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IND-SHEAVES

Masaki Kashiwara, Pierre Schapira

Abstract. — Sheaf theory is not well suited to the study of various objects in Analysis
which are not defined by local properties. The aim of this paper is to show that it
is possible to overcome this difficulty by enlarging the category of sheaves to that of
ind-sheaves, and by extending to ind-sheaves the machinery of sheaves.

Let X be a locally compact topological space and let k be a commutative ring.
We define the category I(kx) of ind-sheaves of k-modules on X as the category of
ind-objects of the category Mod“(kx) of sheaves of k-modules on X with compact
support, and we construct “Grothendieck’s six operations” in the derived categories
of ind-sheaves, as well as new functors which naturally arise.

A method for constructing ind-sheaves is the use of Grothendieck topologies asso-
ciated with families 7 of open subsets satisfying suitable properties. Sheaves on the
site X7 naturally define ind-sheaves.

When X is a real analytic manifold, we consider the subanalytic site X, associated
with the family of open subanalytic subsets, and construct various ind-sheaves by
this way. We obtain in particular the ind-sheaf C}o’t of tempered C°°-functions,
the ind-sheaf CY"" of Whitney C°°-functions and the ind-sheaf Dbl of tempered
distributions. On a complex manifold X, we concentrate on the study of the ind-
sheaf O% of “tempered holomorphic functions” and prove an adjunction formula for
integral transforms in this framework.



iv

Résumé (Ind-faisceaux). — La théorie des faisceaux n’est pas bien adaptée & ’étude
de divers objets de I’Analyse qui ne sont pas définis par des propriétés locales. Le but
de cet article est de montrer que ’on peut surmonter cette difficulté en élargissant
la catégorie des faisceaux & celle des ind-faisceaux, et étendre & ceux-ci le formalisme
des faisceaux.

Soit X un espace localement compact et soit k£ un anneau commutatif. Nous défi-
nissons la catégorie I(kx) des ind-faisceaux de k-modules sur X comme la catégorie
des ind-objets de la catégorie Mod“(kx) des faisceaux de k-modules sur X & sup-
port compact, et nous construisons les « six opérations de Grothendieck » dans la
catégorie dérivée des ind-faisceaux, ainsi que de nouveaux foncteurs qui apparaissent
naturellement.

Une méthode pour construire des ind-faisceaux est 'utilisation de topologies de
Grothendieck associées & des familles 7 d’ouverts de X satisfaisant certaines proprié-
tés. Les faisceaux sur le site X7 définissent alors naturellement des ind-faisceaux.

Quand X est une variété analytique, nous considérons le site sous-analytique X,
associé a la famille des ouverts sous-analytiques et nous construisons ainsi divers
ind-faisceaux. Nous obtenons en particulier le ind-faisceau C;f”t des fonctions C*
tempérées, le ind-faisceau C'" des fonctions C* de type Whitney, et le ind-faisceau
Db, des distributions tempérées.

Sur une variété complexe X, nous concentrons notre étude sur le ind-faisceau O%
des « fonctions holomorphes tempérées » et prouvons une formule d’adjonction dans
ce cadre.
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INTRODUCTION

Sheaf theory is not well suited to the study of various objects in Analysis which
are not defined by local properties, such as for example holomorphic functions with
tempered growth. The aim of this paper is to show that it is possible to overcome this
difficulty by enlarging the category of sheaves to that of ind-sheaves, and by extending
to ind-sheaves the machinery of sheaves.

Recall that if C is an abelian category, the category Ind(C) of ind-objects of C has
many remarkable properties: it contains C and admits small inductive limits, it is
abelian and the natural functor C — Ind(C) is exact and fully faithful. Moreover
Ind(C) is, in a certain sense, “dual” to C.

For a locally compact topological space X and a commutative ring k, we introduce
the category I(kx) of ind-sheaves of k-modules on X as the category of ind-objects
of the category Mod‘(kx) of sheaves of k-modules with compact support in X. This
construction has some analogy with that of distributions: the space of distributions
is bigger than that of functions, and is dual to the space of functions with compact
support. This last condition implies the local nature of distributions, and similarly,
we prove that ind-sheaves form a stack (a “sheaf of categories”).

We construct “Grothendieck’s six operations” in the derived categories of ind-
sheaves, as well as new functors which naturally arise.

There is a method for constructing ind-sheaves using Grothendieck topologies. We
consider on X a family 7 of open subsets satisfying suitable properties and associate
to it a site. In particular, when X is a real analytic manifold and 7 is the family of
subanalytic open subsets, we obtain the “subanalytic site X;,”. We prove that the
category of ind-objects of 7-coherent sheaves is equivalent to the category of sheaves
on the site X7. Therefore, such sheaves naturally define ind-sheaves.

As already mentioned, ind-sheaves allow us to treat functions with growth con-
ditions in the formalism of sheaves. On a complex manifold X, we can define the
ind-sheaf of “tempered holomorphic functions” O%, or the ind-sheaf of “Whitney
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holomorphic functions” 0%, and obtain for example the sheaves of distributions or
of C*°-functions using Sato’s construction of hyperfunctions, simply replacing Ox
with O% or O%. We also prove an adjunction formula for integral transforms in this
framework.

The contents of these Notes is as follows.

Chapters I and II are a short review, without proofs, of the theory of ind-objects
with some applications to derived categories, and the theory of sheaves on Grothendieck
topologies. Of course all these theories (invented by Grothendieck) are now classical.
However, we shall also recall some technical statements extracted from [13] which are
new.

Chapter III is devoted to stacks on a locally compact space X. We introduce the
notion of a proper stack, show that this notion is stronger than the usual one of
a stack, although its axioms are quite easy to check, and prove that the indization
of a proper stack is a proper stack. There are new functors: ¢ from a stack to the
associated ind-stack, and its left inverse a. Under reasonable conditions which will
be satisfied by sheaves, a also admits a left adjoint 3.

Ind-sheaves are introduced in Chapter IV, in which we first construct the internal
operations: tensor product denoted by ®, and internal hom denoted by Zhom. We
then construct the external operations: inverse image f~!, direct image f, and proper
direct image fu. Finally, we study the various relations among all these functors. Note
that the proper direct image of a sheaf is not the same in general whether we calculate
it in sheaf theory or ind-sheaf theory.

In Chapter V, we derive all the functors we have constructed, and give relations
among the derived functors. Moreover, as in the classical case, the functor Rfi
admits a right adjoint f', and we study its main properties. One of the difficulties of
this study is that the category of ind-sheaves does not have enough injective objects.
In this chapter, we also introduce the notions of ind-sheaves of rings and modules.
This will be necessary for applications. For example, the ind-sheaf O% of “tempered
holomorphic functions” cannot be defined in the derived category of ind-sheaves of
Dx-modules, and one has to replace Dx with the ind-sheaf of rings 8x (Dx). As we
shall see, this does not cause much trouble.

Chapter VI is devoted to the construction of ind-sheaves using Grothendieck topolo-
gies. We consider a family 7 of open subsets of X satisfying suitable properties, and
its subfamily 7. of relatively compact open sets. We define the category Coh(7;) as
the full subcategory of Mod(kx) consisting of cokernels of morphisms F — G with
F and G finite sums of sheaves of the type kxy with U € 7. and prove that this
category is abelian. Then we define the site X7 whose family of objects is 7, a cov-
ering of U € 7T being a locally finite covering in X. We study the category Mod(kr)
of sheaves on this site and prove that it is equivalent to the category of ind-objects
of Coh(7;). Hence, there is a natural fully faithful exact functor from Mod(ks) to

ASTERISQUE 271



INTRODUCTION 3

I(kx), and this is a useful tool for constructing ind-sheaves. The category I(kx) of
ind-sheaves on X is much bigger than the category Mod(kr). The first one does not
have enough injectives, which make the theory rather difficult, unlike the second one.
On the other hand the natural functor from Mod(kx) to I(kx) is exact, which fails
when we replace I(kx) with Mod(k7).

We apply these results in Chapter VII and obtain the “subanalytic site” X, on
a real analytic manifold X by taking the family of open subanalytic subsets as 7.
We construct various ind-sheaves on this site, and when X is a complex manifold this
allows us to define in particular the ind-sheaves O% and O% of “tempered holomorphic
functions” and “Whitney holomorphic functions”, respectively. We prove formulas for
direct images, inverse images and composition with a regular holonomic kernel for
the ind-sheaf O% (in the framework of D-modules), from which we deduce a general
adjunction formula for integral transforms.

SOCIETE MATHEMATIQUE DE FRANCE 2001






CHAPTER 1

INDIZATION OF CATEGORIES: A REVIEW

In all these Notes, a ring means an associative unitary ring, and the action of a ring
on a module is unitary. For a commutative ring k, a k-algebra is a ring A endowed
with a ring morphism k — A whose image is contained in the center of A.

In this chapter, we recall some particular results on indization and localization of
categories that we shall need in the sequel. References are made to [16] for the theory
of universes and ind-objects and to [10], [13] or [5] for an exposition on categories and
homological algebra, in particular ind-objects, localization, and derived categories.
Some complementary results to the classical ones may be found in [13].

1.1. Ind-objects

Let U be a universe. A set is called U-small if it is isomorphic to a set belonging
to U. Recall that a U-category C is a category such that for any X,Y € C, the set
Hom(X,Y) is U-small. If moreover the family of objects (a set in a bigger universe)
of C is U-small, then one says that the category is #-small. One says that a category
is essentially U-small if it is equivalent to a small category.

In these notes, we fix a universe U and we shall not refer to /. We shall often abu-
sively refer to a U-category as a category. A category without the ¢-small condition
is called a big category. We shall often simply denote by Set the category of U-small
sets.

For a category C, we denote by C°P the opposite category of C, i.e. Ob(C°P) = Ob(C)
and Hom ., (X,Y) = Hom (Y, X).

Definition 1.1.1. — Let C be a category. One sets
C" : the big category of functors from C°P? — Set .

One shall be aware that C” is not a U-category in general (unless C is essentially
small).
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One defines the functor
R C — ch

X +— Hom,(-,X).
Then for G € C" and X € C,
(1.1.1) Hom .. (R (X),G) ~ G(X).
In particular,

Hom . (h"(X),h"(Y)) ~ Hom,(X,Y),

and h” is fully faithful. We shall identify C with a full subcategory of C* by h". We
denote by CV the big category ((C°P)")°P. Then C is also embedded into C".

The big category C” admits small inductive limits, but in general, even if C also
admits small inductive limits, the functor A" does not commute with h_r}n In order to
avoid confusion, we denote by “lim” the inductive limit in C A and by lim the inductive
limit in C. If I is small and a: I — C is a functor, we set “lim”a = lim(h" o @). In
other words, “lim”« is the object of C" defined by:

“lim"a : € 3 X + lim Hom (X, a(3)) .
— —

With this convention

lim Hom (X, a()) = Homa (h"(X), “lim” a).
?

Recall that a category I is filtrant if it satisfies the conditions (i)—(iii) below.

(i) I is non empty,

(ii) for any ¢ and j in I, there exists k € I and morphisms i — k,j — k,
(iii) for any parallel morphisms f,g: i =% j, there exists a morphism h: j — k such

that ho f =hog.
Recall also that I is called cofinally small if there is a small subset S of Ob([) such
that any ¢ € I admits an arrow ¢ — j with 5 € S.

Definition 1.1.2. — Let C be a category. An ind-object in C is an object A € C"* which
is isomorphic to “an”a for some functor «: I — C with I filtrant and small. One
denotes by Ind(C) the full subcategory of C" consisting of ind-objects, and calls it the
indization of C.

Note that Ind(C) is a U-category.
For A € C, we define the category C4 and the functor as: C4 — C by:
Ob(Ca) = {(X,a); X €C,a € A(X)},
Hoch((X,a),(Y,b)) ={f: X >Y;a=bo f},
ag ¢ (X,a)— X.

One proves easily that A € Ind(C) if and only if C4 is filtrant and cofinally small, and
A~ “lim” a4 in this case.
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1.2. INDIZATION AND LOCALIZATION 7

One extends a functor F': C — C’ to a functor IF: Ind(C) — Ind(C’) as follows.
For A € Ind(C) one defines IF(A) € Ind(C’) by
IF(A) = “lim” F(X).
XeCa
For B € Ind(C) and a morphism f: A — B in Ind(C), f defines a functor C4 — Cp
(A(X)>ar— foa€ B(X)). Hence we get a morphism
IF(f) . “li_r)n” F(X) N “l_iL)n” F(Y),
X€eCa YeCr
and one checks that IF is a functor.
When A ~ “li_.n)l” a(i), B ~ “li_rl)n” B(j), one has
i j
Homlnd(c)(A’ B) ~ lim lim Hom ¢ (a(2), 83)),
iog
and the map [F: Hom (A, B) — Hom (IF(A),IF(B)) is given by
lim lim Hom (a(i), 8(7)) — lim lim Hom ¢, (F(a(i)), F(3(7)))
i J g J
Proposition 1.1.3. — Let F: C — C'. Then

(i) the diagram below commutes

C__Fw—)cl

Indl(C) _IF, Indlc’),

(ii) the functor IF: Ind(C) — Ind(C’) commutes with filtrant inductive limits,
(iii) of F s faithful (resp. fully faithful), so is IF.

1.2. Indization and localization

Let C be a category and let S be a family of morphisms in C.
Definition 1.2.1. — A localization of C by S is the data of a big category Cs and a
functor @: C — Cgs satisfying:

(i) for every s € S, Q(s) is an isomorphism,

(i) for any functor F: C — C’ such that F(s) is an isomorphism for all s € S, there
exist a functor Fis: Cs — C’ and an isomorphism F ~ Fs o Q,

F

c——c
B
Cs

SOCIETE MATHEMATIQUE DE FRANCE 2001



8 CHAPTER 1. INDIZATION OF CATEGORIES: A REVIEW

(iii) if G1 and G4 are two functors from Cs to a big category C’, then the natural
map Hom (G1,G2) — Hom (G; o @, G2 o Q) is bijective.

Note that Cs is unique up to equivalence and Fs in (ii) is unique up to unique iso-
morphism. It is well-known that if S is “a multiplicative system”, then the localization
exists. Using Ind(C), the localization is constructed as follows.

For any object X € C let us define the categories S}, S% and the functors ax, Bx
as follows.

Ob(S%) ={s: X - X';s€ S}
Hom g¢ ((s: X — XN (s X—>X"))={h: X' > X";hos =5}
ax : 8% —C is ax(X - X') =X/,
Ob(Sk) ={s: X' - X;s€ S}
Homg ((s: X' = X),(s": X" - X)) ={h: X" > X';s0h =5}
Bx : (S4)°P = C is Bx (X' — X)=X".
By the definition, S is a multiplicative system if and only if the categories (S% )°P and

S% are filtrant and contain X Mx x.

In the sequel, we shall have to consider the inductive limit lim Hom (Y, ax) with
X,Y € C. We shall often denote it by

lim  Hom (Y, X").
=

X?X’,SES
One has:
Hom, (X,Y) ~limHom (X,ay) = lim Hom,(X,Y")

YooY tes

=~ lim Hom(Bx, ay) = lim Hom (X', Y")
XX, Y DY, 5,t€8

~limHom,(fx,Y) = lim  Hom/(X"Y).
X' X, s€S

One defines the functor
a:C—Ind(C) c C"
by setting
a(X) = “lim”ax.
If f: X — Y is amorphism in C, one constructs a(f): a(X) — a(Y) using the axioms
of multiplicative systems, and one obtains a functor a:: C — Ind(C).
Proposition 1.2.2

(i) The functor a factorizes through Cs, hence defines a functor as: Cs — Ind(C).
(il) The functor as is fully faithful.

ASTERISQUE 271



1.2. INDIZATION AND LOCALIZATION 9

One shall be aware that the diagram

C —Q—> Cs
e
Ind(C)
is not commutative in general. However, there is a natural morphism:
(1.2.1) " wa=as0Q, X — “lim” ox .
Localization of functors. — Let C be a category, S a multiplicative system and

F:C — (' afunctor. In general, F' does not send morphisms in S to isomorphisms
in C’, hence, does not factorizes through Cs. It is however possible in some cases to
define a localization of F' as follows.

Definition 1.2.3

(i) A right localization of F' (if it exists) is a functor Fs : Cs — C’ and a morphism
of functors 7: F — Fs o @ such that, for any morphism G: Cs — C’, the map
Hom (Fs,G) — Hom (F, G o Q) is bijective.

We say that F' is right localizable if it admits a right localization.

(ii) We say that F' is universally right localizable, if for any functor K: C' — C”,

the functor K o F is right localizable and moreover (K o F)s — K o Fs.

Proposition 1.2.4. — Let C be a category, I a full subcategory, S a multiplicative sys-
tem in C, and T the family of morphisms in T which belong to S. Let F: C — C’ be
a functor. Assume that
(i) T is a multiplicative system in Z,
(ii) for any X € C there exists s: X - W with W €T and s € S,
(iii) for anyt € T, F(t) is an isomorphism.

Then F' is universally right localizable.

Indeed, the restriction of F' to Z is localizable, and the natural functor Zr — Cs is
an equivalence. This is visualized by the diagram

Q

C———C

Q :

I —1Ir iFS
Fr
Fou <

Cl

SOCIETE MATHEMATIQUE DE FRANCE 2001



10 CHAPTER 1. INDIZATION OF CATEGORIES: A REVIEW

Definition 1.2.5. — Let X € C. One says that F is right localizable at X if
“li_I)Il”(F o aX)
is representable in C’.

Recall that
LLli_n,)l??(FoaX) — “hi)n” 1_7!()(/)7 (X — X/ = S)
XX
Proposition 1.2.6. — Let F: C — C' be a functor and S a multiplicative system in C.
The two conditions below are equivalent:

(i) F is right localizable at each X € C,
(ii) F is universally right localizable.

1.3. Indization of abelian categories

From now on, C is an abelian category. One denotes by C"*? the big category
of additive functors from C°? to Mod(Z). This big category is clearly abelian. One
denotes by C"N94! the full big subcategory consisting of left exact functors. The
functor h": C — C" makes C a full abelian subcategory of C"+%¢ and this functor is
left exact, but not exact.

As seen in §1.1, an ind-object in C is an object A € C" which is isomorphic to
“lim”a for some functor a: I — C with I filtrant and small. Hence, Ind(C) is a full
additive subcategory of C/®dl  Recall that it is a U-category. If C is small, then
Ind(C) =~ cMaddl,

The category Ind(C) admits kernels and cokernels. Indeed, if f: A — B is a
morphism in Ind(C), one may construct a small filtrant category I, two functors
a,B: I — C and a morphism ¢: a — ( such that A ~ “1i_rg”a, B ~ “lim”3 and
f=“lim”¢. Then “lim” ker ¢ and “lim” coker ¢ will be a kernel and a cokernel of f,
respectively.

Theorem 1.3.1 (see [13])

(i) The category Ind(C) is abelian.
(ii) The natural functor C — Ind(C) is fully faithful and exzact and the natural func-
tor Ind(C) — C™44 is fully faithful and left exact.
(iii) The category Ind(C) admits exact small filtrant inductive limits.
(iv) Assume that for any family {X;}icr of objects of C indexed by a small set I,
the product [], X; (which is well-defined in C") belongs to Ind(C). Then the
category Ind(C) admits small projective limits, and the functor lim s left exact.

In particular, Ind(C) admits small direct sums, which are denoted by “®”.
As a consequence of the preceding results, one gets that if 0 - A’ — A — A” — 0
is an exact sequence in Ind(C), then one may construct a filtrant and small category
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1.4. DERIVED CATEGORIES 11

I and an exact sequence of functors from I to C, 0 —» o’ — a — o” — 0 such that
0 — “lim”"a’ — “lim”a — “lim”a” — 0 is isomorphic to 0 — A —-A—-A"—0.

This immediately implies that if F: C — C’ is an additive functor of abelian cat-
egories and IF: Ind(C) — Ind(C’) is the associated functor, then IF is left (resp.
right) exact as soon as F' is left (resp. right) exact.

Proposition 1.3.2. — A sequence of morphisms A 7) B — C inInd(C) withgo f =0
g

is exact if and only if for any commutative diagram in Ind(C) with Y € C

the dotted arrows may be completed to a commutative diagram, with X € C and h an
epimorphism.

Proposition 1.3.3. — Let C be an abelian category.
(i) C is stable by extension in Ind(C).
(ii) Let Co C C be an abelian subcategory stable by extension in C. Then Ind(Co) is
stable by extension in Ind(C).

Let C be an abelian category and J a full additive subcategory.

Definition 1.3.4. — We say that J is generating (resp. cogenerating) in C if for any
X € C there exists an epimorphism Y-—»X (resp. a monomorphism X—Y) with
YeJ.

1.4. Derived categories

In this subsection, C, C’, etc. are abelian categories.

One denotes by C(C) the abelian category of complexes in C. By regarding mor-
phisms in C(C) which are homotopic to 0 as the zero morphism, one obtains the
triangulated category K (C), whose distinguished triangles are those isomorphic to
X 7 Y — M(f) e where M (f) denotes the mapping cone of the morphism f in

Cc(C).

A morphism f: X - Y in K(C) (or in C(C)) is called a quasi-isomorphism (a qis
for short) if it induces an isomorphism H’(f): H?(X) — H’(Y) for all j € Z.

The derived category D(C) is the localization of K(C) by the multiplicative system
of quasi-isomorphisms. It is naturally a triangulated category. It is a big category in
general.

One denotes as usual by D*(C) (x = +, — or b) the full triangulated subcategory
of D(C) consisting of complexes bounded from below, from above, or bounded.
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Now consider a left exact functor F': C — C’. It defines a functor K (F): K(C) —
K(C’). We shall often write F instead of K (F) for short.

Definition 1.4.1. — Let J be a full additive subcategory of C. One says that J is
F-injective if:

(i) the category J is cogenerating in C,

(ii) for any X € K*(J) such that X is qis to 0, F(X) is qis to 0.

By considering C°P, one obtains the notion of an F-projective subcategory, when
F is right exact.

Proposition 1.4.2. — Let J be an F'-injective subcategory of C. Then F' is right deriv-
able, i.e. F: K*(C) — D%(C') is universally right localizable with respect to the
multiplicative system of quasi-isomorphisms. In particular F admits a right derived
functor RF: DT(C) — D*(C"). Moreover we have H*(RF(X)) =0 for any X € J
and k # 0.

Recall that if X € K*(C), then

RF(X) = “lim” F(X")
X=X’
qis
in Ind(D*(C")).
There is a useful tool to check that a subcategory is F-injective.

Theorem 1.4.3 ([13]). — Let J be a full additive subcategory of C. Assume:

(i) the category J is cogenerating in C,

(ii) for any monomorphism Y'—X with Y' € J there exists an exact sequence
0—=Y' =Y YY" -0 withY,Y" in J such that Y' — Y factorizes through
Y’ — X and such that the sequence 0 — F(Y') —» F(Y) — F(Y") — 0 is ezact.

Then the category J is F-injective.
As a corollary, we recover a classical result:

Corollary 1.4.4. — Let J be a full additive subcategory of C. Assume:
(i) the category J is cogenerating in C,
(i) for any exact sequence 0 — X' — X — X" — 01in C, if X', X € J, then
X// c ._7,
(iii) for any ezact sequence 0 — X' — X — X" — 0 in C with X', X € J, the
sequence 0 — F(X') — F(X) — F(X") — 0 is ezact.

Then the category J is F-injective.

We shall also have to derive bifunctors. Consider three abelian categories C, C’, C”
and an additive bifunctor F': C x ' — C”. We shall assume that F' is left exact with
respect to each of its arguments.
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Definition 1.4.5. — Let J and J’ be full additive subcategories of C and C’ respec-
tively. One says that J x J' is F-injective if
(i) J and J' are cogenerating,
(ii) for any Y € J, J' is F(Y, - )-injective,
(iii) for any Y’ € J', J is F(-,Y’)-injective.

Proposition 1.4.6. — Assume that there exist J and J' such that JxJ' is F-injective.
Then F is right derivable and defines RF : D*(C) x D*(C') — D*(C"). Moreover,
for (X,X") € K*(C) x K*(C') one has:

RF(X,X')~  “lm”  F(,Y)).

X—Y, X' —Y'
qis qis

1.5. Indization and derivation

We shall study the derived category D(Ind(C)) of the category Ind(C) associated
with an abelian category C. In such a study, the universe U/ plays an important role.
In fact, even if C has enough injectives, the category Ind(C) does not have enough
injectives in general (see [13]). Instead, we shall use the following notion of quasi-
injectives. Recall that unless otherwise specified, when we consider a category C, it is
a U-category.

Let C be an abelian category, C’ C C a full abelian subcategory (hence, the natural
functor C' — C is exact). One denotes by D& (C) the full subcategory of D?(C)
consisting of objects with cohomology in C’. If C’ is stable by extension in C, then
Db,(C) is triangulated.

The next result is easily deduced from Propositions 1.3.3 and 1.3.2.

Proposition 1.5.1. — Let C be an abelian category. The natural functor D*(C) —
D% (Ind(C)) is an equivalence of triangulated categories.
Definition 1.5.2. — Let A € Ind(C). We say that A is quasi-injective if the functor
C°? — Mod(Z),
X — A(X) (= Homy, () (X, 4))
is exact.
Assuming that C has enough injectives, one proves easily that A is quasi-injective if

and only if there exist a small filtrant category I and a: I — C such that A ~ “lim”«
and «(i) is injective in C for all 5 € I.

Definition 1.5.3. — Let C be an abelian category. A system of strict U-generators in
C is a family {G,;a € A} of objects of C such that A is U-small and:

om (G,
(i) for all X € C and all a € A, the object G?H (G %) exists,
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.s . . ®Hom (Gq,X) .
(ii) for all X € C, there exists a € A such that the morphism G, — X is

an epimorphism.

A system of strict U-generators is a system of U-generators in the sense of Gro-
thendieck ([7]).

Theorem 1.5.4 ([13]). — Let C be an abelian category with a system of strict generators
and let S C Ob(Ind(C)) be a small subset.

(a) There exists an essentially small full abelian subcategory Co of C such that S C
Ob(Ind(Co)) with the properties:

(i) Co is stable under sub-object, quotient and extension in C,

(ii) for any epimorphism X—-»Y" with Y" € Cy and X € C, there exists a
morphism Y' — X with Y’ € Cy such that the composition Y' — Y is
an epimorphism,

(iii) Ind(Co) is stable by sub-object, quotient and extension in Ind(C),

(iv) for any epimorphism X—»Y" with Y" € Ind(Co) and X € Ind(C), there
ezxists a morphism Y' — X with Y' € Ind(Co) such that the composition
Y' - Y" is an epimorphism,

(v) Ind(Co) has enough injectives.

(b) Assume moreover that C has enough injectives. Then we may choose Cy having
the above properties and such that the injective objects of Ind(Co) are quasi-
ingective in Ind(C).

Corollary 1.5.5. — Assume that C has enough injectives and a system of strict gener-
ators. Then Ind(C) admits enough quasi-injectives.

We denote by Z, the category of quasi-injective objects in Ind(C).
As above, denote by F': C — C’ a left exact functor, and by IF: Ind(C) — Ind(C’)
the associated left exact functor.

Theorem 1.5.6. — Assume that C has enough injectives and a system of strict gener-
ators.

(i) The category I, is IF-injective.

(ii) The diagram below commutes :

p*c) —E . p+(en

D*(1d(C)) 1L p+(md(ey).

(iii) The functor REIF: Ind(C) — Ind(C’) commutes with “lim”. In other words, if
I is small and filtrant and o: I — Ind(C), then

RFIF(“lim” o) ~ “lim” (R*IF o a).
— —
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Corollary 1.5.7. — We keep the notations and the hypotheses of Theorem 1.5.6. Let
X € D(C). Then there is a natural isomorphism

lim Hom py ¢y (X, @) 2 Hom p (1,4(cy) (X, “lim” ).

Remark 1.5.8. — One can prove that if C denotes the category Mod(C) of vector
spaces over the field C, then Ind(C) does not have enough injectives.

Exercises to Chapter 1

Exercise 1.1. — Let k be a field and let C = Mod(k). Define 8: C — Ind(C) by

setting (V) = “lim” W, where W ranges over the family of finite-dimensional vector
wcv
subspaces of V.

(i) Prove that k is projective in Ind(C).

(ii) Prove that the natural morphism (V) — V is a monomorphism.

(iii) Prove that if V is infinite-dimensional, then 3(V') is not representable in Mod (k).
In particular, 5(V) — V is not an isomorphism.

(iv) Prove that Homy,4c)(k, V/B(V)) =0 for all V € C.
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CHAPTER 2

GROTHENDIECK TOPOLOGIES: A REVIEW

In this chapter we briefly recall without proofs some classical constructions. Ref-
erences are made to [16].

2.1. Sites, presheaves and sheaves

The Grothendieck topology was introduced by A. Grothendieck in order to have
a cohomology theory on algebraic varieties. The idea underlying this construction is
that the notion of sheaves on a topological space X essentially relies on the category
Op(X) of open subsets of X and on the notion of open coverings, and nothing else.
Hence to construct the category of sheaves, we may start with an arbitrary category
and axiomatize the notion of a covering.

However, we shall not treat the most general case, and for simplicity we shall only
consider U-small categories admitting finite products and fiber products. If C is such
a category and U € C, one denotes by Cy the category of arrows V' — U. Clearly, Cy
admits finite products and fiber products.

Note that if C admits a terminal object X, then C admits finite products and fiber
products if and only if C admits finite projective limits. Moreover the product is the
fiber product over X.

If V — U is a morphism and S C Ob(Cy ), we denote by V xy S the set

{V xyW -V, W e S} C Ob(CV).
Definition 2.1.1. — If S;, Sy C Ob(Cy), one says that S is a refinement of Sy if any

V — U in S, factorizes as V — V' — U with V/ — U € S5. In such a situation one
writes S1 < Ss.

Definition 2.1.2. — A Grothendieck topology on C is the data associating to any U € C
a family Cov(U) of subsets of Ob(Cy) satisfying the axioms:
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GT1 {U - - U} belongs to Cov(U),

GT2 if 51 E Cov(U) is a refinement of So C Ob(Cy), then S, € Cov( )

GT3 if S € Cov(U), then V xy S € Cov(V) for any V — U,

GT4 if 51,52 C Ob(Cy), S1 € Cov(U) and V xy Sz € Cov(V) for any V € S;, then
Sy € Cov(U).

A subset S € Cov(U) is called a covering of U.

A site X is a category Cx which admits finite products and fiber products and endowed

with a Grothendieck topology.

In the case when Cx admits a terminal object, we denote it by the same letter X.

Let X and Y be two sites.

Definition 2.1.3

(i) A functor f': Cy — Cx is said to be continuous if it commutes with fiber
products and if for any V € Cy and any S € Cov(V), f4(S) € Cov(ft(V)).
(ii) A morphism of sites f: X — Y is a continuous functor f*: Cy — Cx.

Examples 2.1.4

(i) Let X be a topological space. The set Op(X) of open subsets of X ordered by
inclusion defines a category, still denoted by Op(X). Note that if U € Op(X),
then Op(X)y = Op(U). We keep the same symbol X to denote the site obtained
by endowing Op(X) with the following topology: a subset S C Op(U) is a
covering of U if Jy, sV =U.

(ii) If f: X — Y is a continuous map of topological spaces, we shall denote by
ft: Op(Y) — Op(X) the functor V +— f~1(V)and by f: X — Y the associated
functor of sites. Hence, identifying a topological space with a site, one identifies
a continuous map with a functor of sites.

(iii) Let X be a topological space. We can also endow Op(X) with the following
topology: a subset S C Op(U) is a covering of U if there exists a finite subset
So C S such that UVE So V =U. We denote by X the site so-obtained.

(iv) Assume that X is a locally compact topological space. We denote by X;; the
category Op(X) endowed with the following topology. A subset S C Op(U) is
a covering of U in X if for any compact K of X, there exists a finite subset
So C S such that K N (Uyes,V) = KNU.

If U € Op(X), we denote by Ux,, the category Op(U) endowed with the
topology induced by Xis: a covering of V' C U for the topology Ux,, is a
covering of V' in X;¢. There is a natural morphism of sites Ujy — Ux,;, which
is not an isomorphism in general.

In these Notes, we shall restrict ourselves to the study of sheaves of k-modules.
(Recall that k denotes a commutative ring.)
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2.1. SITES, PRESHEAVES AND SHEAVES 19

Definition 2.1.5. — Let X be a site.

(i) A presheaf F of k-modules on X is a functor C3¥ — Mod(k) and a morphism of
presheaves is a morphism of such functors.
(ii) One denotes by Psh(kx) the abelian category of presheaves of k-modules on X.
(iii) If F is a presheaf of k-modules on X and S C Cy, one sets

F(S) = ker ( [[Frvy= [ FV'xu v")).
ves VI Vres
(Recall that the kernel of the double arrow is the kernel of the difference of the
two arrows. Here the two arrows are associated to F(V') — F(V’ xy V") and
F(V") = F(V' xy V").)

(iv) We say that a presheaf F' of k-modules on X is separated (resp. is a sheaf) if for
any U € Cx and any covering S € Cov(U), the natural morphism F(U) — F(S)
is a monomorphism (resp. an isomorphism).

(v) One denotes by Mod(kx) the full additive subcategory of Psh(kx) consisting of
sheaves of k-modules on X. We shall often write Hom  _instead of Hom ;.4 )-

Notation 2.1.6. — Let F be a presheaf on Cx, let U € Cx, let V. — U € Cy, and
let s € F(U). One sometimes writes s|y to denote the image of s in F(V) by the
morphism F(U) — F(V).

Let X be a site. In order to construct the sheaf associated with a presheaf, we need
some preparation. For U € Cx, notice first that the relation S; < S is a pre-order on
Cov(U). Hence, Cov(U) inherits a structure of a category: Hom (1) (1, S2)= {pt}
or & according whether S; is a refinement of S5 or not, and Cov(U)°P is filtrant. Note
that for S1, S € Cov(U), {Vi xu Va;V; € S;,i = 1,2} again belongs to Cov(U).

Let F' € Psh(kx), and let S; < Sy. For V7 € Sy, define first HVESz F(V)— F(W)
by choosing V2 € S such that V3 — U factorizes through Vo — U. The composition
F(S3) — [lyes, F(V) — F(V1) does not depend on the choice of V2 € Ss, and
defines F(S2) — F(S1). Hence, F gives a functor Cov(U)°? — Mod(k). One defines
the presheaf F'* by setting for all U € Cx:

(2.1.1) FrU)= lim F(S).
S€Cov(U)

Theorem 2.1.7
(i) The functor * :Psh(kx) — Psh(kx) is left ezact.
(i) For any F € Psh(kx), F* is a separated presheaf.
(iii) For any separated presheaf F, F* is a sheaf.
(iv) The functor **: Psh(kx) — Mod(kx) is a left adjoint to the embedding functor
t: Mod(kx) — Psh(kx).
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In the sequel, we shall often omit to write the symbol . Hence, (iv) may be
written as

(2.1.2) Hom pg, 4y (F, G) = Hom o) (FFH, G),

with F' € Psh(kx) and G € Mod(kx). If F is a presheaf on X, the sheaf F*+ is
called the sheaf associated with F'.

Definition 2.1.8

(i) Let M € Mod(k). One denotes by Mx the sheaf associated with the presheaf
U — M and calls Mx the constant sheaf with stalk M.

(ii) For U € Cx, one defines kxy € Mod(kx) as the sheaf associated with the
presheaf V s ®Hom (V:U),

Proposition 2.1.9. — Let F € Mod(kx). There is a natural isomorphism
F(U) ~Hom,_(kxuv,F).
Theorem 2.1.10

(i) The category Mod(kx) admits projective limits. More precisely, if {F;}icr is a
projective system of sheaves, its projective limit in Psh(kx) is a sheaf and is a
projective limit in Mod(kx).

(ii) The category Mod(kx) admits inductive limits. More precisely, if {F;}icr is an
inductive system of sheaves, its inductive limit in Mod(kx) is the sheaf associ-
ated with its inductive limit in Psh(kx).

(iii) The category Mod(kx) is abelian.

(iv) The functor v : Mod(kx) — Psh(kx) is fully faithful and left exact. The functor
*t+ : Psh(kx) — Mod(kx) is ezact.

(v) Filtrant inductive limits in Mod(kx) are ezact.

(vi) The U-category Mod(kx) admits enough injectives.

Notation 2.1.11. — Let U € Cx and let F' € Mod(kx). One sets
I(U; F) = F(U).

Proposition 2.1.12. — A morphism ¢ : F — G in Mod(kx) is an epimorphism if and
only if for any U € Cx and any t € G(U), there exists a covering S € Cov(U) such
that for each V € S there exists sy € F(V) with ¢(sv) = t|v.

2.2. Inverse and direct images

Consider a morphism of sites f: X — Y associated with ft: Cy — Cx. One defines
a functor

f«: Psh(kx) — Psh(ky)
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by setting for V € Cy and F € Psh(kx), (f«F)(V) = F(f*(V)). This functor induces
a functor that one denotes by the same symbol:

f«: Mod(kx) — Mod(ky).
One defines a functor
If: Psh(ky) — Psh(kx)

by setting for G € Psh(ky), If(G)(U) = lim G(V).
U—ft(V)
One defines

f~': Mod(ky) — Mod(kx)
by setting f~1G = (If(G))**.
Theorem 2.2.1

(i) The functor f~': Mod(ky) — Mod(kx) is left adjoint to f.: Mod(kx) —
Mod(ky). In other words, we have for F € Mod(kx) and G € Mod(ky):

Hom, (f™'G,F)~Hom, (G, f.F).

(ii) The functor f. is left exact and commutes with projective limits.
(iii) The functor f~! is ezact and commutes with inductive limits.

Notation 2.2.2

(i) We denote by {pt} the category with one object {pt} and one morphism, en-
dowed with its natural topology for which Cov({pt}) consists of {idp}}-

(ii) Let X be a site with a terminal object X. We denote by ax the morphism of
sites X — {pt} defined by a’ ({pt}) = X.

2.3. The functor iy’

Definition 2.3.1. — Let U € Cx and let V € Cy. A subset of Cy is called a covering
of V in Cy if it is a covering in Cx.

Clearly, the conditions of Definition 2.1.2 are satisfied and we get a site (with a
terminal object U) that we denote by U. We define the functor

zb Cx — Cy
iy (V) =UxV.
Since i}, commutes with fiber products, it defines a functor of sites
ip: U — X.
Note that for F' € Mod(kx) and for a morphism W — U, we have
(2.3.1) (ig' F)(W) ~ F(W).
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Notation 2.3.2
(i) For F € Mod(kx) and U € Cx, one sets

T'y(F) = iy,ip'F € Mod(kx).
(ii) We sometimes write for short
Fly =iy'F.
If F € Mod(ky) with U — V, we keep the same notation F|y .

Clearly, the functor I'y : Mod(kx) — Mod(kx) is left exact, there is a natural
morphism F — I'y(F), and I'(X;-) o Ty () ~ I'(U;-). Moreover we have for F,G €
Mod(kx):

Hom, (B, Ty (G)) ~ HomkU(FIU,G|U).

Consider the functor

jb CU -—>Cx,

ViV
This functor defines a functor of sites
jur X = U.
We get functors:
Mod(ky) '%Z_: Mod(kx) Z:ﬁ—l Mod(ky).
Usx Usx

Definition 2.3.3. — One sets iy, = ju .

Proposition 2.3.4
(i) One has ju, ~ig".
(i) iy is ezact and commutes with projective limits.
(iii) iy := ju~ ! is a left adjoint to iy~'. In other words, for F € Mod(ky) and
G € Mod(kx) one has

Hom, (iy)F,G) ~ Hom, (F,iv~'G).

(iv) iy is exact and commutes with inductive limits.
(v) For F € Mod(ky), the sheaf iy F is the sheaf associated with the presheaf
Cx3Ve—=@,_ yFV-U).

Notation 2.3.5. — For F' € Mod(kx) and U € Cx, one sets

Fy = iU!iU—lF.
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Note that the functor F' — Fy is exact and there is a natural morphism Fy — F.
Moreover, if F' = kx, this definition agrees with Definition 2.1.8 (ii).
Consider the hypothesis for U € Cx:

(2.3.2) For any V € Cx, Hom, (V,U) has at most one element.

Proposition 2.3.6. — Assume (2.3.2).
(i) One hasiy' oiy, ~id and iy;* oiyy ~ id.
(i) iy, and iy, are fully faithful.
(iii) The natural morphism Fy — F' is a monomorphism.

Consider a morphism of sites f: X — Y and assume that Cx and Cy have terminal
objects X and Y and f(Y) = X. Let V € Cy, U = f{(V). The morphism f defines
a morphism f|y: U — V. Consider the commutative diagrams of sites

X—Y X —> Y
Tiu Tiv Ju l]v
IETRANNE TN
We deduce
(2.3.3) iU!o(f!U)_l ~ f_loiV|
(2.3.4) (flv), oig ~ iy o fu.
Using (2.3.3), we get the isomorphism
(2.3.5) (flv) Yhyv ~ kxu.

2.4. Internal hom and tensor product

Definition 2.4.1. — Let X be a site and let F,G € Mod(kx).

(i) We denote by Hom,, (F,G) the presheaf on X, U — Hom, (F|y,G|y) and
call it the “internal hom” of F' and G. If there is no risk of confusion, we write
Hom (F, G) instead of Hom, (F,G).

(ii) We denote by F' ®, G the sheaf associated with the presheaf on X, U —
F(U) ®, G(U) and call it the tensor product of F' and G. If there is no risk of
confusion, we write F' ® G instead of F' ®,, G.

Proposition 2.4.2. — Let F,G,K € Mod(kx).
(i) The presheaf Hom (F,G) is a sheaf on X,
(i) for any U € Cx, iy;"Hom (F,G) ~ Hom (i;* F,i;'G),
(i) Hom (kx,F) ~ F,
(iv) kx ® F ~ F,
(v) Hom(F ® G, K) ~ Hom (F, Hom (G, K)).
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Now consider a morphism of sites f: X — Y.

Proposition 2.4.3
(a) Let F € Mod(kx) and let G € Mod(ky). There is a natural isomorphism in
Mod(ky)
(24.1) Hom, (G, fF) — f Hom, (f'G,F).
(b) Let G1,G2 € Mod(ky). There is a natural isomorphism in Mod(kx)
(2.4.2) FTHGI®Gy) ™ fT1G1® f71Ga.

As a corollary, we find that the functor iy, commutes with tensor product.
Proposition 2.4.4. — Let U € Cx, let F € Mod(ky) and let G € Mod(kx).
(a) There is a natural isomorphism
(2.4.3) in(F ®ig'G) = iy F @ G.
(b) There is a natural isomorphism
(2.4.4) Hom (iv\ F, G) ~ iy, Hom (F,ig'G).
Proposition 2.4.5. — Let U € Cx and let F,G € Mod(kx). Then
(i) Fv ®Gu ~ (F®G)u,
(ii) Hom, (Fy,G)=~Hom, (F|v,G|v),
(iii) FU >~ F@kxu,
(iv) Hom (kxu, F) ~Tuy(F).

Exercises to Chapter 2
Exercise 2.1. — Let X be a site.
(i) Prove that hypothesis (2.3.2) on U € Cx is equivalent to
for any morphisms V — U and W — U, onehas V xy W == V x W.

Assume hypothesis (2.3.2) is satisfied for every U € Cx.

(ii) Let U,V € Cx and set W = U xV. Denote by ¥}, : C — Cy the natural morphism
of sites, and similarly for iY,. Prove the isomorphism if;' o iy ~ ¥, o i}//v_l.

(iii) Let F € Mod(kx). Under the notations in (ii), prove the isomorphisms i7;' Fyyr —

il}lFV and (Fy)y ~ Fw.
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CHAPTER 3

STACKS

In this chapter, we work in a fixed universe Y. Hence, otherwise stated, a category
means a U-category and all sets are U-small. We shall denote by X a topological
space and by k£ a commutative ring.

3.1. Definition of stacks

References are made to [6] (see also [9]).

Definition 3.1.1. — A prestack C on a topological space X is the data of:
(i) for each open subset U of X, a category C(U),
(ii) for each open inclusion V' C U, a functor (sometimes called the restriction
functor) pyy: C(U) — C(V),
(iii) for each open inclusions W C V C U, an isomorphism of functors Awvyy : pwv o
pvu — pwu,
these data satisfying:
(i) pvv = idew),
(ii) for each open inclusions U; C Uy C Us C Uy, the diagram below is commutative
(in this diagram, we shall write p;; instead of py,u, and A instead of Ay,v; v, ):

A234
P12 © P23 © P34 — P12 © P24

l/\123 lhu
A

134
P13 © P34 ———— P14-

It follows from the axioms that A\yyy =id and \yyy =id for V C U.
A prestack of k-additive (resp. k-abelian) categories is a prestack such that for each
U, C(U) is k-additive (resp. k-abelian) and the functors pyy are k-linear.
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Notation 3.1.2

(i) For F,G € C(X) one denotes by Hom (F,G) the presheaf of sets on X: U —
Hom ¢y (pux F; pux G) (U open). One sets Endc(F) = Hom(F, F).

(ii) For F € C(U) one often writes F|y instead of pyy (F) for short, and one calls it
the restriction of F' to V. Hence, for W C V C U, Awvy defines an isomorphism
/\WVU: (FlV)IW L) F|W

(iii) If C is a prestack on X, one defines in an obvious way the prestack C|y on U,
its restriction to U.

(iv) If {Ui;i € I} is a family of open subsets, one writes U;; = U; N U;,Ujjx =
U;NU; NU, etc.

Definition 3.1.3. — We say that a prestack C satisfies the axiom ST1, if for any open
subset U of X and any F,G € C(U), the presheaf Homc|U(F, G) is a sheaf on U.

If C is a prestack of additive categories satisfying ST1 and F € C(U), one defines
the support of F', denoted by supp F', as the complementary set in U of the union
of all open subsets V' C U such that F'|y = 0. This coincides with the support of
idr € T'(X;Endc(F)). Note that if V = J,c; Vi and F|y, = 0 for all ¢, then F|y = 0.

Definition 3.1.4. — We say that a prestack C satisfies the axiom ST2, if for any open
subset U C X, any open covering U = | J,.; Ui, any family F; € C(U;), any family of
isomorphisms 6;;: F;|y,, — Fj|u,, such that:

(3.1.1) Oijlvsi © Ojklu,e = Oikluyi

there exist F' € C(U) and isomorphisms 6;: F|y, — F; such that

(312) 0,,;]‘ o (ajl[jz.j) = 0,~|U,.j.

More precisely, (3.1.1) means that the diagram below (in which we do not write
explicitly the morphisms A;;x) commutes:

Ok
FklUjk lUijk — Flejk |Uijk —N'_> Fj‘Uijk

l {
Fkigfijk Fjlu,; v
\Z L91']'
Frlviluin Filu;-luijk
Ok l

>F‘i{Uijk

Filuik |Uijk
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and the equation (3.1.2) means that the diagram below commutes

~

FIUleij il >F|Uij < FlUiIUz‘j

2 :

Fleij )FilUij’

Definition 3.1.5

(i) A separated prestack is a prestack which satisfies the axiom ST1.
(ii) A stack is a prestack which satisfies both the axioms ST1 and ST?2.

Note that if C is a stack and if F is defined as in ST2, then F' is unique up to
isomorphism. Indeed, if (F’, 6}) is another candidate, the isomorphisms «; : 0,700, :
Fly, = F'|y, will glue as an isomorphism a: F — F’ by ST1.

Note also that for a stack of additive categories, C(@) is equivalent to 0, the category
consisting of the zero object.

Definition 3.1.6. — Let C and C’ be two prestacks on X. We shall denote by pvu,
Awvu (resp. piy, AMyvy) the associated functors and morphisms of functors on C
(resp. C’). A functor of prestacks ¢: C — C’ is the data of:

(i) for each open subset U, a functor ¢y : C(U) — C'(U),
(ii) for each open inclusion V' C U, an isomorphism of functors vy : v o pvu =
Pyu ©¥u,

such that for each open inclusions W C V' C U, the diagram below commutes:

A
Pw © pwv © pvuU —WVU—> Yw ° pwu

9wvl

Pwy © PV © pvu bwu

9vul
/
wvu

Pwy © Pyy © Pu —————— Py © QU -

A functor of stacks is a functor of the underlying prestacks. One defines naturally
the notion of a functor of k-additive or k-abelian stacks.

Definition 3.1.7. — Let C and C’ be two prestacks on X. We shall use the same
notations pyy and pj,; as in the preceding Definition 3.1.6. Let ¢: C — C’ and
¢': C — C’ be two functors of prestacks. We denote by v (resp. 65,;) the associated
morphism to ¢ (resp. ¢'). A morphism f: ¢ — ¢’ of functors of prestacks is the data
which associate, to each open subset U, a morphism fy: gy — ¢y of functors from
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C(U) to C'(U), such that for each open inclusion V C U and F € C(U), the following
diagram commutes:

ev(pvuF) MUL)) oy (pvuF)
Ovu(F) vu(F)
v i pyy(fuF) l "

Pyvy(puF) ——— pyy(pp F) .

Hence, one has the notion of equivalence of stacks.

Examples 3.1.8
(i) If C is a stack on X, then C|y is a stack on U.

(ii) Let A be a sheaf of k-algebrason X. Then U — Mod(A|y) is a stack of k-abelian
categories on X.

3.2. Proper stacks

From now on, we assume that the topological space X is Hausdorff and locally
compact. Recall that, for open subsets U and V of X, V CC U means that the
closure V of V is compact and contained in U. In this section, C is a prestack of
abelian categories on X.

Notation 3.2.1. — For an open subset U of X, we denote by iy the open embedding
U — X. We often write i, instead of pyx to denote the restriction functor C(X) —
C(U). Hence, for F € C(X), we have three notations:

puxF = FIU = ialF.

Definition 3.2.2. — A proper stack C on X is a prestack C of abelian categories satis-
fying the following axioms:
(i) C is a separated prestack,
(ii) for all open subsets V' C U C X, the restriction functor pyy is exact,
(iii) for all open subset U C X, C(U) admits small filtrant inductive limits, and the
functor h_n} is exact over such limits and commutes with pyy,
(iv) for all open subset U C X, C(U) admits small filtrant projective limits, and the
functor @ commutes with pyy,
(v) for all open subset U C X, the functor i,}l admits a left adjoint, and denoting
this functor by iy, it satisfies id¢ () = i{,l o iyy.

We shall prove later that a proper stack is actually a stack.
In the sequel let C be a proper stack.
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Lemma 3.2.3. — For any small filtrant inductive system {F;}; in C(X) and for any
small filtrant projective system {G;}; in C(X), we have
Hom (lim F}, lim G;) ~ lim Hom . (F}, G;).
i J %]
Proof. — This immediately follows from the fact that inductive and projective limits
commute with the restriction functors. q.e.d.

Lemma 3.2.4. — For open subsets V C V' C U and F € C(U), there exists a canonical
morphism
ivi(Flv) = ivi(Flv).
Moreover, if V' Nsupp(F) C V, this morphism is an isomorphism.
Proof. — For any G € C(X), we have a chain of morphisms
Hom ¢ (iv1(Flv'), G) ~ Hom ¢y (Flvr, Glvr)
B .
— Homy (F|v,G|v) =~ Hom x, (ivi(Flv),G)

Hence we have the desired morphism.

Assume V' N supp(F) C V. Then V' Nsupp(Hom,, (F,G|v)) C V and hence
(Vs Home,, (F,Glv)) — T'(V;Home,, (F,Glv)) is an isomorphism. It means that
[ is an isomorphism. q.e.d.

Lemma 3.2.5. — For any F € C(U), one has supp(iy F') C supp F'.

Proof. — It is enough to show
(3.2.1) (ivnF)|ly =0 for any open subset V such that supp FNV = @.
Set W =U U~V, F = 4y F and H = ’Homc(ﬁ‘,ﬁ‘). Then H|yny = 0. Define
¢ € End ) (Flw) =T(W; H) by lu =0 and ¢|v =idp,,. Let G be the cokernel
of o : Flw — Flw, and let G = iy,G € C(X). Then we have

G|y ~ G|y =~ coker(p|v) =0,
and similarly G|y ~ F.

Hence it is enough to show that G is isomorphic to iy F. For any K € C(X), we
have

Homc(x)(é, K) =~ Hom (G, K|w)
~ T'(W;Homg,,, (G, K|w)) ~T'(U; Homg,, (G, K|w))
~ HomC(U)(G|U,K|U) ~ Hom ;) (F, K|v)-
Here the third isomorphism follows from Hom, (G, K|w)|v = 0. q.e.d.

Lemma 3.2.6. — For F' € C(U), we have iy\F =~ lim v (F|v).
vccu
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Proof. — Let G € C(X). Then

Homgx)( lim ivi(Flv),G) = lim Homgx,(ivi(F|v),G)

vccUu vccu
~ lim Homc(v)(F|V,i‘—/1G): lim I‘(V;HomCIU(F,i[—le))
vecu vecu

~T(U; Homg,, (F, it G)) ~ Hom ) (F, i G) ~ Hom(x(iv1 F, G).
q.e.d.

Lemma 3.2.7. — Let F € C(X) with supp F C U. Then iyyi;"F — F.

Proof. — Apply Lemma 3.2.4 with V|, V', U replaced by U, X, X. q.e.d.

Lemma 3.2.8. — Let G € C(X). If there is a monomorphism G—iy\F with F €
C(U), then we have

i G = G.

Proof. — Recall the isomorphism iy F' =~ lim iy (F|v). Define Gy € C(X) by the
vccu
Cartesian square

Gy ——— @G
| o |
ivi(Fly) —— i F.

Since the functor lim is exact, we get the isomorphism lim Gy =5 G. Hence, we
—> ’ —
vccu vccu

get the isomorphisms
ivyig' G ~ iyt lim Gy ~ lim iyi;'Gy.
vccu vccu
Indeed, i,}l commutes with hi>n by the axioms, and iy, commutes with hﬂ since it
has a right adjoint. On the other hand, the monomorphism Gy —iy,(F|v) implies
that supp Gy is contained in V C U. Applying Lemma 3.2.7, we get the isomorphism

iviig' Gy — Gy, and then iyi;'G = lim Gy = G. q.e.d.
vccu

Lemma 3.2.9. — For F € C(X), the natural morphism iyiy;' F — F is a monomor-

phism.

Proof. — Define N by the exact sequence 0 - N — z'U,iE,IF — F'. Applying the
exact functor i{]l and using the isomorphism i,}liU!ial ~ ial, we get i{,lN = 0.
Since N is a subobject of iUgi[;lF, we find N = 0 by Lemma 3.2.8. q.e.d.

Proposition 3.2.10. — The functor iy, is exact.
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Proof. — This functor is right exact since it admits a right adjoint. Consider a
monomorphism G—F in C(U), and deﬁne N by the exact sequence 0 — N — iy,G —
i F. Applymg the exact functor i, 1 we find i,}lN = 0. Since N—iy,G, we have
N ~iyig !N by Lemma 3.2.8. Hence N =0. q.e.d.

Proposition 3.2.11. — Let U and V be open subsets, and let F' € C(U). Then
iviiytin F =~ duavi(Fluav).
Proof. — For U’ cC U and V' CC V, set

GU’V’ = Z'V/gi‘—/,l'iulg(FIU/),

G= ll_n)l GU’V’-
u,v’

Then we have
(3.2.2) G ~ iyyiytip F.
Since supp Gyry: CU NV CcUNV,
iunviigay Gurve — Guryr.
Taking the inductive limit with respect to (U’, V'), we obtain
(3.2.3) ivaviigay G — G.
On the other hand, (3.2.2) implies i,}ﬁwG ~ F|ynv, and we get
(3.2.4) ivviighy G = iuavi(Fluny).
Then the assertion follows from (3.2.2), (3.2.3) and (3.2.4). q.e.d.

Proposition 3.2.12. — Let V C U C X be open inclusions. Then z'{,livl is a left
adjoint to pyy:

Hom ) (iy YiviG, F) ~ Hom (G, pvuF) for G €C(V) and F € C(U).
Proof. — Applying the preceding proposition, we have
iviig'iviG ~ ivaui(Glvau) = iviG.
Hence we have

Homc(U)(ialing, F) ~ Hom g (i YiviG,igtio F)

(iy
o~ HOIIIC X)(’LUl’tU ZV|G ZUIF)
~ Homx,(iv\G, iv1 F)

(

~ Homc(v) G,iy, 2U|F) Homc(v)(G,pVUF).
q.e.d.
Proposition 3.2.13. — Let U C X. Then Cl|y is a proper stack.
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Proof. — By the preceding proposition, pyy admits a left adjoint i{,livg. The axioms
are now easily checked. q.e.d.

Proposition 3.2.14. — Let F € C(U),G € C(X). Then
Hom (i1 F, G) =~ iy Homg,, (F, iy G).
Proof. — Let V C X. Then
L(V;Hom(iv1F, G)) = Hom gy (iy i F iy G) = Hom gy (iviiy tiv F, G)

~ Homc(x)(iUnv!(Fl(Jnv), G) ~ HomC(UnV) (FIUﬂV,iL—]fl-]VG)

~T(U NV;Homg,, (Fiy' Q) = T(V;iy, Hom, (Fyig'G)).
Here the third isomorphism follows from Proposition 3.2.11. q.e.d.
Definition 3.2.15. — For F € C(X), we set Fyy := iyyiy F.

The functor C(X) 5 G — I'(U; Hom(F, G)) is representable by Fy .
Let V. C U. The morphism I'(U; Hom(F,G)) — L(V;Hom(F,G)) defines a
morphism

Fy — Fy.

Now, consider an open covering U = |J;c; U;. The families of morphisms Fy,; —
Fy, and Fy,; — Fy, define the two morphisms o and 3:

a
(3.2.5) @i,jEIFUij —7—3 DrecrFue-

Here we have used the convention in Notation 3.1.2 (iv).

Lemma 3.2.16. — Let F € C(X). There is a natural isomorphism coker(a — 3) ——
Fy.

Proof. — Set for short Fy := @, Fy, and Fy := @ij Fy,;. Let G € C(X) and set
H := Hom(F,G). The two sequences

0—-T(U;H) - [[TWxH) - ] T(Ui;;H) and
k i,jel
0 — Hom x)(Fu,G) — Hom y)(Fo,G) = Hom(x(F1,G)
are isomorphic. Since the first one is exact, the result follows. q.e.d.

Theorem 3.2.17. — Let C be a proper stack. Then C is a stack.

Proof. — Let U = J,c; Ui be an open covering of U C X. Let F; € C(U;) and
let 6;;: F|y,, — Fjlu,;, and assume that these isomorphisms satisfy the condition
(3.1.1).

ASTERISQUE 271



3.2. PROPER STACKS 33

Let us introduce the following notations:

. . -1 _ -1
fi-Uif_>Xy fi!_ZUi!? i =y
. . 1 _ .
f’ij . UZ] — X7 fly! = /LUij!’ ij _ZU“J

and define
Fj:= gi_lei = FiIUij'

Using Lemma 3.2.4, we have a morphism fij!gz;l — fiy from which we deduce the
morphism

(3.2.6) agj: fij Fij — faFi.
Denote by 3;; the composition of the morphisms

FisnFig 5= fianFse o JFs-
Then:
(3.2.7) Bij : fij\Fij — [ Fj.

We thus get two morphisms in C(U):

(0%
@i jer fij Fij ? Sk frr Fi-

Set F' := coker(a — ) and define 6;: F; — fi_lF by the natural morphism f; F; —
@ fi1Fr — F. It remains to show that 6;, is an isomorphism for any ip € I.

We may assume from the beginning that U = U;,. Set F° = F,,, F? = FO|y,,
Fjy = F°ly,;. The isomorphisms ;,;: F; — F}’ define isomorphisms

0° = Brbiok : BrfriFr — D frFy
O = ®;;0i5i : Bij fij Fij — @z‘jfz’ngz%-

Consider the diagram below where o and 3° are defined as in (3.2.5) for Fp, so that
FO9 ~ coker(a® — 3%):

a—p
@ij fij Fij —————— ®rfr Fr

Z‘[@l {@0
aO BO

@i fij Y ———— Onfu FY-
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This diagram commutes, thanks to the commutativity of the diagrams

fij Fij —— fuFi fij!ﬂj‘L)fj!Fj
leioi ‘[9101 laioi J{%g
fij!ﬂ%—ﬁfi!ﬂo fij!ﬂg——’szl;}o'
Hence, F is isomorphic to F©. q.e.d.

We shall extend classical constructions in sheaf theory to proper stacks.
Let F € C(X). For an open subset U, we have already defined the object Fyy €
C(X). For a closed subset S, we define the object Fis by the exact sequence

(3.2.8) 0— Fx\s = F — Fs — 0.

For any locally closed subset Z, one can find an open subset U and a closed subset
S such that Z = U N S. We shall see below that (F7)s depends only on Z, and we
shall denote this object by F.

Proposition 3.2.18. — Let F € C(X), and let Z be a locally closed subset of X. Then
(i) the functor C(X) > G +— T'z(X;Hom(F,G)) is representable by Fz,
(i) one has Hom (Fz,G) ~T zHom(F,G),
(iii) the functor F — Fyz is exact and commutes with inductive limits,
(iv) if Z1 and Zy are two locally closed subsets, then (Fz,)z, ~ Fz,nz,,
(v) if Z' C Z is closed in Z, the sequence 0 — Fz\z1 — Fz — Fz: — 0 is ezact,
(vi) if U is open, then we have iy;' (Fz) ~ (iy;" F) znv i.e. C(U) 3 F — Fzny € C(U)
is a functor of stacks,
(vii) supp(Fz) C Z Nsupp F.

Proof

(i) The formula I'z(X;Hom(F,G)) ~ Homc(x)(FZ,G) is true when Z is open.
Applying the left exact functor Hom (-, G) to the exact sequence (3.2.8), we find
that this formula remains true when Z is closed. Now let Z = U N S. Applying
Proposition 3.2.14, we get

Tz(X;Hom o (F,G)) ~ Ts(X;iy.iy Hom(F,G))
>~ FS(X;’Homc(FU,G)) >~ HOII]C(X)((FU)S,G).
(ii) The formula is true when Z is open. Since Hom, is left exact, this formula

remains true when Z is closed. Assume Z = U N S. Then the result follows from
r z =~ r s o FU.

(iii) Let us first show that F' — Fy is exact. The functor F' — Fy ~ iU!i{JIF is exact.
Hence, we may assume that Z = S is closed. By the definition of Fs in (3.2.8), this
functor is exact.
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The functor F' — I'z(X;Hom(F,G)) sends inductive limits to projective limits.
Therefore, the functor F — Fz commutes with inductive limits.

(iv) For any G € C(X), one has
Hom x)(Fz,nz,, G) =~ I'z,02,(X;Hom(F,G)) 2Tz, (X;Tz,Hom(F,G))
~ Tz, (X;Hom(Fz,,G)) = Hom¢ x((Fz,)) 2, G))-

(v) We may assume Z’' = SN Z, with S closed in X. Then the result follows from
the exact sequence (3.2.8) applied to Fz and (iv).
(vi) For any G € C(U), one has

Homc(U)(ial(Fz),G) ~T(U;Hom(Fz,i1G)) ~ T'zau(U; Hom o (F,iv)G))

~ FZnU(U;Hoqu(i,}lF, G)) ~ Homc(U)((z'{,lF)ZnU,G).
Hence we have i7" (Fz) ~ (i;' F) zov-
(vii) For any G € C(X), we have supp Hom .(F,G) C supp F, and hence
supp Hom ;(Fz,G) = suppT'zHom ,(F,G) C Z Nsupp F.

Hence setting G = Fy, one has supp F' = supp(Endc(F)) C Z Nsupp F. q.e.d.
Proposition 3.2.19. — Let F € C(X). Then

lim FU;F—LlimFK.
oLt um
uccx K
As usual U is open, and K ranges through the family of compact subsets of X.

Proof. — Since C is a stack it is enough to show that they are isomorphisms on any
relatively compact open subset of X. This is obvious because inductive limits and
projective limits commute with the restriction functors. q.e.d.

Definition 3.2.20. — Let U be an open subset of X and let G € C(U). One sets

.G = }in iv1(Gk), K compact.
KcCU

Proposition 3.2.21. — The functor iy, is a right adjoint to the functor i,}l.

Proof. — For F € C(X) and G € C(U), we have

Hom x)(F, lim iy \Gk) ~ lim Hom, ) (F,iv\Gk)
KcU KcU
~ lim [(X; Hom(F,iv,GK)).
KcU

Since supp(Hom(F, iy )Gk)) C K C U we have
I'(X;Hom(F,iv\Gk)) ~ T'(U; Hom(F,iv\Gk))
o~ Homc(U)(i{]lF, Gk).
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Hence we have

Hom ) (F, lim ip)Gx) ~ lim Hom gy, (i F, Gx)

KcU KcU
=~ Homy (ip' F, lim Gk) ~ Hom ) (i F, G) .
KcU
q.e.d.

Note that the morphisms G — Gk define the morphism
iU!G — iU*G.
If G has compact support in U, this morphism is an isomorphism.

Proposition 3.2.22. — Let Z be a locally closed subset of X. The functor F — Fyz
admits a right adjoint.

We shall denote this adjoint functor by I'z(-). Hence, for F' and G in C(X), one
has:
Hom () (Gz, F) = Hom¢ x)(G,I'z(F)).
Proof
(i) If Z is open, iy,iy;" is a right adjoint to iy iy

(if) If Z = S is closed, set U = X \ S and define I'g(F) by the exact sequence
0 - I's(F) » F — T'y(F). Since Homg (G, -) is left exact, the result follows in
this case.

(iii) Now assume that Z = SNU with S closed and U open. Set I'; =I'yoI's. q.e.d.
As an immediate consequence of the properties of the functor F' — Fz, one gets:

Corollary 3.2.23

(i) The functor 'z is left exact and commutes with projective limits,
(ii) one hasT'z, oTz, ~T'z,nz,,
(i) of Z’ is closed in Z, there is an exact sequence of functors 0 — I'zs — I'z —
Lz\z,
(iv) Tz(F) represents the contravariant functor G — T'z(X; Hom (G, F)).

3.3. Indization of proper stacks

We assume that X is a Hausdorff locally compact space with a countable base of
open sets. Let C be a proper stack of abelian categories on X. We define the full
abelian subcategory C.(X) of C(X) by

Ob(C.(X)) = {F € C(X); supp F is compact}.

We denote for short
IC(X) = Ind(C.(X)).
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The reason why we consider the ind-objects of C.(X) is that the correspondence U —
IC(U) is a stack as we shall see later, contrarily to the correspondence U +— Ind(C(U))
as we shall see now.

Example 3.3.1. — Let X = R, and consider the stack Mod(kx) of sheaves of k-
modules on X. Let F = kx, Gn = Kjp 4o0o[y G = “lim” G,. Then Gy = 0 in

Ind(Mod(ky)) for any relatively compact open subset U of X. On the other hand,
Homlnd(Mod(kx))(kX,G) ~ lim Hom, (kx,Grn) ~ k.

n

Lemma 3.3.2. — IC(X) admits small projective limits.

Proof. — By the general result in Theorem 1.3.1, it is enough to show that for a
small family {F; € C.(X)}, its product (which is well-defined in the category C.(X)"
of contravariant functors on C.(X)) belongs to IC(X). For G € C.(X) we have
HHomC(X)(G’Fi) = lim Homx)(G, H(FiU))
9 vuccx [
~ Homlc(x)(G, “@” (Fz )).
U i
Here the first arrow is an isomorphism because Hom (G, F; v) — Hom cx)(Gs F)
is an isomorphism whenever supp(G) C U. Thus the product of the F;’s is represented

by “lim” [T,(Fiv)- qed.
U

We introduce the functor:
tx : C(X) = IC(X)

(3:3.1) F — (Co(X) 3 G — Hom g x (G, F)).
This functor is well-defined by the lemma below.

Lemma 3.3.3. — For F € C(X) one has the isomorphisms:

vx F ~ “li_rr)l” Fy ~ }Ln Fy,
Uccx KCcX
where U ranges through the family of relatively compact open subsets of X and K
through that of compact subsets.

Proof. — Let G € C¢(X). Then:
Hom ; x)(G, F) =~ lim Hom (G, Fy) ~ lim Hom (G, Fk).
U K
q.e.d.

Proposition 3.3.4. — The functor vx of (3.3.1) is fully faithful, exact, and commutes
with lim.
—
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Proof. — Let F,G belong to C(X). One has the chain of isomorphisms:

Homye(x(tx F,ixG) ~ lim Homye ) (Fu,txG)
vccx
vccx

Hence, tx is fully faithful. It is exact since the functor F' — Fy is exact as well as

“lim”. Finally let us prove that tx commutes with projective limits. Let {F;}; be a
U
small projective system in C(X). Then we have for G € C.(X)

HomIC(X)(G, LX(@ F)) ~ Hom (G, lim F}) ~ lim Homc(x)(G,Fi)
~ limHom ¢ (G, tx (Fi)) = Hom ¢ ) (G, lim(ex Fy)).
q.e.d.

Notation 3.3.5. — In the sequel, we shall identify C(X) with a full subcategory of
IC(X) by tx and often write F instead of vx F.

Definition 3.3.6. — Let U be an open subset of X. We introduce the functor
pux : 1C(X) — 1C(U),
also denoted by F — F'|y, by the formula:
Hom o) (G, Flv) = Homy x (101G, F)  for G € Cc(U).
This functor is well-defined by the following lemma.

Lemma3.3.7. — Let F = “lim” F;, F; € Cc(X). Then:
i
Fly ~ “li_r)n” (Fiv|v) ~ %&n “l_ir_)n”(F}K|U) V open, K compact.
iW\Vccu KcU i

Proof. — Let G € C.(U). Then iy)G € C.(X) and one has
Hom ¢ x)(iv1G, F) = lim Hom ¢ x) (iv1G, F;) = lim Hom ¢y (G, Filv).

Furthermore we have

llmHomc(U)(G Fily) ~lim lim Hom, (G, Fiv|v)
z VCCU

and

li_.)mHomc(U)(G,FilU) = lln li_IZ}HOInc(U)(G, Fik|v)

KCU i
~ Homy¢(y)(G, lim “lim” Fik|v).
KCU i

q.e.d.
Lemma 3.3.8. — For F € C(X), we have wy(F|y) ~ (tx F)|u.
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Proof. — For any G € C.(U) we have

Hom ¢y (G, w(Flv)) = Hom gy (G, Flv) ~ Hom ¢ x) (iv/ G, F)
~ Homye () (i1 G, tx F) = Hom ¢ 1y (G, (tx F)lv).

q.e.d.

Lemma 3.3.9. — The correspondence U — IC(U) is a prestack of abelian categories
and vy : C(U) — IC(U) is a functor of prestacks.

The proof is obvious.

Proposition 3.3.10. — The functor pyx: IC(X) — IC(U) is exact and commutes with
“li—I)n” and liLn.

Proof. — The functor pyx commutes with lim since the functor Hom oy (iv1G, )
does. The exactness is obvious, and the commutativity with “lim” follows from
Lemma 3.3.7. q.e.d.

Recall that if F' and G belong to IC(X), the presheaf U — Hom o (Flu, Glu) is
denoted by Hom .(F,G).

Proposition 3.3.11. — Let F, G belong to IC(X).
(i) The presheaf Hom,(F,G) is a sheaf.
(ii) For F'~ “lim” F; and G ~ “lim” G; with F;, G; € Cc(X), one has
i J
Hom ¢ (F, G) = limlim Hom (£}, G;).
i g
Proof. — One has the chain of isomorphisms:
Hom ¢y (Flu, Glv) = Homye () ( “lim” Fivly, “lim” Giwlv)
i, VCCU i Wccu
~ lim ( lim Homgq, (Fivlv, Giwlv))
i, VCcU j,WCcU
L, VCcU j
lim lim (Vi Hom(F;, Gy)).
i, VCcU j

R

On the other hand we have

lim Lm (Vi Hom (£, Gy)) ~  lim  m T(V; Hom (£, Gj)yr)
veeu v\v'ccU j
~ lim lmI(U;Hom(F;, Gj)y7).
v'ccU j
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Finally we obtain

I'Iomlc(U)(F|U7G|U)2 lim ri,nP(V§H0mc(Fian))

,WVCcU j
~ lim I’(V;l_ingomc(E-,Gj))
i, VCccU J
~ mF(U; mHomC(ﬂ, Gj))
i j
~ I'(U; lim lim Hom . (F3, Gj)).
i
q.e.d.
Corollary 3.3.12. — Let {F;} be a small filtrant inductive system in IC(X).
(i) For any G € IC(X), we have
Homo(“lim” F;, G) ~ lim Hom . (F;, G).
(if) For any G € C(X), we have
Hom (G, “lim” F;) ~ lim Hom (G, F).
Note that (ii) does not hold in general for G € IC(X) (see Exercise 3.5).
Lemma 3.3.13. — The functor ial admits a left adjoint. In other words, denoting this
adjoint by iyy, we have for F € IC(U) and G € IC(X):
Hom ¢y (ivnF, G) =~ Hom oy (F, i, G).
Moreover, if F = “lim” F; with F; € C.(U), then
iU!! “li_‘II)l” -Fz ~ “m” iU!FIZ'
Proof. — We may assume that F' = “lim” F; with F; € C;(U) and G = “lim” G;

% J
with G; € C.(X). One defines iy F' € IC(X) as in the statement. Then

Hom ¢, (ivnF, G) = lim lim Hom ) (iv1 £, G) = lim limy Hom ¢ ) (Fi, iy G)

7 J ? J
~lim lim HomC(U)(Fia (i(_JlGj)V) =~ HomIC(U)(F’ itle)-
i j,Vccu

q.ed.

One shall be aware that the natural morphism iywyF — txip F for F € C(U) is
not an isomorphism in general. Here this morphism is defined by the morphisms

et o
iy F =~ “lim” iy (Fy) — “lim” (iv, F)w
vccu wWccXx
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(we have not written the functors ¢y, ¢x for short). This is the reason why we employ
the different notation iyy. Of course, if supp F' is compact, then iyyF — iy F.

Theorem 3.3.14. — The prestack IC is a proper stack.

Proof. — By the preceding results, it remains to check properties (v) of Definition
3.2.2 for the functor iyy,. Let F = “lln” F; € IC(U) with F; € C.(U). Since i{,l
commutes with inductive limits, one has

1. —1 «: . o gy =1 ~ .
iy ’LU“FT_’ZU “ll)n”l[ngiZ“h_H)l’ZU ZU!F"L'—“EL)H”E-
i % )

q.e.d.
Let Z be a locally closed subset of X and let F € IC(X). Since IC is a proper
stack, the objects Fz and I'z(F) are well-defined in IC(X). For F € C(X), we have
(3.3.2) tx(Fz) # (tx(F))z in general, and tx (I'z(F)) ~T'z(tx F),
as we shall see later. Therefore we shall use another notation zF' instead of Fz.

Definition 3.3.15. — For a locally closed subset Z and F' € IC(X), let zF be an object
of IC(X) that represents the functor G — I'z(X; Hom.(F,G)).

This functor is representable by Proposition 3.2.18, and the functor F' — zF shares
the properties in the same proposition. In particular we have
Hom (2 F,G) = TzHom o (F, G)),
Homlc(x)(zF, G) ~T'z(X; Hom o (F,G)).
Proposition 3.3.16. — Let Z be a locally closed subset and F € IC(X).
(i) If F = “lim” F; with F; € C(X) and if Z=UNS for a closed subset S and an
open subsét U, then we have

~ €l . -
zF~ “lim” (Fi)yaw V, W open.
VCCUWDS

(if) For G € C(X) and F € IC(X), we have the isomorphism
Hom (G, F)z ~ Hom (G, zF).
(iii) The functor Co(X) 3 G — I'(X; Hom (G, F)z) is representable by z F'.
Proof
(i) Since F'~ “lim” F;w, we may assume from the beginning F; € Cc(X). Assume

i, WCCX
first Z =U. Then

uF ~iynig' F ~iyy “lim” (Fyv|v)

vccu
~ “l.l)n” iU!(EVlU) ~ «1~£>nw F|z'V~
vccu vccu
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Hence we have the desired result. Now assume that Z = S is closed. For any
G = “lim”G; € IC(X) with G; € Cc(X), we have a chain of isomorphisms

HomIC(X)(“@”FiW,G)z lg_n l_iL)nHomC(X)(FiW,Gj)

i, WDS i, WDS j
~ lim limPy(X5Hom(F;, Gy)) =~ lim Iim I'(X; (Hom(F;, Gj))w)
i,WDS j i, WDS j
~ lim I(X;lim(Hom(Fi,G;))w) = lim T'(X; (Hom o (F;, G))w)
i, WDS j i, W28

~ lim I's(X; Hom - (Fi, G)) =~ T's(X; Hom o (F, G)).

2

The general case follows from y(sF) ~ sny F.
(ii) First assume that Z = U is open. Then the formula follows from the isomorphisms

Hom (G, Fly = lim = Homye(G, Fy: = lim  Home(G, Fiv)v-

VIccU,i V,V'CCU,i
~ lim Hom (G, Fiv) = Hom (G, “lim” Fy).
vccau,i veeu,i

Here the first and last isomorphisms follow from Corollary 3.3.12 (ii).
Next, assume that Z = S is closed. In this case, the formula follows from the
isomorphisms

Hom (G, sF) ~ lim Homo(G, Figy) =~ lim  Hom(G, Fiyy)w

WDS,i W,W'D38, i
~ lim Hom (G, Fy)yr = Hom (G, F)s.
W'D8S,i

The general case follows, since ynsF ~ s(v F).
(iii) follows from (ii) by applying the functor I'(X; -). q.e.d.

Lemma 3.3.17. — Let Z be a locally closed subset and F € C(X). Then we have
Lx(Fz(F)) ~ Fz(LxF).

Proof. — For any G € C.(X), we have

Homye x) (G, tx(I'zF)) > Hom ) (G, Tz F) = T'z(X; Hom (G, F))
~ I'z(X;Hom (G, ex F)) = Hom o (G, Tz (Lx F)).

q.e.d.
We shall introduce new functors between the categories C(X) and IC(X).

Definition 3.3.18. — One defines the functor ax : IC(X) — C(X) by

Otx(“l_i_l’g”ﬂ) _ 1_Lan
4 %
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Hence, we have the chain of functors

C(X) — 16(X) — C(X)

ax
and
ax olx =~ idC(X),

since for F' € C(X), one has F ~ h_x)n Fy.
vccx

Proposition 3.3.19. — The functor vx is a right adjoint to ax, that is, for F € C(X)
and G € IC(X) one has the isomorphism:

HomC(X)(aXG,F) ~ HomIC(X)(G, ux F).

Proof. — Let G ~ “lim” G;. then
J

Hom x)(axG, F)~ Homc(x)(l_ig}Gj,F) ~ limHom (G;, F)

J j
~ LHomIC(X)(GJ’ txF) ~ HomIC(X)(“@” Gj,uxF).
J j
q.e.d.
Corollary 3.3.20. — For any open subset U, we have
ay oil_Jl ~ ial oox,
or equivalently, a: IC — C is a functor of stacks.
Proof. — If F = “lim” F; with F; € Cc(X) then
avip'F~ay( “lim” (Fiv)ly) ~ lim (Eyv)lu
Py —
i,Vvccu i,VccuU
~ m ((axF)y)|lv ~ i["]l(aXF).
vccu
q.e.d.

Corollary 3.3.21. — For F € C(X) and G € IC(X), one has the isomorphism
Hom(axG,F) ~ Hom (G, xF).

It follows from Proposition 3.3.19 that there is a natural morphism of functors
id — tx o ax. Recall that the natural morphism ax o tx — id is an isomorphism.

Proposition 3.3.22. — The functor ax is ezact and commutes with small lim and
small lim.
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Proof
(i) Let 0 » F — F — F” — 0 be an exact sequence in IC(X). There exists an
inductive system of exact sequences 0 — F; — F; — F;' — 0, whose “lim” is the

above exact sequence. Then the sequence 0 — lim F] — limF; — lim F)" — 0 is

K3 K3 3
exact.

(ii) Since ax admits a right adjoint, it commutes with lim.

(iil) Let us show that ax commutes with lim. Since this functor is exact, it is enough to
show that it commutes with products. Let A be a small set and let F, € IC(X),a € A.

For each a € A, there exists a small filtrant category I, such that F, ~ “li_r)n” Foi
iel,
with Fy, ; € C(X). Define the small set

B:={p: A— I_IIa;<p(a) €l,}.

Then [] (“li_n)l” Fa,i) ~ “lm” [] ex(Foq) =  “lm” ( IT Fa,w(a)) holds, and
a€A N eI, peB @€A UcCCX,peB a€A v
we obtain the chain of isomorphisms

ax<HFa) ~ hi)n (HFW’(G))UZ H lir_)nFa7i2 HaX(Fa).

a€A UCCX,p€B "qeA acA€l, a€A
q.e.d.

Corollary 3.3.23. — Assume that F € C(X) is injective. Then 1xF € IC(X) is injec-
tive.

Proof. — By Proposition 3.3.22, the functor

G — Hom o (G,tx F) = Hom x (ax(G), F)
is exact. q.e.d.
In order to construct a left adjoint to the functor ax, we need a hypothesis.

Definition 3.3.24

(i) Let F € C(X). We say that F is light on U C X if, for any small filtrant
inductive system i — G; in C(X), the natural morphism lim Hom(F, G;)|lv —

K2
HomC(F,l’LQGi)]U is an isomorphism. This condition is equivalent to saying

that Homlg(F, G)ly = Hom (F,axG)|v is an isomorphism for any G € IC(X).
(ii) We denote by £(X) the full additive subcategory of C(X) whose objects are the
direct sums €D, ;(Fi)y, with I small and F; light on U;, U; open in X.
(iii) If £(X) is generating in C(X) (i.e. for any F € C(X), there exists an epimor-
phism G—F with G € £(X)), we say that C(X) has enough light objects.

Example 3.3.25. — If A is a sheaf of rings on X and C(X) = Mod(.A), the sheaf Ay
is light on U, and the category C(X) has enough light objects.
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Theorem 3.3.26. — Assume that C(X) has enough light objects. Then the functor ax
admits a left adjoint Bx:

Hom 1o x)(Bx F, G) ~ Hom ¢y (F,axG).

Moreover, if F is light on U, then Bx(Fy) ~ yF ~ “@” Fy.
vccu

Proof. — 1t is equivalent to saying that the object Sx F € IC(X )V defined by
(Bx F)(G) = Hom ¢ x) (F,axG), G € IC(X)

is representable.

Now remark that if F; — Fy; — F — 0 is an exact sequence and Bx Fi, Bx Fo
are representable, then Bx F' is representable by coker(8xFi — BxFp). Similarly, if
{F;} is a small family of objects of C(X) such that each 3xF; is representable, then
Bx (®:F;) is representable by “@” Bx F;. Hence, it is enough to prove the result for

Fy when F is light on U. For any G € IC(X), one has
Homye(x)(vF,G) =~ I'(U;Homy(F,G))
= T(U; Hom o (F,axG)) ~ Hom o x) (Fv, axG).

Here the first isomorphism follows from by Definition 3.3.15 and the second isomor-
phism from the fact that F' is light on U. q.e.d.

Until the end of this section, we assume that C(X) has enough light objects. The
functor Bx has the following properties.

Proposition 3.3.27
(i) Bx commutes with lim (i.e. Bx olim ~ “lim” o Bx),
(ii) Bx is right exact,
(iii) ax o Bx ~id,
(iv) Bx is fully faithful.

Proof
(i) and (ii) follows from the fact that Sx has a right adjoint.

(iii) For F and G in C(X), we have
Homc(X)(aXﬂXF, G) ~ HomIc(X)(,BXF, tx Q)
~ Hom ¢y (F,axtxG) = Hom¢ ) (F, G).
(iv) For F and G in C(X), we have
Hom x)(F,G) ~ Hom () (F,ax o fxG) ~ Hom ¢ (Bx F, Bx G).
q.e.d.

Lemma 3.3.28. — For any open subset U, one has i,}lﬁx ~ ﬁuir}l, that is, 8: C — IC
is a functor of stacks.
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Proof. — By Corollary 3.3.20 we have 2'51 ~ ialaxﬁx o~ an,jlﬂx. By adjunction
we obtain Byi;! — iy Bx.

Let us show that Byiy'F — iy;'Bx F is an isomorphism for any F € C(X). Since
both sides are right exact and commute with inductive limits, it is enough to prove
the result when F' = Ly for L light on V. In this case the assertion follows from
Proposition 3.2.18 (vi). q.e.d.

This lemma along with Corollary 3.3.20 implies the following result.

Lemma 3.3.29. — For F € C(X) and G € IC(X), we have
Hom o (Bx F,G) ~ Hom (F,axG).
Remark 3.3.30. — The morphism of functors 8x o ax — id defines
Bx ~ PxoaxoLx — Lx.
This morphism is not an isomorphism in general, even when X = {pt} and C =

Mod(kx). Indeed, if F is a k-vector space, Bx F = @” F;, where F; ranges through

the family of finite-dimensional subspaces of F'.

Exercises to Chapter 3

Exercise 3.1. — Let X = UZ.€ ;1 U; be an open covering and let C; be a stack on Uj.
Assume to be given equivalences of stacks ¢;;: Cil|v,; — Cilu, ; and isomorphisms of
functors Aiji: @ij 0 @ik 5 @ik from C;ly,., to Cklu,, . Assume that for any 1,7, k, [,

ijk ijk

the diagram below commutes:

Ajkl
Pij © Pjk © Pkl — Pij © Pji

l)\ijk lAijl
' Aikl ‘
Pik © Pkl ———— Pil-
Prove that there exists a stack C on X and equivalence of stacks ¢;: Cly, — C;

satisfying the natural conditions (i.e. ¢;; 0 ; =~ ;, etc.).
Prove that C is unique up to equivalence.

Exercise 3.2. — Give an example of F € C(X) such that xF — txF is not a

monomorphism (resp. epimorphism).

Exercise 3.3. — Let C be a proper stack on X, and let K’ > K —17 K" be a complex

in IC(X). Prove that this complex is exact as soon as the sequence of sheaves
Hom . (F, K') — Hom .(F, K) — Hom.(F,K")

is exact for any F € C.(X).
(Hint: prove that Hom ,(F,im ) — Hom ,(F,ker ) is an isomorphism.)

ASTERISQUE 271



EXERCISES TO CHAPTER 3 47

Exercise 3.4. — Let C denote a proper stack. By definition, End (id¢) is the ring of
endomorphisms of the functor id¢ : C — C. Clearly, the presheaf U + End (id¢), ) is
a sheaf of commutative rings. One denotes this sheaf by End(idc).

Let B be a sheaf of commutative rings on X. Let us say that C is a B-stack if one
is given a morphism of rings B — &nd(idc).

Let A be a sheaf of (not necessarily commutative) rings. One defines the stack
Mod(A,C) by

Ob(Mod(4, €)(U) = {(F.¢r): F € C(U),

&r @ Alu — &ndey, (F) is a ring morphism},

Hom 1,4 4.0y (F€F), (G, &g)) = {f € Hom () (F,G) ;6c(a) o f = fo&r(a)
forall V. c U,a € A(V)}.

(i) Prove that Mod(.A,C) is a proper stack of abelian categories, and if A4 is com-
mutative, it is an A-stack.

(ii) Prove that the natural functor of abelian categories Mod(A,C)(X) — C(X) is
exact and faithful.

(iii) Let A be a sheaf of rings on X. Show that the stack Mod(A,Mod(Zx)) is
equivalent to Mod(.A).

Exercise 3.5. — Let F € IC(X).

(i) Prove that the functor IC(X) 3 G — Hom ,(F,G) € Mod(Zx) commutes with
filtrant inductive limits if and only if F € C(X).

(ii) Prove that the functor IC(X) 5 G — Hom.(F,G) € Mod(Z) commutes with
filtrant inductive limits if and only if F' € C.(X).

Exercise 3.6. — Let C and C’ be two stacks on X. For an open subset U of X,
denote by S(U) the category of functors of stacks on U from C|y to C’'|y. Prove that
Uw— S(U) is a stack on X.
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CHAPTER 4

IND-SHEAVES

As in the preceding chapter, we work in a given universe /. Hence, otherwise
specified, a category means a U-category and all sets are U-small. Moreover, all
topological spaces are assumed to be Hausdorff, locally compact, and with a countable
base of open sets. We denote by k a commutative ring.

4.1. The stack of ind-sheaves

In this chapter, A will be a sheaf of k-algebras on a topological space X (with the
image of kx contained in the center of A).

We denote by Mod(A) the abelian category of A-modules, and by Mod“(A) its
full abelian subcategory consisting of sheaves with compact support. Recall that
Mod(A) and Mod®(A) have enough injectives and also have systems of strict genera-
tors. Moreover, the injective objects of Mod®(.A) are injective in Mod(.A). Also recall
that U — Mod(A|y) is a proper stack.

Notation 4.1.1. — We shall use the functors Hom 4 and ® , on Mod(A). When A =
kx we shall simply denote these functors by Hom and ®. Moreover, we write as
usual Hom , instead of Hom Mod(A)*

Definition 4.1.2. — We call an object of Ind(Mod®(A)) an ind-sheaf of A-modules
on X.
We set for short:
I(A) := Ind(Mod®(A)).
Hence, denoting by C the proper stack U — Mod(A|y), I(A) is nothing but the
category IC(X), and we may apply the preceding results. In particular,
U — I(A|y) is a proper stack.

Let us denote by F(.A) the full additive subcategory of Mod(A) consisting of objects
isomorphic to €, ; Au, with I small and U; open in X. Then F(A) is generating.
Since A is light on X, F(A) is contained in £(X) (see Definition 3.3.24). Applying
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the constructions in §3.3, we get the functors
tx : Mod(A) — I(A),
ax : I(A) — Mod(A),
Ba : Mod(A) — I(A).

See Remark 4.1.4 for the reason why we write 84 instead of 8x as in Chapter 3.
These functors satisfy the following properties:

(i) ¢x is exact, fully faithful, and commutes with lim,
(ii) ax is exact and commutes with lim and lim,
(iii) B4 is right exact, fully faithful and commutes with lim,
(iv) ax is left adjoint to tx,

(v) ax is right adjoint to B4,

(Vi) ax olxy ™~ idMod(A) and ax O,BA ~ idMod(.A)-

We have also defined the functor F' — F|y from I(A) to I(A|y), as well as the

functor (F,G) — Homy 4 (F,G) from I(A)°? x I(A) to Mod(kx). Recall that if
i — F; is a small filtrant inductive system with F; € Mod®(A) and F ~ “lim” F;,

(3

then
Fly = “lim” (Fiv|v),
i,VCCuU
and if j — Gj is a small filtrant inductive system with G; € Mod‘(A), then
Homy(4)(“lim” F;, “lim” G;) ~ limlim Hom 4 (£, G;).

1 J ? J
Note that we have

,BA(.Au) ~ UA >~ “hl)n” .AV .

vccu

Notation 4.1.3
(i) If A = kx, we shall often simply denote by Hom the functor Hom .
(ii) We shall often identify a sheaf F' € Mod(.A) and its image tx F' € I(A), and we
shall not write ¢x.
(iii) When A = kx, we write 8x instead of Sy, .

Remark 4.1.4. — Denote for a while by for one of the natural functors Mod(.A) —
Mod(kx) or I(A) — I(kx). Then, clearly, ax and tx commute with for. One shall
be aware that for o B4 # Bx o for.

The functor Sx. — In Chapter 3, we have introduced the functor 8x. This functor
has no counterpart in classical sheaf theory, and we shall study here some of its
properties.

Proposition 4.1.5. — Let F' and G be in Mod(A).

(i) There is a canonical morphism
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(i) The canonical morphism Hom 4(G, A) @4 F — Hom 4(G, F) factors as

(4.1.2) Hom 4(G,A) ®4 F — Homy 4)(G, BaF) — Hom 4(G, F),
where the first arrow is given by (4.1.1) and the second arrow is induced by
BaF — F.

(iii) For F € F(A), the morphism (4.1.1) is an isomorphism.
Proof

(i) (ii) Let U be an open subset of X. For ¢ € Hom 4, (G|v, Alv) and s € F(U) ~
HomAIU(A]U,FIU), we define ¢ € HomI(AIU)(Glu,ﬁA(F)ly) by

Glu -2 Aly <= BaAly 2255 B4(F)|u.

(Here, we write 34 instead of 34, for short in view of Lemma 3.3.28.)
Then p®s — 1 defines Hom 4, (Glu, Alv)®aw) F(U) — Homy 4 ) (Glu, BaF|v).
(iil) Since both sides of (4.1.1) commute with direct sums with respect to F', we may

assume that F' = Ay for some open subset U. In this case the assertion follows from
Proposition 3.3.16. q.e.d.

Lemma 4.1.6. — Let F € F(A), G € Mod(A).
(i) Lety € HomI(A)(G, BaF). For each x € X, there exist an open neighborhood
Uofz,g: Gly — A% vy and f: A"y — F|u such that ¥|uy factorizes as

Gly — Ay <= Ba(A™y) —— Ba(Flv).
o= A7l S BA(A70) S BalFlo)

(i) Assume that g: G — A™ and f: A™ — F satisfy Ba(f) o g = 0 in I(A). Then
for any © € X, there exist an open neighborhood V of x and a commutative

diagram

A~ A

S
GV ——)AT‘L/—ﬁFv

9 f
such that bo p = 0.

Proof
(i) follows from Proposition 4.1.5 (iii).

(ii) Let ), 9: ® fi € Hom 4(G, A)z ® 4, F, and assume this section vanishes. There
exist p; € Hom 4(G, A)z, hx € F; and a;5,b;x, € A, with
9i =) pja4 for all i,
Yok bjkhie = >, a5 fi for all 4,
> pibjx =0 for all k.
q.e.d.
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Proposition 4.1.7. — Let F' be an A-module.

(i) BaF — F is an epimorphism if and only if F is locally of finite type.
(ii) BaF — F is an isomorphism if and only if F is locally of finite presentation.

Proof

(i) (a) Assume that S4F — F is an epimorphism. Let us choose an epimorphism L =

®ic1 Ay, —~F. Let s; € F(U;) be the image of 1y, € T'(U;; Ay, ). Since BaL — BaF

and B4F — F are epimorphisms, 4L ~ “®” y, A — F is an epimorphism. Hence
il

there locally exist a finite subset J of I and V; CC U; such that ®;c5 Ay, — F is an
epimorphism. Hence F' = )., Ay,;s;. For any z € X, set J(z) = {i € J; z € U;}.
Then W = ;¢ s(z) Ui\ (Uie i) V;) is an open neighborhood of z. Since V;NW = @
for any i € J \ J(z), we have Flw =3, ;) (Alw)si.

(i) (b) Conversely, assume that F' is locally of finite type. There locally exists

an epimorphism g: A"—»F. This morphism factors through A" <= G4(A") N
ne
BaF — F. Hence B4 F — F' is an epimorphism.

(ii) (a) Assume that S4F — F is an isomorphism. By (i), F' is locally of finite
type. Hence there locally exists an exact sequence 0 - N — A™ — F — 0. Consider
the commutative exact diagram

BaN > BaA™ » BaF —— 0

N .
0 * N > A" > F > 0.

It shows that 4N — N is an epimorphism, and hence N is locally of finite type.
This implies that F' is locally of finite presentation.

(i1) (b) Conversely, assume that F' is locally of finite presentation and let us show
that G4F — F' is an isomorphism. There locally exists an exact sequence A™ —
A" — F — 0. Then the assertion is obvious by the following diagram with exact
rows

BAA™ —— A A" —— BaF 50

.

A™ > A™ y F > 0.

q.e.d.

Corollary 4.1.8. — F € Mod(.A) is light if and only if F is locally of finite presenta-
tion.

Proposition 4.1.9. — The following two conditions are equivalent:

(i) the functor B.4: Mod(A) — I(A) is ezact,
(ii) the sheaf of rings A is left coherent.
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Proof. — (i) = (ii). Consider an exact sequence 0 — F — A™ — A. Applying
the exact functor B4, we find the isomorphism B4 F — F. Then Proposition 4.1.7
implies that F' is locally of finite type.

In order to prove (ii) = (i), we need a lemma.

Lemma 4.1.10. — Assume that A is coherent and consider an exact sequence 0 —
F ry L — Lo in Mod(A) with Ly and Lo in F(A). Then the sequence BaF v
g A

BaLi —— BaLg is exact.
Bag

Proof. — By the result of Exercise 3.3, it is enough to show that for any G € Mod(A),
the sequence below is exact:

Let z € X. In a neighborhood of z, take u: G — B4L; such that the composition
G — BaL1 — BaLg vanishes. Applying Lemma 4.1.6, there is a commutative diagram

Ak _—_b~_)Am

L, L

v

G A" > Ly > LO

such that bo ¢ = 0 and u is the composition

G — A" ~ B A" —— Bals.
v Ba(w)

Set K = ker(b) and consider the diagram:

G
0 » K > Ak y A™
0 > F / > Ly g > Lg.
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Hence, we get the commutative diagram

.
T

BaK —— B4 A%

G

y
<

N
7

L b ]

BaF —— BaL,.

Therefore, the morphism u : G — 4L, factorizes through B4 F. q.e.d.

We can now complete the proof of Proposition 4.1.9.

Consider an exact sequence 0 — F/ — F — F” — 0 in Mod(.A). We can find an
exact commutative diagram as below such that the sheaves L, L;, LY (j = 0,1) are
in F(A), and moreover such that the second and third rows split:

0
N’ > N > N »0

0 7L/1 /Ll /L’ll /0

A <+ +
0—— L n » Ly >0
0 \F/ 3 )FI/ )O
0 0 0

Let us apply the right exact functor 34 to the diagram. The second and third rows
being split exact, they will remain exact. The columns remain exact by Lemma 4.1.10.
Hence, the bottom row remains exact after applying G4. q.e.d.
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4.2. Internal operations

Definition 4.2.1. — We define the internal tensor product, denoted by ®,, and the
internal hom, denoted by Zhom 4:

® 4 : I(A%P) x I(A) — I(kx)
Thom 4 : I(A)°? x I(A) — I(kx)

by the formulas:
(“li_n)l” Fz) ®A (“lil)n” GJ) — “@”(E ®_A GJ),

i J 2
IhOm_A(“li_H)I” Iﬂi, “lil_l_)l” G]) — !1—111 “li_I)Il” HomA(.Fi,Gj)-
i J % J

Similarly we define ® and Zhom using ®,, and Hom,, . Then those functors ®
and Zhom induce

®: I(kx) x I(A) — I(A),
®: I(A) x I(kx) — I(A),

Thom : I(kx)° x I(A) — I(A),
Thom : I(A°P)°P x I(kx) — I(A).

Proposition 4.2.2

(1) The functor ® , commutes with “lim” and is right ezact. Moreover, AQ F ~ F.
(i) The functor Thom , is left exact. Moreover, Thom 4(A,F) ~ F

The proof is obvious.

Proposition 4.2.3. — The diagram below commutes:
Q4
Mod(.A°P) x Mod(A) ——— Mod(kx)

ll,x X lx lLX
®
A kX)

T(A%P) x I(A) ——A 5 (
lax X ax ax
Mod(A%) x Mod(A) —25 Mod(kx).

Proof. — Let F' € Mod(A°?) and G € Mod(A). Then:
wx(F®,G)="“lim”(F®, Gu ~ “lim”(Fy ®, Gu)

U U
~ “l_iz[_)l”(FU ®,A GU’) ~ (“lilq” FU) ®_A (“lir_)n” GU’) .
u,u’ U U’
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Let F = “lim” F; and G = “lim” G;. Then
— —

( J
ax((“lim” F) @, (“lin” Gy)) = ax(“lim” (F; @, Gj))
i J 4,3
= im(F; ®4 Gj) ~ (lim ) ® 4 (lim G5) .
i,j i J
q.e.d.
Proposition 4.2.4. — The diagram below commutes:
Mod(A)°P x Mod(A) —— Mod(kx)
Hom 4
J,LX X Lx J,LX
I(A)°P x I(A) ——— I(kx)
Thom 4
ax
Homy 4 l
Mod(kx).
Proof
(i) Let F,G € Mod(A). Then
Thom 4(vx F,uxG) ~ lim “lim” Hom 4(Fy,Gv)
u v
~ lim Hom 4(Fu, G) ~ tx(Hom 4(F, G)).
U
(ii) Let F'= “lim” F;,G = “lim” G;. Since ax commutes with lim, we get the chain
i J
of isomorphisms
ax(Thom 4(F,G)) ~ ax(lim “h_n} Hom 4(Fi, G;))
i J
i
q.e.d.

Proposition 4.2.5. — Let K € I(kx) and F, G € I(A). Then:
Hom 4 (K ® F,G) ~ Homy; \(K,Zhom 4(F,G))
~ Homy 4 (F,Zhom (K, G)).
In particular, the functors K ® - is a left adjoint of Thom (K, -).

Proof. — One has the chain of isomorphisms:
HomI(A)(“l_i_l'_I_)l” Kk ® “liL)n” Fz , “li_n)l” G])
k

i J
~ HomI(A)(“li_H}”(Kk ®Fz); “l_ig)l” G])
ik J
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o~ @MHomA(Kk ®Fi,Gj)
ik j

=~ lim lim Hom ,  (Kk, Hom 4(F3, G;))
ik j

= lim Homy;, y(“lim” K, “lim” Hom 4(F;, G;))
i k J

~

=

Oml(kx)(“lii)n” Kka!i!_n 441—‘12377 HomA(E,G]))
k % k

zHomI(kx)(“@” Kk,IhOmA(“l.i)n” -Fz'7 ««ma, G]))
k i J
The second isomorphism is proved similarly. q.e.d.

Corollary 4.2.6. — For F,G € I(A) there is a canonical morphism

F ®Thom 4(F,G) — G.

Corollary 4.2.7. — For F, G € I(A) and K € I(kx), there is a canonical morphism

Thom 4(F,G) ® K — Thom 4(F,G ® K).

Proof. — By the preceding corollary there is a morphism F ® Thom 4(F,G) ® K —
G ® K, and we obtain the desired morphism by adjunction (Proposition 4.2.5). q.e.d.

Corollary 4.2.8. — Let K € I(A) and let i — F; € I(A) be a small filtrant inductive
system of ind-sheaves, and j — G; € I(A) a small projective system of ind-sheaves.
Then we have the isomorphisms

(1) IhomA(K,!iL-nGj) = limZhom 4(K, G;),
J J
(it) IhomA(“m” F,,K) ~ thmA(E,K).

.
(3

? 2
(iii) If K € Mod(A), then one has Zhom 4(K, “l_i_r'_)n” F;) ~ “lim” Thom 4(K, F}),

Proof
(i) Let S € Mod®(kx). Then

Hom,, (S, Thom 4(K,lim G;)) =~ Homy 4 (S ® K, lim G;)
J J
o~ lingomI(A)(S®K, G))
J
>~ @Homl(kx)(S,IhOmA(K, G]))
j
~ Homy;, (S, 1im Thom 4 (K, G;)).
J
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(ii) Let S € Mod®(kx). Then
Hom ;.. (S, Thom 4(“lim” F;, K)) = Homy 4 (S ® “lim” F;, K)

~ Homy 4 (“lim” (S ® F;), K) ~ lim Hom  4,(S ® Fi, K)
i i

o~ @Homl(kx)(S,IhomA(E,K)) o~ Homl(kx)(S,lirnthomA(Fi,K)).

(iii) Let S € Mod®(kx). Then
Hom (S, Thom (K, “lim” F)) = Hom 4 (S ® K, “lim” F})

o~ mHomI(A)(S ® K, F;) ~ ﬁ_q)xHomI(kx)(S,IhomA(K, F))

~ Homy, (S, “lim” Thom 4 (K, F;)).
i

Corollary 4.2.9. — Let K € I(kx) and F, G € I(A). Then:
Thom (K ® F,G) ~ Thom (K,Thom ,(F,G))
~ Thom 4(F,Thom (K, G)).
Proof. — For S € Mod®(kx) we have
Hom (S, Thom 4(K ® F,G)) ~ Homy 4 (S® K ® F,G)
~ Homy;, (S ® K, Thom 4(F,G))
~ Hom, (S, Thom (K,Zhom 4(F,G))).

This shows the first isomorphism. The proof of the second isomorphism is similar.
q.e.d.

Remark 4.2.10. — 1t follows from Corollary 4.2.8 that, for F' € I(A) and K € Mod(.A),
the natural morphism ZThom ,(F, K) — Hom 4 (¥, K) is an isomorphism.

We shall now study the relations among the functors ®, Zhom and (x. Here 8x
is the functor Mod(kx) — I(kx).

Proposition 4.2.11. — Let K € Mod(kx) and F, G € I(A). Then:
Hom (K, Hom 4(F,G)) ~ Homy 4 (BxK ® F,G),
Hom (K, Hom 4(F,G)) ~ Hom 4,(BxK ® F,G).
Proof. — Consider the chain of isomorphisms:
Hom (K, Hom 4(F,G)) ~ Homy (K, ax(Zhom 4(F,G)))
~ Homy, ,(Bx K,Thom 4(F,G))
~ Homy;, ., (Bx K ® F, G).

ASTERISQUE 271



4.2. INTERNAL OPERATIONS 59

The second formula follows. q.e.d.
Proposition 4.2.12. — Let F and G be in Mod(kx). Then:
BxF ®BxG ~ Bx(F Q).
Proof. — Let K € I(kx). Consider the chain of isomorphisms:
Homy, \(Bx F ® fxG, K) = Homy \(Bx F,Thom (8x G, K))

~ Hom, (F,Hom (BxG, K)) ~ Hom, (F,Hom (G,axK))

~ Hom, (F®G,axK)~Hom, (Bx(F ®G),K).
Here the third isomorphism follows from Lemma 3.3.29. q.e.d.
Remark 4.2.13. — For F € I(A), Hom 4(F, -) and Thom 4(F, -) commute with fil-

trant inductive limits if and only if F' € Mod(A). Moreover Homy 4 (F, -) commutes
with filtrant inductive limits if and only if F' € Mod®(A). See Exercise 3.5.

Sheaves associated with locally closed subsets. — In this subsection, the base
ring is the sheaf kx. Recall that if Z is a locally closed subset and F € I(kx), we
have constructed the ind-sheaf z F' in Definition 3.3.15, by setting, for F' = lim” Fj,

2

Z =UnNS, U open, S closed:

2F= “lm” By
i, VCCU,WDS
When there is no risk of confusion, we often write kz and zk instead of (kx)z and
z(kx), respectively.
If Z = {z} with x € X, we shall write ;k and k, instead of (;1k and ki,
respectively.

Proposition 4.2.14
(i) One has the isomorphisms
zk ~ Bxkz, zF ~F® zk for F € I(kx).
(ii) Let U be open and let F,G € I(kx). Then
Hom \(Flv, Glv) = Hom, (F @ uk, G).
(i) Let Z1 and Z3 be two locally closed subsets. Then
zinzk = 2,k ® z,k.
(iv) Assume that Z' is closed in Z. Then there is an exact sequence
0— z\zk— zk — 2k — 0.

(v) Let Z be a locally closed subset. Then for G € Mod(kx) and F € I(kx), one
has
Hom (G, F ® zk) ~ Hom (G, F) @ kz.
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Proof
(ii) By Proposition 4.2.11, one has Homl(kx)(F@)Uk, G) ~Hom,, (kv, Hom (F,G)).
(v) is a particular case of Proposition 3.3.16.
The other results are obvious. q.e.d.
Corollary 4.2.15

(i) If U is open, the morphism yk — ky is a monomorphism.

(ii) If S is closed, the morphism sk — ks is an epimorphism.

Proposition 4.2.16. — For any locally closed subset Z and F € I(kx), one has 'z F ~
Thom (zk, F).
Proof. — For any G € I(kx), one has
Hom; (G, TzF) =T'z(X; Hom (G, F)) ~ Homy, ,(Gz, F)
~ Homy; (zk ® G, F) ~ Hom, \(G,Thom (zk, F)).
q.e.d.

Example 4.2.17. — Let X be a real manifold of dimension n > 1 and let z € X.
Define N € I(kx) by the exact sequence

(4.2.1) 0—> N —> zk—ky—0.

Since Hom (ky, zk) ~ lim Hom (ks, k), where V ranges through a neighborhood sys-
tem of z, we find Hom (k;, ;k) = 0, hence N # 0. On the other hand,

Hom (ky, N) =0
for any open neighborhood U of z.

Example 4.2.18. — By Exercise 1.1, we get a non-zero ind-sheaf F' over X = {pt}
such that

(4.2.2) Homy, (kxu, F) = 0 for all open set U C X.

In fact, one can construct ind-sheaves with such a property on every non-empty space
X (see Exercise 4.8).

Quasi-injective ind-sheaves. — In this subsection, the base ring is the sheaf kx.
Recall that an ind-sheaf K € I(kx) is called quasi-injective if the functor G +—
Homy; (G, K) is exact on Mod®(kx ), or equivalently, if K ~ “lim” K; with K; €

K3

Mod‘(kx) and K; injective in Mod®(kx).

Proposition 4.2.19. — Let K € I(kx) and consider the following properties:
(i) K is quasi-injective,
(ii) K ~ “1_ir_)n” K; with K; € Mod(kx) and K; injective,

(iii) the functor Homy (-, K) is ezact on Mod(kx),

ASTERISQUE 271



4.2. INTERNAL OPERATIONS 61

(iv) the functor Hom (-, K) is ezact on Mod(kx), and the sheaf Hom (F, K) is soft
for any F € Mod(kx),
(v) the functor Thom (-, K) is exact on Mod(kx).

Then (i) & (i) & (i) & (iv) = (v).
Proof. — (i) = (ii) is obvious.

(ii) = (i). One has the isomorphism K ~ “lim” I'z(Kj;), where Z ranges over the
Z,i

family of compact subsets of X. Since I'z(Kj;) is injective in Mod®(kx), the result

follows.

(ii) = (v) follows from the isomorphism Zhom (F, K) ~ “lim” Hom (F| K;), and the

fact that Hom (-, K;) is exact on Mod(kx).

(ii)+(v) = (iv). By applying the exact functor ax to Zhom(-,K), the functor

Homy,,y (-, K) is exact. Since Hom (F, K;) is a flabby sheaf, Hom .\ (F, K) =~

hrn Hom (F, K;) is a soft sheaf.

(iv) = (iii) follows from Homy, (-, K) = ['(X; Hom (-, K)).
(iii) = (i) is obvious. q.e.d.
Corollary 4.2.20. — Let 0 - K' —» K — K" — 0 be an ezact sequence in I(kx), and

assume that K' is quasi-injective. Then for any F € Mod(kx ) the following sequences
are exact:

0 — Thom (F,K') — Thom (F,K) — Zhom (F,K") — 0,

0 — Hom (F,K') - Hom (F,K) — Hom (F,K") — 0,

0 — Homy, (F,K') — Homy, (F, K) — Hom, ,(F,K") - 0.
Proof. — There exists a filtrant inductive system of exact sequences 0 — K — K; —
K" — 0 in Mod(kx) such that every K is injective and its inductive limit gives 0 —
K'—- K — K" — 0. Then 0 — Hom (F,K]) — Hom (F,K;) — Hom (F,K}') — 0
is exact. Hence we obtain the exactness of the first and second sequences. Since

Hom (F, K') is soft by the preceding proposition, the last sequence is exact by applying
T'(X; -) to the second one. q.ed.

Proposition 4.2.21. — Assume that k is a field. Let K € I(kx) be quasi-injective. Let
F € Mod(kx). Then 8xF ® K is quasi-injective.

Proof. — (i) Let us first prove the result when F = kz for a locally closed set Z. By
the result of Proposition 4.2.14 (v), we have for any G € Mod®(kx):

Hom, (G, Bxkz ® K) ~ T'(X; kz ® Hom (G, K)),

and this functor is exact with respect to G.
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(ii) Let F € Mod(kx). There exists an epimorphism @, ; ku,—~F. For a finite
subset J of I, denote by F; the image of @,.; ku,. Then fxF ~ “l.i)n”(/@XFJ)7

and it is enough to prove the result with F replaced by F;. If |J| = 1J, then F is
isomorphic to kz for some locally closed subset Z, and the result follows by (i). Then
the proof goes by induction on the cardinal of J. Indeed, if one has an exact sequence
0> F - F—>F"—>0then0 - 3xF' K — BxF®K — BxF"® K — 0 is
exact, and if BxF' ® K and BxF"” ® K are quasi-injective then SxF ® K will be
quasi-injective. q.e.d.

Proposition 4.2.22. — Assume that k is a field. Let F, G € Mod(kx) and let K €
I(kx). Then there are natural isomorphisms

Thom (G,K) ® BxF — Thom (G, K ® xF),
Hom (G,K) @ F = Hom (G, K ® Bx F),
I(X; F @ Hom (G, kx)) — Hom, (G, BxF).
Note that the third formula gives an alternative definition of the ind-object Sx F
when A = kx.

Proof. — The first morphism is obtained by Corollary 4.2.7, the second one by ap-
plying a to the first one, and the last one by applying I'(X; - ) to the second one.

First let us prove that the second morphism is an isomorphism. Remark that both
sides are left exact with respect to K. Hence we may assume that K is quasi-injective.
Since the functor Hom (G, -) sends exact sequence of quasi-injective objects to exact
sequences, we get by Proposition 4.2.21 that both sides are exact with respect to F.
Since both sides commute with lim with respect to F', we may assume F' = ky for an
open subset U. Then the second formula follows from Proposition 4.2.14.

The third formula follows from the second one by applying the functor I'(X; - ) with
K =kx.

Finally let us prove the first formula. For any S € Mod‘(kx), one has
Hom (S, Thom (G, K) ® Bx F) = I‘(X; Hom (S, Thom (G, K) ® ﬁXF))
~ F(X; Hom (S,Thom (G, K)) ®F)
~ F(X; Hom (S ® G, K) ®F)
~ I‘(X; Hom(S@G,K@ﬁXF))

~ T (X ; Hom (S, Thom (G, K & BxF)) )
~ Hom (S, Zhom (G, K ® Bx F)) .
q.e.d.
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4.3. External operations

Recall that all spaces are Hausdorff, locally compact and with a countable base of
open sets. Let f: X — Y be a continuous map.

From now on, for the sake of simplicity, we assume that k is a field, and we consider
only the base rings kx, ky, etc. The case of sheaves of rings will be treated in the
next chapter.

Inverse image. — Let G € I(ky). We define f~1G € I(kx) as follows. If G =
“lim” G; for G; € Mod®(ky), we set:
-
f—lG — “li_I)Il” (f_lGi)U~
LUCCX
Note that one also has f~'G = “lim” f~'Gj, where f~'G; € Mod(kx).

?
If iy: U < X is an open inclusion, and F € I(kx), then i;;' F ~ F|y, by Lemma
3.3.7.

Proposition 4.3.1. — The diagram below commutes:

MOd(ky) —f:> MOd(kx)

Lyl Lx‘\r
f——l

I(k)y) e I(kx)

ov| e

Mod(ky ) g Mod(kx).

Proof
(i) Let G € Mod(ky). Then ¢y (G) = “lim” Gy and
Vccy
fFlor(@) = “lim”  (f7'Gv)u
Vccy,uccx
~ “li_r)n” (f_lG)f_l(V)ﬁU ~ “h_l')n”(f—lG)U.
vccy,uccx vccx

(ii) Let G = “li_%n” G; € I(ky). Then ay(G) = h_r)nGz and

1

flay(G) ~ f_lliL>nGi ~ li_r)nf_lG,- ~ ozX(“lii)n” 7iay).
q.e.d.

Proposition 4.3.2. — The functor f~1: I(ky) — I(kx) is exact and commutes with
“li_n)l” and ®.
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Proof. — Recall that f~'G = “lim” (f~'G;)u, and the functors “lim”, f~! and
4, UCCX
(+)u are exact and commute with “lim” and ®. q.e.d.

Proposition 4.3.3. — For f: X > Y and g: Y — Z, one has (go f)" '~ f~log1.

The proof is straightforward.

We shall prove later (Corollary 4.3.7) that the functors f~! and 3 commute.

Direct image. — Let F = “lim” F; € I(kx) for F; € Mod°(kx). One defines
f«F € I(ky) by the formula:
f*(“li_II}” E) =]{.i£1“1i_n)l” f*(EK) ~ w “li_II)l” f*(FU(E))
i K i vccx i

Here, K (resp. U) ranges through the family of compact (resp. relatively compact
open) subsets of X. The isomorphism above is described by the morphisms

!iﬂl“li_n)l” f*(-FzK) EASN ll_n “l_ill’_)l” f*(FUFz)K PR !iLn“li_r}n” f*(FUFi)~
K i KU i U

Proposition 4.3.4. — The two functors f~! and f. are adjoint. More precisely, let
F €I(kx) and let G € I(ky). Then

Homl(kx)(f—lG, F) ~Homy; (G, fuF).

Proof. — Let F' = “lim” F; and G = “lim” G;. One has the chain of isomorphisms
¢ j
Homl(kx)(f_le F) ~ Homl(kx)( “]'i)n” (f_lGj)U, “lir_r}” E)
juccX i

= lim  lim Homyioqe,) (/7 Gj)u, Fi)

5»UCCX i

~ lim limHomyqq,)(f7'Gj TuFy)
s UccX i

~ lim  lim Hom y gy (G, S L0 F)
jUCCX i

= @Homl(ky)(Gj» 1+11_n “l_iﬂ}” [Ty Fy)
J uccx i
~ Homl(ky)(G, f*F)

q.e.d.

Corollary 4.3.5. — The functor f.: I(kx) — I(ky) is left exact and commutes with
lim.
—
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Proposition 4.3.6. — The diagram below commutes:

Mod(kx) i——) Mod(ky)

Lx‘[ LyJ{
fe

I(kx) —— I(ky)

axl ayJ'
fe

Mod(kx ) —— Mod(ky ).

Proof
(i)  fetx =~ vy f« follows from ax f~! =~ f~lay and the fact that f. and ¢ are right
adjoint of f~! and .
(ii) Let F ~ “lim” F; with F; € Mod°(kx). Then
-

K2

filaxF) = lim fi((ax F)k) ~ lim f, (lim Fi k)

— Py
K K i
~ Ei_I_I_va(llmF,'K) >~ l&llill}f'(Fz )
K i K i
~ limay (“lim” fiFix) ~ ay (lim “lim” f,Fix) = ay (f F).
K i K i
q.e.d.
Corollary 4.3.7. — The diagram below commutes:
-1
MOd(ky) R MOd(kx)
5YJ/ ﬁxl
f—l
I(ky) _— I(kx)
Proof. — By adjunction, using Proposition 4.3.6. q.e.d.

Proposition 4.3.8. — Let F € I(kx) and G € I(ky). Then
Thom (G, f.F) ~ f.Thom (f~'G,F),
Hom (G, f.F) ~ f,Hom (f G, F).
Proof. — The second formula follows from the first one by applying the functor ay .
To prove the first formula, consider K € I(ky). Then
Homy (K, ZThom (G, f, F)) ~ Hom, (K ® G, f..F)
~ Homl(kx)(f“l(K ®QG),F) ~ Homl(kx)(f_lK ®f71G,F)
~ Homy,,.(f 7' K,Zhom (f7'G, F)) ~ Homy (K, f.Thom (f'G, F)).
q.e.d.

SOCIETE MATHEMATIQUE DE FRANCE 2001



66 CHAPTER 4. IND-SHEAVES

Proposition4.3.9. — For f: X - Y and g: Y — Z, one has (go f), =~ g« o fu.

By adjunction, this follows from Proposition 4.3.3.

Note that f. does not commute with G in general.

Proposition 4.3.10. — Assume that f: X — Y is the embedding of a locally closed
subset. Then f~1f, = id.

Proof. — First, that assume f is an open embedding. Let F' € I(kx) and let G €
Mod‘(kx). One has the isomorphisms:
Homy (G, f~! foF) ~ Hom, ,(fuG, f. F)
~ Homl(,cx)(f_lfnG, F)
~ Hom (G, F).
Here, the first and second isomorphisms follow from Theorem 3.3.14.

If f is a closed embedding the result follows from the classical one for sheaves since
both f~! and f, commute with inductive limits in this case. q.e.d.

Proper direct image. — Let F' = “lim” F; € I(kx) for F; € Mod®(kx). One

defines fuF' € I(ky) by the formula

f!! “m”ﬂ — “h_n,l,, f’-Fz

(3 (2

If iy: U — X is an open embedding, iy coincides with the previous construction of
section 3.3.

Note that the natural morphism fitx F — vy fiF' is not an isomorphism for F' €
Mod(kx), in general. Here, this morphism is described by the morphisms (we do not
write the functors vx,ty for short)

(431)  fuF ~“lim” fi(Fy)~  “lm” (fi(Fv))v — “LIm”(fiF)y.
vccx UCCX,VCCY vVccy

To avoid any confusion, we use the different notation f .

Lemma 4.3.11. — If the support of F' € Mod(kx) is proper over Y, then fuuxF —
ty fi .

Proof. — In this case it is obvious that the last morphism in (4.3.1) is an isomorphism.
q.e.d.

Proposition 4.3.12. — The functor fy is left exact and commutes with “l_iLn”.

The proof is evident.
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Proposition 4.3.13. — The diagram below commutes:

fu

I(k‘x) _— I(ky)

ax l . ayl

Mod(kx) —— Mod(ky ).
Proof. — One has the chain of isomorphisms

ay fu(“lim” F) = oy (“lim” fiF}) = lim fF;

=~ fillim Fy) = fiax (“lim” F).
q.e.d.

Theorem 4.3.14. — For G € I(ky) and let F € I(kx), one has
G fuF ~ fu(f '\G®F).
Proof. — Let G = “lim” G; for G; € Mod®(ky) and F' = “lim” F; for F; €

(3

J
Mod®(kx). Then we have
f_1G®F ~ “li_n)l”(f_lGj) ®E .
0J
Since the F;’s have compact support, (f~'G;) ® F; € Mod®(kx ), and
f”(f—lG ®F) ~ “lii>n” f!(f—lGj ®-Fz) ~ “]il’_l’_)l” GJ ®f‘E

4 3
~ (“l_i_l_)l'l” GJ) ®(“];igl” f'E) ~ G®fllF
7 %

q.e.d.
Corollary 4.3.15. — Let G € I(ky) and let F € I(kx).

(i) There are natural morphisms
fuZhom (f~*G,F) — Thom (G, fuF),
fiHom (f~*G, F) — Hom (G, fuF).
(i1) If G € Mod(ky ), these morphisms are isomorphisms.

Proof. — Since the assertions for the second morphism follows from the first one by
applying «, we shall prove the assertion for the first morphism.

(i) Applying Corollary 4.2.6, we have a natural morphism
f'G®Ihom(f~'G,F) — F.
Hence, by Theorem 4.3.14, we get the morphism
G ® fuThom (f7'G,F) ~ fu(f'G ® Thom (f~'G, F)) — fuF.
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Applying Proposition 4.2.5, we get the desired morphism.
(ii) Let F ~ 1_ir_}n” F; with the F;’s in Mod®(kx). One has the chain of isomorphisms

7

Zhom (G, fuF) ~ Thom (G, fu “li_n)l” F)

~ Thom (G, “lirl_)n” fiF;) ~ “li_g” Hom (G, [ F;)

~ “li_'n)l” f*’Hom(f_lG,Fi) ~ “li_'l'I)l” fg'Hom(f_lG, Fz)

K3 k3

> fu “lim” Hom (f7'G, F)) ~ fuZhom (f~1G, F).

2

Note that we have used the fact that Zhom (K|, - ) commutes with “lim” when K is a
sheaf, and this does not hold when K is an ind-sheaf. q.e.d.

Proposition 4.3.16. — There is a natural morphism of functors from I(kx) to I(ky):
(4.3.2) fu— fe
If F € I(kx) has proper support over Y, this morphism induces an isomorphism

fuF = f.F.

Proof. — Let F' = “lim” F; with F; € Mod®(kx). We have the morphisms

(3

(4.3.3) foF = “lim” fiF; — lim “lim” fi(F)x ~ f.F.
1 KccX [

Here, K ranges over the family of compact subsets of X.

Assume that supp F' is proper over Y. Let S be a closed subset of X proper over
Y such that supp F is contained in the interior of S. We may replace F; with (F;)s.
Then the arrow in (4.3.3) is an isomorphism. q.ed.

In general fi and @8 do not commute. However:

Proposition 4.3.17
(i) There is a natural morphism of functors
(4.3.4) By o fu — fuoBx.

(ii) If f is an open embedding, (4.3.4) is an isomorphism.

Proof
(i) There is a chain of morphisms

fi— fuoaxoBx ~ayo fuofBx.

The result follows by adjunction.
(ii) The functor fi o Bx is left adjoint to ax o f~! ~ f~! o ay which is right adjoint
to By o fi. q.e.d.
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Consider now a Cartesian square of topological spaces

fl

X/__)Y/

J g b

X—Y.
Theorem 4.3.18. — There is a natural isomorphism of functors from I(kx) to I(ky):
flug' " g7 fu.
Proof. — Let F' = “lim” F; with F; € Mod®(kx). Since supp F; is compact, the map

f'+ supp(¢’~"Fi) — Y" is proper. Hence f'yg'™'Fi = f'1g'"'F;, and we get
Flug TF = fy(“lim” g7 F) ~ “lim” 9 7'F;
‘ i

(3

~ “li_ll’)n” g_lf!Fi Eg_l “l_ji)l’l” f!Fi ’:g_lqu.

(3 (2

q.e.d.

Corollary 4.3.19. — Let V be an open subset of Y. Set U = f~Y(V), fv := flv : U —
V, and recall that iy (resp. iy) denotes the open inclusion V. —Y, (resp. U — X).
Let F € I(kx). Then

iyt foF =~ fy,ig'F.
Proof. — Let G € Mod“(ky). Then
Homl(kv)(G,i‘—,lf*F) ~ Homy, ,(ivnG, fi F) ~ Homl(kx)(f'lz'V”G, F)
~ Homl(kx)(iU”f;lG’,F) ~ Hom,, (G, fv. it F).
q.e.d.

Ind-stalk. — Let z € X, and denote by j, the embedding {z} — X . For F €
I(kx), it is natural to define its stalk at x by setting F, = j; ' F. However, there exist
non-zero ind-sheaves on X whose stalk at every z € X vanishes.

Example 4.3.20. — We keep the same notation as in Example 4.2.17, that is, we define
the ind-sheaf N by the exact sequence 0 — N — .k — k, — 0. Since j; ! commutes
with inductive limits, we get that j; ' N = 0 for all y € X.

Hence, we define the ind-stalk of F' at x as ;F. This is an ind-sheaf whose support
is contained in {z}. By Proposition 3.3.16, for F' € Mod(kx) and K € I(kx) one has
the isomorphism:

Hom (F, K); ~ Homy ) (F, - K).

The functor which associates with F' the family of its ind-stalks is faithful:
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Proposition 4.3.21. — Let f: F — G be a morphism in I(kx), and assume that for
each x € X the induced morphism . f: . F — G is the zero morphism. Then f is the
zero morphism.

Proof. — One has the chain of equivalences

f =0 & for all K € Mod(kx), the induced morphism Hom (K, F) —
Homy; (K, G) is zero < for all z € X and all K, Hom (K, F), — Hom (K, G), is
zero < for all z € X and all K, Hom,; (K,sF) — Homy (K, .G) is zero ¢ for
allz € X, . F — .G is zero. q.e.d.

Exercises to Chapter 4

Exercise 4.1. — Let Y =R, X = {0} and denote by f: X — Y the embedding. Let

Gn =k__1_ 1 € Mod(ky). Prove that f~*( ]'[NGn) ~ kN and ] f~YGn) ~
ne

B
mbTn neN

kY. Hence, f~! does not commute with lim.
im

Exercise4.2. — Let f: X — Y be as in Exercise 4.1. By choosing F = kx €
Mod(kx), prove that both f. and fi; do not commute with 3.

Exercise 4.3. — Let X =] — 1,1, Y =R and f: X — Y the embedding. Let F,, =
kj_1411-1; € Mod(kx). Show that “lm” F, ~ kx, “lim” f.F, ~ x(ky) and

n n
fo(“lim” Fy) ~ (ky)x, Hence, f. does not commute with “lim”.
n

Exercise 4.4. — Let f: X — Y be as in Exercise 4.3. Prove that fukx ~ x(ky) and
fikx ~ (ky)x. Hence, futx # vy fi in general.

Exercise 4.5. — Let X = {pt}, F, = k. Prove that 8x( [] F,) is not isomorphic to
nez

[1 Bx(Fn). Hence, Bx does not commute with lim.

nez

Exercise 4.6. — Let X = R, Y = {0}, and denote by f: X — Y the projection.

Let F,, = k{ny € Mod(kx). Prove that [] F,, ~ @ F, ~ “@’ F,,. Deduce that
neN neN neN
fu( TI Fr) ~k®Nand [] fuF, ~ kM. Hence, fi does not commute with lim.

neN neN
Exercise 4.7. — Assume that k is a field. Let K € Mod(kx) be a soft sheaf. Prove
that ' ® K is soft for any sheaf F' € Mod(kx).
(Hint: adapt the proof of Proposition 4.2.21.)

Exercise 4.8. — Assume that k is a field. Let W = kN, let & denote the the family of

subspaces of W with countable dimension and let G = “lim” V.
Ves
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(i) Let U be a relatively compact open subset of X. Prove that

Homy (kxv, Wx) = lim Hom, ,(kxu, Vx)

ves

(ii) Define F = (W/G)x ~ “lim” Wx/Vx. Prove that for any open subset U of X
v

one has

Homl(kx)(kxu,F) =0.

(Hint: in (i) remark that any open covering of U admits a countable subcovering.)
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CHAPTER 5

DERIVED CATEGORIES OF IND-SHEAVES

In this chapter as in the preceding one, we work in a given universe /. All topo-
logical spaces (denoted by X, Y, etc.) are assumed to be Hausdorff, locally compact,
and with a countable base of open subsets. Moreover k is a field.

Notation 5.0.1. — If ¢: C — C' is an additive functor of abelian categories, we shall
usually still denote by ¢ instead of K¥(¢) the associated functor from K*(C) to
K*(C"), and similarly with bifunctors. For example, we still denote by Zhom the
functor K~ (I(kx))°P x K*t(I(kx)) — K*(I(kx)) associated with Zhom .

5.1. Internal operations

Recall that the categories Mod(kx) and Mod®(kx) have enough injectives and
systems of strict generators.

As usual, we denote by D(kx) the derived category of the category Mod(kx) of
sheaves of k-vector spaces on X. More generally, if A is a sheaf of rings on X we
write D(A) instead of D(Mod(A)).

We denote by D(I(kx)) the derived category of the category I(kx) of ind-objects
of Mod®(kx).

Proposition 5.1.1. — The natural functor D(kx) — D(I(kx)) induced by tx is fully
faithful. In particular, D(kx) is equivalent to the full triangulated subcategory of
D(I(kx)) consisting of objects F such that H?(F) € Mod(kx) for all j.

Proof. — Let F,G € K(Mod(kx)). We have
Hom D(I(kx))(LXG’ LXF) ~ lii)n HOmK(I(kX))(G/, LXF) s G, € K(I(kx))
G

G'—
qis
>~ l_i_n_)l HOmK(MOd(kX))(aXGI, F) , GI € K(I(kx))
G'—G
qis
>~ 1£)n HomK(MOd(kx))(G”’ F) s G” € K(Mod(kx))
G'—G
qis

~ Hom p ;. (G, F).
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Here, we have used the fact that the category {axG’ — G} is cofinal in the category
{G" — G}.

Let us prove that if F € D(I(kx)) satisfies H(F) € Mod(kx) for any j, then
F € D(kx). There is a natural morphism F — txaxF, and it is an isomorphism
because it induces isomorphisms in cohomologies. q.e.d.

We introduce the categories

P(kx) = {“@” G]‘; Gj S MOd(kx)},
J
(5.1.1) Pe(kx) = {®" G;; Gj € Mod‘(kx)},
J
Z4(kx) := {F € I(kx); F is quasi-injective}.
If there is no risk of confusion, we shall write P, P, and Z, instead of P(kx), P.(kx)
and Z,(kx), respectively. Note that P and P, are generating and Z, is cogenerating.
Lemma 5.1.2
(i) The category P is stable by ® and the category I, is stable by [,
(i) if G € P and F € I, then ZThom (G,F) € I,
(i) of G € P and F € I,, then Hom (G, F) is soft.
Proof. — (i) is obvious.

(ii) Since Thom (-, F) sends direct sums to direct products, we may assume by (i)
that G € Mod(kx ). In this case, Homy; (-, Zhom (G, F)) =~ Homy (- ®G, F) is
an exact functor on Mod®(kx).

(iii) follows from (ii) and Proposition 4.2.19. Note that
Hom (G, F) ~ Hom (kx,Zhom (F,G)).

q.e.d.
Theorem 5.1.3
a) The category P°P x I, is injective with respect to the functors Hom , Thom
q ) I(kx)
Hom .

(b) The functors below are well-defined:
RHom v+ D™ (I(kx))*P x Dt (I(kx)) — D (Mod(k))
RZhom : D~ (I(kx))°® x D*(I(kx)) — Dt (I(kx))
RHom : D~ (I(kx))°® x D*(I(kx)) — D*(kx).
Proof. — (b) follows from (a) by Proposition 1.4.6.
(al) We shall show first that PgP x I is injective with respect to Hom .
(i) Let G = “©@”G; € P.. In order to see that Z; is injective with respect to the
J

functor Homl(kx)(G, -), we shall apply Corollary 1.4.4. Consider an exact sequence
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0— F s F — F” — 0in I(kx) with F', F, F" in Z,. Let us prove that the functor
g
Homl( kx)(G , - ) applied to this exact sequence gives an exact sequence. We have
(5.1.2) Homy (G, F) ~ HHomI(kx)(Gj,F)
J
and similarly with F' replaced by F” or F’. Since the functor [, Hom (G}, -) is exact

on quasi-injective sheaves by Corollary 4.2.20, the result follows.

(i) Let F € Z,. In order to see that P. is injective with respect to the functor

Hom )( -, F), we shall apply Theorem 1.4.3. Consider an epimorphism H—»G" in

I(kx) with G" = “@” G;’ € P.. By Proposition 1.3.2, for each j, there exist G; €
J

Mod‘(kx) and an epimorphism G;—G? such that the composition G; — G} — G”
factors through H. Let G; = ker(G; — G7). We get an exact sequence

(5.1.3) 0— “EJB” G; N “EJB” Gj N ‘%}9” G;/ =0

such that the morphism “@” G; — G” factors through H. By (5.1.2), the sequence
J

(5.1.3) will remain exact after applying the functor Hom kx)( - F).

(a2) Next let us show that P°P x Z, is injective with respect to the functor Zhom.

For G € P, let us prove that ZThom (G, I®) is an exact sequence if I® is an exact

sequence in Z, bounded from below. It is enough to prove that for any S € Mod®(kx),
H*® :=Homy; (S, Thom (G,1°)) is exact. We have the isomorphism

H® ~Homy, ,(S®G,I*).

Since S ® G € P,, (al) implies the exactness of H®.
The exactness in G is similarly proved.

(a3) The case of the functor Hom follows from (a2) by applying the exact functor
ax.

(a4) Finally let us prove that P°P x 7, is injective with respect to Homl( kx )" Note that
Hom (F,G) is soft for G € P and F € Z; by Lemma 5.1.2 (iii). Hence the assertion
follows from (a3) and the isomorphism Hom (G, F) =~ I'(X ; Hom (G, F)). q.e.d.

Proposition 5.1.4. — Let G,K € D™ (I(kx)) and let F € D*(I(kx)). Then

(i) axRTZhom(G,F) ~ RHom (G, F),
(ii) RThom (G ® K, F) ~ RThom (G, RThom (K, F)).

Proof
(i) follows from the isomorphism ax o Zhom ~ Hom and the exactness of ax.
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(ii) We may assume G,K € K~ (P) and F € K*(Z,;). Since G® K € K~ (P), and
Thom (K,F) € K*(Z,), we get the isomorphisms

RThom (GQ® K, F) ~Thom (GQ K, F)
~ Thom (G,Zhom (K, F)) ~ RThom (G, RZhom (K, F)).

q.e.d.
Proposition 5.1.5. — Let G € D~ (I(kx)) and F € D*(I(kx)). Then
RHom (G, F) ~ RI'(X; RHom (G, F)).
Proof. — We may assume that G € K~ (P) and F € K*(Z,). Then
RHomy;, (G, F) =~ Homy; (G, F)
~T'(X;Hom (G, F)) ~ RI'(X; RHom (G, F)).
Note that the last isomorphism follows since Hom (G, F) is soft. q.e.d.

One difficulty of the theory of ind-sheaves is that the category I(kx) does not have
enough injectives. This difficulty is partly overcome by the use of Theorem 1.5.4.

Theorem 5.1.6. — Let S be a small set contained in Ob(I(kx)). Then there exists a
small full abelian subcategory Co of Mod®(kx) with the properties below.
(i) S C Ind(Cy).
(it) Co satisfies the properties in (a) of Theorem 1.5.4. In particular, Co as well as
Ind(Cy) are stable by sub-objects and quotients,
(iii) Ind(Co) has enough injectives and such objects are quasi-injective in I(kx).
(iv) Cop is stable by ®, Hom . Moreover, ky € Cqy for all open U CC X.
(v) If F € S, then Thom (F, -) sends Ind(Cp) to Ind(Cyp).
(vi) Let K € Ind(Cy) and assume K is injective in this category.
(a) If F € S, then Thom (F, K) is quasi-injective in I(kx).
(b) If F € S, then H* RThom (F,K) = 0 for k # 0.
(c) If F € Ind(Cy), then Hom (F, K) is injective in Mod(kx).
(d) If F € Ind(Cy), then H*RHom (F, K) =0 and H’“RHomI(kx)(F, K)=0
for k #£0.

Proof
(i)—(iv) There exists a small set B contained in Ob(Mod‘(kx)) such that S consists of

F,’s and Fs ~ “lin” F, ; with I, small and filtrant and Fs; € B. Set I = | |, I,. We
il
may assume fronf the beginning that S contains the sheaves ki, for all open subsets
UccX.
With slight modifications of the proof of Theorem 1.5.4 (see [13]), we may construct
a small full subcategory Cy satisfying conditions (a) and (b) of this theorem and such
that Cy contains B and is stable by ®, Hom. Moreover, we may assume that Cy is
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stable by products indexed by I of sheaves in Cy with supports contained in a fixed
compact subset. Then (i)—(iv) follow from this statement.

(v) Let F = Fs ~ “lim” F; and G ~ “li_r)n” G; with G;, F; € Cyp. Then ZThom (F,G)

i€l jeJ
is a sub-object of [[,.; “lim” Hom (F;, G;). One has
jEJ
H “hL,n” Hom (F“G]) ~ uli—n}” ( H Hom (Fi, ch(i))U)v
i€ls J€J e, U i€l

where ¢ ranges over the set of maps J — I; and U over the family of open subsets
UccX.
Then (v) follows since Cy is stable by Hom and by product indexed by Is.

(vi) (a) Let G € Ind(Cy). Then
Homy, gc,) (G, Zhom (F\, K)) =~ Homy, (G, Thom (F, K))
~ Hom (G ® F, K) ~ Homy, 4 ¢, (G ® F, K).
and this functor is exact with respect to G since G ® F € Ind(Cp). Therefore,
Thom (F, K) is injective in Ind(Co), hence quasi-injective in I(kx).

(vi) (b) Let Fo — F be a resolution of F' with the components of F, in P. We may
assume from the beginning that the F}’s belong to S. We may also assume that S is
stable by kernels and cokernels.

Since K is quasi-injective, RZhom (F, K) is represented by ZThom (F., K). Hence, it
is enough to prove that this complex is gis to Zhom (F, K). By standard arguments,
it is enough to show that Zhom (-, K) is exact on S. This follows from the fact that
Homy,qc,) (G, Zhom (H, K)) ~ Hom 4 ¢\ (G® H, K) is exact with respect to H € §
for any G € Co.

(vi) (¢) It is enough to prove that Hom (F, K) is flabby. Let U be an open subset
of X. The monomorphism F ® yk— F gives rise to the epimorphism

I'(X;Hom (F, K)) ~ Homp, 4 ¢, (F, K)
—Hom ¢\ (F ® vk, K) ~ I'(U; Hom (F, K)).

(vi) (d) Consider a resolution F, — F with the components of F, in P. N Ind(Cy).
Then RHom (F, K) is represented by the complex Hom (F,, K). Hence, it is enough
to show that Hom (-, K) is exact on Ind(Cp). This follows from the formula

(5.1.4) I'(U; Hom (F, K)) ~ Homy, g ¢, (vk ® F, K).
The case of RHom;, (F, K) is similar. q.e.d.

Definition 5.1.7. — Let S be a small subset of Ob(I(kx)). We denote by J(S) the
subcategory of I(kx) consisting of objects F with the following properties:

(i) for any G € S, Zhom (G, F) is in Z,(kx),
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(i) H*RTZhom (G,F) =0, H*RHom (G, F) = 0 and H*RHom, ,(G,F) = 0 for
any G € S and any k # 0,
(ili) Hom (G, F) is an injective sheaf for any G € S.

Applying Theorem 5.1.6, we get the following result.

Corollary 5.1.8. — For any small subset S of Ob(I(kx)), the category J(S) is cogen-
erating in I(kx).

Proof. — Let F' € I(kx). Let us take Cp as in Theorem 5.1.6 replacing S with SU{F}.
Since Ind(Cp) has enough injectives, F' is embedded into an injective object in Ind(Co).
The assertion follows from the fact that any injective objects in Ind(Cp) is contained
in J(S5). q.ed.

Corollary 5.1.9. — Let F € DY (I(kx)) and G € D~ (I(kx)). Then
(i) RThom(G,F)~ “lim” Thom (G, F') in Ind(D*(I(kx))),

F—F'
qis
(i) RHom (G, F) ~ “lim” Hom (G, F') in Ind(D™ (kx)),

F—F"
qis
(ili) RHomy, (G, F)~ “lim” Hom (G, F’) in Ind(D*(Mod(k))).

F—F'
qis

Here F — F’ ranges over the family of quasi-isomorphisms in K+(I(kx)).
qis

Proof
(i) Choose a gis G’ — G with G’ € K~ (P) and a qis F — F’ with F/ € K+(Z,).
By Theorem 5.1.3, RZhom (G, F) ~ Thom (G’, F’). Hence it is enough to prove that,
given a qgis G’ — G as above, there exists a qis F — F’ with F’' € K*(Z;) such that
the morphism Thom (G, F') — ZThom (G',F’) is a qis. Let G” denote the mapping
cone of G’ — G. We choose a small set S in Ob(I(kx)) such that S contains all
objects of the complexes F', G” and is stable by kernels and cokernels. Let us apply
Corollary 5.1.8. There exists a qis ' — F’ with F’ € K*(J(S)). By Corollary 5.1.8
(i), Zhom (G", F’) is qgis to 0.
(ii) (iii) The proof is similar. q.e.d.
This corollary means that, for a fixed G € K~ (I(kx)), the functor Zhom (G, -) is

right derivable, and its right derived functor coincides with the right derived functor
RThom (-, -) of the bifunctor Zhom (-, -).

Proposition 5.1.10. — Let K € D™ (kx), K' € DY¥(kx), G € D~ (I(kx)) and F €
D*(I(kx)). Then

(i) RHom (BxK,F) ~ RHom (K,axF),

(i) RHom (BxK ® G,F) ~ RHom (K, RHom (G, F)),

(iii) RHom p, (K, RHom ;. (G, F)) = RHom 4 14y, (Bx K ® G, F),
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(iv) RIhom(K,F ®BxK') ~ RThom (K,F)® fxK',
(v) RHom (K,F ® BxK') ~ RHom (K,F) ® K'.

Proof
(i) By Corollary 5.1.8, we can find a quasi-injective F' € K+ (I(kx)) and a quasi-
isomorphism F' — F' such that RHom (8x K, F') is represented by Hom (Bx K, F') ~
Hom (K,axF'). Moreover since ax(F') ~ Hom(kx,F’), we may assume that
ax(F') is injective. Hence Hom (K, ax F') represents RHom (K,ax F).
(ii) By (i) we have
RHom (BxK ® G, F) ~ RHom (Bx K, RThom (G, F))

~ RHom (K,ax RThom (G, F))

~ RHom (K, RHom (G, F)).
(iii) follows from (ii) by applying RI'(X; ).
(iv) We may assume that K € P and F' € Z,. Then the result follows from Proposition
4.2.22 since F ® Bx K € I, by Proposition 4.2.21.

(v) follows from (iv) by applying the functor ax. q.e.d.

Proposition 5.1.11. — Let G € D™ (kx). Let {F;}; be a small filtrant inductive system
in I(kx). Then we have
“lim” H*RThom (G, F;) = H*RThom (G, “lim” F;),
— -
2 7
lim H*RHom (G, F;) = H*RHom (G, “lim” F}).
- -
(] 1
Moreover, if G has compact support, then
lingomD(kx)(G, F) = Hom 1k, (G, “li_p_}” F).
K3

2

Proof. — We may assume that G € Mod(kx). Then the assertion follows from
Theorem 1.5.6 and Corollary 5.1.9. q.e.d.

5.2. External operations

Let f: X — Y be a continuous map. Recall that X and Y are assumed to be
Hausdorff, locally compact and with a countable base of open subsets.

Direct images
Proposition 5.2.1

(i) The category Ty(kx) is f«-injective.
(i) If F € T,(kx), then f.F € T,(ky).
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Proof
(i) Consider an exact sequence 0 — F' — F — F” — 0 in I(kx), with F’ quasi-
injective. In order to prove that the sequence obtained by applying the functor f.
remains exact, it is enough to prove that for H € Mod°(ky ), the sequence

0 — Homy, (H, fuF') — Hom,, ,(H, fuF) — Hom ,(H, fsF") — 0

is exact. This follows immediately from the adjunction formula of Proposition 4.3.4
and Corollary 4.2.20.

(i) A similar argument proves the exactness of the functor Homy, (-, fsF) on the
category Mod®(ky) by Proposition 4.2.19. q.e.d.

Recall that if C is an abelian category with enough injectives, its cohomological di-
mension is the smallest n € N Ll co such that any object FF € C has an injective
resolution of length < n.
Corollary 5.2.2
(i) The derived functor Rf,: D*(I(kx)) — DY (I(ky)) is well-defined.
(ii) If Mod(kx) has finite cohomological dimension, then Rf, induced a functor
Rf,: D*(I(kx)) — D*(I(ky)).

(iii) Ifg: Y — Z is another continuous map, then R(go f), ~ Rg, o Rf,.
Proposition 5.2.3. — For G € D~ (I(ky)) and F € D*(I(kx)), one has the isomor-
phisms

RHom,, (G, Rf,F) ~ RHom  ,(f'G, F),
RHom (G,Rf,F) ~ Rf ,RHom (f~'G, F),
RZhom (G,Rf,F) ~ Rf ,RThom (f~'G,F).
Proof. — We may assume that G € K~ (P(ky)). We can take a quasi-isomorphism

F — F' with a quasi-injective F’. Then applying Theorem 5.1.3, the result follows
from the non derived case. q.e.d.

Theorem 5.2.4. — The functors Rf, and f~' are adjoint. More precisely, for F €
D*(I(kx)) and G € D*(I(ky)) one has the isomorphism

Hom p (1, 1) (G, Rf ,F) HomD+(I(kx))(f_1G, F).
Proof. — We have the chain of isomorphisms

HOmD+(I(ky))(G, Rf*F) ~ hﬂ HOmK+(‘(ky))(Gl’ f*F/)
F—F', G'—>G
qis qis
~ 111_1_)1 HomK+(I(kX))(f—1G',F/)
F—>F', G'—G
qis qis

~ HOmD+(I(kX))(f_1G, F).
q.e.d.
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Proposition 5.2.5. — There are natural isomorphisms and morphisms
(i) wRf, — Rf.x,
(i) eyRf, — Rf,ax,
(iil) By Rf, — Rf.Bx.

Proof

(i) To prove that for F € D*(kx), tyRf,F ~ Rf .xF, we may assume that F' €
K*(Mod(kx)) and that F is injective. Then (xF € K*(Z,(kx)), and the result
follows.

(ii) To prove that for F € D*(I(kx)), ayRf,F ~ Rf,axF, we may assume that
F € K*(Zy(kx)). Then axF is soft, hence f,-acyclic and the result follows.

(iii) We have f~18yRf, ~ Bxf~'Rf, — PBx, and the result follows by adjunction
(i.e. by Theorem 5.2.4). q.ed.

Proper direct images
Proposition 5.2.6

(i) The category Ly(kx) is injective with respect to fu, and the functor fu admits
a right derived functor Rfy : DY (I(kx)) — Dt*(I(ky)). Moreover, for each k,
the functor RF fu: I(kx) — I(ky) commutes with “lim”.

(i) There is a natural morphism of functors Rfy — Rf,. If F € Dt(I(kx)) has
proper support over Y, then this morphism induces an isomorphism RfuF ——
Rf.F.

(iii) If K € Mod(kx) is soft, then R¥fy(F ® K) =0 for k # 0 and F € I(kx).

(iv) If F € Dt (kx) and f is proper on supp F, then RfuF ~ Rf F.

(v) The functor fu sends Iy(kx) to Zy(ky). Moreover, if g: Y — Z is another
continuous map, then R(go f), =~ Rgn o Rfu.

(vi) One has the isomorphism ay o R fu = Rfioax.

(vii) One has a natural morphism By Rfy — RfuBx, and this morphism is an iso-
morphism when f is an open embedding.

Proof

(i) The functor fu: I(kx) — I(ky) is of the type Ifi, where one denotes again by
fi: Mod®(kx) — Mod®(ky) the restriction of the usual functor fi. Hence we can
apply Theorem 1.5.6.

(ii) Let F € K*t(I(kx)). Proposition 4.3.16 implies the existence of a morphism
fuF — f.F functorial with respect to F. Therefore, we obtain the morphism R f) —
Rf,. If the support of F € D*(I(kx)) is proper over Y, then we can choose its
representative in K*(Z,(kx)) whose support is proper over Y. Then Proposition
4.3.16 implies that RfyF — Rf,F is an isomorphism.
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(iii) Let F = “lim” F; € I(kx) with F; € Mod®(kx). One has

7

R*fy(F®K) ~ “lim” RFA(F, @ K)=0 for k #0.

2

Here, the first isomorphism follows from (i) and (ii). The vanishing result follows
from tl_le fact that F; ® K is soft by Exercise 4.7.

(iv) By (ii) and the corresponding result in sheaf theory, one has RfyF — Rf F «—
Rf,F.

(v) Let F = “lim” F; with the Fj’s injective with compact support. Then fuF ~

7
“lim” f,F;, and the sheaves f, F; are injective.
i

(vi) If F € Z,(kx), then axF is soft, hence fi-acyclic.

(vii) The isomorphism id — axBx defines Rf, — Rf,axfBx ~ ayRfufx, and the

result follows by adjunction (i.e. by Theorem 3.3.26). When f is an open embedding,
fiand fi are exact, and the isomorphism follows from Proposition 4.3.17 (ii). q.e.d.

Theorem 5.2.7. — Let F € Dt (I(kx)) and G € D*(I(ky)). Then
GQRRfuF ~ ng!(f—1G®F).

Proof. — We may assume that F is quasi-injective. In this case, the left hand side
is isomorphic to G ® fuF. By Proposition 4.3.14, G ® fuF ~ fu(f~'G ® F). On the
other hand, fi(f~!G ®F) represents Rfi(f~'G ® F) by Proposition 5.2.6 (iii). q.e.d.

The next result has no counterpart in classical sheaf theory.

Lemma 5.2.8
(i) For G € D~ (I(ky)) and F € D*(I(kx)), there are natural morphisms
RfyRTZhom (f*G,F) — RThom (G,RfyF),
RfiRHom (f'G,F) — RHom (G, RfyF).
(ii) If G € D~ (ky), these morphisms are isomorphisms.

Proof. — The second morphism being obtained from the first one by applying o, we
shall prove the assertions for the first morphism. We have a chain of morphisms:

G ® RfuRThom (f'G,F) ~ Rfu(f~'G ® RThom (f*G,F)) — RfyF.

Then by the adjunction, we obtain the first morphism.

In order to see (ii), we may assume G € Mod(ky) and F' € Z,(kx). In this case, the
morphisms above reduce to fuZhom (f~1G, F) — Thom (G, fuF). This morphism is
an isomorphism by Corollary 4.3.15. q.e.d.
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Consider now a Cartesian square of topological spaces
fl
X/ —_— YI
s 9l
f

X —Y.

Theorem 5.2.9. — There is a natural isomorphism of functors from D*(I(kx)) to
Dt (I(ky+)):
Rf'wg' ™' ~ g 'Rfu.

Proof. — By Proposition 4.3.18, there is an isomorphism f’,,¢’ ~! ~ g=1fy. The right
hand side admits a right derived functor, and R(g~'fu) ~ g 'Rfi1. Hence we get
the morphism of functors g 'R fy — (Rf'y)g’ ~!. Then it is enough to prove that for
each k and each F' € I(kx), it induces an isomorphism g~'R¥fyF — R¥f’, ¢’ 'F.
Since both sides commute with “lim” in view of Proposition 5.2.6 (i), we may assume
that F € Mod®(kx). In this case, the result follows from the corresponding one for
sheaves.

q.e.d.

5.3. Duality

As in the preceding section, consider a continuous map f: X — Y. We shall
extend the classical Poincaré-Verdier duality to ind-sheaves and construct a right
adjoint functor to fi. We refer to [10] Chapter III for an exposition of the classical
case.

Recall that the cohomological dimension of the functor fi is the smallest d € NLIoco
such that R/fiFF = 0 if j > d for all F € Mod(kx). A sheaf F on X is called f-
soft if for any = € X, the sheaf F|f-1(,) is c-soft. The functor f; has cohomological
dimension < d if and only if any sheaf on X has an f-soft resolution of length < d.

From now on, we shall make the following hypothesis:

(5.3.1) the functor fi has finite cohomological dimension.
Lemma 5.3.1. — The two functors fu and fi have the same cohomological dimension.

Proof. — Denote by d the cohomological dimension of fi. Let F ~ “lim” F;, with
i

F; € Mod®(kx). Then R*fyF ~ “lim” R* fiF; = 0 for j > d. Hence, the cohomolog-

ical dimension of fi is less than or équal to that of fi.
The other estimate follows from RFfiF ~ ay R*fyF for F € Mod(kx). q.e.d.
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Let K be an f-soft sheaf on X and let G € Mod(ky). One introduces the presheaf
on X:
fkG: U~ Hom,_(fiKy,G).

Proposition 5.3.2
(i) For F € Mod(kx), FQK is f-soft. In particular, the functor F — fi(F ® Ky)
is ezact,
(ii) of G is injective, the presheaf fi;G is an injective sheaf,
(ili) of G is injective and F € Mod“(kx), then
Hom, (F,fxG)~Hom, (fi(K®F),G).
We refer to Exercise 4.7 and to loc. cit. for a proof.

We shall extend the functor fj to ind-sheaves. Let G € I(ky). We define f}G €
Mod®(kx )44 by the formula:

fxG(F) = Homy(fi(K ® F),G) for F € Mod®(kx).

Lemma 5.3.3
(i) fiG belongs to I(kx).
(ii) The functor fi;: I(ky) — I(kx) commutes with filtrant inductive limits and with
projective limits (in particular, it is left exact).
(iii) If G is quasi-injective, then f} G is quasi-injective.
(iv) The category T,(ky) is fr -injective.
(v) For F €I(kx) and G € I(ky), one has
Hom,, (F, fiG) ~ Hom,, ,(fu(K ® F),G).

Proof

(i) Clearly, the functor fy : I(ky) — Mod®(kx )" %4¢ commutes with filtrant inductive
limits and with projective limits. Hence, to prove (i), we may assume that G is an
injective sheaf. Then the result follows from Proposition 5.3.2.

(ii) is obvious.
(iii) follows from the fact that the functor F — fi(K ® F) is exact.

(iv) Consider an exact sequence 0 — G’ — G — G” — 0 of quasi-injective sheaves,
and let us apply the functor f}< to this sequence. To check that the sequence we have
obtained is exact, it is enough to prove that it is exact after applying the functor
Hom (S, -), with S € Mod®(kx). This is clear by the definition of fic-

(v) Let F' >~ “lim” F; with F; € Mod®(kx). One has the chain of isomorphisms
Homl(kx)(F, f}(G) = EngomI(kx)(Fi7f}{G) = @Homl(ky)(f!(K ® Fi),G)
~ Homy; ,(“lim” fi(K ® F;),G) ~ Homy, ,(fu(K ® F),G).

q.e.d.
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Theorem 5.3.4. — The functor Rfy: D" (I(kx)) — D*(I(ky)) admits a right adjoint,
denoted by f', that is:

Hom p 14y ) (RfuF, G) =~ Hom 4 (110 ) (5 f'a).
Moreover, vx f' ~ f'ty. (In other words, the restriction of this new functor to the

derived category of sheaves coincides with the classical functor f'.)

Proof. — There exists a complex of f-soft sheaves K € K®(Mod(kx)) qis to the
sheaf kx. By Lemma 5.3.3, for F € KT(I(kx)) and G € K*(I(ky)) one has the
isomorphism

HOmK+ (kx))(F fKG) HOIIlK+ ky))(fll(F@K) G)
Let G € K*(I(ky)) and assume that all components of the complex G are quasi-
injective. Let us prove that f}(G represents f'G. We have the chain of isomorphisms

F'—F,G—>G’
qis qis

~ lim o Hom e g (F', fxG)

F'—F,G—G’
qis qis

=~ Hom p+ (7)) (F) [ G).
Here, we have used the fact that fi(F’ ® K) represents Rfi(F ® K) and the fact that
ficG' is qis to f} G if G' is quasi-injective.
By its construction the new functor f' coincides with the classical one when re-
stricted to the derived category of sheaves. q.e.d.

Corollary 5.3.5. — Let F € D*(I(kx)) and G € D*(I(ky)). Then
() RThom (RfyF,G) ~ Rf,RThom (F,f'G),
(i) RHom (RfuF,G) ~ Rf,RHom (F, f'G).

Proof. — Let S € D*(I(ky)). One has the chain of isomorphisms
Hom p ¢ 14y ) (S, RThom (RfuF, G)) ~ Hom p (14,1, (S ® RfuF, G)
~ Hom 4 14y ) (Ru(f 'S ® F), G)
~ Hom p, g kx))( frIS®F, f'G)
=~ Hom 1 (4 1) (F 'S, RThom (F, f'G))
~ Hom p (1,1 (S, Rf . RZhom (F, f'a)).
The second formula follows by applying ax. q.e.d.

Proposition 5.3.6. — Let {G,}; be a small filtrant inductive system in I(ky). Then for
k € Z one has
Hk(f!(“hi)n” Gz)) ~ “I_LH” Hk(f'(Gz))

i
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Proof. — Since each G; is a small inductive limit of sheaves, we may assume from the
beginning that all G;’s are sheaves. Denote by G? the canonical injective resolution of
G;. Then {G?}; is an inductive system of complexes of injective sheaves. Denote by
K a bounded f-soft resolution of the constant sheaf kx, as in the proof of Theorem
5.3.4. Then

Hk(f!(“li_n)l” Gz)) ~ Hk(f!(“li_fq” G;)) ~ Hk(f}((“llr_%n” G:))
~ “@” Hk(f}((G:» ~ “l'ﬂr_}” Hk(f'(Gl))

Here we have used the fact that if G is quasi-injective then f};(G) represents f'(G),
and f"K commutes with “lim”. q.e.d.

Proposition 5.3.7
(i) Let G1,G2 € D*(I(ky)). There is a natural morphism
flG1®f7'Gy — [1(G1 ®Ga).

(ii) Assume that, locally on X, f is isomorphic to the projection Y xR™ — Y. Then
for G € DY (I(ky)), we have the isomorphism

f1G® flky = f'G.
In particular, if f: X — Y is an open embedding, then f' ~ f~1.
(i) Assume that f: X —Y is a closed embedding. Then
f'= f~'RThom ((ky)x, - )-
Moreover, id — f'Rfu.
Proof
(i) Consider the morphisms
Rfu(f'Gr® f7'G2) = Rfuf'G1 ®Ga
— G1 ®Gs.
By adjunction, we get the desired morphism.

(ii) The morphism is constructed in (i) and it is known that it is an isomorphism when
G € D%(ky). To check that it is an isomorphism for a general G, by “dévissage”, we
may assume that G € I(ky). Let G = “lim” G;, with G; € Mod(ky). We have

i

Hk(f_lG(X)f!ky) ~ Hk((f—l “l_iL)n” G'L) ®f’ky) ~ “lii)n” Hk(f_lGi ®f'ky)
~ “h_;)n” Hk(f!Gi) ~ Hk(f! umn Gz)

(iii) By Corollary 5.3.5, we have for G € D*(I(ky))
Rf.f'G ~ Rf RThom (kx, f'G) ~ RThom (f.kx,G).
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Hence, f'G ~ f"'Rf,f'G ~ f~*RThom (f.kx,G).
Now, let F € D*(I(kx)). We get

f'Rf,F ~ f~*RThom (f.kx,Rf.F) ~ f*Rf,RThom (f ' fukx, F)
~ f'Rf,F~F.

q.e.d.

Proposition 5.3.8. — Let K € D~ (I(ky)) and G € D*(I(ky)). Then

RThom (f 'K, f'G) =5 f'RThom (K,G).

Proof. — For any F € D*(I(kx)), one has the chain of isomorphisms

Hom p+ (1)) (£ f'RThom (K,G)) =~ Hom p (11, ) (RfuF, RThom (K, G))
~ Hom p (14, ) (K ® RfuF,G) ~ Hom 14,y (Rfu(f 'K @ F),G)
~ Hom 1 (14 (f T K ® F, f'G) = Hom . (1) (F, RZhom (7' K, f'G)).

q.e.d.

Proposition 5.3.9. — There are a morphism and an isomorphism of functors

(i) axf'— flay,

(i) f'By ()@ flky = f'By(-).

Proof
(i) By Theorem 5.3.4, there is a natural morphism Rfy f' — id. This defines

Rfiaxf' ~ayRfuf' — ay,
and the result follows by adjunction.

(ii) Let G € D*(ky). Using the morphism Rfyf'ky — ky we have the chain of
morphisms

Rfn(f~'8yG ® f'ky) ~ ByG @ Rfuf'ky
— OyGQRky.
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We get the morphism f~18yG ® f'ky — f'ByG by adjunction. To prove it is an
isomorphism, we take S € D®(Mod®(kx)) and check the chain of isomorphisms

HOom p 1y (S, /7By G ® f'hy) = HORT(X; RHom (5, 6x f~'G ® f'ky)
~ HORF(X RHom (S, f'ky) ® f~ 1G)
NHORF(Y Rf,(RHom (S, f'ky) ® f~ 1G))
~ HORF(Y Rf\RHom (S, f'ky) ®G)
~ HORF(Y Rf,RHom (5, fky)®G)
~ HORF(Y RHom (RfuS, ky) ®G)
~ H'RT(Y; RHom (RfuS, By G))
~ Hom p 14,y (RfuS, By G)

= HomD+(I(kx))(S, f!,@YG)-
q.e.d.

Consider a Cartesian square of topological spaces

’
(5.3.2) X' i—) V&

s g
X —L—> Y.
Theorem 5.3.10. — There is a natural isomorphism of functors
Rf'.g" = g'RS,.
Proof. — It is enough to prove the isomorphism
RHom (K, Rf',g"F) ~ RHom,_, (K,g'Rf.F)

for K € DY(I(kys)) and F € D*(I(kx)). By adjunction, this follows from the
isomorphism Rg'nf'_lK ~ f~1RgnK given by Theorem 5.2.9. q.e.d.

Theorem 5.3.11. — There is a natural isomorphism of functors
Rf/!!Q/! = Q!Rf!!-
Note that this isomorphism has no counterpart in sheaf theory.

Proof. — The morphism is constructed by the chain of morphisms RguRf’, g’ =
RfuRg'y g'! — Rfi and by adjunction. Hence, it is enough to prove the isomorphism

RHom (K, Rf'yg" F) = RHomy_ (K,g'RfuF)
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for K € Mod®(ky/) and F € D*(I(kx)). Since K has compact support, one has the
isomorphisms
RHomI(k‘,/)(Ka Rf/!!gl!F) o~ RF(Y’, RHom (K, Rfl!!g/!F))
~ RI'(Y; Rg,RHom (K, Rf'yg''F)).

Now, using Lemma, 5.2.8 and the fact that ¢’ is proper on supp(f’ ~'K), we find
the chain of isomorphisms

Rg.RHom (K, Rf'yg' F) ~ Rg,Rf \RHom (f'~ 'F)
~ Rf,Rg'\RHom (f'~ 1K g'F)
~ Rf,Rg' ,RHom (f' 'K, q"'F)
~ Rf,RHom (Rg', f' 'K, F)
~ Rf\RHom (f~'RguK, F)
~ RHom (RgnK, RfuF)
~ Rg,RHom (K,g'RfuF).

Therefore we get

RHom; (K, Rf'yg F) RI(Y; Rg)RHom (K, Rf'g’ F))
~ RI'(Y; Rg,RHom (K,g'RfuF))
~ RI(Y'; RHom (K, g'RfuF))
~ RHom (X, g'RfuF).

q.e.d.

We may summarize the commutativity of the various functors we have introduced
in the table below. Here, “o” means that the functors commute, and “x” they do not.
Examples showing that the functors do not commute are given in Exercises 4.2, 4.3,
4.4,4.5,4.6,5.1, 5.2.

t | a| B |lim|lim
g An
® o o| o o X
f lio]o]o o X
I« oflo| x| X o
f!g X o X o X
f ! o | X | X o
lim [ x| o] o
—
lim | o | o[ x
P
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5.4. Ring action I

For the reader’s convenience, we define the standard notions of a ring or a module
in the case of the category I(kx), although such constructions make sense and are
classical in the more general framework of tensor categories. Recall that k is assumed
to be a field.

Definition 5.4.1

(i) A ring in I(kx) (or “an ind-kx-algebra”, or simply “an ind-ring”) is the data of an
object A € I(kx) and morphisms u4: A® A — A and €4: kx — A, such that the
diagrams below are commutative.

A—5kx®A A— A®kx
idAl leA A idAl JA@&A
At A4 At A A

Ao des—t2CA | 4oa
A®ml JMA
AgA— P2 1

(i) A left A-module (or simply, an A-module or “an ind-module”) is the data of an
object M € I(kx) and a morphism upr: A ® M — M such that the diagrams below
are commutative.

A®A®M%A®M M—5kxo®M
A®MMl l/-‘M idAl lgA@M
AgM_—HM s M Mt Ao M
Notation 5.4.2

(i) One denotes by vpr: M — Zhom (A, M) the morphism deduced from pps by
the isomorphism

(54.1) Homy, (A ®M, M) ~ Homy, (M, Zhom (A, M)).
(i) One denotes by epr: M — A®M the composition M — kx @M W AQM.
(ii) One denotes by e}, : ZThom (A, M) — M the composition
Thom (A, M) Thom (kx, M)~ M.

Thom (e a,M)

Remark 5.4.3. — In the classical case of a module M over a ring A, the analogous
morphisms of par, v, em and e}, are the morphisms a @ m — am, m — (a — am),
m+— 1 ®@m and ¢ — (1), respectively.
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Definition 5.4.4. — A morphism of A-modules from M to N is a morphism u €
Homy (M, N) such that the diagram below commutes

A®
A@M———u—)A®N

luM luz\r
M———N.
If u is such a morphism, we shall say that “u is A-linear”.
By considering the .A-modules and the morphisms of .A-modules, one gets a cate-
gory, which we denote by I(A).
Lemma 5.4.5
(i) The correspondence U — I(A|y) is a proper stack of k-abelian categories.

(i) The natural functor I(A) — I(kx) is exact and faithful.

The proof is left as an exercise.
As usual, one denotes by

HomI(A) : I(A)°P x I(A) — Mod(kx)
Homy 4y : I(A)°P x I(A) — Mod(k)
the natural functors.

Definition 5.4.6

(a) One denotes by A°P the object A endowed with the morphisms € 400 := €4 and
paoe = g ov, where v: AQ A — A® A is the morphism corresponding to
a®b— bRa.

(b) An A°P-module is called a right A-module.

Note that A is both a left and right .A-module.

Example 5.4.7
(i) If A is a sheaf of kx-algebras, then I(A4) ~ Ind(Mod®(A)) (see Exercise 5.3).

(ii) If A is a sheaf of kx-algebras, then 8x.A is a ring in I(kx), and if M is a
sheaf of A-modules, then 8x M is a Bx.A-module. This follows immediately from the
fact that Sx commutes with ®. Note that, with the notations of Exercise 3.4, one
has the equivalence Mod(A,I(kx)) =~ I(8x.A), because Hom,, (A, Hom (M, M)) =
Homl(kx)(ﬁA®M, M).

Consider the two sequences of morphisms

(5.4.2) A®A®M?A®M—>M—>O where d = pa QM — A® pum,
Y
(5.4.3) 0 = M — Thom (A, M) = Thom (A® A, M) ~ Thom (A,Thom (A, M)),
vMm
where d = Thom (ua, M) — Thom (A, vpr).
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Clearly, gy od=01in (5.4.2), and dowvpr =0 in (5.4.3).
Lemma 5.4.8. — The two complexes (5.4.2) and (5.4.3) are exact.

Proof
(i) The exactness of the complex (5.4.2) follows from the existence of eps. In fact,

pm o en = idp, doeagn +em o py = idagm -
(Here, we regard A ® M as an A-module via the A-module structure of .A.)
(ii) Similarly,

ey o vy = idyy, 62‘4®M od+uvyoey = idIhom(A,M) .

Definition 5.4.9

(i) One defines the bifunctor

c®y - ¢ I(A%P) x I(A) — I(kx)
M ®4 N := coker(M @ A® N - MQ®N)
where d = upy @ N — M Q .
(ii) One defines the bifunctor
Thom 4(-, ) : I(A)P xI(A) — I(kx)
Thom 4(M,N) := ker(Zhom (M, N) y Thom (A® M, N))
where d = Zhom (upr, N) — Zhom (M, vy).

Remark 5.4.10. — One shall not confuse the functor Zhom 4 : I(A)°P x I(A) — I(kx)

and the functor Homy 4y : I(A)°P x I(A) — Mod(kx). Recall that when A = kx we
simply write Zhom and Hom instead of Zhom and Hom .

Note that the functor ® , is right exact, the functor Zhom 4 is left exact, and by
Lemma 5.4.8, one has the isomorphisms

ARy M ~ M,
Thom 4(A,M) ~ M.
Proposition 5.4.11. — One has the isomorphism
axThom 4(M,N) ~Homy 4 (M, N).
Proof. — The left hand side is isomorphic to ker(Hom (M, N) - Hom (A® M, N))
where d = Hom (puar, N) —Hom (M, vy). Let A: Hom 4(M,N) — Hom (M, N). It is

enough to check that A induces an isomorphism I'(U; Hom 4, (M, N))) — ker(d|v) on
each open U C X. We may assume U = X. In this case, one checks the isomorphism

HomI(A)(M, N) ~ ker(HomI(kx)(M, N) - Homl(kx)(A@)M, N)).
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Indeed, d is the morphism u +— (up o u — uo vy), and u is A-linear if and only if
uovy = un oid 4 ®u. This is better visualized by the diagram

Hom, ,(A®M,N)
HomI(A)(M,N)—)Homl(kx)(M,N) N

Homy, (M, Zhom (A, N)).
q.e.d.
Sometimes, one has to consider various rings in I(kx).

Proposition 5.4.12. — Let A1, Az, A3 be three rings in I(kx).

(i) The functor ®,, induces a functor
I[(A; @ AP) x I(A2 ® ASP) — I(A; @ A3P).
(ii) The functor Thom 4 induces a functor
I(A; ® A2)°P x I(A; ® A3) — I(AP ® A3).
The proof is straightforward.

Proposition 5.4.13. — Let A be a ring in I(kx), let M € I(A) and let N € Mod(a.A).
There are natural isomorphisms in I(kx):

Hom , s(aM, N) = Homy 4(M,tN) = ZThom 4(M,N).
The proof is straightforward.

Proposition 5.4.14. — Let Ay, A2, As, Ay be four rings in I(kx). There is a natural
isomorphism in I(A; ® AZ"):

(1M2 ®4, 2M3) ® 4, 3Ms ~ 1Mz ® 4, (2M3 ® 4, 3My).
where ;M; means that M is an A; ®A‘;p-module.

The proof is straightforward.

Proposition 5.4.15. — Let Ay, Az, A3, Ay be four rings in I(kx). There is a natural
isomorphism in I(As ® AJY):

IhomAz(gMg,IhomAl (1 M2, 1My)) ~ IhomA1(1M2 D4, aMs, 1 My).
Here, ;M; € I(A; ® AP).

The proof is straightforward.

We shall now construct the derived functors of ® , and Thom 4.
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Definition 5.4.16
(i) Fr(A) is the full subcategory of I(A4) consisting of the objects isomorphic to
AQ F for some F € I(kx).

(ii) For a small subset S of I(kx), let Z,(A,S) be the full subcategory of I(.A)
consisting of the objects isomorphic to Zhom (A, I) for some I € J(S).

Recall that J(S) is given in Definition 5.1.7. We saw in Corollary 5.1.8 that J(S)
is cogenerating in I(kx).

Lemma 5.4.17
(i) The category Fr(A) is generating in I{A).
(i) For a small subset S of I(kx), the category I,(A,S) is cogenerating in I(A).

Proof
(i) Let M €I(A). Then AQ M — M is an A-linear epimorphism.
Y

(i) Let M € I(A). Since J(S) is cogenerating, there exists a monomorphism M—T
in I(kx) with I € J(S). Then the composition M — Zhom (A, M) — Thom (A, ) is
an A-linear monomorphism. q.e.d.

Lemma 5.4.18. — For an A-linear epimorphism M—A ® F" with M € I(A) and
F" € 1(kx), there exists an exact sequence 0 — F' — F — F" — 0 in I(kx) such
that the morphism AQ FF — A® F" factors through M in I(A).

Proof. — The morphism ¢4 defines the morphism F” — A ® F”. Let F be the
fiber product of M and F" over A® F”. Then F—F" is an epimorphism in I(kx)
and the composition FF — F" — A ® F" factors through M in I(kx). Setting
F’ =ker(F — F"), we get the result. q.e.d.
Theorem 5.4.19

(a) For any M € 1(A; ® AP), the family Fr(Az ® A3P) is projective with respect
to the functor M ® 4, - : (A2 ® A3F) — I(A1 ® AS").
(b) The functor below is well-defined:

§> . D (I(AL ® AP)) x D~ (I(As ® AP)) — D~ (I(A; @ AP)).

(¢) For four ind-rings A, (v = 1,...,4), we have a canonical isomorphism in
D™ (I(A; ® AP)):

L L L L
(1Me ® oM3) Q@ 3 My ~ 1My ® (2M3 ® 3My).
.Az .A3 A2 -AB

Here ;M; € D™ (I(A; ® AT?)).
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Proof
(a) Let N = A; ® A® @ F with F € I(kx). Then M ®, N ~ A; ® A” ® F is exact
in F € I(kx). Hence the assertion follows from the preceding lemma and Theorem
1.4.3.

(b) follows from (a).

To prove (c) we may assume M3 € Fr(A2 ® A3”). Then the assertion follows from
Proposition 5.4.14. q.ed.

Lemma 5.4.20. — Let S be a small subset in I(kx). For any A-linear monomorphism
Zhom (A, I')—M with M € I(A) and I' € J(S), there exists an exact sequence 0 —
I' I —1"—>01mI(kx) with I, I" € J(S) such that Thom (A,I') — Thom (A, I)
factors through M in I(A).

Proof. — The proof is dual to that of Lemma 5.4.18. The morphism ¢4 defines
the morphism Zhom (A,I') — I'. Let N be the fiber coproduct of I’ and M over
Zhom (A,I'). Then I’ — N is a monomorphism in I(kx). Since J(S) is cogen-
erating, there is a monomorphism N — I with I € J(S). The cokernel I” of
the monomorphism I’ — I belongs to J(S). On the other hand, the composition
AQRQM o M — N — I gives a morphism M — Zhom (A, I) in I(A). We can easily

see that the morphism Zhom (A, I') — Thom (A, I) coincides with the composition
of Thom (A, I') = M and M — Thom (A,I) in I(A). q.e.d.
Theorem 5.4.21. — Let A;, Az, A3 be three rings in I(kx).

(a) For any small subset T of K~ (A1 ® A3F), there exists a small subset S of I(kx)
such that, for any 1My € T, the category T,(A; ®A3", S) is injective with respect
to the functors:

Thom 4 (1M3, -) : I(A; ® ASP) — I(Az ® ASP),
Homy 4, (1Ma, -) + I(A1 ® A3%) — Mod(ax (A2 ® A3)),
Homy 4,)(1Ma, -) : I(A:1 ® A3%) — Mod(k).
(b) The functors below are well-defined:

RThom , : D~ (I(A; ® AP))%P x D*(I(A; ® A%)) — D* (I(As ® A)),
RHomy, y: D™ (I(A1 @ A3))P x DF(I(A; ® A3P)) — D* (Mod(ax (A2 ® A3)))
RHom,,,,: D™ (I(4; 8 AP))™ x D*(I(A; ® AP)) — D+ (Mod(k)).

(¢) For M € K~ (I(A; ® AP)), we have
RThom 4 (M,N) =~ “lim”Zhom 4 (M, N'),
RHomy4\(M, N) ~ “lim”Hom 4, (M, N'),
RHomy 4 (M, N) ~ “lim”Homy 4 (M, N").
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Here the inductive limits are taken in the category of ind-objects in the derived
categories, and N — N’ ranges over the family of qis in K*(I(4; ® A3")).

Proof. — We shall only treat the functor Zhom , , the other cases being similar.
(a) We shall take S such that

- A ®A(3)p €S,

— AP ® 1M € S for any 1My €T.

By Theorem 1.4.3 and the preceding lemma, it is enough to show that for an exact
sequence 0 —» I' - I — I — 0 in J(9),

0— IhomAl(lMg,Ihom (Al ®.Agp, I’)) — IhomAl(le,Ihom (.Al ®A§p, I))
— Thom 4 (1Ma,Thom (A, @ A3”, 1")) — 0

is exact for any 1My € T. This follows from Zhom 4, (1Ma,Zhom (A1 ® AP, I)) ~
Thom (A3P ® 1Mz, I) and HY(RThom (A3F ® 1My, I')) = 0.

(b) It remains to show that for any 1Mz € K~ (A; ® AP) quasi-isomorphic to 0,
Thom 4, (1M2,N) is also quasi-isomorphic to 0 for any N € K+(Z,(A; ® A", S))
if we take S big enough. By standard arguments, it is enough to show that for any
exact sequence 0 — 1 M} — 1My — 1 MY — 0, the sequence 0 — IhomAl(lMé’,N) —
Thom 4 (1Ma2,N) — Thom 4 (1M3,N) — 0 is exact for any N € Z,(A; ® AP, S).
Writing N =~ Thom (A1®A3", I) with I € J(S), this follows from Zhom 4 (1M, N) ~
Thom (A3? ® 1Mo, I) and H*(RZhom (A3Y @ 1 MY, I)) = 0. q.e.d.

In order to show the relations between ® and Zhom, let us prove the following
lemma.

Lemma 5.4.22. — Let Ay, Az, A3 be three rings in I(kx), and let S12 and Spz be
small subsets of 1(kx). Then there exists a small subset Si3 of I(kx) such that
Thom 4 (M, N) belongs to T,(Az ® A3”, Sa3) for any M € 1(A; ® A5P) of the form
A1 @ AY ® K with K € S12 and any N € Z,(A; ® AP, S13).

Proof. — Take S13 such that A; ® As € S13, S12 C S13, and F ® K € Si3 for any
F € So3 and K € Si5. Write N = Thom (A; ® AP, I) with I € J(S13). Then we
have

Thom 4 (M, N) ~ Thom (Az ® A3® ® K, I) ~ Thom (A ® A3", Thom (K, I)).

Hence it is enough to show that ZThom (K, I) belongs to J(S23). Since K € S12 C Sis,
we have RZhom (K, I) ~ Thom (K, I), and we conclude, for any F' € Sa3

RZhom (F,Thom (K,I)) ~ RThom (F ® K,I) ~ ZThom (F ® K,I).

q.e.d.
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Theorem 5.4.23. — Let Ay, Az, As, Ay be four rings inI(kx). Then there is a natural
isomorphism in Dt (I(As ® AJ))

L
fZIhOT)’LA2 (2M3,RIh0mAl(1M2, 1N4)) ~ RIhomAl(lMg ? o Ms, 1N4).
2
Here, ;M; € D~ (I(A; ® AJ")) and 1Ny € DF(I(A ® AP)).

Proof. — We may assume that ;M is a complex in Fr(A; ® A3°). Then, tak-
ing So4 big enough, we have RIhomAz(gMg,I) ~ IhOmA2(2M3,I) for any I €
Z,(As ® AP, So4). Taking Si4 big enough and assuming 1Ny € Z,(A1 ® A, S1a),
RThom 4, (1M2,1Ny) is represented by Zhom 4, (1M2,1N4). Furthermore, by the last
lemma, we may assume that the last term belongs to Z (A2 ® A", S24). Hence we
have

RIhomA2(2M3,RIhomA1(1M2,1N4)) '_\_'IhomAz(gMg,IhomAl(lMg, 1NV4)).
On the other hand,

- RIhomAl(lMg ® 4, 2Ms, 1N4) is represented by IhomAl(le ® 4, 2Ms, 1N4),

— 1M, ;% o M3 is represented by ; My @y, o Ms.

Then it is enough to apply Proposition 5.4.15. q.e.d.

5.5. Ring action II

In this section we shall extend some results of section 5.2, replacing the base ring
k by ind-rings.

Since the formalism is similar to that developed previously, we shall not give any
proof.

We consider the following situation: f: X — Y is a continuous map and B is an
ind-ring on Y. We shall assume for simplicity:

(5.5.1) the cohomological dimension of Mod(kx) is finite.

Theorem 5.5.1. — In (i)-(iii) below, D' is D, D*, Dt or D~.

(i) The functor f~': I(ky) — I(kx) induces a functor f~' : DY(I(B)) — D(I(f~'B)),
(ii) The functor f.: I(kx) — I(ky) induces a functor Rf,: DY(I(f~'B)) — D'(1(B)),
(iii) The functor fu: I(kx) — I(ky) induces a functor Rfy: DY (I(f~1B)) — D(I(B)).

Theorem 5.5.2. — For G € D~(I(B)) and F € D*(I(f~!B)), one has the isomor-
phisms
RHom (G, Rf ,F) =~ RHom ;1 (f"'G, F),
RHomy (G, Rf ,F) =~ Rf*RHomI(f_IB)(f‘lG, F),
RThom g(G,Rf,F) ~ Rf*RIhomf_lB(f—lG, F).
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Theorem 5.5.3. — The functors f~1 and Rf, are adjoint. More precisely, for F €
D*(I(f~'B)) and G € D*(I(B)), one has the isomorphism

Hom py4 (1 -1y, (f 7' G, F) = Hom ., () (G, Rf . F).

Theorem 5.5.4. — For F € D= (I(f'B)) and G € D~(I(B°?)), one has the isomor-
phism

G%Rf”F ~ Rfo(f7G & F).
-1

f

Theorem 5.5.5. — Consider the Cartesian square (5.8.2). There is a natural isomor-
phism of functors from DY (1(f~1B)) to D*(I(g~'B)):

Rf'wg'™! ~ g7 Rfy.

Theorem 5.5.6. — The functor Rfy: DY (1(f~'B)) — D*(I(B)) admits a right ad-
joint, denoted by f'. More precisely, for F € DT (I1(f'B)) and G € D*(1(B)) one
has:

5.6. Action of S A

In this section we give some formulas in the particular case where the ind-ring is of
the type 8.A with A a sheaf of k-algebras as in Example 5.4.7 (ii). We shall assume

the cohomological dimension of Mod(kx) is finite,

the flat dimension of A is finite.

In the sequel we shall write 8 instead of Sx: Mod(kx) — I(kx), for short. Note
that I(8.A) ~ Mod(A,I(kx)) and 8 induces an exact functor (still denoted by £)

B: Mod(A) — I(BA).

Theorem 5.6.1. — Let A be a sheaf of kx-algebras, let F € Db(kx), let K € D*(A),
let M € Db(I(B.AP)) and let N € D*(I(8.A)). Then one has the isomorphisms:

L L
i) o(M & N)~a(M N),
(i) o & ) =~ o )§a( )
L ~ L
(ii) RThom (F,M) ) BK = RThom (F,M ) BK),

(iii) RHom (F, M) §K — RHom (F,M é BK).
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Proof
(i) For M € I(8A°) and N € I(BA), one checks easily the formula a(M ®;4 N) ~
aM ® 4, aN. Hence

L
oM ®N)~  “lm” oM &, N)
pA M’ —, M,N'—N

L
~  “lim” (aM'®AaN’)2aM§>aN.
M'—M,N'—N
Here the projective limits range over the family of quasi-isomorphisms M’ — M and
N’ — N. L
L

(ii) There is a canonical morphism RZhom (F,M)’%ﬁK — RIhom(F,Mﬂ%BK).
In order to prove that it is an isomorphism, it is enough to check that it induces an
isomorphism on the cohomology objects. Since cohomology commutes with inductive
limits, we may reduce to the case where K = Ay for an open subset U of X. We
then have the chain of isomorphisms

L
RZhom (F,M)ﬁ(EiﬂAU ~ RThom (F, M) ®,, vk
~ RThom (F, M ®,, vk)
L
~ RThom (F,M ® BAy).
BA
(iii) The third isomorphism follows by applying ox. q.ed.

Theorem 5.6.2. — Let A be a sheaf of kx-algebras, let N € D*(A°P), let M € D®(A)
and let K € D*(I(BA)). There are natural isomorphisms
(i) RHom 4(aK, M) ~ RThom z,(K, M) =~ RHom 4 (K, M),
(i) RHomyg 4 (BM, K) ~ RHom 4(M, aK),
L L
N®M) ~ BN M.
(i) SN &) = oN & 5

Proof
(i) Let us denote by Inj(A) the category of injective A-modules. Then tx sends
Inj(A) to the set of injective objects in I(8.4), and the result follows from Proposition
5.4.13.
(i) The isomorphism
(5.6.1) Homy s 4)(BM, K) = Hom 4(M, aK)
follows immediately from Hom (BM, K) ~ Hom (M,aK). Taking S C I(kx) big
enough and assuming that the components of K belong to Z,(8.4, S), we have
RHom g4 (BM, K) = Homy 5 4 (BM, K)
~ Hom 4(M, aK).
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Then the results follows since aK is a complex of injective A-modules.
(iii) Let K € D*(I(kx)). Using the result of (i), we get the chain of isomorphisms

L L
Home(I(kx))(ﬁ(NgM),K) ~ Home(kX)(NQEM, aK)
~ Hom p,( 4) (M, RHom (N, aK)) ~ Hom p, 4 (M, a(RZhom (BN, K)))
L
~ Home(I(ﬁA))(ﬁM, RThom (BN, K)) ~ Home(I(kx))(ﬂM[%,@N, K).
q.e.d.

Theorem 5.6.3. — Let B be a sheaf of ky-algebras, let L € D*(I(BB°P)) and N €
D*(B). Then we have the isomorphism

L L
fL@BN)~fL ® Bf'N.
BB Bf~1B
Proof. — We have the morphisms

\ L 1 v, L L
nlJ’ ~ nJj — L N.
RI('L @ BI'N)=Rff'L BN =L &P

L L
By adjunction, we get the morphism f'L ® BfIN — f!(L[%ﬂN)' Let K €
Bf~B
Mod®(kx ). We have the chain of isomorphisms

Rf.RHom (K, f'L ® Bf~'N) ~ Rf(RHom (K, f'L) & f7IN)
pf-18 F18

~ Rf,RHom (K, f’L)(%N ~ RHom (RfuK, L)%N

~ RHom (Rf!,K,LéﬁN) ~ Rf,RHom (K, f’(LgL%ﬂN)).

This implies the isomorphism
L L _
Hom py (14 (K, f!(L%ﬂN)) =~ Hom pyy (13 ) (K, f!LﬁfQ_@lBﬁf 'N),

whence the result. q.e.d.

Exercises to Chapter 5

Exercise 5.1. — Let Y =R, X = {0} and denote by f: X — Y the embedding. Let
G = (0y(ky) € I(ky). Prove that f'G ~ kx[—1] and f'ayG ~ kx. Hence, f' does
not commute with a.

Exercise 5.2. — Let f: X — Y be as in Exercise 5.1 and let G = kgoy € Mod(ky).
Prove that f'8yG ~ kx[—1] and Bx f'G ~ kx. Hence, f' does not commute with (3.
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Exercise 5.3. — Let A denote a sheaf of kx-algebras. We also regard A as a ring in
I(kx), and we denote by ¢: Ind(Mod®(A)) — I(A) the canonical functor. Prove that
 is an equivalence of categories as follows.

(i) Construct the functor 7: I(kx) — Ind(Mod“(.A)) such that ¢ o 7(F) ~ A® F for
F e I(kx).

(ii) For M € I(A), construct a morphism d(M): 7(A® M) — 7(M) in Ind(Mod®(A))
such that o(d(M)) coincides with d in (5.4.2).

(iii) Define : I(A) — Ind(Mod®(A)) as ¢ = cokerd. Prove that the two functors ¢
and 1) are a quasi-inverse to each other.
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CHAPTER 6

CONSTRUCTION OF IND-SHEAVES

In this chapter we use Grothendieck topologies in order to construct ind-sheaves.
We shall assume that k is a field and that X is a Hausdorff locally compact space
with a countable base of open subsets.

6.1. 7T-topology
We consider a family 7 of open subsets of X. We set
7. = {U € T; U is relatively compact},
To = {U € T;; U is connected}.
We shall consider some of the hypotheses (6.1.1) and (6.1.2) below.

) U,VeTimpliesUNV €T,
(ii) U and V belong to T if and only if U NV and U UV belong to 7,
i

)

(6.1.1) )
(iii) U \ V has finitely many connected components for every U,V € T,

iv)

(iv) 7. is a covering of X, and @, X € 7.

for any z € X, {U € T;z € U} is a neighborhood system of z,

(6.1.2) (ie. 7 is a basis of the topology).

Note that assuming (6.1.1), every U € 7 has finitely many connected components,
each of which belongs to 7.

We regard 7 as a subcategory of Op(X). Assuming (6.1.1) (i), 7 admits products
and fiber products. Moreover hypothesis (2.3.2) of Chapter 2 is clearly satisfied.
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Definition 6.1.1. — Assume (6.1.1) (i).

(i) We denote by X7 the category T endowed with the topology induced by X, (see
Example 2.1.4). Hence S C TNOp(U) is a covering of U € 7 if for any compact
K of X, there exists a finite subset Sy C S such that K N (Uyegs,V)=KnNU.

(if) For U € Op(X), weset TNU :={VNU;V €T}

(iii) For U € Op(X), we denote by Uz the category 7NU endowed with the topology
induced by U;y. We denote by iy, : Ur — X7 the natural functor of sites
associated with 7 sV —VNUeTNU.

(iv) For U € T, we denote by Uxr the category 7 N U endowed with the topology
induced by X7. A covering of V in Ux7 is a covering in X7. We denote by
tuxs: UxT — X7 the natural morphism of sites 7 > V — V NU and by
Juxs: X7 — Ux7t the morphism of sites 7 NU SV —»V € T.

Notation 6.1.2
(i) We shall often write k7 instead of kx, and hence Mod(k7) instead of Mod(kx, ).
(ii) We denote by p: X — X7 the natural morphism of sites.

1
xT"

As already mentioned in Chapter 2, if U € 7, then jy,,, ~ i
forUeT:

Hence, we set

iUXT! = jqu'_l : MOd(kUXT) - MOd(kXT)'
If F € Mod(kx, ), we also write for short
FIUXT = Z‘UxT_lF € MOd(kUXT)7
FUXT = iUXT!iUXT_lF?
Flu, =iy, 'F € Mod(ky, ),

and we keep the same notation F|y,, or F|y, if F € Mod(kv,,) with U C V.
IfU, X € T, we have

kr i=kx, = a}lkpt where ar: X7 — {pt},
kty = iUXT!kUXT ~ (kT)UXT € MOd(kT).

Note that the natural morphism k7y — k7 is a monomorphism.

6.2. T-coherent sheaves
In this section, we assume that 7 satisfies (6.1.1).

Notation 6.2.1. — If Z is a locally closed subset of X, we shall often write kz instead
of k XZ-

We introduce the category K(7) by setting
Ob(’C(T)) = {(I, {Ui}iel); I ﬁnite, U, eT \ {@}}
Hom (1 (1, {Ui}i), (J,{V;};)) = {(aji)jesiers aji € k, a5 #0=U; C V;}.

ASTERISQUE 271



6.2. T-COHERENT SHEAVES 105

The composition is defined as follows. Let ¢ = (aji)jesicr: (I, {Ui}s) — (J,{V;};)
and ¥ = (bkj)rek jes : (J,{Vj};) = (K, {Wi}r). Then ¢ oo = (cki)rek ic1, With

Cki = E bkjaji.
J

We define naturally the full subcategories K(7;) and K(7p) of K(7).

The functor X(7) — Mod(kx) which associates the sheaf @, ku, to (I,{U;};) is
faithful and we shall identify X'(7") with a subcategory of Mod(kx). Note that this
functor is not fully faithful in general since the open sets which belong to 7 are not
necessarily connected. This functor is fully faithful when restricted to K(7p).

Now recall that if C is an abelian category, J an additive subcategory, and F' € C,
one says that:

(i) F is J-finite if there exists an epimorphism G—+F with G € J,

(ii) F is J-pseudo-coherent if if for any morphism G — F with G € J, keryp is
J-finite, ’
(i) F is J-coherent if F' is both J-finite and J-pseudo-coherent.
Note that (ii) is equivalent to the same condition with “G € J” replaced by “G is
J-finite”.

One denotes by Coh(.J) the full subcategory of C consisting of J-coherent objects.

Then one easily proves that the category Coh(7) is additive and stable by kernels
(see [13]).

We apply these constructions with ¢ = Mod(kx) and J = K(7.). We shall say that
a sheaf F is 7 -finite (resp. pseudo-coherent, resp. coherent) instead of K(7;)-finite
(resp. pseudo-coherent, resp. coherent).

One denotes by Coh(7;) the full subcategory of Mod(kx) consisting of 7;-coherent
objects. Note that Coh(7;) = Coh(Tp).

Theorem 6.2.2. — The subcategory Coh(7.) is stable by kernels, cokernels and finite
direct sums. In other words, it is abelian and the natural functor Coh(7;.) — Mod(kx)
is exact. Moreover Coh(7;) contains K(7.).

We know that Coh(7.) is stable by kernels and finite direct sums. The proof that
it is stable by cokernels is given in Lemmas 6.2.3-6.2.8 below.

Lemma 6.2.3. — Let 0 - F' — F — F" be an exact sequence and assume that F’
and F" are T -pseudo-coherent. Then F is T.-pseudo-coherent.

Proof. — We shall show that for any morphism ¢: G — F with a T -finite G, ker(p)
is 7T -finite. It follows easily from ker(¢) = ker(ker(G — F") — F'). q.ed.

Notation 6.2.4. — Let Z and Z' be a pair of locally closed subsets such that Z N Z’
is closed in Z and open in Z’. The morphism kz — kz/ defined as the composition
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kz — kznz — kz will be denoted by 1z_,z:. Note that 17/ _,zno0lz_z =1z7_7n
does not hold in general.

Lemma 6.2.5. — Consider a morphism ¢: ky — kx\v with U,V € T.. Then there
exists a finite open covering U = | J, U; with U; € T, and a commutative diagram

@i kUi

N
ky S N kx\v

where the vertical arrow is given by ly,—u and v is given by a;1y,_,x\v for some
a; € k.

Proof. — Let U\ V = | J;c; Z; be the decomposition into connected components.
Then [ is finite by (6.1.1) (iii), and the Z;’s are connected and closed in U. Set
Ui=UnV)UZ = U\ (Nj%Z;). Hence U; is open, U; UJ,,,U; = U and
UiN(U;2Uj) = UNV. Therefore U; € 7 for all i by (6.1.1) (ii). Consider the
composition ky, — ky — kx\v. Since U; \ V = Z;, it factors through kz,. Since Z;
is connected, it is given by a;1y,  x\v for some a; € k. q.e.d.

Lemma 6.2.6. — Let F be a subsheaf of ky with U € 1., and assume that F is T.-
finite. Then there exists V € 1., V C U such that F' ~ ky .

Proof. — By the hypothesis, there exists an epimorphism @, ky,—F with U; € T,
and we may assume each U; connected. The composition ky, — F' — ky is given by
a;ily,—u with a; € k. Let V = Ui’aﬁéo U;. Then V belongs to 7. and F ~ ky. q.e.d.

Lemma 6.2.7. — Let V and W belong to T.. Then ky\w is Tc-coherent.

Proof. — Clearly ky\w is T.-finite. Let S € K(7:) and ¢: S — ky\w. Let us show
that ker ¢ is Zc-finite. By Lemma 6.2.5, there exist S’ = @, ku, with a finite index
set I and U; € 7, and an epimorphism f: S’—S such that ) = po f: §" — ky\w
is given by a;1y,,v\w for a; € k. As kert — ker ¢ is an epimorphism, in order to
see that ker ¢ is 7 -finite, it is enough to show that ker is 7 -finite. Set Jy = {i €
I; a; =0}. We define the morphism
g: @ kUi 5% @kU,'nW @ @ kUiﬂUj h— Sl
i€Jo icl i#jel
as follows: gk,, is the natural morphism ky, — S’ for i € Jo, glky,w is given by
ly,nw—u, for i € I, and g|kuimuj is the composition of ky,nu, — ku, ® ku, given by
(ajly,nv;—vi, —@ilu,nu,—u;) and ky, @ ky; — S
Clearly the image of g coincides with ker . Therefore, ker 1) is 7 -finite. q.e.d.

Lemma 6.2.8. — Let F be the quotient of a T.-coherent sheaf by a T.-coherent sub-
sheaf. Then F is 1.-coherent.
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Proof. — It is enough to show that F' is 7.-pseudo-coherent. Let us consider an
exact sequence 0 - N — L — F — 0 with Tc-coherent N and L. There exists an
epimorphism Lo = ®F ;ky, — L with U; € 7. Since the kernel Ny of Lo — F is
the image of ker(N @ Lo — L), Ny is Zc-finite and hence 7c-coherent. Hence we may
assume L = @7, ky, with U; € 7; from the beginning. We shall argue by induction
on n.

Case n = 1. N is of the form ky for some V € 7. by Lemma 6.2.6 and hence
F ~ ky,\v is T.-coherent by Lemma 6.2.7.

Casen >1. Set Ly = ky, C L and Ly = L/L; ~ ®}_,ky,. Let F1 be the image of
L, — F. Then we have a commutative diagram with exact rows and columns:

0 0 0

¢
<

pl
e

<

O 4 1 )F /F2 )O

~ ~N ~

0 0 0

Since N; is the kernel of L; @ N — L, Ny is T.-coherent. The sheaf N, is 7 -finite
because it is a quotient of N, and it is 7¢-pseudo-coherent because it is a submodule
of L,. Hence N is also 7.-coherent. Therefore F; and F; are 7.-pseudo-coherent
by the induction hypothesis, and Lemma 6.2.3 implies that F' is 7.-pseudo-coherent.

q.e.d.

This completes the proof of Theorem 6.2.2.

6.3. 7-sheaves I
In this section, we assume that 7 satisfies (6.1.1).
Proposition 6.3.1. — Let U € T. Then kry — p.kxu and p~tkry = kxu.

Proof
(i) The isomorphism p~kry — kxy follows from (2.3.5).

(ii) Let us first prove the isomorphism k7 =~ p.kx. Denote by F' the presheaf on T
defined by F(@) = 0 and F(U) = k for U # @, U € 7. One has a monomorphism
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of presheaves F' — p,kx. Hence F is separated, k7 ~ F* and Ft — p,kx. Let
U # @,U € T with U connected. We have the sequence of arrows

k=FU) > FtU) < p.kx(U) ~ kx(U) = k.

Therefore k7 (U) ~ p.kx (U) for any connected U, and the result follows since 7Ty is a
covering of X.

(iii) We can now prove that the natural morphism kry — p.kxy is an isomorphism.
Consider the diagram

kruv —— pukxu

L

kr ——— kx.
Since both vertical arrows are monomorphisms, kry is a subsheaf of p,kxy. Let
VeT. fV cCU,then kry(V) =~ kr (V) ~ pkx(V) ~ pikxu(V). If V is not
contained in U, p.kxy (V) = 0, which implies k7¢y (V) = 0. q.e.d.

Proposition 6.3.2. — Denote by p., : Coh(7.) — Mod(kz) the restriction of the func-
tor px to Coh(T.). Then p., is exact and fully faithful, and p~1p,, is isomorphic to
the canonical functor Coh(7;) — Mod(kx).

Proof
(i) Let us prove that p., is exact. Consider an exact sequence 0 — G — S ? F—-0

in Coh(7;) and let us apply the functor p.. We already know that this functor is left
exact. Hence it remains to show that p.(S) — p.(F') is an epimorphism.

Let U € 7. and let s € T'(U; p.F) ~ Hom, (kxu,F). Set §' = S xp kxu.
Then S’ € Coh(7;) and moreover, S’ — kxy is an epimorphism. Since S’ is K(7.)-
finite, there exists an epimorphism ¢ : ®;crkxy,—S’ with I finite. We may assume
further that U; € Ty. The composition kxy, — S’ — kxy is given by a;1y, v, with
a; € k. Let Iy = {i € I;a; # 0}. Then we may assume that a; = 1 for ¢ € Iy, and
U = U;er,U;. We get the commutative diagram

Dicrkxu,

| >,

S' =8 xpkxy —» kxu

| k

S§——F

Y

The composition kxy, — S’ — S defines ¢; € Hom, (kxuv,,S) = I'(U;;S). Since
the diagram above commutes, we have ¢(t;) = s|y,. It remains to apply Proposition
2.1.12.
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(ii) it is enough to prove the isomorphism p~!p,F = F for any F € Coh(7). Since

p 1pe, is exact, we may reduce to the case where F' = kxy. Then apply Proposition
6.3.1. q.e.d.

Proposition 6.3.3. — Let G € Coh(7.) and let { F;} be an inductive system in Mod (k1)
indezed by a small filtrant category I. Then the natural morphism

HJ_)nHoka(p*G, F) — Hoka(p*G,mE)
1 1

s an isomorphism.

Proof
(i) First we assume that G = kxy with U € 7.. By Proposition 6.3.1, we are reduced
to prove the isomorphism lim(£#;(U)) = (lim F3)(U).

7 7
Denote by F the inductive limit in Psh(k7). Then F' is a separated presheaf on
X7. Hence it is enough to prove that F(U) — F*(U) is an isomorphism. Let
S € Cov(U). For each i € I we have isomorphisms F;(U) — F;(S). If S is finite, we

deduce the isomorphism F(U) — F(S). Since the family of finite covering is cofinal
in Cov(U)°P, we obtain F(U) — F*(U).
(ii) There exists an exact sequence G; — Gy — G — 0, with each G; (1 = 0,1) a

finite direct sum of sheaves of the type kxy. Since p, is exact on Coh(7;) and Hom
is left exact, the result follows. q.e.d.

Proposition 6.3.4. — Let F € Mod(kr). There exist a small and filtrant category I
and a functor I — Coh(T;),i+— F; such that F' > lim p, F;;.

1

Proof. — Let F € Mod(k7). Define

In={(U,s);U eT,se FU)}

Go = ®w,s)er kv
Since F(U) ~ Hom, (kru, F), s € F(U) defines a morphism ¢y s : kry — F. Let
P = DW,s)eloPU,s- Since 7. is a covering of X, we find that ¢ : Gy — F' is an
epimorphism. Replacing F' by ker ¢, we find an object G1 = @ v er, k7v and an
exact sequence G; — Go — F — 0. For Jy C Iy, set for short G, = w s)eskTU
and define similarly G;,. Define
J = {(Jl,.]o); Ji C Iy, Jy is finite, iIn(,0|GJ1 C GJO}.

Then J is filtrant and

F~ lim coker(Gy, — Gy,).

(Jl,Jo)EJ

q.e.d.
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Let us write I(Coh(7;)) instead of Ind(Coh(7;)) for short.
We shall extend the functor p.,: Coh(7.) — Mod(kr) by setting:

(6.3.1) A: I(Coh(7,)) — Mod(kz)
A(“lim” Fy) = lim pe, (F3).

%

By Proposition 6.3.3 it is equivalent to define A(F) (with F € I(Coh(7;))) by the
formula

(6.3.2) F(U,/\(F)) = HomI(Coh(Tc))(kXU,F).
Theorem 6.3.5. — The functor A in (6.3.1) is an equivalence of abelian categories.

Proof. — The functor A is essentially surjective by Proposition 6.3.4. Let us prove
that it is fully faithful. Let F,G € I(Coh(7:)). We may assume F = “ lim " F;,
G=¢« hm " Gj, with F;, G; € Coh(7;). Applying Proposition 6.3.3 and the fact that

Pex 18 fully faithful, we get the chain of isomorphisms

lim Hom ¢, 7.1 (G, F3)

—
1

Homygop (7. (F G) ~ 1

12

“ Té “Ta

1 lim Hom,  (0c.Gj, peiFi)

i

Hom,_(pc.Gj,lim pc, F;)
[

14

=]

11

-8

my,, (lin pe, Gy, lim pe, F5).
J 1

q.e.d.

Remark 6.3.6. — Note that the natural functor for : Mod(kr) — Mod(kz,) is an
equivalence of categories. Indeed, for F € Mod(kz,) and V € T set

F(V)= lim F(UNV).
UeT.

Then F € Mod(kr) and the functor F — F is quasi-inverse to the functor for.
Moreover, since Coh(7;) is small, there is an equivalence of categories I(Coh(7;)) ~
(Coh(T,))\k~addl  where the term on the right hand side stands for the category
of k-additive left exact contravariant functors on Coh(7;) with values in Mod(k).
Therefore we get the equivalences

(633)  Mod(kr) = Mod(kr,) = I(Coh(,)) = (Coh(Z;))"*~**".
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6.4. Construction of ind-sheaves

In this section, we assume that 7 satisfies (6.1.1).

Proposition 6.4.1. — Let F € Psh(kr,). Assume:
(i) F(2)=0,
(ii) for anyU andV in T., the sequence 0 —» F(UUV) — F(U)eF(V) —» F(UNV)
18 exact.
Then F € Mod(kz.) and there is a unique F € Mod(k7) which satisfies F(U) ~ F(U)
for all U € T..

Proof. — By Remark 6.3.6, it is enough to prove the first assertion. Let {U;;1 < j < n}
be a finite family in 7.. We shall show that the sequence below is exact:
0—F( U U)— @ FU)— @ F(Uy).
1<k<n 1<k<n Y 1<i<j<n

Here, the morphism ¢ sends (Sk)lngn to (tij)1<i<j<n by ti; = SiIUij - SjIUij'

For n < 1 this is trivial, and for n = 2 this is the hypothesis. For n > 2 assume
the result is proved for j < n— 1. Setting U’ = Ui<x<nUk, the commutative diagram
below is exact by the induction hypothesis.

v

0 —— F(U' UUp) ——— F(U") & F(Uy) ———— F(U' N Uy)

—— 5o

{1
(®icn(F(U:)) ® F(Up) —— ®i<nF(Uin)

<+

@icjnF (Usj)
The assertion follows. q.e.d.

Proposition 6.4.2. — Let F € Mod(kr,) and assume that for any U, V in T, with
U C V, the sequence F(V) — F(U) — 0 is exact. Then F is quasi-injective in
I(Coh(7.)), i.e., the functor Hom, (-, F) is ezact on Coh(7).

Proof. — If G € Coh(7.), we shall write F/(G) instead of Hom,_(G, F) for short.
Let G'>—G be a monomorphism in Coh(7;) and let us prove that F(G) — F(G’)
is an epimorphism. There exists an epimorphism .., kv, ~»G, with U; € 7.. Define
G} :=im (G’ B( le ky,) — G). This is an increasing sequence of subobjects of G. Tt
is enough to prove that the monomorphisms G;—G?, ; give rise to the epimorphisms
F(Gj41) — F(G}). Hence, we may assume from the beginning that there exists

SOCIETE MATHEMATIQUE DE FRANCE 2001



112 CHAPTER 6. CONSTRUCTION OF IND-SHEAVES

U € 7. and a morphism ¢: ky — G such that G’ @ ky — G is an epimorphism.
Consider the commutative exact diagram

0 0

4 i

ed G’

J v
K—Goky — G——0
|l ]

0 »y K > ky > GV >0

0 0

Then G” is T .-coherent, as well as K. Since K is a sub-object of ky, it is isomorphic
to kv for some V' € 7.. Applying the left exact functor Hom, (-, F) to this diagram,
the middle column will remain split exact, and the rows will remain exact in view of
the hypothesis. Hence, the whole diagram will remain exact. q.e.d.

Let us denote by ¢7: Coh(7.) — Mod(kx) the natural functor. It gives rise to a
functor I(Coh(7;)) — I(kx) and hence a functor I7: Mod(kz) — I(kx). This functor
is exact and commutes with inductive limits.

Since I(Coh(7;)) is equivalent to the category of left exact functors from Coh(7;)°P
to Mod(k), we may also define a functor Jr: I(kx) — I(Coh(7.)) — Mod(kr) by

setting for F' € I(kx) and K € Coh(7.),
Hom oz, (K, JTF) = Homyy ) (exir K, F),

or equivalently, I'(U; J7(F)) = Homy ,(kxu, F) for U € T. The functor Jr com-
mutes with filtrant inductive limits.

Proposition 6.4.3. — The functor Jr is right adjoint to IT. In other words, for F' €
I(kx) and G € I(Coh(7.)) ~ Mod(kz) one has

Hom, (G, JrF)~Homy, (I7G,F).

Proof. — Let G ~ lii)npc*Ki with K; € Coh(7.). Using the isomorphism I7 o p., =~

K3
tx o t7 and the fact that I commutes with inductive limits, we get the chain of
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isomorphisms

Hoka(G’ JTF) = lgr_nHoka(pC*K’iv JTF)

~ }illHomI(kx)(LXLTKi,F)

~ Homl(kx)(“li_rg” Irp. K, F)

q.e.d.

We shall now compare those functors.
Note that the functors tx, pc,,tT,I7 are fully faithful and exact, the functors
p~ 1, ax are exact and commute with inductive limits, and p. is left exact. Moreover
v~ pt o pey,
Pex = Px O LT,
tx ovr =~ It o pe,,
p~! ~axolr,
J. TOLX = Pxy
JT o IT jad idMod(kq-) .
One shall be aware that the formula ¢x ~ I7 o p, is false in general.
We may represent these isomorphisms by the commutative diagrams below.

Coh(T2) — T Mod(kx) Coh(7.) —Z Mod(kx)
1

pC*J, lbx pC*‘[ /p */

Mod(k7) —T— (k) Mod(kf/
MOd(kx) MOd(kX)
% JLX p_l Tax
Mod(kr) ¢——I(kx) Mod(kz) —T— T(kx)
T

6.5. Construction II

In this section, we assume that 7 satisfies (6.1.1).
We shall need the following generalization of some of the preceding results.

Proposition 6.5.1. — Let C be a k-abelian category and let F : T.°° — C be a functor.
(a) Assume
(i) F(2)=0,
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(i) for any U and V in T., the sequence 0 - F(UUV) — F(U)® F(V) —
F{UNYV) is exact in C.
Then there is a unique (up to isomorphism) k-additive left exact functor F:
Coh(7;)°P — C which satisfies F(kxy) ~ F(U) for all U € T..
(b) Assume moreover that

forany U,V € T, withU C V, F(V) — F(U) is an epimorphism.
Then F is ezact.

Proof
(a) For S € C, define Fs € Psh(kr) by

Fs(U) = Hom (S, F(U)).

Applying Proposition 6.4.1 and Theorem 6.3.5, we get a unique Fg € Coh(7,)F—add.l
which extends Fg. Clearly, the correspondence S — P’:; is functorial, and thus defines
a left exact functor F : Coh(7,)°P — C".

It remains to show that F' takes its values in C. Let G € Coh(7;). There exists
an exact sequence G; — Gy — G — 0 with G; and G finite direct sums of sheaves
of the type kxy. Since the sequence 0 — F(G) — F(Go) — F(G1) is exact and
ﬁ(Gz) € C for : =0, 1, the result follows.

(b) The proof is similar to that of Proposition 6.4.2. q.e.d.

Corollary 6.5.2. — Let G : T, — Mod(k) be a functor.

(a) Assume
(i) G(2) =0,
(ii) for any U and V in T, the sequence GUNV) — GU) & G(V) —
GU UV) — 0 is exact.
Then there is a unique (up to isomorphism) k-additive right exact functor G :
Coh(T,) — Mod(k) which satisfies: G(kxu) ~ G(U) for all U € T..
(b) Assume moreover

forany U, V e T, withU C V, GU) — G(V) is a monomorphism.
Then G is ezact.

Proof. — Apply Proposition 6.5.1 with F' = G°P : Coh(7;)°? — Mod(k)°?.  q.e.d.

6.6. 7T-sheaves II

In this section, we assume (6.1.1) and (6.1.2).

Proposition 6.6.1. — One has p~' o p, = id and the functor p. is fully faithful.
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Proof. — Let z € X. We have the chain of isomorphisms
(7 'puF)z = lim p~ ' pu F(U) = lim pF(U) > lim F(U)~ Fy.
zeU zeUeT zeUeT
The second assertion follows. q.e.d.

Proposition 6.6.2. — Let F' € Mod(kz) and let U be an open subset of X. Then
[(U;p™'F) ~ lim I(V;F).
VCCUVeT

Proof. — We may assume F' = lim pc, F; with F; € Coh(7;). Then one has

7
p~'F ~limp~' p., F; =~ lim F;.
i i
Since V is compact, one has
D(V;p™'F) = imI(V; p™ ' Fy).

K2

Therefore,
MU;p~'F)~ lim T(V;p7'F)~ lm lm[(V;p7'F)
VCCUVET, VCCUVET, i
~ lim HWmD(V;p 'F)~ lim lmI[(V;F)
— — — —
VCCUVET, i VCCUVET. i
o~ lim T(V;F),
—
VccU,VeT.
where the last isomorphism follows from Proposition 6.3.3. q.e.d.
Proposition 6.6.3

(i) The functor p=' admits a left adjoint, which we denote by p :
Hom, (pF,G) ~Hom, (F,p~'G)

for F € Mod(kx) and G € Mod(kr).
(ii) For F € Mod(kx), pi(F) is the sheaf associated with the presheaf T > U —
F(U).
(iii) For U € Op(X) one has
plkxu) ~ lim  krv.
VccU,VeT
Proof

(i)-(ii) Denote by F € Psh(kz,) the presheaf U +— F(U). First, we construct
morphisms functorial with respect to G € Mod(kr):

Hom pyy, 1. ) (F,G) Hom, (F,p™'G).

—
n

SOCIETE MATHEMATIQUE DE FRANCE 2001



116 CHAPTER 6. CONSTRUCTION OF IND-SHEAVES

Define ¢ as follows. Let ¢ : F — G and U € Op(X). Then £(p)(U) : F(U) —
(p~1G)(U) is given by the sequence of morphisms

FU)~ lim FV)= lm FV)-% lm GV)=(p"'G)U).
vccuveT VCcCcUVEeT VccUVeT

(Here we have used Proposition 6.6.2.) Define 1 as follows. Let ¢ : F' — p~1G and
U € 7.. Then n(v)(U) : F(U) — G(U) is given by the chain of morphisms
FU)=FO)~ lm FV)-% lm p'GV)— GU).
UCVeT. UCVeT.
One checks easily that £ and 7 are an inverse to each other. Since

Hom Psh(ch)(ﬁ, G) ~ Hom,__ (Ft+,G) ~ Hom, (Ft+.G),

we get (i) and (ii).
(iii) By (i) and Proposition 6.6.2, one has for F' € Mod(k7):

Hom,_(p(kxv),F) ~ Hom, (kxu,p 'F)
~ lim F(V)
im
Vccuver

~ @1 HOka(k:Tv,F)
VccUvVeT

:Hoka( lim krv, F).
VccUVeT

Proposition 6.6.4

(i) The functor py is exact and commutes with inductive limits.
(ii) The functor pi commutes with tensor products.

Proof
(i) Let us prove that p; is left exact, the other assertions being obvious by adjunction.
For F' € Mod(kx), denote by F the presheaf on 7, given by F(U ) = F(U). Then
pF ~ (F)** by Proposition 6.6.3 (ii). Since the functors F — F and G — G+ are
left exact, the result follows.
(ii) Let F, G € Mod(kx). The morphism F(U) ® G(U) — (F ® G)(U) gives a
morphism in Mod(k7)

p(F) @ p(G) = p(F @ G)
by Proposition 6.6.3 (ii). Let us show that it is an isomorphism. Since pi commutes
with inductive limits, we may reduce the proof to the case when F = kxy and
G = kxy. Then the result follows from Proposition 6.6.3 (iii). q.e.d.

Proposition 6.6.5. — One has the isomorphisms of functors
(i) ax ~p~tolJr,
(ii) ﬂX s IT o pr.
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Proof
(i) For U € Op(X), and F € I{(kx), one has the chain of isomorphisms

L(U;p~'JrF)~ lim (JrF)(V)
VCccU\VeT,

~ Llr_n Homl(kx)(kxv,F)
VCccUVeT,

= Homl(kx)(ﬁkaU,F)
~ (ax F)(U).

(ii) follows from (i) by taking the left adjoint functors. q.e.d.

This is visualized by the diagrams

Mod(kx) Mod(kx)
-1
2
MOd(kJT) e I(kx) MOd(k']') — I(kx)
Ir Jr

Definition 6.6.6. — For F, G € Mod(kr), we denote by Hom, (F,G) the presheaf
on X,0p(X)>U Hom,, (Flug,Glus)- (Recall that the site Uz is introduced
in Definition 6.1.1 (iii).)

Proposition 6.6.7. — The presheaf Hom_(F, G) is a sheaf on X. Moreover
Hom,, (F,G) ~ p_lHoka (F,G).

Proof. — Let U be an open subset of X. Using Proposition 6.6.2 it is enough to
prove that

HOIIlkUT (Flugs GlU’T) = 1&1 HomkVXT (FlVXT>G|Vx7’)'
VCcCcUVeT
This follows from the fact that the topologies induced on V by X7 and by Ur are
the same. q.e.d.

6.7. Ring action

In this section, we make hypotheses (6.1.1) and (6.1.2).

One defines naturally the notion of a sheaf of rings in Mod(kz), as well as the
notion of modules over such a sheaf of rings. Note that if A is a ring in Mod(kx),
then p..A and piA are rings in Mod (k).

Consider a sheaf A of unitary k-algebras on X. Let A be the presheaf on 7 that
associates I'(U; A) to U € T. Let F be a presheaf on 7 and assume that for each
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U eT, F(U) is an A(U)-module and the restriction morphisms are A-linear, that is,
for V.C U, U,V € T, the diagram below is commutative:

IU; A) @ F(U) — F(U)

l l

I(V;A) @ F(V)—— F(V).
In such a situation, we shall say that F' is a presheaf of A-modules on 7.

Proposition 6.7.1. — Let A be a sheaf of k-algebras on X and let F' be a presheaf of
A-modules on T. Then F*+ € Mod(pA).

Proof — Let U € 7 and let a € T'(U;A). Then a defines an endomorphism of
F|uxs, hence an endomorphism of (F*+)|y,, ~ (Fluy, )t Therefore, we have a
morphism of presheaves of algebras on 7, A — Endy, (FT1). This morphism defines
a morphism of sheaves AT — Endy, (F*), and the result follows since A++ ~ p.A
by Proposition 6.6.3 (ii). q.e.d.

ASTERISQUE 271



CHAPTER 7

IND-SHEAVES ON ANALYTIC MANIFOLDS

Applying the preceding constructions, we shall define various ind-sheaves associated
with spaces of holomorphic functions. This is a reformulation in the language of ind-
sheaves of previous results in [8] and [11].

7.1. Subanalytic sites

In this chapter, X will be a real analytic manifold and & is a field. We refer to [10]
for an exposition on the notions of subanalytic subsets and R-constructible sheaves.

Let 7 denote the family of open subanalytic subsets of X. Then hypotheses (6.1.1)
and (6.1.2) are satisfied.

Definition 7.1.1. — We call the site X7 the subanalytic site on X and denote it
by Xsa.

We denote by R-C(kx ) the abelian category of R-constructible sheaves of k-vector
spaces on X, and by R-C°(kx) the full abelian subcategory of sheaves with compact
support. Hence, the category Coh(7;) coincides with R-C°(kx). Set

Ir—c(kx) = Ind(R-C°(kx)).
Applying Theorem 6.3.5, we obtain the equivalence
I]R—c(kX) jad MOd(kxsa).

In other words, ind-R-constructible sheaves are “usual sheaves” on the subanalytic
site.

Denote by D%__(kx) the full triangulated category of D®(kx) consisting of objects
with R-constructible cohomology (i.e., cohomology in R-C(kx)). A theorem of [8]
asserts that the natural functor D*(R-C(kx)) — D%_.(kx) is an equivalence (see
also [10] Theorem 8.1.11).



120 CHAPTER 7. IND-SHEAVES ON ANALYTIC MANIFOLDS

We denote by Dy (I(kx)) the full subcategory of D®(I(kx)) consisting of objects
with cohomology in Ig_¢(kx). Since R-C°(kx) is a full subcategory of Mod(kx)
stable by extension, Ig_.(kx) is a full subcategory of I(kx) stable by extension, and
Dby _(I(kx)) is triangulated. The exact functor I : Ig_.(kx) — I(kx) induces a
triangulated functor

(7.1.1) I : D(Ig_c(kx)) — Dig_.(I(kx)).
Theorem 7.1.2. — The functor It in (7.1.1) is an equivalence of triangulated cate-
gories.

Proof. — By dévissage, it is enough to prove that for F,G € Ig_.(kx), the natural
morphism (7.1.2) below is an isomorphism

(7.1.2) Hom po (1, (kx)) (F> GIn]) — Hom py g4,y (IT F, I7G[nl).

We may reduce to the case when F' = “69;’ kxy, with a small set I and U; € 7. Since
i€
Hom py y(4.x)) ("€ Fi, Gn]) = [T Hom po 1y (Fi Gln))
i

and there is a similar formula with Hom Db (1(kx)) replaced by Hom Db(Ia_o(kx))? We
are reduced to prove the isomorphism (7.1.2) when F = kxy, with U € 7;. Let
G = “lim” G, with G; € R-C°(kx). By Corollary 1.5.7 and Proposition 5.1.11, we

j
may reduce to the case where G € R-C°(kx). In this case we have:

Hom po (1, (kx)) (k705 G[n]) = Hom o gk y) (kxv, Glnl)
Hotm po (1)) (kxv, Glnl) = Hom oy (kxv, Gln])

and the result follows since the functor D*(R-C(kx)) — D°(kx) is fully faithful.
q.e.d.

Lemma 7.1.3. — Let f: X — Y be a real analytic map and let F € D} _ (kx). The
functors below are well defined:

(i) Rfu: Dbyp_ (I(kx)) — Dig_.((ky)),
(ii) f': D{g_(I(ky)) = Dig_.(I(kx)),
(i) ®: Dpg_o(I(kx)) x Dig_.(I(kx)) — Dig_(I(kx)),
(iv) RThom (F, -): Dig_.(I(kx)) — Dig_.(I(kx)),
(v) B: D*(kx) — D*(Ir-c(kx)).

Proof
(i) Let F € D% __(I(kx)). By “dévissage”, we may assume F in degree 0. Let
F =~ “lim” F;, with F; € R-C°(kx). Since H'RfuF; € R-C°(ky), it remains to notice
that the functor H’ Rfi commutes with “lim”.

juininiay

(ii)—(iii) The proof is similar.
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(iv) Let G € D¥;_.(I(kx)). By dévissage, we reduce to the case where G € Ir_(kx)
and F € R-C(kx). Let G ~ “lim” G; with G; € R-C°(kx). Then we have

H’RIhom (F,G) ~ “lim” H’ RHom (F, G;)
and HYRHom (F,G;) € R-C°(kx).
(v) The functor 3: Mod(kx) — I(kx) is the composition I7 o p;. q.e.d.

Proposition 7.1.4. — Let u: F — G be a morphism in Dby (I(kx)). Then u is
an isomorphism if and only if for any K € R-C°(kx), u induces an isomorphism
RHom (K, F) = RHom (K, G).

Proof. — Consider a distinguished triangle FF — G — L ey and assume that for

any K € R-C°(kx), RHom (K,L) = 0. Let k € Z such that H’(L) = 0 for j < k.
Then Hom (K, H*(L)) ~ H*RHom (K,L) = 0. Hence, Hom (K, H*(L)) = 0, and
this implies H*(L) = 0 since H*(L) € Ig_c(kx). q.e.d.
Proposition 7.1.5. — Let K € K*(R-C(kx)) and let F € K*(Ir—c(kx)). Then
H*RHom (K,F) ~ lim H*Hom (K',F)
K'—K
where K' € K*(R-C(kx)) ranges through the family of complezes qis to K.

Proof. — We may reduce to the case where F' € Ig_.(kx ), then to the case where F' €
R-C(kx). Then the result follows from the equivalence D*(R-C(kx)) ~ D%__(kx).
q.e.d.

Corollary 7.1.6. — Let F € Ig_.(kx) and assume that the functor Hom (-, F) is ezact
on the category R-C(kx). Then one has H' RHom (K,F) = 0 for j # 0 and any
K e R—C(k’x).

7.2. Some classical ind-sheaves

From now on, the base field k is C. Denote by X a real analytic manifold.

Notation 7.2.1. — (i) We denote by d% the dimension of X.

(i) As usual, we denote by C¥ (resp. Cy) the sheaf of complex functions of class
C> (resp. real analytic), by Dbx (resp. Bx) the sheaf of Schwartz’s distributions
(resp. Sato’s hyperfunctions), and by Dx the sheaf of analytic finite-order differential
operators. We also use the notation Ax = C%.

(iii) We denote by QF; the sheaf of p-differential forms with coefficients in Ax (hence,
Q% = Ax) and by Q% the De Rham complex with coefficients in Ax, that is, the
complex

0—)9(}(—>~-~—>de]§‘ —0
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R
We also set Q1x := Qfg‘.
An important property of subanalytic subsets is given by the lemma below.

Lemma 7.2.2. — LetU andV be two open subanalytic subsets of R™, and K a compact
subset of R™. Denote by dist(xz, K \ U) the distance from x € R™ to K\ U. Then
there exist a positive integer N and C > 0 such that

dist(z, K \ (U U V))N < C(dist(z, K\ U) + dist(z, K \V)) for anyz € K.
Let U be an open subset of X. One sets C¥(U) = I'(U;C¥).
Definition 7.2.3. — Let f € C¥(U). One says that f has polynomial growth at p € X
if it satisfies the following condition. For a local coordinate system (1, ..., ) around

D, there exist a sufficiently small compact neighborhood K of p and a positive integer
N such that

(7.2.1) sup,e g (dist(z, K\ U))N|f(z)| < 00.

It is obvious that f has polynomial growth at any point of U. We say that f is
tempered at p if all its derivatives have polynomial growth at p. We say that f is
tempered if it is tempered at any point.

For an open subanalytic set U in X, denote by C5*(U) the subspace of C¥ (U) con-
sisting of tempered functions. Denote by Db, (U) the space of tempered distributions
on U, defined by the exact sequence

0 — I'x\v(X;Dbx) — I'(X; Dbx ) — Dbl (U) — 0.

For a closed subanalytic subset S in X, denote by I§ g the subsheaf of C consisting
of functions which vanish up to infinite order on S.
In [8], [11], one introduces the sheaves:

THom (Cy,C¥) :=V ' (UNV),
THom (Cy,Dbx) :=V — Dbl (UNV),
Cy ®CF =V = T(V; I )

As a consequence of the theorems of Lojasiewicz [14] (see also Malgrange [15]) one
gets the following

Lemma 7.2.4. — Let U and V be two open subanalytic subsets of X. The sequences
below are exact:

0= CXHUUV) - CRHU)@CXHV) = UNV) -0,
0 — Db (U U V) — Db (U) & Dby (V) — Dbl (U N V) — 0,
0 — D(X; Cyny ®CF) — D(X;Cy ®CF) & T(X;Cy ®C)
— I'(X; Cyuv ® C¥) — 0.
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Applying Proposition 6.4.1, we find that C;o’t and Db, are sheaves on X,q. More-
over the functor Db ( -) is exact on the category R-C°(Cx)°P by Proposition 6.4.2.
Applying Corollary 6.5.2, the functor

. ®CP T — Mod(Dx)
U Cy ®CF

extends to the category R-C°(Cx) as an exact functor. We may thus define the left
exact functor:

CE ™ () : R-C°(Cx)°® — Mod(C)
C™(F) = D(X; H(D'F) ® %),
where we set
D'F = RHom (F,Cyx),

and hence H°(D'F) = Hom (F,Cx). Therefore, C5¥"" is a sheaf on Xj,.
Applying Proposition 6.7.1, the above sheaves on X, are piDx-modules, hence
their images by I7 belong to I(6Dx):

CXt, Dby, C¥™Y € 1(BDx).

Definition 7.2.5. — We call C3** (resp. Dbk, C¥™") the ind-sheaf of tempered C*-
functions (resp. tempered distributions, Whitney C*°-functions).

These ind-sheaves satisfy for F' € R-C°(Cx)

(7.2.2) Hom , (F,CX"") ~ T(X; THom (F,C%)),
(7.2.3) Hom,, . (F, Dby ) ~ T'(X; THom (F, Dbx)),
(7.2.4) Homy, ) (F,C¥™) =~ T(X; H'(D'F) ® C¥).

Replacing the “Whitney tensor product” - %J) C%¥ with the usual tensor product,
we get the left exact functor (defined on the whole category Mod®(Cx)):

CS¥(F) =T(X; H'(D'F) C%).
Hence we get the ind-sheaf, CY*“ which is nothing but the ind-sheaf 8x (C¥) and
C* € 1(fDx).
Proposition 7.2.6. — Assume F € D%__(Cx). (In (iv) one may assume F € D*(Cx).)
Then
(i) RHom (F,DbY) ~ THom (F,Dbx),

(i) RHom (F,C¥") ~ RTHom (F,C%),

(iii) RMom (F,C™) ~ (D'F) ®C,

(iv) RHom (F,C%) ~ (D'F) ®C¥.
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Proof
(i) For F € R-C(Cx), the isomorphism (7.2.3) implies
Hom (F, Dbl ) ~ THom (F, Db ).

Then the result follows from Corollary 7.1.6, since THom (-, Dbx) is exact on the
category R-C°(Cx).
(ii) follows from (7.2.2) and Proposition 7.1.5. Indeed, RTHom (F,C¥) is by def-
inition lim T"Hom (F',C¥). Here F' — F ranges over the family of gis with

F'—F
F' € K%R-C(Cx)), and lim is taken in Ind(D%(Cyx)).
(iii) For F' € R-C(Cx), the isomorphism (7.2.4) implies Hom (F,C%™") ~ H°(D'F) ®
C¥. Now let F € D§_.(Cx). We represent it by an object F' € K*(R-C(Cx)). We
have the chain of morphisms

(D'F) & C

1

“lim” Hom (F',Cx) & C¥

F'—F

~ “lim” Hom (F',Cx"™)
F'—F

- “li_r)n” RHom(Fl,Cg(O,W)
F'—F

~ RHom (F,C3™)

Here F’ — F ranges over the family of qis, with F’ € K*(R-C(Cx)). We have
H (“lim” Hom (F',CX™)) ~ “lim” H’ (Hom (F',CX"™)).
F'—F F'—F
Applying Proposition 7.1.5, we get the isomorphism
HI((D'F) ® C) = HI (RHom (F,C™))
and the result follows.
(iv) follows from Proposition 5.1.10 (v). q.e.d.

There is a chain of morphisms

C;’(O,W N C)O:’w — C;o’t —> Dth — Dbx — Bx.

7.3. Ind-sheaves associated with holomorphic functions
Let X be a complex manifold with structure sheaf Ox.

Notation 7.3.1. — We shall mainly follow the notations of [10].

(i) We denote by X the complex conjugate manifold and by X® the underlying real
analytic manifold, identified with the diagonal of X x X.

(ii) We denote by dx the complex dimension of X, by Q% the sheaf of p-differential
forms with coefficients in Ox (hence, Q% = Ox) and by Q% the De Rham complex
with coefficients in Ox. We also set Qx = Q‘;{X . One should not confuse Q% and QF ;.
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(iii) We denote by Dx the sheaf of rings of finite-order holomorphic differential oper-
ators, not to be confused with Dxr.

(iv) As usual, D%__(Cx) denotes the full triangulated subcategory of D*(Cx) con-
sisting of complexes with C-constructible cohomology.

Let F € D%__(Cx). Recall that in [8] and [11], one introduces the objects:
THom (F,0x) = RHomDY(Oy, THom (F,Dbx)),
F ® Ox = RHomp,_(Ox, F ®C%).
Moreover, one has the canonical isomorphism
(7.3.1) R’Homvy(Oy, RTHom (F,C¥)) — THom (F,Ox).
For A = t,w,w, one defines the objects O% € D*(I(8Dx)) by the formulas:
O = RIhomm,T(ﬁOy, Dblyz) «— RIhomBD}_(ﬁOY, ceh),
O% := RThom g, (B0%,CX"™),
O% = RThomzp_(80x%, CT).

Of course, O% ~ BxOx. Moreover the first isomorphism follows from (7.3.1).

Proposition 7.3.2. — Let F € D}_.(Cx). Then
RHom (F,0%) ~ THom (F,Ox),
RHom (F,0%) ~ (D'F) ® Ox,
RHom (F,0%) ~ (D'F) ® Ox.
Proof. — This follows immediately from Proposition 7.2.6. q.e.d.

Note that we have a chain of morphisms
0% — 0% — 0% — Ox.
Notation 7.3.3. — Let L be alocally free O x-module of finite rank, and let A = ¢, w, w.

We set
£ = BL) ® OX.
( )ﬂox X

Remark 7.3.4

(i) One shall be aware that on a complex manifold X of dimension n > 1, the object
0% € D’(I(Cx)) is not concentrated in degree 0. Indeed consider the Dolbeault
complex

(7.3.2) 0 — D0 = D™
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and suppose that this complex is exact at degree p. Let U be an open subanalytic
subset of X and consider the diagram

F o h’ ......... >(CU

N

Applying Proposition 1.3.2, the dotted arrows can be completed to a commutative
diagram with F € R-C°(Cx) and an epimorphism h. It means that, for any s €
Homl(cx)(CU,Dbt)’((O’p ) = DbyOP)(U) satisfying the equation s = 0, there exists
t € Homy,\(F, Dbf,‘((o’p —1)) such that 0t = s. We may assume that F is a finite
direct sum of sheaves Cy,,j € J, with U; open subanalytic and U = U,;U;.
Therefore, there exist t; € Dbt)’((o’p_l)(Uj),j € J solution of 9t; = s on U;. If
n > 1, this is not possible for a suitable choice of U.
(ii) The same argument shows that Rp,Ox is not concentrated in degree 0 for n > 1.
(Recall that p is the natural morphism of sites X — X,,.)

7.4. Operations on O

As an application, let us prove the adjunction formula for integral transforms of
[11] in the framework of ind-sheaves. (For the case of sheaves and D-modules without
growth conditions, refer to [4].)

We shall follow the notations of [11] with an exception: if f: X — Y is a morphism
of complex manifolds, we denote by Df ! and D f1 the inverse and proper direct
images in the derived categories of D-modules.

Following [12], we say that an Ox-module F is quasi-good if for any relatively
compact open subset U, F|y is a union of an increasing sequence of coherent Ox |-
submodules. A Dx-module is called quasi-good if it is quasi-good as an Ox-module.
Recall (loc. cit.) that the full subcategory of Mod(Ox) consisting of quasi-good
modules is stable by kernels, cokernels and extension.

We denote by D}__ ,(Dx) the full triangulated subcategory of D*(Dx) consist-
ing of objects with quasi-good cohomology and by D%_, (Dx) the full triangulated
subcategory of D®(Dx) consisting of objects with regular holonomic cohomology.

Theorem 7.4.1. — Let f: X — Y be a holomorphic map and let N' € D*(Dy). Then
there exists a natural isomorphism in D*(I(Cx)):

(7.4.1) Q2 ﬂ§x BN ldx] = F1Q% B§Y BN)[dy].

We need some preliminary results.
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Lemma7.4.2. — Let f: X — Y be a morphism of real analytic manifolds and let F
be a locally free Ax-module of finite rank. Then RF fi (Db, ®pAx BF) =0 for k #0.

Proof. — Since Rfu(Dby ®5,4, BF) belongs to Dig_(Cy), it is enough to check
that for any G € R-C°(Cy), the complex RHomyc (G, Rfu(Dby ®54, BF)) is
concentrated in degree 0. Consider the chain of isomorphisms

RHom ¢, (G, Rfu(Db ®g4, BF)) = RT(Y; RHom (G, Rfu(Dby ®g 4, BF)))
~ RI.(Y; RfiRHom (f~'G, Db ®44, BF))
~ RI'(X; RHom (f~'G,Db) ® 4 F)

~ RI(X;THom (f G, Dbx) @4, F)-

Since THom (f~1G, Dbx) is soft, these complexes are concentrated in degree 0. q.e.d.
Recall that Q% denotes the De Rham complex on X.

Lemma 7.4.3. — Let f: X — Y be a morphism of oriented real analytic manifolds.
There is a natural morphism in C*(I(Cy))

Fu(Dby 84, B) [d] — DYy @0, BOY [dF).
Proof. — Let G € R-C°(Cy). Using Proposition 4.3 of [11], one gets the morphisms

R B .
Hom ¢ (G, fu( Dby @4, BUE ™)) = Te(X; THom (f7'G, Dbx @4, Q%))
— To(Y; THom (G, Dby @, Q% 7).

q.e.d.

Lemma7.44. — Let f: X — Y be a morphism of complex manifolds. There is a
natural morphism in D*(1(BDY)):

(7.4.2) Rfu(Q% ﬁg{é BDx-y)ldx] — Qy [dy].

Proof. — First, let us recall how to construct a Dx-free resolution of the Dx ®
f71D{P-module Dx_,y. Denote by ©x the sheaf of holomorphic vector fields on X

and by A ©x its exterior algebra. For a left Dx-module M, denote by Sp®(M) the
Spencer resolution of M

5p*(M) :=Dx ®p, NOx &, M
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where the differential is given by

dP® W1 A Avp)®u) =
)4
S (=D TPu @i A AT A Avp) ®u
=1
p .
=D (DEDTIP@ WA AT A Avy) @ viu
=1

=
+ Y (CD)MPR ([ ] AL A AT A AT A Ap) @
1<i<i<p

It is well-known that the natural morphism Sp®(M) — M is a qis of Dx-modules.
Applying this to M = Dx_y, we get the qgis

.
DX—»Y — DX ®0x /\@X ®ox DX—»Y

.
~ Dx ®0x /\eX ®f—1@y f_le-

Hence we get the isomorphisms in D®(3f~1DP):

L [ ]
Ux o2, PPx—y = O ;& B(Dx @, NOX 810, f'Dy)
X

~ Qf A O 1 -p
Xﬁg)x ﬂ(/\ X ®f Oy f Y)
~ O} Q% R, “Dy)[d
X,B%x'@( X®f 10y f vl x]
~ DO ® B(Q% @m0, f7Dy)ldx]
BOx
~ Dby ® B(Q%R @10, f7'Dy)[dx].
BA xR
Applying Rfi we get the desired morphism in D®(I(8Dy)):
L o, 0 —_
Rfu(Q 3 BDx—y)ldx] = fu(Dbk ®, , BQY: ®-10, f~'Dy))[2dx]
— 'Dbg, ®Aylk B(Q;}; ®OY Dy)[?dy]
~ O} @50, B(QY ®p, Dy) [2dy]
L
~ 0L ® BQy [dy].
v 8 By ldv]
q.e.d.
By adjunction, (7.4.2) gives the morphism in D°(I(3f~1D{F)):

(7.4.3) Q% B§ BDx—yldx] — f'Qy ldv].

ASTERISQUE 271



7.4. OPERATIONS ON O 129

Lemma 7.4.5. — The morphism (7.4.3) is an isomorphism.

Proof. — For any F € R-C°(Cx), we have the isomorphisms

L
¢
RHomI(Cx)(F, Q% ﬂ%x BDx vy )[dx]
L
~ RPC(X;T’Hom(F,Qx)é@ Dx—y)[dx]
X

~ RI.(Y; Rf (THom (F,Qx) D@L@ Dx-v))ldx]

~ RT(Y; THom (Rf,F,Qy))[dy]
~ RHom ¢ (RfuF, Q% )[dy]
~ RHomy ¢, (F, £y ldv].
Here, the third isomorphism follows from Theorem 5.7 in [11]. q.e.d.

Proof of Theorem 7.4.1.
Consider the chain of isomorphisms

O & BNdy] = f'94 &  BF INdy]
BDy Bf 1Dy
~QY ® ADx_y ® Bf 'Ndx]
BDx Bf~-1Dy

L
~ Q% ® B(DfIN)[dx].
BDx
In the first isomorphism, we have used Theorem 5.6.3.

By the equivalence of left D-modules and right D-modules, (7.4.3) gives the mor-
phism in D*(I(3f~'Dy)):

L ~
(7.4.4) BDy —x B%x 03( [dx] — fl(')%/ [dy].

Theorem 7.4.6. — Let f: X — Y be a holomorphic map and let M be an object
of DZ_ good(DX) such that supp M is proper over Y. Then there exists a natural
isomorphism in Db(I(Cy)):

L L

7.4.5 Rfu (9 M) ~ Qt D )

( ) f!!( Xﬁ’%)xﬁ ) Y,@%y'@ f!M
We need some lemmas.

Lemma 7.4.7. — Let f: X — Y be a closed embedding of complex manifolds. There
is a natural isomorphism in D*(1(BDx))

Lo it t
/BDX—-vY ® f Oy ~ OX
Bf~1Dy
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Proof. — We have
L —1mt -1 Lo o1t
BDx—y ® [0y ~f Rf,(BDx—y ® f~O0%).
Bf~1Dy 8Dy
Since f is a closed embedding, we have

L L
BDx_y ® f'OL ~ f'Rf,(ADx_y © f1O%)
Bf~1Dy Bf~1Dy
\ L
~ f(BRf.Dx_y ® ot
f(BRf,Dx v 8 v)

L [P
~fDx_y ® [fO}
B y

/1D
L Lo
~fDxy ® [Dy—x ® Oxldx —dy]
Bf~1Dy BDx
~ O%.
Here the fourth isomorphism follows from (7.4.4), and the last isomorphism follows

L
from Dx_y 1()2) Dy—x[dx —dy] ~ Dx. q.e.d.
Y

Lemma 7.4.8. — Let f: X — Y be a smooth morphism of complex manifolds. There
is a natural isomorphism in D*(I(Bf~1Dy))

RThom zp, (BDx_y,0%) ~ f710}.
Proof. — Consider the chain of isomorphisms

L
RTIhom gp, (Dx-y,0%) ~ BRHomp (Dx_y,Dx) B%x 0%

L

~ fDy_x @ O%ldy —dx]
BDx

~ f'O%L [2dy — 2dx]

~ f_loﬁ,.

Here the third isomorphism is given by (7.4.4), and we have used the hypothesis that
f is smooth and Proposition 5.3.7 to prove the last isomorphism. q.e.d.

Lemma7.4.9. — Let f: X — Y be a morphism of complex manifolds. There is a
natural morphism in D*(I(8Dx)):

L —1mt t
BDx_y & f 0y — Ok,

Bf~1Dy
or equivalently there is a morphism in D*(1(3D)):
“10t L t
7y ® pDy_x— Q.
Y

Bf'D
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Proof. — When f is a closed embedding, we have already constructed this morphism
and shown it is an isomorphism. Hence, we may assume that f is smooth. Then we
have the morphisms

L L
BDx_y ﬁf_@l)p 1O ~ BDx_y ﬂf_Q?D RTZhom gp (BDx—y, o%)
Y Y

~ 0.
q.e.d.

Lemma 7.4.10. — Let f: X — Y be a morphism of complex manifolds, and let M €
DY(Dx). Then there is a natural morphism in D®(I(Cy))

L L
4. o D Rfu (2 .
(7.4.6) Yﬂ%’y B(DfIM) — Rfu( Xﬂ%}( BM)
Proof. — Consider the chain of morphisms

L L L
Ot Df, ~ Ot (Dy —
Yﬁg’yﬁ( fHIM) Yﬂ%)y B(Rf(Dy X%M))
L L
— Qt " -
yﬁgy Rfu(B(Dy X%M))

~ R & ADy—x § M)

f~'Dy
10t L L
~ Rfu((f7'Q% ® PBDyex) ® BM)
Bf~'Dy BDx
L
t
— Rf!y(QX ﬂgx ﬂM)

q.e.d.

Proof of Theorem 7.4.6. The morphism is constructed in Lemma 7.4.10. To check
that it is an isomorphism, take G € R-C°(Cy). We have the chain of isomorphisms

L L
RHom ¢, (G, Q% ﬂ% B(DfIM)) ~ Rl (Y;THom (G, Qy)S@ Df M)
Y Y
~ RT(Y; Rf,(THom (f G, QX)ng) M))
X
L
~ RI.(X;THom (f G, Qx)ga M)
X
L
~ RH g,
omyc,(f X ng BM)

L
':RHomI(Cy)(G,Rfu(QB{ ® pM)).
BDx

Here the second isomorphism is given by Theorem 7.3 in [11]. This completes the
proof of Theorem 7.4.6.

SOCIETE MATHEMATIQUE DE FRANCE 2001



132 CHAPTER 7. IND-SHEAVES ON ANALYTIC MANIFOLDS

Recall that if F' € I(kx), there is a natural morphism F' — (aF. Also recall that
we do not write ¢, for short.

Lemma 7.4.11. — For L € D’_, (Dx), the morphisms
RThom g1, (BL, 04) — aRThom gp, (BL, 0%) — RHomp (L,0x)

are isomorphisms.

Proof. — Since these objects belong to D%, .(I(Cx)), the result follows from the
chain of isomorphisms below, where F' € R-C°(Cx).

RHom (F, RThom g, (8L, O%)) = RHomygp, (8L, RThom (F, 0%))
~ RHomp_(L,RThom (F,0%))
~ RHomyp (L, RHom (F, 04))
~ RHomp, (£, THom (F,Ox))
~ RHom, (£, RHom (F, Ox))
~ RHom (F, RHom (£, Ox)).
Here the fifth isomorphism follows from [8]. q.e.d.

Theorem 7.4.12. — Let L € D’_,(Dx), and set L = RHomp, (L, Ox). Then there
exists a natural isomorphism in D®(I(Cx)):

L N
(7.4.7) QY 48 BL > RThom (L, Q%).
X

Proof. — First, let us construct the morphism. Since L ~ RZhom gp, (BL, BOx) by
the preceding lemma, we have the morphism L ® 8L — SOx from which we deduce
the morphism:

Qf & BLOL— Y & BOx = k.
BOx BOx

The morphism (7.4.7) is obtained by adjunction. To prove that it is an isomorphism,
let us take F' € R-C°(Cx). We have the chain of isomorphisms

L L
RHom ¢, (F, Q% ® BL) ~RI(X;THom (F,Qx) ® L)
BOx Ox

~ RI'(X;THom (F ® L,Qx))
~ RHom ¢, (F ® L, Q%)
=~ RHom ¢ ) (F, RZThom (L, %))

Here, the second isomorphism follows from a theorem of Bjork [2] (see also Theorem
10.7 in [11]). q.ed.
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Consider three complex manifolds X, .S,Y and a correspondence:

S
N
X Y
Let M € Dq go0d(Px) and L € D!_,(Ds). We set L = RHom, (L, Os).
We make the hypothesis:

(7.4.8) f~1supp(M) Nsupp(L) is proper over Y.
Let G € D*(I(Cy)). We define

L
Mo L =Dg(Df "M@ L),

S

LoG=Rfi(L®g™'G).
Theorem 7.4.13. — One has the isomorphism

L L
RHom ¢ (Lo G, Qx[dx] ® BM))~RHomyc, (G, lds] @ B(MoL)).
BDx BDy

Proof. — We have the chain of isomorphisms

RHomyc,.) (Rfu(L®g7'G), O ldx] & M)
~ RHomy ) (L ®97'G, f'(@ldx] Q% 5/\4))
~ RHomyc,, (L ©97'G,05lds) & B(DS™'M))
~ RHomy ¢, (97'G, RZhom (L, 2%s[ds] ® B(DS M)
NRHomICS)< -1G, RThom (L, Q4[ds)) ® B(Df~ ‘M))
~ RHomc, (47, (Q[ds] ® BL) ® BDf M)
o (G,Rg* slds] | (ﬂﬁ ® ﬁDf‘lM)))
~ RHom, ¢, )(G, Rgn(%]ds] ® B(L ® Df~ 1M)))
NRHomlcy)(G, 2 © B(Dg,(L § DfM))lds
I

G.0lds) § AMoL)).

q.e.d.
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Remark 7.4.14. — 1t could be interesting to study the sheaves on X, associated to
the Sobolev presheaves on a real analytic manifold X, and to endow O% with a
Sobolev filtration on a complex manifold X.

Remark 7.4.15. — In this paper we have not considered the “microlocal” point of
view, in the line of [17]. In a forthcoming paper, we shall apply the theory of ind-
sheaves to Sato’s microlocalization and construct a functor pux from ind-sheaves on
X to ind-sheaves on T*X. When applied to the ind-sheaves O% or O%, this will
provide an alternative approach to the constructions of [1], [3]. We shall also study
the micro-support of ind-sheaves, in the line of [10].
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