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Abstract. — We study the generalized Whittaker models for irreducible admissible 
highest weight modules L(r) for a connected simple Lie group G of Hermitian type, 
by using certain invariant differential operators VT* of gradient type on the Hermi-
tian symmetric space K\G. It is shown that each L(r) embeds, with nonzero and 
finite multiplicity, into the generalized Gelfand-Graev representation r m ( r ) attached 
to the unique open orbit O m ( r ) (through the Kostant-Sekiguchi correspondence) in 
the associated variety V(L(r)) of L(r). The embeddings can be intrinsically analyzed 
by means of the Cayley transform which carries the bounded realization of K\G to 
unbounded one. If L(r) is unitarizable, the space y(r) of infinitesimal homomor-
phisms from L(r) into r m ( r ) can be described in terms of the principal symbol at 
the origin of the differential operator VT*. For the classical groups G = SU(p,q). 
Sp(n,R) and 50*(2n) , the space y(r) is clearly understood through the oscillator 
representations of reductive dual pairs. 

Résumé (Transformation de Cayley et modèles de Whittaker généralisés pour les modules 
irréductibles de plus haut poids) 

Soit G un groupe de Lie connexe simple de type hermitien. On considère les G-
modules irréductibles admissibles L(r) de plus haut poids. Dans cet article, nous 
étudions les modèles de Whittaker généralisés pour L(r) en utilisant certains opé-
rateurs différentiels de type gradient VT* sur l'espace hermitien symétrique K\G. I] 
est montré que chaque L(r) apparaît, avec une multiplicité finie et non nulle, dans la 
représentation de Gelfand-Graev généralisée T m ( r ) qui est attachée à l'unique orbite 
ouverte 0 m ( r ) (par la correspondance de Kostant-Sekiguchi) dans la variété V(L(r)) 
associée à L(r). On peut analyser intrinsèquement les isomorphismes de L(r) dans 
T m ( r ) au moyen de la transformation de Cayley qui donne un rapport entre la réali-
sation de K\G comme domaine borné et celle comme domaine non borné. Si L(r) est 
unitarisable, l'espace y(r) des homomorphismes infinitésimaux de L(r) dans T m ( r ) 
s'exprime par le symbole principal à l'origine de l'opérateur différentiel VT*. Pour les 
groupes classiques G = SU(p,q), Sp(n,R) et SO*(2n), on peut comprendre l'espace 
y(r) en utilisant les représentations oscillateur pour les paires duales réductives. 
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Introduction 

For a semisimple algebraic group G, the generalized Gelfand-Graev representations 
introduced by Kawanaka [14] form a family of representations of G induced from cer-
tain one-dimensional characters of various unipotent subgroups. By construction, 
each of these induced G-modules is naturally attached to a nilpotent G-orbit OG in 
the Lie algebra through the Dynkin-Kostant theory. The original (non generalized) 
Gelfand-Graev representations are induced from nondegenerate characters of a max-
imal unipotent subgroup, and they correspond to the principal nilpotent orbits. We 
say that an irreducible representation 7r of G has a generalized Whittaker model of 
type OQ if admits an embedding into the generalized Gelfand-Graev representation 
attached to OG< The problem of describing the generalized Whittaker models is im-
portant not only in representation theory but also in connection with the theory of 
automorphic forms. 

Generalized Whittaker models (or vectors) for irreducible representations of G have 
been studied by many authors (e.g., [14], [15], [26], [22], [24], [39], etc.). For real or 
complex groups, it is Kostant [18] who initiated a systematic study on the existence 
of nonzero Whittaker vectors attached to the principal nilpotent orbits of quasi-split 
groups, in connection with the primitive ideals of the irreducible representations in 
question. Later, some results of Kostant have been extended by Matumoto to those 
on generalized Whittaker vectors associated to arbitrary (not necessarily principal) 
nilpotent orbits OG- In fact, it is shown in [22] that the Harish-Chandra module of 
an irreducible admissible representation TT has a nonzero generalized Whittaker vector 
of type OG only if the nilpotent orbit OG is contained in the associated variety of 
the primitive ideal Ann7r in the universal enveloping algebra. For complex groups G, 
one of the main results in [24] tells us that, under certain assumptions on OG and 
on 7r, the space of C~00-generalized Whittaker vectors of type OG is nonzero and 
finite-dimensional if and only if the closure of OG coincides with the wave front set 
Of 7T. 

As to p-adic groups, Mceglin and Waldspurger have already established in 1987 a 
stronger result of this nature, by showing that the wave front cycle (asymptotic cycle) 
of an irreducible representation 7r of G completely controls the spaces of generalized 
Whittaker vectors of interest. Namely, it is proved in [26] that, if OG is a nilpotent 
orbit which is maximal in the wave front set (asymptotic support) of 7r, the dimension 
of the space of generalized Whittaker vectors of type OG is equal to the multiplicity of 
OG in the wave front cycle. However, up to this time, the corresponding phenomenon 
is not yet fully understood in the case of real groups, except for the representations 
with the largest Gelfand-Kirillov dimension (see [23] and [25]). 

In this article, we focus our attention on the irreducible admissible (unitary) highest 
weight representations of real simple Lie groups. These are representations with rather 
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GENERALIZED WHITTAKER MODELS 83 

small Gelfand-Kirillov dimensions. We reveal a structure of the spaces of generalized 
Whittaker models in relation to the associated cycles of highest weight modules. 

Now, let G be a connected simple Lie group with finite center, and let K be 
a maximal compact subgroup of G. Assume that K\G is Hermitian symmetric. 
The Lie algebras of G and K are denoted by go and 60 respectively. We write Kc 
(resp. g,£) for the complexifications of K (resp. go,M respectively. Let g = t + p 
be a complexified Cartan decomposition of g, and let 6 denote the corresponding 
Cartan involution of g. The G-invariant complex structure on K\G gives a triangular 
decomposition g = p+ +t + p- of 0. Conventionally, the complexification in g of any 
real vector subspace 5o of go will be denoted by s by dropping the subscript 0. We 
write U(m) (resp. 5(d)) for the universal enveloping algebra of a Lie algebra m (resp. 
the symmetric algebra of a vector space d). 

The group G of Hermitian type has a distinguished family of irreducible admissible 
Hilbert representations with highest weights. The Harish-Chandra module of such a 
G-representation is obtained as the unique simple quotient L(r) of generalized Verma 
module induced from an irreducible representation (r, VT) of K. Here r is extended 
to a representation of the maximal parabolic subalgebra q := I -f p+ of g by making 
p+ act on VT trivially. We call r the extreme if-type of L(T). 

The purpose of this paper is to describe the generalized Whittaker models for 
irreducible highest weight (g, K)-modules L(r). To be more precise, let {Om \ m = 
0 , . . . , r} be the totality of nilpotent ifc-orbits in the nilradical p+ of q, arranged as 
dim(90 = 0 < dim (9i < • • • < d im0r = dimp+. We write 0'm for the the nilpotent 
G-orbit in g0 corresponding to Om by the Kostant-Sekiguchi bijection. Following the 
recipe by Kawanaka [14] (see also [40]), we can construct a generalized Gelfand-Graev 
representation TM = Ind^m)(rym) (GGGR for short; see Definition 4.3) of G attached 
to Ofm. On the other hand, it is well-known that the associated variety V(L(r)) of 
a highest weight module L(r) is the closure of a single ifc-orbit Om(T) in p+, where 
m(r) depends on r. Then our aim is to specify the (g, K)-embeddings of L(r) into 
these GGGRs TM (m = 0 , . . . , r) . This is a continuation of our earlier work [41] on 
Whittaker models for the holomorphic discrete series. 

In order to specify the embeddings, we use the invariant differential operator VT* 
on K\G of gradient type associated to the if-representation r* dual to r (Definition 
2.3). This operator VT* is due to Enright, Davidson and Stanke ([2], [3], [4]). The 
if-finite kernel of VT* realizes the dual lowest weight module L(T)*. By virtue of the 
kernel theorem given as Corollary 1.8, we find that the space y(r,m) of r/m-covariant 
solutions of the differential equation VT*F = 0 is isomorphic to the space of (g,if)-
homomorphisms in question, where rjm is the character of nilpotent Lie subalgebra 
n(m) of g that defines Tm. 

The space y(r,m) can be intrinsically analyzed by means of the unbounded real-
ization of K\G via the Cayley transform (cf. [32], [9]). Some remarkable results of 
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84 H. YAMASHITA 

Enright and Joseph [5], Jakobsen [20] on the annihilator ideal of (unitarizable) high-
est weight modules are useful in the course of our study. Also, elementary properties 
(cf. Vogan [33, Section 2]) on the associated (characteristic) cycle of Harish-Chandra 
modules guarantee that the space y(r,m) does not vanish for the most relevant 
m = m(r) . As a result, we get the following conclusions (see Theorems 4.7-4.9). 

Theorem 1. — L(r) embeds into the GGGR Tm with nonzero and finite multiplicity if 
and only if the corresponding Om is the unique open Kc-orbit Om(T) in the associated 
variety V(L(r)) of L(r). In this case, the space y(r) := y(rym(r)) consists only of 
elementary functions on the unbounded domain 5 (C p_) which realizes K\G. 

Theorem 2. — If L{r) is unitarizable, we can specify the space y(r) in terms of the 
principal symbol at the origin Ke of the differential operator VT*. This reveals a 
natural action on y(r) of the isotropy subgroup Kc{X) of Kc at a certain point 
X € Om(Ty Furthermore, we find that the dimension ofy(r), that is, the multiplicity 
of embeddings L(r) <-> rm(r), coincides with the multiplicity of the 5(p_)-module 
L(r) at the defining ideal o/V(L(r)). 

For the classical groups G = SU(p,q), 5p(2n,R) and 5 0 * (2n), the theory of 
reductive dual pair gives explicit realizations of unitarizable highest weight modules 
L(T) (cf. [12], [7], [3]). In this setting, it is not difficult to specify the generalized 
Whittaker models for such L(T) 'S more explicitly by using the oscillator representation 
of a pair (G,G') with a compact group G1 dual to G. In fact, this has been done 
by Tagawa [31] for the case SU(p,q), motivated by author's observation in 1997 for 
the case Sp(n,R). We include this observation as well as Tagawa's result at the end 
of this paper (see Theorems 5.14 and 5.15 together with the isomorphism (4.15)), 
handling all the groups SU(p,q), 5p(2n,R) and 5 0 * (2ra) in a unified manner. 

The last statement in Theorem 2 clarifies the relationship between the generalized 
Whittaker models and the multiplicity in the associated cycle AC(L(r)) of unitariz-
able highest weight module L{r). In fact, y(r) turns to be the dual of the isotropy 
representation of Kc(X) attached to AC(L(r)) in the sense of Vogan [33]. We note 
that the associated cycle and the Bernstein degree of L(r) have been specified by 
Nishiyama, Ochiai and Taniguchi [27] for the above classical groups G through de-
tailed study of if-types of L(r), where L{r) is assumed to be an irreducible constituent 
of the oscillator representations of pairs {G,G') in the stable range (with smaller G'). 
Recently, Kato and Ochiai [13] have generalized the technique in [27] to a large ex-
tent. They established in particular a unified formula for the degrees of nilpotent 
orbits Om, which is valid for any simple Lie group of Hermitian type. 

An 77m-equivariant linear form on L(r) is called an (algebraic) generalized Whit-
taker vector of type r)m. Each (g, if )-embedding of L(r) into the GGGR Tm, com-
posed with the evaluation at the identity e G G of functions in Tm, naturally gives rise 
to a generalized Whittaker vector of type rjm on L{r). We can show that the converse 
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is also true for the most relevant case m = m(r) . Namely, it turns out that every 
generalized Whittaker vector of type r/m comes from a function in the space y(r) for 
any L(T) (see Proposition 4.19). This allows us to interpret the main results of this 
article in terms of algebraic generalized Whittaker vectors associated to irreducible 
highest weight (g, K)-modules (Theorem 4.22). 

We organize this paper as follows. 
Section 1 gives general theory on the embeddings of irreducible (g, K)-modules into 

induced G-representations. The kernel theorem (Corollary 1.8) is our main tool for 
studying generalized Whittaker models. We introduce in Section 2 the differential 
operator Vr* on K\G of gradient type associated to r*, after [4]. In addition, the 
solutions F of VT*F = 0 of exponential type are specified in Proposition 2.8. Section 
3 is devoted to characterizing the associated variety and multiplicity of irreducible 
highest weight module L(r) by means of the principal symbol of VT* (Theorem 3.11). 
In Section 4 we give our main results (Theorems 4.7-4.9) that describe the generalized 
Whittaker models for L(r). Relation to algebraic generalized Whittaker vectors is 
also investigated. Last in Section 5, we discuss the case of classical groups SU(p,q), 
5p(2n,R) and 5 0 * (2n) more explicitly. 

Acknowledgements. — The author would like to thank Kazuhiko Koike and Ichiro 
Shimada for kind communication. He is grateful to Kyo Nishiyama, Hiroyuki Ochiai 
and Kenji Taniguchi for useful discussion and comments. He also expresses his grati-
tude to the referee for offering apropos suggestions concerning the original version of 
this article. 

1. Embeddings of Harish-Chandra modules 

This section prepares some generalities about the embeddings of irreducible Harish-
Chandra modules into C°°-induced representations of a semisimple Lie group, by 
developing our earlier observation [42, I, §2] for the discrete series in full generality. 
The results stated in this section are more or less folklore for the experts, or they are 
consequences of some known facts concerning the maximal globalization of Harish-
Chandra modules due to Schmid and Kashiwara (cf. [29], [11]). Nevertheless we 
include here the detail with direct proofs in order to keep this paper more accessible 
and self-contained. In fact, a kernel theorem, Corollary 1.8, will be essentially used in 
the succeeding sections to describe generalized Whittaker models for highest weight 
representations. 

1.1. A duality of Peter-Weyl type. — Throughout this section, let G be any 
connected semisimple Lie group with finite center, and let if be a maximal compact 
subgroup of G. We keep the same notation and convention employed at the beginning 
of Introduction. 
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A [/(g)-module X is called a (g, K)-module if the subalgebra U(t) acts on X 
locally finitely, and if the £o-action gives rise to a representation of if on X through 
exponential map. By a Harish-Chandra module, we mean a (g, if)-module of finite 
length as a C/(g)-module. By basic results of Harish-Chandra (see e.g., [35, Chap.3]), 
any admissible (i.e., if-multiplicity finite) representation of G on a Hilbert space H 
yields, through differentiation, a (g, if)-module structure on the subspace HK of all 
if-finite vectors in if . The continuous G-module H is irreducible if and only if 
the corresponding HK is irreducible as a (g, if)-module. Each irreducible (g,if)-
module X can be extended to an irreducible Hilbert G-module H with if-finite part 
HK — X. Notice that the (g, if )-module corresponding to the irreducible G-module 
H* contragredient to H is isomorphic to the if-finite part of the full dual space 
X' — Homc(X,C). We denote this irreducible (g, if )-module by X * , and call it the 
dual Harish-Chandra module of X. 

We study in this paper the embeddings of irreducible (g, if )-modules X into certain 
smoothly induced Frechet G-modules F. Such an F has a compatible g and if module 
structure through differentiation, and its if-finite part FK is a (g, if )-module. We 
note that the image of X by any g and if homomorphism into F is necessarily 
contained in FK, i.e., Hom0jx(X, F ) = H.omGYK(X, FK)> 

The group G acts on the space C°° (G) of all smooth functions on G by left trans-
lation and by right translation as follows: 

/ / ( * ) : = / ( i T 1 * ) , gRf(x):=f(xg) (g e G,x € G,f € C°°(G)). 

These two actions L and R commute with each other. Through differentiation one 
gets two [/(g)-representations on G°°(G) denoted again by L and R respectively. Let 
GJ-p(G) be the space of functions / G G°°(G) which are left if-finite and also right 
if-finite. Then Gj-p(G) becomes a (g, if )-module through L or R . 

If the group G is compact, i.e., G = if, the regular representation {L^R,CQ{G)) 
of G x G decomposes into irreducibles as 

Cg(G) - ® V6 0 Vô* as G x G-modules 
ôeô 

by the Peter-Weyl theorem, where G denotes the set of all equivalence classes of 
irreducible finite-dimensional representations of G and we write Vs for an irreducible 
G-module of class S G G. The following lemma says that we have a similar duality of 
Peter-Weyl type for irreducible Harish-Chandra modules of noncompact semisimple 
Lie groups. 

Lemma 1.1. — Let X be an irreducible (g,K)-module, and let f be in G^(G) . Then 
the (g, if)-module U(g)Lf generated by f through the action L is isomorphic to X if 
and only if the corresponding U(g)Rf through the action R is isomorphic to X * . 
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We give a proof below introducing some important notion which we use throughout 
this paper. 

Proof of Lemma 1.1. — Let us prove the i/part only since the converse can be proved 
in the same way. So, assume that U(g)Rf ~ X* as (g, if)-modules. 

Take a finite-dimensional if-module (r, VT) which is isomorphic to U(t)Lf. Let 
i : VT —> U(t)Lf denote a if-isomorphism. We define a V*-valued smooth function 
F on G by 

(F(g),v)=i(v)(g) (veVT,geG), 

where ( •, • ) denotes the natural dual pairing on V* x VT. Then it is immediate to 
verify that F lies in the following space: 

(1.1) C~(G) :- {$ \G V; I $(kg) = r*(k)f(g) (p G G, ke i f ) } . 

Here (T*,V*) denotes the representation of if contragredient to r . The space C£S(G) 
has G- and U(g)-module structures through right translation R. The function F is 
in the if-finite part, say C™(G)K, of C${G) since U(t)Lf C C%(G). By definition 
we see 

(1.2) f(g) = (F(9),r1(f)). 

Now the assignment DRF H> DRf = (DHF(')1i-1(f)) (D G U(g)) gives a (g,if)-
homomorphism from U(g)RF onto U(g)Rf ~ X*. We see that this homomorphism 
is injective. In fact, suppose DRf = 0 for some D eU(g). It then follows that 

(1.3) 
0 = DRf(kg) = (DRF(kg),r1(f)) 

= {T*(k)DRF(g),rl(f)) = <Z?fiF(5))r1((Ar1)z7)> 

for all g e G and all k G if. This implies that DRF — 0 since / is a if-cyclic vector 
for U(t)Lf ~ VT. Thus we have found a (g, if )-module embedding, say A0, from X* 
into C™(G)K whose image equals U(g)RF. 

Let (TT,H) be an irreducible admissible G-representation with Harish-Chandra 
module X, and let (TT*,H*) be the representation of G contragredient to 7r. We 
have H*K = X* as remarked before. By virtue of the Probenius reciprocity for 
smoothly induced representation Ind^(r*) of G acting on G^S(G), one obtains a 
linear isomorphism 

(1.4) RomK(X*, VT*)~HomidTK(X\DD C?.(G)K), 

which is given as follows. Take a if-homomorphism T : X* -» V*. Then we can 
define A(<p) G C™(G) for every ip G X* by 

(1.5) RfwwoffmK(X*, VT*)~HomiTK(XSS\ C?, 

Here T denotes the unique continuous extension of T : X* —> V* to H*. Then, the 
assignment T \-> A gives (1.4). 
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We now consider our specified embedding A0 : X* ~ U(g)RF G £ ? ( G ) K . Let 
T0 denote the element of Homx(-X'*, V*) corresponding to A0 by (1.5). Set v?0 := 
A^iF) G X* and ipo := i~x{f) o T0 G X . Here ^0 is regarded as an element of 
X = ( (H*)*k through 

ccx bb; To ;;gg ^$$cv 

with r ^ / ) G K = Homc(K*,C). In view of (1.2) and (1.5) we find 

(1.6) fia) = (^*(#)<A),^o)ff*xff = (<A),TT(#) 1*Po)h*XH (geG). 

Finally, (1.6) implies that the map 

X3D^0^ DLf = (ipoMg^D^o) e U(g)Lf (D G U(g)) 

gives a (g, K)-isomorphism, i.e., X ~ U(g)Lf as desired. 

1.2. Maximal globalization. — Let X be an irreducible (g, K)-module. We fix 
once and for all an irreducible finite-dimensional representation (r,VT) of K which 
occurs in X , and fix an embedding iT : VT ^ X as if-modules. Then the adjoint 
operator i* of iT gives a surjective if-homomorphism from X* to V*. We denote 
by AT* the (fj,if)-embedding from X* into C£?(G) (see (1.1)) corresponding to i* 
through (1.4) and (1.5). 

Equip C£?(G) with a Frechet space topology of compact uniform convergence of 
functions on G and each of their derivatives. The following proposition characterizes 
the closure Ar*(X*)~ of AT*{X*) in G^(G). 

Theorem 1.2 (cf. [29], [11]). — Under the above notation, AT* (X*)~ is a G-submodule 
of ' C£?(G), and one gets an isomorphism of G-modules 

Hom0,K(X, G°°(G)) BW^Fe AT*(X*)~ 

through 

(1.7) (F(g),v) = ((WoiT)(v))(g) (g € G, vGVT). 

Here G°°(G) is viewed as a smooth G-module by left translation L, and the righ 
action R on C°°(G) naturally gives a G-module structure on Hom0 K(X, G°°(G)). 

It follows essentially from [29, page 316] that the G-module AT*(X*)~ gives a 
maximal globalization of the Harish-Chandra module X*. Namely, if a complete, 
locally convex Hausdorff topological vector space F admits a continuous G-action 
with underlying Harish-Chandra module X*, then the identity map on X* extends 
uniquely to a continuous embedding F <-> AT* (X*)~ as G-modules. One can get the 
above theorem from the first statement of Theorem 2.8, or equivalently (2.9), in [11]. 

In what follows, we give a direct proof of the above theorem to keep this article 
self-contained. This is done by generalizing our argument in [42, I, §2]. 
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Proof of Theorem 1.2. — Let W be a (g, if)-embedding of X into G°°(G). Since 
W o iT : VT -)> W(iT(VT)) C C°°(G) is a if-isomorphism, we can see just as in the 
beginning of the proof of Lemma 1.1 that there exists a unique F G C£S(G) satisfying 
(1.7). It is then easy to observe that the map W F sets up a G-homomorphism, 
say T, from H o n i g ^ X , G°°(G)) to C£?(G) and that T is injective because of the 
irreducibility of -X". Hence we will get the theorem if we can show 

(1.8) I m ï = A r . ( r ) - ; 

where ImT denotes the image of T. 
To prove (1.8) we use the projection to if-isotypic component. Let M be any 

smooth Frechet if-module. For each S G if, the unitary dual of if, the integral 
operator Qs defined by 

Qs(v) = (dim 5) 
J K 

tr(S(k)) -kvdk (v G M) , 

gives a continuous if-equivariant projection of M onto its ^-isotypic component Ms. 
Here dk denotes the normalized Haar measure on if. By Harish-Chandra, the Fourier 
series Ylsek Qs(v) converges absolutely to v. (cf. [36, Th.4.4.2.1]). 

Now the right hand side of (1.8) is described in terms of the projections Qs as 

(1.9) Ar.(X*)- = {Fe C™(G) I F6 := Qs(F) G Ar*(X*) for all ô G i f } . 

In reality, the inclusion D is evident since the sum F = J2sek Fs converges in C£S(G). 
Conversely assume F be in the closure AT*(X*)~. Then there exists a sequence 
{•Fj}j=i,2,.. in AT*(X*) such that F = l im^oo Fj . Since the projection Qs is con-
tinuous, one obtains F& = lim:?_>00(F:?)(j for every S G if. Noting that (Fj)s lies 
in a finite-dimensional (and hence closed) subspace AT*(X*)s ~ X**, we find that 
FseAr.(X*)s. 

We are going to show just as in the proof of [42, I, Th.2.4] that ImT coincides 
with the right hand side of (1.9) by using Lemma 1.1 instead of [42, I, Lemma 2.5]. 

Let F be a nonzero function in C™(G) such that F$ G AT*(X*) for every S G if. 
We write E for the totality of finite subsets S of if consisting of elements S such that 
Fs # 0. Define Fs G AT*(X*) and fs,v G G°°(G) by 

Fs = 
ses 

Fs, fs,v = (Fs(-),v) 

for every S G S and v G VT\{0}. Then, U(Q)RFS = AT*(X*) - X* as (g,if)-
modules. This implies that U(g)Rfs,v ^ X* for ail 5 and v (cf. (1.3)). Set Qs := 
S(5es<9<$ and A :— ( ^ ( O ^ ) - We now use Lemma 1.1 to deduce 

(1.10) Qs(U(g)Lfv) = U(g)Lfs,v czX (S e E, v € K\{0}), 

by noting that commutes with U(g)-action L . It then follows from the irreducibil-
ity of X that the kernel of projection Qs restricted to U(g)Lfv is independent of 
a choice of S G S. Indeed, let Si and 52 be in 3 , and set S' := Si U 52. Note 
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that Qsi — QsiQs1 (* = 1,2). One sees from (1.10) that Qs{ on U($)Lfsf,v gives a 
£/(g)-isomorphism from U(Q)l fs>,v onto U(g)Lfsi,v by Schur's lemma. This implies 
that 

Ker(QSl\U(g)Lfv) = Ker(Qs>\U(g)Lfv) = Ker(Q s2\U(g)L fv). 

The above kernel space must be {0} since 

p | Kev(QS\U(g)Lfv) C f]KevQs = {0}, 
SEE s 

where 5 in the middle term runs over all finite subsets of K. We thus find an 
embedding 

X~U(o)Lfv^C°°(G) 

corresponding to F through T. 
Conversely, let W : X ^ G°°(G) be any (g,K)-embedding. Set F := T(W). We 

want to prove F$ — Qs(F) £ AT* (X*) for every S G K. To do this, define an element 
£ G X* by 

(t,a) = ((QsoW)(a))(e) (a G X ) , 

where e denotes the identity element of G. It then follows for any D G U(Q) and 
v eVT that 

( D ^ e ) , «> = ^ ( ( Q a o W o »T)(t;))(e) 
= ((Q,o^)(D*T(t;)))(e) 

(XGG*, GGVT*)~HomiTK(X\ C.(G)K), 

since JDl commutes with <3<$ and with W. Here [7(g) T£> G t/(g) denotes the 
principal anti-automorphism of t/(g) such that TX = —X if X G g. We thus deduce 

( l i d Z)iF«(e) = i*T( TD0 for all L> e U(g). 

This yields that 
F5(g) = i*T(7c*(g)0 = AT.(0(g) (g e G) 

as desired, because the both functions F& and AT* (£) are real analytic on the connected 
Lie group G, and because they have the same Taylor series expansion at e by (1.11). 

Thus the theorem has been proved completely. • 

1.3. Kernel theorem. — To study the embeddings of X into various induced G-
modules, it is useful to characterize the G-module AT+(X*)~ as the full kernel space 
of a continuous G-homomorphism V defined on G£? (G) in the following way. 

Theorem 1.3. — Let X be an irreducible (g,K)-module, and let (r,VT) be a K-type 
of X. Fix an embedding iT : VT <-> X as K-modules, and write AT* for the (g,K)-
embedding X* <-> G^S(G) associated with the adjoint operator i* by (1.4) and (1.5). 
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If V is any continuous G-homomorphism from the G£?(G) to a smooth Frechet G-
module M such that 

(1.12) AT*(X*) = { F e C™(G) | F is right K-finite and V F = 0}, 

then the full kernel space KevV ofV in C™(G) equals the G-module AT*(X*)~, the 
closure of AT*(X*) in G£?(G). Hence one gets from Theorem 1.2 

(1.13) Hom0,K(X, G°°(G)) ~ KerP = AT*(X*)~ as G-modules. 

Proof. — We show that KerP = AT*(X*) . The inclusion D is obvious because 
Ke rP is a closed subspace of G£?(G) by the continuity of V and because AT*(X*) C 
KerV by (1.12). Conversely if F G Ker£>, then it follows from (1.12) that Fs = 
Qs(F) G AT*(X*) for every S G if, because £>F«5 = Qs(T>F) = 0. Hence we get 
F = XMGIC ̂ <5 € AT*(X*)~. Now the assertion follows from Theorem 1.2. • 

Remark 1.4. — The above proof tells us that the assumption on V can be weakened. 
Namely, the theorem is still true for any if-homomorphism V from C£S(G) to a 
smooth if-module M satisfying (1.12). 

Example 1.5. — We mention that an operator V satisfying the requirement in The-
orem 1.3 has been constructed when X* is the (g, if)-module associated with: (a) 
discrete series ([28], [10]) more generally Zuckerman cohomologically induced module 
([38], [1]), with parameter "far from the walls", or (b) highest weight representation 
([2], [4]; see also Theorem 2.6). In each of these cases, V is given as a G-invariant 
differential operator of gradient type acting on (G), where r* is the unique extreme 
if-type of X* which occurs in X* with multiplicity one. 

We conclude this section by giving an application of Theorem 1.3. For this we need 

Definition 1.6. — Let n be a complex Lie subalgebra of g, and (77, E) be a representa-
tion of n on a Frechet space E such that the linear endomorphism rj(Z) is continuous 
on E for every Z e n . Then the space 

C~(G; r?) := {/ : G ^ E | ZRf = -V(Z)f (Z € n)}, 

endowed with the natural Frechet space topology, has a structure of smooth G-module 
by L. We write Tv for the resulting G-representation on G°°(G; 77), and call it the 
representation of G induced from rj in C°° -context. 

Remark 1.7. — If n is the complexification of real Lie subalgebra no of 00 correspond-
ing to a simply connected analytic subgroup N of G, then C°°(G;r)) coincides with 
the space of i£-valued smooth functions / on G such that 

f(gn) = r1(n)-1f(g) ( g e G , n £ N ) , 

at least when E is finite-dimensional. Here 77 denotes the well-defined representation 
of the group TV defined by 77 : n0 E through exponential map. 
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Let the notation and assumption be as in Theorem 1.3 and in Definition 1.6. We 
write C£?(G; rj) for the space of C°°-functions on G with values in V* 0 E satisfying 
the following conditions. 

ZRF = - ( idv- 0 ri(Z))F (Z G n), 

kLF = (r^fc"1) 0 idE)F (fc G K), 

where idv denotes the identity map on a set V. Let E ' be the space of continuous 
linear functionals on E equipped with dual U(n)-action. We define a linear map 

V(n) : G~(G; 77) —> Homkc(#',M) 

through V by 
bbmK(X*, VT*)HomiTK(X\ Ckkkk?.(G)K)kmwwx*^!!;::, 

Here (•, •) stands for the canonical dual pairing on (V* ® E ) x E ' with values in V*. 
If 77 is a one-dimensional n-representation, the above T>(n) is naturally identified with 
the restriction of V to the subspace C£S(G; rj) of G£?(G). 

By using (1.13), we can now deduce the following 

Corollary 1.8 (Kernel Theorem). — Under the above notation, assume that the repre-
sentation (77, E ) of n is weakly cyclic in the following sense: there exists a Co e E ' 
such that C/(n)Co is dense in E ' with respect to the weak ^-topology. Then the embed-
dings of irreducible (Q,K)-module X into induced module G°°(G; 77) are characterized 

as 
Hom0,K(-X", C°°(G; 77)) ~ KerV(rj) as vector spaces. 

Here the isomorphism is given as in (1.7). 

Remark 1.9. — The above kernel thoerem has been proved in our earlier work [42, 
I, Th.2.4] in case that X is the (g, K)-module of discrete series and that V is a 
differential operator of gradient type (Schmid operator). 

Proof of Corollary 1.8. — First, we observe just as in the proof of Theorem 1.2 that 
the map 

Hom0,K(X, G°°(G;77)) 3 W A F G C$(G;ri) 

defined as in (1.7) yields an injective linear map. For a nonzero element F G C£?(G; 77) 
and a nonzero vector v G VT, we put fv := (F(-)1v)(V*®E)xVT € C°°(G;rj). Then F 
lies in the image of if and only if 

(1.14) U(o)Lfv — X as (g, K)-modules. 

It follows from the Hahn-Banach extension theorem that the G-homomorphism 

(1.15) C°°(G;n) 3 f ( / ( • ) , C o W € C~{G) 

is injective because U(n)Co is weak *-dense in E ' . Then (1.14) and (1.15) together 
with (1.13) imply that F G ImT^ if and only if (V(r))F)(t0) = 0. Since the function 
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F is 77-covariant, the latter condition is equivalent to (V(r])F)(U(n)Ço) = 0. This 
implies V{rf)F = 0 (and vice versa) by virtue of the Banach-Steinhaus theorem. • 

We will apply the above kernel theorem later in this paper to describe generalized 
Whittaker models for irreducible highest weight representations. 

2. Differential operators, and lowest or highest weight modules 

From now on, we assume that if \G is an irreducible Hermitian symmetric space 
with G-invariant complex structure. We consider the irreducible highest weight 
(g, if)-modules L(r) with extreme if-types r . In this section we describe, follow-
ing [4], the differential operators VT* of gradient type on K\G whose if-finite kernels 
realize the dual lowest weight (g, if )-modules L(T)* (Theorem 2.6). This combined 
with Theorem 1.3 enables us to identify the maximal globalization of L(r)* with the 
full (not necessarily if-finite) kernel space of VT* (Proposition 2.7). We also specify 
for later use the solutions of differential equation VT*F — 0 of exponential type. 

2.1. Simple Lie group of Hermitian type. — We begin with summarizing some 
basic facts on fine structure for simple Lie groups of Hermitian type, following the 
notation in [41, Part I, §5] and [8, 3.3]. It is known that there exists a unique (up to 
sign) central element Z0 of £0 such that ad Z0 restricted to po gives an Ad(if )-invariant 
complex structure on po- One gets a triangular decomposition of g as follows: 

(2.1) 
g = p_ 0 £ ® p+ such that 

%P±] c p±, [p+,p-] c e, [p+,p+] = [p-,p-] = {o}, 

where p± denotes the eigenspace of ad Zo on g with eigenvalue ±y/—T respectively. We 
extend ad Z$ on po to a G-invariant complex structure on the Hermitian symmetric 
space if \G canonically through the identification p0 = T{K\G)Ke, the tangent space 
of if \G at the origin if e. 

Let to be a compact Cartan subalgebra of go contained in £o- We write A for the 
root system of g with respect to t, and for each 7 G A the corresponding root subspace 
of g will be denoted by g(t; 7): 

fl(t;7) = {X e g I (adiJ)X = y(H)X for all H G t}. 

We can choose root vectors X1 G fl(t;7) (7 G A) such that 

(2.2) X1 - X_7, x / ^ X , + X_7) G to + V ^ P o , [X,, X_7] = # 7 , 

where Hy is the element of v^Tto corresponding the coroot 7V := 27/(7,7) through 
the identification t* = t by the Killing form B of g. Let Ac (resp. An) denote the 
subset of all compact (resp. noncompact) roots in A. 
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Take a positive system A+ of A compatible with the decomposition (2.1): 

P± = 
llùù^$$ 

g(t;±7) with A + : = A + n A n , 

and fix a lexicographic order on v—Tto which yields A+. Using this order we define 
a fundamental sequence ( 7 1 , 7 2 , • • . , 7R) of strongly orthogonal (i.e., 7» ± 7 ; £ A U {0} 
for i / j) noncompact positive roots in such a way that 7^ is the maximal element of 
A+, which is strongly orthogonal to jk+i > • • • > 7R • 

Now, put t~ := Yjk=i ^^7fc c an(^ denote by 7 " G (t~)* the restriction to t" of 
a linear form 7 G t*. For integers fc, I with 1 ^ I < k ^ r, we define subsets P*/, P*, Po 
of A+ and subsets CkhCk,Co of A+ respectively by 

(2.3) Pu := 7cfbbn 7 = 7* +7( 
2 

(2.4) v,;:^^= ^^v,, 7 = 
==;:mù 

2 

(2.5) P* := « 7€ A+ 7 = 
/ 7 * 
, 2 

mmvvn; 7 G A+ 7 = 
!ll! 

2 
(2.6) Po := { 7 1 , 7 2 , • • •, 7R} , Co : = { 7 € A+| 7 " = 0} 

By Harish-Chandra the subsets A+ and A+ are decomposed as 

pù*$$wx 
l^k^r 

jjù^$ Po 
xvddd 

Pu 

xvv = C0 
l<k<r 

ck 
dccv,,::! 

Ckl 

where the unions are disjoint. Moreover the maps 

(2.7) Cki 3 7 1—> 7 + li £ Pki and Ck 3 7 1—^-7 + 7 f c ^ f t 

give rise to bijections from CM to P&/ and from Ck to P& respectively. Note that the 
subsets Pki and Cki are always non-empty, and that Pk and Cfc (1 ^ k ^ r) are empty 
if and only if the Hermitian symmetric space K\G is analytically equivalent to a tube 
domain. 

We now introduce a Cayley transform c — Ad(c) on g denned by the following 
element of G£: 

(2.8) c — exp 
"K 

A k=l 

r 
[xlk - X-lk) J , 

where G£ denotes a connected Lie group with Lie algebra Q. Note that - c2 gives the 
identitv map on t~. It follows that 

(2.9) aP,o := c-1(t" fi v ^ t o ) = c(t" n V^lio) 
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is a maximal abelian subspace of po, and that the elements 

(2.10) Hk := c-HH7k) = -c(Hyk) = Xy„ + X_7fc (k = 1,2,... ,r) 

form an orthogonal basis of vector space aPyo with respect to the inner product defined 
by the Killing form B. This implies in particular that r equals the real rank of G. 
The restricted root system of g with respect to ap has been described by Moore in 
terms of linear forms fa := 7* o (c\ap) on ap (see e.g., [8, Th.3.5] for the description). 

2.2. Generalized Verma module and its maximal submodule. — Let (r, VT] 
be any irreducible finite-dimensional representation of if with A+-highest weighl 
A = A(T). We consider the generalized Verma U(g)-module induced from r: 

M(r) := U(g) ®u(t+p+)VT. 

Here r is extended to a representation of the maximal parabolic subalgebra t + p+ by 
letting p+ act on VT trivially: p+VT = {0}. M(r) has a structure of (g, if)-module 
through 

D' • (D 0 v) := D'D 0 v, k • (D O v) := Ad(k)D 0 r(k)v 

for D; e U(g), k e K and D ® v e M(r) with £> 6 C/(g), v G FT. Let AT(r) be 
the unique maximal proper (g, K)-submodule of M(r) . Then the quotient L(r) := 
M(T)/N(T) gives an irreducible (g, K)-module with A+-highest weight A. 

We now summarize for later use some basic known results concerning the structure 
of N(T). One finds from the decomposition (2.1) that M(r) = U(p-)VT is canonically 
isomorphic to the tensor product 5(p_) 0 VR = 5(p_) 0c VT as a if-module, where 
5(p_) (~ Z7(p_)) denotes the symmetric algebra of p_ looked upon as a if-module 
by the adjoint action. This isomorphism yields a gradation of the if-module M(r) : 

(2.11) M(r) = 
OO 

7=0 
)Mj(r) with MJ(T) := Sj(p-)VR - 5j(p_) 0 VR. 

Here we write SJ(p_) for the if-submodule of 5(p_) consisting of all homogeneous 
elements of S(p_) of degree j . Note that the submodule N(r) is graded: 

(2.12 N(r) = 
OO 

3=0 
jllljdd with NJ(T) :=N(T)nMj(T), 

because N(r) is stable under the action of the central element y/—lZo £ t which gives 
the gradation 5(p_) = 0^o5 j (p_) . 

Since M(r) = S(p-)VT is finitely generated over the Noetherian ring 5(p_), so is 
the submodule iV(r), too. This implies that, if N(r) ^ {0}, there exist finitely many 
irreducible if-submodules W\,..., Wq of N(r) such that 

(2.13) N(r) = 
j 

u=l 
S(p-)WU with hWhhujllcSi»hh(p-)Vr*Si«(p-)®VT 
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for some positive integers iu (u = 1 , . . . , q) arranged as 

(2.14) i(r) := h = rainOI NJ(T) ? {0}}. 

We call i(r) the level of reduction of M(r) . 
An irreducible (g, if)-module X is called unitarizable if X is isomorphic to the 

Harish-Chandra module HK of an irreducible unitary representation of G on a Hilbert 
space H. The unitarizable highest weight (g, if)-modules have been completely clas-
sified by Enright, Howe and Wallach [7]. Note that their work contains case-by-case 
analysis, and that it uses some results of former contributors such as [12], [6], etc. 
Later, Enright and Joseph [5], and also Jakobsen [20] gave a more intrinsic classifi-
cation. 

For unitarizable L(r)'s, [5] gives a simple description of the maximal submodule 
N(T) as follows. Assume that L(r) is unitarizable and that N(T) ^ {0}. Then the 
level i(r) of reduction of M(r) is an integer such that 1 ^ i(r) ^ r, where r is the 
real rank of G as in 2.1. Let <2*(r) be the irreducible if-submodule of S^r)(p_) with 
lowest weight —7r 7r_i(r)+i. Then the tensor product Qi{T) ® VT has a unique 
irreducible if-submodule Wi, called the Parthasarathy, Rao and Varadarajan com-
ponent (the PRV-component for short), with extreme weight A — jr 7r-i(r)+i-
Noting that 

(2.15) QUT) ® VT C S^Hp-) ®VT~ MI(T)(T), 

we regard W\ as a if-submodule of M$(T)(T). 

Theorem 2.1 ([5, 5.2, 6.5 and 8.3], see also [3, 3.1]). — Keep the above notation. If L(r) 
is unitarizable and if the maximal submodule N(r) of M(r) does not vanish, N(r) is 
a highest weight (g,K)-module generated over 5(p_) by the PRV-component W\: 

N(r) = S(p-)W1. 

2.3. A realization of lowest weight module L(T)*. — For each irreducible 
representation (r, VT) of if, let L(r)* be the irreducible lowest weight (g, if)-module 
which is dual to L(r). This subsection gives after [4] a realization of L(r)* as the 
if-finite kernel of a certain G-invariant differential operator of gradient type defined 
on the symmetric space if \G. This together with the kernel theorem (Corollary 1.8) 
will tell us how to describe the (g, if )-embeddings of highest weight module L(r) into 
various induced G-representations. 

Now, let 0*.(G) denote the space of functions F in G£?(G) (see (1.1)) satisfying 

(2.16) XLF = 0 for all Xep+< 

Then we see that O** (G) is a closed G-submodule of C£?(G) through right translation 
i?, and that it is canonically isomorphic to the space of anti-holomorphic sections of 
the G-homogeneous vector bundle on if \G associated to the if-module V*. 
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It is useful to employ another realization of the G-module O** (G) as a space of 
holomorphic yr*-valued functions on a bounded domain B of p_. To be more precise, 
we take a connected linear Lie group G° with a covering homomorphism 

w:G-*G°. 

Such a G° always exists (we can take G° = Ad(G) for example). Let G£ denote 
the connected complexification of G°. We write K°, Kfc and P± = expp± for the 
connected Lie subgroups of G£ with Lie algebras to, t and p±, respectively. Note that 
the exponential map gives holomorphic diffeomorphisms from p± onto P±. Consider 
an open dense subset P+K^P- of G£, which is holomorphically diffeomorphic to 
the direct product P+ x ifg x P_ through multiplication. For each x G P+if£P- , let 
p+(#), kc(x), andp_(x) denote respectively the elements of P+, ifg, and P_ such that 
x = p+(x)kc(x)p-(x). We set f(a?) := logp_(#) G p_. Note that G° C P+if£P_. 
We extend the assignment x \-+ £(x) (x G G°) to a map, denoted again by ^kkff 
from G to p_ through w. This (extended) £ naturally induces an anti-holomorphic 
diffeomorphism, say £, from the symmetric space K\G onto a bounded domain 

(2.17) B := {Ç(x) G p - I x G G} 

of p_, where i(Kx) := £(#). (See for example [16, 7.129].) Let ATc denote the 
complexification of K. Then, w restricted to K yields a covering homomorphism 
from Kc to if£, and the map x \-> kc(x) (x G G°) lifts to a map from G to ifc which 
we denote again by kc(x) (x G G). 

Let 0(B,Fr*) be the space of all V^*-valued holomorphic functions on B. It is 
easily verified that the above £ gives rise to a linear isomorphism 0 from O** (G) onto 
o(B,v;) by 

12-18) (eF)(i(Kx)) := T * ( *C ( « ) ) - 1 F ( I C ) (x € G) 

for F € O*. (G). Then 0 ( 5 , V*) has a G-module structure inherited from (R, O*. (G)) 
through 0 : 

(2.19) iS • / ) ( £ ( * ) ) = T*(fcc(exp£(x) </))/(£(*<?)) (* G G) 

for g € G and / e 0(B, V*). Here one should notice that 

exp£(z)p = (p+(a;)fcc(x))-1^ G P+K£G° C P + ^ P -

for € G°, and that the map 

BxG° 3 (z, g) i—>• fcc(exp zg)£K^ 

lifts to a map from B x G to ifc in the canonical way (cf. [4, Prop.4.7]). 
By differentiating the G-action (2.19) one obtains a g-module 0(B, V*). We remark 

that the action of each element Y in p_ is described simply as 

(2.20) ( r •/)(*) = 
m 
dt 

f(z + tY)\t=0 (z G B). 
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An / G 0{B,V*) is if-finite if and only if / is a polynomial, because one sees from 
(2.19) that 

(ht-f)(z) = T*(ht)f(e^-ltz) 

for ht := exp£Z0 G if (t G M), where Z0 is the central element of to defined in 
2.1. Hence the if-finite part 0*+(G)K of 0**(C?) is isomorphic, through 0 , to the 
space V(p-,V*) = S(p+) 0 V* of V^-valued polynomial functions on p_. Here we 
identify the symmetric algebra 5(p+) of p+ with the ring of polynomial functions on 
p_ through the Killing form B restricted to p+ x p_. 

We now define a bilinear form ( •, • )T on 0**(G) x ({7(g) (S>c VT) by 

(2.21) {F,D®v)T := (DLF(e),v) = ((TD)RF(e),v) 

for F G 0**(G),D G C/(g), and u G K- Here ( • ) denotes the dual pairing on 
V* x VT1 and D \-^TD the principal anti-automorphism of £7(g), respectively. Then 
it is a routine task to verify that ( •, • )r naturally gives rise to a (g, if)-invariant 
bilinear form on 0**(G) x M(r) , which we denote again by ( •, • )T. Note that this 
pairing is described through the above isomorphism 0 as 

(F,D®v)T = ((rD-f)(0),v) with / : - 0 F G O ( B , K * ) , 

where D G U(p-) = 5(p_), v G VT, and TD • / is defined through the directional 
derivative action (2.20). This implies the following 

Lemma 2.2 (cf. [3, §2]) 
(l)The (g,K)-invariant pairing ( •, • )r is nondegenerate on 0**(G)K X M(T). 
(2) Let R(T*) be the orthogonal of the maximal submodule N(r) in 0**(G)K — 

V(p-,V*) with respect to ( • )r. Then R(r*) is the unique, nonzero irreducible 
(g, if)-submodule of O** (G)K, and it is isomorphic to the lowest weight module L(r)* 
dual to L(T) = M(T)/N(T). The (g,if)-isomorphism AT* from L(r)* onto R(T*) is 
given by 

(AT*(<p),w)r = (<P, w + N(r))LiryxL{r) (w G M(r)) 

for (p G L(T)*. 

We are now going to introduce a differential operator of gradient type whose if-
finite kernel characterizes the (g, if )-module R(r*) = AT*(L(T)*). For this, we take 
a basis Xi,...,X8 of the C-vector space p+ such that B(Xj,Xk) = Sjk (Kronecker's 
8), where Xi G p_ denotes the complex conjugate of Xi G p+ with respect to the real 
form go- Set 

Xa:=X?---X? eU(p+) and Xa := X^1 • • -X^s G U(p-) 

for every multi-index a = ( a i , . . . , a s ) of nonnegative integers a i , . . . , a5. We denote 
by \a\ := QL\ 4- • • • + cxs the length of a. For each positive integer n we define the 
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gradients Vn and Vn of order n on C£S(G) as follows. 

VnF(x) := 
|a|=n 

1 
a! 

T* 0 (Xa)LF(x), 

vvbn!^$$$ww< 

\a\=n 

1 
a! Ka 0 (X°)LF(x), 

for # G G and F G C£?(G), where a! := a i ! • • • an!. It is then easy to see that VnF 
and V71^ are independent of the choice of a basis X i , . . . , Jfs, and that the operators 
Vn and Vn give continuous G-homomorphisms 

V" : C~(G) C£(_n)(G), V" : Gr°2(G) -» C~(+n)(G). 

Here r*(±n) denotes the if-representation on the tensor product Sn(p±) 0 V* re-
spectively. 

Let Wu (u = 1 , . . . , q) be, as in (2.13), the irreducible if-submodules of Slu (p-)Vr 
C N(T) which generate N(r) over 5(p_) when N(r) ^ {0}. For each u, the adjoint 
operator Pw of the embedding 

(2.22) wu ^ siu(p-)vT ~ 5*-(p_) 0 v; 

gives a surjective if-homomorphism: 

(2.23) Pu : S*«(p+) 0 V; ~ (5^(p_) 0 Vr)* —> W^-

Definition 2.3. — Under the above notation, let VT* be a G-invariant differential op-
erator from G~(G) to C™(G) defined by 

Pu :d Sdd*«(p+d) 0 Vddd; ~ (5^(p_) 0 Vr)* —> W^-

for x £ G and F G G^S(G). Here we write p = p(r*) for the representation of if on 

{p-®v;)®(®qu=1hhwhhcb,,hh*u), 

and XV* should be understood as VT* = V if N(r) = {0}, or equivalently M(r) = 
L(r). We call X>r* the differential operator of gradient type associated to r*. 

Remark 2.4. — A function F G G^(G) lies in the G-submodule 0**(G) defined by 
(2.16) if and only if VXF = 0. Hence we have KerVT* C 0**(G) for every r*, and 
the equality holds if and only if N(r) = {0}. 

Remark 2.5. — If L(r) is unitarizable, one sees from Theorem 2.1 that 

VT* =V1(B(P1oVi{T)). 

Here i(r) is the level of reduction of M(r) , and the if-homomorphism Pi is defined 
through the PRV-component Wx C S*(r)(p-) 0 VT. 

The following theorem, equivalent to [4, Prop.7.6] due to Davidson and Stanke, 
realizes the lowest weight module L(T)* by means of VT*. 
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Theorem 2.6 (cf. [4]). — The image R(r*) of the (g,K)-embedding AT* from L(T)* 
into 0**(G)K defined in Lemma 2.2 coincides with the K-finite kernel of the differ-
ential operator VT* of gradient type: 

R(R*) = {Fe C£(G) I F is right K-finite and VT*F = 0}. 

2.4. Maximal globalization of L(r)*. — The above theorem together with The-
orem 1.3 implies that the full kernel space KerPT* gives a maximal globalization of 
the lowest weight module L(r)*, as follows. 

Proposition 2.7. — (1) The closure R(T*)~ of R(T*) = Ar.(L(r)*) in C£S(G) coin-
cides with KevVT*. It coincides also with the orthogonal, say R'(T*), of N(T) in the 
whole (not necessarily K-finite) space 0**(G) with respect to the paring ( •, • )T in 
(2.21). 

(2) One has an isomorphism of G-modules 

Hom0,K(L(r), C°°(G)) ~ KevVT*(= R(T*)~ = R'(r*)) 

by the correspondence given in Theorem 1.2 through the canonical K-embedding iT of 
VT into L(T). 

Proof. — The statements except R(r*)~ = R'(T*) follow immediately from Theorems 
1.3 and 2.6. The equality i?(r*)~ = R'(T*) can be shown just as in the proof of 
Theorem 1.3, by bearing in mind that R'(T*) is if-stable. • 

We end this section by specifying for later use the solutions F e O*. (G) of expo-
nential type of the differential equation VT*F — 0. 

For each X G p+ and each v* G V*, let fx,v* — exp X <g> denote the V*-valued 
holomorphic function on p_ defined by 

fx,v(z) :=expB{X,z) • v* (z G p_). 

We set Fx,v* •= © xfx,v* G 0**(G). Then the function Fx,v* is described as 

(2.24) Fx,v(x) = expB{X,Ç(x)) • r*(fcc(x))t;* (x G G) 

by the definition of 0 (see (2.18)). 

Proposition 2.8. — The function Fx,v* satisfies the differential equation VT*F = 0 if 
and only if 

(2.25) Pu(Xiuvvnnn®v*yyy =0 for u y=qaa 

Here Pu is a K-homomorphism from Slu(p+) 0 V* onto W* defined in (2.22) and in 
(2.23). 

Proof. — Let D G 5(p_). In view of (2.20) we observe that 

DRFX,V* = 0"1 (D • fx,v ) - D{X)FX,V*, 
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because /A>* is an exponential function defined by X, where D G S(p-) in the right 
hand side is looked upon as a polynomial on p+ = p!_. It then follows that Fx,v* is 
orthogonal to N(T) = Y^9u=i S(p-)WU with respect to the g-invariant pairing ( •, • )r 
in (2.21) if and only if 

(2.26) (Fx,v* Mr = 0 for all w G Wu (u = 1 , . . . , q). 

We now express w G Wu as w - S j L i Djvj witn &j e ^"(P-) and vj ^ ^r- Then 
the left hand side of (2.26) is calculated as 

(FX,V*,W)T = (-Viu 
N 

gk 
Dj(X)(v*1gggvj) g= (-l)i"^^(X^ykki»®v\w), 

where ( •, •deno te s the dual pairing between Slu (p+)llh* and Slu (p-)<8>VT. Hence, 
the element Fx,v* is orthogonal to Wu with respect to ( •, • )r if and only if the 
linear form Xlu 0 v* on Slu(p-) 0 Vr vanishes on the subspace Wu, or equivalently 
Pu{Xlu = 0 by the definition of Pu. We thus conclude that (2.25) gives a 
necessary and sufficient condition for VT*Fx,v* = 0 by Proposition 2.7 (1). • 

In the next section we will study the condition (2.25) in connection with the associated 
variety and the multiplicity of highest weight module L(r). 

3. Associated variety and multiplicity of highest weight modules 

The purpose of this section is to understand the associated variety and multiplicity 
for each irreducible highest weight module L(r) by means of the principal symbol 
cr of the differential operator VT* of gradient type. The harvest of our discussion 
is summarized as Theorem 3.11. The symbol <T yields a ifc-homogeneous vector 
bundle on the unique open orbit <9m(r) in V(L(r)). The dimension of fibers can be 
understood as the multiplicity of 5(p_)-module L(r)/Im^L(r) at the prime ideal 
Im(T) which defines the variety V(L(r)), and a result of Joseph (cf. Theorem 3.7) 
tells us 7m(r)L(r) = {0}, i.e., L(r)//m(r)L(r) = L(r), for unitarizable L(r)'s. 

3.1. ifc-orbits Om in p+. — We keep the notation in 2.1. Let us begin by de-
scribing the ifc-orbit decomposition of the vector space p+ under the adjoint action. 
For every integer m such that 0 ^ m ^ r = E-rank G, we set 

(3.1) Om := Ad(Kc)X(m) with X(m) := 
r 

k=r—m+l 
cxb,;m 

Here Xlk G 0(t;7*) (see (2.2)) is a root vector for noncompact positive root 7*., and 
X(0) should be understood as 0. It then follows that every X G p+ is conjugate to 
some X(m) under Kc: 

p+ = o0U'-uor. 
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In reality, there exists an element k G K such that 

Ad(fc)(X + X)Gap,0 = 
r 

ffhh 
^(X1k +^-7fc) 

(see (2.9) and (2.10)), since X + X G p0 = Ad(K)ap,0. This shows that 

Ad(fc)X = 
¿6/ 

CjfeX7fc with c* G M\{0}, 

for some subset J of { 1 , . . . , r } . Note that the complex torus 

exp 
kei 

hccvnn CKC 

acts on the set J2kei ^X transitively, and that ^2keI X^h ls conjugate to X(|J|) 
under the action of the Weyl group iVjK-(ap,o)/i?/c(ap,o) of the pair (g0, &p,o) (see e.g., 
[41, Prop.5.1(3)]), where \ J\ denotes the cardinal number of any set J . We thus find 
that X G Om with ra = | / | , and that the elements X(0) , . . . ,X(ra — 1) are in the 
closure of the orbit Om with respect to the usual topology (or the Zariski topology) 
on p+. 

One can compute the the dimension of each ifc-orbit Om as follows. In view of 
Harish-Chandra's result (2.3)-(2.7) on the restricted roots, we easily find that the 
tangent space Tx(m){Om) = [t,X(m)] of Om at the point X(m) G Om is described 
as 
(3.2) [t,X{m)] = 

7€A+(m) 
fl(t;7) 

with 

(3.3) A+(m) := {7r, . . . ,7r_m+1} 
k>l 
k>r—m 

Pkl^j 
k>i—m 

dg 

Hence one obtains 

dim Om = m + 
k>l 
k>r—m 

\PH\ 
k>r—m 

\Pk\ 

This implies in particular that 

dim Or > dim Or-i > > dim O0 = 0, 

and that 

dim Om - dim Om-i = 1 + \Pr-m+i \ 4 
l<r—m+1 

\Pr-m+l,l\' 

Note that the right hand side of the above equality is at least two if either Pr_m+i ^ 0 
(namely, K\G is not of tube-type) or ra < r. 

Thus we have proved the following well-known result. 
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Proposition3.1. — The subspace p+ splits into a disjoint union o / r + 1 number of 
Kc-orbits Om (0 ^ m ^ r): p+ = Uo^m^r ®m, ^d the closure Om of each orbit Om 
is equal to Uk^mOk for every m. 

3.2. Associated variety V(L(r)). — Let L(r) = M(T)/N(T) be, as in 2.2, the 
irreducible highest weight (g, K)-module with extreme if-type (r, VT). Consider the 
annihilator ideal 

Ann5(p_)L(T) : = {D G 5(p_) | Dw = 0 for all w G L(r)}. 

of L(r) in 5(p_) = U(p-). It should be remarked that an element D G 5(p_) belongs 
to Ann5(p_ )L(r) if and only if Dv = 0 for all v € VT, since L(r) = 5(p_)Vr with 
commutative algebra 5(p_). 

Definition 3.2. — The affine algebraic variety 

V(L(r)) := {X G p+ |Pu : S*«(p+) 0 V; ~ vvvv = 0 for all D G Ann5(p_)L(T)} C p+ 

defined by the ideal Anns(p_)Z/(r) is called the associated variety of the (g, K)-module 
L(r). Here 5(p_) is identified with the ring of polynomial functions on p+ through 
the Killing form B of g. 

Remark 3.3. — The notion of the associated variety has been introduced by Vogan 
[33] for arbitrary Harish-Chandra modules (see also [44],[8]). As for the highest 
weight modules L(r), the above definition of V{L{r)) coincides with Vogan's original 
one. Indeed, let 

gr L(r) := 
oo 

n=0 
Un(o)VT/Un^(o)VT 

be the graded (5(g), K)-module defined through the filtration 

{0} := £/_i(g)K CVT = U0(9)VT C • • • C C/n-i(fl)Vr C UN{$)VT C . . . , 

of L(T). Here Un(g) (n = 0 ,1 , . . . ) denotes the natural increasing filtration of U(g), 
and 5(g) ~ 0^Lo/7n(g)/C/n_i(g) is the symmetric algebra of g. Then one easily sees 
that t -f p+ annihilates gr L(r), and that 

gr L(r) ~ L(T) as (5(p_),if)-modules 

by (2.11) and (2.12). Hence the algebraic variety in g* = g (the identification through 
B) defined by the annihilator of gr L(r) in 5(g), which is the associated variety by 
Vogan, is nothing but V(L(r)). 

Since the ideal AnnS(P_)L(r) is stable under Ad(ifc), so is the variety V(L(r)). 
In view of Proposition 3.1, we see that there exists a unique integer m = m(r) 
(0 ^ m ^ r) such that 

(3.4) V(L(r)) = Om~ with Om = Ad(Kc)X(m) and m = m(r). 

In particular, the variety V(L(r)) is irreducible. 
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Now let Im be the prime ideal of S ( p - ) associated to the irreducible variety Om 

(m = 0 , . . . , r ) : 

(3.5) Im := {D G S ( p - ) I D(X) = 0 f o r a l l X G 0 m } . 

It holds t ha t Ir = {0} since Or = p+. If m < r , one knows tha t 

(3.6) I m=jlllwwqann;:!!cxx 

by [5, 8.1] and [21, Prop.2.3], where <2m+i denotes as in (2.15) the irreducible K-
submodule of 5 m + 1 ( p _ ) C 5 (p_) with lowest weight —7 r 7 r - m -

By Hilbert 's Nullstellensatz, I m ( r ) coincides with the radical of the annihilator 
ideal A n n s ( p _ ) L ( r ) for every r . This allows us to deduce the following 

Lemma 3.4. — The annihilator in 5 (p_) of (5 (p_) , K)-module L(r)/Im^L(r) is 
equal to /m(r). 

Proof. — Since y^Ann5( p _)L(r) = 7 m ( T ) , there exists an integer no > 0 such tha t 
Bn° G Anns(p_)L(r) for every B G Qm(r)+i> the finite-dimensional generating sub-
space of Im(T). This implies tha t 

(3.7) ( / m ( r ) ) n o C k k A n n 5 c ( p _ ) L ( r ) 

If D e A n n 5 ( p _ ) ( L ( r ) / / m ( T ) L ( r ) ) , then DL(r) C Im^L(r). Inductively, one gets 

(3.8) DnL(r) C (Im(r))nhLccn(r) (n = l , 2 , . . . ) 

We thus find from (3.7) and (3.8) tha t Dn° G A n n 5 ( p _ ) L ( r ) , and so D G J m ( r ) . This 
proves the inclusion AnnS(P_)(L(r)/Imw^Lwwlm^^$(r)) C / m ( r ) . The converse inclusion is 
obvious. • 

For each X G p+, let m(X) be the maximal ideal of 5 (p_) which defines the variety 
{X} of one element X : 

(3.9) m(X) := 
dggh 

<Y - B(X,Y))S(p.). 

We set 

(3.10; W ( X , r ) := L(T)/UI(X)L(T). 

Then we see tha t dim W(X,T) < oo, and tha t the isotropy subgroup Kc(X) of Kc 
at X acts on W ( X , r ) naturally. Note tha t , if J is an ideal of 5 (p_) t ha t defines the 
variety V(L(T)), then 

(3.11) m(X) DJm(X) D X G V(L(r)) = O m { r ) . 

By applying [33, Cor.2.10 and Def.2.12] in view of Lemma 3.4, we immediately 
deduce 
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Proposition 3.5. — Assume that X G Om(r)- Then the dimension of Kc(X)-module 
W(X,r) coincides with the multiplicity of the S(p-)-module L(r)/Im^L(T) at the 
unique minimal associated prime Im(T) : 

dimW(X,r) = mult/m(T) (L(r)//m(r)L(r)) (X G Om{r)). 

So in particular, one has W(X, r) 7^ {0} 

Remark 3.6. — See [33, Section 2] and also [27, 1.1] for the definition and elemen-
tary properties of the multiplicities of finitely generated modules over a commuta-
tive Noetherian ring (in connection with Harish-Chandra modules). The multiplicity 
mult/m(T) (L(r)) of the whole L(r) at Jm(r) is described as 

(3.12) 
no —1 

j=0 
dim{(/m(T))^(r)/m(X)(/m(T))^L(r)} (X G Om(r)), 

through the filtration 

L(r) = (Im(T))0L(r) D {Imir))1^) D---D (Jm(r))"°L(r) = {0} 

of the (5(p_),if)-module L(r). Here no is as in (3.7), and the summand at j = 0 in 
(3.12) is equal to the above dim>V(X,r). 

The above proposition will be used in the next subsection to study the associated 
variety V(L(T)) in connection with the principal symbol of differential operator VT* 
of gradient type. 

As for the unitarizable highest weight modules, the following remarkable result 
of Joseph (due to Davidson, Enright and Stanke [3] for g classical) gives a clearer 
understanding of the above proposition. 

Theorem 3.7 ([21, Lem.2.4 and Th.5.6]). — If L(r) is unitarizable, the annihilator 
Aniis(P_)W in S(p-) of any nonzero vector w G L(r) coincides with the prime ideal 
/m(r). Especially, one has Anns(P_)L(r) = 7m(r). 

Remark 3.8. — For unitarizable L(r) = M(T)/N(T) with nonzero iV(r), the above 
theorem together with (3.6) implies the inequality: 

t(r) ^ m(r) + 1, 

where i(r) is as in (2.14) the level of reduction of the generalized Verma module M(r) . 
A description of the number m(r) in terms of i(r) has been given in [21]. 

Corollary 3.9 (to Prop.3.5 and Th.3.7). — One has 

dim W(X, r) = mult/m(T) (L(r)) (X G Om(r)) 

for every irreducible unitarizable highest weight module L(r). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



106 H. YAMASHITA 

For the classical groups Sp(2n,R), U(p,q) and 0*(2p), Nishiyama, Ochiai and 
Taniguchi [27, Th.7.18 and Th.9.1] have described the associated cycle: 

(3.13) AC(L(r)) = mult/m(T) (L(T)) • [Om(r)], 

and also the Bernstein degree 

(3.14) DegL(r) = mult/m(T)(L(T)) • deg(Om(r)) 

of the unitarizable highest weight module L(r) (our p+ is replaced by p_ in [27]) 
by using the theory of reductive dual pairs (G,G') with compact G'. They treat the 
case where the dual pair (G,G') is in the stable range with smaller G', and then 
the multiplicity multjm(t) (L(T)) is specified as the dimension of the corresponding 
irreducible representation of G', through detailed study of if-types of L(r). On 
the other hand, the above corollary allows us to give another simple proof of this 
description of the multiplicity by investigating the if<c(X)-module W(X, r ) , where 
the dual pairs (G,G') need not be in the stable range. We will do it later in Section 
5 (see Theorems 5.14 and 5.15). 

3.3. Principal symbol <T and associated cycle. — Let 
m(X) Dffbv*) e w* := e*=1 

be, as in Definition 2.3, the differential operator of gradient type whose kernel realizes 
the maximal globalization of dual lowest weight module L(T)* (see Proposition 2.7). 
We put 

(3.15) <r(X,v*) := 
q 

u=l 
pu{x^ ® v*) e w* := e*=1 w* 

for X G p+ and v* G V*, where PU : 5*u(p+) <g> V* —> W* is the if-homomorphism 
in (2.23). Here cr should be understood as (T(X,V*) = 0 for every X G p+ and every 
v* G V*, when VT* — V1, or equivalently N(r) = {0}. Note that <r is naturally 
identified with the principal symbol at the origin ife of differential operator Pr*, 
where the symbol is considered only on p+ x V* with the anti-holomorphic cotangent 
space p+ = p i of if \G at ife. By abuse of language, we call a the principal symbol 
of VT* at the origin, since we are concerned mainly with the anti-holomorphic sections 
of G-homogeneous vector bundle V* KX G. 

We are now going to describe the associated variety V(L(r)) by means of cr. To 
do this, fix any X G p+ for a while. Then the map v* •->• (T(X,V*) gives a ifc(X)-
homomorphism <r(X, •) from V* to W*. Hence Kercr(X, •) is a ife(X)-submodule 
of V*. By Proposition 2.8 we can describe Ker*r(X, •) as 

Ker<r(X, •) = {v* G V; I VT.FXiv* = 0}, 

where Fx,v* ^ G^?(G) is the function of exponential type defined by (2.24). 
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The following lemma relates the above kernel with the Kc(X)-modn\e W(X,r ) in 
(3.10). 

Lemma 3.10. — For each X G p+, the natural map 

(3 .16) VT <-> MM -  L(T) = M(T)/N(T) -> W(X,T) =  ( )/ ( )  ) 

from VT onto W(X,T) induces a Kc(X)-isomorphism 

(3.17) W(X,r)* ~Kei(r(X, •) CV* 

through the contravariant functor Home(*, ). 

Proof. — First, the natural map from M(r) to W(X,T) in (3.16) induces a linear 
isomorphism from W(X, r)* onto the space U of all linear forms \j) on M(r) satisfying 

(3.18) ipoD = D{X)^ for DeS{p-) 

and 

(3.19)  \  ) = 0 with N(T) = 
d 

u=l 
S(p-)WU as in (2.13). 

In view of (3.18), one sees that the second condition (3.19) is equivalent to 

ib\Wu = 0 for   = 1 , . . . , q. 

Second, pull back each   G U to an element of V* through the embedding VT <-> 
M(T): 

(3.20)    ^ * := \   evr*. 

By (3.18), this map is injective. We can show just as in the proof of Proposition 
2.8 that an element G V* lies in the image of the map (3.20) if and only if 
Pu(Xiu 0 v*) = 0 for u — 1 , . . . , q, or equivalently, v* G Ker cr(X, •). One thus gets 
the linear isomorphism (3.17), which is in fact a ifc(X)-homomorphism since so is 
the map (3.16). • 

We are now in a position to give a characterization of the associated variety V(L(r)) 
of L(T) and the multiplicity mult/m(T) (L(r)/Im(T)L(r)) in terms of the principal sym-
bol cr, as follows. 

Theorem 3.11. — Let L(r) be any irreducible highest weight (g,K)-module with ex-
treme K-type T, and let <r : p+ x V* -> W* be the principal symbol of the differential 
operator VT* of gradient type associated to r*. Then it holds that 

( 3 . 2 1 ) V ( L ( T ) ) = {Xep+\ Ker<r(X, •) ^ { 0 } } . 

Moreover, if X is an element of the unique open Kc-orbit Om(T) of V(L(r)), the 
dimension of vector space Ker<r(X, •) coincides with the multiplicity of S(p_)-module 
L(r)/Im(T)L(T) at the prime ideal 1m(r) ofS(p-) corresponding to the variety V(L(r)) 
= 0771(7-)-
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Remark 3.12. — We can get the same kind of characterization of the associated va-
riety and the multiplicity also for irreducible (g, K)-modules of discrete series G-
representations, by using the results of [10] and [44]. We will discuss it elsewhere. 

Proof of Theorem 3.11. — We write V' for the set in the right hand side of (3.21). 
First, we immediately find that V is an affine algebraic variety of p+, by noting that 

Ker<r(X, •) ^ {0}v*) e w* := e*=1 rank<r(X, •) <: dim!/* - 1. 

Moreover V' is ifc-stable, because one has 

Ker<r(Ad(*)X, • ) = T*(fc)Ker<7(X, • ) for all k G Kc 

by the definition of <r. 
Second, the inclusion Om(r) C V and the second assertion of the theorem are 

direct consequences of Proposition 3.5 and Lemma 3.10. If X g Om(T) = V(L(r)), we 
get m(X) + Ann5(p_)L(r) = S(p_) by (3.11). This implies that 

m(X)L(r) = (m(X) + Anns(p_)L(r))L(r) = L(r). 

So one gets Ker<r(X, •) ~ W(X,r)* = {0} again by Lemma 3.10. We thus find 
Om{r) C V C £>m(r), and so V = V(L(r)) as desired. • 

4. Generalized Whittaker models for highest weight modules 

In this section we describe the generalized Whittaker models for irreducible highest 
weight modules L(r). The main results are summarized as Theorems 4.7-4.9. We 
find that each L(r) embeds, with nonzero and finite multiplicity, into the generalized 
Gelfand-Graev representation rm(r) attached to the Cayley transform of the open 
ifc-orbit OM(T) in the associated variety V(L(r)) of L(r). It is shown that, if L{r) is 
unitarizable, the multiplicity of (g, K)-embeddings L(r) <-» Tm(r) coincides with the 
multiplicity of L(T) at the defining prime ideal of V(L(r)). 

4.1. Generalized Gelfand-Graev representations. — We keep the notation in 
2.1 and 3.1. We begin with introducing in this subsection the generalized Gelfand-
Graev representations of G attached to the Cayley transforms of nilpotent if<c-orbits 
Om — K(\(Kc)X(m) in p+, where m ranges over the integers such that 0 ^ m ^ r = 
M-rank G. 

For this, we consider an ${2-triple in a: 

(4.1) X(m) = 
k=r—m+] 

x 
X~fc, H(m) := 

k=i—m+1 

r 
In, Y(m):= 

k=i—m-t-1 

r 
xbbb, 

with commutation relation 
[H(m),X(m)] = 2X(m), [H(m),Y{m)] = - 2 F ( m ) , 

[X(m),Y(m)] = H(m). 
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We put 

(4.2) 

X'(m) : = -V=îc_1(Xdd(ddm)) = 
ccv 

2 
(H(m) -wwxvX(m) + Y(m)), 

H'(m) : = c-^Him)) = X(m) + Y(m) = 
k=i—ra+1 

r 
Hk (cf. (2.10)), 

Y'(m): = V=ïc-1(Y(m)) = 
xcc 

2 (H(m)+X(m)-Y(m)), 

where c = Ad(c), with c as in (2.8), is the Cayley transform on g. Then (X'(ra), 
H'(m),Y'(m)) forms an sl2-triple in the real form g0 of g, since H(m) = -H(m), 
X{m) = y(m) by (2.2). Set (9^ := Ad(G)X'(ra). We note that the nilpotent G-orbit 
0'm in g0 corresponds to the Xc-orbit Om in p+ C p through the Kostant-Sekiguchi 
correspondence (cf. [8, Th.3.11). 

Lemma 4.1 ([8, Lemma 3.2]) 
(1) The Lie algebra g decomposes into a direct sum of the j-eigensubspaces Qj(m) 

for ad H'{m) as 

g = g_2(m) 0g_i(ra) 0go(m) 0gi(ra) 0g2(m). 

(2) Let A(ra, ?') ( 7 = 0, ± 1 , ±2) be the subsets of the root system A of (g, t) defined 
by 

A(m,2) := {7r_m+ccbn,;;i,... ,7r} 
r—m<l<k 

Pki 

(4.3) A(m, l ) := 
l^r—m<k 

(Pki U Cki) 
r—m<k 

(Pk U C*) 

(4.4) 

A+(m,0) :=C0 {71 » • • • ? lr—m} 
r—m<l<k 

Cki 

l<k^.r—m 
(PkiUCki) 

—m 
(Pk U Ck) 

(4.5) A ( m , 0 ) : = A + ( m , 0 ) U ( - A + ( m , 0 ) ) , A(m,-j) :=-A(m,j) 0' = 1,2). 

Then each subspace c(gj(m)) = Ad(c)gj(m) is described in terms of the root subspaces 
g(t;j) as 

c(0j(m)) = i ©7€A(m,.?)0(t; 7) 
[ t e (®7eA(m,o)fl(t;7)) 

ifj Î 0, 
ifj = 0. 

Now we set 

A-(m) := (A(m, -2 ) U A(m, -1)) n A„ = -A+(m) (cf. (3.3)). 
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Let p-(ra) and n(m) be nilpotent, abelian Lie subalgebras of g defined respectively 
by 

(4.6) p_(m) := 
7€A-(m) 

fl(t;7) and n(m) := c(p_(m)). 

Note that p- ( r ) = p_. If i f \G is of tube type, the Lie subalgebra n(m) is stable 
under the complex conjugation of g with respect to go. 

We get the following lemma on the structure of these subalgebras p-(ra) and n(m). 

Lemma 4.2 
(1) One has the equality 

(4.7) M m ) = [t,K(m)]. 
Namely, p-(ra) ¿5 canonically isomorphic to the tangent space at the point Y(m) of 
Kc-orbit Ad(Kc)Y(m) m p _ . 

(2) Let t)(m) be the subspace of g\{m) such that 

d(ra) := c 1(^eE(mi^n)) 
with 

(4.8) S(m) := 
l^.r—m<k 

Pu) 
k>r—m 

Ok) C A(m,l). 

v*) e w* := h<x;:!!!^^ 

(4.9) n(m) = t)(m) 0 g2(rn) and dim t)(m) = 1 
2 dim fli(ra). 

Proof. — First, (4.7) is a direct consequence of (3.2). To prove (2), we note that 

c2 = Ad(c)2 -
r 

k=l 
Syk with := Ad exp 7T 

2 .-̂ 7fc ^~7fc ) 

gives rise to an element of the Weyl group of (g, t) such that 

c27fc = -7fc> c2Ck = -Pfc, c2Pfe = -Cfc 

for fc = 1 , . . . , r . In fact, 57FC gives the orthogonal reflection with respect to 7*, and 
(2.7) implies c2Ck = —Pk and so c2Pk = - C * . We thus find that 

c2 A (m) = A(m, 2) U S(m) (disjoint union), 

and correspondingly 
n(m) = d(ra) 0 0 2 ( ^ ) 

by Lemma 4.1(2). In view of (4.3) and (4.8), one gets the second equality in (4.9). • 

Let rjm be the one-dimensional representation (i.e., character) of abelian Lie sub-
algebra n(m) = t>(m) 0 02(m) defined by 

(4.10) rha(U):=^B(U,êX\m)) = -V=ÏB{U,Y'(m)) for U 6 n(m). 
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Here 0 denotes the complexified Cartan involution of g, and B the Killing form of 
0. Then, just as in Definition 1.6 we get a C°°-induced G- and (g, if)-representation 
Tm :— TVrn acting on the space 

(4.11) C°°(G; rhn) = {fe C°°(G) I URf = -Vm(U)f (U € n(m))} 

through left translation L. Note that 

(4.12) C°°(G;!7r) C C°°(G;ryr_i) C C G°°(G; 770) = C°°(G), 

since one sees n(m) C n(ra') and r7m'ln(m) — for m ^ m'. 

Definition 4.3. — We call (rm,G°°(G;rym)) the generalized Gelfand-Graev represen-
tation (GGGR for short) of G attached to the nilpotent orbit 0'm — Ad(G)X'(ra) in 
00-

Remark 4.4. — The GGGRs attached to arbitrary nilpotent orbits have been con-
structed in full generality by Kawanaka [14] for reductive algebraic groups. See also 
[40] for the GGGRs of real semisimple Lie groups. 

Remark 4.5. — It should be noticed that the above Tm's are slightly different from 
the G°°-induced GGGRs discussed in [40]. In fact, we extend r]m to a linear form 
on the Lie subalgebra 0i(m) 0 02 (m) by (4.10). Let Cm be the irreducible unitary 
representation of the nilpotent Lie subgroup 

N(m) := exp((0i(m) 0 02(m)) fi 0O) 

of G which corresponds to the coadjoint orbit Ad*(N(m))(-y/-lrjm) by the Kirillov 
orbit method. In [40, Def.1.11], the G°°-GGGR attached to 0'm is defined to be the 
representation G°°-Ind^m^(Cm) of G induced from (m in G°°-context. 

Nevertheless, we can show just as in [40, Prop.4.10] that n(ra) is a totally complex, 
positive polarization of the linear form —\/—irjm on the Lie algebra of N(m). This 
implies that 

G°°-Ind^(m)(Cm) ^ Tm asG-modules, 
and the image of this embedding is always dense in Fm. So we treat Tm in this paper 
instead of G°°-Ind^(m)(Cm). 

4.2. Generalized Whi t t ake r models . — For any irreducible finite-dimensional 
if-module (r, VT), let L(r) = M(T)/N(T) (see 2.2) be the irreducible highest weight 
(0, K )-module with extreme if-type r. Consider the GGGRs (rm, Coc(G;nm)) (m — 
0, . . . , r ) induced from the characters r\m : n(m) -» C. We say that L(r) has a 
generalized Whittaker model of type rjm if L(r) is isomorphic to a (0, if )-submodule 
ofC°°(G;77m). 

We are going to describe the generalized Whittaker models for L(r) by specifying 
the vector space Hom0)^(L(r), G°°(G; rjm)) of (0, if )-homomorphisms from L(r) into 
G°°(G; r)m). To do this, let VT* : G£?(G) -> G£°(G) be, as in Definition 2.3, the 
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G-invariant differential operator of gradient type whose kernel realizes the maximal 
globalization of lowest weight module L(T)* (see Proposition 2.7). We set 

(4.13) 
y(T,m) := KerVT.(r]m) 

= {Fe C™(G) I VT.F = 0, URF = -nm(U)F (U € n(m))}. 

Then the kernel theorem (Corollary 1,8) gives a linear isomorphism 

[4.14) Hom0,/,(^(r),Goo(G;77m)) ~ y ( r ,m) 

through the correspondence (1.7). 
Now our aim is to describe the space y(r, ra) for each r and ra. For this purpose, we 

essentially utilize the following unbounded realization of Hermitian symmetric space 
K\G. 

Proposition 4.6 (cf. [16, page 455], [9], [32]). — Retain the notation at the beginning of 
2.3, and consider the open dense subset P+KgP- of with P± = expp±. 

(1) One has G°c C P+K^P-, where c is the Cayley element of G^ in (2.8). 
(2) Set £'(x) := log p-(xc) G p_ (x G G°), where xc = p+(xc)kc(xc)p-(xc) with 

kc(xc) G Kfc and p±(xc) G P±. Extend the assignment x £'(#) (x G G°) to a map 
from G to p_ through the covering homomorphism w : G -> G°. Then, the extended 
£'(x) (x G G) sets up an anti-holomorphic diffeomorphism, say £'', from K\G onto 
an unbounded domain 

S:= {£ ' (*) I xeG}cp-

Note that the map x i-> kc(xc) (x G G°) lifts to a map from G to Kc (cf. [32]). 
We write kc(x • c) (x G G) for this lift. 

We are now in a position to state the principal results of this article. Let 0m(r) be, 
as in (3.4), the unique open Kc-orbit in the associated variety V(L(r)) of L(T). Among 
the generalized Whittaker models for L(r), those of type /7m(r) are most important. 
We obtain the following theorem on the corresponding linear space y(T,m) with 
ra = ra(r). 

Theorem 4.7. — Let (r,VT) be an irreducible finite-dimensional representation of K. 
Set ra = ra(r) and y(r) := y(r,m) for short. Then, 

(1) y(r) is a nonzero, finite-dimensional vector space. 
(2) For any F G y(r), there exists a unique polynomial function (p on p_ with 

values in V* such that 

F(x) = expB(X(mU'(x))T*(kc(x • c))<p(?(x)) (x G G). 

(3) Let (T \ p-f x V* —•> W* be the principal symbol of the differential operator 
Dr* of gradient type, defined by (3.15). Consider the functions FX(m),v* € G£?(G) of 
exponential type in Proposition 2.8. Then the assignment 

i y cRFX(m),v* ~ FX(m),v*(- c) (v* G Ker<r(X(ra), • )) 
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yields an injective linear map 

Xt : Ker<r(X(m), • ) ^  ( ). 

The linear map \ r is not surjective in general. In fact, if L(r) is finite-dimensional, 
one has Ker<r(X(m), • ) = V* since X(m) = X(0) = 0 in this case. However Lemma 
1.1 implies that y(r) ~ L(r)*. 

Nevertheless, we can show the surjectivity of \T for relevant L(r)'s. 

Theorem 4.8. — Assume that L(r) is unitarizable. Then the linear embedding \T in 
Theorem J^.l is surjective. Hence one gets 

(4.15) Hom0,K(b(r),Coo(G;77W)) ~  ( ) ~ Ker<r(X(m), • ) ~ W(X(m),r)* 

as vector spaces, where m = m(r) , and W(X(m),r ) = L(r)/m(X(m))L(r) ¿5 as in 
(3.10). Moreover, the dimension of the vector spaces in (4.15) equals the multiplicity 
multjrm (L(T))  /    S(p-)-module L(r) at the unique associated prime Im   5(p_) 
6ty Corollary 3.9. 

Theorem 4.7 for m = m(r) allows us to deduce the following result on the structure 
of y(T,m') for m' ^ m(r) . 

Theorem 4.9. — The linear space y{r,m') vanishes {resp. is infinite-dimensional) if 
vn! > m(r) (resp. m' < m(r)). 

Remark 4.10. — Theorem 4.8 recovers, to a great extent, our earlier work [41, Part 
II] on the generalized Whittaker models for the holomorphic discrete series L(r) = 
M(T) = U(Q) ®u{t+p+)VT: 

   0, ( ( ), °°( ;77 )) ~ VT*. 

Moreover, the above three theorems applied to the special case m(r) = r gives an 
answer to Problem 12.7 (for i — 0) posed in [41]. But this answer does not seem to 
be new. In fact, D. H. Collingwood kindly informed me in 1992 that he had settled 
Problem 12.7. 

Remark4.11. — The vanishing of y(r,m') (m' > m(r)) in Theorem 4.9 follows also 
from a general result of Matumoto [22, Th.2]. 

The following three subsections 4.3-4.5 will be devoted to proving the above three 
theorems. 

4 .3. Key lemmas . — In this subsection we prepare two lemmas which are crucially 
important to prove Theorems 4.7 and 4.8. 

The first lemma is the following somewhat surprising result of Jakobsen. 
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Lemma 4.12 ([20, Prop.2.9]). — Let g be any element of G^, and let L(r) be an ir-
reducible highest weight (g^K)-module with extreme K-type r. Then one has the 
equality 

Ann^Ad^p-^Cr) = Ad(flf)(Ann^(p_)L(T)) 
on the annihilator of L(r) in U(Ad(g)p-) and that in U(p-) = 5(p_). 

Second, for each integer ra — 0 , . . . ,r , let Jm denote the ideal of 5(p_) generated 
by the elements Y - B(X(m),Y) (Y G p-(ra)): 

(4.16) Jm — 
Yep-(m) 

( Y - £ ( X ( r a ) , F ) ) S ( p _ ) . 

A method of Joseph (cf. [5, 2.4]) for describing the lowest weight vector of irreducible 
X-module <5m+i = Im n5m+1(p_) (see (3.6)) can be applied to deduce the following 

Lemma 4.13. — It holds that im + Jm — m(X(ra)). Here Im (see (3.5)) is the prime 
ideal of S(p~) corresponding to the irreducible algebraic variety Om, and m(X(m)) 
(see (3.9)) is the maximal ideal of 5(p_) corresponding to X(m) G p+. 

Proof. — The inclusion Im -f Jm C m(X(m)) is obvious since any polynomial in Im 
or in Jm vanishes at X(m) by definition. If ra = r, the equality Ir + Jr = m(X(r)) 
holds since IT — {0} and Jr = m(X(r)). 

Now we assume that ra < r. In order to prove the sum Im -f Jm exhausts the whole 
m(X(ra)), we consider the subspace 

<\m 
7€AnnA+(m,0) 

0(t; - 7 ) c p -

(See (4.4) for the definition of A+(ra,0).) Then one gets p_ = p_(ra) 0 qm as vector 
spaces, and hence 

(4.17) m(X(ra)) = Jm + qm5(p_) 

by the definitions of m(X(ra)) and Jm. 
We set 

ft(m) := (Acn A ( ra ,0) ) \ 
r—m<l<k 

(Cu U -Ckl)) (cf. (4.5)), 

and let tm be the Lie subalgebra of t defined by 

tm := t e (e7en(m)fl(t;7)) 
We write (Kc)m for the analytic subgroup of Kc with Lie algebra tm. Note that 
<\m,Jm and Im are all stable under the adjoint action of (Kc)m- Further, by using 
(2.7) one easily checks that qm is an irreducible (ifc)m-rnodule with lowest weight 
vector X-lr_m G qm. This together with (4.17) reduces our task to showing 

(4.18) X—ryr_rn G Im 4" Jmi 

which can be done as follows. 
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Let <3m+i = Im H Sm+1(p_) be the irreducible if-submodule of Im with lowest 
weight —7r — . . . — 7r_m. Take a nonzero lowest weight vector Dm+i G Qm+\- By-
virtue of [5, 2.4(*)], we find that 

Dm+i = cX-lr - • • X_7r_m mod Jm 

for some nonzero constant c G C. This implies that 

Dm+l = {C 
k>r—m 

B(Xlk, X _ 7 J } . X_7r_m mod Jm. 

Thus we have obtained (4.18) as desired. 

4.4. A role of the Cayley t ransform. — Keep the notation at the beginning of 
2.3. We recall that the bounded realization B = {£(x) \ x G G} C p_ of K\G gives a 
linear isomorphism 

Q:0*r*(G)^0(B,VT*) 

by (2.18). Let 0(p-,V*) be the space of all holomorphic functions on the whole p_ 
with values in V*. Naturally, we regard 0(p_ , V*) as a subspace of 0(B, V*). Set 

o;.(G)0 :=0"1O(p_,V;*). 

Just in the same way, the unbounded realization 

S = {£'(*) = * M z ) c ) I a; € G} C p_ 

of K\G in Proposition 4.6 gives a linear isomorphism 

Qc:0;.(G) -Z+0(S,VT'), 

by 

(4.19) 6cF(E'(x)) - ^ ( f c c ^ c ) ) - 1 ^ ) {x € G;F ç 0*,(G)). 

See also [32, 2.4]. Similarly we put 

o;.(G)g :=vvn,, (,,vvn^oip^v;). 

Then the composite (0c)-1o0 induces an isomorphism from 0** (G)o onto O** (G)§ 
as vector spaces. This is exactly the (well-defined) right translation of functions on 
G by the Cayley element c G G£: 

(4.20) 0*T.(G)o3F^->cRFeO;*(G)c0, 

where 

cRF(x) = r*(fcc(z • c))(0F)(£'(z)) with g(x) = \ogp-(w(x)c) 

for x G G. 
The function c^F = ((0C) 1 o 0) (F) can be interpreted as follows. First, take 

an open neighbourhood U of e (the identity element) in G such that w : G —>> G° 
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restricted to U gives a diffeomorphism from U onto U° := w(U) ( c G°). Define a 
V* -valued function F° on U° by setting 

(4.21) F°{w{x))=F{x) (xeU). 

One sees that F° extends, in a unique way, to a (multi-valued) complex analytic 
function F° on the open dense subset P+K^P- of G£, and that F° comes from the 
function 

(4.22) P+ x Kc x P_ 3 (p+,*c ,p-) —• T*(fcc)(0F)(logp_) G K* 

through the covering map from Kc to K£. Second, we consider the right translation 
cRF° of F° by the Cayley element c G G£. This is a complex analytic function 
denned on P+t fgP-c-1 . Noting that G° C P+K^P-c'1 by Proposition 4.6 (1), we 
write cRF° for the restriction to G° of cRP°. Then our cRF = ((00)"1 o 0) (P) gives 
a (single-valued) lift of cRF° to G. 

The following proposition assures that the above right translation cR preserves the 
kernel of differential operator VT*. 

Proposition 4.14. — Let VT* : G^S(G) -» G^°(G) be the differential operator of gradi-
ent type associated to r*. Then (4.20) yields a linear isomorphism 

KerVT* nO; . (G)0 * KerVT*nO;.(G)c0. 

Namely, a function F in 0*.(G)o satisfies the differential equation VT*F = 0 if and 
only if the corresponding cRF in O** (G)§ satisfies the same equation. 

As shown in the next subsection, this proposition together with two key lemmas 
in 4.3 allows us to describe the space y(r) = y{r,m{r)) of generalized Whittaker 
functions on G associated to the highest weight module L(T). 

Proof of Proposition 4-14- — Let F G 0**(G)o- We employ the interpretation of 
cRF and also the notation given just before the proposition. Note that VT* naturally 
gives rise to a right G^-invariant, holomorphic differential operator, say V°T* defined 
on the complex group G°c. 

Now assume that VT*F = 0. Then one finds that P°*P° = 0 on P + ^ P _ . In 
reality, V°T*F° is the complex analytic extension of T>°*F° on U°, and the latter 
V°T*F° equals zero by assumption (cf. (4.21)). We thus get 

cbcb {cRF°) = cRi p0T*F°) cbbc on P+KQP-C-1. 

This implies that VT*(cRF) — 0, because VT*(cRF) is a lift to G of the restriction 
ccb (cRF°)) \G°. 

The reverse implication can be proved in the same way by using the inverse Cayley 
transform. 
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4.5. Proof of t h e main theorems . — We are now ready to prove our main 
theorems given in 4.2. 

Proof of Theorem 4-7. — Let F be any function in y(r) = y(r,m) (see (4.13)) with 
m = m(r). Set fc := QCF G 0(S,V*). 

STEP 1. We first see that the requirement URF = -r]m(U)F (U G n(m) = 
c(p_(m))) for F is equivalent to 

(4.23) Dx • fc = 0 for Dx € Jm (cf. (4.16)), 

for the corresponding fc, by noting that 

Vm(cY) = -V=ÏB(Y,c-HY'{m))) = -B(Y,X(m)) (Y e p_(m)). 

Here the action of S(p_) on 0(5,1^*) is defined by the directional derivative (2.20). 
STEP 2. Consider the point Y0 := £'(e) G <S (e the identity element of G), which 

is expressed as 

Y0 = logp_(c) = -
gf 

r 
fcxaa 

Let D2 be any element of the annihilator ideal Anns(p_)L(r) of L(r) in 5(p_) = 
C/(p_). Then it is standard to verify that 

(£>2 • n(Y0) = (c(D2))RF{e) = (c(TI?2))LF(e). 

Here D TD denotes the principal anti-automorphism of U(g) as in 1.2. 
Noting that the ideal Anns(P_)L(r) is homogeneous, we can apply Lemma 4.12 to 

deduce that c(TD2) lies in the annihilator of L(r) in C7(c(p_)). This implies that 
wwx,;:mùùâaypù 

because U(g)L(v*, F(-)) ~ L(r) for every nonzero vector v* G V*. We thus conclude 

(4.24) (D2 • /c)(y0) = 0 (I?2 G Ann5(p.)L(r)). 

STEP 3. We are going to specify the function fc G 0(S,V*). It follows from 
Hilbert's Nullstellensatz that 

U/Ann5(p_)L(r) + Jm = m(X(m)), 

since Ann5(p_)L(r) -f Jm defines the variety {X(m)} of one point X(m) in p_f_ by 
virtue of Lemma 4.13. Hence (4.23) and (4.24) imply that there exists a nonnegative 
integer N such that 

(4.25) ((Y - B(X(m), Y))N+1 • fc)(Y0) = 0 for all Y G p_. 

This means that the function fc is of the form 

(4.26) fc(Y) = expB(X(m),Y)<p(Y), 
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where (p is a V*-valued polynomial function on p_ of degree at most N. In particular, 
F lies in OZAGYc by (4.26), and so one finds that 

y ( r ) c o ; . ( G ) § . 

Thus we have proved the claim (2) of Theorem 4.7 as well as the finite-dimensionality 
of y(r) in the assertion (1). 

STEP 4. Let v* G V*. By Proposition 2.8, the function FX(m),v* G O**(G)0 of 
exponential type (see (2.24)) satisfies VT*FX{m),v* = 0 if and only if the vector v* 
lies in Ker<r(X(ra), • ). Proposition 4.14 says that the former condition is equivalent 
to VT*{cRFx{m)^) = 0. Noting that Qc{cRFxim),v*) is of the form (4.26) with 
constant function <p(Y) = v* (Y G p-) , we deduce that cRFX(m^v* G y(r) for every 
v* G Ker<r(X(ra), • ). This proves the assertion (3). Finally, the vector space y(r) 
does not vanish because 

{0} ^ W(X(ra),r)* ~ Ker<r(X(ra), • ) y ( r ) , 

thanks to Proposition 3.5 and Lemma 3.10. 

Proof of Theorem 4-8. — Suppose that L(r) is unitarizable. We set ra = ra(r). Then 
one knows that Im = Anns(p-)L(T) by Theorem 3.7. This combined with Lemma 
4.12 allows us to refine the discussion in Step 3 of the proof of Theorem 4.7. As a 
result, we find that, for any F G 3^(T), the corresponding function fc = QCF in (4.26) 
is necessarily of exponential type, i.e., fc{Y) = exp B(X(m),Y)v* (Y G p_) for some 
v* G V*. This proves the surjectivity of \ r in Theorem 4.7. Now the remainder of 
the theorem is a consequence of Corollary 3.9 and Lemma 3.10. • 

Proof of Theorem 4-9. — First, assume that m' > m :— ra(r). Let F be any function 
in the space ;y(r,ra/). By (4.12), F belongs to y(r) — y{r,m{r)) also. Hence the 
corresponding fc :— QCF G C^p-,^*) is of the form (4.26). It follows in particular 
that 

(X-lr_m,+1)n • fc = expB(X(m), • )((X_7r_m,+1)» • <p) = 0 

for sufficiently large integers n, because B(X(m)yX-~fr_m, ) = 0 and because <p in 
(4.26) is a polynomial on p_. On the other hand, since F is in C°°(G;77m/), we see 
just as in Step 1 of the proof of Theorem 4.7 that 

(*-7,_m,+1) • fC = B(X(m'),X^r_ml+1)r = B(X,r_ml+1,X_7r_ml+1)r. 

Thus one gets fc = 0 since B(X7 _ , ,X_7 _ ; ) ^ 0. This shows that y(r,m') = 
{0}. 

Second, assume that ra' < ra = ra(r). Take a nonzero function F in y(r) by 
Theorem 4.7 (1). Note that y(r) C ^(^ra7) . For each t G E, we define an element 
at G G by 

at :=exp{-£(X7r_m+1 +X_7r_m+1)} = exptc(Hlr_m+1) (cf. (4.2)) 
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Then it is easily checked that 

Ad(at)n(m/) = n(ra') and r]m' ° Ad(at) = rjm'. 

This implies that the functions (at)RF still lie in y(T,m') for all t G K, by noting 
that the differential operator Vr* is right G-invariant. These vectors (at)RF (t G E) 
in y(T,m') turn to be linearly independent, because one gets 

(c(X_7,_m+1))*((aO*F) = e2t • B(X7r_m+1, Jf_7r_m+1) • (to)**"). 

by direct computation. Hence the vector space y(r, m') in question is infinite-
dimensional if m' < m(r) . • 

Now we have completely proved the main theorems, Theorems 4.7-4.9. 

4.6. Relation to generalized Whittaker vectors. — We end this section by 
interpreting our results (Theorems 4.7-4.9) in terms of generalized Whittaker vectors 
in the algebraic dual of an irreducible highest weight (g, K)-module. To do this we 
prepare the following lemma. 

Lemma 4.15. — Set n := n(r) = c(p_) (cf. (4.6)). Let b be the linear map from n to 
p_ defined by 

b(Z) = Z mod 6 + p+ 
for Z G n. Then b is a surjective linear isomorphism. 

Proof — Write an element Y G p- as a linear combination of root vectors: 

Y = 
xvbbn 

c7X_7 with c7 G C. 

Then it is easy to compute the Cayley transform c(X_7) of X_7 for each noncompact 
positive root 7 (see [32, 2.1 and 2.2] and also [41, 9.1]). As a result, one finds that 

c(X.—7) — K/^y.X—7 mod p+ + 1 , 

where K7 — 1/2 or 1/y/2 depending on 7 G . This implies that 

b(c(Y)) = 

7€A+ 
K//y J£—7. 

We thus get the lemma. 

Let L(T) be the irreducible highest weight (g, if)-module with extreme if-type r . 
Let us look upon I/(r), by restriction, as a module over U(n) = 5(n). (Note that n is 
an abelian subalgebra of g.) Then Lemma 4.15 immediately implies the following 

Proposition 4.16. — L(r) is finitely generated as a U(n)-module. Moreover, the 
Gelfand-Kirillov dimension Dim(n;L(r)) and the Bernstein degree Deg(n;L(r)) of 
L(T) as a U(n)-module coincide with those DimL(r) = Dim(g;I/(r)) andT)egL(r) = 
Deg(g; L(T)) as a U(g)-module, respectively. 
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Remark 4.17. — The argument in the proof of Lemma 4.15 allows us to show 

n ± n V ( L ( r ) ) C n ± n p + = {0}, 

where n1- denotes the orthogonal of n in g with respect to the Killing form. In view 
of this property, we can apply a criterion [43, Th.2.2] for the finiteness of restriction 
of U(g)-modules to subalgebras. This gives another proof of the above proposition. 

In view of Lemma 4.12, the annihilator ideal of L(r) in U(n) turns to be 

(4.27) Ann^n) L(r) = c(Ann(/(p_)L(r)), 

and it defines the associated variety 

V(n;L(r))=c(gOm(T))gg 

of [/(n)-module L(r), which is an irreducible affine algebraic variety in n* = c(p+). 
Thus, the associated cycle AC(n:L(r)) of [/(n)-module L(r) is of the form 

AC(n;L(r)) = multc(/m(T))(n;L(r)) • [c((9m(r))], 

where multc(/m(T)) (n; L(r)) denotes the multiplicity of [/(n)-module L(r) at the unique 
associated prime c(Im(T)). Further, the Bernstein degree of [/(n)-module L(r) is 
described as 

(4.28) Deg(n; L(r)) = multc(/m(T))(n; L(r)) • deg(c(£>m(r))), 

where deg(c(0m(r))) denotes the degree of the nilpotent cone c((9m(r)) (cf. [27, 
Lemma 1.1]). 

The above discussion tells us the following coincidence of two types of multiplicities 
of L(r). 

Proposition 4.18. — One has the equality 

multjm(T)(L(r)) = multc(/m(T))(n;L(r)), 

where mult/m(r) (L(r)) is the multiplicity in the associated cycle of (g, K)-module L(r) 
{cf. (3.13))mT 

Proof. — The assertion follows from Proposition 4.16 together with the equalities 
(3.14) and (4.28), by noting that the degrees of orbits Om(T) and c((9m(r)) coincide 
with each other. • 

Now, for each m — 0 , . . . , r = M-rank(G), let rjm be the one-dimensional represen-
tation of n(ra) = c(p_(m)) which induces the GGGR (Tm,C°°(G;r]m)) (cf. (4.10) 
and (4.11)). A linear form ip on L(r) is called an (algebraic) generalized Whittaker 
vector of type rjm if 

tp(Uw) = r]m(U)ip(w) for all U E n(m) and w G L(r). 
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We write Wh*m (L(r)) for the space of such generalized Whittaker vectors. By defi-
nition, one observes that 

(4.29) Wh* (L(r)) ~ (L(r)/c(TJm)L(r)y :=Homc(L(r)/c(TJm)L(r) , C), 

as vector spaces, where Jm is the ideal of S(p-) = U(p-) defined by (4.16), and T 
denotes the automorphism of S(p-) such that TY = -Y for Yep-. Further, every 
(g, if )-embedding T from L(r) into G°°(G; r]m) yields a generalized Whittaker vector 
VGWh* (L(r)) by 

ip(w) = (Tw)(e) (w G L(T)). 

This assignment T ^ ^ sets up a linear embedding 

(4.30) Hom0)K(L(r),Coo(G;7?m)) W h ^ ( L ( r ) ) . 

We can show that this embedding is actually surjective for the most relevant case, 
as follows. 

Proposition 4.19. — If m = m(r), the map (4.30) is surjective. Namely, every 
nonzero generalized Whittaker vector in Wh*m(r) (L(T)) gives an embedding of L{r) 
into the GGGR C°°(G;rim{T)). 

Remark 4.20. — Let L(r)°° denote the smooth G-module consisting of all G°°-vectors 
for an irreducible admissible representation of G corresponding to L(r). In view of 
the discussion in [41, 12.5], one finds that, if L(r) is a member of holomorphic discrete 
series, any vector in Wh*m(r) (L(r)) extends also to a continuous G-isomorphism from 
L(r)°° into G°°(G; 7 7 m ( r ) ) . This appears to be true for any L(r) not necessarily in 
the discrete series, but we do not discuss it here. 

Proof of Proposition 4.19. — First, we set m := Anns(P_)L(r) + Jm(r). By virtue of 
Lemma 4.13, m is an ideal of 5(p_) that defines the one point variety {X(m(r))}, 
and in particular, the codimension of m in 5(p_) is finite. By (4.27), the isomorphism 
(4.29) turns out to be 

(4.31) Wh;m{T)(L(T))~(L(T)/c(Tm)L(T))\ 

Second, we consider the generalized Verma module M(r) = U(g)v*) qwqe wq* :qq= e*=1 VT and 
its unique maximal submodule N(T). The natural quotient map M(r) -» L(r) = 
M(T)/N(T) induces a linear isomorphism 

(4.32) L(T)/c(Tm)L(r) ~ M(T)/(N{T) + c(Tm)M{r)) 

in the canonical way. Now let ( •, • )r be the (g, K)-invariant bilinear form on 
0**(G) x M(r) constructed in 2.3. We write £ for the orthogonal of c(Tm)M(r) 
in 0**(G). Then, the bilinear form ( •, • )r naturally induces a linear embedding 

(4.33) £ ^ (M(r)/c(Tm)M(r))*. 
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Third, just as in the proof of Theorem 4.7 (see 4.5), one finds that an element 
F e O** (G) belongs to £ if and only if 

(4.341 D • fc(Y0) = 0 for all DEi î t , 

where Y0 = f'(e), and fc = (0C)_1F e 0(S,VT*) as in (4.19). It then follows from 
(4.34) that 

(4.35) dim£ = dim VT x dim 5(p_)/m. 

Since we have 
A F ( R ) - U(n)Vr ~ U(n) <g> Vr 

by Lemma 4.15, the dimension of the quotient space M (r) / c(T m) M (r) is equal to the 
right hand side of (4.35). This shows that the linear isomorphism (4.33) is surjective: 

(4.36) £ ^(M(r)/c(Tm)M(r))\ 

In view of Proposition 2.7 (1), (4.31), (4.32) and (4.36) give rise to isomorphisms 

<fnKer£>r* ~ (M(T)/(N(T) + c(Tm)M(r)))* ~ W h * ^ (L(r)) 

as vector spaces, where VT* is the differential operator ol gradient-type associated 
to r*. This proves the proposition, because every function in £ D KerXV* gives a 
(g, X)-embedding of L ( r ) into G°°(G; T y m ( r ) ) by virtue of (4.14). • 

Proposition 4.21. — If L(T) is unitarizable, one gets 

dimWh;m(T)(L(r)) = dimL(r)/m(X(m(r)))L(r) = dimL(T)/c(m(-X(m(T))))L(T), 

where m(X) is the maximal ideal of 5(p_) definining a point X £ Om(T) (cf (4.1)). 
Moreover, the above dimension is equal to the multiplicity in the associated cycle 
AC(L(r)) ofL(r). 

Proof — The assertions follow from Theorem 4.8 and Proposition 4.19 by noting the 
isomorphism (4.31), where Tm = m(—X(m(r))) in this case. • 

Concerning the spaces of algebraic generalized Whittaker vectors, we are now in a 
position to give the following consequence of the main results of this article. 

Theorem 4.22. — The dimension of the vector space Wh* (L(r)) is given as 

dimWh! (L(r)) = 
0 
finite (# 0) 
oo 

if m> m(r), 
if m — m(r), 
if m < m(r). 

Here Om(T) is the unique open Kc-orbit in the associated variety of L(r). Moreover, 
if L(T) is unitarizable, the dimension of Wh* (L(r)) coincides with the multiplicity 
multr , . (L(r)). 
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Proof. — The claims for the cases ra < ra(r) and m = ra(r) follow from Theorems 4.7 
and 4.8 coupled with (4.30) and Proposition 4.19. The property Wh*m(L(r)) = {0} 
for ra > ra(r) can be proved by an argument similar to the one given in the proof 
of Theorem 4.9, or alternatively, one can apply a general result [22, Corollary 4] of 
Matumoto. • 

5. Case of the classical groups 

Hereafter, we assume that G is one of the classical groups SU(p, q) (p^ q), 5p(n,  ) 
or SO*(2n). The theory of reductive dual pairs gives concrete realizations of unita-
rizable highest weight modules L[a] = L(r[a]) for these groups G (see Theorem 5.1), 
by decomposing the oscillator representation of the pair (G,G;), where G' = U(k), 
O(fc), or Sp(k) respectively, and a € G'. 

For such I/[cr]'s, we specify in this section the ifc(^(^))-modules W(X(m), r[a]) = 
L[a]/m(X(m))L[a] (cf. (3.10)) with    =  ( [ ]) explicitly by using the Fock model 
of the oscillator module (see Theorems 5.14 and 5.15). In view of Theorem 4.8, this 
leads us to a clearer understanding of the generalized Whittaker models for L[a]. 

5 .1. Oscillator representation. — We start with constructing the oscillator rep-
resentation of the pair (G,G7), following [3, §7]. First, realize our classical groups G 
as 

SU(p,q) = \geSL(p+q,C) 9 
hf 
fh 

  
-h 

<9 = (h 
  

  
-h. 

xxw;:*** 

Sp(n,W) = [geSU(n,n) igJn9 = Jn with Jn :=   
**vvj 

In 
  

SO* (2n) = g e SU(n,n) l9   
Jn   9 = 

(  
\ln 

In 
gk 

where In denotes the identity matrix of size n. The totality of unitary matrices in G 
forms a maximal compact subgroup K. 

Let MPA denote the space of all complex matrices of size p x q. We write Symn 
(resp. Altn) for the set of all symmetric (resp. alternating) complex matrices of size n. 
Then, the real rank r = M-rankG, the complexification Kc of K, and the irreducible 
i^c-module plunder Ad, can be described for each G respectively as in the following 
table. 

(5.1) 

G r h<<h^^h^^k$^^$p)) g P + 

s u m q S(GL(p,C) xGL(q,C)) MP,Q 
5p(n,   n GL(n,C) Symn 
SO*(2n) [f] GL(n,C) Alt„ 
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Here the fCc-action on p+ is given as 

(5.2) g-X = giXgï\ g = (gi,g2) € S(GL(p,C) x GL(q,Q), X e Mp,g 

for G = SU {p, q), and 

g • X = gXlg, g e GL(n, C), X e S y m n or Alt„ 

for G = Sp(n,R) or SO*(2n). For this, see also [27, 7.1]. 
For every positive integer k, we realize the compact group G' as 

U(k) = {g e GL(k,C) \g*g = h} for G = SU(p, q), 

0(k) = U{k) n GL(k, R) for G = Sp(n,R), 

Sp(k) = {g£ U(2k) I *gjkg = Jk} for G = SO*(2n). 

The complexification of G' will be denoted by G'c, i.e., G'c = GL(k,C), 0(k,C), 
Sp(k, C) respectively. Define a space M of complex matrices by 

M := 

Mntk {n:=p+ q) 

Mn,k 

ww;ù 

for G = SU(p,q), 

for G = Sv(n.R). 

for G = SO*(2n). 

For G = SU (p, q), the elements Z € M will be writ ten as 

$^^<w< 
< 

x 
with A 6 MPtk,B e Mgtk. 

The group .ftfc x G c acts on M by 

(5-3) (9,9')-Z-
'giAg'-1 

^cv::!!! with p = (gi,g2), 

for G = SU(p,q), and by 

(5.4) (g^-Z^gZg1 1 
for G = Sp(n,R) or SO*(2n), where (3,5 ' ) <E Kc x G'c and Z e M . 

We now prepare some notat ion to describe the oscillator representation. Let ip be 
a map from M to p+ such tha t 

(5.5) i>(Z) := 

AlB 

wxvb 

\ZJk*Z 

for G = SU(p, q), 

for G = Sp(n,R), 

for G = SO* (2n) 

Note t ha t ^ : M -> p+ is a Kc x G^-equivariant polynomial map of degree two, where 
we let G'c act on p+ trivially. For each Y € p _ , let hy be a polynomial on M defined 
by 

hY(Z) := £(V>(Z), F ) ( B the Killing form of g). 
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We set for g € Kc, 

(5.6) xcvùù** 

(det9l)-k îovG = SU(p,q), 

( d e t o ) - * / 2 for G = Sp(n,R), 

(detg)~k for G = SO*(2n), 

where # = (#1,02) as in (5.2) for G = SU(p,q). If G = Sp(n, E), the function is 
two-valued on Kc — GL(n , C). We need to go up to the two fold cover of Kc in order 
tha t 8k determines a genuine character of the group. Hereafter, we replace K and 
Kc by their two fold covering groups when G = Sp(n, E). By abuse of notation, the 
latter covering groups will be denoted by K and Kc again. 

Let C[M] denote the ring of polynomial functions on the complex vector space M . 
One can define a (g, i f)-representation u on C[M] in the following fashion. First, the 
p_ action on C[M] is given by multiplication: 

(5.7) <v(Y)f(Z) := hY(Z)f(Z), Y G p_, 

for / G C[M]. Second, p+ acts by differentiation: 

w(X)f(Z) : = k(M0)hh/)(hhZ), h * e p+. 

Here h-x(d) s tands for the constant coefficient differential operator on M defined by 
the polynomial h^, and the constant K depends only on the Lie algebra go of G. 
Third, the complexification Kc acts on C[M] holomorphically as 

u(g)f(Z) := ôk(g)f((g-\e) h• Z), ge Kc. 

On the other hand, C[M] has a natural G^-module structure through 

R{g')f{Z):=f{h{e,ghh'-l)-hZ)h, g' € G'c. 

Then it is easily seen tha t these two representations u> and R commute with each 
other. The resulting (g, K) x G^-representation (a;, R) on C[M] will be called the 
Fock model of the (infinitesimal) oscillator representation of the pair ( G , G ; ) . 

It should be mentioned tha t the above oscillator representation LJ of the pair (G, G') 
comes from the Weil representation of a metaplectic group. In fact, G x G' forms a 
reductive dual pair in a real symplectic group Sp(N, E). Consider the Weil represen-
tation fi (cf. [12]) of the metaplectic group Mp(N, R), which is the two fold cover of 
Sp(N, E). Restrict Q, to the metaplectic cover G x G' of G x G', and then twist it by 
a certain one-dimensional character of the compact group Q\ One thus gets u. 

5.2 . Un i tar i zab le h ighes t we ight m o d u l e s L[a]. — Let (or, V^) be an irreducible 
(finite-dimensional) unitary representation of the compact group G'. Extend a to a 
holomorphic representation of G'c in the canonical way. We set 

(5.8) L[a]:= H o m G t ( ^ , C [ M ] ) , 
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which turns to be a (g, K)-module through the representation u on C [ M ] . Let E(fc) 
denote the totality of equivalence classes of irreducible unitary representations a of 
G' such that L[a] ^ {0}. Note that the G^-action on C[M] is locally finite since G'c 
preserves each subspace of homogeneous polynomials of any fixed degree. Then one 
gets 

(5.9) C[M] ~ 
(TGS(fe) 

L[a] ® Va as (g, K) x G^-modules. 

The isomorphism is given by 

L[a] ®Va 3T ®v I—> T(v) G C [ M ] , 

on each G^-isotypic component L[a] <g) V^. 
The following theorem states the celebrated Howe duality correspondence associ-

ated to (G,G'). 

Theorem 5.1 ([12], [6], [7]; cf. [3, §7]) 
(1) L[CR] ¿5 O N irreducible unitarizable highest weight (g, K)-module for every a G 

E(fc). In particular, (5.9) #WES £/&E irreducible decomposition of the (gy K) xG'c-module 
C[M]. 

(2) L E £ <7I,<T2 G E(fc). TFTEN, ~ Va2 as G'c-modules if and only if L[a\\ ~ Z/[<R2] 
as (g,K)-modules. 

(3) If G — SU(p,q) or Sp(n,R), any irreducible unitarizable highest weight (g,K)-
module is isomorphic to an L[a], where a G E(fc) for some positive integer fc. 

Let r[a] denote the extreme if-type of highest weight (g, K )-module L[a], i.e., 
L[a] = L(r[a]). We note that the correspondence a <-> r[a] can be explicitly described 
in terms of their highest weights. For this, see the articles cited in the above theorem. 

It follows from the standard argument in linear algebra that each i^c-orbit Om 
in p+ (see 3.1) consists of all the matrices in p+ = MM,Symn (resp. Altn) of rank 
ra (resp. 2ra) for G = SU(p,q),Sp(n,R) (resp. SO*(2n)). Let E8tt(iJ) denote the 
(i, j)-matrix unit of size sxt whose (fc, /)-matrix entry eki is equal to 1 if (fc, /) = (i , j) ; 
eki = 0 otherwise. We put 

(5.10) xxv::^^$$ m 

^^ww 
E8tt(i,ï) G M S J * (ra = 0, . . . , m i n ( S , £ ) ) , X V V N , 

where t(0) := 0. Then, we take an element X(m) G Om explicitly as 

(5.11) X(m) r-

W m ) 
In,n(m)/2 

E8tt(i,ï) G MSJ* (ra = 0, ...,mrrfffh<<<^^$^$$ 

for G = SU(p,q), 

for G = Sp(rc,R), 

for G = SO*(2n). 
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Now, it is easily seen that the image ip(M) of the Kc x G^-equi variant map xj) : 
M -¥ p+ in (5.5) is a iiTc-stable, irreducible algebraic variety described as 

(5.12) u)(M) = Omk with mk := min(fc,r), 

where M and u) depend on k. By (5.7) and (5.9), the annihilator ideal in S(p_) of 
L[a] (a G E(fc)) consists exactly of all the elements D G 5(p_) = C[p+] vanishing on 
ip(M). In this way we have shown the following well-known fact. 

Proposition 5.2 (cf. [3, §12]). — For any a G £(fe), £Ae associated variety of unita-
rizable highest weight module L[o~] is equal to the closure of the Kc-orbit Omk — 
kà(Kc)X(mk). More precisely, Anns^p_^L[a] coincides to the prime ideal Imk defin-
ing Omk (cf. Theorem 3.7). 

5.3. Variety Vk and ideal u(m)C[M]. — Now we consider the maximal ideal: 

m := m(X(mk)) = 
Yep-

(Y - B(X(mk), F))5(p_) C 5(p_) (cf. (3.9)), 

for each positive integer k. For m — 0 , . . . , r, let Kc(m) \— Kc(X(m)) be the isotropy 
subgroup of Kc at X(m) G Om. We want to describe the Kc(rrtk)-modules 

W[cr] : = W(X(mK),T[a]) = L[<r]/mL[a] (a G E(fc)). 

In view of (5.8) and (5.9), one gets an isomorphism 

(5.13) W[a] ~ HomG/ (Va,C[M]/uj(m)C[M]) as Kc(mk)-modules. 

So, our task is to decompose the quotient C[M]/u(m)C[M] as Kc(mk) x G^-modules. 
To do this, we note that, by virtue of (5.7), o;(m)C[M] is equal to the ideal of C[M] 

generated by all matrix entries of the following polynomial function of degree two: 

[5.14) M 3 Z i—> if)(Z) - X(mk) G p+. 

We consider the corresponding affine algebraic variety Vk of M: 

Vk := {Z G M I il>(Z) = X(mk)} = (X(mk)), 

which is the inverse image of X(mk) by ip. Clearly, the variety is stable under the 
action of Kc(mk) x G'r. Note that the codimension of Vk is given as 

dim M - dim Vk = dim Omk = dimp-(mk) (cf. Lemma 4.2) 

by virtue of (5.12). 
Now, let us give the G^-orbit decomposition of Vk for each group G separately, 

where G'c is identified with the subgroup {e} x G'c of KcxG'c. We define a subgroup 
G'c(k - r) (r = M-rankG) of G'c by 

(5.15) G'c(k - r) := 
{Ik} (the unit group) 

a 
ff 

0s 

h 
6 G'c. 

if ^ r, 

if k > r, 
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for G = SU(p,q), 5p(n,R), and by 

(5.16) 

G'c(k-r) := 

{I2k} (the unit group) if fc ̂  r, 

'h 
O 
O 

,0 

O 
h n 

O 
h2i 

O 
O 
h 
n 

O ' 
hi2 
O 

h22. 

eG'c hij e Mk-r,k-r if k > r, 

for G = SO*(2n). Note that if k > r, the group G'c(k — r) is naturally isomorphic 
to GL(k - r, C), 0(k - r, C) or Sp(k - r, C) according as G = St/(p, g), Sp(n, E) or 
SO*(2n) respectively. 

First, the following lemma for the case SU(p,q) is due to Tagawa. 

Lemma 5.3 ([31, 3.5 and 3.8]). — Assume that G = SC/(p, g) (r = G'c = GL(fc, C)). 
(1) If k ^ q, the group G'c = GL(fc,C) acte on simply transitively. One gets 

(5.17) ^^^<<wcn, f W f c ) 
$^^<ar ~ Gc as G'c-sets, 

where the matrices Ip^k(k),Iq^k(k) are as in (5.10). 
(2) If k > q and p = q, then the G'c-action on Vk is still transitive, and it holds 

that 

Vk=G'c. 
w<^^$ 

^^^^dhh - G'c/G'c(k - q) as G'c-sets. 

Here G'c(k — q) coincides with the isotropy subgroup of G'c at 
ww<<^$$ 
Kla.k(q) 

evk. 

(3) If k > q and p> q, Vk is no longer G'c-homogeneous. In fact, let Mp-q,k-q be 
the subspace of M defined by 

Mp-g,k-q :- 0 =     
Ja  ) 

U € Mp-qtk-q 

Then Vfc is decomposed as 

(5.18) Vfc = G'c • Mp-gtk-q = 
Ù6A 

G'c-Û, 

where A denotes a complete system of representatives in Mp-q,k-q of the G'c(k — q)-
orbit space 

Mp-q,k_q/G'c(k - q ) ~ f w w < ffMffp-q,k-q<<<G<L(k - q,Q. 

Second, the structure of G^-variety Vk is much simpler for 5p(n, E). This is because 
the corresponding Hermitian symmetric space is always of tube type. 
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Lemma 5.4. — Assume that G = Sp(n,R) (r = n and G'c = 0(k,C)). Then it holds 
that 

Vk=G'c- Inyk(mk) ^ G'c/Gfc(k - n) as G'c-sets, 
Here mk = min(fc,n), and the isotropy subgroup of G'c at In,k(^k) is equal to the 
group G'c(k — n) in (5.15). 

Third, one obtains the following lemma for SO*(2n). 

Lemma 5.5. — Assume that G = SO*(2n) (r = [n/2] and Gfc = 5p(fc,C)). 
(1) If k ^r, one has 

(5.19) Vfe = G'v • J„.2fc(2fc) ~ G'c as G'c-sets. 

(2) If k > r = n /2 with even integer n, the variety Vk is described as 

(5.20) Vk = G'c flr.k(r) 
O 

o 
ww<:^^ 

~G'c/G'c(k-r), 

where G'r(k - r) ~ Sp(k — r,C) (cf. (5.16)) coincides with the isotropy subgroup of 

G'c at the matria Ir.k(r) 
O mù^$$ in M = M2r,2k-

(3) If k > r = (n — l ) /2 with odd integer n, Vk consists of two G'c-orbits. In fact, 
we set 

(zi,z2)~:= 
Ir 
O 
o 

O 
O 
Z\ 

O 
Ir 
n 

o 
Z2, 

for (zi,z2) G Mlì2(k-r) — Mi,jfc_r x Mi^-r- Then Vk decomposes as 

(5.21) Vk=G'c- Mi,2(*-r) = G'c • ( 0 . . . 0 , 0 . . . 0)~ G'c-(1 0 . . . 0 ,0 . . . 0 )~ , 

where Mio(k-r) := {(zi,z2) \ zuz2 G Mi,fc_r}. 

We give below a proof of Lemma 5.5 for G = SO*(2n). Lemmas 5.3 and 5.4 can 
be shown in the same way (so we omit the proofs of these two lemmas). 

Proof of Lemma 5.5. — (1) Suppose k ^ r = [n/2]. In view of (5.5) and (5.11), one 
observes that an element 

Z = 
bb 

vvc G M with C G M2k,2k, D G Mn-2k,2k 

belongs to Vk if and only if 

CJktC = Jki CJklD = 0, and DJktD = 0, 

which means that C G Sp(k,C) and D = O. We thus get (5.19). 
(2) Consider the case k > r = n/2 with even integer n. Take any matrix Z in 

Vk- Let C{ G Mi,2* = C2A; (i = l , . . . , rc) denote the i-th row vector of Z. Set 
di := cr+i (i = 1 , . . . , r). By the condition ZJk lZ = Jr i£>(Z) = -X"(r)), we can 
extend {c i , . . . , cr, d i , . . . , dr} to a symplectic basis {c i , . . . , c^, d i , . . . , dk} of C2fe with 
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respect to the nondegenerate alternating form defined by Jk. Then, there exists an 
element g' G G'c = 5p(fc,C) such that eig' = Ci,ek+ig' = d{ (i = l , . . . , fc) , where 
e\,..., e2k denotes the standard basis of C2fc. This implies that 

Z = 9 
jjlù^^ 

o 
o 

$$$<<wa 
Furthermore, g' G G'c fixes the above matrix if and only if ag' = and ek+ig' — ek+i 
for all i = 1 , . . . , r, or equivalently, g' G G'c(k — r). 

(3) Suppose that fe>r = (n — l) /2 with odd integer n. Just as in (2), one can 
show that any element in 14 lies in the G^-orbit through a matrix Z of the form 

Z = 

jlùù 

eejk 
aea 

mù*pp 
Z 

for some z eC2h. 

Then the condition ip(Z) = X(r) imposes 

eiJk lz = e*+* ^ = 0 for i = 1 , . . . , r. 

Hence one finds that Z = ( 2 1 , 2 2 ) for some (z\,z2) G M1)2(fc_r), i.e., 14 = G'c • 
Afi,2(*-r)-

Finally, observe that two matrices {z\,zif and (z[,z'2)~ in belong to the same 
G^-orbit if and only if the corresponding vectors (zi,z2) and (z[,z'2) in Mij2(fc-r) are 
conjugate under the action of Sp(k - r,C). This yields the second equality in (5.21), 
by noting that Sp(k — r, C) acts on Mi?2(fc-r)\{0} transitively. • 

The above three lemmas imply in particular the following 

Proposition 5.6. — The affine algebraic variety Vk is irreducible except the case G — 
5p(n, R) with k ^n. 

Remark 5.7. — If G = Sp(n, R) with fc ^ n, then Vk — 0(fc,C) has two irreducible 
components according as the coset decomposition 0(fc,C) = 50(fc,C) U gfSO(k,C) 
with GO(fc,C)\SO(fc,C). 

Proof of Proposition 5.6. — Let (G'c)0 = GL(fc,C), 50(fc,C) or 5p(fc,C) be the iden-
tity component of the complex classical group G'c = GL(fc,C), 0(fc,C) or 5p(fc,C) 
respectively. Under the hypothesis of the proposition, we find from Lemmas 5.3-5.5 
that Vk is the image of an irreducible variety (G^)o or [Gfc)0 x Cp (for some p > 0) 
by a continuous map (with respect to the Zariski topology) between two affine spaces 
over C. This proves the proposition. • 
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The next proposition is important to specify our Kc(mk)-mod\iles W[a]. 

Proposition 5.8. — The ideal u;(m)C[M] of C[M] coincides with the defining ideal of 
Vk in C[M]: 

(5.22) üü(m)C[M] = {fe C[M] I f(Z) = 0 for all Z G Vfc}. 

Hence one gets a natural isomorphism 

(5.23) C[M]/u(m)C[M] ~ C[Vk] as Kc(mk) x G'c-modules, 

where C[Vk] denotes the affine coordinate ring ofVk consisting of all functions on Vk 
given by restricting polynomials on M to Vk-

Proof. — We write Tk for the defining ideal of Vk, the right hand side of (5.22). 
By definition one has u;(m)C[M] Clfe. So we want to show the converse inclusion 
Tk C w(m)C[M]. 

First, we prove the inclusion in question when the variety Vk is irreducible. Namely, 
we exclude the case G — 5p(n, M) with k ^ n exactly (see Proposition 5.6). Take any 
basis Yi,...,Yt of the vector space p_(rafc) = [t, Y(mk)] (cf. Lemma 4.2). We define 
A , . . . , / , Gu;(m)C[M] by 

fi{Z):=B(il>(Z)-X(mk),Yi) for ZeM 

Lemma 4.13 together with (5.9) yields 

Vk = {ZGM\fjfi(Zf) = 0 (t = l , . . . , * ) } . 

By case-by-case examination, we can find an element Zq G 14 on which the differen-
tials (dfi)z0 (i = 1, • • •, t) are linearly independent. In fact, the "identitylike" matrices 
given in Lemmas 5.3-5.5 satisfy this requirement if Vk is a single GJ>-orbit. Otherwise, 
one can choose Zo as 

Ö G Mp-qìk-q 

( O . . . 0 , 0 . . . O R eMh2(k-r) 

(SU(p,q), k>q, p>q), 

(50*(2n),fc > (n - l ) /2 with odd n). 

Thus we get ( / i , . . . , ft) = Tk, by applying Lemma 4 of [17, page 345]. This shows 
Tk C u(m)C[M] as desired. 

Second, consider the case G — 5p(n,E) with k ^ n. Then we know ~ 0(fc,C) 
by Lemma 5.4, and hence the equality u;(m)C[M] = Tk is an easy consequence of a 
classical theorem of Weyl [37, Theorem (5.2.C)]. 

Now the equality (5.22) and so the isomorphism (5.23) have been proved com-
pletely. • 
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5.4. Kc(^ife)-niodules W[cr]. — We are now in a position to specify the Kc(mk)-
modules W[o~] for every a G S(fe) (fc = 1,2,.. .) . First, we prepare some notation to 
state the results in a unified form. Let G'c(k—r) (r — E-rank G) be the subgroup of G'c 
in (5.15) and (5.16). With Lemmas 5.3-5.5 in mind, we introduce a G'c(k - r)-stable 
subvariety Uk of Vk as follows. We set 

mù**^^$ 

bn;:vvd 

<<ww^$$ 

Mp-Qik-q 

(k or k > q = p), 

(k > q and pi=- q) 

for G = SU(p,q), and 

Uk := {InAmk)} (fc = l , 2 , . . . ) forG = Sp(n,R), 

where rrik = min(fc,r) as before. The variety Uk for G — SO*(2n) is defined to be 

{/n,2Jb(2*)} (k ^ r = [n/2]) 

Uk'r- r fir Ar) 
(1 

o 
^$$^^ 

AFL,2(jfe-R) 

(k > r = n/2 with n even), 

(k > r = (n - l ) /2 with n odd). 
Then, Lemmas 5.3-5.5 imply that 

(5.24) Vfe = G'c - Uk, 
and that the G^-orbits X in Vfe are in one-one correspondence with the G'c(k — r)-
orbits X DUk in Uk-

Definition 5.9. — We say that the pair (G,G;) is of type (SVT) if the pair (G,G;) is 
in the stable range with smaller member G1 (i.e., fc ̂  r), or the symmetric space K\G 
is of tube type (i.e., G = SU(p,q) with p = q, 5p(n,E), or SO*(2n) with n even). 
This happens exactly when Uk consists of a single G'c(k — r)-fixed point, say Z0. We 
call it the case (SVT), too. 

Now Proposition 5.8 allows us to deduce the following 

Proposition 5.10. — Under the above notation, let C[Uk] be the coordinate ring of 
G'c(k — r)-stable variety Uk viewed as a G'c(k — r)-module in the canonical way. Then 
one has a linear isomorphism 

(5.25) W[a] ~ HomG,c()fc_r)(K, C[Uk]) ~ (V; 0 C[Z4])G'c(*~r) (a G E(fc)). 

In particular, it holds that 

(5.26) W[a] ~ (v;fc{k-r) for the case (SVT). 

Here (V; (8) C[Uk])G c(k~r> denotes the subspace of V; 0 C[Uk] of G'c{k - r)-fixed 
vectors, and the right hand side of (5.26) turns to beV* if k ^ r. 
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Proof. — We know the ifc(^fc ^isomorphism W[a] ~ H o n i G ' c ^ , C[Vk]) thanks to 
(5.13) and (5.23). Let T be a G^-homomorphism from Va to C[Vk]. Set T0(v) := 
T{y)\Uk, the restriction of T(v) G C[Vk] to Uk, for each v G Va. Then T0 gives a 
homomorphism of G'c(k — r)-modules from Va to C[Uk]. By using Lemmas 5.3-5.5 
(see also (5.24)), it is standard to verify that the assignment T t-ï T0 sets up a linear 
isomorphism 

(5.27) HomG,c(V,, C[Vk]) ~ EomG>c(k-r)(V*, C[%]), 

which is a variant of the Frobenius reciprocity. We thus obtain (5.25) (the second 
isomorphism is a natural one). (5.26) follows from (5.25) immediately, since C[Uk] is 
the one-dimensional trivial G'Ak - r)-module for the case (SVT). • 

Remark 5.11. — For the case G = SU(p,q), the above proposition is due to Tagawa 
[31, Th.3.10.1]. 

Remark5.12. — The irreducible decomposition of G'c(k — r)-module C[Uk] is well-
known even if Uk is not a variety of single point. Indeed, C[Uk] is isomorphic to the nat-
ural GL(k - q,C)-module C[Mp-q¿-q] (resp. such Sp(k - r,C)-module C[M1>2(fe-r)]) 
when G = SU(p,q) with p > q and fc > q (resp. G = 50*(2n) with fc > (n - l ) /2 
and n odd). On one hand, the GLp-q x GLk-q duality can be used to decompose 
C[Mp-q,k-q] into irreducibles. On the other hand, the space 5/(M1?2(jfe-r)) of homo-
geneous polynomials on M1)2(fc-r) of any fixed degree I turns to be an irreducible 
Sp(k — r, C)-module with highest weight (/, 0 , . . . , 0). This yields the irreducible de-
composition 

C[Mi,2(*-r)] = vnn,,k®i>oSl(Mh2(k_r)) 

as Sp(k — r, C)-modules. 
Hence the right hand side of (5.25) can be described concretely by a combinatorial 

method, once one knows the branching rule of irreducible representations of G'c re-
stricted to the subgroup G^(fc - r) (cf. [19], [30]). Although we do not discuss it in 
this paper, the author would like to thank K. Koike for kind communication on the 
branching rule of finite-dimensional representations of complex classical groups. 

In view of Corollary 3.9, we get a direct consequence of Proposition 5.10 as follows 

Corollary 5.13. — Let a be in E(fc). Then, the multiplicity mult/mfc (L[cr]) of irre-
ducible highest weight module L[a] at the defining ideal Imk of the associated variety 
V(L[cr]) coincides with the dimension of vector space (V* <S>C[Uk])G c^~r). Especially, 
one gets mult/mfc (L[a]) = dima ifk^r (cf. [27, Th.9.1]). 

At the end, we are going to clarify how the isotropy subgroup K<c(mk) acts on the 
space W[a] ~ HomG/c(jfe_r)(Fa-, C[Uk]). To do this, we note that the elements g of 
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the subgroup Kc(m) (0 ^ ra ^ r) of Kc (see Table (5.1)) are written for each grout 
G = SU(p,q), Sp(n,R) and SO* (2n) respectively as follows. 

9 = 

(9n 

(9ii 
O 

9n 
n 

912 
922 

912 
922) 

912 
922 

(911 
K943 

O 
944) 

I G Kc with pu G GL(ra,C) (SUM).. 

G Kc with gn G 0(m,C) (Sp(n,R)), 

G ifc with 011 G Sp(mX) (SO*(2n)) 

This enables us to define a group homomorphism 

by 

a : Kc{mk) -+ Gffjyiifc, 9 H -

a(p) := r9n 
O 

O 
h-r 

for SU(ggp,q) or Sp(n,R), 

and by 

ot(g) :--

(V11 
O 

P21 
Ko 

O 
h-r 

O 
O 

P12 
o 

P22 
o 

o 
o 
o 

h-r 

with pu = (pu 
KV21 

P12 
P22 

for SO* (2n). 

Here pij is a matrix of size fc, and a(p) should be understood as gn if ^ r. Note 
that the elements of a(Kc(rrik)) commute with those of the subgroup G'c(k — r). 

Now we can deduce 

Theorem 5.14 (Case (SVT)). — Assume that the pair (G, G') is of type (SVT) in Def-
inition 5.9. Then it holds that 

(5.28) W[<r] ~ (5k <S> (<J* o a ) , (Vr<r*)G'c(*-r>) as Kc(mfe)-mod^e5, 

wftere Jjk is the character of Kc in (5.6). In particular, W[<J] ¿5 an irreducible Kc(mk)-
module if fc ^ r. 

Proo/ — Let Z0 be the unique element of Uk. By noting that 

p • Z0 = a(p)"1 • Z0 (0 G tfc(m*)), 

it is a routine task to transfer the Kc(mk)-&ction on HomG/c(Vr0-, C[V*]) to that on 
ty*)G'c(k-r) „ EomGlcik-r)(Va, C[Uk]) through the isomorphism (5.27). We thus 
get (5.28). If fc ^ r, the homomorphism a is surjective. Hence (5.28) implies the 
irreducibility of W[a] for fc ^ r. • 
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Next we consider the remaining case, and assume tha t (G, G') is not of type (SVT). 
Then one has > r and so mk - r. Set / := p - q for G = SU(p,q) {p > q), and 
I = 1 for G = 50*(2ra) (n odd). Then, / % ) := 922 (9 G # c ( r ) ) defines a group 
homomorphism /3 from Kc(r) to GL(Z,C). The group ifc(r) acts on 

q % ] - Q M | , e ( f c _ r ) ] 

naturally through the left multiplication composed with /?, where e := 1 for G = 
SU(p,q), and e := 2 for G = 5 0 * (2n). We denote by v the resulting representation 
of Kc(r) on C[Z4]« Note tha t v as well as cr* o a commutes with the G'c(k — reaction. 

Theorem 5.15 (Non (SVT) case). — Under the above assumption and notation, the re-
ductive part of Kc(r) acts on W[a] ~ (V* <S> C[Z4]) G c^h~r^ by the representation 
5k 0 (cr* o a) <S> v. 

Proof. — This theorem can be proved just as in the proof of Theorem 5.14 by noting 
tha t 

g-U = a(g)-1 • (/3(g)U)~ (U € M J ) t ( f c _ r ) ) 
holds if 9 e Kc{r) lies in the reductive par t of Kc(r), i.e., g\2 = 0. We omit the detail 
of the proof. • 
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