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RATIONAL ELLIPTIC CURVES ARE MODULAR

[after Breuil, Conrad, Diamond and Taylor]

by Bas EDIXHOVEN

Séminaire BOURBAKI

52e année, 1999-2000, n° 871, p. 161 à 188
Mars 2000

1. INTRODUCTION

In 1994, Wiles and Taylor-Wiles proved that every semistable elliptic curve over Q
is modular, in the sense that it is a quotient of the jacobian of some modular curve
(see [64], [60]). This work has been reported upon in this seminar in [50] and [41] ;
see especially [50, §1.2] for a historical account. As a consequence, Fermat’s Last

Theorem, known to be a consequence of this modularity result since work of Ribet
based on a conjecture of Serre (see [40]), was finally proved. For a more detailed

account of all this, see the book [15], and also [17]. Since 1994, this modularity result
has been generalized by an increasing sequence of groups of authors: [24], [14], and [4].
THEOREM 1.1 (Diamond). - Every elliptic curve over Q that is semistable at 3 and
5 is modular.

THEOREM 1.2 (Conrad, Diamond, Taylor). - Every elliptic curve over Q that ac-
quires semistable reduction over a tame extension of Q3 is modular.

THEOREM 1.3 (Breuil, Conrad, Diamond, Taylor). - Every elliptic curve over Q is
modular.

The method of the proofs is basically that of Wiles, i.e., for a given elliptic curve E
over Q one tries to prove that the mod .~ Galois representation on E(~) ~.~~ is mod-
ular for some prime number f, and then that all lifts ofPE,£ to f-adic representations of
a suitable type are modular. The second step involves studying deformations of Galois
representations, the systematic theory of which was initiated by Mazur, triggered by
work of Hida. The key result for the first step is the celebrated theorem of Langlands
[36] and Tunnell [61] that says that pE,3 is modular, as GL2(F3) is solvable and has
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a faithful two-dimensional complex representation. The complications that arise in
the proofs of the theorems above simply come from having to prove results as in
Wiles and Taylor-Wiles, but with fewer hypotheses. In particular, choosing the right
deformations of the restriction of to G~ := becomes much more

complicated if E does not have semistable reduction at ~.
The aim of this report is to give a reasonable sketch of the proofs of the theorems

above, to describe the relation to some conjectures by Fontaine and Mazur and

by Langlands, and to mention some related results. For some applications of the

modularity results above, we refer to [16]. The author of this report does not claim to
have checked the computations in [4], but he has studied [4] quite seriously and has not
encountered any real problem. Let us also state the following theorem (Theorem B
of [4]), whose proof is intricately linked to that of Theorem 1.3 above.

THEOREM 1.4 (Breuil, Conrad, Diamond, Taylor). - Every irreducible continuous

representation p: GQ - GL2(IF5) with cyclotomic determinant is modular.

2. RELATION WITH CONJECTURES BY LANGLANDS,
FONTAINE AND MAZUR

The Langlands program predicts, among many other things, that all L-functions

coming from algebraic geometry are in fact automorphic, i.e., arise from automorphic
representations. More precisely, every absolutely irreducible motive of rank n over
a number field F and with coefficients in a subfield E of Q should correspond to a

cuspidal algebraic automorphic representation of with coefficients in E: see

[10, Question 4.16], and the paragraph after that.
In that paragraph, Clozel explains how this conjecture relates to the conjecture of

Hasse-Weil type that says that the L-function of such a motive extends meromorphi-
cally to all of C and satisfies a certain functional equation. He finishes by remarking
that the only cases for which the Hasse-Weil conjecture has been proved are cases
where one actually proves the stronger conjecture, i.e., the existence of an automorphic

representation; this remains true after the work of Wiles and its generalizations.
Of course, if E is an elliptic curve over Q, the Langlands program predicts that

E is modular. Hence the modularity theorem for elliptic curves over Q is just a tiny

part of the Langlands program.
Fontaine and Mazur stated the following conjecture (Conjecture 1 of [32]).

CONJECTURE 2.1. - Let ( be prime, n ~ 0, and let p : Gal(Q/Q) ~ GLn(Ql) be an

irreducible continuous representation. Then p is isomorphic to a subquotient of some
etale cohomology group with X a smooth projective variety over Q, if
and only if p satisfies the following two conditions:

(1) p is ramified at only finitely many primes;



(2) the restriction to a decomposition group at l is potentially semistable (see
[31] for this notion).

In one direction, this conjecture has been proved: the are known to

be unramified at almost all primes, and the restriction to G~ is known to be potentially
semistable by work of Tsuji and de Jong (see [1, §6.3.3]). It is the other direction

that is even more spectacular: it is amazing that just these two conditions should

imply, for example, that the Frobenius elements at almost all primes have eigenvalues
that are algebraic numbers, and even Weil numbers, and that p should be part of a
compatible system of R-adic representations. The evidence that one has today for this
direction of the conjecture consists of the potentially abelian cases (treated in [32,
§6~; p occurs in the tensor category generated by representations with finite image
and representations which arise from potentially CM abelian varieties), and the cases
treated by Wiles’ method. However, see [39] for a representation that does satisfy the
two conditions above, but for which one does not know if it satisfies Conjecture 2.1.

Combined with the Langlands program, Conjecture 2.1 implies (Conjecture 3c of
[32]) that every 2-dimensional p satisfying the two conditions, up to Tate twist, either
has a finite image, or arises from a modular form of weight at least two.

Since the space of modular forms of a given weight and level is finite dimensional,
one also expects certain finiteness results concerning p as in Conjecture 2.1, which
become semistable over a given extension of Q, and are of fixed Hodge-Tate type:
see [32, §3]. Most of [32] is in fact concerned with a deformation theoretic study of
these finiteness conjectures.

Suppose now that 1 > 2.
For a given absolutely irreducible continuous p : one considers all

lifts p : i that are unramified outside a fixed set of primes. The l-
adic variety (over Qe) of such lifts is conjecturally three dimensional. Now suppose
moreover that is absolutely irreducible. Then the variety of lifts of is smooth
and of dimension five by [42, Thm 4.1]. Since one expects the locus of global lifts
that are potentially semistable and of a given type (i.e., Hodge-Tate type at R, and
semistable over a fixed extension of Q) to be zero dimensional, one expects that the
locus of such local lifts is of codimension three in the five dimensional variety. Indeed,
in the crystalline case with Hodge-Tate weights in the interval [0, .~ - 1], this was
proved in [42] (moreover, the two-dimensional space is smooth). We note that, by [3],
"potentially Barsotti-Tate" is equivalent to "potentially crystalline with Hodge-Tate
weights in [0,1]" (we recall that 1 > 2).

Of course, the computations done by Ramakrishna and by Fontaine and Mazur
are not directly in terms of representations of G~. Ramakrishna uses the results of
Fontaine and Laffaille, and Fontaine and Mazur work with filtered (~, N)-modules.
We note that by recent work of Colmez and Fontaine, ~11~, one actually has an equiva-
lence of tensor categories between semistable .~-adic representations of G.~ and weakly



admissible filtered (~, N)-modules, which makes it possible to translate problems on
the Galois side into problems in linear algebra, even more than before the equivalencebetween "weakly admissible" and "admissible" was known. On the other hand, what
is still not available in this generality is a theory that works for Ze-lattices instead of
~~-vector spaces.

3. REVIEW OF WILES’ METHOD

Before turning to the work of Breuil, Conrad, Diamond and Taylor, let us reviex;
Wiles’ method. Good references for this part are [17], [15], [50], [41], and of course
[64] (the introduction of which gives the story of the proof) and [60]. For simplicity,
we only discuss this method in a case that suffices for modularity of semistable elliptic
curves.

Let E be a semistable elliptic curve over Q. The first observation is that there are
many elliptic curves E’ over Q such that E[5] and E’ [5] are symplectically isomorphic;
this is due to the fact that the modular curve that parameterizes such E’ (over Q-
schemes) is a non-empty open part of P1Q. One proves that there is such an E’,
semistable, and such that the representation GL2(F3)
is surjective (see [50, §3]). By Langlands and Tunnell, the representation pE,,3 is
modular. The aim is now to show that pE~,3 : Aut (E’ (~) ~3°~~ ) ^-_’ )
is modular, by showing that all 3-adic lifts of with reasonable properties are
modular, and hence so is E’. Before we discuss how that works, let us see how one
then establishes the modularity of E itself.

Of course, if is surjective, then we could have taken E’ = E, so let us assume
that is not surjective. Then E[3] is in fact reducible (this uses the semistability
at all primes; see [50, Proposition 1]). But then P E,5 is irreducible, or E- is isogeneous
to the elliptic curve Ei over Q that has j-invariant -5~293/25, as one sees by looking
at the modular curve Xo(15), which has genus one and exactly eight rational points,
four of which are cusps (see [46, §2.1]). The elliptic curve Ei has a model over Q with
conductor 50, which can be checked to be modular. Since modularity is invariant
under isogeny and twisting, we may now assume that pE,5 is irreducible, and hence
surjective ([50, Proposition 1]). In this case, we already know that is modular,
because E’ is, and one proves the same type of result for modularity of 5-adic liftings
as in the 3-adic case.

Let us now give a precise statement of these lifting results. We need some termi-
nology and notation, adapted to the type of representations that we are interested in,
i.e., those coming from modular forms of weight two. For each prime p, we choose an
embedding ~ --~ Qp, and we let Gp and Ip denote the corresponding decomposition
and inertia subgroups of GQ. We let E: GQ - Z*l denote the l-cyclotomic character,
given by the action on the elements of i-power order in Q*.



DEFINITION 3.1. - Let .~ be a prime number, and k a finite field of characteristic .~.
Let R be a complete local noetherian ring with residue field k, and let M be a free
R-module of rank 2 with a continuous action by GQ; a choice of basis then gives a
continuous representation p : GL2 (R) . For p prime and di, ff ’erent f rom ~, M is
called semistable at p if, with respect to a suitable basis, is of the f orm ( 01 ) . The
representation M is called Barsotti-Tate (at ~~ if for each finite quotient M of M there
exists a finite group scheme A4 over ~~ such that M and are isomorphic as

The representation M is called semistable at l if it is Barsotti-Tate
or if, with respect to a suitable basis, 03C1|Ip is of the form ( o i ).

THEOREM 3.2 (Wiles, Taylor-Wiles). - 2 be a prime number. Let K

be a finite extension of 0 its ring of integers, and k its residue field. Let

p : GL2(0) be an odd continuous representation such that:

(1) its reduction p: GL2(k) is modular and its restriction to the quadratic
subfield of is absolutely irreducible;

(2) is semistable ;
(3) p is ramified at only finitely many primes;
(4) det(p) = ~;
(5) for every p - -1 mod ~ such that is reducible, is reducible too.

Then p is modular.

In view of what has been said above, this result implies that all semistable elliptic
curves over Q are modular. Wiles’ strategy to prove Theorem 3.2 is to compare

systematically all deformations of p with certain properties when restricted to decom-
position groups to those coming from modular forms of a given level. For simplicity,
we will now assume that p is semistable at all primes, and follow the exposition in
[41], with some modifications, anticipating our discussion of [24], [14] and [4].

So suppose that p is as in Theorem 3.2, and moreover that p is semistable at all
primes. We will now forget about p, for the moment, but keep p. So p is a continuous
representation of GQ on a 2-dimensional k-vector space, with k a finite extension of IF £
with ~ 7~ 2, and has the following properties: it is modular, absolutely irreducible after
restriction to the quadratic subfield of ~(~c~), semistable at all primes, and det(p) _ ~.
As nothing about these hypotheses changes if we replace k by a finite extension of
it, we may suppose, for example, that the characteristic polynomials of the p(a), a
in Go, are all split. Let 0 be the ring of integers in a finite extension K of ~~, with
residue field k. (Later in the proof, we need a modular form of "minimal level" giving
rise to p, and with coefficients in 0.) For any finite set £ of primes we define two
0-algebras Ro,~ and as follows.

DEFINITION 3.3. - Let R be a complete local noetherian O-algebra with residue
field k. A de f ormation of p to R is a free R-module M of rank two with a continuous



GQ action, such that k ~R M is isomorphic to p. A de f ormation p is said to be of
type ~ if det(p) = E, and p is semistable at I and "minimally ramified" outside ~:

(1) and p is Barsotti-Tate, then p is Barsotti-Tate;
(2) U ~ ~~ and p is unramified at p, then p is unramified at p;
(3) if p tI- ~U~~~ and p is ramified at p (and hence semistable, with our hypotheses~,

then p is semistable at p.

With these definitions, there is, for each ~, a universal deformation ring Ro,2:. that
represents the functor that sends R to the set of isomorphism classes of deformations
of type £ over R. A very good reference for this is [20]. If K - K’ is a finite

extension, then = 0’ ~Q Ro,~.
Let us now turn to the definition of The reader is referred to Appendix A

for certain properties of the Galois representation p f associated to a modular form

f of weight two with coefficients in ~~. We define N2:. to be the set of weight two
newforms f with coefficients in ~~ such that p f : is of type ~, where

Of is the sub-0-algebra of Qf generated by the coefficients of f. The results in

Appendix A imply that there is an integer N2:., such that for each f in N2:., the level
of f divides N2:.. This implies that N2:. is a finite set. One can take N2:. as follows:

where 6 is 0 if p is Barsotti-Tate and £ not in E, and 03B4 is 1 otherwise, and where N(p)
is the level associated to p by Serre in [49] (i.e., N(p) is given by the usual formula

~ 

for the Artin conductor of a representation, in terms of the ramification subgroups at
all p ~ ~). The reason that such a N~ suffices is that the wild parts of the conductors
of Pi and Pf are equal. For simplicity, we will now only consider E that do not
contain primes dividing N (p) (this suffices for the application to semistable lifts of p).
For each f in we have a morphism Of, and we define to be the

image of in the product of the Of. Since Rr is generated, as (9-algebra, by the
traces of elements in the universal representation, To,L. is generated by the elements

ap : for p not dividing 
The method of Wiles is now to show that the surjections Ro,L. -4 are

isomorphisms, by studying how they change as E varies. The first step in this

is to use what has been proved about Serre’s conjectures on modularity of mod ~’

representations in [49]: is not empty (see [45] and [22]). This implies that we

can suppose (and we will) that we have a section 7r = ~~ - O. We let P~
denote the corresponding 0-valued points of and Spec(Ro,), for each E.
Wiles introduced the following 0-modules associated to each E: on the one hand the

cotangent spaces at the P, i.e., and ~s~o s/~ and on the other hand
the "module of congruences" defined as follows. Since T o, is finite free as

0-module, Spec(Q ~) is the disjoint union of two open and closed subschemes

P,K and with P,K consisting of the point P(Spec(K)). We let Zs be the



scheme theoretic closure of in (note that the are reduced by
construction). These modules, that will intervene only via their lengths, are usually
introduced as and (This last module has
finite length if and only if Spec(Q 0 is reduced at 

The fact that represents the functor of isomorphism classes of deformations
of type E implies the following Galois cohomological description of 

where p is the representation corresponding to P = Ps, where ad°(p) is the represen-
tation of GQ on the sub-O-module of trace zero elements of Endo (Mp), and where
H~(GQ, K/O) denotes the subgroup of Hl (GQ, K/O) of classes that
map, at all p, to the subgroups L~,p of the K/O) that reflect the
conditions for deformations to be of type E. To be explicit, these are:

-- Ls,p = H1(Gp/Ip,(ad0(03C1) ~ K/O)Ip) if {l};
-- LE,p = Hl(Gp, K/O) 
-- is the subspace of that corresponds to deformations

that are Barsotti-Tate, E;
-- is the subspace of K/0) that corresponds to deformations

that are semistable at f, if £ E E.
The results of Poitou-Tate on local duality and global Euler characteristic show that,
for M a finite discrete GQ-module, with a Selmer datum Lv C Hl (Gv, M) at all places
v of Q, one has:

where M* is the Cartier dual Hom(M, ~*) of M, and where, for each v, Lv is the
orthogonal of Lv. Moreover, if L C L’ are two Selmer data for M, then one has an
exact sequence:

Having established this, Wiles first proves that 1ro,ø is an isomorphism,
and then that this remains so if one enlarges E. The argument for the first step is
really amazing, he somehow manages to "patch", for a suitable sequence of 1:n, the

and the into power series rings, with the same number of generators, and
deduce from that that is an isomorphism. (This patching argument was
introduced in [60], and used to show that To,ø is a complete intersection, but Faltings
pointed out that one could also use the argument directly in proving Ro,~ --~ To,ø to
be an isomorphism.) We will now take a closer look at this argument, in order to see



which conditions have to be satisfied by the type of deformations that one considers
for it to work.

So suppose that one wants to do this argument for The primes p that
one wants to add to E are congruent to 1 modulo a high power of ~, and such that

p is unramified at p with distinct Frobenius eigenvalues in 1~* . For such a p, and

for ~’ containing p, is a direct sum of two characters, whose restrictions
to Ip factor through the i-part Ap of (Z/pZ)*. Choosing
one of the two Frobenius eigenvalues gives the structure of an O[Ap]-algebra.
The ~’ that one wants to consider are of the form ~’ _ ~ U Q, with Q a set of r

elements, for some fixed r, and such that can also be topologically generated
by r elements. (Note that is an algebra over 0[Ao] with = 03A0p~Q 0394p,
and that 0[AQ] looks more and more as a power series ring in r variables, as the
primes p are closer to 1, 1-adically.) Let L and L’ be the Selmer data corresponding
to E and ~’. Then dimk ~v = r, so one finds, by the exact sequence above,
that dimk H1L (GQ, ado(p)*) > ado(p))). But in the displayed formula
above, one has dimk Lp 2 dimk ad° (p)IP ) = ado(p)), for all

whereas dimk Loo = 0 and dim ad° (p)) = 1 . Moreover, in that formula

one has M) = 1 (since p is absolutely irreducible), and = 1

(since the restriction of p to the quadratic subfield of is absolutely irreducible).
It follows that this setup can only work if Lp = Hl (Gp /Ip, ad° for all I; and

 1 + dimk ad0(03C1)Gl. This means that £ must be M3, and that Ll must be

of dimension 1, unless 1. This last condition puts a very strong restriction

on the type of local deformations at £ that one can use. 
>

In order to prove that is an isomorphism, Taylor and Wiles use that,
in their situation, the localization at p of 0) is a free 
and similarly for the ~’s that they choose. Such results are quite delicate to prove. In

the next section we will discuss how Diamond and Fujiwara have gotten around this,

and actually obtain such freeness results as a consequence of the method. In [17], the
freeness assumption is not used, but the given proof still relies on q-expansions (see
[17, Remark 4.15]).

Let us now briefly discuss how Wiles proved that the RO,03A3 ~ To,E are isomor-

phisms. This is done by induction on the number of elements of 03A3, but, in order

to carry out this induction, one actually proves more, namely, that these O-algebras
are complete intersections. Indeed, Wiles found a criterion for doing the induction,
in terms of the changes of the lengths of and when comparing

between £ and ~’ := E U ~p~. On the Galois side, the exact sequence above gives an

upper bound for the length of /0’ 
On the Hecke side, [17, §4.4] gives a new

proof of the lower bound for the length of that was proved by Wiles. This

proof does not use freeness, and it nicely relates this change of length to the residue at

2 of the L-function of the symmetric square of the system of representations associated



to P, giving a relation to the Bloch-Kato conjectures. Wiles’ argument, which is to

compute the composite Jo (N~~ ) -~ Jo (N~ ), is also sketched in [17, ~4.4~ .

4. IMPROVEMENTS OF THE COMMUTATIVE ALGEBRA PART

The results in commutative algebra that are used in [14] and [4] are improvements
of those in [64] and [60]. These improvements were found independently by Diamond
[25] and Fujiwara [33], motivated by Fujiwara’s work on modularity over totally real
number fields. We also note that Lenstra, de Smit, Rubin, and Schoof have established
isomorphism and complete intersection criteria as in Wiles, without the Gorenstein
hypothesis, and without the limiting process, see [21]. Let us now state the criteria
as in [25, Theorems 2.1 and 2.4].

THEOREM 4.1. - Let k be a finite field, and r > 0 an integer.
Let A :== ..., Sr~~, B := ..., X7..~~, let R be a k-algebra, and let H be

a non-zero R-module that has finite k-dimension. Suppose that for every n > 1 one
has a commutative diagram:

and a B-module Hn with a morphism 03C0n : Hn - H such that as an A-module, Hn
is free over A/mA, and such that the morphism k ~A Hn -~ H induced by ~rn is

an isomorphism. Then H is free over R, and R is a (zero dimensional) complete
intersection.

In the application of this result, k is as above, A is a projective limit of k-algebras
of the form l~~~Q~, with Q a set of r distinct primes p -1 mod ~n and the product
of the B is a projective limit of R and Hand Hn
come from (co)homology groups of modular curves. The freeness of Hn over A/mnA
basically comes from standard facts about cohomology of locally constant sheaves and
unramified covers of affine Riemann surfaces. The Hecke algebra k ~o is the

image T of R in Endk(M), so the conclusion that H is free over R implies that R = T.
The freeness version of Wiles’ numerical criterion is as follows.

THEOREM 4.2. - Let 0 be a complete discrete valuation ring with finite residue field
k, and let R be a complete noetherian local O-algebra. Let H be an R-module, finite
f ree over 0, let 03C6: R ~ T be the quotient by AnnR (H), and suppose that T has a sec-
tion T - O. Put 03C0R :_ Define 03A9 := + 
Let d be the O-rank of If S~ has finite length over D, then the following
are equivalent:



(1) rankoH  d-rankoT and lengthO03A9 ~ d.lengthO(ker(03C0R)/ker(03C0R)2);
(2) rankoH = d.rankoT and 03A9 ~ (O/FittO(ker(03C0R)/ker(03C0R)2))d;
(3) R is a complete intersection and H is free (of rank d~ over R.

5. THE WORK OF BREUIL, CONRAD, DIAMOND, AND TAYLOR

We are now ready to discuss the work of the four authors mentioned above in [24],
[14], and [4]. Before getting into any details, let us see what problems were solved in
each of these three articles. In [24, Theorem 5.3], Diamond gets rid of condition (5)
in Theorem 3.2. To be precise, let us state his result.

THEOREM 5.1 (Diamond). - Let ~ > 2 be prime, K a finite extension of ~~, 0
its ring of integers, k its residue field, and p : GL2 (0) an odd continuous
representation such that:

(1) its reduction p: GL2(k) is modular, and its restriction to the quadratic
subfield of is absolutely irreducible;

(2) is Barsotti-Tate and ~~I~ , or, with respect to a suitable 

of the form (03C60 *03C8), with 03C8 unramified, 03C8 ~ 03C6, and 03C6|Il = ~~k-1|Il for some
integer k ~ 2 and x of finite order;

(3) p is ramified at only finitely many primes.
Then p is modular.

We should note here that Theorem 3.2 is weaker than the result that was proved
by Wiles. What is proved in [64] is the theorem above, with the extra condition (5) of
Theorem 3.2. Let us now explain what the problem is in a case that does not satisfy
this condition (5).

So suppose that p satisfies the conditions of Theorem 5.1, that ~, that pr = 

is irreducible, but is reducible. Then pp is of the form with Qp2 the
unramified extension of degree two of Qp, and 1/J: GQp2 ~ k* a continuous character
such that (To prove this, note that p(Ip) must have exactly two fixed points
on pI (JF p), that are interchanged by Frobp, since otherwise pp would be reducible.)
But then, if £ divides p + 1, there are nontrivial deformations of pr of the form

pp = from Gp to GL2(0’), with 0’ a finite extension of 0, Gp - 0’*

the Teichmuller lift of 1/J: Gp - k* , and with : GQ p 2 -4 O’* of order l. One checks
that det(p)11p is the Teichmuller lift of (use that Frobp acts on the tame
inertia group = by multiplication by p). The whole problem arises from
the fact that, on the one hand, pr and pp have the same Artin conductor, namely, the

square of the conductor of but that, on the other hand, pp admits different lifts
with this conductor. This means that if we consider lifts of p to be minimally ramified
at p if they have Artin conductor cond( 7jJ)2 at p, then we get an Lp C HI (Gp, 



in the notation of Section 3, that is nonzero, making already Wiles’ method at the

minimal level impossible.
The conclusion is that, on the automorphic side, levels of newforms are not fine

enough invariants to work with; one should impose finer conditions on the 
restrictions

to the Gp (at the Galois side), and corresponding conditions on the irreducible

admissible representations on the other side. Wiles already notes this in the second

remark following Conjecture 2.16 in [64].
The finer conditions that will be imposed are in terms of what are called "types" and

"extended types" in the articles that we discuss here. An extended type, at a prime p

(p = .~ is allowed) is simply an isomorphism class of two-dimensional representations
over Qf of the Weil-Deligne group Wp of Qp (see Appendix A), and then types are
isomorphism classes of restrictions to Ip of extended types. The local Langlands

correspondence makes extended types correspond to isomorphism classes of infinite

dimensional irreducible admissible representations of GL2 (Qp) , over Qf. We will not
discuss the proof of Theorem 5.1 here, as it is repeated in [14] and [4], with some

changes, however. Diamond used, in order to simplify the representation theory at the

automorphic side, the Jacquet-Langlands correspondence to work with a quaternion

algebra over Qp instead of the matrix algebra. In the two subsequent articles, one

works directly with modular curves. We recommend [23] for an overview of [24], that
does not become too technical. But, as the reader can already guess, the rest of this

section will get more technical, especially on the automorphic side, because of these

finer restrictions.

With Theorem 5.1 above, it is not hard to prove that all elliptic curves over Q

that are semistable at 3 and 5 are modular; we refer to [24, §5] for details. So the

only remaining problem to get modularity for all elliptic curves over Q is to get rid of

the semistability conditions at 3 and 5. Since modularity is invariant under twisting,
Diamond’s result actually implies that the only elliptic curves E that remain to be

dealt with are those that have potentially good reduction at 3 and 5, but that do

not have a twist with good reduction at 3 and 5. Since one knows that the two

j-invariants that correspond to E with more than two automorphisms are modular,
the only twists to consider are quadratic twists.

The first step in the direction of relaxing the conditions at 3 and 5 was made in

[14], where it is proved that E is modular if it acquires good reduction over a tame

extension of Q3. The main new ingredient of this paper, compared to [24], is a new

type of deformation problem, for a mod .~ representation of G~. Roughly speaking,
one considers deformations p over R of p over k such that the restriction of p to GF,
or a twist of it by a fixed quadratic character, is Barsotti-Tate, for F a fixed finite

extension of ~~ with ramification index e  ~ - 1. We have seen, in Section 3, that it

is crucial that the tangent space over k of the universal deformation ring of the type
of deformations of 03C1|Gl that one considers be of dimension at most one This crucial



result for [14] was proved by Conrad in [13], using his description of finite free group
schemes over the rings of integers of such F obtained in [12], generalizing earlier work
of Fontaine in [30]. Using Conrad’s result, it was then proved ([14, Theorem 7.1.2])
that any elliptic curve E over Q that acquires good reduction over a tame extension
of Q3 is modular.

The final step in relaxing the conditions at 3 is done in [4]. It is the work of Breuil

[3], summarized in [2], that gives a workable enough description of certain finite free
group schemes over rings of integers of arbitrary finite extensions F of that makes

this possible. With this tool available, it is then proved that the remaining E, i.e.,
those that acquire good reduction only after a wild extension of Q3, are modular. The
article [4] consists for about 70% (of 77 pages) of the proof that, in the cases that are
needed, the local deformation space at £ has dimension at most one.

In order to keep this section of reasonable length, we postpone the discussion of
these results at £ to the next one, and in this one we focus more on the global aspects
of the proof, and on Conjecture 1.3.1 of [4], which says for which p : GL2 (O)
one hopes to be able to prove modularity.
We will now follow [4, §1], in order to introduce the necessary terminology, and to

state the conjecture just mentioned. We suppose 1 > 2. An extended i-type is defined
as an isomorphism class of two-dimensional representations of W~ over Qe (with open
kernel), and i-types are isomorphism classes of restrictions to Ie of extended f-types.

Suppose that T’ is an extended f-type, with restriction T to I~.

DEFINITION 5.2. - A continuous representation p: Gi - GL2(0) (with G the ring
of integers in a finite extension K of is said to be of extended type T’ (resp. of

type,) if:
(1) p is potentially Barsotti- Tate;
(2) WD(p) (as in Appendix B) is in T’ (resp. is in T~;
(3) the character det(p) has finite order prime to l.

Now fix a finite extension K of let 0 be its ring of integers and k be its residue
field. Let p be a two-dimensional continuous representation of G~ over k, say on a

vector space V, such that EndGl (V) = k (i.e., either p is absolutely irreducible, or it is
a non-split extension of a character by another character). Under this last hypothesis.
we have a universal deformation ring Ro representing the functor of deformations of
p to complete noetherian local 0-algebras with residue field k. (The superscript
~ is there to indicate that we are considering representations of G~.) We remark

that extended types will only be considered if their restriction to I~ is irreducible.

Now consider In it, we have a minimal closed subset that contains all

deformations of p to finite extensions 0’ of 0 that are of type T, and similarly for
extended type T’. These minimal closed subsets correspond to (reduced) quotients

and A deformation p over R of p is said to be weakly c/ type 03C4 (resp.



weakly of extended type T’), if the corresponding morphism R factors through

R , T (resp. through Ro,T~ ) .
DEFINITION 5.3. - A type T (resp. an extended type T’) is weakly acceptable for p
if there exists a surjection of O-algebras O[[X]] - (resp. O[[X]] - A

type T (resp. an extended type T’) is acceptable for p if moreover 0 (resp.
0), i. e., if there exists at least one l-adic de f ormation of type T (resp. of

extended type T’). We will also speak of p accepting T (resp. T’).

Of course, with these definitions, it is very hard to check whether a given p accepts
a given T or T’. It is precisely this kind of verifications that occupy the most of

[4], and it is there that crucial use is made of Conrad’s and Breuil’s results on finite
group schemes. We note that [4] conjectures that an .~-adic lift of p is of type T (resp.
extended type T’) if and only if it is weakly of that kind (Conjecture 1.1.1 of [4]), but
this has no importance for what follows. What is much more important, is that [4,
Conjecture 1.3.1] tries to predict acceptability purely in computable, representation
theoretic terms. In order to state this conjecture, [4] needs about 4 pages of prepara-
tion, consisting mostly of definitions. Instead of trying to state all these definitions,
we will try to see where they come from.

The question one should ask oneself is: if f is a newform over Qf, then what
can one say about G~ --~ in terms of assuming Pj irreducible?
In particular, for a given p, what are the irreducible admissible representations that
occur as for f with p f,~ ^-_’ p?
An answer to this question will then say for which T and T’ there does exist an

f-adic lift of p of that type. Moreover, from the mechanism that is used to find this,
one may guess under what conditions one expects or to be topologically
generated by one element. 

~ 

To find the answer to the question (and for other reasons as well), [4] constructs
certain ~-adic sheaves on certain modular curves, that pick out a non-zero part of
exactly those 1r j such that has a prescribed type (or extended type). For each T
and for each T’,with irreducible, one defines open subgroups UT of GL2(Zf) and
U03C4’ of and irreducible representations aT and 03C303C4’ on finite dimensional Ql-
vector spaces, with open kernel. The choice of these subgroups and representations
is justified by [4, Lemma 1.2.1] : for every irreducible admissible representation 1f of

over ~~ one has
- and = 0 T;
- HomUT, 03C0) _ Ql if T’, and HomU03C4’(03C303C4’, 03C0) = 0 if T’.

The fact that such subgroups and representations exist is not particular to our sit-
uation. There is a general theory, called (no surprise) type theory, whose goal it is
to describe smooth representations of p-adic groups in terms of their restrictions to
compact open subgroups; see [6]. Before we go on, let us mention that Khare has also
asked and answered the question above, at least in the case of types, in [34].



With these (UT, ar) and one constructs sheaves on modular curves as

follows. One defines U~ to be UT if one considers a type, and UT, n GL2(Zg) if one

considers an extended type. In each case, one has a representation of namely, err-
and the restriction of Let U~~~ be a sufficiently small open subgroup of GL2 (~G~~~ ~ ,
and let a be the representation of U := given by ag. Then the modular curve
and the sheaf are:

with Ma the Ql[U]-module given by a. In the case where one considers an extended
type, one also gets an automorphism of the pair (Yu, By construction, the
duals of the two-dimensional Galois representations p that occur in H; (YU, ~~) if

one considers a type (resp. in if one considers an extended type)
for some are precisely those that correspond to newforms f such that are

of the prescribed kind that is described by T or T’. Let U’ :== and

consider the morphism 7r : Then one has H; (Yu, = H~ 
In order to get information on the corresponding p/s, one now reduces the sheaf
modulo .~, i.e, one chooses a ZR-lattice for a, and one reduces modulo the maximal

ideal. By construction, the Jordan-Holder constituents of this reduction are of the
form 0n,m := with 0  n  ~ and m in ~/(.~ - and

with F the locally constant sheaf of two-dimensional Fl-vector spaces given by the
standard representation of or, if one wishes, by the dual of the £- torsion of

the universal elliptic curve. Moreover, the (n, m) that occur, and their multiplicities,
can be computed by representation theory (Brauer characters). But now one can use
the results of Deligne and Fontaine stated in [29, Theorems 2.5 and 2.6] that describe
the for newforms of prime to ( level, and weight between 2 and l + 1, in order to

see which p occur in the . Since is simply 
is just us note that in the case of an extended type, one also

has to deal with the automorphism WR; this is done in [4, §1.4]. The role played by
the explains that the dependence upon P of "T (resp. T’) admits p" is via its

properties that determine the weight that Serre has attached to (see [29, Sections

2-4]).
Having seen this, we can understand what goes on behind the definition of the

notion of "T (resp. T’ ) admits p" in ~4, ~ 1.3~ : this means that there exist newforms f of
that type such that p f is a lift of p of the required type. What is harder to understand,
is what is behind the corresponding two notions "simply admits", because [4] defines
this by simply listing all elements of this relation. A reasonable guess seems that this

condition means that 1f*Fa has exactly one Jordan-Holder constituent that can give
rise to p~ . (In fact, the freeness results in Theorems 4.1 and 4.2 and the definition of
the Hecke modules that are used imply that in the situations where these theorems

can be applied, 1f*Fa has exactly one Jordan-Holder constituent that can give rise

to p~.) It would be interesting to know how much of the relation between and p f~,~



can be computed using Fontaine’s functors. Let us now state this Conjecture 1.3.1,
and the two main theorems (1.4.1 and 1.4.2) of [4].

CONJECTURE 5.4. - Let k be a finite subfield of p : GL2(k) a continuous
representation, T an .~-type and T’ an extended ~-type with irreducible restriction to L~ .
Suppose that the centraliser of the image of p is k and that the image of T is not

contained in the center ,

(1) T (resp. T’~ admits p if and only if ~0~ (resp. ~0~~, i.e., if
and only if there is a finite extension K’ of ~~ in ~~ an~a continuous representationGL2(OK’) which reduces to p and has type T (r sp.., has extended type T’).p: Gl ~ GL2(OK’) which reduces to p and has type r has extended type 03C4’).

(2) T (resp. T’) simply admits p if and only if T (resp. T’) is acceptable for p.

THEOREM 5.5. - Let 1 > 2 be prime, K a finite extension of ~.~ in ~,~ and k its
residue field. Let p : GQ -t GL2 (K) be an odd continuous representation, ramified at
only finitely many primes. Assume that its reduction p : GQ -t GL2(k) is absolutely
irreducible after restriction to the quadratic subfield and is modular. Further,
suppose that:

-- has centraliser k;
-- is potentially Barsotti-Tate with I-type T (resp. with extended I-type T’~;
- T (resp. T’) admits p;
-- T (resp. T’~ is weakly acceptable for p.

Then p is modular.

The proof of this theorem is very parallel to the proof of [14, Theorem 7. I.I], and
is just written in terms of the changes to make. The strategy is of course the same
as Wiles’, especially in the way that we have described it, but now one imposes, at
all primes where this is required (i.e., ~ and the so-called vexing primes of [23]), these
finer restrictions to define the right notion of minimally ramified deformations. The
commutative algebra that is used consists of the results that we have described in
Section 4. The required Hecke modules are constructed as cohomology groups of
sheaves on modular curves just as the 3ia above, with the difference that one will also
have types 7p at some primes 

Of course, in order to apply this theorem, one has to prove that the last condition
holds, i.e., that there exists a surjection O[[X]] -> R6,p. This condition has indeed
been proved in sufficiently many cases in order to prove Theorem 1.4, by Conrad in
[13] for tamely ramified types with small image, and in [4] for some more types, using
Breuil’s work. We will come back to this question of proving weak acceptability in
the next section.

Let us now see what is still required in order to prove the theorem that all elliptic
curves E over Q are modular. The proof of this is divided into three cases:

( 1 ) is irreducible;
(2) reducible, but absolutely irreducible;



(3) the remaining cases.
First of all, the last case corresponds to rational points on a few modular curves of
small level. It is proved in [14, Lemma 7.2.3], with help of Elkies, that the set of
all such elliptic curves has, up to isogeny and twist, just three elements, which are
known to be modular by calculations. Let us consider the second case. Then E

acquires semistable reduction over a tame extension of Q3 because pE,5(I3) has order
dividing (5 - 1)25. If a quadratic twist E’ of E is semistable at 3, one switches to

E’, and one is in the situation considered in [24]. If not, then any ramified quadratic
twist of EK with K a ramified quadratic extension of Q3 has good reduction, so that
one can use [13, Theorem 4.2.1]. Let us finally consider the first case. In this case,

Theorem 1.4 says that pE,5 is modular. Moreover, since 5 > 3, E acquires semi-stable
reduction over a tame extension of Q5 of degree dividing 4 or dividing 6; in the first

case, where E is potentially ordinary at 5, Theorem 5.3 of [24] applies, in the second
case, there is a ramified extension K of Q5 of degree 3, such that a ramified quadratic
twist of EK has good, supersingular reduction, and [13, Theorem 4.2.1] applies.

So it remains to explain how Theorem 1.4 is proved. Let p be as in that theorem.
One first twists p by a suitable quadratic character, such that falls into one of

the 6 cases of [4], page 3, whose Artin conductors at 3 are 3~, 0  i  5. Then one

considers elliptic curves E over Q such that is isomorphic to p. The moduli space
of these is the union of two non-empty open subschemes of hence there are plenty
of such E. Using Hilbert irreducibility, and some computations by Manoharmayum

[37], one can show that there exists such an E such that pE;3 is surjective on GL2(1F3)
and such that, in the cases of conductor 32 with 2 > 3, pE,3 is such that Theorem 5.5

above can be applied to it, i.e., such that the type, or extended type, can be proved
to be weakly acceptable for pE,3. These results are proved in [4, §2.1]. The use of an
extended type is required only in the case of conductor 35.

6. DEFORMATION PROBLEMS AT £

Let us now discuss the results concerning weak acceptability, obtained in [13], [14].
and in Sections 4-9 of [4]. We recall what this means. Let £ > 2 be prime, K a finite
extension of Qf, with ring of integers 0 and residue field k. Let p be a two-dimensional

representation of Gf over k, with centraliser k. Let T be an £-type, and T’ an extended

£-type with irreducible restriction to 7~. Then the quotients and the

universal deformation ring Ro of p have been defined in the previous section, by
taking the Zariski closures in Spec(R) of the sets of ~-adic lifts of type T (resp.
extended type T’). Weak admissibility of T (resp. T’) just means that there exists a

surjection O~~X~~ --~ (resp. O~~X~~ --~ So what one wants to compute is

the dimension over k of the space of deformations over of p that are weakly of

type T (or extended type T’). But the way that these kind of deformations have been



defined makes this impossible. So, in order to deal with this problem, one defines
other deformation problems, whose universal deformation rings surject to the ones
above, and for which one then proves that they admit a surjection from O~~X1~. The
aim of this section is just to describe these new deformation problems, and to sketch
the tools that are used in their study. Let us mention that there seems to be some
hope that one can deal directly with the rings R6,r and R6,r’ (see the beginning of
[4, §4]). In what follows, we drop the superscript £ from the notation, as we are only
considering representations of G~.

We follow [4, §4]. We first discuss some generalities, and then what happpens in
the worst case, i.e., the conductor 35 case. Let F be a finite Galois extension of Qf,
with group r. We let R be the ring of integers in F, and k its residue field (if we need
to refer to the residue field of 0, we will call it ko). For Q a finite free group scheme
over R, of £-power order, we let denote the contravariant Dieudonne module of

~~; it is a W(k)-module, equipped with operators F and V, such that FV = VF = .~
and, for all x in W(k): Fr = Frobf(x)F. A descent datum for a finite free group
scheme Q over R is a right action of F on ~, compatible with its action on Spec(R),
i.e., for each q in F, one has a commutative diagram:

such that = ~~’2~ for all ~yl and ~2 in h. Note that, since R may be

ramified, this is not what one should call a descent datum; however, it is a descent
datum after restriction to F. In particular, we can associate in this way, to a pair
(~, [-]), a group scheme over Qf. A descent datum as above gives an action of r on

compatible with the action ofFon W (l~), and commuting with F and V, i.e., it
becomes a module over the ring W(k) [F, V] ~h~ (with suitable commutation relations).
The idea is now that to T and T’, one can associate ideals I and I’ of this ring, that
will impose the right conditions on £-adic lifts of p to be of type T or of extended
type T’.

Let us now describe the kind of deformation problems that are considered. The
extension F of Qf should be taken such that the type T (or the extended type
T’) becomes unramified over it. Then one fixes a model over R for p, i.e., a pair

[.]) as above, giving p as the module of its Qf-points, and such that I (or I’)
annihilates Once a model is chosen, one can consider all deformations p of
p, say to artinian rings, that admit a model (~, [.]) with killed by I (or by I’),
with a filtration in which each successive quotient is isomorphic to (go, ~~~). A nice
condition to impose is then that such models are unique, and indeed, this can be



realized in the situations that are needed (this is what [4, §4.2] is about). Let us

denote by and Ro,I’ the universal deformation rings thus obtained.
This is where the generalities end, and where one considers each of the 3 cases

(conductor 33, 34 and 35) separately. Let us just describe what happens in the worst
case: conductor 35. In that case, Conjecture 1.3.1 of [4] suggests 3 extended types Tl ,
i E One can take 0 = Z3. The restrictions of the T2 to are given by
a morphism

with ( of order 3. This defines abelian extensions Fi of Q3( A) of degree 12, that
are Galois over Q3. The ideals Ii that one uses are all three generated by: F + V,
[1l] + 1, and (~~y3~ - ~~3 l~)I~y2~ -F, with ~y2, 73 and ~4 certain elements of 
In particular, 12 is not in the inertia subgroup of Gal(FijQ3), hence the last generator
of the Ii reflects that one works with an extended type. Without this condition, or
even with a similar condition coming from other possible extended types, one wouldn’t

expect the tangent space of the deformation problem to be of dimension one.

Theorem 4.6.1 of [4] says that, for each i, there exist four models of p with the
property that models for deformations as above are unique, and, moreover, that each
deformation of p as above has a filtration with all successive quotients isomorphic to
one of these four. Theorem 4.6.2 of [4] then says that all four have the property that
the universal deformation ring is topologically generated by one element, but three of
them have universal deformation ring F3[[X]] ([4, Theorem 4.6.3]). Using this, it is

finally proved that every 3-adic lift of p that is of extended type say over a finite

extension 0 of Z3, comes from a morphism Ro - that factors through the
universal deformation ring 

2 

associated to this last model. Hence, finally, this

proves that each of the T: weakly accepts p.
To finish this section, let us point out that proving the theorems in the preceding

paragraph takes about 45 pages in [4], with about 30 of them filled with computations
with Breuil’s Ø1-modules. It is my hope that these notes will encourage readers to

take a look at those pages, and understand what is going on. In order to say at least

something about these modules, let us give the definition of the i-torsion 03C61-modules
over R, the category of which is anti-equivalent to that of finite free group schemes

over R that are killed by ~.

Let R etc. be as in the second paragraph of this section. Let 7r be a uniformizer of

R, and En (u) its minimal polynomial over W (1~). Let § denote the £-th

power map on An £-torsion Ø1-module is then a triple (M, Mi, with M



a finite free with M1 a containing ueM, and
with ~i: Mi - M (~-semilinear, such that generates M as 
We note that the category just described does not depend on the choice of the

uniformizer 7r, but that the functors giving the anti-equivalence mentioned above do
depend on that choice. This fact causes a lot of trouble in [4], as one has to study the
action of Gal(F/Q) on models Q over Spec(R), and, of course, Gal(F/Q) will not fix
the choice of 7r.

7. TWO RELATED RESULTS

The aim of this section is to briefly state two modularity results on two-dimensional
Galois representations that are obtained by others than those mentioned in the title.
They can be found in [51] and [7].

THEOREM 7.1 (Skinner, Wiles). - Let R > 2 be prime, and let p : 
be an odd continuous representation, ramified at only finitely many primes, with

det(p) == with 1/J of finite order, ~: ~~ the cyclotomic character and
k > 2 an integer. Suppose that 03C1|Gl is the extension of a character 03C82 by a character
03C81 with of finite order and such that I f p : GQ -t is

irreducible, then suppose that p is modular. Then p is modular.

In fact, they even prove a stronger result, with Q replaced by an arbitrary totally
real field. This generality is actually even necessary for the theorem above, since the
proof involves changing the field Q. Let us note that the representations p considered
by Skinner and Wiles are very different from those considered by Breuil, Conrad,
Diamond, and Taylor, which mostly have irreducible restrictions to any open subgroup
of Gf.

THEOREM 7.2 (Buzzard, Dickinson, Shepherd-Barron, Taylor)
Let p be a continuous, irreducible, odd representation from GQ to GL2(C) with

unsolvable image. Suppose that p is unramified at 2 and at 5, and that the image of
p(Frob2) in PGL2(C) has order 3. Then p is modular.

Let us note that all continuous representations p : GL2(C) with solvable
image and with F a number field are known to be associated to automorphic repre-
sentations, by Hecke (in the dihedral case) and Langlands and Tunnell ([36], [61]).
The strategy of the proof is explained in [57], and carried out in [8], [54], and [28]. The
paper [7] mainly pulls everything together, and provides slight technical but needed
improvements of previously obtained results.

In a nutshell, the strategy consists in realizing a suitable twist of p over a number
field in C, such that it has a reduction p mod 2 with values in GL2(F4). Then one



shows that p is modular, that p arises from an overconvergent 2-adic modular form.
and finally that p arises from a weight one form.

8. LATEST NEWS

This section has been added at the time the final version of this text was written

(June 2000). Its aim is just to direct the reader to some developments that took place
after the lecture (March).

Taylor has released two preprints [58] and [59]. In the first one, he proves, using
work of Skinner and Wiles ([51], [52], [53]), and of many other people, the following
result.

THEOREM 8.1 (Taylor). - Let .~ be an odd prime, and p: GL2(Qf) a contin-
uous irreducible representation such that:

(1) p is unramified at all but finitely many primes;
(2) p is odd (i.e., det p(c) = -1 );
(3) is an extension o f x2 by with ~1|Il and ~2|Il of finite order and n

a non-zero positive integer, such that is not 

Then there is a totally real number field E, a regular algebraic cuspidal automorphic
representation 03C0 of GL2(AE) and a place 03BB of the field of coefficients of 03C0 above l

such that p7r,A (the A-adic representation associated to ~r~ is equivalent to 

As a consequence, such a p has an L-function, and this L-function is meromorphic
and satisfies the expected functional equation. Also, under some mild hypothesis,
it follows that p occurs in some as in Conjecture 2.1. The idea that
allows one to use the results of Skinner and Wiles, and others, concerning p such that

p has a soluble image, is to use abelian varieties with real multiplications such that
the p of the Theorem above is related to the £-torsion, and such that the p-torsion
(for some other prime p) gives a suitable soluble image. The existence of such abelian
varieties is proved by applying Skolem type results to Hilbert-Blumenthal modular
varieties (see for example [38]).

Ramakrishna proved in [43] that, under mild hypotheses, a continuous mod l

representation p : GQ - GL2(k) (not supposed to be modular) can be lifted to a
representation p : GQ ---+ GL2(W(k)) over the Witt vectors of k, with p unramified at
almost all primes. More recently, in [44], he has proved that one can even obtain that
p is semi-stable or crystalline at £. His main innovation is to consider deformation

problems that lead to a universal deformation ring W (l~). He requires to be

of the form ( 01 ) for suitable p. Note that this is stronger than a condition on 
(until now, only conditions on 03C1|Ip were imposed), which makes it reasonable that the
deformation ring will be small. One finds a slight generalization of Ramakrishna’s
results in [59], where they are used to prove some more cases of the Artin conjecture.



Combined with Theorem 8.1, one obtains that p as above becomes modular after
restriction to GE with E a suitable totally real extension of Q (see [58]). This can be
seen as a "potential" version of Serre’s conjecture.

Khare has used Ramakrishna’s work ([35]) to give another proof of certain "R = T"
theorems. Assuming p to be modular, one gets an "R = T" theorem for Ramakrishna’s
deformation problem (the main result of [27] implies that Ramakrishna’s lift p is mod-
ular). Starting with this result, Khare proves that for large enough E, 
is an isomorphism; his proof avoids the special arguments of Wiles and Taylor-Wiles
in the minimal case. Of course, this last result suffices for proving modularity results.
(It seems that from this one also easily obtains the result for all E.)

Breuil and Mezard have released a preprint ([5]) in which they give a conjectural
description of the Samuel multiplicity of local deformation rings in automorphic
terms. They also prove this conjecture in many cases. 

APPENDIX A

GALOIS REPRESENTATIONS ASSOCIATED TO MODULAR
FORMS

The aim of this section is to recall what we need about the Galois representations
associated to modular forms. For simplicity, we only discuss the case of forms of
weight two, so that we only need to deal with the cohomology of the constant sheaf
on modular curves. We use the now standard point of view that was initiated by
Deligne in [18]. As a general reference for this section, we recommend [26].

The object from which everything originates here is the Shimura datum (GL2, 
with acting on I~~ - P~(C) - in the usual way. Let A denote
the ring of adeles of Q, and Af its subring of the finite adeles. For every com-

pact open subgroup U of GL2(Af), let denote the complex analytic variety
x it can be compactified, by adding a finite number of

points, to a smooth compact Riemann surface (usually not connected) We
denote the associated complex algebraic curve by Xu,c. The interpretation of these
curves as moduli spaces of elliptic curves with level structures give models XU,Q
over Q. The inverse limit XQ of the XU,Q has an action, from the right, by 
For £ prime, the Qf-vector space:

has an action by GQ x GL2 (Af) . In order to understand the decomposition of Hf as
a representation of GL2(Af), one uses the Hodge decomposition:



On S~1(XU(~)) one no longer has an action of GL2(Af), but it still is a module over the
Hecke algebra associated to U: the convolution algebra of compactly supported bi-LT-
invariant functions on GL2(Af) (say that GL2(Z) has measure one). The q-expansion
principle and some theory of smooth irreducible representations of the GL2(Qp) show
that S~1(X((C)) decomposes into a direct sum of irreducible ones, each one occurring
only once:

where f runs through the set of newforms of weight two with coefficients in C.
We recall that for all p we have a chosen embedding Q - Qp. It follows that HE
decomposes as a direct sum:

with f running through the set of weight two newforms with coefficients in Qf, and
with p j : GL2(Qf) a continuous representation. We note that p f is realized over
any finite extension over which is defined. The representation Try is a restricted

tensor product ~’p03C0 f,p over all primes, with each 03C0p an infinite dimensional irreducible
admissible representation of GL2(Qp). On the Galois side, we define, for each prime
p, := pflGp’ With these definitions, one knows that, for p ~ .~, 7rf,p and

determine each other via a suitably normalized local Langlands correspondence.
(This was first proved at the unramified places by Eichler and Shimura, then for ~r f,~>
principal series or special by Langlands, then for p 7~ 2 by Deligne, and finally for
all p by Carayol, and simplified by Nyssen.) The representation is usually not
determined by (just think of the case where f corresponds to an elliptic curve with
split multiplicative reduction at ~, where almost determines the elliptic curve),
but Saito has shown in [47] that the (03C6, N, Gl)-module obtained by forgetting the
filtration of the filtered (~, N, Gf)-module corresponding to via Fontaine’s functor

([32, §10]) corresponds to ~r (Actually, in the weight two case that we consider this
is in fact easily deduced from the results for p ~ ~; see [14, Appendix B].)

In order to fix notation, let us give a precise description of this local correspondence,
so that there is no ambiguity about the normalization. To do this, we first recall
that the best way to formulate the local Langlands correspondence is in terms of
the Weil-Deligne group (see [56, §4] and [19]). For p prime, the Weil group Wp
of Qp is the subgroup of Gp consisting of elements whose image in Gpp is in Frobp
(Frobp: x f-7 xP is the arithmetic Frobenius). The Weil-Deligne group is an object W;
that is defined so that a representation of W; on a finite dimensional E-vector space
(E D Q) is a pair (V, N) with V a continuous representation of Wp (with the discrete
topology on V), and a nilpotent endomorphism N of V such that wNw-lv = pNv
for all v in V and w in Wp mapping to Frobp. Such a pair is called F-semisimple
if V is semisimple as a representation of Wp. With these definitions, there are
canonical bijections between the set of (isomorphism classes of) infinite dimensional



irreducible admissible representations of GL2(Qp) over Q, and the set of 2-dimensional
F-semisimple representations of Wp over Q. These bijections are such, that local L
and ê-factors on both sides (suitably normalized) correspond, and they are compatible
with the action of GQ on both sides. For p 7~ 2, this is easy, since one can easily write
down the elements on both sides (on the Galois side, one uses that the wild inertia
acts reducibly). For p = 2, this is harder; the general case was worked out by Kutzko.
If V is a finite dimensional K-vector space, with K a finite extension of Qf, and p ~ .~,
there is an equivalence between representations of W~ on V as above, and continuous
representations of Wp on V.

Following [14], we normalize the local Langlands correspondence WD in such
a way that viewed as a representation of W~ over Qf, is isomorphic to
Qf ~~ for each newform f with coefficients in ~. If is as in ~9~,
then we have f,p) _ f,p) ~ x, where x is the unramified character that sends
Frobp to p. If is unramified, i.e., if p does not divide the level of f, then is

unramified and is semisimple (remember that we are in weight two) and
has characteristic polynomial where tp and sp are the eigenvalues of f
for the Hecke and diamond operators Tp and Sp that are defined by the double cosets

and ° ) U, with U = GL2(Zp). The determinant of p j,p is where

is the central character of ~r j,p , viewed as a character of Wp~ via the isomorphism
of class field theory under which the image of p in Qp/Z* corresponds to Frobp. If x
is a continuous character Q*, then ~ (x det)) ^’ ~ x.

To finish this section, let us recall some facts about the classification of the two-
dimensional semisimple representations of Wp, over C, say. Let p be such a represen-
tation, on a C-vector space V, say. If p is reducible, it is a sum of two characters.

Suppose p irreducible. Since the wild inertia subgroup of Ip acts on V via a
finite p-group, it acts via two characters (possibly equal), unless p = 2 (recall that the
dimension of an irreducible complex representation of a finite group divides the order
of the group). Suppose that splits as a sum of two distinct characters. Then
Wp acts on the set of the two corresponding lines in V, and non-trivially because p
is irreducible. It follows that p becomes reducible over a quadratic extension of Qp.
Suppose now that acts via scalars on V. Then, considering the action of Wp/Ip
(which is the semi-direct product of Z by jpame) on P(V), one sees that, again, p
becomes reducible over a quadratic extension of Qp. So the conclusion is this: the
two-dimensional complex semisimple representations of Wp are sums of two characters,
or induced from a character of WK with K quadratic over Qp, or such that p = 2
and acts irreducibly (these latter ones were first classified by Weil [63], in his
"exercices dyadiques"; clearly, the title of [4] is inspired by this). 



APPENDIX B

TYPES ASSOCIATED TO ~-ADIC REPRESENTATIONS AND TO

ELLIPTIC CURVES

Let £ be any prime. We recall that an extended £-type (over Qf) is an isomorphism
class of two-dimensional representations over Qf of the Weil-Deligne group W; of
Qf (see Appendix A), and that types are isomorphism classes of restrictions to I~-
of extended £-types. We want to describe how one attaches an extended type to
a continuous representation p : GL2(O), with 0 the ring of integers of a finite
extension K of Ql contained in Ql, under the assumption that p is potentially Barsotti-
Tate. So let p be such a representation, and let F be a finite extension of Qp over
which p becomes Barsotti-Tate, i.e., such that is isomorphic to for some

£-divisible group with 0-action over the ring of integers OF of F. Of course, one

solution to this is simply to apply Fontaine’s Dst, F functor as in [32, §10(b)], but
in this simple case of p-divisible group schemes one can be more explicit. Another

reason for doing this more explicitly is that one wants to do computations in the case
of elliptic curves. For more details we refer to [14, Appendix B].

The representation p we have corresponds to an £-divisible group ~~~ over Qp, with
0-action. Let F be a finite Galois extension of Qf such that ~F extends (uniquely,
by [55, Theorem 4]) to an £-divisible group ~oF over OF, with 0-action. Let F

denote For every (J in r, we have commutative diagrams:

with kF the residue field of OF. The last diagram gives a right action of Gf on 

Let d : Wf -t Z be the morphism such that a in Wf induces the power of the

absolute Frobenius on Then we get a morphism from Wf to (Q 0 EndkF ))*
by sending a to [03C3]-1Frobd(03C3) abs. Now let D denote the contravariant Dieudonné module

functor. with ~ denoting W(kF)-dual, is a free K ~Zl W(kF)-
module of rank two, with a left action by Wf. The extended £-type WD(p) associ-
ated to p is then the two-dimensional Qf vector space obtained by base change via

K 0z, W(kF) - Qf (note that both K and F are subfields of Qf); the monodromy
operator is defined to be zero, as we have good reduction.

We can repeat the construction above, with ~~Q replaced by an elliptic curve E
over Qf, with good reduction EoF over OF. Then one gets morphisms:



More generally, one can start with a newform f with coefficients in Q, 
and then one

has:

by the results of Appendix A.

In [62] one can find a complete description of all Pf that arise from elliptic 
curves

over Qf, in terms of their associated filtered (03C6, N, Gl)-modules.
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