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Abstract. — We study the generalized Whittaker models for irreducible admissible
highest weight modules L(7) for a connected simple Lie group G of Hermitian type,
by using certain invariant differential operators D, of gradient type on the Hermi-
tian symmetric space K\G. It is shown that each L(7) embeds, with nonzero and
finite multiplicity, into the generalized Gelfand-Graev representation I';,(,) attached
to the unique open orbit Oy, (,y (through the Kostant-Sekiguchi correspondence) in
the associated variety V(L(7)) of L(7). The embeddings can be intrinsically analyzed
by means of the Cayley transform which carries the bounded realization of K\G to
unbounded one. If L(7) is unitarizable, the space Y(7) of infinitesimal homomor-
phisms from L(7) into I'y,(,) can be described in terms of the principal symbol at
the origin of the differential operator D,«. For the classical groups G = SU(p,q),
Sp(n,R) and SO*(2n), the space Y(7) is clearly understood through the oscillator
representations of reductive dual pairs.

Résumé (Transformation de Cayley et modéles de Whittaker généralisés pour les modules
irréductibles de plus haut poids)

Soit G un groupe de Lie connexe simple de type hermitien. On considére les G-
modules irréductibles admissibles L(7) de plus haut poids. Dans cet article, nous
étudions les modéles de Whittaker généralisés pour L(7) en utilisant certains opé-
rateurs différentiels de type gradient D,» sur I’espace hermitien symétrique K\G. I
est montré que chaque L(7) apparait, avec une multiplicité finie et non nulle, dans la
représentation de Gelfand-Graev généralisée I';,(r) qui est attachée a I'unique orbite
ouverte Oy, () (par la correspondance de Kostant-Sekiguchi) dans la variété V(L(7))
associée & L(7). On peut analyser intrinséquement les isomorphismes de L(7) dans
T, (r) au moyen de la transformation de Cayley qui donne un rapport entre la réali-
sation de K\ G comme domaine borné et celle comme domaine non borné. Si L(7) est
unitarisable, 'espace Y(7) des homomorphismes infinitésimaux de L(7) dans Iy, ;)
s’exprime par le symbole principal 4 'origine de 1’opérateur différentiel D,«. Pour les
groupes classiques G = SU(p, q), Sp(n,R) et SO*(2n), on peut comprendre ’espace
Y(7) en utilisant les représentations oscillateur pour les paires duales réductives.
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Introduction

For a semisimple algebraic group G, the generalized Gelfand-Graev representations
introduced by Kawanaka [14] form a family of representations of G induced from cer-
tain one-dimensional characters of various unipotent subgroups. By construction,
each of these induced G-modules is naturally attached to a nilpotent G-orbit Og in
the Lie algebra through the Dynkin-Kostant theory. The original (non generalized)
Gelfand-Graev representations are induced from nondegenerate characters of a max-
imal unipotent subgroup, and they correspond to the principal nilpotent orbits. We
say that an irreducible representation 7 of G has a generalized Whittaker model of
type Og if 7 admits an embedding into the generalized Gelfand-Graev representation
attached to Og. The problem of describing the generalized Whittaker models is im-
portant not only in representation theory but also in connection with the theory of
automorphic forms.

Generalized Whittaker models (or vectors) for irreducible representations of G have
been studied by many authors (e.g., [14], [15], [26], [22], [24], [39], etc.). For real or
complex groups, it is Kostant [18] who initiated a systematic study on the existence
of nonzero Whittaker vectors attached to the principal nilpotent orbits of quasi-split
groups, in connection with the primitive ideals of the irreducible representations in
question. Later, some results of Kostant have been extended by Matumoto to those
on generalized Whittaker vectors associated to arbitrary (not necessarily principal)
nilpotent orbits Og. In fact, it is shown in [22] that the Harish-Chandra module of
an irreducible admissible representation 7 has a nonzero generalized Whittaker vector
of type Og only if the nilpotent orbit Og is contained in the associated variety of
the primitive ideal Ann 7 in the universal enveloping algebra. For complex groups G,
one of the main results in [24] tells us that, under certain assumptions on Og and
on 7, the space of C~*°-generalized Whittaker vectors of type Og is nonzero and
finite-dimensional if and only if the closure of O¢ coincides with the wave front set
of .

As to p-adic groups, Moeglin and Waldspurger have already established in 1987 a
stronger result of this nature, by showing that the wave front cycle (asymptotic cycle)
of an irreducible representation n of G completely controls the spaces of generalized
Whittaker vectors of interest. Namely, it is proved in [26] that, if O¢ is a nilpotent
orbit which is maximal in the wave front set (asymptotic support) of , the dimension
of the space of generalized Whittaker vectors of type Og is equal to the multiplicity of
Og in the wave front cycle. However, up to this time, the corresponding phenomenon
is not yet fully understood in the case of real groups, except for the representations
with the largest Gelfand-Kirillov dimension (see [23] and [25]).

In this article, we focus our attention on the irreducible admissible (unitary) highest
weight representations of real simple Lie groups. These are representations with rather
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GENERALIZED WHITTAKER MODELS 83

small Gelfand-Kirillov dimensions. We reveal a structure of the spaces of generalized
Whittaker models in relation to the associated cycles of highest weight modules.

Now, let G be a connected simple Lie group with finite center, and let K be
a maximal compact subgroup of G. Assume that K\G is Hermitian symmetric.
The Lie algebras of G and K are denoted by go and & respectively. We write K¢
(resp. g, %) for the complexifications of K (resp. go, o) respectively. Let g = £+ p
be a complexified Cartan decomposition of g, and let 6 denote the corresponding
Cartan involution of g. The G-invariant complex structure on K\G gives a triangular
decomposition g = p4 + €+ p_ of g. Conventionally, the complexification in g of any
real vector subspace so of go will be denoted by s by dropping the subscript 0. We
write U(m) (resp. S(v)) for the universal enveloping algebra of a Lie algebra m (resp.
the symmetric algebra of a vector space v).

The group G of Hermitian type has a distinguished family of irreducible admissible
Hilbert representations with highest weights. The Harish-Chandra module of such a
G-representation is obtained as the unique simple quotient L(7) of generalized Verma
module induced from an irreducible representation (7,V;) of K. Here 7 is extended
to a representation of the maximal parabolic subalgebra q := € + p4 of g by making
p+ act on V; trivially. We call 7 the extreme K-type of L(7).

The purpose of this paper is to describe the generalized Whittaker models for
irreducible highest weight (g, K)-modules L(7). To be more precise, let {Op, | m =
0,...,7} be the totality of nilpotent Kc-orbits in the nilradical p; of q, arranged as
dim Q0 =0 < dimO; < -+ < dim O, = dimp;. We write O;, for the the nilpotent
G-orbit in gg corresponding to O,, by the Kostant-Sekiguchi bijection. Following the
recipe by Kawanaka [14] (see also [40]), we can construct a generalized Gelfand-Graev
representation I'y, = Indf(m)(nm) (GGGR for short; see Definition 4.3) of G attached
to O!,. On the other hand, it is well-known that the associated variety V(L(7)) of
a highest weight module L(7) is the closure of a single Kc-orbit Op,(;) in p4, where
m(7) depends on 7. Then our aim is to specify the (g, K)-embeddings of L(7) into
these GGGRs I'y, (m = 0,...,r). This is a continuation of our earlier work [41] on
Whittaker models for the holomorphic discrete series.

In order to specify the embeddings, we use the invariant differential operator D, -
on K\G of gradient type associated to the K-representation 7* dual to 7 (Definition
2.3). This operator D,« is due to Enright, Davidson and Stanke ([2], [3], [4]). The
K-finite kernel of D« realizes the dual lowest weight module L(7)*. By virtue of the
kernel theorem given as Corollary 1.8, we find that the space Y(7,m) of n,,-covariant
solutions of the differential equation D,«F = 0 is isomorphic to the space of (g, K)-
homomorphisms in question, where 7,, is the character of nilpotent Lie subalgebra
n(m) of g that defines I';,.

The space Y(7,m) can be intrinsically analyzed by means of the unbounded real-
ization of K'\G via the Cayley transform (cf. [32], [9]). Some remarkable results of
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84 H. YAMASHITA

Enright and Joseph [5], Jakobsen [20] on the annihilator ideal of (unitarizable) high-
est weight modules are useful in the course of our study. Also, elementary properties
(cf. Vogan [33, Section 2]) on the associated (characteristic) cycle of Harish-Chandra
modules guarantee that the space )(7,m) does not vanish for the most relevant
m =m(7). As a result, we get the following conclusions (see Theorems 4.7-4.9).

Theorem 1. — L(r) embeds into the GGGR T',,, with nonzero and finite multiplicity if
and only if the corresponding Or, is the unique open Kc-orbit Op,(;) in the associated
variety V(L(7)) of L(t). In this case, the space V(1) := Y(1,m(7)) consists only of
elementary functions on the unbounded domain S (C p_) which realizes K\G.

Theorem 2. — If L(1) is unitarizable, we can specify the space Y(7) in terms of the
principal symbol at the origin Ke of the differential operator D,«. This reveals a
natural action on Y(7) of the isotropy subgroup Kc(X) of K¢ at a certain point
X € Opy(r). Furthermore, we find that the dimension of Y(7), that is, the multiplicity
of embeddings L(1) < T'py(y), coincides with the multiplicity of the S(p_)-module
L(t) at the defining ideal of V(L(7)).

For the classical groups G = SU(p,q), Sp(2n,R) and SO*(2n), the theory of
reductive dual pair gives explicit realizations of unitarizable highest weight modules
L(r) (cf. [12], [7], [3]). In this setting, it is not difficult to specify the generalized
Whittaker models for such L(7)’s more explicitly by using the oscillator representation
of a pair (G,G') with a compact group G' dual to G. In fact, this has been done
by Tagawa [31] for the case SU(p,q), motivated by author’s observation in 1997 for
the case Sp(n,R). We include this observation as well as Tagawa’s result at the end
of this paper (see Theorems 5.14 and 5.15 together with the isomorphism (4.15)),
handling all the groups SU(p, q), Sp(2n,R) and SO*(2n) in a unified manner.

The last statement in Theorem 2 clarifies the relationship between the generalized
Whittaker models and the multiplicity in the associated cycle AC(L(7)) of unitariz-
able highest weight module L(7). In fact, Y(7) turns to be the dual of the isotropy
representation of K¢(X) attached to AC(L(7)) in the sense of Vogan [33]. We note
that the associated cycle and the Bernstein degree of L(7) have been specified by
Nishiyama, Ochiai and Taniguchi [27] for the above classical groups G through de-
tailed study of K-types of L(7), where L(7) is assumed to be an irreducible constituent
of the oscillator representations of pairs (G,G') in the stable range (with smaller G').
Recently, Kato and Ochiai [13] have generalized the technique in [27] to a large ex-
tent. They established in particular a unified formula for the degrees of nilpotent
orbits O,,, which is valid for any simple Lie group of Hermitian type.

An n,-equivariant linear form on L(7) is called an (algebraic) generalized Whit-
taker vector of type n,,. Each (g, K)-embedding of L(7) into the GGGR I, com-
posed with the evaluation at the identity e € G of functions in I',,,, naturally gives rise
to a generalized Whittaker vector of type n,,, on L(7). We can show that the converse
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GENERALIZED WHITTAKER MODELS 85

is also true for the most relevant case m = m(7). Namely, it turns out that every
generalized Whittaker vector of type 7, comes from a function in the space Y(7) for
any L(7) (see Proposition 4.19). This allows us to interpret the main results of this
article in terms of algebraic generalized Whittaker vectors associated to irreducible
highest weight (g, K')-modules (Theorem 4.22).

We organize this paper as follows.

Section 1 gives general theory on the embeddings of irreducible (g, K )-modules into
induced G-representations. The kernel theorem (Corollary 1.8) is our main tool for
studying generalized Whittaker models. We introduce in Section 2 the differential
operator D,« on K\G of gradient type associated to 7*, after [4]. In addition, the
solutions F' of D« F = 0 of exponential type are specified in Proposition 2.8. Section
3 is devoted to characterizing the associated variety and multiplicity of irreducible
highest weight module L(7) by means of the principal symbol of D+ (Theorem 3.11).
In Section 4 we give our main results (Theorems 4.7-4.9) that describe the generalized
Whittaker models for L(7). Relation to algebraic generalized Whittaker vectors is
also investigated. Last in Section 5, we discuss the case of classical groups SU(p, q),
Sp(2n,R) and SO*(2n) more explicitly.

Acknowledgements. — The author would like to thank Kazuhiko Koike and Ichiro
Shimada for kind communication. He is grateful to Kyo Nishiyama, Hiroyuki Ochiai
and Kenji Taniguchi for useful discussion and comments. He also expresses his grati-
tude to the referee for offering apropos suggestions concerning the original version of
this article.

1. Embeddings of Harish-Chandra modules

This section prepares some generalities about the embeddings of irreducible Harish-
Chandra modules into C*°-induced representations of a semisimple Lie group, by
developing our earlier observation [42, I, §2] for the discrete series in full generality.
The results stated in this section are more or less folklore for the experts, or they are
consequences of some known facts concerning the maximal globalization of Harish-
Chandra modules due to Schmid and Kashiwara (cf. [29], [11]). Nevertheless we
include here the detail with direct proofs in order to keep this paper more accessible
and self-contained. In fact, a kernel theorem, Corollary 1.8, will be essentially used in
the succeeding sections to describe generalized Whittaker models for highest weight
representations.

1.1. A duality of Peter-Weyl type. — Throughout this section, let G be any
connected semisimple Lie group with finite center, and let K be a maximal compact
subgroup of G. We keep the same notation and convention employed at the beginning
of Introduction.
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86 H. YAMASHITA

A U(g)-module X is called a (g, K)-module if the subalgebra U(€) acts on X
locally finitely, and if the €-action gives rise to a representation of K on X through
exponential map. By a Harish-Chandra module, we mean a (g, K)-module of finite
length as a U(g)-module. By basic results of Harish-Chandra (see e.g., [35, Chap.3]),
any admissible (i.e., K-multiplicity finite) representation of G on a Hilbert space H
yields, through differentiation, a (g, K)-module structure on the subspace H g of all
K-finite vectors in H. The continuous G-module H is irreducible if and only if
the corresponding H g is irreducible as a (g, K)-module. Each irreducible (g, K)-
module X can be extended to an irreducible Hilbert G-module H with K-finite part
H i = X. Notice that the (g, K')-module corresponding to the irreducible G-module
H* contragredient to H is isomorphic to the K-finite part of the full dual space
X' = Homg(X,C). We denote this irreducible (g, K)-module by X*, and call it the
dual Harish-Chandra module of X.

We study in this paper the embeddings of irreducible (g, K )-modules X into certain
smoothly induced Fréchet G-modules F'. Such an F has a compatible g and K module
structure through differentiation, and its K-finite part Fg is a (g, K)-module. We
note that the image of X by any g and K homomorphism into F is necessarily
contained in F, i.e., Homg i (X, F) = Homg x (X, Fk).

The group G acts on the space C*®(G) of all smooth functions on G by left trans-
lation and by right translation as follows:

9" f(x) = flg7'z), g"f(z):=f(zg) (9€G,z€Qq,feC®Q)).

These two actions L and R commute with each other. Through differentiation one
gets two U(g)-representations on C*°(G) denoted again by L and R respectively. Let
C%(G) be the space of functions f € C*°(G) which are left K-finite and also right
K-finite. Then C$(G) becomes a (g, K')-module through L or R.

If the group G is compact, i.e., G = K, the regular representation (LR, CZ(G))
of G x G decomposes into irreducibles as

CF(G)~EPVs®Vy asG x G-modules
s5eG

by the Peter-Weyl theorem, where G denotes the set of all equivalence classes of
irreducible finite-dimensional representations of G and we write V; for an irreducible
G-module of class § € G. The following lemma says that we have a similar duality of
Peter-Weyl type for irreducible Harish-Chandra modules of noncompact semisimple
Lie groups.

Lemma 1.1. — Let X be an irreducible (g, K)-module, and let f be in C(G). Then

the (g, K)-module U(g)L f generated by f through the action L is isomorphic to X if
and only if the corresponding U(g)Rf through the action R is isomorphic to X*.
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GENERALIZED WHITTAKER MODELS 87

We give a proof below introducing some important notion which we use throughout
this paper.

Proof of Lemma 1.1. — Let us prove the if part only since the converse can be proved
in the same way. So, assume that U(g)®f ~ X* as (g, K)-modules.

Take a finite-dimensional K-module (7,V;) which is isomorphic to U (€)X f. Let
i:V, = U(®)Lf denote a K-isomorphism. We define a V;*-valued smooth function
F on G by

(F(g),v) =i(v)(g) (veVr, g€Q),
where ( -, - ) denotes the natural dual pairing on V* x V. Then it is immediate to
verify that F lies in the following space:

11) %G :={8:G SV | dkg) =1 (k)B(g) (g€ G, ke K)}.
Here (7*,V;*) denotes the representation of K contragredient to 7. The space C22(G)
has G- and U(g)-module structures through right translation R. The function F is

in the K-finite part, say C%(G)k, of C%(G) since U(E)L f C C2(G). By definition
we see

(1.2) f(g) = (F(g),i' ().

Now the assignment DEF — DRf = (DRF(.),i~1(f)) (D € U(g)) gives a (g, K)-
homomorphism from U(g)®F onto U(g)®f ~ X*. We see that this homomorphism
is injective. In fact, suppose D f = 0 for some D € U(g). It then follows that

0 = D®f(kg) = (DRF(kg),i"*(f))
= (r*(k)DRF(g),i1(f)) = (DRF(g),i (k)L f))

for all g € G and all k¥ € K. This implies that DRF = 0 since f is a K-cyclic vector
for U ()L f ~ V,. Thus we have found a (g, K)-module embedding, say Ao, from X*
into C%(G) x whose image equals U(g)F.

Let (m, H) be an irreducible admissible G-representation with Harish-Chandra
module X, and let (7*, H*) be the representation of G contragredient to m. We
have H3 = X™ as remarked before. By virtue of the Frobenius reciprocity for
smoothly induced representation Ind$ (7*) of G acting on C%(G), one obtains a
linear isomorphism

(1.4) Homy (X*, V*) ~ Homg x (X", C2(G)k),

(1.3)

which is given as follows. Take a K-homomorphism T : X* — V*. Then we can
define A(p) € CX(QG) for every ¢ € X* by

(1.5) A(p)(g) = T(r*(9)p) (g9 € G).

Here T' denotes the unique continuous extension of T : X* — V¥ to H*. Then, the
assignment T — A gives (1.4).
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We now consider our specified embedding 4y : X* ~ U(g)RF — CX(G)k. Let
Ty denote the element of Homg (X ™, V*) corresponding to Ag by (1.5). Set g :=
AFY(F) € X* and o := i~1(f) o To € X. Here v is regarded as an element of
X = ((H")*)k through

N =
1[]0 - H* To V.,-* i (f) C
with i71(f) € V; = Hom¢(V*,C). In view of (1.2) and (1.5) we find

(1.6) f(g) = (7" (9)wo, Yo) 1+ x &t = (o, 7(9) " *%ho)r-xrr (9 € G).
Finally, (1.6) implies that the map

X 3 Dipo = D' f = (po,m(g9)""Dypo) € U(g)"f (D € U(g))
gives a (g, K)-isomorphism, i.e., X ~ U(g)* f as desired. O

1.2. Maximal globalization. — Let X be an irreducible (g, K)-module. We fix
once and for all an irreducible finite-dimensional representation (7,V;) of K which
occurs in X, and fix an embedding i, : V; — X as K-modules. Then the adjoint
operator i} of i, gives a surjective K-homomorphism from X* to V;*. We denote
by A:- the (g, K)-embedding from X* into C22(G) (see (1.1)) corresponding to i*
through (1.4) and (1.5).

Equip C2(G) with a Fréchet space topology of compact uniform convergence of
functions on G and each of their derivatives. The following proposition characterizes
the closure A;+(X™)™ of A;+(X™) in CX(G).

Theorem 1.2 (cf. [29], [11]). — Under the above notation, A+ (X ™)™ is a G-submodule
of C2(G), and one gets an isomorphism of G-modules

Homy (X, C®(G) 9 W = F € A (X™)™
through

(1.7) (F(9),v) = (Woir)(v))(g) (9€G, veVr).

Here C°(G) is viewed as a smooth G-module by left translation L, and the right
action R on C*°(G) naturally gives a G-module structure on Homg (X, C*(G)).

It follows essentially from [29, page 316] that the G-module A,«(X*)™ gives a
mazimal globalization of the Harish-Chandra module X*. Namely, if a complete,
locally convex Hausdorff topological vector space F admits a continuous G-action
with underlying Harish-Chandra module X*, then the identity map on X™* extends
uniquely to a continuous embedding F — A,«(X ™)™ as G-modules. One can get the
above theorem from the first statement of Theorem 2.8, or equivalently (2.9), in [11].

In what follows, we give a direct proof of the above theorem to keep this article
self-contained. This is done by generalizing our argument in (42, I, §2].

ASTERISQUE 273



GENERALIZED WHITTAKER MODELS 89

Proof of Theorem 1.2. — Let W be a (g, K)-embedding of X into C*°(G). Since
Woi,: Ve 3 W(ir(V;)) C C®(G) is a K-isomorphism, we can see just as in the
beginning of the proof of Lemma 1.1 that there exists a unique F' € C22(G) satisfying
(1.7). It is then easy to observe that the map W — F sets up a G-homomorphism,
say T, from Homg (X, C®(G)) to C2(G) and that T is injective because of the
irreducibility of X. Hence we will get the theorem if we can show

(1.8) ImYT =A,.(X")",

where Im Y denotes the image of Y.

To prove (1.8) we use the projection to K-isotypic component. Let M be any
smooth Fréchet K-module. For each § € K, the unitary dual of K, the integral
operator ()5 defined by

Qs(v) = (dim4) - /K ") - kvdk (v € M),

gives a continuous K-equivariant projection of M onto its d-isotypic component M.
Here dk denotes the normalized Haar measure on K. By Harish-Chandra, the Fourier
series ) s g @s(v) converges absolutely to v. (cf. [36, Th.4.4.2.1]).

Now the right hand side of (1.8) is described in terms of the projections Qs as

(1.9)  A(X*)" ={FeC%(G) | F5:=Qs(F) € A,-(X*) forall § € K}.

In reality, the inclusion D is evident since the sum F' = } 5 » Fj converges in C2(G).
Conversely assume F' be in the closure A,-(X*)~. Then there exists a sequence
{F;}j=1,,. in Ar+(X") such that F = lim;_,o Fj. Since the projection Qs is con-
tinuous, one obtains Fs = lim;_,o(F})s for every 6 € K. Noting that (F})s lies
in a finite-dimensional (and hence closed) subspace A.+(X")s ~ X5, we find that
F5 € A (X*)s.

We are going to show just as in the proof of [42, I, Th.2.4] that Im T coincides
with the right hand side of (1.9) by using Lemma 1.1 instead of [42, I, Lemma 2.5].

Let F be a nonzero function in C%(G) such that F5 € A,+(X*) for every 6 € K.
We write Z for the totality of finite subsets S of K’ consisting of elements § such that
F5 #0. Define Fs € A;+«(X™) and fs, € C®°(G) by

Fs=Y_F5, fsy=(Fs(),v)
ées

for every S € E and v € V;\{0}. Then, U(g)RFs = A,.(X*) ~ X* as (g,K)-
modules. This implies that U(g)®fs, ~ X* for all S and v (cf. (1.3)). Set Qg :=
> ses @s and f, := (F(-),v). We now use Lemma 1.1 to deduce

(1.10) QsU@) f) =U(@)  fsw~X (S€EE, veV;\{0}),

by noting that Qs commutes with U(g)-action L. It then follows from the irreducibil-
ity of X that the kernel of projection Qs restricted to U(g)L f, is independent of
a choice of S € E. Indeed, let S; and Ss be in Z, and set S’ := S; U S3. Note
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that Qs, = Qs,Qs' (i = 1,2). One sees from (1.10) that Qg, on U(g)~ fsr» gives a
U(g)-isomorphism from U(g) fs', onto U(g)L fs, » by Schur’s lemma. This implies
that

Ker(Qs,|U(8)" f) = Ker(Qs/|U(9)" fo) = Ker(Qs,|U(9)" f)-

The above kernel space must be {0} since

[ Ker(Qs|U(g)" fo) C [ KerQs = {0},

Se= s
where S in the middle term runs over all finite subsets of K. We thus find an
embedding

X ~U(g)tfo = C*(G)

corresponding to F' through Y.

Conversely, let W : X — C(G) be any (g, K)-embedding. Set F' := Y(W). We
want to prove F5 = Qs(F) € A+ (X™) for every 6 € K. To do this, define an element
£e X* by

(§,a) = ((Qs o W)(a))(e) (a € X),

where e denotes the identity element of G. It then follows for any D € U(g) and
v € V; that

(DX Fs(e),v) = DX ((Qs 0 W 0 i,)(v))(e)
= ((Qs o W)(Di-(v)))(e)
= (&, Di-(v)) = (i3 TDE, v),

since DY commutes with Qs and with W. Here U(g) > D — TD € U(g) denotes the
principal anti-automorphism of U(g) such that 7X = —X if X € g. We thus deduce

(1.11) DY Fs(e) = it (TD¢) for all D € U(g).
This yields that
Fy(g) = i3 (n*(9)) = A (€)(9) (9 € G)
as desired, because the both functions F5 and A, (£) are real analytic on the connected

Lie group G, and because they have the same Taylor series expansion at e by (1.11).
Thus the theorem has been proved completely. O

1.3. Kernel theorem. — To study the embeddings of X into various induced G-
modules, it is useful to characterize the G-module A,«(X ™)™ as the full kernel space
of a continuous G-homomorphism D defined on C22(G) in the following way.

Theorem 1.3. — Let X be an irreducible (g, K)-module, and let (7,V;) be a K-type
of X. Fiz an embedding i, : V, = X as K-modules, and write A« for the (g,K)-
embedding X* < CX(G) associated with the adjoint operator it by (1.4) and (1.5).
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If D is any continuous G-homomorphism from the C2(G) to a smooth Fréchet G-
module M such that

(1.12) A (X*)={F € CX(G) | F is right K -finite and DF = 0},

then the full kernel space Ker D of D in C%(G) equals the G-module A+«(X*)™, the
closure of Ar+(X™) in CR(G). Hence one gets from Theorem 1.2

(1.13) Homy x (X, C*(G)) ~KerD = A;«(X*)™ as G-modules.

Proof. — We show that KerD = A,+«(X*)”. The inclusion D is obvious because
Ker D is a closed subspace of C22(G) by the continuity of D and because A+ (X™) C
KerD by (1.12). Conversely if F € KerD, then it follows from (1.12) that F5 =
Qs5(F) € A;+(X*) for every § € K, because DFs = Qs(DF) = 0. Hence we get
F =% sci Fs € Ar+(X™)™. Now the assertion follows from Theorem 1.2. O

Remark 1.4. — The above proof tells us that the assumption on D can be weakened.
Namely, the theorem is still true for any K-homomorphism D from CX(G) to a
smooth K-module M satisfying (1.12).

Example 1.5. — We mention that an operator D satisfying the requirement in The-
orem 1.3 has been constructed when X* is the (g, K)-module associated with: (a)
discrete series ([28], [10]) more generally Zuckerman cohomologically induced module
([38], [1]), with parameter “far from the walls”, or (b) highest weight representation
([2], [4]; see also Theorem 2.6). In each of these cases, D is given as a G-invariant
differential operator of gradient type acting on C22(G), where 7* is the unique extreme
K-type of X* which occurs in X* with multiplicity one.

We conclude this section by giving an application of Theorem 1.3. For this we need

Definition 1.6. — Let n be a complex Lie subalgebra of g, and (7, E) be a representa-
tion of n on a Fréchet space E such that the linear endomorphism 7(Z) is continuous
on F for every Z € n. Then the space

C®Gin) ={f:GS E| 2Rf = —n(2)f (Zen)},

endowed with the natural Fréchet space topology, has a structure of smooth G-module
by L. We write I';, for the resulting G-representation on C*°(G;7), and call it the
representation of G induced from n in C*®-context.

Remark 1.7. — If n is the complexification of real Lie subalgebra ng of go correspond-
ing to a simply connected analytic subgroup N of G, then C*°(G;n) coincides with
the space of E-valued smooth functions f on G such that

flgn) =n(n)"'f(9) (9€G, neN),

at least when F is finite-dimensional. Here 7 denotes the well-defined representation
of the group N defined by 7 : ng — E through exponential map.
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Let the notation and assumption be as in Theorem 1.3 and in Definition 1.6. We
write C%2(G;n) for the space of C*°-functions on G with values in V* ® F satisfying
the following conditions.

ZRF = —(idyv» ®n(2))F (Z € n),
kEF = (r*(k™') ®idg)F  (k € K),

where idy denotes the identity map on a set V. Let E' be the space of continuous
linear functionals on E equipped with dual U(n)-action. We define a linear map

D(n) : CX(G;n) — Home(E', M)
through D by

(DM)F)() =DUF(),¢) (FeCR(Gin), ¢€E').
Here (-, -) stands for the canonical dual pairing on (V;* ® E) x E' with values in V*.
If n is a one-dimensional n-representation, the above D(n) is naturally identified with
the restriction of D to the subspace C2(G;n) of C2(G).
By using (1.13), we can now deduce the following

Corollary 1.8 (Kernel Theorem). — Under the above notation, assume that the repre-
sentation (n, E) of n is weakly cyclic in the following sense: there exists a (o € E'
such that U(n)( is dense in E' with respect to the weak *-topology. Then the embed-
dings of irreducible (g, K)-module X into induced module C*®(G;n) are characterized
as

Homg x (X,C*(G;n)) ~ KerD(n) as vector spaces.

Here the isomorphism is given as in (1.7).

Remark 1.9. — The above kernel thoerem has been proved in our earlier work [42,
I, Th.2.4] in case that X is the (g, K)-module of discrete series and that D is a
differential operator of gradient type (Schmid operator).

Proof of Corollary 1.8. — First, we observe just as in the proof of Theorem 1.2 that
the map

Homg (X, C®(G;m)) 3 W v F € C2(Gsn)
defined as in (1.7) yields an injective linear map. For a nonzero element F' € C22(G;n)

and a nonzero vector v € V;, we put f, := (F(:),v)(v*eE)xv, € C*°(G;n). Then F
lies in the image of T, if and only if

(1.14) U(g)tfo ~ X as (g, K)-modules.
It follows from the Hahn-Banach extension theorem that the G-homomorphism
(1.15) C*(G;n) 3 f — (f(1), ) ExE € C7(G)

is injective because U(n)(p is weak x-dense in E’. Then (1.14) and (1.15) together
with (1.13) imply that F € Im Y, if and only if (D(n)F)({o) = 0. Since the function
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F is n-covariant, the latter condition is equivalent to (D(n)F)(U(n)¢p) = 0. This
implies D(n)F = 0 (and vice versa) by virtue of the Banach-Steinhaus theorem. O

We will apply the above kernel theorem later in this paper to describe generalized
Whittaker models for irreducible highest weight representations.

2. Differential operators, and lowest or highest weight modules

From now on, we assume that K\G is an irreducible Hermitian symmetric space
with G-invariant complex structure. We consider the irreducible highest weight
(g, K)-modules L(7) with extreme K-types 7. In this section we describe, follow-
ing [4], the differential operators D,« of gradient type on K'\G whose K-finite kernels
realize the dual lowest weight (g, K)-modules L(7)* (Theorem 2.6). This combined
with Theorem 1.3 enables us to identify the maximal globalization of L(7)* with the
full (not necessarily K-finite) kernel space of D,« (Proposition 2.7). We also specify
for later use the solutions of differential equation D,+F = 0 of exponential type.

2.1. Simple Lie group of Hermitian type. — We begin with summarizing some
basic facts on fine structure for simple Lie groups of Hermitian type, following the
notation in [41, Part I, §5] and [8, 3.3]. It is known that there exists a unique (up to
sign) central element Zg of & such that ad Z restricted to po gives an Ad(K)-invariant
complex structure on po. One gets a triangular decomposition of g as follows:

g=p_@EDp,y suchthat

(21) [Ev p:l:] C P+, [p+a p—] ce, [p+a p+] = [p—,p—] = {0}7

where p. denotes the eigenspace of ad Zy on g with eigenvalue #1/—1 respectively. We
extend ad Zy on pg to a G-invariant complex structure on the Hermitian symmetric
space K\G canonically through the identification po = T'(K'\G) k., the tangent space
of K\G at the origin Ke.

Let to be a compact Cartan subalgebra of gy contained in €. We write A for the
root system of g with respect to t, and for each v € A the corresponding root subspace
of g will be denoted by g(t;~):

gty)={X€g|(adH)X =~(H)X for all H € t}.
We can choose root vectors X, € g(t;y) (y € A) such that
(2‘2) X’Y —X_q v _I(X’r + X—’Y) € & + v —1po, [X'ya X—'y] = ny’

where H,, is the element of \/—1ty corresponding the coroot vV := 2v/(v, ) through
the identification t* = t by the Killing form B of g. Let A, (resp. A,) denote the
subset of all compact (resp. noncompact) roots in A.
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Take a positive system At of A compatible with the decomposition (2.1):

Py = @ g(t;£y) with Al :=ATnNA,,
vead

and fix a lexicographic order on v/—1t} which yields A*. Using this order we define
a fundamental sequence (71,72, ...,7r) of strongly orthogonal (i.e., v; +v; ¢ AU {0}
for ¢ # j) noncompact positive roots in such a way that -y, is the maximal element of
AT, which is strongly orthogonal to Yg41,-...,7r

Now, put t~ := >.; _; CH,, C t, and denote by ¥y~ € (t7)* the restriction to t~ of
a linear form ~ € t*. For integers k,l with 1 <! < k < r, we define subsets Py, Py, Po
of A} and subsets Cki, C,Co of A} respectively by

(2.3) Py = {’7 eAtly = <E¥£> },

24)  Cu:= {7 €Ay = (”—;l)“}

(2.5) Py, = {7 €Aty = (l'“-)_}, Cr:= {7 €Af

- ﬂ -
2 7 _(2) }’
(26) Py :={71”y2"*"77‘}’ CO = {7EA2—I7_=0}

By Harish-Chandra the subsets A} and A} are decomposed as

A;t:( U Pk)UPOU( U Pkt),

1<kLr 1KIKkLr
At =C U ( U Ck) U ( U C'kl),
1<k 1I<kgr

where the unions are disjoint. Moreover the maps
(2.7) Crud7—v+7€Py and Crdyr— —y+v% € P

give rise to bijections from Cy; to Py and from Cj to Py respectively. Note that the
subsets Py; and Cy; are always non-empty, and that Py and Cy (1 < k < r) are empty
if and only if the Hermitian symmetric space K\G is analytically equivalent to a tube
domain.

We now introduce a Cayley transform ¢ = Ad(c) on g defined by the following
element of G¢:

(2.8) ¢ = exp (% 3 (Ko = X)) )
k=1

where G2 denotes a connected Lie group with Lie algebra g. Note that —c? gives the
identity map on t~. It follows that

(2.9) apo = ¢ H(t™ NV=1t) = c(t™ N V~1t)
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is a maximal abelian subspace of pg, and that the elements
(2.10) Hy:=c Y(H,)=—-c(Hy,) =Xy + X, (k=1,2,...,7)

form an orthogonal basis of vector space a, ¢ with respect to the inner product defined
by the Killing form B. This implies in particular that r equals the real rank of G.
The restricted root system of g with respect to a, has been described by Moore in
terms of linear forms 9y := vy, o (clay) on a, (see e.g., [8, Th.3.5] for the description).

2.2. Generalized Verma module and its maximal submodule. — Let (7,V;)
be any irreducible finite-dimensional representation of K with AZ-highest weight
A = X(7). We consider the generalized Verma U (g)-module induced from 7:

M(r) :=U(9) Qu(e+py) Vr-

Here 7 is extended to a representation of the maximal parabolic subalgebra €+ p by
letting p4 act on V; trivially: p, V. = {0}. M(r) has a structure of (g, K)-module
through

D'-(D®v):=D'D®v, k-(D®v):=Adk)D ® r(k)v
for D' € U(g), k € K and D ®v € M(r) with D € U(g), v € V;. Let N(1) be
the unique maximal proper (g, K)-submodule of M (7). Then the quotient L(7) :=
M(7)/N(r) gives an irreducible (g, K)-module with A*-highest weight \.

We now summarize for later use some basic known results concerning the structure
of N(7). One finds from the decomposition (2.1) that M(7) = U(p_)V; is canonically
isomorphic to the tensor product S(p-) ® V; = S(p-) ®c V; as a K-module, where
S(p-) (~ U(p-)) denotes the symmetric algebra of p_ looked upon as a K-module
by the adjoint action. This isomorphism yields a gradation of the K-module M (7):

o0
(2.11) M(r) =@ M;(r) with M;(r) =8 (p_)V, ~ S (p_) @ V;.

=0
Here we write S7(p_) for the K-submodule of S(p_) consisting of all homogeneous
elements of S(p_) of degree j. Note that the submodule N(7) is graded:

(2.12) N(r) =@ Nj(r) with N;(r) := N(r) N M;(7),
j=0

because N(7) is stable under the action of the central element v/—1Z, € t which gives
the gradation S(p_) = GD;";OSj (p-)-

Since M (1) = S(p—)V; is finitely generated over the Noetherian ring S(p_), so is
the submodule N(7), too. This implies that, if N(7) # {0}, there exist finitely many
irreducible K-submodules W1, ..., W, of N(7) such that

g
(2.13) N(r) =" S(p- )W, with W, C S™(p_)V; ~S™(p_) @V,

u=1
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for some positive integers i, (u = 1,...,q) arranged as

(2.14) i(r) = i = min{j| N;(r) # {0}}.

We call i(7) the level of reduction of M(T).

An irreducible (g, K)-module X is called unitarizable if X is isomorphic to the
Harish-Chandra module H g of an irreducible unitary representation of G on a Hilbert
space H. The unitarizable highest weight (g, K')-modules have been completely clas-
sified by Enright, Howe and Wallach [7]. Note that their work contains case-by-case
analysis, and that it uses some results of former contributors such as [12], [6], etc.
Later, Enright and Joseph [5], and also Jakobsen [20] gave a more intrinsic classifi-
cation.

For unitarizable L(7)’s, [5] gives a simple description of the maximal submodule
N(7) as follows. Assume that L(7) is unitarizable and that N(r) # {0}. Then the
level i(7) of reduction of M(7) is an integer such that 1 < i(7) < r, where r is the
real rank of G as in 2.1. Let Q;(,) be the irreducible K-submodule of ST (p_) with
lowest weight —7v, — -+ —¥,_j(r)41. Then the tensor product Q;;) ® V; has a unique
irreducible K-submodule Wi, called the Parthasarathy, Rao and Varadarajan com-
ponent (the PRV-component for short), with extreme weight A — v, — -+ — ¥, _j(r)41-
Noting that

(2.15) Qi(ry ® Vy C S (p_) ® V; ~ My(ry(7),
we regard Wi as a K-submodule of M;(,(7).

Theorem 2.1 ([5, 5.2, 6.5 and 8.3], see also [3, 3.1]). — Keep the above notation. If L(7)
is unitarizable and if the mazximal submodule N(7) of M (7) does not vanish, N (1) is
a highest weight (g, K)-module generated over S(p_) by the PRV-component W1:

N(r) = S(p-)W1.

2.3. A realization of lowest weight module L(7)*. — For each irreducible
representation (7,V;) of K, let L(7)* be the irreducible lowest weight (g, K )-module
which is dual to L(7). This subsection gives after [4] a realization of L(7)* as the
K-finite kernel of a certain G-invariant differential operator of gradient type defined
on the symmetric space K\G. This together with the kernel theorem (Corollary 1.8)
will tell us how to describe the (g, K')-embeddings of highest weight module L(7) into
various induced G-representations.
Now, let O*.(G) denote the space of functions F in C2(G) (see (1.1)) satisfying

(2.16) XYF=0 forall X ep,.

Then we see that O%.(G) is a closed G-submodule of C22(G) through right translation
R, and that it is canonically isomorphic to the space of anti-holomorphic sections of
the G-homogeneous vector bundle on K'\G associated to the K-module V.
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It is useful to employ another realization of the G-module O}.(G) as a space of
holomorphic V*-valued functions on a bounded domain B of p_. To be more precise,
we take a connected linear Lie group G° with a covering homomorphism

w:G = G°.

Such a G° always exists (we can take G° = Ad(G) for example). Let Gg denote
the connected complexification of G°. We write K°, K¢ and Py = expps for the
connected Lie subgroups of G¢ with Lie algebras €, € and p., respectively. Note that
the exponential map gives holomorphic diffeomorphisms from p onto Py. Consider
an open dense subset Py KZP_ of Gg, which is holomorphically diffeomorphic to
the direct product P, x K¢ x P_ through multiplication. For each z € Py KgP_, let
P+ (), kc(z), and p_ () denote respectively the elements of P, , K¢, and P_ such that
z = py(x)kc(x)p-(x). We set {(z) := log p_(x) € p_. Note that G° C Py K3P_.
We extend the assignment z — £(z) (z € G°) to a map, denoted again by £(z),
from G to p_ through w. This (extended) £ naturally induces an anti-holomorphic
diffeomorphism, say £, from the symmetric space K \G onto a bounded domain

(2.17) B:={&(z) ep- | z € G}

of p_, where £(Kx) := &(x). (See for example [16, 7.129].) Let K¢ denote the
complexification of K. Then, w restricted to K yields a covering homomorphism
from K¢ to K@, and the map = — kc(z) (z € G°) lifts to a map from G to K¢ which
we denote again by kc(z) (z € G).

Let O(B,V}) be the space of all V*-valued holomorphic functions on B. It is
easily verified that the above ¢ gives rise to a linear isomorphism © from O%.(G) onto
O(B,V;) by

(2.18) (OF)(§(K2)) := 7" (kc(z)) ' F(z) (z €G)

for F' € Of.(G). Then O(B, V) has a G-module structure inherited from (R, O%.(G))
through ©:

(2.19) (- f)&(z)) = 7" (kc(exp&(z) 9)) f((zg)) (z € G)
for g € G and f € O(B, V). Here one should notice that

expé(2) g = (p+(z)kc(z)) " zg € Py KEG° C PLKQP-
for z,g € G°, and that the map
B x G° > (z,9) — kc(expzg) € K¢

lifts to a map from B x G to K¢ in the canonical way (cf. [4, Prop.4.7]).
By differentiating the G-action (2.19) one obtains a g-module O(B, V;*). We remark
that the action of each element Y in p_ is described simply as

(220) (V- NE) = £fG+ V)0 (€ B)
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An f € O(B,V}) is K-finite if and only if f is a polynomial, because one sees from
(2.19) that

(he - £)(z) = 7 (h) f(eV71'2)
for hy := exptZy € K (t € R), where Zy is the central element of & defined in
2.1. Hence the K-finite part OF.(G)k of O}.(G) is isomorphic, through ©, to the
space P(p_,V*) = S(p4+) ® V* of V*-valued polynomial functions on p_. Here we
identify the symmetric algebra S(p+) of p4 with the ring of polynomial functions on

p— through the Killing form B restricted to p+ X p_.
We now define a bilinear form ( -, - ), on 0% (G) x (U(g) ®c V) by

(2.21) (F,D ®v), := (DY F(e),v) = (*D)RF(e),v)

for F € O(G),D € U(g), and v € V;. Here ( -, - ) denotes the dual pairing on
V* x V;, and D =T D the principal anti-automorphism of U(g), respectively. Then
it is a routine task to verify that ( -, - ), naturally gives rise to a (g, K)-invariant
bilinear form on O%.(G) x M (), which we denote again by ( -, - );. Note that this
pairing is described through the above isomorphism © as

(F,D @), = ("D- f)(0),v) with f:=OF € O(B,V;),

where D € U(p_) = S(p_), v € V4, and TD - f is defined through the directional
derivative action (2.20). This implies the following

Lemma 2.2 (cf. [3, §2])

(1) The (g, K)-invariant pairing { -, - ), is nondegenerate on O%.(G)kx x M(T).

(2) Let R(7*) be the orthogonal of the maximal submodule N(7) in O%.(G)k =~
P(p—,V*) with respect to ( -, - );. Then R(r*) is the unique, nonzero irreducible
(g, K)-submodule of O*.(G) K, and it is isomorphic to the lowest weight module L(7)*
dual to L(t) = M(7)/N (7). The (g, K)-isomorphism A,« from L(T)* onto R(T*) is
given by

<AT‘ (w)vw)T = (‘pa w+ N(T))L(T)*XL(T) (w € M(T))

for ¢ € L(1)*.

We are now going to introduce a differential operator of gradient type whose K-
finite kernel characterizes the (g, K)-module R(7*) = A,+(L(7)*). For this, we take
a basis X1, ..., X, of the C-vector space p such that B(X;, Xx) = §;x (Kronecker’s
8), where X; € p_ denotes the complex conjugate of X; € p with respect to the real
form go. Set

X :=XM... X% eU(py) and X :=X; X, €U(p-)

for every multi-index o = (a4, ..., as) of nonnegative integers a1, ..., as;. We denote
by |a| := a1 + -+ + a, the length of a. For each positive integer n we define the
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gradients V™ and V" of order n on C%(G) as follows.

ViF@) =Y %?@(X")LF(z),

|a|=n

=D = X“ LF(2),

le|=n
for x € G and F € C%(G), where a! := 04! n!. It is then easy to see that V" F
and V' F are independent of the choice of a basxs X 1,--.,Xs, and that the operators

V" and V" give continuous G-homomorphisms
V™ CR(G) = C2(Ly(G), V":CR(G) = CR (1, (G).
Here 7*(+n) denotes the K-representation on the tensor product S™(p+) ® V* re-
spectively.
Let W, (u=1,...,q) be, as in (2.13), the irreducible K-submodules of S (p_)V;

C N(7) which generate N(7) over S(p—) when N(7) # {0}. For each u, the adjoint
operator P, of the embedding

(2.22) Wy < S*(p_ )V, ~S™(p_) @V,
gives a surjective K-homomorphism:
(2.23) P, :S™(py) @ VF ~ (S™(p-) @ Vy)* — W2

Definition 2.3. — Under the above notation, let D,» be a G-invariant differential op-
erator from C72(G) to C5°(G) defined by

D,-F(z) = V'F(2) & (&=, Pu(V"* F(2)))
for z € G and F € C%2(G). Here we write p = p(7*) for the representation of K on
(p- @ V) @ (DI W),

and D, should be understood as D, = V! if N(7) = {0}, or equivalently M (1) =
L(t). We call D;« the differential operator of gradient type associated to 7*.

Remark 2.4. — A function F € C2(G) lies in the G-submodule O%.(G) defined by
(2.16) if and only if VIF = 0. Hence we have Ker D, C O.(G) for every 7*, and
the equality holds if and only if N(7) = {0}.

Remark 2.5. — If L(7) is unitarizable, one sees from Theorem 2.1 that
Dy = V@ (P, o V),

Here i(7) is the level of reduction of M (), and the K-homomorphism P, is defined
through the PRV-component W; C S (p_) ®V,

The following theorem, equivalent to [4, Prop.7.6] due to Davidson and Stanke,
realizes the lowest weight module L(7)* by means of D,-.
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Theorem 2.6 (cf. [4]). — The image R(7*) of the (g, K)-embedding A+ from L(r)*
into O%.(G)k defined in Lemma 2.2 coincides with the K -finite kernel of the differ-
ential operator D« of gradient type:

R(t*) = {F € CR(G) | F is right K -finite and D« F = 0}.

2.4. Maximal globalization of L(7)*. — The above theorem together with The-
orem 1.3 implies that the full kernel space Ker D,» gives a maximal globalization of
the lowest weight module L(7)*, as follows.

Proposition 2.7. — (1) The closure R(7*)™ of R(7*) = A;+(L(7)*) in CX(G) coin-
cides with Ker D,«. It coincides also with the orthogonal, say R'(7*), of N(7) in the
whole (not necessarily K -finite) space OF.(G) with respect to the paring { -, - ), in
(2.21).

(2) One has an isomorphism of G-modules

Homgy i (L(7), C*(GQ)) ~ KerD,+.(= R(t*)” = R'(1*))
by the correspondence given in Theorem 1.2 through the canonical K -embedding i, of

V; into L(1).

Proof. — The statements except R(7*)~ = R'(7*) follow immediately from Theorems
1.3 and 2.6. The equality R(7*)~ = R'(7*) can be shown just as in the proof of
Theorem 1.3, by bearing in mind that R'(7*) is K-stable. O

~

We end this section by specifying for later use the solutions F' € OF.(G) of expo-
nential type of the differential equation D,+F = 0.

For each X € p; and each v* € V¥, let fx,+ = exp X ® v* denote the V*-valued
holomorphic function on p_ defined by

fx o (2) :=expB(X,z) -v* (z€p_).
We set Fix y+ := ©71fx ,« € O%.(G). Then the function Fx ,+ is described as
(2.24) Fxor (z) = exp B(X, () - * (ke(@)v" (¢ € @)
by the definition of © (see (2.18)).

Proposition 2.8. — The function Fx .+ satisfies the differential equation D« F = 0 if
and only if

(2.25) P, (X*@v*)=0 for u=1,...,q.

Here P, is a K-homomorphism from S%(p1) ® V,* onto W defined in (2.22) and in
(2.23).

Proof. — Let D € S(p—). In view of (2.20) we observe that
DEFx v =07 (D - fx,p») = D(X)Fx,0,

ASTERISQUE 273



GENERALIZED WHITTAKER MODELS 101

because fx, o+ is an exponential function defined by X, where D € S(p_) in the right
hand side is looked upon as a polynomial on py = p*. It then follows that F'x ,« is

orthogonal to N(7) = S(p—)W, with respect to the g-invariant pairing ( -, - ),
in (2.21) if and only if
(2.26) (Fxp,w)y; =0 forallwe W, (u=1,...,q).

We now express w € W, as w = E;\;l Djv; with D; € S(p_) and v; € V;. Then
the left hand side of (2.26) is calculated as

(Fx p»yw)r ’"ZD (v*,v;) = (=) (X @ v*, w),

where ( -, - ) denotes the dual pairing between S* (p;)®V;* and S* (p_)®V;. Hence,
the element Fx .+ is orthogonal to W, with respect to ( -, - ), if and only if the
linear form X% ® v* on S% (p_) ® V, vanishes on the subspace W,, or equivalently
P,(X%™ ® v*) = 0 by the definition of P,. We thus conclude that (2.25) gives a
necessary and sufficient condition for D;« Fx ,+ = 0 by Proposition 2.7 (1). O

In the next section we will study the condition (2.25) in connection with the associated
variety and the multiplicity of highest weight module L(7).

3. Associated variety and multiplicity of highest weight modules

The purpose of this section is to understand the associated variety and multiplicity
for each irreducible highest weight module L(7) by means of the principal symbol
o of the differential operator D,« of gradient type. The harvest of our discussion
is summarized as Theorem 3.11. The symbol & yields a Kc-homogeneous vector
bundle on the unique open orbit Op,(;y in V(L(7)). The dimension of fibers can be
understood as the multiplicity of S(p_)-module L(7)/ILy)L(7) at the prime ideal
I, (ry which defines the variety V(L(7)), and a result of Joseph (cf. Theorem 3.7)
tells us I, (- L(7) = {0}, i.e., L(7)/I;n(r)L(7) = L(7), for unitarizable L(7)’s.

3.1. Kc-orbits O,, in p;. — We keep the notation in 2.1. Let us begin by de-
scribing the Kc-orbit decomposition of the vector space p4 under the adjoint action.
For every integer m such that 0 < m < r = Rrank G, we set

-
(3.1) Om = Ad(K¢)X(m) with X(m):= Z X

k=r—m+1
Here X, € g(t;vx) (see (2.2)) is a root vector for noncompact positive root ~yx, and
X (0) should be understood as 0. It then follows that every X € p, is conjugate to
some X (m) under K¢:

P+ =0U---UO,.
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In reality, there exists an element £ € K such that

Ad(k)(X +X) €apo =D R(Xy, +X_,,)
k=1

(see (2.9) and (2.10)), since X + X € po = Ad(K)apo. This shows that
Ad(k)X = kX, with c € R\{0},
kel
for some subset I of {1,...,r}. Note that the complex torus

exp (- CH,, ) € Ke
kel

acts on the set ), ., C* X, transitively, and that 3, ; X,, is conjugate to X (|])
under the action of the Weyl group Nk (ap,0)/Zk (ap,0) of the pair (go, ap,0) (see e.g.,
(41, Prop.5.1(3)]), where |J| denotes the cardinal number of any set J. We thus find
that X € Oy, with m = |I|, and that the elements X (0),...,X(m — 1) are in the
closure of the orbit O,, with respect to the usual topology (or the Zariski topology)
on py.

One can compute the the dimension of each Kc¢-orbit O,, as follows. In view of
Harish-Chandra’s result (2.3)—(2.7) on the restricted roots, we easily find that the
tangent space T'x(m)(Om) = [€, X(m)] of Op, at the point X (m) € Oy, is described
as

(3.2) Exm)= P o8t
YEA+(mM)
with
33) At ={m.wmad (U RP) U (U B)
k>1 k>r—m
k>r—m

Hence one obtains

dmOp =m+ Y |Pul+ Y |P|

k>l k>r—m
k>r—m

This implies in particular that
dim O, >dimO,_; > -+ > dim Oy =0,
and that
dim Op — dim Oy = 1+ |Prcmpt| + D [Prcmyril-
I<r—m+41
Note that the right hand side of the above equality is at least two if either Py, 41 # @

(namely, K\G is not of tube-type) or m < r.
Thus we have proved the following well-known result.
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Proposition 3.1. — The subspace p,. splits into a disjoint union of r + 1 number of
Kc-orbits O, (0<m < 1) pgp = Hosmgr O, and the closure O, of each orbit Oy,
is equal to Urgm Oy for every m.

3.2. Associated variety V(L(7)). — Let L(r) = M(7)/N(7) be, as in 2.2, the
irreducible highest weight (g, K)-module with extreme K-type (,V;). Consider the
annihilator ideal

Anng yL(7) :={D € S(p-) | Dw =0 for all w € L(r)}.
of L(7) in S(p—) = U(p_). It should be remarked that an element D € S(p_) belongs
to Anng(,_)L(7) if and only if Dv = 0 for all v € V;, since L(r) = S(p-)V; with
commutative algebra S(p_).

Definition 3.2. — The affine algebraic variety
V(L(1)) :={X €p4+ | D(X) =0 forall D€ Anng(,_)L(7)} C p4

defined by the ideal Anng(,_)L(r) is called the associated variety of the (g, K')-module
L(7). Here S(p-) is identified with the ring of polynomial functions on p4 through
the Killing form B of g.

Remark 3.3. — The notion of the associated variety has been introduced by Vogan
[83] for arbitrary Harish-Chandra modules (see also [44],[8]). As for the highest
weight modules L(7), the above definition of V(L(7)) coincides with Vogan’s original
one. Indeed, let

gr L(7) i= @D Un(6)Vs /Un—1(a)Vs
n=0

be the graded (S(g), K)-module defined through the filtration
{0} = U—l(g)VT cV:= UO(Q)VT c---C Un—l(g)VT C Un(g)v‘r c...,

of L(7). Here Uy,(g) (n = 0,1,...) denotes the natural increasing filtration of U(g),
and S(g) ~ ®2oUn(g)/Un—1(g) is the symmetric algebra of g. Then one easily sees
that € + p, annihilates gr L(7), and that

gr L(t) ~ L(r) as (S(p-), K)-modules

by (2.11) and (2.12). Hence the algebraic variety in g* = g (the identification through
B) defined by the annihilator of gr L(7) in S(g), which is the associated variety by
Vogan, is nothing but V(L(7)).

Since the ideal Anng(,_)L(7) is stable under Ad(Kc), so is the variety V(L(7)).
In view of Proposition 3.1, we see that there exists a unique integer m = m(7)
(0 < m < r) such that

(3.4) V(L(1)) = O, with O, = Ad(Kc)X(m) and m = m(r).

In particular, the variety V(L(7)) is irreducible.
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Now let I, be the prime ideal of S(p_) associated to the irreducible variety O,,
(m=0,...,7):

(3.5) In:={D€eS(p-) | D(X)=0 forall X € O,}.
It holds that I, = {0} since O, = p,. If m < r, one knows that

(3'6) Iy, = S(p—)Qm+1

by [5, 8.1] and [21, Prop.2.3], where Q.,+1 denotes as in (2.15) the irreducible K-
submodule of S™*1(p_) C S(p_) with lowest weight —y, — - - - — Yp—m.

By Hilbert’s Nullstellensatz, I;(,) coincides with the radical of the annihilator
ideal Anng,_)L(7) for every 7. This allows us to deduce the following

Lemma 3.4. — The annihilator in S(p_) of (S(p-), K)-module L(T)/Inm)L(T) is
equal to I (r).

Proof. — Since \/Anng(,_)L(T) = Iy (), there exists an integer no > 0 such that

B™ € Anng(,_)L(7) for every B € Qpm(r)+1, the finite-dimensional generating sub-
space of I (). This implies that

(3.7) (Im(r))™ C Anng,_)L(T).
If D € Anngy_y(L(7)/Im(r)L(7)), then DL(7T) C Iy L(7). Inductively, one gets
(3.8) D"L(1) C (Ij(r))"L(1) (n=1,2,...).

We thus find from (3.7) and (3.8) that D™ € Anng,_)L(7), and so D € I;,(;). This
proves the inclusion Anng,_)(L(7)/Ipm()L(7)) C Im(r). The converse inclusion is
obvious. 0

For each X € p., let m(X) be the maximal ideal of S(p_) which defines the variety
{X} of one element X:

(3.9) m(X):= ) (¥ - BX,Y))S(p-).
Yep-

We set

(3.10) W(X,7) := L(7)/m(X)L().

Then we see that dim W(X,7) < oo, and that the isotropy subgroup K¢(X) of K¢
at X acts on W(X,7) naturally. Note that, if J is an ideal of S(p_) that defines the
variety V(L(7)), then

(3.11) m(X)D>J <= X eV(L(1))=Ongy).

By applying [33, Cor.2.10 and Def.2.12] in view of Lemma 3.4, we immediately
deduce
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Proposition 3.5. — Assume that X € Opy. Then the dimension of Kc(X)-module
W(X,T) coincides with the multiplicity of the S(p_)-module L(7)/Inr)L(T) at the
unique minimal associated prime Iy, (r):

dim W(X,7) = mults,,, (L(7)/I;mr)L(7)) (X € Om(r))-
So in particular, one has W(X,7) # {0}.

Remark 3.6. — See [33, Section 2] and also [27, 1.1] for the definition and elemen-
tary properties of the multiplicities of finitely generated modules over a commuta-
tive Noetherian ring (in connection with Harish-Chandra modules). The multiplicity
multy, ., (L(7)) of the whole L(7) at I,(r) is described as

no—1

(3.12) > dim{(Im(r) Y L(r) /m(X)Im(r) P L(T)} (X € Op(r)),
j=0

through the filtration

L(T) = (Im(r))OL(T) i) (Im(-r))lL(T) 2D (Im(‘r))noL(T) = {O}
of the (S(p-), K)-module L(7). Here ng is as in (3.7), and the summand at j = 0 in
(3.12) is equal to the above dim W(X, 7).

The above proposition will be used in the next subsection to study the associated
variety V(L(7)) in connection with the principal symbol of differential operator D«
of gradient type.

As for the unitarizable highest weight modules, the following remarkable result
of Joseph (due to Davidson, Enright and Stanke [3] for g classical) gives a clearer
understanding of the above proposition.

Theorem 3.7 ([21, Lem.2.4 and Th.5.6]). —  If L(7) is unitarizable, the annihilator
Anng,_yw in S(p_) of any nonzero vector w € L(T) coincides with the prime ideal
In(ry- Especially, one has Anng, \L(T) = Ipy(7)-

Remark 3.8. — For unitarizable L(7) = M(7)/N(7) with nonzero N(r), the above
theorem together with (3.6) implies the inequality:

i(r) < m(r) + 1,

where i(7) is as in (2.14) the level of reduction of the generalized Verma module M (7).
A description of the number m(7) in terms of i(7) has been given in [21].

Corollary 3.9 (to Prop.3.5 and Th.3.7). — One has
dim W(X,7) = multy,  (L(1)) (X € Om(r))

for every irreducible unitarizable highest weight module L(t).
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For the classical groups Sp(2n,R), U(p,q) and O*(2p), Nishiyama, Ochiai and
Taniguchi [27, Th.7.18 and Th.9.1] have described the associated cycle:

(3'13) AC(L(r)) = mUItIm(f) (L(T)) ) [Om(T)L
and also the Bernstein degree
(3.14) Deg L(7) = multy,, ., (L(1)) - deg(Opm(r))

of the unitarizable highest weight module L(7) (our p4 is replaced by p_ in [27])
by using the theory of reductive dual pairs (G,G') with compact G'. They treat the
case where the dual pair (G,G’) is in the stable range with smaller G', and then
the multiplicity mult;, ,(L(7)) is specified as the dimension of the corresponding
irreducible representation of G', through detailed study of K-types of L(r). On
the other hand, the above corollary allows us to give another simple proof of this
description of the multiplicity by investigating the K¢(X)-module W(X, 1), where
the dual pairs (G, G’) need not be in the stable range. We will do it later in Section
5 (see Theorems 5.14 and 5.15).

3.3. Principal symbol o and associated cycle. — Let
Dpe=V'a (@I_,P, o V")

be, as in Definition 2.3, the differential operator of gradient type whose kernel realizes
the maximal globalization of dual lowest weight module L(7)* (see Proposition 2.7).
We put
q

(3.15) o(X,v*) = ZPU(Xi“ uv*)eW* :=l_ Wy

u=1
for X € p, and v* € V*, where P, : S*(p;) ® V¥ — W is the K-homomorphism
n (2.23). Here o should be understood as o (X,v*) = 0 for every X € p; and every
v* € V¥, when D,. = V!, or equivalently N(7) = {0}. Note that o is naturally
identified with the principal symbol at the origin Ke of differential operator D;»,
where the symbol is considered only on p; x V* with the anti-holomorphic cotangent
space p4 = p* of K\G at Ke. By abuse of language, we call o the principal symbol
of D« at the origin, since we are concerned mainly with the anti-holomorphic sections
of G-homogeneous vector bundle V' g x G.

We are now going to describe the associated variety V(L(7)) by means of o. To
do this, fix any X € py for a while. Then the map v* — o (X,v*) gives a K¢(X)-
homomorphism (X, -) from V* to W*. Hence Kero (X, -) is a K¢ (X)-submodule
of V*. By Proposmon 2.8 we can describe Kero (X, -) as

Kero(X, ) ={v* € V} | Dy« Fx o+ =0},
where Fx ,« € C%2(G) is the function of exponential type defined by (2.24).
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The following lemma relates the above kernel with the K¢(X)-module W(X,7) in
(3.10).

Lemma 3.10. — For each X € p, the natural map

(3.16) Vy < M(1) = L(t) = M(7)/N(r) = W(X,7) = L()/m(X)L(7)
from V, onto W(X, 1) induces a Kc(X)-isomorphism

(3.17) WX, 7)* ~Kero(X, ) CV}

through the contravariant functor Homg( -, C).

Proof. — First, the natural map from M(7) to W(X,7) in (3.16) induces a linear
isomorphism from W(X, 7)* onto the space U of all linear forms ¢ on M (7) satisfying

(3.18) woD=D(X) for De S(p-)

and

(3.19) Y|N(r) =0 with N(r)= i S(p-)W, asin (2.13).
u=1

In view of (3.18), one sees that the second condition (3.19) is equivalent to
YWy, =0 foru=1,...,q.

Second, pull back each ¥ € U to an element of V* through the embedding V, —
M(r):
(3.20) UsyY o :=y|V, eV,
By (3.18), this map is injective. We can show just as in the proof of Proposition
2.8 that an element v* € V lies in the image of the map (3.20) if and only if
P,(X™ ®v*) =0 for u = 1,...,q, or equivalently, v* € Kero(X, -). One thus gets
the linear isomorphism (3.17), which is in fact a K¢ (X)-homomorphism since so is
the map (3.16). O

We are now in a position to give a characterization of the associated variety V(L(7))
of L(r) and the multiplicity multy,, ., (L(7)/Ip(ry)L(7)) in terms of the principal sym-
bol o, as follows.

Theorem 3.11. — Let L(7) be any irreducible highest weight (g, K)-module with ez-
treme K-type 7, and let o : p4 x V. = W* be the principal symbol of the differential
operator D« of gradient type associated to 7*. Then it holds that

(3.21) V(L(r) = {X € p | Kero(X, ) # {0}}.

Moreover, if X is an element of the unique open Kc-orbit Op(ry of V(L(T)), the
dimension of vector space Ker (X, -) coincides with the multiplicity of S(p—)-module
L(7)/Im(+)L(7) at the prime ideal I,y of S(p_) corresponding to the variety V(L(7))

= Om(n)-
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Remark 3.12. — We can get the same kind of characterization of the associated va-
riety and the multiplicity also for irreducible (g, K)-modules of discrete series G-
representations, by using the results of [10] and [44]. We will discuss it elsewhere.

Proof of Theorem 3.11. — We write V' for the set in the right hand side of (3.21).
First, we immediately find that V' is an affine algebraic variety of p., by noting that

Kero(X, ) # {0} <= ranke(X, )<dimV}* -1
Moreover V' is K¢-stable, because one has

Kero(Ad(k)X, -) = 7*(k)Kero (X, -) forall k € K¢
by the definition of o .

Second, the inclusion Op,;) C V' and the second assertion of the theorem are
direct consequences of Proposition 3.5 and Lemma 3.10. If X € Op,(;) = V(L(7)), we
get m(X) + Anng(,_)L(7) = S(p_) by (3.11). This implies that

m(X)L(r) = (m(X) + Anng(,_)L(7))L(7) = L(7).

So one gets Kero (X, -) ~ W(X,7)* = {0} again by Lemma 3.10. We thus find
Om(ry CV' C Opry, and so V' = V(L(7)) as desired. O

4. Generalized Whittaker models for highest weight modules

In this section we describe the generalized Whittaker models for irreducible highest
weight modules L(7). The main results are summarized as Theorems 4.7-4.9. We
find that each L(7) embeds, with nonzero and finite multiplicity, into the generalized
Gelfand-Graev representation I'y,(,) attached to the Cayley transform of the open
Kc-orbit Oy, (r) in the associated variety V(L(7)) of L(7). It is shown that, if L(7) is
unitarizable, the multiplicity of (g, K')-embeddings L(7) < I'p,(;) coincides with the
multiplicity of L(7) at the defining prime ideal of V(L(7)).

4.1. Generalized Gelfand-Graev representations. — We keep the notation in
2.1 and 3.1. We begin with introducing in this subsection the generalized Gelfand-
Graev representations of G attached to the Cayley transforms of nilpotent Kc-orbits
Om = Ad(K¢)X (m) in p4, where m ranges over the integers such that 0 < m <r =
R-rank G.

For this, we consider an sla-triple in g:

T I T
41 Xm)= 3 Xy, Hm):= 3 H, Ym)= Y X,
k=r—m+1 k=r—m+1 k=r—m+1
with commutation relation

{ [H(m), X (m)] = 2X(m), [H(m),Y(m)] = -2Y(m),
[X(m),Y(m)] = H(m).
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We put

[ X!(m) s = —v=Te (X(m) = Y22 (H(m) — X(m) + Y (m),

(4.2) T H'(m):=c Y (H(m))=X(m)+Y(m)= Y  H (cf (2.10)),

k=r—m+1
| Ym) s = VI (v (m) = ~ LA m) + X (m) — Y (m),

where ¢ = Ad(c), with ¢ as in (2.8), is the Cayley transform on g. Then (X'(m),
H'(m),Y’'(m)) forms an sl-triple in the real form go of g, since H(m) = —H(m),
X (m) =Y (m) by (2.2). Set O, := Ad(G)X'(m). We note that the nilpotent G-orbit
0!, in go corresponds to the Kc-orbit Op, in p4 C p through the Kostant-Sekiguchi

correspondence (cf. [8, Th.3.1]).

Lemma 4.1 ([8, Lemma 3.2])
(1) The Lie algebra g decomposes into a direct sum of the j-eigensubspaces gj(m)
for ad H'(m) as
g =g-2(m) ® g—1(m) & go(m) & g1(m) ® g2(m).
(2) Let A(m, 3) (j =0,%1,+2) be the subsets of the root system A of (g, t) defined
by
A(m,2) = {"/r—-m—}-lv-w’)’r} U ( U Pkl),

r—m<Il<k
(4.3) am=( U @uew)U( U ®ucw),
I<Sr—m<k r—m<k
At (m,0) := COU{fyl,...,'yr_m}U ( U Ck,)
(4.4) r—m<I<k
U( U (PklUCkl))U( U (PkUCk)),
I<ksr—m k<r—m

(4.5) A(m,0) := At(m,0)U (=AT(m,0)), A(m,—j):=-A(m,j) (=1,2).

Then each subspace c¢(gj(m)) = Ad(c)gj(m) is described in terms of the root subspaces
a(t;7) as

oy = ) Breaim, et ) if j #0,
coitm) {"@ (Byeam08ty) #i=0.

Now we set

A~ (m) == (A(m, —2) UA(m, —1)) N Ap = —A*(m) (cf. (3.3)).
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Let p_(m) and n(m) be nilpotent, abelian Lie subalgebras of g defined respectively
by

(4.6) p_(m):= € o) and n(m):=c(p-(m)).
YEA~(m)

Note that p_(r) = p_. If K\G is of tube type, the Lie subalgebra n(m) is stable
under the complex conjugation of g with respect to go.
We get the following lemma on the structure of these subalgebras p_(m) and n(m).

Lemma 4.2
(1) One has the equality

(4.7) p-(m) = [, Y (m)].

Namely, p_(m) is canonically isomorphic to the tangent space at the point Y (m) of
Kc-orbit AA(K¢c)Y (m) inp_.
(2) Let v(m) be the subspace of g1(m) such that

o(m) := ¢ (Byez(m)8(t 7))

with

(4.8) S(m) = ( U Pk,) U ( U Ck) C A(m, 1).
I<r—-m<k k>r—m

Then it holds that

(4.9) n(m) = o(m) ® g2(m) and dimo(m) = %dim g1(m).

Proof. — First, (4.7) is a direct consequence of (3.2). To prove (2), we note that

T
c? = Ad(c)? = H Sy, With s, = Ad(exp %(X’Yk -X_)),
k=1
gives rise to an element of the Weyl group of (g, t) such that

Sy = -, cCr=-P;, Py=-Cy

for k =1,...,r. In fact, s,, gives the orthogonal reflection with respect to ~x, and
(2.7) implies ¢2Cy, = — Py and so ¢2P; = —Cj. We thus find that

c’A~(m) = A(m,2) UE(m) (disjoint union),
and correspondingly
n(m) = v(m) & g2(m)
by Lemma 4.1(2). In view of (4.3) and (4.8), one gets the second equality in (4.9). O
Let 7, be the one-dimensional representation (i.e., character) of abelian Lie sub-

algebra n(m) = v(m) @ g2(m) defined by
(4.10) Nm(U) := V=1B(U,6X'(m)) = —v/—-1B(U,Y'(m)) for U € n(m).
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Here 0 denotes the complexified Cartan involution of g, and B the Killing form of
g. Then, just as in Definition 1.6 we get a C*°-induced G- and (g, K )-representation
'y, :=T,,, acting on the space

(4.11) C®(Ginm) = {f € C®(G) | URf = =nm(U)f (U € n(m))}
through left translation L. Note that
(412) C*(G;nr) C C*(Gsmr—1) C - -- C C=(G;mo) = C(G),

since one sees n(m) C n(m') and 9y |n(m) = 9y, for m < m'.

Definition 4.3. — We call (I'y,, C*®°(G; 1)) the generalized Gelfand-Graev represen-
tation (GGGR for short) of G attached to the nilpotent orbit O;, = Ad(G)X'(m) in

go-

Remark 4.4. — The GGGRs attached to arbitrary nilpotent orbits have been con-
structed in full generality by Kawanaka [14] for reductive algebraic groups. See also
[40] for the GGGRs of real semisimple Lie groups.

Remark 4.5. — It should be noticed that the above I'y,’s are slightly different from
the C*°-induced GGGRs discussed in [40]. In fact, we extend 7, to a linear form
on the Lie subalgebra gi(m) @ ga(m) by (4.10). Let (,, be the irreducible unitary
representation of the nilpotent Lie subgroup
N(m) := exp((g1(m) © g2(m)) N go)

of G which corresponds to the coadjoint orbit Ad*(N(m))(—v/—=1n,) by the Kirillov
orbit method. In [40, Def.1.11], the C*°-GGGR attached to O}, is defined to be the
representation Cw—Ind]%(m)(Cm) of G induced from (,,, in C°°-context.

Nevertheless, we can show just as in [40, Prop.4.10] that n(m) is a totally complex,
positive polarization of the linear form —y/—1n,, on the Lie algebra of N(m). This
implies that

C”—Ind%(m)(gm) — I';, as G-modules,

and the image of this embedding is always dense in I'y,. So we treat I'y,, in this paper
instead of C”-Ind%( m)(Cm).

4.2. Generalized Whittaker models. — For any irreducible finite-dimensional
K-module (7,V;), let L(r) = M(7)/N(7) (see 2.2) be the irreducible highest weight
(g, K)-module with extreme K-type 7. Consider the GGGRs (I, C®°(G;np)) (m =
0,...,r) induced from the characters 1, : n(m) — C. We say that L(r) has a
generalized Whittaker model of type n, if L(r) is isomorphic to a (g, K')-submodule
of C(G;nm).

We are going to describe the generalized Whittaker models for L(7) by specifying
the vector space Homg i (L(7), C®°(G; nm)) of (g, K)-homomorphisms from L(7) into
C*(G; nm). To do this, let D« : CR(G) = C3°(G) be, as in Definition 2.3, the
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G-invariant differential operator of gradient type whose kernel realizes the maximal
globalization of lowest weight module L(7)* (see Proposition 2.7). We set

Y(r,m) := Ker Dy« (n,)

={Fe€CX(G) | D;+F =0, URF = -, (U)F (U € n(m))}.
Then the kernel theorem (Corollary 1.8) gives a linear isomorphism

(4.14) Homyg i (L(7),C®(G;nm)) =~ Y(1,m)

through the correspondence (1.7).
Now our aim is to describe the space Y (7, m) for each 7 and m. For this purpose, we
essentially utilize the following unbounded realization of Hermitian symmetric space

K\G.

(4.13)

Proposition 4.6 (cf. [16, page 455], [9], [32]). — Retain the notation at the beginning of
2.3, and consider the open dense subset P, KgP_ of G¢ with P+ = expp4.

(1) One has G°c C PLKgP_, where c is the Cayley element of G in (2.8).

(2) Set &'(z) :=logp—(zc) € p— (z € G°), where zc = pi(zc)ke(xc)p—(xc) with
kc(zc) € K@ and p4(xc) € Py. Extend the assignment x — &'(z) (z € G°) to a map
from G to p_ through the covering homomorphism w : G — G°. Then, the extended
€'(z) (z € G) sets up an anti-holomorphic diffeomorphism, say €', from K\G onto
an unbounded domain

S:={(z) |z € G} Cp-.

Note that the map z — kc(zc) (x € G°) lifts to a map from G to K¢ (cf. [32]).
We write kc(z - ¢) (z € G) for this lift.

We are now in a position to state the principal results of this article. Let Oy, () be,
as in (3.4), the unique open Kc-orbit in the associated variety V(L(7)) of L(r). Among
the generalized Whittaker models for L(7), those of type 7,(,) are most important.
We obtain the following theorem on the corresponding linear space Y(r,m) with
m =m(T).

Theorem 4.7. — Let (1,V;) be an irreducible finite-dimensional representation of K.
Set m = m(7) and Y(7) := Y(r,m) for short. Then,

(1) Y(7) is a nonzero, finite-dimensional vector space.

(2) For any F € Y(7), there exists a unique polynomial function ¢ on p_ with
values in V¥ such that

F(z) = exp B(X(m),&' ()7 (kc(z - 0))p(¢'(x)) (z €@).

(3) Let o : py x V¥ — W* be the principal symbol of the differential operator
D« of gradient type, defined by (3.15). Consider the functions Fx(m),,» € CR(G) of
ezxponential type in Proposition 2.8. Then the assignment

v* — cRFX(m)Y,,, = Fx(m)w~(- ¢) (v* € Kera(X(m), -))
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yields an injective linear map
xr : Kera(X(m), - ) <= V(7).

The linear map - is not surjective in general. In fact, if L(7) is finite-dimensional,
one has Kero(X(m), - ) = V* since X(m) = X(0) = 0 in this case. However Lemma
1.1 implies that Y(7) ~ L(7)*.

Nevertheless, we can show the surjectivity of x, for relevant L(7)’s.

Theorem 4.8. — Assume that L(7) is unitarizable. Then the linear embedding X, in
Theorem 4.7 is surjective. Hence one gets

(4.15)  Homg g (L(1),C®(G;nm)) ~ V(1) ~ Kero(X(m), - )  W(X(m),7)*

as vector spaces, where m = m(t), and W(X(m),7) = L(7)/m(X (m))L(r) is as in
(3.10). Moreover, the dimension of the vector spaces in (4.15) equals the multiplicity
mult;, (L(7)) of the S(p—)-module L(T) at the unique associated prime I, C S(p-)
by Corollary 3.9.

Theorem 4.7 for m = m(7) allows us to deduce the following result on the structure
of Y(r,m') for m' # m(r).

Theorem 4.9. — The linear space Y(t,m') vanishes (resp. is infinite-dimensional) if
m' > m(r) (resp. m' < m(1)).

Remark 4.10. — Theorem 4.8 recovers, to a great extent, our earlier work [41, Part
II] on the generalized Whittaker models for the holomorphic discrete series L(7) =

M(r) = U(9) Qu(e+ps) V!

Homg g (M (1), C®(G;ny)) = V.
Moreover, the above three theorems applied to the special case m(7) = r gives an
answer to Problem 12.7 (for i = 0) posed in [41]. But this answer does not seem to

be new. In fact, D. H. Collingwood kindly informed me in 1992 that he had settled
Problem 12.7.

Remark 4.11. — The vanishing of Y(7,m’) (m' > m(7)) in Theorem 4.9 follows also
from a general result of Matumoto [22, Th.2].

The following three subsections 4.3—-4.5 will be devoted to proving the above three
theorems.

4.3. Key lemmas. — In this subsection we prepare two lemmas which are crucially

important to prove Theorems 4.7 and 4.8.
The first lemma is the following somewhat surprising result of Jakobsen.
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Lemma 4.12 ([20, Prop.2.9]). — Let g be any element of G¢, and let L(7) be an ir-
reducible highest weight (g, K)-module with extreme K-type 7. Then one has the
equality

Anny(ad(g)p-)L(7) = Ad(g)(Anny,_)L(7))

on the annihilator of L(1) in U(Ad(g)p-) and that in U(p-) = S(p-).

Second, for each integer m = 0,...,r, let Jp, denote the ideal of S(p_) generated
by the elements Y — B(X(m),Y) (Y € p_(m)):
(4.16) Jn= Y. (Y =B(X(m),Y))S(p-).
Yep_(m)
A method of Joseph (cf. [5, 2.4]) for describing the lowest weight vector of irreducible
K-module Q41 = I, NS™ 1 (p_) (see (3.6)) can be applied to deduce the following

Lemma 4.13. — It holds that I, + Jy, = m(X(m)). Here I,,, (see (3.5)) is the prime
ideal of S(p_) corresponding to the irreducible algebraic variety O,,, and m(X (m))
(see (3.9)) is the mazimal ideal of S(p_) corresponding to X (m) € p,.

Proof — The inclusion I, + J,, C m(X(m)) is obvious since any polynomial in I,
or in Jp, vanishes at X (m) by definition. If m = r, the equality I, + J, = m(X(r))
holds since I, = {0} and J, = m(X (r)).

Now we assume that m < r. In order to prove the sum I,,, + J,,, exhausts the whole
m(X(m)), we consider the subspace

Gm = > g(t; =) Cp_.
YEALNA+(m,0)

(See (4.4) for the definition of A*(m,0).) Then one gets p_ = p_(m) @ q,, as vector
spaces, and hence

(4.17) m(X(m)) = Jm + qmS(p-)
by the definitions of m(X (m)) and J,.
We set
Qm) = (AN Am )\ |J (Cuu—Cu)) (o (45),
r—m<I<k

and let €, be the Lie subalgebra of ¢ defined by

by =t® (EB’YEQ(m)g(t; 7))-
We write (K¢)., for the analytic subgroup of K¢ with Lie algebra &,,. Note that
qm, Jm and I, are all stable under the adjoint action of (K¢).,. Further, by using
(2.7) one easily checks that g,, is an irreducible (K¢)m-module with lowest weight
vector X_,_,. € qm. This together with (4.17) reduces our task to showing

(4.18) Xy €I+ Jm,

which can be done as follows.
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Let Qm+1 = Iy N S™H(p_) be the irreducible K-submodule of I, with lowest
weight —y, — -+ — ¥.—m. Take a nonzero lowest weight vector D41 € Qm41. By
virtue of [5, 2.4(*)], we find that

Dm+1 = CX_%‘ v X_’Yr—m mod J,,
for some nonzero constant ¢ € C. This implies that

Dt ={c H B(Xy, X-y)} - Xy, ,, mo0d .
k>r—m

Thus we have obtained (4.18) as desired. O

4.4. A role of the Cayley transform. — Keep the notation at the beginning of
2.3. We recall that the bounded realization B = {£{(z) | z € G} C p_ of K\G gives a
linear isomorphism

0: 0% (G) =5 O(B,V?)

by (2.18). Let O(p—, V*) be the space of all holomorphic functions on the whole p_
with values in V,*. Naturally, we regard O(p_,V;*) as a subspace of O(B,V}*). Set

02.(G)o := 071 0(p—, ;).
Just in the same way, the unbounded realization
S§={¢(z) =&{(w(x)c) | 2 € G} Cp-

of K\G in Proposition 4.6 gives a linear isomorphism

0°: 0%.(G) = 0(S,V)),
by
(4.19) O°F (€' (x)) :=1"(kc(z - ¢)) " F(2) (z € G;F € 0%(Q)).
See also [32, 2.4]. Similarly we put

01.(G)s := (8°)710(p—, ;).

Then the composite (©°) 00O induces an isomorphism from O%. (@) onto O%. (G)§
as vector spaces. This is exactly the (well-defined) right translation of functions on
G by the Cayley element c € G@:

(4.20) 07.(G)o > Fr—> cBFe 0:.(@)§,
where
RF(z) = 7*(kc(z - ¢))(OF)(¢'(z)) with &'(z) = logp_(w(x)c)

forz € G.
The function ¢cBF = ((©°)~! 0 ©)(F) can be interpreted as follows. First, take
an open neighbourhood U of e (the identity element) in G such that w : G — G°
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restricted to U gives a diffeomorphism from U onto U° := w(U) (C G°). Define a
Vr-valued function F° on U° by setting

(4.21) F(w(z)) = F(z) (z €U).

One sees that F° extends, in a unique way, to a (multi-valued) complex analytic
function F° on the open dense subset P, K2P_ of G, and that F° comes from the
function

(4.22) Py x K¢ x P- 3 (p4, ke, p-) — 7" (kc)(OF)(log p-) € V!

through the covering map from K¢ to K@. Second, we consider the right translation
cRF° of F° by the Cayley element ¢ € G%. This is a complex analytic function
defined on Py K2P_c™!. Noting that G° C P K2P_c™! by Proposition 4.6 (1), we
write cRF° for the restriction to G° of cRE°. Then our cRF = ((©°)~1 0 ©)(F) gives
a (single-valued) lift of cRF° to G.

The following proposition assures that the above right translation c® preserves the
kernel of differential operator D;«.

Proposition 4.14. — Let Dr- : C22(G) — C5°(G) be the differential operator of gradi-
ent type associated to 7. Then (4.20) yields a linear isomorphism

KerD;. N O;.(G)o ~ Ker D;+ N O}.(G)§.

Namely, a function F in O*.(G)o satisfies the differential equation D+ F = 0 if and
only if the corresponding c®F in OF.(G)§ satisfies the same equation.

As shown in the next subsection, this proposition together with two key lemmas
in 4.3 allows us to describe the space Y(r) = Y(r,m(7)) of generalized Whittaker
functions on G associated to the highest weight module L(7).

Proof of Proposition 4.14. — Let F' € O}.(G)o. We employ the interpretation of
clF and also the notation given just before the proposition. Note that D,~ naturally
gives rise to a right Gg-invariant, holomorphic differential operator, say ’[)2. defined
on the complex group G¢.

Now assume that D,+F = 0. Then one finds that D2.F° = 0 on PyK2P_. In
reality, 752.,13“ is the complex analytic extension of ﬁﬁ*F° on U°, and the latter
De. F° equals zero by assumption (cf. (4.21)). We thus get

D2 (cRF°) = R(D.F°) =0 on PLKcP_c™t.

This implies that D,«(cBF) = 0, because D,.(cPF) is a lift to G of the restriction
(D2.(c’F°))|Ge.

The reverse implication can be proved in the same way by using the inverse Cayley
transform. O
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4.5. Proof of the main theorems. — We are now ready to prove our main
theorems given in 4.2.

Proof of Theorem 4.7. — Let F be any function in Y(7) = Y(r,m) (see (4.13)) with
m =m(7). Set f¢:= O°F € O(S,V}).

STEP 1. We first see that the requirement URF = —n,,(U)F (U € n(m) =
c(p—(m))) for F is equivalent to

(4.23) D, -f¢=0 for Dy €Jy, (cf (4.16)),
for the corresponding f¢, by noting that
M (€Y) = =V/=1B(Y,e™'(Y'(m))) = =B(Y, X (m)) (Y € p_(m)).

Here the action of S(p—) on O(S,V,*) is defined by the directional derivative (2.20).
STEP 2. Consider the point Yy := £'(e) € S (e the identity element of G), which
is expressed as

Yo =logp_( ZX_A,,e

Let D5 be any element of the annihilator 1deal Anns(p_)L(T) of L(r) in S(p_) =
U(p-). Then it is standard to verify that

(D2 - £)(Yo) = (e(D2))*F(e) = (e("D2))" F(e).

Here D — TD denotes the principal anti-automorphism of U(g) as in 1.2.
Noting that the ideal Anng(,_)L(7) is homogeneous, we can apply Lemma 4.12 to
deduce that ¢(TD>) lies in the annihilator of L(7) in U(c(p—)). This implies that

(C( TDz))LF =0,
because U(g)X (v*, F(-)) =~ L(r) for every nonzero vector v* € V.*. We thus conclude
(4.24) (D2 f°)(Yo) =0 (D2 € Anng(,_)L(7)).

STEP 3. We are going to specify the function f¢ € O(S,V}*). It follows from
Hilbert’s Nullstellensatz that

\/Anns(p_)L(‘r) + Jm = m(X(m))a

since Anng,_)L(7) + J;, defines the variety {X(m)} of one point X(m) in p; by
virtue of Lemma 4.13. Hence (4.23) and (4.24) imply that there exists a nonnegative
integer N such that

(4.25) (Y = B(X(m),Y))N*t1. f)(Yy) =0 forallY € p_.

This means that the function f¢ is of the form

(4.26) fe(Y) = exp B(X(m),Y)p(Y),
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where ¢ is a V*-valued polynomial function on p_ of degree at most N. In particular,
F lies in O.(G)§ by (4.26), and so one finds that

V() C 0% (G)g.

Thus we have proved the claim (2) of Theorem 4.7 as well as the finite-dimensionality
of Y(7) in the assertion (1).

STEP 4. Let v* € V. By Proposition 2.8, the function Fi(m) .+ € Of.(G)o of
exponential type (see (2.24)) satisfies Dy« Fx(m) o« = 0 if and only if the vector v*
lies in Ker (X (m), - ). Proposition 4.14 says that the former condition is equivalent
t0 Dy (cBFx(m),0») = 0. Noting that ©°(cRFx(m),+) is of the form (4.26) with
constant function p(Y) = v* (Y € p_), we deduce that c®Fx(m) ,+ € Y(7) for every
v* € Kero(X(m), - ). This proves the assertion (3). Finally, the vector space Y(7)
does not vanish because

{0} # W(X(m),7)* ~Kero(X(m), - ) = Y(7),
thanks to Proposition 3.5 and Lemma, 3.10. O

Proof of Theorem 4.8. — Suppose that L(7) is unitarizable. We set m = m(7). Then
one knows that I, = Anng,_)L(7) by Theorem 3.7. This combined with Lemma
4.12 allows us to refine the discussion in Step 3 of the proof of Theorem 4.7. As a
result, we find that, for any F' € Y(7), the corresponding function f¢ = ©°F in (4.26)
is necessarily of exponential type, i.e., f¢(Y) = exp B(X(m),Y)v* (Y € p_) for some
v* € V*. This proves the surjectivity of x, in Theorem 4.7. Now the remainder of
the theorem is a consequence of Corollary 3.9 and Lemma 3.10. O

Proof of Theorem 4.9. — First, assume that m' > m := m(7). Let F be any function
in the space Y(r,m'). By (4.12), F belongs to Y(r) = Y(r,m(7)) also. Hence the
corresponding f¢ := O°F € O(p_,V;*) is of the form (4.26). It follows in particular
that

(X i) fO=expB(X(m), - )(X—y,_,.,,)" - 9) =0
for sufficiently large integers n, because B(X(m),X_, _ ,.,) = 0 and because ¢ in

(4.26) is a polynomial on p_. On the other hand, since F is in C®°(G; 0y ), we see
just as in Step 1 of the proof of Theorem 4.7 that

(X_Prr—m"f'l) ’ fc = B(X(m,)’X_’Y’r—m’+l)fc = B(X’Yr—m’+1’X_7r—m’+1)fc.

Thus one gets f¢ = 0 since B(X. X_,,._...,) #0. This shows that Y(r,m') =
{0}.

Second, assume that m' < m = m(r). Take a nonzero function F in Y(7) by
Theorem 4.7 (1). Note that V() C Y(r,m'). For each t € R, we define an element

at € G by
a = exp {~t(Xy,_ 41 + Xr,_pp1)} = expte(Hy,_,.,,) (cf. (4.2)).

r—m! 417 41
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Then it is easily checked that
Ad(a;)n(m') =n(m') and 9y o Ad(at) = N
This implies that the functions (a¢)®F still lie in Y(r,m’) for all ¢ € R, by noting
that the differential operator D, is right G-invariant. These vectors (a;)?F (t € R)
in Y(r,m') turn to be linearly independent, because one gets
(C(X—%—m+1))R((at)RF) = e2t : B(‘X’Yr—m+1’X_‘Yr—m+l> : ((at)RF)*

by direct computation. Hence the vector space Y(r,m’) in question is infinite-
dimensional if m' < m(7). O

Now we have completely proved the main theorems, Theorems 4.7-4.9.

4.6. Relation to generalized Whittaker vectors. — We end this section by
interpreting our results (Theorems 4.7-4.9) in terms of generalized Whittaker vectors
in the algebraic dual of an irreducible highest weight (g, K)-module. To do this we
prepare the following lemma.

Lemma 4.15. — Setn :=n(r) = c(p-) (cf. (4.6)). Let b be the linear map from n to
p_ defined by
W2)=2 mod ¢+ py

for Z € n. Then b is a surjective linear isomorphism.

Proof. — Write an element Y € p_ as a linear combination of root vectors:

Y=Y ¢,X_, with ¢,€C

veay

Then it is easy to compute the Cayley transform e(X_.) of X_, for each noncompact
positive root vy (see [32, 2.1 and 2.2] and also [41, 9.1]). As a result, one finds that

c(X_y)=kyX-y mod p; +E
where k., = 1/2 or 1/1/2 depending on v € A}. This implies that

b(e(Y)) = Z Ky Cy X _ry.
veat

We thus get the lemma. O

Let L(7) be the irreducible highest weight (g, K)-module with extreme K-type 7.
Let us look upon L(7), by restriction, as a module over U(n) = S(n). (Note that n is
an abelian subalgebra of g.) Then Lemma 4.15 immediately implies the following

Proposition 4.16. — L(t) is finitely generated as a U(n)-module. Moreover, the
Gelfand-Kirillov dimension Dim(n; L(1)) and the Bernstein degree Deg(n; L(7)) of
L(7) as a U(n)-module coincide with those Dim L(7) = Dim(g; L(7)) and Deg L(1) =
Deg(g; L(7)) as a U(g)-module, respectively.

SOCIETE MATHEMATIQUE DE FRANCE 2001



120 H. YAMASHITA

Remark 4.17. — The argument in the proof of Lemma 4.15 allows us to show
nbNV(L(r) C vt npy = {0},

where nt denotes the orthogonal of n in g with respect to the Killing form. In view
of this property, we can apply a criterion [43, Th.2.2] for the finiteness of restriction
of U(g)-modules to subalgebras. This gives another proof of the above proposition.

In view of Lemma 4.12, the annihilator ideal of L(7) in U(n) turns to be
(4.27) Anny(n) L(1) = ¢(Anny,_)L(7)),
and it defines the associated variety
V(1; L(7)) = ¢(Om(r))

of U(n)-module L(7), which is an irreducible affine algebraic variety in n* = e(p4).
Thus, the associated cycle AC(n; L(7)) of U(n)-module L(7) is of the form

AC(n; L(7)) = multe(z,, ) (8; L(7)) - [¢(Om(r))];
where mult,(z,,,,)(n; L(7)) denotes the multiplicity of U(n)-module L(7) at the unique
associated prime ¢(Ip,(;)). Further, the Bernstein degree of U(n)-module L(7) is
described as

(4.28) Deg(n; L(7)) = multe(r,..,,) (0 L(7)) - deg(€(Omir);

where deg(c(Omn(r))) denotes the degree of the nilpotent cone ¢(Om(r)) (cf. [27,
Lemma 1.1]).

The above discussion tells us the following coincidence of two types of multiplicities
of L(r).

Proposition 4.18. — One has the equality
multy,, ., (L(7)) = multe(y,, ) (n; L(1)),

where multy, . (L(7)) is the multiplicity in the associated cycle of (g, K')-module L(T)
(cf. (3.13)).

Proof. — The assertion follows from Proposition 4.16 together with the equalities
(3.14) and (4.28), by noting that the degrees of orbits Op,(;) and ¢(On (7)) coincide
with each other. O

Now, for each m =0, ...,r = R-rank(G), let n,, be the one-dimensional represen-
tation of n(m) = e(p—(m)) which induces the GGGR (T, C*®°(G;nm)) (cf. (4.10)
and (4.11)). A linear form v on L(7) is called an (algebraic) generalized Whittaker
vector of type n, if

Y(Uw) = N (U)(w) forall U € n(m) and w € L(7).
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We write Wh; (L(7)) for the space of such generalized Whittaker vectors. By defi-
nition, one observes that

(4.29)  Wh; (L(7)) ~ (L(T)/C(TJm)L(T))* := Home(L(7)/e(TJm)L(T), ©),

as vector spaces, where J,, is the ideal of S(p_) = U(p—) defined by (4.16), and T
denotes the automorphism of S(p_) such that 7Y = —Y for Y € p_. Further, every
(g, K)-embedding T from L(7) into C*®(G; 9y ) yields a generalized Whittaker vector
¥ € Why_ (L(7)) by

P(w) = (Tw)(e) (w € L(r)).

This assignment 7" — ) sets up a linear embedding
(4.30) Homg g (L(1), C*(G;nm)) < Why (L(7)).

We can show that this embedding is actually surjective for the most relevant case,
as follows.

Proposition 4.19. — If m = m(r), the map (4.30) is surjective. Namely, every
nonzero generalized Whittaker vector in Why . (L(7)) gives an embedding of L(T)
into the GGGR C™(G; Nm(r))-

Remark 4.20. — Let L(7)* denote the smooth G-module consisting of all C'*°-vectors
for an irreducible admissible representation of G corresponding to L(7). In view of
the discussion in [41, 12.5], one finds that, if L(7) is a member of holomorphic discrete
series, any vector in Why . (L(7)) extends also to a continuous G-isomorphism from
L(7)* into C°°(G;Mm(r)). This appears to be true for any L(7) not necessarily in

the discrete series, but we do not discuss it here.

Proof of Proposition 4.19. — First, we set m := Anng(,_)L(7) + Jp(r). By virtue of
Lemma 4.13, m is an ideal of S(p_) that defines the one point variety {X (m(7))},
and in particular, the codimension of m in S(p_) is finite. By (4.27), the isomorphism
(4.29) turns out to be

(4.31) Wh; (L(7)) =~ (L(7)/e(F@)L(7))".

Nm(r)

Second, we consider the generalized Verma module M(7) = U(g) ®u(e4p,) V- and
its unique maximal submodule N (7). The natural quotient map M(r) = L(7) =
M(7)/N(7) induces a linear isomorphism

(4.32) L(7)/e(FR)L(r) ~ M(7)/(N(r) + e(Ti) M (1))

in the canonical way. Now let ( -, - ); be the (g, K)-invariant bilinear form on
0:.(G) x M(t) constructed in 2.3. We write £ for the orthogonal of ¢(Tm)M (1)
in Of.(G). Then, the bilinear form ( -, - ), naturally induces a linear embedding

(4.33) E o (M(1)/e(Fm)M(T))*.
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Third, just as in the proof of Theorem 4.7 (see 4.5), one finds that an element
F € 0. (G) belongs to & if and only if

(4.34) D-f°(Yo) =0 forall Dem,
where Yo = £'(e), and f¢ = (0°)"'F € O(S,V;*) as in (4.19). It then follows from
(4.34) that
(4.35) dim & = dim V; x dim S(p_)/m.
Since we have
ME)=UmV, ~2Un)®V;

by Lemma 4.15, the dimension of the quotient space M (7)/c(Tm)M(7) is equal to the
right hand side of (4.35). This shows that the linear isomorphism (4.33) is surjective:

(4.36) &~ (M(r)/e(Tm)M(r))*.
In view of Proposition 2.7 (1), (4.31), (4.32) and (4.36) give rise to isomorphisms
ENKerD,. ~ (M(7)/(N(1) + e(Tm)M(7)))* ~ Wh  (L(r))

NMm(r)
as vector spaces, where D, is the differential operator of gradient-type associated
to 7*. This proves the proposition, because every function in & N KerD,. gives a
(9, K)-embedding of L(7) into C®(G;nm(r)) by virtue of (4.14). 0O
Proposition 4.21. — If L(7) is unitarizable, one gets
dim Wh:’m(f)(L(T)) = dim L(7) /m(X (m(7)))L(7) = dim L(7)/e(m(—X (m(7))))L(1),

where m(X) is the mazximal ideal of S(p-) definining a point X € Op(r) (cf. (4.1)).
Moreover, the above dimension is equal to the multiplicity in the associated cycle

AC(L(7)) of L(7).

Proof. — The assertions follow from Theorem 4.8 and Proposition 4.19 by noting the
isomorphism (4.31), where 7 = m(—X (m(7))) in this case. O

Concerning the spaces of algebraic generalized Whittaker vectors, we are now in a
position to give the following consequence of the main results of this article.

Theorem 4.22. — The dimension of the vector space Wh; (L(7)) is given as

0 if m > m(r),
dim Wh;,_(L(7)) = { finite (#0) if m =m(r),
00 if m < m(r).

Here Oy, 1y is the unique open Kc-orbit in the associated variety of L(T). Moreover,
if L() is unitarizable, the dimension of Why . (L(7)) coincides with the multiplicity
multy,, ., (L(7)).
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Proof. — The claims for the cases m < m(7) and m = m(7) follow from Theorems 4.7
and 4.8 coupled with (4.30) and Proposition 4.19. The property Wh; (L(7)) = {0}
for m > m(r) can be proved by an argument similar to the one given in the proof
of Theorem 4.9, or alternatively, one can apply a general result [22, Corollary 4] of
Matumoto. O

5. Case of the classical groups

Hereafter, we assume that G is one of the classical groups SU(p, q) (p = q), Sp(n, R)
or SO*(2n). The theory of reductive dual pairs gives concrete realizations of unita-
rizable highest weight modules L{o] = L(7[o]) for these groups G (see Theorem 5.1),
by decomposing the oscillator representation of the pair (G,G’), where G’ = U(k),
O(k), or Sp(k) respectively, and o € G'.

For such L[o]’s, we specify in this section the K¢ (X (m))-modules W(X (m), r[o]) =
L[o]/m(X (m))L[o] (cf. (3.10)) with m = m(7[o]) explicitly by using the Fock model
of the oscillator module (see Theorems 5.14 and 5.15). In view of Theorem 4.8, this
leads us to a clearer understanding of the generalized Whittaker models for L[o].

5.1. Oscillator representation. — We start with constructing the oscillator rep-
resentation of the pair (G, G"), following [3, §7]. First, realize our classical groups G

as
4

SU(p,q) = {g € SL(p+4,C) ’ g (g’ 3‘1) 'g = (g’ —OI.,)} (r>9),

\SO*(2n)={g€SU(n,n)‘ tg<10n IO")g=(Z IO")}

where I, denotes the identity matrix of size n. The totality of unitary matrices in G
forms a maximal compact subgroup K.

Let Mp, 4 denote the space of all complex matrices of size p x g. We write Sym,,
(resp. Alt,,) for the set of all symmetric (resp. alternating) complex matrices of size n.
Then, the real rank r = R-rank G, the complexification K¢ of K, and the irreducible
K¢-module p,under Ad, can be described for each G respectively as in the following
table.

L 6 [r] Ke | s |
(5.1) SU(,q) || 4 | S(GL(p,C) x GL(¢,C)) | My,
Sp(n,R) || n GL(n,C) Sym,,
SO*(2n) || [3] GL(n,C) Alt,,

SOCIETE MATHEMATIQUE DE FRANCE 2001



124 H. YAMASHITA

Here the Kc-action on p is given as
(52) g X=@Xg;', g=(91,92) € S(GL(p,C) x GL(q,C)), X € M,
for G = SU(p, q), and

g-X =gX'9, g€GL(n,C), X € Sym, or Alt,

for G = Sp(n,R) or SO*(2n). For this, see also [27, 7.1].
For every positive integer k, we realize the compact group G' as

U(k) ={g9 € GL(k,C) | g'g = It} for G = SU(p,q),
O(k) = U(k) N GL(k, R) for G = Sp(n, R),
Sp(k) = {g € U(2k) | tgJrg = Jr} for G = SO*(2n).

The complexification of G' will be denoted by Gg, ie., Gz = GL(k,C), O(k,C),
Sp(k,C) respectively. Define a space M of complex matrices by

Mpr (n:=p+q) for G=SU(p,q),
M:=<¢ Mpy for G = Sp(n,R),
My 2k for G = SO*(2n).
For G = SU(p, q), the elements Z € M will be written as

Z = (g) with A€ Mp’k,B € My .

The group K¢ x G¢ acts on M by
—1

(5.3) (9,9") -2 := ( ) with g = (g1, g2),

tgz_lB tgl
for G = SU(p, q), and by
(5.4) (9,9") - Z :=gZg'""

for G = Sp(n,R) or SO*(2n), where (g,9') € K¢ x G and Z € M.
We now prepare some notation to describe the oscillator representation. Let 1 be
a map from M to py such that

At'B for G = SU(p, q),
(5.5) Y(Z):=¢ 3Z'Z  for G = Sp(n,R),
1ZJ'Z for G = SO*(2n).

Note that ¢ : M — p, is a K¢ x Gg-equivariant polynomial map of degree two, where
we let G act on p. trivially. For each Y € p_, let hy be a polynomial on M defined
by

hy(Z2) := B(¥(Z),Y) (B the Killing form of g).
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We set for g € Kc,
(detg,)~*  for G = SU(p,q),
(5.6) 0k(g) :={ (detg)~*?% for G = Sp(n,R),
(detg)~*  for G = SO*(2n),

where g = (g1,92) as in (5.2) for G = SU(p,q). If G = Sp(n,R), the function §; is
two-valued on K¢ = GL(n,C). We need to go up to the two fold cover of K¢ in order
that & determines a genuine character of the group. Hereafter, we replace K and
K¢ by their two fold covering groups when G = Sp(n,R). By abuse of notation, the
latter covering groups will be denoted by K and K¢ again.

Let C[M] denote the ring of polynomial functions on the complex vector space M.
One can define a (g, K)-representation w on C[M] in the following fashion. First, the
p— action on C[M] is given by multiplication:

(5.7) w(Y)f(2) :=hy(2){(2), Y €p-,
for f € C[M]. Second, p4 acts by differentiation:
w(X)f(Z) = k(hx(0)f)(Z), X €py.

Here h+(d) stands for the constant coefficient differential operator on M defined by
the polynomial h, and the constant x depends only on the Lie algebra go of G.
Third, the complexification K¢ acts on C[M] holomorphically as

w(9)f(Z) = 0k(9)f (97" e)- Z), g€ Kc.
On the other hand, C[M] has a natural Gi-module structure through

RV f(Z):=f((e,g'™") Z), ¢ €GE.

Then it is easily seen that these two representations w and R commute with each
other. The resulting (g, K) x Gg-representation (w,R) on C[M] will be called the
Fock model of the (infinitesimal) oscillator representation of the pair (G,G").

It should be mentioned that the above oscillator representation w of the pair (G, G")
comes from the Weil representation of a metaplectic group. In fact, G x G' forms a
reductive dual pair in a real symplectic group Sp(NV,R). Consider the Weil represen-
tation Q (cf. [12]) of the metaplectic group Mp(N, R), which is the two fold cover of
Sp(N,R). Restrict 2 to the metaplectic cover G x G of G x G, and then twist it by
a certain one-dimensional character of the compact group G’. One thus gets w.

5.2. Unitarizable highest weight modules L[o]. — Let (0, V,) be an irreducible
(finite-dimensional) unitary representation of the compact group G'. Extend o to a
holomorphic representation of G¢ in the canonical way. We set

(5.8) Llo] := Homg (V5, C[M]),

SOCIETE MATHEMATIQUE DE FRANCE 2001



126 H. YAMASHITA

which turns to be a (g, K')-module through the representation w on C[M]. Let X(k)
denote the totality of equivalence classes of irreducible unitary representations o of
G' such that L[o] # {0}. Note that the G-action on C[M] is locally finite since G
preserves each subspace of homogeneous polynomials of any fixed degree. Then one
gets

(5.9) C[M] ~ @ Lio]®V, as (g, K) x Gg-modules.
oc€X(k)

The isomorphism is given by
Liol®V, 5T ®v+— T(v) € C[M],

on each Gg-isotypic component L{o] @ V.
The following theorem states the celebrated Howe duality correspondence associ-
ated to (G,G").

Theorem 5.1 ([121, [6], [7]; cf. [3, §7])

(1) L[o] is an irreducible unitarizable highest weight (g, K)-module for every o €
(k). In particular, (5.9) gives the irreducible decomposition of the (g, K) x Gr--module
C[M].

(2) Let 01,09 € B(k). Then, Vo, =V, as Ge-modules if and only if L{o1] ~ L{o]
as (g, K)-modules.

(3) If G = SU(p,q) or Sp(n,R), any irreducible unitarizable highest weight (g, K)-
module is isomorphic to an L[o], where o € ¥(k) for some positive integer k.

Let 7[o] denote the extreme K-type of highest weight (g, K')-module L[o], i.e.,
L{o] = L(r[o]). We note that the correspondence o + 7[o] can be explicitly described
in terms of their highest weights. For this, see the articles cited in the above theorem.

It follows from the standard argument in linear algebra that each Kc¢-orbit Oy,
in p4 (see 3.1) consists of all the matrices in py = Mp 4,Sym,, (resp. Alt,) of rank
m (resp. 2m) for G = SU(p,q), Sp(n,R) (resp. SO*(2n)). Let E;4(%,j) denote the
(2, 7)-matrix unit of size s x t whose (k,l)-matrix entry ey, is equal to 1 if (k,1) = (7, j);
ex; = 0 otherwise. We put

m
(5.10) Ly(m) = Eg4(i,i) € Myy (m=0,...,min(s, 1)),

i=1
where I, +(0) := 0. Then, we take an element X (m) € O, explicitly as
Ipq(m) for G = SU(p, 9),
(5.11) X(m):=1Q I,na(m)/2 for G = Sp(n,R),
Y (Ban(i,m+1) — Epn(m+1i,i))/2 for G = SO*(2n).

1=
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Now, it is easily seen that the image (M) of the K¢ x Gg-equivariant map 1 :
M — p, in (5.5) is a Kc-stable, irreducible algebraic variety described as
(5.12) Y(M) = Op, with my :=min(k,r),

where M and 1 depend on k. By (5.7) and (5.9), the annihilator ideal in S(p_) of
L[o] (0 € £(k)) consists exactly of all the elements D € S(p_) = C[p, ] vanishing on
¥(M). In this way we have shown the following well-known fact.

Proposition 5.2 (cf. [3, §12]). — For any o € X(k), the associated variety of unita-
rizable highest weight module L[o] is equal to the closure of the Kc-orbit Op, =
Ad(Kc¢)X (mg). More precisely, Anng,_yL[o] coincides to the prime ideal Im, defin-
ing Om, (cf. Theorem 3.7).

5.3. Variety Vi and ideal w(m)C[M]. — Now we consider the maximal ideal:
mo=m(X(m) = 3 (¥ - B(X(m), Y))S(p-) C S(p-)  (ct. (3.9)),
Yep-

for each positive integer k. For m =0, ..., let Kc(m) := Kc(X (m)) be the isotropy
subgroup of K¢ at X (m) € O,,. We want to describe the K¢ (my)-modules

Wlo] := W(X(my), 7[0]) = L[o]/mL[o] (o € E(k)).
In view of (5.8) and (5.9), one gets an isomorphism
(5.13) Wio] ~ Homg Vs, C[M]/w(m)C[M]) as Kc(my)-modules.

So, our task is to decompose the quotient C[M]/w(m)C[M] as K¢ (my) x Ge-modules.
To do this, we note that, by virtue of (5.7), w(m)C[M] is equal to the ideal of C[M]
generated by all matrix entries of the following polynomial function of degree two:

(5.14) M > Zv— ¢(Z) — X(mu) € p+.
We consider the corresponding affine algebraic variety Vi of M:
Vi :={Z € M | $(2) = X(my)} = ™ (X (my)),

which is the inverse image of X (my,) by 1. Clearly, the variety V; is stable under the
action of K¢(my) X G¢. Note that the codimension of Vy is given as

dim M — dim V}, = dim Op,, = dimp_(my) (cf. Lemma 4.2)

by virtue of (5.12).

Now, let us give the Gi-orbit decomposition of Vi for each group G separately,
where G is identified with the subgroup {e} x G¢ of K¢ x G.. We define a subgroup
Ge(k —r) (r = R-rank G) of G by

{I} (the unit group) ifk<r,

(5.15) Ge(k—r) = {(Ior 2) c ch} ifk>r,
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for G = SU(p,q), Sp(n,R), and by

(5.16)
{I2} (the unit group) ifk<r,
Ge(k—r) = Iolc hO g hO
o 51 I 012 €Ge | hij € My_yp—yr § ifk>r,
O hat O hy

for G = SO*(2n). Note that if k¥ > r, the group G(k — r) is naturally isomorphic
to GL(k — r,C), O(k — r,C) or Sp(k — r,C) according as G = SU(p, q), Sp(n,R) or
SO*(2n) respectively.

First, the following lemma for the case SU(p, q) is due to Tagawa.

Lemma 5.3 ([31, 3.5 and 3.8]). — Assume that G = SU(p,q) (r = q, Gt = GL(k,C)).
(1) If k < g, the group G = GL(k,C) acts on Vi, simply transitively. One gets

Ip,k(k)
Iq‘k(k)
where the matrices Ip (k), I,k (k) are as in (5.10).

(2) If k > q and p = q, then the G-action on Vy is still transitive, and it holds
that

(5.17) Vi = Gg - ( ) ~ Ge  as Gg-sets,

— . Iq,k(Q) ~ Y 1 _ '
Vi = G¢ <Iq,k(Q) ~ Ge/Ge(k ~q) as Gi-sets.

Here G¢(k — q) coincides with the isotropy subgroup of G¢ at (;qykEg) € Vg.
q,k

(3) If k > q and p > q, Vy is no longer Gi.-homogeneous. In fact, let My_q g be
the subspace of M defined by

) 1 0
Mygiq=_20={0 U |UeM,,_q,k_q .
I, 0

Then Vy, is decomposed as
(5.18) Vi = G(/c : Mp—q,k—q = H Gé} : 07
UeA
where A denotes a complete system of representatives in Mp_g x—q of the Ge(k - q)-
orbit space

Mp—q,k—q/G&:(k —q) = My_qk—q/GL(k — ¢,C).

Second, the structure of G¢-variety Vy is much simpler for Sp(n, R). This is because
the corresponding Hermitian symmetric space is always of tube type.
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Lemma 5.4. — Assume that G = Sp(n,R) (r = n and G¢ = O(k,C)). Then it holds
that
Vi = Gg * Ink(my) ~ Ge/Ge(k —n)  as Gi-sets,
Here my, = min(k,n), and the isotropy subgroup of G¢ at I, x(mg) is equal to the
group Ge(k —n) in (5.15).
Third, one obtains the following lemma for SO*(2n).

Lemma 5.5. — Assume that G = SO*(2n) (r = [n/2] and G = Sp(k,C)).
(1) If k < r, one has

(5.19) Vi = G - In2k(2k) ~ Ge  as Gg-sets.
(2) If k > r = n/2 with even integer n, the variety Vi is described as
_ Ik (r) o) ~ 1.
(5.20) ve=Ge- (a7 9 ) = Gefae—n),
where Ge(k —r) ~ Sp(k — r,C) (cf. (5.16)) coincides with the isotropy subgroup of

I (7) 0 . _
0 Ir,k (7‘)) m M = Mzr,gk.
(3) If k > r = (n — 1)/2 with odd integer n, Vy consists of two Gg-orbits. In fact,

we set
I, O O O
(21,22)":={0 O I. O

o z1 0 23

G¢ at the matriz <

for (z1,22) € My g(k—r) = M1 k—r X My g—r. Then Vi decomposes as
(5.21) Vi =Ge - Mygg-r) =G+ (0...0,0...0)~ J[ G¢-(10...0,0...0),
where Ml’z(k_r) = {(z1,22)7 | 21,22 € My j—r}.

We give below a proof of Lemma 5.5 for G = SO*(2n). Lemmas 5.3 and 5.4 can
be shown in the same way (so we omit the proofs of these two lemmas).

Proof of Lemma 5.5. — (1) Suppose k < r = [n/2]. In view of (5.5) and (5.11), one
observes that an element

Z = (g) eM with Ce Mook, D € Mp_ok 2k

belongs to Vi if and only if
CJk tC = Jk, CJk tD = 0, and DJk tD = O,

which means that C € Sp(k,C) and D = O. We thus get (5.19).

(2) Consider the case k > r = n/2 with even integer n. Take any matrix Z in
Vi. Let ¢; € My = C* (i = 1,...,n) denote the i-th row vector of Z. Set
d; »= ¢p4i (1 = 1,...,7). By the condition ZJtZ = J, (& ¢(Z) = X(r)), we can
extend {ci,...,¢,dy,...,d,} to asymplectic basis {ci,...,ck,d1,...,dr} of C** with
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respect to the nondegenerate alternating form defined by Ji. Then, there exists an
element g’ € G¢ = Sp(k,C) such that e;g’ = ¢i,exi9’ = di (1 = 1,...,k), where

e1, ..., ez denotes the standard basis of C?*. This implies that
-1 (I.x(r) 0
7 = =1 . ( .k ) )
g 0 Ir,k (7‘)

Furthermore, g’ € G fixes the above matrix if and only if e;g' = e; and ex4;g' = ex4s
for all i = 1,...,r, or equivalently, g' € G(k —r).

(3) Suppose that £ > r = (n — 1)/2 with odd integer n. Just as in (2), one can
show that any element in V; lies in the G-orbit through a matrix Z of the form

[

€r
Z =\ ept1 for some z € C*.

€k4r
z

Then the condition ¢(Z) = X (r) imposes

eiJktz=ek+iJktz=O for i=1,...,7‘.

Hence one finds that Z = (21,22)” for some (21,22) € My p(k—r), i-€,, Vi = GG -
My 2(k—r)-

Finally, observe that two matrices (z1,22)” and (21, 25)” in Vi belong to the same
Gg-orbit if and only if the corresponding vectors (21, 2z2) and (21, 25) in My 5(x_r) are
conjugate under the action of Sp(k — r,C). This yields the second equality in (5.21),
by noting that Sp(k —r,C) acts on M; 3(4—r)\{0} transitively. O

The above three lemmas imply in particular the following

Proposition 5.6. — The affine algebraic variety Vy, is irreducible except the case G =
Sp(n,R) with k < n.

Remark 5.7. — If G = Sp(n,R) with k < n, then V}, ~ O(k,C) has two irreducible
components according as the coset decomposition O(k,C) = SO(k,C) U ¢'SO(k, C)
with ¢’ € O(k, C)\SO(k, C).

Proof of Proposition 5.6. — Let (G¢)o = GL(k,C), SO(k,C) or Sp(k,C) be the iden-
tity component of the complex classical group G = GL(k,C), O(k,C) or Sp(k,C)
respectively. Under the hypothesis of the proposition, we find from Lemmas 5.3-5.5
that Vj is the image of an irreducible variety (Gg¢)o or (Gg)o x CP (for some p > 0)
by a continuous map (with respect to the Zariski topology) between two affine spaces
over C. This proves the proposition. O
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The next proposition is important to specify our K¢(my)-modules Wo].

Proposition 5.8. — The ideal w(m)C[M] of C[M] coincides with the defining ideal of
Vi in C[M]:

(5.22) wm)CM] ={feCM] | f(Z)=0 forall Z € Vi}.
Hence one gets a natural isomorphism
(5.23) CIM]/w(m)C[M] ~ C[Vx] as Kc(my) x Go-modules,

where C[Vy]| denotes the affine coordinate ring of Vi consisting of all functions on Vi
given by restricting polynomials on M to V.

Proof. — We write I, for the defining ideal of Vi, the right hand side of (5.22).
By definition one has w(m)C[M] C Z,. So we want to show the converse inclusion
T C w(m)C[M].

First, we prove the inclusion in question when the variety Vy is irreducible. Namely,
we exclude the case G = Sp(n, R) with k < n exactly (see Proposition 5.6). Take any
basis Y1, ..., Y; of the vector space p_(my) = [¢,Y (mg)] (cf. Lemma 4.2). We define
fiyo.o, fr € w(m)C[M] by

fi(Z) == B(¥(Z) - X(m4),Yi) for Ze M.
Lemma 4.13 together with (5.9) yields
Ve={ZeM)| fi(Z)y=0 (i=1,...,t)}.

By case-by-case examination, we can find an element Zy € V}, on which the differen-
tials (dfi)z, (¢ =1,...,t) are linearly independent. In fact, the “identitylike” matrices
given in Lemmas 5.3-5.5 satisfy this requirement if Vj is a single G-orbit. Otherwise,
one can choose Z; as

0 € Myp_gk—q (SU(p,q), k> g, p>q),
(0...0,0...0 € My o6 (SO*(2n),k > (n—1)/2 with odd n).

Thus we get (f1,..., ft) = Ik, by applying Lemma 4 of [17, page 345]. This shows
T, C w(m)C[M] as desired.

Second, consider the case G = Sp(n,R) with k¥ < n. Then we know V}, ~ O(k,C)
by Lemma 5.4, and hence the equality w(m)C[M] = Z; is an easy consequence of a
classical theorem of Weyl [37, Theorem (5.2.C)].

Now the equality (5.22) and so the isomorphism (5.23) have been proved com-
pletely. O
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5.4. Kc(mg)-modules W[o]. — We are now in a position to specify the K¢(myg)-
modules Wo] for every o € X(k) (k =1,2,...). First, we prepare some notation to
state the results in a unified form. Let G¢.(k—r) (r = R-rank G) be the subgroup of G¢.
in (5.15) and (5.16). With Lemmas 5.3-5.5 in mind, we introduce a G¢(k — r)-stable
subvariety Uy of Vi, as follows. We set

N R | O e

Mp—q,k-q (k>gq and p#q)
for G = SU(p, q), and

uk = {In,k(mk)} (k = 1,2,. . ) for G = Sp(n,IR),
where my = min(k,r) as before. The variety U, for G = SO*(2n) is defined to be

{In,2(2k)} (k<r=[n/2])
Lg(r) O .
Uy = k =
k=g {( 0 Ir,k(f‘))} (k>r=n/2 with n even),
[ My ags—r) (k>r=(n-1)/2 with n odd).
Then, Lemmas 5.3-5.5 imply that
(5.24) Vi = Ge - Uy,

and that the G-orbits X' in V) are in one-one correspondence with the Gi(k — r)-
orbits X N Uy, in Uy,.

Definition 5.9. — We say that the pair (G,G’) is of type (SVT) if the pair (G,G') is
in the stable range with smaller member G’ (i.e., k < r), or the symmetric space K\G
is of tube type (i.e., G = SU(p,q) with p = q, Sp(n,R), or SO*(2n) with n even).
This happens exactly when U, consists of a single G (k — r)-fixed point, say Z,. We
call it the case (SVT), too.

Now Proposition 5.8 allows us to deduce the following

Proposition 5.10. — Under the above notation, let ClUy] be the coordinate ring of
Ge(k —r)-stable variety Uy, viewed as a Gi(k —r)-module in the canonical way. Then
one has a linear isomorphism

(5.25)  W[o] ~ Homgro(s—r) Ve, ClUUs]) = (Vi © CUi))C'<*=7 (0 € S(k)).
In particular, it holds that
(5.26) Wio] ~ (V;)G’C(k_’) for the case (SVT).

Here (V ® ClU])C <*=7) denotes the subspace of V* ® ClUx] of G'c(k — r)-fized
vectors, and the right hand side of (5.26) turns to be V) if k < r.

ASTERISQUE 273



GENERALIZED WHITTAKER MODELS 133

Proof. — We know the K¢ (my)-isomorphism W(o] ~ Homg:.(V,, C[V&]) thanks to
(5.13) and (5.23). Let T be a Gg-homomorphism from V; to C[Vx]. Set Tp(v) :=
T (v)|Uy, the restriction of T'(v) € C[Vi] to Uy, for each v € V. Then Ty gives a
homomorphism of G¢(k — r)-modules from V, to C[ifx]. By using Lemmas 5.3-5.5
(see also (5.24)), it is standard to verify that the assignment T~ Ty sets up a linear
isomorphism

(5.27) HomG/C(Vg, (C[Vk]) jand Homgzc(k_,) (Va-, (C[Z//k]),

which is a variant of the Frobenius reciprocity. We thus obtain (5.25) (the second
isomorphism is a natural one). (5.26) follows from (5.25) immediately, since C[ly] is
the one-dimensional trivial G (k — r)-module for the case (SVT). a

Remark 5.11. — For the case G = SU(p, q), the above proposition is due to Tagawa
[31, Th.3.10.1].

Remark 5.12. — The irreducible decomposition of G¢(k — r)-module C[if;] is well-
known even if U}, is not a variety of single point. Indeed, C[l{] is isomorphic to the nat-
ural GL(k — ¢, C)-module C[Mp_g k—q] (resp. such Sp(k —r,C)-module C[My 2(x—r)])
when G = SU(p,q) with p > ¢ and k > ¢ (resp. G = SO*(2n) with k > (n — 1)/2
and n odd). On one hand, the GL,_4 x GLy—4 duality can be used to decompose
C[Mp—q,k—q] into irreducibles. On the other hand, the space SI(M1,2(k—r)) of homo-
geneous polynomials on M y(x—r) of any fixed degree ! turns to be an irreducible
Sp(k — r,C)-module with highest weight ({,0,...,0). This yields the irreducible de-
composition

CMy 2(k—r)] = EB!;OSI(MIJ(k—r))

as Sp(k — r, C)-modules.

Hence the right hand side of (5.25) can be described concretely by a combinatorial
method, once one knows the branching rule of irreducible representations of G re-
stricted to the subgroup G(k — r) (cf. [19], [30]). Although we do not discuss it in
this paper, the author would like to thank K. Koike for kind communication on the
branching rule of finite-dimensional representations of complex classical groups.

In view of Corollary 3.9, we get a direct consequence of Proposition 5.10 as follows.

Corollary 5.13. — Let o be in £(k). Then, the multiplicity multy,, (L[o]) of irre-
ducible highest weight module L[o] at the defining ideal Ip,, of the associated variety
V(L[o]) coincides with the dimension of vector space (V* @ ClUy])¢'<*~7). Especially,
one gets multy,, (L[o]) = dimo if k <r (cf. [27, Th.9.1]).

At the end, we are going to clarify how the isotropy subgroup K¢ (my) acts on the
space W[o] ~ Homg (k-r)(Vo, ClUy]). To do this, we note that the elements g of
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the subgroup K¢(m) (0 < m < r) of K¢ (see Table (5.1)) are written for each group
G = SU(p,q), Sp(n,R) and SO*(2n) respectively as follows.

( g11 912 g O .
) € K, th GL ’(C SU \ ,
<<0 922) (943 944)) c with g11 € GL(m,C)  (SU(p,q))
g=< <911 912) € K¢ with g11 € O(m,C) (Sp(n, R)),
O g2
<gll ng) € K¢ with g11 € Sp(m,C) (SO*(2n)).
. O g2

This enables us to define a group homomorphism

a: Kc(me) = G, g+ alg)
g11 0]
a(g) = <O Ik—r) for SU(p,q) or Sp(n,R),

P 0 D12 0]
O Iy O O . (pn p12>
= th = for SO*(2n).
a(9) p1 O pa O WL gu D21 D22 or (2n)

O O O I,

Here p;; is a matrix of size k, and a(g) should be understood as g11 if ¥ < r. Note
that the elements of a(Kc(my)) commute with those of the subgroup Gi(k — ).
Now we can deduce

Theorem 5.14 (Case (SVT)). — Assume that the pair (G,G") is of type (SVT) in Def-
inition 5.9. Then it holds that

(5.28) Wlo] ~ (6, ® (6% 0 @), (V;)G'C(k")) as K¢ (my)-modules,

where Oy, is the character of K¢ in (5.6). In particular, Wo] is an irreducible K¢(my)-
module if k < r.

Proof. — Let Zy be the unique element of ;. By noting that

9-Zo=0a(g9)™" - Zo (g€ Kc(my)),

it is a routine task to transfer the K¢ (mg)-action on Homg.(V,, C[Vk]) to that on
(V)Gelb=m) ~ Homgr(k—r)(Vo, ClUy]) through the isomorphism (5.27). We thus
get (5.28). If k < r, the homomorphism « is surjective. Hence (5.28) implies the
irreducibility of W[o] for k < r. O
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Next we consider the remaining case, and assume that (G, G") is not of type (SVT).
Then one has k > r and so my = 7. Set [ := p—q for G = SU(p,q) (p > ¢), and
Il =1for G = SO*(2n) (n odd). Then, B(g) := ga2 (g € Kc(r)) defines a group
homomorphism 3 from K¢(r) to GL(l,C). The group Kc(r) acts on

Cld] ~ C[Mye(k-r)]

naturally through the left multiplication composed with 3, where € := 1 for G =
SU(p,q), and € := 2 for G = SO*(2n). We denote by v the resulting representation
of K¢(r) on C[Ux]. Note that v as well as o* o« commutes with the G¢(k — r)-action.

Theorem 5.15 (Non (SVT) case). — Under the above assumption and notation, the re-
ductive part of Kc(r) acts on Wio] ~ (V* ® ClUy])¥'c*=") by the representation
0 ® (0* o) ®v.

Proof. — This theorem can be proved just as in the proof of Theorem 5.14 by noting
that

9-U=0a(g)™" - (BU) (UE€ Mer—r)
holds if g € K¢(r) lies in the reductive part of K¢(r), i.e., g12 = 0. We omit the detail
of the proof. O

References

[1] L. Barchini, Szegd kernels associated with Zuckerman modules, J. Funct. Anal., 131
(1995), 145-182.

[2] M.G. Davidson, T.J. Enright and R.J. Stanke, Covariant differential operators, Math.
Ann., 288 (1990), 731-739.

[3] M.G. Davidson, T.J. Enright and R.J. Stanke, Differential operators and highest weight
representations, Mem. Amer. Math. Soc. No. 455, American Mathematical Society,
Rrovidence, R.I., 1991.

[4] M.G. Davidson and T.J. Stanke, Szegé maps and highest weight representations, Pacific
J. Math., 158 (1993), 67-91.

[5] T.J. Enright and A. Joseph, An intrinsic analysis of unitarizable highest weight modules,
Math. Ann., 288 (1990), 571-594.

[6] T.J Enright and R. Parthasarathy, A proof of a conjecture of Kashiwara and Vergne. in
“Noncommutative harmonic analysis and Lie groups (Marseille, 1980)”, Lecture Notes
in Math., 880, Springer, Berlin-New York, 1981, pp. 74-90.

[7] T.J. Enright, R. Howe, and N.R. Wallach, A classification of unitary highest weight
modules, in “Representation theory of reductive groups (Park City, Utah, 1982;
P.C.Trombi ed.)”, Progress in Math., Vol. 40, Birkhauser, 1983, pp.97-143.

[8] A. Gyoja and H. Yamashita, Associated variety, Kostant-Sekiguchi correspondence, and
locally free U(n)-action on Harish-Chandra modules, J. Math. Soc. Japan, 51 (1999),
129-149.

[9] M. Harris and H.P. Jakobsen, Singular holomorphic representations and singular mod-
ular forms, Math. Ann., 259 (1982), 227-244.

[10] R. Hotta and R. Parthasarathy, Multiplicity formulae for discrete series, Invent. Math.,
26 (1974), 133-178.

SOCIETE MATHEMATIQUE DE FRANCE 2001



136 H. YAMASHITA

[11] M. Kashiwara and W. Schmid, Quasi-equivariant D-modules, equivariant derived
category, and representations of reductive Lie groups, in “Lie theory and geometry
(J.L.Brylinski et al. eds.)”, Birkhiuser, 1994, pp.457-488.

[12] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic
polynomials, Invent. Math., 44 (1978), 1-47.

[13] S. Kato and H. Ochiai, The degrees of orbits of the multiplicity actions, in this volume.

[14] N. Kawanaka, Generalized Gelfand-Graev representation and Ennola duality, in “Alge-
braic groups and related topics”, Advanced Studies in Pure Math., 6 (1985), 175-206.

[15] N. Kawanaka, Generalized Gelfand-Graev representations of exceptional simple alge-
braic groups over a finite field. I, Invent. Math., 84 (1986), 575-616.

[16] A.W. Knapp, Lie groups beyond an introduction, Progress in Mathematics Vol. 140,
Birkhauser, Boston-Besel-Stuttgart, 1996.

[17] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963),
327-404.

[18] B. Kostant, On Whittaker vectors and representation theory, Invent. Math., 48 (1978),
101-184.

[19] K. Koike and I. Terada, Young diagrammatic methods for the restriction of represen-
tations of complex classical Lie groups to reductive subgroups of maximal rank, Adv.
Math., 79 (1990), 104-135.

[20] H.P. Jakobsen, An intrinsic classification of the unitarizable highest weight modules as
well as their associated varieties, Compositio Math. 101 (1996), 313-352.

[21] A. Joseph, Annihilators and associated varieties of unitary highest weight modules,
Ann. Sci. Ec. Norm. Sup., 25 (1992), 1-45.

[22] H. Matumoto, Whittaker vectors and associated varieties, Invent. Math., 89 (1987),
219-224.

[23] H. Matumoto, Whittaker vectors and the Goodman-Wallach operators, Acta Math.,
161 (1988), 183-241.

[24] H. Matumoto, C~°°-Whittaker vectors for complex semisimple Lie groups, wave front
sets, and Goldie rank polynomial representations, Ann. Sci. Ec. Norm. Sup., 23 (1990),
311-367.

[25] H. Matumoto, C~°°-Whittaker vectors corresponding to a principal nilpotent orbit of
a real reductive linear Lie group, and wave front sets. Compositio Math. 82 (1992),
189-244.

[26] C. Meeglin and J.-L. Waldspurger, Modéles de Whittaker dégénérés pour des groupes
p-adiques, Math. Z. 196 (1987), 427-452.

[27] K. Nishiyama, H. Ochiai and K. Taniguchi, Bernstein degree and associated cycles of
Harish-Chandra modules — Hermitian symmetric case, in this volume.

[28] W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie
groups, Dissertation, University of California, Berkeley, 1967; reprinted in “Representa-
tion theory and harmonic analysis on semisimple Lie groups (P.L Sally and D.A Vogan
eds.)”, Mathematical Surveys and Monograph Vol. 31, Amer. Math. Soc., 1989, pp.223—
286.

[29] W. Schmid, Boundary value problems for group invariant differential equations, n
“Elie Cartan et les Mathématiques d’Aujourd’hui”, Astérisque, Numéro hors série, 1985,
pp.311-321.

[30] R.S. Strichartz, The explicit Fourier decomposition of L?(SO(n)/SO(n — m)), Canad.
J. Math., 27 (1975), 294-310.

ASTERISQUE 273



GENERALIZED WHITTAKER MODELS 137

[31] M. Tagawa, Generalized Whittaker models for unitarizable highest weight representa-
tions (in Japanese), Master Thesis, Kyoto University, 1998.

[32] M. Vergne and H. Rossi, Analytic continuation of the holomorphic discrete series of a
semi-simple Lie group, Acta Math., 136 (1976), 1-59.

[33] D.A. Vogan, Associated varieties and unipotent representations, in “Harmonic Analy-
sis on Reductive Groups (W.Barker and P.Sally eds.),” Progress in Math., Vol. 101,
Birkhauser, 1991, pp.315-388.

[34] N.R. Wallach, The analytic continuation of the discrete series. II, Trans. Amer. Math.
Soc., 251 (1979), 19-37.

[35] N.R. Wallach, Real reductive groups I, Pure and Applied Mathematics Vol.132, Aca-
demic Press, San Diego-London, 1988.

[36] G. Warner, Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin-
Heidelberg-New York, 1972.

[37] H. Weyl, The classical groups. Their invariants and representations, Eighth printing,
Princeton University Press, Princeton, NJ, 1973.

[38] H.W. Wong, Dolbeault cohomological realization of Zuckerman modules associated with
finite rank representations, J. Funct. Anal., 129 (1995), 428-454.

[39] H. Yamashita, On Whittaker vectors for generalized Gelfand-Graev representations of
semisimple Lie groups, J. Math. Kyoto Univ., 26 (1986), 263-298.

[40] H. Yamashita, Finite multiplicity theorems for induced representations of semisimple
Lie groups II: Applications to generalized Gelfand-Graev representations, J. Math. Ky-
oto. Univ., 28 (1988), 383-444.

[41] H. Yamashita, Multiplicity one theorems for generalized Gelfand-Graev representations
of semisimple Lie groups and Whittaker models for the discrete series, Advanced Studies
in Pure Math. 14 (1988), 31-121.

[42] H. Yamashita, Embeddings of discrete series into induced representations of semisimple
Lie groups, I: General theory and the case of SU(2,2), Japan. J. Math.,16 (1990), 31—
95; II: generalized Whittaker models for SU(2,2), J. Math. Kyoto Univ., 31 (1991),
543-571.

[43] H. Yamashita, Criteria for the finiteness of restriction of U(g)-modules to subalgebras
and applications to Harish-Chandra modules: a study in relation to the associated
varieties, J. Funct. Anal., 121 (1994), 296-329.

[44] H. Yamashita, Description of the associated varieties for the discrete series representa-
tions of a semisimple Lie group: An elementary proof by means of differential operators
of gradient type, Comment. Math. Univ. St. Paul., 47 (1998), 35-52.

[45] T. Yoshinaga and H. Yamashita, The embeddings of discrete series into principal series
for an exceptional real simple Lie group of type G2, J. Math. Kyoto Univ., 36 (1996),
557-595.

SOCIETE MATHEMATIQUE DE FRANCE 2001



