first one, and the last one by applying T(X; •) to the second one. 

First let us prove that the second morphism is an isomorphism. Remark that both 
sides are left exact with respect to if. Hence we may assume that i f is quasi-injective. 
Since the functor Horn (G, •) sends exact sequence of quasi-injective objects to exact 
sequences, we get by Proposition 4.2.21 that both sides are exact with respect to F. 
Since both sides commute with lim with respect to F, we may assume F = kjj for an 
open subset U. Then the second formula follows from Proposition 4.2.14. 

The third formula follows from the second one by applying the functor T(X] •) with 
K = kx. 

Finally let us prove the first formula. For any S G Modc(/cx), one has 

ttoml{kx)(S,Ihom(G,K) ® f3xF) ~ ffjT\fffX; Hffffffffforn (S,Ihom(G,if) 00XF)) 

~ r (X ; v,Horn (S, Ihom (G, i f )) 0 f ) 

~RVV(X; Hfffom(S®G,K)®F)j 

~r(vvvX; Hofjm(S®G,K 0 / ? x F ) ) 

~ V R ( X ; Horn (S,Ihom (G, i f 0 0XF))} 

~ HomI(fcx)(S,Ihom (G, i f 0 / 3 x F ) ) . 

q.e.d. 
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4.3. External operations 

Recall that all spaces are Hausdorff, locally compact and with a countable base of 

open sets. Let / : X —> Y be a continuous map. 

From now on, for the sake of simplicity, we assume that k is a field, and we consider 

only the base rings kx,ky, etc. The case of sheaves of rings will be treated in the 

next chapter. 

Inverse image. — Let G G I(fcy). We define / XG G I(kx) as follows. If G = 

"lim" d for d G Modc(/cy), we set: 
i 

f~1G= "Ihn" (f-'Gih. 
i,UCCX 

Note that one also has f~lG = "lim" f~xGu where f~lGi G Mod(fcx). 

If ddd U ^ X is an open inclusion, and F G I{kx), then i^F ~ F\u, by Lemma 

3.3.7. 

Proposition 4.3.F — The diagram below commutes: 

Mod(kY] 
r1 

Mod(kx] 

by 

l(ky) 

ay 

Mod(ky) 
f-1 

•Mod(kx). 

ax 

r 1 
Kkx) 

iX 

Proof 

(i) Let G G Mod(ky). Then tY(G) = "lim" Gv and 
VCCY 

/ " V ( G ) ~ "lim" (f^GVH 
VCCY,UCCX 

~ "lim" (f-^f-imffhnu * "Hmf f f^r1^. 
vccy,c/ccx U E X C 

(ii) Let G = "lim" G* G I(jfey). Then c*y(G) = lim G* and 
I 2 

/ - V ( G ) ^ / - 1 lim G, ~ l im/"1^ ~ hfax("lim" Z " 1 ^ ) . 
i i 1 

q.e.d. 

Proposition 4.3.2. — Tfte functor f 1: l(ky) —> I(&x) ^ e#ac£ and commutes with 

"lim" ana1 0. 
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Proof. — Recall that f~lG = "lim" (f^G^u, and the functors "lim", f~l and 
i,UCCX 

(-)u are exact and commute with "lim" and 0. q.e.d. 

Proposition 4.3.3. — For f:X^>Y and q:Y —> Z, one has (oof) 1 ~ f 1 o o x. 

The proof is straightforward. 

We shall prove later (Corollary 4.3.7) that the functors / 1 and /3 commute. 

Direct image. — Let F = "lim"F* G l{kx) for Fi G Modc(kx). One defines 

/*F G I(fcy) by the formula: 

/ * ( " l m " F 0 = l im" l im" /* (F^)2 . lim "lim" / . ( I V ^ ) ) . 

i K i t/CCX i 

Here, X (resp. U) ranges through the family of compact (resp. relatively compact 

open) subsets of X. The isomorphism above is described by the morphisms 

lim "lim" UFiK) lim "lim" UTUFAK ^ - lim "lim" UTuFA. 
K i K,U i U i 

Proposition 4.3.4. — The two functors f 1 and /* are adjoint. More precisely, let 

F G ï(kx) and let G G I(fcy). Then 

HomI(jbx)(/-1G,F)~HomI(iby)(G,/.F) 

Proof. — Let F = " lim " F* and G = " lim " Gj . One has the chain of isomorphisms 
i i 

HomI(, Af-'G^F) -HomI(fcx,( "lim" (f~1Gj)u, "lim" F*) 

j , t/ccx 
- l i m H l i m H o m M o d ( , MF ^ y , ^ ) 

j , t/ccx » 
~ lim lim HornMod(fe)(/ ^ I V J i ) 

7, t/CCX » 

-lmHlimH y5}HomMod(fey)(Gi./*r^i:«) 
j , t/CCX i 

- l i m H o m , , , >(G,-, lim "l im"/ . IVF*) 

t/CCX i 
~HomI(fcy)(G,/ .F) . 

q.e.d. 

Corollary 4.3.5. — T/ie functor /* : I(fcx) —> I(fcy) ¿5 /e/£ exact and commutes with 

lim. 
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Proposition 4.3.6. — The diagram below commutes: 

Mod(/cx) 
f 

Mod(fcy) 

ZR 

I(KX) 

ZF 

Mod{kx) 
f 

Mod(Jfey). 

ay 

f 
Kfcy) 

Z 

Froo/ 
(i) f^x — ̂ yf* follows from Oixf~x — f~xOLy and the fact that /* and t are right 
adjoint of f ~ l and a. 

(ii) Let F ~ "lim" F* with F* G Modc(/cx). Then 

fJaxF) ~ lim f * ( ( a x F V ) ^ Urn/.(limine) 

~ lim/i(lim Fi/c) ~ lim \im f\(FiK) 
K i K i 

~ Urn ay ("lim" f\FiK) ^ ay (Um "lim" f*FiK) ~ a y ( / . F ) . 

q.e.d. 

Corollary 4.3.7. — Tfte diagram below commutes: 

Mod(fcy 
r 1 

Mod(/cx) 
ZF 

i(fcy; 
r 1 

ZF 

• i(fex) 

Proof. — By adjunction, using Proposition 4.3.6. q.e.d 

Proposition 4.3.8. — Let F e l(kx) and G G I(fcy). T/ien 

Ihom(G,f*F) ~ sfsfahom(f-1G,F) 

Hom(GJ*F) ~sss UHom(f-lG,F). 

Proof. — The second formula follows from the first one by applying the functor ay 
To prove the first formula, consider i f G I(fcy). Then 

HomI(fcY)(if,Iftom (G, /*F)) ~ HomI(fey)(If 0 G, / . F ) 

~ H o m I f e ) ( / - * ( i f ® G), F) ~ H o m I t e ) C T ^ ® F) 

- H o m ^ ^ Z - ^ ^ / i o m a - ^ ^ ) ) - HomI(jfey)(lif,/.I/iam(r1G,F)). 

q.e.d. 
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Proposition 4.3.9. — For f: X —> Y and g.Y^Z, one has (g o /)# ~ g* o 

By adjunction, this follows from Proposition 4.3.3. 

Note that /* does not commute with ¡3 in general. 

Proposition4.3.10. — Assume that f: X —> Y is the embedding of a locally closed 

subset. Then f -1 /* —> id. 

Proof. — First, that assume •/ is an open embedding. Let F G I(kx) and let G G 

Modc(kx)- One has the isomorphisms: 

Horn*,. JGJ-'UF) ~ KovvffffmUfkJf<<wfvG,f*F) 

^HomI(fcyl(/-1/!!G,F) 

^HomI(fcx)(G,F). 

Here, the first and second isomorphisms follow from Theorem 3.3.14. 

If / is a closed embedding the result follows from the classical one for sheaves since 

both f~x and /* commute with inductive limits in this case. q.e.d. 

Proper direct image. — Let F = "lim" F» G l(kx) for Fi G Modc(/cx). One 

defines fwF G Kkv) bv the formula 

fu " H m " ^ =ss " l i m " / . ^ . 
i i 

If ZJT/ : U <-> X is an open embedding, iu\\ coincides with the previous construction of 

section 3.3. 

Note that the natural morphism f\\iXF —• iyf\F is not an isomorphism for F G 
Mod(A:x), in general. Here, this morphism is described by the morphisms (we do not 

write the functors LX^Y for short) 

(4.3.1) fuF ~ "lim" MFu) ~ "lim" (f\(Fu))v ^ «Um"(/ ,F)v. 
uccx UCCX, VCCY VCCY 

To avoid any confusion, we use the different notation fu . 

Lemma 4.3.11. — / / the support of F G Mod(kx) is proper over Y, then f\\LXF 

tYh.F. 

Proof. — In this case it is obvious that the last morphism in (4.3.1) is an isomorphism. 

q.e.d. 

Proposition 4.3.12. — The functor fu is left exact and commutes with "lim" 

The proof is evident. 
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Proposition 4.3.13. — The diagram below commutes: 

l(kx) 

ax 

Mod(fcx) 

/H 

FI 

xvv;; 

ay 

Mod(fcy). 

PROOF. — One has the chain of isomorphisms 

ay/ü("l im" Fi) ~ ay(" l im" ~ Um/iF* 
Z i i 

~ / ! ( h m F O ^ / ! a x ( " l i m " F i ) . 
i 2 

q.e.d. 

Theorem 4.3.14. — For G G I(fcy) and /e£ F G l(kx), one has 

G®fuF~fn(f-1G®F). 

Proof. — Let G = "lim"G? for G7 G Modc(Ä;y) and F = "lim"F- for F, G 

Modc(A:x). Then we have 

f-xG (g) F ~ " l i m " ! / - ^ , - ) ® Fi. 

Since the F '̂s have compact support, ( / 1G?) ® F* G Mod°(/cx), and 

h{f~lG®F) ~ " l i m " / ! ( / - 1 G j ® F , ) - " l im"Gi®/ !F i 

~ ("lim" G?) (g) ("lim" /iF») — G <S> f\\F. 

3 i 
q.e.d. 

Corollary 4.3.15. — Let G G I(fcy) and Ze* F G I(fcx). 

(i) T/iere are natural morphisms 

fulhom (/_1G, F) -> T/iora (G, / . . F ) , 

/.Horn (/_1G, F) -> Worn (G, / . . F ) . 

(ii) If G E Mod(ky), these morphisms are isomorphisms. 

Proof. — Since the assertions for the second morphism follows from the first one by 

applying a, we shall prove the assertion for the first morphism. 

(i) Applying Corollary 4.2.6, we have a natural morphism 

f-xG ®Ihom(f-lG,cbdF) -> F . 

Hence, by Theorem 4.3.14, we get the morphism 

G <g> fulhom (/_1G, F) ~ f\\(f~1G Ilhorn (/_1G, F)) -> / „F . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



68 CHAPTER 4. IND-SHEAVES 

Applying Proposition 4.2.5, we get the desired morphism. 

(ii) Let F ~ "lim" Fi with the F '̂s in Modc{kx). One has the chain of isomorphisms 

Ihom (G, f\\F) ~ Thorn (G, fu " lim" Fi) 

~ Ihom (G, " lim " fiFi) ~ " lim " Worn (G, / .F i ) 

- " l im"/*Wom(/ -1G,Fi ) - "lim" / .Worn(/"^G,F.) 
i i 

~ /M "lim" Hom{f-lG,Fi) ~ f\\lham(f1G,F). 
i 

Note that we have used the fact that Ihom (K, •) commutes with "lim" when K is a 

sheaf, and this does not hold when K is an ind-sheaf. q.e.d. 

Proposition 4.3.16. — There is a natural morphism of functors from l(kx) to l(ky) 

(4.3.21 limHlimH 

If F G l(kx) has proper support over Y, this morphism induces an isomorphism 

f\\F ^ /*F. 

Proof — Let F = "lim" F* with F» G Modc(A;x). We have the morphisms 
i 

(4.3.3) / „ F ~ " l i m " / , ^ - - lim «KmnMFi)K ~ f.F. 

i KCCX i 
Here, K ranges over the family of compact subsets of X. 

Assume that suppF is proper over Y. Let S be a closed subset of X proper over 

Y such that suppF is contained in the interior of S. We may replace Fi with (Fi)s> 

Then the arrow in (4.3.3) is an isomorphism. q.e.d. 

In general fu and (3 do not commute. However: 

Proposition 4.3.17 

(i) There is a natural morphism of functors 

(4.3.4) PY ° f\\ fu ° fix-

(ii) / / / is an open embedding, (4.3.4) ¿5 an isomorphism 

Proof 

(I) There is a chain of morphisms 

f\\ -> fu ° OLX ° fix — &Y ° fu ° fix-

The result follows by adjunction. 

(ii) The functor fu o fix is left adjoint to ax o / _ 1 ~ / _ 1 o ay which is right adjoint 

to fiy o / j . q.e.d. 
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Consider now a Cartesian square of topological spaces 

g 

X 

X 

cdh 
<vv 

f 
• Y. 

9 

Theorem 4.3.18. — There is a natural isomorphism of functors from I(fcx) to I(fcy).' 

^tg'^F- f'„{«\Sm" g'^F 

Proof. — Let F = "lim" Fi with Fi G Modc(kx). Since suppF* is compact, the map 
i 

/ ' : supp(#' 1Fi) —> Y' is proper. Hence f'vg' lFi ~ f',g' Fit and we get 

f^tg'^F- f'„{«\Sm" g'^Fi) ~ " l i m " / V ^ 
9 7. 

~ "lim" g~lddm ~ g"1 ffh"flim" fhhh ̂  < T 7 H ^ 
Z f1 

q.e.d. 

Corollary 4.3.19. — Let V be an open subset ofY. Set U = f'1^), fv := f\v :U 

V, and recall that iy (resp. ijj) denotes the open inclusion V ^ Y, (resp. U X). 

LetFel(kx). Then 

i~lUF ~ fvJülF. 

Proof. — Let G G Modc(kv). Then 

HomI(fev)(G, v1/.*1) ~ HomI(Jbir)(zvnG,/.F) ~ HomI(A;jc)(/ V n G , ^ ) 

- H o m i ( f c x ) f c " ^ l G ' F ) - H o m ^ ^ G , / ^ , , ^ 1 ^ ) . 

q.e.d. 

Ind-stalk. — Let £ G X , and denote by jx the embedding {x} X . For F G 
I(&x)> it is natural to define its stalk at x by setting Fx = j~1F. However, there exist 
non-zero ind-sheaves on X whose stalk at every x G l vanishes. 

Example 4.3.20. — We keep the same notation as in Example 4.2.17, that is, we define 

the ind-sheaf N by the exact sequence 0 —> N —> xk —• /cx —• 0. Since j " 1 commutes 

with inductive limits, we get that j~xN = 0 for all y £ X. 

Hence, we define the ind-stalk of F at x as XF. This is an ind-sheaf whose support 

is contained in {x}. By Proposition 3.3.16, for F G Mod(kx) and i f G I(fcx) one has 

the isomorphism: 

Hom(F,K)x ~Rdddhoml(kx)(F,xK). 

The functor which associates with F the family of its ind-stalks is faithful: 
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Proposition 4.3.21. — Let f : F —> G be a morphism in I(kx), and assume that for 

each x G X the induced morphism xf : XF —> XG is the zero morphism. Then f is the 

zero morphism. 

Proof. — One has the chain of equivalences 

/ = 0 for all K G Modc(kx), the induced morphism HomI(A.x)(if, F) -> 

Roml{kx)(K, G) is zero for all x G X and all K, Horn{K,F)x -> Horn(K, G)x is 

zero <^ for all x G X and all K, Homl(kx^(K, XF) —> Rom^^K, XG) is zero for 

all x G X, XF —• XG is zero. q.e.d. 

Exercises to Chapter 4 

Exercise 4.1. — Let Y = R,X = { 0 } and denote by / : X —> Y the embedding. Let 

Gn = k}__^^{ G Mod(fcy). Prove that f1( H Gn) ~ kf* and n r\Gn) ^ 
n+1'n+1 nGN nGN 

fc^-. Hence, /_1 does not commute with lim. 

Exercise 4.2. — Let f: X -> 7 be as in Exercise 4.1. By choosing F = kx G 
Mod(A;x), prove that both /* and f\\ do not commute with (3. 

Exercise 4.3. — Let X =] - 1,1[, Y = R and /: X <-> y the embedding. Let Fn =^tgF- f'„{«\Sm" g'^F 

^tg'^F- f'„{«\Sm" g'^FG Mod(fcx). Show that "lim"Fn ~ hx, "lim"/.Fn ~^tg'^F- f'„{«\Sffm" g'^ and 
n n 

/*("l im" Fn) ~ (fey)x> Hence, /* does not commute with "lim". 
n 

Exercise 4.4. — Let / : X —» y be as in Exercise 4.3. Prove that f\\kx ~ x(fcy) and 

/ifcx ^ (fcy)x- Hence, / ^ x ^ t>yf\ in general. 

Exercise 4.5. — Let X = {p t} , Fn = k. Prove that j3x( FT ̂ n) is not isomorphic to 

TT 3Y(F„). Hence. 8 Y does not commute with lim. 
nGZ 

Exercise 4.6. — Let X = R, y = { 0 } , and denote by / : X —> y the projection. 

Let K, = kinx G Mod(fev). Prove that U F„ ~ ffi F« ^ "0"^. Deduce that 
nGN nGN nGN 

/n( n ^n) — fc^N and TT f\\Fn — kN. Hence, fn does not commute with lim. 
nGN nGN 

Exercise 4.7. — Assume that A: is a field. Let K G Mod(fcx) be a soft sheaf. Prove 

that F 0 K is soft for any sheaf F G Mod(fcx). 

(Hint: adapt the proof of Proposition 4.2.21.) 

Exercise 4.8. — Assume that A: is a field. Let W = kN, let E denote the the family of 

subspaces of W with countable dimension and let G = "lim" V. 
V~G£ 

ASTÉRISQUE 271 



EXERCISES TO CHAPTER 4 71 

(i) Let U be a relatively compact open subset of X. Prove that 

HomI(fc iikxu, Wx) - hm HomI(fc Jfcxc/, Vx) 
vex 

(ii) Define F = (W/G)x - "lim" Wx/Vx. Prove that for any open subset U of X 
v 

one has 
Romi(kx)(kxsgssu,F) =0. 

(Hint: in (i) remark that any open covering of U admits a countable subcovering.) 
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CHAPTER 5 

DERIVED CATEGORIES OF IND-SHEAVES 

In this chapter as in the preceding one, we work in a given universe U. All topo
logical spaces (denoted by X , F, etc.) are assumed to be Hausdorff, locally compact, 
and with a countable base of open subsets. Moreover k is a field. 

Notation 5.0.1. — If (p: C —> C is an additive functor of abelian categories, we shall 
usually still denote by ip instead of K+(ip) the associated functor from K+(C) to 
i f + ( C ) , and similarly with bifunctors. For example, we still denote by Ihom the 
functor K-(l(kx))op x K+(I(kx)) -> K+(I(kx)) associated with Ihom. 

5.1. Internal operations 

Recall that the categories Mod(kx) and Modc(kx) have enough injectives and 
systems of strict generators. 

As usual, we denote by D(kx) the derived category of the category Mod(£;x) of 
sheaves of k-vector spaces on X. More generally, if A is a sheaf of rings on X we 
write D(A) instead of D(Mod(A)). 

We denote by D(I(kx)) the derived category of the category I(kx) of ind-objects 
of Modc(/cx). 

Proposition 5.1.1. — The natural functor D(kx) —> D(l(kx)) induced by ix is fully 
faithful. In particular, D(kx) is equivalent to the full triangulated subcategory of 
D(l(kx)) consisting of objects F such that Hj(F) G Mod(kx) for all j . 

Proof. — Let F,G G K(Mod(kx)). We have 

^omD(1{kx))(iXG,LxddFdd)dhh^ lim HomK(I(fcx))(G/, ixF), G' G K(l(kx)) 
a* >n 

qis 
~ lim HomK(Mod(kx))(axGeef,Fee), ee etG' eeeG K(l(kx)) 

G' >G 
qis 

- lim Hom^ftHrfc , , (G, , ,F ) , G" e K(Mod(kx)) 
G" >G 

qis 
-Homc(fcx) (G,F) . 
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Here, we have used the fact that the category {axG7 —> G} is cofinal in the category 

{G" G}. 

Let us prove that if F G D(l(kx)) satisfies iiP(F) G Mod(kx) for any j , then 

F G D(kx)- There is a natural morphism F —» ixosxF, and it is an isomorphism 

because it induces isomorphisms in cohomologies. q.e.d. 

We introduce the categories 

(5.1.1) 

P(kx) := {"0" Gj ; G3 G Mod(A*)}, 

Vc(kx) := {"0" Gj ; Gj G Modc(Â;x)}, 

Zq(kx) := { F G I(fcx) ; ^ is quasi-injective}. 

If there is no risk of confusion, we shall write V, Vc and lq instead of V(kx), Vc(kx) 

and Tq(kx), respectively. Note that V and Vc are generating and lq is cogenerating. 

Lemma 5.1.2 

(i) The category V is stable by ® and the category Tq is stable by Y[, 
(ii) ifGeVandFe Iq, then Ihom (G, F) G Jg, 

(iii) if G eV and F e IN, then Horn (G, F) is soft. 

Proof — (i) is obvious. 

(ii) Since Ihom ( •, F) sends direct sums to direct products, we may assume by (i) 

that G G Mod(fcx)- In this case, H o n i j ^ ^ •, Ihom (G, F)) ~ H o m ^ ^ ^ • 0 G, F) is 

an exact functor on Modc(/cx). 

(iii) follows from (ii) and Proposition 4.2.19. Note that 

Horn (G, F) ~ Horn (kXl Ihom (F,G)) 

q.e.d. 

Theorem 5.1.3 

(a) Tfte category Vop x Jg is injective with respect to the functors H o m ^ ^ ^ Ihom, 

Horn. 

(b) The functors below are well-defined: 

RHomI(fex) : D-(l(kx))op x D+(I(kx)) -> D+(Mod(fc)) 

Rlhom : D-{l(kx))op x D+(I(/cx)) -> D+(I(/cx)) 

FIOTTI : £T( I ( fcX) )°P x D+(I(fex)) ^ + ( ^ x ) . 

Froo/. — (b) follows from (a) by Proposition 1.4.6. 

(al) We shall show first that V°p x lq is injective with respect to H o m ^ ^ . 

(i) Let G = "0" Gj G Vc- In order to see that lq is injective with respect to the 
j 

functor H o m ^ ^(G, • ) , we shall apply Corollary 1.4.4. Consider an exact sequence 
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0 —> F —• F —• F - » 0 in l(kX) with F', F, F" in Xq. Let us prove that the functor 
/ 9 

HomI/fcx)(G', • ) applied to this exact sequence gives an exact sequence. We have 

(5.1.2) HomI(fcx)(G,F)^ 

3 

¡ H o m ^ j í G ^ F ) 

and similarly with F replaced by F' or F". Since the functor Y\- Horn (Gj, • ) is exact 

on quasi-injective sheaves by Corollary 4.2.20, the result follows. 

(ii) Let F G Xq. In order to see that Vc is injective with respect to the functor 

H o n i j ^ ^ • , F ) , we shall apply Theorem 1.4.3. Consider an epimorphism i i - » G " in 

I(fcx) with G" = "0" G" G Vc. By Proposition 1.3.2, for each j , there exist Gj G 
j 

Modc(&x) and an epimorphism Gj-»G" such that the composition Gj —» G" —» G" 

factors through H. Let G'j = ker(Gj —> ). We get an exact sequence 

(5.1.3) 0 -+ "0" G'?- -> "0" "0" G" 0 
I J 3 

such that the morphism "0" Gj —> G" factors through if. By (5.1.2), the sequence 
j 

(5.1.3) will remain exact after applying the functor Hor r i j ^^ - ,F ) . 

(a2) Next let us show that Vop x Xq is injective with respect to the functor Xhom. 

For G G V, let us prove that Ihom (G, I0) is an exact sequence if I* is an exact 

sequence in Xq bounded from below. It is enough to prove that for any S G Modc(&x), 

H* := H o m ^ ^ ( S , Xhom (G, /* ) ) is exact. We have the isomorphism 

-HomI(fcx)(S ®G,J#) . 

Since S ® G G Vcy (al) implies the exactness of H*. 

The exactness in G is similarly proved. 

(a3) The case of the functor TLom follows from (a2) by applying the exact functor 

ax. 

(a4) Finally let us prove that VopxXq is injective with respect to H o m ^ ^ . Note that 

TLom{F,G) is soft for G G V and F G Xq by Lemma 5.1.2 (iii). Hence the assertion 

follows from (a3) and the isomorphism H o m ^ ^ G , F) ~ T(X ; Horn (G, F)) . q.e.d. 

Proposition 5.1.4. — Let G,K G D-(I(kx)) and let F G D+(I(kx)). Then 

(i) axRXhom (G, F) ~ i W o m (G, F) , 

(ii) RXhom (G 0 if, F) - i?J/iora (G, iZZTiora (X, F) ) . 

Proof 

(i) follows from the isomorphism ax ° Thorn ~ Horn and the exactness of ax-
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(ii) We may assume G,K e K~{V) and F G K+(Iq). Since G®K e K~(V), and 
Ihom (K, F) G K+(lq), we get the isomorphisms 

Rlhom (G ®K,F)~ Ihom (G 0 K, F) 

~ Ihom (G, Ihom (K, F)) ~ Rlhom (G, Rlhom (K, F)). 

q.e.d. 

Proposition 5.1.5. — Let G G D-(l(kx)) and F G F>+(I(/cx)). Then 

RHomI(fcx)(G,Fdd) - Rr (X; RHom(G,F)). 

Proof. — We may assume that G G i f - ( P ) and F G^tg'^F- f'„{«\Sm" g'^F Then 

RHomI(fcx)(G,F)^HomI(fcx)(G,F) 

~ T(X; Worn (G, F)) ~ RT(X; RHom (G, F) ) . 

Note that the last isomorphism follows since Hom(G,F) is soft. q.e.d. 

One difficulty of the theory of ind-sheaves is that the category l(kx) does not have 
enough injectives. This difficulty is partly overcome by the use of Theorem 1.5.4. 

Theorem 5.1.6. — Let S be a small set contained in Ob(I(/cx)). Then there exists a 
small full abelian subcategory Co of Modc(/cx) with the properties below. 

(i) S d n d ( C o ) . 
(ii) Co satisfies the properties in (a) of Theorem 1.5.4. In particular, Co as well as 

Ind(Co) are stable by sub-objects and quotients, 
(iii) Ind(Co) has enough injectives and such objects are quasi-injective in I(kx)-
(iv) Co is stable by 0, TLom. Moreover, kjj G Co for all open U CC X. 
(v) IfFeS, then Thorn (F, •) sends Ind(C0) to Ind(C0). 

(vi) Let K G Ind(Co) and assume K is injective in this category. 
(a) If F G S, then Thorn (F^K) is quasi-injective in I(kx)> 
(b) IfFeS, then Hk Rlhom (F, K) = 0 for k ± 0. 
(c) If F G Ind(Co), then Hom(F,K) is injective in Mod(A:x). 
(d) IfFe Ind(Co), then HkRTLom (F, K) = 0 and HkKRomI{kx)(F, K) = 0 

for k^O. 

Proof 
(i)-(iv) There exists a small set B contained in Ob(Modc(/cx)) such that S consists of 
Fs's and Fs ~ "lim" FM with Is small and filtrant and F ^ G B. Set I = \JS Is. We 

ieis 
may assume from the beginning that S contains the sheaves ku, for all open subsets 
U c c x . 

With slight modifications of the proof of Theorem 1.5.4 (see [13]), we may construct 
a small full subcategory Co satisfying conditions (a) and (b) of this theorem and such 
that Co contains B and is stable by 0, Horn. Moreover, we may assume that Co is 
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stable by products indexed by I of sheaves in Co with supports contained in a fixed 
compact subset. Then (i)-(iv) follow from this statement. 

M Let F = "lim" F and G ~ "lim" G, with G , , F G C0. Then Xhom(FG) 
ieis 

is a sub-obiect of TL^r "lim" Hom(Fi.Gj). One has 

J J "lim" W o m ^ ^ G , ) - "lim" ( J J Worn(F,, G„w) r / ) , 
ieis ieis ieis ieis 

where (p ranges over the set of maps J —> Is and U over the family of open subsets 
UCCX. 

Then (v) follows since Co is stable by Horn and by product indexed by Is. 

(vi) (a) Let G G Ind(C0). Then 

Homlnd{Co)(G,Iharn(F,rrK)) ~ HomI(,x)(G,Xhom(F,K)) 
^ HomI(fcx)(G 0 F, K ) ~ HomInd(Co)(G ® F, K ) . 

and this functor is exact with respect to G since G 0 F G Ind(Co). Therefore, 
Xhom(F,K) is injective in Ind(Co), hence quasi-injective in I(fcx)-

(vi) (b) Let F# —> F be a resolution of F with the components of F# in V. We may 
assume from the beginning that the F/s belong to 5. We may also assume that 5 is 
stable by kernels and cokernels. 
Since K is quasi-injective, RIhom(F,K) is represented by Ihom(F9,K). Hence, it 
is enough to prove that this complex is qis to Xhom (F, K). By standard arguments, 
it is enough to show that Xhom (•, K) is exact on S. This follows from the fact that 
HornInd(Coj(G,Xhorn (if, K)) ~ HomInd^Co^(G0if, K) is exact with respect to ii" G S 
for any G G Co. 

(vi) (c) It is enough to prove that Horn (F, K) is flabby. Let U be an open subset 
of X. The monomorphism F (g) jjk^F gives rise to the epimorphism 

T(X; Hom(F,K))rrh ~ Ho<<<mInd(Co)(F, K) 

-HomInd(Co)(F ® uk, K) ~ T(U; Horn (F, K)). 

(vi) (d) Consider a resolution F. —> F with the components of F. in Pc fl Ind(Co). 
Then R?{om(F,K) is represented by the complex Hom(Fm,K). Hence, it is enough 
to show that Horn (•, K) is exact on Ind(Co). This follows from the formula 

(5.1.4) T{UWom{F,Krr)) ~rrrrrHomInd(Co)(uk®F,K). 

The case of R H o m ^ ^ ^ F , K) is similar. q.e.d. 

Definition 5.1.7. — Let 5 be a small subset of Ob(I(fcx))- We denote by J{S) the 
subcategory of I(fex) consisting of objects F with the following properties: 

(i) for any G G .5, Ihom(G, F) is in Iq{kx), 
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(ii) HkRlhom(G,F) = 0, HkRHom(G,F) = 0 and HkRKoml(kx)(G,F) = 0 for 

any G G S and any k ^ 0, 

(iii) Worn (G, F) is an injective sheaf for any G e S. 

Applying Theorem 5.1.6, we get the following result. 

Corollary 5.1.8. — For any small subset S of Ob(I(kx)), the category J(S) is cogen

erating inl(kx). 

Proof. — Let F G I(kx)> Let us take Co as in Theorem 5.1.6 replacing S with 5 u { F } . 

Since Ind(Co) has enough injectives, F is embedded into an injective object in Ind(Co). 

The assertion follows from the fact that any injective objects in Ind(Co) is contained 

in J(S). q.e.d. 

Corollary 5.1.9. — Let F G D+(I(kx)) and G G D~(l(kx)). Then 

(i) Rlhom (G, F) ~ "lim" lhom(G,F') in Ind(D+(I(A*))), 
F >F' 

qis 
(ii) RHom(G,F)~ "lim" Horn (G, F ') in Ind(£>+(A*)), 

F >F' 
qis 

(iii) RRoml(kx)(G,F)~ "lim" HomI(fex)(G,F') m Ind(D+(Mod(fc))). 
F >F> 

qis 
Here F —> F' ranges over the family of quasi-isomorphisms in K+ (l(kx))• 

qis Proof 

(i) Choose a qis G' -» G with G' G K~(V) and a qis F - » F' with F ' G if+(2g). 
By Theorem 5.1.3, Rlhom (G, F) ~ Ihom (G', F ' ) . Hence it is enough to prove that, 
given a qis G' —> G as above, there exists a qis F —> F' with F ' G K+(Fg) such that 
the morphism lhom(G,Ff) —> lhom(G',F') is a qis. Let G" denote the mapping 
cone of G' —> G. We choose a small set S in Ob(I(£;x)) such that S contains all 
objects of the complexes F, G" and is stable by kernels and cokernels. Let us apply 
Corollary 5.1.8. There exists a qis F ^ F ' with F' G K+{J(S)). By Corollary 5.1.8 
(ii), Ihom (G", F') is qis to 0. 

(ii) (iii) The proof is similar. q.e.d. 

This corollary means that, for a fixed G G K~(I(kx)), the functor Ihom (G, •) is 

right derivable, and its right derived functor coincides with the right derived functor 

Rlhom (•, •) of the bifunctor Ihom (•, •). 

Proposition 5.1.10. — Let K G D~(kx), K' G D+(kx), G G D~(ï(kx)) and F G 

D+(I(kx)). Then 

(i) FWora (/3xlf, F) - flWora (X, a x F ) , 

(ii) RHom (pxK 0 G, F) - FWora (K, RHom (G, F ) ) , 

(iii) RRomD+{kx)(K,RHoml{kxw)(wwvwG,F)) -RUomqqqqqqD+(I{kx))(qqf(3xK ®G,F), 
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(iv) Rlhom (K, F <g> ßxK') ~ Rlhom (K, F) 0 ßxK', 
(v) RHom (K, F (g) ßxK') ~ ÄWora (K, F) (8) 

Proo/ 
(i) By Corollary 5.1.8, we can find a quasi-injective F' G K+(I(kx)) and a quasi-
isomorphism F —> F' such that RHom (fixK, F) is represented by Horn {(3xK,Fr) ~ 
Hom(K,axF'). Moreover since ax(F') ~ Hom{kx,F'), we may assume that 
ax(F') is injective. Hence Hom(K,axF') represents RHom(K,axF). 

(ii) By (i) we have 

RHom (ßxK (g) G, F) ~ RHom (ßxK, Rlhom (G, F)) 

- f?«ora (K, a x Rlhom (G, F)) 

- RHom (K, RHom (G, F)) . 

(iii) follows from (ii) by applying RT(X; • ). 

(iv) We may assume that K eV and F Glq. Then the result follows from Proposition 
4.2.22 since F ® f3xK G Tq by Proposition 4.2.21. 

(v) follows from (iv) by applying the functor ax- q.e.d. 

Proposition 5.1.11. — Let G G D~(kx)- Let {Fi}i be a small filtrant inductive system 
in I(kx)> Then we have 

" lim " HkRlhomhh (G, Fi) HkRlhom (G, " lim " F»), 
i i 
lim H RHomhh (G, Fi) —> H RHom (G, " lim " F<). 

7 * 
Moreover, if G has compact support, then 

^KomD(kx)hh(G,Fi) h hh KomD(l(kx))(hhG, " l i m " ^ ) . 
i i 

Proof. — We may assume that G G Mod(fcx)- Then the assertion follows from 
Theorem 1.5.6 and Corollary 5.1.9. q.e.d. 

5.2. External operations 

Let / : X —• Y be a continuous map. Recall that X and Y are assumed to be 
Hausdorff, locally compact and with a countable base of open subsets. 

Direct images 

Proposition 5.2.1 

(i) The category Iq(kx) is /*-injective. 
(ii) IfFe Tq{kx), then / . F G Jg(fcy). 
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Proof 
(i) Consider an exact sequence 0 —> F' —• F —> F" —> 0 in I(fcx)> with F' quasi-
injective. In order to prove that the sequence obtained by applying the functor /* 
remains exact, it is enough to prove that for H G Modc(A:y), the sequence 

0 - Homl{kY)(H,f*F') - HomI(ty)(ff , / ,F) - HomI(fcy)(#, f*F") -+ 0 
is exact. This follows immediately from the adjunction formula of Proposition 4.3.4 
and Corollary 4.2.20. 
(ii) A similar argument proves the exactness of the functor Homj^y^( •, f*F) on the 
category Mod0(ky) by Proposition 4.2.19. q.e.d. 

Recall that if C is an abelian category with enough injectives, its cohomological di
mension is the smallest n 6 N U o o such that any object F G C has an injective 
resolution of length ^ n. 

Corollary 5.2.2 

(i) The derived functor Rf '* : D+(I(kx)) —> D+(I(ky)) is well-defined. 
(ii) If Mod(fcx) has finite cohomological dimension, then Rf* induced a functor 

Rf,: Db(l(kx)) - D\\{kY)). 
(iii) If g: Y —> Z is another continuous map, then R(g o f)^ ~ Rg^ o Rf*. 

Proposition5.2.3. — For G G D~(l(ky)) and F G D+(I(kx)), one has the isomor
phisms 

TXHomlikY)(G,Rf.F) ~ RHomI(fcx)(/-1G,F), 

RHom (G, Rf*Fii)i ~ ii iRf\RHom(f-lG,F), 

Rlhom (G, Rf*F) ~ Rf *Rlhom (/_1G, F) . 

Proof — We may assume that G G K~(V(ky)). We can take a quasi-isomorphism 
F —> F' with a quasi-injective F'. Then applying Theorem 5.1.3, the result follows 
from the non derived case. q.e.d. 

Theorem 5.2.4. — The functors Rf* and f~x are adjoint. More precisely, for F G 
D+(I(kx)) and G G D+(I(ky)) one has the isomorphism 

H°mD+(I(fc,))(G, Rf,F) ~ H o m ^ p ^ , , ! / - ^ , F ) . 

Proof. — We have the chain of isomorphisms 

HomD+(I{fer))(G,JR/,F)~ lim HomK+a(fcy))(G',/.F') 
F >F',G'—->G 

qis qis 
lim H o m ^ ^ C T ' G ' . F ) 

F >F'G' >G 
qis qis 

^^odddbdbbmD+(l(kx)){f-vv'G,F). 

q.e.d. 
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Proposition 5.2.5. — There are natural isomorphisms and morphisms 

(i) tYRf* Rf*i<x, 

(ii) aYRf* sfs gRf^otx, 

(iii) d s p y R f ^ R f ^ x . 

Proof 

(i) To prove that for F G D+(/cx), LyRf*F ~ Rf^iXF, we may assume that F G 

K+(Mod(/cx)) and that F is injective. Then LXF G K+(Iq(kx)), and the result 

follows. 

(ii) To prove that for F G F>+(I(fcx)), ctyRf^F ~ Rf^axF, we may assume that 

F G K+(Xq(kx))' Then a^F is soft, hence /^-acyclic and the result follows. 

(iii) We have f~l^yRf^ ~ f3xf~lRf* —• /?x» and the result follows by adjunction 

(i.e. by Theorem 5.2.4). q.e.d. 

Proper direct images 

Proposition 5.2.6 

(i) The category Tq(kx) is injective with respect to f\\, and the functor f\\ admits 

a right derived functor Rf\\ : D+(I(kx)) —> D+(I(ky)). Moreover, for each k, 

the functor Rkf\\: l(kx) —> I(fcy) commutes with "lim". 

(ii) There is a natural morphism of functors Rf\\ —• Rf*. If F G D+(I(kx)) has 

proper support over Y, then this morphism induces an isomorphism Rf\\F 

Rf*F. 

(iii) If K G Mod(kx) is soft, then Rk/..(F 0 K) = 0 for k ^ 0 and F G I(fcx). 

(iv) If F £ D+(kx) and f is proper on suppF, then Rf\\F ~ Rf\F. 

(v) The functor fn sends Tq(kx) to Tq(ky). Moreover, if g: Y —• Z is another 

continuous map, then R(g o / ) , , ~ Rgw o i2/n. 
(vi) One /ms £/ie isomorphism ay o .R/n P / i o ax-

(vii) One /ms a natural morphism /3yRf\ —> Rf\\/3x, and this morphism is an iso

morphism when f is an open embedding. 

Proof 

(i) The functor f\\ \ l(kx) —• l(ky) is of the type eq qqwhere one denotes again by 

f\ : Modc(/cx) —> Modc(/cy) the restriction of the usual functor f\. Hence we can 

apply Theorem 1.5.6. 

(ii) Let F G K+(l(kx)). Proposition 4.3.16 implies the existence of a morphism 

fuF —• /*F functorial with respect to F. Therefore, we obtain the morphism Rf\\ —> 

Rf^- If the support of F G D+(l(kx)) is proper over Y, then we can choose its 

representative in K+(lq(kx)) whose support is proper over Y. Then Proposition 

4.3.16 implies that Rf\\F —> Rf*F is an isomorphism. 
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(iii) Let F = "lim'' Fi el(kx) with F{ G Modc(kx). One has 
i 

Rkfu {F ® K) ~ " Inn " Rkf, {Fi ® K ) = 0 for fc ̂  0. 
i 

Here, the first isomorphism follows from (i) and (ii). The vanishing result follows 

from the fact that Fi ®K is soft by Exercise 4.7. 

(iv) By (ii) and the corresponding result in sheaf theory, one has Rf\\F Rf*F 

Rf,F. 

(v) Let F = "lim" Fi with the F$'s injective with compact support. Then fuF ~ 
i 

"lim" f*Fi, and the sheaves f*Fi are injective. 

(vi) If F G lq(kx), then axF is soft, hence /i-acyclic. 

(vii) The isomorphism id OJXAV defines F/j —> Rf\ax/3X ~ ayRfufix, and the 

result follows by adjunction (i.e. by Theorem 3.3.26). When / is an open embedding, 

f\ and f\\ are exact, and the isomorphism follows from Proposition 4.3.17 (ii). q.e.d. 

Theorem 5.2.7. — Let F G D+(l{kx)) and G G £>+(I(fcy)). Then 

G (8) Rf\\F ~ Rfu(rxG 0 F) . 

Proof. — We may assume that F is quasi-injective. In this case, the left hand side 
is isomorphic to G 0 fuF. By Proposition 4.3.14, G <g> f\\F ~ fuif^G <g> F) . On the 
other hand, fu(f~lG®F) represents Rf\\(f~1G®F) by Proposition 5.2.6 (iii). q.e.d. 

The next result has no counterpart in classical sheaf theory. 

Lemma 5.2.8 

(i) For G G D~(l(ky)) and F G F>+(I(/cx)), tfaere are natural morphisms 

RfaRIhom (/_1G, F) -> FThora (G, Rf\\F), 

Rf\RHom ( /_1G, F) -+ FWora (G, Rf\\F). 

(ii) If G £ D (ky), these morphisms are isomorphisms. 

Proof. — The second morphism being obtained from the first one by applying a, we 

shall prove the assertions for the first morphism. We have a chain of morphisms: 

G 0 RfvRlhom (/_1G, F) ~ RfvXf^G ® Rlhom ( /_1G, F) ) - » F/nF 

Then by the adjunction, we obtain the first morphism. 

In order to see (ii), we may assume G G Mod(fcy) and F G lq(kx). In this case, the 

morphisms above reduce to fulhom (/_1G, F) —> Ihom (G, / M F ) . This morphism is 

an isomorphism by Corollary 4.3.15. q.e.d. 
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Consider now a Cartesian square of topological spaces 

9' 

X 

X' 
f 

Y' 

f 
Y. 

9 

Theorem 5.2.9. — There is a natural isomorphism of functors from D+(I(kx)) to 
D+(l(kv,)): 

RFUG'-1 ~ G-'RH. 

Proof. — By Proposition 4.3.18, there is an isomorphism f'\\g'~l ^ 9~xf\\ - The right 
hand side admits a right derived functor, and R(g~1f\\) ~ g~lRf\\. Hence we get 
the morphism of functors g~1Rf\\ —> (Rf'^g''1. Then it is enough to prove that for 
each k and each F G l(kx), it induces an isomorphism g~1Rkf\\F —• Rkf'vgf~1F. 
Since both sides commute with "lim" in view of Proposition 5.2.6 (i), we may assume 
that F G Modc(/cx). In this case, the result follows from the corresponding one for 
sheaves. 

q.e.d. 

5.3. Duality 

As in the preceding section, consider a continuous map f:X —> Y. We shall 
extend the classical Poincaré-Verdier duality to ind-sheaves and construct a right 
adjoint functor to f\\. We refer to [10] Chapter III for an exposition of the classical 
case. 

Recall that the cohomological dimension of the functor /» is the smallest d G NUoo 
such that Rjf\F = 0 if j > d for all F G Mod(A:x). A sheaf F on X is called / -
soft if for any X G X , the sheaf F\F-I^ is c-soft. The functor f\ has cohomological 
dimension ^ d if and only if any sheaf on X has an /-soft resolution of length ^ d. 

From now on, we shall make the following hypothesis: 

(5.3.1) the functor f\ has finite cohomological dimension. 

Lemma 5.3.1. — The two functors fu and f\ have the same cohomological dimension. 

Proof. — Denote by d the cohomological dimension of f\. Let F ~ "lim" i^, with 

Fi G Modc(/cx). Then RkfuF ~ "lim" Rkf\Ft = 0 for j > d. Hence, the'cohomolog-
i 

ical dimension of f\\ is less than or equal to that of f\. 
The other estimate follows from Rkf\F ~ ayRkf\\F for F G Mod(/cx). q.e.d. 
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Let K be an /-soft sheaf on X and let G G Mod(fcy). One introduces the presheaf 
o n l : 

f\cG:U^B.oieisieismklfxKu,G). 

Proposition 5.3.2 

(i) For F G Mod(kx), F<g>K is f-soft. In particular, the functor F H-> f\(F®Ku) 
is exact, 

(ii) if G is injective, the presheaf fKG is an injective sheaf, 

(iii) if G is injective and F G Modc(£;x), then 

Eomkx(F,fKG)~K0mkY(f,ieisieis(K®F),Gdsdgs). 

We refer to Exercise 4.7 and to loc. cit. for a proof. 

We shall extend the functor fK to ind-sheaves. Let G G I(fcy). We define fKG G 
Modc(kx)AMd by the formula: 

fKG(F) =Kom1{kY){fi(K®yyF),G) yyy yy for F G Modc(/cx)-

Lemma 5.3.3 

(i) fKG belongs to I(kx). 

(ii) The functor fK: l(ky) —> I(&x) commutes with filtrant inductive limits and with 

projective limits (in particular, it is left exact). 

(iii) If G is quasi-injective, then fKG is quasi-injective. 

(iv) The category Xq(ky) is fK-injective. 

(v) For F G l(kx) and G G \(ky), one has 

HomI(fcx)(F, fKG) ~ HoieisieismI(fcy)(/„(fl: ® F) , G). 

Proo/ 

(i) Clearly, the functor fK: l(ky) —• Modc(A;x)A'add commutes with filtrant inductive 

Limits and with projective limits. Hence, to prove (i), we may assume that G is an 

injective sheaf. Then the result follows from Proposition 5.3.2. 

(ii) is obvious. 

(iii) follows from the fact that the functor F »-> f\(K 0 F) is exact. 

(iv) Consider an exact sequence 0 —> G' —> G —> G" —» 0 of quasi-injective sheaves, 

and let us apply the functor fK to this sequence. To check that the sequence we have 

obtained is exact, it is enough to prove that it is exact after applying the functor 

Horn\(kx)(S, •), with S G Modc(fcx). This is clear by the definition of fK. 

(v) Let F ^ "lim" Fi with Fi G Modc(A:x). One has the chain of isomorphisms 
i 

Roml(kx)(Fj'KG) ~ limHomI(fcx)(F,/^G) ~UmHoieisieisml(kY)(MK ®Fi),G) 

~HomKfcy)('4_im''/!(^®F),G)~HieisieisieisomI(fcy)(/!!(K®F),G). 

q.e.d. 
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Theorem 5.3.4. — The functor Rfu: D+(I(kx)) —• D+(I(/cy)) admits a right adjoint, 

denoted by f, that is: 

~HomD+w^ìì(Rfn(f-1S®F),G~+w^ìì(BBBRfTTTJn( 

Moreover, txf — f'ty • {In other words, the restriction of this new functor to the 

derived category of sheaves coincides with the classical functor f.) 

Proof. — There exists a complex of /-soft sheaves K G Kb{Mod{kx)) qis to the 

sheaf fcx. By Lemma 5.3.3, for F G K+{l{kx)) and G G K+{I{kY)) one has the 

isomorphism 

HomK+(I(kx))(F,flKG) ^ HomRfn(f-1SK+WkY))(MF®K),G). 

Let G G K+{l{ky)) and assume that all components of the complex G are quasi-

injective. Let us prove that fKG represents fG. We have the chain of isomorphisms 

RomD+(1(kY)){Rf,F,G) ~ lim UomK+(1(kY)){fn{Ff <g> K), G') 

F' >F,G >G' 
qis qis 

~ ZZlim H o m ^ ^ ^ F ' , / ^ ' ) 
F' >F,G >G' 

qis qis 
~HomD+(I(kx))(FJ-KG). 

Here, we have used the fact that f\\{F'<8)K) represents Rf\\{F<8>K) and the fact that 

fKG' is qis to fKG if G' is quasi-injective. 

By its construction the new functor f coincides with the classical one when re

stricted to the derived category of sheaves. q.e.d. 

Corollary 5.3.5. — Let F G Db{I{kx)) and G G £>+( I (M) . Then 

(i) RThom (RfuF, G) ~ Rf+Rlhom (F, fG), 

(ii) RHom (RfuF, G) ~ Rf+RHom (F, / ! G ) . 

Proof. — Let S G -D+(I(/cy)). One has the chain of isomorphisms 

¥LomD+(l{kY)) (5, №m~HomD+w^ìì(R G)) ~HomD+w^ìì(RfnFF(f-1S®F),G 

~HomD+w^ìì(Rfn(f-1S®F),G)DHH 

- R0mD+(I(kx)) Rfn(f-1S®F)SDDS 

~ HomD+(I(fcx))(/-15,ffî/lom(HF,/!G)) 

~ HornD+ (I(fcy})(S, RftRThom (F,flG)). 

The second formula follows by applying ax. q.e.d. 

Proposition 5.3.6. — Let {Gi}i be a small filtrant inductive system in I(fcy). Then for 

k G Z one ftas 

iffc(/!("lim" G,)) ^ "lim" Hk{f{Gi)). 

i I 
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Proof. — Since each Gi is a small inductive limit of sheaves, we may assume from the 

beginning that all GVs are sheaves. Denote by G* the canonical injective resolution of 

G{. Then {G*}i is an inductive system of complexes of injective sheaves. Denote by 

K a bounded /-soft resolution of the constant sheaf kx, as in the proof of Theorem 

5.3.4. Then 

Hk(f{"l\m" d)) ~ / /fc(/!("hm" G*)) ̂  ^ ( / ^ ( " h m " G*)] 

~ "lim" Hk{fK{G')) ~ "lim" Hk{f{Gi)). 
i i. 

Here we have used the fact that if G is quasi-injective then FK{G) represents / ! (G) , 

and FK commutes with "lim". q.e.d. 

Proposition 5.3.7 

(i) Let Gi, G2 G Z)+(I(£;y)). There is a natural morphism 

flG1®r1G2-+ f(G1®G2). 

(ii) Assume that, locally on X, f is isomorphic to the projection Y x Rn —• Y. Then 

for G G D^Cilky)), we /mt>e £fte isomorphism 

rLG®YFKY <C<VV FG 

In particular, if f: X —> F is an open embedding, then f'^f 1. 

(iii) Assume that f': X —>Y is a closed embedding. Then 

F Y~SG F~XRLHOM {{KY)X, • ) • 

Moreover, id -̂ ->Y f'Rf\\. 

Proof 

(i) Consider the morphisms 

RMfG1®rTT1G2) T TRfnflG1®G2 

-> Gi ®G2. 

By adjunction, we get the desired morphism. 

(ii) The morphism is constructed in (i) and it is known that it is an isomorphism when 

G G Db(kY). To check that it is an isomorphism for a general G, by "dévissage", we 

may assume that G G I(fcy). Let G ~ "lim" G^, with Gi G Mod(fcy). We have 

fffc(/_1G ®/!fcy) ~ ^ ( ( / _ 1 "lim" Gi)®f-kY) ~ "lim" Hk{f~lGi ® fkY) 

~ "lim" Hk(DGDfGi) ~DHH "lim" GO-

(iii) By Corollary 5.3.5, we have for G G Db(l(kY)) 

RfJ-G ~ Rf*RIhom(kxJG) ~ Rlhom {f*kx,G). 
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Hence, fG ~ f^RfjG ~ f~lRlhom(f*kx,G). 

Now, let F G Db(I(kx)). We get 

flRf*F ~ f-1 Rlhom(f*kx,Rf*F) ~ f~lRf *Rlhom{f-1 f*kx,F) 

~ / " ^ / . F ~ F 

q.e.d. 

Proposition 5.3.8. — Let K G 2)-(I(fey)) and G G F)+(I(/cy)). T/ien 

FJ/iora (/-1FT, / !G) f Rlhom (FT, G) 

Proof. — For any F GHomD+(I(fcx))(F, FT/im (/" XF, /!G)). one has the chain of isomorphisms 

HomD+(I(fcx))(F, /!FT/iom (F, G)) ~ HomD+(I(fcy)){Rf\\F, Rlhom (F, G)) 

^HomD+(I(,r))(F®F/^HomD+(I(fcx))QQFF(<<XX<<X<XFT/iom (/" XF, /!G)). 

- HomD+(I(fcx))( / -^ ® F, fG) ~ HomD+(I(fcx))(F, FT/iom ( / " XF, / !G)) . 

q.e.d. 

Proposition 5.3.9. — There are a morphism and an isomorphism of functors 

(i) axf -> / W , 

(ii) / " V M O ^ / V ^ / ! / ? y ( . ) -

Froo/ 
(i) By Theorem 5.3.4, there is a natural morphism Rfwf —• id. This defines 

Rf\OiXf SF~QQ aYRfwf -> ay, 

and the result follows by adjunction. 

(ii) Let G G D+(£;y). Using the morphism RFUFKY —• fcy we have the chain of 

morphisms 

RMf-'pyG^fky) ~ f3YG® Rfufky 

-> /3yG®ky. 
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We get the morphism / 1(3YG <g> fkY —• f'fiyG by adjunction. To prove it is an 
isomorphism, we take S € Db(Modc(kx)) and check the chain of isomorphisms 

H o m o + d ^ S , / - 1 / ^ ® / ' ^ ) - H°RT[X; RHom (S, Pxf^G ® fkYj) 

~ H°RT (XFF; RHom (S, fkY)® / _ 1 g ) 

~ ff°GGGRr(y;il/l(iîWom(S,/lfcr)®/-1G)) 

~ tf0RFFFGGr(Y; FFRf\RHom(S, fkY)® G) 

~ #°RT(y-Rf^RHom(S, f'kY) ® g ) 

~ tf°FRr(V; JÎWom (Д/цЗ, Ay) ® g ) 

~ HoRFFFT(Y;RHom(RfuS,0YG)J 

^ ЯотвFFF+{4kY})(Rf,S,pYG) 

^KomDFF+{l{kx))(S,f[3YG). 

q.e.d. 

Consider a Cartesian square of topological spaces 

(5.3.2) 

91 

X 

F 
J 

F 

f 
>Y. 

9 

Theorem 5.3.10. — There is a natural isomorphism of functors 

Rfd^gRf*. 

Proof. — It is enough to prove the isomorphism 

RHomI(, ^ R f ' j F ) ~ RHoFFml{kY/)(K,g]Rf*F) 

for K G D+(I(kY>)) and F G D+(I(kx)). By adjunction, this follows from the 
isomorphism Rg,uf'~1K ~ f~1Rg\\K given by Theorem 5.2.9. q.e.d. 

Theorem 5.3.11. — There is a natural isomorphism of functors 

Rf'ug'^FFFgRfr, 

Note that this isomorphism has no counterpart in sheaf theory. 

Proof. — The morphism is constructed by the chain of morphisms Rg\\Rf'ug,y' ~ 
RfwRg'ug'' —> Rf\\ and by adjunction. Hence, it is enough to prove the isomorphism 

RHomHkYi)(K,Rfv/F) FHH FRRoml{kyi)(K,g'RfrF) 
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for K G Modc(ky') and F G D+{l{kx))- Since K has compact support, one has the 
isomorphisms 

RHomI(fc /)(K,Rf,llWDQQg,lF)-RT(Yf;RHom(K,Rffllg,F)) 

~ Rr(F; RgiRHom (K, Rf'u/'F)). 

Now, using Lemma 5.2.8 and the fact that g' is proper on supp(// K), we find 
the chain of isomorphisms 

RgiRHom (K, Rf'ug'F) ~ Rg{Rf\RHom{fA K,g'F) 

~ RfiRg'iRTiom (Qf'~lK, g'lF) 

~ Rf}Rg' *RHom (ff~1K1 g/lF) 

~ RfiRHom (RQg'uf^K, F) 

~ RfiRHom (f-lRguK, F) 

~ RHom (Rg\\K, RfuF) 

~ Rg*RHom (K,glRfuF). 

Therefore we get 

R H o n w AK,Rf'uq''F) ~ RT(Y: RQlRHom(K, RQQDf^'F)) 

~ R r ( y ; Rg*RHom QQ(K, g'RfuF)) 

~ Rr(y;;RHom(K,QgRf\\F)) 

R̂HomFFFI(fc JKjRfoF). 

q.e.d. 

We may summarize the commutativity of the various functors we have introduced 
in the table below. Here, "o" means that the functors commute, and " x " they do not. 
Examples showing that the functors do not commute are given in Exercises 4.2, 4.3, 
4.4, 4.5, 4.6, 5.1, 5.2. 

г1 

v 
v 
v 
lim 

lim 

i а ß lim Im 

о 

о 

о 

X 

о 

X 

о 

о 

о 

о 

о 

X 

о 

о 

о 

о 

X 

X 

X 

о 

X 

о 

о 

X 

о 

о 

X 

X 

о 

X 
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5.4. Ring action I 

For the reader's convenience, we define the standard notions of a ring or a module 
in the case of the category I(fcx), although such constructions make sense and are 
classical in the more general framework of tensor categories. Recall that k is assumed 
to be a field. 

Definition 5.4.1 
(i) A ring in I(fcx) (or "an ind-^x-algebra", or simply "an ind-ring") is the data of an 
object A e l(kx) and morphisms HA ' A ® A —> A and SA'- kx - » A, such that the 
diagrams below are commutative. 

DHH 

A 

A< 

kx 

V/ A A 

)A 

FJ A FJ 

A 

A 
VA 

*A )kx 

A®eA 

A® A 

A® A® A 

A® VJ\ 

A® A VA 

VA® A 
A® A 

VA 

A. 
(ii) A left .4-module (or simply, an .4-module or "an ind-module") is the data of an 
object M e l(kx) and a morphism [XM' A®M —• M such that the diagrams below 
are commutative. 

A® A® M 
VA® M 

A® VM 

A® M VM M 

A® M 

VM I^A 

M 

M 
VM 

>kx®M 

SA® M 

A® M 

Notation 5.4.2 

(i) One denotes by VM - M —• Ihom (A, M) the morphism deduced from IIM by 

the isomorphism 

(5.4.1) H o m I ( f c x ) ( ^ ( g ) M , M ) - H o m I ( f c x ) ( M , J f e o m ( ^ , M ) ) . 

(ii) One denotes b v e i u : M —• A® M the composition M kx®M • A®M. 
HomD 

(hi) One denotes by e*M : Ihom (A, M) —> M the composition 

Ihom (AS, SMS )SSS > I horn (kx, M) ~ M . Xhom (e^,M) 

Remark 5.4.3. — In the classical case ol a module M over a ring A, the analogous 
morphisms of /XM, VM, &M and are the morphisms a <g) ra i—» am, m i—• ( a n am), 
rnSSSF^l^Fm aFnd <p </?(!) respectively. 
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Definition 5.4.4. — A morphism of ^4-modules from M to TV is a morphism u G 
Homj^x)(M,iV) such that the diagram below commutes 

A® M 
Hom 

AF-

fJ* M 

u ->N. 

A®N 

A®N 

If u is such a morphism, we shall say that uu is ^4-linear". 

By considering the .4-modules and the morphisms of ̂ -modules, one gets a cate
gory, which we denote by 1(A). 

Lemma 5.4.5 
(i) The correspondence U i—• I(-4|t/) is a proper stack of k-abelian categories. 

(ii) The natural functor 1(A) —> l(kx) is exact and faithful. 

The proof is left as an exercise. 
As usual, one denotes by 

Hom1(A) : I(^)op x 1(A) Mod(kx) 

HomIUi : I(^)op x 1(A) Mod(fc) 

the natural functors. 

Definition 5.4.6 
(a) One denotes by Aop the object A endowed with the morphisms eZ^OZP := and 

fiA°P :— № A ° v, where v: A® A —> A® A is the morphism corresponding to 
a (8) b i—• b ® a. 

(b) An «4op-module is called a right ^.-module. 

Note that A is both a left and right A-module. 

Example 5.4.7 
(i) If A is a sheaf of fcx-algebras, then 1(A) ~ Ind(Modc(*4)) (see Exercise 5.3). 

(ii) If A is a sheaf of fcx-algebras, then (3XA is a ring in I(kx), and if M is a 
sheaf of ^4-modules, then (3XM is a /3xA-mod\i\e. This follows immediately from the 
fact that (3x commutes with ®. Note that, with the notations of Exercise 3.4, one 
has the equivalence Mod(A,I(kx)) — I((3XA), because Hornkx(A,Horn (M, M)) = 
HomI(fcx)(/U<8>M, M). 

Consider the two sequences of morphisms 

(5.4.2) A(g)A®M —• A®M > M —> 0 where d = fiA^M - A0/^M, 
d \IM 

(5.4.3) 0 -> M > Ihom (A, M) -> Thorn (A ®A,M)~ Thorn (A, Ihom (A, M) ) , 
VM d 

where d = Thorn (fiA, M) — Thorn (A, I'M)-
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Clearly, /IM ° d = 0 in (5.4.2), and d O vM = 0 in (5.4.3). 

Lemma 5.4.8. — The two complexes (5.4.2) and (5.4.3) are exact. 

Proof 

(i) The exactness of the complex (5.4.2) follows from the existence of CM- In fact, 

VM ° CM = IDM, d o eA®M 4- eM ° MM = i d ^ M • 

(Here, we regard i ^ M a s a n 4-module via the 4-module structure of 4 . ) 
(ii) Similarly, 

e*M °VM = IDM, e^0M od-\-VM°^M — i^xhom (A,M) • 

q.e.d. 

Definition 5.4.9 
(i) One defines the bifunctor 

• ®A • : I(4op) x 1 ( 4 ) - I ( f o ) 

M ®AN := coker(M (G)4<G>7V-+M(G)./V) 

where d = /IM ® N - M ® [In-

(ii) One defines the bifunctor 

Ihom A( •, •) : I(4)op x 1 ( 4 ) -> I(fex) 

X/iora , (M, N) := kerflhom (M, TV) -> X/iora ( 4 0 M, JV)) 

where d = Ihom (vm, N) — Ihom (M, z^v)-

Remark5.4.10. — One shall not confuse the functor IhomA: I(4)op x 1 ( 4 ) —> l(kx) 
and the functor Hom^^: 1(4)op x 1 ( 4 ) —> Mod(/cx). Recall that when 4 = kx we 
simply write Ihom and Worn instead of Ihomkx and 'Hom1(kxy 

Note that the functor 0 ^ is right exact, the functor IhomA is left exact, and by 
Lemma 5.4.8, one has the isomorphisms 

Л ® д M ~ M , 

lhomA(A,M) SFF~ M . 

Proposition 5.4.11. — One has the isomorphism 

axIhomA(M, N) ~ Homl{A)(M, N). 

Proof. — The left hand side is isomorphic to ker(Wora (M, N) —> Horn ( 4 0 M, iV)) 
d 

where d = Horn(fjLM,N)-Horn(M,vN). Let À: HomA(M,N) —> Hom(M,N). It is 
enough to check that À induces an isomorphism r(E/; Hom^^M, N)) —» ker(d|t/) on 
each open U C X. We may assume Z7 — X. In this case, one checks the isomorphism 

HomIM)(M,AT) ^ker(HomI(fcx)(M,AT) -> HomI(fcx)(4® M, JV)). 
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Indeed, d is the morphism u > (//M O U — u o z/jv), and u is .4-linear if and only if 
u o z/jv = I^N ° id^ 0w. This is better visualized by the diagram 

HomI(tA)(M, TV) • HomI(fcx)(M, TV) 

HomI(,A®NA® Af, TV) 

Horn I(fcx} (M, T/iora (.4, TV) ). 

q.e.d. 

Sometimes, one has to consider various rings in l(kx). 

Proposition 5.4.12. — Let Ai,A2,A3 be three rings in I(kx). 

(i) The functor 0^2 induces a functor 

I(Ai 0-4°p) x 1(^2 ® ̂ 3P) I (^ i ^^3P)-
(ii) The functor Ihom A induces a functor 

l(Ai ®A2)op x I (4i 0 43) I(A°2P ̂ ^ 3 ) . 
The proof is straightforward. 

Proposition 5.4.13. — Let A be a ring in l(kx), let M G 1(A) and let TV G Mod(oj.4). 
There are natural isomorphisms in I(fcv): 

HomaA(aM, TV) ~ Homl{A)(M, tN) ~ Thorn A(M, tN). 

The proof is straightforward. 

Proposition 5.4.14. — Let A\, A2, A3, A4 be four rings in I(kx)> There is a natural 
isomorphism in l(Ai 0A^P): 

(lM2 ®A2 2M3) WCWV 3M4 ~ iM2 0 ^ (2M3 0 ^ 3M4). 

w/We jMj means that M is an Ai 0 A°?-module. 

The proof is straightforward. 

Proposition5.4.15. — Let A\,A2,A3,A4 be four rings in I(kx)- There is a natural 
isomorphism in I(A3 0 ^ 4 P ) : 

IhomA2{2M3,lhomAidM2,iM4))EE E~ EXThornAidM2 0^2 2M3,iM4). 

#ere, .Mj G l ( A 0 ^ P ) . 

The proof is straightforward. 

We shall now construct the derived functors of 0 ^ and ThornA. 
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Definition 5.4.16 

(i) Fr(A) is the full subcategory of 1(A) consisting of the objects isomorphic to 

A 0 F for some F G I(kx). 

(ii) For a small subset S of I(&x)> let lq(A,S) be the full subcategory of 1(A) 

consisting of the objects isomorphic to Xhom (A, I) for some I G J(S). 

Recall that J(S) is given in Definition 5.1.7. We saw in Corollary 5.1.8 that J(S) 

is cogenerating in l(kx). 

Lemma 5.4.17 

(i) The category Tr(A) is generating in 1(A). 

(ii) For a small subset S ofI(kx), the category Iq(A,S) is cogenerating in 1(A)-

Proof 

(i) Let M G 1(A). Then A®M • M is an 4-linear epimorphism. 
MM 

(ii) Let M G 1(A). Since J(S) is cogenerating, there exists a monomorphism M>^I 

in l(kx) with / G J(S). Then the composition M Xhom (A, M) -> J/iora (4 , J) is 

an 4-linear monomorphism. q.e.d. 
Lemma 5.4.18. — For an A-linear epimorphism M-»A 0 F" with M G 1(A) and 

F" G I(fcx), there exists an exact sequence 0 —> F' —» F —> F" —> 0 m I(fcx) s^c^ 

£/ia£ £/&e morphism A®F A®F" factors through M in 1(A). 

Proof. — The morphism eA defines the morphism F" —» A 0 F". Let F be the 
fiber product of M and F" over A 0 F". Then F - » F " is an epimorphism in I(fcx) 
and the composition F —• F" —• 4 0 F" factors through M in I(fcx)- Setting 
F' = ker(F —> F") , we get the result. q.e.d. 

Theorem 5.4.19 

(a) For any M G l(A\ 0 ^ p ) , family Tr(A2 0 . 4 ^ ) projective with respect 

to the functor M 0̂ 2 • : I(42 0 4gP) -> I (4 i 0 4gP). 
(b) The functor below is well-defined: 

0 : D~(l(Ai ®A°2P)) x D-(I(A2®A°3P)) D - ( I ( 4 i ®4°p))-
^2 

(c) For four ind-rings Av (v — 1 , . . . ,4) , we have a canonical isomorphism in 

D-(I(Ai®A?)): 

L L L L 
(lM2 0 2M3) 0 3M4 ~ iM2 0 (2M3 0 3M4) 

.4.2 ^3 A2 A3 

Here iMj G D~(l(Ai ®A°P)). 
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Proof 

(a) Let TV = 42 0 43p 0 F with F G I(fcx). Then M 0 ^ AT ~ 4 i 043p 0 F is exact 

in F G I(fcx)- Hence the assertion follows from the preceding lemma and Theorem 

1.4.3. 

(b) follows from (a). 

To prove (c) we may assume 2M3 G Fr (42 0 43p). Then the assertion follows from 

Proposition 5.4.14. q.e.d. 

Lemma 5.4.20. — Let S be a small subset in I(fcx)- For any A-linear monomorphism 

Ihom (A, I')>^M with M G 1(A) and I' G J(S), there exists an exact sequence 0 —> 

V -> I -> I" - » 0 m I(fcx) J, J" G JXS) swc/i that Ihom (A, V) Thorn (A, I) 

factors through M in 1(A). 

Proof. — The proof is dual to that of Lemma 5.4.18. The morphism SA defines 

the morphism Ihom (A, I') —> / ' . Let N be the fiber coproduct of I' and M over 

Thorn (A, I'). Then I' —> AT is a monomorphism in I(fcx)- Since J(S) is cogen

erating, there is a monomorphism N —> I with I G J(S). The cokernel I" of 

the monomorphism V —> 7 belongs to J(S). On the other hand, the composition 

4 0 M • M —> A" —> I gives a morphism M —> Thorn (A, I) in 1(A). We can easily 
fJ>M 

see that the morphism Thorn ( 4 , / ' ) —• Thorn (A, I) coincides with the composition 

of Thorn (A, J') —• M and M -> J/iom (4 , I) in 1(4). q.e.d. 

Theorem 5.4.21. — Let A\, A2, A3 be three rings in I(fcx)-

(a) For any small subset T of K~(A\ 042p) , there exists a small subset S ofI(kx) 

such that, for any \M2 G T, the category 2g(4i043>p, S) is injective with respect 

to the functors: 

IhomAl(iM2, •) : I ( 4 i 0 4sp) -+I(42 0 43P), 

Hom^dM^ •) : I (4i 0 4 ^ ) - Mod(ax(42 0 4^p)), 

HomIMi)(iM2>.) : I (4i 0 43p) —> Mod(/c). 

(b) The functors below are well-defined: 

RlhomAi: I T ( I ( 4 i 0 4°p))°p x F>+(I(4i 0 4°p)) £+(I (42 0 4°p)) , 

RHoml{Ai): D-(l(Ax 0 4°p))°p x F>+(I(4i 0 4°p)) -> F>+(Mod(ax(42 0 4 ^ ) ) ) 

RHomIMi): D~(l(Ai 0 4°P))°P x F>+(I(4i 0 4 ^ ) ) £+(Mod(fc)). 

(c) For M G F ~ ( I ( 4 i 0 42p))? we have 

RlhomAl(M,N) ~ u\im"lhBBComAi(M,N'), 

RHom1(Ai)(M,N) ~ u\m"HCCom1{Ai)(M,N'), 

FHomIUi)(M,iV) ~ " h m - H o m ^ ^ ^ M , ^ ) . 
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Here the inductive limits are taken in the category of ind-objects in the derived 

categories, and N —> N' ranges over the family of qis in K+(I(Ai ®A3P)). 

Proof — We shall only treat the functor Xhom A , the other cases being similar, 

(a) We shall take S such that 

- Ai®A°3p G 5, 
- A3P 0 iM2 G S for any XM2 G T. 

By Theorem 1.4.3 and the preceding lemma, it is enough to show that for an exact 

sequence 0 -> V -> I I" - » 0 in J(S), 

0 ^ IhomAi(iM2,Ihom(Ai ®A°^,I')) —> IhomAi(\M2,Ihom(A\ <g>A3p,I)) 

-> IhomAi(xM2,Ihom(Ai ®A°3P,I")) -> 0 

is exact for any iM2 G T. This follows from Ihom Ai(iM2,Ihorn (Ai ®AlP,I)) ~ 

Ihom (^3P 01M2, J) and H^RIhom (A°3P 0 iM2, J ' ) ) ^ 0. 

(b) It remains to show that for any \M2 G lf~(.4i ® A2P) quasi-isomorphic to 0, 

IhomAi(iM2,N) is also quasi-isomorphic to 0 for any N G K+(Iq(A\ ®A3P,S)) 

if we take S big enough. By standard arguments, it is enough to show that for any 

exact sequence 0 —> \M'2 —• \M2 —• iMf/ —> 0, the sequence 0 —> IhomAi (IM7/, AT) —> 

IhomAi(iM2,N) - » IhomAidM^N) 0 is exact for any AT G Tg(4i ®4£P,S) . 

Writing N ~ X/iom (4i0*43P, J) with J G J ( 5 ) , this follows from IhomM dAf2, AT) ~ 

I/iom (4ap 0 iM2, J) and Hl(RIhom (A°3P 0 i M ^ , J)) = 0. 1 q.e.d. 

In order to show the relations between 0 and Ihom, let us prove the following 

lemma. 

Lemma 5.4.22. — Let A\, A2, As be three rings in I(kx), and let S\2 and S23 be 

small subsets of I(kx)- Then there exists a small subset S\3 of I(kx) such that 

XhomAi(M,N) belongs to Iq(A2 0v43P,#23) for any M G I(Ai 0 ^ p ) of the form 

Ai ®A°2P®K with K G Su and any N G Iq(Ai 0 A%p, S13). 

Proof. — Take Sis such that A\ 0 As G S13, S\2 C S13, and F ® K e Si3 for any 

F G 523 and K G Si2. Write N = Ihom(Ai ®A%P,I) with I G J(S13). Then we 

have 

IhomAi (M, N) ~ Ihom (A2 0 A°3P ®K,I)~ Ihom (A2 ® A°3p,Ihom (K, I)). 

Hence it is enough to show that Ihom (K, I) belongs to J(S23). Since K G S\2 C Sis 

we have Rlhom (K, I) ~ Ihom (K, J), and we conclude, for any F G S23 

Rlhom (F,Ihom (K, I)) ~ Rlhom (F ®K,I)~ Ihom (F ®K,I). 

q.e.d. 
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Theorem 5.4.23. — LetAi, A2, A3, A4 be four rings in I(kx)> Then there is a natural 

isomorphism in D+(l(A3 ® A*^)) 

L 

RlhomA2(2M3, RlhomAi(1M2,iN4)) ^ RlhomAl(iM2 0 2M3,1N4). 

Here, iMj e D-(l{Ai®Aop)) and XN4 G £>+(I(4i ®A°/)). 

Proof — We may assume that \M2 is a complex in Tr{A\ 0 A^). Then, tak

ing S24 big enough, we have RlhomA<2(2M3,I) ~ IhomA<2(2M3,1) for any I G 
lq{A2 0 A4P, S24). Taking £14 big enough and assuming i7V4 G lq(Ai 0 A4P, £14) , 

Rlhom Ai (iM2,1 N4) is represented by Ihom Ai (iM2, i7V4). Furthermore, by the last 

lemma, we may assume that the last term belongs to lq(A2 0 A4P, S24). Hence we 

RlhomA2(2M3, RlhomAi(iM2,!N4)) ~ IhomA2(2M3,1hornAl(iM2,1N4)). 

On the other hand, 

- RlhomAi(iM2 0̂ 2 2M3, iN4) is represented by lhomAi(iM2 0̂ 2 2M3, i7V4), 
L 

- iM2 0 2M3 is represented by \M2 0̂ 2 2M3. 

Then it is enough to apply Proposition 5.4.15. q.e.d. 

5.5. Ring action II 

In this section we shall extend some results of section 5.2, replacing the base ring 
k by ind-rings. 

Since the formalism is similar to that developed previously, we shall not give any 
proof. 

We consider the following situation: / : X —> Y is a continuous map and B is an 
ind-ring on Y. We shall assume for simplicity: 

(5.5.1) the cohomological dimension of Mod(&x) is finite. 

Theorem 5.5.1. — In (i)-(iii) below, £>+ is D, Db, D+ or D~. 

(i) The functor f1: l(kY) -> I(fcx) induces a functor f'1 : D\l(B)) -> {l{f~lB)), 

(ii) The functor f*: I(kx) -> I(fcy) induces a functor Rf*: D^f^B)) -> ^ ( 1 ( 5 ) ) , 

(iii) The functor fu: I(kx) -+ l(kY) induces a functor Rfn: D\l(f-lB)) -> 2^(1(5)). 

Theorem 5.5.2. — For G e D~(I(B)) and F G D+(I ( / -1B)) , one fta$ tte tsoraor-

RHomI(B)(G,fl/,F) ~ RHSSomj^_1B)(/_1C?,F), 

KHomm(G,Rf,F) SS^S Rf\RHoml{riB)(rlG,F), 

Rlhom B(G, Rf*F) ~ SSRf «Rlhom f-1B(f~lG,F). 
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Theorem 5.5.3. — The functors f 1 and Rf^ are adjoint. More precisely, for F G 
D+(l(f~lB)) and G G D+(I(B)), one has the isomorphism 

HomD+a(f-1£))(/~lG>F) - RomD+(i(B))(GiRf*F)-

Theorem 5.5.4. — For F GRThom^jpdbbVx and G G F>-(I(#op)), one has the isomor
phism 

G®RfuF ~ Rf\\(f~1G ® F). 
B f-iB 

Theorem 5.5.5. — Consider the Cartesian square (5.3.2). There is a natural isomor

phism of functors from D+(I{f~lB)) to D+^g^B)): 

Rf'ug' '-g-'Rfn 

Theorem5.5.6. — The functor Rfu: D + ^ / ^ B ) ) - » D+(I(B)) admits a right ad

joint, denoted by f. More precisely, for F G D+(l(f~lB)) and G G D+(I(B)) one 

has: 

tt°mD+(i(B))(RfrFiG) - HomD+(i(/-i5))(^/!G)-

5.6. Action of PA 

In this section we give some formulas in the particular case where the ind-ring is of 
the type PA with A a sheaf of fc-algebras as in Example 5.4.7 (ii). We shall assume 

the cohomological dimension of Mod(fcx) is finite, 

the flat dimension of A is finite. 

In the sequel we shall write P instead of fix - Mod(kx) —> I(fcx)> for short. Note 

that l(PA) ~ Mod(.4,I(fcx)) and /3 induces an exact functor (still denoted by P) 

p: Mod(A) - > I ( M ) . 

Theorem 5.6.1. — Let A be a sheaf of kx-algebras, let F G Db(kx), let K G Db(A), 

let M G Db(l(pAop)) and let N G Db(l(pA)). Then one has the isomorphisms: 

(i) 
L L 

a(M ® N) ~ a(M)®a(N), 
13 A A 

(ii) Rlhom (F, M) ® /3K ^ Rlhom (F, M ® pK), 
BA (3A 

(iii) RHom (F, M)®K ^ RHom (F, M ® /?AT). 
.4 /3.4. 
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Proof 
(i) For M G \{pAop) and N G I(pA), one checks easily the formula a(M ®pA N) ~ 
aM®AaN. Hence 

RTho T 

PA 
N) "lim" a(Mf ®QA N') 

M'—>, M,N'-+N 

~ "lim" (aM' <g>A aNf) 
M'—>, M,N'-+N 

i aM 
A 

L 
aN. 

Here the projective limits range over the family of quasi-isomorphisms M' —> M and 
TV' —> N. 

L L 
(ii) There is a canonical morphism Rlhom (F,M) 0 (3K -> Rlhom (F ,M 0 /IF). 
In order to prove that it is an isomorphism, it is enough to check that it induces an 
isomorphism on the cohomology objects. Since cohomology commutes with inductive 
limits, we may reduce to the case where K — Au for an open subset U of X. We 
then have the chain of isomorphisms 

L 
Rlhom (F, M ) 0 PAu ^ Rlhom (F, M) 0 ^ uk 

(3A 
~ Rlhom (F, M 0fcx c/fc) 

~ Rlhom (F, M 0 AAt/). 
/34 

(iii) The third isomorphism follows by applying ax- q.e.d. 

Theorem 5.6.2. — Let A be a sheaf of kx-algebras, let N G Db(Aop), let M G Db(A) 
and let K G Db(I(pA)). There are natural isomorphisms 

(i) RHomA(aK, M) ~ RlhompA(K, M) ~ RHoml{pA)(K, M ) , 
(ii) RHoml(0A)(pM,K) ~ RHomA{M,aK), 

(iii) /?(JV 
4 

M) ~0N 
L 

[3A 
PM. 

Proof 
(i) Let us denote by lnj(A) the category of injective 4-modules. Then ix sends 
lnj(A) to the set of injective objects in I(PA), and the result follows from Proposition 
5.4.13. 
(ii) The isomorphism 

(5.6.1) Homl{f3A)(pM,K) ~ HomA(M,aK) 

follows immediately from Hom(PM,K) ~ Hom(M,aK). Taking 5 c I(fcx) big 
enough and assuming that the components of K belong to Xq(PA, S), we have 

RHoml{(3A){pM,K) ~ Homl(f3A)(PM,K) 

~ HomA(M, aK). 
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Then the results follows since aK is a complex of injective ^-modules. 

(iii) Let K E Db(l(KX)). Using the result of (i), we get the chain of isomorphisms 

HomDb(I{kx))(f3(N®M),K)~ UomDb(kx)(N® M,aK) 

~ HomDb{A)(M, RHom (TV, aK)) ~ RomDb{A)(M, a(Rlhom (0N, K))) 

~ Horn Db(l(0A))(pM,RThom{f3N,K))-RomM'—>, M,N'-+NM'—>, M,N'- ®JN,K). 
PA 

q.e.d. 

Theorem 5.6.3. — Let B be a sheaf of ky-algebras, let L E Db(I((3Bop)) and N E 
Db(B). Then we have the isomnrnhism 

F=LL L 

0B 
/3N) QM'—> L 

M'—>, M,N 
3f-xN. 

Proof. — We have the morphisms 

RHf'L É>F (3f-lSNR)~RRRfuf-HL®(3N->L®pN. 
Pf-^B PB pb 

By adjunction, we get the morphism fL ® f3f~1N -> f(L® /3N). Let K £ 
Pf~xB pb 

Modc(/cx). We have the chain of isomorphisms 

Rf^RHomiK, f-L ® ßf^N) ~ RЛ(RTLom (K< flL) ® ГгЮ 
M'—>, M,N' M'—>, M,N 

~ Rf\RHom (K, flL) | i V ~ i W o m (RfuK, L) | i V 

~ RHom(Rf\\K,L ® f3N) ~ Rf^RTLom (K, f (L <g> f3N)). 
PB pb 

This implies the isomorphism 

H o n w f c v , J K j \ L ® ß N ) ) ^ K o m D b ( l ( k . J M ' — > , M,N'-+NM'—>, M , N ' - + K J l L D ®D ßf^DDN), 
ßB XXBB 

whence the result. q.e.d. 

Exercises to Chapter 5 

Exercise 5.1. — Let Y — M, X = { 0 } and denote by / : X —> Y the embedding. Let 
G = {o}(kY) E l(kY)- Prove that fG ~ kx[-l] and / ayG ~ kx- Hence, /• does 
not commute with a. 

Exercise 5.2. — Let / : X —• Y be as in Exercise 5.1 and let G — k{0y G Mod(A:y). 
Prove that f(3yG ~ &x[—1] and fixf'G ~ kx- Hence, f does not commute with /3. 
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Exercise 5.3. — Let A denote a sheaf of kx-algebras. We also regard A as a ring in 
l(kx), and we denote by cp: Ind(Modc(4)) —> 1(A) the canonical functor. Prove that 
(p is an equivalence of categories as follows. 
(i) Construct the functor r: I(kx) —> Ind(Modc(4)) such that ip o r(F) ~ A 0 F for 

F G I(fex). 
(ii) For M G 1(4), construct a morphism d(M): r ( 4 0 M ) r (M) in Ind(Modc(4)) 
such that <p(d(M)) coincides with d in (5.4.2). 
(iii) Define ip: 1(A) —> Ind(Modc(4)) as ip = cokerd. Prove that the two functors (p 
and ip are a quasi-inverse to each other. 
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CHAPTER 6 

CONSTRUCTION OF IND-SHEAVES 

In this chapter we use Grothendieck topologies in order to construct ind-sheaves. 

We shall assume that A: is a field and that X is a Hausdorff locally compact space 

with a countable base of open subsets. 

6.1 . T - topology 

We consider a family T of open subsets of X. We set 

TC = {U e T; U is relatively compac t} , 

% = {U G T C ; U IS connected}. 

We shall consider some of the hypotheses (6.1.1) and (6.1.2) below. 

(6.1.1) 

(i) U,V G T implies U N V G T , 

(ii) U and V belong to T if and only if U N V and U U V belong to T , 

(iii) U\V has finitely many connected components for every (7, V G TC, 

(iv) TC IS a covering of X , and 0 , I G T . 

(6.1.2) 
for any x 6 I , { [ / G T ; x G [ / } is a neighborhood system of X, 
(I.E. T IS a basis of the tooo logv) . 

Note that assuming (6.1.1), every U G TC has finitely many connected components, 

each of which belongs to TC. 
We regard T as a subcategory of OP(X). Assuming (6.1.1) (i) , T admits products 

and fiber products. Moreover hypothesis (2.3.2) of Chapter 2 is clearly satisfied. 
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Definition 6.1.1. — Assume (6.1.1) (i). 

(i) We denote by XR the category T endowed with the topology induced by XI/ (see 

Example 2.1.4). Hence S c TflOp(£/) is a covering of U G T if for any compact 

K of X , there exists a finite subset SO C S such that K n (UyG(g0 V) = K fl U. 

(ii) For /7 G Op(X) , we set T fl U := n £/; F G T } . 

(iii) For U G Op(X) , we denote by UT the category TnU endowed with the topology 

induced by 17//. We denote by IUT: UT —» X 7 - the natural functor of sites 

associated with T 3 ^ K - > l / n f 7 G T nU. 

(iv) For [/ G T, we denote by £7xr the category T C\U endowed with the topology 

induced by X r - A covering of V in UXT is a covering in XT- We denote by 

i[/XT: UXT —> XT the natural morphism of sites T 3 V V n U and by 

JUXT : -^r —* UXT the morphism of sites T C\U 3 V ^ V e T. 

Notation 6.1.2 

(i) We shall often write KR instead of KXT and hence Mod(/cr) instead of Mod(A:xT). 

(ii) We denote by p: X —> X T the natural morphism of sites. 

As already mentioned in Chapter 2, if U G T, then JUXT* —SFSG<<X Hence, we set 

for U G T: 

iuxri = JC/XT 1 : Mod(A:t/XT) Mod(/cxT). 

If F G Mod(fcx^r), we also write for short 

F\UXT = IUXR XF G MOÀ(KUXT), 

FUXT = IUXT^UXT'1^ 

F\Ut = i>UT~lF G Mod(AfrT), 

and we keep the same notation F\UXT or F\UT if F G Mod(AvXT) with [ / c V . 
If £/, X G T, we have 

KJ- := /cxT = A^KPT where a^-' X ^ — • {p t} , 

*rc/ := iuxT\KUXT - (SSKR)UXT € Mod(fcr). 

Note that the natural morphism KRU —> KR is a monomorphism. 

6.2. T-coherent sheaves 

In this section, we assume that T satisfies (6.1.1). 

Notation 6.2.1. — If Z is a locally closed subset of X , we shall often write KZ instead 

of KXZ-

We introduce the category /C(T) by setting 

Ob(/C(T)) = { ( / , {UI}I€LY, I finiSSte, UieT\ { 0 } } . 

YLOMK{T)((I,{QQQFUi}i),{J,{VJ}J)) = {(AJI)J£JIIEI;SS AJI G K,AJ{ ^ 0 => U{ C VJ}. 
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The composition is defined as follows. Let p = (a>ji)jej,iei'-M'—>, M,N'-+NM'—>, M, -* (J,{Vj}j] 
and i) = ( b k j ) k e K d e J : (J, {Vj}j) -> (K, {Wk}k). Then ip o (p = (cki)keK,iei, with 

M'—>, M 
3 

bkjCLji 

We define naturally the full subcategories K,(TC) and JC(%) of /C(T) . 
The functor /C(T) —> Mod(fcx) which associates the sheaf 0 . kVi to (J, {Ui}i) is 

faithful and we shall identify IC(T) with a subcategory of Mod(kx)- Note that this 
functor is not fully faithful in general since the open sets which belong to T are not 
necessarily connected. This functor is fully faithful when restricted to K(%). 

Now recall that if C is an abelian category, J an additive subcategory, and F EC, 
one says that: 

(i) F is j7-finite if there exists an epimorphism G - » F with G E J, 
(ii) F is ./-pseudo-coherent if if for any morphism G —+ F with G E J, kevp is 

J^-finite, 
(iii) F is Jf-coherent if F is both ^-finite and J'-pseudo-coherent. 

Note that (ii) is equivalent to the same condition with "G E replaced by " G is 

J-finite". 
One denotes by C6h(J) the full subcategory of C consisting of ,7-coherent objects. 
Then one easily proves that the category Coh( J) is additive and stable by kernels 

(see [13]). 
We apply these constructions with C = Mod(A;x) and J — TC(TC). We shall say that 

a sheaf F is 7^-finite (resp. pseudo-coherent, resp. coherent) instead of /C(7^)-finite 
(resp. pseudo-coherent, resp. coherent). 

One denotes by C o h ( j Q the full subcategory of Mod(kx) consisting of 7^-coherent 
objects. Note that Coh(7 ; ) = Coh(7o) . 

Theorem 6.2.2. — The subcategory Coh(T^) is stable by kernels, cokernels and finite 
direct sums. In other words, it is abelian and the natural functor Coh(7^.) —> Mod(A:x) 
is exact. Moreover Coh(7^) contains JC(TC). 

We know that Coh(7^) is stable by kernels and finite direct sums. The proof that 
it is stable by cokernels is given in Lemmas 6.2.3-6.2.8 below. 

Lemma 6.2.3. — Let 0 —» F' —> F —> F" be an exact sequence and assume that F' 
and F" are %-pseudo-coherent. Then F is Tc-pseudo-coherent. 

Proof — We shall show that for any morphism (p: G —> F with a 7^-finite G, ker(cp) 
is 7^-finite. It follows easily from ker(<^) = ker(ker(G —> F") —> F'). q.e.d. 

Notation 6.2.4. — Let Z and Z' be a pair of locally closed subsets such that Z D Z' 
is closed in Z and open in Z'. The morphism kz —• kz' defined as the composition 
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kz —• kznz' kz> will be denoted by Iz^z1- Note that lz'^z" ° lz-+z' = lz->Z" 
does not hold in general. 

Lemma 6.2.5. — Consider a morphism ip: ku —> kX\v with U,V G Tc. Then there 

exists a finite open covering U = |J • Ui with Ui G Tc and a commutative diagram 

ku 

D<<% 
SS 

SF 
XVV 

where the vertical arrow is given by lui->u and ip is given by calui^x\v for some 
ai G k. 

Proof — Let U \ V = [_jieI Zi be the decomposition into connected components. 

Then I is finite by (6.1.1) (iii), and the Z^s are connected and closed in U. Set 

Ui = {U O V) U Zi = U \ (Cij&Zj). Hence U{ is open, 17» U ( J ^ Uj = U and 

Ui H QJtfiUj) = U f l V. Therefore Ui G Tc for all i by (6.1.1) (ii). Consider the 

composition kui —» ku —> kX\v- Since Ui \ V = Zi, it factors through fc^.. Since Zi 

is connected, it is given by ailu^x\v f°r some a* G k. q.e.d. 

Lemma 6.2.6. — Let F be a subsheaf of ku with U G Tc, and assume that F is Tc-

finite. Then there exists V G Tc, V C U such that F ~ky. 

Proof. — By the hypothesis, there exists an epimorphism @ikui-^F with Ui G % 
and we may assume each Ui connected. The composition kut —> F —• ku is given by 

dilui-^u with di G fc. Let V = (Ji,a^o Then V belongs to Tc and F ~ ky. q.e.d. 

Lemma 6.2.7. — Let V and W belong to Tc. Then ky\w is Tc-coherent. 

Proof. — Clearly ky\w is 7^-finite. Let S G JC(TC) and (p: S —* kv\w. Let us show 

that ker ip is 7^-finite. By Lemma 6.2.5, there exist 5' = ©i(Ej fcc/» with a finite index 

set I and Ui G 7^, and an epimorphism / : S ' -»S such that ip = <p o / : g' —»XBV 
is given by a i l f /^yxw f°r ai £ As ker^ —> kery? is an epimorphism, in order to 

see that ker<£? is 7^-finite, it is enough to show that ker^ is 7^-finite. Set Jo = {i G 
7; di =0}. We define the morphism 

g: 0 f c , e 0 k U i n w e © kUinUi — > s ' 
ieJo iei i^jei 

as follows: g\kVi is the natural morphism kut —• S" for i G Jo, g\kVinw ls given by 

lUinw-+Ui for z G 7, and g\kUinUj is tne composition of kUinUj fcc/. © fe^. given by 

(M^nc/,-—r/,, -adUiHUj^Uj) and fct/. © Afy. -> S'. 
Clearly the image of g coincides with ker^. Therefore, ker?/; is 7^-finite. q.e.d. 

Lemma 6.2.8. — Let F be the quotient of a Tc-coherent sheaf by a Tc-coherent sub

sheaf. Then F is Tc-coherent. 
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Proof. — It is enough to show that F is 7^-pseudo-coherent. Let us consider an 
exact sequence 0 -> N -+ L —> F —> 0 with 7^-coherent N and L. There exists an 
epimorphism L 0 = (B^kui —• L with Ui G Tc. Since the kernel AT0 of L 0 —» F is 
the image of ker(iV ® Lo —> L), No is 7^-finite and hence 7^-coherent. Hence we may 
assume L = 0f=1fcf/. with Ui e Tc from the beginning. We shall argue by induction 
on n. 

Case n = 1. iV is of the form fey for some V € Tc by Lemma 6.2.6 and hence 
F ~ kux\v is 7^-coherent by Lemma 6.2.7. 

Case n > 1. Set Li = ku1 C L and L 2 = L/Li — 0 ^ = 2 ^ - Let Fi be the image of 
L\ —> F. Then we have a commutative diagram with exact rows and columns: 

SS 

0 

c 

0 
I 

SD 

SF 

SF 

0 

0 

DD 

' L 

F 

0 

0 

AT, 

-4-2 

WC 

0 

E 

0 

0 

Since Ni is the kernel of L\ © N —> L, Ni is 7^-coherent. The sheaf AT2 is 7^-finite 
because it is a quotient of N, and it is 7^-pseudo-coherent because it is a submodule 
of L 2 . Hence N2 is also 7^-coherent. Therefore Fi and F 2 are 7^-pseudo-coherent 
by the induction hypothesis, and Lemma 6.2.3 implies that F is ^-pseudo-coherent. 

q.e.d. 

This completes the proof of Theorem 6.2.2. 

6.3. T-sheaves I 

In this section, we assume that T satisfies (6.1.1). 

Proposition 6.3.1. — Let U G T . Then kru P*kxu and P~1kru kxu-

Proof 
(i) The isomorphism p~1kru —+ kXu follows from (2.3.5). 

(ii) Let us first prove the isomorphism fer — p*fex- Denote by F the presheaf on T 
defined by F ( 0 ) = 0 and F(U) = k for U ^ 0 , U G T. One has a monomorphism 
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of presheaves F —> p*kx- Hence F is separated, k? — F+ and F+ ^ p*kx- Let 
U ^ 0,17 G T with [7 connected. We have the sequence of arrows 

k = F{U) ^ F+{U) ^ p*kx{U) ~ kx{U) = k. 

Therefore kr{U) ~ p*kx{U) for any connected 17, and the result follows since % is a 
covering of X. 
(iii) We can now prove that the natural morphism kq-u ~* P*kxu is an isomorphism. 
Consider the diagram 

kru P*kXu 

kr~ >kx 
Since both vertical arrows are monomorphisms, kru is a subsheaf of p*kxu- Let 
V G T0. If V C U, then kTU{V) ~ /cT(F) ~ p . A * ^ ) - P*kXu(V). If F is not 
contained in U, p*kxu(V) = 0, which implies kru(V) = 0. q.e.d. 

Proposition 6.3.2. — Denote by pc* : Coh(7^) —• Mod(fcr) the restriction of the func
tor p* to Coh(T^). Then pc=le is exact and fully faithful, and p~1pc* is isomorphic to 
the canonical functor Coh(7^) —» Mod(A:x)-

Proof 
(i) Let us prove that pc^ is exact. Consider an exact sequence 0—> G —> 5 —> F —> 0 

in Coh(7^) and let us apply the functor p*. We already know that this functor is left 
exact. Hence it remains to show that p*(S) —• p*{F) is an epimorphism. 

Let U G Tc and let s G T(U;p*F) ~ Homfcx(kXu,F). Set 5 ' = S xF kXu-
Then S' G Coh(7^) and moreover, S' —> kxu is an epimorphism. Since S' is JC(TC)-
finite, there exists an epimorphism ip : Ç&ieikxUi^S' with I finite. We may assume 
further that Ui G %. The composition kxui —* S' kxu is given by a^lc/^t/, with 
ai G k. Let Jo = {i G 7; a* 7̂  0} . Then we may assume that ai = 1 for i G 7o, and 
[7 = \jieIoUi. We get the commutative diagram 

^ieio^xUi 

S' = SxFkXu 

S F 

kxu 

s 

F 

The composition kxui Sf —> S defines U G №om kx(kxun S) — F(Ui]S). Since 
the diagram above commutes, we have ^(U) = s\u^ It remains to apply Proposition 
2.1.12. 
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(ii) it is enough to prove the isomorphism p 1 p*F F for any F G Coh(7^). Since 

p - 1 Pc* is exact, we may reduce to the case where F = kxu- Then apply Proposition 
6.3.1. q.e.d. 

Proposition 6.3.3. — Let G G Coh(7^) and let {Fi} be an inductive system in Mod(/cr) 
indexed by a small filtrant category I. Then the natural morphism 

lim Horn hT{p*G,Fj) -* Horn fcr(p*G, lim Fi) 
i i 

is an isomorphism. 

Proof 
(i) First we assume that G = kxu with U G Tc. By Proposition 6.3.1, we are reduced 
to prove the isomorphism \\m(Fi(U)) —> (limFj)(U). 

i i 
Denote by F the inductive limit in Psh(fcr). Then F is a separated presheaf on 

XT- Hence it is enough to prove that F(U) —* F+(U) is an isomorphism. Let 
S G Cov(U). For each i G I we have isomorphisms Fi(U) Fi(S). If S is finite, we 
deduce the isomorphism F(U) F(S). Since the family of finite covering is cofinal 

in Cov(f/)°P, we obtain F(U) F+(U). 
(ii) There exists an exact sequence G\ —• Go —» G —> 0, with each G» (z = 0,1) a 
finite direct sum of sheaves of the type kxu- Since p* is exact on Coh(7^) and Horn 
is left exact, the result follows. q.e.d. 

Proposition 6.3.4. — Let F G Mod(fcr). There exist a small and filtrant category I 
and a functor I —» Coh(7^),z \—> Fi such that F ~ limp*i^. 

Proof. — Let F G Mod(/c T ) . Define 

7o = { ( t / , s ) ; t / G T c , 8 G F ( [ / ) } 

Go = ®(u,s)eiokru 

Since F(C/) ~ HomkT(kTu,F), s G F((7) defines a morphism (̂ t/,s : kTu —* ̂ - Let 
<p = 0 ( t / j S ) € j o S i n c e 7^ is a covering of X , we find that ip : Go —> F is an 
epimorphism. Replacing F by ker</?, we find an object G\ — ®(v,t)ehkTv and an 
exact sequence G\ —• G 0 —> F —» 0. For J 0 C Jo, set for short G j 0 = ®(u,s)eJ0kTU 
and define similarly G ^ . Define 

J = {(Ji , J 0); C 4 , J* is finite, i m ^ | G j l c G j J . 

Then J is filtrant and 

F ~ lim coker(Gjx —• G j 0 ) . 
(JUJO)eJ 

q.e.d. 
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Let us write I(Coh(7^)) instead of Ind(Coh(7^)) for short. 
We shall extend the functor pc^: Coh(7^) —> Mod(A:r) by setting: 

(6.3.1) A: I(Coh(T,)i - • Modffc-r} 

A C ' l i m " ^ ) = limpc.(Ft). 
i 1 

By Proposition 6.3.3 it is equivalent to define X(F) (with F G I(Coh(7^))) by the 
formula 

(6.3.2) T(U-X(F)) = Rom1(Coh{Tc))(kxu,F). 

Theorem 6.3.5. — The functor X in (6.3.1) is an equivalence of abelian categories. 

Proof. — The functor A is essentially surjective by Proposition 6.3.4. Let us prove 
that it is fully faithful. Let F,G G I(Coh(Tc)). We may assume F = " l i m " ^ , 

i 
G = "lim" Gj, with Fi,Gj G Coh(7;). Applying Proposition 6.3.3 and the fact that 

3 
pc* is fully faithful, we get the chain of isomorphisms 

HomI(Coh(Tc))(^G) - }^KYK°mcoh(TAGJ>Fi) 

- lim lim Horn hT(pc*Gj, pc*Fj) 

~ lim Horn fcT (pc»G7-, lim p^Fj) 

~ HornhT(limpc+Gj,limp^Fj). 
3 i 

q.e.d. 

Remark 6.3.6. — Note that the natural functor for : Mod(fcr) —> Mod(fcrc) is an 
equivalence of categories. Indeed, for F G Mod(/crc) and V G T set 

F(V) = lim F(UnV). 
ueTc 

Then F G Mod(fcr) and the functor F i-> F is quasi-inverse to the functor /or. 
Moreover, since Coh(7^) is small, there is an equivalence of categories I(Coh(7^)) ~ 
(Coh(Tc))A,k~add'1, where the term on the right hand side stands for the category 
of fe-additive left exact contravariant functors on Coh(T^) with values in Mod(fc). 
Therefore we get the equivalences 

(6.3.3) Mod(A:T) ~ Mod(/crJ ^ I(Coh(Tc)) ~ (Coh(Tc))A'fe-adcM. 
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6.4. Construction of ind-sheaves 

In this section, we assume that T satisfies (6.1.1). 

Proposition 6.4.1. — Let F G Psh(fcxc)- Assume: 

(i) F(0) = 0, 

(ii) for any U and V in %, the sequence 0 -> F(UUV) -> F(C7)0F(V) F(£/nV) 

¿5 exact. 

Then F G Mod(/crc) and £/&ere is a unique F G Mod(/cr) w/wcft satisfies F(U) ~ JF(£0 
/or a// t/ G Tc. 

Proof. — By Remark 6.3.6, it is enough to prove the first assertion. Let {Uj \ 1 < j ^ n} 

be a finite family in Tc. We shall show that the sequence below is exact: 

0->F 
M'—>, M,N' 

SFS 
M'—>, M,N'-+N 

F(Uk) — © F(Uu). 
M'—>, M,N'-+N 

Here, the morphism IP sends (sk)i^k^N to (^i)i<t<j<n by UJ = Si\Vij - Sj\Uir 

For n < 1 this is trivial, and for n = 2 this is the hypothesis. For n > 2 assume 

the result is proved for j ^ n — 1. Setting £// = Ui^fc<ni7fc, the commutative diagram 

below is exact by the induction hypothesis. 

0 > F(Uf U Un) 

0 

>F(Uf)®F(Un) 

EE(F(Ui)) e F{VVUn) 

0 

F(U'nUn) 

> @i<nF(Uin) 

®I<J<NF(UVIJ) 

The assertion follows. q.e.d. 

Proposition 6.4.2. — Let F G Mod(A:rc) and assume that for any U, V in Tc with 

U C V, the sequence F(V) —> F(U) —> 0 is exact. Then F is quasi-injective in 

I(Coh(7^)), i.e., the functor HornkT (-,F) is exact on Coh(7^). 

Proof. — If G G Coh(Tc), we shall write F(G) instead of Homfcr(G, F) for short. 

Let G'^G be a monomorphism in Coh(7^) and let us prove that F(G) —> F(G') 

is an epimorphism. There exists an epimorphism ©™=1 hu^G, with G 7^. Define 

Ĝ - := i m ^ G / 0 ( 0 ^ 1 ku{) —> G^. This is an increasing sequence of subobjects of G. It 

is enough to prove that the monomorphisms Ĝ ->—»Ĝ -+1 give rise to the epimorphisms 

F(Gj+1) —» F(Gfj). Hence, we may assume from the beginning that there exists 
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U G TC and a morphism <p: kjj —> G such that G' 0 ku —> G is an epimorphism. 

Consider the commutative exact diagram 

0- D 

K- >G' eku 

DD 

0 

G' 

0 0 

G' 

G 

G" 

0 

•0 

>0 

Then G" is 7^-coherent, as well as K. Since If is a sub-object of ku, it is isomorphic 

to ky for some V eTc. Applying the left exact functor HomfcT( •, F) to this diagram, 

the middle column will remain split exact, and the rows will remain exact in view of 

the hypothesis. Hence, the whole diagram will remain exact. q.e.d. 

Let us denote by ¿7-: Coh(7^) —> Mod(A;x) the natural functor. It gives rise to a 
functor I(Coh(7^)) —> l(kx) and hence a functor IT : Mod(A>r) —> I(fcx)- This functor 
is exact and commutes with inductive limits. 

Since I(Coh(7^)) is equivalent to the category of left exact functors from Coh(7^)op 

to Mod(fc), we may also define a functor Jr : l(kx) —> I(Coh(7^)) ^ > Mod(&r) by 

setting for F G l(kx) and K G Coh(7;), 

Homi(Coh(rc)FFM'KKKM,N'-)KX)(IXT>TK,FKFF),ZZ 

or equivalently, T(U;JT(F)) = Rom^^ZZkxu, F) for U G T. The functor Jr com

mutes with filtrant inductive limits. 

Proposition 6.4.3. — The functor JT is right adjoint to IT- In other words, for F G 

I(fex) and G G I(Coh(7^)) ~ Mod(/cr) one has 

Hom,r(G,RJTF) -HomI(fcx)(/rC?,F). 

Proof. — Let G ~ limpc^Ki with K{ G Coh(Tc). Using the isomorphism I? o pc^ ~ 

£x ° and the fact that IT commutes with inductive limits, we get the chain of 
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isomorphisms 

Homfcx(G, JTF) ~ h m H o m ^ ^ ^ , JrF) 

~ DD\DimRoCmL{KX)(LXiTKi,F) 

~ HomCî(kx)C(u\NNimn ITpc*Ki,F) 
i 

^HomCI(fcx)(NJTG,F). 

q.e.d. 

We shall now compare those functors. 

Note that the functors tx, pc*, *<T, IT are fully faithful and exact, the functors 

p~1,ax are exact and commute with inductive limits, and p* is left exact. Moreover 

¿T - P о Pc*, 

Pc* = P* o ¿r , 

Pc* = P* o¿r,Pc* = P* o¿r, 

p 1 ~OLX°IT, 

JT ° LX - p*, 
Pc* = P* o¿r,Pc* = P* o¿r, 

One shall be aware that the formula tx — IT ° P* is false in general. 

We may represent these isomorphisms by the commutative diagrams below. 

Coh(Tc) 

Pc, 

Mod(kr 

IT 
Mod(fcx) 

LX 

IT 
>l{kx) 

Coh(Tc) 

Pc* 

Mod(/cr) 

LT 
Mod(kx) 

Mod(/cr) < 
JT 

Mod(kx) 

ix 

Pc* = P* Mod(kr) 

o-1 
Mod(kx) 

IT Mod(kr 

OLX 

6.5. Construction II 

In this section, we assume that T satisfies (6.1.1). 

We shall need the following generalization of some of the preceding results. 

Proposition 6.5.1. — Let C be a k-abelian category and let F : Tcop —> C be a functor. 

fa) Assume 

(i) F(0) = 0 , 
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(ii) for any U and V in Tc, the sequence 0 F(U U ^ ) ^ F(U) 0 F(V) 

F(U H V) is exact in C. 

Then there is a unique (up to isomorphism) k-additive left exact functor F : 

C o h ( T C ) ° P - > C which satisfies F(kXu) ^ F{U) for all U e%. 

(b) Assume moreover that 

for any U, V eTc with U C V, F(V) —> F(U) is an epimorphism. 

Then F is exact. 

Proof 

(a) For SeC, define Fs G Psh(/cr) by 

Fs(U) = Uomc(S,F(U)). 

Applying Proposition 6.4.1 and Theorem 6 .3 .5 , we get a unique Fs G Coh(Tc)A'k~add>1 
which extends Fs- Clearly, the correspondence S H-> Fs is functorial, and thus defines 

a left exact functor F : Coh(Tc)op -> C \ 

It remains to show that F takes its values in C. Let G G Coh(7^). There exists 

an exact sequence G\ —• Go —> G —> 0 with Gi and Go finite direct sums of sheaves 

of the type kxu- Since the sequence 0 —• F(G) —> F (Go) —> F(G\) is exact and 

F(Gi) G C for i = 0 , 1 , the result follows. 

(b) The proof is similar to that of Proposition 6 .4 .2 . q.e.d. 

Corollary 6.5.2. — Let G : Tc —> Mod(fc) be a functor. 

(a) Assume 

(i) G ( 0 ) = 0, 

(ii) for any U and V in Tc, the sequence G(U n V) —> G ( C / ) 0 G(V) —> 

G(J7 U F ) ^ 0 i s ezac*. 

Tften £/iere ¿5 a unique (up to isomorphism) k-additive right exact functor G : 

Coh(Tc) Mod(k) which satisfies: G(kxu) ^ G(U) for all U G Tc. 

(b) Assume moreover 

for any U, V GTC DD F J7 C V , G(J7) —> G ( V ) is a monomorphism. 

Then G is exact. 

Proof. — Apply Proposition 6.5.1 with F = GOP : Coh(Tc)op -> Mod(/c)op. q.e.d. 

6.6. T-sheaves II 

In this section, we assume ( 6 . 1 . 1 ) and ( 6 . 1 . 2 ) . 

Proposition 6.6.1. — One has p~l o p* CC id and the functor p* is fully faithful. 
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Proof. — Let x G X. We have the chain of isomorphisms 

(p~1p,F)x ~ l i m p - V . ^ ) ^ hm p*F(U) ~ lim F(U) ~ Fx. 
xeu xeucei xeuer 

The second assertion follows. q.e.d. 

Proposition 6.6.2. — Let F G Mod(/cr) and let U be an open subset of X. Then 

RFUIP^F)- lim R(V;F). 

vccucyer 

Proof. — We may assume F = limpc*Fi with Fi G Coh(7^). Then one has 
i 

p lF ~ limp 1pc*Fi F~ limF^. 
i i 

Since V is compact, one has 

T(V; p_1F) ~ limT(V; p~lFi). 

Therefore, 

r ( C / ; p - 1 F ) - lim T^p^F)^ F lim ìimT (V - p~l Fi) 
VccU.VGTr vccuyeTc i 

~ lim l i m r ^ p - 1 ^ ) ~ lim l i m T ^ ; ^ ) 
vccu,veTc i vccuyeTc i 

~ lim T(V;F), 
vccu,veTc 

where the last isomorphism follows from Proposition 6.3.3. q.e.d. 

Proposition 6.6.3 

(i) The functor p_1 admits a left adjoint, which we denote by p\ : 

Homfcr (p,F,G) ^ Homfcx ( F ^ G ) 

for F G Mod(/cx) and G G Mod(kT). 

(ii) For F G Mod(/cx), P\(F) is the sheaf associated with the presheaf T 3 U i—> 
F(C7). 

(hi) For C/ G Op(X) one ftas 

p\(kxu) - lim /cTy. 
vcFDct/,ver 

Froo/ 

(i)-(ii) Denote by F G Psh(/crc) the presheaf U \-> F(U). First, we construct 

morphisms functorial with respect to G G Mod(fcr)' 

HomPsh(fcTc)(^G) 

f 

N 
Homfcx(F,p-1G). 
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Define f as follows. Let p : F G and U G Op(X) . Then £(<p)(E/) : F(*7) -> 

(p~1G)(U) is given by the sequence of morphisms 

F(E7) - lim F(V) = limPc* = P* o¿r,Pc* = P* o¿r,Pc* = lim G(V) ~ (p^G^U). 

vccuyer vccuyer vccuyer 

(Here we have used Proposition 6.6.2.) Define n as follows. Let ip : F —> p 1G and 

U e%. Then r](^)(U) : F(f7) —> G((7) is given by the chain of morphisms 

F(U) = F(U) ~ lim F(V) -^U lim p_1G(F) G(U). 

ucverc ucveTc 
One checks easily that £ and 77 are an inverse to each other. Since 

Hom Psh(fcTc)(F, G) ~ H o i r i e g j j j j j j < < G) ̂  Hornfcr (F++, G), 

we get (i) and (ii). 

(iii) By (i) and Proposition 6.6.2, one has for F G Mod(fcr): 

nomk(p\(kXu),F)~nohhkmk(kXkkku,P XF) 

~ lim F(V) 
vccuyer 

~ lim Horn, (k,Tv,F) 
vccuyer 

~ Hom, ( lim krv ? -F) • 
VCCU,V<ET 

q.e.d. 

Proposition 6.6.4 

(i) The functor p\ is exact and commutes with inductive limits. 

(ii) The functor p\ commutes with tensor products. 

Proof 

(i) Let us prove that p\ is left exact, the other assertions being obvious by adjunction. 

For F e Mod(fcx), denote by F the presheaf on Tc given by F(U) = F(U). Then 

p\F ~ (F)++ by Proposition 6.6.3 (ii). Since the functors F \—> F and G H-> G++ are 

left exact, the result follows. 

(ii) Let F, G G Mod(fcx). The morphism F(U) <g> G(U) -> (F ® G)(Z7) gives a 

morphism in Mod(/cr) 

pi(F)®pi(G) ^ p . ( F ® G ) 

by Proposition 6.6.3 (ii). Let us show that it is an isomorphism. Since p\ commutes 

with inductive limits, we may reduce the proof to the case when F = kxu and 

G = kxv- Then the result follows from Proposition 6.6.3 (iii). q.e.d. 

Proposition 6.6.5. — One has the isomorphisms of functors 

(i) ax ^ p 1 o JT, 

(ii) 0X^IT°P\-
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Proof 

(i) For U G Op(X) , and F G I(fcx), one has the chain of isomorphisms 

Pc* = P* o¿r,Pc* = P* o lim ( J rF) (F) 

VCCt/,i/€TC 
~ lim Boml(k Akxv.F) 

vccuyerc 
~ Horn I(fc)(/?x foc/, F ) 

Pc* = P* o¿r,vvww 

(ii) follows from (i) by taking the left adjoint functors. q.e.d. 

This is visualized by the diagrams 

Mod(fo) 

fb 

IT 

Mod(fo) 

vd 

xvv<< Mod(fo 
JT 

P 

Mod(fo) 

OLX 

<xwww 

Definition 6.6.6. — For F , G G Mod(fo) , we denote by Homk (F , G) the presheaf 

on X, Op(X) 3 U i—> Homfe (F|f /T,G|c/T). (Recall that the site UT is introduced 

in Definition 6.1.1 (hi).) 

Proposition 6.6.7. — The presheaf Hornkx(F,G) is a sheaf on X. Moreover 

Homkx(F,G) ~ p-lHomkT(F,G). 

Proof. — Let U be an open subset of X. Using Proposition 6.6.2 it is enough to 

prove that 

Homfc (F | i /T,G | tfr) - hm Homfe {F\vXT,G\yXT). 
vccuyeT 

This follows from the fact that the topologies induced on V by X<r and by UT are 

the same. q.e.d. 

6.7. Ring action 

In this section, we make hypotheses (6.1.1) and (6.1.2). 

One defines naturally the notion of a sheaf of rings in Mod(fo) , as well as the 

notion of modules over such a sheaf of rings. Note that if A is a ring in Mod( fo) , 

then p*A and p\A are rings in Mod(fo) . 

Consider a sheaf A of unitary fc-algebras on X. Let A be the presheaf on T that 

associates T(U; A) to U G T. Let F be a presheaf on T and assume that for each 
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U € T, F(U) is an A(U)-module and the restriction morphisms are .4-linear, that is, 

for V C U, U, V G T, the diagram below is commutative: 

T(U;A)®F(U) >F(U) 

T(V;A)®F(V) >F(U) 

In such a situation, we shall say that F is a presheaf of *4-modules on T. 

Proposition 6.7.1. — Let A be a sheaf of k-algebras on X and let F be a presheaf of 

Â-modules on T. Then F++ e Mod(p!*4). 

Proof. — Let U e T and let a £ T(U;A). Then a defines an endomorphism of 

F\uXTy hence an endomorphism of (F++)|c/XT ^ {F\UXT)++- Therefore, we have a 

morphism of presheaves of algebras on T, A —• EndkT(F++). This morphism defines 

a morphism of sheaves A++ —> £ndkT(F++), and the result follows since A++ ~ p\A 

by Proposition 6.6.3 (ii). q.e.d. 
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CHAPTER 7 

IND-SHEAVES ON ANALYTIC MANIFOLDS 

Applying the preceding constructions, we shall define various ind-sheaves associated 
with spaces of holomorphic functions. This is a reformulation in the language of ind-
sheaves of previous results in [8] and [11]. 

7.1. Subanalytic sites 

In this chapter, X will be a real analytic manifold and A: is a field. We refer to [10] 
for an exposition on the notions of subanalytic subsets and R-constructible sheaves. 

Let T denote the family of open subanalytic subsets of X. Then hypotheses (6.1.1) 
and (6.1.2) are satisfied. 

Definition 7.1.1. — We call the site XT the subanalytic site on X and denote it 
by XSA. 

We denote by R-C(kx) the abelian category of R-constructible sheaves of vector 
spaces on X , and by R-Cc(kx) the full abelian subcategory of sheaves with compact 
support. Hence, the category Coh(7^) coincides with R-Cc(fo) . Set 

lE-c(fo) = Ind(R-Cc(A;x)). 

Applying Theorem 6.3.5, we obtain the equivalence 

iR-c(kx) ~Mod(fosa) . 

In other words, ind-R-constructible sheaves are "usual sheaves" on the subanalytic 
site. 

Denote by D^_c(kx) the full triangulated category of Db(kx) consisting of objects 
with R-constructible cohomology (i.e., cohomology in R-C(fcx)). A theorem of [8] 
asserts that the natural functor Db{R-C(kx)) —> D^_c(kx) is an equivalence (see 
also [10] Theorem 8.1.11). 
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We denote by Db

R_c(l(kx)) the full subcategory of Db(I(kx)) consisting of objects 
with cohomology in I R - C ( & X ) . Since R-C c(/cx) is a full subcategory of Mod(A:x) 
stable by extension, IR_C(&X) is a full subcategory of l(kx) stable by extension, and 
Db

R_c(l(kx)) is triangulated. The exact functor IT : I R - C ( & X ) —* I(&x) induces a 
triangulated functor 

( 7 . 1 . 1 ) IT : D»(lR-c(kx)) -> sDB

M_C(SSSI(kx)). 

Theorem 7.1.2. — The functor IT in ( 7 . 1 . 1 ) is an equivalence of triangulated cate
gories. 

Proof. — By dévissage, it is enough to prove that for F, G G I R - C ( & X ) , the natural 
morphism ( 7 . 1 . 2 ) below is an isomorphism 

( 7 . 1 . 2 ) HomD b ( l R_ c ( f c x ) )(F,G[n]) - Kyyom DB{L{KX))(JJITddFyy, I . 

We may reduce to the case when F = "0" kxUi with a small set / and Ui G Tc. Since 
iei 

Н о Т 1 ? ь ( 1 ( ^ ) ) ( ' Ф " FhG[n}) ~ l[RomD4l{kx))(Ft,G[n}) 
i 

and there is a similar formula with H o m D b ^ f e x ^ replaced by H o m D 6 ^ l R c ^ x ^ , we 
are reduced to prove the isomorphism ( 7 . 1 . 2 ) when F = kxu, with U G T c . Let 
G = "lim" with Gj G M-C c ( /c x ) . By Corollary 1.5.7 and Proposition 5 .1 .11 , we 

3 
may reduce to the case where G G M-C c(&x)- In this case we have: 

ft°MDHIR„c(kx))(kTU,G[n})qdd ~ ddHom D b ( R_ c { k x ) ){kxu,G[n}) 

tt°mD»(I(kx))(kxu,G[ndd}) ~ddd HddomDb(kx)(kxu,G[n}) 

and the result follows since the functor Db(R-C(kx)) —» Db(kx) is fully faithful. 
q.e.d. 

Lemma 7.1.3. — Le£ f: X Y be a real analytic map and let F G F>^_c(/cx)- Tfte 

functors below are well defined: 

(i) Rftl: Db

m_c(l(kxdd)) - dDb

m_c(vl(kY)), 

(ii) f: Db

m_c(l(kv)) - Db

m_c(l(kx)), 

iii) ® : Db

m_c(I(kx)) x Db

m_c(I(kx)) - Db

m_c(l(kx) 

iv) BT/wm(F, • ) : Db

m_c(l(kx)) - ^ R _ C ( I ( ^ ) ) , 
(v) /?: D f c(fc x) -> D b (I R _ c (A*)). 

Proo/ 

(i) Let F G Z?i R_ c(I(fcx))- By "dévissage", we may assume F in degree 0. Let 

F ~ "lim" Fi, with Ft G R-C c ( fc x ) . Since HjRfnFi G M-Cc(A;y), it remains to notice 
i 

that the functor H3Rf\\ commutes with "lim". 

(ii)-(iii) The proof is similar. 
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(iv) Let G G DbR_c(I(kx)). By dévissage, we reduce to the case where G G IR-C(&X) 

and F G R-C(Jfex). Let G ~ "lim" G{ with G{ G R-Cc(/cx). Then we have 

HjRlhom (F, G) ~ " lim " H3RHom (F, G.) 

and H3RHom (F, Gi) G R-Cc(fo) . 

(v) The functor /3: Mod( fo ) —> I(&x) is the composition IT ° p\. q.e.d. 

Proposition 7.1.4. — Let u: F —> G be a morphism in DbR_c(I(kx))> Then u is 

an isomorphism if and only if for any K G R-Cc(kx), u induces an isomorphism 

RHom (F, F) -^U RHom (F, G). 

Proof. — Consider a distinguished triangle F —> G —• L and assume that for 

any F G R-Cc(fo) , RHom (F, L) = 0 . Let k e Z such that i^ ' (L) = 0 for j < fc. 

Then Hom{K,Hk(L)) ~ HkRHom(F,L) = 0. Hence, Hom(F,Hk(L)) = 0, and 

this implies Hk(L) = 0 since F"fc(L) G IR-C(&X) . q.e.d. 

Proposition 7.1.5. — LetKe Kb(R-C(kx)) and let F G Kb(lR-c(kx))- Then 

HkRHom (F, F) ~ lim HkHom(K',F) 

Hom 
where K' G Fb(R-C(/cx)) ranges through the family of complexes qis to K. 

Proof. — We may reduce to the case where F G IR-C(&X), then to the case where F G 

R-C(fcx). Then the result follows from the equivalence F>6(R-C(A;x)) ^ ^ _ c ( f o ) -

q.e.d. 

Corollary 7.1.6. — Let F G IR-C(&X) assume that the functor Horn (•, F) ¿5 e:rac£ 
on the category R-Gc(kx)- F/ien one has H3 RHom{K,F) — 0 /or j ^ 0 and any 

K G M-C(fex). 

7.2. Some classical ind-sheaves 

From now on, the base field k is C. Denote by X a real analytic manifold. 

Notation 7.2.1. — (i) We denote by the dimension of X. 

(ii) As usual, we denote by Cx (resp. Cx) the sheaf of complex functions of class 

C°° (resp. real analytic), by Vbx (resp. S x ) the sheaf of Schwartz's distributions 

(resp. Sato's hyperfunctions), and by T>x the sheaf of analytic finite-order differential 

operators. We also use the notation Ax = Cx. 

(iii) We denote by QPX the sheaf of p-differential forms with coefficients in Ax (hence, 

ft°x = Ax) and by ftx the De Rham complex with coefficients in Ax, that is, the 

complex 

) - » n°x -> > iff -F 0 
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We also set Qx .'= 

An important property of subanalytic subsets is given by the lemma below. 

Lemma 7.2.2. — Let U and V be two open subanalytic subsets of№.n, and K a compact 
subset of W1. Denote by dist(x,K \ U) the distance from x G W1 to K\U. Then 
there exist a positive integer N and C > 0 such that 

dist (x, K \ (U U V))N ^ C(dist(x, K\U) + dist(z, K \ V)) for any xeK. 

Let U be an open subset of X. One sets C%(U) = T(U\C%). 

Definition 7.2.3. — Let / G Cx (U). One says that / has polynomial growth a t p e X 
if it satisfies the following condition. For a local coordinate system ( # i , . . . , xn) around 
p, there exist a sufficiently small compact neighborhood K of p and a positive integer 
N such that 

( 7 . 2 . 1 ) suPxexnt/ (dist(x, K \ U))N\f{x)\ < oo . 

It is obvious that / has polynomial growth at any point of U. We say that / is 
tempered at p if all its derivatives have polynomial growth at p. We say that / is 
tempered if it is tempered at any point. 

For an open subanalytic set U in X , denote by C^:t(U) the subspace of CX(U) con
sisting of tempered functions. Denote by Vbx(U) the space of tempered distributions 
on U, defined by the exact sequence 

0 - rX\u(X;Vbx) -+ T(X;Vbx) Vb^U) 0. 

For a closed subanalytic subset S in X, denote by Txs the subsheaf of Cx consisting 
of functions which vanish up to infinite order on S. 

In [8], [11], one introduces the sheaves: 

THom(Cu,Cx) := V ^ Cy'\U Pi V) , 

THomiCn.Vbx) :=V ^Vbt(UnV), 
THomiCn.Vbx) vv:=V ^Vvvvbt(vvb 

As a consequence of the theorems of Lojasiewicz [14] (see also Malgrange [15]) one 
gets the following 

Lemma 7.2.4. — Let U and V be two open subanalytic subsets of X. The sequences 
below are exact: 

0 C%'\U U V) -> C~''(C/) © C~'*(K) C%'\U n y ) ^ 0, 

0 2%V(£/ U V ) - * Î>6V(C7) e 2>&V(V) - f VbUU n V ) -> 0, 

- C W ® ) -> T ( X ; Q , ® C £ ) © r ( X ; C y ® C$?) 
W 

- > r ( X ; C W ® C £ ) - > 0 . 
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Applying Proposition 6.4.1, we find that Cx'
f and Vbx are sheaves on Xsa. More 

over the functor T>bt

x( • ) is exact on the category R - C c ( C x ) o p by Proposition 6.4.2. 

Applying Corollary 6.5.2, the functor 

.GDGDGG : T - > Mod(Vx) 
W 

U t-> gCu ® C% 

extends to the category E - C c ( C x ) as an exact functor. We may thus define the left 

exact functor: 

C ~ ' w ( • ) : R - C c ( C x ) o p - » M o d ( C ) 

C™'W(F) = T(X;H°(D'F) ®C%), 

where we set 

D'F = RHom(F,Cx), 

and hence H°(D'F) = Horn (F, C x ) . Therefore, C x ' w is a sheaf on X s a . 

Applying Proposition 6.7.1, the above sheaves on X s a are p\T>x-modules, hence 

their images by IT belong to \((3VX): 

THomiCn.Vbx) :=V ^Vb 

Definition 7.2.5. — We call C~'* (resp. Vbx, Cx'
w) the ind-sheaf of tempered C°°-

functions (resp. tempered distributions, Whitney C°°-functions). 

These ind-sheaves satisfy for F e K-CC(C*) 

(7.2.2) H o m ^ F , ^ ) ~ T(X;THoggdddm(F,C%)), 

(7.2.3) Rom1{kx)u(F,mx) ssgfggss~ ssT(X;THuom(F,Vb x ) ) , 

(7.2.4) H o m I ( f c x ) ( F , C ^ ' w u ) ^ uT(X;H°ddd(D'F) ®CJ?). 

w 

Replacing the "Whitney tensor product" • 0 Cx with the usual tensor product, 

we get the left exact functor (defined on the whole category M o d c ( C x ) ) -
CX^(F) = T(X;H°(D'F) ®C£>) 

Hence we get the ind-sheaf, C x

, u ; which is nothing but the ind-sheaf f3x(Cx) and 

c™fffff'" uue f f f i ( j m x ) . 

Proposition 7.2.6. — Assume F € D^_c(Cx). (In (iv) one may assume F e Db(Cx).) 

Then 

(i) RHom (F, Vbx) ~ THom (F,Vbx), 
(ii) RHom(F,Cx'•*) ~ RTHom(F,Cx) 

W 

(ih) RHom(F,C?'w) ~ (D'F) ®Cf, 
(iv) RHom(F,Cx' ) - (D'F) ®C%. 
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Proof 

(i) For F <E R-C(Cx), the isomorphism (7.2.3) implies 

Hom (F, Vblx) ~ THom (F, £>6X). 

Then the result follows from Corollary 7.1.6, since THom(',Vbx) is exact on the 

category M-CC(CX). 

(ii) follows from (7.2.2) and Proposition 7.1.5. Indeed, RTHom(F,Cx) is bY def~ 

inition lim THom(F'Xx)' Here F' —> F ranges over the family of qis with 
pi 

F' E Kb(R-C(Cx)), and lim is taken in lnd(Db(Cx)). 
W 

(iii) For F E R-C(Cx), the isomorphism (7.2.4) implies Horn (F,C^'W) - H°(D'F) ® 

C^5. Now let F G F^_C(CX). We represent it by an object F E KB(R-C(CX))> We 

have the chain of morphisms 

(D'F)®CJ? ~ "lim" Horn(F',CX) ® 
F ' ^ F 

~ "lim" Worn(F7,Cv,w) 
F ' ^ F 

"lim" RHom(F'C^) 
F'^F 

~ RHom(F,Cx,w) 

Here F ' -> F ranges over the family of qis, with F ' <E X 6(M-C(Cx)). We have 

fP(" l im" Hom(F',C%'w)) ~ "lim" Hj(Hom(F',C%'w)). 
F'^F F'—F 

Applying Proposition 7.1.5, we get the isomorphism 

W _ 
W{(D'F)®C%) W{RHom(F,Cx,W)) 

and the result follows. 
(iv) follows from Proposition 5.1.10 (v). q.e.d. 

There is a chain of morphisms 

W{(D'F)®C%) W{RHom(F,Cx,W))Www{(D'Fiiii)®ii 

7.3. Ind-sheaves associated with holomorphic functions 

Let X be a complex manifold with structure sheaf Ox. 

Notation 7.3.1. — We shall mainly follow the notations of [10]. 
(i) We denote by X the complex conjugate manifold and by XR the underlying real 

analytic manifold, identified with the diagonal of X x X. 

(ii) We denote by dx the complex dimension of X , by ftpx the sheaf of ^-differential 

forms with coefficients in Ox (hence, = Ox) and by Qx the De Rham complex 

with coefficients in Ox. We also set fix = ^dx • One should not confuse £LPX and QpxR. 
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(iii) We denote by T>x the sheaf of rings of finite-order holomorphic differential oper

ators, not to be confused with £>XR-

(iv) As usual, D^_c{Cx) denotes the full triangulated subcategory of Db(Cx) con

sisting of complexes with C-constructible cohomology. 

Let F G D™_r(Cx)- Recall that in [8] and [11], one introduces the objects: 

THom(F,Ox) = RHomv_(öx,ffffTHom(F,Vbx)), 

w w 
F®Ox = RHomfffv_(Ox, F ® C%). 

Moreover, one has the canonical isomorphism 

(7.3.1) i?Womü_(ö^,RTHomffff(F,Cx)) THom(F,Ox). 

For A = t, w, <x>, one defines the objects Ox G Db(l(/3VX)) by the formulas: 

Ox := Rlhom ßv_(ßOx,fffVbXR) ^bbxx Rlhompvx^Ox,C^), 

Ox := Rlhom ßVff(ßxxOx^\ 

Ox := Rlhomßv_(ßffföx,Cxxn-

Of course, Ox ~ PxOx- Moreover the first isomorphism follows from (7.3.1). 

Proposition 7.3.2. — Let F G D^_C(CX)- Then 

RHom(F, 0*x) ~ qqssom (F, Ox), 
w 

RHom(F,0ww<%)hhh ~ (F>'F) <g>Ox, 

FWora (F, 0 £ ) -hhh (D'qqF) 0 £>x. 

Proof. — This follows immediately from Proposition 7.2.6. q.e.d. 

Note that we have a chain of morphisms 

0%-+0%-qq+Otx-+qOx-

Notation 7.3.3. — Let £ be a locally free (Dx-module of finite rank, and let A = t, w, uo. 

£x =q (3£) 0 OÏ. 
ßOx 

Remark 7.3.4 

(i) One shall be aware that on a complex manifold X of dimension n > 1, the object 

Ox G Db(l(Cx)) is not concentrated in degree 0. Indeed consider the Dolbeault 

complex 

(7.3.2) 0%-+0%-qq+Otx-+qOx-0mmm%-+0%-qq 

a d 
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and suppose that this complex is exact at degree p. Let U be an open subanalytic 
subset of X and consider the diagram 

VBYO,p) 
d 

F h 
'Cu 

VBYO,p) . 
d 

0 

>Vbx(0'p+1 

Applying Proposition 1.3.2, the dotted arrows can be completed to a commutative 
diagram with F G R-Cc(Cx) and an epimorphism h. It means that, for any s G 
Rom^CX^(CUIT>btx°^) = Vb^'^iU) satisfying the equation ds — 0, there exists 

t G Homj^^FjPf t^0^-1^) such that dt = s. We may assume that F is a finite 
direct sum of sheaves Cud,j € J>> with Uj open subanalytic and U = UjUj. 

Therefore, there exist tj G P6^0,p~^([/j),j G J solution of dtj = s on Uj. If 
n > 1, this is not possible for a suitable choice of U. 
(ii) The same argument shows that Rp+Ox is not concentrated in degree 0 for n > 1. 
(Recall that p is the natural morphism of sites X —> Xsa.) 

7.4. Operations on Ol 

As an application, let us prove the adjunction formula for integral transforms of 
[11] in the framework of ind-sheaves. (For the case of sheaves and D-modules without 
growth conditions, refer to [4].) 

We shall follow the notations of [11] with an exception: if / : X —» Y is a morphism 
of complex manifolds, we denote by D/_1 and D / i the inverse and proper direct 
images in the derived categories of P-modules. 

Following [12], we say that an Ox-niodule T is quasi-good if for any relatively 
compact open subset [/, T\u is a union of an increasing sequence of coherent Ox\u~ 
submodules. A Px-niodule is called quasi-good if it is quasi-good as an Ox-module. 
Recall (loc. cit.) that the full subcategory of Mod(Ox) consisting of quasi-good 
modules is stable by kernels, cokernels and extension. 

We denote by Dbq_good(Vx) the full triangulated subcategory of Db(T>x) consist
ing of objects with quasi-good cohomology and by Db__h(T>x) the full triangulated 
subcategory of Db(T>x) consisting of objects with regular holonomic cohomology. 

Theorem 7.4.1. — Let f:X^Y be a holomorphic map and let N G Db{T*Y). Then 
there exists a natural isomorphism in Db(l{Cx))' 

(7.4.1) 
VBYO,p)VBYO,p)VBYO,p)VBYO,p)VBYHHHO,p)VBYO,p) 

vvv /3TV 

We need some preliminary results. 
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Lemma 7.4.2. — Let f: X —» Y be a morphism of real analytic manifolds and let T 
be a locally free Ax-module of finite rank. Then Rk /n(P&x ®pAx f3T) = 0 for k ^ 0. 

Proof. — Since RfuXVbx ®pAx PT) belongs to £>jR_c(Cy), it is enough to check 
that for any G G M-Cc(Cy), the complex RHomI(Cy)(G,RfwiVb^ ®pAx (3J7)) is 
concentrated in degree 0. Consider the chain of isomorphisms 

RHomI(Cy)(G,F/,!(P^ ®Mx 0f)) ~ RTc{Y]RHom{G1Rhvv{Vbtx %Ax pT))) 

~ Rrc(y; RfrRHom (f^G, ggvVgbbg'x %Avx pF)) 

t RTciX'.RHOMIR'G.kllVlb'x) x®vlggAx T) 

~ R r c ( X ; T H o m { r l G , V b x ) l®vvAx J7). 

Since THom (f XG, Vbx) is soft, these complexes are concentrated in degree 0. q.e.d. 

Recall that fix denotes the De Rham complex on X 

Lemma 7.4.3. — Let f: X —> Y be a morphism of oriented real analytic manifolds. 
There is a natural mowhism in Cb(l(Cv)) 

/ n № %AX № ) 1 4 ] - VB\rb ®0Ayhhh pçi-y [ 4 ] . 

Proof. — Let G G R-Cc(Cy). Using Proposition 4.3 of [11], one gets the morphisms 

Roml(CY)(GJn(Vbtx%Axf3Qdxx ') ^ rc(X;THohmh(rlG,Vhhhbx b b ® A x ^ *)) 

- TC(Y\THOM(G,VbhhY ®Ay Q ^ * ) ) . 

q.e.d. 

Lemma 7.4.4. — Let f: X —> Y be a morphism of complex manifolds. There is a 
natural morphism in Db{X{pVY?)): 

(7.4.2) TC(Y\THOM(G,VbY ®Agy Q^TT*))T TTTG<WCC(Y. 

xxbbb 

Proof. — First, let us recall how to construct a Vx-ivee resolution of the T>x 0 
/~1PyP-module T>X^Y- Denote by Ox the sheaf of holomorphic vector fields on X 

and by f\Ox hs exterior algebra. For a left D^-module M, denote by Sp*(M) the 
Spencer resolution of M 

Sp*{M) := Vx ®Qx K &x ®Qx M 
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where the differential is given by 

d(P 0 (ih A • • • A Vr>) (&u) = 

v 

i=li 

(-If 1Pvi 0 (vi A • • • A vi A • • • A vp) 0 u 

v 
i=l 

i=li 

](-l)(-iy XP 0 (vi A • • • A Vi A • • • A vp) 0 ViU 

+ 
TC(FFF 

{-iy+3P®([vi,Vj] Avi A • • • Avi A • • • AVj A • • • ) ® . 

It is well-known that the natural morphism Sp*(M) —> M is a qis of £>x-modules. 

Applying this to M = VX^Y, we get the qis 

VX^Y <- 2>x ®0x A © x ®ox ^ X ^ F 

- ®Gx A © x »/-<W<XWW<<1̂  / _ 1 ^ y 

Hence we get the isomorphisms in Db(/3f 1Vy)): 

Qfx 0 p V x ^ Y ^ i ï x d d x x ® d d d ^ x 0 O x A 0 x 0 f - i O y Z " 1 ^ ) 

- n ^ ® P(/\ex®f-iOYr1!*) 
(30x J 

-n^ ® P(dd/\ex®f-i<x<xOYhhhr1!*) 

-n^ ® P(/\ex®f-iOhhhh<<x<<Yr1!*fdx) 

~Vbfx 0 /? ( f i^ :®/- iC)y/ -1 l>y)[dx] . 
(3Axr 

Applying Rf\\ we get the desired morphism in Db(I(pVy)): 

RMtfx 0 / î ^ x ^ y ) [dx] - fvXVtfx ®A R-n^ ® P(/\ex®f-iO 0 ^ ^ r 1 ^ ) ) [2dx] 

- ©b*, 0 ^ r (sl(n*/Rs ®0ddy VY)[2dY] 

- OY %oY P(VY ®OY VY) [2dy] 

/\ex®f-iOYr1!hh*) 

q.e.d. 

By adjunction, (7.4.2) gives the morphism in Db(\(fif~1V(y))\ 

(7.4.3) -n^ ® P(/\ex®f-iOYr1!*)-n^ <w® P( 
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Lemma 7.4.5. — The morphism (7.4.3) is an isomorphism. 

Proof. — For any F e R-Cc(Cx), we have the isomorphisms 

RHom I (Cx)(F,^x ® pVx^y)[dx} 

~RRc(X;THofv<<lmmm(F,nx) ® Vx^y)[dx] 

~RTc(Y-RfXTHom(F<w<wcv,tlx) ® VX^YWX] 
T>x 

~ R r ( y ; TTLom (Rf\F, fiy))[dy] 

^ R H o m ^ ^ F / n F , ^ ) ^ ] 

^RHomI (Cx) (F , / ! ^y ) [ ^y ] . 

q.e.d. Here, the third isomorphism follows from Theorem 5.7 in [11]. 

Proof of Theorem 7.4.1. 
Consider the chain of isomorohisms 

fUnl ® / W ) [ d y l ~ / ! f i t ® 0rlM\dy] 
i=lii=li 

fUnl ® /W)[dyl~/!ssfit dv ® 0rlMffffccc\dy]fUnl 

i=lii=li 
^RHomI(Cx)cvvv(Fg,/!^y)[^y]. 

vb,^h, 

In the first isomorphism, we have used Theorem 5.6.3. 

By the equivalence of left £>-modules and right P-modules, (7.4.3) gives the mor-

phism in Dtb(l{[3f-1VY)y 

(7.4.4) pDy^x ® O^dx] ^fOY[dY]. 
i3T)x 

Theorem 7.4.6. — Let f': X —> Y be a holomorphic map and let M. be an object 

of D b

q _ g o o d (Dtx)t such that suppA4 is proper over Y. Then there exists a natural 

isomorphism in D 6 ( I (Cy) ) : 

(7.4.5) 
pDy^x ® O^dx] ^fOY[dY].pDy^x ® O^dx] ^f 

i3T)xi3T)x i3T)xi3T)x 

We need some lemmas. 

Lemma 7.4.7. — Let f:X—>Y be a closed embedding of complex manifolds, 

is a natural isomorphism in Dh(l(dVx)) 

pDy^x ® O^dx] ^fOY[dY].pDy^x ® O^d 

i3T)xi3T)x 
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Proof. — We have 

PVx^Y 
L 

PVx^Y 

PVx^YPVx^YR<W<<XXXLL L 

(3VY 

RThom^j 

Since f is a closed embedding:, we have 

RThom^jpVx 
fRThom 

L RThom^jpVxRThom^jpVx 

RThom 

L 
rlol) 

~fH8Rf*Vx^Y ® Ol) 
RTho 

RThom^jpVxRThom^jpVx 

RThom^jp 

~DGDXDDD ®RThom̂ jpVxgq® O V f d v - d y l 
RThom^jp RThom^jpV 

RThom^ 

Here the fourth isomorphism follows from (7.4.4), and the last isomorphism follows 
L 

from VX^Y ® VY+-x[dx - dY] jjj^ VX. q.e.d. 

Lemma 7.4.8. — Let f: X —> Y be a smooth morphism of complex manifolds. There 
is a natural isomorphism in Db(l(/3f~1Vy)) 

RThom^jpVx^Y.RThom^jpVO'x) ~ r'O'y. 

Proof — Consider the chain of isomorphisms 

RThomdl,([3Vx-+Y,Otx)c - vvPRHomvAVx^y,Vx) ® Olx 
(3T>x 

RThom^jpVxRT^nhom^jpVxRTho 

RThom 

^fOtY[2dy-d<<w,;:;ll2dx] 
RThom^jpVx 

Here the third isomorphism is given by (7.4.4), and we have used the hypothesis that 
/ is smooth and Proposition 5.3.7 to prove the last isomorphism. q.e.d. 

Lemma 7.4.9. — Let f: X —• Y be a morphism of complex manifolds. There is a 
natural morphism in Db(I(3Vx)): 

RThom^jpVxRThom^jpVxRThofbm^j 

Pt~^Y 

or equivalently there is a morphism in Db(I(3V°Y)): 

f - 1 i î t ® 0VY-X -RThom̂jpV» Î Î V . 
RThom^jpV 
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Proof. — When / is a closed embedding, we have already constructed this morphism 

and shown it is an isomorphism. Hence, we may assume that / is smooth. Then we 

have the morphisms 

dVx^v ® f^Ol ~ ffDx^Y ® Rlhom^(BV GRThom^jpVxX^FY, Ox) 
RThom^jpVx RThom^jpVx 

RThom^jpVx 

q.e.d. 

Lemma 7.4.10. — Let f: X —> Y be a morphism of complex manifolds, and let M G 

Db(Vx)- Then there is a natural morphism in Db(I(CY)) 

(7.4.6) fit to B(R>F,M) ^ RFUTN^ to BM). 

PT>Y PVX 

Proof. — Consider the chain of morphisms 

fit ® BiDfM) ^ fit ® 0(RMVY^X ® RThom^jpVxM)) 
pVy pvY RThom 

- • f i t ® RMBlVy^x ® M)) 
PVY RTh 

- F / W / ^ f i t ® (̂PŷRThom̂jpVxj ® X ) ) 
RThom^jpVx RThom 

~RFU((F-LÇLT ê № y . y ) I) AM) 
Pf-léDY PVX 

-*i2f. .ffi t ® AM). 
RThom 

q.e.d. 

Froo/ 0/ Theorem 7.4.6. The morphism is constructed in Lemma 7.4.10. To check 

that it is an isomorphism, take G G R-Cc(Cy). We have the chain of isomorphisms 

RHomT,r X(G,fit ® /?(D/,./W)) ~ Rrc(F; TWora(G, fiy) J> D/, .M) 
RTho 

^ R r ^ y i f l f . f T W o m f r ^ f i v ) ® M)) 
RTh 

-Rrc(X;TWom(/-1G,fiRThom ĵpVx) ® M) 
RTho 

- R H o m ï ï r . ( r 1 ^ , f i t ® y9ARThom̂jpVx4) 
0Z>x 

-RHomI(Cv)(G,F/ ,!(f i^ ® /3M)). 
RTho 

Here the second isomorphism is given by Theorem 7.3 in [11]. This completes the 
nrnnf of TVipnrpm 7 4 
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Recall that if F G I(kx), there is a natural morphism F —d> uaF. Also recall that 
we do not write 6, for short. 

Lemma 7.4.11. — For £ G Db_h(T>x), the morphisms 

Rlhom /3T>X {PC, 0*x) - aRlhompVx(/?£, OLX) DD-> RHomVx (£, O x ) 

are isomorphisms. 

Proof. — Since these objects belong to DjR_c(I(Cx)), the result follows from the 
chain of isomorphisms below, where F G R-CcfCvV 

RHom (F, Rlhom 0V (/3£, O ^ ) ) ~ RHoml(0V J/3C, Rlhom ( F , 0 ^ ) ) 

~ RHomVx ff(£, OiRlhom (F, O ^ ) ) 

~ RHomVfx f ( £ , flftora (F, O ^ )) 

~ RHomVxf(f£,TWora(F, O x ) ) 

~ RHomVx f(£, RHom (F, O x ) ) 

~ RHom(F,ff RHomVx(£, Ox)) -

Here the fifth isomorphism follows from [8]. q.e.d. 

Theorem 7.4.12. — Let £ G Dbr_h(Vx), and set L = RHomVx(C,Ox). Then there 

exists a natural isomorphism in D6(I(Cx)).' 

(7.4.7) fi^ ® PC-^ Rlhom (ddgLrfx). 
(30x 

Proof — First, let us construct the morphism. Since L ~ RlhomJ3T>X(P£,POX) by 
the preceding lemma, we have the morphism L 0 /?£ —» /?Ox from which we deduce 
the morphism: 

fiV 0 / ? £ ® L - » f i V ®d Z^Oxdd^^x. 
RThom^jpVx /30x 

The morphism (7.4.7) is obtained by adjunction. To prove that it is an isomorphism, 

let us take F G M-Cc(Cx). We have the chain of isomorphisms 

RHomT/r ,(F,fiV ® /?£) ~ R r ( X : T W o r a ( F , f i x ) ® £) 
RThom Ox 

~ Rr(Xf; TddWora (F 0 L, fix)) 

~ RHomI(Cddx)(F0L,fi^) 

~RHomTrr n (F, Rlhom (L, fix))-

Here, the second isomorphism follows from a theorem of Bjork [2] (see also Theorem 

10.7 in [11]). q.e.d. 
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Consider three complex manifolds X , 5, Y and a correspondence: 

X 

f 
S 

9 

Y 

Let M G Dbq_good(Vx) and £ GRThom^jpVx We set L = RHomvs(C,Os)• 

We make the hypothesis: 

(7 .4 .8 ) / 1 supp(.M) fl supp(£) is proper over Y. 

Let G G Db(I(Cy)). We define 

MoC = Dq}MR1M ® £), 

LoG = Rf\\(L 0g~1G). 

Theorem 7.4.13. — One Aas £Ae isomorphism 

RHomT^ >(LoG?,fiVfdxl ®RThom^jpVx ̂  RHom™ ,(G, fit[d«l 0 tf(.Mo£)). 
RThom^j 8V^ 

Proof. — We have the chain of isomorphisms 

RHom™ JRfvXL^RThom^jpg^G^xldvx] ® PM) 
pVx 

~RRom1(cqqg<w<<,(L®g-1G,FXNtx[dx} 0 
PVX 

-RHom™ .(sL^g-'G^aaUds] 0 /KD/"1^ ) ) 
PVS 

-RHom™ Jssg^G,Rlhsfs<wom(L^ftUds] 0 ^ ( D / " 1 ^ ) ) ) 
RThom^jpVx 

-RHom™ Jg-^RXhosssmziL^swwwlds]) 0 / W " 1 ^ ) ) 
PT>s 

-RRom^Jg-'G^tfssslds] ® J&WWC) ® ^Dxx/"1^)) 
RThom^jpVx 

-RHom™xfoifoffiUwwxds] 0 (/?ww£ 0 pDf^M))) 
pVs pOs 

- RRomur, (G,RgvXww^\ds} ® 0 D / - 1 ^ ) ) ) 
J ^ \— ̂  -
PVS OS 

-RHom™ jG,fLY 0 p(BgXC 0 D/"1^)))[d5] 
RTho RTh 

-RHom™ J G ^ d s ] 0 /J(A4o£)Y 
£2V 

q.e.d. 
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Remark 7.4.14. — It could be interesting to study the sheaves on Xsa associated to 
the Sobolev presheaves on a real analytic manifold X , and to endow Ox with a 
Sobolev filtration on a complex manifold X. 

Remark 7.4.15. — In this paper we have not considered the "microfocal" point of 
view, in the line of [17]. In a forthcoming paper, we shall apply the theory of ind-
sheaves to Sato's microlocalization and construct a functor [ix from ind-sheaves on 
X to ind-sheaves on T*X. When applied to the ind-sheaves Ox or Ox, this will 
provide an alternative approach to the constructions of [1], [3]. We shall also study 
the micro-support of ind-sheaves, in the line of [10]. 
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