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GEOMETRIZATION OF 3-ORBIFOLDS OF CYCLIC TYPE

Michel Boileau and Joan Porti

with the collaboration of Michael Heusener

Abstract. — We prove the orbifold theorem in the cyclic case: If O is a compact
oriented irreducible atoroidal 3-orbifold whose rami�cation locus is a non-empty sub-
manifold, then O is geometric, i.e. it has a hyperbolic, a Euclidean or a Seifert �bred
structure. This theorem implies Thurston's geometrization conjecture for compact
orientable irreducible three-manifolds having a non-free symmetry.

Résumé (Géométrisation des orbi-variétés tridimensionnelles de type cyclique)
Nous démontrons le théorème des orbi-variétés de Thurston dans le cas cyclique :

une orbi-variété tridimensionelle, compacte, orientable, irréductible, atoroïdale et dont
le lieu de rami�cation est une sous-variété non vide, admet soit une structure hyper-
bolique ou Euclidienne, soit une �bration de Seifert. Ce théorème implique qu'une
variété tridimensionelle, compacte, irréductible et possédant une symétrie non libre,
véri�e la conjecture de géométrisation de Thurston.
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INTRODUCTION

A 3-dimensional orbifold is a metrizable space with coherent local models given by
quotients of R3 by finite subgroups of O(3). For example, the quotient of a 3-manifold
by a properly discontinuous group action naturally inherits a structure of a 3-orbifold.
When the group action is finite, such an orbifold is said to be very good . For a general
background about orbifolds see [BS1], [BS2], [DaM], [Kap, Chap. 7], [Sc3], [Tak1]
and [Thu1, Chap. 13].

The purpose of this monograph is to give a complete proof of Thurston’s orbifold
theorem in the case where all local isotropy groups are cyclic subgroups of SO(3).
Following [DaM], we say that such an orbifold is of cyclic type when in addition
the ramification locus is non-empty. Hence a 3-orbifold O is of cyclic type iff its
ramification locus Σ is a non-empty 1-dimensional submanifold of the underlying
manifold |O|, which is transverse to the boundary ∂|O| = |∂O|. The first result
presented here is the following version of Thurston’s Orbifold Theorem:

Theorem 1. — Let O be a compact, connected, orientable, irreducible, and ∂-incom-
pressible 3-orbifold of cyclic type. If O is very good, topologically atoroidal and acylin-
drical, then O is geometric (i.e. O admits either a hyperbolic, a Euclidean, or a Seifert
fibred structure).

Remark. — When ∂O is a union of toric 2-suborbifolds, the hypothesis that O is
acylindrical is not needed.

If ∂O �= ∅ and O is not I-fibred, then O admits a hyperbolic structure of finite
volume with totally geodesic boundary and cusps.

We only consider smooth orbifolds, so that the local isotropy groups are always
orthogonal. We recall that an orbifold is said to be good if it has a covering which is a
manifold. Moreover if this covering is finite then the orbifold is said to be very good .

A general compact orientable irreducible and atoroidal 3-orbifold (which is not a
priori very good) can be canonically split along a maximal (perhaps empty) collection



2 INTRODUCTION

of disjoint and non-parallel hyperbolic turnovers (i.e. a 2-orbifold with underlying
space a 2-sphere and with three branching points) into either small or Haken 3-
suborbifolds.

An orientable compact 3-orbifold O is small if it is irreducible, its boundary ∂O
is a (perhaps empty) collection of turnovers, and O does not contain any essential
orientable 2-suborbifold.

Using Theorem 1, we are able to geometrize such small 3-orbifolds, and hence to
show that they are in fact very good.

Theorem 2. — Let O be a compact, orientable, connected, small 3-orbifold of cyclic
type. Then O is geometric.

Therefore, to get a complete picture (avoiding the very good hypothesis), it remains
to geometrize the Haken atoroidal pieces.

An orientable compact 3-orbifold O is Haken if:

– O is irreducible,
– every embedded turnover is parallel to the boundary
– and O contains an embedded orientable incompressible 2-suborbifold different

from a turnover.

The geometrization of Haken atoroidal 3-orbifolds relies on the following extension of
Thurston’s hyperbolization theorem (for Haken 3-manifolds):

Theorem 3 (Thurston’s hyperbolization theorem). — Let O be a compact, orientable,
connected, irreducible, Haken 3-orbifold. If O is topologically atoroidal and not Seifert
fibred, nor Euclidean, then O is hyperbolic.

It is a result of W. Dunbar [Dun2] that an orientable Haken 3-orbifold can be
decomposed into either discal 3-orbifolds or thick turnovers (i.e. {turnovers}×[0, 1])
by repeated cutting along 2-sided properly embedded essential 2-suborbifolds.

Due to this fact, the proof of Theorem 3 follows exactly the scheme of the proof
for Haken 3-manifolds [Thu2, Thu3, Thu5], [McM1], [Kap], [Ot1, Ot2]. We do
not give a detailed proof of it here, but we only present the main steps to take in
consideration and indicate shortly how to handle them in Chapter 8.

Since hyperbolic turnovers are rigid, Theorem 2 and Theorem 3 imply Thurston’s
orbifold theorem in the cyclic type case:

Thurston’s Orbifold Theorem. — Let O be a compact, connected, orientable, irre-
ducible, 3-orbifold of cyclic type. If O is topologically atoroidal, then O is geometric.

In late 1981, Thurston [Thu2, Thu6] announced the Geometrization theorem
for 3-orbifolds with non-empty ramification set (without the assumption of cyclic
type), and lectured about it. Since 1986, useful notes about Thurston’s proof (by
Soma, Ohshika and Kojima [SOK] and by Hodgson [Ho1]) have been circulating.
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INTRODUCTION 3

In addition, in 1989 much more details appeared in Zhou’s thesis [Zh1, Zh2] in the
cyclic case. However no complete written proof was available (cf. [Kir, Prob. 3.46] ).

Recently we have obtained with B. Leeb a proof of Thurston’s orbifold theorem
in the case where the singular locus has vertices. A complete written version of this
proof can be found in [BLP1, BLP2]. This proof, in particular for orbifolds with all
singular vertices of dihedral type, relies on the proof of the cyclic case presented here.
However the methods used in [BLP2] to study the geometry of cone 3-manifolds are
quite different from the ones used here.

A different proof, more in the spirit of Thurston’s original approach, has been
announced by D. Cooper, C. Hodgson and S. Kerckhoff in [CHK].

In this monograph we work in the category of orbifolds. For the basic definitions
in this category, including map, homotopy, isotopy, covering and fundamental group,
we refer mainly to Chapter 13 of Thurston’s notes [Thu1], to the books by Bridson
and Haefliger [BrH] and by Kapovich [Kap], as well as to the articles by Bonahon
and Siebenmann [BS1, BS2], by Davis and Morgan [DaM] and by Takeuchi [Tak1].

In the case of good orbifolds, these notions are defined as the corresponding equiv-
ariant notions in the universal covering, which is a manifold.

According to [BS1, BS2] and [Thu1, Ch. 13], we use the following terminology.

Definitions. — We say that a compact 2-orbifold F 2 is respectively spherical , discal ,
toric or annular if it is the quotient by a finite smooth group action of respectively
the 2-sphere S2, the 2-disc D2, the 2-torus T 2 or the annulus S1 × [0, 1].

A compact 2-orbifold is bad if it is not good. Such a 2-orbifold is the union of two
non-isomorphic discal 2-orbifolds along their boundaries.

A compact 3-orbifold O is irreducible if it does not contain any bad 2-suborbifold
and if every orientable spherical 2-suborbifold bounds in O a discal 3-suborbifold,
where a discal 3-orbifold is a finite quotient of the 3-ball by an orthogonal action.

A connected 2-suborbifold F 2 in an orientable 3-orbifold O is compressible if either
F 2 bounds a discal 3-suborbifold in O or there is a discal 2-suborbifold ∆2 which
intersects transversally F 2 in ∂∆2 = ∆2 ∩ F 2 and such that ∂∆2 does not bound a
discal 2-suborbifold in F 2.

A 2-suborbifold F 2 in an orientable 3-orbifold O is incompressible if no connected
component of F 2 is compressible in O. The compact 3-orbifold O is ∂-incompressible
if ∂O is empty or incompressible in O.

A properly embedded 2-suborbifold (F, ∂F ) ↪→ (O, ∂O) is ∂-compressible if:

– either (F, ∂F ) is a discal 2-suborbifold (D2, ∂D2) which is ∂-parallel,
– or there is a discal 2-suborbifold ∆ ⊂ O such that ∂∆ ∩ F is a simple arc α,

∆ ∩ ∂M is a simple arc β, with ∂∆ = α ∪ β and α ∩ β = ∂α = ∂β

An orientable properly embedded 2-suborbifold F 2 is ∂-parallel if it belongs to the
frontier of a collar neighborhood F 2 × [0, 1] ⊂ O of a boundary component F 2 ⊂ ∂O.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001



4 INTRODUCTION

A properly embedded 2-suborbifold F 2 is essential in a compact orientable irre-
ducible 3-orbifold, if it is incompressible, ∂-incompressible and not boundary parallel.

A compact 3-orbifold is topologically atoroidal if it does not contain any embedded
essential orientable toric 2-suborbifold. It is topologically acylindrical if every properly
embedded orientable annular 2-suborbifold is boundary parallel.

A turnover is a 2-orbifold with underlying space a 2-sphere and with three branch-
ing points. In an irreducible orientable orbifold an embedded turnover either bounds
a discal 3-suborbifold or is incompressible and of non-positive Euler characteristic.

According to [Thu1, Ch. 13], the fundamental group of an orbifold O, denoted by
π1(O), is defined as the Deck transformation group of its universal cover.

A Seifert fibration on a 3-orbifold O is a partition of O into closed 1-suborbifolds
(circles or intervals with silvered boundary) called fibres, such that each fibre has
a saturated neighborhood diffeomorphic to S1 × D2/G, where G is a finite group
which acts smoothly, preserves both factors, and acts orthogonally on each factor and
effectively on D2; moreover the fibres of the saturated neighborhood correspond to
the quotients of the circles S1 × {∗}. On the boundary ∂O, the local model of the
Seifert fibration is S1 ×D2

+/G, where D2
+ is a half disc.

A 3-orbifold that admits a Seifert fibration is called Seifert fibred. Every good
Seifert fibred 3-orbifold is geometric (cf. [Sc3], [Thu7]). Seifert fibred 3-orbifolds
have been classified in [BS2].

A compact orientable 3-orbifold O is hyperbolic if its interior is orbifold-diffeo-
morphic to the quotient of the hyperbolic space H3 by a non-elementary discrete group
of isometries. In particular I-bundles over hyperbolic 2-orbifolds are hyperbolic, since
their interiors are quotients of H3 by non-elementary Fuchsian groups. In Theorem 1,
except for I-bundles, we prove that when O is hyperbolic, if we remove the toric
components of the boundary ∂TO ⊂ ∂O, then O − ∂TO has a hyperbolic structure
with finite volume and geodesic boundary. This implies the existence of a complete
hyperbolic structure on the interior of O.

We say that a compact orientable 3-orbifold is Euclidean if its interior has a com-
plete Euclidean structure. Thus, if a compact orientable and ∂-incompressible 3-
orbifold O is Euclidean, then either O is a I-bundle over a 2-dimensional Euclidean
closed orbifold or O is closed.

We say that a compact orientable 3-orbifold is spherical when it is the quotient
of S3 by the orthogonal action of a finite subgroup of SO(4). A spherical orbifold of
cyclic type is always Seifert fibred ([Dun1], [DaM]).

Thurston’s conjecture asserts that the interior of a compact irreducible orientable
3-orbifold can be decomposed along a canonical family of incompressible toric 2-
suborbifolds into geometric 3-suborbifolds.
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INTRODUCTION 5

The existence of the canonical family of incompressible toric 2-suborbifolds has
been established by Jaco-Shalen [JS] and Johannson [Joh] for 3-manifolds and by
Bonahon-Siebenmann [BS2] in the case of 3-orbifolds.

Recall that the eight 3-dimensional geometries involved in Thurston’s conjecture
are H3, E3, S3, H2 ×R, S2 ×R, S̃L2(R), Nil and Sol. The non Seifert fibred orbifolds
require a constant curvature geometry (H3, E3 and S3) or Sol. Compact orbifolds
with Sol geometry are fibred over a closed 1-dimensional orbifold with toric fibre and
thus are not atoroidal (cf. [Dun3]).

Thurston has proved his conjecture for Haken 3-manifolds [Thu1, Thu2, Thu3,
Thu4, Thu5] (cf. [McM1, McM2], [Kap], [Ot1, Ot2]). More generally, his proof
works for Haken 3-orbifolds (cf. Chapter 8).

Here is a straightforward application of Thurston’s orbifold theorem to the ge-
ometrization of 3-manifolds with non-trivial symmetries:

Corollary 1. — Let M be a compact orientable irreducible and ∂-incompressible 3-
manifold. Let G be a finite group of orientation preserving diffeomorphisms acting
on M with non-trivial and cyclic stabilizers. Then there exists a (possibly empty) G-
invariant family of disjoint essential tori and annuli which splits M into G-invariant
geometric pieces.

Using the fact that 3-orbifolds with a geometric decomposition are very good by
[McCMi], one obtains the following immediate corollary:

Corollary 2. — Every compact orientable irreducible 3-orbifold of cyclic type is very
good.

Thurston’s hyperbolization theorem for Haken 3-manifolds ([Thu1, Thu2, Thu3,
Thu4, Thu5], [McM1, McM2], [Kap], [Ot1, Ot2]) and a standard argument of
doubling O along its boundary components, allow to reduce the proof of Theorem 1
to the following theorem, which is one of the main results of this monograph.

Theorem 4. — Let O be a closed orientable connected irreducible very good 3-orbifold
of cyclic type. Assume that the complement O − Σ of the ramification locus admits
a complete hyperbolic structure. Then there exists a non-empty compact essential 3-
suborbifold O′ ⊆ O which is not a product and which is either Euclidean, Seifert fibred,
Sol or complete hyperbolic with finite volume. In particular ∂O′ is either empty or a
union of toric 2-orbifolds.

A compact 3-suborbifold O′ ⊆ O is essential in O if the 2-suborbifold ∂O′ is either
empty or incompressible in O.

Remark. — If the orbifold O is topologically atoroidal, then O = O′ is geometric.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001



6 INTRODUCTION

The following strong version of the Smith conjecture for a knot in S3 is a straightfor-
ward corollary of Theorem 4 and of the classification of the orientable closed Euclidean
3-orbifolds (cf. [BS1], [Dun1]).

Corollary 3. — Let K ⊂ S3 be a hyperbolic knot. Then, for p ≥ 3, any p-fold cyclic
covering of S3 branched along K admits a hyperbolic structure, except when p = 3
and K is the figure-eight knot. In this case the 3-fold cyclic branched covering has a
Euclidean structure. Moreover, in all cases the covering transformation group acts by
isometries.

The proof of Theorem 4 follows Thurston’s original approach. His idea was to
deform the complete hyperbolic structure as far as possible on O − Σ into structures
whose completion is topologically the underlying manifold |O| and has cone singu-
larities along Σ. These completions are called hyperbolic cone structures on the pair
(|O|,Σ) and their singularities are (locally) described by cone angles. Such structures
with small cone angles are provided by Thurston’s hyperbolic Dehn filling theorem
([Thu1, Chap. 5], cf. Appendix B). The goal is then to study the limit of hyperbol-
icity when these cone angles increase. Note that a hyperbolic structure on O induces
a hyperbolic cone structure on the pair (|O|,Σ) with cone angles determined by the
ramification indices. Hence, if these cone angles can be reached in the space of hy-
perbolic cone manifold structures, then O is hyperbolic. Otherwise, the study of the
possible “collapses” occurring at the limit of hyperbolicity shows the existence of a
non-empty compact essential geometric 3-suborbifold O′ ⊂ O which is different from
O when O′ is hyperbolic.

Our main contribution takes place in the analysis of the so called“collapsing cases”.
There we use the notion of simplicial volume due to Gromov and a cone manifold
version of his isolation theorem [Gro, Sec. 3.4]. This gives a simpler combinatorial
approach to collapses than Thurston’s original one. In particular, it spares us the
difficult task of establishing a suitable Cheeger-Gromov theory for collapses of cone
manifolds.

When some of the branching indices are 2, our proof of Theorem 1 uses in a crucial
way the results of Meeks and Scott [MS]. This could be avoided by using the extension
of Thurston’s hyperbolization theorem to Haken 3-orbifolds (cf. Theorem 3). Since
we are not giving here a detailed proof of this extension, we have decided to make the
proofs of our main results (Theorems 1, 2 and 4) totally independent of it.

Here is a plan of the monograph.
In Chapter 1 we introduce the notion of cone 3-manifold and state the theorems

that are the main ingredients in the proof of of Thurston’s orbifold theorem.
In Chapter 2 we prove Theorem 4 from the results quoted in Chapter 1. Then we

deduce Theorem 1 from Theorem 4.
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In Chapter 3 we prove the compactness theorem, which is a cone 3-manifold version
of Gromov’s compactness theorem for Riemannian manifolds of pinched sectional
curvature.

In Chapter 4 we prove the local soul theorem, which gives a bilipschitz approxima-
tion of the metric structure of a neighborhood of a point with small cone-injectivity
radius.

By using the compactness and the local soul theorem, in Chapters 5 and 6 we study
sequences of closed hyperbolic cone 3-manifolds with a fixed topological type.

In Chapter 5 we prove Theorem A, which deals with the case where the cone angles
are bounded above, uniformly away from π.

In Chapter 6, we prove Theorem B which deals with the case where the cone angles
converge to the orbifold angles.

In Chapter 7, we uniformize small 3-orbifolds of cyclic type by proving Theorem 2.
In Chapter 8, we first deduce the complete version of Thurston’s orbifold theorem

from Theorem 2 and Theorem 3. Then we give a detailed overview of the proof of
Theorem 3.

In Chapter 9, we present explicit examples of collapses of hyperbolic cone structures
to other geometric structures. These are the difficult phenomena that cannot be
avoided in the proof of Theorem 4.

In Appendix A, M. Heusener and the second named author complete the results
presented here by showing the following result: if a sequence of hyperbolic cone struc-
tures on a pair (|O|,Σ) collapses at angle π, then the closed orientable 3-orbifold O
is not spherical.

In Appendix B, for completeness we give a detailed proof of Thurston’s hyperbolic
Dehn filling theorem for manifolds and orbifolds.
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CHAPTER 1

CONE MANIFOLDS

Cone 3-manifolds play a central role in the proof of Thurston’s orbifold theorem.
Thurston has shown that they appear naturally as a generalization of hyperbolic
Dehn filling on cusped hyperbolic 3-manifolds. Thurston’s hyperbolic Dehn filling
theorem provides a family of cone 3-manifolds with small cone angles and the proof of
Thurston’s orbifold theorem analyzes the accidents that can occur when we increase
the cone angles in order to reach the hyperbolic metric on the orbifold.

This chapter has two sections. In the first one we give the basic definitions for cone
3-manifolds (of non-positive curvature). In the second one we state some theorems
about sequences of hyperbolic cone 3-manifolds, which are the key steps in the proof
of Thurston’s orbifold theorem.

1.1. Basic Definitions

In this monograph we only consider cone 3-manifolds of non-positive constant cur-
vature. Moreover, we also restrict our attention to cone 3-manifolds whose singular
set is a link and whose cone angles are less than 2π.

To fix notation, let H3
K be the simply connected three-dimensional space of constant

sectional curvature K ≤ 0. Thus H3
−1

∼= H3 is the usual hyperbolic space and H3
0
∼= E3

is the Euclidean space.
For α ∈ (0, 2π), let H3

K(α) be the cone manifold of constant curvature K ≤ 0
with a singular line of cone angle α, constructed as follows. Consider in H3

K a solid
angular sector Sα obtained by taking the intersection of two half spaces, such that
the dihedral angle at the (infinite) edge ∆ is α. The cone manifold H3

K(α) is the
length space obtained when we identify the faces of Sα by a rotation around ∆. The
image of ∆ in the quotient gives the singular line Σ ⊂ H3

K(α). The induced metric on
H3

K(α) − Σ is a non-singular, incomplete Riemannian metric of constant curvature,
whose completion is precisely H3

K(α).
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In cylindrical or Fermi coordinates, the metric on H3
K(α) − Σ is:

ds2
K =


dr2 +

(
α

2π
sinh(

√
−Kr)√

−K

)2

dθ2 + cosh2(
√

−Kr)dh2 for K < 0

dr2 +
( α

2π
r
)2

dθ2 + dh2 for K = 0

where r ∈ (0,+∞) is the distance from Σ, θ ∈ [0, 2π) is the rescaled angle parameter
around Σ and h ∈ R is the distance along Σ.

Having described the local models, we can now define a cone 3-manifold.

Definition 1.1.1. — A cone manifold of dimension three and of constant curvature
K ≤ 0 is a smooth 3-manifold C equipped with a distance so that it is a complete
length space locally isometric to H3

K or H3
K(α) for some α ∈ (0, 2π).

The singular locus Σ ⊂ C is the set of points modeled on the singular line of some
model H3

K(α), and α is called the cone angle at a singular point modeled on this
singular line. According to our definition, Σ is a submanifold of codimension two and
the cone angle is constant along each connected component.

The topological pair (C,Σ) is called the topological type of the cone 3-manifold.
The induced metric on C−Σ is a Riemannian metric of constant curvature, which

is incomplete (unless Σ = ∅), and whose completion is precisely the cone 3-manifold.
By the developing map of a cone 3-manifold C with topological type (C,Σ), we

mean the developing map of the induced metric on C − Σ:

D : C̃ − Σ → H3
K ,

where C̃ − Σ is the universal covering of C − Σ. The associated holonomy represen-
tation

ρ : π1(C − Σ) → Isom(H3
K)

is called the holonomy representation of C. If µ ∈ π1(C − Σ) is represented by a
meridian loop around a component Σ0 of Σ, then ρ(µ) is a rotation of angle equal to
the cone angle of this component.

Thurston’s hyperbolic Dehn filling theorem provides many structures on a hyper-
bolic cusped 3-manifold whose completions are precisely cone 3-manifolds. The cone
angles of these cone 3-manifolds are not necessarily less than 2π. The complete cusped
structure on C −Σ is the limit of these hyperbolic cone structures when the cone an-
gles approach zero. We adopt therefore the standard convention that the cone angle
at a component Σ0 of Σ is zero when the end of C −Σ corresponding to Σ0 is a cusp,
of rank 2 or 1 according to whether Σ0 is compact or not.

We still need two more definitions.
A standard ball in a cone 3-manifold C is a ball isometric to either a metric non-

singular ball in H3
K or a metric singular ball in H3

K(α) whose center belongs to the
singular axis.
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1.2. SEQUENCES OF HYPERBOLIC CONE 3-MANIFOLDS 11

We define the cone-injectivity radius at a point x ∈ C as

inj(x) = sup{δ > 0 such that B(x, δ) is contained in a standard ball in C}.

We remark that the standard ball does not need to be centered at the point x. With
this definition, regular points close to the singular locus do not have arbitrarily small
cone-injectivity radius.

1.2. Sequences of hyperbolic cone 3-manifolds

Let O be an orbifold as in Theorem 4: a closed orientable irreducible very good
3-orbifold of cyclic type, such that the complement O − Σ of the ramification locus
admits a complete hyperbolic structure of finite volume.

Thurston’s hyperbolic Dehn filling theorem provides a one-parameter family of
hyperbolic cone 3-manifolds with topological type (|O|,Σ). Consider the exterior
X = O − int(N (Σ)) of Σ and for each component Σi ⊂ Σ choose a meridian curve
µi ⊂ ∂N (Σi) and another simple closed curve λi ⊂ ∂N (Σi) intersecting µi in one
point; hence µi, λi generate π1(∂N (Σi)).

According to Thurston’s hyperbolic Dehn filling theorem, there exists a space of
deformations of hyperbolic structures on int(X) parametrized by generalized Dehn
coefficients (pi, qi), 1 ≤ i ≤ k, in an open neighborhood U ⊂ (R2 ∪ {∞})k ∼= (S2)k

of (∞, . . . ,∞), where k is the number of connected components of ∂X (and of Σ).
The structure at the i-th component of ∂X is described by the Dehn parameters as
follows:

– When (pi, qi) = ∞, the structure at the corresponding cusp remains complete.
– When pi, qi ∈ Z are coprime, the completion X((p1, q1), . . . , (pk, qk)) is a hy-

perbolic 3-manifold, obtained by genuine Dehn filling with meridian curves
piµi + qiλi, i = 1, . . . , k.

– When pi/qi ∈ Q ∪ {∞}, let ri, si ∈ Z be coprime integers so that pi/qi = ri/si.
Then the completion X((p1, q1), . . . , (pk, qk)) is a hyperbolic cone 3-manifold
obtained by gluing solid tori with possibly singular cores. The underlying space
is the 3-manifold X((r1, s1), . . . , (rk, sk)) and the cone angle of the i-th singular
core is 2π|ri/pi|, i = 1, . . . , k.

Here we are interested in the coefficients of the form (pi, qi) = (ni/t, 0), where
t ∈ [0, 1] and ni is the branching index of the orbifold O along the i-th compo-
nent Σi ⊂ Σ, for i = 1, . . . , k. Thurston’s hyperbolic Dehn filling theorem im-
plies the existence of a real number ε0 > 0 such that, for any t ∈ [0, ε0], there
is a deformation of the complete hyperbolic structure on int(X) whose completion
X
(
(n1

t , 0), . . . , (
nk

t , 0)
)
is a hyperbolic cone 3-manifold with topological type (|O|,Σ)

and cone angles 2π
n1
t, . . . , 2π

nk
t.

The proof of Theorem 4 consists in studying the behavior of the hyperbolic cone
3-manifold X

(
(n1

t , 0), . . . , (
nk

t , 0)
)
while increasing the parameter t ∈ [0, 1]. If the
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12 CHAPTER 1. CONE MANIFOLDS

parameter t = 1 can be reached so that the cone 3-manifold X ((n1, 0), . . . , (nk, 0))
remains hyperbolic, then the orbifold O itself is hyperbolic. Otherwise, there is a
limit of hyperbolicity t∞ ∈ [0, 1]. Then, since the space of hyperbolic cone structures
with topological type (|O|,Σ) and cone angles ≤ 2π is open, one has to analyze
sequences of hyperbolic cone 3-manifolds X

(
(n1
tn
, 0), . . . , (nk

tn
, 0)
)

where (tn)n∈N is an
increasing sequence in [0, t∞) approaching t∞. This analysis will be carried out in
detail in Chapter 2, by using Theorems A and B below, which are central for the
proof of Theorem 4, and should be of independent interest. Their proofs are given
respectively in Chapter 5 and 6.

Theorem A is used when t∞ < 1, while Theorem B is used when t∞ = 1.

Theorem A. — Let (Cn)n∈N be a sequence of closed orientable hyperbolic cone 3-
manifolds with fixed topological type (C,Σ) such that the cone angles increase and
are contained in [ω0, ω1], with 0 < ω0 < ω1 < π. Then there exists a subsequence
(Cnk

)k∈N such that one of the following occurs:

1) The sequence (Cnk
)k∈N converges geometrically to a hyperbolic cone 3-manifold

with topological type (C,Σ) whose cone angles are the limit of the cone angles of
Cnk

.
2) For every k, Cnk

contains an embedded 2-sphere S2
nk

⊂ Cnk
that intersects Σ in

three points, and the sum of the three cone angles at S2
nk

∩ Σ converges to 2π.
3) There is a sequence of positive reals λk approaching 0 such that the subsequence
of rescaled cone 3-manifolds (λ−1

k Cnk
)k∈N converges geometrically to a Euclidean

cone 3-manifold of topological type (C,Σ) and whose cone angles are the limit of
the cone angles of Cnk

.

Theorem B. — Let O be a closed, orientable, connected, irreducible, very good 3-
orbifold with topological type (|O|,Σ) and ramification indices n1, . . . , nk. Assume
that there exists a sequence of hyperbolic cone 3-manifolds (Cn)n∈N with the same
topological type (|O|,Σ) and such that, for each component of Σ, the cone angles form
an increasing sequence that converges to 2π/ni when n approaches ∞.
Then O contains a non-empty compact essential 3-suborbifold O′ ⊆ O, which is not

a product and which is either complete hyperbolic of finite volume, Euclidean, Seifert
fibred or Sol.

As stated, these two theorems deal with geometric convergence of cone 3-manifolds.
Up to minor modifications, the term geometric convergence stands for the pointed
bilipschitz convergence introduced by Gromov [GLP]. The following compactness
theorem plays a central role in the proofs of Theorems A and B. It is a cone manifold
version of Gromov’s compactness theorem for Riemannian manifolds with pinched
sectional curvature (cf. [GLP] and [Pe]). The proof of this theorem is the main
content of Chapter 3.
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Compactness Theorem. — Given a > 0 and ω ∈ (0, π], if (Cn, xn)n∈N is a sequence of
pointed cone 3-manifolds with constant curvature in [−1, 0], cone angles in [ω, π], and
such that inj(xn) ≥ a, then (Cn, xn)n∈N has a subsequence that converges geometrically
to a pointed cone 3-manifold (C∞, x∞).

The compactness theorem is used to analyze sequences of hyperbolic cone 3-mani-
folds which do not collapse. In the collapsing case, we need to rescale the metric in
order to apply the compactness theorem. In fact we need a more precise result in the
collapsing case, analogous to the “Local Approximation Proposition” of Cheeger and
Gromov [CGv, Prop. 3.4], which furnishes a description of the (non-trivial) topology
of neighborhoods of points with small cone-injectivity radius. This is the local soul
theorem, which is the content of Chapter 4.

Local Soul Theorem. — Given ω ∈ (0, π), ε > 0 and D > 1 there exist

δ = δ(ω, ε,D) > 0 and R = R(ω, ε,D) > D > 1

such that, if C is an oriented hyperbolic cone 3-manifold with cone angles in [ω, π]
and if x ∈ C satisfies inj(x) < δ, then:
– either C is (1 + ε)-bilipchitz homeomorphic to a compact Euclidean cone 3-man-

ifold E of diameter diam(E) ≤ R inj(x);
– or there exists 0 < ν < 1, depending on x, such that x has an open neighborhood

Ux ⊂ C which is (1 + ε)-bilipschitz homeomorphic to the normal cone fibre bundle
Nν(S), of radius ν, of the soul S of a non-compact orientable Euclidean cone 3-
manifold with cone angles in [ω, π]. In addition, according to dim(S), the Euclidean
non-compact cone 3-manifold belongs to the following list:

I) (when dim(S) = 1), S1 
 R2, S1 
 (open cone disc) and the solid pillow (see
Figure 1 of Chapter 4), where 
 denotes the metrically twisted product;

II) (when dim(S) = 2)
i) a product T 2 ×R; S2(α, β, γ)×R, with α+β+γ = 2π (the thick turnover);

S2(π, π, π, π) × R (the thick pillow);
ii) the orientable twisted line bundle over the Klein bottle K2×̃R or over the

projective plane with two silvered points P2(π, π)×̃R;
iii) a quotient by an involution of either S2(π, π, π, π)×R, T 2×R or K2×̃R, that

gives an orientable bundle respectively over either D2(π, π), an annulus, or
a Möbius strip, with silvered boundary in the three cases (see Figure 2 of
Chapter 4).

In addition, the (1 + ε)-bilipschitz homeomorphism f : Ux → Nν(S) satisfies the
inequality

max
(
inj(x), d(f(x), S), diam(S)

)
≤ ν/D.

These two theorems, compactness theorem and local soul theorem, are the main
ingredients in the proofs of Theorems A and B. The assumption that cone angles are
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bounded above by π is crucial for the proof of both theorems (and cannot be removed).
Geometrically this property is related to convexity: the Dirichlet polyhedron of a cone
3-manifold with cone angles bounded above by π is convex; moreover convex subsets
of such cone 3-manifolds have nice properties.

One more ingredient for the study of the collapsing case is a cone manifold version
of Gromov’s isolation theorem [Gro, Sec. 3.4] (cf. Proposition 5.2.5). This involves
the notion of simplicial volume due to Gromov [Gro].

A strengthening of Theorem A leads to the following Margulis type result (cf.
Chapter 5):

Proposition 1. — Given 0 < ω0 < ω1 < π, there exists a positive constant δ0 =
δ0(ω0, ω1) > 0 such that every oriented closed hyperbolic cone 3-manifold with cone
angles in [ω0, ω1] and diameter > 1 contains a point x with inj(x) ≥ δ0 > 0.

Stronger thickness results, for general hyperbolic cone 3-manifolds (not assuming
any more, the singular locus to be a link) can be found in [BLP2]. This is a part
of the complete proof of Thurston’s orbifold theorem, including the case where the
singular locus has vertices, that we have written with B. Leeb in [BLP1, BLP2].

For cone angles bounded away 2π/3, using Hamilton’s theorem (cf. [Zh2, Thm
3.2]) we can get ride of the lower bound on the diameter:

Proposition 2. — Given 0 < ω0 < ω1 < 2π/3, there exists a positive constant δ1 =
δ1(ω0, ω1) > 0 such that every oriented closed hyperbolic cone 3-manifold with cone
angles in [ω0, ω1] contains a point x with inj(x) ≥ δ1 > 0.
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CHAPTER 2

PROOF OF THURSTON’S ORBIFOLD THEOREM

FOR VERY GOOD 3-ORBIFOLDS

In this chapter we prove Theorem 4, assuming Theorems A and B. Then we deduce
Theorem 1 from it.

2.1. Generalized Hyperbolic Dehn Filling

Let M be a compact 3-manifold with non-empty boundary ∂M = T 2
1 ∪ · · · ∪ T 2

k a
union of tori, whose interior is hyperbolic (complete with finite volume). Thurston’s
hyperbolic Dehn filling theorem provides a parametrization of a space of hyperbolic
deformations of this structure on int(M).

To describe the deformations on the ends of int(M), we fix two simple closed curves
µi and λi on each torus T 2

i of the boundary, which generate H1(T 2
i ,Z). The structure

around the i-th end of int(M) is described by the generalized Dehn filling coefficients
(pi, qi) ∈ R2 ∪ {∞} = S2, such that the structure at the i-th end is complete iff
(pi, qi) = ∞. The interpretation of the coefficients (pi, qi) ∈ R2 is the following:

– If pi, qi ∈ Z are coprime, then the completion at the i-th torus is a non-
singular hyperbolic 3-manifold, which topologically is the Dehn filling with
surgery meridian piµi + qiλi.

– When pi/qi ∈ Q∪{∞}, let ri, si ∈ Z be coprime integers such that pi/qi = ri/si.
The completion is a cone 3-manifold obtained by gluing a torus with singular
core. The surgery meridian is riµi + siλi and the cone angle of the singular
component is 2π|ri/pi|.

– When pi/qi ∈ R − Q, then the completion (by equivalence classes of Cauchy
sequences) is not topologically a manifold. These singularities are called of
Dehn type, cf. [Ho2].

Theorem 2.1.1 (Thurston’s hyperbolic Dehn filling [Thu1]). — There exists a neigh-
borhood U ⊂ S2 × · · · × S2 of {∞, . . . ,∞} such that the complete hyperbolic structure
on int(M) has a space of hyperbolic deformations parametrized by U via generalized
Dehn filling coefficients.
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The proof (cf. Appendix B) yields not only the existence of a one parameter family
of cone 3-manifold structures but also gives a path of corresponding holonomies in
the variety R(M) of representations of π1(M) into SL2(C). The holonomy of the
complete structure on int(M) is a representation of π1(M) into PSL2(C) that can
be lifted to SL2(C). A corollary of the proof of Thurston’s hyperbolic Dehn filling
theorem is the following:

Corollary 2.1.2. — For any real numbers α1, . . . , αk ≥ 0 there exist ε > 0 and a path
γ : [0, ε) → R(M), such that, for every t ∈ [0, ε), γ(t) is a lift of the holonomy of a
hyperbolic structure on M corresponding to the generalized Dehn filling coefficients(

(p1, q1), . . . , (pk, qk)
)
=
(
(2π/(α1t), 0), . . . , (2π/(αkt), 0)

)
.

When αit = 0, the structure at the i-th cusp is complete; otherwise its completion
is a cone 3-manifold obtained by adding to T 2

i a solid torus with meridian curve µi

and singular core with cone angle αit.

2.2. The space of hyperbolic cone structures

Let O be an irreducible orientable connected closed 3-orbifold of cyclic type, with
ramification locus Σ, and such that O − Σ admits a complete hyperbolic structure
of finite volume. In this section we study the space of hyperbolic cone structures
with topological type (O,Σ). The main result of this section, Proposition 2.2.4,
can be deduced from Thurston’s Hyperbolic Dehn filling theorem (Theorem 2.1.1)
and Hodgson-Kerckhoff rigidity theorem [HK]. Nevertheless we present here an el-
ementary proof, based only on Thurston’s Dehn filling theorem, but independent of
Hodgson-Kerckhoff rigidity theorem.

Notation 2.2.1. — Let m1, . . . ,mq be the ramification indices of O along Σ. We set

α = (α1, . . . , αq) =
( 2π
m1

, . . . ,
2π
mq

)
.

For t ∈ [0, 1], let C(tα) denote the hyperbolic cone 3-manifold having the same
topological type as the orbifold O and cone angles tα = (tα1, . . . , tαq) (the ordering
of the components of Σ is fixed throughout this section). With this notation, C(0) is
the complete hyperbolic structure of finite volume on O − Σ.

Thurston’s hyperbolic Dehn filling theorem (Corollary 2.1.2) means that for small
values of t > 0 the hyperbolic cone 3-manifold C(tα) exists. Thurston’s idea is to
increase t whilst keeping C(tα) hyperbolic and to study the limit of hyperbolicity.

More precisely, consider the variety of representations of π1(O − Σ) into SL2(C),

R := Hom(π1(O − Σ), SL2(C)).

Since π1(O − Σ) is finitely generated, R is an affine algebraic subset of CN (it is
not necessarily irreducible). The holonomy representation of the complete hyperbolic
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structure on O − Σ lifts to a representation ρ0 into SL2(C), which is a point of R.
Let R0 be an irreducible component of R containing ρ0.

Definition 2.2.2. — Define the subinterval J ⊆ [0, 1] to be:

J :=

t ∈ [0, 1]

∣∣∣∣∣∣∣∣
there exists a path γ : [0, t] → R0

such that, for every s ∈ [0, t],
γ(s) is a lift of the holonomy
of a hyperbolic cone 3-manifold C(sα)


Remark 2.2.3. — We say “a” hyperbolic cone 3-manifold C(sα), since we do not use
the uniqueness of the hyperbolic cone structure for s > 0, proved in [Koj].

By hypothesis, J �= ∅ because 0 ∈ J (i.e. O − Σ has a complete hyperbolic
structure).

Proposition 2.2.4. — The interval J is open in [0, 1].

Proof. — The fact that J is open at the origin is a consequence of Thurston’s hyper-
bolic Dehn filling theorem, as seen in Corollary 2.1.2.

Let µ = (µ1, . . . , µq) be the meridians of Σ. That is, µi ∈ π1(O − Σ) represents
a meridian of the i-th component of Σ, for i = 1, . . . , q. Note that µi is not unique,
only the conjugacy class of µ±1

i is unique. We consider the regular map:

Trµ : R0 −→ Cq

ρ �−→ (trace(ρ(µ1)), . . . , trace(ρ(µq))).

Claim 2.2.5. — There exists a unique affine irreducible curve C ⊂ Cq such that, for
any t ∈ J , Trµ(γ([0, t])) ⊂ C.

Proof of the claim. — For n ∈ N, consider the Chebyshev-like polynomial pn(x) =
2 cos(n arccos(x/2)). It is related to the classical Chebyshev polynomial by a linear
change of variable. It can also be defined inductively by the rule{

p0(x) = 2, p1(x) = x,

pn(x) = x pn−1(x) − pn−2(x), for n ∈ N, n > 1.

We are interested in the following property of polynomials pn:

trace(Mn) = pn(trace(M)), ∀M ∈ SL2(C), ∀n ∈ N.

Let ρ0 = γ(0) be the lift of the holonomy corresponding to the complete finite
volume hyperbolic structure on O − Σ. Since ρ0 applied to a meridian is parabolic,
Trµ(ρ0) = Trµ(γ(0)) = (ε12, . . . , εq2), with ε1, . . . , εq ∈ {±1}.

We take C to be the irreducible component of the algebraic set

{z ∈ Cq | pm1(ε1z1) = · · · = pmq(εqzq)}

that contains Trµ(ρ0).
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To show that the component C is well defined and is a curve, we use the following
identity:

p′n(2) = n2, ∀n ∈ N.

It follows from this formula that Trµ(ρ0) is a smooth point of {pm1(ε1z1) = · · · =
pmq(εqzq)} of local dimension 1. Thus C is the only irreducible component containing
Trµ(ρ0) and it is a curve.

Finally to prove that Trµ(γ([0, t])) ⊂ C, we consider the analytic map:

Θ : C −→ Cq

w �−→ (ε12 cos(wπ/m1), . . . , εq2 cos(wπ/mq))

Since γ(s)(µi) is a rotation of angle sπ/mi and Trµ(γ(0)) = (ε12, . . . , εq2), it is clear
that Trµ(γ([0, t])) ⊂ Θ(C). By construction,

Θ(C) ⊂ {pm1(ε1z1) = · · · = pmq(εqzq)}.
Since analytic irreducibility implies algebraic irreducibility, Θ(C) ⊂ C, and the claim
is proved.

Claim 2.2.6. — For every t ∈ J , there exists an affine curve D ⊂ R0 containing γ(t)
and such that the restricted map Trµ : D → C is dominant.

Proof. — We distinguish two cases, according to whether t > 0 or t = 0.
When t > 0, we take an irreducible component Z of Tr−1

µ (C) that contains the
path γ([t − ε, t]), for some ε > 0. Since

Trµ(γ(s)) = (ε12 cos(sπ/m1), . . . , εq2 cos(sπ/mq)),

the rational map Trµ : Z → C is not constant, hence dominant. By considering
generic intersection with hyperplanes we can find the curve D of the claim. More
precisely, we intersect Z with a generic hyperplane H passing through γ(t) and such
that it does not contain Tr−1

µ (Trµ(γ(t))) ∩ Z. Such a hyperplane H exists because
Trµ : Z → C is dominant. By construction Trµ : Z ∩ H → C is not constant and the
dimension of Z ∩H is less than the dimension of Z. By induction we obtain a curve
D.

When t = 0, we consider again an irreducible component Z of Tr−1
µ (C) that contains

ρ0. In this case Thurston’s hyperbolic Dehn filling theorem implies that the restriction
Trµ :X → C is not constant. By considering intersection with generic hyperplanes as
before, we obtain the curve D of the claim.

We now conclude the proof of Proposition 2.2.4. Given t ∈ J , let C and D be as in
Claims 2.2.5 and 2.2.6. Since D and C are curves, for some ε > 0, the path

g : [t, t+ ε) −→ C ⊂ Cq

s �−→ (ε12 cos(sπ/m1), . . . , εq2 cos(sπ/mq))

can be lifted through Trµ : D → C to a map g̃ : [t, t + ε) → D. This map g̃ is a
continuation of γ.
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It remains to check that this algebraic continuation of γ corresponds to the holono-
my representations of hyperbolic cone 3-manifolds. To show this, we use Lemma 1.7.2
of Canary, Epstein and Green’s Notes on notes of Thurston [CEG]. This lemma
(called “Holonomy induces structure”) proves that, for s ∈ [t, t+ ε), g̃(s) is the holon-
omy of a hyperbolic structure on the complement C(tα) − Nr(Σ) of a tubular neigh-
borhood of the singular set, with arbitrarily small radius r > 0. The construction
of the hyperbolic structure in a tubular neighborhood of the singular set needs some
careful but elementary analysis. In [Po2] this is done in the case where the structure
is deformed from Euclidean to hyperbolic geometry, and the constant curvature case
is somewhat simpler. This finishes the proof of Proposition 2.2.4.

Remark 2.2.7. — It follows from the proof that, for every t ∈ J , the path γ : [0, t] →
R0 of holonomies of hyperbolic cone structures is piecewise analytic. This is useful
for applying Schläfli’s formula [Po2, Prop. 4.2]).

The following technical lemma will be used in the next section.

Lemma 2.2.8. — The dimension of Tr−1
µ (C) is 4.

Proof. — The proof of Thurston’s hyperbolic Dehn filling theorem uses the fact that
the local dimension of Tr−1

µ (Trµ(ρ0)) at ρ0 is 3, because of Weil’s local rigidity theo-
rem. Moreover, the dimension of the preimage of any point in C is at least 3, because
this is the dimension of SL2(C). Since Trµ : Tr−1

µ (C) → C is dominant, the dimension
of Tr−1

µ (C) is 4.

2.3. Proof of Theorem 4 from Theorems A and B

Theorem 4. — Let O be a closed orientable connected irreducible very good 3-orbifold
of cyclic type. Assume that the complement O − Σ of the branching locus admits a
complete hyperbolic structure. Then O contains a non-empty compact essential 3-
suborbifold O′ ⊆ O, which is not a product and which is either complete hyperbolic of
finite volume, Euclidean, Seifert fibred or Sol.

Proof of Theorem 4 from Theorems A and B. — We start with the subinterval J ⊆
[0, 1] as in Section 2.2. Recall that J is the set of real numbers t ∈ [0, 1] such that there
is a path γ : [0, t] → R0 with the property that, for every s ∈ [0, t], γ(s) is the holonomy
of a hyperbolic cone 3-manifold C(sα). The hyperbolic cone 3-manifold C(sα) has
the same topological type as O and its cone angles are sα = (s 2π/m1, . . . , s 2π/mq).

By Proposition 2.2.4, J is open in [0, 1], and moreover 0 ∈ J by hypothesis. So
there are three possibilities: either J = [0, 1], J = [0, 1), or J = [0, t) with 0 < t < 1.

If J = [0, 1] then O is hyperbolic. Propositions 2.3.1 and 2.3.7 deal with the cases
where J = [0, t) with 0 < t < 1 and J = [0, 1) respectively.

Proposition 2.3.1. — If J = [0, t) with 0 < t < 1, then O is a spherical 3-orbifold.
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Proof. — Fix (tn)n∈N an increasing sequence in J = [0, t) converging to t and consider
the corresponding sequence of cone 3-manifolds Cn = C(tnα). The cone 3-manifolds
Cn have the same topological type as O, and the cone angles are contained in some
interval [ω0, ω1], with 0 < ω0 < ω1 < π, because 0 < t < 1. Thus we can apply
Theorem A to the sequence (Cn)n∈N, and, after perhaps passing to a subsequence, we
have three possibilities:

i) the sequence (Cn)n∈N converges geometrically to a hyperbolic cone 3-manifold
with the same topological type;

ii) each Cn contains an embedded sphere Sn which intersects Σ in 3 points and the
sum of the cone angles at these points converges to 2π;

iii) there is a sequence of positive reals λn → 0 such that
(

1
λn

Cn

)
n∈N

converges
geometrically to a Euclidean cone 3-manifold with the same topological type.

We want to show that only the last possibility occurs.
If case i) happens, we claim that t ∈ J ; this would contradict the hypothesis

J = [0, t). Let C∞ be the limit of the sequence Cn. Since the convergence is geometric,
the cone angles of C∞ are precisely tα. Therefore C(tα) is hyperbolic and it remains
to show the existence of a path of holonomy representations from 0 to t. To show
that, we take a path γn for each ρn and we prove that the sequence of paths γn has
a convergent subsequence.

Lemma 2.3.2. — The sequence of paths γn has a subsequence converging to a path γ∞.
Moreover, up to conjugation, for n sufficiently large, γ∞ is a continuation of γn.

Proof of Lemma 2.3.2. — Consider the algebraic affine set V = Tr−1
µ (C) and its quo-

tient by conjugation X = V/PSL2(C). The space X may not be Hausdorff, but since
the holonomy of a closed hyperbolic cone 3-manifold is irreducible [Po1, Prop. 5.4],
the points we are interested in (conjugacy classes of holonomy representations) have
neighborhoods that are analytic (see for instance [CS] or [Po1, Prop. 3.4]). If we
remove all reducible representations, then the quotient is analytic, even affine [CS],
call it X irr. By lemma 2.2.8, X irr is a curve. Moreover, the holonomies of hyperbolic
cone structures are contained in a real curve of X irr, because the traces of the merid-
ians are real. Hence, up to conjugation, the paths γn are contained in a real analytic
curve. Thus, ρn converges to ρ∞, the sequence γn has a convergent subsequence, and
the limit γ∞ is a continuation of γn.

It follows from this lemma that the limit γ∞ is a path of holonomy representations
of hyperbolic cone structures. Hence t ∈ J and we obtain a contradiction.

Next we suppose that case ii) occurs. That is, for each n ∈ N, S2
n ⊂ Cn is

an embedded 2-sphere which intersects Σ in three points and the sum of the cone
angles at these points converges to 2π. Since Σ has a finite number of components,
after passing to a subsequence, we can suppose that S2

n intersects always the same
components of Σ. Let m1, m2 and m3 be the branching indices of the components of
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Σ which intersect S2
n, counted with multiplicity if one component of Σ intersects S2

n

more than once. Since the sum of the cone angles at these points converges to 2π, we
have:

2π ≤ t

(
2π
m1

+
2π
m2

+
2π
m3

)
< 2π

(
1
m1

+
1
m2

+
1
m3

)
,

because t < 1. If we view S2
n as a 2-suborbifold F ⊂ O, then F is spherical, because

its underlying space is |F | ∼= S2 and it has three points of ramification with branching
indices m1, m2 and m3, where 1

m1
+ 1

m2
+ 1

m3
> 1. The suborbifold F cannot bound

a discal 3-orbifold, since we assume that the ramification set of O is a link. This
contradicts the irreducibility of the 3-orbifold O, so case ii) cannot happen.

So far we have eliminated cases i) and ii). Now we prove from case iii) that O is a
spherical 3-orbifold.

Case iii) implies that there is a Euclidean cone 3-manifold C(tα) with the same
topological type as O and with cone angles tα = (t 2π/m1, . . . , t 2π/mq), where
0 < t < 1. We first prove that in this case the 3-orbifold O must be very good.

Lemma 2.3.3. — If there is a Euclidean cone 3-manifold C(tα) with the same topolog-
ical type as the orbifold O and with cone angles tα = (t 2π/m1, . . . , t 2π/mq), where
0 < t < 1, then O is a very good 3-orbifold.

Proof of Lemma 2.3.3. — First we deform the singular Euclidean metric induced by
C(tα) on the underlying manifold |O| of O to a Riemannian metric with non-negative
sectional curvature (cf. [Jon], [GT], [Zh1, Zh2]).

Let Σ ⊂ |O| be the singular locus of this Euclidean metric, which is also the ram-
ification locus of the orbifold O. We deform the metric on its tubular neighborhood
Nr0(Σ) of radius r0, for some r0 > 0 sufficiently small. Around Σ, the local expression
of the singular Euclidean metric in Fermi (cylindrical) coordinates is:

ds2 = dr2 + t2r2dθ2 + dh2,

where r ∈ (0, r0) is the distance from Σ, h is the length parameter along Σ, and
θ ∈ (0, 2π) is the rescaled angle parameter.

The deformation we are introducing depends only on the parameter r. This defor-
mation consists of replacing the above metric by a metric of the form

ds2 = dr2 + f2(r)dθ2 + dh2,

where f : [0, r0 − ε) → [0,+∞) is a smooth function that satisfies, for some ε > 0
sufficiently small:

1) f(r) = r, for all r ∈ [0, t ε);
2) f(r) = t r + t ε, for all r ∈ (r0/2, r0 − ε),
3) f is concave: f ′′(r) ≤ 0, for all r ∈ [0, r0 − ε).

Such a function f exists because 0 < t < 1. The first property implies that the
new metric is non-singular. Property 2) implies that, after reparametrization, this
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new non-singular metric fits with the original singular metric at the boundary of
the tubular neighborhood Nr0(Σ). A classical computation shows that the sectional
curvature of the planes orthogonal to Σ is non-negative, by property 3), and it is
even positive at some point. Hence, since the metric is locally a product, it has
non-negative sectional curvature.

We show now that the manifold |O| admits a Riemannian metric of constant pos-
itive sectional curvature (i.e. is spherical), by applying the following deep theorem of
Hamilton ([Ha1, Ha2], see also [Bou]).

Theorem 2.3.4 (Hamilton [Ha1, Ha2]). — Let N 3 be a closed 3-manifold which admits
a Riemannian metric of non-negative Ricci curvature. Then N3 admits a metric
which is either spherical, flat or modelled on S2 × R.
Furthermore the deformation is natural, and every isometry of the original metric

is also an isometry of the new metric.

Remark 2.3.5. — It follows from Hamilton’s proof [Ha2] that the flat case occurs only
if the initial metric on N3 was already flat, and that the case modelled on S2 × R
occurs only if the initial metric had reducible holonomy, contained in SO(2).

We apply Hamilton’s Theorem 2.3.4 to the metric on |O| given by Lemma 2.3.3.
According to the remark, the flat case of Hamilton’s theorem does not occur because
the initial metric was not flat. Moreover, we can also eliminate the case S2 × R,
because this case would imply that the singular Euclidean cone structure on |O| is of
Seifert type (|O| admits a Seifert fibration such that the singular locus is an union of
fibres). This follows, for instance, from [Po2, Lemma 9.1]. Thus Hamilton’s theorem
implies that |O| admits a spherical metric.

Therefore, up to passing to a finite cover, we can assume that the underlying space
|O| of O is S3. Since the ramification set is a link, O is a very good 3-orbifold. More
precisely, O admits a finite abelian regular covering which is a manifold. This proves
Lemma 2.3.3.

Let M → O be a regular covering of O with finite deck transformation group G,
such that M is a manifold. Since t < 1, the Euclidean cone 3-manifold C(t α) induces
a G-invariant Euclidean cone manifold structure onM , with singular angles t 2π < 2π,
from which we deduce (cf. [Jon], [GT], [Zh1, Zh2]):

Lemma 2.3.6. — The manifold M admits a non-singular G-invariant Riemannian
metric with constant positive sectional curvature.

Proof of Lemma 2.3.6. — First, we deform the singular Euclidean metric onM (lifted
from the one induced by C(tα) on |O|) in a G-invariant way to a G-invariant Rie-
mannian metric on M , which is not flat and has non-negative sectional curvature.

Let ΣG ⊂ M be the singular set of this Euclidean metric, which is also the set
of points where the action of G is not free. We deform the metric in a tubular
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neighborhood of the singular set Nr0(ΣG) of radius r0, for some r0 > 0 sufficiently
small, exactly in the same way as in the proof of Lemma 2.3.3. Since the deformation
introduced in Lemma 2.3.3 depends only on the radial parameter r, it is G-invariant.
Hence we get a G-invariant Riemannian metric which is non flat and has non-negative
sectional curvature.

Now, Hamilton’s Theorem 2.3.4 implies that this G-invariant Riemannian metric
on M can be deformed to a G-invariant Riemannian metric with positive constant
sectional curvature. This is because the initial metric is not flat. Moreover M − ΣG

admits a complete hyperbolic structure lifted from the one of O−Σ, and hence cannot
be Seifert fibred.

This G-invariant spherical metric on M induces a spherical metric on the 3-orbifold
O. This concludes the proof of Proposition 2.3.1

We complete now the proof of Theorem 4 by dealing with the case where J = [0, 1):

Proposition 2.3.7. — If J = [0, 1) then O contains a non-empty compact essential
3-suborbifold which is not a product and which is geometric.

Proof. — Let (tn)n∈N be a sequence in [0, 1) converging to 1. We apply Theorem B to
the corresponding sequence of hyperbolic cone 3-manifolds (C(tnα))n∈N whose cone
angles form an increasing sequence that converges to 2π/ni, i = 1, . . . , k, when n

goes to ∞. By Theorem B, O contains a non-empty compact essential 3-suborbifold
O′ ⊆ O which is either Euclidean, Seifert fibred, Sol, or hyperbolic of finite volume,
and which is not a product.

Since Propositions 2.3.1 and 2.3.7 are proved, the proof of Theorem 4 from Theo-
rems A and B is finished.

2.4. Proof of Theorem 1

Theorem 1. — Let O be a compact, connected, orientable, irreducible and ∂-in-
compressible 3-orbifold of cyclic type. If O is very good, topologically atoroidal and
acylindrical, then O is geometric (i.e. O admits either a hyperbolic, a Euclidean, or
a Seifert fibred structure).

Throughout this section we assume that O is a 3-orbifold which satisfies the hy-
pothesis of Theorem 1.

Let DO denote the double of O along some components of ∂O, which we call
doubling components. The ramification set of DO is denoted by DΣ. If we double
along the empty set, then we choose the convention that DO = O, so that DO is
always connected.
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First we give some results about the topology and the geometry of DO and DO −
DΣ in order to reduce the general case to the case where the hypothesis of Theorem 4
are satisfied. Then we deduce Theorem 1 from Theorem 4.

Throughout Lemmas 2.4.1 to 2.4.7 we assume only that O is a compact orientable
irreducible and ∂-incompressible 3-orbifold which is topologically atoroidal and acylin-
drical. The hypothesis that the 3-orbifold O is very good will be used only in Propo-
sition 2.4.9, to reduce the proof of Theorem 1 to the case where ∂O does not contain
any non-singular torus component.

Lemma 2.4.1. — Let O be a compact connected orientable irreducible ∂-incompressible
3-orbifold which is topologically atoroidal and acylindrical. For any choice of doubling
components,

i) DO is irreducible and topologically acylindrical;
ii) every component of ∂O is incompressible in DO;
iii) every incompressible toric 2-suborbifold of DO is parallel to ∂O ⊂ DO.
In particular DO is ∂-incompressible. Furthermore, DO is topologically atoroidal iff
every doubling component is a hyperbolic 2-suborbifold.

Proof of Lemma 2.4.1. — Let S ⊂ DO be a spherical 2-suborbifold. After isotopy,
we can suppose that S is transverse to ∂O and that the intersection S∩∂O is minimal.
We claim that S ⊂ O. Seeking a contradiction, we suppose S �⊂ O. Since S is a sphere
with at most three cone points, at least one component of S ∩ O is a disc ∆2 with
at most one cone point. Since O is irreducible, ∂∆2 is essential in ∂O by minimality.
Hence ∆2 is a compressing disc for ∂O, and we get a contradiction because O is
∂-incompressible. Therefore S ⊂ O and S bounds a discal 3-orbifold by irreducibility
of O. The same argument goes through to show that DO does not contain any bad
2-suborbifold. Hence DO is also irreducible.

Let A ⊂ DO be a properly embedded annular 2-suborbifold. Again we deform
it so that A ∩ ∂O is transverse and minimal. No component of A ∩ O is a discal
orbifold, because ∂O is incompressible and the intersection A∩∂O is minimal. Hence
A = A1 ∪ · · · ∪ Ak, where each Ai is an annular 2-suborbifold properly embedded in
one of the copies of O. If k > 1, then, by minimality of the intersection, none of the
annuli Ai is parallel to ∂O nor compressible in O, contradicting the acylindricity of
O. Hence k = 1 and A ⊂ O is not essential. This proves that DO is topologically
acylindrical.

To show that every component of ∂O is incompressible in DO, suppose that ∂O
has a compressing disc ∆2 ⊂ DO. By making the intersection ∆2 ∩ ∂O minimal,
every disc component of ∆2 ∩ O is a compressing disc for ∂O in O, thus we obtain a
contradiction that proves assertion ii).

Finally, let F ⊂ DO be an incompressible toric 2-suborbifold. After an isotopy,
we can again make the intersection F ∩ ∂O transverse and minimal. If F ∩ ∂O �= ∅,
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then the minimality of the intersection implies that each component of F ∩ O is an
essential annular 2-suborbifold, and we get a contradiction. Thus F ⊂ O and F is
parallel to ∂O.

Lemma 2.4.2. — Let O be a compact connected orientable irreducible ∂-incompressible
3-orbifold which is topologically atoroidal and acylindrical. If every doubling compo-
nent is different from a non-singular torus, then the manifold DO−DΣ is irreducible
and topologically atoroidal.

Proof of Lemma 2.4.2. — Let S ⊂ DO −DΣ be an embedded 2-sphere. It bounds a
discal 3-suborbifold ∆3 in DO, because DO is irreducible. Since S ∩DΣ = ∅, ∆3 is
a 3-ball and ∆3 ∩DΣ = ∅. So DO −DΣ is irreducible.

Let T ⊂ DO − DΣ be an embedded torus. By Lemma 2.4.1 iii), either T is
compressible in DO or parallel to a component of ∂O ⊂ DO. In this last case, since
the doubling components are different from tori, T must be boundary parallel in DO,
and thus it is also boundary parallel in DO − DΣ. If T admits a compressing discal
2-suborbifold, then the irreducibility of DO implies that T bounds either a solid torus
or a solid torus with ramified core S1 × D2(∗). In the former case T is compressible
in DO − DΣ; in the latter case, T is boundary parallel in DO −DΣ.

Lemma 2.4.3. — Let O be a compact connected orientable irreducible ∂-incompressible
3-orbifold.

i) For any choice of doubling components, if DO is Euclidean or Seifert fibred then
O is Euclidean, Seifert fibred, or an I-bundle over a 2-orbifold.

ii) If the doubling components are non-empty, then DO is not Sol.

Proof of Lemma 2.4.3. — First suppose that DO is Euclidean or Seifert fibred. We
can assume that ∂O �= ∅, otherwise the statement is trivial. Moreover DO ad-
mits a finite regular irreducible manifold covering N , because DO is irreducible by
Lemma 2.4.1, and it is geometric. The fundamental group π1(N) is infinite, because
each component of ∂O lifts to incompressible surfaces in N , with infinite fundamental
group.

If DO is Seifert fibred, by [BS1, Thm. 4], ∂O is either isotopic to a vertical (i.e.
fibred) or to a horizontal (i.e. transverse to the Seifert fibration) 2-suborbifold because
it is incompressible (Lemma 2.4.1). Therefore O is either Seifert fibred or an I-bundle
over a 2-orbifold.

If DO is Euclidean but ∂DO is not empty, then DO admits a Seifert fibration,
hence, as above, O is either Seifert fibred or an I-bundle.

To handle the case where DO is Euclidean and ∂DO is empty we consider the
natural involution τ : DO → DO obtained by reflection through the doubling com-
ponents of O. The reflection τ : DO → DO lifts to a reflection τ̃ : N → N which
commutes with the deck transformations group of N → DO. In particular, N is
obtained by doubling a finite regular covering M → O along the lifts of the doubling
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components of DO, which are precisely the fixed point set of the involution τ̃ . We
can take N to be the 3-torus T 3. Then the fixed point set of τ̃ , which is an incom-
pressible surface, is isotopic to a disjoint union of parallel copies of fibres T 2 × {∗}
in T 3. In particular, the finite regular covering M of DO is homeomorphic to the
product T 2 × I. By [BS1, Prop. 12] or [MS], the orbifold O inherits an I-fibration
and is Euclidean. This proves assertion i).

To prove assertion ii), we suppose that DO is Sol. There is a finite regular covering
N → DO which is a manifold and fibres over S1 with fibre T 2 and Anosov monodromy.
Let τ : DO → DO be the natural involution as above, obtained by reflection through
the doubling components of ∂O. Since τ is an involution with a non-empty fixed
point set, not included in the ramification locus, it lifts to an involution τ̃ of N whose
fixed point set contains a two dimensional submanifold. By Tollefson’s theorem about
finite order homeomorphisms of fibre bundles [To2] (see also [MS]), we may assume
that τ̃ preserves the fibration by tori. Then one can easily check that torus bundles
with Anosov monodromy cannot admit the reflection τ̃ .

Remark 2.4.4. — When O is an I-bundle over a 2-orbifold F 2, the following facts
should be noted:

i) The 2-orbifold F 2 is either Euclidean or hyperbolic, because O is irreducible. In
particular, the interior of O has a complete Euclidean or hyperbolic structure.

ii) Acylindricity of O restricts the possibilities for F 2.
iii) The manifold DO −DΣ is Seifert fibred.

We decompose the boundary of O in three parts:

∂O = ∂TO � ∂SEO � ∂HO,

where:

– ∂TO is the union of the boundary components homeomorphic to a torus,
– ∂SEO is the union of the singular Euclidean boundary components,
– ∂HO is the union of the hyperbolic boundary components.

In the following we denote O−N (Σ) by X , where N (Σ) is an open tubular neigh-
borhood of Σ. Let P ⊆ ∂X be the union of ∂TO with the tori corresponding to circle
components of Σ and with the annuli corresponding to arcs in Σ. Equivalently:

P = ∂TO ∪ (∂N (Σ) ∩ int(O)).

Then we have the following proposition (see also [Dun2, Thm. 10], [SOK, §2]):

Lemma 2.4.5. — Let O be a compact orientable irreducible and ∂-incompressible 3-
orbifold which is topologically atoroidal and acylindrical. Then:

i) either X − P admits a hyperbolic structure with totally geodesic boundary and
finite volume,

ii) or O is Seifert fibred or an I-bundle over a 2-orbifold F 2.
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Proof of Lemma 2.4.5. — LetDX be obtained by doublingX along ∂X−P . We take
the convention thatDX = X if ∂X = P , so thatDX is always connected. Then ∂DX

is an union of tori. In fact DX = DO − N (DΣ), where DO is obtained by doubling
O along all the components of ∂SEO � ∂HO. Thus it follows from Lemma 2.4.2 that
DX is irreducible and atoroidal. With these notations, we have the following claim:

Claim 2.4.6. — Either DX = DO−N (DΣ) has incompressible boundary and is topo-
logically acylindrical, or O is Seifert fibred or an I-bundle over a 2-orbifold F 2.

Proof of the claim. — First we prove that ifDO−N (DΣ) has compressible boundary
then O is Seifert fibred. Assuming that DO − N (DΣ) has compressible boundary,
then DO − N (DΣ) is a solid torus, because it is irreducible and its boundary is a
union of tori. Hence the underlying space of DO is a generalized Lens space and its
ramification locus is the core of one of the solid tori of a genus one Heegard splitting.
As the 3-orbifold DO is irreducible, it cannot be the product S1 ×S2(∗), where S2(∗)
is a 2-sphere with one cone point (a bad 2-orbifold). Hence DO has S3 as universal
covering. By the equivariant Dehn’s lemma, DO cannot contain an incompressible
2-suborbifold. Hence ∂O = ∅, and DO = O, by Lemma 2.4.1 ii). Thus O is Seifert
fibred.

We prove next that if DO − N (DΣ) contains an essential annulus then DO is
Seifert fibred. This will imply the claim, because when DO is Seifert fibred, then, by
Lemma 2.4.3, O is either Seifert fibred or an I-bundle over a 2-orbifold.

Suppose that DO − N (DΣ) contains an essential annulus. By Lemma 2.4.2 and
the characteristic submanifold theorem [JS], [Joh], DO − N (DΣ) is Seifert fibred.
We consider a component Σi of Σ and a solid torus neighborhood N (Σi). If the fibre
of the Seifert fibration of DO−N (DΣ) is not homotopic to the meridian of Σi in the
torus ∂N (Σi), then this Seifert fibration can be extended to N (Σi) so that Σi is a
fibre.

We suppose now that the fibre of the Seifert fibration of DO−N (DΣ) is homotopic
to the meridian of Σi. If the base 2-orbifold of the Seifert fibration in DO − N (DΣ)
is different from a disc or a disc with one cone point, then DO − N (DΣ) contains an
essential annulus which is vertical and its boundary is in ∂N (Σi). In particular, the
union of this annulus with two meridian discs (with one cone point) of N (Σi) gives
an incompressible spherical 2-suborbifold in DO, contradicting the irreducibility of
DO. Hence DO−N (DΣ) is a solid torus, and, as we have already shown above, this
implies that ∂O = ∅ and DO = O is Seifert fibred.

To achieve the proof of Lemma 2.4.5 we apply Thurston’s hyperbolization theo-
rem for topologically atoroidal and acylindrical Haken 3-manifolds. We assume that
O is not Seifert fibred, nor an I-bundle over a 2-orbifold F 2. Then it follows from
Lemma 2.4.2 and Claim 2.4.6 that DX is a ∂-incompressible Haken 3-manifold, which
is topologically atoroidal and acylindrical. Since ∂DX is an union of tori, Thurston’s
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hyperbolization theorem shows that DX − ∂DX admits a complete hyperbolic struc-
ture of finite volume.

If ∂X = P , then DX = X and the proof is done. So from now on, we assume that
Q = ∂X − P is not empty. In particular ∂SEO � ∂HO is not empty.

Consider the reflection τ0 : DX → DX through the doubling components Q.
By Mostow-Prasad rigidity theorem, τ0 is homotopic to an isometric involution τ1 :
DX → DX . By Waldhausen’s and Tollefson’s Theorems ([Wa1], [To1]), there exists
a homeomorphism h : DX → DX isotopic to the identity, that conjugates τ0 and τ1.
This implies that the 3-manifold X − P is hyperbolic of finite volume and that the
components Q = ∂X − P are totally geodesic.

Lemma 2.4.7. — If DO is hyperbolic with finite volume, then O is hyperbolic and the
doubling components are totally geodesic.

Proof of Lemma 2.4.7. — Note that if DO is hyperbolic with finite volume, then the
doubling components are precisely the hyperbolic pieces ∂HO of ∂O. We assume that
∂HO is not empty, otherwise O = DO and there is nothing to prove.

Consider the reflection τ0 : DO → DO through the doubling components. By
Mostow-Prasad rigidity theorem, τ0 is homotopic (in the orbifold sense) to an iso-
metric involution τ1 : DO → DO. We want to show that these two involutions are
in fact conjugate. This will imply that the 3-orbifold O is hyperbolic and that the
hyperbolic components of ∂O are totally geodesic.

Since both τ0 and τ1 preserve the ramification set, each one induces a involution
of DO − DΣ. By Lemma 2.4.5, since DO is not Seifert fibred, nor an I-bundle over
a 2-orbifold, the manifold DO − DΣ admits a hyperbolic structure of finite volume
with cusps and totally geodesic boundary. Its totally geodesic boundary is exactly
(∂SEO − Σ) � (∂SEO − Σ).

The following claim shows that the restrictions of τ0 and τ1 to DO − DΣ are
respectively homotopic to some isometric involutions g0 and g1 on DO −DΣ.

Claim 2.4.8. — Let N be a compact orientable irreducible 3-manifold and P ⊂ ∂N a
disjoint union of incompressible tori and annuli, such that N −P admits a hyperbolic
structure of finite volume with totally geodesic boundary. Then any diffeomorphism
h : N → N is homotopic to an isometry on N − P .

Proof of Claim 2.4.8. — If ∂N = P , then it is a direct consequence of Mostow rigidity
theorem. Thus we assume that Q = ∂N − P is not empty.

Let DN be obtained by doubling N along Q ⊂ ∂N . Then ∂DN is an union of
incompressible tori and DN − ∂DN admits a complete hyperbolic structure of finite
volume. Moreover the reflection ρ : DN → DN through the doubling components Q
is an isometry on DN − ∂DN .

The diffeomorphism h : N → N extends to give a diffeomorphism ĥ : DN → DN

which commutes with the involution ρ. By Mostow rigidity theorem ĥ is homotopic
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to an isometry ĥ1 on DN − ∂DN . Since the two isometric involutions ρ and ĥ1ρĥ
−1
1

are homotopic on DN − ∂DN , they must be equal. Hence ĥ1 induces an isometry h1

of N − P , which extends to a diffeomorphism of N .
We show now that h1 and h are homotopic onN . The diffeomorphism φ̂ = ĥ1ĥ

−1 is
homotopic to the identity on DN . Therefore φ̂ induces an inner automorphism of the
fundamental group π1(DN), that sends the subgroup π1(N) to itself (the base point
is taken on the doubling surface Q). Since N is not homeomorphic to an I-bundle over
a component of Q, it follows that π1(N) is its own normalizer in π1(DN) by [Hei,
Thm. 2]. Therefore φ̂ induces an inner automorphism of π1(N). This automorphism
corresponds to the induced action of φ = h1h

−1 on π1(N). Since N is a K(π, 1)-
space, it follows that the map φ is homotopic to the identity on N hence h1 and h

are homotopic on N .

To finish the proof of Lemma 2.4.7 we use an unpublished argument of Bonahon and
Siebenmann [BS3]. We apply Claim 2.4.8 to the restrictions of τ0 and τ1 to DO−DΣ.
Let g0 and g1 denote the isometric involutions of DO − DΣ which are homotopic to
the restrictions of τ0 and τ1 respectively. Then, by Waldhausen’s and Tollefson’s
Theorems [Wa1], [To1], there exist two homeomorphisms h0, h1 : DO − DΣ →
DO − DΣ isotopic to the identity such that the restrictions τ0|DO−DΣ = h0g0h

−1
0

and τ1|DO−DΣ = h1g1h
−1
1 . Therefore, the involutions g0 and g1 on DO − DΣ can

be extended respectively to involutions g0, g1 : DO → DO. It remains to prove that
g0 = g1 on DO.

The map f = g0g
−1
1 is homotopic to the identity on DO in the orbifold sense;

moreover f is of finite order, because its restriction to DO−DΣ is an isometry. Since
f is homotopic to the identity, it lifts to a homeomorphism f̃ : H3 → H3 whose
extension to the sphere at infinity ∂H3 ∼= S2 is the identity. Since f is of finite order,
so is f̃ , because, if n is the order of f , then (f̃)n is an isometry of H3 whose extension
to the sphere at infinity is the identity. By Newman’s theorem (cf. [Ne]), the identity
is the only orientation preserving periodic map of the ball which is the identity on
the boundary. Thus f̃ must be the identity, and in particular g0 = g1. Hence the
involutions τ0 and τ1 are conjugate on DO.

In the proof of the following proposition we use in a crucial way the assumption in
Theorem 1 that the 3-orbifold O is very good.

Proposition 2.4.9. — If Theorem 1 holds when no component of ∂O is a non-singular
torus, then it holds in general.

Proof of Proposition 2.4.9. — As above we decompose the boundary of O in three
parts:

∂O = ∂TO � ∂SEO � ∂HO,

where:
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– ∂TO is the union of the boundary components homeomorphic to a torus
– ∂SEO is the union of the singular Euclidean boundary components
– ∂HO is the union of the hyperbolic boundary components

We assume ∂TO �= ∅. We double along the hyperbolic components ∂HO:

DO = O ∪
∂HO

O.

Since DO is very good, we fix a regular covering p : DM → DO of finite order
which is a manifold, and let G denote its group of deck transformations. Since DO is
irreducible, topologically atoroidal and ∂-incompressible (Lemma 2.4.1), the Equivari-
ant Sphere and Loop Theorems ([DD], [MY1, MY2], [JR]) imply that DM is also
irreducible, topologically atoroidal, and boundary-incompressible. Since by hypothe-
sis ∂(DM) �= ∅, Thurston’s hyperbolization theorem for Haken 3-manifolds implies
that DM is either Seifert fibred or hyperbolic ([Thu1, Thu2, Thu3, Thu4, Thu5],
[McM1, McM2], [Ot1, Ot2], [Kap]). If DM is Seifert fibred, Meeks-Scott theorem
[MS] implies that DO is also Seifert fibred, and thus O is geometric (Lemma 2.4.3).
Therefore we can assume that DM is hyperbolic.

Let γ = {γ1, . . . , γr} be a family of simple closed curves, one on each torus com-
ponent of ∂T (DO). Let DO(γ) denote the 3-orbifold obtained by generalized Dehn
filling with meridian curves γ = {γ1, . . . , γr}. Generalized Dehn filling means that the
filling solid tori may have ramified cores. Moreover, we choose the branching indices
of these filling cores so that the generalized Dehn filling DO(γ) lifts to a genuine Dehn
filling of DM .

We consider a sequence of families of simple closed curves

(γn)n∈N = ({γn1 , . . . , γnr })n∈N

such that, for each n ∈ N, γn gives precisely one curve on each component of ∂TDO,
and for each i = 1, . . . , r, the curves of the sequence (γni )n∈N represent different
homotopy classes on the i-th torus boundary component. For n ∈ N sufficiently large,
the orbifold DO(γn) has a regular covering obtained by Dehn filling of DM , which we
may assume to be hyperbolic by Thurston’s hyperbolic Dehn filling theorem. Then,
by the equivariant sphere theorem ([DD], [JR], [MY1, MY2]) and the proof of
the Smith conjecture [MB] DO(γn) is irreducible for n ∈ N sufficiently large. It is
also topologically atoroidal by the equivariant loop theorem ([JR], [MY1, MY2]).
Moreover, by construction, no component of ∂DO(γn) is a non-singular torus. Hence,
for n ∈ N sufficiently large,DO(γn) is geometric by hypothesis, and so it is hyperbolic.

For each n ∈ N sufficiently large, choose a point xn ∈ DO(γn) so that inj(xn) >
ε(3), where ε(3) > 0 is the 3-dimensional Margulis constant. By the compactness the-
orem (Chap. 3) there is a subsequence of the sequence (DO(γn), xn) which converges
geometrically to a hyperbolic 3-orbifold. Moreover the limit is non-compact and gives
a hyperbolic structure on the interior of the 3-orbifold DO, because the sequence of
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coverings of DO(γn) converges geometrically to the interior of DM by Thurston’s
hyperbolic Dehn filling theorem.

Since DO is hyperbolic, Lemma 2.4.7 shows that O is also hyperbolic.

Proof of Theorem 1. — We use the previous results of this section to make some
reductions of the general case. First, since we assume that O is very good, by Propo-
sition 2.4.9, we can assume that no component of ∂O is a non-singular torus.

LetDO be the double of O along all boundary components. In particular ∂(DO) =
∅. By Lemma 2.4.1, DO is irreducible; moreover every incompressible Euclidean
2-suborbifold is singular and parallel to a doubling component. By Lemma 2.4.2,
DO − DΣ is irreducible and atoroidal. Furthermore, by Lemma 2.4.5, we can as-
sume that DO − DΣ is also topologically acylindrical and has an incompressible
boundary. Hence, by Thurston’s hyperbolization theorem ([Thu3, Thu4, Thu5],
[McM1, McM2], [Kap], [Ot1, Ot2]) DO − DΣ has a complete hyperbolic struc-
ture of finite volume, and we can apply Theorem 4 to DO.

By Theorem 4, DO contains a non-empty compact essential 3-suborbifoldO′ ⊂ DO
which is not a product and which is either Euclidean, Seifert fibred, Sol or complete
hyperbolic with finite volume. We distinguish two cases, according to whether O is
closed or not.

If ∂O = ∅, then O = O′, because the boundary ∂O′ is either empty or a union of
incompressible toric 2-suborbifolds, and O is topologically atoroidal. Thus O is either
Seifert fibred, Euclidean or hyperbolic; it cannot be Sol by atoroidality.

Next we suppose ∂O �= ∅. Note that in this case O′ cannot be Sol by Lemma 2.4.3
ii). By Lemma 2.4.1, every component of ∂O′ is isotopic to a Euclidean component of
∂O. Therefore O′ is obtained by cutting open DO along some (perhaps none) com-
ponent of ∂O. This implies that O can be isotoped into O′, because O′ is connected
and not a product. Moreover after isotopy we can assume that either τ(O′) = O′ or
τ(O′) ∩ O′ = ∅, where τ : DO → DO is the reflection through ∂O. There are three
possibilities:

– If τ(O′)∩O′ = ∅ then O = O′ is Euclidean, Seifert fibred or hyperbolic, possibly
with cusps.

– If τ(O′) = O′ and O′ is hyperbolic, then, by atoroidality, ∂O has hyperbolic
components and O′ is the double of ∂O along the hyperbolic boundary com-
ponents. By Lemma 2.4.7, O is hyperbolic, with some boundary components
totally geodesic and possibly some boundary components cusped.

– If τ(O′) = O′ and O′ is Euclidean or Seifert fibred, then O′ is the double of
O along some boundary components. Lemma 2.4.3 i) implies that O is Seifert
fibred, Euclidean or an I-bundle over a 2-orbifold. The I-bundle case is not
possible, because it would imply that DO − DΣ is Seifert fibred. Hence O is
Seifert fibred or Euclidean.

This finishes the proof of Theorem 1.
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CHAPTER 3

A COMPACTNESS THEOREM

FOR CONE 3-MANIFOLDS

WITH CONE ANGLES BOUNDED ABOVE BY π

The purpose of this chapter is to establish a version of Gromov’s compactness
theorem for sequences of Riemannian manifolds (cf. [GLP] and [Pe]) in the context
of cone 3-manifolds.

Before stating the main theorem we need some definitions.

Definition 3.0.1. — For ε ≥ 0, a map f :X → Y between two metric spaces is (1+ ε)-
bilipschitz if:

∀x1, x2 ∈ X, (1 + ε)−1d(x1, x2) ≤ d(f(x1), f(x2)) ≤ (1 + ε)d(x1, x2).

Remark 3.0.2. — A (1 + ε)-bilipschitz map is always an embedding. Hence one can
also define a (1 + ε)-bilipschitz map as an embedding f such that f and f−1 have
Lipschitz constant 1 + ε. A map is 1-bilipschitz if and only if it is an isometric
embedding.

Definition 3.0.3. — A sequence of pointed cone 3-manifolds {(Cn, xn)}n∈N converges
geometrically to a pointed cone 3-manifold (C∞, x∞) if, for every R > 0 and ε > 0,
there exists an integer n0 such that, for n > n0, there is a (1 + ε)-bilipschitz map
fn : B(x∞, R) → Cn satisfying:

i) d(fn(x∞), xn) < ε,
ii) B(xn, R − ε) ⊂ fn(B(x∞, R)), and
iii) fn(B(x∞, R) ∩ Σ∞) = (fn(B(x∞, R))) ∩ Σn.

Remark 3.0.4. — By definition, the following inclusion is also satisfied:

fn(B(x∞, R)) ⊂ B(xn, R(1 + ε) + ε).

Definition 3.0.5. — For a cone 3-manifold C, we define the cone-injectivity radius at
x ∈ C:

inj(x) = sup{δ > 0 such that B(x, δ) is contained in a standard ball in C}.
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We recall that a standard ball is isometric to either a non-singular metric ball in H3
K ,

or to a singular metric ball in H3
K(α). The definition does not assume the ball to be

centered at x, in order to avoid cone-injectivity radius close to zero for non-singular
points close to the singular locus.

Given a > 0 and ω ∈ (0, π], C[ω,π],a is the set of pointed cone 3-manifolds (C, x)
with constant curvature in [−1, 0], cone angles in [ω, π], and such that inj(x) ≥ a.

This chapter is devoted to the proof of the following result:

Compactness Theorem. — Given a > 0 and ω ∈ (0, π], the closure of C[ω,π],a in⋃
b>0

C[ω,π],b is compact for the geometric convergence topology.

This theorem says that any sequence {(Cn, xn)}n∈N of pointed cone 3-manifolds
in C[ω,π],a admits a subsequence that converges geometrically to a pointed cone 3-
manifold in C[ω,π],b for some b > 0.

The proof of the compactness theorem occupies Sections 3.1 to 3.4. In Section 3.5
we give some properties of the geometric convergence.

The main steps in the proof of the compactness theorem are the following ones.
First we show that C[ω,π],a is relatively compact in the space L of locally compact met-
ric length spaces equipped with the Hausdorff-Gromov topology (Proposition 3.2.4).
Next, in Proposition 3.2.6, we show that, for a sequence of pointed cone 3-manifolds
of C[ω,π],a that converges in L, the limit is a pointed cone 3-manifold in C[ω,π],b for
some b > 0. Finally we show that Hausdorff-Gromov convergence in C[ω,π],a implies
geometric convergence (Proposition 3.3.1).

The second and third step of the proof rely on the following technical result (Propo-
sition 3.2.5): given a radius R > 0, and constants a > 0 and ω ∈ (0, π], for any pointed
cone 3-manifold (C, x) ∈ C[ω,π],a, the cone-injectivity radius of each point in the ball
B(x,R) has a positive uniform lower bound, which only depends on the constants R,
a and ω. The proof of this result is postponed until Section 3.4.

This chapter is organized as follows. Section 3.1 is devoted to the Dirichlet polyhe-
dron and the Bishop-Gromov inequality. In Section 3.2 we show that every sequence
in C[ω,π],a has a subsequence that converges to a cone 3-manifold for the Hausdorff-
Gromov topology, assuming Proposition 3.2.5. In Section 3.3 we show that the con-
vergence is in fact geometric. In Section 3.4 we prove Proposition 3.2.5 using the
Dirichlet polyhedron. In Section 3.5 we show some basic properties of the geomet-
ric convergence. Finally, in Section 3.6 we extend the compactness theorem to cone
3-manifolds with totally geodesic boundary.

3.1. The Dirichlet polyhedron

In this section we first describe the Dirichlet polyhedron and give some elemen-
tary facts about minimizing paths. Then we prove Bishop-Gromov inequality. The
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Dirichlet polyhedron for cone 3-manifolds is also considered in [Sua] and minimizing
paths for cone 3-manifolds are also studied in [HT].

Definition 3.1.1. — Let C be a cone 3-manifold of curvature K ≤ 0 and x ∈ C − Σ.
We define the Dirichlet polyhedron centered at x:

Dx = {y ∈ C − Σ | there exists a unique minimizing path between y and x}.

The open set Dx is star shaped with respect to x, hence it can be locally isomet-
rically embedded in the space of constant sectional curvature H3

K as a star shaped
domain. The following proposition explains why it is called a polyhedron.

Proposition 3.1.2. — The open domain Dx is the interior of a solid polyhedron Dx of
H3

K. Moreover the cone 3-manifold C is isometric to the quotient of Dx under some
face identifications.

In order to prove this proposition we need first to understand the minimizing paths
from x to points in C−Dx. First we recall a well known fact about minimizing paths
in cone 3-manifolds with cone angles less than 2π (cf. [HT] for a proof).

Lemma 3.1.3. — Let C be a cone 3-manifold with cone angles less than 2π and sin-
gular set Σ. Let σ be a minimizing path between two points in C. If σ ∩ Σ �= ∅, then
either σ ⊂ Σ, or σ ∩ Σ is one or both of the end-points of σ.

Recall that a subset A ⊂ C is called convex if every minimizing path between two
points of A is itself contained in A. For instance, a subset with only one point is
convex. The following lemma will be used in the proof of Proposition 3.1.2 in the case
where A = {x}, but it will be used more generally in Section 3.4 and in Chapter 4.

Lemma 3.1.4. — Let C be a cone 3-manifold of non-positive curvature, A ⊂ C a
convex subset and y ∈ C. Then the following hold:

i) There exist a finite number of minimizing paths from y to A.
ii) Minimizing paths to A with origin close to y are obtained by perturbation:

for every ε > 0 there exists a neighborhood U ⊂ C of y such that, for every z ∈ U

and every minimizing path σz from z to A, there exists a minimizing path σy from
y to A such that σz ⊂ Nε(σy), where Nε(σy) is the set of points whose distance
to σy is less than ε.

Proof of Lemma 3.1.4. — We prove i) by contradiction. We assume that we have
an infinite sequence {σn}n∈N of different minimizing paths between y and A. Since
Length(σn) is constant, up to taking a subsequence, {σn}n∈N converges to a path
σ∞. Let ε > 0 be sufficiently small so that the developing map around a tubular
neighborhood Nε(σ∞) is defined. By considering developing maps, we have an infinite
sequence of different minimizing paths between one point and a convex subset in H3

K

or H3
K(α), and this is not possible when the curvature is K ≤ 0.
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We also prove ii) by contradiction: we assume that there is ε > 0 and a sequence
of points zn ∈ C such that zn → y and every zn has a minimizing path σn to A not
contained in Nε(σy), for any minimizing path σy between y and A. Since zn → y,
there is a subsequence of {σn}n∈N that converges to a path σ∞. Moreover, by taking
limits in the inequality

d(y,A) ≥ Length(σn) − d(y, zn),

we get that d(y,A) ≥ Length(σ∞). Therefore σ∞ is a minimizing path from y to
A whose ε-tubular neighborhood Nε(σ∞) contains infinitely many σn, and we get a
contradiction.

Proof of Proposition 3.1.2. — We describe locally C−Dx by using Lemma 3.1.4. Let
y ∈ C −Dx, we consider six different cases.
Case 1. Consider first the case where y �∈ Σ and there are precisely two minimizing

paths σ1 and σ2 between y and x. Take ε > 0 so that the developing map is defined
around the ε-neighborhoods Nε(σ1) and Nε(σ2). By Lemma 3.1.4. there is an open
neighborhood y ∈ Uy ⊂ C so that all minimizing paths from points z ∈ Uy to x are
in one of these tubular neighborhoods Nε(σ1) or Nε(σ2). Since the set of points in
H3

K equidistant from two given different points is a plane, by using developing maps
we conclude that (C −Dx)∩Uy is the “bisector” plane between σ1 and σ2. This case
corresponds to the interior of two faces of Dx identified.
Case 2. Next consider the case where y �∈ Σ and there are n ≥ 3 minimizing paths

σ1, . . . , σn from y to x satisfying the following property

(3.1) there exists v ∈ TyC, v �= 0 such that 〈σ′
1(0), v〉 = · · · = 〈σ′

n(0), v〉,
where the minimizing paths are parametrized by arc length (in particular ‖σ′

i(0)‖ = 1).
Property (3.1) means that the vectors σ′

1(0), . . . , σ
′
n(0) can be ordered in such a way

that, if Pi denotes the“bisector”plane between σ′
i(0) and σ′

i+1(0), then the intersection
P1∩· · ·∩Pn is a line (generated by the vector v). See Fig. 1. When n = 3 property (3.1)
always holds.

Figure 1

An argument similar to case 1 shows that, for some neighborhoodUy of y, (C−Dx)∩Uy

is the union of n half planes bounded by the same line. These are precisely the

ASTÉRISQUE 272



3.1. THE DIRICHLET POLYHEDRON 37

“bisector”half planes between the n pairs of paths σi and σi+1. This case corresponds
to the interior of several edges of Dx identified. Note that the dihedral angles are less
than π by construction.
Case 3. To finish with the non-singular possibilities, consider the case where y �∈ Σ

and there are n ≥ 4 minimizing paths σ1, . . . , σn from y to x that do not satisfy
property (3.1) above. This case is treated as the previous ones and corresponds to n

vertices of Dx identified.
Case 4. When y ∈ Σ and y has only one minimizing path σ to x. This case

corresponds to the interior of an edge of Dx, whose dihedral angle equals the cone
angle of Σ at y. The two adjacent faces of this edges are identified by a rotation
around this edge.
Case 5. When y ∈ Σ and y has n ≥ 2 minimizing paths σ1, . . . , σn to x that satisfy

property (3.1) of case 2. In this case, the vector v of property (3.1) is necessarily
tangent to Σ and it corresponds to n edges of Dx that are identified to get a piece
of Σ.
Case 6. Finally, consider the case where y ∈ Σ and there are n ≥ 2 minimizing

paths σ1, . . . , σn between y and x that do not satisfy property (3.1). It can be shown
that this case corresponds to n vertices of Dx identified.

Corollary 3.1.5. — If the cone angles of C are less than or equal to π, then for every
x ∈ C − Σ the Dirichlet polyhedron Dx is convex.

Proof. — It suffices to show that the dihedral angles of Dx are less than or equal to
π. We have seen in the proof of Proposition 3.1.2 that this is true for dihedral angles
of non-singular edges. For singular edges, this follows from the hypothesis about cone
angles, because dihedral angles are bounded above by cone angles.

We next define the Dirichlet polyhedron centered at singular points. Recall that
H3

K(α) denotes the simply connected space of curvature K with a singular axis of
cone angle α.

Definition 3.1.6. — Let C be a cone 3-manifold of curvature K ≤ 0 and x ∈ Σ ⊂ C.
We define the Dirichlet polyhedron centered at x:

Dx =
{
y ∈ C

∣∣∣∣ there exists a unique minimizing path σ between y and x,

and, in addition, if y ∈ Σ then σ ⊂ Σ.

}
As in the non-singular case, Dx is open, star shaped and it can be locally isomet-

rically embedded in H3
K(α).

Remark 3.1.7. — It is possible to work in the non-singular space H3
K by using the

following construction. Let Sα be an infinite sector of H3
K of dihedral angle α and

consider the quotient map p : Sα → H3
K(α) that identifies the faces of Sα by a

rotation around its axis. Then we look at the inverse image p−1(Dx) ⊂ Sα ⊂ H3
K . As

in Proposition 3.1.2, the set p−1(Dx) is a solid polyhedron and C is the quotient of
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p−1(Dx) by isometric face identifications. The point x is in the boundary of p−1(Dx),
although the polyhedron is star shaped with respect to x. As in Corollary 3.1.5, if
the cone angles of C are bounded above by π, then p−1(Dx) is convex (and so is
Dx ⊂ H3

K(α)).

The following lemma will be used in the proof of Lemma 3.4.5.

Lemma 3.1.8. — Let C be a cone 3-manifold with cone angles less than or equal to
π. If x is in a compact component Σ0 of Σ, then Dx is contained in a region of
H3

K(α) bounded by two planes orthogonal to the singular axis of H3
K(α). Moreover,

the distance between these two planes is bounded above by Length(Σ0).

Proof. — By convexity, it suffices to study the points y ∈ Σ0 that have at least two
minimizing paths to x, one of them contained in Σ0. When we embed Dx into H3

K(α),
these are the points that will correspond to the intersection of ∂Dx with the singular
axis of H3

K(α).
As in the proof of Proposition 3.1.2 the local geometry of ∂Dx will be given by

“bisector”planes between the minimizing paths from y to x. We distinguish two cases.
First we consider the case where there are precisely two minimizing paths σ1, σ2

between y and x, and σ1, σ2 ⊂ Σ0. In this case σ1 ∪ σ2 = Σ0 and the point y is
obtained by identifying the two points of the intersection of ∂Dx with the axis of
H3

K(α). The bisector plane to σ1 and σ2 passing through y is the plane orthogonal to
Σ0, therefore the lemma is clear in this case.

In the second case, among all the minimizing paths between y and x, one of them
σ1 ⊂ Σ0 but at least another σ2 �⊂ Σ0. Moreover, we may assume that one of the faces
of ∂Dx is given by the bisector plane between σ1 and σ2. In this case, consider the
projection p : Sα → H3

K(α) described in the remark 3.1.7. The pre-image p−1(σ1) is
contained in the axis of the sector Sα, and we choose the projection p so that p−1(σ2)
is contained in the bisector plane of Sα. That is, p−1(σ2) defines the same angle
between both faces of Sα. Since α ≤ π, the region of Sα bounded by the bisector
plane between p−1(σ1) and p−1(σ2) is contained in the region of Sα bounded by the
plane orthogonal to the axis of Sα passing through p−1(y) ∩ p−1(σ2). By convexity,
it follows that p−1(Dx) is contained in the region of Sα bounded by this orthogonal
plane. Therefore, p−1(Dx) ⊂ Sα is contained in a region bounded by two planes
orthogonal to the axis of Sα and the distance of these planes is bounded above by
LengthΣ0. This finishes the proof of the lemma.

Finally, we prove Bishop-Gromov inequality as an application of the Dirichlet poly-
hedron.

For r ≥ 0, let vK(r) denote the volume of the ball of radius r in H3
K , the simply

connected 3-space of curvature K ≤ 0.
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Proposition 3.1.9 (Bishop-Gromov inequality). — Let C be a cone 3-manifold of curva-
ture K ≤ 0 and let x ∈ C. If 0 < r ≤ R then:

vol (B(x, r))
vK(r)

≥ vol (B(x,R))
vK(R)

.

Proof. — The proof follows from the fact that the Dirichlet polyhedron is star shaped.
Namely, if B(x, r) is the ball of radius r in H3

K and Dx is the Dirichlet polyhedron
centered at x, then vol(B(x, r)) = vol(B(x, r) ∩ Dx) and vK(r) = vol(B(x, r)). Since
Dx is star shaped, the function r �→ vol(B(x, r) ∩Dx)/ vol(B(x, r)) is decreasing in r,
and the proposition is proved.

Corollary 3.1.10. — Let C be a cone 3-manifold of curvature K ∈ [−1, 0]. Given ε > 0
and R > 0, the number of disjoint balls of radius ε > 0 that can be contained in a ball
of radius R in C has a uniform upper-bound, independent of C.

3.2. Hausdorff-Gromov convergence for cone 3-manifolds

We first recall some well known definitions.

Definition 3.2.1. — For ε > 0, an ε-approximation between two pointed compact met-
ric spaces (X,x) and (Y, y) is a distance d on the disjoint union X � Y whose restric-
tions coincide with the original distances on X and Y , and such that X (resp. Y )
belongs to a ε-neighborhood of Y (resp. X) and d(x, y) ≤ ε.

Let (X,x) and (Y, y) be two pointed compact metric spaces. The Hausdorff-Gro-
mov distance dH((X,x), (Y, y)) is defined as:

dH((X,x), (Y, y)) = inf{ε > 0 | ∃ a ε-approximation between (X,x) and (Y, y)}.

Remark 3.2.2. — By [GLP, Prop. 3.6], two pointed compact metric spaces are iso-
metric by an isometry respecting base points if and only if their Hausdorff-Gromov
distance is zero (see also [BrS]).

Moreover, since dH verifies the triangle inequality, it is a distance on the set of
pointed compact metric spaces.

A cone 3-manifold is a complete metric length space (cf. Chapter 1): the distance
between two points is the infimum of the lengths of paths joining both points.

In the sequel, L will denote the set of complete locally compact pointed length
spaces. Thus we have the inclusion C[ω,π],a ⊂ L. In a complete locally compact
metric length space, closed balls are compact (see for instance [GLP, Thm. 1.10]).
Hence the following definition makes sense.

Definition 3.2.3. — A sequence (Xn, xn) in L converges for the Hausdorff-Gromov
topology to (X∞, x∞) ∈ L if for every R > 0 the Hausdorff-Gromov distance
dH
(
B(xn, R), B(x∞, R)

)
, between the closed balls of radius R, tends to zero as n

goes to infinity.
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The following proposition is the first step in the proof of the compactness theorem.

Proposition 3.2.4. — The space C[ω,π],a is relatively compact in L for the Hausdorff-
Gromov topology.

Proof. — It is a consequence of Gromov relative compactness criterion [GLP, Prop.
5.2] for sequences of pointed complete locally compact metric spaces and the fact that
the space L is closed for the Hausdorff-Gromov topology [GLP, Prop. 3.8 and 5.2].

By Gromov’s relative compactness criterion, a sequence (Xn, xn) in L has a con-
vergent subsequence if and only if, for every R > 0 and for every ε > 0, the number of
disjoint balls with radius ε included in the ball B(xn, R) is uniformly bounded above
independently of n. In our case, such a uniform bound follows from Bishop-Gromov
inequality for cone 3-manifolds with constant curvature K ∈ [−1, 0] (Corollary 3.1.10,
see also [HT]).

We are now stating a key result for the remaining of the proof of the compactness
theorem. This result needs the fact that cone angles are bounded above by π, and is
not true anymore for cone angles bigger than π.

Proposition 3.2.5 (Uniform lower bound for cone-injectivity radius)
Given R > 0, a > 0 and ω ∈ (0, π], there exists a uniform constant b = b(R, a, ω) >

0 such that, for every pointed cone 3-manifold (C, x) ∈ C[ω,π],a, the cone-injectivity
radius at any point of B(x,R) ⊂ C is greater than b.

The proof of this proposition is rather long, so we postpone it to Section 3.4. We
will use it in the proof of the following proposition as well as in Section 3.3.

Proposition 3.2.6. — Let (Cn, xn) be a sequence of pointed cone 3-manifolds in C[ω,π],a

that converges to (X∞, x∞) in L for the Hausdorff-Gromov topology. Then the limit
(X∞, x∞) is a pointed cone 3-manifold in C[ω,π],b for some b > 0. Moreover the
curvature of X∞ is the limit of the curvatures of Cn.

Remark 3.2.7. — The cone-injectivity radius is lower semi-continuous, and it could
happen that inj(x∞) < a.

Proof of Proposition 3.2.6. — Let (Cn, xn) be a sequence in C[ω,π],a that converges to
(X∞, x∞) ∈ L for the Hausdorff-Gromov topology. Since X∞ is a complete, locally
compact, metric length space, we have to show that X∞ is locally isometric to a cone
3-manifold of constant sectional curvature.

Let y ∈ X∞; choose R = d(y, x∞) + 1. From Hausdorff-Gromov convergence, for
n large enough we have an εn-approximation dn between the closed balls B(x∞, R)
and B(xn, R), with εn → 0. We take yn ∈ B(xn, R) such that dn(y, yn) < εn.

By Proposition 3.2.5, there is a uniform constant b > 0 independent of n such
that inj(yn) ≥ b, for every n large enough. Since both Cn and Xn are length spaces,
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dn induces a 3εn-approximation between the compact balls B(yn, b) and B(y, b). By
taking a subsequence if necessary, there are three cases to be considered:
Case 1. For every n ∈ N, B(yn, b) is a standard non-singular ball (i.e. B(yn, b) is

isometric to a metric ball in the space H3
Kn

, where Kn is the curvature of Cn). Since
Kn ∈ [−1, 0], up to a subsequence Kn converges to K∞ ∈ [−1, 0]. Moreover, since

lim
n→∞

dH(B(yn, b), B(y, b)) = 0,

the uniqueness of the Hausdorff-Gromov limit for compact spaces [GLP, Prop. 3.6]
shows that the ball B(y,b) must be isometric to a metric ball in the space of constant
curvature H3

K∞
.

Case 2. For every n ∈ N, B(yn, b) is contained in a standard singular ball, but
the distance between yn and Σ is bounded below, uniformly away from zero. In this
case, since the cone angles are also bounded below by ω > 0, there exists a uniform
constant b′ > 0 such that B(yn, b′) ∩ Σ = ∅ and B(yn, b′) is isometric to a metric
ball in H3

Kn
, for every n ∈ N. Thus we are in the first case and we can conclude that

B(y, b′) is isometric to a metric ball in H3
K∞

, where K∞ = lim
n→∞

Kn.

Case 3. For every n ∈ N, B(yn, b) ∩ Σ �= ∅ and the distance between yn and Σ
tends to zero. In this case we replace yn by y′n ∈ Σ so that d(yn, y′n) → 0. The ball
B(y′n, b) is isometric to a singular ball in the space H3

Kn
(αn) of constant curvature

Kn with a singular axis, where Kn is the curvature of Cn and αn the cone angle
at y′n. Since Kn ∈ [−1, 0] and αn ∈ [ω, π], up to a subsequence we may assume
that Kn → K∞ ∈ [−1, 0] and αn → α∞ ∈ [ω, π]. As in case 1, the fact that the
Hausdorff-Gromov distance dH(B(y′n, b), B(y, b)) tends to zero and the uniqueness
of the Hausdorff-Gromov limit imply that the ball B(y, b) is isometric to a singular
metric ball in H3

K∞
(α∞) and that y ∈ Σ∞.

This achieves the proof of Proposition 3.2.6.

The following corollary is a direct consequence of the proof of Proposition 3.2.6
and will be used later in the proof of Proposition 3.3.1.

Corollary 3.2.8. — Let (Cn, xn) be a sequence of pointed cone 3-manifolds that con-
verges to the pointed cone 3-manifold (C∞, x∞) for the Hausdorff-Gromov topology.
Given y ∈ C∞, choose R ≥ d(x∞, y)+1 and dn an εn-approximation between B(xn, R)
and B(x∞, R), with εn → 0. Then there exists a sequence yn ∈ B(xn, R) such that
dn(yn, y) → 0 as n → ∞, and yn ∈ Σ if and only if y ∈ Σ. Moreover, when y ∈ Σ,
the sequence of cone angles at yn converges to the cone angle at y.

3.3. Hausdorff-Gromov convergence implies geometric convergence

The goal of this section is to prove the following:
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Proposition 3.3.1. — If a sequence (Cn, xn) of pointed cone 3-manifolds converges in
C[ω,π],a to a pointed cone 3-manifold (C∞, x∞) ∈ C[ω,π],a for the Hausdorff-Gromov
topology, then it also converges geometrically.

Proof of Proposition 3.3.1. — Fix a radius R > 0. Let T be a compact triangulated
subset of the underlying space of C∞ such that B(x∞, 12R) ⊂ T . By subdividing the
triangulation we may assume that:

i) all simplices are totally geodesic,
ii) Σ∞ ∩ T belongs to the 1-skeleton T (1), and
iii) the base point x∞ is a vertex of T (0).

Let R′ > 0 be such that T ⊂ B(x∞, R′) and let dn be a εn-approximation between
the compact balls B(x∞, R′) and B(xn, R′), with lim

n→∞
εn = 0.

Let T (0) = {z0
∞, . . . , zr∞} be the vertices of T , with z0

∞ = x∞. We choose some
points z0

n, . . . , z
r
n ∈ B(xn, R′) such that lim

n→∞
dn(zin, z

i
∞) = 0, for i = 0, . . . , r. It

follows from Corollary 3.2.8 that one can choose zin ∈ Σn if and only if zi∞ ∈ Σ∞.
For a simplex ∆ of T , star(∆) denotes the star of ∆, and star∗(∆), the union of

simplices of T that intersect ∆ but not the singular set Σ. With this notation we have
the following:

Lemma 3.3.2. — It is possible to geodesically subdivide the triangulation T so that any
simplex ∆ satisfies the following properties:

i) star(∆) is included in a standard ball of C∞.
ii) Let {zi1∞, . . . , zis∞} be the vertices of star(∆). For n sufficiently large, {zi1n , . . . , zisn }

belongs to a standard ball in Cn,
iii) If ∆ ∩ Σ∞ = ∅ then star∗(∆) is included in a non-singular standard ball.
iv) If ∆ ∩ Σ∞ = ∅ and {zi1∞, . . . , zit∞} are the vertices of star∗(∆) then, for n suffi-

ciently large, {zi1n , . . . , zitn } belongs to a non-singular standard ball in Cn.

Remark 3.3.3. — It is worthwhile to recall that a standard ball in a cone 3-manifold
C with constant sectional curvature K is isometric either to a non-singular metric
ball in H3

K , or to a singular metric ball in H3
K(α) whose center lies in the singular

axis.

Proof of Lemma 3.3.2. — From Proposition 3.2.5, there are two constants r1 > 0 and
r2 > 0 such that for any y ∈ B(x∞, R′) or yn ∈ B(xn, R′):

a) If y ∈ Σ∞, then B(y, r1) is a standard singular ball in C∞, and if yn ∈ Σn, then
B(yn, r1) is a standard singular ball in Cn.

b) If d(y,Σ∞) > r1/8, then B(y, r2) is a non-singular standard ball in C∞, and if
d(yn,Σn) > r1/8, then B(yn, r2) is a non-singular standard ball in Cn.
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Using geodesic barycentric subdivision, we first achieve that for each simplex ∆ of
T , the diameter diam(∆) ≤ 1

8 inf{r1, r2}. Thus diam(star(∆)) ≤ 3
8 inf{r1, r2}, which

implies assertions i) and ii).
To prove iii) and iv) we introduce the constant r3(T ) > 0 depending on T :

r3(T ) = inf{d(∆,Σ∞), for any simplex ∆ ⊂ T such that ∆ ∩ Σ∞ = ∅}.

Proposition 3.2.5 and the fact that cone angles are bounded below by ω > 0 imply
the existence of a constant r4 = r4(r3, ω) > 0 depending on r3 and ω such that for
any point y ∈ B(x∞, R′), if d(y,Σ∞) > r3/2 then B(y, r4) is a non-singular standard
ball in C∞, and for any point yn ∈ B(xn, R′), if d(yn,Σn) > r3/2 then B(yn, r4) is a
non-singular standard ball in Cn.

Next we will subdivide T in such a way that the constants r3 and hence r4 =
r4(r3, ω) do not change, but the diameter of any simplex not meeting Σ∞ becomes
less than r4

8 . This will imply properties iii) and iv) of the lemma.
The process for subdividing a simplex ∆ of T is the following:

a) When ∆ ∩ Σ∞ = ∅, we apply geodesic barycentric subdivision to ∆.
b) When ∆ ⊂ Σ∞, we do not subdivide ∆.
c) When ∅ �= ∆ ∩ Σ∞ �= ∆, we express ∆ as a joint ∆ = ∆0 ∗ ∆1, where ∆0 ⊂ Σ∞

and ∆1 ∩Σ∞ = ∅. Then we apply geodesic barycentric subdivision ∆′
1 to ∆1 and

consider ∆′ = ∆0 ∗ ∆′
1 (see Figures 2 to 4, which describe this process).

This process of subdivision makes the diameter of any simplex disjoint from Σ∞
arbitrarily small without decreasing its distance to Σ∞.

Now we define gn : T → Cn by mapping zi∞ to zin, gn(zi∞) = zin for i = 1, . . . , r,
and we extend gn piecewise-linearly on each simplex of T . To show that the restriction
of gn to B(x∞, R) is a (1 + εn)-bilipschitz map with εn → 0, we need the following
lemma:

Lemma 3.3.4. — For n sufficiently large, gn : T → Cn is a well defined map having
the following properties:

i) gn(T ) is a geodesic polyhedron in Cn, and gn(T ∩ Σ∞) = gn(T ) ∩ Σn;
ii) ∀x, y ∈ B(x∞, 6R), d(gn(x), gn(y)) ≤ (1 + δn)d(x, y) with δn → 0;
iii) the restriction of gn induces a homeomorphism from int(T ) onto gn(int(T )).

Proof of Lemma 3.3.4. — Let ∆ be a 3-simplex in T such that ∆ ∩ Σ∞ = ∅. Up
to permutation of indices, let {z1

∞, z2
∞, z3

∞, z4
∞} denote the vertices of ∆. By Lemma

3.3.2, there exists n1 such that for n ≥ n1, the points {z1
n, z

2
n, z

3
n, z

4
n} are contained in a

non-singular standard ball in Cn. By construction, the sequence {d(zin, zjn)}n∈N tends
to d(zi∞, zj∞) as n → ∞, for any i, j ∈ {1, 2, 3, 4}. Moreover, the sectional curvature
Kn of Cn tends to K∞. It follows that the the bijection between {z1

∞, z2
∞, z3

∞, z4
∞} and

{z1
n, z

2
n, z

3
n, z

4
n} extends linearly to a map from the geodesic simplex ∆ onto the non-

degenerated geodesic simplex in Cn with vertices {z1
n, z

2
n, z

3
n, z

4
n}. That is, gn(∆) is a
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Figure 2.

Figure 3.

Figure 4

well defined non-degenerated simplex such that the restriction map gn|∆ : ∆ → gn(∆)
is (1 + δn)-bilipschitz, with δn → 0.

If ∆ ∩ Σ∞ �= ∅ then, by Corollary 3.2.8, for n sufficiently large, zin ∈ Σn if and
only if zi∞ ∈ Σ∞, i = 1, 2, 3, 4. By using the same method as in the non-singular
case and Lemma 3.3.2, one shows that gn is well defined on ∆ and that gn(∆) is a
non-degenerated totally geodesic simplex in Cn such that gn(∆∩Σ∞) = gn(∆)∩Σn.
We remark that minimizing paths between two points are not necessarily unique in
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singular balls, but they are unique if at least one of the points lies in Σ. Hence, gn
is well defined on ∆, because of assertions iii) and iv) of Lemma 3.3.2. Moreover the
restriction map gn|∆ : ∆ → gn(∆) is (1 + δn)-bilipschitz with δn → 0. This proves
property i).

To prove property ii), consider x, y ∈ B(x∞, 6R). Let σ be a minimizing path
between x and y. Since σ ⊂ B(x∞, 12R) ⊂ T , the inequality d(gn(x), gn(y)) ≤
(1 + δn)d(x, y) follows from the fact that, for any 3-simplex ∆ of T , gn : ∆ → gn(∆)
is a (1 + δn)-bilipschitz map, with δn → 0. It suffices to break up σ into pieces σ ∩∆
and to use the fact that σ is minimizing.

Finally we prove property iii). Note that the restriction of gn from star(∆) onto
gn(star(∆)) is a homeomorphism. This follows from the construction of gn by piece-
wise-linear extension and the fact that, for n sufficiently large and for any simplex ∆
of T , star(∆) and gn(star(∆)) are contained in standard balls. Thus it remains to
show that the restriction of gn to int(T ) is injective for n sufficiently large.

Suppose that x, y ∈ int(T ) are two points such that gn(x) = gn(y); we claim that
x = y. Let ∆x and ∆y be the simplices of T containing x and y respectively. We
claim first that ∆x ∪∆y is contained in a standard ball in C∞ and that gn(∆x ∪∆y)
is also contained in a standard ball in Cn. Recall that the diameter of the simplices
is chosen to be small with respect to the lower bound of the cone-injectivity radius
on T . Thus we prove the claim by showing that the diameter of ∆x ∪ ∆y is also
small. To show this, we first remark that the diameter of gn(∆x ∪ ∆y) is small,
because gn(∆x) ∩ gn(∆y) �= ∅ and diam(gn(∆)) ≤ (1 + δn) diam(∆), with δn →
0. In particular, gn(∆x ∪ ∆y) is contained in a standard ball. Moreover, the limit
lim
n→∞

d(zin, zjn) = d(zi∞, zj∞) means that the distance between vertices of gn(∆x ∪ ∆y)

converges to the distance between vertices of ∆x ∪ ∆y, therefore diam(∆x ∪ ∆y) is
small.

Finally we prove that gn(∆x ∩ ∆y) = gn(∆x) ∩ gn(∆y). This follows from the
facts that gn(∆x ∪ ∆y) and ∆x ∪ ∆y are contained in standard balls, that d(zin, z

j
n)

converges to d(zi∞, zj∞), and that ∆x, ∆y , gn(∆x) and gn(∆y) are the convex hulls of
their vertices. Hence, if gn(x) = gn(y) then x and y belong to the same simplex and
x = y. This proves Lemma 3.3.4.

Lemma 3.3.5. — For n sufficiently large, two points in gn(B(x∞, R)) are joined by a
minimizing geodesic contained in gn(B(x∞, 5R)).

Proof. — Since two points in B(z0
n, 2R) ⊂ Cn are joined by a minimizing geodesic

contained in B(z0
n, 4R), it suffices to show the following inclusions for n large enough:

a) gn(B(x∞, R)) ⊂ B(z0
n, 2R),

b) B(z0
n, 4R) ⊂ gn(B(x∞, 5R)),

where we recall that z0
n = gn(x∞) and x∞ = z0

∞ ∈ T (0).
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Property a) follows from Lemma 3.3.4 ii), which states that for x, y ∈ B(x∞, 6R),
d(gn(x), gn(y)) ≤ (1 + δn)d(x, y), with δn → 0.

For n sufficiently large, the restriction gn : B(x∞, 6R) → gn(B(x∞, 6R)) is a
homeomorphism and hence gn(∂B(x∞, 5R)) = ∂gn(B(x∞, 5R)). Thus inclusion b)
will follow from the inequality d(z0

n, gn(∂B(x∞, 5R))) > 4R, for n sufficiently large.
Let y be a point in ∂B(x∞, 5R), that is d(x∞, y) = 5R. Set:

r0 = sup{diam(∆) | ∆ is a 3-simplex of T }.
Since y ∈ ∂B(x∞, 5R) ⊂ T , there exists a vertex zi∞ ∈ T (0) such that d(zi∞, y) ≤ r0.
So we write:

d(z0
n, gn(y)) ≥ d(z0

n, z
i
n) − d(zin, gn(y)).

By Lemma 3.3.4, d(zin, gn(y)) ≤ (1 + δn)d(zi∞, y) ≤ 2r0. Moreover,

lim
n→∞

d(z0
n, z

i
n) = d(z0

∞, zi∞) = d(x∞, zi∞) ≥ d(x∞, y) − d(zi∞, y) ≥ 5R− r0.

Summarizing these inequalities we conclude that d(z0
n, gn(y)) ≥ 5R−4r0 and it suffices

to choose r0 < R/4 using the proof of Lemma 3.3.2. This achieves the proof of
inclusion b) and of Lemma 3.3.5.

The following lemma concludes the proof of Proposition 3.3.1.

Lemma 3.3.6. — For any real ε > 0, there is an integer n0 such that, for n ≥ n0:

i) The restriction gn :B(x∞, R) → Cn is (1 + ε)-bilipschitz,
ii) d(gn(x∞), xn) < ε/2,
iii) B(xn, R − ε) ⊂ gn(B(x∞, R)).

Proof. — By Lemma 3.3.4 ii), there exists a sequence δn → 0 such that

d(gn(x), gn(y)) ≤ (1 + δn)d(x, y) ∀x, y,∈ B(x∞, 6R), ∀n ≥ n0.

By choosing n sufficiently large we may assume δn < ε, hence property i) will follow
from the following inequality

(1 + ε)−1d(x, y) ≤ d(gn(x), gn(y)), ∀n ≥ n0, ∀x, y ∈ B(x∞, R).

To prove this inequality, given x, y ∈ B(x∞, R), we choose a minimizing path σ

between g(x) and g(y) that is contained in gn(B(x∞, 5R)), by Lemma 3.3.5. Since
gn : B(x∞, 5R) → gn(B(x∞, 5R)) is a homeomorphism, σ̃ = g−1

n (σ) is a path joining
x and y. The map gn is constructed in the proof of Lemma 3.3.4 so that its restriction
to each simplex ∆ of T is (1 + δn)-bilipschitz. Then, by breaking σ̃ into pieces σ̃ ∩ ∆
we prove that (1 + ε)−1 Length(σ̃) ≤ Length(σ), and the claimed inequality follows.

Property ii) follows from the construction, because the Hausdorff-Gromov distance
between the pointed balls

(
B(xn, R′), xn

)
and

(
B(x∞, R′), x∞

)
goes to zero, and the

points x∞ and gn(x∞) are arbitrarily close in the Hausdorff-Gromov approximations.
Next we prove property iii). Let yn ∈ B(xn, R − ε). By property ii), yn ∈

B(gn(x∞), R) = B(z0
n, R). Moreover, in the proof of Lemma 3.3.5 (inclusion b))
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we have seen that B(z0
n, R) ⊆ gn(B(x∞, 5R)). Hence we can choose a point y ∈

B(x∞, 5R) such that gn(y) = yn. Then, for n large, we have:

d(x∞, y) ≤ (1 + δn)
(
d(yn, xn) + d(xn, gn(x∞))

)
≤ (1 + δn)(d(xn, yn) + ε/2),

with δn → 0. For n sufficiently large so that δn < ε/(2R), we conclude that y ∈
B(x∞, R). Hence B(xn, R − ε) ⊆ gn(B(x∞, R)) and the lemma is proved.

3.4. Uniform lower bound for the cone-injectivity radius

The goal of this section is to prove Proposition 3.2.5. For convenience we recall
the statement.

Proposition 3.2.5 (Uniform lower bound for cone-injectivity radius)
Given R > 0, a > 0 and ω ∈ (0, π], there exists a uniform constant b = b(R, a, ω) >

0 such that, for any pointed cone 3-manifold (C, x) ∈ C[ω,π],a, the cone-injectivity
radius at any point of B(x,R) ⊂ C is greater than b.

Remark 3.4.1. — We recall the definition of cone-injectivity radius at a point x ∈ C:

inj(x) = sup{δ > 0 such that B(x, δ) is contained in a standard ball in C}.
Note that the definition does not assume the ball to be centered at x, otherwise regu-
lar points near the singular locus would have arbitrarily small cone-injectivity radius;
such points are contained in larger standard balls centered at nearby singular points.
Moreover, if x ∈ Σ then the standard ball in the definition can be assumed to be cen-
tered at x. Proposition 3.2.5 implies that there is a uniform lower bound for the radius
of a tubular neighborhood of the singular locus Σ. In particular the singular locus can
not cross itself when the cone angles are ≤ π. The proof of Proposition 3.2.5 is based
on volume estimates using the convexity of the Dirichlet polyhedron (Corollary 3.1.5).

The proof of Proposition 3.2.5 is divided in two propositions, the first one deals
with the case of singular points, the second one with the case of regular points.

Proposition 3.4.2. — Given R > 0, a > 0 and ω ∈ (0, π], there exist constants δ1 =
δ1(R, a, ω) > 0 and δ2 = δ2(R, a, ω) > 0 (depending only on R, a and ω) such that
any pointed cone 3-manifold (C, x) ∈ C[ω,π],a satisfies:

i) any component Σ0 of the singular locus Σ ⊂ C that intersects B(x,R) has length
|Σ0| ≥ δ1,

ii) Nδ2(Σ) ∩ B(x,R) = {y ∈ B(x,R) | d(y,Σ) < δ2} is a tubular neighborhood of
Σ ∩B(x,R).

Proposition 3.4.3. — Given R > 0, a > 0 and ω ∈ (0, π], there exists a constant
δ3 = δ3(R, a, ω) > 0 (depending only on R, a and ω) such that for any pointed cone
3-manifold (C, x) ∈ C[ω,π],a, if y ∈ B(x,R) ⊂ C and d(y,Σ) > min(δ1, δ2) then
inj(y) > δ3 (where δ1 and δ2 are the constants given in Proposition 3.4.2).
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The proof of Proposition 3.4.3 is given in [Koj, Prop. 5.1.1]. It may be proved
also by perturbing the singular metric on the tubular neighborhood of Σ ∩ B(x,R)
with radius min{δ1, δ2} to get a Riemannian metric with pinched sectional curvature,
with a pinching constant depending only on δ1 and δ2; then we are in the case of non-
singular Riemannian metrics for which the result is well known (cf. [GLP], [Pe]).
Therefore we only give the proof of Proposition 3.4.2.

Proof of Proposition 3.4.2 i). — The proof follows from the following volume estima-
tions.

Lemma 3.4.4. — Given a > 0 and ω ∈ (0, π], there exists a constant c1 = c1(a, ω) > 0
such that for any pointed cone 3-manifold (C, x) ∈ C[ω,π],a, vol(B(x, 1)) ≥ c1.

Lemma 3.4.5. — Given R > 0 there is a constant c2 = c2(R) > 0 such that, if C is
a cone 3-manifold of curvature K ∈ [−1, 0] and if Σ0 is a component of the singular
locus of C, then for any y ∈ Σ0, vol(B(y,R+1)) ≤ c2(R)|Σ0|, where |Σ0| is the length
of Σ0.

Proof of Proposition 3.4.2 i) from Lemmas 3.4.4 and 3.4.5. — Let Σ0 be a component
of Σ that intersects B(x,R) and y ∈ Σ0 ∩ B(x,R). By Lemmas 3.4.4 and 3.4.5 we
have:

c1 = c1(a, ω) ≤ vol(B(x, 1)) ≤ vol(B(y,R+ 1)) ≤ c2(R)|Σ0|.
Therefore |Σ0| ≥ δ1 = c1/c2.

We now give the proofs of Lemmas 3.4.4 and 3.4.5.

Proof of Lemma 3.4.4. — Let (C, x) ∈ C[ω,π],a; in particular inj(x) > a. Because of
the definition of the cone-injectivity radius, we distinguish two cases, according to
whether B(x, a) is contained in a singular standard ball or in a non-singular one.
Non-singular case. When B(x, a) is a non-singular standard ball, by taking a0 =

inf{1, a} we have vol(B(x, 1)) ≥ vol(B(x, a0)) ≥ 4
3πa

3
0, because the curvature K ≤ 0.

Singular case. When B(x, a) is contained in a standard singular ball, there exists
a point z ∈ Σ and a′ ≥ a such that B(z, a′) is a singular standard ball that contains
B(x, a). We may assume that d(x, z) = d(x,Σ). We distinguish again two sub-cases.

If d(x, z) ≤ 1/2, then by taking a0 = inf{1/2, a}, we have that B(z, a0) ⊂ B(x, 1)
and thus vol(B(x, 1)) ≥ vol(B(z, a0)) ≥ 2

3ωa
3
0, because the cone angles are bounded

below by ω and the curvature K ≤ 0.
If d(x, z) = d(x,Σ) ≥ 1/2, an elementary trigonometric argument shows that we

can find a constant b = b(ω, a) > 0 such that B(x, b) is a non-singular standard ball.
This constant depends only on ω and a, because the curvature K ∈ [−1, 0]. As in the
non-singular case, by taking b0 = inf{b, 1}, we have the inclusion B(x, b0) ⊂ B(x, 1)
and the inequality vol(B(x, 1)) ≥ 4

3πb
3
0.

This finishes the proof of Lemma 3.4.4.
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Proof of Lemma 3.4.5. — Let Σ0 and y ∈ Σ0 be as in the statement of Lemma 3.4.5.
Consider Dy the Dirichlet polyhedron centered at y. By Lemma 3.1.8, Dy is contained
in the region of H3

K(α) bounded by two planes orthogonal to the singular axis of H3
K(α)

and the distance between them is less that or equal to the length |Σ0|. Therefore we
have:

vol(Dy ∩B(y,R+ 1)) ≤ 2π|Σ0| sinh2
K(R+ 1)

where sinhK(r) = sinh(
√

−Kr)/
√

−K if K < 0 and sinh0(r) = r. Since K ∈ [−1, 0],
sinhK(r) ≤ sinh(r) and we conclude:

vol(Dy ∩B(y,R+ 1)) ≤
(
2π sinh2(R+ 1)

)
|Σ0|.

This inequality proves Lemma 3.4.5.

Proof of Proposition 3.4.2 ii). — Let σ be a minimizing arc between two points of
B(x,R) ∩ Σ that is not contained in Σ, in particular σ ∩ Σ = ∂σ. We assume that
σ has minimal length among all such possible arcs. Proposition 3.4.2 ii) will follow
from Lemma 3.4.4 and the following:

Lemma 3.4.6. — There exists a constant c3 = c3(R) > 0 depending only on R such
that vol(NR+1(σ)) < c3(R)|σ|, where NR+1(σ) = {y ∈ C | d(y, σ) ≤ R+1} and |σ| is
the length of σ.

The proof of Proposition 3.4.2 ii) from Lemmas 3.4.4 and 3.4.6 is similar to the proof
of Proposition 3.4.2 i). From the inclusion B(x, 1) ⊂ NR+1(σ) and the inequalities
of Lemmas 3.4.4 and 3.4.6 we conclude that |σ| > c1/c3. Thus it suffices to choose
δ2 = 1

2c1/c3 in Proposition 3.4.2 ii).

The remaining of this section is devoted to the proof of Lemma 3.4.6.

Proof of Lemma 3.4.6. — Let Dσ be the open subset of C defined as:

Dσ = {y ∈ C − Σ | there is a unique minimizing arc between y and σ}.

The open set Dσ is perhaps not convex, but it is star shaped with respect to σ. So
Dσ may be isometrically embedded in H3

K , the space of constant sectional curvature
K ∈ [−1, 0].

Claim 3.4.7. — The set C −Dσ has Lebesgue measure zero.

Proof. — Since Σ is 1-dimensional, it suffices to show that C− (Σ∪Dσ) has measure
zero. Given z ∈ C− (Σ∪Dσ) there are only a finite number of minimizing paths from
z to σ, by Lemma 3.1.4. Moreover, by the same lemma, there is a neighborhood Uz

of z such that for every y ∈ Uz ∩C − (Σ∪Dσ) the minimizing paths between y and σ

are in tubular neighborhoods of the minimizing paths between z and σ. Therefore, by
using developing maps along these tubular neighborhoods and the fact that the set of
points in H3

K that are equidistant from two geodesics has measure zero, we conclude
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that Uz ∩C− (Σ∪Dσ) has measure zero. This implies in particular that C− (Σ∪Dσ)
itself has measure zero and the claim is proved.

This claim implies that vol(NR+1(σ)) = vol(Dσ ∩NR+1(Σ)). We next use the fact
that Dσ ∩ NR+1(Σ) can be isometrically embedded in H3

K to get an upper bound for
its volume.

Let {p, q} = σ ∩ Σ be the end-points of σ. The proof of Lemma 3.4.6 is divided in
three cases: Lemmas 3.4.8, 3.4.9 and 3.4.10,

Lemma 3.4.8. — If σ is orthogonal to Σ at p and q, then Lemma 3.4.6 holds true.

Proof. — Since the cone angles of C are ≤ π, the orthogonality hypothesis implies
that Dσ is contained in the subspace of H3

K bounded by the two planes orthogonal to
σ at its end-points p and q. Therefore, as in the proof of Lemma 3.4.5, we obtain the
following inequality:

vol(NR+1(Σ) ∩Dσ) ≤ 2π|σ| sinh2
K(R+ 1) ≤ 2π sinh2(R+ 1)|σ|,

because K ∈ [−1, 0].

It may happen that σ is not orthogonal to Σ at p or q, when p or q belong to the
boundary of B(x,R). Let θ and φ in [0, π/2] be the angles between σ and Σ at p and
q respectively.

Lemma 3.4.9. — If max{cos(θ), cos(φ)} ≤ 2|σ| then Lemma 3.4.6 holds true.

Proof. — By assumption, Dσ is contained in the union Sσ ∪Sp ∪Sq ⊂ H3
K , where Sσ

is the subspace of H3
K bounded by the two planes orthogonal to σ at p and q, Sp is

a solid angular sector with axis passing through p and dihedral angle π/2 − θ at the
axis, and Sq is a solid angular sector with axis passing through q and dihedral angle
π/2 − φ at the axis. One of the faces of Sp (and of Sq) is a face of Sσ and the other
contains a piece of Σ (cf. Fig. 5).

Figure 5
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Since

vol(NR+1(Σ) ∩Dσ) = vol(NR+1(Σ) ∩ Sσ) + vol(NR+1(Σ) ∩ Sp) + vol(NR+1(Σ)∩ Sq),

to prove Lemma 3.4.6 it suffices to get a suitable upper bound for each one of these
three volumes.

For vol(NR+1(Σ) ∩ Sσ) the same upper bound as in Lemma 3.4.8 goes through:

vol(NR+1(Σ) ∩ Sσ) ≤ 2π sinh2(R+ 1)|σ|.

For vol(NR+1(Σ) ∩ Sp) we use the volume of the sector of angle π/2 − θ:

vol(NR+1(Σ) ∩ Sp) ≤ π/2 − θ

2π
vK(R+ 1),

where vK(R + 1) is the volume of the ball of radius R + 1 in H3
K . Moreover, since

K ≥ −1, vK(R+ 1) ≤ v−1(R+ 1) ≤ π sinh(2R+ 2). Therefore:

vol(NR+1(Σ) ∩ Sp) ≤ (π/2 − θ)
1
2
sinh(2R+ 2).

Since lim
θ→π/2

cos(θ)/(π/2−θ) = 1, there is a constant λ > 0 such that π/2−θ ≤ λ cos(θ).

Therefore the hypothesis cos(θ) ≤ 2|σ| gives:

vol(NR+1(Σ) ∩ Sp) ≤ λ sinh(2R+ 2)|σ|.

The same upper bound can be applied to vol(NR+1(Σ)∩Sq). This proves Lemma 3.4.9.

To achieve the proof of Lemma 3.4.6 we need the following:

Lemma 3.4.10. — There is a universal constant µ > 0 such that the following holds. If
max{cos θ, cosφ} > 2|σ|, then one can find a minimizing path σ′ between two singular
points, that satisfies the following:

i) int(σ′) ∩ Σ = ∅,
ii) |σ′| ≤ |σ|,
iii) σ ⊂ Nµ(σ′),
iv) if θ′ and φ′ are the angles between σ′ and Σ at the end-points of σ′ then

max{cos θ′, cosφ′} ≤ 2|σ|

(note that we are using |σ| instead of |σ′|).

Assuming Lemma 3.4.10, if the minimizing arc σ does not fulfills the hypothesis of
Lemmas 3.4.8 and 3.4.9, then we apply the upper bounds obtained in these lemmas
to the region NR+1+µ(σ′) that contains NR+1(σ). Thus we obtain the upper bound

vol(NR+1(σ)) ≤ vol(NR+1+µ(σ′)) ≤ c3(R+ µ)|σ|

where c3(R + µ) > 0 depends only on R because µ is universal. This inequality
completes the proof of Lemma 3.4.6 (assuming Lemma 3.4.10).
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Proof of Lemma 3.4.10. — By hypothesis, max{cos θ, cosφ} > 2|σ|. For ε > 0 suffi-
ciently small there is a homotopy {σt}t∈[0,ε) of σ = σ0 such that, for any t ∈ [0, ε), σt
is a geodesic arc between two points of Σ satisfying the following:

1) int(σt) ∩ Σ = ∅, for all t ∈ [0, ε);
2) the length |σt| is decreasing with t;
3) the angles θt, φt ∈ [0, π/2] between σt and Σ are increasing with t.

When we increase the parameter t, we end up with one of the following possibilities.

a) either for some parameter t0 we reach a path σt0 that satisfies i) and ii), and
moreover max{cos θt0 , cosφt0} ≤ 2|σ|;

b) or before reaching such a t0 the homotopy crosses Σ: there is t1 > 0 such that
int(σt1 ) ∩ Σ �= ∅ and, for any t ∈ [0, t1), max{cos θt, cosφt} > 2|σ|.

Both possibilities happen at bounded distance, because of the following claim:

Claim 3.4.11. — In both cases, d(σt, σ) ≤ 1, where t ≤ t0 in case a) and t ≤ t1 in
case b).

Proof. — By using developing maps, we embed the homotopy {σt}t∈[0,ε) locally iso-
metrically in H3

K . In particular, the pieces of Σ and the arcs σt are embedded as
geodesic arcs.

Up to permutation, we can assume that cos θ ≥ cosφ, where θ and φ are the angles
at p and q respectively. Let pt ∈ Σ be the end-point of σt obtained by moving p

along Σ and let p′t its orthogonal projection to the geodesic of H3
K containing σ. This

projection p′t lies between p and q (hence it is contained in σ) by construction of the
homotopy (see Fig. 6). In particular d(p, p′t) ≤ |σ|.

Figure 6

Next we consider the right-angle triangle with vertices p, pt and p′t (cf. Fig. 6) and
we apply the trigonometric formula for cos θ:

cos θ = tanhK(d(p, p′t))/ tanhK(d(p, pt)) ≤ tanhK |σ|/ tanhK(d(p, pt)),
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where tanhK(r) = tanh(
√

−Kr)/
√

−K for K > 0 and tanh0(r) = r. We recall that
tanhK(|x|) ≤ |x|.

Since cos θ ≥ 2|σ| ≥ 2 tanhK |σ|, we obtain that tanhK(d(p, pt)) ≤ 1/2. Moreover
1/2 ≤ tanhK 1 because K ∈ [−1, 0]. Thus the monotonicity of tanhK implies that
d(p, pt) ≤ 1, and in particular d(σ, σt) ≤ 1. This proves the claim.

From this claim, we deduce that σt ⊂ N2(σ), because |σt| ≤ |σ| ≤ 1. In particular,
if case a) above occurs, the path σt0 satisfies the conclusion of Lemma 3.4.10 and we
are done. Hence we assume that case b) happens. Let σt1 be the path coming from
the homotopy that intersects Σ in its interior and consider p1 and q1 the nearest two
distinct points of Σ ∩ σt1 . We obtain in this way two points p1 and q1 on Σ joined
by a minimizing arc σ1 such that σ1 ∩ Σ = {p1, q1}. Moreover, by Claim 3.4.11,
d(σ1, σ) ≤ 2 and, by the choice of p1 and q1,

|σ1| ≤
1
2
|σt1 | ≤

1
2
|σ| ≤ 1

4
.

Figure 7

Let θ1, φ1 ∈ [0, π/2] be the angles between σ1 and Σ at p1 and q1 respectively.
We assume again that max{cos θ1, cosφ1} > 2|σ|, otherwise the minimizing path σ1

would satisfy the conclusion of Lemma 3.4.10 and we would be done.
By iterating this process, we construct two sequences of points pn and qn on Σ

such that p0 = p, q0 = q, pn �= qn and there is a minimizing path σn between pn and
qn such that σn ∩ Σ = {pn, qn} and |σn| ≤ 1

2 |σn−1|. Moreover, if θn, φn ∈ [0, π/2] are
the angles between σn and Σ at pn and qn, then we make the choice cos θn ≥ cosφn.
There are two possibilities:

– either cos θn ≤ 2|σ| and the sequences stop at n,
– or cos θn > 2|σ| and the sequences go on.

The following claim shows that the sequences stop at uniformly bounded distance.

Claim 3.4.12. — There is a universal constant η > 0 such that d(p, pn) < η and
d(p, qn) < η, whenever pn and qn are defined.

The claim implies that the sequences stop, otherwise (pn)n∈N would have a conver-
gent subsequence in the compact ball B(p, η), contradicting the fact that the cone-
injectivity radius of the limit point is positive. Hence, for the value of n where the
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sequences stop, the path σn satisfies the conclusions of Lemma 3.4.10, because it is
at a uniformly bounded distance of σ. Hence Lemma 3.4.10 is proved.

Proof of Claim 3.4.12. — Let pn and qn be two points of the sequences on Σ, and
σn the minimizing arc between them such that σn ∩ Σ = {pn, qn} and |σn| ≤ 2−n|σ|.
We also assume that cos θn > 2|σ|, so that pn+1 and qn+1 are defined. These points
are constructed by considering a homotopy of σn as in the beginning of the proof of
Lemma 3.4.10. This homotopy gives:

– either a path σ′
n that crosses Σ, and the points pn+1 and qn+1 are the two

nearest different points in σ′
n ∩ Σ;

– or a path σ′
n such that the angles θ′n and φ′

n between σ′
n and Σ satisfy

max{cos θ′n, cosφ′
n} ≤ 2|σ|.

In this case pn+1 and qn+1 are the end-points of σn+1 = σ′
n and the sequences

stop at n+ 1.

In both cases we have:

max{d(pn, pn+1), d(pn, qn+1)} ≤ |σ′
n| + d(pn, σ′

n),

and |σ′
n| ≤ |σn| ≤ |σ|/2n ≤ 1/2n+1. The trigonometric argument of Claim 3.4.11

applies here to give the following inequality,

cos θn ≤ tanhK |σn|/ tanhK(d(pn, σ′
n)).

Combining this with the hypothesis cos θn > 2|σ| we get:

tanhK(d(pn, σ′
n)) ≤ tanhK |σn|

2|σ| ≤ |σn|
2|σ| ≤ 1

2n+1

Since tanhK(x) = x+O(|x|3), it follows from this inequality that there is a universal
constant η0 > 0 such that d(pn, σ′

n) ≤ η0/2n+1. Summarizing these inequalities we
obtain:

max{d(pn, pn+1), d(qn, qn+1)} ≤ (η0 + 1)/2n+1

and

max{d(p, pn+1), d(q, qn+1)} ≤
n∑

i=0

(η0 + 1)/2i+1 < η0 + 1.

It suffices to take η = η0 + 1 to achieve the proof of Claim 3.4.12.

3.5. Some properties of geometric convergence

In this section we study properties of sequences of pointed cone 3-manifolds in
C[ω,π],a that converge geometrically. During all the section we will assume ω ∈ (0, π]
and a > 0.

Proposition 3.5.1. — Let (Cn, xn) be a sequence in C[ω,π],a that converges geometrically
to a pointed cone 3-manifold (C∞, x∞). Then:
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i) the curvature of Cn converges to the curvature of C∞;
ii) inj(x∞) ≤ lim inf

n→∞
inj(xn).

Proof. — Property i) has been proved in Proposition 3.2.6. It follows also from the
fact that the sectional curvature may be computed from small geodesic triangles.

To prove Property ii) we distinguish two cases, according to whether the cone-
injectivity radius at x∞ is estimated using singular or non-singular balls. Let r∞ =
inj(x∞). We first assume that for any 0 < ε < r∞, the ball B(x∞, r∞ − ε) is
standard and non-singular. Geometric convergence implies that for n sufficiently
large, B(xn, r∞ − 2ε) is standard in Cn, hence inj(xn) ≥ inj(x∞) − 2ε. A similar
argument applies in the case of singular standard balls.

Proposition 3.5.2. — Let (Cn, xn) be a sequence in C[ω,π],a that converges geometrically
to a pointed cone 3-manifold (C∞, x∞). For any compact subset A ⊂ C∞ there exists
n0 > 0 such that for n ≥ n0 there is an embedding fn : A → Cn with the following
properties:

i) fn(A) ∩ Σn = fn(A ∩ Σ∞);
ii) the cone angles at fn(A) ∩ Σn approach the cone angles at A ∩ Σ∞ as n goes to

infinity.

Corollary 3.5.3. — If the limit C∞ of a geometrically convergent sequence (Cn, xn) in
C[ω,π],a is compact, then, for n sufficiently large, Cn has the same topological type as
C∞ (i.e. the pairs (Cn,Σn) and (C∞,Σ∞) are homeomorphic) and the cone angles of
Cn converge to those of C∞.

Proof of Proposition 3.5.2. — Since A is compact, there exists R > 0 such that A ⊂
B(x∞, R). The definition of geometric convergence implies that for any ε > 0 and
for n ≥ n0 (n0 depending on R, ε and the sequence) there exists a (1 + ε)-bilipschitz
map fn : B(x∞, R) → Cn such that

fn(B(x∞, R) ∩ Σ∞) = fn(B(x∞, R)) ∩ Σn.

This proves Property i) of the proposition. Moreover, by taking ε → 0 we get Property
ii).

Proposition 3.5.4. — Let (Cn, xn) be a sequence in C[ω,π],a that converges geometrically
to a pointed cone 3-manifold (C∞, x∞). Assume that the base point x∞ is non-
singular. Let A ⊂ C∞ be a compact subset containing x∞. Let ρn (resp. ρ∞) be the
holonomy of the cone 3-manifold Cn (resp. C∞). Then, we can choose the holonomy
representations and the embeddings fn of Proposition 3.5.2 so that:

i) If the curvature of Cn does not depend on n, then for all γ ∈ π1(A− Σ∞, x∞),

lim
n→∞

ρn(fn∗(γ)) = ρ∞(γ).
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ii) If the curvature Kn ∈ [−1, 0) of Cn converges to 0 as n → ∞, then for all
γ ∈ π1(A− Σ∞, x∞),

lim
n→∞

ρn(fn∗(γ)) = ROT(ρ∞(γ)),

where ROT : Isom(E3) → O(3) is the surjective morphism whose kernel is the
subgroup of translations.

Proof. — We first prove assertion i). We will assume that A contains a neighborhood
of x∞, by replacing A by a bigger set if necessary. Let ˜C∞ − Σ∞, ˜Cn − Σn and
Ã− Σ∞ be the respective universal coverings of C∞ − Σ∞, Cn − Σn and A − Σ∞.
Let D∞ : ˜C∞ − Σ∞ → H3

K be a developing map of C∞, ι̃ : Ã− Σ∞ → ˜C∞ − Σ∞ a
lift of the inclusion A− Σ∞ → C∞ − Σ∞, and f̃n : Ã− Σ∞ → ˜Cn − Σn a lift of fn.
We claim that we can choose developing maps Dn : ˜Cn − Σn → H3

K such that Dn ◦ f̃n
converges to D∞ ◦ ι̃ uniformly on compact subsets.

To prove this claim, we choose a standard ball B(x∞, ε) ⊂ A and three points
a, b, c ∈ B(x∞, ε/2) such that x∞, a, b, c are not contained in a plane. In particular,
a point in B(x∞, ε) is determined by its distance to each one of the four points
x∞, a, b, c. We also assume that B(fn(x∞), ε) is standard. We lift the four points
to the universal covering x̃∞, ã, b̃, c̃ ∈ Ã− Σ∞ so that ã, b̃, c̃ ∈ B(x̃∞, ε). We choose
the developing maps Dn in such a way that Dn(f̃n(x∞)), Dn(f̃n(a)), Dn(f̃n(b)) and
Dn(f̃n(c)) converge respectively to D∞(ι̃(x∞)), D∞(ι̃(a)), D∞(ι̃(b)) and D∞(ι̃(c)).
This choice is possible because fn is (1+εn)-bilipschitz, with εn → 0, and fn preserves
the orientation.

The restriction of Dn ◦ f̃n to B(x̃∞, ε) converges uniformly to the restriction of
D∞ ◦ ι̃, because a point of H3

K is determined by the distance to four points not
contained in a plane. The uniform convergence extends to every compact subset
of Ã− Σ∞, by covering this subset with standard balls and using the fact that the
intersection of two balls, if non-empty, contains four non-coplanar points.

Since Dn ◦ f̃n converges to D∞ ◦ ι̃ uniformly on compact subsets, we have that for
any z ∈ Ã− Σ∞ and any γ ∈ π1(A− Σ∞),

ρn(fn∗(γ))
(
Dn(fn(z))

)
→ ρ∞(γ)

(
D∞(ι̃(z))

)
.

Moreover since Dn(fn(z)) → D∞(ι̃(z)) and A contains a neighborhood of x∞, this
implies that ρn(fn∗(γ)) → ρ∞(γ). This proves assertion i).

Assertion ii) is proved in [Po1, Prop. 5.14(i)].

3.6. Cone 3-manifolds with totally geodesic boundary

The aim of this last paragraph is to prove a compactness theorem for cone 3-
manifolds with totally geodesic boundary. This kind of cone 3-manifolds are only
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used in Chapter 7. If not specified, a cone 3-manifold is assumed to be without
boundary.

Definition 3.6.1. — A cone 3-manifold with boundary is a cone 3-manifold with totally
geodesic boundary, such that the singular set is orthogonal to the boundary.

To define the cone injectivity radius we use not only standard balls in the model
spaces H3

K and H3
K(α), but also half standard balls with totally geodesic boundary.

The double of a half standard ball along its boundary is a standard ball. When it is
singular, the boundary of the half standard ball is orthogonal to the singular locus.

Let C be a cone 3-manifold with boundary. We define the cone-injectivity radius
at a point x ∈ C as

inj(x) = sup
{
δ > 0

∣∣∣∣ B(x, δ) is contained in either a standard ball
or a half standard ball in C

}
.

As in the beginning of the chapter, given a > 0 and ω ∈ (0, π], CB[ω,π],a denotes
the set of pointed cone 3-manifolds (C, x), possibly with boundary, with constant
curvature in [−1, 0], cone angles in [ω, π], and such that inj(x) ≥ a.

Remark 3.6.2. — The set CB[ω,π],a contains C[ω,π],a, because the limit of cone 3-
manifolds with boundary can be a cone 3-manifold without boundary. This happens
when, in a converging sequence of pointed cone 3-manifolds, the boundary goes to
infinity.

This section is devoted to the proof of the following result:

Compactness theorem for cone 3-manifolds with boundary. — For a > 0 and ω ∈ (0, π],
the closure of CB[ω,π],a in

⋃
b>0

CB[ω,π],b is compact for the topology of geometric con-

vergence.

The proof of this theorem follows exactly the same scheme as the proof in the case
without boundary. The main difference is the following uniform lower bound of the
cone-injectivity radius, that we deduce from the analogous bound in the case without
boundary (Proposition 3.2.5).

Proposition 3.6.3 (Uniform lower bound for the cone-injectivity radius in the case with
boundary)
Given R > 0, a > 0 and ω ∈ (0, π], there exists a uniform constant b = b(R, a, ω) >

0 such that, for any pointed cone 3-manifold (C, x) ∈ CB[ω,π],a, the cone-injectivity
radius at any point of B(x,R) ⊂ C is bigger than b.
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Proof of the compactness theorem for cone 3-manifolds with boundary. — We follow
the proof in the case without boundary.

First, by Gromov compactness criterion, CB[ω,π],a is relatively compact in the space
L of locally compact metric length spaces equipped with the Hausdorff-Gromov topol-
ogy. The fact that CB[ω,π],a satisfies the necessary conditions to apply the compactness
criterion follows from Bishop-Gromov inequality, whose proof extends trivially to the
case with totally geodesic boundary.

The second step requires the use of Proposition 3.6.3, that we prove later. Using
this proposition one shows that, if we have a sequence of pointed cone 3-manifolds with
boundary in CB[ω,π],a that converges in L, then the limit is a pointed cone 3-manifold
in CB[ω,π],b for some b > 0. This can be proved by an argument similar to the one
given in the proof of Proposition 3.2.6, by using the fact that the Hausdorff-Gromov
limit of half standard balls is again a half standard ball.

The final step is to show that Hausdorff-Gromov convergence in CB[ω,π],a implies
geometric convergence. This is proved in Proposition 3.3.1 for cone 3-manifolds with-
out boundary, where the bilipschitz maps are explicitly constructed. These bilipschitz
maps are constructed taking account of the singular locus, and the same construction
can be made by taking additional account of the boundary. Thus we are left with the
proof of Proposition 3.6.3.

Proof of Proposition 3.6.3. — GivenC a cone 3-manifold with totally geodesic bound-
ary, DC denotes its double along the boundary. Since the boundary of C is totally
geodesic, DC is still a cone 3-manifold. Given y ∈ C, injC(y) and injDC(y) denote
the injectivity radius in C and in DC respectively. Note that injC(y) ≤ injDC(y).

We will also use the notation BC(x,R) and BDC(x,R) to distinguish the ball in C

from the ball in DC. Note that BC(x,R) ⊆ BDC(x,R).
Given (C, x) ∈ CB[ω,π],a andR > 0, we want to find a lower bound for the injectivity

radius of every point in B(x,R) which depends only on a, R and ω. Since injC(x) ≤
injDC(x), we have that the pointed cone manifold (DC, x) ∈ C[ω,π],a. Therefore, by
Proposition 3.2.5 there exists a uniform constant b0 = b0(R,ω, a) > 0 such that

∀y ∈ BDC(x,R + 4), injDC(y) ≥ b0.

We shall deduce from it that, ∀y ∈ BC(x,R), injC(y) ≥ b for some constant b =
b(b0, ω) > 0 which depends only on b0 and ω. We do it in several steps (Lem-
mas 3.6.4, 3.6.7, 3.6.8).

Lemma 3.6.4. — For every y ∈ ∂C ∩ B(x,R + 2), inj∂C(y) > b0, where inj∂C(y)
denotes the injectivity radius in the boundary and b0 is the constant above.

Proof. — This is a consequence of the fact that inj∂C(y) ≥ injDC(y), since ∂C is a
totally geodesic submanifold of DC.

Next we define the normal radius of a compact region in the boundary.

ASTÉRISQUE 272



3.6. CONE 3-MANIFOLDS WITH TOTALLY GEODESIC BOUNDARY 59

Definition 3.6.5. — Given K ⊆ ∂C a compact subset of the boundary, we define its
normal radius as the following supremum:

n(K) = sup
{
r > 0

∣∣∣∣ two segments of length r orthogonal to ∂C which
start at different points of K do not intersect

}
Remark 3.6.6. — Since K is compact, its normal radius is well defined.

The normal radius is the supremum of all r > 0 such that the normal map defines
a collared neighborhood for K. It is the supremum but not the maximum.

Lemma 3.6.7. — There exists a constant b1 = b1(b0, ω) > 0 depending only on b0 and
ω such that the normal radius is

n(∂C ∩BC(x,R+ 2)) ≥ b1.

Proof. — First we bound below the length of an orthogonal segment that starts in
a smooth point of ∂C ∩ BC(x,R + 3) and hits the singular locus Σ. Thus let y ∈
∂C ∩ BC(x,R + 3) be a nonsingular point and let σ be a segment between y and Σ
which is orthogonal to ∂C. We want to find a lower bound for the length of σ.

Let z = σ ∩ Σ. We may assume that z ∈ BC(x,R + 4). Thus injDC(z) ≥ b0.
Now consider the segment in DC obtained by joining σ to his mirror image along the
boundary. Since this segment goes from z to its mirror image, it joins two singular
points and its length has to be bigger than the injectivity radius at z. Thus the length
of σ is ≥ b0/2.

Next we find the lower bound for the normal radius. We choose β > 0 a constant
with the following property: if two points p and q in the singular model space HK(α)
are joined by two segments of length less than β, then the singular edge of HK(α)
is at distance at most b0/4 from p and q. This constant exists because α ≥ ω, and
it depends only on ω and b0. See Figure 8. We will use the additional fact that
the singular locus of HK(α) and the segments joining p to q cannot have a common
perpendicular plane.

Figure 8
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Now suppose there are two different segments σ1, σ2 with the same length, which are
orthogonal to the boundary, and which start at different points of ∂C ∩BC(x,R+2),
but meet at their end-point {z} = σ1 ∩ σ2.

When both σ1 and σ2 are nonsingular, we will show by contradiction that the
length of σ1 (and of σ2) is at least inf{b0/4, β/2}. Let us assume that their length is
less than inf{b0/4, β/2}. We look at the configuration obtained by reflecting σ1 ∪ σ2

along its boundary. Since injDC(z) > b0 this configuration lies in a standard ball of
radius ≥ b0. By definition of β, we have that the distance between Σ and z is less
than b0/4. Moreover, since σ1 and σ2 are perpendicular to the boundary, it follows
that Σ is not orthogonal to the boundary in the standard ball. Hence we can find
a non-singular segment between Σ and ∂C ∪ BC(x,R + 3) of length less than b0/2,
contradicting the first lower bound of the proof.

If σ1 and σ2 are both singular, then their union σ1 ∪ σ2 is a connected component
of Σ. Since the connected components of DΣ ⊂ DC in the ball BDC(x,R + 3) have
length ≥ b0, it follows that the length of σ1 and σ2 is ≥ b0/4. If σ1 is singular but σ2

is not, then we have shown in the beginning of the proof that the length of σ1 is at
least b0/2.

From Lemmas 3.6.4 and 3.6.7, we have a uniform lower bound for the injectiv-
ity radius of points in the collared neighborhood of ∂C ∩ BC(x,R + 1) with normal
radius b1/2. In particular, such a bound holds for points in BC(x,R) whose dis-
tance to the boundary is ≤ b1/2. Hence the following lemma concludes the proof of
Proposition 3.6.3.

Lemma 3.6.8. — There exists a uniform constant b2 > 0 depending only on b0, ω and
b1 such that for every point y ∈ BC(x,R) the following holds: if the distance to ∂C

is ≥ b1/2, then injC(y) > b2

Proof of Lemma 3.6.8. — Since injDC(y) ≥ b0, either the ball BDC(y, b0) is standard
or BDC(y, b0) is contained in a standard ball.

If BDC(y, b0) is itself standard, then the ball BC(y, b1/2) is also standard, because
b1 ≤ b0 and d(y, ∂C) > b1/2. Therefore injC(y) ≥ b1/2.

When BDC(y, b0) is contained in a standard ball BDC(z, r) we distinguish two
cases according to whether d(y, z) ≤ b1/8 or not.

If d(y, z) ≤ b1/8, then d(z, ∂C) ≥ b1/4. In addition, since b1 ≤ b0 ≤ r, the ball
BC(z, b1/4) = BDC(z, b1/4) is standard and BC(y, b1/8) ⊂ BC(z, b1/4) by construc-
tion. Hence injC(y) ≥ b1/8.

If d(y, z) ≥ b1/8, then, by trigonometric arguments, we can find a constant b′ > 0
depending only on b1 and ω such that the ball BDC(y, b′) is standard. By taking b′ <

b1/2, we have that BC(y, b′) = BDC(y, b′) is standard, and therefore injC(y) ≥ b′.

This finishes the proof of Proposition 3.6.3 and hence of the compactness theorem
in the case with boundary.
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CHAPTER 4

LOCAL SOUL THEOREM FOR CONE 3-MANIFOLDS

WITH CONE ANGLES LESS THAN OR EQUAL TO π

The goal of this chapter is to describe the metric structure of a neighborhood
of a point with sufficiently small injectivity radius in a hyperbolic cone 3-manifold
with cone angles bounded above by π. This description is crucial to study collapsing
sequences of cone 3-manifolds in the proofs of Theorems A and B.

We need first the following definition.

Definition 4.0.1. — Let C be a cone 3-manifold and D a cone manifold of dimension
less than 3, possibly with silvered boundary ∂D. A surjective map p :C → D is said
to be a cone fibre bundle if

– on D− ∂D, the restriction of p is a locally trivial fibre bundle with fibre a cone
manifold. Moreover, if dim(D) = 2 then p(ΣC) = ΣD

– on ∂D, the restriction of p is an orbifold fibration. In particular, the fibre over
a point of ∂D is an orbifold with some cone angles equal to π.

Local Soul Theorem. — Given ω ∈ (0, π), ε > 0 and D > 1 there exist

δ = δ(ω, ε,D) > 0 and R = R(ω, ε,D) > D > 1

such that, if C is an oriented hyperbolic cone 3-manifold with cone angles in [ω, π]
and if x ∈ C satisfies inj(x) < δ, then:
– either C is (1 + ε)-bilipchitz homeomorphic to a compact Euclidean cone 3-man-

ifold E of diameter diam(E) ≤ R inj(x);
– or there exists 0 < ν < 1, depending on x, such that x has an open neighborhood

Ux ⊂ C which is (1 + ε)-bilipschitz homeomorphic to the normal cone fibre bundle
Nν(S), of radius ν, of the soul S of a non-compact orientable Euclidean cone 3-
manifold with cone angles in [ω, π]. In addition, according to dim(S), the Euclidean
non-compact cone 3-manifold belongs to the following list:

I) (when dim(S) = 1) S1 
 R2, S1 
 (open cone disc) and the solid pillow (see
Figure 1), where 
 denotes the metrically twisted product;
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II) (when dim(S) = 2)
i) a product T 2 ×R; S2(α, β, γ)×R, with α+β+γ = 2π (the thick turnover);

S2(π, π, π, π) × R (the thick pillow);
ii) the orientable twisted line bundle over the Klein bottle K2×̃R or over the

projective plane with two silvered points P2(π, π)×̃R;
iii) a quotient by an involution of either S2(π, π, π, π)×R, T 2×R or K2×̃R, that

gives an orientable bundle respectively over either D2(π, π), an annulus, or
a Möbius strip, with silvered boundary in the three cases (see Figure 2).

In addition, the (1 + ε)-bilipschitz homeomorphism f : Ux → Nν(S) satisfies the
inequality

max
(
inj(x), d(f(x), S), diam(S)

)
≤ ν/D.

Figure 1. The solid pillow. Its soul is the interval [0, 1] with silvered boundary.

Figure 2. From left to right, the non-compact Euclidean cone 3-manifolds

with soul D2(π, π), an annulus and a Möbius strip, with silvered boundary

in every case. They are the respective quotients of S2(π, π, π, π)×R, T 2×R
and K2

e×R by an involution.

The Euclidean cone 3-manifolds E in the local soul theorem are called the local
models. We call S the soul , because, in each case, S is a totally convex cone sub-
manifold of the local model E, and E is isometric to the normal cone fibre bundle
of S.

Remark 4.0.2. — It follows from the proof (cf. [CGv]) that ν < R inj(x). In particular,
ν depends on x and this dependence cannot be avoided.

The first step of the proof is Thurston’s classification theorem of non-compact ori-
entable Euclidean cone 3-manifolds. We need in fact a simpler classification, because
Thurston’s classification includes general singular locus, and we consider here only
the case where the singular locus is a 1-dimensional submanifold (cf. [SOK], [Ho1]
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and [Zh1]). After obtaining this classification, we prove the local soul theorem by
applying an argument of [CGv]. In the last section we extend the local soul theorem
to cone 3-manifolds with totally geodesic boundary.

4.1. Thurston’s classification theorem of non-compact Euclidean
cone 3-manifolds

In this section we prove the following result:

Theorem 4.1.1 (Thurston). — Let E be a non-compact orientable Euclidean cone 3-
manifold with cone angles less than or equal to π and a 1-dimensional submanifold as
singular locus. Then either E = R3, E = R3(α) = R × (open cone disc), or E is one
of the local models given in the local soul theorem.

We prove this theorem by using the soul theorem for Euclidean cone 3-manifolds,
which is a generalization of Bieberbach theorem for open flat 3-orbifolds. We need
first some definitions. The proof of the soul theorem for Euclidean cone manifolds is
analogous to the proof of the soul theorem for Riemannian manifolds of non negative
sectional curvature in [CGl] (see also [Sak]).

Definition 4.1.2. — Let C be a cone 3-manifold with singular locus Σ ⊂ C a 1-
dimensional submanifold and curvature K ∈ [−1, 0].

– The silvered points of C are the points of Σ having cone angle π.
– A path γ : [0, l] → C is geodesic if it is locally minimizing.
– A path γ : [0, l] → C is s-geodesic if it is locally minimizing except for some
t ∈ (0, l) where γ(t) is silvered and the following happens: there exist ε > 0 and
a neighborhood U of γ(t) such that γ : (t − ε, t + ε) → U lifts to a minimizing
path in the double cover Ũ → U branched along Σ ∩ U . See Figure 3.

– A subset S ⊂ C is totally s-convex if every s-geodesic path with end-points in S

is contained in S.

Figure 3. Example of s-geodesic.

The notion of s-geodesic generalizes the notion of geodesic, thus total s-convexity
is stronger than usual total convexity, as shown in the following example.
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Example 4.1.3. — Let A be a totally s-convex subset of a cone 3-manifold C and γ a
geodesic path from p ∈ A to q ∈ Σ. If q is a silvered point and γ is orthogonal to Σ,
then γ is contained in A, because the path γ ∗ γ−1 is a s-geodesic with end-points in
A. In particular, a totally s-convex set intersects all singular components having cone
angle π.

Theorem 4.1.4 (Soul Theorem). — Let E be a non-compact Euclidean cone 3-manifold
with cone angles ≤ π. Then E contains a compact totally s-convex cone submanifold
S ⊂ E of dimension 0, 1 or 2, with silvered or empty boundary. Moreover E is
isometric to the normal cone fibre bundle of S.

Given a cone submanifold S ⊂ E, there is an ε > 0 such that the tubular neigh-
borhood of radius ε > 0, Nε(S), is a cone bundle over S. When we say that E is
isometric to the normal cone fibre bundle of S, we mean that we can choose the radius
ε = ∞ and that the metric has the local product structure of the bundle.

The cone submanifold S is called the soul of E.

Remark 4.1.5. — When cone angles between π and 2π are allowed, then this theorem
does not hold anymore. For instance one can easily construct two dimensional cone
manifolds with infinitely many singular points, if we allow the cone angles to be
arbitrarily close to 2π. However a weaker version of the soul theorem holds.

We postpone the proof of the soul theorem to Sections 4.2 and 4.3, and now we
use it to prove Thurston’s Classification Theorem 4.1.1.

Proof of Theorem 4.1.1. — Let E be an orientable non-compact Euclidean cone 3-
manifold and Σ its singular locus. Note that every finite covering S̃ → S (possibly
branched at silvered points) induces a covering Ẽ → E. Moreover, S̃ is the soul of Ẽ,
because S̃ is totally s-convex and Ẽ is the normal cone fibre bundle of S̃. Passing to
finite coverings will help us to simplify the proof.

We distinguish three cases, according to the dimension of the soul S ⊂ E.
When dim(S) = 0, then S is a point p. For ε > 0 sufficiently small, the ball B(p, ε)

of radius ε is either a non-singular Euclidean ball or a ball with a singular axis. Hence,
since E is isometric to the normal cone fibre bundle of the point p, either E is the
Euclidean space R3, or E = R3(α) = R × (open cone disc).

When dim(S) = 1, then either S is S1 or an interval [0, 1] with silvered boundary.
If S = S1, then by convexity either S ⊂ Σ or S ∩ Σ = ∅. Since E is orientable,

Nε(S) is a solid torus, possibly with a singular core. Therefore, E is the (metrically
twisted) product of S1 with an infinite disc, possibly with a singular cone point in the
center.

If S = [0, 1], then we consider the double covering S1 → [0, 1] branched along the
silvered boundary. The induced double branched covering Ẽ → E is S1 
 R2, thus E
is the solid pillow (R3 with two silvered lines; see Figure 1).
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When dim(S) = 2, we use the classification of compact Euclidean cone 2-manifolds
with geodesic boundary and cone angles ≤ π. This classification is easily deduced
from Gauss-Bonnet formula. In particular, either S = S2(α, β, γ) with α+β+γ = 2π
or S is a Euclidean orbifold having as finite covering S̃ = T 2. If S = S2(α, β, γ) or
S = T 2, then S is two sided and Nε(S) = S × (−ε, ε). Therefore E = S × R. The
remaining cases reduce to study finite groups of isometries of T 2 and their orientable
isometric extension to T 2 × R.

4.2. Totally s-convex subsets in Euclidean cone 3-manifolds.

In this section we give some basic facts about totally s-convex subsets in Euclidean
cone 3-manifolds, which are used in the proof of the soul theorem (in Section 4.3).
Lemma 4.2.2 shows that totally s-convex subsets appear naturally as level sets of
continuous convex functions.

Definition 4.2.1. — A continuous function f :E → R on a cone 3-manifold E is convex
if f ◦ γ is convex for every geodesic path γ : [0, l] → E.

Lemma 4.2.2. — If f : E → R is a continuous convex function then, for every s-
geodesic path γ : [0, l] → E, f◦γ is convex. In particular, the subset {x ∈ E | f(x) ≤ 0}
is totally s-convex.

Proof. — Every s-geodesic path is locally the limit of geodesic paths, arbitrarily close
to the singular set but disjoint from it. It follows by continuity that the inequalities
defining convexity are satisfied locally for every s-geodesic path.

Definition 4.2.3. — Let A ⊂ E be a smooth submanifold without boundary. We say
that A is totally geodesic if either dimA = 3 or for every x ∈ A the following hold:

– if x �∈ Σ, then the second fundamental form of A ⊂ E at x is trivial;
– if x ∈ Σ and dimA = 2, then A and Σ are orthogonal at x;
– if x ∈ Σ and dimA = 1, then there is a neighborhood U ⊂ E of x such that

Σ ∩ U = A ∩ U .

For non-singular points, this definition coincides with the usual definition in Rieman-
nian geometry. We also remark that this is a local notion that does not require A to
be complete.

Proposition 4.2.4. — Let E be a Euclidean cone 3-manifold and A ⊂ E a non-empty
closed totally s-convex subset. Then A is an embedded manifold, possibly with bound-
ary, whose interior A− ∂A is totally geodesic.

Before proving this proposition we need the following lemma, which describes the
local structure of A at the singular points.
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Lemma 4.2.5. — Let x ∈ Σ and let D2(x, ε) be the geodesic singular 2-disc transverse
to Σ with center x and radius ε > 0. If A is a closed totally s-convex subset such that
A ∩D2(x, ε) �= ∅, then one of the following possibilities happens:

i) A ∩D2(x, ε) = {x},
ii) A ∩D2(x, ε) contains a smaller disc D2(x, δ), with 0 < δ < ε,
iii) x is silvered and A ∩D2(x, ε) is a segment orthogonal to Σ at x.

Proof. — Choose ε > 0 so that D2(x, ε) is a disc contained in a standard ball. We
prove first that if the cone angle α at x is less than π then the convex hull of a point
y ∈ A ∩ (D2(x, ε) − {x}) contains a disc D2(x, δ), with 0 < δ < ε. We view D2(x, ε)
as the quotient of an angular sector Sα whose faces are identified by an isometric
rotation, and such that y is obtained by identifying two points ỹ1, ỹ2 ∈ Sα, one in
each face of Sα. Consider the geodesic path σ̃ : [0, l] → Sα minimizing the distance
between ỹ1 and ỹ2 (see Figure 4), it projects to a geodesic loop σ : [0, l] → D2(x, ε)
based at y. The convex hull of y contains σ and we have

d(σ, x) = d(y, x) cos(α/2).

By using this formula and the fact that 0 < cos(α/2) < 1, we can construct a sequence
of concentric geodesic loops converging to x, hence the convex hull of y contains a
disc D2(x, δ), with δ > 0. This proves the lemma when α < π.

Assume now that x is a silvered point. Let y ∈ A ∩ (D2(x, ε) − {x}). The set
A contains the minimizing path σ from y to x, because σ ∗ σ−1 is a s-geodesic loop
based at y. Moreover, if A∩D2(x, ε) contains two such segments, then these segments
divide D2(x, ε) into two sectors of angles less than π, therefore D2(x, δ) ⊂ A with
δ > 0.

Figure 4. The sector Sα and the disc D2(x, ε).

Proof of Proposition 4.2.4. — It suffices to prove the result locally: every point x ∈ A

has a neighborhood U such that U ∩ A is an embedded submanifold, possibly with
boundary, whose interior U ∩ A − ∂(U ∩ A) is totally geodesic. If x is non-singular
then it is just a well known result for locally convex subsets in R3. Hence we suppose
that x ∈ Σ.
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We choose a neighborhood U of x that has a product structure. More precisely U

is isometric to D2(0, δ)× (−ε, ε) for some ε, δ > 0, where D2(0, δ) is a singular 2-disc
of radius δ, with a singularity in its center 0. For this product structure we have that
U ∩ Σ = {0} × (−ε, ε) and x = (0, 0).

Since the intersection A∩U ∩Σ is a connected subset of U ∩Σ containing x, there
are the following three possibilities:

a) A ∩ U ∩ Σ = {x};
b) A ∩ U ∩ Σ = {0} × [0, ε), i.e. a subinterval of Σ ∩ U having x as end-point;
c) A ∩ U ∩ Σ = {0} × (−ε, ε) = Σ ∩ U .

By using Lemma 4.2.5 we can describe explicitly all the possibilities for A ∩ U in
each case.

In case a), when A ∩ U ∩ Σ = {x} = {(0, 0)}, there are 3 subcases:

a1) A ∩ U = {x} = {(0, 0)}.
a2) A ∩ U = V × {0}, where V is a convex neighborhood of 0 in D2(0, δ). In

particular int(A ∩ U) is a totally geodesic 2-submanifold transverse to Σ
a3) The point x is silvered and A ∩ U is a segment orthogonal to Σ at x.

It follows from this explicit description that the proposition holds in the three subcases
a1), a2) and a3).

In case b), when A ∩ U ∩ Σ = {0} × [0, ε), again there are three subcases:

b1) A ∩ U = A ∩ U ∩ Σ = {0} × [0, ε), (i.e. A ∩ U is a subinterval of Σ).
b2) For some t0 ∈ [0, ε), A∩(D2(0, δ)×{t0}) contains a singular 2-disc with positive

radius.
b3) x is silvered and, for some t0 ∈ [0, ε), A∩ (D2(0, δ)×{t0}) is a segment perpen-

dicular to Σ at x.

In subcase b1) we have an explicit description of A∩U and we may conclude that the
proposition holds. To give an explicit description in the other cases we need further
work.

In subcase b2), we claim that A ∩ U is a 3-manifold with boundary and that x ∈
∂(A∩U). First we remark that, for every t ∈ (0, ε), the intersection A∩(D2(0, δ)×{t})
contains a singular 2-disc with positive radius, because A∩U contains the convex hull
of the union of A ∩ (D2(0, δ) × {t0}) and A ∩ U ∩ Σ = {0} × [0, ε).

We parametrize U by cylindrical coordinates (r, θ, t) ∈ [0, δ)× [0, α]×(−ε, ε), where
r is the distance to Σ, θ ∈ [0, α] is the angle parameter, α is the singular angle and t

is the height parameter. Thus we identify (r, 0, t) to (r, α, t), and (0, θ, t) to (0, θ′, t),
for every θ, θ′ ∈ [0, α].

By Lemma 4.2.5, if a point belongs to A ∩ U , then so does its projection to Σ.
Therefore there exists a function f : [0, α] × [0, ε] → [0, δ] such that

A ∩ U = {(r, θ, t) ∈ [0, δ] × [0, α] × [0, ε] | r ≤ f(θ, t)}.
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We remark that for every t ∈ (0, ε) and every θ ∈ [0, α], f(θ, t) > 0 because
A ∩ (D2(0, δ) × {t}) contains a singular 2-disc with positive radius.

Next we show that f is continuous. The function f is upper semi-continuous
because A is closed. Moreover the lower semi-continuity of f at a point (θ, t) can be
proved by considering the convex hull of the union of A∩ (D2(0, δ)×{t}) and A∩Σ,
because this convex hull has dimension 3.

Since f is continuous, A ∩ U is a 3-manifold with boundary whose interior is

int(A ∩ U) = {(r, θ, t) ∈ [0, δ] × [0, α] × (0, ε) | r < f(θ, t)}.

Hence the proposition holds in subcase b2).
In subcase b3) we claim that A∩U is a 2-manifold that is the union of a family of

parallel segments perpendicular to Σ. First we remark that, for every t ∈ (0, ε), the
intersection A∩ (D2(0, δ)×{t}) is a segment orthogonal to Σ, because A∩U contains
the convex hull of the union of the segment A ∩ (D2(0, δ) × {t0}) and A ∩ U ∩ Σ =
{0} × [0, ε). Moreover the segments A ∩ (D2(0, δ) × {t}) are parallel, otherwise the
convex hull of their union would have dimension 3 and we would be in subcase b2).

Again we parametrize U by cylindrical coordinates (r, θ, t). By the same argument
as in subcase b2) we conclude that there exists a continuous function f : (−ε, ε) → [0, δ]
such that

A ∩ U = {(r, θ, t) ∈ [0, δ] × [0, α] × [0, ε] | θ = 0, r ≤ f(t)}.

Moreover, for t > 0, f(t) > 0. Hence A ∩ U is a 2-dimensional submanifold with
boundary and with totally geodesic interior {(r, θ, t) | θ = 0, 0 < r < f(t)}. Thus the
proposition follows from explicit description also in this case.

Finally, in case c), when A∩U ∩Σ = {0}× (−ε, ε), there are again three subcases
that can be treated with the same method as subcases b1), b2) and b3). These
subcases are:

c1) A ∩ U = A ∩ U ∩ Σ = {0} × (−ε, ε).
c2) A∩U is a 3-submanifold with boundary that contains U ∩Σ = {0}× (−ε, ε) in

its interior.
c3) x is a silvered point and A ∩ U is a 2-submanifold with boundary, which is the

union of parallel segments orthogonal to U ∩ Σ. In particular the interior of
A∩U is totally geodesic and U ∩Σ = {0}× (−ε, ε) is contained in the boundary
of A ∩ U .

Remark 4.2.6. — In the proof of Proposition 4.2.4, the cases a3), b3) and c3) deal
with silvered points. Let p : Ũ → U denote the double cover branched along U ∩Σ, so
that Ũ is non-singular. In the three cases a3), b3) and c3), p−1(A ∩ U) is a manifold
with boundary, of dimension 1 or 2, whose interior is totally geodesic in Ũ . Moreover
x ∈ ∂A, but in cases a3) and c3) p−1(x) is an interior point of p−1(A ∩ U). This
motivates the following definition.
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Definition 4.2.7. — Let A ⊂ E be a closed totally s-convex subset. The silvered
boundary ∂SA is the set of points x ∈ ∂A ∩ Σ that are silvered and such that the
following holds: if U ⊂ E is a neighborhood of x and p : Ũ → U is the double cover
branched along Σ∩U , then p−1(x) is an interior point of p−1(A∩U). We also define
the non-silvered boundary ∂NSA to be the set of points in ∂A that are not in the
silvered boundary: ∂NSA = ∂A− ∂SA. See Figure 5.

Figure 5

Lemma 4.2.8. — Let A ⊂ E be a non-empty closed totally s-convex subset in a Eu-
clidean cone 3-manifold. Then the following hold:

i) The non-silvered boundary ∂NSA is a closed subset of E.
ii) If dimA = 0 or 3, then ∂SA = ∅ and ∂A = ∂NSA.

Proof. — Let x ∈ A∩Σ and let U ⊂ E be a neighborhood of x. By using the explicit
description of U ∩ A in the proof of Proposition 4.2.4, we have that x ∈ ∂SA if and
only if x is a silvered point such that, either U ∩A is a segment orthogonal to Σ (case
a3)), or U ∩ A has dimension 2 and U ∩ Σ is a piece of ∂SA ⊆ ∂A (case c3)). This
description of points in ∂SA implies that ∂SA is open in ∂A, hence assertion i) is
proved. We also deduce from the description that if ∂SA �= ∅ then dimA = 1 or 2,
which is equivalent to assertion ii).

Proposition 4.2.9. — Let A ⊂ E be a non-empty closed totally s-convex subset in a
Euclidean cone 3-manifold. If dimA < 3 then every point in int(A)∪∂SA = A−∂NSA

has a neighborhood U ⊂ E isometric to the normal cone fibre bundle over A∩U . More
precisely:

– if x ∈ int(A) then U is isometric to the product (A∩U)×Bc(0, ε), where Bc(0, ε)
is a ball of radius ε > 0 and dimension c = codim(A), maybe with a singularity
in its center.

– if x ∈ ∂SA and p : Ũ → U is the double cover branched along Σ ∩ U , then Ũ

is isometric to p−1(A ∩ U) × Bc(0, ε), where Bc(0, ε) is a non-singular ball of
radius ε > 0 and dimension c = codim(A).
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Proof. — If x ∈ int(A) and x �∈ Σ then the proposition is clear because int(A) is
totally geodesic.

If x ∈ int(A) ∩ Σ then, by the description given in the proof of Proposition 4.2.4,
A ∩ U is either in case a2) or in case c1). In case a2), U ∩ A is a totally geodesic
2-dimensional disc perpendicular to Σ, and U is isometric to the product of U ∩ A

with an interval. In case c1), U ∩ A is a subinterval of Σ and U is isometric to the
product of U ∩A with a singular 2-disc. Hence the proposition holds in both cases.

When x ∈ ∂SA, U ∩ A is either in case a3) or c3). In both cases p−1(U ∩ A) is a
totally geodesic submanifold of p−1(A) and the proposition follows.

The following proposition shows that A has a local supporting half-space at every
point of ∂NSA.

Proposition 4.2.10. — Let A ⊂ E be totally s-convex, x ∈ A, y ∈ ∂NSA and γ : [0, l] →
A be a path from x to y that realizes the distance d(x, ∂NSA).

i) If y ∈ Σ, then γ([0, l]) ⊂ Σ.
ii) Let B(y, ε) be a standard ball of radius ε > 0 and let H ⊂ B(y, ε) be the half-ball

bounded by the (maybe singular) totally geodesic disc orthogonal to γ at y. Then
A ∩B(y, ε) ⊆ H.

Proof. — Let y ∈ Σ ∩ ∂NS(A). We choose a neighborhood U ⊂ E of y. By using
the description in the proof of Proposition 4.2.4, the intersection U ∩ A is either in
case b1), b2) or b3). It follows from this description that if a path γ : [0, l] → A from
x to y realizes d(x, ∂NSA), then it also realizes d(x,D2(y, δ)), where D2(y, δ) is the
totally geodesic 2-disc of radius δ > 0 transverse to Σ. In particular, γ is orthogonal
to D2(y, δ) and assertions i) and ii) hold in the singular case.

If y ∈ ∂NSA is non-singular, then assertion ii) can be proved by using developing
maps to reduce the proof to the case of locally convex subsets in R3.

Lemma 4.2.11. — Let E be a Euclidean cone 3-manifold and let A ⊂ E be totally
s-convex. The function

Φ:A → R
x �→ d(x, ∂NSA)

is concave (i.e. −Φ is convex). Moreover, if for some geodesic path γ : [0, l] → A

the function Φ ◦ γ is constant, then for every t ∈ [0, l] there exists a geodesic path
orthogonal to γ that realizes the distance from γ(t) to ∂NSA.

Proof. — Let γ : [0, l] → A be a geodesic path, we want to prove that Φ◦γ is concave.
For t ∈ [0, l], let σt : [0, λ] → A be a minimizing path from γ(t) to ∂NSA of length
λ = d(γ(t), ∂NSA). Let θ ∈ [0, π] be the angle between γ′(t) and σ′

t(0). We claim
that there exists some uniform ε > 0 such that, if |s| < ε and t+ s ∈ [0, l], then

Φ(γ(t+ s)) ≤ Φ(γ(t)) − s cos(θ).
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This inequality shows that Φ ◦ γ may be represented locally as the infimum of linear
functions, and therefore Φ ◦ γ is concave.

To prove this inequality, we consider first the case where σt([0, λ]) ∩ Σ = ∅. Let
D2(σt(λ), δ) be a totally geodesic disc with center σt(λ) and radius δ > 0 that is
orthogonal to σt. By Proposition 4.2.10 ii), the disc D2(σt(λ), δ) bounds a locally
supporting half-ball for A. In particular there exists ε > 0 such that, for |s| < ε

(4.1) Φ(γ(t+ s)) = d(γ(t+ s), ∂NSA) ≤ d(γ(t+ s), D2(σt(λ), δ)).

Moreover, by considering developing maps, we can use elementary trigonometric for-
mulas of Euclidean space to conclude that for |s| < ε

d(γ(t+ s), D2(σt(λ), δ)) = d(γ(t), σt(λ)) − s cos(θ) = λ− s cos(θ),

where ε > 0 is small enough, so that the tubular neighborhood Nε(γt([0, l])) embeds
in the Euclidean space via developing maps (see Figure 6). Therefore

Φ(γ(t+ s)) ≤ λ− s cos(θ) = Φ(γ(t)) − s cos(θ).

Furthermore, the parallel translation of σt along γ gives a family of geodesic paths
{σt+s | |s| < ε}, such that σt+s has length λ− s cos(θ) and minimizes the distance of
γ(t+ s) to D2(σt(λ), δ). Therefore, when Φ ◦ γ is constant we have equality in (4.1),
θ = π/2, and {σt+s | |s| < ε} is a family of geodesics of constant length, orthogonal
to γ and which minimize the distance to ∂NSA.

Figure 6

When σt([0, λ]) ∩ Σ �= ∅, since σt is minimizing, either σt([0, λ]) ∩ Σ = {γ(t)} or
σt([0, λ]) ⊂ Σ by Proposition 4.2.10 i). In particular, γ(t) ∈ Σ and either γ([0, l]) ⊂ Σ
or γ(t) is an end-point of γ. Then the argument in the non-singular case goes through
in the singular case, by just taking care when we use developing maps close to the
singular set.

Finally, note that a compactness argument allows to chose a uniform ε > 0.
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4.3. Proof of the soul theorem

Proof of Theorem 4.1.4 (Soul theorem for Euclidean cone 3-manifolds)
We start by considering Busemann functions. We recall that a ray emanating from

a point p ∈ C is a continuous map γ : [0,+∞) → E such that the restriction on every
compact subinterval is minimizing. We assume that the rays are parametrized by
arc-length. The Busemann function associated to γ is:

bγ(x) = lim
t→+∞

(t − d(x, γ(t))).

By construction, Busemann functions are Lipschitz, with Lipschitz constant 1. In
particular they are continuous.

A Euclidean cone 3-manifold with cone angles less than 2π may be viewed as an
Aleksandrov space of curvature ≥ 0. Next lemma is proved in [Yam, Prop. 6.2] for
those Aleksandrov spaces.

Lemma 4.3.1. — Busemann functions on Euclidean cone 3-manifolds with cone angles
less than 2π are convex.

We consider a Euclidean cone 3-manifold E and we fix a point x0 ∈ E. Following
Cheeger and Gromoll [CGl] or Sakai [Sak, Sect. V.3], for t ≥ 0, we define

At = {x ∈ E | bγ(x) ≤ t for every ray γ emanating from x0}.

Lemma 4.3.2. — For t ≥ 0, At is a compact totally s-convex subset of E, satisfying:

1) If t1 ≥ t2 ≥ 0, then At2 ⊆ At1 and At2 = {x ∈ At1 | d(x, ∂NSAt1) ≥ t1 − t2}. In
particular, for t2 > 0, ∂At2 = ∂NSAt2 = {x ∈ At1 | d(x, ∂NSAt1) = t1 − t2}.

2) E =
⋃
t≥0

At.

3) At intersects all connected components of Σ.

Proof. — The set At is totally s-convex by Lemmas 4.2.2 and 4.3.1. In order to prove
the compactness, we suppose that there is a sequence of points xn in At going to
infinity, and we will derive a contradiction. For every n ∈ N, consider the minimizing
path γn between x0 and xn, which is contained in At by convexity. Since the unit
tangent bundle at x0 is compact, the sequence γn has a convergent subsequence to a
ray γ emanating from x0 and contained in At; that contradicts the definition of At.

We recall the following classical inequalities for Busemann functions, which can
be proved from triangle inequality. For every ray γ emanating from x0, every point
x ∈ E and every real t ≥ 0,

d(x, x0) ≥ bγ(x) ≥ t − d(x, γ(t)).

In particular B(x0, t) = {x ∈ E | d(x, x0) < t} ⊆ At for every t ≥ 0. Thus assertion 2)
is clear. Moreover, for t > 0, dimAt = 3. Therefore, by Lemma 4.2.8, ∂At = ∂NSAt.
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To show assertion 1) we prove first the inclusion

At2 ⊆ {x ∈ At1 | d(x, ∂NSAt1) ≥ t1 − t2}.

Given x ∈ At2 and y �∈ int(At1), we claim that d(x, y) ≥ t1 − t2. By hypothesis, there
exists a ray γ emanating from x0 such that bγ(x) ≤ t2 and bγ(y) ≥ t1. For every t > 0,
we have d(x, y) ≥ d(x, γ(t)) − t + t − d(y, γ(t)). By taking the limit when t → +∞,
we deduce that d(x, y) ≥ bγ(y) − bγ(x) ≥ t1 − t2, as claimed.

To prove the reverse inclusion, we take a point x ∈ At1 such that d(x, ∂NSAt1) ≥
t1 − t2. We claim that for every ray γ emanating from x0, bγ(x) ≤ t2. Note first
that, for every t ≥ t1, d(x, γ(t)) ≥ t − t1, because t1 ≥ bγ(x) ≥ t − d(x, γ(t)). Let z
be the point in a minimizing path between x and γ(t) such that d(z, γ(t)) = t − t1.
Then z �∈ intAt1 , because bγ(z) ≥ t − d(z, γ(t)) = t1. It follows that d(x, z) ≥
d(x, ∂NSAt1) = d(x, ∂At1) ≥ t1 − t2 and

t− d(x, γ(t)) = t − d(x, z) − d(z, γ(t)) ≤ t − (t1 − t2) − (t− t1) = t2.

By taking the limit when t → +∞, bγ(x) ≤ t2. This proves assertion 1).
Finally assertion 3) follows from assertion 1) and the following lemma:

Lemma 4.3.3. — Let A ⊂ E be totally s-convex and let

Ar = {x ∈ A | d(x, ∂NSA) ≥ r}.

If Ar �= ∅ for some r > 0 and Σ0 is a component of Σ such that A ∩ Σ0 �= ∅, then
Ar ∩ Σ0 �= ∅.

Proof. — By Lemma 4.2.11, Ar is totally s-convex. Therefore Ar intersects all com-
ponents of Σ having cone angle π. In general, let Σ0 be a component of Σ that
intersects A and has cone angle less than π. We distinguish two cases, according to
whether Σ0 is compact or not.

When Σ0
∼= S1, for every r > 0 either Ar ∩ Σ0 = ∅ or Σ0 ⊂ Ar, because Σ0 is

a closed geodesic path and Ar is totally s-convex. Therefore, the distance to ∂NSA

is constant on Σ0. Let r0 = d(Σ0, ∂NSA), then Σ0 ⊆ Ar0 , because Σ0 intersects A.
We claim that in fact Ar0 = Σ0. Since Ar0 is connected, we prove that Ar0 = Σ0

by showing that there are no points in Ar0 − Σ0 in a neighborhood of Σ0. Seeking
a contradiction we suppose that there is a point y ∈ Ar0 − Σ in a sufficiently small
neighborhood of Σ0. Then, by Lemma 4.2.5 there is a disc D2(x, δ) ⊂ Ar0 of radius
δ > 0, centered at a point x ∈ Σ0 and transverse to Σ. The convex hull of Σ0∪D2(x, δ)
gives an open neighborhood of x in Ar0 , contradicting the fact that d(x, ∂NSA) = r0.
This proves that Ar0 = Σ0. It follows that Ar = ∅ for r > r0, and Σ0 ⊆ Ar for
r ≤ r0.

When Σ0
∼= R, consider r0 = sup{d(x, ∂NSA) | x ∈ Σ0 ∩A}. If r0 = ∞ then there

is nothing to prove, hence we can assume r0 < ∞. The intersection Ar0 ∩Σ0 is either
a point or a segment in Σ0. If it is a segment, the argument above for the closed case
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shows that Ar0 ∩ Σ0 = Ar0 . If the intersection is a point then dim(Ar0) = 0 or 2. In
any case dimAr0 < dimA. Thus Ar = ∅ for r > r0, and Ar ∩ Σ0 �= ∅ for r ≤ r0.

This finishes the proofs of Lemmas 4.3.2 and 4.3.3.

We fix a value t > 0 and we set A = At, where At is defined as in Lemma 4.3.2.
The subset A ⊂ E is compact totally s-convex and dimA = 3. In particular ∂NSA =
∂A �= ∅.

For r > 0, we consider

Ar = {x ∈ A | d(x, ∂NSA) ≥ r} and Amax =
⋂

{Ar | Ar �= ∅}.

If Ar �= ∅, then Ar is totally s-convex by Lemma 4.2.11. Let r0 = max{d(x, ∂NSA) |
x ∈ A}, then Amax = Ar0 = {x ∈ A | d(x, ∂NSA) = r0}. By Lemma 4.2.11, every
geodesic in Amax is perpendicular to a geodesic minimizing the distance to ∂NSA,
hence dimAmax < dimA = 3.

We set A(1) = Amax. If ∂NSA(1) = ∅ or dimA(1) = 0, then we take S = A(1).
Otherwise, we construct A(2) = A(1)max and so on. Since dimA(i + 1) < dimA(i),
this process stops and we obtain S = A(i) for either i = 1, 2 or 3. Thus S is a compact
totally s-convex subset with ∂NSS = ∅ and dimS < 3.

Next we prove that E is isometric to the normal cone fibre bundle of S. The key
point of the proof is the following lemma:

Lemma 4.3.4. — Each point of E − S has a unique minimizing geodesic path to S.
Moreover for singular points, this path is contained in Σ.

Proof. — We consider the following subset of E − S

X =
{
x ∈ E − S

∣∣∣∣ x has more than one minimizing path to S, or
x ∈ Σ has a minimizing path to S not contained in Σ

}
Claim 4.3.5. — X is a closed subset of E − S and d(X,S) > 0.

Proof of the claim. — By Lemma 3.1.4, each point has a finite number of minimizing
paths to the totally s-convex submanifold S. Moreover, given a point x ∈ E − S,
in a sufficiently small neighborhood of x the minimizing paths to S are obtained by
perturbation of those of x. It follows that the property of having a unique minimizing
path to S, contained in Σ for singular points, is an open property in E − S, and thus
X ⊂ E − S is closed.

Since S is compact, totally s-geodesic and ∂NS(S) = ∅, by Proposition 4.2.9 S has
a metric tubular neighborhood. Thus d(X,S) > 0.

We come back to the proof of Lemma 4.3.4. We want to prove X = ∅. Seeking a
contradiction, we assume X �= ∅.

Let x0 ∈ X be such that d(x0, S) = d(X,S). Either x0 has two minimizing paths
to S or x0 ∈ Σ has a minimizing path to S not in Σ.
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We assume first that there are two minimizing paths γ1 and γ2 from x0 to S. If
at x0 the angle ∠(γ1, γ2) < π, then γ1 and γ2 can be deformed to shorter paths, with
common origin, that minimize the distance to S, contradicting the definition of x0.
Therefore ∠(γ1, γ2) = π and γ−1

1 ∗γ2 is a geodesic with end-points in S, contradicting
the fact that S is totally s-geodesic.

Now we assume that x0 ∈ Σ has a minimizing path γ to S not contained in Σ. If at
x0 the angle ∠(γ,Σ) < π/2, then we can perturb γ to a shorter path, not contained
in Σ and minimizing the distance of a point in Σ to S. This contradicts the definition
of x0, hence we can assume that the angle ∠(γ,Σ) = π/2. We remark that the point
x0 is not silvered, otherwise x0 ∈ S, because γ−1 ∗ γ would be a s-geodesic path with
end-points in S. By construction there exists a totally s-convex subset A ⊂ E such
that S ⊂ int(A) and x0 ∈ ∂NSA (this is one of the sets constructed in Lemmas 4.3.2
and 4.3.3, i.e. A = At for some t > 0 or A = A(i)r for some r > 0 and i = 1,
2 or 3). Since the angle ∠(γ,Σ) = π/2, Proposition 4.2.10 says that γ is tangent
to the boundary of a supporting half-space for A at the point x. In particular γ

does not go to the interior of A. This contradicts the fact that S ⊂ int(A), because
d(S, ∂NSA) > 0.

This finishes the proof of Lemma 4.3.4.

We have shown that every point in E − S has a unique minimizing path to S, and
that for singular points this path is contained in Σ. By Proposition 4.2.9, since S is
compact, totally s-convex and ∂NS(S) = ∅, for some ε > 0 the tubular neighborhood
Nε(S) is isometric to the normal cone fibre bundle of S. The fact that every point in
E − S has a unique minimizing geodesic to S implies that the radius ε of the tubular
neighborhood can be taken arbitrarily large, and thus E is isometric to the normal
cone fibre bundle of S.

4.4. Proof of the local soul theorem.

Proof. — Seeking a contradiction, we assume that there exist some ε0 > 0 and some
D0 > 1 such that for every δ > 0 and every R > D0 there are a hyperbolic orientable
cone 3-manifold Cδ,R with cone angles in [ω, π] and a point x ∈ Cδ,R with inj(x) < δ

that do not verify the statement of the local soul theorem with parameters ε0, D0

and R. By taking δ = 1/n and R = n, we obtain a sequence of pointed hyperbolic
orientable cone 3-manifolds (Cn, xn)n∈N such that inj(xn) < 1/n and xn does not
verify the local soul theorem with parameters ε0, D0 and R = n.

We apply the compactness theorem (Chapter 3) to the sequence of rescaled pointed
cone 3-manifolds (Cn, xn)n∈N = ( 1

inj(xn)Cn, xn)n∈N. Then a subsequence of (Cn, xn)
converges to a pointed Euclidean orientable cone 3-manifold (C∞, x∞).

If the limit C∞ is compact, then the geometric convergence implies that for some
integer n0 there exists a (1 + ε0)-bilipschitz homeomorphism f :C∞ → Cn0 . We can
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also choose n0 such that
n0 > diam(C∞).

Then the rescaled Euclidean cone 3-manifold E = inj(xn0)C∞ is (1 + ε0)-bilipschitz
homeomorphic to Cn0 and we have

diam(E) < n0 inj(xn0 ) = R inj(xn0 ).

Hence xn0 satisfies the statement of the local soul theorem in the compact case and
we get a contradiction.

If the limit C∞ is not compact, then by the soul theorem (Theorem 4.1.4), C∞ has
a soul S∞ and is the normal cone bundle of S∞. Since inj(x∞) ≤ 1, the soul S∞ has
dimension 1 or 2. We choose a real number ν∞ satisfying

ν∞ > D0 max
(
diam(S∞), d(x∞, S∞) + (1 + ε0)ε0, 1

)
.

For n0 sufficiently large, the geometric convergence implies the existence of a (1+ε0)-
bilipschitz embedding g :Nν∞(S∞) → Cn0 such that d(g(x∞), xn0) < ε0 and n0 ≥ ν∞.
The image U = g(Nν∞(S∞)) is an open neighborhood of xn0 , because

d(∂U, g(x∞)) ≥ 1
1 + ε0

d(∂Nν∞(S∞), x∞)

≥ 1
1 + ε0

(ν∞ − d(x∞, S∞)) > ε0 > d(g(x∞), xn0).

As in the compact case, we consider the rescaled 3-manifold E = inj(xn0)C∞ with
soul S = inj(xn0)S∞. By taking ν = inj(xn0 ) ν∞, g−1 induces a (1 + ε0)-bilipschitz
homeomorphism f :U → Nν(S). Moreover, the constants have been chosen so that
ν ≤ n0 inj(xn0 ) ≤ 1 and

max
(
inj(xn0 ), d(f(xn0), S), diam(S)

)
≤ ν/D0.

Thus xn0 verifies the statement of the local soul theorem in the non-compact case and
we obtain a contradiction again. This finishes the proof of the local soul theorem.

Corollary 4.4.1. — Let (Cn)n∈N be a sequence of hyperbolic orientable cone 3-
manifolds such that sup{inj(x) | x ∈ Cn} converges to zero when n → ∞. Then for
every ε > 0 and D > 1,

– either there exists n0 = n0(ε,D) such that for n ≥ n0 the local soul theorem
with parameters ε,D applies to every point of Cn and the local models are non-
compact;

– or, after rescaling, a subsequence of (Cn)n∈N converges to a closed Euclidean
cone 3-manifold.

Proof. — Since the supremum on Cn of the injectivity radius goes to zero, there
exists an integer n0 > 0 such that, for n > n0, the local soul theorem applies to
every point of Cn with compact or non-compact models. We assume the existence of
a sequence of points (xk)k∈N such that xk ∈ Cnk

, the local model of xk is compact,
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and nk → ∞ as k → ∞. In particular, for every k ∈ N there exists a closed Euclidean
cone 3-manifold Ek and a (1+ ε)-bilipschitz homeomorphism fk :Ek → Cnk

such that
diam(Ek) ≤ R inj(xk). Therefore,

diam(Cnk
) ≤ (1 + ε) diam(Ek) ≤ (1 + ε)R inj(xk).

Hence, the diameter of the rescaled cone 3-manifold Cnk
= 1

inj(xk)Cnk
is uniformly

bounded above. By the compactness theorem (Chapter 3) (Cnk
, xnk

)k∈N has a sub-
sequence converging to a pointed Euclidean cone 3-manifold (E, x∞). Moreover, the
limit E is compact, because the diameter of Cnk

has a uniform upper bound.

4.5. Local soul theorem for cone 3-manifolds with boundary

By using the compactness theorem for cone 3-manifolds with boundary, the proof
in the previous section leads to the following generalization of the local soul theorem.

Theorem 4.5.1 (Local Soul Theorem for cone3-manifolds with boundary)
Given ω ∈ (0, π), ε > 0 and D > 1 there exist

δ = δ(ω, ε,D) > 0 and R = R(ω, ε,D) > D > 1

such that the following holds. Let C be an oriented hyperbolic cone 3-manifold, possibly
with boundary, with cone angles in [ω, π]. If x ∈ C satisfies inj(x) < δ, then:
– either C is (1 + ε)-bilipchitz homeomorphic to a compact Euclidean cone 3-man-

ifold E, possibly with boundary, of diameter diam(E) ≤ R inj(x);
– or there exists 0 < ν < 1 (depending on x) such that x has an open neighborhood

Ux ⊂ C which is (1 + ε)-bilipschitz homeomorphic to one of the following:

a) The normal cone fibre bundle Nν(S), of radius ν, of the soul S of a non-compact
orientable Euclidean cone 3-manifold with cone angles in [ω, π], where E is in the
list in the local soul theorem,

b) The quotient of Nν(S) by an isometric involution τ :Nν(S) → Nν(S) whose fixed
point set is two dimensional and orthogonal to the singular locus.

Moreover the (1 + ε)-bilipschitz homeomorphism f : Ux → Nν(S) in case a) and
f :Ux → Nν(S)/τ in case b) satisfies the inequality

max
(
inj(x), d(f(x), S), diam(S)

)
≤ ν/D.

The proof is completely analogous to the case without boundary and we just make
some comments. Recall that the proof is by contradiction, and that we find a rescaled
pointed sequence

(Cn, xn)n∈N =
(

1
inj(xn)

Cn, xn

)
n∈N

that we may assume to converge to a pointed Euclidean cone 3-manifold (C∞, x∞),
possibly with totally geodesic boundary. When C∞ is compact then the discussion is
the same as before. When C∞ is non compact, then we distinguish two cases, a) and
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b), according to whether C∞ has boundary or not. In case a), if C∞ has no boundary,
then the same proof as before applies. In case b), if C∞ has nonempty boundary, then
the double DC∞ is a Euclidean cone 3-manifold with finite injectivity radius, which
is one in the list in case a). Let τ :DC∞ → DC∞ be the reflection with respect to
∂C∞. All we have to prove is that we may choose the soul S∞ to be invariant by
τ (Lemma 4.5.2 below). Once this choice of soul is made, then it is clear that any
metric tubular neighborhood of the soul is τ -invariant, and the proof of the local soul
theorem applies without further change.

Lemma 4.5.2. — Let E be a non compact Euclidean cone 3-manifold with totally
geodesic boundary, finite injectivity radius and cone angles ≤ π. There is a choice of
a soul S of DE so that if τ : DE → DE is the reflection with respect to ∂E, then

τ(S) = S.

Proof. — If the soul S of DE is unique, then the lemma is clear because τ is an
isometry. If the soul is not unique, then DE is isometric to a product S × Rd, with
d = 3 − dimS. Since τ is an isometry, it has to preserve the product structure. We
look at the restriction τ |Rd , which may be trivial or not. When τ |Rd is trivial, then
any choice of soul is τ invariant. Finally, when τ |Rd is not trivial, it has fixed points,
because it is an isometric involution of Rd. In this last case it suffices to choose S×{p}
for some p ∈ Rd fixed by τ |Rd .
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CHAPTER 5

SEQUENCES

OF CLOSED HYPERBOLIC CONE 3-MANIFOLDS

WITH CONE ANGLES LESS THAN π

This chapter is devoted to the proof of the following theorem.

Theorem A. — Let (Cn)n∈N be a sequence of closed orientable hyperbolic cone 3-
manifolds with fixed topological type (C,Σ) such that the cone angles increase and
are contained in [ω0, ω1], with 0 < ω0 < ω1 < π. Then there exists a subsequence
(Cnk

)k∈N such that one of the following occurs:

1) The sequence (Cnk
)k∈N converges geometrically to a hyperbolic cone 3-manifold

with topological type (C,Σ) whose cone angles are the limit of the cone angles of
Cnk

.
2) For every k, Cnk

contains an embedded 2-sphere S2
nk

⊂ Cnk
that intersects Σ in

three points, and the sum of the three cone angles at S2
nk

∩ Σ converges to 2π.
3) There is a sequence of positive reals λk approaching 0 such that the subsequence
of rescaled cone 3-manifolds (λ−1

k Cnk
)k∈N converges geometrically to a Euclidean

cone 3-manifold of topological type (C,Σ) and whose cone angles are the limit of
the cone angles of Cnk

.

The proof of Theorem A splits into two cases, according to whether the sequence
(Cn)n∈N collapses or not.

Definition 5.0.1. — We say that a sequence (Cn)n∈N of cone 3-manifolds collapses if
the sequence (sup{inj(x) | x ∈ Cn})n∈N goes to zero.

Remark 5.0.2. — In the last section §5.5 we strengthen Theorem A by showing that
in cases 1) and 2) the sequence (Cn)n∈N does not collapse. Consequences of this
strengthened version of Theorem A are the following Margulis’types results:

Proposition 1. — Given 0 < ω0 < ω1 < π, there exists a positive constant δ0 =
δ0(ω0, ω1) > 0 such that every oriented closed hyperbolic cone 3-manifold with cone
angles in [ω0, ω1] and diameter > 1 contains a point x with inj(x) ≥ δ0 > 0.
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Stronger thickness results, for general hyperbolic cone 3-manifolds (not assuming
any more the singular locus to be a link) can be found in [BLP2]).

For cone angles bounded away 2π/3, using Hamilton’s theorem (cf. [Zh2,
Thm. 3.2]) we can get ride of the lower bound on the diameter:

Proposition 2. — Given 0 < ω0 < ω1 < 2π/3, there exists a positive constant δ1 =
δ1(ω0, ω1) > 0 such that every oriented closed hyperbolic cone 3-manifold with cone
angles in [ω0, ω1] contains a point x with inj(x) ≥ δ1 > 0.

5.1. The non-collapsing case

The following proposition (see [Zh1], [SOK] and [Ho1]) proves Theorem A when
the sequence (Cn)n∈N does not collapse.

Proposition 5.1.1. — Let (Cn)n∈N be a sequence of hyperbolic cone 3-manifolds satis-
fying the hypothesis of Theorem A. If the sequence (Cn)n∈N does not collapse, then
there is a subsequence (Cnk

)k∈N that verifies assertion 1) or 2) of Theorem A.

Proof. — Since the sequence Cn does not collapse, after passing to a subsequence
if necessary, there is a positive real number a > 0 and, for every n ∈ N, a point
xn ∈ Cn such that inj(xn) ≥ a. Thus the sequence (Cn, xn)n∈N is contained in
C[ω0,ω1],a, the space of pointed cone 3-manifolds (C, x) with constant curvature in
[−1, 0], cone angles in [ω0, ω1], and such that inj(x) ≥ a > 0. By the compactness
theorem (Chapter 3), the sequence (Cn, xn)n∈N has a convergent subsequence, which
we denote again by (Cn, xn)n∈N. Hence, we can assume that the sequence (Cn, xn)n∈N

converges geometrically to a pointed hyperbolic orientable cone 3-manifold (C∞, x∞),
which may be compact or not.

If the limit cone 3-manifold C∞ is compact, then the geometric convergence implies
that C∞ has the same topological type (C,Σ) as the cone 3-manifolds of the sequence
Cn. Moreover the cone angles of C∞ are the limit of the cone angles of Cn. This
shows that in this case the assertion 1) of Theorem A holds. If the limit cone 3-
manifold is not compact, then the next proposition shows that we get the assertion 2)
of Theorem A.

Proposition 5.1.2. — If the limit cone 3-manifold C∞ is not compact, then for n suf-
ficiently large, Cn contains an embedded 2-sphere Sn ⊂ Cn that intersects Σ in three
points, and the sum of the three cone angles at Sn ∩ Σ converges to 2π.

We start with the following lemma.

Lemma 5.1.3. — The limit cone 3-manifold C∞ has finite volume.

Proof. — Since vol(C∞) = lim
R→∞

vol
(
B(x∞, R)

)
, it suffices to bound vol

(
B(x∞, R)

)
independently of R. From the geometric convergence, for every R > 0 there is n0
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so that, for n > n0, there exists a (1 + εn)-bilipschitz embedding fn : B(x∞, R) →
(Cn, xn), with εn → 0. Hence, for R > 0 and n > n0, vol(B(x∞, R)) ≤ (1 +
εn)3 vol(Cn), and we get the bound vol(B(x∞, R)) ≤ 23 vol(Cn). According to
Schläfli’s formula for cone 3-manifolds (cf. [Ho1] or [Po2]), since the cone angles of
the 3-manifolds Cn increase, the sequence (vol(Cn))n∈N decreases, hence it is bounded
above. This fact follows from [Po2, Prop. 4.1], since the sequence (ρn) of holonomy
representations of the cone 3-manifolds Cn belongs to a piecewise analytical path in
the variety of representations (by Remark 2.2.7).

Remark 5.1.4. — The use of Schläfli’s formula is justified by the fact that our sequence
belongs to a one parameter family of cone 3-manifolds. In the case where we apply
Theorem A, it is clear from Chapter 2, §2.2 and §2.3. In general, it is still true because
of Hodgson and Kerckhoff’s local rigidity theorem [HK] and Kojima’s deformation
theorem [Koj].

Proposition 5.1.2 follows from the next one.

Proposition 5.1.5. — If the limit cone 3-manifold C∞ is not compact, then its singular
set Σ∞ has a non-compact component.

Proof of Proposition 5.1.2 from Proposition 5.1.5. —From 5.1.5, there is a connected
component Σ0

∞ of Σ∞ which is not compact. Since vol(C∞) is finite by Lemma 5.1.3,
the cone-injectivity radius along Σ0

∞ is not bounded away from zero.
By the local soul theorem (Chapter 4), there is a point y ∈ Σ0

∞ having a neigh-
borhood (1 + ε)-bilipschitz homeomorphic to a product S2(α, β, γ) × (−ν, ν), where
ν > 0 and S2(α, β, γ) is a two-dimensional Euclidean cone 3-manifold with underlying
space the sphere S2 and singular set three cone points with singular angles α, β and
γ such that α+ β + γ = 2π.

Since (Cn, xn) converges geometrically to (C∞, x∞), there is an (1 + εn)-bilip-
schitz embedding fn : S2(α, β, γ) × {0} → Cn, with lim εn = 0. The image S2

n =
fn(S2(α, β, γ)) is a 2-sphere embedded in Cn that intersects the singular set in three
points and the sum of the three cone angles αn + βn + γn at S2

nk
∩Σ converges to 2π.

This proves Proposition 5.1.2.

The remaining of this section is devoted to the proof of Proposition 5.1.5.

Proof of Proposition 5.1.5. — Seeking a contradiction, we suppose that the limit cone
3-manifold C∞ is not compact, but that all the components of Σ∞ are compact. We
remark first that the number of compact components of Σ∞ cannot be bigger than the
number of compact components of Σn

∼= Σ, because geometric convergence implies
that, for every compact subset A ⊂ C∞, there is an embedding fn : A → Cn, with
fn(A ∩ Σ∞) = fn(A) ∩ Σn. In particular Σ∞ must be compact. Next we use the
following lemma of [Koj] (see also [Zh1]).
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Lemma 5.1.6. — Let C∞ be an orientable hyperbolic cone 3-manifold of finite volume
whose singular set Σ∞ is compact. Then C∞ − Σ∞ admits a complete hyperbolic
structure of finite volume.

Proof. — Since Σ∞ is compact it is a finite collection of disjoint circles. The proof
consists in deforming the metric in Nε(Σ∞)−Σ∞, where Nε(Σ∞) is a tubular neigh-
borhood of radius ε > 0, so that C∞−Σ∞ admits a complete metric of (non-constant)
sectional curvature K ≤ −a2 < 0. With this complete metric C∞ − Σ∞ has finite
volume, therefore by [Ebe, Thm. 3.1] it has only finitely many ends and each end is
parabolic. In particular C∞ − Σ∞ is the interior of a compact manifold with toral
boundary. Since strictly negative curvature forbids essential spheres and tori as well
as Seifert fibrations, Thurston’s hyperbolization theorem (for Haken manifolds) pro-
vides a complete hyperbolic structure on C∞ − Σ∞. See [Koj] for the details of the
deformation.

Remark 5.1.7. — If Σ∞ is compact, then the ends of C∞ are cusps [Ebe, Thm. 3.1].
In particular the ends are topologically T 2×[0,∞). Moreover, if ρ∞ : π1(C∞−Σ∞) →
PSL2(C) is the holonomy of C∞, then the restriction of ρ∞ to π1(T 2×{0}) is parabolic
and faithful. This is a consequence of the fact that, in the proof of Lemma 5.1.6, the
metric has not been changed on the ends.

Let N∞ ⊂ C∞ − Σ∞ be a compact core containing the base point x∞. If Σ∞ is
compact, then the boundary ∂N∞ is a collection of tori T1, . . . , Tp and:

C∞ − Σ∞ = N∞ ∪
∂N∞

p⊔
i=1

Ti × [0,∞).

We setX = C−N (Σ) ∼= Cn−N (Σn), where N denotes an open tubular neighborhood.
From the geometric convergence (for n sufficiently large) there is an (1+εn)-bilipschitz
embedding fn : N∞ → Cn, with εn → 0, such that

Nn = fn(N∞) ⊂ Cn − N (Σn) ∼= X.

Claim 5.1.8. — For n sufficiently large, every connected component of X − int(Nn) is
either a solid torus S1 ×D2 or a product T 2 × [0, 1].

Proof. — First we show that X − int(Nn) is irreducible for n sufficiently large. Oth-
erwise, after passing to a subsequence, we can assume that X − int(Nn) is reducible
for every n. This implies that there is a ball Bn ⊂ X such that Nn ⊂ Bn, because
X is irreducible. Let ρn : π1(X,xn) → PSL2(C) and ρ∞ : π1(N∞, x∞) → PSL2(C)
denote the holonomy representations of Cn and C∞ respectively. The geometric con-
vergence implies the algebraic convergence of the holonomies (Proposition 3.5.4). This
means that for every γ ∈ π1(N∞, x∞), ρn(fn∗(γ)) converges to ρ∞(γ). Since Nn is
contained in a ball, fn∗(γ) = 1, so ρ∞(γ) = 1 for every γ ∈ π1(N∞, x∞). Since the
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holonomy representation of C∞ is non-trivial, we get a contradiction. This proves the
irreducibility of X − int(Nn).

Since X − int(Nn) is irreducible and ∂Nn is a collection of tori, the claim follows
easily from the fact that X is irreducible and atoroidal, by Lemma 5.1.6.

In order to get a contradiction with the hypothesis that Σ∞ is compact we need
in addition the following claim.

Claim 5.1.9. — For n sufficiently large, at least one component X− int(Nn) is a solid
torus.

Proof. — We assume that the claim is false and look for a contradiction. Thus, after
passing to a subsequence if necessary, we can assume that all the components of ∂Nn

are parallel to the boundary of ∂X ; this means that fn : N∞ → X is a homotopy
equivalence.

If T ⊂ ∂N∞ is a component corresponding to an end of C∞, then the
image ρ∞(π1(T, x∞)) is a parabolic subgroup of PSL2(C) by Remark 5.1.7.
Furthermore, since Cn converges geometrically to C∞, for every γ ∈ π1(T, x∞),
ρ∞(γ) = lim

n→∞
ρn(fn∗(γ)).

Since X has a complete hyperbolic structure, by Mostow’s rigidity theorem [Mos]
and Waldhausen’s theorem [Wa1] the group π0(Diff(X)) is finite (see also [Joh]).
Hence, after passing to a subsequence, we can choose γ ∈ π1(T, x∞) such that, for
every n, fn∗(γ) is conjugate to a meridian µ0 of a fixed component Σ0 of Σ. Since
µ0 is elliptic, trace(ρnfn∗(γ)) = ±2 cos(αn/2), where αn ∈ [ω0, ω1] is the cone angle
of the manifold Cn at the component Σ0. Since 0 < ω0 < ω1 ≤ π the sequence
| trace(ρn(fn∗(γ)))| is bounded away from 2. As ρ∞(γ) is parabolic, | trace(ρ∞(γ))| =
2, and we obtain a contradiction with the convergence of ρn(fn∗(γ)) to ρ∞(γ).

From Claim 5.1.9, there is a collection T1, . . . , Tq of components of ∂N∞ such that,
for n sufficiently large, fn(Ti) bounds a solid torus V i

n ⊂ X , for i = 1, . . . , q.
Let λin ⊂ fn(Ti) be the boundary of a meridian disc of the solid torus V i

n, for
i = 1, . . . , q. The inverse images λ̃1

n = f−1
n (λ1

n), . . . , λ̃
q
n = f−1

n (λqn) are the meridians
of the Dehn fillings of N∞ = f−1

n (Nn) which give X . More precisely,

X = N∞
⋃
φi,n

n⊔
i=1

S1 ×D2
i ,

where, for i = 1, . . . , q, the gluing maps φi,n : S1 × ∂D2
i
∼= Ti ⊂ ∂N∞ satisfy

φi,n({∗} × ∂D2
i ) = λ̃in.

We have now the following claim:
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Claim 5.1.10. — For every i = 1, . . . , q, the sequence of simple closed curves (λ̃in)n≥n0

represents infinitely many distinct elements in H1(Ti). Hence, after passing to a
subsequence, the length of λ̃in goes to infinity with n.

Proof. — If the claim is not true, then, after passing to a subsequence, we can assume
that there is an index i ∈ {1, 2, . . . , q} such that the curves λ̃in are all homotopic to a
fixed curve λ̃i, for every n.

Since the sequence (Cn, xn) converges geometrically to (C∞, x∞) we have:

ρ∞(λ̃i) = lim
n→∞

ρn(fn∗(λ̃i)) = ± Id

because, for n sufficiently large, fn(λ̃i) = λin bounds a meridian disc of a solid torus
V i
n ⊂ X . Since Ti corresponds to a cusp of C∞, the holonomy ρ∞(λ̃i) is not trivial

and we get a contradiction.

We are now ready to contradict the hypothesis that Σ∞ is compact. If Σ∞ is
compact, then, by Claims 5.1.8, 5.1.9 and 5.1.10, we have, for i = 1, . . . , q, a se-
quence of curves (λ̃in)n≥n0 in Ti ⊂ ∂N∞ whose lengths go to infinity with n, and so
that the 3-manifold obtained by Dehn filling with meridians {λ̃1

n, . . . , λ̃
q
n} is always

X = C−N (Σ). According to Thurston’s hyperbolic Dehn filling theorem [Thu1] (cf.
Appendix B), almost all these Dehn fillings are hyperbolic. Furthermore, by Schläfli’s
formula, almost all of them have different hyperbolic volumes. Thus we get a contra-
diction, because our Dehn fillings give always the same compact 3-manifold X . This
finishes the proof of Propositions 5.1.5 and 5.1.2.

5.2. The collapsing case

The next proposition proves Theorem A when the sequence of hyperbolic cone
3-manifolds Cn collapses.

Proposition 5.2.1. — Let (Cn)n∈N be a sequence of hyperbolic cone 3-manifolds with
the same hypothesis as in Theorem A. If the sequence (Cn)n∈N collapses, then there
is a subsequence (Cnk

)k∈N that satisfies assertions 2) or 3) of Theorem A.

The proof uses Gromov simplicial volume of a compact oriented 3-manifold M and
the dual notion of real bounded cohomology of M , both introduced by M. Gromov
[Gro] (see also [Iva]).

The simplicial volume ‖M‖ of a compact, orientable, 3-manifoldM , with boundary
∂M (possibly empty) is defined as follows:

‖M‖ = inf


n∑

i=1

|λi|
∣∣∣∣∣

n∑
i=1

λiσi is a cycle representing a fundamental

class in H3(M,∂M ;R), where σi : ∆3 → M

is a singular simplex and λi ∈ R, i = 1, . . . , n.
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In particular, when C is a closed and orientable 3-manifold and Σ ⊂ C is a link, we
define the simplicial volume ‖C − Σ‖ = ‖C − N (Σ)‖, where N (Σ) is an open tubular
neighborhood of Σ in C.

We are starting now to prove Proposition 5.2.1.

Proof of Proposition 5.2.1. — We are going to show that if assertions 2) and 3) of
Theorem A do not hold, then the simplicial volume ‖C − Σ‖ is zero, and this would
contradict the hyperbolicity of C − Σ (Lemma 5.1.6). To show that the simplicial
volume vanishes, we need for a subset of C the notion of abelianity in C − Σ.

Definition 5.2.2. — We say that a subset U ⊂ C is abelian in C − Σ if the image
i∗(π1(U −Σ)) is an abelian subgroup of π1(C−Σ), where i∗ is the morphism induced
by the inclusion i : (U − Σ) → (C − Σ).

Definition 5.2.3. — Let C be an orientable hyperbolic cone 3-manifold, x ∈ C, and
ε,D > 0. A (ε,D)-Margulis’ neighborhood of abelian type of x is a neighborhood
Ux (1 + ε)-bilipschitz homeomorphic to the normal cone fibre bundle Nν(S), of some
radius ν < 1 depending on x, of the soul S of one of the following non-compact
orientable Euclidean cone 3-manifolds:

T × R, S1 
 R2, S1 
 (cone disc),

where 
 denotes the metrically twisted product. Moreover, the (1 + ε)-bilipschitz
homeomorphism f : Ux → Nν(S) satisfies:

max(inj(x), d(f(x), S), diam(S)) ≤ ν/D.

Note that a (ε,D)-Margulis’ neighborhood of abelian type is abelian in C−Σ. This
definition is motivated by the following lemma, which is the first step in the proof of
Proposition 5.2.1.

Lemma 5.2.4. — Let (Cn)n∈N be a sequence of hyperbolic cone 3-manifolds which col-
lapses and satisfies the hypothesis of Theorem A. If both assertions 2) and 3) of The-
orem A fail to hold, then, for every ε,D > 0, there exists n0 such that, for n ≥ n0,
every x ∈ Cn has a (ε,D)-Margulis’ neighborhood of abelian type.

Proof of Lemma 5.2.4. — Since the sequence collapses, we can apply the local soul
theorem (Chapter 4) and we show that the only possible local models are the three
ones of abelian type.

More precisely, since the supremum of the cone-injectivity radius converges to zero
when n goes to infinity, given ε,D > 0 there exists n0 such that for n ≥ n0 the
local soul theorem applies to every point x in Cn. Since we assume that assertion 3)
of Theorem A does not hold, by Corollary 4.4.1, the compact models are excluded.
Hence we have to consider only the non-compact local models.

From the hypothesis that assertion 2) of theorem A does not hold, we get rid of
the product model S2(α, β, γ) × R, where S2(α, β, γ) is a Euclidean cone 2-manifold
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with underlying space the sphere S2 and singular set three points at which the sum
of the three cone angles is α+ β + γ = 2π.

Since the cone angles belong to [ω0, ω1], with 0 < ω0 < ω1 < π, the local models
with a cone angle equal to π cannot occur.

Finally, the last model to be eliminated is the one corresponding to the normal
bundle of the soul of a twisted fibre bundle over the Klein bottle K2×̃R. A neigh-
borhood Ux (1 + ε)-bilipschitz homeomorphic to this model does not intersect the
singular set Σ. If this local model occurred, there would be a Klein bottle K2 × {0}
embedded in C − Σ. This would contradict the fact that C − Σ admits a complete
hyperbolic structure (Lemma 5.1.6).

Since C − Σ admits a complete hyperbolic structure (Lemma 5.1.6), by Gromov
[Gro] and Thurston [Thu1, Ch. 6], ‖C − Σ‖ = vol(C − Σ)/v3, where v3 > 0 is a
constant depending only on the dimension. In particular, ‖C − Σ‖ �= 0. Then the
proof of Proposition 5.2.1 follows from Lemma 5.2.4 and the next proposition:

Proposition 5.2.5. — There exists a universal constant D0 > 0 such that, if C is an
orientable closed hyperbolic cone 3-manifold where every point has a (ε,D)-Margulis’
neighborhood of abelian type, with ε < 1/2 and D > D0, then the simplicial volume
‖C − Σ‖ is zero.

We prove this proposition in Sections 5.3 and 5.4. In order to show that ‖C − Σ‖
vanishes, we adapt a construction of Gromov [Gro, Sec. 3.4] to the relative case. This
construction gives a covering of C by open sets that are abelian in C − Σ, and the
dimension of the covering is 2 in C and 0 in Σ. In fact, Proposition 5.2.5 can be seen
as a version of Gromov’s isolation theorem [Gro, Sec. 3.4] for cone 3-manifolds.

5.3. Coverings à la Gromov

Definition 5.3.1. — For η > 0, a covering (Vi)i∈I of a hyperbolic cone 3-manifold C

by open subsets is said to be a η-covering à la Gromov if it satisfies:

1) for every i ∈ I, there exists a metric ball B(xi, ri) of radius ri ≤ 1 that contains
Vi;

2) if B(xi, ri) ∩B(xj , rj) �= ∅, then 3/4 ≤ ri/rj ≤ 4/3;
3) for i �= j, B(xi, ri/4) ∩B(xj , rj/4) = ∅;
4) every x ∈ C belongs to an open set Vi such that d(x, ∂Vi) ≥ ri/3;
5) for every i ∈ I, vol(Vi) ≤ η r3

i .

Remark 5.3.2. — Every η-covering à la Gromov of a closed hyperbolic cone 3-manifold
is finite, because properties 2) and 3) forbid accumulating sequences.
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Our interest in η-coverings à la Gromov comes from the following proposition.
Our proof of this proposition follows closely Gromov’s proof [Gro, Sec. 3.4], for the
Riemannian (non-singular) case.

Proposition 5.3.3. — There exists a universal constant η0 > 0 such that, for any closed
hyperbolic cone 3-manifold C admitting a η-covering à la Gromov (Vi)i∈I with η ≤
η0, there exists a continuous map from C to a simplicial 2-complex f : C → K(2)

satisfying:

i) for every x ∈ C that belongs to only one open set of the covering, f(x) is a vertex
of K2,

ii) for every vertex v of K(2), there is i(v) ∈ I such that

f−1(star(v)) ⊂
⋃

Vj∩Vi(v) �=∅

Vj .

Proof of Proposition 5.3.3. — The proof consist of a sequence of lemmas, as in
Gromov’s proof [Gro, Sec. 3.4]. We recall that a covering has dimension n if every
point belongs to at most n+ 1 open sets of the covering.

Lemma 5.3.4. — There is a universal integer N > 0 such that, for every closed hy-
perbolic cone 3-manifold C and for every η > 0, the dimension of any η-covering à la
Gromov of C is at most N .

Proof of Lemma 5.3.4. — We shall bound the number Ni of balls B(xj , rj) that in-
tersect a given ball B(xi, ri). From property 2) of the definition of a η-covering à la
Gromov, if B(xj , rj) ∩B(xi, ri) �= ∅, then 3/4 ≤ rj/ri ≤ 4/3 and we have:

B(xj , rj) ⊂ B(xi, ri + 2rj) ⊂ B(xi, 4ri)

and B(xi, 4ri) ⊂ B(xj , 5ri + rj) ⊂ B(xj , 8rj).

By using these inclusions and the fact that the balls (B(xj , rj/4))j∈I are pairwise
disjoint, it follows that the number Ni of balls that intersect a given B(xi, ri) is
bounded above by:

Ni ≤ sup
{

vol(B(xi, 4ri))
vol(B(xj , rj/4))

| B(xi, ri) ∩B(xj , rj) �= ∅

}
≤ sup

j∈I

{
vol(B(xj , 8rj))
vol(B(xj , rj/4))

}
.

Now, the uniform upper bound for Ni comes from Bishop-Gromov inequality (Propo-
sition 3.1.9), which shows that:

vol(B(xj , 8rj))
vol(B(xj , rj/4))

≤ v−1(8rj)
v−1(rj/4)

,

where v−1(r) = π(sinh(2r)−2r) is the volume of the ball of radius r in the hyperbolic
space H3

−1. Since the function r �→ v−1(8r)/v−1(r/4) is continuous, it is bounded on

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001



88 CHAPTER 5. SEQUENCES OF CLOSED HYPERBOLIC CONE 3-MANIFOLDS

[0, 1]. Hence, for any integer N bounding above this function on [0, 1], we get Ni ≤ N

and the lemma is proved.

Given a η-covering à la Gromov, its nerve K is a simplicial complex and, according
to Lemma 5.3.4, the dimension of K is at most N , where N is a uniform constant.
Since we work with a compact cone 3-manifold C, every η-covering à la Gromov is
finite and its nerve K is compact. We canonically embed K in Rp, where p is the
number of vertices of K, which equals the number of open sets of this covering. More
precisely, every vertex of K corresponds to a vector of the form (0, . . . , 1, . . . , 0) and
the simplices of positive dimension are defined by linear extension.

The proof of Proposition 5.3.3 goes as follows. We start in Lemma 5.3.5 by con-
structing a Lipschitz map from C to the nerve of the covering f : C → K which
satisfies properties i) and ii) of Proposition 5.3.3. Next, in Lemma 5.3.7, we de-
form the map f to a Lipschitz map f3 : C → K(3) where K(3) is the 3-skeleton of
K. Finally, in Lemma 5.3.9, we prove that for η > 0 sufficiently small we can deform
f3 : C → K(3) to the 2-skeletonK(2), keeping properties i) and ii) of Proposition 5.3.3.
To prove the existence of such a universal constant η0 > 0 we need uniform constants
in the lemmas, the first example being the upper bound N of the dimension of K.

Lemma 5.3.5. — Let C be a hyperbolic cone 3-manifold equipped with a η-covering à la
Gromov (Vi)1≤i≤p. Let K = K(k) be the nerve of this covering, which has dimension
k ≤ N . Then there exists a Lipschitz map fk : C → K that verifies properties i) and
ii) of Proposition 5.3.3 and in addition:

iii) there exists a uniform constant ξk, depending only on the dimension k, such
that, for 1 ≤ i ≤ p,

∀x, y ∈
⋃

Vj∩Vi �=∅

Vj , ‖fk(x) − fk(y)‖ ≤ ξk
ri
d(x, y).

In this lemma, d denotes the hyperbolic distance on C and ‖ ‖ the Euclidean norm
on Rp, since we assume that K is canonically embedded in Rp.

Proof of Lemma 5.3.5. — We choose a smooth function φ : R → [0, 1] such that
φ((−∞, 0]) = 0, φ([1/3,+∞)) = 1, and |φ′(t)| ≤ 4 for every t ∈ R.

Figure 1. The function φ
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For every i = 1, . . . , p, let φi : Vi → R be the Lipschitz map such that ∀x ∈ Vi
φi(x) = φ(d(x, ∂Vi)/ri), where ∂Vi is the boundary of Vi. Since φi vanishes on ∂Vi,
we extend it to the whole manifold just by taking zero outside Vi. Then we have the
property:

(5.1) ∀x, y ∈ C, ‖φi(x) − φi(y)‖ ≤ 4
ri
d(x, y)

because the map

x �→
{

d(x, ∂Vi) if x ∈ Vi
0 otherwise

has Lipschitz constant 1.
Let ∆p−1 = {(u1, . . . , up) ∈ Rp | u1 + · · · + up = 1 and ui ≥ 0 for i = 1, . . . , p} be

the unit simplex of Rp. We define the map fk : C → ∆p−1 to be:

∀x ∈ C, fk(x) =
1

p∑
i=1

φi(x)
(φ1(x), . . . , φp(x)).

This map is well defined, since
p∑

i=1

φi(x) ≥ 1 by property 4) of a η-covering à la

Gromov.
The nerve K of the covering embeds canonically in Rp as a subcomplex of ∆p−1.

Namely, if V1, . . . , Vp are the open sets of the covering, then the vertex of K corre-
sponding to Vi is mapped to the i-th vertex (0, . . . , 1, . . . , 0) of ∆p−1. By construction
the image fk(C) is contained in K ⊂ ∆p−1 and satisfies properties i) and ii) of Propo-
sition 5.3.3.

The following claim shows that fk satisfies property iii).

Claim 5.3.6. — For 1 ≤ i ≤ p and ∀x, y ∈
⋃

Vj∩Vi �=∅

Vj we have:

a) ‖(φ1(x), . . . , φp(x)) − (φ1(y), . . . , φp(y))‖ ≤ 8(k + 1)
ri

d(x, y)

b) ‖fk(x) − fk(y)‖ ≤
√
2(k + 1)‖(φ1(x), . . . , φp(x)) − (φ1(y), . . . , φp(y))‖.

Proof of Claim 5.3.6. — We first prove a).
From inequality (5.1), for every i = 1, . . . , p, and ∀x, y ∈

⋃
Vj∩Vi �=∅

Vj ,

‖(φ1(x), . . . , φp(x)) − (φ1(y), . . . , φp(y))‖2 =∑
Vj∩Vi �=∅

Vl∩Vj �=∅

(φl(x) − φl(y))2 ≤ 42
∑

Vj∩Vi �=∅

Vl∩Vj �=∅

1
r2
l

d(x, y)2.
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From Property 2) of a η-covering à la Gromov:∑
Vj∩Vi �=∅

Vl∩Vj �=∅

1
r2
l

≤ (k + 1)
∑

Vj∩Vi �=∅

(
4
3rj

)2

≤ (k + 1)2
(

16
9ri

)2

<

(
2(k + 1)

ri

)2

,

where k is the dimension of the covering. Summarizing both inequalities we conclude
the proof of assertion a).

Next we prove b). We view fk as a composition fk = gp ◦ (φ1, . . . , φp), where
gp(u1, . . . , up) = 1

u1+···+up
(u1, . . . , up). Since the dimension of the covering is k,

(φ1, . . . , φp) maps
⋃

Vj∩Vi �=∅

Vj into a (k + 1)2-dimensional subspace of Rp (provided

that p ≥ (k+1)2), which is obtained by putting p− (k+1)2 coordinates equal to zero.
In addition,

∑
j Φj(x) ≥ 1 for every x ∈ C. Hence, by setting s = inf{p, (k + 1)2}, it

suffices to prove that the restricted map

gs| : {(u1, . . . , us) ∈ Rs |
∑

j uj ≥ 1, ui ≥ 0} −→ Rs

(u1, . . . , us) �−→ 1
u1 + · · · + us

(u1, . . . , us)

has Lipschitz constant
√
2s, because

√
2s ≤

√
2(k + 1). For u = (u1, . . . , us) ∈ Rs

satisfying
∑

j uj ≥ 1 and ui ≥ 0, and for v ∈ TuRs, we claim that:

‖(Dugs)v‖ ≤
√
2s‖v‖,

where Dugs is the tangent map of gs at u. An easy computation shows that we have
‖(Dugs)∂∂ui

‖ ≤
√
2. Therefore, if v =

∑
i vi

∂
∂ui

, then

‖(Dugs)v‖ ≤
√
2
∑
i

|vi| ≤
√
2s‖v‖,

by Cauchy-Schwarz inequality. This ends the proof of Claim 5.3.6 and of Lemma 5.3.5.

Lemma 5.3.7. — With the hypothesis of Lemma 5.3.5, the Lipschitz map fk : C → K

can be deformed to a Lipschitz map f3 : C → K(3) into the 3-skeleton which satisfies
properties i), ii) (from Proposition 5.3.3) and iii) (from Lemma 5.3.5).

Proof of Lemma 5.3.7. —We start with the map fk : C → K obtained in Lemma 5.3.5.
If k = dimK = 3, we are done. Hence we assume that k > 3 and we prove the lemma
by induction: we show that whenever we have a map fk : C → K(k) satisfying
properties i), ii) and iii) with k > 3, then we can deform it to a map into the (k− 1)-
skeleton K(k−1) satisfying the same properties. The key point in the argument is the
following technical claim.

Claim 5.3.8. — Given a Lipschitz map fk : C → K(k) satisfying properties i), ii) and
iii), there is a uniform constant εk > 0 (which depends only on k) such that every
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k-simplex ∆k ⊂ K contains a point z at distance at least εk from the image fk(C)
and the boundary ∂∆k.

Proof Claim 5.3.8. — Let ε > 0 be such that every point in ∆k is at distance at most
ε > 0 from the union fk(C) ∪ ∂∆k. We are going to find a uniform constant εk > 0
such that ε ≥ εk.

Let {z1, . . . , zs} ⊂ ∆k be a maximal family of points such that d(zi, ∂∆k) ≥ 3ε and
‖zi − zj‖ ≥ 3ε for i �= j. There exists a constant c1 = c1(k) > 0 depending only on
the dimension k such that, for ε sufficiently small, we can find at least c1ε

−k points
in this family. So we can assume s ≥ c1ε

−k.
By the hypothesis on ε > 0, we can find a family of points {y1, . . . , ys} ⊂ fk(C)∩∆k

such that ‖zi − yi‖ ≤ ε, for i = 1, . . . , s. In particular, ‖yi − yj‖ > ε (if i �= j) and
d(yi, ∂∆k) > ε. Choose points {y1, . . . , ys} ⊂ C such that fk(yi) = yi, i = 1, . . . , s.
From property i) of fk, the points {y1, . . . , ys} belong to

⋃
Vj∩Vi(v) �=∅

Vj , where the open

set Vi(v) corresponds to a vertex v of ∆k. So, from property iii) we have

∀i �= j ∈ {1, . . . , s}, d(yi, yj) ≥
ri(v)

ξk
‖yi − yj‖ >

ri(v)

ξk
ε.

This implies that the balls B(yj ,
ri(v)

2ξk
ε) are pairwise disjoint and satisfy

B(yj ,
ri(v)

2ξk
ε) ⊂

⋃
Vj∩Vi(v) �=∅

Vj ⊂ B(xi(v), 4ri(v)),

where the last inclusion follows from property 2) of a η-covering à la Gromov. We get
the following upper bound for the number s of such balls:

s ≤ max
j=1,...,s

(vol(B(xi(v), 4ri(v)))
vol(B(yj ,

ri(v)

2ξk
ε))

)
≤ max

j=1,...,s

(vol(B(yj , 8ri(v)))

vol(B(yj ,
ri(v)

2ξk
ε))

)
,

because B(xi(v), 4ri(v)) ⊂ B(yj , 8ri(v)), for j = 1, . . . , s. From Bishop-Gromov in-
equality (Proposition 3.1.9) we obtain:

s ≤
v−1(8ri(v))
v−1(

ri(v)

2ξk
ε)
,

where v−1(r) = π(sinh(2r)−2r) is the volume of the ball of radius r in the hyperbolic
3-space. There exists a constant a > 0 such that r3/a ≤ v−1(r) ≤ ar3 ∀r ∈ [0, 8].
Since ri(v) ≤ 1, we obtain the upper bound:

s ≤
a2(8ri(v))38ξ3

k

r3
i(v)ε

3
= c2ε

−3,

where c2 = 212a2ξ3
k > 0 depends only on the dimension k. By combining both

inequalities c1ε
−k ≤ s ≤ c2ε

−3, we conclude that ε ≥ (c1/c2)1/(k−3), with k > 3. This
finishes the proof of Claim 5.3.8.
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End of the proof of Lemma 5.3.7. — We assume k > 3 and we want to construct
fk−1 : C → K(k−1). Let ∆k

1 , . . . ,∆k
q be the k-simplices of K. From Claim 5.3.8, for

every k-simplex ∆k
i ⊂ K we can choose a point zi ∈ ∆k

i so that d(zi, fk(C) ∪ ∂∆k
i ) >

εk. We consider the map Ri : K −{zi} → K which is defined by the radial retraction
of ∆k

i − {zi} onto ∂∆k
i and the identity on K − ∆k

i . Since the points {z1, . . . , zq} do
not belong to the image of fk, the composition

fk−1 = R1 ◦ · · · ◦Rq ◦ fk : C → K

is well defined, and the image fk−1(C) lies in the (k − 1)-skeleton K(k−1). Moreover,
it follows from the construction that fk−1 satisfies properties i) and ii) of Proposi-
tion 5.3.3, because the retractions Ri preserve the vertices and their stars.

For i = 1, . . . , q, the retraction Ri : K − {zi} → K is piecewise smooth. From
the inequality d(zi, fk(C) ∪ ∂∆k

i ) > εk, it follows that the local Lipschitz constant of
R1 ◦ · · · ◦Rq is uniformly bounded on the image fk(C); moreover the bound depends
only on the dimension k, because the constant εk is uniform, depending only on the
dimension k. Thus fk−1 satisfies also property iii) of Lemma 5.3.5.

Next lemma completes the proof of Proposition 5.3.3.

Lemma 5.3.9. — There exists a universal constant η0 > 0 such that, for η < η0 and
for every η-covering à la Gromov of C, the map f3 : C → K(3) of Lemma 5.3.7 can
be deformed to a continuous map f2 : C → K(2) into the 2-skeleton which satisfies
properties i) and ii) of Proposition 5.3.3.

Proof of Lemma 5.3.9. — To deform f3 to f2, it suffices to prove that in every 3-
simplex ∆3 ⊂ K, there is a point z ∈ int(∆3) that does not belong to the image f3(C).
Then such a deformation is constructed by composing f3 with all the radial retractions
from ∆3 − {z} to ∂∆3 as in Lemma 5.3.7. The map f2 will satisfy properties i) and
ii) of Proposition 5.3.3 by construction. Next claim shows that int(∆3) − f3(C) is
non-empty whenever η is less than a universal constant η0 > 0. This will conclude
the proof of Lemma 5.3.9.

Claim 5.3.10. — There exists a universal constant η0 > 0 such that, if C admits a
η-covering à la Gromov with η < η0, then for every 3-simplex ∆3 ⊂ K(3)

vol(∆3 ∩ f3(C)) < vol(∆3).

Proof of Claim 5.3.10. — Property ii) of the map f3 : C → K(3) implies the following
inequality for every 3-simplex ∆3 ⊂ K(3):

vol(∆3 ∩ f3(C)) ≤
∑

Vj∩Vi(v) �=∅

vol(f3(Vj)),

where Vi(v) is the open set corresponding to a vertex v of ∆3. The map f3 is Lipschitz,
and from property iii), its restriction to

⋃
Vj∩Vi(v) �=∅

Vj has Lipschitz constant ξ3/ri(v).
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Hence, according to the formula giving a bound for the volume of the image of a
Lipschitz map (see [Fed, Cor. 2.10.11]), we get:∑

Vj∩Vi(v) �=∅

vol(f3(Vj)) ≤
∑

Vj∩Vi(v) �=∅

vol(Vj)
(

ξ3

ri(v)

)3

.

Property 5) of a η-covering à la Gromov asserts that vol(Vj) ≤ η r3
j . Furthermore,

from property 2) of these coverings, we have rj ≤ 4
3ri(v) whenever Vj ∩ Vi(v) �= ∅.

Thus we deduce the following inequalities:

vol(∆3 ∩ f3(C)) ≤
∑

Vj∩Vi(v) �=∅

vol(f3(Vj)) ≤ η

(
4
3
ξ3

)3

(N + 1),

where N is the universal upper bound of the dimension of the covering given by
Lemma 5.3.4. Hence it suffices to take η0 < vol(∆3)/((N + 1)(4

3ξ3)3) to prove the
claim.

5.4. From (ε,D)-Margulis’ coverings of abelian type to η-coverings
à la Gromov

The aim of this section is to prove Proposition 5.2.5. We recall the statement:

Proposition 5.2.5. — There exists a universal constant D0 > 0 such that, if C is an
orientable closed hyperbolic cone 3-manifold where every point has a (ε,D)-Margulis’
neighborhood of abelian type with ε < 1/2 and D > D0, then the simplicial volume
‖C − Σ‖ is zero.

The proof follows from Proposition 5.3.3 and the following:

Proposition 5.4.1. — There is a universal constant b0 > 0 such that, if C is an
orientable closed hyperbolic cone 3-manifold where each point x ∈ C has a (ε,D)-
Margulis’ neighborhood of abelian type with ε ≤ 1/2 and D ≥ 300, then C admits a
η-covering à la Gromov with η < b0/D.
Moreover, the open sets (Vi)i∈I of the η-covering à la Gromov satisfy the following

additional properties:

6) there is a tubular neighborhood N (Σ) of Σ such that every component of N (Σ)
is contained in only one open set of the covering.

7) ∀i ∈ I,
⋃

Vj∩Vi(v) �=∅

Vj is abelian in C − Σ.

Proof of Proposition 5.2.5. — We choose D0 = max(b0/η0, 300), where η0 > 0 is the
universal constant of Proposition 5.3.3. From Propositions 5.3.3 and 5.4.1, since every
point of C has a (ε,D)-neighborhood of abelian type, we can construct a continuous
map from C to a 2-dimensional simplicial complex: f : C → K2. Moreover properties
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i) and ii) of Proposition 5.3.3 together with properties 6) and 7) of Proposition 5.4.1
imply that f satisfies:

i′) there is an open tubular neighborhood N (Σ) of Σ such that f(N (Σi)) is a vertex
of K2 for every component Σi of Σ.

ii′) for every vertex v of K2, f−1(star(v)) is abelian in C − Σ;

Let C(λ1, . . . , λq) denote the closed orientable 3-manifold obtained by gluing q solid
tori to the boundary of the manifold C−N (Σ), so that the boundaries of the meridian
discs are identified respectively to the simple closed curves λ1, . . . , λq in ∂N (Σ). More
precisely,

C(λ1, . . . , λq) = (C − N (Σ))
⋃

φ1,...,φq

q⊔
i=1

S1 ×D2
i ,

where the gluing maps φi : ∂N (Σi) → S1 × ∂D2
i satisfy φi(λi) = ({∗} × ∂D2

i ), for
i = 1, . . . , q.

From properties i′) and ii′), the continuous map f : C → K2 induces a map
f : C(λ1, . . . , λq) → K2. Since abelianity is preserved by quotient, f

−1
(star(v)) is

abelian in C(λ1, . . . , λq), for every vertex v of K2.
Since dim(K2) = 2, the closed orientable 3-manifold C(λ1, . . . , λq) admits an

abelian covering of dimension 2 by the pull-back of the stars of the vertices of K2.
The vanishing theorem for simplicial volume (cf. [Gro, Sec. 3.1] and [Iva]) shows that
‖C(λ1, . . . , λq)‖ = 0. This holds for every choice of simple closed curves on ∂N (Σ).
Thus, from Thurston’s hyperbolic Dehn filling theorem [Thu1] (cf. Appendix B):

‖C − Σ‖ = lim
Lenght(λi)→∞

‖C(λ1, . . . , λq)‖ = 0.

The remaining of this section is devoted to the proof of Proposition 5.4.1.

Proof of Proposition 5.4.1. — Let C be an orientable closed hyperbolic cone 3-ma-
nifold so that every point x ∈ C admits a (ε,D)-Margulis’ neighborhood of abelian
type, with ε < 1/2 and D > 300. It means that x has a neighborhood Ux ⊂ C that
is bilipschitz homeomorphic to the normal cone fibre bundle Nν(S), of some radius
ν < 1 depending on x, of the soul S of one of the following non-compact Euclidean
cone 3-manifolds: T 2 ×R, S1 
R2, S1 
 (cone disc). Moreover, the (1+ ε)-bilipschitz
homeomorphism f : Ux → Nν(S) satisfies:

a) max
(
inj(x), d(f(x), S), diam(S)

)
≤ ν/D,

(cf. local soul theorem, Chapter 4, and Lemma 5.2.4).
For every point x ∈ C, we define the abelianity radius ab(x) to be:

ab(x) = sup{r > 0 | B(x, r) is abelian in C − Σ}.

ASTÉRISQUE 272



5.4. FROM MARGULIS TO GROMOV 95

By using the (1+ε)-bilipschitz homeomorphism f : Ux → Nν(S) and the upper bound
a), we get:

ab(x) ≥ ν

1 + ε
(1 − 1

D
) ≥ ν

2
≥ D

2
inj(x).

For every x ∈ C we define r(x) = inf(ab(x)
8 , 1). Lemmas 5.4.2 and 5.4.3 give the

first properties of the balls B(x, r(x)).

Lemma 5.4.2. — Let x, y ∈ C. If B(x, r(x)) ∩B(y, r(y)) �= ∅, then

b) 3/4 ≤ r(x)/r(y) ≤ 4/3;
c) B(x, r(x)) ⊂ B(y, 4r(y)).

Proof. — Assume r(x) ≥ r(y). Either r(y) = 1 or r(y) = ab(y)/8. If r(y) = 1,
then r(x) = 1 and assertion b) is clear. If r(y) = ab(y)/8, by using the inclusion
B(y, 6r(x)) ⊂ B(x, 8r(x)) and the fact that 8r(x) ≤ ab(x), it follows that B(y, 6r(x))
is abelian in C − Σ. Hence r(x) ≤ ab(y)/6 ≤ 4r(y)/3 and b) is proved. Assertion c)
follows easily from b) and the inclusion B(x, r(x)) ⊂ B(y, 2r(x) + r(y)).

Lemma 5.4.3. — Let Σ = Σ1 � · · · � Σq be the singular set of C. We choose a point
xi in each connected component Σi. Then, we have the following properties:

d) for i = 1, . . . , q, if µ > 0 is sufficiently small, then Nµ(Σi) ⊂ B(xi,
r(xi)

4 ), where
Nµ(Σi) is the tubular neighborhood of radius µ around the connected component
Σi;

e) B(xi, r(xi)) ∩B(xj , r(xj)) = ∅, for i �= j, i, j ∈ {1, . . . , q}.

Proof. — Property d) follows from the hypothesis that xi has a (ε,D)-Margulis’
neighborhood of abelian type. Since xi is singular, the local model is the normal
cone fibre bundle Nν(S), of radius ν < 1, of the soul S = S1 × {cone point} of the
Euclidean cone 3-manifold S1 
 (cone disc).

Let f : Uxi → Nν(S) be the (1 + ε)-bilipschitz homeomorphism between Uxi and
the local model, then Uxi ∩ Σ = Σi = f−1(S) = f−1(S1 × {cone point}). Since
ε ≤ 1/2, it follows from the upper bound a) that diam(Σi) ≤ diam(S)(1 + ε) ≤ 2 ν

D .
Furthermore, since ν ≤ inf(1, 2 ab(xi)), r(xi) = inf(1, ab(xi)

8 ) and D > 300 we get:

diam(Σi) ≤ 2
ν

D
≤ inf(

2
D
,
4 ab(xi)

D
) < r(xi)/9,

Hence Σi ⊂ B(xi,
r(xi)

9 ). By taking µ ≤ inf{ r(xi)
18 | i = 1, . . . , q} we obtain the

inclusion Nµ(Σi) ⊂ B(xi,
r(xi)

4 ).
To show property e), we assume that there are i �= j such that

B(xi, r(xi)) ∩B(xj , r(xj)) �= ∅

and we seek a contradiction. From property c) of Lemma 5.4.2, the fact that the
balls intersect implies that B(xj , r(xj)) ⊂ B(xi, 4r(xi)). Hence, by property d),
Σi ∪ Σj ⊂ B(xi, 4r(xi)), which is an abelian ball in C − Σ. This implies that the
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two peripheral elements of π1(C − Σ) represented by the meridians of Σi and Σj

commute. This contradicts the fact that C−Σ admits a complete hyperbolic structure
(Lemma 5.1.6)

Construction of the η-covering à la Gromov. — First, we choose a point xi on each
connected component Σi of Σ, i ∈ {1, . . . , q}. We fix the points {x1, . . . , xq} and we
consider all the possible finite sequences of points {x1, . . . , xq, xq+1, . . . , xp}, starting
with these fixed q points and having the property that

(5.2) the balls B
(
xn,

r(xn)
4

)
are pairwise disjoint.

Note that a sequence satisfying (5.2) and Lemma 5.4.2 is necessarily finite because C
is compact. The following lemma is due to Gromov [Gro, Sec. 3.4, Lemma B]:

Lemma 5.4.4. — Let x1, . . . , xp be a finite sequence in C as above, with the first
fixed q points in the singular set. If it is maximal for property (5.2), then the balls
B
(
x1,

2
3r(x1)

)
, . . . , B

(
xp,

2
3r(xp)

)
cover C.

Proof. — Let x ∈ C. By maximality, the ball B
(
x, r(x)

4

)
intersects B

(
xi,

r(xi)
4

)
for

some i ∈ {1, . . . , p}. From property b) of Lemma 5.4.2, r(x) ≤ 4
3r(xi) and thus

x ∈ B
(
xi,

r(xi)+r(x)
4

)
⊂ B

(
xi,

2
3r(xi)

)
.

Let 0 < µ ≤ inf{ r(xi)
18 | i = 1, . . . , q} so that Nµ(Σi) ⊂ B

(
xi,

r(xi)
4

)
, as in

Lemma 5.4.3 d). Let x1, . . . , xp be a sequence as in Lemma 5.4.4, we consider the
covering (Vi)i∈{1,...,p} defined by:

(5.3)
{

Vi = B(xi, r(xi)) for i = 1, . . . , q;
Vi = B(xi, r(xi)) − Nµ(Σ) for i = q + 1, . . . , p.

The following Lemma finishes the proof of Proposition 5.4.1.

Lemma 5.4.5. — There is a universal constant b0 > 0 such that the above covering
(Vi)i∈{1,...,p} defined by (5.3) is a η-covering à la Gromov with η < b0/D and satisfies
Properties 6) and 7) of Proposition 5.4.1.

Proof of Lemma 5.4.5. — We start by checking that the covering satisfies properties
1) to 5) of a η-covering à la Gromov. Property 1) follows from the construction by
setting ri = r(xi), for i = 1, . . . , p. Property 2) follows immediately from Lemma 5.4.2,
and property 3) is the hypothesis 5.2.

Claim 5.4.6. — The covering (Vi)i∈{1,...,p} satisfies property 4) of a η-covering à la
Gromov. That is, ∀x ∈ C there is an open set Vi such that x ∈ Vi and d(x, ∂Vi) > ri/3.

Proof. — Let x ∈ C. From Lemma 5.4.4, x ∈ B(xi, 2
3ri) for some i = 1, . . . , p. If

i ∈ {1, . . . , q} (i.e. if xi ∈ Σ) or if Nµ(Σ) ∩ B(xi, ri) = ∅, then by construction (5.3)
Vi = B(xi, ri) and we have d(x, ∂Vi) ≥ ri/3.
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Thus we may assume that Nµ(Σ) ∩ B(xi, ri) �= ∅. Let j ∈ {1, . . . , q} be an
index so that Nµ(Σj) ∩ B(xi, ri) �= ∅; we can also assume that d(x, xj) ≥ 2

3rj . By
construction Vi = B(xi, ri) − Nµ(Σ); hence it is enough to show that the distance of
x to the component Nµ(Σj) is at least 1

3ri whenever Nµ(Σj) ∩B(xi, ri) �= ∅.
Since d(x,Σj) ≥ d(x, xj) − diam(Σj), d(x, xj) ≥ 2

3rj and diam(Σj) ≤ rj/9 (by
the proof of Lemma 5.4.3), we get d(x,Σj) ≥ 5

9rj . Moreover, from property b) of
Lemma 5.4.2, 4

3rj ≥ ri, hence:

d(x,Σj) ≥ (4
9 + 1

9 )rj ≥ 1
3ri +

1
9rj .

By the choice of µ ≤ inf{ 1
18rj | j = 1, . . . , q} we can conclude that d(x,Nµ(Σj)) > 1

3ri.

Hence d(x, ∂Vi) > 1
3ri and the claim is proved.

Property 5) of a η-covering à la Gromov is given by the following claim:

Claim 5.4.7. — There is a universal constant b0 > 0 such that

vol(Vi) ≤ vol(B(xi, ri)) ≤ b0

D
r3
i , for i = 1, . . . , p.

Proof. — For i = 1, . . . , p, xi has a (ε,D)-Margulis’ neighborhood of abelian type Ux

which is (1 + ε)-bilipschitz homeomorphic to the normal cone fibre bundle Nν(S), of
radius ν < 1, of the soul S of one of the following non-compact Euclidean cone 3-
manifolds: T 2 ×R, S1 
R2, S1 
 (cone disc). The (1+ ε)-bilipschitz homeomorphism
f : Uxi → Nν(S) satisfies ε < 1/2 and max(inj(xi), d(f(xi), S), diam(S)) ≤ ν/D.
From these inequalities we deduce that ab(xi) ≥ ν/2; hence ri ≥ ν/16.

From Bishop-Gromov inequality (Proposition 3.1.9) we get:

vol(B(xi, ri)) ≤ vol
(
B(xi, ν

16 )
) v−1(ri)
v−1( ν

16 )
.

Let a > 0 be a constant so that t3/a ≤ v−1(t) ≤ at3 for every t ∈ [0, 1]. Since ν ≤ 1
and ri ≤ 1, we get:

vol(B(xi, ri)) ≤ vol
(
B(xi, ν

16 )
)
212a2 r

3
i

ν3
.

Since d(f(xi), S) ≤ ν/D ≤ ν/300, we have the inclusion f(B(xi, ν
16 )) ⊂ Nν(S). Thus:

vol
(
B(xi, ν

16 )
)
≤ (1 + ε)3 vol(Nν(S)) ≤ 23 vol(Nν(S)),

because f is (1 + ε)-bilipschitz with ε < 1/2.
By using the upper bound diam(S) ≤ ν/D and the fact that S is of dimension 1

or 2, a simple computation of Euclidean volumes gives the upper bound:

vol(Nν(S)) ≤ 2
π

D
ν3.

Thus:

vol(Vi) ≤ vol(B(xi, ri)) ≤ b0

D
r3
i , where b0 = 216πa2.
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Property 6) of Proposition 5.4.1 follows immediately from property d) of Lemma
5.4.3 and the construction of the covering.

Finally, property 7) of Proposition 5.4.1 follows from property c) of Lemma 5.4.2,
because

∀i = 1, . . . , p,
⋃

Vj∩Vi �=∅

Vj ⊂
⋃

Vj∩Vi �=∅

B(xj , rj) ⊂ B(xi, 4ri)

and by construction the ball B(xi, 4ri) is abelian in C − Σ.
This finishes the proof of Proposition 5.4.1, and thus of Theorem A.

5.5. (ε,D)-Margulis’ neighborhood of thick turnover type

The main purpose of this section is to strengthen the statement of Theorem A by
showing that in cases 1) and 2) the sequence (Cn)n∈N does not collapse. It is a direct
consequence of Proposition 5.2.1 and Proposition 5.5.1 below, which shows that case
2) of Theorem A cannot appear if the sequence (Cn)n∈N collapses. From the proof of
Proposition 5.2.1, it suffices to show that in the non-compact collapse case (i.e. when
case 3) of Theorem A fails to hold), then no (ε,D)-Margulis’ neighborhood with local
model a thick turnover may appear.

Proposition 5.5.1 holds true for closed orientable connected hyperbolic cone 3-
manifolds with cone angles ≤ π.

We use it twice: first at the end of this section, to prove two Margulis’s type
results for closed orientable hyperbolic cone 3-manifolds (Propositions 1 and 2), then
also in Chapter 7, in the proof of the uniformization theorem for small 3-orbifolds
(Theorem 2).

Proposition 5.5.1. — Given ω > 0, there is a constant D1 > 1 (depending only on ω),
such that if every point of a closed orientable connected hyperbolic cone 3-manifold C

with cone angles in [ω, π] admits a (ε,D)-Margulis’ neighborhood, with ε < 1/2 and
D > D1, then no point of C admits such a (ε,D)-Margulis’ neighborhood with local
model a thick turnover S2(α, β, γ) × R, with α+ β + γ = 2π.

The following is the key lemma for the proof of Proposition 5.5.1.

Lemma 5.5.2. — Given ω > 0, there is a constant c = c(ω) such that if a point x of
a connected hyperbolic cone 3-manifold C with cone angles in [ω, π] admits a (ε,D)-
Margulis’ neighborhood with ε < 1/2, D > 1 and a local model of type S2(α, β, γ)× R
(α+β+γ = 2π), then, for some t ∈ [−ν/D, ν/D], the preimage f−1(S2(α, β, γ)×{t})
is contained in the open ball B(x, c inj(x)), where f : Ux → Nν(S) is a (1 + ε)-
bilipschitz homeomorphism.
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Proof of Lemma 5.5.2. — To simplify the notation, we denote by S the Euclidean
cone turnover S2(α, β, γ). Since d(f(x), S) ≤ ν/D, there exists some t ∈ [−ν/D, ν/D]
such that x ∈ f−1(S × {t}). Hence, to prove the inclusion f−1(S × {t}) ⊂
B(x, c inj(x)), it suffices to prove the inequality diam(f−1(S × {t})) ≤ c inj(x).

Since diam(f−1(S × {t})) ≤ 3
2 diam(S), we need only to show that:

inj(x) ≥ e diam(S),

where the constant e = e(ω) > 0 depends only on ω. Then we can take c = 3/2e.
In order to prove the inequality inj(x) ≥ e diam(S), for some constant e = e(ω) >

0, we rescale the hyperbolic cone metric on C by 1/ diam(S). Let C = 1
diam(S)C

be the rescaled cone 3-manifold with constant curvature K = −(diam(S))2. Since
diam(S) ≤ ν/D < 1, the (constant) curvature K of C belongs to [−1, 0). Let inj(x)
be the cone injectivity radius of the point x ∈ C. Then the proof of Lemma 5.5.2
follows from the following claim:

Claim 5.5.3. — There is a constant e = e(ω) > 0 such that inj(x) > e.

Proof of Claim 5.5.3. — We denote by d the distance on the rescaled cone 3-manifold
C = 1

diam(S)C. Let y ∈ f−1(S × {t}) ⊂ C be a singular point. Since d(x, y) ≤ 2, by
Proposition 3.5.2 (lower bound for the cone injectivity radius) we have only to show
that inj(y) > e′ for a constant e′ = e′(ω) > 0 depending only on ω.

Because of the (1 + ε)-bilipschitz homeomorphism f : Ux → Nν(S) and since y

is a singular point, it is sufficient to get such a lower bound for the cone injectivity
radius inj(f(y)), for f(y) in 1

diam(S)Nν(S). In addition, since the cone 3-manifold
1

diam(S)Nν(S) is isometric to the product
1

diam(S)S × [− 1
diam(S)ν,

1
diam(S)ν],

it is sufficient to get a lower bound for inj(f(y)) in S = 1
diam(S)S.

The Euclidean cone turnover S is obtained by doubling a Euclidean triangle ∆
along its boundary. The longest edge of ∆ has length diam(∆) ≥ 1

2 diam(S) = 1
2 .

Since the angles of ∆ belong to [ω/2, π/2], by elementary trigonometric formulas it
follows that the two other edges of ∆ admit a uniform lower bound e′′ depending only
on the constant ω.

Since the point f(y) is a vertex of ∆, the open ball B(f(y), e′′) is a standard
singular ball in the Euclidean cone turnover S. Therefore the cone injectivity radius
inj(f(y)) satisfies: inj(f(x)) > e′′/2. This finishes the proof of Claim 5.5.3 and thus
of Lemma 5.5.2.

The proof of Proposition 5.5.1 follows now readily from the following lemma:

Lemma 5.5.4. — For ω > 0, let c = c(ω) be the constant given by Lemma 5.5.2. Let
C be a closed orientable connected hyperbolic cone 3-manifold with cone angles in
[ω, π]. If every point of C admits a (ε,D)-Margulis’ neighborhood, with ε < 1/2 and
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D > D1 = max{1, 2c}, then no point of C admits such a (ε,D)-Margulis’ neighborhood
with local model S2(α, β, γ) × R (α+ β + γ = 2π).

Proof of Lemma 5.5.4. — We fix the constants ε < 1/2 and D > D1 = max{1, 2c}.
Let A be the subset of points x ∈ C admitting a (ε,D)-Margulis’ neighborhood with
local model S2(α, β, γ) × R (α+ β + γ = 2π). By hypothesis, A is an open subset of
C. To show that A is a closed subset of C, let (xn)n∈N ⊂ A be a sequence of points
that converges to a point x∞ ∈ C. Since the point x∞ admits by hypothesis a (ε,D)-
Margulis’ neighborhood Ux∞ , for n sufficiently large Ux∞ is also a (ε,D)-Margulis’
neighborhood for the point xn ∈ A. Then the following claim shows that Ux∞ must
have a local model of type S2(α, β, γ) × R (α+ β + γ = 2π). Hence x∞ belongs to A

and A is a closed subset of C.

Claim 5.5.5. — Every (ε,D)-Margulis’ neighborhood of a point x ∈ A, with ε < 1/2
and D > D1 = max{1, 2c}, has local model of type S2(α, β, γ)×R with α+β+γ = 2π.

Proof of Claim 5.5.5. — Let Ux be a (ε,D)-Margulis’ neighborhood of x ∈ A with
ε < 1/2 andD > D1 = max{1, 2c}. Then there is a (1+ε)-bilipschitz homeomorphism
f : Ux → Nν(S), where Nν(S) is the normal cone fibre bundle, with radius ν < 1,
of the soul S of a non-compact orientable Euclidean cone 3-manifold. We claim that
the soul S is a Euclidean cone turnover.

By definition of a Margulis’ neighborhood, we have the following inequality:

max(inj(x), d(f(x), S), diam(S)) ≤ ν/D.

This inequality and the inequality D > 2c imply that the open ball B(x, c inj(x))
is included in Ux, because c inj(x) < ν/2 and ε < 1/2.

Since x ∈ A, it admits also a (ε,D)-Margulis’ neighborhood with local model of
type S2(α, β, γ) × R (α+ β + γ = 2π). By Lemma 5.5.2 the open ball B(x, c inj(x))
contains the preimage f−1(S2(α, β, γ) × {t}), for some t ∈ [−ν/D, ν/D]. Hence Ux

contains a cone turnover which is (1 + ε)-bilipschitz homeomorphic to a Euclidean
cone turnover. A quick inspection of the possible local models given by the local soul
theorem in Chapter 4 shows that the local model of Ux has to be of type S2(α′, β′, γ′)×
R with α′ + β′ + γ′ = 2π.

Since the subset A is open and closed in the connected space C, either A is empty
or A = C. The proof of Lemma 5.5.4 follows from the following claim:

Claim 5.5.6. — The subset A cannot be equal to C.

Proof of Claim 5.5.6. — Seeking a contradiction, we assume that A = C. Since C is
compact, there is a finite covering {W1, ...,Wn} of C:

C =
n⋃

i=1

Wi,
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where Wi = f−1
i (Si × [−νi/2D, νi/2D]), fi : Ui → Nνi(Si) is a (1 + ε)-bilipschitz

homeomorphism and Nνi(Si) is the normal cone fibre bundle, with radius νi < 1,
over a Euclidean cone turnover Si = S2(αi, βi, γi) with αi + βi + γi = 2π.

By the proof of Claim 5.5.5, if

f−1
i (Si × [−νi/D, νi/D]) ∩ f−1

j (Sj × [−νj/D, νj/D]) �= ∅,

then, for some tj ∈ [−νj/D, νj/D], f−1
j (Sj × {tj}) is embedded in Ui. Since Ui is

homeomorphic to a product f−1
i (Si)×[a, b], it follows that the essential non-separating

spheres f−1
i (Si) and f−1

j (Sj) are homotopic, hence isotopic in C by [Lau]. Therefore,
by the connectedness of C, all the essential and non-separating spheres f−1

i (Si), i ∈
{1, ..., n}, are parallel in C. Therefore C is homeomorphic to the product S2 × S1

and each level 2-sphere meets the singular locus in exactly three points. This shows
that the complement C − Σ of the singular locus Σ fibres over the circle with fibre
a three-punctured 2-sphere. Since the monodromy is, up to isotopy, of finite order,
C − Σ is Seifert fibred, which is impossible for a hyperbolic cone 3-manifold.

This concludes the proof of Claim 5.5.6, Lemma 5.5.4 and Proposition 5.5.1.

As a consequence of Proposition 5.5.1 and Theorem A we prove now Propositions 1
and 2.

We prove first Proposition 1.

Proof of Proposition 1. — Seeking a contradiction, we assume that there is a se-
quence {Cn}n∈N of closed orientable hyperbolic cone 3-manifolds with cone angles
in [ω0, ω1] and diameter ≥ 1, such that (sup{inj(x) | x ∈ Cn})n∈N goes to zero. By
Theorem A together with Proposition 5.5.1, there is a subsequence that admits a
compact collapse, corresponding to case 3) of Theorem A. In particular the diameter
of the hyperbolic cone 3-manifolds in this subsequence goes to zero, contradicting the
hypothesis.

We prove now Proposition 2.

Proof of Proposition 2. — Seeking a contradiction, we assume that there is a se-
quence {Cn}n∈N of closed orientable hyperbolic cone 3-manifolds with cone angles
in [ω0, ω1], for some ω1 < 2π/3, and such that (sup{inj(x) | x ∈ Cn})n∈N goes to zero.
By Theorem A together with Proposition 5.5.1, there is a subsequence that admits a
compact collapse, corresponding to case 3) of Theorem A. So the rescaled sequence

1
inj(xn)Cn converges to a compact orientable Euclidean cone manifold E with cone
angles strictly less than 2π/3. In particular, for n large enough, Cn has the same
topological type as E.

As in Proposition 2.3.1, by using Hamilton’s theorem one can show that there exists
a closed orientable spherical 3-orbifold O with the same topological type as E and
with branching indices ≥ 3, because the cone angles of E are < 2π/3. The orbifold O
is Seifert fibred, because it is spherical and of cyclic type [Dun1, Dun4]. In addition,
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since the branching indices are ≥ 3, the singular locus Σ is a union of fibres. Thus the
Seifert fibration on O induces a Seifert fibration of Cn−Σ ∼= O−Σ, which contradicts
the hyperbolicity of Cn − Σ proved in Lemma 5.1.6 and in [Koj].
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CHAPTER 6

VERY GOOD ORBIFOLDS AND SEQUENCES

OF HYPERBOLIC CONE 3-MANIFOLDS

This chapter is devoted to the proof of Theorem B.

Theorem B. — Let O be a closed orientable connected irreducible very good 3-orbifold
with topological type (|O|,Σ) and ramification indices n1, . . . , nk. Assume that there
exists a sequence of hyperbolic cone 3-manifolds (Cn)n∈N with the same topological type
(|O|,Σ) and such that, for each component of Σ, the cone angles form an increasing
sequence that converges to 2π/ni when n approaches ∞.
Then O contains a non-empty compact essential 3-suborbifold O′ ⊆ O, which is not

a product and which is either complete hyperbolic of finite volume, Euclidean, Seifert
fibred or Sol.

We recall that a compact orientable 3-suborbifold O′ is essential in a 3-orbifold O
if the 2-suborbifold ∂O′ is either empty or incompressible in O.

The suborbifold O′ of the theorem is not necessarily proper, it can be O′ = O, but
it is non-empty. By saying that O′ is complete hyperbolic of finite volume we mean
that its interior has a complete hyperbolic structure of finite volume. In particular,
∂O′ is a collection of Euclidean 2-suborbifolds.

The proof of Theorem B splits into two cases, according to whether the sequence
of cone 3-manifolds (Cn)n∈N collapses or not, as in Theorem A. The non-collapsing
case does not require the hypothesis very good, and this case will be used in the proof
of Theorem 2 for small orbifolds in the next chapter.

6.1. The non-collapsing case

Next proposition proves Theorem B when the sequence of cone 3-manifolds (Cn)n∈N

does not collapse (i.e. sup{inj(x) | x ∈ Cn} does not converge to zero). The proof of
Proposition 6.1.1 does not use the fact that the orbifold O is very good.
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Proposition 6.1.1. — Let O and (Cn)n∈N satisfy the hypothesis of Theorem B. If the
sequence (Cn)n∈N does not collapse, then O contains a non-empty compact essential
3-suborbifold that is complete hyperbolic of finite volume.

Proof. — Since the sequence (Cn)n∈N does not collapse, after passing to a subse-
quence if necessary, there is a constant a > 0 and, for every n ∈ N, there is a point
xn ∈ Cn such that inj(xn) ≥ a. Thus, the sequence of pointed cone 3-manifolds
(Cn, xn) is contained in C[ω0,π],a, for some ω0 > 0, because the cone angles of Cn

converge to angles of the form 2π/ni.
Since (Cn, xn) ∈ C[ω0,π],a, by the compactness theorem (Chapter 3), after passing to

a subsequence, we can assume that (Cn, xn)n∈N converges geometrically to a pointed
hyperbolic cone 3-manifold (C∞, x∞). By hypothesis, the cone angles of C∞ are of
the form 2π/m with m ∈ N, hence C∞ is an orientable orbifold. We distinguish two
cases, according to whether the limit 3-orbifold C∞ is compact or not.

If the limit 3-orbifold C∞ is compact, then the geometric convergence implies that
C∞ has the same topological type (C,Σ) as the orbifold O. Moreover, the branching
indices of C∞ agree with the ones of O. Therefore as an orbifold C∞ = O and O is
a closed hyperbolic orbifold. Thus Proposition 6.1.1 is proved in this case.

If the limit C∞ is not compact, then we need further work, as in Chapter 5. The
first step is the following lemma.

Lemma 6.1.2. — If the limit 3-orbifold C∞ is not compact, then

i) C∞ has a finite volume,
ii) the ramification locus Σ∞ of C∞ has a non-compact component.

Proof. — Assertion i) is Lemma 5.1.3 and assertion ii) is Proposition 5.1.5, both of
Chapter 5, whose proofs do not require the cone angles to be strictly less than π but
only less than or equal to π.

Hence, the non-compact orientable orbifold C∞ is hyperbolic with finite volume.
Let N∞ ⊂ C∞ be a compact core corresponding to the thick part of the orbifold.
The thin part C∞ − N∞ is a union of cusps of the form F × (0,+∞), where F is
an orientable closed 2-dimensional Euclidean orbifold. Moreover, since Σ∞ is not
compact, at least one of the cusps is singular.

Proposition 6.1.1, in the case where C∞ is not compact, follows from the following
one, because the compact core of C∞ is not a product.

Proposition 6.1.3. — Let N∞ ⊂ C∞ be the compact core of the hyperbolic 3-orbifold
C∞. Then N∞ embeds in O as an essential 3-suborbifold.

Proof. — The geometric convergence implies that, for n sufficiently large, there is a
(1 + εn)-bilipschitz embedding fn : (N∞,Σ∞ ∩ N∞) → (Cn,Σ) with εn → 0. Since
the 3-orbifold O and the cone 3-manifolds Cn have the same topological type, we view
the image fn(N∞) as a suborbifold of O, which we denote by Nn ⊂ O. The orbifold
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Nn is homeomorphic to N∞, thus Nn is an orbifold whose interior is hyperbolic of
finite volume.

In Lemma 6.1.5 we are going to prove that ∂Nn is incompressible in O, but before
we need the following lemma.

Lemma 6.1.4. — For n sufficiently large, the orbifold O − int(Nn) is irreducible.

Proof. — Seeking a contradiction, we assume that O − int(Nn) contains a spherical
2-suborbifold F 2 which is essential. Since O is irreducible, F 2 bounds a spherical 3-
orbifold ∆3, which is the quotient of a standard 3-ballB3 by the orthogonal action of a
finite subgroup of SO(3), and Nn ⊂ ∆3, for n sufficiently large. Since the ramification
locus of O is a link, the only possibility is that ∆3 is either a non-singular ball B3 or
its quotient by a finite cyclic group. Therefore the topological type of ∆3 is (B3, A),
where A = ∆3 ∩ Σ is either empty or an unknotted proper arc.

Let ρn : π1(Cn − Σ, xn) → PSL2(C) be the holonomy representation of Cn

and let fn : (N∞,Σ∞ ∩ N∞) → (Cn,Σ) be the (1 + εn)-bilipschitz embedding
such that Nn = fn(N∞). For n sufficiently large, the representation ρn ◦ fn∗ :
π1(N∞ − Σ∞, x∞) → PSL2(C) is either cyclic or trivial, since Nn ⊂ ∆3. Hence,
the holonomy of C∞ is abelian, because the geometric convergence implies the con-
vergence of the holonomies (Proposition 3.5.4). This contradicts the fact that C∞ is
a complete hyperbolic orbifold of finite volume.

Lemma 6.1.5. — For n sufficiently large, the boundary ∂Nn is incompressible in O.

Proof. — Seeking a contradiction, we suppose that the lemma is not true. So, after
passing to a subsequence if necessary, we can assume that ∂Nn is compressible in O
and furthermore that O − int(Nn) is irreducible (by Lemma 6.1.4). Let F1, . . . , Fp

be the components of ∂N∞. By passing again to a subsequence if necessary, we can
assume moreover that the embedded components fn(F1), . . . , fn(Fq) are precisely the
compressible ones, with p ≥ q, where fn : (N∞,Σ∞ ∩N∞) → (Cn,Σ) is the (1 + εn)-
bilipschitz embedding defining Nn.

For i = 1, . . . , q, let λin be an essential curve on fn(Fi) which bounds a properly
embedded disc in O − int(Nn), intersecting Σ in at most one point. Consider the
simple closed essential curves λ̃in = f−1

n (λin) ⊂ Fi, for i = 1, . . . , q.

Claim 6.1.6. — For each i = 1, . . . , q, the sequence of simple closed essential curves
(λ̃in)n≥n0 represents infinitely many different homotopy classes in the fundamental
group π1(Fi).

Proof. — If the claim is false, then, by passing to a subsequence and changing the
indices of the Fi, we can suppose that the curves λ̃1

n represent a fixed class λ̃1 ∈ π1(F1)
which does not depend on n. Let ρn : π1(Cn − Σ, xn) → PSL2(C) be the holonomy
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representation of Cn and ρ∞ : π1(C∞ − Σ∞, x∞) = π1(N∞ − Σ∞, x∞) → PSL2(C)
be the holonomy of C∞. From the geometric convergence (Proposition 3.5.4):

ρ∞(λ̃1) = lim
n→∞

ρn(fn(λ̃1
n)) = lim

n→∞
ρn(λ1

n).

Since the curves λ1
n are compressible in O, their holonomies ρn(λ1

n) are either elliptic
with bounded order or trivial. Moreover, since π1(F1) is parabolic and λ̃1 does not
bound a discal 2-suborbifold in F1, the holonomy ρ∞(λ̃1) is non-trivial and parabolic
(cf. Appendix B, Lemma B.2.3). Thus we obtain a contradiction comparing ρ∞(λ̃1)
with the limit of ρn(λ1

n).

We come back to the proof of Lemma 6.1.5.
Since the orbifold O − int(Nn) is irreducible, each toric 2-orbifolds fn(F1), . . . ,

fn(Fq) bounds the quotient of a solid torus in O, that we denote by V1, . . . , Vq.
For i = 1, . . . , q, the curve λin bounds a properly embedded discal 2-suborbifold

in Vi. Since int(Nn) ∼= int(N∞) admits a complete hyperbolic structure, Claim 6.1.6
and the orbifold version of Thurston’s hyperbolic Dehn filling theorem [DuM] (cf.
Appendix B, §B.2) imply that, for n sufficiently large, the 3-orbifold

N∞(λ̃1
n, . . . , λ̃

q
n) = N∞ ∪

q⊔
i=1

Vi

obtained by Dehn filling along the curves λ̃1
n, . . . , λ̃

q
n is hyperbolic. In particular

N∞(λ̃1
n, . . . , λ̃

q
n) has an incompressible boundary.

Since the curves λ̃in = f
−1

n (λin) ⊂ Fi represent infinitely many different homo-
topy classes in π1(Fi), it follows from Schläfli’s formula for volume that the sequence
(N∞(λ̃1

n, . . . , λ̃
q
n))n∈N contains infinitely many non-homeomorphic 3-orbifolds. We

shall obtain a contradiction by showing that in fact all these orbifolds are homeo-
morphic to finitely many ones. For n large, the boundary ∂N∞(λ̃1

n, . . . , λ̃
q
n) is incom-

pressible in O, because O − int(N∞(λ̃1
n, . . . , λ̃

q
n)) is irreducible with incompressible

boundary and N∞(λ̃1
n, . . . , λ̃

q
n) is hyperbolic. Hence, this 3-suborbifold is a piece of

the Bonahon-Siebenmann splitting of the 3-orbifold O [BS1]. Uniqueness of this
splitting implies that the 3-orbifolds N∞(λ̃1

n, . . . , λ̃
q
n) are only finitely many. Hence

we get the contradiction that proves Lemma 6.1.5 and therefore Proposition 6.1.3.

6.2. The collapsing case

Next proposition proves Theorem B in the collapsing case.

Proposition 6.2.1. — Let O and (Cn)n∈N satisfy the hypothesis of Theorem B. If the
sequence (Cn)n∈N collapses, then O contains a non-empty compact essential 3-suborbi-
fold, which is not a product and which is either Euclidean, Seifert fibred or Sol.
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Proof. — Since the sequence (Cn)n∈N collapses, by Corollary 4.4.1 of the local soul
theorem (Chapter 4), either there is a subsequence that, after rescaling, converges to
a closed Euclidean cone 3-manifold, or the local soul theorem, with any parameters
ε > 0, D > 1 and non-compact local models, applies to every point x ∈ Cn. Thus we
distinguish again two cases, according to whether we obtain a compact limit or not.

In the first case, for every n ∈ N there is xn ∈ Cn such that the sequence of
rescaled cone 3-manifolds (Cn, xn) = ( 1

inj(xn)Cn, xn) has a subsequence that converges
geometrically to a compact cone 3-manifold (C∞, x∞). The geometric convergence
implies that C∞ is a closed orientable Euclidean 3-orbifold with the same topological
type and the same branching indices as O. Therefore, as an orbifold C∞ = O and so
O is Euclidean. Thus Proposition 6.2.1 holds in this case.

The second case, when we cannot find such a compact limit, is the difficult case to
which the remaining of this chapter is devoted. Hence, from now on we suppose that
the local soul theorem, with any parameters ε > 0, D > 1 and non-compact local
models, applies to every point x ∈ Cn, for n sufficiently large.

Lemma 6.2.2. — Under the hypothesis of the second case, for any ε > 0 and D > 1,
there exists n0 > 0 such that, for n ≥ n0, every x ∈ Cn has an open neighborhood Ux

(1 + ε)-bilipschitz homeomorphic to the normal fibre bundle Nν(S), with some radius
ν < 1 depending on x, of the soul S of one of the following non-compact orientable
Euclidean orbifolds:

a) T 2 × R; S1 
 E2; S1 
 D2(2π/p);
b) S2(2π

p1
, 2π
p2
, 2π
p3

)×R, with 1
p1

+ 1
p2

+ 1
p3

= 1 (thick Euclidean turnover); S2(π, π, π, π)×
R (thick pillow); the solid pillow;

c) P2(π, π)×̃R, which is the twisted orientable line bundle over P2(π, π); and the
quotient of S2(π, π, π, π)×R by an involution that gives the orientable bundle over
D2(π, π), with silvered boundary (cf. Figure 1).

Moreover, if f : Ux → Nν(S) is the (1 + ε)-bilipschitz homeomorphism, then

max(inj(x), d(f(x), S), diam(S)) ≤ ν/D.

Figure 1

We recall that the solid pillow is the orbifold with underlying space R3 and branch-
ing set two straight lines of branching order 2 (cf. Figure 1 in chapter 4). It is the
quotient of S1 
 R2 by an involution.
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Proof of Lemma 6.2.2. — From the hypothesis of the second case, for every ε > 0
and D > 1, there exists an n0 such that for n > n0 we can apply the local soul
theorem, with parameters ε > 0, D > 1 and non-compact local models, to every
point x ∈ Cn. Moreover from the hypothesis about the cone angles, the local models
are orientable Euclidean non-compact 3-orbifolds. Now it remains to eliminate the
Euclidean 3-orbifolds model that are no listed in Lemma 6.2.2 (as in Lemma 5.2.4).
Hence, by the local soul theorem, we only have to get rid of the twisted line bundle
over the Klein bottle K2×̃R1 and the two models of Figure 2, which correspond to an
orientable bundle over either an annulus or a Möbius strip, with silvered boundary in
both cases.

Figure 2

Let S be the soul of one of these three Euclidean non-compact orbifolds, and let
Nr(S) denote its normal fibre bundle of radius r. Then ∂Nr(S) is an incompressible
torus in Nr(S) − Σ, for every r > 0. Therefore the appearance of one of these
models would contradict the fact that C−Σ is topologically atoroidal and not Seifert
fibred.

As in the previous chapter, the neighborhoods given by Lemma 6.2.2 are called
(ε,D)-Margulis’ neighborhoods. We remark that the (ε,D)-Margulis’ neighborhoods
of abelian type correspond to the local models listed in a). The local models listed in
c) are Seifert fibred and different from a product. If neighborhoods corresponding to
these local models appear, then the following lemma proves Proposition 6.2.1.

Lemma 6.2.3. — If for some n ≥ n0 there is a point x ∈ Cn having a (ε,D)-Margulis’
neighborhood of type c) in Lemma 6.2.2, then the orbifold O contains a non-empty
compact essential orientable 3-suborbifold O′ which is Seifert fibred and different from
a product.

Proof of Lemma 6.2.3. — Let S be the soul of one of the Euclidean local models
listed in c). This soul is either a projective plane with two cone points P2(π, π) or
a disc with two cone points and mirror boundary D

2
(π, π). In both cases a regular

neighborhood N (S) of S embeds as a compact suborbifold of O. This suborbifold
O′ = N (S) is Seifert fibred, it is not a product and its boundary ∂O′ = S2(π, π, π, π)
is incompressible in O′. It remains to show that either it is also incompressible in O
or O is Seifert fibred itself.
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First note that O− int(O′) is irreducible, because the soul S = P2(π, π) or D
2
(π, π)

cannot be contained in the quotient of a ball by a finite cyclic action. If ∂O′ is
compressible in O, then the orbifold O − int(O′) is irreducible with compressible
boundary

∂(O − int(O′)) = S2(π, π, π, π).

Therefore O − int(O′) is a pillow and O is Seifert fibred.

Lemma 6.2.3 shows that in applying Lemma 6.2.2 we only need to consider local
models of types a) and b). The following lemma shows that we must consider local
models of type b).

Lemma 6.2.4. — There is a constant D0 > 0 such that if every point of a closed
orientable hyperbolic cone 3-manifold C has a (ε,D)-Margulis’ neighborhood of type
a) or b), with ε < 1/2 and D > D0, then at least one of the neighborhoods is of
type b).

Proof of Lemma 6.2.4. — By Proposition 5.2.5, there exists a uniform constantD0 >

0 such that, if every point of a closed orientable hyperbolic cone 3-manifold C has a
(ε,D)-Margulis’ neighborhood of type a) (abelian type), with ε < 1/2 and D > D0,
then the simplicial volume ‖C − Σ‖ = 0. Therefore, there must be a point whose
local model is of type b), because the fact that C − Σ admits a complete hyperbolic
structure (Lemma 5.1.6) implies that ‖C − Σ‖ �= 0.

By using Lemmas 6.2.2, 6.2.3 and 6.2.4, Proposition 6.2.1 follows from Proposi-
tion 6.2.6 below:

Definition 6.2.5. — We say that a compact orientable irreducible 3-orbifold O is a
graph orbifold if there exists a family of orientable Euclidean closed 2-suborbifolds that
decompose O into Euclidean or Seifert fibred 3-suborbifolds. In particular, Euclidean,
Seifert fibred and Sol 3-orbifolds are graph orbifolds.

Proposition 6.2.6. — Let (Cn)n∈N and O satisfy the hypothesis of Theorem B. There
is a universal constant D1 > 0 such that, if for some n every point of Cn admits a
(ε,D)-Margulis’ neighborhood of type a) or b), with ε < 1/2 and D > D1, then O is
a graph orbifold.

Proof of Proposition 6.2.6. — Let 0 < ε < 1/2 and D > D0, where D0 is the constant
of Lemma 6.2.4. Assume that, for some n fixed, every point of the hyperbolic cone
3-manifold Cn has a (ε,D)-Margulis’ neighborhood of type a) or b).

We choose a point x0 ∈ Cn having a (ε,D)-Margulis’ neighborhood of type b). It
means that x0 has a neighborhood Ux0 ⊂ Cn with a (1+ε)-bilipschitz homeomorphism
f0 : Ux0 → Nν0(S), where Nν(S) is the normal fibre bundle, with some radius ν0 < 1
depending on x0, of the soul S of a non-compact Euclidean 3-orbifold of the family b).
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Let W0 = f−1
0

(
Nν0/D(S)

)
⊂ Ux0 be the inverse image of the closed normal fibre

bundle of the soul S, with radius ν0/D. As a suborbifold of O, W0 is diffeomorphic
to either a thick Euclidean turnover, a thick pillow or a solid pillow.

We need the following proposition, that we shall prove in the next section. We
recall that D0 is the universal constant of Lemma 6.2.4; we can suppose D0 > 104.

Proposition 6.2.7. — Let O and (Cn)n∈N satisfy the hypothesis of Theorem B. There
is a universal constant b1 > 0 such that, if for some n every point of Cn admits a
(ε,D)-Margulis’ neighborhood of type a) or b), with ε < 1/2 and D > D0 > 104, then
Cn admits a η-covering à la Gromov (Vi)i∈I with η < b1/D.
Moreover, there is a choice of x0 and W0 ⊂ O such that the covering (Vi)i∈I

satisfies the additional properties:

6) W0 intersects only one open set Vi of the covering;
7) for every i ∈ I,

⋃
Vj∩Vi �=∅

Vj is virtually abelian in O −W0.

We say that U ⊂ O is virtually abelian in O−W0 if, for every connected component
U ′ of U−p−1(W0), the homomorphism of fundamental groups induced by the inclusion

i∗ : π1(U ′) −→ π1(O − int(W0))

has a virtually abelian image (i.e. the image has a finite index abelian subgroup).

Proof of Proposition 6.2.6 assuming Proposition 6.2.7. — Let η0 > 0 be the universal
constant of Proposition 5.3.3. We choose D1 = sup(b1/η0, 104). Proposition 6.2.7 of
this chapter and Proposition 5.3.3 imply the existence of a continuous map g : C →
K2, from C to a simplicial 2-complex K2, such that:

i) g(W0) is a vertex of K2;
ii) for every vertex v of K2, g−1(star(v)) is virtually abelian in O −W0.

Since O is very good, there is a regular finite covering p : M → O such that M is
a closed 3-manifold. Set W̃0 = p−1(W0) ⊂ M . By composing g with the projection
of the covering map p : M → O, we have a continuous map f = g ◦ p : M → K2 with
the following properties:

i) f(W̃0) is a vertex v0 of K2;
ii) for every vertex v of K2, f−1(star(v)) is virtually abelian in M − W̃0.

Now we use the map f to show that all Dehn fillings along the boundary of any con-
nected component of M − int(W̃0) have simplicial volume zero. Let N be a connected
component of M − int(W̃0). Its boundary ∂N is a union of tori. Let

N = N ∪
∂N

p⊔
i=1

D2 × S1

be any closed Dehn filling of N along ∂N . Since f(W̃0) is a vertex v0 of K2, the map
f : M → K2 induces a map f : N → K2 that coincides with f in N and maps each
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filling solid torus D2 × S1 to the vertex v0. By property ii), for every vertex v ∈ K2,
f
−1

(star(v)) is virtually abelian in N . Hence, the closed orientable 3-manifold N

admits a virtually abelian covering of dimension 2. By Gromov’s vanishing theorem
[Gro, Sec. 3.1] (cf. [Iva]) the simplicial volume ‖N‖ = 0, as claimed.

Next step is the following lemma, whose proof is postponed to the end of the
section.

Lemma 6.2.8. — The 3-orbifold O − int(W0) is irreducible.

Assuming this lemma, then any connected component N of M − int(W̃0) is ir-
reducible, by the equivariant sphere theorem ([DD], [MY1, MY2], [JR]). If ∂N
is compressible in N , then N is a solid torus because it is irreducible; in particular
‖N‖ = 0. If the boundary ∂N is incompressible inN , then the following Lemma shows
that the simplicial volume ‖N‖ = 0 (cf. [BDV]). Therefore ‖M − int(W̃0)‖ = 0.

Lemma 6.2.9. — Let N be an orientable compact irreducible and ∂-incompressible 3-
manifold. Assume that ∂N is a disjoint union of tori and furthermore that any closed
orientable 3-manifold N , obtained from N by Dehn filling, has zero simplicial volume
‖N‖ = 0. Then N itself has zero simplicial volume ‖N‖ = 0.

Proof of Lemma 6.2.9. — Seeking a contradiction, we assume that ‖N‖ �= 0. Ac-
cording to Jaco-Shalen [JS] and Johannson [Joh], N splits along incompressible tori
into Seifert and simple pieces. By Thurston’s hyperbolization theorem the simple
pieces are hyperbolic, hence they have non-zero simplicial volume ([Gro] and [Thu1,
Ch. 6]). Since the simplicial volume is additive under gluing along incompressible tori
([Gro] and [Som]), the assumption that N has non-zero simplicial volume implies
that at least one of these geometric pieces N0 admits a complete hyperbolic structure
of finite volume. We distinguish then two cases, according to whether ∂N0 contains
or not some components of ∂N .

In the first case, when ∂N0 ∩ ∂N �= ∅, the contradiction is obtained by apply-
ing Thurston’s hyperbolic surgery theorem (cf. Appendix B) to the components of
∂N0 which belong to ∂N . This theorem implies that for some closed 3-manifolds
N obtained by Dehn fillings of N along ∂N , the induced Dehn fillings N0 of N0

along ∂N0 ∩∂N give an essential complete hyperbolic submanifold of finite volume in
N . The contradiction then follows from the additivity of the simplicial volume along
incompressible tori [Gro, Som].

In the second case, when ∂N0 ∩ ∂N = ∅, the contradiction is obtained by using
the fact that ∂N0 remains incompressible in infinitely many closed Dehn fillings N

of N along ∂N (by [CGLS, Thm. 2.4.4] and [Gor, Lemma 7.2]). In particular N0

would be an essential complete hyperbolic submanifold of finite volume in N . This
would contradict the fact that ‖N‖ = 0, as in the previous case.
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We prove now thatM−int(W̃0) is a graph manifold. From the proof of Lemma 6.2.9
and the fact that ‖M − int(W̃0)‖ = 0 all the pieces in the Jaco-Shalen and Johannson
splitting of M − int(W̃0) are Seifert fibred; therefore M − int(W̃0) is a graph manifold.

We deduce that O − W0 is a graph orbifold, by using the regular covering
p : M − int(W̃0) → O −W0 and the results of Meeks and Scott [MS], which provide
a graph structure on M − int(W̃0) invariant by the action of the deck transformations
group of the covering.

Since the 3-suborbifold W0 ⊂ O is either a thick Euclidean turnover, a thick pillow
or a solid pillow, O admits a graph structure.

This proves Proposition 6.2.6 from Proposition 6.2.7 and Lemma 6.2.8. The proof
of Proposition 6.2.7 is given in the next section and the proof of Lemma 6.2.8 comes
now.

Proof of Lemma 6.2.8. — Seeking a contradiction, we assume that O − W0 is re-
ducible. It means that there exists an essential spherical 2-suborbifold F 2 ⊂ O. Since
O is irreducible, F 2 bounds a discal 3-suborbifoldD3 in O and D3 contains W0. Since
the branching locus Σ ⊂ O is a link, the discal suborbifold D3 is the quotient of a
ball by a finite cyclic orthogonal action. Hence the topological type of D3 is (B3, A),
where A = B3 ∩ Σ is a proper unknotted arc in the ball B3.

Since W0 ⊂ int(D3), we already have a contradiction in the case where W0 =
N (S2(2π

p1
, 2π
p2
, 2π
p3

)) is a thick Euclidean turnover, because there is no way to embed a
2-sphere in B3 that intersects A in 3 points.

Hence we assume that W0 is either a thick pillow or a solid pillow. In both cases,
Σ ∩ W0 is not connected and we find a contradiction using a Dirichlet polyhedron
and the fact that A = B3 ∩ Σ is connected. More precisely, these local models imply
that there is a metric ball B(x, r) ⊂ W0 ⊂ Cn such that B(x, r)∩Σ is not connected.
We consider the Dirichlet polyhedron Px of Cn centered at x. This polyhedron is
convex, because the cone angles of Cn are equal to or less than π. By convexity,
different connected components of B(x, r)∩Σ give different edges of ∂Px that belong
to different geodesics of H3. In particular, the holonomy of the meridians of different
components of B(x, r) ∩ Σ are not contained in a cyclic group. This contradicts the
inclusion (W0,Σ ∩ W0) ⊂ (D3,Σ ∩D3), because π1(D3 − Σ) ∼= π1(B3 − A) is cyclic.
Thus we get a contradiction and the lemma is proved.

6.3. From (ε,D)-Margulis’ coverings of type a) and b) to η-coverings à la
Gromov

This section is devoted to the proof of Proposition 6.2.7, which constructs the
required η-covering à la Gromov.

We recall that we had applied the local soul theorem (Chapter 4) to the hyperbolic
cone 3-manifold Cn with parameters (ε,D).
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For any point x0 ∈ Cn with a (ε,D)-Margulis’neighborhood of type b), there is
a neighborhood Ux0 and a (1 + ε)-bilipschitz homeomorphism f0 : Ux0 → Nν0(S)
where Nν0(S) is a normal fibre bundle, with some radius ν0 ≤ 1 depending on x0, of
the soul S of a non-compact Euclidean cone 3-manifold of type b). We have defined
W0 = f−1

0

(
Nν0/D(S)

)
⊂ Ux0 .

We want to prove the following proposition:

Proposition 6.2.7. — Let O and (Cn)n∈N satisfy the hypothesis of Theorem B. There
is a universal constant b1 > 0 such that, if for some n every point of Cn admits a
(ε,D)-Margulis’ neighborhood of type a) or b), with ε < 1/2 and D > D0 > 104, then
Cn admits a η-covering à la Gromov (Vi)i∈I with η < b1/D.
Moreover, there is a choice of x0 and W0 ⊂ O such that the covering (Vi)i∈I

satisfies the additional properties:

6) W0 intersects only one open set Vi of the covering;
7) for every i ∈ I,

⋃
Vj∩Vi �=∅

Vj is virtually abelian in O −W0.

Proof of Proposition 6.2.7. — In the proof we set Cn = C to simplify notation.
First we describe the choices of x0 ∈ C and W0. Given ε > 1/2 and D > D0 > 104,

we consider

T(ε,D) =
{
x ∈ C

∣∣∣ x admits an (ε,D)-Margulis’
neighborhood of type b)

}
Since D > D0, Lemma 6.2.4 implies that T(ε,D) �= ∅. For x ∈ T(ε,D), let Ux denote
the (ε,D)-Margulis’ neighborhood of type b) and let f : Ux → Nν(x)(S) be the
(1 + ε)-bilipschitz homeomorphism between Ux and the normal fibre bundle, with
radius ν(x) ≤ 1, of the compact soul S of a local model of type b). We choose a point
x0 ∈ T(ε,D) such that

ν(x0) = ν0 ≥ 1
1 + ε

sup{ν(x) | x ∈ T(ε,D)}.

LetW0 = f−1
0

(
Nν0/D(S)

)
⊂ Ux0 be the inverse image of a closed normal neighborhood

of the soul S of radius ν0/D, where f0 : Ux0 → Nν0(S) is the (1 + ε)-bilipschitz
homeomorphism.

For every x ∈ C we define the virtual abelianity radius (relative to W0 ⊂ O):

vab(x) = sup{r ∈ R | B(x, r) is virtually abelian in O −W0}.

We set r(x) = inf{1, vab(x)
8 }.

This definition is analogous to the one given in Section 5.4. For instance, the
following lemma has the same proof as Lemma 5.4.2:

Lemma 6.3.1. — Let x, y ∈ C. If B(x, r(x)) ∩B(y, r(y)) �= ∅, then

a) 3/4 ≤ r(x)/r(y) ≤ 4/3;
b) B(x, r(x)) ⊂ B(y, 4r(y)).
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Lemma 6.3.2. — For every x0 ∈ W0, W0 ⊂ B(x0,
r(x0)

9 ).

Proof. — This lemma will follow from the inequality

diam(W0) < r(x0)/9.

Since W0 = f−1
0

(
Nν0/D(S)

)
⊂ Ux0 , where f0 : Ux0 → Nν0(S) is a (1 + ε)-bilipschitz

homeomorphism, and Nν0(S) is a normal fibre bundle, with radius ν0, of the soul S
of a non-compact Euclidean cone 3-manifold of type b), we have:

diam(W0) ≤ (1 + ε) diam
(
Nν0/D(S)

)
≤ (1 + ε)

(
diam(S) + 2

ν0

D

)
≤ 6

ν0

D
,

because diam(S) ≤ ν0/D and ε ≤ 1/2. By definition vab(x0) ≥ 1
1+ε(ν0 − ν0/D) ≥

ν0/2, moreover ν0 ≤ 1 and D > 104, thus we obtain the following inequalities:

diam(W0) ≤ 6
ν0

D
≤ inf

{ 6
D
,
12 vab(x0)

D

}
<

r(x0)
9

.

Now we give the construction of the η-covering à la Gromov. We fix a point
x0 ∈ W0, we consider then all the possible finite sequences {x0, x1, . . . , xp}, starting
with x0, such that:

(6.1) the balls B
(
x0,

r(x0)
4

)
, . . . , B

(
xp,

r(xp)
4

)
are pairwise disjoint.

A sequence satisfying (6.1) and Lemma 6.3.1 is finite by compactness. Moreover we
have the following property, proved in Chapter 5, Lemma 5.4.4.

Lemma 6.3.3. — If the sequence {x0, x1, . . . , xp} is maximal for property (6.1), then
the balls B(x0,

2
3r(x0)), . . . , B(xp, 2

3r(xp)) cover C.

Given a sequence {x0, x1, . . . , xp}, maximal for property (6.1) and starting with
x0 ∈ W0, we consider the covering of C by the following open sets:{

V0 = B(x0, r(x0))
Vi = B(xi, r(xi)) −W0, for i = 1, . . . , p.

Next lemma concludes the proof of Proposition 6.2.7.

Lemma 6.3.4. — There is a universal constant b1 > 0 such that, for ε < 1/2 and D >

104, the open sets V0, . . . , Vp define a η-covering à la Gromov of C, with η < b1/D.
Moreover this covering satisfies properties 6) and 7) of Proposition 6.2.7.

Proof. — Lemmas 6.3.2 and 6.3.3 guarantee that the open sets V0, . . . , Vp cover C.
Then by setting ri = r(xi) for i = 1, . . . , p, properties 1), 2) and 3) of a η-covering à
la Gromov follow from the construction and Lemma 6.3.1.

Next claim shows that the covering (Vi)i∈{0,...,p} satisfies also property 4).

Claim 6.3.5. — For every x ∈ C there is an open set Vi, with i ∈ {0, . . . , p}, such that
x ∈ Vi and d(x, ∂Vi) > ri/3.
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Proof of Claim 6.3.5. — Let x ∈ C, then by Lemma 6.3.3 x ∈ B(xi, 2
3ri) for some

i ∈ {0, . . . , p}; we fix this index i. If i = 0 or if B(xi, ri)∩W0 = ∅, then Vi = B(xi, ri)
and the lemma holds. Hence we may assume that i > 0 and B(xi, ri) ∩ W0 �= ∅.
Moreover, we can suppose d(x, x0) > 2

3r0. In this case Vi = B(xi, ri) − W0 and we
claim that d(x,W0) > 1

3ri.
To prove this claim, we use the inequality:

(6.2) d(x,W0) ≥ d(x, x0) − diam(W0) > 2
3r0 − 2

9r0 = 4
9r0,

which holds true because d(x, x0) > 2
3r0 by assumption, and diam(W0) < 2

9r0 by
Lemma 6.3.2. Since B(x0, r0) ∩ B(xi, ri) �= ∅, Lemma 6.3.1 implies that r0 ≥ 3

4ri.
Hence inequality (6.2) becomes d(x,W0) > 1

3ri and the claim is proved.

Before proving property 5) of a η-covering à la Gromov, we point out that property
6) of Proposition 6.2.7 is satisfied by construction and Lemma 6.3.2. Moreover prop-
erty 7) follows from Lemma 6.3.1 and the fact that the balls B(xi, 4ri) are virtually
abelian in O −W0.

Next claim proves property 5) of a η-covering à la Gromov and completes the proof
of Proposition 6.2.7.

Claim 6.3.6. — There exists a universal constant b1 > 0 such that

vol(Vi) ≤ vol
(
B(xi, ri)

)
≤ b1

D
r3
i , ∀i = 0, . . . , p

Proof of Claim 6.3.6. — To estimate the volume of B(xi, ri) we use the same method
as in Claim 5.4.7 of Chapter 5. To fix notation, for i = 0, . . . , p, let fi : Uxi → Nνi(Si)
be the (1+ε)-bilipschitz homeomorphism given by the local soul theorem (Chapter 4).

We need the following technical claim, whose proof is postponed to the end of the
section.

Claim 6.3.7. — For i = 0, . . . , p, let νi denote the radius of the normal fibre bundle of
the soul of the Euclidean local model given by the local soul theorem. Then ri > νi/211.

Assuming that Claim 6.3.7 holds true, we can compare the volumes of the balls
B(xi, ri) and B(xi, νi/211). Since ri > νi/211, by Bishop-Gromov inequality (Propo-
sition 3.1.9) we get:

vol
(
B(xi, ri)

)
≤ vol

(
B(xi, νi/211)

) v−1(ri)
v−1(νi/211)

,

where v−1(t) = π(sinh(2t) − 2t).
As in Claim 5.4.7 of Chapter 5, let a > 0 be a constant such that t3/a ≤ v−1(t) ≤

a t3 for every t ∈ [0, 1]. Since νi ≤ 1 and ri ≤ 1, we get:

vol
(
B(xi, ri)

)
≤ vol

(
B(xi, νi/211)

)
a2233 r

3
i

ν3
i

.
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Since d(fi(xi), Si) ≤ νi/D < νi 10−4, we have that fi
(
B(xi, νi/211)

)
⊂ Nνi(Si).

Thus

vol
(
B(xi, νi/211)

)
≤ (1 + ε)3 vol(Nνi (Si)) ≤ 23 vol(Nνi (Si)),

because fi is (1 + ε)-bilipschitz, with ε ≤ 1/2.
Using the bound diam(Si) ≤ νi/D and the fact that the dimension of the soul Si

is 1 or 2, we easily get the upper bound vol(Nνi(Si)) ≤ (2π/D)ν3
i , as in Claim 5.4.7.

Hence

vol
(
B(xi, ri)

)
≤ b1

D
r3
i , with b1 = 237a2π.

Finally the proof of Claim 6.3.7 concludes the proof of Proposition 6.2.7.

Proof of Claim 6.3.7. — For i = 0, . . . , p, let fi : Uxi → Nνi(Si) be the (1 + ε)-
bilipschitz homeomorphism given by the local soul theorem (Chapter 4). We recall
the upper bound

max(inj(x), d(fi(xi), Si), diam(Si)) ≤ νi
D
.

If i = 0, then it is clear that vab(x0) ≥ ν0/2; thus r0 ≥ ν0/16, because ν0 ≤ 1.
If i ≥ 1, then vab(xi) ≥ inf

(
1

1+ενi(1 − 1
D ), d(xi,W0)

)
, because W0 can intersect

the neighborhood Uxi. Since ε < 1/2 and D > 104, this inequality becomes

vab(xi) ≥ inf
(νi
2
, d(xi,W0)

)
.

Now we want to find a lower bound for d(xi,W0).
Since d(xi, x0) > r0/4 by the choice of the sequence x0, . . . , xp (property (6.1)

above) and since diam(W0) ≤ 6ν0/D by the proof of Lemma 6.3.2, first we get the
following lower bound:

d(xi,W0) ≥ d(xi, x0) − diam(W0) >
r0

4
− 6ν0

D
,

Moreover, d(xi,W0) > ν0( 1
64 − 6

D ) > ν0
128 , because r0 ≥ ν0/16. Therefore, since ν0

and νi ≤ 1, we obtain:

ri ≥ 1
8
vab(xi) ≥ inf

( νi
24

,
ν0

210

)
.

To compare ν0 and νi we distinguish two cases, according to whether the local model
for Uxi is of type a) or b).

If the local model for Uxi is of type b), then by the choice of x0, we have ν0 ≥ νi/2,
hence ri ≥ νi/211.

When the local model for Uxi is of type a), again we distinguish two cases according
to whether the intersection f−1

i (Nνi/8(Si)) ∩W0 is empty or not.
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If f−1
i (Nνi/8(Si)) ∩ W0 = ∅, then f−1

i (Nνi/8(Si)) is virtually abelian in O − W0

and we have

vab(xi) ≥ d(xi, ∂f−1
i (Nνi/8(Si))) ≥ 1

1 + ε

(νi
8

− d(fi(xi), Si)
)

≥

1
1 + ε

(νi
8

− νi
D

)
>

νi
16

and we conclude that ri > νi/128.
If f−1

i (Nνi/8(Si)) ∩W0 �= ∅, then there exists y0 ∈ W0 such that d(y0, f
−1
i (Si)) ≤

(1 + ε)νi/8 < νi/4. Hence, for every x ∈ W0:

d(x, f−1
i (Si)) ≤ d(y0, f

−1
i (Si)) + diam(W0) ≤ νi

4
+

6ν0

D
.

Since W0 corresponds to a (ε,D)-Margulis neighborhood of type b), it cannot be
contained in a (ε,D)-Margulis neighborhood of type a). In particular, W0 cannot be
contained in f−1

i (Nνi(Si)) and we have:
νi
4

+
6ν0

D
>

νi
1 + ε

>
νi
2
.

We deduce that ν0 ≥ Dνi/24 > 32 νi, because D > 104. Thus

ri ≥ inf
( νi
24

,
ν0

210

)
≥ νi/32

and the claim is proved.
This also concludes the proof of Proposition 6.2.7.
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CHAPTER 7

UNIFORMIZATION OF SMALL 3-ORBIFOLDS

An orientable compact 3-orbifold O is small if it is irreducible, its boundary ∂O
is a (perhaps empty) collection of turnovers, and O does not contain any essential
embedded closed orientable 2-suborbifold.

Remark 7.0.1. — If the boundary of a small 3-orbifold O is not empty, then either O
is a discal 3-orbifold or ∂O is an union of Euclidean or hyperbolic turnovers.

Example 7.0.2. — In Figure 1 there is an example of a small orbifold with non-empty
boundary.

Figure 1. This orbifold is small, provided that the ramification indices

are sufficiently large [Dun2].

This chapter is devoted to the proof of Theorem 2:

Theorem 2. — Let O be a compact, orientable, connected, small 3-orbifold of cyclic
type. Then O is geometric.

Remark 7.0.3. — When O is hyperbolic and ∂O is not empty, we prove that either O
is a product or O has finite volume and totally geodesic boundary.
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7.1. Desingularization of ramified circle components

Let O be a compact orientable small 3-orbifold of cyclic type and with topological
type (C,Σ). By definition, a small 3-orbifold does not contain any properly embedded
essential orientable 2-sided 2-suborbifold. It implies that the underlying space itself
does not contain a properly embedded non-separating orientable surface. Let Σ =
Σ0 ∪ Σ∂ be a decomposition of the ramification locus, where Σ0 corresponds to the
circle components of Σ and Σ∂ to the arcs of Σ.

The purpose of this section is to construct a finite regular covering Õ of O that
desingularizes the circle components Σ0 ⊂ Σ.

In particular, if the small orbifold of cyclic type O is closed, then Σ0 = Σ and Õ is
a 3-manifold, hence O is very good.

We start with the following homological lemma (cf. [Tak1]).

Lemma 7.1.1. — Let O be a compact orientable small 3-orbifold of cyclic type and
with topological type (C,Σ). Then:

i) H1(C;Z) is finite.
ii) If Σ0 ⊂ Σ is the union of circle components, then the following exact sequence

holds:

0 → H2(N (Σ0), ∂N (Σ0);Z) → H1(C − Σ0;Z) → H1(C;Z) → 0

Proof of Lemma 7.1.1. — Assertion i) is equivalent to H1(C;Q) ∼= H2(C, ∂C;Q) =
0. Seeking a contradiction, let us assume that there is a non-separating essential
orientable surface |F |, properly embedded in C. We can always make it transverse to
the ramification locus Σ. Then we choose such a surface |F | with the minimal number
of intersection points with Σ. The corresponding orientable 2-suborbifold F ⊂ O with
underlying space |F | is an essential 2-suborbifold in O, otherwise the incompressibility
of |F | implies that one could reduce the number of intersection points with Σ. This
contradicts the smallness of O.

We prove assertion ii) with the long exact sequence for the homology of the pair
(C,C − Σ0):

· · · → H2(C − Σ0;Z) → H2(C;Z) → H2(C,C − Σ0;Z) → H1(C − Σ0;Z) →
→ H1(C;Z) → H1(C,C − Σ0;Z) → . . .

The excision property gives an isomorphism:

Hi(C,C − Σ0;Z) ∼= Hi(N (Σ0), ∂N (Σ0);Z), for i ∈ {1, 2, 3}.

In particular H1(C,C − Σ0;Z) ∼= 0. Moreover, H2(C,C − Σ0;Z) is a free abelian
group generated by the meridian discs of the closed tubular neighborhood N (Σ0) of
the circle components of Σ.
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To obtain the exact sequence stated in ii), it remains to show that

Im{H2(C;Z) → H2(C,C − Σ0;Z)} = {0}.

In fact, it is sufficient to show that the morphism (with rational coefficients)

H2(C − Σ0;Q) −→ H2(C;Q)

is surjective, since H2(C,C −Σ0;Z) is a free abelian group. That is a consequence of
the two following facts:

1) the morphismH2(∂C;Q) → H2(C;Q) is surjective, becauseH2(C, ∂C;Q) vanishes
by assertion i);

2) this morphism factors through H2(C − Σ0;Q), because Σ0 ∩ ∂C = ∅.

The following proposition gives the construction of the desired regular finite cov-
ering Õ of O.

Proposition 7.1.2. — Let O be a compact orientable small 3-orbifold of cyclic type and
with topological type (C,Σ). There is a finite regular covering p :Õ → O such that the
ramification locus of Õ is Σ̃ = p−1(Σ∂).

Proof. — Let Φ : π1(C−Σ0) � H1(C;Z) be the surjection obtained by composing the
abelianization map π1(C−Σ0) → H1(C−Σ0;Z) and the morphism H1(C−Σ0;Z) →
H1(C;Z) induced by inclusion. The kernel G = kerΦ is a normal subgroup of finite
index in π1(C − Σ0) by Lemma 7.1.1 i).

The exact sequence given by Lemma 7.1.1 ii) shows that Φ induces a surjective
morphism

Ψ : G −→ H2(N (Σ0), ∂N (Σ0);Z) → 0.

The free abelian groupH2(N (Σ0), ∂N (Σ0);Z) ∼= ⊕i=q
i=1Z〈δi〉 is generated by the merid-

ian discs δi, i = 1, . . . , q, of the tubular neighborhood N (Σ0) of the cycle components
of Σ. More precisely δi is the meridian disc of the tubular neighborhood of the i-th
component Σi

0 of Σ0.
Let {n1, . . . , nq} be the branching indices of the components {Σ1

0, . . . ,Σ
q
0}. Then Ψ

induces a surjective morphism ψ : G → ⊕i=q
i=1Zni〈δi〉, where Zni is the ring of integers

modulo ni. So H = kerψ is a normal subgroup of finite index in G, hence it is a
normal subgroup of finite index in π1(C − Σ0).

We consider now the covering of C branched along Σ0, associated to the surjective
morphism β : π1(C − Σ0) → π1(C − Σ0)/H .

For i ∈ {1, . . . , q} let µi ⊂ π1(C − Σ0) be a meridian of the i-th component Σi
0.

Since µi corresponds to the boundary of δi, the exact sequence of Lemma 7.1.1 ii)
shows that µi belongs to G. Moreover ψ(µi) is a generator of Zni . By construction,
it follows that β(µi) is a generator of Zni , hence has precisely the same order ni as
the branching index of the corresponding component Σi

0 of Σ0.
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Therefore this branched covering induces a finite regular covering p : Õ → O which
desingularizes the circle components Σ0 of Σ. In particular, the ramification locus of
Õ is Σ̃ = p−1(Σ∂).

In the closed case, Theorem 2 is then a straightforward corollary of Theorem 1 and
Proposition 7.1.2 above:

Corollary 7.1.3. — A closed orientable small 3-orbifold of cyclic type is geometric.

The remaining of this chapter is devoted to the proof of Theorem 2 when ∂O �= ∅.

7.2. Uniformization of small 3-orbifolds with non-empty boundary

In this section we always assume that O is a compact orientable small 3-orbifold
of cyclic type with non-empty boundary ∂O �= ∅. In particular O is either a discal
3-orbifold or it is irreducible and topologically atoroidal, with boundary a collection
of hyperbolic and Euclidean turnovers. Hence it is also acylindrical.

By doubling O along its boundary, the arguments in Section 2.4 of Chapter 2
(Lemmas 2.4.1 to 2.4.7) reduce the proof of Theorem 2 to the proof of Proposition 7.2.1
below. We remark that we do not need Proposition 2.4.9 of Chapter 2 since all
boundary components of O are different from a non-singular torus. Except for that
proposition, the hypothesis that the orbifold O is very good is not used in Section 2.4.

Proposition 7.2.1. — Let O be a compact, orientable, small 3-orbifold of cyclic type
and with non-empty boundary. If the complement O−Σ of the branching locus admits
a complete hyperbolic structure with finite volume and totally geodesic boundary, then
O is geometric.

Proof of Proposition 7.2.1. — The proof of Proposition 7.2.1 follows the scheme of
the proof of Theorem 4 in Sections 2.2 and 2.3 of Chapter 2.

Using the hypothesis that O−Σ admits a complete hyperbolic structure with totally
geodesic boundary, we consider the subinterval J ⊆ [0, 1] of real numbers t ∈ [0, 1]
such that there is a path γ : [0, t] → R0 with the property that, for every s ∈ [0, t],
γ(s) is the holonomy of a hyperbolic cone 3-manifold C(sα), with totally geodesic
boundary and with the same topological type as (|O|,Σ). The cone angles of C(sα)
are sα = (s 2π/m1, . . . , s 2π/mq), where {m1, . . . ,mq} are the branching indices of O
along Σ. Here R0 denotes the irreducible component of the representation variety of
O −Σ that contains the holonomy of the hyperbolic structure on O −Σ, with totally
geodesic boundary and whose ends are cusps.

Lemma 7.2.2. — The subinterval J is non-empty and open.

Proof. — It is non-empty because 0 ∈ J . It is open by Proposition B.3.1 of Ap-
pendix B, which is a version of Thurston’s hyperbolic Dehn filling theorem. The
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proof that J is open at points different from 0 is the same as the proof of Propo-
sition 2.2.4, except for the boundary. To control the holonomy at the boundary it
suffices to use Lemma B.3.3 of Appendix B, which ensures that, when we deform
our holonomy representations, then the representation of the boundary is still the
holonomy of a totally geodesic turnover.

By Lemma 7.2.2, there are three possibilities: either J = [0, 1], J = [0, 1), or
J = [0, t) with 0 < t < 1. If J = [0, 1] then the compact orbifold O admits a
hyperbolic structure with totally geodesic boundary.

Lemma 7.2.3. — The case J = [0, t), with 0 < t < 1, does not occur.

Proof. — We prove it by contradiction: we fix (tn)n∈N an increasing sequence in J =
[0, t) converging to t < 1 and we consider the corresponding sequence of hyperbolic
cone manifolds with totally geodesic boundary {Cn = C(tnα)}n∈N. Up to taking a
subsequence, either (Cn)n∈N collapses or not.

If the sequence Cn does not collapse then, by the compactness theorem, we may
assume that the sequence of pointed cone 3-manifolds (Cn, xn) converges to a hyper-
bolic cone 3-manifold (C∞, x∞). Now we apply Theorem A to the sequence obtained
by doubling Cn along its boundary, which does not collapse either. Since O is small,
the double along the boundary DO contains no spherical turnover. This implies that
case 2) in Theorem A is excluded because a Euclidean turnover in DC∞ is spherical
in DO, (cf. the proof of Proposition 2.3.1). Therefore Theorem A implies that the
double of C∞ is compact. Thus C∞ is also compact and has the same topological
type as Cn, hence we have a contradiction.

If the sequence Cn collapses, then by applying the strengthened version of Theo-
rem A (Section 5.5) to the sequence of doubles, we deduce that the rescaled sequence
( 1

inj(xn)Cn, xn) converges to a compact Euclidean cone 3-manifold. Since t < 1, it
follows that O has spherical boundary. By irreducibility, the unique possibility is
that O is discal, but this contradicts the hypothesis that O − Σ is hyperbolic.

This finishes the proof of Lemma 7.2.3.

To complete the proof of Proposition 7.2.1 we are left with the case J = [0, 1):

Proposition 7.2.4. — If J = [0, 1) then O is hyperbolic

Proof of Proposition 7.2.4. — We fix (tn)n∈N an increasing sequence in J = [0, 1)
converging to 1 and we consider the corresponding sequence of hyperbolic cone 3-
manifolds {Cn = C(tnα)}n∈N. In Proposition 7.3.1 below we will show that the
sequence (Cn)n∈N does not collapse, hence we may apply Lemma 7.2.5 below to
complete the proof of Proposition 7.2.4.
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Lemma 7.2.5. — If Cn does not collapse, then O is hyperbolic. In addition the Eu-
clidean boundary turnovers correspond to cusps and the other boundary turnovers are
totally geodesic boundary components.

Proof of Lemma 7.2.5. — We consider the sequence DCn of doubles of Cn along its
totally geodesic boundary. Let DO denote the double of O. As we indicated in the
introduction to Chapter 6, the proof of Theorem B, given in Section 6.1, does not use
the existence of a finite regular manifold covering for DO. So it applies to show that
DO contains a non-empty compact essential hyperbolic 3-suborbifold which is not a
product. Since O is small, the arguments at the end of Chapter 2, in the proof of
Theorem 1, show that O itself is hyperbolic, possibly with cusps.

7.3. The sequence does not collapse

Let O be an orbifold as in the statement of Propositions 7.2.1 and 7.2.4. As above,
let Cn be a sequence of hyperbolic cone 3-manifolds with the same topological type
as O and whose cone angles increase and approach the orbifold angles of O.

Proposition 7.3.1. — With the hypothesis of Proposition 7.2.4, the sequence Cn does
not collapse.

Proof. — We prove it by contradiction, assuming that Cn collapses. By the local soul
theorem in Chapter 4 (the version with boundary and Corollary 4.4.1), we distinguish
again two cases, according to whether after rescaling we obtain a compact limit or
not:

1) either there is a subsequence that after rescaling converges to a compact Euclidean
cone 3-manifold,

2) or the local soul theorem (possibly with boundary), with any parameters ε > 0,
D > 1 and non-compact local models, applies to every point x ∈ Cn, provided
that n > n0 (where n0 depends on D and ε).

Contradiction in case 1).— In the first case, for every n ∈ N there is a point
xn ∈ Cn such that the sequence of rescaled pointed cone 3-manifolds (Cn, xn) =
( 1

inj(xn)Cn, xn) has a subsequence that converges geometrically to a compact cone
3-manifold (C∞, x∞). The geometric convergence implies that C∞ is a compact ori-
entable Euclidean 3-orbifold with the same topological type and the same branching
indices as O (In particular C∞ has totally geodesic boundary). Thus O is Euclidean
with totally geodesic boundary. We consider the following non-compact Euclidean
orbifold without boundary

O ∪∂ ∂O × [0,∞).

Since O is Euclidean with totally geodesic boundary, ∂O has a collar neighborhood
which is metrically a product, therefore we can glue ∂O× [0,+∞) so that the metrics
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match. The ends of O ∪∂ ∂O× [0,∞) are S2(α, β, γ)× [0,+∞), with α+ β+ γ = 2π.
If we look at the classification of non-compact orientable Euclidean orbifolds, this fact
implies that the only possibility is

O ∪∂

(
∂O × [0,∞)

) ∼= S2(α, β, γ) × R

Thus O ∼= S2(α, β, γ) × [0, 1], contradicting the fact the O − Σ is hyperbolic.

Contradiction in case 2).— In the second case, when we cannot find such a compact
limit, we apply the local soul theorem to Cn and we consider the induced covering by
Margulis’ neighborhoods on the double DCn. Thus we obtain:

Lemma 7.3.2 (Non-compact collapsing case). — For any ε > 0 and D1 > 1, there ex-
ists n0 > 0 such that, for n ≥ n0, every point x in the double DCn has an open
neighborhood Ux (1 + ε)-bilipschitz homeomorphic to the normal fibre bundle Nν(S),
with radius 0 < ν < 1 depending on x, of the soul S of one of the following non-
compact orientable Euclidean orbifolds E:

a) T 2 × R; S1 
 E2; S1 
 D2(2π/p);
b) the thick pillow S2(π, π, π, π) × R; the solid pillow.

Moreover:

i) If f : Ux → Nν(S) is the (1 + ε)-bilipschitz homeomorphism, then

max(inj(x), d(f(x), S), diam(S)) ≤ ν/D1.

ii) Let τn : DCn → DCn denote the involution whose fixed point set is ∂Cn. If
τn(x) = x (i.e. x ∈ ∂Cn), then τn(Ux) = Ux and there is an isometric involution
τ∞ :Nν(S) → Nν(S) such that:

fτn = τ∞f.

As in the previous Chapters 5 and 6, the neighborhoods above given by the local
soul theorem are called (ε,D)-Margulis’ neighborhoods, and the corresponding non-
compact Euclidean cone manifolds E are called local models .

Proof of Lemma 7.3.2. — We observe that the additional property ii) in the state-
ment follows from the fact that we apply the local soul theorem for cone 3-manifolds
with totally geodesic boundary as in Section 4.5. The Margulis’ neighborhoods on Cn

induce Margulis’ neighborhoods on the double of Cn with property ii).
To prove the lemma we have to remove five local models from the list of the local

soul theorem. These are the models with soul an annulus, a Möbius strip, a disc with
two cone points, a projective plane with two cone points, and a Euclidean turnover
(when the soul has boundary we assume that it is silvered), cf. Lemma 6.2.2.

If the soul is an annulus or a Möbius strip, then the boundary of the Margulis’
neighborhood is a torus. Since DO −DΣ is topologically atoroidal, DO is the union
of the Margulis neighborhood with a solid torus. This contradicts the hyperbolicity
of DO −DΣ.
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If the soul is a disc or a projective plane with two cone points, then the boundary
of the Margulis’ neighborhood is a pillow. Since O is small, every pillow in DO is
compressible. Thus DO is the union of the Margulis neighborhood with a solid pillow,
since the Margulis neighborhood is not embedded in a discal 3-orbifold. In particular
the underlying space of DO is S3, contradicting the fact that DO is of cyclic type
and contains turnovers.

Finally, to remove the case where the soul is a Euclidean turnover (i.e. a thick
turnover), we apply Proposition 5.5.1 in Chapter 5.

The following lemma restricts the type of an (ε,D)-Margulis’ neighborhood for a
singular point invariant by the reflection τn.

Lemma 7.3.3. — For n sufficiently large, ε < 1/2 and D > D1, every singular point
of DCn, invariant by the reflection τn, has a (ε,D)-Margulis’ neighborhood of abelian
type a) (i.e. with local model S1 
 D2(2π/p)).

Proof of Lemma 7.3.3. — Let τn : Cn → Cn be the reflection through ∂Cn = Fix(τn).
Let x ∈ Fix(τn) ∩ Σ be a singular fixed point of τn and let U be a (ε,D)-Margulis’
neighborhood of x satisfying properties i) and ii). We choose ε < 1/2 and D > D1.

Seeking a contradiction, let us assume that U is not of the desired type a) (i.e. with
local model of type S1 
 D2(2π/p)). Then, by Lemma 7.3.2, for n sufficiently large,
the local model of U must be of type b): either the thick pillow S2(π, π, π, π) × R or
the solid pillow.

Let f : Ux → Nν(S) be the (1 + ε)-bilipschitz homeomorphism. Property ii) says
that Ux is τn-invariant and Nν(S) has an involution τ∞ such that fτn = τ∞f . In
particular:

f(U ∩ ∂Cn) = f(U ∩ Fix(τn)) = Fix(τ∞).

Since Nν(S) is either the solid pillow or the thick pillow, and since Fix(τ∞) is two
dimensional and transverse to the singularity, it follows that Fix(τ∞) is connected and
contains at least two singular points with cone angle π. Thus a connected component
of ∂O contains two singular points with ramification 2, which is impossible because
the components of ∂O are non-spherical turnovers

We now deduce Proposition 7.3.1 from Lemmas 7.3.2, and 7.3.3.

End of the proof of Proposition 7.3.1. — By hypothesis, the union DΣ∂ of compo-
nents ofDΣ that meets ∂O ⊂ DO is not empty. Since the 3-orbifoldDO is irreducible,
no component of DΣ∂ is contained in a discal 3-suborbifold; henceDO−int(N (DΣ∂))
is an irreducible 3-orbifold.

Let p : Õ → O be the finite regular covering given by Proposition 7.1.2, which
desingularizes the circle components Σ0 of the ramification locus Σ of O. Let

q :DÕ −→ DO
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be the induced finite regular covering, then DΣ̃ = q−1(DΣ∂). Let

M = DÕ − int(N (DΣ̃))

denote the exterior of the ramification locus of DÕ. Then the restriction of q to
M is a regular finite manifold covering of the irreducible compact 3-orbifold DO −
int(N (DΣ∂)).

Moreover DO − int(N (DΣ∂)) does not contain any essential toric 2-suborbifold.
Since O is small and DO − int(N (DΣ)) is topologically atoroidal, such an essential
toric 2-suborbifold would be homeomorphic to S2(π, π, π, π). Furthermore it would
remain essential in DO, because DO does not contain a spherical turnover, contra-
dicting the fact that O is small.

Therefore, by the equivariant sphere theorem ([DD], [MY1, MY2], [JR]) the
manifold M is irreducible, and it is topologically atoroidal because the characteristic
family of essential tori in M is empty by [MS]. Thurston’s hyperbolization theorem
for Haken 3-manifold shows that either M is Seifert fibred or hyperbolic.

If M admits a Seifert fibration, then it is preserved by the deck transformations
group of the finite covering q :M → DO− int(N (DΣ∂)), by Meeks and Scott’s results
[MS]. We can also assume that it is invariant by any lift of the involution of DO −
int(N (DΣ∂)) that fixes ∂O −N (∂Σ). Thus, the 3-orbifold DO − int(N (DΣ∂)) has a
Seifert fibration, invariant by this involution. Since the components of ∂O − N (∂Σ)
are 3 times punctured spheres, by [Wa1] they are transverse to the fibration, and
O − int(N (Σ∂)) is an I-bundle. It follows that O is the product of a turnover with
an interval, and we have a contradiction with the hyperbolicity of O − Σ.

Therefore, from now on we can assume that M admits a complete hyperbolic
structure with finite volume. In particular M has a non vanishing simplicial volume
‖M‖ > 0.

We complete the proof of Proposition 7.3.1 by contradiction. By Lemma 7.3.2,
for n sufficiently large, ε < 1/2 and D > D1 the local model of the (ε,D)-Margulis’
neighborhood of each point in Cn is of type a) or b); moreover by Lemma 7.3.3 for all
points of DΣ∂ it is of type a). By a construction of a η-covering à la Gromov on Cn,
for n sufficiently large and η sufficiently small, as in Chapters 5 and 6, we will be in
position to apply Gromov’s vanishing theorem for the simplicial volume of M ([Gro,
§3.4], [Iva]) and thus to get a contradiction.

To achieve that, we reproduce the proof of the “non compact collapsing case” in
Sections 5.3 and 5.4, but using the notion of virtually abelian subsets in DO − DΣ∂

(as in Chapter 6) instead of the notion of abelian subset. This is due to the fact that
we have to deal here with local models of type b) which are not abelian but only
virtually abelian subsets in DO −DΣ∂ .

More precisely, here is the key lemma (analogous to Proposition 5.4.1) for the
construction of the required η-covering à la Gromov on Cn, for n sufficiently large
and η sufficiently small.
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Lemma 7.3.4. — With the notation above, there is a universal constant b0 > 0 such
that, if for some n every point of Cn has a (ε,D)-Margulis’ neighborhood of type a) or
b), with ε < 1/2 and D > max{D1, 300}, then Cn admits a η-covering à la Gromov
(Vi)i∈I with η < b0/D. Moreover, the open sets (Vi)i∈I of the η-covering à la Gromov
satisfy the following additional properties:

6) there is a tubular neighborhood N (DΣ∂) of DΣ∂ such that every component of
N (DΣ∂) is contained in only one open set of the covering.

7) ∀i ∈ I,
⋃

Vj∩Vi �=∅

Vj is virtually abelian in DO −DΣ∂.

Proof of Lemma 7.3.4. — To simplify the notation, we omit the index n of the
hyperbolic cone 3-manifold Cn.

The proof is analogous to that of Proposition 5.4.1. The fact that we have to
consider a subset DΣ∂ ⊂ DΣ instead of DΣ and (ε,D)-Margulis’ neighborhood of
type b) for points on DΣ −DΣ∂ does not make any real difference in the proof.

We recall that a subset U ⊂ C is virtually abelian in DO − DΣ∂ , if the image
i∗(π1(U − Σ′)) is a virtually abelian subgroup of π1(DO − DΣ∂), where i∗ is the
morphism induced by the inclusion i : (U −DΣ∂) → (DO −DΣ∂) and π1(·) denotes
the fundamental group of the orbifold.

For every point x ∈ C, we define the virtual abelianity radius vab(x) (relatively to
DO −DΣ∂) to be:

vab(x) = sup{r > 0 | B(x, r) is virtually abelian in DO −DΣ∂}.

For every x ∈ C we define r(x) = inf(vab(x)
8 , 1).

This definition is analogous to the ones given in Sections 5.4 and 6.3. Since by
Lemma 7.3.2 all points of DΣ∂ have abelian (ε,D)-Margulis’ neighborhoods, the
proofs of Lemmas 5.4.2 to 5.4.5 in Section 5.4 (that give the construction of the η-
covering à la Gromov) work without any change, except for the proof of Lemma 5.4.3
e) which is now a consequence of the following claim:

Claim 7.3.5. — Let DΣ1 and DΣ2 be two components of DΣ∂ . Two peripheral el-
ements of π1(DO − DΣ∂) represented respectively by meridians of DΣ1 and DΣ2

cannot belong to the same virtually abelian subgroup of π1(DO −DΣ∂).

Proof of Claim 7.3.5. — Let µ1 and µ2 be two peripheral elements in π1(DO−DΣ∂)
represented respectively by a meridian m1 of N (DΣ1) and m2 of N (DΣ2). Let µ1

and µ2 the two peripheral elements of π1(M) corresponding to some lifts of m1 and
m2 on ∂M . Since M admits a complete hyperbolic structure on its interior, they
correspond to two parabolic elements in π1(M) with different fixed points on the
sphere at infinity. Hence, µ1 and µ2 always generate a non-elementary group in
π1(M) ⊂ PSL2(C). In particular, µ1 and µ2 cannot belong to the same virtually
abelian subgroup of π1(DO −DΣ∂).

This finishes the proofs of Claim 7.3.5 and thus of Lemma 7.3.4.
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To finish the proof of Proposition 7.3.1 we choose a constant

D ≥ max{D0, D1, b0/η0, 300},
where D0 and η0 are the constants given in Chapter 5, b0 and D1 are the constants
given in Lemmas 7.3.4 and 7.3.2. Then Lemma 7.3.4, together with Proposition 5.3.3,
implies the existence of a continuous map g : DO → K2, from DO to a 2-dimensional
simplicial complex K2 such that:

i′) for every component DΣi of DΣ∂ there is an open tubular neighborhood
N (DΣi) of DΣi such that g(N (DΣi)) is a vertex of K2;

ii′) for every vertex v of K2, g−1(star(v)) is virtually abelian in DO −DΣ∂ .

By composing the restriction of g to the 3-orbifold DO − int(N (DΣ∂)) with the
projection of the covering map q : M → DO − int(N (DΣ∂)), we get a continuous
map f = g ◦ q : M → K2 with the following properties:

i′) the components of ∂M are mapped by f to distinct vertices of K2;
ii′) for every vertex v of K2, f−1(star(v)) is virtually abelian in M .

On every closed Dehn filling M of M , we use the map f to construct a covering of
dimension 2 ofM by virtually abelian open subsets, as in the proof of Proposition 5.2.5
in Section 5.4. Then, by Gromov’s vanishing theorem ([Gro, §3.1], cf. [Iva]) the
simplicial volume of every closed Dehn fillings M of M along ∂M vanishes. Since M

has a complete hyperbolic structure with finite volume, Thurston’s hyperbolic Dehn
filling theorem [Thu1] (cf. Appendix B) gives a contradiction. This finishes the proof
of Proposition 7.3.1, and hence of Theorem 2.
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CHAPTER 8

HAKEN 3-ORBIFOLDS

The purpose of this chapter is to give a detailed overview of the proof of Theorem 3
(Thurston’s hyperbolization theorem for Haken 3-orbifolds) that we need to complete
the proof of Thurston’s orbifold theorem without assuming the orbifold to be very
good.

Thurston’s Orbifold Theorem. — Let O be a compact, connected, orientable, irre-
ducible, 3-orbifold of cyclic type. If O is topologically atoroidal, then O is geometric.

Definition 8.0.1. — A compact orientable 3-orbifold is Haken if it is irreducible and it
does not contain an essential turnover, but it contains an incompressible 2-suborbifold
different from a turnover.

Theorem 3 (Thurston’s hyperbolization theorem for Haken 3-orbifolds)
Let O be a compact orientable connected Haken 3-orbifold. If O is topologically

atoroidal and not Seifert fibred, nor Euclidean, then O is hyperbolic.

Remark 8.0.2. — The word Haken may lead to confusion: it is not true that a com-
pact orientable irreducible 3-orbifold containing an orientable incompressible properly
embedded 2-suborbifold is Haken in our meaning.

Example 8.0.3. — In Figure 1 of Chapter 7 there is an example of a small (hence non-
Haken) 3-orbifold with a non-empty boundary. By doubling it along its boundary,
one gets a closed irreducible 3-orbifold which is not Haken, but contains an essential
embedded 2-sided 2-suborbifold.

We show in Section 8.1 how to deduce Thurston’s orbifold theorem from Theorem 2
and Theorem 3. Next, in §8.2, we give some basic properties of Haken 3-orbifolds.
Finally, in the remaining of the chapter, we discuss the proof of Thurston’s hyper-
bolization theorem for Haken 3-orbifolds. We do not intend here to give a full detailed
proof, but only to point out the main modifications with respect to the proof in the
manifold case. Since we follow closely the exposition of Thurston’s hyperbolization
theorem for Haken 3-manifolds, given in [McM1] and [Ot2] (cf. also [OP]), with a
bit of courage the details can be worked out using these two references.
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8.1. Proof of Thurston’s Orbifold theorem

Let O be a compact, orientable, connected, irreducible, topologically atoroidal 3-
orbifold. By [Dun2, Thm. 12] there exists in O a (possibly empty) maximal collection
T of disjoint embedded pairwise non parallel essential turnovers. Since O is irreducible
and topologically atoroidal, any turnover in T is hyperbolic (i.e. has negative Euler
characteristic).

When T is empty, Thurston’s orbifold theorem reduces to Theorem 2 or 3 according
to whether O is small or Haken.

When T is not empty, we first cut open the orbifold O along the turnovers of the
family T . By maximality of the family T , the closure of each component of O − T
is a compact, orientable, irreducible, topologically atoroidal 3-orbifold that does not
contain any essential embedded turnover.

Let O′ be one of these connected components. By the previous case, O′ is either
hyperbolic, Euclidean or Seifert fibred. Since, by construction, ∂O′ contains at least
one hyperbolic turnover T , O′ must be hyperbolic. Moreover any such hyperbolic
turnover T in ∂O′ is a Fuchsian 2-suborbifold, because there is a unique conjugacy
class of faithful representations of the fundamental group π1(T ) into PSL2(C).

If the convex core of O′ is 2-dimensional, then O′ is a product T × [0, 1], where T

is a hyperbolic turnover. In this case the 3-orbifold O is Seifert fibred.
Therefore we can assume that all the connected components of O − T have 3-

dimensional convex cores. In this case the hyperbolic turnovers are totally geodesic
boundary components of the convex cores. Hence the hyperbolic structures of the
components of O − T can be glued together along the hyperbolic turnovers of the
family T to give a hyperbolic structure on the 3-orbifold O.

8.2. Fundamental results on Haken 3-orbifolds

For the rest of this chapter we are not assuming anymore the 3-orbifold O to be of
cyclic type. In particular the ramification locus Σ may be a trivalent graph.

We have for Haken 3-orbifolds fundamental results which are analogous to the
results known for Haken 3-manifolds. This follows mainly from Dunbar’s theorem
[Dun2] which shows that a Haken 3-orbifold O admits a strong hierarchy:

Dunbar’s Theorem [Dun2]. — Let O be a compact, orientable, Haken 3-orbifold.
There is a finite sequence of pairs

(O1, F1) → (O2, F2) → · · · → (On,∅),

such that:

i) O1 = O.
ii) Fi is a 2-sided essential (connected orientable) 2-dimensional suborbifold in Oi

which is not a turnover.
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iii) If ∂Oi is neither empty nor an union of turnovers, then ∂Fi �= ∅.
iv) Oi+1 = Oi \ int(N (Fi)) (cut Oi along Fi).
v) On is a disjoint union of discal 3-orbifolds and Euclidean or hyperbolic thick
turnovers (i.e. {turnover} × [0, 1]).

Remark 8.2.1. — Property iii) is not explicitly stated in Dunbar’s paper. To find
essential suborbifolds, the key point in Dunbar’s paper is to use Culler and Shalen’s
technique [CS] about curves of representations. This technique allows to construct
suborbifolds satisfying property iii), because any nontrivial curve of representations
of a hyperbolic manifold induces a nontrivial curve of representations of its boundary.
This follows for instance from the results of [Kap, Ch. 9].

The following proposition is a straightforward generalization of Waldhausen’s the-
orem [Wa3]:

Proposition 8.2.2. — Let O be a compact orientable Haken 3-orbifold. Then its uni-
versal cover Õ is homeomorphic to B3 \ Γ where Γ is a closed subset of ∂B3.

Proof. — To prove Proposition 8.2.2 it is sufficient to show that O is a good orbifold,
because then the proof reduces to Waldhausen’s proof (cf. [Wa3]).

The fact that a Haken 3-orbifold is good follows from [Tak2, Theorem A] by
induction on the length of a strong hierarchy for O.

When O is a good 3-orbifold, we can use the following extensions of the Loop
theorem and Dehn’s Lemma, required in cut and paste methods for 3-orbifolds (cf.
[Tak2, TaY1]). They are derived from the equivariant Dehn’s Lemma (cf. [JR],
[MY1, MY2]):

Dehn’s Lemma. — Let O be an orientable good 3-orbifold with boundary. Let γ ⊂
∂O − Σ be a simple closed non singular curve. Assume that γ represents an element
of finite order n in π1(O). Then there is a discal 2-suborbifold ∆ properly embedded
in O such that ∂∆ = γ.

Loop Theorem. — Let O be an orientable good 3-orbifold with boundary. Let F ⊂ O
be a connected component. If ker(π1(F ) → π1(O)) �= {1}, then there is a discal 2-
suborbifold ∆ properly embedded in O such that ∆ ∩ F = ∂∆ and ∂∆ does not bound
a discal 2-suborbifold in F .

Corollary 8.2.3. — Let O be an orientable good 3-orbifold. Let F ⊂ O be a properly
embedded 2-sided incompressible 2-suborbifold. Then:

i) ker(π1(F ) → π1(O)) = {1}.
ii) If O′ is any connected component of the 3-orbifold obtained by cutting open O

along F , ker(π1(O′) → π1(O)) = {1}.
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Remark 8.2.4. — Since a Haken 3-orbifold is good and irreducible, by Corollary 8.2.3
either it is a discal 3-orbifold or it has an infinite fundamental group.

A direct consequence of the equivariant sphere theorem for 3-manifolds (cf. [DD],
[JR], [MY1, MY2]) is:

Corollary 8.2.5. — Let O be an orientable good 3-orbifold. If O is irreducible, then
any manifold covering of O is irreducible.

Remark 8.2.6. — To get the irreducibility of any orbifold covering in Corollary 8.2.5,
one has to use the fact that every smooth action of a finite group on a 3-ball is
conjugate to linear action. In the cyclic case that follows from the solution of the
Smith Conjecture (cf. [MB]) and in the general case from the works of Meeks and
Yau [MY3] and of Kwasik and Schultz [KS].

Definition 8.2.7. — Let O be an orientable 3-orbifold. A subgroup in π1(O) is a
peripheral subgroup if it is conjugate to a subgroup of the fundamental group of a
boundary component.

The following result is a generalization of Waldhausen’s classical result [Wa3], due
to Y. Takeuchi and M. Yokoyama [TaY2, Thm. 5.6] (cf. also [Tak1]):

Theorem 8.2.8. — Let O1 and O2 be two orientable Haken 3-orbifolds with incom-
pressible boundaries. Let h :π1(O1) → π1(O2) be an isomorphism which sends periph-
eral subgroups into peripheral subgroups. Then there is a homeomorphism between O1

and O2 that induces h.

Another fundamental result that we need is the following:

Theorem 8.2.9 (Torus Theorem). — Let O be a compact orientable good 3-orbifold. If
π1(O) contains a subgroup Z ⊕ Z which is not peripheral, then either O contains an
orientable essential toric 2-suborbifold or O is Euclidean or Seifert fibred.

Proof of Theorem 8.2.9. — Like in Scott’s proof [Sc1] of the Torus theorem for 3-
manifolds, the first step is given by the following claim:

Claim 8.2.10. — Let O be a compact orientable good irreducible 3-orbifold. Let A =
Z ⊕ Z ⊂ π1(O) be a non-peripheral subgroup. Then the covering Ô of O associated to
this Z⊕Z subgroup is a non-compact irreducible 3-manifold with at least two ends.

The proof of Claim 8.2.10 is the same as in the case of 3-manifold (cf. [Sc1]; see
also [Ja, Thm.VII.2.2]), once one observes that Ô must be a 3-manifold, because Ô
is a good irreducible 3-orbifold whose fundamental group Z ⊕ Z has no torsion. In
particular Ô has a compact core homeomorphic to T 2 × [0, 1].
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In fact by the wok of J. Hass, H. Rubinstein and P. Scott [HRS], one can even
show that Ô has a manifold compactification to T 2 × [0, 1]. In the Haken case, that
follows already from J. Simon’s theorem (cf. [Ja, Thm.VII.4]).

Therefore any infinite cyclic covering of Ô has only one end, so we can apply
Dunwoody and Swenson algebraic torus theorem [DS] to show that:

i) the group π1(O) either splits non-trivially over a virtual Z ⊕ Z subgroup, or
ii) π1(O) is an extension of a virtual Z by a virtual surface group, or
iii) π1(O) is virtually Z3.

One may remark that the virtual Z ⊕ Z subgroup obtained in case i) is not always
commensurable to the original subgroup A.

Anyway, since O is a good orbifold, it follows from [TaY1] that the algebraic
splitting given in case i) may be realized by a geometric one. Hence it corresponds
to a splitting along an orientable essential toric 2-suborbifold, since its fundamental
group is virtually Z ⊕ Z.

In case ii) π1(O) is virtually the fundamental group of a compact orientable Seifert
3-manifold. Then it follows from Scott’s result [Sc2] that it is finitely covered by a
Seifert 3-manifold. Therefore, by [MS], it is a Euclidean or a Seifert fibred orbifold.

In case iii) the orbifold O is finitely covered by a closed irreducible 3-manifold, that
is homeomorphic to the 3-torus T 3 by Waldhausen’s theorem [Wa3]. Then it follows
from [MS] that O is an Euclidean orbifold.

The following homotopic characterization of compact orientable good 3-orbifolds,
which are topologically atoroidal and not Euclidean nor Seifert fibred, is used in the
proof of Theorem 3:

Proposition 8.2.11. — Let O be a compact, orientable, irreducible, good 3-orbifold with
infinite fundamental group. If O is topologically atoroidal then either O is Euclidean,
Seifert fibred, or π1(O) is not virtually abelian and every Z⊕Z subgroup is peripheral.

Proof of Proposition 8.2.11. — If π1(O) contains a non peripheral Z ⊕ Z subgroup,
then by Theorem 8.2.9 either O contains a 2-sided embedded essential toric 2-sub-
orbifold, or it is Euclidean or Seifert fibred. Since O is topologically atoroidal, it must
be Euclidean or Seifert fibred.

If π1(O) is virtually abelian, since O is good, irreducible and compact, it is finitely
covered by a compact orientable irreducible 3-manifold M such that π1(M) is isomor-
phic to Z, Z ⊕ Z or Z ⊕ Z ⊕ Z (cf. [Ja, Chap. V]). Since M is irreducible, it follows
that M is homeomorphic to either S1 ×D2, T 2 × [0, 1] or the 3-torus T 3. Hence O is
Euclidean or Seifert fibred by [MS].

Remark 8.2.12. — In [Mai], S. Maillot has proved that a small orientable closed 3-
orbifold, whose fundamental group contains an infinite cyclic normal subgroup, is
Seifert fibred, hence geometric.
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Definition 8.2.13. — We say that a compact orientable 3-orbifold O is homotopically
atoroidal if π1(O) is not virtually abelian and every Z ⊕ Z subgroup is peripheral.

Now we can restate Thurston’s hyperbolization theorem as:

Theorem 8.2.14 (Thurston’s hyperbolization theorem for Haken 3-orbifolds)
Let O be a compact, orientable, connected, Haken 3-orbifold. If O is homotopically

atoroidal, then O is hyperbolic.

The proof of this theorem follows exactly the scheme of the proof for Haken 3-
manifolds (cf. [Thu2, Thu3, Thu5], [McM1], [Kap], [Ot1, Ot2]; see also [Boi] for
an overview)

In the non-fibred case, the inductive gluing step, based on Thurston’s fixed point
theorem [McM1] (cf. [Ot2]) and Maskit’s combination theorem [Mas1, Mas2], is
carried in an analogous way. The initial step requires an equivariant and stronger
version of Andreev’s theorem (cf. [An1, An2], [Thu1, Ch. 13]).

In the fibred case over a 1-orbifold, either it is fibred over the circle or it is fibred
over a compact interval with silvered ends. When it is fibred over the circle, the
orbifold is of cyclic type and very good, so Theorem 8.2.14 follows already from our
Theorem 1.

When it is fibred over a compact interval, there is a 2-fold covering that fibres
over the circle, hence that is hyperbolic by the first case. Then using the argument
given by Bonahon and Siebenmann in [BS3], as in Lemma 2.4.7, one shows that this
covering involution is conjugate to an isometry. Another proof follows from Takeuchi
and Yokoyama’s generalization of Waldhausen’s theorem (cf. Theorem 8.2.8).

8.3. Kleinian groups

We call Kleinian group a discrete subgroup of PSL2(C).
In the following we will always assume that Γ is non-elementary (i.e. not virtually

abelian) and is finitely generated.
The action of Γ on the hyperbolic space H3 extends to a conformal action on the

sphere at infinity S2
∞, which we identify with the Riemann sphere C ∪ {∞}. The

sphere at infinity S2
∞ is partitioned into the domain of discontinuity Ω and the limit

set Λ.
The domain of discontinuity Ω is the maximal open Γ-invariant subset of S2

∞, on
which Γ acts properly discontinuously. The limit set Λ is the closure of the set of fixed
points of non-elliptic elements of Γ. It is the smallest non-empty closed Γ-invariant
subset of S2

∞.
The Kleinian orbifold O := (H3 ∪ Ω)/Γ is an orientable 3-orbifold with a com-

plete hyperbolic structure on its interior O = H3/Γ and a conformal structure on its
boundary ∂O = Ω/Γ.
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Remark 8.3.1. — A Kleinian orbifold O is always very good, by Selberg’s Lemma
[Sel] (cf. [Rat]).

Since Γ is not elementary, if the domain of discontinuity Ω is not empty, then it
admits a unique complete metric of curvature −1 (called the Poincaré metric), which
is conformal to the underlying Euclidean metric and such that Γ acts as a group
of isometries of this metric. Thus ∂O = Ω/Γ is a hyperbolic 2-orbifold. Moreover,
Ahlfors’ finiteness theorem asserts that ∂O = Ω/Γ has finite area when Γ is finitely
generated.

Proposition 8.3.2 (Ahlfors Finiteness Theorem[Ah]). — Let Γ be a finitely generated
Kleinian group which is not elementary. If Ω(Γ) �= ∅, then Ω(Γ)/Γ is a finite-area
hyperbolic orientable 2-orbifold in the Poincaré metric.

The convex core of a hyperbolic 3-orbifold O = H3/Γ is the quotient C(O) =
C̃(Λ)/Γ of the convex hull C̃(Λ) ⊂ H3 of the limit set Λ of Γ.

By construction, the convex core C(O) is the smallest closed convex subset of O
such that the inclusion map i : C(O) → O induces an orbifold-homotopy equivalence.
Because of the convexity, any closed geodesic 1-suborbifold is contained in C(O). In
general C(O) is not a differentiable suborbifold of O because ∂C(O) is not smooth,
but it is “bent” along some geodesic 1-suborbifolds. A way to avoid this difficulty is
to consider a closed δ-neighborhood of C(O), for δ > 0:

Cδ(O) = {x ∈ O | d(x,C(O)) ≤ δ}.
That is now a 3-suborbifold of O of class C1, with a smooth strictly convex boundary.
Moreover, Cδ(O) does not depend (up to diffeomorphism) of δ > 0 and, for all δ > 0,
Cδ(O) is diffeomorphic to the Kleinian 3-orbifold O = (H3 ∪ Ω(Γ))/Γ. We call it the
thickened convex core.

Remark 8.3.3. — Associated to a non-elementary Kleinian group we have:

1) The complete hyperbolic 3-orbifold O = H3/Γ.
2) The Kleinian orbifold (with boundary) O = (H3 ∪ Ω(Γ))/Γ.
3) The thickened convex coreCδ(O) ⊂ O, where Cδ(O) ↪→ O is an orbifold- homotopy

equivalence.

Definition 8.3.4. — A complete hyperbolic 3-orbifold O is geometrically finite if for
some (hence for every) δ > 0 the volume of a thickened convex core is finite:

vol(Cδ(O)) < ∞.

Remark 8.3.5. — This notion of geometrically finite hyperbolic 3-orbifold is the nat-
ural generalization of uniform lattices (i.e. compact finite volume hyperbolic 3-orbi-
folds). For a complete hyperbolic 3-orbifold O = H3/Γ, an equivalent definition of
geometrically finiteness is that some (hence every) Dirichlet fundamental domain of
the Kleinian group Γ has a finite number of sides (cf. [MT, Chap. 3]).
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Let Γ be a non-elementary Kleinian group. Given a point x ∈ H3 and a real number
µ > 0 one defines:

Γµ(x) = 〈γ ∈ Γ | d(x, γx) ≤ µ〉
Γµ(x) is the group generated by those elements of Γ which move the point x a distance
at most µ.

Let Tµ(Γ) = {x ∈ H3 | Γµ(x) is infinite}; it is a closed Γ-invariant subset of H3.
According to B. Bowditch [Bow], for a complete hyperbolic orientable 3-orbifold

O with fundamental group Γ one defines the µ-thin part of O to be:

thinµ(O) = Tµ(Γ)/Γ

It is a closed subset of O. The closure of O− thinµ(O) is the µ-thick part thickµ(O).
There exists a universal constant (the Margulis’ constant) µ0 > 0 such that for

µ ≤ µ0 each connected component of the µ-thin part is either a cuspidal end of rank
1 or 2 (i.e. corresponds to the Γ-conjugacy class of a maximal infinite virtually rank
1 or 2 parabolic subgroup of Γ) or is a tubular neighborhood of a closed geodesic
1-suborbifold of O (called a Margulis tube).

The union of the cuspidal ends of the µ-thin part (for µ ≤ µ0) is called the cuspidal
part of O and denoted by cusp(O).

If O is geometrically finite, then vol(Cδ(O)) < ∞ and all the closed geodesic
1-suborbifolds are in Cδ(O). For this reason, there is no arbitrarily small closed
geodesic. Hence there is a real number µ(O) > 0 such that thinµ(O) = cusp(O) for
all µ < µ(O).

The geometrically finiteness of O is equivalent to the fact that the µ-thick part
thickµ(Cδ(O)) = Cδ(O) ∩ thickµ(O) of a convex core is compact for µ < µ(O). In
this case the µ-thin part thinµ(Cδ(O)) = Cδ(O) ∩ thinµ(O) is a disjoint union of
finitely many cuspidal ends of finite volume.

Then each connected component of the µ-thin part thinµ(Cδ(O)) is isometric to
the quotient of either a cylinder cusp (rank 1 cusp) or a torus cusp (rank 2 cusp)
by a finite group of isometries. Thus it is isometric to F × [0,∞) with the metric
e−2tds2+dt2, where (F, ds2) is a compact orientable annular or toric flat 2-suborbifold.
The possibilities for F are: an annulus S1 × [0, 1], a disc D2(π, π) with two branching
points of order 2; a torus T 2; a pillow S2(π, π, π, π); a turnover S2(2π

p1
, 2π
p2
, 2π
p3

), with
1
p1

+ 1
p2

+ 1
p3

= 1.
For a geometrically finite hyperbolic 3-orbifold, the compact 3-orbifold pair

(M,P ) := (thickµ(Cδ(O)), ∂ thickµ(Cδ(O)) ∩ thinµ(Cδ(O)))

is independent of δ > 0 and of µ < µ(O). The suborbifold P ⊂ ∂M is an union of toric
and annular orientable 2-suborbifolds, corresponding to the track of the truncated
cuspidal ends

The following proposition is a straightforward consequence of properties of geomet-
rically finite Kleinian groups (cf. [Mor1]).
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Proposition 8.3.6. — Let O be an orientable geometrically finite hyperbolic 3-orbifold.
The compact 3-orbifold pair

(M,P ) := (thickµ(Cδ(O)), ∂ thickµ(Cδ(O)) ∩ thinµ(Cδ(O)))

has the following topological properties:

1) M is a compact, orientable, irreducible and very good 3-orbifold.
2) P ⊂ ∂M is a disjoint union of incompressible toric and annular 2-suborbifolds.
3) Every Z ⊕ Z subgroup in π1M is conjugate to a subgroup of some π1(Pi), where

Pi ⊂ P is a connected component (such a Z ⊕ Z must be parabolic).
4) Any properly embedded annular 2-suborbifold (A, ∂A) ↪→ (M,P ) whose boundary
rests on essential curves in P is parallel to P .

Definition 8.3.7. — An orbifold pair (M,P ) which satisfies properties 1) to 4) of
Proposition 8.3.6 is called a pared 3-orbifold . The 2-suborbifold P is called the
parabolic locus of the pared orbifold, and the compact 2-suborbifold ∂0M = ∂M \ P ,
the boundary of the pared orbifold.

This boundary ∂0M is said to be super-incompressible, if it is incompressible and
there is no embedded essential annular 2-suborbifold (A, ∂A) ↪→ (M,∂M) with one
boundary component on ∂0M and the other on P .

The pared 3-orbifold (M,P ) is said Haken when the 3-orbifold M is Haken.

For the rest of this chapter we use the following terminology:

Definition 8.3.8. — A pared 3-orbifold is hyperbolic if there exists an orientable geo-
metrically finite hyperbolic 3-orbifold O such that for δ > 0 and 0 < µ ≤ µ(O):

(M,P ) := (thickµ(Cδ(O)), ∂ thickµ(Cδ(O)) ∩ thinµ(Cδ(O)))

Here is the precise version of Thurston’s hyperbolization theorem, needed for the
proof of Theorem 8.2.14.

Theorem 8.3.9 (Thurston’s hyperbolization theorem for pared 3-orbifolds)
Every compact orientable Haken pared 3-orbifold with a non-virtually abelian fun-

damental group π1(M) is hyperbolic.

Remark 8.3.10 (cf. [Mor1]). — Compact pared 3-orbifolds with virtually abelian fun-
damental groups correspond to the pairs:

– (∆3,∅), with ∆3 a discal 3-orbifold;
– (F × [0,∞), F × {0}), with F a closed orientable toric 2-orbifold;
– (V, P ), where V is a solid torus or pillow with possibly a ramified soul, and P

is empty or an annular 2-suborbifold.

They admit hyperbolic metric, but with infinite volume.
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A compact orientable Haken 3-orbifold is built up inductively from discal 3-orbi-
folds and/or Euclidean or hyperbolic thick turnovers by gluing along incompressible
suborbifolds of the boundary. So this version of Thurston’s hyperbolization theorem
for pared 3-orbifolds is needed at the inductive step, where pared 3-orbifolds appear
naturally.

Thurston’s mirror trick (see §8.6, [Kap], [Ot2], [Pau]) allows to reduce the gluing
inductive step to the final gluing step where the whole boundary ∂0M is involved.
Hence at the inductive step one has a hyperbolic (perhaps not connected) pared 3-
orbifold (M,P ) with super-incompressible boundary and gluing instructions encoded
by an orientation-reversing involution τ : ∂0M → ∂0M . In particular the manifold
M/τ obtained after gluing has a boundary which is a (possibly empty) union of closed
orientable toric 2-orbifolds.

We devote the next sections §8.4 and §8.5 to explain the proof of this gluing step.
Then in §8.6, we explain the mirror trick.

8.4. Thurston’s gluing theorem

The main step of Thurston’s hyperbolization theorem for Haken 3-orbifolds is the
following theorem

Theorem 8.4.1 (Thurston’s gluing theorem). — Let (M,P ) be a pared 3-orbifold with
super-incompressible non-empty boundary ∂0M . Let τ : ∂0M → ∂0M be an orienta-
tion-reversing smooth involution which permutes the boundary components by pairs,
i.e. τ = (f, f−1) : ∂+

0 M ( ∂−
0 M → ∂−

0 M ( ∂+
0 M. Assume that each connected com-

ponent of the pared orbifold (M,P ) is hyperbolic. Then, the quotient orbifold M/τ is
hyperbolic if and only if M/τ is homotopically atoroidal.

The proof of Thurston’s gluing theorem splits into two totally different cases ac-
cording whether or not the pared 3-orbifold (M,P ) is a I-bundle over a compact
2-orbifold.

In the first case the quotient 3-orbifold M/τ is fibred over a closed 1-orbifold. As
remarked before, this case can be handled using our Theorem 1.

So, from now on, we assume that the pared 3-orbifold (M,P ) is not a I-bundle
over a compact 2-orbifold. By Stallings’s 3-dimensional h-cobordism theorem [Sta]
(cf. [Hem, Chap. 10]) and the fact that finite group actions on a product are standard
(cf. [MS]), this hypothesis is equivalent to the condition that π1(M) does not contain a
finite index subgroup isomorphic to the fundamental group of an orientable 2-orbifold
(cf. [Tak1], §8.6).

Using Maskit’s combination theorem ([Mas1, Mas2]; cf. also [Kap], [Ot2]), we
show now how Thurston reduces the proof of the gluing theorem to a fixed point
theorem in the non-virtually fibred case.
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We recall first the definition of the Teichmüller space T (F ) of a connected hyper-
bolic orientable 2-orbifold F of topological type (|F |,ΣF ), where ΣF is a finite number
of points. Two hyperbolic structures (F, s1) and (F, s2) are equivalent if there is an
isometry h : (F, s1) → (F, s2), which is properly isotopic to the identity by an isotopy
of the pair (|F |,ΣF ). The Teichmüller space T (F ) is the set of equivalence classes of
hyperbolic structures with finite area on int(F ).

There is a natural distance on T (F ). The Teichmüller distance between two equiv-
alence classes represented by (F, s1) and (F, s2) is defined by:

∆(s1, s2) =
1
2
inf{log(K(h))},

where the infimum is taken among all the quasiconformal homeomorphisms

h : (F, s1) −→ (F, s2)

that are properly isotopic to the identity by an isotopy of the pair (|F |,ΣF ), and
where K(h) is the eccentricity of h. This distance turns T (F ) into a complete metric
space.

In general the Teichmüller space T (F ) of a possibly non connected orientable hy-
perbolic 2-orbifold F is the product of the Teichmüller spaces of the connected com-
ponents. The Teichmüller distance is then defined as the maximum of the distances
on the Teichmüller spaces of the components.

We introduce now the space of hyperbolic structures of a hyperbolic pared 3-orbi-
fold.

Definition 8.4.2. — Let (M,P ) be a connected orientable pared 3-orbifold. Let Σ ⊂ M

be the ramification locus. A hyperbolic structure on (M,P ) is a pair (O, [f ]), where
O is a geometrically finite hyperbolic 3-orbifold and [f ] is a proper homotopy class of
orientation preserving homeomorphisms

f : (M,P ) −→ (thickµ(Cδ(O)), ∂ thickµ(Cδ(O)) ∩ thinµ(Cδ(O))),

for δ > 0 and 0 < µ ≤ µ(O). Two hyperbolic structures (O1, [f1]) and (O2, [f2]) are
equivalent if (f2)−1 ◦ f1 is properly homotopic to an isometry.

The set of equivalence classes of hyperbolic structures on the hyperbolic pared
3-orbifold (M,P ) is denoted GF(M,P ).

In the non-connected case, GF(M,P ) is the product
∏

GF(Mi, Pi) of the spaces
GF(Mi, Pi) of the connected components Mi of M .

Remark 8.4.3

1) If M is connected and if (O1, [f1]) and (O2, [f2]) are two hyperbolic structures on
M , then by A. Marden [Mar] the proper homotopy class of (f2)−1 ◦ f1 can be
realized by a homeomorphism that extends to a quasi-conformal homeomorphism
between the boundaries of the associated Kleinian orbifolds O1 and O2. We call
such a homeomorphism a quasiconformal extension in the proper homotopy class
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[(f2)−1 ◦ f1]. Thus the set GF(M,P ) is also called the space of quasi-conformal
deformations of the hyperbolic pared 3-orbifold (M,P )

This allows to define the Teichmüller distance ∆ on GF(M,P ) by:

∆((O1, [f1]), (O2, [f2])) =
1
2
inf{log(K(φ))},

where the infimum is taken over all the quasi-conformal extensions φ : O1 → O2

in the proper homotopy class [(f2)−1 ◦ f1], and K(φ) is the eccentricity of the
restriction φ : ∂O1 → ∂O2.

Moreover, Teichmüller’s theory shows that this infimum is realized by a unique
quasi-conformal extension in the proper homotopy class of [(f2)−1 ◦ f1].

2) In the non-connected case, the distance on the product space GF(M,P ) is defined
as the maximum of the Teichmüller distances on the factors. This distance turns
GF(M,P ) into a complete metric space.

Let (M,P ) be an orientable hyperbolic pared 3-orbifold. The Ahlfors-Bers map
∂ : GF(M,P ) → T (∂0M) assigns to an equivalence class of hyperbolic structures
(O, [f ]) ∈ GF(M,P ) the equivalence class in T (∂0M) of finite area hyperbolic struc-
tures induced on the boundary ∂O of the corresponding Kleinian 3-orbifold O (by
Ahlfors finiteness theorem).

Ahlfors-Bers theorem gives a parametrization of the quasi-conformal deformation
space GF(M) by the Teichmüller space T (∂0M).

Proposition 8.4.4 (Ahlfors-Bers Theorem). — Let (M,P ) be an orientable hyperbolic
pared 3-orbifold, with a non-empty boundary ∂0M . The map ∂ : GF(M,P ) → T (∂0M)
is a homeomorphism.

Remark 8.4.5. — If ∂0M is empty then GF(M,P ) is reduced to a point by Mostow’s
rigidity theorem [Mos]. This is also the case if ∂0M is an union of turnovers.

Proof of Proposition 8.4.4. — The proof of Proposition 8.4.4 follows from the classi-
cal case of manifolds [AB], by using the following equivariant definitions of GF(M,P )
and T (∂0M).

Since M is a hyperbolic 3-orbifold, it is very good. Let q : N → M be a finite
regular manifold covering of M . Let Q = q−1(P ), then (N,Q) is a hyperbolic pared
3-manifold.

Let G ⊂ Diff+(N,Q) be the covering group of transformations. It has natu-
ral isometric actions on the deformation spaces GF(N,Q) and T (∂0N), depending
only on the image of G in the mapping class group π0 Diff(N,Q). Moreover the
spaces GF(M,P ) and T (∂0M) can be identified respectively with the fixed points set
GF(N,Q)G and T (∂0N)G of these actions. From now on, we will always make these
identifications, that allow to consider GF(M,P ) and T (∂0M)) as metric subspaces of
GF(N,Q) and T (∂0N).
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By the Bers embedding, the Teichmüller space T (∂0N) carries a complex structure.
Hence the identification of T (∂0M) with T (∂0N)G allows to consider T (∂0M) as a
complex submanifold of T (∂0N), since the action of G is by holomorphic transforma-
tions on T (∂0N), cf. [Gard].

By definition of the Ahlfors-Bers map ∂ : GF(N,Q) → T (∂0N), one has the
inclusion ∂(GF(N,Q)G) ⊂ T (∂0N)G. Moreover, its restriction is the Ahlfors-Bers
map ∂ : GF(M,P ) → T (∂0M). Then the bijectivity of ∂ follows from the proof of
the bijectivity of ∂.

From now on we assume that (M,P ) is a compact orientable pared 3-orbifold with
super-incompressible boundary ∂0M .

We define Thurston’s skinning map, σ : T (∂0M) → T (∂0M̃), where ∂0M̃ is the
boundary of the pared 3-orbifold with the reversed orientation. To define this map
we use the following notation: for a connected component F ⊂ ∂0M , the index F

specifies the projection on the factor T (F ) of T (∂0M).
By the Ahlfors-Bers theorem, to a point s ∈ T (∂0M) corresponds a geometrically

finite hyperbolic structure (Os, [fs]) ∈ GF(M,P ). The covering OF
s of Os, associated

to the component F ⊂ ∂0M determines a quasi-Fuchsian structure on the product
pared 3-orbifold (F, ∂F )× [0, 1], because the Kleinian group π1(Os) has no accidental
parabolic. This is a consequence of the fact that ∂0M is super-incompressible.

Let (sF , s′F ) ∈ T (F )×T (F̃ ) be the Ahlfors-Bers parameters of this quasi- Fuchsian
structure, where sF ∈ T (F ) is the coordinate on the factor T (F ) of s ∈ T (∂0M).

Definition 8.4.6. — The skinning map σ : T (∂0M) → T (∂0M̃) is defined by σ(s)F =
s′F for every point s ∈ T (∂0M).

In the following we denote by τ4 : T (∂0M) → T (∂0M̃) the involution induced by
the involution τ .

Thurston has reformulated Maskit’s combination theorem [Mas1, Mas2] into a
fixed point criterium for the map τ4 ◦ σ : T (∂0M) → T (∂0M).

Proposition 8.4.7 (Gluing criterium) . — Let (M,P) be a hyperbolic pared 3-orbifold,
with a super-incompressible, non-empty boundary ∂0M , and which is not an inter-
val bundle. Let τ : ∂0M → ∂0M be an orientation-reversing smooth involution which
permutes the boundary components by pairs. If the map τ4 ◦ σ : T (∂0M) → T (∂0M)
has a fixed point, then the quotient orbifold M/τ is hyperbolic.

Remark 8.4.8. — The proof follows from the definition of the skinning map and
Maskit’s combination theorem. The algebraic part of Maskit’s combination theorem
remains valid for Kleinian group with torsion. For the topological part one can in-
voke Takeuchi’s generalization of Waldhausen’s theorem (cf. Theorem 8.2.8). In fact
following [Ot2, §2.1], only the trivial I-bundle case is needed ([Tak1, §6], [TaY2])
together with the Baer-Nielsen’s theorem (cf. [Zie]).
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This gluing criterium shows that the gluing theorem 8.4.1 is equivalent to a fixed
point theorem, that we discuss in the next section.

8.5. Thurston’s Fixed Point Theorem

The goal of this section is to explain the proof the following theorem, that implies
the gluing theorem 8.4.1.

Theorem 8.5.1 (Thurston’s fixed point theorem). — Let (M,P) be a hyperbolic pared 3-
orbifold, with a super-incompressible, non-empty boundary ∂0M , and which is not an
interval bundle. Let τ : ∂0M → ∂0M be an orientation-reversing smooth involution
which permutes the boundary components by pairs. Then the map τ4 ◦ σ : T (∂0M) →
T (∂0M) has a fixed point if and only if the quotient 3-orbifold M/τ is homotopically
atoroidal.

Since T (∂0M) is complete with respect to the Teichmüller distance, to prove
Thurston’s fixed point Theorem 8.5.1 one has to study the contraction properties
of the map τ4 ◦ σ. It is a holomorphic map on the Teichmüller space T (∂0M) such
that ‖d(τ4◦σ)‖ ≤ 1, since the Teichmüller metric coincides with the Kobayashi metric
(cf. [Gard]).

Moreover, since M is not an interval bundle, τ4 ◦ σ strictly (but not uniformly)
decreases the Teichmüller distance. This follows from the facts that τ4 is an isometry
and that ‖dσ‖ < 1 pointwise.

Coming back to the notation of §8.4, let q : N → M be a finite regular manifold
covering of M . Let Q = q−1(P ), then (N,Q) is a hyperbolic pared 3-manifold, which
is not an interval bundle.

Let G ⊂ Diff+(N,Q) be the covering group of transformations. Then the Teich-
müller space T (∂0M) can be identified (as a metric subspace) with the fixed points set
T (∂0N)G of the natural isometric action of G on T (∂0N). We recall that the Teich-
müller space T (∂0N) carries a complex structure, on which G acts holomorphically.
Whence we can consider T (∂0M) as a complex submanifold of T (∂0N). Moreover it
is a convex subset for the Teichmüller metric: the Teichmüller geodesic between two
points of T (∂0N)G is contained in T (∂0N)G.

We consider the skinning map of the manifold covering σ : T (∂0N) → T (∂0Ñ).
Then σ(T (∂0N)G) ⊂ T (∂0Ñ)G, since by the Ahlfors-Bers map ∂(GF(N,Q)G) =
T (∂0N)G. By construction, the restriction of σ to T (∂0N)G coincides with σ.

Moreover, the involution τ : ∂0M → ∂0M induces an isometry τ4 : T (∂0N)G →
T (∂0Ñ)G, that may not extend to the whole Teichmüller space T (∂0N).

Since τ4 is an isometry, to prove Thurston’s fixed point Theorem 8.5.1, one has
only to study the contraction properties (with respect to the Teichmüller distance) of
the restriction of σ to T (∂0N)G.
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We will use McMullen’s detailed analysis of the derivative and coderivative of
the skinning map of the manifold covering σ : T (∂0N) → T (∂0Ñ), to study the
contraction properties of the map τ4 ◦ σ (cf. [McM1]; see also [Ot2], [OP]).

For example, if the pared 3-orbifold (M,P ) is acylindrical, the quotient 3-orbifold
M/τ is always homotopically atoroidal. The pared 3-orbifold (M,P ) is acylindrical
iff the pared 3-manifold (N,Q) is acylindrical. McMullen [McM1] shows that in
this case the skinning map σ contracts strictly uniformly the Teichmüller distance
on T (∂0N). Therefore τ4 ◦ σ contracts strictly uniformly the Teichmüller distance
on the closed subspace T (∂0N)G, hence has a fixed point since Teichmüller space is
complete.

When the pared 3-orbifold (M,P ) contains an essential annulus, some gluing invo-
lutions τ may produce homotopically non-atoroidal 3-orbifolds M/τ . Therefore one
must take account of τ in the proof of the fixed point theorem. This is why in this
case one proves only that some fixed iterate (τ4 ◦σ)K is strictly uniformly contracting
on some τ4 ◦ σ-invariant closed subset of T (∂0M), as in the classical manifold case.

In the following, we fix K = C + S, where C is the number of components of ∂0M

and S is the maximal number of homotopy classes of disjoint simple closed curves or
arcs with silvered end points in ∂0M , not parallel to ∂P .

We choose an arbitrary point s0 ∈ T (∂0M) and we denote by L the Teichmüller
distance ∆(s0, τ

4 ◦ σ(s0)). We define T (∂0M)L ⊂ T (∂0M) to be the set of points
which are moved a Teichmüller distance less than L by the map τ4◦σ. Then T (∂0M)L
is a closed τ4 ◦ σ-invariant subset since τ4 ◦ σ decreases the distance. Moreover for
every point s ∈ T (∂0M)L the Teichmüller geodesic between s and τ4 ◦ σ(s) lies in
T (∂0M)L because of the triangle inequality.

The following theorem is a consequence of McMullen’s work [McM1] (cf. [Ot2],
[OP]).

Theorem 8.5.2. — Let (M,P ) be a hyperbolic pared 3-orbifold, satisfying the hypoth-
esis of the fixed point theorem 8.5.1 and such that the quotient 3-orbifold M/τ is
homotopically atoroidal. Let T (∂0M)L ⊂ T (∂0M) and the integer K > 0 be defined
as above. Then there is a uniform constant c < 1 such that the norm of the derivative
of (τ4 ◦ σ)K at every point s ∈ T (∂0M)L verifies ‖d(τ4 ◦ σ)Ks ‖ ≤ c < 1.

Theorem 8.5.2 shows that the map (τ4◦σ)K is uniformly strictly contracting on the
path formed by the union of all the positive iterates by (τ4 ◦ σ)K of the Teichmüller
geodesic joining s0 to τ4 ◦σ(s0). Since T (∂0M) is complete, that implies the existence
of a fixed point for (τ4 ◦ σ)K , and hence for (τ4 ◦ σ).

We give now a sketch (without details) of the proof of Theorem 8.5.2.

Sketch of the proof of Theorem 8.5.2. — We recall that the moduli space M(∂0N) is
the quotient of the Teichmüller space by the natural action of the mapping class group.
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By Baer’s theorem (cf. [Zie]) the moduli space M(∂0M) can be identified with the
image of T (∂0N)G in M(∂0N). In particular it is a closed subspace of M(∂0N).

One of the key results in McMullen’s article [McM1, Thm 5.3] is:

Theorem 8.5.3 (McMullen’s contraction Theorem)). — If the pared 3-manifold (N,Q)
is not an interval bundle, then for any point s ∈ T (∂0N)

‖dσs‖ < c([s]) < 1,

where c is a continuous function of the modular class of s, [s] ∈ M(∂0N).

Since σ is a contraction and τ is an isometry, it follows that if ‖d(τ4◦σ)Ks ‖ is near 1,
then ‖d(σ)(τ�◦σ)k(s)‖ is also near 1 for all 0 ≤ k ≤ K−1. Then by the discussion above
and by using Mumford’s compactness theorem [Mum1], a straightforward corollary
of Theorem 8.5.3 is:

Corollary 8.5.4. — If the pared 3-orbifold (M,P ) is not an interval bundle, then either
Theorem 8.5.2 is true, or there are points s ∈ T (∂0M)L such that the hyperbolic 2-
orbifolds (∂0M, (τ4 ◦ σ)k(s)) develop closed short geodesics, for 0 ≤ k ≤ K − 1.

Remark 8.5.5. — In our context, a closed geodesic has to be understood in the orbifold
sense: it is either a closed curve or an arc with silvered end-points.

One proves now Theorem 8.5.2 by contradiction. Let s ∈ T (∂0M)L be such that
‖d(τ4 ◦ σ)Ks ‖ ≥ 1 − η for some η > 0 sufficiently small (depending only on the pared
3-orbifold (M,P )). Choose ε > 0 such that log(ε) + 2KL ≤ log(µ0(2)), where µ0(2)
is the 2-dimensional Margulis constant.

Using Corollary 8.5.4 and following [McM1, §7.3], (cf. also [Ot2, Facts 6.13
to 6.15]), one shows the existence of an integer 0 ≤ k ≤ C − 1 such that the hy-
perbolic 2-orbifold (∂0M, s0), with s0 = (τ4 ◦ σ)k(s) has the following properties:

i) it contains a closed geodesic α0 shorter than ε/2;
ii) there is an essential immersed annular 2-orbifoldA0 in the pared 3-orbifold (M,P )

with two boundaries components ∂A0 = α0 ∪ γ0 ⊂ ∂0M , where γ0 is homotopic
to a closed geodesic shorter than ε/2 for the hyperbolic metric σ(s0) on ∂0M .

The length of the geodesic α1 homotopic to τ(γ0) for the hyperbolic metric (τ4◦σ)(s0)
on ∂0M is equal to the length of the geodesic homotopic to γ0 for the hyperbolic
metric σ(s0), which by construction of γ0 has length shorter than ε/2 (cf. [McM1,
§7.3], [Ot2, Fact 6.14]). Then one shows that the closed geodesic α1 on the hyper-
bolic surface (∂0M, (τ4 ◦ σ)(s0)) verifies property ii) (cf. [McM1, §7.3], [Ot2, Facts
6.13 and 6.14]).

By iterating this construction, one produces a sequence of S+1 immersed essential
annular 2-orbifolds Ai, i = 0, . . . , S, in the pared 3-orbifold (M,P ) joining two closed
1-orbifolds αi and γi in ∂0M such that:
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1) αi is a closed geodesic, shorter than ε/2, for the hyperbolic metric (τ4 ◦ σ)i(s0) on
∂0M .

2) τ ◦ (γi) is homotopic to (αi+1).

Since the closed geodesic αi is shorter than ε/2 for the hyperbolic metric (τ4◦σ)i(s0)
on ∂0M , it has length at most µ0(2) for the hyperbolic metric s0. That follows from
the choice of ε and the fact that the Teichmüller distance ∆(s0, (τ4 ◦ σ)i(s0)) is at
most LK by the triangle inequality.

By Margulis lemma, the closed geodesics of length less than µ0/2 on the hyperbolic
2-orbifold (∂0M, s0) is a collection of disjoint closed simple curves or simple arcs with
silvered end points. Hence, by the definition of the integer S, the closed 1-orbifolds
αi, i = 0, . . . , S, belongs to at most S homotopy classes on ∂0M . Therefore at least
two among the closed 1-orbifolds αi, say αm and αn, must be homotopic on ∂0M . It
follows that the result of gluing with τ the boundaries of the annular 2-orbifolds Ai,
for m ≤ i ≤ n, can be closed up by an homotopy between αm and αn. In contradiction
with the hypothesis, this would produce an essential map of a toric 2-orbifold into the
3-orbifold M/τ , because by construction each annular 2-orbifold Ai is essential into
the pared 3-orbifold (M,P ).

8.6. Thurston’s Mirror Trick

In this section we describe the topological part of the inductive step, which allows
to reduce its proof to Thurston’s gluing Theorem 8.4.1. It is in this part of the proof
that the existence of a finite strong hierarchy for a Haken 3-orbifold is used. It allows
to associate to any orientable compact Haken 3-orbifold a complexity, and thus to
argue by induction on this complexity.

To define strong hierarchies adapted to the notion of pared 3-orbifolds, we need
the following definitions:

Definition 8.6.1. — A compact properly embedded 2-suborbifold (F, ∂F ) ↪→ (M,∂M)
is super-essential in a compact orientable pared 3-orbifold (M,P ) if it satisfies the
following properties:

– F is essential in M .
– There is no essential embedded annulus (S1 × [0, 1], S1 × {0}, S1 × {1}) ↪→

(M,∂M,F ), such that the boundary component S1 ×{1} ⊂ F is not parallel to
∂F .

– Any connected component of ∂F isotopic to a loop in ∂P already lies in P .
– ∂F meets transversely ∂P in the minimum number of points in its isotopy class.

Definition 8.6.2. — An orbifoldbody is a compact orientable Haken 3-orbifold that can
be cut along a (possibly empty) collection of disjoint two-sided properly embedded
discal 2-suborbifolds into a disjoint union of discal 3-orbifolds and/or thick turnovers.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001



148 CHAPTER 8. HAKEN 3-ORBIFOLDS

Such a minimal collection of disjoint two-sided properly embedded discal 2-sub-
orbifolds is called a complete system of meridian discs for the orbifoldbody.

Remark 8.6.3. — It follows from [Dun2] that a Haken 3-orbifold is an orbifoldbody iff
any properly embedded orientable essential 2-suborbifold in it is a discal 2-suborbifold.

The following proposition introduces a notion of hierarchy for Haken pared 3-
orbifolds, which follows from Dunbar’s construction of a strong hierarchy for Haken
3-orbifolds [Dun2, Thms. 10, 11, 12] (see also [Mor1, §4], [Ot2, §7] and [Pau]
for the case of 3-manifolds). When the relative homology group with rational coef-
ficients H1(|M |, ∂|M |;Q) vanishes, to construct the desired super-essential splitting
2-suborbifold one uses Culler and Shalen’s method via ideal points of the character
variety of the hyperbolic pared 3-orbifold (M,P ) [CS].

Proposition 8.6.4. — A compact orientable Haken pared 3-orbifold has a partial hi-
erarchy of the following type: there is a finite sequence of compact orientable pared
3-orbifolds (M0, P0),...,(Mn , Pn) such that:

i) (M0, P0) = (M,P );
ii) for k ≤ n − 1, there is a connected super-essential 2-dimensional suborbifold

Fk ⊂ Mk which is not discal nor a turnover; moreover if ∂0Mk is neither empty
nor an union of turnovers, ∂Fk �= ∅;

iii) Mk+1 is the 3-orbifold obtained by splitting Mk along Fk. Moreover, Pk+1 is the
union of toric and annular 2-orbifolds, obtained by cutting Pk along ∂Fk and by
forgetting the components that are discal;

iv) Mn is an orbifoldbody.

The integer n is called the length of the hierarchy. It has an upper bound depending
only on the pared 3-orbifold, because of the orbifold version of Haken-Kneser finiteness
theorem (cf. [Dun2, Thm. 12]). We associate to a Haken pared 3-orbifold (M,P ) the
integer P(M,P ) that is the greatest possible length for a strong hierarchy given by
Proposition 8.6.4. We call it the length of (M,P ).

A compact connected orientable pared 3-orbifold (M,P ) of minimal length is an
orbifoldbody with parabolic locus a (possibly empty) collection of incompressible toric
and annular 2-orbifolds. Moreover the length of a pared 3-orbifold decreases strictly by
cutting along any connected properly embedded super-essential 2-suborbifold which
is not discal, nor a turnover.

Thurston’s mirror trick consists in associating to a compact, orientable, pared, 3-
orbifold (M,P ) a compact, orientable, irreducible, atoroidal, mirrored 3-orbifold with
boundary a (possibly empty) union of toric 2-orbifolds.

Definition 8.6.5. — A mirrored 3-orbifold is a pair (M̂,H) where M̂ is a compact
orientable irreducible 3-orbifold with boundary a (possibly empty) union of toric 2-
orbifolds, and H = (Z2)k ⊂ Diff(M̂) is a non-trivial finite abelian group that is
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generated by orientation reversing symmetries through properly embedded orientable
essential 2-suborbifolds in M̂ .

We call the non-orientable quotient 3-orbifold K = M̂/H the kaleidoscope associ-
ated to the mirrored 3-orbifold (M̂,H).

Remarks on kaleidoscopes. — A kaleidoscopeK = M̂/H is a non-orientable 3-orbifold
that is locally modeled on the quotient of R3 by one of the following groups:

i) a finite cyclic rotation group,
ii) a finite abelian group, generated by a rotation and a reflection through a coordi-

nate plane orthogonal to the axis of the rotation,
iii) a subgroup of the group of eight elements generated by the reflections through

the three coordinate planes.

The ramification locus Θ ⊂ K is the union of a 1-suborbifold Σ, that is the quotient
Σ̂/H of the ramification locus Σ̂ of M̂ , with a 2-suborbifold whose underlying space
is ∂|K| − int(|∂K|).

The interior points with an isotropy group generated by reflections through two or
three coordinate planes, together with the boundary points with an isotropy group
generated by reflections through one or two coordinate planes form a 1-suborbifold
G ⊂ Θ. Its underlying space is a trivalent graph in ∂|K| − int(|∂K|) whose vertices
correspond to interior points with isotropy group (Z/2Z)3 or boundary points with
isotropy group (Z/2Z)2. We call the closure of a connected component of Θ−{G∪Σ}
a mirror of K.

One can see the 3-orbifold K = M̂/H as a right angled kaleidoscope obtained by
silvering the connected components of ∂0M −G that are neither a square, nor a bigon
with a branching point. It is F. Bonahon’s observation that for the proof of Thurston’s
hyperbolization theorem for Haken 3-orbifolds we need to consider only this kind of
kaleidoscopes.

Conversely, according to [Mor1, Lemma 14.1] or [Ot2, §7.2] a Kaleidoscope can
always be mirrored along its silvered faces to get a compact orientable mirrored 3-
orbifold.

This dictionary between mirrored 3-orbifolds and kaleidoscopes will be very useful
to prove some equivariant properties of mirrored 3-orbifolds.

Definition 8.6.6. — The underlying type of a mirrored 3-orbifold (M̂,H) or of the
associated kaleidoscope K = M̂/H is the pair (M,P ), where M is the compact ori-
entable 3-orbifold obtained from the kaleidoscope K by erasing the mirrors, and P

is obtained from ∂K by discarding the components which are either a square or a
bigon with a branching point. Since H �= {1}, ∂0M = ∂|K| − P is not empty. The
ramification locus of the 3-orbifold M is obtained from Σ = Σ̂/H by forgetting the
silvering at its end points. In particular the topological type of the 3-orbifold M is
given by the pair (|K|,Σ).
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Definition 8.6.7. — Given a compact orientable pared 3-orbifold (M,P ), we denote by
AM(M,P ) the set of homotopically atoroidal mirrored 3-orbifolds with underlying
type (M,P ).

Proposition 8.6.8. — Let (M,P ) be a compact orientable pared 3-orbifold, then there
is a homotopically atoroidal mirrored 3-orbifold (M̂,H) ∈ AM(M,P ) such that
∂M̂/H = P .

Proof of Proposition 8.6.8. — Since H �= {1}, ∂0M �= ∅. Then, the proof of Proposi-
tion 8.6.8 reduces to the construction of a trivalent graph G ⊂ ∂0M with the following
properties:

1) G ∩ Σ = ∅, where Σ is the ramification locus of the 3-orbifold M ;
2) the closure of every connected component of ∂0M − G is either:

i) a n-gon with n ≥ 5 vertices of G or
ii) an annulus with one boundary component lying in ∂P , and at least one vertex

of G in the other boundary component;
3) if γ ⊂ ∂0M is an embedded closed curve which intersects G transversely in at most

four points, then γ bounds a discal 2-suborbifold ∆ ⊂ ∂0M whose intersection
G ∩ ∆ is homeomorphic to one of the following forms (see Figures 1 and 2):
a) the cone over G ∩ γ when G ∩ γ contains at most 3 points;
b) two disjoint arcs with end points G ∩ γ, possibly connected in ∆ by an edge

of G.

Figure 1. Property 3) when ∆ is a nonsingular disc.

Figure 2. Property 3) when ∆ is a disc with one cone point.
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Then the compact Kaleidoscope K with underlying type (M,P ) and obtained by
silvering all the connected components of ∂0M − G is irreducible and topologically
atoroidal. The irreducibility follows from the irreducibility of the 3-orbifold M , the
super-incompressibility of ∂0M and properties 1), 2) and 3 a) of the graph G. The
topological atoroidality follows from the topological properties of the pared 3-orbifold
(M,P ) and properties 1), 2) and 3 b) of G.

By [BS1] and [MS], M̂ is either homotopically atoroidal, Euclidean or Seifert
fibred. Since the mirrors are n-gons with n ≥ 5 vertices, M̂ contains essential hyper-
bolic 2-suborbifolds. Hence it cannot be Euclidean and it has infinite fundamental
group. Moreover, by [MS] M̂ is not Seifert fibred, since the fibration cannot be pre-
served by the group H . Otherwise some of the reflecting essential 2-suborbifold in M̂

would be saturated, because G has at least one trivalent vertex.

Construction of the trivalent graph G.— To construct the trivalent graph G with the
required properties, we fix a closed collar neighborhood C(P ) of the parabolic locus P
in ∂M such that the neighborhoods are pairwise disjoint. We consider a triangulation
T of ∂M−int(C(P )) such that the ramification locus ∂0M∩Σ belongs to the 0-skeleton
of T , any 2-simplex in T intersects Σ in at most one vertex and ∂C(P ) belongs to the
1-skeleton of T .

We first get a refined triangulation T ′ by modifying T inside each triangle as fol-
lows: we subdivide each edge of the triangle in its middle point, we add the edges
(parallel to the edges of the triangle) which join them, then we reproduce this modifi-
cation in the created triangle and we join each vertex of the new homothetic triangle
obtained by an edge to the corresponding vertex of the initial triangle (see Figure 3).
This construction is due to E. Giroux (cf. [Ot2, §7], [Pau]).

Figure 3. A refined triangle and its dual cellulation.

Let tT ′ be the cellulation dual to the triangulation T ′, obtained by putting a 0-cell
in the interior of each 2-simplex of T ′ and of each 1-simplex of T ′∩∂C(P ), a 1-cell for
each 1-simplex of T ′ and each 0-simplex of T ′ ∩ ∂C(P ), and a 2-cell for each interior
0-simplex of T ′.
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Let G be the 1-skeleton of the cellulation tT ′. It is a trivalent graph that verifies
property 1) because Σ∩∂0M belongs to the 0-skeleton of T ′. It verifies also property
2) since by construction each interior 0-simplex of T ′ is at least pentavalent and each
0-simplex of T ′ ∩ ∂C(P ) is at least tetravalent.

Property 3) is a consequence of the fact that a closed curve γ intersecting G in
at most 4 points gives rise to a closed path γ contained in the 1-skeleton of T ′ and
following at most 4 edges. By the construction of the triangulation T ′ such closed
path γ is contained in the union of at most 2 triangles of the initial triangulation T
with a common edge or a common vertex. Since at most one vertex of each triangle
of the triangulation T belongs to the ramification locus Σ of M , the disc bounded by
γ contains at most one point of ramification and verifies property 3.

Moreover, since no connected component of ∂0M − G is a rectangle, nor a bigon
with a branching point, ∂M̂/H = P .

Definition 8.6.9. — A compact orientable mirrored 3-orbifold (M̂,H) is said hyper-
bolic if it admits a H-invariant complete hyperbolic structure with finite volume.

Given a compact orientable pared 3-orbifold (M,P ), let HM(M,P ) denote the set
of hyperbolic mirrored 3-orbifolds with underlying type (M,P ). ClearlyHM(M,P ) ⊂
AM(M,P ).

Remark 8.6.10. — The existence of a complete H-invariant hyperbolic structure with
finite volume on the mirrored 3-orbifold (M̂,H) is equivalent to the existence of
a complete hyperbolic structure with finite volume on the associated kaleidoscope
K = M̂/H . In particular all the mirrors are totally geodesic and the dihedral angle
at a common edge between two mirrors is π/2.

Such a kaleidoscope is said hyperbolic.

When the orbifold M is not fibred over a 1-orbifold, the following hyperbolization
theorem is proved by induction on the length P(M,P ) of the pared 3-orbifold (M,P )
by using the gluing theorem 8.4.1.

Theorem 8.6.11 (Hyperbolization theorem for mirrored 3-orbifolds)
Let (M,P ) be a compact orientable Haken pared 3-orbifold, then

HM(M,P ) = AM(M,P ).

First we show how to deduce the hyperbolization theorem for Haken pared 3-
orbifolds (Theorem 8.3.9, and thus Theorem 3) from the hyperbolization theorem for
mirrored 3-orbifolds.

Proof of Theorem 8.3.9 from Theorem 8.6.11. — Let (M,P ) be a compact orientable
Haken pared 3-orbifold. By Proposition 8.6.8 there is a mirrored 3-orbifold (M̂,H) ∈
AM(M,P ) such that ∂M̂/H = P . Since Theorem 8.6.11 shows that the mirrored
3-orbifold is hyperbolic, Theorem 8.3.9 follows from the following:
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Claim 8.6.12. — Let (M̂,H) be a compact orientable hyperbolic mirrored 3-orbifold
with underlying type (M,P ) and such that ∂M̂/H = P . If π1(M) is not virtually
abelian, then (M,P ) is a hyperbolic pared 3-orbifold.

Proof of Claim 8.6.12. — The kaleidoscope K = M̂/H has a complete hyperbolic
structure on its interior with totally geodesic mirrors. Moreover its boundary ∂K = P

corresponds to cuspidal ends of this structure. Hence any thickened convex core
Cδ(K) of the hyperbolic 3-orbifold K is of finite volume and the 3-orbifold pair
(thickµ(Cδ(K)), ∂ thickµ(Cδ(K)) ∩ thinµ(Cδ(K))) (for µ < µ(K)) is diffeomorphic
to (M,P ). When π1(M) is not virtually abelian, this gives a geometrically finite
hyperbolic structure on the pared 3-orbifold (M,P ).

We explain now the proof of the hyperbolization theorem for mirrored 3-orbifold
(Theorem 8.6.11) when M is not fibred over a 1-orbifold.

We first need some extra results about good splitting 2-suborbifolds in a mirrored
3-orbifold.

Let (M,P ) be a compact orientable pared 3-orbifold and let (F, ∂F ) ⊂ (M,∂M) be
a properly embedded orientable 2-suborbifold. In the following we denote by (MF , PF )
the pair obtained by cutting M and P along F and by forgetting, after cutting P , the
components that are discal. We will use analogous notations when cutting a mirrored
3-orbifold or a kaleidoscope along some properly embedded two-sided 2-suborbifold.

Definition 8.6.13. —Let (M̂,H) be a mirrored 3-orbifold with underlying type (M,P ).
A good splitting 2-suborbifold is a H-equivariant, properly embedded, super-essential,
orientable 2-suborbifold (F̂ , ∂F̂ ) ↪→ (M̂, ∂M̂) such that the non-orientable 2-suborbi-
fold F = F̂ /H ⊂ K = M̂/H corresponds, after erasing the mirrors of K, to a properly
embedded, orientable 2-suborbifold (F, ∂F ) ⊂ (M,∂0M) which is either:

i) a complete system of meridian discs if M is an orbifoldbody, or
ii) a connected super-essential 2-suborbifold that is not discal, nor a turnover, and

with non-empty boundary if ∂0M is not an union of turnovers.

We call F ⊂ M the underlying type of F̂ and F .

The following two lemmas are crucial to reduce the proof of Theorem 8.6.11 to the
gluing theorem 8.4.1.

Lemma 8.6.14. — Let (M̂,H) be a compact orientable mirrored 3-orbifold. If its un-
derlying type (M,P ) is a Haken pared 3-orbifold, then there is a good splitting 2-
suborbifold in (M̂,H).

Proof of Lemma 8.6.14. — Let K = M̂/H be the kaleidoscope associated to the mir-
rored 3-orbifold (M̂,H). Using the fact that the underlying space M of K is a Haken
3-orbifold, the proof consists in finding a properly embedded non-orientable super-
essential 2-suborbifold (F , ∂F) ⊂ (K, ∂K) with the following properties:
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i) the underlying type F of F is either a complete system of meridian discs if M is
an orbifoldbody, or a connected super-essential 2-dimensional suborbifold which
is not discal, nor a turnover and with a non-empty boundary if ∂0M is not empty,
nor an union of turnovers.

ii) |F| intersects transversely the graph |G| in the minimal number of points among
all the properly embedded non-orientable super-essential 2-suborbifolds satisfying
property i).

Then the lift F̂ of F to M̂ is a good splitting 2-suborbifold. We refer to [Ot2,
Lemma 7.3] and leave the details to the reader.

Lemma 8.6.15. — Let (M̂,H) ∈ AM(M,P ) be a compact orientable homotopically
atoroidal mirrored 3-orbifold. Let F̂ ⊂ M̂ be a good splitting 2-suborbifold, with un-
derlying type F . Then there is a compact orientable homotopically atoroidal mirrored
3-orbifold (M̂ ′, H ′) ∈ AM(MF , PF ) and a subgroup H ′′ ⊂ H ′ such that H ′/H ′′ ∼= H

and the mirrored 3-orbifold (M̂ ′, H ′′) has for underlying type the pared 3-orbifold
(M̂

bF , (∂M̂)
bF ).

Proof of Lemma 8.6.15. — Let F̂ ⊂ M̂ be a good splitting 2-suborbifold and let
F = F̂ /H be the properly embedded non-orientable super-essential 2-suborbifold of
the kaleidoscope K = M̂/H . We denote by F ⊂ M the properly embedded orientable
super-essential 2-suborbifold obtained from F after erasing the mirrors of K.

By cutting the kaleidoscope K along F one gets a kaleidoscope KF whose boundary
contains two copies F+ and F− of F .

Let (MF , PF ) be the compact orientable pared 3-orbifold obtained by cutting
(M,P ) along the super-essential 2-suborbifold F , then the proof follows from the
following claim:

Claim 8.6.16. — There is a homotopically atoroidal kaleidoscope K′ with underlying
type (MF , PF ) such that:

1) F+ ∪ F− is an union of mirrors of K′;
2) the kaleidoscope KF can be obtained from the kaleidoscope K′ by erasing the mirrors
contained in F+ ∪ F−.

We first deduce Lemma 8.6.15 from Claim 8.6.16.
By the equivariant characteristic toric decomposition [BS1], the mirrored 3-orb-

ifold (M̂ ′, H ′) such that M̂ ′/H ′ = K′ is homotopically atoroidal and has the same
underlying type (MF , PF ) as K; thus (M̂ ′, H ′) ∈ AM(MF , PF ).

Let H ′′ ⊂ H ′ be the subgroup generated by the reflections in the mirror group H ′

corresponding to the mirrors contained in F+ ∪ F−. Then the mirrored 3-orbifold
(M̂ ′, H ′′) has for underlying type the pared 3-orbifold (M̂

bF , (∂M̂)
bF ).

Proof of Claim 8.6.16. — Let F+ and F− be the two copies of F in ∂MF and π :
MF → M be the quotient map given by identification of F+ with F−. We denote by
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GF ⊂ ∂0MF the trivalent graph π−1(G ∪ ∂F ), where G ⊂ ∂0M is the trivalent graph
whose edges belongs in the kaleidoscope K to the intersection of two mirrors or of a
mirror and a connected component of ∂K. The proof consists in adding to GF edges
which are contained in F+ ∪ F− to get a trivalent graph G′ ⊂ ∂0MF so that:

a) no component of (F+∪F−)−G′ is a rectangle, nor a bigon with a branching point;
b) the kaleidoscope, obtained by silvering the component of ∂0MF −G′ which are not

rectangle, nor a bigon with a branching point, is homotopically atoroidal.

This can be thought as a relative version of the proof of Proposition 8.6.8. We refer
to [Ot2, Lemma 7.4] or [Pau, Lemma 2.32], and leave the details to the reader.

Now we start explaining the proof of the hyperbolization theorem for mirrored
3-orbifolds. We consider only the case where the underlying type is not a bundle over
a 1-orbifold.

Proof of Theorem 8.6.11 in the non-fibred case. — The first step of the induction is
given by Andreev’s theorem and some generalizations of it due to Thurston. These
results show that homotopically atoroidal kaleidoscopes with underlying types either
(∆3,∅), (Te × [0, 1], Te × {1}) or (Th × [0, 1],∅) are hyperbolic, where ∆3 is a discal
3-orbifold, Te an Euclidean turnover and Th a hyperbolic turnover.

For a proof of these theorems we refer to the original articles by E.M. Andreev
[An1, An2] (cf. [Riv]), and to Thurston’s notes [Thu1, Thm. 13.6.1, 13.6.5 and
13.7.1], where the approach via pattern of circles gives the desired generalizations to
handle the cases with underlying types (Te × [0, 1], Te × {1}) or (Th × [0, 1],∅) (cf.
also [Bro], [Kap]).

Theorem 8.6.17 (Andreev-Thurston’s Theorem). — Let K be a compact kaleidoscope
with underlying type either (∆3,∅), (Te × [0, 1], Te × {1}) or (Th × [0, 1],∅). Then K
is hyperbolic iff K is topologically atoroidal and acylindrical.

For topologically atoroidal and acylindrical kaleidoscopes with underlying type a
pared 3-manifold (B3,∅), or (T 2 × [0, 1], T 2 × {1}), or (F × [0, 1],∅), where T 2 is
the 2-torus and F is a hyperbolic surface, the existence of the desired hyperbolic
structure follows from an argument of circle pattern (cf. [Thu1, Thm. 13.6.2 and
13.7.1], [Mor1, §15]). Moreover, this hyperbolic structure is uniquely determined, up
to isometry, by the combinatorial structure of the Kaleidoscope (i.e. the cellulation of
∂0M given by the mirrors and whose 1-skeleton is the trivalent graph G).

Hence any symmetry of the kaleidoscope is reflected in it. That gives the desired
hyperbolic structures on the topologically atoroidal and acylindrical kaleidoscopes
with underlying types (∆3,∅), (Te × [0, 1], Te × {1}) or (Th × [0, 1],∅), since they
are finitely covered by Kaleidoscopes with underlying type one of the above pared
3-manifolds.
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The proof in the thick hyperbolic turnover case uses the assumption that Th ×{1}
is a single mirror. The statement of Theorem 8.6.17 can be deduced from this case
by cutting the kaleidoscope K with underlying type (Th × [0, 1],∅) into two pieces
along the hyperbolic turnover Th×{1/2}. One obtains two topologically atoroidal and
aspherical kaleidoscopes K1 and K2 by silvering each copy of the hyperbolic turnover
Th × {1/2}. Then one gets the hyperbolic structure on K by gluing the hyperbolic
structures on K1 and K2, given by the proof above, along the two totally geodesic
hyperbolic turnovers corresponding to a copy of Th × {1/2} in K1 and K2.

To handle the inductive step we need the following equivariant version of the gluing
theorem 8.4.1.

Proposition 8.6.18. — Let (M̂,H) ∈ AM(M,P ), where M is not a bundle over a
closed 1-orbifold. Let F̂ ⊂ M̂ be a good splitting 2-suborbifold, with underlying type
F ⊂ M . Let (MF , PF ) be the pared 3-orbifold obtained by cutting open (M,P ) along
F . If AM(MF , PF ) = HM(MF , PF ), then the mirrored 3-orbifold (M̂,H) is hyper-
bolic.

Proof of Proposition 8.6.18. — Let (M̂
bF , (∂M̂)

bF ) be the pared 3-orbifold obtained
by cutting open the pared 3-orbifold (M̂, ∂M̂) along the super-essential 2-suborbifold
F̂ . Then Lemma 8.6.15 implies the following claim:

Claim 8.6.19. — With the hypothesis of Proposition 8.6.18, the pared 3-orbifold(
M̂

bF , (∂M̂)
bF

)
admits a H-invariant hyperbolic structure.

Proof of Claim 8.6.19. — Let (M̂ ′, H ′) ∈ AM(MF , PF ) be the compact orientable
mirrored 3-orbifold given by Lemma 8.6.15. Since by hypothesis AM(MF , PF ) =
HM(MF , PF ), the mirrored 3-orbifold (M̂ ′, H ′) is hyperbolic. Hence the 3-orbifold
M̂ ′ admits a complete H ′-invariant hyperbolic structure with finite volume. This hy-
perbolic structure is also invariant by the subgroup H ′′ ⊂ H ′, given by Lemma 8.6.15.
In particular, the kaleidoscope M̂ ′/H ′′ has a H-invariant hyperbolic structure. Since
∂M̂ ′/H ′′ = (∂M̂)

bF , Claim 8.6.12 shows that the pared 3-orbifold (M̂
bF , (∂M̂)

bF ) has
a H-invariant hyperbolic structure.

By definition of a good splitting 2-suborbifold and the fact that the 3-orbifold M

is not a bundle over a closed 1-orbifold, the pared 3-orbifold (M̂
bF , (∂M̂)

bF ) is not
a bundle over a 1-orbifold (cf. [Ot2, Prop. 7.6]). Moreover its boundary ∂0M̂ bF is
super-incompressible.

Since the pared 3-orbifold (M̂
bF , (∂M̂)

bF ) is hyperbolic, the gluing theorem 8.4.1
shows that the interior of the compact 3-orbifold M̂ admits a complete hyperbolic
structure with finite volume. There are several ways to get a H-invariant hyperbolic
structure.

One way, as in [Ot2, §8], is to establish a H-equivariant version of the gluing the-
orem 8.4.1. One can define a natural action of H on the Teichmüller space T (∂0M̂ bF )
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and consider the the fixed point set T (∂0M̂ bF )H of this action. This set is not empty
by Claim 8.6.19. Hence, it is a closed non-empty subset of T (∂0M̂ bF ), invariant by
the map τ4 ◦ σ. Since τ4 ◦ σ is contracting, the unique fixed point in T (∂0M̂ bF ) given
by the fixed point Theorem 8.5.1 must belong to T (∂0M̂ bF )H . Now the existence of a
H-invariant complete hyperbolic structure on M̂ follows from a H-equivariant version
of Maskit’s combination theorem (cf. [Ot2, §8]).

Another way is to verify that Kapovich’s proof of his homeomorphism theorem
for homotopically atoroidal kaleidoscopes, with underlying type an orientable Haken
3-manifold [Kap, Thm. 7.30], extends to the case where the underlying type is an ori-
entable Haken 3-orbifold. One follows Kapovich’s proof to show that an isomorphism
of the fundamental groups of the two homotopically atoroidal Kaleidoscopes induces
an isomorphism of the fundamental group of the underlying types that preserves the
peripheral structures. Then by Takeuchi and Yokoyama’s result (cf. Theorem 8.2.8)
this isomorphism can be realized by a homeomorphism between the two underlying
types. The last task is to construct such a homeomorphism which preserves the two
mirror structures on the boundaries of the underlying types (cf. [Kap, §7.5]).

We now finish the proof of Theorem 8.6.11. If the length of the pared 3-orbifold
P(M,P ) = 0, then M is an orbifoldbody.

Let (M̂,H) ∈ AM(M,P ). By Lemma 8.6.14 there is in M̂ a good splitting 2-
suborbifold F̂ with underlying type a complete system of meridian discs F ⊂ M .
Since each connected component of the pared 3-orbifold (MF , PF ), obtained by cutting
open (M,P ) along F , is either a discal 3-orbifold or a thick Euclidean or hyperbolic
turnover, AM(MF , PF ) = HM(MF , PF ) by Theorem 8.6.17. Hence (M̂,H) is hyper-
bolic by Proposition 8.6.18. Therefore, we have shown that AM(M,P ) = HM(M,P )
when P(M,P ) = 0.

Let (M,P ) be a Haken pared 3-orbifold with length P(M,P ) = P > 0 and as-
sume Theorem 8.6.11 to hold for all Haken pared 3-orbifolds with length < P. Let
(M̂,H) ∈ AM(M,P ), by Lemma 8.6.14 there is a good splitting 2-suborbifold F̂ ⊂ M̂

with underlying type a properly embedded orientable super-essential 2-suborbifold
F ⊂ M . Hence P(MF , PF ) < P(M,P ) by definition of the length. Since by the induc-
tion hypothesis AM(MF , PF ) = HM(MF , PF ), Proposition 8.6.18 shows that the
mirrored 3-orbifold (M̂,H) is hyperbolic. Therefore AM(M,P ) = HM(M,P ) and
Theorem 8.6.11 is proved for all Haken pared 3-orbifolds of length P > 0. This finishes
the induction step and the proof of Theorem 8.6.11.
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CHAPTER 9

EXAMPLES

This chapter is devoted to examples of the different phenomena that occur in the
proof of the orbifold theorem when we increase the cone angles of a hyperbolic cone 3-
manifold, until some angle ≤ π. There are two kinds of phenomena: collapses and the
appearance of an essential Euclidean cone 2-manifold, namely a Euclidean turnover
S2(α, β, γ) (with α+ β + γ = 2π), a pillow S2(π, π, π, π), or RP2(π, π).

The chapter is organized in eight sections, one for each example. The first examples
are Euclidean collapses at angle < π, i.e. hyperbolic cone 3-manifolds that collapse to
a point and that, after rescaling, converge to a Euclidean cone 3-manifold with the
same topological type. In Examples 9.1 and 9.2, the collapsing angle lies in [2π

3 , π).
By the use of Hamilton’s theorem, the corresponding orbifold with cone angle π is
spherical, but in these examples one can check explicitly that we have a continuous
family of spherical cone structures with cone angles between the angle of Euclidean
collapse and π. Example 9.3 exhibits a Euclidean collapse at angle π.

Example 9.4 is devoted to several collapses at angle π where the corresponding
orbifolds at angle π are Seifert fibred and have one of the following geometries: Nil,
SL2(R) or H2 × R. In Example 9.5 we show another collapse at angle π, where the
corresponding orbifold at angle π has geometry Sol. Geometries S3 and S2 × R do
not occur as direct collapses: the S3 case is eliminated in Appendix A and the case
S2 × R is eliminated in Lemma 9.5.2.

The last three examples are devoted to Euclidean cone 2-submanifolds that appear
when we increase the cone angles. There are three kinds of essential Euclidean cone
2-manifolds that can appear: a turnover S2(α, β, γ) with α + β + γ = 2π, a pillow
S2(π, π, π, π) or its non-orientable quotient RP2(π, π).

When a Euclidean turnover S2(α, β, γ) appears, a cusp must open, because by
Proposition 5.5.1 we cannot have a collapse (cf. remark 5.0.2). But when a pillow



160 CHAPTER 9. EXAMPLES

S2(π, π, π, π) or RP2(π, π) appear, we may have a cusp opening, a collapse, or a com-
bination of both phenomena. Example 9.6 illustrates the turnover case, Example 9.7,
the pillow case, and Example 9.8, the RP2(π, π) case.

9.1. A Euclidean collapse at angle 2π
3

Consider C(α) the cone 3-manifold with underlying space S3, singular set the
figure-eight knot and cone angle α (see Figure 1). It has been shown in [HLM1] that
C(α) is

i) hyperbolic for α ∈ (0, 2π
3 ),

ii) Euclidean for α = 2π
3 , and

iii) spherical for α ∈ (2π
3 , π].

It follows from Appendix A that the same phenomenon occurs for any hyperbolic
two-bridge knot or link in S3: if C(α) is a cone 3-manifold with underlying space
space S3, singular set any hyperbolic two-bridge knot and cone angle α, then it has
a Euclidean collapse at some angle α ∈ [2π

3 , π).

Figure 1. The cone 3-manifold C(α).

For the Whitehead link, Suárez [Sua] has constructed an explicit family of hyper-
bolic, Euclidean and spherical cone 3-manifolds between angles 0 and π.

9.2. Another Euclidean collapse before π

Let C(α) be the cone 3-manifold with underlying space RP3, cone angle α and
singular set the knot described as follows: we view RP3 as the result of an integer
surgery with coefficient 2 on one component of the Whitehead link, and the singular
set is the remaining component (see Figure 2).

The orbifoldC(π) is spherical, because its double cover is the Seifert fibred manifold
with description: (Oo0 | 0; (2, 1), (2, 1), (2, 1)) (here we follow the notation of [Mon]).

Lemma 9.2.1. — For 0 < α < arccos
(

1
2 −

√
2
)
< π, the cone 3-manifold C(α) is

hyperbolic. In addition it is Euclidean for angle α = arccos
(

1
2 −

√
2
)
.
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Figure 2. The cone 3-manifold C(α).

Proof. — The open manifold M = C(α)−Σ is fibred over S1 with fibre a punctured
torus and homological monodromy ( 1 2

1 3 ) (see [HMW, Prop. 3]). By Thurston’s
hyperbolization theorem [Thu4, Ot1], M is hyperbolic. Since the underlying space of
C(α) is RP3, it does not contain any turnover. Thus, by Theorem A and Appendix A,
there exists a Euclidean collapse at some angle < π.

Next we compute the angle where the Euclidean collapse occurs, by using the results
of [Po1]. The variety of characters is computed in [Po1, Ch. 4, Ex. 2]. Following
the notation in [Po1], the component of the variety of characters in which we are
interested is:

(x2
1 − 2)y2

1 = 4(x2
1 − 1)

where x1 and y1 are the traces of some elements of π1(M). In addition, the trace of
the meridian is y0 = 1

2x1y1 and the Reidemeister torsion with respect to the meridian
is

T(M,µ) = ±
(1
2
y2

1 − x2
1

)
.

By [Po1, Thm. 5.13] if χ is the character of the Euclidean collapse then T(M,µ)(χ) = 0,
(cf. also [HLM2]). Thus, at the Euclidean collapse we obtain x2

1 = 2±
√
2, y2

1 = 2x2
1

and y2
0 = 3 ± 2

√
2. By writing y0 = ±2 cosα/2, we have cosα = 1

2 ±
√
2. Hence the

Euclidean collapse occurs at angle

α = arccos
(1
2

−
√
2
)
≈ 2.72 ∈

(2π
3
, π
)
.

9.3. A Euclidean collapse at angle π

This example is picked up from [HLMW], where the authors attribute it to
Thurston, (see also the applications of Andreev’s theorem in Thurston’s Notes
[Thu1]). Let C(α) denote the cone 3-manifold with underlying space S3, singular
set the Borromean rings and cone angle α ∈ (0, π] (Figure 3).

It is shown explicitly in [HLMW] that C(α) is hyperbolic for α < π and that C(π)
is Euclidean. More precisely, they construct a continuous family of polyhedra P (α)
in the space HK(α) of constant curvature K(α), for α ∈ (0, π]. The cone 3-manifold
C(α) is obtained by gluing the faces of P (α) by a isometries. The curvature, which
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Figure 3. The cone 3-manifold C(α).

is continuous, satisfies {
K(α) < 0 for α ∈ (0, π)
K(α) = 0 for α = π

Since K(α) is a continuous function on α, it follows that C(α) has a Euclidean collapse
at angle π. We remark that the orbifold C(π) is Seifert fibred.

Remark 9.3.1. — J.P. Otal pointed out that for the cone angle α ∈ (π, 2π), one can
explicitly show that C(α) is spherical.

9.4. Collapses at angle π for Seifert fibred geometries

We give a family of examples of cone 3-manifolds that collapse at angle π and the
orbifolds at angle π have geometry Nil, SL2(R) or H2 × R.

The other Seifert fibred geometries S3 and S2 × R do not occur as such collapses,
by Appendix A for S3 and Lemma 9.5.2 for S2 × R.

Let Cn,h(α) be the cone 3-manifold with underlying manifold the Lens space
L(|n|, 1), cone angle α and singular set described in Figure 4, where L(|n|, 1) is rep-
resented by integer surgery of coefficient n on the trivial knot, with n ∈ Z − {0}.

Figure 4. The cone 3-manifold Cn,h(α), where h is the number of half-

twists of Σ. The underlying space is L(|n|, 1).

We assume that the number of half-twists of Σ is h ≥ 2 and that n ≥ 4 or n ≤ −5.

Lemma 9.4.1. — For h ≥ 2 and n ≥ 4 or n ≤ −5, the orbifold Cn,h(π) has geometry:

– Nil when n = 4 and h = 2;
– H2 × R when n = −2h;
– SL2(R) otherwise.
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Proof. — To prove that the orbifold Cn,h(π) is geometric, we use the fact that it is
Seifert fibred. This Seifert fibration follows from viewing the link with two components
in Figure 4 as a Montesinos link. To decide the geometry of the orbifold we use two
invariants:

– the sign of the Euler characteristic of the basis.
– the vanishing or not of the Euler class.

The basis of the Seifert fibration is a 2-orbifold B2 with underlying space a disc. It
has silvered boundary, and contains a cone point of order |n| > 0 and a dihedral
corner of order h ≥ 2 (see Figure 5).

Figure 5. The basis B2 of the Seifert fibration of the orbifold Cn,h(π).

In particular the Euler characteristic of the basis is:

χ(B2) =
1
|n| +

1
2h

− 1
2
.

Thus χ(B2) = 0 iff n = 4 and h = 2. Otherwise χ(B2) < 0. Therefore B2 is Euclidean
when n = 4 and h = 2, and B2 is hyperbolic otherwise.

In addition, we also use the vanishing or not of the rational Euler number [BS2]. To
compute this number, we use a double cover of the orbifold, which is the Seifert fibred
manifold (Oo0 | 0; (n, 1), (n, 1), (h, 1)). The rational Euler number of the orbifold is

e0 =
1
2

(
− 2
n

− 1
h

)
= − 1

n
− 1

2h
.

Thus e0 = 0 if and only if n = −2h. It follows that Cn,h(π) has a product geometry
if and only if n = −2h.

Proposition 9.4.2. — If h ≥ 2 and n ≥ 4 or n ≤ −5, then Cn,h(α) − Σ is hyperbolic.

Corollary 9.4.3. — The cone 3-manifold Cn,h(α) is hyperbolic for α ∈ [0, π) and it
collapses at angle π.

Proof of Proposition 9.4.2. — By Thurston’s hyperbolization theorem, it suffices to
check that Cn,h(α) − Σ is irreducible and atoroidal and that it is not Seifert fibred.

To prove that Cn,h(α)−Σ is irreducible and atoroidal, we look at the double cover
of the orbifold

Mn,h → Cn,h(π),
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which is a small Seifert fibred manifold. Since Mn,h has geometry Nil, H2 × R or
SL2(R) and it is small, it is irreducible and atoroidal. It follows that the orbifold
Cn,h(π) is also irreducible and atoroidal, and, by a standard argument, the manifold
Cn,h(π) − Σ is also irreducible and atoroidal.

We prove that Cn,h(α) − Σ is not Seifert fibred by contradiction. Assuming that
Cn,h(α) − Σ admits a Seifert fibration, then it extends to a Seifert fibration of the
underlying manifold L(|n|, 1), so that Σ is one of the fibres, because L(|n|, 1) is irre-
ducible. In particular we have two Seifert fibrations on the orbifold Cn,h(π): one of
them contains Σ as a fibre and the other one was used in Lemma 9.4.1. We lift both
fibrations to the manifold double cover Mn,h. Both lifted fibrations are homotopic,
by [OVZ], and the generic fibre generates the center of π1(Mn,h), which is isomorphic
to Z, because:

– Mn,h has geometry Nil, H2 × R or SL2(R),
– and at least one of the fibrations (hence both) has an orientable basis.

Let τ :Mn,h → Mn,h denote the involution associated to the covering so thatMn,h/τ ∼=
Cn,h(π). We obtain the contradiction by looking at the action of τ on the center Z
of π1(Mn,h), because for one of the fibrations the action is trivial, but for the other
one the action is non trivial.

Proof of Corollary 9.4.3. — Since L(|n|, 1) is irreducible, Cn,h(α) contains no turn-
over. In addition, since Cn,h(π) is not spherical, Theorem A implies that Cn,h(α) is
hyperbolic for α ∈ (0, π). By the proof of Theorem B, since Cn,h(π) is atoroidal and
Seifert fibred, it follows that Cn,h(α) collapses at α = π

9.5. A collapse at π for Sol geometry

This is an example of collapse at angle π into Sol geometry. Let O be the orbifold
fibred over S1 with fibre a pillow S2(2, 2, 2, 2). We assume that the monodromy

φ : S2(2, 2, 2, 2) −→ S2(2, 2, 2, 2)

fixes a singular point of the pillow S2(2, 2, 2, 2) and therefore we view it as an element
of the mapping class group of a disc with three points, i.e. the braid group with
three strings. We take φ = σ1σ

−1
2 , where 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 is the Artin

presentation of the braid group with three strings.
The underlying space of this orbifold is S2×S1 and it has two singular components.

A surgery description of this orbifold is given in Figure 6 below.
The orbifold O has a double cover which fibres over S1 with fibre a torus T 2 and

monodromy a composition of Dehn twists along two curves that generate π1(T 2).
This double cover has geometry Sol, and one can easily check that the involution of
the covering is geometric. Therefore O has geometry Sol.
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Figure 6. Surgery description of O. All branching indices are 2.

Let C(α) denote the cone 3-manifold with the same topological type as O and cone
angle α.

Lemma 9.5.1. — For α ∈ (0, π), the cone 3-manifold C(α) is hyperbolic and it col-
lapses at angle π.

Proof. — By Thurston’s hyperbolization theorem [Thu4, Ot1], the manifold O−Σ is
hyperbolic because it is fibred over S1 and its monodromy is pseudo-Anosov (because
viewed as an element of the braid group of a three times punctured disc, it is just
σ1σ

−1
2 ).
Since Σ represents a trivial cycle in H1(S2 ×S1,Z/2Z), Σ cannot intersect a sphere

in three points. Hence C(α) does not contain any turnover, even if the underlying
manifold is reducible. In addition, since O has Sol geometry, it cannot be spherical,
and by Theorem A we conclude that C(α) is hyperbolic for α ∈ (0, π).

By the proof of Theorem B, either it collapses or O contains an essential hyperbolic
suborbifold with toric boundary different from a product. Since O is Sol, the only
possibility is that the family C(α) collapses at angle π.

A similar example at angle 2π is developed in detail in [Sua], where a family of
cone manifolds that collapses at angle 2π is shown to converge to a circle, and the
corresponding manifold has geometry Sol.

To finish the sections of collapses, we prove that orbifolds with geometry S2 × R
cannot have the topological type of a hyperbolic cone manifold.

Lemma 9.5.2. — If O is an orbifold of cyclic type, with geometry S2 × R and with
branching locus Σ, then O − Σ is not hyperbolic.

Proof. — If the orbifold O has geometry S2×R, then we write O = S2×S1/G, where
G acts on S2 × S1 isometrically (in particular it preserves the product structure). In
addition, the stabilizers of the action of G are at most cyclic, by hypothesis.

We shall prove that S2 × S1 − ΣG is not hyperbolic, where

ΣG = {x ∈ S2 × S1 | the stabilizer Gx of x is nontrivial}.
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Since G preserves the product structure, the components of ΣG are either vertical
(equal to {p} × S1) or horizontal (contained in S2 × {q}).

If all components of ΣG are vertical, then S2 × S1 − ΣG is Seifert fibred, and if
all components of ΣG are horizontal, then S2 × S1 − ΣG is not irreducible. Hence
we assume that ΣG contains at least a vertical component σv and an horizontal one
σh. Let S2 × {q} be the horizontal sphere that contains σh. If g ∈ G is an element
that fixes the vertical fibre σv, then it preserves each horizontal sphere; in particular
g(σh) ⊂ S2 × {q}. Since σh and g(σh) are geodesics in S2 × {q}, they intersect, and
since Σ is a link, the only possibility is that σh = g(σh). Thus the restriction g|S2×{q}
is a rotation that fixes the north and south poles of S2 × {q}, and σh is the equator
of S2 ×{q}. It follows that S2 × S1 −ΣG is homeomorphic to the exterior of the link
in S3 of Figure 7, the key ring, which is Seifert fibred.

Figure 7. S2×S1−ΣG is homeomorphic to the exterior of the key ring in

S3. The two biggest circles correspond to the vertical components of ΣG

(one with 0 and the other with∞-surgery), and the other circles correspond

to the horizontal components of ΣG.

9.6. An essential Euclidean turnover: opening of a cusp

We show an example of Euclidean turnover at angle 2π
3 , that corresponds to the

opening of a cusp. This example is used by Dunfield in [Dunf] to find an ideal point
of the character variety with a non-trivial root of unity. He finds a sixth root of unity,
because it corresponds to the opening of a cusp, with transverse section a Euclidean
turnover S2(2π

3 , 2π
3 , 2π

3 ). There is a similar example in [Ho1].
We now describe the example. Let C(α) be the cone 3-manifold with underlying

space S2 × S1, cone angle α and singular set described as follows. We view S2 × S1

as the result of 0-surgery on one component of the 2-bridge link 72
1 in Rolfsen’s table,

and the singular set is the other component of the link (see Figure 8).
This cone 3-manifold contains a turnover S2(α, α, α), whose intersection with the

exterior of the link is a three times punctured disc, represented in Figure 8. When
α = 2π/3, this turnover is Euclidean and when α < 2π/3, it is hyperbolic.

We will assume that α ≤ 2π
3 . Let C0(α) = C(α) − N (S2(α, α, α)) be the cone

3-manifold (with boundary) obtained by cutting open C(α) along this turnover.
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Figure 8. The surgery description of C(α). The disc that bounds the

component with 0 surgery extends to a turnover in C(α), because it meets

Σ in three points.

The cone 3-manifold C0(α) has boundary two hyperbolic or Euclidean turnovers
S2(α, α, α) and its underlying space is S2 × I. The singular set consists of three
arcs, as described in Figure 9.

Figure 9. The cone 3-manifold C0(α), with cone angles α.

Proposition 9.6.1. — For α ∈ (0, 2π
3 ), the cone 3-manifold C0(α) is hyperbolic with

totally geodesic boundary. In addition, the interior of C0(2π
3 ) is complete hyperbolic

with cusps and, for a good choice of the base point xα, we have:

lim
α→ 2π

3

(C0(α), xα) = (int(C0(2π
3 )), x 2π

3
).

The following corollary says that a cusp appears at angle 2π
3 .

Corollary 9.6.2. — For α ∈ (0, 2π
3 ), the cone 3-manifold C(α) is hyperbolic. In addi-

tion, for a good choice of the base point xα, we have:

lim
α→ 2π

3

(C(α), xα) = (int(C0(2π
3 )), x 2π

3
).

Proof of Corollary 9.6.2. — For α < 2π
3 , since ∂C0(α) has two totally geodesic com-

ponents which are S2(α, α, α), and since a turnover is rigid, we can glue the compo-
nents of ∂C0(α) to obtain the hyperbolic structure on C(α). The assertion about the
limits follows from the proposition, because the boundary of C0(α) goes to infinity
when α → 2π

3 .
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Proof of Proposition 9.6.1. — We draw C0(α) in a more convenient way in Figure 10
(a), in order to view it as a truncated tetrahedron P (α) with faces identified.

Figure 10. (a) The cone 3-manifold C0(α). (b) The ideal triangles.

We label the singular edges e0, e1 and e2, and we consider the two truncated trian-
gles A and B in Figure 10 (b), which are the glued faces of the truncated tetrahedron
P (α). This truncated tetrahedron P (α) is represented in Figure 11, where the angle
of the edges with label e0 is α/4 and the angle of the edges e1 and e2 is α. When
α = 2π

3 , P (2π
3 ) is an ideal tetrahedron, with vertices in ∂H3 = S2

∞, but when α < 2π
3

the vertices of P (α) lie outside ∂H3 = S2
∞, therefore its vertices are truncated by

totally geodesic triangles orthogonal to the faces.

Figure 11. The truncated tetrahedron P (α) and the ideal one P ( 2π
3
).

The face identifications are obtained by rotations around the edges e1 and e2. We
observe that the edges of the truncated tetrahedra correspond precisely to the singular
edges of C0(α). It follows from this construction that C0(α) and intC0(2π

3 ) have the
hyperbolic structures stated in the proposition. Since when α → 2π

3 the polygon P (α)
converges to P (2π

3 ), we also have the assertion about the limits.

Remark 9.6.3. — We could keep deforming by increasing α after 2π
3 , but then the

cusps would be filled to create singular vertices, because the vertices of P (α) lie in H3

for α > 2π
3 . One can even show that P (α) collapses to a Euclidean polyhedron and

it becomes spherical at α = π (some edges have angle π and P (π) is a lens in S3).

A similar example is quoted in [Ho1] by doing surgery 0 and ∞ on the Whitehead
link. In Figure 12 we give a surgery description of Hodgson’s example, which has two

ASTÉRISQUE 272



9.7. A PILLOW 169

singular components. If we take Hodgson’s example with cone angles α everywhere
and we cut open along the turnover, then we obtain again the cone 3-manifold C0(α)
above.

Figure 12. Hodgson’s example, with the turnover represented by a disc

bounding the component with surgery coefficient 0.

9.7. A pillow

In this example we shall combine the two tangles of Figure 13.

Figure 13. The tangles T1 and T2.

We view each Ti as an orbifold with underlying space the 3-ball, ramification locus
the strings of the tangle, and ramification indices 2. The boundary of Ti is a pillow
S2(2, 2, 2, 2). The orbifold T1 is the quotient of the exterior of the figure eight knot
by the involution of Figure 14 (a), and T2 is the quotient of the trefoil knot by the
involution of Figure 14 (b).

Hence, by Theorem 1, T1 is hyperbolic with a cusp. The orbifold T2 is Seifert fibred
with basis B2, where B2 is a 2-orbifold with underlying space a disc, three boundary
arcs of this disc are mirrors connected by two dihedral corners of order 2 and 3, and
∂B2 is an interval with silvered end-points (see Figure 15).

Consider the orbifolds

O11 = T1 ∪∂ T1,

O12 = T1 ∪∂ T2,

O22 = T2 ∪∂ T2,

glued along the boundary. We do not specify the gluing map, except for O22, where
we require the fibrations not to be compatible by the gluing map.
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Figure 14. (a) T1 is the quotient of the figure eight knot exterior by the

involution τ1. (b) T2 is the quotient of the trefoil knot exterior by the

involution τ2.

Figure 15. The basis B2 of the Seifert fibration of T2.

Lemma 9.7.1. — The manifolds O11 − Σ, O12 − Σ and O22 − Σ are hyperbolic.

Proof. — By Thurston’s hyperbolization theorem, it suffices to check that Oij −Σ is
irreducible, atoroidal and not Seifert fibred.

We recall that T1 and T2 have a double cover which is irreducible and topologically
atoroidal. Thus Oij is finitely covered by an irreducible manifold which contains a
unique essential torus, up to isotopy (here the choice of the gluing map for O22 is
relevant). Therefore the orbifold Oij itself is irreducible and has a unique essential
toric suborbifold, which is the pillow ∂Ti ∼= S2(2, 2, 2, 2), by [BS1]. Then it follows
easily that Oij − Σ is irreducible and atoroidal.

The manifold Oij −Σ is not Seifert fibred, because it contains a properly embedded
essential separating sphere with four punctures.

Let Cij(α) denote the cone 3-manifold with the same topological type as Oij and
cone angle α.

Proposition 9.7.2. — For 0 < α < π, Cij(α) is hyperbolic. When α = π, an essential
pillow appears and the following occurs:

i) For the family C11(α), there is an opening of a cusp that splits Oij into two copies
of T1.

ii) The family C22(α) collapses.
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iii) For the family C12(α), depending on the choice of the base point, there is either
an opening of a cusp (corresponding to a base point in T1) or a partial collapse
(corresponding to a base point in T2).

Proof. — First we remark that Oij contains no turnover because the underlying space
is S3. In addition, the fundamental group of Oij is infinite. Thus, by Theorem A
and Hamilton’s theorem, if Cij(α) is the corresponding cone 3-manifold, then it is
hyperbolic for α ∈ (0, π).

At angle π, the 3-orbifold T1 is hyperbolic and the 3-orbifold T2 is Seifert fibred
(with geometry H2×R). The different cases are discussed by appealing to the proof of
Theorem B. The cone manifold C11(α) does not collapse at angle π, but a cusp opens
that splits the cone 3-manifold into two copies of T1, which is a hyperbolic orbifold.
The family C12(α) has a partial collapse: if we choose a base point in the thick part
of T1 then we have again an opening of a cusp, but if we choose a base point in T2 we
have a collapse. Finally, C22(α) collapses at angle π, for any choice of base point.

Remark 9.7.3. — The example of the orbifold O22 is illustrated in Figure 16, which
has been communicated to us by M. Lozano and has inspired the whole Section 9.7.
In [HLM3] they compute the character variety of O22 − Σ, which can be used to
show that there is a collapse at angle π.

Figure 16. The singular set of O22 is the knot 816 in Rolfsen’s table. The

pillow (corresponding to a Conway sphere) is represented by a dotted line.

9.8. An incompressible RP2(π, π)

Let N1(RP2(π, π)) denote the closed tubular neighborhood of RP2(π, π) × {0} (of
radius 1) in the orientable line bundle on RP2(π, π). Alternatively, N1(RP2(π, π))
is the quotient of S2(π, π, π, π) × [−1, 1] by the involution τ0 × τ1 where τ0 is the
antipodal map on S2(π, π, π, π) and τ1 changes the sign on [−1, 1]. Note that

∂N1(RP2(π, π)) ∼= S2(π, π, π, π).

We consider the closed orbifold

O = T1 ∪∂ N1(RP2(π, π)).
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In the notation of Example 9.7, the orbifold O is doubly covered by O11 = T1 ∪∂ T1,
because ∂N1(RP2(π, π)) is doubly covered by S2(π, π, π, π) × [−1, 1].

It follows easily from the discussion in Example 9.7 that this provides an example of
cusp opening at angle π, because an essential RP2(π, π) appears. The cusp section is a
pillow S2(π, π, π, π), which is the boundary of the tubular neighborhood of RP2(π, π).
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APPENDIX A

LIMIT OF HYPERBOLICITY

FOR SPHERICAL 3-ORBIFOLDS

Michael Heusener and Joan Porti

Let O be a spherical 3-orbifold of cyclic type. We denote the ramification locus by
Σ ⊂ O; it is a k-component link Σ := Σ1 � · · · �Σk. During this appendix we assume
that the complement O − Σ of the branching locus admits a complete hyperbolic
structure of finite volume. For t > 0 small enough, let C(tα) be the hyperbolic cone
manifold with topological type (|O|,Σ) and cone angles tα = (t2π/m1, . . . , t2π/mk),
where mi is the ramification index along the component Σi (see Chapter 2, Propo-
sition 2.2.4). Let t∞ be the limit of hyperbolicity, i.e. C(tα) is a hyperbolic cone
manifold for all t ∈ J := [0, t∞).

The aim of this appendix is to prove that the hyperbolic cone manifolds C(tα)
cannot degenerate directly to the spherical orbifold O, i.e. we shall prove:

Main Proposition. — Let O be a spherical 3-orbifold of cyclic type. If the complement
O − Σ of the branching locus admits a complete hyperbolic structure of finite volume
then the limit of hyperbolicity t∞ is contained in the open interval (0, 1).

We obtain the following corollary from this proposition:

Corollary. — The cone manifold C(t∞α) is Euclidean.

Proof of the corollary. — By the main proposition we have 0 < t∞ < 1. Proceed-
ing as in the proof of Proposition 2.3.1 of Chapter 2, we see that C(t∞α) is a Eu-
clidean cone manifold with the same topological type as O and with cone angles
(t∞α1, . . . , t∞αk).

Remark A.0.1. — The main proposition does not follow from Proposition 5.2.1 of
Chapter 5. The proof of the “Collapsing Case” requires the use of the simplicial
volume and does not give information about the collapse itself. If we had a method to
describe the collapse at the angle π in a geometric way we could probably see directly
that a hyperbolic cone manifold cannot degenerate to a spherical orbifold.
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Example A.0.2. — Let O(α, β;n) be the 3-orbifold whose ramification locus is the 2-
bridge knot or link b(α, β) ⊂ S3 and with branching index n. The orbifold O(α, β; 2)
is spherical, and the 2-fold branched covering of (S3, b(α, β)) is the lens space L(α, β)
which itself is a spherical space form. The complement of the branching locus supports
a complete hyperbolic metric of finite volume iff |β| > 1. The orbifold O(5, 3; 3) is
Euclidean, and the orbifolds O(5, 3;n), n > 3, are hyperbolic. Note that O(α, β;n),
n ≥ 3, is hyperbolic if α > 5 and |β| > 1. These orbifolds and their limits of
hyperbolicity were studied in [HLM2].

The strategy of the proof of the main proposition is the following. We assume that
t∞ = 1 and we seek a contradiction. We consider a sequence tn → 1 in J = [0, 1) and
the corresponding sequence of holonomy representations (ρn). By the construction
in Chapter 2, we may assume that the sequence (ρn) belongs to an algebraic curve
C. This curve C has a natural compactification C that consists in adding some ideal
points. Up to a subsequence, ρn converges to a point in the compactification ρ∞ ∈ C.

In Lemma A.1.1 we show that ρ∞ is not an ideal point (i.e. ρ∞ is a representation),
by using Culler-Shalen theory about essential surfaces associated to ideal points and
Lemma A.0.3. In fact, we prove that ρ∞ is an irreducible representation into SU(2)
(Lemma A.1.2). Then we prove that ρ∞ is µ-regular (see Definition A.0.4), which
implies that, for n large, ρn is conjugate to a representation into SU(2). We have
obtained a contradiction, because the holonomy representation of a hyperbolic cone
manifold of finite volume cannot be contained in SU(2).

Spherical 3-orbifolds. — Let O be a spherical 3-orbifold. Then O = S3/G, where
G ⊂ SO(4) is finite. The orbifold O is very good, its universal covering is S3, and
its fundamental group π1(O) is the group of covering transformations, i.e. π1(O) = G

is a finite group. There is a surjection π1(O) → π1(|O|) where |O| is the underlying
manifold (see [DaM]). The 3-manifold |O| is hence a rational homology sphere which
contains the link Σ. Note that Σ ⊂ |O| is a prime link.

We denote respectively by µ1, . . . , µk and m1, . . . ,mk the meridians and ramifica-
tion indices of the components Σ1, . . . ,Σk of Σ. We assume that each meridian µi is
represented by a simple closed curve in ∂N (Σ) which bounds a properly embedded
orbifold disc in N (Σ). Here N (Σ) denotes a tubular neighborhood of Σ ⊂ O.

In what follows, we shall make use of the following lemma:

Lemma A.0.3. — Let F ⊂ O − N (Σ) be a properly embedded orientable surface (so
∂F may be empty). If F is incompressible and non boundary-parallel, then there is a
meridian µi such that ∂F ∩ µi �= ∅.

Proof. — Let F be a properly embedded, orientable, incompressible, non boundary-
parallel surface in O − N (Σ). If ∂F has empty intersection with the meridians of Σ
then we obtain a closed surface F ⊂ |O|, and hence the link Σ ⊂ |O| is sufficiently large
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(following the definition in [CS, §5.1]). This is impossible because S3 is a regular
branched covering of (|O|,Σ) and, according to [CS, Thm. 5.1.1], such a covering
contains either an incompressible surface of higher genus or a non-separating sphere
(see also [GL, Theorem 1]).

Varieties of representation and characters. — Let Γ be a finitely generated
group. The variety of characters X(Γ) is the quotient in the algebraic category
of the action of SL2(C) by conjugation on the variety of representations R(Γ) =
Hom(Γ, SL2(C)). Following [CS], X(Γ) is an affine complex variety, but it is not
necessarily irreducible. For a representation ρ ∈ R(Γ), its projection onto X(Γ),
denoted by χρ, is called the character of ρ. The character χρ may be interpreted as
a map:

χρ : Γ −→ C

γ �−→ tr(ρ(γ)).

For any γ ∈ Γ, the trace function τγ : R(Γ) → C, τγ(ρ) = tr(ρ(γ)), is invariant under
conjugation. Therefore, it factors through R(Γ) → X(Γ) to the rational function

Iγ : X(Γ) −→ C

χρ �−→ χρ(γ) = tr(ρ(γ)).

We use the notation X(O − Σ) = X(π1(O − Σ)).

Definition A.0.4. — Let ρ : π1(O − Σ) → SL2(C) be an irreducible representation
such that ρ(µ1) �= ± Id, . . . , ρ(µk) �= ± Id. We say that ρ is µ-regular if the following
conditions are satisfied:

i) H1(O − Σ;Ad ρ) ∼= Ck, where k is the number of components of Σ.
ii) The function Iµ = (Iµ1 , . . . , Iµk

) : X(O−Σ) → Ck is locally biholomorphic at χρ.

The following lemma is proved in [Po1, Prop. 5.24] and is going to be used at the
end of the proof of the main proposition.

Lemma A.0.5. — Let ρ : π1(O − Σ) → SU(2) be an irreducible representation such
that tr(ρ(µi)) �= ±2 for all i = 1, . . . , k.
If ρ is µ-regular then there exists an open neighborhood U ⊂ R(O − Σ) of ρ such

that for every representation ρ′ ∈ U , ρ′ is conjugate to a representation into SU(2) if
and only if tr(ρ′(µi)) ∈ R for all i = 1, . . . , k.

A.1. Proof of the main proposition

Beginning of the proof. — Let tn ∈ [0, 1) be a sequence that converges to t∞. We
choose a lift ρn ∈ R(O − Σ) of the holonomy representation of the hyperbolic cone
manifold C(tnα). We may assume that the sequence (ρn) is contained in a complex
curve C ⊂ R(O − Σ) ⊂ CN (see the proof of Lemma 2.3.2). Now let C ⊂ PN be the
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projective closure of C and let C̃ be the non-singular projective curve whose function
field F is isomorphic to that of C (see [CS] for details). Following [CS], we call the
points of C̃ which correspond to points of C − C ideal points . We might assume (by
passing to a subsequence) that (ρn) is contained in the non-singular part of C and
hence we have that (ρn) ⊂ C̃. The sequence (ρn) converges since C̃ is compact.

Each point x̃ ∈ C̃ gives us a discrete valuation ν
ex : F ∗ → Z with valuation ring A.

The ring A consists exactly of those functions which do not have a pole at x̃.
The curve C ⊂ R(O − Σ) gives us a tautological representation P : π1(O − Σ) →

SL2(F ) (see [CS]). For a fixed point x̃ ∈ C̃ we obtain therefore a representation
P : π1(O − Σ) → SL2(F ) where F is a field with a discrete valuation. The group
π1(O − Σ) acts hence on the associated Bass–Serre–Tits tree which will be denoted
by T . An element γ ∈ π1(O − Σ) fixes a point of T if and only if τ̃γ does not have a
pole at x̃ where τ̃γ : C̃ → P1 denotes the rational function determined by τγ .

Lemma A.1.1. — The sequence (ρn) does not converge to an ideal point if t∞ = 1.

Proof. — Assume that t∞ = 1 and that (ρn) converges to an ideal point x̃ ∈ C.
Let µ1, . . . , µk be the meridians of Σ. Since tr(ρn(µi)) = ±2 cos(tnπ/mi) converges

to ±2 cos(π/mi), it follows that τ̃µi does not have a pole at x̃. The image P (µi) is
therefore contained in a vertex stabilizer of T . We obtain hence an incompressible
non boundary-parallel surface F ⊂ O − N (Σ) such that F ∩ µi = ∅ for i = 1, . . . , k
(see [CS, Prop. 2.3.1]). This surface cannot exist by Lemma A.0.3.

Lemma A.1.2. — If t∞ = 1 then the sequence (ρn) converges to a representation ρ∞ ∈
R(O − Σ) which has the following properties:

i) ρ∞ factors through a representation of π1(O) into PSL2(C);
ii) ρ∞ is conjugate to a representation into SU(2);
iii) ρ∞ is irreducible.

Proof. — The sequence (ρn) converges to a representation ρ∞ ∈ R(O−Σ) by Lemma
A.1.1 and we have:

tr(ρ∞(µi)) = ±2 cos(π/mi), for i = 1, . . . , k.

In particular ρ∞(µmi

i ) = ± Id and therefore ρ∞ factors trough π1(O−Σ) → π1(O) to
a representation of π1(O) into PSL2(C). Note that π1(O) is the quotient of π1(O−Σ)
by the normal subgroup generated by {µm1

1 , . . . , µmk

k }. This proves i).
Assertion ii) follows from i): π1(O) is finite and up to conjugation SU(2) is the

only maximal compact subgroup of SL2(C).
Assume that ρ∞ is reducible. It follows from ii) that ρ∞ is abelian because every

reducible representation into SU(2) is conjugate to a diagonal representation. The
representations ρn are all irreducible (see [Po1, Prop. 5.4]). The abelian representa-
tion ρ∞ is therefore the limit of irreducible representations which implies the existence
of a reducible metabelian (but not abelian) representation ρ′∞ ∈ R(O − Σ) such that
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tr(ρ∞(g)) = tr(ρ′∞(g)) for all g ∈ G (see [HLM2]). Since ρ′∞(µi) = ±2 cos(π/mi) it
follows that the image of ρ′∞ is finite. We obtain that ρ′∞ is conjugate to a represen-
tation into SU(2). This contradicts the fact that ρ′∞ is metabelian and non-abelian.
Hence the lemma is proved.

With the help of the next lemma we are able to prove the main proposition.

Lemma A.1.3. — If t∞ = 1 then the limit representation ρ∞ is µ-regular.

End of the proof of the main proposition. — Assume that t∞ = 1. The sequence
(ρn) converges to an irreducible representation ρ∞ : π1(O − Σ) → SU(2) such that
tr(ρ∞(µi)) �= ±2. The representation ρ∞ is µ-regular by Lemma A.1.3 and hence we
can apply Lemma A.0.5.

The image of ρn is contained in SU(2) up to conjugation if n is sufficiently large
by Lemma A.0.5; note that tr(ρn(µi)) ∈ R. This contradicts the fact that ρn is the
holonomy of a compact hyperbolic cone manifold (see [Po1, Prop. 5.4]).

It remains to prove Lemma A.1.3. Before we start with the proof, we briefly recall
how to define the homology of an orbifold O with twisted coefficients Ad ρ. Let
ρ be a representation of π1(O) into PSL2(C) and let K be a CW-complex whose
underlying space is the orbifold O such that the ramification locus Σ is contained in
the 1-skeleton. The CW-complex K lifts to a π1(O)-equivariant CW-complex K̃ over
the universal covering of O. Set:

C∗(K; Ad ρ) = sl2(C) ⊗π1(O) C∗(K̃;Z),

where γ ∈ π1(O) acts on the right on the Lie algebra sl2(C) via the adjoint of ρ(γ−1).
Note that C∗(K̃;Z) is not a free π1(O)–module (see [Po1, Section 1.2] for the details).
There is a natural boundary map ∂i : Ci(K; Adρ) → Ci−1(K; Ad ρ) (induced by
the boundary operator on C∗(K̃;Z)) and the homology H∗(O; Ad ρ) is defined. This
homology does not depend on the CW-complex and on the conjugacy class of ρ. When
Σ = ∅ (i.e. O is a manifold), this is the usual homology with twisted coefficients.

Proof of Lemma A.1.3. — In order to compute H1(O − Σ;Ad ρ∞) we consider the
homology of the orbifold. Note that, since ρ∞ induces a representation of π1(O) into
PSL2(C), the adjoint representation of π1(O) into the endomorphism group of the
Lie algebra sl2(C) is well defined.

Step 1. — H∗(O,Ad ρ∞) ∼= 0.
The universal covering of O is S3. The projection π : S3 → O induces a map

π∗ : H∗(S3, sl2(C)) → H∗(O,Ad ρ∞)

where H∗(S3, sl2(C)) ∼= H∗(S3,C) ⊗C sl2(C) is the homology of S3 with non-twisted
coefficients sl2(C) ∼= C3. Since we work over C, we can construct a right inverse to
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π∗ by using the transfer map (see [Bre, Chapter III])

s∗ : H∗(O,Ad ρ∞) → H∗(S3, sl2(C)),

i.e. π∗ ◦ s∗ = Id. In particular s∗ is injective and its image is invariant by the action
of π1(O). The homology H∗(S3, sl2(C)) is only non-trivial in dimensions 0 and 3.
Since ρ∞ is irreducible, the subspace of sl2(C) invariant by π1(O) is trivial, hence
H∗(O,Ad ρ∞) ∼= 0.

Step 2. — H1(O − Σ;Ad ρ∞) ∼= Ck.
We apply a Mayer-Vietoris argument (adapted to the orbifold situation) to the pair

(N (Σ),O−N (Σ)), where N (Σ) is a tubular neighborhood of Σ. Since H∗(O,Ad ρ) ∼=
0, we have a natural isomorphism induced by the inclusion maps:

(A.1) H1(N (Σ);Ad ρ∞) ⊕H1(O − N (Σ);Ad ρ∞) ∼= H1(∂N (Σ);Ad ρ∞)

The homology groupsH1(N (Σ),Ad ρ∞) and H1(∂N (Σ),Ad ρ∞) are easily computed,
and they have dimension k and 2k over C respectively (see [Po1, Lemma 2.8 and
Prop. 3.18] for instance). Therefore H1(O − Σ;Ad ρ∞) ∼= Ck.

Step 3. — χρ∞ is a smooth point of X(O − Σ) with local dimension k.
By an estimate of Thurston [Thu1, Thm. 5.6], see also [CS, Thm. 3.2.1], the

dimension of X(O −Σ) at χρ∞ is ≥ k. In addition, since H1(O −Σ;Ad ρ∞) contains
the Zariski tangent space TχρX(O − Σ), and H1(O − Σ;Ad ρ∞) is dual to the space
H1(O − Σ;Ad ρ∞), dim(TχρX(O − Σ)) ≤ k. Thus dim(TχρX(O − Σ)) = k and χρ∞

is a smooth point.

Step 4. — Iµ = (Iµ1 , . . . , Iµk
) : X(O − Σ) → Ck is locally biholomorphic at χρ∞ .

Viewing H1(O−Σ;Ad ρ∞) as the Zariski cotangent space TχρX(O−Σ), the proof
consists in finding a basis for H1(O −Σ;Ad ρ∞) that can be interpreted as the set of
differential forms {dIµ1 , . . . , dIµk

}.
Let Σ1 �· · ·�Σk = Σ be the decomposition of Σ in connected components. Choose

λ1, . . . , λk ∈ π1(O − Σ) such that λi, µi generate π1(∂(N (Σi))) ∼= Z ⊕ Z, for i =
1, . . . , k. Since tr(ρ(µi)) �= ±2, we may assume that tr(ρ(λi)) �= ±2, up to replacing
λi by λiµi if necessary. If we identify homology groups with cotangent spaces, then
the differential form dIλi generates H1(N (Σi); Ad ρ∞) ∼= C and {dIλi , dIµi} is a
basis for H1(∂N (Σi); Ad ρ∞) ∼= C2 (see for instance [Po1, Lemma 3.20] or [Ho2]
for these computations). It follows from the Mayer-Vietoris isomorphism (A.1) that
{dIµ1 , . . . , dIµk

} is a basis for H1(O − Σ;Ad ρ∞) ∼= TχρX(O − Σ). Therefore Iµ =
(Iµ1 , . . . , Iµk

) is locally biholomorphic at χρ∞ and ρ∞ is µ-regular.
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APPENDIX B

THURSTON’S HYPERBOLIC DEHN FILLING

THEOREM

We give a proof of Thurston’s hyperbolic Dehn filling theorem for completeness.
In the manifold case, the proof is given in Thurston’s notes [Thu1], and it has been
generalized to orbifolds by Dunbar and Meyerhoff [DuM].

We follow Thurston’s proof [Thu1], taking care of the smoothness of the variety
of representations. For the smoothness, we use an argument from [Zh1, Zh2]. There
is another approach in [PP] without using these results in the manifold case.

We prove the theorem for manifolds in Section B.1, and for orbifolds in Section B.2.
In Section B.3 we prove it for a special case of manifolds with totally geodesic bound-
ary.

B.1. The manifold case

Let M be a compact 3-manifold with boundary ∂M = T 2
1 ∪ · · · ∪ T 2

k a non-empty
union of tori, whose interior is complete hyperbolic with finite volume. Thurston’s
hyperbolic Dehn filling theorem provides a parametrization of a space of hyperbolic
deformations of this structure on int(M). The parameters for these deformations are
the generalized Dehn filling coefficients, which describe the metric completion of the
ends of int(M).

For each boundary component T 2
j we fix two oriented simple closed curves µj and

λj that generate π1(T 2
j ). The completion of the structure on the j-th end of int(M)

is described by the generalized Dehn filling coefficients (pj , qj) ∈ R2 ∪ {∞} = S2, so
that the structure at the j-th end is complete iff (pj , qj) = ∞. The interpretation of
the coefficients (pj , qj) ∈ R2 is the following:

– If pj , qj ∈ Z are coprime, then the completion at the j-th torus is a non-
singular hyperbolic 3-manifold, which topologically is the Dehn filling with
surgery meridian pjµj + qjλj .

– When pj/qj ∈ Q ∪ {∞}, let mj , nj ∈ Z be coprime integers such that pj/qj =
mj/nj . The completion is a cone 3-manifold obtained by gluing a torus with
singular core. The surgery meridian is mjµj + njλj and the cone angle of the
singular component is 2π|mj/pj|.
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– When pj/qj ∈ R − Q, then the completion (by equivalence classes of Cauchy
sequences) is not topologically a manifold. These singularities are called of Dehn
type, cf. [Ho2].

Theorem B.1.1 (Thurston’s hyperbolic Dehn filling [Thu1]). — There exists a neigh-
borhood of {∞, . . . ,∞} in S2 ×· · ·×S2 such that the complete hyperbolic structure on
int(M) has a space of hyperbolic deformations parametrized by the generalized Dehn
filling coefficients in this neighborhood.

Proof. — The proof has three main steps. The first one is the construction of the
algebraic deformation of the holonomy of the complete structure on int(M). The
second step is to associate generalized Dehn filling coefficients to this deformation and
the third one is the construction of the developing maps with the given holonomies.
These steps are treated in paragraphs B.1.1, B.1.2 and B.1.3 respectively.

B.1.1. Algebraic deformation of the holonomies. — We recall some notation.
Let R(M) = Hom(π1(M), SL2(C)) be the variety of representations of π1(M) into
SL2(C), and X(M) = R(M)//SL2(C) its variety of characters. Both are affine alge-
braic complex varieties (not necessarily irreducible). For a representation ρ ∈ R(M),
its character χρ is its projection to X(M) and can be viewed as the map χρ : π1(M) →
C defined by χρ(γ) = trace(ρ(γ)), for every γ ∈ Γ. Given an element γ ∈ π1(M) we
will also consider the rational function

Iγ : X(M) −→ C

χρ �−→ χρ(γ) = trace(ρ(γ)).

Recall that µ1, . . . , µk is a family of simple closed curves, one for each boundary
component of M . We will consider the map

Iµ = (Iµ1 , . . . , Iµk
) : X(M) → Ck.

Let ρ0 ∈ R(M) be a lift of the holonomy representation of int(M) and let χ0 ∈
X(M) denote its character. The main result we need about deformations is the
following:

Theorem B.1.2. — The map Iµ = (Iµ1 , . . . , Iµk
) : X(M) → Ck is locally bianalytic

at χ0.

Proof. — We follow the proofs of [Thu1] and [Zh1, Zh2]. We prove first that Iµ is
open at χ0. Let X0(M) be any irreducible component of X(M) that contains χ0. In
order to prove that Iµ is open we use the following two facts:

– By an estimate of Thurston [Thu1, Thm. 5.6], see also [CS, Thm. 3.2.1],
dimX0(M) ≥ k.

– The character χ0 is an isolated point of I−1
µ (Iµ(χ0)), by Mostow rigidity theo-

rem.

ASTÉRISQUE 272



B.1. THE MANIFOLD CASE 181

By the openness principle [Mum2], it follows that Iµ is open at χ0.
Moreover, Iµ is either locally bianalytic or a branched cover. Let V0 ⊂ X(M)

and V1 ⊂ Ck be respective neighborhoods of χ0 and Iµ(χ0) such that the restriction
Iµ|V0 : V0 → V1 is either bianalytic or a branched cover. If Iµ|V0 was a branched
cover, then the ramification set would be a proper subvariety W ⊂ V0 such that
Iµ(W ) would be also a proper subvariety of V1. In addition, if Iµ|V0 was a branched
cover, then the restriction of Iµ|V0−W would be a cover of V1 −Iµ(W ) of degree d > 1.
Hence it suffices to show that Iµ|V0 has only one preimage in a Zariski dense subset
of V1 ⊂ Ck. This set is

S =
{(

ε12 cos
π

n1
, . . . , εq2 cos

π

nq

)
| ni > N0

}
for some N0 sufficiently large, where the coefficients εi = ±1 are chosen so that
Iµ(χ0) = (ε12, . . . , εq2). We have that for χ ∈ X(M) in a neighborhood of χ0, if
Iµ(χ) ∈ S then χ is the character of the holonomy of a hyperbolic orbifold, and
therefore it is unique by Mostow rigidity.

Along this proof we have used twice that deformations of the holonomy imply
deformations of the structure (every time we used Mostow rigidity). The techniques
in Paragraph B.1.3 below apply to construct such deformations of structures.

Remark B.1.3. — A stronger version of this theorem can be found in Kapovich’s book,
[Kap, Thm. 9.34 and Remark 9.41], where the dimension of certain cohomology
groups with twisted coefficients are computed. These computations are an infinites-
imal rigidity result, similar to rigidity results of Calabi-Weil [Wei], Raghunathan
[Rag] and Garland [Garl], and they imply Theorem B.1.2 above.

B.1.2. Dehn filling coefficients. — In order to define the Dehn filling coefficients
(pj , qj), we must introduce first the holomorphic parameters uj and vj . Following
[Thu1], if we view the holonomy of µj and λj as affine transformations of C =
∂H3 − {∞} (∞ being a point fixed by µj and λj), uj and vj are branches of the
logarithm of the linear part of the holonomy of µj and λj respectively. For the
definition we use branched coverings.

Definition B.1.4. — Let U ⊂ Ck be a neighborhood of the origin and W ⊂ X(M) a
neighborhood of χ0. We define π : U → W to be the branched covering such that

Iµjπ(u) = εj2 cosh(uj/2) for every u = (u1, . . . , uk) ∈ U,

and εj ∈ {±1} is chosen so that Iµj (π(0)) = χ0(µj) = trace(ρ0(µj)) = εj2.

Remark B.1.5. — From this definition, u = (u1, . . . , uk) is just the parameter of a
neighborhood of the origin U ⊂ Ck and its geometric interpretation comes from the
branched covering π : U → V ⊂ X(M). We also remark that π(u) = χ0 iff u = 0.
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Now we shall associate a representation to each u ∈ U by considering an analytic
section

s :V ⊂ X(M) −→ R(M)

such that s(χ0) = ρ0. This section may be constructed easily by using [CS,
Prop. 3.1.2] or [Po1, Prop. 3.2]. We use the notation:

ρu = s(π(u)) ∈ R(M) for every u ∈ U.

Lemma B.1.6. — For j = 1, . . . , k, there is an analytic map Aj : U → SL2(C) such
that for every u ∈ U :

ρu(µj) = εjAj(u)
(
euj/2 1
0 e−uj/2

)
Aj(u)−1 with εj = ±1.

Proof. — Let εj ∈ {±1} be such that Iµj (χ0) = χ0(µj) = εj2. We fix a vector
w2 = (w1

2 , w
2
2) ∈ C2 that is not an eigenvector for ρ0 and we set

w1(u) =
(
w1

1(u), w
2
1(u)

)
= (εjρu(µj) − e−uj/2)w2.

Since εje
±uj/2 are the eigenvalues for ρu(µj), the following is the matrix of a change

of basis that has the required properties for the lemma:

Aj(u) =
1√

w1
1(u)w

2
2 − w2

1(u)w
1
2

(
w1

1(u) w1
2

w2
1(u) w2

2

)
.

Lemma B.1.7. — There exist unique analytic functions vj , τj : U → C such that
vj(0) = 0 and for every u ∈ U :

ρu(λj) = ±Aj(u)
(
evj(u)/2 τj(u)

0 e−vj(u)/2

)
Aj(u)−1.

In addition:

i) τj(0) ∈ C − R;
ii) sinh(vj/2) = τj sinh(uj/2);
iii) vj is odd in uj and even in ul, for l �= j;
iv) vj(u) = uj(τj(u) +O(|u|2)).

Proof. — The existence and uniqueness of vj and τj , as well as point ii), follow
straightforward from the commutativity between λj and µj . We remark that the
uniqueness of vj uses the hypothesis vj(0) = 0, because this fixes the branch of the
logarithm. To prove i) we recall that ρ0(µj) and ρ0(λj) generate a rank two parabolic
group, because ρ0 is the holonomy of a complete structure. In particular 1 and τj(0)
generate a lattice in C and therefore τj(0) �∈ R.

To prove iii) we remark that the points (±u1,±u2, . . . ,±uk) project to the same
character in X(M) independently of the signs ±, hence:

vj(±u1,±u2, . . . ,±uk) = ±vj(u1, u2, . . . , uk).
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This equality, combined with points i) and ii) imply that vj is odd in uj and even in
ul for l �= j. Finally, iv) follows easily from the previous points.

Definition B.1.8. — [Thu1] For u ∈ U we define the generalized Dehn filling coeffi-
cients of the j-th cusp (pj , qj) ∈ R2 ∪ {∞} ∼= S2 by the formula:{

(pj , qj) = ∞ if uj = 0
pjuj + qjvj = 2π

√
−1 if uj �= 0

The equality vj = uj(τj(u) +O(|u|2)), with τj(0) ∈ C − R, implies:

Proposition B.1.9. — The generalized Dehn filling coefficients are well defined and

U −→ S2 × · · · × S2

u �−→ (p1, q1), . . . , (pk, qk)

defines a homeomorphism between U and a neighborhood of {∞, . . . ,∞}.

B.1.3. Deforming developing maps. — Let D0 : ĩntM → H3 be the develop-
ing map for the complete structure on int(M), with holonomy ρ0. The following
proposition completes the proof of Theorem B.1.1.

Proposition B.1.10. — For each u ∈ U there is a developing map Du : ĩntM → H3

with holonomy ρu, such that the completion of intM is given by the generalized Dehn
filling coefficients of u.

Proof. — We write int(M) = N ∪ C1 ∪ · · · ∪ Ck, where N ∼= M is a compact core
of int(M), Cj

∼= T 2 × [0,+∞), Cj ∩ N ∼= T 2 × [0, 1] and Cj ∩ Cl = ∅ for j �= l. We
construct Du separately for Ñ and for C̃j , and then glue the pieces. We construct a
family of maps {Du}u∈U that will be continuous on u for the compact C1-topology.
This means that if {un}n∈N is a sequence in U converging to u∞ ∈ U , then Dun

converges to Du∞ uniformly on compact subsets, and the tangent map of Dun also
converges to Du∞ uniformly on compact subsets.

Lemma B.1.11. — There exists a family of local diffeomorphism D0
u : Ñ → H3, which

depends on u ∈ U continuously for the compact C1-topology, such that D0
u is ρu-

equivariant and D0
0 = D0| eN .

Proof. — This is a particular case of [CEG, Lemma 1.7.2], but we repeat their proof
here because we will use the gluing technique. We fix u ∈ U and we construct D0

u a
family continuous on u for the compact C1-topology.

We start with a finite covering {U1, . . . , Un} of a neighborhood of N . Let p :
˜int(M) → M denote the universal covering projection and let V1 be a connected
component of p−1U1 = �

γ∈π1
γV1. We define ∆1 : V1 → H3 to be the restriction of D0

0

and we extend it ρt-equivariantly to p−1U1 = �
γ∈π1

γV1.
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We would like to define ∆i : p−1Ui → H3 in the same way and to construct D0
u by

gluing ∆1, . . . ,∆n, but we must be careful with the equivariance and the continuity on
u for the compact C1-topology. The next step will be to try to extend ∆1 to a map on
p−1U1 ∩ p−1U2. To be precise, we take {U ′

1, . . . , U
′
n} a shrinking of {U1, . . . , Un} that

covers N and we will define ∆2 : p−1U ′
1 ∩ p−1U ′

2 → H3 as an extension of ∆1|p−1U ′
1
.

Thus we define ∆2|p−1U ′
1
= ∆1|p−1U ′

1
and we extend it to p−1U ′

2 as follows.
We choose V2 a connected component of p−1U2 and V ′

2 a connected component of
the smaller neighborhood p−1U ′

2 which is contained in V2. In particular

V ′
2 ⊂ int(V2).

Let φ : V2 → [0, 1] a C∞-bump function such that:

– φ restricted to V ′
2 ∩ p−1U ′

1 is constant equal to 1,
– the closure of the support of φ is contained in V2 ∩ p−1U1.

By using φ, we define f : V2 → H3 as:

f = φ∆1 + (1 − φ)D0
0 .

This is, f equals ∆1 on the intersection V ′
2 ∩ p−1U ′

1 and equals D0
0 on V2 − p−1U1. In

addition f depends continuously on u for the compact C1-topology (we remark that
φ is independent of u). We define ∆2|V ′

2
= f |V ′

2
and we extend it ρu-equivariantly

to p−1U ′
2 = �

γ∈π1
γV ′

2 . In this way ∆2 is ρu-equivariant and the construction depends

continuously on u for the compact C1-topology.
Now we can continue by an inductive process and make successive shrinking to get

D0
u defined on a neighborhood of Ñ . Finally, since D0

0 is a local diffeomorphism and
N is compact, the compact C1-topology implies that D0

u is a local diffeomorphism for
u close to 0.

Lemma B.1.12. — There exists a family of local embeddings Dj
u : C̃j → H3 which is

continuous on u ∈ U for the compact C1-topology, such that Dj
u is ρu-equivariant,

Dj
0 = D0| eCj

and the structure on Cj can be completed as described by the generalized
Dehn filling parameters.

Before proving this lemma, we prove the following one, that concludes the proof of
Proposition B.1.10.

Lemma B.1.13. — There exists a family of local embeddings Du : ĩnt(M) → H3 which
depends continuously on u ∈ U for the compact C1-topology, such that Du is ρu-
equivariant and D0 is the developing map of the complete structure on int(M). In
addition, away from a compact set it coincides with the maps D1

u, . . . D
k
u of Lemma

B.1.12.

Proof of Lemma B.1.13. — We already have D0
u and Dj

u, defined on the respective
universal coverings ofN and Cj . We want to glue these maps by using bump functions
again. Recall that Cj

∼= T 2 × [0,+∞) and N ∩ Cj
∼= T 2 × [0, 1]. Thus it suffices to
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work with a partition of the unit, subordinate to the covering {[0, 3/4), (1/4, 1]} of
the interval [0, 1], to glue the maps on the universal coverings.

Proof of Lemma B.1.12. — The universal covering C̃j is homeomorphic to R2 ×
[0,+∞). We suppose that the action of the fundamental group is given by:

µj : R2 × [0,+∞) −→ R2 × [0,+∞)

(x, y, t) �−→ (x+ 1, y, t)
and

λj : R2 × [0,+∞) −→ R2 × [0,+∞)

(x, y, t) �−→ (x, y + 1, t)
.

By Lemmas B.1.6 and B.1.7, we may assume that

ρu(µj) = ±
(
euj/2 1
0 e−uj/2

)
ρu(λj) = ±

(
evj(u)/2 τj(u)

0 e−vj(u)/2

)
.

Since the cusp is complete for the initial hyperbolic structure when u = 0, we also
assume that the restriction of the developing map Dj

0 = D0|eCj
is:

Dj
0 : R2 × [0,+∞) −→ H3 ∼= C × (0,+∞)

(x, y, t) �−→ (x+ τj(0)y, et)

Here we use the half space model H3 ∼= C × (0,+∞) for the hyperbolic space.
We consider the family of maps Dj

u : R2 × [0,+∞) → H3 defined by

Dj
u(x, y, t) =


(
eujx+vj(u)y − 1
euj/2 − e−uj/2

, et+Re(ujx+vj(u)y)

)
if uj �= 0;

(x+ τj(u)y, et) if uj = 0.

The map Dj
u is ρu-equivariant and it is also a local diffeomorphism. Since vj(u) =

uj(τj(u) +O(|u|2)), Dj
u varies continuously on u ∈ U for the compact C1-topology.

The following claim finishes the proof of the lemma.

Claim B.1.14. — The hyperbolic structure on Cj induced by Dj
u is complete iff uj = 0.

If uj �= 0 then the metric completion of Cj is the completion described by the Dehn
filling parameters.

Proof. — When uj = 0, the structure is complete since it is the quotient of a horoball
by a rank two parabolic group (cf. [BP] or [Rat]).

We assume that uj �= 0. For every t ∈ [0,+∞), Dj
u(R2 × {t}) is the set of points

that are at distance d(t) from the geodesic γ having end-point

γ ∩ ∂H3 =
{

−2
sinh(uj/2)

,+∞
}
.

The distance d(t) satisfies

sinh(d(t)) 2 | sinh(uj/2)|et = 1.

In particular, for a fixed u ∈ U , d(t) → 0 when t → +∞, and

Dj
u

(
R2 × [t,+∞)

)
= Nd(t)(γ) − γ,

where Nd(t)(γ) is the tubular neighborhood of γ of radius d(t).
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We deal first with the case where (pj , qj) is a pair of coprime integers. Let rj , sj ∈ Z
be such that pjsj − qjrj = 1. Consider the linear isomorphism

Φ : R2 −→ R2

(a, b) �−→ (pja+ rjb, qja+ sjb)

The equality pjuj + vjqj = 2π
√

−1 implies that

Dj
u(Φ(a, b), t) =

(
ea2π

√
−1+blj − 1

euj/2 − e−uj/2
, et+b Re(lj)

)
where lj = rjuj + sjvj . An easy computation shows that

Re(lj) = Im(ujvj)/(2π),

which is non-zero, because vj(u) = uj(τj(u) +O(|u|2) and Im(τj(0)) �= 0.
It follows that for every t > 0, Dj

u : R2 × [t,+∞) → H3 factorizes to a homeomor-
phism

(R2 × [t,+∞))
/

〈pjµj + qjλj〉 ∼= Nd(t)(γ) − γ,

where 〈pjµj+qjλj〉 denotes the cyclic group generated by pjµj+qjλj . In addition, the
holonomy of rjµj+sjλj preserves γ and acts on γ as a translation of length Re(lj) �= 0.
It follows that the completion of Cj is obtained by adding the quotient of γ by this
translation, and topologically this is the Dehn filling with meridian pjµj + qjλj .

Next we study the case where pj/qj ∈ Q ∪ {∞}. Let (mj , nj) be a pair of coprime
integers such that mj/nj = pj/qj and set αj = 2πmj/pj . Consider the singular space
H3

αj
defined in the first chapter. The developing map Dj

u : C̃j → H3 − γ induces a
developing map D′

u : C̃j → H3
αj

− Σ, because the universal coverings of H3 − γ and
of H3

αj
− Σ are isometric. Now the discussion in the precedent case applies, and we

conclude that the completion of Cj consist of adding a singular geodesic, with cone
angle αj , and the topological filling meridian is mjµj + njλj .

In the last case, where pj/qj ∈ R − Q, the holonomy of Cj acts faithfully on the
geodesic γ. Since π1(Cj) ∼= Z ⊕ Z, this action is non discrete. It follows easily that
the completion cannot be Hausdorff.

This finishes the proof of the claim, of Proposition B.1.10 and of Theorem B.1.1.

The proof yields not only the existence of a one parameter family of cone 3-manifold
structures but also gives a path of corresponding holonomies in the variety R(M)
of representations of π1(M) into SL2(C). A corollary of the proof of Thurston’s
hyperbolic Dehn filling theorem is the following:

Corollary B.1.15. — For any real numbers α1, . . . , αk ≥ 0 there exist ε > 0 and a path
γ : [0, ε) → R(M), such that, for every t ∈ [0, ε), γ(t) is a lift of the holonomy of a
hyperbolic structure on M corresponding to the generalized Dehn filling coefficients(

(p1, q1), . . . , (pk, qk)
)
=
(
(2π/(α1t), 0), . . . , (2π/(αkt), 0)

)
.

ASTÉRISQUE 272



B.2. THE ORBIFOLD CASE 187

When αjt = 0, the structure at the j-th cusp is complete; otherwise its completion
is a cone 3-manifold obtained by adding to T 2

j a solid torus with meridian curve µj

and singular core with cone angle αjt.

B.2. The orbifold case

B.2.1. Dehn filling on orbifolds. — Let O be a compact 3-orbifold whose bound-
ary components are Euclidean 2-orbifolds. Each component of ∂O is one of the fol-
lowing:

– a 2-torus T 2 ∼= S1 × S1;
– a pillow P = S2(2, 2, 2, 2) ∼= T 2

/
(Z/2Z);

– a turnover S2(n1, n2, n3) with 1
n1

+ 1
n2

+ 1
n3

= 1.

A turnover cannot bound the quotient of a solid torus, hence we cannot do any
Dehn filling on it. This is coherent with the fact that turnovers are rigid, and do not
allow to define Dehn filling parameters. For a 2-torus T 2, we define the Dehn filling
coefficients exactly in the same way as for manifolds. Next we give the details of the
definition for a pillow.

Definition B.2.1. — A solid pillow is a 3-ball with two unknotted singular arcs with
ramification indices 2. In a solid pillow, a meridian disc is a proper non-singular
disc of the solid pillow that splits it into two balls with a singular arc each one (see
Figure 1).

Figure 1. The solid pillow. Its boundary is the pillow. The figure on the

right represents a meridian disc in the solid pillow.

A meridian disc in a solid pillow is unique up to orbifold isotopy. The solid pillow
is the quotient of the solid torus by Z/2Z, and the meridian disc of the solid pillow
lifts to two parallel meridian discs of the solid torus.

The boundary of the solid pillow is the pillow S2(2, 2, 2, 2), hence we have the
following definition.

Definition B.2.2. — Let O be a 3-orbifold, let P ⊂ ∂O be a boundary component
with P ∼= S2(2, 2, 2, 2), and let µ ⊂ P be a simple closed curve that splits P into two
discs with two cone points each one. The Dehn filling of O with surgery meridian
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µ is the orbifold O ∪φ S, where S is a solid pillow and φ : P → ∂S is an orbifold
homeomorphism that identifies µ with the boundary of a meridian disc.

As for manifolds, the Dehn filling only depends on the orbifold isotopy class of the
surgery meridian. To describe the orbifold isotopy classes of these curves, we need
to recall some elementary facts about the fundamental group of the pillow. Since
S2(2, 2, 2, 2) ∼= T 2

/
(Z/2Z), we have an exact sequence:

1 −→ Z ⊕ Z −→ π1(S2(2, 2, 2, 2)) −→ Z/2Z −→ 1.

The sequence splits, and the generator of Z/2Z acts on Z⊕Z by mapping each element
to its inverse.

We list some elementary properties of the fundamental group of an orbifold in the
following lemma, whose proof is an easy exercise.

Lemma B.2.3. — Given γ ∈ π1(S2(2, 2, 2, 2)) with γ �= 1, then:

i) Either γ is torsion free or has order two.
ii) The element γ is torsion free iff γ ∈ ker

(
π1(S2(2, 2, 2, 2)) → Z/2Z

) ∼= Z ⊕ Z.
iii) If γ is torsion free, then γ is represented by n times a simple closed loop that

splits S2(2, 2, 2, 2) into two discs with two singular points each one.

Definition B.2.4. — We call ker
(
π1(S2(2, 2, 2, 2)) → Z/2Z

) ∼= Z ⊕ Z the torsion free
subgroup of π1(S2(2, 2, 2, 2)).

Remark B.2.5. — For a Dehn filling on a pillow, the surgery meridian gives, up to sign,
a primitive element of the torsion free subgroup of π1(S2(2, 2, 2, 2)). Thus, to describe
a Dehn filling it suffices to give a primitive element of the torsion free subgroup, up
to sign.

B.2.2. The hyperbolic Dehn filling theorem. — Let O be a compact 3-orbifold
with boundary such that int(O) is hyperbolic with finite volume. Each boundary
component of O is a Euclidean 2-orbifold. As for manifolds, the completion of the
deformed hyperbolic structures on int(O) is described by generalized Dehn filling
parameters. Assume that ∂O has

– k non-singular tori,
– l pillows, and
– m turnovers,

with k + l > 0. For each torus T 2
j in ∂O, we fix µj and λj two generators of π1(T 2

j ),
that are represented by two simple loops in T 2

j . For each pillow P 2
j in ∂O, we also fix

µj and λj two generators of the torsion free subgroup of π1(P 2
j ), that represent two

simple closed curves in P 2
j (each curve bounds a disc with two cone points).

For a torus T 2
j (j ≤ k), the interpretation of the the generalized Dehn filling

coefficients is the same as in the manifold case. For a pillow P 2
j (k + 1 ≤ j ≤ k + l),

we also associate generalized Dehn filling coefficients (pj , qj) ∈ R2 ∪ {∞} such that
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(pj , qj) = ∞ iff the structure at the j-th cusp is complete. When (pj , qj) ∈ R2 the
interpretation is very similar to the manifold case:

– If pj , qj ∈ Z are coprime, then the completion at the j-th end is a non-singular
hyperbolic 3-orbifold, which topologically is the Dehn filling with surgery merid-
ian pjµj + qjλj .

– When pj/qj ∈ Q ∪ {∞}, let mj , nj ∈ Z be coprime integers such that pj/qj =
mj/nj . The completion is a cone 3-manifold obtained by gluing a solid pillow
with singular core. This core is a segment with silvered boundary (see Fig-
ure 2), and therefore there are singularities which are not of cyclic type. The
surgery meridian is mjµj + njλj and the cone angle of the singular component
is 2π|mj/pj|.

– When pj/qj ∈ R − Q, the completion (by equivalence classes of Cauchy se-
quences) is not topologically a manifold. These singularities are called of Dehn
type, cf. [Ho2].

Figure 2. The solid pillow with a singular soul with cone angle α.

Theorem B.2.6 (Thurston’s hyperbolic Dehn filling for orbifolds [DuM ])
There exists a neighborhood of {∞, . . . ,∞} in S2 × · · · × S2 ∼= (S2)k+? such that

the complete hyperbolic structure on int(O) has a space of hyperbolic deformations
parametrized by the generalized Dehn filling coefficients in this neighborhood.

Proof. — The proof has the same steps as in the manifold case, but it is more
involved. We give the three main steps in the next three paragraphs.

B.2.3. Algebraic deformation of holonomies. — The holonomy representation
of π1(O) into PSL2(C) may not lift to a representation into SL2(C), because π1(O)
has elements of finite order which are rotations. One could work with the variety of
representations into PSL2(C), but in order to use some results of Section B.1, we will
work with representations of O−Σ into SL2(C), where Σ is the ramification set of O.

Assume that Σ consists of n0 circles and n1 arcs (thus it has n0 +n1 components).
Let γ1, . . . , γn0+n1 ∈ π1(O − Σ) represent meridians of the components of Σ. Let
ρ0 : π1(O − Σ) → SL2(C) denote a lift of the restriction of the holonomy of int(O).
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Its character is denoted by χ0. We define:

R(O) = {ρ ∈ R(O − Σ) | trace(ρ(γj)) = trace(ρ0(γj)), for j = 1, . . . , n0 + n1},
X (O) = {χ ∈ X(O − Σ) | χ(γj) = χ0(γj), for j = 1, . . . , n0 + n1}.

A representation in R(O) composed with the natural projection SL2(C) → PSL2(C)
factors to a representation π1(O) → PSL2(C) because the restriction trace(ρ(γj)) =
trace(ρ0(γj)) implies that ρ(γj) is a rotation of the same angle as ρ0(γj). For the
same reason, if χρ ∈ X (O), then ρ factors to a representation π1(O) → PSL2(C).

The elements µ1, . . . , µk+l ∈ π1(O) represent a family of simple closed curves, one
for each boundary component of O different from a turnover. As in the manifold case,
we consider the map

Iµ = (Iµ1 , . . . , Iµk+l
) : X (O) −→ Ck+l.

Let χ0 be the character of the holonomy ρ0 of the complete structure on intO.

Theorem B.2.7. — The map Iµ = (Iµ1 , . . . , Iµk+l
) :X (O) → Ck+l is locally bianalytic

at χ0.

Proof. — The proof or the theorem follows the same scheme as the proof of Theo-
rem B.1.2 in the manifold case. The only difference is the lower bound of the dimension
of X0(O), where X0(O) is a component of X (O) that contains χ0. This is done in the
following lemma.

Lemma B.2.8. — dim(X0(O)) ≥ k + l.

Proof of Lemma B.2.8. — Let X0(O−Σ) be a component of X(O−Σ) that contains
X0(O). Let N (Σ) denote a tubular neighborhood of Σ. By Thurston’s estimate
[Thu1, Thm 5.6], see also [CS, Thm. 3.2.1], we have that

dim(X0(O − Σ)) ≥ k + n0 − 3
2
χ(∂(O − N (Σ))),

because k+n0 is the number of torus components of ∂(O−N (Σ)). Since each pillow
meets 4 singular arcs, each turnover meets 3 singular arcs, and each singular arc meets
the boundary twice, we have that

4l + 3m = 2n1.

In addition the Euler characteristic of the boundary is

χ(∂(O − N (Σ))) = −m− 2l.

Combining these equalities, Thurston’s estimate can be reformulated as:

dim(X0(O − Σ)) ≥ k + n0 + n1 + l.

Since X0(O) is a subset of X0(O − Σ) defined by n0 + n1 equations, lemma B.2.8
follows. This also finishes the proof of Theorem B.2.7
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B.2.4. Generalized Dehn filling coefficients. — As in the manifold case, by
using Theorem B.2.7, we choose a neighborhood V ⊂ X (O) of χ0, a neighborhood
U ⊂ Ck+l of the origin, and a branched covering π : U → V ⊂ X (O) of order 2k+l

defined by

Iµj (π(u)) = Iµj (π(u1, . . . , uk+l)) = εj2 cosh(uj/2) for j = 1, . . . , k + l,

where the coefficients εj ∈ {±1} are chosen so that Iµj (χ0) = trace(ρ0(µj)) = εj2.
Following the manifold case, we choose an analytic section s : V → R(O) and we

use the notation ρu = s(π(u)) ∈ R(O).
Recall that for j = 1, . . . , k, the j-th boundary component of O is a torus Tj and

µj and λj generate π1(T 2
j ). For j = k + 1, . . . , k + l, the j-th boundary component

of O is a pillow Pj and µj and λj generate the torsion free subgroup of π1(Pj). We
choose θj ∈ π1(Pj) any element of order two, so that the following is a presentation
of the fundamental group

π1(Pj) = 〈µj , λj , θj | µjλj = λjµj , θ
2
j = 1, θjµjθj = µ−1

j , θjλjθj = λ−1
j 〉.

We recall that π1(Pj) is a quotient of π1(Pj − Σ).

Lemma B.2.9. — Let µ̃j , θ̃j ∈ π1(Pj − Σ) be two elements that project to µj , θj ∈
π1(Pj).

i) For j = 1, . . . , k + l, there is an analytic map Aj : U → PSL2(C) such that for
every u ∈ U :

ρu(µ̃j) = εjAj(u)
(
euj/2 1
0 e−uj/2

)
Aj(u)−1.

ii) In addition, for j = k + 1, . . . , k + l, Aj : U → PSL2(C) satisfies:

ρu(θ̃j) = ±Aj(u)
(

i 0
−i(euj/2 − e−uj/2) −i

)
Aj(u)−1

where i =
√

−1.

Proof. — We give only the proof for pillows, the proof for tori being the proof of
Lemma B.1.6. We fix w3 ∈ C2 such that w3 is not an eigenvector for ρu(θ̃j) and
set w2(u) = (ρu(θ̃j) − i)w3 �= 0, so that (ρu(θ̃j) + i)w2(u) = 0, because ±i are the
eigenvalues for ρu(θ̃j).

The matrix ρ0(µ̃j) is parabolic, hence it does not diagonalize. This means that
ρ0(µ̃j) has only a one dimensional eigenspace with eigenvalue εj . Therefore, up to
replacing i by −i, we have:

ker(ρ0(µ̃j) − εj Id) ∩ ker(ρ0(θ̃j) + i Id) = {0}.

In particular w2(u) = (w1
2(u), w

2
2(u)) is not an eigenvector for ρ0(µ̃j). As in Lemma

B.1.6, we take w1(u) = (w1
1(u), w2

1(u)) = (εjρu(µj)− e−uj/2)w2, where εj = ±1 is the
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eigenvalue for ρ0(µ̃j). We define:

Aj(u) =
1√

w1
1(u)w2

2(u) − w2
1(u)w1

2(u)

(
w1

1(u) w1
2(u)

w2
1(u) w2

2(u)

)
,

and it is clear from this construction that i) holds.
To prove ii), since (ρu(θ̃j) + i)w2(u) = 0, we have that ρu(θ̃j) is of the form:

ρu(θ̃j) = ±Aj(u)
(
∗ 0
∗ −i

)
Aj(u)−1.

Therefore point ii) follows from the fact that ρu(θ̃j) ∈ SL2(C) and from the relation
ρu(θj)ρu(µj)ρu(θ−1

j ) = ±ρu(µ−1
j ), because ρu factors to a representation of π1(Pj)

into PSL2(C).

The following lemma has exactly the same proof as Lemma B.1.7, again because
ρu factors to a representation of π1(Pj) into PSL2(C).

Lemma B.2.10. — Let λ̃j ∈ π1(Pj − Σ) be an element that projects to λj ∈ π1(Pj).
For j = 1, . . . , k + l, there exist unique analytic functions vj , τj : U → C such that
vj(0) = 0 and for every u ∈ U :

ρu(λ̃j) = ±Aj(u)
(
evj(u)/2 τj(u)

0 e−vj(u)/2

)
Aj(u)−1.

In addition:

i) τj(0) ∈ C − R;
ii) sinh(vj/2) = τj sinh(uj/2);
iii) vj is odd in uj and even in ur, for r �= j;
iv) vj = uj(τj(u) +O(|u|2)).

Following the manifold case, we define:

Definition B.2.11 ([Thu1]). — For u ∈ U and j = 1, . . . , k+l, we define the generalized
Dehn filling coefficients of the j-th cusp (pj , qj) ∈ R2 ∪ {∞} ∼= S2 by the formula:{

(pj , qj) = ∞ if uj = 0;
pjuj + qjvj = 2π

√
−1 if uj �= 0.

The following proposition follows also from Lemma B.2.10 i) and iv).

Proposition B.2.12. — The generalized Dehn filling coefficients are well defined and

U −→ S2 ×
(k+l)
· · · × S2

u �−→ (p1, q1), . . . , (pk+l, qk+l)

defines a homeomorphism between U and a neighborhood of {∞, . . . ,∞}.
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B.2.5. Deformation of developing maps. — Let D0 : ĩntO → H3 be the devel-
oping map for the complete structure on intO, with holonomy ρ0. The following is
the orbifold version of Proposition B.1.10 and completes the proof of Theorem B.2.6.

Proposition B.2.13. — For each u ∈ U there is a developing map Du : ĩntO → H3

with holonomy ρu, such that the completion of intO is given by the generalized Dehn
filling coefficients of u.

Proof. — The proof is analogous to the proof of Proposition B.1.10, but it needs to
be adapted to orbifolds.

First we need an orbifold version of Lemma B.1.11. In the proof of Lemma B.1.11
we use a finite covering {U1, . . . , Un} of a neighborhood of a compact core of the
manifold N ⊂ int(M), such that each Ui is simply connected. In the orbifold case,
we have to use simply connected subsets Ui such that if Ui ∩ Σ �= ∅ then Ui is
the quotient of a ball by an orthogonal rotation. With this choice of Ui, one can
generalize the argument in Lemma B.1.11 by using the fact that, for every torsion
element γ ∈ π1(O), the fixed point set of ρu(γ) depends analytically on u ∈ U . By
using these remarks, Lemma B.1.11 can easily be generalized to orbifolds, as well as
Lemma B.1.13.

It only remains to prove a version of Lemma B.1.12 for orbifolds. This lemma gives
the precise developing maps for the ends. In the orbifold case, we have to distinguish
the kind of end of int(O), according to the associated component of ∂O. For tori,
Lemma B.1.12 applies. We do not have to worry about turnovers because they are
rigid. Thus we only need an orbifold version of Lemma B.1.12 for pillows. It is
Lemma B.2.14 below, that concludes the proof of Proposition B.2.13. Let Cj denote
the j-th end of O. If k + 1 ≤ j ≤ k+ l then Cj

∼= Pj × [0,+∞), where Pj is a pillow.

Lemma B.2.14. — For k + 1 ≤ j ≤ k + l, there exists a family of local embeddings
Dj

u : C̃j → H3 which is continuous on u ∈ U for the compact C1-topology, such that:

i) Dj
u is ρu-equivariant,

ii) Dj
0 = D0| eCj

and
iii) the structure on Cj can be completed as described by the generalized Dehn filling

parameters.

Proof. — The universal covering C̃j is homeomorphic to R2 × [0,+∞). With the
notation above, the group π1(Cj) ∼= π1(Pj) is generated by µj , λj and θj . We may
assume that their action on C̃j by deck transformations is the following:

µj(x, y, t) = (x+ 1, y, t)
λj(x, y, t) = (x, y + 1, t)
θj(x, y, t) = (−x,−y, t)

for every (x, y, t) ∈ R2 × [0,+∞).
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By Lemmas B.2.9 and B.2.10, we may assume:

ρu(µj) = ±
(
euj/2 1
0 e−uj/2

)
, ρu(λj) = ±

(
evj(u)/2 τj(u)

0 e−vj(u)/2

)
and ρu(θj) = ±

(
i 0

−i(euj/2 − e−uj/2) −i

)
.

When u = 0, the cusp is complete and therefore the developing map Dj
0 = D0|eCj is:

Dj
0 : R2 × [0,+∞) −→ H3 ∼= C × (0,+∞)

(x, y, t) �−→ (x+ τj(0)y, et)

The family of maps Dj
u : R2×[0,+∞) → H3 that proves the lemma is the following:

Dj
u(x, y, t) =


(
a(u, t) eujx+vj(u)y − 1

euj/2 − e−uj/2
, a(u, t) et+Re(ujx+vj(u)y)

)
if uj �= 0;

(x+ τj(u)y, et) if uj = 0.

where a(u, t) =
(
1 + et|euj/2 − e−uj/2|

)−1/2
. We remark that in Lemma B.1.13 we

used the same family but with a(u, t) ≡ 1, since we did not require the equivariance
by θj .

The family Dj
u is a family of ρu-equivariant local diffeomorphisms that depends

continuously on u ∈ U for the compact C1-topology. The completion of Cj for the
structure induced by Dj

u is the one described by the Dehn coefficients and it can be
proved in the same way as Claim B.1.14.

This concludes the proof of Lemma B.2.14 and of Theorem B.2.6.

B.3. Dehn filling with totally geodesic turnovers on the boundary

The aim of this last section is to prove Proposition B.3.1, which is a version with
boundary of the hyperbolic Dehn filling theorem, used in Chapter 7.

Let N3 be a three manifold with boundary and let Σ ⊂ N3 be a 1-dimensional
properly embedded submanifold. This is the case for instance when N3 is the under-
lying space of an orbifold and Σ its branching locus.

We will assume that every component of ∂N3 is a 2-sphere that intersects Σ in
three points. We define the non-compact 3-manifold with boundary

M3 = N3 − Σ.

Each component of ∂M3 is a disjoint union of 3 times punctured spheres. Each end
of M3 is the product of [0,+∞) with a torus or an annulus, according to whether the
corresponding component of Σ is a circle or an arc.

We also assume thatM3 admits a hyperbolic structure with totally geodesic bound-
ary, whose ends are cusps (of rang one or two, according to whether the corresponding
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component of Σ is an arc or a circle). As a metric space M3 is complete of finite vol-
ume, and the boundary components are three times punctured spheres. The double
of M3 along the boundary is a complete hyperbolic manifold with finite volume and
without boundary. Let k denote the number of connected components of Σ.

Proposition B.3.1. — For any real numbers α1, . . . , αk ≥ 0 there exist ε > 0 and a path
γ : [0, ε) → R(M3), such that, for every t ∈ [0, ε), γ(t) is a lift of the holonomy of a
hyperbolic structure on M3 whose metric completion is a cone manifold structure with
totally geodesic boundary, topological type (N3,Σ), and cone angles (α1 t, . . . , αk t).

Proof. — We follow the same argument as in the proof of Theorem B.1.1. For the
algebraic part, we choose {µ1, . . . , µk} ⊂ π1(M3) a system of meridians for Σ. As in
Theorem B.1.2 we have:

Proposition B.3.2. — The map Iµ = (Iµ1 , . . . , Iµk
) : X(M3) → Ck is locally bianalytic

at χ0, where χ0 is the character of the lift of holonomy of the complete structure on
M3.

The proof of Proposition B.3.2 follows precisely the same argument as Theorem
B.1.2: Thurston’s estimate gives dim(X0(M3)) ≥ k, and one can also apply the
argument about Mostow rigidity to the double of M3. Moreover we use the following
lemma:

Lemma B.3.3. — Let ρ0 : π1(S2−{∗, ∗, ∗}) → SL2(R) be the holonomy of a hyperbolic
turnover or of a hyperbolic 3 times punctured sphere. Let {ρt}t∈[0,ε) be a deformation
of ρ0 in R(S2 − {∗, ∗, ∗}, SL2(C)) such that, for each meridian µ ∈ π1(S2 − {∗, ∗, ∗})
and for each t ∈ (0, ε), ρt(µ) is a rotation. Then ρt is conjugate to the holonomy of
a hyperbolic turnover (i.e. it is Fuchsian).

Proof. — If ρ0 is a holonomy representation, then ρ0 is irreducible. Since irre-
ducibility is an open property, we may assume that ρt is irreducible. The group
π1(S2 − {∗, ∗, ∗}) is free of rank 2, generated by two meridians a and b such that the
product ab is also a meridian. To prove the claim we use the fact that the conju-
gacy class of an irreducible representation is determined by the traces of a, b and ab.
Thus if ρt(a), ρt(b) and ρt(ab) are rotations, then ρt is conjugate to the holonomy of
the hyperbolic turnover that has cone angles given by ρt(a), ρt(b) and ρt(ab). This
finishes the proof.

By using the fact that deformations of holonomy imply deformations of the struc-
ture and Lemma B.3.3 we obtain the following remark:

Remark B.3.4. — When we deform the holonomy of a hyperbolic cone structure on
M3 with totally geodesic boundary so that the meridians are mapped to rotations,
then the deformed representations are still the holonomy of a hyperbolic structure
with totally geodesic boundary.
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All the explicit deformations constructed in Section B.1 can be used here, combined
with Lemma B.3.3, to prove Proposition B.3.1.
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η-covering à la Gromov, 86

µ-regular representation, 175

ε-approximation, 39

abelian subset, 85

virtually —, 110, 128

abelianity radius, 94

virtual —, 128

Ahlfors Finiteness Theorem, 137

bilipschitz map, 33

Busemann function, 72

Compactness Theorem, 34

with boundary, 57

Compactness theorem, 13

complexity, 147

cone angle, 10

cone fibre bundle, 61

cone manifold, 10

with boundary, 57

cone-injectivity radius, 11, 33

with boundary, 57

convex core, 137

thickenend, 137

cuspidal end, 138

developing map, 10

Dirichlet polyhedron, 37

domain of discontinuity, 136

geometric convergence, 12, 33

good splitting 2-suborbifold, 153

graph orbifold, 109

Hausdorff-Gromov distance, 39

holonomy representation, 10

kaleidoscope, 149

hyperbolic, 152

Kleinian group, 136

limit set, 136

local model, 125

local models, 62

Margulis’ constant, 138

mirror, 149

moduli space, 145

non-silvered boundary, 69

normal radius, 59

orbifold

∂-incompressible, 3

∂-parallel, 3

annular, 3

bad, 3

compressible, 3

cyclic type, 1

Dehn filling, 187

discal, 3

essential, 4, 5

Euclidean, 4

good, 1

Haken, 2, 131

homotopically atoroidal, 136

hyperbolic, 4

geometrically finite, 137

incompressible, 3

irreducible, 3

Kleinian, 136

mirrored, 148

pared, 139

Haken, 139

hyperbolic, 139

space of hyperbolic structures, 141
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small, 2, 119
spherical, 3, 4
strong hierarchy, 132
topologically acylindrical, 4
topologically atoroidal, 4
toric, 3
very good, 1

orbifoldbody, 147
parabolic locus, 139

peripheral subgroup, 134
pillow, 126, 164, 187
solid, 13, 62, 107, 112, 187
thick, 13, 61, 62, 112

quasiconformal extension, 141, 142
ray, 72
s-geodesic, 65
Seifert fibration, 4
silvered boundary, 69
simplicial volume, 84
singular locus, 10

skinning map, 143
soul, 62, 64
Local Soul Theorem, 13, 61

standard ball, 10
half, 57

super-essential, 147
super-incompressible, 139
super-incompressible boundary, 143
Teichmüller

distance, 141
space, 141

thin part, 138
topological type, 10
totally geodesic, 65
turnover, 2, 4
thick, 2, 13, 62, 98

underlying type of a mirrored 3-orbifold, 149
variety of characters, 148, 161, 171, 175
ideal point, 166, 176

variety of representations, 16, 175

ASTÉRISQUE 272


