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FAMILIES TORSION AND MORSE FUNCTIONS 

Jean-Michel Bismut, Sébastian Goette 

Abstract. — To a flat vector bundle, one can associate odd real characteristic classes. 
Bismut and Lott have proved a Riemann-Roch-Grothendieck theorem for such classes, 
when taking the direct image of a flat vector bundle by a proper submersion. They 
have also constructed associated secondary invariants, the analytic torsion forms in 
de Rham theory. The component of degree 0 of thèse forms is the classical Ray-Singer 
torsion. 

The présent paper has five purposes: 
— to extend the theory of analytic torsion forms to the equivariant setting. 
— to give a proper normalization of thèse torsion forms. 
— to prove rigidity formulas, showing that in positive degree, and up to locally 

computable terms, thèse forms are rigid under déformation of the flat connec­
tion. 

— to evaluate the equivariant analytic torsion forms modulo coboundaries, under 
the assumption that there exists a fibrewise gradient vector field which vérifies 
the Morse-Smale transversality conditions in every fibre. 

— to compute the equivariant analytic torsion forms of sphère bundles associated 
to vector bundles. 

Our main formula generalizes the results by Cheeger, Millier, Lott-Rothenberg and 
Bismut-Zhang on the relation of Ray-Singer torsion to Reidemeister torsion, and also 
computations by Bunke for sphère bundles. 
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Résumé (Torsion en famille et fonctions de Morse). — À un fibre plat, on peut associer 
des classes caractéristiques impaires réelles. Bismut et Lott ont montré un théorème 
de Riemann-Roch-Grothendieck, quand on prend l'image directe d'un fibre plat par 
une submersion propre. Ils ont aussi construit des invariants secondaires, les formes de 
torsion analytique en théorie de de Rham, qui sont des formes paires sur la base de la 
fibration considérée. La composante de degré 0 de ces formes est la torsion analytique 
de Ray-Singer. 

Le présent article a pour objet : 
- d'étendre la théorie des formes de torsion analytique en situation équivariante. 
- de normaliser les formes de torsion analytique. 
- d'établir des résultats de rigidité, qui montrent qu'à des termes explicites calcu­

lables localement près, les formes de torsion ne varient pas par déformation de 
la connexion plate considérée, et ceci en degré positif. 

- d'évaluer les formes de torsion analytique équivariantes, sous l'hypothèse qu'il 
existe un champ de gradient de Morse-Smale dans les fibres. 

- d'évaluer les formes de torsion équivariantes des fibres en sphères provenant de 
fibres vectoriels. 

Le résultat principal généralise des résultats obtenus par Cheeger, Mùller, et Lott-
Rothenberg et Bismut-Zhang sur le lien entre torsion analytique et torsion de Reide­
meister, et aussi des calculs de Bunke pour des fibres en sphères. 
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INTRODUCTION 

The main purpose of this paper is to give a formula for the analytic torsion forms in 
de Rham theory introduced by Bismut and Lott [BLol]. Our formula is only valid in 
spécial cases. In this Introduction, we will describe the géométrie setting, and explain 
our results, and also their limitations. 

Let M be a smooth manifold, let E be a vector bundle on M, equipped with a 
flat connection VE. Then the Chern classes of E vanish identically. The theory of 
differential characters by Cheeger-Simons [CSi] shows that [E, VE) has secondary 
characteristic classes which lie in HODD (M ,C/Z). Since C/Z = R 0 R/Z, the R 
component of thèse classes are just ordinary cohomology classes in HODD (M, R). In 
[BLol], Bismut and Lott obtained explicit de Rham représentatives of thèse classes. 
Namely, if qE is a Hermitian metric on E, set 

(0.1) Uj(V E 
,9 

E 

) = (9 
E 

) 
- 1 E 

9 
E 

Then UJ ( V E 
,9 

E ) is a 1-form with values in End (E). Let (p : A (T*M) -» A (T*M) 

be given by <pa = (2IIR) 
—dega/2 a. If h is a holomorphic odd function, put 

(0.2) ft(V E 
,9 

E 
) 2IIR (pTr [h (ou (V E 

,9 
E 

) /2)] • 

Then by [BLol], the form h (V ,9 
E ) is closed, its cohomology class h (V ) does not 

dépend on g E 
7 and is just one of the above odd classes. 

Let 7r : M —> S be a submersion of smooth manifolds with compact fibre X. Let 
F be a complex vector bundle on M, and let V F be a flat connection on F. Let 
( î l -(X,F|x) ,d- ) be the de Rham complex of smooth forms along the fibre with 

coefficients in F , equipped with the fibrewise de Rham opérât or d x Let H*(X,F\x) 
be the fibrewise cohomology of X with coefficients in F. Then H'(X,F\x) is a Z-
graded complex vector bundle on 5, equipped with the flat Gauss-Manin connection 
V H*(X,F\X) In [BLol, Theorem 3.17], Bismut and Lott proved a Riemann-Roch-
Grothendieck formula for such classes. Namely, if h is a holomorphic odd function, if 



2 INTRODUCTION 

e (TX) dénotes the Euler class of TX, we have the identity, 

(0.3) h H9(X,F\X) 
) e (TX) h (VF) in Hodd (X, C ) . 

A fondamental feature of (0.3) is that because the degree of e (TX) is just dim (X), 
the above equality is valid 'degree by degree'. Also recall that if dim(X) is odd, 
e {TX) = 0, so that, if dimX is odd, the right-hand side of (0.3) vanishes. 

Bismut and Lott [BLol] refined on equality (0.3) at the level of differential forms. 
Namely let THM c TM be a horizontal bundle on M, let gTX and gF be metrics 
on TX and F. Then by [B3, Section le)], the above data détermine an Euclidean 
connection VTX on the vector bundle TX over M, which is described in Theorem 
3.5. Let e (TX, VTX) be the differential form associated to the connection VTX, 
which represents e(TX) in Chern-Weil theory. By identifying H*(X,F\x) to the 
corresponding fibrewise harmonie forms, the vector bundle H*(X, F\x) inherits the 

L2 metric g H'(X,F\X) 
L2 Set 

(0.4) h (x) = xe X 
2 

In [BLol, Section 31, Bismut and Lott constructed even forms on S, the analytic 
torsion forms Th (T H M, gTX, VF, gF), which are such that 

(0.5) dTh(THM,gTX,VF,gF) = 
X 

e(TX,VTX)h(VF,gF) 

H*(X,F\X) 
5 9 H*(X,F\X) 

L2 

If the fibres X are odd dimensional and F is fibrewise acyclic, so that H*(X, F\x) = 
0, then Th (THM,gTX\VF\gF) defines an even cohomology class, which does not 
dépend on the above data. 

In gênerai the question arises of evaluating the class of Th (THM, gTX, VF, gF) 
modulo exact forms. This is in fact the main goal of this paper. First let us briefly 
review the présent state of our knowledge on this question. 

Assume temporarily that S is a point, so that we only consider the case of a single 
fibre X. For 0 ^ p ^ dimX, let (p (s) be the zeta fonction of the Laplacian of the 
fibre X acting on p-forms. Put 

(0.6) 0(s) = 

dimX 

E 
p=0 

( - 1 ) P + 1 K P ( S ) . 

By [BLol, Theorem 3.29], if Th (THM,gTX, VF,gF){°} is the component of degree 
0 of % (THM,gTX,VF,gF), then 

(0.7) Th(THM,gTX,VF,gF) (0) 1 

2 
de 
ds 

(0). 

The quantity de 
ds 

(0) is called the Ray-Singer analytic torsion of the fibre. It was 
introduced by Ray and Singer in [RS1]. Quillen [Q2] used holomorphic analytic 
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INTRODUCTION 3 

torsion to define the Quillen metric on the déterminant of the Dolbeault cohomology 
of a holomorphic vector bundle. Bismut and Zhang [BZ1] used its de Rham analogue 
to define a Ray-Singer metric on the complex line det (H9(X, F\x))- Via (0.5) and 
(0.7), one recovers the anomaly formulas for Ray-Singer metrics established by Bismut 
and Zhang in [BZ1, Theorem 0.1]. 

Assume temporarily that the metric g* is flat. In [RS1], Ray and Singer conjec-
tured that the Ray-Singer analytic torsion coincides with a combinatorial invariant, 
the Reidemeister torsion. To be more précise, let K be a triangulation of a fibre X. 
Then, as explained in Milnor [Mil] and in [BZ1, Chapter 1], via K, one can define 
another metric on det (H*(X, F\x)), the Reidemeister metric. One can then show 
that the Reidemeister metric does not dépend on the triangulation. Ray and Singer 
conjectured the equality of the Ray-Singer and Reidemeister metrics. This conjecture 
was proved independently by Cheeger [C] and Mùller [Miïl] using différent methods. 
Essentially, Cheeger studied the behaviour of thèse two metrics by surgery, and Millier 
used combinatorial invariance by taking the mesh of the triangulation to zéro. This 
resuit was extended by Mûller in [Mu2] to unimodular flat vector bundles. 

In [BZ1], Bismut and Zhang extended the above results to the case of gênerai flat 
vector bundles. Let / : X —> R be a Morse function, and let V / be the gradient fleld of 
/ with respect to some metric. Assume that Y = —Vf is Morse-Smale [Sml, Sm2, 
Th] i.e. the corresponding stable and unstable cells intersect transversally. Then, 
as explained in [Mil] and in [BZ1, Chapter I], the above data détermine a finite 
dimensional complex (C* (VFW,F),9), the Thom-Smale complex [Sml, Sm2, Th], 
whose cohomology is just H*(X, F\x)- If gF is a metric on F , we construct this way 
a metric on det(H*(X,F\x)), the Milnor metric. If gF is flat, this metric coincides 
with the Reidemeister metric. In [BZ1], Bismut and Zhang gave a formula comparing 
the Ray-Singer and the Milnor metrics. The defect is given by the intégral on X of a 
Chern-Simons current. 

Assume again that S is a point, and that G is a finite Lie group which acts on 
X, whose action lifts to F and préserves the above data. If the metric gF is unitar-
ily flat, Rothenberg [Ro] showed that one can define an equivariant version of the 
Reidemeister torsion. In [LoRo], Lott and Rothenberg showed that one can extend 
the Cheeger-Muller theorem to this situation, by replacing the Ray-Singer torsion 
by its equivariant extension. In [BZ2], Bismut and Zhang extended the Lott and 
Rothenberg- formula to the case of arbi trarv flat vector bundles. 

Prom the above discussion, it should be clear that Th (THM,gTX, VF,gF)(0) and 
its equivariant extension are fully understood. 

On the other hand, in [BLol, Corollary 4.14], Bismut and Lott gave a formula for 
the analytic torsion forms of S1 fibre bundles equipped with a complex Hermitian line 
bundle with a unitary flat connection, whose holonomy along the fibre is a root of 
unity. The torsion forms are power séries in the first Chern class of the line bundle, the 
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4 INTRODUCTION 

coefficients being polylogarithms evaluated at the considered root of unity. In [I, K], 
Igusa and Klein gave a construction of higher Reidemeister torsion using algebraic K-
theory. In the case of S1 fibre bundles over 52, they gave a formula for their torsion 
which coincides with the formula of Bismut-Lott [BLol]. The coïncidence of thèse 
two computations is unexplained. The purely algebraic character of Igusa and Klein's 
constructions should make a direct approach to a comparison formula very difficult. 
Also, in [Bul], Bunke computed in particular the non equivariant analytic torsion 
forms for sphère bundles associated to vector bundles. 

The présent paper has five pur poses: 

— To extend the theory of analytic torsion forms to the equivariant setting. 
— To give a proper normalization of the analytic torsion forms. 
— To prove rigidity formulas for the equivariant analytic torsion forms in degree 

> 2, which show that up to 'local' terms, they are essentially invariant by 
déformation of the flat connection VF. 

— To evaluate the equivariant analytic torsion forms modulo coboundaries, when 
there is a function f : M —> R which is fibrewise Morse, and the fibres can be 
equipped with a corresponding fibrewise Morse-Smale vector field Y. 

— To give a formula for the equivariant torsion forms of unit sphère bundles. 

In fact, let G be a compact Lie group. Let (E,VE) be a flat vector bundle as in 
(0.1). Assume that G acts trivially on M, and acts on E by flat automorphisms. Let 
gE be a G-invariant metric. If h is a holomorphic odd function, if g G G, set 

(0.8) hg(VE,gE)=Tr[gh(u,(VE,gE)/2)]. 

Then the form hg (VE,gE) has the same properties as the form h (VE,gE). Namely 
hg (Ve,gE) is closed, and its cohomology class hg ( V e ) does not dépend on gE. 

Let now n : M —• S be a submersion taken as before. Assume that the compact 
Lie group G acts on M, and préserves the fibres X. Let F be a flat vector bundle on 
which G acts by flat automorphisms. Then H*(X,F\x) is a flat Z-graded G-vector 
bundle on S. Let now g G G, let Mg C M be the submanifold of fixed points by g. 
which fibres on S with fibre Xg C X. Then in Theorem 3.25, if h is a holomorphic 
odd function, we extend (0.3) to the formula, 

(0.9) hg ( V H*(X,F\X) ) = J X 9 

e(TXg)hg ( V F ) in Hodd (X, C) 

Now we assume that THM,gTX,gF are G-invariant. Thèse data détermine an Eu-
clidean connection VTXG on TXg. If h(x) is still given by (0.4), in Section 3.12, 
we construct equivariant analytic torsion forms Th/g (THM,gTX,VF,gF), which are 
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INTRODUCTION 5 

such that 

(0 .10) dTh,g(THM,gTX,VF,gF) = / X g 

e {TXg,VTXs) hg{VF,9F) 

~hg ( V H'(X,F\x) 
5 9 

H'(X,F\x) 
L2 ) 

Still, as in [BLol], our construction of T^g (THM, gTX, VF, gF) dépends explicitly 
on the choice of h in (0.4). In Sections 2.8 and 3.17, we show how to normalize the 
torsion forms Thi9 (THM,gTX, VF,gF) into forms %hjg (THM,gTX, VF,#F), which 
we call Chern analytic torsion forms. The idea is that one can normalize the classes 
in (0.8) to secondary Chern classes associated to the Chern character, and the forms 
Tchj9 (THM,gTX, VF\gF) verify an équation similar to (0.10). 

It is well known [CSi, Proposition 2.9J that the odd characteristic classes of flat 
vector bundles are rigid in degree ^ 3. We establish a corresponding resuit for the 
analytic torsion forms. Let fi* (5) be the space of smooth forms on S, let dfi*(5) C 
fi* (5) be the space of smooth coboundaries. In Sections 2.4 and 3.16, we show that 
the classes Thi9 (THM,gTX, VF\gF) G Q9(S)/dn*(S) are rigid in positive degree. 
This resuit says that up to locally computable secondary characteristic classes (which 
are analogues of the Bott-Chern classes [BoCh, BGS1] in complex geometry), the 
class of Thi9 (THM, gTX, VF, gF) in fi* (S)/dfi* (S) is invariant under déformation of 
the flat connection VF. We also establish corresponding results for families of finite 
dimensional complexes. 

Assume now that / : M —» R is a G-invariant smooth function, and that V / E TX 
is a G-invariant fibrewise gradient vector field for / . We assume that Y = —Vf is 
Morse-Smale [Sml, Sm2] in every fibre X, i.e. that the stable and unstable cells 
associated to Y intersect transversally. Let B be the zéro set of Y. Then B is a 
submanifold of M, which fibres over S with finite fibre B. If x G B, let ind(x) be 
the Morse index of x, i.e. the number of négative eigenvalues of the quadratic form 
d?f(x) \TXXXTXX-

Let (C* (Wu, F), d) be the Thom-Smale complex along the fibres X, which is 
associated to Y and to the flat vector bundle F. Then (C* (Wu, F), d) is a flat 
Hermitian complex on 5, whose fibrewise cohomology is H*(X, F\x). Let g H9(X,F\X) 

C*(WU,F) 
be the metric on H'(X,F\x), which is obtained by identifying H'(X,F\x) to the 
corresponding harmonie objects in C* (WU,F). Then by a construction given in 
Section 1.10, which extends a construction in [BLol, Section 2], we obtain finite 
dimensional torsion forms Th,g {A C*(WU,F)/ 

1 9 
C*(WU,F) which are such that 

( 0 . 1 1 ) dTKg[ C*{WU,F)i 
7 9 C*(WU,F) ) = hg ( V C*(WU,F) 

5 9 C*{WU,F) ) 
~hg ( HM{X,F\X) ,9 

H'(X,F\X) 
C*{WU,F) ). 
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Let hg ( V H*(X,F\X ) 
7 9 

H9(X,F\X) 
C*{WU,F) 5 g 

FJ* (X ,F |x ) 
L2 ) E R •(s) /dR* (S*) be the class defined 

in [BLol, Section 1] and in Section 1.5, such that 

(0.12) dhg ( V H0(X,F\X) 
,9 

H9(X,F\X) 
C*{WU,F) 5 9 

H9(X,F\X) 
L2 ) = h9 ( V H*(X,F\X) 

5 9 
Hm(X,F\x) 
L2 

p 

- hg ( V H # ( X , F | X ) 
,0 

H'(X,F\X) 
C*{WU,F) 

Let V {TXg,VTXg) be the current defined on the total space of p : TXg —> Mg 
constructed by Mathai and Quillen [MQ, Section 7], such that if Mg is identified to 
the zéro section of TXg, and if 6MQ is the current of intégration on Mgi 

(0.13) dxl> (TXg, VTX*) - p*e (TXg, VRX*) - 8Mg. 

Recall that B is the zéro set of V / . Put 

(0.14) B9 = Bfl Mg. 

Then, as explained in Section 6.3, the current (V/)* V (TXg,VTXg) on Mg is well 
defined, and is such that 

(0.15) d {Vf)* V (TXg, VTX° ) = e (TXg, VTX» )-6Bg. 

For y e R, s e C, Re(s) > 1, set 

(0.16) C(y,s) = 

+6 
Z 

n = l 

cos (ny) 

ns 
1 n(y,s) 

+ oo 
G 

n = l 

sin (ny) 

n s 

Then £ (y, s) and rj (y, s) are the real and imaginary parts of the Lerch zeta function 
L (y, s) [Le]. The function rj (y, s) is holomorphic in the variable s G C, the function 
C (y, s) is also holomorphic in s G C if y £ 27rZ, and is meromorphic with a simple 
pôle at s = 1 if y G 2TTZ. Let / (#, x) be the formai power séries, 
(0.17) 

1(0, x) 
1 

2 
[ 

M 
pEN 
peven 

(2p + l ) ! 

(P!)3 3 

d c 
9 s 

(8,-p) ( 
X 

4 

4 
+ i E 

p G N 
p o d d 

( 2 p + l ) ! 

(P!) 3 
6 n 
d s 

0 e 1 p 
X 

4 

p ) 

(0.18) 0 / {0, x) = I (0, x) - I (0,0). 

Given 6 G R, we identify °I (#, x) to the corresponding additive genus. Also, if 
g e G acts as a parallel automorphism on the fibres of a vector bundle E1, let °Ig (E) 
be the even cohomology class which is obtained by splitting E according to the angles 
9 of the action of g on E, and by summing the corresponding °I (9,x) gênera. 

Let TX s B ,TX u 
B 

Put 

be the stable and unstable subbundles of TX\B with respect to 
Y. Then we have the splitting, 

(0.19) TX\B = TX\ s 
B TX u B 

Let ou be the orientation bundle of TX | u 
B 
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Clearly g acts on TX\&G and preserves the splitting (0.19). Let IG (TX\B9) be the 
genus °IG evaluated on the Z2-graded vector bundle TX\B9, i.e. 

(0.20) °I9(TX\BG) = °I9(TX\ s 
B9 ) ( mai u B9 

Finally, if x G Bg, let TïF* (g>o u X [g] be the trace of the action of g on Fx ® c u 
X 

The main resuit of this paper, proved in Theorem 7.2, is as follows. 

Theorem 0.1. — For any g G G, the following identity holds, 

(0.21) TH,G (THM,gTX,VF,gF) - THT9 I ( A C*(WU,F)r 
7 9 

CM(WU,F) ) 
+ hg ( V H'(X,F\X) 

5 9 
H9(X,F\x) 
C*(WU,F) 5 9 Hm(X,F\x) 

L2 
) 

/ hg (VF,5F) (V/rV(TXS,V™*) 

+ E 
xeBg 

( - 1 ) 
i n d ( x ) 

Tr 
Fx®o u 

X [g] 0 Ig (TXX\BG in n . (S)/d n . (S). 

In Chapter 7, we show that Theorem 0.1 is compatible with ail the known properties 
of the equivariant analytic torsion forms, including anomaly formulas, rigidity and 
products. Using Theorem 0.1 and Poincaré duality, we also dérive certain properties 
of TX\B- Also, as explained in Chapter 7, in degree 0, Theorem 0.1 is équivalent 
to the main resuit of [BZ2], which in turn extends results by Cheeger [C], Mùller 
[Mûl, Mû2], Lott and Rothenberg [LoRo] and Bismut-Zhang [BZ1, BZ2]. 

Put 

(0.22) J(0,x) 
1 
2 
[ 

2. 
pEN p e v e n 

a Z 
d 

(O, –p) 
p! E 

p€JN 
podd 

d 7 
d s (e, -p) 

xp 
p! 

] 

Set 

(0.23) uJ{0,x) = J(0,x) - J (0 ,0 ) ) . 

In Theorem 7.4, we show that if the forms Thj9 {THM,gTX, VF,gF) are replacée! by 
the Chern analytic torsion forms Tch,9(THM,gTX, VF,gF), then the obvious ana­
logue of Theorem 0.1 remains true, with °I (0, x) replacée! by 0 J (0, x). 

Theorem 0.1 is only a first step to the évaluation of the analytic torsion forms in 
full gênerality. As shown in Chapter 5, our fibrations are such that the fundamental 
group of the base S acts as a finite group on the cohomology H* (X, Z). By passing 
to a finite normal cover of 5, this action can then be made trivial. This puts a 
severe restriction of the fibrations to which our formula applies. Fibrations by torus 
bundles associated to gênerai SL (n, Z) vector bundles do not verify our assumptions. 
In particular the évaluation by Bismut and Lott [BLo2] of the analytic torsion forms 
of such torus fibrations cannot be obtained from our main resuit. 
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However, as we shall see in Chapter 16, there is a variant of Theorem 0.1, in which 
/ is only assumed to be a fibrewise Morse-Bott function. In Chapter 16, we establish 
this more gênerai version of Theorem 0.1 in the context of unit sphère bundles. This 
formula is used to evaluate the torsion forms of thèse sphère bundles. We now explain 
in more détail the main formula of Chapter 16. 

Let E be a real vector bundle of dimension n + 1 > 2 on a manifold S. Let gE be 
an Euclidean metric on E, and let Ve be an Euclidean connection. Assume that G 
fixes S and acts on E by unitary automorphisms which préserve VE. Let SE be the 
unit sphère bundle of (E,gE). Let E be the total space of SE. If g e G, we can then 
define analytic torsion forms associated to the projection TT : S —> S, which are closed 
and whose cohomology class Thj9 (£) does not dépend on the choices of gE and VE. 
If g G G, let det (g) = ±1 be the déterminant of g acting on the fibres of E. The 
following resuit is established in Theorem 16.1, in part as a conséquence of Theorem 
0.1. 

Theorem 0.2. — For any g E G, the following identity holds, 

(0 .24) Th,g(£) = ( l - ( - ! ) " det (g)) ( 0 la (E) -
1 

2 
log 

2 7T (N+L) /2 

a ( ( n + l ) / 2 ) 

in even (5, C) . 

Theorem 0.2 was already obtained by Bunke [Bul] in the case where g — 1. As 
explained in Remark 16.3, from Theorem (0.2), we recover the évaluation by Bismut 
and Lott [BLol, Corollary 4.14] of the analytic torsion forms associated associated 
with a circle bundle equipped with a complex line bundle, with holonomy around the 
circle given by a root of unity. 

The analogue of Theorem 0.1 for the Chern analytic torsion forms suggests a pos­
sible link with Arakelov theory. In fact let us recall that in [B8], Bismut introduced 
a genus R(0,x), extending the R(x) genus of Gillet and Soulé [GS1], given by the 
formula, 

(0.25) R(0,x) = 

p > 0 
p e v e n 

i 
p 

3=1 

1 

3 
n(O-p) + 2 

9 V 
ô s 

(0,-p) 
xp 

p! 

+ 
p > 0 

p odd 

v 1 

3 
C ( * , - p ) + 2 

9 
d s 

(O, -p) 
xp 

p! 

so that R(x) = R(x,0). In [B9], it was shown that the genus R(0,x) appears as a 
defect in an immersion formula for equivariant Quillen met ries, extending the main 
resuit of [BL]. In [KôRoe], Kôhler and Roessler extended the Riemann-Roch formula 
in Arakelov geometry of Gillet and Soulé [GS2] to an equivariant situation. Recall 

ASTÉRISQUE 275 



INTRODUCTION 9 

that L(y,s) is the Lerch zeta function. In Proposition 4.40, we give the obvious 
identity, 

(0.26) i?(0,x) + 4J(0,x) = 

p E N 

p 

3 = 1 

1 

3 
L ( 0 , - p ) + 2 a L 

d 
(0,-p) 

xp 

p ! 

As explained in Proposition 4.41, the factor 4 in the left-hand side of (0.26) is 'natural'. 
This resuit suggests a possible mysterious connection of analytic torsion forms in de 
Rham theory with their holomorphic counterpart [BGS1, BK] in Arakelov theory. 

Now we briefly describe the techniques which are used in the proofs of the above 
results. The idea is to combine the methods used by Bismut-Zhang [BZ1, BZ2] in 
their proof of Theorem 0.1 in degree 0 with the formalism of Bismut-Lott [BLol]. 
The proofs also bear some similarity with the proofs of Bismut in [B10], where an 
analogue of the above problem was considered in the context of the holomorphic 
analytic torsion forms of [BGS1, BK]. 

Let us also indicate that in [BGo4, BGo5], we have constructed an infinitésimal 
version of the equivariant torsion, which is essentially a version of the Chern analytic 
torsion forms 7^h,# (THM, gTX, VF, gF) in the case where the fibration ir : M —> S 
cornes from a G-principal fibre bundle, and we have also given a local formula relating 
the classical equivariant analytic torsion to its infinitésimal version. The results of 
[BGo4, BGo5] demonstrate that %hi9 (THM,gTX,VF\gF) gives indeed the 'right' 
normalization of the analytic torsion forms. Besides, we show that thèse results are 
compatible to the results we obtain in the présent paper, and also with results of 
Bunke [Bu2]. 

Let us now describe in more détail the techniques used in the présent paper. 

1. Superconnections and Chern-Simons theory.— In [BLol], Quillen's superconnec­
tions [Ql] are the key tool to the proof of the Riemann-Roch-Grothendieck formula 
(0.3) and to the construction of the analytic torsion forms. In Chapters 1 and 2 of 
this paper, we make the link with Chern-Simons theory more explicit than in [BLol]. 
By making this link, we obtain a natural construction of the Chern analytic torsion 
forms, and also a direct understanding of the rigidity of the analytic torsion forms. 

2. An extended de Rham map.— In [La], Laudenbach proved that under standard 
assumption on Y — —V/, the stable and unstable cells of Y can be compactified into 
submanifolds with C1 conical singularities. In particular, it is possible to integrate 
smooth différential forms on thèse cells. Laudenbach proved that one gets this way 
a de Rham map P°° : Çl*(X,F\x) —* C* (Wn,F), which is a quasi-isomorphism. In 
Section 5.6, we extend this resuit to the situation considered above. Namely, we show 
that there is an intégration along the fibre map P°° : fi* (M, F) -> fi# (S, C# (Wu, F)), 
which maps the de Rham operator dM on M into the canonical fiât superconnection 
Ac-{w\F), Qf c. (wu^Fy 
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3. The Witten complex and the instanton calculus.— In [BZ1, BZ2], a key idea is 
to use the Witten déformation of the de Rham operator [W], i.e. for T G R, to 
replace dx by e~T^dxeT^ and make T —> +00. Besides the 0 eigenvalue, which 
corresponds to the cohomology H*(X, F\x), a finite number of nonzero eigenvalues of 
the Laplacian decay exponentially as T —» +00. In [BZ1], results of Helffer-Sjôstrand 
[HSj] were needed to obtain a précise estimate of the 'small' eigenvalues. In [BZ2, 
Section 6], the results of [BZ1] were given a much simpler proof by using the results 
of Laudenbach [La] on the Thom-Smale complex C (Wu, F). 

In the présent paper, we follow essentially the same strategy as in [BZ1, BZ2]. 
However, we need not only to estimate the 'size' of the small eigenvalues, but also 
subtle properties connected in particular with the variation of the corresponding 
eigenspaces. This is done by two distinct methods developed in Chapters 10 and 
11, which both lead to the same results. In Chapter 10, we use a theory of 'gener-
alized' metrics, and in Chapter 11, we show how to use the eigenvalue estimâtes or 
[BZ2] to obtain the required resuit, when the function / is fibrewise nice. 

4. Local farnilies index theory and Berezin intégrais.— In [BLol], the main results 
were proved using the local farnilies index Theorem of [B3]. Here, we use the local 
farnilies index techniques developed in Berline-Getzler-Vergne [BeGeV]. In [BZ1, 
BZ2], two copies of the bundle of Clifford algebras of (TX, gTX) appeared naturally, 
and the considered operators exhibited a symmetry property when thèse two copies 
were interchanged, which made the local index computations rather easy. Ultimately, 
the Berezin intégrais of Mathai-Quillen appeared in the local index computations. 
Here, this symmetry property is broken. A more sophisticated calculus to handle 
Berezin intégrais is needed, which is developed in Chapter 6. 

5. Finite propagation speed and localization. — As in [BL, B9, BGol ] , finite prop­
agation speed of solutions of hyperbolic équations [ChP, T] plays a key rôle in the 
proofs that certain estimâtes can be made local. In fact in our estimâtes, the question 
often arises of showing that thèse estimâtes can be proved 'locally'. Finite propa­
gation speed is one of the tools one can use to prove that such a localization of the 
estimâtes is indeed possible. 

This paper is organized as follows. In Chapter 1, we recall the formalism of [BLol] 
on flat super connections, and we construct the equivariant gêner alization of the tor­
sion forms of finite dimensional complexes of [BLol]. In Chapter 2, we prove rigidity 
results in positive degree for such torsion forms, and we construct their proper nor-
malization, the Chern torsion forms. In Chapter 3, we prove the equivariant extension 
of the Riemann-Roch-Grothendieck theorem of [BLol] for flat vector bundles, and 
we construct corresponding equivariant analytic torsion forms. We prove that in a 
suitable sensé, thèse forms are rigid under déformation of the flat connection on the 
given vector bundle F , and we also construct their Chern normalization. 
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In Chapter 4, we construct the analytic torsion forms of a Z2-graded vector bundle 
E. The explicit computation of thèse torsion forms is of fundamental interest, since 
it produces the genus °I (6,x). In Chapter 5, we describe the main properties of the 
family of complexes C (WU,F), and we describe the de Rham map of Laudenbach 
[La]. In Chapter 6, we prove various properties of Berezin intégrais in our géométrie 
setting, and we recall the construction of the Mathai-Quillen currents. 

In Chapter 7, we check that Theorem 0.1 is compatible with known results on 
analytic torsion forms. Chapter s 8-15 are dévot ed to the proof of Theorem 0.1. The 
gênerai organization of the proof is closely related to the proof of corresponding results 
in [BZ1, BZ2]. In Chapter 8, using a contour intégral, we prove a basic identity, 
depending on three parameters E,A,TQ. Theorem 0.1 will be obtained by taking 
adéquate limits in this identity. In Chapter 9, we state, without proof, a number 
of intermediate results, from which Theorem 0.1 is then derived. Chapters 10 and 
11 provide two différent proofs of one of thèse results, Chapters 12-15 give proofs 
of the other intermediate results. The proofs involve various kinds of localization on 
the fixed point fibre XG or the fixed critical points BG. Finally, in Chapter 16, we 
establish Theorem 0.2. 

The results contained in this paper were announced in [BGo2, BGo3]. 

Acknowledgments. — The authors are very much indebted to François Laudenbach 
for useful discussions. They are also grateful to a référée, for his detailed observations 
and comment s. 
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CHAPTER 1 

FLAT SUPERCONNECTIONS 
A N D EQUIVARIANT TORSION FORMS 

The purpose of this Chapter is to explain the superconnection formalism, and also 
to state the main results of Bismut-Lott [BLol] on flat superconnections and torsion 
forms. The only minor différence is that we work in an equivariant context. However, 
as explained later, the objects which we consider are just linear combinations of objects 
considered by Bismut and Lott. 

This Chapter is organized as follows. In Section 1.1, we recall the définition by 
Quillen [Ql] of superconnections on a Z2-graded vector bundle E. In Section 1.2, 
we construct the transpose of a superconnection, and in Section 1.3, the adjoint of a 
superconnection with respect to a metric . In Section 1.4, we define the action of a Lie 
group G on super connections. In Section 1.5, we consider flat super connections, and 
we construct the associated odd closed forms of [BLol] in an equivariant context. In 
Section 1.6, we consider superconnections which have total degree 1 on a Z-graded 
vector bundle. In Section 1.7, we define a canonical rescaling of the given Hermitian 
metric with respect to a parameter t > 0. In Section 1.8, we evaluate the limit as 
t —> + oo of the odd forms associated to the rescaled metric. Finally, in Sections 1.9 
and 1.10, we introduce two versions of equivariant torsion forms, and we establish 
corresponding anomaly formulas. 

1.1. The superconnection formalism 

Here we follow Quillen [Ql]. Let M be a smooth manifold. Let E — E+ 0 E- be 
a Z2-graded complex vector bundle on M. Let r = ±1 on E± be the involution of E 
which defines the Z2-grading. Then End (E) is a Z2-graded bundle of algebras, whose 
even (resp. odd) éléments commute (resp. anticommute) with r. If A G End(i£), we 
define its supertrace Trs [A] by the formula, 

(1.1) Tra[A]=Tr[rA]. 

Let A*(T*M) be the complexified exterior algebra of T*M. We extend Trs to a linear 
map A#(T*M) ® End (E) -> C, so that, if a; G A#(T*M), A e End (S), 

(1.2) Trs [LUA] = a;Trs [A]. 
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If A is any Z2-graded algebra, if a, a ' G A , the supercommutator [a, a'] is defined 
by the formula, 

(1.3) fa, a'I = a a ' - ( _ i ) d e g ( « ) d e g ( a ' ) Q , ^ 

In the whole paper, [ ] is our notation for the supercommutator. Then by [Ql], the 
supertrace of supercommutators in A*(T*M) <§ End (E) vanishes. 

Observe that A*(T*M)<g>E is a A*(T*M) module. By définition, a superconnection 
A is an odd differential operator acting on C°° (M, A*(T*M) 0 which vérifies a 
Leibnitz rule. Namely, if G C°° (M, A*(T*M)), s e C°° (M, A*(T*M) ® E) , then 

(1.4) A ( ^ ) = ^ 5 + (- l )deg(u;)^5. 

If = VE+ © V^- is any connection on E which préserves E+ and E-, then there 

is .S G C°° ( M, (A*(T*M) ® End (£))°dd>) such that 

(1.5) A = -h 5, 

and conversely any object of the form (1.5) is a superconnection. 
The curvature of a superconnection A is its square A2. The curvature A2 is a 

smooth section of (A*(T*M) ë End (£))even. 
A super connection is said to be fiât \î A2 = 0. 

1.2. The transpose of a superconnection 

Here, we follow [BLol, Section 1 (c)]. Let E* = E+ © E*_ be the antidual bundle 

of E = E+ © Let * be the even antilinear map from A*(T*M) 0 End(£) into 

A*(T*M) 0 End (^*) which is defined by the following relations: 

- If a, a7 G A*(T*M) § End (£), then 

* 

(aa7) =â~*â*. 

- I f a ; G T * M ( 8 ) R C , 

ÛJ* = — LU. 

- Iî B e End (22), is the obvious transpose of B. 

Given a superconnection A on E1, we write yl as in (1.5). Let be the connection 

on E* induced by V^. Then V^* préserves the splitting E* = ~Ë*+ © ï f . 

Définition 1.1. — The transpose of the superconnection A is the superconnection A 
given by 

(1.6) A*=VW + 5 * . 

One vérifies easily that (1.6) does not dépend on the splitting (1.5). 

ASTÉRISQUE 275 
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1.3. The adjoint of a superconnection 

We follow [BLol, Section 1 (d)]. Let now gE = gE+ 0 gE- be a Hermitian metric 
on E = E+ 0 E-, such that E+ and E- are mutually orthogonal in E. Then gE 
induces a linear even isomorphism E —> E . 

Définition 1.2. — The adjoint A* of the superconnection A is the superconnection on 
E given by 

(1 .7) A* = (gS)-1Tgs. 

Also note that S G A'(T*M) §> End (E), we define S* by the formula, 

(1 .8) S* = (gB)-1rgE. 
Remark 1.3. — An important example of the above situation is the case where = 
Ve+, Ve- is a connection on E = E+ 0 E-. Let uo (Ve, gE) be the 1-form on M 
with values in even self-adjoint sections of End (E), 

(i.9) ^ V ^ X s T ' V Y . 
Then if V^'* is the connection on E which is the adjoint of VE, 

(1.10) VE>* = VE + u(VE,gE). 

Set 

(1.11) VE,u= 1 
2 

(V^ + V*'*) . 

By (1.10) and (1.11), 

(1.12) VE,u=VE+ 1 
2 9E). 

Then V^'w is a unitary connection on E. 

1.4. Superconnections and group actions 

We make the same assumptions as in Sections 1.1-1.3. Let G be a compact Lie 
group. We assume that G acts fibrewise on the vector bundle E over M by even 
automorphisms of E. We define a right action of G on super connections, so that if A 
is a super connection and g G G, 

(1.13) A- g = g~lAg. 

Then 

(1.14) (A-g)2 =9-^9. 
In particular, G préserves flat super connections. 
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Clearly, if A is a superconnection, we can write A in the form, 

(1 .15) A = 
dim M 

3=0 

A(j), 

where A^ is a smooth section of End(£')odd, A^ is a connection on E which pré­
serves the splitting E = E+ 0 and for j ^ 2, A^ is a smooth section of 
(A^'(T*M)§End(£))°dd. By (1.14), (1.15), we find that if A is G-invariant, the 
components A^ are themselves G-invariant. In particular, the connection A^ is 
G-invariant. 

Remark 1.4. — Take g G G. Let é16*, 0 ^ Oj < 2TT be the distinct eigenvalues of the 
action of g on a given fibre Ex. The above shows that thèse eigenvalues are locally 
constant with respect to x G M, so that the vector bundle E splits into a direct sum 
of Z2-graded eigenbundles, 

(1.16) E = 
3=1 

Ee ioj 

The superconnection A then splits as a direct sum of superconnections Ae ioj on the 
E eieJ y 

S. 

1.5. Fiat superconnections, Hermitian metrics and odd closed forms 

Let gE = gE+ 0 gE~ be a G-invariant Hermitian metric o n ^ = E+ 0 E-. Let A' 
be a G-invariant flat super connection on E. Let A" be the adjoint of A' with respect 
to aE. Then A" is also a G-invariant flat sunerconnection on E. Put 

(1 .17) A 
1 

2 
{A" + A'), B 

1 

2 
(A" - A'). 

Then A is a G-invariant superconnection on E, and B is a smooth G-invariant section 

of (A'(T*M) 0 End(£))°dd, such that 

(1 .18) B* = -B. 

The following trivial relations are taken from [BLol, Proposition 1.2]. 

Proposition 1.5. — The following identities hold, 

(1 .19) B2 = -A2, [A,B] = 0, 

[A', B2] = 0, [A", B2} = 0, [A, B2] = 0. 

Now we have the resuit of [BLol, Proposition 1.3]. 

Proposition 1.6. — Let f be a holomorphic function. For any g E G, 

(1 .20) Trs [gf(B2)} = Trs [9] / ( 0 ) . 
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Proof. — Take t G R. Using the fact that Trs vanishes on supercommutators 
[BeGeV, page 40], we get 

(1.21) 
F) 

dt 
[gf(tB2)] = Trs [gB*f (tB2)} = 

1 

2 
\\B,gBf (tB2)}} = 0 . 

By (1.21), we get (1.20). 

We will say that a holomorphic function h : C —> C is real if for any x G C, h (x) = 
h (x). We fix a square root i1/2 of i. Our formulas will not dépend on the choice of 
the square root. Let (p : A*(T*M) -> A*(T*M) be given by 

(1.22) (peu = (2i7r) -deg(u;)/2 UJ. 

In the sequel, we fix g G G. 

Définition 1.7. — If h (x) is a holomorphic odd function, put 

(1.23) hg {A', gE) = (2^)1/2 <^Trs [gh (5) ] . 

If we use the notation in (1.16), we get 

(1.24) hg (A',gE)= 
q 

7 = 1 
e ioj h1 ( A 

e 
i63 

1 9 
iOj 

) 
Therefore, as explained in the Introduction, hg (A7,^^) is a linear combination of 
objects already considered in [BLol]. 

The following resuit was established in [BLol, Theorems 1.8 and 1.11]. 

Theorem 1.8. — The form hg (A',gE) is odd and closed, and it is real if h is real and 
g = 1. Its cohomology class, denoted by hg {A'), does not dépend on gE. 

Proof. — Using Proposition 1.5, and the G-invariance of A, we find that 

(1.25) [A,B] = 0, [Ag} = 0. 

Using (1.25) and the fact that supertraces vanish on supercommutators, we find that 
the form hg (A',gE) is closed. By functoriality, it follows that its cohomology class 
does not dépend on gE. If h is real and g = 1, by [BLol, Theorem 1.8], the form 
hg (A',gE) is real. The proof of our Theorem is completed. • 

Définition 1.9. — Let fî*(M) be the space of smooth complex differential forms on 
M, let dft'(M) C fi*(M) be the subspace of exact smooth differential forms. 

Let £ G [0, Il -* g E 
£ be a smooth family of Hermitian met ries on E taken as before. 

We dénote by Ai, Bi the objects associated to g 
t 

which we defined in (1.17) . 

Définition 1.10. — Put 

(1.26) hg(A',Q E ) = 
-1 

'0 
ï>Trs 9 

1 

2 
9 E 

t 
- 1 d 9 E 

d 
h' (Be) de. 

Now we state a resuit established in [BLol, Theorems 1.9 and 1.11 ]. 
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18 CHAPTER 1. FLAT SUPERCONNECTIONS AND EQUIVARIANT TORSION FORMS 

Theorem 1.11. — The class of the form hg (Af, 9 E 
i 

in 0*(M)/dO*(M) only dépends 
on g E 

0 and 9 E 
a 

Moreover, 

(1 .27) dhg A', g. E 
t = kg A\g E 

1 
-kg A' 9 E 

0 

If h is real and g = 1, the form hg A'g 
E 
i 

is real. 

Proof. — We lift E to M x [0 ,1 ] . Then the flat superconneetion Af lifts to a flat 
superconnection A!. On M x {£}, we equip E with the metric g E Therefore, on 
M x [0 ,1 ] , E is equipped with a metric 9 E One vérifies easily that 

(1 .28) kg A', 9B 
= h9 A', g E 

e + d£ifiTrs 9 
1 

2 9 
E 
e 

> - i d E 
e 

d t 
h' (B£) 

Our Theorem is a conséquence of Theorem 1.8 and of (1 .28) . 

We will dénote by hg (Af,g E 
o 5 9 E 

1 
) the class of hg (A', 9 E 

e 
) i n fi (M)/d îî (M). 

Remark 1.12. — As in Remark 1.3, take a connection = WE+ ©V£~, and assume 
that V e is flat. We use the notation in (1 .9 ) - (1 .12) . Then VE'U is a unitary connection 
on E, which by (1 .10) , is exactly the connection A in (1 .17) associated to A' = \7E. 
Moreover if B is defined as in (1 .17) , 

(1 .29) B 
1 

2 w 
(VE,gE). 

Then from (1 .19) , we find in particular that 

(1 .30) 
VE,u,2 1 

4 
w2(V*,gE), VE'uuj(VF,gF) = 0 . 

1.6. Superconnections of total degree 1 

Let E — 0 ™ ^ E1 be a Z-graded complex vector bundle on M. Set 

(1 .31 ) E+ = O Ei, 
i even 

E- = e E\ 
i odd 

Then E = E+ 0 E- is a Z2-graded vector bundle. 
Let A' be a superconnection on E = E+ 0 E-. As in (1 .15) , we write A' in the 

torm, 

(1 .32) A' = 
dim M 

j=0 

A'(j) 

where A'^ is of partial degree j in the Grassmann variables in A*(T*M). 

Définition 1.13. — We say that A! is of total degree 1 (resp. —1) if A'^ is a connection 
on E which préserves the grading, and if for j ^ 1, A'^ is a section of A-7 (T*M) 0 
Rom(E',E'+1-j) (resp. A-7 (T*M) <§ Hom (E*, E#_1+j)). 
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1.6. SUPERCONNECTIONS OF TOTAL DEGREE 1 19 

In what follows we assume that A! is a flat superconnection of total degree 1. Put 

(1.33) v = A'(°\ VE = A'W. 

Then v is a section of Hom (E*, E9+1), and is a connection on E which préserves 
the grading. 

The following statement was established in [BLol, Proposition 2.2]. 

Proposition 1.14. — We have the identities, 
(1.34) v2 = 0, [ v V ] = o , 

VE,2+ v,A'^ = 0. 

Proof. — This follows from the identity, 

(1.35) A'2 = 0. 

Définition 1.15. — Given x G M, let Hm (E,v)x = 0 ™ o W (E,v)x be the cohomol-
Dgy of the complex (E,v)x. 

By Proposition 1.14, since v is parallel with respect to VE, there is a complex 
Z-graded vector bundle H* (E,v) whose fibres are the H* (E,v)x. Also by [BLol, 
Définition 2.4 and Proposition 2.5], the connection VE induces on H* (E, v) a connec­
tion V ^ * ^ ' ^ , which is flat. This resuit is in fact a trivial conséquence of Proposition 
1.14. 

Let G be a compact Lie group acting fibrewise on E and preserving the Z-grading. 
Assume that A' is G-invariant. Then the A'^ are also G-invariant. It follows that G 
acts naturally on H* (E, v). One vérifies easily that this action is parallel with respect 
to VH^E^. 

Let now GE = @™ 0 GE% be a G-invariant Hermitian metric on E — ®™0 E1, such 
that the El's are mutually orthogonal in E. Let v* be the adjoint of v with respect 
to GE. Put 

(1.36) V = 
1 
2 

(y* - v). 

It follows from finite dimensional Hodge theory that for any x G M, we have a 
canonical isomorphism, 

(1.37) H* (E,v)x~kerVx. 

As a Z-graded subbundle of kerV inherits a G-invariant Hermitian metric from 
the metric GE. Let GH ^E^ be the corresponding G-invariant metric on H* (E,v). 
Let PkerV be the orthogonal projection opérât or from E on ker V. 

Recall that U (VE,GE) was defined in (1.9). Also U (YH'(E,V)^gir(E,V)} IS GIVEN 

by a similar formula. 
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20 CHAPTER 1. FLAT SUPERCONNECTIONS AND EQUIVARIANT TORSION FORMS 

Then by [BLol, Proposition 2.6], 

(1.38) 

yH*(E,v) _ pkerV^E 

yU*(£,u),* _ pkerVy£,* 

LU V H'(E,v) H*(E,v) = PkerVu> (Ve,gE) P k e r y . 

The unitary connections V^'" and V H ' ^ ' ^ U are defined as in (1.9). It follows from 
(1.38) that 

(1.39) V Hm(E,v),u _ pkerV^jE,u 

1.7. A rescaled metric 

We make the same assumptions as in Section 1.6. Let N be the number operator 
acting on E, i.e. N acts on Ek by multiplication by h. 

Définition 1.16. — For t > 0, let gf be the metric on E, 

(1.40) 9 E 
t t N 

9 
E 

Let A" be the adjoint of A' with respect to g E 
t 

Clearly A" = A î Also, 

(1.41) A" = t-NA"tN. 

We define At,Bt as in (1.17), i.e. 

(1.42) At 
1 

2 
(A'J + A'), Bt 

1 

2 
{A'I-A'). 

Take g G G. As in Définition 1.7, set 

(1.43) hg (A', g E 

t ) = (2iir) 1/2 
P Trs [gh (Bt)}-

Définition 1.17. — Set 

(1.44) h9 
A (A', g E 

t ) =^Trs 
N 

2 
gh i (Bt) 

The following resuit was established in [BLol, Theorem 2.9]. 

Theorem 1.18. — The form hn 
J 9 

A (A', g E 
t ) is even. It is real if h is real and g 

Moreover, 

(1.45) 
d 

d t 
hg (A', 9 E 

t ) = d 
A (A',g E 

t 

Définition 1.19. — For t > 0, set 

(1.46) C't = t N/2 A't -N/2 c't' = t -N/2 A"tN'2. 
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Then Ct' is a flat superconnection of total degree 1, and C" is its adjoint with 
respect to the metric gE. Set 

(1.47) Ct = 
1 
2 

(CÏ' + CÏ ) , A = 
1 

2 (Ct"-^') -

By (1.41), (1.46), we get 

(1.48) Ct = tN/2^Att*-N2, A = tNl2Btt-N'2. 

Prom (1.48), we deduce that 

(1.49) hg{A',g E 
t )=hg {Ct,g E ) 5 h» 

A (A', g E 
t 

A 
(Ci, g E ) 

If a e R+, let Vo : A*(T*M) -> A'(T*M) be given by 

(1.50) vaw = a degw/2 

Recall that .A = Ai, B = Bx. 

Proposition 1.20. — For t > 0, the following identifies holà, 

(1.51) Ct = Vt -1 t A v t Dt = ip-1VtBiH. 

Proof. — We use the notation in (1.32). By (1.46), since A' is of total degree 1, and 
A" is of total degree — 1, 

(1.52) C't = 
d i m M 

j=0 

t ( l - i ) / 2 i 4 / ( i ) > c't' = 
dim M 

j=0 

t(1-j)/2 A"(j) 

Prom (1.52), we get (1.51). 

Proposition 1.21. — For t > 0, the following identities hold, 

(1.53) hg (A',g E 

t 
) = (2it)1/2 pwt-1Trs [ gh (v/ÏB) 

Hg (A', g E 
t 

= Qwt-1Trs 
N 

2 
gh' (VtB) 

Proof. — This follows from (1.49) and from Proposition 1.20. 

1.8. The limit of hg (A\g E 
t ) and of hA (A', g E ) as t —» +oo 

We make the same assumptions as in Sections 1.6 and 1.7. Let h (x) be a holomor­
phic odd function. We assume there is c > 0 such that for any A: G N, there exists 
Ck > 0 such that 

(1.54) sup (l + \x\)k\h(x)\ <Ck. 
xGC 

| Re x | ̂  c 

Let ( < ^ ) j e R ^ u { + o o } be- smooth forms on M. We will write that as t —> +oc, 

(1.55) at = a+00 + O (l/Vï) , 
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2 2 CHAPTER 1. FLAT SUPERCONNECTIONS AND EQUIVARIANT TORSION FORMS 

if for any compact set K C M and any k G N, there is C > 0 such that the supremum 
of the norms of at — a+00 and its derivatives of order ^ k over K is bounded by Cj\fï. 

If x G M, g G G, set 

Xg{Ex) = 
m 

j=0 

(-l)jTrE 
3 
x [g], 

(1.56) Xg (Ex) 
m 

3=0 

(-l)JjTrHJ (E:v) X g], 

x'9 {Ex) = 
m 

I=O 

{-iyjTrEi[g}. 

Since the action of g on E is parallel, the functions of x G M in (1.56) are locally 
constant. Classically, Xg (F) is the equivariant Euler characteristic of the complex 
( £ » , Le. 

(1.57) Xg (E) = 
m 

3=0 
(-I)3 TrHJ{<E>v> [g]. 

By définition, 
(1.58) 

hq V H9(E,v) nH'(E,v) 
m 

3 = 1 

(-1)j(2iir)1/2 ipTr gh 
1 

2 
UJ V Vj(E,v) 

7 9 
Hj(E,v) 

The following resuit was established in [BLol, Theorem 2.13]. 

Theorem 1.22. — As t ^ +oo7 

(1.59) hg (A1, g E 

t )=hg H9(E,v) 
5 9 

H*(E,v) 
+ o 1/ r t 5 

Hg A A' 0 t 
1 
2 ft'(O)X 

/ 

g 
{E) + 0 V 

Remark 1.23. — From Theorems 1.8 and 1.22, we deduce that 

(1.60) hg(A')=hg V TT(E,v) in Hodd (M, C) , 

which is just [BLol, Theorem 2.14]. 

1.9. The form Shi9 (A', g E 

We make the same assumptions as in Sections 1.6-1.8. We still assume that the 
holomorphic odd function h(x) is such that (1.54) holds. Also, we use the notation 
in (1.44). 

Définition 1.24. — Set 

(1 .61 ) Sh,g (A', g E 
) = -

+OO 

1 

A A', g E 
t 

1 

2 
h'(0)x g 

(E) 
dt 

t 
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The following resuit was established in [BLol, Theorem 2.16]. 

Theorem 1.25. — The form Sh,g (A',gE) is even, and real if h is real and g = 1. The 
following identity holds, 

(1.62) dSh,g (A', gE) = h9 (A', gE) - h9 V H*(E,v) H*(E,v) 

Proof. — This follows from Theorems 1.18 and 1.22. 

Let g E 
0 and E 

E 
1 be two G-invariant Hermitian metrics which are taken as before. 

Let g H*(E,v) 
0 ,9 

H*(E,v) 
i l be the corresponding metrics on H* (E, v). The following resuit 

was proved in [BLol, Theorem 2.17]. 

Theorem 1.26. — The following identity holds, 

(1.63) Sh,g A' E 
1 - Sh,g A' ,9 E 

0 

= hg (Af,g E 
0 i 9 E 

1 - kg V Hm(E,v) 9 V(E,v) 
0 >01 

H*(E,v) in Q (M)/dn*(M). 

Proof. — This is an easy conséquence of Theorem 1.25 and of the functoriality of the 
forms Sh,g A' ,9 E 

1.10. Flat complexes of vector bundles and their torsion forms 

Let 

(1.64) (E,v) : 0 - E° E1 • • • ET - 0 

be a flat complex of vector bundles. By définition, E = (J) E% is equipped with a flat 
connection VE = m 

i=0 
V E' , and v is parallel with respect to VE, i.e. 

(1.65) Ve v = 0. 

Put 

(1.66) A' = v + VE. 

Then A' is a flat superconnection on E of total degree 1. 
Let G be a compact Lie group action fibrewise on E by automorphisms which 

préserve the Z-grading, the chain map v and the connection VE. Then the supercon­
nection A' is G-invariant. Let g E m 

i=0 9 E i be a G-invariant Hermitian metric on 
E = m 

i=0 E1. Then, by using the notation in Sections 1.6-1.8, 

(1.67) a1; = tv* + vE>*, ct = f S~tv + VE, C"t tv* + V E,* 

Let h be a holomorphic odd function such that 1.54 holds. Now we have the easy 
resuit established in [BLol, Proposition 2.18]. 
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Proposition 1.27. — As t —• 0, 

(1.68) hg [A', g E 
t ) = kg V E 

,9 
E )+o(t), 

A (A', g E 
t ) = 

1 

2 
Xg (E) + 0(t). 

Remark 1.28. — Prom Theorem 1.8 and from Proposition 1.27, we find that 

(1.69) hg (VE) = hg ( V ( £ » j in Q'(M)/dn'(M). 

Définition 1.29. — Put 

(1.70) Th,g(A',gE) = -
+ 00 

0 
hg^ (A', g E 

t 
1 

2 
*!g{E)h'(0) 

1 

2 0? 9 
(E)-

9 
(E))h' i t/2 

dt 

t 

The form Th,g (A',gE) is called an equivariant torsion form. The following resuit 
was established in [BLol, Theorem 2.22]. 

Theorem 1.30. — The form Th,g (A',gE) is even, and real if h is real and g = 1. The 
following identity holds, 

(1.71) àTht9 (A1, g E kg (VE, 9E ~hg\ V H'(E,v) 
9 

H*(E,v) 

Proof. — Equation (1.71) follows from Theorems 1.18, 1.22 and from Proposition 
1.27. 

Let g E 
o i 9 E 

1 be two G-invariant Hermitian metrics taken as before. Recall that the 

classes of forms ha (Ve, q E 
o 9 E 

J >h9 V H*(E,v) 9 o 
H*(E,v) 

5 9 i 
H*(E,v) e M d M 

were defined in Définition 1.10. The following resuit was established in [BLol, The­
orem 2.24]. 

Theorem 1.31. — The following identity holds, 

(1.72) Th,g A' ,9 
E 
1 ~ Th,g 9 0 

hg V E 
,9 

E 
0 9 E 

1 - h9 V H'(E,v) 
,9 o 

H*(E,v) 
i 9 

H*(E,v) 
1 in îî#(M)/dîî*(M). 

Proof — Our Theorem is an easy conséquence of Theorem 1.30 and of the functori-
ality of Th,g ( ^ , ^ ) . 
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1.11. Functorial characterization of the torsion forms 

We use the same notation as in Section 1.10. 
Assume now that the complex (E,v) is acyclic, i.e. H* (E,v) = {0}. By following 

[BLol, Appendix I], we will say that the complex ((E,v) ,gE} splits if there are flat 
vector bundles F 0 , . . . , Fm~l and corresponding Hermitian metrics gF°,... ,gF™ 1 
such that we have the identification of Hermitian flat vector bundles, 

(1.73) E1 = Fi~l®F\ O ^ i ^ m , 

and moreover v : E1 —> El+1 is just the identity map F1 —> F* and vanishes on F1 l. 
Then we state [BLol, Theorem Al. l] . 

Theorem 1.32. — The following identity holds, 

(1.74) dTKg (A1, g E = K (v E 9 E 

If M' is another manifold and a : M' —• M is a smooth map, then 

(1.75) Th,g _ * Al * E 
a A ,a g a*Th,g A', 9 1 

If ((E,v) ,gE) splits, then 

(1.76) Th,g (A',g) E = 0. 

Finally Th,g (Af,gE) dépends smoothly on A'\gE'. 

Proof. — Our Theorem follows in particular from Theorem 1.30. 

Now we state a resuit established in [BLol, Theorem Al.21. 

Theorem 1.33. — Given a manifold M, let T'hg (Af,gE) be an even form on M veri-
fvinq the four conditions in Theorem 1.32. Then 

(1.77) T'Kg (A',gE) = Th,g (A',gE) in îî*(M)/dîr(M). 

Remark 1.34. — One can easily extend the above characterization of Th,g (Af,gE) to 
the case where (E, v) is not acyclic. 
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CHAPTER 2 

RIGIDITY OF TORSION FORMS 
AND THEIR CHERN NORMALIZATION 

One purpose of this Chapter is to prove rigidity of the torsion forms Th,g (Af,gE) 
which were introduced in [BLol] and in Section 1.1. In fact in [BLol, Theorem 2.24] 
and in Theorem 1.31, we showed that thèse forms verify anomaly formulas when we 
deform the metric gE. Here we will show that in degree ^ 2, there are analogous 
anomaly formulas when we deform the flat superconnection Ar. 

The second purpose of this Chapter is to produce a 'natural' normalization of the 
torsion forms, the Chern torsion forms. 

This Chapter is organized as follows. In Section 2.1, we prove that in degree ^ 3, 
the class hg (Af) is rigid under déformation of the superconnection A\ and we produce 
explicit transgression formulas for the corresponding forms hg (A'', gE). In Section 2.2, 
when A: is a holomorphic odd function, we give a residue formula for k (Dt). In Section 
2.3, we establish a convergence resuit on certain forms as t —> +oo. In Section 2.4, 
we prove that the forms Sh,g (A',gE} verify anomaly formulas in degree ^ 2 when 
A! varies, and in Section 2.5 we prove the corresponding resuit for the torsion forms 
Th,g (A',gE). In Section 2.6, by following [BLol, Section 1 (g)] we construct other 
odd forms in the Chern-Simons formalism. In Section 2.7, we relate thèse Chern-
Simons forms to the forms hg (A',gE). In particular, we show how the transgression 
formulas can be obtained in the Chern-Simons formalism. Also we obtain associated 
odd Chern character forms ch° (Af', gE). In Section 2.8, we construct the Chern torsion 
forms. In Section 2.9, we extend the construction of the torsion forms, when we replace 
standard metrics gE by so called generalized metrics gE. Such a construction will be 
needed in Chapter 10. Finally, in Section 2.10, we consider generalized metrics on flat 
complexes. 

2.1. Rigidity properties of the superconnection odd classes 

Here, we use the notation of Sections 1.1-1.5. In particular, M is a smooth manifold, 
and E = E+ 0 E- is a complex Z2-graded vector bundle on M. Also G is a compact 
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Lie group acting fibrewise on E by even automorphisms. Let gE = gE+ 0 gE- be a 
G-invariant Hermitian metric o n E = E + © E _ , which is such that that E+ and E-
are orthogonal in E. 

Let Al be a smooth manifold of G-invariant flat superconnections A' on the Z2-
graded vector bundle E. We will consider the manifold M x Af. We dénote by dM, dM 
the de Rham operators on M x Al, so that the total de Rham operator is d is given 
by dM + dM. 

We still dénote by (E,gE) the pull-back of (E,gE) to M x M. 
If A' e M, let A!' be the adjoint of A' with respect to the metric gEAs in (1.17), 

set 

(2.1) A = 1 
2 

(A" + A'), B = 1 
2 

{A" - A'). 

Let h(x) be a holomorphic odd function. We assume that deg h > 3. Put 

(2.2) k(x) = 
h'{x) 

2x 

Recall that <p : A*(T*M) A*(T*M) was defined in (1.22). We define y? : 
A(T* (M x A4)) -> A (T* (M x X ) ) as in (1.22). More generally, in the sequel, 
we will use the same notation cp on any manifold. 

Also the forms hg (A',gE) on M were defined in Définition 1.7. 

Theorem 2.1. — The form V2i7T(pTrs [gk(B)dMA] on M x M is odd. It is real if h 
is real and g = 1. Moreover we have the identity of forms on M x M, 

(2.3) dMhg (A',gE) = dMV2ri(p Trs [gk(B)dMA] . 

Proof. — Clearly, 

(2.4) (dMA)* =dMA. 

Since = —B, and k is an odd function, 

(2.5) (k(B)dMA)* = —dMAk(B). 

From (2.4)-(2.5), we conclude that if h is real, the form y/^in (fTrs [k(B)dMA] is real 
as in [BLol, Theorem 1.8]. Using the fact that supertraces vanish on supercommu-
tators, we get 

(2.6) dMTrs [gh{B)\ = Trs [gh!{B)dMB] = 2Trs [gk(B)BdMB] 

= Trs [gk(B)[B,dMB]}. 

Since A2 = -B2, 

(2.7) [A,dMA] = —[B, dMB}. 

Since by Proposition 1.5, [A,B] — 0, using (2.7), we get 

(2.8) dMTrs [gk(B)dMA] = -Trs [gk(B)[A, dMA]} = Trs [gk(B)[B, dMB}] . 
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2.1. RIGIDITY PROPERTIES OF THE SUPERCONNECTION ODD CLASSES 2 9 

By (2.6), (2.8), we get (2.3). The proof of our Theorem is complétée!. 

Take m G N, m odd, such that m > 3. 

Définition 2.2. — Put 

om,g= V 2iir ipTïs gBmdMA 5 

Pm, g — 
1 

2 
2iIIq 

0CK(m-3)/2 

(2.9) +(1)gBjdMBBm-2-jdMB 

Trs gBjdMABm-2~jdMA 

+ 
1 

4 
2iiT pTrs gB^m-1^2dMAB^m-3^2dMA 

+ (-1) ( m - l ) / 2 gB{m-l)l2DMBB^m-Z)l2DMB 

Theorem 2.3. — The forms ctm,g cmd on M xM. are odd. They are real if g = 1. 
Moreover, 

(2.10) dMam,g = dM/W 

Proof. — The proof that, if g = 1, and /3m>fi, are real is the same as in Theorem 
2.1. Clearly, 

(2.11) dMTrs [gBrndMA] = 
O ^ j ^ m - l 

(-1)j Trs gBjdMBBm-1-jdMA 

Using (1.19), (2.7), we get 

(2.12) dMTrs gBidMABm-2-idMÀ 

= (-1)j+1Trs gBj B,dMB Bm-2-JdMA Trs gBjdMABm~2-j[B, dMB] 

= (-1)j Trs gBm-1-jdMBBjdMA Trs gBj+1dMBBm-2-idMA 

+ Trs gBm-1-jdMBBjdMA - T r s gBm-2-jdMBBi+1dMA 

Since [A, B] = 0, 

(2.13) dMA,B A,dMB 

Using (2.13), we get 

(2.14) dMTrs gBjdMBBm-2-jdMB 

= ( - l ) j T V s gBj[dMA, B}Bm-2~jdMB -Trs gBjdMBBm-2-j dMA,B 

= Trs gBjdMBBm-1-jdMA + Trs gBj+1dMBBm-2-jdMA 
gBm-1-jdMBBjdMA + Trs gBm~2-idMBBj+1dMA 
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From (2.11)-(2.14), we get (2.10). The proof of our Theorem is complétée!. 

The operator ip : A#(T*M) -> A#(T*M) is now defined as in (1.22). Let A: be a 
holomorphic odd function. Let £ G [0,1] —> A!t be a smooth one parameter family of 
G-invariant flat super connections. 

Définition 2.4. — Let Lk,g (A'^gE) be the form on M, 

(2-15) Lk,g(A'e,gE) = 
1 

0 
^Trs 9k(B£) 

d il 

a. 9 
de. 

Observe that the form Lk,g (A'e, gE) dépends explicitly on the path £ G [0,1] —> A'e. 

Theorem 2.5. — The form Lk,g(A'£lgE) is even, and real if k is real and g = 1. 
If degk ^ 3, given A^A^, the class of the form Lk,g (A'£,gE) in Q*(M)/dQ*(M) 
dépends only on the homotopy class of the path £ —» Af£. If h is a holomorphic odd 
function such that deg/i ^ 3, if k(x) = h'(x)/2x, then 

(2.16) dMLk,g (A'e,gE) = hg {A[,gE) - hg(A'0,gE) . 

Proof — The first part of our Theorem is a trivial conséquence of Theorem 2.3. 
Equation (2.16) follows from Theorem 2.1. 

Remark 2.6. — Theorem 2.5 indicates that if deg/i ^ 3, the cohomology classes 
hg{A') are rigid, i.e. they are invariant under déformations of A'. This resuit is 
well-known [CSi, Proposition 2.9] for the odd Chern classes associated to flat vector 
bundles. This rigidity resuit is not true in degree 1. Also under the assumptions of 
the second part of Theorem 2.5, équation (2.16) refines on the rigidity resuit at the 
level of differential forms. If deg/i ^ 5, the first part of the Theorem indicates that 
the class of the transgression form Lk^g (A'£,gE) in Q*(M)/dQ*(M) is itself canonical, 
i.e. it is rigid under déformation of the path £ —> A'v This class should be thought 
of as an analogue of the Bott-Chern classes in complex geometry [BGS1], since it is 
obtained by a double transgression formula. 

Remark2.7. — One vérifies easily that in degree ^ 3, (1.27) follows from (2.16). 

2.2. An expression for k (DT) 

Now, we make the same assumptions and we use the same notation as in Sections 
1.6-1.9. In particular E = 0^o E1 is a Z-graded vector bundle on M, G is a compact 
Lie group which acts fibrewise by Z-graded automorphisms of E, A' is a flat G-
invariant superconnection on E of total degree 1, and gE — ©^Q^^* is a Hermitian 
metric on E such that the E^'s are mutually orthogonal in E. 

With the notation in (1.36), 

(2.17) B<°> = V. 
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2.2. AN EXPRESSION FOR k(Dt) 3 1 

FIGURE 2.1 

If x G M, A G (A*(T*M) êEr id (£ ) )x , let Sp(^x) C C be the spectrum of A. 
Clearly, 

(2.18) S p ( B ) = S p ( B ( 0 ) ) . 

Also the spectrum of B^ is purely imaginary. Moreover, by (1.37), 

(2.19) kerB<°> ~H9 (E,v). 

Let k (x) be a holomorphic odd function. We assume there is c > 0 such that for 
any p G N, there exists Cp > 0 such that 

(2.20) sup 
xGC 

| Re x I ̂  c 

( i + |x | )p |fc(z)KCV 

To make our arguments simpler, we will temporarily assume that M is compact. 
Since ker£?(°) has constant rank, there exists d\,d2 G R+, with d\ < such 

that 

(2.21) Sp B(o) C{0}U 2di,d2/2 

Let i C C be the circle of centre 0 and radius 1. For t > 0, let At = U A^_ 
be the contour in C indicated in Figure 2.1. 

Définition 2.8. — For t > 0, put 

(2.22) Gt = Vt -1 
1 

2i?r Vt 

Jfe(VtA) 
dtvt, Ht = ^ r 1 

i 

2m di 

2 5 

k(VtX) 

X-B 
dXipt. 
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Proposition 2.9. — For any t > 0, 

(2.23) k(Dt) = Gt + Ht. 

°roof — By (2.18), (2.21), the spectrum of B is included in the domain bounded 
by At U di 

2 ô. Using Proposition 1.20, (2.20) and the theorem of residues, we get 
(2.23). 

Proposition 2.10. — Given p e N, there exists C > 0 such that for t ^ l , 

(2.24) Gt 
C 
tP 

Proof. — Using (2.20), we find that given p' 6 N there exists C > 0 such that if 
t > 1, l e Vt, 

(2.25) k sft\ 
C 

tP' \X\P 

Moreover, if A € At, we have the expansion 

(2.26) ( A - B ) _ 1 = A - B^ 
- 1 

+ A - B<°> 
- i 

B(>0) A - B(°> 
- 1 

+ . . . 

and this expansion only contains a finite number of ternis. By (2.26), we find that 
there exists C > 0, q' G N such that if 1, A e At, 

(2.27) (X-By1 <C t q' 

By (2.25), (2.27), there exist c> 0, C > 0 such that for t ^ 1, 

(2.28) 
1 

2in 

fc(VÎA) 

X — B 
dX 

C 

tp 

Our Proposition follows from (2.28). 

Let p W be the orthogonal projection operator from E on ker£^0) ~ H* (E,v). 
Sftt 

(2.29) p{0}-L = 1 _ p W . 

Then pOT1- is the orthogonal projection operator, which projects on the orthogonal 

bundle (kevB^) to ker i ? ^ in E. Also B^ acts as an invertible operator on 

(kerB<°)) . Let (J3<0>)" dénote its inverse. We extend (B^) to an operator 

which acts like 0 on kerl?(0). Now we proceed as in [B10, Theorem 9.29]. Let D^1) 

be the component of Dt which has partial degree ^ 1 in A#(T*M). Recall that Ht 

was defined in (2.22). 
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Theorem 2.11. — Given t > 0, the following identity holds, 

(2.30) Ht = 
dim M 

p=0 0<io<p+1 
j1,...,jp+1-1in>0 
p+l-ig 
m=l 3 m <io-1 

k io — 1 — p+i -*o 
m = 0 0 

/ i \Pï-i—«0 
k) - 1 - p+1-io 

m=0 7 m ! 

C1Dr(>1 C2... Dt(>1 Cp+1. 

In (2.30), io of the Cj are equal to P^, and the other Cj are equal respectively to 

( V Ï i 3 ( 0 ) ) ~ ( 1 + J l ) , . . . , (VtB(°))"(1+Jp+1"io). In particular, Ht is a polynomial in the 

variable 1/y/i. 

As t —> +oo , 

(2.31) Ht = P{0}k (bh*(e>vA p{0} + o (l/Vt) . 
Proof. — Using (2.18), (2.21), we find that for t > 1, 

(2.32) 
1 

2m (di/2)S 

k(Vt\) 
X-B 

dX 
1 

2m (d1/2\fi)ô 

k(Vtx) 
X-B 

dX 

1 
2iir (di/2)5 

HA) 

X-VtB 
dX. 

Bv Proposition 1.20 and bv (2.32), for t > 1, 

(2.33) 
Ht 1 

2m t (di/2)ô 

fc(A) 
X- Dt 

dX. 

Now we have the expansion 

[2.34) ( A - A ) " 1 = ( À - V / ^ 0 ) ) 
- I 

+ A - V ï S ( 0 ) 
- i Dt(>1 l—VtB(o) 

- 1 
+..., 

and the expansion in (2.34) only contains a finite number of terms. By (2.21), 0 is the 
only élément inside the domain bounded by (d±/2) S which may lie in the spectrum 
of B(°\ Using (2.33), (2.34) and the theorem of residues, we get (2.30). By (1.38), 

(2.35) UJ D H*(E,v) 9 H*(E,v) pWu(VE,gE)pW. 

By (2.30), (2.35), we get (2.31) for t > 1. The gênerai case follows using analyticity. 
The proof of our Theorem is completed. 

2.3. A convergence resuit 

We make the same assumptions as in Section 2.2. Let £ G [0,1] —> A'e be a smooth 
family of G-invariant flat superconnections on E which have total degree 1. Given 
t E R+, we use the notation in Sections 1.6 and 1.7. In particular for t > 0, the objects 
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constructed in (1.42) which are associated to A£ will be denoted with the subscript 
£,t. Let k (x) be a holomorphic odd function. Recall that tpt : A*(T*M) -> A#(T*M) 
was defined in (1.50). 

Proposition 2.12. — Fort> 0, set k\x) = \ftk (y/ix). Then 

(2.36) Lk,g (Al, gEt) = Lk,g (C'l, t, gE), 

Lkttg (A'£,g ) = ^tLk^(Af£lgE). 

Proof. — By (1.46), (1.48), we get the first identity in (2.36). Using Proposition 1.20, 
we then get the second identity in (2.36). 

Let h(x) be a holomorphic odd function such that deg/i > 3. We still define 
k(x) as in (2.2). Recall that by Theorem 2.1, if h is real and g = 1, the forms 
(pTrs [gk(Be)-§7Ae] are real. 

Theorem 2.13. — For t > 0, the following identity holds, 

(2.37) d 
d£ 

1 

t 
4 E 

t ) = d 
dt 

Trs 9k(Bi,t) d 
d 

4/,t in W(M)/dn*(M). 

Proof. — We proceed as in [BLol, Theorem 1.9]. Set M = M x R̂ J_. Over M x {t} C 

M, we equip E with the metric gf = tNgE. Let gE be the corresponding metric on 

the pull-back of E1 to M. The flat super connection A' lifts to a flat super connection 

Af on M. Its adjoint A" is given by, 

(2.38) A" = A'; + 
dt 

t 
N. 

Therefore, 

(2.39) hg A', g 
E 

= h9 
Af g E 

t + 
dt 

t h9 A A', g E 
t 

Now we use Theorem 2.1, and we get (2.37). The proof of our Theorem is completed. 

We make the fundamental assumption that the rank of H* (E1, v£) does not 
dépend on £. As in Section 1.6, we identify H* (E,vi) to a smooth G-invariant 
subbundle of E. By orthogonal projection on H9 (E,vt), given x G M, we obtain a 
G-invariant Hermitian connection on the bundle H* (E,vi)x over [0,1]. We can then 
trivialize H* (E, vg) along [0,1] by parallel transport. In particular the flat connections 
\^H*(E,v<>) on vector bundles H* ( E , ^ ) can now be viewed as a one parameter 
family of G-invariant flat connections on a fixed Hermitian vector bundle over M. 
Let gH'(E^ be the metric on H9 (E,ve). We define the connection V ^ ' ^ ^ ^ on 
H9 (E,v£) as in (1.11). In particular ^VH#(£7'V^'U is well defined. 

Let k (x) be a holomorphic odd function such that (2.20) holds. 
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Let at, t G R+ U +00 be a family of smooth forms on M. In the sequel, we write 
that as t —• +00, at —> c*+oo if # t converges to a+00 uniformly on the compact subsets 
of M together with its dérivâtives. 

Theorem 2.14. — As t —> +00, 

(2.40) wTrs gk (Bl,t) d 
de 

Aitt wTrs gk B H*(E,vA 
e 

d 
de 

V H*(E,ve),u 

Proof. — By Proposition 1.20, 

(2.41) Trs 9HBe,t) 
d 
de 

Ae,t = Trs gk (Dl,t) d 

de 
i 

To make our arguments simpler, we will temporarily assume that M is compact. 
Now we use the results of Section 2.2. Observe that because the rank of ker£° ~ 
H' (E, ve) is independent of £, we may choose d\, di 6 R+, with d\ < d^l^ such that 
(2.21) holds for any t € [0,1], i.e. 

(2.42) Sp B (0) 
e. )l C {0}U[2di ,d2 /2] . 

Since our expressions now dépend on £, we will add a subscript e to ail the expressions 
we meet in this Section. In particular, by Proposition 2.9, 

(2.43) k (De,t) = Gt,t + Ht>t. 

Clearly, 

(2.44) d 
de ct,t = Vt d 

oe 
A (0) 

+ d 
de 

v E.u 
t + o 1 / t 

By Proposition 2.10 and by (2.44), for t ^ 1, for any p G N, there is C > 0 such that 
for t ^ 1, 

(2.45) Trs gGt,t d 
de 

Ce,t 
C 

tP 

Let Plo be the orthogonal projection operator from E on keri?^0' ~ H' (E,vg). 
By (2.31) in Theorem 2.11, we find that as t —> +oo, 

(2.46) Trs 9He,t d 
de 

v E.u -^Trs gk B H(E,ve) 
Pi 

{0} d 
de 

V E.u F {0} 
e 

Notice that ker B (0) = ker A (o) 
e . We claim that d 0 maps ker B (0) 

e 
in its orthogonal. 

In fact let / be a smooth section of ker B (0) 
e 

Then A (0) f = 0, so that 

(2.47) d 
de 

A (0) 
t + A (0) d 

de 
f = o. 

Since A (0) 
e is self-adjoint, Im A (0) 

e 
is orthogonal to ker A (0) Our assertion now follows 

from (2.47). By (2.31), we get 

(2.48) Trs gHl,+oo d 
de 

= 0. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 
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By (2.48), it is clear that 

(2.49) lim Trs 
t—>+oo 

gH,t d 
de 

Al,t = lim Trs 
t—»+oo 

g (Hlt — Hlt +oo Ô 

de 
Vt Ao(o) 

Using (2.30), we find that as t —• +00, 

(2.50) (fft - Fœ) V* 
a 
al 

4(0) -> 

dim M 

p=0 0<io<p+1 
J I V - J J P + I - i o ^ 0 

p + l - i 0 

m= 1 3 m io-1 

k ÏQ — l- P+l-*0 
m = U 7 m (0) 

i0 - 1 - .p+l—io 
h=0 7m ! 

-1 (p+1—io) 

C1R1C2 " - RpCp+i d 
de 

4(o) 

where one of the two following possibilities occur: 

— Ail the Cj's are equal to Péf° , one of the Rj's is equal to B^ and the other 
Rj's are equal to 

- One Cj is equal to [B^) , the other C / s are equal to PJ;°\ and the it^'s are 
ail equal to B(1). 

Using the same arguments as in (2.48), we find that, in the right-hand side of (2.50), 
the first sort of term does not contribute to the supertrace. As to the second sort of 

terms, only those terms where Ci or Cp+i are equal to (^B^^j contribute to the 
supertrace. 

By (1.29), 

(2.51) B{1) 
n£ 

1 
2 

V E 
£ ,9 

E 

Using (1.38) and (2.51), we get 

(2.52) F 10} 
e 

B (i) £ P {0} 
£ B H'(E,ve) 

e 

Ultimately, by (2.50)-(2.52), we find that as t -+ +oo, 

(2.53) Trs 9 Hit — He+oo d 
de 

tA (o) 

-Trs gk B H*(E,ve) 
e E {0} d 

de 
(0) B (0) 

e 

- i 
B (i) 

e 
4 B (i) B (0) 

- i d 
de 

A (0) p {0} 
e 
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By (2.41), (2.44)-(2.46), (2.48), (2.49), (2.53), we find that as t -> +oo, 

(2.54) Trs 9HBt,t) d 
de Ae,t 

Trs gk B H'(E,vt) P (0} d 
de 

v E.u 
i 

d 
de 

(0) 
e 

B 
e 

- i 

B ( i ) 

L [ i ) B (0) 
- i d 

de 
A (0) E {0} 

By finite dimensional Hodge theory, 

(2.55) ker£ (o) 

là 
± 

= Im (vt) e l m ( f | ) . 

Also on ker B (0) ± 
vu acts as an invertible operator from Im(t^) into Im(i^), and 

v\ as an invertible operator from I m ( ^ ) into Im( f | ) . Let vj1 ^{v\)~X dénote the 
corresponding inverses. As before, we extend thèse maps by 0 on the corresponding 
orthogonal bundles. Then, by (2.17), (2.51), we have the identity of operators acting 
on ker B^, 

(2.56) B 
(0) - i 

B (D 
e 

(vl*)-1 — vl-1 (JÛ Ve,gE 

and when acting on k e i B (0) 
e 

_L 
5 1 we have the identity 

(2.57) B ( i ) 
e 

B (0) 
e 

- i 
V E 

,9 
E M) 

- 1 vT1 
Recall that on M x [0,1], H' (E, V() is equipped with a unitary connection, which 

we dénote by V " ' ! ^ ) ' » . Let R be its curvature. By définition, we have the identity 
of forms on M with values in skew-adjoint éléments of End (E), 

(2.58) d 
de 

v H' (E,ve),u d 
de 

5 * 

Let VE'U be the obvious connection on the pull-back of E to M x [0,1], which 
coincides with Vf,u on M x {£}, and with along [0,1]. Recall that E splits as 

(2.59) E = kerB (0) 
i ker B (0) 

t 
± 

Let VE,U>S be the orthogonal projection of the connection of the connection V^'n 
with respect to the splitting (2.59). Then there is a 1-form K on M x M with values 

in skew-adjoint éléments of End (E) which interchange ker B (0) 
e 

and ker B 
i 

such 

that 

(2.60) VE,u = VE,u,s , K 
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By (2.60), we get 

(2.61) R = P {0} 
9 

y£ ,u ,2 _ jç2 
Pl (o) 

Clearly, we have the identity of sections of A*(T*M) <§> End (E), 

(2.62) y£ ,u ,2 d 
de 

,. = d 
de 

v E,u 
£ 

Let / be a smooth section of ker B (0) on x]0,1]. Ther 

(2.63) vif = 0, v\f = 0, 

so that taking into account the fact that V£, v\ are odd, we have the identity of forms 
on M, 

(2.64) {VE'uve) f - veKf = 0, 

( V E ' X ) / - v\Kf = 0 

Since V£ is V E 
e 

flat and v * 
i 

is V flat, by (1.10), (1.11), we get 

(2.65) V E,u 
l vl = 

l 
2 

ou V E 
t 9 E ,vl , V E<u 

£ 4 l 
i 

2 
LU V >9 

E vl* 

By (2.64), (2.65), we find that the restriction of K to A*(T*M) is such that 

(2.66) v£Kf = 
1 

2 vlw V E 
e ,9 

E f, vl*Kf 
= 1 

2 
* V 9 

E f. 

Similarly, by (2.47), 

(2.67) K d 
de 

/ = - A (0) - i d 
oe 

A (0) 
e 

Observe that since K takes its values in skew-adioint morphishis, (2.66) and (2.67 
entirely characterize K. Using the fact that A (0) and d 

d e 
take their values in 

self-adjoint morphisms, we deduce from (2.66), (2.67) the identity of sections of 

A*(T*M) End ker B (0) 
e 

(2.68] P {0} 
t K d 

de 
KP {0} 

t — P {0} d 
de 

A (0) 
t 

(vl*)-1 — vl-1 LU i V E 
t 5 : 9 

E B {0} 
£ 

P {0} 
£ KK d 

de 
p foi l = B {0} 

e 
LU 

o E 
£ 

9E vl1 
(vl*)-1 a 

al A (0) 
e 

p{0} 

By (2.56), (2.61), (2.62),(2.68), we get 
(2.69) 

R d 
de 

= p [0} d 
de 

v E.u d 
de 

^£ 
B o - i 

B ( i ) 
£ 

B ( i ) B (0) 
£ 

-1 d 
de 

A (0) 
£ 

P ,{0} 

By (2.54), (2.69), we get (2.40) when M is compact. When M is not compact, we 
obtain our resuit by restriction to compact subsets of M. The pfoof of our Theorem 
is completed. 
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2.4. Rigidity properties of the forms Sh,g A' ,9E 

We make the same assumptions as in Section 2.3. In particular we still assume the 
H0 (E,ve) have constant rank. 

Let h be a holomorphic odd function with deg/i ^ 3, which is such that (1.54) 
holds. We still define k(x) as in (2.2). 

Recall that the forms Sh a 4' 9E were defined in Définition 1.24. We define 
Lk,g(A'l, 9E as in Définition 2.4. Also note that the vector bundle H* (E, ve) has been 
unnarny irivialized along [0,1], so that ^H*(EM) is now considered as a family of flat 
connections on the fixed vector bundle H* (E, ve) ~ H* (E, t>o), which is equipped with 
the metric gH%(E^\ We define the form LKg (yH'iE^)^H*{E,V^ as in Définition 
2.4. 

Theorem 2.15. — The following identity holds, 

(2.70) Shig{A!1,gE)-SKg 9E 

Lk,g (A'e,g ) - Lkl9 V H(E,v£) 
i 

gH'(E,ve) in n*(M)/dnm(M). 

Proof. — Since h is such that (1.54) holds, k vérifies (2.20). Our Theorem follows 
from (2.15) and from Theorems 2.13 and 2.14. 

Remark 2.16. — Observe that in our Theorem, we only ask that degh ^ 3, while 
Theorem 2.5 guarantees that the terms in the right-hand side of (2.70) only dépend 
on the homotopy class of £ —* A!t if deg/i ^ 5. Theorem 2.15 says that the différence 
of the classes in the right-hand side of (2.70) only dépend on (A^A^), and this even 
in degree 3. 

2.5. Rigidity properties of the torsion forms Th,g (A',gE) 

Let now 

(2.71) (E,v) : 0 - E° E1 • • • ET - 0 

be a flat complex of complex vector bundles on the manifold M, on which G acts 
fibrewise by flat automorphisms preserving the Z-grading. Let = m 

i=0 
E1 be 

the flat connection. Then A' = v + V is a flat superconnection of total degree 1. 
Let gE = m 

i=0 9 E be a G-invariant metric on E = m E% such that the El,s are 
mutually orthogonal in E. 

Let h be a real holomorphic odd function, with deg/i ^ 3, such that (1.54) holds. 
We define k as in (2.2). Recall that the torsion forms Th,g (A'i,gE) were defined in 
Définition 1.29. 

Let £ G [0,1] —• A!t = V£+Vf be a smooth path of G-invariant flat superconnections 
on E of the above type. As in Sections 2.3 and 2.4, we make the assumption that 
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the rank of H* (E, ve) does not dépend on £. We define the forms Lk,g ( V K 
e 5 gE) and 

Lk,g ( v V(E,v£) ,9 H9(E,v£) ) as in Définition 2.4. 

Theorem 2.17. — The following identity holds, 

(2.72) Th,g (A\,gE)-TKg (A'0,gE) 

— Lk,g V E 
e 

,9E ~ Lk,g V H(E,v£) 
i 

gH'(E,ve) in fi* (M) /dîî# (M) . 

Proof. — Our Theorem follows from (2.15) and from Theorems 2.13 and 2.14. 

For a e R*, let y/â be any square root of a. Let R(a) be a polynomial. Put 

(2.73) ha(x) = 
9 

,9a 

1 
Va 

h(y/âx). 

If a G R!j_, ha(x) vérifies the assumptions in (1.54). 

Theorem 2.18. — For a G R^; the following identity holds, 

(2.74) Tha,g (A',gE)=R 
d 

da 

wa Th,g (A', gE 

Proof — Clearly, 

(2.75) Tha,g {A',gE)=R 
Ô 

da 1h(y/E.)/y/Eig l9 ) • 

By Proposition 1.21 and by (2.75), we get (2.74). 

Remark 2.19. — In this finite dimensional context, equality (2.74) is not a surprise. 
In fact by [BLol, Theorem Al.2] or by Theorem 1.33, and by Remark 1.34, the 
forms Th,g(Af\gE) have an axiomatic characterization, which implies equality (2.74). 
In particular, it is ultimately possible to make sensé of Thl9(Af,gE) for any forma] 
power séries h. This is in dramatic contrast with the infinité dimensional situation 
we will consider in Section 3. 

Let now h be a holomorphic odd function verifying the conditions in (1.54). Put 

(2.76) k(x) 
h'(x) - h'(0) 

2x 

Theorem 2.20. — The following identity holds, 

(2.77) Th,g 
A1 9E -Th,g 

{A'0,9E) 
>2 

= Lk,g V >9E)-Lh,c V H*(E,v£) 
g 

Hm{E,vi) in îî* (M) /dîî# (M) . 
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Proof. — If degh > 3, this is just Theorem 2.17. In gênerai, we cannot apply this 
resuit to the function h(x) — /i'(0)x, since it does not verify the conditions in (1.54). 
For a > 0, set 

(2.78) ha (x) = 
1 

y/à 
h (y/âx) . 

Put 

(2.79) h(x) = 
d 

da ha(x)\a=l> 

Then degh ^ 3. By Theorem 2.18, 

(2.80) Th,g (A'gE) = 
d 

da 0aTM (A',gE) \a=1. 
Set 

(2.81) k(x) = 
h'(x) 

2x 

h"(x) 

4 

Theorem 2.17 holds with h replaced by h. Also, by Proposition 2.12, 

(2.82) L(h>a(x)-h>a(0))/2x,g V E 
5 9 E ) = L (h>(x)-h'(0))/2x,g V E 

5 9 E 

By (2.82), we obtain, 

(2.83) L kg D E 
,9 

E = 
d 

da 
^aL(h>(x)-h'(0))/2x,g V E 

e ,9 
E 

a=l-

Of course, when replacing E by H* (E, Vi), an analogue of (2.83) still holds. By 
Theorem 2.17, (2.80), and by (2.83), we get (2.77). The proof of our Theorem is 
completed. 

Remark 2.21. — The main interest of the proof of Theorem 2.20 is that, as we shall 
see in the proof of Theorem 3.45, it can be transferred to infinité dimensions. 

2.6. The imaginary part of the odd Chern classes 

We make the same assumptions as in Sections 1.1-1.5. Namely, E — E+ 0 £ L be a 
complex Z2-graded vector bundle, on which a compact Lie group G acts fibrewise by 
even automorphisms. Also gE = gE+ 0 gE~ dénotes a G-invariant Hermitian metric 
o n ^ = E + © E _ , such that E+ and E- are orthogonal in E. Let M be a smooth 
manifold of G-invariant flat superconnections A' on E. For s G [0,1], put 

(2.84) A* = (l-8)A' + sA". 
Let A be the corresponding obvious superconnection one obtains from (2.84) on the 
pull-back of E to M x M x [0,1]. Then its curvature A2 is a smooth section of 
A (T* (M x M x [0,1])) ® End (E). 
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Proposition 2.22. — The following identity holds, 

(2.85) A2 - 4 s (1 - s) B2 + 2dsB + (1 - s) dMAf + sdMA". 

Proof. — This is an obvious computation, which is left to the reader. 

In the sequel, we will consider differential forms on M x M. x ]0,1]. The operator 
ip defined in (1.22) now refers to forms on this manifold. Let / be a holomorphic 
function. 

Définition 2.23. — Let af,g(A',gE) be the form on M x M x [0,1], 

(2.86) af,g A' ,0 
E = c*Tr8 gf -A2 

By Chern-Weil theory, we know that afi9(A' ,gE) is an even closed form on M x 
A4 x [0,1]. 

If UJ is a form on M x M x [0,1], we dénote by u\s=o the restriction of ou to the 
submanifold (s = 0). Other obvious notation will be used as well. In the sequel, Jj0 ^ 
dénotes intégration along the fibre [0,1]. 

Proposition 2.24. — The following identity of even forms holds on M x M, 

(2.87) d 
[o,i] 

af,9 A' i 
gE af,9 A' ,g 

E 

s=0 
af,9 A' 

,9 
E 

s= l -

In particular given £o G M, the form Jj0 ^ afi9(Af,gE)\t=z0 is a closed odd form on 
M, which is purely imaginary if f is real and g = 1. 

Proof — Identity (2 .87) follows from Stokes formula. Also by (2 .85) , 

(2 .88) ! 2 | s = 0 = dMA', Â2S=1 = dMA", 

and the restriction of both terms to {£ = £Q) vanish. By ( 2 .87 ) , the form 

[o,i] 
<*f,9 A' g E £=£n 

is closed. Also, 

(2.89) As,* = Al-s9 

From (2.89), we deduce easily that if / is real and g = 1, the form JjQ ^ af,g(A',gE) 
is purely imaginary. The proof of our Proposition is complète. • 

Remark2.25. — The closed form on M, Jj0 ^ afi9(A',gE), dépends explicitly on the 
path s G [0,1] —> As defined in (2.84), but its cohomology class only dépends on 
Af, A". In the sequel, the choice of the particular canonical path As will play a 
crucial rôle. 

Assume now that c is an oriented smooth curve in A4, starting at £Q and ending 
at £x. 
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FIGURE 2.2 

Proposition 2.26. — Assume that deg / ^ 2 . Then the following identity of odd forms 
on M holds, 

(2.90) d 
e x [0,1] 

af,9 A' ,9 
E 

[0,1] 
<*f,9 A1 ,9 

E 
e=£0 -

[o,i] 
af,9 A' ,9 

E 
l=l1 

Proof — By Stokes formula, 

(2.91) d 
CX [0,11 

af,9 A' ,9 
E g 

9(cx[0 , l ] ) 
af,9 A' ,9 

E 

[f deg / ^ 2, using (2.85), the restriction of afi9(A', gE) to cx{0} and c x { l } vanishes. 
Prom (2.91), we get (2.90). 

Let now S, S' be two oriented surfaces in M x [0,1] taken as indicated in Figure 
2.2. The surfaces 5, S' are of the form c x [0,1], where the path c E .Mis taken are 
before. Let B be the région bounded by 5, S', A, A'. The set B is itself of the form 
A x [0,1]. By Proposition 2.26, if deg / ^ 2, we have the identity of odd forms on M, 

(2.92) d 
s 

af,9 A' ,<7 
E 

[0,1] 
af,9 A' ,9 

E 
e = e 0 

[o,i] 
<*f,9 A! >0" 

E 
l=l1 

d 
S" 

af,9 A', g E 

[0,1] 
af,9 A', g E 

i=£o 
[0,1] 

af,9 A', g E 
e = e 1 -

Theorem 2.27. — If deg / > 3, we have the identity of even forms on M, 

(2.93) d 
B 

af,9 A', g E 

S' 
af,9 A', g E 

S 
af,9 A', g E 

proof — Using (2.85) and the fact that deg / ^ 3, we get 

(2.94) 
A 

af,9 A', g E = o, af,g (A' gE) = 0. 

Our Theorem now follows from (2.94) and Stokes formula. 
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Proposition 2.26 says that if degf ^ 2, the cohomology class of the closed form 
on M, JJ0 xj afi9(Af,gE), is rigid under déformation of A'. More precisely the class 
of JcX[oi] û / , g ( ^ ^ E ) m fî#(M)/dfî#(M) gives a refinement of this rigidity at the 
level of differential forms. Theorem 2.27 shows that if d e g / > 3, the class of 
Scx[o i] af,g(A',gE) in Q#(M)/df£#(M) is itself rigid under déformation of c. It still 
has the properties of a Bott-Chern class. 

2.7. Superconnection classes and the Chern character 

Définition 2.28. — If f(x) is a holomorphic function, put 

(2.95) (Ff) (x)=x 
•i 

o 
4 s ( l - s)x2) ds. 

Then (Ff) (x) is a holomorphic odd function, which is real if / is real. 

Proposition 2.29. — / / f(x) = 
-f-oo 

p=U 
apxp, then 

(2.96) (Ff)(x) = 
+00 

p=l 

p ! ( p - l ) ! 
( 2 p - l ) ! 

ap22"-2x2"-1. 

Proo/. — If / (x) = xp, then 

(2.97) (Ff)(x) = 
1 

0 
5p-i(1 _ s)p-1dsp22p-2x2p~1 = P\(p-iy. 

( 2 p - l ) i 
22p-2x2p-l^ 

which is just (2.96). 

Remark 2.30. — Assume that / is real and that on R+, / ' (—) is of constant sign. 
Observe that 

(2.98) 
R 

Ff (ix) dx = 
1 

4 [o,i] 

ds 

8(1 ~ 8) 

R + 
\f'{-y)\dy. 

From (2.98), we deduce that if / ^ 0, then Ff(i-) £ L\ (R). This is the case in 
particular if / (x) = ex. In the case where / (x) = ex, Ff will be denoted Fe'. 

It also follows from Proposition 2.29 that 

(2.99) (Fe«) (x) = 
+ 0 0 

P=l 

( P - l ) l 

( 2 p - l ) ! 
22p-2a,2p-l> 

Observe that 

(2.100) xe 
X 

2 
+ 0 0 

p=l 

x2p–1 

( p - 1 ) ! 

The coefficient of x2p 1 in (Fe*) (x) is obtained from the corresponding coefficient in 

the expansion of xex2 by multiplication by the factor 22p~2 [(P-1)!1 
( 2 p - l ) ! 

2 
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Now again, the map ip defined in (1.22) refers to forms on M. We define the form 
(Ff)g (A', gE) as in (1.23). 

Proposition 2.31. — The following identity of forms on M holds, 

(2.101) 
D 
2 [0,1] af,g A', g E 1 

2Î7T 
(Ff)g(A>,gE). 

Proof. — By (2.85), (2.86), 

(2.102) 
1 

2 [o,i] 
<*f,9 A', g E 1 

a/2Ïtt 

1 

0 

Q 
2 

[gf (As(l-s)B2-2dsB)] 

1 
V2ÏÏT 

1 

0 
gBf (As(l-s)B2) ds = 

1 
2Î7T 

(Ff)9 A', g E 

Let / be a holomorphic function. If A is a G-invariant superconnection on E, set 

(2.103) fg(E,A) = <pTta [gf (-A2)]. 

Note here that our notation in (2.103) difïers from the notation hg (A',gE) in (1.23). 
Then by Quillen [Ql], fg (E,A) is a closed form, whose cohomology class does not 
dépend on A. 

Let £ G [0,1] —> Ai be a smooth one parameter path of G-invariant flat supercon­
nections on E. We lift ^ t o a vector bundle on M x [0,1]. If A = Ai + d£^ is the 
obvious lift of Ai to M x [0,1], we define the Chern-Simons form CS (/) (Ai) by the 
formula, 

(2.10< CS(f)(Ai) = -
[o,i] 

fg E.A 

Then the Chern-Simons class CS (f)g (A0, Ai) G îî*(M)/dfi-(M) of CS ( j % (A£) dé­
pends only on Ao, Ai. It is such that 

(2.105) dCS(f)g (A0, Ai) = fg (E, Ai) - /p (S, A0). 

Définition 2.32. — Put 

(2.106) f°g (Ai) = -2iirCS(f)g (E, A£). 

Then 

(2.107) Ref°g (Ai) = 27rImCS(/)p (E,Ae). 

We will dénote by f°g (A0, Ai) the class of f°g (A£) in (M)/dff (M). 
Now we make the same assumptions as in Section 2.6. Recall that A = \(A' + A"). 

Then the path s G [0,1] -» A8/2 defined in (2.84) interpolâtes between A' and A. 
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We can as well define the Chern-Simons form f° (^4S/2), which we will dénote instead 
f° (A',gE). By by (2.101), (2.104), (2.106), we get 

(2.108) f° 
J9 

A', g E = 2in 
1 
2 ®f,9 A', g E 

Then Proposition 2.31 can be written as follows. 

Proposition 2.33. — The following identity of forms on M holds, 

(2.109) f°A*>9 
E (Ff)g (A', g E' 

If f(x) = ex, we will use the notation ch° (A',gE) instead of f° (A'\gE), so that 

(2.110) cK(A',gE)=(Fe-)(A',gE). 

Then ch° (Af,gE) is a secondary Chern character. 

Remark2.34. — Using (2.99) and (2.109) for / = ex, we recover a resuit given in 
[BLol, Proposition 1.14]. 

Now we make the same assumptions as in Section 2.1. Let t G [0,1] —> A'£ be a 
smooth one parameter family of G-invariant flat super connections on E. Let / be a 
holomorphic function such that d e g / ^ 2. Then by Proposition 2.29, degFf ^ 3. 
Set 

(2.111) k(x) = 
{Ff)\x) 

2x 
We use the same notation as in Proposition 2.26. 

Proposition 2.35. — The following identity holds, 

(2.112) 
1 

2 ex [0,1] 
af,9 A', g E 

Lk,g (A'l,g E 

2in 

Proof. — We will assume that / (x) = xp, with p > 2. Using Proposition 2.22, we 
get 

(2.113) 
ex [0,1] 

af,g A', g E 

2 

2in ex [0,1] 
<pTrs 9f" (4s(l-s)B2e)Be d 

de ([\-a)A't + aAÏÏ dlds 

= 2 
p! (p - 1)! 

( 2 p - 2 ) ! 
22p-3 1 

2Î7T 
c 

<pTrs B 2p-3 d 
de 

Ae de. 

By Proposition 2.29, 

(2.114) (Ff)(x) = 
p ! ( p - l ) ! 
( 2 p - l ) ! 

22p-2a,2p- l 
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and so 

(2.115) k(x) = 
p ! ( p - l ) ! 
(2p-2)\ 

22p-3x2p-3> 

Using (2.15), (2.113), (2.115), we get (2.112). 

Remark 2.36. — From Propositions 2.26, 2.31 and 2.35, we recover équation (2.16) in 
Theorem 2.5. Also if degf ^ 3, then d e g F / ^ 5, and deg/c > 3. By Theorem 2.27, 
we recover the remainder of Theorem 2.5. 

Définition 2.37. — If f(x) is holomorphic, put 

(2.116) Qf(x) = 
i 

o 
/ ( 4 s ( l -s)x) ds. 

Similarly, we define, Q : A (T*'evenM) A (T*'evenM) by the formula, 

(2.117) Qf (x) 
i 

o 
iP4s(l-s)®ds. 

I f / (x) = +oo 
p=0 

apxp, then 

(2.118) Q f(x) = 
+00 

p=0 

(PO2 
( 2 p + l ) ! 

ap(4x)p. 

If a G A2p (T*M), then 

(2.119) Qa = (p!)2 

( 2 p + l ) ! 
4pa. 

We use the same notation as in Section 1.5. Let £ G [0,1] —> 5 E be a smooth family 
of Hermitian metrics on E taken as before. Let A£, B£ be the objects defined in (1.17) 
which are attached to g E 

e 

Définition 2.38. — Put 

(2.120) ch(A',g E 
e ) = 

i 

o 
^Trs 9 

1 

2 
E 
t 

- 1 dg E 

d£ 
{Fe-y(BÊ) d£. 

Theorem 2.39. — The class ofthe form ch (A',gE) in fl*(M)/dQ*(M) only dépends 

on g E 
o 9 E . Moreover, 

(2.121) o>ch° (A', flf ) = ch° {A1,g?) - ch° (A,goE). 

If g = 1, the form ch (A', gf) is real. Finally, if h (x) = xex 
9 

(2.122) ch°g(A',g E 
e 

Qhg A', g E 
e D 

Proof — Using (2.110), the first part of our Theorem follows from Theorem 1.11. 
Finally using Remark 2.30 and (2.119), we get (2.122). The proof of our Theorem is 
complet ed. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



4 8 CHAPTER 2. RIGIDITY OF TORSION FORMS AND THEIR CHERN NORMALIZATION 

2.8. The Chern torsion forms 

We make the same assumptions as in Section 1.10. As we saw in Remark 2.30, the 
function Fe* (i-) does not lie in L\ (R). So, a priori, we cannot define the analytic 
torsion forms Tpe*,g (Af,gE). 

In this Section, we set 

(2.123) h(x) = xex\ 

Définition 2.40. — Put 

(2.124) A', g E = QTh,g A', g E 

The form Tch [A', g E is called a Chern torsion form. 

Proposition 2.41. — The even form Tc^g (Af\gE) is such that 

(2.125) dTch,9 (A\gE) =ch°g (VE,gE)-ch°9 V Hm(E,v) 
9 

H*(E,v) 

It is real if g = 1. 

Proof — This follows from Theorem 1.30, and from Remark 2.30. 

Remark 2.42. — Rigidity formulas similar to Theorem 2.20 obviously hold for the 
forms Tch,£ (A',gE). The main point of Définition 2.40 is that it normalizes the 
torsion forms unambiguously. Note that if (F, v) is acyclic, i.e. if H* (E,v) = {0}, by 
[BLol, Theorem A1.2], the class of Tc^g (A',gE) in Q9(M)/dn*(M) is the unique 
natural class such that (2.125) holds. The considérations of [BLol] also extend to 
the non acyclic case. 

2.9. Generalized metrics and the forms Uh,g (A,JgE) 

We make the same assumptions as in Sections 1.6 and 2.4. Let A! be a G-invariant 
flat superconnection on E which has total degree 1. Recall that the notation * was 
introduced in Section 1.2. 

Définition2.43. — A smooth section of (A* (T*M) Hom 
—* 

E,E 
even 

is said 

to be a generalized metric if 

(2.126) gE = gE, 

/ ^ \ even 

and if the component g '̂V0) g End f E, E ) of gE defines a standard Hermitian 

metric on E. Then E+ and E- are orthogonal with respect to g^0) . 
Since gE>(°) is invertible, gE is also invertible. Also any gE can be deformed to 

the standard metric g^0) by the homotopy 

(2.127) €e[o, i ] - g 
E 
e 

= ( l - £ ) g £ + £gE'(°>. 

In the sequel, we assume that g^ is G-invariant. 
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Définition 2.44. — The adjoint super connection A" with respect to is defined by 
the formula, 

(2.128) Aff = (gEy1TgE. 

Then A" is a flat superconnection. As in (1.17), we set 

(2.129) A = D 
2 

(A" + Af), B = 
1 
2 

{A" - A'). 

Then B is an odd section of A* (T*M) End(i£). Also Proposition 1.5 still holds. 
Let h be a holomorphic odd function. We define the form hg (A', gE) by the same 

formula as in Définition 1.7. 

Proposition 2.45. — The form hg(A',gE) is odd, closed, and its cohomology class 

does not dépend on gE, and is equal to h9 {A'). 

Proof. —- The proof of our Proposition is the same as the proof of [BLol, Theorems 
1.9 and 1.11] and of Theorem 1.8. 

Let now t G [1, +oo[—> g E 
t 

be a smooth family of G-invariant generalized metrics 
on E . Let gE = m 

2 = 0 
9E 

i 

be a standard Hermitian metric on E = m 
i=0 

E \ In the 
sequel we identify E and E by the metric gE. We assume that there exist n G N 
and H G (A* (T*M) End (E)) such that as t —> +oo, 

(2.130) tn/2t-N/2g E 
t rNi2 = i + 

H 

Vt 
fO ( iA) . 

tN/2 ( g 
E 
t 

- 1 d 

dt g 
E 
t t -N/2 N -

n 

2 
1 
t 

+O l/t^2 

Recall that A'^ = v, A'^ = VE. Let A" be the adjoint superconnection to A' 
with respect to gf. Let v* be the adjoint of v with respect to the standard metric 
gE, let V^'* be the adjoint connection to with respect to gE. 

Proposition 2.46. — As t —> +oo; 

(2.131) tN?2A't-N/2 = Vtv + VE + 0 1/y/i) 

tN/2Aut-N/2 = ^~tv* + y * , * + [ y ^ H ] + Q 1/Vi 

Proof. — Since Af is of total degree 1, the first identity in (2.131) is trivial. Let A"0 
be the adjoint of A! with respect to the standard metric gE. Then 

(2.132) tN'2A';rNl2 = tN'2 (gf )_1 tN'2 t -N/2A//0j.N/2 t-N/2gEt-N/29 

By (2.130), (2.132), we get the second équation in (2.131). 

Vs in (1.42), set 

(2.133) At 
1 
2 

+ Af Bt 
1 

2 
A" - A' 
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Let now h(x) be a holomorphic odd function such that (1.54) holds. 

Définition 2.47. — Put 

(2.134) bt = t(fTrs 9 
1 

2 
g E 

t 
- 1 d 

dt 
g E 

t h' Bt 

Then bt is an even form on M. Let gH'(E'v) be the Hermitian metric induced by 
gE on H' (E, v) as in Section 1.5. Recall that \g {E), x'g (E) were defined in (1.56). 

Proposition 2.48. — The following identity holds, 

(2.135) 
d 

dt 
hg A', g E 

t 
1 

t 
dbt. 

Moreover as t —» +00, 

(2.136) h9 A ' , g E 
t =hg V H*(E,v) H'(.E,v) + 0 1/ Vt 5 

6 t 

1 
2 4 E n 

4 Xg E h! (0) -h O 1t Vt 

Proof. — The proof of (2.135) is the same as the proof of [BLol, Theorem 2.9] or of 
Theorem 1.11, and uses Proposition 2.45. Observe that 

(2.137) pH*{E,v) [y^H] pH-(E,v)=0 

Using (2.130), Proposition 2.46 and (2.137), the proof of (2.136) is the same as the 
proof of [BLol, Theorem 2.13] and of Theorem 1.22. 

Définition 2.49. — Set 

(2.138) Uh,g {A', g E 
t = 

+ 0 0 

1 
(bt - fr+oo) 

dt 

t 

Theorem 2.50. — The even form Uh,g A' , g E 
t is such that 

(2.139) dUh,g A', g E 
t = kg A' , g E 

1 
~hg V H*(E,v) 

,9 H*(E,v) 

Proof. — Our Theorem follows from Proposition 2.48. 

Remark 2.51. — The forms S h q (A',gE) of Section 1.9 are spécial cases of the forms 

Uh,g A',S E 

If *G]0,1] - g E 
e 

is a smooth family of generalized metrics, we define hg (Af,g E 
1 

as in Définition 1.10. Using Proposition 2.48, the obvious analogue of Theorem 1.11 
holds. We dénote by hq (A',gg,g?) the class of ha U',gf) in Sl'(M)/d£l'(M). 

Let now £ e [0,1] ( g E 
t e 

be a smooth family of generalized metrics on E, such 
that (2.130) holds uniformly in £ G [0,1]. Namely we assume that there is a smooth 
family of standard metrics £ G [0,1] —> g E 

e 
and also a smooth family £ G [0,1] —• Ht G 

(A* (T*M) (8) End (E)) such that (2.130) holds uniformly in £ G [0,1]. 
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Theorem 2.52. — The followinq identity holds, 

(2.140) Uh,g(A',(g E 
t 1 -Uh,g A' g E 

t 0 
hg A', (g E 

0 
(gE)1) 

- kg a H9(E,v) 9 H*(E,v) 
0 

9 
H*(E,v) 

1 
in îî#(M)/dfi#(M). 

Proof. — The proof of our Theorem is the same as the proof of [BLol, Theorem 
2.17] or of Theorem 1.26. 

Remark 2.53. — By Theorem 2.52, the class of Uh,g (A',gf ) in Çt%(M)/dVt9(M) only 
dépends on g f and on g E . 

2.10. Generalized metrics and flat complexes 

We make the same assumptions as in Sections 1.10 and 2.5, and we use the notation 
of Section 2.9. Assume that A! is a G-invariant flat superconnection of total degree 
1, of the form 

(2.141) A' = v + VE. 

Then VE is a flat connection on E which préserves the grading, and v is a parallel 
chain map. Let gE be a G-invariant generalized metric on E. Let V^'* be the adjoint 
of the flat connection VE with respect to the generalized metric gE. Then V e ' * is a 
flat superconnection. Put 

(2.142) A0 = 
1 
2 

V E ' * T V F Î B0= 1 
2 

V E,* - V E 

Proposition 2.54. — The even form 

(2.143) V = 
1 
2 

Trs 9 
1 
2 

'N + (gEy1NEE h' (So) 

is closed and its cohomoloqy class does not dépend on gE, and is equal to the constant 
i 
2 Xg E) h1 (0). 

Proof. — Since VE préserves the grading of E, we have the obvious 

(2.144) Ao,N+(g E - 1 Ng E B0,N-(gEyl NgE 

Moreover, by (1.19), 

(2.145) [Ao,Bo] = 0. 

Therefore, using (2.144), (2.145) and the fact that supertraces vanish on supercom-
mutators, we get 

(2.146) dip 1r] 
1 
2 

Tr. bO 1 
2 

N {zErlNgE h' (B0) = 0, 
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i.e. the form 77 is closed. The fact that its cohomology class does not dépend on g^ 
follows tautologically. By making g^ to be a standard metric on E, and using the 
fact that hf(x) is an even function, the last part of our Proposition follows. 

Définition 2.55. — For u G R I , let gf be the generalized metric, 

(2.147) gE = tN/2gEtN/2^ 

Let Bt be obtained as in (2.129) with respect to gf. 

Proposition 2.56. — As t —• 0, 

(2.148) h9 (A\gE)=h9 (V* 8 * ) + o ( V t ) , 
1 
2 

^Trs G (gtE) d 
dt 0 E 

t hf{Bt) = n 
t 

+ 0 1/ t 

Proof. — Let A'' Ve'*, v* be the adjoints of A', Ve, v with respect to gE. Then 

(2.149) tN/2At— N/2 = Vtv + De, 

tN^2A'lt-N^2 = Vtv* + V^'*. 

From (2.149), we get the first équation in (2.148). Also, 

(2.150) ^ ( f l f ) " 1 
d 
dt 0 

E 
t t N/2 1 

2t 
N + (gE) -1 Ng E 

. 

From (2.149), (2.150), we get the second équation in (2.148). 

Proposition 2.57. — As u —> 0, 

(2.151) h9(A\gE,o E 
u - rçlog(u) -> 

-
1 

0 
<Trs 1 

2 0 
- i a 

dt 0 t h' Bt - 1 
t 

dt. 

Proof — By the analogue of (1.26), 

(2.152) hg K ,gB,f l E 
u = w•if-1 

2 

i 

Trs 3 I E - i 9 
0*-

E h(Bt) dt. 

Using Proposition 2.56 and (2.152), we get (2.151). 

Let now gE,gE/ be two generalized metrics on E. We define the metrics $E,QE' 
as in (2.147). 

Proposition 2.58. — As u —> 0, 

(2.153) h9 {Af,gE,gEf)^h9 (V* g^g*')-
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Proof. — For £ G [0,1], put 

(2.154) g ^ = (l-*)g*+*g*'. 
We also define Q E,£ 

u 
as in (2.147). Then 

(2.155) (g E,l 
u 

- 1 d 

d£ 
E l 

u 
= u-N/2 gE,l - 1 g Ê ' - g £ uw/2. 

Using the analogue of (1.26), (2.149) and (2.155), we get (2.153). 
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CHAPTER 3 

ANALYTIC TORSION FORMS: 
RIGIDITY AND THE CHERN CHARACTER 

Let 7r : M —» S be a smooth fibration with compact fibre X. Let F be a complex 
vector bundle on M, equipped with a flat connection VF. In this Chapter, we extend 
the construction of analytic torsion forms in de Rham theory to an equivariant context. 
We show that thèse forms verify anomaly formulas in degree ^ 2 under déformation of 
the flat connection VF, which extend the corresponding results for finite dimensional 
torsion forms established in Theorem 2.17. Finally we give a Chern normalization of 
the analytic torsion forms. 

This Chapter is organized as follows. In Sections 3.1-3.7, we recall the basic for-
malism of Bismut-Lott [BLol]. In Section 3.1, we describe the géométrie setting. We 
introduce in particular a horizontal vector bundle THM C TM. In Section 3.2, we 
interpret the de Rham operator on the total space of M as a flat superconnection A' 
on the relative de Rham complex F\x)- In Section 3.3, we introduce a metric 
gTX on the relative tangent bundle TX, and we construct the tensors obtained in 
[ B 3 ] , which are associated to (THM, gTX). In Section 3.4, we construct the adjoint 
superconnection A". In Section 3.5, we recall élémentary facts of Clifford algebras. 
In Section 3.6, we relate the connection A = ^ (A" + A') to the Levi-Civita super­
connection of [ B 3 ] . In Section 3.7, given t > 0, we consider the metric gTX/t on TX, 

Çl* \X F\x) 

and the associated metric gt on Çl*(X, F\x), and we construct the objects 
we just described, which are attached to the rescaled metric. 

In Section 3.8, we give the Lichnerowicz formula of [ B 3 ] , [BLol] for the curvature 
A2, and we establish another related Lichnerowicz formula. In Section 3.9-3.12, we ex­
tend the results of [BLol] to the equivariant setting. In Section 3.10, for h (x) = xex , 

we construct the forms hg^A^gf (X'F'X)^ Tn Section 3.11, we establish the corre­

sponding transgression formulas. In Section 3.12, we construct the analytic torsion 

forms Th,g (THM,gTX,VF,gF). 
In Section 3.13, we construct analytic torsion forms associated to more gênerai 

functions h, and we prove natural compatibility properties of thèse forms. Sections 
3.14-3.16 are devoted to the proof of rigidity of the analytic torsion forms under 
déformation of VF. Thèse Sections extend Sections 2.2-2.5 to our infinité dimensional 
setting. Finally in Section 3.17, we construct the Chern analytic torsion forms. 
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3.1. Equivariant smooth fibrations 

Let 7r : M —• S be a submersion of smooth manifolds, with compact fibre X of 
limension n. Let TX C TM be the tangent bundle to the fibres X. 

Let G be a compact Lie group acting on M along the fibres of X, that is if g E G, 
xg = 7T. Then G acts on TM and on TX C TM. Let THM C T M be a G-invariant 
îorizontal subbundle, so that 

(3.1) TM = THM®TX. 

Observe that since G is compact, such a THM always exists. Let PTX : TM —» TX 
be the projection associated to the splitting (3.1). Observe that 

(3.2) THM ~ n*TS. 

By (3.1), (3.2), we have the identification of bundles of algebras 

(3.3) A*(T*M) ~ tt*A* (T*S) ® A*(T*X), 

and this identification is also an identification of G-bundles. 
Take a G G. Set 

(3.4) M,, = {x e M, #x = x} . 

Since G is compact, MG is a smooth submanifold of M. Since G acts along the 
fibres X, it follows that g acts trivially on THM\M9> Therefore we have a fibration 
7r : MG —» 5 with fibre X^, the fixed point set in the corresponding fibre X, which is 
either compact or empty. In particular 

(3.5) THM\M9 C TMG, 

i.e. the restriction of THM to MG defines an horizontal subbundle on MG. Note that 
if one fibre Xg is empty, the fibres over the corresponding connected component of S 
are empty as well. 

Let F be a complex flat vector bundle on M, and let VF be the corresponding 
flat connection. In the sequel, we will consider F as trivially Z2-graded , i.e. as 
an even vector bundle. We assume that the action of G on M lifts to T, and that 
G préserves the connection VF. Let (fî* (M, F) ,dM) be the de Rham complex of 
smooth differential forms with values in F , equipped with the de Rham operator d. 
Then G acts on the left on fî# (M, F) , so that if g G G, s G fî* (M, F) , #s is given by 

(3.6) (gs){x) =g*s(g~lx) . 

Clearly G préserves the Z-grading of fi* (M, F) , and commutes with dM. 
Let (fi*(X, F | x ) , dx) be the fibrewise de Rham complex of smooth forms along 

the fibres X with values in F\x, equipped with the fibrewise de Rham operator 
dx. Again G acts on fi*(X, F | x ) , préserves the Z-grading and commutes with dx. 
Then (fi* (X, F | x ) , dx) can be viewed as a family of infinité dimensional complex 
on S, on which G acts fibrewise. Let Hm(X, F\x) be the cohomology of the complex 
(fi* (X, F | x ) , dx). Then #*(X, F | x ) is a finite dimensional Z-graded G-bundle on S. 
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Let fi* (S, fi* (X, F\x)) be the space of smooth sections of A* (T*S) § fi* (AT, F|x 
on S. Using (3.3), we have the identification of Z-graded G-vector spaces, 

(3.7) fi* ( M , F ) ~ f i * (S , f i - (X,F |X)) . 

3.2. A flat superconnection of total degree 1 

Here, we follow [BLol, Section 3 (b)]. The operator dM acting on fi* {M, F) has 
degree 1 and is such that dM'2 = 0. Also if o; is a smooth section of A* (T*5), and if 
s G fi* (M, F) , then 

(3.8) dM (7T* (LJ) S) = 7T* (dSu) S + (-l)dGg" 7T* (<j) dMS. 

Comparing with (1.4), we find that A' = dM can be considered as a flat superconnec­
tion of fi*(X, F\x), which has total degree 1. 

If U G TS, let UH G THM be the horizontal lift of U, so that TT*Uh = U. ïfU is 
a smooth section of TS, the Lie derivative operator Lu h acts naturally on fi* (M, F) . 
One vérifies easily that if / G C°° (M, C), if a G C°° (M, A*(T*X) 0 F ) , then 

(3.9) L(fu) ha = (Ii* f) LuHa 

Définition 3.1. — Let Vfi# (X'F'X) be the connection on fi* (X, , such that if U G 
TS and if 5 is a smooth section of fi*(X, F\x), then 

(3.10) 
fi'(x,F|x) 

Vy S = LijhS. 

Clearly the connection Vn lx'FlxJ préserves the Z-grading of ÇT(X,F\x)-

Définition 3.2. — If U, V are smooth sections of TS, set 

(3.11) TH (U, V) = -PTX [UH, VH] . 

One vérifies easily that TH is a tensor, i.e. it defines a 2-form on S with values in 
smooth sections of TX. The interior multiplication %th acts naturally on A*(T*M) 0 
F. It increases the total degree by 1, while decreasing the vertical degree by 1, and 
increasing the horizontal degree by 2. 

Now we have a classical resuit stated in [BLol, Proposition 3.4]. 

Proposition 3.3. — The following identity of operators acting on fi* (M, F) holds, 

(3.12) A' = dx + Vn'(x>F^) +iTH. 

Remark 3.4. — Equation (3.4) gives us a décomposition of the superconnection dM 
which is a spécial case of (1.32). Since A'2 = 0, from (3.12), we get 

(3.13) dx'2 = 0, VQ'{X,F\X)^X = 0, VQ'(x'F^)'2+[dx,iTH}=0, 

Vn'(x'F^),iTH = 0, i%„ = 0. 
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As in Section 1.6, the flat superconnection A! induces on H*(X, F\x) a flat connec­
tion V ^ * ^ ^ ' * ) which préserves the Z-grading. This is the Gauss-Manin connection 
VH*(X,F\X) on H*(X,F\X). 

3.3. A metric on TX and the tensors T and S 

Let gTX be a G-invariant Euclidean metric on TX. In the sequel, we identify TX 
and T*X by the metric gTX. 

By [B3, Section 1], (THM,gTX) détermine an Euclidean connection VTX on TX. 
In fact let gTS be an Euclidean metric on TS. We equip TM with the G-invariant 
metric g™ = 7r*gTS®gTX. Let V™'L be the Levi-Civita connection on (TM, g™). 
Let VTX be the connection on TX, 

(3.14) VTX =PTXVTM,L 

Let V ™ be the connection on TM, 

(3.15) V ™ = 7 r * V T 5 e V T X . 

Let T be the torsion of V ™ . Put 

(3.16) S = V™+ - V ™ . 

Then S is a 1-form on M with values in antisymmetric éléments of End (TX). Clas-
sically, if A,B,Ce TM, 

(3.17) S (A) B - S (B) A + T (A, B) = 0, 
2 (S (A) B, G) + (T (A, B), G) + (T (G, A) ,B) - (T (B, C),A) = 0. 

By [B3, Theorem 1.9], we know that 
- The connection VTX préserves the metric gTX. 
- The connection VTX and the tensors T and (S (•),•, •) do not dépend on gTS. 
- The tensor T takes its values in TX, and vanishes on TX x TX. 
- For any A G TM, 5 (A) maps T X into THM. 
- For any A,Be THM, S (A) B e TX. 
- If A e THM, S (A) A = 0. 

From (3.17), we find that if A e THM, B,C G TX, 

(3.18) (T (A, B),C) = (T (A, C),B) = -(S (B) C, A). 

By construction, ail the above objects are G-invariant. Now, we recall a simple resuit 
stated in [B10, Theorem 1.1]. 

Theorem 3.5. — The connection \7TX on (TX, gTX) is characterized by the following 
two properties: 

- On each fibre X, it restricts to the Levi-Civita connection. 
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- ifueTS, 

(3.19) V TX Lu" + 
1 
2 

(„TX\~1 t TX 
(9 ) LuHg . 

IfU,VGTS, 

(3.20) T {U", VH) = TH (U, V). 

IfUeTS,A€TX, 

(3.21) T(UH,A) = I 
2 

gTX -1 LuHgTXA. 

Let dvx be the volume along the fibre X which is associated to the metric gTX. 
Lpt tfi p „ hp fl.n orthonnrmfl.l hasis of TX. SJpf, 

(3.22) e — — 
n 

i=l 
S ( e i ) e» . 

Then using the properties which were listed after (3.17), e G THM. 
If U e TS, let divx (pH) be the smooth function along X such that 

(3.23) LjjHdvx = divx (UH) dvx-

Now we have a resuit stated in [BF1, Proposition 1.4]. 

Proposition 3.6. — IfUe TS, 

(3.24) (eiUH)=dWx (UH). 

Take g G G. The metric gTX induces a metric gTXâ on TXG. Also since VTX is 
G-invariant, VTX\MQ préserves TXG. 

Proposition 3.7. — The restriction ofVTX to TXg is exactly the Euclidean connec­
tion canonically attached to (THM\M9,9TXg) • Moreover the tensors T and (S (-) -, •) 
restrict to the corresponding tensors associated (Mg,THM\M9,gTXg)• 

Proof. — Clearly the metric g™ considered in Section 3.3 is G-invariant. Therefore 
Mg is totally géodésie in M with respect to g™, and so V ™ , L préserves TMg. The 
first part of our Proposition follows. The remainder of the Proposition follows from 
(3.11), (3.17) and from Theorem 3.5. • 

3.4. The adjoint superconnection 

We make the same assumptions as in Section 3.3. In addition we equip F with 
a G-invariant Hermitian metric gF. Let VF'* be the connection adjoint to VF with 
respect to gF. As in (1.9), set 

(3.25) <o(vF,gF) = (gF) v V . 
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Then by (1.10), 

(3.26) V F ' * = V F + w ( V F , <jF) . 

As in (1.11), we define the connection VF'W by 

( 3 . 2 7 ) VF'n - VF + 
1 

2 
^ ( V F , £ F ) . 

Then VF'U is a uni tary connection on F. By (1.30), its curvature is given by 

(3.28) V F,u,2 
= 

- 1 

4 
V F 

5 9 
F 

Let v A # ( T * x ) § i 7 > be the unitary connection on A*(T*X) § F induced by V T X and 

VF'W. 

Let *TX be the Hodge star operator associated to gTX. We equip fi* (X, F\x) with 

the Hermitian product such tha t if s, sf G fi* (X, F\x), 

(3.29) <s,s'> = 

x 

<sn *s'>F = 

x 
(5 , S')A.(T*X)§F d^x-

Let / * # ( x ' F | x ) be the corresponding metric on fi*(X,F|x). Then ^ * ( x ' F | x ) is 

G-invariant. 

Now we will use the notat ion in Section 1.3. Let A be the adjoint of the super­

connection A' with respect to the metric gn ( X ' F I X ) . The adjoint dx>* is just the 

fibrewise adjoint of dx. Let y Q # ( X ' F | x ) ' * be the connection on fi'(X,F|x) which 

is adjoint to y Q * ( x ' F | x ) with respect to gQ9(x^x). Recall t ha t TH, defined in 

(3.11), is a section of A2 (T*5) ® TX. Since T X and T*X are identified by gTX, 

we can consider T F as a section of A2 (T*S) § T*X. Then T ^ A acts naturally on 

A* (T*S) ® fi* (X, and increases the total degree by 3. 

Then we have the resuit s ta ted in [BLol, Proposition 3.7]. 

Proposition 3.8. — The following identity holds, 

(3.30) A" = dx'*+ v " # ( x ' F | x ) ' * — TH A . 

Now we use the formalism of Section 1.5. Namely, set 

(3.31) A — 
1 

2 
[A" + A'), B 

1 

2 v 
{A" - A'). 

Then A is a G-invariant superconnection on fi*(X, F\x), and B is a smooth G-

invariant section of (A* (T*S) ®End (fi*(X, F|x)))°dd, such that 

(3.32) B* = -B. 

The obvious analogue of Proposition 1.5 still holds. 
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3.5. Clifford algebras 

Recall that TX and T*X have been identified by the metric gTX. If A G TX, let 
c (A), c (A) be the odd endomorphisms of A#(T*X), 

(3.33) c(A) = A A - M , c ( i 4 ) = 4̂ A +ÎA-

If A, B in TX, 

(3.34) 
[c (A), c (B)] = - 2 (A, B ) , [c (A), c ( B ) ] = 2 (A, B ) , [c (A), c (5)] = 0. 

Let c(TX) be the bundle of Clifford algebras on (TX,gTX). Then c(TX) is the 
algebra over R generated by 1, A G TX and the commutation relations for A,Be TX, 

(3 .35) [A,B] = -2(A,B). 

Then (3.34) says that A —• c(A) and .A —> zc(A) give two représentations of the 
bundle of Clifford algebras c (TX). 

Also c(TX) acts naturally on itself by multiplication on the left and on the right, 
and thèse two actions commute. They will be denoted respectively by c1 and cr. 
Classically, there is a Z-graded isomorphism of vector spaces c (TX) ~ A*(T*X). Let 
r be the operator on A#(T*X), which is 1 on Aeven (T*X), - 1 on Aodd (T*X). Then 
one vérifies easily that under the above isomorphism, if A G TX, 

(3.36) c (A) = c1 (A), c(A) = rcr (A). 

In the sequel, we will often use the notation c(TX) and c(TX) for the bundle of 
algebras generated by 1 and the c (A) 's and by 1 and the c (A) 's. 

3.6. The Levi-Civita superconnection 

By imitating (1.11), put 

Dx = dx + dx>*, 

(3.37) \7v{x,F\x),u = 1 
2 

v n - ( x , F | X ) + vft*(x ,F|X),* 

w V n*(x,F\x) 
g 

O (x,fx) = ^ • ( X , F | X ) , * _ y t t * ( x , F | X ) 

Then yQ# (X,F[x),u is a unitary connection on Q*(X,F\X). Moreover Dx is a fibre­
wise self-adjoint operator acting on fi*(X, F\x)- By Hodge theory, 

(3.38) kerDx ~H'(X,F\X). 

As a finite dimensional subbundle of fi*(X, F\x), ker Dx inherits the L<i metric of 
fi*(X, F\x)- Let g^2 ̂ X'F'X^ be the corresponding Hermitian metric on H*(X,F\x)-

Recall that e G THM was defined in (3.22). The following resuit was established in 
[BLol, Section 3 (d)]. 
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Proposition 3.9. — If s is a smooth section ofQm(X,F\x), ifUe TS, then 

(3.39) 
x,F\x [x,F\x u 

S 
VA*( T*X)<g)F,uç 1 

2 
e,UH 

Observe tha t c (TH) is a smooth section of (A2 (T*S) ® End (A*(T*X)))°dd. Let 

e i , . . . , en be an orthonormal basis of TX. Let / 1 , . . . , /m be a basis of T 5 , let 

Z 1 , . . . , / m be the corresponding dual basis of T * M . In the next definition, we view 

S as a form along the fibres X with values in End ( T M ) . 

In the sequel, we adopt Einstein's conventions. By [BZ1, Proposit ion 4.12], 

(3.40) Dx T*X)<g)F,uçT*X)<g)F,uç 1 

2 
T*X)<g)F,uçT*X)ng 

Let VA#(T*X) be the connection on A'(T*X) induced by VTX. Along the fibres X, 

the vector bundle A* (T*5) is trivial. Let vA#(T*5)®A*(T*x) be the obvious connection 

on A* (T*S) §> A#(T*X) along the fibres X which is induced by VA#(T*X). 

Definition 3.10. — Let ivA#(T*5)§A#(T*x) be the connection along the fibres X on 

A. ( T * S ) g A * ( T * X ) , 

(3.41] l y A . ( r 5 ) § A . ( T * l ) yA#(T*S)®A#(T*X) 1 

2 
T*X)<g)F Scieur 

1 

2 
T*X)<g)F,uç :m^ù^$ 

The curvature iVA#(T*^A#(T*x) '2 of the connection ^*(T*S)®A-(T*x) is a sec_ 

tion of 

A*(T*X) g A* (T*5) ê End (A*(T*X)) . 

Again, expressions involving ViA '2 and 5 will only be viewed as forms along the 

fibres X. 

Proposition 3.11. — The following identity holds, 

(3.42 lyA#(T*S)§A#(T*X),2 1 

4 x 
VTX'2e, ,e , (c(ei)c(ej) - c ( e i ) c ( e j ) ) 

1 

2 
(SPTXS + VTXS) rH fH 

J a Î J(3 
)faf 

1 

2 
T*X)<g)F,uçT*X)<g)F,uç!:ù$ 

Proo/. — This is an easy identity established in [BIO, Proposit ion 11.8]. 

The following identity was established in [B3, Theorem 4.14], [B5, Théorème 2.3]. 

Proposition 3.12. — If A, A' € TX,B,B' e TM, then 

(3.43) T*X)<g)F A, A' pTX B,PTXB' (SPTXS(A,A')B,B') 

h < (VTX5) (A, A') B, B') = (VTX>2 (B, B') A, A') 
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When we equip F with the connection VF'U, the connection 1 y^-'ir* S)®K*{T* x) 

extends to a connection iyA^T*5)§A#(T*x)§jF> on A* (T*S) ® A*(T*X) g F along 

the fibres X. 

Definition 3.13. — Pu t 

(3.44) 
T*X)< (T*5)§A#(T*X)§F,n 

:mù^$ 
1 lyA*(T*S)§A*(T*X)§F,u / 

Now we use the same notat ion as in (3.41). 

Theorem 3.14. — The following identity holds, 

A 
1 

2 
Dx yft#(x,F|x),u 1 

2 
T*X)<g)F 

(3.45) T*X)< 
1 

2 
c(e^)-

1/2, e< 
7A# (T* 5)§A* (T* X)§F,u 1 

4 
( e ^ ( V F , # F ) (Ci) 

1 

2J 
T*X)<g)F,uçT*X)<g)F,uç 

Proof. — The first identity in (3.45) was established in [BLol , Proposition 3.9]. By 

the same reference, 

(3.46) B = 
1 

2 
:mù^$ 

ù$ 
7A*( T*S)§A#(T*X)§F,u 1 

4 
tei)u>(VF,gF) fa) 

1 

2" 
!ù: [S (eO eJ; / f ) c(ei)c(ej) + u,(VF, <?F) ( / f ) 

1 

2 
T*X)<A 

By (3.17), (3.46), we get the second identity in (3.45). 

Remark3.15. — As observed in [BLol , Remark 3.10], (3.45) shows tha t A is a spe­

cial case of a Levi-Civita superconnection in the sense of [B3]. The second identity 

in (3.45) is of special interest. It shows tha t B is a generalized fibrewise Dirac oper­

ator, in which the fibrewise connection VA*^T X)®F'U is replaced by the connection 
1 yyA* (T* 5)§A# (T* X)<g)F,u 

Vl/2 

3 .7 . A rescal ing of t h e m e t r i c o n TX 

For t > 0, set 

(3.47) 9ÏX 

TX 

t:ù$ 

Let gt 
Î W X , F | X ) 

be the metric on Qm(X,F\x) associated to 9ÏX,9F. 
Let N be the number operator of 0 # ( X , F\x), i.e. N acts by multiplication by k 

on Qk (X, F). One verifies easily tha t 

(3.48) 9t 
m^ù$ ù^$ù tN-n/2gV(x,F\x) ^ 
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Therefore, up to the constant factor t n//2, the metric 9t 

ghg X,F\X 
fits with the con­

ventions used in Section 1.7. 

Let A" be the adjoint of A1 with respect to 9t 
ff(x,F\x) 

Clearly A" A'{. As in 

(1.41), we have, 

(3.49) A'; = t-NA"tN. 

As in (1.42), set 

(3.50) At 
1 

2 
T*X)<g)F,uç Bt 

1 

2 v 
AÏ-A'). 

Now, we imitate Definition 1.19. 

Definition 3.16. — For t > 0, set 

(3.51) C't = tNl2A'rN'2, C'l = rN'2A"tN'2. 

Then C't is a flat superconnection on Q' (X, F\x), and C" is its adjoint with respect 

tog^y^x). Set 

(3.52) Ct 
1 

2 
(C't' + C't), Dt 

1 

2 ' 
C't' - C't). 

As in (1.48), we get 

(3.53) Ct = tN'2AtrNl2, Dt = tN'2Btt~N'2. 

Of course, all the objects which we just defined are C-invariant. 

Proposition 3.17. — For t > 0, the following identities hold, 

(3.54) Ct^ip^VtAiPt, 
T*X)<g)F,uçT*X)<g)F, 

Proof. — Since A' is of total degree 1, the proof of our Proposit ion is the same as 

the proof of Proposition 1.20. • 

3.8 . A Lichnerowicz formula 

Let RF'U be the curvature of the connection VF,M on F. By (1.30), 

(3.55) RF,u 1 

4 
T*X)<g)F,uç 

Set 

(3.56) RTX = VTX,2 

Definition 3.18. — P u t 

(3.57) K 
1 

4 
V , RTXej)c(ei)c(ej) + RF'u. 
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Then H is a smooth section of A*(T*M) 0 c (TX) 0 End (F). Let eu ..., en be a 
locally defined smooth orthonormal basis of TX. Let E be a vector bundle on M. 
LetV^ be any connection on E along the fibres X. In the sequel we use the notation, 

(3.58) ra2 

n 

i=l 

%§M 2 •E 
T*X)<g)F,uç 

One verifies easily that (3.58) does not depend on the choice of the basis e i , . . . , en. 
Let K be the scalar curvature of the fibre (X, gTX). Let z be an odd Grassmann 

variable which anticommutes with all the other odd objects we met before. The 
following formula was established in [BLol, Theorem 3.11] as a consequence of the 
Lichnerowicz formula for the curvature of the Levi-Civita superconnection given in 
[BLol, Theorem 3.6]. Observe that the second equation in (1.30) asserts that the 
tensor U,V G TX -+ VF'uu(VF,gF) (V) is symmetric. 

Theorem 3.19. — Given t G R + , the following identity holds, 

(3.59) C? - zDt = 
t 
4 

l 
T*X)<g)F 

Ae(T*S)®A*(T*X)§F,u Z 

mù^$ù 
c(ei) 

2 К 
16 

t 
8 ' 

c(e»)c(e,-)7£(e»,e,-) 
1 

2" 
T*X)<g)F f" mù^$ Vt 

2 
T*X)<g)F,uçù^$ù 

+ 
t 

16 
HVF,9F) (eO 

2 Vt 

4 
T*X)<g)F, 7TX®F,u 

FH 
J AT 

^ù$ T*X)<g)F, (ei) 

t 
32 

c(ei)c(ej)uj2 I T*X)<g)F,uç mp^ù$^ù 
mù^$ 
8 

c(ei)c(ej T*X)<g)F,uç T*X) m^ù$ 

1 

4 
zVtc(ei)u(VF,gF) (a) -

1 

2 zf°w(V*\9*) US) 

Now we will establish another, but essentially equivalent Lichnerowicz formula. 
Recall that1 V^2(T*5)0A#(T*X) is a connection on A* (T*S)®A*(T*X) along the fibres 
X. Its curvature lies in A9(T*X) 0 A* ( r * 5 ) 0 End (A#(T*X)), and was computed in 
Proposition 3.11. 

Theorem 3.20. — Given t £ R L , the following identity holds, 

(3.60) Cf - zDt = 
t 

4 
1 7Л* (T* S)®A# (T*X)§F,u 

T*X)<g)F 
mù^$ù 

ù^$ù^$ 
c(e» 

2 

* Ï 6 

mù^$ 
8 

c(ei)c(ej) 1 
v t/2 
7A9(T*S)®Am(T*X),2 , 

T*X)<g) 

1 

4 
(ei7 e^) efe, ег) с (efc) с (ег) -

1 
4 2 ( V F , ^ ) (е .в , ) 
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t 
16 

i)c(ej)üi)c(ej)ü 2 t 

32 
c(ei)c(ej)üü2 I i)c(ej)ü i)c(e 

FT 

8 
c(ei)fa i)c(ej)ü (ei),u(VF,gF) i)c(e l 

8 
L0Z VF,9F[ fa 1 fß) 

t 

8 
i)c(ej)ü T/2,ei 

rA* (T* 5 ) 0 A # (T*X)®F,u 
a; 

i)c(ej)ü ¨%£ 

St. 
4 

£¨%£ fOC ±i A# (T* 5)§A# (T* X)§)F,u 
' t/2,ei 

i)c(ej)ü 
J OL , 

1 
4 

zVtc(ei)oü i)c(ej)ü (et, 
1 
2' 
-zfau>\ YF,9F f" 

Proof. — We use formula (3.45) for B. We will consider here the ic(ej) as standard 
Clifford variables and the c(ej) as auxiliary Clifford variables. The operator 

iciei 
l/2,ei 

,Am{T*S)®A*{T*X)®F,u 

is then an ordinary fibrewise Dirac operator, to which the classical Lichnerowicz for­
mula in [BF2, Proposition 2.1] can be applied. Our Theorem follows. • 

Remark 3.21. — The comparison of Theorems 3.19 and 3.20 is interesting. To prove 
directly that formulas (3.59) and (3.60) are in fact identical, one should use Proposi­
tions 3.11 and 3.12. 

3.9. A unitary connection on H*(X,F\x) 

We define cj(Vh#<x'fI^ l:ù!^$ 
H'(X,F\xy 

as in (1.9). Let jH*(X,F\x),* be the connec­

tion on H*(X,F\x) which is the adjoint of V ^ * ^ X , F ' X ^ with respect to the metric 
GH-(x,F]x)_ Set 

(3.61) V 
1 

2 v 
(dx'*-dx) 

Then kerV = ker£>x, and so by (3.38), 

(3.62) kevV~H-(X,F\x). 

Let PkerV be the orthogonal projection operator from Qm(X,F\x) on kerV. By 
[BLol, Proposition 3.14], the obvious analogue of (1.38) holds, i.e. 

(3.63) 

vif(X,F|x) p k e r V y f 2 * ( X , F | x ) 

vtf«(X,F|x),* pkerV^n*{X,F\x),* 

¨M% v//*(X,F|x) 
9L2 

H*(X,F\X) pker V 
£% 

i)c(ej)ü 9Q'( X,F\x) \ PKER V 
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W x , F | X ) 67 

3 .10 . T h e o d d c losed forms hg A\gt 
n'[X,F\x) 

First we s ta te a result established in [BLol , Theorem 3.15], which is the obvi­

ous extension of Proposition 1.6 in this infinite dimensional context. We define the 

Lefschetz number Xg (F) by the formula 

(3.64) Xg (F) 
n 

3=0 

i)c(ej)ü i)c(ej)üi)c(ej)ü 

Then Xg (F) is a locally constant function on S. 

Proposition 3.22. — For any t > 0, 

(3.65) Trs [gexp (-A2t - Xg (F) • 

Proof. — The proof is the same as the corresponding proof in [BLol ] . 

Now we follow [BLol , Section 3] and also Chapter 1. In the sequel, we set 

(3.66) h (x) = xex . 

Take g G G. 

Definition 3.23. — For t > 0, set 

(3.67) kg A',gt 
y{X,F\x) 

(2i7r)1/2< ̂ Trs [gh(Bt)}. 

Similarly, set 

(3.68) hg C* gn*{x,F\x) (2i7r)1/\Trs[gh(Dt)]. 

By (3.53), as in (1.49), 

(3.69) hg i)c(ej)ü 
V(x,F\x 

= hg C't,gn{ {x,F\x) 

Let e (TXg, VTXa) be the closed Euler form in Chern-Weil theory, which represents 

the Euler class of TXg associated to the Euclidean connection VTXg. Let RTXg be 

the curvature of VTX°. Then 

(3.70) e(TXg,VTXa) = Pf 
RTX9 

2TT 
if dim Xa is even, 

= 0 if dim Xg is odd. 

Let e (TXg) e H* (Mg, Q) be the cohomology class of e (TXg, VTX^), i.e. the Euler 

class of TXg. 

Let G (g) = (g) be the closed Lie subgroup of G generated by g. Then G (g) keeps 

Mg fixed and acts on F by flat automorphisms. Therefore the forms hg ( V F , ^ F ) on 

Mg can be defined as in Definition 1.7. They are closed odd forms on Mg. 
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Now we s ta te an extension of [BLo l , Theorem 3.16], where only the case g — 1 was 
considered. Recall tha t as we saw in Sections 3.2 and 3.6, H*(X,F\x) is a Z-graded 
vector bundle on 5 , equipped with the flat Gauss-Manin connection V ^ * ^ ' ^ * ) , and 
with the metric (X>F\X\ 

Theorem 3.24. — The forms hg Af,gt 
n*(x,F\x) 

are odd, closed, and their cohomol-

ogy class does not depend on t > 0. They are real if g = 1. Moreover as t —• 07 

(3.71) kg A',9t 
Q'(X,F\X 

*9 
e(TXg,VTX°)hg (VF,gF)+0(Vt) 

As t —• -hoo, 

(3.72) hg A',gt 
n9(x,F\x) 

= h9 y i f ( X , F | x ) 
9L2 

H'{X,F\xy 
+ o ( i M ) 

Proof. — The proof of the first par t of our Theorem is the same as the proof of 
[BLol , Theorem 3.16] and of Theorem 1.8. The proof of (3.72) is the same as the 
proof of the corresponding result in [BLol , Theorem 3.16] with g = 1. 

Now we concentrate on the proof of (3.71). When g = 1, our result was already 
established in [BLol ] . In the case of a general we proceed as follows. We view z 
as the generator of R*. If a e A (T*5 x R*) , if 

(3.73) a = /?•+ 27, with A t e A- (T*s), 

set 

(3.74) az = 7 . 

Clearly 

(3.75) Trs [gh ( A ) ] = Trs 5 e x p ( - C ? + zDt)\ 

Let Pt (x, x1) be the smooth kernel associated to exp (—Cf + zDtj with respect to 
dvx/ (27r)dim x , so tha t if s € il'(X,F\x), 

(3.76) exp -Cf + zDt) s (x 
M 

Pt(x,x')s(x') 
i)c(ej)ü 

(2*0° dim X' ' 

Then 

(3.77) TVS [gexp(-C? + zDt)] 
<x 

T>s [gPtig^x.x) 
dvx (x) 

(27r)dim x ' 

S tandard results on heat kernels show tha t as t —> 0, the integral in (3.77) localizes 
near the fixed point fibre Xg. Then we combine the techniques of the local families 
index theorem of [B3] with the techniques used in the proof of the Lefschetz fixed 
point formulas to obtain (3.71). We refer to Section 13.3-13.5 for a detailed account 
of the techniques which are needed in the proof of (3.71). This involves in particular 
the use of the rescaling techniques of Berline-Getzler-Vergne [ B e G e V , Chapter 10]. 

ASTÉRISQUE 275 



3.11. A TRANSGRESSION FORMULA 69 

The proof of our Theorem is completed. 

Now we obtain an equivariant extension of the Riemann-Roch-Grothendieck for­

mula of Bismut-Lott [BLo l , Theorem 3.17]. 

Theorem 3.25. The following identity holds, 

(3.78) kg y i f ( X , F | x ) ' 

fx9 
e(TXg)hg(VF) in tfodd(S,C). 

Proof — Our result follows from Theorem 3.24. 

Remark 3.26. — From (3.78), we get, for any odd k G N , 

(3.79) kg VH'(X,F\X) 
¨¨%£ 

*9 

e{TXg)hg(VFyK) mHk(S,C) 

Since deg(e(TXg)) = d imX^ , we deduce from (3.79) tha t this identity still holds 

when replacing h (x) = xex by h (x) = xk for any odd k € N , and more generally, 

by any arbi trary holomorphic odd function h (x). 

3 . 1 1 . A t ransgres s ion formula 

As in [BLol , Section 3 (i)], we imitate the constructions of Section 1.7 in an infinite 

dimensional context. 

Definition 3.27. — For t > 0, set 

(3.80) hA A',gt 
n*(X,F\x) i)c(ej)ü 

N 

2 ' 
gh'(Bt 

Similarly, put 

(3.81) ¨M%£ 0,ga-(x,F\x) •<pTrs 
N 

2 -
-gti ( A ) 

By (3.53), as in (1.49), 

(3.82) K A',g\ 
f(x,F\x) 

= K ct>9 
U,F\X] 

Proposition 3.28. — The following identities hold, 

(3.83) %£ A\9t 
Q#\X,F\x) 

(2 i7r )1 /2^T"1Trs \gh(VtB) 

%¨£ Afl9t 
Q* (x,F\x) 

i)c(ej)üM¨% 
N 

. 2 -
qtï VtB 

Proof — Using Proposition 3.17, the proof of our Proposition is the same as the 

proof of Proposition 1.21. • 

Now we have the obvious extension of [BLo l , Theorem 3.20] and of Theorem 1.18. 
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Theorem 3.29. — The form hi" A',9t 
0# (x,F\xY 

is even. It is real if g = 1. Moreover, 

(3.84) 
d 
dt ;h9 Al S' 

A,9t 
n*(x,F\x 

n v = d 
hA 

. 9 
A',9t 

sWx,F|x) 

t 

Clearly, the function TrF [g] is locally constant on Mg. By the Lefschetz fixed point 
formula, we get 

(3.85) Xg (F) 
xg 

TrF [g]e(TXg). 

P u t 

(3.86; x'g(F) 
M 

3=0 
i-iyjTrHJ^FM[g]. 

Then Xg (F) > Xg ( / ) are locally constant functions on S. 
Now we s ta te an extension of [ B L o l , Theorem 3.21]. 

Theorem 3.30. — Ast^O, 

(3.87) i)c(ej)ü i)c(ej)ü 
Q'{X,F\x) n 

4/l 
Xg (F)h'(0) + O{Vt) 

As t —> +oc, 

(3.88) i)c( [A,9t 
n*(x,F\x) 1 

2 • 
-X'g (F)h'(o) + oh/Vt) 

Proof. — Using Theorem 3.24, and by proceeding as in the proof of [BLo l , Theorem 
3.21], our Theorem follows. • 

3 .12 . T h e equivariant ana ly t i c t or s ion forms 

Now we follow [BLo l , Section 3 (j)] and Sections 1.9 and 1.10. Recall t ha t h(x) 
is still given by (3.66). 

Definition 3.31. — Set 

(3.89) TM (THM,gTX,VF,gF) 
M% 

0 
hA A/ *' Qm(x,F\x) 1 

2 * 
^x'(F)ti(0) 

jXg (F) 
1 
2 * 

(F) h! (iVt /2 
dt 
t ' 

From Theorem 3.30, we find tha t the integral in the right-hand side of (3.89) is 
well defined. 

Now we establish an extension of [BLo l , Theorem 3.23]. 
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Theorem 3.32. — The form Th}9 (TH M,gTX ,VF ,gF) is even, and real if g = 1. 

Moreover, 

(3.90) 
i)c(ej)ü 

(THM,gTX,VF,gF) 
i)c(ej)ü 

e{TXg^x')h9 ( V ^ ) 

-kg ^ • ( X , F | X ) H'(X,F\X 

Proof. — Our Theorem follows from Theorems 3.29 and 3.30. 

Remark 3.33. — The forms Th,g (THM,gTX, VF \gF) are called analytic torsion 

forms. By (3.90), we find tha t for any even A; G N , 

(3.91) dTh>g (THM,gTX,VFyf] 
JXg 

e(TXg^)hg (V^Ff+l) 

- hg vi)c(ej)ü,gL2i)c(ej)ü 
v(fe+l) 

Let T'H M,g,TX ,g'F be another triple of data . We will denote with an extra prime 

the objects canonically at tached to this new triple. Let e (TXg, VTXg, V/TXg) G 

ft* (Mg)/d£l* (Mg) be the corresponding Chern-Simons class, so tha t 

(3.92) de(TXg,VTXg,V,TXg) e (TXg, V/TX*) - e (TXg, VTX*) . 

Now we extend [BLol , Theorem 3.24]. 

Theorem 3.34. — The following identity holds, 

(3.93) Tht9 (T M, g , V , (/ ) — Th^g (T M, g , V , g j =MPOK 

¨¨%£ 
6 ( T I „ V T ^ , V ^ ) hg (VFl9F) 4 

JXg 
e(TXg,V'T^)hg(VF,gF,g'F) 

- hg y / f ( X , F | x ) H'{X,F\X %¨£% H*(X,F\X] ) in SV(S)/d£l9(S) 

Proof. — The proof of Theorem is an easy consequence of functoriality of the forms 

Thi9 (THM,gTX, VF,gF) and and Theorem 3.32. • 

Remark 3.35. — Suppose tha t the connected components of Xg have odd dimension. 

This is t rue if X is orient able, and either X is odd dimensional and g preserves the 

orientation, or X is even dimensional and g reverses the orientation. If Hm(X, F\x) = 

0, by Theorems 3.32 and 3.34, TKg (THM,gTX, VF,gF) is a closed form on 5 whose 

cohomology class does not depend on (THM, gTX, gF). 

Remark 3.36. — Let (DX) 1 be the inverse of DX acting on the orthogonal bundle 

to ker£>x in For s G C , R e ( s ) > d i m ( X ) / 2 , set 

(3.94) *g 00 = - I r s 'N (DX'2)~& 
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Then fig (s) extends to a meromorphic function of s G C , which is holomorphic near 

5 = 0. By definition, the equivariant Ray-Singer analytic torsion [RSI] , [BZ2] of the 

de Rham complex (Q* (X, F\x), dx) is given by (0). In the case where g = 1, it 

was shown by Bismut and Lott [BLol , Theorem 3.29] tha t 

(3.95) Th,g TH gTX i V F , gF 
x(0) ld#g 

2 ds 
(0 ) . 

The arguments in [BLol] extend to the case of a general g. From equation (3.95), 

we derive the anomaly formulas for equivariant Ray-Singer metrics given in [BZ2, 
Theorem 0.1]. 

3 . 1 3 . A n a l y t i c t o r s i o n forms a s s o c i a t e d t o arbi trary funct ions 

In [BLol] and in Section 3.12, we defined the form Thi9 (THM,gTX, VF,gF) only 

for h (x) = xex . We claim tha t if h (x) is any holomorphic odd function such tha t 

(1.54) holds, we can still define the torsion forms T^g (TH M, gTX, V F , g F ) , and tha t 

the obvious analogues of the results of Sections 3.10-3.12 still hold. In fact because 

of the decay condition (1.54), the operators h(Bt) and h! (Bt) are trace class. The 

arguments on the behaviour of the considered forms as t —> + o o can be adapted word 

for word. As to the arguments on the behaviour if the forms as t —•> 0, they can also 

be reproduced. In fact, by using finite propagation speed as in Chapter 13, one shows 

easily tha t the problem of convergence is local near Xg. As in Chapter 13, we then 

work with the resolvent equation, which leads to these convergence results. 

Then we still have the degree by degree equation (3.91). We can write h (x) in the 

form, 

(3.96) h(x) = 

k odd 

i)c(ej)ü 

for k G N , k even, the right-hand side of (3.90) depends only on the a/t+i. The question 

then arises of knowing ifTht9 (THM,gTX, VF,gF)(k) G « - ( S ) / d f t * ( S ) depends on h 

only via 6fc+i. We will provide a part ial answer to this question. 

Prom now on, we still take h (x) as in (3.66), i.e. 

(3.97) h(x) = xe*2. 

For a G C*, let y/a be any square root of a. Let R(a) be a polynomial. As in (2.73), 

set 

(3.98) ha(x) = R 
' d 

M%¨£ 

1 

/a 
h(y/ax). 

Then if a G R!j_, ha(x) verifies the assumptions in (1.54). We can then define the 

analytic torsion forms ThaiQ (THM,gTX,VF\gF). Also by Theorem 3.32, the even 
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%¨£%M% 

-di/2\ %¨£% 
di/2 

0 
-idj 

%¨£ 

FIGURE 3.1 

form Tha (TнM,gтx^,gF) is such tha t 

(3.99) dThai9\ [THM,gTX,VF,gF) 

¨%£ 
e{TXg,VTX°)(ha)g(VF,gF)-(ha)g 

(vH'{X,F\x)^gH\X,F\x) 

Theorem 3.37. — For a E R + , the following identity holds, 

(3.100) i)c(ej)ü THM,gTX,VF,gF --R 
' d 
¨%¨£ 

^aTh,g (THM,gTX,VF,gF). 

Proof. — Clearly, 

(3.101) T,Q (T»M,gTX,VF,gF)=R 
d 

%¨£% Ih(^.)/y/ä,g {THM,gTX,VF,gF 

Also by Proposition 3.17, 

(3.102) y/ECt = l/jaCat1pa 

From (3.89), (3.101), (3.102), we get (3.100). 

Remark 3.38. — Theorem 3.37 gives a strong indication tha t for any even k e N , 

Thig (THM,gTX,VF,gF){k) G fi*(S)/dfi*(S) depends on h only via bk+1. 

3 .14 . A n ident i ty for k(Dt) 

For simplicity, we assume temporarily tha t M is compact. Wi th the notation in 

(3.61), 

(3.103) 

As in (2.18), we get 

B<°> = V. 

(3.104) S p ( £ ) = S p (BW) 
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Since kerl?(0) ~ H*(X, F\x) has constant rank, there exists d\ G R + such tha t 

(3.105) Sp %£¨% C {0}U [2di ,+oo[. 

Let Q (x) be an odd polynomial. Let k (x) be the holomorphic odd function, 

(3.106) k{x) = Q{x) ex\ 

Recall tha t 5 C C is the circle of centre 0 and radius 1. Let A = A+ U A _ be the 

contour in C indicated in Figure 3.1. 

Definition 3.39. — For t > 0, set 

(3.107) Gt %¨%£ i 1 
2Î7T , 

k(VtX) 

A A - B 
dXiptl 

Ht = ^tl 
1^6 

k(VtX) 

X-B 
dXipt. 

Proposition 3.40. — For any t > 0, 

(3.108) k(Dt) = Gt + Ht. 

Proof. — The proof is the same as the proof of Proposition 2.9. • 

Let 1° be the vector bundle of L 2 sections of A*(T*X) ® F along the fibres X , and 

let || ||0 be the norm on 7° associated to the Hermitian product (3.29). If L G C (7°) , 

for p > 1, put 

(3.109) |£||P Tr (L*L)p/2~ 
i/p 

Then (3.109) defines a norm on a vector subspace of C For p = 1, we get the 

trace class operators. For p = 0 0 , by definition || 11^ = || || is the ordinary operator 

norm on C (7°) . 

Now we establish an analogue of Proposition 2.10. 

Proposition 3.41. - There exist C > 0, c > 0 such that for t ^ \ , 

(3.110) i)c(ej)üi)c(ej)ü 

Proof. — Take p E N , p > d i m X . Let kp (A) be the unique holomorphic function on 

C \ R such tha t 

- As A —> ± ¿ 0 0 , kp (A) —> 0. 

- The following identity holds, 

(3.111) 
kip-1] (A) 

( P - 1 ) I 
= fc(A). 
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Clearly, if A £ Д, 

(3.112) |Re(A)| 
1 
2 |Im(A)|. 

Using (3.112), we find that there exist C> 0, C > 0 such that if A € A, 

(3.113) i)c(ej)ü < Cexp (-C't\X\2j . 

Clearly, 

(3.114) 1 
2m JA 

К(уДХ) 
х - в " 

dX 
1 

2гтт. 

hp(VtX) 
a Vt?-1 (X - BF 

-dX. 

If A € Д, we have the expansion, 

(3.115) Х-В)'1 -- i)c(ej)ü% 
- 1 

(a - B<°>' 
- 1 

r i)c(ej)ü i)c(ej)ü - 1 
4- • 

and the expansion only contains a finite number of terms. Also by (3.45), P^1) is 
an operator of order 0. By (3.105), (3.115), we find that there is С > 0 such that if 
AG Д, 

(3.116) U X - B ) - 1 
I oo 

i)c(ej 

Fix Aq € Д. Since p > dimX, and В is fibrewise elliptic of order 1, 

(3.117) (A0 - В)'1 
l:mù! 

< + 0 0 . 

If A € Д, 

(3.118) (A - BY1 = (Ac - BY1 + (A - A0) (A0 - B)~L (A - B)~L 

From (3.116)-(3.118), we find that if A € Д, 

(3.119) (Х-ВГ1 
\P 

< C ( 1 + |A|) (A0 - В)' 
lip 

< c " ( i + |A|). 

Using (3.119), we find that if Л G A, 

(3.120) (х-в)-р , < C ( l + |A|f. 

Prom (3.107), (3.113), (3.114), (3.120), we get (3.110). The proof of our Proposition 
is completed. • 

We still proceed as in Section 2.3. Let p W be the orthogonal projection operator 
from Sl'(X,F\x) on kerP<°) ~ H'(X,F\X). Set 

(3.121) PW1- = l _ p{°>. 

Then pW-1 is the orthogonal projection operator, which projects on the orthogonal 
bundle (ke rP^ )1" t o k e r P ^ inf t#(X,F |x) . Also p(°) acts as aninvertibleoperator 
on (kerP^0))"1. Let (p(°)) 1 denote its inverse. We extend (p(°)) 1 to an operator 
which acts like 0 on kerl?(0). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



76 CHAPTER 3. ANALYTIC TORSION FORMS: RIGIDITY AND THE CHERN CHARACTER 

Theorem 3.42. — The obvious analogue of Theorem 2.11 holds. In particular, as t —> 

+ o o , 

(3.122) Ht-pWk(BH'^F\*ApW 
ii 

= o(i/Vt) 

Proof. — To establish the analogue of (2.30), we proceed as in the proof of Theorem 

2.11. To prove (3.122), we also proceed as in the proof of Theorem 2.11. In fact 

observe tha t in (2.30), i0 > 1, so tha t p{°} appears at least once. Now P<°} is a 

projector on a finite dimensional vector bundle, and in particular it is trace class. 

Since all the operators appearing in the right-hand side of (2.30) are bounded , the 

proof of (3.122) then proceeds as the proof of (2.31). • 

3 .15 . A convergence resul t 

Let £ £ [0,1] —* V f be a smooth one parameter family of flat connections on the 

vector bundle F. Let H* (X, F)£ be the cohomology of the fibres X with coefficient 

in (F, Vf). As in Section 2.3, the objects we just considered which are associated to 

(THM,gTX,V(,gF) will be denoted with the subscript £. 

Recall t ha t h(x) = xex . Let k(x) be given as in (2.76). 

Theorem 3.43. — For t > 0, the following identity holds, 

(3.123) 
i)c(ej 

d£t 
i)c(ej)ü 

V(X,F\X) д 
dt1 

i)c(e i)c(ej)ü i)c(ej in Qm(S)/dQm(S). 

Proof. — The proof of our Theorem is the same as the proof of Theorem 2.13. 

Now, we make the assumption tha t the rank of H* (X, F)£ does not depend on £. 

Then H* (X, F)e depends smoothly on £. 

As in Section 2.3, we identify H* (X, F)e to a smooth finite dimensional G-invariant 

subbundle of F\x). By orthogonal projection on Hm (X,F)£, given s G 5 , we 

obtain a uni tary connection on the bundle H* (X, F) s over [0,1]. We can then 

trivialize H* (X, F) s on [0,1] with respect to this connection. In particular the flat 

connections \/H*(xiF\x)e can now be viewed as a smooth family of flat connections 
H* (X FI ) 

V " ул'г lx> on the fixed vector bundle H'(X, F\x) over S, which is equipped with a 
metric g"l(X,F]x). We denote by i e [0,1] -> Vf* (x 'F | x ) the corresponding smooth 
family of flat connections on H'(X,F\x)-

Let к (x) be a holomorphic odd function given by (3.106). 

Theorem 3.44. — As t —> + c o , 

(3.124) <pTrs дк{В^)—Аь 
i)c(ej)ü i)c(ej)üi)c(ej)ü d 

¨£¨£% 
7H'(E,ve),u 
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Proof. — We proceed as in the proof of Theorem 2.14. The analogue of (2.41) still 
holds. First we assume that M is compact. Since the rank of H* (X, F)e is constant, 
we may and we will assume that d\ G R+ is such that (3.105) holds for every £ G [0,1]. 
By Proposition 3.40, 

(3.125) k(Diit)=Gt,t + Hitt. 

Clearly, we have an analogue of (2.44), and the operators which appear in the 
right-hand side of (2.44) are of order 0. Using Proposition 3.41, we get 

(3.126) 
i)c(e i)c(ej)ü 

£ Ce~ct. 

Moreover we observe again that in the analogue of (2.30), we have ¿ 0 ^ 1 , i.e. p { ° } 
appears at least once. Since P^ has constant rank, it follows that uniform bound 
estimates can be transformed to trace class estimates. We can then continue the proof 
of our Theorem in the same way as when we proved Theorem 2.13, and so we get 
(3.124) when M is compact. By restriction to compact pieces of 5, we obtain our 
Theorem in full generality. • 

3.16. Rigidity formulas for the analytic torsion forms 

We make the same assumptions as in Section 3.15. Recall that h(x) — xe*2. We 
still define the function k{x) as in (2.76). Namely 

(3.127) Jfe(x) -
ti (x) - ti (0) 

2x 

Let Lk,g 

i)c(ej)ü 
Lk,g 

^//•(X,F|X) V
 £ 

H'(X,F\X] be defined as in Definition 2.4. 

Theorem 3.45. — The following identity holds, 

(3.128) [Th,g (THM,gTX,V(,gF) -Th,a(T
HM,gTX,VFgF)]i>2)--

%¨£% 
e {TXg, VTX) Lk,9 (Vf , gF)-Lki9 

^H*(X,F\X) H'(X,F\X)" 
mfi*(5) /dn*(5) . 

Proof. — We proceed as in the proof of Theorems 2.17 and 2.20. We use the notation 
in the proof of Theorem 2.20, with h(x) = xe*2. By Theorem 3.37, 

(3.129) TSf„ (THM,gTX,VF,gF) 
d_ 

da" aThtg (THM,gTX,VF,gF) \ a = 1 . 

Clearly Theorem 3.43 still holds when replacing h by h} i.e. 

(3.130) 
%¨£%% 

£%¨£ 
(A? nTX F M%¨£ 

dt 
9k(Bt,t) 

ô 
i)c(e 

M%¨£% in Q*(5)/dQ*(5) 

In fact, since deg/i > 3, the obvious analogue of Theorem 2.1 holds. By proceeding 
as in the proof of Theorem 2.13, we get (3.130). 
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Now, by proceeding as in [BLol, proof of Theorem 3.16], we obtain, 

(3.131) lim ipTig gk (Bitt) 
d 

i)c(ej)ü 
i)c(ej)ü 

*9 
e(TX3,VTX«)^Trs 

i)c(ej)üi)c(ej)ü 

Also by Theorem 3.44, 

(3.132) lim (£>Trs 
£—•+00 

9k (Be,t) 
d 
dt ;Ae,t --<pTis i)c(ej)üi)c(ej)ü d 

i)c(e 
7H'(X,F\x),u\ 
D 

Prom (3.130)-(3.132), we get 

(3.133) T-Kg (THM,gTX*,VF,gF 2h,g [THM,gTX°,VF,gF) 

JXg 
e(TX91VTX°)L-Kg (Vf,gF)-Lzig 'H'(X,F\X) 

VI 
H'(X,F\X) 

in îî-(S)/dfl*(5). 

Using (2.83), (3.129), (3.133) and the fact that the degree of e (TXg, VTX*) is pre­
cisely dimXg, the proof of our Theorem then continues continues as the proof of 
Theorem 2.20. • 

3.17. The Chern analytic torsion forms 

Now, we extend Definition 2.40 to our infinite dimensional setting. 

Definition 3.46. — Put 

(3.134) Tch,, {THM,gTX^F,gF) :QTKq (THM,gTX,VF,gF). 

The even forms TCh,g (THM,gTX ,VF ,gF) will be called Chern analytic torsion 
forms. 

Theorem 3.47. — If g = 1, the forms Tch,g (THM,gTX, VF,gF) are real. Also the 
following identity of forms holds on S, 

(3.135) dTch,g(THM,gTX,VF,gF) 
lxg 

e(TX9,VTX°)ch°g(VF,gF) 

-chl 
i)c(ej)üi)c(ej)üi)c(ej)ü 

Proof. — Our Theorem follows from Theorem 3.32 and from Remark 2.30. • 

Remark 3.48. — The main point of Definition 3.46 is that we have now normalized 
the analytic torsion forms without any ambiguity. 
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CHAPTER 4 

THE ANALYTIC TORSION FORMS 
OF A Z2-GRADED VECTOR BUNDLE 

The purpose of this Chapter is to evaluate the equivariant analytic torsion forms 
of an Euclidean Z2-graded vector bundle equipped with a metric connection in terms 
of genera I (0,x) and J (#,#). This evaluation is of critical importance in our proof 
of the formula relating the higher analytic torsion forms to the combinatorial torsion 
forms. 

The evaluation of these equivariant analytic torsion forms in de Rham cohomology 
is also related to the evaluation of corresponding holomorphic torsion forms for holo­
morphic vector bundles in Bismut [B7, B8]. These last torsion forms were calculated 
in terms of the genus R(x) of Gillet and Soule [GS1] in the case where the considered 
group action is trivial, and of the more general genus R(6, x) introduced in [B8] in 
the general case. Let L(0, s) = J2n=i eine/ns be the Lerch series. As explained in the 
introduction, the genus R(9, x) is expressed in terms of the real part of L(0,.) and its 
first derivative at odd negative integers, and of its imaginary part and its first deriva­
tive at even negative integers. Here, the Chern analytic torsion forms are expressed 
using the genus J(6,x). The remarkable fact about J(#, x) is that it is expressed as 
a power series in which the role of even and odd negative integers are interchanged 
with respect to the corresponding expression for R(0,x) given in [B7, B8]. Up to 
irrelevant normalizing factors, one can even consider that for some mysterious reason, 
the two series are complementary to each other. 

The relation of the present Chapter to [B7, B8] is even more obvious at the 
computational level. In fact we use directly the results of [B7, B8] to evaluate our 
analytic torsion forms. 

On the other hand, up to a factor 1/2, given r G N*, the Fourier transform of 
on Z/rZ is directly related to the genus obtained by Bismut-Lott [BLol, 

Corollary 4.14] in their evaluation of the analytic torsion forms of circle bundles. As 
we shall see in Chapter 16, this coincidence is not an accident, since we will show that 
the formulas in [BLol] are in fact consequences of the main result of this paper. 
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This Chapter is organized as follows. In Section 4.1, we construct the flat super-
connection of the considered Z2-graded vector bundle. In Section 4.2, following [B8], 
we introduce a function a(u, rj, x), and we evaluate the relevant supertraces in terms 
of this function. In Section 4.3, we obtain the asymptotics of these supertraces as a 
parameter T tends to 0 and +oo. In Section 4.4, we construct the higher analytic tor­
sion forms associated to the function h(x) = xex in positive degree, and we evaluate 
these forms in terms of the additive genus associated to a function 1(0, x). In Section 
4.5, we introduce the corresponding Chern analytic torsion forms, which we express 
in terms of the genus associated to a function J (0,x). In Section 4.6, we compute 
the function 1(0, x) in terms of the Lerch series, and in Section 4.8 we make a related 
computation for the function J (0,x). Finally in Section 4.8, we exhibit the striking 
relation of the genus J (0, x) to the genus R (0, x) which we have described above. 

4.1. The flat superconnection of a Z2-graded vector bundle 

In this Section, we use the notation and the results of Section 3. 
Let M be a manifold. Let n : E = E+ © E- —• M be a Z2-graded real vector 

bundle on the manifold M. Set n± — dim E±,n — dimE, so that n = n+ + ra_. Let 
gE = gE+ © gE~ be an Euclidean metric on E = E+ © E- such that E+ and E-
are orthogonal in E. Let VE = © VE~ be a metric preserving connection on 
E = E+ © E-, and let RE = RE+ © RE- be its curvature. 

Let g € End(-E) be an isometry of E, which preserves the splitting E — E+ © E-
and which is parallel with respect to VE. In particular g commutes with RE. Let 
e±l0j,0 < 0j < 7r, 1 ^ j ^ q and possibly 1,-1 be the locally constant eigenvalues 
of g. Then E ®R C splits into mutually orthogonal eigenbundles according to the 
distinct eigenvalues of g. The connection = © VE~ and the curvature 
RE = RE+ © RE- preserve the above splittings. In particular, we have the orthogonal 
splitting of Z2-graded complex vector bundles 

(4.1) E <»„ C = E1 ffi E-1 
i)c(ej)ü 

Ee 3 ®Ee 3 

In (4.1), E+l and E~l are complexifications of real vector bundles (they are possi­
bly zero), and E^ 3 © Ee % 3 is the complexification of a real vector bundle. The 
connection VE preserves the splitting (4.1). We will denote by VE , . . . the induced 
connections on E1... and by RE , . . . the corresponding curvatures. 

Definition 4.1. — For x £ M, let Ix (resp. l£) be the vector space of smooth (resp. 
square integrable) sections of 7r*A(E*) along the fibre Ex. 

We equip 1% with the L2 scalar product, 

(4.2) S,S'ei%»(S,S') 
M%¨£ 

(s,s,)(x)dvE(x). 
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Let dE be the de Rham operator acting along the fibres I. 
The connection induces a horizontal vector bundle THE on the total space of 

E. Then one verifies easily that with the notation in (3.11), ifU,Ve TM, Z G E, 

(4.3) T§(U,V) = RE(U,V)Z. 

Also, with the notation in [BLol, Definition 3.2] and in (3.10), if U G TM, if s is a 
smooth section of I on M, 

(4.4) i)c(ej)üi)c(ej)üM%¨£ 

Let C be the canonical flat superconnection on / which is attached to the above 
situation as in [BLol, Section 3 (b)] and in Section 3.2. By [BLol, Proposition 3.4] 
or by Proposition 3.3, and by (4.3), (4.4), 

(4.5) C' = dE +V1 +ÌREZ. 

Let q : E i-> R be the smooth function, such that if Z = (Z+, Z-) e E = E+® E-, 

(4.6) i)c(ej)ü 
1 

2 ' 
( I Z J 2 - I Z _ I 2 Ì . 

Then q is a fibrewise Morse function, whose only critical point 0 has index dim E-
For T G R, let gbe the metric on R given by 

(4.7) i)c(ej)üi)c(ej)ü 

In the sequel, R will be considered as a flat twisting bundle on the total space of E. 
Let C'T be the adjoint flat superconnection of C with respect to the metrics gE7g^. 

A special case of Proposition 3.8 is as follows. 

Proposition 4.2. — The following identity holds, 

(4.8) C'Jf = dE* + 2Tiz+-z_ + V7 - REZ A . 

Proof. — This is an obvious computation, which is left to the reader. 

Put 

(4.9) CT 
1 

2V 
i)c(ej)üi)c(e %¨£% 

1 
" 2V 

[C'T-C). 

A related construction is as follows. Put 

(4.10) — 6 e ^, i)c(ej)üi)c(ej)üi)c( 

CT = ^(CT + CT), VT = ~(ßT-CT). 

Then CT is a flat superconnection on /, and CT is its adjoint with respect to the 
metric gE. Also, 

(4.11) CT = e-T*CTeT*, VT = e-TqVTeTq. 

Now we will use the notation of Section 3.5 on Clifford algebras. Let e i , . . . , en+ 
be an orthonormal basis of E+, let en++i,..., en++n_ be an orthonormal basis of 
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E-. Let iV+, N_ be the number operators of A(£+), A(£*). Then JV+, iV_ extend to 
operators acting on A(E). One has the trivial identity, 

(4.12) 

i)c(ej)ü 

c(ei)c(ei) = 2iV+ - n+, 
n_|_ +1^2^n_|_ +71 _ 

c(ei)c(ei) = 2N- - rc_ 

Proposition 4.3. — TTIE following identities hold, 

(4.13) CT = dE + T(Z+ - Z_) A +V7 + iREZ, 

CT = dE* + Tiz^-z. + V7 - REZ A . 

Proof. — This follows from (4.5) and from Proposition 4.2. 

Theorem 4.4. — The following identity holds, 

(4.14) ù^$ùm 1 

4 
Vei + (REZ,ei)) 2 i)c(ej)üi)c(ej)üi)c(ej)ü 

rp2 rp 

i)c(ej)ü 
c(ei)c(ei) -

i)c(ej)üi)c(ej)ü 
c(ei)c(ei) 

Proof. — Our formula follows from [BLOL, Theorem 3.11], which was stated in The­
orem 3.19, or from a simple direct computation. • 

4.2. The superconnection heat kernel and the function a 

Definition 4.5. — For T G R, let VT(Z, Z') be the smooth kernel of exp ^—CT2) with 

respect to dvE{Z')/{2ir)dimE. 

For TeH*, let QT be the obvious square root of T2 + RE'2. Then 

(4.15) QT = \T\ 1 
1 RE 
2 T2 

Theorem 4.6. — For T g R * , the following identity holds, 

(4.16) VT(Z,Z') = 2n/2det 
QT/2 

sinh(QT/2) 

1/2 

exp I 
Q r / 2 

tanh(QT/2) 
-Z ,Z 

QT/2 

\ tanh(QT/2) ' 
r Z ' , Z ' + 1 

QT/2eRE/2 

vsinh(QT/2) 
Z, Z ' 

exp 
Tl 

M%¨£ 
i)c(ej)ü 

c(ei)c(ei) 
77,++1̂ 2̂ 71++7l_ 

C(E*)C(EI) 

1 
4 

UiiREeActeiffiej) 

Proof. — Identity (4.16) follows (4.14) and from Mehler's formula as in [B8, eq. 

(4.48)]. • 
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If z G C , sfz denotes an arbitrary (but fixed) square root of z . Now we follow [B8, 
Definition 4.1]. 

Definition 4.7. — For u.rj.x e C , put 

(4.17) a(^,77,x) = 4sinh 
x — 2r]-\- y/x2 -f 4u 

4 
sinh 

-x + 2r] + VX2 + 4w 

4 

Clearly a(u, rj, x) is a holomorphic function of its arguments, which does not depend 
on the choice of the square root Vx2 + Au. Also o~(u, i$, x) is periodic in 0 of period 
2tt. Moreover, 

(4.18) a(u, 77, x) = <7(Г¿, —77, — x). 

It follows from the above that 

(4.19) G (li, Ì7T, X) = ¿7 (it, —27T, x) . 

Also, one finds easily that as u —* 0, 

(4.20) 
a (i£, 0, x) 

%¨£% 

sinh (x/2) 

x/2 

If the eigenvalues of g are distinct of —1, there is B G Endeven (E1), antisymmetric, 
such that 

(4.21) 9 = eB. 

Suppose now that g is just —1 G End (E). In this case, we write 

(4.22) 0 = et7r. 

By extending (4.21) to this case, if 

(4.23) B — Ì7T, 

then we still have (4.21). 
By the above, we can always write g in the form (4.21) , with B G Endeven ( E ) 0 R C , 

with B = in on E~l. We may and we will assume that B is parallel with respect to 
V s , so that B commutes with RE. 

Observe that a (T2/4, RE) is a well defined element of End (E), which does not 
depend on our choice of B. 

As in (3.6), g acts on / by the formula, 

(4.24) (g8)(Z)=g*8(g-lZ). 

The smooth kernel associated to the operator g exp M%¨£% ) i s j u s t ^ P r ^ - ^ Z ' ) . In 

this last expression, g denotes the obvious action on A(E*). 
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Proposition 4.8. — The following identity holds, 

(4.25) gVT{g-lz,z) = 2"/2det 
Qt/2 

sinh(QT/2)y 

\1/2 

exp 
Qt/2 

\sinh(QT/2) 
T2/4 , B, RE) Z, Z 

g exp 
T 

A 
i)c(ej)ü 

c(ei)c(ei) -

n _|_ +1 $C i ̂  n -)- + n _ 

c(ei)c(ei] 

1 
4 

(ei,REej)c(ei)c(ej] 

Proof — This follows from Theorem 4.6. 

In the next Proposition, we evaluate the supertrace of certain operators acting on 
A (E*). Let N = N+ + N- be the number operator of A (E*). 

Proposition 4.9. — For T G R+, the following identity holds, 

(4.26) Trs 'exp 
T 

4 V i)c(ej) 
c(ei)c(ei) -

n_(_ +1 ̂  i ̂  n+ +n _ 
c(e*)c(e* 

- -(ei,i?£;eJ)c(ei)c(ej) 

= (_l)dim^I DET (T2/4,B,RE 1/2 

Moreover, 

(4.27) 

i)c(ej)ü A7" . n 

2 ^ ' 
g exp 

T / 

V 4V i)c(ej)ü 
I c(e»)c(e») 

7l+ + l^î^7l-|-+n_ 

c(e»)c(ei) 

- - ( e ^ i ^ e ^ c ^ ) ? ^ ) 

= (-l)dim^- det [a (T2/4,B,RE)]1/2Trs 
i4r°(T2/^B,RE 

2 o-(T2/4.B.RE) 

Proof — First we assume that E+ and E- are even dimensional, and that there is 
B G End(E'), preserving the splitting, parallel and antisymmetric, such that g = eB. 
In particular dim El_ is even. We have the easy formula, 

(4.28) B\\(e*) 
1 

4 v 
Bei, ej) (c(ei)c(ej) - c(ei)c(ej)). 

Also in (4.26) we may as well replace g by exp (B\^E*). 
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By [BZ1, Proposition 4.9], among the monomials in the c(e^),c(ej), up to permu­
tation, the only monomial whose supertrace is non zero is c(e\)c(ei) • • • c(en)c(en), 
and moreover, 

(4.29) Trs [c(ei)c(ei) • • • c(en)c(en)} = (-2)n. 

Assume first that E- = 0, so that E = E+. We will use the results of [B7, 
Theorem 6.4] in the case B = 0, and [B8, Theorem 4.5] in the general case. In 
[B7] and [B8], a similar computation is done when n+ is even (the underlying vector 
bundle is complex), with anticommuting Clifford variables c(e^),c(ej), such that, as 
explained in [B7, eq. (6.25)], the only monomial up to permutation whose supertrace 
is non zero is c(ei) • • • c(en)c(ei) • • • c(en), and moreover, 

(4.30) Trs [c(ei) • • • c(e„)c(ei) • • • c(e„)] = 2n. 

Prom (4.30), since n is even, we get 

(4.31) TYS [c(ei)ic(ei) • c(en)ic(en)} = 2n. 

Using (3.34), and comparing (4.29) and (4.31), we see we can use the results of [B7] 
and [B8] without any change in this case. Therefore we get (4.26). 

In the general case, we replace E by E 0 E. Then g acts on E 0 E as before. Also 
(E 0 E)+ and (E 0 E)_ are trivially even dimensional. We claim that the action of 
g on E 0 E verifies the above assumptions. This is clear if no eigenvalue of g is equal 
to —1. If the action of g on E is equal to - 1 , then g\E@E is of the form g = enB, with 
B e End (E 0 E) the obvious symplectic endomorphism. We can then use formula 
(4.26) applied to E 0 E. The obtained identity is then just the square of the identity 
(4.26) we are looking for E. Using analyticity, to verify that (4.26) holds, we only 
need to verify that the right-hand side of (4.26) has the right sign. However in this 
case, for RE = 0, the left hand-side of (4.26) is just (2 cosh (T/4))dim£;, which fits 
with (4.26). Therefore, we have established (4.26) in full generality. 

Still assuming that E = E+ or E = E-, and using (4.12), we get (4.27) by 
differentiating (4.26) in T. By summing the corresponding equalities, (4.27) follows. 
The proof of our Proposition is completed. • 

Remark 4JO. — The formula corresponding to (4.26) when T < 0 can be obtained 
from (4.26) by exchanging the roles of E+ and E-. 

The operator gexp (—C )̂ is fibrewise trace class. We will now evaluate its super-
trace. We use the notation in (4.1). In particular Ex_ denotes the 1-subbundle of E-
with respect to the action of g. 
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Proposition 4.11. — Given T e R+, the following identities hold, 

i)c(ej [gexp 
i)c(e _ / |\dim E_ 

(4.32) 
%¨£% 

" 2 
Trs N - %¨£% 

2/ 
I gexp( -C2T) -l)dimi5iTrs 

1 

2" 

i)c(ej)üi)c(ej)ü 

a(T2/4,B,RE) 

Trs [Tg5exp (-<#)] = (-l)dim£-Trs 
l ^ g ( T 2 / 4 , g , i ? g ; 

2 a(T2/4,B,RE) 

Proof. — Clearly, 

(4.33) Trs [ 5 e x p ( - 4 ) ] = 
%¨£ 

T M ^ T G T 1 ^ ) ] 
dvE{Z) 

i)c(ej)ü%¨£% 

The first equality in (4.32) now follows from Propositions 4.8 and 4.9. The proof of 
the second equality is similar. Using Propositions 4.8 and 4.9, and the obvious 

(4.34) 
M%¨% 

J — oo 
x2 exp ,:m^p dx 

%¨£% 

1 
: 2 ' 

we get 

(4.35) TTA[TQGEXP (-(%)] 

i)c(ej)üi)c(ej)ü 
2 
%£¨% 

s i n h ( ^ ) T 

sint RE — 2B+QT 
4 

sinh -•Rg+2g+QT' 
4 

i)c(e 

Also, 

(4.36) 2 s 
1 

tanh RE — 2B+QT 
4 

1 

tanh i)c(ej)üM% 
4 

T 

! 4QT 

lr 

1 2 fr8 
s i n h ( ^ ) 

sinh {RE-2B+Qrr 
4 ) sinh ( -RE+2B+QT 

4 

T 

4QT 

From (4.35), (4.36) we get the last equality in (4.32). The proof of our Proposition is 
completed. • 

Remark 4.12. — By Witten [W], we know that for T > 0, the L2 cohomology of the 
complex (J, dE + TdfA) is the compactly supported cohomology of £L . Therefore its 
equivariant Euler characteristic XL2 (g) is given by 

(4.37) X L M = ( - l ) d i m ^ det (g\E.) = ( - i f - * - . 

Comparing (4.32) and (4.37), we see that the first equality in (4.32) is just a version of 
[BLol, Theorem 3.15] or of Proposition 3.22 applied to the noncompact fibres E. A 
direct proof of this equality can be given by arguments similar to the ones in [BLol]. 
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4.3. The asymptotics of the heat equation supertraces 

We state a simple result in [B8, Proposition 4.2]. 

Proposition 4.13. — For u,6,x G C, the following identity holds, 

(4.38) cr{u, id, x) = (<T + iOx + u) 

kez* V 

(0 + 2/CTT)2 + i (0 + 2/CTT) x + u 

4k2ir2 

Now we will take the logarithmic derivative of identity (4.38). 

Proposition 4.14. — For 0 G R , x G C ,T G R*, and \x\ < 2n if 6 G 27rZ; \x\ < 

inffcGz |# + 2kir\ Z/0 ^ 27rZ; ¿/16 following identity holds, 

(4.39) 
i ^ (T2/±,ie,x) 

2 <r(T2/4,z<9,x) 
¨M%¨£% 

T 

T2 + 4i ((9 + 2/CTT) x + 4 (<9 + 2/CTT)2 ' 

Proof. — This is an obvious consequence of Proposition 4.13. 

Proposition 4.15. — As T —> 0. 

(4.40) 
1 ^ T ( T 2 / 4 , Z 0 , X ) 

2 a(T2/4,i<9,x) 

1 

T 
e>(T) if e G 2TTZ, 

- O(T) if 9 £ 2TTZ. 

i)c(ej)üi)c(ej)ü 

(4.41) 
l ^ a ( T 2 / 4 , z 0 , z ) 

2 o-(T2/4,i9,x) 

1 
= 4 + e> 

1 
T2 J 

Proof. — Using (4.39), we get (4.40). A direct computation leads to (4.41). 

Remark 4.16. — An obvious computation shows that in (4.41), in degree 0, the con­
vergence is in fact G(e~T/2\ 

Recall that E1 = E]_ 0 E\ is the fixed subbundle of E = E+ 0 E_ under g. 

Proposition 4.17. — As T -> 0, 

(4.42) 
1, 

2 
:Trs 

%¨£% n 

2) 
)pexp( - 4 ) i)c(ej)üi)c(ej)ü d i m £ Ì - dim E l 

T 
f O ( T ) . 

AsT -> + 0 0 , 

(4.43) 
1 

"2 
%¨£ AT-

ri 
" 2 , 

0exp(-Cf,) -%¨£ _-^\dim£;I dim E+ — dim £L 

4%£ 
MP¨% 

1 

1 T2 

Proof. — This follows from Propositions 4.11 and 4.15. 
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4.4. The higher analytic torsion forms of a Z2-graded vector bundle 

Now we may develop the rescaling formalism of Section 3.7. Namely, for t > 0, 
we can replace the metric gE by the metric gE/t, and consider the associated super-
connections. Instead, we will develop directly the equivalent formalism of Definition 
3.16. Set 

(4.44) c'tT = tNi2c'TrNi\ c'iT = t-N/2c+tN/2. 

1 hen CT T is a flat superconnection, and CTT is its adjoint with respect to the metrics 

gE,g$. Set 

(4.45) i)c(ej)ü 
4 « 

t + C'TT) , i)c(ej)ü 
_ 1 
~ 2 ' \C't.T ~ CT.T) 

Recall that ipt was defined in (1.50). As in Proposition 3.17, 

(4.46) i)c(ej)üi)c(ej)üi)c(ej)ü Vt,T = ^1VtVTijt. 

Recall that 

(4.47) h{x) = xex , h'(x) = (l + 2x2)ex\ 

Proposition 4.18. — Given T > 0, the following identities hold, 

(4.48) 

--TV* 2 
~(N 

n 
2, gti (vt,T) i)c(ej)ü d 

OCX; 
mp^mù 

1 

2 
IN 

n 

2) 
exp( -Ctar) )\A=L 

TVS [Tqgh' (pttT)] 1 + 2 
0 

da 
ipaTrs [taTqgexp -CTAR)] \A=L 

Proof. — For v > 0, let Fv : I \—> I be given by 

(4.49) Fvs(Z) = s{Z/v). 

By (4.13), we find that 

(4.50) vt,T = F^VtTF^. 

Using (4.46), (4.47), (4.50), we get the first identity in (4.48). The proof of the second 
identity is similar. • 

By (4.50), we get 

(4.51) 
2 N M%¨£ 

2. gti {vt,T) 
l . 
2 
i)c(ej N 

7V 

2 / 
gti (vtT) . 

By Propositions 4.11 and 4.18, 

(4.52) 
1 

2 
%¨£% N-

¨%¨£% 

2J 
9h'(Pt,T) Tts [Tqgh' (Vt,T)] • 

Using Propositions 4.17 and 4.18, we find that as T —> 0, 

(4.53) 
1, 

2 
Trs %¨£% %¨£%% 

2 ; 
gti (Vr) 

/ \dim Ex_ DIME\ - d i m ^ 

T 
+ 0(T), 
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and that as T —> + 0 0 , 

(4.54) 
ù^$ùpmùmù 

'N 
TI 

2 
gti(VT) = (-1) 

dirn El dim£+ - dimEL 

4 
+ 0 

' 1 

V T2 

If a is a form on M, let a^>0^ be the component of a which has positive degree. 
By Proposition 4.11, 

(4.55) 1, 
2 

N -ù$^ù$ 
2 ^ ( A , T ) 

|(>0) lr 

2 
Trs [Ngh'(Vt,T)}{>0\ 

Using (4.51), (4.53)-(4.55), we can construct the higher analytic torsion forms in 
positive degree of (E,gE, WE) by imitating Definition 3.31. 

Definition 4.19. — The analytic torsion forms Thi9 (£", gE, VE) are defined by the 

formula, 

(4.56) TKg (E,gE^E)i>0)-ù!^$ù 
Jo 

:mù^$p 

"Trs 
N 

[ 2 " 
ah! (Vrr) 

d>o)dT 

T 

By (4.52), (4.55), we know that in (4.56), we may replace -Trs [ f gh' (VT)] 

by Trs [Tfgh' (£>T)](>0) and still obtain the same result. 

Let jVA#(T*M) be the number operator of A#(T*M). 

Proposition 4.20. — The following identity holds, 
(4.57) 

Th,9 (E,9E,VE)i>0) mùp 1 + NMT'M)\ 
f + OO 

JO 
-Trs 

^:mù^^ 

L 2 -
r#exp( i-CT) 

(>0) ,jkmp 

Proof. — By (4.48), (4.55), (4.56), we get 

(4.58) ThjEigE^E)(>0) = 

;lmp ;:lmp ̂;lmp 

Art. 
mpù 

•foo 

^ 0 
-LVs 

r/v 

L 2 -
-#exp 

lmpôpo >o) 1 d T \ 
|o=l, 

which is equivalent to (4.57). 

If f(x) is a holomorphic function of x G C, we denote by f^>Q\x) the function 

/ 0 * 0 - / ( 0 ) . 
Observe that by Proposition 4.15, the function of s G C, 1 < Re (s) < 2, 

1 

2 * 1 » 

r+00 

'0 

Ts-1 I 
l ^ q ( r 2 / 4 , i f l , - x ) 

^ 2 cr(T2/4,z(9,-x) 

1^ 
' 4 , 

,klmop 

extends to a holomorphic function of s near s = 0. 
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Definition 4.21. — For x G C ,0 G R, \x\ < 2TT if 6 G 2TTZ, |Z| < inffceZ |<9 + 2/CTT| if 

V f Z7rZ, put 

(4.59) lmopo d 

l;m 

1 

2 * 1 » 

:;,lm 

n 
rpS—1 

' l ^ g ( r 2 / 4 , ^ , - z ) 

2 a(T2/4,i6,-x) 
1 

4 
;lmp (s) \s=0, 

1(0, x) = l + 2x 
;lmp 

dx , 
F(6,x). 

Observe that by (4.40), 

(4.60) F(e,x){>0) = 
0 

' + 00 "l 4pa (T2/4,i6, -x 

2 <j(T2/4,i6,-x) 

-i(>o) 
,jklm 
;lmpù 

By (4.18), we find that 

(4.61) F(6,x)=F(-6,-x), I(6,x)=I(-6, -x). 

We identify F(0,x),I(6,x) to the corresponding additive genera. In particular, 

(4.62) cvn ±t0,-
= Trs I ±6j 

±i0j 

2in 

By (4.61), 

(4.63) lmop lmp^ù^$:;: \ =1 
-iOj 

-o^E° 

We define I (o, V^1) ,l(n,VE in the same way. 

Definition 4.22. — Set 

(4.64) / ^ , V s ) = / ( 0 , V ^ 1 ) + / ( 7 R , V s " 1 + 2 

lmp^)uyt 

V^1)+/(7R,Vs"1 

Equivalently, 

(4.65) Ig{E,VE) =Trs J é"'( 
àçio 

2Z7T J 

Theorem 4.23. — The following identity holds, 

(4.66) Tht9 {E,gE,VE[ (>o) -L)dimS-4>°) (E,VE 

In particular the forms Th,g (E,gE, VE) > are even, closed, and their cohomology 
class does not depend on gE or VE. 

Proof. — Equation (4.66) follows from Propositions 4.11 and 4.20. Our Theorem 
follows. • 
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4.5. The Chern analytic torsion forms of a Z2-graded vector bundle 

Recall that the operator Q : A*(T*M) -> A*(T*M) was denned in (2.117). Now 
we imitate Definitions 2.40 and 3.46. 

Definition 4.24. — Put 

(4.67) Tch,g (E,gE,VE)i>0) QTh,g (E,gE,VE)i>0). 

In (2.116), if / : C —» C is analytic, we also defined Qf (x). 

Definition 4.25. — For x G C, 0 G R , \x\ < 2TT if 0 G 2TTZ, \X\ < mfkeZ \9 + 2kn\ if 
0 £ 2TTZ, put 

(4.68) J (0 ,x ) = QI(0,x). 

We define the form Jg (E, VE) as in (4.64), (4.65), using instead the function 
J (6,x). Then 

(4.69) Jg(E,VE) =Trs J - i ß , 
mp^ù 

mpù^m 

By (4.68), 

(4.70) J3 (£ ,VB) =QIg{E,VE). 

Theorem 4.26. — The following identity holds, 

(4.71) TCH.0 W > 0 ) V^1)+/(7R,Vs"1V^1)+/ 

In particular the forms %h,g ( ^ , ^ , V E ) ^ are even, closed, and their cohomology 
class does not depend on gE and V s . 

Proof — This follows from Theorem 4.23. 

4.6. The Lerch series and the function 1(0, x) 

For a G Z, x G R , y G R , s G C, let 6*a(x, y, s) be the Kronecker zeta function, 

(4.72) Sa(x,y,s) 
mplùpp 

' (x + nf \x + n\-2se~2i™y, 

where in (4.72), Ylnez ls A SUM OVER ^ £ Z , n ^ —x. The series in (4.72) converges 
absolutely for Re(s) > ^y^, and defines a holomorphic function of s. Also it is periodic 
of period 1 in both variables x,y. By [We, p57], 

1. If a is odd, or if a is even and y £ Z, s I—• Sa(x,y,s) has a holomorphic 
continuation to C. 

2. If a is even and if y G Z, s I—• Sa(#, y, s) extends to a meromorphic function on 
C with a simple pole at s = 
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Let £(s) = ^e ^ e Riemann ze^a function. Then 

(4.73) 50(0,0,s) = 2C(2s), 5i(0,0,s) = 0 . 

Also by [We, p57], we have the functional equation for Sa{x,y,s),a = 0or 1, 

(4.74) T(s)Sa(x, y, S) = i-^s-a-l/2e2inxyT a — s 
1 

2 
Sa y,-x,a- s 

1 
2 

By (4.74), it follows that for a = 0,1, Sa(x,y,.) vanishes at negative integers, and 
Si(x, y,.) also vanishes at 0. 

Definition 4.27. — For y G R, s G C, Re(s) > 1, set 

(4.75) C(Y,*) 

lmpù 

n=l 

cos (ray) 
ras 

V^1)+/(7R,Vs"1 
^mp:;! 

n=l 

sin (ray) 
ras 

Then ((y,s) and rj(y,s) are the real and imaginary parts of the Lerch series 

Hv,s) = j:n=i^L- nearly, 

(4.76) lmop:;mml 1 

2 
;50 

m 
m 

ytv 

27T 

5N 

2) 
V^1)+/(7R,V 

V^1)+/ 
(7R,Vs"1 0. 

2/ 5 + 1 
2TT' 2 

If y ^ 27rZ, S I—> £(y, S) extends to a holomorphic function on C, if y G 27rZ, S »-> £(y, 5) 
extends to a meromorphic function on C with a simple pole at s = 1. Also s 1—> ra(y, 5) 
extends to a holomorohic function on C. Moreover. 

(4.77) C(0,s) = C(s), 77(0,5) = 0 . 

By the above, C(2/> •) vanishes at even negative integers, and 77(2/,.) vanishes at odd 
negative integers. 

Definition 4.28. — For 0 G R*,x G C, < |0|, put 

(4.78) F\x) 
IT 1 
4 |0| 

1 -
lmkl 

<9 

- 1 / 2 
op-è(" 7T 1 

" 4 | 0 | 
1 

pml 

(9 

- 3 / 2 

Observe that 

(4.79) A * ) = l + 2x7 
opok 

ax 
^mplokl 

In the sequel, we denote by 

kez 
V^1)+/(7R,Vs"1V^1) 

the sum of the corresponding series, where we take as a convention that if 2kn + 0 or 
2kn vanish, the corresponding term F2k7ï+e (#) or F2kn (0) is replaced by 0. Note that 
this series is convergent, while the sum of the series F2kn+e(x) is not well-defined. 
The same notation will be used for sums involving other functions than F. 
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Theorem 4.29. — For 0 G R , x G C, \x\ < 2TT if 0 G 2nZ,\x\ < inf/^z |0 + 2/CTT| if 
e $ 2TTZ, then 

(4.80) F ( 0 , x ) - F ( O , O ) = 
kez 

(F2k*+e(x)-F2k* (0)) 

F(0,x 
1 

2 
peven 

(2p)\ d( 

(p\r ds 
^mmlpp 

fx 

podd 

, (2p)\dfli 
V^1)+/(7 9,-p)[ 

klpo 
V47 

pmo 

Proof. — By (4.39), 

(4.81) 
1 
T 

l-ßr<j(T2/A,iO, -x) 

2 a(;iz/4,iV,-x) 

l ^ a ( T 2 / 4 , 2 0 , O ) 

2 a(T2/4,z0,O) 

fcez 

4i (0 +2/CTT) x 

T2 - 4i (0 + 2/CTT) X + 4 ((9 + 2/CTT)2> T2 + 4 (0 + 2/CTT)' 

By (4.81), given 0,x taken as indicated, there is C > 0 such that for 0 < T ^ 1, 

(4.82) 
kez 

U (0 +2/CTT) £ 

T2 - 4z (0 + 2/CTT) x + 4 (0 + 2/CTT)2 ) r2 + 4 (0 + 2/CTT)2 ) 

mpùp^^$ 

and that for T ^ 1, 

(4.83) 
ZCGZ 

4i (0 + 2kn) x 

T2 - 4i (0 + 2/CTT) x + 4 (0 + 2/CTT)2 fr2 + 4 (0 + 2fcTr)2] 
^ 7-2' 

Prom (4.39), (4.59), (4.82), (4.83), we deduce that 

(4.84) F(0,x)(>o> 
kezJ 

-oo 

r 
0 

1 

) T2 - Ai (0 + 2/CTT) x + 4 (0 + 2/CTT)2 

\ (>o) 
mpù^$ù 

We have the trivial, 

(4.85) 
Jo 

/• + 00 AT 

T2 - 4* (0 + 2Jbr) x + 4 (0 + 2Jbr)2> 

(>o) 

TT 

4 
- i (0 + 2A;TT) x + (0 + 2/CTT)2 

- 1 / 2 

with the convention that if 0 4- 2/CTT = 0, the right-hand side of (4.85) vanishes. Prom 
(4.84), (4.85) we get the first equality in (4.80) in positive degree. 
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If 0 + 2kn / 0, 
(4.86) 

- z (0 + 2/CTT)X + (0 + 2/CTT)2 
1/2" (>O) 1 

|0 + 2/CTT| 

+ 00 

1 p=i 

(2p)! 
kmop 

za; 
4(0 + 2/CTT) 

pm 

y (4.84)-(4.86), and using a dominated convergence argument, we get 

(4.87) F(0,x)(>o> 
1 
8 

pGJN VJ 
Lp even 

fdtrya 

(PO2 
So I 

0 
^2TT' 

,0 
'(-èçmpù 

2 

f zx 

ùpm^p 

pmol 

podd 

(2p)! 
pmp^ù$ 

5i 
6> 

^2tt 
.0. 

, P + 2 
2 

' ix 

mpù^^ 

àpç 

If n € N, the function T(s) has a simple pole at — n, and the corresponding residue 
is given by (—1)" /nl. Using the functional equation (4.74), if n € N*, 

(4.88) 
a 
ds' So ^lmp _0_ 

2TT' 
, - n 

V^1)+/(7R,Vs"1 » ! 1 
22n 

S0 
' 6 

^mp 
,0,n + 1 ' 

2 

A C . 
ds 0, 

6» 

2tt 
m:ùpp 

. ( -1 )" 
z 

7T-2"-1 
J2n + i): 

02n+l -Si 
6» 

pm^^$ 
3N 

n + 5 . 

From (4.76), (4.87) and (4.88), we get the second equality in (4.80) in positive degree. 
For s e C, Re (s) > 1, put 

(4.89; ip(s) 
1 

2sT(s) 

^mopù 

'0 
rps—l 

l ^ ( T 2 / 4 , z 0 , O ) 
2 <r(T2/4,z0,O) 

_ 1 
~ 4 

dT. 

By Proposition 4.15 and Remark 4.16, </?(s) is a holomorphic function of s, which 
extends to a holomorphic function near s — 0. By (4.17), 

(4.90) cr (T2/4, z0,0) = 2 (cosh (T/2) - cos(0)), 

and so, 

(4.91) 
l^a{T2/A,i6,0) 

2 a{T2/4,i6,0) 

1 

4c 

sinh (T/2) 
:osh (T/2) - cos (0) ' 

Now we proceed as in [BZ2, proof of Theorem 5.17]. We have the easy equality, 

(4.92) 
1 
4 

sinh (T/2) 

osh(T/2) - cos (6») 
1 
4 

1 
2 
pm^ù$ 

e-nT'2cos(ne). 

By (4.89), (4.92), we obtain, 

(4.93) <p(s) 
1 

2 ' 
C(9,s). 
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From (4.93), we get 

(4.94) *>'(()) 
lmpo^ù 

2ds v 
( 0 , 0 ) 

From (4.89), (4.94), we get the second equality in (4.80) in degree 0. 

For s G C ,Re(s) > \ , 

(4.95) 

kez 

1 

\k-h0/27r\2s 
kez 

1 

^=$^)= 
= 5 O ( 0 / 2 7 r , O , 5 ) - S o ( O , O , 5 ) . 

Also one finds easily that as 5 G] | , +oo[—> | , then 

(4.96) 
kez |/C + 0/2TT|2S 

1 

kez 

1 

\kfa 
kez 

1 

I/C + 0/27T 

1 
ù^mp 

By Lerch's formula [We, Chapter 7, eqs. (15)-(23)] as used in [BZ2, eqs (5.51)-

(5.54)], we get, for any 0 G R, 

(4.97) C ( M ) 
1 
2' 

By (4.74), (4.76) and (4.97), at s = 1/2, S0 (0/2TT, 0, s) has a simple pole with residue 
1. Therefore the right-hand side of (4.95) extends to a holomorphic function near 
«s = l /2 . More precisely, 

(4.98) S o ( 0 / 2 M , s ) - S o ( O , O , s ) \s=l/2 

d 

OS 
(s - 1/2) (So (0/27T,0, s) - So (0,0, s)) U=l/2-

By (4.74), (4.76) and (4.97), we obtain, 

(4.99) So(0 /27r,O,s)-£o(O,O,s) U i / 2 = 4 

^mp^ù$ 

m^ù$ 
(0/2TT,O) 

^ùm 

ös v 
(0,0) 

By the second equality in (4.80), and by (4.95)-(4.99), we get the first equality in 
(4.80) also in degree 0. The proof of our Theorem is completed. • 

Theorem 4.30. — The following identities hold, 

(4.100) 

7(0, x ) - / ( 0 , 0 ) : 

kez 

V^1)+/(7R,Vs"1V^1)+/( 

1(0, x) 
1 

2 
PEN 
peven 

(2p+l)\dC 

(p!)3 ds 
mùp^^$ùp 

'Xs 
V 4 7 

V v 
ôp^ù$ 

PEN 
p odd 

> (2p+l)\dV/ 

(pi)3 ds" ( ! ) ' 

Proo/. — Our Theorem follows from (4.59), (4.79) and from Theorem 4.29. 
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Theorem 4.31. — If r £ N*; and if a G N, then 

mùp^$ù < a 
Z7T-, X 

,(>0) 1 

4 
O^ra^r-l 

exp 227T 
mp^ù$ 

R 
LpGN* 
p even 

2p ! 

(PO2 
2TT 

m 
R 

^$$ù 
^pm 

^pm^$$ 

^pm^ù 

— i 
pEN* U 
podd 

(2p)l 
mùp^mù 

/ m 

V r 

( irx^ 

mùp^ù 

p" 

(4.101) 

V^1)+/(7R,Vs"1 (>0) 1 

4 
V^1)+/(7R,Vs"1 

exp 227T-
mp^ù$ 

R LpEN* 
p even 

( 2 p + l ) ! 

V^1)+/(7R 
2TT—,p+l 

,8TT" 

mpù^$ 

— I 

PEN* 
oodd 

( 2 p + l ) ! 

mp^ù^p 
2TT 

m 

R 
p + 1 

ITX 

^8?ry 

mm 

Proof. — Clearly, if a G N, 

(4.102) So 
ù)mm 

VR' 
0,s 

nez 

la 
R 

f n 
.-2« 

1 
R 

0̂ ra,ra'̂ r—1 
exp j 2z7rra-

a — m 

r 
' nez 

n 
m!! 

r 

I-2s 

Prom (4.102), we get 

(4.103) SO 
a „ \ 
- , 0 , s 
r / 

= r2s-l 

V^1)+/(7R,Vs"1 

exp ( 2ZTT 5 0 0,— ,s 
\ r 1 

By (4.76), (4.103), we obtain, 

(4.104) So - , 0 , * ) = 2 r 2 - ] 
R / 0^m^r-l 

exp 
' ma\ 
2l7T 

R / )< 
' m ^ 
2TT—,2s 

r > 

A similar argument shows that 

(4.105) ^ùpm - , 0 , s 
.r 

-2ir2s~2 
V^1)+/(7R,Vs"1 

exp 2i?r 
mo 

R 
77 f27T—,2S- 1 

V r 

By (4.87), (4.104), (4.105), we get the first equality in (4.101). The second equality 
in (4.101) is then a consequence of (4.59). • 

Remark 4.32. — If k is a function Z/ rZ i—> C, its Fourier transform k : Z / rZ —» C is 
defined by the relation, 

(4.106) k(m) 
1 
R 

aGZ/rZ 
exp j -2iir 

ma 
R 

) k{a). 
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Prom (4.101), we find that if J r ( . , x ) denotes the Fourier transform of I(2ir^,x) con­
sidered as a function on Z/raZ, then 

(4.107) :ml: m 
— ,x 
r 

(0) 1 
4 Lp€N* 

peven 

(2p+l ) ! . 

(p!)2 

/ m 
(27T—,p+l 
V r 

'irxs 

8?r 

V 

— i 

podd 

2 p + l ) ! 

(Pi)2 

m 
2TT-

r 
p + 1 

ùm^p 

pùpm 

m:lpm 

Formula (4.107) is of special interest. In fact up to a factor 1/4, it coincides with 
the power series obtained by Bismut-Lott [BLol, Corollary 4.14], in their evaluation 
of the analytic torsion forms of a circle bundle equipped with the flat line bundle 
whose holonomy along the fibre is e2l7rrn/r. As we shall see in Section 16, this is not 
an accident, since we will show that the result of [BLol] is in fact a consequence of 
our main result. 

4.7. The Lerch series and the function J(0, x) 

Definition 4.33. — For 0 G R*, x G C, \x\ < 0, put 

(4.108) Je{x) 
7T 

"4|0 | 
1-

ix\ 
0 I 

- l 
I 

Equivalently, 

(4.109) Je(x) = -
K sgn(0) 
4 (0 - ix) ' 

Observe that 

(4.110) JO (0) = FE (0). 

Recall that the operator Q was defined in Definition 2.37. 

Proposition 4.34. — The following identity holds, 

(4.111) QIe(x) = J9(x). 

Proof. — By (4.86), 

(4.112) F9(x) = 
7T ' 

4|fl|; 

mlpo 

1 p=0 V/ 

2p)\ fix 

p\)2 \M) 

Using (2.118) and (4.71), we get 

[4.113) QF\x) 
7T 

4|0| 

+oo , 

1 p=0 

(ix/ef 
2p+l • 
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By (4.79), (4.113), we obtain, 

(4.114) Qf{x) 
71 

4|0| 

ppùp 

' p=l 

/ix lopm 

which is just (4.111). 

Theorem 4.35. — The following identity holds, 

(4.115) J (0 ,x ) - J (0,0) 

kez 

(J2k^e (x) - J2k" (0)) , 

J(0,x) 
1 

= 2 
PEN 
peven 

dC 
dsv 

(O,-P) 
ùpù 

mplpù 
llm 

podd 

* dï) 
OS X 

p^ùm 
J(0,x) 

p! 

Proof. — Our identity follows from (2.118), from Theorem 4.30 and from Proposition 
4.34. • 

Theorem 4.36. — IfrG N*; and ifaeN, then 

(4.116) J 27T-ix) 
r J 

(>0) 1 

4o, J(0, 

exp J(0,x) J(0,x) 
r 

pGN* _p even 

C ( 2 ^ , P + l ) 
/ irx 

VJ(0,x) 

p 

—i 
pGN* 
p odd 

/ m 
77 ( 27T—,p+ 1 

J(0,x) 

V 2TT > 

mol 

Proof. — This is a trivial consequence of (2.118) and of Theorem 4.31. 

Observe that | | (0,0) is a smooth function of 0 G R \ 2TTZ. Therefore §§ (0 - i x , 0) 
makes sense as a formal power series, so that 

(4.117) 
J(0,x) 

ds VU 0-ix,0) •• 
mùmùùp 

P=O ~L 

dP d( , 
dQp ds 0,0 

—ix)p 

pi • 

Theorem 4.37. — If 6 € R \ 2-KZ, the following identity holds, 

(4.118) J (6, x) 
ldC 

~2ds v 
6-ix,0). 

Proof. — By (4.115), (4.118) holds in degree 0. By Theorem 4.35, if 6 € R \ 2?rZ, if 
ix € R , for \x\ small enough, 

(4.119) J(6,x) = 
1 

I kez I 
J(0,x) 

1 (>o) ùpm 

8~ 
J(0,x) 

fe-ix 

2TT ' 
ujkh 

ol 
klk 

(>0) 
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Using the functional equation (4.74), if y £ 27rZ, 

(4.120) 
ft 

ds 
So(0,y,0) = S0l 

kez I 
kez I 

Mso by (4.76), 

(4.121) 
d 

ds^ 
SO(0,Y,0) = 

kez I 

8s v 
(2TH/, 0). 

By (4.119)-(4.121), we get (4.118) also in positive degree. 

Now, we will establish for the genus J (0, x) a formula which is closely related to a 
corresponding formula proved in [BGOL, Theorem 4.2] in the context of holomorphic 
torsion. 

Theorem 4.38. — If 6 G R \ 27rZ, if 6' G R, x G C are such that \6'\, \x\ are small 
enough, then 

(4.122) J{9 + 0',x) = J(0,x + i6'). 

Also for 0' G ] - 2TT, 2TT[\{0}; for x E C , |X| < inffeGZ |0; + 2kir\, then 

(4.123) J(0',x) = J(O,x + i0') + Je' (x). 

Proof. — If 0 G ] - 2TT, 2TT[\{0}, for 6>' G R, and \0'\ small enough, for any k G Z, 

(4.124) sgn ((9 + <9; + 2kn) = sgn (6> + 2/CTT) . 

From (4.109), Theorem 4.35 and from (4.124), we get (4.122). Also if 9' G] -2TT, 2TI 
for A; G Z*, 

(4.125) sgn (<9; + 2/CTT) = sgn (fe). 

Using the same arguments as before and (4.125) instead of (4.124), we get (4.123). 
The proof of our Theorem is completed. • 

Remark 4.39. — Of course, there are corresponding statements for I(0,x). However 
the formulas are more complicate. It is interesting to observe that while the Chern 
normalization of analytic torsion forms is conceptually natural, here and later, their 
evaluation leads to simpler formulas than with any other normalization. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



100 CHAPTER 4. THE ANALYTIC TORSION FORMS OF A Z2-GRADED VECTOR BUNDLE 

4.8. Formal relation to the R genus 

As explained in the Introduction, in equi variant Arakelov theory, a power series 
R(6,x) appears naturally [B8, B9], which is given by the formula, 

(4.126) kez Ikez I 
p even 

kez 
V 

«—i « 1 
9,-p) + 2-±(0,-p хР 

p^O I 
p odd 7^J 

JL 
9,-p) + 2-±(0,-p 

xP 
mpl 

so that R(x) = R (#, 0) is the R series obtained by Gillet and Soulé [GS1] in the non 

equivariant context. Recall that the Lerch series is given by L (y, s) = Yln=i 9,-p) + 

Proposition 4.40. — The following identity holds, 

(4.127) R (0, x) + 4 J (0, x] 

pGN j=l 

V 
l-L(d,-p) + '< 

«ai­

da 

kez Ikez I9,-p) + 
kez Ikez I9,-p) + 

Proof. — After (4.77), we saw that £ (y, s) vanishes when s is an even negative integer, 
and that r](y,s) vanishes when s is an odd negative integer. Our identity then follows 
from (4.115) and from (4.126). • 

Assume now that M is complex manifold, that E = E+ ® E- is a holomorphic 
Z2 graded vector bundle on M , and that gE = gE+ 0 gE- is a Hermitian metric 
o n E = E + e ^ - We denote by = 0 VE~ the holomorphic Hermitian 
connection on E = E+ 0 E. Let g G End (E) be a holomorphic isometry of E, which 
preserves E+ and E-. 

By [B8, Section 7 c)], the holomorphic analytic torsion forms ch (E,gE) are well 
defined. Similarly to the underlying real Z2-graded vector bundle E, we can associate 
the Chern de Rham analytic torsion forms Tc^g (E,gE) (here we omit V^, since gE 
determines VE. 

To the genus J (0, x), we can associate the closed form Sg (E1, gE). 

Proposition 4.41. — The following identity holds, 

(4.128) ch (E,gE)(>0) + 2Tcho;9 (E,gE)i>0) = (R + 4J)g (E,gE)i>0). 

Proof — This is a trivial consequence of Theorem 4.26 and of Proposition 4.40. • 

Remark 4.42. — The fact that the genera R (0, x) and J (0, x) fit so well in formulas 
(4.127), (4.128) is maybe more than coincidental. 
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CHAPTER 5 

A FAMILY 
OF THOM-SMALE GRADIENT VECTOR FIELDS 

The purpose of this Chapter is to establish various results on families of Thom-
Smale complexes, associated to the gradient field of a fibrewise Morse function, which 
is supposed to be Morse-Smale in every fibre. 

This Chapter is organized as follows. In Section 5.1, we recall the construction 
of the Thom-Smale complex associated to a Morse-Smale vector field. In Section 
5.2, we state the results of Laudenbach [La], which guarantee that, under natural 
assumptions, there is a de Rham map, which is a quasi-isomorphism from the de 
Rham complex into the Thom-Smale complex. The key fact is that the closure of the 
stable and unstable cells are manifolds with conical singularities in C1 coordinates. 
In Section 5.3, we introduce a group action on the Morse-Smale complex. In Section 
5.4, we consider the case of an equivariant fibration, and we briefly describe the 
corresponding Leray spectral sequence. In Section 5.5, we suppose that this fibration 
is equipped with fibrewise Morse-Smale vector fields. We construct the corresponding 
family of Morse-Smale complexes. Finally in Section 5.6, we establish a families 
version of Laudenbach's results [La]. In particular we show that, under standard 
assumptions, the integral of a smooth form along the closure of the stable or unstable 
cells is a smooth form. Also we compare various natural spectral sequences. We show 
in particular that the fundamental group of the base S of the fibration acts on the 
cohomology of the fibre X as a finite group. 

5.1. The Thom-Smale complex of a gradient vector field 

Let X be a compact manifold of dimension n. Let / : X —> R be a Morse function. 
Let B be the set of critical points of / , 

(5.1) B = {xeX,df(x) = 0}. 

If x e B, recall that the index ind (x) is such that the quadratic form d2f (x) on TXM 
has signature (n — ind (x), ind (#)). 
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Let hTX be a metric on TX, and let V / be the gradient vector field of / with 
respect to hTX. Set 

(5.2) Y = - V / . 

Consider the differential equation 

(5-3) 5 - I ' M -
Equation (5.3) defines a group of diffeomorphisms ^ t ^ e R of X. 

If x G B, put 

(5.4) Vu(x) = {yeX Urn Vt(y)=x}, 

Ws(x) = {yeX,tKmoQVt(y)=x} 

The cells Wu(x) and Ws(x) are called the unstable and stable cells. They are em­
bedded submanifolds of X, and moreover, 

(5.5) Wu (x) ~Rind(x), W (x) ~R"-ind<x). 

Also Ww (x) and Ws (x) intersect transversally at x. If x G B, set 

(5.6) raA:u = TXWu (x), TXXS = TXWS (x). 

Then 

(5.7) TXX = TXXS®TXXU. 

Assume that Y verifies the Smale transversality conditions [Sml, Sm2], Namely 
we suppose that if x,y G B„ Wu(x) and Ws(y) intersect transversally. In particular 
if ind(y) = ind(x) — 1, Wu{x) Pi Ws(y) consists of a finite set T(x, y) of integral curves 
7 of the vector field Y, with 7_oo = x,7+oc = y, along which Wu(x) and VFs(T/) 
intersect transversally. 

By [Sml, Theorem A], [Mi2, Theorems 4.4 and 5.2], given a Morse function / , 
there exists a metric hTX such that the corresponding vector field Y verifies the Smale 
transversality conditions. 

If x G B, let 0^,0% be the orientation lines of TXXU,TXXS. Then 0^,0* are 
Z2-lines. Also by (5.5), (5.6), 0^,0% can be identified with the orientation lines of 
Wu (x), Ws (x). In the sequel, we will identify these lines to the corresponding com­
plex lines. Note that the lines 0^, osx are canonically identified to their duals. 

Let x,y e B, with ind (y) = ind (x) — 1. Take 7 G T(x, y). The orientation bundle of 
the orthogonal bundle T±Ws(y) to TWS (y) in TX\Ws^ is canonically isomorphic to 
ou(y). Let r W s ( i ) be the orthogonal bundle to Y in TWu(x). Its orientation bundle 
o(T'Ws(x)) is canonically isomorphic to so that 5 G 0(TWs(x)) corresponds to 
F § s G o^. Since TxWs(y) and T'Ws(x) have the same orientation bundle, to 
7 G T(x, y), we can associate n7(x, y) G 0^ (8) 0^ • 
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Let (F, VF) be a complex flat vector bundle on X, and let (F*,VF*) be the 
corresponding dual flat vector bundle. Set 

(5.8) C.(WU,F*)= 0 K®oux, 

d(Wu,F*) 

ind(x)=i 

kez Ikez I 

By (5.5), on Wu (x), the flat vector bundle F can be canonically trivialized by parallel 
transport. In particular, if x,y G B are such that ind(y) = ind(x) — 1 and if 7 G 
r(x,2/),e* G F*, let r7(e*) G F* be the parallel transport of / G F* along 7 with 
respect to the flat connection VF . 

If x G B,s G o^,e* G set 

(5.9) d(s ® e*) -
y€B 

nd(y)='md(x) — 1 
7Gr(rr,2/) 

n7(x, y)s 0 T7(e*). 

Then 9 maps d{Wu,F*) into Ci_i(Wr,4,F*). 
Now we recall a basic result of Thorn [T] and Smale [Sm2]. 

Theorem 5.1. — We have the identity 

(5.10) d2 = o, 

so that (C.(Wu,F*),d) is a chain complex. Moreover there is a canonical isomor­
phism of Z-graded vector spaces, 

(5.11) H.(C.(Wu,F*),d)~H.{X,F*). 

Let (C'(WU, F),d) be the complex dual to the complex (C.(WU, F*), d). By (5.8), 
we get 

(5.12) C'{WU,F) = 0 Fx®oux 

Cl (WU,F) = 
xeB 

ind(x)=i 

) Fx®oux. 
3 

By Theorem 5.1, we get the canonical isomorphism, 

(5.13) H'(Cm(Wu,F),d) ~ H\X,F). 

The complex (C (Wu, F), d) will be called the Thom-Smale complex attached to Y. 
Let o (TX) be the orientation bundle of TX. Then o (TX) is a Z2-line bundle. We 

will consider o (TX) as a complex line bundle. If we replace / by — / and Y by —Y, 
the roles of Wu and Ws are interchanged. Comparing (5.8) and (5.12), we obtain 
easily the isomorphism of complexes, 

kez Ikez I 
{C. (WU,F), d) ~ (Cn~- ( r , F ® o (TX)), d] 
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On the other hand, by (5.13), 

(5.15) Hm (C* (Ws,F®o(TX)) 1d)~H9(XJF®o{TX) 

One verifies easily that (5.11)-(5.15) is just Poincaré duality. 
Let (Vf(X,F\x),dx) be the complex of smooth sections of A'(T*X) è F on X, 

equipped with the de Rham operator dx, so that we have the canonical isomorphism, 

(5.16) H* (Q- (X ,F |x ) , dx ) ( X , F ) . 

Let us recall that a Morse function / is said to be nice if / takes the value i 
on the set of critical points of index i. By a result of Smale [Sml, Theorem B], 
[Mi2, Theorem 4.8], given a gradient vector field Y = —V/ which verifies the above 
transversality conditions, there is a nice Morse function / and a metric hTX on TX 
such that Y is also the gradient vector field for / with respect to hTX. So, if necessary, 
we may as well assume now that / is a nice Morse function. 

Now we follow Milnor [Mil, Section 9] and [BZ1, Chapter I c)]. Suppose that / 
is nice. For p 6 N, set 

(5.17) t/P = / " 1 b - l / 2 , + o o [ . 

The decreasing family of closed sets Up defines a decreasing filtration on the de Rham 
complex (Q*(X,F\x),d). By definition FpQm(X,F\x) is the set of elements of 
Q*(X,F\x) whose support is included in Up. Let us construct the corresponding 
spectral sequence. By definition, 

(5.18) Ep'q = FpQ.p+q (X, F) /Fp+1Qp+q (X, F) 

Then 

(5.19) = H"+"(Ui,Ui+1,F). 

The basic result of Morse theory shows that 

(5.20) Ep'q = CP(WU,F) if g = 0, 

= 0 if q + 0. 

By (5.20), one finds easily that 

(5.21) ( £ 7 ! , d i ) ^ ( C ' (Wu,F),d), 

and that the spectral sequence degenerates at E 2 . In particular we have established 
the existence of the canonical isomorphism (5.13). Also equation (5.21) gives a purely 
algebraic construction of the complex (C* (Wu, F), d). 
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5.2. The de Rham map of Laudenbach 

If x G X, e > 0, let Bx (x, e) be the open ball of centre x and radius e with respect 
to hTX. By a simple argument by Helffer-Sjostrand [HSj, Proposition 5.1], if x G 5 , 
for so > 0 small enough, there exists an identification of Bx (x, Sso) with an open 
neighbourhood Vs£o of x in X, a Morse function f£Q:X^ R, and a metric hjx on 
TX, which have the following properties: 

- (/e0> ^0X) coincide with / , on X \ F3£o. 
- The critical set for the function f£o is still equal to B. Also the stable and 

unstable cells associated to (fe0^ti^x) coincide with the corresponding stable 
and unstable cells for (/, hTX). 

- Under the above coordinate system, on V ^ , the metric ti^x comes a from 
a standard metric on TX such that TXXS and TXXU are orthogonal in TX. 
Moreover if Z G TXX, if Z = (Z+,Z-), with Z+ G TXX8,Z- G TXXU, and 
\Z\ < 2e0, then 

(5.22) /eo (Z) = / ( * ) + 5 |Z+ |2 - |Z_ |2 

Note that the above constructions can easily be done equivariantly. Also observe 
that if / is nice, the new function f£o is also nice. 

Observe the the Thom-Smale complex associated to {feQ^h^x) coincides with 
the given Thom-Smale complex (C* (WU,F) ,9). In the sequel we will assume that 

(f,h^) = (f£0,hj0x)-
In [La], Laudenbach proved that under the above conditions, the closed cells Wu(x) 

are submanifolds of X with conical singularities. Also he showed that if x G B, 
Wu (x)\Wu (x) is stratified as a union of Wu (y), with ind (y) < ind (x). An important 
point in [La] is that the coordinate charts in which the above description of Wu (x) 
is valid are in general only C1. Once an orientation of Wu (x) is fixed, Wu(x) defines 
a current on X. Equivalently, smooth forms can be integrated on Wu{x). Moreover 
if x G B, the boundary of Wu (x) considered as a current coincides with its geometric 
boundary, i.e. it is the current of integration on the Wu (y), with Wu (y) C Wu (x) \ 
Wu (x) and ind (y) = ind (x) — 1, the orientations being obtained as in (5.9). 

Clearly, we can trivialize the vector bundle F on Wu(x) with respect to the con­
nection VF. In particular, if a G Q(M, F) , the integral JWU^ ot lies in 0 Fx. 

Definition 5.2. — Let P°° be the map 

(5.23) a G fi* (M, F) -> P°°a = 
CEBJWH* 

aeC* (WU,F). 

Now we have the key result by Laudenbach [La, Propositions 6 and 7], [BZ1 
Theorem 2.9]. 
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Theorem 5.3. — The map P°° is a quasi-isomorphism of complexes, which provid 
the canonical identification of the cohomology groups of both complexes. 

5.3. Equivariant Thorn-Smale complexes 

We make the same assumptions as in Sections 5.1 and 5.2. Let G be a compact Lie 
group. We assume that G acts on X, and that this action lifts to F , and preserves 
the flat connection VF. Then by (3.6), G acts on (ST(X,F\x),d). Therefore G acts 
on H* (X, F) and preserves its Z-grading. 

Recall that if g G G, the Lefschetz number Xg (F) was defined in (3.64) by the 
formula 

(5.24) Xg (F) 

n 

3=0 

-lYTrHiV>F\*)\g]. 

Take g G G. Set 

(5.25) Xg — {x G X, gx = x} . 

Then Xg is a finite union of compact submanifolds of X. Also, if x G Xg, 

(5.26) TxXg = {UeTxX,g*U = U}. 

Also TrF|x* [g] is a locally constant function on Xg. 
Let e(TXg) G H* (Xg,Q) be the Euler class of TXg. The Lefschetz fixed point 

formula asserts that 

(5.27) Xg (F) = 
JXG 

TrF[g]e(TXg). 

Now we assume that / : X —> R is a G-invariant Morse function, that hTX is a 
G-invariant metric on TX, and that Y = —V/ verifies the Thom-Smale transversality 
conditions. Note that Y is then a G-invariant vector field. 

By [Sml, Sm2], [Mi2, Theorems 4.4 and 5.2], generically, a gradient vector field 
for / verifies the Smale transversality conditions. As explained in [BZ2, Section 1 d)], 
if G is a non trivial group, a G-invariant generic gradient vector field is not necessarily 
Thom-Smale. However, as shown in [BZ2, Theorem 1.10] using results of Illman [II], 
if G is a finite group, there exists a G-invariant Morse function / and a G-invariant 
metric hTX such that Y = —V/ verifies the Thom-Smale transversality conditions. 

Set 

(5.28) Bg^BDXg. 

Since V / is G-invariant, we deduce from (5.26) that Vf\xg £ TXg. Therefore the 
restriction f\xg of / to Xg is a Morse function, and the restriction of V / to Xg is a 
gradient field for f\xg- The set Bg is exactly the set of critical points of f\xg- Also 
if x G Bg, TXXS and TXXU are g-invariant. 
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Now we use the notation of Sections 5.1-5.2. Clearly G acts on the finite set B, 
and interchanges the Wu (x)'s, and also the Ws (x)'s. It then follows easily that G 
acts on the complex (C* (WU,F) , <9), and so it acts on its cohomology. Then (5.13) 
is an identification of G-vector spaces. 

By (1.56), (1.57) and by the above, it follows that 

(5.29) Xg (F) 
n 

XgXg 

kez Ikez Ikez I 
kez Ikez Ikez I 

If x G Bg, g acts on ou (x) 0 Fx. Then (5.29) can be written in the fo 

(5.30) Xg (F) = 
teBg 

9\o«(x) = det3|T«x-9\o 

If x G Bg, let ind^ (x) be the index of f\xg at x. The action of g on ou (x) is given 
by 

31) 9\o«(x) = det3|T«x-

Also, one has the trivial, 

(5.32) (-ird{x)detg\TuX- 9\o«(x) = det3|T«x-

By (5.31), (5.32) we get 

(5.33) 9\o«(x) = det3|T«x-9\o«(x) = de 9\o«(x) = det3|T«x-9\o«(x) 

y (5.30)-(5.33), we get 

;5.34) Xg (F) = 
xeBg 

; (-l)ind°{x)TrF°[g}. 

Of course, by Chern-Gauss-Bonnet, we obtain directly the equality of the right-hand 
sides of (5.27) and (5.34). 

Proposition 5.4. — The vector field Y\xg is Morse-Smale. 

Proof. — We claim that if x G Bg, Wu (x) D Xg is just the unstable cell for Y\xg 
at x. In fact, if y G Wu (x) n Xg, since Y is G-invariant, the integral curve of Y 
through y lies in Xg, so that our assertion follows. The same property holds for the 
corresponding stable cells. 

Let now x, xf e Bg, and let y G Wu (x) n Ws (x') f l Xg. Since Y is Morse-Smale, 
Wu (x) and Ws (x1) intersect transversally at y. By considering the corresponding 
+1 eigenspaces under the obvious action of g, our Proposition follows. • 
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5.4. A smooth fibration 

We make the same assumptions and we use the same notation as in Section 3. In 
particular TT : M —> S is a submersion of smooth manifolds with compact fibre X 
of dimension n, and (F, VF) is a complex flat vector bundle on M. Also G is a Lie 
group acting on M along the fibres X, whose action lifts to F and preserves VF. 

The de Rham complex (ft* (M, F) ,dM) is a filtered complex. Namely if m,p G 
N, 0 ^ m ^ dim M, 0 ^ p ^ dim 5, set 

(5.35) F/pîlm(M,F) = { s € Î Î ' ( M , F ) , if X i , . . . , Xm_p+1 G TX, 

then 2x1---ixm_p+1s = 0 j . 

Then the F/pft* (M, F) defines a filtration on ft* (M, F). The corresponding spectral 
sequence, which we will note E^##) , is the Leray spectral sequence. In particular, 

(5.36) E0(P'9) = C°° (M, TT* Ap (T*S) ® Aq (T*X) ê F). 

and do is the fibrewise de Rham operator dA. 
Recall that H'(X,F\x) is the cohomology of the fibre X with coefficients in F. 

Then H*(X,F\x) is a Z-graded flat vector bundle on S, which is equipped with a 
flat connection, the Gauss-Manin connection (X'FI*). It follows from the above 
considerations that 

(5.37) E[M =np(S,Hq (X,F\X)) 

Also d\ acting on E//**) is just the de Rham operator ds. In particular, 

(5.38) E^) =HP(S,Hq (X,F |X)) . 

Of course, the Lie group G acts naturally on the spectral sequence ER . 

5.5. A family of gradient vector fields 

We make the same assumptions as in Section 5.4. Let / : M —• R be a G-invariant 
smooth function. We assume that / is Morse along every fibre X. 

Let hTX be a G-invariant metric on TX. Let V / C TX be the gradient field of / 
along the fibre X with respect to hTX. Then V / G TX. We make the fundamental 
assumption that Y = —Vf is Thom-Smale along every fibre X. 

By proceeding as in [Mi2, Section 4], one verifies easily that there is a G-invariant 
smooth function f : M —• R such that V / is a gradient vector field for / , and / is 
fibrewise nice. So, if necessary, we may as well assume that / itself is fibrewise nice. 

Let B be the zero set of Y, i.e. the set of fibrewise critical points of / . Let B* be 
the set of critical points of / which have index i along the fibres X. Then B, B2 are 
finite covers of S. We denote by B, Bl the corresponding fibres. 
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Observe that TXU,TXS are now vector bundles on B, and that 

(5.39) TX\B =TXU®TXS. 

Let ou,os be the Z2-lines on B, which are the orientation lines of TXU,TXS. In the 
sequel we will still denote by ou,os the corresponding complexifications. 

Now we temporarily assume that / is fibrewise nice. Since / takes the constant 
value i on B \ we see that B is exactly the set of critical points of / on M, and that 
/ is a Morse-Bott function. For p G N, set 

(5.40) UP = / ~ 1 | p - l / 2 , + o o [ . 

As in Section 5.1, the UpS define a decreasing filtration F" on ft0 (M, F). Namely 
F"pSl* (M, F) is the set of s G ft* (M, F) whose support is included in Up. Let E'#'(#'#) 
be the corresponding spectral sequence. Using the analogue of (5.19) and the Thorn 
isomorphism, we get 

(5.41) 
9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-

Now we no longer suppose / to be fibrewise nice. Put 

(5.42) C'(WU,F) = 0 Fx®oux, 
xeB 

'i{Wu,F)= 0 Fx®oux. 

Then C* (Wu, F) is a flat Z-graded vector bundle on S. Let VC*(W^'F) be the cor­
responding flat connection on C* (Wn,F). The identification (5.21) of the fibrewise 
complexes (C* (Wu, F), d)s to an algebraic complex shows that the chain map d de­
pends smoothly on s G £, and is flat with respect to \JC*(WU ,F). Therefore C* (Wu, F) 
is an example of a Z-graded flat complex in the sense of Sections 1.10 and 2.5. In par­
ticular A! = d + Vc (WU>F) is a flat superconnection of total degree 1 on C* (Wu, F). 
By (5.13), 

(5.43) H* (C- (Wu,F),d)~H'(X,F\x). 

As we saw in Section 1.6, the flat connection x/c*(wu,F) m(juces a flat connection on 
H* (C* (WU,F) , <9). Using (5.43), one verifies easily that this connection is just the 
Gauss-Manin connection (x'Fi*). 

The complex (ft# (S,C# (WU,F)) ,A') is naturally bigraded. The partial grading 
in A* (T*5) defines a filtration on (fi«(5, C* {Wu, F)), V C # ^ ' F ) + ^ # Let £/(.,.) 
be the corresponding spectral sequence. Then 

(5.44) EQP^ = QP (S,CQ(WU,F)), 

and df0 is just d.By (5.13), 

(5.45) EFPQ)=W (S,H* ( X , F | x ) ) , 
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and the differential d'1 is the Gauss-Manin connection Vff*(x'Flx'. In particular 

(5.46) E>{P,I) HP(S,H" (X,F\X)). 

Similarly the gradine in C* (WU,F) defines another filtration on 

[Ü'(S,C (WU,F))VC {w 'F]+d) 

Let E"^'''I be the corresponding spectral sequence. By construction 

(5.47) E»(P«)=H<I (BVF\BP®ou\BP 

Comparing (5.37), (5.38), (5.41) with (5.45), (5.46), (5.47), we get 

(5.48) K{m,9) - K(*,m) with r = 1,2, 

9\o«(x) = det3|T«x-

Of course, (5.48) gives identifications of G-vector spaces. As we shall see in Section 
5.6, this result extends to the full spectral sequences. 

5.6. A families version of the results of Laudenbach 

Observe that TX\B is just the normal bundle NB/M to B in M. Let hTX be a 
G-invariant metric on TX. Given e > 0, let U£ be the ^-neighbourhood of B in TX\B. 

By proceeding as in Helffer-Sjostrand [HSj, Proposition 5.1], as in Section 5.2, 
for SO > 0 small enough, there exists a G-equivariant identification of US£Q with a 
tubular neighbourhood V^£Q of B in the fibres X, which maps the fibres TX\B into 
the corresponding fibres X, a G-invariant fibrewise Morse function f£o : M —• R and 
a G-invariant metric h^x on TX which have the following properties: 

— {feo,hT0X) coincide with / , hTX on M \ V3£o. 
— The fibrewise critical set for the function f£o is still equal to B. Also the sta­

ble and unstable cells associated to (f£o,hJx) coincide with the corresponding 
stable and unstable cells for (/, hTX). 

— Under the above coordinate system, on U2£O, the metric hjx comes a from a 
standard metric on TX\B such that TXS\B and TXU\B are orthogonal in TX\B. 
Moreover if x G B , Z G TXX\B, if Z = (Z+,Z_), with Z+ G TXX\B,Z_ G 
TXX\B, if \Z\ ^ 2s0, then-

(5.49) tyr Z f9\o«( 1 
pm [\Z+\2-\Z.\2) 

The Thom-Smale complex associated to (fe0ihjx) coincides with (C* (Wu, F), 9). 
In the sequel, we will then assume that (/, hTX) = (f£o,h^xy 

We will consider the unstable cells Wu (x) as subsets of M, which fibre on S. The 
fibrewise closures Wu (x) also patch into closed sets in M, which fibre over S. This is 
because all the arguments used in [La] can be applied to the vector field Y, viewed as 
a gradient vector field for the Morse-Bott function / : M —> R. If x is a locally trivial 
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FIGURE 5.1 

section of B, we still denote by Wu (x) the associated unstable cell, and Wu (x) its 
closure. 

A word for word reproduction of the arguments of Laudenbach [La] show that the 
Wu (x) are submanifolds of M with conical singularities, that the Wu (x) \ Wu (x) are 
stratified by Wu of strictly lower index. Again, the description of Wu as a manifold 
with conical singularities can only be done in C1 charts over M. Therefore Wu (x) is 
a well defined current on M. Its boundary as a current coincides with its geometric 
boundary. 

A subtle point is to understand how the global description of the Wu (x) fit with 
the fibrewise description of the Wu (x). We will address this point in our next result. 

By the above, if a G fi*(M, F), if x is a locally trivial section of B, the pushforward 
current fWu(xj & is well defined. This is a locally defined current on S with values in 
wx' 

Theorem 5.5. — If a e Ct9(M,F)9 then 
mpmo 

i is C°° on S. 

Proof. — We will closely follow the general strategy of Laudenbach [La], while almost 
entirely avoiding the description of the compactified cells W as manifolds with conical 
singularities. 

We will first consider the case of a single fibre, and give a description of the com­
pact ificat ion of the descending cells. This description will then immediately extend 
to the case of families. 

First, we consider the standard Morse model in (5.22). Namely let E = E+(&E- be 
a Z2-graded finite dimensional real vector space, equipped with an Euclidean metric 
gE such that E+ and £L are orthogonal in E. If Z = (Z+, ZJ) G E = E+ 0 E-, set 

(5.50) f(Z)=1-(\Z+\2-\Z_\2 
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In Figure 5.1, we have represented the level sets V+ = / = / 1 {—1}, 
the ascending and descending unit spheres S+ = V+ fl E+, 5_ = V- fl £L, and also 
D+ = S+ x E-,D- = E+x 5_ . 

If y = - V / , then 

(5.51) y = ( - z + „ 

The corresponding flow ^ t is given b 

(5.52) 4>t (Z+,Z-) e~tZ+,etZ. 

It will be convenient to identify V+ to D+, V- to £>_ by the flow These identifi­
cations are given by 

(5.53) ( Z + , Z _ ) G F + -
mpù^$ 

\z+ 
\z+\z. 

(z+,z-)ev_ \Z-\zA 
z. 

\z-

Clearly the flow identifies V+ \ S+ to V- \ 5 _ , and Z)+ \ 5 + to D-\S-. This last 
identification is just given by 

(5.54) (Z+,Z-)eD+\S+ \Z-\Z+ z. 
\Z-

:D+\S-. 

Now, we consider the real blow up of E along E+ or E-. Namely, let p+ : R+ x 
E+ x S_ ^ F ,p_ : R+ x S+ x £_ —> E be given by 

(5.55) p+ (r ,Z+,Z_) = (Z+, rZ_) , 

p_ (r ,Z+,Z_) = ( rZ+,Z_) . 

Then D+ = P+1 (D+) ,D_ = PZ1 (D-) are obtained by blowing up D+, £>_ along 
S+, 5_ . They both coincide with R+ x S+ x S-. Moreover the identification of D+ 
to D- via the flow is just given by the identity map of R x S+ x S_. 

Let now F+ be a submanifold of D+ which intersects S+ transversally. Set H+ = 
F+ fl S+. Our first goal is to describe a compactification of the image of F+ by the 
flow $t->t ̂  0. Near there is a projection r+ : E+ —> Using transversality, 
near H+, the map Z = {Z+, Z_) € F+ —> (r+Z+, Z_) is a diffeomorphism. Therefore 
there is a smooth locally defined map ft : H+ x E- —» E+, such that locally near H+, 
F+ is the image of H+ x E- by the map (x, ZJ) G if+ x E- —• (ft (x, Z _ ) , Z_), and 
moreover ft (x, 0) = x. It follows that locally, the image of F+ by the flow in E can 
be compactified as the image of [0,1] x [0,1] x if+ x 5_ by the map, 

(5.56) (a, 6, x, Z_) -» (aft (x, a6Z_), 6Z_). 

From (5.56), we deduce that locally, the image of F+ by the flow can be compactified 
into the image of a smooth manifold with boundary by a smooth map. In particular 
this compactification produces a well-defined current on E. The same argument shows 
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that the image of F+ in Z)_ can be compactified into a set F_, which is locally the 
image of [0,1] x iJ+ x S- by the map 

(5.57) (a, x, Z-) —» (aft (x, aZJ), Z_) . 

In particular, it still defines a current on D-. Also S- C F_. 
Now, we show how to 'iterate' the above procedure. Let E1 — E]_ 0 E]_ be 

another Z2-graded Euclidean vector space of dimension n. The corresponding objects 
associated to E1 will be denoted with a superscript x. Let $ = <£_) be a smooth 
diffeomorphism from a neighbourhood of S- in D- into Set F\ = $ ( S _ ) . 
We assume that F\ intersects S\ transversally. Put H\ — F\ D S]_. Let r]_ be 
a projection of on H]_, which is well defined near H\. Set K- — 4>_1 (H]_). 
Then is a smooth submanifold of S-. Using transversality, we find that near 
{0} x H+ x K- C [0,1] x H+ x 5_, the map 

(5.58) (a, x, Z_) G [0,1] x H+ x S- -+ 

(a, x, r+4>+ (aft (x, aZ_) , Z_) , (aft (x, aZ_) , Z_) 

= ( a , x , x \ Z l ) e [0,1] x # + x x £ i 

is a diffeomorphism. 
Then a compactification of the image of (F_) by the flow associated to th< 

vector field Y1 can be described locally as the image of [0, l]3 x H+ x H\ x Sl_ b 
the map, 

(5.59) (a, a1, ft1, x, x1, (ax$+ (aft (x, aZ_) , ZJ), 6xZi) , 

where Z_ is itself evaluated at (a, x, x , a 1b1Zi) under the inverse of the diffeomor­
phism in (5.58). In particular, this compactification defines a current on E1. More­
over, a compactification Ft. of the image of in Dx_ by the flow ^ \ can be 
described locally as the image of [0, l]2 x H+ x H\ x 5 l by the map 

(5.60) ( a , a \ x , x \ Z l ) -> ( a ^ + (aft (x, aZJ), Z_ ) , Z\) , 

where in (5.60), Z_ is evaluated at (a, x, x1, a1Zt) under the inverse of the diffeo­
morphism defined in (5.58). 

It should now be clear that the above process can be iterated. From the above, 
we recover the fact established in Laudenbach [La] that in the case of a single fibre 
X, the descending cells can be compactified, and define currents on X. Observe here 
that we have not established as in [La] that the compactifications are C1 manifolds 
with conical singularities. 

Assume now that the assumptions of our Theorem are verified. Locally over S, we 
can trivialize TX\B = TXS\& 0 TXU\B into a Z2-graded vector space. In our de­
scription of the compactification of the descending cells under the given transversality 
assumptions, it follows that all the maps in (5.57)-(5.60) describing the compactifica­
tion of the descending cells and their intersection with the D- will depend smoothly 
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on the extra parameter s G S. By integration, it follows that if a G fi*(X, F\x) has 
a small support, its integral along the compactification of any of the descending cells 
is well-defined, and depends smoothly on the parameter s. The proof of our Theorem 
is completed. • 

Remark 5.6. — By a well-known result of Palis and Smale [PSm], Morse-Smale dy­
namical systems are structurally stable. However, this does not lead to a simple 
proof of Theorem 5.5, because, in general, the conjugation homeomorphisms are not 
smooth. 

In view of Theorem 5.5, we can now set the following definition. 

Definition 5.7. — Let P°° = fi*(M, F) -» fi* (S, C* (Wu, F)) be given by 

(5.61) P°°o 

pù^mù 
Wu{x) 

a. 

Theorem 5.8. — The map P°° is a quasi-isomorphism ofZ-graded G-complexes map­
ping (fi*(M, F ) , dM) into (fi* ( S , C* (Wu, F)), A'), and mapping the {titrations F', F" 
on fi*(M,F) into the corresponding titrations in (f i*(S,C* (WU,F)),A'). Also P°° 
maps the spectral sequences on fi*(M, F) into the corresponding spectral sequences on 
fi* (S, C* (Wu, F)). In particular the map EQ#,#) —* £Q *'#) corresponds to the fibrewise 
quasi-isomorphisms P°° : (fi*(X,F\x), dx) - » (C* (WU,F) ,9) . Finally P°° induces 
the identification of spectral sequences, 

(5.62) 9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-

9\o«(x) = det3|T«x-hy 

Proof. — First we show that P00 is a morphism of Z-graded filtered complexes, i.e. 

(5.63) poo^M =i/poo> 

Take a G fi*(M, F). We claim that we have the quality of currents on 5, 

(5.64) V°°dMa = A'P°°a. 

In fact, by proceeding as in Laudenbach [La], or by using the arguments in the proof 
of Theorem 5.5, we find easily that the boundary of W as a current coincides with 
its geometric boundary. Using Stokes formula, we get the equality of currents in 
(5.64). Also by Theorem 5.5, these currents are smooth. Therefore, they coincide in 
fi* (S, C* (WU,F)). It is clear that P°° is a filtered morphism with respect to the 
nitrations Ff and F". The fact that the map E^ '^ -> ^(#,,) is just F ° ° is trivial. 

Using (5.48), a standard result in homological algebra [CaE, Chapter XIII, Theo­
rem 3.2] shows that P°° is a quasi-isomorphism, and that (5.62) holds. The proof of 
our Theorem is completed. • 
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Observe that if 5 is simply connected, the flat vector bundle H*(X,F\x) on 5 is 
trivial as a flat vector bundle. 

Theorem 5.9. — If S is simply connected, 

(5.65) H* (M, F) ~ H* (M, C) g H\X, F\x), 

and the spectral sequences E'/#'#), E^#'#) and E'^^E'J^ degenerate at E2. 
Even if S is not simply connected , for F = Q, the above spectral sequences degen­

erate at E2. Moreover TT\ (S) acts as a finite group on H* (X, Z). 

Proof — The flat vector bundle C* (Wu, F) is trivial as a flat Z-graded vector bundle 
on S. It follows that the spectral sequence E^9'9) degenerates at E2, and that 

(5.66) H* (SI (5, C* (Wu, F)), A') ~ H* (M, C) § H'(X, F\x). 

Using Theorem 5.8 and (5.66), we obtain the first part of our Theorem. 
Let us now assume that F = C. Let H C 7Ti (S) be the subgroup of 7Ti (S) which is 

the kernel of the monodromy representation on the complex (C* (Wu, C) ,9). Then 
H is a normal subgroup of finite index, i.e. TT\ (S) /H is a finite group. Let Sf be the 
corresponding TTI (5) /H cover of S. The lift of (C* (Wu, C) , d) to Sf is a trivial flat 
complex. The arguments in the proof of the first part of our Theorem show that the 
corresponding spectral sequences degenerate at E2. Since our spectral sequences are 
just the 7Ti (S) /H-invariant parts of these spectral sequences and 7Ti (S) /H is finite, 
the same property holds for our spectral sequences. Finally since 7Ti (S) /H is finite, 
7ri (S) acts as a finite group on Hm (X, Z). The proof of our Theorem is completed. • 

Remark 5JO. — Let E be a SL (n, Z) vector bundle on 5, let A c E be the corre­
sponding lattice. Let M be the total space of E/A. Then M fibres on S with fibre 
the torus X — E/A. In this case the action of TTI (S) on H* (X, R) is the monodromy 
representation on A* (E*), which is in general not finite. Therefore, in general, such 
torus fibrations do not verify our assumptions. 
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CHAPTER 6 

FIBRATIONS, BEREZIN INTEGRALS 
A N D EULER CURRENTS 

In this Chapter, we recall the construction by Mathai-Quillen [MQ] of the Thorn 
forms and of the transgressed Euler forms for Euclidean vector bundles with connec­
tion in the Berezin integral formalism. Under the assumptions of Section 3, we apply 
these results to the vector bundle TX on M. This point of view was already developed 
in [BZ1, Chapter III], which we follow closely. In fact let us recall that in [BZ1], 
which only involved one single fibre X, two copies of the exterior bundle of algebras 
Am(T*X) appeared naturally. An involution exchanging these two copies was then 
used in [BZ1], in particular in local index theoretic computations. In our relative 
situation, the problem is less symmetric. Still, a less obvious symmetry is preserved. 
We explain here what is needed for the local families index theoretic computations 
which will be done in the following Chapters. The results established in this Chapter 
will be used in particular in Chapters 7, 9 and 13. 

This Chapter is organized as follows. In Section 6.1, we recall the Berezin integral 
formalism. In Section 6.2, we give describe the Mathai-Quillen Thorn forms. In 
Section 6.3, we recall the results of [BGS3] on the convergence of the Thorn forms 
as a parameter T tends to + o o . In Section 6.4, we construct the Mathai-Quillen 
transgressed Euler form. In Section 6.5, in the context of fibrations, we establish 
curvature identities. Finally, in Section 6.6, we prove a fibrewise Stokes formula, 
which is based on the symmetries mentioned above. 

6.1. The Berezin integral 

Let E and V be real finite dimensional vector spaces of dimension n and m. Let 
gE be an Euclidean metric on E. We will often identify E and E* by the metric gE. 
Let ei, • • • , en be an orthonormal basis of E, and let e1, • • • , en be the corresponding 
dual basis of E*. 

Let A* (E*) be the exterior algebra of E*. It will be convenient to introduce another 
copy A* (E*). If e £ E*, we will denote by e the corresponding element in A* (E*). 
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Suppose temporarily that E is oriented and that ei, • • • , en is an oriented basis 
of E . Let FB be the linear map from A* (1/*) 0 A* (E*) into A (V*), such that if 

ae A(V*),0e A (£7*), 

(6.1) 
mpom 

a/? = 0 if degP < dimE, 

rB 
OTE1 A • • • A EN 

/^71(71+1)72 

nn/2 
a. 

More generally, let O(E) be the orientation line of E . Then JB defines a linear map 

from A* (V*) 0 A* (E*) into A* (V*) 0 O (E). The linear map FB is called a Berezin 

integral. 

Let A be an antisymmetric endomorphism of E . We identify A with the element 
of A (£*), 

(6.2) A 
1 

2 ùpmù^pù 
(EI,AEJ) EI A e-?. 

By definition, the Pfaffian Pf ^ of ^ is given by, 

(6.3) 
mùp 

exp(-A/2) = Pf 
mpm 

\2ir\ 

Then Pf [~] lies in O(E). Moreover Pf [^] vanishes if N is odd. 

6.2. The Mathai-Quillen Thorn forms 

Let M be a manifold of dimension M. Let 7r : E —• M be a real vector bundle 
of dimension n. Let be an Euclidean metric on E . Let be an Euclidean 
connection on (E, GE), and let RE = V^'2 be its curvature. Then RE is a smooth 
section of A2 (T*M) 0End(E) . Also 7r*V£; is an Euclidean connection on 7r* (E,GE), 
and 7T* RE is the curvature of 7r*V£;. 

Let ei ,-- - ,en be an orthonormal basis of £ and let e1, - - - ,en be the corre­
sponding dual basis of Let / 1 , • • • , /m be a basis of TM, and let Z1, • • • , /m 
be the corresponding dual basis of T*M. We identify P ^ with the section RE of 
A2 (T*M) 0 A2 (£*), 

(6.4) P * 
1 
4 

l^i,j^.n 

>i, RE (fa, M ED) / a A A ? A 5 . 

The connection defines a horizontal subspace THE of TE such that T E = 
THE © Let P ^ be the projection TE ^ E and let PE* : E* -> T*£ be the 
transpose of PE. Then P ^ is a section of T*E 0 If we identify E1 with E* by the 
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metric gE, PE can be considered as a section of T*E ® E*, so that 

(6.5) pE 
n 

1 

9\o«(x) = det3|T«x-

Let Y be the generic element of E. 

Definition 6.1. — For T ^ 0, let AT be the section of A (T*E) § TT*A (£*), 

(6.6) 4̂T 
ir*RE 

2 
V r p ^ + r iy i2 

The connection n*VE acts as a differential operator on smooth sections of 
A(T*E) § 7r*A(E*). Also if e G E, the interior multiplication ie acts naturally on 
A (E*), and so it acts as a derivation of the graded algebra A (T*E) ® 7r*A (£"*). To 
indicate clearly that ze only acts on the second factor A (E*), we will write ig instead 
of ie. 

The following result was proved in [MQ, Section 6] and [BeGeV, Lemma 1.85 
and Propositions 1.87 and 1.88]. 

Theorem 6.2. — The following identities hold, 

(6.7) TT*VE+ 2y/Ti9,AT = 0, 
dAT 

dT 
7r*V^ + 2\/Ti9 

Y 

' 2y/T 

We will use the formalism of the Berezin integral developed in Section 6.1, with 
V = TE. If u; is a smooth section of A (T*E) 0 7r*A (E*) over E, JB uo is a smooth 
section of A(T*E) ® 7r*o(E), i.e. a smooth differential form over E with values in 
7T*o(E). 

Put 

(6.8) c (E, VE) = Pf 
mplm 

_2TT_ 

Then e (£ , V^) is a smooth closed section of AdimE (T*M)®o(E). It is a Chern-Weil 
representative of the rational Euler class of E. Of course, if n = dim E is odd, then 

(6.9) e(E,VE)=0. 

Definition 6.3. — Let CLT and BR be the forms on E, 

(6.10) ClT = 
rB 

e x p ( - A r ) , 
pmù^^ rB Y 

2VT 
î x p ( - A r ) . 

Let 7r* denote the integral along the fibre of forms on E taking value in ir*o(E). 
Now we state a result of Mathai-Quillen [MQ, Theorem 6.4], also given in [BZ1, 
Theorem 3.4]. 
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Theorem 6.4. — The forms CLT have degree n, they are closed, and their cohomology 
class does not depend on T. For T > 0, the forms ar represent the Thorn class of E, 
so that 

(6.ii) 7R*AT = 1. 

The forms br have degree n — 1. Moreover, 

(6.12) 

a0 = 7R*e(£,V^) 

bT = -^f,T>0, 

-^r = -dbT, T > 0. 

6.3. Convergence of the Mathai-Quillen currents 

Let o (TM) be the orientation bundle of TM. We identify M to the zero section of 
E. If k G N and if K is a compact subset of E, let || Hc£(£) be a natural norm on the 
Banach space CfC(E) of forms in E with values in 7R*o(TM), which are continuous 
with k continuous derivatives, and whose support is included in K. Let 5M be the 
current of integration on M. If ¡1 is a smooth compactly supported form on E with 
values in 7R*o(TM), then $EH5M — JM Observe that 5M can also be viewed as a 
current on E with values in o (E). 

Now we state a convergence result for the currents CXTI&T-, which was proved in 
[BGS3, Theorem 3.12] and stated in the present form in [BZ1, Theorem 3.5]. 

Theorem 6.5. — Let K be a compact subset of E. There is a constant C > 0 such 
that for any smooth form ¡1 on E with values in TT*O(TM), whose support is included 
in K, for T ^ 1, then 

(6.13) 
IE 
' v(aT - 6M) 

Cùp 
mpp 

9\o«(x) = det3| 

JE 
[ibT 

c 
* 7^3/2 

9\o«(x) = det3 

Remark 6.6. — By proceeding as in [B6, Theorem 3.2], one can give a microlocal 
refinement to Theorem 6.5. Namely one can show that as T —> + 0 0 , ax converges 
to 5M in the space of currents whose wave front set is included in N^^E ~ E*, with 
similar estimates. 

6.4. A transgressed Euler class 

We now construct a Mathai-Quillen current[MQ, Section 7]. 
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Definition 6.7. — Let tp (£ , VE) be the current on E with values in o(E), 

(6.14) 
9\o«(x) = det3|T«x-/*+oo 

JO 
bTdT. 

By Theorem 6.5, the current ip (E, VE) is well-defined. 
Recall that M is identified to the zero section of E. The normal bundle to M in 

E is exactly E. 
Let g'E be another metric on E, and let VfE be an Euclidean connection on E with 

respect to g'E. Let e (E, VE, \7'E) denote the Chern-Simons class of forms of degree 
n — 1 over M with values in o(E), which is defined modulo smooth exact forms, such 
that 

(6.15) de (E, VE, VE) = e (E, Ve) - e (E, VE) . 

For the definition and properties of the wave front set of a current, we refer to [Ho, 
Chapter VIII]. The following result was stated in [BZ1, Theorem 3.7]. 

Theorem 6.8. — The current ip (E, VE) is of degree n — 1. If X is a smooth function 
on E with values in R*7 under the map eeE—>\e€E,ip (E1, V^) is changed into 
sign (A)n ifj (E, VE) . The current ip (E, VE) is locally integrable on E. Its wave front 
set of is included in E*. Also, 

(6.16) dtp (E, VE) = 7T*e (E, VE) - 8M. 

The restriction of —ip (E, \7E) to the fibres of E coincides with the solid angle form 
of the fibre associated to the metric gE. 

// g/E is another metric on E, and if VE is a connection on E which preserves 
the metric g,E, then 

(6.17) ib (E, Ve) - é {E, VE) = 7T*ê (E, VE, VE) modulo exact currents. 

Remark 6.9. — Assume that dim.E < dimM. Let s be a smooth section of E. Set 

(6.18) M' = {x G M, s (x) = 0} . 

Suppose that over M7, ds is of maximal rank d\mE. Equivalently, the graph of s 
intersects the 0 section of E transversally. Then M' is a smooth submanifold of M. 
Let NM'/M De the normal bundle to M' in M. Then ds : NM>/M —> E\M* is an 
identification of vector bundles. Since the wave front set of t/j (E1, VE) is included 
in E * , by [Ho, Theorem 8.2.4], the pulled-back current 5*^ (E,VE) on M is well-
defined, and its wave front set is included in iV* //n/f. Moreover, 

(6.19) ds*ip (E, Ve) = e (E, Ve) - SM> . 

Here 8M' should be viewed as a current on M with values in o (TM). By proceeding as 
in [BGS2, Theorem 3.15], we find that the current s*ip (£, VE) is locally integrable 
on M. 
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6.5. Fibrations and curvature identities 

Now we make the same assumptions and we use the same notation as in Section 3. 
In particular тг : M —> S is a submersion with compact fibre X, and TH M С TM is a 
horizontal vector bundle on TM, so that THM ~ тг*Т5. Then TX = THM®TX, so 
that Л*(Т*М) ~ тг*Л* (T*S) 0 Am(T*X). In the sequel, we will often write A* (T*S) 
instead of 7г*Л* (T*S), to emphasize the fact that A* (T*S) is viewed as a trivial 
vector bundle along the fibres X. 

We will denote by A* (T*X) another copy of the exterior algebra of the fibre X. 
The bundle of algebras Л* (T*X) will be the exterior algebra of the fibres X. If 
e G T*X, we denote by ê the corresponding element in A* (T*X). All the objects 
which are naturally differential forms along the fibres X will be denoted with aT 

Recall that the fibrewise connection I\7^(T*S)®A*(T*X) on д . (T*§^ g д-(Т*Х) 
was defined in Definition 3.10 by the formula 

(6.20) ^-(Т-З)ЕЛ-(Т-Х) = VA*(r-5)8A'(T-x) + 1 (Seu V2c(ei)/Q 

9\o«(x) = det3|T«x-kl 

In particular 1vA*(T,*S,)®A#(T*X),2 should be considered as a smooth section of 
A* (T*X) 0 A* (T*S) 0 End (A*(T*X)). Also VTX'2 now denotes the restriction of 
VTX'2 to the fibres X as a hatted form. This is a section of A2 (T*X) 0 End (TX). 
Of course, we still consider VTX'2 as a smooth section of A*(T*M) 0 End (TX). 

Definition 6.10. — Let A be the tensor obtained from 

(6.21] 1 
2 

1у7Л*(Т*5)§Л*(Т*Х),2 _, 1 
4 

^тх^а,еЛс(ЕГ)с(ЕМ 

by replacing c(e^) by у2егЛ for 1 ^ г ^ n. 

Then A e A2 (T*X) 0 A* (T*S) 0 A'(T*X) ~ A2 (T*X) 0 A (T*M). 

Theorem 6.11. — The following identity holds, 

(6.22) A - 1 
= 4< 

(Е^ТХ>2Е,)?ЕЗ. 

Proof. — By (3.42), we get 

(6.23) - 2 Д 1 
4 

V7TX'2 (е4,е,-)ек,ег)е*е5'е*е' 

1 
4 4 

9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-

1 
2 x 

(VTX5) ( e i , e J ) e f c ) / f ) e^e fc r . 

Recall that as we saw after (3.17), S maps TX into THM. Using Proposition 3.12 
and (6.23), we get (6.22). • 
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Now we will establish a version of Bianchi's identity for 1 TJ^'(T* S)®A9(T*X) ^ put 

(6.24) yA*(T*S)§A*(T*X) = 2% A VA#(T*5)§A*(T*X)< 
Ci 

Then X)^(T*S)®A*(T*X) acts on the smooth sections of A(T*X) ® A* (T*S) § 

A*(T*X). Since VTX is fibrewise torsion free, vA#(T*5)§A#(T*x) acts on the smooth 

sections of A (T*X) as the fibrewise hatted de Rham operator d*. 

In the sequel, we view T(e^fa) as a section of TX. The interior multiplica­

tion operator iT(ei,fa) acts on A*(T*X). Then the operator etfaiT(ei,f^) acts on 

A# (T*X) § A# (T*5) § A9(T*X). It increases the degree in A (T*X) by 1, and de­

creases the degree in A (T*X) by 1. 

Theorem 6.12. — The following identity holds, 

(6.25) yA#(T*S)êA#(T*X) 9\o«(x) = det3|T«x-)A = O. 

Proof. — Bianchi's identity for 1 \7*9(T*S)®A9(T*X) asserts that 

(6.26) "lyA#(T*5)êA#(T*X) lyA#(T*5)êA#(T*X),2" = 0. 

Clearly there is an identification of Z-graded vector spaces C(TX) ~ A*(T*X). 
Given r G N, let cr (TX) c c (TX) correspond to Ar (T*X) by this isomorphism. Let 
J : C(TX) —> A* (T*X) be the bundle isomorphism which to A G CR (TX) associates 
2rl2CT G AR(T*X). Under this isomorphism, if Y G TX, the map A G C(TX) -> 
[c(y), a] G c (TX) corresponds to the map (5 G A (T*X) -> - V ^ y / ? G A* (T*X). 

Using (6.20), under the isomorphism j , the operator which corresponds to the 
commutator with 1\YA*(T*S)^>A9(T*X) is just the commutator with 

(6.27) Y7A*(T*5)§A*(T*X) 
{S(ei)ejjS)eiriej^ 

hjk 9\o«(x) = det3|T«x-p^pà^pp 

Prom (6.26) and from the Bianchi identity for VTX, we conclude that 

(6.28) 'yA#(T*S)0A#(T*X) _ (S(ei)ejJ^)ériEJÌA] = 0. 

Also by (3.18), 

(6.29) [S(EI)EJ,F?) = (T(EIJ?),EJ) 

By (6.28), (6.29), we get (6.25). The proof of our Theorem is completed. • 

Now we use the formalism of Sections 6.1-6.4 on the manifold M, by taking here 

(E,gE ,VE) = (TX,gTX,VTX). Recall that for T ^ 0, AT, a section of A* (T*TX)g 

A* (T*X), was defined in Definition 6.1. 
Let / : M —> R be a smooth function. Let V / G TX be the fibrewise gradient 

vector field of / with respect to gTX. 

Definition 6.13. — Put 

(6.30) BT = (VF)*AT. 
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Then BT is a section of A*(T*M) g A* (T*X). By (6.4)-(6.6), we get 

(6.31) BT = \ VTX>2e3) M + Vf (VTXV/, e,) e* + T |V/|2 . 

Take T G R+. Observe that 1 \/^(T*S)®A'(T*X) + ^Tc ig a superconnection 

along the fibres X. Its curvature f ivA#(T*5)®A#(T*x) + y/2Tc(Vf)j is a section of 

A* (T*X) § A* (T*S) ® End (A*(T*X)). Let £T be obtained from 

(6.32) 1 
~2 

flyA#(T*S)§A*(T*X) _ 9\o«(x) = det3|T«x- 1 
+ 4 

VTX'2ei,eJ)c(ei)c(e,) 

>y replacing c(e^) by y/2eLA, for 1 ̂  i < n as in Definition 6.10. 
Observe that faVfgf is just the horizontal component of df. 

Theorem 6.14. — The following identity holds, 

(6.33) 
9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-

PROOF — Clearly, 

(6.34) (1VA*(T*s>§A,<T*x> + x/2Tc(V/)) = 

i v A - ( T - s ) ê A - ( T * x ) , 2 + ^2T^C ( V ™ V / ) + 2Vf (S (e<) V / , / f ) ëfa - 2T |V/|2 . 

Also, since VTX is fibrewise torsion free, 

(6.35) 9\o«(x) = det3|T«x- V ™ V / , e < ) . 

Moreover, using (6.29), we get 

(6.36) <5(c0V/ , /^ ) = VR(CII/H)/. 

Prom Theorem 6.11 and from (6.34)-(6.36), we obtain, 

(6.37) pm 1 
" 4 

9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-9\o«(x) = de 

- V r ^ r v ^ ^ j Z + T i v / i 2 . 

Also, 

(6.38) VTXV/ = e* A 5 (V™V/, e,-) + / a A ?V/QH Vei/. 

Moreover, 

(6.39) 9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-9\o« 

From (6.38), (6.39), we conclude that 

(6.40Ì VTXVF = EIAEI(VIXVF,EJ) • ^ A V e , ( / " V ; « / ) «'ArVrf«,,/«)/ 

= e« A el <V™V/ , e,) - ? A FAVT{EIJS)F - V A ' ^ S > ^ * * > ( f V ; « / ) -

Using (6.37)-(6.40), we get (6.33). The proof of our Theorem is completed. 
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Theorem 6.15. — The following identity holds, 

(6.41) $A-(T-S)gA-(T-X) + énT(eiJS) - 2VfiVf) )BT = O 

Proof. — By proceeding as in the proof of Theorem 6.12, and using Theorem 6.14, 
we find that 

(6.42) 9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-

BT + vtva*(t*s)®a*(t*x> ( / ° V / h / ) ) = 0. 

Also, since VTX is fibrewise torsion free. 

(6.43) yA'(T*S)êA«(r*X),2 ( / " V / h / ) = 0. 

Finally, if U e TÄ 

(6.44) .ayA-(T'S)§A-(r-X) ( r V / n / ) = 0 . 

Prom (6.42)-(6.44), we get (6.41). The proof of our Theorem is completed. 

Remark 6.16. — Needless to say, a more direct proof of (6.41) can be given. 

6.6. A Stokes formula 

In the sequel, fx denotes integration along the fibre of TT : M —• X. Let r be the 

algebra endomorphism in A* (T*X) § A* (T*S) § A*(T*X) such that 

(6.45) r (e*) = e\ r pmp 9\o«(x) = det3|T«x-mùp 

Proposition 6.17. — If (3 is a smooth section of A* (T*X) ® A#(T*M), then 

(6.46) 
^mpl 

m^ù 
ß = 

<_1xn(n+l)/2 

lmp 

ml 
mp^ù 

Proof — Let /3max e A* (T*S) be the component of (5 such that 

/jmax 1 A . . . A e n A e l A . . . A e n 

is the component of ¡3 which is a factor of 

e1 A •• • A en A e"1 A • • • A en. 

Then by (6.1), 

(6.47) 
x 

pm^ù 
ß--

r_i\n(n+l)/2 

7,-dim X/2 
JX 

ß^e1 A • • • A e". 

Also, one has the trivial, 

(6.48) (r/3)max 9\o«(x) = det3|T«x-ù^m 

Prom (6.47), (6.48), we get (6.46). 
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Theorem 6.18. — If a is a smooth section of A#(T*X) 0 A*(T*M), then 

(6.49) 
/ x . 

ù$ 
Y7A*(T*5)§A*(T*X)^ _ N 

Proof — We denote by \7A* (T* S)®A* (T*x) the connection along the fibres X on 
A* (T*S)0A# (T*X). Here vA#(T*s)§A#(T*x) increases the degree in unhatted Grass-
mann variables in A'(T*X) by 1. Clearly, 

(6.50) ^^) 
^ A ' ( r 5 ) G A * ( r x ) a = VA*(T*S)§A.(T*X)RA> 

Also, if dx denotes the de Rham operator along the fibre, which acts naturally on 
smooth sections along the fibre of A* (T*S) 0 A*(T*X), we have the identity, 

(6.51) 
B vA*(T*S)®A*(T*X)ra = dX fB 

VOL. 

Using Proposition 6.17 and (6.50), (6.51), we get 

(6.52) 
FX. 

»J3 ̂ A#(R*5)GA#(T*X)A = /_1xn(n+l)/2 

JX 
dX 

B 
VOL = U, 

i.e. we have established (6.49). The proof of our Theorem is completed. 
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CHAPTER 7 

ANALYTIC TORSION FORMS 
A N D MORSE-SMALE VECTOR FIELDS 

The purpose of this Chapter is to state the main result of this paper, and to check 
its compatibility to known results, like the anomaly formulas for analytic torsion forms 
and the rigidity results which were established in Sections 2.5 and 3.16. Also we verify 
that our main result is compatible to Poincaré duality, and also to taking products. 
Finally, we state a number of consequences of our main result. 

This Chapter is organized as follows. In Section 7.1, we describe the geometric 
setting. In Section 7.2, we state our main result, which relates the analytic torsion 
forms Thi9 (THM,gTX,VF,gF) to the torsion forms TM ( ^ - ( ^ , F ) / ^ - ( ^ , F ) ) OF 
the given family of fibrewise Thom-Smale complexes. In Section 7.3, we give the cor­
responding formula for the Chern analytic torsion forms %h,g (THM,gTX, VF,#F). 

In Section 7.4, we show that our formula is compatible to the anomaly formulas 
and the rigidity results established in the previous Sections, in Section 7.5, we prove 
its compatibility to products, and in Section 7.6, we show it is compatible to Poincaré 
duality. 

In Section 7.7, we derive a relation between the torsion forms associated with two 
families of Morse-Smale vector fields. Finally, in Sections 7.8-7.10, we derive conse­
quences of our main formula when the Xg are odd dimensional or even dimensional. 

7.1. Assumptions and notation 

In the whole Section, we use the notation, 

(7.1) h (x) = xex2. 

We make the same assumptions as in Chapter 3 and in Section 5.5, and we use the 
corresponding notation. In particular, let THM be a G-invariant horizontal subbundle 
of TM, let gTX\gF be G-invariant metrics on TX, F. Also we assume that / : M —• R 
is G-invariant and fibrewise Morse, that hTX is a G-invariant metric on TX, and that 
V / is the fibrewise gradient vector field of / with respect to hTX. We assume that 
Y = —V/ is Morse-Smale in every fibre X. Finally, we fix g G G. 

Let Thi9 (THM,gTX, VF,gF) be the analytic torsion forms which are constructed 
as in Definition 3.31. 
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Recall that XJC\WU,F) denotes the flat connection on C* {Wu, F). Using (5.42), we 
equip the complex of flat vector bundles (C* (WU,F) ,d) with the metric gc (WU>F) 
induced by the metric gF on F\&. Then the Cl (W, F) 's are mutually orthogonal in 
C* (WU,F). Let Thi9 (Ac^wu^',gc^wu^) be the associated torsion forms on S, 
which we construct as in Definition 1.29. 

Let be the Hermitian metric on Hm(X, F\x) which was constructed in 
H*(X F\ ) 

Section 3.6. Let gc.(Wu ^ be the metric on H*(X, F\x) which is obtained from 
the metric gc'(wU>F) as in Section 1.6 via the isomorphism H* (C* (WU,F) ,d) ~ 
H'{X,F\X) which was stated in (5.43). hethg{VH'^F^\g^{^)\gf2{X^x)) G 
ft9 (S)/dfl* (S) be the class constructed in Definition 1.10. 

Let ip (TXg, VTXg) be the Euler current on Mg, which is obtained as in Definition 
6.7. 

By the results of Section 5.3, J\M9 is fibrewise Morse, and V J\M9 is a section 
of TXg, which is a fibrewise gradient vector field for J\M9- By Proposition 5.4, if 
Y — —V/, Y\M9 is Morse-Smale along the fibres Xg. Set 

(7.2) Bg = B 0 Mg. 

Then B P is exactly the zero set for Y\M9- Also B 5 is a finite covering of S, with fibre 
Bg. By Remark 6.9, the current (V/)* ij) (TXg,VTXg) is well-defined, and its wave 
front set is included in T*XP|b9- By (6 .19) , we have the equation of currents on Mg, 

(7.3) d (V/)* V {TXg, VTX*) = e (TX9, VTX°) 
xeB9 

_xyndg{x) ^ 

Also using the properties of the wave front set of (V/)* ip {TXg,VTXg) and [Ho, 
Theorem 8.2.13], we find that the integral along the fibre, 

*9 
h9 (VF,gF) {VfT^(TXg,VTX°) 

is smooth on S. Moreover, by (5.33) and (7.3), we get 

(7.4) d 
*-9 

hg(VF,gF) ( V / ) * V ( r X s , V ^ ) = 
*9 

hg(VF,gF)e(TXg,VTX°) 

+ hg C (WU, F) , gC \W 'F> 

Recall that the function I(6,x) was defined in Definition 4.21, and evaluated in 
Theorems 4.30 and 4.31. By Theorem 4.29, 

(7.5) / (0 ,0) = IË1 
2ds (0,0). 

Definition 7.1. — Put 

(7.6) °I(6,x) = I(6,x)-I(0,0). 
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By (7.5), (7.6), 

[7.7) 01(0,0) 
1 

= 2 
^pm^ù 

ds 
(9,0)- 0 < , 

DS 
0,0 

Also, by Lerch's formula as used in [We, Chapter 7, eqs. (15)-(23)] and in [BZ2, eq. 
(5.54)], 

ù^m 

ds 
(0,0)4 1 

2 ' 
IOK(2TT)=0, 

(7.8) 
^mpl 

ù^m ,0) + ilog(27r) 
1 

2 
^^pml 1 

4V 

ù^pm 
r (Ô/27T) • 

^mù^$ 

" r ^ 
-0 /2TT ) ) , 0 < 6> < 2TT. 

Consider the Z2-graded vector bundle TX\B9 = TXS\B9 © TX"|b9 over the man­

ifold B9. To avoid any ambiguity, let us just say that TXS\B9 is the even part of 

TX\B9, and TXU\B9 is the corresponding odd part. The vector bundle TX\B9 is 

naturally equipped with an action of g. We define the form °IG (TX\B9, V tx 'b») as 

in (4.64)-(4.65). Let °IG (TX\B9) be the corresponding cohomology class. 

7.2. Statement of the main resull 

For convenience, we state the main result in this paper. This result was already 
given in the Introduction as Theorem 0.1. 

Theorem 7.2. — For any g € G, the following identity holds, 

(7.9) Th,g(THM,gTX,VF,gF)- Th„(Ac'(WU'Fi',gc'(wu<Fn 

, T (VH'(X,F\X) H'(X,F\X) H'(X,F\xy 

JX9 
ftä(Vf,/)(V/)>(TIs,V^) 

xeBg 
(-l)ind(x)Tr^®°" \Q\°I„ (T.XIr ) in Çï'(S)/diï'(S). 

7.3. The formula for the Chern analytic torsion forms 

Recall that the function J (9, x) was defined in Definition 4.25, and evaluated in 
Theorems 4.35 and 4.36. By Theorem 4.35, 

(7.10) J (9,0) 
lù^$ù 

2 ds 
9,0). 

Definition 7.3. — Put 

(7.11) °J(9,x) = J(9,x) -J (0,0). 
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By (7.10), 

(7.12) 
9\o«(x) = det 
3|T«x-

1 

2 

pmo 

Kds 
(6,0) 

mop 

dsv 
;o,o) 

By (7.7), (7.12), 

(7.13) °j(e,o) = °i(e,o). 

We define °Jg {TX\Bg) as before. 

Theorem 7.4. — For any g G G, the following identity holds, 

(7.14) TcKg (T»M,gTX,VF,gF - Tch,g I (AC9(Wu,F)f C*(WU,F) 

+ chg H*(X,F\x),t H9(X,F\X) H9(X,F\X 
C9(WU,F) i^Lo 

ù^p^$ 
Jxg 

9\o«(x) = det3|T«x-9\o«(x) = det3|T«x-mù 

xeBg 
;-l)md(a:)TrF^< [g)°Jg (TX\Bq) in îWS)/df i - (S) . 

Proof. — Using (2.122), (3.134), (4.70) and (7.13), and applying the operator Q to 
the left-hand side of (7.9), we get (7.14). • 

7.4. Compatibility of Theorem 7.2 to deformations and rigidity results on 
analytic torsion forms 

Using Theorems 1.11, 1.30 and 3.32, and also (7.4), we find that when applying 
the de Rham operator d to the left-hand side of (7.9), we get 0. Therefore (7.9) is a 
refinement of a known equality on differential forms. This argument shows tautologi-
cally that Theorem 7.2 is compatible with the variation formulas for the terms which 
appear in the left-hand side of (7.9) with respect to the data THM,gTX ,gF. 

In degree 0, Theorems 7.2 and 7.4 are equivalent. They are in fact equivalent to the 
result of Bismut-Zhang [BZ2, Theorem 0.2], which is an extension of a result of Lott 
and Rothenberg [LoRo] to the case of flat vector bundles which are not necessarily 
unitarily flat. In particular, in degree 0 and for g = 1, both Theorems are equivalent 
to the extension of the Theorem of Cheeger [C] and Miiller [Mul, Mii2] to arbitrary 
flat vector bundles, which was given in [BZ1, Theorem 0.2]. 

We claim that our Theorem is compatible to the rigidity results in Theorems 2.20 
and 3.45. Let k (x) be given by (3.127). Let £ e [0,1] -> Vf be a smooth family of 
flat connections on F. As in Section 3.16, we assume that the rank of H'(X,F\x) 
does not depend on £. Clearly, C* (WU,F) is now equipped with a smooth family of 
flat superconnections £ € [0,1] —> ^W of total degree 1. 
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Here, we use the notation of Sections 3.15 and 3.16. By Theorem 2.5, we get easily, 

(7.15) kg (VH'(X,F\X) H'(X,F\x) 
yC*(Wu,F),l>yL2A 

Hm{X,F\x) >2 

kg V 
o 
Hm(X,F\x H* X,F x 9C* WU,F] ,0'#L2,0 

H*(X,F\X (>2) 
^mpù 

^ùpm V mp 
H9(X,F\x 

9L2 
H*(X,F\x) ^ùpm V 

^^mp 
Hm(X,F\x\ 9 H'(X,F\x 

C*(WU,F in iV S ^ùpùm S 

Since deg^ (TXg, VTX*) = dimX - 1, 

(7.16) 
*9 

h9 (VF,£F) ( V / ) > ( T X „ V ^ ) 

9\o«(x) = det3|T 

mùp^m 
Xg 

h9 (yF,gFf\vfT^(TXg,VTX°). 

By Theorem 2.5 and by (6.19), we get 

(7.17) 
mù^^pm 

( M v f , 5 F ) hg(VF,gF))(VfTi,(TX9,VT^) 

02) 

mplopm 
e(TXg,VTX°)Lkt9 (Vf ,5F) 

xeBg 
( - l ^ 1 ' 1 ^ (Vf,5F)x in î î * ( 5 ) / d î î ' ( 5 ) . 

Using (5.33), one finds easily that 
(7.18) 

mpù^$ 
( AC*(Wu,F)r nC'(Wu,F) 
^ ' 9 

lmpù^m J-7C9(WU,F) nC'{Wu,F)^ 
v£ ' 9 in Cr(S)/dCT(S). 

By Theorems 2.20, 3.45 and (7.15)-(7.18), we find that Theorem 7.2 is compatible 
with deformations of the flat connection VF. 

7.5. Compatibility of Theorem 7.2 to products 

Let 7r' : M' —> S' be another fibration with compact fibre X'. We assume that 

this fibration is equipped with data similar to the data for n : X —> 5, including a 

flat Hermitian vector bundle ^F ' , gF ^, a horizontal vector bundle THM', a fibrewise 

Morse function / ' : Mf —> R and a fibrewise Morse-Smale gradient field V ' / ' . These 

data will be denoted with a 

We can then form the product TT" : M" = M x M' -± S" = S x S' with fibre 

X" = XxX'. Let p:M" -> M,p' : M" M' be the obvious projections. Let THM" 

be the horizontal bundle on M" which is induced by THM,THM''. Let ( F " , # F " ) 

be the tensor product of p* ( F , gF) and pf* (Ff, gF' j . More generally, we denote with 
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a " the objects which are attached to this new fibration. In particular the function 
/" = p*f + p'*f is a fibrewise Morse function on M" and V " / " = p* V / + p'* V ' / ' is 
a fibrewise Morse-Smale vector field. 

By an obvious extension of [BLol, Proposition 3.28] to the equivariant setting, we 

get 

(7.19) Thi9 J THM",gTX\vF\gF'r --Xg (F)Thi9 THM',gTX\VF\gF' 

+ Xg(F')Thì9 (THM,gTX,VF,gF) in W(S)/dtl*(S). 

Similarly one can establish the easy formula, 

(7.201 

Th,g 
'AC'(w"u,F")f gC'(w"u,F") Xg (F)Thi9 'ACm(W,u,F')t gC*(W'u,F'y 

+ Xg (F')Tht9 r AC*(Wu,F)r Cm{Wu,F) in îî*(S)/dîî*(S). 

AN identity similar to (7.19) and (7.20) holds for 

h9 VH*(X",F"\X„) H'(X",F"\X, 
iyC*{W"u,F") 

ompo X",F"\X„)\ 

By using transitivity properties of the currents I/J (E,gE) similar to [BGS3, The­
orem 3.20], we get the identity of currents on M", 

(7.21) ( v , 7 " ) * ^ ( r x ; , v r j f i ' ) (V/)* if, {TXg, Vrx«) e (TX'g, VTXs 

X£Bg 

9\o«(x) = det3|T«x-M V 7 0 V (TX'9,VT< 

modulo exact currents whose wave front set does not intersect 7r"*T* (S x S'). By 

(7.21), we find that 

X9 
kg VF\gF"" (V' / 'TV' 

9\o«(x) = det3|T«x-

verifies an identity similar to (7.19) and (7.20). 

Finally using (5.30), we get 

(7.22) 
uuk 

9\o«(x) = det3|T«x- lg}°Ig(TX"\B,, 9\o«(x) = det3 

xeB'g 

/^ynd(x) 

9\o«(x) = det3|T«x-
\g]%(TxX'\Wg)+Xg(Ff 

xeBg 

( - l ) i nd (x )TVF^ \g]°Ig(TxX\Bg), 

i.e. (7.22) also verifies an identity similar to (7.19) and (7.20). 
We have thus proved that Theorem 7.2 is compatible to taking producl 
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7.6. Compatibility of Theorem 7.2 to Poincaré duality 

Let O (TX) be the orientation bundle of TX. Then O (TX) is a Z2-bundle, on which 
g acts naturally. In particular O(TX) can be considered as a flat complex G-line 
bundle, equipped with a flat G-invariant metric. Let gF ®°(TX) be the corresponding 
metric on F* ®o(TX). 

Theorem 7.2 will be shown to be compatible with the transformation / —• —/, F —• 
T ®O(TX). 

By using fibrewise Poincaré duality, we have a canonical isomorphism of flat Her-
mitian G-bundles over S, 

(7.23) H-(X,F\X)* ~Hn- X, F * ® o ( T X ) j 

Also, one verifies easily that 

(7.24) 
mpmlp TH M, gTX, VF* ®°(TX">, gF* ®O(TX) > - l ) n + 1 r M (THM,gTXyF,gF) 

Observe that when replacing / by — / and F by F* ®o (TX), the complex C* (Wu, F) 

is replaced by the complex C* (WS,F* ®o(TX)). Moreover, by (5.14), we have the 

canonical isomorphism of flat Hermitian G-complexes over S, 

(7.25) C (Wu,F)*,d (cn- { WS,F* ®o{TX) pmpl 

From (7.25), we obtain easily 

(7-26) Th,g ^C'(W\F"®o(TX))i C'(W,F*®o{TX)) 

= (-l)»+1Th)9 aC9(WU,F)/ NC'(WU,F)^ 

On Mg, the action of g on O (TX) is given by 

(7.27) 9\o(rx)\Mg = det [flf|Tx] |M9, 

and (7.27) is equal to ± 1 . More precisely, 

(7.28Ì g\o(TX)\Mg ( ]_̂ m̂ Xg 

Using in particular Theorem 6.8, one has the obvious equalities, 

hg ( T-7H*(X,F*®O(TX)) H*(X,F*®o(TX)) 
yC*(Ws,F*®o(TX)) Y9L2 

H*(X,F*®o(TX)) 

(7.29) = (-l)n+1hg 9\o«(x) = det3|T«x-H'{X,F\X) 
yC*(Wu,F) 

H'(X,F\xy 
9L2 

hg ^F*®o(TX) F*®o(TX) = -g\o(TX)\Mghg (VF,gF) 

( - V / ) > ( T X , , V T X * ) = (-l)dimX* (Vf)*RL>(TXg,X?TX«) 

We saw in (7.24) and (7.26) that, when replacing / by — / and F by F*, the first 
two terms in the left-hand side of (7.9) are multiplied by ( - l )n+1. By (7.28), (7.29), 
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the third term in the left-hand side of (7.9) and the first two terms in the right-hand 
side of (7.9) are also multiplied by (—l)n+1. 

When replacing / by - / , and F by F* (g> o(TX), (_i)ind^) [s changed into 
(_^n-ind(^ rj^F^ [g] is unchanged, and % (TX\Bg) is now -°Ig (TX\Bg). So 
we find that under the above transformation, the last term in the right-hand side of 
(7.9) is also multiplied by ( - l )n+1. 

We have thus proved that Theorem 7.2 is compatible with the transformation 
f->-f,F^T®o{TX). 

7.7. Changing the Morse gradient field 

Let now fi be another G-invariant fibrewise Morse function, and let V i / i be an­
other associated G-invariant fibrewise Morse-Smale vector field. More generally, we 
denote with the subscript i the objects which are associated to V i / i . 

Theorem 7.5. — For any g € G, the following identity holds, 

(7.30) TH,G 
9\o«(x) = det3|T«x-l;mpo 

- TH,G 
' £C*(Wu,F)r C*(WU,F) 

+ hg v#*(X,F|x) H'(X,F\X 
iyC*(Wu,F) 

H'(X,F\x 
m9\o«(x) = d 

'*9 
h9 {VF,9F) ( V x / O X T ^ V ™ - ) 

oplp 
h9 (VF,9F) ( V / ) * ^ ( T I 9 , V ^ ) 

9\o«(x) = det3| 
( - l ) i n d l ( x ) T r F ^ ° ï - [g]°Ig {TxX\Blit] 

xeBg 

(-l)ind(x) TrF^°" [g]°Ig (TxX\Bg) in ii'(S)/dQ'(S). 

Proof. — Our Theorem is a trivial consequence of Theorem 7.2. 

Remark 7.6. — In degree 0, in the case where g = 1, Bismut and Zhang [BZ1, The­
orem 16.1] gave a direct proof of Theorem 7.5, by arguments of Laudenbach [La]. In 
[La], if X is a compact manifold, Laudenbach describes the bifurcation of the Thom-
Smale complex along a smooth family t G [0,1] —> Yt of gradient fields associated 
to a given Morse function / , which verify the Thom-Smale transversality conditions, 
except at a finite family of values of t, where generic singularities may occur. If / , f\ 
are two Morse functions on a compact manifold X, Laudenbach also considers a Cerf 
path [Ce] t e [0,1] —> ft € C°° (X, R) connecting / to / i , the functions ft are then 
Morse except at a finite family of values of t where birth or death of critical points 
may occur. Laudenbach also describes the bifurcation of the Thom-Smale complex 
along such paths. By using these two kinds arguments, Bismut and Zhang could give 
a direct proof of Theorem 7.5 in degree 0 for g = 1. 
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In arbitrary degree, for g = 1, we do not know how to give a direct proof of 
Theorem 7.5. Needless to say, it is possible to establish Theorem 7.5 along a smooth 
path t £ [0 ,1 ] —> Yt of fibrewise gradient fields which are fibrewise Morse-Smale 
except at a finite family of values of t where the singularities are at most of the type 
considered in [La] and[BZl]. 

7.8. The case where #F'B is flat and dimXg is odd 

In this Section, we will assume that F\& carries a G-invariant flat metric. Then 
we may and we will assume that the given metric gF'B is flat and G-invariant. 

In this Section, we will also assume that dimX5 is odd. By (7 .28) , this is the case 
in particular if the fibres X are odd dimensional, orientable, and if g preserves the 
orientation. 

Since DIMXO is odd, e (TXq, Vгx^) = 0. Also since pF'B is flat, 

(7 .31 ) hg(C9(Wu,F),g° [W ^)) = 0. 

Then it follows from (7 .4) that 

(7 .32) d 
'x9 

K (VF,£F) ( V / ) > ( T I 9 , V ^ ) U 0 . 

Theorem 7.7. — The cohomology class, 

(7 .33) 

xeBg 
-l)indW TrF*®°* [g] °Ig (TX\Bgy*'} e Heven (5, C) 

does not depend on V f, as long as gF'B is flat. Moreover the following identities hold, 

(7 .34) 

Th,g(T»M,gTX,vF,9F)i>2)- 9\o«(x) = det3|T«x-H*(X,F\x) H*(X,F\X) (̂ 2) 
I 

XEBg 

(-l)ind(x) TrF*®°* [g]°Ig (TX\Bgf (^2) in Çl'(S)/<Kl9(S). 

^loml 
h9 (VF,^F) ( V / ) V ( r ^ ^ ) 

m^ùùp 
= 0 in Heven (S, C) . 

Proof. — Since the metric #F'B is flat, the metric gc*(wuiF) [s flat. In particular 
C* {WU,F) is a flat Hermitian complex of vector bundles. So the chain map d and 
its adjoint d* are flat. Using the identification 

keT(d + d*)~H9(X,F\x), 

H (X F\ ) 
we find that the metric gc.(Wu ^) on H*(X,F\x) is also flat. 

It follows from (1 .70) and from the above considerations that 
(7 .35) TH,G 

'^Cm(Wu,F)f C*(WU,F)^ \ ( ^ 2 ) 
= U. 
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Now we will use Theorem 7.5 applied to / and to j \ — —f. Since the metrics 
H9{X,F\X) , H*(X,F\x 

9c*{wU,F) a n a 9C{WS,F) 
' are flat, 

(7.36) mùppm 'vif(X,F|x) H'(X,F\x) 
*C*(WU,F) 

H*{X,F\X\ 
9\o«(x) = de 

v(>2) 
= 0 in îî*(S)/d«#(S) 

Therefore, in degree ^ 2, the left-hand side of (7.30) vanishes in Qm (5) /dfi* (5). Using 
Theorem 6.8, (7.30) and the fact that dimXg is odd, we get the second equality in 
(7.34). The first equality in (7.34) then follows from Theorem 7.2, from the second 
equality in (7.34) and from (7.35). 

Now, we use Theorem 7.5 again. It follows from the above that the left-hand side 
of (7.30) vanishes in Q* (S) /dQ9 (S). Also, by the above the first two terms in the 
right-hand side of (7.30) vanish in fl*(S)/dfi*(S). Therefore the sum of the last two 
terms also vanishes in Q9 (S) /dQm (S). So we have established the first part of our 
Theorem. 

The proof of our Theorem is completed. 

Remark 7.8. — Since the metric H*(X,F\x) 
1C*(WU,F) is flat, one finds easily that 

hg vH'(X:F\x) H*(X,F\x) H\X,F\X 
yC*(Wu,F) '#L2 

v (>2) 
G Çr(S)/d£r(S) 

does not depend on the choice of V / . Prom the first identity in (7.34), we reobtain a 
proof of the first part of our Theorem. 

Put 

(7.37) I(x) = J ( 0 , x ) . 

Recall that by Theorem 4.31, 

(7.38) / ( z ) ( > 0 ) 
1 
4 

p even 

( 2 p + l ) ! 
9\o«(x) = det3|T«x-- C ( p + i ) 

F IX > 
8TT 

mpl 

Observe that for p ^ 1, £ (p + 1) ^ 0. We identify / (x) to the corresponding additive 
genus. 

Recall that KR0 (S) is the stable real if-theory of S. Also TX\B is a Z2-graded 
vector field. Then 

(7.39) 
XEB 

(-lfnd{x)TxX eKRo(S). 

Equation (7.22) with g = 1 says that the vector bundle in (7.39) behaves like a derived 
Euler characteristic with values in KR0 (S). Namely, let x (X), x (X') be the Euler 
characteristics of X, X'. Then 

7.40) 

XEB" 

(_l)ind^) TXX" --x(x] 
XEB' 

{_v\nd(x)T,x, + y{Xi\ 

XEB 

(-l)ind{x)TxX. 

Also we will write Th (THM,gTX) instead of TM (THM,gTX, VR,#R). 
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Theorem 7.9. — Assume that dimX is odd. Then the vector bundle, 

(7.41) 
xeB 

(-iyDd(x)TXX eKlh(S)®RQ 

does not depend on V / . Moreover, the following identity holds, 

(7.42) Th(THM,gTX)m) M ( y i f (X,R) H*(X,Tl) 
9c(wu,n) 

H*(x,n 
9L2 

mplpmo 

= 1 
xeB 

(-l)ind{x)TxX 
lmp 

in fi*(S)/d«*(S). 

Proof. — Let E e KR0 ( S ) ® R Q be the virtual vector bundle in (7.41). By Theorem 
7.7, 1(E) G Heven (S, R ) does not depend on V / . Since the coefficients of 1 ^ (x) 
in (7.38) are non zero, I is a sum with non zero coefficients of the Newton 
classes of E. Therefore the Pontryagin classes of E in positive degree do not depend 
on V / , so that E itself does not depend on V / . From (7.34), we get (7.42). The 
proof of our Theorem is completed. • 

7.9. The case where #F'B is flat and dimX^ is even 

We still assume that gF\* is flat. Also we assume that dimXg is even. By (7.28), 
this is the case if the fibres X are even dimensional, orientable, and g préserves the 
orientation. 

Theorem 7.10. — The following identities hold, 

(7.43) 

Th,g( {T»M,gTX,VF,gF)(>2)+hg( yH*{X,F\x) H*{X,F\X) H'{X,F\X) 
yC9(Wu,F) '^L2 

(>2) 

9\o«(x) = det3|T«x-
Xg 

h9 ( V ^ , / ) ( V / ) > ( T X „ V ^ ) 
v(>2) 

in Sl9(S)/dn*(S), 

xeBg 
(-l)ind<*> TrF*®°* [g] °Ig (TxX\Bg)^2) = 0 in #even (S, C) . 

Proof. — We use the same arguments as in the proof of Theorem 7.7. Using Theorei 
7.5 leads here to the second identity in (7.43). From Theorem 7.2, we then get tb 
first identity. The proof of our Theorem is completed. [ 

Theorem 7.11. — 7/dimX is even, then 

(7.44) 

xeB 
(-l)ind(x) TXX = 0 in KRo (S) ®z Q . 
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Moreover, 

(7.45) rh(THM,gTXf2)+h\ 9\o«(x) = det3|T«x-H'(X,R) H*(X,R) 
7c(Wu ,R) ' #£2 

\ ( > 2 ) 

= 0 in ST(S)/<Xr(S). 

Proof. — We use Theorem 7.10 applied to F = R. We get 

(7.46) 9\o«(x) 
= det3|T«x-

9\o«(x) = det 

;-i)ind(:i;)Txx 
\ (^2) 

= 0 in Heven l (S ,R) . 

The same argument as in the proof of Theorem 7.9 then shows that (7.44) holds. 
Equation (7.45) also follows Theorem 7.10. • 

7.10. The case where #F'B is flat, dim AT is odd and F is acyclic 

In this Section, we assume that G is trivial, that X is odd dimensional, and that 
F is fibrewise acyclic. 

Theorem 7.12. — The following identity holds, 

(7.47) 

x£B 
(-l)ind(x) TXX = 0 in KR0 (S) ®z Q 

Moreover if the metric gF'B is flat, 

(7.48) Th(THM,g™,VF,gFf2) = 0 in ifeven (X ,R) . 

Proof. — As in the proof of Theorem 5.66, we replace S by a finite normal covering 
S", which is such that m (Sf) acts trivially on (C* {Wu, C) , d). Take x e B,y e B, 
with ind (y) = ind (x) — 1. Recall that the finite set of gradient lines T (x, y) connecting 
x and y was defined in Section 5.1. Assume that T (x, y) is non empty. Then we can 
take a 7 £ r (x, y), which is defined globally on 5". The construction of Section 5.1 
shows that 7 provides an identification of the Z2 graded vector bundles TXX to TyY 
in KRQ (SF). More precisely, 

(7.49) T°X e r ~ Tjx, T^X - r ^ x e R. 

Since F is acyclic, the Euler characteristic of (C* (Wu, F ) , 9) vanishes. More precisely, 
by splitting the complex (C* (Ww, F ) , d) into 'connected' pieces (i.e. into direct sums 
of indexed by x £ £ which can connected by a sequence of gradient lines), the 
Euler characteristic of each connected piece of (C* (WU,F) ,9) vanishes. The same 
vanishing property holds for the corresponding 'connected' parts of (C* (Wu1 C) , d). 

It then follows from (7.49) and from the above considerations that 

(7.50) 

xeB 

] ( - l ) i n d ^ TXX = 0 in KR0 (Sf) 

From (7.50), we get (7.47). 
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Then by (7.34) in Theorem 7.7, and by (7.47), we get (7.48). The proof of our 
Theorem is completed. • 
Remark 7.13. — Equation (7.47), in the case where dimX is odd, should be compared 
with equation (7.44) for the case where dim X is even. 
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C H A P T E R 8 

A C O N T O U R I N T E G R A L 

In this Chapter, under the assumptions of Section 7, we construct a closed form 
7 on R + x R with values in C2'(5)/dfi#(5). The proof of our main result will be 
obtained by integrating 7 on a large rectangular contour in R + x R . This Chapter is 
the obvious extension of [ B Z 1 , Chapter V] and of [BZ2, Section 3]. 

In Section 8.1, we construct 7, and in Section 8.2, we obtain the contour integral. 
As before, we write 

(8.1) h(x) = xe*2. 

Also the assumptions of Section 7 will be in force. 

8 . 1 . A closed form 

For T G R , let be the metric on F, 

(8.2) 5£ = e-2T/5F 

Let Ct,r be the superconnection on Q9(X,F\x) attached to (THM,gTX,g?), and 
let Dt,T be the corresponding morphism, which are obtained as in (3.52). 

Put 

(8.3) M = M x R ; x R , s = s x R ; x R . 

Let 7r : M 1—• S be the obvious projection with fibre X. Put 

(8.4) THM = THM e R 2 . 

t 
A 

r3 
e 

0 

r2 

A 

r4 

fx 

To T 

FIGURE 8.1 
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Over (t, T ) G R ; X R , we equip TX with the metric 
TX 

t 
, and the vector bundle F 

with the metric 9T- Let qTX, qF be the corresponding: metrics on TX, F. 
Let A be the superconnection on (X, F\x) associated to \ THM, gTX,gFj, and 

let B be the corresponding morphism, which are defined as in (3.31). By (3.53), one 
verifies easily that 

(8.5) tN/2§t-N/2 DT,T 
dt 
2t 

N n 
2 

dTf. 

Definition 8.1. — Let 7 be the form on S, 

(8.6) 7 = Trs gh B n dt 
2 2t 

X9 (F) -

Proposition 8.2. — There is a smooth form odd form 6T,T on S, depending smoothly 
on (£, T) G R?j_ x R ; such that 

(8.7) 7 = TVS [gh ( A , T ) ] 
dt 
2t 

Trs [Ngh'(DtiT)] dTTrs [fgh'(DtiT)] 
dtdT 

2t 
Öt,T-

Proof — Our Proposition follows from (8.5) and (8.6). 

Proposition 8.3. — The form 7 on S is odd and closed. 

Proof — This is a trivial consequence of Theorem 3.24. 

8.2. A contour integral 

We fix constants e, A, To such that 0 < e < 1 < +00,0 ^ To < +00. Let T = T£,A,T0 

be the contour shown in Figure 8.1. The contour T is made of four oriented pieces 
Ti , . . . , T4. Let A be the oriented interior of T. 

Theorem 8.4. — The following identity of even forms on S holds, 

(8.8) 
r 

7 = —d 
A 

7-

Proof. — This is an obvious consequence of Proposition 8.3. 

For 1 < k < 4, put 

(8.9) т° 
rfc 

7-

Then Theorem 8.4 says that 

(8.10) 
4 

k=l 
2k d 

A 
7-

From (8.10), we get 

(8.11) 
4 

k=l 
1k 0 in Qm(S)/dn*(S). 
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Our proof of Theorem 7.2 will consist in making A —> +00, T0 —• +00, e —> 0 in 
this order in (8.11). 
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A P R O O F OF T H E M A I N R E S U L T 

In this Chapter , we establish the main result of this paper, which was stated in 
the Introduction and also in Theorem 7.2. Our starting point is equation (8.11). We 
then state seven intermediate results, which are needed in our proof of Theorem 7.2. 
The proofs of six of these results are delayed to the next six Sections. 

The general organization of this Chapter is closely related to [BZ1, Chapter VII] 
and to [BZ2, Section 5]. In Section 9.1, we make simplifying assumptions on the 
metrics gTX,gF and on THM. In Section 9.2, we establish convergence results on 
certain differential forms. In Section 9.3, we state our seven intermediate results. In 
Section 9.4, we compute the asymptotics of the i£'s as A —> +oo,Tb —• +oc,e —> 0. 
In Section 9.5, we show that the divergences which appear in this limit process are 
compatible with equation (8.11), and we obtain an identity of forms in fl* (S)/dQ9 (5). 
In Section 9.6, we show that this identity is just Theorem 7.2. 

In this Chapter, we use the notation of Chapter 3, Section 5.5, and of Chapters 7 
and 8. Also, to complement equation (1.23) in Definition 1.7, we will use the notation, 

(9.1) h* [A1, gE) = Trs [gh (B)], 

the * indicating that the factors 2m are omitted. 
In the rest of the paper, we still use the notation, 

(9.2) h{x) = xex\ 

9.1. Some simplifying assumptions on the metrics gTX\gF 

As we saw in Chapter 7, equation (7.9) in Theorem 7.2 is compatible with many 
natural operations on the data, including the deformation of the metrics gTX\gF\ In 
particular, we may and we will assume in the sequel that gTX = hTX, so that V/ is 
the fibrewise gradient field of / with respect to the metric gTX. 

Also, using the arguments we gave after (5.49), we may and we will assume the 
simplifying assumptions of Section 5.6 to be in force. Namely we assume that so > 0 
is small enough so that we have a fibrewise G-equivariant identification of the 3^o-
neighbourhood Us€o of B in TX\& with a corresponding tubular neighbourhood V3£O 

of B in M, which maps the fibres TX\& into the corresponding fibres X, so that 
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— TXS\B and TXU\B are mutually orthogonal in TX|B, and moreover, under the 
above identification, on V2£o, the metric gTX is just the obvious flat metric of 
TX\B. 

- If x G B, if Z = (Z+, ZJ) G X^X = TXXS 0 TxXn, if \Z\ < 2e0, then equation 
(5.49) holds, i.e. 

(9.3) / ( Z ) = /(x) + ^ ( | Z + | 2 - | Z _ | 2 ) . 

As in Section 5.6, we can modify the metric gTX into another G-invariant metric, 
and choose £0 > 0 small enough so that if x G B, TXXS and TXXU are mutually 
orthogonal in TXX, and that on U2£o — V2£o, gTX is just the obvious flat metric along 
the fibres of TX|B. 

Also, F | B is a flat vector bundle on B. On U2£o — V2£o, we identify F to F | B by 
parallel transport with respect to the flat connection VF along radial lines in TX\&. 
Since F is flat on M, the above identification also identifies the flat connections. Also 
it is G-equi variant. The metric gF^ on F|B is G-invariant. We may and we will 
assume that So is small enough so that on E/̂ o — V^eoi the metric gF is just the 
metric #F'B. In particular, on U2£o — V2eo, the metric gF will be fibrewise unitarily 
flat. 

Let VTX|B = VTXS|B 0 Vtx" |b be a G-invariant Euclidean connection on TX\B 

which preserves the splitting TX|B = TXS|B 0 TXU\B. As in Section 4.1, the con­
nection Vtx |b induces a horizontal subbundle TH (TX|B) C T (TX|B). We may and 
we will assume that e$ is small enough so that under the identification U2£o — V2£o, 
then THM\USQ~TH (TX\B)\V.O. 

9.2. Convergence results on integrals of differential forms 

Let X9ik,l ^ k ^ p be the connected components of Xg. For 1 ^ k ^ p, let 
x(Xg^) be the Euler characteristic of Xg^- The Lefschetz fixed point formula in 
(3.85) asserts that 

(9.4) Xg(F) 
P 

fc=l 

TrF^[g]x(Xg<k). 

Also by (5.34), 

(9.5) X9 (F) 

XGBg 
(-l)inds(x) rFrFx [g]. 
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Set 

(9.6) 

x'a{F) 
dimX 

i=0 
(-íYiTrH'^F^[g}, 

x'g+/~ (F) 
XGBg 

(-l)ind9(x)dim TXXS/"|B9 TrFx [g], 

TrsB° [f] 
X£Bg 

(-ird*{x)TrF*lg)f(x). 

Recall that n = dimX. Then 

(9.7) x'9+(F) + x'g-(F)=nXg(F). 

In the sequel we use the notation of Section 6 with respect to the Euclidean vec­
tor bundle {TXg,gTXa) on Mg, equipped with the Euclidean connection VTXg. In 
particular, for T G R or T G R \ 0, the forms <2T, &T are smooth forms on the total 
space of TXg. They are defined as in Definition 6.3. Recall that V/|M9 is a section 
of TXg. 

Definition 9.1. — Let OLT,&T be the forms on Mg, 

(9.8) OCT = (V/)*aT, #r = (V/)*6r . 

As explained in Remark 6.6, as T —> +oo, the convergence results of Theorem 6.4 
also hold in the sense of microlocal convergence. Also on the zero set B5 of V / | M 9 , 

d2fMg has maximal rank. By [Ho, Theorem 8.2.4], the convergence results of Theorem 
6.5 can be pulled back into corresponding convergence results for the currents OLTI&T-

A more direct easy argument is given in [BZ1, Theorem 3.18]. In particular, from 
Theorem 6.5, we deduce that 

(9.9) 
xg 

TrF[g]fa+00 = Trs^ [/]. 

Let NXg/x be the normal bundle to Xg in X. We identify NXg/x to the orthogonal 
bundle to TXg in TX\Xg. Then g acts on NXg/x. Let e±i0*,O < Oj ^ TT be the 
distinct locally constant eigenvalues of g on NXgjX. Let NOXx be the corresponding 
real eigenbundles. With the notation in (1.16), 

(9.10) N 0i 
xjx 

® R C AT eidJ 
Xg/X 

N е~гвз 
XQ/X if 0 < 6j < 7T, 

N1rxjx N-1xgX 

If x G B^, TxXg and the N 0̂x's are mutually orthogonal with respect to the 
fibrewise Hessian d2f (x). Let (n+ (0) (x) ,n_ (0) (x)) be the signature of the restric­
tion of d2f (x) to TxXg. Similarly let (n+ (0j) (x) ,n_ (Oj) (x)) be the signature of 
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d2f(x) onN% /x. Set 

(9.11) n+ (x) =dimTxXs, n_ {x)=àimTxXu. 

Let h{x) be the holomorphic odd function such that 

(9.12) ti(x)=e*2. 

Definition 9.2. — For T S R+, put 

(9.13) TYlT 
d 

dT 
T 

x9 
TrF [g] faT2/4 

TIT 
1 

2 xg 
h*g(VF,gF)TBT2/4 l d 

2dT x9 
Tg(VF,gF)T*ßTy4. 

Proposition 9.3. — As T —» +oc7 

(9.14) T 
x9 

f(aT - a+00) 
XEBg 

(-1)indg(x) 

4 
(n+(0)(z)-n_(0)(z)), 

rjnl 
*9 

dfßr 
XEBg 

,^yndg(x) 

4 
(n+(0)(s)-u-(0)(s)). 

Proof. — Observe that the integrals in (9.14) are R-valued integrals. Then we use 
[BZ1, Theorem 3.20], with g = 1 and // = d/. • 

Proposition 9.4. — 4̂s T —* +oo, 

T2 (mT - TYSB* [/]) 

XEBg 

(_!)ind.(x) (n+(0)(x) _ „_(0)(a:)) TrFx [3], 

(9.15) TnT -> 0, 

*9 
ft;(v^,^)T2/3x2/4-o. 

Proo/. — By (6.12) and by (9.13), we get 

(9.16) TUT 
*9 

TrF[g}faT2/4 
rp2 

2 Xg 
TrF[g}dfßT2/4. 

By Proposition 9.3 and by (9.16), we get the first identity in (9.15). 
Recall that on L̂ eo? the metric gF is the pull-back of the metric $F'B. There­

fore, on f/2£0, the forms ft* (F,gF) and hg (F,gF) are pull-backs of forms on S. Also 
deg(/3T2/4) = dim(Xg) — 1. It follows that for rj G [0,1] small enough, the inte­
grals along the fibre Xg of ft* (F,gF) PT2/4 and of ft* (F,gF) PT2/4 on U2£o vanish 
identically. Also on the complement of this neighbourhood, as T —> -foe, /3̂ 2/4 and 
~§T@T2/4 converge to 0 like e_cT2, with c > 0. Therefore, we have established the last 
two convergence results in (9.15). • 
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Remark 9.5. — Note that the last convergence result in (9.15) also follows from The­
orem 6.5. 

9.3. Seven intermediate results 
To make our arguments simpler, we will assume from now on that S is compact, 

or, equivalently, that M is compact. If this is not the case, the constants C which 
will appear in the results which follow will depend on the choice of a compact subset 
K CS. 

On Bg, consider the Z2-vector bundle TX\Bg = TXs\Bg 0 TX£g. This vector 
bundle is equipped with a metric such that the splitting TX\B9 = TXS\B9 0 TXg 
is orthogonal, with a connection VTX'B^ preserving the splitting and also the metric, 
and also with an isometric and parallel action of g which preserves the splitting. In 
the sequel, we use the notation of Chapter4 for this vector bundle. In particular if 
x G B^, the function q : TX\&g —» R is defined as in (4.6), and Vj, denotes the 
operator defined in (4.9). 

Let '* be the adjoint of dx with respect to the metrics gTX\gF on (TX, F). Set 

(9.17) D% =dx + d*'*. 
As in (3.38) 

(9.18) kerD$ ~H*(X,F\X). 
Let P^ be the orthogonal projection operator from Q9(X,F\x) on ker Dx with 
respect to the Hermitian metric on £l*(X,F\x) defined in (3.29), which is attached 
to the metrics gTX,gF- Let ^'F'x^ be the metric induced by this Hermitian 
metric on H*(X,F\X) via the identification (9.18), so that #f2*(X,F|x) = ^f2*^'F|x). 
Now consider the Z-graded flat Hermitian vector bundle ^H*(X,F\x),9^2 ^'F'x^. 
We can then use the notation in Remark 1.12. In particular, by following the notation 
in (1.29), set 

(9.19) B £ W * > = | W (H'(X,F\x),gfSX'FM) • 
Similarly to the flat Hermitian complex C* (Wu1 F) equipped with the flat super-

connection Ac*(wu,F)f ̂  for t > 0, we can construct Ŵ as in (1.41). Let 
Nc*(w»,F) be the number operator of C* (Wu, F). 

Theorem 9.6. — Given M > 0, there exists C > 0 such that for t ^ 1,0 < T ^ M, 

(9.20) It. [fgh'(Dt,T)} - Trs \4*fpWgh' (<№F'*>) C 
Vt 

Proof. — For a given T, the existence of C > 0 follows from the methods of [BLol, 
Theorem 3.16]. Uniformity in T £ [0, M] is trivial. • 
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Theorem 9.7. — There exists 5 G ]0,1/2] such that if e, A are such that 0 < e < A < 
+oc, there exists C > 0 such that ifte [e,A],T^ 1, then 

(9.21) |Tr8 [Ngh'iDitT)]-Zg-(F)\ 
C 

TC 

Theorem 9.8. — The following identity holds, 

(9.22) lim 
T 

1 
(TVS Ngh'{Dt,T)]-x!g (F)) 

dt 
2t 

- K 
yif(X,F|x) 

#L2,0 
H*(X,F\X) 

9L2,T 
Hm(X,F\x) -TrsB' [f]T 

1 
4 

(x,;(F)-Xf9-(F))\og(T) 

•l 

0 
Trs NC'(W«,F)GH, C*(WU,F) - X1-(F) dt 

It 
• + 00 

1 
Trs NC*(W»,F)H, TJC*(WU,F) 

~ Xf9 (F) 
dt 
2t 

h*g VH*(X,F\X) 
SL2.0 

H'(X,F\X) 
9c*(Wu,F) 

H*(X,F\x) 1 
4 

(xf9-(F)-X,;(F))log(n) 

in ü'(S)/dW(S) 

Theorem 9.9. — There exists to G ]0,1] such that if t G ]0,£o], as T -foo, 

(9.23) TRS [fghf (Dt,T)] = TraB°[f\ 
1 
4 

X7(F) Xg F 1 
T 

o 1 
T3 

Theorem 9.10. — There exists C > 0 such that for 0 < t ^ 1,0 ^ T ^ i_ 
Vt7 

then 

(9.24) 
1 
t 

TVS fgti Dt,T/Vt — TUT — V t n j <C 

Theorem 9.11. — For any T > 0, the following identity holds, 

(9.25) lim 
i>0 

1 
t 

(TYS [fghf (DttT/t)]-TrBB'\f]) 

xeBg 

TVS [qgtiCD*T))TrF*[g]. 

Theorem 9.12. — There exist t0 G ]0,1], C > 0 sizc/i that for t G]0, t0], T ^ 1, £/ien 

(9.26) 
1 

t 
TVS (AfT/t)] -TrBB'[f\ 

t 
AT (xr^)-xr^)) 

c 
T3 

Remark 9.13. — We will give two different proofs of Theorem 9.8 in Chapters 10 and 
11. Theorems 9.7 and 9.9 will be proved in Chapter 12, Theorem 9.10 in Chapter 13, 
Theorem 9.11 in Chapter 14, and Theorem 9.12 in Chapter 15. 
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9.4. The asymptotics of the 1% 

We start from the identity (8.11), 

(9.27) 
4 

k=l 
ig = 0 in W(S)/dn*(S). 

Note that if an G dQ'(S) is a family of smooth exact forms on S which converge 
uniformly to a smooth form a, then a £ dQ*(S). 

Now we will study individually each /£, 1 ̂  k ̂  4, by making in succession A —> 
+oc, T0 —> +oo, £ —> 0. 

1) The term I? 

Clearly, 

(9.28) TO 
A 

E 
TVS [Ngti (DttT)] 

dt 

2t 

a) A —> +QQ 

By Theorem 3.30, as A -> +oo, 

(9.29) fo1 1 
2 X'^log^)-^1 

4 

E 
TVs [ W (A,TO)] 

dt 
2t 

+oo 

1 
(TVS [at^(a,T0)]-x;(^)) 

dt 
2t 

/3) T Q ^ + O O 

By Theorem 9.7, we see that as To —> +oo, 

(9.30) 
T 

e 
TVS [Ngti (A,To)] 

dt 
2t 

1 
2 

^-(F)log(e). 

By (9.29), (9.30), we find that as T0 -> +oo, 

(9.31) A1 
+ 00 

1 
(TVS[W(A,To) ] -x^(^ ) ) 

dt 
2t 

lì 
1 
2 

X£-(F)log(e). 

Y) E -> O 

We get 

(9.32) T2 1 
2 ̂

-(F)log(e)=0. 

2) The term l£ 

Clearly, 

(9.33) T2 
To 

0 
TFRS [ / ^ ' ( A ^ l d T . 
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152 CHAPTER 9. A PROOF OF THE MAIN RESULT 

a) A —> +00 
By Theorem 9.6, as A —• +00, 

(9.34) 7"° f1 
i2 ^ i2 

•To 

0 
Trs PT{o} fPT{o}gh' RH*(X,F|X)' dT. 

Proposition 9.14. — TTie following identity holds, 

(9.35) T2 -h*g H*(X,F\x) gL2.0 
H*(X,F\x) 

gL2.0 
H*(X,F\x) inQ*(S)/dQ#(S). 

Proof. — Using Definition 1.10 and proceeding as in [BL, Theorem 6.12 ] and in 
[BZ1, Proposition 7.16] , we get (9.35). • 

(3) T0 -^+00 
Tautologically, 

(9.36) l\ + h*g (H*(X9F\x) gL2.0 
H*(X,F\X) 

9L2,T 
H*{X,F\xY 0. 

3) The term 
We have the identity, 

(9.37) J3 
A 

e 
Trs [Ngti (A)] 

dt 
2t 

a) A —> +00 
By Theorem 3.30, as A —> -hoc, then 

(9.38) Â3 
1 
2 

4(F)log(A) I13 
.1 

s 
Trs [Ngti (Dt)} dt 

2t 
+00 

1 
(TYS [Ngti(Dt)}-Xf9(F)ti(0)) dt 

2t 
P) Tq->H-oq 
As To —• +00, l\ remains constant and equal to if. 
7) e ->+0 
By Theorem 3.30, we see that as t —» 0, 

(9.39) T2 n 
4 

X9(F) log(e) 

T3 
i3 

•l 

0 
Trs [Ngti(Dt)] 1 

2 
nXg(F)ti(0) 

dt 
2t 

>+oo 
f 

(ivs № ( a ) ] - X ; w o ) ) 
dt 
2t 
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S) Evaluation of if 

Theorem 9.15. The following identity holds, 

(9.40) <pli = THTG (THM,gTX,MF,gF) 

n 
4 

XG(F) 
1 
2 

X'9(F) 
To 

o 
H! (iy/i/2) - h' (0) 

dt 
t 

+00 

B 
H! I iy/i/2 

dt 

t 

Proof. — Our identity follows from (3.89) and from (9.39). 

4) The term 1% 

Clearly, 

(9.41) 7-0 
I4 

•TO 

O 
Trs[fgh' (D£T)\ dT. 

a) A —» 4~oo 
The term /4 remains constant and is equal to l\. 
0) T0 +00 

By Theorem 9.9, we find that if e G]0, to], as To —> +00, 

(9.42) ll+TrsB'[f]T0 
1 
4 

(xf;(F)-x,-(F))\og(T0) 

T2 
»1 

0 
(Trs [fgh'(D£iT)]-TrsB'[f])dT 

+oo 
1 

TVS [fgh! (De,T)]-TVs^[/] 1 
4 ( X ^ ) - ^ X 1 - G ) ) 

1 
T 

dT. 

7)e-+0 
Put 

(9.43) 

7° 
1 

0 

1 
VE 

(TVS [FGH! (D£,T/Vi)} - TrBB'\f\) dT, 

J2 
1VE 

1 

1 
VE 

(TVs [fgh' {D£,T/Vi)] - TVs^[/]) dT, 

J3 
'+00 

'1 

1 
e 

Trs [fgh'{D£!T/e)] -TrsB°[f] 

S 
4 

Xg(F) 
1 
2 

Xg(F) 1 
T 

dT 

Then 

(9.44) l\ — J1 -F- J2 + J3 
1 
4 (x;+(F)-xr(^))log(^). 
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By (9.9) and by Theorem 9.10, we find that as e —> 0, 

(9.45) J? + / TrF [g] f (a1/4 - a+oc) -±= - j \ = 

i / rg(WF,gF)ß1/4+1- f1 f h*g(VF,gF)TßTyidT. 
Z JXQ Z JO JXa 

Also, using (9.13), we get 

(9.46) J2 
S 

VE 
Trs [fgti (DSiT/e)] - mT/Vi - y/ênT/^ 

dT 

s 

x9 
TrF [g] f (a1/4e - a+00) 

1 

e xg 
TrF [g] f (ai/4 - a+oo) 

1 
VE 

1 
2e x9 

h* {F,gF)(31/4£ 
1 
2 x9 

h* {F,gF)(31/4£ 

1 
2 

1VE 

R 
1 

xg 
tig {VF,gF) TpT2/4 dT. 

By Propositions 9.3, 9.4 and by Theorems 9.10 and 9.11, we find that as e —> 0, 

(9.47) 7° 
Xg 

^F [9] f (0:1/4 - »+oo) 
1 

VE 
J12 

xEBg 

Tr Fx[g] 
•1 

'0 
TrB [qgti (VXT)} + (-iy«d°W (n+(0)(s) - n_(0)(z)) 

1 

rp2 
dT 

+ (_1)ind9(x) ( ^ ( O ) ^ ) - ^ ^ ) ^ ) ) 1 
2 x3 

K(VF,5F)/3I/4 

1 

2 

+oo 

1 
/»; (vF,5F)r/3T2/4dT. 

By Theorems 9.11 and 9.12, using the notation in (9.11), we see that as e —• 0, 

(9.48) J3 -> J3 

XEBg 
TrF* [g] 

+00 

'1 
ITS qgh' DxT 

_(_ i rd . (x ) (n+(a.)_n_(a;)) 
1 

4T 
dT 
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Prom (9.44)-(9.48), we find that as e 0, 

(9.49) T2 1 
4 

(xT(F)-Xf9-(F))log(e) T3 
+oo 

0 
ft! (F,gF)(3udu 

xeBg 
T*F' [g] 

1 

o 
^sfeffft' № ) ] + (-l)ind«(x) (n+(0)(x) - n-(0)(x)) U 

j<2 
dT 

+oo 

1 
Trs [qgh' (2>f.)] - ( - l f d » ^ («+(*) - n_(*)) 1 

4T 
dT 

+ (_1)ind,(x) (n+(0)(x)_n_(o)(x)) 

S) Evaluation of I3 

Theorem 9.16. — The following identity holds, 

(9.50) QI4 
x9 

hg(F,gF) ( V / ) > ( T X , V ™ ) 

xeBg 
(-l)ind^) TrF* [g] 

0<1<r 

1 
2 

n+(6»)(x) -n_((9)(x) Et 
Es (M) 

+ log(2)C(0,O) + l 
r ' ( i) 

2 4 > 0 ) ( ^ k ) 

Proo/. — Clearly, 

(9.51) <P 
x9 

K(F,gF)(3u 
xo 

^h;(F,gF)(2infmX^/2ipPu. 

Since deg(pu) = dimX^ — 1, 

(9.52) (2i7r)dimX* <p/3u = (2in)1/2l3u. 

By (1.23), (9.51), (9.52), we get 

(9.53) q 
x9 

K(F,gF)(3u 
*9 

hg(F,gF)pu. 

Using (6.14) and (9.53), we obtain, 

(9.54) q 
+oo 

0 Xg 
K (F,gF)(3u du 

*9 
hg(F,gF) (Vfr^(TX,gTX). 

Also by (4.52), (4.55), (4.56) and by Theorem 4.23, 

(9.55) q 
+oo 

'o 
Trs [qgh' (VT)]{>0) dT = (-l)ind^) jj><>) (TX\B,) . 

Using (9.49), (9.54), (9.55), we get (9.50) in positive degree. 
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Now we use the notation of Section 4.2 with respect to the action of g on TX\B9 

By Propositions 4.11 and 4.18, if x £ Bg, 
(9.56) 

TVS [Tqgh'{Vr)) (o) 1 + 2 ^ ( - l ) i nd^ Trs 
da J 

1a/aTo(^/4,^ ,0) 
2 <j(T'2/4,£,0) |T'=aT,a=l-

By Proposition 4.15 and by Remark 4.16, we find that as T —> 0, 

(9.57) 
l£a(T2/4,ie,0) 

2 o(T2/4,i6,0) 
IoC2rZ 

T 
0(T), 

and that as T —» +00, 

(9.58) 
l^a(T2/4, i0 ,O) 

2 a(T2/4,i6,0) 

1 
4 

O e-T/2 

For s E C, Re (s) > 1, put 

(9.59) V>(«) 
1 

T(s) 

+00 

3 
rj-iS—1 

l^a(T2/4,*0,O) 
2 a(T2/4,i<9,0) 

1 
4 

dT. 

By (9.57), (9.58), ^(s) is a holomorphic function of s, which extends to a holomorphic 
function near s — 0, and moreover, by (9.57) and (9.58), 

(9.60) V'(0) 
.1 

0 

l ^ a ( r 2 / 4 , W , 0 ) 

2 <r(T2/4,i<9,0) 
l6>G27RZ 

r 
dT 
T 

•+00 

1 

1 ^ < T ( T 2 / M 0 , O ) 

2 a(T2/4,i(9,0) 
1 
4 

dT 
T l#€27rZ 

r ' ( i ) 

4 

By (4.89), (4.93), (9.59), we obtain, 

(9.61) V>(*) = 2 - 1 c ( M -

So by (9.60), (9.61), we get 

(9.62) 
.1 

'0 

• l^a(T2/4, i0,O) 
2 a(T2/4,iO,0) 

IoC2rZ 

T 

dT 
T 

+oo 

1 

1^T (T2 /4 ,Z0 ,O) 
2 a(T2/4,z<9,0) 

1 
4 

dT 
T 

10G27TZ 
r ' ( i ) 

4 
1 
2 

E£ 
dt 

(0,O)+log(2)C(0,O) 
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Now, we have the obvious, 

(9.63) 1 + 2 
d 
da 

>i 

o 

l^<7(T '2 /4 ,^ ,0) 

2 a{T"/4,iO,0) 
\T'=CLT 

1(9g2TTZ 
aT 

dT 
T 

» + 00 

'l 

1 ^ ( ^ / 4 , ^ , 0 ) 

,2 <r(T'2/4,z0,O) 
\T'=aT 

1 
4 

dT 
T 

\a=l 

1 

0 

l£a(T2/4,i6,0) 

v2 a(T2/4,i0,0) 
10627TZ 

T 
dT 
T 

-FOO 

a 

l^a(T2/4,z0,O) 
2 <r(T2/4,i<9,0) 

1 
4 

dT 

T 

2 x l0e27rZ 1 
2 

By (9.49), (9.56) and (9.63), we get (9.50). The proof of our Theorem is completed. 

9.5. Matching the divergences 

Theorem 9.17. — The following identity holds, 

(9.64) I3 +I4 i 

'o 
Trs [NC*(Wu,F)gh' (BC*(Wu,F)) ~ X'G~ (F) 

dt 
2t 

+ 00 

1 

Trs [NC*(Wu,F)gh' (BC*(Wu,F)) 
~ X'G (F) 

dt 
2t 

-h; (H'(X,F\X) 
9L2,O 

H9(X,F\X) 
9C*(WU,F) 

H'(X,F\xy 

1 
4 

ffî (F) - x'~ (F)) log(Tr) = 0 in n-(S)/d«-(S). 

Proof. — Recall that by (9.27), 

(9.65) 
4 

k=l 

I% = 0 in îî#(5)/dîî#(5). 

As A —• +oo, the following diverging terms appear in (9.29), (9.38), 

(9.66) 1 
2 

4 (F) log (.4) 
1 
2 

4 (F)log(A)=0. 

By (9.65), (9.66), we get 

(9.67) 
4 

k=l 
Il = 0 i n ft*(S)/d£R(S). 
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Using Theorem 9.8 and (9.31), (9.36), (9.42), we find that 

(9.68) I1 + I3 +I4 
•1 

0 
Trs NC-{W^F)gh, BHm(X,F\x) ~ X'- (F) 

dt 
2t 

»+oo 

G 
Trs Nc'^^gh' Br{X'FM) \-x'(F) 

dt 

2t 

-ng\tt (A., r \x ), 5L2,0 H*(XF|X)>#C«(IV" F) ) 

+ 7 (x'i (p) - X'g+ (F)) log(TR) = 0 in ü'(S)/dü'(S). 

By (9.32), (9.39), (9.49), as s -> 0, we get the diverging terms, 

(9.69) \ (x'g- (F) - x'g+ (F) + x'g+ (F) - X'g~ (F)) lo§ (£) = °-

From (9.68), (9.69), we obtain (9.64). The proof of our Theorem is completed. 

9.6. A proof of Theorem 7.2 

By (1.70) and by Theorems 9.15, 9.16 and 9.17, we get 

(9.70) THTG (THM,gTX,VFgF) Th,9 (C- (Wu, F), vC'(w»,F)9gc'(w«,F)\ 

h9 (H*(X,F\X) 9L2,O 
H\X,F\x) 

yC*(Wu,F) 
H*(X,F\xY 

*9 
h9 (F,gF) ( V / ) > ( T X , V ™ ) 

X&Bg 
(-l)ind"(x) TrFx [g] 

o<o<R 

1 
2 

n+{0)(x) -n_(0)(x) 
St 
ds 

(e,o) 

+ iog(2)C(e,o) + i + 
log(7T)-r'(l)-

2 
+ /(>°) (TX|Bfl) 

1 
4 

(X'g+ (F) - X'g~ (F)) 

1 

T 
fti (iy/i/2) - ti (0)) dt 

t 

+oo 

0 
ti (iVt/2 

dt 

t 
Oin fi*(S)/dfi*(S). 

Also, one has the trivial, 

(9.71) 
«1 

0 
ti (iVi/2) - f t ' (O) 

dt 
t 

+oo 

1 
ti (iVt/2 dt 

t 
l 

o 
e"'/4 - 1 

dt 
t 

>+oo 

sq 
c-t/4 dt 

t 

1 
2 

.+oo 

r0 
e-^dt 

r , ( l ) + 2(log(2)- l) . 

Moreover by (4.97), for any 0 e R, 

(9.72) C(M): 
1 
2 

Prom (5.33), (7.7), (7.8), (9.70)-(9.72), we get (7.9). The proof of Theorem 7.2 is 
completed. 
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G E N E R A L I Z E D M E T R I C S : 
A F I R S T P R O O F OF T H E O R E M 9.8 

The purpose of this Chapter is to give a proof of Theorem 9.8 using the theory 
of generalized metrics. It is close in spirit to the proof of the corresponding result 
in degree 0 which was established in [BZ1, Theorem 5.5]. The idea is to show that 
for T > 0 large enough, we can construct a filtered finite dimensional subbundle 
F£'1] C A* (T*S)®Sl*(X,F\x), which we identify via P°° to A* (T*S)®C* (WU,F). 
The Gr of the vector bundle FĴ '1' is just the bundle of sum of the eigenspaces of 
the fibrewise Laplacian A^°^ associated to small eigenvalues. The difficulty is then 
to control the behaviour of torsion forms for C (WU,F) associated to generalized 

, . C'(WU,F) m 
metrics gT v as I —> +oo. 

In Chapter 11, when / is supposed to be fibrewise nice, and also parallel with 
respect to THM (a choice of such a / is always possible), another proof of Theorem 
9.8 will be given, which relies on the precise estimates on the eigenvalues of 
obtained in Helffer-Sjostrand [HSj], which were given a simpler direct proof in [BZ2, 
Theorem 6.12]. 

This Chapter is organized as follows. In Section 10.1, using the simplifying as­
sumptions of Section 9.1, we identify the geometric setting near B using the results of 
Chapter 4. In Section 10.2, we introduce the eigenbundles associated to small eigen­
values. In Section 10.3, we give various algebraic properties of the curvature A^ , 
associated to the metrics gTX\gF. In Section 10.4, we introduce a projector P !̂'1' on 
F^'1', and in Section 10.5 their obvious analogues P[°y'. 

In Section 10.6, by restriction of P°°, we construct the maps P̂ ? : F^'1' —> 
A*(T*S) 0 C* (Wu, F). In Section 10.7, we construct the generalized metrics 
gT K ' \ In Section 10.8, we obtain the obvious extensions P ^ of P^, and we 
study their asymptotics as t —> +oo, and also the asymptotics of the corresponding 
generalized metrics gtTK ' ;. In Section 10.9, we include t > 0 as a base parameter, 
so that S is replaced by S x R̂ _. In Section 10.10, we construct superconnection 
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forms for Fy' J similar to the forms of Chapters 1 and 2. In Section 10.11, we relate 
these forms to superconnection forms associated to the generalized metrics gfT^W 
on C*(WU,F). 

In Section 10.12, we state a simple identity on generalized torsion forms. In Section 
10.13, we state a result on generalized metrics, which implies Theorem 9.8. The 
next Sections are devoted to the proof of this result. In Section 10.14, we introduce 
the projectors PT, which are analogues of the projectors P̂ ? with respect to the 
harmonic oscillators of Chapter 4. In Section 10.15, we extend the instanton results of 
[HSj, BZ2] to the present geometric setting. Our projectors P̂ ? being perturbation 
of ordinary self adjoint projectors PJ?'1^ by nilpotent operators, the methods of [BZ2] 
have to be adequately modified. Finally, in Sections 10.16 and 10.17, we complete the 
proof of the result stated in Section 10.13. 

We assume the assumptions of Chapter 9 to be in force, and in particular the 
simplifying assumptions of Section 9.1. Also we use the notation of the previous 
Chapters. As in Chapter 9, we suppose that S is compact, so that M is also compact. 
As before, we use the notation, 

(10.1) h(x) = xex\ 

10.1. The harmonic oscillator near B 

Recall that B is the set of fibrewise critical points of / . Now we use the notation of 
Chapter 4, with M = B. Also the Z2-graded vector bundle E — E+®E- will be here 
TX|B =TXS\B®TXU\B. The metric gTX induces a metric gTXIB = gTXS\*®gTXU\*. 
If x G B, the vector spaces Ix, 1% were defined in Definition 4.1. 

Clearly, F|B is equipped with a flat connection VF'B. We denote by V/<g)F'B the 
connection on I<S>F\s induced by V7and VF'B. The metric gF induces a metric #F'B 
on F|B- Let T be the restriction of / to B. Then by (9.3), using the notation in 
(4.6), if x G B, Z G (TX\B)X , \Z\ ^ e, set 

(10.2) f(Z)=F(x) + q(Z). 

For T G R, the metric gF induces the metric # '̂B on F|B , which is given by 

(10.3) ,£lB=e-2rV|B-

Let C/<S>F'B be the canonical flat superconnection on / 0 F|B which is attached to 
the above situation. As in (4.5), we have the identity, 

(10.4) C/§FIB - dTX\* + V/§F'B + ii?Tx,BZ. 

Given T G R, let C^0F'B be the adjoint flat superconnection with respect to the 
metrics gTX\B,gpB. By an obvious extension of (4.8), we get 

(10.5) 4§F|b =dTXlB* + 2Tiz+_z_+V/§FlB+o; ( f | B ^ f | b ) - 2 T ^ - ^ t x ' b Z A . 
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As in (4.9), we set 

(10.6) rI%F\B 
\srp 

1 
2 

Ksrp CIOF|B 
T 

p/SFlB 1 

2 
CIOF|B 
T 

£/®F|B 

A related construction, which extends (4.10) is as follows. First, we extend tem­
porarily / given by (10.2) to TX|B. Set 

(10.7) TTWIB e-TfclêF\'BeTf^ CIO|B 
T 

eTfC&F&e-Tff 

V^rp 1 
2 

CIOFB 
T 

CIOFB 
T 

p/SFlB 1 
2 

CIOFB 
T 

7^§F|B 

As in (4.11), 

(10.8) ^/SFIB 
L/J1 

E-TfCTe Tf DIOFB 
T 

E-TfCTe Tf 

Then, by (4.13), 

(10.9) 

K^rp cfTX 1 B* + Tiz+_z_ + V/êFlB +- TdT - RTX\*Z. 

£^F|B cfTX 1 B* + Tiz+_z_ + V/êFlB + ( f |b , SF,b) - TdT - RTX\*Z. A . 

By (10.7), we get 

K^rp 1 
2 

¿ ^ , . + ¿ 2 ^ 1 « ' T 
2 

( iz+-z_+(^+-^-)A)+V/§F'B 

(10.10) 
1 
2 

a; F|B,<?F|B 
1 
2 

iRTXBZ RTX^ZA 

CIOFB 
D 

1 
2 

dTX|B,*_dTX|BA T 

2 
(iz+-z_ - ( Z + - Z _ ) A ) 

1 

2 
^(f|b,<?F|b) 

-TdF 1 

2 
VxiBZ + #TX"BZA . 

Let ei-> • • -1 en+ be an orthonormal basis of TXS\&, let en+_|_i,..., en be an or­
thonormal basis of TXU\B. Then by (4.14), 

(10.11) ^/gF|B,2 
Lsp< 

1 
4 

{ei,RTX^ej)c{ei)c(ej) 2 1 

4 
{ei,RTX^ej)c{ei)c(ej) 

1 
4 

u;2 |F|B,gFB T2 
4 

|Z|2 
T 

4 
1<i<n+ 

c(ei)c(ei) 

s++1<i<n++n 

c(e*)c(e*) 

In particular, by (10.11), we get 

(10.12) -^/SFIB^O) 1 
4 

TX\B 
ji2 

4 
Z|2 

5 

4 
1<i<n+ 

c(ei)c(ej) 
s++1<i<n++n 

c(e»)c(ei) 
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Clearly, 

(10.13) SP CIOFB2 
T 

sP py/gFlB̂ .CO) 

The operator 
py/§F|B,2,(0) is a harmonic oscillator. Take p non zero in Amax (T*XW|B). 

Let fT be the one dimensional vector space spanned by exp (—T\Z\2/2)p. Then by 
[W], [BZ1, Proposition 8.3], 

(10.14) ker CT /§F|B,2,(0) |T O F|B 

Let pT be the orthogonal projection operator from / on fT. Then pT extends to 
an endomorphism of I <g> F\B- Note that when acting on / ® F | B , PT LS °f the form 
pT (8) 1. 

For T e R+, using (4.12), we get 

(10.15) Sp py/gF|B,2,(0) T 
2 N. 

10.2. The eigenbundles associated to small eigenvalues 

For T ^ 0, recall that dX'* is the adjoint of dx with respect to the metrics gTX , 

Let (X'F'X)' be the corresponding adjoint connection to V17 (X'F'X), and let ^ 
be the adjoint superconnection on Çlm(X,F\x) to A' with respect gTX, gF. By (3.12) 
and (3.30), 

(10.16) ^A' = 4'*+vf^'F|^'*-T^A. 

^ = 4 ' * + v f ^ ' F | ^ ' * - T ^ A . 

As in (3.31), set 

(10.17) AT 1 
2 

(A""T +A') .B71 
l 
2 

(A""T +A') 

Clearly, 

(10.18) Arp l 
4 (A""T +A') 

In the sequel, we will also use the notation, 

(10.19) AT = e-TUTeTf, BT = e-TfBTeTf. 

Also Sp is our notation for the spectrum. If H e A* (T*S) <g> End (fi*(X,F|x)), 
let tf(0> be the component of H in End (9,'(X, F\x)) • Clearly, 

(10.20) sp (^) = sp te2) = sp = sp te2-(0)). 
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r_ i r+ 

- 2 .0 2 

—i 

FIGURE 10.1 

Definition 10.1. liseS, let F [o,i] 
Ts 

(resp. F [o,i] 
Ts 

be the direct sum of the eigenspaces 

of A 2,(0) 
T (resp. A 2,(0) 

Ts associated to eigenvalues A G [0,1], let R [0,11 
T,s 

(resp. F [0,1] Ts 
be 

the orthogonal projection operator from A* ²( Xs, F|Xs) TT 
p\Xs,F\Xs) on [0.11 

T. s (resp. 

from (fi- (Xs,F|xJ ^•(XS,F |xJ) on F [0,11-
Ts 

Clearly, we have the obvious orthogonal splittings, 

(10.21) T [o,i] 
Ts 

dimX 

i=0 
F [0,l],t 

Ts 
T ;o,i] dim X 

i=0 
m [0,l],i 

Ts 

Also, 

(10.22) P [o,i] 
Ts 

e-Tf P [0,1] 
Ts 

eTf 

Let Ml be the number of elements in Bl. Equivalently, Ml is the number of critical 
points of / in a given fibre X whose index is equal to i. 

Theorem 10.2. — There exists T0 ̂  0 such that for T ^ To, 

(10.23) Sp A 2,(0)' 
T 

ERA 
l 
4 

U[4,oo[, 

rk (F ri 
T,3 

M\l^i^ dimX. 

Proof. — For a given s G S, this result was established in [BZ1, Theorems 7.8 
and 7.9]. Since S is compact, a trivial uniformity argument shows that we can find 
T0 G R+ such that (10.23) holds for any s G 5, T ^ T0. • 

By the above, it follows that the Fj?'^, F^l's are the fibres of smooth Z-graded 

vector bundles FJ?'1 ,̂ FJ?'1^ on S, which are subbundles of fi*(X, F\x). Clearly, 

(10.24) h'(x) = (l + 2x2)ex\ 

Put 

(10.25) r(x) = (l-2x)e~x. 
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Let 5 be the unit circle in C. Let r = T+ U T_ be the contour indicated in Figure 
10.1. 

Definition 10.3. — For t e R+,T ^ T0, put 

(10.26) Kt,T = wt-1 1 
2iir IT 

r(t\) 
A _/l̂> 

dAwt 

Lt,T 
1 

2ZTT Vts 

h'(\) 
A - A , r 

dA. 

Proposition 10.4. — The following identity holds, 

(10.27) hi ( A , T ) = -K*,T + -^t,T-

Proo/. — By (10.24), (10.25), 

(10.28) ti ( A , r ) = r (C?|T) . 

Using Proposition 3.17 and (10.20), (10.23), we get (10.27). 

By (10.27), 

(10.29) TYS [Ngti ( A , T ) ] = [NgKtiT] + Trs [NgLt,T] • 

Theorem 10.5. — There exists C > 0, c> 0,6 e ]0,1] swcft tftat fort^l,T^ T0, 

(10.30) |Trs [ A ^ T ] | Ce~ct 
ts 

Proof. — Set 

(10.31) Mt,T,a vr1 
1 

2ï7T r 

exp(—taA) 
A - A2T dAwt 

Then by(10.25), 

(10.32) Kt,T 1 2 
<9 
9a 

MT,R,A|A=L. 

Put 

(10.33) Mt,T,a = e-TfMt,T,aTf 

By (10.19), (10.31), 

(10.34) Mt,T,a = w-1 1 
2i?r 'r 

exp(—taA) 
A - -A2T dXtpf 

By (10.33), 

(10.35) Trs [JVgMt,r,a] = Trs [iV5MT>T,A; 

Clearly if dx'* is the adjoint of dx with respect to gn'\x'F^x), then 

(10.36) <#•* =dx'* + 2TiVf. 
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Recall that y"*(*'F|x)'* = \?^'(x<Flx)'* is the connection adjoint to vn*(x,F|x) 
with respect to ga (X<F\X). Let (df)H be the horizontal component of df. Then 

(10.37) V?'(x,F|x) •* = Vfi* (*>F|*) - 2T (dff . 

From (10.16), (10.17), (10.36), (10.37), we get 

(10.38) AT = \ (DX + 2T«V/) + Vn'(x'F|x)'" -T(dff - \c {TH). 

If vn»(x,F|x),« = Vo'(X'F|x^", by (10.19), 10.38), we obtain, 

(10.39) AT = \ (DX +Tc(V/)) + vn*(*'F|*)'M - J c ( T " ) . 

The essential point in (10.39) is that the term T (df)H has disappeared. 
Now we claim that the proof of our Theorem is formally the same as the proof 

of [BIO, Theorem 9.5], where a similar problem was considered in the holomorphic 
category. In fact observe that fibrewise, B is the zero set of V/. Also c (V/) anti-
commutes with the principal symbol c of DX. By the simplifying assumptions we 
made in Section 9.1, near B, 

(10.40) AT = C!?FI*. 

By (10.14), the kernel of C^F|b,(0) can be identified with F | B (g>ow|B. Using (10.10) 
and the fact, we get the easy formula, 

(10.41) PTATPT = VF|B'W. 

Observe that 

(10.42) Sp(vF|B'w'2) - { 0 } . 

Therefore, 

(10.43) 
1 

2Î7T , T 

exp(—taX) 
A - VF|B,u,2 dX = 0. 

By (10.32), (10.35), (10.39), (10.40)-(10.43), we find that we can proceed as in 
[BIO, Theorem 9.5] and get (10.30). The proof of our Theorem is completed. • 

Remark 10.6. — By Theorem 10.5, we find that as T —> +oo, 

(10.44) 
+oo 

1 
Trs [NgKttT] 

dt 
2t 

0. 

Therefore, to establish Theorem 9.8, we only need to study the limit as T —> +oo of 
' + 00 

1 
(TVS [NgLttT] - X'G (F)) 

dt 
2t' 
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10.3. The grading of A% 

If k G A* (T*S) §End (îî# (X, F\x)), we can write k in the form, 

(10.45) 
dim 5 

k = kU) e AJ (T*S) ®End(Q*(X,F|x)) • 
j=0 

Observe that A* (T*S) §End (fi* (X, F|x)) is a Z-graded bundle of algebras. Namely, 
if k is taken as in (10.45), deg k — p if for any j , 

k(i) e V (r*S) ® Hom(ft* (X, Fix), A*+p-j(X, F|jf)) • 

Moreover A# (T*5)gEnd (ft*(X,F|x)) inherits a filtration F from the filtration of 
A* (T*S). We will say that deg (k) ^ 0 if it is the sum of elements of non negative 
degree. Also we will write that 

deg (jfe) ^ 2F (k) 

if for any j , deg (kj) ^ 2j. 

Proposition 10L7. — ForT^ 0, e A* (T*S) §End (ft#(X, F|x)) ¿5 swc/i that 

(10.46) 0 < deg (A2T) ^ 2F ( ^ ) . 

The only term in A^ which makes the first (resp. the second) inequality in (10.46) be 

an equality is \ A., drjp (resp. \[dx,A'+] ) . 

Proof. — Clearly deg(A') = 1. Also in A'^, d%'* is of degree - 1 , and V " * ^ ' ^ ' * 

and THA have positive degree. Therefore, deg (Ay,) ^ 0. Moreover the only term in 
A\ with degree 0 is A [A\ d*'* j . 

Clearly, 

(10.47) [A',A'i]= [dx,A'±} + vfi-(x,f|x))A« + [iTH,A'i]. 

Now dx is of total degree 1. The degree of dx'* is —1 and its F is 0, the degree of 
n* (x,F\x) ,* zf 

VT is 1 and its F is 1, the degree of T A is 3 and its F is 2. Therefore 
equality holds in (10.46) for [dx,A'£\. Also vrt-(x,F|x))dX, has degree 0, and its 

F i s 1, 7n-(x,F|x);VJ*(^U)- has degree 2 and its F is 2, va-(x>FU);TifA 

has degree 4 and its F is 3. Finally 
'. _n*(x,F|X),* 
zT,VT v 7 

has degree 2 and its F is 3, 

[iTH,dx>*] has degree 0 and its F is 2, and [iTH,THA] has degree 4 and its F is 4. 
This completes the proof of our Proposition. • 
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10 .4. The projectors p£'1] 

Observe that A* (T*5) acts on A* (T*S) § fi# (X, F\x). Let J C C be the circle of 
centre 0 and radius 1/4. Recall that by (10.20) and by Theorem 10.2, for T ^ T0, 

(10.48) Sp (A^)n6 = 0. 

Definition 10.8. — For T ^ T0, put 

(10.49) P[o,i] 
T 

1 
2i?r 

dX 
]5Х-АУ 

Clearly, P£'1] G A* (T*S) ®End (fi- (X, F|x)). Then we write, 

(10.50) P[o,i] 
T 

dim 5 

j=1 

P[0,L],(I) 

with Pp1]'{j) G AJ (T*5)®End(îî*(X,F|x)). 
In the sequel, the operator * acts on A* (T*S)® End (Sl*(X, F\x)) as in (1.8), with 

respect to the metric gTF2* (X F\x) . We will often say that if k is such that k* = k, then 
it is self-adjoint. 

Theorem 10.9. — For T ^ To, P^ '1^ zs an even projection operator acting on 
A* (T*S) <8>Q* (X, F\x), with finite dimensional range, which commutes with the 
action of A* (T*S) and with N\A'^, and is such that 

(10.51) P[0,L],(0) p[0,L] 
T • 

Also, 

(10.52) P[0,l],* _ P[0,l] 0<deg(p£>1]) < 2 f ( P £ ' 1 ] ) . 

If 

(10.53) F^1]=Im ( p J M ) , 

then F^ '1^ is a Z2-graded filtered vector subbundle of A* (T*5) OA* (X,F\x), on which 

A* (T*S), A', J4£ act. The linear map a G A* (T*5) O F[0.1] -> P^'1]a G F£ '1 ] ¿5 an 
isomorphism of Z2-graded filtered vector bundles. 

For any k' G N * , we ftave £Ae identity, 

(10.54) P[o,i] 
T 

1 

2Z7T '(5 

dA 

A - B!£ 

Proof. — For A G 6, (A — Ay) 1 is a compact even operator. Therefore P^ '1^ is a 
compact even operator. Also by [ReSi, Theorem XII.5], P^ '1^ is a projection operator. 
Therefore the range F^'1^ of P^ '1^ is finite dimensional. Moreover P^ '1^ commutes 
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with A?r. Since A', and the elements of A* (T*S) commute with A^, they also 
commute with P '̂1 .̂ We write Aj, in the form, 

(10.55) A2 - 42'<°) 4- 42'(>°) 

Then if A G <J, 

(10.56) {\-A\Y" 
DIMX 

¿=0 
A - A 2[0] 

- 1 42,00) 
rxrp 

¿2,00) A - 4 ' ( 0 ) 
- 1 

so that A^>0^ appears i times in the right-hand side of (10.56). The term corre­
sponding to i = 0 is obviously equal to the projection operator PJ?'1 ,̂ i.e. (10.51) 
holds. Also since A^* = A^, the first identity in (10.52) also holds. Also AJ^^ is of 
degree 0. Using Proposition 10.7, (10.49) and (10.56), we get the second identity in 
(10.52). 

Since the projector P '̂1̂  depends smoothly on the parameter s G S, its range 
F ^ ' 1 ] is a finite dimensional vector subbundle of A* (T*S) 0ft* (X,F\X). Since p£'1] 
is even, FJ£'1] is naturally Z2-graded. Also A* (T*5), A!,A!^ act naturally on F£ '1] . 

Moreover F ^ ' 1 ] inherits a filtration from the filtration of A* (T*S) ®Q9(X,F\X). If 
/3GF^1]^, then 

(10.57) (3 = B(j) + /jO'+i) + . . . 

Since Pp1](3 = (3, using (10.51), we get 

(10.58) P[0.1]B(j) = B(j) 

so that (3^ G AJ (T*S) ^F^?'1'. This way, we have defined an injective linear 

map Gr7' ^ F ^ ' 1 ^ —> AJ1 (T*S) 0FJ?'1'. An obvious inverse for this map is just 

a G A''(T*S) 0FJ?'1] Pp1]a G Gr7 (F£'1]). Therefore, we have established 

that a G A# (T*5) 0FJ?'1' -> p£'1]a G F ^ ' 1 ] is an isomorphism of Z2-graded filtered 
vector bundles. 

Recall that A^ = —B\. Using the holomorphic functional calculus [ReSi], one 
shows easily that (10.54) holds. The proof of our Theorem is completed. • 

10.5. The projectors P[°̂ 1] 

Since TM = THM © TX, we have a smooth identification TM ~ TT*T5 0 TX. 
Therefore we have the identification, 

(10.59) A ( T * M ) ~ TT*A* (T*5) 0A (T*X). 

Let jVA*(T*M) be the operator defining the Z-grading of A (T*M). Using (10.59), we 
find that ATA#(T*M) acts naturally on A* (T*5) 0ft* (X, F\x). 
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For t > 0, T ^ 0, let A"T be the adjoint super connect ion to A' with respect to the 
metrics gTX /t,gF. 

Proposition 10.10. — The following identities hold, 

(10.60) 

T-NA* <T* M>/2ArTNA* <T* M> /2 1 

V* 
Af, T-NA9(T*Mï/2Ar,TNAm(T*Mï/2 1 

vt 
A" 

Proof. — Since A! increases the degree in A (T*M) by 1, the first identity in (10.60) 
is trivial. Also by (10.16), 

(10.61) T_NA* (T* M) /2A^TNA* <T* M) /2 Vtd*'* 
1 

Vt 
V* 

T 
X,F|x,* 1 

¿3/2 
TH 

Comparing with (3.49), we get the second identity in (10.60). 

By (10.23), we get 

(10.62) Sp {AlT) c [0, t 
4 

]n[2*,+oo[. 

Definition 10.11. — For T ^ T0,t > 0, put 

(10.63) P[o,i] 
t.T 

1 
2Z7T ¿(5 

dA 
A A2t,T 

An analogue of Theorem 10.9 holds for P | ^ , so that P|% is an even projector 

on a finite dimensional Z2-graded filtered subbundle F[° !̂] of A# (T*5) (X, . 

Proposition 10.12. — The following identity holds, 

(10.64) •P[0,l] _ /-JVa#<t* )̂/2T>[0,1]+NA'<T*M>/2 

F[%1] = t~ivA#(T*M)/2F l̂] 

Proof. — This is a consequence of Proposition 10.10. 

Definition 10.13. — For T ^ T0, put 

(10.65) p[o,i] 1 
2I7T 

dA 

A — I Af, dy' 

Still, the obvious analogue of Theorem 10.9 holds for P^'y. In particular P^ 'y is a 

projector on a finite dimensional vector bundle F ^ ' ^ . Also A! and dx'* act on F^T. 

Proposition 10.14. — Given a e A* (T*5) oa*(X), as t -> +oo, 

(10.66) P i ? « = P & + 0 ( l / t ) a . 
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Proof. — Set 

(10.67) RT 1 
4 

A' rfiMX,F|X),* 
T 

jiH 

Then if T ^ T0, A G 5, 

(10.68) (X-A2T) A 1 
4 

A. , ' 
- l 

A 1 
4 

4̂. , drp 
- l 
Rt A 1 

4 
J4 , d̂  

- l 

and the expansion (10.68) only contains a finite number of terms. Also \ Â',dy'*J 
is of degree 0, while RT is of positive degree. Therefore as t —> +oo, 

(10.69) t-»K'lT""l* (A - A?)-1 tNA'(T'M)/* A 1 
4 i4 , drp 

- l 
+ 0(1/*). 

Using (10.49), (10.64) and (10.69), we get (10.66). 

For t > 0,T ^ 0, let Ct,T be denned as in Section 8.1, so that by (3.53), 

(10.70) Ct,T = tN/2At,Tt-N/2. 

Definition 10.15. — Put 

(10.71) •p[o,i] 
rt,T 

1 
2in to 

dX 
A ~ C?T 

Again, P[°^ is a projection operator on a finite dimensional vector bundle F[0.1]. 

Proposition 10.16. — The following identities hold, 

(10.72) 
pSS'̂ rH0,11̂  
p[0,l] _ WV/2p[0,lL-iV/2 rt,T — rt,T 1 ' pSS'^rH0,11^ 

4̂Zso, as t —> +oo, 

(10.73) p l^p j f^ + ofiM). 
Proof. — By (3.54), 

(10.74) Ct,T = tpt l\TtATil)t. 

From (10.49), (10.64) and (10.74), we get (10.72). By (10.51) and (10.72), we get 
(10.73). • 
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1 0 . 6 . The maps P?? 

Recall that P°° : Q9(X,F\X) -> Cm(Wu,F) was defined in Definition 5.2, and 
that P ° ° : «*(M,F) -> A* (T*S) 0 C9 (WU,F) was defined in Definition 5.7. Then 
F°° and P ° ° are chain maps which preserve the Z-grading. Also P ° ° preserves the 
filtrations associated to A* (T*S). 

Definition 10.17. — For T ^ T0, let P?? : F£'1] -> A* (T*5) ®C# (W™, F) , P£° : 
FJ?'1] -> C* (W14, F) be the restrictions of P ° ° , P°° to F^ '1 ] , FJ?'1]. 

Observe that, by (10.51), P^ '1^ — pj?'1^ contains only terms of positive degree in 
the Grassmann variables in A* (T*S). 

Theorem 10.18. — There exists T$ ̂  To such that for T ^ TQ, P^? is an isomorphism 
of 7*2-graded filtered vector bundles, which commutes with the action of A* (T*S). 
Moreover, 

(10.75) poo^/ = ^C#(Wu,F)/poo 

Also, 

(10.76) 0 ^ deg ( P £ ? P £ ' 1 ] ) ^ 2F ( P ? ? P ^ 1 ] ) . 

The map P°°P!°'1] (F^°)_1 : A* (T*S) ® C (Wu, F) -+ A* (T*5) § C* (W", F) ¿5 
one one, increases the total degree, and moreover, 

(10.77) (poopJP.ll (poprl)(0)=1. 

Also, 

(10.78) (Poo)-1 = P[0.1] (Poo)-1 (PooP[0.1] (Poo)-1)-1, 
T T T T T 
(poo)-MO) = (popy1. 

Finally 

(10.79) 0<deg(P5?)-1 < 2 F ( P | ? ) - 1 . 

Proof. — Clearly Pj? is a homomorphism of Z2-graded filtered vector bundles, which 

commutes with the action of A* (T*S). So it maps GrJ (F^11) into 

Gr* (A* (T*S) ® C (Wu, F)) A* (T*S) ®C (Wu, F). 

To prove that Pj? is an isomorphism, we only need to show that it induces an iso­
morphism of the corresponding Gr-bundles. 

By Theorem 10.9, the map a £ A (T*S) gPJ?'11 -• Pp1]a 6 F ^ ' 1 ' induces the 

isomorphism A* (T*S) ®PJ?'1] ~ Gr* (F^'1]) . If a € A* (T*S) § PJ?'11, 

(10.80) P[0.1] a = a+B, B E F[0.1]>j+1 
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Prom (10.80), we get 

(10.81) P£?p£'1]a = P°°a + P°°/3, P°°(3e (A* (T*S) <§)C* (Wu, F)) >j+1. 

Therefore the canonical identification 

Grj ( F £ ' 1 ] ) ~ Aj (T*S)(F£'1] -> 

Grj (A* (T*S) ®Ce (Wn, F)) ~ Aj (T*S) ®Ce (WM, F) 

is given by, 

(10.82) ce G Aj (T*S) §FJ?'1] -> P°°a G A-7 (T*S) §Ce (Ww, F ) . 

Now, by [BZ2, Theorems 6.9 and 6.10], for T ^ T0 large enough, the map a G FJ?'1] -> 
P£°a: G C* (Wu, F) is an isomorphism of vector bundles. So we have established that 
for T ^ To large enough, P™ is an isomorphism. 

By Theorem 5.8, we get (10.75). Also, 

(Ю.83) p™ppl] = P°°P!° '1] . 

Since P°° is a map of filtered complexes which preserves the degree, from Theorem 
10.9, we also get (10.76). 

Using (10.51), we get (10.77). By (10.77), P ° ° P ^ ' 1 ] (P^°)-1 is one to one. Recall 
that (P^0)-1 and P ° ° preserve the total degree. By Theorem 10.9, P™ increases 
the total degree. Therefore P°°P!£ '^ (P£°)-1 increases the total degree. Using the 
invertibility of P ° ° P ^ ' 1 ] (P£°)~\ the first equation in (10.78) follows. From (10.51) 
and (10.77), we get the second equation in (10.78). 

Using (10.52), we get 

(10.84) 0 ^ deg (P°°P!£ '1] (P?0)'1) ^ 2F (P°°P!°'1] (P?0)-1) . 

Using (10.52), (10.77) and (10.84), we get (10.79). The proof of our Theorem is 
completed. • 

Remark 10.19. — Equation (10.75) can be rewritten as, 

(10.85) P§?A' (Pfy1 = Ac^wu^'. 

By (10.85), we have identified the flat Z2-graded filtered vector bundles F ^ ' 1 ' and 
C* (WU,F) and the corresponding flat superconnections A' and Ac*(wu,F>>f. In the 
next section, we will consider the case of A'^. 

Also by proceeding as in the proof of Theorem 10.18, we see that, if P ^ T : F ^ ' 1 ^ —* 
A* (T*S)§C* (Wu, F) is the restriction of P ° ° to F ^ , then P ~ T is an isomorphism, 
and the obvious analogue of the first equation in (10.78) holds, i.e. 

(Ю.86) [ Р ^ г Г = P S (РтГ1 ( P ° ° P S C p ^ T 1 ) - 1 • 
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10.7. The generalized metric ST 
C*(WU,F) 

As we saw in Theorem 10.18, the map (P??)-1 identifies A* (T*S)®C* (WU,F) 
and F£,1] C A' (T*5) (X,F|X). In the sequel, we will consider (P??)"1 as a map 
from A* (T*S) ®C* (Wn, F) into A* (T*S) gfi- (X, 

Let (P??)"1'* be the adjoint of (P??)"1 with respect to the metrics gc9(wutF)^ 

g£ (x,F|x). Then (P5?)"lj* maps A* (T*S) ®fi# (X,F|X) into A* (T*S) ®C# (Wu,F). 

Definition 10.20. — For T ^ Tq, put 

(10.87) ST 
C*(WU,F) (P5?)"1,# (P??)"1 OT 

C*(Wu, F) (P5?)"1,# (P??)"1 

Observe that gT k C* (Wu F) ' Ms a generalized metric on C*(WW,F) in the sense of 
Section 2.9. Also gT vC* (Wu F) ' ; is a standard metric on C* (WU,F), which is such that 
the C* (Wu,FYs are orthogonal in C* (WU,F) with respect to g^^^K 

Theorem 10.21. — For T > TQ, 

(10.88) C*(V ,̂F),(0) _ C*(W,F) 

Moreover, 

(10.89) PS? A' (P~)-1=Ac#(wtt'F),î 

POO Alt /POO\~ 1 JT •t*-r£ V T ) (g£*(^'F)) i4C,(r)F),/gC,(r,F)i 

Proof. — Equation (10.88) follows from (10.78). The first identity in (10.89) was 
already established in (10.75). Clearly, 

(10.90) P[0,L] 4/P>[0,L] 
JT rp /1 A rp 

p£'1] (P5?)-1 A ^ ^ ' ^ P ^ P ^ 1 1 . 

Let P°°'* be the adjoint of P°°. Using (10.52) and taking adjoints in (10.90), we get 

(10.91) P J ^ ' I ^ P ^ ' 1 ' = Py'1J p°°>*Ac9(wu>F)" (p°?)-1'* pi0,1' 

Also, 

(10.92) POO Äff /-POO\-L _ -POO-P[0,1] /»//-P[0,L] /POO\-L Jij-i yX rp J X rp JT rp /ljil ji yjL rp j 

From (10.91), (10.92), we obtain, 

(10.93) P^A'T (P??)"1 = P¥P[£1]P°°>tAc'(wuW (P5?)-1'* p£,1] (P??)"1. 

Since 

(10.94) Pp1] (P^y1 = (P??)"1, P°° (P??)-1 = 1, 

we get 

(10.95) (P§?)_1'*p!£,1] = (PS?)-1'*, (PS?)-1,*P°°-* = 1. 
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Therefore, 

(10.96) (P??)"1'* (Pf?)_1P|?P^1]P00'* - (P™)~h* Pp1]P°°'* 

(P^)'1'* P°°>* - 1. 
By (10.96), we deduce that 

(10.97) p™pp1]p°°>* - [ ( P T R1'* ( P T 

Prom (10.93), (10.94), (10.97), we get the second identity in (10.89). The proof of our 
Theorem is completed. • 

Remark 10.22. — Equation (10.89) shows that P^A^ ( P ^ ) _ 1 is exactly the adjoint 
superconnection to A with respect to the generalized metric gT v C* (Wu F)' , in the sense 
of Definition 10.1. 

10.8. The maps P^T and the generalized metrics St,T 
C'(WU,F) 

Let jvA#(T*S)§C'(W-,F) be the tQtal number operator of A* (T*5) § C (WU,F). 

Definition 10.23. — Given T > t > 0, let PT^T : F^!] -> A* (T*S) ® C* (Wu, F) 
be the restriction of P ° ° to F[%1]. 

Recall that by Remark 10.19, P ^ ? T : F[0.1] -> A* (T*S) § C* (WU,F) is an iso­
morphism. 

Proposition 10.24. — The map P^T is invertible. Moreover, 

(10.98) ( P ^ - ^ t - ^ ^ ' V ^ p - ) - 1 ^ ^ ^ ^ ^ ' ^ ^ . 

As t —* +oo, 
(10.99) (p~T)-1 = (p~T)-1 + o ( i A ) . 

Proof. — If / e C' (Wu, F), by Proposition 10.12, there is / ' e F '̂1] such that 

(10.100) ( P - ) - 1 / = ^ a , ( t * M ) / y . 

Then 

(10.101) p~r-"A,(T*M,/Y = / , 

so that since P ° ° preserves the total degree, 

(10.102) P § ? / ' = t"C,(W"'F)/2/ . 

From (10.102), we get 

(10.103) P§?/' = t"C,(W"'F)/2/. 

so that (10.98) holds. 
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Also, by the obvious analogue of the first equation in (10.78), 

(10.104) ( P ^ ) - 1 = Pgjjl (P^)-1 ( P ~ p g l (P?0)-1)" • 

Using (10.66), the analogue of (10.77) and (10.104), we find that as t -> +oo, 

(10.105) ( p ^ ) - 1 = p £ j ( / ç p ) - 1 ( p ^ ^ ' V o a / t ) , 

which, by (10.86), is just (10.99). The proof of our Proposition is completed. 

Definition 10.25. — Put 

(10.106) q[0,1] 1 
2in Ô 

dX 
A - 1/4[dX , A" T] 

Still, Q^ '1^ is a projector with finite dimensional range G^'1^. Let Q™T be the 
restriction of P°° to G[^T . Note that here, P°° is used and not P°°. Then T : 
G £ ' T A# {T*S) <§) C9 (Wu, F) is one to one. Also the obvious analogue of formula 
(10.78) holds, i.e. 

(10.107) ( Q ^ T ) " 1 
q[0.1] (Poo)-1 (PooQ[0.1] (Poo)-1 

Let Qj. f2* (X F\x ) ' Xyoe the metric on A* (X,P|x) which is associated to the metrics 

9TX/ti9T on TXjF. Let(P^T)_1'* be the adjoint of (P^T)_1 with respect to the 

metrics g^X,Flx\gc^w^Fl Let (Q~T)-1'* be the adjoint of ( Q ^ , T ) _ 1 with 

respect to 
n*(x,F\x) gC'(Wu,F)t 

The next result is not needed in our proof of Theorem 9.8. 

Proposition 10.26. — As t ^ +oo, 

(10.108) t(-NC*(wu,F)+n/2 (Poo)-1.* = (QooT)-1.* + O(1/t) 

Proof. — Let (P£y) '* be the adjoint of (P£jO with respect to to the metrics 

gn>(x,F\x)^c.{w„Fl Then 

(10.109) (P.~r)-1,* = (Pîrr)0"1,*«JV-B/a-

Recall that by (10.79), deg ((P??)"1) > 0. Then 

(10.110) (P??)"1 = A0 + A2--- + A2]..., 

with deg(A2j) = 2j. Using (10.98), we get 

(10.111) ( P ^ ) " 1 ^ = Ao 
A2 

t 
A2j 
V 
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Also by (10.79), 

(10.112) j < F(A2j). 

Therefore A2J increases the vertical degree in A*(T*X) by at most j . 
• tt (X FI x ) 

Let A^j be the adjoint of A2J with respect to the metrics gc*(wu,F\gT . 
Prom (10.111), we get 

(10.113) (РГт)о"1'* A* ^0 
A*2 
t 

л * 
Л27 re 

and decreases the vertical degree by at most j . By (10.109), (10.113), we obtain, 
(10.114) 

t(-Nc*(wU>F)+n/2) 
(P^T)"1'* 

t(-Nc*(wU>F) 4* ^0 
A% 
t 

A* 
V 

tN 

Let A^p be the component of A2J which increases the vertical degree by j . By 
(10.114), we find that as t —> + 0 0 , 

(10.115) t(-Nc*(wU>F)+n/2) 
(РГт)"1'* . л(0),* 

• ^0 
4(2J),* • o ( i / t ) . 

By (10.110), (10.115), we find that the leading term in the right-hand side of (10.115) 
is the adjoint with respect to the metric gn (X'F'X) 0f the component R of ( P ° ° ) - 1 
which makes the second inequality in (10.79) to be an equality. 

Clearly, 

(10.116) P ° ° ( P ? ? ) - 1 = 1. 

Since deg (P°° ) = 0, from (10.116), we get 

(10.117) P°°R= 1. 

Also, 

(10.118) pp1] ( P ^ r 1 = ( Р ^ Г 1 . 

Using Proposition 10.7, (10.106) and (10.118), we obtain, 

(10.119) QSR = R. 

Prom (10.117), (10.119), we get 

(10.120) R = (Qoo,T)-1 

Our Proposition follows from the statement we gave after (10.115) and from (10.120). 

The following result is not needed either in our proof of Theorem 9.8. 
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Proposition 10.27. — The following identities hold, 

(10.121) 
poo Af /poo \~1 _ AC'(Wu,F)t 

•poo /T>OO \ 1 
^oo,Ta l^oo,TJ (QS,t)"i,,(pS1t)"1 

-1 
Ô * ( ( Q ^ , T ) - 1 ' * ( P ^ T ) " 1 ) -

Proo/. — The first identity in (10.121) follows from Theorem 5.8. Using (10.16), 
(10.99), we see that as t —• +oo, 

(10.122) (QS,t)"i,,(pS1t)"1 = Ô*((Q^,T)-1'* (P^T)"1)-

Also by (10.89), we get 

(10.123) Poo A" (-poo \ 1 ^(-iVCIR-f)+n/2) 
( P ^ T ) " 1 ' * (P&)"1 

- l 

/r^.(^,Ji-)i4C.(wuiF),/tJVc.(^.,)N rWC(wU,F)+„/2 (poor)-l,. (poor)-l 

Clearly, 

(10.124) t-Nc*(wU>F)AC'(W«,F)»tNc*(wU'F) = tg* + VC'(^,F)* 

From (10.99),(10.108), (10.122)-(10.124), we get the second identity in (10.121). 

Let (P£°) be the adjoint of (P£°) 1 with respect to the metrics g^ 
(X, F|X) 

gC'(Wu,F)^ 

Proposition 10.28. — The following identity holds, 

(10.125) tN/2 ( P ^ T ) " 1 ^ ^ ^ ' ^ 7 2 = VT1 ( P ? ? ) " 1 ^ -

Proof. — This follows from Proposition 10.24. 

Proposition 10.29. — There exists a smooth section J of 

(A* (T*S) g Horn (C (Wu, F), Î2' (X, F\x)))even , 

such that as t —> +00, 

(10.126) tN/2 (P^)-1r^c,(w'"'F)/2 = (p-)- i J 

ft 
+ 0(l/t), 

tN/2 (P^)-1r^c,(w'"'F)/2 = (p-)-i T* 
Jo t 

0(l/t). 

Proof. — Using (10.51), (10.78), and (10.125), we get the first identity in (10.126). 
By taking adjoints, we obtain the second identity. • 

Definition 10.30. — Put 

(10.127) C-(VR\F) ( P ~ T ) - M ( P ^ ) - 1 . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



178 CHAPTER 10. GENERALIZED METRICS: A FIRST PROOF OF THEOREM 9.8 

Then gtTK C* (Wu F)' Ms a generalized metric on C* (WU,F). Recall that the metric 
gc'(w»,F) on c. ^wu^ F^ whkh wag defined in (10<87)5 is such that the C{ (Wu, FYs 

are mutually orthogonal. 
Now we will show that the generalized metrics gtTK 'C*(Wu F)} verify the assumptions 

in (2.130). 

Theorem 10.31. — There is a smooth section H of 

(A- (T*5) 0 End (C* (Wu, F)))even , 

such that as t —• +oo, 

.-Nc'(wU>F)/2+n/2 C'(WU,F) ,-Nc*(wU>F)/2 _ C'(WU,F) 
1 »£,T 1 ~ "T 

H O (1/t) 

(10.128) tNc'(wU'F)/2 C9(WU,F) - 1 d 
dt 

Cm(WuJF) 
&t,T 

t-Nc*(wU>F)/2 

NC9(WU,F) n 
2 

1 

t 
oli/t^2) 

Proof. — By (10.109), we get 

(10.129) ._JVC*(WU'F) /2 C*(WU,F) JVC*(WU'F)/2 
1 St,T 1 

( f ^ ( ^ V ) / W 2 (pcoR)-L,*^M / ^ / 2 ( p c o R ) - L T - ^ - ( - ^ ' ) M 

By Proposition 10.29 and by (10.129), we get the first identity in (10.128). 
Also, 

(10.130) C*{WU,F) 

.-Nc'(wU>F)/2+n/2 C'(WU,F) ,-Nc*(wU>F)/2 _ C'(WU,F) 

Therefore, 

(10.131) 
d 
dt 

C#(JVU,F) 
INRC-(^,F)_N 

2t gt,T 
C#(WU,F) 

gt,T 
RC'(WU,F) NC*(W*,F) 

2t 
(JV**(w,1'F)-n)/2 d 

dt 
tn/2t-Nc'(wU>F)/2gC^Wu,F)t-Nc'(wU'F)/2\^ 

By (10.98), (10.126), (10.129), one verifies easily that 

tn/2t-Nc'(wU>F)/2gC9(Wu,F)t-Nc'(wU>F)/2 

is a polynomial in Therefore, as t —> +oo, 

(10.132) 
a 

at 
tn/2T-^^^,,)/2FTC.(WU^t_^cv^.,)/2\ = c / /t3/2x ^ 

Prom the first identity in (10.128), (10.131) and (10.132), we get the second identity 
in (10.128). The proof of our Theorem is completed. • 
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Proposition 10.32. — The following identity holds, 

(10.133) tNC'{WU'F)l2Y>TT^T (??TY1 t-NC'(WU'F)/2 = P?Vtdx'* (P?) 

Also as t —• +00, 
(10.134) 

tNC'{WU'F)l2Y>TT^T (??TY1 t-NC'(WU'F)/2 = P?Vtdx'* (P?)-1 + 0(1). 

Proof. — Identity (10.133) follows from (10.89). By (10.123), we get 

(10.135) 
^ • ( - • ' ) / 2 p r r < T ( p c o , ) - i T - ^ - ( - . ' ) / 2 = ^ ' ( — ) / 2 = 1 t-NC'(WU'F)/2 C*(WU,F) - l 

tNC'{WU'F)l2Y>TT^T (??TY1 t-NC'(WU'F)/2 = P?Vtdx'* (P?)'(WU'F) 

CM(WU,F).-Nc'(wU>F)/2 

Using Theorem 10.31 and (10.135), we find that as t —> +00, 

(10.136) 
tNC'{WU'F)l2Y>TT^T (??TY1 t-NC'(WU'F)/2 = P?Vtdx'*-1 Vta*gTC*(Wu,F) 

+ 0(1) , 

which is equivalent to (10.134). The proof of our Proposition is completed. 

10.9. Replacing MbyMxR; 

Now we replace M b y M x R̂ _, 5 by S x R^, 7r : M -> S by 7?: M —> S . We denote 
by P°° the map of integration along the fibre from M to S . Over M x {£}, we equip 
TX with the metric gTX /t, and F with the metric gj,. Let A' be the corresponding 
flat super connect ion, and let AT be its adjoint. Then 

(10.137) A' = A' + dt d 
dt' 

Arp — A^ rp -\- dt d 
dt 

N n 
2 

Similarly, let ^p*(wu<F)' be the canonical flat superconnection on C*(WU,F) over 
S x R* , and let A0'^"'*")" be its adjoint with respect to the metric gc'(wU,F)_ THEN 

(10.138) ^C'(WU,F)l _ £C'(WU,F)I dt 
d 

de 
^C'(WU,F)n _ J^C'(WU,F)II dt 

d 
dt' 

By (10.23), for t G R;,T ^ T0, 

(10.139) Sp A~2 
T Sx{t} C[0 2 

4 
Pi [4£,+oo[. 
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Definition 10.33. For t' > 0, 1 
8 

< t < 2tf, put 

(10.140) P [o,i] 
T Sx{t} 

1 

2in t'S 

dX 

A - A?n\sx{t} 

Using (10.139) and the holomorphic functional calculus, one finds that P^' |sx{t} 
does not depend on the choice of tf. This way we obtain a well defined P '̂1 ,̂ a section 
of A* (T* (S x R4)) § Q*(X, F\x) over S x R^_. Using Theorem 10.9, we find that 
P '̂1̂  is an even self-adjoint projector with finite dimensional range, which commutes 
with A! and Aip. 

Comparing with (10.63), we find that there is an odd section q[0.1] of A* (T*S) 

®V(X,F\X) over M x R I such that 

(10.141) P ;o,i] 
T 

P [0,1] 
t,T 

dtQ o,i] 

Since PJJ!'1' is self-adjoint, in the sense that P '̂1̂ '* = PJJ?'1', Q[0y' is also self-adjoint. 

Since the range of P '̂1̂  is finite dimensional, the same is true for Q[%^. Since P '̂1̂  
is a projector, we deduce from (10.141) that 

(10.142) Q [0,1] 
t.T 

Rp [0,1] 
ta 

Q [0,1] t.T Q 
[0,1] 
t.T 

p [0,1] 
t,T ' 

so that Q [0,1] R interchanges Im P [o,i] 
t,T and Im 1 - P ,[o,i] 

t,T 
From the commutation 

relations, 

(10.143) "1',P£'1]] = 0 , ^AT, Pj.' ĵ — 0, 

we get 

(10.144) 
d 

dt 
p[0,l] 

kok11!, 
d 
dt 

p[0,l] 
rt,T [N,Pff A" O[0'1]" 

Set 

(10.145) F ^ = I m (P^1]). 

Let P5? be the restriction of P°° to F£'1]. Then by Proposition 10.24, for T ^ TQ, 

P5? is an invertible morphism from Fp1] into A* (T* (S x R + ) ) <§>C# (Wu, F). Then 

we can write fP^) in the form, 

(10.146) (p-)-1 = (P-T) 1+dtR^T. 

From (10.146), we get 

(10.147) (P-)"1'* = (P -T) -1 'V^* . 

Definition 10.34. — Put 

(10.148) ^ • ( ^ = (p§?)-1-(p§?)-1. 
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Clearly, we can write ST 
•C*{WU,F) in the form 

(10.149) ST ;C*(WU,F) 
QT?t 

C9(WU,F) dtSt.T* 

Then the obvious analogue of Theorem 10.21 holds. In particular ST 
-C*{WU,F) is a 

generalized metric on C* (WU,F) over S x R+. 

Theorem 10.35. — The following identities hold, 

(10.150) TDOO Ä P~oo T 
-1 AC*(Wu,F)' 

Poo T AJ-I Poo T 
-1 

r 
~C*{WU,F) -1 jJC*(Wu,F)// 

ST 
;C#(VyU,F) 

Proof. — Our Theorem follows from Theorem 10.21. 

10.10. The superconnection forms for ze [o,i] 
T 

Observe that as in (10.54), 

(10.151) P [o,i] 
R 

1 
2m Vts 

dX 
X — B+T 

Using the holomorphic functional calculus, we find that 

(10.152) h(BtT)P [o,i] 
dT 

1 
2m y/iö 

h(X) 
X — Bt,T 

dX 

ti ( Ä T ) P [0,1] dT 
1 

2in Vts 
h'(X) 

X — Bt,T 
dX. 

Similarly, with the notation in (10.72), 

(10.153) 

p[o,i] 1 
2m Vts 

dX 
X-D+T1 

M A , r ) P [o,i] 
t,T 

1 
2iir s/tö 

h(X) 
X - DtiT 

dA 

ti ( A , r ) P [0,1] t,T 
1 

2m y/tö 
ti (X) 

X - Dt,T 
dX. 

By (10.26), (10.153), we get 

(10.154) LttT = ti ( A , T ) P [o,i] 
t,T 

Definition 10.36. — For t G R + , T ^ TQ, put 

(10.155) at,T = v2i7r^TrB^/i(Bt,r)P [0,11 
dT 

Qt,T 
1 
2 

Qt,T AT 1 
2 gh'(BtiT)P [0,1]' 

dt 

In (10.155), we may replace Bt,r by Dt,T and P [o,i] 
t,T by P [0,11 

dt Then at?T, &t,T are 
forms on 5. 
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Theorem 10.37. — For T ^ TQ; the form at}r is odd and closed, and the form bt,r is 
even. Moreover, 

(10.156) 
d 
dt <H,T d 

bT,T 

t 
Also as t —> -t-oo, 

(10.157) at,T =hg Vi/*(X,F|X) 
gL2,T 

H'(X,F\xy •o(i/Vt) 

bt,r 
1 
2 x'9(F) 

n 
4 Xg (F) oli/Vt) 

Proof — The proof of the first part of our Theorem is essentially the same as the 
proof of [BLol, Theorems 1.8 and 2.9], or of Theorems 1.8 and 1.18. Still, we have 
to be more careful, because of the dependence of P[°y' on t. Since 

(10.158) [AT,T,BttT]=0, [At,T P foal' 
tl 

- 0 , 

we find easily that at,r is closed. Using the argument after (10.140), given t' > 0, if t 
is close enough to t', instead of (10.152), we can write, 

(10.159) h(BtiT)P [o,i] 
dt 

1 
2in Vt's 

h(X) 
X — BtT 

= 0 

the key point being that the contour of integration in (10.159) does not depend on t. 
We can then proceed as in [BLol] and prove (10.156). 

Now, we use the notation of Section 3.14. By proceeding as in Section 3.14, we 
find that there exists C > 0 such that for t ^ 1, 

(10.160) h(DtiT)-P£'1]h RBH'{X,F\X) 

1 
C 
Vt' 

Using (10.73) and (10.160), we get (10.157). The proof of our Theorem is completed. 

Remark 10.38. — An equivalent reformulation of equation (10.156) is that if c is the 
form on M x R̂ _, 

(10.161) C = at,T 
dt 
t 

bt,T 

then c is closed. 

Definition 10.39. — For T ^ TQ, put 

(10.162) S [0,11 
dt 

IT) 
oo 

1 
(6t,T - £>OO,T) 

dt 

t 

Proposition 10.40. — The even form S^^ (T) on S is such that 

(10.163) dS [o,H 
dt (T) hg 

AC'(WU,F), C'(WU,F) hg[H-(X,F\x) 9LO,T 
H'(X,F\X^ 
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Proof. — Observe that by Theorem 10.21, 

(10.164) Û1,T = hg AC9(WuiF)f 
ST 

C*(WU,F) 

Our Proposition follows from Theorem 10.37 and from (10.164). 

Proposition 10.41. — The following identity holds, 

(10.165) S [o,i] 
dt 

(T) 
+oo 

1 
(^Trs [NgLtiT]-X'g(F)) 

dt 

2t' 

Proof. — By (3.53) and by Proposition 10.16, we get 

(10.166) bt,T 
1 

2 
qtRS N n 

2 
gLt,T 

Also by proceeding as in the proof of Proposition 1.6, and using the fact that P [o,i] 
t,T 

is trace class, we get 

(10.167) TYS ti(Bt,T)P [o,i] 
DT 

X'(F) 

By (10.162), (10.166), (10.167), we get (10.165). 

10.11. The form c and the complex C9 (WU,F) 

Recall that ST 
>C9(WU,F) is a generalized metric on the complex C9 (WU,F) over 

S x RÜj_. Also the form c on S x R+ was defined in (10.161). 

Proposition 10.42. — The following identity of forms on M x R+ holds, 

(10.168) c = hg [C9 (WU,F) ST 
•C*(WU,F) 

Proof. — This is an easy consequence of Theorem 10.35. 

By (10.149), the generalized metric gT 
C*(WU,F) contains a term with dt as a factor. 

Instead we will consider qTs 
C*(WU,F) as a generalized metric on C9 (Wu, F) over S x R I , 

i.e. we eliminate the term with dt in gT 
C9(WU,F) Then h9 ^C9(Wu,F)f gT 

C9(Wu,Fy 

is a closed form on S x R^. We can write hg AC9(Wu,F)i 
gt,T 

C9(WU,F) in the form 

(10.169) hg ^C9(Wu,F)t 
g*,T 

C*(WU,FY 
hq ' ACm{Wu,F)< 

gT 
Ç9{WU,FY s 

dt hg ^C9{WUÌF\ 
g*,T 

C9(WU,F) dt 

and hg AC9{WU,F)Ï 
gt,T 

C*(WU,F) S 
hg AC9(WU,F) 

gt,T 
Ç9{WU,F) I dt 

are smooth 
forms on S. 
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Proposition 10.43. — For any t £ R+; the following identity of forms holds on S, 

(10.170) at,T = hg AC9(WU,F)> 
qTt 

C*(WU,FY s 

Vt,T hg AC9(WU,F)r 
qTt 

C*(WU,F) dt 
in nm(S)/dW(S), 

Proof. — Using (10.150), we get the first identity in (10.170). Recall that St,r was 
introduced in (10.149). For £ e [0,1], put 

(10.171) gT,l 
-C9(WU,F) 

gT,l 
C*(WU,F) ldtSt,T 

Now we enlarge the total space M to be M x R+ x [0,1]. In particular Ac (wu>F)f is 
now replaced by 

(10.172) A' = AC*(wu,F)' + dt Q 
dt 

d£ 
d 
d£ 

Let À'T be the adjoint of AÏ with respect to gT,t 
:C*(WU,F) Set 

(10.173) 6 = hg A' ST,* 
<C*{WU,F)Y 

Then 5 is a closed form on M x R+ x [0,1]. Now because in (10.171), £ is a factor of 
dt, we can write 5 in the form 

(10.174) S = a + dtp + didty, 

i.e. the form 5 does not contain a term with just d£. Since S is closed, we get 

(10.175) 
a s 
d£ 

d^ = 0. 

By (10.175), we find that 

(10.176) Pi=o = Pt=i in n-(5)/dn-(S). 

Our Proposition follows. 

Recall that by Theorem 10.31, the generalized metric St,r 
C*(WU,F) on C* (WU,F) 

verifies the assumptions in (2.130) with respect to the standard Hermitian metric 
gC (w ,F) T;nerefore we can define the form Uh,g (^Ac*^WU'F^\gfT^w as in 
Definition 2.49. 

Theorem 10.44. — For T ^T$, the following identity holds, 

(10.177) S [o,i] 
h,g 

CO = uh,g ACM(WU,F) 
»Kt,r 

C'(WU,F) in îî#(5)/dîî*(5). 

Proof — This follows from (2.138), (10.162), (10.170). 
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10.12. An identity on the forms Uh,g AC'(Wu,F)f 
gT,t 

Cm(WU,FY 

Definition 10.45. — For u G R I , let gT,t 
C*(WU,F) be the generalized metric on 

C* (WU,F), 

(10.178) gT,t 
C*(WU,F) uNc*(wU>F)/2 

ST 
C*(WU,F) uNc*(wU>F)/2 

Observe that our notation is compatible with (2.147). Let A 
gT,t 
C*(Wu,F)rr be the 

adjoint of Ac'(wuiF^ with respect to 0T,n 
Cm(Wu,F) Put 

(10.179) B 
T,u 
C*(WU,F) 1 

2 
A: 

T,u 
C*(Wu,F)n AC9(Wu,F)f 

Let NH'(X,F\X) be the number operator of H'{X,F\X). We define the form 

Sh,g (A',uNC'{WU'F)gc^wu^) as in Definition 1.24. 

Proposition 10.46. — For T ^ T¿, u G ]0,1], the following identity holds, 

(10.180) 

Uh,g ßC*(Wu,F)f 
8t,T hg 'yH9(X,F\x 

#L2,0 
H#(X,F|x) 

#L2,T 
tf*(X,F|x) 

Sh,9 ^C#(WU,F)/ IT gC'(Wu,F) 

hg VIF* (X,F|X) 
#L2,0 

H'(X,F\x) NH*(X,F\X) 
U 9c 

H*(X,F\X) 
>(WU,F) 

-hg (AC^WU^' gT,t 
C*(WU,F) 

gT,t 
C*{WU,F) 

hg 'AC'(Wu,F)t 
gT,t 

C*(WU,F) NC*(WU,F 
U 

gC*(WU,F) in Çr(S)/dW(S). 

Proof — Our identity identity follows from Remark 2.51 and Theorem 2.52. 

Let TJT be the even form associated to A°*^wu,F^f gT,t 
Cm(Wu,F) which was introduced 

in (2.143). By Proposition 2.54, 

(10.181) NT 
1 
2 

X'g-(F) mQr{S)/dXr{S). 
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Proposition 10.47. — As u 0, 

Sh,g ^C*(WU,F)/ uN •C*(WU,F) 9C (WU,F) kg VH* (X,F\X) 
9L2,O 

Hm(X,F\x) 

uN H»(X,F\X) 
yC*(Wu,F) 

Hm(X,F\x) 1 
2 

^-(F)log(u)-

(10.182) Q 
i 

o 
Trs NC*(W,F) Bt C*(WU,F) tC*(WU,F) dt 

2t 
+oo 

1 
Ti'., NC*(W,F) gti Bt C*(WU,F) X'9(F) 

dt 
2t 

hg V//#(X,F|X) 
9L2,O 

H'(X,F\x) 
yC*(Wu,F) 

Hm(X,F\x) in n*(S)/dQm(S) 

hg A C*(Wu,F)f 
ST 

C9(WU,F) 
gT,u 

C9{WU,F) 
T)T log (u) 

.1 

0 
^Trs 1 

2 gT,u 
C*{Wu,Fy -1 d 

dt gT,u 
C*(WU,F) 'gti BT:t 

C*(WU,FY nT 
t 

dt 

in îî*(5)/dfî*(5). 

Proof. — By Proposition 1.6 and Definition 1.10, 

(10.183) hg ytf-(X,F|X) 
9L2,O 

Hm(X,F\x) NH*(X,F\X) 
U yC*(Wu,F) 

H'(X,F\X) 

hg y//*(X,F|X) 
#L2,0 

H9(X,F\X) 
VC*(WU,F) 

H9(X,F\x) 1 
2 

X;(F)log(u) înîî*(5)/dn-(S). 

Our identities follow from Propositions 1.27 and 2.57 and from (10.183). 

Proposition 10.48. — As u —> 0, 

(10.184) hg ^C*(WU,F), gT,u 
C*{WU,F) U 

NC*{WU,F) 
g 
C*(WU,F) 

h (VC*(Wu,F) 
ST 

C'(WU,F) 9C (WU,F) 

Proof. — Our Proposition is a special case of Proposition 2.58. 
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Theorem 10.49. — The following identity holds, 

(10.185) 

Uh,g AC*(WU,F)> 
gt,T 

C*{WU,F) hg vff(X,F|x) 
9l2,o 

H*{X,F\x) 
9l2,t 

H'(X,F\x) 

q 
1 

r0 
Trs NC*(WU,F) gti Bt C*(WU,F) X'(F] 

dt 
2t 

•+oo 

1 
Trs NC'(W\F)gh, Bt C9(WU,F) X'(F] 

dt 
2t 

•l 

o 
<pTrB 1 

2 AT,* 
C'(WU,F) -1 d 

dt Vr.t 
C*(WU,F) gti BT,t 

C*(WU,FY dt 
t 

dt 

hg yff(X,F|x) 
9l2,o 

H*(X,F\x) 
9c*{Wu,F) 
H#(X,F|x) 

hg ^C*(WU,F) 
qtT 

C*(WU,F) 9 C*(WU,F) in fi*(S)/dfr(S) 

Proof. — Our identity follows from Propositions 10.46-10.48. 

10.13. A fundamental result 

The fundamental result of this Chapter is as follows. 

Theorem 10.50. — As T -> +oo, 

l 

o 
QTrs 1 

2 gT,t 
C#(WU,F) -1 d 

dt 0T,t 
C#(U ,̂F) gn' BT,t 

(C#(WU,F) 7?T 

t 
dt -> 0, 

(10.186) 

hg VC*(Wu,F) 
gT 

C#(WU,F) 
0 C#(WU,F) Trs [f}T 

1 
4 

(X,g+(F)-X,g-(F))\Og(T) 1 
4 

(xr(^)-X;+(^))log(7r). 

Proof. — The remainder of the Chapter is devoted to the proof of our Theorem. • 

Remark 10.51. — Using Theorems 10.5, Remark 10.6, Proposition 10.41 and Theo­
rems 10.44, 10.49 and 10.50, Theorem 9.8 follows. 

10.14. The projectors PT 

Recall that the operato] Csrp 
r/®F|B,2 was constructed in Section 10.1. 

Given nf e N , let QN (TXU\B) be the algebra of invariant polynomials on degree 
ri on TXn|B. 

Definition 10.52. — For T ̂  1, put 

(10.187) PT 1 
2Ì7T 6 

dX 

X-C7 /®F|B,2 
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Theorem 10.53. — For T > 1, PT is a projection acting on A* (T*S) 0/0 F|B, with 
finite dimensional range FT, which commutes with the action of A* (T*S) and with 

C7 
I§>F\' CIOF|B and is such that 

(10.188) F (o) 
T PT-

Also FT lies in (A* (T*S))even 0 End (l°)even. For any k' G N*; 

(10.189) PT 1 
2in '6 

dX 

X-V 
T 
I§)F\is,kf 

More generally, the obvious analogue of Theorem 10.9 still holds. In particular the 
linear map a G A* (T*5) 0 fT -> PTa € FT an isomorphism of Z2-graded vector 
bundles. 

When acting on I <g> F\&, PT is of the form PT 0 1, and £/ie first factor does not 
depend on (F|B, VF|B, #F|B) . 

For /c £ N Zarge enough, 

(10.190) FT = ker V T 
I§>F\B,k 

In particular, for n' large enough, 

(10.191) FT C exp (-T\Z\2/2) QN' (TXU\B) 0 A* (T*S) 0 A* (T*XB) 0 F\B. 

Proof. — The proof of the first part of our Theorem is the same as the proof of The­
orem 10.9. The key point is that the resolvent of the harmonic oscillator ^̂ (g)FlB'2̂ 0) 
is compact. 

Recall that the operators CT,T>T were introduced in (4.11). We claim that in 

(10.187), we can replace C ^ ' 3 ' 2 by c\. In fact by (10.11), 

(10.192) C iW|B,2 
T C •2 

T 
1 
4 

u2 F\*,gFl* 

so that C 2 
T commutes with C 

iWlB,2 
T C 2 

T Then if A G 5, 
(10.193) 

A C 
IOF|B.2 
T 

- 1 
x-c 2 

T 
- 1 

X-C 2 
T 

- 1 
C /"®F|B,2 

T C 2 
T A-C 2 

T 
- 1 

and the expansion terminates after a finite number of terms. By (10.193) using the 
above commutation properties, we find that, when integrating over 5, only the first 
term in the expansion contributes to the integral. The above shows that in (10.189), 

we can as well replace X^?F'B by DT- In particular, when acting on 1° 0 F | B , the 
operator PT is of the form PT 0 1. 

Equation (10.190) follows from [ReSi, Theorem XII.51. Clearly, 

(10.194) Il = L2 (TX|B) 0 A* (T*S) 0 A (T*X|B) 0 F|B. 

Using (10.10), we see that DTOF|B can be expressed as linear combination of creation 
and annihilation operators acting on L2 (TX|B) and on A* (T*S) 0 A (T*XB) 0 F\B-

ASTÉRISQUE 275 



10.15. THE MAPS JT AND ET 189 

A simple recursion procedure shows that for any k G N*, there is n' G N such that 
(10.195) 

ker ©rSF'B,fc C exp (-T|Z|2/2) Qn' (TXW|B) ® A* (T*S) § A* (T*XB) § F|B. 
By (10.190) and (10.195), we get (10.191). The proof of our Theorem is completed. • 

10.15. The maps JT and e r 

Put 

(10.196) P [o,i] 
T 

1 
2Î7T 

dX 
X — Ann 

Then, by (10.19), 

(10.197) P [o,i] 
T e"T'F ,[0,11 

T 1 Tf 

So P [0,1] T is a projector acting on A* (T*S) 0 fWX, Fix), whose finite dimensional 
image F RFO.ll 

T is a finite dimensional subbundle of A* (T*5) § ÎÎ*(X, F|x) . 
Let 7 : R —» 10,1 be a smooth function such that 

(10.198) 7(a) = 1 for a 1 
2 

0 for a > 1. 

If Z G Rn, set 
(10.199) M ( Z ) = 7 ( S / M ) . 

Then 
(10.200) /x(Z) = 1 if |Z| ^e0/2, 

0 if |Z| > e0. 
If T > 0, set 

(10.201) aT 
Rn 

ix2 (Z) exp(-T\Z\2)dZ. 

Then there is c > 0 such that as T —> +oo, 

(10.202) aT 7T 
T 

N/2 O (e-cT) 

Take x e B. Let px € Amax (T^XIE ) . , . be of norm 1. Then px is determined up 
to sign. It defines a section of o(x) ® Amax (TU-*X|B)X. 

Definition 10.54. — Let JT : A* (T*S) § C*(Wu, F)-> A* (T*S) § Q*(X,F|x) be 
such that if /1 € o(x) ® Fx, then 

(10.203) 3Th 
a(Z) 
ou/,2 

PT [exp (-T\Z\2/2) px] h. 
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Using (10.188), we find that the induced map JT : C# (WU,F) il9(X,F\x) is 
given by 

(10.204) JTh 
u(Z) 
q1/2 
T 

exp(-T|Z|72) pxh. 

Definition 10.55. — Let êT : A* (T*S) ® C* (Wu, F) F£' J be given by 

(10.205) eT P [0,11 
T JT. 

Clearly eT commutes with the action of A# (T*S). By (10.22), (10.51), (10.197), 
(10.204 and (10.205), the induced map eT : C* (WU,F) -* ft*(X,F|x) is given by 

(10.206) eT P [o,i] 
T Jt 

In the sequel, we write that as T —• +oo, a family of smooth sections on M is 
O (e~cT) if the sup norm of the derivatives is O (e~cT). We now have an extension 
of BZ2, Theorem 6.7]. 

Theorem 10.56. — There is c> 0 such that as T -> +oo, /or any s G C9 (Ww, F), 

(10.207) (e^ — JT) S = O (e cT) uniformly on M. 

Proof. — The proof proceeds very much as the proof in [BZ1, Theorem 8.8] and in 
[BZ2, Theorem 6.7]. The essential difference is that the considered operators are not 
'self-adjoint' in the classical sense. By (10.54) and (10.196), we know that for any 
k G N* , 

(10.208) P [o,i] 
T 

1 
2in T 

dX 

A IT 2k ' 
T 

In the sequel, we choose k G N* large enough so that (10.190) holds. 
Take x G B,he o(x) (g> Fx. If A G 6, 

(10.209) A t 2/c> 
T 

Jrh 
X 

Jxh T 9k. 
T 

JTh 

X 
and so, 

(10.210) 
Jrh 

X 
X A 2k 

T 
- 1 

37h X A •2k 
T 

- 1 A 2k 
T 

Jxh 
X 

Now, by our fundamental assumptions in Section 9.1, with the required identifications, 
on {xf G X, dx (x, x1) ^ e}, the operator A? coincides with Cy®^3'2. Since /JL(Z) = 1 
for \Z\ ^ e/2, using (10.190), we get 

(10.211) A 2k 
T JTh(Z) = 0 for \Z\ ^ e/2. 

By (10.191), we deduce from (10.211) that there exists c > 0 such that as T —• +00, 

(10.212) E -2fc 
T JT^ : O ( e ^ ) |fc|. 
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Using (3.45), we see that 

(10.213) A 2k 
T 

Dx 
2 

2k 
KT, 

where KT is a differential operator of order 2 k - 1, whose coefficients depend polyno-
mially on T, the polynomial being of degree 2k. 

If q G R, let || || q be a smooth family of norms on the fibrewise qth Sobolev space 
of sections of A'(T*X) § A" (T*S). 

Since Dx,2k is elliptic of degree 2k, given q G N, there exists C > 0 such that for 
se A-(T*S)§ft-(X,F|x), 

(10.214) ||S||q+2k < C (||DX,2K S||q + ||S||0) 

By the considerations which follow (10.213) and by (10.214), we see that given q G N , 
there exists C > 0 such that for A G <5, T ^ 1, 

(10.215) Nl ,+2 fc<c( | | (^ A 2k 
T S 

q 
T2k ||S||q+2k-1 

Also given q G N , there exists C > 0 such that for A > 0, s G A* (T*S) <§> ft* (X, F|X) , 

(10.216) ||s||9+2fc-l < C llsll<Z+2fc 
A 

^,+2*-l||s||o 

Prom (10.215), (10.216), we deduce that there exists C > 0,k' G N such that for 
A G 6, s G A' (T*S) § fi* (X, F|x), 

(10.217) l|s||,+2fc < C A A 2k' 
re s\\q + T*k'\\sh 

Also by (10.23), for T ^ T0, we know that Sp A 2fc,(0V 
T Hi = 0. More precisely, 

since 2/c,(0) 
T is self-adjoint, by (10.23), there exists C > 0 such that for T^T0 ,A€ 

G ft* (X, F|x) , 

(10.218) A A 2fc,(0) T 
k -1 

T 
0 

< C' ||S||0. 

By (10.217), (10.218), we get 

(10.219) A A 2fc,(0) R 
-1 

S 
q+2k 

CT2k' h i , . 

Moreover, 
(10.220) 

A I4 
•2fc 
T 

-1 
A A •2fc,(0) T 

-1 
A ;4 -2fc,(O; 

R 
-l S 2kJ>0) 

T A IS 
2fe,(0) 
T 

— 1 

and the expansion in (10.220) contains a finite number of terms. Also by Theorem 
3.19 or by (10.39), AT 2fc,(>0) ' is a differential operator of order 2k — 1, which depends 
polynomially on T. 
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By (10.219), (10.220), we find that there exists C" > 0,k" G N such that for 
\eS,T^T0,seQ'(x,F\x), 

(10.221) a A 2k 
T 

-1 
5||g+2fc C"T2k"\\s\\q. 

Prom (10.212), (10.221), we deduce that there exists c> 0 such that to T ^ T0, 

(10.222) A A 2fc> 
T 

-1 A 2k 
T lTh\\q+2k = O (e-cT) \\h\\. 

Using (10.222) and Sobolev's inequalities, we see that there exists c > 0 such that for 
\ e 6,T ^ T0,x e B,h e Fx, 

(10.223) A A •2k 
T 

-1 
E 

•2k 
T JTh 0(e~cT) \\h\\. 

Prom (10.208), (10.210), (10.223), we get (10.207). The proof of our Theorem is 
completed. • 

Definition 10.57. — For T ^ T0, let eT : A* (T*S)§C* (Wu, F) F£'1] be the linear 
map, 

(10.224) eT = eTfeT 

By (10.197), (10.205), we get 

(10.225) eT P [0,11 
T 

eTfjT. 

Then eT commutes with A* (T*S). The induced map eT : C9 (Wu, F) -» (X, F|x) 
is given by, 

(10.226) eT [0.11 
T 

eTfjT. 

In the sequel, we consider er as a linear map from A* (T*S) ® C* (WU,F) into 
A* (T*5) § «• (X, F |x) . Let e£ : A* (T*S) § «• (X, F|x) A* (T*5) § C* ( F ) 

• u RI* (.Â  Fix ) 
be the adjoint of er with respect to the metrics gc'^wu,F\gT . 

Recall that C* (WU,R) = ®xeB o(x). In the sequel, we will denote by OD (1/T) 
an element of A# (T*S) ® End (C* (W™, R)) which commutes with A# (T*5), which is 
of positive degree in A* (T*5), which preserves the A* (T*S) ®o(x), which is O (1/T) 
as T —> +oo. Of course OD 0-/T) then acts on C* (Wn, F), and preserves the o(x) <S> 
Fx,x G B. Also the various OD (X/T) commute with each other. 
Proposition 10.58. — AsT ^ +oo; 

(10.227) e^eT = 1 + OD (1/T) + O (e~cT) . 

Proof. — If be the adjoint of with respect to the metrics g C*(WU,F) 
E 

Q*(X,F|X) 

then 

(10.228) e*TeT = e*TeT 
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By Theorem 10.56, if s G C* (Wu, F), 

(10.229) ëTs -JTs = 0 (e-cT). 

By Theorem 10.53, PT is of the form PT 0 1. Using (10.203), we get 

(10.230) JTh 
eTF 

1/2 
AT 

FT [exp (-T\Z\2/2) px] h. 

Recall that by Theorem 10.53, when acting on / 0 F | B , PT is of the form FT 0 1, 
i.e. we may temporarily assume that F = R. If v G R+, we define fv as in (4.49). 
By (10.11), 

(10.231) C2T4 = ^wF^TCÌF^ifr. 

Using (10.189) and (10.231), we get 

(10.232) PT = wrJrF^FlFVT^VT. 

Put 

(10.233) PX (exp(-|Z|2/2)Px) = k. 

Using (10.188), we find that № is given by 

(10.234) fc<o>=exp(-|Z|2/2) px. 

From (10.231), (10.233), we deduce that 

(10.235) PT (exp (-T\Z\2/2) px) = ^F^k. 

By (10.191), (10.202), (10.228), (10.229), (10.230), ((10.234), (10.235), we get 
(10.227). The proof of our Proposition is completed. • 

Clearly, P??eT G A* (T*S) 0 End (C* (Wu, F)). Now we establish an extension of 
[BZ2, Theorem 6.11]. 

Theorem 10.59. — There exists c > 0 such that as T —> +oc, 

(10.236) PT°er eTF 7T 

T 
NC*(W",F)/2__n/4 

(l + 0D{l/T) + 0(e-cT)). 

In particular for T ^ TQ large enough, P??eT G (A* (T*S) 0 End (C* (Wu, F))) 
invertible. 

Proof. — Take ft G o(x) 0 FX. Then by (5.61), (10.224), 

(10.237) P^eTh 
yeB 

eTf(y) 
wu(Y) 

eT(f-f(y))ëTh. 

Observe that on Wu(y), 

(10.238) / - / ( » K 0 . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



194 CHAPTER 10. GENERALIZED METRICS: A FIRST PROOF OF THEOREM 9.8 

By Theorem 10.56 and by (10.238), given yG B 

(10.239) 
wu(x) 

eT(f-f(y))ëTh 
tWu(y) 

eTV-Ky»JTh + 0(e-cT). 

By (10.2), (10.230), (10.235), we get 

(10.240) 

Wu(x) 
eT(f-f(*»JTh 1 

1/2 
aT 

W1/VT 
T?X 

v(Z)exp(-T\Z\2/2)F1/VTk(Z)h 

1 
aV2Tind(̂ )/2 

W1VT 
FxX 

/i (z/Vf) exp (-\Z\2/2) k (Z) h. 

Using (10.191), (10.202), (10.234), (10.235), (10.239), (10.240), we find that 

(10.241) 
Wu(x) 

eT(f-f^ëTh 7T N 
DD 

ind(x)/2-n/4 
(1 + 0 (1/T)) ft. 

Since the support of Jrh is included in a small ball centred at x, if yG B, the 
integral fWu(yj eT(f~f(y^JTh is non zero if and only if x G Wu (y). As we saw in 
Section 5.1, if y G B,y ̂  x, if x G Wu (y), then f(x) < f{y). More precisely, there 
exists c > 0 such that on the support of /i, 

(10.242) / - / ( y ) < - c . 

Prom (10.191), (10.230), (10.235), (10.242), we deduce that iîyeB,y^x, 

(10.243) 
Wu(x) 

enf-f(y))jTh = a (e~cT) 

From (10.237), (10.241), (10.243), we get (10.236). The proof of our Theorem is 
completed. • 

10.16. A proof of the first part of Theorem 10.50 

By Theorem 10.59, for T ̂  TQ large enough, the map P ^ e ^ is invertible. There­
fore, for T large enough, 

(10.244) ST 
C*(WU,F) ( P r e r ) *-1 (e^eT) (P§?er) -1 

By (10.178), 

(10.245) e-TFtNc*(wU>F)/2AC'(Wu,F),t-Ncm(wU>F)/2eTF 

Vte-T^deT:F + VC#^U'F) + TdT 

e-TTtNc0(wU>F)/2A 
LT,t 
C*(WU,F) t-N cm(wU>F)/2ETF 

gT 
C*{WU,F) TT -1 \ftQ* + VC'(W\F).. 

gT 
C'(WU,F) TT 
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Set 
(10.246) KT = e-TFPooeT. 

Clearly, by (10.244), (10.246), we get 

(10.247) eTF ST 
C*(WU ,F) TP (kT)"1'* (eTeT) (kT)"1. 

Prom (10.244)-(10.247), we obtain, 

(10.248) e-TTtNC*(WU'F)/2A 
T,t 
C*(WU,F) ft-NC*(WU>F)/2eTF k^ (eTe^) 1 k^ 

VieTrd*e-T^ + ^'(W^F),* _ TDJ: ky (eTeT) 1 k^ 
Also by Proposition 10.58 and Theorem 10.59, as T —• H-oo, 

(10.249) kT (e^er) 1 kj 7T 
T 

NC*(Wu, F)-n/2 
(1 + OD (1/T)) + 0 (e"cT) . 

Needless to say, both sides in (10.249) are even, including O d (1/F). In particular 
OD (1/T) commutes with TdT. By (10.249), we deduce that 
(10.250) 

kr (eTeT)_1 k^ {-TdT) (kT (eTeT)_1 kTJ - l —TdT + OD (1/T) + O (e~cT), 

Now by the results of Section 5.1, if x G 5 , the chain map d maps o(x) O Fx a 
direct sum of C* (Wu,F)y, which are such that f(y) > f(x). So there exists c > 0 
such that as T —> +oo, 
(10.251) e-TrQeTr O (e"cT) eT^*e"T^ = O (e~cT) 

Prom (10.245)-(10.251), we deduce that given t G ]0,1], as T -> +oo, 

(10.252) e-TrtNC*(WU>F)/2A 
T,t 
C#(WU,F) t-NC*(Wu,F)/2eTF yC#(Wu,F),u 

0 D ( l / T ) + ( l + Vt)0(e-cT) 

By (2.143), (2.150), 

(10.253) 
l 

o 
^Trs 1 

2 gT,t 
C#(WU,F) - 1 9 

9̂  0T,t 
C*(WU,F) gti B C*(WU,F) 

T,t 
TJT 
t 

dt 

l 
0 

<pTr8 NC'(WU,F) 
ST 

C*{WU,F) - 1 
A C'(WU,F) 

T,t 
C#(tyu,F) 

9(h B, T,t 
,C'(WU,F)' b! B T,0 

C'(WU,F) dt 
2t 

Also, by (10.247), 

(10.254) e-T,t NC*(WU,F) gT 
Ç'{WU,F) -1 

AT C"(WU,F) 
ST 

C'(WU,F) eTF 

NC*(Wu,F) + KT (e*TeT)-1 k*TNC*(Wu,F) (kT (e*TeT)-1 k*T)-1 
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By (10.249), (10.254), it is clear that 

kT (e^eT) - l ULNc*lwu>F) ,kT (e^eT) - l k^ 
- l 

remains uniformly bounded as T —> +00. 
Prom (10.252), and from the above boundedness result, we see that as T —> +00, 

the integrand in the right-hand side of (10.253) tends to 0. Moreover, by (10.252), we 
can use dominated convergence in this integral, which then tends to 0 as T —> +00. 
We have thus established the first convergence result in Theorem 10.50. 

10.17. A proof of the second part of Theorem 10.50 

Clearly, 

(10.255) hg VC*(^,F) 
ST 

C*(WU,F) 
9 C*(WU,F) 

hg yC*(Wu,F) ST 
C*(WU,F) 

e 
-2TT 

9 
,C*(WU,F) 

hg yC*(Wu,F) „-2TF C*{WU,F) C*{WU,F) 

By (1.26), 

(10.256) hg yrjC*{Wu,F) -2TT C*(WU,F) C*(WU,F) 
v )c y 1 y 

TTrsBa [/] 

Also, 

(10.257) h9 hc*WU'F\ 8T 
C*(WU,F) C-2TT 

9 
C*(WU,F) 

T (VC-(W«,F)+Td:F TT ST 
Cm(Wu,F) eTF C*(WU,F) 

Using (10.247), (10.249), (10.250), (10.257), we find that as T —> +00, 

(10.258) 

hg yC'{Wu,F) 
ST 

C*(WU,F) -2TT C*(WU,F)S 
e y 

1 
4 

{Z-(F)-%+(F))log(T) 
1 
4 

(xr (^) -x ;+(^)) iog (7r) . 

Prom (10.255)-(10.258), we get the second equation in (10.186). The proof of 
Theorem 10.50 is completed. 
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CHAPTER 11 

FIBRE WISE NICE FUNCTIONS: 
A SECOND PROOF OF THEOREM 9.8 

In this Chapter, we give a second proof of Theorem 9.8, under the extra assumption 
that / is fibrewise nice, and parallel with respect to the connection on M associated 
to THM. Instead of using generalized metrics as in Chapter 10, we use the precise 
estimates on the small eigenvalues of D* which were obtained in Helffer-Sjostrand 
[HSj] and in [BZ2], and also a technique due to Ma [Mai, Ma2] to estimate analytic 
torsion forms in a different context. 

This Chapter is organized as follows. In Section 11.1, we state precisely our extra 
assumption on / . In Section 11.2, we state two fundamental results, of which Theorem 
9.8 is a consequence. The next Sections are devoted to the proof of these two results. 

In Section 11.3, we recall various results from [BZ2], which were obtained in a 
more general form in Chapter 10. In Section 11.4, we give estimates on the spectrum 
of £^ 0 ) . In Section 11.5, we give simple results on superconnection supertraces on 
C* (WU, F). In Section 11.6, we split the superconnection associated to BT into 
three pieces, corresponding to large eigenvalues of to the very small non zero 
eigenvalues, and to the zero eigenvalue. Section 11.7 is devoted to the proof of two 
intermediate results. Sections 11.8-11.10 are devoted to the asymptotics of these 
three pieces as T —> +oo. In Section 11.11, we establish a compatibility result for the 
asymptotics of certain supertraces as t —> 0. Finally, in Sections 11.12 and 11.13, we 
establish our two fundamental results. 

In this Chapter, we use the notation and results of Chapters 1-9, and of Sections 
10.1 and 10.2. 

1 1 . 1 . An extra simplifying assumption 

In this Chapter, besides the simplifying assumptions of Section 9.1, we also assume 
that / is fibrewise nice, i.e. on B \ / takes the value i. As we saw in Section 5.5, this 
is not a restrictive assumption. 
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By the assumptions we made in Section 9.1, we find that since / is fibrewise nice, 

( i l i ) Vn*(x'F|*)/ = 0ont/2£o~y2£0. 

By possibly taking a smaller e0, we may and we will assume that THM is chosen so 
that 

(11.2) vQ-(x,F|x)/ = 0 

Equivalently, THM will be assumed to be included in the tangent bundle to the level 
sets of / . 

11.2. Two fundamental results 

Theorem 11.1. — As T -> +oo; 

(11.3Ì 
+oo 

1 
(Trs [Ngh'{Dt,T)]-x!-{F)) 

dt 

2t 

1 
2 

(xf0-(F)-X,a(F)) (2T-log(T)) 

1 

o 
Trs [NC*(Wu,F)gh' (B 

't 
Cm{Wu,F) X'g- (F) dt 

2t 
+ 00 

1 
TVs NC*{W^F)ghf fB C*(WU,F) 

t ~ X'9~ (F) 
dt 
2t 

1 

2 
(x,9-(F)-x,9(F))\og(7r). 

Theorem 11.2. — As T -> +oo, 

(11.4) 

hg (VH*(XF|X) 9L2ì0 
Hm(XtF\x) 

9L2,T 
H9(X,F\x) X'9(F)T 1 

2 
X'9{F) n 

4 
X9 (F) 

log(T)-,h9 vff(X,F|x)^i/#(X,F|x)0 
9 C*{WU,F) 
H*(X,F\X) 

1 

2 
X'9(F) 

n 
4' 

X'9(F) I log (TT) in ft#(S)/dft#(S). 

Proof. — The remainder of the Chapter is devoted to the proof of Theorems 11.1 and 
11.2. • 

Remark 11.3. — Clearly, Theorems 11.3 and 11.4 imply Theorem 9.8. 

11.3. Preliminary results 

Recall that ar was defined in (10.201) by the formula 

(11.5) CÏT 
Rn 

V2 (Z) exp (-T\Z\2) dZ. 
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Recall that JT : Cm (WU,F) n'(X,F\x) was denned in (10.204) by the formula 

(11.6) JTh 
u(Z) 
a T 

1/2 exp(-T|Z|2/2)^/i, 

thatëT:C* (WU,F) F [0,1] T in (10.206) is given by 

(11.7) eT P [o,i] 
T oo 

that eT : C9 (Wu, F)-> F[0.1] was defined in (10.226) by the formula 

(11.8) eT P 
T 
[0,1]. tF JT 

so that 
(11.9) er = eTf er-

Also eT is the adjoint of eT with respect to the metrics gn \xiF\x) ^gC(Wu,F)^ an(j 

is the adjoint of eT with respect to the metrics gT ^ ' / ^C*(VFU,F) 
The following results were established in [BZ2, Theorems 6.7, 6.9, 6.11 and 6.12]. 

Theorem 11.4. — There exists c > 0 such that as T —> -hoo. 

(11.10) 

ëT - JT = O (e"cT) , 
e^eT = 1 + O (e~cT) , 

poo _ TT 7T 

T 

NC*(W",F)/2_N/4 
(l + 0 ( e - ^ ) ) 

e-1 dXeT T 
7T 

1/2 
e~T (o + 0(e"cT)) 

Remark 11.5. — The first identity follows from Theorem 10.56. Proposition 10.58 
shows that the second identity holds in (11.10). The third identity follows from 
Theorem 10.59. The fourth identity follows from the second and third identities, and 
also from the identity 

( i i . l i ) P^d* (P^y1 = d, 
which itself follows from Theorem 5.3. 

Remark 11.6. — For T ^ 0 large enough, put 
(11.12) e'T = eT [e^eT] -1/2 

Then 
(11.13) erperp — 1. 
By (11.10), 
(11.14) e'T = eT(l + 0(e-cT)) 
It follows that in (11.10), we may as well replace er by e'T. 
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11.4. The spectrum of B (o) 
T 

Clearly, 

(11.15) ker£ Cm(Wu,F),(0) H*(X,F\x). 

Let F 
T 
C*(Wu,F)J0\ kerB Om(Wu,F) be the orthogonal projection operator on the 

vector bundle ker Bc (WU>F) with respect to the metric gc (w >F\ The spectrum of 
gC9{wu,F),{0) -g pUreiy imaginary. There exists di,d2 £ R+, with d\ < Gk/4, such 
that 

(11.16) Sp B C*(Wu,F),(0) C{0}U[2di,d2/2]. 

Recall that E {0} 
T 

Çf(X,F\x) ->kevB (0) 
T 

H'(X, F\x) is the orthogonal projec­

tion operator on ker B, (0) 
T 

with respect to the metric 9T 
nm(X,F\x) 

Theorem 11.7. — For T > 0 large enough, 

(11.17) Sp for 
T 

C{0}U 
T 

. 7T 

1/2 
e~T 3 

2 
di 

2 

3 
d2 U [l,+oo[. 

Moreover there exists c > 0 such that as T —> -foo, 

(11.18) (e'T)-1P 
T 
{0} 

E4t P 
T 
C*(Wu,F),{0} O (e-cT) . 

Proof. — By Hodge theory, 

(11.19) kerB^ ~H'(X,F\X). 

In particular, by (11.15), (11.19, we get 

(11.20) rk kevB^) = rk f kerBc'(wu>F^ ) . 

As observed in Remark 11.6, from (11.10), we get 

(11.21) (e'r)-1 dxe'T = (T/TT)1/2 e~T (d+O (e~cT)) . 

Since e'T : C (WU,F) fJ?'1] is unitary, from (11.21), we get 

(11.22) (e'j.)-1 d*'*e' = (Tli,)1'2 e~T (3* + O (e-cT)). 

Prom (11.21), (11.22), we get 

(11.23) (T/TT)-1/2 eT (e'r)'1 B^e'T = ßc*(w-,F),(o) + 0 (E-CT) _ 

From (11.16), (11.20), (11.23), we get (11.17). 
By (11.17), for T > 0 large enough, 

(11.24) F {0} 
T 

1 
2in 2Z7 

d\ 

X-(T/iry1/2eTB^> 

Using (11.23), (11.24), we get 

(11.25) ( 4 ) " 1 F {0} 
T e>-p 

1 
2Z7T 2Z7 

d\ 
X _ ßC*(Wu,F),(0) 

O (e"cT) 
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ido 

A'+ 

ld1 

-di /2 di/2 
0 

id1 

A' 

-id2 

FIGURE 11.1 

Also, by (11.16), we obtain, 

(11.26) F 
T 
)C*(Wu,F)A0\ 1 

2¿7T DI<5 

dX 
A_ BC«(w«,F))(o)' 

From (11.25), (11.26), we get (11.18). The proof of our Theorem is completed. 

11.5. The superconnection supertraces associated to C9 (WU,F) 

Recall that S is the unit circle in C. Let A' = A+ U A'_ be the contour in C 
indicated in Figure 11.1. 

Definition 11.8. — Put 

(11.27) GC*(WU,F) wt-1 1 
2Í7T A' 

ti (Vtx) 

X _ fiC*(Wu,F 
dXipt, 

HC9(WU,F) wt-1 
^6 

ti (y/i\) 
X _ fiC*(Wu,F 

dXipt> 

Proposition 11.9. — For any t > 0, 

(11.28) ti D C9(WU,F) 
t 

G C9(WU.F) 
t 

H C9(WU,F) 
t 

Proof. — By (11.16), the spectrum of BC*(WU'F^ is included in the domain bounded 
by A' U (di/2) 6. Using Proposition 1.20, we get (11.28). • 
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Put 

(11.29) q= [dimS/2] + l. 

Proposition 11.10. — There exist smooth even forms 
a0 
C*(WU,F) 

aq 
C'(WU,F) on S 

such that as t —> 0, 

(11.30) Trs NC'(W«,F)gGC'(W"tF) 
S 

k=0 

C-(W",F)RFC + 0 

Proof. — Clearly, there is a holomorphic function m(x) such that hf (x) = m (x2). 
By (11.27), we get 

(11.31) , „C*(WU,F) ,_i 
Q 

k=0 

m<*> (0) 

Jfc! 
1 

2iir A' 

X2k 

X — ßC*(Wu,F) 
dXtk + o(tq) 

Let A" C C be the image of A' by the map À —> À2. Then 

(11.32) 1 
2Z7T A' 

X2k 

X — BC*WU>F) 
dX 

1 
2Z7T A" 

Xk 
X — ßC*(Wu,F),2 

dX. 

Using (11.32), we find that the form 

Trs NC'(Wu,F)g 1 

2i7T A' 

X2k 

x — bc*(wu>fî 
dX 

is even. Equation (11.30) now follows from (11.31). 

Now we proceed as in [BIO, Theorem 9.29]. 

Theorem 11.11. — Given t > 0, the following identity holds, 

(11.33) H 
tr 
C*{WU,F) dim S 

p=0 O^N^P+L 
jlv,jp+l-t0^° 

Z:rTO**«O-I 

H'(IO-L P+1-ÎQ k — C jk (0) 

¿ 0 - 1 \p+l—io 
k=0 Jk 

(-1)p+1-io 

CLßC'(^,F),(L)C2 . . . ßC'(W«,F),(L)C 

In (11.33), ¿0 of the Cj's are equal to pC*(wu,F),{o}^ ^e 0^er5 are eQua\ respec-

lively to (ViBc*^"^'(0))"(1+J'l),...,(v/tJBc*^''^'(0))"(1+J,'+1-io). In particu-

lar, ^W is a polynomial in the variable . 

As t —> +oo, 

(11.34) 

HC9(W",F) = pC'(Wu,F),{0}ht U(H*(X,F\X) 9\ 
H*(X.F\r) 
0*{WU,F) 

2 
pCm(Wu,F),{0} 

+ o(i/Vt 
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Proof. — Using (11.16), we find that for t ^ 1, 

(11.35) 1 
2Z7T (di/2)6 

ti (y/tX) 
A - BC*(Wu,F) iX 

1 
2Î7T (d1/2y/t)ö 

ti ly/tX) 
A - BC*(Wu,F) 

dX 

1 
2ZTT (di/2)ö 

h' (A) 
A - \ftBc*(Wu'F) 

dX. 

By Proposition 1.20 and by (11.35), for t ^ 1, we get 

(11.36) HC'(WU,F) 1 
2i?r (d1/2)S 

V (A) 
A - A »(W,F) 

dA. 

Clearly, 

(11.37) T> az 
C*(WU,F) y/lßC*(Wu,F),(0) BC'(W«,F),(l)t 

By (11.37), we get 

(11.38) X-D t 
C*{WU,FY - l \-StBc^WU'F^ - l 

(A -VtBC*(Wu,F),(o) -1 BC-(W,F),(1) A _ ^ ^ ( ^ , F ) , ( 0 ) -1 

and the expansion in (11.38) only contains a finite number of terms. By (11.16), 0 is 
the only element inside the domain bounded by (di/2) 6 which may lie in the spectrum 
of Bc*{w«,F),(o)m Using (n.36), (11.38) and the theorem of residues, we get (11.33). 
Also, by (1.38), 
(11.39) pC'(WU'F),{0} ßC'(Wu,F),(l) pC*(Wu,F),{0} 

pC'(Wu,F),{0} 1 
2 rz vH»(X,F|x) P H9(X,F\xY 

C»(WU,F) 
pC'(Wu,F),{0} 

Prom (11.33), (11.39), (11.34) follows when t^ 1. By analyticity, we get (11.34) for 
alH > 0. The proof of our Theorem is completed. • 

Proposition 11.12. — There are smooth even forms b U 
C*(WU,F) hC*{Wu,F) on S 

such that 

(11.40) Trs \NC-(W^F)gHC-(W^Fy q 

k=0 
b 
k 
C'(WU,F) k 

Also, 

(11.41) hC'(Wu,F) 
°0 x'g{F). 

Proof. — Observe that in each of the terms in the right-hand side of (11.33), 1/y/i 
appears with the power 

V + 1 - i0 
p+l-io 

k=l 
jk q. 
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A+ 

t/2 
-1/4 0 -i/2 1/4 

A-

FIGURE 11.2 

Also since Bc'(wuiF}^ is an odd operator, and JBc*(iyU'F)'(1) is even as an operator, 
when multiplied by Nc (WU'F)g, the supertrace of the corresponding term is non zero 
only if the power of 1/y/i is even. Our Proposition follows. • 

Proposition 11.13. — The following identities hold, 

(11.42) a 0*(Wu,F) 
k 

b 'k 
C*{WU,F) 0 if k > 0, 

a 
o 
C'(WU,F) x'g-(F)-x'(F). 

Proof. — By Proposition 11.9, 

(11.43) Trs \Nc^wu^gh' D t 
C*(WU,F) Trs NC^WU^ 9^t 

V(WU,F) 

Trs [№^wu^gH 
t 
C*(WU,F) 

Also as t —> 0, 

(11.44) Trs ^ ( r « V (D t 
C*(WU,F) X1-g (F) +O(t) 

Our Proposition now follows from Propositions 11.10, 11.12 and from (11.44). 

11.6. The superconnection supertraces associated to F [0,11 
T 

Now we will use a technique due to Ma [Mai, Ma2] to estimate Trs [Nghf (D^T)]-
In [Mai, Ma2], Ma studied the adiabatic limit of holomorphic torsion forms for a 
multifibration. In [Mai, Ma2], as T —> +oo, the small eigenvalues of the correspond­
ing Dirac operators tend to 0 like 1/Tfc, k = 1,2,..., and the question is then to study 
the contribution to the analytic torsion forms of the various groups of small eigenval­
ues. Here, the situation will be formally the same, except that the small eigenvalues 
behave like e~cT, c > 0. 
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Recall that 5 is the unit circle in C. Also the contour A' was introduced in Figure 
11.1. Let A = A+ U A_ be the contour in C indicated in Figure 11.2. 

Definition 11.14. — Put 

(11.45) 

Ft,T = ipr1 
1 

2in 
ti (Vtx) 

X — BT 
dXéu 

Gt,T = ^t1 
1 

2Î7T A' 

ti (Vtx) 
X - D,TM-ie2T T 

dXéu 

HT,T = ^r1 
1 

2in 
ti (y/tX) 

X — DeAT T dX\bt. 

Proposition 11.15. — The following identity holds, 

(11.46) h' (A ,T) = FtJ1 + Gre-2TtT + He-4TtT. 

Proof. — Clearly, 

(11.47) Sp(A ,r) = V*Sp B (oY 
T 

By Proposition 3.17, Theorem 11.7 and by (11.47), we find that for T ^ 0 large 
enough, 

(11.48) /i,(A,r)=^t"1 
1 

2iir 
ti (Vtx) 

X — BT 
dX 1 

2iir (TT)1/2 e-TA' 
ti (y/tX) 

X — BT 
dX 

1 
2in e~2TS 

ti(Vtx) 
X — BT 

dX 1>t. 

Now, 

(11.49) 1 
2Î7T (TT)1/2 e-TA' 

ti (Vtx) 
X — BT 

dX 
1 

2Î7T A' 

ti T 
TV 

e-2TtX 

X - 'T 
7T 

-1/2 eTBT 
dA, 

1 
2in e~2T6 

ti (Vtx) 
X — BT 

dX 1 
2ZTT s 

ti Ve-*TtX 
X - e2TBT 

dX. 

Using Proposition 3.17, (11.48) and (11.49), we get (11.46). 

11.7. Two intermediate results 

As in (10.19), we use the notation 

(11.50) AT = e-TfATeTf, BT = e-TfBTeTf. 
Take ci € ]0,1]. Put 

(11.51) UT Xec 0 
4 

A| ^ ClVf,\X\ > 1 
8 
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Theorem 11.16. — For c\ € ]0,1] small enough, for any integer p > dimX + 2, there 
exists C > 0 such that for T ^ 1 and X £ UT, 

(11.52) TVs Ng(X-Br)-p TVs NC*(Wu,F)g \ - B 
u 
,C*(W",F) -P 

C 

VT 
(1 + |A|) P+l 

Proof. — By (3.45), since the horizontal component (df)H vanishes, 

(11.53) BT 
1 
2 

E(ei)1 
1/2,e* 
A* (T* S)§A# (T* X)®F,u r ( v / , e i 

T 

2 
c(Vf) 

1 

4 
A* (T* S)§A# (T* X)®F,u 

1 
2 

/ ^ ( v ^ , ^ ) ( / f ) 

From (11.53), we get 

(11.54) BT 
1 
2 

E(ei)1 A* (T* 5)gA* (T* X)§F,u 
1/2, 

T 

2 
c(V.f) 

1 
2 

E(ei)1 F D D 
CT 
H 

By (11.54), we find that the £?T>0 does not depend on T. We will write B >0 instead 
of B :(>0) 

T 
Clearly, in (11.52), we can replace BT by BT- By the simplifying assumptions we 

made in Section 9.1, on the support of /x, 

(11.55) B7 V •/^FIR 
T 

As in (10.14), 

(11.56) kerXJ T 
/®F|B fT O F|B 

Using (11.54)-(11.56) , in degree 0, the proof of our Theorem is the same as the proof 
of [BL, Theorem 9.24]. 

Moreover, 

(11.57) (X-BT) 1 X-B T 
:(0) -1 

X-B (0) 
T 

- l 
B 

•>C A B (o) 
T 

-1 

and the expansion in (11.57) only contains a finite number of terms. Set 

(11.58) P U,+OO[ 
T l-F [0,11 

T 

If A G UTL put 

(11.59) 

LT,1 p [0,11 
T X B 10) T 

-1 A 0,11 
T LT,2 P ;[0,1] 

T A a (0) 
T 

, -1 
p r,]l,+oo[ 

LT,3 F T\ll,+oo[ 
X-B (0) 

T 
-i 

i1 [0,11 
T LT,4 F T,]l,+oo[ 

A B (0)" 
A 

-1 
P ;T,]l,+oo[ 
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We still use the notation in (3.109) to define the norms || || . By proceeding as in 
[BL, Theorem 9.21], we can define mT (A) e End(C* (WU,F)) such that for T ^ 0 
large enough, 

(11.60) LT,I = (MT (A) A) - l 

and moreover by [BL, eq. (9.13)], if c\ > 0 is small enough, if A G UT, 

(11.61) Im"1 (A) - 1 
oo 

c 

VT 
(1 + |A|). 

By using (11.55), (11.56) and by proceeding as in the proof of [BL, Theorem 9.23], 
we find that for 2 ^ j < 4, 

(11.62) ||£T,J|IP-I < C, IÎ TJHOO 
c 

VT 
From (11.57)-(11.62) we find that to establish (11.52), in (11.57), we may as well 

replace A B (0V 
T 

_I 
by P [0,1] T A. 

Let pT be the orthogonal projection operator from Qm(X,F\x) on Im(JT) C 
Q'(X,F\X). We claim that 

(11.63) F [o,i] 
T 1 Pi 

oo 
O (e-cT) 

In fact, since JT : C*(WU,F) Sl'(X,F\x) is an isometric embedding, (11.63) 
follows from the first equation in (11.10). 

Recall that II IL is the Hilbert-Schmidt norm. Then 

(11.64) P ;[0,l] 
T PT 

I2 

2 
P [0,1] T 

2 

2 
IIPTII 2 

2 
2ReTr P 0,1]. 

T PT 

Since the ranks P [0,11 
T and of PT are both equal to dim(F|ß), using (11.63), (11.64), 

we get 

(11.65) P [o,i] T PT 
2 

2 
(9 (e"cT) . 

Let QT be the orthogonal projection operator from Q*(X,F\X) on F [o,i] T Im(JT). 
Then 

(11.66) P ;[0,1] T Pi 
1 

P :[0,ll 
T Pi QT 

l 
P [o,H 

T PT 
2 

IQTIII ^ 2dim(F|B) P [o,i] T T 
2 

Prom (11.65), (11.66), we get 

(11.67) P "0,11 
T PT 

l 
0(e"cT). 

By the above it follows that to establish (11.52), we may as well replace in (11.57) 

A B (0) 
T 

-1 by pT/\. 
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Let r : A(T*X|B) —> Amax (T*XU\B) the obvious orthogonal projection operator. 
Then using (10.14), (11.6), we find easily that if s G A*(X,F|x), 
(11.68) 

pTs (Z) u(Z) 
aT 

exp -T\Z\2 /2 r 
TX|B 

/i (ZF) exp -T\Z'\2 /2)s(Z')dvTX (Z'). 

Using (11.55), (11.68), we get 

(11.69) pTBTpT PT LS rj-i PT * 

By (10.204), since here dT = 0, we get 

(11.70) dT 
:/§F|B,(>0) 1 

2 
W (F|B,gF|B c(RTX^Z 

Since c (RTX^Z) is an odd operator, we get 

(11.71) rc RTX\vZ r = 0. 

By (11.68), (11.69), (11.71), we obtain, 

(11.72) pTB >o)_ 
PT 

1 
2 W F |B ,3F |B 

Using the above, we get (11.52). The proof of our Theorem is completed. 

Theorem 11.17. — For c\ G ]0,1] small enough, given any integer p > dim(X) + 1, 
there exists C > 0 such that for T > 1 /ar#e enough, and \ELUT, 
(11.73) II {\-BT)-l\\P^c{i + \\\y. 

Proof. — Again, we can replace in (11.73) BT by BT- First we claim that (11.73) 
holds for B^ • Using (11.55), the proof is the same as the proof of [BL, Theorems 
9.21 and 9.23]. To get (11.73), we use (11.57) and the fact that B{>0) is of order 0. 
The proof of our Theorem is completed. • 

11.8. The term containing Fttr 

Theorem 11.18. — There exist c > 0, C > 0 such that for T ^ 0 large enough, and 
t > 1, 

(11.74) |Trs [NgFt,T]\ 
C 

VT 
e~ct. 

Proof. — By (11.45), 

(11.75) Trs [NgFt,T] = Vr'Trs Ng 1 

2i-K 
h' ! (VT) 
X — BT 

dX 

Take p G N . Let kp (A) be the unique holomorphic function on C \ R such that 
- As A —• ± ioo, kp (A) —> 0. 
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The following identity holds, 

(11.76) 
fc<T ^ (A) 

(P-1)! 
ft'(A). 

Clearly, if A € A, 

(11.77) |Re(A)| 
1 

2 
Im(A)| 

Using (11.77), we find that there exist C > 0, C > 0 such that if A e A, 

(11.78) \kp Vtx Cexp -C't|A|2 

By (11.76), 

(11.79) 1 
2l7T 

h'(VtX) 

X — BT 
dX 

1 
2ZTT 

kp(VtX) 
y/tP'1 (A - BTy 

jdX, 

1 
2Î7T 

ti (yftX) 

X-B 
u 
C*(WU,F) dX 

1 
2I7T 

FCP (y/iX) 

y/tP-1 [X-B 
o 
C*Wu,F E2 

dX. 

By Theorem 11.16 and by (11.78), we get 

(11.80) Trs Nq 
1 

2L7T AnC/R 

Kp VtA) 

V/ÏP-1 ( A - B r p 
dX 

Trs NC'(W«,F) 1 
2i?r AnC/T 

Kp VtA) 

V/ÎP-1 ( A - £ 
'0 
C*Wu,F T c/A 

C' 

Vr AnUT 

\kv (viX)\ 
Vt"-1 

(I + |AI; p+1 dA 
C' 

VT 
C-ct 

Take A G A. Then by Theorem 11.7, there exists C > 0 such that for T > 0 large 
enough, 

(11.81) A B (o) 
T 

-1 
a 

Since i^>0^ is an operator of order 0, from (11.57), (11.81), we deduce that if A G A, 

(11.82) A — BT 
-L 

oo C. 

Take A0 G A. Then 

(11.83) (A - BT) 
-L 

(AQ — BT) 
-L 

(A0 - A) (Ac - BT) 
- I 

[A - BT) 
-L 

Prom Theorem 11.17 and from (11.82), (11.83), if A G A, 

(11.84) (A - BT -L 

v 
< C ( 1 + |A|). 
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Using (11.78), (11.84), we get 
(11.85) 

Trs Ng 
A\UT 

kv(VtX) 
Vtp-X 

1 
(A - BT) P 

d\ ^ Cexp(-ctT), 

Trs NC'(W",F)g 
A\UT 

kp(VtX) 
Vtp-1 

1 

X-B 
'0 
C'(WU,FV 

pdX Cexp(-ctT) 

From (11.75), (11.79), (11.80), (11.85), we get 

(11.86) 

Trs Ng 1 
2in A 

ti (y/tX) 
X — BT 

dX Trs NC'(W",F) 1 
2i7T 'A 

ti (Vtx) 
X-E 

u 
C'(WU,F) dX 

C 
VT 

e-ct. 

Also, since Sp (B 
o 
C*(WU,F) {o}, 

(11.87) 1 
2i?r 'A 

ti (Vtx) 
X-E 

u 
C'(WU,F) 

dX = 0. 

By (11.86), (11.87), we get (11.74). The proof of our Theorem is completed. 

11.9. The term containing Gt,T 

Theorem 11.19. — For any t>0, as T —> +oo, 

(11.88) Trs [NgGt,T] Trs Nc'<-wu^gG 't 
,C*(WU,F)' 

Moreover, there exist c > 0, C > 0 such that for T large enough and t ^ 1. 

(11.89) |Trs [NgGt,T}\^Ce-ct, 

Trs \Nc^wu^gG 
t 
C*(WU,F) Ce~ct. 

Proof. — Put 

(11.90) Dt,T = e-TfDt,TeTf. 

To establish the first inequality in (11.89), we may as well replace in formula (11.45) 
for Gt,T the operator ^(T/7R)-IE2T T by B^T-YE2TT-. 

We use the notation in the proof of Theorem 11.16. By (3.54) and (11.54), we get 

(11.91) D(T/tt)-1 e2T,T (T/7r)-l/2eTB (o) 
T 

B(1) bp) 
(T/7r)_1/2 eT 
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Then for T ^ 0 large enough, and A G A', 

(11.92) (A - D{T/^)~1e2T,T) 
-I 

(\-(T/7r)-1/2eTB :(0) 
T 

-1 

(X-(T/7r)-1/2eTB T 
•(0)\ -1 B{1) 

B{2) 

(T/7r)"1/2eT 
A-(T/7r)-1/2eT^ Z 

T 

-L 

and the expansion in (11.92) only contains a finite number of terms. By (11.17), for 
T ^ 0 large enough, 

(11.93) Sp((T/7r)-1/2eT£ :(0) 
T C {0} U [3/2di, 2/3d2] U [(T/TT)"1/2 eT, +oo[. 

Also 

(11.94) X-(T/n)-1/2eTE ^ o 
T 

-1 
A (T/TT) -1/2 eTP r(0) 

T 
-1 

p ̂[0,11 
T 

(X-(T/7r)-1/2eTE : 0 
r 

-1 
P 

|L,+OO[ 
T 

Then we split the sum in (11.92) using (11.94). By (11.93) and by the theorem of 
residues, we find that for T ^ 0 large enough, the integral over A' of a term where 
only P-]1+oo[ appears vanishes identically. 

Moreover FT is finite dimensional, and for T large enough, its dimension does not 
depend on T. It follows that in the terms where P^'1' appears, the trace class norm of 
the corresponding operator can be estimated in terms of the || norm. By (11.93), 
for T > 0 large enough, and A € A7, 

(11.95) (X-(T/7r)-1/2eTB : Or 
T 

v-1 
P 

DL,+OO[ 
T 

MOO 

C 

(T/7T)"1/2 eT 

rX-(T/7r)-1/2eTB (o) 
T 

k -1 
p ;[0,11 

T 
I CO 

c. 

By (11.92), by the above considerations and by (11.95), we see that 

(11.96) 

Trs [NgGt,T] - Trs NgP [o,i] 
T 

1 
2in 'A' 

h'(y/i\) 

X-F ,[0,11 
T 

B (0) 
T 1 „IT T 

L (i) F 
T 
[0,11 

•dX 

C 

(TM~1/2eT' 
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By (11.53), £^>0) does not depend on T. We will write B ^ instead of £^>0). 
Then for T > 0 large enough, 

(11.97) Trs NgF ;[0,1] 
T 

1 
2Î7T A' 

ti (Vtx) 

X-F :[0,ll 
T 

D :(0) 
' T _1e2T,T 

B (1) P [0,1] 
T 

dA 

= Trg NC-(W«,F)Ô 1 
2i7T A' 

/i; (Vtx) 

X-E~LF • [0,1] 
T 

(T/TT)-1/2 ETB (o) 
T 

B(1) P [0,1 
T CT 

dX 

By (11.14), (11.23), 

(11.98) e 
T 
- l (T/TT) -1/2 e7 B O 

T eT 5 C#(Vyu,F),(0) 0(E~CT) 

Recall that JT : C'(WU,F) -> A*(XF|x) was defined in (10.204), (11.6). By 
(11.53), (11.55), 

(11.99) B(1) JT = JTw (VF|B ,gF|B) 

By (11.8), (11.99), we obtain, 

(11.100) F [o,i] 
T 

B(1) e 
ZA JT = CTOJ VFIB,^ IB 

Prom (11.100), for T ^ 0 large enough, 

(11.101) e-1T P[0.1]N(1)eTf JT = w (VF|B, gF|B) 

Moreover, by (11.10), we get 

(11.102) JT-ET = 0(E-CT), 

where in the right-hand side of (11.102), O (e cT) holds in the ordinary L2 norm of 

n*(X,F\x). If we equip Sl'(X,F\x) with the metric g% (X'F{x\ then (11.102) is 
equivalent to, 

(11.103) eTfjT -eT = o (E~CT) . 

Using (11.101) and (11.103), we get, for T ^ 0 large enough, 

(11.104) E^LPPL]B^PPL]ET 
1 
2 Z F\B,9FIb O (e-cT) 

Also if A € A', 

(11.105) (A) I 
1 
2 

|Im(A)| 

Therefore, there exist c > 0,C > 0 such that for t ^ 0,A G A', 

(11.106) k (V̂  ^ Ce-Ct. 
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By (11.98), (11.104), (11.106), we find that given t > 0, as T ->• +oo, 

(11.107) Trs NgF [0,1] 
T 

1 
2in A' 

ti (y/tX) 

X-F ,[o,i] 
T B (0) 

T/2 +1 e2T,T 
B(1) P. [o,i] 

T 

dA 

Trs NC'(Wu,F)gGC'(Wu,F) O (e~cT) 

By (11.96), (11.97), (11.107), we get (11.88). By (11.96)-(11.107), we also get (11.89). 
The proof of our Theorem is completed. • 

Theorem 11.20. — For T > 0 large enough, there are smooth even forms oo (T), . . . , 
aq (T) such that as t —> 0, 

(11.108) Trs [NgGt,T] 
g 

fc=0 
ak (T)rk + 0T (t). 

There exists C > 0 such that for T large enough and t 6 [0,1], 

(11.109) \oT(t)\^ct. 

Finally, there exists c > 0 such that as T —» +00, 

(11.110) ak T a 'k 
C*(WU,F) O (e~cT) forO^k^q. 

Proof. — By (11.45), 

(11.111) wtGt,TW-1t 1 
2ZTT A' 

ti (y/tX) 
X - D(T/Y)-1e2t,T 

dX. 

The proof of (11.108) continues as the proof of Proposition 11.10. 
Also, by the same argument as in the proof of Theorem 11.19, 

(11.112) Trs Ng 1 
2m A' 

xk 
X - D(<T/7r)~1e2T,T 

dX 

Trs NC-{W^F)g 1 
2i7T A' 

Xk 
A — pC9(Wu,F) 

dX O (e"cT) 

Using (11.30), (11.31), (11.111), (11.112), we get (11.109) and (11.110). The proof of 
our Theorem is completed. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



214 CHAPTER 11. FIBREWISE NICE FUNCTIONS: A SECOND PROOF OF THEOREM 9.8 

11.10. The term containing Ht,r 

Theorem 11.21. — For T ^ 1 large enough, and t > 0, 

(11.113) Ht,T 
dim 5 

p=0 o<io<p+1 
o<io<p+1 

p+1-io k = l jk<io-1 

tit*0-1' ,p+l-i0 
fc = 0 jk (0) 

io 1 p+l—io 
k=0 jk 

("I) p+l-zo 

Ci B(1) BP) 

Ve4Tt 
C2 B(1) B(2) 

Ve4Tt 
Cp+1 

In (11.113), io of the Cj's are equal to P {0} 
T 

the others are equal respectively to 

Ve4TtB (OR 
T 

(i+ji) Ve4Tt£ (0) 
T 

l+jp+l-20 J In particular, for T > 0 /arye 

enough, Ht,r is a polynomial in the variable 1/Vt . 
Finally, for T ^ 0 large enough, as t —> 4-co, 

(11.114) Ht,T P {0} 
T 

ti B H*{X,F\x) 
T 

F {0} 
T 

O (1/Vt) 

Proa/. — By (11.17), it is clear that for T > 0 large enough, inside the unit circle, 
0 is the only possible element in the spectrum of DGAT T. We can then proceed as in 
the proof of Theorem 11.11 to establish our Theorem. • 

Theorem 11.22. — For T ^ 0 large enough, there are smooth even forms bo (T) , . . . 
bq (T) such that for t>0, 

(11.115) Trs [NgHttT] 
1 

k=0 
bk (T)t~k. 

Moreover, 

(11.116) 60(T) = X; (F). 

There exists c > 0 such that as T —> +00, 

(11.117) Trs [NgHt,T] = x'g (F) + O (e~cT). 

Also, there exists c > 0 such that as T —• +00, 

(11.118) bk (T) =0 (e-cT) for k > 0, 

=X'g (F)fork = 0. 

Proof — Observe that as operators, is even, and B^ is odd. Using Theorem 
11.21, the proof of the first part of our Theorem is the same as the proof of Proposition 
11.12. Also by (11.17), for T > 0 large enough, 

(11.119) Sp (e2TBT) C {0} U 3 
2 

(T/n)1/2eTd1,+oo 
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Using (11.119) and proceeding as in the proof of Theorem 11.19, we get (11.117). 
Using (11.113), we see that as T —> +oo, the terms which contain a positive power 
of 1/y/i tend to 0 like e~cT. By (11.115)-(11.117), we get (11.118). The proof of our 
Theorem is completed. • 

11.11. A compatibility result 

Definition 11.23. — For T ^ 0 large enough, and t > 0, put 

(11.120) Kt,T IT1 
1 

2Î7T 4S 
ti (y/i\) 
X — BT dXibt. 

Proposition 11.24. — For T ^ 0 large enough, and t > 0, 

(11.121) G(T/ir)e-2Tt,T + HE-4TTT = Kt,T-

Proof. — The proof of our Proposition is the same as the proof of Proposition 11.15. 

Theorem 11.25. — As T —> +oo, given t > 0, 

(11.122) Trs [NgKttT] = Xg~ (F) + O (l/Vf) 

For T ^ 0 large enough, there exist smooth even forms Co (T) , . . . , cq (T) such that 
as t —> 0, 

(11.123) Tr8 [NgKttT] 
q 

k=o 
ck (T)t-k + 0T (t). 

AsT -» +oo, 

(11.124) ck(T) = 0(l/VT), k>0, 

C0(T) = X9-(F) + O(I/VT), 

Finally, for T ^ 0 large enough, 

(11.125) ak (T) 
T 
7T 

-fc 
e2kT + bk (T)e4kT = ck (T),0<k<q. 

Proof. — By proceeding as in the proofs of Theorems 11.18 and 11.20, we get (11.122) 
and (11.123). Also by proceeding as in the proof of Theorem 11.20, we find that the 
expansion in (11.123) is uniform in T. Therefore (11.124) holds. By (11.108), (11.115), 
(11.121), (11.123), we get (11.125). The proof of our Theorem is completed. • 
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11.12. A Proof of Theorem 11.1 

By Proposition 11.15, Theorems 11.18, 11.19 and by Theorem 11.22, for T > 0 
large enough, 

(11.126) 
+oo 

1 
{Trs[Ngh'(Dt,T)}-X'g (F)) 

dt 
2t 

•+oo 
1 

TVS [NgFtiT] dt 
2t 

+OO 
1 IT 

Trs [NgGttT] 
dt 
2t 

+oo 
E-4T 

(Trs [NgHttT]-x'g (F)) dt 
2t 

By Theorem 11.18, as T —> +00, 

(11.127) +00 
1 

Trs [NgFttT] 
dt 
2t 

0. 

Also, using in particular Theorem 11.22, we get 

(11.128) 
+OO 

(T)e 
T 

-IT 
TVS [NgGt,T] 

dt 
2t 

+oo 
E-4T 

(Trs [NgHt,T]-x'g (F)) 
dt 
2t 

1 

T ' E-2T 
Trs [AT5GT>T] 

<7 

fc=0 
a*(T)t~k dt 

2t 
+00 

1 
TVS [NgGttT] 

dt 
2t 

1 
2 

Q 

/C=L 

a* (T) 
k 

T 
7T 

-fc e2KT 1 1 
2 a0 (T)log 

T 
7T 

- 1 
e2T 

1 
2 

9 

fc=i 

Ok (T) 
Jfc 

e4kT. 

By Theorems 11.19 and 11.20, as T -> +00, 

(11.129) 
1 

T 
7T 

E-2T 
TVs [ W t | T ] 

9 

fc=0 
afc(T)t~k dt 

2t 
1 

0 
TVS NC*{W^F)gG C*(WU,F)' 

t 
1 

k=0 
a C*(WU.F) 

k 
t~k dt 

2i 

By Propositions 11.12 and 11.13, 

(11.130) 
1 

k=0 
a C*(WU,F) 

k t-k Trs NC'(W\F)gH C'(WU,F) 
t -X'9~(F). 

By (11.28), (11.129), (11.130), we see that as T -> +00, 

(11.131) 
1 

T 
7T 

E-2T 
TVs [NgGt,T] 

1 

k=0 
ak (T)t~k dt 

2t 
1 

0 
TVs NC%W^F)gh, BC\WU,F) 

-x'9-(F) 
dt 
2t 
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By (11.88), (11.89) in Theorem 11.19, as T -> +00, 

(11.132) 
.+00 

1 
Trs [NgGttT] 

dt 
2t 

•+00 

1 
Trs \Nc^wu^gG C*(WU,F) 

t 
dt 
2t 

Using (11.124) and (11.125) in Theorem 11.25, we see that if k > 0, as T -> +00, 

(11.133) ak (T) 
T 
7T 

-k 
e2kT + bk (T)e4fcT^0. 

Also by (11.110) in Theorem 11.20, as T —> +00, 

(11.134) 1 
2 

q 

k=i 

ak (T) 
k 

1 
2 

q 

/C=l 

a C#(W,F) 
k 

k 

Using (11.40) in Proposition 11.12, and (11.42) in Proposition 11.13, 

(11.135) 
+00 

1 
Trs NgH C*(WU,F) 

t -X'9(F) 
dt 
2t 

1 
2 

q 

k=l 

a C'(WU<F) 
lk 

k 

Therefore, using Proposition 11.9 and (11.135), we get 

(11.136) 
+00 

1 
Trs \ NgG Cm(Wu,F) 

t 
dt 
2t 

1 
2 

q 

k=l 

a C*(WU,F) 
k 

k 
.+00 

q 
Trs NC'(W»,F)GH, lB C(WU,FY 

't -X'9(F) 
dt 
2t 

Finally, by (11.110), we find that as T —> +00, 

(11.137) 1 
2 

a0 (T)log T 
7T 

-1 e2T 1 
2 a C*(WU,F) 

'0 (-2T + log(T)) 

1 
2 a 

C*(WU,F) 
u 

log (TT) . 

By (11.42), (11.126)-(11.128), (11.131)-(11.134), (11.136), (11.137), we get (11.3). 
The proof of Theorem 11.1 is completed. 

11.13. A proof of Theorem 11.2 

Let NH^X^X^ be the number operator of H'(X,F\X). 

Theorem 11.26. — There exists c > 0 such that as T —• +00, 

(11.138) 5t H*(X,F\x) 
R 

9 H*(X,F\X) 
<C*(WU,F) 

TT 
T 

NH*(X,F|x)-n/2 
e 

2TNH*(X,F\X) -1 
( H O ( e - c T ) ) . 
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Proof. — Take / € ker£C"(w",F),(o)_ Then 

(11.139) df = 0, 

Clearly / represents and element of H'(X, F\x). For T ^ 0 large enough, (P^°) 1 / € 
F.J?'1'. Also using Theorem 5.3, from (11.139), we get 

(11.140) dx(p?r1f = o. 

Therefore (Pj?) 1 / also represents an element of H9(X,F\x)- Clearly, 

(11.141) poo (poori f = f 

By Theorem 5.3 and by (11.141), (P^)'1 f G F^1] and / G C* (Wn,F) represent 
the same element in H*(X,F\X). Also P^0} (P^°)_1 / lies in ker ^ 0 ) ) , and also 
represents the same element in H9(X, F\x). It follows that / G ker ( ^ • ( W ^ F M O ) ) _> 
P^ (P^°)_1 / G ker B^ is the canonical map which identifies the two vector bundles. 

By the above, we find that for T ^ 0 large enough, 

(11.142) 9 H9(X,F\X) 
L2,T 

9 H*(X,F\X) 
C»(WU,F) 

P {0} 
T 

p IOO 
T 

-1 P (0} 
T 5 oo 

T 
-1 

Clearly, 

(11.143) e -i 
p 

P, {0} 
T 

H oo' 
T 

-1 e /-l 
T p {0} 

T e T P oo T e T 
- l 

By Theorems 11.4, by (11.14), by Theorem 11.7 and by (11.143), and using the fact 
that T = NC'(WU>F\ there exists c> 0 such that as T —» +oo, 

(11.144) e T 
H P {0} 

T 
H oo 

T 
-1 pC-(^,F),(0)+(9 / -cTA 

7T 

T 

NC-(W«,F)/2_N/4 
eTNc*(wu,F) 

-1 

Since is a unitary map, (11.138) follows from (11.142)-(11.144). • 

Remark 11.27. — Theorem 11.2 is now a trivial consequence of (1.26) and of Theorem 
11.26. 
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C H A P T E R 12 

A N A S Y M P T O T I C E X P A N S I O N F O R Trs [fgh' (Dt,T)] 
A S T —> +OO 

The purpose of this Chapter is to prove Theorem 9.9, i.e. to study the asymptotics 
of Trs [fghf (Dt^r)] as T —> +00. Also, we prove the much easier Theorem 9.7. This 
Chapter is the obvious extension of [ B Z 1 , Chapter XII] and of [BZ2, Section 8] to 
the relative setting. 

This Chapter is organized as follows. In Section 12.1, we give a Lichnerowicz 
formula. In Section 12.2, we state an intermediate result, from which Theorem 9.9 
follows. The remainder of the Section is devoted to the proof of this result. In 
Section 12.3, we establish an estimate on a heat kernel. In Section 12.4, we prove our 
intermediate result. Finally, in Section 12.5, we establish Theorem 9.7. 

We use the notation of the previous Chapters, and in particular of Sections 3.6 and 
3.8. Also, we still assume that S is compact. 

1 2 . 1 . A Lichnerowicz formula 

Set 
(12.1) Ct,T = e TfCt,TeTf, DtT = e~Tf D+TeTf 

Theorem 12.1. — Given t G R+, T G R, the following identity holds, 

(12.2) r2 t 
4 V: 

Rei 
' (T* S)0Am (T*X)§>F,u,2 К 

16 
t 
8 

\(ei)c{ej)1l(ei,ej) 

1 
2 

f fBR 1 a ' f,ej Vt 
2 

c(ei) faR(ei,fHa) 

t_ 
' 4 

'1 
4 T

2\Vf\2 (V/) T2\Vf\2-Tu{VF,gF) (V/) 

Vt 
4 

tac(ei) б TX<g)F,b 
fH 
J at 

^ ( V F , a F ) (e , ) -2T iTX 
J oe 

Vf,ej> 

t 
32 

Xei)c{ej)u)2 VF,gF &l 5 &j ) 
t 
8 c{ei)c(ej) 7TX®F,t 

ie 
u(VF,gF) (ej) 

-2T< TX Vf,ej> 

Proof. — By [BLol, Theorem 3.11] or by Theorem 3.19, we have a formula for 
CfTl which coincides with the right-hand side of (12.2), except for the first term, in 
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which 7A# (T* 5)§A# (T* X)§>F,u 
t/2 

is replaced by 7A* (T* 5) § A# (T*X)§F,u 
t/2 

TV/, which 

is the connection RA* (T* 5)gA# (T*X)§F,w 
t/2 on \9 ( r 5 ) 0 A . ( T * I ) ^ F associated to 

THM,gTX,gF. When replacing r2 by c2 we get (12.2). 

12.2. A proof of Theorem 9.9 

The main result of this Section is as follows. 

Theorem 12.2. There exists to G ]0,1] such that ifte ]0, to], as T —» +oo; 

(12.3) Trs f#exp c2 Trs Boi If}' 
1 
4 

Xg+ ;F)-X'-(^)) T o 
1 

T3 

Proof. — The remainder of the Chapter is devoted to the proof of our Theorem. 

Remark 12.3. — By (4.47), 

(12.4) Trs If gti ( A , T ) ] 1 + 2 
d 
da 

Trs fgexp -a >2 ^ 
|a=l-

Also bv (3.102), 

(12.5) Trs fgexp I aCtT wa Trs fgexp c2 " 

From (12.3)-(12.5), we get (9.23), i.e. we have established Theorem 9.9. 

12.3. An estimate on the kernel of exp c2 

Let dx (•,•) denote the Riemannian distance along the fibres X with respect to 
the metric gTX. Let dvx be the volume form along the fibres X associated to the 

metric gTX Let exp c2 (x,xf) be the smooth kernel associated to the operator 

exp C2t;T with respect to dvx (x') '(27r)n/2, so that if s G nm(X,F\x), 

(12.6) exp c2 six) --
(X 

exp -c2 (x, x') s (xf) 
dvx (xf) 

(27T) yn/2 

Clearly, 

(12.7) Tr£ /#exp -C2 N 

X 
f(x)Trs g exp c2 (g-1x,x) 

dvx (x) 

f27T DIMX/2 

Theorem 12.4. — There exists to G ]0,1] such that for any t G ]0,£o]> there exist 
C > 0, C > 0 swc/i £/ia£ /or any x e X,dx (x, B^) ^ £o/4, ^ften 

(12.8) exp I rt,T2 (g-1x,x) ^ Cexp(-ClT). 
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Proof. — We will give a simple probabilistic proof of our Theorem. Let Ax be the 
Laplace-Beltrami operator along the fibres X, which is associated to the metric gTX. 
Recall that by Proposition 3.17, 

(12.9) exp -c2 = A 1 EXP tC21.T wt 

Let pt(x,xf) be the smooth kernel associated to the operator exp (tAx/ 4). Let 
Ht,T {x) be defined by, 

(12.10) exp j -tc2 (g 1x,x) Pt [g 1x,x) HtiT(x). 

Using Theorem 12.1, we will give a probabilistic representation of Ht,r (x) by the 
ltd stochastic calculus. Our formula will be an extension of a Feynman-Kac formula. 

Let be the probability law on C ([0,1], X) of the Brownian bridge s G [0,1] —> 
xs G X with #o = g~1x,xi = x, which is associated to the metric 2gTX/t. Recall 
that by [D], [It], [Bl, Chapter II], even though a.e., the paths s G [0,1] xs G X 
are nowhere differentiable, we can still define the parallel transport operator TQ from 
(A* (T*S) 0 A*(T*X) § F)xs into (A# (T*S) § A9(T*X) § P ) ^ with respect to the 
connection 1V^2T Ŝ®A (T*X)OF,u along the path x and TQ also depends continu­
ously on s. Similarly, the inverse of TQ is well defined and depends continuously 
on s. Set 

(12.11) ET c2 
• U1,T 

1 
4 

7A# (T* 5)§A# (T*X)§F,u,2 
l/2,e< 

If 
16 

T2 
4 

v j f 

Then by (12.2), I?x is an operator of order 0. Let Vs be the solution of the differential 
equation, 

(12.12) d 
ds 

Vs -VsTOtExsTo 

Vç, = 1. 

A simple application of Ito's stochastic calculus as in [B2, Theorem 2.5] shows that 

(12.13) Ht,T = EBxt exp -t 
•l 

Jo 

K 
16 

T2 
4 

v/i2 {xs) ds Vira 

To estimate the right-hand side of (12.13), we proceed as in [BZ1, proof of Theorem 
12.6 and equ. (12.29)]. The main difference with respect to [BZ1] is that the parallel 
transport operator TQ is not unitary. 

Let U G TXX, let s G [0,1] -> xs G X be a smooth curve. Let T%U G TXSX be the 
parallel transport of U with respect to the connection VTX along the curve s —• xs. 
Let be the covariant derivative along s —• xs with respect to the connection 
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7A* (T* S)® A* (T'X)®F,u 
1/2 

By (3.41), (3.44), we get 

(12.14) L D 
Ds 

(TOsU) 2 <Sxs f • 
Xs 

ToU, fH>fa 

D 
Ds 

C r?U) = 0. 

By (12.14), we obtain, 

(12.15) TÂC (ToU) Tos c(U) + 
a 

Jo 
2(5Xu (xu)T?U,f")fadu, 

TÂC(ToU) Tos c{U). 

By (12.15), we get immediately an expression for T^tE^T® in equation (12.12). The 
integral in the right-hand side of (12.15) should then be interpreted as a stochastic 
integral in the sense of Stratonovitch along the path u —> xu. 

Clearly, we can expand Vs in the form, 

(12.16) 

vs = vsM + v}>0\ 
V(0) e End(A'(T*X)êF)x 

y(>° e A<>0> [T*S) ê End (A*(T*X) ® F)x . 

Similarly, 

(12.17) _« TpXs 0 £<°)+ £?(><» 

Then equation (12.12) can be written in the form, 

(12.18) 
d 
ds 

/(>o) -K(>0)^E 1/(0) = i; 

d , 
ds 

/(>o) -K(>0)^E Vc(o)Es(>o) y0(>0) = o. 

By proceeding as in [ B Z 1 , proof of Theorem 12.6], there exists 7 > 0 such that for 
t > 0,T > 0, 

(12.19) Vs(o) ̂ exp(7i(l + T)), 

Vs(o) -1 
<exp(7*(l + T)). 

Put 

(12.20) Ws(>o) Vs(o) V(0) 
-1 

Then by (12.18), 

(12.21) d 
ds 

Ws(>o) .w(>o)y(o)jB(>o) F(0) -1 V;(o)£7(>o; Vs(o) -1 

W0(>0) = 0. 

Clearly, equation (12.21) can be solved by recursion on the degree in A* (T*S). 
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If dx (x, Bg) ^ eo/4, then either dx (x, B) ^ £0/4, or there exists x0 G B\Bg such 
that dx (x,x0) ^ e0. Then g_1x0 G 5 \ and dx {g~lx, g~1x0) ^ £0. 

First we consider the case where dx (x, B) > £o/4. Clearly there exists /3 > 0 such 
that if Y G X, (y, B) ^ e0/8, then 

(12.22) | V / | 2 ( Y ) ^ / ? . 

Let 5 be the stopping time, 

(12.23) 5 = inf se[0,l],dx {x,xs)^e0/S\ 

By (12.13), there exists C > 0 such that if t € ]0,1], T ^ 0, o e ]0,1/2], 

(12.24) hT?t|<c exp (-£T2a/3/4) + Bxt [S< a 
1/2 EBxt Vl R0 

2" 1/2 

By using the estimates of Varadhan [V, proof of Theorem 5.1] and by proceeding as 
in [BZ1, equ. (12.23)], we find that there exists c' > 0 such that under the above 
conditions, 

(12.25) qj£ [S ^ a] ^ c'exp (s20/72at) 

Moreover by (12.19)-(12.21), and using standard estimates on stochastic integrals, we 
find that there exists C > 0,7 > 0 such that under the above conditions, 

(12.26) EBxt Viri 
21 , 1/2 ^ Cexp(7£(l+T)). 

By (12.24), (12.25), we get 

(12.27) Я x 
t,T £ Cexvht(l + T)) exp (-tT2ap/4) + exp (-r2/144at) 

Take, 

(12.28) a — £0 
6tTy/B 

Given t G ]0,1], for T > 0 large enough, a G]0, 1/2]. Then 

(12.29) tT2af3/4 = el/lUat EoVB 
24 

Put 

(12.30) to = 
EoVB 

307 
Then if t G ]0, to], 

(12.31) 
EOVB 

24 
7* > 0. 

By (12.27), (12.29), (12.31), we get (12.8) in the case where dx (x,B) ^ e0/4. 
When there exists xo G B\Bg such that dx (x, xo) < £0? the proof of the estimate 

(12.8) is essentially the same. We proceed exactly as in the proof of [BZ1, proof of 
Theorem 12.6]. The main point is that a continuous path path s G [0,1] —• xs G X 
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such that xo = g lx,x\ = x necessarily goes through a region where | V / | 2 is large 
enough, and spends some time there. Details are left to the reader. 

Now, we use the notation in Chapter 4 and in Section 10.1. We define ut,T as 
in (4.44)-(4.46). Equivalently, set 

(12.32) 
=I®F\B,2 

Ct,T = wt-1 rtc 
=I®F\B,2 

A-

Theorem 12.5. — There exists to G ]0,1] such that for t G ]0, £o]> there exists C > 0, 
C > 0 such that if xo G B, if' x,xf G X are such that dx (X,XQ) ^ r/A, dx (xf,xo) ^ 
r/4, then 

(12.33) expf c2 - exp 
-=I®F\B,2 

Et,T (x,x') ^ Cexp(-C'T). 

Proof. — By proceeding as in [BZ1, proof of Theorem 12.6] and in Theorem 12.4, 
we get (12.33). 

12.4. A proof of Theorem 12.2 

By Theorems 12.4 and 12.5, and by (12.7), we find that there exists to G ]0,1] such 
that if t G]0, t0], there exist C > 0, C" > 0 such that for T ^ 0, 

(12.34) 

Trs fg exp c2 
xex 

d~{x,Bg)^e0/l 

fix) Trs #exp -C 
IOF|B,2 
t,T 

(g xx,x) 

dvx (x) 

(2tt) dim X/2 
< Cexp(-C'T). 

Now we also use the notation in Chapter 4. By (4.50), (10.11), if XQ G Bg, 

(12.35) 
zerX()x 
\ZKeo/4 

Trs /#exp -C •/§F|B,2 
t,T 

g~lZ,Z dvTx (Z) 

(2n dim X/2 

zeTXQx 
\ZKe0/4 

f(Z)Trs gVtr g^Z/Vt^Z/Vi dvTx (Z) 

[2-Kt dim X/2 

TrF*O #exp -UJ2 VF|E GFB /4 

By Proposition 1.6, 

12.36Ï TrF*° 9 exp W2 VF|B VFB /4 = Tr^O [g] 

Recall that the function Z G TX\& —> q(Z) € R was defined in (4.6). By (9.3), foi 
Z G TXoX, \Z\ ^ e0/4, 

(12.37) f(Z) = f{x0) + q(Z). 
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Also, by (4.25), (4.26), 

(12.38) t2T2/^B,RTX^9 2n/2de Qtr/2 
sinh(QtT/2) 

•a t2T2/A,B,RTX\™9 
1/2 

(-1) ind9(x0) exp 
Qtr/2 

,sinh(Q*T/2 
o 't2T2/^B,RTX^9 z,z) 

By (12.37), (12.38), we get 

(12.39) 
}zerxnx 
Î Keo/4 

f(Z)TrB gPtT Ig-'Z/ViiZ/Vt) dvTx {Z) 

(2nt] iimX/2 
( - i 'mdg(xo) 

zerXQx 
\Z\^eoVT/4 

/(*<>) + T (z) det 1 
tT 

Q t r / 2 

sinh(Q£T/2) 
G t2T2/4,B,RTX\*9 

1/2 

exp 
1 

tl 
Qtr/2 

sinh(Q*T/2) 
O t2T2/^B,RTX^9 z,z 

dvrx (Z) 

d̂im X/2 

Clearly, 

(12.40) zerxnx 
\Z\^£oVT/4 

det 
1 

tT 
Qtr/2 

rinh (Qtr/2) 
-cr t2T2/^B,RTX^9 

1/2 

exp 1 
tT 

Qtr/2 

smh(QtT/2] 
•a t2T2/A,B,RTX\*9 z,z dvTx (Z) 

-̂dim A/2 

= 1 - zerxnx 
\Z\^EOVT/4 

det 1 
tT 

Qtr/2 
sinh (Qtr/2) 

•a t2T2/A B,RTX\*9 
1/2 

exp 1 
4 

Qtr/2 

sinh (Qtr/2 
o t2T2/A,B,RTX^9 Z,Z dvTx (Z) 

^dimX/2 

Moreover, as T —» +00, one verifies easily that 

(12.41) 1 
tT 

Qtr/2 

sinh(QtT/2; O t2T2/^B1RTX^9 1. 

Prom (12.40), (12.41), we find that given t € ]0,1], there exists c > 0 such that as 
T-++00, 

(12.42) zerxnx 
|Z|<eo>/r/4 

/(x0)dei 1 

tT 

Qtr/2 
sinh(QtT/2; 

a t2T2/4,B,RTX^9 
1/2 

exp 
1 

,*T 
Qtr/2 

sinh(QtT/2) 
•a t2T2/4,B,RTX^9 Z,Z dvTx (Z) 

d̂im X/2 
= f(x0) + O{e-cT). 
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By the same argument as before, as T —* +00, 

(12.43) zerxnx 
\Z\^e0VT/A 

T (Z) del 1 
tl 

Qtr/2 
smh(QtT/2) 

A t2T2/^B,RTX\*9 
1/2 

exp 1 
tT 

Qtr/2 
sinh(QtT/2) 

•A t2T2/A,B,RTX\** Z,Z dvTx (Z) 
Tdim x/2 

'zeTXQ*. T (Z) del 1 
tT 

Qtr/2 
sinh (Qtr/2 

•A t2T2/4,B,RTX\*9} 
1/2 

exp 1 
T 

Qtr/2 
sinh(QtT/2) t 

t2T2/4,B,RTX\*9 Z,Z dvTx (Z) 
-Tj-dim X/2 

fO(e"cT) 

By Propositions 4.8, 4.9 and 4.11, 

(12.44) 
zerXQx T (Z) del 1 

tT 
Qtr/2 

3inh(QtT/2) •A t2T2/^B,RTX\**\ 
1/2 

exp 
1 

tT 
Qtr/2 

sinh (Qtr/2] -o t2T2/^B,RTX\*9 z,z) dvTx (Z 
d̂im X/2 

1 
7 Irs 0 

S 

dT t2T2/±,B,RTX\*A 

o t2T2/±,B,RTX\*9 

By (9.11), Proposition 4.15 and by (12.43), (12.44), we find that as T —> +00, 

(12.45) zerxnx 
\Z\^e0VT/4 

T (Z) det 1 
tT 

Qtr/2 
sinh (Qtr/2) 

a t2T2/4,B,RTX^ 
1/2 

exp 1 
tT 

Qtr/2 
sinh (Qtr/2) 

-<7 t2T2/4,B,RTXi*9 z,z dvTx (Z) 
•Tj-dimX/2 

1 
AT 

(n+ (x0) - n- (x0)) + O 1 
T3 

By (12.35), (12.36), (12.39), (12.42), (12.45), as T -+ +00, 

(12.46) zerxnx 
\ZKe0/4 

Trs /#exp -C r®F|B,2' 
fc,T (g-1Z,Z) dvrx (Z) 

(2tt] dim X/2 

- (_;[\mcWo) f(xo) 
1 

4T 
(n+ (X0) - Tl- (xq)) TrF*o [g] 

By (12.7), (12.34) and (12.46), we get (12.3). The proof of Theorem 12.2 is completed. 

1 2 . 5 . A proof of Theorem 9 .7 

Now we will prove the much easier Theorem 9.7. First, we assume that the sim­
plifying assumptions of Section 11.1 are in force. By Theorem 11.7, for T ^ 0 large 
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enough, for t > 0, 

(12.47) h'(Dt,T) yt-1 
1 

2ii\ 'A 

ti (y/tX) 
X - B 7 

iX^t w-i 1 
2Z7T 5/4 

ti (y/iX) 

X — Bj> 
dXipf 

Using Theorems 11.16 and 11.17, (11.78), (12.47), we find that given e,A with 0 < 
e C A < +oo, there exists C > 0 such that if t £ \e,A),T^ 1, 

( 12.48) TrB[Ngh'(DtlT)] X'i (F) 
C 
J T 

i.e. we have established Theorem 9.7 when the assumptions of Section 11.1 are verified. 
In the general case, by proceeding as in Section 12.4, we find that if t G [e, A], t < £o5 

Theorems 12.4 and 12.5 show that (9.21) holds, i.e. we have established Theorem 9.7. 
When t G [e, A] is arbitrary, we may as well use Theorem 12.1, and observe that by 
the simplifying assumptions in Section 9.1, instead of (11.55), we have the slightly 
weaker, 

(12.49) Brp V IOF|B,2 
T 

Using (12.49), and proceeding as in [BIO, proof of Theorem 9.5], we get (9.21) for 
t G [e, A], The proof of Theorem 9.7 is completed. 
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T H E A S Y M P T O T I C S OF Trs 'FGH! ( A 5 T M ) A S t -> 0 

The purpose of this Chapter is to establish Theorem 9.10, i.e. to obtain the first 
two terms in the asymptotics of Trs fgti Dt,T/Vt as t —• 0, and also a uniform 
estimate in the range 0 ^ T < l / y t . To establish the required estimates, we use 
techniques from local families index techniques of Berline-Getzler -Vergne [BeGeV], 
and also functional analytic methods inspired from [BL]. First, we obtain the required 
estimates for bounded T, so as to compute the two leading terms in the asymptotic 
expansion as quickly as possible. Later, we explain how to obtain uniformity in the 
range 0 ^ T ^ 1/y/t. 

This Chapter is organized as follows. In Section 13.1, we state a corresponding 
asymptotic expansion for Trs /#exp -ci T/Vt and we prove that Theorem 9.10 
can be derived from such a result. The remainder of the Chapter is devoted to the 
proof of this main result. In Section 13.2, we show that the proof of our estimate can 
be made local near Xg. As in [BL, B9, BGol], finite propagation speed of solutions 
of hyperbolic equations plays an essential role. In Section 13.3, we show how to 
replace the manifold X by TXX , for x G Xg. In Section 13.4, we introduce a Getzler 
rescaling on certain Clifford variables. In Section 13.5, we obtain the first term in the 
asymptotic expansion of Trs fg exp -C ;T/y/t as t —> 0, by using a method due 
to [BeGeV], i.e. by computing the leading term in the asymptotic expansion of the 
considered rescaled operator as t —> 0. In Section 13.6, we obtain the second term in 
the asymptotic expansion of this operator. 

In Section 13.7, we give an estimate on the certain smooth kernels depending on 
t, T for bounded T, from which our main result follows for bounded T. The proof of 
this result is deferred to Section 13.9. From this intermediate result, in Section 13.8, 
we obtain the second term in the asymptotic expansion of Trs /#exp -cl ,r/Vt 
as t —> 0. The results of Chapter 6 are used in the explicit computations. 
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As mentioned before, in Section 13.9, we establish estimates for certain kernels 
depending on £, T for bounded T. The proof of these estimates is closely related to 
[BL, B9, BGol], and involves commutator techniques. 

In Section 13.10, we establish our main result in the full range of variation of T. 
Away from Bp, we refine on the estimates of Section 13.9 by exploiting the fact that 
|V/| has a positive lower bound. Near Bg, since there is an explicit geometric model 
already considered in Chapter 4, we use the explicit computation of Chapter 4 to 
obtain the required estimates in that case too. 

In this Chapter, we make the same assumptions as in Chapters 9-10 and 12, and 
we use the corresponding notation. As before, we also assume that S is compact. 

13.1. A convergence result and a proof of Theorem 9.10 

Recall that the function h(x) was defined in (9.12). We get 

(13.1) h(x) = 
fX 

/0 
et2dt 

Then h (x) is a real holomorphic odd function. 
The fundamental result of this Chapter is as follows. 

Theorem 13.1. — There exists C > 0 such that for t e ]0,1], 0 ^ T ^ 2/y/i, 

(13.2) 1 
t 

Trs /#exp -C 
•2 > 
t,T/\fbj xg 

TrF [g] faT2/4 

Vt 
2 x, 

K (VF,gF)T(3Ty< <C 

Proof. — The next subsections are devoted to the proof of our Theorem. 

Remark 13.2. — We now show how to derive Theorem 9.10 from Theorem 13.1. By 
(12.4), 

(13.3) Trs [fgh' (Dt,r)] = 1 + 2 
d 

da 
Trs fgexp —a 72 

't,T/Vt \a=l-

Alsobv (12.5), 

(13.4) Trs fgexp -a r2 
ut,T/Vt 

= *PaTrs /#exp r 2 
-^at,T/Vt 

By Theorem 13.1, if t G 0 1 
2 a e è,2] T< i M , 

(13.5) 
1 
1 

Trs /#exp 2 N 
-Cat,T/y/i Xg 

TrF [g] faaT2/4 

\/at 

2 Xg 
h*g (VF, gF) VaTBaT2/4 <C 
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Recall that aAT2/4 is of degree dimX5, so that the form on 5, 

Jxg 

TrF [g]fOaT2/4 

is of degree 0. Prom (13.4), (13.5), we get 

(13.6) 
1 
1 

Trs fgexp —a yt,T/y/t 
)xg 

TrF [g] faAT2/4 

ay/t 
2 

0c 
Xg 

h*9{VF,9F) TßaT2/4 <C 

Also, 

(13.7) 1 + 2 
de 

da Xg 
[9] /o:AT2/4|a=l 

sd 
<9T 

T 
*9 

TrF [g] faT2/4 

Moreover, since degßAT2/4 = dimX^ - 1, 
(13.8) 

1 
2 

awa 
Xg 

h*g yF,9F TßaT2/4 
1 
2 ,x9 

Tr ah /ai 
[VF,gF) 

2 
s/äTßAT2/4. 

Therefore, by (13.1), 

(13.9; 1 + 2 
d 
df 

1 
2 wa 

/x9 

h*g [VF,gF) TßaT2/4\a=l 
1 
2 *9 

h*g VF,sF) T/?T2/4 

1 
2 

9 
dT x9 

Xg [VF,gF) T2ßTz/4 

From (13.3), (13.6), (13.7), (13.9), we get (9.24). The proof of Theorem 9.10 is 
completed. 

13.2. Localization of the problem 

We take £0 > 0 as in Section 9.1. Let ax be an upper bound for the injectivity 
radius of the fibres X. Given rj > 0, let Uv be the e-neighbourhood of Xg in Nxg/x-
We identify NXg/x to the orthogonal bundle to TXg in TX\xg. Then, there ex­
ists rjo G]0,inf {ax/32,£0/32}] such that if 77 G]0,2r/0], the map (x,Z) G NXg/x 
exp* (Z) G X is a diffeomorphism from on a tubular neighbourhood Vrj of Xg in 
X. In the sequel, we identify and Vv. This identification is ^-equivariant. Let 
a G]0, r/o] be small enough so that if x G X, if dx (g-1x,x) ^ a, then x G V^. 

Clearly, if a G C, 

(13.10) exp (—a2) 
'+00 

J—00 
exp (2zsa) exp -s2 

(is 

0 r 
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Let / : R —> +00 be a smooth even function such that 

(13.11) f(s) = 1 if |s| ^ a/2, 

= 0 if \s\ ^ a. 

Put, 

(13.12Ï g(s) = l-f(s). 

Definition 13.3. — For t > 0, a G C, put 

(13.13) Ft (a)-
P + OC 

R-OO 
exp (2isa) f Vis exp s') 

ds 

VT 

Gt (a) = 
-f-OO 

— OC 
exp (2isa) g Vts exp i -S2 ds 

VT 

Then 

(13.14) exp (-a2) = Ft (a) + Gt (a) 

Moreover Ft, Gt are even holomorphic functions, whose restriction to R lies in 5 (R). 
By (13.13), we find that given m, m' e N, O 0, there exist C > 0, C' > 0 such that 
if i € 10, l],a € C,|Im(a)| < c, 

(13.15) \a\ G(m') (a) ^ Cexp(-C/t). 

Put 

(13.16) It(a) 
-FOO 

-OO 
exp (2isa/t) g(s) exp -52A 

DS 

VT 

Then 

(13.17) It(a) = Gt(a/Vt). 

By (13.11), (13.16), we find that given ra,m' G N, there exist C > 0,C" > 0 such 
that if £ G ]0,l],a G C, |Im(a)| ^ f, 

(13.18) \a\" T{m' 
lt (a) exp {-C'/t). 

Clearly, there exist uniquely defined holomorphic functions Ft (a), Gt(a), It(a) such 
that 

(13.19) Ft (a) = Ft (a2) Gt (a) = Gt (a2) It (a) = h (a2) 

By (13.14), (13.17), 

(13.20) exp (-a) = Ft (a) + Gt (a), It (a) = Gt (a/t). 
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Definition 13.4. — Given c > 0, set 

(13.21) 

Ur.= A e C,Re(A) s 
Im2 (A 

4c2 
-c2 

Vc = A e C, Re (A) > Im2 (A) 
4c2 

-c2 

rc = A e C,Re(A) = Im' (A) 
4c2 

-c2 

The set Vc is the image of {A € C, |Im(A)| < c} by the map A -> A2. By (13.15), 
given ro,m' e N , c > 0, there exist C > 0, C > 0 such that if t € ]0,1], A € Fc, 

(13.22) |A|m £>(m') < Cexp(-C/t). 

By (13.18), given m, m' G N , there exist C > 0, C > 0 such that if £ € ]0,1], A € 
Va/8 

(13.23) |A|m J(m' 
1t (A) ^Cexp(-C/t) 

By (13.20), 

(13.24) exp -c2 = Ft r2 +It tC2t,T 

In particular, we deduce from (13.24) that 

(13.25) Trs fg exp ut,T -TVS fgFt c2 -hTrs /0* tC2t,T 

Proposition 13.5. — T/ie following identity holds, 

(13.26) Trs fgit tC2t,T = ^_1Trs fgIt tC2t,T 

Proof. — This follows from (3.55). 

Now we use the notation in (3.109). Also if x G X, r G R+, let J5X (x,r) be the 
open ball of centre x and radius r in the corresponding fibre X, with respect to the 
Riemannian distance dx. 

Theorem 13.6. — For any M ^ 0, there exist C > 0, C > 0 such that for t G 
]0,1],0< T^M/t, 

(13.27) It t2 C2i,T ^ C exp (-C'A). 

Proof. — We use formula (12.2) for c\T. Observe that for 0 ^ T ^ M/t, when 
multiplied by t2, all the zero order terms which appear in the right-hand side of 
(12.2) remain uniformly bounded. We can then use (13.23) and proceed as in [BGol, 
proof of Theorem 7.15] to establish (13.27). 
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From (13.26), (13.27), we deduce that there exist C > 0,C > 0 such that for 
t € ] 0 , l ] , < K r < 2 / t , 

(13.28) Trs fgIt f 2 < Cexp(-C'/t). 

Using (13.25), (13.28), we see that to establish Theorem 13.1, we only need to establish 
the corresponding estimate for Tr£ fgFt C2t,T 

Let Ft C2t,T (x, xr be the smooth kernel of Ft c2 y with respect to the volume 

dvx (x')/(2ir)dimX/2. Then 

(13.29) fgFt Ct,T) 
x 

Trs f(x)gFt c2 (g xX,Ï 
dvx(x) 

(2n dim X/2 ' 

Using finite propagation speed for solutions of hyperbolic equations [ChP, Section7.8], 
[T, Section 4.4] and (13.13), given xÇl, we find that the support of Ft C2t,T (x,.) 

is included in the ball Bx (x,a). Moreover the kernel Ft c2 (*,.) depends only 

on the restriction of Cf T to Bx (x, a). By the choice we made of a, the support of 

Ft c2 (g 1x,x] is included in V™. 
By the above, we find that the proof of Theorem 9.10 is now a local problem on X, 

and this only near Xg. In the sequel, we will denote by dvxg the volume form on the 
fibre Xg with respect to the metric gTXg. Similarly, we denote by dvrx the volume 
form on the fibres TX. Other volume forms will be denoted in the same way. 

Let k (x1 Z) be the smooth function defined on Ve so that 

(13.30) dvx (x, Z) = k (x, Z) dvXg (x) dvNxg/x (Z 

Since Xg is totally geodesic in X, as in [BL, Proposition 8.9], one finds easily that 

(13.31) k (x, Z) = 1 + G \\z\2 

By the above, we get 

(13.32) 

Trs fgF Ct,T/Vt 
Xg Z€NXg/x,\Z\^s0 

Trs f(x,Z)gFt —2 > 
^t,T/y/t 

(g-1(x,Z),(x,Z)) k(x, Z) 
dvNXg/x z) 

XD dim NXg/x/2 
dvXg (x) 

(2n dimXo/2 

13.3. Replacing X by TX 

Let 7 (s) : R —» [0,1] be a smooth even function such that 

(13.33) 7(5) = 1 if |*| < 1/2 

= 0 if |*| ^ 1. 
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HZ e TX, put 

(13.34) p(Z) = 7 (|Z|/4i*>). 

Then 

(13.35Ì p(Z) = lìf\Z\^2rio, 

= 0 if |Z| ^ 4ry0. 

If x G Xgì Z G TXX, let t G R —> xt = exp* (£Z) be the geodesie in the fibre X 

such that xo = x 
dx 
dt t=0 : Z. If 0 < 77 < 2770 the map Z G BTxX(o,n) -> expX (Z) E 

Bx (x,ri) is a diffeomorphism. Let k (Z) be the function defined on BT**(0,2e0) 

such that 

(13.36) dvx(Z) = kfx (Z)dvTx (Z). 

Then 

(13.37) *4(Z) = l + 0 |Z|2 

Recall that the connection v f (T*S)§A#(T*X)§F,u on A* (T*S')ëA*(T*X)êF 
was defined in Definition 3.13. Take x G Xg. In the sequel, we trivialize the vector 
bundle A* (T*S) ® A'(T*X) ® F alone: geodesies in X centred at x with respect to 

the connection ,A* (T* 5)§A* (T*X)§F,u 
t/2 

If x G Xp, let Hz be the vector space of smooth sections of (A* (T*S) <g> A*(T*X)<g) 
F)x over TXX. The operator p2 (Z) c\ T now acts on Hx. Let ATX be the Laplacian 
on TXX. 

Definition 13.7. — Let Lt ^ be the operator acting on Hx, 

;i3.38) rl,X - \I-P2{Z) 
t 
4 

ATX P2(Z) C2t,T/Vt 

Let Ft r2 
^t,r/Vt 

z , z ' ) , z , z ' eTxx be the smooth kernel associated to the oper­

ator Ft r2 
^t,T/Vt 

with respect to dvrx (Z')/(2tt) iim X/2 If Z € 7Vx9/x,x, |Z| ^ J70, 

if a;' £ X is such that dx (Z, x') < a, since a < 770, then 

(13.39) dx (x,x') ^ 2%. 

In particular, x' is represented by Z' € TXX such that ^ 2r/o, so that p(Z') = 
1. Using finite propagation speed as in Section 13.2, we find that if a; 6 X„,Z € 
NXg/x,x,\Z\^rio.. 

(13.40) Ft rl,X 
ht,T 

(9~lz,z) F C2t,T/Vt 'g-1Z,Z)k'x(Z). 
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13.4. The Getzler rescaling 

Let Ht : Hx —• Hx be the linear map, 

(13.41) Hth(Z) = h(Z/Vt 

Put 

(13.42) T 2,x Hf1 L1THt 

Let Op^ be the space of scalar differential operators onTxX. Clearly, 

(13.43) T2,x End (A'(T*X)X) ® End (Fx) <8> Opx. 
Put 

(13.44) £ = dimXg. 
Let e i , . . . , et be an orthonormal basis of TxXg, let e^+i,..., en be an orthonormal 
basis of NXg/x,x- Then e i , . . . , en is an orthonormal basis of TXX. 

Recall that as an algebra, End (A (T*XQ)) is generated by the c(e*), c(e?), 1 < i, j ^ 
,̂ so that End k{T*Xg))=c{TXg)®c{TXg). 

Now we introduce a Getzler rescaling [Ge], [BeGeV, Chapter 10]. For t > 0,1 ^ 
i ^ n, put 
(13.45) Q (ê ) = A/te' Л 't/iiei. 

Definition 13.8. — If x G Xg, let be the operator deduced from L2'^ by replacing 
c(ei) by Q (ê ) for 1 ^ i ^ £, while leaving unchanged the c(e*)'s for £ + 1 ^ i ^ n 
and the c(ei)'s for 1 < i ^ n. 

Clearly, we can write Ft(L3.xT) \g-lZ,Z in the form 

(13.46) Ft L3.x 
T 

g-1Z,Z 

¿1 <---<ip 
Jl<---Jq 

e*1 eipiej1 2E, i....jq 
i....jq 

with 

[13.47) jl—3q 
i....jq 

c(TXg) ê End Nx9,x O Fx 
X 

Put 

(13.48) Ft r3,X {g~lz,z mas Q1...l 

In (13.48), Qi...£ is the coefficient of e1 A • • • A e£. 

Definition 13.9. - Let Trs : c(TXg) —> C be the linear map such that 

(13.49) Trs [c(eil)...c(eip)] o if p < e, 

Trs[c{ei)...c(e£)] (-1 €(£+l)/2 
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We extend Trs to a linear map from A* (T*S)êc(TXa) § End [NxQ/x OF 
into C, so that it is an ordinary supertrace on the last factor. 

Proposition 13.10. IfxeXg,ZeNXg/Xl\Z\^e0, the following identity holds, 

(13.50 d̂im ATX9/x/2rp̂  fgFt C2t 
r/Vt g-lV~tZ,\ftZ K rtz) 

= Trs fgFt L'tlr) {g-xz,z) 
max 

Proof. — As in [ B Z 1 , Proposition 4.9], one verifies easily, that among the monomials 
in the c(ei),c(ej), 1 ̂  i, j ^ £ acting on A (T*Xg), up to permutation, 

c(e1)c(e1)...c(ei)c(ee) 

is the only monomial with a non zero supertrace, and moreover 

(13.51) Tra \c(e1)c(e1)...c(e£)c(ee)} = (-2Y. 

Prom (13.51), we get 

(13.52) Trs [c (ei). . . c (et) c (ci). . . c(e£)] = 2£Trs [c (ex)... c (e£)]. 

Prom (13.51), (13.52), we get (13.50). 

Let i : Mg —> M be the obvious embedding. The map i induces the fibrewise 
embedding i : Xg —> X. Recall that since V/ G TX is G-invariant, V/|xff £ TXg. 
As we saw in Section 3.3, the connection VTX induces a connection VTXg on TXg. 
In particular VTXa V/ is a 1-form on Mg with values in TXg. 

If (HI,..., HM) is a basis of TMGI and if (/i1,..., H171) is the corresponding dual 
basis, set 

(13.53) c(VTX°Vf) -Hjc nTXg 
tlj 

v7/ 

Equivalently, 

.(13.54) c (VT^V/) 
e 

i=l 
éc VTXgVf fac( VTX 

fHa 
V/ 

Recall that RF>U is given by (3.55). 

Definition 13.11. — Put 

(13.55) r3, x 
1 
4 

Vei + i*RTXZ, ei V2 1 
4 

e^,% F\J ej^ c(ei)c(ej) 

T 
" 2 c VTXsV/ 

/̂ 2 

4 
v/l2 i*RF,u 
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In the sequel, we will write that a sequence of differential operators on TXX witr 
smooth coefficients converges if the coefficients converge uniformly over compact sets 
together with their derivatives of any order. 

Now we state a convergence result. A more precise version of this result will b( 
given in Theorem 13.18. 

Proposition 13.12. — As t —> 0; 

(13.56) r3,x /-3, x 

Proof. — Using Theorem 12.1, and proceeding as in [BeGeV, Proposition 10.28], we 
get (13.56). 

13.5. The first term in the asymptotics of Tr£ Z#exp C2 
t,T/y/t j 

Theorem 13.13 IfxeXg,ZeNXg/X)X, ast^O, 

(13.57) Trs gFt r3,x g- z,z) 
I max Trs #exp i L3.x 

0.T 
g'xZ,Z 

max 

Moreover there exist C > 0, C > 0 such that if Z& NXg/XtX,\Z\^e0/Vt, 

(13.58) Trs gFt 1-3,2 
TT 

[g-xz,z\ ^ Cexp -C'\Z\2 

Proof. — The proof of our Theorem is the same as the proof of [BGol, Theorem 

7.43 . 

In the sequel, we will write RTX ,RF>U instead of i*RTX ,i*RF'u, since we only deal 
with forms over Mg. 

Proposition 13.14. — The following identity holds, 

(13.59) g exp •^o,r g~lZ,Z = 2n>2 det 
RTX/2 

Ksmh(RTX/2) 

1/2 

exp 
RTX/2 

vsinh(iîr*/2) 
-a(0,B,RTX)Z,Z) 

g exp 
1 

"4 
6̂ , R 6jf c{ei)c{ej) 

T 
2 

c(VTX^Vf) 4 |V/|2 exp(-R^u). 

Proof. — Our Proposition follows from Proposition 4.8 and from (13.55). 

Theorem 13.15. — The followinq identity holds, 

(13.60' 
JNXg/x,x 

Trs #exp T3,X g~lz,z) dvrx (Z) 

(2tt] dimNXg/x/2 

_ (2 xdimXy/2 RĴ F, [g] ^T2/4-
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Proof. — Using Proposition 13.14, we get 

(13.61) 
Nxg/X 

Trs g exp 
_ T3,x 
^0,T (g-1Z,Z) dvrx (Z) 

(2TT dimA/Xo/x/2 

= 2£/2det 
RTX*/2 

ysmh(RTX9/2); 

, 1/2 
Tr. exp 1 

~4 
&i 5 R 9 &j c(ei)c(ej) 

T 
f 2 

(VTX^V/ 
T2 

4 
IV/R det (a 0,B,RNx9/x -1/2 

TrsA N*Xg*X #exp 1 
" I 

euRNx*fxej c(ei)c(ej) TrFx g exp —RF,U) 

Now using (6.1), (6.10), (6.30), (6.31),(9.8), (13.49), and proceeding as in [MQ, 
Lemma 2.12], we get 

(13.62; det 
RTX9/2 

Ksinh(RTX9/2) 

x 1/2 
TVS exp 

1 
~4 

e», RTX° ej)c(ei)c(ej) 

T 
f 2 

c(Vrx 'V/) 
j.2 

T 
V/L2 = 7r^2aT2/4. 

Also by using (4.26) in Proposition 4.9, we get 

(13.63) det o (O,B, RNxg/x 
,-1/2 

TV£ 
A(N*Ng/X 

g exp 
1 

"4 
euRNx9'xej c(ei)c(ej) = 1. 

Finally, by Proposition 1.6, 

(13.64) TVFx [<7exp (-RF'U)] = TrFx [g]. 

From (13.61W13.64), we get (13.60). The proof of our Theorem is completed. 

Theorem 13.16. — For any T > 0, as t —• 0, 

(13.65) Trs fa exp -C2 ut,T/Vt 
Xg 

TVF [g] faT2/4. 

Proof — Our Theorem follows from (13.25), (13.28), (13.32), and from Theorems 
13.13 and 13.15. 

13.6. The asymptotic expansion of the operator r 3,x 

Definition 13.17. — If x e Xq, put 

(13.66) Mr 
1 
4 

c(ei) 7F^\ VF,9F) (Ci) 
T 

" 4 "(VF,ffF) (V/) . 

In the sequel, we will write some operators in the form O (Z, Z), P (Z), Q (Z), R (Z). 
These operators are smooth tensors, such that O (Z,Z) depends quadratically on Z, 
and P (Z), Q (Z), R (Z) depend linearly on Z. The dependence in the variable T 
will be explicitly written. 
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Theorem 13.18. — Given T e R+; there are bounded operators Ni,x € T*X ® 
End (Fx) , 1 ^ i ^ n, l^j^£,£+l^k^n ,and smooth tensors Ol (Z, Z), 1 ^ i < 
n, P(Z),Q (Z) ,R(Z), such that if 

(13.67) 

AX MxT 

i<j<l 
Vei (RTXZ,ei] 

i<j<l 
l+1<k<n 

Ni,x 
j.x 

\Z)e? Ac(efc) + OI ( Z , Z ) 

+ P ( Z ) + T Q (Z) + T 2 . R ( Z ) , 

as t —> 0, 

(13.68 R3,i R3,i VtAxT+ 

0(t) [l + TO(Z) + TO izi2 T2O \zf) o(\z4\)) 

Proof. — We will still use Theorem 12.1. If Z 6 TXX, \Z\ < e0, U € T^X, let T£/ (Z) 
be the parallel transport of U with respect to VTX along £ e [0,1] —» tZ. In our 
geodesic coordinates , we can still view tU (Z) as lying in TXX. Then classically, 

(13.69) tU ( Z ) = U + O \Z\2' 

In formula (12.2), we then choose, 

(13.70) d (Z) = rei (Z), 1 ^ i ^ n. 

In fact ei (Z),..., en (Z) will then be an orthonormal basis of TzX with respect to 
the metric a%x. 

By (3.41), 

(13.71) 7A* (T* S)®A* (T* X) 
i 7, 

:(tU(Z)) V2(Sz(Z)UJ»)fa 

,A»(T*S)®A*(T*x; 
X 

c(rC/ (Z ) ) = 0. 

By (13.71), we find that parallel transport with respect to L ̂ A* (T* S)® A* {T* X) pre 
serves the elements of degree < 1 in A* (T*S)®c{TX). 

F o r p e N , g e N , Op(\Z\q] denotes an expression in 

A* (T*S) ê c(TxXa) ® c(TXQ) êEnd 'A N*Xg/X 
x 

which has the following two properties: 

- For k e N, k < q, its derivatives of order k are O \z\q-k 

— It is of length < p with respect to the Z-grading induced by A- (T*S)®c(TxXg). 

From (13.71), we deduce that, in the trivialization with respect to the connection 
1\7A* (T'S)® A.'(T'X) 

(13.72) c(tU(Z)) = c(U) V2(SX(Z)V / f ) r l-Oi (\z\2) 

ASTÉRISQUE 275 
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In the sequel for 1 < i < n, c (rei (VtZY ,3 
It 

denotes the operator c (r) written in 

the considered trivialization with respect to the connection 7A* (T* 5)®A# (T* X) 
t/2 

Prom 
(13.72) we deduce that for l ^ i ^ e, 

(13.73) Vt c [rei I sftZ 3 
t 

2é A 
t 
2 

tei 2Vi (S(Z ei Ja , fa to(\z\2) 

and that for £ + 1 < i < n, 

13.74) Vt c irei Viz 
3 
t 

sTt (c{ei) + 2(S{Z) f" 
' a 

fa VtO(\Z\2). 

We trivialize temporarily A* (T*S)<êA*(T*X)(àF by parallel transport with respect 
to the connection i\/^(T*S)®A'(T*X)®F,U along the geodesic t G [0,1] -> tZ. Let V 
be the connection form for I\7a*(T*S)®A*(T*X)®F,U -M tne considered trivialization. 
Using (13.71) and the arguments which follow, we find that T is a one form with 
values in elements of A* (T*S) <g> c (TX) <§> c(TX) which have length < 2. By [ABoP, 
Proposition 3.7], 

(13.75) Y(Z) 
1 
2 

y A* (T* 5)§A* (T* X) §F,2 ^ ) + 0 2 ( | ^ | 2 ) 

Using (3.42), (13.73) and (13.75), we get 

(13.76) Vt] [Viz] 
3 
5 (i*RTXZ,.) + Vi 

1^7^ 
l+1<k<n 

e* Ac(efc)ö(Z) + 

o ( Vt ) o (|z|2) + o(t)o (\z\) + o(t)o (\zn 

Similarly one finds easily the asymptotics (up to the order y/t) of the other terms 
in the first three lines of the right-hand side of (12.2). The proof of our Theorem is 
completed. 

13.7. A technical result 

Now, we state a result, which will imply Theorem 13.1 for bounded T. 

Theorem 13.19. For anyT G R, x G Xg, Z G NXg/x,x, 

(13.77) lim 1 

Vt 
R gFt r3,x 

Lt.T g-xZ,Z Trs g exp r3,x [g-'z^z) 

d 
ds 

Trs gexi r3,x sAn-i g~xz,z\ |s=0< 

Moreover, given M 6 R+, there exist C > 0, C > 0 such that for t € [0,1], 0 < T ^ 
M,x£Xg,Z GNXg/XtX, 

(13.78) 1 
t 

Trs gFt T3,x [g-lz,z) Trs g exp I r3,x 
,L/o,t 

,g-lz,z) 

-Vi 
d 
ds 

Trs g exp 7-3, X 
OT 

sMxt {g~lz,z) U=o S Cexp(-C'|Z|2) 
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Proof. — The proof of our Theorem is delayed to Section 13.9. 

13.8. A proof of Theorem 13.1 for bounded T 

By (13.25), (13.28), (13.31), (13.32), (13.37), (13.40), (13.59), (13.78), we get, for 
t e J0,1J,0 < T ^ M, 

(13.79) 
1 
1 lis /#exp CtiT/Vt 

>x5 
f Trs \gexp _ r3'x g-1ZZ 

dvNXg/x {Z) 

(27T) dimArX5/x/2 
dvXa (x) 

(2tt dim Xg/2 

-Vt 
Xg 

f 
NXg/> 

d 

ds 
Trs g exp L3.x + sAXt (g-1ZZ) 

s=0 

dvNXa/x (Z] 

(2?r dimJVXg/x/2 
dvXn (x) 

(2n dimXg/2 

Xg Nxg/x 
(f (x),Z)Trs g exp L3,x 

O,T 
[g-'z^z) 

dvNXg/x (Z) 

{2TT] dim Nx /x/2 
dvx0 (a:) 

(2TT; dim Xg/2 
< C 

Set 

(13.80) £(vF,<?F) 
L 

I+1 
? A w ( V F , / ) (e<). 

Equivalently, W 5vf ?Gf° the hatted version of the restriction of <*(vF,gF) to the 

fibre Xg. 

Theorem 13.20. — The following identities hold, 

(13.81 
JNXg/x 

If (x),Z) Trs gex] T 3>a 
L0,T. (g-lz,z) 

dvNXg/x (z) 

(2TT; iim JVx./x/2 
= 0, 

Nxg/x 

A 

AS 
Trs g exp r3,x sA£ {g-lz,z) |s=0 

dvNx,x (Z) 

2n iim NXg/x/2 

= (2TT) dim Xg/2 1 
4 

B 
TrF* 0 VTXOF,u + TiVf £(vF, / ) exp -BT2/A - Ì?F'U) 

Proof. — Clearly the operator LQ'^ is invariant by the map Z —> —Z. Therefore we 
get the first identity in (13.81). We claim that in the left-hand side of the second 
identity, we can replace by M^. In fact by the obvious analogue of (13.51), when 
acting on A (j^Xg/x)^ only globally even monomials in the c(e^), c(ei),£ + 1 ^ i ^ n 
have a non zero supertrace. This fact makes the first sort of anticommutator in the 
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right-hand side of (13.67) does not contribute to the second integral in (13.81). The 
remaining terms in (13.67) are odd in the variable Z, and so do not contribute to the 
integral for the same reasons as before. 

By Proposition 4.8 and by (13.55), as in Proposition 13.14, we get 

(13.82) pexp 
r3,x 

"^0,7 sMxT [g~lz,z --Tl2 det 
RTX/2 

sinh (RTX/2' 

1/2 

exp 
RTX/2 

sinh (RTX/2) 
•a(0,B,RTX)Z,2 

gexi 1 
4 

[ei, RTX ej)c(ei)c(ej) 
T2 

4 
v/l2-

T 
2 

c(VTX^Vf) RF,u _ sMx 

From (13.82), we obtain, 

(13.83 
NXg/X 

1VS #exp L3,x - sMxT g~lz,z) 
dvNXq/x 

(2TT d\TCiNXg/x/1 

= 2^ det 
RTXg/2 

sinh {R1 x9'2\ 

1/2 

det \a(0,B,RNx9/x 
-1/2 

Trs gex\ 
1 

~4 
Bi, R ej i c(ei)c(ej 

ji2 

4 
V/l2 T 

2 
cNTX^Vf RF'u-sM$ 

By (13.83), we get 

(13.84) 
NXg/X 

a 

ds 
Trs g exp L3,x + sMxT [g-xz,z) \s=0 

dvNXg/x (Z) 

(2tt dim NXg/x/2 

= -2£'2 det 
RTXg/2 

sin\i(RTX9/2) 

1/2 

det Q,B,RNxo/x 
-1/2 

Trs gM£ exp 
1 
4 

ei, R ej j c(ei)c(ej) 
rp2 

4 
IVfl2 

T 
2 c(VTX^V/ RF,u 

As before, in M^, the term 

e+i^i^n 
c(eiWF'uoj VF ,gF))(ei) 

does not contribute to the supertrace in (13.84). 
Then, by proceeding as in the proof of Theorem 13.15, by using in particular (13.63) 

(13.66), (13.84), we get (13.81). The proof of our Theorem is completed. 

Recall that the function h(x) was defined in (9.12) or in (13.1). 
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Theorem 13.21. — The following identity holds, 

(13.85N 
1 
4 Xg 

f 
B 

TrF* g VTXOF,u 
Tivf Q(VF,gF) exp(-BT2/4-RF>u) 

1 
~2 x9 

h*g VF,gF)T(3T2/4. 

Proof. — By (1.12), 

(13.86) \7TX®F'UQ F,gF) VTXOF,u •F,9F) 
1 
2 UVF,gF),Q(F,9F) 

By (1.19), 

(13.87) VF, (VF,gF) -u2(VF,gF) 

Equivalently, if U, V are smooth sections of TM 

(13.88) VFw 
U 

(VF,gF) (V) VFw 
U 

VF,9F\ (U) u;(VF,gF)([U,V}) 

= - K v F , / ) (u)MvF,9F) (v)}. 

Set 

(13.89) yA* (T* S)® A* (T* X)®F,u 
L 

I+1 

ei VAei (T*S)§A*(T*X)®F,u 

Equivalently, y A* (T* S)§A* (r*X)§F,« is the hatted version of the restriction to X„ of 
the connection yA* (T* S)®A* (T*X)§F> By (13.86)-(13.88), we obtain, 
(Ï3.90Î 

VTX®F>uQ(F,gF) 'yA* (T* S)§A* (T* X)0F,u ei fa iT(ei,fHa) u(VF,gF). 

Using (13.90), we get 

(13.91) 
lx9 

f 
rB 

TrFa \g (yTX®F>u TiVf Z(VF,gF) exp -BT2/4 - RF>U) 

Jxg 
f 

B 
TrF* yA* (T* S)§A* (r*X)§F,i ei fa iT(ei,fHa) -Tivf HVF,9F)i 

exp(-BT2/4 + w2 (F,5F) /4) 

By Theorem 6.15, (9.1) and (9.12), we get 

(13.92) ŷA*(T*S)§A*(T'X) ei fa iT(ei,fHa) TiVf —* 
2hg 

VF,9F exp ( - B T 2 / 4 ) 

= TrFx 9 yA* (T* S)®\'(T'X)®F,u ei fa iT(ei,fHa) TiVf [^(Vf ,5f) : 

exp(-BT2/4+to2 (F,gF) /4) 
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By (13.91), (13.92), we obtain, 

(13.93) 
fx9 

f 
B 

TrFx 9 rVTX®F,u + Ti_ W (VF,gF) exp -BT2iA — RFiU) 

= - 2 
xg 

rB 
pyA#(T*5)§A*(T*X) h*g (VF,gF) exp -BT2I4) 

By Theorem 6.18 and by (13.93), we get 

(13.94; 
Xg 

f 
RB 

TrF* glVTX®F,u + Ti_ w (VF,gF) exp — R>T2 /4 — RI 

= - 2 
'x9 

h*g (VF,gF) 
B 

Vfexp(-BT2/4) , 

which, in view of (6.10), (9.8) is just (13.85). The proof of our Theorem is completed. 

Remark 13.22. — By (13.79), by Theorems 13.15, 13.20 and 13.21, we get (13.2) for 
bounded T. The proof of Theorem 13.1 for bounded T is completed. 

13.9. A proof of Theorem 13.19 

Recall that t — dimX^. Set 

(13.95) m = dim S. 

Let M G R+. 

Definition 13.23. — If x G Xg, 0 ^ p ^ s, 0 ^ q ^ £, let K(PtQ)iX (resp. K°ipq)x) b( 
the vector space of smooth (resp. square integrable) sections of 

(A* (T*S) ® A* (T*X9)êc(TXg) ê A- (iVx9/x) § F)x 

over TXX. 

Let Kx,Kj be the direct sum of the K(Pjg))X, K p̂ gj x. More generally, of a G R, 
we denote by K£ the ath Sobolev space of sections of the above vector space. 

Definition 13.24. — For t G ]0,1],0 ^ T < M,x G Xg, if 5 G K(M)?X has compact 
support, put 

(13.96) H2,x,0 
hxx 

\s\2(l + \Z\p{uZ/2)) 2(n-\-m—p—q) dvrx (Z), 

\s\lx,l l5|2,rr,0 
n 

1=1 

Ve, S 2 
t,x 
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Then (13.96) define Hilbert norms on the Sobolev spaces K£, Kj.. Let ( )t x 0 be the 
associated Hermitian product on Kx. We identify Kx to its antidual by the Hermitian 
product associated to (13.96). Then embeds as a dense subspace of K*J, and the 
norm of the embedding is less than 1. Let K"1 be the antidual of , en let | \ t , x - i 
be the corresponding norm. Then Kx embeds a a dense subspace of K"1, and the 
norm of the embedding is less than 1. 

Theorem 13.25. — There exist constants C± > 0,. . . , C4 > 0 such that ift G ]0,1], 0 ^ 
T < M, x G Xq, if s,s' G Kx have compact support, then 

(13.97) 

Re t ' ^ 
t,x,0 

> C1|S|2t,x,1 C2\s\lxfi, 

Im 7-3, X 
t T1̂ ' ^ 

t,x,0 
^ C3|S|T,a;,L|S|T,x,0j 

L3.xTs,s 
t,x,0 

^ C3|S|T,a;,L|S|T,x,0j 

Proo/. — Using (12.2), the proof of our Theorem is the same as the proof of [BL, 
Theorem 11.26]. 

Recall that Uc was defined in Definition 13.4. 

Theorem 13.26. — There exist c> 0, C > 0 such that ift G 10, 11, 0 < T < M, A G Uc, 

the resolvent A T 3,x -1 exists, extends to a continuous linear operator from Kx 1 

to Kl, and moreover, 

(13.98) A - L3,x 
-1 0,0 

< C, 

A - L3,x -1 -1,1 
< C(l + |A|)2. 

Proof — Using Theorem 13.25, the proof of our Theorem is the same as the proof 
of [BL, Theorem 11.27]. 

From now on. r"> 0 is fiVpd a.s in Thpnrpm 13.26. 

Definition 13.27. — Let Qx be the family of operators, 

(13.99) Qx = {Vei1l^i^n}. 

For j G N , let QJX be the set of operators Q\... Qj, with Qi G QX11 ̂  i ^ j . 

Proposition 13.28. — Ta&e A; G N . There exists Ch > 0 sitcA t/iat if t e 10,11, 
0 ^ T < M , x€-Yfl,Qi,...,Qfc G if s,sf G Kx /lave compact support, then 

(13.100) <[Q1, . , -̂ t ,T] ]s,s'>M,o| ^ CFCHT,a-,L|S'|T)X)I. 

Proof. — Using (12.2), the proof of our Proposition is the same as the proof of [BL, 
Proposition 11.29]. 
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If k e N, if s G K£ , put 

(13.101) li5llt,a:,/c 
k 

J=°QeQJx 
\QS\lx,0 • 

UAeC К к x¿-fc+J let A fc,fc+l 
\t,X 

be the norm of A with respect to the above norms. 

Theorem 13.29. — For any k G N, £/iere exis£ mx G N, Cfc > 0 sitc/i £Aa£ if t G 
]0,1],0 ^ T ^ M,x G X^À G £/c, £fte resolvent A - L3,x maps into K£+1, 
and moreover 

(13.102) A - L3,x 
-l k,k+1 

t,x 
£ Ck (1 + |A|)m*. 

Proo/. — Using Theorem 13.26 and Proposition 13.28, the proof of our Proposition 
is the same as the proof of [BL, Theorem 11.30]. • 

Theorem 13.30. — There exist C > 0 such that for any m G N; there is C > 0, 
r G N such that for t G ]0,1], x G Xg, Z, Z' G TXX; 

(13.103) sup 
I a I, I a' I 

A|a|+|a'| 

dZadZ'<*' 
•Ft r 3,cc (Z,Z) ^c(i + \z\ + \z'\)r 

exp(-C"|Z-Z'|2) 

Proof. — Using Theorem 13.29, the proof of our Theorem is the same as the proof 
of [BL, Theorem 11.31], of [B9, Theorem 11.14], or of [BGol, Theorem 7.42]. Note 
in particular that the exponential factor in the right-hand side of (13.103) can be ob­
tained as in [B9, BGol] by using finite propagation speed for solutions of hyperbolic 
equations. 

Observe that if 5 G has compact support, |s|tj2Cjo, lskcc,i can also be defined for 
t = 0. Also, 

(13.104) \s\t,x,0 <: N0,x,0> |s|t,x,l < No,*,!* 

We denote by K,h, k = 0,1, —1 the corresponding Hilbert spaces. If (a — a\... an) 
is a multiindex, set Za = Z?1 ...z%«. 

Definition 13.31 - If k = J-l>UN,fc'GN, let K ik,k' x be the set of the s G K'fc such 
that if \a\ ^ k', then Zas G K'£. If s G K'£'k', set 

(13.105) lisi 2 
o,x,fc,(fc'; 

\a\^k' 
\\Z°8 2 

0,x,k ' 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2001 



248 CHAPTER 13. THE ASYMPTOTICS OF Trs fgti (DtT/Vï^ AS t -» 0 

Proposition 13.32. — For k G N, ttere earcstf C > 0,rafc € N sitc/i £/ia£ for 0 ^ T ^ 
M,xG X5, À G C/c, if s € Kx Aas compact support, 

(13.106) A - r 3,x 
^0,T 

-1 
s 

0,x,l,(fc) 
< c a + iAir« H5||o,cc,0,(A;)-

Proof. — The proof of our Proposition is the same as the proof of [BL, Proposition 
11.34]. • 

Proposition 13.33. — There exists C > 0 such that for t G ]0,1], 0 < T ^ M, x G 
Xg, A G C/c, z/ s G Kz has compact support, 

(13.107) r3,x r3,x sU,t,-] ^ CVÎ||s||o,x,i,(3)-

Proof. — Using Theorem 13.18, the proof of our Theorem is the same as [BL, The­
orem 11.35]. 

Proposition 13.34. — There exist C > Q,k G N such that for t G ]0,1], 0 ^ T < 
M, x G Xg, A G C/c, if s £ Kx /ms compact support, 

(13.108) A - L3,x 
t,T 

-1 
A - L3,x 
t,T 

-T 
S 

%x,0 
^CVt(l + \\\)k ||s||0lx,0,(3)-

Proof. — Using Proposition 13.33, the proof of our Proposition is the same as the 
proof of [BL, Theorem 11.36]. 

Recall that Tc was defined in Definition 13.4. By Theorem 13.26, 

(13.109) Ft (L3,x) 1 
2Z7T Ic 

Ft(A) 

A - L3,x 
t,T 

dA, Ft{Lo]r] 
1 

227T , rc 

Ft(A) 

\ — r°'x 
dA. 

Using (13.22), the above results, (13.109) and proceeding as in [BL, Section 11 p)] 
and in [B9, Section 11] leads to a proof of Theorem 13.13, which is a first step in the 
proof of Theorem 13.19. 

Now we will go one step further to establish (13.77) in Theorem 13.19. 

Proposition 13.35. — If k e N, there exists C > 0 such that for t G ]0,1],0 < T ^ 
M, x G Xg, if s £ Kx has compact support, then 

(13.110) 1 
Vt 

<T3,x _ T3,x \ 
t,x,k 

^ C ll5llo,:c,fc+2,(3) * 

Proof. — Our Proposition is an easy consequence of Theorem 13.18. 

Proposition 13.36. — Given k,k' G N, there exist C > 0,mk,kf G N such that for 
0 ^ T ^ M, x G Xg, A G Uc, if s G Kx has compact support, 

(13.111) A - L3,x 
t,T 

-1 
5 

0,x,fc+l,(fc') 
< C ( l + |A |r^' ||S|lo,,,fc,(fc0-
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Proof. — The proof is the same as the proof of [BL, Theorem 11.30 and Proposition 
11.34], or of Theorem 13.29 and Proposition 13.32. 

Theorem 13.37. — Given k G N; there exist C > 0, ra& G N such that ift G ]0,1], 0 < 
T < M, x G X0, A G Uc, if s G Kx ftas compact support, 

(13.112) 1 

Vt 
A - L3,x 
t,T 

- l 
X - T"3̂  

, - l 
3 

t,x,k 
^ C ( l + | A | r ll«llo,x,FC,(3)-

Proof. — Clearly, 
(13.113) 

1 
Vt 

A - L3,x 
t,T 

- l \ r3>* -1" A - L3,x 
t,T 

-1 7-3,X r3,I 

Vt 
A - L3,x 
t,T 

-1 

Using Theorems 13.29, Propositions 13.35 and 13.36, and (13.113), we get 

(13.114) 1 
Vt 

A - L3,x 
t,T 

- l 
X - r3iX 
A L,QT 

-1N 
S 

t,x,k 
^C(l + \X\)mk 

7-3,x _ 7-3,a: 

Vt 
X _ T3'X A iv0jT 

-1 
S 

ls,t,fc-l 
^ C ( l + | A | p \ _ r3^ 

A 1^QT 

-1 
S 

0,x,/c+l,(3) 

^ C ( l + |A|)mfc+mfc'3 l5llo,x,/e,(3) ' 

which is just (13.112). 

Theorem 13.38. — Given k G N, q G N7 £/iere e#2s£ C > 0, n^g G N snc/i z/ 
t G ]0,1], 0 ^ T ^ M, x G Xg, A G C/c, if s G Kx /ms compact support, 
(13.115) 

1 
Vt 

A - L3,x 
t,T 

-q 
(A — LQ̂ J 1-9 g 

i,x+q-1 
< C ( l + | A | r - ||*||0>X>FC,(3))-

Proof — We have the formula, 

(13.116) 1 

Vt 
f A - I/Q^J 

-q 
'A — I/O,T) q 

A - L3,x 
t,T 

-<?+l S _ r3>* -1 X — T3'X A ivQ T 
-1 

A - L3,x 
t,T 

-g+2 A - L3,x 
t,T 

-1 
A 1JQT 

-1 

Vt 
X - T3'x 

-1 

Using Theorem 13.29, Propositions 13.32 and 13.36 and Theorem 13.37, we get 
(13.115). 
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Theorem 13.39. — There exist C > 0 such that for any m G N, there is C > 0 
r G N such that for £ G ]0,1], x G X^, Z, Z' G TXX, 

(13.117) sup 
|a|,|a/|^m 

QW\+W\ 

dZ<*dZ,Q 
1 

v7* 
Ft (L3,x 
t,T 

Ft (L3,x 
t,T 

(Z,Z') 

£ C(l + |Z| + |Z'|)r exp (-C"|Z - Z'|2) . 

Proo/ — Using Theorems 13.37, 13.38, and proceeding as in [BL, Theorem 11.31], 
we get (13.117). 

Proposition 13.40. — There exist C > 0 such that if t G ]0,1], 0 ^ T < M, x G Xg, if 
s G Kx has compact support, 

(13.118) 
f j 3,x j 3,x 

vt 
Ax S 

0,x,-l 

< CVt ||S||O,x,1,(3) 

Proof. — Our Proposition follows from Theorem 13.18. 

Theorem 13.41. — There exist C > 0, fc G N such that if t G 10, 11, 0 ^ T ^ M.x G 
.X ,̂ A G t/c, 

(13.119) 
A — .ZJ. '-T-i 

v - l \ _ 7"3'x 
-1 

Vt 
Ft (L3,x 
t,T 

-1 
4X A ~~ ^O!T ) 

-1 

x,t,0 

^ C v ^ (l + |A|)fcH|0|X|1|(6). 

Proo/. — Using (13.113), we get, 

(13.120) 
A ~~ ,T 

- l A -(L3,x 
t,T 

-1 

Vt 
A 1^0T 

-1 AX A 1JQT 
-1 

- (X — L?'^ 
- l 7-3, X 7"3,X 

vt 
AX \ 7"3'x A ~ ^0,T 

-1 

, A ~~ ,T 
-1 A i70T 

-] 
4X A 1JQT 

-1 

By Theorem 13.26, by Proposition 13.32 and Proposition 13.40, there exists A: G N 
such that 

(13.121) (A ~~ L*'T 
- l 7-3,x r3,x 

Lt,T ~ ^0,T 
Vt 

- Ax (A ~~ L1\TJ 
-1 

S 
t,x,0 

< C ( l + |A|)fc |s|I)0L(3). 
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Also by Proposition 13.34, 

(13.122) 
A - 3,x 
t,T 

- l X r 3,z -1 

Vt 
s 

t,x,0 

^ C ( l + |A|)fc||5||o,,,0,(3) 

So by Theorem 13.18, by Proposition 13.36 and by (13.122), we obtain, 

(13.123) A - 3,x 
t,T 

- l 
X - T3'x 

- l 
4X X r3^ -1 

s 
\x,t,0 

^cVt (1 + |A|)A AX A - 3,x 
t,T 

-1 
s 

0,x,0,(3) 

£CV* (1 + IAI)* A ^0,T 
-1 

5 
r,0,2,(6) 

^CV* (l + |A|)*+/c' ||s||o,*,i,(6)-

Prom (13.120), (13.121), (13.123), we get (13.119) 

Using now (13.15), (13.109), and Theorems 13.39 and 13.41, we find that as t 0, 

(13.124 
1 

Vt 
Ft (L3,x 
t,T 

- exp t-3,X> 
0,T j 

(Z,Z') -> 

d 

ÖS 
exp L3,x - sAxT 

o,T 
(Z, Zf) |s=0, 

which is just (13.77) in Theorem 13.19. 
Equations (13.117) and (13.124) do not still give us the estimate (13.78) for t G 

]0,1],0 ^ T < M. To obtain this estimate, one needs to take extra terms in the 
asymptotic expansion of L3^ in equation (13.68), so as to obtain a uniform bound. 
Details are left to the reader. 

13.10. A proof of Theorem 13.1 

Now we will explain how to establish the estimate (13.2) in the full range t G 
10,11,0 < T < 2Iy/i 

First we consider the case where x G Xg is such that dx (x,B) > £o/4. Then if 
Z G TXX is such that \Z\ ^ 4r/o, since rjo ^ £o/32, if follows that 

(13.125) dx (Z,B)^e0/8. 

In particular |V/ (Z)\2 has a positive lower bound. 

Definition 13.42. — For t G ]0,1], T G R+, if s G has compact support, put 

(13.126) I I2 
\S\t,T,x,l 

s|t,x,1 rp2 \p(Vtz) \Vf\s I2 

t,x,0 
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Using (12.2) and the above considerations, we find easily that if t G ]0,1], 0 ^ T ^ 
2/y/i, the estimates in Theorem 13.25 hold, with|s|t,x,i replaced by |s|t TxV 

In the asymptotic expansion (13.68) of the operator as t —> 0, we now need 
to keep track of the dependence of on T, since T is no longer uniformly bounded. 
Using (13.68) and the same arguments as in Section 13.9, we see that in the right-hand 
side of (13.117), instead of C, we will have C (l + T2). 

Now we will take advantage of the fact that the estimates in Theorem 13.25 hold, 
with |s|t,rr,i replaced by |s|̂ TrE r Put 

(13.127) fir,* V C i , l ^ z < n ; \T\p Viz 

We define QJT X as in Definition 13.27, by replacing QX by QT,X- Also if s G Kj;, we 
define ||s||t?7>)A. as in (13.101), by replacing QX by QTIX. 

Then all the results of Section 13.9 remain formally true, when doing the obvious 
changes. 

Theorem 13.43. — There exist C > 0 such that for any k G N , m G N , there is C > 0, 
r G N such that for t e ] 0 , l ] , 0 < T ^ 2/y/i,x G Xg such that dx (x,B) ^ s0/4, 
Z,Z' G TXX, 

(13.128) 

SUD 
LAJJLA'L̂ M 

p (VtZ) T 
k ft\<x\ + \<*'\ 

dZadZ'<*' 
Ft(L*%)(Z,Z'\ ^ C ( l + T2) (l + |Z| + |Z,|)r 

exp( -C" |Z-Z ' |2 ) . 

Proof. — Taking into account the above considerations, the proof of our Theorem is 
the same as proof of Theorem 13.30. 

Theorem 13.44. — There exist C > 0 such that for any k G N , m G N , there is C > 0, 
r G N such that fort G ]0,1], 0 ^ T ^ 2/y/i, x G Xg such that dx (x,B) ^ e0/4, 
z, Z ' G T J , 

(13.129) sup 
LALJLA'L̂ M | 

P VÏZ)T 
T Q\a\ + \a'\ 

dZ<*dZ'<* 
1 

Vt 
(F t (L^)-Ft (Lj»)N (Z,Z') 

< C (1 + T2) (1 + |Z| + |Z'|)r exp (-C"|Z - Z'|2) 

Proof. — By proceeding as in the proof of Theorem 13.39, we get (13.129). 

Theorem 13.45. — There exists C > 0 such that for any k G N, ttere is C>0 SMCA 

t/ia£ for t G ]0,1], 0^T^2/v^, x e Xg with dx (x,B) ^ s0/4, Z e NXg/x,x,\Z\ ^ 

(13.130) 1 
Vt 

[Ft(L%) - Ft(Lfc) {g-'z^z) < 
C 

1 + T* 
exp(-C'|Z|2) 
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Proof. — By (13.35), if \Z\ ^ T/O/V^, then p(y/tZ) = 1. Our Theorem is now a 
consequence of Theorem 13.44. 

Theorem 13.46. — There exists C > 0 such that for any k G N , there is C > 0 such 
that for t G ]0,1], 0 < T ^ 2/x/£, x e Xg with dx (x,B) ^ £0/4, Z G NXg/x,x, \Z\ ^ 

Vo/vt, 

(13.131) 1 
t 

Trs gFt L^) (^-1z,z; -Trs #exp _ r3,x (g-1 Z',Z) 

-Vt 
d 

ds 
Trs 9 exp L3,x + sMxT 

o,T 
(g-1 Z',Z) \s=0 

C 
1 + Tk 

exp -C'|zr 

Proof. — The proof of our Theorem proceeds as the proof of Theorems 13.19 and 
13.45. Details are left to the reader. 

Theorem 13.47. — There exist C > 0 such that for t G 10,1], 0 < T ^ 2/y/i, 

(13.132) 
1; 
~t\ {xeXg,dx(x,B)^e0/4} IZ€NXg/x 

Z|<no 

Trs fgFt Ct,T/Vt {g-'z^z) k (x, Z) 

dvNXq/x (Z) 

(2TT dimNXg/x/2 
dvXn (x) 

(2TT .dim Xg/2 {xEXg,dX (x,B)<Eo/4 
TrF[g)faT2/4 <C 

Proof. — In degree 0, our Theorem was already established in [BZ1, equ. (13.62)] 
and [BZ2, equ. (9.18)]. So here, we concentrate on the proof of (13.132) in positive 
degree. 

Take x G Xg,dx (x,Bg) < £o/4. Let #0 be the unique element of Bg such that 
dx (xq,x) ^ so/A. Since rjo < £o/32, then Bx (x,rjo) C Bx (xo,Sq). In particular, 

by (13.35), on Bx (x,r/o), the operator C2tT^ coincides with the operator C^^]^2 

defined as in (10.11). Therefore, using finite propagation speed as in Section 13.2, 

we find that in (13.132), we can as well replace Trs / 2 N 
Ct,T/y/t 

by Ft ?/§F|B,2 
't,T/Vt 

By 

proceeding as in Theorem 13.6 and in (13.28), we find that we can as well replace 

Ft C :/®F|B,2 
t,T/Vt by exp -C ?WIR,2 

>,T/Vt 
, Namely, we now have to estimate the integral 

(13.133) 
\ZeTXQX,\Z\^e0/4} 

Trs /#exp -C •/§F|B,2^ 
't,T/Vt {g'^z 

dvrx (Z) 

<2̂ .̂ dim X/2 

Now we use the notation in Chapter 4. In particular the kernel VT (Z,ZR) was 
defined in Definition 4.5 and computed in Theorem 4.6. If Z G TXQX, we write Z in 
the form, 

(13.134) Z = Z0 + Zi with Z0 G TX0Xg, Z1 G NXg/XìXQ. 

By (12.37), if \Z\ ^ so/4, 

(13.135) f(Z) = f(x0) + q(Z0) + q(Z1). 
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Now we redefine the norm |Z|, so that if Z is given by (13.134), then 

(13.1361 \Z\=sup{\Z0\,\Z1\} 

By (12.35), (12.36), 

(13.137) 
JZ£TX0X,\Z\^e0/4 

Trs fgexp C 
IOF|B2 
t,T/Vt 

{g-lz,z) 
dvTX (Z) 

(2TT VDIM X/2 

|Zo|<Eo/4 
|̂ i|<eo/4>/« 

f (Zo/Vt +Zi) Trs pVyTtT g-1 Zo/Vt +Zi ) , Z o M + Z 1 

di;Tx (Z) 

tdimXG/2 /27r)dimX/2 
TRfXO[G] 

By (4.25), (4.26), we get 

(13.138) [gV^tT(g-xZ,Z)\ = 2n/2 det 
QVtT/2 

vsinh (Qjït/2) 

1/2 

("I) àndg (XQ) det tT2/4,B,RTX\*9 
1/2 

exp 
QjiT/2 

sinh (Q^tT/2) 
•a tT2/^B,RTX\™9 Z,Z 

We claim that in (13.137), we can replace the condition \ZA ^ en/Ay/i by Zi G 

NXg/X,XO This is because when acting on NXa Xa, when T ^2/y/i Qvït/I 
, sinh(Q^T/2) 

(0) 

and cr tT2/4,B,RTX\*9 
AO) 

have a positive lower bound. Also, 

(13.139) \Zo\<e0/4 
ZieNXg/x,x0 

/(Zo + VtZi) 

Trs [gPVtT g-1 Z o M +Zi [Zo/Vt +Zi 
dvTx (Z) 

, sinh(Q^T/2) VDIM X/2 

= t 
'TxnX 

/(Z)Trs f(Z)Trs (^_1z,z; dt;Tx (Z) 

(2TT VDIM X/2 

|£ol̂ e0/4 
ZieNXg/x,x0 

f( Zo + VtZ1) 

Trs gPVtT g-1 'Zo/Vt + Zi Z o M + 
DvTX(Z) 

tdimX9/2 (27r)dlmA/2 
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By (13.135) and by Proposition 4.11, we have the identity, 

(13.140) t 
TXQX 

f(Z) Trs \gVrtT(g-xZ,Z dvTx (Z) 

(2TT \ dim A/2 

= (-1) indg(x) (-1)indg(x) Vt 
T 

l 
2 

d 
dT a T'2U,B,RTX^9 

a Tf2/4,B,RTX^ 
\T'=\/iT-

Now by Proposition 4.15, for t G ]0,1], 0 < T < 2/Vi, 

(13.141) Vi 
T 

d 
ÖT' 

-a T,2/4,£,#tx|b* 

a Tf2/4,B,RTX^ 
\T'=VtT 

(>o) 

= O (t) 

Let QV9 B9 be the tensor QT associated to TXG\&G. By (13.138), 

(13.142) |Zo|^o/4 
ZieNXg/x,x0 

(f(x0)+q(Z0))Trs qPVtT 'g-1 (Zo/Vt + Z1) 

(z0/Vt + zx dvTx (Z) 
fdimX9/2 (21X)AmX'2 

_ /-^yndg(xo) rpdimXg 
lz0eTxoxq 
\Z0\^eo/4 

(f(x0) + q(Z0)) 

det 
Q 

TX9\B 
VtT 

12 a tT2/4<,0,Rтx^^ 1/2 

-sin! Q TXg\ng 
VtT 

/2 T2 

exp —T2 Q 
^Xg\ua 
JtT '2 a tT2/410,Rтx^l*9 

sinh Q TXg\-B 
VtT '2 tT2 

Zo, ZQ 
dvTxq (Z0) 
^•dimXg/2 

By (4.20), if t G 10,11,0 ^ T < 21 Vi, 

(13.143) Q TXglUg 
VtT '2 

sinh Q TXg\ug 
s/tT 

12 

a £T2/4.0. ftTX*|B3 

tT2 
l + O (tT2) , 

so that 

det Q 
TXg|Bo 
VtT 

12 

sinh Q TXg|Bo 
s/iT 12 

a ltT2/4,0,RТX^LВ9 

tT2 

remains uniformly bounded, and also the operator 

Q TXg|Bo 
/tT 

'2 

sinh Q TXg\Bo 
VtT 

12 

a tT2/4,0,RTX°lB° 

tT2 

(o) 
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has a positive lower bound. From (13.142), (13.143), we find that there exist C > 0, 
C > 0 such that if t G ]0,1], 0 ^ T ^ 2/y/i, 

(13.144) \Z0\^e0/4 
ZieNXg/x,x0 

{f(x0) + q(Z0))Trs g ^ v t r g-1 z0/Vi + zx 

(Zo/Vt + Zi dvTx (Z) 

tdimxg/2 (27r) dim X/2 

>0 

^ CO (tT2) Tdim-*« exp (-C'T2) 

By (13.144), there exists C > 0 such that for t € ]0,1],0 < T ^ 2/y/i, 

(13.145) 
1 
1 \Z0\^eo/4 

Zi£NXg/x,x0 

(f(x0) + q(Z0))Trs fPVtT g-1 Zo/Vt + zx 

( Zo/Vt + Zi dvTx (Z) 
THIM xg/2 (2T)dimX/2 

(>0) 
< c 

By (4.32) and (13.138), 

(13.146) \Z0\>e0/i 
Z1€NXg/XiX( 

tq(Zi) TrB fPVtT g-1 f Zo/Vt + zA Zo/Vt + Zx 

dvTX (Z) 

THIM xg/2 (2T)dimX/2 

/JIDIM X, 
jz0eTX()xa 
\Zo\^e0/4 

det 
Q 

TXg\G 
VtT 

'2 

sinh Q TXg\-Bg 
VtT 

12 

G tT2/4,0,RTX^\*^ 

tT2 

1/2 

exp rj-i2 Q 
rXg\& 
VtT 

'2 

,sinh Q TXg\&a 
VtT 

12 

G tT2/^0,RTX^^^ 

tT2 
•ZQ, ZQ 

dVTXa (Z0) 

dimXg 

(-1) 
ind9(x0) y/i 

T 
Trs 1 

2 

a 
dT' 

a T,2U,B,RTX\*9 

G T,2/4,B,RTX^ 
\T'=VÏT 

By Proposition 4.15, for t G ]0,1], 0 < T < 2/y/i, 

1 

VtJ 
;Trs 

1 
2 

TR 
ar- o T,2/4,B,RTX\*9 

G T,2/4,£,#tx|b* 
\T'=VtT 
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remains uniformly bounded. Using the above arguments, we see that there exists 
C > 0 such that for t G ]0,1],0 < T < 2/y/i. 

(13.147) 1 
t \Z0\>eQ/A 

ZieNXg/x,x0 
tq (Z1) Trs 9VJÎT 9-1 Zo/Vt +z ( Zo/Vt + Zi 

dvTx (Z) 
tdimXg/2 (27r)dimX/2 

< C 

By (13.139)-(13.141), (13.145), (13.146), (13.147), we get (13.132). The proof of 
our Theorem is completed. 

Remark 13.48. — As we saw in the proof of Proposition 9.4, 

(13.148) xexg 
dx(x,B)^e0/4 

h*g (VF, gF) T / W = 0. 

Using (13.25), Theorem 13.6, (13.29), (13.32), Proposition 13.10, Theorems 13.15, 
13.20, 13.21, 13.46 and 13.47, we get (13.2). The proof of Theorem 13.1 is completed. 
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CHAPTER 14 

THE ASYMPTOTICS OF Trs [fgh' (DT,T/T) AS t —> 0 

The purpose of this Chapter is to establish Theorem 9.11, i.e. to obtain the asymp-
totics of Trs [fgh' {Dt,T/t)\ as £ —> 0. As in Chapter 13, finite propagation speed of 
solutions of hyperbolic equations plays an important role in the proofs. 

This Chapter is organized as follows. In Section 14.1, we state the main result of 
this Chapter, from which Theorem 9.11 follows immediately. The remainder of the 
Chapter is devoted to its proof. In Section 14.2, we show that the required estimates 
can be made local near Xg. In Section 14.3, we show that these estimates can be 
localized near Bg. Finally, in Section 14.4, we complete the proof of our main result. 

In this Chapter, we make the same assumptions as in Chapters 9-10 and 12-13, 
and we use the corresponding notation. In particular h (x) — xex , and S is assumed 
to be compact. 

14.1. A convergence result and a proof of Theorem 9.11 

The main result of this Chapter is as follows. 

Theorem 14.1. — For any T > 0, the following identity holds, 
(14.1) 

lim 
1 
~t Trs /#exp r2 t,T/t - Trs^ [f 

xeBq 
Trs qgexp Cx,2 

T 
TrFx [g] • 

Proof — The remainder of the Chapter is devoted to the proof of our Theorem. 

Remark 14.2. — By (12.4), 

(14.2) TVS [fgh' (ZVr)l 1 + 2 
A 
Ea 

Trs fgexp 2 ^ 
-aCtT,t \a=l-

Moreover, by(12.5), 

(14.3) Trs Ifgexp -aCtTu wa Trs /^exp ~^at,T/t 
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By (14.1), we find that given a > 0, 
(14.4) 

lim 
1 
t Trs fgexp r2 at,T/t TrBB> [/] 

xeBg 
aTrs qgexp _rx,2 TrF* [g]. 

Finally, by Proposition 4.18, 

(14.5) TYS [qgti(VT)} = 1 + 2 d 
da 

waTrs qgexp(-C2aT) \a=l-

From (14.2)-(14.5), we get (9.25), i.e. we have established Theorem 9.11. 

14.2. Localization of the problem near Xg 

We use the same notation as in Chapter 13. In particular the functions FtlGt,h 
were defined in Section 13.2. By (13.25), 

(14.6) Trs fgexp r2 ~-Trs fgFt r2 
Ut,T/t 

\-Trs fgh tCt,T/t 

Bv Prooosition 13.5. 

(14.7) Trs fgh tCt,T/t waTrs fgh 1 °l,T/t 

By Theorem 13.6, given T ^ 0, there exist C > 0, C > 0 such that for t G ]0,1], 

(i4.8; h {t2C1^T/t) < Cexp(-C'/ t) 

By (14.7), (14.8), we find that given T > 0, there exist C > 0, C > 0 such that when 
*É]0,1], 

(14.9) Trs \fgh 2 N ^ Cexp(-C'/t). 

From (14.6), (14.9), we see that to establish Theorem 14.1, we may as well replace 
in (14.1) Trs 19 exp r2 

~L/t,T/t 
by Trs fgFt 'c1 ' 

As in (13.29), 

(14.10) Trs fgFt 2 N 
&t,T/t X 

TVs f(x)gFt r2  
t,T/ 

g lx,x dvx(x) 
(27r)dimX/2 

By the argument we gave after (13.29), we know that the support of Ft r2 * (x,.) 

is included in Bx (x,a), that Ft 'r2 N 
Ut,T/t 

(X,.) depends only on the restriction of 
r2 
^t,T/t 

to Bx (X,OJ), and moreover that the support of Ft r2 t,t/t (g 1x,x) is con­
tained in vno . 

It follows from the above that our proof of Theorem 14.1 is now local on X, and 
this only near Xq. 
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14.3. An estimate away from Bg 

Proposition 14.3. — For any T > 0, k G N , there exists C > 0 such that for t G 
]0,1],x G V£o,d* (x,B) ^ so/4; £/*en 

(14.11) Ft ^t,T/t (g 1x,z ^ Ctk. 

Proof. — By (3.54), 

(14.12) Ft ^t,T/t = wt-1Ft tCl,T/t wt 

Recall that as in (12.22), there exists ¡3 > 0 such that [fyeX, dx (y, B) ^ s0/8, then 

(14.13) IV f I (v) > 0. 

Also, as we saw above, the support of Ft (tC1Tu x, is included in Bx (x,a). 

Since a < so/32, if dx {x,B) ^ s0/4,y G £ x (x,a), then dx (y,£) > s0/8, so that 
(14.13) holds. 

Let ip : M —> [0,1] be a smooth function such that 

(14.14 y>(y) - 1 if dx (y,B) ^s0/8, 

= 0 if dx (y,B) < so/16. 

Put 

(14.15) Lt,T = {f2tC1T/t - (1 - q2) 4 ATX 
T2 

t 
Using finite propagation speed as in Section 13.2, we find that if x G X. dx (x, B) ^ 
so/4, then 

(14.16) Ft\ tel, (x,.) = Ft (LtlT) (*,.). 

Let I |0 denote the standard L2 norm on ü* (A, F\x), and let | \± be a norm on the 
corresponding Sobolev space of order 1. If t G 10, iL T > 0,5 G ft*(A", Fix), put 

(14.17) |2 
t,T,1 

t|S|2 T2 
t 

S|2 
0 

Using Theorem 12.1, an analogue of Theorem 13.25 holds for the operator Lt,T-
Namely there exist C\,..., C4 > 0, such that if s G Qm (A, F\x), then 

(14.18) 
Re(L* TS,S)O > Ci i2 

Slt,T,l 
C2|*|2, 

|Im(Lt>Ts, s)o| < C3 |s|t,T,i No 

|(Lt£s,s')0 < C4 |s|t T x |s'|t,T,i 

Let U\,..., [/n' G TA be a finite family of smooth sections of TA which span TA 
at every x. Also we define the family of operators 

(14.19) Q = V t t , l ^ i ^ n ' 
T2 

t . 
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It is then elementary to establish estimates similar to the estimates in (13.100). Then 
by proceeding as in [BL, Section 11] and in Sections 13.9 and 13.10, we find that for 
any T > 0, k G N , there exists C > 0 such that for t G ]0,1], x G Vr)0,dx (x, B) ^ e0/4, 
then 

14.20) Ft(Lt,r) (^_1a:,ar) ^ Ctk. 

By (14.12), (14.16), (14.20), we get (14.11). The proof of our Proposition is completed. 

14.4. A proof of Theorem 14.1 

By an argument given in the proof of Theorem 13.47, if xq G Bg, dx (x, xq) ^ £o/4, 

(14.21) Ft ^t,T/t (g xx,x Ft 
IOF|B.2 
t,T/t (g 1x,x] 

By (14.6), (14.9), by Proposition 14.3 and by (14.21), for any k G N , there exists 
C > 0 such that for t G ]0,1], 

(14.22) 

TVS fg exp r2 * 
~^t,T/t xex 

dx(x,Bg)^e0/4 
f(x) TVS gFt /§F|B,2 

't,T/t (g 1x,x) 

dvx (x) 
(27r)dimX/2 

< Ctk. 

Now, using (13.20), (13.23), in (14.22), we may as well replace Ft IOF|B.2 
t,T/t 

(g 1x,x) by exp -C IOF|B.2 
t,T/t I (g-lx,x). By (12.35), (12.36), if x0 G J^, 

(14.23) xEX 
dx (x,x0)^£0/4: 

f(x) TVS #exp -C 
IOF|B.2 
t,T/t 

(g lx,x) 
dvx (x) 

(2ir)dimX/2 

!zeTXQx 
\Z\^e0/4 

f(Z) Tr, gVT (g^Z/Vt.Z/Vt dvTx (Z) 

(27rt)dimX/2 
TVF*o [g] 

By (12.37), (12.38), we get 

(14.24) lzeTXQx 
|Z|<eo/4 

F5z°Trs g^Pj 'g^Z/Vt.Z/Vi 
dvTx [Z) 

(27rtfimX/2 

(_lYndg(xo) 
ZETXQX 

\Z\^e0/4y/t 

(f (x0) + tq{Z))de\ 
QT/2 

sinh (QT/2) a T2/4,£,#tx |b^ 
1/2 

exp -
QT/2 

, sinh (Qt /2 
fT2/A,B,RTX\™9 Z,Z 

dvTx (Z) 
^dim X/2 
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For a given T > 0 the operator 

Q T / 2 

_sinh(QT/2) 
o T2/4,B,RTX^9 

(0) 

has a positive lower bound. So by (14.24), there exists c > 0 such that as t —> 0, 

(14.25) zerxnx 
\Z\^e0/4y/i 

det 
QT/2 

sinh {QT/2) 
a T2/4,B,RTX\*9 

1 1/2 

exp 
QT /2 

sinh(QT/2J 
-a T2/4,B,RTX\*9 Z,Z 

dvTx (Z] 

d̂im X/2 
: 1 + O ( e ~ c n 

By Propositions 4.8, 4.9 and 4.11, 

(14.26) 
zeTXQx 

q (Z) det 
QT/2 

sinh (QT/2) 
o T2/4,B,RTX\*9 

1/2 

exp 
QT /2 

sinh (QT/2; 
T2/4,B,RTXlB9 Z,Z 

dvTx (Z) 
d̂im X/2 

1 
X 

Trs 
1 
2 

dT a T2/4,B,RTX^} 

a T2/4,B,RTX\*9 

By the same argument as before and by (14.26), we see that as t —• 0, 

(14.27) zeTxnx 
\Z\<eQ/4Vt 

q (Z) det 
QT /2 

sinh (QT/2^ 
•a T2/4,B,RTX\*9 

1/2 

exp 
QT /2 

, sinh (QT/2) 
•a (T2/4,B,RTX^ Z,Z 

dvTX (Z) 

d̂im X/2 

1 
T 

Trs 
1 
2 

97 o T2/4,JB,«TX|B^ 

o T2/4 ,£ ,#TXM 

By Proposition 4.11, by (14.6), (14.9) and by (14.22)-(14.27), we get (14.1). The 
proof of Theorem 14.1 is completed. 
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T H E A S Y M P T O T I C S OF Trs [fgh' ( Dt,T/t) A S T —> +00 

The purpose of this Chapter is to establish Theorem 9.12, i.e. to study the asymp-
totics of Trs fgh' (DtiT/t) as T —>• +00. 

This Chapter is organized as follows. In Section 15.1, we state an asymptotic 
formula which implies Theorem 9.12. The remainder of the Chapter is devoted to the 
proof of this formula. In Section 15.2, we show that our estimates can be localized 
near Bg. In Section 15.3, we use the explicit geometric model near Bg which was 
already considered in Section 4 to complete the proof. 

In this Chapter, we make the same assumptions as in Sections 9-10 and 12-14 and 
we use the corresponding notation. In particular we still assume that S is compact. 

15.1. A convergence result and a proof of Theorem 9.12 

The main result of this Section is as follows. 

Theorem 15.1. — There exist t0 G ]0,1], C > 0 such that for t G ]0, t0], T > 1, 

(15.1) 1 
1 Trs fg exp r2  

t,T/t 
-TrsB°[f] t 

4T 
(x';(F)-x9-(F) C 

T3 ' 

Proof. — The remainder of the Chapter is devoted to the proof of our Theorem. 

Remark 15.2. — By proceeding as in Remark 14.2, (9.26) follows from (15.2), i.e. we 
have proved Theorem 9.12. 

15.2. An estimate on the kernel of exp r2 y 

Theorem 15.3. — There exist t0 G ]0,1],C > 0,C" > 0 such that for any 
te]0,tolT^l,xeX,dx (x,Bq)^e0/4, 

(15.2) exp ~°t,T/t [9-1x,x < Cexp{-C'T/t). 

Proof. — We proceed as in [BZ1, Proposition 15.1], [BZ2, Proposition 11.1] and in 
our proof of Theorem 12.4, from which our notation is taken. We still use (12.9), 
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(12.10), (12.13), with T replaced by T/t. Classically, there exists C > 0 such that for 
£ G ] 0 , 1 ] , X G X , 

(15.3) Pt (g x, x] C 
tn/2' 

Instead of (12.19), we now say that there exists 7 > 0 such that for t G ]0,1],T ^ 0, 

(15.4) V° 
V S 

£ e x p ( 7 ( l + T ) ) , 

(VO) -1 <exp(7(l + T)). 

As in the proof of Theorem 12.4, we first consider the case where dx (x, B) ^ £o/4. 
Take a G ]0,1/2]. By proceeding as in the proof of Theorem 12.4, instead of (12.27), 
we now have, 

(15.5) TJX 
nt,T/t 

^ Cexp (7 (1 + T)) (exp (-T2af3/4t) + exp(-£o/144at)) 

Take, 

(15.6) a - £0 

6Ty//3' 

For T > 1 large enough, a G ]0,1/2]. Also, 

(15.7) T2a(3/4t = el/UAat eoTy/P 
24t 

Put 

(15.8) to = 
EoVB 

487 

Then, if t G ]0,*0], 

(15.9) 
EoVB 

24£ 
• 7 ^ 

^oTv^ 
48* 

By (15.3), (15.5), (15.7), (15.9), we get (15.2) in the case where dx (x,B) ^ e0/4. 
As in the proof of Theorem 12.4, we also have to consider the case where there 

exists xo G B \ Bg such that dx (x, Xo) ^ £n- The arguments of the proof of Theorem 
12.4 and the above considerations then lead to a proof of (15.2). The proof of our 
Theorem is completed. • 

Theorem 15.4. — There exist t0 G ]0,1], C > 0, C > 0 such that ift G]0, t0], T ^ 1, if 
XQ G Bq, if x,xf G X are such that dx (XQ,X) ^ £0/4, dx (xo,x;) < £o/4, t/ien 

(15.10) exp r2 t,T/t — exp -C IOFB.2 
ST,t 

(x, x7; £ Cexp(-C"T/£). 

Proof — By proceeding as in the proof of [BZ1, Theorem 15.2] and in our proof of 
Theorem 15.3, we obtain our Theorem. 
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15.3. A proof of Theorem 15.1 

By (12.7), by Theorems 15.3 and 15.4, there exist t0 G ]0,1],C > 0, C > 0 such 
that if* G ]0,£0],T ^ 1, 

(15.11) Trs fg exp r2 
^t,T/t 

xex 
dx(x,Bg)^r/4 

f(x)Trs g exp -C 
-,I®F\n,2 
t,T/t 

(g 1x,x] dvx (x) 

(27r)dimX/2 
< Cexp(-C'T/t). 

By (14.23) and (14.24), if x0 G Bg, 

(15.12) 

xex 
dx (x,x0)^r/4 

f(x)TrB g exp C 
IOFB.2 
t,T/t 

(g xx,x dvx (x) 

(2TT' Iim X/2 
/ ^yndg(xo) 

Z<ETXNX 
\Z\^.ry/T/4y/i 

/(xo)-
t 
T T(Z) det 

1 
f 

QT/2 

sinh (QT/2) 
T2/4,B,RTX^9 

1/2 

exp 
1 
f 

QT/2 

sinh (QT/2) 
-a T2/4,B,RTX^ Z,Z dvTx (Z) 

-Tj-dim X/2 
ft^o [g] 

By using (12.41), we see that for T > 1, the operators 

T 
QT/2 

sinh (QT/2) (7 T2/4,B,RTX^9 
(o) 

lave a positive lower bound. Therefore there exists C > 0 such that for t G 10,11, 
T ^ 1, 

(15.13) ZETXQX 

\ZKrVr/4Vt 

del 
1 
T 

QT /2 

5inh(QT/2, 
d r2/4,£,#TXlB* 

1/2 

exp I 
1 
t 

QT/2 

sinh (QT/2) 
T2/4,£,iîTXlB. Z , Z 

dvrx (^) 
^dimX/2 

= l + 0(exp(-C'T/t)). 
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The same argument shows that for t £ ]0,1],T ^ 1, 

(15.14) ZETxoX 
|Z|̂ rVf/4V^ 

g (Z) det 1_ 
f 

QT/2 
sinh (QT/2] •a T2/4,B,RTX^9 

1/2 

exp 1_ 
f 

QT/2 
sinh (QT/2 

cr T2/4,B,RTX^ Z,Z dvTx (Z) 
^dim X/2 

^TXQX 
q (Z) det 

1 
T 

QT /2 

sinh (QT/2 
-o* T2/4,B,i?TX|B* 

1/2 

exp 
1 
T 

Qr/2 
sinh (QT/2) 

(7 T*/4,B,RTXb' Z,Z 
ivTX (Z) 
^dimX/2 

+ O (exp (-C'T/t)). 

By Propositions 4.8, 4.9 and 4.11, 

(15.15) 
TXQX 

q (Z) det 
T 

QT /2 
sinh (QT/2) 

-a T2/A,B,RTX\*9 
1 1/2 

exp I 1_ 
T 

QT/2 
sinh (QT/2; 

O T2/4,B,RTX^ zX 
dvTX (Z) 
^dimX/2 

1 
J Tds 

1 
2 

aT a T2/^B,RTX^9 

a (T2/^B,Rtx^9) 

By Proposition 4.15, as T —» +00, 

(15.16) 
1 
2 

d 
dT 

a T2/4,£,i?TXK 

a T2/4,B,RTX^9 

1 
4 (71+ (x0) n_ (x0)) 4- O 2̂ 2 

By (9.6), (15.11)-(15.16), we get (15.1). The proof of Theorem 15.1 is completed. 
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T H E A N A L Y T I C T O R S I O N F O R M S 
OF U N I T S P H E R E B U N D L E S 

The purpose of this Chapter is to evaluate the analytic torsion forms of the sphere 
bundle SE of a vector bundle E in terms of the additive genus °I (0, x). The evaluation 
of these torsion forms has already been done by Bunke [Bui] in the case where g = 1. 

Our proof uses an extension of the main formula of this paper, to the case where 
the function / is now fibrewise Morse-Bott. In fact, we consider instead the suspended 
sphere bundle SE®n, which is equipped with a fibrewise Morse function m to which 
Theorem 7.2 can be applied. The function / = m2 is fibrewise Morse-Bott, and SE C 
SEeR is one of its fibrewise critical manifolds. We show that an extension of Theorem 
7.2 still holds in this very special case. By combining these two computations, we are 
then able to evaluate the torsion forms of SE. Let us point out that a proof of this 
extension of Theorem 7.2 has been established in [BGo5, Theorem 5.11] in the context 
of infinitesimal equivariant torsion, as a consequence of the comparison formula for 
equivariant torsions given in [BGo4, BGo5], in relation with another work of Bunke 
[Bu2]. 

When the fibres SE are odd dimensional, we give a second proof which is based on 
a different principle. The proof uses the evaluation of the torsion forms for S1 bundles 
associated to a complex line bundle A, and also the functoriality properties of analytic 
torsion forms in de Rham theory, which were established by Ma in [Ma4] using the 
adiabatic limit techniques developed in Berthomieu-Bismut [BerB], and also in Ma's 
previous work on holomorphic torsion forms [Mai, Ma2]. The evaluation of the 
torsion forms for the above 51 bundles can of course be obtained using the techniques 
of the first proof. Another method is to use the evaluation of the equivariant torsion 
forms for these S1 bundles at roots of unity by Bismut-Lott [BLol, Corollary 4.14], 
and also Theorem 4.31 and Remark 4.32 to extend these results to arbitrary elements 
in S1. 

This Chapter is organized as follows. In Section 16.1, we state our formula for the 
torsion forms of SE. In Section 16.2, we construct the functions m and / , and we 
describe the corresponding stable and unstable cells. In particular, we show that even 
if / is only fibrewise Morse-Bott, there is analogue of the de Rham map of Definition 
5.2. In Section 16.3, we evaluate the torsion forms of SE®n. In Section 16.4, we give 
an embedding formula which relates the torsion forms for SE to the torsion forms of 
SE®K. In Section 16.5, we prove this embedding formula, by extending the arguments 
in Chapter 9 to the case of the fibrewise Morse-Bott function / . Finally in Section 
16.6, when SE is odd dimensional, we give another proof of our main formula, which 
is based on adiabatic limit techniques. 
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16.1. A formula for the analytic torsion forms of a unit sphere bundle 

Let S be a manifold. Let E be a real vector bundle on S of dimension n + 1 ^ 2, 
and let o (E) be its orientation line. Let gE be an Euclidean metric on E. Let VE be 
a metric preserving connection on E. Let g € Aut (E) be a parallel isometry of E. 

Let SE be the sphere bundle in E, i.e. 

(16.1) SE = {x&E, N1 = 1}. 

Let £ be the total space of SE. Let gTsE be the metric on TSB which is induced 
by the metric gE. Clearly the only non zero cohomology groups in H' (SE,Z) are 
H° (SE, Z) = Z, Hn SE, Z)=o (E). 

The connection VE defines a horizontal subbundle TH£ on £. It then follows from 
(3.90) that Thy9 TH£ gSEOR is a closed form, i.e. it defines an element of Heven (S), 
whose cohomology class Thl9 (£) does not depend on the choice of gE or VE. 

If g G G, let det (g) = ±1 be the determinant of g acting on the fibres of E. 

Theorem 16.1. — For any g £ G, the following identity holds, 

(16.2) Th,g (E) ( l - ( - l ) " det (g)' Ig(E) I 

2 
log 

27r("+l)/2 

r ( ( n + l ) / 2 ) 
in Heven (S, C) . 

Proof. — The remainder of the Chapter is devoted to the proof of our Theorem. Our 
Theorem will in fact follow from Theorems 16.9 and 16.11. 

Remark 16.2. — By equation (7.24), if n is odd and g does not preserve orientation, 
or if n is even and g preserves orientation, 

(16.3) Th,g THS,gTsE = 0. 

Of course, Theorem 16.1 fits with (16.3). 

Remark 16.3. — Theorem 16.1 has already been obtained by Bunke [Bui] in the case 
where g = 1. From Theorem 4.31, Remark 4.32 and Theorem 16.1, we recover the 
evaluation by Bismut-Lott [BLol, Corollary 4.14] of the analytic torsion forms for 
circle bundles. 

16.2. The suspension of a sphere and a Morse-Bott function 

Let n ^ 1. Let E be a finite dimensional real vector space of dimension n + 1 ̂  2, 
let gE be an Euclidean metric on E. Then O(n) acts on E. Let SE be the sphere 

(16.4) SE = { x e E , \ \ x \ \ = l 

Let gTsE be the metric on TSE which is induced by the metric gE. Let R be the 
standard real line, equipped with the standard metric such that ||1|| = 1. Then we 
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equip E 0 R with the obvious scalar product, so that E and R are orthogonal in 
E 0 R. The action of O(n) on E lifts to E 0 R. Then O(n) acts on Smn. 

We denote by (x, t) the standard element in E 0 R. Then i : x G 5^ —• (x, 0) G 
gj5©R jis an embedding. 

If (x,t)G5£;®R, put 

(16.5) m (x, £) = t. f(x,t)=t2. 

For technical reasons, we do not equip SE®R with its standard round metric. Let 
TS be a 0(n)-invariant metric on TSE®R which has the following two properties, 

- If X! = (0,1),x2 = (0,-1), the map x G E x, ± i - INI2 is a O(n)-

equivariant diffeomorphism from an open ball centred at 0 in E into neighbour­
hoods of xi or X2 in 5^®R. We assume that near x\ or x2, the metric gTsE®R 
is just the flat Euclidean metric on E. 

- The set U = {(x, *) G SS®R, -1/2 < * < 1/2} is a collar neighbourhood of 5^ 
in Smn. We identify W to SE x ] - 1/2, l/2[, and this O(n) equivariantly. We 
assume that on U1 

(16.6) 0 
TSEOR g TSE \dm\2 . 

We denote by Vra, V/ the gradient fields to /, m with respect to the metric g TSE 

Proposition 16.4. — The function m is a Morse function on SE®n, which is O(n)-
invariant. It has two critical points, x\ = (0,1) with ind(xi) = n + 1, and x\ = 
(0, — 1), with ind (x2) = 0. 

Proof. — The proof of our Proposition is left to the reader. 

Let ^(^(x1) Wm(x2) be the unstable cells at xi,X2. Then 

(16.7) W£ (an) S EOR {^2}, W£ (x2) = {x2}. 

Here (xi) is considered as an orientable n + 1 cell, so that it can be viewed as 
a section of o(E), while (#2) is unambiguously defined. The cells in (16.7) are 
0(n)-invariant. 

Consider the complex (C* (W^), 9). This complex is spanned over R by (xi), 
W£(x2), with 

(16.8) deg WC(xi)=n + l, deg ^ (x2) = 0. 

Since n ^ 1, 

(16.9) 9 = 0. 

Recall that 

(16.10) f = m\ 
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Proposition 16.5. — The function f is a 0(n)-invariant Morse-Bott function on 
SE®n, whose critical set consists of x\, x2, SE, with 

(i6.li) ind (xi) = n '+ 1, ind(x2) = n + 1, ind (SE) = 0. 

Proof. — The proof of our Proposition is left to the reader. 

Let Wj (x±), Wj (x2) be the unstable cells at x\,x2. Then 

(16.12) Wf (xi) = {(x,t) G SEOR ,*>o} 
WJ(x2) Ux,t) e SEOR t<0) 

Now we describe a compie: C. (Wuf) E whose homology coincides canonically 
with the homology of SE®n. In fact as explained in [BZ1, Chapter I c)], to the Morse-
Bott function / , one can associate a spectral sequence whose E1 just computes the 
relative homologies of sets of the form {c ^ / < d}, where c, d are non critical values. 
Here we should take the sets {/ > 1/4} and {/ < 1/4}. The relative homology of 
{/ ^ 1/4} has two generators in degree n + 1, Wf (x\) and Wf (#2)? which can be 
viewed as sections of o (E). The relative homology of {/ < 1/4} (which here coincides 
with the standard homology) has one generator x in degree 0, which generates Ho (SE) 
and one generator SE in degree n, which generates Hn (SE). Note that SE should 
also be viewed as a section of o (E). 

The complex C. (Wuf) E is then generated by Wf (x{) G o(E),Wf(x2) G 
o (E) in degree n + 1, SE G o (E) in degree n and x in degree 0. The chain map d is 
given by 

(16.13) dW?(x1) = SE, 
dSE = 0, 

dWY(x2) = -SE, 
dx = 0. 

Here the above spectral sequence degenerates, i.e. the homology of the complex 
C. (Wuf) E coincides canonically with the homology of SE®n, whose representa­

tives are SE®n in degree n + 1 and 1 in degree 0. 
Let dvSE be the standard Lebesgue measure on SE which has total mass 1. Observe 

that (x\), WUf (x2), SE are explicit 0(n)-invariant cycles, while x has no canonical 
0(n)-invariant representative in SE. Instead we will represent x by the current dvSE, 
which should be thought of as the 0(n)-average of points in SE. It is then feasible to 
replace x by dvSE in (16.13). 

Let WÎ (x\), Wî (x2) be the stable cells at x\,x2. Then 

(16.14) Wsf(x1) = {x1} Wsf (x2) = {x2} . 

The stable cell Wf (SE) originating from SE is given by 

(16.15) W} (SE) = SE®n ' x i , x 2 } 
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The stable cell originating from x G SE is one dimensional and given by the meridian 
connecting x\ and x2 through x. Similarly one can define the stable current flowing 
from dvE- It is just the average with respect to dvE of the above meridians indexed 
bv x G SE. 

^ow we describe the complex C9 [Wy] ,d dual to c.lwy),d) It is gener­

ated by (o(E)Xi ,o(E)X2) in degree n 4 - 1 , by UJ G o(E), the canonical volume form 
UJ on SE with volume equal to 1 in degree n, and by 1 in degree 0. The chain map 
d vanishes in degree 0 and degree n + 1. Moreover if {xi} G o(E)Xi , {x2} G o(E)X2 
are associated to the orientation of SE defined by u, then 

(16.16) du = {xi}- {x2} 

The above complex can also be viewed as a complex of currents on SE®n. The 
Dirac masses 6Xl, SX2 can De viewed as n -f 1 currents on SE®n with values in o (E). 
Consider the map j : (x, t) G Smn \ {xi, x2} -> -py G S^. The form CJ on 5 ^ pulls 
back to a well defined current j*u on SE®n. Let £ (UJ) G O(E') be the obvious image 
of u. We identify 1 to the constant function equal to 1 on SE®K. Then one verifies 
easily that we have the equality of currents on 5^®R 

16.17) 4 , = 0, 

/71 = f> 

dJX2 = 0, 

dj*u = e(uj) (öXl -ôX2). 

Finally, note that O(n) acts on (c* [Wfj ,dj just on the factor o(E). In partic­

ular, 

(16.18) guj = det (g) UJ. 

Remark 16.6. — The spectral sequence associated to the function / degenerates, es­
sentially because the Morse-Bott function / only has two critical values. For arbitrary 
Morse-Bott functions, the spectral sequence does not degenerate. 

Even though / is not Morse, but only Morse-Bott, we will still define an associated 
de Rham map. Let (Q,* (SE) , d) be the de Rham complex of SE. 

Definition 16.7. Let P°° :Si'(M)->C9 Wf be the map, 

(16.19) aenm(M)-^P00a = 
2 

1 Wf(xi) 
A + sE 

a + 
SE 

a°dvsE. 

Proposition 16.8. — The map P°° in (16.19) is a quasi-isomorphism of Z-graded G-
complexes, which provides the canonical identification of the cohomology groups of 
both complexes. 

Proof. — Using Stokes formula, our Proposition follows easily. 
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16.3. The torsion forms of Smu 

We make the same assumptions as in Section 16.1 and we use the corresponding 
notation. Let M be the total space of SE®n. Then M is equipped with a horizontal 
bundle THM. We equip TSmn with the metric gTsE®R constructed in (16.6). 

We first prove a special case of Theorem 16.1. 

Theorem 16.9. — The following identity holds, 

(16.20 Thg THMgTS^EOR (1-(-1)n+1 det (g) 

OI G 5e° 1 
2 log Vol (Smn' in Heven (5, C). 

Proof. — Let m : SE®n —• R be the smooth function constructed in Section 16.2. 
Then m is fibrewise Morse, and the fibre wise gradient field -Vm is fibrewise Morse-
Smale. The critical points of m along the fibres are the sections xi, x2 of 5£;®R. Both 
critical points are G-invariant, i.e. they lie in Bg. Now we will use Theorem 7.2. As 
in (7.35), 

(16.21) Th,g ac*(Wum) gC*(Wum)) (̂ 2) 
= 0. 

As explained in (7.36), since H° (SmK,R) ,Hn+1 (SE®n,n) are flat line bundles 

(16.22) hg Y/f#(5£®R,R; THMgTS^EOR 
gC*(Wum) 

THMgTS^EOR 
9L2 

(>2) 
= 0 in n-(s)/dn*(s). 

Also, 

(16.23) inda (xi) — dimE1, indg (x2) = 0. 

Moreover, 

(16.24) TXl = E, TX'X2 = E. 

One has the trivial, 

(16.25) l , / -i\dimE—dimE1 
àet g = (-1) 

Using Theorem 7.2 and (16.21)-(16.25), we get (16.20). The proof of our Theorem 
is completed. 

Remark 16.10. — By applying Theorem 16.9 in degree 0, and by noting that 

(16.26) Vol (SE) 
2?r(n+l)2 

R((n+L)2) ' 

we get Theorem 16.1 in degree 0, even in the case n = 1. 
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16.4. The embedding formula 

The main technical result of this Chapter is as follows. 

Theorem 16.11. — The following identity holds, 

(16.27) Thg THM, gTSEOR A>2) 
= Th,g TH£,gTsE (>2) 

+ 2(-l)ndet (g)°Iq(E)^2) in iTven (S, C) 

Proof — The next Section is devoted to the proof of Theorem 16.11. 

Remark 16.12. — By Theorems 16.9 and 16.11, we get Theorem 16.1. 

16.5. A proof of Theorem 16.11 

We will obtain Theorem 16.11 by establishing a version of Theorem 7.2, adapted 
to the case where / is the fibrewise Morse-Bott function introduced in Section 16.2, 
and V/ is the associated fibrewise gradient field. 

We will develop a machinery, which, is in principle, valid for more general Morse-
Bott gradient fields, but we will only check the details in the present situation. 

In this Section, we use the notation of Chapters 5-15. In particular M still denotes 
the total space of 5s®11 ? with fibre X = SE®n. Also, we will consider only the case 
of the trivial vector bundle F = R. 

16.5.1. The geometry of critical submanifolds. — Still, B denotes the man­
ifold of zeros of V/. Then B fibres on 5, with fibre B. Then B is the union of 
connected critical manifolds {x} of / in a given fibre X — SE®n. If x G B, f takes a 
constant value / (x) on x. Note that here, x is x\,x2 or SE. 

Observe that here THM\B C TB, i.e. THM\B is a horizontal bundle on B. Note 
that on E C M, THM\& = THE. Also, in the present situation, / is parallel, so that 
the horizontal component (df)H vanishes. 

If x G B, the normal bundle Nx/X splits as 

(16.28) N*/x=NZ/x®N2/x. 

Let o Nu 
u/X 

be the orientation bundle of Nu 
u/X 

Put 

(16.29) n+ (x) = à\mNsx/x, n_ (x) =dimiVw (a;). 

Similarly, set 

(16.30) ind(a:) = dim TV" (a;). 

Set 

(16.31 Bg — B ("I Mg. 
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Then Bff fibres on 5, with fibre Bg, which itself is the union of the xgix e B. Clearly, 
V/|xg € TXg. The restriction of / to Bg is still a Morse-Bott function. If y is a 
connected component of Bp, if x G B is such that y C x, then Tx\y and iVx/xli/ are 
both stable by g. We define the n+ (y), n_ (0j) (y) as in Section 9.2, by replacing 
TX by Nx/X\y. 

16.5.2. An extended form of Theorem 7.2. - Let o Nu 
u/X 

be the orientation 

line of N£/x. If x G B, let Bx be the local fibration on S with fibre x. We denote 

by Th,g THBx,gT* V° (Nux/X) the analytic torsion forms on S associated with Bx, 

where the fibres x are equipped with the metric qTx induced by qTX, and V° (Nux/X) 

is the obvious flat connection. Note that the line bundle o Nu 
u/X 

is canonically 

equipped with a metric, which we do not write explicitly. 
We can embed the C* Wf into (B). This is here especially relevant for the 

form Ld on 8e®11, which is harmonic Let gC*(Wf) be the corresponding metric on 
C* (Wf) 

Theorem 16.13. — The following identity holds. 

(16.32) Thg THM, gTSEOR ~Th,Q 'ACm(Wu,F), gC*(W?) 

+ hg VH*(x) 9 
H*(X) 
C7«(W7) 9 

H9(X) 
L2 

AER 

/^ynd(x) Thg THBx,gT* VH*(x) 

xeBg 

(-1) indg(x] 

fx 
e(Tx)0Ig{Nx/x\n9) in Sl'(S)/<Klm(S). 

Proof — The remainder of the Chapter is devoted to the proof of our Theorem. 

Remark 16.14. — We briefly show how to derive Theorem 16.11 from Theorem 16.13. 
Clearly, NSE/sE®R — H> and 9 acts trivially on NSE^ESR. Therefore using Theorem 
16.13 and proceeding as in the proof of Theorem 16.9, we get (16.27). The proof of 
Theorem 16.11 is completed. 

Let us also point out that an extension of Theorem 16.13 to compact manifolds 
equipped with an action of a compact Lie group has been established in [BGo5, 
Theorem 5.11], in the context of infinitesimal equivariant torsion, as a consequence 
of the comparison formula of [BGo4, BGo5] which relates two natural versions of 
equivariant torsion. The result established in [BGo5] is valid even if the spectral 
sequence considered above does not degenerate. Also note that Theorem 16.13 for unit 
sphere bundles can be recovered from [BGo5, Theorem 5.11]. Finally observe that 
Theorem 16.13 and the corresponding version established in [BGo5] are themselves 
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related to earlier results by Bunke [Bu2], who gives a formula for the infinitésimal 
equivariant torsion of an odd dimensional compact oriented manifold in terms of 
contributions of the cells of an associated G-CW complex. 

16.5.3. Convergence of currents. — Note that in our geometric setting, the 
obvious analogue of the simplifying assumptions of 9.1 still hold. In particular, 
THM\B C TB. 

Since B is the union of the x G B, we will often write N^/x instead of N™/x. Let 

Xg \ X,0 Nu 
x/X 

be the Lefschetz number of x equipped with the flat line bundle 

O Nu 
x/X 

Using the above spectral sequence argument, one finds easily that instead 

of (9.5), we now have 

(16.33) Xg (R) = 

xEB 

(-1)ind(x) Xg x, o " x / X , 

In the sequel, we will write H* (X) instead of H* (X, R). Instead of (9.6), we now set 

(16.34) 

x i ( R ) 

dimX 

¿=0 
(-1) iTrH(X)[g] 

Xg o[N"B/x 
i=0 

- î y n r ^ M ^ / * ) ) ^ , 

X-1+ 
g 

(R) 
x e b 

(-1)ind(x) dim Ns/u Xg x Ns/u ' 

Trs^ [f 
x€B 

( -1 ' ind(a: 
Xg X,0 iyx/X À f(x) 

One verifies easily that the obvious analogue of (9.9) still holds. 
We still define mT as in Definition 9.2. Note that the since F = R, the obvious 

analogue of mT in (9.13) vanishes. Instead of Proposition 9.3, we find that as T —> +oo, 
if x(-xg)) denotes the Euler characteristic of xQ, 

(16.35) T 
]x9 

f (aT - a+oo 

xeBg 

(-1) ,indg(x) 

4 
[n+ (0) ( x ) - n _ (0) (x))x(xg), 

rp2 

Xg 
dfßT^ 

xeBg 

(-1) ind9(x) 

4 
[n+ (0) ( x ) - n _ (0) (x))x(xg). 

Similarly, in Proposition 9.4, the first equation in (9.15) is now replaced by 

(16.36) T2 (mT-TvsB° (/)) 

xeBg 
(n+ (0)(x)-n- (0) (x)) 

Xg 
TrF[g]e(Txg) 
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16.5.4. Four intermediate results. — In this Section, to make our statements 
simpler, we will assume S to be compact. If S is not compact, the constants which 
appear in our estimates will depend explicitly on a compact subset K c S. 

If x G Ba, consider the Zo-vector bundle NX/X\B9 NSX/X\B9 NSX/X\B9 This 
vector bundle is equipped with a metric such that the splitting Nx/x\BT NSX/X\B9 

NUX/X\B9 is orthogonal, with a connection V X/X|B9 preserving the splitting and alsc 
the metric, and also with an isometric and parallel action of g which preserves the 
splitting. In the sequel we use the notation of Chapter 4 for this vector bundle. In 
particular if x G Bg,Bg,DT denotes the operator defined in (4.9). 

Let NC be the number operator of ^# (x). Recall that THM\B C TB, so that 
THM\B is a horizontal subbundle on B. Let D% be the analogue of DT defined in 
(3.52) for B, where of course, B is still equipped with the flat line bundle o iyx x 

Note that Theorem 9.6 still holds. We now have an analogue of Theorem 9.7. 

Theorem 16.15. — Given e, A with 0 < £ < ^ 4 < + o o ; there exists C > 0 such that if 
t G [e,A],T^ 1, then 

(16.37) Trs [Ngti {Dt,T)\ 

xEB 

(-1) ind(x) Trs [Ncgh' (Dct)} Xg :R) 
c 

VT 

Theorem 16.16. — The following identity holds, 

(16.38) lim 
T^+oc 

+oo 

1 
(Trs [Ngh' (A,r)] - X'g (F) 

dt 
2t 

-h*g (VH*(XR) 
>9 

H*(X,n) 
L2,0 

H*(X,Il 
VL2,T 

Trs^ [f]T 

1 
4 [XT (F) X'+(F))log(T) 

1 

Jo 
Trs NC W a t i gh' B C*(Wf) X-1 

g 
(R) 

dt 
2t 

+ 
-\-oo 

li 
Trs NC'(Wf)gfl' f 

B1 
°'{wf] 

- x i ( R : 
dt 

2t 

- h* Tr7H*(x,n; H'(X.H) 
yL2,0 

H*(X.n 
yc*(wy) 

1 
" 4 ( x T ( R ) # ( R ) ) l 0 g ( 7 T ) 

xeB 

(_Dind(x) 
' + 00 

2t 
Trs [Ncgh'{Dt)\ -x'9c o NuB,x 

dt 

2t 
in n*(S)/dnm(S). 

Theorem 16.17. — The obvious analogues of Theorem 9.9, 9.10 and 9.12 hold. 

An analogue of Theorem 9.12 is now. 
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Theorem 16.18. — For any T > 0, the following identity holds, 
(16.39) 

lim 1 (Trs \fgh' (D,r/t)] -TrsB°[f}] 

xER Jx 
e(Tx)Trs [qgh' (T>^)] TrFx [g] 

Proof. — The proof of Theorems 16.15-16.18 will be sketched in Sections 16.5.4-

Remark 16.19. — Using Theorem 9.6, Theorems 16.15-16.18, we derive Theorem 
16.13 in the same way as Theorem 7.2 from Theorems 9.8-9.11 in Chapter 9. 

16.5.5. A proof of Theorem 16.15. — By proceeding as in [BL, Sections 8 and 
9], we get Theorem 16.15 easily. The situation is made much easier than in those 
references, because the situation is product near SE. We still need to define a map 

JT : C (Wf) A* (X) extending [BZ2, Definition 6.5] and (10.204), (11.6). At 
#i,£2, which are isolated critical points of / , we define JT as in (10.204). Let aT be 
defined as in (11.5) for n = 1, i.e. 

(16.40) aT = 
In 

il2 (Z) exp(-T\Z\2)dZ. 

Observe that l,u are harmonic forms on SE. If Z = t denotes the normal coordinate 
to SE in Smn, for 77 = 1 or UJ, set 

(16.41) JTV 
u(Z) 

all2 
exp T|Z|2/2W 

The proof of Theorem 16.15 then proceeds as in [BL, Sections 8 and 9]. 

16.5.6. A proof of Theorem 16.16. — We define the maps eT,eT as in (11.7), 
(11.8). 

We claim that the obvious analogue of Theorem 11.4 still holds. In fact, consider the 
first equation in (11.10). Near x\ or x2l this is just the first equation in Theorem 11.4, 
which was established in [BZ2, Theorem 6.7]. Also, near SE, Smn ~ SE x ] - e, e[, 
we are in a product situation, so that the analogue of (10.211) still holds. Recall 
that CC,DC are the analogues of C, D for the projection of B on S with fibre B. Let 
K £ ]0,1] be small enough so that 

(16.42) Sp(Cc'2) C {0}U[2*,+oo[. 

Then, by proceeding as in [BL, Sections 8 and 9], for T ^ 0 large enough, 

(16.43) Sp (C2 
T) 

0. 2 
3 
2 K, +00 

Let now ô be the circle of centre 0 and radius K/2 in C. Then by the arguments in 
[BL, Sections 8 and 9], there exists C > 0 such that for T ^ 0 large enough, if À G 5, 

(16.44) À — C T> 
-1 < C 
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The proof of the analogue of [BZ2, Theorem 6.7] or of the first equation in (11.10) 
then continues as in [BZ2]. From this result we derive the analogue of [BZ2, Theorem 
6.9] or of the second equation in (11.10). 

Also we claim that the analogue of [BZ2, Theorem 6.11] or of the third equation 
in (11.10) holds. The proof is in fact exactly the same. The proof of the analogue of 
[BZ2, Theorem 6.12] or of the fourth equation in (11.10) is also the same. Therefore 
we have established the obvious extension of Theorem 11.4. 

Now we establish a version of Theorem 11.16. Recall that given c\ > 0, the set 
[ / T C C was defined in (11.51). 

Theorem 16.20. — For c\ £ ]0 ,1] small enough, for any integer p ^ dim A -f 2, there 
exists C > 0 such that for T ^ 1 and \£UT, 

(16.45) Trs Nxg(X-BTyp 
хев 

[-1] |ind(x) Trs Ncg(X-BcyF 

< С 
VT 

1 + |A|)P+1. 

Proof. — Using (11.54) (which is valid here since (df)H = 0, and the fact that near 
SE, we are in a product situation), the proof of our Theorem is the same as the proof 
of [BL, Theorem 9.24] and of Theorem 11.16. 

Let now v G 10,1] be such that 
(16.46) |Sp(Bc)| С {0}U[2i/,+oo[. 

Let Bc-(w?) be the obvious analogue of _Bc*(w",F) There are di,d2 € R+, with 
d\ < ¿2/4, such that 

(16.47) Sp Bc-(w?) Z{0}u[2d1,d2/2}. 

Then instead of Theorem 11.7, we now have. 

Theorem 16.21. — For T > 0 large enouqh, 

(16.48) Sp B(0) 
T 

C{0}L 
T 

A 

1/2 
e-T 3 

2 di 
2 
3 d2 

3 
2 

+00 

Proof. — Using Theorem 16.20, the proof of our Theorem proceeds as the proof of 
Theorem 11.7. 

We redefine the contour A in Figure 11.2, where ±¿/2 is replaced by ±u, and ± \ 
by ±u/2. Put 

(16.49) Ft = ФГ 
1 

2in A 

ti(-JiX) 
\-Dc 

d\%pt. 
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Observe that over Xi, 1 ̂  i < 2, D° = 0, so that 

(16.50) Ft = 0 at x\ or X2. 

A version of Theorem 11.18 is as follows. 

Theorem 16.22. — There exist c > 0, C > 0 such that for T ^ 0 large enough, and 
t>t 

(16.51) Ir8 [JVX<^,T 

xEB 
(-1) ind(cc) Irs [NcgFt < 

C 
JT 

e~ct. 

Proof. — We proceed as in the proof of Theorem 11.18, by using Theorem 16.20 
instead of Theorem 11.18. 

We claim that the obvious analogue of Theorem 11.19 still holds. In fact by (16.48), 

(16.52) Sp 7T 

-1/2 
eTB(o) C {0}n[3/2di,2/3d2]U 

3 
2 

T 
7T T 

-1/2 
eu, -hoc 

Let QT be the orthogonal projection from Çt*(X,F\x) on the direct sum of the 
eigenspaces of B(o) associated to eigenvalues in [0,3/4i/], with respect to to the metric 
A*(X,F|X) 

xT 
By (16.48), QT is a projection operator on a finite dimensional subbun-

dle of Q*(X,F\x) which has finite constant dimension for T > 0 large enough. Set 
RT = 1 — QT- In the proof of Theorem 11.19, we replace P^1],P^^°°^ by QT, RT. 
Then the estimates in the proof of Theorem 11.19 remain true, so that its conclusion 
still holds. 

The remaining results in Chapter 11 can then be proved as before. In view of the 
above results, this completes the proof of Theorem 16.16. 

16.5.7. A proof of Theorem 16.17. — This consists in checking that analogues 
of Theorems 9.9, 9.10 and 9.12 still hold. 

The proof of the analogue of Theorem 9.9 proceeds as in Chapter 12. In fact, near 
x\ or #2, the analysis is the same as in Chapter 12. Near SE, we take advantage 
of the fact that the situation is product. In fact near SE, we may as well use the 
arguments of Section 12 in the coordinate t, while the contribution of SE remains 
constant. Details are left to the reader. 

The proof of the analogue of Theorem 9.10 is even simpler. In fact we proceed as in 
Chapter 13. Observe first that here F = R, so that uù Ve,gF] = 0, nT = 0, RF^U = 0. 
The arguments of Section 13.2 show that the proof of our result is local on X and 
can be localized near Xg. Near x\ and x2, the proof of our Theorem is the same as 
in Chapter 13. Near SE, we take advantage of the product structure of the problem. 

The proof of the analogue of Theorem 9.12 proceeds along the same lines as in 
Chapter 15. 
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16.5.8. A proof of Theorem 16.18. — To establish Theorem 16.18, we proceed 
as in the proof of Theorem 9.11 which was given in Chapter 14. We only need to 
establish an obvious analogue of Theorem 14.1, the arguments in Remark 14.2 then 
leading to Theorem 16.18. The arguments in the proofs given in Chapter 14 remain 
valid near x\ and x2. If SE was an arbitrary critical submanifold, to establish the 
analogue of Theorem 14.1, we would need the techniques used by Bismut-Lebeau in 
[BL, Section 1]. However, here, the situation being product near SE, much simpler 
arguments should be used. One can, for example, use a Getzler rescaling on SE, while 
using the scaling arguments of Section 14 in the normal coordinate t. Details are left 
to the reader. 

16.6. Adiabatic limits: the case where n is odd 

Now we assume that n is odd. We will give a different proof of Theorem 16.1 using 
adiabatic limit techniques. 

Then dimS^ = n is odd. By (16.3), we may as well assume that g preserves the 
orientation. 

Let g be the Lie algebra of G. Let Z (g) C G be the centralizer of G and let $(g) C Q 
be its Lie algebra. Observe that RE is a 2-form on S with values in 3 (g). By arguments 
which were given in detail in [BGol, Section 2.6] in the holomorphic context, there 
is an analytic function K G 3 (g) —> ThiQ (K) G C, defined on a neighbourhood of 0, 
such that 

(16.53) Thg TH£,gTsE = TM (-RE/2i*) . 

The function K —> Thl9 (K) G C is called an equivariant infinitesimal analytic torsion 
form. 

From now on, SE will simply denote the sphere of centre 0 and radius 1 in the 
vector space E. 

Take K G 3 (#), with \K\ small enough. Under the above assumptions, it is clear 
that there is a complex structure J on E which commutes with both g and K. Let 
H be the underlying complex vector space, which has complex dimension (n + 1) /2. 

Then S1 acts freely on SE via the semigroup t G S1 —> etJ. The quotient of SE by 
the action of S1 is the complex projective space P(n-i)/2- Observe that g acts as a 
holomorphic map on P(n-i)/2- In particular g preserves the orientation of P(n-i)/2-

Consider the projection q : SE —> P(n-i)/2> with fibre S1. The cohomology of the 
fibre S1 is concentrated in degree 0 and 1, and the cohomology groups form trivial 
Z-line bundles on P(n_i)/2, on which g and K act trivially. Since P(n-i)/2 is even-
dimensional, and g preserves the orientation of P(n-i)/2> by the same argument as in 
(7.24), the corresponding equivariant infinitesimal analytic torsion forms of P(n-i)/2 
with coefficients in these two line bundles vanish identically. 
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Consider now the spectral sequence associated to the projection q. Still g and K 
act trivially on the terms of this spectral sequence. 

Since SE is odd-dimensional, and g is oriented, SE is also odd-dimensional. In 
particular, its equivariant Euler form of TSE with respect to the action of K on SE 
vanishes identically. The same is true for the associated Chern-Simons forms. 

Now we will use a formula due to Berthomieu-Bismut [BerB] in the context of 
holomorphic analytic torsion forms, due to Ma [Mai, Ma3] for holomorphic equiv­
ariant torsion, and still to Ma [Ma4, Theorem 0.1] for non equivariant analytic torsion 
forms in de Rham theory. This formula expresses the functoriality of the torsion forms 
under composition of two proper submersions. We claim that this formula can be ad­
equately adapted to our equivariant infinitesimal analytic torsion forms. Verifying 
that the arguments of [BerB] and [Mai, Ma3, Ma4] can be adapted is not difficult, 
and uses in particular the local index theoretic techniques of [BLol], and of the previ­
ous Sections of this paper, and also the adiabatic limit techniques of Mazzeo-Melrose 
[MazMe] and Dai [Da]. 

Let P(n-i)/2,0 be the submanifold of P(n-i)/2 fixed by g. Then P(n-i)/2,s 1S a 
union of projective spaces in P(n-i)/2-

Let Th,g THSEto,gTSl (K) be the infinitesimal analytic torsion forms associated 
to the fibration qg Sg -> P(n-l)/2,0 with fibre S1, where THSE is the orthog­
onal bundle to TS . Note that since the fibres S are one-dimensional, the forms 
Th,g THSEto,gTSl K) on P(n_i)/2,0 are closed with respect to the equivariant op­
erator d — 2im ~p(n_1)/2,g i and the cohomology class of Th,g THSEto,gTSl (K) does 
not depend on the metric data. 

By eliminating the constant term in the expansion of Thi9 (K), to which the spectral 
sequence contributes, an obvious analogue of [BerB, Theorem 3.1] and of [Ma3, 
Theorem 3.11 shows that we have the equality, 

(16.54) Th.a(K)<>0) 
P(n-l)/2,< 

CK (^P(n-l)/2,p) %,g THSE,gTS^ 
(>o) 

We may and we will assume that K is generic, so that its eigenvalues x\,... ,xn 
are distinct. Let /fp(n-i)/2,G be the vector field on P(n_i)/2,p induced by K. If K 
is generic, the zero set of ifp(n-i)/2,G consists of a finite family of distinct points 
(2/1 > • • • 5 2/(n+i)/2)> represented in H \ {0} /C* by the common non zero eigenvectors 
of g and K. Prom (16.54) and the Bott localization formulas [Bo], [BeV], we get 

(16.55) Th,g W ( > 0 ) 
p 

i=l 
Th,g THSE,gTSl (K) (>0) 

Vi 

NOW Thg K (>o) 
Vi 

is exactly the equivariant infinitesimal torsion of S1 evaluated at 
(g,K). Using [BLol, Corollary 4.14], Theorem 4.31 and Remark 4.32, or by using 
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instead Theorem 16.1 in the case n = 1, we find that if g, K act on y.j by multiplication 
by e%e*,Xj, 
(16.56) Thg (K) (>o) 

wj 
2°i(euxj), 

From (16.55), (16.56), we get 

(16.57) THA«)1>0) 2 
(n+l)/2 

j=0 
I (Oj, xj) 

From (16.57), we get (16.2) in positive degree when n is odd. 
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