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FAMILIES TORSION AND MORSE FUNCTIONS

Jean-Michel Bismut, Sebastian Goette

Abstract. — To a flat vector bundle, one can associate odd real characteristic classes.
Bismut and Lott have proved a Riemann-Roch-Grothendieck theorem for such classes,
when taking the direct image of a flat vector bundle by a proper submersion. They
have also constructed associated secondary invariants, the analytic torsion forms in
de Rham theory. The component of degree 0 of these forms is the classical Ray-Singer
torsion.

The present paper has five purposes:

to extend the theory of analytic torsion forms to the equivariant setting.

to give a proper normalization of these torsion forms.

to prove rigidity formulas, showing that in positive degree, and up to locally
computable terms, these forms are rigid under deformation of the flat connec-
tion.

to evaluate the equivariant analytic torsion forms modulo coboundaries, under
the assumption that there exists a fibrewise gradient vector field which verifies
the Morse-Smale transversality conditions in every fibre.

to compute the equivariant analytic torsion forms of sphere bundles associated
to vector bundles.

Our main formula generalizes the results by Cheeger, Miiller, Lott-Rothenberg and
Bismut-Zhang on the relation of Ray-Singer torsion to Reidemeister torsion, and also
computations by Bunke for sphere bundles.

© Astérisque 275, SMF 2001



iv

Résumé (Torsion en famille et fonctions de Morse). — A un fibré plat, on peut associer
des classes caractéristiques impaires réelles. Bismut et Lott ont montré un théoréme
de Riemann-Roch-Grothendieck, quand on prend 'image directe d’un fibré plat par
une submersion propre. Ils ont aussi construit des invariants secondaires, les formes de
torsion analytique en théorie de de Rham, qui sont des formes paires sur la base de la
fibration considérée. La composante de degré 0 de ces formes est la torsion analytique
de Ray-Singer.

Le présent article a pour objet :

— d’étendre la théorie des formes de torsion analytique en situation équivariante.

— de normaliser les formes de torsion analytique.

- d’établir des résultats de rigidité, qui montrent qu’a des termes explicites calcu-
lables localement prés, les formes de torsion ne varient pas par déformation de
la connexion plate considérée, et ceci en degré positif.

— d’évaluer les formes de torsion analytique équivariantes, sous ’hypothése qu’il
existe un champ de gradient de Morse-Smale dans les fibres.

— d’évaluer les formes de torsion équivariantes des fibrés en sphéres provenant de
fibrés vectoriels.

Le résultat principal généralise des résultats obtenus par Cheeger, Miiller, et Lott-

Rothenberg et Bismut-Zhang sur le lien entre torsion analytique et torsion de Reide-
meister, et aussi des calculs de Bunke pour des fibrés en sphéres.
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INTRODUCTION

The main purpose of this paper is to give a formula for the analytic torsion forms in
de Rham theory introduced by Bismut and Lott [BLo1]. Our formula is only valid in
special cases. In this Introduction, we will describe the geometric setting, and explain
our results, and also their limitations.

Let M be a smooth manifold, let F be a vector bundle on M, equipped with a
flat connection V. Then the Chern classes of E vanish identically. The theory of
differential characters by Cheeger-Simons [CSi] shows that (E,V¥) has secondary
characteristic classes which lie in H°d (M, C/Z). Since C/Z = R & R/Z, the R
component of these classes are just ordinary cohomology classes in H°d (M, R). In
[BLo1], Bismut and Lott obtained explicit de Rham representatives of these classes.
Namely, if g¥ is a Hermitian metric on E, set

(0.1) w(VE,gE) = (gE)_1 VFgE.

Then w (VE, g¥) is a 1-form with values in End (E). Let ¢ : A*(T*M) — A*(T*M)

)—dega/2

be given by pa = (2iw a. If h is a holomorphic odd function, put

(0.2) h(VE,g%) = V2ir oTx [h (w (VE, gF) /2)] .

Then by [BLo1], the form h (VZ, g¥) is closed, its cohomology class h (V¥) does not
depend on g%, and is just one of the above odd classes.

Let 7 : M — S be a submersion of smooth manifolds with compact fibre X. Let
F be a complex vector bundle on M, and let V¥ be a flat connection on F. Let
(92*(X, F|x),d*) be the de Rham complex of smooth forms along the fibre with
coefficients in F, equipped with the fibrewise de Rham operator dX. Let H*(X, F|x)
be the fibrewise cohomology of X with coefficients in F. Then H*(X, F|x) is a Z-
graded complex vector bundle on S, equipped with the flat Gauss-Manin connection
VH*(X.,FIx) In [BLol, Theorem 3.17], Bismut and Lott proved a Riemann-Roch-
Grothendieck formula for such classes. Namely, if h is a holomorphic odd function, if



2 INTRODUCTION

e (T X) denotes the Euler class of TX, we have the identity,
(0.3) h (vH'<XvF'X>) = / e(TX)h(VF) in H*M (X,C).
X

A fundamental feature of (0.3) is that because the degree of e (T'X) is just dim (X),
the above equality is valid ‘degree by degree’. Also recall that if dim(X) is odd,
e(TX) =0, so that, if dim X is odd, the right-hand side of (0.3) vanishes.

Bismut and Lott [BLo1] refined on equality (0.3) at the level of differential forms.
Namely let T#M C TM be a horizontal bundle on M, let g7X and g¥ be metrics
on TX and F. Then by [B3, Section 1c)], the above data determine an Euclidean
connection VTX on the vector bundle TX over M, which is described in Theorem
3.5. Let e (TX,VTX) be the differential form associated to the connection VI¥,
which represents e (T'X) in Chern-Weil theory. By identifying H*(X, F|x) to the
corresponding fibrewise harmonic forms, the vector bundle H*(X, F|x) inherits the

Ly metric gfz.(X’F|X). Set

(0.4) h(z) = ze® .

In [BLol, Section 3], Bismut and Lott constructed even forms on S, the analytic
torsion forms 7j, (TH M, g7*, V¥, gF), which are such that

(0.5) dT, (THM, g™, VF ¢F) = / e (TX,VT*) h (VF,g")
X
—h (vH'(X,FlX),glI:I;(X»ﬂX)) ‘

If the fibres X are odd dimensional and F is fibrewise acyclic, so that H*(X, F|x) =
0, then 7, (TH M, g"X, V¥, g") defines an even cohomology class, which does not
depend on the above data.

In general the question arises of evaluating the class of T, (TH M, g7X, V¥ gf')
modulo exact forms. This is in fact the main goal of this paper. First let us briefly
review the present state of our knowledge on this question.

Assume temporarily that S is a point, so that we only consider the case of a single
fibre X. For 0 < p < dim X, let {, (s) be the zeta function of the Laplacian of the
fibre X acting on p-forms. Put

dim X
(0.6) 0(s)= > (1" pG(s).
p=0
By [BLo1, Theorem 3.29], if 7;, (TH M, g%, V¥, gF )(0) is the component of degree
0 of Tp, (TH M, g7*,VF, gF), then
0 106

= 5%, (0).

The quantity % (0) is called the Ray-Singer analytic torsion of the fibre. It was
introduced by Ray and Singer in [RS1]. Quillen [Q2] used holomorphic analytic

(0.7) T (THM, g™ V¥, gF)
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INTRODUCTION 3

torsion to define the Quillen metric on the determinant of the Dolbeault cohomology
of a holomorphic vector bundle. Bismut and Zhang [BZ1] used its de Rham analogue
to define a Ray-Singer metric on the complex line det (H*(X, F|x)). Via (0.5) and
(0.7), one recovers the anomaly formulas for Ray-Singer metrics established by Bismut
and Zhang in [BZ1, Theorem 0.1].

Assume temporarily that the metric g¥" is flat. In [RS1], Ray and Singer conjec-
tured that the Ray-Singer analytic torsion coincides with a combinatorial invariant,
the Reidemeister torsion. To be more precise, let K be a triangulation of a fibre X.
Then, as explained in Milnor [Mil] and in [BZ1, Chapter 1], via K, one can define
another metric on det (H*(X, F|x)), the Reidemeister metric. One can then show
that the Reidemeister metric does not depend on the triangulation. Ray and Singer
conjectured the equality of the Ray-Singer and Reidemeister metrics. This conjecture
was proved independently by Cheeger [C] and Miiller [Mii1] using different methods.
Essentially, Cheeger studied the behaviour of these two metrics by surgery, and Miiller
used combinatorial invariance by taking the mesh of the triangulation to zero. This
result was extended by Miiller in [M1ii2] to unimodular flat vector bundles.

In [BZ1], Bismut and Zhang extended the above results to the case of general flat
vector bundles. Let f : X — R be a Morse function, and let V f be the gradient field of
f with respect to some metric. Assume that Y = —V f is Morse-Smale [Sm1, Sm2,
Th] i.e. the corresponding stable and unstable cells intersect transversally. Then,
as explained in [Mil] and in [BZ1, Chapter I], the above data determine a finite
dimensional complex (C* (W*, F)),d), the Thom-Smale complex [Sm1, Sm2, Th],
whose cohomology is just H*(X, F|x). If g*" is a metric on F, we construct this way
a metric on det (H*(X, F|x)), the Milnor metric. If g¥' is flat, this metric coincides
with the Reidemeister metric. In [BZ1], Bismut and Zhang gave a formula comparing
the Ray-Singer and the Milnor metrics. The defect is given by the integral on X of a
Chern-Simons current.

Assume again that S is a point, and that G is a finite Lie group which acts on
X, whose action lifts to F' and preserves the above data. If the metric g¥ is unitar-
ily flat, Rothenberg [Ro] showed that one can define an equivariant version of the
Reidemeister torsion. In [LoRo], Lott and Rothenberg showed that one can extend
the Cheeger-Miiller theorem to this situation, by replacing the Ray-Singer torsion
by its equivariant extension. In [BZ2], Bismut and Zhang extended the Lott and
Rothenberg formula to the case of arbitrary flat vector bundles.

From the above discussion, it should be clear that 7, (T7 M, g7, V¥ gF )(0) and
its equivariant extension are fully understood.

On the other hand, in [BLo1, Corollary 4.14], Bismut and Lott gave a formula for
the analytic torsion forms of S* fibre bundles equipped with a complex Hermitian line
bundle with a unitary flat connection, whose holonomy along the fibre is a root of
unity. The torsion forms are power series in the first Chern class of the line bundle, the
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4 INTRODUCTION

coefficients being polylogarithms evaluated at the considered root of unity. In [I, K],
Igusa and Klein gave a construction of higher Reidemeister torsion using algebraic K-
theory. In the case of S! fibre bundles over S2, they gave a formula for their torsion
which coincides with the formula of Bismut-Lott [BLo1]. The coincidence of these
two computations is unexplained. The purely algebraic character of Igusa and Klein’s
constructions should make a direct approach to a comparison formula very difficult.
Also, in [Bul], Bunke computed in particular the non equivariant analytic torsion
forms for sphere bundles associated to vector bundles.

The present paper has five purposes:

— To extend the theory of analytic torsion forms to the equivariant setting.

— To give a proper normalization of the analytic torsion forms.

— To prove rigidity formulas for the equivariant analytic torsion forms in degree
> 2, which show that up to ‘local’ terms, they are essentially invariant by
deformation of the flat connection V¥

— To evaluate the equivariant analytic torsion forms modulo coboundaries, when
there is a function f : M — R which is fibrewise Morse, and the fibres can be
equipped with a corresponding fibrewise Morse-Smale vector field Y.

— To give a formula for the equivariant torsion forms of unit sphere bundles.

In fact, let G be a compact Lie group. Let (E, VE ) be a flat vector bundle as in
(0.1). Assume that G acts trivially on M, and acts on E by flat automorphisms. Let
gF be a G-invariant metric. If h is a holomorphic odd function, if g € G, set

(0.8) he (VF,9%) = Tr [gh (w (VF,4") /2)] -

Then the form hy (VE, gF) has the same properties as the form h (VZ, g¥). Namely
hg (VE, g¥) is closed, and its cohomology class hy (V) does not depend on g*.

Let now 7 : M — S be a submersion taken as before. Assume that the compact
Lie group G acts on M, and preserves the fibres X. Let F’ be a flat vector bundle on
which G acts by flat automorphisms. Then H*(X, F|x) is a flat Z-graded G-vector
bundle on S. Let now g € G, let My C M be the submanifold of fixed points by g.
which fibres on S with fibre X; C X. Then in Theorem 3.25, if h is a holomorphic
odd function, we extend (0.3) to the formula,

(0.9) hg (v”’<X7F|x)) - / e(TX,) hy (VF) in H*M (X, C).
X

9

Now we assume that TH M, gTX, g¥ are G-invariant. These data determine an Eu-

clidean connection VIXs on TX,. If h(z) is still given by (0.4), in Section 3.12,
we construct equivariant analytic torsion forms 7y, 4 (THM, g7%, V¥, gF), which are

ASTERISQUE 275



INTRODUCTION 5

such that

(0.10) dTn 4 (THM,g"™*,VF, g") = / e (TXg,VT¥9) hy (VF, g")
9

— hy (VH%X,le), gfz%x,ﬂx)) .

Still, as in [BLo1], our construction of 7y, 4 (T# M, gTX, V¥, gF) depends explicitly
on the choice of h in (0.4). In Sections 2.8 and 3.17, we show how to normalize the
torsion forms 7 4 (TH M, g™*, V¥, ¢F') into forms Ten g (THM, gTX, V¥, gF'), which
we call Chern analytic torsion forms. The idea is that one can normalize the classes
in (0.8) to secondary Chern classes associated to the Chern character, and the forms
Ten,g (THM, gTX,VF gF) verify an equation similar to (0.10).

It is well known [CSi, Proposition 2.9] that the odd characteristic classes of flat
vector bundles are rigid in degree > 3. We establish a corresponding result for the
analytic torsion forms. Let *(S) be the space of smooth forms on S, let d*(S) C
Q°(S) be the space of smooth coboundaries. In Sections 2.4 and 3.16, we show that
the classes Ty, 4 (TH M, g7*, V¥ gF') € Q*(S)/d*(S) are rigid in positive degree.
This result says that up to locally computable secondary characteristic classes (which
are analogues of the Bott-Chern classes [BoCh, BGS1] in complex geometry), the
class of T g (THM, g7*, V¥, g") in Q*(S)/d*(S) is invariant under deformation of
the flat connection V¥. We also establish corresponding results for families of finite
dimensional complexes.

Assume now that f : M — R is a G-invariant smooth function, and that Vf € TX
is a G-invariant fibrewise gradient vector field for f. We assume that Y = -V f is
Morse-Smale [Sm1, Sm2] in every fibre X, i.e. that the stable and unstable cells
associated to Y intersect transversally. Let B be the zero set of Y. Then B is a
submanifold of M, which fibres over S with finite fibre B. If z € B, let ind (z) be
the Morse index of z, i.e. the number of negative eigenvalues of the quadratic form
a*f (@) l1, x xT, X -

Let (C* (W%, F),d) be the Thom-Smale complex along the fibres X, which is
associated to Y and to the flat vector bundle F. Then (C* (W",F),0) is a flat
Hermitian complex on S, whose fibrewise cohomology is H*(X, F|x). Let gg: ((V);Lﬂj‘))
be the metric on H*(X, F|x), which is obtained by identifying H*(X, F|x) to the
corresponding harmonic objects in C* (W*,F). Then by a construction given in
Section 1.10, which extends a construction in [BLol, Section 2], we obtain finite

dimensional torsion forms T}, g (AC* W™ F) gC*(W™.F)) "which are such that

(0.11) dTh, (AC'<W“YF)/,QC'<W”,F>) = h, (VC%W",F), gc'(wu,m)

H*(X,F H*(X,F|x)
— hy (v ( lX)’gc-(Wu,;; ) .
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Let g ((VH*4FL), glTCRIR0 gIH0MIN)) € 00 (5) /d2* (S) be the class defined
in [BLol, Section 1] and in Section 1.5, such that

(0.12) dﬁg (VH'(X,F|X)’gg:((é(/f%)’gf;(X,le)) = hy (VH'(X,le)’gZ'(X,le))

H*(X,F H*(X,F|x)
— hy (V ( lX)vgc"(Wu,Fx) ) _

Let v (T Xy, VT%s) be the current defined on the total space of p : TX, — M,

constructed by Mathai and Quillen [MQ, Section 7], such that if M, is identified to
the zero section of T X, and if d5, is the current of integration on My,

(0.13) Ay (TXg,VT9) = p*e (T Xy, VI¥9) — b, .
Recall that B is the zero set of Vf. Put
(0.14) B, =BnM,.

Then, as explained in Section 6.3, the current (Vf)* ¢ (T Xy, VIX9) on M, is well
defined, and is such that

(0.15) AV Y (TXy, VX)) = e (TX,, VT¥o) - 6p,.

g9
For y € R,s € C,Re(s) > 1, set
+o0 +o00o

(0.16) C(y,5)=zggil(f—w, n(y,8)=z-s-l—n7—1(—s@-

n=1 n=1
Then ¢ (y, s) and 7 (y, s) are the real and imaginary parts of the Lerch zeta function
L (y, s) [Le]. The function 7 (y, s) is holomorphic in the variable s € C, the function
¢ (y, s) is also holomorphic in s € C if y ¢ 27Z, and is meromorphic with a simple

pole at s = 1 if y € 27Z. Let I (6,x) be the formal power series,

(0.17)
1 2p+1)OC, | rT\P . (2p+1)ton | rxz\P
10.2) =3 pEZN (ph)? 35 p)(4) +ZI§ ()* FA p)(4)
peven podd
Put
(0.18) °1(0,z) =1(8,z)—1(0,0).

Given 6 € R, we identify °I (,z) to the corresponding additive genus. Also, if
g € G acts as a parallel automorphism on the fibres of a vector bundle E, let °I, (E)
be the even cohomology class which is obtained by splitting F according to the angles
6 of the action of g on E, and by summing the corresponding °I (8, z) genera.

Let TX|g,TX|§ be the stable and unstable subbundles of T X |g with respect to
Y. Then we have the splitting,

(0.19) TX|g=TX|gdTX|g.
Let 0" be the orientation bundle of T X |§.
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Clearly g acts on T X |g, and preserves the splitting (0.19). Let I, (T X|g,) be the
genus OIg evaluated on the Zj-graded vector bundle TX |, i

(0.20) o1, (TX|s,) = °I, (TX|§9) —op, (TXH;Q) .

Finally, if z € By, let Tr" =@ [g] be the trace of the action of g on Fy ® ou.
The main result of this paper, proved in Theorem 7.2, is as follows.

Theorem 0.1. — For any g € G, the following identity holds,

(021) Trg (T7M,g™, VF, gF) — Ty, (A7 40" 08,0

= H*(X, H*(X,F H*(X,F
+ hy (v (Pl gHR OO A |x>)

== [ (970" (9 (2,57
9
+ 3 (1) e () O (T, X |,) in Q°(S)/dQ*(S).
z€B,

In Chapter 7, we show that Theorem 0.1 is compatible with all the known properties
of the equivariant analytic torsion forms, including anomaly formulas, rigidity and
products. Using Theorem 0.1 and Poincaré duality, we also derive certain properties
of TX|g. Also, as explained in Chapter 7, in degree 0, Theorem 0.1 is equivalent
to the main result of [BZ2], which in turn extends results by Cheeger [C], Miiller
[Miil, Mii2], Lott and Rothenberg [LoRo] and Bismut-Zhang [BZ1, BZ2].

Put

02)  Jew=3|X Fe-»nL+iX Te-nT
pEN pEN
peven podd

Set

(0.23) 97(8,2) = J(6,2) — J (0,0)).

In Theorem 7.4, we show that if the forms 7y, 4 (TH M, g%, V¥ gF) are replaced by
the Chern analytic torsion forms ZTen g (TH M, g™%, V¥, gF), then the obvious ana-
logue of Theorem 0.1 remains true, with °I (9, z) replaced by °J (6, z).

Theorem 0.1 is only a first step to the evaluation of the analytic torsion forms in
full generality. As shown in Chapter 5, our fibrations are such that the fundamental
group of the base S acts as a finite group on the cohomology H* (X,Z). By passing
to a finite normal cover of S, this action can then be made trivial. This puts a
severe restriction of the fibrations to which our formula applies. Fibrations by torus
bundles associated to general SL (n, Z) vector bundles do not verify our assumptions.
In particular the evaluation by Bismut and Lott [BLo2] of the analytic torsion forms
of such torus fibrations cannot be obtained from our main result.
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However, as we shall see in Chapter 16, there is a variant of Theorem 0.1, in which
f is only assumed to be a fibrewise Morse-Bott function. In Chapter 16, we establish
this more general version of Theorem 0.1 in the context of unit sphere bundles. This
formula is used to evaluate the torsion forms of these sphere bundles. We now explain
in more detail the main formula of Chapter 16.

Let E be a real vector bundle of dimension n + 1 > 2 on a manifold S. Let g¥ be
an Euclidean metric on F, and let VZ be an Euclidean connection. Assume that G
fixes S and acts on E by unitary automorphisms which preserve VE. Let S¥ be the
unit sphere bundle of (E, g¥). Let & be the total space of SZ. If g € G, we can then
define analytic torsion forms associated to the projection 7 : £ — S, which are closed
and whose cohomology class 75, 4 (£) does not depend on the choices of g¥ and VZ.
If g € G, let det (g) = £1 be the determinant of g acting on the fibres of E. The
following result is established in Theorem 16.1, in part as a consequence of Theorem
0.1.

Theorem 0.2. — For any g € G, the following identity holds,

(0.24) Thy (€)= (1= (~1)" det (9)) (Ofg (B) - %log (r (2(75:))/;2)»
in Hev*" (S, C).

Theorem 0.2 was already obtained by Bunke [Bul] in the case where g = 1. As
explained in Remark 16.3, from Theorem (0.2), we recover the evaluation by Bismut
and Lott [BLol, Corollary 4.14] of the analytic torsion forms associated associated
with a circle bundle equipped with a complex line bundle, with holonomy around the
circle given by a root of unity.

The analogue of Theorem 0.1 for the Chern analytic torsion forms suggests a pos-
sible link with Arakelov theory. In fact let us recall that in [B8], Bismut introduced
a genus R (0,z), extending the R (z) genus of Gillet and Soulé [GS1], given by the
formula,

P

) 1 on zP

(0.25) R(0,z) = E i E 377(97—17)4'2‘(9—8(9,—1)) o
pPomn =1

L | o¢ xP
p)?d j=1
p OC

so that R(z) = R(z,0). In [B9], it was shown that the genus R (6,z) appears as a
defect in an immersion formula for equivariant Quillen metrics, extending the main
result of [BL]. In [K6Roe], Kéhler and Roessler extended the Riemann-Roch formula
in Arakelov geometry of Gillet and Soulé [GS2] to an equivariant situation. Recall
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that L (y,s) is the Lerch zeta function. In Proposition 4.40, we give the obvious
identity,

(0.26) R(0,7) +4J (0,z) = Z(Z ZL(0,—p) + ‘?9(0 p))f:.

pEN]l

As explained in Proposition 4.41, the factor 4 in the left-hand side of (0.26) is ‘natural’.
This result suggests a possible mysterious connection of analytic torsion forms in de
Rham theory with their holomorphic counterpart [BGS1, BK] in Arakelov theory.

Now we briefly describe the techniques which are used in the proofs of the above
results. The idea is to combine the methods used by Bismut-Zhang [BZ1, BZ2] in
their proof of Theorem 0.1 in degree 0 with the formalism of Bismut-Lott [BLo1].
The proofs also bear some similarity with the proofs of Bismut in [B10], where an
analogue of the above problem was considered in the context of the holomorphic
analytic torsion forms of [BGS1, BK].

Let us also indicate that in [BGo4, BGo5], we have constructed an infinitesimal
version of the equivariant torsion, which is essentially a version of the Chern analytic
torsion forms Zch g (TH M, gTX vF gF ) in the case where the fibration 7 : M — S
comes from a G-principal fibre bundle, and we have also given a local formula relating
the classical equivariant analytic torsion to its infinitesimal version. The results of
[BGo4, BGo5] demonstrate that Teh,g (T7 M, g7, V¥, gF') gives indeed the ‘right’
normalization of the analytic torsion forms. Besides, we show that these results are
compatible to the results we obtain in the present paper, and also with results of
Bunke [Bu2].

Let us now describe in more detail the techniques used in the present paper.

1. Superconnections and Chern-Simons theory.— In [BLo1], Quillen’s superconnec-
tions [Q1] are the key tool to the proof of the Riemann-Roch-Grothendieck formula
(0.3) and to the construction of the analytic torsion forms. In Chapters 1 and 2 of
this paper, we make the link with Chern-Simons theory more explicit than in [BLo1].
By making this link, we obtain a natural construction of the Chern analytic torsion
forms, and also a direct understanding of the rigidity of the analytic torsion forms.

2. An extended de Rham map.— In [La], Laudenbach proved that under standard
assumption on Y = —V f, the stable and unstable cells of Y can be compactified into
submanifolds with C* conical singularities. In particular, it is possible to integrate
smooth differential forms on these cells. Laudenbach proved that one gets this way
a de Rham map P> : Q*(X, F|x) — C* (W™, F), which is a quasi-isomorphism. In
Section 5.6, we extend this result to the situation considered above. Namely, we show
that there is an integration along the fibre map P> : Q*(M, F) — Q* (S,C* (W", F)),
which maps the de Rham operator d™ on M into the canonical flat superconnection
ACTWSEY of O (WY, F).
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3. The Witten complex and the instanton calculus.— In [BZ1, BZ2], a key idea is
to use the Witten deformation of the de Rham operator [W], i.e. for T € R, to
replace dX by e TfdXeTf, and make T — +oo. Besides the 0 eigenvalue, which
corresponds to the cohomology H*(X, F'|x), a finite number of nonzero eigenvalues of
the Laplacian decay exponentially as ' — +oo. In [BZ1], results of Helffer-Sjostrand
[HSj] were needed to obtain a precise estimate of the ‘small’ eigenvalues. In [BZ2,
Section 6], the results of [BZ1] were given a much simpler proof by using the results
of Laudenbach [La] on the Thom-Smale complex C* (W*, F).

In the present paper, we follow essentially the same strategy as in [BZ1, BZ2].
However, we need not only to estimate the ‘size’ of the small eigenvalues, but also
subtle properties connected in particular with the variation of the corresponding
eigenspaces. This is done by two distinct methods developed in Chapters 10 and
11, which both lead to the same results. In Chapter 10, we use a theory of ‘gener-
alized’ metrics, and in Chapter 11, we show how to use the eigenvalue estimates or
[BZ2] to obtain the required result, when the function f is fibrewise nice.

4. Local families index theory and Berezin integrals.— In [BLo1l], the main results
were proved using the local families index Theorem of [B3]. Here, we use the local
families index techniques developed in Berline-Getzler-Vergne [BeGeV]. In [BZ1,
BZ2], two copies of the bundle of Clifford algebras of (T'X, g"*) appeared naturally,
and the considered operators exhibited a symmetry property when these two copies
were interchanged, which made the local index computations rather easy. Ultimately,
the Berezin integrals of Mathai-Quillen appeared in the local index computations.
Here, this symmetry property is broken. A more sophisticated calculus to handle
Berezin integrals is needed, which is developed in Chapter 6.

5. Finite propagation speed and localization. — As in [BL, B9, BGol], finite prop-
agation speed of solutions of hyperbolic equations [ChP, T] plays a key role in the
proofs that certain estimates can be made local. In fact in our estimates, the question
often arises of showing that these estimates can be proved ‘locally’. Finite propa-
gation speed is one of the tools one can use to prove that such a localization of the
estimates is indeed possible.

This paper is organized as follows. In Chapter 1, we recall the formalism of [BLo1]
on flat superconnections, and we construct the equivariant generalization of the tor-
sion forms of finite dimensional complexes of [BLo1]. In Chapter 2, we prove rigidity
results in positive degree for such torsion forms, and we construct their proper nor-
malization, the Chern torsion forms. In Chapter 3, we prove the equivariant extension
of the Riemann-Roch-Grothendieck theorem of [BLo1] for flat vector bundles, and
we construct corresponding equivariant analytic torsion forms. We prove that in a
suitable sense, these forms are rigid under deformation of the flat connection on the
given vector bundle F', and we also construct their Chern normalization.

ASTERISQUE 275



INTRODUCTION 11

In Chapter 4, we construct the analytic torsion forms of a Z,-graded vector bundle
E. The explicit computation of these torsion forms is of fundamental interest, since
it produces the genus °7 (6, z). In Chapter 5, we describe the main properties of the
family of complexes C* (W*, F), and we describe the de Rham map of Laudenbach
[La]. In Chapter 6, we prove various properties of Berezin integrals in our geometric
setting, and we recall the construction of the Mathai-Quillen currents.

In Chapter 7, we check that Theorem 0.1 is compatible with known results on
analytic torsion forms. Chapters 8-15 are devoted to the proof of Theorem 0.1. The
general organization of the proof is closely related to the proof of corresponding results
in [BZ1, BZ2]. In Chapter 8, using a contour integral, we prove a basic identity,
depending on three parameters ¢, A,Ty. Theorem 0.1 will be obtained by taking
adequate limits in this identity. In Chapter 9, we state, without proof, a number
of intermediate results, from which Theorem 0.1 is then derived. Chapters 10 and
11 provide two different proofs of one of these results, Chapters 12-15 give proofs
of the other intermediate results. The proofs involve various kinds of localization on
the fixed point fibre X, or the fixed critical points By. Finally, in Chapter 16, we
establish Theorem 0.2.

The results contained in this paper were announced in [BGo2, BGo3|.

Acknowledgments. — The authors are very much indebted to Francois Laudenbach
for useful discussions. They are also grateful to a referee, for his detailed observations
and comments.
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CHAPTER 1

FLAT SUPERCONNECTIONS
AND EQUIVARIANT TORSION FORMS

The purpose of this Chapter is to explain the superconnection formalism, and also
to state the main results of Bismut-Lott [BLo1] on flat superconnections and torsion
forms. The only minor difference is that we work in an equivariant context. However,
as explained later, the objects which we consider are just linear combinations of objects
considered by Bismut and Lott.

This Chapter is organized as follows. In Section 1.1, we recall the definition by
Quillen [Q1] of superconnections on a Zs-graded vector bundle E. In Section 1.2,
we construct the transpose of a superconnection, and in Section 1.3, the adjoint of a
superconnection with respect to a metric . In Section 1.4, we define the action of a Lie
group G on superconnections. In Section 1.5, we consider flat superconnections, and
we construct the associated odd closed forms of [BLol] in an equivariant context. In
Section 1.6, we consider superconnections which have total degree 1 on a Z-graded
vector bundle. In Section 1.7, we define a canonical rescaling of the given Hermitian
metric with respect to a parameter t > 0. In Section 1.8, we evaluate the limit as
t — +oo of the odd forms associated to the rescaled metric. Finally, in Sections 1.9
and 1.10, we introduce two versions of equivariant torsion forms, and we establish
corresponding anomaly formulas.

1.1. The superconnection formalism

Here we follow Quillen [Q1]. Let M be a smooth manifold. Let £ = Ey & E_ be
a Zo-graded complex vector bundle on M. Let 7 = £1 on E1 be the involution of E
which defines the Z;-grading. Then End (F) is a Zo-graded bundle of algebras, whose
even (resp. odd) elements commute (resp. anticommute) with 7. If A € End (E), we
define its supertrace Trs [A] by the formula,

(1.1) Ty [A] = Tr [7A] .

Let A*(T*M) be the complexified exterior algebra of T*M. We extend Trs to a linear
map A*(T*M) ® End (E) — C, so that, if w € A*(T*M), A € End (E),

(1.2) T, [wA] = wTr, [4].
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If A is any Zo-graded algebra, if o, @’ € A, the supercommutator [, /] is defined
by the formula,

(1.3) [, d] = ad/ — (—l)deg(a)deg(al) da.

In the whole paper, [ ] is our notation for the supercommutator. Then by [Q1], the
supertrace of supercommutators in A*(T*M) & End (E) vanishes.

Observe that A*(T*M)®E is a A*(T* M) module. By definition, a superconnection
A is an odd differential operator acting on C*° (M, A*(T*M) ® E), which verifies a
Leibnitz rule. Namely, if w € C* (M, A*(T*M)), s € C= (M, A*(T*M) ® E), then

(1.4) A(ws) = dws + (—1)%8) w45,

If VP = VE+ @ VE- is any connection on E which preserves E; and E_, then there
is S € C™ (M, (A*(T*M) & End (E))"dd) such that

(1.5) A=VF 45,

and conversely any object of the form (1.5) is a superconnection.

The curvature of a superconnection A is its square A%2. The curvature A2 is a
smooth section of (A*(T*M) ® End (E))™"".

A superconnection is said to be flat if A% = 0.

1.2. The transpose of a superconnection

Here, we follow [BLo1, Section 1 (c)]. Let E* = E, & E_ be the antidual bundle
of E = E; ® E_. Let * be the even antilinear map from A*(T*M) ® End (E) into

A*(T*M) ® End (E*) which is defined by the following relations:
—~ If o, € A*(T*M) ® End (E), then
(aa!) =a"*a".

- IfweT*M®rC,

@' =-0.
— If Be End(E), B" is the obvious transpose of B.

Given a superconnection 4 on E, we write A as in (1.5). Let VE" be the connection
on E" induced by VE. Then VE  preserves the splitting E* = E, @ E_.

Definition 1.1. — The transpose of the superconnection A is the superconnection A
given by
(1.6) A =vVE +35".

One verifies easily that (1.6) does not depend on the splitting (1.5).
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1.3. The adjoint of a superconnection

We follow [BLo1, Section 1 (d)]. Let now g¥ = gF+ @ gF- be a Hermitian metric
on E = E, @ E_, such that E; and E_ are mutually orthogonal in E. Then g¥
induces a linear even isomorphism F — E".

Definition 1.2. — The adjoint A* of the superconnection A is the superconnection on
E given by
(1.7 A* = (gE)_IZ*gE.
Also note that S € A*(T*M) ® End (E), we define S* by the formula,
(1.8) S* = (gE)_lg*gE.
Remark 1.3. — An important example of the above situation is the case where V¥ =

VE+ @ VF- is a connection on E = Ey & E_. Let w (V¥, g¥) be the 1-form on M
with values in even self-adjoint sections of End (E),

(1.9) w(VE,gE) = (gE)_IVEgE.
Then if VZ* is the connection on E which is the adjoint of V¥,
(1.10) VE* =VF +w (VE, ¢7).
Set
1
11 Eu _ - E E,x )
(1.11) v 5 (VE+VFE)

By (1.10) and (1.11),
(1.12) vEBu = vF 4 %w (VE g%).

Then V&% is a unitary connection on E.

1.4. Superconnections and group actions

We make the same assumptions as in Sections 1.1-1.3. Let G be a compact Lie
group. We assume that G acts fibrewise on the vector bundle £ over M by even
automorphisms of E. We define a right action of G on superconnections, so that if A
is a superconnection and g € G,

(1.13) A-g=g1Ag.
Then
(1.14) (A- g)2 =g 1A%

In particular, G preserves flat superconnections.
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Clearly, if A is a superconnection, we can write A in the form,
dim M

(1.15) A=) A9,
=0

where A is a smooth section of End (E)°*, A®) is a connection on E which pre-
serves the splitting £ = E, @ E_, and for j > 2, AU is a smooth section of
(A (T*M) ® End (E))°*. By (1.14), (1.15), we find that if A is G-invariant, the
components A are themselves G-invariant. In particular, the connection A is
G-invariant.

Remark 1.4. — Take g € G. Let €%,0 < 6; < 2 be the distinct eigenvalues of the
action of g on a given fibre E,. The above shows that these eigenvalues are locally
constant with respect to x € M, so that the vector bundle E splits into a direct sum
of Zs-graded eigenbundles,

6,

q
(1.16) E=@E"".
j=1

. . . . i,

The superconnection A then splits as a direct sum of superconnections A¢ ° on the
05

Ee J ,S.

1.5. Flat superconnections, Hermitian metrics and odd closed forms

Let g% = gF+ ® g~ be a G-invariant Hermitian metricon E = E, @ E_. Let A’
be a G-invariant flat superconnection on E. Let A” be the adjoint of A’ with respect
to g¥. Then A” is also a G-invariant flat superconnection on E. Put

(1.17) A= (A4 4), B= (4"~ A).

Then A is a G-invariant superconnection on F, and B is a smooth G-invariant section
of (A*(T*M) & End (E))***, such that

(1.18) B* = -B.
The following trivial relations are taken from [BLo1l, Proposition 1.2].

Proposition 1.5. — The following identities hold,
(1.19) B?=-A% |[A,B]=0,
[A",B?] =0, [A",B*]=0, [A B*=0.
Now we have the result of [BLo1, Proposition 1.3].

Proposition 1.6. — Let f be a holomorphic function. For any g € G,
(1.20) Trs [9f (B?)] = Trs [g] £ (0) .
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Proof. — Take t € R. Using the fact that Trs vanishes on supercommutators
[BeGeV, page 40], we get

(1.21) %Trs [¢f (tB?)] = Trs [¢B*f' (tB?)] = %Trs [[B,gBf (tB*)]] = 0.
By (1.21), we get (1.20). O

We will say that a holomorphic function h : C — C is real if for any z € C,h (T) =

h(x). We fix a square root i'/2 of i. Our formulas will not depend on the choice of
the square root. Let ¢ : A*(T*M) — A*(T*M) be given by

(1.22) pw = (2ir)"4eB)/2

In the sequel, we fix g € G.
Definition 1.7. — 1f h(z) is a holomorphic odd function, put
(1.23) hy (A',97) = (2im)'/2 oTx, [gh (B)].

If we use the notation in (1.16), we get
q ) 6. 619.
(124) hg (A',gE) =2629jh1 (Ale GJ,gE J) .
j=1

Therefore, as explained in the Introduction, hy (A’ , gE) is a linear combination of
objects already considered in [BLo1].
The following result was established in [BLo1, Theorems 1.8 and 1.11].

Theorem 1.8. — The form hy (A, g%) is odd and closed, and it is real if h is real and
g = 1. Its cohomology class, denoted by hy (A’), does not depend on gP.

Proof. — Using Proposition 1.5, and the G-invariance of A, we find that
(1.25) [A,B] =0, [A,g] = 0.

Using (1.25) and the fact that supertraces vanish on supercommutators, we find that
the form hg (A’,g¥) is closed. By functoriality, it follows that its cohomology class
does not depend on g¥. If h is real and g = 1, by [BLo1, Theorem 1.8], the form
hg (A, gF) is real. The proof of our Theorem is completed. O

Definition 1.9. — Let Q*(M) be the space of smooth complex differential forms on
M, let dQ2*(M) C Q*(M) be the subspace of exact smooth differential forms.

Let £ € [0,1] — gF be a smooth family of Hermitian metrics on E taken as before.
We denote by Ay, By the objects associated to g’ which we defined in (1.17) .

Definition 1.10. — Put
T (Al AE ' 1, gy-1097
(1.26) hg (A',97') =/O ¢Trs |95 (9¢) -0 (B)| de.

Now we state a result established in [BLo1, Theorems 1.9 and 1.11 |.
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Theorem 1.11. — The class of the form hy (A, gF) in Q*(M)/dQ*(M) only depends
on g¥ and g¥. Moreover,

(1.27) dhy (A',gF) = hy (A',gF) — hy (A, gF) .
If b is real and g = 1, the form hy, (A',gF) is real.

Proof. — We lift E to M x [0,1]. Then the flat superconnection A’ lifts to a flat
superconnection A’. On M x {¢}, we equip E with the metric g¥. Therefore, on
M x [0,1], E is equipped with a metric g¥. One verifies easily that

1 ~E ! E 1 E—l@g[E,
(1.28) hg (A 9 ) =hy (A 19e ) + dlpTrg 95 (ge ) Wh (Be)| -
Our Theorem is a consequence of Theorem 1.8 and of (1.28). O
We will denote by hy (A', g%, gF) the class of hy (A, gF) in Q*(M)/dQ*(M).

Remark 1.12. — As in Remark 1.3, take a connection VF = VE+ @ V- and assume
that V is flat. We use the notation in (1.9)-(1.12). Then V¥% is a unitary connection
on E, which by (1.10), is exactly the connection A in (1.17) associated to A’ = VE.
Moreover if B is defined as in (1.17),

1
(1.29) B=w (VE,g%).
Then from (1.19), we find in particular that

(1'30) VE,u,Q — _%wQ (VE,QE) , VE’uLU(VF,gF) =0.

1.6. Superconnections of total degree 1
Let E = P~ E' be a Z-graded complex vector bundle on M. Set
(1.31) E.= @ E, E_ =@ E.

i even i odd
Then F = E, @ E_ is a Zy-graded vector bundle.
Let A’ be a superconnection on £ = Fy @& E_. As in (1.15), we write A" in the
form,

dimM
(1.32) A = Z A0
=
where A’ is of partial degree j in the Grassmann variables in A*(T*M).

Definition 1.13. — We say that A’ is of total degree 1 (resp. —1) if A’(") is a connection
on E which preserves the grading, and if for j # 1, A’ is a section of A7 (T*M) ®
Hom (E*, E**'=7) (resp. A7 (T*M) ® Hom (E*, E*='+7)).
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In what follows we assume that A’ is a flat superconnection of total degree 1. Put
(1.33) v=AO, vE = 40,

Then v is a section of Hom (E*, E**'), and V¥ is a connection on E which preserves
the grading.
The following statement was established in [BLo1l, Proposition 2.2].

Proposition 1.14. — We have the identities,
(1.34) v’ =0, [VZ,0] =0, VP2 4 o, @] =0,

Proof. — This follows from the identity,
(1.35) A? =0.
O

Definition 1.15. — Given z € M, let H* (E,v), = @, H" (E,v), be the cohomol-
ogy of the complex (E,v),.

By Proposition 1.14, since v is parallel with respect to V¥, there is a complex
Z-graded vector bundle H* (E,v) whose fibres are the H* (E,v),. Also by [BLol,
Definition 2.4 and Proposition 2.5, the connection V¥ induces on H* (E, v) a connec-
tion VH"(E:) which is flat. This result is in fact a trivial consequence of Proposition
1.14.

Let G be a compact Lie group acting fibrewise on E and preserving the Z-grading.
Assume that A’ is G-invariant. Then the A’) are also G-invariant. It follows that G
acts naturally on H* (E,v). One verifies easily that this action is parallel with respect
to VH"(Ev),

Let now g% = @, 97" be a G-invariant Hermitian metric on E = @ E', such
that the E*’s are mutually orthogonal in E. Let v* be the adjoint of v with respect
to gF. Put

(1.36) V= %(v* —).

It follows from finite dimensional Hodge theory that for any x € M, we have a
canonical isomorphism,

(1.37) H*(E,v), ~kerV,.

As a Z-graded subbundle of E, ker V inherits a G-invariant Hermitian metric from
the metric gf. Let g#"(E:?) be the corresponding G-invariant metric on H* (E,v).
Let P¥'V be the orthogonal projection operator from E on ker V.

Recall that w (VZ, gF) was defined in (1.9). Also w (VA (Ew) gH*(Ew) g given
by a similar formula.

SOCIETE MATHEMATIQUE DE FRANCE 2001
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Then by [BLo1, Proposition 2.6],
VH'(E,'U) — PkeerE
(1.38) VH'(E,v),* _ Pker VvE,*,
w (VH’(E,’U) gH°(E,v)) — Pkervw (VE QE) PkerV‘
The unitary connections VF* and VH#*(E:0)% are defined as in (1.9). It follows from
(1.38) that
(139) vH'(E,v),u — Pker VvE,u'

1.7. A rescaled metric

We make the same assumptions as in Section 1.6. Let N be the number operator
acting on E, i.e. N acts on E¥ by multiplication by k.

Definition 1.16. — For t > 0, let gF be the metric on F,
(1.40) gf =tNgF.
Let A be the adjoint of A’ with respect to gZ. Clearly A” = AY. Also,
(1.41) Al =t=NA"EN,
We define A;, B; as in (1.17), i.e.

(1.42) A= % (AU + A", B = % (A7 — Y.
Take g € G. As in Definition 1.7, set
(1.43) hy (A',9F) = (2im)'/? Txs [gh (By)].
Definition 1.17. — Set
N
(144  (,af) = o1 [ Fon' (80

The following result was established in [BLo1, Theorem 2.9].

Theorem 1.18. — The form h) (A’,gF) is even. It is real if h is real and g = 1.
] t

Moreover,
3 o b (AL gP)
Definition 1.19. — For t > 0, set
(1.46) Cl=tN2A N2, Cl =t~ N2A"N/2,
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Then Cj is a flat superconnection of total degree 1, and C} is its adjoint with
respect to the metric g. Set

1 1
(147) Ct = 5 (Ct” + Ct/), Dt = 5 (Ct” - Cé) .
By (1.41), (1.46), we get
(1.48) Cy = tN2At~N/?) Dy = tV/2Bt~N/2,
From (1.48), we deduce that
(149)  hy (A\gF) =hy (CLgP), KD (A,gF) = h) (ClgP).
Ifae Ry, let ¢, : A*(T*M) — A*(T*M) be given by
(1.50) Yaw = a8/ 2y,

Recall that A = A;, B = Bj.
Proposition 1.20. — For t > 0, the following identities hold,
(1.51) Cy = ;7 1Vt Auy, Dy = ;7 Wt Byy.

Proof. — We use the notation in (1.32). By (1.46), since A’ is of total degree 1, and
A" is of total degree —1,
dim M dim M

(1.52) Cl = Z t(1=9)/2 g1G) cl = Z $(1=3)/2 A1)
Jj=0 j=0
From (1.52), we get (1.51). O
Proposition 1.21. — For t > 0, the following identities hold,
(1.53) hy (4',9F) = (2im)"/? oy T, [gh (VEB)],
_ N

R (A’ 9F) = o7 T [;gh’ (v B)] .

Proof. — This follows from (1.49) and from Proposition 1.20. a

1.8. The limit of hy (4’,gF) and of h" (A, gF) as t — +oo

We make the same assumptions as in Sections 1.6 and 1.7. Let h (z) be a holomor-
phic odd function. We assume there is ¢ > 0 such that for any k € N, there exists

Cx > 0 such that
(1.54) sup (1 +al)® |k (z)] < Ck.
z€C
|Re z|<c

Let (at)teniu{ﬁo} be smooth forms on M. We will write that as t — 400,

(1.55) Q= Cpoo + O (1/\/5) ,
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if for any compact set K C M and any k € N, there is C' > 0 such that the supremum
of the norms of oy — a4 o and its derivatives of order < k over K is bounded by C/ Vt.
IfxeM,ge€Q@, set

Xo (Ba) = > (=1 Tr¥ [g],
3=0
(1.56) Xy (Bs) = 3 (1) jTef B [g],
j=0
X (Ba) = > (—1) 5TcP [g].
7=0

Since the action of g on E is parallel, the functions of z € M in (1.56) are locally

constant. Classically, x4 (F) is the equivariant Euler characteristic of the complex
(E,v), ie.

(1.57) Xo (B) = 3" (=1) e E2) [g]
j=0
By definition,
(1.58)
H*(Ew) H*(Ew)) _ = _ 1V (9;.-\1/2 l HI(Ew) HI(E,v)
hg(V g ) > (1) (2im) <PTr[gh(2w(V g ))]

Jj=1
The following result was established in [BLo1, Theorem 2.13].
Theorem 1.22. — Ast — +o0,

(1.59) hy (A, 9F) = hy (V" (E) gH*E0) 10 (1/VE)
1
By (A 9F) = 5K (0)x; (B) + O (1/\/2) .
Remark 1.23. — From Theorems 1.8 and 1.22, we deduce that
(1.60) he (A') = hy (vH‘<E’v>) in H°4 (M, C),
which is just [BLol, Theorem 2.14].

1.9. The form Sy 4 (A', g%)

We make the same assumptions as in Sections 1.6-1.8. We still assume that the
holomorphic odd function h (z) is such that (1.54) holds. Also, we use the notation
in (1.44).

Definition 1.24. — Set

+oo
o) s (o) = [ (b (A0F) - 3 O (8)) T

T.
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The following result was established in [BLo1, Theorem 2.16].

Theorem 1.25. — The form Sh,q (A’, g%) is even, and real if h is real and g = 1. The
following identity holds,

(L6 Sy (41,0%) = hy (4,65) — by (V1" g5,
Proof. — This follows from Theorems 1.18 and 1.22. O

Let g¥ and g¥ be two G-invariant Hermitian metrics which are taken as before.

Let g(l,q H(Bw) , gfl (B be the corresponding metrics on H* (E,v). The following result

was proved in [BLo1, Theorem 2.17].
Theorem 1.26. — The following identity holds,
(1.63) Shyg (AI791E) — Shyg (A/agég)
=hy (4,98, 97) — hy (VH°(E’”),gfo(E’”),gfI.(E’”)) in Q*(M)/dQ*(M).

Proof. — This is an easy consequence of Theorem 1.25 and of the functoriality of the
forms Sy 4 (4, 97). O

1.10. Flat complexes of vector bundles and their torsion forms
Let
(1.64) (E,0):0—E* 2 F' X5 ... 2L E™ 50

be a flat complex of vector bundles. By definition, E = @ E' is equipped with a flat
connection V¥ = @;’;0 VE' and v is parallel with respect to VE, i.e.

(1.65) VvEy = 0.
Put
(1.66) A =v+VE

Then A’ is a flat superconnection on E of total degree 1.

Let G be a compact Lie group action fibrewise on E by automorphisms which
preserve the Z-grading, the chain map v and the connection VE. Then the supercon-
nection A’ is G-invariant. Let g% = @[, ¥ be a G-invariant Hermitian metric on
E =@, E'. Then, by using the notation in Sections 1.6-1.8,

(1.67) Al =tv* + VE* Cl=tv+VE, Cl =Vtv* + VB

Let h be a holomorphic odd function such that 1.54 holds. Now we have the easy
result established in [BLo1, Proposition 2.18].
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Proposition 1.27. — Ast — 0,

(1.68) hg (A',9¢) = he (VZ,9%) + O (1),

Remark 1.28. — From Theorem 1.8 and from Proposition 1.27, we find that
(1.69) hy (VE) = hy (VH'(E’”)) in Q°(M)/dQ* (M).

Definition 1.29. — Put

+o00o
70) Ty (467 = - | [hg (A, 9F) = 2x, (B) I (0)

D= o) -

(Xy (B) — x5 (B)) b (i\ft /2)] %

The form T} 4 (A’,g¥) is called an equivariant torsion form. The following result
was established in [BLo1l, Theorem 2.22].

Theorem 1.30. — The form Tj, 4 (A’,gE) is even, and real if h is real and g = 1. The
following identity holds,

(1.71) ATy, (A, gF) = hy (VE, gF) = hy (VH E®) gH (B
g 9 g9

Proof. — Equation (1.71) follows from Theorems 1.18, 1.22 and from Proposition
1.27. O

Let g, gF be two G-invariant Hermitian metrics taken as before. Recall that the
classes of forms hy (VZ, g&, gF) , by (VH’(E’”),ggl.(E’”),gf.(E’v)> € Q*(M)/dQ* (M)
were defined in Definition 1.10. The following result was established in [BLol, The-
orem 2.24].

Theorem 1.31. — The following identity holds,

(1.72) Thg (A, 97) = Tng (A, 95) =
by (V5,98 9F) = hy (V"B g B g ED) in @r(a1) fagr* (M),

Proof. — Our Theorem is an easy consequence of Theorem 1.30 and of the functori-
ality of Ty 4 (4, gF). , O
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1.11. Functorial characterization of the torsion forms

We use the same notation as in Section 1.10.
Assume now that the complex (FE,v) is acyclic, i.e. H* (E,v) = {0}. By following
[BLo1, Appendix I}, we will say that the complex ((E,v),g") splits if there are flat

vector bundles F°,...,F™! and corresponding Hermitian metrics g% ,...,gF "
such that we have the identification of Hermitian flat vector bundles,
(1.73) E'=F"lgF 0<i<m,

and moreover v : E* — E*t1 is just the identity map F? — F* and vanishes on F*~1,
Then we state [BLol, Theorem Al.1].

Theorem 1.32. — The following identity holds,

(1.74) dTh,q (A, 97) = hy (VF,g7).

If M’ is another manifold and oo : M’ — M is a smooth map, then

(1.75) Thyg (" A, a"gP) = a* Ty g (A, g%).

If ((E,v),g¥) splits, then

(1.76) Thq (A, g7) =0.

Finally Ty, 4 (A’, g¥) depends smoothly on A, g*.

Proof. — Our Theorem follows in particular from Theorem 1.30. O
Now we state a result established in [BLo1, Theorem A1.2].

Theorem 1.33. — Given a manifold M, let T; , (A’,g") be an even form on M wveri-
fying the four conditions in Theorem 1.32. Then

(1.77) Ty, 4 (A',9%) = Thg (A',9%) in Q°(M)/dQ° (M).

Remark 1.34. — One can easily extend the above characterization of T}, 4 (A’ ,g® ) to
the case where (E,v) is not acyclic.
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CHAPTER 2

RIGIDITY OF TORSION FORMS
AND THEIR CHERN NORMALIZATION

One purpose of this Chapter is to prove rigidity of the torsion forms T} 4 (A’ ,gF )
which were introduced in [BLo1] and in Section 1.1. In fact in [BLo1, Theorem 2.24]
and in Theorem 1.31, we showed that these forms verify anomaly formulas when we
deform the metric g¥. Here we will show that in degree > 2, there are analogous
anomaly formulas when we deform the flat superconnection A’.

The second purpose of this Chapter is to produce a ‘natural’ normalization of the
torsion forms, the Chern torsion forms.

This Chapter is organized as follows. In Section 2.1, we prove that in degree > 3,
the class hy (A’) is rigid under deformation of the superconnection A’, and we produce
explicit transgression formulas for the corresponding forms kg (4’, g¥). In Section 2.2,
when k is a holomorphic odd function, we give a residue formula for k (D;). In Section
2.3, we establish a convergence result on certain forms as t — +o0o. In Section 2.4,
we prove that the forms Sy, g (A’,9¥) verify anomaly formulas in degree > 2 when
A’ varies, and in Section 2.5 we prove the corresponding result for the torsion forms
Th,g (A',gF). In Section 2.6, by following [BLol, Section 1 (g)] we construct other
odd forms in the Chern-Simons formalism. In Section 2.7, we relate these Chern-
Simons forms to the forms h, (A’ ,g? ) In particular, we show how the transgression
formulas can be obtained in the Chern-Simons formalism. Also we obtain associated
odd Chern character forms chy (A’, g¥). In Section 2.8, we construct the Chern torsion
forms. In Section 2.9, we extend the construction of the torsion forms, when we replace
standard metrics g¥ by so called generalized metrics g?. Such a construction will be
needed in Chapter 10. Finally, in Section 2.10, we consider generalized metrics on flat
complexes.

2.1. Rigidity properties of the superconnection odd classes

Here, we use the notation of Sections 1.1-1.5. In particular, M is a smooth manifold,
and £ = E; & E_ is a complex Zs-graded vector bundle on M. Also G is a compact
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Lie group acting fibrewise on E by even automorphisms. Let ¢f = g+ @ ¢F- be a
G-invariant Hermitian metric on £ = E, & E_, which is such that that F, and E_
are orthogonal in F.

Let M be a smooth manifold of G-invariant flat superconnections A’ on the Zo-
graded vector bundle E. We will consider the manifold M x M. We denote by d™ , dM
the de Rham operators on M x M, so that the total de Rham operator is d is given
by dM + dM.

We still denote by (E, g¥) the pull-back of (E,g%) to M x M.

If A’ € M, let A” be the adjoint of A’ with respect to the metric g¥. As in (1.17),
set

(2.1) A= % (A" + A, B= % (A7 — A,
Let h(z) be a holomorphic odd function. We assume that degh > 3. Put
W (z)

Recall that ¢ : A*(T*M) — A*(T*M) was defined in (1.22). We define ¢ :
AT*(M xM)) - A(T* (M x M)) as in (1.22). More generally, in the sequel,
we will use the same notation ¢ on any manifold.

Also the forms hy (A’, g¥) on M were defined in Definition 1.7.

Theorem 2.1. — The form /2im ¢Trg [gk(B)dMA] on M x M is odd. It is real if h
is real and g = 1. Moreover we have the identity of forms on M x M,

(2.3) dMhg (A', g%) = dMV/2im ¢ Trs [gk(B)dM A] .
Proof. — Clearly,

(2.4) (¢MA)" = aMA.

Since B* = —B, and k is an odd function,

(2.5) (k(B)dMA)" = —dM Ak(B).

From (2.4)-(2.5), we conclude that if h is real, the form v/2im ¢Trs [k(B)d™ A] is real
as in [BLo1, Theorem 1.8]. Using the fact that supertraces vanish on supercommu-
tators, we get

(2.6) dMTrg[gh(B)] = Tr, [gh'(B)dM B] = 2Tr, [gk(B)Bd"' B|
= Tr [gk(B)[B,d™B]] .
Since A% = —B?,
(2.7) [A,d™A] = —[B,dMB].
Since by Proposition 1.5, [A, B] = 0, using (2.7), we get
(2.8)  dMTy, [gk(B)dMA] = —Tx, [gk(B)[A,d™A]] = Tr, [gk(B)[B,d" B]] .
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By (2.6), (2.8), we get (2.3). The proof of our Theorem is completed. O
Take m € N, m odd, such that m > 3.

Definition 2.2. — Put
Qm,g = V2im pTrs [gB™dMA]

ﬁm’g=%\/2i7rg0 > Trs[gBdeAB’"'z‘deA
0<ji<(m—3)/2

(2'9) + (_1)j gBdeBBm—z—deB]
+ :11-\/ 2im T [gB(m_l)/szAB(m—3)/2dMA

+ (_1)(m—1)/2 gB(m—l)/2dMBB(m—3)/2dMB] )

Theorem 2.3. — The forms ap, g and Bm,g on M X M are odd. They are real if g = 1.
Moreover,

(2.10) dMam g = dM B 4.
Proof. — The proof that, if g = 1, am g and B, 4 are real is the same as in Theorem
2.1. Clearly,

(2.11) dMTr, [gBmdMA] = Y~ (<1) Tr, [gBIdMBB™ 1 71gMA]
0jsm—1
Using (1.19), (2.7), we get

(2.12) dMTy, [gBIdMAB™271dMA]
= (1)’ Tr, [¢B[B,dMB]B™ 2~ 1dM A] + Ty, [gBdM AB™2~9 (B, dMB]|
= (-1) {’I‘rs [9B?dMBB™ 1= 1dMA] — T, [¢B7 T dMBB™ 271 dMA)

+ Trs [gB™ ' 7dMBBIdMA] — Tr, [gB™ 7 7dMBBI+1dMA] }
Since [A, B] =0,
(2.13) [dMA, B] = [A,dMB].
Using (2.13), we get
(2.14) dMTys [gB7dMBB™ *71¢MB]
= (1) Tx, [¢B?[¢MA, B]B™~27dMB] — T, [¢B/dM BB™ 279 [dM 4, B]]
= Tr, [¢B/d™ BB™ 1 ~1dMA] + T, [¢B/H'dMBB™ 1 dM4]
+Trs [gB™ ' 7aMBB/d™M A] + Tr, [gB™ 27 7dMBBI+1dM 4] .
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From (2.11)-(2.14), we get (2.10). The proof of our Theorem is completed. g

The operator ¢ : A*(T*M) — A*(T*M) is now defined as in (1.22). Let k be a
holomorphic odd function. Let £ € [0,1] — A} be a smooth one parameter family of
G-invariant flat superconnections.

Definition 2.4. — Let Ly 4 (A}, g*) be the form on M,

! E ! aAZ
(2.15) Lig (A}, g5) = / STr, gk(Bg)W] .
0

Observe that the form Ly 4 (A}, g¥) depends explicitly on the path £ € [0,1] — A}.

Theorem 2.5. — The form Ly (A}, g¥) is even, and real if k is real and g = 1.
If degk > 3, given A, A}, the class of the form Ly g (A}, %) in Q*(M)/dQ* (M)
depends only on the homotopy class of the path £ — Aj,. If h is a holomorphic odd
function such that deg h > 3, if k(z) = h'(z)/2z, then

(2.16) dMLi.g (A}, %) = hy (A1, g%) — hy(Ay, g7) .
Proof. — The first part of our Theorem is a trivial consequence of Theorem 2.3.
Equation (2.16) follows from Theorem 2.1. d

Remark 2.6. — Theorem 2.5 indicates that if degh > 3, the cohomology classes
hg(A’) are rigid, i.e. they are invariant under deformations of A’. This result is
well-known [CSi, Proposition 2.9] for the odd Chern classes associated to flat vector
bundles. This rigidity result is not true in degree 1. Also under the assumptions of
the second part of Theorem 2.5, equation (2.16) refines on the rigidity result at the
level of differential forms. If degh > 5, the first part of the Theorem indicates that
the class of the transgression form Ly 4 (A4}, g¥) in Q*(M)/dQ*(M) is itself canonical,
i.e. it is rigid under deformation of the path £ — Aj. This class should be thought
of as an analogue of the Bott-Chern classes in complex geometry [BGS1], since it is
obtained by a double transgression formula.

Remark 2.7. — One verifies easily that in degree > 3, (1.27) follows from (2.16).

2.2. An expression for k (D;)

Now, we make the same assumptions and we use the same notation as in Sections
1.6-1.9. In particular E = @, E* is a Z-graded vector bundle on M, G is a compact
Lie group which acts fibrewise by Z-graded automorphisms of FE, ‘A’ is a flat G-
invariant superconnection on E of total degree 1, and g¥ = @:’;0 gF" is a Hermitian
metric on F such that the E¥’s are mutually orthogonal in E.

With the notation in (1.36),

(2.17) BO =v.
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FIGURE 2.1

Ifz € M,A € (A(T*M)®End(E))_, let Sp(A;) C C be the spectrum of A.
Clearly,

(2.18) Sp (B) = Sp (B(O)) .
Also the spectrum of B(® is purely imaginary. Moreover, by (1.37),
(2.19) ker BO) ~ H* (E,v).

Let k (z) be a holomorphic odd function. We assume there is ¢ > 0 such that for
any p € N, there exists Cp, > 0 such that
(2.20) sup (1+ |z|)? |k (z)| < Cp.
z€eC
|Re z|<c

To make our arguments simpler, we will temporarily assume that M is compact.
Since ker B(®) has constant rank, there exists d;,ds € R}, with d, < d/4, such
that

(2.21) ‘Sp (B(O))‘ c {0} U [2dy, d2/2).

Let 6 C C be the circle of centre 0 and radius 1. For ¢ > 0, let A, = Ay UA;
be the contour in C indicated in Figure 2.1.

Definition 2.8. — For t > 0, put

o1 k(VEX) o1 k(VEX)
(222)  Ge=vi o /A op W He=9 %/d_lg =B W

2
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Proposition 2.9. — For any t > 0,
(2.23) k(D:) = Gy + Hy.
Proof. — By (2.18), (2.21), the spectrum of B is included in the domain bounded

by A; U %15. Using Proposition 1.20, (2.20) and the theorem of residues, we get
(2.23). O

Proposition 2.10. — Given p € N, there exists C > 0 such that fort > 1,

C
(2.24) Gl < 45

Proof. — Using (2.20), we find that given p’ € N there exists C > 0 such that if
t> 1,1 € Ay,

(2.25) ’k (\/E/\)‘ <-C

Moreover, if A € A;, we have the expansion
-1 -1 -1
(226) (A—B)'= (/\ - B(O)) + (,\ - B<°>) B0 (A - B<0>) T

and this expansion only contains a finite number of terms. By (2.26), we find that
there exists C' > 0,q’ € N such that if t > 1, ) € A,

(2.27) l(A - B)_l‘ <OVAT.

By (2.25), (2.27), there exist ¢ > 0,C > 0 such that for ¢ > 1,

1 k(VEX) C

. — — < =.

(2.28) 2im /A =B Y <w
Our Proposition follows from (2.28). O

Let P19} be the orthogonal projection operator from E on ker B ~ H* (E,v).
Set

(2.29) plotLt — 1 _ pi0},

Then P{9} is the orthogonal projection operator, which projects on the orthogonal
bundle (ker B(O))L to ker B® in E. Also B acts as an invertible operator on
(ker B(O))l. Let (B(O))_1 denote its inverse. We extend (B(O))_1 to an operator
which acts like 0 on ker B(?). Now we proceed as in [B10, Theorem 9.29]. Let D?l)
be the component of D; which has partial degree > 1 in A*(T*M). Recall that H;
was defined in (2.22).
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Theorem 2.11. — Given t > 0, the following identity holds,
dim M k‘(“’ 1— EP'H z0 ) (0)

(2.30) H;=
N Z .0<zoz\p+1 . (i0-1 Zp+1 io )

J1se-)p+1— 102
+1—
an 1 10.7m<20 1

( 1)P+1—io

ClD§>1)C2 . (>1)Cp+1

In (2.30), ig of the C; are equal to P19} and the other C; are equal respectively to
(\/EB(O))_(H'”) ,...,(\/EB(O))_(1+J"+1_i°). In particular, Hy is a polynomial in the
variable 1/\/13

Ast — +o0,
(2.31) H, = PO (BHE) pO) 1 0 (1/v2).
Proof. — Using (2.18), (2.21), we find that for ¢ > 1,
k (VA 1 tA
(2.32) L/ FOVEN oy —/ kVEA) o
2im Ja, 205 A— B 24 (d1/2v%)8 A— B

_ 1 _kX)
2 J (4, /26 A\ —Vt B

By Proposition 1.20 and by (2.32), for t > 1

(2.33) H, = — k)

dA.
2 (d1/2)6 A — Dt

Now we have the expansion
-1
(2.34) (A—D,)'= (,\ - \/ZB<0>)
-1 -1
+ (/\ - \/ZB(O)) pEY (,\ - \/ZB<0>) I

and the expansion in (2.34) only contains a finite number of terms. By (2.21), 0 is the
only element inside the domain bounded by (d;/2)§ which may lie in the spectrum
of B, Using (2.33), (2.34) and the theorem of residues, we get (2.30). By (1.38),

(2.35) w (TH (B, g (B)) = PO}y (92, gF) PO},
By (2.30), (2.35), we get (2.31) for ¢ > 1. The general case follows using analyticity.
The proof of our Theorem is completed. O

2.3. A convergence result

We make the same assumptions as in Section 2.2. Let £ € [0,1] — A}, be a smooth
family of G-invariant flat superconnections on E which have total degree 1. Given
t € R, we use the notation in Sections 1.6 and 1.7. In particular for ¢t > 0, the objects
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constructed in (1.42) which are associated to A, will be denoted with the subscript
¢,t. Let k (z) be a holomorphic odd function. Recall that o, : A*(T*M) — A*(T*M)
was defined in (1.50).

Proposition 2.12. — For t > 0, set k'(z) = vtk (Vtz). Then
(2'36) Lk,g (AZ,Q,:E) = Lk,g (Cé,t’gE) ,
Lit,g (A4%,9%) = weLng (4, 9F).

Proof. — By (1.46), (1.48), we get the first identity in (2.36). Using Proposition 1.20,
we then get the second identity in (2.36). O

Let h(z) be a holomorphic odd function such that degh > 3. We still define
k(z) as in (2.2). Recall that by Theorem 2.1, if h is real and g = 1, the forms
©Trg [gk(Bg)%Ag] are real.

Theorem 2.13. — Fort > 0, the following identity holds,

01 0 0

2.37 ——h) (A}, 9F) = —¢Tr — in Q° *(M).
Q31 ghd (Ahaa) = G [gh(Bed gyde| in 22 (00) /a5 (0)

Proof. — We proceed as in [BLol, Theorem 1.9]. Set M = M xR%. Over M x{t} C
M, we equip E with the metric g¥ = tNgP. Let g€ be the corresponding metric on
the pull-back of E to M. The flat superconnection A’ lifts to a flat superconnection
A’ on M. Its adjoint A} is given by,

dt

(2.38) A" = A" + -
Therefore,
< dt
(2.39) hy (4',57) = hy (4',9F) + Th) (4',gF).

Now we use Theorem 2.1, and we get (2.37). The proof of our Theorem is completed.
O

We make the fundamental assumption that the rank of H*(E,v,) does not
depend on ¢. As in Section 1.6, we identify H* (E,v;) to a smooth G-invariant
subbundle of E. By orthogonal projection on H* (E,v), given x € M, we obtain a
G-invariant Hermitian connection on the bundle H* (E,v;), over [0,1]. We can then
trivialize H* (E,vg) along [0, 1] by parallel transport. In particular the flat connections
VH*(E:ve) on the vector bundles H* (E,v;) can now be viewed as a one parameter
family of G-invariant flat connections on a fixed Hermitian vector bundle over M.
Let gf*(E:e) be the metric on H* (E,v;). We define the connection VH' (E:ve): on
H* (E,v,) as in (1.11). In particular 2V (Eve)t is well defined.

Let k (z) be a holomorphic odd function such that (2.20) holds.
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Let a;,t € R} U +oo be a family of smooth forms on M. In the sequel, we write
that as t — 400, @y — @y if @y converges to a4 uniformly on the compact subsets
of M together with its derivatives.

Theorem 2.14. — Ast — +o0,
(2.40) oTre | gk(Be )—QAZ — Trs | gk (BH (Eyve ) 9 g (B

' ° N e ‘
Proof. — By Proposition 1.20,

7] 0
(241) ’I‘I’S [gk(Bgvt)aeAz t:| = 'I‘I'S [gk(De t)aeog t] .

To make our arguments simpler, we will temporarily assume that M is compact.
Now we use the results of Section 2.2. Observe that because the rank of ker BY ~
H* (E,v) is independent of £, we may choose d1,dz € R}, with d; < da/4, such that
(2.21) holds for any ¢ € [0,1], i.e.

(2.42) ’Sp (BEO))‘ c {0} U [2d1, da/2].

Since our expressions now depend on ¢, we will add a subscript ¢ to all the expressions
we meet in this Section. In particular, by Proposition 2.9,

(243) k (Df,t) = G&t + Hl,t-
Clearly,

8 © b 0
(2.44) =5Ce \f A + 557 +o(1/\/E).
By Proposition 2.10 and by (2.44), for t > 1, for any p € N, there is C' > 0 such that
fort>1

0 C
(2.45) }Trs I:gGZ,taCZ,t}

-t;;.

X

Let PZ{O} be the orthogonal projection operator from E on ker B§0) ~ H* (E,vy).
By (2.31) in Theorem 2.11, we find that as t — +o0,

88 o¢
Notice that ker Béo) = ker AE ). We claim that %A? maps ker Bé ) in its orthogonal.
In fact let f be a smooth section of ker B(O) Then Afzo) f =0, so that

9 A OR4
et T A Gl =0

Since A,(ZO) is self-adjoint, Im Ag ) is orthogonal to ker Ago). Our assertion now follows
from (2.47). By (2.31), we get

0
(2.48) Tr, [gHg,.;.oo%Ag:I =0.

(2.47)
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By (2.48), it is clear that
. 9 4o _ 0 /i 4©
(2.49) t—-}I—Poo Trs |gH, taﬂAZt = tl}-iqloo Trg g(HZ,t - H£,+oo) & tA[
Using (2.30), we find that as t — +o0,

(2.50) (Ht—Hoo)\/Z%Af) —
dim M plio—1-0 50 )(O)

Z . 0<ZoZ<p+1 (10—1__2p+1 io ) (-

Jiyeesdpti—ig 20
1—ig , .
an+=1 *0 jm éo—1

)PH1=io

80)

CiRiCy - RyCpy1 = 62 ,

where one of the two following possibilities occur:

— All the Cj’s are equal to PE{O} , one of the R;’s is equal to B(®) and the other
R,’s are equal to B(Y).
— One Cj is equal to (B(O))—l, the other C;’s are equal to P[{O}, and the R;’s are
all equal to B(1).

Using the same arguments as in (2.48), we find that, in the right-hand side of (2.50),

the first sort of term does not contribute to the supertrace. As to the second sort of

-1
terms, only those terms where C; or Cp4q are equal to (Béo)) contribute to the

supertrace.
By (1.29),

(2.51) B(l) (VE"gE)
Using (1.38) and (2.51), we get
(2.52) PZ{O}Bél)Pg{O} _ Bf. (E,ve)'

Ultimately, by (2.50)-(2.52), we find that as ¢t — +oo,
O 40
(253) T‘I‘S g (H[,t - Hl,+oo) %\/ZA —

[gk (B P ( ;’E A9 (B") "B 4 BY (Bf»o))_l % A§0)> Pe{O}] ‘
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By (2.41), (2.44)-(2.46), (2.48), (2.49), (2.53), we find that as t — 400,

(2.54) Tr [gk(Be,t)—a—Az,t} -

ot
Tr, {gk (BH-(E,W)) PO (%vf,u _ %AI(ZO) (BEO))—I B
_ B (Bém)‘l %Aﬁo))Pz{O}}-
By finite dimensional Hodge theory,
(2.55) (ker B,EO)) g Im (ve) ® Im (vy) .

L
Also on (ker Béo) ) , Vg acts as an invertible operator from Im (v}) into Im (v,), and

v} as an invertible operator from Im (ve) into Im (v}). Let v;!, (v,’;)_1 denote the
corresponding inverses. As before, we extend these maps by 0 on the corresponding
orthogonal bundles. Then, by (2.17), (2.51), we have the identity of operators acting
on ker B,(ZO),

—1 _ B
(2.56) (B?)  BY = () —o7") w(V5,65),
. o)+ S
and when acting on (ker B, , we have the identity

(2.57) B (BS’))_1 =w (V2,67 (@) —vit).

Recall that on M x [0,1], H* (F,v) is equipped with a unitary connection, which
we denote by VH (E:ve)u et R be its curvature. By definition, we have the identity
of forms on M with values in skew-adjoint elements of End (E),

6 H.(E,‘Ug),’u,_ a
(2.58) 57V =R(5 )

Let VE* be the obvious connection on the pull-back of E to M x [0,1], which
coincides with Vf’“ on M x {¢}, and with % along [0, 1]. Recall that E splits as

1
(2.59) E=ker B @ (ker B{") .

Let VEws be the orthogonal projection of the connection of the connection VEu
with respect to the splitting (2.59). Then there is a 1-form K on M x M with values

1
in skew-adjoint elements of End (E) which interchange ker B‘EO) and (ker Béo)) such
that

(2.60) VEu = yBws L K.
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By (2.60), we get

(2.61) R =P (%EW - Kk?) P,
Clearly, we have the identity of sections of A*(T*M) ® End (E),
0 0
2.62 B2 .
(262) v (613 ) (%V
Let f be a smooth section of ker Béo) on x]0,1]. Then
(2.63) vef =0, v f=0,

so that taking into account the fact that v,,v; are odd, we have the identity of forms
on M,

(2.64) (VE"up) f — v K f =0,
(VEU;) f—v;Kf =0
Since v is V¥ flat and v} is VE* flat, by (1.10), (1.11), we get
u 1 u ok 1
(2.65) \%k wzi[w(Vf,gE),w], VP = -2 [ (Ve,9%),v;].
By (2.64), (2.65), we find that the restriction of K to A'(T* ) is such that
1
(2.66) vwKf = —Uzw (VE,95) f, v, Kf = *§UZW (Ve,9%) f.
Similarly, by (2.47),
ON ¢ _(4@) 79 40
(2.67) K(E)g)f——(Ae ) Al ¥,

Observe that since K takes its values in skew-adjoint morphisms, (2.66) and (2.67
entirely characterize K. Using the fact that Ago) and %A(O)f take their values in
self-adjoint morphisms, we deduce from (2.66), (2.67) the identity of sections of
A*(T*M) & End (ker Bﬁo)),

0 0 o — -
(2.68) Pz{O}K (52) er{O} Pe{O} A(O) ((ve) - Vg 1) w(V¢,97) Pz{0}>

oe
POKK ( ; ) PO = P (VE,67) (7" - 7)) gg AL pLOY
By (2.56), (2.61), (2.62),(2.68), we get
(2.69)
R <%, ) P (;V - %Af_,o) (15:5"’)_1 BY - BV (B,E"’)—1 %Aﬁ}”) Pl

By (2.54), (2.69), we get (2.40) when M is compact. When M is not compact, we
obtain our result by restriction to compact subsets of M. The proof of our Theorem
is completed. ’ O
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2.4. Rigidity properties of the forms S, 4 (4, g%)

We make the same assumptions as in Section 2.3. In particular we still assume the
H* (E,v;) have constant rank.

Let h be a holomorphic odd function with degh > 3, which is such that (1.54)
holds. We still define k(z) as in (2.2).

Recall that the forms Sh 4 (A}, g”) were defined in Definition 1.24. We define
Ly,g (A}, gF) as in Definition 2.4. Also note that the vector bundle H* (E, v;) has been
unitarily trivialized along [0, 1], so that VH*(E:2) is now considered as a family of flat
connections on the fixed vector bundle H* (E,v;) ~ H* (E, vp), which is equipped with
the metric gH"(Fv¢). We define the form Ly 4 (V' (Ewe) gH"(E:ve)) ag in Definition
2.4.

Theorem 2.15. — The following identity holds,

(2'70) Sh,g ( ,1agE) - Sh,g (A679E)
= Liy (A4, 97) = Ly (VHE, gH*E20) i Q2 (M) /dO2* (M),

Proof. — Since h is such that (1.54) holds, k verifies (2.20). Our Theorem follows
from (2.15) and from Theorems 2.13 and 2.14. O

Remark 2.16. — Observe that in our Theorem, we only ask that degh > 3, while
Theorem 2.5 guarantees that the terms in the right-hand side of (2.70) only depend
on the homotopy class of £ — Aj, if degh > 5. Theorem 2.15 says that the difference
of the classes in the right-hand side of (2.70) only depend on (Aj, A}), and this even
in degree 3.

2.5. Rigidity properties of the torsion forms T} 4 (4’, g¥)
Let now
(2.71) (E,0):0-E* > E' % ... 2L E™ 0

be a flat complex of complex vector bundles on the manifold M, on which G acts
fibrewise by flat automorphisms preserving the Z-grading. Let V¥ = @:’;0 VE' be
the flat connection. Then A" = v + VE is a flat superconnection of total degree 1.
Let g¥ = @, g% be a G-invariant metric on E = @], E* such that the E'’s are
mutually orthogonal in E.

Let h be a real holomorphic odd function, with degh > 3, such that (1.54) holds.
We define k as in (2.2). Recall that the torsion forms Tj g (A}, g¥) were defined in
Definition 1.29.

Let £ € [0,1] — A} = v+ VE be asmooth path of G-invariant flat superconnections
on E of the above type. As in Sections 2.3 and 2.4, we make the assumption that
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the rank of H* (E, v;) does not depend on ¢. We define the forms Ly 4 (VE, g¥) and
Li,g (VHEw) gH*(Eve)) ag in Definition 2.4.

Theorem 2.17. — The following identity holds,

(2.72)  Thyg (A1,97%) = Thyg (A5,9%)
= Liy (VF,97) = Ly (V) g E20) in Q* (M) /dS2* (M)
Proof. — Our Theorem follows from (2.15) and from Theorems 2.13 and 2.14. O

For a € R*, let \/a be any square root of a. Let R(a) be a polynomial. Put

(2.73) ha(z) = R (%) %h(\/&c).

If a € R}, ho(x) verifies the assumptions in (1.54).

Theorem 2.18. — For a € R}, the following identity holds,

(2.74) Th.g(A,9%) =R <%) YaThg (4, 97).

Proof. — Clearly,

(2.75) Thawg (A',9%) = R (%) Th(va)/va (A 97) -

By Proposition 1.21 and by (2.75), we get (2.74). a
Remark 2.19. — In this finite dimensional context, equality (2.74) is not a surprise.

In fact by [BLol, Theorem A1.2] or by Theorem 1.33, and by Remark 1.34, the
forms T}, 4(A’, g¥) have an axiomatic characterization, which implies equality (2.74).
In particular, it is ultimately possible to make sense of T}, 4(A’, g¥) for any formal
power series h. This is in dramatic contrast with the infinite dimensional situation
we will consider in Section 3.

Let now h be a holomorphic odd function verifying the conditions in (1.54). Put

_ W@ - WO
2x

Theorem 2.20. — The following identity holds,

(2.76) k(z)

(277) [Th,g (AllagE) - Th’yg (A()’gE)](>2)

— Lk,g (Vf,gE) _ Lk,g (VI-P(E,W)’QH'(E,W)) in Q° (M) /on (M) )
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Proof. — If degh > 3, this is just Theorem 2.17. In general, we cannot apply this
result to the function h(z) — h'(0)z, since it does not verify the conditions in (1.54).
For a > 0, set

(2.78) ha (z) = —Z=h (Vaz)
Put
2.79) h(z) = 2h ()]
( . - da a a=1-
Then degh > 3. By Theorem 2.18,
, 0
(280) Tﬁyg (A 7gE) = %waTh,g (A/79E) |a=1-
Set
Ty _R(@ _ W)
(2.81) k(z) = 5r = 1

Theorem 2.17 holds with h replaced by h. Also, by Proposition 2.12,

(2.82) Lk, (2)-h,,(0)) /22,9 (V£ 97) = YaLnr(@)-n1(0)) /22,9 (V5 97) -
By (2.82), we obtain,

0
(2.83) Ly, (VE, %) = %waL(h’(z)—h’(O))/Zs,g (VE,9%) la=1.

Of course, when replacing E by H*(E,v.), an analogue of (2.83) still holds. By
Theorem 2.17, (2.80), and by (2.83), we get (2.77). The proof of our Theorem is
completed. 0

Remark 2.21. — The main interest of the proof of Theorem 2.20 is that, as we shall
see in the proof of Theorem 3.45, it can be transferred to infinite dimensions.

2.6. The imaginary part of the odd Chern classes

We make the same assumptions as in Sections 1.1-1.5. Namely, E = E, @ E_ be a
complex Zy-graded vector bundle, on which a compact Lie group G acts fibrewise by
even automorphisms. Also g = gF+ @ ¢g¥- denotes a G-invariant Hermitian metric
on E = FE, @& E_, such that £, and F_ are orthogonal in F. Let M be a smooth
manifold of G-invariant flat superconnections A’ on E. For s € [0, 1], put

(2.84) A =(1-s)A" +sA".

Let A be the corresponding obvious superconnection one obtains from (2.84) on the
pull-back of E to M x M x [0,1]. Then its curvature A% is a smooth section of
A(T* (M x M x[0,1])) ® End (E).
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Proposition 2.22. — The following identity holds,
(2.85) A% = —45(1—s) B +2dsB + (1 — s) dM A’ + sd™MA”.
Proof. — This is an obvious computation, which is left to the reader. O

In the sequel, we will consider differential forms on M x M x |0, 1]. The operator
¢ defined in (1.22) now refers to forms on this manifold. Let f be a holomorphic
function.

Definition 2.23. — Let ay 4(A’, g¥) be the form on M x M x [0,1],
(2.86) asg(4',g%) = oy, [of (-42)].

By Chern-Weil theory, we know that ay 4(A’, g¥) is an even closed form on M x
M x [0,1].

If wis a form on M x M x [0,1], we denote by w|s=o the restriction of w to the
submanifold (s = 0). Other obvious notation will be used as well. In the sequel, f[o,l]
denotes integration along the fibre [0, 1].

Proposition 2.24. — The following identity of even forms holds on M x M,

(2'87) d/ Olf,g(A/, QE) = afyg(A,’gE)|s=0 - O‘f,g(Alng)ls:l'

In particular given £y € M, the form f[o 1 afq(A',97)|e=e, 15 a closed odd form on
M, which is purely imaginary if f is real and g = 1.

Proof. — Identity (2.87) follows from Stokes formula. Also by (2.85),
(2.88) A?|mg = dM A, A2 =dMAa",
and the restriction of both terms to (¢ = £p) vanish. By (2.87), the form

/ R
[0,1]

is closed. Also,

(2.89) AS* = Al7S,
From (2.89), we deduce easily that if f is real and g = 1, the form f[o 1 afqg(AgF)
is purely imaginary. The proof of our Proposition is complete. O

Remark 2.25. — The closed form on M, f[O,l] af,q(A4’,gP), depends explicitly on the
path s € [0,1] — A® defined in (2.84), but its cohomology class only depends on
A’,A”. In the sequel, the choice of the particular canonical path A° will play a
crucial role.

Assume now that ¢ is an oriented smooth curve in M, starting at ¢y and ending
at El.
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FIGURE 2.2

Proposition 2.26. — Assume that deg f > 2. Then the following identity of odd forms
on M holds,

e0) df ap@igf)= [ an@lm = [ ong( o).
¢x[0,1] [0,1] [0,1]

)

Proof. — By Stokes formula,

(291) df apg®)= [ ag(dgb)

cx[0,1] d(ex]0,1])
If deg f > 2, using (2.85), the restriction of as 4(A’, g¥) to cx {0} and ¢ x {1} vanishes.
From (2.91), we get (2.90). O

Let now S, S’ be two oriented surfaces in M x [0, 1] taken as indicated in Figure
2.2. The surfaces S, S’ are of the form ¢ x [0, 1], where the path ¢ € M is taken are
before. Let B be the region bounded by S,S’, A, A’. The set B is itself of the form
A x [0,1]. By Proposition 2.26, if deg f > 2, we have the identity of odd forms on M,

(292)  d /S oo (Al gB) = /[ g9 oty = /[ a4t

’ )

d/ Off,g(A',gE)=/ af,g(A'»QE)|e=eo—/ afg(A',9%) o=,
S’ [0,1] [0,1]

)

Theorem 2.27. — If deg f > 3, we have the identity of even forms on M,

(2'93) d/ af»g(Alth) :/ afvg(Al’gE) - / afag(A/’gE)'
B s s
Proof. — Using (2.85) and the fact that deg f > 3, we get
(2.94) / aypq(A,gF) =0, / asq(A, gF) =0.
A A/
Our Theorem now follows from (2.94) and Stokes formula. a
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Proposition 2.26 says that if deg f > 2, the cohomology class of the closed form
on M, f[O,ll afg(A’,g"), is rigid under deformation of A’. More precisely the class
of fcx[m] afq(A’,g®) in Q*(M)/dQ* (M) gives a refinement of this rigidity at the
level of differential forms. Theorem 2.27 shows that if deg f > 3, the class of
fcx[O,l] afq(A',gF) in Q°(M)/dQ* (M) is itself rigid under deformation of c. It still
has the properties of a Bott-Chern class.

2.7. Superconnection classes and the Chern character

Definition 2.28. — If f(z) is a holomorphic function, put

1
(2.95) (Ff)(z) = x/ [ (4s(1 - s)z®) ds

0
Then (Ff) (z) is a holomorphic odd function, which is real if f is real.

Proposition 2.29. — If f(z) = +°3 apxP, then
(2.96) Zp ap22p 2p2— 1

Proof. — If f(z) = zP, then
! plp —1)! 2p-1
(2.97) (Ff)(z) = / P71 — s)P dsp2?P 2?1 = ———22” 22
0 (2p—1)!
which is just (2.96). O

Remark 2.30. — Assume that f is real and that on R, f'(—-) is of constant sign.
Observe that

(2.95) fiEnee=g [ 2 [ sl

From (2.98), we deduce that if f # 0, then Ff(i-) ¢ L; (R). This is the case in
particular if f (z) = e®. In the case where f (z) = e, F f will be denoted Fe*.
It also follows from Proposition 2.29 that

1
Observe that
+o0 2p—1
2 x
2.100 re® = —_—
(2100) :4:‘1 (p—1)!

The coefficient of 2P~ in (Fe*) (z) is obtained from the corresponding coefficient in

the expansion of ze*” by multiplication by the factor 22P~ 21(’gp—_1)1')],i.
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Now again, the map ¢ defined in (1.22) refers to forms on M. We define the form
(Ff), (A’,g%) as in (1.23).

Proposition 2.31. — The following identity of forms on M holds,

(2.101) -;—/[Ollaf,g(A,g ) = m (Ff)g (A',97).

Proof. — By (2.85), (2.86),

(2.102) %/{Ol]af,g(A,g \/_ s [9f (4s(1 — s)B? — 2dsB)]

- \/%go/o Tr, [ng' (4s(1 — s)B?)] ds = % (Ff), (A,g%).
O

Let f be a holomorphic function. If A is a G-invariant superconnection on F, set

(2.103) fq (B, A) = ¢Tr, [gf (—A?)] .

Note here that our notation in (2.103) differs from the notation hy (A4, g¥) in (1.23).
Then by Quillen [Q1], f, (E, A) is a closed form, whose cohomology class does not
depend on A.

Let £ € [0,1] — Ag be a smooth one parameter path of G-invariant flat supercon-
nections on E. We lift E to a vector bundle on M x [0,1]. If A = A, + deg; is the
obvious lift of A, to M x [0, 1], we define the Chern-Simons form CS (f), (4¢) by the
formula,

(2.104) CS (), (A¢) = — /[] o (E.).

Then the Chern-Simons class CS (f), (Ao, A1) € Q*(M)/dQ*(M) of CS(f), (Ae) de-
pends only on Ag, A;. It is such that

(2.105) dCS(f)g (Ao, A1) = f4 (E, A1) — f4 (E, Ao) -

Definition 2.32. — Put

(2.106) fq (Ae) = =2imCS(f)y (E, Ar) .
Then
(2.107) Re f (Ae) = 2n ImCS(f)4 (E, Ar) .

We will denote by f7 (Ao, A1) the class of f7 (Ag) in Q*(M)/d(M).
Now we make the same assumptions as in Section 2.6. Recall that A = (A4’ + A”).
Then the path s € [0,1] — A%/2 defined in (2.84) interpolates between A’ and A.
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We can as well define the Chern-Simons form f° (4%/2), which we will denote instead
f° (4, ¢%). By by (2.101), (2.104), (2.106), we get

1
(2.108) fq (A, g%) = 2imsas,y(A',g").
Then Proposition 2.31 can be written as follows.

Proposition 2.33. — The following identity of forms on M holds,

(2.109) f3 (A, g%) = (Ff), (A,d").
If f(x) = e®, we will use the notation ch® (A’, g¥) instead of f° (4’,g¥), so that
(2.110) chy (4',g7) = (Fe*), (4, g").

Then ch; (4", %) is a secondary Chern character.

Remark 2.34. — Using (2.99) and (2.109) for f = e®, we recover a result given in
[BLol, Proposition 1.14].

Now we make the same assumptions as in Section 2.1. Let £ € [0,1] — A} be a
smooth one parameter family of G-invariant flat superconnections on E. Let f be a
holomorphic function such that deg f > 2. Then by Proposition 2.29, deg F'f > 3
Set

(Ff) (z)
We use the same notation as in Proposition 2.26.

Proposition 2.35. — The following identity holds,

1 Li,q (Aev )
2.112 —/ arq(A,g ’—.
( ) 2 ex[0,1] £ ) 2im

Proof. — We will assume that f(z) = zP, with p > 2. Using Proposition 2.22, we
get

(2.113) asg(A, g")
¢x[0,1]
-2 ©Trs |gf" (4s(1—s) B )Bea ((1—3)A'+5A"]d€ds
A% cx[0,1] s ¢ (9@ ¢ ¢

PO Do L [,

= 2= 2°P~ s | B2P73 A

(2p — 2)! Lo
By Proposition 2.29,

(2.114) (Ff)(z) = p_(__Q(p 11))' 022,291
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and so
pl(p—1)! , —3,2p—3
2.115 k(x) = ——2 P P
(2.115) @) =T —a1
Using (2.15), (2.113), (2.115), we get (2.112). O

Remark 2.36. — From Propositions 2.26, 2.31 and 2.35, we recover equation (2.16) in
Theorem 2.5. Also if deg f > 3, then deg F'f > 5, and degk > 3. By Theorem 2.27,
we recover the remainder of Theorem 2.5.

Definition 2.37. — If f(x) is holomorphic, put

(2.116) / f(4s(1 = s)z)ds.
Similarly, we define, @ : A (T*°V**M) — A (T*°V*"M) by the formula,

(2.117) Qa=/0 Yas(1—s)Qds.
If f(z) = Y125 apa?, then

(2.118) Z (2p+ o » (42
If o € A% (T* M), then

(2.119) Qa = (2;”—221)!41’&

We use the same notation as in Section 1.5. Let £ € [0, 1] — gF be a smooth family
of Hermitian metrics on E taken as before. Let Ay, By be the objects defined in (1.17)
which are attached to gF.
Definition 2.38. — Put
~o ! 1 —10gF '
e10) & (.f) = [ o [95 (F) ™ % (pery (B | at.

Theorem 2.39. — The class of the form ch’ (A',gF) in Q*(M)/dQ* (M) only depends
on g&,gF. Moreover,

(2.121) deh’ (A, gF) = ch® (4, gF) — ch® (4', 4F) .
If g =1, the form ch’ (A, gF) is real. Finally, if h(z) = ze®’
(2.122) chy (4',gF) = Qhy (4',9F) .

Proof. — Using (2.110), the first part of our Theorem follows from Theorem 1.11.
Finally using Remark 2.30 and (2.119), we get (2.122). The proof of our Theorem is
completed. O
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2.8. The Chern torsion forms

We make the same assumptions as in Section 1.10. As we saw in Remark 2.30, the
function Fe* (i) does not lie in L; (R). So, a priori, we cannot define the analytic
torsion forms Tpee 4 (4, gF).

In this Section, we set

(2.123) h(z) =ze® .
Definition 2.40. — Put
(2.124) Teng (A, 9%) = QTh 4 (4, 97).

The form Tep, (A’, g%) is called a Chern torsion form.
Proposition 2.41. — The even form Ten g (A',g®) is such that
(2.125) AT (A',gE) _ ch; (VE,gE) _ Ch; (VH'(E,U),QH%E,U)) .
It is real if g = 1.
Proof. — This follows from Theorem 1.30, and from Remark 2.30. O

Remark 2.42. — Rigidity formulas similar to Theorem 2.20 obviously hold for the
forms Ten,g (A’ ,gE). The main point of Definition 2.40 is that it normalizes the
torsion forms unambiguously. Note that if (E, v) is acyclic, i.e. if H* (E,v) = {0}, by
[BLo1, Theorem A1.2], the class of Teh g (A’,g%) in Q*(M)/dQ*(M) is the unique
natural class such that (2.125) holds. The considerations of [BLo1] also extend to
the non acyclic case.

2.9. Generalized metrics and the forms U, , (4’, gF)

We make the same assumptions as in Sections 1.6 and 2.4. Let A’ be a G-invariant
flat superconnection on E which has total degree 1. Recall that the notation * was
introduced in Section 1.2.

- —\ | €ven
Definition 2.43. — A smooth section gF of (A‘ (T*M) ® Hom (E, E )) is said
to be a generalized metric if

(2.126) g =¢g”,

eve:

. n
and if the component gf(® ¢ End (E, E ) of gF defines a standard Hermitian

metric on E. Then E, and E_ are orthogonal with respect to g (9,

Since g€ is invertible, g¥ is also invertible. Also any gZ can be deformed to
the standard metric g (©) by the homotopy

(2.127) te0,1] —gf =(1-0)gPF+eg"O.

In the sequel, we assume that g? is G-invariant.
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Definition 2.44. — The adjoint superconnection A” with respect to g¥ is defined by
the formula,

(2.128) A" = (gP) T A g".
Then A” is a flat superconnection. As in (1.17), we set
1
(2.129) A= % (A" + A, B= (4"~ A).

Then B is an odd section of A* (T*M) ® End (E). Also Proposition 1.5 still holds.
Let h be a holomorphic odd function. We define the form hy (A’,g¥) by the same
formula as in Definition 1.7.

Proposition 2.45. — The form hy (A',gF) is odd, closed, and its cohomology class
does not depend on g¥, and is equal to hy (A').

Proof. — The proof of our Proposition is the same as the proof of [BLol, Theorems
1.9 and 1.11] and of Theorem 1.8. d

Let now t € [1,4+o00[— gF be a smooth family of G-invariant generalized metrics
on E. Let g% = @, ¢”" be a standard Hermitian metric on E = @], E'. In the
sequel we identify E and E" by the metric gf. We assume that there exist n € N
and H € (A* (T*M) @ End (E))*"" such that as ¢t — +oo,

H
(2.130) /2 N2 N2 — g 4 7 +0O(1/t),

tN/2 (gB) 7! %g?t-”’/? =(¥-3) % +0 (1/62).

Recall that A0 = v, A’'(D) = VF. Let A/ be the adjoint superconnection to A’
with respect to gF. Let v* be the adjoint of v with respect to the standard metric
9%, let VE* be the adjoint connection to V¥ with respect to g%.

Proposition 2.46. — Ast — +oo,
(2.131) N2 AN — iy £ VE £ O (1/\/5) ,
N2 AN =t + VE* 4 [v* H] + O (1/\/2) :

Proof. — Since A’ is of total degree 1, the first identity in (2.131) is trivial. Let A"°
be the adjoint of A’ with respect to the standard metric g¥. Then

(2.132) N2 A1=N/2 N/ (gtE)_l ¢N/2 (t—N/2A/IOtN/2) t~N/2gB=N/2
By (2.130), (2.132), we get the second equation in (2.131). O
As in (1.42), set

1
(2.133) A= (A + ), B = % (A7 = A7)
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Let now h(z) be a holomorphic odd function such that (1.54) holds.

Definition 2.47. — Put

-10 ,
(gf) agf’"h (By)| -

1

(2.134) by = tTrs 95

Then b, is an even form on M. Let g (Ew) be the Hermitian metric induced by
g¥ on H* (E,v) as in Section 1.5. Recall that x, (E), X} (E) were defined in (1.56).

Proposition 2.48. — The following identity holds,
0 1

(2.135) i1 (A 87) = —dbe.

Moreover as t — +00,

(2.136) hy (A',8F) = hy (VH B0 gH ED) 4 0 (1/VE)
by = (%X; (E) - gxg (E)) W (0) + O (1/\/£) .

Proof. — The proof of (2.135) is the same as the proof of [BLo1, Theorem 2.9] or of
Theorem 1.11, and uses Proposition 2.45. Observe that

(2.137) PH(E) [y ] PH(Ew) — ¢,
Using (2.130), Proposition 2.46 and (2.137), the proof of (2.136) is the same as the
proof of [BLol, Theorem 2.13] and of Theorem 1.22. O

Definition 2.49. — Set

(2.138) Ung (A, &) = — /1+°° (bt — bioo) %.

Theorem 2.50. — The even form Uy 4 (A’,gF) is such that

(2.139) AUpg (4',8F) = hy (A',8F) = by (V"B g ED),

Proof. — Our Theorem follows from Proposition 2.48. a
Remark 2.51. — The forms Sy, 4 (A’, g¥) of Section 1.9 are special cases of the forms

Uh,g (Al’gf)

If £ €]0,1] — g is a smooth family of generalized metrics, we define hg (A’ gfF)
as in Definition 1.10. Using Proposition 2.48, the obvious analogue of Theorem 1.11
holds. We denote by hy (A’,gZ,g¥) the class of hy (A',gF) in Q*(M)/dQ*(M).

Let now £ € [0,1] — (gF ) , be a smooth family of generalized metrics on E, such
that (2.130) holds uniformly in £ € [0,1]. Namely we assume that there is a smooth
family of standard metrics £ € [0,1] — g and also a smooth family ¢ € [0,1] — Hy €
(A* (T*M) ® End (E))*" such that (2.130) holds uniformly in £ € [0, 1].
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Theorem 2.52. — The following identity holds,
(2.140) Ung (4',(&F),) — Ung (4, (&F),) = hg (4, (&%), (87),)
— g (VHE, (g1 ED) | (gH7ED) Yin Q°(M)/d (M).

Proof. — The proof of our Theorem is the same as the proof of [BLol, Theorem
2.17] or of Theorem 1.26. O

Remark 2.53. — By Theorem 2.52, the class of Uy 4 (A, gf) in Q*(M)/dQ* (M) only
depends on g¥ and on gF.

2.10. Generalized metrics and flat complexes

We make the same assumptions as in Sections 1.10 and 2.5, and we use the notation
of Section 2.9. Assume that A’ is a G-invariant flat superconnection of total degree
1, of the form

(2.141) A =v+VE

Then V¥ is a flat connection on E which preserves the grading, and v is a parallel
chain map. Let g¥ be a G-invariant generalized metric on E. Let VE* be the adjoint
of the flat connection V¥ with respect to the generalized metric g¥. Then VZ* is a
flat superconnection. Put

1
(2.142) Ao =5 (V5" + VE), By = % (VE* — V5.
Proposition 2.54. — The even form
1 1 -1
(2.143) n=3Tr, [g§ (N+ (") Ng?) w (Bo)]

is closed and its cohomology class does not depend on g, and is equal to the constant
3Xg (E) W (0).

Proof. — Since V¥ preserves the grading of E, we have the obvious
(2.144) [40,N + (%) Ng®| = [Bo, v — (%) Ng?].
Moreover, by (1.19),

(2.145) [Ao, Bo] = 0.

Therefore, using (2.144), (2.145) and the fact that supertraces vanish on supercom-
mutators, we get

(2.146) dp~ln = %m [g [Bo,% (V- NgE)] W (Bo)} =0,
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i.e. the form 7 is closed. The fact that its cohomology class does not depend on g
follows tautologically. By making g¥ to be a standard metric on E, and using the
fact that h'(z) is an even function, the last part of our Proposition follows. O

Definition 2.55. — For u € R, let g7 be the generalized metric,
(2.147) gf = tN/2gBN/2,
Let B; be obtained as in (2.129) with respect to gZ.
Proposition 2.56. — Ast — 0,
(2.148) hy (4',6F) = hy (VF,g%) + O (V )

%cpTrs 9(e’) gtgt W (Bt)] =-7tl (1/\/5)-
Proof. — Let AY, VE* v* be the adjoints of A’, VF, v with respect to g€. Then
(2.149) tN2ANIZ = o+ VE,

N2 A NI2 — \frot 4 B

From (2.149), we get the first equation in (24148). Also,

(2.150) 072 (gf) " D gpri = L (N4 (67) 7 Ng®)
From (2.149), (2.150), we get the second equation in (2.148). O

Proposition 2.57. — Asu — 0,
(2.151) hy (A',g%, %) — nlog (u) —
1 [ 1 10 Ev/ n
_ Z — — o dt.
[ {om[oy @) Grapn 0] - 2}
Proof. — By the analogue of (1.26),

~ 1t I 6 ,
(2.152) by (4,67 08) = o3 [ Tufo(a)™ e (B0)

Using Proposition 2.56 and (2.152), we get (2.151). O

Let now gZ,g®" be two generalized metrics on E. We define the metrics gZ, gZ’

as in (2.147).

Proposition 2.58. — Asu — 0,
(2.153) he (A87,87") = by (VZ,87,87).
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Proof. — For £ € [0,1], put

(2.154) gfht =1 -0)gP+0g”.

We also define gZ+¢ as in (2.147). Then

(2.155) (gf,f)‘l ;%gf,z — N2 (gE,e)-l (gE/ _ gE') uN/2,

Using the analogue of (1.26), (2.149) and (2.155), we get (2.153). O
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CHAPTER 3

ANALYTIC TORSION FORMS:
RIGIDITY AND THE CHERN CHARACTER

Let w : M — S be a smooth fibration with compact fibre X. Let F' be a complex
vector bundle on M, equipped with a flat connection V¥, In this Chapter, we extend
the construction of analytic torsion forms in de Rham theory to an equivariant context.
We show that these forms verify anomaly formulas in degree > 2 under deformation of
the flat connection V¥, which extend the corresponding results for finite dimensional
torsion forms established in Theorem 2.17. Finally we give a Chern normalization of
the analytic torsion forms.

This Chapter is organized as follows. In Sections 3.1-3.7, we recall the basic for-
malism of Bismut-Lott [BLo1]. In Section 3.1, we describe the geometric setting. We
introduce in particular a horizontal vector bundle THM C TM. In Section 3.2, we
interpret the de Rham operator on the total space of M as a flat superconnection A’
on the relative de Rham complex Q* (X, F|x). In Section 3.3, we introduce a metric
g7X on the relative tangent bundle TX, and we construct the tensors obtained in
[B3], which are associated to (77 M, gTX). In Section 3.4, we construct the adjoint
superconnection A”. In Section 3.5, we recall elementary facts of Clifford algebras.
In Section 3.6, we relate the connection A = 3 (A” + A’) to the Levi-Civita super-
connection of [B3]. In Section 3.7, given ¢ > 0, we consider the metric g7X /t on T X,

Q* (Xx,F .
and the associated metric g, (x.rix) on Q*(X, F|x), and we construct the objects

we just described, which are attached to the rescaled metric.

In Section 3.8, we give the Lichnerowicz formula of [B3], [BLo1] for the curvature
A?, and we establish another related Lichnerowicz formula. In Section 3.9-3.12, we ex-
tend the results of [BLo1] to the equivariant setting. In Section 3.10, for h (z) = ze’

Q*(x,F
we construct the forms hy (A’ , Gy ( IX)

. In Section 3.11, we establish the corre-
sponding transgression formulas. In Section 3.12, we construct the analytic torsion
forms Ty, ¢ (TH M, gTX, V¥, gF).

In Section 3.13, we construct analytic torsion forms associated to more general
functions h, and we prove natural compatibility properties of these forms. Sections
3.14-3.16 are devoted to the proof of rigidity of the analytic torsion forms under
deformation of VF. These Sections extend Sections 2.2-2.5 to our infinite dimensional

setting. Finally in Section 3.17, we construct the Chern analytic torsion forms.



56 CHAPTER 3. ANALYTIC TORSION FORMS: RIGIDITY AND THE CHERN CHARACTER

3.1. Equivariant smooth fibrations

Let 7 : M — S be a submersion of smooth manifolds, with compact fibre X of
dimension n. Let TX C T'M be the tangent bundle to the fibres X.

Let G be a compact Lie group acting on M along the fibres of X, that is if g € G,
g = m. Then G acts on TM and on TX C TM. Let TH M C TM be a G-invariant
horizontal subbundle, so that

(3.1) T™M =THM e TX.

Observe that since G is compact, such a TH M always exists. Let PTX : TM — TX
be the projection associated to the splitting (3.1). Observe that

(3.2) THM ~ 7*TS.
By (3.1), (3.2), we have the identification of bundles of algebras
(3.3) A(T*M) ~ 7*A* (T*S) ® A*(T* X),

and this identification is also an identification of G-bundles.
Take g € G. Set

(3.4) My ={x e M,gz =z}.

Since G is compact, M, is a smooth submanifold of M. Since G acts along the
fibres X, it follows that g acts trivially on TH M| M, Therefore we have a fibration
m: My — S with fibre X, the fixed point set in the corresponding fibre X, which is
either compact or empty. In particular

(3.5) THM |y, C TM,,

i.e. the restriction of TH M to M, defines an horizontal subbundle on M. Note that
if one fibre X, is empty, the fibres over the corresponding connected component of .S
are empty as well.

Let F' be a complex flat vector bundle on M, and let V¥ be the corresponding
flat connection. In the sequel, we will consider F' as trivially Zs-graded , i.e. as
an even vector bundle. We assume that the action of G on M lifts to F, and that
G preserves the connection VF. Let (Q* (M, F),d™) be the de Rham complex of
smooth differential forms with values in F', equipped with the de Rham operator d.
Then G acts on the left on Q* (M, F'), so that if g € G,s € Q°* (M, F), gs is given by

(3.6) (95) (¢) = ges (97 "2).
Clearly G preserves the Z-grading of Q* (M, F), and commutes with M.

Let (92*(X, F|x),dX) be the fibrewise de Rham complex of smooth forms along
the fibres X with values in F|x, equipped with the fibrewise de Rham operator
dX. Again G acts on Q°*(X, F|x), preserves the Z-grading and commutes with d*.
Then (Q*(X, F|x),d*) can be viewed as a family of infinite dimensional complex

on S, on which G acts fibrewise. Let H*(X, F|x) be the cohomology of the complex
(2*(X, F|x),d*). Then H*(X, F|x) is a finite dimensional Z-graded G-bundle on S.
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Let Q° (S,9Q°(X, F|x)) be the space of smooth sections of A* (T*S) ® Q* (X, F|x)
on S. Using (3.3), we have the identification of Z-graded G-vector spaces,

(3.7) Q° (M, F) ~Q° (5,Q°(X, Flx)).

3.2. A flat superconnection of total degree 1

Here, we follow [BLo1, Section 3 (b)]. The operator d™ acting on Q°* (M, F) has
degree 1 and is such that d*>? = 0. Also if w is a smooth section of A* (T*S), and if
s € Q* (M, F), then
(3.8) dM (1 (w) s) = 7* (d5w) s + (1)1 7* (W) dMss.

Comparing with (1.4), we find that A’ = d™ can be considered as a flat superconnec-
tion of Q*(X, F|x), which has total degree 1.
IfU € TS, let UH € TH M be the horizontal lift of U, so that 7, U¥ = U. If U is

a smooth section of T'S, the Lie derivative operator Ly x acts naturally on Q°* (M, F).
One verifies easily that if f € C* (M,C), if a € C* (M, A*(T*X) ® F), then

(3.9) Lijpyna= (7"f) Lyna.

Definition 3.1. — Let V' (x.Fix) be the connection on Q*(X, F|x), such that if U €
T'S and if s is a smooth section of Q*(X, F|x), then

(3.10) v () ps,
Clearly the connection v (x.rix) preserves the Z-grading of Q*(X, F|x).

Definition 3.2. — If U,V are smooth sections of T'S, set
(3.11) T (U, V)= -PTX [U" VH].

One verifies easily that TH is a tensor, i.e. it defines a 2-form on S with values in
smooth sections of TX. The interior multiplication ip# acts naturally on A*(T*M)®
F. Tt increases the total degree by 1, while decreasing the vertical degree by 1, and
increasing the horizontal degree by 2.

Now we have a classical result stated in [BLol, Proposition 3.4].

Proposition 3.3. — The following identity of operators acting on Q* (M, F) holds,
(3.12) A = X v () g

Remark 3.4. — Equation (3.4) gives us a decomposition of the superconnection d™
which is a special case of (1.32). Since A’? = 0, from (3.12), we get

(3.13) dX? =, [VQ‘ (X,le),dX] =0, v (X,F|x),2 + [dX,z'TH] =0,

v (XvF'X),iTH] =0, iy =0.
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As in Section 1.6, the flat superconnection A’ induces on H*(X, F|x) a flat connec-
tion VH"(X.F1x) which preserves the Z-grading. This is the Gauss-Manin connection
VH (XFIx) on H*(X, F|x).

3.3. A metric on TX and the tensors T and S

Let g7X be a G-invariant Euclidean metric on TX. In the sequel, we identify TX
and T*X by the metric g7X.

By [B3, Section 1], (T# M, ™) determine an Euclidean connection V7* on T'X.
In fact let g7° be an Euclidean metric on T'S. We equip TM with the G-invariant
metric g7M = 1*gT9@gTX. Let VI'ML be the Levi-Civita connection on (T'M, g7M).
Let VTX be the connection on T'X,

(3.14) vIX = pTXgTM.L
Let VTM be the connection on T M,

(3.15) VM — pxyTS ¢ vTX,
Let T be the torsion of VI™, Put

(3.16) S =vIML _gTM,

Then S is a 1-form on M with values in antisymmetric elements of End (I'X). Clas-
sically, if A, B,C € TM,
(3.17)  S(A)B—-S(B)A+T(A,B)=0,
2(S(A)B,C)+ (T (A,B),C)+ (T (C,A),B)—(T'(B,C),A)=0.
By [B3, Theorem 1.9], we know that

— The connection VX preserves the metric g7*.
— The connection VTX and the tensors T and (S (-),-,-) do not depend on g7%.
The tensor T takes its values in T'X, and vanishes on TX x T'X.
— For any A € TM, S (A) maps TX into THM.
— Forany A,Be THM,S(A)BeTX.
_AcTHM, S(A)A=0.
From (3.17), we find that if A€ THM, B,C € TX,

(3.18) (T (A,B),C) = (T (A,C),B) = —(S(B)C, A).

By construction, all the above objects are G-invariant. Now, we recall a simple result
stated in [B10, Theorem 1.1].

Theorem 3.5. — The connection VI on (TX, g™™) is characterized by the following
two properties:

— On each fibre X, it restricts to the Levi-Civita connection.
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— IfueTsS,
1 -

(319) VE{;( = LUH —+ 5 (gTX) ! LUHgTX.

IfUV TS,
(3.20) T(UEvH) =T (U, V).
IfUeTS,AeTX,

1 —

(3.21) T(U",4) =5 (4™ ' LyngTX AL

Let dux be the volume along the fibre X which is associated to the metric g7X.
Let ej,..., e, be an orthonormal basis of TX. Set
(322) € =— Z S (62') €;.

Then using the properties which were listed after (3.17), e € TH M.
IfU € TS, let divx (U¥) be the smooth function along X such that

(3.23) Lyndvx = divx (U¥) dvx.
Now we have a result stated in [BF1, Proposition 1.4].
Proposition3.6. — IfU € TS,
(3.24) (e, UM} = divx (UH).
Take g € G. The metric g7 induces a metric g7%s on TX,. Also since VX is
G-invariant, VTX |5, preserves TX,.

Proposition 3.7. — The restriction of VIX to TX, is eractly the Euclidean connec-
tion canonically attached to (T™ M|n,, g"*9). Moreover the tensors T and (S (-)-,-)
restrict to the corresponding tensors associated (Mg, TH M|y, g7 %e).

Proof. — Clearly the metric g”™ considered in Section 3.3 is G-invariant. Therefore
M, is totally geodesic in M with respect to g7, and so V:JCII:I’L preserves T'Mg. The
first part of our Proposition follows. The remainder of the Proposition follows from
(3.11), (3.17) and from Theorem 3.5. O

3.4. The adjoint superconnection

We make the same assumptions as in Section 3.3. In addition we equip F with
a G-invariant Hermitian metric g¥'. Let VF* be the connection adjoint to V¥ with
respect to gF'. As in (1.9), set

(3.25) w(VF,¢") = (gF)—1 vEigr.
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Then by (1.10),

(3.26) VB = VF 4 w(VF,¢gF).

As in (1.11), we define the connection V% by

(3.27) vEe = vF 4 %w(VF, g").

Then V% is a unitary connection on F. By (1.30), its curvature is given by
(3.28) vhw? = —%uﬂ (VF,g").

Let VA*(T"X)8Fu be the unitary connection on A*(T*X) ® F induced by VX and
vFu,

Let X be the Hodge star operator associated to g7X. We equip Q* (X, F|x) with
the Hermitian product such that if s,s’ € Q*(X, F|x),

(3.29) (s,8") = /x (sA*8')p = /X (s,s')A.(T.X)@F dux.

Let ¢ (XFIx) be the corresponding metric on Q°*(X, F|x). Then & (X.Flx) g
G-invariant.
Now we will use the notation in Section 1.3. Let A” be the adjoint of the super-

connection A’ with respect to the metric gQ. (X’F Ix ) The adjoint dX* is just the
fibrewise adjoint of dX. Let V¥ (XoFx) be the connection on £°(X, F|x) which

is adjoint to v (X’le) with respect to gﬂ. (X’le). Recall that TH, defined in
(3.11), is a section of A% (T*S) ® TX. Since TX and T*X are identified by g7X,
we can consider TH as a section of A% (T*S) ® T*X. Then THA acts naturally on
A* (T*S) ® Q°* (X, F|x) and increases the total degree by 3.

Then we have the result stated in [BLo1l, Proposition 3.7).

Proposition 3.8. — The following identity holds,
(3.30) A" = g 4y (XFIx) o _pH A
Now we use the formalism of Section 1.5. Namely, set
(3.31) A= % (A" + A), B- % (A" - AY).

Then A is a G-invariant superconnection on Q° (X , F| X), and B is a smooth G-
invariant section of (A* (T*S) ® End (Q*(X, F|X)))°dd, such that

(3.32) B* = —B.

The obvious analogue of Proposition 1.5 still holds.
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3.5. Clifford algebras

Recall that TX and T*X have been identified by the metric g7X. If A € T X, let
c¢(A),é(A) be the odd endomorphisms of A*(T*X),

(3.33) c(A) = AN —iy, é(A) =AN+ig.
IfA,BinTX,
(3.34)

[c(A),c(B)]=-2(4,B), [¢(4),¢(B)]=2(4,B), [c(4),¢(B)]=0.

Let ¢ (TX) be the bundle of Clifford algebras on (T'X,g7*). Then c¢(TX) is the
algebra over R generated by 1, A € T'X and the commutation relations for A, B € TX,
(3.35) [A,B] = —-2(A,B).

Then (3.34) says that A — c¢(A) and A — i¢(A) give two representations of the
bundle of Clifford algebras ¢ (T'X).

Also ¢ (T X) acts naturally on itself by multiplication on the left and on the right,
and these two actions commute. They will be denoted respectively by ¢’ and ¢".
Classically, there is a Z-graded isomorphism of vector spaces ¢ (T'X) ~ A*(T*X). Let
7 be the operator on A*(T*X), which is 1 on A" (T*X), —1 on A°4 (T*X). Then
one verifies easily that under the above isomorphism, if A € TX,

(3.36) c(A) = (4), ¢(A)=71c" (A).

In the sequel, we will often use the notation ¢(T'X) and ¢(TX) for the bundle of
algebras generated by 1and the c¢(A)’s and by 1 and the é(A)’s.

3.6. The Levi-Civita superconnection
By imitating (1.11), put
DX = dX 4 d%~,
(3.37) v (X Fix)w _ %(vn' (X.Flx) 4 g2 (X,F|x),*)

)

W(VQ. (X,F|x),gQ’ (x,F|x)) = v (XFIx) o _ g0t (X.Fix)

Then V' (X.Flx) is a unitary connection on *(X, F|x). Moreover DX is a fibre-
wise self-adjoint operator acting on Q° (X , F| X). By Hodge theory,

(3.38) ker DX ~ H*(X, F|x).

As a finite dimensional subbundle of Q*(X, F|x), ker DX inherits the Ly metric of
Q* (X, F|x). Let gfz‘(X’FIX) be the corresponding Hermitian metric on H*(X, F|x).
Recall that e € TH M was defined in (3.22). The following result was established in
[BLol, Section 3 (d)].
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Proposition 3.9. — If s is a smooth section of Q* (X, F|x), if U € TS, then

vg° (X,Flx)u

. * S u ]_
(3.39) 5§ = VAT 08k 5 (e U").

Observe that ¢ (T#) is a smooth section of (A2 (T*S) ® End (A'(T*X)))Odd. Let

€1,...,€, be an orthonormal basis of TX. Let fi,...,fn be a basis of T'S, let
fY, ..., f™ be the corresponding dual basis of T*M. In the next definition, we view
S as a form along the fibres X with values in End (T'M).

In the sequel, we adopt Einstein’s conventions. By [BZ1, Proposition 4.12],

. * S ].
(3.40) DX = (e, VA (T X)®Fu _ §E(ei)w(VF,gF) (€) .

Let VA" (T"X) be the connection on A*(T*X) induced by VX, Along the fibres X,
the vector bundle A* (T*S) is trivial. Let VA" (T"S)®A*(T"X) he the obvious connection
on A* (T*S) ® A*(T*X) along the fibres X which is induced by VA*(T"X),

Definition 3.10. — Let VA" (T"S)BA*(T"X) be the connection along the fibres X on
A* (T*S) ® A*(T*X),

(3.41) YA TTS)BANTIX) _ gA(TTHBANTX) | % (Sei, F1) Vac(e:) £
1
+ §<5f§1,féq)f“fﬂ'

The curvature 1VA*(T*9)BA(T"X),2 of the connection VA" (T HBA(T™X) g g gec-
tion of
A (T*X)® A* (T*S) ® End (A*(T* X)) .
Again, expressions involving V%2 and S will only be viewed as forms along the
fibres X.

Proposition 3.11. — The following identity holds,
(3.42) Ly A*(T*S)BA(T"X),2 _ i (VTX2¢; €3} (c(es)e(e;) — Elei)ele;))
+ %((SPTXS +VTXS) f2 1) 1o + % (VX Ses, f2) Vac(e:) f.
Proof. — This is an easy identity established in [B10, Proposition 11.8]. ]
The following identity was established in [B3, Theorem 4.14], [B5, Théoréme 2.3].
Proposition 3.12. — If AJA' € TX,B,B' € TM, then

(3.43) (VTX2(A,A)PTXB,PTXB') + (SPTXS(A,A") B,B')
+((VTX8) (A, A")B,B') = (VT*?(B,B) A, A').
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When we equip F with the connection V™, the connection 1WA (T"S)®A* (T X)

extends to a connection !VA*(T")BA(T"X)8Fu on A+ (T*S) ® A*(T*X) & F along
the fibres X.

Definition 3.13. — Put
(3.44) 1V£\’(T*S)®A'(T*X)®F,u e L1gA*(T*S)BA(T X ®Fu¢

Now we use the same notation as in (3.41).
Theorem 3.14. — The following identity holds,

1 ox Q*(X,F|x), 1 H
A='§D +V ( |X)u—§C(T ),
1,\ . * SAe * S 1
(345)  B=—g@e) Vg, VNI 4 Ze(ew(VE, ") ()
1
3 fu(VF6) (7).

Proof. — The first identity in (3.45) was established in [BLo1, Proposition 3.9]. By
the same reference,

]. . * DA e * > ].
(3.46) B = _55(81.)V/e\i (T*S)RA*(T"X)®Fu | Zc(ei)w(vF,gF) (e:)

+ 505 ((8 (e es, Sy elen)ale) + (V7. g7) (1)) - 32(T7).
By (3.17), (3.46), we get the second identity in (3.45). O

Remark 3.15. — As observed in [BLol, Remark 3.10], (3.45) shows that A is a spe-
cial case of a Levi-Civita superconnection in the sense of [B3]. The second identity
in (3.45) is of special interest. It shows that B is a generalized fibrewise Dirac oper-
ator, in which the fibrewise connection VA (T*X)8Fu jg replaced by the connection
1Vi\/’2(T S)BA(T* X)BFu_

3.7. A rescaling of the metric on TX

For t > 0, set

(3.47) gTX = gT.

Q.
Let g, (x.rix) be the metric on Q*(X, F|x) associated to gf %, g¥.
Let N be the number operator of Q*(X, F|x), i.e. N acts by multiplication by k
on QF (X, F). One verifies easily that

(3.48) g?. (X’le) — tN—n/2gQ° (X,le)‘
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Q*(x,F .
Therefore, up to the constant factor t~™/2, the metric gy ( IX) fits with the con-
ventions used in Section 1.7.

Q.
Let A} be the adjoint of A’ with respect to g,
(1.41), we have,

(3.49) Ay =t N AN,
As in (1.42), set

(X’FIX). Clearly A” = AY. As in

1 1
(3.50) Ay = 3 (A + A", B; = 3 (A — A').
Now, we imitate Definition 1.19.
Definition 3.16. — For t > 0, set
I 4N/2 g1,—N/2 1" _ 4—N/2 p114N/2
(3.51) C,=t""%A"t , C =t A"t A,

Then Cj is a flat superconnection on * (X, F|x), and C{' is its adjoint with respect
to gn. (X’le). Set

1 1
As in (1.48), we get
(3.53) C, = tN2 A~ N/?, Dy = tN/2Bt~N/2,

Of course, all the objects which we just defined are G-invariant.

Proposition 3.17. — For t > 0, the following identities hold,

(3.54) Cr = 'Vt A, Dy =4; 'Vt By
Proof. — Since A’ is of total degree 1, the proof of our Proposition is the same as
the proof of Proposition 1.20. O

3.8. A Lichnerowicz formula

Let RF® be the curvature of the connection V¥* on F. By (1.30),

1
(3.55) RF® = —Zw2 (VF,g").
Set

(3.56) RTX = vyTX2,

Definition 3.18. — Put

(3.57) R = i (¢!, RTX &) 2(e;)ele;) + RF™.
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Then R is a smooth section of A*(T*M) ® ¢(TX) ® End (F). Let ej,...,e, be a
locally defined smooth orthonormal basis of TX. Let E be a vector bundle on M.
LetV¥® be any connection on E along the fibres X. In the sequel we use the notation,

(3‘58) (veEi)z = Z (Vg)Z - VE Ty VIXes

i=1

One verifies easily that (3.58) does not depend on the choice of the basis ey, ..., e,.

Let K be the scalar curvature of the fibre (X, g7*). Let z be an odd Grassmann
variable which anticommutes with all the other odd objects we met before. The
following formula was established in [BLo1l, Theorem 3.11] as a consequence of the
Lichnerowicz formula for the curvature of the Levi-Civita superconnection given in
[BLol, Theorem 3.6]. Observe that the second equation in (1.30) asserts that the
tensor U,V € TX — VFuw(VF, gF) (V) is symmetric.

Theorem 3.19. — Given t € R}, the following identity holds,

2
t . * SAe * P~ z2 K
2 A*(T*S)QA® (T X)QF, ~
(359) Ct - ZDt = _Z <1Vt/2yei v Wc(el)) + t—16

+ Leteele)R (enes) + 212 FPR (12 1) + Lhcle) R (ex £2)

2
vt T

+ % [w(vF,gF) (ei)]Q _ Tfa/c\(ei)vfgf@}?’,uw(vl:‘,gF) (ei)
+ ;—25(61)5((3])0;2 (VF,gF) (ei, 6]) — éc(ei)a(ej)VZ;X@F’"w(VF,gF) (e])

— %z tc(ei)w(VF,gF) (€) — %Zfaw(vF,gF) (fofl) :

Now we will establish another, but essentially equivalent Lichnerowicz formula.
Recall that 1V$;(T*S)®A. (T"X) is a connection on A* (T*S)®A*(T*X) along the fibres
X. Its curvature lies in A*(T*X)® A* (T*S) ® End (A*(T* X)), and was computed in
Proposition 3.11.

Theorem 3.20. — Given t € RY, the following identity holds,

2
13 (T*S)BA* (T* X)® z K
2 _ A (T*S)BA* (T* X)BF,u ~
(3.60) Cf —zD; = “a <lvt/2,e,. - %d&')) + tE
| PO A*(T*$)RA*(T* X),
— gc(ei)C(ej)(IVt/z( JOA* (T™ X),2 (es,¢;)

1 ~ - 1
+7 (RTX (ei,€5) ex,e1) C(ex) C(er) — sz (VF,g5) (ei,ej))+

SOCIETE MATHEMATIQUE DE FRANCE 2001



66 CHAPTER 3. ANALYTIC TORSION FORMS: RIGIDITY AND THE CHERN CHARACTER

+ 15 W(VF,07) (@) ~ ascledele;)? (V7 6) (exrey)

- %c(ei)f“ [w(VF,9") (&), w(VF,g") (fH)] - _;_wz (VF, ") ( 5,f;§{)
+ éa(ei)c(ej)lvi\/;(z:S)@A'(T*X)@)F,uw(vl?’gF) (ej)

\/EA A (T*S)®A*(T* X)&
+ Tc(ei)fa 1vt/2€2 YA (T )®F’uw(VF,gF) (ff)

1 1.,

1t te(e)w(VF,g7) (ei) - 32t w(VF,g") (£3) -
Proof. — We use formula (3.45) for B. We will consider here the ic(e;) as standard
Clifford variables and the c(e;) as auxiliary Clifford variables. The operator

is then an ordinary fibrewise Dirac operator, to which the classical Lichnerowicz for-
mula in [BF2, Proposition 2.1] can be applied. Our Theorem follows. O

Remark 3.21. — The comparison of Theorems 3.19 and 3.20 is interesting. To prove
directly that formulas (3.59) and (3.60) are in fact identical, one should use Proposi-
tions 3.11 and 3.12.

3.9. A unitary connection on H*(X, F|x)

We define w(VH.(X’Fl)‘),gf;(X’F"‘)) as in (1.9). Let V" (X,FIx)* bhe the connec-

tion on H*(X, F|x) which is the adjoint of VH"(X:FIx) with respect to the metric

glI:I;(X’Fb{)- Set

(3.61) V= % (a%* —d¥).
Then ker V = ker DX, and so by (3.38),
(3.62) kerV ~ H*(X, F|x).

Let P*rV be the orthogonal projection operator from ° (X , F| X) on kerV. By
[BLo1, Proposition 3.14], the obvious analogue of (1.38) holds, i.e.

vH® (X,Flx) _ pkerVyQ° (X,F|X)’
(3.63) VH GFI PkerVVQ’(X,F|x),*’

w(vH'(Xvle), gf;(X,F'lx)) _ Pker\/w(vﬁ' (x.F1x) gor (x,F|x)) pler V.
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3.10. The odd closed forms h, (A',gtn. (X’le))

First we state a result established in [BLol, Theorem 3.15], which is the obvi-
ous extension of Proposition 1.6 in this infinite dimensional context. We define the
Lefschetz number x4 (F') by the formula

n

(3.64) Xo (F) = 5" (1) e XF1x) [g].
3=0

Then x4 (F) is a locally constant function on S.

Proposition 3.22. — For anyt > 0,

(3.65) Trs [gexp (—A7)] = xq (F).

Proof. — The proof is the same as the corresponding proof in [BLo1]. O

Now we follow [BLo1, Section 3] and also Chapter 1. In the sequel, we set
(3.66) h(z) = ze® .
Take g € G.

Definition 3.23. — For t > 0, set

(3.67) hg (A’, g?'(X’F"‘)) = (2im)"/? ¢'Tx, [gh (By)) -

Similarly, set

(3.68) ty (g™ (9F1)) = (2im) 2 v g (D).
By (3.53), as in (1.49),

(3.69) hy (A’, G (xorix) ) = h, (c;,gﬂ'(X»le)> .

Let e (T X4, VT¥s) be the closed Euler form in Chern-Weil theory, which represents
the Euler class of T X, associated to the Euclidean connection VIXs. Let RTXs be
the curvature of V7Xs. Then

RTXg
(3.70) e (TXy, V™) = Pf [ o=

} if dim X is even,
=0 if dim X, is odd.

Let e (T'X,y) € H* (Mg, Q) be the cohomology class of e (T' Xy, VTX¢), ie. the Euler
class of T'X,.

Let G (g) = (g) be the closed Lie subgroup of G generated by g. Then G (g) keeps
M, fixed and acts on F' by flat automorphisms. Therefore the forms h, (VF g7 ) on

My can be defined as in Definition 1.7. They are closed odd forms on M,.
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Now we state an extension of [BLo1, Theorem 3.16], where only the case g = 1 was
considered. Recall that as we saw in Sections 3.2 and 3.6, H*(X, F|x) is a Z-graded
vector bundle on S, equipped with the flat Gauss-Manin connection VZ*(X:FI1x) and

with the metric gf;(X’F'x ),

*(x.Fix)

Theorem 3.24. — The forms h, (A’ , th are odd, closed, and their cohomol-

ogy class does not depend on t > 0. They are real if g = 1. Moreover ast — 0,

(3.71)  hy (A’,gf”(x’”"))z /X e (TXy, V™) by (V7 97) + 0 (VE).

g

Ast — +oo,
(372) hg (Al,g:z.(x’Fix)) — hg (VH.(X,F|X)’Q£I;(X1F|X)) + 0 (1/\/1_5) .

Proof. — The proof of the first part of our Theorem is the same as the proof of
[BLo1, Theorem 3.16] and of Theorem 1.8. The proof of (3.72) is the same as the
proof of the corresponding result in [BLo1, Theorem 3.16] with g = 1.

Now we concentrate on the proof of (3.71). When g = 1, our result was already
established in [BLol]. In the case of a general g, we proceed as follows. We view z
as the generator of R*. If & € A (T*S x R*), if

(3.73) a=p0F+zy, with B,v€ A*(T*S),
set

(3.74) oF = 1.

Clearly

(3.75) Trs [gh (Dy)] = Trs [gexp (—CF + 2Dy)]" .

Let P, (x,2’) be the smooth kernel associated to exp (—C? + zD;) with respect to
dvx [ (2m)"™ X so that if s € Q*(X, F|x),

—C?+2Dy) s(z) = z,2')s(z _ox (@)
(3.76) exp (—Cf + zDy) s (z) /XPt(, )s( )(27r)dimX"
Then
1 dv
(3.77) Trs [gexp (—C? + 2Dy)]| = /XTrs [9P: (97 'z, z)] (275(%.

Standard results on heat kernels show that as ¢ — 0, the integral in (3.77) localizes
near the fixed point fibre X,. Then we combine the techniques of the local families
index theorem of [B3] with the techniques used in the proof of the Lefschetz fixed
point formulas to obtain (3.71). We refer to Section 13.3-13.5 for a detailed account
of the techniques which are needed in the proof of (3.71). This involves in particular
the use of the rescaling techniques of Berline-Getzler-Vergne [BeGeV, Chapter 10].
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The proof of our Theorem is completed. O

Now we obtain an equivariant extension of the Riemann-Roch-Grothendieck for-
mula of Bismut-Lott [BLo1, Theorem 3.17].

Theorem 3.25. — The following identity holds,
(3.78) hg (vH'<X1le>) = / e (TX,) hy (VF) in H®¥ (S, C).
X

g9

Proof. — Our result follows from Theorem 3.24. O

Remark 3.26. — From (3.78), we get, for any odd k € N,
. (k)
(3.79)  hy (VH <X’F|x>) — / e(TX,) hy (VF)™ in H* (5,C).
XQ

Since deg (e (T'Xy)) = dim Xy, we deduce from (3.79) that this identity still holds
when replacing h (z) = ze®” by h(z) = 2* for any odd k € N, and more generally,
by any arbitrary holomorphic odd function A ().

3.11. A transgression formula

As in [BLo1, Section 3 (i)], we imitate the constructions of Section 1.7 in an infinite
dimensional context.

Definition 3.27. — For t > 0, set

(3.80) hl (A’, g (X’F'X)> = oTr, [%gh'(Bt)J .
Similarly, put
(3.81) hp (c;, ey (X»le)) - ngrs[%gh’ (Dt)].
By (3.53), as in (1.49),
(3.82) my (40 (X’F|X)) = ) (Cp,g™ (XF1x)),
Proposition 3.28. — The following identities hold,
Q°*(X,F ) _
(3.83) ho (4,91 ( "‘)) = (2im)"/? oy Ty, [gh (VEB)],

m (40, (x.rix) ) = oui T [ Sow (VEB) |

Proof. — Using Proposition 3.17, the proof of our Proposition is the same as the
proof of Proposition 1.21. O

Now we have the obvious extension of [BLo1, Theorem 3.20] and of Theorem 1.18.
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Theorem 3.29. — The form h;) (A, ? (X’F|X)> is even. It is real if g = 1. Moreover,
*(x.Fix)
0, (p ot(een)y _ Bo(4he ")
(3.84) =-h (A, g )_ ; .

Clearly, the function Tr* [g] is locally constant on M. By the Lefschetz fixed point
formula, we get

(3.85) xo (F) = /X T [g]e (TX,).

Put

(3.86) X, (F) = fj (—1)7 FTeH XF1x) [g]
j=0

Then x4 (F), x, (f) are locally constant functions on S.
Now we state an extension of [BLol, Theorem 3.21].

Theorem 3.30. — Ast — 0,

(3.87) R (A', g?'(X’F"‘)) - Z-Xg (FYR (0) + O (\/Z ) .
Ast — +o0,
(3.88) ny (4, o (X’F"‘)) = %x; (F) I (0) + 0 (1/VE).

Proof. — Using Theorem 3.24, and by proceeding as in the proof of [BLol, Theorem
3.21], our Theorem follows. a

3.12. The equivariant analytic torsion forms

Now we follow [BLo1, Section 3 (j)] and Sections 1.9 and 1.10. Recall that h (z)
is still given by (3.66).

Definition 3.31. — Set
2% (F) ' (0)
— (B () - i ()) w (iE 2) | -

From Theorem 3.30, we find that the integral in the right-hand side of (3.89) is
well defined.

Now we establish an extension of [BLol, Theorem 3.23].

+o00
359) Ty (T701,67,97,7) == [ [y (407 (”'X)>‘
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Theorem 3.32. — The form Tp, 4, (THM, g™*, V¥, g¥) is even, and real if g = 1.
Moreover,

(3.90) dTn 4 (THM, g™, V¥, g") = / e (T Xy, VT ¥s) hy (VF,g")

9

— hy (VH‘(X,FIX) gf'(X’F'X))
) 2 *
Proof. — Our Theorem follows from Theorems 3.29 and 3.30. O

Remark 3.33. — The forms Ty, 4 (THM,g"*, V¥ g¥) are called analytic torsion
forms. By (3.90), we find that for any even k € N,

(391) d%,g (THM,gTX,VF,gF)(k) — / e (TXg,VTXg) hg (VF,gF)(k+l)

Xg

. . (k+1)
~hy (VH (X,le),gfz (X»le)) .

Let T"H M, g'TX, g'F be another triple of data. We will denote with an extra prime
the objects canonically attached to this new triple. Let € (TX,, VIXe, V' T%s) ¢
Q°(My)/dQ* (M) be the corresponding Chern-Simons class, so that

(3.92) de (T Xy, VT, V' TXo) = e (T Xy, V'TXo) — e (TX,, Vo).

Now we extend [BLo1l, Theorem 3.24].

Theorem 3.34. — The following identity holds,

(393) 77119 (TIHM, gITX, vF’glF) _ 771,9 (THM, gTX’ vF7gF) —

/ g(cr‘x'g7 VTXQ,VITXQ) hg (vF’gF) +/ e (TXg,V/TXg) Eg (vF,gF,gIF)
Xg

9

— Ry (VAT XN, gHEOOFI), GHEOEOY i Q2 () dg2* (5).

2

Proof. — The proof of Theorem is an easy consequence of functoriality of the forms
Th,g (THM, g%,V gF) and and Theorem 3.32. O

Remark 3.35. — Suppose that the connected components of X, have odd dimension.
This is true if X is orientable, and either X is odd dimensional and g preserves the
orientation, or X is even dimensional and g reverses the orientation. If H*(X, F|x) =
0, by Theorems 3.32 and 3.34, 7, 4 (THM, gTX, VF,gF) is a closed form on S whose
cohomology class does not depend on (TH M, g7, gF).

Remark 3.36. — Let (DX )_1 be the inverse of DX acting on the orthogonal bundle
to ker DX in Q*(X, F|x). For s € C,Re(s) > dim (X) /2, set

(3.94) 9, (s) = —Tr, [N (DXJ)“S] .
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Then ¥, (s) extends to a meromorphic function of s € C, which is holomorphic near
s = 0. By definition, the equivariant Ray-Singer analytic torsion [RS1], [BZ2] of the
de Rham complex (Q°*(X, F|x),dX) is given by % (0). In the case where g = 1, it
was shown by Bismut and Lott [BLo1l, Theorem 3.29] that

109
(3.95) T (THM, g™* VF, gF) @ = 552 (0).
The arguments in [BLo1] extend to the case of a general g. From equation (3.95),

we derive the anomaly formulas for equivariant Ray-Singer metrics given in [BZ2,
Theorem 0.1].

3.13. Analytic torsion forms associated to arbitrary functions

In [BLol] and in Section 3.12, we defined the form 7y, , (T# M, 7%, V¥, g¥) only
for h(z) = ze® . We claim that if h(x) is any holomorphic odd function such that
(1.54) holds, we can still define the torsion forms 7 4 (T# M, g7*, V¥, ¢¥), and that
the obvious analogues of the results of Sections 3.10-3.12 still hold. In fact because
of the decay condition (1.54), the operators h (B;) and h' (B;) are trace class. The
arguments on the behaviour of the considered forms as t — 400 can be adapted word
for word. As to the arguments on the behaviour if the forms as ¢t — 0, they can also
be reproduced. In fact, by using finite propagation speed as in Chapter 13, one shows
easily that the problem of convergence is local near X;. As in Chapter 13, we then
work with the resolvent equation, which leads to these convergence results.

Then we still have the degree by degree equation (3.91). We can write h (z) in the
form,

(3.96) h(z)= > bz,
keN
k odd
for k € N, k even, the right-hand side of (3.90) depends only on the ai+1. The question
then arises of knowing if 7,4 (TH M, g7X, VF,gF)(k) € Q°(S)/dQ*(S) depends on h
only via bgy1. We will provide a partial answer to this question.
From now on, we still take h (z) as in (3.66), i.e.

(3.97) h(z) = ze™ .

For a € C*, let \/a be any square root of a. Let R(a) be a polynomial. As in (2.73),
set

(3.98) ha(z) = R (%) —\}—ah(\/ax).

Then if a € RY, hq(x) verifies the assumptions in (1.54). We can then define the
analytic torsion forms Ty, 4 (TH M, g7X, V¥, gF). Also by Theorem 3.32, the even
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form 7p,, (TH# M, g"*s,g"") is such that

(3.99) dTh, o (THM, g™, V", g")

= / e (T Xy, VT¥0) (ha), (VF,gF) ~ (ha), (VH°(X’F’X),gf;(X’F|X)) _

Xg

Theorem 3.37. — For a € R}, the following identity holds,

d
(3.100) Thag (THM, g™, VF gF) =R (%) VaTh,g (THM, ™%, VF, gF) .

Proof. — Clearly,
0

(3.101) Th, o (T M, g™, V", g") = R (_) Tvay/vag (T M, g™, V", g")

Oa
Also by Proposition 3.17,
(3.102) VaCy = 1, Copth7 L.
From (3.89), (3.101), (3.102), we get (3.100).

73

|

Remark 3.38. — Theorem 3.37 gives a strong indication that for any even k£ € N,

Th,g (THM, gTX, VF,gF)(k) € Q° (S)/dQ’(S) depends on h only via bg41.

3.14. An identity for k (D)

For simplicity, we assume temporarily that M is compact. With the notation in

(3.61),

(3.103) BO —v.

As in (2.18), we get

(3.104) Sp(B) = Sp (B<°>) .
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Since ker B(O) ~ H*(X, F|x) has constant rank, there exists d; € R’ such that
(3.105) ’Sp (B(O))’ c {0} U [2dy, +oo].

Let @ (z) be an odd polynomial. Let k (z) be the holomorphic odd function,
(3.106) k(z)=Q(z)e* .

Recall that 6 C C is the circle of centre 0 and radius 1. Let A = AL U A_ be the
contour in C indicated in Figure 3.1.

Definition 3.39. — For t > 0, set

1 [ k(VEN
R Sl AV
(3.107) G: =1, 2ir Ja A= B d\y,
E(VEN)
H, = ¢; ! — 7 .
t wt %1_5 \_B dA’(/)t
Proposition 3.40. — For any t > 0,
(3.108) k(D) = Gy + H;.
Proof. — The proof is the same as the proof of Proposition 2.9. O

Let I° be the vector bundle of Ly sections of A*(T*X) ® F along the fibres X, and
let || ||, be the norm on I° associated to the Hermitian product (3.29). If L € £ (I9),
for p > 1, put

(3.109) Il = Tr [(L*L)"?] v

Then (3.109) defines a norm on a vector subspace of £ (I°). For p = 1, we get the
trace class operators. For p = oo, by definition || ||, = || || is the ordinary operator
norm on L (I°).

Now we establish an analogue of Proposition 2.10.

Proposition 3.41. — There exist C > 0,c > 0 such that fort > 1,
(3.110) |Gell, < Ce™.
Proof. — Take p € N,p > dim X. Let kj, (\) be the unique holomorphic function on

C\ R such that

— As XA — %ioo, k, () — 0.
— The following identity holds,

k)
(3.111) N k(N).
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Clearly, if A € A,

(3.112) IRe (V)] < %]Im()\)l.
Using (3.112), we find that there exist C > 0,C” > 0 such that if A € A,
(3.113) ‘k,, (\/E,\)’ < Cexp (—C”tA|>\|2> .
Clearly,
(3.114) %ir Ja k)\(\_/ig) X\ = #//_\ ﬂp_A(Ef\—z:%’.dA'

If A\ € A, we have the expansion,
-1 -1 -1
(3.115) (A—B)'= ()\ - B<°>) + (,\ - B(°>) BGY ()\ - B(0>) 4o

and the expansion only contains a finite number of terms. Also by (3.45), B> is
an operator of order 0. By (3.105), (3.115), we find that there is C' > 0 such that if
A€ A,

(3.116) “(,\—B)‘lu <C

oo

Fix A\g € A. Since p > dim X, and B is fibrewise elliptic of order 1,

(3.117) [0 =B)7Y| < +oo.

If X € A,

(3.118) A=B) '=MN-B)'+A=-X)N-B)\A-B)".
From (3.116)-(3.118), we find that if A € A,

(3.119) 6= <carinfoo-B)7 <cra+m.

Using (3.119), we find that if A € A,

(3.120) “()\—B)_”Hl <C(L+ AP

From (3.107), (3.113), (3.114), (3.120), we get (3.110). The proof of our Proposition
is completed. O

We still proceed as in Section 2.3. Let P{°} be the orthogonal projection operator
from Q*(X, F|x) on ker BO ~ H*(X, F|x). Set
(3.121) plot — 1 _ pio},
Then P{%} is the orthogonal projection operator, which projects on the orthogonal
bundle (ker B(O))l to ker B in Q* (X, F|x). Also B(® acts as an invertible operator

on (ker B(O))J'. Let (B(O))_1 denote its inverse. We extend (B(O))—1 to an operator
which acts like 0 on ker B().
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Theorem 3.42. — The obuvious analogue of Theorem 2.11 holds. In particular, ast —
+00,
(3.122) | e = PO (B CeF1) POY| = o (1/vi).

1

Proof. — To establish the analogue of (2.30), we proceed as in the proof of Theorem
2.11. To prove (3.122), we also proceed as in the proof of Theorem 2.11. In fact
observe that in (2.30), ip > 1, so that P{% appears at least once. Now P{%} is a
projector on a finite dimensional vector bundle, and in particular it is trace class.
Since all the operators appearing in the right-hand side of (2.30) are bounded , the
proof of (3.122) then proceeds as the proof of (2.31). O

3.15. A convergence result

Let £ € [0,1] — V{ be a smooth one parameter family of flat connections on the
vector bundle F. Let H* (X, F'), be the cohomology of the fibres X with coefficient
in (F, V{ ) As in Section 2.3, the objects we just considered which are associated to
(THM, g™X,V}F, gF") will be denoted with the subscript .

Recall that h(z) = ze® . Let k(x) be given as in (2.76).

Theorem 3.43. — Fort > 0, the following identity holds,

01 ;9% (X,F|x 2} 0 e .
(3.123) &?h;\ (Ap, 9; ( )) = EchTrs [gk(Be,t)%Ae,t] in Q°(S)/dQ* (S).

Proof. — The proof of our Theorem is the same as the proof of Theorem 2.13. O

Now, we make the assumption that the rank of H* (X, F'), does not depend on £.
Then H* (X, F), depends smoothly on ¢.

As in Section 2.3, we identify H* (X, F'), to a smooth finite dimensional G-invariant
subbundle of Q* (X, F|x). By orthogonal projection on H* (X, F),, given s € S, we
obtain a unitary connection on the bundle H* (X, F) , over [0,1]. We can then
trivialize H* (X, F) , on [0,1] with respect to this connection. In particular the flat

connections V" (X:Flx)e can now be viewed as a smooth family of flat connections
Vf.(X’le ) on the fixed vector bundle H *(X, F|x) over S, which is equipped with a
metric gf;(X’le). We denote by ¢ € [0,1] — Vf'(X,le ) the corresponding smooth
family of flat connections on H*(X, F|x).

Let k (z) be a holomorphic odd function given by (3.106).

Theorem 3.44. — Ast — 400,

b} H*(Ewe)\ O GH®(Bv0)u
(3.124) ¢Trs l:gk(Bl,t)&ALt] = ¢Trs [9’“ (Be ) o6 '
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Proof. — We proceed as in the proof of Theorem 2.14. The analogue of (2.41) still
holds. First we assume that M is compact. Since the rank of H* (X, F'), is constant,
we may and we will assume that d; € R is such that (3.105) holds for every £ € [0,1].
By Proposition 3.40,

(3.125) k(Deyt) =Gt + Hey.
Clearly, we have an analogue of (2.44), and the operators which appear in the

right-hand side of (2.44) are of order 0. Using Proposition 3.41, we get

(3.126) ”n«s [gGg ‘5 eCl t] < Ce™ .

Moreover we observe again that in the analogue of (2.30), we have iy > 1, i.e. P{0}
appears at least once. Since P{°} has constant rank, it follows that uniform bound
estimates can be transformed to trace class estimates. We can then continue the proof
of our Theorem in the same way as when we proved Theorem 2.13, and so we get
(3.124) when M is compact. By restriction to compact pieces of S, we obtain our
Theorem in full generality. O

3.16. Rigidity formulas for the analytic torsion forms

We make the same assumptions as in Section 3.15. Recall that h (z) = ze® . We

still define the function k(z) as in (2.76). Namely
K (x) — h' (0)
2z '
Let Li g (V{,9%) , Lrg (Vf.(X’FIX),gf;(X’HX)) be defined as in Definition 2.4.

(3.127) k(z) =

Theorem 3.45. — The following identity holds,
>
(3.128)  [Tng (T M, g™, VF,gF) = T, (TH M, g7X,VE gF)]P? =

/X e (T Xy, V™) Lig (VF,97) =Ly (V7 X110, gl OFI) i 2 (8) a2 (5).

Proof. — We proceed as in the proof of Theorems 2.17 and 2.20. We use the notation
in the proof of Theorem 2.20, with h(z) = ze®”. By Theorem 3.37,

d
(3.129) T (TP M, g™* V7 gF) = %%TM (THM, ™%, V¥, ") |azn.

Clearly Theorem 3.43 still holds when replacing h by h, i.e.

(3.130) %A(A“, g7 %, ¢") = g [gk(B“) Au] in Q°(5)/dQ*(S).

In fact, since degh > 3, the obvious analogue of Theorem 2.1 holds. By proceeding
as in the proof of Theorem 2.13, we get (3.130).
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Now, by proceeding as in [BLo1l, proof of Theorem 3.16], we obtain,

, - ] - 0 —Fu
(3.131) lim o Tr, [gk(Bg,t) &Ag,t] = /X e (TXy, VT¥s) Tr, [gk (Bf) wvi ]

Also by Theorem 3.44,

. = 0 _ = ([ H* (X,Flx)\ O oH®(X,Flx)u
(3.132)  lim oTrs [gk(BZ,t) é-éAz,t] = Trs [gk (Be ) 57Vt .

From (3.130)-(3.132), we get
(3133) [T, (THM, g™, VF,gF) - T | (TH M, g™, VE g)| =

/X e (TXg, V7%0) Ly, (VE,97) = Ly, (Vi) gf XF1))
9

in Q°(5)/dQ*(S).

Using (2.83), (3.129), (3.133) and the fact that the degree of e (T'X,, VT%9) is pre-
cisely dim X, the proof of our Theorem then continues continues as the proof of
Theorem 2.20. O

3.17. The Chern analytic torsion forms

Now, we extend Definition 2.40 to our infinite dimensional setting.
Definition 3.46. — Put
(3.134) Teng (THM, g"* VT, g") = QTh (TH M, g™*,VF,g").

The even forms Ten 4 (TH M, g7*, V¥, gF') will be called Chern analytic torsion
forms.

Theorem 3.47. — If g = 1, the forms Ten,g (THM,g"*, V¥, g") are real. Also the
following identity of forms holds on S,

(3.135) dZeny (THM, g™, VF, gF) = / e (TX,y,VTXe) chg (VF,g")
Xg

— ch? (VH’(x,ﬂx), gfz'(x,ﬂm) '
Proof. — Our Theorem follows from Theorem 3.32 and from Remark 2.30. O

Remark 3.48. — The main point of Definition 3.46 is that we have now normalized
the analytic torsion forms without any ambiguity.
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CHAPTER 4

THE ANALYTIC TORSION FORMS
OF A Z,-GRADED VECTOR BUNDLE

The purpose of this Chapter is to evaluate the equivariant analytic torsion forms
of an Euclidean Z,-graded vector bundle equipped with a metric connection in terms
of genera I (6, z) and J (6,x). This evaluation is of critical importance in our proof
of the formula relating the higher analytic torsion forms to the combinatorial torsion
forms.

The evaluation of these equivariant analytic torsion forms in de Rham cohomology
is also related to the evaluation of corresponding holomorphic torsion forms for holo-
morphic vector bundles in Bismut [B7, B8|. These last torsion forms were calculated
in terms of the genus R(z) of Gillet and Soulé [GS1] in the case where the considered
group action is trivial, and of the more general genus R(6,z) introduced in [B8] in
the general case. Let L(6,s) = S, €™ /n® be the Lerch series. As explained in the
introduction, the genus R(6, z) is expressed in terms of the real part of L(0,.) and its
first derivative at odd negative integers, and of its imaginary part and its first deriva-
tive at even negative integers. Here, the Chern analytic torsion forms are expressed
using the genus J(6,z). The remarkable fact about J(6,z) is that it is expressed as
a power series in which the role of even and odd negative integers are interchanged
with respect to the corresponding expression for R (6,z) given in [B7, B8]. Up to
irrelevant normalizing factors, one can even consider that for some mysterious reason,
the two series are complementary to each other.

The relation of the present Chapter to [B7, B8] is even more obvious at the
computational level. In fact we use directly the results of [B7, B8] to evaluate our
analytic torsion forms.

On the other hand, up to a factor 1/2, given r € N*, the Fourier transform of
J(%,z) on Z/rZ is directly related to the genus obtained by Bismut-Lott [BLol,
Corollary 4.14] in their evaluation of the analytic torsion forms of circle bundles. As
we shall see in Chapter 16, this coincidence is not an accident, since we will show that
the formulas in [BLo1] are in fact consequences of the main result of this paper.
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This Chapter is organized as follows. In Section 4.1, we construct the flat super-
connection of the considered Z2-graded vector bundle. In Section 4.2, following [B8],
we introduce a function o(u,n, z), and we evaluate the relevant supertraces in terms
of this function. In Section 4.3, we obtain the asymptotics of these supertraces as a
parameter 1" tends to 0 and +o00. In Section 4.4, we construct the higher analytic tor-
sion forms associated to the function h(z) = ze®” in positive degree, and we evaluate
these forms in terms of the additive genus associated to a function I(#,z). In Section
4.5, we introduce the corresponding Chern analytic torsion forms, which we express
in terms of the genus associated to a function J (8, z). In Section 4.6, we compute
the function I(6, z) in terms of the Lerch series, and in Section 4.8 we make a related
computation for the function J (6, z). Finally in Section 4.8, we exhibit the striking
relation of the genus J (6, z) to the genus R (6, z) which we have described above.

4.1. The flat superconnection of a Z,-graded vector bundle

In this Section, we use the notation and the results of Section 3.

Let M be a manifold. Let 7 : E = E, & E_ — M be a Zs-graded real vector
bundle on the manifold M. Set ny = dim Fy,n = dim F, so that n = n4 +n_. Let
gF = gP+ @ ¢g¥- be an Euclidean metric on E = E, ® F_ such that £, and E_
are orthogonal in E. Let VF = VE+ @ VF- be a metric preserving connection on
E =E, ®E_, and let R¥ = RF+ @ RF- be its curvature.

Let g € End(F) be an isometry of E, which preserves the splitting E = F, @ E_
and which is parallel with respect to V. In particular g commutes with R®. Let
e 0 < 0; < m,1 < j < ¢q and possibly 1, —1 be the locally constant eigenvalues
of g. Then E ®r C splits into mutually orthogonal eigenbundles according to the
distinct eigenvalues of g. The connection V¥ = VF+ @ VF- and the curvature
RF = RF+ @ RE- preserve the above splittings. In particular, we have the orthogonal
splitting of Zs-graded complex vector bundles
(4.1) EorC=E'¢E' @ (E" o Ee‘”") .

1<5<q
In (4.1), Et! and E~! are complexifications of real vector bundles (they are possi-
bly zero), and ECY @ B¢ is the complexification of a real vector bundle. The
connection VF preserves the splitting (4.1). We will denote by VZ ' ,. .. the induced
connections on E!... and by RF 1, ... the corresponding curvatures.

Definition 4.1. — For x € M, let I, (resp. I?) be the vector space of smooth (resp.
square integrable) sections of 7*A(E*) along the fibre E,.

We equip 10 with the Ly scalar product,

(4.2) 58 €10 (5,5) = / (s, ') (z)dvg (z).

x
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Let d® be the de Rham operator acting along the fibres I.
The connection VE induces a horizontal vector bundle T# E on the total space of
E. Then one verifies easily that with the notation in (3.11),if U,V € TM,Z € E,

(4.3) THU, V)= RE(U,V)Z.

Also, with the notation in [BLo1, Definition 3.2] and in (3.10), if U € TM,if sis a
smooth section of I on M,

(4.4) Vis=vAE)g,

Let C’ be the canonical flat superconnection on I which is attached to the above
situation as in [BLo1l, Section 3 (b)] and in Section 3.2. By [BLo1, Proposition 3.4]
or by Proposition 3.3, and by (4.3), (4.4),

(4.5) C' =d¥ + V! +igey.
Let ¢ : E — R be the smooth function, such that if Z = (Z;,Z_)e E=E, ®E_,
1
(46) W(2) = 5 (124 - 12-1).
Then q is a fibrewise Morse function, whose only critical point 0 has index dim E_.
For T € R, let g® be the metric on R given by
2 _ _-2oT
(4.7) 1112 = =27,
In the sequel, R will be considered as a flat twisting bundle on the total space of F.

Let C! be the adjoint flat superconnection of C’ with respect to the metrics g¥, g®.
A special case of Proposition 3.8 is as follows.

Proposition 4.2. — The following identity holds,

(4.8) Cf=dP* +2Tiz, 7z +VI—REZA.
Proof. — This is an obvious computation, which is left to the reader. O
Put
1 " / 1 1 !

(4.9) CT=—2—(CT+C), DT:§(CT—C).
A related construction is as follows. Put
(4.10) Cp=eTiCeT, Cp = eTacle T,

_ T E— — 1 v -

Cr= §(CT +Crp), Dr = '2‘(CT_CT)'

Then E'T is a flat superconnection on I, and E;C is its adjoint with respect to the
metric gF. Also,

(4.11) Cr =eTacpe™e, Dr =e TaDgeT,
Now we will use the notation of Section 3.5 on Clifford algebras. Let e,...,en,
be an orthonormal basis of Ey, let e, 11,...,€n,+n_ be an orthonormal basis of
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E_. Let N1, N_ be the number operators of A(E}), A(E*). Then Ny, N_ extend to
operators acting on A(FE). One has the trivial identity,

(4.12) > cle)eles) = 2Ny —ny, > cle;)éle;) = 2N_ —n_.

1SiSny ny+1SiSng+n-
Proposition 4.3. — The following identities hold,
(4.13) Cr=dP +T(Zy — Z)AN+V! +igey,
Cr=d" +Tiz,_yz +VI —REZA.
Proof. — This follows from (4.5) and from Proposition 4.2. O
Theorem 4.4. — The following identity holds,

= 1 1 POSNN
(4.14) C; =-7 (Ve, + (REZ, ei))2 + ~(ei, REe;)c(e;)c(e;)

4
T2 T ~ ~
+ ‘4*|Z|2 +7 ( Z c(ei)e(e:) — Z C(ei)c(ei)> -
1<i<ny ny+1<i<ny+n_

Proof. — Our formula follows from [BLo1, Theorem 3.11], which was stated in The-
orem 3.19, or from a simple direct computation. O

4.2. The superconnection heat kernel and the function o

Definition 4.5. — For T € R, let Pr(Z, Z’) be the smooth kernel of exp (—5}2> with
respect to dvg(Z')/(2n)3™E,

For T € R*, let Qr be the obvious square root of T2 + RF>2, Then

E
(4.15) Qr =T (1+§%+...).

Theorem 4.6. — For T € R*, the following identity holds,

1/2
(4.16) Pr(Z,2') =2"*det (Sml?(T%/m)

exp ( - <%Z,Z> - <g§(7£72—)Z'»Z'> + 2<%Z, z’>)

exp<-§( S dedle) - Y c(ei)E(e,.))

1<i<ny ny+1<i<ny+n_
1 PO
-7 (& RPe;) C(ei)c(ej)).

Proof. — Identity (4.16) follows (4.14) and from Mehler’s formula as in [B8, eq.
(4.48)]. O
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If z € C, /z denotes an arbitrary (but fixed) square root of z. Now we follow [BS8,
Definition 4.1].

Definition 4.7. — Yor u,n,z € C, put

x—277+\/m2+4u> Sinh<—m+2n+\/m>
4 4 ’

(4.17)  o(u,n,z) = 4sinh (

Clearly o(u, 7, z) is a holomorphic function of its arguments, which does not depend
on the choice of the square root v/z2 + 4u. Also o(u,6,z) is periodic in 8 of period
2m. Moreover,

(418) U(u’ m, [E) = U(uv -, —CL').
It follows from the above that
(4.19) o (u,im,z) = o (u, —im, z).

Also, one finds easily that as u — 0,

o (u,0,z) . sinh (z/2)

(4.20) . o2

If the eigenvalues of g are distinct of —1, there is B € End®'*" (E), antisymmetric,
such that

(4.21) g=é€b.

Suppose now that g is just —1 € End (F). In this case, we write
(4.22) g=e".

By extending (4.21) to this case, if

(4.23) B =i,

then we still have (4.21).

By the above, we can always write g in the form (4.21) , with B € End®*"*" (F)®grC,
with B = i on E~!. We may and we will assume that B is parallel with respect to
VZ, so that B commutes with RE.

Observe that o (T2/4, B, RP) is a well defined element of End (E), which does not
depend on our choice of B.

As in (3.6), g acts on I by the formula,

(4.24) (95)(2) = g.s(g7' 2).

The smooth kernel associated to the operator gexp (—EZT) is just gPr(¢~'Z,2'). In
this last expression, g denotes the obvious action on A(E*).
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Proposition 4.8. — The following identity holds,

1/2
(4.25) gPr(g~'Z,2) = 2"/*det (M)

sinh (Qr/2)
exp (— <'s5n}?(TT/j/2)U (T?%/4, B, RF) Z, Z>)
soo(-1( X dedite)- B cleseten)
1<i<ny ny+1<is<ny+n_

1
- Z <61‘, RE8j> 8(61)6(6])) .
Proof. — This follows from Theorem 4.6. O

In the next Proposition, we evaluate the supertrace of certain operators acting on
A(E*). Let N = N4 + N_ be the number operator of A (E*).

Proposition 4.9. — For T € R, the following identity holds,

(4.26) Tr, [g exp (“% ( > cle)ele:) — > C(ei)g(ei)>

1<i<ny ny+1<i<ny+n_
-1 {en REej>a(ei)a(ej)>}
= (~1)4m B get [0 (T2/4, B, RF)] "2,
Moreover,
(4.27)
g (v-F)aen(-T( X demer - 3 e
1<i<ny ny+1<i<ny+n_
_ i (es, REej>5(e,-)E(ej)>]
i ST
Proof. — First we assume that E, and E_ are even dimensional, and that there is

B € End (E), preserving the splitting, parallel and antisymmetric, such that g = eB.

In particular dim E! is even. We have the easy formula,

(428) Blage) = 7 (Bewes) (cledeles) — 2len)i(es))

Also in (4.26) we may as well replace g by exp (B|A(E*).
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By [BZ1, Proposition 4.9], among the monomials in the c(e;), c(e;), up to permu-
tation, the only monomial whose supertrace is non zero is c(ej)c(e1) - - - ¢(en)c(en),
and moreover,

(4.29) Trs [c(e1)é(er) - - - c(en)clen)] = (—2)".

Assume first that E_ = 0, so that E = E,. We will use the results of [B7,
Theorem 6.4] in the case B = 0, and [B8, Theorem 4.5] in the general case. In
[B7] and [B8], a similar computation is done when n is even (the underlying vector
bundle is complex), with anticommuting Clifford variables c(e;), ¢(e;), such that, as
explained in [B7, eq. (6.25)], the only monomial up to permutation whose supertrace
is non zero is c(ey) - - - c(en)c(e1) - - - €(en), and moreover,

(4.30) Trs [c(e1) -+~ c(en)cler) - - Clen)] = 2™
From (4.30), since n is even, we get
(4.31) Trs [c(e1)ic(er) - - - c(en)ic(en)] = 2™.

Using (3.34), and comparing (4.29) and (4.31), we see we can use the results of [B7]
and [B8] without any change in this case. Therefore we get (4.26).

In the general case, we replace E by E® E. Then g acts on E @ E as before. Also
(E®E), and (E® E)_ are trivially even dimensional. We claim that the action of
g on E @ F verifies the above assumptions. This is clear if no eigenvalue of g is equal
to —1. If the action of g on E is equal to —1, then g|ggE is of the form g = ¢™B, with
B € End (FE @ E) the obvious symplectic endomorphism. We can then use formula
(4.26) applied to E @ E. The obtained identity is then just the square of the identity
(4.26) we are looking for E. Using analyticity, to verify that (4.26) holds, we only
need to verify that the right-hand side of (4.26) has the right sign. However in this
case, for RF = 0, the left hand-side of (4.26) is just (2cosh (T/4))™™ ¥, which fits
with (4.26). Therefore, we have established (4.26) in full generality.

Still assuming that F = E; or E = E_, and using (4.12), we get (4.27) by
differentiating (4.26) in T. By summing the corresponding equalities, (4.27) follows.
The proof of our Proposition is completed. O

Remark 4.10. — The formula corresponding to (4.26) when T' < 0 can be obtained
from (4.26) by exchanging the roles of E; and E_.

The operator gexp (—C2) is fibrewise trace class. We will now evaluate its super-
trace. We use the notation in (4.1). In particular E1 denotes the 1-subbundle of E_
with respect to the action of g.
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Proposition 4.11. — Given T € R, the following identities hold,
Tr, [gexp (—C2)] = (—1)3m &=

1

(4.32) - §TI‘S [(N - g_) gexp (—C’%)] = (~1)dimBLpy [1 20 (T?/4, B, RF)

2 o(T?/4,B,RE)
20 (T?/4, B, RF)
o (T?/4, B, RF)

b

T, [Tqgexp (—C2)] = (~1)%m B~ T, [%

Proof. — Clearly,

(4.33) T, [gexp (-CF)] = /E Tts [9Pr(9™' 2, 2)] (‘;ff%

The first equality in (4.32) now follows from Propositions 4.8 and 4.9. The proof of
the second equality is similar. Using Propositions 4.8 and 4.9, and the obvious

Foo dx 1
2 _y oz 1
(4.34) /_ z® exp (—2?) NAubr

we get
(4.35) Tr [Tqgexp (—C%)]

. 11 sinh (Q—2T) T
— (_1)d1m E_ —’I\fs
2 sinh (RE_24B+QT) sinh (-—RE+iB+QT) 4QT

Also,

1 1 T
4.36) —-Tr +
(4.36) 2 [ (tanh (RE—zf+QT ) tanh (—RE+ZB+QT ) ) 4QT}

) sinh (%l) T
=g | (BE=2P49r ) sinh (=RE425+92 ) 4Q1

From (4.35), (4.36) we get the last equality in (4.32). The proof of our Proposition is
completed. O

Remark 4.12. — By Witten [W], we know that for 7' > 0, the L2 cohomology of the
complex (I,d? 4+ TdfA) is the compactly supported cohomology of E_. Therefore its
equivariant Euler characteristic xr,(g) is given by

(4.37) X£2(9) = (~1)5™E= det (g]p—) = (1) F~ .

Comparing (4.32) and (4.37), we see that the first equality in (4.32) is just a version of
[BLo1, Theorem 3.15] or of Proposition 3.22 applied to the noncompact fibres E. A
direct proof of this equality can be given by arguments similar to the ones in [BLo1].
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4.3. The asymptotics of the heat equation supertraces

We state a simple result in [B8, Proposition 4.2].

Proposition 4.13. — For u,0,x € C, the following identity holds,
((0+2k7r)2 +i(0+2kn)z +u>

. 2 .
(4.38) o(u,i6,z) = (6 + 0z + u) H T
kezZ*
Now we will take the logarithmic derivative of identity (4.38).

Proposition4.14. — For § € R,z € C,T € R*, and |z| < 27 if 0 € 27Z, |z| <
infrez |0 + 2km| if 0 ¢ 2nZ, the following identity holds,

1 20 (T2/4,i6, T
(4.39) -BT”(2 /4,19,2) = .
2 o(T%/4,i0,x) {5, T% +4i (0 + 2km)z + 4 (0 + 2kn)

Proof. — This is an obvious consequence of Proposition 4.13. O

Proposition 4.15. — AsT — 0,

1 50 (T?/4,i0,z) 1 ,
(4.40) 3 o Libz) T +O(T) if 6 € 27Z,
=0(T) if 0 ¢ 2nZ.

As T — 400,

3 2/4 7

=0 (1T7/4,10, 1
(4.41) Lapo (IP/4i05) 1, (1Y

2 0(T?/4,i6,%) 4 T2

Proof. — Using (4.39), we get (4.40). A direct computation leads to (4.41). |
Remark 4.16. — An obvious computation shows that in (4.41), in degree 0, the con-

vergence is in fact O(e~7/2).

Recall that E' = E1 @ E! is the fixed subbundle of E = E; & E_ under g.

Proposition 4.17. — AsT — 0,

dim E_ dim E_l'_ — dim E_l_
T

(4.42) —%m [(¥=3) gexp (-c3)] = (-1) +O(T).

AsT — 400,

(4.43) —%Trs [(N - g) gexp (—C%)] = (-—1)dhnE1 dim B — dim E- +0 < ! ) .

4

Proof. — This follows from Propositions 4.11 and 4.15. O
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4.4. The higher analytic torsion forms of a Z;-graded vector bundle

Now we may develop the rescaling formalism of Section 3.7. Namely, for ¢ > 0,
we can replace the metric g¥ by the metric g /t, and consider the associated super-
connections. Instead, we will develop directly the equivalent formalism of Definition
3.16. Set

(4.44) Cip = tN2Cpt N2, Cilp =t~ N2CqtN 2,

Then C; 1 is a flat superconnection, and C}';. is its adjoint with respect to the metrics
g%, g%, Set

(445)  Cur=3 (Clr+Cla). Dz =5 (Clir —Char).

Recall that ¢, was defined in (1.50). As in Proposition 3.17,

(4.46) Cer = ;' VECrir, Dy = ¢; Vi Drijy.
Recall that

(4.47) h(z) = ze®, W(z) = (1+222) e”

Proposition 4.18. — Given T > 0, the following identities hold,
(4.48)

5T [(N = 3) ot (D)) = (1 + 2 ) Yo = 5T [(¥ = 5 ) exp (= Chur) ] e,
Tre [Tqgh’ (De.1)] = (1 +2— ) Yo Tr [taqu exp (— CtaT)] la=1-

Proof. — For v > 0, let F, : I — I be given by

(4.49) Fys(Z)=s(Z/v).

By (4.13), we find that

(4.50) Dir=F ﬁDtTF;g.

Using (4.46), (4.47), (4.50), we get the first identity in (4.48). The proof of the second
identity is similar. O

By (4.50), we get
1 n , 1 n ,
(5= B) o] L (v - D)o 0]
By Propositions 4.11 and 4.18,

1 n ’ _ !/
(4.52) _§Trs [(N - 5) gh (Dt,T)] = Trs [Tqgh’ (De,1)] -
Using Propositions 4.17 and 4.18, we find that as T — 0,

dim E! dlm E_l'_ - dlm El

(53 3T [(N = 2) gh’ (Dr)] =~ (-1 —= o),

(4.51)
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and that as T' — 400,

(4.54) —%m [(N - g) gh’ (DT)] —(=1)

dim EY dim E+ —dim F_ o) i
4 T2 )"
If a is a form on M, let a(>® be the component of o which has positive degree.

By Proposition 4.11,

](>0)

1 n ’ o 1 / (>0)
(455)  —3Tx, (v - 5) gh' (Der)| = =5 Tre [Ngh' (D)7

Using (4.51), (4.53)-(4.55), we can construct the higher analytic torsion forms in
positive degree of (E, gF,VE ) by imitating Definition 3.31.

Definition 4.19. — The analytic torsion forms 7, 4 (E, g%, VF) (>0 are defined by the
formula,

>0 g

0 Foo N
(4.56) Th,g(E,gE,VE)(”:%O/ T [?gh’wﬂ] T
0

By (4.52), (4.55), we know that in (4.56), we may replace —Trs [§ gh’ (DT)](>O)
by Trs [T fgh' (DT)](>O) and still obtain the same result.
Let NA*(T"M) be the number operator of A*(T*M).

Proposition 4.20. — The following identity holds,

(4.57)
+o0 (>0)
Ty (£,97.79) 7 = o (14.800) [Tty [ Foem (-ch)| T
0

Proof. — By (4.48), (4.55), (4.56), we get

(4.58) Th, (E g%, V)" =

o oo N 1G9 dr
) (1 + 2%) Va (/0 —Tr, [;gexp (—CT)] T la=1,
which is equivalent to (4.57). a

If f(z) is a holomorphic function of € C, we denote by f(>9(z) the function

f(z) = £(0).
Observe that by Proposition 4.15, the function of s € C,1 < Re(s) < 2,

1 /+°° — 1550 (T?/4,i6,-z) 1 .
25T'(s) Jo 2 o(T?/4,i0,—x) 4

extends to a holomorphic function of s near s = 0.
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Definition 4.21. — For x € C,0 € R, |z| < 27 if § € 27Z, |z| < infkez |0 + 2kn]| if
0 ¢ 27Z, put

“'°° i0 2/4,i0, —x
(4.59) F(6,z) = [zsr o / (% o (g/ f;a, _x)) _ i.) dT] (3) |s=0,
1(6,z) = <1 + 2x£) F(0,z).

Observe that by (4.40),

(>0)
too 11 25 (T2/4,i0, —2) dT
4.60 F (6 <>°)=/ _or =.
(4.60) (6,2) o |2 o(T2/4,i0,—x) T
By (4.18), we find that
(4.61) F(0,z) = F(-0,—z), I(6,z) = I(—0, —z).

We identify F(0,z),1(6,z) to the corresponding additive genera. In particular,

Eeiwj REeiwj
(4.62) I(iej,v ):ﬁs I{+6;,——— :

By (4.61),

wj e—iej
(4.63) I (ej,vEe ) =17 <—ej,vE ) .

We define I (0, VEI) v (7r, VE_I) in the same way.

Definition 4.22. — Set

1 -1 93

(4.64) 1,(E,VF) =1(o,vE ) +I(7r,VE )+2 3 I(ej,vE )
1<5<q
Equivalently,
E . RP

(4.65) I, (E,V ) = Tre [I (—zB,-%H .
Theorem 4.23. — The following identity holds,

(>0) dim E!
(4.66) Thg (E, g%, VE)"7 = (=1)"™ 5= [0 (E,VF).

In particular the forms Tp 4 (E, gE,VE)(>O) are even, closed, and their cohomology
class does not depend on gF or VE.

Proof. — Equation (4.66) follows from Propositions 4.11 and 4.20. Our Theorem
follows. a

ASTERISQUE 275



4.6. THE LERCH SERIES AND THE FUNCTION I(6,z) 91

4.5. The Chern analytic torsion forms of a Zs-graded vector bundle

Recall that the operator Q : A*(T*M) — A*(T*M) was defined in (2.117). Now
we imitate Definitions 2.40 and 3.46.

Definition 4.24. — Put
(467) 7::h,g (Ea gEv VE)(>O) = Q'];hg (E’gE’ VE)(>0) :
In (2.116), if f : C — C is analytic, we also defined Qf (z).

Definition 4.25. — For z € C,0 € R, |z| < 27 if § € 27Z, |z| < infkez |0 + 2kn| if
6 ¢ 2nZ, put

(4.68) J(0,z) =QI(0,z).

We define the form J, (E,VF) as in (4.64), (4.65), using instead the function
J (6,z). Then

. R"
(4.69) Jg (E,VF) = Trg [J (—ZB, —%H :
By (4.68),
(4.70) Jy (B,VE) =QI, (E,VF).

Theorem 4.26. — The following identity holds,
(4.71) Tong (B, g%, VE)T? = (—1)8m B jC0) (B vF)

In particular the forms Ten 4 (E, g%, VE )(>O) are even, closed, and their cohomology
class does not depend on g¥ and VE.

Proof. — This follows from Theorem 4.23. O

4.6. The Lerch series and the function I(6, z)
Fora€ Z,z € R,y € R,s € C, let S,(z,y, s) be the Kronecker zeta function,
(4.72) Sa(z,y,8) = Z (24 n)" |z + n| e 2,
nez

where in (4.72), Z;ez is a sum over n € Z,n # —z. The series in (4.72) converges
absolutely for Re(s) > %tL and defines a holomorphic function of s. Also it is periodic
of period 1 in both variables z,y. By [We, p57],

1. If a is odd, or if a is even and y ¢ Z, s — S,(z,y,s) has a holomorphic
continuation to C.

2. If a is even and if y € Z, s — S,(z,y, s) extends to a meromorphic function on
C with a simple pole at s = aT‘H
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Let ¢(s) = 3% & be the Riemann zeta function. Then
(4.73) S0(0,0, s) = 2¢(2s), $1(0,0,s) = 0.

Also by [We, p57], we have the functional equation for S,(z,y,s),a =0 or 1,
; 1
(4.74) T(s)Sa(a,y,s) =i~ n> e~ /2e2moup (“ —s+ 5) Sa (y, —za— s+ %) .

By (4.74), it follows that for a = 0,1, S,(z,y,.) vanishes at negative integers, and
Si(z,y,.) also vanishes at 0.

Definition 4.27. — For y € R, s € C,Re(s) > 1, set

+o00 oo

cos (ny sin (ny
@) =) ny,s) =3 ),
n=1 n=1
Then ((y,s) and 7n(y,s) are the real and imaginary parts of the Lerch series
+oo giny
L(y,s) = . Clearly,

n=1 ns

@16 =35 (013, s =1s (o,i,ﬁ).

271’2 o’ 2

Ify ¢ 27Z, s — ((y, s) extends to a holomorphic function on C, ify € 27Z, s — ((y, s)
extends to a meromorphic function on C with a simple pole at s = 1. Also s — n(y, s)
extends to a holomorphic function on C. Moreover,

(4.77) €(0,8) = ((s), n(0,s) = 0.

By the above, ((y,.) vanishes at even negative integers, and 7(y,.) vanishes at odd
negative integers.

Definition 4.28. — For § € R*,z € C,|z| < ||, put
1 iz M2 T 1 iz\ T2
. Fe = E— _—— 10 = — — 1 _ — .
(4.78) @=-55(-%) . re :
Observe that
(4.79) I(z) = (1 + 2x8%) FO(x).

In the sequel, we denote by

Z’ (szw+9 (z) — F2km (0)>

kEZ

the sum of the corresponding series, where we take as a convention that if 2kw + 0 or
2k vanish, the corresponding term F2¥™+9 () or F2¥™ (0) is replaced by 0. Note that
this series is convergent, while the sum of the series F2k7+9(2) is not well-defined.
The same notation will be used for sums involving other functions than F'.
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Theorem 4.29. — For 6 € R,z € C, |z| < 27 if § € 2nZ,|x| < infiez |0 + 2kn| if
0 ¢ 2nZ, then

(4.80)  F(8,a) - F(0,0)= 3 (F*+(z) — F**7 (0))

keZ
1 (2p)! O¢ T\P . (2p)! 1 T\P
ren =31 3 e (E) i e ()
peven podd

Proof. — By (4.39),

(4.81) 1 {l 250 (T?/4,i0, —x) 1o U(T2/4,i0,0)} B
. ; _

T |2 o(T2/4,i0, —x) (T2/4,46,0)

Z 4i (0 + 2km) x
= (T2 —4i(0+2%km)z +4(0+ 2k7r)2) (T2 +4(0+ 2k7r)2)

By (4.81), given 0, z taken as indicated, there is C' > 0 such that for 0 < T < 1

4i (0 + 2k
482 3 Chs ”)f ~|<¢,
= (T2 — 40 (0 + 2k7) z + 4 (8 + 2k) ) (T2 +4(0 + 2kn) )
and that for T > 1,
43 (0 + 2km) x C
(4.83) )" : ( ) . ~| < 73
poer? (T2 — 45 (0 + 2k7) & + 4 (0 + 2k7) ) (T2+4(0+2k7r) )
From (4.39), (4.59), (4.82), (4.83), we deduce that
oo . (>0)
(4.84)  F(0,z)C0 =" / 5 dT
ez T2 — 4i (0 + 2km) x + 4 (6 + 2km)

We have the trivial,

(>0)
dT

400
(4.85) /o (T2 —4i(0+2km)z+4(0+ 2k7r)2)

—1/2
- g (—i 0+ 2km)z + (6 + 2k7r)2) ,

with the convention that if 8 + 2km = 0, the right-hand side of (4.85) vanishes. From
(4.84), (4.85) we get the first equality in (4.80) in positive degree.
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If O + 2km # 0,
(4.86)

[(—z’ 0+ 2km) 2 + (0 + 2k7r)2)_1/2] oY -7 2k7r| Z ( e M)Y.

By (4.84)-(4.86), and using a dominated convergence argument, we get

o ruop 1| 2 (072) 3

GN*
+ 3 s (50"3) (&)

p even
peEN™
podd

If n € N, the function I'(s) has a simple pole at —n, and the corresponding residue
is given by (—1)" /n!. Using the functional equation (4.74), if n € N*,

d 0 iy —2n (2)! 0 1
(488) $SQ (0, %, —n) = (—1) ™ 22n S() -—,0,71 + ‘2‘ 3

d 0 (D) 20 s 20+ 1) 0 3

75> (O’ﬁ’_"> T i ot (g 0nt g

From (4.76), (4.87) and (4.88), we get the second equality in (4.80) in positive degree.
For s € C,Re(s) > 1, put

1 too o [150(T%/4,i6,0) 1
(4.89) #(8) = 310 /0 T <§8§(T2/4,i9,0) —Z) dT"

By Proposition 4.15 and Remark 4.16, ¢(s) is a holomorphic function of s, which
extends to a holomorphic function near s = 0. By (4.17),

(4.90) o (T?/4,16,0) = 2 (cosh (T'/2) — cos(8)),
and so,

150 (T%/4,i6,0) 1 sinh(T/2)

2 0(T2/4,i0,0) ~ 4cosh(T/2) — cos ()’

Now we proceed as in [BZ2, proof of Theorem 5.17]. We have the easy equality,
1 sinh (T'/2) 1

(4.91)

- el l —nT/2
(4.92) 4 cosh (T/2) —cos(0) 4 *3 ge cos (nf).
By (4.89), (4.92), we obtain,
(4.93) #l5) = 3¢(60,9).
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From (4.93), we get

15¢

28s

From (4.89), (4.94), we get the second equality in (4.80) in degree 0.
For s € C,Re(s) > 1,

I 1 r 1
(495) kEZZ W — ’; |k| = So (0/277 O S) SO (0,0,8) .

(4.94) ¢'(0) = (6,0).

Also one finds easily that as s 6]5, +00[— 1 5, then

/ 1 r1 / 1 1
4.96 e e —— ).
(4.96) 2 |k +0/2m* 2 T ,;z (|k+9/27r| Ikl)

kEZ kEZ
By Lerch’s formula [We, Chapter 7, egs. (15)-(23)] as used in [BZ2, egs (5.51)-
(5.54)], we get, for any 6 € R,

(4.97) ¢(6,0) = —

By (4.74), (4.76) and (4.97), at s = 1/2, Sy (8/27,0, s) has a simple pole with residue
1. Therefore the right-hand side of (4.95) extends to a holomorphic function near
s = 1/2. More precisely,

(4.98) [So (6/27,0,5) — So (0,0, s)] le=1/2

= % |:(s —1/2) (SO (6/2m,0,s) — 5o (0,0, S)):| |3=1/2.

By (4.74), (4.76) and (4.97), we obtain,
(4.99) [so (6/27,0,s) — So (0,0, s)] lom1/2 = 4 (g—g (6/27,0) — gC (o, 0))

By the second equality in (4.80), and by (4.95)-(4.99), we get the first equality in
(4.80) also in degree 0. The proof of our Theorem is completed. O

Theorem 4.30. — The following identities hold,
(4.100)

1(6,2) — 1(0,0)= 3 (I (z) - 1% (0)),

kEZ
(2p+1'8( T\P . (2p+ 1)! O T\P
5| 2 () FiY T 0-p) (3
seN | (4) peN (p') Js (4)
peven podd
Proof. — Our Theorem follows from (4.59), (4.79) and from Theorem 4.29. O
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Theorem 4.31. — Ifr € N*, and if a € N, then

FErte) =L S (@) 3 B ) (12

o<mgr—1 pEN™
peven
. (2p)! ( m ire\?
- 2 ) 1) o )
ZPGXI\;*( !)277 TPt 87
podd
(4.101)
a \>0 1 , 2p + 1)! ire\?
I (277;,9:) =1 exp (2277@) [ Z %C (27r@,p+ 1) (%ﬂf)
o<mr—1 r peEN* (p) r ™
peven
, (2p+1)! m (irz)p:|
—1 —n(2r—,p+1) | — .
pezl\; (p)? ( r ) 8w
podd

Proof. — Clearly, if a € N,

Qa ra —2s
(4.102) S (;,0,3) =Y +n\
neZ
1 a—m , m' | 7%
= - Z exp <2i7rm > Z n+ —
r o<mm/<r—1 r nez r
From (4.102), we get
a0 ) =y e m

(4.103) So (T,O,s) =7 Z exp (2z7r " ) So (0, " ,s) .

os<m<r—1
By (4.76), (4.103), we obtain,

@ 0 ) = gp2e-t (2in2) ¢ (22

(4.104) So (T,o,s) —or > exp(2in )4 (27r - ,23).

o<mgr—1
A similar argument shows that

T 0.5) = _aip?-? 29 1 (22 9

(4.105) S1 (;,O,s) = —2ir°° Z exp (2z7r - )n (27r " ,28 1).

o<m<r—1
By (4.87), (4.104), (4.105), we get the first equality in (4.101). The second equality
in (4.101) is then a consequence of (4.59). O

Remark 4.32. — If k is a function Z/rZ — C, its Fourier transform k:Z /TZ — C is
defined by the relation,

(4.106) k(m) = ; Z exp <~2i7r?) k(a).
a€Z/rZ
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From (4.101), we find that if I7(.,z) denotes the Fourier transform of I (2=, z) con-
sidered as a function on Z/mZ, then

(107) (2 ,m)(o)=ﬂ > %C (2 _’p‘“) (Z:)

pEN™
peven
2p+1)! P
—iy et p+ n (22 p+1) (x> ]
. (o) 8m
peEN
podd
Formula (4.107) is of special interest. In fact up to a factor 1/4, it coincides with

the power series obtained by Bismut-Lott [BLo1, Corollary 4.14], in their evaluation
of the analytic torsion forms of a circle bundle equipped with the flat line bundle
whose holonomy along the fibre is €™/, As we shall see in Section 16, this is not
an accident, since we will show that the result of [BLol] is in fact a consequence of
our main result.

4.7. The Lerch series and the function J(0, )
Definition 4.33. — For § € R*,z € C, |z| < 0, put

o\ -1
()= (1%
(4.108) J? (z) = 10] (1 0) .
Equivalently,
9)
4.1 ? () = T80
(4.109) T (@) 4 (0 —ix)

Observe that
(4.110) J?(0) = F°(0).
Recall that the operator () was defined in Definition 2.37.
Proposition 4.34. — The following identity holds,
(4.111) QI%(z) = JO ().
Proof. — By (4.86),

(4.112) - 372 Z (_) <_>

Using (2.118) and (4.71), we get

(iz/0)P
(4.113) 4|0| Z 2p+1°
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By (4.79), (4.113), we obtain,

r X /iz\?
(4.114) Qfe(x)zm‘;(?) ,

which is just (4.111). O

Theorem 4.35. — The following identity holds,

(4.115) J(0,2) = J(0,00= 3 (J*+0 (z) — 727 (0)) ,
kEZ
1 6(
J(0,z) == + Z
2 peEN 85 pGN
peven podd

Proof. — Our identity follows from (2.118), from Theorem 4.30 and from Proposition
4.34. O

Theorem 4.36. — If r € N*, and if a € N, then

(4.116) J(2r;,x)(>0):i 3 exp(2m—) Z((zw p+1) (’;:)p

osm<r—1 peEN™

peven
) ire
—1 Z n(27r ,p+1) (271')
peEN™
podd
Proof. — This is a trivial consequence of (2.118) and of Theorem 4.31. |

Observe that % (8,0) is a smooth function of § € R\ 27Z. Therefore %‘Sl (6 —iz,0)
makes sense as a formal power series, so that

. R (—iz)”
(4.117) a;(@—zx,ﬂ)— 891’%( ,0) o
p=0
Theorem 4.37. — If 0 € R\ 27Z, the following identity holds,
19¢ .
(4.118) J(0,z) = 298 (0 —iz,0).

Proof. — By (4.115), (4.118) holds in degree 0. By Theorem 4.35, if § € R\ 27Z, if
iz € R, for |z| small enough,

1 %Y i (e—iz 1\1?

kEZ
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Using the functional equation (4.74), if y ¢ 27Z,

1o} 1

Also by (4.76),

15} ¢
(4.121) %SO (0,y,0) = 4% (27y,0).
By (4.119)-(4.121), we get (4.118) also in positive degree. d

Now, we will establish for the genus J (6, z) a formula which is closely related to a
corresponding formula proved in [BGol, Theorem 4.2] in the context of holomorphic
torsion.

Theorem 4.38. — If 6 € R\ 27Z, if ' € R,z € C are such that |0'|,|z| are small
enough, then

(4.122) J(O+0,2)=J0,z+ib).
Also for 0" € ] — 2m,2n[\{0}, for z € C,|z| < infxez |0’ + 2kn|, then

(4.123) J(0,z)=J(0,z+i0) +J% ().

Proof. — If € ] — 27, 2x[\{0}, for ¢’ € R, and |¢’| small enough, for any k € Z,
(4.124) sgn (6 + 0" + 2kn) = sgn (6 + 2kT) .

From (4.109), Theorem 4.35 and from (4.124), we get (4.122). Also if 8’ €]—2x,2x[\0,
for k € Z*,

(4.125) sgn (0" + 2km) = sgn (k) .

Using the same arguments as before and (4.125) instead of (4.124), we get (4.123).
The proof of our Theorem is completed. a

Remark 4.39. — Of course, there are corresponding statements for I (6, x). However
the formulas are more complicate. It is interesting to observe that while the Chern
normalization of analytic torsion forms is conceptually natural, here and later, their
evaluation leads to simpler formulas than with any other normalization.
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4.8. Formal relation to the R genus

As explained in the Introduction, in equivariant Arakelov theory, a power series
R (6, z) appears naturally [B8, B9], which is given by the formula,

| ] P
(4.126) R(B,2)= Y i > =n(6,~p) +25°(6,~p) § =
p>0 j=1 9s p:

p €éven

k}

+ Z -¢(0, P+2<(9 —p) %T,

p20 |\ J= 1

p odd
so that R (z) = R(z,0) is the R series obtained by Gillet and Soulé [GS1] in the non
equivariant context. Recall that the Lerch series is given by L (y, s) = :z "';#
Proposition 4.40. — The following identity holds,

8L zP
(4.127) R(6,2) +4J (0,2) = Y (Z ZL(o 2520, —p)) o
pEN j= 1

Proof. — After (4.77), we saw that ¢ (y, s) vanishes when s is an even negative integer,
and that 7 (y, s) vanishes when s is an odd negative integer. Our identity then follows
from (4.115) and from (4.126). |

Assume now that M is complex manifold, that £ = E & E_ is a holomorphic
Z, graded vector bundle on M, and that gFf = gF+ @ g¥- is a Hermitian metric
on E = E, ® E_. We denote by VF = VE+ @ VF- the holomorphic Hermitian
connection on £ = E; @ E. Let g € End (E) be a holomorphic isometry of E, which
preserves E, and E_.

By [BS8, Section 7 c)], the holomorphic analytic torsion forms ch (E,g*) are well
defined. Similarly to the underlying real Zs-graded vector bundle E, we can associate
the Chern de Rham analytic torsion forms Zc 4 (E, g¥) (here we omit V¥, since g¥
determines VZ.

To the genus J (6, z), we can associate the closed form S, (E, g¥).

Proposition 4.41. — The following identity holds,
(4.128) o (B,95) 7 + 2Toe 4 (B, gF) 0 = (R+4J), (B,g7)7.
Proof. — This is a trivial consequence of Theorem 4.26 and of Proposition 4.40. [

Remark 4.42. — The fact that the genera R (0, z) and J (6, ) fit so well in formulas
(4.127), (4.128) is maybe more than coincidental.
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CHAPTER 5

A FAMILY
OF THOM-SMALE GRADIENT VECTOR FIELDS

The purpose of this Chapter is to establish various results on families of Thom-
Smale complexes, associated to the gradient field of a fibrewise Morse function, which
is supposed to be Morse-Smale in every fibre.

This Chapter is organized as follows. In Section 5.1, we recall the construction
of the Thom-Smale complex associated to a Morse-Smale vector field. In Section
5.2, we state the results of Laudenbach [La], which guarantee that, under natural
assumptions, there is a de Rham map, which is a quasi-isomorphism from the de
Rham complex into the Thom-Smale complex. The key fact is that the closure of the
stable and unstable cells are manifolds with conical singularities in C' coordinates.
In Section 5.3, we introduce a group action on the Morse-Smale complex. In Section
5.4, we consider the case of an equivariant fibration, and we briefly describe the
corresponding Leray spectral sequence. In Section 5.5, we suppose that this fibration
is equipped with fibrewise Morse-Smale vector fields. We construct the corresponding
family of Morse-Smale complexes. Finally in Section 5.6, we establish a families
version of Laudenbach’s results [La]. In particular we show that, under standard
assumptions, the integral of a smooth form along the closure of the stable or unstable
cells is a smooth form. Also we compare various natural spectral sequences. We show
in particular that the fundamental group of the base S of the fibration acts on the
cohomology of the fibre X as a finite group.

5.1. The Thom-Smale complex of a gradient vector field

Let X be a compact manifold of dimension n. Let f : X — R be a Morse function.
Let B be the set of critical points of f,

(5.1) B = {z € X,df (z) = 0}.

If z € B, recall that the index ind (z) is such that the quadratic form d?f (z) on T, M
has signature (n — ind (z) ,ind (z)).
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Let hTX be a metric on TX, and let Vf be the gradient vector field of f with
respect to hTX. Set

(5.2) Y =-V/.
Consider the differential equation
dy

5.3 — = .

(53) )
Equation (5.3) defines a group of diffeomorphisms ¥;|icr of X.

If x € B, put
(5.4) W*(z) = {y € X, tl}l_noo Uy(y) =z},

We(z) = {y € X, lim W,(y) =zx}.

The cells W*(x) and W*(z) are called the unstable and stable cells. They are em-
bedded submanifolds of X, and moreover, '

(5.5) Wt (z) ~ RiPd@), W* (z) ~ RP—ind(@),
Also W* (z) and W* (z) intersect transversally at z. If z € B, set
(5.6) T X" =T,W" (), T, X°=T,W?(z).
Then

(5.7) T.X =T, X° T, X"

Assume that Y verifies the Smale transversality conditions [Sm1, Sm2]. Namely
we suppose that if z,y € B,, W¥%(z) and W*(y) intersect transversally. In particular
if ind(y) = ind(z) — 1, W¥(z) N W*(y) consists of a finite set I'(z, y) of integral curves
v of the vector field Y, with v7_o = =,7400 = ¥, along which W*(z) and W?(y)
intersect transversally.

By [Sm1, Theorem A], [Mi2, Theorems 4.4 and 5.2], given a Morse function f,
there exists a metric h7X such that the corresponding vector field Y verifies the Smale
transversality conditions.

If x € B, let oy,0] be the orientation lines of T, X“ T, X°®. Then o3,0; are
Zy-lines. Also by (5.5), (5.6), o¥, 0% can be identified with the orientation lines of
W (z),W? (z). In the sequel, we will identify these lines to the corresponding com-
plex lines. Note that the lines o¥, 0] are canonically identified to their duals.

Let z,y € B, with ind (y) = ind (z)—1. Takey € I'(z, y). The orientation bundle of
the orthogonal bundle T+ W*(y) to TW* (y) in TX |yy(y) is canonically isomorphic to
o%(y). Let T'W*(z) be the orthogonal bundle to Y in TW*(x). Its orientation bundle
o (T'"W*(z)) is canonically isomorphic to o, so that s € o(T"W*(z)) corresponds to
Y ®s € ot. Since T*W*(y) and T'W*(z) have the same orientation bundle, to
v € I'(z,y), we can associate n,(z,y) € oy ® oj.
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Let (F,V) be a complex flat vector bundle on X, and let (F*, V") be the
corresponding dual flat vector bundle. Set

(5.8) C.(W*, F*) = @ F’®oY,
r€EB
C; (WY F*) = @ F:®od
z€EB
ind(z)=1

By (5.5), on W* (), the flat vector bundle F' can be canonically trivialized by parallel
transport. In particular, if z,y € B are such that ind(y) = ind(z) — 1 and if v €
D(z,y),e* € Fy, let 7,(e*) € F, be the parallel transport of f € F; along v with
respect to the flat connection V¥ "

Ifz € B,scoz,e* € F},set

(5.9) O(s®e*) = Z Z ny(x,y)s ® 7y (e").
yEB v€l(z,y)
ind(y)=ind(z)—1
Then 8 maps C;(W*, F*) into C;_1(W*, F*).
Now we recall a basic result of Thom [T] and Smale [Sm2].

Theorem 5.1. — We have the identity
(5.10) 9% =0,

so that (C,(W",F*),0) is a chain complex. Moreover there is a canonical isomor-
phism of Z-graded vector spaces,

(5.11) H,(C.(W",F*),0) ~ H,(X,F*).

Let (C*(W*, F), 9) be the complex dual to the complex (C,(W*, F*),9). By (5.8),
we get

(5.12) C* (W“,F)= @ F,®0Y,
z€EB
C'WY . F)= @ F,®o"%
z€B
ind(z)=1

By Theorem 5.1, we get the canonical isomorphism,
(5.13) H*(C*(W"“, F),0) ~ H* (X, F).

The complex (C* (W™, F),d) will be called the Thom-Smale complex attached to Y.

Let 0 (T'X) be the orientation bundle of TX. Then o (T X) is a Z-line bundle. We
will consider o (T'X) as a complex line bundle. If we replace f by —f and Y by —Y,
the roles of W* and W* are interchanged. Comparing (5.8) and (5.12), we obtain
easily the isomorphism of complexes,

(5.14) (C.(W*",F),0) ~ (C"™* (W*,F ® 0(TX)), ).
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On the other hand, by (5.13),
(5.15) H*(C*(W*,FRo(TX)),0)~H*(X,F®0(TX)).

One verifies easily that (5.11)-(5.15) is just Poincaré duality.
Let (Q°*(X, F|x),dX) be the complex of smooth sections of A*(T*X)&® F on X,
equipped with the de Rham operator d*X, so that we have the canonical isomorphism,

(5.16) H* (Q°(X,F|x),dX) ~ H* (X, F).

Let us recall that a Morse function f is said to be nice if f takes the value i
on the set of critical points of index i. By a result of Smale [Sm1, Theorem B],
[Mi2, Theorem 4.8], given a gradient vector field Y = —V f which verifies the above
transversality conditions, there is a nice Morse function f and a metric h7X on TX
such that Y is also the gradient vector field for f~with respect to hTX, So, if necessary,
we may as well assume now that f is a nice Morse function.

Now we follow Milnor [Mil, Section 9] and [BZ1, Chapter I c)]. Suppose that f
is nice. For p € N, set

(5.17) Up=f"tp—1/2,+00].

The decreasing family of closed sets U, defines a decreasing filtration on the de Rham
complex (Q*(X,F|x),d). By definition FPQ*(X, F|x) is the set of elements of
Q*(X, F|x) whose support is included in U,. Let us construct the corresponding
spectral sequence. By definition,

(5.18) EP9 = FPQPYI (X, F) JFPHIQPTI (X F).
Then
(519) Ef’q = HPte (Ui,Uz'+1,F).

The basic result of Morse theory shows that

(5.20) EPY = CP (W™, F) if ¢ =0,
=0if ¢ #0.

By (5.20), one finds easily that
(521) (El, dl) >~ (C. (Wu, F) ,8) s

and that the spectral sequence degenerates at F. In particular we have established
the existence of the canonical isomorphism (5.13). Also equation (5.21) gives a purely
algebraic construction of the complex (C* (W*, F),9).
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5.2. The de Rham map of Laudenbach

If £ € X,e > 0, let BX (z,¢) be the open ball of centre z and radius  with respect
to hTX. By a simple argument by Helffer-Sjéstrand [HSj, Proposition 5.1], if z € B,
for eg > 0 small enough, there exists an identification of BX (z,3¢0) with an open
neighbourhood V3., of z in X, a Morse function f, : X — R, and a metric hZX on
T X, which have the following properties:

= (feo, hTX) coincide with f,AT¥ on X \ Va,.

— The critical set for the function f,, is still equal to B. Also the stable and
unstable cells associated to (fe,, hZX) coincide with the corresponding stable
and unstable cells for (f,hTX).

— Under the above coordinate system, on Vae,, the metric hZX comes a from
a standard metric on TX such that T, X® and T, X* are orthogonal in TX.
Moreover if Z € T, X, if Z = (Z,Z_), with Z, € T, X*,Z_ € T, X", and
|Z]| < 2gg, then

(5.22) foo (2) = £ @)+ 5 (1242~ 12-2).

Note that the above constructions can easily be done equivariantly. Also observe
that if f is nice, the new function f., is also nice.

Observe the the Thom-Smale complex associated to (fe,,hZX) coincides with
the given Thom-Smale complex (C* (W*, F),0). In the sequel we will assume that
(fs HT) = (feor hEGY)-

In [La], Laudenbach proved that under the above conditions, the closed cells W*(x)
are submanifolds of X with conical singularities. Also he showed that if x € B,
Wu (z)\W* (z) is stratified as a union of W* (y), with ind (y) < ind (z). An important
point in [La] is that the coordinate charts in which the above description of W+ (x)
is valid are in general only C!. Once an orientation of W* (z) is fixed, W¥(z) defines
a current on X. Equivalently, smooth forms can be integrated on W*(z). Moreover
if x € B, the boundary of W* (z) considered as a current coincides with its geometric
boundary, i.e. it is the current of integration on the W* (y), with W« (y) C W= (z) \
W* (z) and ind (y) = ind (z) — 1, the orientations being obtained as in (5.9).

Clearly, we can trivialize the vector bundle F' on W*(z) with respect to the con-
nection V. In particular, if o € Q (M, F), the integral fwu—(z)o‘ lies in 0% ® Fy.

Definition 5.2. — Let P> be the map,

aeC (W F).

(5.23) a€Q(MF)—> P a=Y /
zeB Y W*(@)

Now we have the key result by Laudenbach [La, Propositions 6 and 7], [BZ1,
Theorem 2.9].
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Theorem 5.3. — The map P is a quasi-isomorphism of complexes, which provides
the canonical identification of the cohomology groups of both complexes.

5.3. Equivariant Thom-Smale complexes

We make the same assumptions as in Sections 5.1 and 5.2. Let G be a compact Lie
group. We assume that G acts on X, and that this action lifts to F, and preserves
the flat connection V¥. Then by (3.6), G acts on (Q*(X, F|x),d). Therefore G acts
on H* (X, F) and preserves its Z-grading.

Recall that if g € G, the Lefschetz number x4 (F) was defined in (3.64) by the

formula
n

(5.24) Xq (F) = Z (—1) TeH XFIx) [g]
§=0
Take g € G. Set
(5.25) Xg={ze X, gxz=2za}.
Then X, is a finite union of compact submanifolds of X. Also, if z € X,
(5.26) T, Xg={U €T, X,g.U=U}.

Also TrF'%s [g] is a locally constant function on X g

Let e (T'X,) € H* (X,4,Q) be the Euler class of TX,. The Lefschetz fixed point
formula asserts that
(5.27) X (F) = [ T lgle(rX,).

g

Now we assume that f : X — R is a G-invariant Morse function, that hTX is a
G-invariant metric on TX, and that Y = —V f verifies the Thom-Smale transversality
conditions. Note that Y is then a G-invariant vector field.

By [Sm1, Sm2], [Mi2, Theorems 4.4 and 5.2], generically, a gradient vector field
for f verifies the Smale transversality conditions. As explained in [BZ2, Section 1 d)],
if G is a non trivial group, a G-invariant generic gradient vector field is not necessarily
Thom-Smale. However, as shown in [BZ2, Theorem 1.10] using results of Illman [I1],
if G is a finite group, there exists a G-invariant Morse function f and a G-invariant

metric ATX such that Y = —V f verifies the Thom-Smale transversality conditions.
Set
(5.28) By, =BnNX,.

Since Vf is G-invariant, we deduce from (5.26) that Vf|x, € TX,. Therefore the
restriction f|x, of f to X, is a Morse function, and the restriction of V f to X, is a
gradient field for f|x,. The set B, is exactly the set of critical points of f |x,. Also
if x € By, T, X*° and T, X" are g-invariant.
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Now we use the notation of Sections 5.1-5.2. Clearly G acts on the finite set B,
and interchanges the W* (z)’s, and also the W* (z)’s. It then follows easily that G
acts on the complex (C* (W*, F),d), and so it acts on its cohomology. Then (5.13)
is an identification of G-vector spaces.

By (1.56), (1.57) and by the above, it follows that

(5.29) Xg (F) =Y (=1) T ™ [g).
7=0
If z € By, g acts on 0" () ® F. Then (5.29) can be written in the form,
(5.30) Xg (F) = 3 (-1 =85 [g].
TEB,

If z € By, let indy (z) be the index of f|x, at x. The action of g on o* () is given
by

(5.31) low(z) = det glTux.

Also, one has the trivial,

(5.32) (=1)™4) det gy x = (~1)" %)

By (5.31), (5.32) we get

(5.33) (1) TFe®0% [g] = (-1) ™ T [g].

By (5.30)-(5.33), we get

(5:34) Xg (F) =) (=11 [g].

z€By
Of course, by Chern-Gauss-Bonnet, we obtain directly the equality of the right-hand
sides of (5.27) and (5.34).

Proposition 5.4. — The vector field Y|x, is Morse-Smale.

Proof. — We claim that if x € By, W* (z) N X, is just the unstable cell for Y|x,
at z. In fact, if y € W* (z) N X,, since Y is G-invariant, the integral curve of ¥
through y lies in X, so that our assertion follows. The same property holds for the
corresponding stable cells.

Let now z,2’ € By, and let y € W* (x) N W* (2') N X,. Since Y is Morse-Smale,
W (z) and W* (z') intersect transversally at y. By considering the corresponding
+1 eigenspaces under the obvious action of g, our Proposition follows. O
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5.4. A smooth fibration

We make the same assumptions and we use the same notation as in Section 3. In
particular 7 : M — S is a submersion of smooth manifolds with compact fibre X
of dimension n, and (F, V) is a complex flat vector bundle on M. Also G is a Lie
group acting on M along the fibres X, whose action lifts to F' and preserves V.

The de Rham complex (Q* (M, F),d™) is a filtered complex. Namely if m,p €
N,0<m<<dimM,0 < p<dimS, set

(5.35) FPQ™ (M, F) = {s €Q* (M,F), if X1,..., Xm_p1 € TX,

then iy, - -ix,, _,.,5= 0}.

Then the F'PQ* (M, F) defines a filtration on Q°* (M, F). The corresponding spectral
sequence, which we will note E/ (°"), is the Leray spectral sequence. In particular,

(5.36) E(P? = C® (M, 7*AP (T*S) ® A (T*X) B F),

and dy is the fibrewise de Rham operator d*X.

Recall that H*(X, F|x) is the cohomology of the fibre X with coefficients in F.
Then H*(X, F|x) is a Z-graded flat vector bundle on S, which is equipped with a
flat connection, the Gauss-Manin connection VH"(X:FIx) It follows from the above
considerations that

(5.37) E{"? = QF (5, H' (X, Flx)).
Also d; acting on Ell("') is just the de Rham operator d°. In particular,
(5.38) EP9 = HP (S,HI (X, Flx)).

Of course, the Lie group G acts naturally on the spectral sequence E'r("').

5.5. A family of gradient vector fields

We make the same assumptions as in Section 5.4. Let f : M — R be a G-invariant
smooth function. We assume that f is Morse along every fibre X.

Let hTX be a G-invariant metric on TX. Let Vf C TX be the gradient field of f
along the fibre X with respect to h”X. Then Vf € TX. We make the fundamental
assumption that Y = —V f is Thom-Smale along every fibre X.

By proceeding as in [Mi2, Section 4], one verifies easily that there is a G-mvarlant
smooth function f M — R such that V f is a gradient vector field for f , and f is
fibrewise nice. So, if necessary, we may as well assume that f itself is fibrewise nice.

Let B be the zero set of Y, i.e. the set of fibrewise critical points of f. Let B? be
the set of critical points of f which have index 4 along the fibres X. Then B, B¢ are
finite covers of S. We denote by B, B* the corresponding fibres.
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Observe that T X", TX* are now vector bundles on B, and that
(5.39) TX|lp=TX"®TX"®.

Let o%, 0° be the Z-lines on B, which are the orientation lines of TX*, T X*. In the
sequel we will still denote by o%, 0° the corresponding complexifications.

Now we temporarily assume that f is fibrewise nice. Since f takes the constant
value i on B?, we see that B is exactly the set of critical points of f on M, and that
f is a Morse-Bott function. For p € N, set

(5.40) Up=f"p—1/2,+00].

As in Section 5.1, the Up’s define a decreasing filtration F” on Q* (M, F). Namely
F'"PQ* (M, F) is the set of s € Q* (M, F) whose support is included in U,. Let E"(**
be the corresponding spectral sequence. Using the analogue of (5.19) and the Thom
isomorphism, we get

(5.41) E/P? = H1(BP, Flg» ® o*).

Now we no longer suppose f to be fibrewise nice. Put

(5.42) c*(W",F)= @ F,®oj,
z€B

C'(W F)= @ F,®o"
z€EB?

Then C* (W*, F) is a flat Z-graded vector bundle on S. Let VE"W™F) be the cor-
responding flat connection on C* (W*, F'). The identification (5.21) of the fibrewise
complexes (C* (W*, F),0), to an algebraic complex shows that the chain map J de-
pends smoothly on s € S, and is flat with respect to VE* W™ F) Therefore C* (W*, F)
is an example of a Z-graded flat complex in the sense of Sections 1.10 and 2.5. In par-
ticular A’ = 84 VC* (W".F) is 3 flat superconnection of total degree 1 on C* (W*, F).
By (5.13),

(5.43) H* (C* (W*, F),8) ~ H*(X, F|x).

As we saw in Section 1.6, the flat connection V" (W*:F) induces a flat connection on
H* (C*(W",F),0). Using (5.43), one verifies easily that this connection is just the
Gauss-Manin connection VH*(X:Flx),

The complex (°*(S,C* (W™, F)),A’) is naturally bigraded. The partial grading
in A* (T*S) defines a filtration on (Q*(S,C* (W¥, F)),VC W"F) 1 ) | Let E/(**
be the corresponding spectral sequence. Then
(5.44) EyPY = QF (5,09 (W*, F)),
and dj is just 0.By (5.13),

(5.45) ™D = QP (S, H (X, Flx)),
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and the differential d’* is the Gauss-Manin connection VH"(X:FIx) In particular
(5.46) E{P9 = HP (S, H? (X, F|x)).
Similarly the grading in C* (W, F) defines another filtration on
(9-(5, C* (W, F))VC W F) 4 a).

Let E”(** be the corresponding spectral sequence. By construction

(5.47) E/P9) = H9(BP, Flgr ® 0%|ps) .
Comparing (5.37), (5.38), (5.41) with (5.45), (5.46), (5.47), we get
(5.48) E/**) ~ E* with r = 1,2,

Elll(o,o) ~ E;_,(.,.).

Of course, (5.48) gives identifications of G-vector spaces. As we shall see in Section
5.6, this result extends to the full spectral sequences.

5.6. A families version of the results of Laudenbach

Observe that TX|g is just the normal bundle Ng /m to Bin M. Let hTX be a
G-invariant metric on TX. Given € > 0, let U, be the e-neighbourhood of B in T X |p.

By proceeding as in Helffer-Sjéstrand [HSj, Proposition 5.1], as in Section 5.2,
for 9 > 0 small enough, there exists a G-equivariant identification of Us., with a
tubular neighbourhood Vi, of B in the fibres X, which maps the fibres TX|g into
the corresponding fibres X, a G-invariant fibrewise Morse function f., : M — R and
a G-invariant metric hg:)x on T'X which have the following properties:

— (feo, RTX) coincide with f, AT on M \ Va,.

— The fibrewise critical set for the function fe, is still equal to B. Also the sta-
ble and unstable cells associated to ( feos hZ;X ) coincide with the corresponding
stable and unstable cells for (f, A7X).

— Under the above coordinate system, on Us,,, the metric hg;x comes a from a
standard metric on TX|g such that TX*|g and TX"“|g are orthogonal in T'X |g.
Moreover if z € B,Z € T, X|g, if Z = (Z+,Z_), with Z; € T, X|B,Z_ €
T.X|m, if |Z| < 2, then

(5.49) foo (2) = § (2) + 5 (12 - 12 ).

The Thom-Smale complex associated to ( feos th ) coincides with (C* (W*, F), ).
In the sequel, we will then assume that (f, h7%) = (fe,, RZX).

We will consider the unstable cells W* (z) as subsets of M, which fibre on S. The
fibrewise closures W* (z) also patch into closed sets in M, which fibre over S. This is
because all the arguments used in [La] can be applied to the vector field Y, viewed as

a gradient vector field for the Morse-Bott function f : M — R. If z is a locally trivial
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section of B, we still denote by W* (z) the associated unstable cell, and W* (z) its

closure.
A word for word reproduction of the arguments of Laudenbach [La] show that the

W () are submanifolds of M with conical singularities, that the W* (z)\ W* (z) are
stratified by W* of strictly lower index. Again, the description of W* as a manifold
with conical singularities can only be done in C* charts over M. Therefore W (z) is
a well defined current on M. Its boundary as a current coincides with its geometric
boundary.

A subtle point is to understand how the global description of the W* (z) fit with
the fibrewise description of the W (x). We will address this point in our next result.

By the above, if @ € Q°*(M, F), if  is a locally trivial section of B, the pushforward
current fma is well defined. This is a locally defined current on S with values in

u
ox.

Theorem 5.5. — If a € Q*(M, F), then [z a is C* on S.

Proof. — We will closely follow the general strategy of Laudenbach [La], while almost
entirely avoiding the description of the compactified cells W" as manifolds with conical
singularities.

We will first consider the case of a single fibre, and give a description of the com-
pactification of the descending cells. This description will then immediately extend
to the case of families.

First, we consider the standard Morse model in (5.22). Namely let E = FL ®E_ be
a Zs-graded finite dimensional real vector space, equipped with an Euclidean metric
g% such that E, and E_ are orthogonalin E. If Z = (Z,,Z_) € E=E, ® E_, set

(5.50) £(2) =3 (1242~ 12-1).
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In Figure 5.1, we have represented the level sets V, = f=1{1},V_ = f~1{-1},
the ascending and descending unit spheres Sy =V, N E,.,S_ =V_NE_, and also
D+ = S+ X E._,.D_ = E+ x S_.

IfY =—-V/f, then

(5.51) Y=(-2,,Z_).
The corresponding flow U, is given by
(552) ¢t (Z+, Z_) = (e—tZ+, etZ_) .

It will be convenient to identify V; to D4, V_ to D_ by the flow ¥;. These identifi-
cations are given by

(5.53) (Z4,Z_) €V, — (é . |z+|z_)

(Z4,2.) € V. — (lz_l Z., %) .

Clearly the flow identifies Vi \ Sy to V_\ S_, and D, \ Sy to D_\ S_. This last
identification is just given by
Z_
(5.54) (21,22 € D\ Sy = (12124, 7= ) € Da\ S
Now, we consider the real blow up of E along E4 or E_. Namely, let py : R4 X
E,.xS_— E,p_:RixS; x E_— FE be given by

(555) P+ (7', Z+9 ) (Z-H TZ—)
(1" Z+7 ) (TZ-H )

Then D, = pit (D+),1A7_ = p_! (D_) are obtained by blowing up D, D_ along
S,,S_. They both coincide with R x S; x S_. Moreover the identification of ﬁ+
to D_ via the flow is just given by the identity map of R x §4 x S_.

Let now F be a submanifold of Dy which intersects Sy transversally. Set H; =
Fy NnSy. Our first goal is to describe a compactification of the image of F; by the
flow ®;,t > 0. Near H,, there is a projection r4 : Ey — H,. Using transversality,
near Hy, themap Z = (Z4,Z_) € Fy — (r+Z4+,Z_) is a diffeomorphism. Therefore
there is a smooth locally defined map h : Hy x E_ — E., such that locally near H,
F, is the image of H; x E_ by the map (z,Z_) € Hy x E_ — (h(z,Z_),Z_), and
moreover h(z,0) = z. It follows that locally, the image of F by the flow in E can
be compactified as the image of [0,1] x [0,1] x Hy x S_ by the map,

(5.56) (a,b,2,Z_) — (ah(z,abZ_),bZ_).

From (5.56), we deduce that locally, the image of F; by the flow can be compactified
into the image of a smooth manifold with boundary by a smooth map. In particular
this compactification produces a well-defined current on E. The same argument shows
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that the image of F in D_ can be compactified into a set F_, which is locally the
image of [0,1] x Hy x S_ by the map

(5.57) (a,z,Z_) — (ah(z,aZ_),Z_).

In particular, it still defines a current on D_. Also S_ C F_.

Now, we show how to ‘iterate’ the above procedure. Let E' = Ei & E! be
another Zy-graded Euclidean vector space of dimension n. The corresponding objects
associated to E! will be denoted with a superscript !. Let ® = ($,,®_) be a smooth
diffeomorphism from a neighbourhood of S_ in D_ into D}. Set Fi = & (S5_).
We assume that F} intersects S} transversally. Put H} = F} N S}. Let r} be
a projection of E} on Hj, which is well defined near Hi. Set K_ = & ' (H}).
Then K_ is a smooth submanifold of S_. Using transversality, we find that near
{0} x Hy x K_ C [0,1] x Hy x S_, the map

(5.58) (a,z,Z_)€[0,1] x HL x S_ —
(a,z,7} @4 (ah (z,0Z-),Z_),®_ (ah(z,aZ_-),Z_))
= (a,z,2',2L) € [0,1] x Hy x H} x EX

is a diffeomorphism.

Then a compactification of the image of ® (F_) by the flow ¥} associated to the
vector field Y1 can be described locally as the image of [0,1]* x Hy x H} x S by
the map,

(5.59) (a,a',b',z,2",ZL) — (a'®4 (ah (z,aZ-),2Z_),b'ZL),

where Z_ is itself evaluated at (a,z,z',a'b'Z1) under the inverse of the diffeomor-
phism in (5.58). In particular, this compactification defines a current on E'. More-
over, a compactification F! of the image of ® (F_) in D! by the flow ¥} can be
described locally as the image of [0,1]> x Hy x H} x S by the map

(5.60) (a,a', 2,3, 21) — (a'®4 (ah(z,0Z_),Z-),ZL),

where in (5.60), Z_ is evaluated at (a,z,z',a*Z1) under the inverse of the diffeo-
morphism defined in (5.58).

It should now be clear that the above process can be iterated. From the above,
we recover the fact established in Laudenbach [La] that in the case of a single fibre
X, the descending cells can be compactified, and define currents on X. Observe here
that we have not established as in [La] that the compactifications are C! manifolds
with conical singularities.

Assume now that the assumptions of our Theorem are verified. Locally over S, we
can trivialize TX|g = TX®|lg & TX"|g into a Zg-graded vector space. In our de-
scription of the compactification of the descending cells under the given transversality
assumptions, it follows that all the maps in (5.57)-(5.60) describing the compactifica-
tion of the descending cells and their intersection with the D_ will depend smoothly
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on the extra parameter s € S. By integration, it follows that if o € Q° (X ,F| X) has
a small support, its integral along the compactification of any of the descending cells
is well-defined, and depends smoothly on the parameter s. The proof of our Theorem
is completed. O

Remark 5.6. — By a well-known result of Palis and Smale [PSm]|, Morse-Smale dy-
namical systems are structurally stable. However, this does not lead to a simple
proof of Theorem 5.5, because, in general, the conjugation homeomorphisms are not
smooth.

In view of Theorem 5.5, we can now set the following definition.

Definition 5.7. — Let P> = Q*(M, F) — Q* (S,C* (W%, F)) be given by

(5.61) P®q = Z/_()a

x€B

Theorem 5.8. — The map P is a quasi-isomorphism of Z-graded G-complexes map-
ping (Q*(M, F),dM) into (Q* (S,C* (W*, F)), A’"), and mapping the filtrations F', F"
on Q*(M, F') into the corresponding filtrations in (Q*(S,C* (W%, F)),A’). Also P
maps the spectral sequences on Q*(M, F') into the corresponding spectral sequences on
Q° (S, C* (W% F)). In particular the map Eg(”) - E(')("') corresponds to the fibrewise
quasi-isomorphisms P> : (Q* (X, F|x),d*) — (C* (W, F),0). Finally P> induces

the identification of spectral sequences,
(5.62) E/(® ~ Bl r > 1,

E/(9 ~ B0 r > 1.
Proof. — First we show that P°° is a morphism of Z-graded filtered complexes, i.e.
(5.63) P>dM = AP,
Take a € Q*(M, F). We claim that we have the quality of currents on S,
(5.64) P*dMa = A'P®a.

In fact, by proceeding as in Laudenbach [La], or by using the arguments in the proof
of Theorem 5.5, we find easily that the boundary of W" as a current coincides with
its geometric boundary. Using Stokes formula, we get the equality of currents in
(5.64). Also by Theorem 5.5, these currents are smooth. Therefore, they coincide in
Q°(S,C* (W*, F)). It is clear that P™ is a filtered morphism with respect to the
filtrations F’ and F”'. The fact that the map Eg*® — EN*® is just P is trivial.
Using (5.48), a standard result in homological algebra [CaE, Chapter XIII, Theo-
rem 3.2] shows that P is a quasi-isomorphism, and that (5.62) holds. The proof of
our Theorem is completed. O
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Observe that if S is simply connected, the flat vector bundle H*(X, F|x) on S is
trivial as a flat vector bundle.

Theorem 5.9. — If S is simply connected,
(5.65) H*(M,F)~ H*(M,C)® H*(X, F|x),

and the spectral sequences E/(** E/(**) and E'(** E"(** degenerate at Ey.
Even if S is not simply connected , for F = C, the above spectral sequences degen-
erate at Ey. Moreover m; (S) acts as a finite group on H* (X, Z).

Proof. — The flat vector bundle C* (W¥, F') is trivial as a flat Z-graded vector bundle
on S. It follows that the spectral sequence Eﬁ("” degenerates at Es, and that

(5.66) H* (Q(S,C* (W, F)), A"~ H* (M,C) ® H*(X, F|x).

Using Theorem 5.8 and (5.66), we obtain the first part of our Theorem.

Let us now assume that F = C. Let H C m; (S) be the subgroup of 7 (S) which is
the kernel of the monodromy representation on the complex (C* (W*, C),d). Then
H is a normal subgroup of finite index, i.e. 71 (S)/H is a finite group. Let S’ be the
corresponding 7y (S) /H cover of S. The lift of (C* (W¥,C),d) to S’ is a trivial flat
complex. The arguments in the proof of the first part of our Theorem show that the
corresponding spectral sequences degenerate at Es5. Since our spectral sequences are
just the m (S) /H-invariant parts of these spectral sequences and 7 (S) /H is finite,
the same property holds for our spectral sequences. Finally since m; (S) /H is finite,
m1 (S) acts as a finite group on H* (X, Z). The proof of our Theorem is completed. [

Remark 5.10. — Let E be a SL(n,Z) vector bundle on S, let A C E be the corre-
sponding lattice. Let M be the total space of E/A. Then M fibres on S with fibre
the torus X = E/A. In this case the action of 7; (S) on H* (X, R) is the monodromy
representation on A® (E*), which is in general not finite. Therefore, in general, such
torus fibrations do not verify our assumptions.
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CHAPTER 6

FIBRATIONS, BEREZIN INTEGRALS
AND EULER CURRENTS

In this Chapter, we recall the construction by Mathai-Quillen [MQ] of the Thom
forms and of the transgressed Euler forms for Euclidean vector bundles with connec-
tion in the Berezin integral formalism. Under the assumptions of Section 3, we apply
these results to the vector bundle TX on M. This point of view was already developed
in [BZ1, Chapter III], which we follow closely. In fact let us recall that in [BZ1],
which only involved one single fibre X, two copies of the exterior bundle of algebras
A*(T*X) appeared naturally. An involution exchanging these two copies was then
used in [BZ1], in particular in local index theoretic computations. In our relative
situation, the problem is less symmetric. Still, a less obvious symmetry is preserved.
We explain here what is needed for the local families index theoretic computations
which will be done in the following Chapters. The results established in this Chapter
will be used in particular in Chapters 7, 9 and 13.

This Chapter is organized as follows. In Section 6.1, we recall the Berezin integral
formalism. In Section 6.2, we give describe the Mathai-Quillen Thom forms. In
Section 6.3, we recall the results of [BGS3] on the convergence of the Thom forms
as a parameter T tends to +oo. In Section 6.4, we construct the Mathai-Quillen
transgressed Euler form. In Section 6.5, in the context of fibrations, we establish
curvature identities. Finally, in Section 6.6, we prove a fibrewise Stokes formula,
which is based on the symmetries mentioned above.

6.1. The Berezin integral

Let E and V be real finite dimensional vector spaces of dimension n and m. Let
g% be an Euclidean metric on E. We will often identify E and E* by the metric g¥.
Let e;,--- ,e, be an orthonormal basis of E, and let e!,--- ,e™ be the corresponding
dual basis of E*.

Let A* (E*) be the exterior algebra of E*. It will be convenient to introduce another
copy A* (E*). If e € E*, we will denote by é the corresponding element in A (E*).
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Suppose temporarily that E is oriented and that ej,--- ,e, is an oriented basis
of E. Let fB be the linear map from A*(V*) ® A* (E*) into A (V*), such that if
a€eA(V*),Beh(EY),

B
(6.1) / off =0 if degB < dim E,
B e _1\n(n+1)/2
/ ael/\.../\en:_(_l.z______a‘
/2

More generally, let o(E) be the orientation line of E. Then [ B defines a linear map
from A* (V*) ® A* (E*) into A® (V*) ® o(E). The linear map fB is called a Berezin
integral.

Let A be an antisymmetric endomorphism of E. We identify A with the element
of A (E*),

(6.2) A== 5 (e Aej)einel.

1<4,5<n

By definition, the Pfaffian Pf [£] of £ is given by,

(6.3) / ’ exp (—A/2) = Pf [%] ‘

Then Pf [2’—3;] lies in o( E'). Moreover Pf [%] vanishes if n is odd.

6.2. The Mathai-Quillen Thom forms

Let M be a manifold of dimension m. Let m : E — M be a real vector bundle
of dimension n. Let g be an Euclidean metric on E. Let V¥ be an Euclidean
connection on (E, g¥), and let RF = V2 be its curvature. Then R is a smooth
section of A? (T*M)®End(E). Also 7*V¥ is an Euclidean connection on 7* (E, g%),
and 7*RF is the curvature of 7*VE.

Let e1, - ,e, be an orthonormal basis of E and let el,---,e™ be the corre-
sponding dual basis of E*. Let fi,---,fm be a basis of TM, and let f!,---, f™
be the corresponding dual basis of T*M. We identify RE with the section RE of
A% (T*M) & A% (E*),
(6.4) RE=3 3" (e, RE (far fo) &) FO AP Nei el
1<a,B<m
1<ij<n

The connection VZ defines a horizontal subspace T#E of TE such that TE =
THE @ E. Let PF be the projection TE — E and let PF* : E* — T*E be the
transpose of PE. Then PZ is a section of T*E ® E. If we identify E with E* by the
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metric g¥, PF can be considered as a section of T*E ® E*, so that

n

(6.5) PP =" (PPe) el

1
Let Y be the generic element of E.

~

Definition 6.1. — For T > 0, let At be the section of A (T*E) ® ™A (E*),

*RE
(6.6) Ar =" — +VIPP 4+ Ty [

The connection 7*VF acts as a differential operator on smooth sections of
A(T*E) ® ™A (E*). Also if e € E, the interior multiplication 7. acts naturally on
A (E*), and so it acts as a derivation of the graded algebra A (T*E) & ™A (E*). To
indicate clearly that ¢, only acts on the second factor A (E*), we will write 4; instead
of ie.

The following result was proved in [MQ, Section 6] and [BeGeV, Lemma 1.85
and Propositions 1.87 and 1.88].

Theorem 6.2. — The following identities hold,

Y
2VT
We will use the formalism of the Berezin integral developed in Section 6.1, with

V = TE. If w is a smooth section of A (T*E) ® ™A (E*) over E, wa is a smooth
section of A (T*E) ® 7*0(E), i.e. a smooth differential form over E with values in

OAT
orT

(6.7) [n*vE +2VTig, AT] —0, = |#*VE + 2vTig,

m*o(E).
Put
RE‘
(6.8) e(E,VP) =Pf [-27] .

Then e (E, V) is a smooth closed section of A4™ & (T*M)®o(E). It is a Chern-Weil
representative of the rational Euler class of E. Of course, if n = dim F is odd, then

(6.9) e(E,VF) =0.
Definition 6.3. — Let ar and br be the forms on E,
B B ¢
(6.10) ar = / exp (—Ar), br = / T exp (—Ar) .
Let . denote the integral along the fibre of forms on E taking value in 7*o(E).

Now we state a result of Mathai-Quillen [MQ, Theorem 6.4], also given in [BZ1,
Theorem 3.4].

SOCIETE MATHEMATIQUE DE FRANCE 2001



120 CHAPTER 6. FIBRATIONS, BEREZIN INTEGRALS AND EULER CURRENTS

Theorem 6.4. — The forms ar have degree n, they are closed, and their cohomology
class does not depend on T'. For T > 0, the forms ar represent the Thom class of E,
so that

(6.11) mear = 1.
The forms by have degree n — 1. Moreover,

ap = 7*e (E, VE)

_ _iyar
(6.12) br = —"22F, T >0,
P
% — —dbp, T > 0.

6.3. Convergence of the Mathai-Quillen currents

Let o (T'M) be the orientation bundle of TM. We identify M to the zero section of
E. If k € N and if K is a compact subset of E, let || HC;((E) be a natural norm on the
Banach space C (E) of forms in E with values in 7*o(T M), which are continuous
with k continuous derivatives, and whose support is included in K. Let d); be the
current of integration on M. If u is a smooth compactly supported form on E with
values in 7*o(T'M), then f £ wopr = f - Observe that dps can also be viewed as a
current on E with values in o (E).

Now we state a convergence result for the currents ar, 81, which was proved in

[BGS3, Theorem 3.12] and stated in the present form in [BZ1, Theorem 3.5].

Theorem 6.5. — Let K be a compact subset of E. There is a constant C > 0 such
that for any smooth form p on E with values in m*o(T M), whose support is included
i K, forT > 1, then

C
(6.13) '/EN(GT - 5M)l < Wis llles, gy
C
’/E#b:r < T3/2 “.UHC}((E)‘

Remark 6.6. — By proceeding as in [B6, Theorem 3.2], one can give a microlocal
refinement to Theorem 6.5. Namely one can show that as T' — 400, ar converges
to dy in the space of currents whose wave front set is included in N}, /B E*, with
similar estimates.

6.4. A transgressed Euler class

W