
Astérisque

ALEXIS BONNET

GUY DAVID
Cracktip is a global Mumford-Shah minimizer

Astérisque, tome 274 (2001)
<http://www.numdam.org/item?id=AST_2001__274__R1_0>

© Société mathématique de France, 2001, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_2001__274__R1_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


ASTÉRISQUE 274 

CRACKTIP IS A GLOBAL 
MUMFORD-SHAH MINIMIZER 

Alexis Bonnet 
Guy David 

Société Mathématique de France 2001 
Publié avec le concours du Centre National de la Recherche Scientifique 



A. Bonnet 
Goldman Sachs, Petersborough Court, 133 Fleet Street, London EC4A 2BB. 
E-mail : a l ex i s .bonne t@vi rg in .ne t 

G. David 
Équipe d'Analyse harmonique, UMR CNRS 8628, Bâtiment 425, 
Université de Paris-Sud, 91405 Orsay cedex, France. 
E-mail : Guy.David@math.u-psud.fr 

2000 Mathematics Subject Classification. — 49K99, 49Q20. 

Key words and phrases. — Mumford-Shah functional. 



CRACKTIP IS A GLOBAL 
MUMFORD-SHAH MINIMIZER 

Alexis Bonnet, Guy David 

Abstract. — We show that the pair (u, K) given by K = (—00,0] C M2 and 

u(r cos 6, r sin 9) = y/2/n r1/2 sin(0/2) for r > 0 and - n < 0 < n 

is a global Mumford-Shah minimizer. This means that if K is another closed set in 
the plane with locally finite Hausdorff measure, u is a function on E2 \ K with a 
derivative in L2oc(R2 \ K), and the pair (u, K) coincides with (u, K) out of some disk 
B, then 

H1(KHB)+ f \Vu\2 < HX{K HB)+ [ |Vu|2 , 
JB^K JB^G 

where H1 denotes Hausdorff measure. 
We shall also show that every global Mumford-Shah minimizer (u',K') that is 

sufficiently close to (u, K) near infinity must be equivalent to it. This is the case, for 
instance, if some blow-in limit of {v!\K') equals (u,K). 

The proofs will be based on a detailed study of the harmonic function v' conjugated 
to u'\ and its level sets. We shall also use blow-up techniques and the monotonicity 
of an energy integral. 
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Résumé (Cracktip est un minimum de Mumford-Shah global) 
Le résultat principal de ce texte est que le couple (u, K) défini par K = ] — oo, 0] c 

M2 et 

u(rcos<9,rsin0) = y/2/ïr r1/2 sin(0/2) pour r > 0 e t - TT < 0 < n 

est un minimum global de la fonctionnelle de Mumford-Shah. Ceci signifie que si K 

est un fermé du plan de mesure de Hausdorff de dimension 1 localement finie, u est 

une fonction définie sur 3R2 \ K dont la dérivée est dans Lfoc (R2 \ K), et si le couple 

(u, K) coïncide avec (г¿, K) hors d'un disque £?, on a 

HL(KHB)+ J \Vu\2 ^Hl{jjKrjujjklB)+ u[ |Vïï|2, 
JB^K JB^G 

où l'on note H1 la mesure de Hausdorff. 
On montrera aussi que tout minimum global (u',K') de la fonctionnelle de 

Mumford-Shah qui est suffisament proche de (u,K) à l'infini lui est équivalent. C'est 
le cas par exemple si l'une des limites de (uf, K') par implosions est égale à (u, K). 

La démonstration est basée sur une étude détaillée de la fonction harmonique conju
guée de ^ et de ses ensembles de niveau. On utilise aussi des techniques d'explosion 
et la monotonie d'une intégrale d'énergie. 
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CHAPTER A 

GENERAL INTRODUCTION 

1. Introduction 

The main goal of this paper is to verify that cracktips (as defined below) are 
global minimizers of the Mumford-Shah functional. This gives a positive answer to 
a question of E. De Giorgi [DG]. We shall also prove that all the global minimizers 
of the Mumford-Shah functional that are close enough to cracktips (in ways that will 
soon be made precise) are cracktips. 

The global version of the Mumford-Shah functional that we consider here is morally 
given by 

where Hl{K) denotes the one-dimensional Hausdorff measure of the closed set K 
[see for instance [Fa] or [Ma] for definitions]. This is only a moral definition, because 
J(u,K) = +00 for all interesting competitors (u,K), and so we shall have to give a 
more local definition of competitors and minimizers. 

Let us first define the set Uo of admissible pairs (or competitors). These are the 
pairs (u, K), where K is a closed subset of the plane, u G W^(№? \ K) is a function 
defined on E2 \ K and whose distributional gradient Vu lies in L2oc (E2 \ K), and 
which satisfy the additional requirement that 

where we denote by BR = B(0,R) the open disk centered at the origin and with 
radius R. 

Next let (u, K) e Uo be given. A competitor for (u, K) is an admissible pair 
(v, G) e UQ which satisfies the following properties for some (large) R > 0: 

(1.1) J(u,K)= í \Vu\2 + Hl{K) 
BR^K 

(1.2) Н1(КПВп)+ [ 
BR^K 

|Vw|2 < +00 for all R > 0, 

(1.3) G \ BR = if \ BR 



2 1. INTRODUCTION 

(1.4) v(x) = u(x) on R 2 \ (K U BR), 

and 

(1.5) if x, y G R 2 \ (K U £ # ) are separated by if, then G also separates them. 

[We say that K separates x from y when x, y lie in different connected components 

of R 2 \ K] 

Note that if (1.3)-(1.5) hold for R>0, they also hold for all R! > R. 

Definition 1.6. — A global minimizer (for the Mumford-Shah functional) is an admis

sible pair (u,K) G UQ such that 

(1.7) H\K DBR)+ [ \Vu\2 ^ H\G H BR) + / | V ^ | 2 

JBR^K JBR^G 

for all competitors (v,G) for (u,K) and R > 0 such that (1.3)-(1.5) hold. 

Note that we do not need to be too specific about R: if (1.7) holds for some R such 

that (1.3)-(1.5) hold, it stays true for all such R (by (1.3) and (1.4)). 

This class of global minimizers was introduced in [Bo], where it is shown that if 

(UO,KQ) is a minimizer for the (usual) Mumford-Shah functional 

(1.8) Jlu, K)= [ \u- g\2 + HHK) + / | V d 2 

BR^K BR^K 

(on a bounded domain and with a given bounded function g on ft), then all limits 

of (u, K) under blow-ups are global minimizers as in Definition 1.6. Our topological 

condition (1.5) actually comes from this in a natural way; see Section 12 for details 

about this. 

Note that if (w, K) is a global minimizer, we can always add any closed set of 

i^-measure zero to K, and this gives another global minimizer equivalent to (u,K). 

We shall say that the global minimizer (u, K) is "reduced" if there is no proper closed 

subset K of K such that u extends to a function u G W^2 ( R 2 \ K) and (u, K) 

is a competitor for (u,K). [We add this last constraint because of the topological 

condition (1.5); we want to avoid opening holes that would change the true nature of 

(«,*)•] 
It is not too hard to check that for each global minimizer (u,K) there is a reduced 

global minimizer (ïï, K) which is equivalent to (u,K), that is, such that K C X , 

u is an extension of u, and (ïï, K) is a competitor for (u,K). Because of this, we 

shall always assume that all our global minimizers are reduced. We don't loose any 

generality, and this will allow us to give more pleasant descriptions of K. 

The natural analogue in the present context of the celebrated Mumford-Shah con

jecture in [MuSh] is that all (reduced) global minimizers belong to the following short 

list: 

(1.9) K = 0 and u is constant; 

ASTÉRISQUE 274 



1. INTRODUCTION 3 

(1.10) 
K is a line and u is constant on each 
of the two connected components of R2 \ K ; 

(l.ii) 
K is a propeller (see the definition below) and 

u is constant on each of the 3 components of R2 \ K ; 

(1.12) (u, K) is a cracktip (also see below). 

We call propeller a union of three half-lines with a common endpoint (called center) 
and that make 120° angles with each other. 

We call cracktips the pairs (u, K) such that, after a suitable change of coordinates 
in the plane, 

for r > 0 and —7r < 6 < 7r. The (constant) sign ± and the value of the constant C 
obviously do not matter. 

If the conjecture above where true, then the Mumford-Shah conjecture would quite 
probably follow, using the arguments in [Bo] (we did not check all the details). The 
converse is less clear a priori (there could be global minimizers that do not show up 
as blow-ups of Mumford-Shah minimizers). 

Recall that if (u, K) is a global minimizer and K is connected, then (u, K) belongs 

to the short list above. This is one of the main points of [Bo], where it is used to 
prove that isolated components of KQ for Mumford-Shah minimizers are finite unions 
of C1 -curves. 

The pairs (u, K) in (1.9), (1.10), and (1.11) are easily seen to be global minimizers. 
Note that the topological condition (1.5) is needed for this. The main result of this 
paper is that 

(1.15) Cracktips (as defined by (1.13) and (1.14)) are global minimizers. 

Note that in the case of cracktips, the topological condition (1.5) on competitors 
for (u, K) is void, because K does not separate any pair of points. Thus cracktips are 
also minimizers for De Giorgi's definition, even though [DG] does not mention (1.5). 

Our proof of (1.15) will also give that all global minimizers that are sufficiently 
close to a cracktip are actually cracktips. The precise meaning of "sufficiently close" 
may vary a little. Here is an example of sufficient condition. 

(1.13) K = {(z,o) ; x ^ o} 

(a half-line) and u is given by 

(1.14) 
Q 

и (r cos ö, г sin 9) = ±у/2/тг r1/2 sin - + С 
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4 1. INTRODUCTION 

Theorem 1.16. — Let (u, K) be a global minimizer. Suppose that there is a connected 
component Ko of K such that K\Ko is bounded. Then (u, K) is one of the minimizers 
of the short list (1.9)-(1.12). 

As we shall see later, the only new case is when Ko looks like a half line at infinity, 
and then (u, K) is a cracktip. The other cases correspond to simpler global minimizers 
as in (1.9)-(1.11). 

Another result that we shall prove is that if (w, K) is a global minimizer and at 
least one of its blow-ins is a cracktip, then (u, K) is a cracktip. Since we want to 
avoid giving the definition of blow-ins now, the precise statement will only be given 
later. See Theorem 40.4. 

The two statements above can be seen as progress in the direction of the Mumford-
Shah conjecture. We can also hope that the techniques of this paper will be useful to 
get further information on Mumford-Shah and global minimizers. On the other hand, 
the results obtained here can be seen as one more perturbation result of the type 
"global minimizers that are close enough to a minimizer of the short list (1.9)-(1.12) 
are in the list". 

It seems very plausible that there exist simple domains ft (like the unit disk 5(0 ,1) ) , 
functions g G L°°(ft) (like the restriction to 5(0 ,1) of the cracktip function u in 
(1.14)), and minimizers (u,K) of the Mumford-Shah functional in (1.8), such that K 
is a C1 curve with an open end in ft (like K = (—1,0] in 5(0 ,1) ) . The results of this 
paper do not seem to imply this directly. 

The proof of (1.15) will be long and technical, but the general scheme is not too hard 
to describe. To make this paper less unpleasant to read, we give in the next section 
a reasonably precise description of the argument; this description would almost be a 
proof if we knew already that our minimizers are sufficiently smooth (for instance, 
finite unions of C1 curves). After this, we give the proof in all its gory details. 
Probably the reader will not want to see some of them (like the proof of existence of 
minimizers for a functional which is very close to to the usual one); we shall try to 
help by cutting the proof in fairly small steps with explicit titles, so that the reader 
can skip some sections and see where he stands in the general scheme. 

Our proof contains a few partial results that also hold for global minimizers, and 
may have independent interest. We also reprove some known results, because we 
need to extend them to our special minimizers. In particular we give (near Section 9) 
a slightly more detailed version of a proof of existence of Mumford-Shah minimizers 
from Dal Maso, Morel, and Solimini [DMS]. Note that this will be done also in [MaSo], 
without the slightly unpleasant worry about the extra boundary (—oo, —1], and with 
an argument that works in higher dimensions. 

We also check with a little more detail than in [Bo] the fact that limits of global 
minimizers are global minimizers (Section 12)(also see [Le3]), and that if (v,G) is a 
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2. A DESCRIPTION OF THE PROOF 5 

reduced global minimizer, R2 \ G has no bounded connected component (Section 15). 
In fact, every component of R2 \ G contains disks of arbitrarily large radii (Section 17), 
and is even a John domain with center at infinity (see Lemma 20.1 and Remark 20.5). 
We also have to settle the relatively easy case when v is locally constant somewhere 
(Section 18). 

The construction of a harmonic function w conjugated tov, as well as the descrip
tion of its boundary behaviour near G and the structure of almost all its level sets rm 
(as in Sections 25-32) could be useful in later developments. See in particular Lemma 
22.3, Propositions 25.1, 26.2, 28.2, 30.1, and the first lines of Section 32. 

We should mention here that since this manuscript was written, it has been proved 
[DaLe] that for reduced global minimizers, R2 \ G is connected (unless G is a line 
or a propeller). Some additional local regularity properties of G are deduced from 
this, but although these results can simplify some of the arguments below, they do 
not seem to allow enormous shortcuts. 

The second author wishes to mention the fact that the scheme of the proof is due to 
the first author. He is ready to admit that he is responsible for many of the technical 
details, though. Both authors wish to thank Marie-Claude Vergne for typing the 
manuscript. 

2. A description of the proof 

We shall denote by (UQ,KQ) the cracktip with 

for r > 0 and —7r < 6 < 7r, which corresponds to the sign + and C = 0 in (1.14). 

We shall assume that (UO,KQ) is not a global minimizer, and our first task will 
be to find a minimizer (v,G) ^ (UO,KQ) which looks a lot like (uo,Ko) at infinity. 
Unfortunately we shall not be able to do this with exactly the same functional J as 
above. The point is that if {u\, K\) is a competitor for (uo, i^o) which is strictly better, 
it is too easy to find even better competitors by just dilating (m, K\). To avoid this 
lack of compactness, we shall introduce slightly different functionals JR (where the 
parameter R is a large radius, and our competitors will be forced to equal (UQ,KO) 

out of BR). In the definition of JR we shall replace HX(K) with a nonlinear function 
of H1^). The usual theory of Mumford-Shah minimizers will still give us minimizers 
(UR,KR) of JR, and the effect of the nonlinear function will be to force KR to be a 
compact perturbation of KQ (with the symmetric difference KRAKO contained in a 
ball that does not depend on R), without having to put special constraints to that 

(2.1) K0 = {(x,0) ; x^O} 

and 

(2.2) 0 

UQ (r COS в, r sin в) = \¡2pK r1//2 sin -
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6 2. A DESCRIPTION OF THE PROOF 

effect. The desired minimizer (v, G) (of a slightly different functional) will then be 
obtained as a limit of the pairs (UR, KR). 

The rest of the argument consists in showing that any (reduced) minimizer (i>, G) 
(either for the initial Mumford-Shah problem or the slightly modified functional) that 
is close enough to (uo, KQ) at infinity must be a cracktip. This will then produce the 
desired contradiction. 

We shall have to use many of the known results on global minimizer (and their 
straightforward extension to our modified functional). In particular, we shall con
stantly use the fact that for H 1-almost every point Zo of G there is a small radius 
r > 0 such that GnB (z0,r) is a C1-curve that crosses B (z0,r). [See [Da] or [AFP].] 
We shall call such points z0 regular points of G. 

Since v minimizes J | Vf |2 locally, it is harmonic on R2 \ G. We shall check that v 

has a harmonic conjugate, that is, a harmonic function w on R2 \ G such that v + iw 
is holomorphic on R2 \ G « C \ G. This is a (probably quite classical) consequence 
of the fact that v satisfies the Neumann condition dv/dn — 0 on the boundary G. 
See Section 22. 

Next we want to check that w has a continuous extension to R2, and that this 
extension is constant on each connected component of G. This is not surprising, and 
would even be very easy if we knew that G is sufficiently smooth. The point is that 
at the locations where G is a C1-curve, v and w have C1 boundary values (one from 
each side of the curve). [See Section 14.] Prom the Neumann condition dv/dn = 0 
and the definition of w we deduce that the tangential derivative dw/dr = dv/dn 
vanishes, so that the boundary values of w near regular points are locally constant. 
This essentially gives the result; the technical part of the proof consists in checking 
that w does not have weird jumps near the (possibly infinitely many) non regular 
points of G. See Sections 25-27. 

We shall need to know that for each regular point ZQ of G, 

(2.3) the jump of v at zo is ^ 0. 

By jump of v we mean the difference between the boundary values of v from both 
sides of G; we do not need to be precise about the sign of the jump here. This will be 
fairly easy to check: if v had no jump at zo, we would be able to produce a competitor 
strictly better that (v, G) by removing a small arc G fl B (zo, r) near ZQ from G, and 
modifying v in B (zo, 2r) so that the values in B (zo, r) patch nicely. By choosing r 
small enough (and because v has no jump at zero) it would be possible to do this 

removing a piece from G is allowed by our topological condition (1.5), because R2 \ G 
has only one unbounded component. Thus we would get a contradiction, and (2.3) 
holds. See Section 16 for details. 

with a much smaller loss in energy ( / 'V^ '2 ) than R l ( G n B ( * o , r ) ) - Note that 
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2. A DESCRIPTION OF THE PROOF 7 

A consequence of (2.3) is that 

(2.4) R2 \ G is connected 

In other words, R2 \ G has no bounded connected component. Indeed, if Q was a 

bounded component of R2 \ G, we would be able to find a point z$ e 80, which is a 

regular point of G. Note that we can add any constant to v in Q without affecting 

the minimizing property of (v, G). By choosing the constant correctly, we can arrange 

a contradiction with (2.3). This proves (2.4). [See Section 15, and Section 17 for a 

more precise result.] 

An important part of the argument is the study of the level sets 

Trn = {z e R2 ; w(z) = m}. 

Let us normalize w (by adding a constant to it) so that w(z) = 0 on the unbounded 

component of G. We shall prove that rm = 0 for m > 0 and rm is a rectifiable 

Jordan curve through infinity for almost all m < 0. Moreover, the function v is 

strictly monotonous on each such Jordan curve. 

If G had only count ably many connected components, this would be fairly easy. Let 

us describe the argument in that case. Because w is constant on each component of G, 

only countably many sets Tm can meet G. For the other values of m (and if Tm ^ 0 ) , 

Tm is a level set of the harmonic function w in R2 \ G. Note that w is not locally 

constant anywhere in R2 \ G, because R2 \ G is connected and this would imply that 

v is constant on R2 \ G. [This is not possible if (v, G) looks like (UQ, KQ) at infinity.] 

Thus Tm is composed of analytic arcs, which may possibly meet in a starlike way 

at critical points of w. These critical points are zeroes of the holomorphic function 

(v + iw)f, so they are isolated point in R2 \ G. They are also isolated points in 

Tm C R2 \ G. Because (v, G) is close to (u0, KQ) near infinity, it will be easy to check 

that w has no critical point in a neighborhood of infinity. Altogether, Tm contains 

only finitely many critical points. Thus Tm has a simple structure: finitely many 

analytic arcs that connect critical points or go to infinity. 

Next rm does not contain any (closed) loops. Indeed, suppose 7 is a loop in Tm, 

and denote by Q the bounded domain with boundary 7. We may assume that Q 

is minimal (among such domains), because Tm is composed of finitely many arcs. 

Then Tm does not meet (This also uses the fact that arcs of Tm have to end at a 

critical point or escape at infinity). So w — m does not change signs on ft. Assume 

for definiteness that w(z) > m on Q. Except at (a finite number of) critical points, 

the normal derivative dw/dn (with a choice of normal pointing into Q) is positive on 

d£l, and so the tangential derivative dv/dr = dw/dn is also positive (if we choose the 

trigonometric orientation on 7 = dQ). Thus v is strictly increasing along 7, which is 

of course impossible since 7 is a loop. 

Thus Tm has no loops. Then each connected component of Tm is a tree, with finite 

arcs connecting critical points and infinite arcs escaping to infinity. Because (f, G) is 
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8 2. A DESCRIPTION OF THE PROOF 

close to (^o, KQ) near infinity, we can easily check that there are at most 2 branches 
of Tm going to infinity. [We shall find lots of large radii R for which dBR n Tm has at 
most 2 points.] Then the only options are Tm = 0 (which happens for m > 0) and 
Tm is a Jordan curve through infinity (which happens for m < 0). 

The fact that v is strictly monotonous on Tm when Tm is a Jordan curve as above 
is easy, because we now know that there is no critical point on Tm (they would create 
too many branches) and dv/dr = dw/dn does not change signs on Tm. 

In the general case when G has uncountably many connected components, we 
can exclude first the countably many values of m for which rm meets a nontrivial 
connected component of G. [There is at most countably many such components, since 
each of them has positive measure.] Nonetheless we are left with a bad subset G' of 
G (the set of points x G G such that { # } is the component of x in G). Of course 
if1(G/) = 0 because G' contains no regular point of G, but nonetheless G' could a 
priori meet many (or even most) Tm. We shall have to check that G' has a small 
effect on the properties of Tm described above, at least for almost every value of m. 
See Sections 28-32 for details. 

Our study of the level sets Tm will allow us to give a good description of the vari
ations of the boundary values of v on G when you turn around a bounded connected 
component Go of G. The only interesting case is when Go is not reduced to a point. 
Then almost every point of Go is a regular point, and v has boundary values at those 
points (from both accesses). 

We shall prove that when you turn around Go and restrict to regular points, the 
variations of (the boundary values of) v are as simple as they can be: v is strictly 
increasing and then strictly decreasing. Let us only give a fairly loose argument 
here, based on Figures 2.1 and 2.1 bis below, just to convince the reader that this 
is coherent with what we know from the behavior of v on the level sets Tm. Denote 
by mo the constant value of w on Go (so that Go C rmo). We can find sequences of 
numbers m tending to mo from above and from below, such that each Tm is a Jordan 
curve through infinity and v is strictly monotonous on Tm. Note that these curves 
do not meet each other, and all the points of Go are limits of points of such curves. 
[Indeed, otherwise w would have a local minimum somewhere, and since almost all 
its level lines contain no loop, this would force w, and then to be locally constant 
somewhere.] We shall see in the proof that this forces a behavior of v on Go like the 
one suggested by Figure 2.1. and Figure 2.1 bis. See Section 34. 

To continue our argument we set mo = inf {w(z) ; z G G } . Note that mo > —oo 
because G has only one unbounded component Goo, and G \ Goo is bounded. Next 
set 

(2.5) Q0 = {z G R2 ; w(z) < m0} . 
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2. A DESCRIPTION OF THE PROOF 9 

FIGURE 2.1 FIGURE 2.1 BIS 

FIGURES 2.1 AND 2.1 BIS. The arrows indicate the direction where v increases. 

The minimum of v is at m and the maximum at M. 

It is not too hard to show that 

(2.6) dQo is connected. 

Actually, we shall not really need to check (2.6), it will be enough to know that dQo 

is the limit of Jordan curves Ymi m < mo. 

For each fixed point x G 17Q, set 

(2.7) q (r) = 
1 

2 lim $(r) = 1 
Wv\z 

for r > 0. Because of (2.6), we can apply the monotonicity argument of [Bo] to get 

that 

(2.8) $ is nondecreasing. 

Indeed, the argument in [Bo] only needs (2.6), plus the fact that v is harmonic and 

dv/dn = 0 on <9̂ o- This last property holds on dflo fl G by the Neumann condition 

on f, and on d£lo \ G C rm o D (M2 \ G) because dv/dn = dw/dr = 0 there. See 

Section 35. 

Set £(x) =lim $(r) . We can use (2.8) and the fact that (v,G) looks like (uo,K0) 
r—>0 

at infinity to show that £(x) ^ lim $(r) = 1. 
r—>-oo 

Because the only case when $(r) can be locally constant in the monotonicity ar

gument of [Bo] is the case of a multiple of a cracktip, we even get that £(x) < 1. 
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It is also possible to get rid of the case when 0 < £(x) < 1. The rough idea is that 

in this case (v, G) would have blow-ups at x for which the analogue of $ is constant. 

These blow-ups would have to be multiples of cracktips (as above), and they also 

would have to be global minimizers (as are all blow-ups of (v,G)). This last would 

force £ ^ 1 (essentially, by direct computation on a cracktip). 

The argument in Sections 36-37 is a little more complicated than what was just 

implied, because we have to take care of the difference between fi0 H B(x, r) and 

B(x,r) \ G i n (2.7). 

So we finally get to know that £(x) = 0 for all x G ft0. Modulo the difference 

between Qo C\B(x, r) and B(x, r) \ G, this means that all points of QQ are "low energy 

points". We are only interested in points xeGnfto = Gn dQo and (like in the 

standard Mumford-Shah theory for low energy points) we shall be able to prove that 

all points of G fl dQo are either regular points of G (as defined above) or "spider 

points". This last means that for r small enough, G fl B(x,r) is the union of three 

disjoint G1 arcs that connect x to dB(x,r), and make 120° angles with each other at 

their common endpoint x. 

We are now fairly close to the final contradiction. Pick a point xo G dQo fl G. 

Note that G is not connected, because otherwise the argument in [Bo] would show 

that (v, G) is a cracktip. Thus we can choose #o out of the unbounded connected 

component G ^ of G. [This uses the fact that w = 0 on G^ and w < 0 everywhere; 

actually we even show that mo < 0, so that dflo does not touch Goo.] Finally denote 

by Go the connected component of Xo in G. Since xo is a regular or a spider point of 

G, Go is not reduced to one point. 

We now use our description of the variations of (the boundary values of) v when 

we turn around Go- We shall use a parameterization z : S1 —• Go of Go, which we 

shall call the "tour of Go", and which corresponds to turning around Go (once) in the 

trigonometric sense. For almost-every t G S1, z(t) is a regular point of G, and z'(i) 

exists and is nonzero. For such t, v has a limit at z(t), where we only consider the 

access from R2 \ G from the right of G (which makes sense because z'{t) ^ 0). Call 

this limit u(t). It turns out that u has a continuous extension to S1 and that, as was 

suggested above, S1 splits into two intervals I\ and I2 with disjoint interiors, where 

u is respectively strictly increasing and decreasing. 

When t G /1 and z(t) is a regular point of G, the part of R2 \ G on the right of G 

near z(t) lies in f^o, because dw/dn = —dv/dr < 0 at z(t). Hence z(t) G dflo, and 

this stays true for all t G /1 by continuity. 

So z(Ii) is entirely composed of regular and spider points of G. Since spider points 

are isolated by definition, and Go is compact, there are only finitely many of them. 

Hence z(Ii) is composed of finitely many G1 arcs, which may only meet at spider 

points. See Figure 2.2; we do not know how ugly G can be on ^(/2), but we shall not 

care. 
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f(h) 

f(h) 

FIGURE 2.2. Symbolic picture of z(h). 

Note that the restriction of z to I\ is injective. This comes from (2.4), which forbids 
the existence of any loop in G, and our description of z(I\) as a finite union of G1 
curves with no endpoint in I\ (which prevents z{.) from arriving at the end of an arc, 
and then returning on the other side, as one imagines happens for a cracktip). 

Let t G I\ be such that z(t) is a regular point. Then there is another point 
t* G S1 \ {t} such that z(t*) = z(t), and we know that t* G h because t G I\. 
Set u*(t) = u(t*). One can check that t* is a (locally) decreasing function of t (by 
plane topology and because z turns around G in the trigonometric sense), hence u* is 
increasing on I\ (because u is decreasing on I2). This is true near points t G /1 such 
that z(i) is regular, but when z(t) is a spider point, t* and u*(i) may have jumps, 
which are respectively negative (by topology again) and positive. 

Altogether, u is continuous and increasing on /1 (the continuity comes from the 
fact that all points of z(i) are regular or spider points), and u* is increasing also, with 
a finite number of positive jumps that come from spider points. Also, u(i) ^ u*(i) on 
/1, because of (2.3). [When z(t) is a spider point, u*(t) takes two values, and both 
are different from u(t).] 

Here comes at last the contradiction. Call a the initial endpoint of I\. Because u 
increases on /1 and decreases on I2, u(a) = ini{u(t);t G S1}. Hence u(a) ^ u*(a), 
with obvious adaptation to the case when z(a) is a spider point. Since u*{t) ^ u(t) on 
i i , u is continuous, and u* has only positive jumps, we get that u*(t) > u(t) on I\. In 
particular, if b denotes the endpoint of /1, we get that u*(b) > u(b). But u*(b) ^ u(b), 
by the same argument that led to u(a) ^ u*(a). This contradiction will complete our 
proof. 

For the rest of this paper we shall try to give proofs that are as detailed as seems 
reasonably possible. Hopefully the reader will be able to skip rapidly through some 
sections; we shall try to make this easier by giving explicit names to them. In some 
occasions, we shall ask the reader to believe that the usual proof that Mumford-
Shah minimizers have some property extends to the situation of this paper, instead 
of repeating the (long) proof; we shall try to limit these occasions to a small number. 
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CHAPTER B 

EXISTENCE AND REGULARITY RESULTS 
FOR A MODIFIED FUNCTIONAL 

3. The functional JR, R > 1 

As we said in the introduction, our general plan for proving (1.15) is to assume 
that the cracktip defined by (2.1) and (2.2) is not a global minimizer, try to use this 
to define an other, exotic minimizer, and eventually derive a contradiction. 

Our first stage will be to define, for each R > 1, a functional JR which is fairly 
close to the global Mumford-Shah functional of the introduction, and which admits 
minimizers that are not the cracktip. For JR we shall force our competitors to coincide 
with (uo, KQ) outside of BR = B(0, R), but later on we shall let R tend to +oo, and 
then undesirable local boundary effects will disappear. 

Let us first define our set UR of acceptable competitors. Set 

(3.1) 
UR = {(v, G) eU0:G contains L = (-oo, - 1 ] , G\BR = K0\ BR, 

and v(x) = u0(x) for all x e l 2 \ (BR U K 0 ) } , 

where UQ is the set of admissible pairs in the introduction. Next set 

(3.2) JR(v,G)=h(H1(Gjmjmjmjm^L)) + 
BR^G 

\Vv\2 

where h is a nice increasing function with the following properties. First 

(3.3) h(t) = t for O ^ t ^ h , 

where t\ ^ 2 will be chosen soon. The main point will be to make sure that (u$, K$) 
does not minimize JR. Next we want that 

(3.4) h(t) = At for t large enough, 

with a (large) constant A that will be chosen later. The point here is that if A is large 
enough, it will not be worth taking competitors with large values of HL(G \ L). This 
in turn will help us prove that for minimizers (VR, GR) of JR, GR \ L stays bounded 
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(independently of R). We also require that 

(3.5) h be increasing, convex, of class C 1 , 

and that 

(3.6) h'(Bt) ^ 2ti(t) for all t > 0, 

with a large constant B to be chosen later. [So h! only increases very slowly; this will 

make our life easier.] 

Of course the constraints on h are not optimal; we only want a reasonable choice 

of h to work with. 

We shall now choose ¿1; the other constants A and B will be chosen later in the 

proof. Since we have assumed that (uo,Ko) is not a global minimizer, there is a 

competitor (ui,Ki) for (uo,Ko) which does strictly better. Thus (ui,Ki) coincides 

with (UQ, KQ) (as in (1.3) and (1.4)) out of some ball Bi = B (0, Ri), and 

(3.7) H 1 ( i ^ n ^ i H 
BR^K 

| V ^ i | 2 < ( X 0 n £ i ) + 
BR^K 

iVunl 2 

[See (1.7) and the remark that follows; also note that (1.5) is void here, because 

R2 \ KQ is connected.] 

A small computation using the homogeneity of UQ shows that K2 — R±lKi and 

v>2(x) = R^^ui (R\x) also have the properties above, but with the radius R2 = 1. 

Thus we may assume that (u\,Ki) was already chosen with R\ = 1. Then (m, K\) G 

UR for all R ^ 1. We now choose t\ ^ 2 so that H1(Ki \ L) ^ t \ . With this choice 

of ¿1, 

(3.8) JR(u1,K1)=H1 ( i ^ i \ L ) + 
BR^K 

| V ^ | 2 

< H (Ko \ L) + 
JBR^KQ 

\Vu0\
2 = JR (UO,K0) , 

by (3.7), and because the contributions from BR \ i?i and H 1 (L fl £ # ) are equal. 

Set 

(3.9) ri(R)=mI{JR(u,Kcvddd) ; (u,K)eUR}. 

We have just seen that 

(3.10) rj(R) < JR(U0,K0). 

In the next few sections, we want to prove the existence of minimizers for the 

functional JR on UR. At the same time, we want to derive some information on 

the minimizers. All this will be very close to standard proofs in the Mumford-Shah 

theory. We shall give the details anyway, both for completeness and because we need 

to convince the reader that some of our estimates do not depend on A. 
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4. LOCAL AHLFORS-REGULARITY FOR MINIMIZERS OF JR 15 

Our proof of existence will use minimizing sequences and uniform estimates (like 

the concentration property of [DMS]), instead of the compactness properties of BV 

or SBV. Because of this, it will be useful to consider also the restriction JR of JR to 

the smaller class of candidates 

(3.11) UR = {(u, K) G UR : K has at most k connected components} . 

The advantage of this class, as we shall see, is that JR automatically reaches its 

minimum on UR. 

4. Local Ahlfors-regularity for minimizers of JR 

Let R > 1 be fixed, and let (v, G) be a minimizer for JR (on UR) or for JR (on 

ukR). 

We shall systematically assume that (v, G) is "reduced", which means that there 

is no closed subset G' of G, with G' ^ G and L C G', and such that v has an 

extension in W^2(M.2 \ G'). In the case of JR, we only consider sets G' with at most 

k components. In other words, we require that G be minimal with the given v. It 

is fairly easy to replace any minimizer for JR (or JR) with a reduced minimizer with 

(essentially) the same v. Set 

(4.1) G~=G\L = G\ ( - o o , - 1 ] . 

The main purpose of this section is the prove that G~ is locally Ahlfors-regular, 

like in the elimination lemma of [DMS]. We start with simpler properties. 

Lemma 4.2. — For x G M2 and r > 0, 

(4.3) H1 (G~ HB(x,r)) ^2irr. 

To prove this, simply compare (v, G) with the competitor (vi , Gi) where 

(4.4) Gi = GUd (BR Pi B(x, r)) \ (G~ n B(x, r)) , 

and vi is the same as v except on BR n i?(x, r), where we take t>i to be any constant. 

It is clear that (vuGi) G UR. If (v,G?) G £/£ and G n £ ( x , r ) ^ 0 , then Gi does 

not have more connected components than G, and (i>i, G±) G UR as well. [Otherwise, 

(4.3) is true trivially and we don't need to worry.] Obviously 

(4.5) f | V « i | 2 = / \Vv\2-( \Vv\2^[ \Vv\2, 

JBR^G! JBR\G JBRnB(x,r)\G JBR\G 
and since 

(4.6) H1 (GJ-) < H1 (G~) - 1 (G~ H £ (x , r)) + 2nr 

by (4.4), we get (4.3) by minimality of (v, G). • 
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16 4. LOCAL AHLFORS-REGULARITY FOR MINIMIZERS OF JR 

The same argument also tells us something about 

a = 
BRDB(x,r)^G 

\Vv\2. 

Let us assume that 

(4.7) GHB(x,r) ^ 0 , 

so that Gi above does not have more connected components than G and (v\ , Gi) G 

if (v,G) G Ufr. Since ( f ,G) is a minimizer, 

If t ^ (f?2 — l ) if1 (G ), this is an immediate consequence of (3.6) (because hi 

is nondecreasing). Otherwise H1 (G~) < t/(B2 - 1) < 10rG/(£2 - 1) and, if B is 

large enough, a comparison with (4.9) gives that H1 (G~) ^ 1. In this case A = 1, 

t < 10rG ^ 20B, and (4.11) follows again from (3.6). 

We may now return to (4.8). Note that H1 (Gj~) ^ H1 (G")-\-2irr by (4.6). Hence, 

if r ^ re we may apply (4.11) with t = 2nr, and (4.8) says that a ^ 87rrA. Let us 

summarize. 

Lemma 4.12. — If (v, G) minimizes JR or J^, x G M2, 0 ^ r ^ re, and if (4.7) holds, 

then 

(4.13) / \Vv\2 ^ SnrX. 

We now come to the more delicate part of this section, the local Ahlfors-regularity 

of G~. The next result is only a minor modification of the "elimination lemma" in 

[DMS]. Our proof will be more like the one in [MoSo] or [DaSel]; we shall repeat the 

main lines because we need to be careful about the dependence on constants. 

Proposition 4.14. — There is a constant C\ ^ 1, that does not depend on A, B, or R, 

such that for all R > 1, all minimizers (v, G) for JR or for some J^, all x G G~ and 

all radii r > 0 such that 

(4.15) r^rG 

(4.8) a < /i (tf1 (Gi)) - h (H1 (G~)) 

by (4.5) and (3.2). This will be easier to use if r is not too large. Set 

(4.9) rG = B + BH1 (G~) , 

where B is as in (3.6), and 

(4.10) \ = \G = ti(H1(G-)). 

Let us check that 

(4.11) hfi1 (G~)+t) ^hfi1 (G~)) + 4A£ for 0 < t ^ 10rG. 

/ 
J BRnB(x,r)^G 

ASTÉRISQUE 274 



4. LOCAL AHLFORS-REGULARITY FOR MINIMIZERS OF JR 17 

we have that 

and 

(4.16) B(x,r) C f l f l \ { - 1 } , 

(4.17) H1 (G~ 0 £ (x , r)) > C f V . 

We want to prove the proposition by contradiction, and so we assume that we can 

find x, r as in the statement, but such that (4.17) does not hold. We want to produce 

a contradiction (if C\ is large enough). 

First observe that since (v, G) is a reduced minimizer, H1 (G fl B(x, p)) > 0 for all 

p > 0. This uses the fact that closed sets with vanishing one-dimensional Hausdorff 

measure are removable for bounded functions in W^2. In more concrete terms, if 

H1 (G fl B(x, p)) = 0 for some p > 0, we could extend v through G fl B(x, p) to get a 

function in near x- The argument is classical (see already [MuSh]), and so we 

do not elaborate. 

Since x G G~ = G \ L we also get that if1 (G~ D B(x,p)) > 0 for all p > 0. 

By a minor variant of the Lebesgue differentiation theorem (see for instance [Ma], 

page 86), we know that for H 1-almost all y G G~, 

(4.18) limsup p~lHl (G~ n p)) ^ 1. 

In particular, we can find points y G G~ OB (x, r/10) such that (4.18) holds. For such 

points, the disk B (y, r/10) still satisfies the constraints (4.15) and (4.16), and does 

not satisfy the conclusion (4.17) either, except for the fact that we have to replace C\ 

with 10Gi. Thus we may as well assume that our first choice of x satisfies (4.18). 

All the disks B (x, 10_Jr), j > 0, satisfy the hypotheses (4.15) and (4.16). Because 

x satisfies (4.18) (and if C\ > 10, say), many of these disks satisfy (4.17). Thus we 

may replace our initial choice of r with a new one (of the type 10~-7r, but which we'll 

call r immediately), which still satisfies the negation of (4.17), i.e., 

(4.19) H1 (G~ H B{x, r)) < C f V , 

but for which r/10 satisfies (4.17), i.e., 

(4.20) H1 ( G " n £ (x , r /10) ) > (10Gi)_1r. 

We want to show that this is impossible if C\ is large enough. We shall start with 

the most delicate case when 

(4.21) B(x,r/8) meets L. 

Denote by x\ the point of L closest to x. Obviously 

(4.22) \xDGDiDGDG-x\<r-. 
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18 4. LOCAL AHLFORS-REGULARITY FOR MINIMIZERS OF JR 

We want to construct a competitor (vi,G\) that should be better than (v, G), by 
removing a good part of G~ D B(x,r). We first choose a disk B\ — B (# i , r i ) with 
the following; properties: 

(4.23) 2r 
3 

<<r1 << 3r 
4 

(4.24) â lpi n G" = 0. 

(4.25) 
Vv|2 ^ 

|Vv|2 ^ 103A, 

and 

(4.26) 
G-nJ3(x,r) 

dist {z.dBx)'112 dllHl{z) ^ ll7, 

where we set 

(4.27) 7 = 
100 
r 

3r/4 

t=2r/3 G~nB(x,r) 
dist (z, dB (xut))~1/2 dH\z)dt. 

The precise reasons for our last constraint (4.26) will become clear later. Let us 
first observe that we can choose B\ as above. Indeed the set of radii r\ that satisfy 
(4.23) but not (4.24) has measure ^ Gf V because of (4.19). [This set is contained in 
the image under the 1-Lipschitz mapping z —• \z — x±\ of G~ n B(x,r).] So most of 
the choices of r\ in (4.23) satisfy (4.24). Similarly, (4.25) holds for most choices of r\ 
because of (4.13), and we can also add the final constraint (4.26), by Chebyshov and 
the definition of I. 

So we can choose B\ with the properties (4.23)-(4.26). Note that since x\ G L, 
\xi - x\ ^ r/8 (by (4.22)), and B(x,r) C BR \ { - 1 } (by (4.16)), we know that the 
half-line L contains a diameter of B\. Let us first modify G and v in the upper half 

(4.281 B* = { ( a , llllb) G B\ ; blll > 0} 

oîB1. We take 

(4.29) Gi = G \ ^ + , 

and let t»i be the function defined on M2 \ Gi, equal to von 12 \ [B^ U G) , continuous 

on 7?^ \ L, harmonic on and which minimizes 

(4.30) E1 = 
Bt 

| V ^ | 2 . 

Note that the half-circle 8B^ \ L does not meet G because of (4.24); hence the 
values of v\ on Bf can be computed from the values of v on OB* \ L by first 
extending these to dB\ by symmetry, and then taking the restriction to B± of the 
Dirichlet extension. We shall give more details about this construction after (4.53); for 
the moment, let us just observe that (v±,Gi) G UR. We also have that (v\,Gi) G UR 
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if (v,G) G UR. The point is that the piece of G that we have removed could not be 

essential to connect together pieces of G\: the remaining piece LnBi can be used at 

least as efficiently. 

Now we want to compare our two candidates, and in particular estimate the cost 

in energy that we have to pay for removing G fl B± , namely, 

(4.31) AE = E1-E = E1- [ \Vv\2. 
JB+^G-

In the computations that follow, and in order to get more rapidly to the central 

part of the argument, we shall integrate by parts on the slightly irregular domain 

ft = Bf \ G~ without much justification. These integrations by parts are the same 

(in fact, a little simpler because there is no initial image g here) as in [MoSo], where 

they are carefully justified. 

For the sake of completeness, let us also describe an (essentially equivalent) way 

to deal with this issue. For each small e > 0, we can surround G~ fl B± by a finite 

collection T£ of piecewise C1 curves. In fact, we can even take T£ to be composed of 

line segments and arcs of circles, to stay within e of G~ fl B±, and to be contained in 

B± U (L fl B\). Then consider the domains Q£ bounded by dBf U T£ and contained 

in Q. On these domains we define harmonic functions v£, with the same boundary 

values on dB± and vi, and which minimize the energy Ee — I |Vv£|2 . 

On the domain Q£ we can integrate by parts, and the argument below will give 

good estimates on E\ — E£ that do not depend on e. It is easy to check that (after 

taking a subsequence if you wish) the functions v£ converge to v, and that E£ tends to 

E. We then get the desired estimates on AE with a limiting argument (and without 

integrating by parts on irregular domains). Let us not give more details here (and 

refer to [MoSo]), but only mention that the construction of the curves T£ and domains 

ft£ will be done later, although in a slightly different situation (see Section 23), and 

the limiting arguments concerning v£ and E£ also (see Section 24). 

So let us proceed to our estimate of 

(4.32) AE = J { l V ^ i | 2 - | V t ; | 2 } -

Write |V^i|2 — |Vv|2 = V (v\ — v) • V (vi + v); then Green says that 

(4.33) AE = - (vi -v)A (vi -h v) + (yi - v) 
d (vi + v) 

dn 
dH1 

= 
an 

(vi - v) 
d (vi + v) 

dn 
dH\ 

with the choice of unit normal n to dtt that makes the signs in our formula right, and 

because v and v\ are both harmonic on Q. 
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Decompose dQ, into three disjoint pieces c?i, 82, $3, with 

(4.34) di=dB+\L, d2 = dB+ fi L, and ^3 = G " n B j - . 

By definition of v\ (and also (4.24)), v\ — v vanishes on d\. So we may forget 

about d\ in (4.33). Next dvi/dn = 0 on 82] this is the (classical) Neumann condition 

on v\ that comes from the minimality of E± (through the Euler-Lagrange condition). 

Similarly, dv/dn = 0 on d2 U 9 3 . Thus we can also forget about d2 in (4.33), and 

(4.33) simplifies to 

(4.35) AE = 
bn 

(vi - v) 
d (vi + v) 

dn 
BR^K 

BR^K 
(vi - v) 

dvi 

dn 

Note that we just committed a slight abuse of notation, because in the last integral, 

we still mean an integral on #3. Thus it is implied here that a given point of G~ nB* 

may be counted more than once in the integral (in general, twice and with opposite 

orientations of the unit normal). 

We can also get rid of vidvi/dn in (4.35). First apply Green's formula on B+ to 

get that 

(4.36) 
BR^K 

V « ! | 2 = -
1st 

BR^K 

JdB+ 
cv 

dvi 

dn JdB+ 
Vi 

dvi 

on 

because v\ is harmonic on B± . The same computation with the domain £1 = B± \ G 

yields 

(4.37) 
iBi 

BR^K 

vx<w 
| V V l |

2 = 
dB+ 

Vl 
dvi 

dn + 
IG-(IB+ 

Vl 
dvi 

on 

with just one additional term that comes from the inside boundary, and with the same 

convention (or abuse of notation) concerning integration on G~ fi B* as in (4.35). 

Prom (4.36) and (4.37) we get that 

(4.38) 
JG-DB+ 

dv-i 

dn 
= 0, 

and then (4.35) yields 

(4.39) 
BR^KBR^K 

G-HB+ 

dvi 
V dn ' 

This is the usual formula about jumps (except that we managed to get to it without 

talking about jumps). Indeed it turns out that almost every point of G~ D B* is 

counted twice in (4.39) (one for each access from (1), with opposite choices of unit 

normals. Note also that v\ is differentiate on G~ D B± because it is harmonic on 

B^ . We may choose to regroup the two occurrences of almost each point of G~ fl B*, 

and then we would be integrating 3ump(v)dvi/dn in (4.39). We decided to avoid this 

way of presenting things, because it makes it more clear that our computations also 
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work in approximating domains Q£ (as above), and almost allows us not to mention 
that G~ is rectifiable. 

To estimate AE we shall use a localization argument. Let D be any disk centered 
on d3 = H G~ and with radius lOGfV. Note that 2D C B(x,r) by (4.22) and 
(4.23). Hence (4.19) and the same argument as for (4.24) (with the image of 2DnG~ 
by a Lipschitz mapping) allow us to find a new disk Df with the same center as D, 
such that D c D ' c 2D, and 

(4.40) dD' H G~ = 0 . 

Also, because of Lemma 4.12 and our hypothesis (4.15), we can even take D' so that 

(4.41) 
JdD'^L 

\Vv\2 ^ 103A. 

[Here (4.7) holds because D is centered on G , and we use Chebyshov as for (4.25).] 

Set D" = D1 fi B^, call D'" the connected component of D" N G that touches 
dD" \ G, and denote by 

(4.42) osc (v ; D,n) = sup v — mi v 

the oscillation of v on D'" . We want to check that 

(4.43) osc (v ; £>'") ̂  osc (v ; <9£>" \ G), 

and even that 

(4.44) supv ^ sup 
D"' dD"^G 

and the similar (but opposite) inequality for the infimum. This is just saying that the 
values of v on D'" are controlled by its values on the part of d{D" \ G) which is not 
contained in G. 

At this point we should rapidly discuss the uniqueness of v. We know that v 
minimizes the energy / = $D„^L |Vi>|2, with the given boundary values on dD" \ 
G. If v' e Wl>2(D" \ G) has the same boundary values as v on dD" \ G, and 
JD"^L № V ' \ 2 = then, by the strict convexity of the L2-norm, \{v + v') does strictly 
better, unless \Vv'\ — \Vv\ almost everywhere on D" \ G. Thus v may not be unique, 
but \Vv\ is. In the situation above, we can take v' — Min{v(z), sup v\ and get 

dD"^G 
that \V(vf -v)\ = 0 on D" \ G. This implies that i/ = v on and (4.44) and 
(4.43) follow. 

If W is a connected component of D" \ G that does not touch dD" \ G, we only 
know that is is constant on W, but the value of the constant could be anything, 
and will not matter. 
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Note that dD" \ G = <9Z}" \ L (because of (4.24) and (4.40)), and that it is 
connected. Thus 

4.45) osc (v ; dD" \ G) ^ 
JdD"\L 

Vv\dHx 

^H1 (b,bdD"\L)1/2 
fhf3C1-1/2r 

\Vv\2 

1/2 

^ (407rG1-1r)1/2 (2.103A)1/2 < 103C1-1/2r1/2A1/2/2r1/2A1/2 

by Cauchy-Schwarz, because dD" \ L c (ftBi \ G) U (<9-D' \ L), and by (4.25) and 

(4.41). Prom (4.43) and (4.45) we deduce that there is a constant Co such that 

(4.46) Hz) - CD\ < 103G1-1/2r1/2A1/2 for z e D"'. 

We are almost ready to plug this in (4.39), but let us first check that 

(4.47) 
'd3nD" 

dv\ 

on 
= 0, 

where ds = fl G as usual. Indeed, 

(4.48) 
JD" 

Avi 
' D'nBl 

Avi I 
JdD" 

dvi 
dn 

by Green, and the same computation on the almost identical domain D" \ G gives 

(4.49) 
J D" Jd{D"^G) 

dv\ 

dn JdD" 

dv\ 

dn 
ID"C\G-

dvi 

dn 

(with the same abuse of notation as usual, and because L does not meet B* (and 
hence D" n G = D" n G~)) . This proves (4.47). 

Note that (4.47) stays true if we replace D" with another regular domain contained 

in D" and whose boundary does not meet G~~. Actually we shall use (4.47) with 

domains of the type D" \ IJjLi Dj > where the D" are constructed just like D". 

Cover ds by disks Z^-, j ^ 1, centered on $3 and with the same radius lOCf V, in 

such a way that the 2Dj, j ^ 1, have bounded overlap. For each Dj, select as 

above, and set D" = D'j fl J3+. Obviously the D" still cover ^3, because d% C -£?Ĵ-

Finally set D* = \ ^fc • Then 

(4.50) A E = -
07h 

V on 
3 Jd3nD* 

dvi 

on 

by (4.39), and because the Dj are disjoint and cover $3. We can apply (4.47) to D*, 

because dD* is composed of pieces of dD'l, k ^ j , and dD'l does not meet G~ (by 

(4.24) and (4.40)). 

To compute fdsnD* vdv\/dn, we would like to use (4.46), but it only tells us about 

the values of v in D'", the component of D" \ G that touches dD" \ G. We also need 
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to control v in the other components of D" \ G. Let W be such a component; then 

W is also a component of R2 \ G. Also, 

(4.51) diam W ^ H1 (dW \ L) = H1 (dW n G~) ^ if1 (G~ n D'J) < CfV, 

by (4.19). Hence does not meet any dD% (because dD%\L is connected, contained 

in R2 \ G, and its diameter is at least lOGf 1r). Thus W is either contained in Dj, 

or does not meet it. If we add or subtract a constant to v in W, this does not change 

Jd3nD* vdvxjdn, because either dWDd3n D* = 0 , or else dW C (d3 PI Dfj U L, and 

then JQ ndWnD* dvi/dn = fdw dvi/dn = 0 as well, by the proof of (4.47). This is 

not too surprising, because adding a constant to v in W does not change AE either. 

So let us replace v by the same constant CD3 as in (4.46) in all the components 

W, so that now (4.46) holds with D'" replaced with D" \ G. Then 

(4.52) 
'dsCiD*. 

V 
dvi 

dn \Jd3nD* 
(v-CDi) 

dvi 

dn 
103C71/2r^2XJJMMÙMÙ*<<MM^2 

a3nD* ! 

ùùù 

dn I 

because (4.47) allows us to remove a constant, and by (4.46). Then (4.50) yields 

(4.53) AE ^ 

j 

103C71/2r^2XMKMÙ^2 

lmklm 

I dvi 

dn 

103C71/2r^2X^2JFJÙMÙÙ1ll03C71/2 dv\ 

I dn 

Next we want to estimate the derivative of v\ on B±. We first return to the way 

we can compute v\ from its boundary values on dB± \ L. Denote by w the function 

defined on dBi which is equal to v on dB± \ L and which is symmetric with respect 

to L. [In other words, take w(a, —b) = w(a, b) = v(a, b) for (a, b) e dB± \ L] Note 

that w is C1 on dB\ \ L (because v is harmonic away from G and dB\ does not 

meet G - ) , and it is even continuous across the two points of dB\ fl L, because it is 

symmetric and has limits at those points. This last comes from (4.25), which implies 

that JdBl^L |Vu| < +oo. Denote by v\ the harmonic extension of w to B±. It is 

also the (unique) continuous function on 5 i which coincides with w on dB\ and 

minimizes E\ = I \Vvl\2. [Uniqueness follows from the convexity of the problem, 

or from uniqueness for the Dirichlet problem.] 

Since v* is symmetric, E{ = 2 / |Vt>i|2. Thus, by definition of v\ and Ei, we 
JB+ 

have that \E\ ^ E\ (because the restriction of v\ to B± is a competitor in the 

definition of Ei) . 

Also, it is not too hard to check that the symmetric extension of v\ to B\ (which 

we shall still denote by v\) lies in W**lj2(Bi), coincides with w on dB\, and that 

/ |V^i|2 = 2 / |V^i|2 = 2Ei. Then 2Ei ^ E{ by definition of E{. Thus E{ = 

JBx JB+ 
2E\, and v\ = v\ by uniqueness of v± (or v{). 
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Altogether, is equal on to the Poisson extension of w, and \Vvi\ is easy to 

estimate. In fact, with (4.25) and a few brutal estimates using the Poisson kernel, 

one can get that 

(4.54) |Vvi(*) | < C\l/2dist(z,dB1y1/2 for z G B f . 

Here C is an absolute constant. We may now plug this in (4.53) and use (4.26) to get 

that 

(4.55) AE ^CC~1/2Xr^2 [ dist (z, dB1)'1/2 dH\z) < CC~1/2\r^2I 

Jd3 

because 83 = G~ fl B± c G~ fl B(x, r). 

We still need to estimate I. By Fubini-Tonnelli, 

(4.56) I= — f i [3r/4 Wz-x^-tl-^dtldH^z) 

r JG-nB{x,r) (Jt=2r/3 J 

< Gr'1'2 [ dH\z) ^ Cr-V2Hl (G~ n B(x,r)) 
JG-r\B{x,r) 

^Cr~l/2Hl (G~ fl B\) 

by (4.19) and (4.20), and because B (x, r/10) C B± (by (4.22) and (4.23)). Hence 

(4.57) AE < CCi1/2\H1 (G~ n £1) , 

where G is some absolute constant. 

Recall from (4.31) and (4.30) that AE is the cost in the energy term of (3.2) that 

you have to pay for replacing our minimizer (v, G) with the competitor (yi, Gi ) . Since 

(v, G) is a minimizer for JR or this cost must at least compensate what you win 

in the length term by removing G n B+ = G~ fl B+ from G, as in (4.29). Thus 

(4.58) h (H1 (G")) - h (H1 ( G f ) ) < AE. 

Let us check that 

(4.59) h{b) - h{a) ^ ^7(fe)(& - a) for 0 < a ^ b . 

Note that h'(a) > /i'(6)/2 for a ^ 6/2, by (3.5) and (3.6). This gives (4.59) (with a 

twice better constant) for a ^ 6/2 . For a < 6/2, we simply notice that h(b) — h(a) > 

h(b) - h(b/2) ^ 6/i'(6)/4 ^ (6 - a)/i'(6)/4, by the previous case; (4.59) follows. 

Let us apply (4.59) with 6 = H1 (G") , a = H1 (GJ") = H1 (G~)-Hl (G~ n B + ) = 

b- H1 (G~ n £ + ) (because G^ = G~ \ B + by (4.29)) and h'(b) = ti (H1 (G")) = A 

(by (4.10)). Then compare with (4.58) and (4.57). We get that 

(4.60) Hl (G~ H B?) = b-a ^ ^ (h(b) - h(a)) ^ ^AE ^ ACC^H1 (G~ n Bx) . 
A A 
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We have obtained (4.60) by comparing the minimizer (v,G) with a candidate 
(vi,Gi) obtained by modifying (v,G) on the upper half B+ of B\. The same con
struction on the lower half B f gives that 

(4.61) H1 (G~ H B f ) < 4GG~1/2B1 (G~ H Bi). 

Thus 

(4.62) H1 (G~ H Bi) = H1 (G~ H B+) + B1 ( G " n B f ) < iCC^H1 (G~ n B i ) , 

with the same absolute constant G as in (4.57). If Ci is chosen larger than 64G2, we 
get the desired contradiction. 

This settles our most delicate case when B ( x , r / 8 ) meets L (as in (4.21)). When 
B(x,r/S) does not meet L, we can use a similar but simpler argument. We choose 
Bi = B (x, r i) , with 1/10 < ri < 1/8, and otherwise the same properties (4.24)-(4.26) 
as above (the proof of existence is the same). Then we take G\ = G \ B\ and choose 
v\ equal to v on the complement of Bi, continuous on Bi , and harmonic in B\. The 
estimates are the same as above, except that we don't have to care about L, and they 
give a contradiction in this case as well. This completes our proof of Proposition 4.14. 

• 

5. G~ stays in a fixed ball 

We continue to assume that (v, G) is a reduced minimizer for JR or Jj| and want 
to prove that G~ — G \ L stays in a fixed ball BR0 (independent of R). 

Proposition 5.1. — / / the constants A and B in (3.4) and (3.6) are chosen large 
enough, there exist constants Co and Ro, independent of R, such that if (f, G) is 
a minimizer for JR or J^, 

(5.2) G~ := G \ L C BRo 

and 

(5.3) H1 (G" ) < G0. 

Remark. — In view of our main application, the fact that cracktips are global mini-
mizers of the Mumford-Shah functional, we shall be happy to fix A and B once and for 
all, with the simple constraints (5.11), (5.59), and (5.83) that come from Proposition 
5.1, and similar constraints that will make our proof of existence for minimizers of JR 
easier. Then the fact that Go and RQ may depend on this choice of A and B will not 
disturb us. It is very important that they do not depend on R, though. 

Proposition 5.1 will rely mostly on the local Ahlfors-regularity property of Propo
sition 4.14 (and specifically the fact that the constant C\ there does not depend on 
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R, A, or B). Before we come to that, we need to estimate the maximal amount of 
energy we can hope to save by adding length to G in a ball. Let us first compute 

(5.4) E0 = 
JBR^KO 

Vuol2, 

where {UQ,KQ) still denotes the reference cracktip, as in (2.1) and (2.2). 

Let us continue to use polar coordinates (r, 6) as in (2.2). Then 

(5.5) 
OUQ 

dr 
1 
2 r2pKr-l/2 sin 

e 
2 ' 

(5.6) 
duo 
de 

1 
2 

sflpKv1!2 cos 
e 

2 

(5.7) IViior = 
'dun 

dr 

2 
4 

1 ///,:k 
de 

2 1 
4 

2 
7T 

r-1 sin2 
e 
2 

f cos 
e 
2 

1 
2nr 

and 

(5.8) E0 = 
•JBR 

1 

'IT I 
/0 

rdrde 

2-Kr 

= R. 

Since (UQ.KQ) e UR for all R, a brutal comparison yields 

(5.9) h (H1 (G-)) ^ JR(hkhkv,G) ^ JR(u0,K0) = 1 + R 

because we continue to assume that (v1 G) minimizes JR or some Jj^, and by the 
definition (3.2) of JR. 

Note that the conclusions of Proposition 5.1 are automatically satisfied when R is 
small. Indeed (5.2) holds trivially for R ^ R0 (because G~ C BR by (3.1)), and (5.3) 
follows from (5.9) for R ^ Co — 1. So we may assume that R is as large as we want. 

Since h(t) = At for t large (by (3.4)), (5.9) implies that 

(5.10) H1 (G-)< 
JBR ^PI 

A 
if R is large enough. 

Let x G G~ be given, and let us try to apply Proposition 4.14 with the radius 
r = 2C\Hl (G~). This is doomed to failure, because we chose r so that (4.17) does 
not hold. So one of the hypotheses (4.15) or (4.16) is violated. We shall assume that 

(5.11) B^mC^bbx and ; 4 > 1 0 C i . 

Note that this make sense because C\ does not depend or A or B in Proposition 4.14. 
Then 

(5.12) r = 2C1H1 (G~) ^ 
B 

30 
H1 (G~)<rG 
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by (5.11) and (4.9). Hence (4.15) holds and (4.16) must be false. One option is that 
— 1 G B(x, r), in which case 

(5.13) \x\ ̂  1 + r = 1 + 2C1B1 (G~) < 2 + 2C1R /A R/4 < | 

by (5.10) and (5.11), and if R is large enough. The other option is that 

(5.14) \ x \ ^ R - r > ^ 

(for the same reasons). 

Our next task is to exclude this second option, i.e., show that all x G G~ satisfy 
(5.13). The proof will be similar to Proposition 4.14, but we shall have to deal with 
the different boundary conditions on 8BR. The general principle is the same: because 
of (5.10), G~ \ BR/4 is too small to be really useful. Set 

(5.15) Gi = (G n B (0, B/4)) U L, 

and define v\ as follows. Observe that 

(5.16) Gi H B (0,3B/4) = G H B (0,3B/4) 

because 

(5.17) G H B (0,3B/4) \ B (0, B/4) C L 

(see (5.13) and (5.14)). We decide to keep 

(5.18) v±(z) = BR^K for z G B (0 ,B /2 ) \ Gi 

(which makes sense because of (5.16)) and 

(5.19)BR^KBR^KBR^KBR^K = v{z) =w uQ{z) for z G M2 v (Bfl U L), 

which is natural if we want (vi, G\) to lie in UR. Let 

(5.20)BR^KBR^KBR^KBR^K fH = BRx\(B (0, B/2) U L) 

denote the remaining domain. We take v\ to be harmonic on H, have a continuous 
extension to BR \ (B (0, B/2) U L) which coincides with f on dB (0, B/2) \ L and 
with on 3BR \ L, and to minimize the energy 

(5.21) B i = f | V ^ | 2 . 

Note that the boundary values that we gave ourselves on dB (0, R/2) and 8BR \ 
are C1 (and even, as we shall see soon, with bounded derivatives), so there is no 
difficulty with the existence of v\. Also, it is easy to check that (vi,G±) G UR , i.e., 
that vi G W^l (M2 \ Gi ) . Finally, if (v,G) G for some fe, then Gx has at most k 
connected components also (by (5.17)), and so (vi, G\) G UR. We shall need estimates 
on V\. 
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Lemma 5.22. — There is a universal constant C > 0 such that 

(5.23) |Vt;i| ^CR~1/2 onH. 

Let us first check that 

(5.24) |Vv\ ^ CR~1/2 on dB (0, R/2) \ L. 

To do this, observe that we may assume that 

(5.25) sup{|v(x) | ; x G BR \ G} < sup{|u0(aO| ; x G \ L} = A / 2 ^ #1/2. 

This is not necessarily true without modification, because \ G may a priori have 

connected components that do not reach OBR, but then v is constant on each of these 

components, and we may modify the values of the corresponding constants (to make 

them all equal to 0, for instance) without changing Vv or (5.24). The main reason 

for (5.25) is that if we set 

(5.26) v(x) = Max - y ^ i ^ M i n s/2jsfsggg^R^2,v(x)) 

on BR \ G and v(x) = u0(x) on R2 \ (BR U L), then (v, G) G UR (and also UR if 

(f, G) G E/jj) as well, and 

o$o$o$ 
IVÏÏI2 

'BR^G 
Nv\2. 

Note that once G has been fixed, the problem of minimizing / |Vv|* with the 
JBR\G 

constraint that v = iio on \ L is convex: if v and v both satisfy the constraint, 

then (v-\-v)/2 also, and if in addition v and t; both minimize the energy integral 

above, then Vv = Vv in L2 because otherwise (v + v)/2 would give a strictly smaller 

energy integral. Thus v may not be unique (because of the connected components 

that do not touch OBR), but Vv is. Our observation (5.25) follows from this. 

We now return to the proof of (5.24). For x G dB (0, R/2) such that dist(x, L) > 

i2/100, we use (5.25) and the fact that v is harmonic on B (x, i2/100) to get that 

(5.27) |Vv(x) | < CR-hwpUviz)] ; z G B (x, # /100)} < CR~1/2. 

So we only have to bound |Vv| on dB (0,R/2) fl B \ L, where B is the disk of 

radius #/100 centered on the point of L Pi dB (0, R/2). 

By the same symmetry argument as above (see between (4.53) and (4.54)), the 

values of v on each of the two half-disks 2B± that compose 2B\L can be obtained from 

the values of v on the corresponding half-circle d (2B±) \ L by symmetric extension 

to d(2B) and then Poisson extension. In this situation also we can use (5.25) and 

the same estimate as in (5.27) to get that \Vv(x)\ < CR'1'2 on dB (0,R/2) C\B\L. 

This proves (5.24). 

Because of (5.24) and the corresponding estimate on the restriction of to &BR, 

Lemma 5.22 will be a direct consequence of the following. 
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Lemma 5.28. — Let H be as in (5.20), and let w be defined and differentiable on 
dH \ L . Denote by dw/dr the derivative ofw on the two arcs of circles that compose 
dH \ H. Suppose that 

\dw\ 
(5.29) \w\ ^ R1/2 and . ^ ^ iT1/2 on dH \ L. 

Denote by v\ the harmonic function on H which admits boundary values on dH \ L 

equal to w and which minimizes / |V^i|2. Then 
JH 

(5.30) |Vvi| ^CR~1/2 on if. 

In this statement the constant C does not depend on R, and actually the lemma 
will follow from the special case when R = 2 (and with the same constant C) because 
its statement is invariant under dilations. 

The existence and uniqueness of v\ in the statement of Lemma 5.28 is classical, 
but let us just say a few words about it because it is an issue that will come out often 
in this text. It is well-known and fairly easy to prove that functions in W1,2(H) have 
boundary values radially almost everywhere on dH \ L. Our boundary condition 
on dH \ L, taken in the radial almost everywhere sense, defines a nonempty, closed 
affine subspace of W1,2(H), and v\ is the point of that subspace that minimizes the 
norm. It is then easy to check that v\ is harmonic on H and extends continuously to 
dH \ L. Note that this fits with our earlier declarations concerning the definition of 
the competitor vi, around (5.21). 

Now let w and v\ be as in the statement of Lemma 5.28, with R — 2. We first 
want to check that 

(5.31) \Vvx\^ChhhR-1/2 = C on Hu 

where Hx = {reid ; 1 < r ^ 2 and \6\ < 2TT/3} . This is a little easier because we 

shall not be bothered by L. Clearly / |Vt>i|2 ^ C (because it is very easy to find 
JH 

extensions of w that satisfy this), so we can find 60 such that 37r/4 ^ 0O ̂  47r/5 and 
/»2 

(5.32) J { |V^ i ( r e^° ) | 2 + | V t ; i ( r e - ^ 0 ) | 2 } d r ^ C . 

The values of v\ in H\ are obtained from the values of v\ on the line segments 
[reld ; 1 ^ r < 2 and 8 = ±#o} and the values of v\ = w on the arcs of circles 
{reld ; r = 1 or 2 and |0| ^ #0} by application of an appropriate Poisson kernel. 
A fairly brutal estimate then gives (5.31). [Note that the corners of the domain 
[re10 ; 1 ^ r ^ 2 and |0| ^ 6Q] are far from H\\ suitable estimates on the Poisson 
kernel could always be obtained by mapping this domain conformally to a disk.] 

We need also to estimate \Vv\\ on the two remaining pieces of H \ H\. For each 
of them we can apply the usual reflection argument to reduce our mixed Neumann-
Dirichlet problem to a pure Dirichlet problem on a similar domain with twice the 
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Figure 5.1

aperture. The estimates are then the same as for (5.31). [We can even make them 
a tiny bit simpler because (5.31) gives a slightly better estimate than (5.32) on the 
radial part of the boundary.] This is probably more than enough details about the 
proof of Lemma 5.28. □

As was mentioned before, Lemma 5.22 follows from Lemma 5.28. □
We are now ready to start estimating

(5.33) A E= f  |Vvi| 2- [  |Vv| 2= f  {|V^i|2 -  |V^|2}
Jbr^gi Jbr^g Jh^g *■ ’

(because the pairs (vi, Gi) and (v, G) coincide on B (0, R /2); see (5.18) in particular). 
Set Q = H \  G = Br \  (B (0, R/2) U G) . The same integration by parts as for

(4.33) yields

(5.34) AE= f  (v!-v) d (Vl +V'*dH1.
Jan dn

On dB (0, R/2) \  L and on 8Br \  G, the functions V\ and v coincide, and so the 
contribution of these sets is null. On the set L, the normal derivatives dv\/dn and 
dv/dn vanish, and so we can forget about L as well. So we are only left with the set 
G~ n H = G~ \  B (0, R/2). Since dv/dn = 0 on this set, we get that

(5.35) A E= [  (v i-v )^p -,
Jg-^b{o,r/2) an

with the usual abuse of notation that a given point of G~ may be counted twice, one 
for each access from ii.

We want to “localize” this integral, like in the proof of Proposition 4.14. Set d = 
G~ \  B (0, R/2) and let I) be any disk centered on d and with radius r = 2111 (G~). 
We want to estimate the oscillation of v\ — v on D (or on the two pieces of D \  L, 
when D meets L). We first choose a disk D' with the same center as D, such that 
D C D' C 2D,
(5.36) G_ n9D' = 0,

(5.37) [  |Vu|2 ^ 100A.
JdD'r\BR\L
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It is easy to get (5.36) because the set of radii for D' such that G fl dD' ^ 0 has 
measure at most H1 (G~) ^ r/2. The second constraint is also easy to get, because 

|Vv | 2 ^ 167rrA. This last comes from lemma 4.12, and the fact that 
(BRD2D)^G 

2r = 4H1 ( G " ) < r G , by (4.9). 
So let D' be as above, and denote by D" any connected component of D1C\BR \ L. 

Most of the time, D' does not meet L and J9" = D' C\BR, but when L meets D' there 
may be two possibilities for D". In the computations that follow, the oscillation of v\ 
on D" will not disturb, because 

(5.38) osc (vi ; £>") := sup vx- inf ̂  ^ G r i T 1 / 2 

D" D" 
by (5.23). 

Next we want to estimate the oscillation of v on D" \ G, and let us start with the 
case when D' does not meet 8BR or, equivalently, when 

(5.39) D' C BR. 

Because v minimizes / |Vv | 2 , we may as well assume that 
JBR^G 

(5.40) osc (v ; D" \ G) ^ osc (v ; dD" \ L ) . 

[Note that the right-hand side makes sense because dD" does not meet G~.] As for 
(5.25), the "may as well assume" comes from the fact that we may need first to modify 
the constant values of v on the connected components of BR \ G that do not reach 
all the way to OBR. [Such modifications clearly do not change AE, and we shall see 
soon that they do not change our computations.] The reason for (5.40) is the same 

as for (5.25): otherwise we could reduce J \ Vv\2 by replacing v(x) on D" with 

(5.41) v(x) = Max < inf v, Min ( v(x), sup v ) > . 

[dD"^L \ dD"^L J J 
Note that by (5.39), dD" \ L is a single (connected!) arc of the circle dD'. It does 

not meet G by (5.36), and so we may use (5.37) and Cauchy-Schwarz to get that 
(5.42) osc (v ; dD ч L) < 

JdD'\L 
IVd < Gr 1 / 2 A 1 /2 . 

Altogether 

(5.43) osc ( V l - v ; D" \ G) < C r 1 / ^ 1 / 2 

by (5.38), (5.40), (5.42), and because rFT1/2 ^ r i / 2 ^ r i /2 A i /2 [ s i n c e r =  

27Ï 1 (G~) «S i? (by (5.10)) and A ̂  1 (by (4.10), (3.5), and (3.3))]. 

Observe that 

(5.44) 
JG-nD" 

C*th 

dn 
= 0. 
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Indeed / A^i = / Avi = 0, and when we apply Green to these domains (as 
JD" JD"^G-

in (4.48) and (4.49) above) we get that 

(5.45) 
JdD" 

dvi 

on Jd(D"^G-) 

dvi 

dn 

The difference between the two boundaries is G fl D" (with the usual abuse of 

notation concerning multiplicities), and (5.44) follows. 

Because of (5.44) we can subtract a constant from v\—vm the integral just below, 

and get that 

(5.46) 
!G-nD" 

(vi - v) 
dvi 

dn 
< o s c ( ^ i - v ; D" \ G J 

G-HD" 

\dvx 

dn 

^ ^ 1 / 2 ^ / 2 ^ - 1 / 2 ^ 1 ( G - n D » \ 

because of (5.43) and (5.23). Here we used the fact that when we add constants to v 

on components of BR \ K that do not touch dD" (to get (5.40)-(5.43)), we do not 

change the left-hand side of (5.46). The argument is the same as for (4.53). Also, we 

used (5.17) implicitly, to show that D" C H. 

Our estimate (5.46) also holds if we replace D" with D" \ U™i D", where the D" 

are other pieces of disks like D"\ the only thing that matters is that we still have 

(5.44) for this smaller domain, for the same reason. 

Let us continue our localization of the main piece of (5.35). Set 

(5 .47) Go = {x e G~ N B (0, R/2) ; dist (s, dBR) ^ 5r} 

Cover Go by disks Dj, j ^ 1, centered on Go, with the same radius r, and such 

that the 2Dj have bounded overlap. Construct the slightly larger disks D'j, and then 

define the pieces D", as above. Re-enumerate the D'J, if needed, to account for the 

fact that some D'- decompose into two pieces D". Finally set D* = D" \ Ui=i 
and GQ = G~ Pi ̂  (J^ . By construction, GQ is the disjoint union of the G~ fl D*j, 

and 

(5.48) 
'Go 

(Vi - v) 
BR^ 

dn 
3 \vi(x) 

(vi - v) 
dn 

dn 

\vi(x) - v(x)\ < Cr1/2X1/2 for x £ 2X1ggk2 fkkkkor x 

^ C,rl/2ooooô î̂̂ Âl/2**Ä-l/2ffl2X1/2 for x s 

because (5.46) also holds for the D*,. 

We still need to estimate the integral on the remaining set d\ = G \ 

(5(0, R/2) U G%). Let us check that 

(5.49) \vi(x) - v(x)\ < Cr1/2X1/2 for x £ Ôi. 
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To be fair, we should mention that we are again abusing notations: we should note 

that v(x) stands for the boundary value of v(x) (from the access which corresponds 

to the "point" of dft = d(H \ G) that x stands for). We shall actually prove the 

inequality in (5.49) for x G ft in a neighborhood of d\. This is of course enough to 

control the boundary values that we just referred to; the proof will also give enough 

control o n v - ^ i to allow uniform estimates in the limiting arguments described after 

(4.31), if we want to avoid integrating by parts directly on nonsmooth domains. 

So let x G d\ be given, and set D = B(x, lOr). Since GQ contains Go by construc

tion, dist (x, 3BR) < 5r and D meets 3BR. 

Let x denote the point of 3BR which is closest to x, and choose a disk D' — B (x, r') 

such that 15r < r' < 30r, and which satisfies (5.36) and (5.37). The existence of D' 

can be proved as above (note that 30r = 60H1 (G~~) ^ re by (4.9)). We decided to 

center D' on 8BR to make the picture below simpler. Note that D C D ' , though. 

Let D" denote the connected component of D' n BR \ L that contains x and x. 

[See Figure 5.2.] 

3D' 

3D 

The relevant part 8D" \ G of 8D" is itself composed of two pieces, 51 = 8BR fi 
8D"\G and 82 = BRHdD"\G. On 61 the function v coincides with UQ (by definition 

of UR) and so 

Because of (5.36), 82 = BRC\dD" \ L, which is an arc of the circle dD'. To be fair, 

this would not be true if we had chosen our radius r' just a tiny bit larger than the 

FIGURE 5 .2 

By the same truncature argument as before, we may assume that 

(5.50) osc (v ; D" \ G) < osc (v ; 3D" \ G ) . 

(5.51) ose ( M i ) = osc (n0, ¿1) < CrR~1/2 ^ Cr1/2. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



34 5. G~ STAYS IN A FIXED BALL 

distance from x to L (as in Figure 5.3), but we have enough latitude on our choice of 

r' to avoid this stupid case. [Recall also that r — H1 (G~) <C R by (5.10).] 

FIGURE 5.3. A bad case (easy to avoid). 

At least one of the two extremities of the arc ¿2 lies in 8BR \ L. Call it ZQ. Then 

ZQ G ¿1 (it does not lies in G~ because of (5.36)). Hence 

(5.52) v (z0) = vi (ZQ) = u0 {z0). 

Since 82 is connected and contained in dD' D BR \ L, 

(5.53) ose (v ; S2) ^ 
Ô2 

\Vv\ < Gr^A1/2 

by (5.37) and Cauchy-Schwarz. Since 62 ends up in ZQ, we get that 

(5.54) \ ^ A 1 / 2 

for z G ¿2. Because of (5.51), and since zo G ¿1, (5.54) also holds for z G Si. 

Altogether, (5.54) holds on dD" \ G = <$i U <S2, and then on D" \ G by (5.50). On 

the other hand, 

(5.55) M * ) - v (*0)| = \vi{z) - vi (^o)l ^ CriT ^ < Gr1/2 

forv(z)-v(z0)\ ̂  G, because of (5.52) and (5.23). This and (5.54) yield 

(5.56) \vAz) - v (z)\ < Cr1/2X^2 for G. 

Note that £)" contains a neighborhood of our initial point x G 9i, and so (5.49) follows 

from (5.56). 

Now 

(5.57) 
qdqd 

[v\ — v) 
dvi 

dn 
Cr^X^R-^H1 (ft) \dvi I 

on 
< Cr^X^R-^H1 ( f t ) 

by (5.49) and (5.23). By definition of <9i (just above (5.49)), G~ \ B (0,B/2) is the 

disioint union of Gn and д^, and so 

(5.58) AE = 
(vi - v) 

(vi - v) 
dvi 
dn 

<: Cr^X^RT1'2 {H1 (GS) + # 1 (0i)} 

- Crd^Cr^X^R-X^R-^H1 ( G " x 5 (0, i ï /2)) 

by (5.35), (5.48), and (5.57). 
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Recall that r = 2H1 (G~) ^ (2R + 2)/A (if R is large enough), by (5.10). Let us 

assume that, say, 

(5.59) A ^ 103C2 

where C is the same absolute constant as in (5.58). Then (5.58) yields 

(5.60) AE < 10"1 X^H1 (G~ \ B (0, R/2)) . 

Let us summarize the situation. We have implicitly assumed here that G~ \ 

B(0,R/2) is not empty, and we have constructed a new competitor (vi,Gi). [See 

(5.15)-(5.21).] Then we estimated the extra energy AE that we had to pay for re

moving G~ \ B (0, R/2) and we arrived to (5.60). Since (v, G) is a minimizer for JR 

or J^, we must have that 

(5.61) Ah^AE^ lQ~1Xll2H1 (G~ \ B (0, i2/2)) , 

where 

(5.62) Ah = h (H1 (G~)) - h (H1 (6?^)) 

is what we gained in the length term of (3.2). Set a = H1 (Gj~) and b = H1 (G~) 

Then 

(5.63) b - a = H1 ( G " \ G?j:) = ii"1 (G" \ B (0, fl/4)) = H1 (G~ \ 5 (0, fl/2)) , 

by (5.15) and (5.17). Then h'{b) = A by (4.10), and (4.59) says that 

(5.64) Ah - h(b) - h(a) ^ ^(b - a) = ^ H1 (G~ \ B (0,R/2)). 

Recall that A ̂  1 (by (3.3), (3.5), and (4.10)), and so (5.64) contradicts (5.61) 

unless G~ C B(0 , i? /2 ) . 

Recall from the discussion that led to (5.13)-(5.14) that every point of G~ has to 

satisfy (5.13) or (5.14). We finally managed to show that G" C £ ( 0 , ^ / 2 ) , which 

excludes (5.14). Set 

(5.65) R+ = sup{ |z | ; z G G~ } . 

We have just proved that 

(5.66) R+ ^ l + 2Gii/1 (G~) 

where C\ is still as in Proposition 4.14. [Compare with (5.13).] 

To complete our proof of Proposition 5.1 (i.e., show in particular that R+ is less 

than an absolute constant) we need an estimate of H1 (G~) in terms of This will 

be obtained by improving the energy estimate that led to (5.9), taking into account 

that i?+ may be much smaller than R. 

Define a new competitor (?J+, G+) as follows. Take 

(5.67) G+ = LU dBR+, 
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(5.68) v+{x) = u0(x) on M2 \(BRUL), 

(5.69) v+(x) = 0 on BR+ \ L, 

and 

(5.70) t>+(r cos#, r sin#) = or1/2 sin 
6 

2 
- h a r ~ 1 / 2 # + s in 

(9 
2 

for i2+ < r ^ R and —7T < 6 < 7r, and where 

(5.71) BRBR BRBR 
R1'2 

R1!2 + R - ^ R * 

We chose the constant a so that i>+ would be continuous across \ L (compare 
(5.70) with (2.2) when r = R). Thus (t>+,G+) is an acceptable competitor for JR, 
and even G+) G for all fc. 

Of course the formula (5.70) was not chosen at random. Let us check that v+ is 
the harmonic function on BR \ (BR+ U L) that coincides with UQ on 8BR \ L and 
minimizes 

(5.72) BRBR 
>BR^(BR+UL) 

| V t ; + | 2 . 

We already know that v+ = UQ on 8BR \ L. To prove what we just said, it will be 
enough to check that v+ is harmonic on BR \ (BR+ U L) and that its normal derivative 
on dBR+ UL vanishes. This is the usual characterization of energy minimizers in terms 
of Dirichlet and Neumann conditions. We avoided to use it so far, but now it is slightly 
more convenient. [The reader that would not know about this characterization can 
retrieve it from our formulae giving AE after integrations by parts.] 

Set z = re16 and z1/2 = rxl2eiel2 with the notations above. Then v+{z) — 
almjz1/2 — i i+z-1 /2} , which proves that v+ is harmonic (because z1/2 and z~xl2 
are holomorphic). 

The radial derivative is 

(5.73) 
dv+ 
dr 

1 
BR 

2 

BRBR 0 

2 
a 
2 r -3/2R+sm 

6 

2 ' 
which vanishes when r = R+. This takes care of the normal derivative on dBR+. The 
normal derivative along L is also null, because 

(5.74) 
BRBR 

de 
2 

a 
2 

r1/2 cos 
6 

2 + 
a 
2 
-r l'2R+Cos e 

2 ' 

which vanishes when 9 = ±ir. So v+ minimizes the energy, as promised. 

By definition of R+, G~ is contained in BR+, and hence 

(5.75) 
JBR^G 

|Vt,|2 > 
BRX(BR+UL) 

IVd2 hlhlff 
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by the energy-minimizing property of v+. Next compute 

(5.76) AE+ = 
BR^KQ 

|Vu0|2 -
JBR^(BR+UL) 

Vv+\2 

We could do this brutally with (5.73) and (5.74), but let us use the analogue of 
(4.39) in our situation, i.e., 

(5.77) v(z)-v(z0 
JdBR 

du0 
dr 

BR 

The access to dBR+ from the inside of BR+ does not contribute to the integral (by 
(5.69)). Also, 

(5.78) 
du0 
dr 

v(z)- 1 

2 
r ' sin 

e 

27 
while (5.70) yields 

(5.79) v+ = 2QT1/2 sin 
m 
2 

when r = R+. 

Thus 

(5.80) AE+ = sJlpK a 
JdBR+ 

sin2 
2 
6 

dH1 uu 
v(z)-v(z0)\ ^ 

= 2 
Rl/2 + R-1/2R+ R+ < 2R+. 

Altogether 

(5.81) hiH1 (G~)) = JR(V,G) -
BR-^G 

IVd2 

< JR(v, G)-E+ < JR (W0, KO) - E+ 

= h (H1 (Ko \ L)) + 
JBR^KO 

|V«or - E+ 

= 1 + AE+ < 1 + 2R+ 

by (3.2), (5.75), because (v, G) is a minimizer and (UQ, KQ) a candidate, by (3.2) again, 
and then (3.3) and (5.80). 

We compare this with (5.66) and get that 

(5.82) h (H1 (G')) ^ 3 + ACiH1 (G~) 

Let us decide to choose 

(5.83) A > 5Ci 

Since h(t) = At for t large, (5.82) gives an upper bound on H1 (G~), which proves 
(5.3). The other conclusion (5.2) follows from (5.66). This completes our proof of 
Proposition 5.1. • 
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6. Existence of minimizers: general strategy 

So far we introduced the functionals JR and proved nice properties for their min
imizers. We intend to take such minimizers, find a sequence of radii R that tends 
to + o o such that the corresponding minimizers converge to a pair (v,G), and then 
prove that (v, G) minimizes a modest variant of the global Mumford-Shah functional. 
After this, we shall prove that (v, G) must be a cracktip and eventually get the desired 
contradiction. Before we do all this, we shall have to check the existence of minimizers 
for JR, at least for R large. 

The verification of existence will take some time, probably much too long compared 
to the amount of new information contained in the proof. We feel compelled to give an 
argument for self-containedness and because the situation of JR is slightly different 
from the usual one, but this argument contains no surprise, and we would not be 
shocked if the reader decided not to read it. 

Our proof of existence will be rather constructive and will avoid compactness prop
erties of BV. Instead we shall rely on the approach of Dal Maso, Morel, and Solimini 
[DMS] and use their "concentration property". Our excuse for this is that we had to 
prove reasonably carefully the local Ahlfors-regularity property of Proposition 4.14, 
and we can use these estimates again for the existence. 

Our general scheme for the proof of existence will be the same as in [DMS] or 
[MoSo], but there will be a few differences because we don't want to use BV or SBV. 
Parts of the arguments will use ideas from [DiKo] (for the "property of projection") 
or [DaSe2], or their presentation in the survey [DaSe3]. Also see [MaSo] for a new 
existence argument based on these ideas. 

To prove the existence of minimizers for JR, we want to start from a minimizing 
sequence (vn, Gn) and try to get the minimizer as a limit. Of course this cannot work 
with any sequence, because even if the sets Gn converge nicely (for the Hausdorff 
metric on compact subsets of BR, say) to a set G, we do not have that 

The point of our argument will be that we can modify our sequence (vn, Gn) in such a 
way that Gn satisfies a nice regularity property (the uniform concentration property 
of [DMS]), so that (6.1) holds. 

One way to ensure the concentration property (and then (6.1)) will be to demand 
that (vn,Gn) be a minimizer for some JR. If we want to do this and get minimizing 
sequences, we need to show that 

(6.i) H1 (G \ L ) < liminf H1 (Gn \ L). 

(6.2) n(R) = lim T]k(R) 

where 

(6.3) n(R)=mi{JR(v,G) ; (v,G)eUR} 
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and, for k ^ 1, 

(6.4) nk(R) = inf {JR(v, G) ; (v, G) € UkR] . 

Of course there are other ways to get minimizing sequences with the uniform concen
tration property without actually proving (6.2), but going trough (6.2) will be just as 
convenient. Either way, we need to take a pair (?J, G) G UR that almost minimizes JR 
and improve it in various way. This is what we shall do in the next two sections. In 
Section 9 we shall see how to deduce the existence of minimizers for JR from (6.2). 

7. First cleaning of a competitor for JR 

In this section we give ourselves a competitor (v, G) G UR that nearly minimizes 
JR, and we show that G is not far from being locally Ahlfors-regular and rectifiable. 

Let us remind the reader that if G is a closed subset of R2 with sigma-finite H1-
measure, then G has an essentially (up to sets of vanishing iczrl-measure) unique 
decomposition as 

(7.1) G = GREC U Girr, 

where Grec is rectifiable, which means that we can find a countable family {r̂ } of 
simple curves of class G1 such that 

(7.2) H1 ^Grec\|Jr^ = 0 , 

while Girr is irregular, or totally unrectifiable, which means that 

(7.3) H1 (Girr H r) = 0 for each G1-curve T. 

See for instance [Ma] (or [Fe], or other sources on geometric measure theory) for this 
and other standard facts on rectifiability that will be used in this section. 

Proposition 7.4. — Let (t>, G) €UR be such that 

(7.5) JR(v,G)^ri(R) + e 

for some e > 0. Then 

(7.6) H1 ( G ^ ) < Ce. 

See (6.3) and the beginning of Section 3 for the definitions. The constant G will 
depend on various geometric constructions, but not on v or G. The dependence on 
R does not really interest us here, but C does not depend on R either, if we add the 
constraint that e be small enough (depending on R). 

Also note that other information on G will come along the way (concerning almost 
Ahlfors-regularity, e t c . ) ; (7.6) is just an example. 
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To prove the proposition we can assume that e is as small as we want, because 
otherwise a brutal estimate gives 

(7.7) H1 (Girr) < H1 (G-) ^ h (H1 ( G - ) ) < JR(v, G) 

< JR (U0, K0)+e^l + R + e^Ce, 

by (7.5), (5.8) and (5.4). 

Prom now on we let (v, G) G UR be such that (7.5) holds, and we also assume that 

£ ^ 1. We shall proceed by a series of little steps where we shall prove that, except on 

fairly small sets, G has increasingly good properties. The various steps will look like 

each other, if only by the systematic use of the same covering argument. We start 

with a very simple property. 

Lemma 7.8. — Set 

(7.9) Zi = {x G G" ; there is an r > 0 such that H1 (G~ fl B(x, r)) ^ 37rr} . 

Then 

(7.10) H1 (Zi) < 15e. 

For each x G Zi , set 

(7.11) r(x) = sup { r > 0 ; H1 (G~ fl B(x, r)) ^ 37rr} . 

We still have that 

(7.12) H1 (G~ n B(x, r(x))) > 37rr(rr) 

(by a trivial limiting argument). Also, r(x) ^ (37r)~1H1 (G~) , so the radii r(x) are 
bounded. Thus we can use the standard |-covering lemma of Vitali (see the first 
pages of [St]). We get a finite or countable set X C Z\ such that the B(x,r(x)) , 

x G X , are disjoint, but the B(x, 5r(x)) , x G X , cover Zi . 

Let Xo be any finite subset of X . We construct a competitor (vi ,Gi) G as 

follows. Set 

(7.13) Gi G x (J 5 X U (J 55, 
,xGX0 

UL, 

where = BR fl £(#, r(x)). It is easy to check that G\ is closed, and it contains L. 

Keep 

(7.14) 

and set 

(7.15) 

vi(x) — v(x) out of Gì U U B* 
.XEXQ 

vi(x) = 0 on M Bx. 

xex0 
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Then (vi,Gi) e UR, and (7.5) says that 

(7.16) J(v,G) ^ J ( v i , G i ) + e . 

Let us now estimate how much we won in the length term. Observe that 

(7.17) G r e G" \ 
xeXo 

B(x,r(x)) U 
-xex0 

dBx 

This would be obvious if we had not replaced the Bx coming from (7.13) with the larger 
B(x,r(x)). So we may have lost the sets G~nB(x,r(x))\Bx = G~nB(x,r(x))ndBR. 
This is not the case: these sets are contained in the corresponding dBx anyway. 

Prom (7.17) and the disjointness of the B(x,r(x)) we get that 

(7.18) H1 (Gr ) < H1 ( G " ) I -

xex0 
H1 (G~ nB(x,r{x))) + 

xex0 
H1 (dBx) 

^ H 1 ( G - ) - T T 

xex0 
r(x), 

by (7.12) and because H1 (dBx) ^ 2nr(x). 

Because of (7.14) and (7.15) we have not increased the energy term. So 

(7.19) J(v, G) - J (vi, Gi) ^ h (H1 ( G " ) ) - h (H1 ( G f ) ) 

^H1 (G" ) - H1 ( G r ) ^ T T 

xexG 
r(x) 

by (3.2), because ti(t) ^ 1 (by (3.3) and (3.5)), and by (7.18). Now (7.16) says that 

7T ^2 r(x) ^ e and? since Xo was any finite subset of X, TT r(x) ^ e as well. Now 

x6X0 x€X 
we use the fact that the B(x, 5r(x)) cover Z\ to get that 
(7.20) H1 (zo 

dqtg 
tf1 (G~nB(a;,5r(aO)) ^3TT 

5r(x) 

5r(x) ^ 15e, 

where we used the definition (7.11) of r{x) for the second inequality. This completes 
our proof of Lemma 7.8. • 

Next we want to control |Vi>|2, like in Lemma 4.12. 

Lemma 7.21. — Set 

(7.22) z2 = { x e G-
X^HBR^G 

\Vv\2 > 5?rrA for some 0 < r < 1 >, 

where X = h! {H1 (G )) as usual. Then 

(7.23) H1 (Z2) ^ SOe. 
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Because of Lemma 7.8, it is enough to control Z2 \ Z\. For each x G Z2 \ Z\ 

choose 0 < r(x) < 1 such that 

(7.24) 
V,CJNHL::HB{x,rVfdh 

|Vf|2 ^ 57rr(x)A. 

Then let X be a finite or countable subset of Z2 \ Zi such that the balls B(xìr(x))ì 

x G X , are disjoint but the B(x,5r(x)), x G X , cover Z2 \ Zi . Let Xo be any 

finite subset of X , and let (vi,Gi) be the same competitor as in Lemma 7.8. [The 

construction is the same but the accounting will be different.] Obviously 

(7.25) H1 (Gì) ^ H1 (G~) +2TT r(x) 

x€X0 

by (7.13). Let us assume that 

(7.26) r{x) <k 

kfigop 

r{x) < 5 

to simplify our estimates. Then (3.3), (3.5) and (3.6) imply that h'(t) ^ 2A for 

t ^ H1 (G~) + ZirJ^-czv r(x) (recall that we already assumed that B > 60). Thus 

(7.27) h^1 (Gì))-hfi1 (G-)jjjmu) H1 (G~) +2TT 

xex0 

r(x) h^1 (Gì))-hfi1 (G 

< 4TTA 

x£X0 

r(x). 

On the other hand 

(7.28) 
JBR^GX 

| V ^ | 2 = 
IBR^G 

\Vv\2 
xex0 /BRnB(a;,r(x))\G 

\Vv\2 

hdujj 

ùkklùll 
|Vw|2 - 5TTA 

*ll*dqd 
r(x), 

because the B(x,r(x)) are disjoint and by (7.24)). Altogether 

(7.29) J>i,Gi) ^ J(v,G) - T T A 

r(:r)gg 

r(:r) 

'by (3.2), (7.27) and (7.28)), and (7.5) yields 

(7.30) xex0 

xex0 

r(x) ^ €. 

So far we only proved this for finite subsets of X that satisfy (7.26). On the other 

hand, all r(x) are < 1, À > 1, and e ^ 1, so we can get (7.30) for all finite subsets of 
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X by adding elements one by one (so that (7.26) stays true). Then (7.30) is also true 

with XQ — X, and 

(7.31) H1 (Z2 \ Z i ) < YJ RL ((Z* X ZL) N B (*> 5R(X))) 

xEX 
^ ^ H 1 (G~ C\ B (x,5r(x))) 

xex 

^ 15?r ^ r(x) < 15s 

xex 

because the B(x, 5r(x)), x G l , cover Z2 \ Zi , the points x G l d o not lie in Zi , by 

(7.30), and because A ̂  1. 

Now (7.23) follows from this and (7.10); this completes our proof of Lemma 7.21. 

• 
Next we want to worry about local Ahlfors-regularity (as in Proposition 4.14). Let 

C2 > 0 be a fairly large constant, to be chosen soon. [It will be an analogue of C\ in 

Proposition 4.14.] 

Lemma 7.32. — Set 

(7.33) Z3 = {x G G " \ 8BR ; there exists 0 < r < 1 

such that B(x,r) C BR \ L and if1 (G~ fl £ ( s , r ) ) ^ C2_1r}. 

T/ien, 2fC2 is large enough (depending on nothing), 

(7.34) i^1(Z3) ^ Ce . 

Note that we decided not to worry about points of L or 8BR because we won't 

need to and this would complicate the argument (as in Sections 4 and 5). 

To prove the lemma, first observe that since Z3 is a Borel set with finite H1-

measure, the Lebesgue differentiation theorem says that for almost all x G Z3, 

(7.35) l imsupr"1^1 ( G - n f l f ^ r ) ) ^ 1. 
r—»0 

See for instance [Ma], Theorem 6.2 p.86. 

Let Z denote the set of points of Z3 \ (Z\ U Z2) that satisfy (7.35). Of course it 

will be enough to control Z , since 

(7.36) H1 (Z3) ^ H1 (Zi) + H1 (Z2) + 1 ( Z ) . 

For each x G Z choose a first radius r (x ) such that 

(7.37) 0 < r(x) ^ 1, 

(7.38) B(x,r(x)) CBR\L, 

(7.39) H1 (G~ H r(x)) < G2-V(x), 
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but r(x)/8 does not satisfy (7.39), i.e., 

(7.40) H1 (G~ fi B (x,r(x)/8)) > (8C2)_1r(a;), 

The definition of Z% gives a radius that satisfies (7.37)-(7.39). It is then easy to get 

(7.40) as well by replacing r(x) with r(x)/8, or r(x)/64, etc., as needed. The process 

converges because of (7.35) (and if C2 is large enough). 

Note incidentally that since B(x,r(x)) does not meet L we can replace G~ with G 

in (7.39) and (7.40). 

Choose again a subset X of Z such that 

(7.41) the disks B (x, r(x)/5), x G X , are disjoint 

and 

(7.42) ZC M B(x,r(rr)). 

Let Xo be a finite subset of X , and let us construct a competitor (vi,Gi) like the 

one used for Proposition 4.14. For each x G Xo choose a disk Bx = B (x, rx) with the 

properties 

(7.43) 
r(x) 

8 
r(x)dd r(x) 

5 

(7.44) <9£x H G = 0 , 

(7.45) 
JdBx 

\Vv\2 < 103A, 

and 

(7.46) 
JGnB(x,r(x); 

dist (z,dBxy1/2 dH\z) < Ix, 

where 

(7.47Ì ix = I O V ^ ) - 1 
Mx)/h 

lt=r(x)/8 . fGnB(x,r(a:)) 
dist (z, <9£(x, £))"1/2 £(x, £)lùl)"1 

[Compare with (4.23)-(4.27).] We can find such a radius rx because of (7.39) (to get 

(7.44)), because x £ Z2 (to get (7.45)), and of course by Fubini and Chebyshov. 

We still need to cut X0 into two subsets. Set 

(7.48) 

X'0 = x G XQ ; 
BxnB(y,20C~1r(x)llhl)^G 

\Vv\2 ^ 103AC2_1r(x) for all y G G fi Bx 
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and XQ = Xo \ XQ. The computations that follow are the same as in Section 4, 
only simplified slightly because we do not have to worry about L or 8BR. Our new 
competitor is given by 

(7.49) G i = G \ 
x£X'Q 

x£X'Q 

(7.50) v\(x) = v(x) on R 2 \ G i U 

vv;;;v 

GiU 

while on each Bx we require v\ to be harmonic and have a continuous extension to 
Bx that coincides with v on dBx. This makes sense, because dBx does not meet 
G, by (7.44). Note also that the disks Bx are disjoint (by (7.41) and (7.43)), so our 
modifications are independent from each other. 

It is easy to check that (v\,Gi) G UR (i.e., it is an acceptable competitor for JR). 
The same computations as in Section 4 (but simpler, because we do not need to reflect 
on L) give the analogue of (4.55), i.e., 

(7.51) JB====X 

JBX 
|VVl|2-

JJJBX^G 
IVd2 ^CC21/2jjjXrnnnn{x)^2!I!!<<<s<j 

[This is where we need the condition in (7.48).] 

The estimate for Ix can be carried as in (4.56): Fubini gives that 

(7.52) IX^Cr(jjmx)"1/2 H1 (G H b bkkg B(x, r(x))), 

and then we can use (7.39) and (7.40) to see that this is ^ 8Gr(x)-1/2 H1 (G fl Bx). 
Thus 

(7.53) AEX ^ CC^^XH1 (jmmG H Bx) = CC2~1/2XH1 (G~ n Bx), 

with a constant C that does not depend on C2. We choose C2 so large that CC2 X^2 < 
1/8 in (7.53), and then sum over x G XQ to get that 

(7.54) AE = 
rurureiigjj 

\VV1\2-
JBR^G 

jj\VV\2 : 
x£X'0 

xex^hh A 

8 xex^ 
H1 (G- n Bx). 

On the other hand we may apply (4.59) with a = H1 [G1 ) , b = H1 (G ) , and 
h'{b) = X (by (4.10)). We get that 

(7.55) h (H1 (G~)) - h (H1 (G^)) =b-
X 
4 

(b-a) E 
4 

xexfQ 
H1 (G~ n Bx) , 

by (7.49). Now we can sum and get that 

(7.56) J(v,G)-J(v1,G1) = h ( Я 1 (G')) - h (H1 ( G f ) ) - AE 

ssf A 

8 
xG.X'a 

H (G- n Bx), 
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by (3.2), (7.55) and (7.54). Since J(v,G) ^ J (yu Gi) + e by (7.5), we get that 

(7.57) A 
x e x ' Q 

H1 (G Pi Bx) ^Se. 

We still need to control the similar sum for XQ = XQ \ XQ. For each x € , 
select y e Gn Bx such that 

(7.58) 
JD(x)^G 

IVd2 ^ 103AC9_1r(x), 

where we set D(x) = Bxf)B(y, 20C9 r(x)). We construct a new competitor (vi, Gi) G 

UR by taking 

(7.59) d = xGU 
dD(xj) 

dD(xj) 

vi = v out of Ux€X£' D(x) , and t>i = 0 on \JxeXi)f D(x) \ G . Then 

(7.60) 
JBR^G 

d= xGU 
d= xGU 

| V V l | 2 = 
d= xGU D(i)sG 

|Vu|2 ^ 103 d= xGU 

d= xGU 
r(x) . 

by (7.58) and because the D(x),x € XQ, are disjoint (by (7.41) and (7.43)). On the 
other hand, 

7.61) H1 (GT) -H1 ( G " ) < 
xexu 

H1(dD{x)) < 100 C^1 

rex;' 
r(x) 

hence 

(7.62) /i (tf1 (GJ")) - h (H1 (G-)) ^ 200 A C2~l 
xexx 

r(x) 

at least if 

(7.63) 100 A C2-1 
•ex-

r(x) ^ 1 

In this case, we can use (7.5) and the definition (3.2) to get that 

(7.64) 100 Л C 2

_ 1 

xex'j 
r(x) ^ e , 

by (7.60) and (7.62). Thus (7.64) holds when we have (7.63), but we can add points 
of XQ one by one, and get (7.64) and (7.63) in all cases; the argument is the same as 
before. 

We deduce from (7.57), (7.40), (7.43) and (7.64) that 
(7.65) 
A 

x£X0 

H1 (G~ fl Bx) ^ 8 e + A 
xexa 

H1 (G~ fl Bx) ^ 8 £ + 8 G2A 

r(x) ^ Ce 

r(x) ^ Ce. 
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Since this inequality holds for all finite subsets XQ of X , it also holds for X , and 

then 

(7.66) H\Z) ^ 

xex 

H1 (ZnB(x,r(x))) ^ 
xex 

H1 (G~ n B(x,r(x))) 

^ 8 

xex 

H1 (G~ nB(x,r(x)/8)) ^ 8 

xex 

H1 (G~ H Bx) < Ce 

by (7.42), (7.39), (7.40), (7.43), and (7.65). 

Lemma 7.32 follows from this, (7.36), and the two previous lemmas (on Z\ and 

Z2) 

Now we want to prove Proposition 7.4 itself. To control Girr, we want to use 

the equivalent here of the "property of projections" introduced by F. Dibos and G. 

Koepfler ([DiKo], [Di]). Our presentation will be closer to the one in [Lél] or [DaSe3]. 

Set Z4 = G[rr \ (Z\ U Z2 U Z3). For H1 -almost every x 6 Z4, we have that 

(7.67) x £ LU dBR 

by (7.3), 

(7.68) limsup -H1 (Z4 H B(x, r)) ^ 1 
r^o r 

by the same density theorem as for (7.35), and 

(7.69) limsup -H1 ((G \ ZA n B(x, r)) = 0, 
r^o r 

again by a standard density theorem. [See for instance Theorem 6.2 on page 86 of 

[Ma].] 

Denote by Z the set of x 6 Z± that satisfy (7.67)-(7.69). Because of the previous 

remarks and the three lemmas above, (7.6) and Proposition 7.4 will follow as soon as 

we prove that 

(7.70) H1(Z)^Ce. 

For each x G Z , choose a radius r(x) such that 

(7.71) 0 < r{x) < 1, 

(7.72) B(x,r(x)) CBR\L, 

(7.73) H1 (Z4<lB{x,r(x)/5)) > 
r(x) 

6 

and 

(7.74) H1 [(G \ Z4) n B(x,r(x))] ^ rr(x), 

where the small constant r will be chosen soon. 
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As usual, choose a family X C Z such that 

(7.75) the disks B(x,r(x)), x G X , are disioint, 

but 

(7.76) Z e l l B(x,5r(x)) 
BRBRBR 

Let Xo be a finite subset of X ; we want to modify (v,G) on the disks B(x,r(x)), 
x G Xo, to construct a better competitor (vi,Gi). 

For the moment, fix x G Xo. For each direction 9 G S1, denote by 7r# the orthogonal 
projection from M2 onto the line of direction 9 through the origin. Also call TTQ the 
projection in the orthogonal direction. A theorem of Besicovitch tells us that 

(7.77) H1 (no (Girr)) = 0 for almost all 9 G S1. 

See for instance [Ma], Theorem 18.1 on page 241. The same thing obviously holds for 
and, since Z4 C Girr, we can choose 9 G S1 such that 

(7.78) H1 (icoiZ^ + H1 (7r2(Z4)) = 0. 
Then (7.74) yields 

(7.79) H1 (ire(G H r(x))) + if1 (TTJ(G n B(x, r(x))) ^ 2rr(x). 

We want to use this information to choose a square Qx such that dQx fl G = 0 , 
and then remove Qx PlG from G, but before we do this we need some estimates on 
the derivative of v. 

Fix p G (1,2), for instance p = 3/2. For all y G G n B{x,r{x)/b) and 0 < t < 
r(#)/5, set 

(7.80) wP(y,t) = t1-4/P 
JB(y,t)^G 

\Vv\p 
I 2/p 

(where we integrate against the Lebesgue measure). The exponent 1 — 4/p was just 
chosen so that (jp(y,t) be a dimensionless number. If y G Z4 (so that in particular 
y 0 ^2), we can easily get that up(y,t) ^ CX by Holder (see (7.22)); the following 
lemma says that much more is true on average. 

Lemma 7.81. — There is a constant Cp > 0 such that 

(7.82) 
lyeZnB(xir(x)/5) J0<t<r(x)/2 

up(y,t) 
dH1(y)dt 

t 
^ Cp\r(x). 

This is actually proved in [DaSe2], Proposition 4.5 page 311, modulo slightly dif
ferent hypotheses that do not really matter. In order not to confuse the reader (and 
also not to force on them the definition of Carleson measures) we shall give a rapid 
nroof here. 
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Set K = Z H B(x,r(x)) and, for z G E2, d(z) = dist(z, i f ) . Let 2 < a < +oo be 

such that - + | = 1, and also choose b e (0, l/a). Write 

(7.83) \Wu(z)\p = IVtxWI2 
26/p 

, 26/p 

, 26/p , P/2 
d(z)" 
IVtx 

and apply Holder. We get that 

(7.84) wP(»,t)<t1"4/,'/(y,*)^(»,*)2/pa. 

where 

(7.85) J(l/,*) = 
'B(y,t)sG 

|Vw(z)|2 
IVWI 

IVtx 

26/p 

and 

(7.86) J(y,t) = 
JB(y,t)^G 

fdizY 
IVtx 

-bo 

To estimate J(y,t) we shall need to know that for 0 < p ^ 1, 

(7.87) \{z e B(y.i) ; àìst(z.K) < pt>| < Gp£2. 

To prove this we may assume that p < 1 /3 (the other case is trivial). Cover the set 

in (7.87) by balls B(u, 2pt) centered on KC)B(y,t + 2pt) and such that the B (a;, pt/S) 

are disjoint. Since Z does not meet Z3 (because Z C Z4 = Glvv \ (Zi U Z2 U Z3)) we 

have that 

(7.88) if1 (G~ n B (w, pt/h)) ^ (5G2)_1 pt 

(compare with (7.33)). Since we are only interested in points y € Z (see (7.82)), we 
may assume that y 6 G~ \ Zi , and hence iJ1 (G~ Pi B{y, 2t)) < 67r£. [Compare with 
(7.9).] Since the B (w, p/5) are disjoint and contained in B(y, 2£), (7.88) implies that 
there are at most Cp~x such balls; (7.87) follows. 

To estimate J(y, t) we decompose B(y, t) \ G into regions Bk where d(z)/t ~ 2_/e, 
fc > 0. The contribution of Bk to the integral in (7.86) is ^ C2kba \Bk\ ^ C2kba2-kt2 

by (7.87). The series converges because we chose b < cr-1, and the sum is less than 
Ct2. So 

(7.89) J(y,t)2/lp(T ^Gt4/pa, 

and 

(7.90) u>p(y,t) < Ctl--v+^I{y,i) = CrlI(y,t) 

by (7.84) and because 1 
a + 2 

= 1. Thus the left-hand side of (7.82) is less than C 

times 

(7.91) |VU(*)|2 /// fd{z)s 

t 

26/p 
dzdH1(y)dt 

t2 
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where we integrate with the constraints y G Z fl B (# , r ( x ) / 5 ) , 0 < t < r ( x ) / 2 , and 

z G M2 \ G lies at distance < t from y. In particular z e B (x, 7r(x)/10). By Fubini, 

(7.92) BRBR 

./zeB(x,r(:c))\G 
a(z) |V^(z) | dz, 

where 

(7.93) a{z) = 
J0<t<r(x)/2 

(d(z)\ 

BR 

26/p 

Jy€KnB(z,t) 
dH\y) 

dt 
IVthh 

(recall that K = Z D B(x, r(#))). Let us check that 

(7.94) 
JKnB(z,t) 

dHl(y) ^ Ct. 

Suppose i ( n 5 ( z , t ) is not empty, and let £ denote one of this points. Then 

X fl B(z, t) C G~ fl £ ( £ , 2*). [Recall that K C Z, which does not meet L by (7.67).] 

Since £ G X , it lies in G~ \ Zi and i/1 (G~ fl £(£ , 2t)) ^ 6TT£ (see (7.9)); hence (7.94) 

holds with C = 67T. 

Note also that the left-hand side of (7.94) vanishes unless d(z) = dist(z, K) ^ t. 

Hence 

(7.95) a(z) ^ C 
'd(z)^t<r(x)/2 

'd(z) 
t 

2b/p 
dt 

t 
^ G, 

and then 

(7.96) BRBRBR 

B(x,r(aO)\G 
|Vu(z)|2 < GAr(x) 

by (7.92), and because x G Z C G" \ Z2. [See (7.22).] 

This completes our proof of Lemma 7.81. • 

Next we want to deduce from the lemma that for each (small) a > 0 there is a 
C(a) > 0 such that for all x G Xo as above, we can find y G Z fl B ( x , r ( x ) / 5 ) and 

te [C(a)-1rhhlkh(x)cwv,r(x)/2] such that 

(7.97) up(y,t) < a\. 

Suppose not. Call J the left-hand side of (7.82). We would have that 

(7.98Ì BRBR 

lyeZnB{x,r(x)/5) 

rr(x)/2 

JC(a)-1r(x) 
a\dHl(y) 

dt 

t 

^ aXH1 (ZDB (£, r(x)/5)) Log 
C(a) 

2 
aX 

r(x) 

6 
Log 

C(a) 

2 

by (7.73), and because almost all of Z4 lies in Z. [See around (7.67)-(7.69).] Of course 

this would contradict (7.82) if C(a) is large enough, whence the existence of the pair 

(y,t). 
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Now choose r so small, depending on a (which will be chosen soon), so that r < 

(lOOC(a))-1. Then (7.79) tells us that we can find a square Qx centered at y, with 

sides parallel to 0 and the orthogonal direction, and such that 

(7.99) B(y,t/1;:::0)cQxsgcggsB(sgsgy,t) 

and 

(7.100) dQx r\G = 0. 

Indeed, if £ denotes half the sidelength of Qx, (7.99) allows all choices of £ between 

£/10 and t/2, while (7.79) (and the fact that B(y,t) C B(x,r(x))) only forbid a set 

of values of £ with measure ^ 4rr(x). [The extra factor 2 comes from the fact that 
both £ and — £ have to avoid the projections in (7.79).] Since 4rr(x) < 4r(x) 

100C(a) 
At 
100' 

this leaves a lot of room for the choice of £ and Qx. 

In fact, there is even enough room left for the choice of £ to allow the extra re

quirement that 

(7.101) 
JdQx 

WvfdH1 < 
100 

•/B(y,t)\G 
\Vv\p 

100 

t iu lup(y,t 

IVgg 

= 100t1"p/2a;p(y,*)p/2 < lOOoP^AP/2*1-^2, 

by (7.80) and (7.97) 

Denote by v\ the harmonic extension on Qx of the values of v on dQx (which are 

of class C1 by (7.100)). It is well-known (and not hard to check with the Poisson 

kernel) that functions on a circle which have a derivative in Lp have an extension to 

the disk with finite energy J J |Vt>|2. This fact, plus the bilipschitz equivalence of 

squares to disks and a small homogeneity argument, yields 

(7.102) IL IVvil2 ^Ct2~2/P 
'dQx 

IVtxWIjp^p 
I 2/p 

< C a A t , 

by (7.101). 

Now we can choose a so small that Ca < (IOOC2) , where C2 is the same constant 

as in the definition (7.33) of Z3. Then 

(7.103) IL |VVl|2 ^ (IOOC2)-1 Ai < ÎO^XH1 (G~ n B (y, ¿/10)) 

< lO^XH1 (G~nQx) 

because y e Z, Z c G~ \ Z3, and by (7.99). 

We are now ready to conclude. For each x € XQ (our finite subset of X, chosen 

just after (7.76)) we choose y, t, and Qx as above. Then we take 

(7.104) Gi = G \ 
x&Xo 

IVtx 
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We still have that G± D L and G\ C BR, because Qx c B(y,t) C B(x,r(x)) c 
i?R \ L (by (7.72) in particular). Also, the Qx are disjoint because the B(x, r(x)) are 
disjoint (by (7.75)), and so we may define v± on R2 \ G\ by keeping v\—v out of the 
squares Qx and defining V\ on each Qx as above. Then 

(7.105) 
IVtxWIjp 

IVVII2-
IVtxWIjp 

IVtxWI 

IVtxWI 
|VVl|2 

< HT1 A 
xeXo 

iî1 (G-C\QX) 

^ 10_1A [tf1 (G~) . i î 1 (GT)] 

because the Qx are disjoint, by (7.103), and by (7.104). 

On the other hand 

(7.106) h (H* (G')) - h (H1 ( G r ) ) > \ [H1 (G-) - H1 ( G r ) ] 

by (4.59), and so 

(7.107) J(v,G)-J(v1,Gvvvvvvvvk1)> 
b, 
. 4 

A 

10, 
[ff1 (G-)-H' (G7)l 

6A 

41 IVtx 
1 ( G " n Qx) 6A 

40 
X€X0 

r (x ) 

10C(a) 

because for each bx, fh contains B (?/,t/10), which is centered at y G Z C G \ Z3, 
and t > r(x)/Cdd(fa). See (7.99), the definition of y and t before (7.97), and (7.33). 

We also kgnow from (7.5) that J(v, G) < J (vi, G\) + e, and hence 

(7.108) A 
IVtxWIjp 

IVtxWoôoIj 

Of course (7.108) still holds with X , because it holds for all its finite subsets XQ. 
Finally 

(7.109) H\Z) < 

xex 

H1 (ZnB(x,5r(x))) ^ 15TT 
xex 

r(x) ^ Ce 

by (7.76), because Z C G , because all points x G X lie in G \ Zi , by definition 
(7.9) of Zi , and because À > 1. 

This completes our proof of (7.70) and, as explained just before (7.70), of Propo
sition 7.4. • 

8. The Jj | approximate JR 

In this section we complete the proof of (6.2), i.e. the fact that ry(i?), the infimum 
of JR, is the limit of the corresponding infima rjk(R) of the J^. 
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Note that UR increases with k, so rjk(R) is a nonincreasing function of k and 
lim rjk(R) ^ v(R)- To complete the proof we give ourselves a small e > 0 and a 

competitor (v,G) G UR that satisfies (7.5) (i.e., for which JR(V,G) is almost mini
mal). We want to use (v,G) to construct a competitor (u, K) in some [/^ such that 
J(u, if) < 77(i?) + Ge. This will give a k for which 7/fc(i2) ^ rj(R) + Gs, and (6.2) will 
follow because r]k(R) is a nonincreasing function of k. 

So let e > 0 and (v,G) be given, and assume that (7.5) holds (just like in the 
previous section). Let us look more closely at the rectifiable part Grec of G. The 
definition (7.2) says that Grec is covered, except perhaps for a subset of vanishing 
iif1-measure, by a countable collection { I \ } of simple curves of class G1. We may as 
well assume that Ti = L. Then G \ Ti has finite ii^-measure, and we can find a 
finite subcollection Ti , . . . , Tm such that 

(8.1) H1 Grec 
m 

i=l 

::n IVtxWI 

Set Ej = (Grec n Tj) \ \Ji<:j Ei. Then Ej C F,- n G r e c , the Ej are disjoint, and 

H1 ( G r e c x Uj ̂ ) ^ e. The Lebesgue (or Hausdorff) measure on each Tj is regular, 

so we can find an open set Oj C Tj which contains Ej and such that H1 (Oj \ JE?j) < 

e/m. The open set is a union of at most countably many intervals of Tj, and we 

can choose a finite union Oj of these intervals so that Hl (Oj \ Oj) ^ e/m. For 

j = l we keep O^ = Oj = L. Also, for j > 1, me may have taken Tj C BR, and then 0\ C BR as well. 

Finally denote by Ko the union of all the closures dj of these intervals. Then 

'8.2) KQ is closed, contains L, and is contained in L U BR, 

(8.3) Äo has finitely many connected components, 

(8.4) H1 (Grec \ Ko) ^ 2e, 

(8.5) H1 (Ko \ Grec) < e. 

Because of (7.6) we also have that 

(8.6) H1 (G \ K0) ^ Ce. 

We need to find a way to get rid of G \ K$, without paying too much in terms 
of JR, and most importantly without adding infinitely many connected components 
to K0. 

As usual, we start with a covering of G \ KQ. For each x G G \ KQ, set 

(8.7) ri(x) = sup j r G [0,1] 
JB(x,r)nBR^G 

\Vv\2 ^ 5TITA} 
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if x G Z2 (see (7.22)), and n(x) = 0 otherwise. Thus r\{x) > 0 if x G Z2. Also n(x) < 

1/10 (if e is small enough), because otherwise we could add some d(B(x,r) Pi BR) to 

G, replace v with a constant on B(x,r) n and reduce JR{V,G) by much more 

than e. See the proof of Lemma 7.21 for more detail. Of course, 

(8.8) / | V ^ | 2 ̂  5<7rr\ for n(x) ^ r < 1, 
JB(x,r)nBR\G 

by definition of r\(x) and a small limiting argument (to get r = ri (x) also). Next set 

(8.9) r2(x) = sup { r ^ 0 ; tf1 (£(x , r) n G \ i f 0 ) > r / 4 } 

for x E G \ Ko- By the same density theorem as for (4.18) or (7.35), we have that 
r2(x) > 0 for i71-almost every x G G\K0. Because of (8.6), r 2 (x) < 1/10 everywhere. 
Set 

(8.10) r 3 (x) = Max( r i (x ) , r 2 (x ) ) , 

(8.11) Z 5 = {x G G \ K0 : r 3 (x) > 0} , 

and 

(8.12) Z 6 = G \ (K0 U Z 5 ) • 

Choose a set X 5 C Z 5 such that the balls jB (x , r 3 (x ) ) , x G X 5 , are disjoint, but 

the B (x, 5r 3 (x)) , x G X5, cover Z5. 

Denote by X5 the set of x G X5 such that r 3 (x) = r 2 (x) . Then 

(8.13) ww= ddS r 2 W ^ 4 I ] ffl ( B (^' R 2(x)) H G x K 0 ) 
ccGX̂dhhh dd̂ €X£ *eX£ 

^ AH1 (G \ K 0 ) ^ Ge 

by definition of r 2 (x ) , and then the disjointness of the B (x , r 3 (x) ) and (8.6). 

Also set Xg = X 5 \ X£. Then X£' c Z 2 , because r 3 (x) = n(x) > 0 for x G X 5 ' 

(and x G G~ because L C i^o)- The same argument as in Lemma 7.21 tells us that 

(8.14) TTA Y r i ( x ) 
xext; 

[See in particular (7.30) and the comment that follows it; the additional information 

that the points of the set X (in the proof of Lemma 7.21) all lie in G~ \ Z\ was 

not used for (7.30), but only in (7.31) to deduce an estimate on H1 (Z2 \ Z\) from 

(7.30).] Since r 3 (x) = ri(x) on X ^ , we can group (8.13) with (8.14) and get that 

(8.15) Y r^x) < C e ' 
x£X5 

We also want to cover Z$. Since r 2 (x) > 0 almost-everywhere onGxi^o , H1 (ZQ) = 

0. Thus we can cover Z 6 by disks B(x,r±(x)), x G Xg, with X ^ e x ' R 4 ( X ) ^ £- We 
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may even assume that X$ C ZQ (otherwise, change the centers and double the radii). 

Let us use the Vitali type covering lemma again to find a subset X§ of XQ such that 

the disks B (x, r4(x)), x G X 6 , are disjoint, and the B (x, 5r4(x)), x G X&, cover ZQ. 

To make our notations more uniform, set X = X5UXQ, and also r4(x) = r$(x) for 

x G X$. By the preceding discussion, 

(8.16) G\K0 = ZBUZ6c 

xex 

£ ( x , 5 r 4 ( x ) ) , 

and 

(8.17) 
IVtxW 

IVtx 
r4(x) ^ Ce. 

Denote by xi, X 2 , . . . x^ , . . . the elements of X. We can choose this description of X 

in such a way that the sequence of radii {r4 (x^)} be nonincreasing. [This is because 

of (8.17).] For i ^ 1, we shall choose a last radius ri = r(xi) with the following 

properties. First, 

(8.18) 5r4 (xi) < Ti < 10r4 (xi) 

and, if we set Bi = B (x*, r*) 

(8.19) dBi fl G \ #0 = 0 . 

So far, this is easy to obtain, because r4 (x^) ^ r2 (x^), and by the definition (8.9). 

W e also require that 

(8.20) 
JdBiHBR^G 

\Vv\* ^ CX. 

This is also easy to get because r4 (x^) ^ r\ (x^), 10r4 (xi) < 1 (by (8.17)), and by 

(8.7). We add a last constraint on the choice of r,. Set 

(8.21) J(i) = {j< i B H R 4 (xj)) meets B (x^, l l r 4 (x^))} . 

Note that J(i) has at most C elements, because r 4 ( x j ) ^ r4 (x^) for j G J(z), the 

disks B ( x , r 4 ( x ) ) , x G X 5 , are disjoint, and so are the JE? ( x , r 4 ( x ) ) , x G l 6 - We also 

require that for all j G J(i) either 

(8.22a) dist (dBi, dBj) ^ 0 Min (r^rj) 

or else 

(8.22b) dBi and dBj intersect with an angle ^ 0, 

where 6 > 0 is a small positive constant. 

Finally we require that (8.22a) or (8.22b) hold also with OBR instead of dBj (and 

R instead of rj). 

If we choose 6 small enough, then we can add the new constraints (8.22) to the 

previous ones (8.18)-(8.20). This is because for each j G J(z), the constraint (8.22) 

only forbids a set of measure ^ C0r4 (pa) of potential choices for r$, and there are at 
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most G such constraints. [The final constraint on transversality with 8BR is treated 

the same way.] 

So we choose the radii Ti with the properties above. Note that our condition (8.22) 

is actually satisfied for all j < i (because (8.22a) holds trivially when j £ J(i)), and 

even for all j ^ i (because (8.22) is symmetric). 

Let us modify a last time our list of disks Bi. For each i ^ 1, set 

(8.23) Di=BiC\ BR. 

Remove from our list of disks Bi all those for which Di is not maximal, i.e., those for 

which Di is strictly contained in some other Dj. If two or more disks Di coincide, 

just keep one of them and remove all the other ones. Of course these modifications 

do not change \J{ (Bi fl BR) , so we still have that 

(8.24) G \ K o c[JBi 
i 

after this modification, and now 

(8.25) Di is not contained in Dj when i ^ j . 

Let us also use the opportunity to re-number the Bi. Choose a new ordering such 

that the sequence {r^} (with the new ordering) is non-increasing. 

We are now ready to start the construction of a new competitor (u, K) G UR. This 

competitor will be the limit of a sequence {{vi, d)} which we want to construct now. 

We shall define at the same time a nondecreasing sequence of closed sets Ki C G*; 

the main property of Ki will be that it does not have more connected components 

than KQ. 

We start with Ko as above, Go = GUKo, and for vo the restriction of v to Mr \ Go. 

[This may look artificial, but we want to have Ko C Go.] Note that (t>o,Go) G UR 

because of (8.2) in particular. 

Now suppose that i > 1 and that we already defined the Vj, Gj and Kj, 0 < j ; ^ 

i — 1. Our construction will be simpler if 

(8.26) dDi meets iff-i 

(with Di as in (8.23)); we shall then say that i G I\. In this case we take 

(8.27) Ki = Ki-1UdDi, 

(8.28) Gi = KiU [Gi-i x Di], 

and we define Vi by 

(8.29) 
I Vi = Vi-i out of Di 

K = o on Di. 
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It is easy to check that Ki C Gi, Ki does not have more connected components 
than Ki-i (by (8.26)), Gi is closed, and (vi,Gi) G UR (if we already have that 
(vi-i,Gi-i) G UR). Note also that 

(8.30) Ki,Gi, and Vi coincide with A^- i , Gi-i, and v%-\ out of Di. 

Now consider the more delicate case when i G h, where 

(8.31) /2 = {i ^ 1 ; dDi does not meet X i - i } • 

In this case we do not want to add dDi to our boundary (because this would increase 
the number of components of Ki), and instead we shall try to get rid of the part of 
Gi-i inside Bi. More precisely, set 

(8.32) D* = Di 
j<i 

Bj, 

and then take 

(8.33) Ki = Ki-! 

and 

(8.34) Gi = /fiU(Gi_i\JD?). 

We still have that Ki c Gi and, since Ki-\ C G*_i by our (implicit) induction 
hypothesis, Gi coincides with G^-i out of D*. Before we are able to define Vi, we 
shall need a lot of information on the sets Di and D*. Let us first check that 

(8.35) Di nDj = 0 when i G /2, j € /1, and j < i. 

Assume instead that Di meets Dj. Because of (8.25), dDi meets dDj (because 
otherwise we would have that Di C Dj or Dj C Di). This is not possible under the 
conditions of (8.35), because dDj C Kj C i f i - i and d-D* does not meet Ki-\. So 
(8.35) holds. 

For most of the definition of Vi we shall have to wait a little more, but we can 
already decide to keep 

(8.36) Vi(x) = Vi-i(x) out of D*. 

This seems reasonable because we did not modify G^-i out of D*. If we keep with 
this resolution, we will have that 

(8.37) Ki,Gi, and Vi coincide with Ki„\,Gi-\ and Vi-i out ot D\. 

For the rest of the definition of Vi, we shall need to know more about D* before 
we can do the necessary gluing. Note that the slightly degenerate case when D* is 
empty may happen. This will not disturb us, in this case we simply keep (vi,Gi) = 
(vi-\,Gi-i). So let us assume now that D* is not empty, and let us try to describe 
it better. 
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Lemma 8.38. — The boundary dD* is composed of a bounded number of arcs of cir
cles of radii ^ ri, and mt(D*) is composed of a bounded number of disjoint simply 
connected domains that are all bilipschitz-equivalent to disks of radius ri. 

We shall even have a uniform control on the bilipschitz constants for the compo
nents of int (D*) that depends only on the constant 0 > 0 in (8.22). 

To prove the lemma, first note that dD* is composed of a finite number of arcs of 
circles. This is clear from the definitions (8.32) and (8.23). The corresponding circles 
are either 8BR, or various dBj, j ^ i, and they all have radii ^ Vi because Tj is a 
monotone function of j . Moreover, (8.22) and its analogue for 3BR tell us that the 
circles are at distances ^ from each other or meet with angles ^ 0. Thus there 
are at most G such circles (they all meet Bi), and there are at most C arcs of circles. 

The open set int (D*) is obtained from Di = Bi n BR by removing its intersection 
with various disks Bj. To prove that each connected component of int (D*) is simply 
connected we can proceed by induction on the number of Bj that were removed from 
Di. The point is that if U is a simply connected domain contained in Di and Bj is 
a disk which is not contained in Di, then all the connected components of U \ Bj 
are simply connected. A well known fact from two-dimensional topology is that this 
follows from the connectedness of the complement of U \ Bj. This last comes from the 
fact that all points of Bj are connected through Bj to the exterior of U. Thus int (D*) 
has simply connected components. The fact that they are all bilipschitz equivalent 
to disks of radius ri comes from our estimate on the number of arcs of circles (of 
radii ^ r^ that compose dD*, their angles > 0 when they meet, and the fact that 
D* C Di. This completes our proof of Lemma 8.38. • 

Next we want information on di = dD* fl BR and its closure di. 

Lemma 8.39. — We have that 

(8.40) di H Gj = 0 for 0 < j ^ i - 1, 

(8.41) di nDj = 0 for j e h, j < i, 

and 

(8.42) di fl int (Dj) = 0 for j e J2, j < i. 

To prove the lemma, first recall that di is composed of a finite number of arcs of 
circles dBj, j ^ i. Then di is the same as di, except that we also add the endpoints 
of these arcs that lie in dBR. Let us first check that 

(8.43) di does not meet Go = G U Kn. 

Let 7 be one of the arcs that compose di, and let j < i denote the index such that 
7 C dBj. Since 7 C Dj fl Di, (8.35) says that j G I2 if j < i\ this is also true if j = i, 
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trivially. Note that 

(8.44) dBj fi BR n G0 = 0 for j G I2-

Indeed dDj does not meet KQ C KJ-I (by definition of /2? see (8.31)), hence dBj n 

B/e C 9£>j does not meet KQ either, and finally dBj does not meet Go \ KQ = G \ KQ 

(by 8.19)). 

So the arc 7 cannot meet Go, because it is contained in dBj n BR. This proves 

(8.43). 

The rest of (8.40), i.e., the case when j > 0, will follow from (8.43) as soon as we 

prove (8.41). This is because Gj C Gj-i U dDj when j G h (by (8.27), (8.28), and 

the fact that Kj-i C Gj-i), and Gj C Gj-i when j G h (by (8.33), (8.34), and 

because Kj-\ C Gj-\). 

To prove (8.41) simply observe that di fl -Dj C H Dj, which is empty when 

j € h, j < h because of (8.35). 

Finally (8.42) holds because di C dD*, which cannot meet int (Dj) for j G /2, 
j < i, because intDj c Bj and by (8.32). This completes our proof of Lemma 8.39. 

We are now ready to define the function Vi on D*. [Recall that the rest of R2 \ Gi 

was taken care of by (8.36) already. We want to take 

(8.45) Vi(x) = v(x) on di, 

(8.46) Vi(x) = UQ(X) on dBR H dD*, 

and then define Vi on int (D*) by the condition that 

(8.47) Vi is continuous on D* and harmonic on int (D*) 

We want to check that this is coherent, and we shall proceed by induction. Thus 

we assume that all the functions Vj, j < i, j G /2, have been chosen according to these 

rules, and we shall check that Vi also can be defined through (8.45)-(8.47). 

Because of (8.40), all the function Vj, j ^ i — 1 are defined on di. Let us check that 

(8.48) Vj(x) = v(x) for x E di and j ^ i — 1. 

This is true for j = 0, because v0 is the restriction of v to R2 \ Go- If 1 ^ j < i — 1 

and (8.48) holds for j — 1, there are two options. If j G /1 , then (8.48) holds because 

of (8.41) and (8.30). If j G I2 and x G di \ D*, then Vj(x) = Vj-i(x) = v(x) by 

(8.36) and induction hypothesis. Since di does not meet int (Dj) by (8.42), we are 

left with the case when j G h and x G di fl dD*. Then either x G dj = <9£>* D 

and dBR fl <9D*= by (8.45) (and induction hypothesis) or else x G dBR fl <9D* and 

^•(x) = UQ(X) = v(x) by (8.46). This proves (8.48). 

Because of (8.48) for j = i — 1, the two definitions that we have given of Vi on di (in 

(8.36) and (8.45)) coincide. The situation on dBRDdD* is similar; we chose Vi = UQ in 
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(8.46), and (8.36) also forced v\ = UQ on dBRDdD* \ G * - I because (̂ _i, G^-i) G UR 
(by induction hypothesis). Here we may have defined Vi (in (8.46)) also on a piece of 
8BR D Gi, but this does not matter. So (8.45) and (8.46) are compatible with (8.36). 

Since di fl Go = 0 (by (8.40)), the restriction of v to di has limits at the points 
of di fl dBR which coincide with the values of ^o at these points. [This is because 
v(x) = UQ(X) on dBR \ Go, since (v, G) G UR.] Thus 

(8.49) (8.45) and (8.46) define a continuous function Vi on dD*. 

Because of this (and also of Lemma 8.38) our definition of Vi on mt(D*) (that is, 
by (8.47)) makes sense. 

Thus we can define Vi as in (8.36) and (8.45)-(8.47). Moreover, Vi is continuous 
(and even piecewise G1) across dD*. It is easy to check that (vi,Gi) G UR, because 
of this, (8.36), and (8.34). 

This completes our definition of Vi,Gi, and Ki by induction. We need some esti
mates on Vvi before we let i tend to +oo. Because of Lemma 8.38, we can estimate 
the Dirichlet integral of Vi on D* like on a bounded collection of disks of radius ri, 
and 

(8.50) 
BRBR 

\Vvi\2 KCn 
dD* 

dvi\ 
j dr 

I2 
dH\ 

where dvi/dr denotes the (tangential) derivative of the restriction of Vi to dD*. Ob
viously 

(8.51) 
JdD*ndBR 

dvj 

I dr 

I2 
BR CnR-1 

by (8.46). Since dD* \ dBR = dD* Pi BR = di is composed of finitely many arcs of 
circle dBj, j ^ i, we may use (8.43) and (8.20) to get that 

(8.52) 
JdD*\dBR 

\dvi 

I dr 

2 
^ ex. 

Thus 
JDX 

\Vvi\2 ^ CnX, by (8.50)-(8.52), and then 

(8.53) 
JBR^Gi 

|Vt„i2 : BR 
IVtxWIjp 

|Vvi_i|2 + CriA 

because of (8.36). 

We are now ready to go to the limit. Set 

(8.54) K = 
BRBR 

oo 
K 

Let us first check that K does not have more connected components than Ko. For 
each connected component An of Ko, choose an origin zi G At. For all z ̂  1, every 
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point of Ki can be connected to one of the zt by a path contained in Ki. [This is 

because the only times when we modified the sets Ki were when i G / i , and then we 

added a piece dDi connected to Ki-\ (by (8.26)).] Consequently, if A* denotes the 

connected component of ze in (Ĵ  Ki, the union of the sets A\ contains all the sets Ki 

(and hence is dense in K). The desired result follows, because the closure (in K) of 

each A*p is connected. 

Next we check that 

(8.55) K CKQUGU 

v(z) 

dDi) 

Since by (8.27) and (8.33) all the Ki are contained in the right-hand side of (8.55), 

the only interesting points are those of K \ \Ji Ki. Let x be such a point, and let {xn} 

be a sequence of points of \J{ Ki which converges to x. If xn G G U Ko for infinitely 

many values of n, then x G G U KQ (which is closed by (8.2)) and we are happy. If xn 

lies in a single dDi, i £ h, for infinitely many values of n, then x G dDi, this does not 

happen because we assumed that x $ Ki. We are left with the case when xn G dDin 

for n large enough, with an index in that tends to +oo. Since dDiri C Bin and Bin 

is centered on G, we have that dist (xn, G) ^ rin. Also Tin tends to 0 (by (8.17) and 

(8.18)), and so x G G. This proves (8.55). 

Lemma 8.56. — For all x G R2 \ K, there is a neighborhood W of x and an index 

j ^ 1 such that, for all i ^ j , 

(8.57) W C R2 \ Gi 

and 

(8.58) Vi(z)=Vj(z) on W. 

In other words, every point of R2 \ K has a neighborhood W on which Vi is defined 

for i large and {vi} is stationary. 

Let us first check that for all x G R2 \ K there is a neighborhood Wo of x that 

meets only finitely many sets Di, i G I\. 

Suppose not. Then there is a sequence {in}n^i of indices in G h such that in tends 

to +oo and dn = dist (x,Din) tends to 0. Note that dist(x,K) ^ dn + diamAn ^ 

dn + 2rin because dDin C ifn C K. Since r̂n tends also to 0, we get that x G K, a 

contradiction. This give the existence of WQ. 

Let us first prove the conclusion of the lemma when 

(8.59) x G D = 

ieii 

Di. 

Let j denote the largest integer of I\ such that x G DJ; j is well-defined because 

x G WQ and WQ meets only finitely many Di, i e h. Note that x ̂  <9A for any 
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i G /1 , because dDi C K and x £ K. Thus 

(8.60) dist (x,Di) > 0 for all ielui> j . 

Only finitely many Di, ̂  G /1, can ever get close to x (because x G Wo), so (8.60) 

implies that we can find a neighborhood W of x that does not meet any Di, i G /1 

and i > j . We may as well modify W (by reducing it) so that W be open, 

(8.61) WcDjH W0, and W n X = 0 

(because x # K). 

Note that by (8.35) Dj does not meet any D^, i G /2 and i > j . Then it does not 

meet the corresponding D* either. We already know that W does not meet any of 

the Di,i e h and i > j . Altogether, (8.30) and (8.37) tell us that all the Ki, Gi, and 

Viy i ^ j , coincide with Kj, Gj, and Vj on W. Thus (8.57) and (8.58) will follow as 

soon as we prove that W does not meet Gj. 

By (8.61), W does not meet Kj c K. Since Gj D Dj = Kj O Dj by (8.28), we get 

that W does not meet Gj (by (8.61)), as needed. This completes our discussion of 

the case when x G D (as in (8.59)). 

Now suppose that x & D. Then 

(8.62) dist(x,D) = dist (a;, (J dDi) > dist(x,K) > 0 , 

IVtxWI 

because K contains all the dDi, i G I\. Let us now assume that 

(8.63) x G Bj for some j G /2-

Let W be a neighborhood of x which is contained in Bj and does not meet K or 

D. [Such a W exists, by (8.62).] Then W does not meet any of the Di, i e h . It 

does not meet the D*, i £ I2 and i > j either (by (8.32)); hence the Ki, Gi, and Vi 

stay the same on W for i > j as for i = j , by (8.30) and (8.37). Once again, it will 

be enough to show that W does not meet Gj. 

Since Kj C K and W does not meet K, it will be enough to check that 

(8.64) GjHBj c Kj for j G J2. 

(because I f c B j ) . To prove (8.64) we may forget about L (which is contained in 

Ko)\ thus it is enough to control Gj Pi Bj n BR = Gj fi D j . 

The only situations where we ever add something to Gi are when i e h and we add 

dDi. This never affects Dj, because Di D Dj = 0 for such i, i < j (by (8.35)). Thus 

all the points of Gj Pi Dj already lie in Go- Let z be such a point. Let jo denote the 

smallest index of I2 such that z G Dj0; then jo ^ j because z G D j . If z 0 ifj (the 

only interesting case in view of (8.64)), z g Kj0 either. By definition of jo, z G D*o 

(see (8.32), use (8.35) again, and note that z G Di if it lies in some Be). By (8.34), 
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z £ Gj0, and since z was never put back in Gj (by the remark about the Di,i £ I\), 

zgGj. This proves (8.64). 

We are left with the case when (8.59) and (8.63) both fail. Let us first check that 

there is a neighborhood W\ of x that only meets finitely many sets Di, i £ I\ U h-

Suppose not. Then there is a sequence in that tends to + o o and such that 

dist (x, Din) tends to 0. Since the Bin are centered on G, dist(x, G) ^ dist (x, Din) + 

rin, which tends to 0 because r*n also tend to 0. Thus x e G. Since it does not lie in 

K, x £ G \ Ko. By (8.24), x lies in some Bi. Obviously i G I\, since (8.63) does not 

hold. We do not have x G Di, because (8.59) fails. Thus x G Bi \ Di, and there are 

only two options: x G dDi or x G L. Both cases are impossible because LUdDi C K, 

and x G R2 \ K, by the only hypothesis of Lemma 8.56. This proves the existence of 

WL 

Now let j be so large that no Di, i > j, meets W\. Then for all i > j the 

restrictions to W\ of Ki,Gi, and Vi are the same as for i = j. Thus it is enough to 

find a neighborhood W of x such that W ilGj = 0 and W C W\. 

Simply choose W connected, contained in W\, and disjoint from K. Suppose, to 

get a contradiction, that W fl Gj contains some point z. Note that Gj C G U K 

(because Go = G U Ko and all the pieces that we ever added to the Gi were also 

added to some Ki, hence lie in K). Since W does not meet K, z lies in G. We even 

have that z G G \ Ko because Ko C K. In particular z G (because L C Ko), and 

also (8.24) says that z G -E?i0 f°r some io ̂  1. 

We claim that W does not meet any Di, i G I\. Indeed if i G I\, dDi does not meet 
W (because dDi C K) and x £ Di (because we are still in the case when (8.59) fails). 
Since W is connected, it cannot meet D^. This proves the claim, and the consequence 
is that io G h (since z G Bi0 Pi BR C Di0). 

We know from (8.64) that Gi0 fl ̂ 0 C Kio. Hence z £ Gio, since z e W and W 
does not meet K. Since z £ WnGj (by definition of z) and all WdGi, i > j, coincide 
with W fl (because W C VFi), we must have ¿0 < j . This means that z has been 
added to Gj some time between io and j . This is impossible because the only points 
that we ever add to the sets Gi lie in some dDi, i £ I\, and so lie in K. 

This contradiction proves that WnGj = 0 , and completes our proof of (8.57) and 

(8.58) in the last of our three cases. Lemma 8.56 follows. • 

Because of Lemma 8.56, the functions Vi converge, uniformly on compact subsets 

of M2 \ K, to a function u. The convergence is excellent: the sequence is stationary 

on each compact subset of M2 \ K. Hence u £ W1'2 (BR \ K), and 

(8.65) 
JBR^K 

|Vd2 liminf 
¿—•-+-00 0 JBR^Gi 

|V^|2 s 
J BR\G 

IVd2 cx 
00 

i=l 
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by Fatou and (8.53). On the other hand, 

(8.66) H1 (K~) := H1 (K\L)^ H1 (G~) + H1 (K0 \ G) + 

IVtx 

IVtxWIjp^p 

^ H1 (G~) + £ + 2TI 
oo 

2=1 
IVtxWI 

by (8.55), (8.5), and the trivial fact that GREC C G. Since 

(8.67) 
oo 

i=l 
ri ^ Ce 

by (8.17) and (8.18), 

(8.68) JR(u,K)^JR(u,G) + C\£ 

by (3.2), (8.65)-(8.67), and also the definition (4.10) of A, the basic properties (3.3), 

(3.5) and (3.6) of /i, and our assumption that e ^ 1. Note that 

(8.69) (u, K) G UR for some k, 

The fact that (u,K) G UR comes from our construction of K and u, and in particular 

the fact that u G W1'2 (BR \ K)\ then (u, K) G / 7 ^ for some k by the observation 

that follows (8.54). 

We are now ready to conclude. For each e > 0 (small enough) we can choose a 

competitor (v,G) G UR that satisfies (7.5). We have just shown that we can use 

(v,G) to construct a new competitor (u,K) in some U^ that satisfies (8.68). Thus 

rjk(R) ^ TJ(R) + CXe for that k\ the desired estimate (6.2) follows because rjk(R) is a 

nonincreasing function of fc, as was explained at the beginning of this section. [Recall 

from (3.4), (3.5), and (4.10) that A < A ] 

This completes our proof of (6.2). 

9. Existence of minimizers (the concentration property) 

In this section we complete the program announced in Section 6 and prove the 

following result. 

Proposition 9.1. — For R > 1 large enough we can find ( V R , GR) EUR such that 

(9.2) JR(VR,GR) = T>(R\ 

where r](R) = inf {JR(v, G)\(v, G) G UR] as in (6.3). 

To prove the proposition we shall use (6.2) and a classical argument based on the 

concentration lemma of [DMS]. See [MoSo]. 

Our first observation is that for each k ^ 1 there is a pair (VR, GR) G ( 7 ^ such that 

(9.3) JR(VR,Gr) = r)K(R). 
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To find a minimizer for J^ we start from a sequence {{vk^, Gk^)}£ in U^ such that 

(9.4) lim JR Gk,i) = rik(R). 

Modulo extracting a subsequence, we may assume that the closed sets Gkie con

verge, for the Hausdorff metric, to a limit Gk. We can also assume that for each £, 

Vk a has been chosen so as to minimize 

(9.5) BRBRBR 

JBR^GK,E 
|VvM|2 

with Gk,e fixed, and under the usual constraint that v = uo on 8BR \ Gk^. Then 

vkj is harmonic. This is good, because we have an upper bound for Ei that does 

not depend on £, and we can use this to prove uniform estimates on Vvk,e away from 

Gk. Then Montel allows us to extract a new subsequence so that (after extraction) 

the sequence {vkii}£ converges on R2 \ Gk to a function vk, uniformly on compact 

subsets of BR \ Gk. Then vk is continuous on M2 \Gk, harmonic on BR \Gk, and 

(vk,Gk)eUR. 

Also, Gk has at most k connected components, because Hausdorff limits of con

nected compact sets are connected, and so (vk,Gk) G U^. By Fatou, 

(9.6) 
JBR^GK 

|V«fe|2 = lim inf 
BRBRBR 

|VvM|2. 

So far, the argument is quite general, and would work with any minimizing sequence 

in UR. The point now is that the restriction of the Hausdorff measure if1 to compact 

connected sets of finite length is lower semicontinuous, and hence the same thing 

works with sets with at most k components. [You may always extract subsequences 

so that each component converges.] See for instance [MoSo], p. 125. The conclusion 

is that, in the oresent case 

(9.7) H1 (G7) < lim inf if1 Gkj. 

and hence 

(9.8) JR (vk, Gk) < lim inf JR (vk:£, Gkli) = rfk(R). 
£—•+00 

This completes our rapid proof of existence of minimizers for each J^. See [MoSo] 

for additional details. 

Now we turn to the existence of minimizers for JR. We start from the sequence 

{(vk, Gk)}k of minimizers for j £ that we just obtained. Note that this is a minimizing 

sequence for JR, because of (6.2). Follow the same argument as above; we get a limit 

(v, G) G UR as before, and we even get the analogue of (9.6), i.e., that 

(9.9) 
JBR\G 

\Vv\2 ^ lim inf 
k—>-\-oc >BR\GK 

\Vvk\2. 
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For the next stage (i.e., the analogue of (9.7)) we cannot use the same argument as 

before, since we have no uniform bound on the number of components of the G^. Of 

course, the analogue of (9.7) is false in general (that is, without information on the 

sets Gk other that the fact that they converge to G). [Think about powder-like sets 

that converge to a thick limit G.] 

In order to get the analogue of (9.7) anyway, we shall use the fact that (vk,Gk) 

minimizes to get an additional regularity property of the Gk (the uniform concen

tration property of [DMS]). 

We shall say that {Gk} satisfies the uniform concentration property if for all e > 0 

we can find a constant C(e) (independent of k) with the following property. For each 

disk B — B(x,r) centered on G^, with radius r ^ 1, and that does not meet L, we 

can find a disk B(y, t) centered on G^, contained in B, and such that 

(9.10) t ^ G(£)-1r 

and 

(9.11) v d d H 1 ( G ^ D B ( y , t ) ) ^ ( 2 - e ) t . 

Our definition is slightly different from the one in [DMS] or [MoSo]. This is mostly 

to simplify the statement and accommodate the special status of L here, but the 

difference does not really matter. 

We shall sketch a proof of this property soon, but let us first see how to use it to 

get the analogue of (9.7) and conclude. 

Consider the compact set A = G D BR, which is the Hausdorff limit of the sets 

Ak — Gk H BR. We want to apply Proposition 10.10 on page 123 of [MoSo], and so 

we need a Vitali covering B of A. We pick a countable, dense subset of A, and take 

for B the collection of all disks centered on the dense subset and with rational radii 

^ 1. Obviously B is countable, and it is a Vitali covering of A, as defined in the first 

lines of Subsection 2 on page 82 of [MoSo]. 

To apply Proposition 10.10 of [MoSo] we have to check that for each e > 0 w e can 

find a constant C£ such that for all B G B there is a ko ^ 1 such that for k ^ ko we 

can find Bk G B with Bk C B, 

(9.12) diam£fc ^ GedianxB 

and 

(9.13) H1 {Ak H Bk) ^ (1 - e)diamBfc. 

[Compare with (10.11) in [MoSo] (with a = 1), and with the relevant definition (8.1) 

in [MoSo].] 

This is easy to check. When B = B(x, r) is a disk of B such that B (x, r/2) meets 

L, then we can find a disk B' G B with comparable diameter, contained in B, centered 

on L n BR (or at least very close to L D BR if we forgot to include a dense subset 



9. EXISTENCE OF MINIMIZERS (THE CONCENTRATION PROPERTY) 67 

of L fl BR in the dense set in A that was used to define B), and which is completely 

crossed by L D BR. Then we can take Bk = B' for all k, and ( 9 . 1 2 ) , ( 9 . 1 3 ) are easily 

checked. 

Now suppose that B = B(x,r) G B and B ( x , r / 2 ) does not meet L. For k large 

enough, we can find Xk G Ak such that 

( 9 . 1 4 ) \x-xk\^r/10. 

Moreover, Xk G Gk because L is too far. We apply the uniform concentration 

property to the set Gk and the disk B ( x ^ , r / 3 ) and get a disk B (yk,tk) centered on 

Gk. If k is large enough (depending only on r and e) we can find points of A very 

close to yk, and hence there is a disk Bk = B (zk,Pk) in # such that 

( 9 . 1 5 ) |*fc-2/*| ^ [lOCfc)]-1^ 

and pfc is larger than, but extremely close to, tk 4- [ 1 0 C ( £ ) ] _ 1 er. 

Clearly Bk C B (by ( 9 . 1 4 ) , because B (y, tk) C 5 r / 3 ) , and because JB/C is very 

close to B(y,tk)). Also, ( 9 . 1 2 ) holds with C £ = 3 C ( e ) , by ( 9 . 1 0 ) . Finally, ( 9 . 1 3 ) 

follows from ( 9 . 1 1 ) , the fact that B(y,tk) C by construction, and because pk is 

close enough to tk-

We are almost in position to apply Proposition 1 0 . 1 0 in [MoSo]. The only detail 

that still needs to be addressed is that sets in B are required to be compact in [MoSo]. 

This is easily fixed: take closed disks instead of open ones in the definition of B above. 

So we get that {Ak}k has a "uniformly concentrated subsequence", in the sense of 
[MoSo] this time. We then apply Theorem 1 0 . 1 4 in [MoSo] and get that 

( 9 . 1 6 ) Hl(A) ^ liminf H1 (Ak), 
fc—>>oo 

maybe after extracting a new subsequence (but a posteriori we know that this is not 

needed). After removing the constant contribution of L D BR, we get the desired 

analogue of ( 9 . 7 ) , that is, 
( 9 . 1 7 ) H1 (G~) < liminf H1 (G~) . 

The argument can then be completed as in the existence of minimizers for ddgd 

above: (9.9) and (9.17) yield 

(9.18) JR(V, G) < liminf JR (vk, GK) < rj{R) 
k—KX) 

because {(vk, Gk)} is an extracted subsequence of a minimizing sequence for JR. 

To complete our proof of Proposition 9 . 1 , we still need to say how to get the uniform 

concentration property for minimizers of J^. 

In our definition of that property, we restricted ourselves (on purpose) to disks 

B(x,r) that do not meet L and have radii r ^ 1. Also these disks never get close to 

8BR, because of Proposition 5 .1 (and if R is large enough). Finally the presence of 
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the function h in the definition (3.2) is not a special worry either, because r ^ 1 and 
none of the modifications involved in the proof will ever need adding more than Gr in 
length to G. For all these reasons, the proof of the uniform concentration property for 
(reduced) minimizers of is the same as the usual proofs given in [DMS], [DaSe3], 
or [MoSo]. 

Because we already gave in Section 6 a big part of the argument, let us rapidly 
review how it goes for the convenience of the reader. 

Let e > 0 be given, and let B = B(x, r) be a disk of radius r ^ 1 centered on G^ 
and that does not meet L, as in the definition of the uniform concentration property. 
Let a > 0 be a small constant (to be chosen later, depending on e). The same 
argument as for (7.97), but simpler because here we have a true minimizer (instead 
of a candidate that satisfies (7.5)) and hence we can use the mass estimates from 
Section 4 (instead of their ersatz with the sets Zi), says that we can find another 
constant C(a) > 0 such that, in the situation above, there is a disk B(y,t) centered 
on G~ fl B(x,r/b), with radius t ^ C(a)~lr, such that B(y,t) C B(x,r), and for 
which (7.97) holds. By the definition (7.80), this means that 

(9.19) 
f JB{y,t)^Gk 

\Vvk\p 
I 2/p 

< aXtp'1. 

We want to prove that this ball B(y,t) satisfies the required properties in the 
definition of uniform concentration, at least if a is chosen small enough. Since (9.10) 
is obvious, we only need to check (9.11). Suppose that this is not the case, that 

(9.20) H1 (GknB(yA)) < (2-e)t. 

[Note that Gk fl B(y,t) = Gk fl B(y,t), because B(x,r) does not meet L.] Set 

(9.21) E = {p G (0, t) ; Gk fl dB(y, p) has at most one point} . 

We claim that 

(9.22) \E\> 
et 

2 
This is not hard to prove, especially if we allow ourselves to use the rectifiability of 
Gfc. The point is that the radial projection z —> \z — y\ is 1-Lipschitz, so that 

(9.23) H1 (TT"1 ((0, t) \ E)) ^ 2 I(0, t) \ E\ = 2t - 2 \E\, 

where the factor 2 comes from the multiplicity. Since (9.23) is fairly intuitive, and 
anyway we can refer to other proofs of the uniform concentration property, we omit 
the details. Of course (9.22) follows from (9.23) and (9.20). 

From (9.22) and (9.19) we deduce that we can find p G E such that p ^ et/A and 

(9.24) 
JdB(y,p)^Gk 

\Vvk\p $C(e,A)ap/2t1-p/2, 

where C(e, A) depends on e and À, but we won't care. 
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Prom (9.24) and Holder we get a very good control on the jump of the restriction 
of Vk to dB(y,p) at the only point of dB(y,p) D Gk- [If dB(y,p) does not meet Gk, 
the argument is even simpler.] 

We can use this to construct a better competitor than (vk,Gk), as follows. We 
remove Gk fl B(y,p) and replace it with an arc 7 of dB(y,p) centered at the point 
of dB(y,p) H Gk, and with length \H1 (Gk fl B(y,p)) ^ C_1p (by the local Ahlfors-
regularity of Gk)- This way, we shall save at least (2C)~1p in the length term. 

The interest of 7 is that we can extend the restriction of Vk to dB(y, p) \ 7 linearly 
on 7 , and get a continuous function n; on dB(y, p) such that 

(9.25) 
JdB(y,p) 

IVtxWIjp^pIVtxWIjp^pIVtxWI 

[The estimate is not hard to get, but we shall omit the details.] Then we can extend 
w to the whole disk B(y,p), with 

(9.26) 
JJB(yiP) 

\Vw\2 ^ C"(e,\)at. 

We keep the function Vk out of B(y, p), and replace it with (the extension of) w in 
B(y,p); (9.26) is an upper bound for what we have to pay in the energy term of JR. 

Altogether we can choose a so small that the loss in the energy term is the less 
than the gain in length; this gives a contradiction with the minimality of (vk,Gk), 
and proves (9.11) by contradiction. 

This completes our rapid review of how to get the uniform concentration property 
for Gk, and at the same time the proof of Proposition 9.1. • 

10. Limit in R of the minimizers for JR 

So far we defined for each large enough R a functional JR on a set UR, and we 
proved the existence of minimizers (VR, GR) for JR. All this will be used to produce 
a minimizer for a special (global) functional. In this section we choose an increasing 
sequence of radii for which the corresponding pairs (VR, GR) converge to a limit (v, G). 
We also give a few estimates on the rapidity of convergence. These estimates will 
be used later, like in Section 11 to prove that (y,G) is a minimizer for our special 
functional. 

We start with estimates on VR — UQ. For each (fixed) R > 1 and (v,G) G UR, set 

(10.1) E{v) = 
JBR^G 

\Vv\2. 

Let RQ denote, as in Proposition 5.1, a large radius such that 

(10.2) GR = GR \ L C B ( 0 , RQ) 
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when (VR,GR) is a (reduced) minimizer for JR. TO simplify the exposition, we shall 

only consider parameters R ^ 2RQ. 

Denote by vR the continuous function on BR \ (BR0 U L) which coincides with ̂ 0 

on 8BR \ L, is harmonic on BR \ (i?#0 fl L) , and minimizes 

(10.3) E+ = 
JBR^(BR0\JL) 

IVtxWIjp^ 

We can always extend vR by taking vR = 0 on i?#0 and = uo out of BR. Then 

(vft,LU 8BR0) G UR and E1"1" = E(vR). The pair ( v j , LU 3BRQ ) is the same as 

the pair (i>+,G+) in (5.67)-(5.71), except that now i?+ is called RQ. At any rate the 

estimate (5.80) on AE+ = E (UQ) — E+ is still valid, and writes 

(10.4) E(u0) ^ E+ + 2RQ. 

[See (5.76) for the definition of AE+.] Prom (10.2) and the definition of vR we deduce 

that 

(10.5) E(vR)^ E+ ^ E(u0)-2R0 

when (VR, GR) minimizes JR. 

We also need an upper bound for E (VR). Denote by vR the harmonic function on 

BR \ L associated to the choice of G = L. [In other words, vR is also continuous on 

BR \ L, coincides with UQ on OBR \ L, and minimizes E (vR) with these constraints.] 

Note that 

(10.6) AE~ := E (vR) - E(U0) 

is a decreasing function of R, because for R' > R the function vR is an acceptable 

candidate for the minimization of JB L |Vi>|2 (as in the definition of vR/). 

Denote by C3 the value of AE~ for R = 2. Then 

(10.7) E(vR) ^E(V~) ^E(u0) + C3 for R ^ 2 . 

We want to use (10.5) and (10.7) to get estimates for VR — UQ. We will do this with 

Hilbert spaces and the Pythagoras theorem. 

Denote by i f the set of functions on D = BR \ (BR0 U L) that are defined modulo 

an additive constant and have a derivative in L2(D). With the natural norm 

(10.8) \H\H = 

stztt 
\Vw\2 

Ï 1/2 

i f is a Hilbert space. 

All the function vt, vR, UQ, VR mentioned so far have restrictions in if, and even 

in 

(10.9) V = {w G i f ; w is harmonic on D and has a continuous extension 

to BR \ (BR0 U L) that coincides with UQ on 8BR \ L} . 
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Note that V is a closed affine subspace of H (because \\w\\H controls moduli of con
tinuity of w, including up to OBR \ L, for functions of V) . Also, the boundary 
constraint in (10.9) cancels the indétermination on functions: functions in V are no 
longer defined modulo a constant. 

Among all element of V, is the one that minimizes the norm || . This is 
just the definition of v^. In other words, is the orthogonal projection of the origin 
on V. Then 

(10.10) wfH < E{w) < E(u0) + C3 < E+ + 2RQ + C3 = \\v+\\2H + 2Ro + C 

(by Pythagoras), and in particular if we take w = UQ or w = VR we get that 

(10.11) \\wfH < E{w) < E(u0) + C3 < E+ + 2RQ + C3 = \\v+\\2H + 2Ro + C3 

by (10.7), (10.5), and (10.3). Hence 

(10.12) \\wfH < E{w) < E(u0) + C3 < E+ + 2RQ + C3 = \\v+\\2H + 2Ro + C3 

for w = UQ and w = VR (by (10.10)), and the triangle inequality yields 

(10.13) | | ^ o - ^ | | / / ^ 2 ( 2 ^ o + C3)1/2 for R>2. 

Lemma 10.14. — For all x EE2 \ L such that \x\ ̂  2RQ and all R> 2 \x\, 

(10.15) \VVR(X)-FVFFFU0(XFF)FF\^C\FFFXFF\-F1 . 

Here as above, VR comes from a minimizer (VR,GR) of JR. TO prove the lemma, 
consider w = UQ — VR. Then w is harmonic on D = BR \ (BR0 U L) , satisfies the 
usual Neumann condition dw/dn = 0 on L, and (10.13) says that H^H^ ^ C. 

If x and R are as in the statement and in addition dist(#, L) ^ \x\ /10, we simply 
use the harmonicity of w on B = B (x, \x\ /10) to get that 

(10.16) \Vw(x)\ ^ 
\B\ 
1 

J B 
\Vw\ ^C\x\~l 

JB 
S/w\2 

>! i/2 

\\wfH < E{w 

by the mean value property for Vw and Cauchy-Schwarz. 

When dist(x, L) < \x\ /10 we take for B a disk centered on L, with radius ^ \x\ /3, 
and such that x G \B. By Fubini and Chebychev, we can choose B so that 

(10.17) 
'dB 

\Vw\2^mjfjCjflxr^lwlll^Clxsssl'1.gg 

The values of w on the half-disk B+ that contains x are obtained by symmetrizing the 
values of w on dB+ \ L ~ <9i?+ D dB with respect to L and then taking the Poisson 
integral. In this case we easily deduce (10.15) from (10.17). This proves the lemma. 
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We want to use Lemma 10.14 to estimate VR — UQ, and for this it will be good to 

control the mean value of VR — UQ on some circles. We claim that 

(10.18) 
JdBr^L 

VR = 

JdBR\L 
VR = 

JOBR^L 

UQ = 0 for RQ < r ^ R. 

The last equality is true by definition of uo, and the previous one because 

{VR,GR) G UR and GR does not meet 8BR \ L (by 10.2)), so that VR = u0 on 

8BR \ L. To prove the first one we differentiate with respect to r. Set 

(10.19; a(r) 1 

r JdBr\L 
VR = 

Ì9Bi\{-l} 
vR(r0)d0. 

Then 

(10.20) a'(r) = 
/0£i \{- l ] 

8VR 

or 
(re)de = 

1 

gj dBr^L 

dvR 

or 

1 

r d(£r\GH) 

\wfH 

\wfH 

1 

r JBr^GR 
AVR = 0 , 

because OVR/OU on the piece of boundary [9 (f?r \ G^)] \ [9jBr \ L] that we had to 

add to 8Br \ L (by the Neumann condition that comes from the minimality of VR). 
The last equalities in (10.20) use Green and the harmonicity of VR; the reader that 

would (still) be worried about the validity of our integration by parts can consult 

[MoSo], or go through the limiting argument suggested in Section 4. This completes 

our proof of the claim (10.18). 

Let x G M2 \ L be such that 2RQ ^ |x| < R/2. Since the mean value of VR — uo on 
the arc of circle 8Br \ L, r = is zero, we can integrate (10.15) on 8Br \ L and 
get that 

(10.21) \VR(X) - u0(x)\ < C for 2R0 < |x| ^ 
r 

2 

We now have as much information on VR — ^0 as we'll ever need, and we can start 

to think about taking limits (in R). 

First choose a sequence {Rm}m^i of radii Rm > 2R0 such that Rm tends to +00 

and the compact sets fl G » converge (for the usual Hausdorff metric) to a limit 

G'. Set G = G' U L. 

Note that the sets GjRm have the uniform concentration property discussed in 

Section 9. The situation is a little different here, but the proof is the same. Thus we 

can apply Proposition 10.10 and Theorem 10.14 in [MoSo] as in the last section and 

get that 

(10.22) H1 (G \ L) < liminf H1 (GRRN \ L). 
m—•4-00 
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Now we want to take a subsequence so that the VRM converge as well. Let us first 
check that for each r > 2RQ there is a constant G(r) such that 

at least when i?m ^ 2r. Of course it is important that C(r) does not depend on m. 

To prove (10.23), it is enough to restrict to x G dBr \ L because, by the usual 
truncature argument and the minimality of VR^ , the values of VRM on dBr \ L control 
the values of VRM inside. We do not need to worry about the components of BR \ G 
that do not touch 8BR, because be can set VRM = 0 there. Now (10.23) follows from 
(10.21) (applied with \x| = r); we can take C(r) = sup \u0(x)\+C = yflpK^^ + C, 

where C is as in (10.21). 

Because the function VRM are harmonic in BRM \ GJRM, we can use the Montel 
property, the estimates (10.23), and the fact that G#m converges to G to extract a 
subsequence of our sequence {Rm} (which we'll still call {Rm}) such that 

Also, v is harmonic on R2 \ G, since the VRM are harmonic. We can say a little 
more than (10.24) when we stay away from B R 0 : from (10.24) and the estimate for 
V^RM that follows from (10.15), we can easily deduce that 

(10.25) {vRm} converges to v uniformly on every Br \ (L U B2R0) , r > 2RQ. 

This is slightly better than (10.24), because it means that we don't have to worry 
about losing uniform convergence when we get close to L (outside of B2Ro). 

For 1 ^ p ^ + o o and r > Ro, denote by W1,p (dBr \ L) the set of (continuous) 
functions on dBr \ L with a derivative in Lp. We claim that we can always extract 
a new subsequence so that (after extraction) 

(10.26) {VRm} converges to v in W1*2 (dBr \ L) 

for every rational radius r ^ 2RQ. 

This is easy. We restricted to rational radii to simplify the argument; with this 
restriction we only have to be able to get (10.26) for a single radius. Then one 
uses (10.15) and compactness properties of W1,+°° (dBr \ L) in W1,2 (dBr \ L). Of 
course any other value of p G [1, + o o ) (instead of p = 2) would work as well. We omit 
the (classical) details. 

We have enough information now on the convergence of the pairs (VR^^GR^) to 
(v, G) to prove minimizing properties of (v, G). This will be done in the next section, 
but let us first record an easy estimate on v, to be used much later. 

(10.23) \vRrn(x b n n d ) \ ^ C ( r ) on Br \ G * m . 

dBr\L 

(10.24) 
{vRm } converges on R2 \ G to a limit v, 

uniformly on every compact subset of R2 \ G. 
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Lemma 10.27. — For every x G M2, 

( 1 0 . 2 8 ) limsup 
r—»+00 

1 

IB{x,r)^G 
| V Î ; | 2 ^ 1. 

In fact the limit exists and is equal to 1, but we only need ( 1 0 . 2 8 ) . Of course it is 

enough to prove ( 1 0 . 2 8 ) for x = 0 , because B(x, r) C B ( 0 , \x\ + r) and r~l (\x\ + r) 

tends to 1. The contribution of B ( 0 , RQ) does not change the limsup either, so it will 

be enough to estimate 
Js 

\Vvf where S = BR \ (BFÍN U L). First, 

( 1 0 . 2 9 ) 

J s 
Vv\2 

1/2 

Js 
IVUOI2 

,1/2 

JS 
(IVuol - IVd)2 

1/2 

by the triangular inequality. Next 

( 1 0 . 3 0 ) 
Js1 

I Vuol2 

\wfH < E{w 

I V«o|2 = r 

by ( 5 . 8 ) and the notation ( 5 . 4 ) , while 

( 1 0 . 3 1 
Js 

(|V«o| - |Vt;|)2 |Vi¿0 - Vv| ,l2 ^ limsup 
\wfH 

|Vu0 - VvRm I2 

^ limsup 
ra—>+oo ^(BH0UL; ^(BH0UL; 

|Vu0 - VvflJ \wfH < E 

by Fatou, ( 1 0 . 1 3 ) , and the definition ( 1 0 . 8 ) . 

Finally, ( 1 0 . 2 9 ) yields 

( 1 0 . 3 2 ) U Vi;|2 
j 1/2 

< r1/2 + C, 

and Lemma 1 0 . 2 7 follows. 

11. Our modified functional and why (v,G) minimizes it 

Let us first define our modified (global) functional. Denote by U (our set of 

competitors) the set of pairs ( f ,G) , where G C R2 is a closed set that contains 

L = (—oo, — 1 ] , G~ := G \ L is bounded, H1 (G~) < +oo, and v is a function defined 

on R2 \ G with a derivative in L2oc (R2 \ G) and even such that J B X G |V^|2 < +oo 

for every ball B. The restriction that G~ be bounded is not really needed here, but 

will not disturb either. 

Let (v, G) G U be given. A competitor for (v, G) is a pair (u, K) G U such that for 

R large enough, 

( I L I ) G and X = K \ L are contained in JB^ 

and more importantly 

( 1 1 . 2 ) u(x) = v(x) for x G M 2 \ (BR U L). 
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Here we don't have to worry about an analogue of the topological condition (1.5). 
because R2 \ (BR U G ) = R 2 \ ( B R U L) for R large, and R2 \ (BR U L) is connected. 

Definition 11.3. — A minimizer of the modified functional is a pair (t>, G) G U such 
that 

(11.4) h(Hl (G-)) + 
JBR^G 

\Wv\2 ^h(Hx {K~)) + 
JBR^K 

|Vu|2 

for each competitor (u, K) for (t>, G) and all large enough R. 

Here h is the same function as in Section 3, with A and B chosen so that the 
results of Section 4-9 are valid. Note also that as long as (11.1) and (11.2) hold, the 
inequality (11.4) does not depend on R. The main goal of this section is to prove the 
following. 

Propositions 11.5. — The pair (v, G) introduced in the last section is a minimizer of 
the modified functional. 

The proof will be very similar to arguments in [Bo]; the situation is a little simpler 
here because we won't have to worry about the number of connected components at 
infinity. We give the proof for the convenience of the reader. 

We have already checked in the last section that (v,G) G U. See in particular 
(10.2), (5.3), (10.22), and (10.28). Let us argue by contradiction and assume that we 
can find a strictly better competitor (u, K) for (v,G). Let R be such that (11.1) and 
(11.2) hold, but (11.4) fails. We can easily assume that R is rational (to be able to 
use (10.26)) and that R > 10.Ro, because otherwise we can replace R with a larger 
(rational) radius. Of course we want to use (u, K) to construct a competitor for JRrn 
that is better than (vRrn,GRm) for some (large) m. 

For the moment, let m be any integer such that Rm > R, and set Gm = GRrn and 
vm = vRrn to simplify notations. We want to construct a pair (v,G) G URrn. Let us 
keep 

(n.6) G = K 

and 

(11.7) v = vm out of BR. 

This is possible, because anyway all our singular sets G, Gm, K are reduced to L 
outside BR. Since (vm,Gm) G URm and Rm > ft!, (11.6) and (11.7) imply that 

(11.8) (v, G) = (u0, KQ) out of BRm. 

Next we want to define v on BR \ G = BR \ K. We shall take v of the type 

(11.9) v = u + w on BR \ G, 
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where w will actually be defined on the whole BR \ L. Since we want v to be 

continuous across OBR \ L, we have to require that 

(11.10) w = vm — u on OBR \ L 

(because of (11.7)). Note that this is equivalent to 

(11.11) W = Vm — V Ou ÔBR^L, 

by (11.2). 
We choose for w any reasonable extension to BR \ L of the values of vm — i; on 

<9Z?R \ L . We can take the harmonic extension with the usual Neumann condition 

on L as the reader probably expected, but even cruder choices will work as well. For 

instance we could interpolate radially between the boundary values on ÔBR \ L and 

the mean value /3 of vm — v on ÔBR \ L using a formula like 

(11.12) w (reie) 
2r-R 

R 
{Reie) -v{Ré6)} 

2R-2r , 

R 
-ß 

for R/2 ^ r ^ R and — n < 0 < 7r, and 

(11.13) w (reie) = ß for r < 
Ä 

^ 2 ' 

The only constraint on the choice of w is to have 

(11.14) 
JBR^L 

IVH2 < CR 
JÔVXBR^L 

\V(Vm-vCCC)\2, 

where we shall not even care about the way the constant CR depends on R. Of course 

(11.14) is easy to get. 

The right-hand side of (11.14) is equal to CR \\vm — v\\w1'2(dBR^L) an<̂  (10-26) tells 

us that it tends to 0 when m tends to +00. Let e > 0 be given, to be chosen later. 

Then (11.14) says that 

(11.15) 
JBR^L 

I Vu;12 < e2 for m large enough. 

Now we want to compare (v,G) with (vm,Gm). First notice that (y,G) G URri 

by (11.7), (11.9), (11.15), and because v is continuous across dBR \ L. Moreover 

(11.16) jRm&G) = h(H1(G^L)) + 
JBRRN^G 

IVÏÏI2 

= h{H1(K\L)) + 
JBRRXVN^(BRUL) 

|V^m|2-
JBR^G 

,\V(U + W)\2 

by (3.2), because G = K (by (11.6)), by (11.7) (and the fact that K — G = L out of 

BR), and by (11.9). 
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Set a2 = 
JBR^K 

\Vu\2 and b2 = 
BR^K 

|VH2. We know from (11.15) that b ̂  e 

if m is large enough; hence 

(11.17) 
JBR^G 

_ |V(u + w)|2 < a2 + 2a6 + &2 < a2 + 2ae + e2 

because G = K. Now set 

(11.18) A = JRm (v, G) - JRm (vm, Gm). 

Then 

(11.19) A = ;bbnJ.;;,,.Rm(v,G)-h(H1(G;i)) 
JBRRN^GM 

|Vi;m|2 

dhd=jf h;.(H\gllK;.-))-h(H\G-))-
JBR^G 

\V(u + w)f-
JBR^Gm 

\wfH < E{ 

by (11.16) and because the middle integrals cancel. Then (11.17) yields 

(11.201 A ^ Ah + 
JBR^K 

\Vu\2 + 2ae + £2 
JBR\Gm 

\VVm\2, 

with Ah = h (H1 (K-)) - h (H1 (G-)). 

Now we want to use our assumption that (11.4) fails. Denote by 6 the left-hand 

side of (11.4), minus the right-hand side. [Thus 8 > 0.1 By (11.20), 

(11.21) A + (if1 ( G - ) ) - h (H1 ( G " ) ) } 

Now 

JBR^G 
\Vv\2-

JBR^GM 

\Vvm\2 + 2ae + £2. 

(11.22) limsup h (H1 (G-)) - h (H1 ( G " ) ) < 0 
m—»+00 

by (10.22), and 

(11.23) 
JBR^G 

\Vv\2 ^ limsup 
R m—>4-OO BR^Gm 

\Vvm\2 

by Fatou and because the Vvm converge to Vv, in fact uniformly on every compact 

subset of BR \ G. Of course 2ae + £2 is as small as we wish (because a is a fixed 

number that does not depend on m in particular). By choosing e small enough, we 

can force the right-hand side of (11.21) to be ^ 5/2 for m large enough. This gives 

A < 0, a contradiction with the minimality of (vm,Gm) = (^m,GflTO). [See (11.18) 

for the definition of A.] 

So we were wrong to assume that (11.4) could fail, and (v, G) is a minimizer of the 

modified functional. Proposition 11.5 follows. • 
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CHAPTER C 

REVIEWS ON BLOW-UP LIMITS AND C 1 PIECES 

12. Blow up 

The main goal of this section is to prove that limits of our minimizer (v, G) by blow
up procedures are essentially global minimizers of the Mumford-Shah functional, as 
in Definition 1.6. The word "essentially" means that we'll have to multiply the length 
terms in (1.7) by A = ti (H1 (G~)). 

First we'll need a few definitions; we start with the appropriate extension of the 
notion of global minimizer. 

We keep the same class UQ of admissible pairs as in Section 1 (a little before (1.2)), 
and also the same notion of competitors for an admissible pair (u,K) G Uo (see 
(1.3)-(1.5)). 

Definition 12.1. — Let A > 0 be given. A global A-minimizer (for the Mumford-Shah 
functional) is a pair (u, K) G UQ such that 

(12.2) XH1 (K n BR) + 

\wfH < E{w 

|Vu|2 < XH1 (G n BR) 

\wfH < E{ 

IVd2 

for all competitors (v, G) for (u, K) and all large enough radii R. 

This definition is mostly a matter of convenience, because there is not much differ
ence between global minimizers (with A = 1, as in Section 1) and global A-minimizers: 
it is easy to see that (u,K) is a global A-minimizer if and only if [\~1^2u,K) is a 
global 1-minimizer. 

Next we want to give a few definitions about limits. We start with limits of closed 
subsets of the plane. 

If G, K are nonempty closed subsets of the plane and R > 0, set 
(12.3) 

dR(G, K) = sup {dist(a;, K) ; x £ G D BR} + sup {dist(x, G) ; x € KDBR} . 
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For small values of R it may be that G fl BR or K D BR is empty. We shall then 
define the corresponding supremum to be zero. 

If {GN} is a sequence of nonempty closed sets in the plane and G is a nonempty 
closed set, we say that {GN} converges to G if d,R ( G n , G) tends to 0 for each R > 0. 
Of course it is enough to check this on integer values of R, since OIR(G,K) is a 
nondecreasing function of R. 

Next we define convergence of pairs (v, G). Our presentation will be slightly closer 
to the one in [Le2] than the original definition of [Bo], but the notion is the same. We 
are interested in pairs (i>, G), where G C R 2 is closed and nonempty, and where v is 
a G1-function defined on R 2 \ G. Let us call U\ the set of such pairs. Note that in 
the present paper the G 1 requirement is easily checked; our functions v will always 
be harmonic on I 2 \ G. 

Let {(vn, G n ) } n ^ 1 be a sequence in U\ and ( f ,G) G U\. We say that {(vN,GN)} 
converges to (v, G) if { G n } converges to G (as above) and if for each compact subset 
A of R 2 \ G, the derivatives Vvn converges to Vv uniformly on A. 

Note that for n large enough, GN does not meet A, which allows us to talk about 
the convergence of Vvn on A. Also, this definition only determines v up to an additive 
constant on each connected component of R 2 \ G. We can remove this ambiguity by 
choosing an origin in each component of R 2 \ G, and fixing the values of v there. The 
issue is the same as in the following. 

Lemma 12.4. — Suppose that {GN} converges to G and that { V t ; n } converges uni
formly on each compact subset ofM2 \ G. Suppose also that for each connected com
ponent O o / R 2 \ G there is a point z G O such that {vn(z)} converges. Then {vn} 
converges to a limit v on R 2 \ G, and the convergence is uniform on every compact 
subset o / R 2 \ G. 

This is easy. The point is that if A is a compact subset of R 2 \ G, then A meets 
only finitely many components of R 2 \ G. If O is one of them, then A fl O can be 
connected to the point z of the statement by a compact connected set contained in O. 
The rest of the proof is routine. 

Note also that it is always easy to find converging subsequences, as in the following 
lemma. 

Lemma 12.5. — Let {(vN,GN)} be a sequence in U±, suppose that for each n, vn is 
harmonic on R 2 \ GN, and also that for each R > 0 there is a constant CR such that 

(12.6) 

\wfH < E{w 

| V ? ; n | 2 ^ CR for all n. 

Then there is a subsequence {(^n f c ?G n f c )} that converges to some (v,G). 

This is also standard. We can extract a first subsequence so that the G n f c converge 
to some G. Our statement was a little imprudent, because we have to allow also 
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the case when G = 0 , but this makes no real difference. Then we use (12.6) and 
the harmonicity of the vn to get uniform bounds on the second derivatives of the 
vnk, k large, on every compact subset of R2 \ G. We can then extract repeated 
subsequences, using Montel, an exhaustion of R2 \ G by compact sets, and the same 
sort of arguments as in Lemma 12.4. We omit the easy details. 

Let us now describe blow-ups for our minimizer (v, G) of the modified functional. 
We select a sequence of points yn G G (the most interesting case) and a sequence of 
radii tn > 0. Then we consider the pairs (vn, Gn) G U\ given by 

(12.7) Gn = t~1(G-yn) 

and 

(12.8) vn{x) = t~1/2v (tnx + yn) for x G R2 \ Gn. 

[Note that B (yn,tn) for G becomes the unit disk for Gn.] We shall first restrict to 
situations where 

(12.9) lim tn = 0 

(which corresponds to what we mean by blow-up) and 

(12.10) lim t 'Mist (yn, L) = +oo, 
n—>-oo 

which will make boundary effects due to L disappear. 
Note that we are in the situation of Lemma 12.5. Indeed 

(12.11) / |V^n|2 = t-1 f \Vv\2 ^ ATTXR 
JBR^Gn JB(ynitnR)^G 

as soon as tNR ^ 1, say. The inequality comes from the fact that (y, G) is a minimizer 
of the modified functional (try a competitor with K = G U dB(yn,tNR) and u = 0 
in B(yn,tNR)). We could also get it from Lemma 4.12 and Fatou, because Vv is the 
limit of a sequence Vt>#m • We easily deduce (12.6) from (12.11), because for each 
fixed R we do not care about the first values of n. 

Because of this, we can always extract subsequences so that the pairs (vnk,Gnk) 
converge (in the sense described above). 

Proposition 12.12. — Let (v,G) be a minimizer of the modified functional. Let {tn}, 
{yn} be as above, and in particular satisfy (12.9) and (12.10). Suppose the sequence 
{(vn,Gn)} converges to a limit (u,K). Then (u,K) is a global X-minimizer, with 
\ = h' (H1 (G \ L ) ) . 

The proof of Proposition 12.12 is almost the same as in [Bo], Section 2.2 (iii). We 
sketch it here anyway, mostly because of the slight differences in definitions. 

Let (y,G), {(vn,Gn)}, and (u,K) be as in the proposition, and suppose (u,K) 
is not a global minimizer. We want to proceed as in Section 11 and find a better 
competitor than (v,G). Let us first check that (u,K) G UQ, the set of acceptable 
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pairs denned in Section 1. For this and the rest of Proposition 12.12, the main point 

is that for all R > 1, 

(12.13) H1 (K fl BR) ^ liminf H1 (GN fl BR) < 2TTR. 

n—•-foo 

The last inequality is easy to obtain, with the same proof as in Lemma 4.2. Note 

that the argument involves replacing GN fl B(yn,Rtn) with 8B (yn,Rtn), and that 

B (yn, Rtn) does not meet L for n large enough, by (12.10). 

The first inequality is proved like its counterpart (10.22), using the uniform con

centration property for the sets GN Pi BR (or equivalently, the sets G fl B (yn, Rtn)). 

The uniform concentration property can be proved exactly as (suggested) for the sets 

GR in Section 9, using the minimality of (v, G). The details are the same as in Section 

9, [Bo], or [DMS]. 

The functions vn are harmonic on their domain of definition R2 \ Gn, and so u is 

harmonic on R2 \ K. Also, 

(12.14) 
JBR^K 

\Vu\2 ^ liminf 
n—»4-oo 

\wfH < E{w 

\Vvn\2 ^ 4TT\R 

by Fatou and (12.11). Altogether, (1.2) holds and (u,K) G U0. 

Since we have assumed that (u, K) is not a global A-minimizer, there is a competitor 

(u, K) for (u, K) such that (12.2) fails for R large enough. [Recall that the failure of 

(12.2) does not depend on R, provided that R is large enough, because of (1.3) and 

(1.4)]. Choose a (large) radius R such that (1.3), (1.4), and (1.5) hold, (12.2) fails, 

and also such that 

(12.15) K fl 3BR has at most 10 points. 

[This last is easy to get, by (12.13) and a standard argument using radial projections 

and Chebychev.] 

Let £ > 0 be small, to be chosen later. Set 

(12.16) Z = {z G 8BR ; dist (z, K D dBR) < e} . 

Note that 8BR \ Z is a compact subset of R2 \ K. For n large enough, it does not 

meet GN. We shall restrict to these large values of n and set 

(12.17) Gn = [ ( G „ U Z ) \ B j i ] U KDBR . 

Note that GN is closed because K fl 8BR = K fl 8BR and GN fl 8BR are contained in 

Z. 

On the complement of BR UGn, we keep vn(x) = vn(x). In BR \ Gn, we want to 

set 

(12.18) vn(x) = u(x) + wn(x), 
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where we'll need to choose wn such that 

(12.19) wn(x) = vn[x) - u(x) on dBR \ Z, 

so that our definitions of vn on BR and its complement agree nicely on 3BR \ Z. 

Lemma 12.20. — For n large enough we can find a C1-function wn on BR \ (ZU GN) 
such that (12.19) holds and 

(12.21) / _ \Vwn\2 ^e. 
J BR\GTI 

To prove this lemma, we need to construct functions wn on BR\GU with prescribed 
boundary values on 3BR \ Z, and obviously we can do the construction separately 
(and independently) on each connected component of BR\(ZU GN). So let V denote 
a connected component of BR \ (Z U GN) = BR \ (Z U K) (by (12.17)). If V does not 
meet 8BR, then we can take wn = 0 on V, because there is no boundary condition 
coming from (12.19). So suppose that V meets 3BR. The various points ofVD 8BR 
are not separated by K (by definition of V), hence (1.5) tells us that they are not 
separated by K either. [Recall that K plays the role of G in (1.5).] Thus 

(12.22) V H 8BR is contained in some connected component O of R2 \ K. 

We need to know more about the values of vn — u on the intersection of such an O 
with 8BR. For each O of R2 \ K that meets 3BR, set 

(12.23) 0* = { z G O f l 0BR ; dist (z, 8BR n K ) ^ | } . 

Obviously (9* is a compact subset of O. Choose a point in (9*, and set an = 
vn{zo) — U(ZQ) = vn(zo) — u(zo) (because u and u coincide on OBR, by the analogue 
here of (1.4)). Then 

(12.24) {Vvn} converges to Vu uniformly on (9*, 

just because (u,K) is the limit of the sequence {(vN,GN)} and (9* is compact in 
R2 \ K, but also 

(12.25) {vn — an} converges to u uniformly on (9*, 

by definition of an and the argument of Lemma 12.4. [Some argument was needed 
here, because 0* could be composed of more than one interval of 8BR, and we need 
to use the fact that these intervals are connected by paths in R2 \ K.]. 

From (12.24) and (12.25) we easily deduce that for n large enough we can find a 
function hn defined on the whole 8BR which coincides with vn — an — u on the slightly 
smaller set 

(12.26) 0\ = {z e O H dBR ; dist dBR D K) > e} , 
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and which satishes 

(12.27) 
JdBR 

\Vhn\2 ^ lO"10^"1 . 

Let us still denote by hn the harmonic extension of hn to BR. Then 

(12.28) 
JBR 

|Vhn| 
e 

1U 

We are now ready to define wn on each connected component V of BR \ (Z U Gn). 
By (12.22) and the definitions (12.16) and (12.26), V fl dBR is contained in 0\ for 
some O as above. We take wn = hn + an on V. Obviously 

(12.29) 
Jv 

|Vwn|2 
e 
in 

by (12.28), and wn = vn - u = vn - u on V n 8BR by definition of /in and because 
u = u on 8BR \ K (by (1.4)). The function wn that we have defined this way satisfies 
the requirements for Lemma 12.20; in particular (12.21) follows from (12.29), because 
there are at most 10 components V that touch 8BR, by (12.15). The lemma follows. 

Now choose wni n large enough, as in Lemma 12.20. This gives a pair (vn,Gn) 
that coincides with (vn, Gn) out of BR. Set 

(12.30) G* — tnGn + yn 

and 

(12.31) Vn(X) = tn2Vn 
f x - yn N 

hjf 
on R2\G*n. 

[This is the inverse transform to the one in (12.7) and (12.8).] We get a competitor 
« , G * ) f o r (v,G). 

We still have to do the comparison of (u*, G* ) with (v, G) and get a contradiction 
(if s is chosen small enough and n is large enough). The computations from now on 
are essentially the same as in Section 11. First 

(12.32) H1 (G*n \ L) - H1 (G-) = tn iH1 (Gn n BR) - H1 (Gn n BR) 

H1 [K n BR) - H1 (Gn n Bfl) + 21e 

by (12.30), (12.7), (12.10), (12.17), (12.16), and (12.15). Since Hx(KnBR) < 
lim inf H1 (Gn n BR) by (12.13), we get that 

(12.33) H1 (G*n \ L) - H1 ( G " ) ^ t„ [H1 ^ n ßflJ - JÎ1 ( if D BÄ) + 22s 

for n large enough, and then 
(12.34) 

h (H1 (G*n \L))-h (H1 (<?-))< Xtn [H1 (K n BR) -H^Kf) BR) + 23e 
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for n large enough, because A = h! (H1 (G )) and tn tends to 0. Next 

(12.35) AE := 
JB(ynitnR)^G*l 

|v<|2 
JB(y R)^G 

\Vv\2 

— tfl 
JBR^Gn 

|Vvn| -tn 
JBR^Gn 

\Vvn\2 

by (12.31) and (12.8). We can use (12.18) and the fact that a = 
JBR^Gn 

Nul2 
,1/2 

is finite to get that 

(12.36) 
JBR^Gn 

|Vïïn|2 < a + 
lJBR^Gn 

|V^n|2 
,1/2] 2 

^ a2 + 2ae1/2 + e < a2 + 3ae1/2 = 
JBR^K 

_ \Vu\2 + 3a^/2 

by (12.21), if 5 is small enough, and because BRnGn = BRf)K (by (12.17)). We 

also have that 

(12.37; 
JBR^K 

|Vd2 < 
'BR\Gn 

|V^ |2 + e 

for n large enough, by (12.14) (or Fatou and the convergence of \7vn to Vie). Alto

gether, 

(12.38) t-'AE^ 
JBR^K 

\Vu\2 -
JBR^K 

\\/u\2 + 3d£1/2 + £ 

for n large enough, by (12.35), (12.36), and (12.37). 

It is now time to use our hypothesis that (12.2) does not hold to get the desired 
contradiction: if £ is small enough, (12.34) and (12.38) contradict the minimality of 
(v,G). This completes our proof of Proposition 12.12. • 

We shall also need variants of Proposition 12.12 where the centers yn in the blow

up procedure do not satisfy (12.10), but instead lie on the half-line L. The limits of 

such blow-up sequences will then be "global A-minimizers in R2 \ R" (when yn stays 

away from —1), or "global A-minimizers in R2 \ (—00,0]" (when yn = — 1 for all n). 
Let us first say what this means. Set 

(12.39) U2 = {(u, K) e U0 ; K contains R } 

and 

(12.40) Us = ttu.K) eUn ; K contains (-00,01} . 

Definition 12.41. — A global A-minimizer in R2 \ R (respectively, in R2 \ (—00,0]) 

is a pair (u, K) in U2 (respectively, in Us) such that (12.2) holds for all competitors 

(v, G) for (u, K) that lie in U2 (respectively, in Us) and all large enough radii R. 
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In other words, the definition is the same as for global A-minimizers, except that 
we add the constraint that K contains the line R or the half-line (—00,0], both on the 
admissible pairs and on the competitors. In the case of R 2 \ R , a global A-minimizer on 
R2 \ R is nothing more than the juxtaposition of two independent global A-minimizers 
on the two half-planes that compose R2 \ R. 

Proposition 12.42. — Let (v,G) be a minimizer for the modified functional. Let {tn} 
be a sequence of positive numbers tending to 0 (as in (12.9)) and {yn} a sequence of 
points of L. Define (vn,Gn) as in (12.7) and (12.8), and suppose that the sequence 
{(vn,Gn)} converges to a limit (u,K) (with the notion of convergence defined at the 
beginning of this section). Set A = h! (H1 (G \ L)) as usual. If furthermore 

(12.43) lim t^distfon,-!) =+00, 
n—»+00 

then (u,K) is a global X-minimizer in R2 \ R. If instead yn = —1 for all n, then 
(u,K) is a global X-minimizer in R2 \ (—00,0]. 

The statement was long, but the proof is the same as above (except for a few minor 
details that we leave to the reader). 

The situation for limits of global A-minimizers is even a little simpler, because we 
don't need to worry about (12.9) and the derivative of h. 

Proposition 12.44. — Let {(un,Kn)} be a sequence of global X-minimizers (for some 
fixed X > 0). Suppose that {(un, Kn)} converges to a limit (u,K), and that the 
origin lies in K (a brutal way to require that K ^ 0). Then (u,K) is also a global 
X-minimizer. 

The proof is still the same as in [Bo] and Proposition 12.12. There is an additional 
verification (compared with the proof of Proposition 12.12) that we need to do in this 
case. When we construct our competitor (vn, G*) for (v,G) (as in (12.30) and (12.31)), 
we also need to check the topological condition (1.5) before we do the comparisons. 
Let us sketch the argument, even though it is very close to its analogue in [Bo]. After a 
dilation, we are reduced to showing that for n large enough, Gn satisfies the analogue 
of (1.5) with respect to Gn. That is, we need to prove that if y, z e R2 \ (BR U Gn) 
lie in different components of R2 \ Gn, then Gn also separates them. 

Suppose this is not the case. Then we can find a path 7 C R2 \ Gn that goes from y 
to z. If 7 does not meet BR, then it does not meet Gn either, because Gn \ BR C Gn 
(by (12.17)). So 7 meets BR. We can even find a subarc 7 ' of 7 which lies in BR \ Gn, 
and has its two endpoints z\ and Z2 in OBR \ Z , and in two distinct components of 
R2 \ Gn. [Consider successive points of 7 n 8BR, and recall that y,z lie in different 
components of R2 \ Gn\. Call I\ and I2 the components of z\ and Z2 in 3BR \ Z. 
Thus 7i and I2 are separated by Gn in R2, but they are not separated by Gn fi BR in 
BR. Note that Gn D BR c K HBR, by (12.17), so K HBR does not separate h from 
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I2 in BR, and even less in R2. Recall that by construction (u,K) was a competitor 

of (u,K), and so K satisfies the analogue of (1.5) with respect to K. Hence K does 

not separate I\ from I2 in R2. 

For each given pair h,h of components of OBR \ Z , if K does not separate I\ 

from I2, then for n large Gn does not separate them either, because {Gn} converges 

to K. [Think about a path from /1 to I2 that does not meet K] Note that there 

are only finitely many pairs I\,I2 to consider, and so for n large enough, we cannot 

find points y, z e R2 \ (BR U Gn) that lie in different components of R2 \ Gn, but 

which Gn does not separate. This completes our sketch of verification for (1.5) and 

Proposition 12.44. • 

Let us add that there are also results like the ones in Proposition 12.42, where 

limits of sequences of global A-minimizers in R2 \ R and R2 \ (-00,0] (corresponding 

to blow up sequences or not) are shown to be global A-minimizers in R2, R2 \ R, or 

R2 \ (—oo,0], depending on the situation. We shall only be more precise when we 

need such results. 

13. G1 curves and spiders 

For most of the rest of this text, we shall give ourselves a pair (v, G) and assume 

that either 

(13.1) (v,G) is a (reduced) minimizer of the modified functional 

(as in Definition 11.3), or 

(13.2) (i;,G) is a (reduced) global A—minimizer 

(as in Definition 12.1). 

In this section we want to recapitulate some of the standard regularity properties 

of (ordinary) Mumford-Shah minimizers that are satisfied by (v,G), with essentially 

the same proofs. Thus this section will not contain much in terms of proofs. 

The following convention will help us treat (13.1) and (13.2) at the same time. 

Definition 13.3. — When (13.1) holds, we say that a disk B(x,r) centered on G is 

acceptable if r ^ 1 and B(x,r) does not meet L. When (13.2) holds, an acceptable 

disk is just any disk centered on G. 

We start our list of regularity properties with an Ahlfors-regularity result: there is 

a constant C such that 

(13.4) C~lr ^ H1 (Gn B(x,r)) ^ Cr 

for all x £ G and r > 0, with the constraint that r < 1 when (13.1) holds. Here 

C depends on A in a simple way, but we don't really care. The second inequality is 

proved as in Lemma 4.2. The proof of the first inequality is the same as in Proposition 
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4.14 when B (x, r/2) is acceptable; otherwise (13.1) holds and B (x, r/2) meets L, and 

the desired inequality holds because G contains L. Next 

(13.5) f |V<;|2 ^ 47rrA 

«/£(x,r)\G 
for all disks when (13.2) holds, and for all disks of radius r ^ 1 when (13.1) holds. 

Otherwise, we could add dB(x, r) to G and replace v with a constant in B(x, r). The 

constraint on r comes from the function h, and the proof is the same as for Lemma 

4.12. 

Now we want to describe results from [Da] or [AFP]. 

Definition 13.6. — A regular point of G is a point x G G such that there is a disk 

B = B(x,r) for which 

(13.7) G fl 5 is a simple C1 curve that contains x and crosses B 

(so that in particular G fl OB is composed of exactly 2 points, and G D B is a curve 

that joins them), and furthermore 

(13.8) 

the curve G Pi B is the image under a rotation of some 10 2—Lipschitz graph. 

A disk with the properties (13.7) and (13.8) is called a disk of regularity for G. 

Of course there is something a little arbitrary in the definition, but it will be 

useful to have (13.8) in addition to the more natural (13.7), and this will not cost us 

anything. Note that, thanks to (13.8), B(x,r') is a disk of regularity for all r' ^ r 

when B(x,r) is a disk of regularity. We shall also need the analogue of Definition 13.6 

with spiders instead of curves. 

Definition 13.9. — A spider centered at x is a union of three simple curves of class C 1 

that all start from x$, make 120° angles with each other at #o, and do not intersect 

except at XQ. [See Figure 13.1.]. The three curves will also be called the legs of the 

spider. We say that the spider is fiat when each of its legs is the image under some 

rotation of a 10~2-Lipschitz graph. 

Definition 13.10. — A spider point of G is a point x G G such that for some disk 

B = B(x,r), GnB is a flat spider centered at x, and GO OB has exactly three points 

(one in each leg of the spider). Such a disk B will be called a spider disk. [See Figure 

13.2.] 

FIGURES 13.1 AND 13.2. 
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Proposition 13.11. — H1 -almost every point of G is a regular point of G. 

Let us start with the contribution of L in the special case when (13.1) holds. We 

want to prove that in this case, 

(13.12) almost-every point of L is a regular point of G. 

To prove this, it is enough to check that for all (large) m, almost every point of 

Lm = [-ra, - 1 - ^ ] is a regular point of G. Let e > 0 be given, and denote by 

Xm the set of points of Lm that are not regular. Cover Xm with disks B(x,5e), 

x G Xm, where Xm C Xm is chosen so that the disk B(x,e), x G Xm, are disjoint. 

Since x G Xm is not a point of regularity, B(x,e/2) meets G \ L. By the proof of 

Proposition 4.14 (applied to a point of B(x, e/2) fl G \ L), 

(13.13) H1(GDB(x,e)\L)^C-1e for x e Xm. 
Hence 

(13.14) H1 (Xm)=H1 (LHXmX 

\wfH < E 

H1 (L fl B(x, be)) 

^ 10 C 

\wfH < E{w 

H1 (G n e) \ L) < 10 C H1 (Z£), 

where Z£ = {y G G \ L ; dist (2/, Lm) ^ e } . Since the intersection of the Z£ is empty 

and each Ze has finite H1 -measure, we get that 

(13.15) lim Hl {Z£) = 0, 

and hence H1 (Xm) = 0. This proves (13.12) when (13.1) holds. 

The rest of the proof of Proposition 13.11 can be imported, essentially without 

modification, from [Da] and probably also from [AFP]. Let us be more specific. Be

cause of (13.12), we can stay away from L and avoid all complications related to L. 

The second difference with the situation of [Da] and [AFP] is the absence of the third 

term in the usual Mumford-Shah functional (the term with the initial image g). Of 

course this is only good for us, and would allow considerable simplifications in the 

proofs of [Dal if we were to copy them down. 

The third difference comes from the composition of the term H1 (G~) with the 

slightly non-linear function h. This never causes a real problem, for the same rea

sons as we have seen in the previous sections (like Section 4). The situation is even 

simpler here in that respect, because we can restrict to very small disks (and hence 

systematically stay in the region where A/2 ^ h'(t) ^ 2A). 

The last difference with the situation of [Da] and [AFP] comes from the topological 

condition (1.5) on the competitors for (v,G) when we have (13.2). It turns out that 

in all the arguments used in [Da], the competitors that are used to compare with 

(f, G) and get estimates satisfy the additional constraint (1.5), except perhaps in the 
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situation that we shall rapidly describe below. This is probably also the case in [AFP], 

but we did not check this. 

Let us describe the situation in [Da] where we compare (v, G) with pairs (£>, G) 

for which (1.5) does not necessarily hold. This shows up in Lemma 3.19 on page 790 

of [Da], where we assume that G fl dB(x,t) is contained in the union of two small 

intervals i i , I2 of dB(x,t), and that, for some p G (1,2), 

(13.16) hJx.t) = ¿2 1 
JdB(x,t)^G 

\Vv\p 

is not too large, and we want to get a lower bound on the variation of v on dB(x, t) \ 

( / i U / 2 ) . 

To prove that lemma, one compares (v, G) with a pair (v, G), where G is obtained 

from G by adding two small intervals J{, I'2 of dB(x,t) that contain I\ and I2, and 

removing G fl B(x,t). We get a problem with (1.5) when the two connected compo

nents of dB(x, t) \ (/1 UI2) lie in different components of R2 \ G, because G no longer 

separates them. On the other hand, if this is the case, we can add a large constant 

to v in one of the connected components of R2 \ G; this does not change (v, G) in 

any essential way, but it makes the variation of v on dB(x, t) \ (I± U I2) as large as 

we want. In other words, whenever we cannot apply the proof of [Da] because (1.5) 

would be violated, we can still get the desired estimate cheaply by modifying v. 

The reader should not be shocked by this. In fact the lower bounds on jumps of 

v that we get from Lemma 3.19 in [Da] are only used to control the sizes of holes 

in curves that connect /1 to I2 above, i.e., the length of sets that we would have to 

add to G fl B(x,i) to get a curve in B(x,t) that connects /1 to /2- If we cannot use 

the argument of [Da] because of (1.5), then G fl B(x,t) disconnects the two pieces of 

dB(x, t) \ (/1 U I2) and there is simply no hole to fill. 

Thus we can use [Da]; this completes our proof of Proposition 13.11. • 

In addition to Proposition 13.11, we shall need some of the partial results from [Da] 

that were used to prove it. We start with the basic way to find disks of regularity. 

Lemma 13.17. — There is a constant e > 0 such that if B(x,r) is an acceptable disk 

(see Definition 13.3), if 

(13.18) 
JB(x,r)^G 

| V v | ^ £r3/2, 

and if there is a line D such that 

(13.19) dist(z, D) ^ er for all z G G fi B(x, r) 

and 

(13.20) dist ( 2 , G) ^ er for all z G D n B(x, r), 

then B (x,r/2) is a disk of regularity. 
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See Theorem 4.8 and the relevant definitions (2.5) and (2.11) in [Da]. Lemma 13.17 
can be seen as a perturbation result. If, in the disk B(x,r), (u,K) looks enough like 
the line minimizer from (1.10) (that is, a pair (u',K') where K' is a line and u' is 
locally constant), then K n B(x,r/2) is a C1 curve. A consequence of this is that if 
(u, K) is a (reduced) global minimizer for which some blow-in sequence converges to 
a line minimizer, then (u,K) itself is a line minimizer. [See Corollary 18.26 below.] 
Note also that line minimizers are the tangent objects to minimizers at regular points. 

We shall also need the analogue of Lemma 13.17 with curves replaced with spiders 
and lines replaced by propellers (the corresponding tangent objects). Recall that we 
call "propeller" a union of three half-lines that start from a same point (the center 
of the propeller) and make 120° angles at this point. [So propellers are very flat 
unbounded spiders.] 

Lemma 13.21. — There is a constants > 0 such that if B(x,r) is an acceptable disk, 
if (13.18) holds, and if there is a propeller P centered at x such that 

(13.22) dist(z, P) ^ sr for all z G G FL B(x, r) 

and 

(13.23) dist(*,G) < er for all zePn B{x,r), 

then there exists x$ G G P\B(x, lOer) such that B (#O, r/2) is a spider disk. 

This follows from Theorem 10.7 on page 876 of [Da], modulo a couple of minor 
technical differences that we discuss now. The hypotheses (10.1)-(10.3) of that theo
rem were slightly different from the ones we have in Lemma 13.21. Here we do not 
care about (10.1), which was only coming from the additional g-term in the stan
dard Mumford-Shah functional. Next (10.2) in [Da] is the same as (13.22) here, so 
that we only need to worry about the hypothesis (10.3) on the jumps of v across a 
neighborhood of dB(x, r) fl P. 

We cannot deduce (10.3) in [Da] directly from the hypotheses of our Lemma 13.21, 
because (10.3) asks for a very large jump. However we can use an argument similar to 
the one in Lemma 3.19 of [Da] to show that (10.3) in [Da] holds for some (significantly 
smaller) B (x,r/C). 

More precisely, we can first use (13.18) and Fubini to replace r with a slightly 
smaller r' such the variation of v on each of the three main pieces of dB(x, r') \ G is 
extremely small. Call Ji, J2, J3 these main pieces, and ai, 0̂ 2, 0:3 the mean values 
of v on Ji, J2, Js respectively. 

If OJI, 0J2, OLS are all very close to each other, we can get a contradiction roughly 
as follows. From (13.18), (13.5), and Holder, we get a very good control of 

/ |V.r, say, fo, , . 3/2. Because of this, we can assume that r> has a l» 
JB(x,r)\G 
been chosen so that hp(x,rf) is very small (where hp(x,rf) is as in (13.16)). Then we 
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can use the fact that ai , a?2, a3 are very close to each other to modify v on a small 

neighborhood of P in dB(x, rl) and get a function v on dB(x, r') such that 

(13.24) £-i 

JdB(x,r') 
\Vv\p is very small 

(in fact, as small as we want). [Compare with (13.16).] Then we can extend v 

harmonically in B(x,r'), in such a way that 

(13.25) r"1 
JB{x,r') 

|W|2 is very small, 

and replace G with G = [G \ B(x,r')] U Z , where Z is a small neighborhood of P 

in dB(x,r'). We get a contradiction, at least if (v,G^ is an acceptable competitor. 

The other case is when (13.2) holds and G does not satisfy (1.5). In this case we can 

modify v on a component of M2 \ G so that OJI, 0J2, OL3 are not all close to each other. 

[See the discussion in the proof of Proposition 13.11.] The construction is almost the 

same as in Lemma 3.19 of [Da], so we omit the details. 

We also need to exclude the situation where a\ and 0L2 are very close to each other, 

but reasonably far from a3. In this case we first use (13.18) and the co-area formula 

to show that we can find a closed subset H of B(x, r') such that 

(13.26) Hl M{H.BLB\G)^Cer 

and H disconnects completely J3 from J\ U J2 in B(x, rf). The argument is very close 
to Lemma 3.39 in [Da], so we omit the details. 

We can easily assume that H is contained in an er-neighborhood of P. [If it is not, 

we can always project it on such a neighborhood, and this only makes (13.26) slightly 

worse, because of (13.22).] Call P3 the branch of P that goes from the center x to 

the point of P fl dB(x, r') near the junction between J\ and J2. Set 

(13.27) iJi = {z e H ; dist (z, P3) ^ er} U dB (x, 2er). 

Then Hi still separates J3 from J\ and J2 in B(x,r'). [See Figure 13.3] 

dB(x, r*) 

FIGURE 1 3 . 3 
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Note that 

(13.28) H1 (HiJMJ) ̂ H 1 N C N N NN(GnB(x , r ' ) ) 
r 
C 

by (13.26), and because a good portion of G fl B(x, r') has been removed in (13.27), 
by (13.23) and (13.4). Set 

(13.29) G= [G BLL\ B(x,r')] U F i U Z , 

where Z is the union of three arcs of dB(x, r') centered at the points of PC\dB(x, r') 
and with length r/6C, C as in (13.28). Thus 

[13.30) H1(GnBCC(xy)) < H\GnB{x,NNCNr')) -
r 

2C 

The rest of the argument goes as above (or as in Lemma 3.19) of [Da]). We can 
define a function v on the circle dB(x, r') that coincides with v on J\ \ Z and J2 \ Z 
(but not on J3), and which satisfies (13.24). [This is possible because OL\ is very close 
to OJ2-] Then we can extend v on B(x,r'), so that (13.25) holds. Because of the 
separation property of Hi, we can keep v = v on the complement of B(x,r') and on 
the component of B(x, r') \ G that contains Z3. This gives a pair (v, G) that strictly 
improves (v,G), because of (13.30) and (13.25). If (v, G) is an acceptable competitor 
for (v,G), we hold the desired contradiction. Otherwise we are in the situation of 
(13.2), G does not satisfy (1.5), and hence G separates J\ from J2 . In this case we 
can modify v on the component of J2 in M2 \ G so that (after modification) OJI, 0̂ 2, 
0J3 become fairly distant from each other. 

At this point of the discussion, we know that we can assume that ai, QJ2, OL3 are 
all fairly different from each other. Of course they are not hugely different, as would 
be required if we wanted to apply Theorem 10.7 of [Da] directly to B(x1r/). On the 
other hand, we can use (13.18), (13.22), and the harmonicity of v to get that v is 
nearly constant on each of the three components of 

(13.31) {z e B(x,r') ; dist(z,P) ^ 2er\ 

Consider the small disk Bi = B(x,cir), where c\ will be chosen soon. If e is small 
enough (depending on c\ in particular), the jumps associated to Bi as in (10.3) of 
[Da] are all ^ C'1^2 (because |a< - O L J \ > 2C~1r1/2). If ci is chosen small enough, 
this is ^ e^1 (cir)1/2, as required in (10.3) of [Da]. 

Thus Theorem 10.7 in [Da] applies to B±, and we get that GilB (x, \c\r) is a nice 
spider. In the statement of that theorem, one insisted more on the chord-arc property 
}f the spider, but the proof also gives that G fl B (x, C2r) is a flat spider for some 
[perhaps smaller) constant C2. 

This does not give yet Lemma 13.21, because we also need to control G outside 
of B{x, c2r). This control is easy to obtain (if e is small enough), because we can 
apply Lemma 13.17 above to a fairly dense collection of points of G fl B (x, 3r/4). We 
get that GnB (x,3r/4) is a spider by gluing the various curves obtained in this way. 
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Then we get the desired control on the variation of the angle of the tangent to each 

leg of the spider from the flatness of the curves given by Lemma 13.17 and the fact 

that G n B(x,r) stays er-close to P (by (13.22)). To be honest, to get the precise 

constant 10-2 in the definition of a flat spider, we need Lemma 13.17 to give us a 

slightly better constant than IO-2 in (13.8). Of course there is no problem with this. 

This completes our sketch of proof for Lemma 13.21. 

The following consequence of Lemmas 13.17 and 13.21 will be useful. 

Corollary 13.32. — Let y G G and a sequence {tn} of positive numbers be given. 

Suppose that the sets Gn = t~x(G — y) converge to a limit K. If we are in the 

situation of (13.1), suppose in addition that y G G \ L and {tn} tends to 0. 

If K is a line, then y is a regular point of G. If K is a propeller, then y is a spider 

point of G. 

Here the notion of convergence of sets is the same as in the beginning of Section 

12, i.e. convergence for the Hausdorff metric on every disk of the plane. Regular and 

spider points are defined at the beginning of this section. 

Let y and {tn} be as in the statement of Corollary 13.32. Because of the remark just 

before Proposition 12.12 (or the corresponding observation for global A-minimizers), 

we can always extract a subsequence so that the pair (vn, Gn) converges to some limit 

(u,K), where we define vn by (12.8) with yn = y. Let us assume that we already 

extracted such a subsequence. 

By Proposition 12.12 or its analogue Proposition 12.44 for global A-minimizers, 

(u, K) is a global A-minimizer. 

If K is a line or a propeller, the associated function u must be constant on each 

component of R2 \ K. This is well-known, and fairly easy to prove. For instance, if 

K is a line through the origin, we can use the fact that for all R > 0, 

(13.33) 
JB(0,r) 

|Vd2 < CR 

(by (13.5)) to get that for r < R, 

(13.34) 
JB(0,r)\K 

\Vu\2 ^ CR~lr 

by easy estimates on the solution of the Dirichlet-Neumann problem on £(0 , R) \ K 

(i.e., eventually, by scale invariance and even easier estimates on the Poisson kernel 

on the disk). Once we have (13.34), we get that Vu = 0 on R2 \ K by letting R tend 

to 4-oo with r fixed. The case when K is propeller can be treated in the same way; 

the estimates are even more favorable. 

So u is constant on each component of R2 \ K, and hence Vvn tends to 0 uniformly 

on each compact subset of R2 \ K, by convergence of {vn} to u, and harmonicity of 
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all our functions. Let us check that we even have that 

(13.35) lim 
n—»+oo ^ß(0,ß)\(KUGri) 

| V v n | = 0 

for every R > 0. For each small rj > 0, decompose B(0, R) \ (K U Gn) into fi? U fig, 

where 

(13.36) fi» = | x G B(0,Ä) \ ( K U G J ; |Vvn(a;)| < r?} 

and ftn = B(0, R) \ (HT U GN U ftn). Then 

(13.37) 
qIE 

|Vvn| ^r]\B(0,R)\ =<KT1R2 

trivially, while 

(13.38) 
2̂ 

|Vvn| ^ 
'fi? 

^ |V^n|2 

v 1/2 

|fi5l1/2 

sg<s <sfs 
ß(y,t„Ä)\G 

|V^|2 

1/2 

|Qn|1/2 < {47rÄA}1/2|^n|1/2 

by Cauchy-Schwarz, (12.8) and a change of variable, and (13.5). Because \Vvn\ con

verges to 0 uniformly on compact subsets of B(0, R)\K, the right-hand side of (13.38) 

tends to 0 (for each fixed 77), and (13.35) follows easily. 

If K is a line, it follows from (13.35), the convergence of {Gn} to K, and the 

formulae (12.7) and (12.8) (with yn = y) that B(y,tn) satisfies the hypotheses of 

Lemma 13.17 for n large enough. In this case y is a point of regularity. 

If K is a propeller, then for n large enough B (y, tn) satisfies the hypotheses of 

Lemma 13.21 and y is a spider point of G. 

This completes the proof of Corollary 13.32. • 

Here is another application of Lemma 13.17. 

Lemma 13.39. — For each constant C\ > 0 there is a constant C2 > 0 such that for 

every acceptable disk B{x,r) and every measurable set E C G fl B (rr,r/2) such that 

Hl(E) ^ C f V , we can find a disk of regularity B(y,t) centered on E and with radius 

t € [C2-V, i r ] . 

See Definitions 13.3 and 13.6 for acceptable disks and disks of regularity. 

As the reader may have guessed, we want to find y G E and t £ [2C21r, | r ] that 

satisfy the hypotheses of Lemma 13.17. So let us fix our acceptable disk B(x,r) and 

call A the set of pairs (y,t) e E x \2C2lr, \r\ that do not satisfy the hypotheses of 

Lemma 13.17. Decompose A into A^ U A?, where 

(13.40) A! = {(y,t)eA; (13.18) fails} 

and A2 — A \ Ai. 
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Let us first take care of A\. Fix 1 < p < 2, and set 

(13.41) 
G/.t)^*1-4/*<CCC 

'B(y,t)^G 
|Vdp 

I 2/p 

just like in (7.80). For each (y,t) £ Ai, 

(13.42) WpG/.t)^*1-4/* 
JB(y,t)^G 

\wfH < 
s 2 

\B(y,t) 
-2 

WpG/.t)^*1-4/* 

J JB(y,t)^G 
|Vv| 

\ 2 

WpG/.t)^*1-4/* 

by Holder and since (13.18) fails. On the other hand, 

(13.43) 
lyeGnB(x,r/2) r0<t^r/2 

^(BH0UL; 
dH1(y)dt 

t 
< CAr. 

This is still Proposition 4.5 on page 311 of [DaSe2], and the proof is the same (but a 

little simpler) as for Lemma 7.81 above. From (13.42) and (13.43) we deduce that 

(13.44) 
iH\y)di 

t 
^ 7T2~h-2 

y£GHB(x,r/2) 0<t<r/2 
WpG/. 

lH1(y)dt 

t 
^Ce-jljX!!;r, 

where we do not really care about the dependence in A, but it is important that C 

does not depend on C2. 

To estimate the size of A2 we use the local uniform rectinability of G. 

Lemma 13.45. — For each e > 0 there is a constant C(e) such that, for every accept

able disk B(x, r), 

(13.46) 

WpG/.t)^*1 

dH1(y)dt 

t<FQ<F 
: ^ C ( e ) r , l l l 

where ^43(x,r) denotes the set of pairs (y,t) G GDB (x,r/2) x (0, r/2] for which there 

is no line D with the properties (13.19) and (13.20) (with (x,r) replaced by (y,t)). 

This lemma is a consequence of the local uniform rectifiability of G, and more 

precisely of the fact that for every acceptable disk B(x, r), there is an Ahlfors-regular 

curve T with constant ^ C that contains G D B(# ,2r /3 ) , say. Here we can forget 

about the precise definition of Ahlfors-regular curves (in terms of parameterizations) 

and iust recall that T is a connected set such that 

(13.47) H1 (r fl B(z, s)) ^ Cs for all disks B(z, s). 

The constant C, just like C{e) in our lemma, is allowed to depend on A. 

The existence of the Ahlfors-regular curves V is proved in [DaSe2]. (See Theorem 

2.8 on page 302 there). Of course the same proof works here also. 
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Now Lemma 13.45 follows from the fact that uniformly rectifiable sets satisfy the 

"bilateral weak geometric lemma". The justification is the same as for Corollary 6.3 

on page 319 of [DaSe2]; see in particular the definition (6.5). For a general discussion 

about uniform rectifiability including the bilateral weak geometric lemma, we refer to 

[DaSel]. 

We may now return to the proof of Lemma 13.39. It is clear from the definitions 

of A2 and As(xir) that A2 C A%(x,r). Hence Lemma 13.45 and (13.44) imply that 

(13.48) 
JA 

dH1(y)dt 

t 
^Cf(e)r. 

On the other hand 

(13.49) 
J JEx[2C-1r,±r 

dH1(y)dt 

t 
= H1(E) Log 

fC2 

A ) 
^C^r Log 

C2 

4 

by our assumption on E1, and it is now easy to choose C2 so large, depending on C\ and 

a fixed choice of e (the one that makes Lemma 13.17 work), that the right-hand side 

of (13.49) is strictly larger than the right-hand side of (13.48). Then E x [C2~1r, \r\ is 

not contained in A, Lemma 13.17 applies to some pair (y,£), and this proves Lemma 

13.39. • 

In view of the statement of Lemma 13.39, the reader may be worried about the 

situation when (13.1) holds and B(x,r) meets L. The following lemma can help 

reduce to the situation of Lemma 13.39. 

Lemma 13.50. — There is a constant C$ such that if (13.1) holds, x G L, B(x,r) does 

not contain —1 and G fl B (x,r /2) is not contained in L, then 

(13.51) H1 ({y G GnB(x,r) ; dist(y,L) ^ C 7 V } ) ^ C^r. 

Suppose not. Let us first check that 

(13.52) Gn B(x,2r/3) C {y ; dist(2/,L) ^ ar} , 

where a is as small as we want (if we choose C3 accordingly large). This comes from 

the local Ahlfors-regularity of G far from L (as in (13.4)): if Gf)B (x, 2r/3) contained 

a point z at distance ^ ar from L, then the disk B (z,ar/2) would be contained in 

the left-hand side of (13.51) (if C3 > 2a_1) but have a mass ^ C~lar > C%1r (again 

if C3 is large enough). This proves (13.52). 

We want to use (13.52) to construct a better competitor for (v,G). The idea will 

be to apply a deformation of a disk of radius r/6 that collapses a good part of G onto 

L, so as to win a nontrivial amount of length. First choose a point z G L fl B (x, r/2) 

which is essentially as close as possible to G~ = G \ L. Then 

(13.53) dist (z,G~) ^ 2ar , 
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by (13.52) and because B(x,r/2) contains points of G by assumption. Now there 

is a C1 mapping \I> of R 2 to itself such that 

(13.54) ty(y) = y on L and out of B = B (z,r/6), 

(13.55) V(y) G L for all y G B (z,r/12) such that dist(î/,L) ^ ar, 

(13.56) | D ^ ( y ) | < 1 + Ca everywhere, 

and also such that there is an open set U of B \ L that contains the set 

{z G B \ L ; dist(z, L) > ar or z £ B (z, r /10)}, such that 

(13.57) the restriction of ^ to U is a diffeomorphism onto its image B \ L, 

and finally 

(13.58) | D * ( î / ) - I d | < G a ont/. 

The simplest way to construct \£ is to choose a nice pair of curves T+, T_ as 

suggested by Figure 13.4, and collapse the region between T+ and T_ onto L. The 

domain U is the part of B that does not lie between T + and T_. 

dB = dB (z,-L) 

collapsed region L = 4 /(r+) = xF(r_) 

FIGURE 1 3 . 4 

Now we take G = * ( G ) . Note that G still contains L, by (13.54). Next 

(13.59) 

H\G-) := # X ( G \ L) < ^ ( G " ) + CaHl(G~ HB)- H\G~ n r/12)), 

where we loose no more than CaH1 (G fl B) because only G n £ moves (by (13.54)), 

and by (13.56), and we win H1 (G~ D B (z , r/12)) because all these points are sent to 

L (by (13.55)). 

Because G is locally Ahlfors-regular (which can be proved as in Section 4), this 

gives that 

(13.60) H 1(G-)^H1(GWVWVV-)-CD<-\W 

at least if a is small enough. 
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Now set v{£) = v (#_1(£)) on R2 \ G. This is well defined because L c G, by 

(13.57), and because we can take \P-1(£) = £ out of B. Because of (13.58), 

(13.61) |VÏÏ(£)|^(l + Ca)|V^ (^-1(£))| 

and a change of variable yields 

(13.62) 
JB^G 

\Vv\2 < (1 + Ca) 
JB^G 

|V |̂2 

Thus the difference is as small as we want (compared to r), and because of (13.60) 

(ïï, G) is a strictly better competitor than (v, G). This contradiction finishes the proof 

of Lemma 13.50. • 

14. C1-regularity of v near regular and spider points 

In this section we take care of a minor technical issue: the fact that near regular 

and spider points, v has boundary values on G (from both sides) that are of class C1. 

Let us start with regular points. 

Lemma 14.1. — Let B(x,r) be a disk of regularity for G, and denote by ill, Q2 the 

two connected components of B(x,r) \ G. Then each of the restrictions of v to ùù 

has a C1-extension to QiC\ B (x , r /2) . 

See Definition 13.6 for disks of regularity. Also, do not pay attention to the radius 

r/2, which is here mostly for convenience. 

The lemma is standard. Here we can use the conformal invariance of energy in

tegrals to give a soft proof. Obviously it is enough to prove the result for fix. First 

choose a domain Di such that 

(14.2) fil D B (x, 2r/3) c D i C fti, 

and whose boundary is a Jordan curve composed of two C +£ arcs, one contained in 

G and one contained in Oi, and which meet with right angles. [See Figure 14.1]. This 

is possible because we know that GC\B(x, r) is actually of class C1+£ for some e > 0 

(and even C1'1 by [Bo]). This extra regularity on G at the places where it is C1 is 

easy to get (and actually comes for free in [Da]), and will allow a simpler control on 

the conformal mapping below. 

Next let D2 be a half disk, and map conformally Di onto D2. We can do this so 

that the conformal mapping ip : Di —• D2 sends the arc G fl dDi to the straight part 

of dD2 and the other piece Qi fl dDi to the circular part of dD2. This makes sense 

because \£ has a continuous extension to the boundary, and it is possible because we 

can find conformal mappings of the unit disk D that send two given distinct points of 

<9D to any two given distinct points of dB. 

Because Di and D2 are piecewise C1+e, the extension of tp to Di is also C1, except 

perhaps at the two corners. This comes from the fact that conformal mappings 
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between C1+~ domains are Cl up to the boundary. [See for instance [Po], page 
48]. Here, if we want to apply such theorems directly, we can always compose with 
conformal mappings like z —> (z — zo) near the corners, to get rid of the angles. Our 
mapping is also fairly regular near the corners, because of the choice of right angles 
in the definition of D\, but this does not really matter.

Consider v = v o 0_1, which is defined on ip (Dj \  G) (i.e., on the union of 
and the circular part d of its boundary). The restriction of v to 8 is also C1, with 
perhaps a singularity when we approach the two endpoints. This singularity is fairly 
mild, because v and v are bounded anyway.

Also, v is the function on Do which minimizes the energy with the given boundary 
data on d. This comes from the conformal invariance of energy integrals. By the 
same symmetry argument as in Section 4 (see after (4.53)), the values of v on D2 are 
obtained from its values on d by symmetrization and integration against the Poisson 
kernel. [This also uses some of the mildness of v on d mentioned above.] Thus v 
extends in a C1 way to D2, except perhaps at the two corners.

Since v = v o yp this gives the desired properties on v as well. [Note that 
0 (B (x ,r/2) Pi fi 1) lies in Do, far from the corners.] This proves Lemma 14.1. □

Here is an analogue of Lemma 14.1 for spider disks.

Lemma 14.3. — Let B(x,r) be a spider disk for G, and denote by il, , i = 1,2,3, the 
connected components of B(x,r) \  G. Then the restriction of v to each has a C1 
extension to fi B {x,r/2).

The proof is almost the same as for Lemma 14.1. Let, us use a first conformal 
mapping $ to get rid of the angle at x. Set $(z) = (z -  x)3/"2 on fij, where the choice 
of holomorphic square root does not really matter.

If D\ is a domain like the one used in Lemma 14.1 (but with one extra corner at 
x), then D\ = <£> (D1) has only two corners left. We then map D[ onto a half-disk 
D2 by a conformal mapping ip as above. Once again, v = v o i »“ 1 o ip~l is C1 up 
to the boundary, except perhaps at the two corners. Finally, » = « 0^ 0$  has a C1 
extension to 0* n B (x, r/2) because $ has a (zero) derivative at x. [See the picture.] 
The lemma follows. □
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CHAPTER D 

MISCELLANEOUS PROPERTIES OF MINIMIZERS 

15. 0 = R2 \ G has no bounded component 

We continue with our assumption that (v, G) is a minimizer as in (13.1) or (13.2), 
and set Q = R2 \ G. 

Lemma 15.1. — The open set Q has no bounded component. 

In the special case of (13.1), we know from the definition at the beginning of Section 
11 that G~ = G \ L is bounded, and so ft has only one unbounded component. Thus 
Lemma 15.1 will show that 

(15.2) ft is connected when (13.1) holds. 

Actually Lemma 15.1 is proved in [Bo], modulo minor details, but we continue with 
our tradition of giving a proof for the convenience of the reader. 

Let us proceed by contradiction and assume that ft has a bounded component fto. 
Obviously dfto C G and H1 (dfto) > 0. If we are in the situation of (13.1), dfto cannot 
be contained in L, even up to a set of if1-measure 0, and so H1 (dfto PI G~) > 0. By 
Proposition 13.11, we can find a regular point x G G fl dfto, and if (13.1) holds we 
can even take x in G~. 

Let B = B(x, r) be a disk of regularity centered at x. Since B(x,r') is also a disk 
of regularity for all r' < r (see Definition 13.6 or the remark that follows it), we can 
always assume that B is an acceptable disk (i.e., is not too large and does not meet 
L) if (13.1) holds. 

By Lemma 14.1, Vv has continuous extensions to the closures of both components 
of B (x,r/2) \ G, and hence |Vi>| stays bounded near x. Thus we can assume that 

(15.3) 
JB(x,r)^G 

|Vd2 < er, 
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where e is as small as we want, because otherwise we could replace r with a smaller 
radius. 

By Fubini and Chebychev, we can find p such that r/4 < p < r/2 and 

(15.4) 
JdD^G 

\Vv\2 ^ 10e, 

where we set D = B(x, p) 
Since x G dQoi one of the two components of il that touch x must be il0. Let us 

call Hi the other one. Our intention is to modify v slightly in Hi D D and a little 
more in HQ to find a better competitor than (v, G) and get a contradiction. The idea 
will be to first modify v on Ho (by adding a constant) to get a good contact near the 
point x, and then do some gluing in D and eliminate a good portion of G fl D. 

Let us try to make our notations more transparent by calling Vi the restriction 
of v to f^i, i = 0,1. Also denote by rrii the mean value of V{ on the arc of circle 
dD n Hi. [See Figure 15.1, and recall that the geometry of the situation is simple 
because B(x,r) is a disk of regularity.] 

FIGURE 15.1 

Let Z denote the union of two small arcs of dD centered at the points of dD Pi G 
and with lengths equal to r/100. Denote by v the function on dD which is equal to 
vi on dD fl Hi \ Z, to i?o + mi — mo on dD fl Ho \ Z , and which interpolates in the 
obvious linear way on Z. Then 

(15.5) 
JdD 

|W|2 ^Ce 

by (15.4) (and because v has essentially the same averages on the two pieces of dD\Z). 

The harmonic extension of v to D satisfies 

(15.6) 
JD 

|W |2 < Cet. 

We define v on fio \ D by v(z) = VQ{Z) + mi - m0 = v(z) + mi — mo, and on the 
rest of M2 \ (G U D) by w(z) = v(z). We also set 

(15.7) G = (G \ Z?) U Z. 

Note that (v, G) is a compact perturbation of (v,G) (i.e., is equal to it outside a 
large ball) because Q0 is bounded. Also, v e W^(R2 \ G). If (13.1) holds, (u, G) is a 
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competitor for (v, G) because we did not touch L (recall that B(x,r) is an acceptable 

disk). If (13.2) holds also (ïï, G) is an acceptable competitor for (v, G); the topological 

condition (1.5) is not violated because we only connected to a bounded component 

VvM|2 

The comparison is easy to do. We did not modify Vv out of D, and in D we lost 

at most Cer in the energy term, by (15.6). On the other hand (15.7) says that we 

saved Hl(G (ID) - Hl(Z) ^ 2p - r/50 in terms of length, so (v, G) is strictly better 

than (v, G) if e is small enough. 

This gives the desired contradiction and proves Lemma 15.1. • 

Remark 15.8. — Lemma 15.1 also holds for global minimizers in R 2 \ R and R 2 \ 

(—00,0], with essentially the same proof. The only point is that, as in the situation 

of (13.1), we can find regular points of dflo that lie away from R or (—oo, 0]. 

16. v really jumps at regular and spider points 

Lemma 16.1. — Let xo be a regular point of G, Bo = B(xo,ro) a disk of regularity, 

and denote by Mi and M2 the two connected components of Bo \ G. 7/(13.1) holds, 

assume that xo £ L. If (13.2) holds, assume that Mi and M2 are contained in the 

same connected component ofM = E?\G. Then 

(16.2) lim v(x) ^ lim v(x). 
X ^ - X o v ' X ^ X Q X ' 

xEQi X£Q,2 

Note that the limits in (16.2) exist by Lemma 14.1. The proof of Lemma 16.1 is 

almost the same as above. Because of Lemma 14.1, the restrictions of v to Mi and M2 

have C1 extensions up to the boundary in some neighborhood of Xo, and so we can 

find a radius ri < ro such that 

(16.3) 

J B(xo,n)\G 

\Vv\2 ^eru 

where e will be chosen soon. We can also choose n so small that for i — 1, 2, 

(16.4) sup {v(x) ; x e Mi D B (xo, ri)} — inf {v(x) ; x G Mi fl B (#o, ^i)} ^ er\^2. 

If (13.1) holds, let us also choose r\ so small that B{xo,ri) does not meet L. Next 

we choose a disk D = B (XQ, r) such that ri /4 < r < ri /2 and 

(16.5) 
JdD^G 

\Vv\2 ^ 10e. 

This is possible, by (16.3) and Chebychev. We want to define a competitor (v, G) 

with 

(i6.6) G = (G\D)UZ, 
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where Z is the union of two small arcs of dD centered at the points of dD D G and 

with lengths equal to r/100. Figure 15.1 is still an acceptable picture for this, except 

that the fti have different indices and the center is now called XQ. We want to keep 

(16.7) v(x) = v(x) on M 2 \ ( G U D U Z ) , 

and then extend v in a natural way to D. Still denote by v the function on dD that 

extends v linearly on each of the two arcs of Z . We claim that if (16.2) does not hold, 

(16.8) 
JdD 

\Vv\2 ^ Ce. 

Indeed denote by m^, i = 1,2, the mean value of v on the arc dD n fi* \ Z , and by 

mo the common value of the limits in (16.2). Then 

(16.9) |mi - m2| ^ |mi - m0| + \m2 - m0\ ^ 2er{/2 

by (16.4), and (16.8) follows from this and (16.5), because the arcs of Z are not too 
short. 

Now define v in D to be the harmonic extension of its values on dD; thus 

(16.10) 
JD 

| V £ f ^Cer, 

by (16.8). The accounting will then be easy; when we replace (v, G) with (v, G), we 

lose at most C er in energy (by (16.10)), and we win at least HX(G DD) — HX(Z) > 

r i /4 in length. So we'll get the desired contradiction as soon as we prove that (v, G) 

is a legitimate competitor for (v,G). 

The fact that v G W^2(R2 \ G) is easy to check, as usual. If (13.1) holds, we 

simply have to check that we did not remove a piece of L accidentally. This is the 

case, because we made sure that B(xo,r{) would not meet L. If (13.2) holds, we have 

to check that G satisfies (1.5), i.e., that for x, y out of some ball -E?(0, R), G separates 

x from y whenever G separates them. Because we only modified G inside D, there 

can only be a problem when x and y are connected to dD in R2 \ G. But then x and 

y lie in the same component of R2 \ G, by assumption on ̂ i and f^-

Thus (v, G) was an authorized competitor, and our assumption that (16.2) fails 

leads to a contradiction. This proves the lemma. • 

We'll also need a version of Lemma 16.1 for spider points. 

Lemma 16.11. — Let B(xo,ro) be a spider disk, and denote by tti, ^3 the con

nected components of B (xo?ro) \ G. 7/(13.1) holds, assume that xo ^ —1. 7/(13.2) 

holds, assume that fli and fl2 are contained in the same connected component of H. 

Then (16.2) holds. 

The proof is the same as above, except that we now work in D fl (Di U Q2) instead 

of D, and we only remove the branch of the spider D fl G that separates f̂ i from 

ASTÉRISQUE 274 



17. Q HAS NO THIN CONNECTED COMPONENT 107 

ft2- See the picture. Note also that the case when xo G L, XQ ^ — 1 is impossible by 
definition of a spider point. We leave the details. 

17. ft has no thin connected component 

In this section we only consider global minimizers, as opposed to minimizers of the 
modified functional for which the question of thin connected components does not 
arise because ft is connected (by (15.2)). 

So we assume that (u, K) is a (reduced) global minimizer, either in the whole plane 
(as in (13.2)), or in R2 \ R or R2 \ ( - o o , 0] (as in Definition 12.41). Let us still denote 
by ft the complement of K in R2 , R2 \ R , or R2 \ (—oo, 0]. Here is what we mean by 
"not thin". 

Lemma 17.1. — Every connected component of ft contains disks of arbitrarily large 
radii. 

We already know from Lemma 15.1 and Remark 15.8 that ft has no bounded 
component, so we only need to worry about infinite (but thin) components. 

So let fto be a connected component of ft, and assume to get a contradiction that 
for some d > 0, all points of fto lie at distance < d from dfto-

First pick an origin zo G dfto- If (u, K) is a global minimizer in R2 \ R (respectively, 
in R2 \ (—oo, 0]), choose zo out of R (respectively, out of (—oo,0]). 

Then choose xo G fto and x\ in some other component ft\ of ft, both very close to 
ZQ. In particular, require that \xi — ZQ\ < d/2 for i = 0,1, and that fti lies in the same 
connected component of R2 \ R as fto when (u, K) is a global minimizer in R2 \ R . 

Let us first complete the proof in the simpler case when (^, K) is a global minimizer 
in R2. Set Dr — B (zo,r) for all r ^ d. Because fto and meet Dr and are both 

keep v = v 
^ / up to here 

remove this arc 

FIGURE 16.1 
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unbounded (by Lemma 15.1), dDr meets both O0 and f2i, and so it meets dOo (in 
fact, at least twice). Because of this, 

(17.2) H1 (dtt0 C)DR\Dd)^R-d for all R>d. 

Take R very large, and apply Lemma 13.39 to the disk B(z0,R), with C\ — 2, 
and with E = dflo H \ -DR/2. We get a disk of regularity B(y, t) centered on E 
and with radius t G [C2~1R, R/2] • We also get a contradiction because one of the 
two components of B(y, t) \ G must be contained in QQ (otherwise, y would not lie in 
dQo), and both components of B(y, i) \ G contain disks of radius > d if C2~1R ^ 2d. 
This proves Lemma 17.1 when (u,K) is a global minimizer in R2. 

Now suppose that (u, K) is a global minimizer in R2 \ R. The same argument as 
above works if we can choose zo G dOo (at the beginning of the construction) so that 
dist(zo,R) > 2R, where R = 2C2d and G2 comes from Lemma 13.39 applied with 
C\ — 2. So we are left with the case suggested by Figure 17.1 when dOo, and hence 
also Flo, is contained in a strip 

(17.3) SR = {z G R2 ; dist(z,R) ^ 2R] . 

Q.Q (seen form far) 

FIGURE 17.1 

This situation is impossible, by the same argument as for Lemma 13.50. That is, 
we can modify (u,K) in a very large disk D = B(ZQ,CR) (with any choice of ZQ 
as above) to get a strictly better competitor. The idea is to collapse QQ fl \D and 
dQ0 H \D onto the line R, and so save about H1 (\D fl dn0 \ R) ^ G.R/3 in length. 
For this we use a function ^ like the one in (13.54)-(13.58) and Figure 13.4. The 
estimates are the same as in the end of Section 13 (starting with the construction of 
^ a few lines before (13.53); we do not need the measure theory before because we 
know that H1 (\D fl dft0 \ R) ^ C R/S). We leave the details. 

The case when (u, K) is a global minimizer in R2 \ (—00,0] is treated in the same 
way. This time the only case when the argument above does not apply is when Oo 
stays at distance ^ 2R from (—00,0], and we can apply the deformation argument 
of Lemma 13.50 to a disk of radius C R, C very large, centered close to (—00,0] and 
very far to the left. 

This completes our proof of Lemma 17.1. • 
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18. The case when u is locally constant somewhere 

Lemma 18.1. — Let (u,K) be a global minimizer. If u is constant on one of the 
connected components offt = №2\K, then K is empty, or a line, or a propeller, and 
u is constant on every component of ft. 

Recall that a propeller is a union of three half-lines ending at the same point, and 
making 120° angles with each other at this point. 

Of course, if u is constant near some point x G ft, it is constant in the component 
of x, because it is harmonic. 

Remark 18.2. — If (v, G) is a minimizer of the modified functional (as in Definition 
11.3) and v is constant near some point of R2 \ G, then v is constant on M2 \ G, by 
the simple observation above and because ft is connected (by (15.2)). Hence the only 
option allowed by Definition 11.3 is that G = L and v = Gte. [This option will often 
be ruled out later by conditions on the behavior of v at infinity, but it is still allowed 
here.] This is the reason why we do not need to study minimizers of the modified 
functional in (the rest of) this section. 

Let (u, K) be as in the lemma, and let fto be a connected component of ft where u 
is constant. We can assume that K is not empty, since otherwise the result is trivial. 

Lemma 18.3. — fto is convex. 

Suppose not. Then we can find a line segment I whose endpoints lie in Q0 but 
which is not contained in fto- Since we can move the endpoints a little bit, we can 
even assume that I is not contained in the closure fto- This is easy to check, especially 
because we can use (13.4) and Proposition 13.11, for instance. We can still move I 
a tiny bit in the direction orthogonal to I and keep these properties. We use this 
observation to require two additional properties that will simplify our construction. 
First we demand that 

(18.4) every point of I fl K be a regular point of K. 

This is easy to arrange, because i f ^almost every point of K is regular (by Proposition 
13.11), and so the projection of the remaining part of K in the direction orthogonal 
to I has measure zero. We just have to move I so that its projection avoids this set 
of measure zero. 

By Fubini, and the fact that H1 (K fl BR) < + o o for all R, we can also require 
that 

(18.5) IDK be finite, 

and even that 

(18.6) K meet I transversally at each point of I fl K, 
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because the projection in the direction orthogonal to / of the set of regular points 

of K with a tangent parallel to / has zero measure, by Sard's theorem. [Note that 

here the fact that we restrict to regular points helps (because we can reduce to the 

case of finitely many C1-curves), and we can get (18.5) and (18.6) by very elementary 

means.] 

So let I have all the properties above, and then denote by J the closure of any 

nonempty connected component of I \ Qo- Thus J is a closed interval, its endpoints 

lie in dflo, but the rest of J lies in R2 \ f^o-

Call a and b the endpoints of J. Since a, b lie in dQo and are regular point of K, we 

can find a path 7 in Qo (except for its two endpoints) and which connects a to b. [See 

Figure 18.1; we start with two little segments orthogonal to K that start at a and b 

and point into fio> and then use the connectedness of flo to join their endpoints.] We 

may even require that 7 be of class C1 and that it be simple. 

YC Lin 

FIGURE 18.1 

If we add the segment J to 7, we get a Jordan arc 7. This is because J only meets 

7 at a and ò, since the rest of J does not meet iio-

Call V the bounded component of R2 \ 7. We replace K with 

(18.7) K = (K \ V) U J, 

and then define u on R2 \ K by 

(18.8) u = u on R2 \ (K U J U V) 

and 

(18.9) u = c0 on V, 

where Co is the constant value of u on VLQ. [See Figure 18.2.] 

Note that the definition is complete: R2 \ K is the disjoint union of R2 \ (KUJUV) 

and V. Now we want to show that (u, K) is a better competitor than (1/, K). 

First we need to check that u G Wj^R2 \ K). The only potential trouble is with 

the interface between the two definition of u, i.e., with the regularity of u across dV. 

There is no difficulty with J, since we put it in K. There is no difficulty with 7 \ {a , b] 
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и — и here 

и — и here 
и = Со nere ] 

FIGURE 18 .2 

either, because u is constant and equal to Co in a neighborhood of 7 \ {a, b}. [Recall 
that this arc is contained in £IQ.] 

To prove that (u, K) is a competitor for (u, K), we also need to check that (u, K) 

coincides with (u,K) out of some large disk BR, and that the topological constraint 

(1.5) is satisfied. The first condition is of course fulfilled if V C BR, and so it is 

enough to check (1.5). 

So suppose that x, y G M2 \ (K U BR) are separated by K, but not by K, and let 

us find a contradiction. Let £ denote a path from x to y that does not meet K. Since 

K separates x from y, £ must meet K, and this can only happen in V (because the 

rest of K is contained in K). 

Call a and /3 the first and last points of £ fl <9V when we run along £ from # to 

y. These points exist because x,y lie out of V (we implicitly assumed that V C £ # ) . 

Since £ does not meet K and J C K, the points a and (3 must lie in 7 \ {a, b}. We 

can replace the arc of £ between a an /? by the arc of 7 between a and /?; we get a 

new arc £ which still joins x to y, but no longer meets K (by definition of a and /3, 

and because 7 \ {a, b} C fio)- This contradicts our assumption that K separates x 

from y, and proves that (u, K) is a competitor for (w, If) . 

The accounting will be easy. We did not lose anything in the energy term, since u 

is constant wherever it differs from u. In the length term, we won at least 

(18.10) AL = HX(K N V) - HX(J). 

Let us check that AL > 0. For each point x G J \ {a, b}, denote by Lx the half-line 

with extremity x which is perpendicular to J and starts (from x) in the direction of 

V. Obviously Lx eventually crosses 7, and it must meet K N V before it does so for 

the first time, because x G M2 \ O0 and 7 C O 0 . See Figure 18.3. 

Denote by n the orthogonal projection onto the line that contains J. We have just 

checked that Tr(KnV) contains J \ { a , 6}. Thus AL > 0. To prove the strict inequality, 

we can use the fact that a is a regular point of K and the tangent to i f at a is transverse 

to I (by (18.4) and (18.6)). This shows that H1 [IT"1 (A) HKnV] > HX(A) for some 
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small subinterval A of J (close to a); see Figure 18.3 again. This proves the strict 

inequality. 

Thus (u,K) was a better competitor than (u,K), and this contradiction shows 

that / did not exist, i.e., that Flo is convex. • 

FIGURE 1 8 . 3 

Next we want to say that Mo looks like a cone at infinity. Fix an origin xo G Do-

Since our problem is invariant, we may as well assume that XQ = 0. Set 

(18.li; J = {6 G S ; there is a sequence {yn} of points of M0 

such that \yn\ tends to + oo and 
\yn\ 

tends to 0}. 

Note that since Mo is not bounded (by Lemma 15.1) and S1 is compact, J is not 

empty. Let us check that 

(18.12) for all 6 G J, the half line DQ = {r6 ; r ^ 0} is contained in M0. 

First we show that C Oo. Let r ^ 0 be given, and let {yn} be a sequence in Mo 

such that \yn\ tends to -foo and |yn|_1 Vn tends to 6. As soon as \yn\ > r, the point 

r \Vn\_1 Vn lies in Mo (by convexity and because 0 G Mo), and so r6 G Mo, as needed. 

To complete the proof of (18.12), observe that Mo contains a small disk Bp centered 

at 0. Let rO be any point of D Q . If r = 0, then rQ = 0 £ Mo, as needed. Otherwise, 

2r6 G Mo by the argument above, and so we can find z G Do fl B (2r#,p/10). Since 

Bp C Do and Mo is convex, all points \{z + IJ), \u\ < p lie in Mo. In other words, MQ 

contains B (z/2, p/2) and in particular r6 G Do- This proves (18.12). 

Lemma 18.13. — There is a positive (universal) constant S such that diamJ ^ 6. 

Let us choose #o £ J"? and set Do = DQ0. [Recall that J is not empty.] Since our 

problem is invariant under rotations, we may as well assume that 0O = 1- We want 

to proceed by contradiction and so we assume that diamJ ^ 6, where 0 < 6 < 1/100 

will be chosen soon. 

Since J does not contain any point at distance ^ S from 1, we can find a radius 

Ri > 1 such that 

(18.14) y_ 

Ivi 
- 1 ^ 26 for all yeM0\B (0, Ri). 
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Let us now check that 

( 1 8 . 1 5 ) Hl (dtto n B(0, R)^B (0,9R/10)) ^ 
R 
5 

for all R ^ 2R\. Indeed, Do C fio by ( 1 8 . 1 2 ) , while OQ does not meet 

( 1 8 . 1 6 ) D* = {(0,i); \t\>Rx) 

(i.e., most of the vertical axis). Consequently every circle <95(0,r), 9R/10 ^ r ^ R, 
must meet dflo at least twice (once above Do and once below), and (18.16) follows. 
See Figure 18.4. 

dB (О, 9R 
10 

dB(0, R) 

FIGURE 18.4 

Now let us choose a point x G dQ,o^dB(0, R) and apply Lemma 13.39 with r = R/3. 
We take for E the same set dQ0 H 5 (0 , i?) \ B (0,9i?/10) as in (18.15). Note that 
E c B{x,r) because of (18.14). We can apply Lemma 13.39 with C\ — 5/3, and we 
get a disk of regularity B(y,t) centered on E and such that C nVvM|2VvM|22~1r 

Since y G dDch one of the two components of B(y,t) \ K is contained in Do- Call 
it O. Note that 

(18.17) O C 5(0,2R) \ 5 (0, R/2), 

because t^r/2 = R/6 and dist (y, 55(0 , ij)) ^ R/10. Since > 2RU O is contained 
in the thin cone of (18.14). On the other hand, O contains a disk of radius ¿/10 ^ 
R/30C2- This is clearly incompatible with staying in the thin cone, at least if we 
choose 5 small enough. 

Thus we get the desired contradiction; this completes our proof of Lemma 18.13. 

Remark 18.18. — The same argument as in Lemma 18.13 shows that J cannot be 

reduced to a set composed of two opposite points in S1. Indeed, if this were the case, 

there would be a radius R \ such that all the points of VLQ \ B (0, R \ ) lie in a thin cone 

around some line D (instead of half a line as in (8.14)). We could still apply the same 

argument as above to get a contradiction. 
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Claim 18.19. — Let 61,62 £ J be such that 6\ ^ —62- Then the shortest interval of 

S1 that contains 6\ and 62 is contained in J. 

Indeed (18.12) says that D$1 and DQ2 are contained in QQ, and so the convex cone 

generated by D#1 and DQ2 is also contained in QQ- The claim follows, by definition 

of J. 

We are now ready to prove that 

[ J is a closed interval of S1, with diameter 
(18.20) { 

I at least S > 0 and length at most rr. 

First, J is closed (by (18,11) and (18.12), say) and its diameter is at least S. Then 

J contains at least two points, as in Claim 18.19 (see Remark 18.18); hence J contains 

some nontrivial interval Jo of S1. For each other point of J, we can apply Claim 18.19 

with some point of Jo; hence J is an interval of S1. Now the length of J cannot be 

more than IT, because otherwise J would be the whole circle and QQ would be the 

whole plane (by Claim 18.19 and (18.12)). This proves (18.20). 

Our information on J will be easier to use after a blow-in. Pick a (fixed) point 

y £ K and a sequence {tn} that tends to +00. As was observed just before Proposition 

12.12, we can always extract a subsequence so that the pairs (un,Kn) defined from 

(u,K) as in (12.7) and (12.8) converge to some limit (u1^x). Proposition 12.44 tells 

us that (u1,K1') is a global minimizer. 

From (18.12) and the definition (18.11) of J it follows that { t ~ 1 ^ o } converges to 

the closed cone 

(18.21) C(J) = {r6 ; r > 0 and 6 £ J} . 

For the same reason, {t~l (90o)} converges to dC(J), the boundary of that cone. In 

particular, Kl contains dC(J), and int(C(J)) is one of the connected components of 

R2 \ K1. By the convergence of {un} to u1, we also know that u1 is constant on 

int(C(J)). 

By Proposition 13.11, almost every point of 8C(J) is a regular point of K1. Let x 

be such a point and B(x,r) a disk of regularity centered at x. Thus K1 D B(x, r) is 

just a diameter of B(x, r) , and coincides with dC( J) D B(x, r). 

Denote by ^1 the connected component of R2 \ K1 that contains B(x,r) \ C(J). 

We claim that 

(18.22) u1 is constant on Q\. 

By Lemma 14.1, u1 has a C1 extension on D B (x,r/2), which we still denote 

by u1. Note that (18.22) will follow if we prove that 

(18.23) the boundary values on dili of Vul vanish in a neighborhood of x. 
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This can be seen as a consequence of a theorem of Riesz but here, since u1 is C1, we 

can also use the Schwarz reflection principle and analytic continuation. 

The shortest way to get to (18.23) is to use the classical formula that gives the 

jump of IVu1]2 in terms of the curvature of K1 when K1 is a C1-curve (as here). 

[See [MuSh].] Let us nonetheless sketch a direct proof (which is of course equivalent). 

Let w G R2 denote the unit vector perpendicular to K1 fl B(x, r) and pointing in the 

direction of Hi (as seen from x). Let (p be a smooth bump function supported on 

B(x,r) and equal to 1 on B (x ,r /2) , and set <£(z) = z + t(p(z)w, where t is a small 

parameter. We replace with (5, K), where K = $ we keep u = u1 

out of 3>(C(J)), and take u(z) = c$ on $(int(C(J))), where Co is the constant value 

of u1 on int(C(J)). The point of the modification is that we save all the integral 

(18.24) AE = 

7*(C(J))xC(J) 

Ivu1!2 

in the energy term, and AE ^ C~lt (for t small) if Vul does not vanish on dVt\ fl 

B(x,r/2), while the length that we have to add is at most Ct2. This completes our 

proof of (18.23)); (18.22) follows, as we said before. 

Now we found a second connected component Di of R2 \ K1 (in addition to 

Int(C(J)), where u1 is constant. To this new component we can associate an in

terval Ji of S1, defined as in (18.11) but with f̂ i instead of QQ. Note incidentally that 

J (or Ji) does not depend on the choice of origin, and neither does the description in 

(18.20). So Ji also fits the description (18.20). 

It is easy to see that J and J\ have disjoint interiors, simply because Qi does not 

meet C(J). 

Let us take a second blow-in. Denote by (ii2, K2) the limit of some blow-in sequence 

constructed with ( V , ^ 1 ) , just like (u1,!?1) was constructed above. Then (u2,K2) 

is also a global minimizer. The same argument as above shows that dC(J) and dC(J\) 

are contained in if2, and Int (C( J)) and Int (C (J\)) are two components of R2 \ K2 

on which -u2 is constant. 

If R2 = C(J) U C (Ji), then if2 is a line, and we shall see later how to conclude 

from this. 

Otherwise, we can choose a regular point of K2 in d (C(J) U C (Ji)), and follow the 

same argument as above. We find a new connected component of R2 \ if2, which 

is contained in R2 \ (C(J) U C (Ji)), and on which u2 is constant. We associate to Q2 

a third interval J2 as in (18.11), and it is easy to see that J2 is contiguous to J U Ji, 

but its interior does not meet J U J\. 

We continue this construction until we get a union J U J\ • • • U Jk that covers the 

circle, or equivalently 

(18.25; C(J )UC(J i )U-- -UC(J*) = R 2 . 
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This has to happen eventually, because the intervals Je have diameters ^ S and 
disjoint interiors. 

When (18.25) happens, the new blow-in limit (izfe+1, Kk+1) is such that Kk+1 = 
dC(J) U • • • U dC (Jfc) and uk+1 is constant on int (C(J)) and its successors. It is then 
easy to see that the only options are either k = 1 and K2 is a line, or k = 2 and X3 

is a propeller. 
At this point we were able to show that some iterated blow-in of (u, K) is a line 

or a propeller (each time with a function that is constant on every component of the 
complement). Thus Lemma 18.1 will follow from the next lemma. 

Lemma 18.26. — Let (u, K) be a global minimizer and suppose that there is a sequence 
{tn} that tends to -foo and for which {t~lK} tends to a line or a propeller. Then K 
is a line or a propeller, and u is constant on each component of№? \ K. 

This is not new; see for instance [Bo]. Let us sketch the proof anyway. First we 
need to know that if K is a line or a propeller, then u is constant on each component 
of R2 \ K. Suppose for instance that K is a line through the origin. We know that 

(18.27) 
JBR\K 

\Vu\2 < CR 

(see (13.5)), which allows us to choose radii R as large as we want such that 

(18.28) 
JdBR^K 

\Vu\2 ^ C. 

Then we use the fact that we can compute the values of u inside each half of 
BR \ K by integration of the Poisson kernel against the symmetrized restrictions of 
u to ÔBR \ K. This yields 

(18.29) 
JBR^K 

iVd2 c T2 
R JOBR^K 

IVd2 ^ C 
R 

for r < R/2, say. Now we can fix r and let R tend to +oo, and we get that Vu = 0 
everywhere. 

The case of a propeller (through the origin, say) is treated in the same way. The 
point is that if V is one of the components of BR \ If, we can still compute the 
values of u on V from its values on dV \ K: we first use the mapping z —> z3/2 to 
change variables and reduce to a half-disk, and then compute as above. This gives an 
estimate which is even more favorable than (18.29); the rest of the argument is the 
same. 

Now let (u, K) be as in the lemma. Because the hypothesis of the lemma is invariant 
under translations, we can assume that the origin lies in K. [This is just a minor issue, 
due to the fact that we defined blow-up sequences only with points yn G K.) 

Because of the remark before Proposition 12.12, we may as well assume that the 
blow-in sequence {{un, Kn)} associated to yn = 0 and tn as in (12.7), (12.8) converges 
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to a limit (woo, KQO). [Otherwise, extract a subsequence.] We already know about the 

convergence of { i f n } , and so ifoo is a line or a propeller. Since (uoo>-Koo) is a global 

minimizer by Proposition 12.44, we get that Uoo is locally constant. In other words, 

the functions Vun converge to 0, uniformly on every compact subset of M2 \ i f ^ . 

[See our definition of convergence, a little before Lemma 12.4.] 

Now we want to apply Lemma 13.17 or Lemma 13.21 to the unit disk and the 

global minimizer (un, i fn) (if n is large enough). We get the hypotheses (13.19) and 

(13.20) (for a line) or (13.22) and (13.23) (for a propeller) by convergence of KN to a 

line or a propeller. So we only have to check (13.18), i.e., the fact that 

(18.30) 
JB(O,I)^K, 

|Vun| ^ e 

for n large enough. This is an easy consequence of the uniform convergence of Vun 

to 0 on compact subsets of B(0,1) \ i f^ , Holder, and the fact that 

(18.31) 
</£(0,l)\Kn 

|Vun|2 < c. 

[See (13.35)-(13.38) for the same argument, almost in the same context.] 

Thus we can apply Lemma 13.17 or Lemma 13.21, and we get that for n large 

enough, KN n B (0,1/2) is a C1-curve or spider. In other words, i f fl B (0, tn/2) is a 

C1 curve or spider for n large. 

We can now deduce that i f is a line or a propeller. The shortest way in terms of 

amounts of estimates is probably to observe that our conclusion that KN fl B (0,1/2) 

is a C1 curve or spider comes with uniform estimates. [In fact, we even have uniform 

C1+Q!-estimates for some a > 0 with the same proofs.] These uniform estimates, when 

scaled down to if, give better and better approximations of i f fl BR for any fixed r, 
and the conclusion follows. 

Since we do not want to rely on estimates that were not stated, let us also give 

a brutal (but implacable) argument: from the fact that i f Pi B (0,£n/2) is (arcwise) 

connected for a sequence of tn that tends to +oo, we can deduce that i f is connected, 

and then i f is a line or a propeller, by [Bo]. 

This completes our proof of Lemma 18.26; Lemma 18.1 follows as well. • 
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CHAPTER E 

THE JOHN CONDITION 

19. Connectedness and rectifiable curves 

In this section we address a minor technical point: the existence of rectifiable curves 
that connect points in a connected set with finite if1-measure. We consider a subset 
Go of the plane, such that 

(19.1) Go is closed, connected, and H1 (Go fl B) < +00 for every disk B, 

and we want to study the arcwise connectedness of Go-

Lemma 19.2. — If Go satisfies (19.1) then for every choice of x,y £ Go there is a path 
jx^y which is rectifiable (i.e., with finite length), supported in Go, and which connects 
x to y. 

This is of course a slight modification of the classical result that says that if Go 
is connected, closed, and i f i f1 (Gro )<+oo , then Go is arcwise connected. The little 
additional difficulty here is that Go may not be bounded. 

So let Go satisfy (19.1), and let us assume that 

(19.3) Go is not bounded; 

otherwise, we may always use the classical result mentioned above (see for instance 
[Fa]), or modify slightly the proof below. First we want to check that for all x £ Go 
and R > \x\, 

(19.4) there is a rectifiable arc supported in Go and which connects x to 3BR. 

The proof is standard; let us only sketch the argument. For every (small) e > 0, 
call "e-chain" a finite sequence { x o , . . . , xm} of points in Go such that — %i\ ^ £ 
for 0 ^ i < m. Since Go is connected, for all y £ Go and all e > 0, there is an e-chain 
that goes from x to y (that is, such that xo = x and xm = y). Let us choose any 
point y £ Go \ BR, and then only keep the beginning of the e-chain (before we leave 
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BR for the first time). This gives an £-chain of points in Go fl BR that goes from x 

to some point of Go 0 BR \ BR-£. 

For each (small) e, let {XQ,... ,#m} be such an e-chain. Let us choose this chain 

so that m is minimal. Then \xi — Xj\ > e for \i — j \ > 1, because otherwise we could 

take a shortcut. Hence the disks B(xj,e/2) have a covering number ^ 2 (i.e., no 

point of the plane lies in 3 of them). Since H1 (Go fl B (xi,e/2)) ^ e/2 by (19.3) and 

the connectedness of Go, we see that 

(19.5) m^Ae-'H1 (Go fl BR) 

because XQ, . . . , xm_i all lie in B R - £ by minimality. 

Denote by 7£ the polygonal arc obtained by connecting each point Xi, 0 < i < m, 

to Xi+i by a line segment. Then 

(19.6) length (7e) ^ (Go Pi BR) + £ 

by (19.5). This allows us to define a parameterization ze : [0,1] —• E2 of 7 e , which 

is G-Lipschitz for some G that does not depend on e. [For instance, we can take 

G = AH1 (Go fl # # ) + 1]. By Montel, we can find a sequence {en} that tends to 0 

such that z£n converge uniformly to some G-Lipschitz function z. It is easy to see 

that z parameterizes the arc that we want for (19.4). 

Now return to Lemma 19.2. For each x G Go, denote by G(x) the set of points 

y G Go that can be connected to x by an arc of finite length supported in Go- We 

want to show that G(x) = Go-

Let us first check that 

(19.7) H1ÇR)=0, 

where 

(19.8) U = {R > 0 ; G0 H dBR is infinite} 

Clearly it is enough to show that Hl(1l fl I) =0 for all intervals I = [0, N). Let \i 

denote the image by x —> \x\ of the restriction of H1 to Go fl Bjy. Thus 

(19.9) H(E) = H1 ({x G Go ; \x\ G E}) 

for measurable subsets of I. By (19.1), /1 is a finite measure. By the Hardy-Littlewood 

maximal theorem, or the existence of a Lebesgue density for ¡1 (Lebesgue-)almost-

everywhere, the upper density 

(19.10) d*(t) = limsup 
£^0+ 

jx([t-g , t + g]) 
2e 

is finite almost everywhere on I. 

On the other hand, if t G I in such that Go D dBt has at least k point, then 

d+(t) ^ k/2. This uses the connectedness of Go- The estimate (19.7) follows. 
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Note that (19.7) would still hold with the same proof if Go was a countable union 

of connected sets, provided of course that we keep the condition H1 (Go fl B) < +oo 

for all B. 

Now let R (large) be such that Go fl OBR is finite, and denote by x\,... ,X£ the 

points of G0 H dBR. For 1 ̂  j ^ £, set Ej = BRnG (XJ). By (19.4), 

(19.11) G0nBR = \jEj. 

3 

Let us check that 

(19.12) Ej is closed. 

Let {zn} be a sequence in Ej that converges to some z G Go fl BR. For each n 

the proof of (19.4) gives an arc jn, supported in Go fl BR, with length at most 

G = 4if1 (Go fl BR) + 1, and that connects zn to some point yn G Go fl 8BR. Since 

zn G Ej, we also have that yn G Ej (by definition of Ej). 

Modulo extracting a subsequence, we can assume that the G-Lipschitz parameter-

izations of the arcs 7N by [0,1] given by the proof of (19.4) converge uniformly to 

the G-Lipschitz parameterization of some arc 7 . Then 7 has finite length ^ C, is 

supported in Go fl BR, and connects z to some point y G Go fl OBR. Since Go fl 3BR 

is finite and y is the limit of {yn}, we see that y = yn for n large enough, and so 

y G Ej. Then z G Ej as well (because of 7 ) ; this proves (19.12). 

Note that for x,y G Go fl BR, y G G(x) if and only if x and y lie in a same Ej. 

Then (19.12) implies that G(x) D BR is closed. Since we can take R as large as we 

want, we get that 

(19.13) G(x) is closed. 

By definition, the sets G(x),x G Go, are either equal or disjoint. Since for every 

R as above, BR only meets finitely many such G(x) (because each of them coincides 

with a union of sets Ej in BR), we get that G(x) is open as well. 

Thus all G(x) are both closed and open. Since they are not empty and Go is 

connected, we get that G(x) = Go for all x, as need for Lemma 19.2. • 

We shall need the following slight improvement of Lemma 19.2. 

Lemma 19.14. — If Go satisfies (19.1), then for every choice of x,y G Go there is a 

simple, rectifiable arc 7 ^ which is supported on Go and connects x to y. 

To prove this we just need to take the rectifiable arc 7 ^ given by Lemma 19.2, 

and make it simple. The standard way to do this is by removing the unnecessary 

loops, and it is described in [Fa]. Let us point out a slightly different method. Set 

(19.15) L = inf {length(7) ; 7 is a rectifiable arc in Go that connects x to y} . 
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122 19. CONNECTEDNESS AND RECTIFIABLE CURVES 

Lemma 19.2 tell us that L < + o o , and now we claim that we can find 7 ^ as above 

so that length (ix,y) — L. 

This is fairly easy. We start from a minimizing sequence of curves 7n, where 

Ln = length (7n) tends to L. We can parameterize 7N in a Ln-Lipschitz way from the 

unit interval. As before, we can use Montel to find a subsequence of parameterizations 

that converges uniformly on [0,1] to some L-Lipschitz function. That function is a 

parameterization of the desired curve 7X)3/. 

It is also easy to see that our minimizing curve 7 ^ is simple (because if it had a 

loop, it could be made shorter); Lemma 19.14 follows. • 

Lemma 19.16. — Suppose Go satisfies (19.1) and is not bounded. Then for all x G Go 

there is an infective Lipschitz path jx : [0,+00) —» Go such that 7x(0) = x and 

lim \jx(t)\ = +00 
t—>+oo 

Let x G Go be given, and choose an increasing sequence {Rn} that tends to +00 

and such that 

(19.17) dn = Go H dBRn is finite 

for every n. Such a sequence exists because of (19.7). 

For each n, (19.4) tells us that we can find an arc 7N from x to some point of dn. 

[From now on, all arcs will have finite length and be supported in Go, by convention.] 

Denote by zn the last point of 7N D d\, when you run along 7N from x to dn. Since 

d\ is finite, we can find x\ € d\ such that zn = x\ for infinitely many values of n. 

Thus there is an arc from x to x\, and x\ is connected to dn by an arc in Go \ BRL 

for infinitely many values of n. [Note that this also means "for n large enough", since 

you must cross <9M to go from d\ to dn when 1 ̂  m ^ n.} 

Let us continue our construction. We can get a sequence {xm} of points xm G dm 

such that for all m > 1, 

(19.18) Xm-i is connected to xm by an arc supported in Go \ BRTTI_1, 

and 

(19.19) Xm can be connected to dn by an arc supported in Go \ BRm 

for infinitely many values of n > m. 

The verification is easy; we proceed as above with repeated applications of the pigeon 

hole principle. 

We construct a first path 7 ^ ) as follows. We glue together a first arc from x to x\, 

then an arc supported in Go \ BR1 from x\ to X2, then an arc supported in Go \ BR2 

from #2 to £3, and so on. Since our path 7 ^ eventually leaves every BRM (and 

Rm tends to + 00), (the obvious Lipschitz parameterization of ) 7 ^ ) satisfies all the 

desired properties, except perhaps for injectivity. 
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Let us see now how to modify our initial path 7^) to make it simple. We want to 

construct a sequence of paths 7 ^ , starting with 7W. 

To construct 7^) from 7^°) we take the last point z\ of 7^°) fl d\ and replace the 

subarc of 7^°) between x and z\ with a simple arc (in Go) from x to z\. 

Now let us construct 7 ^ . Denote by Z2 the first point of 7^) Pi 82 and by y\ the 

first point of 7^) fl d\ that can be connected to Z2 by an arc in Go \ GR± . Such a 

point exists, because d\ is finite. We simply replace the arc of 7 ^ between y\ and Z2 
with a shortest arc in Go \ GRX from y\ to Z2- Such a shortest arc exists by the same 

argument as above, and it is automatically simple. It does not meet the arc of 7^) 

between x and y\ (except at 7/1), by definition of y\. Thus the subarc of 7^) between 

x and Z2 is simple. 

We proceed in the same way to construct 7 ^ from ^ n ~ 1 \ We denote by zn 

the first point of 7(n_1) n dn and by yn-i the first point ^(n~^ n <9n_i that can be 

connected to zn by an arc in Go \ BRn_x. We then replace the arc of ̂ n~^ between 

yn-i and zn with a shortest arc in Go \ BRTI_1 that goes from yn-i to zn. This gives 

a curve The arc of 7 ^ between yn-\ and zn is simple (by minimality), and it 

does not meet the arc of ^ n ~ ^ (or 7^ ) ) between x and yn-i (by definition of yn_i). 

Thus the arc of 7^ ) between x and zn is simple. 

This completes our construction of the sequence { 7 ^ } . Note that for m > n we 

shall never modify the arc of 7 ^ between x and the first point £n of 7^ ) fl dn. 

Denote by 7 ^ : [0, Tn] —» Go the parameterization by arclength of the arc of 7 ^ ) 

between x and £n. Since Rn tends to +00, Tn tends to +00 as well. Also, we just said 

that the restriction of 7 ^ to [0,Tn] coincides with 7 ^ for m > n. Thus {^xn^}n 

converges to a limit 7^ : [0, +00) —• Go-

The function jx is injective, because each 7 ^ is. Then 7X(^) eventually leaves 

every BRn, because it can only cross dBRn finitely many times (by (19.17)) and 

lx (Tm) lies out of BRU for infinitely many (in fact, all) values of m > n. 

Thus 7a; satisfies all the properties required in Lemma 19.16; this proves the lemma. 

• 

20. Paths of escape to infinity in Q 

We shall need later to estimate differences \v(x) — v(y)\ in terms of L2-averages of 

\Vv\ on H. For this, some uniform control on the way f2 is connected will be useful. 

In effect, we shall show that Cl (or each of its components when (v,G) is a global 

minimizer) is a John domain with center at infinity, at least locally. 

In this section again, we suppose that ( f ,G) satisfies (13.1) or (13.2). Our main 

result will be the existence for each x G Q = M2 \ G of an escape path to infinity, as 

follows. 
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Lemma 20.1. — There is a constant C\ > 0 such that, for every z G Q, = M2 \ G, 

there is an escape path *yz : [0,1] —* Q, such that 

(20.2) 7 . ( 0 ) = z, 

(20.3) 7 2 is Ci-lipschitz, 

and 

(20.4) dist (7s(t), G) > Gf1 {£ + dist(z, G)} for all * G [0,1]. 

Remark20.5. — In the case of global minimizers (i.e., when (13.2) holds), we can 

even define jz on [0, + o o ) . This is not surprising (in view of the invariance of (13.2) 

under dilations), and it will easily follow from the proof. 

We start the proof with a more local escape lemma. 

Lemma 20.6. — There is a constant G2 > 0 such that, for each disk B{x,r) of radius 

r ^ C~2~x and each z G B(x,r) such that 

(20.7) dist(z,G) ^ 10"2r, 

we can find an arc 7 in Q such that 

(20.8) 7 C B (a, G2r) \ G, 

(20.9) dist(7,G) ^ G2_1r, 

and 

(20.10) 7 connects z to a point w such that dist(u?, G) ^ r. 

We want to prove this by compactness. Let us restrict to the case of minimizers of 

the modified functional (as in (13.1)); the case of global minimizers would be similar, 

but simpler. So let us assume that the lemma is false for minimizers of the modified 

functional. Then for each integer j ^ 1, we can find a minimizer (VJ,GJ), a disk 

Bj = B (xj,rj) of radius rj ^ 2~-7, and a point Zj G Bj such that 

(20.11) dist (zj,Gj) ^ 1 0 " % 

for which there is no path 7 C £lj such that the analogue of (20.8)-(20.10) with 

G2 = 2^ hold. 

We are not exactly in the same situation as in Section 12 to take a blow-up sequence, 

because the minimizer (VJ,GJ) depends on j , but this will not matter. Also, we shall 

need to distinguish cases, depending on the position of Xj relative to L and —1. 

First observe that dist (ZJ, Gj) < r^, because otherwise the trivial path form Zj to 

itself would have worked. So we can choose yj G Gj such that \yj — Zj\ ^ r-j. Set 

(20.12) G* = rj1 (Gj - Vi) 

ASTÉRISQUE 274 



20. PATHS OF ESCAPE TO INFINITY IN O 125 

and 

(20.13) v*(x) = r~1/2Vj (r3x + y3) on R2 \ G*; 

these are the analogues of Gn and vn in (12.7) and (12.8), except that here G3 and 
Vj are changing with j. 

Our first case is when 

(20.14) lim r"1 dist {y3, L) = +oo. 

The remark before Proposition 12.12 and Proposition 12.12 itself are still valid in 
this case (with (20.14) and the fact that r3 < 2~J tends to 0 playing the role of (12.10) 
and (12.9)). So we can extract a subsequence so that (after extraction) { ( ^ G!-)} 
converges to a global minimizer (u, K). Modulo an additional extraction, we can also 
assume that Zj = rj1 (z3 — y3) tends to a limit z. 

By (20.11), dist(z*,G*) ^ 10~2 and hence dist(z,if) ^ 10~2. In particular, 
z G R2 \ K, and Lemma 17.1 says that its connected component in R2 \ K contains 
disks of arbitrarily large radii. So we can find a path 7 in R2 \ K that connects z to 
some point w such that dist (it;, K) > 2. 

Let D denote the diameter of 7 and d its distance to K. Call 7 ? the path obtained 
from 7 by adding to it a line segment from Zj to z at the beginning. For j large enough, 
7 * stays at distance ^ d/2 from G!-, and connects z^ to w. Also, dist (iu, G^) ^ 1 
and 7 * is contained in B (zj,D + l ) . It is easy to check that for j large enough, 
lj — rj l*j + % satisfies the analogue of (20.8)-(20.10) with G2 = 2J, in contradiction 
with the definition of (v3,G3). 

This settles the case when (20.14) holds. The proof of Lemma 20.6 when (v,G) 
satisfies (13.2) and without the restriction that r ^ C^1 also follows from this argu
ment. 

If (20.14) does not hold, then we can extract a subsequence so that 

(20.15) dist (y31L) ^ A, 

where A is some fixed number (that depends on our sequence (v3, G3), but this does 
not matter). Denote by y'- the point of L that is closest to y3. Our second case is 
when 

(20.16) lim rj1 dist iy'^-I) =+00. 

Then we define v*,G*,Zj as above, but with y'- instead of y3. We can apply Propo
sition 12.42 and, modulo extraction of a new subsequence, we get that { ( v * , G * ) } 
converges to a global minimizer on R2 \ R. 

We can continue the argument just as before, since Lemma 17.1 also applies to 
global minimizers on R2 \ R. This settles our second case when (20.16) holds. 
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In the remaining case when (20.16) fails, we can extract a new subsequence for 
which rj1 (y'j + l ) is bounded. This time we have that for some A' > 0, 

dist (ZJ, - 1 ) < A'rj 

(by (20.15) and because \yj — Zj\ ^ rj). 

In this case we do the blow up relative to the fixed origin —1, and Proposition 12.42 
allows us to extract a subsequence of the corresponding { (VJ , Glj)} that converges to 
a global minimizer on M2 \ (—oo,0]. The rest of the argument goes as in the two 
preceding cases. 

This completes our proof of Lemma 20.6 by contradiction and compactness. • 
We can now proceed with the proof of Lemma 20.1. 

Let z G O be given. We want to construct a sequence of paths 7$, which we shall 
glue to each other to obtain 7js. 

We start from ZQ = z, and distinguish between two cases. Set ro = 10 dist (20, G). 
If ro > C^1, we can simply take for 7^ a parameterization with constant speed of any 
line segment [20,21], where \z± — 221 = |dist (20, G). 

So assume that ro < G2X. In this case we can apply Lemma 20.6 to the disk 
B (ZQ, ro). We get a first arc 70 C B (20, C^ro) \ G, with dist (70, G) ^ G-fVo, and 
which connects 20 to some point z\ such that dist (z\, G) ^ ro. We may as well assume 
that length (70) ^ C3 ro, because otherwise we may replace 70 with a piecewise linear 
arc that satisfies this, maybe at the expense of multiplying C2 by 2. 

We want to continue this and construct a sequence of arcs 7m, with the following 
properties. First, 7m starts form a point zm G SI (the endpoint of the previous arc if 
m ^ 1). Next, 

(20.17) dist(7m,G) ^ C ^ r m , 

where rm = 10 dist (zm, G). Also, 

(20.18) length (7m) < C3rm, 

and finally 7m ends at a point zm+i such that 

(20.19) dist (zm+u G)^rm = 10 dist (zm, G). 

We continue this construction as long as we can apply Lemma 20.6, i.e., as long 
as rm ^ Cjf1. When this finally fails, we can complete our construction with a last 
segment 7™ = [zm, zm+i] of length ^dist (zm, G). 

We get an arc 7 by concatenating the arcs 7m defined above, and then the Lipschitz 
parameterization 7^ required for Lemma 20.1 is obtained by parameterizing 7 with 
constant speed. Note that 

(20.20) 10rm ^ rm+i 
< (10C3 + 1 ) 
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by (20.19) and (20.18). Hence the radii rm increase geometrically, the total length of 
7 is comparable to the last radius (and hence, to 1), and the constant speed referred 
to above is bounded. This proves (20.3). For the same reasons, 

(20.21) C-Vm_! < t ^ Crm_i 

when 7z(£) lies in 7m, m ^ 1; (20.4) easily follows from this and (20.17). This 
completes our proof of Lemma 20.1. • 

In the special case of global minimizers (i.e., when (13.2) holds), we do not have 
the constraint that r ^ C^1 in Lemma 20.6, and so we can construct our curves 7m 
indefinitely. This proves Remark 20.5. • 

21. Consequences on the moduli of continuity of functions 

In this section we continue to assume that (v,G) satisfies (13.1) or (13.2), and we 
give ourselves a C1 -function / on ft = R2 \ G and a disk B = B (#o, ^o)- We assume 
that 

(21.1) | V / ( x ) | < C0r~1/2 + C0dist(x,G)-1/2 for x G H, 

and we want to estimate \f(x) — f(y)\ when 

(21.2) x and y lie in a same connected component of B \ G. 

If (13.1) holds, let us also assume that ro ^ 1. 

Lemma 21.3. — There is an absolute constant C4 such that, with the notations and 
assumptions above, 

(21.4) \f(x)-f(y)\< Co C ^ 2 . 

Remark. — Although the authors are quite proud of the proof below, it is only fair 
to say that this is not the first occurrence of Holder estimates in a John domain. See 
[HaKo] for similar (and anterior) arguments. 

To prove the lemma, let B,x,y be as above. Set Bi = B (xo, (1 -f- C±) ro), where 
Ci is the same constant as in Lemma 20.1, and choose a finite subset E of B\ \ G 
which is (IOC1)-1 ro-dense in B\ \ G. We can choose E with less than C elements, 
where C depends only on Ci. 

Let us also choose a continuous path £ : [0,1] —» B \ G such that £(0) = x and 

№ = v-
For each t e [0,1], denote by E(t) the set of points z G E which can be connected 

to £(t) by a path 7 = 7 ^ : [0, ro] —• ft with the properties 

(21.5) 7(0)=£W , l(ro) = z, 

(21.6) 7 is 2Ci-Lipschitz, 
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and 

(21.7) dist ( 7 ( 5 ) , G) ^ (lOCi)"1 {s + dist (£(£), G)} for 0 ^ s ^ r0. 

[Note the similarity with the conclusions of Lemma 20.1.1 Let us first check that 

(21.8) E(t) is not empty. 

Indeed Lemma 20.1 gives us a path 7 ^ ) which starts from £(£), is Ci-Lipschitz, 

and satisfies (20.4) (which is 10 times better than (21.7). Note that, by Remark 20.5 

in particular, 7 ^ ) is defined on an interval at least as large as [0,r*o]. Its restriction 

to [0, TQ] is almost what we need, except that its endpoints z' = 7 ^ ) (7*0) may not lie 

in E. On the other hand, (20.3) tells us that z' G B\ \ G, and hence we can pick 

z G E such that \z' - z\ < (lOCi)"1 r0. Note that 

(21.9) dist ([*', dist(z', G)dist(z', G) - \z' -z\Z 9 
10 

0 - 1 „ 
1̂ r0, 

by (20.4). We now set 

(21.10) 
T ( « ) = 7«t) 

'3sN 

. 2 j 
for 0 ^ 5 ^ 

2r0 

6 

and 

(21.11) 7 ( 5 ) = z' + 
3s - 2r0 

ro 
(z-z') for 

2r0 

3 
< s ^ r0. 

It is easy to see that 7 satisfies (21.5)-(21.7), because of the analogous properties of 

7£(t) and (21.9). This proves (21.8). 

Note that we kept some free room in our proof of (21.8). Because of this, the proof 

also shows that for all t G [0,1], we can find a point z(t) G E{t) such that 

(21.12) z(t) G E(t') for all t' in some neighborhood of t in [0,1]. 

Indeed, we just have to modify 7 above to make it start from £(£') instead of £(£). Note 

that we do not want to get any precise lower bound on the size of the neighborhood 

of tin (21.12). 

Now let / G C1 (Q) be as in the beginning of this section, and let us check that 

(21.13) FJJFJFD- f(z)\ < CCor1^2 for z G E(t). 

Simply choose 7 as in (21.5)-(21.7) and note that 

(21.14) 7(5) = z' +7(5) = z' + 

' u 
|V/(7(*))ll7'(s)Ml<k 

^ 2Ci Co 
./o 

{r0-1/2+ d i s t ( 7 ( s ) , G ) - 1 / 2 } d s7 ( 5 ) = z' + 

7(5) = z' + r1/2-
'0 

RT 
7(5) = z' +J 7(5) = z' +JKJK 
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by (21.6), (21.1), and (21.7). Next set 

(21.15) Ex = {z G E ; z G E(t) for some t G [0,1]} , 

and then 

(21.16) t(z) = sup{£ ; z G £ ( * ) } 

for z € Ei. We still have that 

(21-17) | / ( № ) ) ) - / ( * ) K C C 0 r £ / 2 , 

by (21.13) and the continuity of / o £. 

Our goal is to use (21.13) for diverse values of t G [0,1], to get an estimate on 

\f(x) ~ f(y)\ = l/(£(0)) - / ( £ (1))|. We shall just need to be a little careful about the 

way z varies in such formulae. 

Set to = 0 and zo = z(to), where z (to) is as in (21.12). In particular zo G E (to) 

and (21.13) says that 

(21.18) \f(x) - f (z0)\ = \f (£ (to)) - f (z0)\ KCC0 rl'2. 

Set ti = t (zo). Then t\ > to, by definition of ZQ = z (to) and by (21.12). Also, 

(21.19) | / (i (h)) - f (z0)\ = |/ (£ (t (zo))) - f (z0)\ ^CC0 rl'2 

by (21.17) 

If ti = 1 we can stop here, because then £(£i) = £(1) = y and (21.4) follows 

from (21.18) and (21.19). So let us assume that t\ < 1, and set z\ = z(t\). Since 

zi € £ ( t i ) , (21.13) says that 

(21-20) l / ( ^ ( t i ) ) - / ( ^ i ) K C C 0 ^ / 2 . 

Note that z\ ^ zo, because by definition (21.12) of z\ = z (¿1), z\ G E(tf) for values 

of tf > t\. This would not be possible if z\ = 20, by definition of t\ — t (zo). 

We can continue the construction in the same manner. We define a sequence of 

parameters U G [0,1] by 

(21.21) ti =t(zi-1), 

and at the same time a sequence of points zi G E\ by 

(21.22) Zi = z(U). 

We stop as soon as we get tk = 1 for some fc, and then we do not even define z^. 

First observe that {U} is increasing, because U = t(zi-i) and Zi-\ = z(U-i). 

[This uses the definition (21.12) and the fact that £¿-1 < 1 if U is ever defined.] 

Also, each Zi, i < k, is different from all its predecessors. Indeed zi = z (ti), hence 

Zi G E(t') for values of t' > U (note that U < 1 because i ^ k). But for all j < i, 

U ^ tj+\ = t (ZJ), and hence Zj could not lie in E(t') for any tf > U, as zi does. So 

Zi ^ Zj, as needed. 
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Since Ei C E has at most C elements and all the Zi are distinct, our construction 

must stop for some k ^ C. In the mean time, we have the following estimates. First 

(21.23) | / (£ (U)) - f (Zi)\ ^CC0 rl0/2 for i < k, 

because zi = z (U) G E (U) and by (21.13), and 

(21.24) | / (£ - / (Zi)\ ^CC0 rl/2 for i < k, 

because £ (ti+1) = £ (t ( ^ ) ) by (21.21), and by (21.17). 

Note that £(tk) = £(1) = V and £ (¿0) = £(0) = x. We can now add up all the 

inequalities (21.23) and (21.24), and get the desired estimate (21.4) . [Note that there 

are no more than 2C inequalities to add up, because k ^ C] 

This completes our proof of Lemma 21.3. • 
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CHAPTER F 

THE CONJUGATED FUNCTION w 

22. The conjugated function w 

We continue with the hypotheses (13.1) or (13.2). Since v minimizes / |Vt,| 

locally, it is harmonic and satisfies the usual Neumann condition dv/dn = 0 on G. 
This will allow us to define a conjugated function w, such that 

The construction is very general, and only requires the Neumann condition, so it 
is probably very classical as well. 

We want to define w separately on each component Q{ of ft = R2 \ G by 

(22.1) f(z) = v(z) + iw(z) is holomorphic on Q,. 

(22.2) w(z)=Ci+ [ VvMt))(-i<y'(t))dt, 

where C{ is a constant, 7 : 7 7 —» is an arc of class C1 that goes from some origin 
Zi G fii to z, and where Vi> (j(t)) (—iY(t)) denotes the derivative of v at 7(£), applied 
to —ry'(£), a vector orthogonal to the tangent to the curve 7 at 7(2). [We are abusing 
notation here, because we identify freely R 2 with the complex plane.] Of course (22.2) 
is the standard way of recuperating a holomorphic (or harmonic) function from its 
derivative, except that we modified it a little to recover w to v. 

Lemma 22.3. — The formula (22.2) defines (for each choice of constants Ci) a har
monic function w on O such that (22.1) holds. 

What is almost obvious here is that locally (22.2) defines a harmonic function w 
conjugated to v. We only need to check that the definition by (22.2) is coherent, i.e., 
that two choices of C1 arcs 71 and 72 as above always give the same value of w(z). 
In fact, it is enough to prove that 

(22.4) 
jis 

Vv(ll{t)){-i1[(t))dt = 
I no. 

Vvh2(t))(-i<(t))dt 
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for all choices of two C1-arcs 71 and 72 supported in Q,, with the same origins and 

the same endpoints. We can even assume that 71 and 72 are simple and only meet at 

their extremities; the general case follows by a slightly painful, but neither hard nor 

surprising argument. We skip the details. Thus it is enough to show that 

(22.5) / Vv(7(t))%%%<-i7'(t))dt = LL0 

for every C1, simple loop 7 in Q. So let 7 be such a loop, and denote by W the 

bounded Jordan domain bounded by 7. We may apply Green in the domain W \ G 

and find that 

(22.6) 
Iy 

Vvh(t))(-WL%LL(t))dt = ± 
dv 

j1 
dn -an 

= ± 
d(W^G) 

dv 

dn 
-dH1 = ± 

d(W^G 
Av = 0, 

where the sign ± would be easy to compute, but does not matter here. 

Here we used the fact that dv/dn = 0 on G fl W (the missing part of d(W \ G)). 

The reader may be worried because we have again applied Green on a domain that 

is not too smooth. Since we feel too bad about doing this repeatedly, we shall give in 

Section 24 a proof of (22.6) that only uses integrations by parts on smooth domains 

(and a small limiting argument). See also [M0S0] for a justification of the Green 

formula in our context. 

This completes our discussion of the proof of Lemma 22.3. 

23. How to surround a compact set with curves 

In this section we give ourselves a compact set G° in the plane and, for small values 

of e > 0, surround G° with a finite collection of curves TJ£, j G J(e), at distance about 

e from G°. We intend to apply this to various compact subsets G° of G (where (v, G) 

satisfies (13.1) or (13.2)), to justify some of our integrations by parts, but also to 

finesse some issues related to the existence and regularity of boundary values of v and 

w on G. The construction below is of course standard. 

So let G° be a compact set in the plane, and e > 0 be given. First we want to 

cover 

(23.1) G° = \xeR2 ; dist (z, G°) ^ e\ 

with disks Bi, i G 1(e), centered on G°. Choose points Xi, i G 1(e), on G°, so that 

(23.2) every point of G° lies at distance ^ 10~2e from some Xi,i G 1(e). 

Since G° is compact, we can do this with a finite set 1(e). Let us even choose our 

points Xi,i G 1(e), at mutual distances ^ 2 • 10~3£, say, so that 

(23.3) the B (xi, 10~3e) , i G 1(e), are disjoint. 
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This will be useful later. 

For each i G 1(e), choose a radius Ti G [3e/2,2e] and set Bi = B(xi,ri). We can 

use our latitude in the choice of ri to ensure that 

(23.4) the circles dBi never meet tangentially, 

and 

(23.5) 8Bix n dBi2 fl dBi3 = 0 whenever ¿1,22,23 G 1(e) are distinct. 

Next set 

(23.6) H(e)= |J Bi. 

Obviously 

(23.7) G°£ C (e) c{xel2; dist (x, G°) < 2e} 

because of (23.2). Also denote by U(e) the unbounded connected component of M2 \ 

H(s). 

Let us first study the boundary dU(e). Clearly dU(e) is composed of arcs of circles 

coming from the dBi, i G 1(e). There is only finitely many of these arcs, and they can 

only meet transversally (by (23.4)); furthermore, there is no triple point (by (23.5)). 

Denote by TJ£, j E J, the connected components of dU(e). We want to check first 

that 

(23.8) each Y{,j G J, is a Jordan curve. 

Let z eT3£ be given. Assume first that z only lies on one circle dBi. Near z, we 

must have H(e) on one side of dBi (the side that contains Bi C H(e)), and U(e) on 

the other side (because otherwise z would not lie on dU(e)). In this case, there is a 

small neighborhood of z on which dU(e) coincides with dBi, with U(e) on one side 

and H(e) on the other side. 

If z lies on more than one circle, we can find i,£ G 1(e) such that z G dBiOdB^. In 

this case, dBi meets dBe transversally at z, and z does not lie on any other dB3 (by 

(23.4) and (23.5)). Then, in a small neighborhood of z, H(e) coincides with Bi U Bt, 

U (e) coincides with the complement of Bit) Be, and dU (e) coincides with d (Bi U Bi). 

See Figure 23.1. 

Thus every point z e FJ£ has a neighborhood where dU(e) is a simple, piecewise 

C°° curve; (23.8) follows easily because dU(e) is bounded. Note that 

(23.9) C dU(e) C dH(e) 

by definitions; hence (23.7) and (23.1) imply that 

(23.10) e ^ dist (x, G°) < 2e for all x G TJ£,j G J. 
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Figure 23.1

Next denote by QJe, j  G J, the bounded connected component of E2 \  [Recall 
from (23.8) that F  ̂ is a Jordan curve.] Let us now check that

(23.11) R2 is the disjoint union of U(e), the ilJ£, j  G J, and the T{ ,j G J.

Let us first check that

(23.12) U(e)C\ifE = 0  for j  G J.

Let z G £/(e) and j  € J  be given. Let 7 be a path from z to 00 in R2 \  H(e); such a 
path exists by definition of U(e). Since TJe c  dH(e) (see (23.9)), 7 does not meet F|, 
and hence z lies in the unbounded component of IR2 \  F|; (23.12) follows.

Next we want to check that for j, k G J . j  7̂  k,

(23.13) Q3£nUk£=0 .

First notice that

(23.14) r in n *  = 0,
because (23.12) tells us that every point of has a neighborhood which does not 
meet U(s), while on the other hand r |  C dU(e).

Of course does not meet 1'̂  (because these are distinct connected components 
of dU (e)); hence fl = 0 . Similarly, fl = 0 . So we only need to prove that 
ill fl fig = 0  to establish (23.13). If this failed, ill (which is connected and does not 
meet dil£ = Tj) would be contained in Similarly, fl£ would be contained in ttJe, 
and so iVe = and = dflJE = dfl£ = Fj. This is of course impossible when j  /  k; 
hence Q?e fl fl£ = 0 and finally (23.13) holds.

So far we proved that all the sets mentioned in (23.11) are disjoint; we still need 
to check that their union is the whole plane.

Let z € R2 be given, and let 7 be a C1-arc from 2 to 00. If 7 does not meet any F ,̂ 
then it does not meet their union dU(s), and hence z G U(e) (because U(s) contains 
a neighborhood of 00). So let us assume that 7 meets some TJe, and denote by z\ 
the first point of 7 (when we leave from z) which lies on some F |. We may assume 
that z\ 7̂  z, because otherwise 2 G F;| and we are happy. Note that near z\, F£ is 
a piecewise smooth curve, with U(e) on one side of and consequently il{ on the
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other side (because it cannot be on the same side, by (23.12)). Then z lies in U(e) 

or in QJ£, depending on the position relative to TJ£ of points of 7 just before z\. This 

proves (23.11). • 

Next we want to check that 

(23.15) G° CG°£C H(e) C «2-

where G® and H(e) are as in (23.1) and (23.6). The first inclusions come from (23.1) 

and (23.7), and so it is enough to show that for each of the balls Bi, i G 1(e), that 

compose H(e), 

(23.16) Bi C Q3£ for some j G J. 

By definition of U(e) (as a component of M2 \ H(e)), Bi does not meet U(e). Since 

Bi is open, it does not meet dU(e) either. Since dll(e) is the union of the T{, (23.11) 

tells us that Bi is contained in the union of the Q3£, j G J. But this is a disjoint union 

of open sets, and Bi is connected. Hence Bi is contained in a single Q3£, as needed for 

(23.16) and (23.15). 

Remark23.17. — When G° is connected, J has only one element, i.e., dU(e) is con

nected and composed of a single Jordan curve T£. 

To prove this, first observe that G° is connected and contained in the disjoint union 

of open sets il£ (by (23.15)). Hence G° is contained in a single QJ£. 

Let us also check that every QJ£ contains some Bi. Indeed, pick any point z eT£ = 

dil{. Then z lies on some dBi, and near z we must have U(e) one one side of T£ 

(because T£ c dU(e)). This must be the side that does not meet Bi, because U(e) 

does not meet H(e). We must also have QJ£ on one side of Y3£, by definition of QPe, and 

this cannot be on the same side as U(e), by (23.12). Hence Bi meets Q,3£, and (23.16) 

(and the disjointness of the ftJ£) says that Bi C il£, as announced. 

Now every Bi meets G° (at its center, for instance), and hence all fl3£ must meet 

G°. Since we know that G° is contained in a single QJ£, the remark follows. 

It will be convenient to apply the construction above with a sequence {en} that 

tends to 0, and for which the corresponding domains U (en) are nested and converge 

to their natural limit ft0. 

Lemma 23.18. — Let G° be a compact subset of the plane. We can find a decreasing 

sequence {en} that tends to 0 and for which 

(23.19) U (en) C U (£n+i) for all n, 

and 

(23.20) fio = l 

n 

U(en), 
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where fin denotes the unbounded connected component ofR2 \ G°, and the U (£n) are 

constructed as above. 

To prove the lemma, let us first check that for all e > 0, 

(23.21) U(e) C fin. 

Since U(e) is connected (by definition), contains a neighborhood of oo, and does not 

meet <9fi0 C G° (by (23.15) and (23.12)), we get that U(e) C fi0. Hence U(e) C fi0, 

and (23.21) will follow as soon as we show that dU(e) does not meet dfin C G°. But 

dU(e) is the union of the T3e, while G° is contained in the union of the fi^, by (23.15). 

Thus (23.21) follows from the disjointness property in (23.11) or (23.14). 

Next we want to prove that 

(23.22) 
for each compact subset T of fio, there exists 

£o > 0 such that T c U(e) for all e < 6Q. 

Let T be any compact subset of fio, set r = dist (T, G°) > 0, and cover T with finitely 

many disks Di centered on T and with radius r /2. For each £, choose a path 7̂  in 

fin that connects Dp to 00. Then TO = dist (7/, G°) > 0. Set 

(23.23) £0 = Min 
r 

67 

1 

3 
Min Ti 

Thus for every point x G T there is a path 7̂  from x to 00 that stays at distance 

^ 3£0 from G°. 

If £ ^ £0 and x G T, 7X does not meet any T3e (by (23.10) and because 

dist (73;, G°) ^ 3e). Therefore x does not lie in any fi^, j G J. We already know that 

it does not lie on any T{\ thus the only option left by (23.11) is that x G U(e). This 

proves (23.22). 

We are now ready to prove Lemma 23.18. If we choose {£n} so that £n tends to 0, 

then we shall get (23.20) automatically, by (23.21) and (23.22). 

The other condition (23.19) is also easy to obtain. First we can find R > 0 such 

that R2 \ BR C U(e) when e ^ 1, say. Then assume that £n has already been defined, 

and apply (23.22) with Tn = U (en) n BR. We get that (23.19) holds if we choose 

£n+i small enough. A simple iteration gives the lemma. • 

Remark 23.24. — In the typical application of the construction above, G° will be a 

compact piece of G such that 

(23.25) dist ( G ° , G \ G ° ) >0. 

In this case, we get that 

(23.26) Ti c fi = R2 \ G for all 7 G J 

as soon as e is small enough, by (23.10). 
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We shall also use the construction with sets G° like 

(23.27) G° = G n B, 

where B is a closed disk such that 

(23.28) GC\dB = {xo], 

(23.29) XQ is a regular point of G, 

and 

(23.30) G is transverse to dB at XQ. 

[A typical situation of this type is when (13.1) holds, B = BR for some very large R, 

and then x$ is some point of L] In the present situation, we do not have (23.26), but 

we still have a good control on the way the Y£ may meet G. Prom (23.10) we deduce 

that for e small enough, 

(23.31) dist(2?, G) > e for all z e dU{e) \ B (x0,5e). 

On the other hand, a close look at the construction of U(e) from H(e) and the Bi 

gives that for e small enough, 

(23.32) 
B(xo,he) C\dU(e) is composed of a single, piecewise C°° arc of 

some , which cuts G transversally in a single point of B (XQ , 2e). 

See Figure 23.2. 

/ dB 

G° = G n 5 

Tg is the boundary of the 
union of these disks 

FIGURE 23.2 
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24. A limiting argument to integrate by parts 

Let us rapidly fulfill our promise of proving (22.6) without integrating by parts on 

nonsmooth domains. So let 7 be a G1, simple loop in Q, = R2 \ G and let us try to 

prove that 

(24.1) 
dvn 

dv 

on 
dH1 = 0, 

where the unit normal is associated to the domain W bounded by 7 . 

Set G° = G fl W; this is a compact subset of W. Define a sequence {en} and let 

U (en) be as in Lemma 23.18. Since 7 C ilo (the unbounded component of R2 \ G°), 7 

is contained in U (en) for n large. Let us only keep the indices n for which 7 C U (en), 

and set 

(24.2) Wn = WUnU(en). 

By (23.19) and (23.20), {Wn} in an increasing sequence of piecewise smooth do

mains, and 

(24.3) 

nUU 

7(5) = z' +UUL 

where W° is the intersection of W with the unbounded component of R2 \ G°. 

The boundary dWn consist of 7 (the exterior boundary), and a finite collection of 

curves T£\ (which all lie inside W, by (23.10)). 

Let vn denote the harmonic function on Wn which has boundary values on 7 equal 

to the values of v there, and minimizes 

(24.4) En — 
7(5) = z 

\Vvn\2 

under these constraints. The existence of vn can be proved with a reasonably simple 

convexity argument; the main point is that our constraint on the boundary values of 

vn on 7 defines a closed affine subspace of the Hilbert space of functions on Wn with 

finite energy (as in the definition of En); vn is the closest point of this subspace to 

the origin. 

Also, vn has piecewise G1 extensions to the curves TJ£n that compose the inner 

boundary of Wn, and dvn/dn = 0 on those. This is also easy to prove, for instance 

with the conformal invariance techniques of Section 14. Thus we can integrate by 

parts, as follows. 

Let 7 be a C1, Jordan curve in Wn; we are only interested in the case when 7 is 

very close to 7 , but this does not matter. Denote by W the bounded component of 

R 2 / 7 , and set Wn = Wf) Wn = Wf)U {en) (by (24.2)). Then 

(24.5) 
dvn 

dvn 

dn 
dH1 

'dWn 

dvn 

on 
iHl = 

dvn 
Avn = 0 
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because dvn/dn = 0 on the inside boundary of Wn, by Green, and because vn is 
harmonic on Wn. 

We want to deduce (24.1) from this by taking limits. Set 

(24.6) E = 
Jw^G 

IVd2 V 
Jw° 

Vt;|2, 

where W° is, as for (24.3), the intersection of W with the unbounded component of 
R2 \ G°. In fact, W° = W\G because R2 \ G (and hence R2 \ G°) does not have 
any bounded connected component (see Section 15), but even if we did not know this, 
we would still have the second equality in (24.6), because v would have to be constant 
on the bounded components of R2 \ G°, by the local energy minimizing property of 
v (and the fact that 7 does not meet these bounded components). 

Since Wn is an increasing sequence of domains and W° is its limit (by (24.3)), 
{En} is a nondecreasing sequence and En ^ E (because v is a competitor in the 
definition of vn and En, for instance). Since En is uniformly bounded (by E) and 
vn is harmonic on Wn, we can extract a subsequence so that (after extraction) {vn} 
converges to some limit t^ , uniformly on every compact subset of W°. Then 

(24.7) 
Jw° 

|Vt>oo|2 ^ liminf 
) n—>oo VvM 

\Vvn\2 = liminf En^E, 
n.—>no 

by Fatou. 

It is not difficult to check that Voo also has boundary values on 7 equal to v. So 
does at least as well as v in terms of minimizing the energy E on W°. By uniqueness 
of such minimizers, = v on W°. We can also deduce from (24.7) that 

(24.8) E = lim En 
n->oo 

but what we really wanted to know here is that {vn} converges to v in W°. Because 
we know that these functions are harmonic, this also implies that Vvn converges to 
Vv, uniformlv on compact subsets of W°. Then 

(24.9) 
VvM 

dv 
on 

-diJ1 - 0 

for all the G1, Jordan arcs 7 for which we established (24.5). 

We can now deduce (24.1) from (24.9) by letting 7 tend to 7. This completes our 
proof of (22.6). • 

Note that the argument of this section is sufficiently general to be applied in the 
situations above where we have used integrations by parts on domain delimited by 
G (or similar sets coming from minimizers) to compute differences of energy. See in 
particular the proof of local Ahlfors-regularity (Proposition 4.14) in Section 4, but 
also similar computations in Sections 5 and 7. 
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25. v and w have limits at points where G is not connected 

With this section we start an investigation of the boundary values of v and its 
conjugate function w. We continue to assume that (v,G) satisfies (13.1) or (13.2). 
We shall call "point where G is not connected" a point x0 G G such that {#o} is a 
connected component of G. 

We keep the notation / = v + iw, as in Section 22. 

Proposition 25.1. — IfXQ G G is a point where G is not connected, then the limit 

(25.2) /* (*o) = lim 
Z—>X0 
IMMM 

MM 

exists. 

First we want to put ourselves in position to apply the construction of Section 23 
and surround XQ with curves that do not meet G. The following lemma is a little too 
general for the present situation (where we could take Go = {#o})> but we shall use 
it again later. 

Lemma 25.3. — Let Go be a bounded connected component of G. For every S > 0, we 
can find a closed set G° such that 

(25.4) G0 C G0 C {z G G ; dist(z, G) < 0} 

and 

(25.5) dist ( G ° , G \ G ° ) > 0 . 

Since we did not find any simple, purely topological proof of this lemma, we shall 
use the rectifiability of G and the fact that HX(G) is locally finite. The following 
argument is a minor modification of an argument of [DaSe2], to which we also refer 
the reader for additional detail. First define a sort of distance to Go by 

(25.6) d(x) — inf { i ? 1 ( 7 \ G) ; 7 is a simple, rectifiable arc from x to Go} • 

It is easy to check that d(x) is a 1-Lipschitz function of x, that its restriction to 
G is differentiable at every regular point of G, and that the derivative of d at these 
points is zero. Since almost-every point of G is regular (by Proposition 13.11) and d 
is Lioschitz, a minor modification of Sard's theorem eives that 

(25.7) H1(d(G))=0. 

Next we check that 

(25.8) d(x) = 0 if and only if x G GQ. 

It is clear that d(x) = 0 on Go- Conversely, suppose that d(x) = 0. For every 
n ^ 0, choose a simple rectifiable arc 7 n from x to some point of Go, such that 

(25.9) H1 (7n \ G) ^ 2"n. 
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First assume that jn stays in a fixed disk BR. Then H1 (jn) stays bounded (be

cause H1 (G H BR) < +00), so we can find uniformly Lipschitz parameterizations 

£n : [0,1] —» R2 of the 7 n . Then we can find a subsequence of {£n} that converges 

uniformly to some limit £. Note incidentally that 

(25.10) Go is closed, 

just like any connected component of G (because Go would contain Go and still be 

connected). Thus the arc 7 parameterized by £ still connects a; to Go- If 7 was not 

contained in G, we could find y on 7 , at distance d > 0 from G, and then we would 

have H1 (7™ \ G) > d/2 for n large enough (because 7 n would have to cross at least 

half of B(y,d) to get close to y); this contradiction with (25.9) shows that 7 C G. 

But then 7 C Go (which is a connected component of G), and x e Go. This takes 

care of the case when the arcs 7 n stay in a fixed disk BR. 

Suppose now that infinitely many arcs 7 n leave BR, where we choose R so large 

that Go U {x} C BR-\. Of course we may as well extract a subsequence and so we 

can assume that all 7 n leave BR before they reach Go- [We can always assume that 

7 n does not meet Go before its endpoint.] Then we can find a sub-arc 7 ^ of 7 n that 

is contained in BR and connects 3BR to Go. The same argument as above gives a 

limiting arc 7 C G which still connects 3BR to Go- This is impossible because Go is 

a connected component of G and by definition of R. Thus the 7 n were all contained 

in a fixed disk, as in our first case. This proves (25.8). 

Choose a decreasing sequence {tn} of positive numbers such that tn 0 d(G) for all 

n and tn tends to 0. This can be done, by (25.7). Set 

(25.11) Vn = {x eR2 ; d{x) < tn). 

Note that Vn is compact, a least for n large. Indeed, if R is such that Go C B R - ± , 
say, then p = inf d(x) is positive, and Vn C BR as soon as tn < p. By (25.8), 

9BR 

(25.12) 

n 
Vn = Go, 

hence for every fixed S 

(25.13) Vn C {x G R2 ; dist (x, G0) < 6} 

for n large enough. 

Choose G° = G n Vn for such an n. Then (25.4) follows from (25.13), and we only 

need to check (25.5). But 

(25.14) sup {d(x) ; x e G0} < tn, 

because the supremum in question is attained (since G° is compact and d is continu

ous), and because tn 0 d(G). Then for x G G° and y G G \ G°, 

(25.15) \x-y\Z \d(x) - d(y)\ ^ tn - d(x) ^ tn - sup {d(x) ; x G G0} > 0, 
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which implies (25.5). Lemma 25.3 follows. • 

Remark 25.16. — We can also apply the proof of Lemma 25.3 when G is replaced 

with some closed subset G of G, and Go is a bounded connected component of G. In 

the conclusion, we just need to replace (25.5) with 

(25.17) dist ( G ° , G \ G ° ) > 0 . 

Return to the proof of Proposition 25.1. Let XQ G G be a point where G is not 

connected, and let 6 > 0 be small. Let G° C G(1B (xo, 5) denote the piece of G given 

by Lemma 25.3 applied with Go = {#o}- Apply to G° the construction of Section 

23, where we choose e = s(5) so small that the curves TJ£ that compose dU(e) do not 

meet G. [See Remark 23.24, and in particular (23.26).] Let us also choose e so small 

that dU{e) C B (x0,25). This is possible, by (23.10) and because G° C B (x0,5). 

By (23.15), Xo is contained in some QJe, which we shall denote by £1(5). Also denote 

by T(5) = d£}(5) the corresponding curve T{. By construction, T(5) C B (#o, 2(5), and 

hence 

(25.18) 0B?BB(5) cB(x0,26). 

Let us now verify that 

(25.19) ose 7 ; fi(<J) x G := sup • l / ( * ) - / (y ) l ; x,y G Ü(ö) \ G <C6^2. 

We want to use Lemma 21.3, and so we need to check the hypothesis (21.1). First 

observe that 

(25.20) 
JB{x,r)^G 

|V / |2 = 2 
rB(x,r)\G 

|VÎ ; |2 ^ 8?rAr 

for all disks B(x,r), with the only constraint that r ^ 1 when (13.1) holds. The 

equality follows from the definition of / ; for the inequality see (13.5). 

If x G ft = E2 \ G we can apply this with r = dist(x,G) when (13.2) holds, or 

r = Min (1, dist(x, G)) when (13.1) holds. Since / is holomorphic, we get that 

(25.21) 7(5) = z' +7(5) = z' +7(5) = z' 

JB(x,r)^G 
iv/l 

\B(x,r)\-
JB(x,r)^G 

iv/r 
1/2 

<CAl /2r- l /2 

by Cauchy-Schwarz and (25.20). Thus 

(25.22) | V / ( x ) | ^ G A1/2 dist(x,G)-1/2 

when (13.2) holds, and also when (13.1) holds and dist(x,G) ^ 1. Otherwise 

(25.23) \Vf(x)\ ^ G when dist(x, G) ^ 1 
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Therefore / satisfies (21.1) in all cases (because r0 < 1 when (13.1) holds). [Recall 

that at this point A is a fixed constant.] 

Now we want to check that 

The simple curve d£l(6) = T(6) is clearly connected and does not meet G, so it is 

enough to show that every point z G £1(6) \ G can be connected to d£l(6) by an arc in 

£}. [Note that such an arc stays in £1(6) \ G until it touches d£}(6) for the first time.] 

We simply use the escape path jz given by Lemma 20.1. If 6 is small enough, 

(20.4) applied with t = 1 shows that 

and hence 7^(1) lies outside of £1(6) by (25.18). This proves that 7Z crosses d£}(6), 

and (25.24) follows. 

We are now ready to prove (25.19). Let x,y G £1(6) \ G be given. Take B = 

B(x0,26)] then (21.2) holds because of (25.24) and (25.18). Thus we can apply 

Lemma 21.3 (provided that we took 6 ^ 1/2). We get that \f(x) - f(y)\ < C6^2; 

this proves (25.19). 

Now we can easily check that the limit / * (x0) in (25.2) exists. For each small 

enough 6, we found a neighborhood £1(6) of #o such that (25.19) holds. The existence 

of / * (#o) follows at once (using the Cauchy criterion). This completes our proof of 

Proposition 25.1. • 

26. w has a continuous extension to R2 

In this section we continue to assume that (v,G) satisfies (13.1) or (13.2), but we 

also suppose, mostly for convenience, that 

(26.1) Q = R2 \ G is connected. 

Note that (26.1) is always true when (13.1) holds; see (15.2). 

Proposition 26.2. — The Junction w has a continuous extension to R2, and the exten

sion is constant on every connected component of G. 

As was said in Section 2, the proof of this would be easy if we knew that G is 

piecewise C1. Then we would observe that w has piecewise C1 boundary values on G, 

and the Neumann condition dv/dn — 0 would tell us that the tangential derivative 

dw/dr equals 0. This would show that the boundary values of w on G are locally 

constant, and the conclusion would follow. Thus all the trouble in this section and the 

next one will come from the possible lack of regularity of G, which will force slightly 

more complicated arguments. 

(25.24) £1(6) \ G is connected. 

(25.25) |7*(1) - sol > dist(7,( l) ,G) ^ Gf1 > 26, 
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The most delicate part of the argument will concern the boundary values of w on 

connected components of G that are not reduced to one point. An important first 

step will be to control the boundary values at regular points, as follows. 

Lemma 26.3. — Let Go be a connected component of G, not reduced to one point. 

Then there exists mo G E such that 

(26.4) lim w(z) = mo for all regular points x G Go. 

We shall first prove the lemma in the slightly simpler case when Go is a bounded 

component of G, and in this case we shall not need our connectedness assumption 

(26.1). The case when Go is unbounded will be considered in the next section, and 

Proposition 26.2 will be deduced from Lemma 26.3 just after that. 

First we want to surround Go by a Jordan curve in Q. By Lemma 25.3 (ap

plied with 6 = 1) we can find a compact set G°, with Go C G° C G, such that 

dist ( G ° , G \ G ° ) > 0 . 

Next we apply the construction of Section 23 to enclose G° in a collection of Jordan 

curves F^. If we choose e small enough, the curves TJ€ do not meet G; see Remark 

23.24 and (23.26). 

We know from (23.15) and (23.11) that Go is contained in the disjoint union of 

open sets QJ£, and since Go is connected, it is contained in a single QJe. [See Remark 

23.17 for a similar argument.] We shall call Qi the ftJ£ that contains Go, and Ti = dfti 

the corresponding T{. Thus 

(26.5) G0 C « i , 

(26.6) fti is the bounded connected component of E2 \ Ti, 

and 

(26.7) Ti is a piecewise G1 Jordan curve that does not meet G. 

So far, we only chose a domain fii where it will be convenient to work. Consider 

G1 = G n fii, and apply Lemma 23.18 to G1. We get a collection of domains U (en) 

that satisfy (23.19) and (23.20). 

Denote by Qo the unbounded component of E2\G1 (as in (23.20)). Clearly Ti C flo 

(by (26.6) and the definition of G1), and hence 

(26.8) ft0 = K2 \ G \ 

because for every z G fti \ G1, the escape path ^z of Lemma 20.1 goes through T\. 

The proof of this last fact in the same as for (25.24); it relies on the fact that if we 

chose e in the definition of Q,\ and T\ above small enough (which of course we can 

easily do), then all the points of Ti (and hence of Hi) are pretty close to G1, by 

(23.10). We may also get (26.8) directly from the connectedness of ft if we want. 
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Prom (26.8), (23.19) and (23.20), we deduce that for n large Ti is contained in 

U (en)- Let us remove the first few values of n where this may fail. Next set 

(26.9) Wn=Sl1nU(en). 

Thus Wn is a piecewise smooth domain whose outer boundary is Ti and whose inner 

boundary is composed of the Jordan curves T£n, j e Jn, that also compose dU (en). 

We still have that 

(26.10) Wn C Wn+U 

by (23.19), and 

(26.11) \J Wn = fli \ G1 = îîi \ G, 
n 

by (23.20) and (26.8). 

Our intention is to deduce information on v from similar information on functions 

vn defined on Wn. Before we do this, we want to modify slightly our domains Wn to 

make the comparison between v and vn easier near some given points of Go-

So let # i ,X2 be two given distinct regular points on Go- Such points are easy to 

find, because almost every point of G is regular (by Proposition 13.11) and Go is 

connected and not reduced to one point. Let us also choose two disks Du, £ = 1,2, 

centered at X£, such that 

(26.12) 2Di is a disk of regularity for G, 

(26.13) Di C fii 

for £ = 1,2, and 

(26.14) D1nD2 = 0 . 

For ^ = 1,2, choose one of the two connected components of Dg \ G, and call it 

Vi. We want to study the boundary values of w near the points xt, with access from 

the regions Vi. 

First let us describe the sets U (en) n Dt for n large. In the construction of U(e) 

(in the early Section 23) we first defined a union H (en) of small disks Bi centered on 

a 10~2£:-dense subset of G1, as in (23.6). Because 2De is a disk of regularity for G, 

H (en) fl Di looks a lot like the thin corrugated tube of Figure 26.1 when n is large 

enough. 

Denote by yt the central point of the arc of circle VeDdDi. From (26.10), (26.11), 

and (26.13) we deduce that 

(26.15) yn e Wn for n large, 

and then that 

(26.16) X W V t ^ H ( e n ) c W n 
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(again for n  large), because dU  (en ) C OH (en) (by (23.9)). We also get th a t

(26.17) 3 W n n V e = dU  (e„) n V e = d H  {en) n

(in the  picture, the  lower p a rt of the  corrugated curve).

F i g u r e  2 6 .1

Note th a t since Go is connected, it is contained in a single £l\n (by the same 
argum ent as in Rem ark 23.17, say). We shall denote by r„ .o  the boundary  of th a t 
dom ain flJ£n. Because of the  description above each of the  two sets d W n fl V t  (as in
(26.17)) is contained in r nioi and

(26.18) d W n r i V t  =  T njaC\Vt 

for i  =  1,2 and n  large enough.

F i g u r e  2 6 .2

We decide to  replace our dom ains W n , n  large enough, w ith

(26.19) W* = W n U V 1 U V 2.

[See Figure 26.2; in effect we only add two th in  tubu lar regions in D\  and  £>2.] We 
still have th a t

(26.20) w : C w : +1
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and 

(26.21) 
n 

7(5) = z' +7(5) = z' 

by (26.10) and (26.11), and by construction. [Note in particular that Wn c W* C 
fii \ G] 

By the discussion above, dW* and dWn coincide out of D\ UD2, and in De we get 
dW* from dWn by replacing the arc Tn$C\Vi with a new arc with the same endpoints, 
and which is composed of two small arcs of the circle dDi and the arc G D Di. In 
particular 

(26.22) dW* is a finite collection of piecewise C1 Jordan curves, 

and 

(26.23) GC\Di and G^D2 are two arcs of the same connected component of dWn 

(i.e., the Jordan arc T* 0 obtained from rn?0 by the modification explained above). 

Our domains W* have the same exterior boundary as the Wn, i.e., Ti = dfli. 

Let us now define a function vn e W1,2 (W*) by requiring that it have boundary 
values on the exterior boundary Ti which coincide with v o n T i (note that v is defined 
and continuous on Ti, by (26.7)), and that it minimize the energy 

(26.24) En = 
7(5) 

\Vvn\2 

under this constraint. 

As for vn in Section 24, the existence and uniqueness of vn can be proved by 
convexity arguments. [Also see (26.25) below if you are worried about components 
of W* that would not touch Ti] We can use (26.20), (26.21), and the local energy 
minimizing property of v to show that (modulo extracting a subsequence to make the 
argument easier), vn converges to v uniformly on every compact subset of fii \ G. 
The argument is the same as in Section 24. 

Next we want to define conjugated functions wn> Let us first check that 

(26.25) W* is connected. 

By definition, U (en) is the unbounded connected component of M2 \ H (sn). Thus 
every point of U (en) can be connected to oo by an arc in U (en). Then every point of 
Wn = fii C\U (en) can be connected to Y\ by an arc in Wn [take the previous arcs, and 
just stop when you hit dCti.] The same thing holds for W*, because the points of Vi 
that were added in (26.19) can be connected to points of Vi fl Wn by arcs in Vp. Our 
claim (26.25) follows because T\ clearly has a small neighborhood whose intersection 
with Wn is connected. 
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Choose any origin A E W\ (the smallest of our domains Wn) , and define a conju

gated function wn to vn on W* by 

(26.26) wn(z) = w(A) - V^n(7(t))(-H/(t))dt , 

where 7 : 77 —> is an arc of class G1 that goes from A to z, and the conventions 

are the same as for (22.2) above. 

For the same reasons as in Section 22 (and with simpler integrations by parts, since 

W* is piecewise smooth), wn is well defined on W*, and 

(26.27) vn + iwn is holomorphic on W*. 

Since wn and w are both given in terms of vn and v by a formula like (26.26), 

the uniform convergence of vn to v on compact subsets of Q\ \ G and the uniform 

bounds on Vvn and Vv given by the harmonicity of these functions and our bounds 

on energy imply that 

(26.28) {wn} converges to w uniformly on every compact subset of \ G. 

Recall from (26.22) that dW* is piecewise G1. In fact it is piecewise G1+a for some 

a > 0 (by the same proof), and the same argument as in Lemmas 14.1 and 14.3 shows 

that vn has boundary values on dW*, and that theses boundary values are continuous 

on dW* and G1 on each of the G1+a-arcs that compose it. Because of the formula 

(26.26) we also get that 

(26.29) W*ÁX) = JI51 wn(z) 
z£W* 

exists and is continuous on dW*, and also that it is G1 on each of the (open) G1+0; 

arcs that compose it. 

Since the tangential derivative dwn/dr on the G1+a-arcs of dW* \ T\ coincides, 

by (26.26), with the normal derivative dvn/dn, and since dvn/dn = 0 by the usual 

Neumann condition on energy-minimizing functions, we get that 

(26.30) 
dw*n 

dr 
= 0 on the G1+a arcs of dW* \ Tu 

and hence 

(26.31) wn is constant on T* 0. 

Now we want to combine (26.31) with (26.28) to get an analogous statement on w. 

Let us return to our two domains Vi C D^. Recall from (26.19) that W* contains Vf, 

this will make things a little more pleasant, because it will allow us to take limits on 

fixed domains. 

Denote by rt the radius of Di, and set V[ = Vs> fl 5(x^,3r^/4) and Ct = Ve fl 

OB (xe, re/2). By the same argument as in Lemma 14.1, the functions vn, v, wn, w 

have G1 extensions to V1 and V2> 
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Lemma 26.32. — The sequences {vn} and { w n } converge to v and w uniformly on Ci. 

Of course the only new information concerns the uniformity of the convergence 

near the extremities of Ci, since we already know that there is uniform convergence 

on compact subsets of fii \ G. First note that 

(26.33) 
Jve 

{\Vvn\2 + \Vv\2\^En +DGDG 
7(5) = z' + 

D|V^|2 ^ 2 
7(5) = z' + 

|Vd2 

by definitions, and also the fact that W* C Ct\ \ G, by (26.21). Thus we can find 

radii r = r(£,ri) such that 2r^/3 < r < 3rW4 and 

(26.34) 
JVer\dB(xe,r) 

|Vt/n|2 + |Vt;|2} <2{ 
7(5) = z' + 

\Vv\2 

Next we can use the fact that v and vn minimize the energy on Vi fl B (xe, r) with 

the given boundary data on Vi fl dB (xe, r). Because Ve fl B (xg, r) is regular and by 

the same technique as in Lemma 14.1 (i.e., use a conformal mapping to reduce to a 

half-disk, and then a reflection to reduce to a simple Dirichlet problem on a disk) it 

is easy to deduce from (26.34) that 

(26.35) 
JCe 

||Vt;„|2 + |Vt ; |2)<C / 
VvM|2 

Vv\2 :=C" , 

where the precise value of the constant C' will not matter. Set 

(26.36) Sn = sup{|t;n(x) - v(x)\;x G Ci} 

and, for each compact subarc T of Ci\ 

(26.37) Sn(T) = sup{K(x) - v(x)\ ; x G T } . 

Then 

(26.38) Sn < 5n(T) -\ 
JCi^T 

{\Vvn\ + |Vt;|} < 5n{T) + 2(G,)1/2#1 (d x T)1/2 

bv (26.35) and Cauchv-Schwarz. 

The second term can be made as small as we want by choosing T close to the 

whole Ce, and then Sn(T) is small for n large, by the uniform convergence of {vn} to 

v on compact subsets of fii \ G (like T) . Thus Sn tends to 0, and {vn} tends to v 

uniformly on Ci. The same argument, together with the fact that |Vwn| = |Vi;n| by 

definition of a conjugated function, gives the uniform convergence of { w n } to w on 

Ci. This completes the proof of Lemma 26.32. • 

Set rrii — \imz-+xe w(z). The existence of nii was never an issue (because Vi is 
zeVe 

regular), but what we want to know is that mi =7712. Note that mi is also the 

value of w at the two points of Ci fl G, again because Vt is regular and by the same 

argument as for (26.30). Also denote by m(n) the constant value of w* on T* 0. [See 

(26.31).] In particular m(n) is the value of at the endpoints of Cg. Now Lemma 
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26.32 and the fact that w and the wn have limits at the endpoints of Ce imply that 
me — lim m(n) for each t, and hence mi = m,2. 

n—»+oo 

Let us verify that Lemma 26.3 (in our special case when Go is bounded) follows 
from this. We have chosen two distinct, but otherwise arbitrary regular points in Go, 
and for each one an access region Ve. Then we proved that the two limits mi and 
m2 are equal. If we apply this to the same choice of points x\ and x2, the same V2, 
but the other choice of Vi, we also get that the two approach regions to x\ give the 
same limit (by comparing). The existence of the constant mo as in (26.4) now follows 
easily. 

27. The case when Go is not bounded 

We still need to prove Lemma 26.3 when Go is an unbounded component of G. [In 
the special case of (13.1), this means that Go is the component of G that contains L] 
We shall need to modify the argument above, but fortunately not too much. 

Our first trouble comes from the construction of Qi and Ti, at the very beginning 
of the argument. If Go is not bounded, we cannot surround it entirely by a curve 
that does not meet G. Instead of this we shall choose a curve Ti that surrounds a big 
piece of Go and crosses G only once, in a nice transversal way. 

Let again two distinct points of regularity xi, x2 of Go be given. By Lemma 19.2, 
there is a rectifiable curve 7 in Go which connects x\ to x2. 

Lemma 27.1. — There is a piecewise G°° (closed) Jordan curve T± and a point of 
regularity x$ of G such that 

(27.2) r i H G = {*(,}, 

(27.3) Ti meets G transversally (and even perpendicularly) at x$, 

and 

(27.4) 7 C f i i , the bounded connected component of R2 \ T\. 

We leave for later in this section the proof of this lemma, and first show how to 
use it to complete the proof of Lemma 26.3. 

Just as in the bounded case, set G1 = G n fii, and apply Lemma 23.18 to G1. We 
get an increasing sequence of domains U (en), whose union is still fio = R2 \ G1 as 
in (26.8). 

Because of the intersection at #o, we cannot say that the whole Ti is contained in 
U (en) for n large, but only that 

(27.5) r i \ D 0 C [ / ( e „ ) , 

where DQ is a small disk of regularity centered at XQ. 
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Inside Do, the situation is not too complicated, and looks like the one described in 

the second part of Remark 23.24. The fact that 17i is not a disk (as in (23.27)) does 

not play a serious role, and (23.28)-(23.30) come from Lemma 27.1. First, G1 DDQ is 

just one of the two halves of the arc G Pi Do, which starts from dDo and ends at xo> 

Then H (en) D Do is, for n large enough, some sort of wrinkled sock around G1 fi Do, 

as suggested by Figure 27.1. The points of Do which do not lie in the sock H (en) lie 

in U (en), at least if n is large enough. The arguments are the same as in Remark 

23.24 (compare with (23.32) and Figure 23.2). 

We set Wn = Q1nU(en) as before (see (26.9)). We still have (26.10) and (26.11); 

the only major difference with the situation of Section 26 is that now the outside 

boundary of Wn is composed of a long arc of Ti (in fact, almost all of Ti), connected 

to a long part of the arc T{n that gets close to xo [See Figure 27.1.] The arc TJ£n that 

we just mentioned is the arc rn?o that surrounds the connected component of xo in 

G1; the argument is the same as in Remark 23.17: the component of xo in G1 must 

be contained in a single T£n. 

FIGURE 2 7 . 1 

Also, the component of xo in G1 contains 7 for the following reason. We know 

from (19.4) (and because Go is not bounded) that there exist arcs in Go that connect 

7 to points of Go arbitrarily far away. Such arcs start in 171 by (27.4), and end out of 

Qi because Qi is bounded. The only point where they are allowed to cross Ti = dQi 

is xo, by (27.2). Our claim follows. 

Let us continue our construction as above. Choose small disks of regularity Da 

centered at xi, I = 1,2, with the properties (26.12)-(26.14), as well as access regions 

(i.e., components of Dg \ G) Vg. Our description of U (en) 0 Dg is still valid, and in 

particular (26.15)-(26.18) still hold for the same reasons. 

Define W* as in (26.19). We still have (26.20)-(26.23), but the slight difference 

is that the curve rn?o that has been modified to construct T* 0 in now part of the 

exterior boundary of Wn. Thus the exterior boundary of W* is composed of a long 

subarc of Ti (most of it, as before), and a long part of T* 0. 
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We define vn e W1'2 (W*) as before: we demand that it have the same boundary 

values as v on the arc Ti n dW* (i.e., most of Ti) , and that it minimize the energy in 

(26.24) under this constraint. Thus we only put Dirichlet conditions on part of the 

exterior boundary, but this will not prevent the argument above from working. 

Here also, W* is connected. As before, every point of Wn = tti D U (en) can be 

connected to infinity by an arc in U (en). The only way such an arc can leave Wn is 

by crossing dWn \ dU (en), i.e., the part of Ti that lies on dWn. Since this arc of I \ 

is connected and has a small neighborhood whose intersection with Wn is connected, 

we get that Wn is connected. The connectedness of W* follows as before. 

The construction of the conjugated function wn on W*, and the various limiting 

arguments that follow, can be repeated as above. 

This completes our proof of Lemma 26.3 in the remaining case when Go is not 

bounded, modulo the proof of Lemma 27.1 which we undertake now. • 

Note that in the special case of (13.1), Lemma 27.1 is trivial because we can take 

Ti = 8BR for a very large R. [Recall that when (v, G) is a minimizer of the modified 

functional, G is the union of the half-line L with a bounded set.] Similarly, Lemma 

27.1 is fairly easy when (v, G) is a global minimizer which is asymptotic to a cracktip 

(or which has a blow-in sequence that converges to a cracktip). Thus the proof of 

Lemma 27.1 that follows is not required for the main results of this paper. 

Lemma 27.6. — Assume that £1 = R2 \ G is connected, and let Go be an unbounded 

connected component of G. For every regular point x £ Go, Go \ {x} has exactly two 

connected components. 

Let Go and x G Go be as in the statement. Choose a small disk of regularity 

D = B(x,r), and also a line segment / = [a, b] C B(x,r/2) which is centered at x 

and crosses G perpendicularly at the point x. 

Since is connected, we can find a polygonal arc 7 in Q, that connects a to b. 

We can easily manage to make 7 simple, and disjoint from I except for its endpoints 

a and b. By putting together 7 and the segment [a, 6], we get a polygonal Jordan 

curve T(x). Denote by fl(x) the bounded component of R2 \ T(x), and by ^ + ( x ) the 

unbounded component. 

Set G(x) = Go nfl(x) and G+(x) = Go D^+(x) ; these will be the two components 

of Go \ {x} promised in Lemma 27.6. Since T(x) Pi G = { # } , it is clear that 

(27.7) Go \ {x} = G(x) U G+(x), 

and that (27.7) is a partition of Go \ {x} into (relatively) open sets. The partition 

is nontrivial, because G(x) and G+(x) both contain little arcs of Go near x (one on 

each side). Thus Lemma 27.6 will follow as soon as we prove that G(x) and G+(x) 

are connected. 
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Suppose we have a partition G(x) = FiUF2 into disjoint (relatively) closed subsets. 

Since the little arc DnG(x) is connected, it is entirely contained in F\ or in F2; say 

it is contained in F\. Set 

(27.8) Fi = Fi U (G0 \ ft{x)) and F2 = F2. 

The set F2 is closed in G(x) = GoC\ft(x), and does not get close to dft(x)nG0 = 

hence it is closed in Go- Similarly, F\ \ {x} is closed in G0 \ { x } ^ and Fj^contains 

a whole neighborhood of x in Go, so F\ is closed in Go- Thus F\ and F2 form a 

partition of Go into closed subsets, and the connectedness of Go implies that F2 = 0 

(we know that F\ 7̂  0). 

This proves that G(x) is connected. The connectedness of G+(x) can be proved 

the same way, and Lemma 27.6 follows. • 

We may now return to the proof of Lemma 27.1. Recall that we are given two 

points x\, x2 of an unbounded connected component of Go, and a rectifiable curve 

7 in Go that connects them. We want to find a regular point xo G Go such that 

the curve Ti = T(xo) constructed above satisfies the conclusions of Lemma 27.1. We 

already have (27.2) and (27.3) automatically, by construction of T(XQ), and so we 

only need to choose XQ SO that 7 C ft\ = ft (XQ). 

Because of Lemma 19.16, we can find a simple curve 71 in Go that starts from 

the final endpoint of 7, say, and goes to 00. Denote by 72 the curve composed of 7, 

followed by 71. 

Choose a radius R so large that 7 C BR, and also such that all points of G0 fl OBR 

are regular. Such an R exists, by Proposition 13.11. 

Denote by xo the last point of 72 D BR, let 72 be the portion of 72 strictly before 

Xo, and the portion of 72 strictly after xo. Both portions are clearly connected, 

and they do not meet because 71 is simple and 7 does not meet 72" by definition of 

R. 

Let D denote the small disk of regularity centered at xo that we already used to 

define T (xo). Since 73" and 7^ are connected, disjoint, and both end up (or start) at 

xo, each of them contains one of the two arcs that compose D fl G \ { x o } . 

Prom this and the connectedness of y£ and 72 » we deduce that 72" and 72" are 

contained in the two components G (xo) and G+ (xo) of Go \ { x o } . Since 72" is not 

bounded, the only possibility is that 72" C G+ (xo), and then 7^ C G(xo). Since 72" 

does not meet 7, 7 must be contained in 7^, and hence in G(xo) . This is exactly 

what we wanted, because G (xo) = Go fl ft (xo). 

This completes our proof of Lemma 27.1 and, by the same token, of Lemma 26.3. 

• 
Now we want to deduce Proposition 26.2 from Lemma 26.3. 
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Lemma 27.9. — Let Go be a component of G, not reduced to a point, and let mo be 
as in Lemma 26.3. Then 

(27.10) \w(x) - mo| < Cdist (x, G0)1/2 

for all x G ft such that dist (x, Go) ^ 1. 

So let x be as in the lemma, and set 5 = dist (x, Go). Let us first replace x with a 
point y which is reasonably far from G (instead of just Go). Lemma 20.1 gives us an 
escape path jx from x, but let us just use the restriction of ^x to the interval [0,5]. 
Set y = ix(6). Then 

(27.11) dist (y, G) ^C^5, 

by (20.4). Also choose z0 G Go such that 

(27.12) \z0-x\=5. 

Note that by (20.3) the length of ^x between x and y is at most C\5. Thus this 
arc is contained in B = B (z0, (Gi + 2)5), and x and y lie in the same component 
of B \ G because 7^ does not meet G. We want to apply Lemma 21.3 to control 
w(x) — w(y), but we may not be able to do so directly if (C\ + 2) 5 > 1. This is not a 
serious issue; the simplest way to deal with it is probably to cut 7X into less than G 
consecutive arcs of length ^ 1, and apply Lemma 21.3 to each of these arcs. Let us 
not worry about this issue and do as if we could apply Lemma 21.3 directly with the 
disk B in all cases. 

Note that f = v + iw satisfies the condition (21.1). This was checked in Section 
25; see in particular (25.22) and (25.23). Here we only need to know that 

(27.13) |Vw(z) | ^ G dist(z, G)"1/2 + G on O, 

which of course follows from (25.22) and (25.23). Thus Lemma 21.3 applies, and 

(27.14) \w{y) - w(x)\ ^ C51/2. 

Next we want to compare w(y) with the limit of w at some regular point of Go-
Choose a regular point z\ G Go such that \z\ — zo\ <5; this can be done because H1-
almost all points of Go are regular, and H1 (Go C) B (zo,5)) > 0 (since Go is connected 
and not reduced to a point). Also choose z G ft such that \z — zi\ ^ 5 and 

(27.15) \w(z)-m0\ < 51/2, 

where mo is as in (26.4) (and Lemma 27.9). 

Let 72 denote the escape path given by Lemma 20.1, and set y\ = 7Z(<$). Then 

(27.16) dist(yi,G) ^ C^5 

by (20.4), 

(27.17) | * o I <nn 2n5+\z-n:Vl\ ccbbb^DDD><b (2 + C1bb)5dgd 
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by (20.3), and the same argument as for (27.14) gives that 

(27.18) \w(yi)-w(z)\^mkùlCShlhllljh<^2. 

Nowsetr = (2C1)~iö,D = B(y,r), and Di = B (yi,r). Note that 

(27.19) \w(t) - w(y)\ ^ Cô^ îorteD 

and 

(27.20Ì \w(t) - w (yi) | < Cô1/2 for t G Di , 

by (27.13), (27.11), and (27.16). 

Denote by P the line through y and orthogonal to [y,yi] and, for each £ G P(ID, 

set £(£)= £ , £ + î / i - î / l . Set 

Pi = { £ G P fl D ; £(£) contains some point of G which is not regular} . 

Since f/^-almost every point of G is regular (by Proposition 13.11), Pi is contained 

in the projection of some set of if1-measure zero, and hence H1 (Pi) = 0. Also set 

(27.21) p2 = {£ G P D D\H{£) H G is infinite} . 

Since H1 \ G H \JtePnD ^ (Oj < +°°> [t is fairlY easY to check that H1 (P2) = 0- This 

is essentially Fubini's theorem, and the fact that we can remove Pi and only consider 

regular points of G makes the proof slightly easier. Nevertheless we shall omit the 

Droof. 

Set P3 = (P H D) \ (Pi U P2). Thus Hl (P3) = 2r. Note that all £(f), £ G P n 23, 

are contained in P (zq, (C\ + 3) 5) (by (27.17) and the analogous estimate for y). Then 

(27.22) 
7(5) = z 7(5) = z' 

\Vw\dH1 dH VS 
^B(«o,(Ci+3)(5)\G 

7(5) = z' + 

/B(*o,(Ci+3)Ä)>SG 

7(5) = z' 
. 1/2 

7(5) = z' + 

by Fubini, Cauchy-Schwarz, and (25.20). In particular we can choose £ G P3 such 

that 

(27.23) 
Ji(t)^G 

\Vw\dH1 < C61'2. 

Since £ G P3, £(£) only meets G a finite number of times, and only at regular 

points of G. Of course all these points lie in connected components of G that are not 

reduced to one point (by definition of a regular point), and Lemma 26.3 tells us that 

w is continuous at all these points. Recall that £(£) = [£,£'], with £' = £ + 2/1 —y G D\. 

We have that 

(27.24) K O - KOI < 
7(5) = z' 

\Vw\dH1 ^C61/2 
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by (27.23), and hence 

(27.25) \w(x)-HLHm0\ ̂  JJC61/2 

by (27.14), (27.15), (27.18), (27.19), (27.20), and (27.24). This completes our proof 
of Lemma 27.9. • 

A trivial consequence of Lemma 27.9 is that if Go is a component of G which is 
not reduced to a point and mo is as in Lemma 26.3, then 

(27.26) lim w(z) = m0 for all x G G0. 
zed 

Since we know from Proposition 25.1 that w also has limits at points of G where 
G is not connected, we can extend w to R2 by taking 

(27.27) w(x) = lim w(z) for x G G. 
zen 

To complete the proof of Proposition 26.2, we still have to check that w is contin
uous. At this point, this is mostly formal. The continuity on ft is not a surprise: w is 
even harmonic there. Let x G G be given, and let us check that w is continuous at x. 
Let {xn} be a sequence that tends to x. For each n, choose a point zn G ft such that 
\zn — %n\ ^ 2-n and \w (zn) — w (xn)\ ^ 2-n. [We can take zn = xn if xn G ft, and 
otherwise we use (27.27).] Then w (zn) tends to w(x) by (27.27), and w (xn) tends to 
w(x) as well. This proves the continuity of w. 

Our proof of Proposition 26.2 is now complete. • 

Remark 27.28. — Our hypothesis (26.1) that ft be connected was probably not 
needed, but it was convenient. [Otherwise, we would at least have to worry about 
gluing together the various restrictions of w to the different components of ft.] 
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CHAPTER G 

THE LEVEL SETS OF w 

28. Variations of v on the level sets of w 

[n the next few sections we want to study the level sets 

(28.1) rm = {z e R2;w(z) = m} 

and show that, for almost-every m G 1, Tm is either empty or a single, locally 
rectifiable Jordan curve through oo. This will take some time; the purpose of this 
section is to show that for almost-every m, the variations of v along (curves in) Tm 
are given by its derivative on Ct, with no contribution from the various jumps and 
singularities that v may have on G. 

We continue with our usual assumptions that (13.1) or (13.2) holds, and that Q is 
connected (to be sure that w is continuous). 

Proposition 28.2. — For almost-every m G R, v has a continuous extension to CtUTm, 
with the following property. For every simple arc 7 : [0,1] —• Tm such that 

(28.3) l ' e ^ ( [ 0 , 1 ] ) , 

the function v o 7 also has a derivative in L1 ([0,1]), and 

(28.4) v o 7(1) — v o 7(0) 
/n 

fvoi)'(t)jljjgdt 

J{t ; -y(t)en] 
Vv(j(t))-7f(t)dLLLt¨¨P. 

By (28.3) we mean not only that 7 has a derivative almost-every where, but also 
that 7 is the integral of 7 ' . 

The proposition does not use the fact that the functions v and w are conjugated, 
and would hold with v replaced with any other function that satisfies the same esti
mates, i.e., (25.22) and (25.23). 

Before we start to estimate, let us exclude the values of m for which v probably 
has jumps on Tm. Denote by 

(28.5) S = {x e G ; {x} is a connected component of G} 
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the set of points where G is not connected. Since almost-every point of G is a point 

of regularity (and hence is not in S), 

(28.6) H (S) = 0. 

The set G \ S will be easy to exclude from our discussion. Every non trivial 

component of G has positive measure, and so there are at most countably many such 

components. Since w is constant on each nontrivial component of G (by Proposition 

26.2) we get that 

(28.7) {m G E ; Tm meets G \ S} is at most countable. 

The set S is small, but will create trouble. We only know that (28.6) holds, and 

in particular <S has no reason to be countable. Proposition 25.1 tells us that v is 

continuous at each point XQ of <S, but we expect \Vv\ to blow up like \x — XQ\ 1 at 

such a point. If inside Tm the set S is a little too fat (typically, if its dimension there 

is ^ 1/2), we can expect a nontrivial contribution of the singular part of Vt>. We want 

to show that in average (over m) this behavior does not occur. To do this we shall 

use a covering argument (to use (28.6)) and the co-area formula (to take averages in 

m). 

Let e > 0 be small; it will tend to zero at the end of the argument. Because of 

(28.6), we can find disks Bj, j G J, with 

(28.8) Bj = B(xj,rj), Xj G S , 

(28.9) 5 c 
jeJ 

Bj, 

and 

(28.10) 
7 G J 

Tj < e. 

We may always replace Tj with 5rj and apply the Vitali covering lemma in the first 

pages of [St], and so we can assume that 

(28.11) the B (xj,rj/5), j G J, are disjoint. 

Let m G E be given, and suppose that 

(28.12) Tm does not meet G PÏÏ¨¨\ S. 

Let 7 : [0,1] —> Tm be a simple arc with a derivative in L1, as in the statement of 

Proposition 28.2. Set 

(28.13) J(l) = {jeJ; LHL meets 7([0,1])} 
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and then choose a finite subset Jo ( 7 ) of JY7) such that 

(28.14) Gn7([0 , l])=Sn7([0 , l ])c 
7(5) = z' + 

7(5) = 

The identity in (28.14) comes from (28.12), and Jo(7) exists because G fl 7([0,1]) is 

compact and the Bj, j G J ( 7 ) , cover it (by (28.9) and the first part of (28.14)). 

For each j G J, denote by A(j) the set of connected components of B (XJ, 2TJ) \ G 

that meet Bj. 

Lemma 28.15. — A(j) has at most C elements. 

For every component a G A(j), choose a point xa G a D Bj, and denote by 7 a the 

escape path of Lemma 20.1 (applied with z = xa). Set tj = (2C\)~l Tj, where C\ 

is as in Lemma 20.1, and ya = 7 a (tj). The image of 7 a does no meet G (by (20.4)) 

and is contained in B (XJ,2TJ) (by (20.3) and our choice of tj). Hence ya G a. Also 

dist (ya,G) ^ C^Hj = (2Cf)~\j by (20.4). Altogether, 

(28.16) 
for each component a G A(j) we can find ya G af)B (xj,2rj) 

such that Ba = B (ya, C~1r?) C a, 

where we set C = 2C\. The disks Ba, a G A(j) are disjoint (because the components a 

are disjoint), and there cannot be more than C' of them because they are all contained 

in B (XJ, 2TJ). This proves Lemma 28.15. • 

Return to our arc 7 in Tm, and set 

(28.17) R={te[LµL0,l]%%; 7 ( t ) e M 2 N U j 6 J o 5 i } , 

where Jo = Jo ( 7 ) is the same finite subset of J(j) as in (28.14). Obviously R is 

compact, and by (28.14) */(R) does not meet G. Hence 

(28.18) 7(£) G Q for t in some neighborhood of R 

(because fl is open and 7 is continuous), and v o 7 has a derivative in L1 in some 

neighborhood of R. 

Now we want to define two sequences {sn} and {tn} in [0,1]. We start with s0 = 0 

and already distinguish between two cases. If SQ G R, take 

(28.19) t0 = sup{£ ; [s0,t] C R}. 

Thus to is the last point of [0,1] before we leave R for the first time. 

If so 0 R, take to = so-

Suppose now that we already defined so ^ ¿0 ^ • • * ^ sn ^ tn, and that 

(28.20) 
tn = 1, or else there is a sequence {£*;} of points in 

}tn, 1] \ R that tends to tn. 
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Note that (28.20) holds for n = 0, because is closed (which takes care of the case 

when SQ&R), and by (29.19). 

If tn = 1, we stop the construction. Otherwise, (28.20) gives us a sequence DH DD 

By definition of i?, each j{£k} he in some Bj, j G Jo, and since Jo is finite we can 

find jn G Jo such that 

(28.21) Kx = {k ^ 0 ; <y{£k} G £Jn} is infinite. 

Recall from Lemma 28.15 that A (jn) is finite. Since for each k G K\, 7 (£*;) lies in 

a for some a G *A(jn) (by definition of A(jn)), we can find an G *4.(jn) such that 

(28.22) K2 = {k G ; 7 ( 6 ) e an} is infinite. 

This implies in particular that 

(28.23) j(tn)eannBjn. 

Take 

(28.24) sn+i = sup {s G [0,1] ; 7 (3 ) G an n Biw } . 

Note that sn+i > tn, by (28.21) and (28.22). 

If 5n_|_i ^ R, we take tn+i = <sn+i. Otherwise, we set 

(28.25) £n+i = sup {* G [sn+i, 1] ; [sn+i, t] C J?} . 

We still have (28.20) for n + 1, because R is closed and by (28.25). It is also clear 
that tn_|_i ^ sn+i > tn. 

Thus we can construct our two sequences by induction. Let us now check that 
the construction stops after a finite number of steps, i.e., that tn = 1 for some n. 

Obviously it is enough to check that 

(28.26) the pairs ( j n 5 « n ) are all different, 

because there are only finitely many possible pairs. 

To prove (28.26) notice that when we choose (jn>an), we make sure that there are 

points > tn such that 7 G an f l Bjn. [See (28.21) and (28.22).] If there was an 

m < n such that jm = jn and am = an, we would have sm+i > tn, by the definition 

(28.24) of sm+i. This would contradict the way we constructed our sequences (i.e., 

the fact that SQ < to ^ si ^ t\ • • • ) . Thus (28.26) holds, and our construction stops 

after finitely many steps. Note that 

(28.27) for every j G Jo, there are at most C integers n such that jn = j , 

where C is as in Lemma 28.15. This follows from our proof of (28.26). 

Next we want to study the variations of v o 7 . First note that 

(28.28) v has a continuous extension to Q U S. 
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Indeed, simply set 

(28.29) v(x) = lim 
z—»x 
zen 

;(x) for x G S ; 

the limit exists by Proposition 25.1. To check (28.28) we only need to verify that v is 

continuous at all points of <S, and this can be done exactly like for the continuity of 

w at the end of Section 27. [See the few lines after (27.27).] 

Note that (28.28) is a little stronger than the first statement of Proposition 28.2, 

because Tm does to meet G \ <S, by (28.12) [See also (28.7).] Since 7 is continuous 

and 7([0, l ] ) c r m c O U 5 , we get that 

(28.30) v o 7 has a continuous extension to [0,1]. 

Denote by N the last value of n in the construction above, i.e., the integer such 

that tN = l. Then 

(28.31) 

v(<y(l))-v(<y(0)) = 

TV 

n=0 

{ « ( 7 (*$p»))p +gkgk;k,gk 

n=0 

N - l 

{v ( 7 (sn+i) ) - v ( 7 (*n))} 

Set 

(28.32) v(7 (*n))} 

n=u 

N 

v(7 (*n))} 

Note that when sn R we chose tn = sn, and so we are not adding any interval 

to R\. When sn G R, the interval [sn,tn] is contained in R by (28.25) (or (28.19)). 

Hence R\ C R. 

We have seen (just below (28.18)) that v o 7 has a derivative in L1 in some neigh

borhood of R. Hence 

(28.33' v ( 7 (tn)) - V ( 7 (Sn)) iîiii= 
p$o 

V«lù(lîi7(t))-7,(*)d«. 

(the case when sn $ R and £n = sn is of course trivial). We can sum over n and get 

that 

(28.34) 

N 

n=u 

M7(*n))-t;(7(snjm))}: V«(7(tj))-7,(*)d«. 

To control the remaining sum, let us show that for 0 < n ^ N — 1, 

(28.35) | z ; ( 7 ( s „ + i ) ) - t ; ( 7 ( i n ) ) K C ' r V 2 . 

By definition (28.24), sn+i is the limit of a sequence { r ^ } of points in [0,1] such 

that 7(77*0 G an fl Bjn. On the other hand, (28.21) and (28.22) say that tn is the 

limit of a subsequence of {£k} for which 7 (£&) G an H 5Jn. Thus 7 (sn+i) and 7 (tn) 

lie in an fl S jn . 
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We checked in Section 25 that / = v + iw, and hence v itself, satisfies the require

ment (21.1) [See near (25.22) and (25.23).]. Thus we can apply Lemma 21.3 with 

B = B (xjn,2rjn) (note that 2rjn < 1, by (28.10)). We can take for x and y (in (21.2) 

and (21.4)) any pair of points of a n , but then also points of aZn D(f]U 5 ) , by (28.28). 

In particular we get that 

(28.36) | t ; ( 7 ( * n + i ) ) - t ; ( 7 ( t n ) ) | < C r ^ . 

Hence 

(28.37) 
liV-l 

I 71=0 

{v ( 7 (s n+i)) ~v{7 {tn))} VvM|2 

je Jo (7) 

1/2 

because (28.27) tells us that each Tj shows up at most C times in the sum. Then 

(28.38) *(7(l))-t;(7(0))-
VvM| 

Vvh(t)) • l'(i)dt VvM|2 

je Mi) 

1/2 

by (28.31), (28.34), and (28.37). 

This is essentially the best we can do with e and m fixed. Our next goal is to 

average this over m, and then let e tend to 0 (to get rid of the right-hand side of 

(28.38). 

For each k ^ 0, set Sk = 2~h and choose a covering of S by disks Bj^, j £ Jfc, as 

in (28.8)-(28.11) and with e = sk. 

For all m € R and all (large) M > 0, set 

(28.39) 
J f e(m, M) = Ij e Jk ; Bj C B(0, M) and £7 meets a connected 

component of T m with diameter ^ 2 fc >. 

This looks a little strange, but it will work. Also set, for each choice of r > 0 (small) 

and M > 0, 

Z>T,M = s m G IR ; T m does not meet G \ 5 and (28.41) holds 
(28.40) 

for infinitely many values of k > 

that is, 

(28.41) 
jGJfc(m,M) 

r V 2 < R, 

where we denote by Vj^ the radius of Bj^. Also set 

(28.42; z = 
r>0 
M>0 

M7 (*») 

Lemma 28.43. — ff X (R \ Z ) = 0. 
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We shall prove this in the next section; in the mean time we want to finish the 
proof of Proposition 28.2. 

Because of Lemma 28.43, we can restrict our attention to m G Z. Note that v has 
a continuous extension to ft U Tm, by (28.28). 

Let 7 : [0,1] —» Tm be a simple arc with a derivative in L1, as in the statement of 
the proposition. Choose M so large that 7 Q O , 1]) C B(0,M - 1). Also let r > 0 be 
small, and choose k such that (28.41) holds and 

(28.44) 2~k < Min fl 

12 
diam(7([0,l])) 

We can find k because m G ZT^M-

Let us do the construction of the beginning of this section, with e = our 
corresponding choice of disks J3j,fc, and the curve 7 . We get a closed set R\ C [0,1] 
(which still depends on r) , and for which (28.38) holds. 

Let us check that 

(28.45) J o ( 7 ) C Jfc(m,M), 

where Jo(7) is the subset of Jk that shows up in (28.38) and is defined just after 
(28.13). Let j G J0(7) be given. By definition of J0(7) , j G J(j) (the set in (28.13)). 
Then Bj = Bj^ meets 7 Q O , 1]), which is contained in a component of Tm with diame
ter ^ 2~k (by (28.44)). Also Bj C B(0 , M) because 7Q0 ,1 ] ) C 5 ( 0 , M - 1), Bj meets 
7([0,1]), and by (28.10) and (28.44). This proves (28.45) (compare with (28.39)). 

Because of (28.41) and (28.45), the right-hand side of (28.38) is less than Cr. Let 
us summarize the situation. Set 

(28.46) R0 = {te [0,1] ; 7 ( 0 e n}. 

For each r > 0 we have found a closed subset R\ of RQ (see a little above (28.33) fo 
the statement that R^ C R, and use (28.18)) such that 

(28.47) "(7(1)) - 0 ( 7 ( 0 ) ) -
SG 

M7 (*»))-«(7 (*«))} +KGG 

by (28.38). We also want to control 

(28.48) 
JRo 

|Vv(7(t))ll7 '(*) |d*. 

Since 7 is a simple curve and 7' G L1, 

(28.49) M7I 
J7([0,1]KG 

\Vv{y)\dFFH\y C)^ 
7rmnB(0, M)\G 

\Vv\dH\ 

by a change of variables, the injectivity of 7 , and the definition of M. 

This is the right time for imposing a second condition on m. Set 

(28.50 Z! = ime Z 
1mnB(0,M)\G 

|Vv| dH1 < +00 for all M > 0 
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Lemma 28.51. — H1 (R \ Zx) = 0. 

To prove this, apply the co-area formula (see for instance [Fe], p.248) to the function 
v, on the domain B(0, M) \ G. We find that 

(28.52) 
J m 

dHl dm 
% rmnJ3(o,M)n^ 

ls(0,M)xG | Vw| dx, 

where dx denotes Lebesgue measure, and where (28.52) is an identity between finite 
measures. To be honest, we should only apply the co-area theorem to Lipschitz 
functions. Here we can do this on compact subsets of B(0, M) \ G, where v is even 
C 1 , cover i?(0, M) \ G by an increasing sequence of such compact sets, and then take 
a limit. 

Let us apply (28.52) to the function \Vv\. Since both \Vv\ and \Vw\ satisfy the 
estimate in (25.20), we get that 

(28.53) 
J m JrmnB(o, BM)nn 

\Vv\dHl \dm = 
JJB(BB.0,M)\GB. 

|Vv||Vti;| dx^C(BM), 

where we have to take C(M) = CMZ when (13.1) holds, since (25.20) is only valid 
(with the constant STT) for balls of radius ^ 1. 

We deduce Lemma 28.51 from (28.53) by applying Fubini, and then taking a count
able union in M. • 

Let us return to our argument. Because of Lemma 28.51, we may restrict our 
attention to the case when m G Z\. Then the integral I above is finite. 

Let us apply the argument that led to (28.47) to the restriction of 7 to any interval 
[ M l C [0,11. The equivalent of (28.47) yields 

(28.54) \vh(t)) - vh(s))\ < 
R0n[s,t] 

\Vv(7(t))\\y(t)\dQFt + Cr 

because the analogue of Ri in this situation is contained in Ro Pi [s,i\. 
This estimate is true with all choices of r (and with a constant C that does not 

depend on r) . Thus it is also true with r = 0. Thus v o 7 has bounded variation, 
and its total variation is less than / . Moreover, the derivative of v o 7 is absolutely 
continuous with respect to lR0(t)\Vv(j(i))\\^ff(iFF)\dt, with a density ^ 1. Hence 
(v o 7 ) ' G /^[0,1]) , in the distribution sense. 

This gives the first part of (28.4). The second part comes from the fact that 

the contribution of [0,1] \ Ro to / (v o j)f(t)dt is zero (by the absolute continuity 
Jo 

mentioned above), and the fact that (v o j)f{t) = QFVv(^( i ) ) • ^'(t) almost-everywhere 
on Ro (by the chain rule). 

This completes our proof of Proposition 28.2, modulo Lemma 28.43 that will be 
proved in the next section. • 

To conclude this section, we give a corollary of the proof of Proposition 28.2. 
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Corollary 28.55. — For almost-very m G M, we have that if 7 : [0,1] —> Tm zs s^c/i 

that 

(28.56) Yei1 ([0,1]) 

and 

(28.57) Vv(7(t)) • 7 ; ( t ) > 0 for almost-every £ G P0 = {t e [0,1] ; 7(2) G ft} , 

t/ien 0(7(1)) ^ v(7(0)). 

The main point of this new statement is that here we do not require 7 to be 

simple; the conclusion is weaker, too. We can keep the same argument as in the proof 

of Proposition 28.2, up until (28.47). [Indeed, the fact that 7 is a simple arc is only 

used later, in the estimate of / . ] Prom (28.47) and (28.57) we deduce that 

(28.58) v(7(l)) - 0(7(0)) ^ -Ct 

and, since r was arbitrary, the conclusion of Corollary 28.55 follows. 

This proves the corollary (modulo lemma 28.43). • 

29. Proof of Lemma 28.43 

Keep the notations of the previous section. Set 

(29.1) Y = { m G l ; rm does not meet G\S} 

and, for each M > 0 and r > 0, 

(29.2) XTJM = {m £ Y ; (28.41) only holds for finitely many values of k} . 

Then ZT,M = Y\ XTYM, and 

(29.3) Z = Y H 

M7 (*») 
M7 (*»)) 

by the definitions (28.40) and (28.42). Since X ^ M is an increasing function of M and 

a decreasing function of r, we can make the union in (29.3) countable by restricting 

to integer values of M and rational values of r. Since in addition R \ Y is at most 

countable (by (28.7)), Lemma 28.43 will follow as soon as we prove that 

(29.4) H1 (XTTM) =F 0 

for all choices of r and M. Fix r and M, and set 

(29.5] Ak = 
JmeY j€Jk(m,M) 

M7 (KGP 

where Jk(m,M) is as in (28.41) and (28.39) 

Lemma 29.6. — There is a constant C(M) such that 

(29.7) Ak < C(M)e\/2. 
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Maybe we should remind the reader that we chose ek = 2~k, and then we con

structed our covering of S by disks Bj = Bjik so that (28.8)-(28.11) would hold with 

e = ek. 

We want to see first how to deduce (29.4) from Lemma 29.6, and then we shall 

prove the lemma. 

So let us assume that (29.7) holds. Set 

(29.8) X(k) = {me XRM ; (28.41) does not hold for k} . 

Then r |-X"(fc)| ^ Ak by (29.5) and Chebychev, and hence 

(29.9) \X(k)\ ^ r~xAk ^ r-1C(M)e1k/2 = T " 1 C ( M ) 2 - / c / 2 

by (29.7) and our earlier choice of ek. Set 

(29.10) E(k0)= |J X(k) ; 
k^ko 

then \E(k0)\ ^ 4r-1C(M)2~k^2, by (29.9). 

We claim that XT,M C E (ko) for every k0. Indeed, if m G XTJM, (28.41) only 

holds for finitely many values of k. In particular, for every ko we can find k ^ ko such 

that (28.41) does not hold for k. This exactly means that m G E (ko), as we claimed. 

The consequence of our claim is that | X T J M | ^ |2£(fco)|, which is as small as we 

want. Thus (29.4) actually follows from (29.7), and Lemma 28.43 will fall as soon as 

we prove Lemma 29.6. 

To prove this last lemma, first observe that when j G Jk(m,M), Bj meets a 

component of Tm of diameter ^ 2~k (see (28.39)). Since rjjk ^ ek = 2~k by (28.10), 

we get that 

(29.11) H1(rmn2Bjik)^rjtk. 

Set 

(29.12) T^ = Tm H 5(0 , M + 1) n fi. 

Note that 2Bjik C 5 (0 , M + 1) by (28.39) and because rjik < 1. Also, for m G Y, 

if1-almost all of Tm lies in ft, because Tm does not meet G \ S (by (29.1)), and 

H1(S)=0 (by (28.6)). Thus 

(29.13) H1 (r*m H 2Bjtk) > rjik 

when m G Y, by (29.11), and hence 

(29.14) Ak < 
'm€Y jEJk(m,M) 

M7 (OU (r^ n2Biife) } d m 
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by (29.5). Let us replace H1 (T^ n 2Bjik) with 
/r* 

m 

M7 (*»))-«(7 ( and then apply Beppo-

Levi to exchange the series and the integral. We get that 

(29.15) Ak < 
JmeY f p* 

A m 
CH 

k -1/2-n O 1PP UUP dm, 

where we can now be generous and sum over all j G Jk. Denote by 

(29.16) hk(x) = 

jeJk 

] rjil/2t2Bj,k(x) 

the function that we need to integrate. Let us use again the co-area formula (28.52), 

but with M replaced with M + 1. We get that 

(29.17) Ak 
J m VvM|2 

hk(x)dHl(x) dm = 
./B(0,M+1)\G 

hk(x) \ Vw(x)\ dx 

^ \\hk\\2 
B(0,M+1)\G 

\Vwf 
1/2 

= l l a l l a 
JB(0,M+1)\G 

IVd2 
j 1/2 

<C(M) \\hk\\2, 

by Cauchy-Schwarz, because |Vw| = \Vv\ everywhere on Q, and by (25.20). The 

precise value of C(M) will not matter. 

We see that Lemma 29.6, and hence Lemma 28.43, will follow as soon as we prove 

that 

(29.18) \\hk\\l < Cek 

Fix k, and decompose hk into 

(29.19) M7 (*»))-« 
I 

VvM|2 

where 

(29.20) M7JJ 

M7 (*»))-«(7 ( 

M7 (*»))-«(7 

where we set r,- = r¿,k and Bj = for convenience, and 

(29.21) J{t) = {j € J* ; 2_ / < Tj < 2~e+1} . 

Recall from (28.11) that the disks \Bj , j G Jk, are disjoint. Since for each I the 

Bj, j £ J(£), all have comparable radii, we get that 

(29.22) 

jeJ{t) 
M7 (*»))-«(7 ( 
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everywhere. Set 

(29.23) M7 (*» 
M7I 

2BÓ ; 

then 

(29.24) ft ^ C2^GKGGHWi 

by (29.20)-(29.23). Next 

(29.25) IIM2 = 
£ m 

. (fe,fm) 

e 
11MI2+2 

e m>e 
(flì fm) 

M7 

e 
y\w£\ + c 

£ m>£ 

] 2 ^ + m ^ 2 \ W e n W m \ , N 

by (29.24). Set 

(29.26) ae = 2^\We^2. 

Then 

(29.27) 

e 
,aì = 

e 
2l\Wt\ 

e 

XX 

XXBN 

XBNN 

SGSG 

M7 (*»MI 

rj'r2 = C 

jeJKk 

M7 (*»))-«(7 

by (29.23), (29.21), and (28.10), 

The first sum in the right-hand side of (29.25) is thus less than Cek, and we are 

left with the rectangular terms. Let us first sum over 

(29.28) Ax = Ut,m) ; £<m and \Wtn Wm\ ^ 2(^m>/5 |W^|} . 

[This corresponds to a reasonable behavior: we can expect We to be significantly 

larger than Wm when £ < m] Set 

(29.29) DDSFS 

(*,m) GAi 
; 2^+m)/2|winwm|. 

Then 

(29.30) Si ^ 
(£,Mm) €Ai 

' OYO2̂+0°8°8°m̂2\PPWm\1/2\JJMWenÏP̈PIWm\1/2 

QDQD 

U.m) €Ai 

2«+m)/2\wm\1/ÏÏ ¨22ÏPPI(i-m)/w\Wt\1/2 

<XC 

(l,m) €Ai 

M7 (*»))-«(7 (*« 
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Let us cut this sum in slices where m — £ = n. We find that 

(29.3Г Si 
n>o e 

Q —П/IU _ _ 
n>0 

,2-n/1° | | Ы | | 2 ||{o/+n}||2 < Ce*, 

by Cauchy-Schwarz and (29.27). 

We still need to sum over 

(29.32) Д2 = { ( 4 т ) ; K m a n d |И>> П Wm\ > 2<'"m)/5 [ 

For (^,ra) G Д2, 

(29.33) а£ = 2"l2\W,\1/2 < 2</22(™-<>/10 |Wi П Wm|1/2 

^ 2т/22(^-т)/22(т-/)/10JFFJJHHM7 (*»))-«(7 (L < 2"«(m^}am: 

and so 

(29.34 E2 := 

(£,m) GA2 

M7 (*»))-«(7 (*«))} +G 
(̂ ,m) GA2 

M7* ( 

m VvM|2 
M7 (*»))-«( FQF 

m 

M7 (*»))-«(7 

by (29.27) again. Altogether (29.18) follows from (29.25), (29.27), (29.31), and 
(29.34). 

This completes our proof of Lemma 28.43. As was observed at the end of last 
section, Proposition 28.2 and Corollary 28.55 follow. • 

30. There are no loops in Г т 

Proposition 30.1. — For all m E l , R \ Г т has no bounded connected component. 

Let m £ Ш be given. We want to assume that R2 \ Г т has a bounded component U 
and derive a contradiction. Let us first assume that U has a smooth exterior boundary 
and rapidly sketch an argument for this case; this will give an idea of our strategy for 
this section. 

Since U does not meet Г т , w(z) — m has a fixed sign on U, and hence the normal 
derivative dw/дп also has a fixed sign (but may vanish) on the exterior boundary of 
U. The same thing holds for the tangential derivative dv/дт = dw/дп (recall that v 
and w are conjugated). Since the exterior boundary of U is a loop, the only option 
is that v is constant on it. Note that w also is constant on that exterior boundary 
(which is contained in Г т ) , and so v is constant on the component (s) of ft that meets 
the exterior boundary of U. We shall see later in this section that this is impossible. 

Our intention is to give sense to the argument above. The main difficulty will be 
to find a loop 7 in dU such that U always stays on the same side of 7 (so that we can 
control the sign of dv/дт along 7 , and then use Corollary 28.55). Our first goal is to 
replace U with a simply connected domain V D U\ this will simplify the manipulation 
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of boundaries. Essentially, V will be the union of U and the closure of its interior 

components. Set 

(30.2) 
\V= IzeR2 

; we can find a simple, polygonal Jordan curve r in U 

such that z lies in the bounded component of R2 \ T >. 

It is clear that U C V, and also that dV C dU. Since U is bounded, V is also 

bounded. Let us check that 

(30.3) V is simply connected. 

Let r be a loop in V; we want to show that T can be deformed into a trivial loop 

(reduced to a point) inside V. By approximation, we can assume that T is a polygonal 

loop. By simple manipulations (essentially, composing loops), we can reduce to the 

case when V is simple. 

After these reductions, let us try to surround T by a curve in U. Each point of T 

can be surrounded by such a curve, by (30.2). By compactness of T, we can find a 

finite collection of simple, polygonal curves jn in U, such that T is contained in the 

union of the bounded components of R2 \ 7N. Then we use the following lemma a 

few times. 

Lemma 30.4. — Let 71 and 72 be two simple polygonal loops in the plane. Denote by 

fli the bounded component of M2 \ 7$. If fli meets 0,2, then we can find a simple 

polygonal loop 73 such that 73 C 71 U 72 and fli U fl2 is contained in the bounded 

component of R2 \ 73. 

Of course we are abusing notation here, we do not distinguish between the loops 

and their images. We shall leave the proof of this lemma to the reader. A probably 

not optimal proof would consist in observing first that we can also assume that 71 

and 72 only meet transversally, and then take for 73 the boundary of the unbounded 

component of 71 U 72 and follow the arguments in Section 23. • 

After a finite number of applications of Lemma 30.4, we obtain a polygonal Jordan 

curve 7 C U such that the whole T is contained in the bounded component fl* of 

R2 \ 7. By (30.2), fl* C V and, since fl* is simply connected, T can be contracted in 

£2*, hence in V. This proves (30.3). 

Next we want to parameterize dV in a reasonable way. The most rapid option 

would probably be to use the boundary values of a conformal mapping t/> : D —> V. 

Indeed we would get that ipf £ H1 (the Hardy space) because ^(dV) < +00, if m is 

chosen correctly ; in particular we would get that for these values of m the boundary 

values of IJJ on <9B would have a derivative in L1. Since we want to avoid giving 

too many references to [Po], we shall use a somewhat heavier construction, based on 

Section 23. 
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Fix an origin 0 in U, choose a sequence en that tends to 0 and such that en < 

YQ dist (0,R2 ^U) (to be safe), and do again the construction of the beginning of 

Section 23, with G° = dV and e = en. Choose disks Bi, i G I{sn), and define 

H (en) as in (23.2)-(23.6), but this time let U (en) denote the connected component 

of R2 \ H (en) that contains 0. Thus we are just exchanging the roles of 0 and oo, 

but otherwise nothing changes seriously. Since G° = dV is connected (by (30.3)), we 

get that dU (en) is composed of a single, piecewise C1, Jordan curve that we shall 

call T(n). See the description of dU(e) after (23.7), and Remark 23.17; the proofs are 

the same in the present situation. 

Denote by £n the length of T(n). It will be good to know that 

(30.5) C'1 ^£n^C for all n, 

with a constant C that is allowed to depend on m and U, but not on n. 

To get this, let us put a first constraint on m. We shall later put another simi

lar constraint, but at the end of the argument we shall see how to get rid of both 

constraints. In the mean time let us assume that 

(30.6) Tm does not meet G \ «S 

and 

(30.7) H1 (rm n B(0, M)) < +oc for all M > 0. 

We shall see soon why (30.7) implies (30.5), but let us first check that 

(30.8) almost-every m e t satisfies (30.6) and (30.7). 

We already know from (28.7) that (30.6) holds for almost every m, and so it is 

enough to take care of (30.7). Let us use the co-area formula (28.52) again, this time 

applied to the constant function 1. We get that 

(30.9) 
m 

H1 (Tm H B(0, M) nn)dm = 
3(0,M)\G 

Ww\ dx 

< |£(0 ,M) |1 /2 
/B (0 ,M) \G 

\Vw\2 

\ 1/2 

< + o o , 

and hence H1 (Tm fl B(0, M) fl £2) < + o o for almost-every m. 

Note that when (30.6) holds, if1 (rm n J3(0, M ) n ft) = H1 (Tm fl B(0, M ) ) , 

because Tm n G C S and H1^) - 0 (by (28.6)). Thus for every (fixed) M , 

H1 (Tm H B(0,M)) < + o o for almost-every m; (30.7) follows by taking a countable 

union. 

Now let us check (30.5). The analogues of Lemma 23.18 and (23.22) in our situation 

are still valid, with Cto — V (the component of M2 \dV that contains 0). In particular, 

every compact subset of V is contained in U (en) for n sufficiently large, and hence 

diam (U(en)) ^ ^diam((7) > 0 for n large enough. This forces £n ^ |diam({7) for 
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n large, and the first inequality in (30.5) follows. [We may always remove the first 

values of n.] 

For the second part of (30.5) we return to the construction of H (en) and U (en) 

from the disks Bi, i G I{en). Recall in particular that we chose our centers Xi, 

i £ I (sn), sufficiently far from each other, so that 

(30.10) the disks B[ = B (x{, 10-3£n) , i G / (en), are disjoint. 

(See (23.3)). On the other hand 

(30.11) H1 (dV H B[) > 10-3£n for all i G / (en) 

because Bi and B,i are centered on G° = dV and dV is connected (by (30.3)). Of 

course we can safely assume that en < dia,mdV. 

From this and (30.10) we deduce that 

(30.12) VvM|2VvM|2 

i€l{en) 

ltfe~lHl (dV n B[) < l O ^ i f 1 (dV), 

and then 

(30.13) £n = H1 (dU (en)) ^ H1 (dH (en)) ^ 

iel(en) 

H1 (dB,) < CH^dV) 

because T(n) = dU (en) is a simple rectifiable curve, and by (23.6) and (30.12). This 

proves (30.5). 

Let zn : S1 —» T(ri) denote a parameterization of T(n) with constant speed. Let us 

assume that 

(30.14) zn preserves the trigonometric sense, 

by which we mean that U (en) stays on our left when we follow zn(i) and t runs along 

S1 in the trigonometric sense. Of course this can be arranged. 

We know from (30.5) that the zn are Lipschitz, uniformly in n, and so we may 

always assume that {zn} converges uniformly on S1 to some Lipschitz function z. 

[Otherwise, replace {en} with a subsequence.] Note that z (S1) C dV, by (23.10). 

Our next goal will be to prove that sub-arcs of z satisfy the main hypothesis (28.57) 

of Corollary 28.55. 

Since U is a component of E2 \ Tm, w — m does not vanish on U and hence keeps 

a constant sign there. Without loss of generality, let us assume that 

(30.15) w(x) — m > 0 on U. 

We want to check that 

(30.16) (v o z)'(t) > 0 for almost-every t G i?o; 

ASTÉRISQUE 274 



30. THERE ARE NO LOOPS IN Г, 173 

where jRO = {£ G S1 ; z(t) G £2} is essentially as in Section 28, and where we abuse 
notations slightly and identify S1 with the torus to define derivatives. [We should 
really have considered v о z (elt), t E l , instead of v о z(t).] 

Let t G S1 be given, and set z = z(t). Suppose that z G £2. Then w is harmonic 
near z. It is not constant near z, because otherwise it would be equal to m in 
a neighborhood of z, and z would not lie in dV С dU. Let us first assume that 
Vw(z) ф 0. 

In this first case there is a small disk D centered at z such that Г т П D is an 
analytic curve through z. Since dV С dU С Г т and z G dV, V cannot lie on both 
sides of Г т , and hence 

(30.17) VnD = UPiD = {xeD; w(x) > m} 

and dV П D = dU П D = Г т П D. 
Then T(n)nD is, for n large enough, a slightly corrugated curve that goes along Г т 

and lies in V. [The other side of дН (en) is not contained in Г(п), because U (en) С V, 
by (23.21).] See Figure 30.1 . 

Let us assume also that z'(t) exists. Then z'(t) ф 0, because Г(п) was always 
parameterized with constant speed ^ C~l (by (30.5)) , and because we know what 
Г(п) looks like in D. From (30.14) and our description of Г(п) and U (en) in D, we 
deduce that U and V lie on the left of z, when one looks in the direction of z'(i). We 
also know that dw/дп > 0 at z (with a unit normal which points towards U and V, 
by (30.15) and because Vw(z) ф 0 in the present case. Since w is conjugated to v 
we get that dv/дт, the tangential derivative of v in the direction of zf(t), is positive. 
This proves (30.16) when Vw(z) ф 0 and z'(i) exists. 

T(n) = dU(en) 

rm,du,dv 

U(En), U, V -T(n) 

T(n) 

FIGURE 30.1 FIGURE 30.2 

Next consider the case when Vw(z) = 0. By Puiseux's theorem, there is a small 
disk D centered at z such that Tm fl D is composed of a finite collection of analytic 
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curves that converge to z in a starlike way. [See Figure 30.2.] Since dV C dU C <9rm, 
V fl D is composed of some of the sectors delimited by rm. For n sufficiently large, 
r(n) n D is composed of a finite number of curves that follow pieces of Tm. Figure 30.2 
gives a reasonably realistic possibility, but we shall not need to know the combinatorics 
precisely. The main point is that since the curves T(n) are parameterized at constant, 
never too small, speed, there are only finitely many points t' G S1 such that z(t') = z. 
In other words, all points t G S1 such that z(t) G fl and Vw(z(t)) = 0 are isolated in 
S1, and there is only countably many of them. 

Since z is Lipschitz, z'(i) exists for almost every t. Thus our first case occurs for 
almost every t such that z(i) G fl. This proves (30.16). 

Let us now put our second restriction on m: let us assume that m satisfies the 
condition of Corollary 28.55. As for our earlier conditions (30.6) and (30.7), this one 
is satisfied for almost-every m. 

For each choice of a > 0 and b G R, the mapping 7 : [0,1] —> Tm defined by 
7(t) = z (eiat+ib) satisfies the condition of Corollary 28.55: 7 ' G L1 ([0,1]) because z 
is Lipschitz, and (28.57) follows from (30.16). The conclusion of the corollary is that 
v(z(t)) ^ v(z(s)) for all choices of s,t G S1. In other words, v o z is constant on S1. 

Since RQ is open by definition this can only be compatible with (30.16) if Ro is 
empty. On the other hand, we claim that 

(30.18) H1(z(S1)) > 0 . 

Indeed zn is the constant speed parameterization of T(n) = dU (en) which preserves 
the trigonometric sense (as in 30.14)), and hence it has winding number 1 around 
each point of U (en). Now we can apply Lemma 23.18 with fl0 = V (see half-way 
between (30.9) and (30.10)), and so V is the increasing union of the U (en). Therefore 
z has winding number 1 around every point of V, and of course this cannot happen 
if diam [z (S1)) is too small. This proves our claim (30.18). 

Because of (30.6) and the fact that z (S1) C dV C dU C Tm, we now have that 

(30.19) ^(S1) c G f i r m c S 

because RQ is empty. Since i^1(«S) = 0 by (28.6), this contradicts (30.18). 
So we finally reached the desired contradiction, but only under some additional 

conditions on m. Fortunately, these conditions are satisfied almost-everywhere, and 
so we proved that 

(30.20) R2 \ Tm has no bounded component for almost-every m G R. 

The other values of m are now easy to get. Let m G R be an exception to (30.20), 
and let U be a bounded component of R2 \ rm. As we said before , w — m keeps 
the same sign on J7, and we may assume without loss of generality that w > m on U. 
Let ZQ be any point of U, and choose mi such that m < mi < w (ZQ) and for which 
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(30.20) holds. Denote by U\ the connected component of z0 in R2 \ Tmi. As before 
w — mi keeps a constant sign on U\, and so w > mi on Ui (because of zo). Thus Ui 
does not meet Tm, and since it is connected and meets U, it must be contained in U. 
Then Ui is bounded, a contradiction with the definition of mi. 

This completes our proof of Proposition 30.1. • 

31. Almost-every Tm is composed of trees without endpoints 

Let m G M be given, and suppose that 

(31.1) H1 (Tm n B(0, M)) < +oo for all M > 0. 

We know from (30.8) that this is the case for almost-every m. Let us also suppose 
that Tm ̂  0 , and let r° be a connected component of Tm. Let us first show that 

(31.2) r° is not bounded. 

Suppose to the contrary that is bounded. We want to find a bounded Jordan 
curve 7 such that 

(31.3) 7 does not meet x mi 

and 

(31.4) r° 
m 

is contained in the bounded component of R \ 7 . 

First we want to apply Lemma 25.3 with G replaced by Tm. In the proof of that 
lemma, we only used the analogue of (31.1) for G and the fact that G is rectifiable 
(besides topological conditions). This is still the case here, because Tm is rectifiable. 
Indeed Tm D G is rectifiable (since G is), and Tm n ft is an at most countable union 
of analytic curves. [The case when w would be locally constant in a neighborhood of 
some point of Tm is excluded by (31.1).] 

So we can apply Lemma 25.3 to Tm and its bounded component T^, and 
we get a closed set G° C Tm which is bounded, contains T^, and for which 
dist (G0,Tm\G0) > 0 . 

Next apply apply the construction of Section 23 to surround G° by Jordan curves. 
Choose the parameter e in the construction so small that the surrounding curves do 
not meet Tm. [See Remark 23.24 and in particular (23.26).] Since is connected, 
it is contained in the domain bounded by a single surrounding curve 7; this curve 
satisfies (31.3) and (31.4), as required. 

Because of (31.3), w(x)—m has a constant sign on 7; let us assume for instance that 
w(x) > m on 7 . Set m2 — inf {w(x) ; x G 7 } , and choose mi such that m < mi < m2. 
Denote by U\ the component of R2 \ Tmi that contains some given point of T^. 
Since is connected and does not meet dUi C Tmi, is contained in U\. Then 
w(x) < mi on U\, because w(x) — mi has a fixed sign on J7i, and U\ contains T^. 
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Then U\ does not meet 7 (by definition of 7712), and so U\ is contained in the bounded 
component of R2 \ 7 (by (31.4)). This contradicts Proposition 30.1; (31.2) follows. 

Now we want to show tha t 'T^ is a tree", by which we mean that 

(31.5) J for all choices of x,y G T^, there is a unique 

[simple arc rm(x,2/) C that connects them. 

For the existence, simply see Lemma 19.14, applied to T^; the condition (19.1) is 
satisfied, by (31.1). To prove the uniqueness, let us assume that we have two simple 
arcs 71 and 72 supported on T^, and which connect the same points x and y. 

It will be more precise to consider parameterizations (rather than sets). So for 
i = 1,2, 7i : Ii is an injective continuous mapping, and we want to show that 
71 and 72 are equivalent, i.e., that they can be obtained from each other by composing 
with a homeomorphism. 

If 7i (^1) C 72 (/2)? it is fairly easy to show that 71 and 72 are equivalent. For 
instance, we may compose both arcs with the inverse of 72 (which is homeomorphism 
between 72 (/2) and /2 ) , and we are reduced to the case when 72 is the identity on I2 
and 71 : I\ —> I2 is continuous, injective, and has the same endpoints. In this case 71 
is a homeomorphism of /1 to I2, and our initial arcs 7* were equivalent. 

So we may assume that we can find z\ G 71 (/1) \ 72 (/2)- Let J C /1 be a maximal 
interval such that 71 (J) contains z\ and is disjoint from 72 (/2)- The two endpoints 
of 7 i (J) lie in 72 (/2)» and there is a (simple) sub-arc 73 of 72 that connects them. 
We can glue 73 to the restriction of 71 to J, and we get a (closed) Jordan curve 7 
supported on T^. This is impossible, because the bounded component of R2 \ 7 would 
necessarily contain bounded components of R2 \ Tm, in contradiction to Proposition 
30.1. This proves (31.5). 

Now we want to check that has no endpoints. Let us be more precise. 

Lemma 31.6. — Assume, in addition to (31.1), that 

For every simple, rectifiable arc 7 : / —> T^, parameterized by arclength, we can 
find a simple rectifiable arc 7 : R —> T^, also parameterized by arclength, and which 
extends 7. 

Note that (31.7) holds for almost every m, by (28.7). It is easy to show, just 
by chasing definitions, that every 7 as above can be extended to a maximal interval 
J D / , with an extension which we shall still denote by 7, and which is still simple, 
supported on T^, and parameterized by arclength. What we need to show is that 

So let us assume that J ^ R, and try to derive a contradiction. Without loss of 
generality, we can assume that the final endpoint of J is 0. 

(31.7) rm D G c S. 

J = R. 
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Since 7 is Lipschitz, it has a limit ZQ at 0. If 0 0 J, this means that the obvious 
extension of 7 to J U { 0 } is not simple. Then zn G liJ), and r ° 

m 
contains a loop; we 

have seen just before the statement of Lemma 31.6 that this contradicts Proposition 
30.1. So 0 G J. The same argument works for the initial endpoint of J, and so 
J = [a, 0] for some a < 0, or J = (—00,0]. 

Let us call regular point of rSL a point z G r ° 
m 

such that for r > 0 small enough, 
r ° 

m 
fl B(z,r) is a simple C1-curve through z and that crosses B(z,r). Let us check 

that 

(31.8) iJ1-almost every point z G x m is a regular point of r ° . 
m 

By (31.7) and (28.6), we need only consider points of r ° 
m 

nfi. But all points of r ° 
m such that Vw(z) ^ 0 are clearly regular points of r° 

m 

and there are at most countably 

many points of r ° H 1} where Vw(z) = 0. [Such points are isolated in r ° • note that 
(31.1) does not allow w to be locally constant near a point of Tm.] This proves (31.8). 

Next we want to Drove that 

(31.9 
r ° 

m 
\z\ has exactly 2 connected components when z is a regular point of r ° . 

m 
Let 2; be a regular point of r ° , and choose a small disk B = B(z,r) such that 

is a simple C/1 curve that crosses B. Then i? fl r ° 
m 

{ z } has exactly two 
components, which we call 71 and 72. By Lemma 19.2 and (31.1). .B...../? HKGKK r ° 

m 
is arcwise 

connected, and so every point y G m can be connected to z bv a rectifiable 
arc in r ° 

m 
We can stop this arc iust before it hits z for the first time, and we get a 

rectifiable arc in г° 
m 

^ {z} that connects y to 71 or 72. Thus r ° \ { z } has at most 

two components. 
To complete the proof of (31.9), we just need to check that 71 and 72 do not lie in 

the same component of r ° « 
m 

{z\. If this were the case, Lemma 19.14 (applied to the 
component in question, maybe minus a small disk centered at z to make it compact) 
would give us a simple arc 73 supported on T*L \ \z\ that connects 71 to 72. Then we 

could add to 73 a little arc 01 r ° Pi B and obtain a (closed) Jordan curve contained in 

x m As we have seen earlier (for instance before the statement 01 Lemma 31.6), this 
is impossible because of Proposition 30.1. This proves (31.9). 

Return to Lemma 31.6 and our maximal arc 7 : J —> r ° . Note that J = { 0 } is 
impossible, because r ° is not reduced to {ZQ} by (31.2), and hence it contains lots 

of nontrivial simple curves starting from zo = 7 ( 0 ) (by Lemma 19.14). Those curves 
would of course be extensions of the trivial arc 7. Set 

(3I.IO; J* = {t G int(J) ; 7(t) is a regular point of r ° j 
raj 

Let t G J* be given, and set z = 7(£). Since 7 is simple, j(J) \ { z } has exactly 

two components. Call 7+ = 7+(£) the component that contains zn, and 7 - = 7-(£) 

the other one. Since 7± is connected and contained in r ° 
m 

{ z } , it is contained in a 
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component T± = T±(t) of Tm \ {z}. Note that T+ ̂  T_, because the two small arcs 

7i and 72 that compose B fl Tm (in the discussion above) are contained, one in 7+ 

and the other one in 7_. 

Lemma 31.11. — Iftis close enough to 0, T+ is bounded. 

First note that our condition on t may be needed. We expect Tm to be an infinite 

tree with possibly many branches, and we don't want one of these branches to leave 

from 7+ between z and ZQ. 

Let us assume that the lemma is false and try to get a contradiction. Choose a 

first point ti G J* such that T+ (ti) is not bounded. Let M be so large that the 

whole arc of 7 between z\ — 7 ( ^ 1 ) and ZQ is contained in 5(0 , M — 1). Choose 

2/i G T+ (ti) \ 5(0 , M). We can connect y\ to zo by a simple arc £1 C T+ (t\). To see 

this, first observe that if D is a small enough open disk centered at z , then T+ (ti)\D 

is still connected and contains y\ and ZQ. The point of the manipulation is that now 

T+ (¿1) \ D is closed and we can apply Lemma 19.14 to it to get £1 . 

Denote by z[ the first point of 7(J) when we go from yi to z0 along £1 . Since £1 C 

T+ (ti) and 7_ (ti) C T_ (ti) 7^ T+ ( ¿1 ) , z[ must lie on 7+ (t±) and hence z[ = 7 (^) 

for some ^ > t\. If t[ = 0, we can extend 7 by adding to it a parameterization by 

arclength of the arc of £1 between z[ and ?/i; since by definition of z[ this arc does not 

meet 7(J ) , our extension of 7 is still simple (and supported on Tm). This contradicts 

the maximality of J. Hence t\ < t[ < 0. 

Since we assumed our lemma to fail, we can find t2 G J* Pi 0) such that T+ (£2) 

is unbounded. As before, we choose y2 G T+ (¿2) \ 5(0 , M ) , connect it to ZQ by a 

simple arc £2 C T+ (¿2), and let z'2 = 7 (£2) denote the first point of 7(J) that we hit 

when we go from y2 to ZQ along £2- For the same reason as before, t2 <t'2 < 0. 

Let us continue this construction; we get sequences {tn}, {yn}, { £ n } , and { ^ } ; the 

main point of the argument is that if £'n denotes the arc of £n between yn and z'n, 

(31.12) the arcs f̂n are disjoint. 

To see this, let k < n be given. Then t'k < tn < t'n by construction, and so 

z'k=l (t'k) e 7 - (tn)- The only point of £k n 7 ( J) is z'k. Since z'k ^ zn = 7 (*n), ^ 

is contained in T^ \ {zn}. Since is connected, it is contained in the component 

of \ {zn} that contains z'k. This component is T_ (tn) because zk G 7 - (£n) and 

7_ (tn)cr_ (tn). 

Similarly, z'n G 7+ (tn) because t'n > tn. The only point of £'n H 7( J) is z'n and, 

since z'n 7̂  zn because t'n tn, is contained in \ { z n } . Since it is connected, it 

is contained in a single component of Tm \{zn}, and since it contains z'n G 7+ (tn) C 

T+ (tn), this component is T+ (£n). Altogether £fk and £^ lie in different components 

of \ { z n } , and (31.12) follows. 
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For each n, H1 (£'n fl B(0, M)) ^ 1, because £'n starts at yn € R 2 \ B(0, M) and 

ends at zfn, which lies in JE?(0, M — 1) because all the curve 7 between z\ = 7 (¿1) and 

z0 = 7 ( 0 ) is contained in £(0 , M — 1). [Also recall that t\ < t'n < 0 by construction.] 

From this and (31.12) we easily deduce that H1 (Tm fl S(0, M)) = +00 because all 

the £'n are supported on Tm. This contradicts (31.1). Lemma 31.11 follows from this 

contradiction. • 

Choose t G J* such that T+ = r+(£) is bounded, and let 5 be a small open disk 

centered at z = ^(t) and such that Tm (12B is a simple, C1-curve through 2B. Then 

G° = T+ \ B is compact, connected, and not empty (because it contains z$) if B is 

small enough. 

Apply the construction of Section 23 (and in particular Remark 23.17) to G°. We 

get a Jordan curve 77 such that 

(31.13) G° is contained in the bounded component of R 2 \ 77, 

and 

(31.14) e ^ dist G°) ^ 2e for x e rj. 

where e is the small parameter in the construction of Section 23, and (31.14) follows 

from (23.10). See Figure 31.1 already. Note that 

(31.15) dist(G°,rm\r+) > 0 

because these two sets are disjoint, G° is compact, and Tm \ T+ is closed. Hence 

(31.16) 77 does not meet G° U (rm \ T+) 

if we choose e small enough, by (31.14). Then the only place where rj may meet Tm 

is in B, on the little arc B fl T+. See Figure 31.1. 

FIGURE 3 1 . 1 

We are now ready to reach the desired contradiction. Since z is a regular point of 

TQ1 and T™ fl 2B is a smooth curve that crosses 2B, we have a good control on what 

the curve rj looks like inside B. By construction, if e is small enough, rj crosses xvx 

exactly once, and transversally. 
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Recall from our proof of (31.8) that iI1-almost every point z FHG is not only a 
regular point of T^, but even a point of ft such that Vw(z) ^ 0. Thus we can assume 
that our t G J* was chosen so that z = j(t) G ft and Vw(z) ^ 0 as well. In this 
case (and if B was chosen so small that Vw ^ 0 on 5 ) , the restriction of w — m to rj 
changes signs at the point where rj crosses T^. Since the rest of 77 does not meet Tm, 
w — m does not change signs there. This is clearly impossible. 

Recall that the present argument started when we assumed that we could find a 
maximal arc 7 : J - » T^ as in Lemma 31.6, but with J ^ R. The contradiction that 
we just reached completes our proof of Lemma 31.6. • 

32. Our final description of the levels sets Tm 

So far we have only assumed that 

(32.1) ft = R2 \ G is connected 

(in addition to (13.1) or (13.2), of course), and we have proved that for almost-every 
m G R, Tm is either empty or a union of rectifiable (by (31.1)) trees (i.e., with no 
loops, as in Proposition 30.1), with infinite branches only (as in Lemma 31.6). Thus 
Tm may a priori look like the sets suggested by Figure 32.1. 

Note that Figure 32.1 strongly suggest that almost-every Tm is actually composed 
of finitely many Jordan curves through 00 (the true trees with many branches being 
exceptional). We shall only prove this under somewhat stronger assumptions on the 
behavior of (v,G) at 00, and then there will be only one Jordan curve. 

In this section we want to add a few hypotheses on the behavior of (y, G) at infinity, 
whose effect will be to bound by 2 the number of branches of Tm that escape to 00. 

FIGURE 32.1. A few level sets TM. 
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Under these assumptions, we shall show that for almost-every m G R, Tm is either 
empty or a single Jordan curve through oo. Then we shall check that (in the second 
case) v is strictly monotonous on the Jordan curve rm. 

Let us first describe our additional hypotheses on (v,G). We do not try to give 
optimal conditions here; the main point is to make sure that Tm has at most two 
infinite branches. First, we assume that 
(32.2) 

G has exactly one unbounded connected component, which we denote by Goo-

When (13.1) holds, this is always true, because G contains L and G \ L is bounded. 

Let us use (32.2) to normalize w; we require that 

(32.3) w(x) = 0 on G00. 

[This is easy to get, because we can add a constant to w; also recall from Section 26 
that w is defined and continuous on the whole plane and constant on each component 
of G.] We also assume that 

(32.4) for all m > 0, we can find arbitrarily large radii R such that TmndBR = 0 , 

and 

(32.5) f f°r an< M < 0, we can find arbitrarily large radii R 
1 such that Tm D 8BR has exactly two points. 

We shall see later that the hypotheses (32.1)-(32.5) are satisfied by (v, G) or by 
(—v,G) when (v,G) looks sufficiently like a cracktip near oo, and when (13.1) holds. 
Let us not worry about this now, and continue our description of the level sets Tm. 

Proposition 32.6. — Suppose that (v,G) satisfies (13.1) or (13.2), and the conditions 
(32.1)-(32.5). Then 

(32.7) w(z) < 0 for all z G R2, 

(32.8) T0 := {z G R2 ; w{z) = 0} = G00 , 

and, for almost-every m < 0, 

(32.9) Tm is a rectifiable Jordan curve through oo. 

Let us first check (32.7). Because of (32.4), all the connected components of Tm are 
bounded when m > 0. Since for almost all m > 0, (31.2) tells us that no component 
of Tm is bounded, we see that Tm = 0 for almost-all m > 0. In other words, for 
almost-all m > 0, w does not take the value m. Since w is continuous, it simply 
cannot take any positive value, and (32.7) holds. 

Now we want to prove (32.9), and we give ourselves m < 0 such that all the 
conditions of Section 31 hold. Because of (32.5), Tm is not empty. Then we can 
apply Lemma 31.6 to a trivial arc, and we get a simple, rectifiable arc 7 : R —• Tm, 
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parameterized by arclength. Because of (31.1), 7(f) cannot stay too long in a given 
disk, and so 

(32.10) lim | 7 ( t ) | = l i m | 7 ( t ) | = + o o . 
t—+-\-oo t—+—oo 

In other words, our simple curve T = 7(E) goes through 00. 

To complete our proof of (32.9), we still need to check that Tm = T. Note that for 
R large, T fl OBR contains at least two points, because Y is simple and by (32.10). If 
in addition 

(32.11) rm fl OBR has exactly two points, 

then 

(32.12) T H dBR = Tm n OBR. 

Now suppose that rm ^ T, and let z be a point of Tm \ T. Apply Lemma 31.6 to 
an initial arc reduced to {z}. This gives a rectifiable Jordan arc V C Tm that goes 
through 00. For R large enough, T' fl OBR contains at least 2 points; if we choose R 
so that in addition (32.11) holds (and we can do this with arbitrarily large values of 
R, by (32.5)), we get that 

(32.13) TfndJJBR = FFTrnndBR. 

Hence T' D 8BR = T f l OBR because (32.12) holds, and these two equal sets have 
exactly two points. Call these points x and y. If R was chosen large enough, the arc 
of T; between x and y contains z, which is not the case for the arc of T between x 
and y (by definition of z). This contradict (31.5). So we were wrong to suppose that 
Tm ^ T, and (32.9) holds. 

We still need to prove (32.8), i.e., that 

(32.14) Fw{Oz)E < 0 O RGFF2 \ Goo-

Let us first check that w(z) < 0 on fl. Since ft is connected, w is harmonic on ft, 
and w ^ 0 everywhere, the only other option is that w = 0 on fl, hence also on R2. 
This is impossible here, for instance because it contradicts (32.5). Hence w(z) < 0 on 
fl. 

So we only need to exclude the case when w(z) = 0 on a component Go of G, 
Go 7^ Goo- Because of (32.2), Go is bounded. By Lemma 25.3, we can find a compact 
set G° such that Go C G° C G and 

(32.15) dist (G°,G\GGK°) > 0 . 

Then we can apply the construction of Section 23 to surround G° by a finite collection 
of (bounded) Jordan curves that satisfy (23.10). If the parameter e is chosen small 
enough compared to the distance in (32.15), these Jordan curves do not meet G. 
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Finally, since Go is connected, we can find one curve 7 among our surrounding Jordan 

curves such that 

(32.16) Go is contained in the bounded component of R 2 \ 7 . 

[The argument is the same as in Remark 23.17.] Set 

(32.17) ra0 = sup {w(z)\z G 7 } . 

Then mo < 0 because 7 is compact and contained in ft, and we already know that 

w(z) < 0 on Q. For mo < m < 0, call ftm the connected component of R 2 \ Tm that 

contains Go- Then w — m assumes a constant sign on n m , and this sign is positive 

because w = 0 on Go. Then ftm does not meet 7 (by (32.17)), and Ctm is contained in 

the bounded component of R 2 \ 7 , by (32.16). Thus we found a bounded component 

ftm of some R 2 \ Tm. This contradiction with Proposition 30.1 completes our proof 

of (32.14), (32.8), and Proposition 32.6. • 

Now we consider the variations of v along the Jordan curves of Proposition 32.6. 

Lemma 32.18. — For almost-every m < 0 (32.9) holds, v has a continuous extension 

to QU Tm, and this extension is strictly monotone on Tm. 

Let m < 0 be such that (32.9) holds, such that Tm n G C S (as in (28.12)), and 

also such that we can apply Proposition 28.2. This is the case for almost all m < 0 

by Propositions 32.6 and 28.2, and by (28.7). 

Since T m C ft U <S, v has a continuous extension to ft U T m , by (28.28). 

Since Tm is a Jordan curve, R 2 \ T m has two components, which we call fli and ^2-

By definition of Tm, w(z) ^ m for all z G fti U Since fli is connected, w(z) — m 

keeps a constant sign on fli. Because of (32.5), we know that w takes values > m as 

well as < m, and so the signs of w(z) — m on fti and on Q2 are different. So we can 

assume that w(z) < m on Q\ and w(z) > m on O2. 

Let 7 : R —• Tm be a parameterization of T m by arclength. Note that G ft 

for almost all t G R, because we have assumed that Tm H G C <S, and i?x(<S) = 0 (by 

(28.6)). In fact, for almost every t, Viu(7(£)) 7^ 0, because the set of points z G T m 

such that Vw(z) = 0 is at most countable. [See for instance the proof of (31.8).] 

Let us choose the orientation of Tm (or in other words, the direction of our pa

rameterization by 7 ) so that fi2 lies on our left when we run along T m . It is not too 

hard to check that the notion makes sense, i.e., that the condition that we get is the 

same when we look at any regular point of T m . [One could for instance fix two such 

points, smooth Tm away from these points, and reduce to the simple case when T m 

is smooth and we can use continuity.] 

Now it is easy to check that if t G R is such that 7(2) G SI, \7w(j(t)) ^ 0, and j'(t) 

exists, then (vo^y(t) > 0. This just uses our condition on orientations, the fact that 

7 '(£) ^ 0, and the fact that w is conjugated to v. 
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We can now apply Proposition 28.2 (because 7 is simple), or even Corollary 28.55, 

to get that v o 7 is nondecreasing. To get that v o 7 is strictly increasing, we simply 

note that there is an open dense set on Tm (i.e., the set of points z £ Tm n ft such 

that Vw(z) 7^ 0) where v is strictly increasing. 

Lemma 32.18 follows. • 
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CHAPTER H 

THE MONOTONICITY FORMULA 
AND POINTS OF LOW ENERGY 

33. Our tour of G0 

We shall need later to know how the boundary values of v vary when one turns 
around a bounded (nontrivial) component of G. 

In this section Go is a fixed connected component of G, and we assume that Go is 
bounded and not reduced to a point. We want to describe a parameterization of Go by 
the unit circle that corresponds to the access from Ct. The most natural one would be 
the boundary values of a conformal mapping from C \ £ ( 0 , 1 ) to C \ G o ~ R 2 \ G o , but 
we shall use constructions from the previous sections instead. The slight advantage 
will be that we won't have to use regularity properties of conformal mappings, and 
that we'll get a little more flexibility. 

First choose a sequence {5N} which tends to 0, and for each n apply Lemma 25.3 
to Go, with 8 — Sn. We get a closed set G° = G°(n) such that 

(33.1) Go C G° C {z e G ; dist(s, G) < 6N} 

and 

(33.2) dn := dist (G°, G \ G°) > 0. 

We could have forgotten about this first stage and done most of the argument below, 
but it will be convenient later to have curves that surround Go and do not meet G, 
and this is the point to using G°. Set 

(33.3) en = Min((Jn,10-1dn), 

and apply the construction of Section 23 to G° and with e = en. We get a collection 
of curves TJ£ that surround G°, but because Go is connected, there is a (unique) curve 
T(n) among the Y{ such that 

(33.4) Go is contained in the bounded component of R2 \ T(n). 
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[See the proof of Remark 23.17.] Observe that 

(33.5) dist (a, Go) < dist (x, G°) + <J„ < 2en + <Jn < 3(5, 

for x G r(n), by (23.10), (33.1), and (33.3). Also 

(33.6) dist(r(n),G) ^ en 

by (23.10), (33.2), and (33.3). In particular, 

(33.7) T(n) does not meet G. 

Let us check that 

(33.8) G-1 < if1 № ) ) < G, 

where C depends on Go, but not on n. The first inequality is trivial, by (33.4) and 
the fact that diam Go > 0. For the second one, let us even prove a bit more. 

Lemma 33.9. — For all disks D = B(y, p) of radius p < 1, 

as soon as en ^ p. 

The reader should not worry about the small restriction on p; we just decided to 
get a constant C that does not depend on p, and we want to use the local Ahlfors-
regularity of G. 

It is clear that (33.8) follows from Lemma 33.9, because all T(n) lie in a fixed 
bounded set. 

To prove the lemma we shall use the fact that T(n) C dU (en) C dH (sn) by (23.9), 
where H (en) = Uie/(en) Bi as m (23.6). Set 

(33.10) H1 (T(n) H £>) < Gp 

(33.11) J = {iel (en) ; «95* meets D} . 

We want to control the size of J. First recall from (23.3) that 

(33.12) the disks B[ = B (x^ 10~3£n) are disjoint. 

Also, each disk Bi is centered on G°, and so 

(33.13) H1 (G fl B[) ^ C-len, 

because G is locally Ahlfors-regular. [See (13.4).] Then 

(33.14) H1 (T(n) (ID) ^ H1 (OH (en) H D) ^ 

QF 
[H1 (dBi) ^ 2TT 

sS 
DD 

^ 47ren(#J) ^ CQQG 

ieJ 

H1 (G H B[) < CH1(G H 2D) < Cp 

because ri ^ 2en, by (33.13) and (33.12), because all B[ are contained in 2D (by 

(33.11) and because en ^ p), and by the upper bound in the local Ahlfors-regularity 

of G. [See (13.4).] The lemma follows. • 
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For each n denote by zn : S1 —> T(n) a parameterization of the Jordan curve 

T(n) with constant speed. Chose zn so that it "preserves the trigonometric sense", 

by which we mean that zn(t) turns around the bounded component of M2 \ r(n) 

counterclockwise when t G S1 turns around the unit disk counterclockwise, or that zn 

has index 1 with respect to every point of that bounded component. By (33.8), 

(33.15) zn is G-Lipschitz 

with a constant that does not depend on n. Modulo replacing {Sn}, {en}, and {zn} 

with subsequences, we can assume that 

(33.16) {zn} converges uniformly on S1 to some Lipschitz function z. 

From (33.5) we easily deduce that z (S1) C G0. Set 

(33.17) R = {t G S1 ; z(t) is a regular point of G } . 

Lemma 33.18. — R is a dense open subset ofS1 and H1 (S1 \ R) =0. 

It is clear that R is open, since 

(33.19) R' = {x G Go ; x is a regular point of G} 

is itself open in Go, and R = z~x(Rf). By Proposition 13.11, 

(33.20) H1 (G0 \ R') = 0. 

We want to transfer this to the circle. Let r > 0 be small. By (33.20), we can 

cover Go \ R' by disks Dt = B (yt, pi), £ G L, with 

(33.21) ^Pi^r. 

Since Go \ R! is compact, we can assume that L is finite. Set p = Min{p^ ; £ G L}. 

For all n such that en < p, set 

(33.22) K = {ye r(n) ; dist (y, G0 \ R') < p} . 

Then 
B{yi,p£ 

xccv 
B{yi,p£ + p) C 

£€L 
I 2D,, 

and so 

(33.23) H1 (E'n) < 

qqq 
'if1 (r(n)n2D/) << C 

cwv 
Pi ^ Gr 

by Lemma 33.9 and (33.21). Next set 

(33.24) En = {t G S1 ; dist (zn(t), Go \ R') < p} = z~l (E'n) 

Then H1 (En) ^ Gr, because zn is a parameterization of T(n) at constant speed, and 

by (33.8). If n is also so large that \\zn - zW^ < p, then S1 \ R = z~l (Go \ Rf) is 
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188 33. OUR TOUR OF G0 

contained in En. This proves that H1 (S1 \ R) ^ Cr. Lemma 33.18 follows, since r 

was arbitrary. • 

We shall need to know more about z near regular points. 

Lemma33.25. — For each x G Rf, there are exactly two points ti,t2 G S1 such that 

z(U) = x. 

Recall that R' is the set of points x £ Go that are regular for G. The lemma should 

not be a surprise; we expect our tour of Go to visit x twice, one time for each access 

region to x. 

For each x G Rchoose a small radius r(x) such that B(x,2r(x)) is a disk of 

regularity, and denote by fti(rz) and Q2(x) the two components of B(x, 2r(x)) \ G. 

Choose points yi(x), i = 1,2, in the middle of Qi(x). Since ft is assumed to be 

connected, ft^(x) is contained in the unbounded component of M2 \ G° (the set fto in 

Lemma 23.18 and (23.22)). Hence (23.22) says that y%{x) G U (en) for n large enough. 

This implies that for n large, 

(33.26) Vi{x) lies in the unbounded component of R2 \ T(n). 

See for instance (23.12). 

Because G H B(x, 2r(x)) is a fairly flat G1-curve that crosses B(x, 2r(x)), we have 
a very good idea of what the set H (en) in (23.6) looks like inside that disk. Set 
B(x) = B(x,r(x)). For n large enough, dH (en) fl B(x) is the union of two slightly 
corrugated curves Ti(x) and Tg (x) that roughly follow G° Pi B(x) = G Pi B(x), one 
on each side, as in Figure 33.1. 

Q (x) Q (x) 

a2(jc) 

•G 0 

r2

n(x) 

FIGURE 33.1 

Since T(n) C dH (en) (by (23.9)), and on the other hand T(n) separates G 0 from 

2/1 (a;) and y 2 W for n large (by (33.26)), we get that for n large, 

(33.27) r (n ) H J3(x) = <9iJ ( e n ) fl = T^(x) U r£ ( z ) . 

Because of this, 

(33.28) {t e S 1 ; *n(t) G I?(x) U J2= I?(x) U J2

n(x), 
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33. OUR TOUR OF G0 189 

where the sets 

(33.29) i?(x) = z-1(r?(a:)) 

are disjoint intervals. Prom (33.8) and the fact that zn runs along T(n) with constant 

speed, we deduce that 

(33.30) c - M x K i T O K C H r ) , 
and also that 

(33.31) c-MxKiTOKCHr),i?(x) = z-1(r? 

because there are portions of T(n) fl B(x, 2r(x)) \ B(x) of lengths ^ r(x) that zn has 

to go through between I f (x) and I2(x). 

For n large enough, Tf(x) passes at distance ^ 3en from x. Hence we can find 

tf(x) G I f (x) such that 

(33.32) i?(x) = z-1(r?(a:))i?(x) = z-1(r? 

Extract a subsequence (that may depend on x) such that (after extraction) the 

t™(x) converge to limits U = U(x). Then 

(33.33) z(U{x)) = x, 

by (33.32), the uniform convergence (33.16), and the uniform Lipschitz estimate 

(33.15). Note that U (x) ^ to(x), and even 

(33.34) esg \ t i ( x ) - t2 (x ) \>C-1r(x ) , 

by (33.31). 

To complete our proof of Lemma 33.25, we still need to check that z~1(x) has at 

most two points. Suppose that si, 52, 53, G S1 are such that z (si) = x. Since zn (s{) 

tends to x, we get that Si £ i f (x) Ul2 (x) for n large. [See (33.28).] In particular, two 

of the Si lie in the same Ii(x), and so they lie at distance ^ | / f ( # ) | ^ Cr(x) from each 

other (by (33.30)). Since we could have made this argument with any small value of 

r(x), two of the Si must be equal. Lemma 33.25 follows. • 

We shall need even more notation. For all x G R', choose r{x) as above, and let 

t\(x) and t2(x) be the two points given by Lemma 33.25. These are also the points 

that we constructed in the proof of that lemma. Denote by Ii(x), i = 1,2, the interval 

of S1 centered at U(x) and with length Cf1r(x) , where we choose C\ so large that 

(33.35) dist (Ii(x), I2(x)) ^ CrV(x) 

(which is easy to get, by (33.34)) and 

(33.36) z{Ii{x)) c £ ( x , r ( x ) / 2 ) , 

which we can arrange because z (ti(x)) = x and z is Lipschitz. 
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190 33. OUR TOUR OF G0 

Let us check that for n large enough, 

(33.37) zn(t) G Qi(x) Pi B(x) for t G h(x), 

where B(x) = B(x,r(x)) as before, and maybe after exchanging the names of Q\(x) 

and Q2(x) (the two components of 2B(x) \ G) or, equivalently, the names of t\(x) 

and t2(x). 

The fact that zn (h(x)) C B(x) for n large is an easy consequence of (33.36) and 

the uniform convergence in (33.16). 

To prove that zn (Ii(x)) stays in the same component Qi(x) for n large, we use 

the uniform convergence (33.16) and the fact that all zn were chosen to turn around 

Go in the same (counterclockwise) direction. For instance, in the situation of Figure 

33.1, we must run along Ti(x) from right to left and along T2(x) from left to right. If 

m and n are so large that \zm — zn\ < 10~~2r(x), say, zm (h(x)) and zn (h(x)) must 

lie in the same Qi(x). This proves our claim (33.37). 

Next we want to transfer our notations to the circle. For each t G R (see the 

definition (33.17)), set rt = r(z(i)), where r(z(t)) is as above. Then B(z(t),2rt) is 

a disk of regularity for G. Define Qi(z(t)) and Q2{z(t)) as above, and choose the 

indices so that (33.37) holds with ti(x) = t. Then set t* = t2(x),'Qt = Sli(z(t)), 

fij = Q2(z(t)), It = h(z(t)), and J* = I2(z(t)). 

Thus t* t, z (t*) = z(t), It and 7t* are intervals of length C^xrt centered at t and 

t* respectively, 

(33.38) dist (it, Jt*) > C^ru 

(33.39) z (It) and z (Jt*) are contained in G0 H B (z(t), rt/2) 

and, for n large enough, 

(33.40) zn (It) cQtnB (z(t), rt) 

and 

(33.41) e z zn ( i ; ) cn* tnB( z ( t ) , r t ) . 

For t e R, denote by At the line segment of length rt that starts at z(t), is 

perpendicular to G at that point, and lies in Qt except for its endpoint z(t). See 

Figure 33.2. 

Note that for n large, 

(33.42) r(n) fl At has exactly one point. 

This follows from our good description of T(n) near z(t); see near (33.27) and Figure 

33.1. Thus we can define sn £ S1 by 

(33.43) zn(sn)e At, 

ASTÉRISQUE 274 



34. V A R I A T I O N S O F v A L O N G O U R T O U R O F G0 191 

-dB(z(t), 2rt) 

F I G U R E 3 3 . 2 

and then 

(33.44) lim zn(sn) = z(t), 

by (33.5) (or our nice description of T(n) near z(t)). Let us check that 

(33.45) lim sn = t. 
m—*rvi 

Suppose this fails. Then we can extract a subsequence for which lim sn = s ^ t. 

Then z(s) = z(t), by (33.44), the convergence of zn(s) to z(s), and the fact that 

Zn (sn) — zn(s) tends to 0 by the uniform Lipschitz bound in (33.15). Thus s = t* 

by Lemma 33.25, and hence sn G I£ for n large. By (33.41), zn(sn) G £2£, which 

obviously contradicts (33.43). This proves our claim. 

We now have enough general information on our tour of Go (i.e., the mapping z). 

In the next section we shall use z to study the variations of (the boundary values of) 

v along Go-

34. Variations of v along our tour of Go 

We continue with the notations and assumptions of the previous section. In par

ticular, Go is a bounded component of G, not reduced to a point, and z : S1 —> Go 

is the (essentially 2-to-l) parameterization of Go constructed in Section 33. Here we 

shall also use our assumptions of Section 32, because we want to apply Lemma 32.18. 

Recall from (33.17) that 

(34.r R = {t G S ; z(t) is a regular point of G } 

By lemma 14.1 and the definitions before (33.38), 

(34.2) v has a C extension to Qt rï B (z(t),rt) 

Thus we can set 

(34.3) u(t) = lim v(z) for t G R. 
z-+z(t) 
zeQt 
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192 34. VARIATIONS OF v ALONG OUR TOUR OF G0 

Lemma 34.4. — The function u has a (unique) continuous extension toS1. It is even 
Holder-continuous with exponent 1/2. 

Note that since R is dense in S1 (by Lemma 33.18), our extension is necessarily 
unique (if it exists). Thus it will be enough prove that 

(34.5) \u(t)-uffffffffk(t')\^Ckk\t-t'\wql/2 for tJeR, 

with a constant C that may depend on Go-

Let t,t' e R be given, with t ^ t. For n large, let sn G S1 be defined by (33.43), 
and similarly define s'n G S1 by zn (s'n) G A^. Then 

(34.6) lim sn = t and lim s'n = t', 

by (33.45). Denote by 7n the shortest arc of T(n) between zn (sn) and zn (s'n). Then 

(34.7) diam7n ^ G \tf — t\ for n large, 

by (34.6) and the uniform Lipschitz estimate (33.15). Also, 7n does not meet G, by 
(33.7). Let us verify that we can apply Lemma 21.3 here. We have checked earlier 
that v (and even / = v + iw) satisfies the requirement (21.1); see (25.22), (25.23), and 
the sentence that follows. Also, x = zn (sn) and y = zn(s'n) lie in a same component 
of B \ G for some disk B of radius ro = C\tf — t\, by (34.7) and because 7 n n G = 0; 
this takes care of (21.2). The case when ro > 1 is not a serious problem because we 
can cut 7n into boundedly many pieces with diameters < 1; anyway we shall not care 
about how the constant C in (34.5) depends on Go. Altogether we can apply Lemma 
21.3 and we get that 

(34.8) \v (zn (sn)) - v (zn « ) ) | ^ G\t' - t\1/2 , 

with a constant C that does not depend on t,t' and n. 

Note that zn(sn) lies in Qt by definition, and tends to z(t) by (33.44). Then 
v(zn(sn)) tends to u(t), by (34.3). Similarly v(zn(s'n)) tends to u(t'), and (34.5) 
follows from (34.8). This proves Lemma 34.4. • 

Since the extension is unique, we can safely denote it by u as well. Here is the 
main result of this section. 

Proposition 34.9. — There is a decomposition S1 = / + U / ~ into intervals with disjoint 
interiors, so that 

(34.10) u is strictly increasing on 7+, 

and 

(34.11) u is strictly decreasing on I~. 
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Note that in (34.10) and (34.11), we use the order on 7^ that comes from the 
trigonometric sense on S1. Also, r± cannot be empty or reduced to one point, by 
(34.10), (34.11), and the continuity of u. 

To prove the proposition, we shall try to focus on the dense set R as much as we 
can, to avoid complications with the parts of G that we do not control well. The 
general idea will be that we can approach Go with nearby level lines Tm, where we 
control the variations of v by Lemma 32.18. See Figure 34.1. 

FIGURE 34.1. The set Go and three level sets Tm (including the central 

one which contains Go). The arrows indicate the variations of v. 

We start with a local description, essentially on R. 

Lemma 34.12. — For almost all t E S1 , u is differentiate at t and u'(t) ^ 0 . 

Since H1 (S1 \ R) = 0 by Lemma 33.18, it will be enough to consider points of R. 
Let us first check that for each t € R, 

(34.13) Vv(x) i- 0 for i^-almost every x G G n B (z(t),rt), 

where Vv(x) denotes the continuous extension of Vv to Qt H B(z(t)1rt) given by 
(34.2). To prove this, we use the following classical result of F. and M. Riesz. [See 
for instance Corollary 4.2 p.65 in [Ga].] 

Lemma 34.14. — If the continuous function f : B(0,1) —> C is holomorphic on 
B(0,1), and if f(x) = 0 on a subset of positive ^-measure of dB(0,1), then f = 0. 

The same result is easily seen to be valid on any simply connected bounded domain 
of class G1+e, e > 0, because we can compose with a conformal mapping. This uses 
the fact that the conformal mappings from the unit disk to the given domain have 
G1 extensions to the closed disk, with a derivative that does not vanish on the circle. 
See for instance Theorem 3.5 on page 48 of [Po]. 
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In the present situation we apply (the analogue of) Lemma 34.14 to the derivative 

of v -f iw on a smooth subdomain of ft* whose boundary contains GC\B (z(t),rt). We 

do not get into trouble because of regularity, because G H B (z(t), 2rt) is in fact G1+£ 

for all e < 1. See for instance Sections 6 and 7 of [Bo] for a stronger result. 

Thus if (34.13) fails, we get that Vv E 0 on our smooth subdomain of ft*, hence 

on the whole ft because we are currently assuming that ft is connected. In general, 

this would be enough to give a complete description of (v,G), as in Section 18. Here 

we even assumed that (32.5) holds, and we get a contradiction. This proves (34.13). 

Denote by dv/dr the tangential derivative along G of our extension of v. For the 

moment, the precise sign of dv/dr will not matter, so we don't need to orient G near 

z(t). We have that 

(34.15) 
dv , 

dr 
^ 0 as soon as Vv(x) ^ 0 

(hence, almost-everywhere on G fl B (z(t),rt)), because v satisfies the Neumann con

dition dv/dn = 0 on G D B (z(t),rt). 

We are now ready to prove Lemma 34.12. As was mentioned before, we may restrict 

our attention to R, because H1 (S1 \ R) = 0. For each t £ R, let It be the small 

interval centered at t0 introduced before (33.38). Since R is a countable union of such 

intervals It, it is enough to show that for all t G R, 

(34.16) u'(s) exists and u\s) ^ 0 for almost every s G If. 

From (33.40) and our description of the curves T(n) in B (z(t),rt) we easily deduce 

that the restriction of z to It is bilipschitz. In particular, it preserves sets of measure 

0. and also 

(34.17) z'(s) ^ 0 for all s £ It such that z'(s) exists. 

For almost every s £ It, z'(s) exists and so u'(s) exists also. Moreover, u'(t) ^ 0 as 

soon as Vv(z(t)) ^ 0 (by (34.15) and (34.17)). This happens almost everywhere on 

It, by (34.13), (33.39), and because the restriction of z to It preserves sets of measure 

0. This completes our proof of (34.16), and Lemma 34.12 follows. • 

Set 

(34.18) R± = { í E R ; ± « ' ( í ) > 0 } , 

where our condition ±u'(t) > 0 is meant to contain the differentiability of u at t, and 

we identify S1 with the torus to talk about the sign of u'(t). 

Let mo denote the constant value of w on Go. We claim that for all t £ R± we can 

find a positive radius r't ̂  rt such that 

(34.19) ± (w(x) - ra0) < 0 for x £ ftt fl B (z(t),r't). 

Indeed dv/dr(z(t)) ^ 0 because u'(t) ^ 0 (and z is Lipschitz), and then 

±dw/dn(z(t)) < 0, with a unit normal pointing towards ft*, because ±u'(t) > 0, w is 
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conjugated to v, and because all T(n) were set to turn around Go counterclockwise. 
Then (34.19) holds, with a suitably small choice of rj, because Vw is continuous on 
QtnB(z(t),rt). 

We shall later need to know that 

[ if t G R^, there is a neighborhood V of t in S1 
(34.20) < , 

I such that s G R for almost all s G V, 

where of course the point is that the set is the same for all s as the one for t. 
To see this, note that ±dv/dr(z(t)) > 0, if we choose the orientation of G near z(i) 
correctly. Then ±dv/dr(z(s)) > 0 in a small neighborhood V of t, because dv/dr is 
continuous near z(i). Then ±uf(s) > 0 for all s G V such that 2/(5) exists, because 
z preserves the orientation near t (with our choice of orientation on G). Our claim 
(34.20) follows. 

Our sets R^ are nice, because we have a good control of v on them, and 

(34.21) H1 (S1 \ (R+ U R-)) = 0, 

by Lemma 34.12. However we cannot prove easily that they are both nonempty, and 
so we introduce the slightly larger sets 

(34.22) 5± = {t G S1 ; there is a sequence {sn} in S1 that converges to t and 

such that ± (w (zn (sn)) — mo) < 0 for infinitely many values of n } . 

Let us check that 

(34.23) R±CS±. 

If t G R+ and n is large enough, we can find sn G S1 such that zn (sn) G At 
(as in (33.43)). Then zn(sn) G Qt H B (z(t), r[) for n large (by (33.44)), and so 
±(w(zn(sn)) - mo) < 0 (by (34.19)). Since sn tends to t by (33.45), t G S± as 
needed. 

Lemma 34.24. — S± is not empty. 

To prove this, it is enough to check that for all n 

(34.25) mf{w(z) ; z G T(n)} < m0 ̂  sup{w(z) ; 2 G T(n)} . 

Indeed (34.25) allows us to find s^; G S1 such that ± (w (zn (sn)) — mo) ^ 0, and then 
we can find a subsequence { n ^ } for which {s^k} converges to some limit t±. Then 
^ G S±, as we can see by keeping the values s^k on our subsequence, and choosing 
sn = ^ for all other integers. 

So it is enough to check (34.25). Suppose for instance that the first inequality fails, 
so that w(z) > mo on T(n). Choose m such that mo < m < inf {w(z) ; z G T ( n ) } . 
Then the connected component of R2 \ Tm that contains Go cannot meet T(n) (be
cause w(z) < m on that component), hence is contained in the bounded component 
of R2 \ T(n). This is impossible, by Proposition 30.1. 
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The proof of the second inequality in (34.25) is similar. Lemma 34.24 follows. • 

Now we come to the place where we shall use level lines and Lemma 32.18. 

Lemma 34.26. — Suppose to G S~ and t\,t2,t% G i?+ are such that 

(34.27) t0 < ti < t2 < t3 < t0 in S1. 

Then 

(34.28) u (¿1) ^ u (t2) ^ u (ts) or u (t3) ^ u (t2) < u (tx). 

By (34.27), we mean that when we start from to and run along S1 in the trigono

metric direction, we hit t\ first, then t2, then £3, before hitting to again after one turn. 

In particular, the points U are all distinct. 

To prove the lemma, we shall proceed by contradiction and assume that (34.28) 

does not hold. Thus 

(34.29) u (t2) lies out of the closed interval with extremities u (t\) and u (ts). 

Set Zi — z (U) and A* = Ati for 0 < i ^ 3. Also set 

(34.30) Afi = AinB(zi,r), 

where r is chosen so small that 

(34.31) the disks B (zi, 2r), 0 < i < 3, are disjoint, 

(34.32) v (zf2) lies out of the closed interval with endpoints v (z[) and v (z's) 

for all choices of points Z | G A J , l < I < 3 , 

and also that r ^ r't. for 1 ^ i ^ 3, where r't. is as in (34.19). The second property 

is easy to obtain, by its analogue (34.29) and by (34.3). The last condition < r't. 

implies that 

(34.33) w(x) < m0 on Ai U A2 U A 3 , 

by (34.19) and because U G R+ for 1 ̂  i < 3. 

Now we want to choose a level set rm, m < mo, that passes close to the 21», i ) 1. 

Since w is continuous and w(x) < m o on A J , 2 > 1 , ^ takes on A^ all values of m < mo 

that are close enough to mo. Hence 

(34.34) Tm meets all A-, 1 ̂  i < 3, 

as soon as m < mo is large enough. We choose m like this, but also such that 

(34.35) Tm is a simple rectifiable curve through 00, 

and 

(34.36) v has continuous extension to ft U Tm, which is strictly monotone on Tm. 

Lemma 32.18 tells us that this is possible. 
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Denote by z\, i = 1,2,3, the point of A^ Pi Tm that is closest to Z{. Thus 

(34.37) [ziiz'i) does not meet Tm. 

Let us now construct a simple arc 7 from z\ to z%. Let 7' denote the arc of Tm 

between z[ and ¿3. This makes sense because of (34.35). Our arc 7 starts from zi, 

follows the segment [z\, z[] up to z[, then follows 7' up to zf3, and finally follows [zf3, zs] 

up to zs. It is easy to see that 7 is simple, but we shall not really need this fact. Also 

note that 

(34.38) w(x) < mo on 7 \ { 2 1 , 2 3 } , 

by (34.33) and because w(x) = m < mo on 7' c Tm. 

We also want to construct an arc 70, that almost connects zo to z2, and that does 

not meet 7. The way we shall eventually get a contradiction is by showing that 70 

must meet 7, for topological reasons connected to (34.27). 

First we want to choose a curve T(n) very close to Go- Recall from (33.42) that 

for n large enough, T(n) D A* has exactly one point yi. By (33.44), yi is as close to Zi 

as we want (provided that n is large). Thus, for n large, 

(34.39) yie(zhzl) for l ^ z < 3 . 

Denote by Si = sn^ the point of S1 such that yi = zn (si). Then Si tends to U (by 

(33.45)), and so (34.27) yields 

(34.40) t0 < si < s2 < s3 < t0 in S1 

for n large. 

Note that Go is compact and does not meet Tm (because w(x) = mo on Go, and 

m < mo)- Hence dist(Go,Tm) > 0, Tm does not meet T(n) for n large (by (33.5)), 

and even 

(34.41) Tm lies in the unbounded component of M2 \ T(n), 

because Tm is connected and unbounded. 

Now denote by £n the point ^n = zn (sn) associated to to £ S~ as in the definition 

(34.22) of S~. Thus N = {n ; w (£n) ^ mo} is infinite, and sn tends to to- We choose 

n e N so large that (34.39)-(34.41) hold, and also 

(34.42) sn < si < s2 < s3 < sn on S1. 

Our argument will be simpler if we modify slightly T(n) near £n. Recall from (33.7) 

that T(n) does not meet G, and so £n G $1. Also, w cannot be constant near £n; this 

is forbidden by our hypotheses (32.1) and (32.5), for instance. By the maximum 

principle, we can find points G ft such that w (£fn) > w (£n), and that are as close 

to £n as we want. Set m\=w (£fn). Since we can always replace €'n with any point of 
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[£n>£n]j we nave a continuum of values of m\ to choose from. We decide to choose £n 

so that 

(34.43) rmi is a simple rectifiable curve through oo. 

This is possible because of Lemma 32.18, even with the constraint that be very 

close to £n that will show up soon. 

Note that 

(34.44) mi > w(£n) ^ m0 

because we took n G N. 

Let us deform our parameterization zn of T(n) in a small neighborhood of sn, so 

as to get a mapping z'n such that z'n (sn) = £fn. Since we can choose £'n very close to 

£n, we can do this deformation without altering the main properties of zn and T(n). 

Let us require in particular that 

(34.45) r = z'n (S1) is a simple, piecewise G1 Jordan curve, 

(34.46) Tm lies in the unbounded component of R2 \ T 

(as in (34.41)), 

(34.47) Go lies in the bounded component of R2 \ T, 

(34.48) r n A , = {Vi} for i = l ,2,3, 

and 

(34.49) i'n < Vl < y2 < ys < C on T, 

which we can get because of (34.42). [Recall from just after (34.39) that yi = zn(si) 

for i ^ 1.] 

We are almost ready to construct our second curve 70. First choose a radius R so 

large that 

(34.50) G0 U T(n) U r U 7 C BR. 

Denote by 7^ the arc of Tm that goes from z'2 (our first point of Tm n A2) to 00, 

without meeting 7'. This arc 7^ exists, because (34.32) and (34.36) tell us that z'2 lies 

outside of the closed arc of Tm between z[ and z's, and this arc is precisely 7'. 

Our arc 70 is constructed as follows. [Also see Figure 34.2.] First we leave from 

£n € rmi, and follow any branch of Tmi \ { £ ^ } until we hit OBR for the first time. 

Then we follow 8BR (in any direction), until we hit 7^ for the first time. After this 

we follow 7Q back to the point z'2, and finally we follow the segment A2 up to the 

point y2 where we stop. Note that 7^ and both branches of Tmi \ { £ ^ } meet OBR, 

by (34.50) and because they are unbounded. Let us check that 

(34.51) 70 does not meet 7. 
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First, rmi does not meet 7, because w(x) ^ mo on 7 (by (34.38)) and w(x) > mo 

on Tmi (by (34.44)). Next OBR does not meet 7, by (34.50). Our curve 7^ does 

not meet 7' by definition, and it does not meet the other pieces \zi,z'^), i = 1,3, of 

7, by (34.37) and because 7^ C Tm. Hence % does not meet 7. We are left with 

the segment (z2,y2], which does not meet 7' by (34.37) and does not meet the other 

[zi,z$ by (34.31) and (34.30). This proves (34.51). 

Let us check also that 

(34.52) 70 is simple. 

The arc of Tmi that starts 70 is simple by (34.43), it does not meet 8BR (except at 

its end) by definition; it does not meet 7Q either, because j'0 C TM and m <m\ (by 

(34.44)), and it does not meet [y2,z2) °y (34.33) and (34.44). So our arc of Tmi does 

not meet the rest of 70, and (34.52) follows from the construction of the rest of 70. 

The situation at this point looks quite promising (in terms of getting the desired 

contradiction). The curves 70 and 7 do not meet, but yet it seems from (34.49) that 

they should. [See Figure 34.2]. We want to get our contradiction from the following 

lemma. 

FIGURE 34.2. It looks like 70 should meet 7. 

Lemma 34.53. — Ifyo < y\ < y2 < Vz < Vo in I\ 7o is a simple arc from yo to y2, 71 

is a simple arc from y\ to y$, and both arcs 70, 71 lie in the unbounded component of 

R2 \ T except for their extremities yi, then 70 meets 71. 

To prove the lemma, we can use a conformal mapping from the unit disk to the 

outside of T (including 00) to reduce to the following. 

Lemma 34.54. — If to < h < t2 < ¿3 < to in S1, rjo is a simple arc from to to t2, rji 

is a simple arc from t\ to t%, and both arcs are contained in B(0,1) except for their 

endpoints, then rjo meets r/i. 
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We leave the proof of Lemma 34.54 to the reader (see Figure 34.3). Note that the 

fact that our curves are simple is not needed, but allows a "simple" proof with the 

Jordan curve theorem. This completes our discussion of the proof of Lemma 34.53. • 

FIGURE 34.3. The situations of Lemmas 34.53 and 34.54. 

Let us return to the proof of Lemma 34.26. As Figure 34.2 suggests, we are not yet 

in position to apply Lemma 34.53, because the curve TMI may cross T a few times. 

To fix this problem, set X = 70 PI T and 

(34.55) X + = {x e X ; x < 2/1 < y2 < 2/3 < x on T} . 

Note that £'N G X + , by (34.49). The last point of X (when we go along 70, starting 
from €'n) is clearly y2. Call XQ the previous one. [It exists, because 70 does not meet 
r between z2 and y2 (by (34.48)), X is closed, and £/N € X]. Thus XQ is the first point 
of T \ {y2} that we meet when we run along 70 backwards. 

We have just seen that xo (2/2, z'2], (34.46) tells us that xo cannot lie on 70 C Tm, 

and (34.50) prevents XQ from lying on 8BR. Thus XQ lies on the arc of TMI that starts 

7o. 

First suppose that x$ £ X + . Call 70' the arc of 70 between xo and y2. Then 

7o \ {£0,2/2} does not meet V (by definition of xo), and it is even contained in the 

unbounded component of R2 \ T (call it ft00), because it contains a piece of 8 BR. 

Also denote by 7" the arc of 7 between y\ and 2/3. Then 7" \ {2/1,2/3} lies in ftoo, by 

(34.48) and (34.46). Since xo G X + , we can apply Lemma 34.53 and we get that 70 

meets 7"'. This obvious contradiction with (34.51) settles our first case. 

So we may assume that xo G X " = X \ Ar+. Denote by rjo the arc of 70 between 

^ and xo- We already know that 770 is a sub-arc of Tmi. Hence 770 does not contain 

any 2/i, 1 < i ^ 3, by (34.44) and (34.33). Hence dist (X PI rj0, {2/1,2/2,2/3}) > 0, and 

the sets rjo fl X+ and 770 Pi X~ are both closed (because they are the intersections of 

770 fl X with the two components of T \ {2/1, ys})-

Sinceb ̂ (BH0UL;bnffj and rjo PI X + is closed, there is a last point x\ G X + when we run 

along rjo from £'n to XQ. Note that x\ 7^x0, because xq G X~. Since in addition 
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?7o fl X is closed, there is a first point x2 of rjo 0 X after x±. Note that x2 is also 
the first point of rjo D X after #i, by definition of x\. 

Denote by 77 the arc of 770 between x\ and x2. Then 

(34.56) 77 meets T only at its endpoints, 

by what was just said. Also, 

(34.57) 77 is simple 

by (34.43) or (34.52), and 

(34.58) x\ < yi < x2 < 2/3 < x\ on T, 

because x\ G X+ and x2 G X~. 

The easiest subcase now is when 

(34.59) 77 \ {xux2} C Ox>, 

where fioo still denotes the unbounded component of M2 \ T . In this case we can apply 
Lemma 34.53 to the curves rj (from x\ to x2) and 7" (the sub-arc of 7 from yi to y3). 
As was observed before, 7" \ {2/1,^/3} C O ^ , by (34.46), (34.48), the connectedness 
of 7", and the fact that it contains some points of 7' C Tm. So (34.58) allows us to 
apply Lemma 34.53, and we get that 7" meets 77. This is impossible, because 77 C 70 
and by (34.51). 

In view of (34.56) the only case left when (34.59) fails is when 

(34.60) 77 \ {xux2} C 

where denotes the bounded component of R2 \ T. In this case we want to use the 
same sort of argument, but with arcs in fi&. Thus we want to connect y\ and 7/3 by 
an arc in fib [See Figure 34.4.] 

FIGURE 34.4 

Let 72 be a simple arc in Go that connects z\ to 23. Such an arc exists, by Lemma 
19.14. Let 72 be the simple curve that starts from 7/1, follows [2/1,21], runs along 72 
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up to Z3, and then follows [23,2/3] up to 2/3. The two segments [¿¿,2/0 do not meet T 

(by (34.48)), and neither does G0 (by (34.47)). Thus 

(34.61) 72 \ {2/1,2/3} Cf26 

(by (34.47) again). Prom (34.58) (34.60), (34.61), and the analogue for Qb of Lemma 

34.54, we get that 77 meets 72. But this is impossible, because w(x) = mi on 77 

(because 77 C 770 C Tmi), w(x) < ra0 on 72 (by (34.33) and because w(x) = mo on 

Go), and by (34.44). This contradiction in our last subcase completes the proof of 

Lemma 34.26. • 

Lemma 34.62. — If to G S~ and £i,£3 G R+ are such that t0 < £1 < £3 < t0 in S1, 

then u(t\) <u (¿3). 

This looks like a substantial improvement over Lemma 34.26, but the hard work is 

done. Because of (34.20), there is a neighborhood V of t\ in S1 such that t G for 

almost all £ G V. We choose £ G R+ just a little past £1, so that 

(34.63) £0 < £1 < £ < £3 < £0 in S1, 

and also so close to t\ that 

(34.64) u(t) >u(h). 

This is possible, because u' (t\) > 0 by definition of R+ (see (34.18)). 

Let us apply Lemma 34.26 to our four points. We get that u(t) lies between u (£1) 
and u (£3) (with possible equalities), and the only option compatible with (34.64) is 

that u (£1) < u(t) ^ u (£3). This proves the lemma. • 

Lemma 34.65. — //£0 < £1 < £2 < ¿3 < £0 in S1, we cannot have that £o,£2 G 5~ and 

£i,£,!,!,!!3 G,,!!; 

Indeed, if we apply Lemma 34.62 with £0 < £1 < £3 < £0, we get that u (t\) < u (£3), 

while if we apply it with £2 < £3 < £1 < £2, we get that u (£3) <u(t\). • 

Denote by I± the closure of R± in S1. We know from (34.21) that J+ U I~ = S1, 

because i?+ U R~ is dense. 

First we want to get rid of the case when R~~ = 0. Pick to £0 G 5~; this is possible, 

by Lemma 34.24. Set J = S1 \ {£0}; J is an interval, and Lemma 34.62 tells us that 

the restriction of u to i?+ D J is strictly increasing. Since R+ is dense in J because 

R- = 0? we also get that the restriction of u to J is strictly increasing. [Recall from 

Lemma 34.4 that u is continuous.] This is impossible, because u is also continuous at 

£0. 

The case when R+ = 0 is also impossible, by the same argument (involving sym

metric versions of Lemmas 34.26 and 34.62). 
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Fix points t- G R and t+ G R+. For each t G t ^ £+, denote by J(£) the 

connected component of S1 \ {£,£+} that does not contain We claim that 

Indeed R" C 5~ by (34.23), and then lemma 34.65 tells us that for all s G R~ \ {£_}, 

the two points 5 and t- lie in the same component of S1 \ {£, £+}. This proves (34.66). 

From (34.66) we deduce that 

because J(t) is open and I is the closure of R . Then J(t) c / + , since S1 = 7+U/ . 

Thus every point of R+ can be connected to t+ by an arc in 7+ is connected, 

and hence I+ is either a closed interval or the whole S1. 

To exclude the last possibility, notice that since t- G R~, (34.20) gives a small 

open interval V centered at t- and which is f/^-almost entirely contained in R~. 

Then V C I~ and V does not meet any J(t), t G R+ \ {£+}, by (34.67). Since F is 

open, we get that V D 1+ = 0 and 1+ ^ S1. 

Of course J~ is also an interval which does not get too close to £+ (for the same 

reasons as for 7+), and I~ does not meet the interior of 7+, because it does not meet 

any of the J(t),t G R+ \ (by (34.67)). 

To complete our proof of Proposition 34.9, we still need to check (34.10) and (34.11). 

However (34.10) is an easy consequence of Lemma 34.62 (applied with to = £_), the 

density of R+ in 7+, and the continuity of u. The verification of (34.11) would be 

similar. 

This completes our proof of Proposition 34.9. • 

35. The monotonicity formula 

The goal of this section is to prove a monotonicity formula similar to the one in 

[Bo], and which will be used later to find lots of low energy points in G. 

We keep the same hypotheses as in Section 32, and even add a new one. Recall 

from (32.2) that we assume that G has exactly one unbounded component Goo- We 

want to suppose now that 

(34.66) J(i) H R- = 0 for all teR+\ . 

(34.67) J(t) O J" = 0 for t G R+ {£+} 

(35.1) G \ Goo is bounded, 

so that 

(35.2) m0 = inf{w(z) ; z e G} 

is finite. [Recall that w is continuous.] Set 

(35.3) ddgft0 = {z G R2 ; w(z) < m0} . 
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Then flQ is open, and f̂ o C fl by definition of NTQ. For all X G fio and R > 0, set 

(35.4) Q x (r) = 
1 

r n0nB(x,r) 

iVd2 

Proposition 35.5. — For all x eflo, <&x is nondecreasing on (0,-hoo). 

This is the main result of this section, but we shall also need to know about the cases 

when $x is locally constant. Because of this, and even though the proof of Proposition 

35.5 is very close to the argument in [Bo], we feel compelled to give a fairly detailed 

proof. This is also the reason why we don't want to derive the proposition from its 

analogue on simpler domains flm, which would be easier to do. 

Fix a point x G fio> and write $(r) instead of $x(r) to simplify. By Fubini, ip(r) = 

r<Ê>(r) is the integral of its derivative <p'(r) • 
jQ.0r\dB{x,r) 

|Vd2; so $ is differentiable 

almost-everywhere, its derivative is 

(35.6) $'(r) = 
r 

1 
Mr) 

1 

r 'n0ndB(x,r) 
\Vv\2 

almost-every where, and $ is the integral of its derivative. Thus it will be enough to 

prove that 

(35.7) $(r) < 
lsi0ndB(x,r) 

\Vv\2 

for almost every r > 0. Let us integrate by parts a first time to get that 

(35.8) $(r) = 
1 

r , /Q0nöß(x,r) 

= 1) 
on 

I f f 1 , 

where n is the unit normal to 8B(x,r) that points outside of B(x,r). Thus dv/dn 

will be the same thing as dv/dr. Let us (even) verify (35.8) by a limiting argument. 

Set 

(35.9) FTM = {z eRz \ w(z) < m) 

for all m < m0. Of course Qm C ^0 C fl, and is the increasing union of the flm. 

Thus 

(35.10) $(r) = lim 
m^mc 
m<mo 

1 

r 'QmDB(cc,r) 
|V«|2, 

by monotone convergence. Let us also check that 

(35.11) 
Jn0ndB(x,r) 

8v 

on 
dH1 = lim 

M—>mo 
M<MO 'QmndBix^r) 

V 
dv 

on 
iH1 

for almost every r > 0. Certainly (35.11) holds as soon as 

(35.12) 
Jn0ndB(x,r) 

\v\ \Vv\dH1 < +oo, 

and for (35.7) it is even enough to check that (35.12) holds for almost every r. 
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Let us use the fact that H1 (G fl BR) < +00 for all R; we get that G fl dB(x,r) 

is finite for H1-almost all choices of r (by a Pubini-like argument that we used a 

few times before). For these values of r, dB(x,r) \ G is composed of finitely many 

open intervals 7, and on each of them the oscillation of v is at most fT \Vv\. Then 

(35.12) holds as soon 
JdB{x,r)^G 

\Vv\ dH1 < +00. This is the case for almost all r, 

by Cauchy-Schwarz and because 
JBR^G 

iVd2 < +00 for all R. 

This proves that (35.12), and hence (35.11), hold for almost all r > 0. It was also 

possible to avoid the Fubini-like argument, and control the size of v on the potentially 

infinite number of components of dB(x,r) \ G by connecting each of them to a 

reasonably large disk in ft. This would use Sections 20 (to connect components to 

larger disks) and 21 (to control the values of v). 

Because of (35.10) and (35.11), to prove that (35.8) holds for almost every r > 0 

(which will be enough), it is enough to check that for almost-every m < mo, 

(35.13) 
JÇLrnnB{x,r) 

\Vv\2 = 
JnmndB(xy 

V 
dv 

dn 
dH1. 

By proposition 32.6, we can restrict to the m < mo such that 

(35.14) Tm = w 1(m) is a rectifiable Jordan curve through 00. 

When (35.14) holds, Tm is even an analytic curve, because for m < mo the level 

set Tm is contained in ft and w is harmonic on ft. Thus there will be no regularity 

problem to integrate by parts. Also, w — m changes signs when we cross Tm, and 

since the sign remains constant on each of the two components of R2 \ Tm, one of 

them must be ftm and the other one {z ; w(z) > m}. In particular, dftm = Tm. Let 

us apply Green's theorem on ftm. C)B(x,r). We get that 

(35.15) 
i^mnB(x,r) ivd2 = 

/0(fìmn5(x,r); 
1)-

dv 

dn 
dH1, 

because v is harmonic. Notice that dv/dn = dw/dr = 0 on Tm, because w is 

conjugated to v and Tm is a level curve for w. Thus the only piece of boundary that 

gives a contribution to the right-hand side of (35.15) is ftm (ldB(x, r); (35.13) follows. 

This completes our verification of (35.8) for almost-every r > 0. 

Because of (35.8), it will be enough to prove that 

(35.16) 
1 

r QoC\dB(x,r 
V-

dv 

on 
dH1 $ 

JÇlQndB(x,r) 
\Vv\2dHx 

for almost all r > 0. (Compare with (35.7)). 

To prove (35.16), decompose ftoH<9i?(£, r) into its connected components Jj, j E J. 

Thus Ij is an open interval of dB(x,r) (or maybe the whole dB(x,r)). 
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Denote by vr and v$ the radial and tangential derivatives of » on Un fi dB(x,r). 

Then 

(35.17) 

Jh 
|VfI2 dH1 = 

Iy 
v2rdHl 

Ji, 
v2dHl 

:= A2 + B2 > 2AB = 2 
Iy 

v2dH' 
1/2 

Iy 
vjdH1 

1/2 

Now we use a classical result of Wirtinger 

Lemma 35.18. — Let I = [a, b] be an interval, and f a function on I such that /' £ 

L2(I) and Jjf(x)dx = 0. Then 

(35.19) 
Ji 

f(x)2dx <hdd 
• | / | -

^ 7T 

2 

Iy 
(f'(x)fdgxee. 

Also, the only functions for which (35.19) is an equality are the multiples of the func

tion fo(x) = sili -nix—a) 
b—a 

71 

Iy 

See for instance Theorem 2.58 in [HaLiPo]. 

Denote by ctj the mean value of v on Ij. If Ij is an interval, Lemma 35.18 tells us 

that 

(35.20) 
Iy 

(v-ctjfdH1 ^dhdfhh 

dqdd 

Tri ll, 
vvl ,dvH1. 

In the remaining case when Ij = dB(x,r), (35.20) is still true (and could even be 

improved), because we can always remove a point from the circle and apply the 

lemma to the remaining interval. [This amounts to forgetting a periodicity condition.] 

Finally, 

(35.21 
Iy 

vr (v — a7) dH ^ 
Jh 

v^dH1 
1/2 

Iy 
(v-etifv,,dH1 

1/2 

Iy 
Iy 

v2rdEvx 
s 1/2 

\h 
7T >h 

vîdHvv1 

1/2 

<<cv 

<c<b 'h 
\Vv\2vvdHl 

by Cauchy-Schwarz, (35.20), and (35.17). 

So far we did not use any specific property of <9fJo> but this will have to happen 

when we prove that 

(35.22) 
Iy 

VrdH1 = 0. 
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Before we prove (35.22), let us say how to use it to complete our proof. By (35.22), 

we can remove from the left-hand side of (35.21). We get that 

(35.23; 
jQondBix.r) 

dv 
V 

dn 
dH 

2TT 

vrv dH1 ^ 

2TT 2TT 

•Mil 
Iy 

\Vv\2dHx 

Iy 

2TT 

dqdr 
wv 

IVvfdH1 =r 
lQ.Qr\dB(x,r) 

\\7v\2dH\ 

because dv/dn = vr by definitions, fto H dB(x, r) is the disjoint union of the Ij, and 

by (35.22) and (35.21). 

This is the same thing as (35.16). Thus Proposition 35.5 will follow from (35.22). 

Now we want to prove (35.22). The argument will use the same sort of ingredients 

as for the verification of the coherence of our definition of w in Section 22, and it may 

even be that one can be deduced from the other. Let us first check that 

(35.24) 2TTSGFS 

m<mo 

2TTSHH 

where m) denotes the component of the center of Ij (or any given point of Ij if 

Ij = dB(x,r)) in Ctm n dB(x,r). This is easy, because Qo is the increasing union of 

the fim, m < mo, and then every compact subset of Ij is contained in £2m, m < mo 

sufficiently close to mo-

Next we want to show that 

(35.25) 
Jl(j,m] 

vr dH = 0. 

If we can do this, (35.22) will follow at once, provided that JDB^X r^G \Vv\ dH1 < 

-hoo (so that we can apply Lebesgue's dominated convergence theorem). Our conver

gence condition is satisfied for almost all r > 0 (because JBR^G |VÎ; |2 < -foo for all 

jR), hence it will not disturb. 

Also, it will be enough to prove (35.25) for almost-every m < mo. So we may 

assume that (35.14) holds. 

The easiest case is when I(j,m) = dB(x,r). In this case Tm does not meet 

dB(x,r); it does not meet B(x,r) either (because it is connected and unbounded). 

Then B(x,r) C ftm and 

(35.26) 
JdB(x,r) 

Vr dH1 = 
!dB(x,r) 

dv 

dn m1 
JB(x,r) 

Av = 0. 

If I(j,m) = dB(x,r) \ {y} for some y € dB{x,r), then Tm H dB(x,r) = {y} 

and Tm does not get inside B(x,r) (by (35.14)). In this case also B(x,r) C Qm and 

(35.25) is proved as in (35.26). 

We are left with the case when I(j,m) is an interval of dB(x,r) with distinct 

extremities a, b. Then a and b lie on dCtm — rm. Denote by 7(a , 6) the arc of Tm 
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between these two points, and by 7 the Jordan arc that we get by completing 7(a, b) 
by the arc /(j,m ). [This is a Jordan curve because I(j,m ) C does not meet Fm.] 
Let fT denote the bounded component of R2 \  T. We claim that

(35.27) n* c  nm.

[See Figure 35.1.] Indeed, the two open arcs of Tm that compose Tm \  7(a, 6) do 
not meet 7 = dfl*, and so they are both contained in the unbounded component of 
R2 \  7 (because they are connected and unbounded). Thus fl* does not meet Tm. 
Since w(z) < m near 7(j, to), we get (35.27).

Now v is harmonic on Cl* and Green yields

0 = / a  v . f  —-dH 1 = i
Jsì* Jon- dn on

(35.28)
in' Jdn* un Ji(j,m)

because dv/dn = dw/dr = 0 on Fm. This proves (35.25). Proposition 35.5 follows, 
as was said before. □

Figure 35.1

Now we want to discuss the case when $>x is constant on some interval [ri, r2]- The 
case when i>x(r) = 0 for any r > 0 is excluded here, because we assume that is 
connected and v is not constant. [See (32.1) and (32.5).]

Lemma 35.29. — If&x is constant on some interval [r\,r2\, r2 > r\, then we can find 
constants a,/3,0o G R such that
(35.30) G = {x -  peie° ; p ^  0} 
and

(35.31) v (2 + rel6) = a 4- fir1/2 sin^  2^°)

for Oq — 7r < 9 < 9q + 7i and 0 < r < + 00. Moreover (3 = ± (2<E>/ 7r ) , where $ 
denotes the constant value of $x on [ri,r2].

Suppose that is constant on [ri,r2]. Then (35.7) is an equality for almost all 
r 6 (ri ,r2), and so are all the inequalities that compose (35.23).

Suppose this is the case for r. Then \Ij\/2-k = r for all the sets 7, that give a 
nontrivial contribution to the sum in (35.23). Note that there is at least one such
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interval (call it 7), because the right-hand side of (35.23) is positive (by (35.7) and 

because $x(r) > 0). Then |7| = 2irr, which means that 

(35.32) I = {x + reie ; 0o - 7T < 0 < 0O + TT} , 

where 6Q = 0o(r) may depend on r, or else 7 = dB(x,r). In both cases, 7 is the on 

component of fio D dB(x, r). 

Since the first inequality in (35.23) is an equality, (35.21) (for Ij = 7) is also an 

equality. Since both sides of (35.21) are positive, we can simplify and deduce from 

the second inequality that 

(35.33) 
Ji 

( v - a , ? d H l f = V v M 
7TZ 

I7I2 
j vjdH\ 

and both sides of (35.33) are positive. Thus we are in a situation where (35.19) is an 

equality. If (35.32) holds, Lemma 35.18 yields that 

(35.34) v (x + re%e) = a(r) + /3(r) sin 
e - 0o(r) 

2 
for 90(r)-TT < 0 < 0o(0 +7T. 

Also, (3(r) ^ 0 because both sides of (35.33) are positive. 

In the remaining case when 7 = dB(x,r), we can apply the same argument and 

get (35.34) with any value of 0o- This is of course impossible, because f3(r) ^ 0 and 

hence v [x + re16) has a jump on 7 C fto-

Now we want to see how a(r), /3(r), and 0o(r) depend on r. Rewrite (35.34) as 

(35.35) v(x + rei6) = a{r) +(3{r)cos(ss0o(r)/2)sin(0/2)-0bfj{r)sinjjjgj(0o(ssr)/2ss)cffos(gjgjgg/2) , 

which holds for almost every r £ (ri,^) and then 0o(r) — 7r < 0 < 60(r) + TT. 

Let ro G (ri, r2) be such that fio meets dB (x, ro). We know from (35.32) that this 

is the case for almost all ro G (ri,r2). Pick a little disk T̂ o centered on dB(x,ro) 

and contained in fio. Then replace our initial interval (ri,r2) with a smaller, but 

nontrivial interval such that dB(x, r) meets \Do for all r in the new interval (ri, r2). 

For all r G (ri,r2) such that (35.35) holds, we can use linear algebra to recover 

the coefficients a(r), /?(r)cos(0o(r)/2), /?(r)sin(0o(r)/2) from the values of ̂  on Do. 

[In fact, a small number of values of 0 would be enough.] This proves that these 

coefficients are (restrictions to a set of full measure of) smooth functions defined for 

r £ (^1^2)- Then (35.35) holds for all r G (ri,r2) (by taking limits), and we can 

differentiate in (35.35). 

Since (35.21) is an equality, we must also have A2 = B2 in (35.17), hence 

(35.36) 
Ji 

vldR1^ 

J i 

vl dH1 = 
1 

2 JI 

\Vv\2dHl. 
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Call $ the constant value of $x(r) on (ri,r2). Since (35.7) is an equality (almost 

everywhere), 

(35.37) 
Ji 

Vv\zdHx =Vv\zdHx = 

On the other hand, a direct computation with (35.35) or (35.34) gives that 

(35.38) 

and hence 

vldH1 
4r 

7T 
2TTVv\zd 

(35.39) ß(r) = ± 
(2r<& 

TT 

> 1/2 
Vv\zdHx = 

1 /2 
with ¡3 = ± (23>/7r) 1 , as in the statement of Lemma 35.29. Of course the sign is 

constant by continuity. 
If we differentiate in (35.34) we get that 

(35.40) vr (x + reie) = ß'(r) sin 
fO-00(r) 

2 
+ h{0), 

where h{6) is some linear combination of cos {{6 — 0o(r))/2) and a constant, with 

coefficients that may depend on r. In particular, h is orthogonal to sin ((0 — 0o(r))/2) 

and 

(35.41) / v2rdHl =Trrß'(r)2 
Ji 

+ 
Ji 

hiOfdH1 = 
2 

4 h(0)2dH\ 
Ji 

by (35.39). When we compare this with (35.36) and (35.37), we get that h(0) = 0, 

and then that a(r) and 0o(r) are constant. 

This gives the same description of v as in (35.31), but only for r\ < r < V2- The 

general case follows easily, because Q, is connected and v is harmonic on Q. 

When (13.2) holds, we immediately deduce the description of G in (35.30) from 

(35.31), because (v, G) is a reduced minimizer. 

When (13.1) holds, this brutal approach only gives that G = Go U L, where Go 

denotes the half-line in (35.30) and L = ( - c o , —1] is as in the definition of our modified 

functional. [See Section 11.] However we must have dv/dn = 0 on L, and it is easy 

to see that this can only happen when L C Go. For instance, we can say that L must 

be contained in a level set of w (since dw/dr = 0 on L), and we can check that Go is 

the only level set of w that contains a line segment. 

This completes our proof of Lemma 35.29. • 

Remark 35.42 (on cracktips). — In the situation of Lemma 35.29, we can say a little 

more, because many pairs (v,G) defined by (35.30) and (35.31) do not satisfy (13.1) 

or (13.2). 
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First, (35.30) and (35.31) can only define a global A-minimizer (v, G) (as in (13.2)) 
when (3 = ±y2A/7r, which corresponds to $x(r) = A. This was already observed in 
[MuSh]; the point is that when f32 < 2X/TT, we can make G a little shorter near x and 
save more in length than we have to pay in energy, while when (32 > 2X/TT we can 
improve (v, G) by making the half-line G a little longer. 

The situation for global A-minimizers in R2 \ (—oo,0] (see Definition 12.41) is 
a little different. If G in (35.30) contains (—oo,0] strictly, then we still have the 
constraint (32 = 2X/TT as above, but if G = (—oo,0], the argument suggested above 
only gives the constraint (32 ̂  2A/7T (because we are not allowed to make G shorter). 

The situation for minimizers of the modified functional is similar. If G contains L 
strictly, we get the constraint (32 = 2\/n (where now \ = h' (if1(G \ L)) , and when 
G = L we only know that (32 ̂  2A/TT. This can be seen directly, or we could use the 
fact that blow-ups of (v,G) at the endpoint of L are A-minimizers in R2 \ (—oo,0) 
(by Proposition 12.42). 

Of course the converse to these results, i.e., the fact that we listed all the con
straints, is much less obvious, or else at least half of this paper is ridiculous. 

36. Gi l Ofto contains only regular and spider points 

In this section and the next one we want to use the monotonicity formula and blow 
up arguments to find lots of regular or spider points in G. We continue with the 
hypotheses of the previous section, and even add two. Let us assume that 

(36.1) lim inf 
r—>+oo 

1 

• r >B(x,r)\G 
|Vd2 ^ A, 

where A is as in the definition of a global A-minimizer when (13.2) hold, and A = 
b! (i71(G \ L)) (as usual) when (13.1) holds. Let us also assume that 

(36.2) (i;,G) is not a "generalized cracktip", 

by which we just mean that we cannot find x G R2 and constants a, /?, @Q G R such 
that (35.30) and (35.31) hold. We use a slightly different name here not to conflict 
with the slightly more restrictive definition of cracktips given in Section 1. 

Proposition 36.3. — Under the hypotheses above, mo < 0 and every point of GO dQo 
is a regular or a spider point of G. 

See (35.2) for the definition of mo and Section 13 for regular and spider points. 

We start with a few easy observations. Let x G fto be given, and let $x be as in 
(35.4). Proposition 35.5 says that <&x is nondecreasing, and so it has limits at 0 and 
oo. Then (36.1) tells us that 

(36.4) lim Qx(r) ^ A. 
r—>oo 
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Set 

(36.5) t(x) = l i m $x(r) 

r—>0 
Then (36.4) implies that £(x) ^ A. Let us check that 

(36.6) £{x) < A for all xeQ0. 

Indeed, if £(x) = A, then $x(r) is constant and Lemma 35.29 says that (v, G) is a 

generalized cracktip. Since (36.2) excludes this case, (36.6) holds. 

The main step in our proof will be to prove that £(x) — 0 (as in the next lemma). 

This will be done in the rest of this section. Then we shall need to worry about the 

difference between fto H B{x, r) and B{x, r) \ G in the definition of $x. This will be 

done in Section 37. In both parts of the argument, blow-ups will be useful. 

Lemma 36.7. — We have that £(x) = 0 for all x € fto, except perhaps for x = — 1 

when (13.1) holds. 

The case when (13.1) holds and x = — 1 is a little special, and it will be easier to 

treat it separately later. 

Note that £{x) = 0 on ft trivially, because Vv is continuous there. Thus we may 

restrict toxeGilfto = Gn dfto (since fto C ft, as we checked just below (35.3). 

Fix a point x G G fl dfto- We shall proceed by contradiction and assume that 

£(x) > 0. 

Let {tn} be any sequence of positive numbers with 

(36.8) lim tn = 0. 
n—->-|-oo 

Later on, {tn} will be associated to a (converging) blow-up sequence {(vn,Gn)} as 

in Section 12, but for the moment we want to use the monotonicity formula and our 

assumption that £(x) > 0 to study the behavior of v on the circles dB (x,tnp) for 

(almost every) fixed p > 0. Some amount of notation will be useful. 

For each p > 0 and n ^ 0, denote by I(n) the longest component of ft0P\dB (x, tnp). 

[In case of equality, choose a longest one at random.] Set 

(36.9) J'(n) = {z e &B(0, p) ; tnz + xe I(n)} 

and 

(36.10) / „ ( * ) = J"1/2 [v (tnz + x)- a(n)} 

for z G I'(n), and where a(n) denotes the mean value of v on I(n). The definition 

makes sense because I(n) C fto C ft. 

Lemma36.11. — For almost every p > 0, we can find a subsequence {tnk} of {tn} 

and constants 6(p) and fi{p) such that: 

(36.12) the compacts sets dB(0,p) \ V (nk) converge to {-ei6{p)}\ 
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(36.13) 

{fnk} converges to / , uniformly on compact subsets of dB(0,p) \ {— eï(9^}, 

where f is defined by 

(36.14) f ( p e i e ) = ß ( p ) s m l h l fOhl-O(p) 
2 for 6{p) - TT < e < 0(p) + TT ; 

(36.15) ß(p)2 = 
2p£(x) 

TT 

The proof of this lemma will take some time. Clearly it will be enough to show 

that for all choices of 0 < a < b < + o o , almost all p G (a, b) have the property of the 

lemma. So we fix a and b as above and restrict our attention to p G (a, b). 

Denote by E the set of p G (a, b) such that, for all n > 0, &x(r) is differentiate at 

r = tnp, and the various equalities of Section 35 (that were only proved for almost all 

r) hold with r = tnp. Of course H1 ((a, 6) \ E) = 0 and we can restrict our attention 

to p G E. 

Prom (35.6) and the sentence that follows it, we get that 

(36.16) <&x {bin) - $x (atn) = 
dhh 

J r=atn 

&x(r)dr 

rbtn 

J atn 

1 

r JÇL0ndB{x,r) 
\Vv\2 -

1 

r 
•*x(r) dr. 

For all n ^ 0 and p G (a, 6), set 

(36.17) Vv\zdHx =gsg 
Jn0ndB(x,tnp) 

\Vv\2 

and 

(36.18Ì Bn(p) = $x (tnp) = 
1 

tnP Jn0nB(x,tnp) 
\Vv\2. 

Note that 

(36.19) Bn(p) = 
1 

tnP J /QondBixJnp) 

V 
dv 

dn 
dH1 

for p G E, by (35.8). Also set 

(36.20) An(p) = An(p)-hl*llBn(p). 

Then (36.16) and the change of variables ptn = r yield 

(36.21) $x ibtn) - $x (atn) = 
»6 

Ja 
A n (p] 

dp 

P 
Note that 

(36.22) An(p) > 0 f o r p G £ , 
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by (35.7). Since lim $ (btn) = lim $ (atn) = tlx), (36.21) implies that 
n—>+oo n—>+oo 

An(p)dp/p tends to 0. Modulo extracting a subsequence from {tn} (which does 

not disturb for Lemma 36.11), we can assume that 

(36.23) 
Ja 

Vv\zd 
dp 

P 
Vv\zdHx 

Let us check that in this case 

(36.24) lim An(p) = 0 
n—>-f-oo 

for almost all p € (a,b). Set 

(36.25) Zn = (pe (a,b) ; A„(p) >2- " i 

and Z'n = \Jm>nZm. Then \Zn\dp/p ^ 2"" by Chebychev, and \Z'n\dp/p < 2"»+1. If 
(36.24) fails, p G Zm for infinitely many values of m, and hence p G Z'n for all n. This 

proves our claim. 

Now we fix p G E such that (36.24) holds and try to get the description of Lemma 

36.11. Denote by Ij, j G J(n), the components of fio H d £ (#, £np). Then 

(36.26) Sn(p) 
Up 

1 

j 

v 
dv 

on 
dH1 < 

3 

Iy] 

2ntnp „ 
Vv\zdHx =Vv\zd 

by (36.19) and (35.23). Hence 

(36.27) An(p) = 
Jn0r\dB(x,tnp) 

\Vv\2 - Bn(p) 

fqfg 
j 

1 - Mil 
2TT tnp Iy 

\Vv\2 > Min 
3 

1 -

Vv\zdHx 

2-Ktnp 
Vv\zdHx = 

by (36.17). Note that 

(36.28) An(p) ^ Bn(p) = $x (tnp) ^ £(x) > 0 

by (36.22), (36.20), (36.18), (36.5), and our contradiction assumption. Hence the 

minimum in (36.27) tends to 0, because An(p) tends to 0 (by (36.24)). 

Recall from just before Lemma 36.11 that I(n) denotes the longest of the Ij, 

j G J (n) . Then 

(36.29) lim 
n—>+oc 

Vv\zdHx 

2TT tnp 
= 1. 

Set I* (n) = fio fl dB (x, tnp) \ I(n). Thus I* (n) is the union of all the intervals Ij, 

j G J(n), other that I(n). For n large enough, {1 — \Ij\ /2-Ktnp} > 1/2 for all these 

Ij, and so 

(36.30) 
Jl*(n) 

\Vv\2 = 

3\Ij*I{n) Ij 
\Vv\2 ^ 2An(p), 
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by the first inequality in (36.27). Hence 

(36.31) lim 
n—»-foo ^(BH0UL; 

|Vt,|2 = 0, 

by (36.24). 

Next we want to analyze more precisely the contribution of J(n) to (36.26) and 

(36.27). First recall from (35.21) and (35.22) that for all j £ J(n), 

(36.32) 
Iy 

V 
dv 

dn 
Iy 

(v - aj) 
dv 

dr 

tel 
2TT 'ij 

\VV\2 ^ tnP 

Iy 
Vvf 

(where ctj denotes the mean value of v on Ij), and hence 

(36.33) 
Jl*(n) 

V 
dv 

dn 
IyIyIy 

Jl*(n) 
\Vv\\ 

(36.34) Bn(p) = 
1 

tnP 7(n)U/*(n) 
v 

dv 

dr, 

1 

tnP ll(n) 
V 

dv 

dn 
4 

h{ny 
\Vv\2 

(by (36.19) and (36.33)), and 

(36.35) An(p) = An(p) - Bn(p) ^ 
Jl(n) 

\Vv\2 
1 

tnP I{n) 
V 

dv 

dn 

>> 1 

tnP 

| / ( n ) 

2TT Jl(n) 
\Vv\2 -

'l(n) 
V 

dv 

dn 

by (36.20), (36.17), (36.34), because I*(n) = Q0ndB (x,tnp)\I{n), and since \I(n)\ ^ 

2-Ktnp. 

Next return to (35.21). Set / = I(n) to save some space and denote by a(n) the 

mean value of v on / (as before the statement of Lemma 36.11). Observe that 

(36.36) 
Ji 

v 
dv 

dn 
Iy (v — a(n)) vr 

(with the notations of (35.21)), by (35.22). Prom (35.21) we deduce that 

(36.37) 

Iy 
2TT Ji 

|Vd2 
Ji 

v 
dv 

dn Ji 
v^ 

1/2 Iy 

7T Iy 
v2e 

1/2 
iy 

Iy 
(v — a(n))2 

1/2 

because the right-hand side of (36.37) is the difference between two consecutive lines 

of (35.21). Set 

(36.38) (n))2 

9l(n) 

v2e 

1/2 
7T 

\I(n)\ Jl(n) 
(v — a(n))2 

,1cnc/2 

Then 

(36.39) An(p) ^ 
|/(n)| 
IT tnp Jl(n) 

v2 

\ 1/2 
(n))2 
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by (36.35) and (36.37). We want to deduce from this that ôn tends to 0. First note 

that 

(36.401 

lim 
n—>+oo 

\Vv\2 = lim An(p) = lim Bn(p) = lim $x (tnp) = £(x) > 0, 
\ n—>-foo n—•+00 n—++oo 

by (36.17) and (36.31), (36.24) and (36.20), (36.18), (36.5), and our contradiction 

assumption. Since 

(36.41) 
Jl(n) 

\Vv\2-An(p)^ 
1 

tnP J(n) 
V 

dv 

on ll(n) 
\Vv\2 

by the first inequality in (36.35) and (36.32), (36.40) and (36.24) imply that 

(36.42) lim 
Vv\zd 

1 

tnP % I(n) 
V 

dv 

dn 
Vv\zdHx = 

Set 

(36.43) Vv\zdHx 

Jl(n 
r 

v 1/2 

and bn = 
ll(n) 

v2e 

,1/2 

When we multiply (35.21) by l/tnp, both sides tend to £(x) (by (36.42), (35.22), 

(36.29), and (36.40)); hence 

(36.44) lim anbn = 
n—>-f-oo 

£(x) 

2 

(look at the second line of (35.21)). On the other hand 

(36.45) 
Vv\zdHx =ssg 

<I(n) 
\Vv\2, 

which tends to £(x) by (36.40). Hence (an - bn)2 tends to 0, and 

(36.46) lim a2n = lim b2n = 
n—>+oo n—>+oo 

£(x) 

2 

We immediately deduce from this, (36.39), (36.24), and (36.29) that 

(36.47) lim 8N = 0. 

[Recall from the definition (36.38) and (35.21) or Lemma 35.18 that Sn ^ 0.] 

Let us renormalize all this, and then we shall take limits. Let I'(n) and fn be as 

in (36.9) and (36.10). Thus fn has mean value 0 on I'{n), and it is almost optimal 

for Lemma 35.18, in the sense that if we denote by f'n its (tangential) derivative, 

(36.48) 
Jl'{n) 

7')2 
KJn) 

1/2 
7T 

|J'(n) Jl'(n) 

f2 
1/2 

Vv\zd 
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(by (36.38) and a change of variables), while 

(36.49) lim 
n—>+oo 'J'(n) 

( / ; f = 
l(z) 

2 

(by (36.46) and (36.43)). 

Let us check that for n large, 

(36.50) dB(Q,p) \ I'(n) is not empty. 

Otherwise, g(z) = fn(pz) would be smooth on the circle, we could write the Fourier 

expansion 

(36.51) 

and then 

(36.52) 

9(z) = 
ck zk, 

ck zk, 

(36.53) 

libila = 2* 

k 

v Z~2 2 
. K ck-> 

Il3l|22 = 27r 
k 

4 < libila 

because cq = 0, so that finally 

(36.54) wa^p-1 wwl ^ P-1 iipiis=p"2 ii/n«2 = 
2?r 

|/'(n)|> 

2 
'll/nll2-

This is not compatible with (36.48) and (36.49) when n is large enough, because Sn 

tends to 0. Our claim (36.50) follows. 

For n large, 8B(0, p) \ I'(n) is a nonempty closed interval of dB(0, p), and (36.29) 

tells us that its diameter tends to 0. Thus, modulo extracting a new subsequence, 

we may assume that it converges to a point £(p) = —el0^ in dB(0,p). This gives 

(36.12). 

Modulo a third sequence extraction, we can also assume that {fn} converges to a 

limit / , uniformly on every compact subset of V = dB(0, p) \ {£(p)}. This comes from 

our uniform estimate (36.49) on ||/4H2j and the fact that all fn have mean value 0. 

To complete the proof of Lemma 36.11, we still have to check that / satisfies (36.14) 

and (36.15). 

First note that ||/'||2 < (£(x)/2)1/2, by (36.49) and Fatou. On the other hand 

(36.55) ||/||2 = lim ||/||2 = \I'\ 
7T 

filx) 

2 

1/2 

because { /n} converges to / uniformly on compact subsets of i7, fn is also uniformly 

bounded by (36.49) (and the fact that it has mean value 0), and then by (36.48) and 

(36.49). 
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Thus / is one of the extremal functions in Lemma 35.18, and so / has the form 
(36.14) for some /?(p). Finally (36.15) follows from (36.14) and (36.55) by a compu
tation. 

This completes our proof of Lemma 36.11. • 

We may now return to the proof of Lemma 36.7. We want to use Lemma 36.11 to 

show that limits of (v, G) under blow-ups at the point x are "generalized cracktips". 

Let us keep our initial sequence {tn} that tends to 0, set 

(36.56) Gn=t-\G-x), 

and define vn on R2 \ Gn by 

(36.57) vn{z) = t~1/2v (tnz + x). 

Thus {(vn,Gn)} is the blow-up sequence associated to (tn) and the fixed point x G G 
in (12.7) and (12.8). Let us assume that 

(36.58) {{v<n,Gn)} converges to a limit (it, K), 

with the notion of convergence that was described a little before Lemma 12.4. 

Note that we can always find sequences {tn} like this. In fact, Lemma 12.5 tells us 
that for each sequence {tn} that tends to 0, we can extract a subsequence for which 
(36.58) holds. 

We want to use Lemma 36.11 to prove that (u, K) is almost a "generalized cracktip", 
and then get a contradiction because the cracktip is at best a generalized A'-minimizer 
for the wrong value of A'. 

Let D be any compact disk contained in R2 \ K. Since dist(Z), K) > 0 and {Gn} 
converges to K (by (36.58)), Gn does not meet D for n large. Moreover, 

(36.59) \/vn converges to Vu uniformly on D, 

again by (36.58). See the definition of convergence before Lemma 12.4. 

Select an origin xry inside D, and set 

(36.60) anin) = vn (XD) - u (XD) • 

Then (36.59) yields that 

(36.61) vn(z) — an{n) converges to u uniformly in D. 

Denote by F the set of radii p > 0 that have the property of Lemma 36.11. Also 
set 

(36.62) F(D) = {peF ; &B(0, p) meets the interior of D} . 

Let p G F(D) be given. Define fn by (36.10), but on the possibly larger (and more 
natural) domain of definition dB(0,p) \ Gn. Note that 

(36.63) fn(z) = vn(z) - t-^2a(n) on dB(0,p) x Gn, 
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by (36.57). Denote by {rik} the subsequence given by Lemma 36.11 (because p G F) , 

and let f be as in (36.14). Thus 

(36.64) {fnA converges to / on dB(0,p) \ {-eie{p)\. 

Set gk = vnk — CLD (rik) — fnk on Dn dB(0,p) (which does not meet Gnk for k 

large enough). Then gk = tnl^2a(nk) — OLD (nk) is constant (by (36.63)), and {gk} 

converges to u - f on D fl dB(0,p) \ {e~i6^} by (36.61) and (36.64). Denote by 

7D(p) the (constant) limit. Thus 

(36.65) 7D(p) = lim 
k—»+oo 

j *nfc1/2a (™fc) - fl£> (™fc) 

and 

(36.66) u(z) = f(z) + 7D(p) on L> H dB(0,p) \ { - e * * ^ } . 

Since ii is continuous on D and / has a jump of size 2/3(p) 7̂  0 at —ex6^ (by (36.14) 

and (36.15)), 

(36.67) 
zdHx =Vv\zdHx =ddqfqqh 

Thus (36.66) and (36.14) yield 

(36.68) u (pe^) = (3(p) sin 
rO-0(p) 

2 
+ 7D(P; 

for all (9 G (6(p) - vr, 0(p) + TT) such that pe^ G £>. 

Now we want to study the dependence of our coefficients on p and D. As in 

Section 35 (see between (35.35) and (35.36)), the coefficients /3(p)eie(<p^2 and jD(p) 

can be computed (by linear algebra) from the values of u on any small interval of 

D fl dB(x,p). Then they depend smoothly on p (with D fixed). That is, we can find 

smooth functions on {p > 0; dB(0,p) meets int(D)} that coincide with (3(p)eie(p^2 

and 7D(p) on F(D). 

Note that P(p)e'ie^p^2 does not depend on our choice of D, and even though 7r>(p) 

may depend on JD, 7^>(p) = djD(p)/dp depends only on p, not on D. This is be

cause, in the definition (36.65), the only dependence of JD(P) on p comes from the 

tnl^2a (rik), which do not depend on D. 

Because of all this, the coefficients /3(p)eie(<p^2 and YD(p) are defined and smooth 

on the complement of 

(36.69) Z = {p>0; dB(0,p)cK} 

This is because if p G (0, +00) \ Z , we can apply the preceding arguments to a disk 

C l 2 \ i ( centered on 8B(0,p). The reader should not be too impatient here; we 

agree that Z must be empty, but we shall only prove it later. 

Let p G F \ Z be given. To avoid convergence issues, assume that dB(0,p) fl K 

is finite. We know that this is the case for almost all p, because if1 (if) is locally 

finite and by a standard Pubini-like argument. Note that (3(p) never vanishes, so we 
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can find smooth determinations of f3(p) and 6(p) locally. Then we can differentiate 
(36.68) with respect to p. We get that 

(36.70) 
du 
dp 

ck zk, = 0'(p)sm 
(9 - 0{p) 

2 ) + M * ) > 

with 

(36.71) hp{6) = -
1 

2 
9f(p)f3(p) cos 

Vv\zdHx = 

2 
Vv\zdHx = 

Then 

(36.72; 
JdB(0,p)^K 

Vv\z 

dp, 
2 

dH1 = p 
Vv\zdHx 

J0(p)-7T 

du 
\dp 

Vv\zdH= I2 . 
dO 

Vv\zdHx =d 

Je 
sin2 

9-9(p) 
2 

d9 + p 
Je 

hp{9)2d9, 

because hp{-) is orthogonal to sin (• - 9(p)/2). Since (3(p) = ± (2p£{x)/-n)l/2, (3'{p)2 = 
£(x)/2np and hence 

(36.73) 
JdB(0,p)^K 

du 

dp 

2 
dH1 = 

£(x) 
2 + P 

Je 
hJ6)2d9. 

We want to show that 

(36.74) 9'{P) = iD{p) = 0, 

and so it will be enough to show that hp(0)2d6 = 0, or that 

(36.75) 
JdB(0,p)^K 

du 
dp, 

2 

dH1 ^ 
£(x) 

2 

To get this we shall use the uniform convergence of Vvn to Vu on the compact 
subsets of M2 \ K, which comes from (36.58). Note that —e10^ G K, because 
otherwise we could choose a compact disk D C M2 \ K centered at —eie^ and 
contradict (36.67). Then (36.12) says that every compact subset T of dB(0,p) \ K 
is contained in V (n^) for n large enough. Then 

(36.76) 
JJ 

(du 
Vv\zd 

2 
= lim 

n—y+oc IT 

( dvn 
.dp 

2 
< liminf 

k—»+oo fIf(nk) 

( dvnk 
dp 

2 

= liminf 
k—>+oo Vv\zdHx 

ck zk, 
Vv\zdHx 

2 Vv\zd 

2 

because Vvn converges to Vг¿ uniformly on T, by (36.9), (36.57) and a change of 

variables (to get the second equality), and by (36.46) and (36.43) (applied to n^). 

Since this holds for all choices of T, we get (36.75), and then (36.74). 

Let Z be as in (36.39), and let / be a component of (0, + o o ) \ Z. We know from 

(36.15), (36.74), and the remark before (36.69) that (3(p) = ± (2p£(x)/7r)1/2 (with a 

constant sign) on / , and that e%e^ is constant on / . As for 7D(p), we only know that 
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yD(p) = 0 on / , so that 7£>(p) is only "locally constant". Let us be more precise. For 

each connected component Ö of 

(36.77) Vj = {z G R2 \ K; \z\ G 1} , 

we can define JD(P) for all compact disks D c O and all p G F ( D ) . Here again the 

reader is probably shocked that we even consider the possibility that Vi may not be 

connected, but we just don't want to prove immediately that this is impossible. Let us 

check that 7D(p) does not depend on D or p. First, (36.74) and the regularity of 7D(-) 

on F(D) imply that ^D(P) = 1D{P') for all choices of p, p' G F(D). Also, it is clear 

from (36.66) that jD(p) = 7D'(p) whenever p G F and int(£>) fl int (D')n dB(0, p) ^ 0 . 

From these two observations it is easy to deduce that JD(P) does not depend o n D c O 

or p G F(D). Altogether we found constants /?/ = ± (2£(X)/TT)1^2 and 0/ that depend 

only on J, and a constant jo that depends on O as well, such that 

(36.78) u(peiG) =ßip1/2 sin 
Vv\zdHx 

2 
) + 7e> 

for all p e I and £ £ (0/ - 7r, 0/ + 7r) such that peie G (9. 

We are now fairly close to the desired contradiction. By (36.58), (-u, K) is the limit 

of some blow-up sequence of (v, G) at the point x. If (13.2) holds, Proposition 12.44 

tells us that (u,K) is a global A-minimizer. If (13.1) holds and x 0 L, then we can 

use Proposition 12.12 to get the same conclusion, with A = h! (HX{G \ L)) as usual. 

In the remaining case when (13.1) holds and x G 1/, note that x ^ - 1 because we 

excluded this case in the statement of Lemma 36.7; hence Proposition 12.42 says that 

(w, K) is a global A-minimizer in E2 \ R. 

Let us first use this to show that Z is empty. The simplest proof at this point 

is to say that R2 \ K has no bounded connected component, by Lemma 15.1 and 

Remark 15.8, but we can also proceed directly, as follows. Let z be any regular point 

of K, and let B be a disk of regularity centered at z. [See Definition 13.6.] Call 

fli and f̂ 2 the connected components of B \ K. On each Qi, u is given by (36.78), 

for some values of the constants (3I,0I, and 70 that may depend on i. Because u 

minimizes / IV^2 locally, its boundary values on K Pi B (with access from Cli) 

satisfy the Neumann condition du/dn = 0. Then K Pi B is contained in a level set of 

the coniueated function w defined bv 

(36.79) w(pei0) = -ßIp v1/2 coscc 
tO-Or 

2 

for p ^ 0 and 10 — 0/1 ^ 7r. These level sets are the half-line 

(36.80) Kj = {-peiei ; p ^ O } , 

and a collection of parabolas. 

If Z was not empty, K would contain a circle dB(0, R), Proposition 13.11 would say 

that dB(0,R) contains regular points for K, and then some nontrivial arc of circle 
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would be contained in one of the level sets above. This is impossible, and so Z is 

empty and there is only one interval / = (0, + o o ) . 

Now we can easily exclude the case when (u, K) is a global minimizer on R2 \ R. 

In this case also, almost every point of R is a regular point for K (or equivalently, is 

the center of some small disk B such that K D B = R n B). We did not state this 

fact yet, but the proof is the same as for (13.12) above. It only uses measure theory 

and the local Ahlfors-regularity of K \ R. By the argument above, for almost every 

point z G R there is a small interval of R centered at z which is contained in a level 

line of w above, and hence in Kj. This is clearly false. So we can assume that 

(36.81) (u, K) is a global A-minimizer (in R2) . 

Next we want to check that K = Ki, where Ki is still as in (36.80). Prom (36.78), 

which now holds with fixed values of /3/ and 0/, we easily deduce that Ki C K. 

Suppose that K is not contained in K\. Since K is Ahlfors-regular, H1 (K \ Ki) > 

0, and by Proposition 13.11 we can find a point z G K \ Kj which is regular for K. 

Let B be a small disk of regularity centered at z. By the argument above, K fi B is 

contained in one of the level sets of w above, and so it is an arc of parabola. 

We can find a competitor (u,K) which is strictly better that (u,K), as follows. 

First, K is obtained from K by replacing K C\B with the line segment with the same 

endpoints. Call fii, Q2 the two connected components of B \ K, and (l\,Q,2 the 

corresponding components of B \ K. On each f^, u is defined by (36.78), with some 

constant 70. We define u on (li by the same formula, with the same constant; outside 

of B, we keep u = u. It is easy to see that (2, K) is an acceptable competitor for 

(u, K). Note that we did not change the values of Vu; we simply added or subtracted 

constants locally. Since K is strictly shorter that K, we get the desired contradiction 

with (36.81). 

So K = Ki, there is only one component O, and (u,K) is a generalized cracktip. 

[Compare (36.80) and (36.78) with (35.30) and (35.31).] Now Remark 35.42 and 

(36.81) imply that /3/ = ± (2A/TT)1/2. But we already knew that /3/ = ± (2£(X)/TT)1/2 

(see just above (36.78)). Since we know from (36.6) that £(x) < A, this gives the 

desired contradiction. 

Our proof of Lemma 36.7 is now complete. • 

Note that our argument fails when (13.1) holds and x = — 1, because (u,K) is 

a global A-minimizer in R2 \ (-00,0], and Remark 35.42 does not exclude the case 

when K = (-00,0] and 0\ < 2A/TT. 

37. Points of low energy (continued) 

In this section we want to complete our proof of Proposition 36.3. The assumptions 

are the same as in Section 36. 
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Lemma 37.1. — The case when mo = 0 does not occur. 

Assume instead that ra0 = 0. Then O0 = {z G R2 ; w(z) < 0} = R2 \ Goo, by 

(35.3) and Proposition 32.6, and hence G = Goo (by (35.2)) and in particular G is 

connected. Thus we could use [Bo] and conclude immediately when (13.2) holds, but 

it will be useful to review the argument anyway. 

Sublemma 37.2. — 7/(13.2) holds, every point G is a regular or a spider point of G. 

7/(13.1) holds, every point of G \ L is a regular or a spider point of G. 

Let x G G be given, and suppose that # G G \ L if ( 1 3 . 1 ) holds. Choose a sequence 

{tn} of positive numbers that tends to 0, and such that if {(vn,Gn)} denotes the 

blow-up sequence defined by ( 3 6 . 5 6 ) and ( 3 6 . 5 7 ) , then 

( 3 7 . 3 ) { ( ^ n , Gn)} converges to a limit (u, K). 

See before Lemma 1 2 . 4 for the precise definition of convergence, and Lemma 1 2 . 5 

for the existence of a sequence {tn} like this. Also note that 

( 3 7 . 4 ) (u, K) is a global A-minimizer. 

by Proposition 12.12 or Proposition 12.44. 

Let D be any compact disk in R2 \ K. Then D c M 2 \ G n for n large, and {Vvn} 

converges to uniformly on D, by (37.3). Hence 

( 3 7 . 5 ) 
JD 

|V«|2 
71 

lim 
n—>+oc ID 

\Vvn\2= lim t'1 
n—»4-oo 'x+tnD 

IVd2, 

by ( 3 6 . 5 7 ) and a change of variables. Since mo = 0, QQ = R2 \ G and hence 

( 3 7 . 6 ) x + tnD C ilo lor n large enough. 

Choose R so large that D C B(0, R). Then x + tnD c H B (x, tnR) and 

(37.7) in1*"' 
Jx+tnD 

|Vv|2<$x (tnR), 

by the definition ( 3 5 . 4 ) of $x. By ( 3 6 . 5 ) and Lemma 3 6 . 7 , $x (tnR) tends to £(x) = 0 

when n tends to + o o . Hence / \Vu\2 = 0, by ( 3 7 . 5 ) , and u is constant on the 
JD 

connected component of D in R2 \ K (because it is harmonic). 

Sublemma 37.8. — If u is constant on some connected component of R2 \ K, then x 

is a regular or a spider point of G. 

Indeed (37.4) allows us to apply Lemma 18.1. We get that i f is a line or a propeller; 

it cannot be empty because it contains 0 (since x G G). Now Corollary 13.32 says 

that a: is a regular or a spider point of G, as needed. • 
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We recorded this as a sublemma because it will be used a few times later. Note 

that we only used (37.6), and the fact that x £ L if (13.1) holds (through (37.4)), not 

our hypothesis that mo = 0. 

Sublemma 37.2 is an immediate consequence of Sublemma 37.8 and the preceding 

discussion. • 

Remark 37.9. — In our proof of Sublemma 37.2, we only used our hypothesis that 

mo = 0 to get (37.6). When mo ^ 0, we can still say the following. Let x G G be 

given, and suppose that x G G \ L if (13.1) holds. Let {tn} be a sequence of positive 

numbers that tends to 0, and suppose that (37.3) holds. If there exists a compact 

disk D (with positive diameter) such that (37.6) holds, then x is a regular or a spider 

point of G. The proof is the same. 

Let us return to the proof of Lemma 37.1. First assume that (13.2) holds. Let 

7 : 7 —• G be a simple piecewise C1 arc such that \j'(t)\ = 1 almost everywhere 

and for which the interval of definition 7 is maximal. Such a curve exists, essentially 

by abstract nonsense. If 7 has an endpoint a G R, then 7 (a) is easily denned by 

continuity (even if a 0 7), because 7 is Lipschitz. Sublemma 37.2 even allows us to 

extend 7 beyond a, but this extension cannot be simple (because 7 is maximal). This 

implies that G contains a loop, and then R2 \ G has a bounded component. This is 

not possible, by Section 15. Hence a does not exist, and I = R. 

Because 771 (G D 7?(0, R)) < +00 for all R, j(t) tends to infinity in both directions. 

Thus T = 7 (R) is a Jordan curve through 00, and R2 \ G has at least two components 

(because V C G). This contradiction with our assumption (32.1) settles the case when 

(13.2) holds. 

We are left with the case when (mo = 0 and) (13.1) holds. Let us first check that 

G = L. Suppose not, pick a point x G G \ L and let 7 : 7 —> G \ L be a simple, 

piecewise C1 arc through x, such that \^y'(t)\ = 1 almost everywhere, and for which 7 

is maximal. 

If I = R, then 7 ( 1 ) is a Jordan curve through infinity (because 771 (G Pi 7?(0, R)) < 

+00 for all T£, as above), hence R2 \ G has a least two components, in contradiction 

with (32.1). 

So 7 has at least one endpoint a G R. As before, 7 (a) is defined because 7 is 

Lipschitz. We claim that 7 (a) G L. Otherwise, Lemma 37.2 allows us to extend 7 a 

little across a. Since 7 is maximal, the extension cannot be simple (because it takes 

values in G \ L). Then G \ L contains a loop and we get a contradiction, as before. 

So 7 (a) G L. 

If 7 has two endpoints a, b G R, then 7 (a) and 7 ( 6 ) both lie in L, and we get a loop 

in G by completing the arc ^(t) with the line segment [7(a), 7 ( 6 ) ] C L. 
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Thus we are left with the case when / has exactly one endpoint a e i We construct 

a Jordan curve F through infinity by gluing 7 ( 7 ) with the half-line (—00,7(0)] C L. 

Of course r c G , and so M2 \ G has at least two components, in contradiction with 

(32.1). 

This series of contradictions proves our claim that G — L (when mo = 0 and (13.1) 

holds). Let us check now that (v, G) is a generalized cracktip. 

Set P = {z G C ; Re(z) > 0} and v(z) = v (z2 - l ) for z e P. Then v is harmonic 

on P and satisfies the usual Neumann condition dv/dn = 0 on dP, because it is 

locally energy-minimizing (by the invariance of our energy integrals under conformai 

mappings). Also, 

(37.10) 
JB(O,R)DP 

Vv\zdHx = 
B(-1,«2)\L 

|VÏÏ|2 ^ CR2, 

because otherwise we could add dB (—1,-R2) to G and replace v with a constant in 

B (—l,i?2). We can extend v by continuity on P, and then by symmetry on the 

whole plane. We get a harmonic function v on the whole plane; see the arguments 

in Section 14 for more details in slightly more complicated situations. Let w be a 

harmonic function such that v + iw is holomorphic. Because of (37.10), v + iw is 

a polynomial of degree at most 1, and a simple computation shows that (v,G) is 

a "generalized cracktip" (with the definition just after (36.2)). This contradicts our 

assumption (36.2). 

This completes our proof of Lemma 37.1. • 

We may now return to the main statement in Proposition 36.3. 

Since mo < 0 and w(z) = 0 on Goo (by (35.2)), 

(37.11) dflo does not meet Goo-

For the rest of the proof, we let x G G fl dflo be given, and we want to prove that 

a; is a regular or a spider point of G. 

Pick a blow-up sequence {tn} such that lim tn = 0 and for which (37.3) holds. 

Note that x 0 L when (13.1) holds, by (37.11). Thus Proposition 12.12 or Proposition 

12.44 tells us that (it, K) is a global A-minimizer (as in (37.4)). We want to show that 

u is constant on some component of M2 \ K, and then conclude with Sublemma 37.8. 

Note that we can extract as many subsequences as we like from {£n}, because this 

will not affect (37.3) or (37.4). 

If we can find a nontrivial compact disk D C M2 \ K such that (37.6) holds, then 

we can use Remark 37.9 to conclude. So we may assume that this is not the case. Let 

us see what this means. Set 

(37.12) îî£ = {z ; x + tnz G ft0}. 
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Note that QQ is open. We may as well assume that the sets R2 \ QQ converge to some 

closed set R2 \ Slg0, because otherwise we can extract a subsequence from {tn} and 

make it true. If is not empty, then it contains a nontrivial disk 2D, and it is easy 

to check that D satisfies (37.6). Thus we may assume that 

(37.13) the sets R2 \ tt% converge to R2. 

For each n, choose a point zn G fio such that \zn — x| ^ 2~ntn. Set 

(37.14) m(ri) = w (zn) < m0. 

Note that w takes all the values of m G (m(n), mo) on the interval [x, zn]. Because 

of this, we may as well assume that m(n) has the properties of Proposition 32.6 and 

Lemma 32.18, since otherwise we could replace zn with some other point of f^o^fx, zn\. 

In particular, 

(37.15) rm(n) is a rectifiable Jordan curve through oo. 

Choose a point z'n G Tm(n) fl dB (x, tn) and denote by £n the subarc of Tm(n) from 

zn to z'n. We may assume that 

(37.16) ^ C rm(n) H B (x, tn) C fi0, 

because otherwise we can replace z'n with an earlier point of £n D dB (x, tn). Set 

(37.17) ip(z) = t~x{z - x) for z G R2, 

and then 

(37.18) 6i = ^ ( f n ) . 

Thus ^ is a simple arc from (p (zn) to <p (z'n), and 

(37.19) in C S(0,1) \ Gn 

by (37.16) and (36.56). 

We shall need to distinguish between two cases. 

Case 1. — We first assume that we can find rj > 0 such that, for infinitely many 

values of n, there is a point yn G £n such that 

(37.20) dist(yn,G) ^ r)tn. 

Replace {tn} with a subsequence, so that now yn exists for all n, and even {tp (yn)} 

converges to some limit y* G B(0,1). [Note that \ip(yn)\ < 1, by (37.19).] Then 

(37.21) dist (?/*,#) ^ m 

by (37.20) and (37.3). [See also the definitions (37.17) and (36.56).] Set 

(37.22) wn(z) = t~^2w (tnz 4- x ) - t~1/2w {tny* + x) 

on R2. Thus vn + iwn is holomorphic on R2 \ Gn, because v + iw is holomorphic on 

R2 \ G. 
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Denote by V the connected component of y* in R2 \ K. From (37.3) we know that 

(37.23) {Vwn} converges uniformly on compact subsets of R2 \ K. 

From this and the fact that wn (y*) = 0 for all n we deduce that {wn} converges 
uniformly on compact subsets of V to some limit WQO ; then u + iwoo is holomorphic 
on V (because it is the locally uniform limit of functions vn + iwn + Cn that are 
holomorphic on the domains R2 \ Gn ~ C \ Gn) We want to show that 

(37.24) Woo(z) ^ O o n V. 

Let z G V be given. Because of (37.13), we can find points a* G R2 \ tto such that 

(37.25) lim a* = z. 

Set ojn = x + £na*. Then w (an) ^ m0 > w (yn), because a* G R2 \ QQ, by definition 
(37.12) of f̂ o> because r̂ o = ; ^ ( ^ ) < ^o}5 because yn G and by (37.16). 
Hence 

(37.26) j g g W n № ) > w n ( < p ( y n ) ) , 

by (37.22). Next let us check that 

(37.27) Woo(z) = lim wn(z) = lim wn (a*) . 

The first equality is just the definition of WOQ. For the second one, note that if D is 
a small compact disk centered at z and contained in V, then (37.23) implies that the 
functions |Vwn| are uniformly bounded on D. From (37.25) we deduce that a* G D 
for n large, then that \wn(z) — wn (OJ*)| ^ C \z — a* |, which tends to 0. This proves 
(37.27). The same proof also gives that 

(37.28) lim wn(<p(yn))= lim wn(y*) = 0, 

n—»+oo n—>+oo 

because y* = lim ^p{yn) and by (37.21). 

Now (37.24) easily follows from (37.26), (37.27), and (37.28). 
From (37.24) and (37.28) we see that the harmonic function Woo reaches its min

imum on V at the point y*. Since y* is interior (by (37.21)), is constant on V, 
and so is u. We can conclude using Sublemma 37.8. 

Case 2. — We may now assume that we cannot find rj > 0 as in Case 1. 

This means that 
(37.29) lim rjn = 0, 

n—>+oc 
where 

(37.30) T?„ = t'hup {dist(y, G) ; y 6 £„} = sup jdist (y, Gn) ; y € C«} 

(by (37.17) and (37.18)). 
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Recall from (37.19) that £n is a compact subset of B(0,1). Thus we can extract a 

new subsequence from {tn}, so that {£n} converges to a limit £. Then 

(37.31) £ is a compact, connected subset of K fl B(0,1). 

Indeed, £ is connected because each £n is connected, and £ <Z K because of (37.29) 

and the convergence of {Gn} to K. The other properties listed in (37.31) are obvious. 

Note that 0 G £ because the initial point zn of £n = </?_1(£n) lies at distance 

^ 2~ntn from x. (See after (37.13)). Similarly, £ contains a point of dB(0,1), because 

z'n G dB (x,tn) and z'n G £n. (See after (37.15)). 

Thus H1^) ^ 1. On the other hand, (37.4) and Proposition 13.11 tell us that 

almost-every point of £ C K is a regular point of K. So we can choose a point y G £ 

such that 0 < \y\ < 1 and y is a point of regularity of K. 

Set B — B(y, 2r), where r is chosen so small that 

(37.32) B is a disk of regularity for K and B c 5 (0 ,1) \ { 0 } . 

Other similar constraints on r will show up in the next few lines. 

For all n, denote by yn a point of Gn that minimizes \yn — y\, and set Bn = 

B (yn, r). We claim that if r is chosen small enough, then 

(37.33) Bn is a disk of regularity for Gn for n large enough. 

To see this we want to apply Lemma 13.17. Denote by D the tangent line to 

K at y. Since K is a C1 curve near D satisfies (13.19) and (13.20) with G,r,e 

replaced with K, 3r, e/3 (say), at least if r is small enough. Then for n large enough, 

D still satisfies (13.19) and (13.20) with G,r replaced with Gn,2r; this follows from 

the convergence of {Gn} to K, as in (37.3). 

To verify (13.18), consider the set A(S) = {z G B(y,3r) ; d i s t ^ X ) ^ J}, where 

(5 > 0 will be chosen soon. Since A(S) is a compact subset of E2 \ K, (37.3) says that 

for n large, 

(37.34) 
lA{5) 

Vv\zdHx = 

'A(Ô) 
|Vu| + 

5 

2 
r3/2 ^ , r 3 / 2 , 

where the second inequality holds if r is small enough, because Vu has continuous 

extensions on both sides of R2 \ K near y. [See Section 14]. Besides 

(37.35) 
rB(y,2r)\(GnUA(5)) 

|Vv„ | ^ 
.JB(y,2r)^Gn 

|Vv„|2 

1/2 
|B(y,2r)\^(<5)|1/2 

^ C r ^ l B M r ) ^ * ) ! 1 / 2 , 

by Cauchy-Schwarz, (13.5), and (36.57). The right-hand side of (37.55) can be made 

as small as we want compared with r3/2, by choosing 6 very small. Hence the analogue 

of (13.18) for Gn and B (yn, 2r) holds (by (37.34) and (37.35)), we can apply lemma 

13.17, and our claim (37.33) follows. 
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Denote by fli and Q2 the two components of B \ K. Fix an origin a somewhere 

in the middle of f2i fl \B, and denote by Qi^n (respectively, fi2,n) the component of 

Bn \ Gn that contains (respectively, does not contain) a. 

For n large enough, £n passes at distance ^ 10~2r from y, because y G £ and £ is 

the limit of the curves £n. Hence for n large enough there is a sub-arc £n of £n such 

that 

(37.36) C C £n H £ n 

and 

(37.37)jgjgj^(BH0ULH^ (B0dm edrrs B (yn, r/50) and 9 5 (yn, 9r/10). 

[See Figure 37.1]. 

Note that £^ does not meet Gn, by (37.19). Hence it is contained in fii>n or in 

02,n- Let us extract a new subsequence from {tn} so that £n is contained in the same 

Qi^n for all n. Without loss of generality, we can assume that i = 1, so that 

(37.38) C C fti,n for all n. 

Note that 

(37.39) dist (z, G<<n) <W,,; ryn for * G 

by (37.30). [See Figure 37.1 for a vague description of the geometric situation.] 

FIGURE 37.1 

Define wn on R2 by 

(37.40) wn(z) = t~^2w (tnz + x) - t~1/2w (tna + x), 

where a still denotes our origin in Qi. Then 

(37.41) vn + iwn is holomorphic on R2 \ Gn, 

because v + iw is holomorphic on R2 \ G. 

Note that {Vwn} converges uniformly on compact subsets of fîi, by (37.3). Since 

in addition wn(a) = 0 for all n, {wn} converges uniformly on compact subsets of fix 

to a limit lUoo, and u + iiUoo is holomorphic on 171 (by (37.41)). 
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By construction, wn is constant on £'n, because t;n C £n, and by (37.16), (37.18), 

and (37.40). Denote by mf(n) the constant value of wn on i'n. Let us first check that 

(37.42) Woo(̂ ) ̂  lim sup ra'(n) for all z G fti D B (y, 2r /3) . 

Let z e Qi C\B(y,2r/S) be given. By (37.13) we can find points z{n) G R2 \ f2J 

such that {^(n)} converges to z. It is easy to see that z(n) G fiij7l for n large enough 

(essentially, by (37.3) and definitions). By the same argument as for (37.27), the 

|Vwn| are uniformly bounded on some small disk around z, and hence 

(37.43) Woo(z) = lim wn{z) = lim wn(z(n)). 

On the other hand z(n) G R2 \ ftft, hence x + £nz(ra) G R2 \ Q0 (by (37.12)), 

u> (x + £nz(n)) ^ mo > m(n) (by definition of QQ and (37.14)), and then wn(z(n)) > 

m/(n) (by (37.40) and because m(n) is the constant value of w on £n). Now (37.42) 

follows from this and (34.43). 

To simplify our discussion, let us extract a new subsequence so that m'(ri) has a 

limit m'(oo). [We do not exclude the unlikely case where 771/(00) = — 00 a priori.] 

Then (37.42) says that Woo{z) ̂  777/(00) on Qi n B (y, 2r/3). If we do not have that 

(37.44) Woo(z) > m'(oo) on ̂ 0 5 (y,2r/3), 

then we can conclude, because ^00(2:) = m/(oo) on f̂ i fl B (y, 2r/3) by the maximum 

principle, and then u is also constant on the component of R2 \ K that contains f^i, 

so that we can apply Sublemma 37.8 as usual. So we may assume that (37.44) holds. 

Our plan is to deduce from (37.44) that for n large enough 

(37.45) wn(z) > ra'(n) on £lhn 0 B (y, r /10) , 

say. Since wn(z) = m'{ri) on i'n (by definition of m'(n)), this will contradict (37.37) 

or (37.38), and we will be rid of our last case. Set 

(37.46) fi; = fti,nnBfo,r/2). 

Then dn'n = d1Ud2Ud3, where 

dB(y, ) 

FIGURE 37.2 
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(37.47) di = dQltn H B (y, r/2) C Gn, 

(37.48) <92 = {z G fJi,n n <9B (y, r/2) ; dist(z, AT) ^ er} , 

(37.49) 9 3 - { z G fti,n H 9 5 (y, r/2) ; dist(z, X ) < er} , 

and the small constant e > 0 will be chosen soon. [See Figure 37.2.] 

Let us check that 

(37.50) wn(z) > m'(n) on di. 

Indeed w(z) = m(n) < m0 on £n (by (37.16) and (37.14)), and w(z) ^ m0 on G (by 

definition of mo). Then wn(z) is strictly larger on d\ C Gn than its constant value 

m'(n) on £n; this proves (37.50). 

Note that <92 does not depend on n (for n large enough), and that it is a compact 

subset of f̂ i n 5 (y ,2 r /3 ) . Then {wn} converges to Woo uniformly on (the constant 

set) <92. Since inf lux (z) ; z e 82} > m'(oo) (by (37.44)) and m'(oo) is the limit of 

the m/(n), we get that for n large enough, 

(37.51) wn(z) ^ m'{n) on <92. 

Near the middle of <92, we can do a little better. Choose a compact arc of circle 

I C dB (y, r/2) n fii, which will not depend on e. Note that I C <92 for n large (and 

if £ is not too large). By (37.44), we can find 5 > 0 such that ^00(2:) ^ m/(oo) + 25 

on / , and so 

(37.52) wn(z) ^ m'{n) + 5 on I 

for n large enough. 

Let 9 denote any of the two small arcs of circle that compose #3. We claim that 

(37.53) \wn(z) - wn{z')\ ^ Ce1/2 for z, z' G d, 

with a constant C that does not depend on n or e. Because of the regularity of Gn 

near d (see (37.33)), (37.53) follows from the fact that 

(37.54) \wn(z) - wn(z')\ < Cp1/2 for z, z' G D 

whenever D is a disk of radius p such that 2D C fii,n-

To go from (37.54) to (37.53), we can decompose d into a geometric series of 

Whitney arcs of circles, to which we can apply (37.54). To prove (37.54) we simply 

note that wn is harmonic in 2D and J2D \\7wn\2 < Cp by (13.5). This proves (37.53). 

Note that each arc d has an extremity in <92. Therefore 

(37.55) wn(z) > m'(n) - Ce1/2 on <93 

for n large enough, by (37.51) and (37.53). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



232 37. POINTS OF LOW ENERGY (CONTINUED) 

wn > m\h) here 

wn > m\n) - Ce1/Z 

wn > m\n) here 

wn > m\n) + Ô here 

FIGURE 37.3 

For z e f i i , n Pi B (y,r/10) and E C dQ,'n, denote by ooz(E) the harmonic measure 

of E in the domain £l'n and centered at z. Then for n large 

(37.56) wn(z) > m'{n) cuz (ft) + ra'(n) CJZ (ft \ J) + [m'(n) + J] a;* (J) 

4- m Y n i - C e 1 ^ ^ ( f t ) , 

by (37.50), (37.51), (37.52), and (37.55). Then 

(37.57) wn{z) - m\n) > 5uz{I) - Ce1/zouz ( f t ) 

(because UJz (dQ'n) = 1). It is clear that if e is small enough, LJZ (ft) < ooz(I) for all 
z £ ^i,n H B (y,r/10) (and n large enough). [See Figure 37.3.] Now we can choose e 

so small (depending on S in particular) that (37.45) follows from (37.57). 

As was announced after (34.45), this allows us to get a contradiction in our only 

remaining case. Proposition 36.3 follows. • 
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CHAPTER I 

CONCLUSIONS 

38. The final contradiction 

In this section we continue with the same notations and assumptions as above, and 

reach a contradiction. A precise recapitulation of what this means will be done in the 

next section. 

Let ZQ e G be such that 

Note that mo < 0 by Proposition 36.3, and that zo exists because w is continuous, 

G \ Goo is bounded (by (35.1)), and w(z) = 0 on Goo (by the normalization (32.3)). 

Denote by Go the connected component of z0 in G. Obviously, Go ^ Goo (by (32.3)). 

Our general strategy will be to check first that 

and then use our description of the variations of v around Go (in Section 34) and the 

regularity of a good piece of Go (as in Section 36) to find a regular or a spider point 

of Go where v does not jump. This will contradict the results of Section 16. 

Let us first check (38.2). Suppose that Go = {^o}- Then zo 0 dQo, because 

otherwise Proposition 36.3 would say that zo is a regular or a spider point of G. Then 

there is an open neighborhood V of zo such that w(z) ^ mo onV. By Lemma 25.3, 

there is a compact set G° such that G0 = {z0} C G° C G n V and dist (G°, G \ G°) > 

0. We can use the construction of Section 23 to surround G° by a Jordan curve 

r C n V. [See in particular (23.10) (to show that T C ft Pi V is e is small enough) 

and Remark 23.17.] 

Note that w is harmonic and ^ mo on a neighborhood of T; hence the maximum 

principle says that w(z) > mo on T. [The other option is that w and v are constant 

on a component of fi, but this is ruled out by (32.1) and (32.5), say.] 

(38.1) w (ZQ) = mo := inf {w(z) ; z £ G} . 

(38.2) Co Ï {zo} , 
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Now choose m such that ra0 < m < inf {w(z) ; z G Г } , and let W denote the 
component of zo in R2 \ Г ш . Then u>(z) < m on ТУ (by connectedness and because 
ги (го) = mo), hence W does not meet Г and is contained in the bounded component 
of R2 \ Г. This contradiction with Proposition 30.1 proves (38.2). 

Now we want to use our tour z : S 1 —> Go of Go and Proposition 34.9. Let us first 
check that 

(38.3) z(t) G dfto П G for all t G J+, 

where 7 + is the interval of S 1 that shows up in Proposition 34.9. 

Recall from a little bit after Lemma 34.65 that 7 + is the closure of R+ in S 1 , where 
R+ is the set defined in (34.18) and (34.1). Since z is Lipschitz, it is enough to check 
that z(t) G dfto for t G R+. This last follows at once from (34.19). The reader should 
not be shocked by this short proof: the reduction to the dense set R where z(t) is 
a regular point is natural, and for these points we are essentially saying that if the 
boundary values of v near z(t) (and with access from ftt) are strictly increasing, then 
dw/dn < 0 near z(t) and z(i) is accessible from fto. 

Prom (38.3) and Proposition 36.3 we deduce that 

(38.4) z(i) is a regular or a spider point of G for all t G i + . 

Note that 

(38.5) If = {t G J+ ; z(t) is a spider point of G } 

does not have any accumulation point (by (38.4) and because / + is closed); hence IQ 
is finite. 

For t G / + \ IQ , z(t) is a regular point of G and so t G R. We know from Section 
33 (and in particular the discussion a little before (33.38)) that there is a unique point 
f G S 1 , t* ^ t, such that z(t*) = z(t). [This point t* corresponds to the access to 
z(t) from the other region fij.] 

Lemma 38.6. — Set I* = J + \ l£ and <p(t) = t* for t e I*. Then 

(38.7) ip(t) G S 1 \ / + С J - for t G 7 # , 

and (p : I# —•> I~ is continuous and strictly decreasing. 

Of course the continuity of у on does not prevent the existence of jumps at the 
points of IQ. When we say that ip : I# —>• I~ is decreasing, we use the orders on the 
intervals I+ and I~ that come from the trigonometric orientation of S 1 . 

Let us first check (38.7). We claim that 

(38.8) the restriction of z to I+ is injective. 

Note that (38.7) will follow from this, because <p(i) Ф t and z (ip(i)) = z(t), so that t 
and (p(t) cannot both lie on I + . The fact that S 1 \ i~+ С I~ comes from Proposition 
34.9. 
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To prove (38.8), suppose that we can find a, b G I4" such that a < b (in 7+) and 

z(a) = z{b). Set 

where [a, b] and [a, £) denote the subintervals of J+ that the reader imagines. Then 

b' > a (in J+), because z is obviously injective in a small neighborhood of a (by (38.4) 

and the construction of z). Also, z{b') G z ([a, &')) by definition of 6' (and because z 

is injective in a small neighborhood of b'). Next set 

Then a' < b' ( in J+), because z(fr') is a regular or a spider point (and by construction 

of z). The restriction of z to (a',b') is injective (by (38.9)), and z{a!) = z{b'). Hence 

Go contains a loop and R2 \ G has a bounded component. This contradiction with 

Lemma 15.1 proves (38.8) and (38.7). 

To prove that ip is decreasing, let ti, t2 € be given, with t\ < £2 in 7+. Set A* = 

A*., where A^ is the line segment of length that starts at 2 is perpendicular 

to G at that point, and lies in £lti (except for its endpoint z (U)). See the definition 

after (33.41), or just Figure 33.2. Similarly set A* = A ^ . ) . 

Recall that z was constructed as the limit on S1 of parameterizations zn of curves 

T(n). We know from (33.42) that for n large, T(n) D A* has exactly one point. Call 

this point i/i, and define s^n £ S1 by zn (s*,n) = y{. Similarly, for n large enough and 

i = 1,2, T(n) D A* has exactly one point, which we call y\ = zn (s*n). 

Since t\ ^ ¿ 2 , (38.8) tells us that z(t\) ^ z{t2), and so the four points 

£ 1 ^ 2 , y> (ti), <£> ( ¿ 2 ) are all distinct (because each z ( ^ ) has exactly two inverse 

images under z). We want to show that 

(38.11) £i < ¿2 < (p (t2) < (f (h) < £i in S1, 

and as usual it will be slightly easier to proceed by contradiction. So let us assume 

that (38.11) does not hold. Then 

(38.9) b' — sup {t G [a, b] ; the restriction of z to [a, t) is injective} , 

(38.10) 0! = sup {t G [a, b') ; z(t) = z{b')} . 

(38.12) t1<t2<(f (*i) < <p (t2) < h in S1, 

because we know that t\,t2 G I+ and ip (ti), <p (t2) G S1 \ / + . Note that 

(38.13) lim sn i = ^ and lim s* { = (p ObA 

for i = 1,2, by (33.45). Hence 

(38.14) 5n,i < 5n,2 < 5n>1 < 4 , 2 < «n,l On S1 

for n large enough, and so 

(38.15) 2/1 < 2/2 < 2/1 < 2/2 < 2/i on r(n) 

as well. Set 

(38.16) H = [Vi,z(U)]\J[z(ti),yfl 
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for i = 1,2. For n large enough, the simple curve 7* is contained in the bounded 

component of R2 \ T(n), except for its endpoints yi and y\. Also 71 H 72 = 0 , by 

(33.44) and because 2 (¿1) 7̂  2 (¿2)- We get the desired contradiction from (38.15) and 

Lemma 34.54. [See Figure 38.1.] 

FIGURE 38.1 

Thus (p : J# —> I~ is strictly decreasing. We still need to check that <p is continuous. 

Let t\ G be given, and let us just verify that ip is continuous from the right at t\\ 

the continuity from the left would be the same. Observe that in the argument above 

\z (¿2) — z(£i)| ^C\t2 — t\\ (because z is Lipschitz), and then |y£ — y j | ^ C \t2 — t\\ 

for n large enough (and t2 close enough to ¿1) because G is a nice curve near z{t\). The 

constant C' may depend on t\, but not on n or ¿2- Then \s2n — s{ | ^ C;/1̂ 2 — ti| 

(because T(n) is parameterized by zn with constant speed, and we have uniform 

bounds on its length), and hence \<p{t2) — ip{t\)\ < C" \t2 — ti\ (by (38.13)). 

This completes our proof of Lemma 38.6. • 

Remark 38.17. — The only property of 7+ that was used here is (38.4) (and the fact 

that i~+ is a closed interval). Thus Lemma 38.6 still holds with JT+ replaced with a 

slightly larger interval 7+ (that contains I+ in its interior). 

Next we want to say a little more about the behavior of (p near points of Iq. For 

each t G Iq, set 

(38.18) (pit*) = lim (p(s). 

The limits exist by monotonicity. If t is one of the endpoints of 7+, (38.18) still makes 

sense, because we can define ip on 7+ \ Iq for some slightly larger interval J+ D / + , 

as in Remark 38.17. It will be good to know that 

(38.19) (p{t+) ^<p(t-), 

i.e., that (p has a nonzero jump at t. 

Let t G Iq be given, and let ¿1,̂ 2 G I* be very close to t, and such that t\ < 

t < t2 in I+. [If t is an endpoint of J+, replace / + with a slightly larger J+, as in 

Remark 38.17.] Keep the same notations as in the proof of Lemma 38.6, in particular 

concerning the intervals A*, A* and the points yi, y*, i = 1,2. [Also see Figure 38.2.] 
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FIGURE 3 8 . 2 

For n large enough, the length of the shortest arc of T(n) between y\ and y\ is at 

least C, where C does not depend on n or the choice of £i, £2 (provided that they stay 

close enough to t). Then \s{ — s^n\ ^ C for n large enough (because zn is Lipschitz 

with uniform bounds, see (33.15)), and hence |^ ( t i ) — ^(¿2)! ^ Cl', by (38.13). This 

proves (38.19). 

Recall from Proposition 34.9 and Lemma 34.4 that we have a continuous function 

won S1, which is strictly increasing on I+ and strictly decreasing on I~. Set 

(38.20) u*(t) = u (cp(t)) for t G / # = / + \ I0+. 

Lemma 38.6 tells us that u* is continuous on and strictly increasing (as a compo
sition of two strictly decreasing functions). Also, the jumps of u* at points of IQ are 
strictly positive, because u is strictly decreasing on I~ (by (34.11)), because v?(£+) 
and (f (t~) lie in I~ (as limits of points of / " " ) , and </? (£+) < (p (t~) in I~ (by Lemma 
38.6 and (38.19)). 

Extend u* to I+ by taking 

(38.21) u*(t) =u(<p (t+)) = lim u*{s) for t G if. 

Write 7+ = [a, b]. Then u(a) < u(t) for all t G S1 \ { a } , by Proposition 34.9. Thus 

(38.22) u(a) <u*(a), 

because (p(a) ^ a if a G and </?(a+) 7̂  a (because ^ ( a+ ) < y?(a~) in J~) if 

oG/J". Similarly, iz(fe) > u(t) for all t G S1 \ { 6 } , 

(38.23) u(b) >u*(b) ii be I*, 

(38.24) u(b) >u(<p (6")) - lim w*(s) if 6 G 70+ 

(again because ip (b~) ^ b). Now set 

(38.25) t0 = inf {t G (a, 6),v:,!; ; u(t:f,ùlk*j) > 
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the existence of to, and also the fact that to G (a, b), are easily deduced from the 
continuity of u and (38.22)-(38.24). If t0 € I*, we get that 

(38.26) u* (t0) = u (t0) 

because u and are continuous near t. If to G IQ, we get that u (to) > u* (to), by 
(38.21) and because u is continuous. Since u* has a positive jump at to, we get that 

(38.27) u(t0) > lim u*(t), 

and then u(t) > u*(t) for lots of points t G (a, to). This contradicts the definition of 
to in (38.25); hence the only possibility is that to G J# and (38.26) holds. 

Since to G J#, z (to) is a regular point of G, to G R (see (34.1)), and 

(38.28) u(to)= lim v(*), 
2—>z(t0) 

as in (34.3). Similarly, <p (t0) G i?, and 

(38.29) u*(to)=u((p(t0))= lim v(z). 
z—>z(t0) 

Thus (38.26) says that v has no jump at the regular point z (to). 

On the other hand, we are in position to apply Lemma 16.1, because Q, = M2 \ G 
is connected (by (32.1)), and because Go does not meet L when (13.1) holds. [Recall 
from the first lines of this section that Go is a component of G, and Go ^ Goo-] 

So Lemma 16.1 contradicts (38.26). We are now reasonably happy. We made 
various assumptions on a minimizer (v, G) (including that (v, G) is not a "generalized 
cracktip"), and we finally got a contradiction. In the next section we shall sort out 
what this means. 

39. The main technical statements 

Let us summarize in this section what we proved since Section (13). We started 
with a pair (v, G), and we assumed that 

(39.1) (v, G) is a reduced minimizer of the modified functional 

(as in (13.1); see Definition 11.3), or 

(39.2) (v, G) is a reduced global A-minimizer 

(as in (13.2); see Definition 12.1). We also assumed that E2 \ G is connected (see 
(26.1), (32.1)), but in view of Lemma 15.1, it is equivalent to assume that 

(39.3) E2 \ G has only one unbounded connected component. 

We further assumed that 

(39.4) G has exactly one unbounded connected component Goo, 
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and that 

(39.5) G \ Goo is bounded 

(see (32.2) and (35.1)). The next conditions concern the level sets 

39.6 rm = [z G R2 ; w(z) = m) 

of the function w constructed in Section 22. Recall that w is continuous on R2 and 

v + iw is holomorphic on R2 \ G « C \ G. We assumed that w satisfies (32.4) and 

(32.5), under the normalization (32.3) that w = 0 on Goo-

Our final real assumption was that 

(39.7) lim inf 
r—»+oo 

• 
r B(x,r)^G 

\Vv\2 < A 

for x G R2, where A = ft' {HX(G \ L)) when (39.1) holds. (See (36.1)). 

We finally assumed in (36.2) that (v, G) is not a "generalized cracktip", and then 

we got a contradiction. Recall from just after (36.2) that we call generalized cracktip 

a pair (v, G) such that 

(39.8) G = {x - peie° ; p > 0) 

and 

(39.9) 
v (x + rie) = a + /3r1/2 sin 

Vv\zdHx = 

2 
[ for 0Q - 7T < 9 < 60 + 7T and 0 < r < +oo, 

for some choice of x € R2 and a,ß,0o GR. 

Let us summarize this in two statements. These are not definitive; in particular 

Theorem 39.10 is not a good as Theorem 1.16. 

Theorem 39.10. — Let (i>, G) be a reduced global X-minimizer (as in Definition 12.1). 

Suppose that (39.3), (39.4), (39.5), (32.3), (32.4), (32.5), and (39.7) hold. Then we can 

find x G R2, a G l , and 60 G R such that (39.8) and (39.9) hold, with f3 = V ^ A / T T . 

The only apparently new thing in this statement is the precise value of ¡3, but 

Remark 35.42 tells us that (3 = ±^2\/7r, and the negative sign is excluded by (32.4) 

and (32.5). 

Theorem 39.11. — Let (v,G) be a reduced minimizer of the modified functional (as 

in Definition 11.3). Suppose that (32.3), (32.4), (32.5) and (39.7) hold, with A = 

h! ( i7:(G \ L)) (and h as in (11 A)). Then we can find x G R, x ^ — 1, a G R, and 

0^(3^ v^A/TT such that (39.8) and (39.9) hold with 60 = 0. 

Here again the precision on ¡3 comes from Remark 35.42, the fact that we can take 

6o = 0 and x ^ — 1 comes from the constraint that L C G, and we did not need 

to mention (39.3), (39.4), and (39.5) because they are automatically satisfied, since 

G \ L is bounded by definition of a minimizer. 
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40. Theorem 1.16 and a variant with blow-ins 

In this section (v, G) is a reduced global A-minimizer (see definition 12.1); we want 

to prove Theorem 1.16 and a variant with "blow-ins". 

Definition 40.1. — A blow-in of (v, G) is a pair (u, K) for which we can find a point 

y G G and a sequence {tn} of positive numbers such that 

(40.2) lim tn = + o o , 

and 

(40.3) {(vn,Gn)} converges to (u,K), 

where vn and Gn are defined by (12.7) and (12.8) with yn = y, and the notion of 

convergence is the one described before Lemma 12.4. 

Note that blow-ins exist. Lemma 12.5 tells us that from each sequence {tn} we 

can extract a subsequence for which (40.3) holds. Of course (v, G) could have lots of 

different blow-ins, coming from different sequences. The notion will be useful because 

Proposition 12.44 tells us that blow-ins of (v, G) are also global A-minimizers, and in 

some situations they may be simpler. Let us now state our companion to Theorem 

1.16. We continue to call "generalized cracktip" any pair (v,G) such that (39.8) and 

(39.9) hold for some choice of x G M2 and a, /3,0O € B*. 

Theorem 40.4. — Let (v,G) be a (reduced) global X-minimizer. Suppose that we can 

find a blow-in (it, K) of (v, G) which is a generalized cracktip. Then (v, G) is a gen

eralized cracktip. 

Note that in this case we also get that ¡3 = ±y/2X/ir, by Remark 35.42. 

Also, it should be observed that if (v, G) is a (reduced) global A-minimizer and 

we can find a sequence {tn} such that lim tn = + o o and {t~xG\ converges to a 
n—>-+oo 

half-line, then (v, G) is a generalized cracktip. This is because we can always extract 

a subsequence of {tn} so that (40.3) holds for some (u, K) (by Lemma 12.5), and then 

(u,K) is a global minimizer (by Proposition 12.44). Since K is a half-line, (u,K) is 

a generalized cracktip (for instance by [Bo], but we could also use the Leger formula 

in [Le2] or the end of our proof of Lemma 37.1 (see four lines above (37.10))). Now 

we can apply Theorem 40.4 and (v, G) is a generalized cracktip. 

The rest of this section is devoted to the proof of Theorems 1.16 and 40.4. We 

start with a simpler version of Theorem 40.4. 

Proposition 40.5. — If (v, G) is a reduced global X-minimizer and all the blow-ins of 

(v, G) are generalized cracktips, then (v, G) is a generalized cracktip. 

Let us assume for convenience that 0 G G (otherwise, we could translate v and G). 

Let us first define a function j(t) to measure the closeness of (v, G) to cracktips at 
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the various scales t. Denote by H\ the set of generalized cracktips (i.e. pairs (v*, G*) 

as in (39.8) and (39.9)), with the natural constraint 01 = 2\/ir. For each t > 0, set 

(40.6) Gt = t^G, 

(40.7) Vt{x) = rl,2v(tx) for x 6 l 2 \ Gtl 

and then 

(40.8) 7(£) = inf 
(v*,G*)eHx 

d(Gt,G*) + 
rB(0,l)\(GtUG*) 

\ V v t - V v * l h 

where 

(40.9) d(Gt,G*) = sup {dist (z,G*) ; z G Gt fi 5 (0 ,1 )} 

+ sup {dist ( 2 , Gt) ; z G G* H £ ( 0 , 1 ) } . 

Lemma 40.10. — lim 7f t ) = 0. 
¿—»• + 00 

It will be enough to check that 

(40.11) lim 7 (tn) = 0 

for every sequence {£n} such that (40.2) and (40.3) hold for some generalized cracktip 

(Î/, K). Indeed, if j(t) does not tend to 0, then we can find {tn} such that (40.2) holds 

and 7 (tn) stays away from 0. Then we can extract a subsequence for which (40.3) 

holds for some (u, K) (by Lemma 12.5), and the assumption in Proposition 40.5 says 

that (u, K) is a generalized cracktip. Our claim follows. 

So let {tn} satisfy (40.2) and (40.3) for some generalized cracktip (^, K), and let us 

prove (40.11). Of course we want to try (v*,G*) = (u,K) in the definition of 7 (tn). 

The fact that 

(40.12) lim dccc(Gtn,K)=0 
n—>+oo 

comes straight from the definition of convergence in (40.3). To estimate 

(40.13) In = 
B(0,l)^(GtnUK) 

I Vvtn - Vu | , 

we cut the domain of integration into two pieces A\ and Ao. Set 

(40.14) A1 = {z G 5(0 ,1) ; dist(z, K)>8). 

Note that for each choice of 8 > 0, A\ is a compact subset of M2 \ K that does not 

depend on n, so A\ does not meet Gtn for n large enough, and 

(40.15) lim 
n—>+oc JA! 

I Vvtn - Vti| = 0 
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because |Vt>tn| converges to \Vu\ uniformly on A\, by (40.3). On the other hand, if 

A2 — 5 (0 ,1) \ (G* UKUAi), 

(40.16) 
JA2 

Vv\zdHx =Vv\zdHx =Vv\zdHx 

IA2 
(|Vt*J + |Vu|)2 

1/2 

Vv\zdHx =Vv\zhhHx =Vv\z 

by Cauchy-Schwarz and (13.5). Thus we can make In as small as we wish (for n large) 

by first choosing 5 very small, and then using (40.15). In other words, In tends to 0. 

This proves (40.11), and Lemma 40.10 follows. • 

For each t > 0, choose a pair (v%,G%) in H\ such that 

(40.17) d(GuG*t) + 
rB(0,l)\(GtUGt*) 

\vvt- w;\ <27( t ) . 

Lemma 40.18. — Denote by Xt the endpoint of Gi. Then lim xt = 0. 
£—•+00 

Let us first check that there are arbitrarily large values of t for which Xt G B (0,1/2). 

Choose any sequence {tn} such that (40.2) and (40.3) hold for some (u, K). Then K is 

a half-line, by assumption on (v, G). Call x its endpoint, and set a = ( l - | -2 |x | )~1, say. 

Then {Gtn} converges to K (by (40.3)), and hence {Gatn} converges to aK. Since aK 

is a half-line with an endpoint in B (0,1/2), and 7 (atn) tends to 0, xatn £ 5 (0,1/2) 

for n large. 

Now observe that if xt G (0,1/2) and 2t ^ t' ^ 4£, say, then 

(40.19) \Xf\< 
1 
2 xt\ 4- 107(*) + 107(O-

This is because <3£ is very close to Gt, G^, is very close to Gf, and G /̂ = jrGt- This 

estimate is quite rough, but because of Lemma 40.10 it is still enough to imply that 

lim xt = 0, as needed. [Start with xt G (0,1/2) and iterate (40.19).] • 
£—•-+-00 
Lemma 40.20. — For each (small) S > 0, there is a to > 0 such that for each t ^ to, 

(40.21) Gt H 5(0 ,1) \ 5(0,6) is a C1 curve. 

Let ô > 0 be given, and let t be so large that xt G 5 (0, ¿/3). Let r = r(S) < 10~2 

be a small constant, to be chosen soon, and let 5 = B(x,r) be any disk centered on 

Gt, with radius r, and such that 

(40.22) 5 C 5 ( 0 , 1 ) \ 5 (0,2(5/3). 

We want to apply Lemma 13.17 to 5 and the pair (vt,Gt). Let D be the line 

that contains G*. Then (13.19) and (13.20) hold if j(t) is small enough (compared 

with the constant e of Lemma 13.17), by (40.17). As for (13.18), observe that since 

xt G 5 (0, ¿/3) lies at distance ^ ¿/3 from 5 , a direct computation with (39.9) yields 

(40.23) 
JB^GI 

| V < | ^C(ô)r2 
e 

2 
r3/2 
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if r is small enough. Since 

(40.24) / |Vv t -Vv t* |<27( t ) 
JB^(G;uGt) 

by (40.17), (13.18) holds if -y(t) is small enough. 

Thus we can apply Lemma 13.17, and we get that B (x, r/2) is a disk of regularity 

for G*. Note that this holds for all choices of x e Gt such that (40.22) holds. Let us 

also require that 7(t) < 10~2r, say. Then Gt fl B(0,1) is so close to the line segment 

G*t H B(0,1) (by (40.17)) that we can easily deduce that 

(40.25) Gt H B (0,1/2) \ B (0, S) is a G^curve 

from our local description of Gt. 

Of course (40.25) is not exactly the same as (40.21), but we can easily get (4.21) 

by applying (4.25) to 2t and with 5/2. This proves the lemma. • 

Remark 40.26. — As we already mentioned earlier, Lemma 13.17 actually gives more 

regularity than what we stated: Theorem 4.8 in [Da], for instance, gives uniform C1+£ 

bounds for some e > 0, and much more is true. Because of this, we even have that for 

t ^ to, Gt fl B(0,1) \ B(0,S) is a G1+£ curve, with uniform estimates (that depend 

on 6). 

The proof of Lemma 40.20 also gives that for t large enough and all radii p £ 

(1/2,1), Gt fl dB(0,p) has exactly one point. Hence 

(40.27) G D dB(0, p) has exactly one point 

for p large enough, and consequently 

(40.28) M2 \ G has only one unbounded component, 

as required in (39.3). 

We also deduce from Lemma 40.20 (applied with 6 = 1/3) and some gluing that 

(40.29) G \ B (0, to/3) is a G1 curve that escapes to oo. 

Hence (39.4) and (39.5) are satisfied. 
Next we want to check the conditions (32.3)-(32.5) on the level sets of w. 

Let r > 0 be small (essentially as small as in the proof of Lemma 40.20 with 

5 = 1 / 4 , say). For t large, denote by zt the only point of Gt fl OB (0,1/2), and set 

Bt = B(zt,r). 

We know from (the proof of) Lemma 40.20 that if r is small enough, then for t 

large Bt is a disk of regularity for G*, and also GtnBt is a G1+£ curve, with estimates 

that do not depend on t large enough. [See Remark 40.26.] Denote by Qf the two 

connected components of Bt^Gt, with on the right of Gt fl Bt when one looks at 

Bt from the origin. We know from Section 14 that vt has a G1 extension to Qt (we 

may have to replace Bt with \Bt for this, but this does not matter), and the proof 
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also gives a control on the continuity of Vvt on Clt which does not depend on t (large 
enough). Thus there is a function h(p) that tends to 0 (when p tends to 0+) such 
that for t large enough, and each choice of ± , 

;40.30) \Wvt(x) - Vvt(y)\ < ftflx - y\) when x,y G ftf. 

We claim that for t large enough, 

(40.31) 
\dvt 

dr (z) = ± 
(3 

x/2 
<< № 

10 
for zedB ( 0 , l / 2 ) n f i f , 

where dvt/dr denotes the radial derivative of vt and (3 is the constant associated to 
(yl,G*t.) as in (39.9). Note that (3 = ±^/2A/7r, and the sign cannot depend on £ (large 

enough), because (40.17) would not allow such a brutal discontinuity of v*. 

Because of (40.30), it is enough to prove (40.31) with the smaller constant \/3\ /20, 

but only on the smaller set 

(40.32) 
Et = {ze dB (0,1/2) H nf ; dist (z, Gt) > p} , 

where the constant p is chosen so small that h(p') < |/31 /20 for p' ^ p. Next 

(40.33) 
dvti 

or 
dvti 

dvti 

Br 
< Cp-2-y(t) for z G Et 

(and t large enough), by (40.17) and the fact that Vvt — is harmonic away from 

GtUGl 

Now (40.31) follows from a stupid computation on dv^/dr near G£, and the fact 

that the radius r of Bt can be made as small as we want. 

Suppose for définiteness that /3 > 0. If /3 < 0, we may as well apply our argument 

to the pair (—v,G). Set 

(40.34) Wt(z) = t~1/2w(tz) on R2 \ Gt\ 

thus Vt H- iwt is holomorphic on R2 \ Gt • 

From (40.31) we deduce that 

(40.35) ± 
dwt 

ccw 
dvti P 

4 
on dB ( 0 , l / 2 ) n f i f , 

where dwt/d9 denotes the angular derivative of wt (i.e., half of the tangential deriva

tive) 

Because of (40.35), and the fact that wt(z) = 0 on Gt, wt(z) ^ —/3r/4 at both 

points of dB (0,1/2) n dBt- Since dwt/d0 is as close as we want to div^/dO on 

dB (0,1/2) \ Bt (by (40.17) and the harmonicity of Vvt - Vv*, as for (40.33)), we 

easily deduce from this that 

(40.36) wt(z) < 
(3r 

4 
on dB ( 0 , l / 2 ) \ f l t . 
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Set rm,t = {z e M2 ; wt(z) = m}. From (40.35) and (40.36) we deduce that 

(40.371 rm,t D dB (0,1/2) = 0 for m > 0, 

(40.38) r 0 ï t n ô B ( 0 , l / 2 ) = { z t } , 

and 

(40.39) Trr, / fl dB (0,1/2) has exactly two points when — 
[3r 

4 
< m < 0. 

[We do not care about large negative values of m] The desired estimates (32.4) and 

(32.5) follow from this, because 

(40.40) rm n dB (o, t/2) = t \ rmMft n dB (0 ,1 /2)} 

We still need to verify (39.7). Probably the most natural way to do this would be 

to observe that if {tn\ satisfies (40.2) and (40.3) then 

(40.41) lim sup 
n ------00 /J5(0,l)\Gn 

|Vt;n|2 ^ 
/£(0,1)\* 

IVd2. 

Note that this is not the inequality that one gets by Fatou. We can get it by looking 

closely at the proof of Proposition 12.44 (i.e., of the fact that (u, K) is a global A-

minimizer). The idea is that if (40.41) failed, we would be able to construct better 

competitors for (v,G). Such competitors would be obtained by replacing (v,G) in 

big disks I?(0,£n) with dilations of (u,K), plus a small term to correct the slightly 

different boundary values on dB (0, tn). We would win a significant amount of energy 

because (40.41) fails, and we would almost not lose on lengths or because of the 

correction, by the argument in Section 12. In the present situation, it is just as easy 

to prove a stronger variant of (40.41), as follows. 

Lemma 40.42. — Set 

(40.43) a(t) = 
JB(0,l/2)^(GtUG;) 

\Vvt- V < | 2 

for t > 0. Then 

(40.44) lim a(t) = 0. 
t—>+OG 

The proof is a lot like our estimate in / „ in (40.13). Set 

(40.45) Ai = {z e B (0,1/2) ; dist (z, Gt) > 6} . 

Note that dist (A\, GtUGl)^ 5/2 for t large, and then 

(40.46) \Vvt - Vwt*| < C<5_17(0 on Ai, 

by (40.17) and because Vvt - Vvt* is harmonic on M2 \ (Gt U G£). Then 

(40.47) qdqd | V t , t - V < | 2 ^ C r 2 7 ( * ) 2 
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for t large, and the left-hand side of (40.47) will tend to 0, no matter which choice of 

5 we make. Next consider A2 = B(0, p) \ (Gt U GJ) for 0 < p < 1/2. Then 

(40.48) / \Vvt-Vv*t\
2 ^Cp, 

by (13.5). Finally set 

(40.49) A3 = B (0,1/2) \ (Gt U G* UAiU A 2 ) • 

For each choice of p, there is a constant G(p) such that for t large enough, 

(40.50) |Vv t | + | V < | ^ G(p) on A3. 

The estimate for |V^*| is very easy, because we have a formula for i£, and Lemma 

40.18 tells us that xt e B (0,2/3) for t large. 

The estimate for \Vvt\ will be a consequence of Remark 40.26. First, we can find a 

small radius r = r(p) such that for all x G Gt fl i? (0,2/3) \ I?(0, p), f?(:r, r) is a disk 

of regularity for Gt and 

(40.51) \Vvt(z) - Vvt(z')\ ^ C^p) for z,z' G ft, 

where ft is any of the two components of B(x, r) \ G*. The proof is the same as for 

(40.30). 

For each choice of B(x,r) and ft as above, choose z G ft such that dist(z,G*) ^ 

r/10. Then 

(40.52) \Vvt(z) - Vv;(z)\ < C r ' S W < 1 

for £ large enough, by (40.17) and harmonicity. Hence |Vi^(z) | ^ G 2 (p), and (4.51) 

yields 

(40.53) |Vvt(*7)l < C3(p) for z' G ft. 

This proves (40.50) for all points of As that lie at distance ^ r/2 from G*. For the 

rest of ^3, we can use (40.17) (and anyway we won't need them because S will be 

chosen very small). 

From (40.50) we deduce that 

(40.54) / \Vvt(z) - Vv*t(z)\2 ^ C(p)2\AS\ < 2C(p)26 
JA3 

(by the definitions (40.45) and (40.49) of A1 and As). 

For each small e > 0, we can choose p so small that Cp < e/3 in (40.48), and then 

6 such that 2C(p)26 < e/3 in (40.54), and since for t large enough the right-hand 

side of (40.47) is also smaller than e/3, we get that a(t) < e for t large enough. This 

proves (40.44) and Lemma 40.42. • 

Note that 

(40.55) lim 
t-»+oo </B(0,l/2)\G* 

|v<|2 A 
2 
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by (39.9), the fact that {32 = 2\/ir, and Lemma 40.18. We omit the easy computation. 

Then 

(40.56) lim 
t->+oc 

2 

t f£(0,t/2)\G 
|V^|2 = 2 lim 

£-++oo /jB(0,l/2)\Gt 
IVftl2 = A 

by (40.7) and Lemma 40.42. In particular, (39.7) holds. 

We completed all the necessary verifications. Theorem 39.10 applies, and (v,G) is 

a generalized cracktip. 

Proposition 40.5 follows. • 

Proof of Theorem 1.16. — Let (v, G) be as in Theorem 1.16. Thus (v, G) is a global 

A-minimizer (with A = 1, but this does not really matter) and there is a connected 

component Goo of G such that G \ Goo is bounded. We want to show that (v, G) is 

one of the easy solutions (where G is a line or a propeller and v is locally constant) 

or a generalized cracktip. 

Lemma 40.57. — If (u,K) is a blow-in of (v,G) (as in (40.2) and (40.3),), then K is 

connected. 

Let y G G and {tn} be such that (40.2) and (40.3) hold. We may assume that 

y = 0, because otherwise we could translate G and v. Then 

(40.58) K = lim Gn = lim 
1 

ccc 
G. 

We want to show that for each x G K \ { 0 } , there is a curve in K that goes from 

0 to x. Fix x e K \ {0} and, for each n, denote by xn the point of Gn that is closest 

to x. Thus 

(40.59) x = lim xn 
ro—>-+oo 

by (40.58), \tnxn\ tends to +oo by (40.2), and hence tnxn G Goo for n large enough 

(because G \ Goo is bounded). 

Fix an origin xo G Goo, and apply Lemma 19.14 to Goo, ̂ o5 and tnxn. We get a 

simple rectifiable curve Tn c Goo that goes from xo to tnxn. Set Tn = tn'1rn and 

in = H1 (rn). We claim that 

(40.60) {£n} is bounded. 

Suppose not. Then we can extract a subsequence from {£n} so that £n tends to 

4-00. bet 

(40.61) ôn = sup{|z | ; z G Tn} . 

Then 8n tends to 4-oo as well, because diam7n ^ G 1£n, because Tn C Goo and by 

(13.4). Set 

(40.62) rn — rn U tn xo,xn , 
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and then choose a point zn such that 

(40.63) zn lies in a bounded component of R \ T*, 

and 

(40.64) \zn\ ^ Sn - 1. 

Such a point is easy to find. For instance we can choose a regular point £n of Tn very 

far from the origin, and try two points z^ in M2 \ rn, very close to £n, and on different 

sides of Tn (locally). The points z^ cannot both lie in the unbounded component of 

R2 \ T*, for instance because the winding numbers of the closed curve T* around 

these points are different. We can even choose zn out of Gn. 

Note that (vn, Gn) is also a global A-minimizer, and so we can apply Lemma 20.1 

to it. We get an escape path 7 n = 7 ^ , which is even defined on [0, +00) because of 

Remark 20.5. 

From (20.4) it is clear that 7n(s) eventually leaves the (bounded) component of zn 

in R2 \ T*. Set 

(40.65) sn = inf { O 0 ; 7gn(sgk) G gkgkT } 

and Vn = 7n (sn). Then 

(40.66) yn e r; \ Tnghh Cg [tùmmh 

because the image of 7 n does not meet Tn C Gn (by (20.4)). Then \yn — zn\ ^ Sn/2 

for n large, by (40.64) and because {xn} is bounded (by (40.59)). Hence sn ^ C~15n 

(by (20.3)), and dist (yn, Gn) ^ C " 1 ^ (by (20.4)). When Sn is too large, this is 

incompatible with (40.66) and the fact that xn G Gn. Our claim (40.60) follows from 

this contradiction. 

Because of (40.60), we can find parameterizations fn of the curves Tn that are de

fined on [0,1] and Lipschitz with uniform bounds. Then we can extract a subsequence 

of {fn} that converges uniformly on [0,1] to some limit / . It is clear that /([0,1]) is 

an arc in K that contains 0 and x. Lemma 40.57 follows. • 

Let us now apply the main result in [Bo]. We get that all blow-ins of (v,G) are 

generalized cracktips or trivial minimizers associated to lines or propellers as in (1.10) 

and (1.11). [The case of the empty set is not possible by our definition of blow-ins 

and because we implicitly assumed that G is not empty.] 

If all the blow-ins of (v, G) are generalized cracktips, we can apply Proposition 40.5 

and conclude. So we are left with the easier case when for at least one blow-in (u, K) 

of (v, G), K is a line or a propeller. In this case Lemma 18.26 tells us that G is a line 

or a propeller, and v is locally constant on each component of E2 \ G. 

This completes our proof of Theorem 1.16. • 

ASTÉRISQUE 274 



40. THEOREM 1.16 AND A VARIANT WITH BLOW-INS 249 

Proof of Theorem 40.4- — Let (v, G) be as in the statement, and let y G G and {tn} 

be such that (40.2) and (40.3) hold and (u, K) is a generalized cracktip. We may 

assume that y = 0, since otherwise we can translate v and G. 

For t > 0, define Gu vu and j(t) as in (40.6)-(40.9). Thus (vn,Gn) = (vtn,Gtn) 

with these new notations. Also, (40.11) holds with the same proof as above. 

If lim 7(t) = 0, then all blow-ins of (v, G) are generalized cracktips or minimizers 
t—*+oc 

associated to lines, and we can conclude as in the proof of Theorem 1.16. We can also 

follow quietly the proof of Proposition 40.5 and see that it works. 

So we may assume that j(t) does not tend to 0. Let r > 0 be very small (to be 

chosen later), and set 
(40.67) t*n = sup {t G [0, tn] ; lit) > r } . 

Then tn is well defined for n large (because j(t) does not tend to 0, and if r is small 

enough), and even 

(40.68) lim t* = +0O 

(because tn tends to -hoo). We want to use {tn} to construct an unlikely blow-in of 

(v, G). Modulo extracting a subsequence, we can assume that 

(40.69) {[yt*n, Gt*n)} converges to some limit (u*, K*). 

Denote by 7 * the analogue of the function 7 , but for the pair (u*,K*). That is, set 

(40.70) 7*(s) = inf 
(v*,G*)GHx 

d(K*s,G*) + 
B(0,1)\(KS*UG*) 

V < - W | 

with the same conventions as in (40.6)-(40.9). 

Lemma 40.71. — We have that 

(40.72) 7 (s) $ r for s ^ 1. 

Let us first note that 

(40.73) Vv\zdHx = 
ft 

k t* 

3/2 
7(t) for 0 < t* < t < +00. 

This is easy to check. If (v*,G*) G H\ is a competitor in the definition (40.8) 

of 7 (£ ) , then (v**/t, G**j^j (with the same notations as in (40.6) and (40.7)) is a 

competitor in the definition of 7( t*) , the distance in (40.9) is at most multiplied by 

t/t* (because of (40.6)), and similarly the integral is multiplied by less than (t/t*)3^2. 

The precise power will not matter anyway. 

By (40.73) (with t and t* exchanged) and (40.67), 7 (tn) ^ r. Since 7 (tn) tends to 

0 and 7 (£*) ^ r does not tend to 0, (40.73) also implies that 

(40.74) lim 
n— +̂00 

tn 
t* 

= +00. 
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Next 

(40.75) 7(s£*) < r for 1 < s ^ tn 
f* ' 

by (40.67). For each 5 > 1, 

(40.76) {{vst*n ,Gst*n)} converges to (и*, К*). 

by (40.69). Then 

(40.77) 7*(s) < liminf 7 « ) < r , 
n—»+00 

by the compactness of our set H\ of generalized cracktips, the obvious continuity of 
d(Gt,G*) with respect to Gu Fatou, (40.74), and (40.75). This proves the lemma. 

For each s > 1, choose (us, Ks\ G H\ such that 

(40.78) d(K*s,Ks) + 
JB(0,1)^(K*UKS) 

|V t* ; -V5s | <27*(s). 

Let us first assume that for s large enough, 

(40.79) the endpoint xs of Ks lies in 5 (0,1/10). 

If our constant r is chosen small enough, then for s large 

(40.80) KÌ H 5(0 ,1) \ 5 (0,1/4) is a C1 curve. 

The proof is the same as for (40.21) with 5 = 1/4. 

From all this we easily deduce that 

(40.81) K* \ B (0, so) is connected for some so > 0. 

Then we can apply Theorem 1.16, and we get that 

(40.82) (u*,K*) is a generalized cracktip or K* is a line or a propeller. 

Let us try to prove (40.82) also when (40.79) does not hold for s large. First note 

that ifx8 G 5 (0 ,9 /10) for some s > 1, then xs> G 5 (0,1/10) for 10s < s' < 100s. 

This is because (40.76) and (40.77) say that in the unit disk, Ks is very close to K* 

and Ksi is very close to K*, = jrK*. Of course we need r to be small enough here. 

Thus if (40.79) does not hold for all s ^ 10, 

(40.83) xs G E2 \ 5 (0,9/10) for s > 1. 

In this case also we can apply the argument of Lemma 40.20 (but this time in 

5 ( 0 , 2 / 3 ) , say, to stay sufficiently far from the points xs), and we get that for all 

s > 1, 

(40.84) K* fl 5 (0,1/2) is a C1 curve. 

Then K* is connected, and we can deduce (40.82) from [Bo]. 
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Thus we proved that (40.82) holds in both cases. Recall that (i/*, K*) is a blow-in 
of (v, G). So if K* is a line or a propeller, G also is a line or a propeller. See the end 
of the proof of Theorem 1.16 (starting a little below (40.66)). 

We are left with the case when (u*,K*) is a generalized cracktip. Then 

(40.85) lim 7(O = 0, 

by (40.69) and (40.11). On the other hand, j (t*n) ^ r (see a little below (40.73)). 
This contradiction completes our proof of Theorem 40.4. • 

41. Cracktips are global minimizers 

In this section we complete our proof of (1.15). 

In the first sections we have assumed that (1.15) fails, and then constructed a 
modified functional (see Section 11) and a minimizer (v,G) of that functional. The 
next stage is the following. 

Lemma 41.1. — (v,G) is a generalized cracktip. 

We already know from Proposition 11.5 that (v, G) is a minimizer of the modified 
functional. It is reduced by construction, but otherwise we could always replace it 
with a reduced minimizer. We want to apply Theorem 39.11, so let us check the 
hypotheses. 

We start with (32.3)-(32.5). Recall from (10.24) that v is the limit of some sequence 
VRM. [The pairs (VR,GR) were themselves obtained as minimizers of some other 
functionals JR.] The convergence of {VR^} is uniform on every compact subset of 
M2 \ G and, since all our functions are harmonic, VvRm converges to Vv at least 
point wise. Then Lemma 10.14 implies that 

(41.2) \Vv(x) - Vu0(x)\ ^ C \x\~x 

for all x G M2 \ L such that |x| ^ 2RQ. Here UQ is the reference cracktip function 
defined by (2.2), and Ro is some constant. [It shows up in Proposition 5.1 for the first 
time, but this does not matter here.] 

We want to use (41.2) to study the variations of w (the conjugate function) on 
8BR for R large. Denote by wo the function conjugated to uo and normalized by 
WQ(X) = 0 on (—00,0]. Then 

(41.3) wo(rcos0,rsin0) = - v ^ r 1 / 2 cos (0/2) 

for r > 0 and —TT^O^TT. 

Prom (41.2) we deduce that 

(41.4) \w(x) - w0(x)\ ^ C for \x\ ^ 2R0 
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(because w and WQ coincide on L). In particular, 

(41.5) w (Rcos9,Rsin9) ^ 
VvM|2 

in 
for |0| 11 

3TT 

4 
if R is large enough. 

Another consequence of (41.2) is that w is strictly monotone on each of the two 
arcs of dB(0, R) where 3?r/4 ^ 9 < TT and -ir < 9 < -3TT/4. Therefore 

(41.6) rm = {z ; w(z) = m} does not meet dB(0, R) when m > 0, 

(41.7) ron0B(O,fl) = {-R}, 
and 

(41.8) Tm n dB(0, R) has exactly two points when 
R1'2 

10 
< m< 0. 

In particular, (32.3)-(32.5) hold. 

The last condition (39.9) holds, by (10.28) and because A = ti [HX(G \ L)) ^ 1 by 
(3.3) and (3.5). So we can apply Theorem 39.11, and (v, G) is a generalized cracktip. 
This proves the lemma. • 

Note that the constant /3 in the representation of v by (39.9) must be y/2/n, for 
instance because of (41.2). Thus (v,G) is a translation of our reference cracktip 
(u0jK0). 

Suppose that G ^ L, i.e., that G — (—oo, XQ] for some XQ > —1. Note that (u0, Ko) 
is a blow-up of (v, G) at xo'. it is the limit of the sequence (vn, GN) defined by (12.7) 
and (12.8) with yn = xo and tn — 2~n, say. Then Proposition 12.12 says that (uo, Ko) 
is a global A-minimizer, and hence A = 1 (by Remark 35.42). Here we are working 
under the assumption that (uo,Ko) is not a global minimizer; thus the current case 
when G L is impossible. 

We are left with the case when G = L, and unfortunately some energy estimates 
will be needed to show that this case is impossible as well. The general principle is 
easy: if we finally arrived to the minimizer G = L, then L itself should have been a 
significantly better competitor than Ko = (—oo, 0] for our local functional JR, which 
is not the case. 

Recall that our pair (v, G) was obtained as the limit of minimizers (vRM,GRRN) of 
the functional J#m, for some sequence {Rm} that tends to +oo. [See a little under 
(10.21) and (10.24).] Set 

(41.9) E(m) = 
B(0,JRm)\GHm 

Vv\zdHx = 

and also call Dm = B(0, Rm) and dm = OB (0, Rm) \ L. We want to replace VRm 
with the simpler function um which is defined and continuous on Dm \ L, coincides 
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with uo and VRM on dm, is harmonic on Dm \ L, and for which 

(41.10) E'{m) 
/ D M \ L 

|Vum|2 

is minimal. Note that E(m) < E'(m), because VRM minimizes E(m) among continu

ous functions on Dm \ GRm that coincide with UQ on #m, and um is such a function. 

Lemma 41.11. — lim {E'(m) - E(m)) = 0. 
m—>+oo 

We want to use VRM to construct a fairly good competitor for E'(m). This will 

be easier after a conformai mapping. Set ip(z) = (z + l )1 /2 for z G C \ L, where 

we choose the obvious determination of the square root, with values in the half-

plane P + = {z : &z > 0} . Set B = B ( o , (R0 + l ) 1 / 2 ) , where R0 is the constant of 

Proposition 5.1. Then 

(41.12) < ^ ( G * m x L ) c £ , 

by (5.2). Also, 

(41.13) Em = sup {%tz ; z E (p (GRm \ L)} 

tends to 0, because G#m tends to G = L. 

Denote by ifm the isosceles trapezoid with vertices ±2 (RQ + l)1^2 i and £m ± 

(#o + 1)1/2 [See Figure 41.1.] Choose a diffeomorphism ip : W D P+ -> 3 £ fl P+ \ 

ifm such that I/J(Z) = z near P+ fl <9(3#) and 

(41.14) VvM|2VvM|2 ^ C em on 3 £ f i P + . 

(GRm) 

(GRm 

Hm 

FIGURE 4 1 . 1 . The arrows indicate the action of ip. 
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Set v = VRm op 1 on (p (Dm \ G#m), and then u = voip on (p (Dm \ £ ) • Finally 
set w = o <p on £)m \ L. Then 

(41.15) 
^ ( D M \ G R M ; 

|V£f = E(m) 

by (41.9) and the conformai invariance of energy integrals. The composition with 

ip does not change anything out of 3B, and multiplies the energy in SB by at most 

l + Csm, by (41.14). Thus 

(41.16; 

Also 
Jip(Dm^L) 

\Vu\2 < E(m) + C Em 
'3BHP+ 

| W | 2 . 

(41.17) 
J3Br\P+^Hm 

|W |2 = 
Jip-1(3BnP+\Hm) 

| V I ; Ä J 2 < C , 

by conformai invariance of énergies, because cp 1 (3B fl P+) = B (—1,9 (RQ + 1)), and 

by Lemma 4.12. We do not care if C is very large, as long as it does not dépend on 

m. Finally 

(41.18) 
J Dm\L 

IVul2 = 
VvM|2VvM|2 

\Vu\2 < £(ra) + C em. 

Now ti is an allowed competitor in the definition (41.10) of E (m), and so 

(41.19) E'(m) 2 
' Dm^L 

|Vd2 ^E(m) + C em. 

Lemma 41.11 follows, because em tends to 0. 

Next we want to compare E'(m) with 

(41.20) E0(m) = 
RDm\(-oo,0] 

Vv\zdHx = 

where UQ still denotes our reference cracktip function. Let us use Green's theorem on 

ft = Dm \ ( -oo ,0 ] (as we did for (4.32)). We get that 

(41.21) E'(m)-E0(m) = 
1 

||Vum|2 - |VU0|2} = / V (Um - Uq) • V (um + Uq) 

VvM| 
In 

(um - UQ) A (Um + Uq) + 
'dn 

(Um - UQ) 
8 (um + Uq) 

dn 

Since A(um + ^o) = 0 on ft, um - «o = 0 on <9m, and d(?xm + UQ) /dn — 0 on 

[—RM, —1]? we are only left with the double contribution of [—1,0] in the boundary 

integral. On [—1,0], duo/dn = 0, and dum/dn shows up twice, with opposite values. 

Thus 

(41.22) E'(m) - E0(m) = 
-i 

o 
Jump (Um - UQ) 

dUm 
dy 

vb 
1 

1-1 
Jump (UQ) 

v dum 
dy 

Vv\zdHx = o 

J-i 
\x\1/2-

dUm(x) 

dy -dx. 
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by (2.2). Set um(z) = uo(z 4- 1). We shall see soon that um is a good approximation 
to um- At any rate, 

(41.23) 
•o 

y-i 
\x\ 1/2 dUm 

dy 
(x)dx = 

1 

2 
Vv\zdHx = 

a 

J-i 
\x\1/2 (x + l)~l/2dx. 

Set x = sin2 u—1, 0 < u < 7r/2, so that dx = 2sinucos^, \x\x'2 = cosг¿, (x + 1) 1/2 = 

(sinix)-1, and 

(41.24) 
a 

J-i 
\x\l/2 {x + l)~1/2dx = 

'0 

r/2 
2 cos2 u du = 

7T 

2 

Thus the main term in our computation of the right-hand side of (41.22) is 1. 

The function um — Um is continuous on Dm \ L, harmonic on Dm \ L, and satisfies 

the Neumann condition d (um - um) /dn = 0 on L. Also, 

(41.25) |(tlm " Sm) (*)l = \U0(Z) - U0(Z + 1)| ^ CP"1/2 

on <9m, by definitions and a crude estimate. By the maximum principle for 

solutions of the Dirichlet-Neumann problem (i.e., because um — um minimizes 

JDm^L 
|V (Um ~Um)\ for the given boundary data on <9m), (41.25) holds in Dm \ L, 

id in particular on the circle dB (—1, Rm — 1) 

Define the auxiliary function / on D = {zeB(0,(Rm-l)1/2) ; R(s)>0byg 
(41.26) f(z) = {Um - Um) (z2 ~ l ) . 

Then / is continuous on D, harmonic inside, and satisfies the usual Neumann condi

tion on the imaginary axis. We can extend / to B = 5 ( 0 , (Rm — l)1^2) by symmetry, 

and we get a continuous function on B which is harmonic in B. [See the argument 

after (4.53) for more details.] Thus 

(41.27) \Vf(z)\^CR -1 m on 5(0 ,1) 

by (41.25), and 

(41.28) |V (Um ~ Um) (01 < C Rm' (£ + 1)"V2 OU 5 ( - l , 1) X L, 

by composing with £ —> (£ + 1)1//2. We can plug this into (41.22), and we get that 

(41.29) \Ef(m)-E0{m)-l\ = 2 /2/TT 

/.0 
lzl1/2 a (Um ~ Um) 

dy 
x)dx 

Vv\zdHx =sss 

-1 

/.0 
|x|1/2 (x + l)-1/2do: Vv\zdHx =yyhe 

Altogether, 

(41.30) lim \E(m)-E0(m) - 1| = 0, 
m—>+oo 
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because of Lemma 41.11. Since J#m (UO,KQ) = 1 + Eo(m) by (3.2), (2.1), (3.3), and 
(41.20), we get that 

(41.31) A (Rm) := JRrn fro, K0) - JRm (vRRN,GRJ ^ 1 + E0(m) - E(m) 

(by (3.2) and (41.9)), and hence 

(41.32) limsup A(Rm) < 0, 
771—•-{-OO 

by (41.30). 

On the other hand, A(i?) is a nondecreasing function of R, by (3.2) and the fact 
that UR in (3.1) has more and more elements (so that (VR,GR) G UR> for Rf > R, 
for instance). Our assumption that (UQ,KQ) is not a minimizer also implies that 
A(R) > 0 for R > 1, as in (3.9) and (3.10). Thus limsup A (Rm) ^ A ( l ) > 0, in 

m—>+oo 
contradiction with (41.32). 

This final contradiction completes our proof of (1.15). • 
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