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THE DEGREES OF ORBITS 
OF THE MULTIPLICITY-FREE ACTIONS 

by 

Shohei K a t o & Hiroyuki Ochia i 

Abstract — We give a formula for the degrees of orbits of the irreducible representa-
tions with multiplicity-free action. In particular, we obtain the Bernstein degree and 
the associated cycle of the irreducible unitary highest weight modules of the scalar 
type for arbitrary hermitian Lie algebras. 

Résumé (Degrés des orbites nilpotentes des représentations irréductibles sans multiplicité) 
Nous donnons une formule pour les degrés des orbites nilpotentes des représen-

tations irréductibles sans multiplicité. Nous obtenons les degrés de Bernstein et les 
cycles associés des représentations irréductibles unitaires de plus haut poids de type 
scalaire pour des algèbres de Lie hermitiennes. 

1. Introduction 

Let K be a connected reductive complex algebraic group, and V an irreducible 
representation of K. We assume tha t the action of K is multiplicity-free; tha t is, 
each irreducible representation of K occurs at most once in the polynomial ring C[V]. 
We also assume tha t the image of K in GL(V) contains all nonzero scalar matrices 
C X idv- Such representations have been classified by Kac [10]. There are eight families 
and five exceptional representations. 

In this paper, we determine the degree of each closed If-stable subset Y oi V. 
We establish a method by which we can express some asymptotic behavior of the 
dimension of the filtered module in terms of a definite integral. This is a generalization 
of the technique presented in Ref. [19]. As a corollary, a formula for the degree of 
each if-stable closed subset can be obtained (Theorem 2.5). The multiplicity-free 
action contains an important family coming from the hermitian symmetric spaces. 
Such representations consist of four families and two exceptionals of the classification 
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140 S. KATO & H. OCHIAI 

mentioned above. Using the detailed s tructure of the restricted root system, we 
can obtain a formula in these hermitian symmetric cases tha t is more concise than 
tha t obtained in the general case (Theorem 3.2). This formula unifies three kinds 
(i.e., homomorphism, symmetric endomorphism and skew-symmetric endomorphism) 
of Giambelli formulas, as well as the corresponding formula for the exceptional Lie 
algebras. The formula for the degree of the closure of the orbit immediately gives 
the Bernstein degree of the irreducible unitary highest weight module of the scalar 
type (Corollary 4.1). For three families of classical Lie algebras sp(n,M), u(p, q) and 
o*(2n), this result is obtained in Section 7 of Ref. [19] through case analysis. In the 
final section, we give two examples demonstrat ing the calculation of the Bernstein 
degree of the uni tary highest weight modules of the non-scalar type. These are also 
derived from Theorem 2.3. In the Appendix, we list the explicit values for the degree 
of the closure of the orbits for all thirteen families of multiplicity-free actions, with 
some comment on the s tructure of the orbits. 

A par t of this paper is taken from the master thesis of the first author [12]. 

2. Degree of the multiplicity-free action 
2 . 1 . D e g r e e . — Let V be a finite-dimensional complex vector space, C[V] the ring 
of polynomials on V, and M a finitely-generated C^J -modu le . By a s tandard pro-
cedure, we can associate two additive, numerical invariants, the dimension and the 
multiplicity of M . This procedure is briefly summarized in Section 1 of Ref. [19] in 
this volume. 

Let Y be a closed conic subvariety of V, and let 1(F) be the defining ideal of Y; 

l(Y) = {p e C[V] | p(y) = 0 for all y e Y}. 

We define C[Y] = C[V]/I(Y). Defined in this manner, C[Y] is the coordinate ring 
of y . Since I (Y) is a (reduced) graded ideal of C[V], C[Y] is naturally a graded 
C[F]-module. The multiplicity of C[Y] is called the degree of Y, and is denoted by 
deg(Y). It is known tha t the degree of a complete intersection is elementary. 

Lemma 2.1 

(i) / / Y is a complete intersection, then the degree of Y is the product of the degrees 
of the defining equations of the irreducible components ofY. 

(ii) If Y is a hypersurface, then the degree of Y is the degree (as a homogeneous 
polynomial) of the defining equation ofY. 

(hi) IfY is a linear subspace ofV, then the degree ofY is I. 

The assertion (hi) is a special case of (ii), and (ii) is a special case of (i). The 
assertion (i) is found in s tandard textbooks, such as Ref. [4]. On the other hand, 
if the variety Y is not a complete intersection, such as a determinantal variety, its 
degree is non-trivial, as can be seen from the Giambelli formula. 
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THE DEGREES OF ORBITS OF THE MULTIPLICITY-FREE ACTIONS 141 

2.2. Asymptotic behavior of some graded module. — Let i f be a connected 
reductive complex algebraic group, and let V be a finite dimensional representation 
of if. Let C[VY be the set of homogeneous polynomials in C[V] of degree i. We 
assume tha t the image of i f in GL(V) contains all nonzero scalar matrices. Then, 
there exists an element Z G Lie(K) such tha t Z • p = ip for all p G C[V]*. This 
element is called the degree operator (or Euler operator) . We denote the natural 
action of i f on the graded algebra C[V] by A d . We call M a (C[V],if)-module if 
M is a C[V]-:module and is a completely reducible i f-module with the compatibility 
condition k • (p • ( f c - 1 • ra)) = (Ad (k)(p)) • ra for all k G if, p G C[V] and ra G M . 
We denote the decomposition into if-isotypic components by M = 0 M M M . Assume 
tha t there exists some isotypic component M\ generating M as a C[V]-module. Such 
a component is unique if it exists. We define a graded component by Ml — C[V]*MA 

for i e Z^Q. Then M = 0^M2 is a graded C[V]-module, and each graded component 
is given by 

M1 = {ra G M I Z • ra = (A(Z) + i ) ra} . 

We assume, moreover, tha t M has a multiplicity-free decomposition 

M = 
<peA(M) 

xb$$^<<^^ 

where F(p) is a (finite-dimensional) irreducible i f-module whose highest weight is //, 
and tha t there exists linearly independent weights < p i , . . . , g?™ such tha t 

A(M) = {ni<pi H h n m < £ m I n< G Z^o}-

In this case, the graded component Ml is given by 

M * = e F ( A + my>i H + n m v? m ) , 

where the summation is over ( n i , . . . , n m ) G with ri\^p\(Z) -\ h n m ( ^ m ( Z ) = z. 
We will determine the asymptotic of the dimension of the graded component for 
large i. 

Using the Weyl dimension formula, it can be shown tha t d imF(A + n\<p\ + • • • -f 
nm(pm) is a polynomial in ( n i , . . . , n m ) . To be more explicit, let be the set of 
positive roots of the Lie algebra of if, and let pK be the half sum of positive roots. 
We define 

A+ = A+ \ {a G A+ I (a, (fi) = 0 for all i = 1 , . . . , r a} 

and 

f(x\,..., xm) -
xx<<!!* 

(a,A + PK) 

(&,PK) 

x 

**vvn 

(a,A + pK) + a i ( a , y > i ) + • • • + xm(a, <pm) 
(a,pK) 
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142 S. KATO & H. OCHIAI 

Then dim F(X + ni<pi -I h nm(pm) = / ( n i , . . . , nm). The degree of the polynomial 
/ is equal to the number | A ^ | of roots in A ^ , and the leading term, which we denote 
by / , is 

f [x>\ , . . . , XJYI) '• 

ww<;:!ùù$ 

(a, A + pK) 
\OL,PK) 

x 
<wxn,;: 

3i(a,<Pi) + --' + a?mv%¥>m) 
<<wxcvn,; 

We define a filtered module M/ = ©;=0M\ This {M/}/ gives the filtration of M; 
and the dimension of the filtered component is 

dim Mi - ) / ( n i , . . . , n m ) 

where the summation is over n = (n\,... ,nm) £ ^™o> w^n n i ^ i ( ^ ) + * ' * + 
nmtymiZ) ^ l- We express this condition as Inl ^ / for short. 

Lemma 2.2. — Let d = m + | A ^ | . Then 

lim l~d 
|n|</ 

/ ( * ) = f(x)dxi • "dxm, 

where the domain of integration is the simplex 

{(xi,... ,xm) e Em I xi ^ 0 , . . . ,sm ^ 0, xx(pi(Z) + - • • + xm(pm(Z) ^ 1}. 

Summarizing the above, we have the following theorem: 

Theorem 2.3. — / / / is large, then 

dim Mi = c-l /d\ + (lower order terms), 

where d = m + | A W | and 

c = d\ 
"€A+\A+ 

(OL,\ + pK) 
ww<x^^ 

x 
<*eA+ 

E8tt(i,ï)SJ* (ra = 0, ..., xm (x, xm) 

^^hhlqq 
fhwwvaae<< 

tuiift ifte domain of integration 

{(xu...,xm) eRm | * i >0,...,a;TO > 0 , si¥>i(Z) + • • • + wwvvwwajkkmùùaaettts (Z) ç 1}. 

2.3. Multiplicity-free action. — Let V and if be as in the Introduction. That 
is, in addition to the assumption made in the previous subsection, we assume that the 
representation V is irreducible and that €[V] is multiplicity-free. The set of highest 
weights of if-types arising in C[V] is a free semigroup. We denote the set of generators 
by PA+(V). 

Let Y be a closed irreducible if-stable subset of V. Since V has a finite number 
of if-orbits, Y is the closure of a if-orbit on V. We set M = C[Y]. As in §2.1, M 
can naturally be considered the quotient ring of C[V], and thus it inherits the natural 
grading from C[V]. Then the (C[F], if )-module M satisfies the first assumption in 
§ 2.2. with the weirfit A taken to be zero. 
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Lemma 2.4. — Suppose Y is an irreducible closed K-stable subset ofV. Then there 
exists a free semigroup A(Y) such that C[Y] — 0 ,peA(y) F((p) as a K-module. The 
generators of the free semigroup A(Y) form a subset of PA+(V). This subset is 
denoted by PÄ+{Y) C PA+(V). 

A proof oi this lemma is given in net. [bj. Also appearing there is the explicit torm 
of the subset generating the subsemigroup, which we use in an application below. 

We denote the number of elements of PA+(Y) by ra, and we set PA+(Y) = 
{ipi,... ,<£>m}. For a weight a, we define the vector ( a i , . . . , a m ) G Rm by 
((a,<pi),...,(a,<pm)). We define 

A+ = { a e A + | ( a b . . . , a m ) / 0 } 

and ki = <fi(Z) G Z>o- Then, the if-type F(ipi) appears in the homogeneous compo-
nent C[F]^ . With this notation, we can give the degree of Y. 

Theorem 2.5. — The dimension ofY is ra -f |Ay|, and the degree ofY is 

UaeAt (<*>P^b 
UaeAt (<*>PK 

X 
xvxw<:! 

a i ^ i -I h amxm) dx\ • • • dxm, 

where the domain of the integration is the simplex 

{(xll...,xrn) G Rm I xi ^ 0 , . . . ,xm ^ 0, kixi + + kmxm ^ 1}. 

Proof. — Applying Theorem 2.3 with 

f(X\ 5 • • • 5 Xm) 
!!<w 

a i ^ i H h amXm 
{U,PK) 

we obtain the result. 

3. Hermitian symmetric case 

In this section, we consider the subclass of the multiplicity-free actions consisting 
of the holomorphic tangent spaces of the hermitian symmetric spaces. In this case, 
we can obtain a more sophisticated formula for the degree by using the structure of 
the restricted root system. 

3.1. Hermitian Lie algebra. — We first recall some standard notation of Lie 
algebras, root systems and weights. 

Let pjo be a non-compact real simple Lie algebra. Let go = £o ® Po be a Cartan 
decomposition of go. We assume that the center Co of 6o is non-zero, that is, that $o 
is of the hermitian type. Then Co is one dimensional. Let to be a Cartan subalgebra 
of to- Then to is a compact Cartan subalgebra of g0. Let g, t, p and t denote the 
respective complexifications of flo> fyb Po and to. We denote the Killing form by £?(•, •). 
The restriction of the Killing form on t is a non-degenerate symmetric bilinear form. 
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144 S. KATO & H. OCHIAI 

Using this, we identify t with its dual t*, and introduce the non-degenerate symmetric 
bilinear form (•,•) on t*. Let A be the root system of (0,t), and ga the root space 
corresponding to the root a G A. A root a is said to be compact (resp., non-compact) 
if 0a C t (resp., ga C p). Let Ac (resp., An) denote the set of all compact (resp., 
non-compact) roots in A. We have the disjoint decomposition A = Ac U An. 

There exists an element Y0 G \/^Tco such that 7(Fo) = ±1 for any 7 G An. 
This Yo is called the characteristic element. We set A^ = {a G A | a(Y0) = ±1}. 
Then Ac = {a G A | a(Y0) = 0}, and we have the disjoint decomposition A = 
A+ UACU A~. Then 6 = 1 0 (0C*EAC 0a) gives the root space decomposition, and if 
we set p± = @a£/±± 0a, then we have the triangular decomposition g = p+ 0 t 0 p~. 
We choose an ordering of A such that the set A+ of all positive roots satisfies the 
condition A+ C A+. Let Af = A± n Ac. 

As in Ref. [1], we construct a maximally strongly orthogonal subset { 7 1 , . . . , 7r} C 
A+ such that 7« is the smallest element of the subset of elements in A+ orthogonal 
to 7 1 , . . . , 7 i - i . Then 71 is the unique simple non-compact root. For a A G t*, we 
define H\ G t by B(Hx,h) = X(h) for all h G t, or equivalently, \'(H\) = (A, A') for 
all A' G t*. Let t" = £-=1 Cff7i. Then { # 7 l , . . . ,#7r} forms a basis of t" . Then, 
letting t+ = {H G 11 -h(H) = 0 for all i = 1,..., r } , we have t = t+ 0 t". 

We summarize several facts on strongly orthogonal roots (see, e.g., [23], [24]). 
Note that the strongly orthogonal roots {7*} here are taken from the minimal 71, 
while those of [24] in this volume are taken from the maximal 7r. 

Lemma 3.1 
(1) For 1 ^ i < j ^ r, 7e and 7^ are strongly orthogonal: 7$ ± 7^ ^ A. 
(2) The number r of maximally strongly orthogonal roots is equal to the split rank 

of 0o-
(3) If a G A+, then the restriction a\t- takes one of the following possible forms: 

- —7i/2 for some i = 1,... , r. 
- —(7fc - 7z)/2 for some 1 ̂  fc < / ^ r. 
- 0. 

(4) If a € A+, then the restriction a|t- takes one of the following possible forms: 
- 7»/2, 7J for some i = 1,..., r. 
- (7* + 7/)/2 for some 1 ̂  fc < / ^ r. 

(5) The set of non-zero restrictions of A(g,t) to t~ is one of the following two: 
- A ( f l , r ) - { ± ^ , ± ( 7 * ±7 i ) / 2 I 1 ̂  i ^ r , l ^ fc < / ^ r} ; type Cr, 
- A ( f l , r ) - {±7i/2,±7i,(7fc ±7 / ) /2 | 1 ̂  i ^ r, 1 ^ fc < / < r} ; type BCr. 
The root system is of type Cr if and only if the hermitian Lie algebra go is of 
the tube type. 

(6) By the Cayley transformation, the toral subalgebra t~ is isomorphic to the com-
plexification of a split Cartan subalgebra of go. This implies that the root system 
A(g,t~) coincides with the restricted root system of go. 
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THE DEGREES OF ORBITS OF THE MULTIPLICITY-FREE ACTIONS 145 

(7) The dimension of root spaces has the following properties: 
- dimg(t",±7i) = 1. 
- The dimension dimg(t-, ±(7& ± 7/)/2) does not depend on k or I. This 
dimension is called the multiplicity of middle roots. 
- The dimension dimg(t~, ±7i/2) does not depend on i. This dimension is 
called the multiplicity of short roots. The multiplicity of short roots is zero if 
and only if the Lie algebra go is of the tube type. 

(8) The number of compact roots has the following properties: 
- The cardinality of the set {a G A+ | a|t- = — (7* — 7/)/2} is equal to the 
multiplicity of middle roots. 
- The cardinality # { a G A+ | a|t- = -7*/2} = # { a G A+ | a|t- = -7 i /2} 
is equal to half of the multiplicity of short roots. 

(9) Let Ao = {a G A | a|t- = 0 } . Then Ao is a subset of Ac and is the root 
system corresponding to the reductive subalgebra Z^(t~) = {X G t \ [X,H] = 
0, for all H G t " } . 

(10) The strongly orthogonal roots 7 1 , . . . . 7r are long roots and have the same length. 

We recall the classification of the hermitian Lie algebra go and some relevant in-
formation which we will use later. 

CI AIII Dili BI, DI EIII EVII 

00 sp(n, R) «u(p, q) so*(2n) so(2,rz) 6̂(-14) *7(-25) 

r n min(p, q) [n/2] 2 2 3 

c 1/2 1 2 (n - 2)/2 3 4 

middle 1 2 4 n-2 6 8 

short 0 2\p-q\ 0 or 4 0 8 0 

Here, we follow the notation of Ref. [1]. The split rank r of g0 is denoted by t in 
Table 1 of Ref. [2]. The length of the interval c of the Wallach set is given in Table 
2.9 of Ref. [1]. It is denoted by e = in Table 1 of Ref. [2]. Then c is equal to half 
of the multiplicity of the middle roots. The entries in the row labeled 'middle' (resp. 
'short') are the root multiplicities of the restricted root system of go- These values 
are quoted from [5] (Table VI, Ch.X). The multiplicity of short roots for type Dili is 
zero (resp., four) if n is even (resp., odd). 

3.2. Degree of the orbi t . — Let Gc be a connected linear Lie group with Lie 
algebra g, and let GR, K and KR be the connected analytic subgroups of Gc with 
Lie algebras go, t and to, respectively. The restriction of the adjoint action of Gc 
on g to the subgroup K preserves the subspaces 6 and p±. We now recall the orbit 
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146 S. KATO & H. OCHIAI 

decomposition of the action of K on p+. (See Section 3.1 of Ref. [24].) In this 
decomposition, the closure relation of the orbits is a linear ordering, and the number 
of if-orbits on p+ is r + 1. Then we can enumerate orbits Om with m — 0 , 1 , . . . , r so 
that the closure is given by OM = OM U • • • U 0\ U OQ. Any if-stable closed subset of 
p+ is irreducible and of the form Om. 

We define cp* = —(TI H 1-7*). Then, with the notation of Lemma 2.4. PA+(V) = 
{ ( p i , . . . , a n d PA+(Om) = {y>i,...,<pm}. 

We define the following definite integral: 

Ia(s,m) = 
ccb 

{xix2'"Xmy 
l^i<j^m 

\x*i Xj I dx\ ' dXfji. 

Here the parameters a and s are positive real numbers, and the domain of the inte-
gration Dm is the simplex 

Dm = {(Xu...,Xm) G Rm I Xi ^ 0, X! + +xm ^ 1}. 

This integral is evaluated in Ref. [11] (see also Example VI.10.7(c) of Ref. [16] and 
Theorem 2.2 of Ref. [18]). The result is 

Ia{s,m) = 
ml •jm ii=l T(ia/2) 

T ( a / 2 ) " 
T7Î1 
1.1=1 

L T((8 + !) + (*- l ) a / 2 ) 
T(l + m(s + 1) + (m - l ) m a / 2 ) 

Let sr (resp., c) be equal to half of the root multiplicity of the short (resp., middle) 
roots of the restricted root system. In particular, sr = 0 for the tube type. For 
m = 0 , . . . ,r , we define sm = sr + 2c(r — m), dm — m(sm + 1) + (m — l)mc, and 

^tm = ia e Ac I (a> 7t) = 0 for all i = 1 , . . . , m} 

Theorem 3.2 
(1) 77ie dimension of the orbit Om is dm. This is the homogeneous degree of the 

integrand of the integral I2c(srn,m). 
(2) The degree of Om is given by 

deg((9m) = dm\ x « 7 i , 7 i > / 2 R » - M 

.a€A+\A+m wx^^$ 
x 1 

ml 
/2C(5m,m). 

The explicit values of degrees are given in the Appendix. We remark that the 
degrees of almost all orbits in the present case can be obtained without using the above 
theorem, as they can be obtained from the previously obtained results appearing in 
many detailed works. This theorem, however, gives a unified formula for the degree 
in terms of if-types corresponding to the orbits. 

3.3. Proof of Theorem 3.2. — We first apply Theorem 2.5. Let V = p+ and 
Y = with 0 ^ m <C r. Then A £ = A+ and A£ = A+ \ A+m. Using the 
Killing form, we can identify the dual of p+ with p_. Then C[V] is isomorphic to the 
symmetric algebra S(p~). The degree operator Z is — Y0, where Y0 is the characteristic 
element. Since 7$ G A+, we have ^p\{Z) — 1 for all i. 
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We employ a new set of coordinates yi, defined in terms of the original coordinates 
by yi = Xi + + xm, in the integral in Theorem 2.5. We define (f[ — <pi and 
ip\ = (fi- ipi-x for i ^ 2. Since <pi = -(71 H h 7i), <p\ = ~7*- Tnen tne semigroup 
A(M) can be expressed as 

A(M) = {n '^ i + • • • + rim<p'm I G Z^o, ni ^ • • • ̂  < J . 

Next, we define ( a i , . . . , a J J = ((a, <pi),..., (a, ^ ) ) for a G A ^ . Then a i#i -fx h 
OLmXm = aij/i + • • • + a^2/m. Clearly, the integral 

cvb:!$ 

(ai^i H h amxm)dxi • • • ctem 

over the domain 

{(a?i,... ,rrm) G Rm | a* ^ 0 for 1 <C i ^ ra, x^\{Z) + w• • • xvv+ (Z) ^ 1 } 

is equal to 

(1) 
^^wwxcvn 

(«Ì2/1 + • • • x+ Ci,mym)dy1 • • • %m 

over the domain 

{(î/l, . • • ,Vm) e Rm I yi Z V2 > • • • £ î/m S* 0, yi^i(Z) + . xvv• • + W m ( 2 ) ^ ! } • 

We next determine A^ and ( a i , . . . , a'm) for each a G Ay. 

Lemma 3.3. — Let ei be the i-th unit vector in Rm. 
(1) For any a G A+; ( a i , . . .,a'm) = ((a, - 7 1 ) , . . . , (a, -7™)) Jafces one 0 / the fol 
lowing forms: 

— ((715 7i)/2)(ejfe — ehk/) tutó/i some 1 ^ A: < / ^ m. 
— ((71,7i)/2)e$ hk some 1 ^ i ^ m. 
- 0. 

(2) For eoc/i 1 ^ k < I ^ ra, the number of a G A+ satisfying the condition 
( a i , . . . , a'm) = ((7i,7i)/2)(ejfe — e/) ¿5 equal to the root multiplicity 2c of the middle 
roots. 
(3) For each i, the number of a € A+ satisfying (a[,... ,a'm) — ((7i,7i)/2)ei is 
equal to sm. 

Proof. — For ra — r, the assertion follows from the identity tr = t~. We next consider 
the case for general ra. 

We define a = ((71,71)/2) for convenience. For 1 ^ k < I ^ ra, we have 

{a G A+ | ( a i , . . . , a £ J = a(ek - e/)} = {a G A+ | ( a i , . . . , a ' r ) = a{ek -et)}. 

This demonstrate the assertion for the middle roots. For 1 ^ i ^ ra, the set 

{a G A+ I ( a i , . . . , a ^ ) = ae<} 
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is the disjoint union of 
{a G A+ I ( a i , . . . , a j . ) = a e j 

and 
r 

¿=771+1 
{aG A + | ( a i , . . . , a / r ) = a ( e < - c i ) } . 

This shows that s™ = sr + 2c(r — m). 

We now complete the proof of Theorem 3.2. By Lemma 3.3, the number of elements 
in A^ is 2cxra( ra - l ) /2+msm. This implies the formula dm = ra(sm + l) + ( ra- l ) rac . 
Also by this lemma, we have the following formula for / ' : 

f(yii--,y bnm) = C 
1=1 

m 
aw)dime(tm,el) 

^^kann;:: 
(ay* - ow)dimt(t"»e»-e,: 

= Cad--m(yi---2/m)s™ 
ww<^^ 

(yk-yi)2c, 

where we denote 
C = 

1 
L e A t \ A t J a i P c ) w c b n x a a 

The domain of integral in (1) is 

(2) D'm = . . . , ym) G E m I Vl > y2 Z • • • ^ !/m > 0, ^ + • • • + ym ^ 1}. 

Since the integrand of Ia(s,m) is symmetric with respect to permutations of the 

variables (y i , . . . , t/m), the integral f,(y)dy is equal to 1 
ml 

ff(y)dy. Hence 

the degree of Om is equal to dm\Cadrn rnI2c(sm,m)/m\. This completes the proof of 
Theorem 3.2. • 

4. Unitary highest weight modules of the scalar type 

4.1. Highest weight modules. — We keep the notation of Section 3. We define 
p+ = ®aeA+ 5« and p~ = ®a€A- fla- Tnen G - P~ ® * ® p+ is a graded Lie algebra 
with a characteristic element Yb. We next define q = Ï 0 p+. Then q is a maximal 
parabolic subalgebra of g with the commutative nilpotent radical p+. Every maximal 
parabolic subalgebra with a commutative nilpotent radical arises in this way. 

A weight À G t* is said to be a A+-dominant integral weight if 2(A, a)/(a, a) G Z ^ 0 
for all a G A+. We denote the set of all A+-dominant integral weights of t* by Pc+. 
Also, we denote the fundamental weight corresponding to the non-compact simple 
root 7i by (. In other words, the element ( G t* is characterized by the conditions 

(C,a) = 0 for all a G Ac, and (C,7i) = <7i,7i>/2. 

Let pc be equal to half of the sum of roots in A+ and p that of A+. 
We denote the irreducible finite dimensional representation of t with the highest 

weight A G Pc+ by F(A). Through the Levi decomposition q = t 0 p+, a 6-module is 
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considered as a q-module on which p+ acts trivially. We define the generalized Verma 
module (or induced module) by 

N(X) = U(g) ®u{q) F(A), 

where U(g) is the universal enveloping algebra of g. By definition, N(X) is a highest 
weight g-module. It is well known that N(X) has a unique simple quotient L(A). Note 
that, as in the definition in Ref. [1], we employ no rho-shift in our definition of an 
irreducible highest weight module L(X). The infinitesimal character of N(X) and L(X) 
is X + pe t*. 

The Poincare-Birkhoff-Witt theorem implies the isomorphism N(X) = U(p+) 0c 
F(X) as a (C/(p+),if)-module. Note that p+ is commutitive and that the enveloping 
algebra U(p+) is canonically isomorphic to the symmetric algebra 5(p+). It is signif-
icant that the module N(X) together with L(X) is not only filtered by U(g) but also 
is graded by the action of the characteristic element. 

4.2. Unitary highest weight modules. — An irreducible highest weight g-
module L(X) is called unitarizable if it has a g0-hivariant positive definite sesqui-linear 
form. The set of irreducible unitary highest weight modules consists of two classes; 
one is the set of induced modules (irreducible generalized Verma modules), and the 
other is the set of irreducible unitary highest weight modules which is not induced. In 
particular, the latter class with one-dimensional lowest If-types is called the Wallach 
set. It is easy to see (e.g., Section 2.2 of Ref. [19]) that the associated cycle of the 
generalized Verma module N(X) is (dimF(A)) • [p+]. In what follows, we consider the 
representation which is not induced. 

Let us recall the number c introduced in Section 3.1. For unitary highest weight 
modules of the scalar type L(zQ, the Wallach set corresponds to the set of parameters 
z = 0, —c, . . . , — (r — l)c. It is shown in Ref. [2] that the annihilator is 

Annl/(p-)L(-mcC) = l{Om) 

for m — 0, . . . , r . Since for m = r the Verma module N(—rcQ is irreducible, the 
unitarizable L(—rcQ does not belong to the Wallach set. However, since the situation 
is the same for the case m = r, we do not exclude the case m = r. As a (C/(p~), K)-
module, we have the isomorphism 

L(-mcC) = U(p-)/I(Om) S qpm]. 

Thus, the associated variety of L(—mcQ is (9m, and the associated cycle of L(-mcQ 
is [Om], The Gelfand-Kirillov dimension of L(—mc() is the dimension of the variety 
Om, and the Bernstein degree of L(—mc() is the degree of Om. 

As a direct consequence of Theorem 3.2, we can determine the Gelfand-Kirillov 
dimension and the Bernstein degree of the unitary highest weight module L(—mcQ 
of the scalar if-type. 
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Corollary 4.1. — Let sm,dm and A+m be the same as in Theorem 3.2. We consider 
the representation L(—mcQ with m = 0 , l , . . . , r . 
(1) The Gelfand-Kirillov dimension of L(—mcQ is dm. 
(2) The Bernstein degree of L(—mcQ is 

cc «7i,7i)/2)d™-m 

sUsaeAt (<*>PK 

1 
ra! 

/2c(sm,ra) 

We note that if-type decompositions like that in Lemma 2.4 are given in Ref. [21] 
for the generalized Verma module and in Theorem 5.10 of Ref. [23] for the module 
L(—mcQ in the Wallach set. 

5. Further example of the degree of unitary highest weight modules 

In the previous section we saw the method introduced in Section 2 is effective for 
modules of the scalar type. We now consider its application to modules of non-scalar 
type. In this section, we give calculations of the degrees of some unitary highest 
weight modules of non-scalar type. These examples are based on the examples in 
Ref. [1], and we follow the notation used there for the root system. 

Let { a i , . . . ,a /} C A+ be the set of simple roots and . . . ,u;/} the set of the 
corresponding fundamental weights. 

5.1. EIII, case II, "the last unitarizable place". — Let g0 be of type EIII. 
The corresponding multiplicity-free action is of the type (xi) in the Appendix. The 
compact root system Ac is of type JD5. Let us consider the A+-dominant integral 
weight of the form 

À = aujQ H- (—a — 4)c<;i 

with positive integer a G Z>o. Here, the simple root a i is taken to be non-compact, 
and the fundamental weight uo\ is perpendicular to Ac. The weight of this form is 
referred to in Ref. [1] as "the last unitarizable place of Case II". The set A\ = {a £ 
Ac | (A, a) = 0} is the root system of type D4 whose simple system is { « 2 , «3 ,0:4 , as} . 

We consider the unitary highest weight representation L(A). This is the only 
unitary highest weight module L(X) of non-scalar type which is neither induced nor 
at 'the first reduction point'. 

Proposition 5.1. — For L(aujQ + (—a - 4)o;i), the Gelfand-Kirillov dimension is 16 
and the Bernstein degree is 1. 

Proof. — From the if-type decomposition 

L(X) = 
UaeAt (<*>bbc 

F(\ - ni7i - n272) 
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given in Proposition 12.5 of Réf. [1], we have m = 2. Using the realization of the root 
system in the standard Euclidean space [1], we have A+ = {±ei + ej | 1 ^ i < j ^ 5}. 
We calculate 

Kmh = h h { e i + e i \ i = 2,3,4} U {ej - ek | 2 ^ k < j <: 4}, 

which is the root system of type As with the simple system {a2, #4, a$}. This implies 
that (a, A) = 0 for all a G A+m. Then 

xvv,: 

(a, A + pc) 
(a, Pc) 

= 1. 

Hence, by Theorem 3.2, the asymptotic of the dimension of the filtered pieces of L(A) 
is identical to that of the scalar case with m = 2. The proposition thus follows from 
(xi) in the Appendix or (hi) of Lemma 2.1. • 

5.2. EVII, case II, the last unitarizable place. — Let go be a Lie algebra 
of type EVII. The corresponding multiplicity-free action is given in (xiii) in the 
Appendix. The root system Ac is of type EQ. Let us consider the weight 

A = kujQ + (-2k - S)u7, 

with positive integer k. The fundamental weight 007 corresponds to the non-compact 
simple root a-j. The weight of this form is called "the last unitarizable place of Case IF. 
The subset A\ — {a G Ac | (A, a) = 0} is the root system of type D5 whose simple 
system is {a\, a2, as, a±, 0̂5 }. 

We consider the representation L(A). This is the only unitary highest weight 
module of non-scalar type which is neither induced nor at the first reduction point. 

Proposition 5.2. — For L(kcjQ + (—2k — 8)077), the Gelfand-Kirillov dimension is 26 
and the Bernstein degree is 

3(2* + 7 ) I l L i ( * + 0 
7! 

Proof. — The if-type decomposition is given in Proposition 13.10 of Ref. [1]. We 
have 

L(A) = 0 F(A - ni7i - n272 - nsS), 
NIEZ 

nî 7l2^0 

where 5 — a$ -\-a7. We apply Theorem 2.3 with m — 2 and with A replaced by A — ns5 
for each n3 = 0 , . . . , k. For m — 2, A+m = {±ei + ej | 1 ^ i < j ^ 4}, which is 
the root system of type D4 with the simple roots {#5, #4, as, a2}. This implies that 
(a, A) = 0 for all a G A+ . Then, for each 723, the contribution to the degree is 

(3) deg(ö2) x 
<*€A+ 

(a, A - n3S + pc) 
(a, pc) -- deg(ö2) x 

a€A+ 

a, -nsô + pc) 
(a, Pc) 
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Here, the root systems A+ and A+2 have the following significant relation. 

Lemma 5.3. — For any a G A+2, we have 

(a,Ô) = (A,U>i n4) AND (A,PC) = (a,pc n4>-

iîfere. pc,r>4 = ^2 + 2e3 + 3e4 is equal to half of the sum of the roots in A^2. The 
fundamental weight cai,£>4 = e± of the natural représentation 0/50(8) corresponds to 
the simple root a$. 

This lemma implies that the quantity (3) is equal to the dimension of the irreducible 
finite-dimensional representation F(so(8), n3u;i^4) of the Lie algebra 00(8) with the 
highest weight NZUJ\,DA- Its value is 

(n3 + l)(n3 + 2)(n3 + 3)2(n3 + 4)(n3 + 5)/(3 • 5!) = 
n3+6N 

<ccc< 
<< 'n3 + 5\ 

6 

Then, the degree of the representation L(\) is d — deg(02) multiplied by the quantity 
k 

n3-0 a€A+ 

(a, -n3£ + pc) 
(A, Pc) 

(k + T 
7 

4-
cbc<< 

cc7 
(2fc + 7) nt=i(* + o 

7! 

as is required in the proposition. 

Corollary 5.4. — The associated cycle of L(KUJQ + (—2k — 8)1^7) is 

^K + 7)U6I=1(K + I) 
7! 

<c<ccbb 

Remark 5.5. — Vogan [22] has introduced the isotropy representation of the isotropy 
subgroup of the generic point of the associated variety on the space of the multiplicity 
of a given (g, K)-module. In our case, the Lie algebra of the Levi part of the isotropy 
subgroup of a point of the nilpotent orbit O2 in K is isomorphic to so(9). Let UJ\,BA 
be the fundamental weight corresponding to the natural (vector) representation of 
so(9), and F(so(9),KOJI,B4) the irreducible finite-dimensional representation of so(9) 
with highest weight fccJi,B4. It is easy to see, by the Weyl dimension formula, that 

(2fc + 7 ) n L ( * + 0 
7! = dimF(so(9),fccJi5B4)-

Since the restriction of the irreducible representation F(so(9), KCUI^J to the sub-
algebra 50(8) is decomposed as 0^3=o F(so(8),NSUJI^D4), the proof above may sug-
gest interpreting the number as the dimension of the representation as above. 
Hence, it is suggested that the isotropy representation attached to the representa-
tion L(KUJQ + (—2k — 8)^7) is precisely F($o(9), KUJ\,BA)-

ASTÉRISQUE 273 



THE DEGREES OF ORBITS OF THE MULTIPLICITY-FREE ACTIONS 153 

6. Appendix : List of degrees of orbits 

We define the orbit Oo = {0}. The orbit Omax is open dense. 

6.1. Hermitian symmetric case. — The following case (i), (ii), (hi), (iv), (xi), 
or (xiii) corresponds to the case with Cartan label AIII, CI, Dili, (BI and DI), EIII, 
or EVII, respectively, (cf. Table in §3.1.) We use Theorem 3.2. In the following, we 
normalize the inner product (•, •) so that the restriction on Ac is induced from the 
Killing form on I. For example, (7z-,7i) = 4 for the case (i), while (7«,7*) = 2 for 
other five cases. 

(i) GLP x GLq with p ^ q: Here the orbits are parametrized by {0 ,1 , . . . ,#} . 
We apply the following identifications to Theorem 2.5: Ac is of type Ap-i x 
Aq-i, Ac(tm) is of type Ap-i-m x A9_i_m, the denominator of the formula is 
riaGA+\A+m(a'/9c> = 11™ 1 ( (P~ i)KQ - and sm = p + q-2m. In this case: 

dim(Om) = m(p + q) - m2 

deg(Om) 
0!1! • • • (m - 1)! x (p + q - 2m)! ---{p + q- m- 2)!(p + q - m - 1)! 
(p - m)\(p - m + 1)!. • • (p - 1)! x (q - m)\(q - m + 1)! • • • (q - 1)! * 

This coincides with the Giambelli formula, 
(ii) S2GLn: Here the orbits are parametrized by { 0 , 1 , . . . , n} . In this case, Ac is of 

type An_i, A c ( t m ) is Of type An_i_m, IIa€A+\A+m (a'Pc) = r i i l i f a - a n d 
sm = n — m. We then obtain 

dim(0m) = mn — (m — l)m/2 

deg(Om) 0!1! • • • (m - 1)! (2n - 2m)!!(2n - 2m + 1)!! • • • (2n - m + 1)!! 
0Ü1Ü • • • (m - 1)!! (n - m)!(n - m -h 1)! • • • (n - 1)! 

where /!! = /(/ - 2) • • • 4 • 2 for an even integer /, and /!! = /(/ — 2) 3 • 1 for odd 
/. This coincides with the Giambelli formula. 

(hi) A2GLn: In this case, we parameterize the orbits by {0 ,1 ,2 , . . . , [n/2]}, not 
by {0,2,4, . . . ,2[n/2]}, since our numbering should be compatible with the 
enumeration of the Wallach set for the unitary highest weight module of the 
scalar if-type. Here, Ac is of type An_i, Ac(tm) is of type An_i_2m x Am, 

xxw;;:^^^^$$$$ .¿=1 (n — i)!, and sm = 2n — 4m. We have 

dim(öm) = 2mn - (2m + l)m 

deg(Om) -
1!3! •. • (2m - 1)! x (2n - 4m)!(2n - 4m + 2)! • • • (2n - 2m - 2)! 

(n - 2m)! • • • (n - m + l)!(n - m)! (n - 1)! 
This coincides with the Giambelli formula, 

(iv) On x GL\\ In this case, the orbits are parametrized by {0,1,2}. Then, Ac is the 
root system of so(n), Ac(t2) = Ac(ti) is the root system of so(n — 2), and for 
m = 1 the denominator of the formula is NA<GA+\A+ (a->Pc) — (n~"3)!(|n—1) = 
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(n — 2)!/2. Here we have 

dim((9m) = 0, n - 1, n 

deg(0m) = 1,2,1 for ra = 0,1,2, respectively. 

Since the closure of the orbit 0\ is a quadratic hypersurface, the formula above 
follows from Lemma 2.1. 

(xi) Spiriio x GL\\ Here the orbits are parametrized by {0,1,2}, and in this case 
Ac = {ai | 2 < i ^ 6} is of type D5, Ac(ti) = {a< | i = 2,4,5,6} is of 
type A4, and Ac(t2) = {o^ | i = 2,4,5} is of type A3. The denominator 
naGA+\A+m(a^c) for m al is 7!5!/2, and that for ra = 2 is 7!5!4!/2. We have 

dim(0m) =0,11,16, 

deg((9m) = 1,12,1 for ra = 0,1,2, respectively 

(xiii) i?6 x GL\\ Here the orbits are parametrized by {0,1,2,3} and in this case 
Ac = {ai I 1 ^ i ^ 6} is of type EQ, Ac(ti) = {a* | 1 ^ i ^ 5} is of type 
£>5, and Ac(t2) = Ac(t3) = {ai | 2 ^ i ^ 5} is of type D4. The denominator 
na6A+\A+m(a'^) for m = 1 is ll!8!/6, and that for ra = 2,3 is 2 • ll!8!7!/3. 

dim(Om) = 0,17,26,27, 

deg((9m) = 1, 78,3,1 for ra = 0,1,2,3, respectively. 

Since the hermitian symmetric space of type EVII is of the tube type, it is known 
that the orbit O2 is a hypersurface, and that the defining equation, which is the 
basic relative invariant of the corresponding prehomogeneous vector space, is 
cubic. The degree here was known previously, except for the case ra = 1. 

6.2. Non-hermitian case 
(v) Sp2n x GL\ : In this case, the orbit structure is the same as that for GL2n x GL\, 

which is a special case of case (i). 
(ix) Spin-j x GLi : In this case, the orbit structure is the same as that for 0(7) x GL\, 

which is a special case of case (iv). 
(xii) G2 x GL\\ Here, the orbit structure is the same as that for 0(7) x GLi, which 

is a special case of case (iv). 
(vi) Sp2n x GL2: In this case, the orbits are parametrized by {(0,0), (1,0), (2,0), 

(2,2)}. Comparing with the orbits {0^\0^\0^} of case (i) GL2n x GL2, we 
have 

U0 - U(0,0) ' Ul ~ U(l,0) ' U2 - U(2,0) U U(2,2) 
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We also know that 0(2,o) *s a quadratic hypersurface. Then the formula for the 
degrees of the closure of orbits can be reduced to that in known cases. 

dim(0m) = 0,2n + 1,4n - 1,4n 

deg(0^) = l ,2n ,2 , l . 

(vii) Sp2n x GL%: In this case, the orbits are parametrized by {(0,0), (1,0), (2,0), 
(2,2), (3,0), (3,2)}. Comparing with the orbits {0^\ £>f \ 0$\ O^} of the case 
(i) GL2n x GL3, we have 

_ /n(vii) _ yn(vÜ) n(l) _ n(y'n) , , ^ ( V Ü ) n(l) _ >^(VII) , . Wvü) 
U0 ~ U(0,0) > Ul - U(l,0) ' U2 - U(2,0) U ̂ (2,2) ' ^3 ~ ^(3,0) U ̂ (3,2) * 

It is not difficult to see that the variety 0(3,o) is the complete intersection of 
three quadratic hypersurfaces. Thus the degree of the variety for this case, 
except for Of2 o), was known previously. We have 

dim(0m) = 0,2n + 2,4n + 1,4n + 2,6n - 3,6n 

deg(CQ = l,n(2n + l),4n(n - l),n(2n - 1),8,1 

(viii) Sp4xGLn: Here, the orbits are parametrized by {(0,0), (1,0), (2,0), (2,2), (3,2), 
(4,4)}. Comparing with the orbits {0$\ Of\ 0$\ 0$\ O^} of the case (i) 
GL4 x GLn, we have 

/0 (0 — n ( v i i i ) n o — /o(viii) — / o ( v i i i ) I I n ( v i i i ) — n(Yliiï n ' O — / n ( v i i i ) 
^0 — ^(0,0) ' Ul — U(l,0) ' 2 ~ U(2,0) U U(2,2) ' ^3 — ^(3,2) ' U* ~~ (4,4) ' 

In this case the degree of the variety, except for 0(2,o) > was known previously. 
Here we have 

dim(0m) = 0, n + 3,2n + 3,2n + 4,3n + 1,4n 

deg(O^) = 1, n(n + l)(n + 2)/6, (n - l)n(n + l ) /3 , (n - l)n2(n + 1)/12, 

(n — 2)(n — l )n /6 ,1 , respectively. 

(x) SpirtQ x GLi: Here, the orbits are parametrized by {0,1,2,2;}. This repre-
sentation is equivalent to the isotropy representation on the tangent space of 
the Riemannian symmetric space F±/Spin§ of rank one. Thus it has an invari-
ant quadratic form. Comparing the orbits {OQV\o[lv\ 02v^} of the case (iv) 
Oie x GLi, we find 

O<IV) = O « , O<IV) = o[x) u oix\ O F > = off 

On the other hand, the representation (x) is the restriction of the representation 
(xi). The correspondence between orbits is 

bb, = ö{*\öf] = ö [ x ) , 0 < x i ) = 0 2

x ) U 0 { ¿ } . 
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Then the formula for the degrees of the closure of orbits can be reduced to that 
in cases (iv) and (xi). We obtain 

dim(0m) =0,11,15,16 

deg(Om) = 1,12,2,1, respectively. 

6.3. Examples . — Let us illustrate the calculations necessary to obtain the above 
results by considering the spaces (vii) and (viii). In these cases, the group if is a 
direct product, say, K = lK xrK with lK = 5p(n,C) = Sp2n and rK = GL(n',C). 
We consider the case in which (n,n') = (n,3) or (2,n'). We use the superscript / or 
r to indicate an object corresponding to lK or rK. The root system *Aj is of type 
Cn, and r A ^ is of type Ani-\. In the standard realization, 

and 
1A+ = {a ± ej I 1 ^ i < j ^ n} U {2ei | 1 ^ i ^ n}, 

rA+ = {ei-ej I 1 < j <^n'}. 

We denote the weight eH he; = ( 1 , . . . , 1,0,... , 0) of Ki (resp., Kr) by U (resp., r^). 
First, we consider the space 5p2n x GL3. Here, the set of primitive weights arising 

in V is PA+{V) = { ^ 1 , ^ 2 , ^ 3 , ^ 2 ^ 3 ^ 4 1 » Where ^ 1 = (*i;ri), ^ 2 = ( ¿ 2 ^ 2 ) , ^ 3 = 
( ¿ 3 ^ 3 ) , ^2 = (0;R2), ^ 3 = (/i;r3) and ^ 4 = (Z2;ri + r3). The generators of the 
subsemigroups corresponding to orbits are known: 

Pi+(0(o,o)) = 0; 

PA+(0(2,2)) = { ^ 2 , ^ 2 } ; 

Pi+(0(1,o)) = {iM; 

Pi+(O(3,0)) = {rl>u*l>M. 

Pi+(O(2 ,0) ) = { ^ 1 ^ 2 } ; 

We consider the degree of the closure of the orbit Y = 0(3,o). First, we note that 
the lattice A+(O^i0)) is 

{niV>i + n2^2 + ^ 3 ^ 3 I rii e Z^o} 
= {ni^i + n2(^2 - ^1) + n3(^3 - ^ 2 ) I n[ ^ n2 ^ n3 ^ 0}. 

Next, for each a, we set ( a ^ a ^ a ^ ) = ( (a ,^ i ) , (a, ^ 2 — ^i),(a,V;3 — ^ 2 ) ) . Then 
Theorem 2.5 implies that the degree of Y is 

(4) 

vnn^^$$ 
^^^$<< 

d! 

<x^$$ 

^^ee^^$ ^^$ 
f{X\, . . . , #m) * fipl 1 ' • • , #ra)d#l * * * dxmi 

where m = 3, d = m + |*A£| + |rA^| , ' / = IlaG'A+fai^i ®mxm), and r / is 
similar to The domain of integration is D'3 of (2), since the degree of ^1,^2 — ^1 
and tps — ip2 is 1. From the explicit form of ipi, we know that1 A j \ ' A y is the positive 
root system of type Cn_3 and zAy = {e i±e j , e2±e j | 3 ^ j < n}U{ei±e2,2ei,2e2}. 
We also have rAy = r A ^ . Then, with some calculation, we obtain the denominator 
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of the formula as 

<x£lA+ 
(ex, V ) = 8(2n - l)!(2n - 3)!(2n - 5)!,. and 

a€rA$ 
(OLJPK) = 2. 

The leading polynomials here are 

lf(xux2,x3) = (xix2x3)2n-6(xl -x\){x\ -x\){xl -xl)(2x1)(2x2){2xs), 

rf(xi,x2,x3) = (xi - x2)(xi - x3)(x2 - X3). 

Finally, we recall the evaluation of the integral 

(5) d! 
xxv 

(X\ ' ' ' Xm) 
\ssgxxx 

(Xi Xj ) 2 s(x)dx\ • • • dxm 

= 2m*m-A'/2(ra - 1)!• • • 1! • r!(r + 2)! • • • (r + 2ro - 2)!, 

where d — m(r + 1) + 3m(m - l ) /2 , and s(x) = I l i^ K j^m^* + ^ i ) is tne Schur 
function attached to the staircase partition (m — 1 , . . . , 1,0). This is a special case 
of the formula in Example VI.10.7(c) of Ref. [16]. The right-hand side of (5) equals 
2r!(r + 2)! for m = 2, and 16r!(r + 2)!(r + 4)! for m = 3. We use the formula (5) for 
m = 3 and r = 2n — 5. With this information, we conclude that the degree of Ofsto) 
is 8. 

We now consider another orbit, Y = O(2,o)- The lattice A+((9(2,o)) is { n i ^ i + ^ V ^ | 
G Z^o} = {^i^i + ^2(^2 — V î) I ni ^ n2 ^ 0 } . Here, we can again use (4), with 

m — 2. The denominators and the leading polvnomials in this case are 

< a , V > = 4 ( 2 n - l ) ! ( 2 n - 3 ) ! , 
OLG1 At 
lf = (x1X2?n-\x1 -x2)(x1 +x2)(2x1)(2x2), 

aErA+ 
(a/pK) = 2. 

rf = X!X2(Xi - X 2 ) . 
Then, the integral is of the form (5) with m — 2 and r — 2n — 2. Hence, we conclude 
that the degree of O(2,o) is 4n(n — 1). 

Finally, we consider the orbit Y = O(2,o) of the space Sp4 x GLn>. In this case, 
the primitive weights are known to be ipi = (Zi;ri), ^2 = (¿2,^2), ^3 = (¿1^3), 
^4 = (0;r4), ^2 = (0;r2), and ip'4 = (/2;ri + r3). We also know that = 
{ ^ 1 , ^ 2 , ^ 3 , ^ 4 , ^ , ^ } , F i+(O(0 ,0) ) - ^ , Pi+(O(i,0)) = ftM, Fi+(O(2,0)) -
{</>!,<M, Pi+(0(2,2)) - ty>l,^2,^}, and P i+(0(3F2) ) = { ^ 1 , ^ , ^ 3 , ^ , ^ } - THEN> 

we see that zAy = ZA£ and that rA^ \ rAy is a positive system of type An>-3. We 
then find that the denominators and the leading polynomials in the formula giving 
the degree are 

a(FlA± 
(a,lpK) = 4 , 

a€rA+ 
( a /  ) = ( n ' - l ) ! ( n ' - 2 ) ! , 

'/ = {2x1){2x2){x1 - x2){Xl + x2), rf={xiX2)n'-2{xl-x2). 

Thus we can apply the integral formula (5) with m = 2 and r = n' — 1. Hence, we 
conclude that the degree of Ot2 o) is (n' — l)n'(n' + l ) / 3 . 
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